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Introduction en francais

Enjeux écologiques

Une meilleure compréhension des écosystemes

L’écologie est étymologiquement la science de la maison (du grec ancien oikos). Par
définition, c’est la science des étres vivants (animaux, micro-organismes, etc.) dans un
environnement spécifique a une échelle particuliere (populations, espéces, communautés)
et de leurs relations avec les autres étres vivants. En écologie, une espéce est constituée
d’individus qui peuvent se reproduire entre eux et produire une descendance fertile, for-
mant ainsi des populations. Les individus sont généralement mutuellement dépendants
les uns des autres pour leur survie.

Les individus de différentes especes vivant dans une méme région forment une com-
munauté. L’ensemble des étres vivants dans leur environnement forme un écosysteme
(savane, forét, intestin, etc.). Historiquement, le concept d’écosysteme est récent [Tan39).
La compréhension de ces écosystémes (écologie des communautés, lorsque I'accent est mis
sur l'interaction entre les especes) et de leurs mécanismes de fonctionnement sous-jacents
constitue un défi majeur en écologie [MWG67].

Le nombre d’especes dans un écosysteme est souvent lié a une mesure d’échelle. Sur
Terre, certains rares écosystemes sont petits (2-3 especes), cependant la plupart ont un
tres grand nombre d’especes. Cette grande diversité d’especes est nécessaire a la survie
des étres vivants. A ce jour, les scientifiques ont répertorié plus de 2 millions d’especes
sur Terre. Par exemple, la forét amazonienne abrite 10 espéces. A notre échelle, notre
microbiome abrite un ordre de grandeur de 10° espeéces et 10'® cellules [CSF15]. De
nombreuses questions sur ces grands écosystémes restent sans réponse car les systemes
plus complexes demandent beaucoup plus de données empiriques pour étre “compris” et
les études expérimentales ne sont pas adaptées a leur étude. Une meilleure compréhension
permettrait de gérer durablement les populations animales pour protéger les populations
menacées, ou d’avoir une meilleure gestion des antibiotiques sur notre flore intestinale.

Les écologues menent de nombreuses études expérimentales sur des systemes a peu
d’especes, alors que dans les grands systemes, il devient rapidement impossible de récolter
des données a grande échelle. Cependant, ces derniéres années, de nombreux outils tech-
nologiques ont été développés en laboratoire pour étudier des systemes microbiologiques
et permettraient de faire des comparaisons avec les études théoriques [HAB*21]. Par ex-
emple, de nombreux processus sont automatisés avec I’émergence du deep learning pour
reconnaitre les especes et les compter, notamment sur des images prises par avion ou
drone. Ce manque de données peut étre compensé par 'utilisation et I’étude de modeles.
Ces modeles n’ont pas forcément pour seul but de prédire la dynamique de 1’écosysteéme
mais de comprendre les mécanismes qui permettent une grande diversité.
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L’un des principaux débats en écologie concerne la relation entre la diversité et la
stabilité d'un écosysteme. Depuis longtemps, de nombreux écologues ont suggéré que
la diversité des communautés renforgait la stabilité des écosysteémes [Machb, MayT73].
Cependant, a partir d’'un modele théorique qu’il a introduit dans les années 70 [May72],
May a remis en question la relation diversité-stabilité en utilisant une analyse de stabilité
linéaire sur un modele de communauté construit de maniere aléatoire et a découvert que la
diversité tend a déstabiliser le systeme. Cela a conduit au débat sur la diversité-stabilité
[May73, Yod81, McC00, IC07, JIMM™*16, LMB* 18] ou les enjeux théoriques consistent a
trouver les arguments ou mécanismes manquants du modele de May.

Dans cette these, j’étudie les grands écosystemes afin de comprendre 1'un des prin-
cipaux facteurs écologiques affectant leur diversité et leur dynamique : les interactions
biotiques entre especes. Dans une communauté, I’ensemble des interactions entre ses com-
posantes est représenté comme un réseau d’interactions. Il existe deux grandes classes
d’interactions : les interactions intra-spécifiques et les interactions inter-spécifiques. La
premiere classe correspond aux interactions au sein d’'une méme espece qui peuvent étre
négatives (compétition) et positives (effet Allee). La seconde, plus diversifiée, correspond
aux interactions entre deux especes différentes, par exemple la compétition, le mutual-
isme, la prédation, etc. L’écologie des communautés est une sous-discipline de 1’écologie
qui s’attache a comprendre I’évolution des abondances (:=nombre d’individus) des espéces
qui composent une communauté au cours du temps. En bref, j'utilise un modele qui décrit
la dynamique de la communauté pour comprendre 'impact du réseau d’interactions sur
les propriétés d’un équilibre telles que l'existence, la diversité, la stabilité, etc.

Cours éclair sur les EDOs

En écologie, la dynamique des populations peut étre modélisée en temps continu ou dis-
cret. En temps continu, des équations différentielles ordinaires (EDO) sont utilisées pour
décrire 1’évolution de 'abondance & = (z1, ..., z,,) d'un systéme a n espéces. On com-
mence par rappeler le probleme de Cauchy.

Soit U un ouvert de R"*1 f: U — R""! continue par rapport a (¢, x),

{ Wl — f(tx(t)),
x(0) = x¢.

(1)

Un systeme est dit autonome si f ne dépend pas de ¢.

Le théoréme de Cauchy-Lipschitz établit que si f est C! par rapport a @, alors pour
toute condition initiale, le probléme (1) admet une unique solution maximale (I,7), 7 :
I — R™. De plus, toute autre solution du probléme (1) est une restriction de la solution
maximale.

Si le systeme est autonome, le principe de majoration a priori indique que si f : U — R"
est continue et localement lipstchitzienne, (/,u) une solution maximale du théoréme de
Cauchy et sup(I) = oo, alors il existe une solution globale au probleme (1).

Dans la suite, on s’intéresse au probleme autonome :

{ ) _ fla(t)),
x(0) = xo.

(2)

Afin d’étudier le probléme (2), une question importante consiste a obtenir des informations
sur l'existence et I'unicité des équilibres et leurs propriétés. Un équilibre * du systeme
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(2) est une solution de 1’équation :

dx(t)
= 0 < f(z)=0.

La fonction f peut étre complexe, les solutions de ce systéme ne sont pas nécessairement
triviales et il peut y avoir plusieurs équilibres avec des propriétés différentes. Un équilibre
x* est dit faisable si toutes ces composantes sont strictement positives c.a.d.

x*>0 < 1,>0 VYke[n].

Une propriété majeure d'un point d’équilibre est sa stabilité. Un équilibre est stable
s’il revient a sa valeur d’équilibre apres une petite perturbation du vecteur d’abondance
x. Dans le cas d'une équation différentielle linéaire, I’étude de la stabilité est triviale et
dépend des valeurs propres de l'opérateur linéaire. Dans le cas non linéaire, elle est plus
complexe. Cependant, on peut linéariser le systeme pour obtenir des informations sur la
stabilité locale autour de 1’équilibre.

Soit &* un point d’équilibre de (2), on dit que x* est asymptotiquement stable si il
est stable et si 3§ > 0, V(I, x) solution de (2)

Jtoel,|x(t)) —x*|<d = x(t) ﬁm*

Théoréme 0.1 (Stabilité d'un équilibre, cas non-linéaire). Soit &* un équilibre d’un
systéme différentiel non linéaire autonome ou f est différentiable en x* et soit D f(x*) =

J|z+ sa Jacobienne au point d’équilibre. Soit A = Sp(J|+) l'ensemble des valeurs propres
de J|z+ et R(A) l'ensemble de la partie réelle des valeurs propres de A.

1. Si¥he A, R(A) <0, alors x* est asymptotiquement stable et on a

VY €]0, min —R(A)[,Ve > 0,30 > 0, |x(ty) — x*| < o

=Vt > tg,x(t) existe et |x(t) — x| < ee H7t0)

2. Sidxe A, R(A) > 0, alors =* est instable.

3. Siv¥he A, R(A) <0 et il ya des valeurs propres purement imaginaires, alors on ne
peut pas conclure.

Soit &* un équilibre pour un systéme différentiel non linéaire autonome (2), on dit que
x* est asymptotiquement globalement stable si pour tout @y > 0, la solution de (2) qui
commence a x(0) = x, satisfait

Remarque 0.1. Dans cette these, j’étudie exclusivement la stabilité asymptotique, c¢’est-a-
dire la stabilité et la convergence vers le point d’équilibre. Par abus de notation, je réfere
I'étude de la stabilité a la stabilité asymptotique. Je conseille le livre de Hirsch et al.
[HSD74] pour un cours complet sur les EDOs.
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Le modéle de Lotka-Volterra

Les équations différentielles sont fréquemment utilisées en biologie pour décrire un systéme
d’especes en interaction. Une forme particulierement utilisée est le modele densité-
dépendant :

{ il = a(t) f(2(t)). @
ou f est communément appelé valeur sélective ou taux de croissance d’une espece. Quand
f(x(t)) < 0 la dynamique sera décroissante et inversement lorsque f(x(t)) > 0. Si
le systéme est défini dans l'orthant positif R, alors le systeme est dit invariant : si
V;(0) = 0, alors V& > 0 : 2;(t) = 0 [HS98]. L'un des modeles densité-dépendant les plus
utilisés en écologie est le modele de Lotka-Volterra qui est une pierre angulaire de cette
these.

Historiquement, Thomas Robert Malthus (1766-1834) s’est intéressé a la modélisation
des fluctuations d’'une population. Sa conclusion était que sans contraintes, 'abondance
d’une population croit de fagon exponentielle

2 = ra(t),
z(0) = x9,

ol 7 = naissance — mort et la solution analytique est z(t) = zoe™. Une solution qui
manque un peu de réalisme.

Plus tard, Pierre Francois Verhulst (1804-1849) s’est intéressé a un modele plus réaliste
en supposant que le modele est limité par une taille maximale K > 0 (capacité de charge)

dx(t x(t
{ dg) = rx(t) (1—%) ,

Son modele logistique représente, par exemple, la limite de croissance d’une population
de zébres dans la savane en raison de la pénurie de ressources.

Dans un second temps, les scientifiques se sont intéressés a la modélisation des inter-
actions entre especes. Lorsqu’on ajoute les interactions entre les populations, le modele
le plus simple porte le nom de deux scientifiques, Lotka et Volterra, qui I'ont formulé
indépendamment a la fin des années 20 [Lot25, Vol26]. Classiquement étudié sous la
forme d’un modele proie-prédateur a 2 dimensions, il a été comparé a des données issues
de populations naturelles [Huf58].

D’un point de vue général et dans des dimensions supérieures, les équations de Lotka-
Volterra ou le modele de Lotka-Volterra généralisé jouent un role clé dans 1’étude de la
dynamique des populations dans le temps. Ce modele s’analyse mathématiquement, il est
aussi tres polyvalent et robuste, et constitue une premiere étape dans le développement
des modeles écologiques. Ce modele a été étudié a la fois en écologie [Wan78, Jan87, LB92]
en en mathématiques [GJ77, Goh77, Tay88, HS98, Tak96].

D’un point de vue mathématique, ce modele décrit la dynamique de la population
d’un systeme a n especes. Il est défini par un systeme a n équations différentielles :

dl‘gt(t) = l‘k(t) (Tk — 9$k(t) + EGZ[;L] Bkgxg(t)) y (4)
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ou k € [n] ={1,---,n}. L’abondance de l'espece k au temps ¢ est représentée par xy(t)
et © = (x1, -+ ,x,) est le vecteur des abondances des différentes especes. Le parametre
0 est le coefficient d’autorégulation ou l'interaction intraspécifique de chaque espece. Le
parametre r, correspond au taux de croissance intrinseque de 'espéce k. Le coefficient
By est effet per capita des espeéces ¢ sur le taux de croissance de I'espece k. La matrice
B, représentant la structure du réseau d’interactions, peut souvent étre décomposée sous
différentes formes : blocs, cascade, réseaux multiplex, graphons, etc. [CN88 SCG*05,
LIPJ*06, PEM12].

L’objectif de nombreux mathématiciens et écologues est de comprendre le comporte-
ment du systeme en fonction de ces différents parametres d’entrée. Par exemple, le nombre
d’équilibres, leur stabilité et leur faisabilité pour comprendre les implications écologiques
qui en découlent.

Comme nous 'avons déja mentionné, le probleme majeur du travail avec de grands
systemes est la difficulté d’observer ou d’estimer les informations sur la matrice d’interaction.
Un choix naturel consiste a remplacer les interactions par des coefficients aléatoires dont
les propriétés statistiques (moyenne, variance, etc.) et la structure (blocs, cascade, etc.)
codent certaines des véritables propriétés du réseau trophique. La matrice B devient un
objet mathématique complexe : une matrice aléatoire. Cet objet mathématique représente
la deuxieme pierre angulaire de cette these.

L’émergence des matrices aléatoires en écologie

Dans les années 70, suite aux travaux de Gardner et Ashby [GA70], Robert May a réouvert
le débat de longue date sur la relation entre diversité et stabilité en écologie [Mach5]. Son
article fondateur [May72] a motivé I’émergence de matrices aléatoires en tant qu’outil
mathématique clé pour caractériser les écosystemes en grande dimension. Une meilleure
compréhension de ces outils a amélioré notre compréhension de la nature des interactions
et des réseaux trophiques pour parvenir a la stabilité [Tay88, AT12, TPA14]. Dans son
étude, May s’est intéressé au modele (2) [May73], en supposant que le systéeme est a un
équilibre faisable x*. D’apres le théoreme 0.1, I’étude de la stabilité locale correspond a
I’étude des valeurs propres réelles de la matrice Jacobienne du systéme au point d’équilibre.
La matrice Jacobienne du systeme (2) est :

0fi(x
J = (Jkt)nxn, Jke = J;kx(z ) .

Il existe une matrice M = J|,«, appelée "matrice des communautés” (Jacobienne) qui
décrit D'effet de 1’espece ¢ (colonne) sur 'espéce k (ligne) autour du point d’équilibre.

May a remis en question une croyance centrale en écologie en affirmant que des réseaux
écologiques suffisamment grands ou complexes ont une probabilité d’étre stables proches
de zéro. Pour établir ce point, il a analysé la stabilité de grands réseaux dans lesquels
les especes interagissent au hasard. Dans ce cas, la matrice Jacobienne est une matrice
aléatoire non-Hermitienne

M=-IT+A4,

ou A est une matrice aléatoire centrée n x n composée de variables aléatoires Ay ~
N(0,0?) qui apparaissent avec une probabilité C' et valent 0 sinon (le parametre C' est
appelé connectance). Lorsque n est grand, May a prouvé que la probabilité que le point

5
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d’équilibre soit stable est proche de 0 chaque fois que la “complexité” satisfait :
ovnC > 1.

Les valeurs propres de la matrice M sont distribuées selon la loi circulaire, dans un
disque de centre (—1,0) et de rayon ov/nC (voir Figure 1). La condition de stabilité
est R(Sp(M)) < 0. Si le modele a un grand nombre d’espéces connectées avec de fortes
interactions, alors le modele est susceptible d’étre plus instable.
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Figure 1: Spectre de la matrice aléatoire Jacobienne (matrice non-Hermitienne) M =
—1 + A dans le plan complexe (n = 500, 0 = 1, C' = 1). Le cercle en trait plein représente
la limite de la loi circulaire. La ligne pointillée représente le seuil a ne pas dépasser pour
la partie réelle des valeurs propres pour que le systeme soit stable.

Dans un modéle densité-dépendant (3), la Jacobienne est évaluée par

Jie = Opefr(x) + xkﬁgcltﬂ)

Dans le systeme de Lotka-Volterra (4), a ’équilibre faisable z*, la matrice Jacobienne
dépend de I’'abondance des especes a 1’équilibre

J|p+ = diag(x®)(—1 + B),

ou B est introduite a (4). L’étude de la Jacobienne est plus difficile car * et B ne
sont plus indépendants. Cependant, Stone [Stol8] et Gibbs et al. [GGRA18] ont montré
que les intuitions restent similaires, la stabilité des grands systemes LV est uniquement
déterminée par la matrice d’interaction.

6
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Formulation finale du modeéle

Dans la majeure partie de la theése, nous nous concentrons sur le modele (4) ou ry =
1,Vk € [n], & = 1 et nous ajoutons un parametre de normalisation générique dans la
matrice d’interaction. Des taux de croissance égaux sont choisis permettant de réduire
le nombre de parametres et de simplifier grandement les calculs. La compréhension de
I'impact de la matrice d’interaction B dans le systeme LV pose de nombreux probléemes
ouverts. Cependant, Rohr et al. [RSB14] se sont intéréssés a I’étude des taux de croissance
permettant la coexistence entre les espéces. Leurs travaux sur la stabilité structurelle ont
été étendus par Cenci et al. [CS18], Saavedra et al. [SRBT17] et Grilli et al. [GAST17].
Le choix de garder le parametre d’autorégulation 6 = 1 apporte de lintelligibilité.
Dans le cas 6 # 1, on peut redimensionner le systéme (32) pour supprimer le parameétre
0 en posant Ty := Oy, By := Bie/0. Dans les faits, Barabés et al. [BMSA17] ont étudié
I'importance d’avoir un terme d’autorégulation fort pour que le systéeme ait un équilibre
stable. A noter que les valeurs de la diagonale de la matrice B ne sont pas fixées a 0, mais
leurs valeurs microscopiques ont un impact négligeable sur les résultats asymptotiques.

dxcllgt(t) = {L‘k(t) <1 — {L‘k(t) + Z Bkgl‘g(t)> . (5)
te[n]

Le dernier détail important qui differe de la notation standard du modele de Lotka-
Volterra est que 'on ajoute un parametre de normalisation 1/4/n dans la matrice B. La
raison théorique majeure est de limiter 'impact des parametres d’interaction sur les autres
termes tout en gardant une influence asymptotique c.a.d.

E (2 Bkgxg(t)> ~O0(1) ; Var <Z Bm(t)> ~0(1).
te[n] ¢e[n]

D’un point de vue écologique, on peut imaginer que quand le nombre d’especes aug-
mente dans un écosystéme, alors la force des interactions d’une espece sur les autres a
tendance a diminuer.

Généralement, le modele peut finalement s’écrire sous la forme compacte :

dZL’k
W = Iy (1 — Tk + (Bw)k) , ke [n] ) (6>

ou B reste a déterminer.

Le réseau d’interactions

L’enjeu majeur de cette these est de comprendre I'impact de la matrice d’interaction B
sur la dynamique du modele Lotka-Volterra. Dans la nature, B correspond au réseau
d’interactions entre les espéces ou peut étre considéré comme le réseau trophique de
I'écosysteme (dans le sens “qui mange qui ?”). Les réseaux écologiques vastes et fortement
connectés sont fréquents dans la nature [DWMO02, PLC91].

Dans le systeme (5), un modele général pour la matrice d’interaction B est une ma-
trice aléatoire non centrée avec des interactions corrélées deux a deux combiné avec une
structure de graphe :

B=So <A + “1,;3) , (7)

[e2VA L n
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ou o est le produit d’Hadamard c.a.d. (X oY);; := X;;Yi; et le vecteur 1,, de taille n x 1
est composé de uns. La matrice aléatoire A = (Ayy) k.te[n] satisfait les conditions suivantes

1. (Age, k < 0) sont des variables aléatoires indépendantes identiquement distribuées
<lld) et E(Akg) = 0, E(|AM|2) =1let E(|Ak[|4) <woV1l<k</L

2. pour k < /¢ le vecteur (Ags, Ag) a une distribution standard bivariée, indépendante
des autres variables aléatoires, avec une covariance cov(Ags, Ap) = E(AreAe) = p
avec |p| < 1.

S = (Skg)kyge[n] est la matrice d’adjacence d’un graphe c.a.d. si on représente chaque
espece par un nceud et une interaction entre deux especes par un sommet dirigé, alors

g, 1 siil existe un impact de 'espece ¢ sur k,
K 0 sinon.

En I’absence de toute autre information, on peut supposer que S est la matrice d’adjacence
d’un graphe d’Erdés Renyi (ER) [ER60]. C’est un graphe avec n sommets. On suppose
qu’il existe une aréte entre deux sommets avec une probabilité p indépendante de toute
autre aréte.

D’un point de vue écologique, deux types de structures peuvent affecter le type
d’interactions et l'existence de communautés avec des interactions préférentielles.

D’une part, le type d’interaction est différent selon les especes. Ces parametres sont
gérés par des choix sur les propriétés statistiques des variables aléatoires B;;. L’ensemble
des parametres (o, u, p) peut représenter une gamme de types d’interaction. Tout d’abord,
la force de l'interaction est représentée par «, une grande valeur de « représente un
systeme avec des interactions faibles, au contraire une petite valeur de a représente des
interactions tres fortes. Les parametres p et p décrivent la nature des interactions du
systeme. Quand p < 0, les interactions entre partenaires ont un impact opposé 'une sur
l'autre, comme dans les interactions antagonistes (le prédateur est influencé positivement
par 'abondance de sa proie tandis que la proie est affectée négativement par celle du
prédateur). Lorsque p > 0, les interactions entre les partenaires ont un impact similaire
les uns sur les autres, c’est-a-dire qu’ils sont engagés dans des interactions mutualistes ou
compétitives. Le parametre d’interaction moyen p augmente la proportion d’interactions
compétitives ou mutualistes en fonction de son signe. Etant donné une interaction par
paire Byy/By, dans le systéme, les trois motifs dominants sont :

o compétition (relation -/-), ce qui se produit plus souvent lorsque p > 0, u < 0
[Mac70, Zee95],

« mutualisme (relation +/4), ce qui se produit plus souvent lorsque p > 0, u > 0
[SGB*15, Sto20],

« prédation (relation +/-), ce qui se produit plus souvent lorsque p < 0, p ~ 0 [AT12].

Il existe d’autres types d’interactions comme le commensalisme ou I'amensalisme [BTHO06].

D’autre part, la structure du réseau d’interactions differe selon les écosystemes. La
structure de la matrice d’interaction peut également étre affectée par I'existence de com-
munautés, c’est-a-dire de groupes d’especes qui interagissent préférentiellement entre

8
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eux [TF10, AGB*15]. Dans ’équation (5), le réseau est représenté par S une matrice
d’adjacence d'un graphe donné. Plusieurs types de structures sont largement étudiés en
écologie et peuvent étre modélisés par le graphe S.

Tout d’abord, les structures modulaires telles que la compartimentalisation des réseaux
trophiques, également appelée modularité, qui sont la propension des noeuds a étre con-
nectés préférentiellement au sein des groupes plutdt qu’entre les groupes ([GSSP*10,
GRA16]).

Deuxiemement, les structures imbriquées ou chaque espece joue un role différent dans
I’écosysteme. Ces modeles sont généralement appelés imbriqués en raison de leur structure
dans laquelle certaines especes ont plus d’interactions que d’autres [BJMOO03, BEPG™09,
SKA13, PBHM19].

Dans les grands écosystemes, toutes les especes n’interagissent pas les unes avec les
autres, d’ou l'intérét d’étudier les écosystemes épars [BSHM17]. Dans les faits, May
[May72] considére la connectance comme un parametre clé lié a la complexité d'un
systeme.

Enfin, les modeles de traits avec des structures latentes [EJK*13] comme le modele
de niche de Williams et Martinez [WMO00], le modele en “cascade” [CBN90] qui établit
une structure de prédation dans le réseau trophique. Chaque espece peut se nourrir aux
niveaux trophiques inférieurs mais pas aux niveaux supérieurs [HMS16, PBG22|. A noter
que toutes ces structures peuvent étre modélisées par un graphon (chaque noeud est associé
a une variable aléatoire et les connexions dépendent d’une fonction des variables associées
aux deux noeuds).

Pour un apercgu général des différents modeles des communautés écologiques complexes
du point de vue du physicien, voir Barbier et al. [BABLIS].

Métacommunauté et dynamique spatiale

A des échelles spatiales plus grandes, les écologistes s’intéressent également aux interac-
tions entre les populations (plutot qu’entre les individus) afin de comprendre les schémas
de la diversité des especes dans 'espace et le temps. Dans ce contexte, les interactions
mutualistes, compétitives et prédatrices sont remplacées par les processus de colonisation,
d’extinction et de remplacement de populations entieres. La théorie de 1’écologie spatiale
trouve ses racines dans les travaux de MacArthur et Wilson [MWG63] et Levins et Heat-
wole [LH63] et plus tard MacArthur sur la biologie et géographie des populations [Mac84].
En particulier, The Theory of Island Biogeography (TIB) est une pierre angulaire de la
théorie de la dynamique spatiale [MW67]. Le TIB décrit comment la biodiversité des iles
est maintenue par un équilibre entre I'immigration et ’extinction des especes.

Depuis ce jour, la théorie de I’écologie spatiale a évolué pour comprendre les mécanismes
de coexistence qui sous-tendent le modele de métacommunauté introduit par Wilson.
[Wil92]. L’étude des modeles de métacommunautés s’est particulierement développée en
raison de la prise de conscience de I’hétérogénéité spatiale des écosystemes. Leibold et
al. [LHM™04] ont décrit les différents mécanismes a 1'échelle spatiale : la colonisation
(les organismes se déplacent d’'un site a 'autre entre les générations), I’habitat de niche
(les especes peuvent étre plus ou moins bien adaptées a un environnement donné) et la
stochasticité (si les especes sont équivalentes en termes de traits, de compétitivité, etc., on
ne s’attend pas nécessairement a ce qu’elles coexistent, mais on sait qu’il faudra un certain
temps avant que I'une ou 'autre ne prenne complétement le controle du site, c¢’est-a-dire
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un modele neutre).

Considérant que la capacité des especes a coloniser de nouveaux habitats est cruciale
pour le maintien des populations, un type de modele de métacommunauté mathématiquement
analysable est connu sous le nom de modele d’occupation avec un compromis compétition-
colonisation. La légitimité de ce modele repose sur 'existence d’'un compromis entre la
capacité d'une espece a coloniser de nouveaux patchs et sa capacité concurrentielle. Cette
capacité concurrentielle affecte sa résistance a la colonisation par une autre espece et
sa propre capacité a remplacer d’autres especes. Formellement, il s’agit d’'un modele
d’occupation de parcelles ou chaque espece a la capacité de coloniser de nouvelles par-
celles en compétition avec d’autres especes. La variable d’intérét est la proportion de
I’habitat occupée par chaque espéce.

Initiallement étudié par Levins [Lev69] et Levins et Culver [LC71] dans le cas de
deux espéces, ce modele a suscité un intérét particulier dans sa version a n espeéces ou la
compétition est hiérarchique [Has80, NM92, Til94]. Dans un cadre plus général, il a été
étudié dans un cas ou la compétition n’est pas hiérarchique [Ama03, YWO01, CMJD06a]
et aussi dans un contexte épidémiologique d'une dynamique d’interactions hote-parasite
[MN94, NM94]. Dans un cadre plus général, des approches de matrice aléatoire ont été
utilisées pour étudier la stabilité dans un contexte de méta-écosysteme. Chaque parcelle
a sa propre dynamique et la dispersion de toutes les especes relie les différentes parcelles,
voir Gravel et al. [GML16].

La dynamique spatiale d'un systéme a n especes avec un dilemme compétition coloni-
sation [CMJDO06a] est de la forme

Z k- n
4Pk = 1-— E — + E — E , 8
m CkPk ( e Pe) MgPr + CkPk P PeMke — Pk e CePeNek: ( )

ou py représente le taux d’occupation de ’espece k, m;, est le taux d’extinction de ’espece
k, ¢ représente le taux de colonisation de l'espece k, ngy correspond a la probabilité de
remplacement de ’espece ¢ par k.

Ces équations peuvent étre représentées comme un modele de compétition de Lotka-
Volterra avec des interactions asymétriques :

dpy, C
0 =Pk |Gk — My t+ Z pe (ke — cener: — k)
dt =

Dans le contexte du modele de Lotka-Volterra avec de la dispersion, des travaux supplémentaires
ont été effectués en introduisant un parametre de migration [BG20, PNJ21, VPNJ22].
Dans le contexte du méta-réseau trophique avec des parametres de diffusion, Brechtel et

al. [BGR™18] ont étudié la formation de motifs par diffusion dans les réseaux.

Théorie des matrices aléatoires : une visite guidée

Historiquement, la théorie des matrices aléatoires trouve ses racines dans les travaux du
statisticien John Wishart dont le but était d’étudier les matrices aléatoires de covariance
empirique d’échantillons gaussiens multivariés [Wis28]. Par la suite, dans les années
50, une deuxieéme impulsion a été donnée par Eugene Wigner [Wigh5] dont le but était
d’expliquer la distribution des niveaux d’énergie dans les noyaux atomiques. L’approche

10
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innovante utilisée par Wigner [Wig67] pour décrire le spectre d’une matrice aléatoire
Hermitienne a été reprise par d’autres physiciens pour résoudre des problemes de physique
nucléaire [Dys62] et de sciences physiques. Par la suite, de nouvelles structures matricielles
ont été étudiées, de nombreux travaux ont été réalisés par Marchenko et Pastur [MP67] sur
les grandes matrices de covariance et Girko [Gir85], Bai [Bai97] et Silverstein [SC95, BS10]
sur l'extension des résultats aux matrices non-Hermitiennes. Jusqu’a aujourd’hui, une
multitude de travaux ont été publiés dans des domaines tres divers des mathématiques
tels que la combinatoire, les graphes aléatoires, la théorie des probabilités libres, la théorie
du signal, la théorie des nombres, etc.

La force de la théorie des matrices aléatoires vient de la stabilisation du spectre des ma-
trices (aléatoire et a priori compliqué) lorsque la dimension de la matrice tend vers l'infini.
Dans ce cadre, la distribution des valeurs propres de la matrice devient completement
déterministe. De maniere tres simplifiée, il s’agit d'une équivalence de la loi des grands
nombres pour le spectre d'une matrice. Les enjeux et motivations de la théorie des matri-
ces aléatoires reposent sur la description des propriétés standard du spectre des matrices
. valeurs propres, vecteurs propres, plus grande valeur propre, etc. D’un point de vue
technique, il s’agit d’'un mélange équilibré d’algebre linéaire, de probabilités, d’analyse
complexe et de combinatoire.

Quelques definitions

Soit A € M(C), A := (Ape)nxn, une matrice carrée de taille n avec des coefficients

appartenant & I’ensemble complexe C. On note A* := A", Soit un vecteur x € R™, on
note |z|, sa norme Euclidienne :

" 1/2
||, = (Z ka|2> :
k=1

Définition 0.1 (Valeurs propres). On définit A;(A), A\a(A), ..., A,(A) les valeurs propres
de A c.a.d. les racines de son polynome caractéristique, tel que

IAM(A)] = = [ \(4)].
L’ensemble des valeurs propres de A est appelé le spectre de A et noté Sp(A).

Définition 0.2 (Rayon spectral). La rayon spectral de la matrice A, que 1’'on note p(A) =
|A1(A)[, est le module de la valeur propre ayant le plus grand module.

Définition 0.3 (Valeurs singulieres). Les valeurs singulieres oy (A), 02(A), ..., 0,(A) de
la matrice A sont la racine carrée des valeurs propres de la matrice hermitienne A*A c.a.d.

gi(A) = V/N(A*A),  Vie[n].

Définition 0.4 (La norme spectrale). La norme spectrale de la matrice A notée par ||A|
est définie par sa plus grande valeur singuliere

|A]l := max (\F)\, A valeur propre de A*A) =01(A).

11
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En probabilité, la mesure spectrale caractérise le spectre d’'une matrice. Dans le do-
maine des RMT, elle est utilisée pour exprimer les résultats de convergence du spectre
vers une mesure déterministe. Soit I < C, on note ) la mesure de Dirac au point A

définie par
1siAel,
A1) = {

0 sinon .

Définition 0.5 (Mesure spectrale empirique). Soit A € M, (C) et ses valeurs propres

AM(A), ..., A(A), on définit la mesure spectrale empirique de la matrice A dans (C, B(C))
par
1 n
== 0w
s

Pour tout sous-ensemble £ < C, la quantité :

card{l <k <n:\(A) e E}

MA<E) = n )

est la proportion de valeurs propres de A dans F.

La convergence faible d’'une mesure spectrale empirique vers une mesure déterministe
décrit de nombreux résultats de matrices aléatoires.

Définition 0.6 (Convergence faible). On dit que p4 convergence faiblement vers une
mesure de probabilité u c.a.d. pa % (t, si pour toute fonction f continue et bornée
n—

[ omaty = 335 i) o [ stoantan)

Remarque 0.2. Si A est aléatoire, alors pu4 est une distribution de probabilité aléatoire
discrete, cela implique { fua(du) sont aussi des variables aléatoires. Nous dirons alors que
presque slirement (p.s.) p4 convergence faiblement vers p

sur R

(p-s.) pa—— pu.

n—o0

Définition 0.7 (Résolvante). Soit A € M, (C), on appelle résolvante de la matrice A
Q := (Qre)nxn définie par

Q(z) = (A—=zI)"", 2 ¢ Sp(A).

On note

Ti={2€eC : Im(z) > 0}

la moitié supérieure du plan complexe.

Définition 0.8 (Transformée de Stieltjes). Soit u € P(R) une mesure de probabilité. La
transformée de Stieltjes de p notée g, : C* — C est définie par

Jud)\ ),zeC".

12
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Remarque 0.3. Soit pa la mesure empirique des valeurs propres A;(A), -+, A\, (A) de la
matrice symétrique A, alors la transformée de Stieljes associée est donnée par

n

9a(2) = [ 2 na(an Z

ot Q = (A—zI)7! est la résolvante de la matrice A et Tr(Q) est la trace de la matrice Q.

—Tr (A—==D)71),

’L

Proposition 0.2 (Inversion de Stieltjes). Soit g, la transformée de Stieltjes de la mesure
p de masse finie p(R). Sia,beR et u({a}) = pn({db}) =0, alors

L ’ .
p(a,b) = ;yli%hlm ) gu(x +iy)dx,
et

1
Ve e R, p({r}) = — lim Im(g,(z + iy)) .
Ty—0t
Proposition 0.3 (Identité de Woodbury). Soit A une matrice de taille n x n, U une
matrice n x m, B une matrice m x m, V une matrice m x n. On suppose que toutes les
inverses des matrices considérées existent, alors :

(A+UBV) ' =A7 — A\ UB v+ VAU VAT,

L’identité de Woodbury pour une perturbation de rang 1 est souvent utilisée et appelée
identité de Sherman-Morrison.

Proposition 0.4 (Identité de Sherman-Morrison). Soit A une matrice n x n et u, v deuz
vecteurs de dimension n. On suppose que toutes les inverses des matrices considérées
existent, alors :

A lyp* A1
A R o DL L
(A +uv7) 14+ v*A- 1y

Proposition 0.5 (Inégalité de Poincaré). Une mesure de probabilité P sur R™ satis-
fait Uinégalité de Poincaré avec une constante ¢ > 0 si, pour toute fonction continue
différentielle f : R™ — C,

Vare(f) = Ee(|f(2) — Ee(f(2))[") < iEp!Vf(:c)F.

Matrice de Wigner

Définition 0.9. Soit W,, une matrice Hermitienne n x n, W,, = W tel que W,
(Wie, 1 < k < € <n) sont des variables aléatoires i.i.d. avec E(Wy,) =0, V1 < k < (et
E(|[Wi|?) < o0, V1 < k < £. W,/\/n est appelée matrice de Wigner.

Théoréme 0.6 (Universalité du théoreme de Wigner et de la loi semi-circulaire). Soit
W, une matrice de Wigner définie par W, := (W, 1 < k < {) variables aléatoires i.i.d.
telles que

1. EWy) =0, V1< k <Y,
2. BE([Wi|*) =02 <0, V1< k</leto>0.

13
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Figure 2: Spectre (histogramme) de la matrice aléatoire de Wigner W,,//n (n = 1000,
o = 1). La ligne continue représente la loi semi-circulaire.

Alors presque surement, la mesure spectrale empirique de W, /v/n converge faiblement vers
la loi semi-circulaire :

n

1 D
.S. n T o scH
(p-s) pumy n}; M(¥2) e M

ou lis. est définie par

dpige(t) = (402 — 2)1(_g201 ()t

2w o?

Les valeurs propres de la matrice W,,/4/n sont réelles. Dans la Figure 2, un his-
togramme des valeurs propres d'une matrice aléatoire de Wigner est illustré par rapport
a la distribution théorique donnée par le théoreme 0.6.

Comportement local du spectre pour les matrices de Wigner

On note

Amax (W) = max A\, (W,,) et Apin(W3,) = min A (W,,) .
ke[n] ke[n]

Pour traiter certaines questions, il est nécessaire d’avoir des informations exactes sur la
position de la plus grande valeur propre de la matrice. Dans le cas des matrices de Wigner,
de nombreux travaux ont été réalisés et affinés dans les années 80" [FK81, BYS8S].

Théoréme 0.7 (Convergence des valeurs propres extrémes). Si E(|Wpe|?) < o0, V1 <
k < {, alors
max( n/\/7> —> 20 ) mm( n/\/7) —20.

En particulier,
|Wo /v = max((Awax (W /v/0)s Ain (W /V/)]) == 20

14
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SiE([Wye|*) = 0, V1 < k < ¢, alors

Amax(Wa/v/n) == +0.

Matrice de Wigner déformée

La derniere propriété spécifique sur les matrices de Wigner a traiter dans le cadre de cette
these est la distribution des valeurs propres lorsque la matrice de Wigner est perturbée
par une déformation de rang fini. Ce type de modele est fréquemment appelé “spike”.
Selon le type de déformation, certaines valeurs propres aberrantes peuvent s’échapper du
support de la distribution. Soit W,, une matrice de Wigner aléatoire et

1 E(Wy) =0, V1<k<
2. E(|WM‘2)202<OO,V1<]€<£€'60>0,

3. sup E[|Wy|*] < 0.
k#L

Soit P, une matrice symétrique réelle déterministe de rang fixe r. Nous sommes
intéressés par les propriétés du spectre de la matrice ﬁWn + P,.

Depuis l'article pionnier de Fiiredi et Komlos [FK81], de nombreux scientifiques ont
étudié les propriétés spectrales des matrices de Wigner déformées [Pé06, CDMF09, PRS13,
RS13]. On note 64, ...,0, les valeurs propres ordonnées de P, ou Vj € [1,7], 6; est de
multiplicité k; et indépendant de n. Soit ry, I'index associé¢ au seuil 0 c.a.d. 6,, = 0 et P,
a ro — 1 valeurs propres distinctes. Soit 74, (resp r_,) est le nombre de j tel que 6; > o
(resp 6; < —o).

Théoréme 0.8 (Théoreme de Wigner deformé - [CDMF09, PRS13]). Soit W,, est une
matrice de Wigner réelle aléatoire satisfaisant la condition (1)-(3) et P, est une matrice
Hermitienne réelle déterministe de rang r fini fixe comme ci-dessus. Soit

0.2

Po; = Gj + .
0;
Alors, les conditions suivantes sont vraies :

1. Pour 1 < ] < Tto, I<i< k]; )\k1+...+kj_1+i - pﬂj )

2. >\k1+...+kr+a+1 — 20,

3. )\k1+...+kr,to — —20,

4' PO’lM"j =T — T_o + 17 1 < ? < kja >\k1+...+kj71+i - p9j .

La convergence (1)-(4) est en probabilité.

Remarque 0.4. Dans [CDMF09], Capitaine, Donati-Martin et Féral montrent que si la
distribution des entrées satisfait 'inégalité de Poincaré (proposition 0.5), la convergence
du théoréme 0.8 est vraie presque stirement.

Dans la Figure 3, un histogramme des valeurs propres de la matrice de Wigner
déformée est illustré par rapport a la distribution théorique donnée par le théoreme 0.8.
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Figure 3: Spectre (histogramme) de la matrice aléatoire de Wigner deformée W,,/y/n+ P,
(n = 1000, 0 = 1). La matrice de perturbation est P, = diag(—4,2,3,0,...,0). La
ligne continue représente la loi semi-circulaire. Les lignes pointillées indiquent la valeur

théorique des valeurs aberrantes a —4—1/4,241/2,3+1/3 comme prédit par le théoreme
0.8.

La loi circulaire

Dans la deuxieme partie de cette introduction sur les matrices aléatoires, nous nous con-
centrons sur les matrices non-Hermitiennes. Soit Y,, € M,,(C) une matrice aléatoire carrée
de dimension n x n dont les entrées sont i.i.d. centrées de variance 0. Les valeurs propres
de Y,, ne sont plus réelles mais complexes. Le résultat principal concerne la convergence
de la mesure spectrale empirique de Y,,/4/n vers la loi circulaire dans le plan complexe.
Initiallement prouvé par Mehta [Meh67] pour la distribution spectrale empirique moyenne
dans le cas d’une gaussienne complexe suite aux travaux de Ginibre sur la formule ex-
plicite du spectre [Gin65], Edelman [Ede97] a établi la loi circulaire dans le cas de variables
aléatoires gaussiennes réelles. Silverstein a donné un argument pour passer de la conver-
gence moyenne a la convergence presque sire. Girko a travaillé sur la version universelle
(pour d’autres types de distribution) [Gir85] en fournissant quelques éléments de preuves
tels que la technique d’hermétisation. Cependant, c’est finalement Tao et Vu [TVKI10]
qui ont prouvé le cas général. Je conseille au lecteur de consulter Bordenave et Chafai
[BC12].

Théoréme 0.9. Soit Y, une matrice aléatoire M,,(C) telle que Y, := (Yie, 1 < k, € < n)
sont des variables aléatoires i.i.d. telles que BE(Yy) = 0,V1 < k0 < n et B(|Yi|?) =
o2, V1 < k0 < n. Alors presque sirement, la mesure spectrale empirique de Y,/\/n
converge faiblement vers la loi circulaire

D
e

ot pi. est la loi circulaire c.a.d. la loi uniforme sur le disque de rayon o de C avec comme

densité
1

dﬂc(z) = ﬁlze(},\déodz .
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Figure 4: Spectre de la matrice aléatoire non-Hermitienne Y, /y/n dans le plan complexe
(n = 1000, ¢ = 1). Le cercle de ligne continue représente la frontiere de la loi circulaire.

Dans la Figure 4, les valeurs propres d'une matrice aléatoire non-Hermitienne dans
le plan complexe sont représentées par rapport a la distribution théorique donnée par le
théoreme 0.9.

Comportement local du spectre pour les matrices non-Hermitiennes

Dans le cas de la loi du cercle, il est important d’avoir des informations sur la position
du rayon spectral. Nous avons vu précédemment dans les travaux de May [May72], la
nécessité de décrire le seuil de perte de stabilité par la plus grande valeur propre de la
partie réelle de la matrice Jacobienne. De nombreux travaux ont été réalisés sur ce sujet,
en particulier par Bai [BSY88, BS10].

Théoréme 0.10 (Convergence des valeurs propres extrémes). SiE(Yy,) = 0 et E(|Yie|*) <
0, V1 <k, ¢ <n, alors

S YTL .S.
22,90 et p()—p—»a.

Y,
\/ﬁ n—o0 \/ﬁ n—0o0

Valeurs aberrantes dans le spectre des matrices non-Hermitiennes

Comme dans le cas de Wigner, nous pouvons considérer une perturbation de rang fini de
la matrice non-Hermitienne. Ce probléme a été considéré par Tao [Taol3, Théoréme 1.7]
et a été étendu par Benaych-Georges et Rochet [BGR16] pour 1'étude des fluctuations des
valeurs propres aberrantes.

Théoréme 0.11 (Spectre déformé d’une matrice aléatoire non-Hermitienne). Soit Y,, une
matrice aléatoire i.i.d. avec B(Yi) = 0, E(|Yie|?) = 1 et E(|YVie|*) < o0, V1 < k0 < n
et pour chaque n, soit P, une matrice déterministe de rang O(1) et de norme opérateur
O(1). Soite > 0, et supposons que pour tout n suffisamment grand, il n’y a pas de valeurs
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Figure 5: Spectre de la matrice non-Hermitienne Y,,/y/n + P, dans le plan complexe
(n = 1000, o = 1). La matrice de perturbation est P, = diag(1l + 2i,2,3,0,...,0). Le
cercle en trait plein représente la limite de la loi circulaire. Il y a trois valeurs propres
dans les petits cercles en pointillés centrés sur 1 + 27, 2, 3 comme prédit par le théoreme
0.11.

propres de P, dans l'anneau {z € C : 1 +¢ < |z| < 1+ 3¢}, et il y a j valeurs propres
M(Py),...; Nj(Py) pour j = O(1) dans la région {z € C: |z| =1+ 3¢}.
Alors, p.s., pour n suffisamment grand, il y a précisément j valeurs propres

Y, Y,
M—=+P,),..\|—=+P, ],
() ()
de % + P, dans la région {z € C : |z| = 1+ 2¢}, et aprés avoir étiqueté correctement ces

valeurs propres, \i(X= + P,) = \i(P,) + o(1) lorsque n — oo pour chaque 1 < i < 7.
vn

Dans la Figure 5, les valeurs propres d’une matrice aléatoire non Hermitienne déformée
avec des valeurs aberrantes sont représentées par rapport a la distribution théorique
donnée par le théoreme 0.11.

Le modele elliptique

Dans la configuration de la matrice de Wigner, on considere que l'interaction d’une espece
sur I'autre est la méme. Pour les matrices non-Hermitiennes, toutes les interactions sont
indépendantes. Cependant, en écologie, les effets réciproques d’une espece k sur une
autre espece ¢ (Xy <> Xy) sont liés. Mathématiquement, on considére une corrélation
par paire entre les entrées de la matrice. Ceci peut étre utilisé pour décrire des processus
biologiques tels que la prédation lorsque le signe des interactions est inversé et que la
corrélation est négative. Dans une matrice aléatoire, lorsque les interactions par paire
sont tirées d’une distribution bi-variée, nous sommes dans le cadre du modele elliptique.
Introduit a l'origine par Girko [Gir86], ce modele a depuis été largement étudié [Gir95,
Naul2, NO15, OR14].
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Définition 0.10 (Modele elliptique aléatoire). Soit X, une matrice aléatoire réelle qui
satisfait aux trois conditions suivantes :

1. Les paires (Xys, Xox), k # ¢ sont des variables aléatoires i.i.d. avec

Vk #* g, E(ng) = 0, E(|ng|2) =1et E(|XM|4) < 0.

2. Pour k < {¢le vecteur (Xyp, Xgi) est tiré d’'une distribution bivariée, indépendemment
des variables aléatoires restantes, avec une covariance E( Xy, Xp) = p avec |p| < 1.

3. (Xkk, 1 < k < n) sont des variables aléatoires i.i.d., indépendantes des entrées hors-
diagonales avec E(X;) = 0 and E(| Xy.|?) = 1.

Pour p € (—1,1), on définit 'ellipsoide
2

S'—{z—$+iyeC' ‘ + v <1}
. C(T4p? o (1=p2 )

Remarque 0.5.

1. Pour p = 1, & est l'intervalle [—2, 2] sur 'axe réel et pour p = —1, £_; est I'intervalle
[—2, 2] sur I'axe imaginaire.

2. Sip=1, X,, est une matrice de Wigner.
3. Si p =0, X,, est une matrice non-Hermitienne c.a.d. définie par le théoreme 0.9.

Théoréme 0.12 (Loi elliptique). Soit X,, une variable aléatoire elliptique satisfaisant les
conditions de la définition 0.10. Alors presque sturement, la mesure spectrale empirique
de X, /\/n converge faiblement vers la loi elliptique :

D
(p-s.)  Hxa —— pp,

v/n N—0

ot f1, est la mesure de probabilité uniforme sur ellipsoide &, de densité

1 .
———  Siz€CE,,
Np(z) = {W(l_’ﬁ) . g
0 sinon .

Dans la Figure 6, les valeurs propres d'une matrice aléatoire elliptique dans le plan
complexe sont représentées par rapport a la distribution théorique donnée par le théoreme
0.12.

Le corollaire 2.3 dans O’Rourke et Renfrew [OR14] fournit des informations sur le
rayon spectral d'une matrice elliptique.

Proposition 0.13 (Rayon spectral d’'une matrice aléatoire elliptique). Soit X,, une ma-
trice aléatoire elliptique définie dans la définition 0.10, alors

Xn p.s. 1 +’ ‘
p \/ﬁ n—0 p ’
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Figure 6: Spectre de la matrice elliptique X,, (n = 500) avec des parametres distincts p €
{—0.5, 0, 0.5}. La ligne continue représente une ellipse {z = z+1iy € C :

22 _
T = U
qui est la limite du support de la distribution spectrale limite pour un modele elliptique.

Valeurs aberrantes dans le modele elliptique

L’étude des valeurs aberrantes dans le cas d'une matrice elliptique déformée a été réalisée
par O’Rourke et Renfrew [OR14].
On définit le voisinage pour tout ¢ > 0

Epsi={zeC:dist(z,&,) <0} .

Théoréme 0.14 (Matrice aléatoire elliptique déformée). Soit k > 1 et 6 > 0. Soit
X,, une matrice aléatoire elliptique spécifiée par la définition 0.10. Soit P, une matrice
deterministe de taille n x n de rang fini k et sup, |P,| = O(1). On suppose que pour n
suffisamment grand, il n’y a pas de valeurs propres non nulles de P, qui satisfont

\i(P,) + 75 € Er35\Eps avec |N;(P,)| > 1,

et il y a j valeurs propres A\i(P,), ..., \j(P,) pour j < k qui satisfont

MN(B) + Ai(i%) e C\Ey35 avec [Ni(Py)] > 1.

Alors, p.s., pour n suffisamment grand, il y a exactement j valeurs propres de ﬁXn + P,
dans la région C\E, 25 et aprés avoir étiqueté correctement les valeurs propres,

X, p L
24P ) =)(P _— ), Vi<i<yg.
Al(\/ﬁjt n) Ai( n>+)\i(Pn) +0(1),V i<

Dans la Figure 7, les valeurs propres d'une matrice aléatoire elliptique déformée dans
le plan complexe sont représentées par rapport a la distribution théorique donnée par le
théoreme 0.14.

Cadre théorique de la these

La compréhension des points d’équilibre du systéme de Lotka-Volterra (6) et leur stabilité
permet de mieux comprendre I'impact du réseau trophique, représenté par la matrice
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Figure 7: Spectre de la matrice elliptique deformée X,,+ P, (n = 500) avec des parametres
distincts p € {—0.5, 0.5}. La matrice de perturbation est P, = diag(1l + 21,2, 3,0, ...,0).
La ligne continue représente une ellipse {z = = + iy € C, ﬁ + ﬁ = 1} qui est la
limite du support de la distribution spectrale limite pour un modele elliptique. Il y a trois
valeurs propres dans les petits cercles en pointillé centrés sur 1 + £ + (2 — %)2 , 2+ 8,

3 + £ comme prédit par le théoreme 0.14

d’interaction B, sur I'abondance des espéces. En particulier, le réseau trophique a un
impact sur la persistance des espéces qui le composent (:= nombre d’especes persistantes),
la faisabilité du systeme (c’est-a-dire s'il existe un équilibre avec toutes les especes a des
abondances non nulles) et la stabilité de 1’équilibre. On rappelle le systéme d’équations
(6),
dxk
Ezfﬂk(l—mk-i—(B.’B)k), ke[n]
Une caractéristique essentielle pour comprendre la dynamique du systéeme LV (6) est
'existence d'un équilibre x* = (2} )re[n) tel que :

{ xk (1—at + (Bx*),) =0, Vkel[n], 9
k

xp = 0.
Une question naturelle est de savoir si un équilibre existe et s’il est unique. Si c’est
le cas, une autre considération est de savoir si le systeme converge vers cet équilibre,

c’est-a-dire la convergence d’une solution x vers 'équilibre x* : x(t) — x* si x(0)
—00

est suffisamment proche de x*. La derniere étape consiste a décrire la stabilité : locale,
globale, résilience (:= capacité d’un systéme a retrouver sa structure initiale suite a une
perturbation), etc. Le systeme de Lotka-Volterra est invariant c’est-a-dire que (0) > 0
(composante par composante) implique «(¢) > 0 pour tout ¢ > 0. Cependant, certaines
de ces composantes x(t) peuvent converger vers zéro si I'équilibre * a des composantes
nulles.
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Faisabilité

La question de la faisabilité d’'un équilibre * > 0 avait déja été abordée par Goh
[GJ77] pour le modeéle Lotka-Volterra dans les années 70’, puis Logofet s’est intéressé
a ce probleme dans le cas d'un systeme compétitif [Log93]. Rossberg a également étudié
le nombre moyen d’especes pouvant coexister dans des communautés compétitives [Ros13].
Récemment, Grilli et al. [GAST17] ont étudié 'impact des propriétés du réseau trophique
sur le taux de croissance pour maintenir un équilibre faisable en utilisant les méthodes de
stabilité structurelle introduites par Rohr et al. [RSB14].

D’apres (7), nous considérons une matrice d’interaction avec des entrées gaussiennes

ou A, := (A, 1 < k, ¢ < n) sont des variables aléatoires i.i.d. avec Ag ~ N(0,1).

Basé sur les travaux de Geman et Hwang [GH82], Dougoud et al.[DVR* 18] ont montré
que dans le cadre d’entrées aléatoires de la matrice d’interaction, si a,, > 0 est fixé et
indépendant de n alors nécessairement certaines especes s’éteignent. Le seuil d’existence
d’un équilibre faisable du modele (6) a été étudié par Bizeul et Najim [BN21]. Dans leur
article, ils montrent également que la faisabilité implique la stabilité. Ce type de résultat
avait déja été observé par Stone [Stol6] qui a montré que le seuil de stabilité est franchi
avant le seuil de faisabilité.

En partant de I’équation (9), si * > 0, ’ensemble des équations d’équilibre devient
une équation linéaire :

x* =1+ B,x*. (10)

On se limitera ici au cas non trivial dans lequel «;,, — o0 et on définit le seuil de faisabilité

par a = 4/2log(n).

Théoréme 0.15 (Theoreme 1.1 [BN21]). Soit a, —— 0. Soit x* = (23 ) ke[n) la solution
de (10) et A, := (Age, 1 < k, 0 < n) sont des variables aléatoires i.i.d. avec Age ~ N(0,1).

1. Siil existe € > 0 de telle sorte que oy, < (1 —€)ask alors

]P’{minxz >O} — 0.

ke[n] n—00

2. Si il existe € > 0 de telle sorte que oy, = (1 + €)at alors

]P’{minxz > O} — 1.
ke[n]

—1
Remarque 0.6 (Esquisse de la preuve). Soit Q,, = (I — of?ﬁ) , la résolvante de la matrice
A,. Le probléme est défini par :

g (T oo (1o ATy
= <= = — .
¥ /T v apr/1
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Pour chaque entrée du vecteur x*

1 LA, 1

=1+ \f‘i‘QZ( )Qn7
Z Ry,

:1_{_7]{ 72

ap 2

Y

Zy.
1-{—* Zy, NN(O,l).
On peut montrer que le terme Rj, est négligeable en utilisant les propriétés de concentra-
tion gaussienne (pour plus de détails, voir [BN21]). A partir des propriétés des valeurs
extrémes d’une famille de variables aléatoires gaussiennes, on peut déduire

Zp ~ —4/21 —ay, .
]Elel[lrﬁxk>0 < g[lrﬁ k og(n) > —a,

Les résultats d’existence et d’unicité d’un équilibre faisable ont été étendus dans le cas
d’un réseau trophique creux par Akjouj et Najim [AN21]. Ils supposent que chaque espece
est en relation avec d autres especes. La magnitude de d par rapport a n reflete la densité
de connexions du modele. Deux cas distincts sont étudiés, d'une part d est proportionnel
a n. D’autre part, d > log(n) dans le cas d’une structure en blocs particuliere. De plus,
ils démontrent également la stabilité globale de 1’équilibre.

Condition de non-invasion

Le probleme (9) devient beaucoup plus complexe lorsque 1'on considére un équilibre dans
lequel x* a des composantes nulles. Le systeme d’équations n’est plus linéaire et I’équation
devient un probleme d’optimisation non linéaire. Une solution naive et immédiate pour
résoudre ce probléme est de choisir un sous-ensemble Z < [n], définir les composantes
correspondantes x7 = (x});er & zéro, et de résoudre le systéme linéaire restant :

L7c = ]_Ic =+ BZC{EIC .
|Z¢|

Si il existe xze = 0 qui résout 1’équation précédente, alors & = (:cz) satisfait (9) et est
ZC

un potentiel équilibre. Le nombre de sous-cas Z < [n] est 2" et, en particulier, croit de
maniere exponentielle lorsque n — 0.

Les équations d’équilibre deviennent mal posées car il peut y avoir plusieurs équilibres.
Une condition connue en écologie pour les systemes dynamiques est la condition de non-
invasion [LM96, JS98| associé a I’équilibre saturé. Un équilibre est saturé s’il est résistant
a I'invasion d’une espece absente. L’étude des équilibres saturés et de la permanence est
un sujet de recherche important dans le domaine des systémes dynamiques (pour plus de
détails, voir le livre fondateur de Hofbauer et Sigmund [HS98)).

Définition 0.11 (Equilibre saturé). Soit Z¢ I’ensemble des espéces persistantes,

e x estsaturé < VkeZ:1—xaf + (Bx*), <0,
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e « est strictement saturé < VkeZ : 11—} + (Bx*), < 0.
Lemme 0.16.

1. Si il y a une solution strictement positive x(t) > 0, tel que x(t) 7 x*, alors x*

est un équilibre saturé.

2. Six* est strictement saturé, alors il existe une solution strictement positive x(t) >
*
0, tel que x(t) T
On remarque qu’en s’appuyant sur les propriétés standard des systemes dynamiques,
voir par exemple [Tak96, Theorem 3.2.5], une condition nécessaire pour que ’équilibre a*
soit stable est que
1 —x; +(Bx¥), <0. (11)

La condition (11) diminue le nombre de solutions potentielles au systeme (9). En référence
a 'EDO (6), l'exigence pour une espeéce donnée k € [n] pour étre non invasive est

équivalent a:
1d
(x"”) <0. (12)

Par conséquent, on se concentrera maintenant sur I’ensemble des conditions suivantes :

zf (1 —af + (Bx*);) = 0 pourke|[n],
1—zf+ (Bx*), < 0 forkeln], (13)
x* > (0 par composante.

Le probleme de la recherche d’un équilibre positif entre ainsi dans la classe des problemes
de complémentarité linéaire (LCP), que nous décrivons ci-apres.

Probleme de complémentarité linéaire

Le LCP est une classe de problemes issue de 'optimisation mathématique qui englobe
notamment les problemes de programmation linéaire et quadratique ; les références stan-
dard sont les suivantes [Mur88, CPS09]. Soit une matrice M de taille n x n et un vecteur
q de taille n x 1, le LCP associé désigné par LC'P(M, q) consiste a trouver deux vecteurs
z,w de taille n x 1 satisfaisant I’ensemble des contraintes suivantes :

z > 0,
w=Mz+q = 0, (14)
w'z = 0 < wgz,=0 pour tout k€ [n].

Comme w peut étre inféré de z, on note z € LOP(M, q) si (w, z) est une solution de
(14).

L’étude du LCP remonte aux travaux de Lemke [Lem65] et Cottle et Danzig [CDG6S].
Lemke et Howson [LH64] ont développé un algorithme basé sur des étapes du pivot pour
résoudre le probleme (14).

Introduit par Fielder et Ptak [FP66], la classe des P-matrices est reliée au probléme
de complémentarité linéaire. Murty [Mur72] montre que si M est une P-matrice alors il
existe une unique solution au LCP.
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Définition 0.12 (P-matrice). Une matrice carrée M est une P-matrice si tous ses prin-
cipaux mineurs (sous-déterminants) sont strictement positifs

det(Mz) >0, VYZc|[n], Mz= (Mg)ksez-

De nombreuses propriétés sur les conditions nécessaires et suffisantes pour qu’une
matrice réelle soit une P-matrice ont été étudiées par Rump [Rum03] et Rohn [Roh12].
Numériquement, vérifier qu'une matrice est une P-matrice est co-NP complet [Cox94].

Théoréme 0.17 (Existence et unicité d’'une solution au probleme LCP [Mur72]). Une
matrice M est une P-matrice si et seulement si le LCP(M,q) a une unique solution
(w, z) pour tout q € R™.

Dans le cas du modele de Lotka-Volterra et en considérant (13), nous cherchons x* €
LCP(I - B,-1).

Définition 0.13 (M-matrice). Une matrice carrée A est une M-matrice si elle peut étre
exprimée sous la forme A = sI —C, ou C' = (Cyy) avec Cxp = 0,1 < k, £ < n, et s > p(C),
le rayon spectral de C'.

Le nom M-matrice a été donné par Ostrowski [Ost56] en référence a Hermann Minkowski.
De nombreuses propriétés sur les M-matrices ont été introduites par Fiedler et Ptak [FP62]
et étendues par Plemmons [Ple77].

Remarque 0.7.

o L’ensemble des M-matrices non singulieres est un sous-ensemble de la classe des
P-matrices.

o L’ensemble des M-matrices non singulieres est un sous-ensemble de la classe des
matrices avec une inverse positive, c’est-a-dire que

A7l existe et A7 > 0.

Stabilité globale

Le theoreme 0.17 donne une condition suffisante et nécessaire pour I’existence d’un équilibre
unique non envahissable a I’équation (9). Dans le cas d'un équilibre faisable * > 0, Bizeul
et Najim [BN21] ont montré qu’il existe un équilibre globalement stable. Dans le cas d'un
équilibre avec des especes qui s’éteignent, il est nécessaire de revenir aux propriétés des
fonctions de Lyapunov.

Le théoreme de Lyapunov dit qu'une matrice A est stable (ses valeurs propres ont une
partie réelle strictement négative) si et seulement s’il existe une matrice définie positive
H telle que HA + ATH est définie négative. Cette condition remonte aux travaux de
Lyapunov [Lia07] qui ont été améliorés et étudiés par Barker et al. [BBP78| et Logofet
[Log05] qui fait un résumé de toutes les conditions sur les matrices représenté par une
fleur.

Définition 0.14 (Stabilité diagonale de Lyapunov). Une matrice M est Lyapunov di-
agonallement stable, noté M € S, si et seulement s’il existe une matrice diagonale D a
éléments positifs telle que DM + MTD est définie négative, c’est-a-dire que toutes ses
valeurs propres sont négatives.

25



Introduction en francais

Proposition 0.18 (Takeuchi et al. [TAT78]). St M € S, alors —M est une P-matrice.

Soit le systeme (4) et on consideére que la matrice B est arbitraire,

dyk(t)
dt

= yp(ry + (=01 + By)x), ke|n]. (15)

Takeuchi et Adachi (voir par exemple [Tak96, Th. 3.2.1]) fournissent un critére pour
I'existence d’un équilibre unique y* et la stabilité globale du systeme LV.

Théoréme 0.19 (Takeuchi et Adachi [TA80]). Si —01 + B € S,,, alors LCP(6I — B,r)
admet une unique solution. En particulier, pour tout r € R", il y a un unique équilibre
y* a (15), qui est globalement stable dans le sens ou pour chaque y, > 0, la solution de
(15) qui démarre a y(0) = y, satisfait

y(t) — vy

t—o0

Le modele Lotka-Volterra vu par un physicien

Dans la section précédente, des conditions mathématiques ont été données pour 'existence
d’un équilibre faisable et l'unicité d’'un équilibre globalement stable dans (4) ou cer-
taines especes peuvent disparaitre. Cependant, la richesse des équations de Lotka-Volterra
provient de la diversité de ses comportements dynamiques. Le manque de connaissances
mathématiques est complété par des méthodes issues de la physique pour améliorer la
compréhension de ces divers comportements dynamiques (propriétés de 1’équilibre, dy-
namique hors équilibre, sophistication du modele).

Depuis longtemps, la théorie de la mécanique statistique des systemes désordonnés a
été développée pour étudier les verres de spin par le systeme des répliques (voir Mezard
et al. [MPV86] pour une revue).

L’utilisation de ces méthodes pour étudier les systémes biologiques a été introduite
pour la premiére fois par Diederich et Opper [DO89, OD92] et utilisé pour étudier la dy-
namique des équations des répliques multi-especes (modele équivalent au systeme Lotka-
Volterra) par Tokita [Tok04]. Plus récemment, ces méthodes de physique statistique des
systemes désordonnés ont été adaptées pour résoudre des problemes d’écologie théorique.
En particulier, la méthode de la cavité dynamique est utilisée pour analyser la dynamique
des communautés ou des interactions aléatoires entre les especes sont considérées. Les
physiciens ont divisé l'espace des parametres (i, a, p) en un diagramme de phase ou la
question majeure est d’identifier les limites entre les différentes phases : point fixe stable
unique, chaos avec des attracteurs multiples, croissance infinie etc.

