Deep Neural Network Compression for Visual Recognition - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

Deep Neural Network Compression for Visual Recognition

Compression de réseaux de neurones profonds pour la reconnaissance visuelle

Robin Dupont
  • Fonction : Auteur
  • PersonId : 1357170
  • IdRef : 276034414

Résumé

Thanks to the miniaturisation of electronics, embedded devices have become ubiquitous since the 2010s, performing various tasks around us. As their usage expands, there's an increasing demand for efficient data processing and decision-making. Deep neural networks are apt tools for this, but they are often too large and intricate for embedded systems. Therefore, methods to compress these networks without affecting their performance are crucial. This PhD thesis introduces two methods focused on pruning to compress networks, maintaining accuracy. The thesis first details a budget-aware method for compressing large neural networks using weight reparametrisation and a budget loss, eliminating the need for fine-tuning. Traditional pruning methods often use post-training indicators to cut weights, ignoring desired pruning rates. Our method incorporates a budget loss, directing pruning during training, enabling simultaneous topology and weight optimisation. By soft-pruning smaller weights via reparametrisation, we reduce accuracy loss compared to standard pruning. We validate our method on several datasets and architectures. Later, the thesis examines extracting efficient subnetworks without weight training. We aim to discern the optimal subnetwork topology within a large network, bypassing weight optimisation yet ensuring strong performance. This is realized with our Arbitrarily Shifted Log Parametrisation, a differentiable method for discrete topology sampling, facilitating masks' training to denote weight selection probability. Additionally, a weight recalibration technique, Smart Rescale, is presented. It boosts extracted subnetworks' performance and hastens their training. Our method identifies the best pruning rate in a single training cycle, averting exhaustive hyperparameter searches and various rate training. Through extensive tests, our technique consistently surpasses similar state-of-the-art methods, creating streamlined networks that achieve high sparsity without notable accuracy drops.
Grâce à la miniaturisation de l'électronique, les dispositifs embarqués sont devenus omniprésents depuis les années 2010, réalisant diverses tâches autour de nous. À mesure que leur utilisation augmente, la demande pour des dispositifs traitant les données et prenant des décisions complexes de manière efficace s'intensifie. Les réseaux de neurones profonds sont puissants pour cet objectif, mais souvent trop lourds pour les appareils embarqués. Il est donc impératif de compresser ces réseaux sans compromettre leur performance. Cette thèse introduit deux méthodes innovantes centrées sur l'élagage, pour compresser les réseaux sans impacter leur précision. Elle introduit d'abord une méthode qui considère un budget pour la compression de grands réseaux via la reparamétrisation des poids et une fonction de coût budgétaire, sans nécessité de fine-tuning. Les méthodes d'élagage traditionnelles reposent sur des indicateurs post-entraînement pour éliminer les poids, négligeant le taux d'élagage visé. Notre approche intègre une fonction de coût, guidant l'élagage vers une parcimonie précise pendant l'entraînement, optimisant la topologie et les poids. En simulant l'élagage des petits poids pendant l'entraînement via reparamétrisation, notre méthode limite la perte de précision par rapport aux méthodes traditionnelles. Nous démontrons son efficacité sur divers ensembles de données et architectures. La thèse se penche ensuite sur l'extraction de sous-réseaux efficaces sans entraîner les poids. L'objectif est de trouver la meilleure topologie d'un sous-réseau dans un grand réseau sans optimiser les poids, tout en offrant de bonnes performances. Ceci est fait grâce à notre méthode, l'Arbitrarily Shifted Log-Parametrisation, qui échantillonne des topologies de manière différentiable, permettant de former des masques indiquant la probabilité de sélection des poids. En parallèle, un mécanisme de recalibrage des poids, le Smart Rescale, est introduit, améliorant la performance des sous-réseaux et accélérant leur formation. Notre méthode trouve également le taux d'élagage optimal après un entraînement unique, évitant la recherche d'hyperparamètres et un entraînement pour chaque taux. Nous prouvons que notre méthode dépasse les techniques de pointe et permet de créer des réseaux légers avec haute parcimonie sans perdre en précision.
Fichier principal
Vignette du fichier
DUPONT_Robin_these_2023.pdf (8.22 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04480233 , version 1 (27-02-2024)

Identifiants

  • HAL Id : tel-04480233 , version 1

Citer

Robin Dupont. Deep Neural Network Compression for Visual Recognition. Computer Vision and Pattern Recognition [cs.CV]. Sorbonne Université, 2023. English. ⟨NNT : 2023SORUS565⟩. ⟨tel-04480233⟩
40 Consultations
22 Téléchargements

Partager

Gmail Facebook X LinkedIn More