Bayesian Deep Learning for Mining and Analyzing Astronomical Data - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

Bayesian Deep Learning for Mining and Analyzing Astronomical Data

Apprentissage profond bayésien pour l'analyse de données d'astronomie

Claire Theobald
  • Fonction : Auteur
  • PersonId : 1089512

Résumé

In this thesis, we address the issue of trust in deep learning predictive systems in two complementary research directions. The first line of research focuses on the ability of AI to estimate its level of uncertainty in its decision-making as accurately as possible. The second line, on the other hand, focuses on the explainability of these systems, that is, their ability to convince human users of the soundness of their predictions.The problem of estimating the uncertainties is addressed from the perspective of Bayesian Deep Learning. Bayesian Neural Networks assume a probability distribution over their parameters, which allows them to estimate different types of uncertainties. First, aleatoric uncertainty which is related to the data, but also epistemic uncertainty which quantifies the lack of knowledge the model has on the data distribution. More specifically, this thesis proposes a Bayesian neural network can estimate these uncertainties in the context of a multivariate regression task. This model is applied to the regression of complex ellipticities on galaxy images as part of the ANR project "AstroDeep''. These images can be corrupted by different sources of perturbation and noise which can be reliably estimated by the different uncertainties. The exploitation of these uncertainties is then extended to galaxy mapping and then to "coaching'' the Bayesian neural network. This last technique consists of generating increasingly complex data during the model's training process to improve its performance.On the other hand, the problem of explainability is approached from the perspective of counterfactual explanations. These explanations consist of identifying what changes to the input parameters would have led to a different prediction. Our contribution in this field is based on the generation of counterfactual explanations relying on a variational autoencoder (VAE) and an ensemble of predictors trained on the latent space generated by the VAE. This method is particularly adapted to high-dimensional data, such as images. In this case, they are referred as counterfactual visual explanations. By exploiting both the latent space and the ensemble of classifiers, we can efficiently produce visual counterfactual explanations that reach a higher degree of realism than several state-of-the-art methods.
Dans cette thèse, nous abordons le problème de la confiance que nous pouvons avoir en des systèmes prédictifs de type réseaux profonds selon deux directions de recherche complémentaires. Le premier axe s'intéresse à la capacité d'une IA à estimer de la façon la plus juste possible son degré d'incertitude liée à sa prise de décision. Le second axe quant à lui se concentre sur l'explicabilité de ces systèmes, c'est-à-dire leur capacité à convaincre l'utilisateur humain du bien fondé de ses prédictions. Le problème de l'estimation des incertitudes est traité à l'aide de l'apprentissage profond bayésien. Les réseaux de neurones bayésiens admettent une distribution de probabilité sur leurs paramètres, qui leur permettent d'estimer différents types d'incertitudes. Tout d'abord, l'incertitude aléatoire qui est liée aux données, mais également l'incertitude épistémique qui quantifie le manque de connaissance que le modèle possède sur la distribution des données. Plus précisément, cette thèse propose un modèle de réseau de neurones bayésien capable d'estimer ces incertitudes dans le cadre d'un problème de régression multivarié. Ce modèle est appliqué dans le contexte du projet ANR "AstroDeep'' à la régression des ellipticités complexes sur des images de galaxies. Ces dernières peuvent être corrompues par différences sources de perturbation et de bruit qui peuvent être estimées de manière fiable par les différentes incertitudes. L'exploitation de ces incertitudes est ensuite étendue à la cartographie de galaxies, puis au "coaching'' du réseau de neurones bayésien. Cette dernière technique consiste à générer des données de plus en plus complexes durant l'apprentissage du modèle afin d'en améliorer les performances. Le problème de l'explicabilité est quant à lui abordé via la recherche d'explications contrefactuelles. Ces explications consistent à identifier quels changements sur les paramètres en entrée auraient conduit à une prédiction différente. Notre contribution dans ce domaine s'appuie sur la génération d'explications contrefactuelles basées sur un autoencodeur variationnel (VAE) et sur un ensemble de prédicteurs entrainés sur l'espace latent généré par le VAE. Cette méthode est plus particulièrement adaptée aux données en haute dimension, telles que les images. Dans ce cas précis, nous parlerons d'explications contrefactuelles visuelles. En exploitant à la fois l'espace latent et l'ensemble de prédicteurs, nous arrivons à produire efficacement des explications contrefactuelles visuelles atteignant un degré de réalisme supérieur à plusieurs méthodes de l'état de l'art.
Fichier principal
Vignette du fichier
DDOC_T_2023_0081_THEOBALD.pdf (12.62 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

tel-04206212 , version 1 (13-09-2023)

Identifiants

  • HAL Id : tel-04206212 , version 1

Citer

Claire Theobald. Bayesian Deep Learning for Mining and Analyzing Astronomical Data. Computer Science [cs]. Université de Lorraine, 2023. English. ⟨NNT : 2023LORR0081⟩. ⟨tel-04206212⟩
68 Consultations
29 Téléchargements

Partager

Gmail Facebook X LinkedIn More