La méthode de la cavité permet de dériver une équation de champ moyen approchant
un probleme non linéaire de haute dimension. Le concept clé consiste a supposer qu’'un
point fixe unique existe et a introduire une nouvelle espece avec de nouvelles interactions
dans le systeme existant. Apres I’établissement de la nouvelle especes, une analogie entre
les propriétés des solutions avec n et n + 1 especes est vérifiée. Cette méthode est utilisée
pour étudier le systeme (4) qui peut admettre un point fixe stable unique mais aussi une
dynamique hors équilibre : une phase chaotique avec des attracteurs multiples. Bunin
[Bun16, Bunl7] a utilisé la méthode de la cavité dynamique pour mener et étendre des
résultats plus généraux (propriétés des especes persistantes, phase des attracteurs multi-
ples) pour le diagramme de phase du systeme de Lotka-Volterra (4). Ces méthodes ont
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été utilisées pour résoudre de nombreux problemes en écologie théorique. En particulier,
Barbier et al. [BABL1S] présente des comportements génériques dans les communautés
complexes. Pour une revue de la méthode de la cavité appliquée aux problemes de dy-
namique des communautés, voir Barbier et Arnoldi [BA17].

Le modele étudié par les physiciens est plus générique, le systeme désordonné de
Lotka-Volterra est donné par

d:v;t(t) = xp(t) (’f‘k —x(t) + Z Buxdt)) + Me + w225 () () (16)
Le[n]

ou les )\, sont des constantes de migration et wyg+/22x(t)nx(t) est un terme de bruit
démographique ou 7, (t) est une fonction aléatoire variant dans le temps.

Le diagramme de phase étudié par Bunin [Bunl7] avait déja été étudié numériquement
par Kessler et Shnerb [KS15] avec la présence du parameétre de migration ;. Le modele
de Lotka Volterra avec un terme de bruit démographique a été étudié récemment par
Bunin [Bun21] et Altieri et al. [ARCB21]. La méthode de la cavité dynamique permet
de dériver I'équation dynamique du champ moyen pour les applications hors équilibre
[RBBC19, RBBB20, ABC20], en particulier pour I’étude de la dynamique des attracteurs
multiples représentée dans la Figure 8. En outre, Biroli et al. [BBC18] montrent que le
régime des attracteurs multiples est analogue a une phase critique de verre de spin. Pour
une revue dans les systémes écologiques, voir Altieri [Alt22].
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Figure 8: Dynamique d’un systéme LV de 100 especes avec migration (16) dans la phase
chaotique avec des attracteurs multiples et des parametres u =4, a = 0.5, Vi € [n], \; =
10719 L’axe des ordonnées est en échelle logarithmique.

Une autre méthode utilisant des techniques fonctionnelles génératrices pour établir des
équations de champ moyen similaires afin d’étudier la phase d’équilibre dans le systéme
LV a été utilisée par Galla [Gall8]. Des méthodes identiques ont été utilisées pour établir
les valeurs propres des matrices aléatoires [BJRG22b, BJRG22a| et analyser les modeles

de Lotka Volterra avec différentes structures d’interaction, comme le modele en cascade
[PBG22].

D’autres applications sont possibles, comme les travaux récents de Fraboul et al.
[FBM22| sur les mutations dans le modele LV ou 'étude de l'impact de leffet Allee
sur le diagramme de phase par Altieri et al. [AB22].
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Contributions

Chapitre 1 - Equilibrium and persisting species in a large Lotka-
Volterra system of differential equations

Ce chapitre est basé sur une prépublication de Clenet, Massol et Najim [CMN22].

Dans le Chapitre 1, nous nous concentrons sur le modele (6) ou la matrice d’interaction
B est une version simplifiée de (7) qui admet la représentation suivante :

A
B=—"_4+"117

ay/n o n

ou A = (Aye) est une matrice avec des variables aléatoires normalisées (EAg, = 0 et
Var(Ag) = 1) indépendantes et identiquement distribuées (i.i.d.) avec un moment d’ordre
quatre fini, & > 0 est un parametre supplémentaire reflétant la force d’interaction et © € R
représente une tendance arbitraire des interactions.

Dans le theoreme 0.15, Bizeul et Najim prouvent l’existence d’un seuil a ~ 4/2log(n)
dans le cas p = 0, qui garantie la faisabilité de I’équilibre x* de (6). Cependant,
Dougoud et al. [DVR*18] ont montré que certaines espéces s’éteignent lorsque a > 0 est
indépendant de n. L’objectif de ce chapitre est de décrire I'impact de la force d’interaction
a et de la tendance d’interaction p sur les conditions de coexistence des especes en inter-
action.

Premiérement, en combinant les résultats de Takeuchi et Adachi du théoréme 0.19 avec
les résultats standard de RMT du théoreme (0.27), nous fournissons des conditions suff-
isantes sur les parametres a et p pour assurer I'existence d’un équilibre unique globalement
stable * en grande dimension n — co. L’équilibre est composé d’especes persistantes et
d’espéces disparues.

Par la suite, étant donné un équilibre unique a*, nous décrivons les propriétés des
especes persistantes. Dans cette perspective, nous fournissons une heuristique pour cal-
culer asymptotiquement la proportion d’espeéces persistantes et nous analysons via un
systeme d’équations la dépendance entre les parametres «, p et la proportion d’especes
persistantes. De plus, nous montrons a ’aide d’une heuristique que la distribution de
I'abondance des especes persistantes est une gaussienne tronquée (voir Figure 9).

Dans la nature, les interactions entre espéces sont en constante évolution et sont
affectées par 'environnement. Sous ’hypothése que les conditions environnementales in-
fluencent la force d’interaction, nous étudions les conséquences d'un changement soudain
des conditions environnementales, exprimé par un changement brutal du parametre a.
Lorsque a varie pour la méme matrice A et le méme parametre u, le systéme peut
présenter différents états. Lorsque la valeur de o augmente au-dela d’une certaine valeur
critique, toutes les especes coexistent ; a l'inverse, pour des valeurs suffisamment faibles
de «, les especes peuvent disparaitre tout en conservant un équilibre stable unique. Nous
décrivons le changement entre ces deux états et comment la proportion d’especes persis-
tantes varie en résolvant numériquement le systéeme de Lotka-Volterra. Nous observons
qu'une diminution de « affecte négativement la richesse spécifique de 1'équilibre (voir
Figure 10).

Enfin, nous analysons un indice de diversité (nombres de Hill d’ordre 1) pour avoir une
représentation plus précise de la dynamique de la biodiversité. La dynamique de cette
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Figure 9: Distribution de 'abondance des especes persistantes. L’axe des abscisses
représente la valeur des abondances et ’histogramme est construit sur les composantes
positives de 1’équilibre x*. La ligne solide représente la distribution théorique des
paramétres (o, p) donnée par 'heuristique. Les entrées sont gaussiennes N (0,1) et les
parametres sont fixés a (n = 2000, = 2, u = 0.2).
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Figure 10: Dynamique des abondances dans le cas d’'une communauté de dix especes. La
matrice des interactions A et les conditions initiales sont communes et nous appliquons
une variation brutale de «(t) a t = 30. Les lignes hachées représentent les especes qui
bénéficient de la variation de I'habitat ; les lignes pleines représentent les especes qui souf-
frent du changement. Les lignes en pointillés représentent les especes en voie d’extinction.

mesure de diversité suggere que la moyenne des coefficients d’interaction, pu, affecte la
durée de la dynamique transitoire, une dynamique transitoire plus courte étant associée
a des interactions plus mutualistes (c’est-a-dire des valeurs positives plus élevées de ).
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Chapitre 2 - Equilibrium in a large Lotka-Volterra system with
pairwise correlated interactions

Ce chapitre est basé sur l'article écrit par Clenet, El Ferchichi et Najim publié¢ dans le
journal Stochastic Processes and its Applications (Novembre 2022) [CEFN22].

Dans le Chapitre 2, nous nous concentrons sur le modele (7) ot nous étendons le
résultat sur le seuil de faisabilité de Bizeul et Najim (0.15). La matrice d’interaction B,
est une matrice aléatoire non centrée avec des entrées corrélées par paire :

olt Ay, = (Ake)k,ce[n) est une matrice aléatoire qui satisfait deux conditions (i) (Age, & < €)
sont des variables aléatoires gaussiennes standard N (0, 1) indépendantes et identiquement
distribuées (ii) pour k < ¢ le vecteur (Ags, Ag) est un vecteur gaussien standard bivarié,
indépendant des autres variables aléatoires, avec une covariance cov(Age, Ag) = p et
|p| < 1. La suite de nombres positifs («,) est soit fixe, soit infinie. Le parameétre p est un
nombre réel fixé.

10{ === p=-05 : I -5
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Figure 11: Transition vers la faisabilité pour le modele elliptique. Pour chaque x sur
I’axe des abscisses, nous simulons 1000 matrices B,, de taille n = 1000, puis nous cal-
culons la solution @, du théoreme de faisabilité a I'échelle a,,(k) = k4/log(n) puis de
tracer la proportion de solutions faisables obtenues pour les 1000 simulations. Chaque
courbe représente la proportion de solutions faisables @, pour trois valeurs distinctes
p e {—0.5, 0, 0.5}. La ligne verticale en pointillés correspond & x = /2 c.a.d. 1'échelle

critique aZf = 4/2log(n).

On prouve que la faisabilité est atteinte lorsque a, » 4/2log(n) et p < 1, et qu’il
n’y a pas de faisabilité autrement. De plus, le parametre de corrélation p n’a aucune
influence puisque le seuil de transition de phase est le méme que dans le cas i.i.d. [BN21]
. les corrélations induites entre les composantes x de la solution @, sont trop faibles
(voir Figure 11). De plus, nous prouvons que la méme transition de phase se produit si
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nous considérons un profil de covariance (pre, & < ) ot pry = cov(Age, Ag,) au lieu d'un
parametre de covariance fixe p.

En utilisant les résultats de Takeuchi et Adachi (0.19) sur la stabilité des systemes LV
avec les résultats RMT du théoreme 0.14, nous établissons des conditions suffisantes pour
I'existence d'un équilibre stable unique ou certaines espeéces peuvent disparaitre, ce qui
représente une extension du Chapitre 1.

Enfin, nous concluons avec un résultat important sur l’estimation de la proportion
d’especes persistantes. En utilisant les arguments des physiciens, nous énongons le probleme
ouvert, nous rappelons les équations de Bunin et Galla et nous fournissons des simulations
d’un systéme d’équations pour calculer la proportion d’especes persistantes.

Chapitre 3 - Impact of a block structure in large systems of Lotka-
Volterra

Ce chapitre est un projet en cours entre Clenet, Massol et Najim.

Dans le Chapitre 3, nous visons a développer les résultats des Chapitres 1 et 2 dans
un écosysteme comportant de nombreuses communautés. Dans la nature, les réseaux
d’interactions sont plutot structurés, ce qui contribue a la stabilité du systeme. Afin
d’étendre les résultats du modele de Lotka-Volterra pour décrire les propriétés dune
dynamique multi-communautés, nous définissons une matrice d’interaction par blocs dans
laquelle nous pouvons adapter les interactions intra et inter-communautés. Pour des
raisons d’interprétation dues a la complexité du modele, nous considérons le cas de deux
communautés en interaction (voir Figure 12). Dans le cadre de 2 communautés, la matrice
B = (Bg¢)nn est définie comme suit :

A A
B = L (CXii CY11§> + 1 (/'6111111%—1 M121111}2> ’ (17)

Aoy 29 T T
EOS . n M21112111 M221I2112

. 1/0411 1/0412 (M1 M2
s = ) ll» - ’
(1/0421 1/CY22> (Mm ,u22>
Le parametre 8 = (1, 52), Z?:l B; = 1 est la taille en proportion de chacun des blocs,
Z; est un sous-ensemble de [n] de taille |Z;| := f;n correspondant a l'indice des especes
appartenant a la communauté i, 17, est un vecteur d’entrée de 1 de taille 8;n. La ma-
trice A;; est une matrice aléatoire non Hermitienne de taille (f;n, 5;n) avec des entrées
gaussiennes centrées réduites, c¢’est-a-dire N'(0,1).

La matrice s représente la force d’interaction dans chaque bloc. La matrice de tendance
p permet d’ajuster en moyenne le type d’interaction (mutualisme, compétition) de chaque
bloc.

Dans une premiere section, nous étendons le résultat de faisabilité de Bizeul et Najim
(0.15) pour une matrice d’interaction par blocs ot g = 0. En utilisant ce résultat,
nous étudions le maintien de la faisabilité de deux communautés lorsqu’on ajoute des
interactions entre elles. Les interactions entre les communautés réduisent la faisabilité et
si nous supposons que les communautés peuvent varier en taille et que les interactions
intra-communauté sont différentes, la communauté avec la force d’interaction la plus faible
est avantagée, c’est-a-dire que la taille de la communauté peut étre plus grande. Nous

ou :
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Figure 12: Dynamique du modele (7) de 2 communautés distinctes composées de 5 especes
avec une matrice d’interaction (17). A ¢ =0, les deux communautés convergent vers leur
point d’équilibre faisable et ne sont pas en interaction. At = 5, les deux communautés
commencent a interagir c.a.d. ajs et ag; augmentent d’une fagon linéaire jusqu’a t = 15.
Ensuite, les deux communautés convergent vers leur nouveau point d’équilibre avec des

especes persistantes et éteintes dans les deux communautés.

concluons cette premiere partie en étudiant le cas non centré g # 0, ot nous donnons des
conditions de faisabilité en utilisant des propriétés sur les M-matrices.

Les deuxieme et troisieme parties de ce chapitre sont une extension des résultats du
Chapitre 1 et une interprétation écologique des résultats. D’une part, dans la deuxiéme
partie, nous étudions l'existence d'un équilibre unique globalement stable ou les especes
peuvent s’éteindre en utilisant le théoreme 0.19 de Takeuchi et Adachi et des résultats de
RMT, en particulier la théorie sur I’équation vectorielle quadratique. Nous établissons un
théoreme pour le cas p = 0, puis nous étudions le cas non centré p # 0 lorsque la force
d’interaction est similaire dans chaque bloc. Contrairement aux résultats obtenus dans le
cas d'une seule communauté, 'augmentation de la compétition inter-communautés peut
déstabiliser le systeme.

D’autre part, la troisieme partie décrit les heuristiques sur les propriétés et la distri-
bution des abondances des especes persistantes dans chaque bloc (voir Figure 13). Une
interprétation graphique de ces heuristiques met en évidence plusieurs résultats. Il ex-
iste une contagion de la diversité : plus la persistance d'une communauté est élevée,
moins son impact sera néfaste sur les autres communautés. Le déclin de la persistance
entre deux communautés en interaction n’est pas linéaire mais a un double effet négatif,
d’ou I'importance de maintenir des communautés persistantes et de ne pas négliger les
phénomenes de rétroaction dans les interactions entre les communautés. Nous concluons
par une étude de I'impact des interactions mutualistes et compétitives.

Dans une quatrieme et derniere section, une étude de similarité numérique est réalisée
entre un modele ou la force d’interaction varie et un modele ou la connectance dans
chacune des communautés est variable, ce qui donne une matrice d’adjacence du graphe
d’interaction connu sous le nom de Bernouilli Stochastic Block Model (voir Figure 14).
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Figure 13: Distribution des abondances des especes persistantes pour chaque commu-
nauté. L’axe des abscisses représente la valeur des abondances et 1'histogramme est con-
struit a partir des composantes positives de 1’équilibre &* associé a chaque communauté.
La ligne continue bleue (resp. la ligne continue rouge) représente la distribution théorique
de la communauté 1 (resp. communauté 2) en fonction des parameétres (o, p) donnés par
les heuristiques. Les entrées sont gaussiennes N (0, 1) et les paramétres sont fixés &
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Cette similitude est analysée a travers la condition de stabilité donnée historiquement par
May [May72].

Chapitre 4 - A probabilistic perspective of the hierarchical competition-
colonization trade-off model

Ce chapitre est un projet en cours entre Allesina, Clenet, Della Libera, Massol et Miller.

Dans le Chapitre 4, nous étudions le modele compétition-colonisation a plusieurs
especes (8), dans le cas d’une compétition hiérarchique c.a.d.

1 sik</?,
Nke =

0 sinon .

La dynamique des abondances de chaque espece au sein de ’habitat dépend principale-
ment de son taux de colonisation et de son taux d’extinction. Nous proposons une in-
terprétation probabiliste du modele en échantillonnant les taux de colonisation a partir
d’une distribution de probabilité donnée avec le méme taux d’extinction pour toutes les
espéces. Dans ce cadre, nous étudions deux types différents de processus d’assemblage.
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Figure 14: Représentation d’une matrice d’adjacence des interactions d'un écosystéme
de taille n = 200. Un graphe d’un Stochastic Block model symétrique de parametre

P = 00'265 00'215> . Une cellule de couleur rouge indique Sg; = 1, au contraire, une cellule

de couleur blanche indique qu’il n’y a pas d’interaction Sy, = 0.

D’une part, nous supposons que initialement la communauté contient un pool de n
especes (processus de métacommunauté "tout en une fois”) et nous laissons les occupa-
tions de toutes les especes évoluer dans le temps selon I’équation (8) ou certaines especes
persistent alors que d’autres peuvent disparaitre. De maniére surprenante, nous obtenons
un résultat d’universalité de la distribution du nombre d’especes persistantes. Pour une
large gamme de distribution, en moyenne la proportion d’especes persistantes est de un
demi. De plus, nous montrons (pour la distribution uniforme) que la distribution des
especes persistantes est une distribution binomiale B(n,1/2) (voir Figure 15).

Outre le résultat d’universalité, nous décrivons les propriétés des especes persistantes
en rappelant quelques résultats de Kinzig et al. [KLD*99] sur la fraction des parcelles
vides et des occupations. Nous terminons cette section en clarifiant I’hypothese de pertur-
bation intermédiaire qui avait été observée par Hastings [Has80] ot la coexistence optimale
entre les especes se produit lorsque le taux de mortalité est intermédiaire.

D’autre part, nous étudions un processus d’invasion séquentielle. Partant d’un habitat
vide, celui-ci est rempli par I'introduction séquentielle d’especes dont les taux de colonisa-
tion sont tirés selon une distribution spécifique. Nous observons que le nombre d’espéces
persistantes sature avec une croissance logarithmique due aux contingences historiques
et aux cascades d’extinction (voir Figure 16). Nous analysons les propriétés des contin-
gences historiques dii au phénomene des cascades d’extinction qui est un élément clé du
phénomene de saturation.

Nous donnons quelques éléments de réponse théoriques avant de procéder a une analyse
numérique du modele du processus d’assemblage. Le résultat d’universalité n’est plus
vrai et une différence majeure est observée entre les distributions a queue réguliere et a
queue lourde. En général, plus la queue est lourde, plus la diversité est grande. Cette
hypothése de compromis entre compétition et colonisation montre I'importance de trouver
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Figure 15: Représentation de la distribution du nombre d’espéces persistantes pour un
pool initial de n = 1000 especes et pour différentes distributions du taux de coloni-
sation. Chaque courbe est obtenue par des expériences de Monte Carlo en calculant
P = 100000 fois I'algorithme et en stockant les valeurs obtenues pour former le contour
d’un histogramme. La courbe rouge correspond a la fonction de densité de la distribution
binomiale B(n, 3).
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Figure 16: Représentation de la richesse spécifique du modele d’invasion séquentielle en
fonction du nombre d’invasions pour différentes distributions. La courbe est obtenue a
I’aide de simulations de Monte Carlo en calculant P = 2000 fois et en calculant la moyenne
du nombre d’espeéces persistantes.

un équilibre entre les compétiteurs et les colonisateurs.

Pour conclure, cette perspective probabiliste du modele hiérarchique de compétition-
colonisation multi-espéces met en avant et compare deux types différents d’assemblages
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distincts et donne les conditions pour que de nombreuses especes coexistent sous le com-
promis compétition-colonisation.
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Ecological issues

A better understanding of ecosystems

Ecology is etymologically the science of the house (from ancient Greek oikos). By def-
inition, it is the science of living beings (animals, micro-organisms, etc.) in a specific
environment at a particular scale (populations, species, communities) and their relations
with other living beings. In ecology, a species gathers only individuals that can repro-
duce with one another and that can produce fertile offspring and thus form populations.
Individuals are usually mutually dependent on each other for their survival.

Individuals of different species living in the same region form a community. All living
beings in their environment form an ecosystem (savannah, forest, intestine, etc.). His-
torically, the concept of ecosystem is not old [Tan39]. Understanding these ecosystems
(community ecology, when the focus is on the interaction between species) and their
underlying functioning mechanisms is a major challenge in ecology [MWG67].

The number of species in an ecosystem is often related to a measure of scale. On
earth, some rare ecosystems are small (2-3 species), however, there are many ecosystems
with a very large number of species. This great diversity of species is necessary for the
survival of living beings. To date, scientists have listed more than 2 million species on
earth. For example the Amazon forest is home to 10° species. On our own scale, our
microbiome hosts an order of magnitude of 10 species and 10'® of cells [CSF15]. Many
questions about these large ecosystems remain unanswered because more complex systems
ask for much more empirical data to be “understood” and experimental studies are not
suited to the study of large ecosystems. A better understanding would allow to manage
animal populations sustainably to protect endangered populations, or to have a better
management of antibiotics on our intestinal flora.

Ecologists carry out many experimental studies on small systems of species, whereas
in large systems this quickly becomes intractable to collect data at a large scale. However,
in recent years, many technological tools have been developed in laboratories for studies
in microbiology systems and would allow comparisons with theoretical studies [HAB*21].
For example, many processes are automated with the emergence of deep learning to
recognize species and count them, especially on images taken by plane or drone. This
lack of data can be compensated by the use and study of models. Such models do not
necessarily have the sole purpose of predicting the evolution of the ecosystem but to
understand the mechanisms that allow a great diversity i.e. toy models.

One of the major debates in ecology is the relationship between diversity and sta-
bility in an ecosystem. In the 70’, many ecologists suggest that diverse communities
enhanced ecosystem stability [Mach5, May73]|. However, initiated by a theoretical model
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that he introduced in the 70’ [May72], May challenged the diversity-stability relationship
by using linear stability analysis on randomly constructed community model and found
that diversity tends to destabilize the system. This lead to the diversity-stability debate
[May73, Yod81, McC00, ICO7, IMM*16, LMB™" 18] where the theoretical issues are to find
the missing arguments or mechanisms of the model of May.

In this thesis, I study large ecosystems in order to understand one of the major eco-
logical factors affecting their diversity and dynamics: biotic interactions between species.
In a community, all the interactions among its component are represented as a network of
interactions. There are two main classes of interactions: intra-specific and inter-specific
interactions. The first class corresponds to the interactions within the same species that
can be negative (competition) and positive (Allee effect). The second, more diversified,
corresponds to interactions between two different species, for example competition, mu-
tualism, predation, etc. Community ecology is a sub-discipline of ecology which focuses
on understanding the evolution of abundances (:=number of individuals) of the species
that compose a community over time. To summarize, I use a model that describes com-
munity dynamics to understand the impact of the interactions network the properties of
an equilibrium such as existence, diversity, stability, etc.

Crash course on ODEs

In ecology, population dynamics can be modeled in continuous or discrete time. In con-
tinuous time, ordinary differential equations (ODE) are used to describe the evolution of
the abundance ® = (z1, ..., x,) of a n-species system. We start by recalling the Cauchy
problem.

Let U be an open set of R*™! f: U — R""! continuous with respect to (¢, ),

{ w0 =t =(1),
A system is said to be autonomous if f does not depend on t.
The Cauchy-Lipschitz theorem states that if f is C! with respect to @, then for any
initial condition the problem (18) admits a unique maximal solution (7,7), v : I — R™
Moreover, any other solution of the problem (18) is a restriction of the maximal solution.
If the system is autonomous, the theorem of a priori majorations indicates that if
f: U — R™is locally Lipschitz continuous, (/,u) a maximal solution of Cauchy’s theorem
and sup(I) = oo, then there exists a global solution of the problem (18).
In the following, we focus on the autonomous problem:

{ 0 — fa(t), )

In order to study the problem (19), an important issue consists in obtaining information
on the existence and uniqueness of the equilibrium and their properties. An equilibrium
x* of the system (19) is a solution of the equation:

dx(t)
= 0 < f(z)=0.
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The function f can be complex, the solutions of this system are not necessarily trivial
and there can be several equilibria with different properties. An equilibrium x* is feasible
if all its components are positive i.e.

>0 < x;,>0,Yien].

A major property of an equilibrium point is its stability. An equilibrium is stable if
it returns to its equilibrium value after a small perturbation of the abundance vector x.
In the case of a linear differential equation, the study of stability is trivial and depends
on the eigenvalues of the linear operator. In the non-linear case, it is more complex.
However, one can linearize the system to obtain information on the local stability around
the equilibrium.

Given * an equilibrium point of (19), we say that x* is asymptotically stable if it is
stable and if 3 > 0, V(/, ) solution of (19)

Jtoel,|x(ty) —x*| <5 = x(t) - x*.
Theorem 0.20 (Stability of an equilibrium, non-linear case). Let «* be an equilibrium
for an autonomous nonlinear differential system where f is differentiable in x* and let
Df(x*) = J|g+ be its Jacobian. Let A = Sp(J|.+) be the set of eigenvalues of J|+ and
R(A) the set of real parts of eigenvalues of A.

1. If VA e A, R(A) <0, then x* is asymptotically stable and we have

Vi €]0, min —R(A)[, Ve > 0,35 > 0, |x(ty) —x*| <o

=Vt = to, z(t) ewist and |x(t) — z*| < ee HEt0)

2. If INe A, R(A) > 0, then x* is unstable.

3. If VA € A,R(A) < 0 and there are pure imaginary eigenvalues, then we cannot
conclude.

Let * be an equilibrium for an autonomous nonlinear differential system (19), we say
that * is asymptotically globally stable if for every @y > 0, the solution to (19) which
starts at x(0) = x, satisfies

%

Remark 0.8. In this thesis, we investigate exclusively asymptotic stability i.e. stability
and convergence to the equilibrium point. By abuse of notation, we refer the study of
the stability towards the asymptotic stability. I advise the reader to look at the book of
Hirsch et al. [HSD74] for a complete review on ODEs.

Lotka-Volterra model

Differential equations are frequently used in biology to describe a system of interacting
species. A particularly used form is the density-dependent model:

) — w(t) f(x(t)),
{ :L'CEO) = 19, (20)
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where f is commonly called the fitness or growth rate of a species. When f(x(t)) < 0 the
dynamics will be decreasing and the opposite when f(x(t)) > 0. If the system is defined
in the nonnegative orthant R, then the system is forward invariant: if V z;(0) > 0, then
Vt > 0 : x;(t) = 0 [HS98]. One of the most widely used density-dependent models in
ecology is the Lotka-Volterra model which is the cornerstone of this thesis.

Historically, Thomas Robert Malthus (1766-1834) was interested in modeling the fluc-
tuations of a population. His conclusion was that without constraints, abundance in his

model grows exponentially.
{ w0 — ra(t),

z(0) = z9,

where r = birth — death and the analytical solution is z(t) = xee™. A solution that lacks
a bit of realism.

Later, Pierre Frangois Verhulst (1804-1849) was interested in a more realistic model
by assuming that the model is limited by a maximum size K > 0 (carrying capacity)

His logistic model represents, for example, the growth limit of a zebra population in the
savanna due to the shortage of resources.

In a second time, scientists were interested in modeling interactions between species.
When adding interactions between populations, the simplest model is named after two
scientists, Lotka and Volterra who formulated it independently at the end of the 20’s
[Lot25, Vol26]. Classically studied in the form of a 2-dimensional prey-predator model, it
has been compared with data from natural populations [Huf58].

From a general point of view and in higher dimensions, the Lotka-Volterra equations or
Generalized Lotka-Volterra model play a key role in the study of population dynamics over
time. This model is mathematically tractable but also very versatile and robust, and forms
a first step in the development of ecological models. This model has been studied both in
ecology [Wan78, Jan87, LB92] and in mathematics [GJ77, Goh77, Tay88, HS98, Tak96.

From a mathematical point of view, this model describes the population dynamics of
a n-species system. It is defined by a system of n differential equations:

d.ﬁlﬁ(};t(t) = l’k(t) (T’k — Ql’k(t) + Z Bkgl‘g(t)) s (21)
te[n]

where k € [n] = {1,--- ,n}. The abundance of species k at time ¢ is represented by xy(¢)
and € = (x1,---,x,) is the vector of abundances of the various species. Parameter 6
is the self regulation coefficient or intra-specific interaction of each species. Parameter
rr corresponds to the intrinsic growth rate of species k. The coefficient By, is the per
capita effect of species ¢ on the growth rate of species k. The matrix B, representing
the interaction network structure, can often be decomposed in different forms i.e. blocks,
cascade, multiplex networks, graphons, etc [CN88, SCG*05, LIPJ*06, PEM12].

The goal of many mathematicians and ecologists is to understand the behavior of
the system as a function of these different input parameters. For example, the number of
equilibria, their stability and feasibility to understand the resulting ecological implications.
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As mentioned before, the major issue of working with large systems is the difficulty
of observing or estimating information on the interaction matrix. A natural choice is
to replace the interactions by random coefficients whose statistical properties (mean,
variance, etc) and structure (block, cascade, etc) encode some of the true properties of
the food web. The matrix B becomes a complex mathematical object: a random matrix.
This mathematical object represents the second cornerstone of this thesis.

Emergence of random matrices in ecology

In the 70’s, following the work of Gardner and Ashby [GAT70], Robert May reopened the
long-standing diversity vs stability debate in ecology [Mac55]. His seminal work [May72]
motivated the emergence of random matrices as a key mathematical tool for characterizing
high dimensional ecosystems. A better understanding of these tools has expanded our
understanding of the nature of interactions and food webs to achieve stability [Tay88,
AT12, TPA14]. In his study, May was interested in the model (19) [May73], assuming
that the system is at a feasible equilibrium x*. According to Theorem 0.20, the study of
local stability corresponds to studying the real eigenvalues of the Jacobian matrix of the
system at the equilibrium point. The Jacobian matrix of the system (19) is:

dfr(z) '

J = (Jet)nxn, S =
(hsn i = 5

There exists a matrix M = J|.#, the so-called “community matrix” (Jacobian), de-
scribing the effect a species ¢ (column) has on species k (row) around the equilibrium
point.

May questioned a central belief in ecology by proving that sufficiently large or complex
ecological networks have probability to be stable close to zero. To prove this point, he
analyzed the stability of large networks in which species interact at random. In this case,
the Jacobian matrix is a non-Hermitian random matrix

M=-I+A,

where A is a centered random matrix n x n with element N (0, 0?) with probability C' and
0 otherwise (C' is called the connectance). For large n, May proved that the probability
of stability is close to 0 whenever the “complexity” satisfies:

ovnC > 1.

The eigenvalues of matrix M are distributed according to the circular law, in a disk of
center (—1,0) and radius o/nC (see Figure 17). The stability condition is R(Sp(M)) < 0.
If the model has a large number of highly connected species with strong interactions, then
the model is likely to be more unstable.

In a density-dependent model (20), the Jacobian is evaluated as

(990@

e = Opefr(x) +

In the Lotka-Volterra system (21), at a feasible equilibrium z*, the Jacobian matrix
depends on species abundances at equilibrium

J|z+ = diag(x*)(—1 + B),
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Figure 17: Spectrum of Jacobian random matrix (non-Hermitian matrix) M = —I + A in

the complex plan (n = 500, 0 = 1, C' = 1). The solid line circle represents the boundary
of the circular law. The dashed line represents the threshold not to be exceeded for the
real part of the eigenvalues for the system to be stable.

where B is introduced in (21). The study of this Jacobian is more difficult because there is
no independence between x* and B. However, Stone [Stol8] and Gibbs et al. [GGRA1S]
showed that the intuitions remain similar, the stability of large LV systems is uniquely
determined by the interaction matrix.

Final model formulation

In most of the thesis, we focus on the model (21) where 7, = 1,Vk € [n], § = 1 and we add
a generic normalization parameter in the interaction matrix. Choosing equal growth rates
releases the number of parameters, greatly simplifies the computations and discharge the
complexity of the model. Understanding the impact of the interaction matrix B in the LV
system comprises many open-problems. However, Rohr et al. [RSB14] were concerned
on the possible growth rate leading to coexistence. Their work on structural stability
has been extended by Cenci et al. [CS18], Saavedra et al. [SRB*17] and Grilli et al.
[GAST17].

The choice to keep the self-regulation term 6 = 1 brings more clarity. In a € # 1 case,
we can redimension the system (32) to avoid the parameter 6 by setting Ty := Oxy, By =
Bie/0. In fact, Barabas et al. [BMSA17] studied the importance of strong self-regulation
term for the food web to have a stable equilibrium. Note that the values of the diagonal
of the matrix B are not set to 0, but their microscopic values have a negligible impact on
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the asymptotic results.

M“”:m@)c—mﬁw+§]mﬂmo. (22)
dt e

The last important detail that differs from the standard Lotka-Volterra notation is that we
assume a normalization parameter 1/4/n in the matrix B. The major theoretical reason
is to limit the impact of the interaction parameters on the other terms and to make it
macroscopic i.e.

E(ZBWNO~QU;\M<ZBWNO~QU
te[n] ¢e[n]

From an ecological point of view, one could imagine that when the number of species
increases in an ecosystem, then the strength of the sum of the interactions of one species
with all the others will not tend to increase.

Generally, the model can finally be written in the compact form:

dzy
dt

where B is yet to be determined.

= T (1 — Tk + (Ba:)k) , ke [n] , (23)

Network

The major challenge of this thesis is to understand the impact of the interaction matrix
B on the dynamics of the Lotka-Volterra model. In nature, B corresponds to the network
of interactions between species or considered as the food web of the ecosystem (in the
sense: “who eats whom?”). Large and highly connected ecological networks are common
in nature [DWMO02, PLC91].

In the system (22), a general model for the interaction matrix B is a non-centered
random matrix with pairwise correlated interactions combined with a graph structure:

_ A Ko o7

where o is the Hadamard product i.e. (X oY);; := X;;Y;; and the n x 1 vector 1,, is a
vector of ones. A = (Aps)k,een is a random matrix satisfying the following conditions

1. (Age, B < {) are independent and identically distributed (i.i.d.) random variables
and E(Akg) = O, E(‘AMP) =1 and E(’AM‘4) <woV1<k</.

2. for k < ¢ the vector (Ags, Age) has a standard bivariate distribution, independent
from the remaining random variables, with covariance cov(Age, Ag) = E(ApcAg) =
p with |p| < 1.

S 1= (Ske)k,re[n] 1s an adjacency matrix from a graph i.e. if we represent each species by
a node and an interaction between two species by a directed vertex then

g, 1 if there exists an impact of species £ on k,
M 0 otherwise.
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In the absence of any other information, we may assume that S is the adjacency matrix
of an Erdos Renyi graph (ER) [ER60]. It is a graph with n vertices. It is assumed that
there is an edge between two vertices with probability p independent from every other
edge.

From an ecological standpoint, two types of structures can affect the type of interac-
tions and the existence of communities with preferential interactions.

On the one hand, the type of interaction is different between the species. These
settings are managed by choices about the statistical properties of the random variables
B;j. The parameter set (a,p,p) can represent a range of interaction types. First of
all, the interaction strength is represented by «, a large value of « represents a system
with weak interactions, conversely a small value of « represents very strong interactions.
The parameters p and p describe the nature of the interaction in the system. When
p < 0, interaction partners have opposite impact on one another, i.e. as in antagonistic
interactions (the predator being positively influenced by the abundance of it prey while the
prey is negatively affected by that of the predator). When p > 0, interaction partners have
similar impact on one another, i.e. they are engaged in either mutualistic or competitive
interactions. The mean interaction parameter pu increases the proportion of competitors
or mutualists depending of its sign. Given a pairwise interaction Byg/By in the system,
the three predominant patterns are:

 competition (-/- relationship), which happens more often when p > 0, u < 0 [Mac70,
Zee9b,

o mutualism (+/+ relationship), which happens more often when p > 0, u > 0
[SGB+15, Sto20],

« predation (+/- relationship), which happens more often when p < 0, u ~ 0 [AT12].

There are other types of interactions such as commensalism, amensalism [BTHO6].

On the other hand, the structure of the interaction network differs between ecosystems.
The structure of the interaction matrix can also be affected by the existence of commu-
nities, i.e. groups of species that interact preferentially among them [TF10, AGB*15]. In
(22), the network is represented by S an adjacency matrix of a given graph. Several types
of structures are widely studied in ecology and be modeled by the graph S.

First, modular structures such as the compartmentalization of food webs, also called
modularity, is the tendency of nodes to be connected preferentially within groups than
between groups ([GSSP*10, GRA16]).

Second, nested structures where each species plays a different role in the ecosystem.
These models are generally called nested because of their structure where some species
have more interactions than others [BJMO03, BFPG*09, SKA13, PBHM19].

In large ecosystems, not all species interact with each other, thus the relevance of
studying sparse ecosystems is of considerable interest [BSHM17]. In fact, May [May72]
considers connectance as a key parameter linked to the complexity of a system.

Last, trait models with latent structures [EJK™ 13] such as the niche model of Williams
and Martinez [WMOO0], the so called “cascade” model [CBN90] which establishes a preda-
tion structure in the food web. Each species can eat on the lower trophic level but not on
the subsequent ones [HMS16, PBG22|. Note that all these structures can be modeled with
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a graphon (each node is associated with a random variable and the connections depend
on a function of the variables associated with the two nodes).

For a general review of the different patterns in complex ecological communities from
a physicist’s point of view see Barbier et al. [BABLI1S].

Metacommunity and spatial dynamics

At larger spatial scales, ecologists are also interested by interactions between populations
(rather than between individuals) in order to understand the patterns of species diversity
in space and time. In this context, mutualistic, competitive and predatory interactions are
replaced by the processes of colonization, extinction and replacement of whole populations.
The theory of spatial ecology finds its roots in the works of MacArthur and Wilson
[MW63] and Levins and Heatwole [LH63] and later on by MacArthur on population
biology and geography [Mac84]. In particular, The Theory of Island Biogeography (TIB)
is a fundamental cornerstone of spatial dynamics theory [MWG67]. The TIB describes how
the biodiversity on islands is maintained by a balance between immigration and extinction
of species.

Since then, spatial ecology theory has evolved to understand coexistence mechanisms
behind the metacommunity model introduced by Wilson [Wil92]. The study of meta-
community models has been particularly developed due to an awareness of the spatial
heterogeneity of ecosystems. Leibold et al. [LHM*04] have described the different mech-
anisms at the spatial scale: colonization (organisms move from one site to another between
generations), niche habitat (species may be more or less well adapted to a given environ-
ment) and stochasticity (if species are equivalent in terms of traits, competitiveness, etc.,
we don’t necessarily expect them to coexist, but we do know that it will take a certain
amount of time before one or the other completely takes over the site, i.e. a neutral
model).

Considering that the ability of species to colonize new habitats is crucial to the main-
tenance of populations, one type of mathematically tractable metacommunity model is
known as an occupancy model with a competition-colonization trade-off. The belief as-
sociated to this model is the existence of a trade-off between the ability of a species to
colonize new patches and its competitive ability, which affects its resistance to coloniza-
tion by another competing species and its own ability to replace other species. Formally,
it is a patch occupancy model where each species has the ability to colonize new patches
in competition with other species. The variable of interest is the proportion of habitat
occupied by each species.

Initially studied by Levins [Lev69] and Levins and Culver [LC71] in the case of a
two species, this model has been of special interest in its n-species version where the
competition is hierarchical [Has80, NM92, Til94]. In a more general case, it has been
studied when the competition is not hierarchical [Ama03, YW01, CMJDO06a] and also in
an epidemiological context of a dynamic of host-parasite interactions [MN94, NM94]. In a
more general framework, random matrix approaches have been used to study stability in
a meta-ecosystem context. Each patch has its own dynamics and dispersal of all species
connects the different patches, see Gravel et al. [GML16].

The spatial dynamics of an n-species system in a competition colonization trade-off
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[CMJDO06a] is of the form

dpy, -
2R 1— E — + § — E , 25
di CkPk ( Z pe) MgPk + CkPk Hkpﬂlkz Pk & CePeTek; ( )

where py represents the occupancy of species k, m;, is the extinction rate of species k,
¢, represents the colonization rate of species k, ng corresponds to the probability of
replacement of species ¢ by k.

These equations can be represented as a Lotka Volterra competition model with asym-
metric interactions

déjtk = Dk [Ck —mg + Z e (Crtie — cenex — k)
=1

In the context of the Lotka-Volterra model with dispersal, further work has been done by

introducing a migration parameter [BG20, PNJ21, VPNJ22]. In the context of meta-food

web with diffusion parameters, Brechtel et al. [BGR*18] studied diffusion-driven pattern

formation in networks.

Guided tour on random matrices

Historically, the theory of random matrices has its roots in the work of the statistician
John Wishart whose purpose was to study a random matrix of empirical covariance of
multivariate Gaussian samples [Wis28]. Subsequently, in the 50’s, a second impulse was
given by Eugene Wigner [Wigh5] whose aim was to explain the distribution of energy
levels in atomic nuclei. The innovative approach used by Wigner [Wig67] to describe the
spectrum of a Hermitian random matrix was taken up by other physicists to solve problems
in nuclear physics [Dys62] and physical sciences. Later on, new matrix structures were
studied, many works were done by Marchenko and Pastur [MP67] on large covariance
matrices and Girko [Gir85], Bai [Bai97] and Silverstein [SC95, BS10] extended results
to non-hermitian matrices. Until today, a multitude of works have been published in
very diverse fields of mathematics such as combinatorics, random graphs, free probability
theory, signal theory, number theory, etc.

The strength of random matrix theory comes from the stabilization of its spectrum
(random and a priori complicated) when the dimension of the matrix tends towards
infinity. Within this framework, the distribution of the eigenvalues of the matrix becomes
completely deterministic. In a very simplified way, this is an equivalence of the law of
large numbers for the spectrum of a matrix. The stakes and motivations of the theory of
random matrices are based on the description of the standard properties of the spectrum
of matrices: eigenvalues, eigenvectors, largest eigenvalue, etc. It is a balanced mixture of
linear algebra, probability, complex analysis, combinatorics.

A few definitions

Let A e M(C), A := (Age)nxn, & square matrix of size n with coefficient in the set of
complex numbers C. We denote by A* := A'. Given a vector & € R", we note ||, its
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Euclidean norm:

" 1/2
|z, = <Z !flfk\2> -
k=1

Definition 0.15 (Eigenvalues). Denote by A1 (A), A2(A), ..., A\y(A) the eigenvalues of A
i.e. the roots of its characteristic polynomial, such that

IMA)| == [\(AD)].
The set of eigenvalues of A is called the spectrum of A and noted Sp(A).

Definition 0.16 (Spectral radius). The spectral radius of the matrix A, that we note
p(A) = |A1(A)], is the modulus of the eigenvalue with the largest modulus.

Definition 0.17 (Singular values). The singular values o1(A), 02(A), ..., 0,(A) of the
matrix A are the square root of the eigenvalues of the Hermitian matrix A*A i.e.

Definition 0.18 (Spectral norm). The spectral norm of the matrix A denoted by [|A| is
defined by its largest singular value

|All := max (\F)\, A eigenvalue of A*A) =01(A).

In probability, the spectral measure characterizes the spectrum of a matrix. In the
RMT field, it is used to express results of convergence of the spectrum to a deterministic
measure. Given I < C, denote by d, the Dirac measure at the point A defined by

1ifAel,
5,\(1):{

0 otherwise .

Definition 0.19 (Empirical spectral measure). If A € M,,(C) with eigenvalues \;(A), ..., A\, (4),
we define the empirical measure of eigenvalues in (C, B(C)) by

1 n
= Z Oxe(A)
=

For every subset F < C, the quantity:

card{l <k <n:\(A) e E}

MA(E) = n )

is the proportion of eigenvalues of A in F.

The weak convergence of a empirical spectral measure to a deterministic measure
describes many random matrix results.

Definition 0.20 (Weak convergence). It is said that p4 converges weakly to a probability
measure fi i.e. fiq n—_%: i, if for any function f continuous and bounded on R

[ rwuatan - 7112 FOw) [ St
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Remark 0.9. If A is random, then p,4 is a random discrete probability distribution, this
implies § fua(du) are also random variables. We will then say that almost surely (a.s.)
14 converges weakly to p

(a.s.) pa # e
Definition 0.21 (Resolvent). Let A € M, (C), we call the resolvent of A the matrix
Q := (Qre)nxn defined by
Q(z) = (A—zI)"", 2 ¢ Sp(A).
We denote by
={2¢eC : Im(z) >0}
the upper half of the complex plane.

Definition 0.22 (Stieltjes transform). Let p € P(R) a probability measure. The Stieltjes
transform of p denoted by g, : C* — C is defined by

fud)\ ),zeC™.

Remark 0.10. Let ps the empirical measure of the eigenvalues A\j(A),---, A, (A) of the
symmetric matrix A, then the associated Stieltjes transform is given by

Gua(2) :J)\i pa(dX) Z)\ — fTr (A==zD)7)

where Q = (A — 2I)7! is the resolvent of the matrix A and Tr(Q) is the trace of matrix
Q.
Proposition 0.21 (Stieltjes inversion). Let g, the Stieltjes transform of the measure p
of finite mass u(R). If a,be R and p({a}) = u({b}) =0, then

b

L. :
w(a,b) = ;ylg(%lm ) gu(x +iy)dx,

and

Vre R, u({z}) = = 11r£1+1m(gu(x +1y)) .

Proposition 0.22 (Woodbury identity). Let A be a matriz n x n, U a matriz n x m, B
a matrix m x m, V. a matrix m x n. It is assumed that all the considered matriz inverses
exist, then:
(A+UBV) ' = A A7\ U(B v+ VAU VAT,
The Woodbury identity for a rank 1 perturbation is often used and referred to as
Sherman-Morrison identity.

Proposition 0.23 (Sherman-Morrison identity). Let A a matriz n x n and u, v two
vectors of dimension n. It is assumed that all the considered matriz inverses exist, then:
A yp* A1

1+v*Atu’

Proposition 0.24 (Poincaré inequality). A probability measure P on R"™ satisfies a

Poincaré inequality with constant ¢ > 0 if, for all continuously differentiable functions
f:R"—C,

(A+uw*)t=A4""1—

Varg(f) = Ee(|f(2) — Ee(f(2))") < iEP!Vf(iU)IQ :
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Figure 18: Spectrum (histogram) of the Wigner random matrix W,,/4/n (n = 1000, o = 1).
The solid line represents the semi-circular law.

Wigner matrices

Definition 0.23. Given W,, a hermitian matrix n x n, W,, = W} such that W, :=
(Wie, 1 <k <€ <n) are i.i.d. random variables with E(Wy,) = 0,V1 < k < ¢ and
E(|[Wi|?) < 00, V1 < k < L. W,/y/n is called Wigner matrix.

Theorem 0.25 (Universality of the Wigner theorem and semi-circular law). Let W, a
Wigner matriz defined by W, := (Wi, 1 < k < {) i.4.d. random variables such that

1. EWy) =0, V1< k <Y,
2. BE([Wi|?) =02 <0, V1<k<{ando > 0.

Then almost surely, the empirical spectral measure of W, /y/n converges weakly to the

semi-circular law:
n

1 D
8. ni=— ) 0 — [hsc,
(a.s.) Hvy n}; M) o H

where g is defined by

dﬁLSC(t)

2mo?

The eigenvalues of the matrix W,,/y/n are real. In Figure 18, a histogram of the eigen-
values of a Wigner random matrix is illustrated compared to the theoretical distribution
given by Theorem 0.25.

Local spectrum behavior for Wigner matrices

Denote by
Amax (W) = max A\ (W,,) and Ay (W,,) = min A\ (W,,) .

ke[n] ke[n]
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To address certain issues, it is necessary to have exact information on the position of the
largest eigenvalue of the matrix. In the case of Wigner matrices, many works have been
done and refined in the 80’ [FK81, BYS8S].

Theorem 0.26 (Convergence of extremes eigenvalues). If E(|Wy|*) < o0, V1 < k < ¢,

then
maX( Tl/\/7) ——_) 20 ) mln( n/\/7) —20.

In particular,

|Wo /v = max((Amax (W /V/0)s Amin (Wi /A1) ]) =22 20
IfE(|Wie|?) = 00, V1 < k < (, then

maX( n/\/7> —’ +00.

Deformed Wigner matrix

The last specific property to be addressed for this thesis is the distribution of eigenvalues
when the Wigner matrix is perturbed by a finite rank deformation. This type of model is
frequently called “spike”. Depending on the type of deformation, some spike eigenvalues
may escape from the bulk of the distribution.

Let W, be a random Wigner matrix and

1 E(Wy) =0, V1<k<
2. E([Wy|*) =0? <, VI<k<land o >0,
3. supE[|Wy|*] < 0

k#L

Let P, a deterministic real symmetric matrix of fixed rank r. We are interested in the
properties of the spectrum of the matrix ﬁWn + P,.

Since the pioneering paper of Fiiredi and Komlos [FK81], many scientists have studied
the spectral properties of deformed Wigner matrices [Pé06, CDMF09, PRS13, RS13].
Denote by 04, ..., 0, the ordered eigenvalues of P, ¢; has multiplicity of k; and they are
independent of n. Let 7y, the index associated to the threshold 0 i.e. 6,, = 0 and P,
has 1o — 1 distinct positive eigenvalues. Let r,, (resp r_,) be the number of j such that
;> o (resp 8; < —o).

Theorem 0.27 (Deformed Wigner Theorem - [CDMF09, PRS13]). Let W,, be a random
real Wigner matriz satisfying condition (1)-(3) and P, be a deterministic real hermitian
matrix of fived finite rank r as above. Let

2
o
Po. = 0, +—.
J J 9]‘
Then the following holds:
1. Forl< j Tto, I<i< kja >\k1+...+kj71+i = Po;

2. )\k1+...+k,«+o+1 — 20,
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Figure 19: Spectrum (histogram) of the deformed Wigner random matrix W, /y/n + P,
(n = 1000, 0 = 1). The perturbed matrix is P, = diag(—4,2,3,0,...,0). The solid line
represents the semi-circular law. The dashed lines indicate the theoretical value of the
outliers at —4 — 1/4,2 + 1/2,3 + 1/3 as predicted by Theorem 0.27.

3 Neytotbe_, . — —20,
4. Forjzr—r o+ 1,1 <0 <kj, Neytvkj_10i — Po, -
The convergence in (1)-(4) is in probability.

Remark 0.11. In [CDMF09], Capitaine, Donati-Martin and Féral show that if the entries
distribution satisfy a Poincaré inequality (proposition 0.24), the convergence in Theorem
0.27 holds almost surely.

In Figure 19, a histogram of the eigenvalues of the deformed Wigner random matrix
is illustrated compared to the theoretical distribution given by theorem 0.27.

Circular law

In a second part of the tour, we focus on non-Hermitian matrices. Let Y, € M, (C) be
a square random matrix of dimension n x n whose entries are i.i.d. centered of variance
o?. The eigenvalues of Y,, are no longer real but complex. The major outcome concerns
the convergence of the empirical spectral measure of Y,,/y/n toward the circular law in
the complex plane. Initially proved by Mehta [Meh67] for the expected empirical spectral
distribution in the complex Gaussian case as a result of Ginibre’s work [Gin65] of the
explicit formula for the spectrum. Edelman [Ede97] established the circular law in the case
of real Gaussian random variables. Silverstein gave an argument to pass from expected
convergence to almost surely convergence. Girko worked in the universal version (for other
types of distribution) [Gir85] by providing some insights of proof such as the Hermitization
technique. However, it is finally Tao and Vu [TVK10] who proved the general case. I
advice the reader to look at Bordenave and Chafai [BC12].
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Figure 20: Spectrum of a non-Hermitian random matrix Y,,/4/n in the complex plan
(n = 1000, ¢ = 1). The solid line circle represents the boundary of the circular law.

Theorem 0.28. Let Y, be a random matriz M,,(C) such that Y, := (Y, 1 < k,{ < n)
are i.i.d. random variables such that E(Yy) =0, V1 < k, ¢ <n and E(|Yi|?) = 02, V1 <
k,0 < n. Then almost surely, the empirical spectral measure of Y, /+/n converges weakly
to the circular law.

M% — > He,
where p. is the circular law which is the uniform law on the disc of radius o of C with

density
1
dﬂc(z) = 72126([3,\2|<sz .
xea

In Figure 20, the eigenvalues of a non-Hermitian random matrix in the complex plan
are illustrated compared to the theoretical distribution given by Theorem 0.28.

Local spectrum behavior for non-Hermitian matrix

In the case of the circle law, it is important to have information on the position of the
spectral radius. We have seen previously in the work of May [May72], the necessity to
describe the stability transition by the largest real part eigenvalue of the Jacobian matrix.
Many works have been done on this subject, in particular by Bai [BSY88, BS10].

Theorem 0.29 (Convergence of extremes eigenvalues). If E(Yi) = 0 and E(|Yi|?) <
0, V1 <k, 0 <n, then,

YTL a.s
%5920 and p<) — 0.

Yo
\/ﬁ n—00 \/ﬁ n—00

Outliers in the spectrum of non-Hermitian matrix

As in the Wigner case, we can consider a finite rank perturbation of the non-Hermitian
matrix. This result has been proved by Tao [Taol3, Theorem 1.7] and has been extended
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Figure 21: Spectrum of a non-Hermitian random matrix Y,,//n + P, in the complex plan
(n = 1000, o = 1). The perturbed matrix is P, = diag(1l + 2¢,2,3,0,...,0). The solid
line circle represents the boundary of the circular law. There are three eigenvalues in the
small dashed circles centered at 1 + 2z, 2, 3 as predicted by Theorem 0.30.

in Benaych-Georges and Rochet [BGR16] where they studied the fluctuations of the outlier
eigenvalues.

Theorem 0.30 (Deformed spectrum of non-Hermitian matrix). Let Y, a i.i.d. random
matriz with E(Yy) = 0, E(|Yi|?) = 1 and E(|Yie|?) < o0, V1 < k, € < n and for each
n, let P, be a deterministic matriz with rank O(1) and operator norm O(1). Let e > 0,
and suppose that for all sufficiently large n, there are no eigenvalues of P, in the annulus
{zeC:1+4¢ < |2| <1+ 3¢c}, and there are j eigenvalues \i(P,), ..., \;(P,) for some
j = O(1) in the region {z € C: |z| = 1 + 3¢}.

Then, a.s., for sufficiently large n, there are precisely j eigenvalues

Y, Y,
M{—=+P. ], . N |—=+P,
1<ﬁ+ > ”(ﬁ+ )

of % + P, in the region {z € C : |z| = 1+ 2¢}, and after labeling these eigenvalues
properly, )\Z(% + P,) = XN(P,) +0(1) asn — o for each 1 <i < j.

In Figure 21, the eigenvalues of a deformed non-Hermitian random matrix with outliers
are illustrated compared to the theoretical distribution given by theorem 0.30.

Elliptic model

In the Wigner matrix configuration, the interaction of one species on the other is con-
sidered to be the same. For non-Hermitian matrices, all interactions are independent.
However, in ecology, the reciprocal effects of a species k on another species ¢ (X < Xi)
are linked. Mathematically, we consider a pairwise correlation between the entries of the
matrix. This can be used to describe biological processes such as predation when the sign
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of the interactions is reversed and the correlation is negative. In random matrix, when the
pairwise interactions are drawn from a bi-variate distribution, we are in the framework
of the elliptic model. Originally introduced by Girko [Gir86], this model has since been
widely studied [Gir95, Naul2, NO15, OR14].

Definition 0.24 (Random elliptic model). Let X,, be a real random matrix satisfying
the following three conditions:

1. Pairs (Xge, Xox), k # € are i.i.d. random variables with

Vk # 0, E(Xp) =0, E(|Xpe|?) = 1 and E(| Xpe|*) < 0.
2. For k < /¢ the vector (Xgs, Xgi) is sample from a bivariate distribution, independent

from the remaining random variables, with covariance E(X,Xy) = p with |p| < 1.

3. (Xkk,1 < k < n) are i.i.d. random variables, independent of off-diagonal entries

For p e (—1,1), define the ellipsoid

2

2
Sp::{z:x~l—iyeC: ¢ + Y )2<1}.
p

(1+p)? (1-
Remark 0.12. 1. For p = 1, & is the line segment [—2,2] on the real axis and for
p = —1, £_1 is the line segment [—2, 2] on the imaginary axis.

2. If p=1, X, is a Wigner matrix.
3. If p =0, X,, is a non-Hermitian matrix i.e. defined by Theorem 0.28.

Theorem 0.31 (Elliptic law). Let X,, an elliptic random matriz satisfying conditions in
definition 0.24. Then almost surely, the empirical spectral measure of X,,/A/n converges
weakly to the elliptic law:

(a.5.) frxy —— fi,
\/ﬁ n—0o0

where p, is the uniform probability measure on the ellipsoid £, with density

;2 ZfZ €& 5
fp(2) = {ﬂ(lp ) !

0 otherwise .

In Figure 22, the eigenvalues of an elliptic random matrix in the complex plan are
represented compared to the theoretical distribution given by theorem 0.31.

Corollary 2.3 in O’Rourke and Renfrew [OR14] provides information about the spectral
radius of an elliptic matrix.

Proposition 0.32 (Spectral radius of elliptic random matrix). Let X,, a elliptic random
matriz defined in definition 0.24, then
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Figure 22: Spectrum of an elliptic matrix X,, (n = 500) with distinct parameters p €
{—0.5, 0, 0.5}. The solid line represents the ellipse {z = x + iy € C, 1+p T t o =1}
which is the boundary of the support of the limiting spectral distribution for an elhptlc
model.

Outliers in the elliptic model

The study of outliers in the case of a deformed elliptic random matrix has been done by

O’Rourke and Renfrew [OR14].
We define the neighborhoods for any § > 0

Ep5 = {z e C:dist(z,&,) <0} .

Theorem 0.33 (Deformed elliptic random matrix). Let k > 1 and § > 0. Let X,, be an
elliptic random matriz defined in definition 0.24. Let P, a deterministic matriz n x n of
finite rank k and sup, | P,| = O(1). Suppose for n sufficiently large, there are no nonzero
eigenvalues of P, which satisfy

LP € £,35\E,5 with |N(P,)] > 1,

and there are j eigenvalues A\ (P,), ..., \;(P,) for some j < k which satisfy

p .
)\1(Pn> + m S C\gpg(& with ‘)\Z(PTL)‘ >1.

Then, a.s., for n sufficiently large, there are exactly j eigenvalues of ﬁXn + P, in the

region C\E, 25 and after labeling the eigenvalues properly,

X p .
AMi|l—=+ P, ) =N(Py) + —— 1),Vv1i<i<y.
(\/ﬁ+ ) ( )Jr)\‘ + o(1) 1< ]

In Figure 23, the eigenvalues of a deformed elliptic random matrix in the complex plan
are illustrated compared to the theoretical distribution given by theorem 0.33.
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Figure 23: Spectrum of a deformed elliptic matrix X,, + P, (n = 500) with distinct
parameter p € {—0.5, 0.5}. The perturbed matrix is P, = diag(1 + 2i,2,3,0,...,0). The
solid line represents the ellipse {z = x + 1y € C, ﬁ + ﬁ = 1} which is the boundary
of the support of the limiting spectral distribution for an elliptic model. There is three
eigenvalues in the small dashed circles centered at 1+ £ + (2 — 22)i , 24+ 2 3+ 2 as

predicted by Theorem 0.33

Theoretical background of the thesis

Understanding the equilibrium points of the Lotka-Volterra system (23) and their sta-
bility provides a better understanding of the impact of the food web, represented by the
interaction matrix B, on the abundances of the species. In particular, the food web has
an impact on the persistence of its component species (:= number of persisting species),
the feasibility of the system (i.e. whether there exists an equilibrium with all species at
non-zero abundances) and the stability of the equilibrium. Recall (23),

dilik

Sk (-t (Bay) . ke[

an essential feature to understand the dynamics of the LV system (23) is the existence of
an equilibrium x* = (})kefn such that

z’i
26
xy = 0. (26)

{ v (1 —af + (Bx*)g) =0, Vke|n],
A natural question is whether an equilibrium exists and whether it is unique. If so, a
further consideration is whether the system converges to this equilibrium i.e. the conver-
gence of a solution x to the equilibrium x*: x(t) — x* if x(0) is sufficiently close to

*

x*. The last step is to describe the stability: local, global, resilience (:= ability of an
system to regain its initial structure following a perturbation), etc. The Lotka-Volterra
system is forward invariant i.e. x(0) > 0 (componentwise) implies x(t) > 0 for every
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t > 0. However, some of these components z(t) may converge to zero if the equilibrium
x* has zero components.

Feasibility

The question of the feasibility of a equilibrium «* > 0 had already been addressed by
Goh [GJ77] for the Lotka-Volterra model in the 70’s’, then Logofet was interested in this
problem in the case of a competitive system [Log93]. Rossberg also investigated the mean
number of species that can coexist in competitive communities [Ros13]. Recently, the
work of Grilli et al. [GAST17], using structural stability methods introduced by Rohr et
al. [RSB14], studied the impact of food web properties on the growth rate to maintain a
feasible equilibrium.
From (24), we consider a matrix of interactions with Gaussian entries

1
anr/1

where A, := (A, 1 < k,£ < n) are i.i.d. random variables with A, ~ NV(0, 1).

Based on the work by Geman and Hwang [GH82], Dougoud et al.[DVR* 18] have shown
that in the framework of random entries of the interaction matrix, if o, > 0 is fixed and
independent of n then necessarily some species will become extinct. The threshold of
existence of a feasible equilibrium of the model (23) has been studied by Bizeul and
Najim [BN21]. In their paper, they also show that feasibility involves stability. This
type of result had already been observed by Stone [Sto16] where the stability threshold is
crossed before the feasibility threshold.

Starting from (26), if * > 0, the equilibrium set of equations becomes a linear
equation:

Bn = Ana

" =1+ B,x*. (27)

We will restrict here to the non-trivial case in which «,, — o and define the feasibility
threshold by o = 4/2log(n).

Theorem 0.34 (Theorem 1.1 [BN21]). Let a, —— . Let ©* = (2 )kefn) e the solution
of (27) and recall A, = (Are,1 < k0 < n) are i.i.d. random variables with Ag, ~

N(0,1).

1. If there exists € > 0 such that eventually o, < (1 —¢)a} then

]P’{minxz >O} — 0.

ke[n] n—00
2. If there exists € > 0 such that eventually oy, = (1 + €)at then

]P’{minxz >O} — 1.

ke[n] n—00

-1
Remark 0.13 (Sketch of proof). Let @, = (I — a%) , the resolvent of the matrix A,,.
The problem is defined by:

o g (T oo (1o ATy
= <= = — .
¥ /T v apr/1
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For each entry of the vector x*

Z
~1+ 25 7, ~N(0,1).

We can show that the Ry term is negligible by using Gaussian concentration properties
(for more details, see [BN21]). From the properties of the extreme values of a family of
Gaussian random variables, one can deduce

lgel[l%xz >0 < irel[lr% Zy, ~ —4/2log(n) > —a,, .

The existence and uniqueness results of a feasible equilibrium have been extended
in the case of a sparse food web by Akjouj and Najim [AN21]. They assume that each
species is in relation with d other species. The magnitude of d with respect to n reflects the
sparsity of the model. Two distinct cases are studied, on the one hand d is proportional
to n. On the other hand d > log(n) in the case of a particular block structure. Moreover,
they also demonstrate the global stability of the equilibrium.

Invadability condition

The problem (26) becomes much more complex when we consider an equilibrium where
x* has some vanishing components. The system of equations is no longer linear and the
equation becomes a non-linear optimization problem. A naive and immediate solution to
solve this problem is to choose a subset Z < [n] and set the corresponding components
xr7 = (xF)ser to zero, and to solve the remaining linear system:

L7c = ]_Ic =+ BZC{EIC .
|Z¢|

If there exists xzc = 0 that solves the previous equation, then & = <$I> satisfies (26)
IC

and is a potential equilibrium. The number of sub-cases Z < [n] is 2" and in particular
grows exponentially as n — co.

The equilibrium equations become ill-posed as there might be many equilibria. A
known condition in ecology for dynamical system is the non-invadability condition [1.M96,
JS98] associated to saturated equilibrium. An equilibrium is saturated if it is resistant
against the invasion by an absent species. The study of saturated equilibrium and perma-
nence is an important research topic in the field of dynamical systems (for more details,
see the seminal book of Hofbauer and Sigmund [HS98]).

Definition 0.25 (Saturated equilibrium). Given Z¢ the set of persisting species,

o x issaturated < VkeZ: 1 —x} + (Bx*), <0,
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o x is strictly saturated < Vke Z:1—z} + (Bzx*), < 0.
Lemme 0.35.

