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nos courses à pied le samedi matin et les après-midi BU à la magnifique médiathèque de
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avec qui j’ai toujours autant de plaisir à faire des randonnées, des soirées et pleins d’autres
aventures qui m’ont permis de décompresser.
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Tran, Complex systems in ecology: a guided tour with the large Lotka-Volterra model and
random matrices (Expected: 2022)

Preprints:
1. M. Clenet, F. Massol, J. Najim, Equilibrium and surviving species in a large Lotka-Volterra

system of differential equations, arXiv:2205.00735 (2022)

Published articles:
1. M. Clenet, H. El Ferchichi, J. Najim, Equilibrium in a large Lotka-Volterra system with

pairwise correlated interactions, Stochastic Processes and their Applications (2022)

Conference papers:
1. M. Clenet, F. Massol, J. Najim, Surviving species in a large Lotka-Volterra system of

differential equations, GRETSI (2022)

2. P. Bizeul, M. Clenet, J. Najim, Positive Solutions for Large Random Linear Systems,
IEEE International Conference on Acoustics, Speech and Signal Processing (2020)

Code:
1. M. Clenet, Equilibrium and surviving species in a large Lotka-Volterra system of differen-

tial equations (Chapter 1): https://github.com/maxime-clenet/Equilibrium-and-s
urviving-species-in-a-large-Lotka-Volterra-system

2. M. Clenet, Equilibrium in a large Lotka-Volterra system with pairwise correlated interac-
tions (Chapter 2): https://github.com/maxime-clenet/Feasibility-in-a-large-L
otka-Volterra-system-with-pairwise-correlated-interactions

xiii

https://github.com/maxime-clenet/Equilibrium-and-surviving-species-in-a-large-Lotka-Volterra-system
https://github.com/maxime-clenet/Equilibrium-and-surviving-species-in-a-large-Lotka-Volterra-system
https://github.com/maxime-clenet/Feasibility-in-a-large-Lotka-Volterra-system-with-pairwise-correlated-interactions
https://github.com/maxime-clenet/Feasibility-in-a-large-Lotka-Volterra-system-with-pairwise-correlated-interactions




Introduction en français

Enjeux écologiques

Une meilleure compréhension des écosystèmes
L’écologie est étymologiquement la science de la maison (du grec ancien ôıkos). Par
définition, c’est la science des êtres vivants (animaux, micro-organismes, etc.) dans un
environnement spécifique à une échelle particulière (populations, espèces, communautés)
et de leurs relations avec les autres êtres vivants. En écologie, une espèce est constituée
d’individus qui peuvent se reproduire entre eux et produire une descendance fertile, for-
mant ainsi des populations. Les individus sont généralement mutuellement dépendants
les uns des autres pour leur survie.

Les individus de différentes espèces vivant dans une même région forment une com-
munauté. L’ensemble des êtres vivants dans leur environnement forme un écosystème
(savane, forêt, intestin, etc.). Historiquement, le concept d’écosystème est récent [Tan39].
La compréhension de ces écosystèmes (écologie des communautés, lorsque l’accent est mis
sur l’interaction entre les espèces) et de leurs mécanismes de fonctionnement sous-jacents
constitue un défi majeur en écologie [MW67].

Le nombre d’espèces dans un écosystème est souvent lié à une mesure d’échelle. Sur
Terre, certains rares écosystèmes sont petits (2-3 espèces), cependant la plupart ont un
très grand nombre d’espèces. Cette grande diversité d’espèces est nécessaire à la survie
des êtres vivants. A ce jour, les scientifiques ont répertorié plus de 2 millions d’espèces
sur Terre. Par exemple, la forêt amazonienne abrite 106 espèces. A notre échelle, notre
microbiome abrite un ordre de grandeur de 103 espèces et 1018 cellules [CSF15]. De
nombreuses questions sur ces grands écosystèmes restent sans réponse car les systèmes
plus complexes demandent beaucoup plus de données empiriques pour être “compris” et
les études expérimentales ne sont pas adaptées à leur étude. Une meilleure compréhension
permettrait de gérer durablement les populations animales pour protéger les populations
menacées, ou d’avoir une meilleure gestion des antibiotiques sur notre flore intestinale.

Les écologues mènent de nombreuses études expérimentales sur des systèmes à peu
d’espèces, alors que dans les grands systèmes, il devient rapidement impossible de récolter
des données à grande échelle. Cependant, ces dernières années, de nombreux outils tech-
nologiques ont été développés en laboratoire pour étudier des systèmes microbiologiques
et permettraient de faire des comparaisons avec les études théoriques [HAB`21]. Par ex-
emple, de nombreux processus sont automatisés avec l’émergence du deep learning pour
reconnâıtre les espèces et les compter, notamment sur des images prises par avion ou
drone. Ce manque de données peut être compensé par l’utilisation et l’étude de modèles.
Ces modèles n’ont pas forcément pour seul but de prédire la dynamique de l’écosystème
mais de comprendre les mécanismes qui permettent une grande diversité.
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L’un des principaux débats en écologie concerne la relation entre la diversité et la
stabilité d’un écosystème. Depuis longtemps, de nombreux écologues ont suggéré que
la diversité des communautés renforçait la stabilité des écosystèmes [Mac55, May73].
Cependant, à partir d’un modèle théorique qu’il a introduit dans les années 70 [May72],
May a remis en question la relation diversité-stabilité en utilisant une analyse de stabilité
linéaire sur un modèle de communauté construit de manière aléatoire et a découvert que la
diversité tend à déstabiliser le système. Cela a conduit au débat sur la diversité-stabilité
[May73, Yod81, McC00, IC07, JMM`16, LMB`18] où les enjeux théoriques consistent à
trouver les arguments ou mécanismes manquants du modèle de May.

Dans cette thèse, j’étudie les grands écosystèmes afin de comprendre l’un des prin-
cipaux facteurs écologiques affectant leur diversité et leur dynamique : les interactions
biotiques entre espèces. Dans une communauté, l’ensemble des interactions entre ses com-
posantes est représenté comme un réseau d’interactions. Il existe deux grandes classes
d’interactions : les interactions intra-spécifiques et les interactions inter-spécifiques. La
première classe correspond aux interactions au sein d’une même espèce qui peuvent être
négatives (compétition) et positives (effet Allee). La seconde, plus diversifiée, correspond
aux interactions entre deux espèces différentes, par exemple la compétition, le mutual-
isme, la prédation, etc. L’écologie des communautés est une sous-discipline de l’écologie
qui s’attache à comprendre l’évolution des abondances (:=nombre d’individus) des espèces
qui composent une communauté au cours du temps. En bref, j’utilise un modèle qui décrit
la dynamique de la communauté pour comprendre l’impact du réseau d’interactions sur
les propriétés d’un équilibre telles que l’existence, la diversité, la stabilité, etc.

Cours éclair sur les EDOs
En écologie, la dynamique des populations peut être modélisée en temps continu ou dis-
cret. En temps continu, des équations différentielles ordinaires (EDO) sont utilisées pour
décrire l’évolution de l’abondance x “ px1, ..., xnq d’un système à n espèces. On com-
mence par rappeler le problème de Cauchy.

Soit U un ouvert de Rn`1, f : U Ñ Rn`1 continue par rapport à pt,xq,
#

dxptq

dt
“ fpt,xptqq ,

xp0q “ x0 .
(1)

Un système est dit autonome si f ne dépend pas de t.
Le théorème de Cauchy-Lipschitz établit que si f est C1 par rapport à x, alors pour

toute condition initiale, le problème (1) admet une unique solution maximale pI, γq, γ :
I ÞÑ Rn. De plus, toute autre solution du problème (1) est une restriction de la solution
maximale.

Si le système est autonome, le principe de majoration a priori indique que si f : U Ñ Rn

est continue et localement lipstchitzienne, pI, uq une solution maximale du théorème de
Cauchy et sup(I) = 8, alors il existe une solution globale au problème (1).
Dans la suite, on s’intéresse au problème autonome :

#

dxptq

dt
“ fpxptqq ,

xp0q “ x0 .
(2)

Afin d’étudier le problème (2), une question importante consiste à obtenir des informations
sur l’existence et l’unicité des équilibres et leurs propriétés. Un équilibre x˚ du système
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(2) est une solution de l’équation :

dxptq

dt
“ 0 ô fpxptqq “ 0 .

La fonction f peut être complexe, les solutions de ce système ne sont pas nécessairement
triviales et il peut y avoir plusieurs équilibres avec des propriétés différentes. Un équilibre
x˚ est dit faisable si toutes ces composantes sont strictement positives c.a.d.

x˚
ą 0 ô xk ą 0, @k P rns .

Une propriété majeure d’un point d’équilibre est sa stabilité. Un équilibre est stable
s’il revient à sa valeur d’équilibre après une petite perturbation du vecteur d’abondance
x. Dans le cas d’une équation différentielle linéaire, l’étude de la stabilité est triviale et
dépend des valeurs propres de l’opérateur linéaire. Dans le cas non linéaire, elle est plus
complexe. Cependant, on peut linéariser le système pour obtenir des informations sur la
stabilité locale autour de l’équilibre.

Soit x˚ un point d’équilibre de (2), on dit que x˚ est asymptotiquement stable si il
est stable et si D δ ą 0, @pI,xq solution de (2)

D t0 P I, |xpt0q ´ x˚
| ď δ ñ xptq ÝÝÝÑ

tÑ8
x˚ .

Théorème 0.1 (Stabilité d’un équilibre, cas non-linéaire). Soit x˚ un équilibre d’un
système différentiel non linéaire autonome où f est différentiable en x˚ et soit Dfpx˚q “

J |x˚ sa Jacobienne au point d’équilibre. Soit Λ “ SppJ |x˚q l’ensemble des valeurs propres
de J |x˚ et RpΛq l’ensemble de la partie réelle des valeurs propres de Λ.

1. Si @λ P Λ,RpΛq ă 0, alors x˚ est asymptotiquement stable et on a

@µ Ps0,min ´RpΛqr, @ϵ ą 0, Dδ ą 0, |xpt0q ´ x˚
| ă δ

ñ @t ě t0,xptq existe et |xptq ´ x˚
| ď ϵe´µpt´t0q .

2. Si Dλ P Λ,RpΛq ą 0, alors x˚ est instable.

3. Si @λ P Λ,RpΛq ď 0 et il y a des valeurs propres purement imaginaires, alors on ne
peut pas conclure.

Soit x˚ un équilibre pour un système différentiel non linéaire autonome (2), on dit que
x˚ est asymptotiquement globalement stable si pour tout x0 ą 0, la solution de (2) qui
commence à xp0q “ x0 satisfait

xptq ÝÝÝÑ
tÑ8

x˚ .

Remarque 0.1. Dans cette thèse, j’étudie exclusivement la stabilité asymptotique, c’est-à-
dire la stabilité et la convergence vers le point d’équilibre. Par abus de notation, je réfère
l’étude de la stabilité à la stabilité asymptotique. Je conseille le livre de Hirsch et al.
[HSD74] pour un cours complet sur les EDOs.
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Le modèle de Lotka-Volterra
Les équations différentielles sont fréquemment utilisées en biologie pour décrire un système
d’espèces en interaction. Une forme particulièrement utilisée est le modèle densité-
dépendant :

#

dxptq

dt
“ xptqfpxptqq ,

xp0q “ x0 ,
(3)

où f est communément appelé valeur sélective ou taux de croissance d’une espèce. Quand
fpxptqq ă 0 la dynamique sera décroissante et inversement lorsque fpxptqq ą 0. Si
le système est défini dans l’orthant positif Rn

`, alors le système est dit invariant : si
@xip0q ě 0, alors @t ą 0 : xiptq ě 0 [HS98]. L’un des modèles densité-dépendant les plus
utilisés en écologie est le modèle de Lotka-Volterra qui est une pierre angulaire de cette
thèse.

Historiquement, Thomas Robert Malthus (1766-1834) s’est intéressé à la modélisation
des fluctuations d’une population. Sa conclusion était que sans contraintes, l’abondance
d’une population crôıt de façon exponentielle

#

dxptq

dt
“ rxptq ,

xp0q “ x0 ,

où r “ naissance ´ mort et la solution analytique est xptq “ x0e
rt. Une solution qui

manque un peu de réalisme.
Plus tard, Pierre François Verhulst (1804-1849) s’est intéressé à un modèle plus réaliste

en supposant que le modèle est limité par une taille maximale K ą 0 (capacité de charge)
#

dxptq

dt
“ rxptq

´

1 ´
xptq

K

¯

,

xp0q “ x0 .

Son modèle logistique représente, par exemple, la limite de croissance d’une population
de zèbres dans la savane en raison de la pénurie de ressources.

Dans un second temps, les scientifiques se sont intéressés à la modélisation des inter-
actions entre espèces. Lorsqu’on ajoute les interactions entre les populations, le modèle
le plus simple porte le nom de deux scientifiques, Lotka et Volterra, qui l’ont formulé
indépendamment à la fin des années 20 [Lot25, Vol26]. Classiquement étudié sous la
forme d’un modèle proie-prédateur à 2 dimensions, il a été comparé à des données issues
de populations naturelles [Huf58].

D’un point de vue général et dans des dimensions supérieures, les équations de Lotka-
Volterra ou le modèle de Lotka-Volterra généralisé jouent un rôle clé dans l’étude de la
dynamique des populations dans le temps. Ce modèle s’analyse mathématiquement, il est
aussi très polyvalent et robuste, et constitue une première étape dans le développement
des modèles écologiques. Ce modèle a été étudié à la fois en écologie [Wan78, Jan87, LB92]
en en mathématiques [GJ77, Goh77, Tay88, HS98, Tak96].

D’un point de vue mathématique, ce modèle décrit la dynamique de la population
d’un système à n espèces. Il est défini par un système à n équations différentielles :

dxkptq

dt
“ xkptq

˜

rk ´ θxkptq `
ÿ

ℓPrns

Bkℓxℓptq

¸

, (4)
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où k P rns “ t1, ¨ ¨ ¨ , nu. L’abondance de l’espèce k au temps t est représentée par xkptq
et x “ px1, ¨ ¨ ¨ , xnq est le vecteur des abondances des différentes espèces. Le paramètre
θ est le coefficient d’autorégulation ou l’interaction intraspécifique de chaque espèce. Le
paramètre rk correspond au taux de croissance intrinsèque de l’espèce k. Le coefficient
Bkℓ est l’effet per capita des espèces ℓ sur le taux de croissance de l’espèce k. La matrice
B, représentant la structure du réseau d’interactions, peut souvent être décomposée sous
différentes formes : blocs, cascade, réseaux multiplex, graphons, etc. [CN88, SCG`05,
LIPJ`06, PEM12].

L’objectif de nombreux mathématiciens et écologues est de comprendre le comporte-
ment du système en fonction de ces différents paramètres d’entrée. Par exemple, le nombre
d’équilibres, leur stabilité et leur faisabilité pour comprendre les implications écologiques
qui en découlent.

Comme nous l’avons déjà mentionné, le problème majeur du travail avec de grands
systèmes est la difficulté d’observer ou d’estimer les informations sur la matrice d’interaction.
Un choix naturel consiste à remplacer les interactions par des coefficients aléatoires dont
les propriétés statistiques (moyenne, variance, etc.) et la structure (blocs, cascade, etc.)
codent certaines des véritables propriétés du réseau trophique. La matrice B devient un
objet mathématique complexe : une matrice aléatoire. Cet objet mathématique représente
la deuxième pierre angulaire de cette thèse.

L’émergence des matrices aléatoires en écologie
Dans les années 70, suite aux travaux de Gardner et Ashby [GA70], Robert May a réouvert
le débat de longue date sur la relation entre diversité et stabilité en écologie [Mac55]. Son
article fondateur [May72] a motivé l’émergence de matrices aléatoires en tant qu’outil
mathématique clé pour caractériser les écosystèmes en grande dimension. Une meilleure
compréhension de ces outils a amélioré notre compréhension de la nature des interactions
et des réseaux trophiques pour parvenir à la stabilité [Tay88, AT12, TPA14]. Dans son
étude, May s’est intéressé au modèle (2) [May73], en supposant que le système est à un
équilibre faisable x˚. D’après le théorème 0.1, l’étude de la stabilité locale correspond à
l’étude des valeurs propres réelles de la matrice Jacobienne du système au point d’équilibre.
La matrice Jacobienne du système (2) est :

J “ pJkℓqnˆn , Jkℓ “
Bfkpxq

Bxℓ

.

Il existe une matrice M “ J |x˚ , appelée ”matrice des communautés” (Jacobienne) qui
décrit l’effet de l’espèce ℓ (colonne) sur l’espèce k (ligne) autour du point d’équilibre.

May a remis en question une croyance centrale en écologie en affirmant que des réseaux
écologiques suffisamment grands ou complexes ont une probabilité d’être stables proches
de zéro. Pour établir ce point, il a analysé la stabilité de grands réseaux dans lesquels
les espèces interagissent au hasard. Dans ce cas, la matrice Jacobienne est une matrice
aléatoire non-Hermitienne

M “ ´I ` A ,

où A est une matrice aléatoire centrée n ˆ n composée de variables aléatoires Akℓ „

N p0, σ2q qui apparaissent avec une probabilité C et valent 0 sinon (le paramètre C est
appelé connectance). Lorsque n est grand, May a prouvé que la probabilité que le point
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d’équilibre soit stable est proche de 0 chaque fois que la “complexité” satisfait :

σ
?
nC ą 1 .

Les valeurs propres de la matrice M sont distribuées selon la loi circulaire, dans un
disque de centre p´1, 0q et de rayon σ

?
nC (voir Figure 1). La condition de stabilité

est RpSppMqq ă 0. Si le modèle a un grand nombre d’espèces connectées avec de fortes
interactions, alors le modèle est susceptible d’être plus instable.

Figure 1: Spectre de la matrice aléatoire Jacobienne (matrice non-Hermitienne) M “

´I`A dans le plan complexe (n “ 500, σ “ 1, C “ 1). Le cercle en trait plein représente
la limite de la loi circulaire. La ligne pointillée représente le seuil à ne pas dépasser pour
la partie réelle des valeurs propres pour que le système soit stable.

Dans un modèle densité-dépendant (3), la Jacobienne est évaluée par

Jkℓ “ δkℓfkpxq ` xk
Bfkpxq

Bxℓ

.

Dans le système de Lotka-Volterra (4), à l’équilibre faisable x˚, la matrice Jacobienne
dépend de l’abondance des espèces à l’équilibre

J |x˚ “ diagpx˚
qp´I ` Bq ,

où B est introduite à (4). L’étude de la Jacobienne est plus difficile car x˚ et B ne
sont plus indépendants. Cependant, Stone [Sto18] et Gibbs et al. [GGRA18] ont montré
que les intuitions restent similaires, la stabilité des grands systèmes LV est uniquement
déterminée par la matrice d’interaction.

6
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Formulation finale du modèle
Dans la majeure partie de la thèse, nous nous concentrons sur le modèle (4) où rk “

1, @k P rns, θ “ 1 et nous ajoutons un paramètre de normalisation générique dans la
matrice d’interaction. Des taux de croissance égaux sont choisis permettant de réduire
le nombre de paramètres et de simplifier grandement les calculs. La compréhension de
l’impact de la matrice d’interaction B dans le système LV pose de nombreux problèmes
ouverts. Cependant, Rohr et al. [RSB14] se sont intéréssés à l’étude des taux de croissance
permettant la coexistence entre les espèces. Leurs travaux sur la stabilité structurelle ont
été étendus par Cenci et al. [CS18], Saavedra et al. [SRB`17] et Grilli et al. [GAS`17].

Le choix de garder le paramètre d’autorégulation θ “ 1 apporte de l’intelligibilité.
Dans le cas θ ‰ 1, on peut redimensionner le système (32) pour supprimer le paramètre
θ en posant x̃k :“ θxk, B̃kℓ :“ Bkℓ{θ. Dans les faits, Barabás et al. [BMSA17] ont étudié
l’importance d’avoir un terme d’autorégulation fort pour que le système ait un équilibre
stable. A noter que les valeurs de la diagonale de la matrice B ne sont pas fixées à 0, mais
leurs valeurs microscopiques ont un impact négligeable sur les résultats asymptotiques.

dxkptq

dt
“ xkptq

˜

1 ´ xkptq `
ÿ

ℓPrns

Bkℓxℓptq

¸

. (5)

Le dernier détail important qui diffère de la notation standard du modèle de Lotka-
Volterra est que l’on ajoute un paramètre de normalisation 1{

?
n dans la matrice B. La

raison théorique majeure est de limiter l’impact des paramètres d’interaction sur les autres
termes tout en gardant une influence asymptotique c.a.d.

E

˜

ÿ

ℓPrns

Bkℓxℓptq

¸

„ Op1q ; Var
˜

ÿ

ℓPrns

Bkℓxℓptq

¸

„ Op1q .

D’un point de vue écologique, on peut imaginer que quand le nombre d’espèces aug-
mente dans un écosystème, alors la force des interactions d’une espèce sur les autres a
tendance à diminuer.

Généralement, le modèle peut finalement s’écrire sous la forme compacte :
dxk

dt
“ xk p1 ´ xk ` pBxqkq , k P rns , (6)

où B reste à déterminer.

Le réseau d’interactions
L’enjeu majeur de cette thèse est de comprendre l’impact de la matrice d’interaction B
sur la dynamique du modèle Lotka-Volterra. Dans la nature, B correspond au réseau
d’interactions entre les espèces ou peut être considéré comme le réseau trophique de
l’écosystème (dans le sens “qui mange qui ?”). Les réseaux écologiques vastes et fortement
connectés sont fréquents dans la nature [DWM02, PLC91].

Dans le système (5), un modèle général pour la matrice d’interaction B est une ma-
trice aléatoire non centrée avec des interactions corrélées deux à deux combiné avec une
structure de graphe :

B “ S ˝

ˆ

A

α
?
n

`
µ

n
1n1J

n

˙

, (7)
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où ˝ est le produit d’Hadamard c.a.d. pX ˝ Y qij :“ XijYij et le vecteur 1n de taille nˆ 1
est composé de uns. La matrice aléatoire A “ pAkℓqk,ℓPrns satisfait les conditions suivantes
:

1. pAkℓ, k ď ℓq sont des variables aléatoires indépendantes identiquement distribuées
(i.i.d.) et EpAkℓq “ 0, Ep|Akℓ|

2q “ 1 et Ep|Akℓ|
4q ă 8 @ 1 ď k ď ℓ.

2. pour k ă ℓ le vecteur pAkℓ, Aℓkq a une distribution standard bivariée, indépendante
des autres variables aléatoires, avec une covariance covpAkℓ, Aℓkq “ EpAkℓAℓkq “ ρ
avec |ρ| ď 1.

S :“ pSkℓqk,ℓPrns est la matrice d’adjacence d’un graphe c.a.d. si on représente chaque
espèce par un nœud et une interaction entre deux espèces par un sommet dirigé, alors

Skℓ “

#

1 si il existe un impact de l’espèce ℓ sur k,
0 sinon.

En l’absence de toute autre information, on peut supposer que S est la matrice d’adjacence
d’un graphe d’Erdös Renyi (ER) [ER60]. C’est un graphe avec n sommets. On suppose
qu’il existe une arête entre deux sommets avec une probabilité p indépendante de toute
autre arête.

D’un point de vue écologique, deux types de structures peuvent affecter le type
d’interactions et l’existence de communautés avec des interactions préférentielles.

D’une part, le type d’interaction est différent selon les espèces. Ces paramètres sont
gérés par des choix sur les propriétés statistiques des variables aléatoires Bij. L’ensemble
des paramètres pα, µ, ρq peut représenter une gamme de types d’interaction. Tout d’abord,
la force de l’interaction est représentée par α, une grande valeur de α représente un
système avec des interactions faibles, au contraire une petite valeur de α représente des
interactions très fortes. Les paramètres µ et ρ décrivent la nature des interactions du
système. Quand ρ ă 0, les interactions entre partenaires ont un impact opposé l’une sur
l’autre, comme dans les interactions antagonistes (le prédateur est influencé positivement
par l’abondance de sa proie tandis que la proie est affectée négativement par celle du
prédateur). Lorsque ρ ą 0, les interactions entre les partenaires ont un impact similaire
les uns sur les autres, c’est-à-dire qu’ils sont engagés dans des interactions mutualistes ou
compétitives. Le paramètre d’interaction moyen µ augmente la proportion d’interactions
compétitives ou mutualistes en fonction de son signe. Étant donné une interaction par
paire Bkℓ{Bℓk dans le système, les trois motifs dominants sont :

• compétition (relation -/-), ce qui se produit plus souvent lorsque ρ ą 0, µ ă 0
[Mac70, Zee95],

• mutualisme (relation +/+), ce qui se produit plus souvent lorsque ρ ą 0, µ ą 0
[SGB`15, Sto20],

• prédation (relation +/-), ce qui se produit plus souvent lorsque ρ ă 0, µ « 0 [AT12].

Il existe d’autres types d’interactions comme le commensalisme ou l’amensalisme [BTH06].
D’autre part, la structure du réseau d’interactions diffère selon les écosystèmes. La

structure de la matrice d’interaction peut également être affectée par l’existence de com-
munautés, c’est-à-dire de groupes d’espèces qui interagissent préférentiellement entre
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eux [TF10, AGB`15]. Dans l’équation (5), le réseau est représenté par S une matrice
d’adjacence d’un graphe donné. Plusieurs types de structures sont largement étudiés en
écologie et peuvent être modélisés par le graphe S.

Tout d’abord, les structures modulaires telles que la compartimentalisation des réseaux
trophiques, également appelée modularité, qui sont la propension des nœuds à être con-
nectés préférentiellement au sein des groupes plutôt qu’entre les groupes ([GSSP`10,
GRA16]).

Deuxièmement, les structures imbriquées où chaque espèce joue un rôle différent dans
l’écosystème. Ces modèles sont généralement appelés imbriqués en raison de leur structure
dans laquelle certaines espèces ont plus d’interactions que d’autres [BJMO03, BFPG`09,
SKA13, PBHM19].

Dans les grands écosystèmes, toutes les espèces n’interagissent pas les unes avec les
autres, d’où l’intérêt d’étudier les écosystèmes épars [BSHM17]. Dans les faits, May
[May72] considère la connectance comme un paramètre clé lié à la complexité d’un
système.

Enfin, les modèles de traits avec des structures latentes [EJK`13] comme le modèle
de niche de Williams et Martinez [WM00], le modèle en “cascade” [CBN90] qui établit
une structure de prédation dans le réseau trophique. Chaque espèce peut se nourrir aux
niveaux trophiques inférieurs mais pas aux niveaux supérieurs [HMS16, PBG22]. A noter
que toutes ces structures peuvent être modélisées par un graphon (chaque nœud est associé
à une variable aléatoire et les connexions dépendent d’une fonction des variables associées
aux deux nœuds).

Pour un aperçu général des différents modèles des communautés écologiques complexes
du point de vue du physicien, voir Barbier et al. [BABL18].

Métacommunauté et dynamique spatiale
À des échelles spatiales plus grandes, les écologistes s’intéressent également aux interac-
tions entre les populations (plutôt qu’entre les individus) afin de comprendre les schémas
de la diversité des espèces dans l’espace et le temps. Dans ce contexte, les interactions
mutualistes, compétitives et prédatrices sont remplacées par les processus de colonisation,
d’extinction et de remplacement de populations entières. La théorie de l’écologie spatiale
trouve ses racines dans les travaux de MacArthur et Wilson [MW63] et Levins et Heat-
wole [LH63] et plus tard MacArthur sur la biologie et géographie des populations [Mac84].
En particulier, The Theory of Island Biogeography (TIB) est une pierre angulaire de la
théorie de la dynamique spatiale [MW67]. Le TIB décrit comment la biodiversité des ı̂les
est maintenue par un équilibre entre l’immigration et l’extinction des espèces.

Depuis ce jour, la théorie de l’écologie spatiale a évolué pour comprendre les mécanismes
de coexistence qui sous-tendent le modèle de métacommunauté introduit par Wilson.
[Wil92]. L’étude des modèles de métacommunautés s’est particulièrement développée en
raison de la prise de conscience de l’hétérogénéité spatiale des écosystèmes. Leibold et
al. [LHM`04] ont décrit les différents mécanismes à l’échelle spatiale : la colonisation
(les organismes se déplacent d’un site à l’autre entre les générations), l’habitat de niche
(les espèces peuvent être plus ou moins bien adaptées à un environnement donné) et la
stochasticité (si les espèces sont équivalentes en termes de traits, de compétitivité, etc., on
ne s’attend pas nécessairement à ce qu’elles coexistent, mais on sait qu’il faudra un certain
temps avant que l’une ou l’autre ne prenne complètement le contrôle du site, c’est-à-dire
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un modèle neutre).
Considérant que la capacité des espèces à coloniser de nouveaux habitats est cruciale

pour le maintien des populations, un type de modèle de métacommunauté mathématiquement
analysable est connu sous le nom de modèle d’occupation avec un compromis compétition-
colonisation. La légitimité de ce modèle repose sur l’existence d’un compromis entre la
capacité d’une espèce à coloniser de nouveaux patchs et sa capacité concurrentielle. Cette
capacité concurrentielle affecte sa résistance à la colonisation par une autre espèce et
sa propre capacité à remplacer d’autres espèces. Formellement, il s’agit d’un modèle
d’occupation de parcelles où chaque espèce a la capacité de coloniser de nouvelles par-
celles en compétition avec d’autres espèces. La variable d’intérêt est la proportion de
l’habitat occupée par chaque espèce.

