Architectures and Protocols for Connected Vehicles - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

Architectures and Protocols for Connected Vehicles

Architectures et protocoles pour les véhicules connectés

Sabri Khamari
  • Fonction : Auteur
  • PersonId : 1349144
  • IdRef : 275537374

Résumé

The advent of Intelligent Transportation Systems (ITS) marks a paradigm shift in the approach to managing and optimizing transportation infrastructures. Rooted in the integration of state-of-the-art communication technologies, ITS encompass a variety of applications aimed at enhancing road safety, traffic efficiency, and driving comfort. However, the execution of these increasingly computation-intensive applications raises inherent challenges related to latency, data processing, and service continuity. The emergence of Edge Computing stands as a transformative advancement poised to redefine the efficacy of vehicular applications in Intelligent Transportation Systems (ITS). Contrasting with conventional cloud computing paradigms, which frequently encounter latency issues attributable to the remote nature of data processing, Edge Computing decentralizes computational tasks to be nearer to the point of data generation. This proximity drastically diminishes latency, optimizes data aggregation, and enhances overall resource utilization. Consequently, Edge Computing is uniquely positioned to address and potentially mitigate the limitations that have previously impeded the optimization of ITS functionalities. Nevertheless, the incorporation of Edge Computing into vehicular networks unveils a unique array of complexities, ranging from the strategic placement of edge servers and efficient data offloading techniques to the implementation of robust service migration protocols and safeguarding privacy and security measures.This thesis investigates the problems of edge server placement and service migration in vehicular networks. Our contributions in this thesis are threefold. First, we introduce "ESIAS," an Edge-based Safety Intersection Assistance System, specifically designed to improve safety intersections. The system aims to proactively distribute precise warning messages to drivers, mitigating the risk of common intersection-related accidents. Second, we tackle the challenge of optimal Edge server placement in vehicular networks, employing integer linear programming to find the most effective solutions. The methodology considers latency, cost, and server capacity in real-world traffic conditions. The proposed framework aims not only to minimize the overall deployment cost but also to balance the computational workloads among Edge servers, all while maintaining latency within acceptable thresholds. Finally, we delve into the complex issue of service migration in MEC-enabled vehicular networks, addressing the quandary of maintaining quality of service (QoS) while minimizing migration costs. As vehicles move through different regions, maintaining service quality requires strategic service migration, which poses challenges in terms of timing and location. To resolve this problem, we formulate it as a Markov Decision Process (MDP) and apply deep reinforcement learning techniques, specifically Deep Q-Networks (DQN), to discover optimal migration strategies tailored to each service's requirements. The resulting framework ensures seamless service continuity even within high-mobility constraints, achieving an optimal balance between latency and migration costs.
L'avènement des Systèmes de Transport Intelligents (STI) marque un changement de paradigme dans l'approche de la gestion et de l'optimisation des infrastructures de transport. Ancrés dans l'intégration des technologies de communication de pointe, les STI englobent une variété d'applications visant à améliorer la sécurité routière, l'efficacité du trafic et le confort de conduite. Cependant, l'exécution de ces applications de plus en plus gourmandes en calcul pose des défis inhérents liés à la latence, au traitement des données, et à la continuité des services. L'émergence de l'Edge Computing se présente comme une avancée transformatrice prête à redéfinir l'efficacité des applications véhiculaires dans les Systèmes de Transport Intelligents (STI). En contraste avec les paradigmes conventionnels de Cloud Computing, qui rencontrent fréquemment des problèmes de latence attribuables à la nature distante du traitement des données, l'Edge Computing décentralise les tâches computationnelles pour être plus proche du point de génération des données. Cette proximité réduit drastiquement la latence, optimise l'agrégation des données, et améliore l'utilisation globale des ressources. Par conséquent, l'Edge Computing est idéalement positionné pour adresser et potentiellement atténuer les limitations qui ont précédemment entravé l'optimisation des fonctionnalités des STI. Néanmoins, l'incorporation de l'Edge Computing dans les réseaux véhiculaires révèle un éventail unique de complexités, allant du placement stratégique des serveurs de bord et des techniques efficaces de déchargement de données à la mise en œuvre de protocoles robustes de migration de services et la sauvegarde des mesures de confidentialité et de sécurité.Cette thèse examine les problèmes de placement des serveurs Edge et de migration des services dans l'architecture de l’Edge Computing pour véhicules. Nos contributions dans cette thèse sont triples. Premièrement, nous introduisons "ESIAS", un Système d'Assistance de Sécurité à l'Intersection basé sur l'Edge, spécialement conçu pour améliorer la sécurité des intersections. Le système vise à distribuer proactivement des messages d'avertissement précis aux conducteurs, atténuant ainsi le risque d'accidents courants liés aux intersections. Deuxièmement, nous abordons le défi du placement optimal des serveurs en bordure dans les réseaux véhiculaires, en utilisant la programmation linéaire en nombres entiers pour trouver les solutions les plus efficaces. La méthodologie prend en compte la latence, le coût et la capacité des serveurs dans des conditions de trafic réelles. Le cadre proposé vise non seulement à minimiser le coût global de déploiement, mais aussi à équilibrer les charges de travail computationnelles entre les serveurs en bordure, tout en maintenant la latence dans des seuils acceptables. Enfin, nous nous plongeons dans la question complexe de la migration des services dans les réseaux véhiculaires, en abordant le dilemme du maintien de la qualité de service (QoS) tout en minimisant les coûts de migration. À mesure que les véhicules se déplacent à travers différentes régions, le maintien de la qualité du service nécessite une migration de service stratégique, qui pose des défis en termes de timing et de localisation. Pour résoudre ce problème, nous formulons le problème en tant que processus décisionnel de Markov (PDM) et appliquons des techniques d'apprentissage par renforcement profond, spécifiquement les Deep Q Networks (DQN), pour découvrir des stratégies de migration optimales adaptées aux exigences de chaque service. Le cadre résultant assure une continuité de service transparente, même dans des contraintes de haute mobilité, en réalisant un équilibre optimal entre la latence et les coûts de migration.
Fichier principal
Vignette du fichier
KHAMARI_SABRI_2023.pdf (2.49 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04446183 , version 1 (08-02-2024)

Identifiants

  • HAL Id : tel-04446183 , version 1

Citer

Sabri Khamari. Architectures and Protocols for Connected Vehicles. Other [cs.OH]. Université de Bordeaux, 2023. English. ⟨NNT : 2023BORD0483⟩. ⟨tel-04446183⟩
35 Consultations
63 Téléchargements

Partager

Gmail Facebook X LinkedIn More