Skip to Main content Skip to Navigation
Journal articles

Structural characteristics of Al2O3 ultra-thin films supported on the NiAl(100) substrate from DFTB-aided global optimization

Abstract : Surfaces of aluminum alloys are often coated with ultra-thin alumina films which form by self-limited selective oxidation. Although the presence of such films is of paramount importance in various applications, their structural and stability characteristics remain far from being known. In particular, on the NiAl(100) substrate, the observed structure has been tentatively assigned to a distorted θ-alumina polymorph, but the film stoichiometry, the nature of its surface and interface terminations, as well as the mechanisms that stabilize the θ phase remain unknown. Using a combined tight-binding/DFT genetic algorithm approach, we explicitly demonstrate that ultra-thin θ(100)-type films correspond to the structural ground state of alumina supported on the (2 × 1)-NiAl(100) substrate. Thus, experimentally observed θ-alumina films correspond to thermodynamic equilibrium, rather than being the result of kinetic effects involved in the alloy oxidation and film growth. They are favoured over other Al2O3 phases of dehydrated boehmite, pseudo-CaIrO3, γ, or bixbyite structures, which have recently been identified among the most stable free-standing ultra-thin alumina polymorphs. Moreover, our results prove that nonstoichiometry can be easily accommodated by the supported θ(100) film structure via an excess or deficiency of oxygen atoms at the very interface with the metal substrate. Dedicated DFT analysis reveals that the oxide-metal interaction at stoichiometric interfaces depends surprisingly little on the composition of the NiAl surface. Conversely, at oxygen-rich/poor interfaces, the number of additional/missing Al–O bonds is directly responsible for their relative stability. Finally the comparison between the experimental and theoretical electronic characteristics (STM and XPS) of supported θ(100)-type films provides clues on the detailed structure of the experimentally observed films.
Complete list of metadata

https://hal.sorbonne-universite.fr/hal-03467087
Contributor : Jacek Goniakowski Connect in order to contact the contributor
Submitted on : Monday, December 6, 2021 - 1:07:56 PM
Last modification on : Friday, January 14, 2022 - 9:38:05 AM

File

 Restricted access
To satisfy the distribution rights of the publisher, the document is embargoed until : 2022-05-13

Please log in to resquest access to the document

Identifiers

Citation

Maxime van den Bossche, Jacek Goniakowski, Claudine Noguera. Structural characteristics of Al2O3 ultra-thin films supported on the NiAl(100) substrate from DFTB-aided global optimization. Nanoscale, Royal Society of Chemistry, 2021, 13 (46), pp.19500-19510. ⟨10.1039/d1nr05705g⟩. ⟨hal-03467087⟩

Share

Metrics

Les métriques sont temporairement indisponibles