Bibliographie

[1]    Antonov, J., S. Levitus, T. P. Boyer, M. Conkright, T. O. Brien, et C. Stephens, World ocean atlas, NOAA Atlas NESDIS, Wash., D.C., 1998.

[2]    Apel, J. R., An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter, Journal of Geophysical Research, 99, 16,269-16,291, 1994.

[3]    Barber, D., et al., Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes, Nature, 400, 344-348, 1999.

[4]    Blanch, S., et A. Aguasca, Sea water dielectric permittivity models: review and impact on the brightness temperature at L-band, in LOSAC/WISE/EuroSTARRS workshop, SP-525, ESTEC/European Space Agency, 2003.

[5]    Blume, H.-J. C., A. W. Love, M. J. V. Melle, et W. W. Ho, Radiometric observations of sea temperature at 2.65 GHz over Cheasapeake Bay, IEEE Transactions on Antennas and Propagation, AP-25, 121-128, 1977.

[6]    Boutin, J., E. Obligis, et E. Dinnat, WP1120, Influence of surface roughness on Tb simulated in L-band by Yueh-LODYC emissivity model and by UCL model - analyse of the differences, in Scientific requirements and impact of space observation of ocean salinity for modeling and climate studies: final report, NERSC technical report no214 under contract no14273/00/NL/DC European Space Agency, 2002.

[7]    Boyer, T. P., S. Levitus, J. Antonov, M. Conkright, T. O. Brien, et C. Stephens, World ocean atlas, NOAA Atlas NESDIS, Wash., D.C., 1998.

[8]    Businger, J. A., Turbulent transfert in the atmospheric surface layer, American Meteorological Society, Boston, Mass., 1973.

[9]    Camps, A., WInd and Salinity Experiment 2000 (WISE 2000), Tech. Rep. 14188/00/NL/DC, ESTEC, 2001.

[10]    Chaigneau, A., et R. Morrow, Surface temperature and salinity variations between Tasmania and Antartica, 1993-1999, Journal of Geophysical Research, 107, 22-1-22-7, 2002.

[11]    Chandrasekhar, S., Radiative transfert, Dover, New York, 1960.

[12]   Charnock, H., Wind stress on a water surface, Q. J. R. Meteorol. Soc., 81, 639-640, 1955.

[13]   Charnock, H., A note on empirical wind-wave formulae, Q. J. R. Meteorol. Soc., 84, 443-447, 1958.

[14]   Cox, C., et W. Munk, Measurement of the roughness of the sea surface from photographs of the sun’s glitter, Journal of the Optical Society of America, 44, 838-850, 1954.

[15]   Cox, R. A., The salinity problem, vol. 1, Macmillan, New York, 1970.

[16]   Crawford, J., Frank S., Ondes - Berkeley : cours de physique, vol. 3, Armand Colin, Paris, 1972.

[17]   Deane, G. B., et M. D. Stokes, Scale dependence of bubble creation mechanisms in breaking waves, Nature, 418, 839-844, 2002.

[18]   Debye, P., Polar molecules, Chemical Catalogue Company, New York, 1929.

[19]   Delahaye, J.-Y., P. Golé, et P. Waldteufel, Calibration error of L-band sky-looking ground-based radiometers, Radio Science, 37, 11-1-11-11, 2002.

[20]   Delcroix, T., Observed surface oceanic and atmospheric variability in the tropical Pacific at seasonal and ENSO timescales: a tentative overview, Journal of Geophysical Research, 103, 18,611-18,633, 1998.

[21]   Delcroix, T., et C. Hénin, Seasonal and interannual variations of sea surface salinity in the tropical Pacific Ocean, Journal of Geophysical Research, 96, 22,135-22,150, 1991.

[22]   Dittmar, W., Report on researches into the composition of ocean water collected by H. M. S. Challenger, in Challenger Report, vol. 1 of Physics and Chemistry, pp. 1-251, 1884.

[23]   Donelan, M. A., et W. J. Pierson, Jr., Radar scattering and equilibrium ranges in wind-generated waves with applications to scatterometry, Journal of Geophysical Research, 92, 4971-5029, 1987.