1. If there is a positive solution x(t) > 0, such that x(t) o T, then ®® is a saturated

equilibrium.

2. If x* is strictly saturated, then there exists a positive solution x(t) > 0, such that

Notice that relying on standard properties of dynamical systems, see for instance
[Tak96, Theorem 3.2.5], a necessary condition for the equilibrium a* to be stable is that

1 — ot + (Bz*), < 0. (28)

The condition (28) decreases the number of potential solutions to system (26). In reference
to the ODE (23), the requirement for a given species k € [n] to be non-invadable is

equivalent to:
1d
(x’“) <0. (29)

As a consequence, we will now focus on the following set of conditions:

xp (1 =z} + (Bx*)y)
1 —a} + (Bx*)y
w*

0 for ke [n],
0 for k€ [n], (30)

0 componentwise .

VoA

This casts the problem of finding a non negative equilibrium into the class of Linear
Complementarity Problems (LCP), which we describe hereafter.

Linear complementary problem

LCP is a class of problems from mathematical optimization which in particular encom-
passes linear and quadratic programs; standard references are [Mur88, CPS09]. Given a
n x n matrix M and a n x 1 vector g, the associated LCP denoted by LC'P(M, q) consists
in finding two n x 1 vectors z, w satisfying the following set of constraints:

z > 0,
w=Mz+q > 0, (31)
w'z =0 < wzp=0 forallke][n].

Since w can be inferred from z, we denote z € LCP(M, q) if (w, z) is a solution of (31).
The LCP problem study goes back to the work of Lemke [Lem65] and Cottle et al.
Danzig [CD68]. Lemke and Howson [LH64] developed a algorithm based on pivot steps
to solve the problem (31).
Introduced by Fielder and Ptak [FP66], the class of P-matrices is related to the linear
complementarity problem. Murty [Mur72] showed that a P-matrix give necessary and
sufficient conditions to have a unique equilibrium to the LCP problem.

Definition 0.26 (P-matrix). A square matrix M is called a P-matrix if all its principal
minors (sub-determinants) are strictly positive

det(Mz) >0, VIc|[n], Mz=(M)rer.
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Many properties on the necessary and sufficient conditions for a real matrix to be a
P-matrix has been studied by Rump [Rum03] and Rohn [Roh12]. Numerically, checking
that a matrix is a P-matrix is co-NP complete [Cox94].

Theorem 0.36 (Existence and uniqueness of a solution to the LCP problem [Mur72]).
A matriz M is a P-matriz if and only if the LCP(M, q) has a unique solution (w, z) for
all g € R"

In the case of the Lotka-Volterra and in view of (30), we look for #* € LCP(I—B,—1).

Definition 0.27 (M-matrix). A square matrix A is called M-matrix if it can be expressed
in form A = sI — C, where C = (Cy) with Cy > 0,1 < k. < n, and s > p(C), the
spectral radius of C.

The name M-matrix was given by Ostrowski [Ost56] refering to Hermann Minkowski.
Many properties of M-matrices has been introduced by Fiedler and Ptdk [FP62] and
extended by Plemmons [Ple77].

Remark 0.14.
o The set of non-singular M-matrices are a subset of the class of P-matrices.

e The set of non-singular M-matrices are a subset of the class of inverse-positive
matrices i.e.
A~ exists and A7 > 0.

Global stability

Theorem 0.36 gives a sufficient and necessary condition for the existence of a unique non-
invadable equilibrium to the equation (26). In the case of a feasible equilibrium x* > 0
, Bizeul and Najim [BN21] have shown that there exists a globally stable equilibrium.
In the case of an equilibrium with vanishing species, it is necessary to go back to the
properties of Lyapunov functions.

Lyapunov’s theorem says that a matrix A is stable (its eigenvalues have a strictly
negative real part) if and only if there exists a positive definite matrix H such that
HA+ AT H is negative definite. This condition goes back to the work of Lyapunov [Lia07]
which has been improved and studied by Barker et al. [BBP78| and Logofet [Log05] which
makes a summary of all the matrix conditions in the form of a flower.

Definition 0.28 (Lyapunov diagonal stability). Matrix M is called Lyapunov diagonally
stable, denoted by M € S, if and only if there exists a diagonal matrix D with positive
elements such that DM + M T D is negative definite i.e. all eigenvalues are negative.

Proposition 0.37 (Takeuchi et al. [TAT78]). If M € S,, then —M is a P-matriz.

Recall the system (21) and consider the matrix B is arbitrary,
dyx(t)
dt

Takeuchi and Adachi (see for instance [Tak96, Th. 3.2.1]) provide a criterion for the
existence of a unique equilibrium y* and the global stability of the LV system.

= yp(ry + (=01 + By)x), ke|n]. (32)
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Theorem 0.38 (Takeuchi and Adachi [TA80]). If —0I + B € S,,, then LCP(0I — B,r)
admits a unique solution. In particular, for every r € R"™, there is a unique equilibrium
y* to (32), which is globally stable in the sense that for every y, > 0, the solution to (32)
which starts at y(0) = y, satisfies

y(t) —y".

t—00

The Lotka-Volterra model from a physicist standpoint

Previously, mathematical conditions were given for the existence of a feasible equilibrium
and uniqueness of a globally stable equilibrium in (21) where some species may vanish.
However, the richness of the Lotka-Volterra equations stems from the diversity of its dy-
namical behaviors. The lack of mathematical knowledge is supplemented by methods from
physics to improve the understanding on these diverse dynamical behaviors (properties of
the equilibrium, out-of equilibrium dynamics, model sophistication).

Since a long time, the theory of statistical mechanics of disorder systems have been
developed to study spin glasses and replicator system (see Mezard et al. [MPV86] for a
review).

The use of these methods to study biological systems were firstly introduced by
Diederich and Opper [DO89, OD92] and used to study multi-species replicator dynamics
(model equivalent to the Lotka-Volterra system) by Tokita [Tok04]. More recently, these
methods of statistical physics of disorder system have resurfaced to solve problems in
theoretical ecology. In particular, the dynamical cavity method is used to analyze com-
munity dynamics where random interactions between species are considered. Physicists
have divided the space of parameters (u, c, p) in a phase diagram where the major issue is
to identify the boundaries between the different phases: unique stable fixed point, chaos
with multiple attractors, unbounded growth, etc.

The cavity method enables to derive mean-field equation approximating a high-dimensional
nonlinear problem. The key concept consist of assuming a unique fixed point exist and
introduce a new species with new interactions in the existing system. After the estab-
lishment of the new species, an analogy between the properties of the solutions with n
and n + 1 species is verified. This method is used to study the system (21) that admits
a unique stable fixed point but also out of equilibrium dynamics. The dynamics may fall
into a chaotic phase with multiple attractors. Bunin [Bun16, Bun17] used the dynamical
cavity method to conducts and extends more general results (properties of the persisting
species, multiple attractors phase) for the phase diagram of the Lotka-Volterra system
(4). These methods have been used to solve many problems in theoretical ecology. In
particular, Barbier et al. [BABL18] exhibits generic behaviors in complex communities.
For a review on the cavity method applied to community dynamics problems see Barbier
and Arnoldi [BA17].

The model studied by physicists is more generic, disordered Lotka-Volterra system is
given by

dl’k(t)
dt

= l’k(t) <7’k — l’k(t) + 2 Bkgl’g(t)> + )\k + Wi 2.Tk(t>nk(t) s (33)
te[n]

where the A\, are a migration constants and wg /2 (t)nx () is a demographic noise term,
nk(t) is random time-varying function.
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The phase diagram studied in Bunin [Bunl7] had already been investigated numer-
ically by Kessler and Shnerb [KS15] with the presence of the migration parameter Ay.
The Lotka Volterra model with demographic noise term has been investigated recently
by Bunin [Bun21] and Altieri et al. [ARCB21]. The dynamical cavity method enables
to derive dynamical mean-field equation for out-of-equilibrium applications [RBBC109,
RBBB20, ABC20], in particular for the study of the multiple attractors dynamics repre-
sented in Figure 24. Furthermore, Biroli et al. [BBC18] show that multiple equilibrium
regime is analogous to a critical spin-glass phase. For a review of glassy phases in ecolog-
ical systems see Altieri [Alt22].

100 1

107 4

1073 4

107 A

1077 1

Abundance (x;)

1077 A

10711

Time (t)

Figure 24: Dynamics of a 100 species LV system with migration (33) in the chaotic phase
with multiple attractors and parameters u = 4, a = 0.5, Vi € [n], \; = 107!°. The y-axis
is in a log-scale.

An alternative method using generating functional techniques for deriving similar
mean-field equations to study the equilibrium phase in the LV system was used by
Galla [Gall8]. Identical methods was used to derive the eigenvalues of random matrices
[BJRG22b, BJRG22a| and analyze the Lotka Volterra models with different interaction
structure such as cascade model [PBG22].

Other applications are possible, such as the recent work of Fraboul et al. [FBM22] on
mutations in the LV model or the study of the impact on the Allee effect on the phase
diagram by Altieri et al. [AB22].

Contributions

Chapter 1 - Equilibrium and persisting species in a large Lotka-
Volterra system of differential equations

This Chapter is based on a preprint by Clenet, Massol and Najim [CMN22].

In Chapter 1, we focus on the model (23) where matrix B is a simpler version of (24)
admitting the following representation:

A
B=-"_+"117

ay/n o n

where A = (Agy) is a matrix with random standardized (EAg, = 0 and Var(Ag) = 1)
independent and identically distributed (i.i.d.) entries with finite fourth moment, o > 0
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is an extra parameter reflecting the interaction strength and p € R represents an arbitrary
trend of the interactions.

In Theorem 0.34, Bizeul and Najim proved the existence of a threshold a ~ 4/21og(n)
in the case u = 0, which guarantees the feasibility of the equilibrium a* of (23). However,
Dougoud et al. [DVRT18] showed that some species will go to extinction if a@ > 0 is
independent of n. The aim of the chapter is to describe the impact of the interaction
strength « and interaction trend g on the conditions of coexistence of the interacting
species.

First, combining results from Takeuchi and Adachi in Theorem 0.38 with standard
RMT results in Theorem (0.27), we provide sufficient conditions on the parameters o and
it to ensure the existence of a unique globally stable equilibrium x* in large dimension
n — o0. The equilibrium is composed of persisting species and vanishing species.

Later on, given a unique equilibrium x*, we describe the properties of the persisting
species. In this perspective, we provide a heuristics to compute asymptotically the pro-
portion of persisting species and understand via a system of equations the dependence
between parameters a and p and the proportion of persisting species. Furthermore, we
show that the distribution of abundance of persistent species is a truncated Gaussian (see
Figure 25).
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Figure 25: Distribution of the abundance of persisting species. The z-axis represents
the value of the abundances and the histogram is built upon the positive components of
equilibrium a*. The solid line represents the theoretical distribution for parameters (a, )
as given by the heuristics. The entries are Gaussian AN(0,1) and the parameters are set
to (n =2000,a =2, = 0.2).

In nature, interactions between species are constantly changing and affected by the
environment. Under the assumptions that environmental conditions influence interaction
strengths, we study the consequences of a sudden change of environmental conditions,
expressed through a decrease in parameter a. When « varies for the same matrix A
and the same parameter pu, the system can display different states. When the value of «
increases above a certain critical value, all species will coexist; conversely, for sufficiently
low values of «, species may vanish while keeping a unique stable equilibrium. We describe
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the change between these two states and how the proportion of persisting species varies by
solving numerically the Lotka-Volterra system. We observe that a decrease in o negatively
affects equilibrium species richness (see Figure 26).
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Figure 26: Abundance dynamics in the case of a community of ten species. The matrix of
interactions A and the initial conditions are common and we apply a abrupt variation of
a(t) at t = 30. The dashed lines represents species which benefit from habitat variation;
solid lines represent species suffering from the change. Dotted lines represent species
undergoing extinction.

Finally, we analyze a diversity index (Hill numbers of order 1) to have a more precise
representation of biodiversity dynamics. The dynamics of this diversity measure suggests
that the mean of interaction coefficients, u, affects the duration of transient dynamics,
with shorter transient dynamics being associated with more mutualistic interactions (i.e.
higher positive values of u).

Chapter 2 - Equilibrium in a large Lotka-Volterra system with
pairwise correlated interactions

This Chapter is based on the article by Clenet, El Ferchichi and Najim and will be
published in Stochastic Processes and its Applications in November 2022 [CEFN22].

In Chapter 2, we focus on the model (24) where we extend the result on the feasibility
threshold of Bizeul and Najim (0.34). The interaction matrix B,, is a non-centered random
matrix with pairwise correlated entries:

A,
+laT

ap\/n - n

where A,, = (Ag¢)re[n] is a random matrix satisfying the two conditions (i) (Age, k < ¢)
are standard Gaussian N (0,1) independent and identically distributed (i.i.d.) random
variables (i7) for k < ¢ the vector (Ags, Ag) is a standard bivariate Gaussian vector,
independent from the remaining random variables, with covariance cov(Ags, Ag) = p

B, =

64



Introduction

with |p| < 1. The sequence of positive numbers () is either fixed or goes to infinity.
Parameter p is a fixed real number.

104 === p=-05 : I -
— p=0 i" -
----- p=0.5 LA
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Figure 27: Transition towards feasibility for the elliptic model. For each s on the x-
axis, we simulate 1000 matrices B,, of size n = 1000, compute the solution @, of the
feasibility Theorem at the scaling «, (k) = k4/log(n) and then plot the proportion of
feasible solutions obtained for the 1000 simulations. Each curve represents the proportion
of feasible solutions @, for three distinct values p € {—0.5, 0, 0.5}. The dot-dashed
vertical line corresponds to k£ = /2 i.e. the critical scaling a* = 1/2log(n).

We prove that feasibility is reached whenever a,, » 1/2log(n) and p < 1, and that
there is no feasibility otherwise. Furthermore, the correlation parameter p has no influence
since the phase transition threshold is the same as in the i.i.d. case [BN21]: the induced
correlations between components x;’s of solution x, are too weak (see Figure 27). In
addition, we prove that the same phase transition holds if we consider a covariance profile
(pre, k <€) where pyy = cov(Ags, Ag) instead of a fixed covariance parameter p.

Using results by Takeuchi and Adachi (0.38) on stability of LV systems with RMT
results in Theorem 0.33, we establish sufficient conditions for the existence of a unique sta-
ble equilibrium where some species may vanish which represents an extension of Chapter
1.

We finally conclude with an important outcome on estimating the proportion of per-
sisting species. Using physicists’ arguments, we state the open problem, recall Bunin’s
and Galla’s equations and provide simulations of a closed-form system of equations to
compute the proportion of persisting species.

Chapter 3 - Impact of a block structure in large systems of Lotka-
Volterra

This Chapter is an ongoing project between Clenet, Massol and Najim.
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Figure 28: Dynamics of model (24) of 2 distinct communities of 5 species with interaction
matrix (34). At ¢t = 0, the two communities converges to their feasible equilibrium point
and are not interacting. At ¢t = 5, the two communities start to interact i.e. aqs and aw
increase with a linear growth until ¢ = 15. Then, the two communities converges to their
new equilibrium point with persisting and extinct species in both communities.

In Chapter 3, we aim at developing the results of chapter 1 and 2 in an ecosystem
with many communities. In nature, interaction networks are rather structured, which
contributes to the stability of the system. To extend the results of the Lotka-Volterra
model to describe the properties of a multi-community dynamic, we define a block in-
teraction matrix in which we can adapt the intra and inter-community interactions. For
interpretation purposes due to the complexity of the model, we consider the case of two
interacting communities (see Figure 28). Within the framework of 2 communities, the
matrix B = (Bj¢)n,, is defined as

Ay A
B— B ;Tﬂ %le n 1 (pnlgly el g, (34)
cno2z2) o \unlnly pelnly )’

. 1/0411 1/0412 [ H11 M2
s = y b= )

<1/0421 1/0622) (M21 ,U22>
B = (b1, 52), Zf;l B; = 1 is the size by proportion of each of the blocks, Z; is a subset
of [n] of size |Z;| := Bin matching the index of species belonging to community i, 1z,
is a entry wise vector of 1 of size 3;n. A;; is a non-Hermitian random matrix of size
(Bin, Bjn) with reduced centered Gaussian entries i.e. N'(0,1). The matrix s represents
the interaction strength in each block. The trend matrix g allows to adjust on average
the type of interaction (mutualism, competition) of each block.

In a first section, we extend the feasibility result of Bizeul and Najim (0.34) for a
block interaction matrix where o = 0. Using this result, we study the maintenance of the
feasibility of two communities when adding interactions between them. The interactions
between communities reduce the feasibility and if we assume that the communities can

where:
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vary in size and the intra-community interactions are different, the community with the
lowest interaction strength is advantaged i.e. the size of the community can be larger. We
conclude this first part by studying the non-centered case g # 0, where we give feasibility
conditions using properties on M-matrices.

The second and third parts of this chapter are an extension of the results of Chapter
1 and an ecological interpretation of the results. On the one hand, in the second part,
we study the existence of a unique globally stable equilibrium where species can become
extinct by using a result of Takeuchi and Adachi in Theorem 0.38 and RMT, in particular
the theory on quadratic vector equation. We establish a theorem for the case g = 0, then
we study the non-centered case p # 0 when the strength of interactions is similar in each
block. In contrast to the results in the single-community case, increasing inter-community
competition can destabilize the system. On the other hand, the third part describes the
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Figure 29: Distribution of abundance of the persisting species in each community. The
x-axis represents the value of the abundances and the histogram is built upon the positive
components of equilibrium x* associated to each community. The blue-solid line (resp.
red-solid line) represents the theoretical distribution of community 1 (resp. community
2) for parameters (o, p) as given the heuristics. The entries are Gaussian N(0,1) and
the parameters are set to

0.5 0.5 2 3 11

heuristics on the properties and distribution of abundances of persistent species in each
block (see Figure 29). A graphical interpretation of these heuristics highlights several
elements, there is a contagion of diversity: the higher the persistence of a community,
the less its impact will be harmful on the other communities. The decline in persistence
between two interacting communities is not linear but has a double negative effect, hence
the importance of maintaining persistent communities and not neglecting feedback phe-
nomena in community interactions. We conclude with a study of the impact of mutual
and competitive interactions.
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In an fourth section, a numerical similarity study is performed between a model where
the interaction strength varies and a model where the connectance in each of the commu-
nities is varying, which gives an adjacency matrix of the interaction graph known as the
Bernouilli Stochastic Block Model (see Figure 30). This similarity is analyzed through
the stability condition given historically by May [May72].
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Figure 30: Representation of an adjacency matrix of the interactions of an ecosystem
of size n = 200. A graph of a symmetric Stochastic Block model of parameter P =
0.6 0.25
0.25 0.1 )"
indicates that there is no interaction Sy, = 0.

A red colored cell indicates Sy, = 1, on the contrary, a white colored cell

Chapter 4 - A probabilistic perspective of the hierarchical competition-
colonization trade-off model

This Chapter is an ongoing project between Allesina, Clenet, Della Libera, Massol and
Miller.

In Chapter 4, we study the hierarchical competition-colonization trade-off model (25),
in the case of a hierarchical competition i.e.

1 ifk<?,

Tkt = 0 otherwise.

The dynamics of each species’ abundances within the habitat depends mainly on its
colonization rate and its extinction rate. We propose a probabilistic interpretation of the
model by sampling the colonization rates from a given probability distribution with the
same extinction rate for all species. In this framework, we investigate two different types
of assembly processes.

On the one hand, it is assumed that initially the community contains a pool of n
species (all-at-once metacommunity process) and we let the occupancies of all species
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Figure 31: Representation of the distribution of the number of persistent species for a
initial pool of n = 1000 species and for different distribution of colonization rate. Each
curve is derived using Monte Carlo experiments by computing P = 100000 times the
all-at-once metacommunity process and store the values obtained to form the outline of a
histogram. The red curve corresponds to the density function of the binomial distribution

B(n,?2).
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Figure 32: Representation of the species richness of the sequential invasion model as a
function of the number of invasions for different distributions. The curve is derived using
Monte Carlo simulations by computing P = 2000 times and averaging the number of
persistent species.

change in time according to equation (25) where some species persist while others may
vanish. Surprisingly, we obtain a universality result of the distribution of the number
of persistent species. For a wide range of distribution, on average the proportion of
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persistent species is one half. Furthermore, we show (for the uniform distribution) that
the distribution of persistent species is a binomial distribution B(n,1/2) (see Figure 31).

In addition to the universality result, we describe the properties of persistent species
by recalling some results of Kinzig et al. [KLD"99] on fraction of empty patches and
occupancies. We end-up this section by clarifying the intermediate disturbance hypothesis
that had been observed by Hastings [Has80] where optimal coexistence between species
occurs when the mortality rate is intermediate.

On the other hand, we study a sequential invasion process. Beginning with an empty
habitat, it is filled by sequentially introducing species whose colonization rates are drawn
according to a specific distribution. We observe that the number of persisting species
saturates with a logarithmic growth due to historical contingencies and extinction cas-
cades (see Figure 32). We analyze the properties of historical contingencies due to the
phenomenon of extinction cascades which is a key element of the saturation phenomenon.

We give some theoretical elements of answer before carrying out a numerical analysis
of the assembly process model. The universality result is no longer true and a major
difference is observed between regular and heavy-tailed distributions. In general, the
heavier the tail, the greater the diversity. This assumption of competition colonization
trade-off show the importance of finding a balance between competitors and colonizers.

To conclude, this probabilistic perspective of the hierarchical competition-colonization
trade-off model put forward and compare two different types of distinct assemblages and
gives conditions for many species to coexist under the competition-colonization trade-off.
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Chapter 1

Equilibrium and persisting species in
a large Lotka-Volterra system of
differential equations

Abstract

Lotka-Volterra (LV) equations play a key role in the mathematical modeling of various
ecological, biological and chemical systems. When the number of species (or, depending
on the viewpoint, chemical components) becomes large, basic but fundamental questions
such as computing the number of persisting species still lack theoretical answers. In this
paper, we consider a large system of LV equations where the interactions between the var-
ious species are a realization of a random matrix. We provide conditions to have a unique
equilibrium and present a heuristics to compute the number of surviving species. This
heuristics combines arguments from Random Matrix Theory, mathematical optimization
(LCP), and standard extreme value theory. Numerical simulations, together with an em-
pirical study where the strength of interactions evolves with time, illustrate the accuracy
and scope of the results.
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Chapter 1. Equilibrium and persisting species in a large Lotka-Volterra system of differential equations

1.1 Introduction

Since May’s seminal work [May72] and for the past decades, many theoretical studies
addressed the issue of the coexistence of species in ecosystems.

Introduced in the 1920s by Lotka [Lot25] and Volterra [Vol26], the Lotka-Volterra
(LV) model is a well-known classic in theoretical ecology and mathematics. It represents
a first step in our understanding of ecosystems through the variety of its dynamical be-
haviours (single or multiple equilibria, cycles, chaos), its flexibility (many models can be
approximated in the form of a LV model) and its mathematical calculability.

In this article, we consider large LV models with random parameters. Leveraging on
the asymptotic understanding of large random matrices which naturally appear enables
us to provide insights on equilibria and species coexistence for such models.

Model and assumptions.

Large Lotka-Volterra systems of differential equations arise in various scientific fields such
as biology, ecology, chemistry, etc. Although our results are generic in nature and not
specific to a given field, we will rely on the ecological terminology in the sequel.

A large system of Lotka-Volterra equations is a system of coupled ordinary differential
equations (ODE) that write:

dxk(t) = .T}k(t> (Tk — ka(t) + 2 Bkgdfg(t)) s (11)
dt =

where k € [n] = {1,--- ,n}.

Here, n represents the number of species in a food web or community, the unknown
vector & = (zy,) ke[n] is the vector of abundances of the various species and evolves with
time t > 0 according to the dynamics (1.1). Parameter 7y represents the intrinsic growth
rate of species k, 6 is an intraspecific feedback coefficient (most often positive due to
competition), and By, is the per capita effect of species ¢ on species k.

Remark 1.1. Notice that without interactions, i.e. B = (Bp¢)ke[n) = 0, system (1.1) is
simply a system of uncoupled logistic differential equations.

We shall focus on the model where r, = 0 = 1:
dl’k

E = Tk (1 — T+ (BCB)k) , ke [n] (12)
with matrix B admitting the following representation:
A
B=-—"_+En",
ay/n - n

where A = (4;;) is a matrix with random standardized (EA;; = 0 and var(4;;) = 1)
independent and identically distributed (i.i.d.) entries with finite fourth moment, o > 0
is an extra parameter reflecting the interaction strength, and 1 € R represents an arbitrary
trend of the interactions. The n x 1 vector 1 is a vector of ones.

Remark 1.2. Although matrix B is a complex random object, a result by Tao [Taol3,
Theorem 1.7] fully describes its asymptotic spectrum: Assume that |u| > 1/«, then for
any fixed € > 0, almost surely eventually all the eigenvalues of B but one are in the disk
{z € C:|z| <1/a+ e} while one extra eigenvalue takes the value p + o(1).

Remark 1.2 is illustrated in Fig. 1.1.
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Figure 1.1: Spectrum of non-Hermitian matrix B in the complex plan (n = 1000, a = 1).
In Fig. 1.1a, 4 = 0 and the solid line circle represents the boundary of the circular law.
In Fig. 1.1b, i = 2 and there is an eigenvalue in the small dashed circle centered at 2, as
predicted by [Taol3, Th. 1.7] - see also Remark 1.2.

Presentation of the main results.

Unique equilibrium. In the study of the behaviour of x(t) as t — oo the existence of
an equilibrium «* to Eq. (1.2) is an important prior to any stability property of x(¢). By
equilibrium, we mean the existence of a vector &* = (z}) satisfying

zp(l1—ap + (Bx™),) =0 for ke|[n].

General results on LV systems state that @(t) > 0 (componentwise) as long as x(0) > 0
[HS98]. However, a possible equilibrium x* will only verify * > 0, i.e. some components
x;, may take the value zero.

In Theorem 1.2, we provide sufficient conditions on the parameters v and p to ensure
the existence of a unique equilibrium. These conditions rely on the “typical” behaviour
of the random matrix B in large dimension n — 0.

Evaluating the number of surviving species. Given a unique equilibrium x*, an
important question is to describe the set of surviving/vanishing species. In this perspec-

tive, we introduce the set
S ={ien], zf >0} (1.3)

of surviving species. In Section 1.3, we provide a heuristics to compute asymptotically the
ratio E—‘ and understand via a system of equations the dependence between parameters
a and p and the number of surviving species. A complementary result addressing the
elliptic random matrix model by means of theoretical physics methods can be found in
[Bun17] (dynamical cavity method) and in [Gall8] (generating functional techniques).

Notice that in [BN21], Bizeul and Najim have studied a different normalization for o
in the case p = 0, namely a ~ 4/2log(n), to guarantee the survival of every species (fea-
sibility of the equilibrium). Indeed, a consequence of Dougoud et al.’s results [DVR™ 18] is
that some species will go to extinction if & > 0 is fixed (i.e. does not increase sufficiently
with n).

An empirical study of LV systems with changing interaction strengths.
Equipped with results on the existence of a unique equilibrium, one pending question is
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to understand what happens when the coefficient o varies for the same matrix A and
the same parameter p. In particular, when the value of a increases above a certain
critical value, all species will coexist [BN21]; conversely, for sufficiently low values of «,
the existence of a feasible equilibrium is not warranted anymore, however a unique and
stable equilibrium may exist. How species equilibrium abundances change between these
two states and how |S| varies will be the focus of Section 1.4.

Notations

Denote by p(C') the spectral radius of matrix C, by |C| the spectral norm of matrix C,
and by |ul the euclidean norm of vector w. We represent by ¢, the Dirac measure at x:

5&?(E):{1 lfIEE'

0 else

weak

We denote by %> the almost sure convergence of random quantities and by the

weak convergence of measures. Given a set S, we denote by |S| its cardinality.

1.2 Equilibrium and stability results

A primer on Random Matrix Theory. We first recall some results on Random
Matrix Theory (RMT), which provides a number of valuable insights to understand the
asymptotic behaviour of A. We begin by the almost sure (a.s.) convergence of the spectral
radius and the spectral norm:

p(A/v/n) =51 and |A/vn| = 2.

We also have the a.s. weak convergence of the spectral measure of A/4/n to the circular
law (see for instance [BC12]):

1 weak  L{z21y2<1
(a.s.) - 2 O (A//m) e ;y <Y dx dy,

n—00
ke[n]

where (A(A/y/n);k € [n]) is the spectrum of A/y/n. This convergence is illustrated in
Fig. 1.1a.

The description of the spectral norm of the deterministic part of matrix B is more
straightforward:

117
= |p|.

Mi
n

Notice that both the random and deterministic parts of matrix B do not vanish asymp-
totically and thus have a macroscopic effect on the dynamics of system (1.1), as recalled
in Remark 1.2 where the asymptotic spectrum of B is described.

The non-invadability condition. A key element to understand the dynamics of the
LV system (1.1) is the existence of an equilibrium x* = (}) ke[, such that

{ ok (1—af+ (Bat)y) =0, Whken], (1.4)

i = 0.
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and the study of its stability, that is the convergence of a solution & to the equilibrium
x*: x(t) — x* if x(0) is sufficiently close to x*.

It is well known that for LV equations, the fact that (0) > 0 (componentwise) implies
that (t) > 0 for every ¢ > 0, but one can have some components x(t) of x(t) vanishing
to zero. As a consequence, we will only consider non negative equilibria * > 0 with
possibly vanishing components.

Notice that the situation substantially differs whether &* > 0 or x* has vanishing
component. In the former case, the equilibrium set of equations becomes a linear equation:

¥ =1+ Bx*.

In the latter case, the equilibrium equations are no longer linear.

In the centered case p = 0, the existence of a positive solution has been studied in
[BN21] and requires o » +/2log(n) (while we consider « fixed here).

A naive and systematic way to solve (1.4) is to choose a priori a subset Z < [n], to
set the corresponding components &z = (z);er to zero, and to solve the remaining linear
system:

L1 = 1|Ic‘ + Brexze .

If there exists @z > 0 that solves the previous equation, then & = (;:I) satisfies (1.4)
Tc

and is a potential equilibrium. The number of subcases Z < [n] is 2" and in particular
exponentially grows as n — o0.

In order to decrease the number of potential solutions to (1.4), we first notice that
relying on standard properties of dynamical systems, see for instance [Tak96, Theorem
3.2.5], a necessary condition for the equilibrium x* to be stable is that

1— 2 + (Bx*); < 0. (1.5)

The condition (1.5) is better known in ecology as the non-invadability condition [LM96].
In reference to the ODE (1.2), the requirement for a given species k € [n] to be non-

invasive is equivalent to:
1 dx
("") <0. (1.6)

The main interpretation is as follows: if one adds species k with a very low abundance in
the system, it will not be able to invade the system as a result of condition (1.6).
As a consequence, we will now focus on the following set of conditions:

xy (1 =z} + (Bx*);)
1-— l’;’; + (Ba:*)k
m*

0 for ke [n],
0 for k€ [n], (1.7)

0 componentwise .

VoA

This casts the problem of finding a non negative equilibrium into the class of Linear
Complementarity Problems (LCP), which we describe hereafter.

Linear Complementarity Problem (LCP). LCP is a class of problems from math-
ematical optimization which in particular encompasses linear and quadratic programs;
standard references are [Mur88, CPS09]. Given a n x n matrix M and a n x 1 vector
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g, the associated LCP denoted by LCP(M, q) consists in finding two n x 1 vectors z, w
satisfying the following set of constraints:

z = 0,
w=Mz+q = 0, (1.8)
w’'z = 0 < wpz=0 forallkeln].

Since w can be inferred from z, we denote z € LCP(M, q) if (w, z) is a solution of (1.8).
A theorem by Murty [Mur72] states that the LC'P(M, q) has a unique solution (w, 2)
iff M is a P-matrix, that is:

det(Mz) >0, VIc|[n], Mz=(My)ser.
In view of (1.7), we look for * € LCP(I — B, —1).

The equilibrium x* and its stability. For a generic LV system

WO i+ (Cyh), ke lnl, (19)

Takeuchi and Adachi (see for instance [Tak96, Th. 3.2.1]) provide a criterion for the
existence of a unique equilibrium y* and the global stability of the LV system.

Theorem 1.1 (Takeuchi and Adachi [TA80]). If there exists a positive diagonal matriz
A such that AC + CTA is negative definite, then LCP(—C,r) admits a unique solution.
In particular, for every r € R", there is a unique equilibrium y* to (1.9), which is globally
stable in the sense that for every y, > 0, the solution to (1.9) which starts at y(0) = y,
satisfies

y(t) — y*.

t—o0

Combining this result (setting C' = —(I—B)) with results from RMT, we can guarantee
the existence of a globally stable equilibrium x* of (1.1) for a wide range of the set (a, ).
Denote by

1 1 2
A={(a,m)eR’ixR:a>\@,m<2+ 1—} (1.10)

2 a?
the set of admissible parameters.

Theorem 1.2. Let (o, i) € A, then a.s. matriz (I — B) + (I — B)T is eventually positive
definite: with probability one, for a given realization w, there exists N(w) such that for
n > N(w), (I — B¥) + (I — B*)T is positive definite. In particular, there exists a unique
(random) globally stable equilibrium x* € LCP(I — B¥,—1) to (1.7).

Optimal conditions for the stability of *. In Theorem 1.2, we provided a sufficient
condition, namely (o, 1) € A, which guarantees the stability of the LV system. If u = 0,
this condition simply writes a > /2.

A natural question is to find the optimal condition over « (we consider the extra
condition p = 0) to have stability. Such a question is challenging and we explore a
possible phase transition via numerical simulations. These simulations indicate that

1
af = —
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Zone B

10 15 20 25 30 35 40

Figure 1.2: The shaded area represents the set A given by (1.10) yielding the existence
of a unique (random) globally stable equilibrium x*. Area A is divided into two zones
B and C. Both zones correspond to parameters (c, i) for which matrix 21 — (B + BT)
is definite positive, as stated in Theorem 1.2. In zone B, Apax(B + BT) corresponds to
a spiked eigenvalue (1 above the critical threshold (a/2)7!). In zone C, Apax(B + BT)
corresponds to the right edge of the semi-circle law. Notice that zone C extends to negative
values along the y-axis.

seems to be a threshold above which stability is granted and below which some species’
abundances explode. This threshold already appears in [Bunl7, Fig. 2].

To support this conjecture, we proceed with a Monte-Carlo experiment to compute
the standard deviation, one of the many measures which can characterize early warning
signals preceding a transition in an ecosystem [KDS*13].

Let « be fixed and P be the number of Monte-Carlo repetitions. Draw randomly the
initial abundances and the interaction matrix B. Then let the dynamics of the LV system
(1.2) run for a “sufficiently long” time T (to observe either an explosion of a species
abundance or the convergence of the abundance vector). Let s € N be the precision of
the numerical scheme and t;, = T'. Denote by

xi(t(J)? xi<t1)7 U 7$Z(t8>
the time discretization of the dynamics of the abundance z(t) of species k for ¢ € [0,7]

as obtained by the Runge-Kutta methods. Define by

n S S

SD, = ;Z 510 2 () - (510 Dy xi@-))

k=1 i=5—50 1=s—50

the standard deviation of experiment number p. Numerically, we say that the abundance

of a species has unbounded growth if for some k € [n] there exists sy € [0, s] such that

x¢(ts,) is no longer a number (NaN) indicating the explosion of the abundance of species

k and thus the explosion of SD,. In this case, we set
SD, = .
Consider now the two following indicators.

1. The global standard deviation:

1 P

7
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Proportion of unbounded growth
Standard deviation (SD)

H ' H H
0.6 07 08 039 10 11 12 13 14 07 08 09 10 11 12 13 14
Interaction strength a Interaction strength a

(a) Proportion of unbounded growth. (b) Standard deviation

Figure 1.3: The dotted line represent the physicist threshold at 1/4/2 and the dashed line
the expected P-matrix threshold at 1. In Fig. 1.3a, the proportion of unbounded growth
as a function of the interaction strength («) is displayed. In Fig. 1.3b, the standard
deviation defined in (1.2) is illustrated as a function of the interaction strength ().

2. The proportion of unbounded growth dynamics corresponding to
1 2
5 2. Lisp,—0)
p=1

The results of the numerical simulations are displayed in Figure 1.3. We observe that the
proportion of unbounded growth significantly increases as it approaches the a* = 1/4/2
threshold. The simulations show a non-linear increase of the standard deviation SD when
« gets closer to o™ which can be seen as a early warning signal. Notice that when explosion
occurs, the equilibrium remains unique and stable if a > o*.

1.3 A heuristic approach to the proportion and dis-
tribution of the surviving species

1.3.1 Proportion of surviving species

In Section 1.2, we have presented conditions on parameters a, pu for the existence of
a globally stable equilibrium x* to (1.1) under the non-invadability condition. As x*
depends on the realization of matrix B, it is a random vector. Moreover since o > 0 is
fixed and does not depend on n, the equilibrium x* will feature vanishing components
(see the original argument in [DVR*18] and the discussion in [BN21]). In an ecological
context, we shall refer to these non-vanishing components as the surviving species, the
vanishing components corresponding to the species going to extinction with z; = 0 and
In this section, we assume that the A;;’s are N (0, 1)-distributed and describe the
proportion of non-vanishing components of the equilibrium x*; we also describe the dis-
tribution of the surviving species 7 > 0 which turns out to be a truncated Gaussian.

Remark 1.3. The Gaussianity assumption facilitates the explanation of the heuristics but
does not seem necessary for the result to hold. In Fig. 1.6b, the entries are not consid-
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ered Gaussian but the distribution of the surviving species still matches the truncated
Gaussian.

Given the random equilibrium a*, recall the definition of S in (1.3). We introduce the
following quantities:

A~ |S| A 1 * A2 1 *\2
p=—, m=iz) o, =) (@)
n |3|§M 51 2

Notice that in the definitions of i and 6* we can replace >,y by s
Denote by Z ~ N(0, 1) a standard Gaussian random variable and by ® the cumulative
Gaussian distribution function:

2

T e—%
O(x) = du .
@ =] S
Recall the definition of the set A in (1.10).

Heuristics 1.1. Let (a, ) € A. The following system of three equations and three un-
knowns (p, m, o)

o/p® (1 —p)+a(l+pupm) = 0, (1.11)
1+upm+g—\/ﬁE(Z|Z>—6) = m, (1.12)

a

2
(1+ppm)*+ (1 + upm)got/ﬁE(Z | Z > —9)
a’p
where o

6 =0d(p,m,0) = ——=(1+ ppm) , (1.14)

7P

admits a unique solution (p*,m*,o*) and

A  @.S. * A a.s. % ~A  @.S. *
p——p°, m———m and o0 ——>0".
n—00 n—0o0 n—0o0

Associated to this solution (p*, m*, o*) is 6* = 6(p*, m*, c*).

There is a strong matching between the parameters obtained by solving (1.11)-(1.13)
and their empirical counterparts obtained by Monte-Carlo simulations. This is illustrated
in Fig. 1.4. In Fig. 1.5, we illustrate the sensitivity of o* to the parameters (o, p).

Remark 1.4. The heuristics above substantially simplifies in the centered model case,

where ¢4 = 0 and B = %ﬁ' Following (1.20) — see Appendix 1.B, assume that a > /2.

Then the system with two unknowns (p, o)

—1(1 _ —
o/p®7 (1 —p) + 0 where §— &

1+ 227 | Z > —5) + ZPE(Z% | Z > —6) = o o\/p

. . . A a.s. A a.s.
admits a unique solution (p*,o*). Moreover, p — p* and & — o*.
n— n—
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Figure 1.4: The plots represent a comparison between the theoretical solutions (p*, o*, m*)
of (1.11)-(1.13) and their empirical Monte Carlo counterpart (the star marker) as functions
of the interaction strength a (left) and the interaction drift p (right). Matrix B has size
n = 500 and the number of Monte Carlo experiments is 200. In Column (1.4a), p = 0
and o > /2 on the z-axis (which guarantees a unique and stable equilibrium 2*). When
interaction a~! increases, the number of surviving species p* decrease but their variance
o* and mean m* increase. In Column (1.4b), @ = 2 and p € (—0.5,0.5) on the z-axis.
The interaction drift appears to have no impact on the proportion p* of surviving species,
whereas it influences their variances and means.

1.3.2 Distribution of surviving species

In the previous section, the proportion p of the surviving species, their mean m and second
moment 62 have been described as empirical counterparts of the solutions p*, m*, (o*)?
of a system of equations. While establishing this system of equations, we will provide the
following representation (see (1.23) in Appendix 1.C) of the abundance zj of a surviving
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Figure 1.5: The 3D plot represents 0* = o*(«, 1), solution of the system (1.11)-(1.13).
In contrast to the proportion of persisting species p*, we observe that p has a major
influence over o*. The graph for the theoretical value of m* has approximately the same
behavior with respect to p and .

species:
o*\/p*
xp = 1+ pup'm* + ap Zy,
where Z, ~ N(0,1) and Z > —0* = —d6(p*, m*,0*), 0 being defined in (1.14). We take
here advantage of this representation to characterize z;’s distribution, which turns out to
be a truncated Gaussian.

Heuristics 1.2. Let (a, 1) € A, x* the solution of (1.7) and let (p*, m*, o*) the solution of
the system (1.11)-(1.13). Recall the definition (1.14) of 6 and denote by 6* = o(m*, p*, o*).
Let zf > 0 a positive component of x*, then:

L‘(x,’i)———»ﬁ(l+up*m*+a;/]72 ‘ Z>—6*>,

n—a0

where Z ~ N(0,1). Otherwise stated, asymptotically xi admits the following density

]-{y>0} « 1 (07 2

— - = - 5* *

W) O(6*) o*4/2m p* =P 0*«/p*y

The heuristics simply follows from the fact that if =} is a surviving species then

* *
o*\/p 7,
Q

xp =14 pp*m* +

conditionally on the fact that the right hand side of the equation is positive, that is
Zr > —0*. A simple change of variable yields the density - details are provided in
Appendix 1.C.

Fig.1.6 illustrates the matching between the theoretical distribution obtained in Heuris-
tics 1.2 and a histogram obtained by Monte-Carlo simulations. It also illustrates the
validity of the heuristics beyond the gaussiannity assumption of the entries.
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(a) Gaussian entries. (b) Uniform entries.

Figure 1.6: Distribution of surviving species. The x-axis represents the value of the
abundances and the histogram is built upon the positive components of equilibrium x*.
The solid line represents the theoretical distribution for parameters (o, p) as given by
Heuristics 1.2. In Fig. (1.6a), the entries are Gaussian A/ (0, 1) and the parameters are set
to (n = 2000, = 2, = 0.2). In Fig. (1.6b), the entries are uniform U(—+/3,/3) with
variance 1 and the parameters are set to (n = 2000, = /3, u = 0). Notice in particular
that the theoretical distribution matches with non-Gaussian entries.

1.4 Switching between equilibria: changing interac-
tion strength

In the previous sections, the strength « of the interactions was fixed, cf. equation (1.2).
However, in nature interactions between species are constantly changing due to e.g. abiotic
factors such as temperature, which affect the rate at which individuals forage for prey, etc.
Our contribution is rooted in the framework of asymptotic dynamics, but many recent
ecological studies highlight the importance of taking into account both transient dynamics
(out-of-equilibrium abundance values due to frequent perturbations) and shifts between
equilibria due to changing environmental conditions [Has01, FN11, NA16]. In the sequel,
we discuss a more general framework.

The model and intuition. If we restrict ourselves to a specific environment, a pos-
sible ecological interpretation of the fluctuation of interaction strength corresponds to
the relationship between the size of the habitat and the probability of contact between
individuals from two interacting species (e.g. think of a pool of freshwater containing
piscivorous fishes and their prey species — interactions, be them competition or predation,
would be potentially more frequent if the volume of water was reduced). In physics, think
of particles in motion in a given volume: if the number of particles and the temperature
stay constant, reducing the volume should increase the number of interactions between
particles.
From a model standpoint, let u be fixed, a = a(t) : R* — (1/2,0). Consider

dek
dt
where matrix B; admits the following representation

LB

A P
a(t)hy/n  n

= T (1 — T + (Btw)k) , ke [n] , (115)

B, = 117 and (af(t),p) e A.
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Remark 1.5. Following Theorem 1.2, condition («(t), i) € A guarantees that there exists
a unique equilibrium x*(t) for every ¢t € R*.

We focus on the case of a system that fluctuates between two equilibrium points
(Figure 1.7a). We consider a sudden incident, most often irreversible in the short term,
which reduces a portion of habitat, e.g. forest fires. The system transits from a feasible
state to a state with vanishing species due to the change of the strength of interactions,
modelled by the following step function:

a(t) = ol + a2l o), (a1, a2,t0) € (\/i —i—oo)2 x R, (1.16)

The change of model parameter occurs at ty, which causes a change in the strength of the
interactions going from a value a; to ap. One may choose ay < vy and the difference (or
ratio) between the two values represents the intensity of the incident.

In large dimension, it is possible to characterize this change by its impact on the
number of surviving species in the system (1.15). At a given time t, the proportion of
surviving species p = p(t) € [0, 1] can be computed by resolving the system in Heuristics

1.1. This function, associated to the step function « given in (1.16), is represented in
Figure 1.7b.

=== Feasibility threshold
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£

06

04

02

o

Variation of the interaction strength ait)
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Variation of the proportion of surviving species p(t)

30 30
Time (t) Time (t)

(a) Step function «(t) (b) Proportion of surviving species p(t)

Figure 1.7: (a) Variation of the interaction strength through time, used in the dynamics
of a ten-species system depicted in Figure 1.8 (o = 2.5, ag = 1.5). The dotted line
represents the feasibility threshold associated to the system.

(b) Variation of the proportion of surviving species depending of the variation of a(t) in

(a).

In the case of a sudden incident, the proportion of surviving species predicted by the
heuristics has a form similar to «(t) i.e. a step response. In the feasible state, p(t) is
close to 1 (i.e. all species coexist); after the transition occurs, some species vanish and
here p(t) ~ 0.87. Beware that the heuristics results follow instantaneously the change
of a; however, there is a smoother transition in the dynamics between the two equilibria
(respectively corresponding to «; and as) due to the return rate to equilibrium, see for
instance [NC97], [ABLH18]). This transition is illustrated in Figure 1.8.

Simulations. We provide hereafter a simulation-based analysis of the impact of the
sudden incident on a given ecosystem: Define a ten-species system (1.15) with a fixed
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matrix of interactions A with Gaussian entries A(0,1) and consider o = «(t) as in Fig.
1.7a.

This scenario has a mixed impact on the community, see Fig. 1.8. While some
species benefit from this change through an increase in their abundances, others are
severely affected by this shift, some of which become extinct. This phenomenon can be
understood as follows: at first (¢ < ty), the system admits a feasible equilibrium state with
a=a; =2.5>4/2log(10) ~ 2,14 and the abundances converge to this equilibrium (see
Figure 1.7a). When the transition occurs at ¢ = ¢y, Theorem 1.2 ensures the convergence
to a new equilibrium defined by parameter as. Since oy = 1.5 is below the feasibility
threshold 4/21og(10) ~ 2.14, some species vanish. In other words, this sudden change of
model parameter causes an increase of interaction strengths, which has a negative impact
on species diversity.
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Figure 1.8: Abundance dynamics in the case of a community of ten species. The matrix
of interactions A and the initial conditions are common and we apply the function of
variation «(t) given in Figure 1.7a. The dashed lines represents species which benefit
from habitat variation; solid lines represent species suffering from the change. Dotted
lines represent species undergoing extinction.

Evolution of diversity Finally, we illustrate the evolution of diversity using diversity
indicators more suited to the description of changes such as the one represented in Fig.
1.8 [Jos06]. We introduce here Shannon diversity H’, a standard measure of biodiversity
in ecology, which is given by

ZZ] - log (Zj :cj) (1.17)
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and ranges from 0 (one species completely dominates the community) to log(n), when
each species is equally abundant. When many species become rare while others become
more abundant, H' drops. Because H’ varies before species actually vanish, it is a more
sensitive index of community diversity than species richness.

The Hill number of order 1, defined as e, is a diversity measure that takes into
account species abundances and varies between 1 and n, i.e. it behaves like an “effective
species richness”, see e.g. [Jos07].

In Fig. 1.9a, we represent the mean of this diversity measure over time for a hundred-
species system and observe a negative impact of the variation of the strength of the
interactions on diversity. Parameter x4 has no impact on diversity at equilibrium (similarly,
i has no impact on the proportion of persistent species), but the lower the value of
i, the slower the transition to a new equilibrium. In other words, the more generally
“competitive” the ecosystem is (i.e. very negative values of p), the longer it takes for
transient dynamics to settle near equilibria.

The evolution of the Hill number of order 1 complements the evolution of species
richness: when « decreases, the expected number of surviving species decreases (Fig.
1.7); at the same time, e" decreases even more drastically as the abundance distribution
of surviving species gets more heterogeneous. Figure 1.9b also shows that the variability
of the Hill number of order 1 among simulations increases drastically when a decreases.
The conclusion is that the more species are lost, the more difficult it is to predict the
diversity index as o* depends on a and strongly influences e!’.
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Figure 1.9: Dynamics of the Hill number of order 1 in the case of an ecosystem of a hundred
species. The initial conditions are similar for each species. We define an interaction matrix
A and let the dynamics of Lotka-Volterra evolve according to model (1.15) and we apply
the function of variation «(t) of Figure 1.7a. For each time step, we compute e We
repeat this scheme a large number of times (here 500), and we average the time series. In
(a), we apply this procedure for different values of p. In (b), we apply this procedure for
a fixed p = 0 and compute the quantiles of the 500 trajectories.

Theoretical estimation of diversity. Standard mathematical methods (Taylor’s the-
orem) can be used to obtain a theoretical approximation of the Hill number of order 1
(details are provided in Appendix 1.D.1):

e ~ np* (2 - ;é?;) . (1.18)
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This estimator is based on the properties of the persistent species (p*, m*, o*) calculated
by solving the fixed point equation of the heuristics (1.1). These three properties depend
on the type of the interactions, as indicated by parameters (a, p) (Figure 1.4). We compare
the accuracy of this estimator with two examples in which the strength of the interactions
() and the interaction drift () vary (Figure 1.10).

On the one hand, a shift of the interaction drift  does not affect the proportion of
surviving species. Furthermore, the impact of p on ¢* and m* is proportional i.e. % is

equal to a constant. For these reasons, p does not affect the Hill number (Figure 1.10b).

. . / . .
On the other hand, if « increases, then p*, m*, o* P 1 and e’ — n which is makes
a—+00

sense because when a becomes very large, all abundances converge to 1. If a decreases: p*
. . !/
decreases, and o* increases faster than m*. This confirms that e’ decreases even more

drastically as the abundance distribution of surviving species gets more heterogeneous
(Figure 1.10a).
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Figure 1.10: Evolution of the Hill number of order 1 as a function of «a (a) and u (b).
The theoretical solutions (solid line) are computed by resolving (1.1) and integrating
the parameter (p*,o*, m*) in equation (1.18). The empirical solutions (star marker) are
computed by a Monte-Carlo experiment (100 experiments): we define a matrix B of size
100 x 100, solve the LCP problem and calculate the associated Hill number e’ using
(1.17).

1.5 Discussion

In this paper, our main interest was to describe the impact of the strength o and mean
of interactions in large LV models on the conditions of coexistence of interacting species.
Combining results from Takeuchi [Tak96] with standard RMT results, we have provided
insights into the study of stability of large random ecosystems - see [Stol8, GGRA18].

We have characterized the unique equilibrium properties of the surviving species by
resolving a system of equations. From a physicist point of view, similar equations were
obtained by Opper and Diederich [OD92] and studied in a more general framework by
Bunin using the dynamical cavity method [Bunl7] and Galla [Gall8] using generating
functional techniques.

The coexistence of many species in random ecosystems was also studied by Servan et
al. [SCG*18] and Pettersson et al. [PSNJ20], where a more generic case was analyzed
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with different growth rates. Grilli et al. [GAS™17] identified the key quantities regulating
the parameter space leading to feasible communities. In contrast to previous approaches,
an important feature of our model is the monitoring of the impact of interactions by a
normalization factor (a4/n). From an ecological point of view, one might expect that the
larger the number of species, the weaker the interactions will be due to some dilution
of interactions among potential interaction partners, which would justify the use of such
normalization factors. From a mathematical viewpoint, the normalizing parameter «
captures the range of a unique equilibrium and the threshold for feasibility.

In nature, interactions between species are constantly changing and affected by the
environment. Under the assumptions that environmental conditions influence interaction
strengths, we have endeavoured in Section 1.4 to study the consequences of a sudden
change of environmental conditions, expressed through a decrease in parameter «. Solv-
ing numerically the Lotka-Volterra system confirms the predictions given by heuristics,
i.e. that a decrease in « negatively affects equilibrium species richness. A more precise
representation of biodiversity dynamics can be obtained through Hill numbers of order 1
which also decreases after the sudden change in . The dynamics of this diversity mea-
sure suggests that the mean of interaction coefficients, i, affects the duration of transient
dynamics, with shorter transient dynamics being associated with more mutualistic inter-
actions (i.e. higher positive values of ).

Many questions naturally arise as a follow-up. First, a mathematical proof of the
heuristics presented here is a challenging prospect because the LCP procedure induces a
statistical dependence that is a priori difficult to handle. However, looking for this proof
will certainly help extend the results to other underlying assumptions on the parameters
of the LV system.

Regarding the extension of the heuristics to other assumptions, two situations could be
of particular interest: non-centered elliptical matrix models as in Bunin [Bunl7] and LV
models in which species growth rates are also controlled as in [SCG*18]. We are confident
that such extensions are possible, but might hinge on more sophisticated developments,
in particular to include growth rates in the calculus of order statistics.

In this paper we have only considered the case of a full interaction matrix with param-
eters (o, ). However, food webs are often structured in compartments [BDB*11] and/or
obey hierarchies (e.g. larger species eat smaller ones) [BAB*19]. By a numerical analysis
of LV systems, one could use the same tools to study more patterned matrices [AT12].
Recent studies emphasize the sparsity of real food webs [BSHM17]. Beyond the feasibility
studied by Akjouj and Najim [AN21], one could also study the existence and stability of
a unique equilibrium in a sparse context.

Finally, variations of the interaction strength highlight the impact of habitat destruc-
tion. Many theoretical studies provide mathematical formulas for the return rate to
equilibrium [NC97, ABLH18]. A further theoretical study of model (1.15) could provide
a more quantitative answer. In this article, we have limited the analysis to the case of a
single sudden incident, but other types of fluctuations for the interaction strength could
be considered for a better understanding of habitat conservation phenomena. For exam-
ple, a seasonal model could be appropriate to describe the evolution of the dynamics over
the seasons.
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Appendix

1.A Simulation details

Simulations were performed in Python. All the figures and the code are available on
Github [Cle22a].

Simulations on the properties of surviving species are performed in two different ways.
The theoretical solutions are obtained resolving numerically the system of equations of
heuristics 1.1. We use a solver (cf. scipy.optimize) to find a local minimum of the function
defined by the system of equations (a modification of the Powell hybrid method). The
empirical solutions are computed using a Monte Carlo experiment. We simulate a large
number of matrix matrix B, we resolve the associated LCP problem using the Lemke’s
algorithm. Then, we use the LCP solution to calculate the properties of the surviving
species: proportion of survivors, etc. Finally, we make an average on the ensemble of
experiments. The Lemke algorithm is implemented in the lemkelcp package and can
be found on Github [Lam19]. The dynamics of the Lotka-Volterra are achieved by a
Runge-Kutta of order 4 (RK4) implemented in the code.

1.B Proof of Theorem 1.2

We have

A+ AT 2
1—B+I—BT:21—(B+BT):21—< i +“11*) .
ay/n n

Notice that 21 — (B + BT) is positive definite iff the top eigenvalue of B + BT is lower
than 2:
Amax(B + BT) < 2. (1.19)

We first focus on the random part (A + AT)/a which is a symmetric matrix with inde-
pendent N (0, 2/a?) entries above the diagonal (note that the distribution of the diagonal
entries is different from the off-diagonal entries, with no asymptotic effect). In this case,
it is well known that the largest eigenvalue of the normalized matrix (or equivalently
its spectral norm since the matrix is symmetric) a.s. converges to the right edge of the
support of the semi-circle law (see [BS10, Th. 5.2]):

\ A+ AT L. 22
max a\/ﬁ .

In the centered case (u = 0), condition (1.19) occurs if a > /2.

(1.20)

n—00 o
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- L i
030 . 7-4:—77 HHEE h:\\ 030 */ﬁ: T ™ i
A TN AT _\3\ |
025 /'e \\ 025 / \ !
,at L i N |
2o 2o / i
g g !
& o1s 8o1s E
010 ‘ ‘ ‘ 010 ‘ i
1
i 1
1
DGD—Z -1 o 1 2 3 BGB—Z -1 0 1 2 3 ’_‘:
Spectrum Spectrum
(a) No outlier if p < (av/2)~ 1. (b) Outlier if g > (ay/2)7!

Figure 1.B.1: Spectrum (histogram) of the Hermitian random matrix B + BT (n = 1000,
a = 4/2). The solid line represents the semi-circular law. In Fig. 1.B.1a, u = 0 and there
is no oulier. In Fig. 1.B.1b, u = 1.5 and one can notice the presence of an eigenvalue
outside the bulk of the semi-circular law. The dashed line indicates its theoretical value.

We now consider the general case where o # 0. Notice that the trend matrix P =
27“11* admits a unique non zero eigenvalue 2. Denote by A = Aat;‘* We are interested

in the top eigenvalue of the symmetric matrix A+ P. Based on a result by Capitaine et
al. [CDMF09, Th. 2.1], we have:

L

. s 2u+ oy Hp> 4
(s ) g2 {2

n—0o0

This result is illustrated in Figure 1.B.1.

Assume first that p < a%@ (corresponding to zone C in Fig. 1.2), then )\max(fl +

pP) 27*/5, which is strictly lower than 2 (cf. condition (1.19)) if a > /2. Hence

n—a0
)\max(fl + P) is eventually strictly lower than 2 under this condition.
Assume now that pu > o%/i (corresponding to zone B in Fig. 1.2), then

1
)\maX(A + P) 2/,4 + —
a?p
We are interested in the conditions for which 2u + —- < 2 or equivalently
2au—20zu—|—1<0. (1.21)

An elementary study of the polynomial £(X) = 2a?X? — 202X + 1 yields that &’s
discriminant is positive if a > /2,
1 1 2
+ +
= S P &
5(“ ) d H 279 a2’

and & (ﬁ) < 0, so that € (=, u"). In particular condition (1.21) is fulfilled if

\F

. 1 1 N 1 ] 2
H av2’ 2 2 a2 |
Under this condition, (1.21) is fulfilled and a.s. limsup, ., Amax(A + P) < 2, which
completes the proof: we can then rely on Theorem 1.1 to conclude.
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1.C Construction of the heuristics

We first discuss Heuristics 1.1 and establish Equations (1.11), (1.12) and (1.13).

1.C.1 Equation (1.11).

We first recall a result on order statistics of a Gaussian sample. Consider a family (Zk)ke[n]
of i.i.d. random variables AV(0, 1) and the associated order statistics

Zr < 7y <---< ZF.

Consider an index |na] € [n] where a € (0,1) is fixed, then the typical location of Z,,,
is @7 (a):
ZE  ~®a) as n— o, (1.22)

[nal

see for instance [Smi49, BDHT7S].
Let «* be the equilibrium of (1.1) and consider the random variable

i€S

We assume that asymptotically the z}’s are independent from the Bjy;’s, an assumption
supported by the chaos hypothesis, see for instance Geman and Hwang [GH82]. Denote by
E.+« = E(- | *) the conditional expectation with respect to *. Notice that conditionally
to x*, the Z)’s are independent Gaussian random variables, whose two first moments can
easily be computed, see Section 1.C.2 below for the details:

B+ 2, = pprn  and Varm*(Zk) = —.

Notice that the fact that E,« and Varm*(Zk) only depend on p,é and 7 which are (sup-
posedly) converging quantities supports the idea that Zj is unconditionally a Gaussian
random variable with moments:

EZy = up*m* and V&I‘(Zk) = ,

where p*, m*, o™ are resp. the limits of p, m, 5. We now introduce the standard Gaussian
random variables (Zj)re[n) Where

Zk—EZk Zk—,up* m*
k= -« * *
var(Zy) VP

Consider the equilibrium «* = (2} )refn)- If £ € S, that is 2} > 0, we have
l—af+ (Bx*),=0 = 1+ (Bz")>0.
This identity has two implications:

xy =14 (Bx*), and 1+ (Bzx"), >0 ifkeS.
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Relying on the representation (Bx*); = Zk, we obtain the representation

* *
xp =1+ (Bx*), = 1+,up*m*+a ;/ZTZk if keS. (1.23)

and the condition:
o*\/p*

1+ (Bx*)y = 1+pup*m*"+—"—"7; > 0.
o

If k ¢ S then

* [k
1+(B:13”‘)k=14—/Lp*m*+(7 ka<O
(6%

by the non invadability condition. Otherwise stated,

Zr < —““*Hip;’” ifke¢sS,
7, > —0‘(1:"7’@ ifkeS.
a¥\/p

Considering the order statistics of the Z;’s we obtain:

% *
Zi <. < zp < -0
K2 O-*«\/pi*
Now, there are exactly n — |S| = n(1 — p) indices before the threshold corresponding to

the components of * equal to zero. In particular, index ¢ = n(1 — p) corresponds to the
value

* *

7% _a(l+pp*m”)
(2 O-*«\/]?

Relying on (1.22), we finally obtain

a(l + pp*m®*)
o*\/p*

It remains to replace p by its limit p* to obtain (1.11).

(1 -p) -

1.C.2 Details on Equation (1.11): Moments of Zj.

We compute hereafter the conditional mean and variance of Zj, = (Bx*)) with respect to
x*. We rely on the following identities:

I 9 1 2 1 pr
EByi ==, E(Br)'=—+"—5~—, EB,B, =— .
M (Bi) a’n * n?  a’n MER T 2 (077

We first compute the conditional mean:

Epe(Z) = ), B(Bu)af = Y, E(Bu)ai = £ ) a,

i€[n] €S €S
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We now compute the second moment:

2
E;,yk(Z,?) = Em* (ZB;%I?> = Em* Z Bszk] 3 ]7

€S i,jJES

= Y E(By)z* + ) E(ByByj)aia],

iES 'L;é]

1 *2 /JJ Z

= l‘ s

04271 €S iF£] ' ]
(a) _ _ po? 2 2272
¢ i S = i 5] o

i,JES €S

where the approximation in (a) follows from the fact that

1 - 1
||22‘"”i”“”j ng (|8|)

i7#]

We can now compute the variance:
. o v\ 2 Do

vatg (Z) = Bar (23) = (Ban Ze) = 25
a

1.C.3 Equation (1.12).

Our starting point is the following generic representation of an abundance at equilibrium
(either of a surviving or vanishing species):

* *

p
Zk) 1z, 5%

xp = (1+up*m*+a

* *

b
Zk) 1z~ 6%

= (1 + up*m*) 1{Zk>—5*} + ( o

Summing over § and normalizing,

o*y/p* 1

keS keS |S| keS

a p nl
:(1+upm)+ " |S\ Z:Zkl{zk> 5%}

o*\/p* 1
a P(Z>—-6%

—
N

b

—~
=

|2

(1+ pp*m*) + E(Z1z>_s+y),

m =~ (1+ pp*m*) + d ;/]TE(Z | Z > —6%).

where (a) follows from the fact that |S| = >, s 1{z,>—s%} (by definition of §), (b) from
the law of large numbers + Zke 1 2kl z,— 5y EZ1{7._5 and 151 - P(Z > —§%)

with Z ~ N(0,1). Tt remains to replace m by it hmlt m* to obtain (1 12).

Eq. (1.13) can be obtained similarly. Details are provided in Appendix 1.C, see Section
1.C 4.
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1.C.4 Equation (1.13).

As for the proof of (1.12), we start from the generic representation of x}:

*

o e
ZEZ = <1 + up*m* + P Zk> l{Zk>—5*}

* *

= (1 + ,up*m*) 1{Zk>—5*} + Zk]-{Zk>—6*} .

Taking the square, we get

=1+ up*m*)2 iz, ~—5%

O'* /*p* 0.* 2p>x<
Zk]-{Zk>76*} + ( )2

+2(1 4+ pup*m*) le]_{zk>,5*} )

Summing over S and normalizing, we get

keS keS
o*\/p* 1
* *
+2(1 4 pup*m*) " E Z Zi Lz, >—o%)

keS
(0*)*p*
a? \5!,;5 =m0t

Finally, we conclude by replacing the empirical means by their limits

sz1{zk> oy = E(ZV|Z> -6, i=1,2.
keS

[S]
and get

* *

— (14 pp*m*)? + 201 + up'm*) T E(Z | Z > —6%)

O'* 2p* .
+(O32E(ZQ | Z > —%).