Initiallement étudié par Levins [Lev69] et Levins et Culver [LC71] dans le cas de
deux espèces, ce modèle a suscité un intérêt particulier dans sa version à n espèces où la
compétition est hiérarchique [Has80, NM92, Til94]. Dans un cadre plus général, il a été
étudié dans un cas où la compétition n’est pas hiérarchique [Ama03, YW01, CMJD06a]
et aussi dans un contexte épidémiologique d’une dynamique d’interactions hôte-parasite
[MN94, NM94]. Dans un cadre plus général, des approches de matrice aléatoire ont été
utilisées pour étudier la stabilité dans un contexte de méta-écosystème. Chaque parcelle
a sa propre dynamique et la dispersion de toutes les espèces relie les différentes parcelles,
voir Gravel et al. [GML16].

La dynamique spatiale d’un système à n espèces avec un dilemme compétition coloni-
sation [CMJD06a] est de la forme

dpk

dt
“ ckpk

˜

1 ´

n
ÿ

ℓ“1
pℓ

¸

´ mkpk ` ckpk

ÿ

ℓ‰k

pℓηkℓ ´ pk

ÿ

ℓ‰k

cℓpℓηℓk , (8)

où pk représente le taux d’occupation de l’espèce k, mk est le taux d’extinction de l’espèce
k, ck représente le taux de colonisation de l’espèce k, ηkℓ correspond à la probabilité de
remplacement de l’espèce ℓ par k.

Ces équations peuvent être représentées comme un modèle de compétition de Lotka-
Volterra avec des interactions asymétriques :

dpk

dt
“ pk

«

ck ´ mk `

n
ÿ

ℓ“1
pℓ pckηkℓ ´ cℓηℓk ´ ckq

ff

.

Dans le contexte du modèle de Lotka-Volterra avec de la dispersion, des travaux supplémentaires
ont été effectués en introduisant un paramètre de migration [BG20, PNJ21, VPNJ22].
Dans le contexte du méta-réseau trophique avec des paramètres de diffusion, Brechtel et
al. [BGR`18] ont étudié la formation de motifs par diffusion dans les réseaux.

Théorie des matrices aléatoires : une visite guidée
Historiquement, la théorie des matrices aléatoires trouve ses racines dans les travaux du
statisticien John Wishart dont le but était d’étudier les matrices aléatoires de covariance
empirique d’échantillons gaussiens multivariés [Wis28]. Par la suite, dans les années
50, une deuxième impulsion a été donnée par Eugène Wigner [Wig55] dont le but était
d’expliquer la distribution des niveaux d’énergie dans les noyaux atomiques. L’approche
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innovante utilisée par Wigner [Wig67] pour décrire le spectre d’une matrice aléatoire
Hermitienne a été reprise par d’autres physiciens pour résoudre des problèmes de physique
nucléaire [Dys62] et de sciences physiques. Par la suite, de nouvelles structures matricielles
ont été étudiées, de nombreux travaux ont été réalisés par Marchenko et Pastur [MP67] sur
les grandes matrices de covariance et Girko [Gir85], Bai [Bai97] et Silverstein [SC95, BS10]
sur l’extension des résultats aux matrices non-Hermitiennes. Jusqu’à aujourd’hui, une
multitude de travaux ont été publiés dans des domaines très divers des mathématiques
tels que la combinatoire, les graphes aléatoires, la théorie des probabilités libres, la théorie
du signal, la théorie des nombres, etc.

La force de la théorie des matrices aléatoires vient de la stabilisation du spectre des ma-
trices (aléatoire et a priori compliqué) lorsque la dimension de la matrice tend vers l’infini.
Dans ce cadre, la distribution des valeurs propres de la matrice devient complètement
déterministe. De manière très simplifiée, il s’agit d’une équivalence de la loi des grands
nombres pour le spectre d’une matrice. Les enjeux et motivations de la théorie des matri-
ces aléatoires reposent sur la description des propriétés standard du spectre des matrices
: valeurs propres, vecteurs propres, plus grande valeur propre, etc. D’un point de vue
technique, il s’agit d’un mélange équilibré d’algèbre linéaire, de probabilités, d’analyse
complexe et de combinatoire.

Quelques definitions
Soit A P MpCq, A :“ pAkℓqnˆn, une matrice carrée de taille n avec des coefficients
appartenant à l’ensemble complexe C. On note A˚ :“ A

J. Soit un vecteur x P Rn, on
note }x}2 sa norme Euclidienne :

}x}2 “

˜

n
ÿ

k“1
|xk|

2

¸1{2

.

Définition 0.1 (Valeurs propres). On définit λ1pAq, λ2pAq, . . . , λnpAq les valeurs propres
de A c.a.d. les racines de son polynôme caractéristique, tel que

|λ1pAq| ě ¨ ¨ ¨ ě |λnpAq| .

L’ensemble des valeurs propres de A est appelé le spectre de A et noté SppAq.

Définition 0.2 (Rayon spectral). La rayon spectral de la matrice A, que l’on note ρpAq “

|λ1pAq|, est le module de la valeur propre ayant le plus grand module.

Définition 0.3 (Valeurs singulières). Les valeurs singulières σ1pAq, σ2pAq, . . . , σnpAq de
la matrice A sont la racine carrée des valeurs propres de la matrice hermitienne A˚A c.a.d.

σipAq :“
a

λipA˚Aq , @i P rns .

Définition 0.4 (La norme spectrale). La norme spectrale de la matrice A notée par }A}

est définie par sa plus grande valeur singulière

}A} :“ max
´?

λ, λ valeur propre de A˚A
¯

“ σ1pAq .
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En probabilité, la mesure spectrale caractérise le spectre d’une matrice. Dans le do-
maine des RMT, elle est utilisée pour exprimer les résultats de convergence du spectre
vers une mesure déterministe. Soit I Ă C, on note δλ la mesure de Dirac au point λ
définie par

δλpIq “

#

1 si λ P I ,

0 sinon .

Définition 0.5 (Mesure spectrale empirique). Soit A P MnpCq et ses valeurs propres
λ1pAq, . . . , λnpAq, on définit la mesure spectrale empirique de la matrice A dans pC,BpCqq

par

µA :“ 1
n

n
ÿ

k“1
δλkpAq .

Pour tout sous-ensemble E Ă C, la quantité :

µApEq “
cardt1 ď k ď n : λkpAq P Eu

n
,

est la proportion de valeurs propres de A dans E.

La convergence faible d’une mesure spectrale empirique vers une mesure déterministe
décrit de nombreux résultats de matrices aléatoires.

Définition 0.6 (Convergence faible). On dit que µA convergence faiblement vers une
mesure de probabilité µ c.a.d. µA

D
ÝÝÝÑ
nÑ8

µ, si pour toute fonction f continue et bornée
sur R

ż

fpuqµApduq “
1
n

n
ÿ

k“1
fpλkq ÝÝÝÑ

nÑ8

ż

fpuqµpduq .

Remarque 0.2. Si A est aléatoire, alors µA est une distribution de probabilité aléatoire
discrète, cela implique

ş

fµApduq sont aussi des variables aléatoires. Nous dirons alors que
presque sûrement (p.s.) µA convergence faiblement vers µ

pp.s.q µA
D

ÝÝÝÑ
nÑ8

µ .

Définition 0.7 (Résolvante). Soit A P MnpCq, on appelle résolvante de la matrice A
Q :“ pQkℓqnˆn définie par

Qpzq “ pA ´ zIq
´1, z R SppAq .

On note
C` :“ tz P C : Impzq ą 0u

la moitié supérieure du plan complexe.

Définition 0.8 (Transformée de Stieltjes). Soit µ P PpRq une mesure de probabilité. La
transformée de Stieltjes de µ notée gµ : C` Ñ C est définie par

gµpzq “

ż 1
λ ´ z

µpdλq , z P C` .

12
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Remarque 0.3. Soit µA la mesure empirique des valeurs propres λ1pAq, ¨ ¨ ¨ , λnpAq de la
matrice symétrique A, alors la transformée de Stieljes associée est donnée par

gµA
pzq “

ż 1
λ ´ z

µApdλq “
1
n

n
ÿ

i“1

1
λi ´ z

“
1
n

Tr
`

pA ´ zIq
´1˘ ,

où Q “ pA´ zIq´1 est la résolvante de la matrice A et TrpQq est la trace de la matrice Q.

Proposition 0.2 (Inversion de Stieltjes). Soit gµ la transformée de Stieltjes de la mesure
µ de masse finie µpRq. Si a, b P R et µptauq “ µptbuq “ 0, alors

µpa, bq “
1
π

lim
yÑ0`

Im
ż b

a

gµpx ` iyqdx ,

et
@x P R, µptxuq “

1
π

lim
yÑ0`

Impgµpx ` iyqq .

Proposition 0.3 (Identité de Woodbury). Soit A une matrice de taille n ˆ n, U une
matrice n ˆ m, B une matrice m ˆ m, V une matrice m ˆ n. On suppose que toutes les
inverses des matrices considérées existent, alors :

pA ` UBV q
´1

“ A´1
´ A´1UpB´1

` V A´1Uq
´1V A´1 .

L’identité de Woodbury pour une perturbation de rang 1 est souvent utilisée et appelée
identité de Sherman-Morrison.

Proposition 0.4 (Identité de Sherman-Morrison). Soit A une matrice nˆn et u, v deux
vecteurs de dimension n. On suppose que toutes les inverses des matrices considérées
existent, alors :

pA ` uv˚
q

´1
“ A´1

´
A´1uv˚A´1

1 ` v˚A´1u
.

Proposition 0.5 (Inégalité de Poincaré). Une mesure de probabilité P sur Rn satis-
fait l’inégalité de Poincaré avec une constante c ą 0 si, pour toute fonction continue
différentielle f : Rn Ñ C,

VarPpfq “ EPp|fpxq ´ EPpfpxqq|
2
q ď

1
c
EP|∇fpxq|

2 .

Matrice de Wigner
Définition 0.9. Soit Wn une matrice Hermitienne n ˆ n, Wn “ W ˚

n tel que Wn :“
pWkℓ, 1 ď k ď ℓ ď nq sont des variables aléatoires i.i.d. avec EpWkℓq “ 0, @ 1 ď k ď ℓ et
Ep|Wkℓ|

2q ă 8, @ 1 ď k ď ℓ. Wn{
?
n est appelée matrice de Wigner.

Théorème 0.6 (Universalité du théorème de Wigner et de la loi semi-circulaire). Soit
Wn une matrice de Wigner définie par Wn :“ pWkℓ, 1 ď k ď ℓq variables aléatoires i.i.d.
telles que

1. EpWkℓq “ 0, @ 1 ď k ď ℓ,

2. Ep|Wkℓ|
2q “ σ2 ă 8, @ 1 ď k ď ℓ et σ ą 0.

13
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Figure 2: Spectre (histogramme) de la matrice aléatoire de Wigner Wn{
?
n (n “ 1000,

σ “ 1). La ligne continue représente la loi semi-circulaire.

Alors presque surement, la mesure spectrale empirique de Wn{
?
n converge faiblement vers

la loi semi-circulaire :

pp.s.q µWn?
n

:“ 1
n

n
ÿ

k“1
δ

λk

´

Wn?
n

¯

D
ÝÝÝÑ
nÑ8

µsc ,

où µsc est définie par

dµscptq “
1

2πσ2

a

p4σ2 ´ t2q1r´2σ,2σsptqdt .

Les valeurs propres de la matrice Wn{
?
n sont réelles. Dans la Figure 2, un his-

togramme des valeurs propres d’une matrice aléatoire de Wigner est illustré par rapport
à la distribution théorique donnée par le théorème 0.6.

Comportement local du spectre pour les matrices de Wigner
On note

λmaxpWnq “ max
kPrns

λkpWnq et λminpWnq “ min
kPrns

λkpWnq .

Pour traiter certaines questions, il est nécessaire d’avoir des informations exactes sur la
position de la plus grande valeur propre de la matrice. Dans le cas des matrices de Wigner,
de nombreux travaux ont été réalisés et affinés dans les années 80’ [FK81, BY88].

Théorème 0.7 (Convergence des valeurs propres extrêmes). Si Ep|Wkℓ|
4q ă 8, @ 1 ď

k ď ℓ, alors
λmaxpWn{

?
nq

p.s.
ÝÝÝÑ
nÑ8

2σ , λminpWn{
?
nq

p.s.
ÝÝÝÑ
nÑ8

´2σ .

En particulier,
›

›Wn{
?
n
›

› “ maxp|λmaxpWn{
?
nq|, |λminpWn{

?
nq|q

p.s.
ÝÝÝÑ
nÑ8

2σ .

14
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Si Ep|Wkℓ|
4q “ 8, @ 1 ď k ď ℓ, alors

λmaxpWn{
?
nq

p.s.
ÝÝÝÑ
nÑ8

`8 .

Matrice de Wigner déformée
La dernière propriété spécifique sur les matrices de Wigner à traiter dans le cadre de cette
thèse est la distribution des valeurs propres lorsque la matrice de Wigner est perturbée
par une déformation de rang fini. Ce type de modèle est fréquemment appelé “spike”.
Selon le type de déformation, certaines valeurs propres aberrantes peuvent s’échapper du
support de la distribution. Soit Wn une matrice de Wigner aléatoire et

1. EpWkℓq “ 0, @ 1 ď k ď ℓ,

2. Ep|Wkℓ|
2q “ σ2 ă 8, @ 1 ď k ď ℓ et σ ą 0,

3. sup
k‰ℓ

Er|Wkℓ|
4s ă 8.

Soit Pn une matrice symétrique réelle déterministe de rang fixe r. Nous sommes
intéressés par les propriétés du spectre de la matrice 1?

n
Wn ` Pn.

Depuis l’article pionnier de Füredi et Komlòs [FK81], de nombreux scientifiques ont
étudié les propriétés spectrales des matrices de Wigner déformées [Pé06, CDMF09, PRS13,
RS13]. On note θ1, ..., θr les valeurs propres ordonnées de Pn où @j P r1, rs, θj est de
multiplicité kj et indépendant de n. Soit r0, l’index associé au seuil 0 c.a.d. θr0 “ 0 et Pn

a r0 ´ 1 valeurs propres distinctes. Soit r`σ (resp r´σ) est le nombre de j tel que θj ą σ
(resp θj ă ´σ).

Théorème 0.8 (Théorème de Wigner deformé - [CDMF09, PRS13]). Soit Wn est une
matrice de Wigner réelle aléatoire satisfaisant la condition (1)-(3) et Pn est une matrice
Hermitienne réelle déterministe de rang r fini fixe comme ci-dessus. Soit

ρθj
“ θj `

σ2

θj

.

Alors, les conditions suivantes sont vraies :

1. Pour 1 ď j ď r`σ, 1 ď i ď kj, λk1`...`kj´1`i Ñ ρθj
,

2. λk1`...`kr`σ `1 Ñ 2σ ,

3. λk1`...`kr´r´σ
Ñ ´2σ ,

4. Pour j ě r ´ r´σ ` 1, 1 ď i ď kj, λk1`...`kj´1`i Ñ ρθj
.

La convergence (1)-(4) est en probabilité.

Remarque 0.4. Dans [CDMF09], Capitaine, Donati-Martin et Féral montrent que si la
distribution des entrées satisfait l’inégalité de Poincaré (proposition 0.5), la convergence
du théorème 0.8 est vraie presque sûrement.

Dans la Figure 3, un histogramme des valeurs propres de la matrice de Wigner
déformée est illustré par rapport à la distribution théorique donnée par le théorème 0.8.
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Figure 3: Spectre (histogramme) de la matrice aléatoire de Wigner deformée Wn{
?
n`Pn

(n “ 1000, σ “ 1). La matrice de perturbation est Pn “ diagp´4, 2, 3, 0, ..., 0q. La
ligne continue représente la loi semi-circulaire. Les lignes pointillées indiquent la valeur
théorique des valeurs aberrantes à ´4´1{4, 2`1{2, 3`1{3 comme prédit par le théorème
0.8.

La loi circulaire
Dans la deuxième partie de cette introduction sur les matrices aléatoires, nous nous con-
centrons sur les matrices non-Hermitiennes. Soit Yn P MnpCq une matrice aléatoire carrée
de dimension nˆn dont les entrées sont i.i.d. centrées de variance σ2. Les valeurs propres
de Yn ne sont plus réelles mais complexes. Le résultat principal concerne la convergence
de la mesure spectrale empirique de Yn{

?
n vers la loi circulaire dans le plan complexe.

Initiallement prouvé par Mehta [Meh67] pour la distribution spectrale empirique moyenne
dans le cas d’une gaussienne complexe suite aux travaux de Ginibre sur la formule ex-
plicite du spectre [Gin65], Edelman [Ede97] a établi la loi circulaire dans le cas de variables
aléatoires gaussiennes réelles. Silverstein a donné un argument pour passer de la conver-
gence moyenne à la convergence presque sûre. Girko a travaillé sur la version universelle
(pour d’autres types de distribution) [Gir85] en fournissant quelques éléments de preuves
tels que la technique d’hermétisation. Cependant, c’est finalement Tao et Vu [TVK10]
qui ont prouvé le cas général. Je conseille au lecteur de consulter Bordenave et Chafäı
[BC12].
Théorème 0.9. Soit Yn une matrice aléatoire MnpCq telle que Yn :“ pYkℓ, 1 ď k, ℓ ď nq

sont des variables aléatoires i.i.d. telles que EpYkℓq “ 0, @ 1 ď k, ℓ ď n et Ep|Ykℓ|
2q “

σ2, @ 1 ď k, ℓ ď n. Alors presque sûrement, la mesure spectrale empirique de Yn{
?
n

converge faiblement vers la loi circulaire

µ Yn?
n

D
ÝÝÝÑ
nÑ8

µc ,

où µc est la loi circulaire c.a.d. la loi uniforme sur le disque de rayon σ de C avec comme
densité

dµcpzq “
1
πσ2 1zPC,|z|ďσdz .
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Figure 4: Spectre de la matrice aléatoire non-Hermitienne Yn{
?
n dans le plan complexe

(n “ 1000, σ “ 1). Le cercle de ligne continue représente la frontière de la loi circulaire.

Dans la Figure 4, les valeurs propres d’une matrice aléatoire non-Hermitienne dans
le plan complexe sont représentées par rapport à la distribution théorique donnée par le
théorème 0.9.

Comportement local du spectre pour les matrices non-Hermitiennes
Dans le cas de la loi du cercle, il est important d’avoir des informations sur la position
du rayon spectral. Nous avons vu précédemment dans les travaux de May [May72], la
nécessité de décrire le seuil de perte de stabilité par la plus grande valeur propre de la
partie réelle de la matrice Jacobienne. De nombreux travaux ont été réalisés sur ce sujet,
en particulier par Bai [BSY88, BS10].

Théorème 0.10 (Convergence des valeurs propres extrêmes). Si EpYkℓq “ 0 et Ep|Ykℓ|
4q ă

8, @ 1 ď k, ℓ ď n, alors
›

›

›

›

Yn
?
n

›

›

›

›

p.s.
ÝÝÝÑ
nÑ8

2σ et ρ

ˆ

Yn
?
n

˙

p.s.
ÝÝÝÑ
nÑ8

σ .

Valeurs aberrantes dans le spectre des matrices non-Hermitiennes
Comme dans le cas de Wigner, nous pouvons considérer une perturbation de rang fini de
la matrice non-Hermitienne. Ce problème a été considéré par Tao [Tao13, Théorème 1.7]
et a été étendu par Benaych-Georges et Rochet [BGR16] pour l’étude des fluctuations des
valeurs propres aberrantes.

Théorème 0.11 (Spectre déformé d’une matrice aléatoire non-Hermitienne). Soit Yn une
matrice aléatoire i.i.d. avec EpYkℓq “ 0, Ep|Ykℓ|

2q “ 1 et Ep|Ykℓ|
4q ă 8, @ 1 ď k, ℓ ď n

et pour chaque n, soit Pn une matrice déterministe de rang Op1q et de norme opérateur
Op1q. Soit ε ą 0, et supposons que pour tout n suffisamment grand, il n’y a pas de valeurs
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Figure 5: Spectre de la matrice non-Hermitienne Yn{
?
n ` Pn dans le plan complexe

(n “ 1000, σ “ 1). La matrice de perturbation est Pn “ diagp1 ` 2i, 2, 3, 0, ..., 0q. Le
cercle en trait plein représente la limite de la loi circulaire. Il y a trois valeurs propres
dans les petits cercles en pointillés centrés sur 1 ` 2i, 2, 3 comme prédit par le théorème
0.11.

propres de Pn dans l’anneau tz P C : 1 ` ε ă |z| ă 1 ` 3εu, et il y a j valeurs propres
λ1pPnq, ..., λjpPnq pour j “ Op1q dans la région tz P C : |z| ě 1 ` 3εu.

Alors, p.s., pour n suffisamment grand, il y a précisément j valeurs propres

λ1

ˆ

Yn
?
n

` Pn

˙

, ..., λj

ˆ

Yn
?
n

` Pn

˙

,

de Yn?
n

` Pn dans la région tz P C : |z| ě 1 ` 2εu, et après avoir étiqueté correctement ces
valeurs propres, λip

Yn?
n

` Pnq “ λipPnq ` op1q lorsque n Ñ 8 pour chaque 1 ď i ď j.

Dans la Figure 5, les valeurs propres d’une matrice aléatoire non Hermitienne déformée
avec des valeurs aberrantes sont représentées par rapport à la distribution théorique
donnée par le théorème 0.11.

Le modèle elliptique
Dans la configuration de la matrice de Wigner, on considère que l’interaction d’une espèce
sur l’autre est la même. Pour les matrices non-Hermitiennes, toutes les interactions sont
indépendantes. Cependant, en écologie, les effets réciproques d’une espèce k sur une
autre espèce ℓ (Xkℓ Ø Xℓk) sont liés. Mathématiquement, on considère une corrélation
par paire entre les entrées de la matrice. Ceci peut être utilisé pour décrire des processus
biologiques tels que la prédation lorsque le signe des interactions est inversé et que la
corrélation est négative. Dans une matrice aléatoire, lorsque les interactions par paire
sont tirées d’une distribution bi-variée, nous sommes dans le cadre du modèle elliptique.
Introduit à l’origine par Girko [Gir86], ce modèle a depuis été largement étudié [Gir95,
Nau12, NO15, OR14].
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Définition 0.10 (Modèle elliptique aléatoire). Soit Xn une matrice aléatoire réelle qui
satisfait aux trois conditions suivantes :

1. Les paires pXkℓ, Xℓkq, k ‰ ℓ sont des variables aléatoires i.i.d. avec

@ k ‰ ℓ, EpXkℓq “ 0, Ep|Xkℓ|
2
q “ 1 et Ep|Xkℓ|

4
q ă 8 .

2. Pour k ă ℓ le vecteur pXkℓ, Xℓkq est tiré d’une distribution bivariée, indépendemment
des variables aléatoires restantes, avec une covariance EpXkℓXℓkq “ ρ avec |ρ| ď 1.

3. pXkk, 1 ď k ď nq sont des variables aléatoires i.i.d., indépendantes des entrées hors-
diagonales avec EpXkkq “ 0 and Ep|Xkk|2q “ 1.

Pour ρ P p´1, 1q, on définit l’ellipsöıde

Eρ :“
"

z “ x ` iy P C : x2

p1 ` ρq2 `
y2

p1 ´ ρq2 ď 1
*

.

Remarque 0.5.

1. Pour ρ “ 1, E1 est l’intervalle r´2, 2s sur l’axe réel et pour ρ “ ´1, E´1 est l’intervalle
r´2, 2s sur l’axe imaginaire.

2. Si ρ “ 1, Xn est une matrice de Wigner.

3. Si ρ “ 0, Xn est une matrice non-Hermitienne c.a.d. définie par le théorème 0.9.

Théorème 0.12 (Loi elliptique). Soit Xn une variable aléatoire elliptique satisfaisant les
conditions de la définition 0.10. Alors presque sûrement, la mesure spectrale empirique
de Xn{

?
n converge faiblement vers la loi elliptique :

pp.s.q µXn?
n

D
ÝÝÝÑ
nÑ8

µρ ,

où µρ est la mesure de probabilité uniforme sur l’ellipsöıde Eρ de densité

µρpzq “

#

1
πp1´ρ2q

si z P Eρ ,

0 sinon .

Dans la Figure 6, les valeurs propres d’une matrice aléatoire elliptique dans le plan
complexe sont représentées par rapport à la distribution théorique donnée par le théorème
0.12.

Le corollaire 2.3 dans O’Rourke et Renfrew [OR14] fournit des informations sur le
rayon spectral d’une matrice elliptique.

Proposition 0.13 (Rayon spectral d’une matrice aléatoire elliptique). Soit Xn une ma-
trice aléatoire elliptique définie dans la définition 0.10, alors

ρ

ˆ

Xn
?
n

˙

p.s.
ÝÝÝÑ
nÑ8

1 ` |ρ| .
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(a) ρ “ 0 (b) ρ “ ´0.5 (c) ρ “ 0.5

Figure 6: Spectre de la matrice elliptique Xn (n “ 500) avec des paramètres distincts ρ P

t´0.5, 0, 0.5u. La ligne continue représente une ellipse tz “ x`iy P C, x2

p1`ρq2 `
y2

p1´ρq2 “ 1u

qui est la limite du support de la distribution spectrale limite pour un modèle elliptique.

Valeurs aberrantes dans le modèle elliptique
L’étude des valeurs aberrantes dans le cas d’une matrice elliptique déformée a été réalisée
par O’Rourke et Renfrew [OR14].

On définit le voisinage pour tout δ ą 0

Eρ,δ :“ tz P C : distpz, Eρq ď δu .

Théorème 0.14 (Matrice aléatoire elliptique déformée). Soit k ě 1 et δ ą 0. Soit
Xn une matrice aléatoire elliptique spécifiée par la définition 0.10. Soit Pn une matrice
deterministe de taille n ˆ n de rang fini k et supn }Pn} “ Op1q. On suppose que pour n
suffisamment grand, il n’y a pas de valeurs propres non nulles de Pn qui satisfont

λipPnq `
ρ

λipPnq
P Eρ,3δzEρ,δ avec |λipPnq| ą 1,

et il y a j valeurs propres λ1pPnq, ..., λjpPnq pour j ď k qui satisfont

λipPnq `
ρ

λipPnq
P CzEρ,3δ avec |λipPnq| ą 1 .

Alors, p.s., pour n suffisamment grand, il y a exactement j valeurs propres de 1?
n
Xn `Pn

dans la région CzEρ,2δ et après avoir étiqueté correctement les valeurs propres,

λi

ˆ

Xn
?
n

` Pn

˙

“ λipPnq `
ρ

λipPnq
` op1q, @ 1 ď i ď j .

Dans la Figure 7, les valeurs propres d’une matrice aléatoire elliptique déformée dans
le plan complexe sont représentées par rapport à la distribution théorique donnée par le
théorème 0.14.

Cadre théorique de la thèse
La compréhension des points d’équilibre du système de Lotka-Volterra (6) et leur stabilité
permet de mieux comprendre l’impact du réseau trophique, représenté par la matrice
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(a) ρ “ ´0.5 (b) ρ “ 0.5

Figure 7: Spectre de la matrice elliptique deformée Xn `Pn (n “ 500) avec des paramètres
distincts ρ P t´0.5, 0.5u. La matrice de perturbation est Pn “ diagp1 ` 2i, 2, 3, 0, ..., 0q.
La ligne continue représente une ellipse tz “ x ` iy P C, x2

p1`ρq2 `
y2

p1´ρq2 “ 1u qui est la
limite du support de la distribution spectrale limite pour un modèle elliptique. Il y a trois
valeurs propres dans les petits cercles en pointillé centrés sur 1 `

ρ
5 ` p2 ´

2ρ
5 qi , 2 `

ρ
2 ,

3 `
ρ
3 comme prédit par le théorème 0.14

d’interaction B, sur l’abondance des espèces. En particulier, le réseau trophique a un
impact sur la persistance des espèces qui le composent (:= nombre d’espèces persistantes),
la faisabilité du système (c’est-à-dire s’il existe un équilibre avec toutes les espèces à des
abondances non nulles) et la stabilité de l’équilibre. On rappelle le système d’équations
(6),

dxk

dt
“ xk p1 ´ xk ` pBxqkq , k P rns .

Une caractéristique essentielle pour comprendre la dynamique du système LV (6) est
l’existence d’un équilibre x˚ “ px˚

kqkPrns tel que :
#

x˚
k p1 ´ x˚

k ` pBx˚qkq “ 0 , @k P rns ,

x˚
k ě 0.

(9)

Une question naturelle est de savoir si un équilibre existe et s’il est unique. Si c’est
le cas, une autre considération est de savoir si le système converge vers cet équilibre,
c’est-à-dire la convergence d’une solution x vers l’équilibre x˚ : xptq ÝÝÝÑ

tÑ8
x˚ si xp0q

est suffisamment proche de x˚. La dernière étape consiste à décrire la stabilité : locale,
globale, résilience (:= capacité d’un système à retrouver sa structure initiale suite à une
perturbation), etc. Le système de Lotka-Volterra est invariant c’est-à-dire que xp0q ą 0
(composante par composante) implique xptq ą 0 pour tout t ą 0. Cependant, certaines
de ces composantes xkptq peuvent converger vers zéro si l’équilibre x˚ a des composantes
nulles.
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Faisabilité
La question de la faisabilité d’un équilibre x˚ ą 0 avait déjà été abordée par Goh
[GJ77] pour le modèle Lotka-Volterra dans les années 70’, puis Logofet s’est intéressé
à ce problème dans le cas d’un système compétitif [Log93]. Rossberg a également étudié
le nombre moyen d’espèces pouvant coexister dans des communautés compétitives [Ros13].
Récemment, Grilli et al. [GAS`17] ont étudié l’impact des propriétés du réseau trophique
sur le taux de croissance pour maintenir un équilibre faisable en utilisant les méthodes de
stabilité structurelle introduites par Rohr et al. [RSB14].