[24]   Donelan, M. A., F. W. Dobson, S. D. Smith, et R. J. Anderson, On the dependence of sea surface roughness on wave development, Journal of Physical Oceanography, 23, 2143-2149, 1993.

[25]   Droppleman, J. D., Apparent microwave emissivity of sea foam, Journal of Geophysical Research, 75, 696-697, 1970.

[26]   Droppleman, J. D., R. A. Mennella, et D. E. Evans, An airborne measurement of the salinity variations of the Mississippi River outflow, Journal of Geophysical Research, 75, 5909-5913, 1970.

[27]   Dupuis, H., P. K. Taylor, A. Weill, et K. Katsaros, Inertial dissipation method applied to derive turbulent fluxes over the ocean during the Surface of the Ocean, Fluxes and Interactions with the Atmosphere/Atlantic Stratocumulus Transition Experiment (SOFIA/ASTEX) and Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Experimentale (SEMAPHORE) experiments with low to moderate wind speeds, Journal of Geophysical Research, 102, 21,115-21,129, 1997.

[28]   Durand, F., L. Gourdeau, J. Verron, et T. Delcroix, Assimilation of sea surface salinity in a tropical OGCM: a twin experiment approach, Journal of Geophysical Research, 107, 5-1-5-14, 2002.

[29]   Durand, F., L. Gourdeau, J. Verron, et T. Delcroix, Can we improve the representation of modelled ocean mixed-layer by assimilating surface-only satellite-derived data ? A case study for the tropical Pacific during the 1997-98 El Nino, submitted in Journal of Geophysical Research, 2002.

[30]   Durden, S. L., et J. F. Vesecky, A physical radar cross-section model for a wind-driven sea with swell, IEEE Journal of Oceanic Engineering, OE-10, 445-451, 1985.

[31]   Elfouhaily, T., B. Chapron, K. Katsaros, et D. Vandemark, A unified directional spectrum for long and short wind-driven waves, Journal of Geophysical Research, 102, 15,781-15,796, 1997.

[32]   Ellison, W. J., A. Balana, G. Delbos, K. Lamkaouchi, L. Eymard, C. Guillou, et C. Prigent, Study and measurement of the dielectric properties of sea water, Tech. Rep. 11197/94/NL/CN, ESTEC/European Space Agency, 1996.

[33]   Forch, C., M. Knudsen, et S. P. L. Sörensen, Berichte über die Konstantenbestimmungen zur Aufstellung der hydrographischen Tabellen, Naturv. og mathem., 6, 121, 1902.

[34]   Garratt, J. R., Review of drag coefficients over oceans and continents, Monthly Weather Review, 105, 915-929, 1977.

[35]   Guissard, A., Atmospheric instability above the ocean and implications for scatterometry, submitted in IEEE Transactions on Geoscience and Remote Sensing, 2003.

[36]   Hasselmann, K., et al., Measurements of wind-wave growth and swell during the Joint North Sea Wave Project (JONSWAP), vol. 12 of Dtcsh. Hydrog. Z., 1973.

[37]   Ho, W. W., et W. F. Hall, Measurements of the dielectric properties of seawater and NaCl solutions at 2.65 GHz, Journal of Geophysical Research, 78, 6301-6315, 1973.

[38]   Ho, W. W., A. W. Love, et M. J. V. Melle, Measurements of the dielectric properties of sea water at 1.43 GHz, Tech. Rep. CR-2458, NASA, 1974.

[39]   Hollinger, J. P., Passive microwave measurements of sea surface roughness, IEEE Transactions on Geoscience Electronics, GE-9, 165-169, 1971.

[40]   Ikezoe, Y., N. Hirota, J. Nakagawa, et K. Kitazawa, Making water levitate, Nature, 393, 749-750, 1998.

[41]   Irisov, V. G., Small-slope expansion for thermal and reflected radiation from a rough surface, Waves in Random Media, 7, 1-10, 1997.

[42]   Jackson, D. D., Interpretation of inaccurate, insufficient and inconsistent data, Geophysical Journal of the Royal Astronomical Society, 28, 97-109, 1972.

[43]   Johanessen, J., et al., Scientific requirements and impact of space observation of ocean salinity for modeling and climate studies, Tech. Rep. 14273/00/NL/DC, ESTEC/European Space Agency, 2002.