It remains to replace & by its limit o* to obtain (1.13).

1.D Density of the distribution of the persistent species.

Assume that z* > 0, and let f = R — R be a bounded continuous test function. We have

Ef(z}) = E[f (1+0*;/FZk+up*m*) ‘Zk>—5*] :

o0 £ * 1 T
(0]

N

— &(=6%) v
= f Jly)e \FE 5*> Sy,

hence the density of .
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1.D.1 Theoretical estimation of the diversity index

Recall that |S| = np is the number of surviving species and that

€
bi =
ZjeS €

is the frequency of (surviving) species i.

To find a theoretical estimate of Hill number of order 1, we proceed by expansion and
set

D = —+5 1) <<—
5] o < 1g)

where §; represents the deviation of species ¢ from the standard frequency if all surviving
species have the same frequency. Notice that ). s d; = 0.

= - Sontn) = 33 (549 o (7 +5) -

€S iES

We use the Taylor-Young formula of order 2 to decompose the log:

1 1 6%|S|?
o (157 +01) = 1w (137 + 1810~ T #8800,

1 62|S?
A log<|8‘)+]8|5i— ’2| :

Hl

&

AGE )(log(@) ‘5’5‘52|S|2)’

2
1 53152
_ 1og< )+5 ( >+353_z
EL& g 151

€S 2 7
528 5;32
= log(IS]) = >’ ’2|+Z ‘2| .

iES €S

Notice that Z‘Sl M is negligible since |§;| « |S|™!. The term 1 corresponds to the
maximum value that the Shannon diversity index can take if |S| are present in the system.
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It remains to develop the second term of the r.h.s.

2
oNes = 2l B
I 2Z<zjesxj |sr)

iES iES

_72 x5 2 N 1
2 S\ Qs ) S| Ljesy ISP)
Sl v}
- =D |l ="+
2 ;S (Ljes ©3)?

_ _@ Dics Ui —l—l

2 |SP (5 Ljes wi)* 27
1 |1?|Ziesx? N 1
(8 Djes )2 2

52 1

Y

DO | —

"f_

S
>
SN—
[N}
[\

7~ N
2%
|
[u—
N—

Finally the Hill number of order 1 can be computed as:

IS yISI 52
eHl ~ 610g(‘8|)_72i:15i7

~ |S|( ‘@ié> - 191(1- 5+ 3) = 5 (- )

Replacing |S| by np* and & and m by their limits, we get the desired result:

(o)
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Chapter 2

Equilibrium in a large
Lotka-Volterra system with pairwise
correlated interactions

Abstract

Consider a Lotka-Volterra (LV) system of coupled differential equations:
[tk:£L‘k(T’k—[Ek+(B$)k), azz(xk), 1<k:<n,

where 7 = (r;) is a n x 1 vector and B a n x n matrix. Assume that the interaction
matrix B is random and follows the elliptic model:

1
ay/n
where A = (A;;) is a n x n matrix with A/(0, 1) entries satisfying the following dependence
structure (¢) the entries A;; on and above the diagonal are i.i.d., (i) for ¢ < j each vector
(A;j, Aj;) is standard gaussian with covariance p, and independent from the other entries;
vector 1,, stands for the n x 1 vector of ones. Parameters «, i are deterministic and may
depend on n.

Leveraging on Random Matrix Theory, we analyse this LV system as n — oo and study
the existence of a positive equilibrium. This question boils down to study the existence
of a (componentwise) positive solution to the linear equation:

B=——A+"117
n

Xp =Ty + Ban,

depending on B’s parameters (o, 11, p), a problem of independent interest in linear algebra.

In the case where no positive equilibrium exists, we provide sufficient conditions for
the existence of a unique stable equilibrium (with vanishing components), and following
Bunin [Bunl7], present a heuristics estimating the number of positive components of the
equilibrium and their distribution.

The existence of positive equilibria for large Lotka-Volterra systems has been raised
in Dougoud et al. [DVR"18], and addressed in various contexts by Najim et al. [AN21,
BN21].

Such LV systems are widely used in mathematical biology to model populations with
interactions, and the existence of a positive equilibrium known as a feasible equilibrium
corresponds to the survival of all the species x; within the system.
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2.1 Introduction

2.1.1 Lotka-Volterra system of coupled differential equations.

Lotka-Volterra (LV) systems are widely used in mathematical biology, ecology, chemistry
to model populations with interactions or chemical reactions [Gop84, HS98, KKO08, Her90].
In the context of theoretical ecology (that we shall adopt hereafter without loss of general-
ity), consider a given foodweb and denote by x!, = (2x(t))1<x<n the vector of abundances’
of the various species at time ¢ > 0. In a LV system, the abundances are connected via
the following coupled equations:

dt

= {Ek(t) (Tk — {Ek(t) + zn: Bkgfﬂg(t)) for ke [n] = {1, s ,n}, (2.1)

(=1

where B,, = (Byy) stands for the interaction matrix, and 7 stands for the intrinsic growth
of species k. Notice that standard results yield that if the initial condition ¥ = @,,|;— is
componentwise positive, then ! remains positive for every ¢ > 0.

At the equilibrium %ﬂ = 0, the abundance vector x, = (ask)ke[n] is solution of the
system:
T, <7"k — x5 + Z Bkm> =0 for z;>0 and keln]. (2.2)
Le[n]

An important question, which motivated recent developments [DVR*18, BN21], is the
existence of a feasible solution x,, to (2.2), that is a solution where all the x}’s are positive,
corresponding to a scenario where no species disappears. Notice that in this latter case,
the system (2.2) takes the much simpler form:

Xy =Ty + ann 5 r, = (Tk)ke[n] .

In this article, we will investigate the existence of an equilibrium, potentially feasible, for a
large foodweb (n — o) whenever the interaction matrix B,, is random. In various models
of interest for B,, Random Matrix Theory (RMT) provides an accurate description of
the asymptotic properties of a large random matrix (its spectrum, spectral norm, etc.).
We will leverage on RMT to infer the existence of an equilibrium in the case where B,
follows a random elliptic model, to be described hereafter.

To simplify the analysis, we will mostly consider the case where r,, = 1,,, except for
the stability where this extra assumption is not needed.

2.1.2 Random elliptic model for the interaction matrix

In the spirit of May?, we model the interaction matrix B, as a non-centered random
matrix with pairwise correlated entries:

A
no Pyl (2.3)

:ozn\/ﬁ n

LA species abundance is a quantity proportional to the number of individuals for this species.
2Beware that May did not consider LV systems but rather used a random matrix model for the
Jacobian at equilibrium of a generic system of coupled differential equations.

B,
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where A, = (A;j)ije[n) is @ random matrix satisfying the two conditions (i) (A;;,7 < j)
are standard Gaussian N (0,1) independent and identically distributed (i.i.d.) random
variables (ii) for ¢ < j the vector (A;;, A;;) is a standard bivariate Gaussian vector,
independent from the remaining random variables, with covariance cov(4;;, A;;) = p with
|p| < 1. The sequence of positive numbers (a,) is either fixed or goes to infinity. Parameter
 is a fixed real number. As a consequence, the Gaussian entries of the interaction matrix
B,, admit the following moments:

p

1 1 .
E(BZ]) = g, Var(Bij) = — COV(BU7 B]Z) = % (Z #* j) .

a’n’
Such a matrix model is often called a random elliptic model for |p| < 1 since the spectrum
of matrix A, /4/n is asymptotically an ellipse, see Fig.2.1.1, in the sense that the empirical
distribution of the eigenvalues of A, /i/n converges towards the uniform distribution on

the ellipsoid , ,
Epz{ze(C, Re*(2) Im?(z) <1}.
(1+p)? (1-p)
Originally introduced by Girko [Gir86], this model has since been widely studied [Gir95,
Naul2, NO15, OR14, AK22] from a mathematical perspective.

From a theoretical ecology viewpoint, the random elliptic model is interesting [AT12,
Bunl17], [Ros13, Section 18.3] for its flexibility as it introduces a correlation parameter
between the pairwise entries (A;;, Aj;;). Positive correlations will be used to model mutu-
alistic interactions while negative ones will model predator/prey interactions. This model
interpolates between the Wigner model (p = 1), the full i.i.d. model (p = 0 with Gaussian
entries) and the antisymetric model (p = —1).

=
I
I
ee

0s

! .
oF o 3o
.

=

0o 00

Imaginary axis

-0.5

-15 -10 -05 00 05 10 15 -15 -10 -05 00 05 10 15 -15 -10 -05 00 05 10 15
Real axis

(a) p=0 (b) p=-0.5 (¢) p=05

Figure 2.1.1: Spectrum of non-Hermitian matrix B, (n = 500) in the centered case (u
= 0) with distinct parameter p € {—0.5, 0, 0.5}. The solid line represents the ellipse
2

{z=2+1yeC, ﬁ + (137/))2 = 1} which is the boundary of the support of the limiting

spectral distribution for an elliptic model.

The spectral norms of A, and 1,1 satisfy

A, 1

“Zl=0(1) and |-1,1)|=1
' va| = oW notn
hence both the random and deterministic parts of the interaction matrix B,, may have an
impact as n — oo.
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2.1.3 Presentation of the main results

In this article, we address the following issues.

Feasibility.

We first describe the conditions over parameters (p, o, p) for which system (2.2) admits a
unique feasible equilibrium. We prove that feasibility is reached whenever ay, > /2 log(n)
and p < 1, and that there is no feasibility otherwise, see Theorem 2.1. Notice that the
correlation parameter p has no influence since the phase transition threshold is the same
as in the i.i.d. case [BN21]: the induced correlations between components x;’s of solution
x, are too weak. Pushing this remark further, we prove that the same phase transition
holds if we consider a covariance profile (p;;, ¢ < j) where p;; = cov(A;;, Aj;) instead of a
fixed covariance parameter p.

In [BN21], Bizeul and Najim established the conditions for feasibility in the centered
(1 = 0) model with i.i.d interactions (A4;;). In [AN21], Akjouj and Najim studied a sparse
model of interactions where only d,, > log(n) interactions are non-null in each row and
column of A,,. The study of the feasibility for an elliptic model completes this picture.

Stability without feasibility.

If « is fixed, Dougoud et al. [DVR™ 18] showed that no feasible solution can arise. Under
this assumption, we establish in Proposition 2.3 sufficient conditions for the existence
of a unique stable equilibrium to system (2.2). In this case, some species will vanish
(some of the components z;’s of solution x,, are equal to zero). In order to proceed we
combine results by Takeuchi [Tak96] on stability of LV systems with Random Matrix
Theory (RMT) results.

Estimating the number of surviving species.

We finally conclude with an important question: given a set of parameters (p, o, ) which
yields to a unique stable equilibrium, is it possible to estimate the proportion of surviving
species? From a mathematical point of view, this is an open question. At a physical
level of rigor, Bunin [Bunl7] (relying on the cavity method) and Galla [Gall8] (relying on
generating functionals techniques) provide a closed-form system of equations to compute
the proportion of surviving species. We state the open problem, recall Bunin’s and Galla’s
equations and provide simulations.

In [CMN22], equations and simulations are provided in the simpler case where p = 0,
together with heuristics supporting these equations.

Organisation of the article

Feasibility and stability results together with the open question on the estimation of the
number of surviving species are presented in Section 2.2. Section 2.3 is devoted to the
proof of the feasibility result, Theorem 2.1. Proof of the stability result, Proposition 2.3,
is provided in Section 2.4. Simulations were performed in Python. All the figures and the
code are available on Github [Cle22b].
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Notations

If Ais a matrix AT stands for its transpose. We denote by log(x) the natural logarithm.
If & = (2;)ie[n is a vector, we denote by & > 0 (resp. « > 0) the componentwise positivity
(resp. non-negativity), that is the fact that z; > 0 (resp. x; = 0) for every i € [n]. We
denote by “*> (resp. 2») almost sure convergence (resp. convergence in probability).

2.2 Main results: Feasibility, stability and surviving
species

2.2.1 Feasibility

To simplify the analysis, we consider the case where 1, = 1 (k € [n]). Hence, the LV
system takes the following form in the sequel:

dzel) _ ) (1 — o) + Y Bkm@)) for ke [n]. (24)
dt te[n]

In the next theorem, we describe the conditions to reach a feasible equilibrium. We either
assume that matrix B is given by the elliptic model or has a more general covariance
profile.

Theorem 2.1 (Feasibility for the elliptic model). Assume that matriz B, is given by the
elliptic model (2.3), or that B, has a covariance profile, i.e.

A,
+ P (2.5)

apy/m n

where A, is an x n matriz with entries (A;;,i < j) i.i.d. N(0,1) and where (A;;, Aj;) is
a standard bivariate gaussian vector for i < j, independent from the remaining random
variables, with covariance COV(/L'j, /Nlji) = pg;l), where (pgl); i <g;n=1)is a collection of
deterministic real numbers in [—1,1].

Let ay, —® and denote by o = /2logn. If i # 1 then the following equation

B, =

x,=1,+ B,x,
almost surely admits a unique solution T, = (T )refn]-

1. (feasibility) If n < 1 and there exists € > 0 such that, for n large enough, o, =
(14 ¢e)al then
P{minxk > 0} — 1.

ke[n] n—o

2. If w> 1 or there exists € > 0 such that, for n large enough, o, < (1 —¢)as then

P{minxk > O} — 0.
ke[n]

n—a0
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— p=0

08| —- Threshold ’/ 08

P(Feasibility)
P(Feasibility)

1
|
1 VT 2 1
K

(a) Gaussian entries, (b) Uniform [—+/3,+/3] entries.

Figure 2.2.1: Transition towards feasibility for the elliptic model (2.3) on the left subfigure
(Gaussian entries), and for a model with uniform entries and same pairwise dependence
structure on the right one. For each x on the z-axis, we simulate 1000 matrices B, of size
n = 1000, compute the solution @, of Theorem 2.1 at the scaling a, (k) = k4/log(n)
and then plot the proportion of feasible solutions obtained for the 1000 simulations.
Each curve represents the proportion of feasible solutions @, for three distinct values
pe {05, 0, 0.5}. The dot-dashed vertical line corresponds to x = 4/2 i.e. the critical

scaling o = 4/2log(n).

Proof of Theorem 2.1 is established in Section 2.3 under the assumption that B,
follows the elliptic model. The adaptations needed to cover the covariance profile case are
provided in Appendix 2.A.

Remark 2.1. If one considers the system (2.1) instead of (2.4), that is r,, # 1,, the sharp
phase transition at o = 4/2log(n) does not hold any more. The transition takes place
on a wider region for the «,’s (transition buffer) which upper and lower bounds depend

on r,’s characteristics: Absence of feasibility® if «,, « % 2log(n) and feasibility if

ap > Tiﬁi?i)«/Qlog(n) where

or(n) = |r/vn|, rmx(n) = m[a>]< ri(n), Tmn(n) = m[ir]l ri(n),
€N €N

with the assumption that 0 < k£ < Tyin(n) < Tmax(n) < K < 00, This can be established
following the general lines of the proof (Normal Comparison Lemma - Th. 2.4, repre-

sentation lemma - Lemma 2.9, etc.) and adapting the arguments from [BN21, Section
4.2].

Remark 2.2 (Structural stability). In the context of the previous remark, notice that if
oy > % 2log(n), a small change in r,, say v, — r, + 8,, such that oy, (r, + 6,)
remains to close to oy, (7,) will not affect the feasibility (and stability, see for instance
Remark 2.4). The fixed point is therefore structurally stable in the sense of Grilli et al.

[GAST17].
Remark 2.3 (Non-Gaussian random variables). A natural question is whether Theorem
2.1 remains true if B,’s entries are no longer Gaussian. Simulations with non-Gaussian

pairwise correlated random variables support this idea, see Fig. 2.2.1b where uniform
(centered with variance one) entries are used. However an effective proof will require to

3Here a,, < b, means that there exists € > 0 such that a,, < (1 — )by, eventually.
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overcome some of the arguments based on the Gaussiannity of the entries, such as the
Normal Comparison Lemma (Theorem 2.4) and a representation lemma (Lemma 2.9).
We do not pursue in this direction here.

2.2.2 No feasibility but a unique stable equilibrium.

Aside from the question of feasibility arises the question of stability: for a complex system,
how likely a perturbation of the solution x,, at equilibrium will return to the equilibrium?
Gardner and Ashby [GA70] considered stability issues of complex systems connected at
random. Based on the circular law for large random matrices with i.i.d. entries, May
[May72]| provided a complexity/stability criterion and motivated the systematic use of
large random matrix theory in the study of foodwebs, see for instance Allesina et al.
[AT'15]. Recently, Stone [Sto18] and Gibbs et al. [GGRA18] revisited the relation between
feasibility and stability.
For a generic LV system

dyr(t)
dt

= yk(re + (Cy)i), ke n], (2.6)

Takeuchi and Adachi provide a criterion for the existence of a unique equilibrium y* and
the global stability of LV systems, see Theorem 3.2.1 in [Tak96].

Theorem 2.2 (Takeuchi and Adachi 1980). If there exists a positive diagonal matriz A
such that AC + CTA is negative definite, there is a unique non-negative equilibrium y*
to (2.6), which is globally stable:

Y(0) =y "
Yy, > 0, , t) —y~.
Yo {y(t) satisfies (2.6) y(®) o Y
Combining this result (setting I — B = —C') with results from Random Matrix Theory,
we can guarantee the existence of a globally stable equilibrium a* of (2.1) for a wide range
of parameters (p, «, ). Denote by

A= {(p,a,,u)e (—1,1) x (0,0) x R,

a>/2(1+p), /L<;+; 1—2(112Lp)} (2.7)

«
the set of admissible parameters.

Proposition 2.3. Let A, be a n x n matriz with entries (/Zlij,z' < j) ii.d., centered
with unit variance, with a fourth finite moment and where (Aij, zzlﬂ) is a standard bivari-
ate vector for i < j, independent from the remaining random variables, with covariance
cov(Aij, Aj;) = p. Denote by

N

A,
+E1,17 . (2.8)

:a\/ﬁ n

Consider the system (2.1) and let (p, a, p) € A, then almost surely, matric

B,

(I -By)+({—B,)"
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Figure 2.2.2: Representation of the set of admissible parameters A by a heat map. The
set A given by (2.7) yields the existence of a unique (random) globally stable equilibrium
x*. The z-axis corresponds to p, the y-axis to a and the intensity of the color u.

is eventually positive definite: with probability one, for a given realization w, there exists
N(w) such that for n = N(w), (I — B¥) + (I — B%)" is positive definite. In particular,
there exists a unique globally stable non-negative equilibrium x*.

Proof of Proposition 2.3 is provided in Section 2.4.

Remark 2.4. Notice that this result applies to a general vector 7, and to non-Gaussian
random variables with a finite fourth moment. In particular, the assumption does not
involve vector r, and a small change r, — r, + dr, will not affect the stability of the
system. The finite fourth moment assumption is necessary to control A\yax (B, + B)).

Abundances (x;)
Abundances (x;)

o 2 4 8 10 1z 0 2 4 & 8 10 2

[
Time (t) Time (t)

(a) Initial conditions drawn in (0, 2), (b) Initial conditions equal to 1.

Figure 2.2.3: Representation of the dynamics of a ten-species system. For a fixed matrix
of interactions Bjg with parameters (p = 0, = 2,4 = 0) € A, we consider two distinct
initial conditions. Simulations show that the abundances converge in both cases toward
the unique globally stable equilibrium z* predicted by Proposition 2.3. Notice that since
a < 4/21og(10) ~ 2.14, we witness vanishing species.
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2.2.3 Estimating the number of surviving species: Towards Bunin
and Galla’s equations.

After giving conditions for the realization of a feasible equilibrium and investigating the
existence and uniqueness of a stable sub-population (i.e some species vanish), we address
the question of estimating the proportion of surviving species as a function of the model
parameters (p, a, ().

To our knowledge, this question has not received yet an answer at a mathematical
level of rigor and remains open. However theoretical physicists/ecologists provided a
solution to this problem supported by simulations. Tools from physics to study population
dynamics in the context of Lotka-Volterra equations were first introduced by Opper et al.
[DO89, OD92]. In 2017, Bunin [Bunl7| precisely answers the question of estimating the
proportion of surviving species for the model under investigation (non-centered elliptic
model B). He uses the dynamical cavity method (a review of which can be found in
[BA17]). The key concept consists of assuming that a unique fixed point exists and
introducing a new species with new interactions in the existing system. Provided the
coherence of the assumption, an analogy between the properties of the solutions with n
and n + 1 species yields closed-form equations that we present hereafter.

Notice that recently, similar equations were obtained by Galla [Gall8] using generating
functional techniques.

The system of equations presented hereafter is a version of Bunin’s equations without
the carrying capacity. It is similar to the equations obtained by the replicator equations
[DO89, ODI2]. Notice that we mention but do not discuss the many implicit assumptions
yielding the system of equations (see Appendix 2.B for more details on the system of
equations (2.10)-(2.13)).

Let (p,a, ) € A and * given by Proposition 2.3. We first introduce the following
quantities:

_ Card{z} > 0,i € [n]}
n

¢

Z(x;‘)? . (2.9)

S|

I&
, (x) = 52%‘ , (&?) =
=1
Denote by Z ~ N(0,1) and set

A= (1+@ ) ——

VS

The following system of 4 equations has 4 unknowns, among which the (supposedly ex-
isting) asymptotic limits of ¢, {(x),(x?), denoted (by abuse of notations) by the same
notations. The fourth unknown v is a parameter essentially related to the dynamical
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cavity method. This system is supposed to admit a unique solution:

1 .2
5 = \/%JA e ds (2.10)
@ - *m (<1+<w>m P —A)) (2.11)
@ = (15) (0r@nr 20 @nY ez - )
v > E(Z%Z > A)> (2.12)

0= o _1/”) 213

The theoretical solutions of system (2.10)-(2.13) are compared with the empirical values

obtained by Monte-Carlo experiments. As shown in Fig. 2.2.4, the matching is remark-
able.

ies (¢)

x2)

Vi

Proportion of the surviving speci
Root mean square

7 75 7 72 7 75 7 E) % ) 7% %
Interaction strength (a) Interaction strength () Interaction strength ()

(a) ¢ versus «, (b) {x) versus «, (c) (2?) versus a.

Figure 2.2.4: Theoretical values of ¢, (x) and {(x*) (solid line) obtained by solving the
system (2.10)-(2.13) given the parameters (u = 0.2, p = 0.5), compared to the empirical
values (dots) obtained by Monte-Carlo simulations (size of matrix n = 500, number of
random samples P = 200). The x-axis corresponds to the interaction strength c.

The impact of the correlation p on the proportion of the surviving species is shown in
Figure 2.2.5.

Remark 2.5. From a theoretical ecology point of view, notice that a negative correlation
(prey-predator) seems to slow down the decline of the surviving species, whereas a positive
correlation (mutualism and competition) reverses the trend. These types of results are
similar to Allesina and Tang [AT12] where they notice that prey-predator interactions
seem to stabilize the system.

2.3 Feasibility: Proof of Theorem 2.1

We assume that matrix B, is given by (2.3) (elliptic model). The case where matrix B,

is given by (2.5) (covariance profile model) needs extra arguments which are provided in
Appendix 2.A.
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Figure 2.2.5: Effect of the correlation p and the interaction strength o on the proportion
of surviving species ¢. Each curve is plotted by resolving the system (2.10)-(2.13) in the
centered case p = 0.

2.3.1 Preliminary results
Extreme Value Theory (EVT) and the Normal Comparison Lemma

Let (Zy),oy be a sequence of 1.i.d. A(0,1) random variables and denote:

1
- , an =+/2logn, B =a;——1log(4mlogn) . 2.14
7T, — ming Zi n=2logn ., 27 lo8(4mlogn) (2.14)

{Mn = IMaXge[n] Zy,
Let G(x) = e=® " be the Gumbel cumulative distribution function, then classical EVT
results (see for instance [LLR83, Theorem 1.5.3]) yield that for every = € R,

P{a}(My = B7) < o} —— G(z), P{ai(¥,+8)) > —of —>G().  (215)
We consider the following dependent framework: Let (2, )kefn be a Gaussian vector
whose components are N (0, 1) with covariance

COV (Zpmi Zon) = g, ol <1, k(.

We are interested in the behaviour of M,, = maxye[n] Zk,n and Mn = MiNkefn) Zk,n , and
shall prove the counterpart of (2.15) with the help of the Normal Comparison Lemma
(NCL):

Theorem 2.4 (Theorem 4.2.1, [LLR83]). Suppose that (&, i € [n]) is a gaussian vec-
tor where the &;’s are standard normal variables, with covariance matriz A' = (Azlj)
Similarly, let (n;, i € [n]) be a gaussian vector where the n;’s are standard normal, with
covariance matriz A° = (AY). Denote by p;; = max {|AY],|AL]} and let (u;, i € [n]) be
real numbers. Then:

|P{& <wuy, jen]} — P{n <uy, je[n]}

1 172 3(uf + )
<o 2 MGG =ph) e (—w’ . (2.16)

1<i<j<n
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Corollary 2.5. Recall the definition of (Z g)ke M, and ./\/l above, then

Plak(M, — B) <o} ——> G(2), P{ai(M,+5) = -2} —G().  (217)

n—o0 n—o0

Proof. We apply the NCL to (Zi)ke[n) and (Zi),. keln] Let p;j = % and u,(7) = % + B},
then

[P{ag, (M, = f;) < w} = Plog,(Mn = ;) < 2}
= [P{Z; < un(2), jenl} —P{Z;n <un(z), jen]} ,

),
1 n(n—1 2\ 72 2 2
Qﬂn(nz )‘Z’ (1 — 7’22) exp (— 1u"(]|:3|> < Knexp (—1;"@1) .
+ 1 +1

Now eventually u, (z) = (1 + o(1)) = ko for any £ < 1 and

2 2K%1 (26
s (_un(xg) < nexp <_Hg<”>> _ (&)

1+1 141

~—

This last term goes to zero as n — o for a well-chosen « sufficiently close to one. This
concludes the proof for M,,. The proof for /\/ln can be handled similarly with minor
modifications. O

Random Matrix Theory
Let B, be given by model (2.3).

Lemme 2.6. Let A, an x n matriz with i.i.d. N'(0,1) entries fori < j and (A;j, Aj;) a
standard bivariate Gaussian vector with covariance p fori < j, then the following estimate
holds true: almost surely,

lim sup

el <

Proof. The proof relies on two arguments: the classical estimate of the asymptotic spectral
norm of a Wigner matrix [BS10, Th. 5.1] and the following decomposition of matrix
A,/+/n as linear combination of Hermitian Wigner matrices:

A, A+ A [i(A, - A])]

V2(WVT+p+V1=p) < 2v2.

N 2ﬁ”—i 2\/5” : (i = —1). (2.18)
i(An—AT
Notice that both matrices W,! = gj/é" and W2 = [ (A2 \fA 2] are Wigner matrices, with

off-diagonal variances (i < j):

lAn—FAg] 1+p li(An_ATTL)} 1—p
var | | ——2 = — and  var| | ——"™~ =—.
2 |, 2 2, 2

Hence,
1+ 1 -
< lim sup [ W, | + lim sup [W,7] = 2 (\/ 2 . +\/ 2 p)

An elementary analysis yields v2(y/T+ p + /1= p) < 2v2 for |p| < 1. O

lim sup
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2.3.2 Proof of Theorem 2.1 - the centered case ;=0
Some preparation and strategy of proof

We first prove Theorem 2.1 in the case where ;1 = 0 and focus on the equation
A

x + o \/ﬁw (2.19)

By Lemma 2.6, limsup,, |A,/+/n| is a.s. bounded hence
An

/T
As a consequence, the resolvent Q,, = (I, — An/(any/n)) " is a.s. eventually well-defined
and the solution @, = (zg)ke) of (2.19) writes «, = Q,1,. Denote by e, the kth

canonical vector of R". The following representation holds true (we shall often drop index
n in the following):

a.s. O

n—o0

T T
Tp, e, x=¢e,Ql=> e < > 1,
= /1

1 [ A 1 [ A\

Denote by
A | AN

Notice that the Zj,,’s are standard A (0, 1) however they are not independent as
1
COV(Zk,n, Zg,n) = *COV(AM, Agk) = B , k#7.
n n
Introducing M,, = maxge[,] Z,n and ]\7” = MiNge[n] Zk,n, We proved in Corollary 2.5 that

P{a*(M, — B) <z} | P{a;(m + B = —x} s Gla). (2.22)

n—a0

In the sequel, we often drop n and simply write Ry(A) instead of Ry, (A). Following the
same strategy as in [BN21], we notice that (2.20) yields

af

minke[n] T < 1+ oTIHM + 071% MaXke[n] Rk<A) ’

{ minke[n] T, = 1+ i]\\/f—l— 1 minke[n] Rk(A)

which we can rewrite

. VAT % i n1 Ri(A
min xy, 214—0‘4‘(726" — By Mkeln] (A i )> ,

’{IE[TL] Qn Ay (7Y a,"{an
* minger,1 R (A)
= 1+ (1 op(1) + M B

where we have used the fact that M%f” =o(1), cf. (2.22). Similarly, we have:

mane[n] Rk (A) )

ooy

*

minz, < 1+ In (—1 + op(1) +
ke[n] O,

(2.23)

The proof in the centered case follows then from the following lemma:
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Lemme 2.7. Let Ry, ,(A) be defined as in (2.21) and recall that o,, —— +00, then:

n—+0o0

maXpe[n] Rrn(4) » 0 and mingem) Ren(4)  p

m/210gn n— m/ZIOgn n—

The remaining of the section is devoted to the proof of Lemma 2.7.

0.

Lipschitziannity and Gaussian concentration

We first introduce a truncated version of Ry, (A). Let n € (0,1) and ¢ : R" — [0,1] a
smooth function satisfying:

@@):{1 if 2 € [0,2v/2 + 1 2.2

0 ifex=4 ’

decreasing from 1 to 0 gradually as = goes from 2v/2 + 7 to 4. Let

-~ A
Rin(A) = ¢ Ry n(A) where ) ( —ZL ) . (2.25)

Notice that Ek(A) differs from Ry (A) if ¢, < 1 which happens with vanishing probability
as P{p, <1} =P {sn > 2¢/2 + 77} — 0 by Lemma 2.6. The following lemma is a first

step towards Gaussian concentration.

Lemme 2.8. Let Ry, defined by (2.25) and M an n x n matriz. Then the function

e - (5 (-2

is K-Lipschitz, i.e.

By(M) = Ry(N)| < K |M - NI, (2.26)
where M, N are n x n matrices, |M||r = /3, |Mi;|* is the Frobenius norm and K a
constant independent from k and n.

The second step is to notice that Ry(A) (where A has Gaussian entries but with off-
diagonal pairwise correlations) can be in fact expressed as a Lipschitz function of i.i.d.
N(0,1) entries.

Lemme 2.9. Consider the linear function I' : R™*™ — R™ " defined by

Iii(X) e X, + i<,
F“(X) = X” and ] I g ( )
Lji(X) = /552 X55 — /52
Then
1. We have |I'(X)|r < K,|X|r where K, = 24/1 + |p| hence I" is K,-Lipschitz.

2. If matriz X, = (X;;) has i.i.d. N(0,1) entries, then A, = I'(X,,) has i.i.d. N(0,1)
entries on and above the diagonal (i < j) and each vector (A;;, Aj;) is a standard
bivariate Gaussian vector with covariance p for i < j.
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The proof is straightforward and is thus omitted.
A consequence of this lemma is that Ry(A) = Ry (I'(X)) is K x K,-Lipschitz. Applying
Tsirelson-Tbragimov-Sudakov inequality [BLM13, Theorem 5.5] finally yields:

Proposition 2.10. Let K the Lipschitz constant of Lemma 2.8 and K, = 2+/1 + |p|.
Then N N
E max (7(4) ~ ERi(4)) < 2K, K+/logn.
c(n
Details of the proof are similar to those in [BN21] and are thus omitted.

Remark 2.6. Notice that ¢, <1 and that ¢, = 0if |A/y/n| = 4. In particular,

1

on 1 —-4a;,

A
—| <
\/ﬁH !

—1
for n large enough. For the latter estimate, write Q) = (] — aﬁ/ﬁ) , Q7'Q = I and

Q=1+ T%Q’ then apply the triangular inequality.

Proposition 2.11. The following estimate ER), (An) = O(1) holds true, uniformly for
ke [n].

Proof. We shall prove that the variables R have a common distribution for k e [n], which
in particular implies that

~ ~ ~ 1 ~
ERy =ER;, Vkie[n] and ER,=- Y ER;. (2.27)
n

Once this fact is established, the proof is straightforward:

Z ER; ‘ —Ep,1" (\‘;)2@

where the last equality follows from the arguments developed in Remark 2.6.
Let us now establish (2.27).
Denote by A, the matrix associated to the permutation o : [n] — [n] and defined by

A, = {1 ifi = o(j)

0 else

~ A
ER| - Eon |—=| Q] = 0(1),

Notice in particular that A,e; = ey, A;Ar = A, for 0,7 two permutations and
A,-1 = Al. Denote by (ij) the transp051t10n swapping 7 and Ji Le. (1j)i =7, (1j)j =i
and (ij)¢ = ¢ otherwise. We consider A=A i) AAzij), that is A is obtained by swapping
A’s 1th and jth column, then the ¢th and jth row. Observe that A and A have the same
distribution and so is the case for Ry(A) and Ry, (A).

We have AZ;) = I,,, implying that Ak = A i) AFA(ij) and then

k
. 1 /AN
Ri(A) = el ) &k > () 1 = eAg)), Py (\/ﬁ> Apupl

k=2 k=2

= TZ&H()kl = R;(A).

k=2

110



Chapter 2. Equilibrium in a large Lotka-Volterra system with pairwise correlated interactions

This proves that R;(A), Ri(ﬁ),Rj(A) have the same law, hence the same expectation.
Eq.(2.27) is established, which concludes the proof. H

We are now in position to prove Lemma 2.7.

~ ~

Proof of lemma 2.7. Recall that ER,(A) = ER,. Since maxXpe[n) Rk(A) — Ri(A) = 0,
Markov inequality yields:

p ) MKkl Ri(A) — Ry(A) .
any/2logn -
E (maxke[n] By (A) — Eék(A)>
capy/2logn

eanr/2logn ’
V2K x K,

EQy,

I

<

9

where the last inequality follows from Proposition 2.10.
This implies that

~ ~

mane[n] Rk (A) - R1 (A) P

0.
any/2logn n—

It remains to prove that

Rl (A) P 0 and mane[n] Rk (A) P 0
an\/QIOgn n—a0 anw/Zlogn n—00 ’
The arguments are similar to those in [BN21, Section 2.3]. Proof of the second assertion
of Lemma 2.7 can be done similarly. This concludes the proof. O

2.3.3 Proof of Theorem 2.1 - the non centered case.

Recall that a,, — o0 as n — . Denote by u,, = ﬁln and notice that the spectrum of
I,—pu,u, is {1—pu, 1}, the eigenvalue 1 with multiplicity n—1. Notice in particular that if
i # 1, then I —puu’ is invertible. So is (eventually) I ——2~ —puu' as |A/(a,/n)| — 0

ana/n
a.s. We shall also rely on the fact that |Q — I| — 0 as. As a consequence,

uw' Qu 225 1.
n—o0

Denote by & and @ the vectors solutions of the equations:

A
/T

The following representations hold:

Aaz
apy/n

:E:1+B:i::1+( +uuuT):E and x=1+

A —1
Z=(I-B)"'1 and m:<l_an\/ﬁ) 1.
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Recall that Q = (I — A/(a4/n))”". By rank one perturbation identity (Woodbury), we
have:

1 Quu'Q
(I-B)" _Q+71—WTQU
and
. Q11— pu'Qu) + pQuu'Ql x
To= 1—puTQu 11— puQu’

If p < 1and a,, = (1+¢)a then eventually, & has positive components. This is no longer
the case if u > 1 or a,, < (1 — €)at. This concludes the proof of Theorem 2.1.

2.4 Stability: Proof of Proposition 2.3

Proof. We have

A+ AT 2
J—B+I—BT—21—(B+BT)—2I—( * +“11T>.
ay/n n

We will rely on the following condition:
21 — (B + B") is positive definite < Apu(B+B') <2. (2.28)

Notice that (/vl + AT) /o is a symmetric matrix with independent centered entries with
variance 2(1+ p)/a?) above the diagonal (the diagonal entries have a different distribution
from the off-diagonal entries, with no asymptotic effect). Notice that by assumption,
these entries have a finite fourth moment. In this case, it is well known that the largest
eigenvalue of the normalized matrix (or equivalently its spectral norm since the matrix

is symmetric) almost surely converges to the right edge of the support of the semi-circle
law (see [BS10, Theorem 5.2]):

A+ AT 24/2(1
Amax< - ) (Ltp) (2.29)
ay/n n—w a

Suppose that (p, «, ) € A. Notice that in this case,

1 1 1 1 1
\/Tp < _ < -4+ - 1_M
av/2 2 2 2 o?

We consider three subcases
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In the centered case (i), condition (2.28) asymptotically occurs whenever av > 4/2(1 + p).

Before studying subcases (ii) and (iii), we recall a result on small rank perturbations
of large random matrices.

Notice that the trend matrix P = 2—“llT admits a unique non zero eigenvalue 2.

Denote by H = AJ:/Af We are concerned with the top eigenvalue of the symmetric matrix
H + P. Based on a result by Capitaine et al. [CDMF09, Theorem 2.1], we have:

2+ L2 if > Lt

a.s V2a
)\max<H + P) n—00 { 2 2(1+p)
————— else.
Consider now subcase (ii), then Ay (H + P) —= %(Hp), which is strictly lower than

n—o0

2 since (p, o, 1) € A. Hence Apax(H + P) is eventually strictly lower than 2 in this case.
We finally consider subcase (iii). In this case,

1+p

Amax(H + P) %55 2 .
(H+P) > 2+ o

We shall prove that 2u + ;—5 < 2 or equivalently
202 1% —20°u+1+p<0. (2.30)

An elementary study of the polynomial Q(X) = 2a2X? — 202X + 1 + p yields that Q’s
discriminant is positive if @ > 4/2(1 + p) and ’s roots are given by

1_2(1+p).

1
Qut) =0 = p= t3 o2

N | —

o2 a2
fulfilled for u € ( - \/5 ) > , which is precisely subcase (iii). Hence a.s. limsup,,_, ., Amax(H+

Also remark that Q ( X122 ) < 0, so that Y™*2 ¢ (4=, u*). In particular condition (2.30) is

P) < 2. We can then rely on Theorem 2.2 to conclude.
[l
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Appendix

2.A Proof of Theorem 2.1: adaptations to the case
of a covariance profile

In this section, we provide the arguments to prove Theorem 2.1 in the case where matrix
B follows the model (2.5), i.e.

A,
B + AT

Cap/n o n
where A,’s entries are ii.d. A(0,1) on and above the diagonal (i < j), and (Aj;;, A;;)
is a standard bivariate Gaussian vector (i < j) with covariance cov(A,;, A;;) = pi;, and
independent from the remaining random variables.
There are essentially 3 issues to resolve, to fully adapt the proof developed in Section
2.3 to the covariance profile case:

1. The decomposition (2.18) yields % = W}l + ¢W?2 where W' W? are Hermitian
matrices with
1+ pi

L = pi
2n '

2n

Since W', W2 are no longer Wigner matrices, but rather matrices with a variance
profile, an extra argument is needed to obtain an almost-sure upper bound for
lim sup,, [W}| + limsup,, [W?].

var ([W,];;) = and  var ([W2];;) =

2. The Lipschitz property for ﬁkn(ﬁn) Essentially, we need the counterpart of Lemma
2.9 to the context of a covariance profile.

3. The control of the term E Ry, ,(A).

2.A.1 Proof of issue 1: Control of the spectral norm of a Her-
mitian matrix with a variance profile

Applying Latala’s theorem [Lat05], we easily show that
E|W,|+E[W:]| <C

where C' is a constant independent from n.
Now write

T, 0X, [1+ pij
W’r} = 7 Where Tn = (TZ]) s TZ] = Tj7
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matrix X,, = (X;;) is a Wigner matrix with i.i.d. A(0,1) entries on and above the
diagonal, and o stands for the Hadamard product, i.e. T, 0 X,, = (1;;X;;). Notice that
/nW'is 1-Lipschitz with respect to the Frobenius norm

| X llevon = | 12X -
\/ G

Hence by Gaussian concentration, we have

P{|Val W] — VAEW| > 6} < 2¢%
Taking § = £4/n, we obtain

7L82

P{||Wa] —E[W,[] > e} <
The same holds for W72, hence the upper control:
limsup (W, |+ [W7]) < limsup (E|[W,|+E[W?]) < C

almost surely. It remains to replace the truncation function ¢ in (2.24) by the smooth

function
1 ifz<C+n,
() = !
0 else.

to proceed.

2.A.2 Proof of issue 2: Iék(fl) is a Lipschitz function of Gaussian
i.i.d. random variables

It suffices to replace function I' in Lemma 2.9 by
f\ LR, RO

where

G(X) = N/ B X+ [ (i< )
() =/ Ex, - 1%X (i< j) -

and to modify accordingly the Lipschitz constant by K=2/2>2/1+ max;; | pi;l-

2.A.3 Proof of issue 3: Magnitude of Eﬁkn(fln)

To address this issue, we provide a quick argument which relies on Isserlis’ theorem also
called Wick’s formula (see [Jan97, Th. 1.28]), highly dependent on the Gaussiannity of
the entries.

Theorem 2.12 (Isserlis Theorem). if (Xi,---,X,) is a centered normal vector, then
E(X1 Xz X,) = > [ ] B(X:X;) (2.31)
I {ij}ell

where the sum is over all the partitions I1 of [n] into pairs {i, j}, and the product over all
the pairs contained in II.
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Recall that:

ER,(A ZE[

=2

()]-gz -

-
=2 ai’n2 =2 O/ 2”5

Consider a matrix A,, where the pairwise covariance cov(A;;, A;;) = 1. Denote by C; =
Ee; A°1. We will show that each quantity |Cy| is bounded by C,. Notice that:

Co= Y E(AyinAui.Ai.,). (2.32)

U101

By Isserlis’ theorem, we have:

‘E(Aimr’iimia Ze,u+1 2 H E 10541 Zklk+1)
II {j,k}ell
2 H E(ZijijJrlZikikJrl) = E (Ziliz o 'Zimﬂ) :
IT {jk}ell

From this, we deduce that |Cy| < Cy, hence |[ER)(A)| < ER,(A). This gives the desired
bound since ERy(A4) = O(1).

2.B Details on the system of equations (2.10)-(2.13)

The system of equations (2.10)-(2.13) is a re-interpretation of the final form of Bunin’s
equations to estimate the proportion of the surviving species. Note that for specific details
on the dynamical cavity method, see Bunin [Bunl17]. First recall the following quantities:

Card{z} > 0,7 € [n]} 1 ¢

e e R RO RS (ol

n o1

and v a parameter essentially related to the dynamical cavity method.
Starting from (2.4), the following change of variables is used

* *
T, Ty,

%22:1 13;( - () ’

and expose nontrivial symmetries of the problem. In particular, this change induces the
study of a new system of equations where the fixed point is precisely those of the replicator
equations. Suppose that the system is at a stable equilibrium point resistant to invasions
i.e. the reintroduction of an extinct species at small abundance, automatically implies its
decay to zero.

To analyze this system, add a new species Ty and study the analogy between the
properties of the solutions with n and n + 1 species. After some computations (see Bunin
[Bunl7]), one remark that if y > 0 the distribution of the new invading species is a
Gaussian variable i.e.

1 N 1 (x?) N
%a—pv[ (<w>+u)+ @ ]Z ., Z~N(0,1).

Vk e [n], Ty =
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Given Ty the abundance of the new species and using the argument of the resistance of
invasion, Bunin finally obtain the expression of abundance of the new species:

To = max(0, 7y ) .

By an identification argument, when the new species is added to the system, it follow
the same distribution as the other. We may generalized the distribution to all the species
and after a revision of the change of variables, we recover an explicit distribution of each
species included in vector of abundances a:

V<a“’2>zk) . Zp ~ N(0,1).

1
Vk € [n], zf = max [0, z;"] = max |0, - oo (1+ (@) pu+

[0}

Notice that the distribution of the vector of abundances x is a truncated normal distri-
bution on 0 (see [CMN22]).

The last step is to find a system of 4 equations, 4 unknowns: v, (x?) and (x) and the
proportion of persistent species ¢. Given A = (1 + (x) pu)a/4/{x?), we obtain equation
(2.10):

6 = Plai > 0),

:]P’<1_1pv (1+<w>u+<;2>2k> >0) :

:P<zk>—<1+<w>u> - ) ,

1 +00
:]P)<Zk > —A) = mJA e 2 dz.

Then equation (2.11):

(z) ~ E(z})
=FE (max [O, xZ*]) ,
= E($Z+1x:+>0) y

— E(}* |2} > 0P} > 0),

=E<1_1pv <1+<$>N+\/§?>Zk |Zk>—A)¢,

a

- ¢ (1+<w>u)+(1¢ ) CR(Z | 2> -A).

1-£ — e
« (e
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And then equation (2.12):

-E (1_1pv<1+<w>u+f2>zk>) [ Ze> -4 o,

2

— ( Vo ) [(1 +{xyp)? +2(1 + (x) p) @E(Zk | Zr > =) + <22>E(Z;? | Zk > —A) |

where

1 +00 2 1 +00 .2
E<le>_A>:2J e 2 zdz E(Z2lz>_A)=f e2 22dz.

™ J_A 27 YN

The last equation (2.13) is intrinsically related to the dynamical cavity method and
can be incorporated in the other three equations by resolving the 2nd order polynomial
of v. Parameter v represents a major “turning point” in the understanding of the system
of equations (2.10)-(2.13) in the elliptic model.

v=¢< ! )
a— pu

A system of four equations and four unknowns is obtained and can be solved numerically
by evaluating the integrals. We refer to Bunin’s article [Bun17] for the uniqueness of the
solution of the system.
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Chapter 3

Impact of a block structure in large
systems of Lotka-Volterra

Abstract

The Lotka-Volterra (LV) system represents a simple, robust and versatile model used
to describe large interacting systems such as food webs or microbiomes. This model
consists of n coupled differential equations linking the abundances of the different species
present in the system. When the number of species becomes very large, the true value of
each interaction is difficult to observe or estimate, therefore the interactions between the
different species can be modeled as random variables in order to understand the system
dynamics. In this paper, we extend the LV model to describe the properties of a multi-
community model. By adding a block structure to the matrix of interactions, we study
the properties (feasibility, existence of an attrition phenomenon within each community)
of distinct communities by adjusting the inter- and intra-community interactions. In
particular, we analyze the properties and dynamics that emerge with two communities of
interacting species. The interplay between the two communities affects their respective
equilibrium and their resistance to small perturbations (stability).
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Introduction

Understanding large ecosystems and the underlying mechanisms that enable high species
diversity is a major challenge in theoretical ecology. Motivated by the seminal work
of May [May72], the emergence of random matrices has been a key mathematical step
to model high dimensional ecosystems. A better understanding of these tools has ex-
panded our understanding of the nature of interactions and food webs to achieve stability
[AT12, TPA14]. The Lotka-Volterra model [Lot25, Vol26] plays a key role in the study of
population dynamics over time. This model has been studied both in ecology and in math-
ematics. The study of the stability of this model has raised much interest [GGRA18] as
well as its feasibility i.e. conditions under which all species persist [BN21, GAS™17, Sto18].

In nature, ecological networks are rather structured and many studies have assessed the
network structures that contribute to the stability of a given community [TF10, AGB*15].
A widespread network structure in nature is the compartmentalization of food webs, also
called modularity. The underlying concept is that the network is structured in the form of
groups of nodes that interact more strongly within their group and more weakly between
groups. A mathematical formulation of modularity has been defined by Newman [New(06].
Subsequently, modularity has been of great importance in ecology [GSSP*10], in complex
networks, see Variano et al. [VMLO04] and Fortunato [Forl0] for a complete review of
community detection (compartmentalization in ecology). May had already mentioned
that a multi-community structure should improve stability [May72], a hypothesis that was
later investigated by Pimm [Pim79]. Although studies show that modularity improves
the persistence (:= non-extinction of the species, generally related to their resistance
to external perturbations) of the species in the dynamical system [SB11]. Grilli et al.
[GRA16] studied the impact of modularity on the stability of the Jacobian of a system,
the so called “community matrix”.

In this article, we consider a block structure network representing the inter- and intra-
community interactions. Each block is identified by its interaction parameters, on the
one hand the strength of the interactions i.e. the standard deviation of the random part
of interactions and on the other hand a mean interaction parameter controlling on aver-
age the type of interactions (mutualism, competitiveness). The idea that the interaction
strength plays a key role in the stability of ecosystems was brought by May [May72].
Rooney et al. [RMGMO6] showed that real food webs are structured such that fast and
slow channels convey stability to food webs. In this paper, we study some properties of
distinct communities in interaction, in particular feasibility (i.e. whether there exists an
equilibrium with all species at non-zero abundances) and the existence of an attrition phe-
nomenon (some species may vanish) within each community. In particular, we analyze
the properties and dynamics that emerge with two communities of interacting species.
The interplay between the two communities affects their respective equilibrium and their
resistance to small perturbations (stability). Finally, we investigate the similarities be-
tween the strength of interactions and the connectance in the Lotka-Volterra model with
respect to the stability-complexity threshold of May [May72].

Model and assumptions. The Lotka-Volterra model is a standard model in ecology
to study the dynamics of a community of species over time. This model describes the
population dynamics of a m-species system. It is defined by a system of n differential
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equations
dx(t
(l;t( ) = xk(t) (Tk - Q.Ik(t) + Z Bkgxg(t)) , (31)
Le[n]
where k£ € [n] = {1,---,n}. The abundance of species k at time ¢ is represented by
zy(t) with ® = (z1,- - ,x,) the vector of abundances. Parameter 6 is the self regulation

coefficient or intra-specific interaction of each species. Parameter r; corresponds to the
growth rate of species k. The coefficient By, represents the impact of species ¢ on species k.
The matrix B, representing the interaction network, is decomposed in a block structure.
This structure differentiates different groups of species in the form of communities that
interact with each other. On the one hand, the diagonal blocks of B correspond to
interactions within each community. Each community has its own strength and type
of interaction. On the other hand, the off-diagonal blocks correspond to the impact of

the communities on each other. Within the framework of two communities, the matrix
B = (Bi¢)nn is defined as

A A
B L 10(473 %711; N l H11 ]_Zl 1%1 ,U12]-Il 125—::2 , (32)
\/ﬁ A1 A2 n Mot 112 1_’[1 ,LLQQ]-IQ 1.'[2

@21 22

where:
o« B =(p1,52), Z?zl B; = 1 is the size by proportion of each of the blocks,

o 7, (resp I,) is a subset of [n] of size |Z;| := Bin (resp |Zs| := Pan) matching the
index of species belonging to Community 1 (resp Community 2) where Z; = [5n]
and Zy = {fin+1,--- ,n},

« 17, is a vector whose entries are 1’s of size g;n.

o A;; is a non hermitian random matrix of size (5;n,f;n) with standard Gaussian
entries i.e. N(0,1).

To standardize the model, we define a matrix associated to the coefficient «a;; of each
block as
o — a1 g2 .

Q21 (2
The associated matrix representing the strength of the interactions, i.e. their standard
deviation, is defined by

1 1

az ag

The diagonal terms represent the interaction strength in each community. The off-
diagonal terms s;; represent the interaction strength of the impact of the community
j on the community ¢. The lower the value of «;;, the stronger the interactions. If «;; is
very large then the interactions are absent. A mean matrix p defined by

[ M1 M2
H (M21 Mzz) ’
is a matrix describing the average value of interaction coefficients. By extension, it also
defines the dominant type of interactions within and among communities. A negative
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value results in interactions to be on average detrimental to the species i.e. competition,
while a positive value means the interactions are on average beneficial to the species i.e.
mutualism.

In Figure 3.0.1, an interaction matrix of a 20-species ecosystem with two communities
of different sizes is represented. The large number of parameters makes it possible to
model many ecological situations. The results of the article can be mostly extended to
the case of b blocks. In Appendix 3.C, we define the model with several (more than two)
communities.

15
1
3 _—
4 1.0
]
|
7 05
a
*IIIHII B
1 — 00
13 | -I
13
14 -0.5
15 [ |
16
17 1.0
18
149
0 -1.5

12345367 8910112131415 1617181920

Figure 3.0.1: Representation of an interaction matrix (3.2) of a 20 species system in the
form of a heatmap (the color tone gives information on the value of each entry of the
matrix). There are two distinct communities of different size, their characteristics are
given by the following parameters

on B S I 13y (0 =10
n—20,ﬁ1—.75,3—<1/10 1),;1,—(0 0).

Community 1 has a low impact on Community 2 whereas Community 2 has a competitive
(negative) impact on community one.

A typical example: assume two distinct groups of species following the dynamics of the
Model (3.3) (see Figure 3.0.3). Initially, the two communities are not interacting

172 ¢
3—(6 1/2),5>0,

and both are feasible in the sense that all species survive (see Figure 3.0.3 for ¢ < 5).
Starting from t = 5, the two communities begin to interact more and more with each
other (a2, a9 decrease with a linear growth, see Figure 3.0.2). The persistence of species
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(i.e. the number of persisting species) decreases in both communities. The ranking of
abundances does not seem to be respected, the species that have the highest abundance
in Community 1 are not the ones that have the highest abundances when the interactions
increase. In our example, the species with the highest abundance in Community 2 becomes
extinct when the interactions between the two groups are increased.

15 15 . 15
[1.0 [1.0 [1.0
0.5 05 0.5
-00

" a'm

9 8 7 6 5 4 3 2 1
9 8 7 6 5 4 3 2 1
9 8 7 6 5 4 3 2 1

-0 -00
I ‘A n
05 05 -0.5
H H
-0 -1.0 L -1.0
-15 . -1.5 . -15
1 2 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
(a) t =5 (b) t = 10 (c) t =15

Figure 3.0.2: Representation of the evolution of the interaction matrix (3.2) when two
communities of 5-species start to interact with each other (see Figure 3.0.3). It is illus-
trated in the form of a heatmap (the color tone gives information on the value of each
entry of the matrix). In Fig. (a), at ¢ = 5 the two feasible communities are not interacting.
In Fig. (b), at t = 10 the interaction strength are equal in and between the communities.
In Fig. (¢), t = 15 the inter-community interactions are strong, the communities reach a
new equilibrium at ¢ = 20 with vanishing species from both communities.

Properties of the dynamical system. We are interested in the impact of a block
structure of the food web on its persistence and stability. We limit the study to the
2-block case i.e. B defined in (3.2) and we focus on the model where r, = 1,Vk € [n] and
0=1:

dl’k

dt
A key element to understand the dynamics of the LV system (3.3) is the existence of an
equilibrium a* = (2} )re[n) such that

=x, (1 —xp+ (Bx)y) , keln]. (3.3)

{ a (1 — o+ (Bx*)y) =0, Vke|[n], (3.4)

xy = 0.
and the study of its stability, that is the convergence of a solution & to the equilibrium
x*: x(t) — x* if 2(0) is sufficiently close to *.

The Lotka-Volterra system is an autonomous differential system. If the initial con-
ditions are positive i.e. (0) > 0 (componentwise), it implies x(t) > 0 for every ¢ > 0.
However, some of the components z(t) may converge to zero if the equilibrium x* has
components equal to zero. In this article, we are considering two related behaviors. On
the one hand, under a feasible equilibrium x* > 0 of (3.3), the equilibrium set of equations
becomes a linear equation:

¥ =1+ Bx". (3.5)
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35 | —— Community 1
—— Community 2
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Figure 3.0.3: Dynamics of model (3.1) of 2 distinct communities of 5 species with inter-
action matrix (3.2). At ¢ = 0, the two communities converge to their feasible equilibrium
point and are not interacting. At ¢ = 5, the two communities start to interact i.e. aqs
and aw; increase with a linear growth until ¢ = 15. Then, the two communities converges
to their new equilibrium point with persisting and extinct species in both communities.

In the context of a single community, the existence of a positive solution has been stud-
ied by Bizeul and Najim [BN21] and extended for more complex food webs in [AN21,
CEFN22|. On the other hand, if #* has vanishing components, the equilibrium equations
are no longer linear, and do not satisfy (3.5) anymore. We can then associate the equi-
librium with a nonlinear optimization problem which has been studied by Clenet et al.
[CMN22] in the single community case.

3.1 Feasibility

Denote by « the interaction (normalisation) parameter in the case of a unique community.
According to the work of Dougoud et al.. [DVR"18], if « is fixed (i.e. does not depend on
n) then there can be no feasible equilibrium at large n. Following this work, Bizeul and
Najim [BN21] provided the right normalization of « to have a feasible equilibrium. The
threshold corresponds to a ~ 4/2log(n) above which the equilibrium is feasible almost
surely. Some extensions of these results have been made in the sparse case [AN21] and
with a mean and pairwise correlated entries [CEFN22]. In this section, conditions on the
matrices s and p are given to get a feasible equilibrium in each community. We then
provide some ecological interpretations.

3.1.1 Theoretical analysis of the threshold

Recall the notation @ = (2 )en)- Denote by |||, = Ikn%w]c |zx|. We are interested in the
c(n

existence of a feasible solution of the fixed point problem associated with the model (3.3).

124



Chapter 3. Impact of a block structure in large systems of Lotka-Volterra

Consider s and p such that I — B is invertible. The problem is defined by
*=1+Bx* & x*=(1—-B)'1=0Q1, (3.6)

where Q = (I — B)™! is the resolvent of the matrix B. The problem (3.6) admits a unique
solution. An extension of the computations of Bizeul and Najim is carried out in the
framework of a block structure network. In the sequel, one considers the centered case

p = 0 (see Subsection 3.1.4 for the non-zero case). Recall the Hadamard product o of
two matrices Ao B = (A;;B;;) and consider

1 1
sos = fl iZ
a21 O‘22

We consider a matrix s which depends on n, i.e. s = s,, such that:

s ——0 < Vi, je{l,2}, Qjj ——> 0.

Let B,, a matrix defined by

1 (A, A
T 1 Al
B,=Vs,V' o Tn (A21 AQQ) : (3.7)

where

(1, O
VEMnXQ, V = ( 0 112> .

A A .
The spectral radius of — ( All A12) a.s. converges to 1. So as long as s, is close to
21 A

zero, the matrix [ — B,, is eventually invertible.

Theorem 3.1 (Feasibility for the 2-blocks model). Assume that matriz B,, is defined by
the 2-blocks model (3.7), p = 0. Let B = (p1,52), p1 + B2 = 1 represents the proportion
of each community. Let s, — 0 and denote by s = 1/y/2logn the critical threshold.
Let ©,, = (k) ke[n) be the solution of (3.6).

1. If there exists € > 0 such that eventually ||(sy o sy BTH (1+¢)(s*)? then

P{minxk >0} —> 0.

ke[n] n—0o0

2. If there exists € > 0 such that eventually H $p08,)8" H (1 —€)(s*)? then

P{minxk >0} — 1.

ke[n] n—

Sketch of proof. The first step consists in decomposing the equilibrium x*:

zf = el x* —ele

zze;Bel
= 1 +e4 Bl + ¢} B*Q1,
=1 +Zk+Rk,
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where Z, = Y, | By, Vk € [n].

For the moment, we suppose Vk € [n], Ry is a negligible term if n is sufficiently large.
This part of the proof has not been treated yet and relies on Gaussian concentration of
Lipschitz functionnals. However, we are confident that the techniques applied in [BN21]
will succeed in handling Rj.

The feasibility of the two communities is studied independently. Using Gaussian ad-

dition properties, a simpler form of Z is deduced. Consider a family (Zk)ke of i.i.d.
random variables N'(0, 1).

Ifkely, Zu =Y Bu+ Y. B,

fEIl ZEZQ
0411 CY12
NN %Zk
ayp 079
Similarly
ifk?EIQ, Zk;N 57214-672221@
a3 Qg

Given B = (31, B2), conditions on the matrix a are inferred to have:

P(min 2 > 0) =1 < P(min Z, > —1) = 1. (3.8)
ke[n] ke[n]

In order to compute a tractable form of min Z,, an additional approximation is made, if

ke[n]
n is large enough
min Z, ~ —/2log(fin) ~ —/21log(n) (3.9)

keZ;

( T + — Zk, 61 Hlln Zk> s
o) oy kezl \/ o3, 0422 keZs
~ min — + — 210g(n)> : ﬂ + & <— 210g(n)> ,
0411 0421 0422
( (

- \/26110g +25210g<n>7_ \/2& log(n) +2ﬁ2log(n)) |

oty a3 a3,
= —max <\/261 k;g(n) T 255 k;g(n) 7 \/251 lzg(”) N 20, lzg(n)> .

aTy Q7o a3 Q59

Following the approximation (3.9), the condition ]rgn[lrﬁ Zy > —1 asymptotically boils down
e|n
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to

- < \/ 26 log(n) , 28, 1oa(n) \/251 log(n) 25, log<n>> .

2 2 2 2
aTy Q7o Qg Q59

max (251 l(;g(n) I 20, log(n) 25 log(n) n 20, lzg(”)) <1,

anq 5D 531 Q59

The extension to the b-block case can be found in Appendix 3.C.
Since aocq/log(n) is the critical regime, we introduce the matrix & defined by

«

Viog(n)’

where k will be O(1) at criticality, this will be convenient for ecological interpretations.
Using (3.9), the condition on Kk writes

Kr =

2 2 2 2
max (§1+§2,§1+§2) <1. (3.10)
K11 Kia K321 K2

Remark 3.1. 1. If Vi € {1,2},06; = % and the entry of the matrix K are equal, then

condition (3.10) gives the threshold x;; > 1/2, we find again the threshold /2 log(n)
in [BN21].

2. If kK19 = Ko = 0, then condition (3.10) gives the feasibility conditions for each

community:
app > +/201log(n) and agy > /205 log(n).

For the same «, it means o > 4/2log(n) max(/, B2).

Remark 3.2. Assume K11 = koo = 14 and K12 = kg = Vs, condition (3.10) is reformulated

as:
2 2 2 2
max(ﬁ;—kﬁ2 ﬂ1+522)<1.

20 2
4 vy 1 4

If 51, B2 and 15 are fixed, then the phase transition on the intra-community interactions

occurs at
vy > min b B2
1 1_Ba’Al L _ B |-
2 2 2 U2

In Figure 3.1.1, the phase transition is represented for a chosen set of parameters. Note
that the transition is rather smooth. However, an increase in the size of the model would
allow a smoother curve. The threshold depends on 1y, its increase (decrease of the inter-
block interactions) lowers the feasibility threshold to reach at least 1 (for communities of
the same size).
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Figure 3.1.1: Transition towards feasibility for the 2-blocks model (3.2). For each value
vy on the x-axis, we simulate 500 matrices B of size n = 500 with two communities of the
same size (f; = [ = 0.5) with the inter-block interactions fixed at ag;(1vs) = a91(1n) =
24/log(n) and compute the solution & of Theorem (3.1) at the scaling for the intra-
block interactions ay1(vy) = aaa(v1) = v14/log(n). The curve represents the proportion
of feasible solutions @ obtained for the 500 simulations. The dotdashed vertical line
corresponds to 1y = [P = 2/4/3.
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3.1.2 Preservation of feasibility between two groups

Equation (3.10) defines a “feasibility domain” and gives a constraint in five dimensions.
The two communities of species can be studied independently i.e. the two components of
equation (3.10) respectively give the feasibility condition for each community.

o If 28 4 28 1, then Community 1 is feasible.

k11 D)

o If % + % < 1, then Community 2 is feasible.
The first community will be affected by the modification of the coefficient: ki1, k12, the
second by: kg1, Koo. From a general point of view, an increase in the inter- or intra-
interaction strength will decrease the probability to have a feasible equilibrium.

An example of application: suppose we start with two feasible communities of the
same size (51 = [ = 0.5) and add interactions between these two groups, the feasibility
of the general model decreases. The feasibility domain is represented in Figure 3.1.2.
It shows a feasibility threshold where above the curve the feasible property is satisfied.
This means that the lower the values of k17 and ko9, i.e. the stronger the interactions
within the groups, the more likely the feasibility property is lost. We can deduce that
an independent group structure is more likely to be feasible and therefore stable which
supports previous work on compartments models [SB11].
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Figure 3.1.2: Representation of the feasibility phase diagram. The feasible domain is above
the surface. The z-axis (resp x-axis) is the strength of interaction within Community 1 -
k11 (resp Community 2 - Kg3). The y-axis is the inter-community interactions kip = Ko;.

The colored surface illustrate the threshold between the feasibility and non-feasibility
domain in the system (3.3).

