Skip to Main content Skip to Navigation

Etude de la couche de surface atmosphérique et des flux turbulents sur deux glaciers de montagne dans les Andes tropicales et les alpes Françaises

Abstract : We study turbulent fluxes of sensible and latent heat, that are a poorly-known and difficult term to measure over glaciers, with the help of two field campaigns deployed over the ablation zone of Zongo glacier (16°S, Bolivia, 4900-6000 m.a.s.l.) during the austral winter dry season and over the Saint-Sorlin glacier (French Alps, 45°N, 2600-3400 m.a.s.l.) during the boreal summer. A 6-m mast allowing for wind speed and air temperature vertical profile measurements was installed, along with 2-m masts holding eddy-covariance systems. The focus is on the temporal evolution of turbulent fluxes and the applicability of the aerodynamic profile method in the complex terrain of high mountains. The assumptions of the method are discussed by characterizing the wind regimes and the turbulence. We then compute fluxes and associated errors. Above Zongo glacier, under weak synoptic forcing, katabatic flows are observed from late afternoon to early morning, with a wind-speed maximum at around 2 m. Strong synoptic forcing roughly aligns with the glacier, leading to strong downslope flows for which no wind-speed maximum is observed. Most of the days around noon, upslope flows are observed. On Saint-Sorlin glacier in summer, flows associated with low-pressure systems coming from the west or Foehn events roughly align with the glacier, leading to strong downslope winds. Wind-speed maxima are observed night and day, ~50% of the time, when synoptic forcing is moderate. Upslope flows are observed 15% of the time, when synoptic forcing is weak. The surface layer is disturbed by outer-layer eddies in strong flows and by slow oscillations if katabatic flow prevails. These disturbances influence turbulent fluxes. Random errors on the fluxes derived from the profile method are mainly due to temperature uncertainties. Errors remain small on the mean fluxes. The surface layer is rarely deeper than 2 m on both glaciers and the profile method with measurements made above that height underestimates the surface fluxes by 20% to 70%. When a wind-speed maximum is observed, fluxes are underestimated even at 2 m. The influence on the fluxes of the surface-layer disturbances is not captured by the profile method, and fluxes are about 40% smaller than the eddy-covariance fluxes. The latter are affected by large random errors due to inadequate statistical sampling of large-scale eddies and are probably underestimated, mainly due to vertical wind speed underestimation (~15%) and to vertical flux divergence. Above Zongo glacier, due to the dry high-elevation air, sublimation (a few millimeters w. e. per day) is a large energy loss for the surface. Sensible heat flux is a large energy gain in strong nocturnal downslope flows (from 30 to 50 W m-2) and strong winds, due to a marked temperature inversion. When a wind-speed maximum is observed, low wind speeds cause small turbulent fluxes (from 5 to 20 W m-2). The sum of turbulent fluxes is small in those two cases because the fluxes are opposed in sign and the biases mostly compensate. In upslope flows, the sensible heat flux is small (<5 W m-2) due to near-neutral stratification, but latent heat losses remain large (around -25 to -35 W m-2), so that the net turbulent flux is large and the biases do not compensate. Above Saint-Sorlin glacier, the latent heat flux remains small because the air is generally humid, whereas the sensible heat flux can be large (~25 W m-2) when wind speed is high. The net flux is large when wind speed is high, and the biases on net turbulent fluxes derived from the profiles can be significant.
Document type :
Complete list of metadatas

Cited literature [164 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Friday, January 12, 2018 - 1:36:11 PM
Last modification on : Wednesday, October 14, 2020 - 3:48:39 AM
Long-term archiving on: : Wednesday, May 23, 2018 - 7:57:27 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01681289, version 2



Maxime Litt. Etude de la couche de surface atmosphérique et des flux turbulents sur deux glaciers de montagne dans les Andes tropicales et les alpes Françaises. Sciences de la Terre. Université Grenoble Alpes, 2015. Français. ⟨NNT : 2015GREAU005⟩. ⟨tel-01681289v2⟩



Record views


Files downloads