[44]   Johnson, H. K., J. Hojstrup, H. J. Vested, et S. E. Larsen, On the dependence of sea surface roughness on wind waves, American Meteorological Society, 28, 1702-1716, 1998.

[45]   Johnson, J. T., et M. Zhang, Theoretical study of the small slope approximation for ocean polarimetric thermal emission, IEEE Transactions on Geoscience and Remote Sensing, 37, 2305-2316, 1999.

[46]   Jones, I. S. F., et Y. Toba, Wind stress over the ocean, Cambridge University Press, Cambridge, 2001.

[47]   Klein, L. A., et C. T. Swift, An improved model for the dielectric constant of sea water at microwave frequencies, IEEE Transactions on Antennas and Propagation, AP-25, 104-111, 1977.

[48]   Kraus, J. D., Radio Astronomy, McGraw-Hill, New York, 1966.

[49]   Kudryavtsev, V. N., V. K. Makin, et B. Chapron, Coupled sea surface-atmosphere model - 2. spectrum of short wind waves, Journal of Geophysical Research, 104, 7625-7639, 1999.

[50]   Le Vine, D. M., et S. Abraham, The effect of the ionosphere on remote sensing of sea surface salinity of space: absorption and emission at L-band, IEEE Transactions on Geoscience and Remote Sensing, 40, 4, 2002.

[51]   Le Vine, D. M., M. Kao, R. W. Garvine, et T. Sanders, Remote sensing of ocean salinity: results from the Delaware coastal current experiment, Journal of Atmospheric and Oceanic Technology, 15, 1478-1484, 1998.

[52]   Lemaire, D., Non-fully developed sea state characteristics from real aperture radar remote sensing, Ph.D. thesis, Université Catholique de Louvain, 1998.

[53]   Lewis, E. L., The practical salinity scale 1978 and its antecedents, IEEE Journal of Oceanic Engineering, OE-5, 3-8, 1980.

[54]   Liebe, H. J., G. A. Hufford, et M. G. Cotton, Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz, in AGARD 52nd Specialists Meeting of the Electromagnetic Wave Propagation Panel, pp. 3-1-3-10, Palma de Mallorca, Spain, 1993.

[55]   Liu, W. T., et W. Tang, Equivalent neutral wind, Tech. rep., JPL Publication, 1996.

[56]   Long, D. G., et M. Drinkwater, Azimuth variation in microwave scatterometer and radiometer data over Antartica, IEEE transactions on Geoscience and Remote Sensing, 38, 1857-1870, 2000.

[57]   Miller, J. L., M. A. Goodberlet, et J. B. Zaitzeff, Airborne salinity mapper makes debut in coastal zone, EOS, 79, 173-177, 1998.

[58]   Miranda, J., M. Vall-llossera, R. Villarino, et A. Camps, Sea state and rain effects in the sea surface emissivity at L-band, in LOSAC/WISE/EuroSTARRS workshop, SP-525, ESTEC/European Space Agency, 2003.

[59]   Molines, J. M., B. Barnier, C. Boone, P. Y. Le Traon, et M. Espino, Scientific requirements and impact of space observation of ocean salinity for modeling and climate studies- CLIPPER model results, Tech. Rep. 14273/00/NL/DC, ESTEC/European Space Agency, 2002.

[60]   Monahan, E. C., et M. Lu, Acoustically relevant bubble assemblages and their dependence on meteorological parameters, IEEE Journal of Oceanic Engineering, 15, 340-349, 1990.

[61]   Monahan, E. C., et I. G. O’Muircheartaigh, Optimal power-law description of oceanic whitecap coverage dependence on wind speed, Journal of Physical Oceanography, 10, 2094, 1980.

[62]   Monahan, E. C., et I. G. O’Muircheartaigh, Whitecaps and the passive remote sensing of the ocean surface, International Journal of Remote Sensing, 7, 627-642, 1986.

[63]   Moskowitz, L., Estimates of the power spectrums for fully developed seas for wind speeds of 20 to 40 knots, Journal of Geophysical Research, 69, 5161-5179, 1964.

