Applications of AI to study of finite algebraic structures and automated theorem proving - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

Applications of AI to study of finite algebraic structures and automated theorem proving

Applications de l'IA à l'étude des structures algébriques finies et à la démonstration automatique de théorèmes

Boris Shminke
  • Fonction : Auteur
  • PersonId : 1310268
  • IdRef : 273224514

Résumé

This thesis contributes to a finite model search and automated theorem proving, focusing primarily but not limited to artificial intelligence methods. In the first part, we solve an open research question from abstract algebra using an automated massively parallel finite model search, employing the Isabelle proof assistant. Namely, we establish the independence of some abstract distributivity laws in residuated binars in the general case. As a by-product of this finding, we contribute a Python client to the Isabelle server. The client has already found its application in the work of other researchers and higher education. In the second part, we propose a generative neural network architecture for producing finite models of algebraic structures belonging to a given variety in a way inspired by image generation models such as GANs (generative adversarial networks) and autoencoders. We also contribute a Python package for generating finite semigroups of small size as a reference implementation of the proposed method. In the third part, we design a general architecture of guiding saturation provers with reinforcement learning algorithms. We contribute an OpenAI Gym-compatible collection of environments for directing Vampire and iProver and demonstrate its viability on select problems from the Thousands of Problems for Theorem Provers (TPTP) library. We also contribute a containerised version of an existing ast2vec model and show its applicability to embedding logical formulae written in the clausal-normal form. We argue that the proposed modular approach can significantly speed up experimentation with different logic formulae representations and synthetic proof generation schemes in future, thus addressing the data scarcity problem, notoriously limiting the progress in applying the machine learning techniques for automated theorem proving.
Cette thèse contribue à une recherche de modèles finis et à la démonstration automatisée de théorèmes, en se concentrant principalement, mais sans s'y limiter, sur les méthodes d'intelligence artificielle. Dans la première partie, nous résolvons une question de recherche ouverte à partir de l'algèbre abstraite en utilisant une recherche automatisée de modèles finis massivement parallèles, en utilisant l'assistant de preuve Isabelle. À savoir, nous établissons l'indépendance de certaines lois de distributivité abstraites dans les binaires résiduels dans le cas général. En tant que sous-produit de cette découverte, nous apportons un client Python au serveur Isabelle. Le client a déjà trouvé son application dans les travaux d'autres chercheurs et de l'enseignement supérieur. Dans la deuxième partie, nous proposons une architecture de réseau neuronal génératif pour produire des modèles finis de structures algébriques appartenant à une variété donnée d'une manière inspirée des modèles de génération d'images tels que les GAN (réseaux antagonistes génératifs) et les autoencodeurs. Nous contribuons également à un paquet Python pour générer des semi-groupes finis de petite taille comme implémentation de référence de la méthode proposée. Dans la troisième partie, nous concevons une architecture générale de guidage des vérificateurs de saturation avec des algorithmes d'apprentissage par renforcement. Nous contribuons à une collection d'environnements compatibles OpenAI Gym pour diriger Vampire et iProver et démontrons sa viabilité sur des problèmes sélectionnés de la bibliothèque TPTP (Thousand of Problems for Theorem Provers). Nous contribuons également à une version conteneurisée d'un modèle ast2vec existant et montrons son applicabilité à l'incorporation de formules logiques écrites sous la forme clausal-normale. Nous soutenons que l'approche modulaire proposée peut accélérer considérablement l'expérimentation de différentes représentations de formules logiques et de schémas de génération de preuves synthétiques à l'avenir, résolvant ainsi le problème de la rareté des données, limitant notoirement les progrès dans l'application des techniques d'apprentissage automatique pour la démonstration automatisée de théorèmes.
Fichier principal
Vignette du fichier
2023COAZ4058.pdf (6.45 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04291048 , version 1 (17-11-2023)

Identifiants

  • HAL Id : tel-04291048 , version 1

Citer

Boris Shminke. Applications of AI to study of finite algebraic structures and automated theorem proving. Artificial Intelligence [cs.AI]. Université Côte d'Azur, 2023. English. ⟨NNT : 2023COAZ4058⟩. ⟨tel-04291048⟩
151 Consultations
72 Téléchargements

Partager

Gmail Facebook X LinkedIn More