3.1.3 Impact of the community size

From another point of view, for a fixed matrix &, the condition to have a feasible fixed

point domain can be computed as a function of the size of each community i.e. the pair
B = (b1, B2). Starting from (3.10):

max( 2—61~|—27ﬁ2 251+2€2)<1,

2 2 2
K11 K12 Ka1 K9

the two components are studied independently,

2 2(1 — 2 2(1 —
éjti( 251)<1<:> @4—7( 261)<1,
K11 K12 K11 K12
2 2 2
< Bl( ) <1- )
"0%1 "f%z "‘0%2
-3
©51<(2 Hl;>7/€11<512
”%1 “%2
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In an identical manner, one has

2
26, 2(1— =
\/51+(51)<1¢>51>§2>,I€22<I€21.

2 2
K1 K22 <l -2

K31 Ko
In the case where the intra-community interactions (k11 , k22) are smaller than the inter-
community interactions (kia, K21), we obtain an upper and a lower bound for the ad-
missible size of each community i, 5y to have a feasible equilibrium. In Figure 3.1.3,
different cases of the feasibility zone are represented according to the inter-community
interactions (K12, K21). If the intra-community interactions are different, the community

with the lowest interaction x;; is advantaged i.e. the size of the community can be larger.

zzzzzzzzzzzzzzzzzzzzz

(a) K11 = 1.2, K92 = 1.2 (b) K11 = 1.2, K929 = 1.4 (C) K11 = 1.4, K929 = 0.9

Figure 3.1.3: Representation of the feasibility domain depending on the fixed intra-
community interaction. In (a), (b), (c), a different scenario of intra-community interaction
is presented. Each panel represents the upper-bound (blue curve) and the lower-bound
(red curve) of the size of Community 1 as a function of the interaction between two com-
munities (K12, k21). The blue area is the admissible zone to have a feasible fixed point in
(3.3). The size of community 2 is equal to 5y = 1 — ;.

3.1.4 Extension to the non-centered case

Theorem 3.1 is extended to the non centered case g > 0. The matrix of interaction B
can be decomposed into the sum of a main matrix A and a mean matrix P,

A A
p_ - (aﬁ 255) L1 (#11111121 ulzlzllg) ‘

Az 22 T T

\\/ﬁ az1 o/ Zl H21 122 111 H22 112 112
v Y
A P

Recalling the fixed point equation (3.6),
¥ =1+ Adx* < =T —-A)"1=0Q1.

Denote by 5
Z=1+Bx=1+(A+ P)Z,

the equilibrium of the non-centered system. Consider o and p such that (I — zzl) and
(I — A — P) are invertibles. Recall that Q = (I — A)™!, by using a special case of the
Woodbury formula

(I—A-P)'=Q+QPUI—-A-P)",
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multiplying both side by 1,
F=x2"+QP%=(I-QP)'z*.

From a heuristic point of view, when the dimension of the system becomes very large
@ ~ I because each entry of o converge to infinity.

The second step consists in estimating the matrix (I — P)~!. If matrix (I — P)~! has
only non negative components and (I — P)~! has no zero rows (:= a row with only 0
entries), then 7 is positive. The second condition is impossible because if (I — P)~! exists,
its determinant is non-zero.

Here, we only consider the case where the mean has non-negative elements p > 0. In
this case, the properties of class of M-matrices can help. For a survey on characterizations
of non-singular M-matrices, see [Ple77].

Definition 3.1 (M-matrix). An n x n matrix that can be expressed in the form sI — C,
where C' = (¢;;) with ¢;; = 0,1 < 4,5 < n, and s > p(C), the spectral radius of C, is
called an M-matrix.

Proposition 3.2. [ — P is an M-matriz if and only if (I — P)~' exists and (I —P)™* >0
component-wise.

Remark 3.3. The class of M-matrices is included in the class of P-matrices (see section
3.2) and of inverse-positive matrices i.e. matrix inverses with non-negative elements.

By identification, we are interested in the specific setting where C' = P. If all the
coefficients of the matrix P are non-negative i.e. > 0 and p(P) < 1, then (I — P) is a
M-matrix. It is then sufficient to a give a condition on the spectral radius of the matrix
P.

The non-zero eigenvalues of the matrix P are the eigenvalues of the matrix diag(8)u.
Suppose 0 # 0 is an eigenvalue of P = UpUT with U € M,,»(R) defined by

1 /1, 0
U=—" 1
Vn < 0 1zz> ’
then there exists u such that

Pu=0u<UpU v =0u,
s U'UpU ™ =0U"u, (3.11)
< diag(B)ulU v =0U"u.

0 is an eigenvalue of the matrix diag(8)u and U'u its associated eigenvector.
If >0, & is feasible if:

p(aing(pyp < 1o p ((Br Bz oy

For a mean matrix of rank 1, P = %1,11;, the condition is p < 1 which is similar to
[CEFN22].

Remark 3.4. If the mean is the same for every block u = pl117, 1 # 0, one can use the
identical arguments as in Clenet et al. [CEFN22].
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3.2 Existence of a unique equilibrium

In Section 3.1, the case of a feasible equilibrium i.e. * > 0 has been analysed. However,
in Figure 3.0.3, for £ > 15, we notice that the system can also converge to an equilibrium
with vanishing species. Here, the conditions of existence and uniqueness of an equilibrium
with vanishing species are described. Moreover, the next step will be the investigation of
the properties of the persisting species in each communities.

3.2.1 Theoretical requirement

The research of fixed points of (3.3) is equivalent to the identification of solutions of the
system (3.4). However, the number of potential solutions can be extremely large. The
works of Takeuchi [Tak96, Theorem 3.2.5] have made it possible to reduce this number by
relying on standard properties of dynamical systems. In particular, a necessary condition
for the equilibrium x* to be stable is that

1 —ap + (Bx™), <0. (3.12)

Condition (3.12) is better known in ecology as the non-invadability condition [LM96]. In
reference to the ODE (3.3), the requirement for a given species k € [n] to be non-invasive

is equivalent to:
1d
(“) <0. (3.13)

The condition 3.13 describes the fact that if we add a species to the system at very low
abundance, then it will not be able to invade the system. As a consequence, we will now
focus on the following set of conditions:
xy (1 —xf + (Bx*))
1-— JZZ + (B.CB*) k
m*

0 for ke [n],
0 for ke [n], (3.14)

0 componentwise .

VoA

This casts the problem of finding a non negative equilibrium into the class of Linear
Complementarity Problems (LCP), which we describe hereafter.

Linear Complementarity Problem (LCP). The linear complementarity problem
is a class of problems in mathematical optimization theory. It was proposed by Cottle
and Danzig in 1968 [CD68] and appears frequently in computational mechanics problems.
In particular LCP encompasses linear and quadratic programs; standard references are
[Mur88, CPS09]. Given a n x n matrix M and a n x 1 vector g, the associated LCP
denoted by LC'P(M, q) consists in finding two n x 1 vectors z, w satisfying the following
set of constraints:

z = 0,
w=Mz+q > 0, (3.15)
w'z = 0 < wpz,=0 forallke][n].

Since w can be inferred from z, we denote z € LCP(M, q) if (w, z) is a solution of (3.15).
A theorem by Murty [Mur72] states that the LC'P(M, q) has a unique solution (w, z)
iff M is a P-matrix, that is:

det(MI) >0 , VI c [n] , MI = (Mkf)k,EGI-
In view of (3.14), we look for * € LCP(I — B, —1).
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The equilibrium x* and its stability.

Definition 3.2 (Lyapunov diagonal stability). Matrix M is called Lyapunov diagonally
stable, denoted by M € S, if and only if there exists a diagonal matrix D with positive
elements such that DM + M "D is negative definite i.e. all eigenvalues are negative.

Proposition 3.3 (Takeuchi et al. , 1978). If M € S,, then —M is a P-matriz.

Recall the system (3.1) with different growth rates for each species and consider matrix
B is arbitrary,
dyx(t)

dt

Takeuchi and Adachi (see for instance [Tak96, Th. 3.2.1]) provide a criterion for the
existence of a unique equilibrium y* and the global stability of the LV system.

=yp(re + (=01 + B)y)r), ke|n]. (3.16)

Theorem 3.4 (Takeuchi and Adachi, [TA80]). If —6I + B € S,,, then LCP(0I — B,r)
admits a unique solution. In particular, for every r € R"™, there is a unique equilibrium
y* to (3.16), which is globally stable

y<0) =Y *
Yy, > 0, , Y(t) — y™.
Yo { y(t) satisfies y(t) e

Combining this result with RMT, we can guarantee the existence of a globally stable
equilibrium x* of (3.1) for a wide range of the parameters (8, o, p).

3.2.2 Centered case: u =10

Before going into details, we make some reminders about Stieltjes transforms, a key
element of proofs in random matrix theory. We denote by

Ct:={2€C : Im(z) > 0}
the upper half of the complex plane.

Definition 3.3 (Stieltjes transform). Let v € P(R) a probability measure. The Stieltjes
transform of v denoted by g, : C* — C is defined by

_ 1 +
gu(2) = JR )\_Zu(d)\),ze Ccr.

Remark 3.5. Let v the empirical measure of the eigenvalues Ay, - - -, A, of the symmetric
matrix A € M,,(C) define by

1 n
Vp i= — Z 5)\]€(A)‘
nkzzl

then the associated Stieltjes transform is given by

1 1 & 1 1
_ _ - — STr((A—2D)Y),
a2 = [ Tl = L35 = (a0 )
where Q = (A — 2I)7! is the resolvent of the matrix A.
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Proposition 3.5 (Stieltjes inversion). Let g, the Stieltjes transform of the measure v of
finite mass v(R). If a,be R and v({a}) = v({b}) =0, then

1 b

v(a,b) = — lim Im | g,(x + iy)dx,
Ty—0t a

and

Ve R, v({z}) = lyli%l Im(gy (x + iy)) .

Theorem 3.6. Let p = 0 and assume that

|diag(8)" ((s 0 5) + (s 0 5)") diag(B)"], <

then a.s. matriz (I — B)+ (I — B)T is eventually positive definite: with probability one, for
a given realization w, there exists N(w) such that forn > N(w), (I — B®) + (I — B®)"
positive definite. In particular, there exists a unique (random) globally stable equilibrium
x* e LCP(I — B¥,—1) to (3.14).

Sketch of proof. From Theorem 3.4, we need to verify the Lyapunov diagonally stable
condition of the matrix (—I + B) € S,, by analyzing its largest eigenvalue.

- 1 Autdy A | Ay
(=I+B)+ (—1+B") = -2I + NAEH e N
a21 a2 22

Denote by H the symmetric matrix

A +AT Al

1 (Hy Hyp e el

H - - a11 T 12 §|¥_21
\/ﬁ Hoy Hoy \/ﬁ A + Ao Aza+Ay ’

a21 12 22

where Vi, 7 € {1,2}, H;; is a matrix of size 5;n x §;n and each off-diagonal entries follow
a Gaussian distribution N (0,1/af; + 1/a3 ).

A matrix is negative definite 1f and only if all its eigenvalues are negatives. Here,
notice that —27 + H is negative definite iff the top eigenvalues of H is lower than 2. The
aim of the proof is to give condition on the parameter a such that

Amax (H) < 2.

The matrix H has a variance profile, such a model has been studied in great details
by Erdos et al. and is linked to the theory of the Quadratic Vector Equation (QVE, see
[AEK17, AEK19] for more technical information). Given m(z) = (my(2), -, m,(2)),
the QVE associated to the matrix H is decomposed as

ket - i_ﬁz )+ (g ag) e

ey
kel — =z+ ) = ( 1)me )+ — - my(z).
= afy a3 T azyn

Denote by 1/m(2) = (1/my(2), -+ ,1/m,(2))" and
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the QVE can be written in the standard form

o =z+Sm(z). (3.17)

Following Theorem 2.1 in Ajanki et al. [AEK19], Vz € C*, Equation (3.17) has a unique
solution m = m(z) where n™! Y m; is a Stieltjes transform of a probability measure and
the support of the associated measure is included in [-X, ¥], where ¥ = 2|S Hl/ .

This information gives an asymptotic bound on the support of the matrix H associated
with (3.17) i.e. asymptotically Ve > 0 for a given realization w, there exists N(w);
Vn = N(w)

Ama (H) < 2 S] +

Recall that —21 + H is negative definite iff Aax (H) < 2. This condition is fulfilled if
2S5 <

or equivalently
IS, <1.

Notice that this condition is sufficient but not necessary. Given the particular shape of

the matrix S, computing its norm is equivalent to computing the norm of a matrix of size
2x2

1S, = \Mmg 1”<@osw+@osﬂdd 8(8)",

1/2 2 1,1 1/2
@t (51 0)/
0 52 oz, T oz oz, 0 f

which completes the proof, we can then rely on Theorem 3.4 to conclude.

Remark 3.6.

2

1. In the context of a unique community, suppose that o = a11', then the previous
condition takes the simpler form a > /2 which was already stated in [CMN22].
Indeed, starting from the condition of Theorem 3.6, the condition on the matrix is

12 0\ 2/ 2/0®\ (12 0\"?| [[1/a® 1/a?
0 1/2 2/a* 2/a? 0 1/2 ~\1/e? 1/a? )|,
which has eigenvalues 2/a? and 0. The same sufficient condition is obtained 2/a? <

1 < a>+/2.

2. The proof in the b-blocks case is provided in Appendix 3.C. The condition given
there is similar to Theorem 3.6.

3. The condition given in Theorem 3.6 is sufficient to guarantee a unique solution
to LCP(I — B,1) but not necessary, although it provides more information and
guarantees the global stability. This condition might be relaxed finding the bound
associated to the P-matrix property of I — B (see Appendix 3.D).
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Spectrum: a computer based approach. Theorem 3.6 only provides sufficient con-
ditions for the existence of a unique stable equilibrium and is based on the rough asymp-
totic upper bound estimation ¥ = 2 |.S H;/ ?. We can assess the sharpness of this bound by
comparing it to the limiting spectrum of matrix H, which can be plotted via numerical
simulations. An efficient way to compute numerically the spectrum of the matrix H comes
from the system of non linear equations (3.17).

Starting from the QVE (3.17) associated to the matrix H, the system takes the simpler
form

?
=2+ G+ )+ Ay,
12 21 22

where Vk € Z;, my(z) = u(z) and Yk € Zy, mg(z) = v(z). All the knowledge of (3.17) rely
on p(z) and v(z). Then, using RMT theory, the resolvent G of the symmetric matrix H
can be approximated by

1 _ 23 1 1
{—M =z+ ot B + v,

1

v

G(z) = (H — =) ~ diag(u(2)1,, v(2)1},) .

From Remark 3.5, the trace of the resolvent is equal to the Stieltjes transform

o(2) = LTr(G) = iu(2) + a2

of the spectral measure. Finally, the spectral density can be obtained using a the Stieltjes
inversion (Prop. 3.5). The spectral density of the matrix H can be computed numerically
by an iterative scheme. The initial condition of the two measurements (u, V) is g = vy =
—%. Then, the iterative scheme

I S 261 B SR
{_ et O‘%l'up_l + 52(06%2 + a%l)yp_l

Hp
1 1 232 ’
z+ 51(7;2 + g)/ﬁpﬂ + aZ, V-1

1

Vp
converge to [, = lirfooup and vy, = hToo”” The last step consist of using the property
p— p—

of the Stieltjes inversion (Prop.3.5).

Remark 3.7. To handle the Stieltjes inversion (Prop.3.5) numerically, it is similar as start-
ing with 2 = z + e1,e ~ 1073,

In Figure 3.2.1, the estimation of the spectral density by the numerical method is
represented for different types of interactions in the blocks of the matrix H. The threshold
given by 2 HSH;/2 appears to be sharp.

3.2.3 Non centered case (u # 0)

The extension to the non-centered case (u # 0) may be mathematically tractable using
the QVE theory. However, at this point we shall consider the case where all the coefficients
a;; are equal to a constant o.

Proposition 3.7. Let Opa = Amax(diag(B8) (e + 7)), Let a = all’, a > +/2 and
assume that if Omax > V2/a,

emaxe(\/i71+ 1_22>7
(6] V (0%
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Figure 3.2.1: Spectrum (histogram) of the Hermitian random matrix H (n = 1000),
conditions on (3, a) are given in each panel. The solid line represents the distribution
of the spectrum computed by the numerical approach. The dashed vertical line indicates

the upper bound of the largest eigenvalue of H given by 2|5 ||;/ 2,

then a.s. matriz (I — B)+ (I — B)T is eventually positive definite: with probability one, for
a given realization w, there exists N(w) such that forn > N(w), (I — B¥)+ (I — B¥)" is
positive definite. In particular, there exists a unique (random) globally stable equilibrium

x* e LCP(I — B*,—1) to (3.14).

Proof. In order to have the existence of a unique globally stable equilibrium, it is sufficient

that matrix .
~I+B+(-I1+B")=-2I+H+P,

is negative definite where

g 1 (All + AL A12 + A;—l) 7

- T\/ﬁ Agl + AIQ AQQ =+ A;I—Q
P 1 2p1117, 1; . (p12 + u21)1%1 1}2 ‘
n (/~L21 + M12)112 111 2,[12211’2 ]_I2

Recall that —21 + (B + BT) is negative definite if and only if the largest eigenvalue of
B + BT is lower than 2 i.e.
Amax(B +BT) < 2. (3.18)
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Remark 3.8. In [CMN22], an admissible zone is described for a rank 1 mean matrix where
the condition on the strength of the interactions is o > /2.

The matrix H is a GOE (Gaussian Orthogonal Ensemble) matrix, its spectrum con-
verges almost surely to the semi-circular law of support [— 2;{5, 2;{5]

The theory of random matrices gives precise information about the spectrum of the
matrix H 4+ P. In particular, matrix P may create outliers whose positions depend on o
and the eigenvalues of the matrix P.

In Capitaine et al. [CDMF09, Th. 2.1], they describes the impact of a mean matrix
of a finite rank symmetric matrix on the spectrum. In particular, they give the exact
location of the spikes in the case of a symmetric matrix H and a mean symmetric matrix
of finite rank which is the case here.

First of all, matrix P is a deterministic symmetric matrix of fixed finite rank r and
has J eigenvalues 6; > --- > 0; independent of N. To recover the largest eigenvalues, it is
sufficient to study the matrix of dimension 2 (see (3.11) for details)

diag(8)(p + p') .

Denote by the largest eigenvalue by

Omax = Amax(diag(B8)(p + p"))

Using the results of Capitaine et al. [CDMF09], the largest eigenvalue of matrix H + P
converges to

D a.s emax + —2— lf emax > Q )
/\max(H + P) m { M e “

Assume first that 0., < g, then Amax(H + P) 22 na‘s[;o 2V2 which is strictly lower than 2
if & > /2. Hence Amax (H + ]5) is eventually strictly lower than 2 under this condition.

else.

Assume now that 0., > %, then

~ a.s 2
Amax(H + P) — O + T

We are interested in the conditions for which 6, + ﬁ < 2 or equivalently

0% — 2070 +2 <0, (3.19)

max

An elementary study of the polynomial £(X) = o202, — 2a%0h.c + 2 yields that £’s
discriminant is positive if a > /2,

2
+ + /
g(ernax) =0 had emax =1 + - ? 3

and & (%) < 0, so that \f € (0 ax: 01 ). In particular condition (3.19) is fulfilled if

max’ ¥ max

Qmaxe(ﬂ, 1+4/1—22> )
[0 (e

Under this condition, (3.19) is fulfilled and a.s. limsup,,_,, Amax(H + P) < 2. O
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Remark 3.9. In the simplest case where the two communities are of equal size 8 = (%, %),
the analytical formula for the two eigenvalues are

1

b= 3 [Mn + o2 + A/ (pa2 + p121)2 + (pa1 — M22)2] :
1

0y = 3 [;/Jn + poo — \/(H12 + p21)? + (pan — “22)2] :

Ecological interpretation of the condition. In this section, an analysis of the impact
of the mean parameter p is achieved. We are interested in the sensitivity of mutualism and
competition to the uniqueness and existence of an equilibrium when the two interacting
communities are of the same size. One defines the function v by

1

Y1, faz, fo, fo2) = 5 [Mn + Moo + \/(Mm + po1)? + (p11 — M22)2] ,

corresponding to the largest eigenvalue 6, of B + BT if 6; > v/2/a.
The impact of the mean interaction coefficient 115 on the largest eigenvalue is quan-
tified by

oY M1z + 21

Oz 24/(p12 + p21)? + (pnn — pio2)?
oY
Opirz
If the type of effect of Community 2 on Community 1 (u12) has the opposite behav-
ior than the type of effect of the Community 1 on 2 (u91) i.e. competition/mutualism
or mutualism/competition, then the equilibrium is likely to be unique globally stable.
Conversely, this helps explain the following rather counter-intuitive phenomenon: when
the competition between the communities increases, the left support of the spectrum is
strongly affected. However, if p is of rank 2 then the right edge of the spectrum will
also be affected when the second eigenvalue exceeds a certain threshold. Suppose that
21 is negative, then the stronger the competition of p15 will be, the more chance of
losing the stability condition. This phenomenon does not appear in the case of a single
community where the increase in competition does not affect stability (see [CMN22]).
This phenomenon is shown in Figure 3.2.2. In this example, we increase the competition
of Community 2 on Community 1, stability is lost when exceeding a certain threshold
[AT12].
In Figure 3.2.3, the behavior of ¢ as a function of the variable p5 is represented by
a parabola whose minimum is obtained in g5 = —u9; = 2. The general conclusion is
that opposite inter-communities interactions behaviors between two community stabilize
the ecosystem whereas a mostly competitive or mutualistic type of relationship has the
opposite behavior.
The same arguments can be performed on the diagonal terms, in particular to Com-
munity 1 pq1.

>0 < 12 > —po1 -

0 1 -
v I Hi1 — He2

Oy 2 2\/(#12 + p21)% + (p11 — po2)? .

oy
opan

>0 < /(a2 + p2)? + (g — po2)? + pag — pizn > 0,

had \/(Nm + p91)? + (11 — p22)? > plog — 1 -
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Figure 3.2.2: Spectrum (histogram) of the Hermitian random matrix B + BT (n = 1000,
a = /2). The solid line represents the semi-circular law. In Fig. 3.2.2a, u = —2 and there
is a unique negative outlier. In Fig. 3.2.2b, u15 = —4 and one can notice the presence
of one outlier and the other outlier is contained in the bulk of the semi-circular law. In
Fig. 3.2.2¢, p12 = —7, the competition has reach a threshold with 2 outliers outside the
bulk including on the right-side disturbing the stability. The dashed line indicates its
theoretical value.

On the one hand, if p1; > oo this is always true, on the other hand by taking the square,
one has (p12 + p21)® > 0 which is also true for any matrix p. The behavior of intra-
community mean is the same as in the one-community case: a negative mean does not
affect stability, but a positive mean will have a very strong impact on the top eigenvalue
and therefore stability.

Remark 3.10. The most general case could be treated by complex computations leading
to implicit equations on the conditions and therefore difficult to interpret. A non-sharp
bound by the triangular inequality

|+ Pl < |[H], + | P], = [H], + max(61]  6a])

This is not optimal in the sense that when competitive interactions are added the largest
positive eigenvalue is not always influenced. However, if the mean matrix P is large, it is
anticipated that the eigenvalues that come out of the bulk are still “not too far” from the
expected value.
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Figure 3.2.3: Representation of the function (-, u12) by a parabola. The perturbed
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3.3 Persisting species

In Section 3.2, we have presented conditions on the matrix o, u and the proportion of
community 8 for the existence of a globally stable equilibrium «* to (3.1) under the non-
invadability condition. The vector &* is random and depends on the realization of matrix
B. Moreover since a has fixed components and does not depend on n, the equilibrium
x* will feature vanishing components in the case of many communities (see the original
argument for a unique community in [DVR*18] and the discussion in [BN21]). In an
ecological context, we define two categories of species in the vector x*, the persisting
species (non-vanishing components zj > 0) and the vanishing components corresponding
to the species going to extinction with 2} = 0 and x(¢) - 0.

In this section, we are interested in the properties (proportion, variance, distribution)
of non-vanishing components of the equilibrium a* for each community; we also describe
the distribution of the persisting species z} > 0 which turns out to be a truncated Gaus-
sian.

Remark 3.11. The Gaussianity assumption facilitates the explanation of the heuristics
but does not seem necessary for the result to hold. In Figure 3.3.3, the entries are not
considered Gaussian anymore but the two first moment E(By,) and E(|By|?) coincide. In
this case, the distribution of the persisting species still matches the truncated Gaussian.

3.3.1 A heuristics of the number of persisting species

Assume that the considered ecosystem has two distinct interacting communities. The set
of persisting species in community i € {1,2} is defined as

81 = {/{:EIl, QTZ > O} ; Il = [1,51’”],
Sy ={keD, z; >0} ; Ly=[fn+1n].
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Given the random equilibrium a*, we introduce the following quantities for each commu-
nity ¢ € {1, 2}

S 1 « a2 1 2
bi = , My = T, O0; = a7 (l’ ) .
|Zi| |Sil Z g |Sil Z g

k‘EZZ‘ kEIi
Denote by Z ~ N(0,1) a standard Gaussian random variable and by ® the cumulative
Gaussian distribution function:

w2

x e~ 5
P(x) = du .
@ =]
Heuristics 3.1. Let (o, i) and assume that either condition of Theorem 3.6 or Proposi-
tion 3.7 holds, then the following system of six equations and siz unknowns (p1, p2, My, M2, 01, 09)

po= 1-2(), (3.20)
pp = 1-9(0), (3.21)
my = 14+ M +2MEZ|Z>6), (3.22)
me = 14+ X+ ME(Z|Z >0,), ( )
(3.24)
(3.25)

(01)> = (1+X)?+2(1+M)AE(Z|Z > 6) + ATE(Z2|Z > 61) 3.24
(02)2 = (1+X)?+2(1+ XN)AE(Z|Z > &) + AJE(Z2|Z > 6,) 3.25
where
1=\
A= \/pl(al)Qﬁzl + p2(<72)2572 ;A = pima St + pamafajiin ;0 = , (3.26)
Qi o) A,

admits a unique solution (pi,ps, m¥,ms of o3) and ¥ i€ {1,2}

N a.s. * A a.s. * N a.s. *
Di —— p; m; ——— m; and 0; —— 0, .
n—o0 n—o0 n—a0

There is a strong matching between the parameters obtained by solving (3.20)-(3.25)
and their empirical counterparts obtained by Monte-Carlo simulations. This is illustrated
in Fig. 3.3.1.
3.3.1.1 Construction of the heuristics
Getting information about the fixed point is equivalent to solving the LCP problem

xy <1—xZ—|—ZBMﬂ:Z> =0, Yke[n].
=1

Consider the random variables:

Vk e [n], Zk = Z Bkgl‘; .
Z€S1U32

We assume that asymptotically the x}’s are independent from the Bj,’s, an assumption
supported by the chaos hypothesis, see for instance Geman and Hwang [GH82]. Denote by
Eg« = E(- | *) the conditional expectation with respect to x*. Notice that conditionally
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Figure 3.3.1: Comparison between the theoretical solutions (pi,ps, o5, o5, mi, mi) of
(3.20)-(3.25) and their empirical Monte Carlo counterpart (the star marker) as functions
of the off-diagonal block interaction strength aqs/ag;. The left column is associated to
the properties of Community 1. The rigth column is associated to the properties of Com-
munity 2. Matrix B has size n = 100 and the number of Monte Carlo experiments is 500.

0 0 3 g B = (%7%) . When off-diagonal

o =

)
0 0 Q91 \/E
block interaction ay, a5 increases, the number of persisting species p* decrease but their
12 5 Qg1 )
variance o* and mean m* increase.

The parameters are g =
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to «*, the Z)’s are independent Gaussian random variables, whose two first moments can
easily be computed, see Appendix 3.B for the details

Vk € T, Box(Zy) = privaBupiar + ParniaBotiia ,

Vk e Ii,varm* (Zk) pﬁf B +]52A§ 62 :
Oé

il azZ
Notice that the fact that E,« and Varm*(Zk) only depend on py, pa, My, Mo, 61, 62 (that
are converging quantities) supports the idea that Zj, is unconditionally a Gaussian random
variable with moments:

7 b I62
EZ;, = pim* B + pimiBopis and  var(Zy,) = pl(al)Qa + p3 (o )2(72 ;
71 72

where pf, p5, mi, m3 o}, o are resp. the limits of py, po, My, M9, 01, 62. We can intro-
duce two families of standard Gaussian random variables (Zy)rez, and (Zy)gez,:

Zy, — E(Zk) Zy — pimi Bupan + pimi Bofuio
var(Zy) \/p1 )? '81 + p3(03)? 6222

Vkel, Z)=

To simplify the following computations, we denote:

P = A PT(07) P + p3(03)?— 1 AY = pymIBipir + pamis Baia ; 6 = PR
azl 0412 A

)

Here, \f (resp AY) corresponds to the average effect of the interactions on the community
i (resp average variance of the interactions on the community 7).

Consider the equilibrium x* = (2} ) ke[n], the definition of the LCP equilibrium implies
if ke Sl U 822

(1 —2f 4+ (Bx*),) = 0and 1+ (Bx*), = 1+ Z;, > 0.
We finally obtain the following relationship for the persisting species:

=1+ XN +AZ, ifkeS;. (3.27)

Heuristics (3.20)-(3.21). We can write the first two equations:
P(x} = 0lk e §;) =1 — ®(07),

and
Pz =20k e Sy) =1—(05).

We finally obtain (3.20) and (3.21):
py =1-(d7).
py =1-0(5).
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Heuristics (3.22)-(3.23). Our starting point is the following generic representation of
an abundance at equilibrium (either of a persisting or vanishing species) in the case k € S;:
xp =L+ N + A7 Zy) 17,57
= (14 X)) Lg%y + (A7 Zk) Lz, 55%) -

Summing over §; and normalizing,

zp = (1+ ) Lz, 5%y + A7 Z Zilz, 55,
BM; BM; * B“w *

. () . |z
m; = (14+ ) + A Ziliy 5%y,
]SHI]; 12>

1
——E(Z1 -

iy ~ (L+ A9 + AYE(Z | Z > 67).

me 2 (14 %) + AF

where (a) follows from the fact that |S;| = X},s, 1(z,>s%) (by definition of §;), (b) from
the law of large numbers \Tlﬂz:kezi Ziliz,~5,) —= EZ1z. s and ||I“ — P(Z > §})
with Z ~ N(0,1). It remains to replace m; by its limit m¥ to obtain heurlstlcs 2. We
finally obtain the 3rd and 4th equations:

my =14+ X + ATE(Z|Z > §))
my =1+ M\ + ASE(Z|Z > 63)

Heuristics (3.24)-(3.25). By similar computations, one can obtain similarly the 5th
and 6th equations:

(o) = (1 + A))? +2(1 + M\)ATE(Z|Z > 67) + (A))’E(Z2°|Z > 6F)
(03)? = (1+ 252 +2(1 + XAIE(Z|Z > 63) + (AY’E(Z%|Z > &)

General properties of the ecosystem Information on the properties of the total
proportion of the block can be computed.

1. Proportion of persisting species.
P(z; = 0) =P(a} = 0lk e Z))P(k € Zy) + P(x} = 0|k € Zo)P(k € 1) ,
p* = pib+p3Pa.
2. Mean square of the abundance of the persisting species.
E((})?) = E((w})k € T)B(k € Th) + E((a)2lk € )P(k € T,),
(0%)? = (6721 + (03262
3. Mean of the abundance of the persisting species
E(z}) = E(zi|k € Th)P(k € ) + E(zf|k € Iy)P(k € Zy) ,

m* =mif +msBs.
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3.3.2 Distribution of the persisting species

We may recall the following representation of the abundance z} of a persisting species
when k € §;:
{L‘;: = 1+)\7+A:<Zk if keS,,

where Z, ~ N(0,1) and Z;, > 6F = 6;(pf, m, oF) defined in (3.27). This representation

allows to characterize the distribution of x} of each community. It turns out that the
persisting species of each community follow a truncated Gaussian distribution.

Heuristics 3.2. Let (o, ) and assume that either condition of Theorem 3.6 or Proposi-
tion 3.7 holds and let (pi,ps, mi, ms, of 03) be the solution of the system (3.20)-(3.25).
Recall the definition (3.26) of i, A;, §; and denote by 0} = 6;(pF,m},0F). Let xj > 0 be
a positive component of x* belonging to the community i, then:

E(x;’;)—>£<1+)\;"+A;‘Z ‘ Z>5;"),
n—0o0

where Z ~ N(0,1). Otherwise stated, asymptotically Yk € S;, x} admits the following
density

_ 1{y>0} 1 1 ﬂ * ?
fely) = 5(—3?) Arvan exp{—2 (Af +(5i) } : (3.28)

The heuristics simply follows from the fact that if = is a persisting species and k € S,
then
xp =14+ X+ Al Zg,

conditionally on the fact that the right hand side of the equation is positive, that is
Zy > 6F. A simple change of variable yields the density - details are provided in Appendix
3.B.

Fig. 3.3.2 illustrates the matching between the theoretical distribution obtained by
3.28 and a histogram obtained by generating the interaction matrix for 2 communities.
In Figure 3.3.3, the validity of heuristics in the case of non-Gaussian entries is illustrated.

3.3.3 Toward a general case

In the heuristics 3.1 and 3.2, we are restricted to conditions to have unique and globally
stable equilibrium on (e, i) given by Theorem 3.6 and Proposition 3.7.

(i) On the one hand, in Theorem 3.6, we assume that g = 0 and give condition on .

(i) On the other hand, in Proposition 3.7, we assume e = a11". The first condition is
a > 4/2 and we give conditions on p depending of a.

However, in Figure 3.3.4, we notice that the results remain convincing for couples (o, )
beyond these assumptions. For this reason, we shall use in the sequel the heuristics beyond
the conditions of Theorem 3.6 and Proposition 3.7. We remain confident that by using
the QVE theory for the non-centered case, we could extend the conditions over (a, @) to
have a unique and globally stable equilibrium beyond conditions (i) and (ii).

146



Chapter 3. Impact of a block structure in large systems of Lotka-Volterra

— = Community 1

0.8 4 _/Pbﬁ — COmuRity 2

05 Z \

0.4

\

0.2 4 /

0.1 1

Density of the distribution (f)

0.0 T T u
00 05 10 15 20 25 30 35 40

Abundances (x*)

Figure 3.3.2: Distribution of persisting species in each community. The x-axis represents
the value of the abundances and the histogram is built upon the positive components
of equilibrium «* associated to each community. The blue-solid line (resp. red-solid
line) represents the theoretical distribution of Community 1 (resp. Community 2) for
parameters (e, p) as given by Heuristics 3.2. The entries are Gaussian N (0, 1) and the
parameters are set to
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3.3.4 Diversity is contagious

In Figure 3.0.3, adding interactions between two feasible communities disturb the persis-
tence of the ecosystem i.e. beyond a given threshold, some species go extinct. Using the
heuristic equations (3.20)-(3.25), the evolution of the proportion of persisting species in
each communities can be quantified. Understanding the effect of species richness in each
communities becomes an important endeavour. In particular, the effect of the species
richness of Community 1 on Community 2 when interactions are added (see Figure 3.3.5).
In Figure 3.3.6, we represent the impact of the species richness of Community 1 (which de-
pends mainly on ;) on Community 2. When Community 1 has more persisting species
(larger aq7), its impact is smaller on the persistence decay of Community 2. We con-
clude that there is a contagion of diversity: the higher the persistence of a community,
the less its impact will be harmful on the other communities. This can be compared to
a spatial averaging or insurance effect: the more persistent species there are in the ac-
tive community, the more interactions the passive community will receive i.e. functional
complementarity in the communities (see Loreau et al. [LNI*01, LMGO03]). From an evo-
lutionary standpoint, contagious diversity has been studied by Calcagno et al. [CJL*17]
where diversity favours diversification.
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Figure 3.3.3: Distribution of persisting species in each community. The x-axis represents
the value of the abundances and the histogram is built upon the positive components
of equilibrium «* associated to each community. The solid lines (blue for Community
1, red for Community 2) represents the theoretical distribution for parameters (a, ) as
given by Heuristics 3.2. The entries are uniform U(—+/3,+/3) with variance 1 and the
parameters are set to
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Notice in particular that the theoretical distribution matches even with non-Gaussian
entries.

3.3.5 Feedback effect

A natural question that emerges is the existence of a feedback effect. In Figure 3.3.7, a
diagram of the situation is represented, two communities are interacting, the impact of
Community 1 on Community 2 is increasing. When this increase occurs, if Community
1 has higher persistence then Community 2 is less severely affected (see section 3.3.4).
However, when Community 2 is affected, there is a feedback loop affecting Community
1. The evolution of the persistence is represented in Figure 3.3.8. A decrease of the
persistence p} is observed when the interaction increases i.e. a9 decreases. The feedback
effect is negative, which produces a detrimental cycle: if Community 1 is less persistent, it
affects Community 2 more negatively, which in turn affects Community 1 more strongly.
The decline in persistence between two interacting communities is not linear but has a
double negative effect, hence the importance of maintaining persistent communities and
not neglecting feedback phenomena when dealing with ecosystems (see Loreau [LNI*01]).

3.3.6 Type of food web interactions

In the previous sections, the impact of the strength of interactions o was investigated
without the mean interaction parameter g = 0. However, particular types of food webs
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Figure 3.3.4: Comparison between the theoretical solutions (pi,ps, o5, o5, m¥ mi) of
(3.20)-(3.25) and their empirical Monte Carlo counterpart (the star marker) as func-
tions of the off-diagonal block interaction strength cvs/ce;. The left column is associated
to the properties of Community 1. The right column is associated to the properties of
Community 2. Matrix B has size n = 100 and the number of Monte Carlo experiments

—0.3 —0.5 2 12 ’ IB _ (1 l) When

@ = 212

03 —03)° a1 V2
off-diagonal block interaction agy, ag;' increases, the number of persisting species p* de-
crease but their variance o* and mean m* increase.

is 500. The parameters are p =

(mutualism, competition, antagonistic) arise in nature and their consequences could be
related to specific patterns. The use of the mean parameter p of the matrix B allows to
control the sign of interactions (on average) in each block, and therefore the nature of the
food web.

Inter-community interactions. Let us consider two communities whose interactions
are initially mostly competitive (p1o = p2; < 0), mutualistic (g2 = po; > 0) or antago-
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Figure 3.3.5: Diagram of the experience of the impact of the species richness of Community
1 on Community 2. The off-diagonal block A;s is set to 0, aj, — 0.
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Figure 3.3.6: Heatmap of the proportion of persisting species pj in Community 2. The x-
axis represents the impact of Community 1 on Community 2 by increasing the off-diagonal
interaction strength as;. The y-axis represents the interaction strength in Community 1
which is directly related to the proportion of persistent species pj.

Self-regulation of community 1 (a11)

nistic (/,ng = —,u21).

Remark 3.12. From a theoretical standpoint, in order to have pairwise antagonistic inter-
actions within the community, we would have to add a correlation parameter p between
the pairs of interactions. Antagonistic relationships appears when p < 0. Here, an inverse
relationship between the inter-community parameter 15 = —p9; increases the number of
antagonistic interactions on average.

The previous results (see Figure 3.1.2) indicate a decrease in persistence in both com-
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Figure 3.3.7: Diagram of the experience of a feedback effect. The off-diagonal interaction
strength a5 is set to a constant. The interaction of Community 1 on Community 2 s
is enhanced.
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Figure 3.3.8: Representation of the feedback effect. Proportion of the persisting species p}
in Community 1 when increasing the interaction strength of Community 1 on Community
2 (a; decreases).

munities with no mean (g = 0) when there is an increase in inter-community interactions.
In Figure 3.3.9, we consider these three different cases. The impact on persistence is the
same for mutualistic and competitive interactions. However, for an antagonistic relation-
ship, the community benefiting from the interaction (here Community 2) will have a better
persistence [TF10, AT12]. Inversely Community 1 will be deficient of the interaction.
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Figure 3.3.9: Representation of the impact of the type of inter-community interactions.
The two figures illustrates the persisting species in each community (Community 1 in
Fig. 3.3.9a, Community 2 in Fig. 3.3.9b) as a function of the inter-community interaction
strength (a2 = a1). Three types of inter-community are investigated:

Antagonist p, = (004 *8'4> ,

Mutualism p,, = (004 0(')4> :

Competition p, = (_84 _8'4> .

Intra-community interactions. The type of inter-community interactions has an ef-
fect on persistence within communities. The type of intra-community interactions can
also have a significant effect. For this purpose, we compare the persistence of Community
2 under the condition that Community 1 is mostly competitive or mutualistic. In Figure
3.3.10, we notice that when interactions are added (asg;), and the type of interaction is
mostly competitive in Community 1 then the persistence of Community 2 is less affected.
The idea is that if competition is strong within Community 1, then the abundances will
be more homogeneous in Community 1 and therefore the effect will be weaker on Commu-
nity 2. Conversely, a mutualistic community will have a greater and more heterogeneous
abundance and its effect will be strongly increased over the other communities.

More resilient community. A natural question is which type of community is better
able to withstand the impact of other communities. In Figure 3.3.11, we observe that
the larger the mean of Community 2, the better the community’s persistence. Upon
comparison with Figure 3.3.10, the two heatmaps appear similar with the exception of
a permutation. A mostly mutualistic community o = 0.4 is as resistant to the impact
of any community as a standard community which is resistant to a mostly competitive
community p;; = —0.4 and therefore less affected.

Some additional summary graphs. Given the number of parameters of the model,
it is possible to test many possibilities. See appendix 3.E for other types of effects.
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Figure 3.3.10: Heatmap of the proportion of persisting species pj in Community 2. The
x-axis corresponds to the impact of Community 1 on Community 2 by increasing the
off-diagonal interaction strength as;. The y-axis corresponds to the disturbance piq
in Community 1 which is directly related to the average type of interactions (mutual-
ism/competition). The parameters are
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3.4 Parallel between connectance and interaction strength

In this article, we have mainly focused on the impact of the parameter ¢ i.e. on the
observation of the behavior of the model when the strength of the interactions varies. In
his work [May72], May provided a stability threshold depending on three factors (n, o, C)
in the case of a single size community. n is the dimension of the system, o is the variance
of the interactions, and C' is the average proportion of non-zero values in the community
matrix. These three factors summarize the properties of the community matrix (the
Jacobian) which represents the impact between species around the equilibrium. The
stability condition is given by
ovnC < 1.

When compared to the matrix model (3.2) as a Jacobian matrix, the factor n is absorbed
by o which is of order O(n~'/2) by construction. The second factor ¢ is identified with our
1/ - the inverse of the interaction strength and the last is the connectance C. Following
these remarks, May’s criterion with (3.2) is rewritten with our notations as

e

— < 1.
(0%

The objective of this section is to discuss through simulations whether the parameters
of connectance C' and strength of interactions a may exactly offset or mimic each other in
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Figure 3.3.11: Heatmap of the proportion of persisting species pj in Community 2. The
x-axis corresponds to the impact of Community 1 on Community 2 by increasing the
off-diagonal interaction strength as;. The y-axis corresponds to the disturbance piq
in Community 1 which is directly related to the average type of interactions (mutual-
ism/competition). The parameters are
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their effects on feasibility, stability and persistent species properties. In physical terms,
is there a composite parameter that completely determines the feasibility in the Lotka-
Volterra model? In particular, can we make a parallel between the connectance and the
strength of interactions?

In the sequel, we can define the connectance as a function (similarity) on the strength
of the interactions by

Type of community 2 (uzz)

C = fla) - %,Va e [1,0). (3.29)

Remark 3.13. The similarity relation is only defined for o > 1 whereas for 1/v/2 < a < 1,
the Lotka-Volterra model (3.3) admits a unique equilibrium [Bunl7].

Similar interaction matrix To compare the similarities between connectance and
interaction strength in the model, we define a new interaction matrix B* that does not
depend on interaction strength. From (3.2), one can define B whose interaction strength is
the same for all matrices i.e. & = 11" and S the adjacency matrix of a specific stochastic
block model, then

B%=S0RB,

where o corresponds to the Hadamard product between two matrices.
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Remark 3.14. In the rest of the section, we assume that all graphs are undirected. If
species k interacts with species ¢, reciprocally species ¢ interacts with species k. This
specific choice reduces the type of relationship that we can have in our model, “absolute”
commensalism and amensalism (in the sense that By, # 0 and By, = 0) are not repre-
sented. However, we can consider that this type of relationship is taken into account if
we have a significantly greater relationship of one species on another than the reverse.

A brief reminder about Erdos-Rényi (ER) graphs denoted by G(n,p). It is a graph
with n vertices. It is assumed that there is an edge between two vertices with probability
p independent from every other edge. (see [Bol98] for a review on random graphs). The
adjacency matrix associated to this graph is symmetric and contains on average pn(n—1)
entries equal to 1. We associate the connectance C' = p, we say that if p = O(1), then the
graph is dense which will be the study case. The case of an interaction matrix B° where
S is an adjacency graph of an Erdos-Rényi matrix has been already considered by May
in the context of the Jacobian.

Let consider a subclass of stochastic block model (see [Abb18, LW19] for review on
SBM). Let an ecosystem have b communities Ci, ...,Cp, let 8 = (1, ..., 5) be the sizes
of each community such that Z?:1 B; = 1. A SBM is a random graph whose vertices
are partitioned into b communities. Given P := (p;;,1 < 4,5 < b, p;; € [0,1]) a sym-
metric matrix, there exists an edge between vertex u € C; and v € C; with probability
pi; independent from every other edge. To summarize, each block corresponds to an ER
graph where the final adjacency matrix S is symmetric. We associate a connectivity ma-
trix C = P with V1 < 4,5 < b, p;; = O(1) i.e. each graph associated to each block is
dense. In ecology and in general, SBMs are used to cluster the species in communities
(see [BDB*11, MM17].

In Figure 3.4.1, the adjacency matrices of an Erdos Renyi graph and an SBM are
illustrated.

(b) Stochastic Block Model

Figure 3.4.1: Representation of an adjacency matrix of the interactions of an ecosystem of
size n = 200. In Fig (a), an Erdos Renyi graph of parameter G(200,0.25) is illustrated. In

0.6 O.25>
025 0.1 )°
A red colored cell indicates Si, = 1, on the contrary, a white colored cell indicates that
there is no interaction Sy, = 0.

Fig (b) a graph of a symmetric Stochastic Block model of parameter P =
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3.4.1 Standard case: a unique community

Two types of matrices are compared if there is a single community: B* vs. B where S is
the adjacency matrix of an ER graph, B is defined in (3.2) with o = 2117 and p = 0
for both models.

Feasibility Following the work of Bizeul and Najim [BN21], the feasibility threshold is
given by a,, = 1/2log(n). From (3.29),

1

Cn:f(an):m

corresponds to the feasibility transition for the matrix B®. In Figure 3.4.2, we observe
that the feasibility threshold is consistent. Even if the normalization term 1/4/n is always

14 4 =-= Threshaold

0.8

(=]
[=2]

P(Feasibility)

0.2

0.0

10 15 20 25 30 35
K
Figure 3.4.2: Transition towards feasibility for the model B®. For each value k =
a?/log(n) on the x-axis, we simulate 500 matrices BS of size n = 500 and compute
the solution x of Theorem (3.1) adapted to B° at the scaling C, (k) = 1/klog(n). The

curve represents the proportion of feasible solutions @ obtained for the 500 simulations.
The dotdashed vertical line corresponds to k = 2.

present, the transition threshold in C,, = 1/2log(n) expresses a rather large proportion of
interactions in an ecosystem. For example, the critical connectance threshold for a system
with 1000 species is C' = 1/4. For C' > 1/4, the probability that a random LV system
with 1000 species admits a feasible equilibrium decreases quickly.

Persisting species The second step consists of testing the properties of the persisting
species in the model. In the case of a single community, the heuristics has been established
by Clenet et al. [CMN22]. In two separate procedures, we compute empirically the
properties of the two models B and B®. In Figure 3.4.3, we observe that the two models
seem to match for the 3 properties: proportion of persisting species, mean and root
mean square of persisting species. The remark 3.11 on the Gaussian assumption can be
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completed when the connectance between species is inferior than 1. There exists a trade-
off between the strength of the interactions («)) and the connectance C' in the LV model
with a single community.
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Figure 3.4.3: Comparison between the empirical solutions (properties) (p*,m*, o*) of
matrix B and B® as functions of the interaction strength o and connectance C' = f().
Matrix B and B® has size n = 100 and the number of Monte Carlo experiments is 300.
The mean is fixed to zero p = 0.

3.4.2 Many communities: Stochastic Block Model

The results for a single community can be extended to several communities using the
framework of this paper. Suppose, there are two communities where B is defined by (3.2)
with interactions between two symmetric communities

Q2 (22

B=(51,5), a= (0411 a12> , p=0.

The connectance model is defined by the matrix B® where S is an adjacency matrix of a
symmetric Stochastic Block Model defined by

8= (). €= fe) = (b 2T

1/0%2 1/04%2

Two specific properties are studied, the global stability and the properties of persisting
species in each community (proportion of persisting species, mean and root mean square
of the persisting species).
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Global stability properties

Conjecture 3.1. Let p = 0 and
Hdiag(,@)l/2 (C + CT) diag(ﬁ)l/zH2 <1,

then a.s. matrix (I — B®) + (I — B%)" is eventually positive definite: with probability
one, for a given realization w, there exists N(w) such that for n > N(w), (I — (B*)¥) +
(I — (B%)“)T is positive definite. In particular, there exists a unique (random) globally
stable equilibrium x* € LCP(I — (B%)*, —1) to (3.14).

The significance of the conjecture inequality is simple to formalize. Assume that there
are two communities of the same size $; = [ = 1/2 and recall that the matrix C' is
symmetric. The condition then becomes ||C| < 1.

The histogram of the real eigenvalues of the B+ BT matrix seems similar to that of the
B + (B%)" matrix. In figure 3.4.4 the histogram of the matrix B + (B®)T is compared
to the distribution and the theoretical bound of the matrix B + BT. The result motivates
the conjecture.

§ 02
Spectrum ) ) Spectrum
1/2 1/2 1/4 1
@ s -n212.0- (15 1) me-neze- (L)
06 7":;:7_ Il 7::53‘ i 06 "T
§ 0.4 ‘ ‘ i § 04
M -10 05 Spezgrum 05 ) 15 -15 10 a5 Spezgrum 15
B _(1/9 1/25 B _(1/9 1/25
©8-22.0= (o V7) @ s =tz (U

Figure 3.4.4: Spectrum (histogram) of the Hermitian random matrix B° + (B%)T (n =
1000), condition on (B, C) are given in each sub-figures. The solid line represents the
distribution of the spectrum computed by the numerical approach. The dashed vertical

line indicates the upper bound of the largest eigenvalue of B + BT given by 2 S H;/ 2,
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Properties of the persisting species We compare the two models for the properties
of persisting species with two communities. The heuristics have been established in the
section 3.3. We compute empirically the properties of the models B and B®. In figure
3.4.5, we look at these properties for each community: proportion of persisting species,
mean and root mean square. The results show curves that merge into each others and
confirm the similarity between connectance C' and interaction strength o when there are
several communities.

3.4.3 Many communities with mean interaction parameter p # 0

In the framework of a community matrix, we consider a certain interaction trend p # 0.
We distinguish two types of model:

A
B=-—"_+E117

ay/n o n

and

BS=SoB, B= Ll
Vnoon
where S is the adjacency matrix of an ER graph G(n,C), C = f(«).

We have seen in section 3.2, that when we change the trend p of the matrix, the
stability can be affected by a “spike” eigenvalue that goes out of the bulk. We observe
that for the matrix B®, we apply the graph structure on matrix B. This implies that
the spike eigenvalue of the matrix will be less pronounced because only a proportion C'
of components are affected. If we want a perturbation equivalent to that of the matrix B
we should add a trend fi = oy in matrix B,

Individually, each species can undergo a larger mean interaction strength while re-
maining stable. We fall back on a complexity result in the sense that the B matrix is
less complex in terms of the number of interactions.

3.4.4 Partial conclusion

The SBM model is a type of food web that has been widely used in ecological models.
We choose a symmetric SBM, this allows to give a reasonable ecological condition so that
the interaction between two species is always reciprocal. We show numerically that in the
framework of the Lotka-Volterra model (3.3) choosing a type of network with connectivity
is equivalent to being interested in a model where all species are connected with a variable
interaction strength. In the Lotka-Volterra multi-community model, the relation between
connectance and interaction strength is C = f(a). Even if the meaning is different, we
fall back on the same stability criteria as for the Jacobian in the paper of May [May72].

However, when the interaction matrix has a interaction trend, its effect is weaker in
the case of a matrix with a lower connectance because it affects fewer interactions. It is
possible to find an equivalent by increasing the trend and finding spikes of the same size.

A numerical study has been performed, a challenge would be to compare theoretically
the difference between the two models and find the same similarities.
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Figure 3.4.5: Comparison between the empirical solutions of matrix B and B® as functions
of the off-diagonal block interaction strength cy5/C1o. The left column is associated to the
properties of Community 1 (pf, m§,o7). The right column is associated to the properties
of Community 2 (pi, m3,0%). Matrix B and B® has size n = 100 and the number of
Monte Carlo experiments is 300. The parameters are
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B = 0 0 , O = a1y 1 >C:f<a)>w3: 575
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3.5 Discussion

In this paper, we describe a model of the dynamics of species abundances when interaction
among species is structured in multiple communities. The main interest is to outline the
effect of a block structure on the stability and persistence of the species. Specifically, we
describe the dynamics and properties of each community in the system (proportion of
persisting species, mean and root mean square of the abundances of persisting species)
and their effect on each other. We define an interaction matrix per block which has
several characteristics such as the strength of the interactions 1/a;, the mean interaction
trend matrix p and the size of the community 8. In this context, we focused most of our
analysis to the case of two interacting communities. However, our results are scalable to
multiple communities.

At first, we extend the feasibility results found by Bizeul and Najim [BN21] in the
case of a block structure. A feasibility threshold was found in the form of an inequality
that must be verified to have a feasible community set. This complements the recent
results on interactions with a sparse structure [AN21] and interactions with a correlation
profile [CEFN22]. We notice that to maintain the feasibility of two communities, we
have to minimize interactions between the communities. Moreover, the community with
weaker interactions will be able to display a larger total abundance in the ecosystem
while maintaining the feasibility threshold. We extend the feasibility result in the case of
a strongly mutualistic community g > 0. However, for our model not to have exploding
abundances, it is necessary to keep the mean interaction trend relatively low, as is already
well known for mutualistic Lotka-Volterra models.

Subsequently, we studied what happens below the feasibility threshold where species
can become extinct. Theoretical conditions were given for a unique globally stable equi-
librium in the model (3.3) with persisting and vanishing species. This result is given
by Lyapunov conditions related to a result of Takeuchi and Adachi [TA80] and random
matrix theory. These stability results had been found in the case of a single community
by Clenet et al. [CMN22]. This complement the properties of stability in the Lotka-
Volterra system that has been studied by Stone [Stol8] and Gibbs et al. [GGRA1S].
Recent random matrix methods allow us to describe the spectrum of a block matrix and
plot it numerically. Furthermore, we extended the result with the addition of an inter-
action trend in each community. Communities with with opposite dominant interactions
(e.g. mutualistic vs. competitive) are more likely to result in a unique globally stable
equilibrium. Later on, we showed that whereas in the single community case where a
competition trend does not affect the stability [CMN22], when there are communities
have mostly competition interactions, it destabilize the system [AT12]. An antagonistic
network between two communities is more stable than a mutualistic or competitive one.

In a last open sub-section, hints to give sufficient and necessary conditions to obtain
a unique equilibrium are given. These conditions provided by Murty [Mur72] are related
to the results on the P-matrices associated with the LCP problem.

In a third part we give heuristics on the persisting species (proportion, mean and root
mean square of their abundances). These heuristics have also been found in the case of
a single community by Clenet et al. [CMN22]. From a physicist point of view and using
the methods of Bunin [Bunl7] and Galla [Gall8], Barbier et al. [BABL18] and Poley et
al. [PBG22] have extended the heuristics in the block and cascade model. Previously,
obtaining properties on persisting species in the LV model (not normalized by /n) has
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already been done by Servan et al. [SCG™ 18] where they consider a different growth rate
for each species. The study of the stability and properties of persisting species in the LV
system was also carried out by Pettersson et al. [PSNJ20, PSJ20]. From an ecological
point of view, heuristics are deduced from the properties of interactions between multiple
communities. A first consequence is that diversity is contagious: a feasible community
has less negative effect on the persistence of the communities it interacts with. The larger
the fraction of persistent species in a community, the less harmful its effect on other
communities. The second is the existence of a feedback between the effects of communities
on one another. Indeed, this causes a detrimental cycle between communities.

The average type of interaction in the food web plays a major role (competition,
mutualism, antagonism). For example, when two communities interact mainly through
mutualism or mainly through competition between them, the persistence of species in
both communities ends up being the same (see Figure 3.3.9). However, for an antagonistic
inter-community interaction (u12 = — 1), the community benefiting from the interaction
will have a larger fraction of persisting species. In the case of the type of intra-community
interaction will also affect species persistence: if a community is mostly competitive, it will
have less effect on other communities, while a mutualistic community will have a stronger
negative effect on other communities (see Figure 3.3.10). Overall, the most resilient
communities (i.e. with the highest fraction of persisting species) are those mutualistic
communities which benefit from inter-communities antagonistic interactions

In a last open section, we discuss the similarities between the strength of interactions
and the connectance in the Lotka-Volterra model. The general conclusion is that the same
equivalence between connectance and strength of interaction is found as in the works of
May [May72] on the stability-complexity threshold in the case of several communities.
The analysis of a symmetric SBM network that has been studied a lot in ecology [MM17]
can be done through the prism of a block model with varying interaction strength.

Many mathematical and ecological questions remain unanswered in this type of model.
First, a rigorous mathematical proof of the heuristics presented here would be of
interest although the LCP procedure induces a statistical dependence a priori difficult to
handle. This issue is still pending in the single community case [CMN22] and appears to
be challenging to address.

Second, we could extend the heuristics for two different scenarios. On the one hand, it
would be interesting to add pairwise correlation between species. This has already been
done by physicists, see [BABL18, PBG22]. In the study of feasibility, it has been shown
that a correlation profile does not play a role on the feasibility threshold [CEFN22]. On
the other hand, for the sake of complexity, we have chosen to set the growth rates equal
to the same value 7, = 1, Vk € [n]. It would be relevant to control the distribution
of the growth rate as in [SCG™18] or to consider structural stability as Saavedra et al.
[SRB*17], i.e. by how much can the growth rates be perturbed (initially all equal to 1)
without changing the type of equilibrium a* obtained.

Two subsections of the paper are based on simulations: the extension of the condi-
tions for a single globally stable equilibrium using the equivalence between P-matrix and
the LCP problem [Mur72] and the analysis of the trade-off of May connectance versus
interaction strength in the Lotka-Volterra model. In both cases, both problems are based
on RMT results.

The applications in ecology are numerous on this type of model. We could consider a
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spatial structure accounting for spatial proximity in the sense that two close communities
tend to be more strongly connected. For example, in an aquatic environment, we could
imagine the existence of an up/down gradient in a water column. In figure 3.5.1, a
situation where three communities are involved is illustrated
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Figure 3.5.1: In (a), a representation of the gradient of interaction between three commu-
nities in a water column is represented. The blue arrows correspond to strong interaction
strength due to their spatial proximity. On the opposite, the communities 1 and 3 are
separated, the green arrow represents a weaker interaction. In (b), the block matrix as-
sociated with this type of model is displayed. The colors of the blocks match the colors
of the arrows. The red color block corresponds to intra-community interactions.

Originally introduced by R.T. Paine [Pai66, Pai69], the concept of keystone species in
ecology is widespread i.e. one species controls the coexistence of the others, if we remove
it, we lose species with whom it was interacting. Mouquet et al. [MGMC13] suggested to
extend the concept of keystone species to communities. One could analyze in the block
system the existence of a keystone community that would have disproportionately large
effect on other communities. In a metacommunity dynamic, Resetarits et al. [RCL18|
have studied the keystone community concept where patches have a strong effect on other
patches.

One could imagine that the same species is present several times in the system, but
in different blocks, see Gravel et al. [GML16]. In this case, the inter-blocks represent
interactions between spatially isolated communities (so should be less strong). If each
diagonal or non-diagonal block is a copy of the same interaction pattern (possibly slightly
perturbed) and we can add linear effect to the system to represent emigration and immi-
gration, then we could study the feasibility properties of this system. In [GML16], they
found that it works best when the dispersion is intermediate.

Last but not least, it would be relevant to compare the patterns obtained with data in
ecology as in the recent article by Hu et al. [HAB™21] in the case of a single community.
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Appendix

3.A Numerical methods

Simulations were performed in Python. All the figures and the code will be available on
Github.

Simulations on the properties of persisting species are performed in two different ways.
The theoretical solutions are obtained resolving numerically the system of equations of
heuristics 3.1. We use a solver (cf. scipy.optimize) to find a local minimum of the function
defined by the system of equations (a modification of the Powell hybrid method). The
empirical solutions are computed using a Monte Carlo experiment. We simulate a large
number of matrix matrix B, we resolve the associated LCP problem using the Lemke’s
algorithm. Then, we use the LCP solution to calculate the properties of the persisting
species: proportion of survivors, etc. Finally, we make an average on the ensemble of
experiments. The Lemke algorithm is implemented in the lemkelcp package and can
be found on Github [Lam19]. The dynamics of the Lotka-Volterra are achieved by a
Runge-Kutta of order 4 (RK4) implemented in the code.

3.B Remaining computations

3.B.1 Moments of Z,

We compute hereafter the conditional mean and variance of Z;, = (Bx*);, with respect to
x*. We rely on the following identities Vk € Z;, V¢ € Z; and Yo € I, :

2
Hij 1 Hi 1 Mg i
EBk@ n] s E(Bzg) = aQn + nig ~ a2n y ]EBkgBko = # (6 75 0) .
i iJ

We first compute the conditional mean:

Vk’ € Iu Ew* (Zk) = 2 E(Bkg)[Ez‘ = 2 Bkg CL’e + Z Bkg

fE[n] 5651 EESQ
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=
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We now compute the second moment:

2
VkZGIZ', ]Em*(f,f) = Em* (Z BngE?) = Em* Z BkgBkOIZ‘JI:,
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where the approximation in (a) follows from the fact that

and (b) follows from the fact that

i i i i i i
J q.T*ZI?*: J qx*x*+ J qa:*x*
n2 [ 2ad?) n2 [2ad?) n2 %0
E,oeSlu$2 4681,0681 EESl,OESQ
Mg i Mg i
+ Ayl + o TE
P L (cSs 08y
2
2 2
TP S 2 Z o
- 2 2 9 il 4
n |‘,Z’.1’ ‘Sl| leSy

OESQ

Z1| |25 |S1] | S| 1 ) 1 .
+ i1 o —— € — T, | + ...
AN A 2, S| 2.

4651
2 ~2

= BYPI AT + 281 Bopr Do priatiihe + By s ,
R N2
= (i1 B D110 + iz Ba Paming )™ .

We can now compute the variance:

> v N2 A A2 N
VEk EIia varlys (Zk) =K <ZZ> - <]Em*Zk> = 51]7;01 + 5217;0—2 ‘
i Qo

3.B.2 Details of Heuristics 3

In the case k € S;:

rp = (1+ A +AfZ)) 17,5

= + =+ (a1 Br P11 + fuiz Bo Pa g )2 ,

= (1+X) iz, w65y + (A Zy) iz, 5%y -
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Taking the square, we get:

(@})? = (1 + A Liz0)
=2(1+ X)) Afl{zkw;"} + ((Af)zZz) 1iz, 5%y -
Summing over S; and normalizing, we get

1 *
S (x5)? = (1 + X)) ’8‘21{Zk>5}

keS;

+2(1+ X)) A7

Z Zkl{Zk>—5Zk}
kESi

!3\

keS;

!5 |

Finally, we conclude by replacing the empirical means by their limits
keS;

and get

=T+ X +2(1+ \N)AE(Z | Z > &)
+ AYR(Z% | Z > 6F) .

It remains to replace &; by its limit o to obtain (3.24)-(3.25).

3.B.3 Density of the distribution of the persistent species.

Assume that z* > 0, and let f = R — R be a bounded continuous test function. We have
Vk e Sz

Ef(e}) = E[f(lmz‘mrzk) \zkw:] ,

_u2

Lussry e7=

=J f(1+/\;"+A;"u)1 (o) Vo

A* +6*)2 1
_ d
f 1y Vard(—on)Ar Y

du ,

hence the density of z}, Vk € S; .