D’après (7), nous considérons une matrice d’interaction avec des entrées gaussiennes

Bn “
1

αn

?
n
An,

où An :“ pAkℓ, 1 ď k, ℓ ď nq sont des variables aléatoires i.i.d. avec Akℓ „ N p0, 1q.
Basé sur les travaux de Geman et Hwang [GH82], Dougoud et al.[DVR`18] ont montré

que dans le cadre d’entrées aléatoires de la matrice d’interaction, si αn ą 0 est fixé et
indépendant de n alors nécessairement certaines espèces s’éteignent. Le seuil d’existence
d’un équilibre faisable du modèle (6) a été étudié par Bizeul et Najim [BN21]. Dans leur
article, ils montrent également que la faisabilité implique la stabilité. Ce type de résultat
avait déjà été observé par Stone [Sto16] qui a montré que le seuil de stabilité est franchi
avant le seuil de faisabilité.

En partant de l’équation (9), si x˚ ą 0, l’ensemble des équations d’équilibre devient
une équation linéaire :

x˚
“ 1 ` Bnx˚ . (10)

On se limitera ici au cas non trivial dans lequel αn Ñ 8 et on définit le seuil de faisabilité
par α˚

n “
a

2 logpnq.

Théorème 0.15 (Theorème 1.1 [BN21]). Soit αn ÝÝÝÑ
nÑ8

8. Soit x˚ “ px˚
kqkPrns la solution

de (10) et An :“ pAkℓ, 1 ď k, ℓ ď nq sont des variables aléatoires i.i.d. avec Akℓ „ N p0, 1q.

1. Si il existe ε ą 0 de telle sorte que αn ď p1 ´ εqα˚
n alors

P
"

min
kPrns

x˚
k ą 0

*

ÝÝÝÑ
nÑ8

0 .

2. Si il existe ε ą 0 de telle sorte que αn ě p1 ` εqα˚
n alors

P
"

min
kPrns

x˚
k ą 0

*

ÝÝÝÑ
nÑ8

1 .

Remarque 0.6 (Esquisse de la preuve). Soit Qn “

´

I ´ An

α
?

n

¯´1
, la résolvante de la matrice

An. Le problème est défini par :

x˚
“ 1 `

ˆ

Anx˚

αn

?
n

˙

ô x˚
“

ˆ

I ´
An

αn

?
n

˙´1

1 .
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Pour chaque entrée du vecteur x˚

@k P rns, x˚
k “

8
ÿ

i“0
e˚

k

ˆ

An

αn

?
n

˙i

1 ,

“ 1 `
1
αn

e˚
k

An
?
n

1 `
1
α2

n

e˚
k

ˆ

An

αn

˙2

Qn1 ,

“ 1 `
Zk

αn

`
Rk

α2
n

,

« 1 `
Zk

αn

, Zk „ N p0, 1q .

On peut montrer que le terme Rk est négligeable en utilisant les propriétés de concentra-
tion gaussienne (pour plus de détails, voir [BN21]). À partir des propriétés des valeurs
extrêmes d’une famille de variables aléatoires gaussiennes, on peut déduire

min
kPrns

x˚
k ą 0 ô min

kPrns
Zk „ ´

a

2 logpnq ą ´αn .

Les résultats d’existence et d’unicité d’un équilibre faisable ont été étendus dans le cas
d’un réseau trophique creux par Akjouj et Najim [AN21]. Ils supposent que chaque espèce
est en relation avec d autres espèces. La magnitude de d par rapport à n reflète la densité
de connexions du modèle. Deux cas distincts sont étudiés, d’une part d est proportionnel
à n. D’autre part, d ě logpnq dans le cas d’une structure en blocs particulière. De plus,
ils démontrent également la stabilité globale de l’équilibre.

Condition de non-invasion
Le problème (9) devient beaucoup plus complexe lorsque l’on considère un équilibre dans
lequel x˚ a des composantes nulles. Le système d’équations n’est plus linéaire et l’équation
devient un problème d’optimisation non linéaire. Une solution näıve et immédiate pour
résoudre ce problème est de choisir un sous-ensemble I Ă rns, définir les composantes
correspondantes xI “ px˚

i qiPI à zéro, et de résoudre le système linéaire restant :

xIc “ 1|Ic| ` BIcxIc .

Si il existe xIc ě 0 qui résout l’équation précédente, alors x “

ˆ

xI
xIc

˙

satisfait (9) et est

un potentiel équilibre. Le nombre de sous-cas I Ă rns est 2n et, en particulier, crôıt de
manière exponentielle lorsque n Ñ 8.

Les équations d’équilibre deviennent mal posées car il peut y avoir plusieurs équilibres.
Une condition connue en écologie pour les systèmes dynamiques est la condition de non-
invasion [LM96, JS98] associé à l’équilibre saturé. Un équilibre est saturé s’il est résistant
à l’invasion d’une espèce absente. L’étude des équilibres saturés et de la permanence est
un sujet de recherche important dans le domaine des systèmes dynamiques (pour plus de
détails, voir le livre fondateur de Hofbauer et Sigmund [HS98]).

Définition 0.11 (Equilibre saturé). Soit Ic l’ensemble des espèces persistantes,

• x est saturé ô @k P I : 1 ´ x˚
k ` pBx˚qk ď 0,
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• x est strictement saturé ô @k P I : 1 ´ x˚
k ` pBx˚qk ă 0.

Lemme 0.16.

1. Si il y a une solution strictement positive xptq ą 0, tel que xptq ÝÝÝÑ
tÑ8

x˚, alors x˚

est un équilibre saturé.

2. Si x˚ est strictement saturé, alors il existe une solution strictement positive xptq ą

0, tel que xptq ÝÝÝÑ
tÑ8

x˚.

On remarque qu’en s’appuyant sur les propriétés standard des systèmes dynamiques,
voir par exemple [Tak96, Theorem 3.2.5], une condition nécessaire pour que l’équilibre x˚

soit stable est que
1 ´ x˚

k ` pBx˚
qk ď 0 . (11)

La condition (11) diminue le nombre de solutions potentielles au système (9). En référence
à l’EDO (6), l’exigence pour une espèce donnée k P rns pour être non invasive est
équivalent à:

ˆ

1
xk

dxk

dt

˙

xkÑ0`

ď 0 . (12)

Par conséquent, on se concentrera maintenant sur l’ensemble des conditions suivantes :
$

&

%

x˚
k p1 ´ x˚

k ` pBx˚qkq “ 0 pour k P rns ,
1 ´ x˚

k ` pBx˚qk ď 0 for k P rns ,
x˚ ě 0 par composante .

(13)

Le problème de la recherche d’un équilibre positif entre ainsi dans la classe des problèmes
de complémentarité linéaire (LCP), que nous décrivons ci-après.

Problème de complémentarité linéaire
Le LCP est une classe de problèmes issue de l’optimisation mathématique qui englobe
notamment les problèmes de programmation linéaire et quadratique ; les références stan-
dard sont les suivantes [Mur88, CPS09]. Soit une matrice M de taille nˆn et un vecteur
q de taille nˆ 1, le LCP associé désigné par LCP pM, qq consiste à trouver deux vecteurs
z,w de taille n ˆ 1 satisfaisant l’ensemble des contraintes suivantes :

$

&

%

z ě 0 ,
w “ Mz ` q ě 0 ,
wJz “ 0 ô wkzk “ 0 pour tout k P rns .

(14)

Comme w peut être inféré de z, on note z P LCP pM, qq si pw, zq est une solution de
(14).

L’étude du LCP remonte aux travaux de Lemke [Lem65] et Cottle et Danzig [CD68].
Lemke et Howson [LH64] ont développé un algorithme basé sur des étapes du pivot pour
résoudre le problème (14).

Introduit par Fielder et Pták [FP66], la classe des P -matrices est reliée au problème
de complémentarité linéaire. Murty [Mur72] montre que si M est une P -matrice alors il
existe une unique solution au LCP.
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Définition 0.12 (P-matrice). Une matrice carrée M est une P -matrice si tous ses prin-
cipaux mineurs (sous-déterminants) sont strictement positifs

detpMIq ą 0 , @ I Ă rns , MI “ pMkℓqk,ℓPI .

De nombreuses propriétés sur les conditions nécessaires et suffisantes pour qu’une
matrice réelle soit une P -matrice ont été étudiées par Rump [Rum03] et Rohn [Roh12].
Numériquement, vérifier qu’une matrice est une P -matrice est co-NP complet [Cox94].

Théorème 0.17 (Existence et unicité d’une solution au problème LCP [Mur72]). Une
matrice M est une P -matrice si et seulement si le LCP pM, qq a une unique solution
pw, zq pour tout q P Rn.

Dans le cas du modèle de Lotka-Volterra et en considérant (13), nous cherchons x˚ P

LCP pI ´ B,´1q.

Définition 0.13 (M -matrice). Une matrice carrée A est une M -matrice si elle peut être
exprimée sous la forme A “ sI ´C, où C “ pCkℓq avec Ckℓ ě 0, 1 ď k, ℓ ď n, et s ą ρpCq,
le rayon spectral de C.

Le nomM -matrice a été donné par Ostrowski [Ost56] en référence à Hermann Minkowski.
De nombreuses propriétés sur lesM -matrices ont été introduites par Fiedler et Pták [FP62]
et étendues par Plemmons [Ple77].
Remarque 0.7.

• L’ensemble des M -matrices non singulières est un sous-ensemble de la classe des
P -matrices.

• L’ensemble des M -matrices non singulières est un sous-ensemble de la classe des
matrices avec une inverse positive, c’est-à-dire que

A´1 existe et A´1
ě 0 .

Stabilité globale
Le theorème 0.17 donne une condition suffisante et nécessaire pour l’existence d’un équilibre
unique non envahissable à l’équation (9). Dans le cas d’un équilibre faisable x˚ ą 0, Bizeul
et Najim [BN21] ont montré qu’il existe un équilibre globalement stable. Dans le cas d’un
équilibre avec des espèces qui s’éteignent, il est nécessaire de revenir aux propriétés des
fonctions de Lyapunov.

Le théorème de Lyapunov dit qu’une matrice A est stable (ses valeurs propres ont une
partie réelle strictement négative) si et seulement s’il existe une matrice définie positive
H telle que HA ` AJH est définie négative. Cette condition remonte aux travaux de
Lyapunov [Lia07] qui ont été améliorés et étudiés par Barker et al. [BBP78] et Logofet
[Log05] qui fait un résumé de toutes les conditions sur les matrices représenté par une
fleur.

Définition 0.14 (Stabilité diagonale de Lyapunov). Une matrice M est Lyapunov di-
agonallement stable, noté M P Sω, si et seulement s’il existe une matrice diagonale D à
éléments positifs telle que DM ` MJD est définie négative, c’est-à-dire que toutes ses
valeurs propres sont négatives.
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Proposition 0.18 (Takeuchi et al. [TAT78]). Si M P Sω alors ´M est une P-matrice.

Soit le système (4) et on considère que la matrice B est arbitraire,

d ykptq

dt
“ ykprk ` p´θI ` Byqkq , k P rns . (15)

Takeuchi et Adachi (voir par exemple [Tak96, Th. 3.2.1]) fournissent un critère pour
l’existence d’un équilibre unique y˚ et la stabilité globale du système LV.

Théorème 0.19 (Takeuchi et Adachi [TA80]). Si ´θI ` B P Sω, alors LCP pθI ´ B, rq

admet une unique solution. En particulier, pour tout r P Rn, il y a un unique équilibre
y˚ à (15), qui est globalement stable dans le sens où pour chaque y0 ą 0, la solution de
(15) qui démarre à yp0q “ y0 satisfait

yptq ÝÝÝÑ
tÑ8

y˚ .

Le modèle Lotka-Volterra vu par un physicien
Dans la section précédente, des conditions mathématiques ont été données pour l’existence
d’un équilibre faisable et l’unicité d’un équilibre globalement stable dans (4) où cer-
taines espèces peuvent disparâıtre. Cependant, la richesse des équations de Lotka-Volterra
provient de la diversité de ses comportements dynamiques. Le manque de connaissances
mathématiques est complété par des méthodes issues de la physique pour améliorer la
compréhension de ces divers comportements dynamiques (propriétés de l’équilibre, dy-
namique hors équilibre, sophistication du modèle).

Depuis longtemps, la théorie de la mécanique statistique des systèmes désordonnés a
été développée pour étudier les verres de spin par le système des répliques (voir Mezard
et al. [MPV86] pour une revue).

L’utilisation de ces méthodes pour étudier les systèmes biologiques a été introduite
pour la première fois par Diederich et Opper [DO89, OD92] et utilisé pour étudier la dy-
namique des équations des répliques multi-espèces (modèle équivalent au système Lotka-
Volterra) par Tokita [Tok04]. Plus récemment, ces méthodes de physique statistique des
systèmes désordonnés ont été adaptées pour résoudre des problèmes d’écologie théorique.
En particulier, la méthode de la cavité dynamique est utilisée pour analyser la dynamique
des communautés où des interactions aléatoires entre les espèces sont considérées. Les
physiciens ont divisé l’espace des paramètres pµ, α, ρq en un diagramme de phase où la
question majeure est d’identifier les limites entre les différentes phases : point fixe stable
unique, chaos avec des attracteurs multiples, croissance infinie etc.

La méthode de la cavité permet de dériver une équation de champ moyen approchant
un problème non linéaire de haute dimension. Le concept clé consiste à supposer qu’un
point fixe unique existe et à introduire une nouvelle espèce avec de nouvelles interactions
dans le système existant. Après l’établissement de la nouvelle espèces, une analogie entre
les propriétés des solutions avec n et n` 1 espèces est vérifiée. Cette méthode est utilisée
pour étudier le système (4) qui peut admettre un point fixe stable unique mais aussi une
dynamique hors équilibre : une phase chaotique avec des attracteurs multiples. Bunin
[Bun16, Bun17] a utilisé la méthode de la cavité dynamique pour mener et étendre des
résultats plus généraux (propriétés des espèces persistantes, phase des attracteurs multi-
ples) pour le diagramme de phase du système de Lotka-Volterra (4). Ces méthodes ont
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été utilisées pour résoudre de nombreux problèmes en écologie théorique. En particulier,
Barbier et al. [BABL18] présente des comportements génériques dans les communautés
complexes. Pour une revue de la méthode de la cavité appliquée aux problèmes de dy-
namique des communautés, voir Barbier et Arnoldi [BA17].

Le modèle étudié par les physiciens est plus générique, le système désordonné de
Lotka-Volterra est donné par

dxkptq

dt
“ xkptq

˜

rk ´ xkptq `
ÿ

ℓPrns

Bkℓxℓptq

¸

` λk ` ωk

a

2xkptqηkptq , (16)

où les λk sont des constantes de migration et ωk

a

2xkptqηkptq est un terme de bruit
démographique où ηkptq est une fonction aléatoire variant dans le temps.

Le diagramme de phase étudié par Bunin [Bun17] avait déjà été étudié numériquement
par Kessler et Shnerb [KS15] avec la présence du paramètre de migration λk. Le modèle
de Lotka Volterra avec un terme de bruit démographique a été étudié récemment par
Bunin [Bun21] et Altieri et al. [ARCB21]. La méthode de la cavité dynamique permet
de dériver l’équation dynamique du champ moyen pour les applications hors équilibre
[RBBC19, RBBB20, ABC20], en particulier pour l’étude de la dynamique des attracteurs
multiples représentée dans la Figure 8. En outre, Biroli et al. [BBC18] montrent que le
régime des attracteurs multiples est analogue à une phase critique de verre de spin. Pour
une revue dans les systèmes écologiques, voir Altieri [Alt22].

Figure 8: Dynamique d’un système LV de 100 espèces avec migration (16) dans la phase
chaotique avec des attracteurs multiples et des paramètres µ “ 4, α “ 0.5, @i P rns , λi “

10´10. L’axe des ordonnées est en échelle logarithmique.

Une autre méthode utilisant des techniques fonctionnelles génératrices pour établir des
équations de champ moyen similaires afin d’étudier la phase d’équilibre dans le système
LV a été utilisée par Galla [Gal18]. Des méthodes identiques ont été utilisées pour établir
les valeurs propres des matrices aléatoires [BJRG22b, BJRG22a] et analyser les modèles
de Lotka Volterra avec différentes structures d’interaction, comme le modèle en cascade
[PBG22].

D’autres applications sont possibles, comme les travaux récents de Fraboul et al.
[FBM22] sur les mutations dans le modèle LV ou l’étude de l’impact de l’effet Allee
sur le diagramme de phase par Altieri et al. [AB22].
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Contributions

Chapitre 1 - Equilibrium and persisting species in a large Lotka-
Volterra system of differential equations
Ce chapitre est basé sur une prépublication de Clenet, Massol et Najim [CMN22].

Dans le Chapitre 1, nous nous concentrons sur le modèle (6) où la matrice d’interaction
B est une version simplifiée de (7) qui admet la représentation suivante :

B “
A

α
?
n

`
µ

n
1n1J

n ,

où A “ pAkℓq est une matrice avec des variables aléatoires normalisées (EAkℓ “ 0 et
VarpAkℓq “ 1) indépendantes et identiquement distribuées (i.i.d.) avec un moment d’ordre
quatre fini, α ą 0 est un paramètre supplémentaire reflétant la force d’interaction et µ P R
représente une tendance arbitraire des interactions.

Dans le theorème 0.15, Bizeul et Najim prouvent l’existence d’un seuil α „
a

2 logpnq

dans le cas µ “ 0, qui garantie la faisabilité de l’équilibre x˚ de (6). Cependant,
Dougoud et al. [DVR`18] ont montré que certaines espèces s’éteignent lorsque α ą 0 est
indépendant de n. L’objectif de ce chapitre est de décrire l’impact de la force d’interaction
α et de la tendance d’interaction µ sur les conditions de coexistence des espèces en inter-
action.

Premièrement, en combinant les résultats de Takeuchi et Adachi du théorème 0.19 avec
les résultats standard de RMT du théorème (0.27), nous fournissons des conditions suff-
isantes sur les paramètres α et µ pour assurer l’existence d’un équilibre unique globalement
stable x˚ en grande dimension n Ñ 8. L’équilibre est composé d’espèces persistantes et
d’espèces disparues.

Par la suite, étant donné un équilibre unique x˚, nous décrivons les propriétés des
espèces persistantes. Dans cette perspective, nous fournissons une heuristique pour cal-
culer asymptotiquement la proportion d’espèces persistantes et nous analysons via un
système d’équations la dépendance entre les paramètres α, µ et la proportion d’espèces
persistantes. De plus, nous montrons à l’aide d’une heuristique que la distribution de
l’abondance des espèces persistantes est une gaussienne tronquée (voir Figure 9).

Dans la nature, les interactions entre espèces sont en constante évolution et sont
affectées par l’environnement. Sous l’hypothèse que les conditions environnementales in-
fluencent la force d’interaction, nous étudions les conséquences d’un changement soudain
des conditions environnementales, exprimé par un changement brutal du paramètre α.
Lorsque α varie pour la même matrice A et le même paramètre µ, le système peut
présenter différents états. Lorsque la valeur de α augmente au-delà d’une certaine valeur
critique, toutes les espèces coexistent ; à l’inverse, pour des valeurs suffisamment faibles
de α, les espèces peuvent disparâıtre tout en conservant un équilibre stable unique. Nous
décrivons le changement entre ces deux états et comment la proportion d’espèces persis-
tantes varie en résolvant numériquement le système de Lotka-Volterra. Nous observons
qu’une diminution de α affecte négativement la richesse spécifique de l’équilibre (voir
Figure 10).

Enfin, nous analysons un indice de diversité (nombres de Hill d’ordre 1) pour avoir une
représentation plus précise de la dynamique de la biodiversité. La dynamique de cette
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Figure 9: Distribution de l’abondance des espèces persistantes. L’axe des abscisses
représente la valeur des abondances et l’histogramme est construit sur les composantes
positives de l’équilibre x˚. La ligne solide représente la distribution théorique des
paramètres pα, µq donnée par l’heuristique. Les entrées sont gaussiennes N p0, 1q et les
paramètres sont fixés à pn “ 2000, α “ 2, µ “ 0.2q.

Figure 10: Dynamique des abondances dans le cas d’une communauté de dix espèces. La
matrice des interactions A et les conditions initiales sont communes et nous appliquons
une variation brutale de αptq à t “ 30. Les lignes hachées représentent les espèces qui
bénéficient de la variation de l’habitat ; les lignes pleines représentent les espèces qui souf-
frent du changement. Les lignes en pointillés représentent les espèces en voie d’extinction.

mesure de diversité suggère que la moyenne des coefficients d’interaction, µ, affecte la
durée de la dynamique transitoire, une dynamique transitoire plus courte étant associée
à des interactions plus mutualistes (c’est-à-dire des valeurs positives plus élevées de µ).
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Chapitre 2 - Equilibrium in a large Lotka-Volterra system with
pairwise correlated interactions
Ce chapitre est basé sur l’article écrit par Clenet, El Ferchichi et Najim publié dans le
journal Stochastic Processes and its Applications (Novembre 2022) [CEFN22].

Dans le Chapitre 2, nous nous concentrons sur le modèle (7) où nous étendons le
résultat sur le seuil de faisabilité de Bizeul et Najim (0.15). La matrice d’interaction Bn

est une matrice aléatoire non centrée avec des entrées corrélées par paire :

Bn “
An

αn

?
n

`
µ

n
1n1J

n ,

où An “ pAkℓqk,ℓPrns est une matrice aléatoire qui satisfait deux conditions piq pAkℓ, k ď ℓq
sont des variables aléatoires gaussiennes standard N p0, 1q indépendantes et identiquement
distribuées piiq pour k ă ℓ le vecteur pAkℓ, Aℓkq est un vecteur gaussien standard bivarié,
indépendant des autres variables aléatoires, avec une covariance covpAkℓ, Aℓkq “ ρ et
|ρ| ď 1. La suite de nombres positifs pαnq est soit fixe, soit infinie. Le paramètre µ est un
nombre réel fixé.

Figure 11: Transition vers la faisabilité pour le modèle elliptique. Pour chaque κ sur
l’axe des abscisses, nous simulons 1000 matrices Bn de taille n “ 1000, puis nous cal-
culons la solution xn du théorème de faisabilité à l’échelle αnpκq “ κ

a

logpnq puis de
tracer la proportion de solutions faisables obtenues pour les 1000 simulations. Chaque
courbe représente la proportion de solutions faisables xn pour trois valeurs distinctes
ρ P t´0.5, 0, 0.5u. La ligne verticale en pointillés correspond à κ “

?
2 c.a.d. l’échelle

critique α˚
n “

a

2 logpnq.

On prouve que la faisabilité est atteinte lorsque αn "
a

2 logpnq et µ ă 1, et qu’il
n’y a pas de faisabilité autrement. De plus, le paramètre de corrélation ρ n’a aucune
influence puisque le seuil de transition de phase est le même que dans le cas i.i.d. [BN21]
: les corrélations induites entre les composantes xk de la solution xn sont trop faibles
(voir Figure 11). De plus, nous prouvons que la même transition de phase se produit si
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nous considérons un profil de covariance pρkℓ, k ă ℓq où ρkℓ “ covpAkℓ, Aℓkq au lieu d’un
paramètre de covariance fixe ρ.

En utilisant les résultats de Takeuchi et Adachi (0.19) sur la stabilité des systèmes LV
avec les résultats RMT du théorème 0.14, nous établissons des conditions suffisantes pour
l’existence d’un équilibre stable unique où certaines espèces peuvent disparâıtre, ce qui
représente une extension du Chapitre 1.

Enfin, nous concluons avec un résultat important sur l’estimation de la proportion
d’espèces persistantes. En utilisant les arguments des physiciens, nous énonçons le problème
ouvert, nous rappelons les équations de Bunin et Galla et nous fournissons des simulations
d’un système d’équations pour calculer la proportion d’espèces persistantes.

Chapitre 3 - Impact of a block structure in large systems of Lotka-
Volterra
Ce chapitre est un projet en cours entre Clenet, Massol et Najim.

Dans le Chapitre 3, nous visons à développer les résultats des Chapitres 1 et 2 dans
un écosystème comportant de nombreuses communautés. Dans la nature, les réseaux
d’interactions sont plutôt structurés, ce qui contribue à la stabilité du système. Afin
d’étendre les résultats du modèle de Lotka-Volterra pour décrire les propriétés d’une
dynamique multi-communautés, nous définissons une matrice d’interaction par blocs dans
laquelle nous pouvons adapter les interactions intra et inter-communautés. Pour des
raisons d’interprétation dues à la complexité du modèle, nous considérons le cas de deux
communautés en interaction (voir Figure 12). Dans le cadre de 2 communautés, la matrice
B “ pBkℓqn,n est définie comme suit :

B “
1

?
n

ˆ

A11
α11

A12
α12

A21
α21

A22
α22

˙

`
1
n

ˆ

µ111I11J
I1 µ121I11J

I2

µ211I21J
I1 µ221I21J

I2

˙

, (17)

où :
s “

ˆ

1{α11 1{α12
1{α21 1{α22

˙

, µ “

ˆ

µ11 µ12
µ21 µ22

˙

,

Le paramètre β “ pβ1, β2q,
ř2

i“1 βi “ 1 est la taille en proportion de chacun des blocs,
Ii est un sous-ensemble de rns de taille |Ii| :“ βin correspondant à l’indice des espèces
appartenant à la communauté i, 1Ii

est un vecteur d’entrée de 1 de taille βin. La ma-
trice Aij est une matrice aléatoire non Hermitienne de taille pβin, βjnq avec des entrées
gaussiennes centrées réduites, c’est-à-dire N p0, 1q.

La matrice s représente la force d’interaction dans chaque bloc. La matrice de tendance
µ permet d’ajuster en moyenne le type d’interaction (mutualisme, compétition) de chaque
bloc.

Dans une première section, nous étendons le résultat de faisabilité de Bizeul et Najim
(0.15) pour une matrice d’interaction par blocs où µ “ 0. En utilisant ce résultat,
nous étudions le maintien de la faisabilité de deux communautés lorsqu’on ajoute des
interactions entre elles. Les interactions entre les communautés réduisent la faisabilité et
si nous supposons que les communautés peuvent varier en taille et que les interactions
intra-communauté sont différentes, la communauté avec la force d’interaction la plus faible
est avantagée, c’est-à-dire que la taille de la communauté peut être plus grande. Nous
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Figure 12: Dynamique du modèle (7) de 2 communautés distinctes composées de 5 espèces
avec une matrice d’interaction (17). À t “ 0, les deux communautés convergent vers leur
point d’équilibre faisable et ne sont pas en interaction. À t “ 5, les deux communautés
commencent à interagir c.a.d. α12 et α21 augmentent d’une façon linéaire jusqu’à t “ 15.
Ensuite, les deux communautés convergent vers leur nouveau point d’équilibre avec des
espèces persistantes et éteintes dans les deux communautés.

concluons cette première partie en étudiant le cas non centré µ ‰ 0, où nous donnons des
conditions de faisabilité en utilisant des propriétés sur les M -matrices.

Les deuxième et troisième parties de ce chapitre sont une extension des résultats du
Chapitre 1 et une interprétation écologique des résultats. D’une part, dans la deuxième
partie, nous étudions l’existence d’un équilibre unique globalement stable où les espèces
peuvent s’éteindre en utilisant le théorème 0.19 de Takeuchi et Adachi et des résultats de
RMT, en particulier la théorie sur l’équation vectorielle quadratique. Nous établissons un
théorème pour le cas µ “ 0, puis nous étudions le cas non centré µ ‰ 0 lorsque la force
d’interaction est similaire dans chaque bloc. Contrairement aux résultats obtenus dans le
cas d’une seule communauté, l’augmentation de la compétition inter-communautés peut
déstabiliser le système.

D’autre part, la troisième partie décrit les heuristiques sur les propriétés et la distri-
bution des abondances des espèces persistantes dans chaque bloc (voir Figure 13). Une
interprétation graphique de ces heuristiques met en évidence plusieurs résultats. Il ex-
iste une contagion de la diversité : plus la persistance d’une communauté est élevée,
moins son impact sera néfaste sur les autres communautés. Le déclin de la persistance
entre deux communautés en interaction n’est pas linéaire mais a un double effet négatif,
d’où l’importance de maintenir des communautés persistantes et de ne pas négliger les
phénomènes de rétroaction dans les interactions entre les communautés. Nous concluons
par une étude de l’impact des interactions mutualistes et compétitives.

