Rubidium vapors in high magnetic fields - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2016

Rubidium vapors in high magnetic fields

Vapeurs de rubidium sous champs magnétiques intenses

Résumé

Optical spectroscopy of simple atoms allows a very precise measurement of the atomic properties and of the external perturbations, as applied magnetic or electric fields. The Zeeman spectrum represents a magnetic field fingerprint. In this work we present our investigations about rubidium response to high magnetic fields in order to use it as magnetic field probe in the range 0.1 T - 60 T. This work was carried out in the framework of the RUHMA (RUbidium Atoms in High MAgnetic fields) project. Our investigation opens the path to magnetic field optical metrology, converting a magnetic fi eld measurement into an optical frequency determination . The principle of the experiment is to compare experimental atomic spectra with computed theoretical spectra, in order to extract the value of the magnetic field strength. We performed our preliminary tests in static magnetic fields, ranging from 0.06 T to 0.2 T. In this framework we investigated in details some complex spectroscopic structures due to the multi-level nature of the atomic system. After this preliminary phase, the 1T-60T range have been investigated using the pulsed magnets of the Laboratoire National des Champs Magnétiques Intenses in Toulouse. We carried out an effort of miniaturization of the experimental setup in order to satisfy the constraints imposed by high magnetic field experiments. We performed metrology of pulsed magnetic field up to 58 T, which is the highest field an atomic gas has never been exposed. The accuracy of our method attained the level of 10 -4 .
La spectroscopie optique des atomes simples permet une mesure très précise des propriétés atomiques et des perturbations extérieures, comme par exemple des champs électriques ou magnétiques appliqués. Le spectre Zeeman correspond à une signature du champ magnétique. Dans cette thèse nous présentons l'étude de la réponse du rubidium aux champs magnétiques intenses, dans le but d'utiliser celle-ci comme une sonde de champ magnétique dans l'intervalle de 0.1 T à 60 T. Ce travail a été réalisé dans le cadre du projet RUHMA (RUbidium Atoms in High MAgnetic fields). Notre étude ouvre la voie à la métrologie optique des champs intenses, en déterminant un champ magnétique grâce à la mesure d'une fréquence optique. Le principe de l'expérience consiste à comparer les spectres atomiques expérimentaux et les spectres théoriques calculés, afin d'obtenir la valeur de l'intensité du champ. Nous avons réalisé des premiers tests en champ magnétiques statiques, compris entre 0.06 T et 0.2 T. Dans ce régime, nous avons étudié en détails les effets dus à la structure particulière des niveaux d'énergie du système atomique: des configurations à trois ou quatre niveaux produisent des nouvelles résonances et influencent l'amplitude des signaux observés . Après cette phase préliminaire, le régime de champs intenses (entre 1 T et 60 T) a été exploré, en utilisant les bobines pulsées du Laboratoire National des Champs Magnétiques Intenses de Toulouse. L'une des tâches critiques de ce travail a été la miniaturisation du système expérimental, dans le but de satisfaire les contraintes imposées par une expérience en champ intense. Avec ce système nous avons pu étudier la métrologie des champs pulsés jusqu'à environ 58 T , ce qui est, à ce jour, le champ le plus intense auquel un gaz atomique n'a jamais été soumis. L'incertitude relative de notre méthode est de l'ordre de 10 -4 .
Fichier principal
Vignette du fichier
thesescotto.pdf (7.31 Mo) Télécharger le fichier

Dates et versions

tel-01482289 , version 1 (03-03-2017)
tel-01482289 , version 2 (13-11-2017)

Identifiants

  • HAL Id : tel-01482289 , version 1

Citer

Stefano Scotto. Rubidium vapors in high magnetic fields. Atomic Physics [physics.atom-ph]. Université de Toulouse (Paul Sabatier); Università degli studi di Pisa, 2016. English. ⟨NNT : ⟩. ⟨tel-01482289v1⟩
246 Consultations
1487 Téléchargements

Partager

Gmail Facebook X LinkedIn More