Skip to Main content Skip to Navigation

Infection à entérovirus in vitro et in vivo

Abstract : Enterovirus genus encompasses a number of non-enveloped RNA viruses grouped into 12 species, EV-A-J and Rhinovirus A-C. Group B coxsackieviruses (CV-B) belong to the EV-B species. CV-B and particularly CV-B4 is thought to be involved in the development of chronic diseases like type 1 diabetes (T1D). A strain of CV-B4 (CV-B4 E2) was isolated from the pancreas of a patient with T1D, and was able to induce a hyperglycemia in mouse. The mechanisms of the enteroviral pathogenesis of T1D are not well known yet. It has been observed that the infection of human monocytes with CV-B4 E2 in vitro can be enhanced by anti-VP4 antibodies bound to the virus, and human macrophages are also infected by CV-B4 in vitro. The in vitro studies are rich with information but in vivo infection models are needed to better understand the mechanisms of enterovirus infections. Despite the effect of enterovirus on health, the means in the fight against these viruses are limited.Our main objectives were i) to investigate CV-B4 E2-infection in mice and to determine whether monocytes / macrophages are targets of the virus in vivo ii) to implement a CV-B4 E2-induced diabetes model in mice iii) to study the anti-CV-B4 activity of various molecules in vitro iiii) To highlight the natural occurrence of enterovirus infections in animals.Viral RNA was found in vivo in monocytes (CD14+) and macrophages (F4/80+) of the spleen and in bone marrow cells of ICR-CD1 mice inoculated with CV-B4 E2. In vitro, CV-B4 E2 infected the CD14+ and the F4/80+ cells of the spleen. Bone marrow-derived macrophages (BMDM) were infected by CV-B4 in vitro. The serum of CV-B4 E2- infected mice enhanced in vitro the infection of spleen cells by CV-B4 E2 but not the infection of BMDM. ICR-CD1 mice, treated with a sub-diabetogenic dose of Streptozotocin β (STZ), and afterwards inoculated with CV-B4 E2 developped hyperglycaemia and hypoinsulinemia. The viral load of pancreas assessed by quantitative RT-PCR was not different in diabetic animals (STZ/CV-B4 E2) compared to non-diabetic animals inoculated with CV-B4 E2. Histological analysis of diabetic animals highlighted an inflammation of pancreas isletsPirodavir-derived molecules, which bind to the enteroviruses capsid, inhibited the infection with echovirus 7 and 11 but not the infection with CV-B4 E2 in vitro. On the other hand, it was displayed that an anti-CV-B4 E2 effect of fluoxetine in cultures of mouse pancreas fragments and mouse beta cells. The detection of anti-VP4 antibodies in serum by ELISA using a 50 amino acids peptide of VP4 from EV-G1 (a porcine enterovirus) was applied to piglets to highlight enterovirus infections. A strong sequence homology (88%) between the VP4 of EV-G1 and of other EV-G suggests that antibodies directed against viruses other than EV-G1 can be detected.In conclusion, CV-B4 E2 can infect monocytes and macrophages in vitro and in vivo in a murine system, and the virus can cause diabetes in mice previously exposed to low doses of STZ. Fluoxetine inhibits the infection of pancreatic cells with CV-B4 E2 in vitro. The detection of anti-EV-G1-VP4 antibodies highlighted natural enterovirus infections in young pigs. This porcine model could be used to study the pathophysiology of enterovirus infections and to evaluate approaches aimed to fight these viruses.
Document type :
Complete list of metadatas
Contributor : Abes Star :  Contact
Submitted on : Friday, January 11, 2019 - 4:46:10 PM
Last modification on : Tuesday, September 15, 2020 - 4:27:38 AM


Version validated by the jury (STAR)


  • HAL Id : tel-01956976, version 2



Mehdi Ayech Benkahla. Infection à entérovirus in vitro et in vivo. Médecine humaine et pathologie. Université du Droit et de la Santé - Lille II, 2016. Français. ⟨NNT : 2016LIL2S053⟩. ⟨tel-01956976v2⟩



Record views


Files downloads