Dans une quatrième et dernière section, une étude de similarité numérique est réalisée
entre un modèle où la force d’interaction varie et un modèle où la connectance dans
chacune des communautés est variable, ce qui donne une matrice d’adjacence du graphe
d’interaction connu sous le nom de Bernouilli Stochastic Block Model (voir Figure 14).
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Figure 13: Distribution des abondances des espèces persistantes pour chaque commu-
nauté. L’axe des abscisses représente la valeur des abondances et l’histogramme est con-
struit à partir des composantes positives de l’équilibre x˚ associé à chaque communauté.
La ligne continue bleue (resp. la ligne continue rouge) représente la distribution théorique
de la communauté 1 (resp. communauté 2) en fonction des paramètres pα,µq donnés par
les heuristiques. Les entrées sont gaussiennes N p0, 1q et les paramètres sont fixés à

n “ 1000 , µ “

ˆ

0.5 0.5
0 0

˙

, α “

ˆ

2 3
3 3

˙

, β “

ˆ

1
2 ,

1
2

˙

.

Cette similitude est analysée à travers la condition de stabilité donnée historiquement par
May [May72].

Chapitre 4 - A probabilistic perspective of the hierarchical competition-
colonization trade-off model
Ce chapitre est un projet en cours entre Allesina, Clenet, Della Libera, Massol et Miller.

Dans le Chapitre 4, nous étudions le modèle compétition-colonisation à plusieurs
espèces (8), dans le cas d’une compétition hiérarchique c.a.d.

ηkℓ “

#

1 si k ă ℓ ,

0 sinon .

La dynamique des abondances de chaque espèce au sein de l’habitat dépend principale-
ment de son taux de colonisation et de son taux d’extinction. Nous proposons une in-
terprétation probabiliste du modèle en échantillonnant les taux de colonisation à partir
d’une distribution de probabilité donnée avec le même taux d’extinction pour toutes les
espèces. Dans ce cadre, nous étudions deux types différents de processus d’assemblage.
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Figure 14: Représentation d’une matrice d’adjacence des interactions d’un écosystème
de taille n “ 200. Un graphe d’un Stochastic Block model symétrique de paramètre
P “

ˆ

0.6 0.25
0.25 0.1

˙

. Une cellule de couleur rouge indique Skℓ “ 1, au contraire, une cellule
de couleur blanche indique qu’il n’y a pas d’interaction Skℓ “ 0.

D’une part, nous supposons que initialement la communauté contient un pool de n
espèces (processus de métacommunauté ”tout en une fois”) et nous laissons les occupa-
tions de toutes les espèces évoluer dans le temps selon l’équation (8) où certaines espèces
persistent alors que d’autres peuvent disparâıtre. De manière surprenante, nous obtenons
un résultat d’universalité de la distribution du nombre d’espèces persistantes. Pour une
large gamme de distribution, en moyenne la proportion d’espèces persistantes est de un
demi. De plus, nous montrons (pour la distribution uniforme) que la distribution des
espèces persistantes est une distribution binomiale Bpn, 1{2q (voir Figure 15).

Outre le résultat d’universalité, nous décrivons les propriétés des espèces persistantes
en rappelant quelques résultats de Kinzig et al. [KLD`99] sur la fraction des parcelles
vides et des occupations. Nous terminons cette section en clarifiant l’hypothèse de pertur-
bation intermédiaire qui avait été observée par Hastings [Has80] où la coexistence optimale
entre les espèces se produit lorsque le taux de mortalité est intermédiaire.

D’autre part, nous étudions un processus d’invasion séquentielle. Partant d’un habitat
vide, celui-ci est rempli par l’introduction séquentielle d’espèces dont les taux de colonisa-
tion sont tirés selon une distribution spécifique. Nous observons que le nombre d’espèces
persistantes sature avec une croissance logarithmique due aux contingences historiques
et aux cascades d’extinction (voir Figure 16). Nous analysons les propriétés des contin-
gences historiques dû au phénomène des cascades d’extinction qui est un élément clé du
phénomène de saturation.

Nous donnons quelques éléments de réponse théoriques avant de procéder à une analyse
numérique du modèle du processus d’assemblage. Le résultat d’universalité n’est plus
vrai et une différence majeure est observée entre les distributions à queue régulière et à
queue lourde. En général, plus la queue est lourde, plus la diversité est grande. Cette
hypothèse de compromis entre compétition et colonisation montre l’importance de trouver
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Figure 15: Représentation de la distribution du nombre d’espèces persistantes pour un
pool initial de n “ 1000 espèces et pour différentes distributions du taux de coloni-
sation. Chaque courbe est obtenue par des expériences de Monte Carlo en calculant
P “ 100000 fois l’algorithme et en stockant les valeurs obtenues pour former le contour
d’un histogramme. La courbe rouge correspond à la fonction de densité de la distribution
binomiale Bpn, 1

2q.

Figure 16: Représentation de la richesse spécifique du modèle d’invasion séquentielle en
fonction du nombre d’invasions pour différentes distributions. La courbe est obtenue à
l’aide de simulations de Monte Carlo en calculant P “ 2000 fois et en calculant la moyenne
du nombre d’espèces persistantes.

un équilibre entre les compétiteurs et les colonisateurs.
Pour conclure, cette perspective probabiliste du modèle hiérarchique de compétition-

colonisation multi-espèces met en avant et compare deux types différents d’assemblages
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distincts et donne les conditions pour que de nombreuses espèces coexistent sous le com-
promis compétition-colonisation.
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Ecological issues

A better understanding of ecosystems
Ecology is etymologically the science of the house (from ancient Greek ôıkos). By def-
inition, it is the science of living beings (animals, micro-organisms, etc.) in a specific
environment at a particular scale (populations, species, communities) and their relations
with other living beings. In ecology, a species gathers only individuals that can repro-
duce with one another and that can produce fertile offspring and thus form populations.
Individuals are usually mutually dependent on each other for their survival.

Individuals of different species living in the same region form a community. All living
beings in their environment form an ecosystem (savannah, forest, intestine, etc.). His-
torically, the concept of ecosystem is not old [Tan39]. Understanding these ecosystems
(community ecology, when the focus is on the interaction between species) and their
underlying functioning mechanisms is a major challenge in ecology [MW67].

The number of species in an ecosystem is often related to a measure of scale. On
earth, some rare ecosystems are small (2-3 species), however, there are many ecosystems
with a very large number of species. This great diversity of species is necessary for the
survival of living beings. To date, scientists have listed more than 2 million species on
earth. For example the Amazon forest is home to 106 species. On our own scale, our
microbiome hosts an order of magnitude of 103 species and 1018 of cells [CSF15]. Many
questions about these large ecosystems remain unanswered because more complex systems
ask for much more empirical data to be “understood” and experimental studies are not
suited to the study of large ecosystems. A better understanding would allow to manage
animal populations sustainably to protect endangered populations, or to have a better
management of antibiotics on our intestinal flora.

Ecologists carry out many experimental studies on small systems of species, whereas
in large systems this quickly becomes intractable to collect data at a large scale. However,
in recent years, many technological tools have been developed in laboratories for studies
in microbiology systems and would allow comparisons with theoretical studies [HAB`21].
For example, many processes are automated with the emergence of deep learning to
recognize species and count them, especially on images taken by plane or drone. This
lack of data can be compensated by the use and study of models. Such models do not
necessarily have the sole purpose of predicting the evolution of the ecosystem but to
understand the mechanisms that allow a great diversity i.e. toy models.

One of the major debates in ecology is the relationship between diversity and sta-
bility in an ecosystem. In the 70’, many ecologists suggest that diverse communities
enhanced ecosystem stability [Mac55, May73]. However, initiated by a theoretical model
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that he introduced in the 70’ [May72], May challenged the diversity-stability relationship
by using linear stability analysis on randomly constructed community model and found
that diversity tends to destabilize the system. This lead to the diversity-stability debate
[May73, Yod81, McC00, IC07, JMM`16, LMB`18] where the theoretical issues are to find
the missing arguments or mechanisms of the model of May.

In this thesis, I study large ecosystems in order to understand one of the major eco-
logical factors affecting their diversity and dynamics: biotic interactions between species.
In a community, all the interactions among its component are represented as a network of
interactions. There are two main classes of interactions: intra-specific and inter-specific
interactions. The first class corresponds to the interactions within the same species that
can be negative (competition) and positive (Allee effect). The second, more diversified,
corresponds to interactions between two different species, for example competition, mu-
tualism, predation, etc. Community ecology is a sub-discipline of ecology which focuses
on understanding the evolution of abundances (:=number of individuals) of the species
that compose a community over time. To summarize, I use a model that describes com-
munity dynamics to understand the impact of the interactions network the properties of
an equilibrium such as existence, diversity, stability, etc.

Crash course on ODEs
In ecology, population dynamics can be modeled in continuous or discrete time. In con-
tinuous time, ordinary differential equations (ODE) are used to describe the evolution of
the abundance x “ px1, ..., xnq of a n-species system. We start by recalling the Cauchy
problem.

Let U be an open set of Rn`1, f : U Ñ Rn`1 continuous with respect to pt,xq,
#

dxptq

dt
“ fpt,xptqq ,

xp0q “ x0 .
(18)

A system is said to be autonomous if f does not depend on t.
The Cauchy-Lipschitz theorem states that if f is C1 with respect to x, then for any

initial condition the problem (18) admits a unique maximal solution pI, γq, γ : I ÞÑ Rn.
Moreover, any other solution of the problem (18) is a restriction of the maximal solution.

If the system is autonomous, the theorem of a priori majorations indicates that if
f : U Ñ Rn is locally Lipschitz continuous, pI, uq a maximal solution of Cauchy’s theorem
and sup(I) = 8, then there exists a global solution of the problem (18).
In the following, we focus on the autonomous problem:

#

dxptq

dt
“ fpxptqq ,

xp0q “ x0 .
(19)

In order to study the problem (19), an important issue consists in obtaining information
on the existence and uniqueness of the equilibrium and their properties. An equilibrium
x˚ of the system (19) is a solution of the equation:

dxptq

dt
“ 0 ô fpxptqq “ 0 .
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The function f can be complex, the solutions of this system are not necessarily trivial
and there can be several equilibria with different properties. An equilibrium x˚ is feasible
if all its components are positive i.e.

x˚
ą 0 ô xi ą 0, @i P rns .

A major property of an equilibrium point is its stability. An equilibrium is stable if
it returns to its equilibrium value after a small perturbation of the abundance vector x.
In the case of a linear differential equation, the study of stability is trivial and depends
on the eigenvalues of the linear operator. In the non-linear case, it is more complex.
However, one can linearize the system to obtain information on the local stability around
the equilibrium.

Given x˚ an equilibrium point of (19), we say that x˚ is asymptotically stable if it is
stable and if D δ ą 0, @pI,xq solution of (19)

D t0 P I, |xpt0q ´ x˚
| ď δ ñ xptq ÝÝÝÑ

tÑ8
x˚ .

Theorem 0.20 (Stability of an equilibrium, non-linear case). Let x˚ be an equilibrium
for an autonomous nonlinear differential system where f is differentiable in x˚ and let
Dfpx˚q “ J |x˚ be its Jacobian. Let Λ “ SppJ |x˚q be the set of eigenvalues of J |x˚ and
RpΛq the set of real parts of eigenvalues of Λ.

1. If @λ P Λ,RpΛq ă 0, then x˚ is asymptotically stable and we have

@µ Ps0,min ´RpΛqr, @ϵ ą 0, Dδ ą 0, |xpt0q ´ x˚
| ă δ

ñ @t ě t0,xptq exist and |xptq ´ x˚
| ď ϵe´µpt´t0q .

2. If Dλ P Λ,RpΛq ą 0, then x˚ is unstable.

3. If @λ P Λ,RpΛq ď 0 and there are pure imaginary eigenvalues, then we cannot
conclude.

Let x˚ be an equilibrium for an autonomous nonlinear differential system (19), we say
that x˚ is asymptotically globally stable if for every x0 ą 0, the solution to (19) which
starts at xp0q “ x0 satisfies

xptq ÝÝÝÑ
tÑ8

x˚ .

Remark 0.8. In this thesis, we investigate exclusively asymptotic stability i.e. stability
and convergence to the equilibrium point. By abuse of notation, we refer the study of
the stability towards the asymptotic stability. I advise the reader to look at the book of
Hirsch et al. [HSD74] for a complete review on ODEs.

Lotka-Volterra model
Differential equations are frequently used in biology to describe a system of interacting
species. A particularly used form is the density-dependent model:

#

dxptq

dt
“ xptqfpxptqq ,

xp0q “ x0 ,
(20)
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where f is commonly called the fitness or growth rate of a species. When fpxptqq ă 0 the
dynamics will be decreasing and the opposite when fpxptqq ą 0. If the system is defined
in the nonnegative orthant Rn

`, then the system is forward invariant: if @xip0q ě 0, then
@t ą 0 : xiptq ě 0 [HS98]. One of the most widely used density-dependent models in
ecology is the Lotka-Volterra model which is the cornerstone of this thesis.

Historically, Thomas Robert Malthus (1766-1834) was interested in modeling the fluc-
tuations of a population. His conclusion was that without constraints, abundance in his
model grows exponentially.

#

dxptq

dt
“ rxptq ,

xp0q “ x0 ,

where r “ birth ´ death and the analytical solution is xptq “ x0e
rt. A solution that lacks

a bit of realism.
Later, Pierre François Verhulst (1804-1849) was interested in a more realistic model

by assuming that the model is limited by a maximum size K ą 0 (carrying capacity)
#

dxptq

dt
“ rxptq

´

1 ´
xptq

K

¯

,

xp0q “ x0 .

His logistic model represents, for example, the growth limit of a zebra population in the
savanna due to the shortage of resources.

In a second time, scientists were interested in modeling interactions between species.
When adding interactions between populations, the simplest model is named after two
scientists, Lotka and Volterra who formulated it independently at the end of the 20’s
[Lot25, Vol26]. Classically studied in the form of a 2-dimensional prey-predator model, it
has been compared with data from natural populations [Huf58].

From a general point of view and in higher dimensions, the Lotka-Volterra equations or
Generalized Lotka-Volterra model play a key role in the study of population dynamics over
time. This model is mathematically tractable but also very versatile and robust, and forms
a first step in the development of ecological models. This model has been studied both in
ecology [Wan78, Jan87, LB92] and in mathematics [GJ77, Goh77, Tay88, HS98, Tak96].

From a mathematical point of view, this model describes the population dynamics of
a n-species system. It is defined by a system of n differential equations:

dxkptq

dt
“ xkptq

˜

rk ´ θxkptq `
ÿ

ℓPrns

Bkℓxℓptq

¸

, (21)

where k P rns “ t1, ¨ ¨ ¨ , nu. The abundance of species k at time t is represented by xkptq
and x “ px1, ¨ ¨ ¨ , xnq is the vector of abundances of the various species. Parameter θ
is the self regulation coefficient or intra-specific interaction of each species. Parameter
rk corresponds to the intrinsic growth rate of species k. The coefficient Bkℓ is the per
capita effect of species ℓ on the growth rate of species k. The matrix B, representing
the interaction network structure, can often be decomposed in different forms i.e. blocks,
cascade, multiplex networks, graphons, etc [CN88, SCG`05, LIPJ`06, PEM12].

The goal of many mathematicians and ecologists is to understand the behavior of
the system as a function of these different input parameters. For example, the number of
equilibria, their stability and feasibility to understand the resulting ecological implications.
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As mentioned before, the major issue of working with large systems is the difficulty
of observing or estimating information on the interaction matrix. A natural choice is
to replace the interactions by random coefficients whose statistical properties (mean,
variance, etc) and structure (block, cascade, etc) encode some of the true properties of
the food web. The matrix B becomes a complex mathematical object: a random matrix.
This mathematical object represents the second cornerstone of this thesis.

Emergence of random matrices in ecology
In the 70’s, following the work of Gardner and Ashby [GA70], Robert May reopened the
long-standing diversity vs stability debate in ecology [Mac55]. His seminal work [May72]
motivated the emergence of random matrices as a key mathematical tool for characterizing
high dimensional ecosystems. A better understanding of these tools has expanded our
understanding of the nature of interactions and food webs to achieve stability [Tay88,
AT12, TPA14]. In his study, May was interested in the model (19) [May73], assuming
that the system is at a feasible equilibrium x˚. According to Theorem 0.20, the study of
local stability corresponds to studying the real eigenvalues of the Jacobian matrix of the
system at the equilibrium point. The Jacobian matrix of the system (19) is:

J “ pJkℓqnˆn , Jkℓ “
Bfkpxq

Bxℓ

.

There exists a matrix M “ J |x˚ , the so-called “community matrix” (Jacobian), de-
scribing the effect a species ℓ (column) has on species k (row) around the equilibrium
point.

May questioned a central belief in ecology by proving that sufficiently large or complex
ecological networks have probability to be stable close to zero. To prove this point, he
analyzed the stability of large networks in which species interact at random. In this case,
the Jacobian matrix is a non-Hermitian random matrix

M “ ´I ` A ,

where A is a centered random matrix nˆn with element N p0, σ2q with probability C and
0 otherwise (C is called the connectance). For large n, May proved that the probability
of stability is close to 0 whenever the “complexity” satisfies:

σ
?
nC ą 1 .

The eigenvalues of matrix M are distributed according to the circular law, in a disk of
center p´1, 0q and radius σ

?
nC (see Figure 17). The stability condition is RpSppMqq ă 0.

If the model has a large number of highly connected species with strong interactions, then
the model is likely to be more unstable.

In a density-dependent model (20), the Jacobian is evaluated as

Jkℓ “ δkℓfkpxq ` xk
Bfkpxq

Bxℓ

.

In the Lotka-Volterra system (21), at a feasible equilibrium x˚, the Jacobian matrix
depends on species abundances at equilibrium

J |x˚ “ diagpx˚
qp´I ` Bq ,
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Figure 17: Spectrum of Jacobian random matrix (non-Hermitian matrix) M “ ´I `A in
the complex plan (n “ 500, σ “ 1, C “ 1). The solid line circle represents the boundary
of the circular law. The dashed line represents the threshold not to be exceeded for the
real part of the eigenvalues for the system to be stable.

where B is introduced in (21). The study of this Jacobian is more difficult because there is
no independence between x˚ and B. However, Stone [Sto18] and Gibbs et al. [GGRA18]
showed that the intuitions remain similar, the stability of large LV systems is uniquely
determined by the interaction matrix.

Final model formulation

In most of the thesis, we focus on the model (21) where rk “ 1, @k P rns, θ “ 1 and we add
a generic normalization parameter in the interaction matrix. Choosing equal growth rates
releases the number of parameters, greatly simplifies the computations and discharge the
complexity of the model. Understanding the impact of the interaction matrix B in the LV
system comprises many open-problems. However, Rohr et al. [RSB14] were concerned
on the possible growth rate leading to coexistence. Their work on structural stability
has been extended by Cenci et al. [CS18], Saavedra et al. [SRB`17] and Grilli et al.
[GAS`17].

The choice to keep the self-regulation term θ “ 1 brings more clarity. In a θ ‰ 1 case,
we can redimension the system (32) to avoid the parameter θ by setting x̃k :“ θxk, B̃kℓ :“
Bkℓ{θ. In fact, Barabás et al. [BMSA17] studied the importance of strong self-regulation
term for the food web to have a stable equilibrium. Note that the values of the diagonal
of the matrix B are not set to 0, but their microscopic values have a negligible impact on
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the asymptotic results.

dxkptq

dt
“ xkptq

˜

1 ´ xkptq `
ÿ

ℓPrns

Bkℓxℓptq

¸

. (22)

The last important detail that differs from the standard Lotka-Volterra notation is that we
assume a normalization parameter 1{

?
n in the matrix B. The major theoretical reason

is to limit the impact of the interaction parameters on the other terms and to make it
macroscopic i.e.

E

˜

ÿ

ℓPrns

Bkℓxℓptq

¸

„ Op1q ; Var
˜

ÿ

ℓPrns

Bkℓxℓptq

¸

„ Op1q .

From an ecological point of view, one could imagine that when the number of species
increases in an ecosystem, then the strength of the sum of the interactions of one species
with all the others will not tend to increase.

Generally, the model can finally be written in the compact form:

dxk

dt
“ xk p1 ´ xk ` pBxqkq , k P rns , (23)

where B is yet to be determined.

Network
The major challenge of this thesis is to understand the impact of the interaction matrix
B on the dynamics of the Lotka-Volterra model. In nature, B corresponds to the network
of interactions between species or considered as the food web of the ecosystem (in the
sense: “who eats whom?”). Large and highly connected ecological networks are common
in nature [DWM02, PLC91].

In the system (22), a general model for the interaction matrix B is a non-centered
random matrix with pairwise correlated interactions combined with a graph structure:

B “ S ˝

ˆ

A

α
?
n

`
µ

n
1n1J

n

˙

, (24)

where ˝ is the Hadamard product i.e. pX ˝ Y qij :“ XijYij and the n ˆ 1 vector 1n is a
vector of ones. A “ pAkℓqk,ℓPrns is a random matrix satisfying the following conditions

1. pAkℓ, k ď ℓq are independent and identically distributed (i.i.d.) random variables
and EpAkℓq “ 0, Ep|Akℓ|

2q “ 1 and Ep|Akℓ|
4q ă 8 @ 1 ď k ď ℓ.

2. for k ă ℓ the vector pAkℓ, Aℓkq has a standard bivariate distribution, independent
from the remaining random variables, with covariance covpAkℓ, Aℓkq “ EpAkℓAℓkq “

ρ with |ρ| ď 1.

S :“ pSkℓqk,ℓPrns is an adjacency matrix from a graph i.e. if we represent each species by
a node and an interaction between two species by a directed vertex then

Skℓ “

#

1 if there exists an impact of species ℓ on k,

0 otherwise.
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In the absence of any other information, we may assume that S is the adjacency matrix
of an Erdös Renyi graph (ER) [ER60]. It is a graph with n vertices. It is assumed that
there is an edge between two vertices with probability p independent from every other
edge.

From an ecological standpoint, two types of structures can affect the type of interac-
tions and the existence of communities with preferential interactions.

On the one hand, the type of interaction is different between the species. These
settings are managed by choices about the statistical properties of the random variables
Bij. The parameter set pα, µ, ρq can represent a range of interaction types. First of
all, the interaction strength is represented by α, a large value of α represents a system
with weak interactions, conversely a small value of α represents very strong interactions.
The parameters µ and ρ describe the nature of the interaction in the system. When
ρ ă 0, interaction partners have opposite impact on one another, i.e. as in antagonistic
interactions (the predator being positively influenced by the abundance of it prey while the
prey is negatively affected by that of the predator). When ρ ą 0, interaction partners have
similar impact on one another, i.e. they are engaged in either mutualistic or competitive
interactions. The mean interaction parameter µ increases the proportion of competitors
or mutualists depending of its sign. Given a pairwise interaction Bkℓ{Bℓk in the system,
the three predominant patterns are:

• competition (-/- relationship), which happens more often when ρ ą 0, µ ă 0 [Mac70,
Zee95],

• mutualism (+/+ relationship), which happens more often when ρ ą 0, µ ą 0
[SGB`15, Sto20],

• predation (+/- relationship), which happens more often when ρ ă 0, µ « 0 [AT12].

There are other types of interactions such as commensalism, amensalism [BTH06].
On the other hand, the structure of the interaction network differs between ecosystems.

The structure of the interaction matrix can also be affected by the existence of commu-
nities, i.e. groups of species that interact preferentially among them [TF10, AGB`15]. In
(22), the network is represented by S an adjacency matrix of a given graph. Several types
of structures are widely studied in ecology and be modeled by the graph S.

First, modular structures such as the compartmentalization of food webs, also called
modularity, is the tendency of nodes to be connected preferentially within groups than
between groups ([GSSP`10, GRA16]).

Second, nested structures where each species plays a different role in the ecosystem.
These models are generally called nested because of their structure where some species
have more interactions than others [BJMO03, BFPG`09, SKA13, PBHM19].

In large ecosystems, not all species interact with each other, thus the relevance of
studying sparse ecosystems is of considerable interest [BSHM17]. In fact, May [May72]
considers connectance as a key parameter linked to the complexity of a system.

Last, trait models with latent structures [EJK`13] such as the niche model of Williams
and Martinez [WM00], the so called “cascade” model [CBN90] which establishes a preda-
tion structure in the food web. Each species can eat on the lower trophic level but not on
the subsequent ones [HMS16, PBG22]. Note that all these structures can be modeled with
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a graphon (each node is associated with a random variable and the connections depend
on a function of the variables associated with the two nodes).

For a general review of the different patterns in complex ecological communities from
a physicist’s point of view see Barbier et al. [BABL18].

Metacommunity and spatial dynamics

At larger spatial scales, ecologists are also interested by interactions between populations
(rather than between individuals) in order to understand the patterns of species diversity
in space and time. In this context, mutualistic, competitive and predatory interactions are
replaced by the processes of colonization, extinction and replacement of whole populations.
The theory of spatial ecology finds its roots in the works of MacArthur and Wilson
[MW63] and Levins and Heatwole [LH63] and later on by MacArthur on population
biology and geography [Mac84]. In particular, The Theory of Island Biogeography (TIB)
is a fundamental cornerstone of spatial dynamics theory [MW67]. The TIB describes how
the biodiversity on islands is maintained by a balance between immigration and extinction
of species.

Since then, spatial ecology theory has evolved to understand coexistence mechanisms
behind the metacommunity model introduced by Wilson [Wil92]. The study of meta-
community models has been particularly developed due to an awareness of the spatial
heterogeneity of ecosystems. Leibold et al. [LHM`04] have described the different mech-
anisms at the spatial scale: colonization (organisms move from one site to another between
generations), niche habitat (species may be more or less well adapted to a given environ-
ment) and stochasticity (if species are equivalent in terms of traits, competitiveness, etc.,
we don’t necessarily expect them to coexist, but we do know that it will take a certain
amount of time before one or the other completely takes over the site, i.e. a neutral
model).

Considering that the ability of species to colonize new habitats is crucial to the main-
tenance of populations, one type of mathematically tractable metacommunity model is
known as an occupancy model with a competition-colonization trade-off. The belief as-
sociated to this model is the existence of a trade-off between the ability of a species to
colonize new patches and its competitive ability, which affects its resistance to coloniza-
tion by another competing species and its own ability to replace other species. Formally,
it is a patch occupancy model where each species has the ability to colonize new patches
in competition with other species. The variable of interest is the proportion of habitat
occupied by each species.

Initially studied by Levins [Lev69] and Levins and Culver [LC71] in the case of a
two species, this model has been of special interest in its n-species version where the
competition is hierarchical [Has80, NM92, Til94]. In a more general case, it has been
studied when the competition is not hierarchical [Ama03, YW01, CMJD06a] and also in
an epidemiological context of a dynamic of host-parasite interactions [MN94, NM94]. In a
more general framework, random matrix approaches have been used to study stability in
a meta-ecosystem context. Each patch has its own dynamics and dispersal of all species
connects the different patches, see Gravel et al. [GML16].

The spatial dynamics of an n-species system in a competition colonization trade-off
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[CMJD06a] is of the form

dpk

dt
“ ckpk

˜

1 ´

n
ÿ

ℓ“1
pℓ

¸

´ mkpk ` ckpk

ÿ

ℓ‰k

pℓηkℓ ´ pk

ÿ

ℓ‰k

cℓpℓηℓk , (25)

where pk represents the occupancy of species k, mk is the extinction rate of species k,
ck represents the colonization rate of species k, ηkℓ corresponds to the probability of
replacement of species ℓ by k.

These equations can be represented as a Lotka Volterra competition model with asym-
metric interactions

dpk

dt
“ pk

«

ck ´ mk `

n
ÿ

ℓ“1
pℓ pckηkℓ ´ cℓηℓk ´ ckq

ff

.

In the context of the Lotka-Volterra model with dispersal, further work has been done by
introducing a migration parameter [BG20, PNJ21, VPNJ22]. In the context of meta-food
web with diffusion parameters, Brechtel et al. [BGR`18] studied diffusion-driven pattern
formation in networks.

Guided tour on random matrices
Historically, the theory of random matrices has its roots in the work of the statistician
John Wishart whose purpose was to study a random matrix of empirical covariance of
multivariate Gaussian samples [Wis28]. Subsequently, in the 50’s, a second impulse was
given by Eugene Wigner [Wig55] whose aim was to explain the distribution of energy
levels in atomic nuclei. The innovative approach used by Wigner [Wig67] to describe the
spectrum of a Hermitian random matrix was taken up by other physicists to solve problems
in nuclear physics [Dys62] and physical sciences. Later on, new matrix structures were
studied, many works were done by Marchenko and Pastur [MP67] on large covariance
matrices and Girko [Gir85], Bai [Bai97] and Silverstein [SC95, BS10] extended results
to non-hermitian matrices. Until today, a multitude of works have been published in
very diverse fields of mathematics such as combinatorics, random graphs, free probability
theory, signal theory, number theory, etc.

The strength of random matrix theory comes from the stabilization of its spectrum
(random and a priori complicated) when the dimension of the matrix tends towards
infinity. Within this framework, the distribution of the eigenvalues of the matrix becomes
completely deterministic. In a very simplified way, this is an equivalence of the law of
large numbers for the spectrum of a matrix. The stakes and motivations of the theory of
random matrices are based on the description of the standard properties of the spectrum
of matrices: eigenvalues, eigenvectors, largest eigenvalue, etc. It is a balanced mixture of
linear algebra, probability, complex analysis, combinatorics.

A few definitions
Let A P MpCq, A :“ pAkℓqnˆn, a square matrix of size n with coefficient in the set of
complex numbers C. We denote by A˚ :“ A

J. Given a vector x P Rn, we note }x}2 its
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Euclidean norm:

}x}2 “

˜

n
ÿ

k“1
|xk|

2

¸1{2

.