[64]   Munk, W. H., A critical wind speed for air-sea boundary processes, Journal of Marine Research, 6, 203, 1947.

[65]   Neumann, G., et W. J. Pierson, Jr., Principles of physical oceanography, Prentice-Hall, Inc., London, 1966.

[66]   Nordberg, W., J. Conaway, D. B. Ross, et T. Wilheit, Measurements of microwave emission from a foam-covered, wind-driven sea, Journal of The Atmospheric Sciences, 28, 429-435, 1971.

[67]   Ogilvy, J. A., Theory of wave scattering from random rough surfaces, IOP Publishing Ltd, London, 1991.

[68]   Phillips, O. M., The equilibrium range in the spectrum of wind-generated waves, Journal of Fluid Mechanics, 4, 426-434, 1958.

[69]   Phillips, O. M., Spectral and statistical properties of the equilibrium range in wind-generated gravity waves, Journal of Fluid Mechanics, 156, 505-531, 1958.

[70]   Pickard, G. L., et W. J. Emery, Descriptive physical oceanography, Butterworth Heinemann, Oxford, 1964.

[71]   Pierson, W. J., The theory and applications of ocean wave measuring systems at and below the sea surface, on the land, from aircraft, and from spacecraft., Tech. Rep. CR-2646, N76-17775, NASA, 1976.

[72]   Pierson, W. J., Jr., et L. Moskowitz, A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii, Journal of Geophysical Research, 69, 5181-5190, 1964.

[73]   Prigent, C., et P. Abba, Sea surface equivalent brightness temperature at millimeter wavelengths, Annales Geophysicae, 8, 627-634, 1990.

[74]   Reich, P., et W. Reich, A radio continuum survey of the northern sky at 1420 MHz, part II, Astron. Astroph. Suppl. Ser., 63, 205-292, 1986.

[75]   Reul, N., et B. Chapron, WP1300, Foam emissivity modeling, Tech. Rep. 14273/00/NL/DC, ESTEC/European Space Agency, 2002.

[76]   Reynolds, R. W., et T. M. Smith, Improved global sea surface temperature analyses using optimum interpolation, Journal of Climate, 7, 929-948, 1994.

[77]   Saillard, M., et A. Sentenac, Rigorous solutions for electromagnetic scattering from rough surfaces, Waves in Random Media, 11, R103-R137, 2001.

[78]   Schanda, E., Physical fundamentals of remote sensing, Springer-Verlag, Berlin, 1986.

[79]   Schulz, J., WP1200, Impact of rain on sea surface brightness temperature, in Scientific requirements and impact of space observation of ocean salinity for modeling and climate studies: final report, NERSC technical report no214 under contract no14273/00/NL/DC European Space Agency, 2002.

[80]   Smith, S. D., Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature, Journal of Geophysical Research, 93, 15,467-15,472, 1988.

[81]   Soloviev, A., et R. Lukas, Observations of large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool, Deep-Sea Research, 44, 1055-1076, 1997.

[82]   Soriano, G., C.-A. Guérin, et M. Saillard, Scattering by two-dimensional rough surfaces: comparison between the method of moment, Kirchhoff and small-slope approximations, Waves in Random Media, 12, 63-83, 2002.

[83]   Stogryn, A., The apparent temperature of the sea at microwave frequencies, IEEE Transactions on Antennas and Propagation, 77, 1658-1666, 1967.

[84]   Stogryn, A., The emissivity of sea foam at microwave frequencies, Journal of Geophysical Research, 77, 1658-1666, 1972.

[85]   Stogryn, A., Equations for the permittivity of sea water, Tech. rep., GenCorp Aerojet, 1997.

[86]   Stogryn, A. P., H. T. Bull, K. Rubayi, et S. Iravanchy, The microwave dielectric properties of sea and fresh water, Tech. rep., GenCorp Aerojet, 1995.

[87]   Swift, C. T., et R. E. McIntosh, Considerations for microwave remote sensing of ocean-surface salinity, IEEE Transactions on Geoscience and Remote Sensing, GE-21, 480-491, 1983.

