Magnus Based Airborne Wind Energy Systems

Abstract : Last century has been the century of the technology revolution. Fossil fuels have fueled this technology revolution. The challenges faced by our society be it the climate change or the world energy situation or the depletion of fossil fuel reserves are the most grievous challenges faced by any generation. Renewable energy is believed to be the key to energy problems of our society. There are many innovative technologies competing against each other to fuel the next energy revolution. Renewables sources of energies such as solar, wind, biomass, hydropower, geothermal etc. Though promising but due to the high economic cost and limited application they are yet to prove their mass scale applicability. Almost all of them are seasonal, hence, are discontinuous and non-uniform sources of energy. They also have a limitation in terms of choice of plant sites, and generally, require large tracts of land for plants which lead to low power density per unit area.Nonetheless, Wind and Solar energy have attracted a lot of attention in the last few decades. However, for the world to fully shift from fossil fuels and nuclear energy to Wind and Solar power, it is necessary to develop new kind of systems which can generate continuous power at a lower cost with fewer site selection constraints.In the quest to find the perennial clean source of energy. Our society is looking towards the scientific community for innovative solutions. This thesis is one such step towards finding innovative solutions to our energy problems. High altitude wind energy systems (HAWE) or more commonly known as Airborne wind energy systems (AWES) are believed to be the answer to the energy needs of the future generations. Airborne wind energy (AWE) is an innovative concept aiming at utilizing the energy of the high altitude wind currents, as high altitude wind currents are almost uniform across the globe, and AWES can be practically set-up anywhere around the world. Also, the proposed AWE systems require less structural material. Thus, they are expected to be much cheaper than any other available energy source. Therefore, AWE is a promising prospect in this quest to find a solution to our energy problems.In this work, the feasibility of Magnus-based airborne wind energy systems is explored. The work presents in detail a brief history of Airborne wind energy systems and the basic concepts needed to develop an understanding about the AWE technology. It discusses in detail Magnus-based airborne systems and gives a historical perspective on the Magnus-effect based machines. It discusses in detail the aerodynamical properties of the Magnus effect and presents an aerodynamic model for such systems. Since modeling is an important aspect of any technology. This work presents a detailed model of the Magnus-based AWE systems along with the control algorithms required for the operation of such systems. A common tool used to analyze wind-based energy systems is power curves. This work presents an approach to design power curves for AWE systems in order to analyze the power producing capabilities of Airborne wind energy systems.
Document type :
Theses
Complete list of metadatas

Cited literature [123 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02113723
Contributor : Abes Star <>
Submitted on : Tuesday, May 28, 2019 - 11:15:12 AM
Last modification on : Friday, June 7, 2019 - 3:51:55 PM

File

GUPTA_2018_diffusion.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02113723, version 2

Collections

Citation

Yashank Gupta. Magnus Based Airborne Wind Energy Systems. Automatic. Université Grenoble Alpes, 2018. English. ⟨NNT : 2018GREAT094⟩. ⟨tel-02113723v2⟩

Share

Metrics

Record views

163

Files downloads

95