Definition 0.15 (Eigenvalues). Denote by λ1pAq, λ2pAq, . . . , λnpAq the eigenvalues of A
i.e. the roots of its characteristic polynomial, such that

|λ1pAq| ě ¨ ¨ ¨ ě |λnpAq| .

The set of eigenvalues of A is called the spectrum of A and noted SppAq.

Definition 0.16 (Spectral radius). The spectral radius of the matrix A, that we note
ρpAq “ |λ1pAq|, is the modulus of the eigenvalue with the largest modulus.

Definition 0.17 (Singular values). The singular values σ1pAq, σ2pAq, . . . , σnpAq of the
matrix A are the square root of the eigenvalues of the Hermitian matrix A˚A i.e.

σipAq :“
a

λipA˚Aq , @i P rns .

Definition 0.18 (Spectral norm). The spectral norm of the matrix A denoted by }A} is
defined by its largest singular value

}A} :“ max
´?

λ, λ eigenvalue of A˚A
¯

“ σ1pAq .

In probability, the spectral measure characterizes the spectrum of a matrix. In the
RMT field, it is used to express results of convergence of the spectrum to a deterministic
measure. Given I Ă C, denote by δλ the Dirac measure at the point λ defined by

δλpIq “

#

1 if λ P I ,

0 otherwise .

Definition 0.19 (Empirical spectral measure). IfA P MnpCq with eigenvalues λ1pAq, . . . , λnpAq,
we define the empirical measure of eigenvalues in pC,BpCqq by

µA :“ 1
n

n
ÿ

k“1
δλkpAq.

For every subset E Ă C, the quantity:

µApEq “
cardt1 ď k ď n : λkpAq P Eu

n
,

is the proportion of eigenvalues of A in E.

The weak convergence of a empirical spectral measure to a deterministic measure
describes many random matrix results.

Definition 0.20 (Weak convergence). It is said that µA converges weakly to a probability
measure µ i.e. µA

D
ÝÝÝÑ
nÑ8

µ, if for any function f continuous and bounded on R

ż

fpuqµApduq “
1
n

n
ÿ

k“1
fpλkq ÝÝÝÑ

nÑ8

ż

fpuqµpduq .
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Remark 0.9. If A is random, then µA is a random discrete probability distribution, this
implies

ş

fµApduq are also random variables. We will then say that almost surely (a.s.)
µA converges weakly to µ

pa.s.q µA
D

ÝÝÝÑ
nÑ8

µ .

Definition 0.21 (Resolvent). Let A P MnpCq, we call the resolvent of A the matrix
Q :“ pQkℓqnˆn defined by

Qpzq “ pA ´ zIq
´1, z R SppAq .

We denote by
C` :“ tz P C : Impzq ą 0u

the upper half of the complex plane.
Definition 0.22 (Stieltjes transform). Let µ P PpRq a probability measure. The Stieltjes
transform of µ denoted by gµ : C` Ñ C is defined by

gµpzq “

ż 1
λ ´ z

µpdλq , z P C` .

Remark 0.10. Let µA the empirical measure of the eigenvalues λ1pAq, ¨ ¨ ¨ , λnpAq of the
symmetric matrix A, then the associated Stieltjes transform is given by

gµA
pzq “

ż 1
λ ´ z

µApdλq “
1
n

n
ÿ

i“1

1
λi ´ z

“
1
n

Tr
`

pA ´ zIq
´1˘ ,

where Q “ pA ´ zIq´1 is the resolvent of the matrix A and TrpQq is the trace of matrix
Q.
Proposition 0.21 (Stieltjes inversion). Let gµ the Stieltjes transform of the measure µ
of finite mass µpRq. If a, b P R and µptauq “ µptbuq “ 0, then

µpa, bq “
1
π

lim
yÑ0`

Im
ż b

a

gµpx ` iyqdx ,

and
@x P R, µptxuq “

1
π

lim
yÑ0`

Impgµpx ` iyqq .

Proposition 0.22 (Woodbury identity). Let A be a matrix nˆ n, U a matrix nˆm, B
a matrix mˆm, V a matrix mˆ n. It is assumed that all the considered matrix inverses
exist, then:

pA ` UBV q
´1

“ A´1
´ A´1UpB´1

` V A´1Uq
´1V A´1 .

The Woodbury identity for a rank 1 perturbation is often used and referred to as
Sherman-Morrison identity.
Proposition 0.23 (Sherman-Morrison identity). Let A a matrix n ˆ n and u, v two
vectors of dimension n. It is assumed that all the considered matrix inverses exist, then:

pA ` uv˚
q

´1
“ A´1

´
A´1uv˚A´1

1 ` v˚A´1u
.

Proposition 0.24 (Poincaré inequality). A probability measure P on Rn satisfies a
Poincaré inequality with constant c ą 0 if, for all continuously differentiable functions
f : Rn Ñ C,

VarPpfq “ EPp|fpxq ´ EPpfpxqq|
2
q ď

1
c
EP|∇fpxq|

2 .
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Figure 18: Spectrum (histogram) of the Wigner random matrixWn{
?
n (n “ 1000, σ “ 1).

The solid line represents the semi-circular law.

Wigner matrices
Definition 0.23. Given Wn a hermitian matrix n ˆ n, Wn “ W ˚

n such that Wn :“
pWkℓ, 1 ď k ď ℓ ď nq are i.i.d. random variables with EpWkℓq “ 0, @ 1 ď k ď ℓ and
Ep|Wkℓ|

2q ă 8, @ 1 ď k ď ℓ. Wn{
?
n is called Wigner matrix.

Theorem 0.25 (Universality of the Wigner theorem and semi-circular law). Let Wn a
Wigner matrix defined by Wn :“ pWkℓ, 1 ď k ď ℓq i.i.d. random variables such that

1. EpWkℓq “ 0, @ 1 ď k ď ℓ,

2. Ep|Wkℓ|
2q “ σ2 ă 8, @ 1 ď k ď ℓ and σ ą 0.

Then almost surely, the empirical spectral measure of Wn{
?
n converges weakly to the

semi-circular law:
pa.s.q µWn?

n
:“ 1

n

n
ÿ

k“1
δ

λk

´

Wn?
n

¯

D
ÝÝÝÑ
nÑ8

µsc ,

where µsc is defined by

dµscptq “
1

2πσ2

a

p4σ2 ´ t2q1r´2σ,2σsptqdt .

The eigenvalues of the matrix Wn{
?
n are real. In Figure 18, a histogram of the eigen-

values of a Wigner random matrix is illustrated compared to the theoretical distribution
given by Theorem 0.25.

Local spectrum behavior for Wigner matrices

Denote by
λmaxpWnq “ max

kPrns
λkpWnq and λminpWnq “ min

kPrns
λkpWnq .
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To address certain issues, it is necessary to have exact information on the position of the
largest eigenvalue of the matrix. In the case of Wigner matrices, many works have been
done and refined in the 80’ [FK81, BY88].

Theorem 0.26 (Convergence of extremes eigenvalues). If Ep|Wkℓ|
4q ă 8, @ 1 ď k ď ℓ,

then
λmaxpWn{

?
nq

a.s.
ÝÝÝÑ
nÑ8

2σ , λminpWn{
?
nq

a.s.
ÝÝÝÑ
nÑ8

´2σ .

In particular,
›

›Wn{
?
n
›

› “ maxp|λmaxpWn{
?
nq|, |λminpWn{

?
nq|q

a.s.
ÝÝÝÑ
nÑ8

2σ .

If Ep|Wkℓ|
4q “ 8, @ 1 ď k ď ℓ, then

λmaxpWn{
?
nq

a.s.
ÝÝÝÑ
nÑ8

`8 .

Deformed Wigner matrix
The last specific property to be addressed for this thesis is the distribution of eigenvalues
when the Wigner matrix is perturbed by a finite rank deformation. This type of model is
frequently called “spike”. Depending on the type of deformation, some spike eigenvalues
may escape from the bulk of the distribution.

Let Wn be a random Wigner matrix and

1. EpWkℓq “ 0, @ 1 ď k ď ℓ,

2. Ep|Wkℓ|
2q “ σ2 ă 8, @ 1 ď k ď ℓ and σ ą 0,

3. sup
k‰ℓ

Er|Wkℓ|
4s ă 8.

Let Pn a deterministic real symmetric matrix of fixed rank r. We are interested in the
properties of the spectrum of the matrix 1?

n
Wn ` Pn.

Since the pioneering paper of Füredi and Komlòs [FK81], many scientists have studied
the spectral properties of deformed Wigner matrices [Pé06, CDMF09, PRS13, RS13].
Denote by θ1, ..., θr the ordered eigenvalues of Pn, θj has multiplicity of kj and they are
independent of n. Let r0, the index associated to the threshold 0 i.e. θr0 “ 0 and Pn

has r0 ´ 1 distinct positive eigenvalues. Let r`σ (resp r´σ) be the number of j such that
θj ą σ (resp θj ă ´σ).

Theorem 0.27 (Deformed Wigner Theorem - [CDMF09, PRS13]). Let Wn be a random
real Wigner matrix satisfying condition (1)-(3) and Pn be a deterministic real hermitian
matrix of fixed finite rank r as above. Let

ρθj
“ θj `

σ2

θj

.

Then the following holds:

1. For 1 ď j ď r`σ, 1 ď i ď kj, λk1`...`kj´1`i Ñ ρθj
,

2. λk1`...`kr`σ `1 Ñ 2σ ,
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Figure 19: Spectrum (histogram) of the deformed Wigner random matrix Wn{
?
n ` Pn

(n “ 1000, σ “ 1). The perturbed matrix is Pn “ diagp´4, 2, 3, 0, ..., 0q. The solid line
represents the semi-circular law. The dashed lines indicate the theoretical value of the
outliers at ´4 ´ 1{4, 2 ` 1{2, 3 ` 1{3 as predicted by Theorem 0.27.

3. λk1`...`kr´r´σ
Ñ ´2σ ,

4. For j ě r ´ r´σ ` 1, 1 ď i ď kj, λk1`...`kj´1`i Ñ ρθj
.

The convergence in (1)-(4) is in probability.

Remark 0.11. In [CDMF09], Capitaine, Donati-Martin and Féral show that if the entries
distribution satisfy a Poincaré inequality (proposition 0.24), the convergence in Theorem
0.27 holds almost surely.

In Figure 19, a histogram of the eigenvalues of the deformed Wigner random matrix
is illustrated compared to the theoretical distribution given by theorem 0.27.

Circular law
In a second part of the tour, we focus on non-Hermitian matrices. Let Yn P MnpCq be
a square random matrix of dimension n ˆ n whose entries are i.i.d. centered of variance
σ2. The eigenvalues of Yn are no longer real but complex. The major outcome concerns
the convergence of the empirical spectral measure of Yn{

?
n toward the circular law in

the complex plane. Initially proved by Mehta [Meh67] for the expected empirical spectral
distribution in the complex Gaussian case as a result of Ginibre’s work [Gin65] of the
explicit formula for the spectrum. Edelman [Ede97] established the circular law in the case
of real Gaussian random variables. Silverstein gave an argument to pass from expected
convergence to almost surely convergence. Girko worked in the universal version (for other
types of distribution) [Gir85] by providing some insights of proof such as the Hermitization
technique. However, it is finally Tao and Vu [TVK10] who proved the general case. I
advice the reader to look at Bordenave and Chafäı [BC12].
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Figure 20: Spectrum of a non-Hermitian random matrix Yn{
?
n in the complex plan

(n “ 1000, σ “ 1). The solid line circle represents the boundary of the circular law.

Theorem 0.28. Let Yn be a random matrix MnpCq such that Yn :“ pYkℓ, 1 ď k, ℓ ď nq

are i.i.d. random variables such that EpYkℓq “ 0, @ 1 ď k, ℓ ď n and Ep|Ykℓ|
2q “ σ2, @ 1 ď

k, ℓ ď n. Then almost surely, the empirical spectral measure of Yn{
?
n converges weakly

to the circular law.
µ Yn?

n

D
ÝÝÝÑ
nÑ8

µc ,

where µc is the circular law which is the uniform law on the disc of radius σ of C with
density

dµcpzq “
1
πσ2 1zPC,|z|ďσdz .

In Figure 20, the eigenvalues of a non-Hermitian random matrix in the complex plan
are illustrated compared to the theoretical distribution given by Theorem 0.28.

Local spectrum behavior for non-Hermitian matrix
In the case of the circle law, it is important to have information on the position of the
spectral radius. We have seen previously in the work of May [May72], the necessity to
describe the stability transition by the largest real part eigenvalue of the Jacobian matrix.
Many works have been done on this subject, in particular by Bai [BSY88, BS10].

Theorem 0.29 (Convergence of extremes eigenvalues). If EpYkℓq “ 0 and Ep|Ykℓ|
4q ă

8, @ 1 ď k, ℓ ď n, then,
›

›

›

›

Yn
?
n

›

›

›

›

a.s.
ÝÝÝÑ
nÑ8

2σ and ρ

ˆ

Yn
?
n

˙

a.s.
ÝÝÝÑ
nÑ8

σ .

Outliers in the spectrum of non-Hermitian matrix
As in the Wigner case, we can consider a finite rank perturbation of the non-Hermitian
matrix. This result has been proved by Tao [Tao13, Theorem 1.7] and has been extended
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Figure 21: Spectrum of a non-Hermitian random matrix Yn{
?
n`Pn in the complex plan

(n “ 1000, σ “ 1). The perturbed matrix is Pn “ diagp1 ` 2i, 2, 3, 0, ..., 0q. The solid
line circle represents the boundary of the circular law. There are three eigenvalues in the
small dashed circles centered at 1 ` 2i, 2, 3 as predicted by Theorem 0.30.

in Benaych-Georges and Rochet [BGR16] where they studied the fluctuations of the outlier
eigenvalues.

Theorem 0.30 (Deformed spectrum of non-Hermitian matrix). Let Yn a i.i.d. random
matrix with EpYkℓq “ 0, Ep|Ykℓ|

2q “ 1 and Ep|Ykℓ|
4q ă 8, @ 1 ď k, ℓ ď n and for each

n, let Pn be a deterministic matrix with rank Op1q and operator norm Op1q. Let ε ą 0,
and suppose that for all sufficiently large n, there are no eigenvalues of Pn in the annulus
tz P C : 1 ` ε ă |z| ă 1 ` 3εu, and there are j eigenvalues λ1pPnq, ..., λjpPnq for some
j “ Op1q in the region tz P C : |z| ě 1 ` 3εu.

Then, a.s., for sufficiently large n, there are precisely j eigenvalues

λ1

ˆ

Yn
?
n

` Pn

˙

, ..., λj

ˆ

Yn
?
n

` Pn

˙

,

of Yn?
n

` Pn in the region tz P C : |z| ě 1 ` 2εu, and after labeling these eigenvalues
properly, λip

Yn?
n

` Pnq “ λipPnq ` op1q as n Ñ 8 for each 1 ď i ď j.

In Figure 21, the eigenvalues of a deformed non-Hermitian random matrix with outliers
are illustrated compared to the theoretical distribution given by theorem 0.30.

Elliptic model
In the Wigner matrix configuration, the interaction of one species on the other is con-
sidered to be the same. For non-Hermitian matrices, all interactions are independent.
However, in ecology, the reciprocal effects of a species k on another species ℓ (Xkℓ Ø Xℓk)
are linked. Mathematically, we consider a pairwise correlation between the entries of the
matrix. This can be used to describe biological processes such as predation when the sign
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of the interactions is reversed and the correlation is negative. In random matrix, when the
pairwise interactions are drawn from a bi-variate distribution, we are in the framework
of the elliptic model. Originally introduced by Girko [Gir86], this model has since been
widely studied [Gir95, Nau12, NO15, OR14].

Definition 0.24 (Random elliptic model). Let Xn be a real random matrix satisfying
the following three conditions:

1. Pairs pXkℓ, Xℓkq, k ‰ ℓ are i.i.d. random variables with

@ k ‰ ℓ, EpXkℓq “ 0, Ep|Xkℓ|
2
q “ 1 and Ep|Xkℓ|

4
q ă 8 .

2. For k ă ℓ the vector pXkℓ, Xℓkq is sample from a bivariate distribution, independent
from the remaining random variables, with covariance EpXkℓXℓkq “ ρ with |ρ| ď 1.

3. pXkk, 1 ď k ď nq are i.i.d. random variables, independent of off-diagonal entries
with EpXkkq “ 0 and Ep|Xkk|2q “ 1.

For ρ P p´1, 1q, define the ellipsoid

Eρ :“
"

z “ x ` iy P C : x2

p1 ` ρq2 `
y2

p1 ´ ρq2 ď 1
*

.

Remark 0.12. 1. For ρ “ 1, E1 is the line segment r´2, 2s on the real axis and for
ρ “ ´1, E´1 is the line segment r´2, 2s on the imaginary axis.

2. If ρ “ 1, Xn is a Wigner matrix.

3. If ρ “ 0, Xn is a non-Hermitian matrix i.e. defined by Theorem 0.28.

Theorem 0.31 (Elliptic law). Let Xn an elliptic random matrix satisfying conditions in
definition 0.24. Then almost surely, the empirical spectral measure of Xn{

?
n converges

weakly to the elliptic law:
pa.s.q µXn?

n

D
ÝÝÝÑ
nÑ8

µρ ,

where µρ is the uniform probability measure on the ellipsoid Eρ with density

µρpzq “

#

1
πp1´ρ2q

if z P Eρ ,

0 otherwise .

In Figure 22, the eigenvalues of an elliptic random matrix in the complex plan are
represented compared to the theoretical distribution given by theorem 0.31.

Corollary 2.3 in O’Rourke and Renfrew [OR14] provides information about the spectral
radius of an elliptic matrix.

Proposition 0.32 (Spectral radius of elliptic random matrix). Let Xn a elliptic random
matrix defined in definition 0.24, then

ρ

ˆ

Xn
?
n

˙

a.s.
ÝÝÝÑ
nÑ8

1 ` |ρ| .
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(a) ρ “ 0 (b) ρ “ ´0.5 (c) ρ “ 0.5

Figure 22: Spectrum of an elliptic matrix Xn (n “ 500) with distinct parameters ρ P

t´0.5, 0, 0.5u. The solid line represents the ellipse tz “ x ` iy P C, x2

p1`ρq2 `
y2

p1´ρq2 “ 1u

which is the boundary of the support of the limiting spectral distribution for an elliptic
model.

Outliers in the elliptic model
The study of outliers in the case of a deformed elliptic random matrix has been done by
O’Rourke and Renfrew [OR14].

We define the neighborhoods for any δ ą 0

Eρ,δ :“ tz P C : distpz, Eρq ď δu .

Theorem 0.33 (Deformed elliptic random matrix). Let k ě 1 and δ ą 0. Let Xn be an
elliptic random matrix defined in definition 0.24. Let Pn a deterministic matrix n ˆ n of
finite rank k and supn }Pn} “ Op1q. Suppose for n sufficiently large, there are no nonzero
eigenvalues of Pn which satisfy

λipPnq `
ρ

λipPnq
P Eρ,3δzEρ,δ with |λipPnq| ą 1,

and there are j eigenvalues λ1pPnq, ..., λjpPnq for some j ď k which satisfy

λipPnq `
ρ

λipPnq
P CzEρ,3δ with |λipPnq| ą 1 .

Then, a.s., for n sufficiently large, there are exactly j eigenvalues of 1?
n
Xn ` Pn in the

region CzEρ,2δ and after labeling the eigenvalues properly,

λi

ˆ

Xn
?
n

` Pn

˙

“ λipPnq `
ρ

λipPnq
` op1q, @ 1 ď i ď j .

In Figure 23, the eigenvalues of a deformed elliptic random matrix in the complex plan
are illustrated compared to the theoretical distribution given by theorem 0.33.
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(a) ρ “ ´0.5 (b) ρ “ 0.5

Figure 23: Spectrum of a deformed elliptic matrix Xn ` Pn (n “ 500) with distinct
parameter ρ P t´0.5, 0.5u. The perturbed matrix is Pn “ diagp1 ` 2i, 2, 3, 0, ..., 0q. The
solid line represents the ellipse tz “ x` iy P C, x2

p1`ρq2 `
y2

p1´ρq2 “ 1u which is the boundary
of the support of the limiting spectral distribution for an elliptic model. There is three
eigenvalues in the small dashed circles centered at 1 `

ρ
5 ` p2 ´

2ρ
5 qi , 2 `

ρ
2 , 3 `

ρ
3 as

predicted by Theorem 0.33

Theoretical background of the thesis
Understanding the equilibrium points of the Lotka-Volterra system (23) and their sta-
bility provides a better understanding of the impact of the food web, represented by the
interaction matrix B, on the abundances of the species. In particular, the food web has
an impact on the persistence of its component species (:= number of persisting species),
the feasibility of the system (i.e. whether there exists an equilibrium with all species at
non-zero abundances) and the stability of the equilibrium. Recall (23),

dxk

dt
“ xk p1 ´ xk ` pBxqkq , k P rns

an essential feature to understand the dynamics of the LV system (23) is the existence of
an equilibrium x˚ “ px˚

kqkPrns such that
#

x˚
k p1 ´ x˚

k ` pBx˚qkq “ 0 , @k P rns ,

x˚
k ě 0.

(26)

A natural question is whether an equilibrium exists and whether it is unique. If so, a
further consideration is whether the system converges to this equilibrium i.e. the conver-
gence of a solution x to the equilibrium x˚: xptq ÝÝÝÑ

tÑ8
x˚ if xp0q is sufficiently close to

x˚. The last step is to describe the stability: local, global, resilience (:= ability of an
system to regain its initial structure following a perturbation), etc. The Lotka-Volterra
system is forward invariant i.e. xp0q ą 0 (componentwise) implies xptq ą 0 for every
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t ą 0. However, some of these components xkptq may converge to zero if the equilibrium
x˚ has zero components.

Feasibility
The question of the feasibility of a equilibrium x˚ ą 0 had already been addressed by
Goh [GJ77] for the Lotka-Volterra model in the 70’s’, then Logofet was interested in this
problem in the case of a competitive system [Log93]. Rossberg also investigated the mean
number of species that can coexist in competitive communities [Ros13]. Recently, the
work of Grilli et al. [GAS`17], using structural stability methods introduced by Rohr et
al. [RSB14], studied the impact of food web properties on the growth rate to maintain a
feasible equilibrium.

From (24), we consider a matrix of interactions with Gaussian entries

Bn “
1

αn

?
n
An,

where An :“ pAkℓ, 1 ď k, ℓ ď nq are i.i.d. random variables with Akℓ „ N p0, 1q.
Based on the work by Geman and Hwang [GH82], Dougoud et al.[DVR`18] have shown

that in the framework of random entries of the interaction matrix, if αn ą 0 is fixed and
independent of n then necessarily some species will become extinct. The threshold of
existence of a feasible equilibrium of the model (23) has been studied by Bizeul and
Najim [BN21]. In their paper, they also show that feasibility involves stability. This
type of result had already been observed by Stone [Sto16] where the stability threshold is
crossed before the feasibility threshold.

Starting from (26), if x˚ ą 0, the equilibrium set of equations becomes a linear
equation:

x˚
“ 1 ` Bnx˚ . (27)

We will restrict here to the non-trivial case in which αn Ñ 8 and define the feasibility
threshold by α˚

n “
a

2 logpnq.

Theorem 0.34 (Theorem 1.1 [BN21]). Let αn ÝÝÝÑ
nÑ8

8. Let x˚ “ px˚
kqkPrns be the solution

of (27) and recall An :“ pAkℓ, 1 ď k, ℓ ď nq are i.i.d. random variables with Akℓ „

N p0, 1q.

1. If there exists ε ą 0 such that eventually αn ď p1 ´ εqα˚
n then

P
"

min
kPrns

x˚
k ą 0

*

ÝÝÝÑ
nÑ8

0 .

2. If there exists ε ą 0 such that eventually αn ě p1 ` εqα˚
n then

P
"

min
kPrns

x˚
k ą 0

*

ÝÝÝÑ
nÑ8

1 .

Remark 0.13 (Sketch of proof). Let Qn “

´

I ´ An

α
?

n

¯´1
, the resolvent of the matrix An.

The problem is defined by:

x˚
“ 1 `

ˆ

Anx˚

αn

?
n

˙

ô x˚
“

ˆ

I ´
An

αn

?
n

˙´1

1 .
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For each entry of the vector x˚

@k P rns, x˚
k “

8
ÿ

i“0
e˚

k

ˆ

An

αn

?
n

˙i

1 ,

“ 1 `
1
αn

e˚
k

An
?
n

1 `
1
α2

n

e˚
k

ˆ

An

αn

˙2

Qn1 ,

“ 1 `
Zk

αn

`
Rk

α2
n

,

« 1 `
Zk

αn

, Zk „ N p0, 1q .

We can show that the Rk term is negligible by using Gaussian concentration properties
(for more details, see [BN21]). From the properties of the extreme values of a family of
Gaussian random variables, one can deduce

min
kPrns

x˚
k ą 0 ô min

kPrns
Zk „ ´

a

2 logpnq ą ´αn .

The existence and uniqueness results of a feasible equilibrium have been extended
in the case of a sparse food web by Akjouj and Najim [AN21]. They assume that each
species is in relation with d other species. The magnitude of d with respect to n reflects the
sparsity of the model. Two distinct cases are studied, on the one hand d is proportional
to n. On the other hand d ě logpnq in the case of a particular block structure. Moreover,
they also demonstrate the global stability of the equilibrium.

Invadability condition
The problem (26) becomes much more complex when we consider an equilibrium where
x˚ has some vanishing components. The system of equations is no longer linear and the
equation becomes a non-linear optimization problem. A naive and immediate solution to
solve this problem is to choose a subset I Ă rns and set the corresponding components
xI “ px˚

i qiPI to zero, and to solve the remaining linear system:

xIc “ 1|Ic| ` BIcxIc .

If there exists xIc ě 0 that solves the previous equation, then x “

ˆ

xI
xIc

˙

satisfies (26)

and is a potential equilibrium. The number of sub-cases I Ă rns is 2n and in particular
grows exponentially as n Ñ 8.

The equilibrium equations become ill-posed as there might be many equilibria. A
known condition in ecology for dynamical system is the non-invadability condition [LM96,
JS98] associated to saturated equilibrium. An equilibrium is saturated if it is resistant
against the invasion by an absent species. The study of saturated equilibrium and perma-
nence is an important research topic in the field of dynamical systems (for more details,
see the seminal book of Hofbauer and Sigmund [HS98]).

Definition 0.25 (Saturated equilibrium). Given Ic the set of persisting species,

• x is saturated ô @k P I : 1 ´ x˚
k ` pBx˚qk ď 0,
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• x is strictly saturated ô @k P I : 1 ´ x˚
k ` pBx˚qk ă 0.

Lemme 0.35.

1. If there is a positive solution xptq ą 0, such that xptq ÝÝÝÑ
tÑ8

x˚, then x˚ is a saturated
equilibrium.

2. If x˚ is strictly saturated, then there exists a positive solution xptq ą 0, such that
xptq ÝÝÝÑ

tÑ8
x˚.

Notice that relying on standard properties of dynamical systems, see for instance
[Tak96, Theorem 3.2.5], a necessary condition for the equilibrium x˚ to be stable is that

1 ´ x˚
k ` pBx˚

qk ď 0 . (28)

The condition (28) decreases the number of potential solutions to system (26). In reference
to the ODE (23), the requirement for a given species k P rns to be non-invadable is
equivalent to:

ˆ

1
xk

dxk

dt

˙

xkÑ0`

ď 0 . (29)

As a consequence, we will now focus on the following set of conditions:
$

&

%

x˚
k p1 ´ x˚

k ` pBx˚qkq “ 0 for k P rns ,
1 ´ x˚

k ` pBx˚qk ď 0 for k P rns ,
x˚ ě 0 componentwise .

(30)

This casts the problem of finding a non negative equilibrium into the class of Linear
Complementarity Problems (LCP), which we describe hereafter.

Linear complementary problem
LCP is a class of problems from mathematical optimization which in particular encom-
passes linear and quadratic programs; standard references are [Mur88, CPS09]. Given a
nˆn matrix M and a nˆ1 vector q, the associated LCP denoted by LCP pM, qq consists
in finding two n ˆ 1 vectors z,w satisfying the following set of constraints:

$

&

%

z ě 0 ,
w “ Mz ` q ě 0 ,
wJz “ 0 ô wkzk “ 0 for all k P rns .

(31)

Since w can be inferred from z, we denote z P LCP pM, qq if pw, zq is a solution of (31).
The LCP problem study goes back to the work of Lemke [Lem65] and Cottle et al.

Danzig [CD68]. Lemke and Howson [LH64] developed a algorithm based on pivot steps
to solve the problem (31).

Introduced by Fielder and Pták [FP66], the class of P -matrices is related to the linear
complementarity problem. Murty [Mur72] showed that a P -matrix give necessary and
sufficient conditions to have a unique equilibrium to the LCP problem.

Definition 0.26 (P-matrix). A square matrix M is called a P -matrix if all its principal
minors (sub-determinants) are strictly positive

detpMIq ą 0 , @ I Ă rns , MI “ pMkℓqk,ℓPI .

59



Introduction

Many properties on the necessary and sufficient conditions for a real matrix to be a
P -matrix has been studied by Rump [Rum03] and Rohn [Roh12]. Numerically, checking
that a matrix is a P -matrix is co-NP complete [Cox94].