[88]   Trokhimovski, Y. G., Gravity-capillarity wave curvature spectrum and mean-square slope retrieved from microwave radiometric measurements (Coastal Ocean Probing Experiment), Journal of Atmospheric and Oceanic Technology, 17, 1259-1270, 2000.

[89]   Tsang, L., J. A. King, et R. T. Shin, Theory of microwave remote sensing, Wiley, New York, 1985.

[90]   Ulaby, F. T., R. K. Moore, et A. K. Fung, Microwave remote sensing - Active and passive, vol. 1, Microwave remote sensing fundamentals and radiometry, Artech House, Boston, 1981.

[91]   Valenzuela, G. R., Theories for the interaction of electromagnetic and oceanic waves - A review, Boundary-Layer Meteorology, 13, 61-85, 1978.

[92]   Villarino, R., A. Camps, M. Vall-llossera, J. Miranda, et J. Arenas, Sea foam and sea state effects on the instantaneous brightness temperatures at L-band, in LOSAC/WISE/EuroSTARRS workshop, SP-525, ESTEC/European Space Agency, 2003.

[93]   Voronovich, A. G., Wave scattering from rough surfaces, Springer-Verlag, Berlin, 1994.

[94]   Webster, W. J., Jr., et T. T. Wilheit, Spectral characteristics of the microwave emission from a wind-driven foam-covered sea, Journal of Geophysical Research, 81, 3095-3099, 1976.

[95]   Weill, A., T. Besnard, S. Contardo, J. Etcheto, et J. Boutin, Wise results from whitecapping and stereophotogrammetry: a tentative of superposition of topography and foam surface to retrieve active and fossil foam, in LOSAC/WISE/EuroSTARRS workshop, SP-525, ESTEC/European Space Agency, 2003.

[96]   Wentz, F. J., Cox and Munk’s sea surface slope variance, Journal of Geophysical Research, 81, 1607-1608, 1976.

[97]   Wilheit, T. T., A model for the microwave emissivity of the ocean’s surface as a function of wind speed, IEEE Transactions on Geoscience Electronics, GE-17, 244-249, 1979.

[98]   Wilson, W., S. Yueh, S. Dinardo, et F. Li, L/S-band radiometer measurements of a saltwater pond, in Geoscience and Remote Sensing Symposium, 2002. IGARSS ’02. 2002 IEEE International, vol. 2, pp. 1120-1122, 2002, tY - CONF.

[99]   Wilson, W. J., S. H. Yueh, S. J. Dinardo, S. L. Chazanoff, A. Kitiyakara, F. K. Li, et Y. Rahmat-Samii, Passive active L- and S-band (PALS) microwave sensor for ocean salinity and soil moisture measurements, IEEE Transactions on Geoscience and Remote Sensing, 39, 1039-1048, 2001.

[100]   Wu, J., Oceanic whitecap and sea state, Journal of Physical Oceanography, 9, 1064-1068, 1979.

[101]   Yueh, H. A., R. T. Shin, et J. A. Kong, Scattering of electromagnetic waves from a periodic surface with random roughness, Journal of Applied Physics, 64, 1657-1670, 1988.

[102]   Yueh, S. H., Modeling of wind direction signals in polarimetric sea surface brightness temperatures, IEEE Transactions on Geoscience and Remote Sensing, 35, 1400-1418, 1997.

[103]   Yueh, S. H., Estimates of Faraday rotation with passive microwave polarimetry for micrawave sensing of Earth surfaces, IEEE Transactions on Geoscience and Remote Sensing, 38, 2434-2438, 2000.

[104]   Yueh, S. H., et R. Kwok, Electromagnetic fluctuation for anisotropic media and the generalized Kirchhoff’s law, Radio Science, 28, 471-480, 1993.

[105]   Yueh, S. H., R. Kwok, et V. Nghiem, Polarimetric scattering and emission properties of targets with reflection symmetry, Radio Science, 29, 1409-1420, 1994.

[106]   Yueh, S. H., R. West, W. J. Wilson, F. K. Li, E. G. Njoku, et Y. Rahmat-Samii, Error sources and feasibility for microwave remote sensing of ocean surface salinity, IEEE Transactions on Geoscience and Remote Sensing, 39, 1049-1060, 2001.