Abstract : In this work we study different instability phenomena for nonlinear Schrödinger equations.\\[3pt]
In the first part we show a phase decoherence mechanism for the semiclassical Gross-Pitaevski equation in dimension 3. This geometrical phenomenon occurs because the harmonical potential allows the construction of stationnary solutions to the equation which concentrate on circles of R^{3}.
In the second part, we obtain a geometric instability result for the cubic NLS on a riemannian surface. We assume that this surface admits a stable and nondegenerate periodic geodesic. Then with a WKB method we construct nonlinear quasimodes and we obtain approximate solutions to the equation for times such that instability occurs. Thus we generalize results of Burq-Gérard-Tzvetkov for the sphere.
In the last part, we consider supercritical Schrödinger equations on a riemannian manifold of dimension $d$. Thanks to nonlinear geometric optics in an analytic frame, we show a mechanism of loss of derivatives in Sobolev spaces, and an instabilty in the energy space.
Résumé : Dans cette thèse on s'est intéressé à différents phénomènes d'instabilités pour des équations de Schrödinger non-linéaires.
Dans la première partie on met en évidence un mécanisme de décohérence de phase pour l'équation (semi-classique) de Gross-Pitaevski en dimension 3. Ce phénomène géométrique est dû à la présence du potentiel harmonique, qui permet de construire -via une méthode de minimisation- des solutions stationnaires se concentrant sur des cercles de R^{3}.
Dans la deuxième partie, on obtient un résultat d'instabilité géométrique pour NLS cubique posée sur une surface riemannienne possédant une géodésique périodique, stable et non-dégénérée. Avec une méthode WKB, on construit des quasimodes non-linéaires, qui permettent d'obtenir des solutions approchées pour des temps pour lesquels l'instabilité se produit. On généralise ainsi des travaux de Burq-Gérard-Tzvetkov pour la sphère.
Enfin, dans la dernière partie on considère des équations sur-critiques sur une variété de dimension d. Grâce à une optique géométrique non-linéaire dans un cadre analytique on peut montrer un mécanisme de perte de dérivées dans les espaces de Sobolev, et une instabilité dans l'espace d'énergie.