Theorem 0.36 (Existence and uniqueness of a solution to the LCP problem [Mur72]).
A matrix M is a P -matrix if and only if the LCP pM, qq has a unique solution pw, zq for
all q P Rn.

In the case of the Lotka-Volterra and in view of (30), we look for x˚ P LCP pI´B,´1q.

Definition 0.27 (M -matrix). A square matrix A is called M -matrix if it can be expressed
in form A “ sI ´ C, where C “ pCkℓq with Ckℓ ě 0, 1 ď k, ℓ ď n, and s ą ρpCq, the
spectral radius of C.

The name M -matrix was given by Ostrowski [Ost56] refering to Hermann Minkowski.
Many properties of M -matrices has been introduced by Fiedler and Pták [FP62] and
extended by Plemmons [Ple77].
Remark 0.14.

• The set of non-singular M -matrices are a subset of the class of P -matrices.

• The set of non-singular M -matrices are a subset of the class of inverse-positive
matrices i.e.

A´1 exists and A´1
ě 0 .

Global stability
Theorem 0.36 gives a sufficient and necessary condition for the existence of a unique non-
invadable equilibrium to the equation (26). In the case of a feasible equilibrium x˚ ą 0
, Bizeul and Najim [BN21] have shown that there exists a globally stable equilibrium.
In the case of an equilibrium with vanishing species, it is necessary to go back to the
properties of Lyapunov functions.

Lyapunov’s theorem says that a matrix A is stable (its eigenvalues have a strictly
negative real part) if and only if there exists a positive definite matrix H such that
HA`AJH is negative definite. This condition goes back to the work of Lyapunov [Lia07]
which has been improved and studied by Barker et al. [BBP78] and Logofet [Log05] which
makes a summary of all the matrix conditions in the form of a flower.

Definition 0.28 (Lyapunov diagonal stability). Matrix M is called Lyapunov diagonally
stable, denoted by M P Sω, if and only if there exists a diagonal matrix D with positive
elements such that DM ` MJD is negative definite i.e. all eigenvalues are negative.

Proposition 0.37 (Takeuchi et al. [TAT78]). If M P Sω then ´M is a P-matrix.

Recall the system (21) and consider the matrix B is arbitrary,

d ykptq

dt
“ ykprk ` p´θI ` Byqkq , k P rns . (32)

Takeuchi and Adachi (see for instance [Tak96, Th. 3.2.1]) provide a criterion for the
existence of a unique equilibrium y˚ and the global stability of the LV system.
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Theorem 0.38 (Takeuchi and Adachi [TA80]). If ´θI ` B P Sω, then LCP pθI ´ B, rq

admits a unique solution. In particular, for every r P Rn, there is a unique equilibrium
y˚ to (32), which is globally stable in the sense that for every y0 ą 0, the solution to (32)
which starts at yp0q “ y0 satisfies

yptq ÝÝÝÑ
tÑ8

y˚ .

The Lotka-Volterra model from a physicist standpoint
Previously, mathematical conditions were given for the existence of a feasible equilibrium
and uniqueness of a globally stable equilibrium in (21) where some species may vanish.
However, the richness of the Lotka-Volterra equations stems from the diversity of its dy-
namical behaviors. The lack of mathematical knowledge is supplemented by methods from
physics to improve the understanding on these diverse dynamical behaviors (properties of
the equilibrium, out-of equilibrium dynamics, model sophistication).

Since a long time, the theory of statistical mechanics of disorder systems have been
developed to study spin glasses and replicator system (see Mezard et al. [MPV86] for a
review).

The use of these methods to study biological systems were firstly introduced by
Diederich and Opper [DO89, OD92] and used to study multi-species replicator dynamics
(model equivalent to the Lotka-Volterra system) by Tokita [Tok04]. More recently, these
methods of statistical physics of disorder system have resurfaced to solve problems in
theoretical ecology. In particular, the dynamical cavity method is used to analyze com-
munity dynamics where random interactions between species are considered. Physicists
have divided the space of parameters pµ, α, ρq in a phase diagram where the major issue is
to identify the boundaries between the different phases: unique stable fixed point, chaos
with multiple attractors, unbounded growth, etc.

The cavity method enables to derive mean-field equation approximating a high-dimensional
nonlinear problem. The key concept consist of assuming a unique fixed point exist and
introduce a new species with new interactions in the existing system. After the estab-
lishment of the new species, an analogy between the properties of the solutions with n
and n ` 1 species is verified. This method is used to study the system (21) that admits
a unique stable fixed point but also out of equilibrium dynamics. The dynamics may fall
into a chaotic phase with multiple attractors. Bunin [Bun16, Bun17] used the dynamical
cavity method to conducts and extends more general results (properties of the persisting
species, multiple attractors phase) for the phase diagram of the Lotka-Volterra system
(4). These methods have been used to solve many problems in theoretical ecology. In
particular, Barbier et al. [BABL18] exhibits generic behaviors in complex communities.
For a review on the cavity method applied to community dynamics problems see Barbier
and Arnoldi [BA17].

The model studied by physicists is more generic, disordered Lotka-Volterra system is
given by

dxkptq

dt
“ xkptq

˜

rk ´ xkptq `
ÿ

ℓPrns

Bkℓxℓptq

¸

` λk ` ωk

a

2xkptqηkptq , (33)

where the λk are a migration constants and ωk

a

2xkptqηkptq is a demographic noise term,
ηkptq is random time-varying function.
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The phase diagram studied in Bunin [Bun17] had already been investigated numer-
ically by Kessler and Shnerb [KS15] with the presence of the migration parameter λk.
The Lotka Volterra model with demographic noise term has been investigated recently
by Bunin [Bun21] and Altieri et al. [ARCB21]. The dynamical cavity method enables
to derive dynamical mean-field equation for out-of-equilibrium applications [RBBC19,
RBBB20, ABC20], in particular for the study of the multiple attractors dynamics repre-
sented in Figure 24. Furthermore, Biroli et al. [BBC18] show that multiple equilibrium
regime is analogous to a critical spin-glass phase. For a review of glassy phases in ecolog-
ical systems see Altieri [Alt22].

Figure 24: Dynamics of a 100 species LV system with migration (33) in the chaotic phase
with multiple attractors and parameters µ “ 4, α “ 0.5, @i P rns , λi “ 10´10. The y-axis
is in a log-scale.

An alternative method using generating functional techniques for deriving similar
mean-field equations to study the equilibrium phase in the LV system was used by
Galla [Gal18]. Identical methods was used to derive the eigenvalues of random matrices
[BJRG22b, BJRG22a] and analyze the Lotka Volterra models with different interaction
structure such as cascade model [PBG22].

Other applications are possible, such as the recent work of Fraboul et al. [FBM22] on
mutations in the LV model or the study of the impact on the Allee effect on the phase
diagram by Altieri et al. [AB22].

Contributions

Chapter 1 - Equilibrium and persisting species in a large Lotka-
Volterra system of differential equations
This Chapter is based on a preprint by Clenet, Massol and Najim [CMN22].

In Chapter 1, we focus on the model (23) where matrix B is a simpler version of (24)
admitting the following representation:

B “
A

α
?
n

`
µ

n
1n1J

n ,

where A “ pAkℓq is a matrix with random standardized (EAkℓ “ 0 and VarpAkℓq “ 1)
independent and identically distributed (i.i.d.) entries with finite fourth moment, α ą 0
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is an extra parameter reflecting the interaction strength and µ P R represents an arbitrary
trend of the interactions.

In Theorem 0.34, Bizeul and Najim proved the existence of a threshold α „
a

2 logpnq

in the case µ “ 0, which guarantees the feasibility of the equilibrium x˚ of (23). However,
Dougoud et al. [DVR`18] showed that some species will go to extinction if α ą 0 is
independent of n. The aim of the chapter is to describe the impact of the interaction
strength α and interaction trend µ on the conditions of coexistence of the interacting
species.

First, combining results from Takeuchi and Adachi in Theorem 0.38 with standard
RMT results in Theorem (0.27), we provide sufficient conditions on the parameters α and
µ to ensure the existence of a unique globally stable equilibrium x˚ in large dimension
n Ñ 8. The equilibrium is composed of persisting species and vanishing species.

Later on, given a unique equilibrium x˚, we describe the properties of the persisting
species. In this perspective, we provide a heuristics to compute asymptotically the pro-
portion of persisting species and understand via a system of equations the dependence
between parameters α and µ and the proportion of persisting species. Furthermore, we
show that the distribution of abundance of persistent species is a truncated Gaussian (see
Figure 25).

Figure 25: Distribution of the abundance of persisting species. The x-axis represents
the value of the abundances and the histogram is built upon the positive components of
equilibrium x˚. The solid line represents the theoretical distribution for parameters pα, µq

as given by the heuristics. The entries are Gaussian N p0, 1q and the parameters are set
to pn “ 2000, α “ 2, µ “ 0.2q.

In nature, interactions between species are constantly changing and affected by the
environment. Under the assumptions that environmental conditions influence interaction
strengths, we study the consequences of a sudden change of environmental conditions,
expressed through a decrease in parameter α. When α varies for the same matrix A
and the same parameter µ, the system can display different states. When the value of α
increases above a certain critical value, all species will coexist; conversely, for sufficiently
low values of α, species may vanish while keeping a unique stable equilibrium. We describe
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the change between these two states and how the proportion of persisting species varies by
solving numerically the Lotka-Volterra system. We observe that a decrease in α negatively
affects equilibrium species richness (see Figure 26).

Figure 26: Abundance dynamics in the case of a community of ten species. The matrix of
interactions A and the initial conditions are common and we apply a abrupt variation of
αptq at t “ 30. The dashed lines represents species which benefit from habitat variation;
solid lines represent species suffering from the change. Dotted lines represent species
undergoing extinction.

Finally, we analyze a diversity index (Hill numbers of order 1) to have a more precise
representation of biodiversity dynamics. The dynamics of this diversity measure suggests
that the mean of interaction coefficients, µ, affects the duration of transient dynamics,
with shorter transient dynamics being associated with more mutualistic interactions (i.e.
higher positive values of µ).

Chapter 2 - Equilibrium in a large Lotka-Volterra system with
pairwise correlated interactions
This Chapter is based on the article by Clenet, El Ferchichi and Najim and will be
published in Stochastic Processes and its Applications in November 2022 [CEFN22].

In Chapter 2, we focus on the model (24) where we extend the result on the feasibility
threshold of Bizeul and Najim (0.34). The interaction matrix Bn is a non-centered random
matrix with pairwise correlated entries:

Bn “
An

αn

?
n

`
µ

n
1n1J

n ,

where An “ pAkℓqk,ℓPrns is a random matrix satisfying the two conditions piq pAkℓ, k ď ℓq
are standard Gaussian N p0, 1q independent and identically distributed (i.i.d.) random
variables piiq for k ă ℓ the vector pAkℓ, Aℓkq is a standard bivariate Gaussian vector,
independent from the remaining random variables, with covariance covpAkℓ, Aℓkq “ ρ
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with |ρ| ď 1. The sequence of positive numbers pαnq is either fixed or goes to infinity.
Parameter µ is a fixed real number.

Figure 27: Transition towards feasibility for the elliptic model. For each κ on the x-
axis, we simulate 1000 matrices Bn of size n “ 1000, compute the solution xn of the
feasibility Theorem at the scaling αnpκq “ κ

a

logpnq and then plot the proportion of
feasible solutions obtained for the 1000 simulations. Each curve represents the proportion
of feasible solutions xn for three distinct values ρ P t´0.5, 0, 0.5u. The dot-dashed
vertical line corresponds to κ “

?
2 i.e. the critical scaling α˚

n “
a

2 logpnq.

We prove that feasibility is reached whenever αn "
a

2 logpnq and µ ă 1, and that
there is no feasibility otherwise. Furthermore, the correlation parameter ρ has no influence
since the phase transition threshold is the same as in the i.i.d. case [BN21]: the induced
correlations between components xk’s of solution xn are too weak (see Figure 27). In
addition, we prove that the same phase transition holds if we consider a covariance profile
pρkℓ, k ă ℓq where ρkℓ “ covpAkℓ, Aℓkq instead of a fixed covariance parameter ρ.

Using results by Takeuchi and Adachi (0.38) on stability of LV systems with RMT
results in Theorem 0.33, we establish sufficient conditions for the existence of a unique sta-
ble equilibrium where some species may vanish which represents an extension of Chapter
1.

We finally conclude with an important outcome on estimating the proportion of per-
sisting species. Using physicists’ arguments, we state the open problem, recall Bunin’s
and Galla’s equations and provide simulations of a closed-form system of equations to
compute the proportion of persisting species.

Chapter 3 - Impact of a block structure in large systems of Lotka-
Volterra
This Chapter is an ongoing project between Clenet, Massol and Najim.
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Figure 28: Dynamics of model (24) of 2 distinct communities of 5 species with interaction
matrix (34). At t “ 0, the two communities converges to their feasible equilibrium point
and are not interacting. At t “ 5, the two communities start to interact i.e. α12 and α21
increase with a linear growth until t “ 15. Then, the two communities converges to their
new equilibrium point with persisting and extinct species in both communities.

In Chapter 3, we aim at developing the results of chapter 1 and 2 in an ecosystem
with many communities. In nature, interaction networks are rather structured, which
contributes to the stability of the system. To extend the results of the Lotka-Volterra
model to describe the properties of a multi-community dynamic, we define a block in-
teraction matrix in which we can adapt the intra and inter-community interactions. For
interpretation purposes due to the complexity of the model, we consider the case of two
interacting communities (see Figure 28). Within the framework of 2 communities, the
matrix B “ pBkℓqn,n is defined as

B “
1

?
n

ˆ

A11
α11

A12
α12

A21
α21

A22
α22

˙

`
1
n

ˆ

µ111I11J
I1 µ121I11J

I2

µ211I21J
I1 µ221I21J

I2

˙

, (34)

where:
s “

ˆ

1{α11 1{α12
1{α21 1{α22

˙

, µ “

ˆ

µ11 µ12
µ21 µ22

˙

,

β “ pβ1, β2q,
ř2

i“1 βi “ 1 is the size by proportion of each of the blocks, Ii is a subset
of rns of size |Ii| :“ βin matching the index of species belonging to community i, 1Ii

is a entry wise vector of 1 of size βin. Aij is a non-Hermitian random matrix of size
pβin, βjnq with reduced centered Gaussian entries i.e. N p0, 1q. The matrix s represents
the interaction strength in each block. The trend matrix µ allows to adjust on average
the type of interaction (mutualism, competition) of each block.

In a first section, we extend the feasibility result of Bizeul and Najim (0.34) for a
block interaction matrix where µ “ 0. Using this result, we study the maintenance of the
feasibility of two communities when adding interactions between them. The interactions
between communities reduce the feasibility and if we assume that the communities can
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vary in size and the intra-community interactions are different, the community with the
lowest interaction strength is advantaged i.e. the size of the community can be larger. We
conclude this first part by studying the non-centered case µ ‰ 0, where we give feasibility
conditions using properties on M -matrices.

The second and third parts of this chapter are an extension of the results of Chapter
1 and an ecological interpretation of the results. On the one hand, in the second part,
we study the existence of a unique globally stable equilibrium where species can become
extinct by using a result of Takeuchi and Adachi in Theorem 0.38 and RMT, in particular
the theory on quadratic vector equation. We establish a theorem for the case µ “ 0, then
we study the non-centered case µ ‰ 0 when the strength of interactions is similar in each
block. In contrast to the results in the single-community case, increasing inter-community
competition can destabilize the system. On the other hand, the third part describes the

Figure 29: Distribution of abundance of the persisting species in each community. The
x-axis represents the value of the abundances and the histogram is built upon the positive
components of equilibrium x˚ associated to each community. The blue-solid line (resp.
red-solid line) represents the theoretical distribution of community 1 (resp. community
2) for parameters pα,µq as given the heuristics. The entries are Gaussian N p0, 1q and
the parameters are set to

n “ 1000 , µ “

ˆ

0.5 0.5
0 0

˙

, α “

ˆ

2 3
3 3

˙

, β “

ˆ

1
2 ,

1
2

˙

.

heuristics on the properties and distribution of abundances of persistent species in each
block (see Figure 29). A graphical interpretation of these heuristics highlights several
elements, there is a contagion of diversity: the higher the persistence of a community,
the less its impact will be harmful on the other communities. The decline in persistence
between two interacting communities is not linear but has a double negative effect, hence
the importance of maintaining persistent communities and not neglecting feedback phe-
nomena in community interactions. We conclude with a study of the impact of mutual
and competitive interactions.
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In an fourth section, a numerical similarity study is performed between a model where
the interaction strength varies and a model where the connectance in each of the commu-
nities is varying, which gives an adjacency matrix of the interaction graph known as the
Bernouilli Stochastic Block Model (see Figure 30). This similarity is analyzed through
the stability condition given historically by May [May72].

Figure 30: Representation of an adjacency matrix of the interactions of an ecosystem
of size n “ 200. A graph of a symmetric Stochastic Block model of parameter P “
ˆ

0.6 0.25
0.25 0.1

˙

. A red colored cell indicates Skℓ “ 1, on the contrary, a white colored cell
indicates that there is no interaction Skℓ “ 0.

Chapter 4 - A probabilistic perspective of the hierarchical competition-
colonization trade-off model
This Chapter is an ongoing project between Allesina, Clenet, Della Libera, Massol and
Miller.

In Chapter 4, we study the hierarchical competition-colonization trade-off model (25),
in the case of a hierarchical competition i.e.

ηkℓ “

#

1 if k ă ℓ ,

0 otherwise.

The dynamics of each species’ abundances within the habitat depends mainly on its
colonization rate and its extinction rate. We propose a probabilistic interpretation of the
model by sampling the colonization rates from a given probability distribution with the
same extinction rate for all species. In this framework, we investigate two different types
of assembly processes.

On the one hand, it is assumed that initially the community contains a pool of n
species (all-at-once metacommunity process) and we let the occupancies of all species
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Figure 31: Representation of the distribution of the number of persistent species for a
initial pool of n “ 1000 species and for different distribution of colonization rate. Each
curve is derived using Monte Carlo experiments by computing P “ 100000 times the
all-at-once metacommunity process and store the values obtained to form the outline of a
histogram. The red curve corresponds to the density function of the binomial distribution
Bpn, 1

2q.

Figure 32: Representation of the species richness of the sequential invasion model as a
function of the number of invasions for different distributions. The curve is derived using
Monte Carlo simulations by computing P “ 2000 times and averaging the number of
persistent species.

change in time according to equation (25) where some species persist while others may
vanish. Surprisingly, we obtain a universality result of the distribution of the number
of persistent species. For a wide range of distribution, on average the proportion of
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persistent species is one half. Furthermore, we show (for the uniform distribution) that
the distribution of persistent species is a binomial distribution Bpn, 1{2q (see Figure 31).

In addition to the universality result, we describe the properties of persistent species
by recalling some results of Kinzig et al. [KLD`99] on fraction of empty patches and
occupancies. We end-up this section by clarifying the intermediate disturbance hypothesis
that had been observed by Hastings [Has80] where optimal coexistence between species
occurs when the mortality rate is intermediate.

On the other hand, we study a sequential invasion process. Beginning with an empty
habitat, it is filled by sequentially introducing species whose colonization rates are drawn
according to a specific distribution. We observe that the number of persisting species
saturates with a logarithmic growth due to historical contingencies and extinction cas-
cades (see Figure 32). We analyze the properties of historical contingencies due to the
phenomenon of extinction cascades which is a key element of the saturation phenomenon.

We give some theoretical elements of answer before carrying out a numerical analysis
of the assembly process model. The universality result is no longer true and a major
difference is observed between regular and heavy-tailed distributions. In general, the
heavier the tail, the greater the diversity. This assumption of competition colonization
trade-off show the importance of finding a balance between competitors and colonizers.

To conclude, this probabilistic perspective of the hierarchical competition-colonization
trade-off model put forward and compare two different types of distinct assemblages and
gives conditions for many species to coexist under the competition-colonization trade-off.
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Chapter 1

Equilibrium and persisting species in
a large Lotka-Volterra system of
differential equations

Abstract
Lotka-Volterra (LV) equations play a key role in the mathematical modeling of various
ecological, biological and chemical systems. When the number of species (or, depending
on the viewpoint, chemical components) becomes large, basic but fundamental questions
such as computing the number of persisting species still lack theoretical answers. In this
paper, we consider a large system of LV equations where the interactions between the var-
ious species are a realization of a random matrix. We provide conditions to have a unique
equilibrium and present a heuristics to compute the number of surviving species. This
heuristics combines arguments from Random Matrix Theory, mathematical optimization
(LCP), and standard extreme value theory. Numerical simulations, together with an em-
pirical study where the strength of interactions evolves with time, illustrate the accuracy
and scope of the results.
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1.1 Introduction
Since May’s seminal work [May72] and for the past decades, many theoretical studies
addressed the issue of the coexistence of species in ecosystems.

Introduced in the 1920s by Lotka [Lot25] and Volterra [Vol26], the Lotka-Volterra
(LV) model is a well-known classic in theoretical ecology and mathematics. It represents
a first step in our understanding of ecosystems through the variety of its dynamical be-
haviours (single or multiple equilibria, cycles, chaos), its flexibility (many models can be
approximated in the form of a LV model) and its mathematical calculability.

In this article, we consider large LV models with random parameters. Leveraging on
the asymptotic understanding of large random matrices which naturally appear enables
us to provide insights on equilibria and species coexistence for such models.

Model and assumptions.
Large Lotka-Volterra systems of differential equations arise in various scientific fields such
as biology, ecology, chemistry, etc. Although our results are generic in nature and not
specific to a given field, we will rely on the ecological terminology in the sequel.

A large system of Lotka-Volterra equations is a system of coupled ordinary differential
equations (ODE) that write:

dxkptq

dt
“ xkptq

˜

rk ´ θxkptq `
ÿ

ℓPrns

Bkℓxℓptq

¸

, (1.1)

where k P rns “ t1, ¨ ¨ ¨ , nu.
Here, n represents the number of species in a food web or community, the unknown

vector x “ pxkqkPrns is the vector of abundances of the various species and evolves with
time t ą 0 according to the dynamics (1.1). Parameter rk represents the intrinsic growth
rate of species k, θ is an intraspecific feedback coefficient (most often positive due to
competition), and Bkℓ is the per capita effect of species ℓ on species k.
Remark 1.1. Notice that without interactions, i.e. B “ pBkℓqk,ℓPrns “ 0 , system (1.1) is
simply a system of uncoupled logistic differential equations.

We shall focus on the model where rk “ θ “ 1:
dxk

dt
“ xk p1 ´ xk ` pBxqkq , k P rns (1.2)

with matrix B admitting the following representation:

B “
A

α
?
n

`
µ

n
11T ,

where A “ pAijq is a matrix with random standardized (EAij “ 0 and varpAijq “ 1)
independent and identically distributed (i.i.d.) entries with finite fourth moment, α ą 0
is an extra parameter reflecting the interaction strength, and µ P R represents an arbitrary
trend of the interactions. The n ˆ 1 vector 1 is a vector of ones.
Remark 1.2. Although matrix B is a complex random object, a result by Tao [Tao13,
Theorem 1.7] fully describes its asymptotic spectrum: Assume that |µ| ą 1{α, then for
any fixed ε ą 0, almost surely eventually all the eigenvalues of B but one are in the disk
tz P C : |z| ď 1{α ` εu while one extra eigenvalue takes the value µ ` op1q.

Remark 1.2 is illustrated in Fig. 1.1.
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(a) No outlier (µ “ 0) (b) Presence of an outlier (µ “ 2)

Figure 1.1: Spectrum of non-Hermitian matrix B in the complex plan (n “ 1000, α “ 1).
In Fig. 1.1a, µ “ 0 and the solid line circle represents the boundary of the circular law.
In Fig. 1.1b, µ “ 2 and there is an eigenvalue in the small dashed circle centered at 2, as
predicted by [Tao13, Th. 1.7] - see also Remark 1.2.

Presentation of the main results.
Unique equilibrium. In the study of the behaviour of xptq as t Ñ 8 the existence of
an equilibrium x˚ to Eq. (1.2) is an important prior to any stability property of xptq. By
equilibrium, we mean the existence of a vector x˚ “ px˚

kq satisfying

x˚
kp1 ´ x˚

k ` pBx˚
qkq “ 0 for k P rns .

General results on LV systems state that xptq ą 0 (componentwise) as long as xp0q ą 0
[HS98]. However, a possible equilibrium x˚ will only verify x˚ ě 0, i.e. some components
x˚

k may take the value zero.
In Theorem 1.2, we provide sufficient conditions on the parameters α and µ to ensure

the existence of a unique equilibrium. These conditions rely on the “typical” behaviour
of the random matrix B in large dimension n Ñ 8.

Evaluating the number of surviving species. Given a unique equilibrium x˚, an
important question is to describe the set of surviving/vanishing species. In this perspec-
tive, we introduce the set

S “ ti P rns, x˚
i ą 0u (1.3)

of surviving species. In Section 1.3, we provide a heuristics to compute asymptotically the
ratio |S|

n
and understand via a system of equations the dependence between parameters

α and µ and the number of surviving species. A complementary result addressing the
elliptic random matrix model by means of theoretical physics methods can be found in
[Bun17] (dynamical cavity method) and in [Gal18] (generating functional techniques).

Notice that in [BN21], Bizeul and Najim have studied a different normalization for α
in the case µ “ 0, namely α „

a

2 logpnq, to guarantee the survival of every species (fea-
sibility of the equilibrium). Indeed, a consequence of Dougoud et al.’s results [DVR`18] is
that some species will go to extinction if α ą 0 is fixed (i.e. does not increase sufficiently
with n).

An empirical study of LV systems with changing interaction strengths.
Equipped with results on the existence of a unique equilibrium, one pending question is
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to understand what happens when the coefficient α varies for the same matrix A and
the same parameter µ. In particular, when the value of α increases above a certain
critical value, all species will coexist [BN21]; conversely, for sufficiently low values of α,
the existence of a feasible equilibrium is not warranted anymore, however a unique and
stable equilibrium may exist. How species equilibrium abundances change between these
two states and how |S| varies will be the focus of Section 1.4.

Notations
Denote by ρpCq the spectral radius of matrix C, by }C} the spectral norm of matrix C,
and by }u} the euclidean norm of vector u. We represent by δx the Dirac measure at x:

δxpEq “

#

1 if x P E

0 else
.

We denote by a.s.
ÝÝÑ the almost sure convergence of random quantities and by weak

ÝÝÝÑ the
weak convergence of measures. Given a set S, we denote by |S| its cardinality.

1.2 Equilibrium and stability results
A primer on Random Matrix Theory. We first recall some results on Random
Matrix Theory (RMT), which provides a number of valuable insights to understand the
asymptotic behaviour of A. We begin by the almost sure (a.s.) convergence of the spectral
radius and the spectral norm:

ρpA{
?
nq

a.s.
ÝÝÝÑ
nÑ8

1 and }A{
?
n}

a.s.
ÝÝÝÑ
nÑ8

2 .

We also have the a.s. weak convergence of the spectral measure of A{
?
n to the circular

law (see for instance [BC12]):

pa.s.q
1
n

ÿ

kPrns

δλkpA{
?

nq
weak

ÝÝÝÑ
nÑ8

1tx2`y2ď1u

π
dx dy ,

where pλkpA{
?
nq; k P rnsq is the spectrum of A{

?
n. This convergence is illustrated in

Fig. 1.1a.
The description of the spectral norm of the deterministic part of matrix B is more

straightforward:
›

›

›

›

µ
11T

n

›

›

›

›

“ |µ| .

Notice that both the random and deterministic parts of matrix B do not vanish asymp-
totically and thus have a macroscopic effect on the dynamics of system (1.1), as recalled
in Remark 1.2 where the asymptotic spectrum of B is described.

The non-invadability condition. A key element to understand the dynamics of the
LV system (1.1) is the existence of an equilibrium x˚ “ px˚

kqkPrns such that
#

x˚
k p1 ´ x˚

k ` pBx˚qkq “ 0 , @k P rns ,

x˚
k ě 0.

(1.4)
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and the study of its stability, that is the convergence of a solution x to the equilibrium
x˚: xptq ÝÝÝÑ

tÑ8
x˚ if xp0q is sufficiently close to x˚.

It is well known that for LV equations, the fact that xp0q ą 0 (componentwise) implies
that xptq ą 0 for every t ą 0, but one can have some components xkptq of xptq vanishing
to zero. As a consequence, we will only consider non negative equilibria x˚ ě 0 with
possibly vanishing components.

Notice that the situation substantially differs whether x˚ ą 0 or x˚ has vanishing
component. In the former case, the equilibrium set of equations becomes a linear equation:

x˚
“ 1 ` Bx˚ .

In the latter case, the equilibrium equations are no longer linear.
In the centered case µ “ 0, the existence of a positive solution has been studied in

[BN21] and requires α "
a

2 logpnq (while we consider α fixed here).
A naive and systematic way to solve (1.4) is to choose a priori a subset I Ă rns, to

set the corresponding components xI “ px˚
i qiPI to zero, and to solve the remaining linear

system:
xIc “ 1|Ic| ` BIcxIc .

If there exists xIc ě 0 that solves the previous equation, then x “

ˆ

xI
xIc

˙

satisfies (1.4)

and is a potential equilibrium. The number of subcases I Ă rns is 2n and in particular
exponentially grows as n Ñ 8.