3.C Extension to the b-blocks model

3.C.1 Model

Within the framework of b communities,the matrix B = (By)n., is defined as

166



Chapter 3. Impact of a block structure in large systems of Lotka-Volterra

1 1
B = %vsvT oA+ ﬁvuvT : (3.30)
where
1 0 --- 0
gl 1, - 0 An - Ap
VeMuw, V=| . 7 | A= e
0 0 .. 1'1 Ay - Ap
b
Layn - 1oy 11t M
s = : : s =1 -,
Vap -+ 1/ow 1SR 172

o« B = (51,052 0p), Zi’:l B; = 1 is the size by proportion of each of the blocks.

o 7, is a subset of [n] of size |Z;| := ;n matching the index of species belonging to
Community 1.

e 17, is a entry wise vector of 1 of size g;n.

+ A;; is a non-Hermitian random matrix of size (;n, 5;n) with reduced centered Gaus-
sian entries i.e. N'(0,1).

3.C.2 Feasibility

We consider a growing scaling matrix

snmﬂ = VZ,]E{l,b},O{ijn—_)—Og)OO.

Let B,, a matrix defined by

1
B,=Vs,V'o %A. (3.31)

The spectral radius of ﬁA a.s. converges to 1. So as long as s, is close to zero, the
matrix I — B, is eventually invertible.

Theorem 3.8 (Feasibility for the b-blocks model). Assume that matriz B,, is defined
by the b-blocks model (3.31), p = 0. Let B = (51, P2 -, b)), Z?:l B; = 1 represents
the proportion of each community. Let s, — 0 and denote by st = 1/y/2logn. Let

Ty, = (Tp)re[n) be the solution of (3.6).

1. If there exists € > 0 such that eventually |(s, o sn)BTHOO > (1+¢)(s¥)? then

P{minxk >0} — 0.

ke[n] n—

2. If there exists € > 0 such that eventually |(sn o sn)BTHOO < (1 —¢)(s*)? then

n—a0

P{minxk > O} — 1.
ke[n]
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Sketch of proof. Starting from the decomposition the equilibrium x*:

$Z=1+Zk+Rk,

where Z, = >3 By, Yk € [n] and we suppose Yk € [n], Ry is a negligible term if n is

sufficiently large.

The feasibility of the b communities is studied independently. Using Gaussian addition
properties, a simpler form of Z; is deduced. Consider a family (Zj)e[n) of i.i.d. random

variables N (0, 1).

b
fkel, Zv= ), > Bu,

J=1/Lel;

Given B = (/1, f32, .., Bp), conditions on the matrix a are inferred to have

P(min z; >0) =1 < P(min Z; > —1) =1.

ke[n]

ke[n]

In order to compute a tractable form of min Zj, an additional approximation is made, if

n is large enough

min Z, ~ —/2log(Bin) ~ —/2log(n).

k?GIi

min 7, = min

ke[n]

1€[b]

ke[n]

(3.32)

Following the approximation (3.32), the condition min Z; > —1 asymptotically boils
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down to

7j=1 )
< max = :
iel] \ = o3 2log(n)
1 .
29T 2
= H(snosn) B8 HOO < Slog(n) (a)

]

Notice that the non-centered case can be treated in the same principle for several
communities.

3.C.3 Existence of a unique equilibrium
3.C.3.1 Centered case

Denote by H symmetric the matrix

where V1,7 € [b], H;; is a matrix of size f;n x ;n and each off-diagonal entries follow a
Gaussian distribution (0, 1/a;; + 1/a3;).
The Quadratic Vector Equation (QVE) associated to the matrix H is decomposed as

kel ! +izl<1+l) (2)
iy ———— = & — | =+ — | mu(z).
mi(2) i=iiez; " af o

Given m(z) = (my(z), - ,mu(2)), denote by 1/m(z) = (1/my(z),---,1/m,(2)) and
S =1V(s+sT)VT the QVE can be written in the standard form

T n

() =z+4+ Sm(z). (3.33)

Following Theorem 2.1 in Ajanki et al. [AEK19], ¥z € C, Equation (3.33) has a unique
solution m = m(z) and the support of the associated measure is included in [-X%, 3] |
r=2|8 Hé/ ?. This information gives a bound to the support of the matrix H associated
with (3.33). In particular, Apa.x (H) < 2 HSHé/Q. Recall that —21 + H is negative definite
if Amax () < 2. The final condition, which is non-sharp, to have a unique globally stable
equilibrium is

2185” <2 < |8, <1,
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Given the particular shape of the matrix S, computing its norm is equivalent to computing
the norm of a matrix of size b

8], = [diag(B)"* ((s o 5) + (s 0 5)") diag(8)"?], -

which completes the proof: we can then rely on Theorem 3.4 to conclude.

3.C.4 Persisting species

Let (o, p) satisfying the condition for * to be a unique stable equilibrium. The following
system of 3b equations and 3b unknowns p = (p1,pa, .., ), M = (M1, M2, ...,my), o =
(0-17 02y -4y Ub)

Vie[b], (0)* = (1+X)?+2(1+XN)AE(Z|Z > 6) + AIE(Z%Z > 6))

where
b b
, 11—\
_ 2P\ s i
A; = ij(aj) A= ijmjﬁjuij ;0 = ;
admits a unique solution (p*, m*, o*) and V i € [b]
A a.s. * A a.s % d A~ a.s. *
Pi =i, My ——m; an 0i — >0 .

3.C.5 Distribution of the persisting species

Let (e, p) satisfying the condition for &* to be a unique stable equilibrium. * the solution
of (3.14) and let (p*, m*, o*) the solution of the Heuristics. Recall the definition (3.26)
of A\i, Ay, 6; and denote by 6F = 6;(pF, m,oF). Let xf > 0 a positive component of x*
belonging to the community ¢, then:

n—0o0

E(mZ)—>£(1+)\2‘+A§‘Z ‘ Z>5;"),

where Z ~ N(0,1). Otherwise stated, asymptotically Yk € S;, zi admits the following

density
1{y>0} 1 1 Y * ?
_ L 44 . .34
fr(y) 5(—3?) Aryan exp{ 5 < ; + 51) (3.34)

3.D Necessary and sufficient condition of P-matrix

As a reminder, Murty [Mur72] states that the LCP(I — B,—1) has a unique solution
ifft I — B is a P-matrix. The condition given in Theorem 3.6 is sufficient to guarantee a
unique solution to LC'P(I— B, 1) but not necessary, although it provides more information
and guarantees the global stability. This condition might be relaxed finding the bound
associated to the P-matrix property of I — B. In this section, we present, from a heuristic
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point of view, the information on the potential bound to have the existence of a unique
equilibrium to the LCP problem.

First, recall the definition of P-matrix with its equivalent given by Fiedler and Ptak
[FP66].

Theorem 3.9 (Theorem 1.3 [FP66]). The following properties of a square matriz M are
equivalent:

1. All principal minors of M are positive

det(Mz) >0, VIZIcn], Mz= (Mg)kgez;

2. All real eigenvalues of M and its principal submatrices are positive.

The main issue is to understand the spectrum of the centered matrix B i.e. pu = 0.
According to the Theorem 3.9, one has the implication

sup p(B*) < 1= VI < [n], det (I — B¥) >0

Zc([n]

where B? is the main sub-matrix of index Z x Z. If we conjecture that the spectral radius
of any main sub-matrix of B is smaller than the radius of B i.e.

sup p(B") < p(B),
Ic(n]

then in the single community case i.e. @ = al11', one has p(B) <1 < a > 1. To

conclude a > 1 implies the existence of a unique equilibrium to the LCP problem. This
sufficient condition is possibly necessary.

When considering many communities, an open question is the conjecture on the exis-
tence of a similar bound depending on the parameters ac and .
Given V7T a variance profile of matrix B associated to Z < [n]. In the case of two
communities, V7 is a main sub-matrix of

1 T 1 T

\% 1 af, ]-Il lIl af, 121 112
o\ 21,17 11T
n 0‘%1 Is 1 a§2 I Is

By RMT properties, Najim et al. [CHNR21] prove the convergence of the spectral measure
for a non-Hermitian matrix with variance profile. The convergence of the spectral radius
of B is not established but is expected. The spectral radius of B is computed from the
variance profile V'

2 /1 1 1/2
(5 275 )¢ 2"

Finally, if we establish the same conjecture as in the single community case, we would
have

sup p(V1) < p(V) < 1.

Ic[n]
To conclude p(V) < 1 is a sufficient (and possibly necessary) condition to the existence
of a unique equilibrium to the LCP problem.
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Remark 3.15. The spectral radius of matrix V

12 /1 1 1/2
51 0 0‘?1 Q%Q 61 0
0 B = =)\ 0 f
21 22

represents the radius of the disc which supports the limiting eigenvalue distribution. The
module of the second eigenvalue is the radius of an inner disc where we can witness higher
concentration of the eigenvalues, see Figure 3.D.1.
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Figure 3.D.1: Spectrum of non-Hermitian matrix B in the complex plan (n = 1000), see
caption in each sub-figure for the setting of (8, ). The solid line circle represents the
boundary of the circular law and concentration circles associated to the eigenvalues of the
variance profile matrix V. In plot (c¢)-(d), the conditions of the circular law are met.

Remark 3.16. A comparison with the bound when there is a single community shows that
the same result is obtained. The spectrum of the matrix of rank 1

1
202 \1 1/~

has two eigenvalues 0 and é The condition for a single-community is recovered é <
l & 1l<a.
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3.E Additional graphs: type of food web interactions

Here we summarize with 6 graphs (see Figure 3.E.1) the effects on the persistence of each
community according to the type of interactions. For this purpose we define 4 disturbance

matrices
" _ 0.4 H12 u _ 0.4 H12
MM pioy 0.4) * FMC por —0.4)7
o —0.4 12 . —0.4 12
I“l’CM - ( /1/21 04) I ’IJ’CC - ( /1/21 04 .
For each of these matrices, an analysis of the antagonistic (p12 = —p21 = 0.4), mutualistic
(12 = po1 = 0.4) and competitive (u12 = po; = —0.4) case is performed.
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Chapter 4

A probabilistic perspective of the
hierarchical competition-colonization
trade-off model

Abstract

Introduced and analyzed by Tilman, the hierarchical competition-colonization trade-off model
represents a system of species competing for a set of habitat patches. In this model, the competi-
tion is hierarchical: the dynamics of each species’ occupancy within the metacommunity depends
on its colonization and extinction rates. For a better understanding of the restrictions induced
on the colonization rate in a large-dimension system, we propose a probabilistic interpretation of
the model by looking at colonization parameters following a given probability distribution. Our
aim is to determine the distribution maximizing the coexistence between the species. Based on
this information, we can assess species occupancies and characterize the assembly process of the
ecosystem. To answer this question, we first carried out analytical and simulation-based work to
investigate the optimal distribution, persistence and stability. Second, we analyzed two different
types of assembly processes: a “all-at-once approach” starting from a pool of species by letting
the dynamics elapse, and a “invasion sequence approach” developing an invasion sequence that
involves a historical contingency effect.

The hierarchical competition-colonization trade-off model represents a first step in our un-
derstanding of species-rich metacommunities. From a mathematical point of view, we find in-
formation on the stability and persistence of the model allowing the whole or a sub-population
of species to coexist. We continue this investigation by providing insights into the shape of the
distribution of the colonization rate. On the one hand, for a wide range of distributions, we
found that if species are thrown together all at once, on average one in two species persists
indefinitely. On the other hand, when species try to invade in a random sequence, the heavier
the distribution “tail”, the higher the probability of coexistence. Subsequently, the comparison
of the two assembly processes shows us that the invasion sequence approach seems to be much
more restrictive in terms of the number of persisting species due to historical contingencies and
extinction cascades.

To conclude, this probabilistic perspective of the hierarchical competition-colonization trade-
off model allows to put forward and compare two different types of distinct assemblages and
gives conditions for many species to coexist under the competition-colonization trade-off.
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Introduction

Motivations

Understanding the functioning of large ecosystems represents an important challenge in
theoretical ecology. The complexity of these systems makes it necessary to use mathemat-
ical modeling. Regarding the Lotka-Volterra model [Lot25, Vol26], early mathematical
models did not take into account the spatial structure of habitats to understand the
mechanisms underlying species coexistence. However, under the impulse of the research
of MacArthur [Mac84] in population biology and geography and the formulation of the
theory of island biodiversity by MacArthur and Wilson in 1967 [MW67], the consideration
of spatial dynamics became a major issue in ecology. Subsequently, a theory derived from
different concepts (patch dynamics, species sorting, mass effect, neutral theory) emerged:
the metacommunity. More recently, the metacommunity framework has subsumed several
concepts, notably niche theory, ecological filtering, dispersal limitation, patch dynamics
and the importance of stochasticity, under a unified theoretical umbrella, with the aim of
pushing the field further in the direction of scientific, refutable community ecology (see
Leibold et al. [LHM™"04] for a review).

One of the most popular model of spatially structured environment is the competition-
colonization (C-C) trade-off model. It belongs to the class of patch dynamics models
where the interest is in modeling the occupancy of a species in the landscape and not its
abundance. The considerable advantage of this model is its simplicity, allowing for both
theoretical and empirical research. The origin of this model goes back to the work of
Levins et al. [Lev69, LC71] who introduced a simple model of colonization and extinction
dynamics. This model assumes a patch-occupancy where the main driver is the ability
of the population to disperse between different patches while being subject to extinction.
This metapopulation model has subsequently been extended and integrated into many
empirical and theoretical works (see Hanski [Han99] for a review). Later on, Levins’
model has been extended to a multiple species framework. The C-C trade-off model has
emerged as an important object where the main idea is to keep few parameters, but to
find a simple rule to make species coexist, the competition-colonization trade-off.

In a first step, this model was studied in the framework of a hierarchical competition
i.e. the most competitive species is the worst colonizer. In early work, Hastings [Has80)]
was interested in studying disturbance in the model where he demonstrated the so-called
“Intermediate Disturbance Hypothesis”. Then, Nee and May [NM92] added habitat de-
struction to the model. Further research was carried out for two competing species by
Hanski [Han83] and for a general form of the hierarchical competition-colonization trade-
off model by Tilman [Til94] and including the impact of habitat destruction by Tilman
et al. [TMLN94]. Kinzig et al. [KLD"99] finally analyze the high diversity limit in the
hierarchical C-C model.

In the case of non-hierarchical competition, the classical paradigm between competi-
tion and colonization was studied by Amarasekare et al. [Ama03] and Yu and Wilson
[YWO01] in the replacement competition case. Subsequent analyses are also found in
[PRI8]. Calcagno et al. [CMJD06a] gave a new impulse in response to Yu and Wilson
by taking into account competition and a preemption parameter. Empirical research has
also been conducted by Cadotte [Cad07] to study the intermediate disturbance hypoth-
esis (IDH) related to the C-C trade-off model. In fact, the IDH is not supposed to be a
metapopulation scale assumption but rather a local scale assumption. Fox [Fox13] has
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argued extensively that this assumption is shown (in a mathematical sense) not to be pos-
sible i.e. no model of local dynamics predicts the IDH under realistic assumptions. This
type of model has been extended in other fields than ecology, in particular on host-parasite
interactions by May and Nowak [MN94, NM94, MN95].

More recently, the C-C model is still the subject of considerable attention with exten-
sions for higher-order competition [LBL20], dispersal network [ZBN*21], multimodality
in diversity—disturbance relationships [ML02, LBB22].

In this article and to clarify the restrictions induced on the colonization rate in a
large-dimension system, we propose a probabilistic interpretation of the hierarchical C-C
model. We consider communities that emerge through the model dynamics from an initial
random pool where the colonization parameters are sampled from a specific probability
distribution. A link can be formally established between the C-C model and the Lotka-
Volterra model (see appendix of [CMJD06a]) providing a new proof of the global stability
of the system. This probabilistic approach aims at understanding the distribution and
characteristic outcomes that maximizes coexistence between species. Surprisingly, a uni-
versality result appears for the distribution of number of persisting species from a pool
of many species. Furthermore, we challenge this universality result when communities
are assembled one-at-a-time from a regional pool [SA21]. This different assembly process
shows different dynamics properties going from linear to logarithmic growth. Patterns of
competition colonization trade-off appears showing the importance of finding a balance
between competitors and colonizers.

Model

Commonly called the competition-colonization trade-off model, it is an extension of the

well-known Levins [Lev69] model to n-species. Its most general form is provided in
Calcagno et al. [CMJDO0Ga]

dpi(t) = cipi(t) (1 R

di pj(t)> - mipi(t)

+cipi(t) Y i (0 — pilt) Y epi(Dmgi, Vi € [n],

J#i J#i

n

(4.1)

where p;(t) € [0,1] represents the occupancy of species i at a given time t, m; is the
extinction rate of species 7, ¢; represents the colonization rate of species 4, 1;; corresponds
to the probability that species ¢ takes over a patch already occupied by species j if it
lands there.

The first term of the equation represents the colonization of species ¢ into empty
patches, the second term of the equation represents the extinction of patches where species
¢ is currently present. The third term corresponds to the colonization of species ¢ into
patches occupied by other species, the weakness of species j present in a patch is repre-
sented by the competition term 7;;. Conversely, the last term of the equation represents
the patches of species i that are subject to colonization by other species. The species i is
weakened by species j according to the competition factor ;.

In this paper, we focus on its simplified version which corresponds to Hastings’ and
Tilman’s version where we assume that the competition is hierarchical (referred as the
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HT model). The HT model represents a system of species competing for a set of habitats
(patch). It is a metacommunity model where competition is hierarchical: the dynamics
of each species within the population depends only on its colonization rate (c¢) and its
extinction rate (m).

Hastings [Has80] was concerned about the effects of disturbance m; = m,¥i € [n]
on species richness and considered the extinction rate of each species the same. The
HT model in its more similar form to the C-C model was introduced by Tilman and
represented as

i—1

dp;it) = cipilt) (1 - ipj(t)) — mip;(t) — (Z cjpj(t)pi(t)> NVieln], (42

J=1

where p;(t) € [0,1] corresponds to the occupancy of species i at a given time t, ¢; €
R? corresponds to the colonization rate of the species ¢ where species are arranged in
increasing order of ¢ i.e. ¢; < -+ < ¢,, m; € R, corresponds to the extinction rate of

species ¢ and
1 ife<y,
i 0 otherwise.

The term 7;; reflects the additional requirement intrinsically related to the model:
the establishment of a competitive hierarchy between species. The main idea consists in
having the first species as the best competitor but the poorest colonizer. Each species
added to the system must be a better colonizer and a poorer competitor. The key idea
to have a stable coexistence of a maximum number of species is that high colonization
rates could offset the competition due to other species by invading the patch (sites) that
are not occupied.

Denote by ¢ = (c1, ...,¢,) " the vector of colonization rates. Without loss of generality,
it is assumed that the colonization rates are sorted in increasing order i.e.

L <Cy<...<ep.

This means that species 1 is the most competitive and species n the least competitive.
From a probability theory viewpoint, a sorted independent identically distributed (i.i.d.)
random sample from a continuous distribution is an order statistic of a statistical sample.
For standard properties of order statistics see Appendix 4.B.2 (for a more detailed review,

see Arnold et al. [ABNO0S]).

The purpose of this article is to improve our understanding of spatially structured
communities comprising many species. However, when the number of species becomes
very large, it is challenging and costly to collect data. In general, it is easier to have
an estimate of the ratio ¢/m for a Levins model (on the one hand, it is linked to the
equilibrium, on the other hand, if we can estimate a number of colonization events, we
will necessarily relate it to a number of extinctions to be able to make something of it).
Here, we suppose that the colonization rates ¢ follow a certain probability distribution
with continuous positive density. From an empirical point of view, this is justified insofar
as we wish to know if there are distributions independent of the exact values of the
colonization parameters. We note Bertrand’s paradox on distributions that Calcagno
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et al. [CMJDO06b] take up in their answer to Adler [AdlO6]. The thinking process is
similar to May’s seminal paper [May72] on the community matrix where he assumes
that around the equilibrium point the effect of one species on another has a certain
statistical distribution. and to the numerous works that followed on the effect of different
distributions. Subsequently, many works have followed to understand the effect of the
diverse distributions, in particular Allesina et al. [AT12, AT15, GRA16].

Many questions arise as follow-up:

o Isit possible to find a statistical distribution that maximizes the coexistence between
the species?

o Given a certain distribution, can we predict the expected number of coexisting
species?

o Given the statistical distribution maximizing the coexistence, what is the occupancy
of the persistent species?

Notation

See Appendix 4.B for more details on the probability distribution.
o Uniform distribution of support [1,2] is ¢([1,2]) or "Uniform 1.
o Uniform distribution of support [1, ¢max| i U([1, ¢max) or "Uniform cpa — 1.
 Pareto distribution of support [1,00) with parameter a is P(a) or "Pareto a’.

» Exponential distribution of support [1, 00) with parameter A is £(A) or "Exponential
A

o Log-Cauchy distribution of support [0, o) with parameter u, o is LC(0,1) or "Log-
Cauchy’.

4.1 Dynamics and connection with the Lotka-Volterra
model

4.1.1 Set of admissible solutions

At this point, without concern for the dynamics of the system (4.2), many properties of
the model can be obtained in a simple form [Til94]. In detail, equilibrium occupancy of
each species p* = (p},...,p}) can be computed with iterative equations. Given p*, one
can deduce the proportion of empty space when i species are present

j=1

The results obtained by Tilman for the occupancies, empty space and colonization rate
are recalled in section 4.A.1.

Assume the extinction rates are all equal i.e. Yi € [n], m; = m. At this point, the
conditions for species coexistence only relate to the choice of the parameters ¢. The

179



Chapter 4. A probabilistic perspective of the hierarchical competition-colonization trade-off model

invading condition of a species depends only on its colonization rate and the state of
the system. At equilibrium with n species present in the system, a species invades and

persists if and only if
m
Cnt1 > h7%7
where ¢,, .1 corresponds to the colonization rate of the invading species and h,, to the
proportion of empty patches before invasion. This condition forces the new species to be
a better colonizer than the previous ones. These conditions can be written for all species

and make up the admissible set for the colonization rate.

An example of a two-species system Consider the two-species version of the model
(4.2), species 1 is the most competitive, species 2 the least competitive. Assume that both
species have the same extinction rate m. The dynamics is governed by a two-equation
system:

dpy (t
c;t( ! = api(t)(1 = pi(t)) — mpi(t) = pr(t)(cr(1 = pa(t)) —m),
dpo(t
c?lt( ) = capa(t)(1 = p1(t) — pa(t)) — mp2(t) — cip1 (¢)p2(t) -
At equilibrium, the occupancy of species 1 is
m
R [
Dy e’

which corresponds to the fixed point value of the Levins model [Lev69]. For species 2, the

occupancy is
m c
e (1)
Co Co

Using the two equilibrium equations, we can deduce the constraints of coexistence between
the species
i
CiL >Mm; Cy > —.
m

The constraints for a two-species system in the space of admissible solutions is illus-
trated by a density plot for two different probability distributions in Figure 4.1.1. We
observe that each distribution gives a different number of red admissible points.

Graphical representation in the n-species system A natural question concerns
the distribution of the vector ¢ having a maximum of point in the admissible set. From
a graphical perspective, we can see the sequence of conditions on an interval. Given a
sample of colonization rates c.
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Figure 4.1.1: Given two species with the same extinction rate m = 1, we sample ¢ =
(c1,¢2) by a given distribution (in (a) uniform, in (b) exponential) and sort them ¢; < ¢s.
Each sample (¢q, ¢2) is represented by a point in space, the number of samples is 300. If
the couple coexist, the point is red. Otherwise, the point is blue. The set of conditions C
is represented as red solid lines.

o As a simple requirement, the colonization rate must be greater than the extinction
rate, otherwise the species goes to extinction. Is ¢; > m?

m

o If no, species 1 does not invade and the new condition is ¢ > m?

o If ¢y > m, species 1 invades the system and add a new condition. This condition
has been referred to as the niche shadow in [KLD"99]. According to Meszéna et al.
[MGPMO6], this is similar to limiting similarity. Is ¢y > ¢}/m?

m C1 i s csm
2
m ]

Remark 4.1. From a theoretical standpoint, we can compute the probability of coexistence
by simple integral computations. However, without fixing the density function f of the
colonization rates ¢, the computations are untractable. Given a fixed distribution f, we
can compute analytically the integral (in small dimension). In the contrary case, we
can estimate the integral numerically by using standard Python library or Monte Carlo
experiments.
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Admissible sets for the colonization rates Consider a species pool of n species in
which the colonization rates are randomly drawn from a given distribution following the
dynamics of (4.2). Assume the extinction rate is the same for all species Vi € [n], m; = m.
Let S < [n] be the subset of indices of the persisting species. The components of the
equilibrium vector p* can be classified into two classes: the persisting species, i € S such
that pf > 0 and the vanishing species, i € §¢ such that p} = 0.

The conditions on the colonization rate vector ¢ are formulated in order to have
coexistence between the species in the form of a set. The set of admissible solutions
represents a series of algebraic conditions and depends on ¢ and m

i—1 2 i 2
(Hj:l $2j+1> m (Hj:l xzj)
. 5 5 T2i41 > - )
11— 11—
m (szl 1‘2;‘) (szl 902j+1)

Cm ={ E RZ_ L X9 > (43)

The standard case (m = 1) will be denoted C. These conditions are obtained using the
recursion formula in the Appendix 4.A.2. The equations for the occupancy p* for each
species as a function of the colonization rate ¢* and the fraction of empty patches formulas
(already obtained in [Til94]) are re-computed.

How to maximize the coexistence between the species in the HT model? From a down-
to-earth point of view, one could just choose a vector of colonization rates satisfying ¢ € C
corresponding to the case where all species coexist and survive. However, this condition
is very stringent. To simplify this restriction, it is assumed that only a subset fulfills the
conditions ¢s € C where ¢s : {¢;,i € S}.

The coexistence problem can be reinterpreted as: given a finite number of species with
colonization rates taken from a given finite support, how many species can be chosen so
that they all persist?

IfeseC, P(S|=k|n).

This problem is equivalent to check 2" possibilities, either the presence or the absence
of the species. However, since the problem includes a competitive hierarchy, if the first
species has the opportunity to invade, it cannot be displaced by the next species. The
most competitive species will always have priority. We end up testing only n conditions
by following a decision tree (see Figure 4.1.2).

To sum up, the system follows the dynamics given by equation (4.2) starting from a
pool of n species. The vector of colonization rate ¢ is sampled from a positive probability
distribution and we sort the ¢ in increasing order. The aim is to assess if cs € C, P(|S| = k |
n), the remaining colonization rates for a fixed n. A schematic way to solve this problem
is to browse a tree represented in Figure 4.1.2. From an algorithmic standpoint, a version
is presented in pseudo-algorithm 1 which keeps the persistent species at the equilibrium
point. We define this algorithm or ecosystem construction as all-at-once metacommunity
process.

4.1.2 Relation with the Lotka-Volterra model and global stabil-
ity of the equilibrium

Introduced at the beginning of the 20th century by Lotka [Lot25] and Volterra [Vol26],
the Lotka-Volterra (LV) model is one of the most popular models in ecology. One of its
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% {3} {2} {2,3} {1} {1,3} {1,2y  {1,2,3}

Figure 4.1.2: Decision tree for a 3-species system. The path of the binary tree selects the
persisting species. At each node, the path on the right corresponds to the survival of the
species, the one on the left to the extinction of the species. At the end, the root indicates
the indexes of the persisting species.

strengths is its versatility: many models can be related to an LV model including, in par-
ticular, the extension of the Levins’ metapopulation model to several species. We revised
the HT model as a Lotka-Volterra model and gives a demonstration of the uniqueness and
global stability of the equilibrium point of (4.2). Notice that Tilman [Til94] and Hastings
[Has80] also carries out this problem in appendix of their articles.

First, we reformulate the HT model as a Lotka-Volterra model

dpz i i—1 .
ar b (1 - ZP;‘) - P — (Z ijjpz‘> ,Vie[n],
j=1

Jj=1

dp; = .
= e pi(ri — (Ap);) = p; (ri — ;Aijpj> ,Vie[n], (4.4)

d .
< P _ diag(p)(r — Ap) .

dt
where
c 0 0O --- 0
c1+ ¢ Co 0
ri=c¢—m;,VYie[n]and A= |c1+c3 ca+ez e
: 0
Cc1+ ¢y Cn,

Generally, 7 = (rq,...,r,) is understood as a growth rate and corresponds here to the
dynamics of the species ¢ without interactions. If the colonization rate is superior to the
extinction rate, the species survives and grows indefinitely, otherwise, the species vanishes.
However, this must be interpreted carefully because p; € [0,1], therefore r can not be
clearly understood without A. The matrix A corresponds to a matrix of interactions, it
is a competitive interaction matrix because —A;; < 0, Vi, j € [n]. The impact of species
J < i on species ¢ is ¢; + ¢;. On the one hand, this interaction coefficient depends on the
colonization of ¢;, the higher the colonization rates of better competitors, the less easy

183



Chapter 4. A probabilistic perspective of the hierarchical competition-colonization trade-off model

Algorithm 1 All-at-once metacommunity

Require: n > 0
c < list
for [ e [1,n] do = Creation of a random vector
randomly choose ¢,.,, from a probability distribution;
c<— e, chew);
end for
¢ « Sorted(c); > Ascending sorting algorithm
for j € [1,len(c)] do = Selection by the tree of the persisting species
S —m;
if ¢[j] < S then
del(c[]);
else
S — c[j]?/S;
end if
end for

it is for a species to persist. On the other hand, the presence of the ¢; coefficient is less
intuitive and intrinsically related to the model (4.2). The ¢; comes out of the matrix term
and states that we do not recolonize the patches where we are present.

Feasible fixed point To study the behavior of p(t),t — +o0, we characterize the
equilibrium of the system (4.4). An equilibrium p* is defined as a vector satisfying
dp*
Vi€ [n], 5{ 0 < piri—(Ap*)) =0.
If A is non-singular and a feasible fixed point exists i.e. pf > 0, Vi € [n], then the
equilibrium p* can be explicitly determined by

p*=Alr.

The condition on the vector ¢ to have all species coexisting is ¢ € C,,. These conditions
are very restrictive. We are rather interested to determine a subsystem of species which
coexist at equilibrium.

Fixed point with vanishing species In general, we consider cases in which there is

no feasible equilibrium. A particular attention is given to the fixed point where some

species may vanish i.e p;(?) T 0. In the following, we show that equation (4.4) has a
—+00

unique globally stable equilibrium.
A unique equilibrium p* to (4.4) is globally stable if for every p, > 0, the solution to
(4.4) which starts at p(0) = p, satisfies

p(t) —p".

Definition 4.1 (P-matrix). A square matrix M is said to be a P-matrix if and only

1. All principal minors of M are positive

det(Mz) >0, VIc|n], Mz= (Mw)ker -
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2. All real eigenvalues of M and its principal submatrices are positive.
Proposition 4.1. The matriz A defined in (4.4) is a P-matriz.

Proof. ¢ is positive and A is a lower triangular matrix. The proof rely on two properties
of the triangular matrix.

First, the eigenvalues of a lower triangular matrix are the diagonal entries of the
matrix. Second, each principal submatrices of A are a lower triangular matrix and there
eigenvalues correspond to a subset of ¢ > 0. Using definition 4.1 ends the proof. [

In graph theory, the matrix A represents a directed graph.

Definition 4.2 (Directed cycle). A directed cycle in a directed graph A is a non-empty
directed path in which only the first and last vertices are equal.

Since the matrix A is triangular, A represents a directed acyclic graph i.e. there is

no cycle in the graph. Consequently, —A is composed of cycles of length one (a cycle on
himself).

Theorem 4.2 (Takeuchi et al. [TAT78]). Suppose that —A has only cycles of length one.
Then the system (4.4) and every reduced system of (4.4) have a nonnegative and globally
stable equilibrium point for each r € R™ iff A is a P-matrix.

To conclude, relying on Theorem 4.2, the system (4.4), equivalent to (4.2), has a
unique globally stable equilibrium point p* independently of the parameter values i.e. for
any initial condition p,, colonization rate ¢ and extinction rate m.

4.1.3 Dynamics of the model

In a given landscape of patches, suppose there is a pool of species whose dynamics is (4.2).
It is assumed that for i € [n], ¢; are i.i.d. random variables on R* . After drawing, sort the
¢; in increasing order. The continuous dynamics is given by the differential equations (4.2)
and the behavior is simple. Independently of the parameters (¢, m) of the model and the
initial condition, the dynamics converges to a unique equilibrium p* = (pi, ...., p¥).

In fact, direct information on the persistent species is given by the conditions (4.3). If
one waits long enough, the equilibrium is reached. This equilibrium is saturated because
it is resistant against invasion of absent species [HS98]. Let i € 8¢ the indices of the

extinct species, then:
<1 dp > <0.
Di dt p;—0+

By construction, the dynamics of the model (4.2) can be understood in two equivalent
directions (see Figure 4.1.3). On the one hand, there is a primary ecosystem with a pool
of n species that have different initial occupancies. The ecosystem changes continuously
according to the ODE of the model. On the other hand, the ecosystem is assumed to
be initially empty and species try to invade it sequentially in a random order. When a
species tries to invade the system at a certain time t, it can cause the extinction of other
species, but also the expansion of other species that were already present in the system.
Indeed, the particularity is that a species that has invaded the system, even if it becomes
extinct, it can invade again at any time.
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Figure 4.1.3: Diagrams of the two types of construction of the model (4.2) dynamics
are represented for a ecosystem. The ellipse corresponds to the habitat and the points
corresponds to the species. In Fig. (a), standard dynamics is shown. In Fig. (b), the
assembly dynamics is represented with an invasion of each species.

Remark 4.2. A permanent extinction never occurs in the dynamics of the model. However,
the vanishing components corresponding to the species going to extinction with pf = 0
and p;(t) — 0.

t—00

Both types of construction are represented in Figure 4.1.4. The ecosystem is composed
of 7 species. We observe a convergence of the two dynamics towards the same equilibrium
which is true for infinitely long periods. We notice that the disturbances generated by the
first method are mainly located at the beginning of the dynamics whereas in the second
case, each invasion generates disturbances.

04
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Abundanc

(a) All-at-once metacommunity (b) Sequential invasion without exclusions

Figure 4.1.4: The two types of construction of the model (4.2) dynamics are represented
for a ecosystem of 7 species (n = 7). In Fig. (a), all-at-once metacommunity is shown
with a starting pool of 7 species with random initial conditions. The abundance or habitat
proportion of each species as a function of time is displayed. In Fig. (b), the sequential
invasion without exclusions is represented with an invasion of each species at a regular
time interval.

4.1.4 Choice of the extinction rate

In this paper, we focus on a specific HT model form (4.2) similar to the study of Hastings
[Has80] . The extinction rate is equal for each species i.e. Vi € [n], m; = m. Without this
condition, the set of admissible solutions C,, in (4.3) cannot be defined. In this paper, the
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main interest is on the colonization rate e. However, studying the model with different
extinction rates is an intriguing perspective.

Without loss of generality and in a framework where the interest is on ¢, we could have
chosen an extinction rate equal to m = 1 for all species. However, we will maintain the
term m (when possible) to have common results. We begin with equation (4.2) where we
divide the equation by m

dpi 7 i—1
o = bici (1 - ZPj) — mp; — (Z ijjpi) ) (4.5)
j=1

j=1

dp; 1 G . = gy
—=p— 1= =i — Lo | .
e (1 3] - (S o)
7j=1 7j=1
One can define a new vector ¢’ where ¢; = % Vi € [n]. Considering m fixed, the analyses
can proceed equivalently on ¢ or ¢’

dpi 1 / i - /
g - PG (1 - ;Pj> —pi— <; c;pipi | - (4.6)

The equilibrium of equation (4.6) is similar to (4.5) with m = 1. The factor 1/m has
only an impact on the speed of the convergence. We incorporate the extinction rate m
into the colonization rate, this corresponds to sample the ratio ¢; = ¢;/m from a positive
probability distribution. Denote by C’ the series of algebraic conditions associated with
the vector ¢/, then

celC < ceC,.

4.2 All-at-once metacommunity dynamics: persistent
species in the hierarchical competition-colonization
trade-off model

In the section 4.1, the set of admissible solutions C has been defined, this gives information
about the number of persistent species in the model (4.2). Information on the dynamics
was given to narrow the focus of the analysis to C. We have all the necessary mathematical
conditions to find a statistical distribution that maximizes the probability of coexistence
between the species and to have information about the species richness which can coexist
on average.

4.2.1 An invariance of species richness

Evolution of the species richness Given ¢ sampled from a positive probability dis-
tribution, the species richness k after a sufficiently long time and after removal of species
that are going to extinction as a function of the number of species in the initial pool n is
on average n/2,

n
E(S| = kln) = 5
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This result is shown by heuristic analysis and numerical simulations in the next section.
Notice that the number of species in the initial pool n is equivalent to the number of species
that can invade the system at any time. The function of the species richness according to
the number of invasions is represented in Figure 4.2.1. All the supports of the distributions
start at m which implies that no species is repressed by lack of colonization. Notice that
on average half of the species coexist independently of the distribution of the colonization
rate. For example, if we have 1000 species at the beginning, on average 500 will remain
in the end, whether the ¢ is drawn from a uniform or a power law distribution.

500

400

300

200

Species richness

—— Uniform
Exponential
Power law
Log-normal

100

0 200 400 800 800 1000
Size of the starting pool
Figure 4.2.1: Representation of the species richness of the persistent species k as a function
of the number of species in the initial pool n for different distributions. The curve is
derived using Monte Carlo simulations by computing P = 300 times the algorithm 1
and averaging the number of persistent species. Independently of the distribution, the
behavior of the curve is f : 2 — x/2.

A subsidiary issue is the distribution of the persistent species. Is it possible to describe
the distribution of the persistent species P(|S| =k | n)?

Distribution of the number of persistent species On average we observe that
half of the persisting species remain, what is the distribution of the number of persisting
species i.e. if the pool of species is n what is the probability that there is |S| = k persistent
species?

The result is non-trivial. Independently of the distribution of the colonization rates c,
the distribution of the number of persistent species is close to the binomial distribution
B(n, 3) if n is large i.c.

n\ 1
P(|S| =k | n) oo (k)Z"

This is consistent with E(|S| | n) = n/2.

In Figure 4.2.2, the vicinity of the curves for different distributions is shown, the result
is obvious. The symmetry of the binomial distribution indicates that the probability of
having very few persistent species is the same as almost all persistent species.
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Figure 4.2.2: Representation of the distribution of the number of persistent species for a
initial pool of n = 1000 species and for different distribution of colonization rate. Each
curve is derived using Monte Carlo experiments by computing P = 100000 times the
algorithm 1 and store the values obtained to form the outline of a histogram. The red
curve corresponds to the density function of the binomial distribution B(n, 3).

4.2.2 Elements of proof of this invariance

Niche shadows From the definition of the admissible set C for the colonization rate,
the odd condition is

(H;—l C2j>22 '
(H;jl C2j+1>

Given ly; 11 the minimum threshold required for the colonization rate of species 27 + 1 to
settle in the system, we have by definition:

(.)
<H;_:11 C2j+1>

Coi4+1 >

l2i+1 =

Notice a recursive formula for the [;

2

l 2

C2i+1 > L2541 = T
i

In an equivalent way, the same computations can be performed for the even condition,
then we obtain a general recurrence formula:

AN

(4.7)

Civ1 > liy1 =

Sal RS

1

By definition, the interval (c¢;,[l;41) is called the niche shadow of species ¢; where [; 1
correspond to the minimum threshold required for the colonization rate of species ¢ + 1
to settle in the system i.e. ¢;p 1 > l;yq.
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Remark 4.3. If ¢; has a narrow niche shadow i.e. ¢;/l; ~ 1, then ¢;,1 can be close to ¢; and
consequently many species might coexist in the final community (the so-called ”infinite
niche packing” [KLD*99]).

Given X; a random variable describing the amount by which ¢; exceeds its bound i.e.
X; = ¢; — l;. If the number of species in the initial pool n is large and the distribution
of the colonization rates is sufficiently dense (close to each other), in the case of a finite
support X; will be small X; ~ O(n™!). From (4.7)

Remark 4.4. The relation l;,1 ~ [; +2X; is important and already gives indications on the
number of species present in the system on average. Indeed, the interval [I;,[;,1] contains
one species and is of size 2.X; where X; is a random variable of unknown distribution of
order 1/n.

Proof in the uniform case Assume that n is sufficiently large, for convenience m = 1
and ¢ ~ U([1,2]). Under the assumption (4.8), the assembly process is invariant to
shifting the ¢; and the problem is equivalent to m = 0 and ¢ ~ U([0,1]). The aim
consists in proving that the probability to have k persistent species from a pool of n
species is P(|S| = k|n) ~ B(n, 1/2) according to the conditions (4.3).

Given ¢; = x i.e. the probability that the first species falls in the interval (x,z + dx)
is

P(cy € (x,x + dx)) = f(z)dx .

The probability that the species 2,...,b 4+ 1 fall in the interval (z,2x) (i.e. these species
are excluded by species 1) is

P(c; € (x,22),i € [2,b]) = (F(2x) — F(z)).

The probability that the remaining n —b— 1 species fall in the interval (2z,1) (distributed
according to the original distribution left-truncated at 2z independently of the first b + 1
species) is

Plcie (2z,1),ie[b+1,n]) = (1 — F(2z))" L.

A combinatorial argument allows to compute the number of possibilities: n!/(b!(n—1—-b)!).

Let 81 be a random variable corresponding to the number of species excluded by the
first species. To compute the probability that 5; = bi.e. excludes the subsequent b < n—1
species, we integrate over the possible values of x (note that x runs only up to 1/2 when
b <mn — 1, because x > 1/2 implies that all subsequent n — 1 species are excluded). We
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will deal with that case separately below.

1/2 n!
PWl:m:ﬂL M@fifbﬂﬂﬂﬂﬁmﬁ—F@D%r—F@@w**m:

L TP
_L =12 ) (1= 2) v
n 1/2

b) (n—10) J 2’(1 — 22)" ' bdx

(
:(Zyn—@Jq;wu—uwlb;m,mzzw,
(

:(Zyn—wﬁbB®+Ln—®.

where we have recognized the beta function in the last line and because b and n are
integers, the beta function

bl(n —b—1)!

n!

B(b+1,n—1b) =

This cancels with the earlier combinatorial factor and we finally find

In the case b = n — 1, we can use a standard geometric series argument

(| (| 1— L 1
— — — — 2m
b=0 b=1

If the truncated distribution is a rescaled instance of the original distribution as for the
uniform distribution, then we can find the probability that a particular subset of species
a1, g, ... survives by simply multiplying the probabilities that the first species excludes
by = ay —ag — 1 species, the remaining n — b; — 1 are distributed uniformly on (z,1). By
rescaling, we find that the probability that the second survivor (the minimum among the
remaining n—b; — 1 species) excludes by = a3 — s — 1 species, and so on. For convenience,
we specify the subset of coexisting species by the sequence of gaps: b; = a;.1 — a; — 1.
Ultimately, we find the probability of a particular sequence of k survivors by computing

k k
P (ﬂ{& = bz»}) = []®e5 =b),
B ;:11 1 1
- 11 9b;+1 x by, !
1
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The final factor (1/2%) has a reduced power because the kth (final) survivor must
exclude all remaining species. By definition, Zle b; = n — k, so the probability of *any*
particular set of survivors is

P <O{5z = bz}) = 2n1_1 :

This probability does not depend on the particular sequence (i, ...k, or even on k. This
implies that the probability of finding k£ survivors is just the number of possible sets of
k survivors, multiplied by the probability of each. Since the first species always survives,

we have
n—1 1
Plisi= k1m0 = (371 ) g

which is the binomial distribution B(n —1,1/2).

Insight in the general case In this section, we present a non-rigorous intuition to
extend this result to a certain class of distributions. Assume that ¢ is distributed according
to an arbitrary distribution with support on [m, ), PDF f(x) and CDF F(z). As above,
we shift to obtain support on [0, 00) and fix m = 0. The probability that the first species
excludes b species is

P = b) = j i Mﬂx)(mm ~ F@)!(1 - F2o)) e, (49)

The assumption comes from the fact that the density of species 1 is close to zero when
n becomes large. Consequently, the integral (4.9) can be approximated, first we truncate
the integral at the median, as in the uniform case. This choice avoids integrating over
negative probabilities. When b = n — 1, we instead integrate up to oo.

P
Plby=b) ~ L Mf (2)(F(22) = F(x))"(1 = F(22))" " ~"da.

The second argument consider the density of the colonization rate of species 1. The
integral (4.9) is dominated by the behavior near x = 0 because the colonization rate ¢;
has high probability to be close between [0, €], e > 0, then

€ n'

P =b) ~ fo W——i—ly)!f(x)(F(%) — F(2))"(1 — F(2z))" " "dz .

The last argument is the less rigorous and gives an insight of the behavior in general
distribution, we use a linear approximation to write F'(2x) = 2 F(x) which is poor as x
becomes large, but for distributions with high density at 0 (m, in the original frame) and
sufficiently light tails, the integral will be dominated by the behavior near z = 0, where
the linear approximation is good.

Y )
Plb=b)~ f Mf(wxm))b(l — 2F(z))" " da.

192



Chapter 4. A probabilistic perspective of the hierarchical competition-colonization trade-off model

The rest of the proof consists in pursuing the uniform case example. We use the substi-
tution u = 2 F'(x). This implies du = 2 f(x)dz, so we have

1
P =) = () =) [ == i

0

exactly as in the uniform case and 2% for b = n+1. Consequently, we can find the probabil-
ity of an particular sequence of survivors by multiplying the probabilities of ﬂle{ﬂi = b;}.

4.2.3 Properties of the persisting species

In the previous section, we showed a precise description of the number of persisting species
in the model (4.2) as a function of the starting n pool. A natural question is to understand
the properties of the persisting species (proportion of habitat, empty space left, impact
of the extinction rate) as in the work of Tilman [Til94] or Kinzig et al. [KLD*99].

Evolution of the fraction of empty patches

The fraction of empty patches features the first interesting property as a consequence of
the “all-at-once” equilibrium described above. In a counter-intuitive way even when the
size of the ecosystem is very large at the beginning n — +o0, h,,, it does not necessarily
converge towards 0. In the single-species Levins model with parameter (¢, m), the fraction
of empty patches is given by m/c i.e. the higher the colonization rate, smaller the fraction

of empty patches. In the n-species model, the conclusion is similar, we have the relation
hi ~ (mfe;)'?

=1

1
mhi—1 + - mp;

I

cili—1

i—1
hioy + 2351 P}
cili—i
1
cihi— .

3|&

)

using the fact that h; < h;_1, one obtain the same equality as in Kinzig et al. [KLD*99],

S ch< 2 (4.10)
Ci+1 C;

This equation shows that to have an idea of the empty space, it is sufficient to have a

good approximation of ¢, = m[a>]< ¢i. In the appendix 4.B.3, we recall the maximum distri-
S

butions of different distributions (uniform, Exponential, Pareto) and we give a heuristic
to compute numerically the maximum of a family of r.v for a finite n.

The simplest example is that of a finite support. In figure 4.2.3, we compare the
relation h; ~ (m/c;)"’? for a uniform distribution and a Beta distribution. Theoretically
in the case of the uniform distribution, consider n standard i.i.d. random variables U; ~
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Figure 4.2.3: Comparison between the empirical and theoretical bounds of the fraction
of empty spaces (h,) as a function of the size of the initial pool of species. In panel
(a), this relationship is illustrated in the case where ¢ follows a uniform distribution (of
max = 2) and the theoretical estimation is 1/4/2. In panel (b), the same relationship is
given when ¢ follows a Beta distribution of parameters Beta(1,1) and compared to the
empirical estimation of the maximum of the Beta function as a function of n applied to
the expression 1/,/c,.

U([1, max]), E(max U;) = cpax. In the case of the Beta distribution, we use the heuristic
of the empirical approximation.

When the distribution of ¢ has infinite support, theory states that when the number
of species tends to infinity, the fraction of empty spaces tends to zero. However, when n
is too small, the prediction is not accurate because of the gap between ¢;;; and ¢;. The
standard example is the Pareto distribution which is shown in Figure 4.2.4 with the upper
and lower bound given in (4.10).

. Pareto 1
0.30 25 L Lower bound
2 Upper bound

025
0.20
015
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0.05 o e
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0.00

Size of the pool (1)

Figure 4.2.4: Comparison between the empirical and theoretical bounds of the fraction of
empty spaces (h,,) as a function of the size of the initial pool for the Pareto distribution
P(1). The dotted lines represent the upper bound (red) and lower bound (blue) of (4.10)
computed using the heuristics to obtain an estimation of the maximum for a fixed n.

From an ecological point of view, the empty space in the habitat depends mostly on
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the colonization capacity of the best colonizing species.

Occupancies

The distribution of the occupancies has been studied by Kinzig et al. [KLD799]. In this
paragraph, the main result is illustrated. They give a relationship between occupancies
and colonization rates, they show that p*(c)occ™*? when extinction rate is equal to 1.
The most competitive species tends to occupy a larger share of the landscape than the
most colonizing species.

In figure 4.2.5 we plot the power distribution relationship between the occupancies
and the colonization rate p*(c) ~ ¢=*2 for an ecosystem with n = 100000 species for two
different uniform distributions. The matching is quite remarkable.

—— Uniform 5
—— Power law

—— Uniform 1
—— Power law

Occupancy at equilibrium (p*)
Occupancy at equilibrium (p*)

10 12 14 16 138 20 1 2 3 4
Colonization rate (c) Colonization rate (c)

(a) U([1,2]) (b) U([1,6])

Figure 4.2.5: Representation of the occupancies at equilibrium p* as a function of the
colonization rates e¢. The occupancy of a species is associated to its colonization rate is
computed for a ecosystem of n = 100000 species. A moving average is used to smooth
out all the points. In Fig.(a), the uniform distribution of support [1,2] is plotted and the
red curve represents the power distribution 1/¢*2. In Fig.(b), the uniform distribution of
support [1,6] is plotted and the red curve represents the power distribution 5/c%2.

In Figure 4.2.6, the empirical distribution in the case of an exponential distribution
E(1) is displayed. The result is quite intriguing and different. The beginning of the
curve seems to decrease and then there is an increase in the proportion of habitat. This
is the effect of the tail of the distribution. Indeed, the exponential distribution has an
infinite support, very colonizing species can be present in the system and recover a large
proportion of habitat.

Impact of the extinction rate

The impact of the extinction rate or the diversity disturbance relationship has been largely
studied and introduced in Hastings [Has80] in the HT model. The number of species in
the system differs according to the extinction rate and the number of persistent species as
a function of the extinction rate gives an optimal threshold i.e intermediate disturbance
hypothesis. The number of persisting species reaches a peak when the left support of the
probability distribution is at m. Let ¢y, the left edge of the support of the distribution.
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Figure 4.2.6: Representation of the occupancies at equilibrium p* as a function of the
colonization rates e¢. The occupancy of a species is associated to its colonization rate is
computed for a ecosystem of n = 100000 species. A moving average is used to smooth
out all the points. The case of an exponential distribution £(1) of colonization rates is
represented.

The standard example of a value ¢y, = 1 is studied. At m = ¢, it is the conver-
gence to the binomial distribution, half of the species survive independently of the chosen
distribution (see Figure 4.2.1).

The edge effect is more accentuated when the distribution has high density close to
Cmin-

Mathematically, the causes of the loss of species richness are explained when m # ¢y,
by

o if m » cpin, a large part of the density of the distribution is truncated with the
first condition ¢; > m, Vi € [n]. Species that have a lower colonization rate than the
extinction rate cannot survive.

e M & Cpin: a large part of the density of the distribution is truncated with the

second condition, if we suppose that ¢; is very close to m,,;, = 1, then ¢y > % ~ %
Species whose colonization rate is less than the inverse of the extinction rate cannot
survive. If ¢,,;, starts far from m, it implies larger and larger niche shadows, because
the first species takes up a large part of the patches (and so the next one must be

considerably better colonizer, etc. by domino effect).

From an ecological point of view, an increased extinction rate of all species is generally
associated with a decrease in species richness. However, it is not intuitive that a decrease
in extinction rate implies a decrease in species richness. In the context of abundances,
Fox [Fox13] argues that the intermediate disturbance hypothesis should be abandoned. In
the HT model, a decrease in extinction rate implies a supremacy of the most competitive
species at the expense of the others, hence the decrease in extinction.

In the case of m,,;, = 1, we represent in figure 4.2.7 the impact of the extinction rate
on the species richness in the case of two uniform distributions of different support. We
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can observe that if we take two extinction rates: m; = 1.3 and my = 1/m; = 0.77, the
species richness is the same. A larger distribution support will tend to reduce the impact
of the extinction rate, as a higher density on the left side of the support increases the
deterioration of the ecosystem.
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Figure 4.2.7: Representation of species richness as a function of extinction. Two dis-

tributions are identified U([1,2]) (blue line) and U([1,3]) (orange line) whose left edge
Cmin = 1. The right red vertical lines represent m; = 1.3 and the left ms = 1/m; = 0.77.

4.3 Sequences of invasions and community assembly

In section 4.2, the all-at-once metacommunity dynamics was presented in an ecosystem
with a starting species pool where the model evolves according to the dynamics (4.2).
We have seen that this approach is equivalent to considering an empty ecosystem at the
beginning, adding species one by one and considering that they can invade the system
again at any time. Here we want to consider what would happen if an extinct species was
condemned to never return to the system. This has potential realism (when compared
to a real assembly process) and allows to answer new questions such as the effects of
invasions in communities. This approach is called the assembly process or invasion se-
quences [MDC*17, RR85, Cas90, RZB*09, RBL*19, Tok04]. It consists in starting from
an empty system and filling it through a series of invasions. We define an iterative process
where at each time step a species tries to invade the system and is then confronted with
an invasion condition. If this invasion condition is satisfied, it can enter the system and
potentially displace species from the system. These displaced species will not be able to
re-enter the system afterward so the composition of the system at any point in time does
not only depend on which species have tried to invade but also on the order in which
they have tried to do so. The invasion condition related to C evolves each time a new
species enters the system. The invasion of a species depends on the current state of the
system and therefore depends on the invasions that have been carried out in the past.
This implementation of the model has a historical contingency that was not present in
the all-at-once metacommunity dynamics and reveals different outcomes.
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4.3.1 Description of the invasion process and extinction cas-
cades

Dynamics of the invasion process

The sequential invasion process follows the dynamics described by the system (4.2). We
start from an empty system and we inject one species after the other into the system. Each
species is characterized by its colonization rate which is randomly drawn following the
same probability distribution. The invasion of a new species can cause the extinction of
one or more species. In Figure 4.3.1, a diagram of the situation is illustrated. Each species
is injected into the system at very low occupancy p; ~ € > 0 and we let the dynamics
elapse. If the occupancy of a species converges to 0, the species is considered extinct and
is removed from the system. According to Theorem (4.2), there exists a unique globally
stable equilibrium.

sample ¢ sample Cpew

........
----------
. .
. -
.
. .,
.

-
-
.-
-

o
. 0
.....
L .
------
---------------

Figure 4.3.1: Sequential invasion process in an ecosystem. The ellipse corresponds to the
habitat and the points corresponds to the species. For each new species, a new colonization
rate Cpep is drawn. The left diagram represents the possibility (or not) of invasion of a
new species in an ecosystem. The right diagram represents the situation of invasion of a
new species leading to the extinction of a species present in the ecosystem.

Three types of situations can be observed when new species attempts to invade. Con-
sider the situation of a system by an interval with the presence of the niche shadows (i.e.
the interval of exclusion created by each species in the system by the condition defined by
C) of the different species of the system. The niche shadows are represented by a shaded
green zone.

e The new species cannot invade if its colonization rate falls into the niche shadow of
a species in the community. In this case the equilibrium of the system remains the
same (same species, same occupancies).

[ V7777777 1. | |
2
m C1 4 C1 Co
Cnew' m

o The new species invades and the system converges to a new equilibrium that includes
the new species.
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1

Cnew

o The new species invades and generates an extinction cascade when its niche shadow
affects other species and challenges all the shadow niches in the system. The system
converges to a new equilibrium that includes the new species but without some
of the more colonizing species, depending on the location of the new species niche
shadow and the shifts it implies in the niche shadows of all other species.

| ' T ! |
m 4 ¢ 1 Co

Cnew

In the figure 4.3.2, we represent the dynamics of the system as a result of the successive
invasions. A first observation is the fast convergence of the system towards its new
equilibrium. The invasion of a less competitive species does not affect the abundance
of more competitive species. However, it does change the abundance of less competitive
species and can cause extinctions. We note the extinction of species 3 and 5 during the
invasion of species 6.
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Figure 4.3.2: Representation of the sequential invasion dynamics with an invasion of each
species (6 in total) at a regular time interval. The dynamics of the system between each
invasion corresponds to (4.2).

The dynamics of the sequential invasion process indicates convergence to a new unique
globally stable equilibrium at each invasion (see Theorem 4.2). Finally, in the study
of the sequential invasion process, the restriction to analyze the conditions of invasions
by reducing the dynamic phase between invasions (and species removed) is sufficient.
Without loss of generality, we can describe the dynamics where each iteration corresponds
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to an invasion. At each iteration, suppose we wait long enough for our system to reach
an equilibrium. The dynamics of the system by iteration is represented for different
distributions in Figure 4.3.3. The growth of the species richness is no longer linear (30
species in the system after 1000 invasions), the system evolves in an irregular way with
invasions and extinctions of species.
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Figure 4.3.3: Dynamics of the species richness as a function of the invasion trials in the
sequential invasion process. In both figures the extinction rate is m = 1.

Historical contingencies

The impact of the order of invasions is important in the sequential invasion process,
which gives rise to historical contingencies i.e. the probability of invasion of a new species
depends strongly on the past. This is the main difference with the all-at-once metacom-
munity which does not admit this phenomenon because all species can invade the system
at any time. In Figure 4.3.4, all orders of invasions are tested in a unique 9 species
framework. It highlights the historical contingencies phenomenon for different distribu-
tions. We observe that the distribution seems to have a rather small variance (around
~ 3 possible values of species richness).

To avoid the bias of a single realization and have a general idea of the distribution,
we observe a histogram of the number of persisting species in a very simple case with 6
species with a sample of 500 realisations (see Figure 4.3.5). We observe that depending
on the order of invasion, the range of values goes from a single species persisting to all
species persisting. We also notice that the distribution of the number of persisting species
depends strongly on the distribution of colonization rates. However, the behavior of the
distribution looks like a unimodal distribution. This is related to the sequential invasion
process which is similar to the all-at-once metacommunity because there are not many
extinctions at the beginning of an invasion sequence.

Formalization of the sequential invasion process

The purpose of this section consists in formalizing the iterative sequential invasion process.
When a species wants to invade the system, there are two main scenarios (we combine
the invasions with 0+ extinctions):

1. failure of the invasion of the new colonizer,

200



Chapter 4. A probabilistic perspective of the hierarchical competition-colonization trade-off model

040 040 040
= Uniform 1 = Uniform 10 —LogCauchy
038 035 038
030 030 030
025 025 025
z z z
o2 % o2 o2
015 015 015
010 010 010
00s 005 00s
000 000 000
1 2 3 3 13 7 § s 1 2 3 H 13 7 s 13
- parcio 2 = pareto 5
038
030
025
z

2o
015
010
008
000

B 3 H H H 7 5 5

4 ]
Number of surviving species. Number of surviving species

(a) U([1,2])

(b) U([1,11])

03 03
o030 030
02 02
z z
Zox o
o1 015
ow0 010
00s 005
000 000 |

H H

1 3 3

1 5 3
N fes Number of surviving species.

(d) P(1) (e) P(2) (f) P(5)

Figure 4.3.4: Histogram of the distribution of the number of persisting species after the
invasion of 9 species. The extinction rate is m = 1. All order of invasions are tested
and each plot corresponds to a different distribution for the drawing of the new values of
colonization rate.
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Figure 4.3.5: Histogram of the distribution of the number of persistent species after 6
invasions for a large number of realizations P = 500. The extinction rate is m = 1. All
720 orders of invasions are tested and each plot corresponds to a different distribution for
the drawing of the new values of colonization rate.

2. success of the invasion: zero, one or more species vanish.

Consider an initial failure zone or niche shadow zone (if the colonization rate of the
invading species falls in this zone, it does not invade) depending on the extinction rate
F9 = [0,m]. The colonization rate of a new species e, trying to invade the system is
drawn from a chosen positive probability distribution. There exists two main options
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1. Cpew € F°, the species fails,
2. Cpew ¢ FV, the species invades.

If the species invades, a new failure zone is defined F' = [0, m] U [crew, C2rp/m] as well
as a vector of colonization of the species present after one iteration c} = (Cpew). If the
species fails, the empty vector after one iteration €9 is defined.

Given cf = (c1, ..., cx) the vector of colonization rate of the k species in the system after
| iteration. The failure zone F* associated to the k species in the system corresponds to
an union of intervals

4] )
FF=10,m] u L;J To;, (5_1{:[]11 >>2

|5 (H;_zll xng) ’
(U [ )

This union of intervals represents a non-admissible invasion set evolving through the
sequential invasion process. By construction, they are disjoint intervals. On the opposite,
we define by A* = [0, +00)\F* the admissible set.

Given a new species trying to invade the system with a colonization rate c,e, drawn
from a chosen probability distribution, there are two options:

(4.11)

1. Cpew € F*, the species fails,
2. Cpew & F¥, the species invades.

In case of failure, we can define the vector at the next iteration: ¢ = cﬁl. In the case of
success, the problem is more complex, the next paragraph deals with its description.

Update of the non-admissible zone The second case is more sophisticated (the
species invades). The invasion of a new species into the system can have important
consequences on the conditions of the failure zone and the species present in the system.
Two sub-scenarios are distinguished.

At iteration [, after the invasion, the new colonization rate c,.,, is added to the vector
of colonization rate of the species present ¢f = (ci,..,¢). We seek the index i such that
Ci < Cpew < Ci1 and define a new vector: ¢t = (cy, ..., ¢, Cpew, Cist1, -, k). Recall the set

of admissible conditions
i1 2 i 2
(Hj:l $2j+1> <Hj:1 5021‘)
2 ;o X2i41 > D)
i—1 i—1
[[21 22 [ [ z2j1

Two corresponding cases depending on the impact on the species present in the system
are considered

C = .’BERT_ﬁiin>

;"*1 e C, the species invades without causing extinction, update F*¥ — FFr+!

k+1 k+1
1 TG

o if c
using the new vector of colonization ¢
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o if ¢f1 ¢ C, up to the value ¢y, the conditions are fulfilled because the invasion of
a less competitive species does not affect the more competitive species. Then, we
go through the rest of the vector, each time a condition is not met, we delete the
associated species and re-compute the niche shadows. At the end of the process, d

species are extinct, we obtain a new vector cfjllfd.

If d > 0, this is called an extinction cascade.

Algorithm As for the all-at-once metacommunity process, the sequential invasion pro-
cess algorithm is described by the pseudo code given in the Algorithm 2. It is possible
to optimize the algorithm by keeping in memory the right bounds of the intervals of F*.
This avoids having to recompute the set F* at each iteration and allows to check that
a species does not invade faster at each iteration i.e. the selection by the tree start at
the index of ¢,.,. Recall that in contrast to the all-at-once metacommunity process, the

Algorithm 2 Sequential invasion process

Require: n > 0
c < list
S—m
for [ € [1,n] do
randomly choose ¢,.,, from a probability distribution;
¢ —[¢, Chewl;
¢ « Sorted(c); > Ascending sorting algorithm
for j € [1,len(c)] do = Selection by the tree of the remaining species
S —m;
if ¢[j] < S then
del(c[])
else
S < c[j]*/S;
end if
end for
end for

order of appearance of species is important due to historical contingencies. This effect
can be illustrated by a small example: ¢; =4, ¢ =5, ¢35 = 20.

e ¢y — 3 — ¢, only species 1 survives (species 3 does not invade).

e ¢y — 1 — c3, species 1 and species 3 survive (species 2 collapses but species 3
invades because 4% = 16 < 20).

Analytical insights

At iteration [, assume that k species are present in the system. Given c¢,.,,, the colonization
rate of a new species drawn from a chosen probability distribution with density function
f, then the probability that the new species invades is

Plehew ¢ F*) =1~ | f(x)dx. (4.12)
]:k
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The probability that there is no extinction cascades i.e. ¢f™! e C is difficult to express

due to its strong dependence on the past events. The arrival of the new species depends
on the state of the system just as the species present in the system depend on the past
states of the system. However, insights on the probability of the number of extinction
cascades are addressed in the next paragraph.

Extinction cascades

Extinction cascades [CBBT11, PA13, VAN15, RZVM17] are the key events that disrupt
the system. Unlike the all-at-once metacommunity process, which allows a species to
invade the system at any time, the sequential invasion process does not provide for tran-
sient species. Let z; be the number of species in the system at iteration [, the following
recurrence equation determines the behaviour of the species richness in the ecosystem

x4+ 1—eif chew ¢ F,
T = { : : ¢ (4.13)

2 if Cpew € F,

where ¢,,,, corresponds to the colonization rate of the invader and e; the number of ex-
tinctions if the new species invades (see Witting et al. [WTLOO0] for a practical application
of probability to extinction cascades).

