Les singularités des polynômes à l'infini et les compactifications toriques

Résumé : Cette thèse porte sur l'étude de la topologie des fibres d'un polynôme complexe. Dans les préliminaires, on présente les différentes techniques qui seront utilisées comme les champs de vecteurs stratifiés et les conditions de contrôles sur ces champs, les variétés toriques. On présente aussi quelques résultats préparatoires sur les propriétés de la compactification torique des fibres d'un polynôme.

Le chapitre 2 donne les principaux résultats de cette thèse dans le cas d'une compactification torique par poids de l'espace affine C^n. On démontre la trivialité affine d'un polynôme à l'aide de l'hypothèse de modération sur le gradient par poids de Malgrange-Paunescu : |grad_Wf(z)|_W est minoré. On démontre aussi grâce à la même hypothèse de modération sur le gradient la propriété locale suivante : le champ de vecteurs de Kuo-Paunescu après modification torique donne un champ de vecteurs controlé par rapport au diviseur à l'infini. Cette dernière condition nous donne la condition la plus importante : la condition non-caractéristique. On en déduit la trivialité locale en un point du diviseur.

Le chapitre 3 est basé sur les travaux de Hamm, Lê et Mebkhout. Il décrit la correspondance entre la condition non-caractéristique obtenue au chapitre 2 et la notion de cycles évanescents ainsi que celle de trivialité locale.

Le chapitre 4 présente la généralisation des théorèmes du chapitre 2 pour une compactification torique quelconque de l'espace affine C^n.
Type de document :
Thèse
Mathématiques [math]. Université d'Angers, 2002. Français
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://tel.archives-ouvertes.fr/tel-00002671
Contributeur : David Alessandrini <>
Soumis le : jeudi 15 mars 2007 - 22:47:40
Dernière modification le : lundi 5 février 2018 - 15:00:03
Document(s) archivé(s) le : vendredi 25 novembre 2016 - 14:23:18

Fichiers

Identifiants

  • HAL Id : tel-00002671, version 3

Citation

David Alessandrini. Les singularités des polynômes à l'infini et les compactifications toriques. Mathématiques [math]. Université d'Angers, 2002. Français. 〈tel-00002671v3〉

Partager

Métriques

Consultations de la notice

326

Téléchargements de fichiers

177