2526 articles  [english version]
Fiche détaillée Thèses
Université Pierre et Marie Curie - Paris VI (30/01/2012), Jorge Kurchan (Dir.)
Liste des fichiers attachés à ce document : 
PDF
Thesis.pdf(8.8 MB)
Rare events in many-body systems: reactive paths and reaction constants for structural transitions
Massimiliano Picciani1

Cette thèse aborde l'étude de phénomènes physiques fondamentaux, avec des applications aux matériaux d'intérêt nucléaire. Nous avons développé des méthodes pour l'étude d'évènements rares concernant des transitions structurales thermiquement activées dans des systèmes à N-corps. La première méthode consiste en la simulation numérique du courant de probabilité associé aux chemins réactifs. Après avoir dérivé les équations d'évolution du courant de probabilité, on échantillonne ce courant grâce à un algorithme de type Monte Carlo Diffusif. Cette technique, dénommée Transition Current Sampling, a été appliquée pour étudier les transitions structurales d'un agrégat de 38 atomes liés par un potentiel Lennard-Jones (LJ-38). Un deuxième algorithme, dénommée Transition Path Sampling avec bias de Lyapunov local (LyTPS), a ensuite été développé. LyTPS permet de calculer des taux de réaction à température finie en suivant la théorie des états de transition. Un biais statistique dérivant du maximum des exposantes de Lyapunov locaux est introduit pour accélérer l'échantillonnage de trajectoires réactives. Afin d'extraire la valeur des constantes de réaction d'équilibre depuis celle obtenues par LyTPS, on utilise le Multistate Bennett Acceptance Ratio. Nous avons à nouveau validé cette méthode sur l'agrégat LJ-38. LyTPS est ensuite utilisé pour calculer les constantes de migration des lacunes et di-lacunes dans le Fer-α, ainsi que l'entropie de migration associée. Ces constantes de réaction servent de paramètre d'input dans des codes de modélisation cinétique (First Passage Kinetic Monte Carlo) pour reproduire numériquement des recuits de résistivité de Fer-α après irradiation.
1 :  SRMP - Service de recherches de métallurgie physique
Évènements rares – Méthodes computationnelles et simulation numérique – Transitions structurales – Cinétique sous irradiation – Grandes déviations – Paysages d'énergie – Constantes de réaction – Défauts dans les cristaux

Rare events in many-body systems: reactive paths and reaction constants for structural transitions
This PhD thesis deals with the study of fundamental physics phenomena, with applications to nuclear materials of interest. We have developed methods for the study of rare events related to thermally activated structural transitions in many body systems. The first method involves the numerical simulation of the probability current associated with reactive paths. After deriving the evolution equations for the probability current, a Diffusion Monte Carlo algorithm is implemented in order to sample this current. This technique, called Transition Current Sampling was applied to the study of structural transitions in a cluster of 38 atoms with Lennard-Jones potential (LJ-38). A second algorithm, called Transition Path Sampling with local Lyapunov bias (LyTPS), was then developed. LyTPS calculates reaction rates at finite temperature by following the transition state theory. A statistical bias based on the maximum local Lyapunov exponents is introduced to accelerate the sampling of reactive trajectories. To extract the value of the equilibrium reaction constants obtained from LyTPS, we use the Multistate Bennett Acceptance Ratio. We again validate this method on the LJ-38 cluster. LyTPS is then used to calculate migration constants for vacancies and divacancies in the α-Iron, and the associated migration entropy. These constants are used as input parameter for codes modeling the kinetic evolution after irradiation (First Passage Kinetic Monte Carlo) to reproduce numerically resistivity recovery experiments in α-Iron.
Rare events – Numerical simulations – structural transitions – kinetics under irradiation – large deviations – energy landscapes – reaction constants – point defects in crystals