In order to decrease the number of potential solutions to (1.4), we first notice that
relying on standard properties of dynamical systems, see for instance [Tak96, Theorem
3.2.5], a necessary condition for the equilibrium x˚ to be stable is that

1 ´ x˚
k ` pBx˚

qk ď 0 . (1.5)

The condition (1.5) is better known in ecology as the non-invadability condition [LM96].
In reference to the ODE (1.2), the requirement for a given species k P rns to be non-
invasive is equivalent to:

ˆ

1
xk

dxk

dt

˙

xkÑ0`

ď 0 . (1.6)

The main interpretation is as follows: if one adds species k with a very low abundance in
the system, it will not be able to invade the system as a result of condition (1.6).

As a consequence, we will now focus on the following set of conditions:
$

&

%

x˚
k p1 ´ x˚

k ` pBx˚qkq “ 0 for k P rns ,
1 ´ x˚

k ` pBx˚qk ď 0 for k P rns ,
x˚ ě 0 componentwise .

(1.7)

This casts the problem of finding a non negative equilibrium into the class of Linear
Complementarity Problems (LCP), which we describe hereafter.

Linear Complementarity Problem (LCP). LCP is a class of problems from math-
ematical optimization which in particular encompasses linear and quadratic programs;
standard references are [Mur88, CPS09]. Given a n ˆ n matrix M and a n ˆ 1 vector
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q, the associated LCP denoted by LCP pM, qq consists in finding two n ˆ 1 vectors z,w
satisfying the following set of constraints:

$

&

%

z ě 0 ,
w “ Mz ` q ě 0 ,
wT z “ 0 ô wkzk “ 0 for all k P rns .

(1.8)

Since w can be inferred from z, we denote z P LCP pM, qq if pw, zq is a solution of (1.8).
A theorem by Murty [Mur72] states that the LCP pM, qq has a unique solution pw, zq

iff M is a P -matrix, that is:

detpMIq ą 0 , @ I Ă rns , MI “ pMkℓqk,ℓPI .

In view of (1.7), we look for x˚ P LCP pI ´ B,´1q.

The equilibrium x˚ and its stability. For a generic LV system

d ykptq

dt
“ ykprk ` pCyqkq , k P rns , (1.9)

Takeuchi and Adachi (see for instance [Tak96, Th. 3.2.1]) provide a criterion for the
existence of a unique equilibrium y˚ and the global stability of the LV system.

Theorem 1.1 (Takeuchi and Adachi [TA80]). If there exists a positive diagonal matrix
∆ such that ∆C `CT ∆ is negative definite, then LCP p´C, rq admits a unique solution.
In particular, for every r P Rn, there is a unique equilibrium y˚ to (1.9), which is globally
stable in the sense that for every y0 ą 0, the solution to (1.9) which starts at yp0q “ y0
satisfies

yptq ÝÝÝÑ
tÑ8

y˚ .

Combining this result (setting C “ ´pI´Bq) with results from RMT, we can guarantee
the existence of a globally stable equilibrium x˚ of (1.1) for a wide range of the set pα, µq.
Denote by

A “

#

pa,mq P R˚
` ˆ R : a ą

?
2, m ă

1
2 `

1
2

c

1 ´
2
a2

+

(1.10)

the set of admissible parameters.

Theorem 1.2. Let pα, µq P A, then a.s. matrix pI ´Bq ` pI ´BqT is eventually positive
definite: with probability one, for a given realization ω, there exists Npωq such that for
n ě Npωq, pI ´ Bωq ` pI ´ BωqT is positive definite. In particular, there exists a unique
(random) globally stable equilibrium x˚ P LCP pI ´ Bω,´1q to (1.7).

Optimal conditions for the stability of x˚. In Theorem 1.2, we provided a sufficient
condition, namely pα, µq P A, which guarantees the stability of the LV system. If µ “ 0,
this condition simply writes α ą

?
2.

A natural question is to find the optimal condition over α (we consider the extra
condition µ “ 0) to have stability. Such a question is challenging and we explore a
possible phase transition via numerical simulations. These simulations indicate that

α˚
“

1
?

2
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Figure 1.2: The shaded area represents the set A given by (1.10) yielding the existence
of a unique (random) globally stable equilibrium x˚. Area A is divided into two zones
B and C. Both zones correspond to parameters (α, µ) for which matrix 2I ´ pB ` BT q

is definite positive, as stated in Theorem 1.2. In zone B, λmaxpB ` BT q corresponds to
a spiked eigenvalue (µ above the critical threshold pα

?
2q´1). In zone C, λmaxpB ` BT q

corresponds to the right edge of the semi-circle law. Notice that zone C extends to negative
values along the y-axis.

seems to be a threshold above which stability is granted and below which some species’
abundances explode. This threshold already appears in [Bun17, Fig. 2].

To support this conjecture, we proceed with a Monte-Carlo experiment to compute
the standard deviation, one of the many measures which can characterize early warning
signals preceding a transition in an ecosystem [KDS`13].

Let α be fixed and P be the number of Monte-Carlo repetitions. Draw randomly the
initial abundances and the interaction matrix B. Then let the dynamics of the LV system
(1.2) run for a “sufficiently long” time T (to observe either an explosion of a species
abundance or the convergence of the abundance vector). Let s P N be the precision of
the numerical scheme and ts “ T . Denote by

xd
kpt0q, xd

kpt1q, ¨ ¨ ¨ , xd
kptsq

the time discretization of the dynamics of the abundance xkptq of species k for t P r0, T s

as obtained by the Runge–Kutta methods. Define by

SDp “
1
n

n
ÿ

k“1

»

–

1
50

s
ÿ

i“s´50
pxd

kptiqq
2

´

˜

1
50

s
ÿ

i“s´50
xd

kptiq

¸2
fi

fl

1{2

the standard deviation of experiment number p. Numerically, we say that the abundance
of a species has unbounded growth if for some k P rns there exists s0 P r0, ss such that
xd

kpts0q is no longer a number (NaN) indicating the explosion of the abundance of species
k and thus the explosion of SDp. In this case, we set

SDp “ 8 .

Consider now the two following indicators.
1. The global standard deviation:

SD “
1
P

P
ÿ

p“1
SDp1tSDpă8u .
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(a) Proportion of unbounded growth. (b) Standard deviation

Figure 1.3: The dotted line represent the physicist threshold at 1{
?

2 and the dashed line
the expected P-matrix threshold at 1. In Fig. 1.3a, the proportion of unbounded growth
as a function of the interaction strength (α) is displayed. In Fig. 1.3b, the standard
deviation defined in (1.2) is illustrated as a function of the interaction strength (α).

2. The proportion of unbounded growth dynamics corresponding to

1
P

P
ÿ

p“1
1tSDp“8u .

The results of the numerical simulations are displayed in Figure 1.3. We observe that the
proportion of unbounded growth significantly increases as it approaches the α˚ “ 1{

?
2

threshold. The simulations show a non-linear increase of the standard deviation SD when
α gets closer to α˚ which can be seen as a early warning signal. Notice that when explosion
occurs, the equilibrium remains unique and stable if α ą α˚.

1.3 A heuristic approach to the proportion and dis-
tribution of the surviving species

1.3.1 Proportion of surviving species
In Section 1.2, we have presented conditions on parameters α, µ for the existence of
a globally stable equilibrium x˚ to (1.1) under the non-invadability condition. As x˚

depends on the realization of matrix B, it is a random vector. Moreover since α ą 0 is
fixed and does not depend on n, the equilibrium x˚ will feature vanishing components
(see the original argument in [DVR`18] and the discussion in [BN21]). In an ecological
context, we shall refer to these non-vanishing components as the surviving species, the
vanishing components corresponding to the species going to extinction with x˚

k “ 0 and
xkptq ÝÝÝÑ

tÑ8
0 .

In this section, we assume that the Aij’s are N p0, 1q-distributed and describe the
proportion of non-vanishing components of the equilibrium x˚; we also describe the dis-
tribution of the surviving species x˚

i ą 0 which turns out to be a truncated Gaussian.
Remark 1.3. The Gaussianity assumption facilitates the explanation of the heuristics but
does not seem necessary for the result to hold. In Fig. 1.6b, the entries are not consid-
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ered Gaussian but the distribution of the surviving species still matches the truncated
Gaussian.

Given the random equilibrium x˚, recall the definition of S in (1.3). We introduce the
following quantities:

p̂ “
|S|

n
, m̂ “

1
|S|

ÿ

iPrns

x˚
i , σ̂2

“
1

|S|

ÿ

iPrns

px˚
i q

2 .

Notice that in the definitions of m̂ and σ̂˚ we can replace
ř

iPrns
by

ř

iPS .
Denote by Z „ N p0, 1q a standard Gaussian random variable and by Φ the cumulative

Gaussian distribution function:

Φpxq “

ż x

´8

e´ u2
2

?
2π

du .

Recall the definition of the set A in (1.10).

Heuristics 1.1. Let pα, µq P A. The following system of three equations and three un-
knowns pp,m, σq

σ
?
pΦ´1

p1 ´ pq ` αp1 ` µ pmq “ 0 , (1.11)

1 ` µ pm `
σ

?
p

α
EpZ | Z ą ´δq “ m, (1.12)

p1 ` µ pmq
2

` p1 ` µ pmq
2σ?

p

α
EpZ | Z ą ´δq

`
σ2p

α2 EpZ2
| Z ą ´δq “ σ2 (1.13)

where
δ “ δpp,m, σq “

α

σ
?
p

p1 ` µpmq , (1.14)

admits a unique solution pp˚,m˚, σ˚q and

p̂
a.s.

ÝÝÝÑ
nÑ8

p˚ , m̂
a.s.

ÝÝÝÑ
nÑ8

m˚ and σ̂
a.s.

ÝÝÝÑ
nÑ8

σ˚ .

Associated to this solution pp˚,m˚, σ˚q is δ˚ “ δpp˚,m˚, σ˚q.

There is a strong matching between the parameters obtained by solving (1.11)-(1.13)
and their empirical counterparts obtained by Monte-Carlo simulations. This is illustrated
in Fig. 1.4. In Fig. 1.5, we illustrate the sensitivity of σ˚ to the parameters pα, µq.
Remark 1.4. The heuristics above substantially simplifies in the centered model case,
where µ “ 0 and B “ A

α
?

n
. Following (1.20) – see Appendix 1.B, assume that α ą

?
2.

Then the system with two unknowns pp, σq

$

&

%

σ
?
pΦ´1p1 ´ pq ` α “ 0

1 `
2σ

?
p

α
EpZ | Z ą ´δq `

σ2p
α2 EpZ2 | Z ą ´δq “ σ2

where δ “
α

σ
?
p

admits a unique solution pp˚, σ˚q. Moreover, p̂ a.s.
ÝÝÝÑ
nÑ8

p˚ and σ̂
a.s.

ÝÝÝÑ
nÑ8

σ˚.
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(a) Parameters pp˚, σ˚, m˚q versus α. (b) Parameters pp˚, σ˚, m˚q versus µ.

Figure 1.4: The plots represent a comparison between the theoretical solutions pp˚, σ˚,m˚q

of (1.11)-(1.13) and their empirical Monte Carlo counterpart (the star marker) as functions
of the interaction strength α (left) and the interaction drift µ (right). Matrix B has size
n “ 500 and the number of Monte Carlo experiments is 200. In Column (1.4a), µ “ 0
and α ą

?
2 on the x-axis (which guarantees a unique and stable equilibrium x˚). When

interaction α´1 increases, the number of surviving species p˚ decrease but their variance
σ˚ and mean m˚ increase. In Column (1.4b), α “ 2 and µ P p´0.5, 0.5q on the x-axis.
The interaction drift appears to have no impact on the proportion p˚ of surviving species,
whereas it influences their variances and means.

1.3.2 Distribution of surviving species

In the previous section, the proportion p̂ of the surviving species, their mean m̂ and second
moment σ̂2 have been described as empirical counterparts of the solutions p˚,m˚, pσ˚q2

of a system of equations. While establishing this system of equations, we will provide the
following representation (see (1.23) in Appendix 1.C) of the abundance x˚

k of a surviving
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Figure 1.5: The 3D plot represents σ˚ “ σ˚pα, µq, solution of the system (1.11)-(1.13).
In contrast to the proportion of persisting species p˚, we observe that µ has a major
influence over σ˚. The graph for the theoretical value of m˚ has approximately the same
behavior with respect to µ and α.

species:
x˚

k “ 1 ` µ p˚m˚
`
σ˚

?
p˚

α
Zk ,

where Zk „ N p0, 1q and Zk ą ´δ˚ “ ´δpp˚,m˚, σ˚q, δ being defined in (1.14). We take
here advantage of this representation to characterize xk’s distribution, which turns out to
be a truncated Gaussian.

Heuristics 1.2. Let pα, µq P A, x˚ the solution of (1.7) and let pp˚,m˚, σ˚q the solution of
the system (1.11)-(1.13). Recall the definition (1.14) of δ and denote by δ˚ “ δpm˚, p˚, σ˚q.
Let x˚

k ą 0 a positive component of x˚, then:

Lpx˚
kq ÝÝÝÑ

nÑ8
L
ˆ

1 ` µp˚m˚
`
σ˚

?
p˚

α
Z

ˇ

ˇ

ˇ

ˇ

Z ą ´δ˚

˙

,

where Z „ N p0, 1q. Otherwise stated, asymptotically x˚
k admits the following density

fpyq “
1tyą0u

Φpδ˚q

α

σ˚
?

2π p˚
exp

#

´
1
2

ˆ

α

σ˚
?
p˚
y ´ δ˚

˙2
+

.

The heuristics simply follows from the fact that if x˚
k is a surviving species then

x˚
k “ 1 ` µ p˚m˚

`
σ˚

?
p˚

α
Zk

conditionally on the fact that the right hand side of the equation is positive, that is
Zk ą ´δ˚. A simple change of variable yields the density - details are provided in
Appendix 1.C.

Fig.1.6 illustrates the matching between the theoretical distribution obtained in Heuris-
tics 1.2 and a histogram obtained by Monte-Carlo simulations. It also illustrates the
validity of the heuristics beyond the gaussiannity assumption of the entries.
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(a) Gaussian entries. (b) Uniform entries.

Figure 1.6: Distribution of surviving species. The x-axis represents the value of the
abundances and the histogram is built upon the positive components of equilibrium x˚.
The solid line represents the theoretical distribution for parameters pα, µq as given by
Heuristics 1.2. In Fig. (1.6a), the entries are Gaussian N p0, 1q and the parameters are set
to pn “ 2000, α “ 2, µ “ 0.2q. In Fig. (1.6b), the entries are uniform Up´

?
3,

?
3q with

variance 1 and the parameters are set to pn “ 2000, α “
?

3, µ “ 0q. Notice in particular
that the theoretical distribution matches with non-Gaussian entries.

1.4 Switching between equilibria: changing interac-
tion strength

In the previous sections, the strength α of the interactions was fixed, cf. equation (1.2).
However, in nature interactions between species are constantly changing due to e.g. abiotic
factors such as temperature, which affect the rate at which individuals forage for prey, etc.
Our contribution is rooted in the framework of asymptotic dynamics, but many recent
ecological studies highlight the importance of taking into account both transient dynamics
(out-of-equilibrium abundance values due to frequent perturbations) and shifts between
equilibria due to changing environmental conditions [Has01, FN11, NA16]. In the sequel,
we discuss a more general framework.

The model and intuition. If we restrict ourselves to a specific environment, a pos-
sible ecological interpretation of the fluctuation of interaction strength corresponds to
the relationship between the size of the habitat and the probability of contact between
individuals from two interacting species (e.g. think of a pool of freshwater containing
piscivorous fishes and their prey species – interactions, be them competition or predation,
would be potentially more frequent if the volume of water was reduced). In physics, think
of particles in motion in a given volume: if the number of particles and the temperature
stay constant, reducing the volume should increase the number of interactions between
particles.

From a model standpoint, let µ be fixed, α “ αptq : R` Ñ p
?

2,8q. Consider
dxk

dt
“ xk p1 ´ xk ` pBtxqkq , k P rns , (1.15)

where matrix Bt admits the following representation

Bt “
A

αptq
?
n

`
µ

n
11T and pαptq, µq P A .
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Remark 1.5. Following Theorem 1.2, condition pαptq, µq P A guarantees that there exists
a unique equilibrium x˚ptq for every t P R`.

We focus on the case of a system that fluctuates between two equilibrium points
(Figure 1.7a). We consider a sudden incident, most often irreversible in the short term,
which reduces a portion of habitat, e.g. forest fires. The system transits from a feasible
state to a state with vanishing species due to the change of the strength of interactions,
modelled by the following step function:

αptq “ α11r0,t0q ` α21rt0,`8q, pα1, α2, t0q P p
?

2,`8q
2

ˆ R` (1.16)

The change of model parameter occurs at t0 which causes a change in the strength of the
interactions going from a value α1 to α2. One may choose α2 ă α1 and the difference (or
ratio) between the two values represents the intensity of the incident.

In large dimension, it is possible to characterize this change by its impact on the
number of surviving species in the system (1.15). At a given time t, the proportion of
surviving species p “ pptq P r0, 1s can be computed by resolving the system in Heuristics
1.1. This function, associated to the step function α given in (1.16), is represented in
Figure 1.7b.

(a) Step function αptq (b) Proportion of surviving species pptq

Figure 1.7: (a) Variation of the interaction strength through time, used in the dynamics
of a ten-species system depicted in Figure 1.8 (α1 “ 2.5, α2 “ 1.5). The dotted line
represents the feasibility threshold associated to the system.
(b) Variation of the proportion of surviving species depending of the variation of αptq in
(a).

In the case of a sudden incident, the proportion of surviving species predicted by the
heuristics has a form similar to αptq i.e. a step response. In the feasible state, pptq is
close to 1 (i.e. all species coexist); after the transition occurs, some species vanish and
here pptq « 0.87. Beware that the heuristics results follow instantaneously the change
of α; however, there is a smoother transition in the dynamics between the two equilibria
(respectively corresponding to α1 and α2) due to the return rate to equilibrium, see for
instance [NC97], [ABLH18]). This transition is illustrated in Figure 1.8.

Simulations. We provide hereafter a simulation-based analysis of the impact of the
sudden incident on a given ecosystem: Define a ten-species system (1.15) with a fixed
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matrix of interactions A with Gaussian entries N p0, 1q and consider α “ αptq as in Fig.
1.7a.

This scenario has a mixed impact on the community, see Fig. 1.8. While some
species benefit from this change through an increase in their abundances, others are
severely affected by this shift, some of which become extinct. This phenomenon can be
understood as follows: at first (t ď t0), the system admits a feasible equilibrium state with
α “ α1 “ 2.5 ą

a

2 logp10q » 2, 14 and the abundances converge to this equilibrium (see
Figure 1.7a). When the transition occurs at t “ t0, Theorem 1.2 ensures the convergence
to a new equilibrium defined by parameter α2. Since α2 “ 1.5 is below the feasibility
threshold

a

2 logp10q » 2.14, some species vanish. In other words, this sudden change of
model parameter causes an increase of interaction strengths, which has a negative impact
on species diversity.

Figure 1.8: Abundance dynamics in the case of a community of ten species. The matrix
of interactions A and the initial conditions are common and we apply the function of
variation αptq given in Figure 1.7a. The dashed lines represents species which benefit
from habitat variation; solid lines represent species suffering from the change. Dotted
lines represent species undergoing extinction.

Evolution of diversity Finally, we illustrate the evolution of diversity using diversity
indicators more suited to the description of changes such as the one represented in Fig.
1.8 [Jos06]. We introduce here Shannon diversity H 1, a standard measure of biodiversity
in ecology, which is given by

H 1
“ ´

ÿ

i

xi
ř

j xj

log
˜

xi
ř

j xj

¸

(1.17)
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and ranges from 0 (one species completely dominates the community) to logpnq, when
each species is equally abundant. When many species become rare while others become
more abundant, H 1 drops. Because H 1 varies before species actually vanish, it is a more
sensitive index of community diversity than species richness.

The Hill number of order 1, defined as eH 1 , is a diversity measure that takes into
account species abundances and varies between 1 and n, i.e. it behaves like an “effective
species richness”, see e.g. [Jos07].

In Fig. 1.9a, we represent the mean of this diversity measure over time for a hundred-
species system and observe a negative impact of the variation of the strength of the
interactions on diversity. Parameter µ has no impact on diversity at equilibrium (similarly,
µ has no impact on the proportion of persistent species), but the lower the value of
µ, the slower the transition to a new equilibrium. In other words, the more generally
“competitive” the ecosystem is (i.e. very negative values of µ), the longer it takes for
transient dynamics to settle near equilibria.

The evolution of the Hill number of order 1 complements the evolution of species
richness: when α decreases, the expected number of surviving species decreases (Fig.
1.7); at the same time, eH 1 decreases even more drastically as the abundance distribution
of surviving species gets more heterogeneous. Figure 1.9b also shows that the variability
of the Hill number of order 1 among simulations increases drastically when α decreases.
The conclusion is that the more species are lost, the more difficult it is to predict the
diversity index as σ˚ depends on α and strongly influences eH 1 .

(a) Impact of µ (b) Variability of Hill number eH 1

Figure 1.9: Dynamics of the Hill number of order 1 in the case of an ecosystem of a hundred
species. The initial conditions are similar for each species. We define an interaction matrix
A and let the dynamics of Lotka-Volterra evolve according to model (1.15) and we apply
the function of variation αptq of Figure 1.7a. For each time step, we compute eH 1 . We
repeat this scheme a large number of times (here 500), and we average the time series. In
(a), we apply this procedure for different values of µ. In (b), we apply this procedure for
a fixed µ “ 0 and compute the quantiles of the 500 trajectories.

Theoretical estimation of diversity. Standard mathematical methods (Taylor’s the-
orem) can be used to obtain a theoretical approximation of the Hill number of order 1
(details are provided in Appendix 1.D.1):

eH 1

« np˚

ˆ

3
2 ´

1
2

pσ˚q2

pm˚q2

˙

. (1.18)
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This estimator is based on the properties of the persistent species pp˚,m˚, σ˚q calculated
by solving the fixed point equation of the heuristics (1.1). These three properties depend
on the type of the interactions, as indicated by parameters pα, µq (Figure 1.4). We compare
the accuracy of this estimator with two examples in which the strength of the interactions
pαq and the interaction drift pµq vary (Figure 1.10).

On the one hand, a shift of the interaction drift µ does not affect the proportion of
surviving species. Furthermore, the impact of µ on σ˚ and m˚ is proportional i.e. σ˚

m˚ is
equal to a constant. For these reasons, µ does not affect the Hill number (Figure 1.10b).
On the other hand, if α increases, then p˚,m˚, σ˚ ÝÝÝÝÑ

αÑ`8
1 and eH 1

Ñ n which is makes
sense because when α becomes very large, all abundances converge to 1. If α decreases: p˚

decreases, and σ˚ increases faster than m˚. This confirms that eH 1 decreases even more
drastically as the abundance distribution of surviving species gets more heterogeneous
(Figure 1.10a).

(a) Impact of α (b) Impact of µ

Figure 1.10: Evolution of the Hill number of order 1 as a function of α (a) and µ (b).
The theoretical solutions (solid line) are computed by resolving (1.1) and integrating
the parameter pp˚, σ˚,m˚q in equation (1.18). The empirical solutions (star marker) are
computed by a Monte-Carlo experiment (100 experiments): we define a matrix B of size
100 ˆ 100, solve the LCP problem and calculate the associated Hill number eH 1 using
(1.17).

1.5 Discussion
In this paper, our main interest was to describe the impact of the strength α and mean µ
of interactions in large LV models on the conditions of coexistence of interacting species.
Combining results from Takeuchi [Tak96] with standard RMT results, we have provided
insights into the study of stability of large random ecosystems - see [Sto18, GGRA18].

We have characterized the unique equilibrium properties of the surviving species by
resolving a system of equations. From a physicist point of view, similar equations were
obtained by Opper and Diederich [OD92] and studied in a more general framework by
Bunin using the dynamical cavity method [Bun17] and Galla [Gal18] using generating
functional techniques.

The coexistence of many species in random ecosystems was also studied by Servan et
al. [SCG`18] and Pettersson et al. [PSNJ20], where a more generic case was analyzed
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with different growth rates. Grilli et al. [GAS`17] identified the key quantities regulating
the parameter space leading to feasible communities. In contrast to previous approaches,
an important feature of our model is the monitoring of the impact of interactions by a
normalization factor (α

?
n). From an ecological point of view, one might expect that the

larger the number of species, the weaker the interactions will be due to some dilution
of interactions among potential interaction partners, which would justify the use of such
normalization factors. From a mathematical viewpoint, the normalizing parameter α
captures the range of a unique equilibrium and the threshold for feasibility.

In nature, interactions between species are constantly changing and affected by the
environment. Under the assumptions that environmental conditions influence interaction
strengths, we have endeavoured in Section 1.4 to study the consequences of a sudden
change of environmental conditions, expressed through a decrease in parameter α. Solv-
ing numerically the Lotka-Volterra system confirms the predictions given by heuristics,
i.e. that a decrease in α negatively affects equilibrium species richness. A more precise
representation of biodiversity dynamics can be obtained through Hill numbers of order 1
which also decreases after the sudden change in α. The dynamics of this diversity mea-
sure suggests that the mean of interaction coefficients, µ, affects the duration of transient
dynamics, with shorter transient dynamics being associated with more mutualistic inter-
actions (i.e. higher positive values of µ).

Many questions naturally arise as a follow-up. First, a mathematical proof of the
heuristics presented here is a challenging prospect because the LCP procedure induces a
statistical dependence that is a priori difficult to handle. However, looking for this proof
will certainly help extend the results to other underlying assumptions on the parameters
of the LV system.

Regarding the extension of the heuristics to other assumptions, two situations could be
of particular interest: non-centered elliptical matrix models as in Bunin [Bun17] and LV
models in which species growth rates are also controlled as in [SCG`18]. We are confident
that such extensions are possible, but might hinge on more sophisticated developments,
in particular to include growth rates in the calculus of order statistics.

In this paper we have only considered the case of a full interaction matrix with param-
eters pα, µq. However, food webs are often structured in compartments [BDB`11] and/or
obey hierarchies (e.g. larger species eat smaller ones) [BAB`19]. By a numerical analysis
of LV systems, one could use the same tools to study more patterned matrices [AT12].
Recent studies emphasize the sparsity of real food webs [BSHM17]. Beyond the feasibility
studied by Akjouj and Najim [AN21], one could also study the existence and stability of
a unique equilibrium in a sparse context.

Finally, variations of the interaction strength highlight the impact of habitat destruc-
tion. Many theoretical studies provide mathematical formulas for the return rate to
equilibrium [NC97, ABLH18]. A further theoretical study of model (1.15) could provide
a more quantitative answer. In this article, we have limited the analysis to the case of a
single sudden incident, but other types of fluctuations for the interaction strength could
be considered for a better understanding of habitat conservation phenomena. For exam-
ple, a seasonal model could be appropriate to describe the evolution of the dynamics over
the seasons.
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Appendix

1.A Simulation details
Simulations were performed in Python. All the figures and the code are available on
Github [Cle22a].

Simulations on the properties of surviving species are performed in two different ways.
The theoretical solutions are obtained resolving numerically the system of equations of
heuristics 1.1. We use a solver (cf. scipy.optimize) to find a local minimum of the function
defined by the system of equations (a modification of the Powell hybrid method). The
empirical solutions are computed using a Monte Carlo experiment. We simulate a large
number of matrix matrix B, we resolve the associated LCP problem using the Lemke’s
algorithm. Then, we use the LCP solution to calculate the properties of the surviving
species: proportion of survivors, etc. Finally, we make an average on the ensemble of
experiments. The Lemke algorithm is implemented in the lemkelcp package and can
be found on Github [Lam19]. The dynamics of the Lotka-Volterra are achieved by a
Runge-Kutta of order 4 (RK4) implemented in the code.

1.B Proof of Theorem 1.2
We have

I ´ B ` I ´ BT
“ 2I ´ pB ` BT

q “ 2I ´

ˆ

A ` AT

α
?
n

`
2µ
n

11˚

˙

.

Notice that 2I ´ pB ` BT q is positive definite iff the top eigenvalue of B ` BT is lower
than 2:

λmaxpB ` BT
q ă 2 . (1.19)

We first focus on the random part pA ` AT q{α which is a symmetric matrix with inde-
pendent N p0, 2{α2q entries above the diagonal (note that the distribution of the diagonal
entries is different from the off-diagonal entries, with no asymptotic effect). In this case,
it is well known that the largest eigenvalue of the normalized matrix (or equivalently
its spectral norm since the matrix is symmetric) a.s. converges to the right edge of the
support of the semi-circle law (see [BS10, Th. 5.2]):

λmax

ˆ

A ` AT

α
?
n

˙

a.s.
ÝÝÝÑ
nÑ8

2
?

2
α

. (1.20)

In the centered case (µ “ 0), condition (1.19) occurs if α ą
?

2.
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(a) No outlier if µ ď pα
?

2q´1. (b) Outlier if µ ą pα
?

2q´1.

Figure 1.B.1: Spectrum (histogram) of the Hermitian random matrix B `BT (n “ 1000,
α “

?
2). The solid line represents the semi-circular law. In Fig. 1.B.1a, µ “ 0 and there

is no oulier. In Fig. 1.B.1b, µ “ 1.5 and one can notice the presence of an eigenvalue
outside the bulk of the semi-circular law. The dashed line indicates its theoretical value.

