Skip to Main content Skip to Navigation
Theses

Applications des méthodes multigrilles à l'assimilation de données en géophysique

Résumé : Depuis ces trente dernières années, les systèmes d'observation de la Terre et les modèles numériques se sont perfectionnés et complexifiés pour nous fournir toujours plus de données, réelles et numériques. Ces données, de nature très diverse, forment maintenant un ensemble conséquent d'informations précises mais hétérogènes sur les structures et la dynamique des fluides géophysiques. Dans les années 1980, des méthodes d'optimisation, capables de combiner les informations entre elles, ont permis d'estimer les paramètres des modèles numériques et d'obtenir une meilleure prévision des courants marins et atmosphériques. Ces méthodes puissantes, appelées assimilation variationnelle de données, peinent à tirer profit de la toujours plus grande complexité des informations de par le manque de puissance de calcul disponible. L'approche, que nous développons, s'intéresse à l'utilisation des méthodes multigrilles, jusque là réservées à la résolution de systèmes d'équations différentielles, pour résoudre l'assimilation haute résolution de données. Les méthodes multigrilles sont des méthodes de résolution itératives, améliorées par des corrections calculées sur des grilles de plus basses résolutions. Nous commençons par étudier dans le cas d'un modèle linéaire la robustesse de l'approche multigrille et en particulier l'effet de la correction par grille grossière. Nous dérivons ensuite les algorithmes multigrilles dans le cadre non linéaire. Les deux types d'algorithmes étudiés reposent d'une part sur la méthode de Gauss Newton multigrille et d'autre part sur une méthode sans linéarisation globale : le Full Approximation Scheme (FAS). Ceux-ci sont appliqués au problème de l'assimilation variationnelle de données dans le cadre d'une équation de Burgers 1D puis d'un modèle Shallow-water 2D. Leur comportement est analysé et comparé aux méthodes plus traditionnelles de type incrémentale ou multi-incrémentale.
Document type :
Theses
Complete list of metadatas

Cited literature [73 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00574221
Contributor : Abes Star :  Contact
Submitted on : Wednesday, May 2, 2012 - 5:12:23 PM
Last modification on : Friday, July 3, 2020 - 4:46:10 PM
Document(s) archivé(s) le : Friday, August 3, 2012 - 2:47:33 AM

File

Neveu_Emilie_2011_archivage.pd...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-00574221, version 2

Collections

Citation

Emilie Neveu. Applications des méthodes multigrilles à l'assimilation de données en géophysique. Mathématiques générales [math.GM]. Université de Grenoble, 2011. Français. ⟨NNT : 2011GRENM009⟩. ⟨tel-00574221v2⟩

Share

Metrics

Record views

934

Files downloads

693