If an invader manages to invade by being a very good colonizer then F will not change
significantly. However, if an invader is very competitive with a very low colonization rate,
then the set F will be severely affected.

Remark 4.5. This sequence indicates that the growth of the number of species in the
system is a combination of two phenomena:

« the probability of invasion,
« the magnitude of the extinction cascades.

In the following section, we will see that the speed of dynamics of the richness of the
system seems logarithmic (see Figure 4.3.9a). Either the probability of invasion decreases
with time, or the number of extinction cascades increases.

Theoretical toy model

From a theoretical standpoint, the recursion equation (4.13) can be presented as a toy
model in order to understand the underlying mechanisms of the sequential invasion pro-
cess. Given a starting condition xy = 0 at the beginning of the sequential invasion process
i.e. there is initially no species in the system and x; the number of persisting species at
iteration [. We define a recurrence relation depending on random variables

Ti41 = Xl(l'l +Y — (1 — Y})(Zl — 1)) + (1 — Xl)xl , (414)

where X; ~ B(1, p;*) are independent random variables, p;* correspond to the probability
of an invasion at iteration [. The random variables Y; ~ B(1,p}) are independent, p}
is the probability that there is no extinction after an invasion occurring at iteration [.
The random variables Z; ~ L(A?) are independent and £ is an unknown distribution and
A € [1,90) (the “1” comes from the fact that there is a minimum of one extinction). The
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mean of the distribution A7 corresponds to the number of extinctions after an invasion at
iteration /.

The toy model’ is an approximation of the sequential invasion process. We seek esti-
mates of the three parameters defining the r.v. given in equation (4.14). The estimators
of the parameters for the binomials X,Y are the classical estimators of the mean. For
the parameter of Z, we assume an underlying Poisson model, we compute the classical
estimator of the mean.

In Figure 4.3.6 when ¢, ~ U([0,1]), the dynamics of the quantities (p;*, pi*, \¥ — 1)
is illustrated as a function of interval of invasions i.e. we estimate each parameter in an
interval Vi € N*, [100(z — 1), 1007] < [0,n] by averaging the values every 100 time steps.
We notice that the probability of invasion is slightly higher than 0.5. When a species
invades, it has a probability close to 1/3 of avoiding extinction and if it does, on average
1.5 species will be ejected from the landscape. The recurrence formula (4.14) can be

055
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Probability
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—.Dfx
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0.35
AZ-1

1 2 3 4 5 & 7 B 9 10 11 12 13 14 15 1 17 18 183 20

Interval of invasions
Figure 4.3.6: Representation of the parameters (p;*, pi*, \¥ — 1) as a function of interval
of invasions. A interval of invasions i € [1,20] corresponds to [100(¢ — 1),100¢]. In this
example, the sequential invasion process count n = 2000 invasions in total and ¢, is
sampled from a uniform distribution U([0,1]). Each interval [ provides an estimator of
the parameters. The red dotted horizontal lines are indicators plotted respectively at 1/3
and 1/2.

rewritten in a simpler form
zi1 =1+ Xi(1 - 2+ YV12),

l
= > Xi(1— Zk + Vi) .

k=1

Recall that Vk € N*| X}, Y}, Z; are independent by construction (Z is the r.v. of the
number of extinctions conditional on there being one after an invasion, Y is the r.v. that
says there are no extinctions conditional on there being an invasion, X is the r.v. that
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says there is an invasion), then

MN

E(zi41) = ) E(Xk) (1 = E(Zk) + E(Y2)E(Z)))

ey
I
—

PR (1= A+ D)

[
MN

i
L

Given, vy = pi (1 — A + pf A7) the increment to the expected species richness between
invasion £ and k£ + 1. From a heuristics standpoint, the habitat is non-saturated if

Vi ~ O(kia),a/ < 1 = E(lerl) Q 0.

A naive computation is to use the values of Figure 4.3.6, we notice the value v, — 0,
—00

but how fast?

In Figure 4.3.7, we compare v, to k=1, we notice that vj, seems to decrease slowly. The
value of the slope gives -a where v, ~ k7. From a mathematical point of view, this is a
promising way to understand rigorously the dynamics of x; and to show that the habitat
is not saturated in the sequential invasion process.

102
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Interval of invasions

Figure 4.3.7: Comparison of the the increment to the expected species richness v, and

k~! the threshold to get an infinite sum of vy.

To motivate the model (4.14), by estimating the parameters (p;%, p;, \?) as a function
of interval of invasions, we reproduce the (mean) of the growth of the sequential invasion
process for two different distributions in Figure 4.3.8.

4.3.2 Dynamics of the system over time and final composition

As in the all-at-once metacommunity process, we are interested in understanding the
dynamics of the sequential invasion process over time and the properties of the species
that inhabit the system to grasp the trade-off between competition and colonization.
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Figure 4.3.8: Dynamics of the species richness as a function of the number of invasions in
the sequential invasion process. The extinction rate is m = 1. In both figures, the blue
curve represents the empirical mean of P; = 1000 sequential invasion process. The orange
curve represents mean of P, = 1000 curve of toy model (4.14) where the parameters
(piX, pi¥, \?) are estimated in each interval of invasions of size 100.

Dynamics of the species richness

In the context of the dynamics of the sequential invasion process over invasions, we notice
that regardless of the distribution chosen, the system tends to saturate or at least seems
to be growing very slowly. In Figure 4.3.9a, we represent the dynamics of the species
richness over the iterations (invasion trials) for some benchmark distributions (uniform,
Pareto/Power, Log-Cauchy). At the beginning, we note a very fast growth reminiscent of
the all-at-once metacommunity dynamics, then a consequent slowing down. If we compare
the performances of each distribution, colonization rates sampled by a Log-Cauchy has
higher species richness than Pareto and the uniform distributions. Regular distributions
seem to have a weaker performance than heavy-tail distributions which seem to perform
equally well in the Pareto case. An increase in the maximum value of the support of
regular distributions does not improve the situation such as the uniform (|1, 11]), which
has worse species richness than uniform #([1, 2]).

The shape of the curves suggest a logarithmic relationship between the species richness
and the number of invasion trials (see Figure 4.3.9b). One could think of habitat size
variation where more habitat tends to contain more species with a form of saturation
caused by extinctions, dispersion, prey-predator interaction, etc.

Distribution of species richness One of the major results in the all-at-once meta-
community process is the convergence of the distribution of the realized species richness
to a binomial distribution. For a given number of invasions, we want to have an idea of
the distribution of the richness of the system. In Figure 4.3.10, we represent a histogram
of the number of species for a large sample of system. A comparison is established with a
Binomial distribution with an estimator of the mean and variance. The species richness
distribution appears to be symmetric, but it is close to the binomial distribution. Many
“peaks” appear in the density shape (see Fig. 4.3.10-b).
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Figure 4.3.9: Representation of the species richness of the assembly as a function of the
invasions for different distributions. The curve is derived using Monte Carlo simulations
by computing P = 2000 times the algorithm 2 and averaging the number of persistent
species. In panel (a) the plot corresponds to the standard case, whereas panel (b) is the
same plot using log-log scale.
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Figure 4.3.10: Histogram of the species richness for a fixed number of invasions (n = 2000).
The histogram is derived using Monte Carlo simulations by computing P = 2000 times
the algorithm 2 which corresponds to the size of the sample for the histogram. In each
plots, the red curve corresponds to a Binomial mass function adjusted to the mean and
variance estimators of the sample.

Impact and dynamics of extinction cascades

In section 4.3.1, the phenomenon of successive extinctions taking place when a certain
type of species invades the system has been carefully defined. It was deduced that these
extinctions are a major cause of the phenomenon of habitat saturation. The purpose of
this section is to quantify numerically the extinction cascades in order to describe precisely
the sequential invasion process.

In Figure 4.3.11, the frequency of occurrence of the cascade is represented for a very
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large number of systems. To take into account the effect of extinction on the state of the
system i.e. the species richness is not similar for every distribution, the size of the cascade
is studied in proportion to the size of the final system. Here, we decide to normalize by
the state of the final system. However, we could normalize by the size of the system at
the time the cascade takes place.
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Figure 4.3.11: Distribution of the size of extinction cascades as a function of the size of
the cascade normalized by the final number of species in the system. We realize a Monte
Carlo experiment for a system of size n = 1000 and perform the sequential invasion
process P = 1000 times.

On the one hand, by comparing the different distributions, the regular distributions
undergoes much more important cascades in relation to the final size of the system. On
the contrary, the Log-Cauchy distribution seems to be much less affected by the cascade
phenomenon. Finally, if we look at the Pareto distribution, we observe the heavier the
tail, the more extinction cascades occur. For regular distributions, a similar phenomenon
is observed, a larger support implies a larger cascade.

On the other hand, the frequency to have at least one extinction is higher for the
sequential invasion process with heavy-tailed distribution (see Figure 4.3.12)

The invasion of a competitor species is more likely to affect the species present in the
system (a more detailed study is made in section 4.3.3) and cause extinction cascades
because species invasions cannot ever cause extinctions of species with lower colonization
rates. This phenomenon depends mainly on the density of the distribution of colonization
rates, a trade-off between a strong density on the left and a strong tail on the right must
be found.

We are also interested in understanding the distribution of the number of extinctions
following an invasion for a fixed number of invasions. In a rather naive approach, we
compare the distribution of the number of extinctions following an invasion (via sampling
of many systems) in the figure 4.3.13 to a Poisson distribution. The match is not perfect
but gives an idea of the distribution to be explored. The identification works much better
in the case of a Pareto distribution than in the case of a uniform distribution where the
distribution of the number of extinctions is more strongly right-skewed than expected.
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Figure 4.3.12: Probability to have at least one extinction as a function of the invasion

trials. We realize a Monte Carlo experiment for a system of size n = 1000 and perform
the sequential invasion process P = 1000 times.
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Figure 4.3.13: Histogram of the number of extinctions for a fixed number of invasion
n = 1000 computed for a large number of sequential invasion process P = 500. The red
point corresponds to the Poisson distribution with a estimated mean.

Another important issue is the dynamics of the amplitude of the cascades. The sat-
uration phenomenon indicates the increase of the regularity of the inputs/outputs of the
species in the system. Figure 4.3.12 confirms this hypothesis with a saturation of the
cascades phenomena with each iteration. The behavior of the Pareto distributions are
similar. Like the general system, and independently of the distribution, the probability to
have at least one extinction seems to stabilize or converge to a state that is self-regulating.
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Impact of the extinction rate

The impact of the extinction rate is similar as what was observed under the “all-at-
once” implementation of the model. Assume c,;, = 1, a representation of the species
richness as a function of the extinction rate is displayed in Figure 4.3.14. Independently
of the distribution of the colonization rate of the new invaders, the threshold remains at
M = Cmin-

The most striking example is the effect of the extinction rate on the Log-Cauchy
distribution, it is a distribution which tends to take values very close to cpi, = 1, the
change of species richness around the extinction rate m = 1 is important. For the Pareto
distribution, at the extinction rate m = 1, the dynamics is the same independently of
the parameter that we choose. However, we observe that a lower parameter a increases
coexistence of the species. The left density of the Pareto function is weaker when the
parameter is small and the tail of the distribution is increasingly heavy. Consequently,
a change in extinction near c.,;, will less affect a heavier-tailed Pareto distribution. To
conclude, the intermediate disturbance hypothesis [Has80] is satisfied in the sequential
invasion process as in the Top down process.
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Figure 4.3.14: Representation of species richness as a function of extinction for standard
distributions. The threshold of the extinction rate is at m = ¢y, = 1.

Species occupancies

Complementary information to the number of species in the system is their occupancies
p*. The distribution of the colonization rate has an effect on species richness, we notice
that it can also have an effect on species occupancies.

A first noteworthy observation (see Figure 4.3.15) is the difference between the uniform
distribution and the ’heavy-tail’ distributions. On the one hand, in Figure 4.3.15(a), the
distribution is heavily positively skewed whereas few species have a large proportion of
habitat. On the other hand, in Figure 4.3.15(b-d), (heavy-tail distributions) some species
occupy a large part of the habitat. However, we do not notice any difference between the
different distributions.
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Figure 4.3.15: Representation of a histogram of the occupancy for a fixed number of
invasions n = 1000. The histogram is derived using Monte Carlo simulations by computing
P = 100 times the algorithm 2 and recovering the associated proportion of habitat of each
final system.

In the all-at-one metacommunity process, Kinzig et al. [KLD"99] proved that species
occupancies were related to their colonization rates through a power law.

In the sequential invasion implementation of the model, the problem appears more
complex. To analyze species occupancies, we observe in Figure 4.3.16 the amount of
space taken by a species according to species rank i.e. species are ranked according to their
colonization rate. For the Log-Cauchy distribution, we observe a phenomenon of “hump”
which seems also present in the uniform distribution. This “hump” phenomenon indicates
that species that are good competitors and good colonizers at the same time occupy the
most space. The comparison of the different parameters of the Pareto distribution is also
very interesting: the weaker the parameter (heavier the tail), the weaker the density on
the left. A low density on the left indicates a faster increase in species occupancy with
species colonization rank while conversely, a late increase is due to a higher density on the
left. The remarks on the Pareto example can be transposed to the case of the uniform
distribution.

Remark 4.6. A related problem is the distance of each colonization rate and its below
niche shadows threshold. The density of the spacing could give a more precise idea of this
hump.

212



Chapter 4. A probabilistic perspective of the hierarchical competition-colonization trade-off model

= Uniform1
Uniform10
—— Paretol
—— Pareto2
Paretos
—— Log-Cauchy

012

=
=
@

Proportion of species
[=]
[=]
[=4]

[=]
=
B

0.02

0.00

Rank

Figure 4.3.16: Plot of the occupancy as a function of the rank of colonization rate at
iteration n = 1000. We use a Monte Carlo experiment P = 1000 and average the occu-
pancy values for each rank. For the last ranks, we truncate the graph if we do not have
a sufficient number of values (i.e. j10) to obtain an average.

Dynamics of the fraction of empty patches

Previously, we were interested in species occupancies according to their colonization rates.
However, an important question is the amount of space that the whole community will
occupy. In Figure 4.3.17, we represent the dynamics of the fraction of empty patches
during the sequential invasion process. A first observation is that the fraction of empty
patches seems to converge to a given limit for any distribution of colonization rate. Fur-
thermore, the convergence towards the final fraction of empty patches seems fast, in 200
invasions, we have a precise idea of the remaining fraction of empty patches.
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Figure 4.3.17: Representation of the fraction of empty patches as a function of the number
of invasions. We use a Monte Carlo experiment P = 1000 and average the fraction of
empty patches values at each iteration.

In the all-in-once metacommunity process, equation (4.10) describes precisely the frac-
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tion of empty patches h,, when n becomes large. From Figure 4.3.18, independently of
the distribution, the estimate seems to be correct in the sequential invasion process. The
estimate obtained analytically under the all-at-once implementation of the model (h,,)
seems to be correct also when the model is implemented using sequential invasions.
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Figure 4.3.18: Comparison between the empirical and theoretical bound of the fraction
of empty patches (h,) as a function of the size of the initial pool. In Fig. (a) the uniform
distribution ([1,2]) is plotted, the theoretical estimation is computed by 1/4/2. In Fig.
(b) the uniform distribution U([1,2]) is plotted, the theoretical estimation is computed

by 1/4/11.

If we compare the fraction of empty patches to the species richness in the system, the
Pareto distribution of the colonization rate is a good example of less fraction of empty
patches does not necessarily imply richer communities: the increase in the number of
species in the Pareto case a = 1 and a = 5 is similar and yet the fraction of empty
patches is very different. The uniform distribution with a larger support has less fraction
of empty patches. Note again that in the sequential invasion process, what matters is the
colonization rate of the largest species present in the system.

Development of the habitat diversity

In addition to species richness, we want to describe the dynamics of the system with other
measures of diversity. We introduce two standard measures of diversity [Whi72, Jos06],
the Shannon index defined by

/ - Di Di
H :—Zl_hnlog<1_hn> : (4.15)

i=1

where h,, corresponds to the empty space h, = 1—>" | p;. For comparison purpose with
species richness, the Hill number of order 1 will be considered . The second diversity
index is the inverse Simpson index (:= Hill number of order 2)

o (4.16)

Yo ()

These two measures of diversity are Hill numbers (Shannon’s exponential version and
Simpson’s inverse), their maximum value is equal to the species richness. These are more
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refined measures of diversity than species richness because they take into account the
(evenness) of occupancy between species.

Diversity indices do not respond similarly to changes in the distribution of colonization
rates. An important marker is that the diversity is greater in the case of the uniform
distribution when the right-hand support is larger, whereas in Figure 4.3.9a, the final
species richness of the system is lower when the right-hand edge of the uniform distribution
support grows. The intuition of this phenomenon is the strong impact of the density on the
right. We also observe that Log-Cauchy distribution seems less “out of the box” than for
species richness. The behavior of its diversity index is equivalent to Pareto distribution.
However, if we compare the different Pareto distributions, the result is clear: the heavier
the tail, the higher the diversity.

The uniform distribution appears to have a smaller gap between its species richness
and diversity than the heavy-tailed distributions. The heavier the tail of the distribution,
the more similar the competitors will be and the larger the colonizers will be and stay in
the system.
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Figure 4.3.19: Representation of the diversity index of the assembly as a function of the
invasions for different distributions. The curve is derived using Monte Carlo simulations
by computing P = 2000 times the algorithm 2 and averaging the number of persistent
species. In Fig. (a), the Hill number of order 1 is plotted using the exponential of H’
defined in (4.15). In Fig. (b), the Inverse Simpson index is illustrated from equation
(4.16).

Distribution of the final vector of colonization rate

For a fixed number of invasions, we are interested in the distribution of the colonization
rates of the persistent species. This information provides an indication of the impact of
niche shadows on the distribution of ¢. In Figure 4.3.20, for 500 invasions, the cumula-
tive distribution function (CDF) of the final colonization rates ¢ is represented when the
colonization rates of species attempting to invade is drawn from a uniform distribution
compared to the theoretical CDF of the uniform distribution. We observe that indepen-
dently of the support of the uniform law the curvature of the CDF is the same. Moreover,
we observe three distinct phases. In a first phase, a rapid increase of the CDF is observed,
showing the persistence of many competitive species (with low ¢). In a second phase, we
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have a slowing down of the curve growth, then in a last phase an increase of the slope of
the CDF which shows an accumulation of good colonizers.
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Figure 4.3.20: Representation of the empirical CDF after the sequential invasion of the
colonization rate of the persistent species after 500 invasion trials. The curve is derived
using Monte Carlo simulations P = 1000. In both plots, the red dotted line represents
the respective CDF of the initial distribution of the colonization rate.

The example of the Pareto distribution is shown in Appendix 4.D. The CDF is charac-
terized by initially rapid growth and then significantly slow growth. The shape is similar
to a CDF of the standard Pareto distribution.

4.3.3 Properties of the invaders

Previously, we focused on the study of the general dynamics of the system over time:
richness, diversity, extinction cascades, etc. This system depends on invasions of new
species. In this section we are specifically addressing the properties of invading species
over time.

Probability of invading the system

A first natural question is whether it is increasingly difficult to invade the system as it
builds up. Moreover, considering the [th invasion of the system, will it be more difficult
to invade the system at the next iteration (fluctuation of the invasion probability)?

The probability to invade the system at an iteration [ is defined in equation (4.12).
This probability changes with time depending on the state of the system F and the
distribution of the colonization rates of the persistent species. The complexity of the
random failure zone F restricts us to a numerical computation of this integral over the
iterations. We represent the numerical results for the different distributions in figure
4.3.21 as well as the auto-correlation of each time series.

In general, unlike the all-at-once metacommunity process, we observe a probability
that seems slightly higher than 0.5. This may be due to a size effect since the richness
of the system is small and asymptotically, we may expect a convergence toward 0.5.
The invasions remain frequent during the dynamics of the system and it is mainly the
extinction cascades which “drive” the dynamics of the general system. We have seen that
the extinction cascades are frequent.
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In Figure 4.3.21, two distinct behaviors appear between heavy-tailed variables (Pareto,
Log-Cauchy) and uniform variables. In the case of heavy-tailed variables, we observe a
convergence of the invasion probability with little noise. Conversely, in the uniform case,
the dynamics of the system does not seem completely clear with a lot of noise, even though
a trend is emerging.

However, a common feature of the sequential invasion processes is the positive corre-
lation between the number of invasion attempts and the invasion probability.
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Figure 4.3.21: Dynamics of the probability of a new species to invade the system as a
function of the number of invasions. We distinguish the 6 cases of standard distributions
(a)-(f). The noisy curve corresponds to an average of several sequential invasion processes.
In each graph, the blue curve corresponds to a smoothing filter. In each case, the right
plot is an autocorrelation function of the left plot.

Remark 4.7. See appendix 4.D for an alternative method of computing the probability of
invasion.

Feature of an invader

We are interested in the properties of the invaders. In particular, we would like to know
as the number of invasion trials becomes large and the number of species in the system
increases whether the invaders have particular features. The numerical method used is
for a given system, we compare the mean and variance of the colonization rates ¢ of the
invaders at different time intervals (see Figure 4.3.22).

Remark 4.8. A second numerical method is presented in Appendix 4.D by performing a
moving average on the realized colonization rates and average the time series for different
sequential invasion processes.

With both methods, we observe similar trends. We can classify the results in two
categories: the distributions of initial ¢ values with finite mean and variance and the
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Figure 4.3.22: Representation of the mean and variance of the colonization rates of the
invaders at different time interval. We consider an sequential invasion process of size
n = 50000, which we split into a set of intervals of size 50 [0,1000] u [1000,2000] U
[2000, 3000]... U [49000, 50000]. In each interval, the mean and variance of the coloniza-
tion rates of the invaders are computed. The plots (a)-(b) correspond to the uniform
distribution U([1,2]), the plots (c)-(d) correspond to Pareto a = 2, the plots (e)-(f) cor-
respond to Pareto a = 5.

distributions with infinite variance i.e. Pareto with parameter a < 2 or the Log-Cauchy
distribution.

In the case of finite-variance distributions (see Figure 4.3.22-a,c), the properties of the
invaders remain constant with little noise over the iterations. The mean and variance of
the colonization rates of the invaders remain constant over time, the profile of the invaders
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does not change over the iterations.

In the case of a distribution with infinite variance (see Figure 4.3.22-b), the mean
and the variance the colonization rates of the invaders fluctuate over time with “peaks”
which correspond to the cases where species with very large colonization rate invade
the system. We observe that the fluctuation remains very strong despite the peaks. This
fluctuation will be even stronger in cases where the mean also tends to infinity (for example
Log-Cauchy). However, there is no “trend” in the sense that the peaks seem to appear
randomly and the variations behave like noise.

To conclude, regardless of the distribution of the initial colonization rates, the profile
of the invaders seems to remain constant over the iterations. However, during an invasion,
the system tends to change, the type of invader can play an important role. We quantify
its impact in the next section.

Impact of an invader

When a species invades the system, we have seen in section 4.3.2 it can involve extinction
cascades. These extinctions will depend on the general colonization parameter distribution
but also on the colonization parameter of the invader. In Figure 4.3.23 the mean value of
the colonization rate of the invader is displayed for each extinction cascade effect.

Regardless of the distribution, we notice simply that the lower the colonization rate,
the greater the chance of implying a extinction cascade effect. From an ecological point
of view, the idea is that if the colonization rate is low, the species is very competitive and
will displace the species already present in the system. We notice that the difference in
scale is due to the distribution of the colonization rate, the bending of the curve will be
greater than the right tail of the probability density is light (difference between Ul and
U10 and P1, P2, P5).
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Figure 4.3.23: Mean of the colonization rates of the invaders as a function of the number
of extinctions cascades it creates. This experiment is done only once in a large sequential
invasion process n = 200000.
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4.3.4 Properties of resistant species

The main focus has been on describing the properties of the invaders. When a species
invasion occurs, a possible scenario is the extinction cascade: one or more species become
extinct as a result of the invasion. In this type of iterative process, what is the ability
of a species to resist to invasions? In this part, we quantify empirically, which species
(in terms of colonization value) are more likely to “resist” these invasions. We know that
competitors are more resilient, we expect high ¢ values to come and go faster than low
values. However, we suspect that it is difficult to stack up a lot of small values of ¢, so
we would finally like to quantify the distribution of the ¢’s that resist as a function of
time, in order to answer the question: is there a growing fraction of the colonization rate
support that resists invasions?

Properties of the colonization rate of the persistent species

General metrics for studying the dynamics of persisting species is the average (see Figure
4.3.24) and median (see Figure 4.3.25-b) of the colonization rates of persisting species as
a function of invasion trials.

We distinguish three different behaviors: when the distribution of colonization rates of
the species attempting to invade admits a finite variance, the mean converges to 1. This
indicates that the proportion of highly competitive species tends to grow in the system
and that colonizing species do not seem to stay in the system “on average” When the
mean and variance of the distribution is infinite (Pareto 1, Log-Cauchy), we have jumps
in the mean of the survivors. This suggests that a highly colonizing species enters the
system and is not displaced by more competitive species for a significant amount of time.
The last case is infinite variance but finite mean distribution (Pareto 2), the trend seems
to be increasing even if the curve is noisy.
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Figure 4.3.24: Mean of the colonization rate of the persisting species as a function of the
number of invasions trials. The curve is derived using Monte Carlo simulations P = 1000
of many sequential invasion process.
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In a second step, we look at the curve of colonization rates as a function of rank for a
different number of invasions trials (see Figure 4.3.25). For each of these curves, we look
at a box plot to see the distribution of colonization rates.

We distinguish again two cases: the case of the regular distribution (uniform 1) and
the case of a heavy-tailed distribution with a finite mean and variance (Pareto 3). In the
case of the uniform distribution, we again observe a decrease in the colonization rates of
the persistent species as the number of invasions trials increase, the mass of colonization
rates approaches 1. However, we do not observe a reduction of the values of colonization
present in the system. We observe a similar behavior for the heavy-tailed distribution
with a decrease of the median without much change for the colonizing values (we remain
in a case where the variance and the mean are finite).
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Figure 4.3.25: The left plots are representations of the colonization rates as a function of
colonization rank for a different number of invasions. For each of these curves, on the right
plots, we compute a box plot which gives additional information on the distribution of
colonization rates. A Monte Carlo experiment is realized for P = 1000 sequential invasion
processes to obtain the functions on the left plots.

Lifetime of a species in the system

It was observed that under some distributions, competitive species seem to become a
majority in the system while in other cases a pool of colonizing species tends to remain
in the system. Another way to illustrate this phenomenon is to study the average time a
species survives in the system.
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In Figure 4.3.26, we represent the mean colonization rate ¢4 of species persisting
till age. In the case of regular distributions, we observe that long-lived species have a
low average c¢ while short-lived species have a higher average c. In the case of heavy-
tailed distributions, colonizers seem to persist longer in the system. Numerically, the
large values taken by the heavy-tailed distributions can cause some issues in the graphical
representations, there is not really a relation between lifetime and colonization rates for
heavy-tailed distribution.
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Figure 4.3.26: Representation of the mean value of colonization rate as a function of its
lifetime in the system for n = 1000 invasions.

Discussion

Analyzed by Tilman [Til94], the HT model (competition-colonisation trade-off with hier-
archical competition) represents a first step in our understanding of species-rich metacom-
munities. In this paper, we bring a new perspective to the HT model (4.2) by studying
the behavior of the model when colonization rates are randomly distributed and a large
number of species is considered. The question is whether species can coexist to form a
metacommunity with many species under the strict conditions of this model. To carry
out this investigation, we identified two different types of sequential invasion processes:

1. a all-at-once metacommunity process starting from a initial pool of species in the
landscape or from an equivalent point of view starting from an empty system with
an invasion sequence where it is assumed that all species can invade at any time,

2. a sequential invasion process developing an invasion sequence that involves a histor-
ical contingency effect.

First, from a mathematical standpoint, we are interested in the behavior of the system
of n equations (4.2). As already mentioned by Calcagno et al. [CMJDO06al, there is an
equivalence between the C-C trade-off model and the Lotka-Volterra model (4.4). From
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a new perspective, using the Theorem of Takeuchi et al. [TAT78], we show that there
is a unique globally stable equilibrium of system (4.2). This important aspect makes
it possible to overlook transient dynamics in the study of model (4.2) for both types
of implementations. We recall the conditions of coexistence depending on the coloniza-
tion rates in the form of a set of admissible conditions (4.3). The number of persistent
species at equilibrium p* is computed simply using this set. Like Hastings [Has80], we
restrict our analysis to a fixed extinction rate equal for all the species, which simplifies
the computations.

All-at-once metacommunity

Intuitively, in light of the quadratic conditions of the set of admissible solutions (4.3), one
could assume that the coexistence of many species is complicated. However, we show that
when n is large enough, then the number of persistent species is distributed according
to a binomial distribution (Figure 4.2.2), and that half of the species coexist (Figure
4.2.1). Furthermore, we show that coexistence does not depend on the distribution of
colonization rates in the all-at-once metacommunity. In particular, we can consider very
different colonization distributions: uniform, Exponential, Pareto, Log-Cauchy, etc.

In a second part, we study the properties of persistent species by recalling some results
of Kinzig et al. [KLD"99]. The dynamics of the fraction of empty patches depends
only on the colonization rate of the best colonizer in the system. A distribution with
bounded support may let a greater fraction of empty patches, whereas if the support
of the distribution is large, the empty space will be filled. In addition, the distribution
of the occupancies of each species as a function of its colonization rates follow a power
law poce™®? when ¢ is drawn from any uniform distribution. However, for heavier-tailed
distributions, the best colonizers will also be able to occupy a large fraction of the available
patches. As a final point, we clarify the intermediate disturbance hypothesis that had
been observed by Hastings [Has80] where optimal coexistence between species occurs when
M = Cpin 1.€. the left bound of the support of the different distributions (Figure 4.2.7).

Sequential invasion process and extinction cascades

Compared to the all-at-once approach, the sequential invasion process is much more re-
strictive i.e. diversity accumulates much more slowly when species cannot re-invade with-
out a concomitant invader to help the new species. The number of persisting species
saturate with a logarithmic growth due to historical contingencies and extinction cas-
cades (Figure 4.3.9). In contrast to the all-at-once metacommunity process, there is no
universality result under this implementation, every result depends on the distribution
chosen to draw the colonization rates of species attempting to invade. The dynamics of
the species richness depends on the distribution of the colonization rate of the new in-
vaders. Regular distributions of colonization rates such as the uniform distribution have
a worse coexistence probability than heavier-tailed distributions. The phenomenon of
extinction cascades is a key element of the saturation phenomenon (Figure 4.3.11). Its
study allows us to understand the difference in performance between the distributions.
With each iteration, the phenomenon of extinction cascades also seems to stabilize. We
reach a system where the inputs/outputs seem to compensate one another independently
of the distribution. The impact of the extinction rate is not the most important element,
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however the intermediate disturbance hypothesis still drives the impact of the extinction
rate (Figure 4.3.14). Species occupancies are affected by the the distribution of the col-
onization rates. On the one hand, a major difference is observed between regular and
heavy-tailed distributions. On the other hand, when we study the occupancy of species
by their colonization rank, we observe that the greater the density of the distribution on
the left, i.e. there are more competitive species trying to invade the system, the lower the
proportion of competitive species. In the extreme case of the Log-Cauchy distribution,
we observe that there is a balance of species importance with small and large colonization
rates to occupy a larger part of the patches. An additional point on the distribution of
landscape is the fraction of empty patches, the conclusion is unambiguous: the heavier
the tail the smaller the fraction of empty patches (Figure 4.3.17). The fraction of empty
patches is similar to the all-at-once metacommunity process (Figure 4.3.18). In addition
to the study of species richness, two diversity indices (Hill number of order 1, Inverse
Simpson index := Hill number of order 2) are studied. The behavior of diversity is the
same as species richness. On the one hand, the diversity of species that persist when
colonization rates are drawn into the uniform distribution is high; on the other hand the
diversity of species that persist when colonization rates are pulled into the Log-Cauchy
distribution is significantly lower. In general, the heavier the tail, the greater the diversity
(Figure 4.3.19).

Independently of the distribution, we can make several general observations, first
1

of all the probability of invasion decreases with time to converge to a value close to 3
(Figure 4.3.21). The properties (mean, variance) of the colonization rates of the invaders
is constant over the iterations and depends intrinsically on the initial distribution (Figure
4.3.22). Ultimately, the extinction cascade is greater when the invader has a colonization
rate that is low and therefore the more competitive a species, the stronger its impact on the
extinction of other species (Figure 4.3.23). However, there are some notable differences
between regular (uniform) and heavy-tailed (Pareto, Log-Cauchy) distributions. First,
the probability of invasion is much less noisy in the case of heavy-tailed distributions.
This can be explained by the lower number of extinction cascades and thus the system
changes less over time. Secondly, the distribution of invaders seems to remain constant
when colonization rates are drawn following a regular distribution while in the other case,
the properties of the invaders fluctuate a lot over time even if the trend remains constant.
The reason is the very small and very large values that the colonization rates can reach

and this has an effect on the mean colonization rate which implies extinction cascades.

In the case of regular distributions of colonization rates, the species that appear to
remain in the system are the most competitive (Figure 4.3.24). There is a system that
becomes more and more competitive and few colonizing species manage to stay in the
system (Figure 4.3.25). This could explain the small increase of species in the system.
Finally the community of persistent species keeps a smaller and smaller fraction of the
species that try to invade the system. Conversely, heavy-tailed distributions behave dif-
ferently, with colonizing species managing to maintain themselves even if the competing
species remain key species in the system (Figure 4.3.26).

To conclude, a partial answer is that the species that will tend to stay in the system the
longest are the competitive species because they are less subject to extinction cascades.
On the one hand, if there are many competitive species in the system, the competitive
species will have more difficulty to invade the system. On the other hand, the colonizing
species will succeed in invading the system without changing (much) its structure (which
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is facilitated by a heavy-tailed density function). However, when a competitive species
succeeds in invading the system, it will tend to push out some of the best colonizing
species. Finally, we find that a good balance between competition and colonization pro-
mote coexistence i.e. if too many species are competitive, then no one can invade the
system and conversely too many colonizers gives a more volatile system.

Perspectives

While keeping a probabilistic structure of the ¢ colonization rates, a first natural per-
spective would be to introduce more complexity to model 4.2, such as new parameters, to
understand their impact on the all-at-once metacommunity and the convergence to the
binomial distribution or the sequential invasion process. In this paper, a fixed extinction
rate has been assumed for all species m; = m, ¥i € [n]. However, one could consider a
different extinction rate as in Tilman’s historical paper [Ti194] and observe its effect. The
impact of an multimodal disturbance factor as in Liao et al. [LBB22| could give different
results. One could also study the impact of habitat loss as in the paper by Nee and May
[NM92], Tilman [TMLNO94] or more recently Li et al. [LBL20]. In this paper, explicit
spatial structure linking patches is not considered, we assume a global dispersal ability.
In nature, habitats are structured [HO00, OHO1] i.e. paths from one patch to another
can be indirect, adding spatial structure would undoubtedly affect our quantitative re-
sults [GB12, WBvN™*21], as in Zhang et al. [ZBN'21] where they showed that network
heterogeneity (i.e. variation in the number of links between patches) promotes species
coexistence in hierarchical competitive communities.

The major extension would be to monitor the effects of a more general version of the
hierarchical competition-colonization trade-off model (4.2). Indeed, this model has been
criticized for being based on unrealistic assumptions. In particular, this model assumes
that worse colonizers always out-compete better ones, regardless of how similar their
colonization rates i.e. perfectly asymmetric competition. Calcagno et al. [CMJDO06a]
studied the competition-colonization trade-off model 4.1 relaxing the hierarchical com-
petition assumption assuming that there is preemption (:= a species present in a patch
has an ability to resist invasion of a new species). They found that the effects of these
changes were more nuanced, but did not fundamentally alter the ability of the trade-off to
maintain coexistence. Calcagno et al. showed that relaxing this assumption can actually
favor coexistence. This is especially likely when competition is not perfectly asymmetric,
suggesting that these assumptions might “cancel out” to some extent.

Although in the study of the sequential invasion process, we consider only the col-
onization rate of the invader sampled from the same distribution. We could consider
that the distribution of colonization rates change due to environmental conditions. If
the distribution of invaders change, habitat and persistent species in the system will be
subject to new constraints. We could measure the “resistance” of the different distribu-
tions against others and therefore give arguments to an optimal distributions. We could
choose a metric between the two distributions and see how it changes over time: speed
of growth, extinction cascades increase and arguments of the kind (competitor/colonizer)
has a better resistance in the system.

Similarity with the Lotka-Volterra model has been already suggested by Calcagno et
al. [CMJDO06a]. Surprisingly, the behavior of a standard Lotka-Volterra random system is
the same. Servan et al. [SCG' 18] showed that when interaction coefficients are sampled
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independently from a symmetric distribution with mean zero, the number of coexisting
species from a pool of size n is also distributed as B(n, %) They considered a scenario
where all species are statistically equivalent and interactions are essentially unstructured,
while we consider communities with strongly hierarchical interactions. The fact that the
final distribution of the persistent species are identical in these highly dissimilar cases
suggests the possibility that this behavior is a more general result of ecological dynamics
where species possess some symmetry by emerging from ecological mechanisms.

Stability in model (4.1) is still an open-question. In the LV form (4.4), the interaction
matrix is similar to an anti-symmetric predator-prey matrix [YA73, RW84]. From a
theoretical standpoint, the diversity-stability debate has not found a clear mechanism
to propose an alternative to May’s results [May72]. Spatial dynamics and the study of
patch dynamics could be a possible alternative for the stability of ecosystem dynamics
and provide an answer to the stability paradox.

Last but not least, a rigorous proof in the case of the all-at-once metacommunity
process could help to improve our understanding of the universality mechanisms associated
with the model. However, the task is not simple due to the inerrant nonlinear conditions
associated with the set of conditions of an admissible solution (4.3).
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Appendix

Numerical methods

Simulations were performed in Python.

4.A Theoretical background

4.A.1 Reminder of Tilman’s article

The following equations are reminders of the ones obtained by Tilman (1994). At equi-
librium, the species ¢ will occupy p; proportion of habitat

i—1
m; Cs
I [ 1+ D).
; lpj( Ci)]

C; =1

Remark 4.9. Denote by h; the proportion of empty space left when i species are present
in the model.

o If the extinction rate of every species is equal to m; = 0, Vi € [n], regardless of the
colonization rate of the other species, it is always the most competitive one that
will remain in the end and colonize the whole space i.e py(t) P 1.

o If we develop the above equality, we obtain an upper bound for each species: Vi €
[n], pf < hi1 — . Even if a species is very colonizing, it will never be able
to colonize more than the space it has been given. This condition illustrates the
regulation of competition.

Apart from the number of species and whether the extinction rate is superior than
one, at equilibrium there is always empty space. It may be brieﬂy recalled in Levins
one-species model, the fraction of empty patches corresponds to 1 — ™. The fraction of
empty patches when 7 species are present is given by

d mz i— 1+Z] ]_pjmj
hi = 1_210; a cihi—1 .

The fraction of empty patches is necessarily greater than *** and therefore the landscape
is necessary occupied by 1 — cm (see section 4.2.3 for pre(nse estimation of the fraction of

the empty patches).
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Selection of the parameter Throughout the paper, the extinction rate of all species
is equal to m; = m, Vi € [n]. The relevance of the paper relates to the choice of
the parameter c. The possibility of a species to invade the system depends only on its
colonization rate and the state of the system. At equilibrium, a species will be able to
invade the system and persist if and only if

m

2 )
hn—l

Cp > (4.17)

where ¢,, corresponds to the colonization rate of the invading species and h,_; to the
fraction of empty patches of the system.

Condition (4.17) is very strong and assumes that each species wanting to invade the
system is always less competitive and always more invasive. The condition will be re-
worded based on the colonization rates of other species. These strong constraints will
allow the creation of the all-at-once metacommunity model.

4.A.2 Condition on the colonization rate and occupancy

In this part, we find Tilman’s conditions by another approach. Assume the ¢; are arranged
in increasing order and the dynamics of the species is

dp; i i—1
dtl:pi Ci—m—Cinj—Zijj
Jj=1

j=1

The equation that gives the non-trivial equilibrium (p; > 0) can be written as follows

) 1—1
m Cip;
1_;_2%._2%]:0, (4.18)
o= =1

One way to solve this equation in the case where p; > 0, Vi € [n] is to introduce the
fraction of empty patches h; defined by

hi=1-> p;. (4.19)
j=1

Equation (4.18) can then be rewritten as

i—1

—-m + Cihi,1 — Cip; — Z Cipj = 0. (420)

j=1
For the iteration ¢ — 1, we can replace ¢;_1h;_ s — ¢;_1p;—1 by ¢;_1h;_1, which gives

1—2
—-m + Ci—lhi—l - Z Cip; = 0. (421)

J=1

We then remove (4.20) from (4.21) to obtain a recurrence equation linking p and h

i = (1 - Cil) hi—y — Cic%lpi—l ) (4-22)

G 7
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then we can complete using equation (4.19) rewritten

Ci—
hi =hi_1 —p; = ?l(hi—l + pi-1) - (4.23)

)

The equations (4.22) and (4.23) can be written as vector equations using the following

notations
(P (-1 —1 (0 1
=) 4= () 2= (00)

(4.22) and (4.23) are then expressed as

X, = <C"‘1A + B> X1, (4.24)

C;

A?:O,B?:O,AB:(S D BA:<(1) é) ABA— A BAB - B

Suppose we have

Xoiv1 = (A + B:B)Xo, (4.25)

with po = 0 and hy = 1. Applying twice in a row the recurrence (4.24) and the simple
computations, we obtain

Xpirg — (CQ"“A + B) Xojio = (C%”AB n C%“BA) Xoge1 - (4.26)

C2i+3 C2i+3 C2i+2

By injecting proposition (4.25) into equation (4.26), we find that

X2i+3 — (CQH_QAB + CQlHBA) (OzZA + 6ZB) X() = (CQH_Z O[Z‘A + it ﬂzB> XQ . (427)

C2i+3 C2i+2 C2i+3 C2i+2

That is, the following recurrence relations:

a1 = CQH_QOQ' (428)
C2i+3

Biv1 = C%Hﬁi (4.29)
C2i+2

(4.30)

Given ag = m/cy, ¢cg = m and By = 1, we derive the general expressions of the coefficients
forv> 0

j=0
al = Z )
H Coj+1
j=0
i—1
C2j+1
_ J=0
[T ey
j=1
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In the same way, if we suppose
Xoi = (A +6B) X1, pr=1-m/e;, hy=mfe.

The same method of calculation shows

C2i+1
Xojyo = < A+ B) Xoit1,
C2i+2

_ (CQHlAB—F C2;i BA) Xos,

C2i+2 Coi+1

_ <C2i+1%A+ C2; 5iB> X

C2i+2 C2i+1

This leads to the fact that
H C2j+1
A (4.31)

[T ey
| (4.32)

C2j+1
(4.33)

It has therefore been shown, with equations (4.28)-(4.29) and (4.31)-(4.32), that the
recurrence (4.24) can be decomposed and solved between even and odd indices as follows

H C2j [T coj .
Xojp1 = | 2—A+ 75— B|. (1) , (4.34)
[1 coje1 [T ey
7=0 Jj=1
i—1 i—1
1_[ Coj+1 l_[ Coj 1_m
Xy = F(j A+ ijfl B . ( mCl) . (4.35)
[T co [T 2 “
j=1 j=1
In terms of p;, this yields
H C2j+1 H C2j
P2it1 = :? - Z.:O ; (4.36)
H H C2j+1
j=1 =0

i—1 1—1 1—1
H C2j+1 H C25 H C2j+1
S — 2= =0 . (4.37)

i -1 i
[Te  Tleojin T1c
j=1 =0 j=1
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It may also be noted that the equations (4.34) and (4.35) provide expressions for h;
(the unoccupied habitat by species 1 to i) at equilibrium. As long as all species persist:

i

[T ¢y
0

hain = 40—, (4.38)
H Coj+1
=0
i—1
H C2j+1
ho; = 2 (4.39)

By manipulating these two equations, we see that: h; = (%) h;_o, which gives a
decrease rate of h; for every two species added.

For species i to persist in the system, its equilibrium given by (4.36) or (4.37) must
be positive. This implies that the conditions for species persistence can be given as

i 2 /ia 2
P2i+1 persist <= C2i41 > M <H CQj) /(H 02j+1> , (440)
. =0

7j=1

i—1 2 i—1 2
D2i persist = C9; > (H 02j+1> / m(H 02j> . (441)

j=0 j=1

We can reorder the inequalities (4.40)-(4.41), so that the conditions of coexistence can
be written as (¢o = m)

C1 Co C1C3 Co C4 C1C3C5
I<—<-"<——<-"—<———=<

Co &1 Co C2 C1 C2 Cp C2 C4

stopping inequalities with on the right a fraction where the largest index of the numerator
is equal to the index of the last persistent species.

4.B Reminders of probability

4.B.1 Definition of standard distribution

For reproductibility purposes, we recall some standard positive probability distribution.
Each distribution is defined by a random variables X following the probability distribution
function (PDF) f and the cumulative distribution function (CDF) F'. We denote by

1if z € [a,b],
Lap)(z) = {

0 else,

the characteristic function.
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Definition 4.3 (Continuous uniform). The continuous uniform distribution U([a, b])
describes an experiment where there is an arbitrary outcome that lies between certain
bounds: (a,b) € R%,

1 r—a

jab) = ——1 F(z;a,b) =
f(xaaab) b—a [a,b](x)7 (x,a,b) b—a

1[a,b] (.73) + 1[b,+oo) (.77)

Given X a random variable following the distribution U([a, b])

E(X) =2 ;r b Var(x) = 12“)

Definition 4.4 (Pareto). The Pareto distribution P(a) is a power distribution distribu-
tion with shape a, support [1, +0),

f@m)=ﬁiﬁmwM@,F@mw=<l—1)1umﬂw-

x(l
Given X a random variable following the distribution P(a):

E(X) = “ifa>1, Var(X) = 7(%1)‘;(%2) if a > 2,
+o0 otherwise +o0 otherwise.

The Pareto PDF f,,, can be expressed as a function of the exponential PDF fq:

fpar(x; a) = fexp(log(x>; CL)

Definition 4.5 (Log-normal). The log-normal distribution Lognormal(u,o?), u € R and
o > 0, is a probability distribution of a random variable whose logarithm is distributed
in accordance with a Normal distribution.

f(xv 1, U) = ZEO‘127T €xXp (_(log(;()jg_lu)) 1(07+00) (.CI?),
Flouo) = @ (1) 1,0,

where ® corresponds to the CDF of the normal distribution A/ (0, 1).
Given X a random variable following the distribution Lognormal(u, o?):

E(X) = e | Var(X) = (7" — 1)e+°

Definition 4.6 (Log-Cauchy). The log-Cauchy distribution LogCauchy(u, o), € R and
o > 0, is a probability distribution of a random variable whose logarithm is distributed
in accordance with a Cauchy distribution.

1 o
faino) = o | (o)

1 1 1 —
F(z,p,0) = 5t — arctan <og(w),u) :

™ o

Mean and variance are infinite.
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Definition 4.7 (Exponential). The exponential distribution £(\), A > 0 is a continuous
analogue of the geometric distribution.

f(‘xa )\) = )‘6_)\%1[0,+OO)<$) ’ F(CL’, >\) =1- e_)\ml[(),-i-oo)(‘r)'

Given X a random variable following the distribution £(\):

wm:i,wmmzl

4.B.2 Reminder on order statistics

Given a sample of iid random variables X = (Xi,---,X,) distributed by the density
function f and F' stand for the cumulative distribution function. We denote the order
statistics: X(yy, -, X(n) by sorting the realization of X by increasing order. In particular,
on the one hand X, correspond to the smallest value and the minimum of X and on the
other hand X(,,) = max (X, ...., X,,).

e One can defined each order statistics by its probability density function

N (@) P() (1~ F(a))""

Sxo @) = G =D —w)

o The joint density function of the order statistics is

1=1

e The joint density function of Xy and Xy, 1 <k <l <nis

n!
fxyxo (@, y) = D=1 B l)!f(:r)f(y)x

[F (@) [Fy) = F(@)] 77 1 = Fy)"™.

e The joint density function of Xy, Xy and Xy, 1<k <l <m <nis

n!

fX(k),X<l),X(m)(x,y, Z) :(k? _ 1)'(Z _ 1 _ l{;)'(m o l o 1)|(n o m),f(x)f(y)f<z)x
[F@)) [Fly) = F@)] M F(z) = Fy)]" L= F()" ™

o In the case of a large sample of n order statistics, if F' is continuous non zero, an
application of the multivariate central limit theorem and the delta method yields

N - p(1 —p)
Kt~ (#7405t

where p € (0,1) and |...| denote the integer part.

For more information on order statistics, I suggest the reader to look at Arnold et al.
[ABNOS].

233



Chapter 4. A probabilistic perspective of the hierarchical competition-colonization trade-off model

4.B.3 Properties of the maximum

To be able to compare the distributions in the different sequential invasion processes, we
obtain information on X(,) = max(Xy,---,X,). In particular, we get information about
the mean of this random variable. One can explicit the mean of a positive random variable
in terms of the survival function

E(X(n)) = J P(X(n) > :L‘)d:L‘

0

Continuous uniform Since the uniform distribution has a finite support, given X =
(Xh e 7Xn) ~ U([CL, b])
E(X@) ——b.

n—+0o0

Exponential Given X = (X3, -+, X,) ~ £()), the right edge of the support is infinite,
we have

00

E(X@w) = 1—(1—e ) dx,
Jo
[ =35 (0 e,
Jo k=0
ftoo n
_ 2 Z) Jelg=Xha gy,

k=1

o
—_

i ()Jk-

k=1

Pareto Given X = (Xy,---,X,,) ~ P(a), the right edge of the support is infinite and
a > 2 to have a finite variance:

|
— 1+ ;(—1)’f—1_(:) foo ;k dz

-1 5 () [,
— 1+ é(—m’“ (Z) (akl_ 3
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Log-Cauchy Since the mean and variance of the Log-Cauchy are infinite, we deduce
the mean of the maximum is as well infinite.

An empirical point of view For a fixed n, it is always possible to compute empirically
the value of the maximum provided that the mean does not tend to infinity. A Monte Carlo
(MC) method can be used, the maximum of a random vector of the desired distribution
is computed a large number of times and its empirical mean is computed. Assuming
that the mean of the maximum is increasing with respect to n (which is not completely
absurd).

If a desired maximum value is given, it is possible by a fixed point method to find the
parameters of the distribution giving this maximum. This way of proceeding can be a
bit shaky because our function only returns an “approximation” of the maximum of the
distribution. However, if the MC process is repeated a large number of times, a reasonable
approximation can be obtained.

4.B.4 Reminder on heavy-tailed distribution

A heavy-tailed distribution is a probability distribution whose tail is not exponentially
bounded i.e. given X a random variables and F' its CDF the moment generating function
of X, Mx(t), is infinite for all ¢ > 0 which mean

JemdF(x) =00, Vt > 0.

In others words, given G(z) = P(X > z) the survival function of X, the distribution is
heavy-tailed if
lim " G(x) = o0, Vt > 0.

T—>0
In this paper, common heavy-tailed distribution are Pareto distribution and Log-Cauchy
distribution is considered as “super heavy-tailed” distribution because it exhibits a loga-
rithmic decay which is heavier than the Pareto distribution.
The reference we are working with is Foss et al. [FKZ13].

4.C An optimal density function

Is it possible to find a continuous density function f which optimize the probability of
coexistence of n species in the process (beyond a universality result)? This section is an
open ended part to understand the intuitive idea of a heavy tailed distribution. In the
sequel, the extinction rate is m = 1.

The 2-species case

Let begin with a system of two species with colonization rates ¢; and ¢y, two random
variables with density function f. We would like to maximize

+00 ptoo
P = r?ggQL . f(@) f(y)laeydydz

where D is the class of density function.
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This kind of problem seems mathematically intractable even less when the dimension
will increase. To circumvent this problem, we can express the density function as a sum

of Dirac
1 i
n = al

The idea behind this is have some insights about the distribution of the mass. The vector
of the mass is given by @ = (a1, -+ ,a,) € R%. We could approximate the Dirac by a
selection of well chosen functions or get information about the cumulative distribution
function F. By replacing f by the sum of Dirac

2 n

P=max s 3 Z Lais1y1(a;>a2) Lia;>a:)

i=1j5=1

To maximize P, we have to choose Vi, a; > 1, i.e. colonization rates cannot be less
than 1. There is a major loss of the mass if the support of the density is below the
extinction rate. In addition, there is the following implication a; > a = a; > a;. Let
a;,1 € [n] in a increasing order

l<ai<ay<---<a,.

Then

P= mﬁﬁ;nnzZZ (ay>a2)

1=175>1

Finally, the condition on the vector of mass a to maximize coexistence between two

species is
2 4 2n—1
p, > Ay > A o > o0 > Q]

The ratio between two mass is getting bigger and bigger

a;

> a} " > cap(2 2 log(ar)) > eI A,
ai—1

The main idea is that if n — oo we pick two colonization rate (ci, cz) from the set a we
are a.s. that the condition of coexistence is satisfied.

Remark 4.10. Given a;, i € [n] in a increasing order with 1 < a; < ay < -+ < a, and
a; = 1+ ¢, then the minimal value of a; must be as = (1 + €)?. With the same arguments,
we find

271 i1
1—1 2
as =1+, ag=1+€)P a;=(1+e¢)? 22(k>ek.

k=0

The 3-species case

Using the same arguments as in the 3-species case and considering a vector of mass
a=(ay,...,a,),

4+ ptoo
Pzr?eaD)(Gf f J%EZ (y) f(2) 11, <.dzdyd
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6 n n n
P = max g Z Z Z ]l{ai>1}]l{aj>ag}]l{

}]l{ag>az}]l{ak>a]}
s

Following the same assumptions of the 2-species case and with the arguments

2 2 _ 2 2/ 2
aj > a; < a; > a;a; ,  ap > aj/a; = ag > aj,
1=1j>ik>j

P = miénn ZZZﬂ{a>az}]l{ >z}

Finally if Vj > i, a; > a7 then for k > j, we have a, > a7 > _. This implies that the

sw‘ww

first condition controls the sum. One can count
1 n n n
i=1j>i k>j

Finally, by switching to a continuous distribution, we would have a heavy density on the
left side and a heavy-tail on the right side. These conditions are sufficient to find an
optimal density for a finite number of species. If the number of species becomes infinite,
then the probability of falling on the same mass would no longer be 0. This section
gives an idea of the balance between competition and colonization found in the sequential
invasion process.

4.D Additional graphics

Sequential invasion process

Distribution of the colonization rate

aaaaaaaaaaaaaaaa

(a) P(1) (b) P(2) (c) P(5)

Figure 4.D.1: Representation of the empirical CDF after the sequential invasion of the
colonization rate of the persistent species after 500 invasion trials. The curve is derived
using Monte Carlo simulations P = 1000.

Feature of an invader

We perform a moving average on the realized colonization rates and average the time
series for different sequential invasion processes (see Figure 4.D.2).

237



Chapter 4. A probabilistic perspective of the hierarchical competition-colonization trade-off model

o

Mean of the colonisation rate of the invaders
Mean of the colonisation rate of the invaders
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(a) U([1,2]) (b) P(2)

Figure 4.D.2: Representation of a moving average on the colonization rates of the invaders
for a sequential invasion process of size n = 1000. A Monte Carlo experiment is realized
P = 100 times by getting times series of the moving average curve on the colonization
values and average the time series of P sequential invasion process. In Fig. (a), the plot
corresponds to the uniform distribution #([1,2]). In Fig. (b), the plot corresponds to the
Pareto distribution with parameter a = 2.

Properties of the invaders

We can also compute a good intuition of the probability by keeping in memory for all
invasion trials if a species invades (or not) the system. (see Figure 4.D.3) One can repeat
the process many times and have an “average” at time 1 that a species invades the system.
One obtains a series of values which are decorrelated from each other.

10 —— Uniform 1 10
Smooth filter

0.6

04

Proportion of invaders
I~

0z

T”TT[”r.r-rT. 'I'i__rrrT t

0o

o 100 200 300 400 500
Number of invasions [] 5 1 15 20 5

Figure 4.D.3: Representation of the probability of an invader as a function of the invasion
trials (left) and its auto-correlation curve (right). The probability is computed by a
Monte-Carlo experiment. We run P sequential invasion process and keep a binary vector
where the value is 1 if the species invades at invasion trial /, 0 otherwise. We average
all the binary vectors and obtain for each invasion trial [ a probability of invasion. A
smoothing function is also drawn. The right graph corresponds to an auto-correlation
plot of the left curve.
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Conclusion

From a general perspective, this thesis is based on the development of mathematical and
numerical techniques for the analysis of theoretical models of ecosystems. In particular,
I am interested in developing a better understanding of the diversity of species and the
complexity of their interactions. This represents a huge challenge in theoretical ecology
and the complexity of the system requires mathematical models. The aim is to improve
our understanding of their properties (feasibility, stability, persistence) in order to preserve
biodiversity, save endangered species or manage exploited species in a sustainable way.
Future disturbances will heavily affect ecosystems and preventing and understanding these
changes may be one of the major challenges of ecological research.

In order to explain the coexistence of species, three issues need to be considered, the
relative importance of which is still unknown... The abiotic constraints and the niche
of the species i.e. species sorting [LHM 04| shows that we find species adapted to their
environment. The dispersion of species and the spatial structure of the environments
i.e. mass effect explain that clumsy species will coexist as long as they are able to
disperse well and that their habitats of predilection are not far. The role of interactions
between species as a driver of species coexistence remains to this day a major issue in
ecology. We are thinking mostly about competition, but we need to broaden this to all
types of interactions. The idea is that phenomena like Paine’s keystone predation [Pai66]
are probably important elements in understanding species coexistence (= if we better
understand interactions and their impact on the number of persistent species, we should
understand cases where neither species sorting nor mass effect give us the keys).

From a more specific point of view, the objective of my thesis was to elaborate a
quantitative analysis of large Lotka-Volterra models based on Random Matrix Theory.
The theory of random matrices is a powerful mathematical tool still in full expansion with
many unsolved problems so far. Numerous matrix structures have been studied creating
a direct link to the many types of interaction or food-web matrices between species within
the same community.

Starting from the beginning, it is May [May72] who introduced the use of random
matrices in ecology by emphasizing a paradox between diversity and stability. Following
May’s work, many efforts have been made to study particular structures of the random
Jacobian matrix also called “community matrix”, in particular the work of Allesina et al.
[AT12, AGB*15, GAST17]. However, the study of the Jacobian only gives information on
the stability of a system around the equilibrium. The Lotka-Volterra model considering a
random interaction matrix is a first step towards a more sophisticated system. This model
is simple (the A;; has few distribution parameters), versatile because many models can be
written in the form of an LV model like the competition-colonization trade-off model and
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robust in its dynamic behavior (cyclic, chaos, equilibrium). The large-scale version of the
LV model has undergone many studies in recent years, on topics such as the feasibility
of an equilibrium [BN21], the stability of the Jacobian of the LV model with dependence
between the interaction matrix and the vector of abundances [GGRA18, Stol18] and struc-
tural stability [RSB14, GAST17, SRB*17, RSB14]. Servan et al. [SCG*18] have given
results on coexistence in a feasible sub-population model. My thesis work is positioned
at the center of gravity between the work of Bizeul and Najim, Servan et al. [SCG*18]
and results using physics-based tools such as the dynamical cavity method physicists use
to study the LV model [Bunl7, Gall8].

In Chapter 1, we give sufficient conditions for the existence and uniqueness of a globally
stable equilibrium with vanishing species in a community. This study is carried out in the
framework of a random interaction matrix with two main parameters, o controlling the
interaction strength and p controlling the dominant type of interaction. We give heuris-
tics to find properties of this equilibrium such as the proportion of persistent species, as
well as the variance and mean of their equilibrium abundances. We observed that an
increase in the strength of interaction between species increases the number of extinc-
tions. In nature, interactions between species are constantly changing and affected by the
environment. Under the assumptions that environmental conditions influence interaction
strengths, we have endeavored to study the consequences of a sudden change of environ-
mental conditions, expressed through a decrease in parameter . Solving numerically the
Lotka-Volterra system confirms the predictions given by heuristics, i.e. that a increase of
the interaction strength negatively affects equilibrium species richness. In this context, a
analysis of diversity measure suggests that mutualistic interactions imply shorter transient
dynamics.

In Chapter 2, we extend the feasibility results of Bizeul and Najim [BN21] to the case
of pairwise correlated interactions. We consider a correlation profile where the correlation
can be different between the different pairs of interactions. The main outcome is that the
correlation between the interactions does not influence the feasibility threshold. Moreover,
we give sufficient conditions for the existence of a unique globally stable equilibrium for a
sub-population of persisting species. In order to proceed we combine results by Takeuchi
and Adachi [TA80] the stability of LV systems with Random Matrix Theory results. We
finally conclude on estimating the proportion of persisting species. At a physical level
of rigor, we state the open problem, recall Bunin’s and Galla’s equations and provide
simulations of a closed-form system of equations to compute the proportion of persisting
species.

In Chapter 3, we investigate the LV model to describe the properties of a multi-
community model. By adding a block structure to the matrix of interactions, we study
the properties (feasibility, existence of an attrition phenomenon within each community)
of distinct communities by adjusting the inter- and intra-community interactions. In par-
ticular, we analyze the properties and dynamics that emerge with two communities of
interacting species. New patterns emerge when considering interacting communities. The
interplay between the two communities affect their respective equilibrium and their re-
sistance to small perturbations (stability). From an ecosystem point of view, this means
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understanding the coexistence between communities with different properties that inter-
act with each other. A numerical similarity study is carried out between a model where
the strength of the interactions varies and a model where the connectance in each of
the communities varies, which gives an interaction matrix known as the Stochastic Block
Model (Bernouilli version). This similarity is analyzed through the stability condition
given historically by May [May72].

In Chapter 4, we analyze a multi-species occupancy model representing a system of
hierarchical competition between species where the dynamics of each species’ occurrences
within the metacommunity depends mainly on its colonization rate and its extinction
rate. For a better understanding of the restrictions induced on the colonization rate
in a large-dimension system, we propose a probabilistic interpretation of the model by
looking at colonization parameters following a given probability distribution. We carried
out analytical and simulation-based work to investigate the optimal distribution. From
a mathematical point of view, we elucidate the stability and persistence of the model
allowing the whole or a sub-population of species to coexist using its similarity with the
Lotka-Volterra model. Second, we analyzed two different types of approaches: a all-at-
once metacommunity process starting from a pool of species by letting the dynamics
elapse, and a sequential invasion process developing an invasion sequence that involves a
historical contingency effect. On the one hand, surprisingly in the all-at-once metacom-
munity process we find a universality result on the distribution of persistent species for a
wide range of distributions. We find that on average the proportion of persistent species is
one half. On the other hand, in the sequential invasion process, the heavier the right-hand
side “tail” of the distribution of the colonization rate of the invaders, the higher the prob-
ability of coexistence. Subsequently, the comparison of the two approaches shows us that
the sequential invasion process seems to be much more restrictive in terms of the number
of persisting species due to historical contingencies and extinction cascades. To conclude,
this probabilistic perspective of the hierarchical competition-colonization trade-off model
allows to put forward and compare two different types of distinct assemblages and gives
conditions for many species to coexist under the competition-colonization trade-off.

Take-home messages

The bottom line of this thesis is that some details are important for understanding the
dynamics and diversity of large Lotka-Volterra systems or related models.. In particular,
the strength of the interactions (Chapter 1) and the block structure (Chapter 3) have an
important impact on the properties and stability of an equilibrium where some species
vanish. However, I have shown that pairwise correlation has no impact on the feasibility
of the equilibrium (Chapter 2).

I found a heuristic to improve the understanding and relationship between impor-
tant properties of the equilibrium such as the proportion of persistent species, mean and
variance of persistent species for a general Lotka-Volterra model (Chapter 1) and its
extensions (Chapter 3). However, if we follow the same approach for the competition-
colonization trade-off model, we would have a much simpler result for the proportion of
persistent species i.e. half of the species persist (Chapter 4).

From an ecological perspective, the species richness and stability of ecosystems are
properties that cannot be studied without taking into account the interactions between
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species (Chapters 1 and 2) and the spatial structure (Chapters 3 and 4).

Perspectives

Many perspectives have been discussed at the end of each chapter, I have decided to
select five of them whose future issues are important for the understanding of community
dynamics and also from the mathematical standpoint.

In the model of Lotka-Volterra in the context of this thesis, we identified three types
of interaction: mutualism (x> 0,p > 0), competition (z < 0,p > 0) and predation
(b~ 0,p < 0). In chapter 2, we considered the feasibility problem in a system with
pairwise correlated entries. However, in chapter 1 and 3, we only deal with the cases where
there is no correlation between the interactions because it is mathematically more difficult
to handle these cases. This reduces the general nature of the model. Moreover, with tools
coming from physics, one may obtain a number of results (see Bunin [Bun17] in the unique
community case and Poley et al. [PBG22] in the block case). Using mathematical (not
physicists’) methods, we are confident that such extensions are possible, but might hinge
on more sophisticated developments. If an interaction matrix has a block structure, one
could consider correlations in the broader sense of community instead of individual. In
this system, we would have similarities between communities according to their degree of
correlation.

Recently, many researchers have been interested in exploring higher-order interactions
i.e. interactions among three or more species [MS17, GBMSA17, GLL22|. A more distant
perspective would be to extend work on pairwise correlations in random matrices to
higher-order correlations. Korkmazhan et al. [KD22] show that high-order correlations
in species interactions lead to complex diversity-stability relationships when studying the
“community matrix” or random Jacobian. This type of interactions leads to particular
random matrix spectra. Aceituno et al. [ARS19] studied matrix spectra in the case where
there are higher-order cyclic correlations between k-tuples matrix entries.

A promising method to prove heuristics in larger cases would be the use of the Approxi-
mate Message Passing (AMP) algorithm which has distant similarities with the dynamical
cavity method. AMP has the advantage of having many mathematically rigorous results
[FVRS21, MR16, CT21, JM12].

In this thesis, we were mainly interested in equilibrium properties. However, the Lotka-
Volterra model can exhibit other behaviors such as chaos or multi-equilibrium dynamics.
In nature, we also find out of equilibrium dynamics. To study this type of behavior,
many theories have been developed such as the permanence [Jan87, LM96, JS98, HS98|.
A system is called permanent if no species become extinct where the boundaries act
as repeller. Another category of non-equilibrium dynamics is the transient species (i.e.
species that may persist over a long time period followed by rapid changes in dynamics)
investigated by Hastings et al. [Has01, HAC*18].

In Chapter 1, a model was defined where the strength of the interactions vary, which
could be represented by climate disruption acting on the variability of ecosystems. How-
ever, no quantitative indication of this rate of change was given. In the context of the
periodic model with «(t), we would like to explain in detail the phenomenon of return
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to equilibrium, in particular the speed of convergence or resilience. The rate of the re-
turn to equilibrium used by the “standard” theorists depends on the real part of the
largest eigenvalue of the Jacobian. Eventually what we observe is that if the strength
of the interactions is weak, then the largest eigenvalue will be small and consequently
the return to equilibrium will be fast. If the strength of the interactions increases, the
dominant eigenvalue will be closer to 0 and the return to equilibrium slower. The second
phenomenon is that the rate of return to equilibrium depends directly on the abundance
of the species. We observe in the seasonal dynamics that the greater the abundance of a
species, the faster it will return to an equilibrium. This is a good explanation to say that
when a species converges too fast to 0 then it may never return to the system over a short
period of time (in the sense that it will never regain its initial abundance). Arnoldi et al.
[ALH16, ABLH18] have extensively studied measures of stability such as the resilience or
reactivity of a system. A further theoretical study of the LV model could provide a more
quantitative answer. In Chapter 1, we have limited the analysis to the case of a single
sudden incident, but other types of fluctuations for the interaction strength could be con-
sidered for a better understanding of habitat conservation phenomena. For example, a
seasonal model could be appropriate to describe the evolution of the dynamics over the
seasons.

It is known that if the trajectory stays in a compact space where x; > 0,Vk € [n] (i.e.
in some cases of chaotic attractors or cyclic dynamics), then the long-term average of the
vector of abundances i.e.

1 (7T
x:TL x(t)dt .

is equal to # = B~'1, the same formula to determine a feasible equilibrium.

Could the LCP theory be used in the same way to describe a cyclic phase where some
species vanish? In line with this problem, one could be interested in the distribution of
species over time and their variations.

A paper released in 2013 by Saterberg et al. [SSE13] has shown that the disappearance
of ecological interactions or functional extinctions precedes population extinctions. In
other words, a species already loses links with its neighbors at the beginning of the decline,
making other species around it disappear long before it has itself disappeared. A naive
answer would be to study the impact of sparsity (i.e. the average number of interactions
per species) on the model. Paradoxically, in chapter 3, we have shown that decreasing the
number of interactions increases the stability. However, this only happens when r» > 0 and
each species can survive independently of the others. It would be interesting, but probably
difficult, to study a model where some species are strongly dependent on interactions with
other species for their survival i.e. 7 < 0. The robustness of the LC'P(M, q) results to the
q value would be a starting point to analyze this type of dynamics. One could possibly use
the structural stability as the work of Saavedra et al. [SRB*17] on results with positive
r and see how far one can move the vector » without changing the attractor.

In chapter 4, a probabilistic perspective on the competition-colonization trade-off model
with hierarchical competition was given, i.e. the competition parameter is intrinsic to the
model and the coexistence of species depends only on the colonization and extinction
rates. The study of stability in the model designed in Calcagno et al. [CMJD06a] could
lift the veil on the stability-complexity debate. Spatial dynamics and the study of patch
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dynamics may be a possible answer to the stability-diversity paradox. As the model can be
rewritten as a Lotka-Volterra model, we could consider random competitions parameter
and a random colonization rates.

Recall model in [CMJDO06al,

n
i _ Cipi (1 - pj) —epi + cipi ) iy — Di ), i, Vi€ [n],
dt j=1 j#i j#i
where p; represents the occupancy of species i. Parameter e is the extinction parameter
of all species. Parameter ¢; represents the colonization parameter of the species ¢ and 7;;
corresponds to probability that a population of species ¢ can locally overtake an established
population of species j

This system can be represented in the form of a Lotka Volterra competition scheme
with asymmetric interactions.

Jj=1

dp; = .
g P <Ci —e+ ij (cimij — cjmji — Cz)) , Vie[n].
Given 7 = (1;j)nn be a square matrix of size n and

dpy dps . dpn,

C:(Cz')nyp:(pi)nye:].e,DpT:(dt’EJ...7 p

We can then rewrite the equation in a matrix form
Dp = diag(p) [c — e + (diag(c)n — 1" diag(e) — e17)p] ,
= diag(p)(c — e + Ap),
with A = B — C = diag(c)n — n'diag(c) — 17,

Cl Cl S Cl
C2  C2 Co
C = ,
CN CN CN
0 CiMz2 — CaM21 -+ CiMp — Cplnl
CaM21 — C1712 0 CoM2n — Cnln2
B = :
Cnnnl - Clnln 0

Matrix B is a real antisymmetric matrix, the nonzero eigenvalues of B are non-real and
C' is a rank one matrix, therefore it admits 0 as an eigenvalue of multiplicity n — 1.

In an effort to extend the study of the intermediate disturbance hypothesis, Liao et al.
[LBB22] analyzed the competition-colonization trade-off model in the case of multimodal-
ity in diversity disturbance hypothesis. At the end, they discuss the storage effect as a
temporal niche segregation i.e. species are specialized in different phases of environmental
fluctuations [MSS22]. If we understand the impact of the 7;; matrix in the system, we
could imagine varying a matrix 7(t) over time and observe the behavior of the system as
in Chapter 1.
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Last but not least, in this thesis, no relation with data has been carried out. Instead,
the use of models and the theory of random matrices helps understand what could theo-
retically happen in the absence of information. The development of this theory provides a
better understanding of the underlying mechanisms that ensure the coexistence of species
in large ecosystems. A major challenge for future research in this field would be to work
with large datasets and determine whether they are consistent with what we observe the-
oretically. Recently, Hu et al. [HAB*21] compared the theoretical Lotka-Volterra phase
diagram with experimental data from a laboratory trial. Regarding the Tilman-Hastings
model, there are probably ways to apply it to more epidemiological data (see the applica-
tion of Slatkin [Sla74] by Madec and Gjini [MG20]). With the rise of artificial intelligence
tools to collect data and machines in laboratories that are increasingly sophisticated to
work with many species, we might be able to better understand the functioning of mi-
crobiota [CSF15] or large ecosystems. Finally, I think that the complementarity between
theoretical and empirical ecology is very important and represents a beneficial cycle for
both fields. In view of the recent climate emergency and the stakes of maintaining ecosys-
tems, which is a major issue in ecology, we must act now!

245



Conclusion and Perspectives

246



Bibliography

[AB22]

[Abb18]

[ABC20]

[ABLH18]

[ABNOS]

[Ad106]

[AEK17]

[AEK19)

[AGB*15]

[AK22]

[ALH16]

A1£22)

Ada Altieri and Giulio Biroli. Effects of intraspecific cooperative interactions
in large ecosystems. SciPost Physics, 12(1):013, January 2022.

Emmanuel Abbe. Community Detection and Stochastic Block Models: Re-
cent Developments. Journal of Machine Learning Research, 18(177):1-86,
2018.

Ada Altieri, Giulio Biroli, and Chiara Cammarota. Dynamical mean-field
theory and aging dynamics. Journal of Physics A: Mathematical and Theo-
retical, 53(37):375006, August 2020.

J.-F. Arnoldi, A. Bideault, M. Loreau, and B. Haegeman. How ecosystems
recover from pulse perturbations: A theory of short- to long-term responses.
Journal of Theoretical Biology, 436:79-92, January 2018.

Barry C. Arnold, Narayanaswamy Balakrishnan, and Haikady Navada Na-
garaja. A first course in order statistics. STAM, 2008.

Frederick R. Adler. Commentary on Calcagno et al. (2006): Coexistence in a
metacommunity: the competition—colonization trade-off is not dead. Ecology
Letters, 9(8):907-909, 2006.

Oskari Ajanki, Laszlo Erdos, and Torben Kriiger. Universality for general
Wigner-type matrices. arXiv:1506.05098 [math/, August 2017.

Oskari Ajanki, Laszlo Erdos, and Torben Kriiger. Quadratic vector equa-
tions on complex upper half-plane. Memoirs of the American Mathematical

Society, 261(1261):0-0, September 2019.

Stefano Allesina, Jacopo Grilli, Gyérgy Barabas, Si Tang, Johnatan Aljadeft,
and Amos Maritan. Predicting the stability of large structured food webs.
Nature Communications, 6(1):7842, November 2015.

Johannes Alt and Torben Kriiger. Local elliptic law. Bernoulli, 28(2):886—
909, May 2022.

J-F. Arnoldi, M. Loreau, and B. Haegeman. Resilience, reactivity and vari-
ability: A mathematical comparison of ecological stability measures. Journal
of Theoretical Biology, 389:47-59, January 2016.

Ada Altieri. Glassy features and complex dynamics in ecological systems,
August 2022.

247



Bibliography

[Ama03]

[AN21]

[ARCB21]

[ARS19]

[AT12]

[AT15]

[BA17]

[BAB*19]

[BABLIS]

[Bai97]

[BBC18]

248

Priyanga Amarasekare. Competitive coexistence in spatially structured en-
vironments: a synthesis. Ecology Letters, 6(12):1109-1122, 2003.

Imane Akjouj and Jamal Najim. Feasibility of sparse large Lotka-Volterra
ecosystems. Technical Report arXiv:2111.11247, arXiv, November 2021.

Ada Altieri, Felix Roy, Chiara Cammarota, and Giulio Biroli. Properties
of Equilibria and Glassy Phases of the Random Lotka-Volterra Model with
Demographic Noise. Physical Review Letters, 126(25):258301, June 2021.

Pau Vilimelis Aceituno, Tim Rogers, and Henning Schomerus. Universal
hypotrochoidic law for random matrices with cyclic correlations. Physical
Review F, 100(1):010302, July 2019.

Stefano Allesina and Si Tang. Stability criteria for complex ecosystems.
Nature, 483(7388):205-208, March 2012.

Stefano Allesina and Si Tang. The stability—complexity relationship at age
40: a random matrix perspective. Population Ecology, 57(1):63-75, January
2015.

Matthieu Barbier and Jean-Frangois Arnoldi. The cavity method for com-
munity ecology. preprint, Ecology, June 2017.

Ulrich Brose, Phillippe Archambault, Andrew D. Barnes, Louis-Felix Bersier,
Thomas Boy, Joao Canning-Clode, Erminia Conti, Marta Dias, Christoph
Digel, Awantha Dissanayake, Augusto A. V. Flores, Katarina Fussmann,
Benoit Gauzens, Clare Gray, Johanna Haussler, Myriam R. Hirt, Ute Ja-
cob, Malte Jochum, Sonia Kéfi, Orla McLaughlin, Muriel M. MacPherson,
Ellen Latz, Katrin Layer-Dobra, Pierre Legagneux, Yuanheng Li, Carolina
Madeira, Neo D. Martinez, Vanessa Mendonga, Christian Mulder, Sergio A.
Navarrete, Eoin J. O’Gorman, David Ott, José Paula, Daniel Perkins, Denise
Piechnik, Ivan Pokrovsky, David Raffaelli, Bjorn C. Rall, Benjamin Rosen-
baum, Remo Ryser, Ana Silva, Esra H. Sohlstrom, Natalia Sokolova, Murray
S. A. Thompson, Ross M. Thompson, Fanny Vermandele, Catarina Vinagre,
Shaopeng Wang, Jori M. Wefer, Richard J. Williams, Evie Wieters, Guy
Woodward, and Alison C. Iles. Predator traits determine food-web archi-
tecture across ecosystems. Nature Ecology € Evolution, 3(6):919-927, June
2019.

Matthieu Barbier, Jean-Frangois Arnoldi, Guy Bunin, and Michel Loreau.
Generic assembly patterns in complex ecological communities. Proceedings
of the National Academy of Sciences, 115(9):2156-2161, February 2018.

Z. D. Bai. Circular Law. The Annals of Probability, 25(1):494-529, 1997.

Giulio Biroli, Guy Bunin, and Chiara Cammarota. Marginally stable equi-
libria in critical ecosystems. New Journal of Physics, 20(8):083051, August
2018.



Bibliography

[BBP78]

[BC12]

[BDB*11]

[BDHTS]

[BFPG*09]

[BG20]

[BGR16]

[BGR*18]

[BIMOO03]

[BJRG22a]

[BJRG22D)

[BLM13]

[BMSA17]

G. P. Barker, A. Berman, and R. J. Plemmons. Positive diagonal solutions
to the Lyapunov equations. Linear and Multilinear Algebra, 5(4):249-256,
January 1978.

Charles Bordenave and Djalil Chafai. Around the circular law. Probability
Surveys, 9, January 2012.

Edward B. Baskerville, Andy P. Dobson, Trevor Bedford, Stefano Allesina,
T. Michael Anderson, and Mercedes Pascual. Spatial Guilds in the Serengeti
Food Web Revealed by a Bayesian Group Model. PLoS Computational Bi-
ology, 7(12):€1002321, December 2011.

A. A. Balkema and L. De Haan. Limit Distributions for Order Statistics. 1.
Theory of Probability & Its Applications, 23(1):77-92, December 1978.

Ugo Bastolla, Miguel A. Fortuna, Alberto Pascual-Garcia, Antonio Fer-
rera, Bartolo Luque, and Jordi Bascompte. The architecture of mutual-
istic networks minimizes competition and increases biodiversity. Nature,

458(7241):1018-1020, April 2009.

Joseph W. Baron and Tobias Galla. Dispersal-induced instability in complex
ecosystems. Nature Communications, 11(1):6032, December 2020.

Florent Benaych-Georges and Jean Rochet. Outliers in the Single Ring The-
orem. Probability Theory and Related Fields, 165(1):313-363, June 2016.

Andreas Brechtel, Philipp Gramlich, Daniel Ritterskamp, Barbara Drossel,
and Thilo Gross. Master stability functions reveal diffusion-driven pattern
formation in networks. Physical Review E, 97(3):032307, March 2018.

J. Bascompte, P. Jordano, C. J. Melian, and J. M. Olesen. The nested
assembly of plant-animal mutualistic networks. Proceedings of the National
Academy of Sciences, 100(16):9383-9387, August 2003.

Joseph W. Baron, Thomas Jun Jewell, Christopher Ryder, and Tobias Galla.
Eigenvalues of Random Matrices with Generalized Correlations: A Path
Integral Approach. Physical Review Letters, 128(12):120601, March 2022.

Joseph W. Baron, Thomas Jun Jewell, Christopher Ryder, and Tobias Galla.
Non-Gaussian random matrices determine the stability of Lotka-Volterra
communities. arXiv:2202.09140 [cond-mat, g-bio], February 2022.

Stéphane Boucheron, Gabor Lugosi, and Pascal Massart. Concentration
Inequalities: A Nonasymptotic Theory of Independence. Oxford University
Press, February 2013.

Gyorgy Barabas, Matthew J. Michalska-Smith, and Stefano Allesina. Self-

regulation and the stability of large ecological networks. Nature Ecology &
FEvolution, 1(12):1870-1875, December 2017.

249



Bibliography

[BN21]

[Bol9g]

[BS10]

[BSHM17]

[BSYSS]

[BTHO6]

[Bun16]

[Bunl17]

[Bun21]

[BYSS]

[Cad07]

[Cas90]

[CBB*11]

[CBN90]

250

Pierre Bizeul and Jamal Najim. Positive solutions for large random linear
systems. Proceedings of the American Mathematical Society, 149(6):2333—
2348, June 2021.

Béla Bollobas. Random Graphs. In Béla Bollobas, editor, Modern Graph
Theory, Graduate Texts in Mathematics, pages 215-252. Springer, New York,
NY, 1998.

Zhidong Bai and Jack W. Silverstein. Spectral analysis of large dimensional
random matrices. Springer series in statistics. Springer, New York ; London,
2nd ed edition, 2010.

Daniel M. Busiello, Samir Suweis, Jorge Hidalgo, and Amos Maritan. Ex-
plorability and the origin of network sparsity in living systems. Scientific
Reports, 7(1):12323, December 2017.

Z. D Bai, Jack W Silverstein, and Y. Q Yin. A note on the largest eigenvalue
of a large dimensional sample covariance matrix. Journal of Multivariate
Analysis, 26(2):166-168, August 1988.

Michael Begon, Colin R. Townsend, and John L. Harper. FEcology: from
individuals to ecosystems. Blackwell Pub, Malden, MA, 4th ed edition, 2006.

Guy Bunin. Interaction patterns and diversity in assembled ecological com-
munities, July 2016.

Guy Bunin. Ecological communities with Lotka-Volterra dynamics. Physical
Review E, 95(4):042414, April 2017.

Guy Bunin. Directionality and community-level selection. Oikos, 130(4):489—
500, 2021.

Z. D. Bai and Y. Q. Yin. Necessary and Sufficient Conditions for Almost
Sure Convergence of the Largest Eigenvalue of a Wigner Matrix. The Annals
of Probability, 16(4):1729-1741, 1988.

Marc William Cadotte. Competition-Colonization Trade-offs and Distur-
bance Effects at Multiple Scales. Ecology, 88(4):823-829, 2007.

T J Case. Invasion resistance arises in strongly interacting species-rich model

competition communities. Proceedings of the National Academy of Sciences,
87(24):9610-9614, December 1990.

Alva Curtsdotter, Amrei Binzer, Ulrich Brose, Francisco de Castro, Bo Eben-
man, Anna EkI6f, Jens O. Riede, Aaron Thierry, and Bjorn C. Rall. Robust-
ness to secondary extinctions: Comparing trait-based sequential deletions in
static and dynamic food webs. Basic and Applied Ecology, 12(7):571-580,
November 2011.

Joel E. Cohen, Frédéric Briand, and Charles M. Newman. Community Food
Webs, volume 20 of Biomathematics. Springer, Berlin, Heidelberg, 1990.



Bibliography

[CD6S]

[CDMF09)]

[CEFN22]

[CHNR21]

[CIL*17]

[Cle22a)

[Cle22b]

[CM.JDO06a]

[CM.JDO6b]

[CMN22]

[CN8S]

[Cox94]

[CPS09]

Richard W. Cottle and George B. Dantzig. Complementary pivot theory of
mathematical programming. Linear Algebra and its Applications, 1(1):103—
125, January 1968.

Mireille Capitaine, Catherine Donati-Martin, and Delphine Féral. The
largest eigenvalues of finite rank deformation of large Wigner matrices: Con-
vergence and nonuniversality of the fluctuations. The Annals of Probability,
37(1), January 20009.

Maxime Clenet, Hafedh El Ferchichi, and Jamal Najim. Equilibrium in a
large Lotka—Volterra system with pairwise correlated interactions. Stochastic
Processes and their Applications, 153:423—-444, November 2022.

Nicholas Cook, Walid Hachem, Jamal Najim, and David Renfrew. Non-
Hermitian Random Matrices with a Variance Profile (II): Properties and
Examples. Journal of Theoretical Probability, November 2021.

Vincent Calcagno, Philippe Jarne, Michel Loreau, Nicolas Mouquet, and
Patrice David. Diversity spurs diversification in ecological communities. Na-
ture Communications, 8(1):15810, June 2017.

Maxime Clenet. Equilibrium and surviving species in a large
Lotka-Volterra system of differential equations, 2022. Published:
hitps://github.com/mazime-clenet /Equilibrium-and-surviving-species-in-
a-large-Lotka-Volterra-system.

Maxime Clenet. Feasibility in a large Lotka-Volterra system with pairwise
correlated interactions, 2022.  Published: https://github.com/maxime-
clenet/Feasibility-in-a-large- Lotka- Volterra-system-with-pairwise-correlated-
imteractions.

V. Calcagno, N. Mouquet, P. Jarne, and P. David. Coexistence in a metacom-
munity: the competition—colonization trade-off is not dead. Fcology Letters,

9(8):897-907, August 2006.

Vincent Calcagno, Nicolas Mouquet, Philippe Jarne, and Patrice David. Re-
joinder to Calcagno et al. (2006): Which immigration policy for optimal
coexistence? FEcology Letters, 9(8):909-911, 2006.

Maxime Clenet, Francois Massol, and Jamal Najim. Equilibrium and sur-
viving species in a large Lotka-Volterra system of differential equations, May
2022.

Joel E. Cohen and Charles M. Newman. Dynamic Basis of Food Web Orga-
nization. Ecology, 69(6):1655-1664, 1988.

Gregory E. Coxson. The P-matrix problem is co-NP-complete. Mathematical
Programming, 64(1):173-178, March 1994.

Richard Cottle, Jong-Shi Pang, and Richard E. Stone. The linear comple-
mentarity problem. Number 60 in Classics in applied mathematics. Society

251



Bibliography

[CS1§]

[CSF15]

[CT21]

[DO8Y]

[DVR*18)]

[DWMO02]

[Dys62]

[Ede97]

[EJK*+13]

[ERG0]
[FBM22]

[FK81]

[FKZ13]

252

for Industrial and Applied Mathematics, Philadelphia, siam ed., [classics ed.]
edition, 2009.

Simone Cenci and Serguei Saavedra. Structural stability of nonlinear popu-
lation dynamics. Physical Review E, 97(1):012401, January 2018.

K. Z. Coyte, J. Schluter, and K. R. Foster. The ecology of the microbiome:
Networks, competition, and stability. Science, 350(6261):663-666, November
2015.

Wei-Kuo Chen and Si Tang. On Convergence of the Cavity and Bolthausen’s
TAP Iterations to the Local Magnetization. Communications in Mathemat-
ical Physics, 386(2):1209-1242, September 2021.

S. Diederich and M. Opper. Replicators with random interactions: A solvable
model. Physical Review A, 39(8):4333-4336, April 1989.

Michaél Dougoud, Laura Vinckenbosch, Rudolf P. Rohr, Louis-Félix Bersier,
and Christian Mazza. The feasibility of equilibria in large ecosystems: A
primary but neglected concept in the complexity-stability debate. PLOS
Computational Biology, 14(2):e1005988, 2018.

Jennifer A. Dunne, Richard J. Williams, and Neo D. Martinez. Food-web
structure and network theory: The role of connectance and size. Proceedings
of the National Academy of Sciences, 99(20):12917-12922, October 2002.

Freeman J. Dyson. Statistical Theory of the Energy Levels of Complex
Systems. 1. Journal of Mathematical Physics, 3(1):140-156, January 1962.

Alan Edelman. The Probability that a Random Real Gaussian Matrix
haskReal Eigenvalues, Related Distributions, and the Circular Law. Journal
of Multivariate Analysis, 60(2):203-232, February 1997.

Anna Eklof, Ute Jacob, Jason Kopp, Jordi Bosch, Rocio Castro-Urgal, Nat-
acha P. Chacoff, Bo Dalsgaard, Claudio de Sassi, Mauro Galetti, Paulo R.
Guimaraes, Silvia Beatriz Loméascolo, Ana M. Martin Gonzélez, Marco Au-
relio Pizo, Romina Rader, Anselm Rodrigo, Jason M. Tylianakis, Diego P.
Viazquez, and Stefano Allesina. The dimensionality of ecological networks.
Ecology Letters, 16(5):577-583, 2013.

P. Erdés and A. Renyi. On the evolution of random graphs, 1960.

Jules Fraboul, Giulio Biroli, and Silvia De Monte. Artificial selection of
communities drives the emergence of structured interactions, August 2022.

Z. Firedi and J. Komlos. The eigenvalues of random symmetric matrices.
Combinatorica, 1(3):233-241, September 1981.

Sergey Foss, Dmitry Korshunov, and Stan Zachary. An Introduction to
Heavy-Tailed and Subexponential Distributions. Springer Series in Opera-

tions Research and Financial Engineering. Springer New York, New York,
NY, 2013.



Bibliography

[FN11]

[For10]

[Fox13]

[FP62]

[FP66]

[FVRS21]

[GATO]

[Gallg]

[GAS*17]

[GB12]

[GBMSAL17]

[GGRA1S]

[GHS2]

Tadashi Fukami and Mifuyu Nakajima. Community assembly: alternative
stable states or alternative transient states? Ecology Letters, 14(10):973-984,
2011.

Santo Fortunato. Community detection in graphs.  Physics Reports,
486(3):75-174, February 2010.

Jeremy W. Fox. The intermediate disturbance hypothesis should be aban-
doned. Trends in Ecology & Evolution, 28(2):86-92, February 2013.

Miroslav Fiedler and Vlastimil Ptdk. On matrices with non-positive off-
diagonal elements and positive principal minors. Czechoslovak Mathematical
Journal, 12(3):382-400, 1962.

Miroslav Fiedler and Vlastimil Ptdk. Some generalizations of positive defi-
niteness and monotonicity. Numerische Mathematik, 9(2):163-172, Decem-
ber 1966.

Oliver Y. Feng, Ramji Venkataramanan, Cynthia Rush, and Richard J.
Samworth. A unifying tutorial on Approximate Message Passing.
arXiv:2105.02180 [cs, math, stat], May 2021.

Mark R. Gardner and W. Ross Ashby. Connectance of Large Dynamic (Cy-
bernetic) Systems: Critical Values for Stability. Nature, 228(5273):784-784,
November 1970.

Tobias Galla. Dynamically evolved community size and stability of ran-
dom Lotka-Volterra ecosystems. EPL (Europhysics Letters), 123(4):48004,
September 2018.

Jacopo Grilli, Matteo Adorisio, Samir Suweis, Gyorgy Barabas, Jayanth R.
Banavar, Stefano Allesina, and Amos Maritan. Feasibility and coexistence
of large ecological communities. Nature Communications, 8(1):14389, April
2017.

Luis J. Gilarranz and Jordi Bascompte. Spatial network structure and
metapopulation persistence. Journal of Theoretical Biology, 297:11-16,
March 2012.

Jacopo Grilli, Gyorgy Barabas, Matthew J. Michalska-Smith, and Stefano
Allesina. Higher-order interactions stabilize dynamics in competitive network
models. Nature, 548(7666):210-213, August 2017.

Theo Gibbs, Jacopo Grilli, Tim Rogers, and Stefano Allesina. Effect of
population abundances on the stability of large random ecosystems. Physical
Review E, 98(2):022410, August 2018.

Stuart Geman and Chii Ruey Hwang. A chaos hypothesis for some large
systems of random equations. Zeitschrift fr Wahrscheinlichkeitstheorie und
Verwandte Gebiete, 60(3):291-314, 1982.

253



Bibliography

[Gin65|

[Gir85]

[Gir86]

[Gir95]
[GJT77]

[GLL22]

[GML16]

[Goh77]

[Gop&4]

[GRAL16]

[GSSP+10]

[HAB*21]

[HAC+18]

[Hans3]

[Han99]

[Has80]

254

Jean Ginibre. Statistical Ensembles of Complex, Quaternion, and Real Ma-
trices. Journal of Mathematical Physics, 6(3):440-449, March 1965.

V. L. Girko. Circular Law. Theory of Probability & Its Applications,
29(4):694-706, January 1985.

V. L. Girko. Elliptic Law. Theory of Probability & Its Applications,
30(4):677-690, December 1986.

V. L. Girko. The Elliptic Law: ten years later I. 3(3):257-302, January 1995.

B.S. Goh and L. S. Jennings. Feasibility and stability in randomly assembled
Lotka-Volterra models. Ecological Modelling, 3(1):63-71, February 1977.

Theo Gibbs, Simon A. Levin, and Jonathan M. Levine. Coexistence in
diverse communities with higher-order interactions, March 2022.

Dominique Gravel, Frangois Massol, and Mathew A. Leibold. Stability and
complexity in model meta-ecosystems. Nature Communications, 7(1):12457,
November 2016.

B. S. Goh. Global Stability in Many-Species Systems. The American Natu-
ralist, 111(977):135-143, 1977.

K. Gopalsamy. Global asymptotic stability in Volterra’s population systems.
Journal of Mathematical Biology, 19(2):157-168, April 1984.

Jacopo Grilli, Tim Rogers, and Stefano Allesina. Modularity and stability
in ecological communities. Nature Communications, 7(1):12031, November
2016.

R. Guimera, D. B. Stouffer, M. Sales-Pardo, E. A. Leicht, M. E. J. Newman,
and L. A. N. Amaral. Origin of compartmentalization in food webs. Ecology,
91(10):2941-2951, October 2010.

Jiliang Hu, Daniel R. Amor, Matthieu Barbier, Guy Bunin, and Jeff Gore.
Emergent phases of ecological diversity and dynamics mapped in micro-
cosms. preprint, Biophysics, October 2021.

Alan Hastings, Karen C. Abbott, Kim Cuddington, Tessa Francis, Gabriel
Gellner, Ying-Cheng Lai, Andrew Morozov, Sergei Petrovskii, Katherine
Scranton, and Mary Lou Zeeman. Transient phenomena in ecology. Sci-
ence, 361(6406):eaat6412, September 2018.

Ilkka Hanski. Coexistence of Competitors in Patchy Environment. FEcology,
64(3):493-500, June 1983.

Ilkka Hanski. Metapopulation Ecology. OUP Oxford, March 1999.

Alan Hastings. Disturbance, coexistence, history, and competition for space.
Theoretical Population Biology, 18(3):363-373, December 1980.



Bibliography

[Has01]

[Her90]

[HMS16]

[HOO0]

[HS9g]

[HSD74]

[Huf58]

[1C07]

[Jan87]

[Jan97]

[JM12]

[IMM+16]

[Jos06]
[Jos07]

[JS98]

[KD22]

Alan Hastings. Transient dynamics and persistence of ecological systems.
FEcology Letters, 4(3):215-220, 2001.

Roger H. Hering. Oscillations in Lotka-Volterra systems of chemical reac-
tions. Journal of Mathematical Chemistry, 5(2):197-202, June 1990.

Jan O. Haerter, Namiko Mitarai, and Kim Sneppen. Food Web Assembly
Rules for Generalized Lotka-Volterra Equations. PLOS Computational Bi-
ology, 12(2):1004727, 2016.

Ilkka Hanski and Otso Ovaskainen. The metapopulation capacity of a frag-
mented landscape. Nature, 404(6779):755-758, April 2000.

Josef Hofbauer and Karl Sigmund. FEwvolutionary Games and Population
Dynamics. Cambridge University Press, May 1998.

Morris W. Hirsch, Stephen Smale, and Robert L. Devaney. Differential Equa-
tions, Dynamical Systems, and Linear Algebra. Academic Press, June 1974.

C. Huffaker. Experimental studies on predation: Dispersion factors and
predator-prey oscillations. Hilgardia, 27(14):343-383, August 1958.

Anthony R. Ives and Stephen R. Carpenter. Stability and Diversity of
Ecosystems. Science, 317(5834):58-62, July 2007. Publisher: American
Association for the Advancement of Science.

Wolfgang Jansen. A permanence theorem for replicator and Lotka-Volterra
systems. Journal of Mathematical Biology, 25(4):411-422, September 1987.

Svante Janson. Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics.
Cambridge University Press, Cambridge, 1997.

Adel Javanmard and Andrea Montanari. State Evolution for General Ap-
proximate Message Passing Algorithms, with Applications to Spatial Cou-
pling. arXivw:1211.5164 [cs, math, stat], December 2012. arXiv: 1211.5164.

Claire Jacquet, Charlotte Moritz, Lyne Morissette, Pierre Legagneux,
Francois Massol, Philippe Archambault, and Dominique Gravel. No com-
plexity—stability relationship in empirical ecosystems. Nature Communica-
tions, 7(1):12573, November 2016.

Lou Jost. Entropy and diversity. Oikos, 113(2):363-375, May 2006.

Lou Jost. Partitioning Diversity into Independent Alpha and Beta Compo-
nents. Ecology, 88(10):2427-2439, 2007.

Vincent A. A. Jansen and Karl Sigmund. Shaken Not Stirred: On Perma-
nence in Ecological Communities. Theoretical Population Biology, 54(3):195—
201, December 1998.

Elgin Korkmazhan and Alexander R. Dunn. High-order correlations in
species interactions lead to complex diversity-stability relationships for
ecosystems. Physical Review E, 105(1):014406, January 2022.

255



Bibliography

[KDS*13]

[KKO0S]

[KLD*99]

[KS15]

[Lam19]

[Lat05

[LB92]

[LBB22]

[LBL20]

[LCT1]

[Lem65]

[Lev69]

[LH63]

[LH64]

256

Sonia Kéfi, Vasilis Dakos, Marten Scheffer, Egbert H. Van Nes, and Max
Rietkerk. Early warning signals also precede non-catastrophic transitions.
Oikos, 122(5):641-648, 2013.

Krisztina Kiss and Sandor Kovacs. Qualitative behavior of n-dimensional
ratio-dependent predator—prey systems. Applied Mathematics and Compu-
tation, 199(2):535-546, June 2008.

A. P. Kinzig, S. A. Levin, J. Dushoff, S. Pacala, and Associate Editor:
Nicholas J. Gotelli. Limiting Similarity, Species Packing, and System Stabil-

ity for Hierarchical Competition-Colonization Models. The American Natu-
ralist, 153(4):371-383, 1999.

David A. Kessler and Nadav M. Shnerb. Generalized model of island biodi-
versity. Physical Review E, 91(4):042705, April 2015.

A. Lamperski. Lemke’s algorithm for linear complementarity problems, 2019.
Publication Title: GitHub repository.

Rafal Latala. Some Estimates of Norms of Random Matrices. Proceedings
of the American Mathematical Society, 133(5):1273-1282, 2005.

Richard Law and Jerry C. Blackford. Self-Assembling Food Webs: A Global
Viewpoint of Coexistence of Species in Lotka-Volterra Communities. Ecology,

73(2):567-578, April 1992.

Jinbao Liao, Gyorgy Barabas, and Daniel Bearup. Competition—colonization
dynamics and multimodality in diversity—disturbance relationships. Ecology,
103(5), May 2022.

Yinglin Li, Daniel Bearup, and Jinbao Liao. Habitat loss alters effects of
intransitive higher-order competition on biodiversity: a new metapopula-
tion framework. Proceedings of the Royal Society B: Biological Sciences,
287(1940):20201571, December 2020.

R. Levins and D. Culver. Regional Coexistence of Species and Competition
between Rare Species. Proceedings of the National Academy of Sciences,
68(6):1246-1248, June 1971.

Carlton Lemke. Bimatrix Equilibrium Points and Mathematical Program-
ming. Management Science, 11(7):681-689, May 1965.

R. Levins. Some Demographic and Genetic Consequences of Environmental
Heterogeneity for Biological Control. Bulletin of the Entomological Society
of America, 15(3):237-240, September 1969.

R. Levins and Harold Heatwole. On the distribution of organisms on islands.
Caribbean Journal of Science, 3:173-177, January 1963.

C. E. Lemke and Jr. Howson, J. T. Equilibrium Points of Bimatrix Games.
Journal of the Society for Industrial and Applied Mathematics, 12(2):413~
423, June 1964.



Bibliography

[LHM*04]

[Lia07]

[LIPJ*06]

[LLRS3]

[LMO6]

[LMB*18]

[LMGO03]

[LNI*01]

[Log93|

[Log05]

[Lot25)

[LW19)

[Mach5]

[MacT70]

M. A. Leibold, M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase,
M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau,
and A. Gonzalez. The metacommunity concept: a framework for multi-

scale community ecology: The metacommunity concept. FEcology Letters,
7(7):601-613, June 2004.

A. Liapounoff. Probleme général de la stabilité du mouvement. Annales de
la Faculté des sciences de Toulouse : Mathématiques, 9:203-474, 1907.

Thomas M. Lewinsohn, Paulo Inacio Prado, Pedro Jordano, Jordi Bas-

compte, and Jens M. Olesen. Structure in plant-animal interaction assem-
blages. Oikos, 113(1):174-184, 2006.

M. R. Leadbetter, Georg Lindgren, and Holger Rootzén. FEztremes and
Related Properties of Random Sequences and Processes. Springer Series in
Statistics. Springer New York, New York, NY, 1983.

Richard Law and R. Daniel Morton. Permanence and the Assembly of Eco-
logical Communities. FEcology, 77(3):762-775, April 1996.

Pietro Landi, Henintsoa O. Minoarivelo, Ake Briannstrom, Cang Hui, and
Ulf Dieckmann. Complexity and stability of ecological networks: a review of
the theory. Population Ecology, 60(4):319-345, October 2018.

Michel Loreau, Nicolas Mouquet, and Andrew Gonzalez. Biodiversity as

spatial insurance in heterogeneous landscapes. Proceedings of the National
Academy of Sciences, 100(22):12765-12770, October 2003.

M. Loreau, S. Naeem, P. Inchausti, J. Bengtsson, J. P. Grime, A. Hector,
D. U. Hooper, M. A. Huston, D. Raffaelli, B. Schmid, D. Tilman, and D. A.
Wardle. Biodiversity and Ecosystem Functioning: Current Knowledge and
Future Challenges. Science, 294(5543):804-808, October 2001.

Dmitrii Olegovich Logofet. Matrices and graphs: stability problems in math-
ematical ecology. CRC Press, Boca Raton, 1993.

Dmitrii O. Logofet. Stronger-than-Lyapunov notions of matrix stability, or
how “flowers” help solve problems in mathematical ecology. Linear Algebra
and its Applications, 398:75-100, March 2005.

Lotka. FElements of Physical Biology. Williams and Wilkins Company, 1925.

Clement Lee and Darren J. Wilkinson. A review of stochastic block mod-
els and extensions for graph clustering. Applied Network Science, 4(1):122,
December 2019.

Robert MacArthur. Fluctuations of Animal Populations and a Measure of
Community Stability. Fecology, 36(3):533-536, 1955.

Robert MacArthur. Species packing and competitive equilibrium for many
species. Theoretical Population Biology, 1(1):1-11, May 1970.

257



Bibliography

[Mac84]

[May72]

[May73|

[May76]

[McCO0]

[MDC*17]

[Meh67]

[MG20]

[MGMC13]

[MGPMO6]

IML02]

[MM17]

IMN94]

[MNO5]

258

Robert H. MacArthur. Geographical Ecology: Patterns in the Distribution
of Species. Princeton University Press, July 1984.

Robert M. May. Will a Large Complex System be Stable?  Nature,
238(5364):413-414, August 1972.

Robert M. May. Stability and complexity in model ecosystems. Number 6 in
Monographs in population biology. Princeton University Press, Princeton,
N.J, 1973.

Robert M. May. Simple mathematical models with very complicated dynam-
ics. Nature, 261(5560):459-467, June 1976.

Kevin Shear McCann. The diversity—stability debate. Nature,
405(6783):228-233, May 2000.

F. Massol, M. Dubart, V. Calcagno, K. Cazelles, C. Jacquet, S. Kéfi, and
D. Gravel. Chapter Four - Island Biogeography of Food Webs. In David A.
Bohan, Alex J. Dumbrell, and Francois Massol, editors, Advances in Ecolog-
ical Research, volume 56 of Networks of Invasion: A Synthesis of Concepts,
pages 183-262. Academic Press, January 2017.

M. L. Mehta. Random Matrices and the Statistical Theory of Energy Levels.
Academic Press, 1967.

Sten Madec and Erida Gjini. Predicting N-Strain Coexistence from Co-
colonization Interactions: Epidemiology Meets Ecology and the Replicator
Equation. Bulletin of Mathematical Biology, 82(11):142, October 2020.

Nicolas Mouquet, Dominique Gravel, Francois Massol, and Vincent
Calcagno. Extending the concept of keystone species to communities and
ecosystems. Ecology Letters, 16(1):1-8, 2013.

Géza Meszéna, Mats Gyllenberg, Liz Pasztor, and Johan A.J. Metz. Com-
petitive exclusion and limiting similarity: A unified theory. Theoretical Pop-
ulation Biology, 69(1):68-87, February 2006.

Nicolas Mouquet and Michel Loreau. Coexistence in Metacommunities: The
Regional Similarity Hypothesis. The American Naturalist, 159(4):420-426,
April 2002.

Catherine Matias and Vincent Miele. Statistical clustering of temporal net-
works through a dynamic stochastic block model. Journal of the Royal Sta-
tistical Society. Series B (Statistical Methodology), 79(4):1119-1141, 2017.

Robert M. May and Martin A. Nowak. Superinfection, Metapopulation
Dynamics, and the Evolution of Diversity. Journal of Theoretical Biology,
170(1):95-114, September 1994.

Robert M. May and Martin A. Nowak. Coinfection and the evolution of
parasite virulence. Proceedings of the Royal Society of London. Series B:
Biological Sciences, 261(1361):209-215, August 1995.



Bibliography

[MP67]

[MPV36]

[MR16]

[MS17]

[MSS22]

[Mur72]

[Mur88]

IMW63]

IMWG67]

[INA16]

[Naul2]

[NC97]

[New06]

INM92]

INMO4]

V. A. Marcenko and L. A. Pastur. Distribution of eigenvalues in certain sets
of random matrices. Mathematics of the USSR-Sbornik, 1(4):457, April 1967.

M Mezard, G Parisi, and M Virasoro. Spin Glass Theory and Beyond: An
Introduction to the Replica Method and Its Applications, volume 9 of World
Scientific Lecture Notes in Physics. World Scientific, November 1986.

Andrea Montanari and Emile Richard. Non-Negative Principal Component
Analysis: Message Passing Algorithms and Sharp Asymptotics. IEEE Trans-
actions on Information Theory, 62(3):1458-1484, March 2016.

Margaret M. Mayfield and Daniel B. Stouffer. Higher-order interactions
capture unexplained complexity in diverse communities. Nature Ecology &
Evolution, 1(3):0062, March 2017.

Immanuel Meyer, Bnaya Steinmetz, and Nadav M. Shnerb. How the storage
effect and the number of temporal niches affect biodiversity in stochastic
and seasonal environments. PLOS Computational Biology, 18(3):e1009971,
March 2022.

Katta G. Murty. On the number of solutions to the complementarity problem
and spanning properties of complementary cones. Linear Algebra and its
Applications, 5(1):65-108, January 1972.

Katta G. Murty. Linear complementarity, linear and nonlinear programming.
Number 3 in Sigma series in applied mathematics. Heldermann, Berlin, 1988.

Robert H. MacArthur and Edward O. Wilson. An Equilibrium Theory of
Insular Zoogeography. FEwvolution, 17(4):373-387, 1963.

Robert H. MacArthur and Edward O. Wilson. The Theory of Island Bio-
geography. Princeton University Press, 1967.

Ben C. Nolting and Karen C. Abbott. Balls, cups, and quasi-potentials:
quantifying stability in stochastic systems. FEcology, 97(4):850-864, 2016.

Alexey Naumov. Elliptic law for real random matrices, August 2012.
arXiv:1201.1639 [math)].

Michael G. Neubert and Hal Caswell. Alternatives to Resilience for Mea-
suring the Responses of Ecological Systems to Perturbations. FEcology,
78(3):653-665, 1997. Publisher: Ecological Society of America.

M. E. J. Newman. Modularity and community structure in networks. Pro-
ceedings of the National Academy of Sciences, 103(23):8577-8582, June 2006.

Sean Nee and Robert M. May. Dynamics of Metapopulations: Habi-
tat Destruction and Competitive Coexistence. Journal of Animal Ecology,
61(1):37-40, 1992.

Martin A. Nowak and Robert Mccredie May. Superinfection and the evolu-
tion of parasite virulence. Proceedings of the Royal Society of London. Series
B: Biological Sciences, 255(1342):81-89, January 1994.

259



Bibliography

[NO15]

[0D92]

[OHO1]

[OR14]

[Ost56]

[PA13]

[Pai66]

[Pai69]

[PBG22]

[PBHM19]

[PEM12]

[Pim79]

[PLCO1]

[Ple77]

[PNJ21]

260

Hoi H. Nguyen and Sean O’Rourke. The Elliptic Law. International Math-
ematics Research Notices, 2015(17):7620-7689, January 2015.

Manfred Opper and Sigurd Diederich. Phase transition and 1/f noise in a
game dynamical model. Physical Review Letters, 69(10):1616-1619, Septem-
ber 1992.

Otso Ovaskainen and Ilkka Hanski. Spatially Structured Metapopulation
Models: Global and Local Assessment of Metapopulation Capacity. Theo-
retical Population Biology, 60(4):281-302, December 2001.

Sean O’Rourke and David Renfrew. Low rank perturbations of large elliptic
random matrices. arXiv:1309.5326 [math-ph], May 2014.

Alexander Ostrowski. Determinanten mit iiberwiegender Hauptdiagonale
und die absolute Konvergenz von linearen Iterationsprozessen. Commentarii
mathematici Helvetici, 30:175-210, 1956.

lan S. Pearse and Florian Altermatt. Extinction cascades partially esti-
mate herbivore losses in a complete Lepidoptera—plant food web. FEcology,
94(8):1785-1794, 2013.

Robert T. Paine. Food Web Complexity and Species Diversity. The American
Naturalist, 100(910):65-75, 1966.

Robert T. Paine. The Pisaster-Tegula Interaction: Prey Patches, Predator
Food Preference, and Intertidal Community Structure. Ecology, 50(6):950—
961, 1969.

Lyle Poley, Joseph W. Baron, and Tobias Galla. Generalised Lotka-Volterra
model with hierarchical interactions, August 2022.

Claudia Payrat6-Borras, Laura Hernandez, and Yamir Moreno. Breaking
the Spell of Nestedness: The Entropic Origin of Nestedness in Mutualistic
Systems. Physical Review X, 9(3):031024, August 2019.

Michael J. O. Pocock, Darren M. Evans, and Jane Memmott. The Ro-
bustness and Restoration of a Network of Ecological Networks. Science,
335(6071):973-977, February 2012.

Stuart L. Pimm. The structure of food webs. Theoretical Population Biology,
16(2):144-158, 1979.

Stuart L. Pimm, John H. Lawton, and Joel E. Cohen. Food web patterns
and their consequences. Nature, 350(6320):669-674, April 1991.

R. J. Plemmons. M-matrix characterizations.I-—nonsingular M-matrices.
Linear Algebra and its Applications, 18(2):175-188, January 1977.

Susanne Pettersson and Martin Nilsson Jacobi. Spatial heterogeneity en-
hance robustness of large multi-species ecosystems. PLOS Computational
Biology, 17(10):€1008899, October 2021.



Bibliography

[PROS]

[PRS13]

[PSJ20]

[PSNJ20]

[Pé06]

[RBBB20]

[RBBC19]

[RBL*19]

[RCL18]

[RMGMO6]

[Roh12]

[Ros13]

[RRS5|

Stephen W. Pacala and Mark Rees. Models Suggesting Field Experiments
to Test Two Hypotheses Explaining Successional Diversity. The American
Naturalist, 152(5):729-737, November 1998.

Alessandro Pizzo, David Renfrew, and Alexander Soshnikov. On finite rank
deformations of Wigner matrices. Annales de I’Institut Henri Poincaré, Prob-
abilités et Statistiques, 49(1):64-94, February 2013.

Susanne Pettersson, Van M. Savage, and Martin Nilsson Jacobi. Stability of
ecosystems enhanced by species-interaction constraints. Physical Review E,
102(6):062405, December 2020.

Susanne Pettersson, Van M. Savage, and Martin Nilsson Jacobi. Predicting
collapse of complex ecological systems: quantifying the stability—complexity
continuum. Journal of The Royal Society Interface, 17(166):20190391, May
2020.

S. Péché. The largest eigenvalue of small rank perturbations of Hermitian
random matrices. Probability Theory and Related Fields, 134(1):127-173,
January 2006.

Felix Roy, Matthieu Barbier, Giulio Biroli, and Guy Bunin. Complex inter-
actions can create persistent fluctuations in high-diversity ecosystems. PLOS
Computational Biology, 16(5):¢1007827, 2020.

F Roy, G Biroli, G Bunin, and C Cammarota. Numerical implementation
of dynamical mean field theory for disordered systems: application to the
Lotka—Volterra model of ecosystems. Journal of Physics A: Mathematical
and Theoretical, 52(48):484001, November 2019.

Tamara N. Romanuk, Amrei Binzer, Nicolas Loeuille, W. Mather A.
Carscallen, and Neo D. Martinez. Simulated evolution assembles more realis-

tic food webs with more functionally similar species than invasion. Scientific
Reports, 9(1):18242, December 2019.

Emlyn J. Resetarits, Sara E. Cathey, and Mathew A. Leibold. Testing the
keystone community concept: effects of landscape, patch removal, and envi-
ronment on metacommunity structure. Ecology, 99(1):57-67, 2018.

Neil Rooney, Kevin McCann, Gabriel Gellner, and John C. Moore. Structural
asymmetry and the stability of diverse food webs. Nature, 442(7100):265—
269, July 2006.

Jiri Rohn. On Rump’s characterization of P-matrices. Optimization Letters,
6(5):1017-1020, June 2012.

Axel G. Rossberg. Food webs and biodiversity. Wiley-Blackwell, Chichester,
West Sussex, UK, 2013.

John D. Rummel and Jonathan Roughgarden. A Theory of Faunal Buildup
for Competition Communities. Evolution, 39(5):1009, September 1985.

261



Bibliography

[RS13]

[RSB14]

[Rum03]

[RWS84]

[RZB*09]

[RZVM17]

[SA21]

[SB11]

SC95]

[SCG+05]

[SCG+18]

[SGB*15]

[SKA13]

262

David Renfrew and Alexander Soshnikov. On finite rank deformations of
wigner matrices ii: delocalized perturbations. Random Matrices: Theory
and Applications, 02(01):1250015, January 2013.

Rudolf P. Rohr, Serguei Saavedra, and Jordi Bascompte. On the structural
stability of mutualistic systems. Science, 345(6195):1253497, July 2014.

Siegfried M. Rump. On P-matrices. Linear Algebra and its Applications,
363:237-250, April 2003.

Ray Redheffer and Wolfgang Walter. Solution of the stability problem for a
class of generalized volterra prey-predator systems. Journal of Differential
Equations, 52(2):245-263, April 1984.

Tamara N. Romanuk, Yun Zhou, Ulrich Brose, Eric L. Berlow, Richard J.
Williams, and Neo D. Martinez. Predicting invasion success in complex

ecological networks. Philosophical Transactions of the Royal Society B: Bi-
ological Sciences, 364(1524):1743-1754, June 2009.

T. N. Romanuk, Y. Zhou, F. S. Valdovinos, and N. D. Martinez. Chap-
ter Five - Robustness Trade-Offs in Model Food Webs: Invasion Probabil-
ity Decreases While Invasion Consequences Increase With Connectance. In
David A. Bohan, Alex J. Dumbrell, and Francois Massol, editors, Advances
in Ecological Research, volume 56 of Networks of Invasion: A Synthesis of
Concepts, pages 263—291. Academic Press, January 2017.

Carlos A. Servan and Stefano Allesina. Tractable models of ecological as-
sembly. Ecology Letters, 24(5):1029-1037, May 2021.

Daniel B. Stouffer and Jordi Bascompte. Compartmentalization increases
food-web persistence. Proceedings of the National Academy of Sciences,
108(9):3648-3652, March 2011.

Jack W. Silverstein and Sang-Il Choi. Analysis of the Limiting Spectral
Distribution of Large Dimensional Random Matrices, 1995.

D. B. Stouffer, J. Camacho, R. Guimera, C. A. Ng, and L.. A. Nunes Amaral.
Quantitative Patterns in the Structure of Model and Empirical Food Webs.
Ecology, 86(5):1301-1311, 2005.

Carlos A. Servan, José A. Capitan, Jacopo Grilli, Kent E. Morrison, and
Stefano Allesina. Coexistence of many species in random ecosystems. Nature
Ecology € Evolution, 2(8):1237-1242, August 2018.

Samir Suweis, Jacopo Grilli, Jayanth R. Banavar, Stefano Allesina, and
Amos Maritan. Effect of localization on the stability of mutualistic eco-
logical networks. Nature Communications, 6(1):10179, December 2015.

Phillip P. A. Staniczenko, Jason C. Kopp, and Stefano Allesina. The ghost
of nestedness in ecological networks. Nature Communications, 4(1):1391,
January 2013.



Bibliography

[Sla74]

[Smi49]

[SRB*+17]

[SSE13]

[Sto16]

[Sto18§]

[Sto20]

[TAS0)]

[Tak96]

[Tan39]

[Taol3]

[TAT78]

[Tay88)

[TF10]

[Til94]

Montgomery Slatkin. Competition and Regional Coexistence. FEcology,
55(1):128-134, 1974.

N. V. Smirnov. Limit distributions for the terms of a variational series.
Akademiya Nauk SSSR. Trudy Matematicheskogo Instituta imeni V. A.
Steklova, 25:60, 1949.

Serguei Saavedra, Rudolf P. Rohr, Jordi Bascompte, Oscar Godoy, Nathan
J. B. Kraft, and Jonathan M. Levine. A structural approach for understand-
ing multispecies coexistence. Ecological Monographs, 87(3):470-486, 2017.

Torbjorn Saterberg, Stefan Sellman, and Bo Ebenman. High frequency of
functional extinctions in ecological networks. Nature, 499(7459):468-470,
July 2013.

Lewi Stone. The Google matrix controls the stability of structured ecological
and biological networks. Nature Communications, 7(1):12857, November
2016.

Lewi Stone. The feasibility and stability of large complex biological networks:
a random matrix approach. Scientific Reports, 8(1):8246, December 2018.

Lewi Stone. The stability of mutualism. Nature Communications, 11(1):2648,
December 2020.

Yasuhiro Takeuchi and Norihiko Adachi. The existence of globally stable
equilibria of ecosystems of the generalized Volterra type. Journal of Mathe-
matical Biology, 10(4):401-415, December 1980.

Y. Takeuchi. Global dynamical properties of Lotka-Volterra systems. World
Scientific, Singapore ; River Edge, NJ, 1996.

A. G. Tansley. British Ecology During the Past Quarter-Century: The Plant
Community and the Ecosystem. Journal of Ecology, 27(2):513-530, 1939.

Terence Tao. Outliers in the spectrum of iid matrices with bounded rank
perturbations. Probability Theory and Related Fields, 155(1):231-263, 2013.

Yasuhiro Takeuchi, Norihiko Adachi, and Hidekatsu Tokumaru. Global sta-
bility of ecosystems of the generalized volterra type. Mathematical Bio-
sciences, 42(1):119-136, November 1978.

Peter J. Taylor. Consistent scaling and parameter choice for linear and
Generalized Lotka-Volterra models used in community ecology. Journal of
Theoretical Biology, 135(4):543-568, December 1988.

Elisa Thébault and Colin Fontaine. Stability of ecological communities and
the architecture of mutualistic and trophic networks. Science, 329(5993):853—
856, 2010.

David Tilman. Competition and Biodiversity in Spatially Structured Habi-
tats. Ecology, 75(1):2-16, January 1994.

263



Bibliography

[TMLN94|

[Tok04]

[TPA14]

[TVK10]

[VAN15]

[VMLO4]

[Vol26]

[VPNJ22]

[WanT7§|

[WBvN*21]

[Whi72]

[Wig55]

[Wig67]

[Wil92]

264

David Tilman, Robert M. May, Clarence L. Lehman, and Martin A. Nowak.
Habitat destruction and the extinction debt. Nature, 371(6492):65-66,
September 1994.

Kei Tokita. Species Abundance Patterns in Complex Evolutionary Dynam-
ics. Physical Review Letters, 93(17):178102, October 2004.

Si Tang, Samraat Pawar, and Stefano Allesina. Correlation between interac-
tion strengths drives stability in large ecological networks. Fcology Letters,
17(9):1094-1100, September 2014.

Terence Tao, Van Vu, and Manjunath Krishnapur. Random matrices: Uni-
versality of ESDs and the circular law. The Annals of Probability, 38(5):2023—
2065, September 2010.

Marcos Costa Vieira and Mario Almeida-Neto. A simple stochastic model
for complex coextinctions in mutualistic networks: robustness decreases with
connectance. Ecology Letters, 18(2):144-152, 2015.

Evan A. Variano, Jonathan H. McCoy, and Hod Lipson. Networks, Dy-
namics, and Modularity. Physical Review Letters, 92(18):188701, May 2004.

Publisher: American Physical Society.

Vito Volterra. Fluctuations in the Abundance of a Species considered Math-
ematicallyl. Nature, 118(2972):558-560, October 1926.

Ankit Vikrant, Susanne Pettersson, and Martin Nilsson Jacobi. Spatial co-
herence and the persistence of high diversity in spatially heterogeneous land-
scapes. Ecology and Evolution, 12(6):¢9004, 2022.

Peter J. Wangersky. Lotka-Volterra Population Models. Annual Review of
Ecology and Systematics, 9:189-218, 1978.

Shaopeng Wang, Ulrich Brose, Saskya van Nouhuys, Robert D. Holt, and
Michel Loreau. Metapopulation capacity determines food chain length in
fragmented landscapes. Proceedings of the National Academy of Sciences,
118(34):€2102733118, August 2021.

R. H. Whittaker. Evolution and Measurement of Species Diversity. Tazon,
21(2/3):213-251, 1972.

Eugene P. Wigner. Characteristic Vectors of Bordered Matrices With Infinite
Dimensions. Annals of Mathematics, 62(3):548-564, 1955. Publisher: Annals
of Mathematics.

Eugene P. Wigner. Random Matrices in Physics. SIAM Review, 9(1):1-23,
January 1967.

David Sloan Wilson. Complex Interactions in Metacommunities, with Impli-
cations for Biodiversity and Higher Levels of Selection. Ecology, 73(6):1984—
2000, 1992.



Bibliography

[Wis28]

[WMOO]

[WTLOO]

[YAT73]

[Yod81]

[YWO01]

[ZBN*21]

[Zee95)

John Wishart. The Generalised Product Moment Distribution in Samples
from a Normal Multivariate Population. Biometrika, 20A(1/2):32-52, 1928.

Richard J. Williams and Neo D. Martinez. Simple rules yield complex food
webs. Nature, 404(6774):180-183, March 2000.

Lars Witting, Jiirgen Tomiuk, and Volker Loeschcke. Modelling the optimal
conservation of interacting species. FEcological Modelling, 125(2):123-144,
January 2000.

J. A. Yorke and W. N. Anderson. Predator-Prey Patterns. Proceedings of
the National Academy of Sciences, 70(7):2069-2071, July 1973.

P. Yodzis. The stability of real ecosystems. Nature, 289(5799):674-676,
February 1981.

Douglas W. Yu and Howard B. Wilson. The Competition-Colonization
Trade-off Is Dead; Long Live the Competition-Colonization Trade-off. The
American Naturalist, 158(1):49-63, July 2001.

Helin Zhang, Daniel Bearup, Ivan Nijs, Shaopeng Wang, Gyorgy Barabas,
Yi Tao, and Jinbao Liao. Dispersal network heterogeneity promotes
species coexistence in hierarchical competitive communities. FEcology Let-
ters, 24(1):50-59, 2021.

Mary Lou Zeeman. Extinction in Competitive Lotka-Volterra Systems. Pro-
ceedings of the American Mathematical Society, 123(1):87-96, 1995.

265






Etude des grands systémes de Lotka-Volterra : I’écologie théorique a travers
les matrices aléatoires

Mots clés : Ecologie théorique, Systémes dynamiques, Matrice aléatoire, Lotka-Volterra,
Ecologie des communautés, Stabilité, Diversité, Faisabilité, Métacommunauté.

La diversité des especes et la complexité de leurs interactions représentent un défi important en
écologie théorique. La difficulté a analyser ces systemes rend nécessaire le recours a la modélisation
mathématique. Le systéeme de Lotka-Volterra forme un modele simple, robuste et polyvalent utilisé
pour décrire de grands systemes en interaction tels que les réseaux trophiques ou les microbiomes. Ce
modele est constitué de n équations différentielles couplées reliant les abondances des différentes especes
présentes dans le systéme. Lorsque le nombre d’espéces devient trés important, les parametres du modele
sont trop nombreux pour pouvoir étre observés ou estimés correctement. Par conséquent, les interactions
entre les différentes especes peuvent étre modélisées comme des variables aléatoires afin de comprendre
la dynamique du systéme. Dans cette these, je développe une analyse quantitative des grands systémes
de Lotka-Volterra en m’appuyant sur la théorie des matrices aléatoires et des simulations numériques. Je
me focalise d’abord sur I'existence d’une sous-population stable dont je décris les propriétés a ’équilibre.
Ensuite, j’étudie l'existence d’un seuil critique permettant la faisabilité de I’équilibre (:= toutes les especes
du systéme survivent) lorsque les interactions sont corrélées par paires. Une meilleure compréhension de
ces phénomenes permet d’étendre ces propriétés a une structure d’interaction par blocs décrivant un
modeéle multi-communautés. J’analyse les propriétés (faisabilité, existence d’un phénomene d’attrition
au sein de chaque communauté) de communautés distinctes en ajustant les interactions inter- et intra-
communautaires. Dans une derniére partie, je propose une interprétation probabiliste d’'un modele de
compétition multi-especes dans lequel on modélise non pas ’abondance des espéces a un niveau local mais
leurs occurrences par site au niveau du paysage. J’examine dans ce modele le compromis compétition-
colonisation lorsque les parameétres de colonisation suivent une distribution de probabilité donnée. Les
résultats obtenus dans ces différents chapitres démontrent I'existence de “lois asymptotiques” régissant
le comportement des modeles écologiques lorsque le nombre d’espéces devient trés grand.

Large Lotka-Volterra model: when random matrix theory meets theoretical
ecology

Keywords: Theoretical ecology, Dynamical systems, Random matrixz, Lotka-Volterra, Com-
munity ecology, Stability, Diversity, Feasibility, Metacommunity.

The diversity of species and the complexity of their interactions represent a huge challenge in theoret-
ical ecology. The system’s complexity requires mathematical modelisation. The Lotka-Volterra system
forms a simple, robust and versatile model used to describe large interacting systems such as food webs
or microbiomes. This model consists of n coupled differential equations linking the abundances of the
different species present in the system. When the number of species becomes very large, the model
parameters are too large to be observed or estimated precisely. Therefore, the interactions between the
different species can be modeled as random variables to understand the dynamics of the system. In this
thesis, I develop a quantitative analysis of large Lotka-Volterra systems based on random matrix theory
and numerical simulations. I first focus on the existence of a stable subpopulation for which I describe
the equilibrium properties. Then, I study the existence of a critical threshold that allows the feasibility
of equilibrium (:= all species in the system survive) when the interactions are pairwise correlated. A bet-
ter understanding of these phenomena allows to extend these properties to a block interaction structure
describing a multi-community model. T analyze the properties (feasibility, existence of attrition within
each community) of distinct communities by adjusting the inter- and intra-community interactions. In a
final section, I propose a probabilistic interpretation of a hierarchical competition-colonization trade-off
model in which we model not the abundance of species at a local level but their occurrences by patch at
the landscape level. T examine in this model the competition-colonization trade-off when the coloniza-
tion parameters follow a given probability distribution. The results obtained in these different chapters
show the existence of “asymptotic laws” governing the behavior of ecological models when the number of
species becomes very large.
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