We now consider the general case where µ ‰ 0. Notice that the trend matrix P “
2µ
n

11˚ admits a unique non zero eigenvalue 2µ. Denote by Ǎ “ A`AT

α
?

n
. We are interested

in the top eigenvalue of the symmetric matrix Ǎ ` P . Based on a result by Capitaine et
al. [CDMF09, Th. 2.1], we have:

λmaxpǍ ` P q
a.s

ÝÝÝÑ
nÑ8

#

2µ ` 1
α2µ

if µ ą 1?
2α
,

2
?

2
α

else.

This result is illustrated in Figure 1.B.1.
Assume first that µ ď 1

α
?

2 (corresponding to zone C in Fig. 1.2), then λmaxpǍ `

P q
a.s.

ÝÝÝÑ
nÑ8

2
?

2
α

, which is strictly lower than 2 (cf. condition (1.19)) if α ą
?

2. Hence
λmaxpǍ ` P q is eventually strictly lower than 2 under this condition.

Assume now that µ ą 1
α

?
2 (corresponding to zone B in Fig. 1.2), then

λmaxpǍ ` P q
a.s.

ÝÝÝÑ
nÑ8

2µ `
1
α2µ

.

We are interested in the conditions for which 2µ ` 1
α2µ

ă 2 or equivalently

2α2µ2
´ 2α2µ ` 1 ă 0 . (1.21)

An elementary study of the polynomial ξpXq “ 2α2X2 ´ 2α2X ` 1 yields that ξ’s
discriminant is positive if α ą

?
2,

ξpµ˘
q “ 0 ô µ˘

“
1
2 ˘

1
2

c

1 ´
2
α2 ,

and ξ
´

1
α

?
2

¯

ă 0, so that 1
α

?
2 P pµ´, µ`q. In particular condition (1.21) is fulfilled if

µ P

˜

1
α

?
2
,

1
2 `

1
2

c

1 ´
2
α2

¸

.

Under this condition, (1.21) is fulfilled and a.s. lim supnÑ8 λmaxpǍ ` P q ă 2, which
completes the proof: we can then rely on Theorem 1.1 to conclude.
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1.C Construction of the heuristics
We first discuss Heuristics 1.1 and establish Equations (1.11), (1.12) and (1.13).

1.C.1 Equation (1.11).
We first recall a result on order statistics of a Gaussian sample. Consider a family pZkqkPrns

of i.i.d. random variables N p0, 1q and the associated order statistics

Z˚
1 ď Z˚

2 ď ¨ ¨ ¨ ď Z˚
n .

Consider an index tnαu P rns where α P p0, 1q is fixed, then the typical location of Z˚
tnαu

is Φ´1pαq:
Z˚

tnαu » Φ´1
pαq as n Ñ 8 , (1.22)

see for instance [Smi49, BDH78].
Let x˚ be the equilibrium of (1.1) and consider the random variable

Žk “
ÿ

iPS
Bkix

˚
i “ pBx˚

qk.

We assume that asymptotically the x˚
i ’s are independent from the Bki’s, an assumption

supported by the chaos hypothesis, see for instance Geman and Hwang [GH82]. Denote by
Ex˚ “ Ep ¨ | x˚q the conditional expectation with respect to x˚. Notice that conditionally
to x˚, the Žk’s are independent Gaussian random variables, whose two first moments can
easily be computed, see Section 1.C.2 below for the details:

Ex˚Žk “ µ p̂ m̂ and varx˚pŽkq “
p̂σ̂2

α2 .

Notice that the fact that Ex˚ and varx˚pŽkq only depend on p̂, σ̂ and m̂ which are (sup-
posedly) converging quantities supports the idea that Žk is unconditionally a Gaussian
random variable with moments:

EŽk “ µ p˚ m˚ and varpŽkq “
p˚pσ˚q2

α2 ,

where p˚,m˚, σ˚ are resp. the limits of p̂, m̂, σ̂. We now introduce the standard Gaussian
random variables pZkqkPrns where

Zk “
Žk ´ EŽk
b

varpŽkq

“ α
Žk ´ µ p˚ m˚

σ˚
?
p˚

.

Consider the equilibrium x˚ “ px˚
kqkPrns. If k P S, that is x˚

k ą 0, we have

1 ´ x˚
k ` pBx˚

qk “ 0 ñ 1 ` pBx˚
qk ą 0 .

This identity has two implications:

x˚
k “ 1 ` pBx˚

qk and 1 ` pBx˚
qk ą 0 if k P S .
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Relying on the representation pBx˚qk “ Žk, we obtain the representation

x˚
k “ 1 ` pBx˚

qk “ 1 ` µ p˚ m˚
`
σ˚

?
p˚

α
Zk if k P S . (1.23)

and the condition:

1 ` pBx˚
qk “ 1 ` µ p˚ m˚

`
σ˚

?
p˚

α
Zk ą 0 .

If k R S then
1 ` pBx˚

qk “ 1 ` µ p˚ m˚
`
σ˚

?
p˚

α
Zk ď 0

by the non invadability condition. Otherwise stated,
$

&

%

Zk ď ´
αp1`µ p˚m˚q

σ˚
?

p˚
if k R S ,

Zk ą ´
αp1`µ p˚m˚q

σ˚
?

p˚
if k P S .

Considering the order statistics of the Zk’s we obtain:

Z˚
1 ď ¨ ¨ ¨ ď Z˚

i ď ´
αp1 ` µ p˚m˚q

σ˚
?
p˚

ď Z˚
i`1 ď ¨ ¨ ¨ ď Z˚

n .

Now, there are exactly n ´ |S| “ np1 ´ p̂q indices before the threshold corresponding to
the components of x˚ equal to zero. In particular, index i “ np1 ´ p̂q corresponds to the
value

Z˚
i » ´

αp1 ` µ p˚ m˚q

σ˚
?
p˚

Relying on (1.22), we finally obtain

Φ´1
p1 ´ p̂q “ ´

αp1 ` µ p˚ m˚q

σ˚
?
p˚

.

It remains to replace p̂ by its limit p˚ to obtain (1.11).

1.C.2 Details on Equation (1.11): Moments of Žk.
We compute hereafter the conditional mean and variance of Žk “ pBx˚qk with respect to
x˚. We rely on the following identities:

EBki “
µ

n
, EpBkiq

2
“

1
α2n

`
µ2

n2 »
1
α2n

, EBkiBkj “
µ2

n2 pi ‰ jq .

We first compute the conditional mean:

Ex˚pŽkq “
ÿ

iPrns

EpBkiqx
˚
i “

ÿ

iPS
EpBkiqx

˚
i “

µ

n

ÿ

iPS
x˚

i ,

“ µ
|S|

n

1
|S|

ÿ

iPS
x˚

i ,

“ µ p̂ m̂ .
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We now compute the second moment:

Ex˚pŽ2
kq “ Ex˚

˜

ÿ

iPS
Bkix

˚
i

¸2

“ Ex˚

ÿ

i,jPS
BkiBkjx

˚
i x

˚
j ,

“
ÿ

iPS
EpB2

kiqx
˚2
i `

ÿ

i‰j

EpBkiBkjqx˚
i x

˚
j ,

“
1
α2n

ÿ

iPS
x˚2

i `
µ2

n2

ÿ

i‰j

x˚
i x

˚
j ,

paq
»

p̂σ̂2

α2 `
µ2 p̂2

|S|2

ÿ

i,jPS
x˚

i x
˚
j “

p̂σ̂2

α2 `
µ2 p̂2

|S|2

˜

ÿ

iPS
x˚

i

¸2

“
p̂σ̂2

α2 ` µ2 p̂2m̂2 ,

where the approximation in paq follows from the fact that

1
|S|2

ÿ

i,jPS
x˚

i x
˚
j “

1
|S|2

ÿ

i‰j

x˚
i x

˚
j ` O

ˆ

1
|S|

˙

.

We can now compute the variance:

varx˚

´

Žk

¯

“ Ex˚

´

Ž2
k

¯

´

´

Ex˚Žk

¯2
“

p̂ σ̂2

α2 .

1.C.3 Equation (1.12).
Our starting point is the following generic representation of an abundance at equilibrium
(either of a surviving or vanishing species):

x˚
k “

ˆ

1 ` µ p˚m˚
`
σ˚

?
p˚

α
Zk

˙

1tZką´δ˚u

“ p1 ` µ p˚m˚
q 1tZką´δ˚u `

ˆ

σ˚
?
p˚

α
Zk

˙

1tZką´δ˚u

Summing over S and normalizing,

1
|S|

ÿ

kPS
x˚

k “ p1 ` µ p˚m˚
q

1
|S|

ÿ

kPS
1tZką´δ˚u `

σ˚
?
p˚

α

1
|S|

ÿ

kPS
Zk1tZką´δ˚u,

m̂
paq
“ p1 ` µ p˚m˚

q `
σ˚

?
p˚

α

n

|S|

1
n

ÿ

kPrns

Zk1tZką´δ˚u,

m̂
pbq
» p1 ` µ p˚m˚

q `
σ˚

?
p˚

α

1
PpZ ą ´δ˚q

EpZ1tZą´δ˚uq,

m̂ » p1 ` µ p˚m˚
q `

σ˚
?
p˚

α
EpZ | Z ą ´δ˚

q.

where paq follows from the fact that |S| “
ř

kPS 1tZką´δ˚u (by definition of S), pbq from
the law of large numbers 1

n

ř

kPrns
Zk1tZką´δu ÝÝÝÑ

nÑ8
EZ1tZą´δu and |S|

n
ÝÝÝÑ
nÑ8

PpZ ą ´δ˚q

with Z „ N p0, 1q. It remains to replace m̂ by its limit m˚ to obtain (1.12).
Eq. (1.13) can be obtained similarly. Details are provided in Appendix 1.C, see Section

1.C.4.
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1.C.4 Equation (1.13).
As for the proof of (1.12), we start from the generic representation of x˚

k:

x˚
k “

ˆ

1 ` µ p˚m˚
`
σ˚

?
p˚

α
Zk

˙

1tZką´δ˚u

“ p1 ` µ p˚m˚
q 1tZką´δ˚u `

σ˚
?
p˚

α
Zk1tZką´δ˚u .

Taking the square, we get

x˚2
k “ p1 ` µ p˚m˚

q
2 1tZką´δ˚u

` 2p1 ` µ p˚m˚
q
σ˚

?
p˚

α
Zk1tZką´δ˚u `

pσ˚q2p˚

α2 Z2
k1tZką´δ˚u .

Summing over S and normalizing, we get

1
|S|

ÿ

kPS
px˚

kq
2

“ p1 ` µ p˚m˚
q

2 1
|S|

ÿ

kPS
1tZką´δ˚u

` 2p1 ` µ p˚m˚
q
σ˚

?
p˚

α

1
|S|

ÿ

kPS
Zk1tZką´δ˚u

`
pσ˚q2p˚

α2
1

|S|

ÿ

kPS
Z2

k1tZką´δ˚u .

Finally, we conclude by replacing the empirical means by their limits
1

|S|

ÿ

kPS
Zi

k1tZką´δ˚u “ EpZi
| Z ą ´δ˚

q , i “ 1, 2 .

and get

σ̂2
“ p1 ` µ p˚m˚

q
2

` 2p1 ` µ p˚m˚
q
σ˚

?
p˚

α
EpZ | Z ą ´δ˚

q

`
pσ˚q2p˚

α2 EpZ2
| Z ą ´δ˚

q .

It remains to replace σ̂ by its limit σ˚ to obtain (1.13).

1.D Density of the distribution of the persistent species.
Assume that x˚ ą 0, and let f “ R Ñ R be a bounded continuous test function. We have

Efpx˚
kq “ E

„

f

ˆ

1 `
σ˚

?
p˚

α
Zk ` µ p˚m˚

˙
ˇ

ˇ

ˇ

ˇ

Zk ą ´δ˚

ȷ

,

“

ż 8

´8

f

ˆ

1 ` µ p˚m˚
`
σ˚

?
p˚

α
u

˙

1tuą´δ˚u

1 ´ Φp´δ˚q

e´ u2
2

?
2π
du ,

“

ż 8

0
fpyqe

´ 1
2

ˆ

α

σ˚
?

p˚
y´δ˚

˙2
α

?
2πΦpδ˚q p˚ σ˚

dy ,

hence the density of x˚
k.
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1.D.1 Theoretical estimation of the diversity index

Recall that |S| “ np̂ is the number of surviving species and that

pi “
xi

ř

jPS xj

is the frequency of (surviving) species i.
To find a theoretical estimate of Hill number of order 1, we proceed by expansion and

set

pi “
1

|S|
` δi , |δi| !

1
|S|

where δi represents the deviation of species i from the standard frequency if all surviving
species have the same frequency. Notice that

ř

iPS δi “ 0.

H 1
“ ´

ÿ

iPS
pi logppiq “ ´

ÿ

iPS

ˆ

1
|S|

` δi

˙

log
ˆ

1
|S|

` δi

˙

.

We use the Taylor-Young formula of order 2 to decompose the log:

log
ˆ

1
|S|

` δi

˙

“ log
ˆ

1
|S|

˙

` |S|δi ´
δ2

i |S|2

2 ` δ3
i εpδiq ,

« log
ˆ

1
|S|

˙

` |S|δi ´
δ2

i |S|2

2 .

H 1
« ´

ÿ

iPS

ˆ

1
|S|

` δi

˙ˆ

log
ˆ

1
|S|

˙

` |S|δi ´
δ2

i |S|2

2

˙

,

“ ´
ÿ

iPS

„

1
|S|

log
ˆ

1
|S|

˙

` δi ´
δ2

i |S|

2 ` δi log
ˆ

1
|S|

˙

` |S|δ2
i ´

δ3
i |S|2

2

ȷ

,

“ logp|S|q ´
ÿ

iPS

δ2
i |S|

2 `
ÿ

iPS

δ3
i |S|2

2 .

Notice that
ř|S|

i“1
δ3

i |S|2

2 is negligible since |δi| ! |S|´1. The term 1 corresponds to the
maximum value that the Shannon diversity index can take if |S| are present in the system.
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It remains to develop the second term of the r.h.s.

´
1
2
ÿ

iPS
δ2

i |S| “ ´
|S|

2
ÿ

iPS

˜

xi
ř

jPS xj

´
1

|S|

¸2

,

“ ´
|S|

2
ÿ

iPS

˜

x2
i

p
ř

jPS xjq2 ´
2

|S|

xi
ř

jPS xj

`
1

|S|2

¸

,

“ ´
|S|

2
ÿ

iPS

˜

x2
i

p
ř

jPS xjq2

¸

`
1
2 ,

“ ´
|S|

2

ř

iPS x
2
i

|S|2p 1
|S|

ř

jPS xjq2 `
1
2 ,

“ ´
1
2

1
|S|

ř

iPS x
2
i

p 1
|S|

ř

jPS xjq2 `
1
2 ,

“ ´
1
2
σ̂2

pm̂q2 `
1
2 ,

“ ´
1
2

ˆ

σ̂2

m̂2 ´ 1
˙

.

Finally the Hill number of order 1 can be computed as:

eH 1

« elogp|S|q´
|S|

2
ř|S|

i“1 δ2
i ,

« |S|

˜

1 ´
|S|

2

|S|
ÿ

i“1
δ2

i

¸

“ |S|

ˆ

1 ´
1
2
σ̂2

pm̂q2 `
1
2

˙

“
|S|

2

ˆ

3 ´
σ̂2

pm̂q2

˙

.

Replacing |S| by np˚ and σ̂ and m̂ by their limits, we get the desired result:

eH 1

«
np˚

2

ˆ

3 ´
pσ˚q2

pm˚q2

˙

.
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Chapter 2

Equilibrium in a large
Lotka-Volterra system with pairwise
correlated interactions

Abstract
Consider a Lotka-Volterra (LV) system of coupled differential equations:

9xk “ xkprk ´ xk ` pBxqkq , x “ pxkq , 1 ď k ď n ,

where r “ prkq is a n ˆ 1 vector and B a n ˆ n matrix. Assume that the interaction
matrix B is random and follows the elliptic model:

B “
1

α
?
n
A `

µ

n
1n1J

n ,

where A “ pAijq is a nˆn matrix with N p0, 1q entries satisfying the following dependence
structure piq the entries Aij on and above the diagonal are i.i.d., piiq for i ă j each vector
pAij, Ajiq is standard gaussian with covariance ρ, and independent from the other entries;
vector 1n stands for the nˆ 1 vector of ones. Parameters α, µ are deterministic and may
depend on n.

Leveraging on Random Matrix Theory, we analyse this LV system as n Ñ 8 and study
the existence of a positive equilibrium. This question boils down to study the existence
of a (componentwise) positive solution to the linear equation:

xn “ rn ` Bnxn ,

depending on B’s parameters pα, µ, ρq, a problem of independent interest in linear algebra.
In the case where no positive equilibrium exists, we provide sufficient conditions for

the existence of a unique stable equilibrium (with vanishing components), and following
Bunin [Bun17], present a heuristics estimating the number of positive components of the
equilibrium and their distribution.

The existence of positive equilibria for large Lotka-Volterra systems has been raised
in Dougoud et al. [DVR`18], and addressed in various contexts by Najim et al. [AN21,
BN21].

Such LV systems are widely used in mathematical biology to model populations with
interactions, and the existence of a positive equilibrium known as a feasible equilibrium
corresponds to the survival of all the species xk within the system.
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2.1 Introduction

2.1.1 Lotka-Volterra system of coupled differential equations.
Lotka-Volterra (LV) systems are widely used in mathematical biology, ecology, chemistry
to model populations with interactions or chemical reactions [Gop84, HS98, KK08, Her90].
In the context of theoretical ecology (that we shall adopt hereafter without loss of general-
ity), consider a given foodweb and denote by xt

n “ pxkptqq1ďkďn the vector of abundances1

of the various species at time t ě 0. In a LV system, the abundances are connected via
the following coupled equations:

dxkptq

dt
“ xkptq

˜

rk ´ xkptq `

n
ÿ

ℓ“1
Bkℓxℓptq

¸

for k P rns :“ t1, ¨ ¨ ¨ , nu , (2.1)

where Bn “ pBkℓq stands for the interaction matrix, and rk stands for the intrinsic growth
of species k. Notice that standard results yield that if the initial condition x0

n “ xn|t“0 is
componentwise positive, then xt

n remains positive for every t ą 0.
At the equilibrium dxn

dt
“ 0, the abundance vector xn “ pxkqkPrns is solution of the

system:

xk

˜

rk ´ xk `
ÿ

ℓPrns

Bkℓxℓ

¸

“ 0 for xk ě 0 and k P rns . (2.2)

An important question, which motivated recent developments [DVR`18, BN21], is the
existence of a feasible solution xn to (2.2), that is a solution where all the xk’s are positive,
corresponding to a scenario where no species disappears. Notice that in this latter case,
the system (2.2) takes the much simpler form:

xn “ rn ` Bnxn , rn “ prkqkPrns .

In this article, we will investigate the existence of an equilibrium, potentially feasible, for a
large foodweb (n Ñ 8) whenever the interaction matrix Bn is random. In various models
of interest for Bn, Random Matrix Theory (RMT) provides an accurate description of
the asymptotic properties of a large random matrix (its spectrum, spectral norm, etc.).
We will leverage on RMT to infer the existence of an equilibrium in the case where Bn

follows a random elliptic model, to be described hereafter.
To simplify the analysis, we will mostly consider the case where rn “ 1n, except for

the stability where this extra assumption is not needed.

2.1.2 Random elliptic model for the interaction matrix
In the spirit of May2, we model the interaction matrix Bn as a non-centered random
matrix with pairwise correlated entries:

Bn “
An

αn

?
n

`
µ

n
1n1J

n , (2.3)

1A species abundance is a quantity proportional to the number of individuals for this species.
2Beware that May did not consider LV systems but rather used a random matrix model for the

Jacobian at equilibrium of a generic system of coupled differential equations.
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where An “ pAijqi,jPrns is a random matrix satisfying the two conditions piq pAij, i ď jq
are standard Gaussian N p0, 1q independent and identically distributed (i.i.d.) random
variables piiq for i ă j the vector pAij, Ajiq is a standard bivariate Gaussian vector,
independent from the remaining random variables, with covariance covpAij, Ajiq “ ρ with
|ρ| ď 1. The sequence of positive numbers pαnq is either fixed or goes to infinity. Parameter
µ is a fixed real number. As a consequence, the Gaussian entries of the interaction matrix
Bn admit the following moments:

EpBijq “
µ

n
, varpBijq “

1
α2n

, covpBij, Bjiq “
ρ

α2n
pi ‰ jq .

Such a matrix model is often called a random elliptic model for |ρ| ă 1 since the spectrum
of matrix An{

?
n is asymptotically an ellipse, see Fig.2.1.1, in the sense that the empirical

distribution of the eigenvalues of An{
?
n converges towards the uniform distribution on

the ellipsoid

Eρ “

"

z P C,
Re2

pzq

p1 ` ρq2 `
Im2

pzq

p1 ´ ρq2 ď 1
*

.

Originally introduced by Girko [Gir86], this model has since been widely studied [Gir95,
Nau12, NO15, OR14, AK22] from a mathematical perspective.

From a theoretical ecology viewpoint, the random elliptic model is interesting [AT12,
Bun17], [Ros13, Section 18.3] for its flexibility as it introduces a correlation parameter
between the pairwise entries pAij, Ajiq. Positive correlations will be used to model mutu-
alistic interactions while negative ones will model predator/prey interactions. This model
interpolates between the Wigner model (ρ “ 1), the full i.i.d. model (ρ “ 0 with Gaussian
entries) and the antisymetric model (ρ “ ´1).

(a) ρ “ 0 (b) ρ “ ´0.5 (c) ρ “ 0.5

Figure 2.1.1: Spectrum of non-Hermitian matrix Bn (n “ 500) in the centered case (µ
= 0) with distinct parameter ρ P t´0.5, 0, 0.5u. The solid line represents the ellipse
tz “ x` iy P C, x2

p1`ρq2 `
y2

p1´ρq2 “ 1u which is the boundary of the support of the limiting
spectral distribution for an elliptic model.

The spectral norms of An and 1n1J
n satisfy

›

›

›

›

An
?
n

›

›

›

›

“ O p1q and
›

›

›

›

1
n

1n1J
n

›

›

›

›

“ 1

hence both the random and deterministic parts of the interaction matrix Bn may have an
impact as n Ñ 8.
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2.1.3 Presentation of the main results
In this article, we address the following issues.

Feasibility.

We first describe the conditions over parameters pρ, αn, µq for which system (2.2) admits a
unique feasible equilibrium. We prove that feasibility is reached whenever αn "

a

2 logpnq

and µ ă 1, and that there is no feasibility otherwise, see Theorem 2.1. Notice that the
correlation parameter ρ has no influence since the phase transition threshold is the same
as in the i.i.d. case [BN21]: the induced correlations between components xk’s of solution
xn are too weak. Pushing this remark further, we prove that the same phase transition
holds if we consider a covariance profile pρij, i ă jq where ρij “ covpAij, Ajiq instead of a
fixed covariance parameter ρ.

In [BN21], Bizeul and Najim established the conditions for feasibility in the centered
(µ “ 0) model with i.i.d interactions pAijq. In [AN21], Akjouj and Najim studied a sparse
model of interactions where only dn ě logpnq interactions are non-null in each row and
column of An. The study of the feasibility for an elliptic model completes this picture.

Stability without feasibility.

If α is fixed, Dougoud et al. [DVR`18] showed that no feasible solution can arise. Under
this assumption, we establish in Proposition 2.3 sufficient conditions for the existence
of a unique stable equilibrium to system (2.2). In this case, some species will vanish
(some of the components xk’s of solution xn are equal to zero). In order to proceed we
combine results by Takeuchi [Tak96] on stability of LV systems with Random Matrix
Theory (RMT) results.

Estimating the number of surviving species.

We finally conclude with an important question: given a set of parameters pρ, α, µq which
yields to a unique stable equilibrium, is it possible to estimate the proportion of surviving
species? From a mathematical point of view, this is an open question. At a physical
level of rigor, Bunin [Bun17] (relying on the cavity method) and Galla [Gal18] (relying on
generating functionals techniques) provide a closed-form system of equations to compute
the proportion of surviving species. We state the open problem, recall Bunin’s and Galla’s
equations and provide simulations.

In [CMN22], equations and simulations are provided in the simpler case where ρ “ 0,
together with heuristics supporting these equations.

Organisation of the article
Feasibility and stability results together with the open question on the estimation of the
number of surviving species are presented in Section 2.2. Section 2.3 is devoted to the
proof of the feasibility result, Theorem 2.1. Proof of the stability result, Proposition 2.3,
is provided in Section 2.4. Simulations were performed in Python. All the figures and the
code are available on Github [Cle22b].
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Notations
If A is a matrix AJ stands for its transpose. We denote by logpxq the natural logarithm.
If x “ pxiqiPrns is a vector, we denote by x ą 0 (resp. x ě 0) the componentwise positivity
(resp. non-negativity), that is the fact that xi ą 0 (resp. xi ě 0) for every i P rns. We
denote by a.s.

ÝÝÑ (resp. P
ÝÑ) almost sure convergence (resp. convergence in probability).

2.2 Main results: Feasibility, stability and surviving
species

2.2.1 Feasibility
To simplify the analysis, we consider the case where rk “ 1 pk P rnsq. Hence, the LV
system takes the following form in the sequel:

dxkptq

dt
“ xkptq

˜

1 ´ xkptq `
ÿ

ℓPrns

Bkℓxℓptq

¸

for k P rns . (2.4)

In the next theorem, we describe the conditions to reach a feasible equilibrium. We either
assume that matrix B is given by the elliptic model or has a more general covariance
profile.

Theorem 2.1 (Feasibility for the elliptic model). Assume that matrix Bn is given by the
elliptic model (2.3), or that Bn has a covariance profile, i.e.

Bn “
Ãn

αn

?
n

`
µ

n
1n1J

n , (2.5)

where Ãn is a nˆ n matrix with entries pÃij, i ď jq i.i.d. N p0, 1q and where pÃij, Ãjiq is
a standard bivariate gaussian vector for i ă j, independent from the remaining random
variables, with covariance covpÃij, Ãjiq “ ρ

pnq

ij , where pρ
pnq

ij ; i ă j;n ě 1q is a collection of
deterministic real numbers in r´1, 1s.

Let αn ÝÝÝÑ
nÑ8

8 and denote by α˚
n “

?
2 log n. If µ ‰ 1 then the following equation

xn “ 1n ` Bnxn

almost surely admits a unique solution xn “ pxkqkPrns.

1. (feasibility) If µ ă 1 and there exists ε ą 0 such that, for n large enough, αn ě

p1 ` εqα˚
n then

P
"

min
kPrns

xk ą 0
*

ÝÝÝÑ
nÑ8

1 .

2. If µ ą 1 or there exists ε ą 0 such that, for n large enough, αn ď p1 ´ εqα˚
n then

P
"

min
kPrns

xk ą 0
*

ÝÝÝÑ
nÑ8

0 .
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(a) Gaussian entries, (b) Uniform r´
?

3,
?

3s entries.

Figure 2.2.1: Transition towards feasibility for the elliptic model (2.3) on the left subfigure
(Gaussian entries), and for a model with uniform entries and same pairwise dependence
structure on the right one. For each κ on the x-axis, we simulate 1000 matrices Bn of size
n “ 1000, compute the solution xn of Theorem 2.1 at the scaling αnpκq “ κ

a

logpnq

and then plot the proportion of feasible solutions obtained for the 1000 simulations.
Each curve represents the proportion of feasible solutions xn for three distinct values
ρ P t´0.5, 0, 0.5u. The dot-dashed vertical line corresponds to κ “

?
2 i.e. the critical

scaling α˚
n “

a

2 logpnq.

Proof of Theorem 2.1 is established in Section 2.3 under the assumption that Bn

follows the elliptic model. The adaptations needed to cover the covariance profile case are
provided in Appendix 2.A.
Remark 2.1. If one considers the system (2.1) instead of (2.4), that is rn ‰ 1n, the sharp
phase transition at α˚

n “
a

2 logpnq does not hold any more. The transition takes place
on a wider region for the αn’s (transition buffer) which upper and lower bounds depend
on rn’s characteristics: Absence of feasibility3 if αn !

σrpnq

rmaxpnq

a

2 logpnq and feasibility if
αn "

σrpnq

rminpnq

a

2 logpnq where

σrpnq “
›

›r{
?
n
›

› , rmaxpnq “ max
iPrns

ripnq , rminpnq “ min
iPrns

ripnq ,

with the assumption that 0 ă κ ď rminpnq ď rmaxpnq ď K ă 8. This can be established
following the general lines of the proof (Normal Comparison Lemma - Th. 2.4, repre-
sentation lemma - Lemma 2.9, etc.) and adapting the arguments from [BN21, Section
4.2].
Remark 2.2 (Structural stability). In the context of the previous remark, notice that if
αn "

σrpnq

rminpnq

a

2 logpnq, a small change in rn, say rn Ñ rn ` δn such that σminprn ` δnq

remains to close to σminprnq will not affect the feasibility (and stability, see for instance
Remark 2.4). The fixed point is therefore structurally stable in the sense of Grilli et al.
[GAS`17].
Remark 2.3 (Non-Gaussian random variables). A natural question is whether Theorem
2.1 remains true if Bn’s entries are no longer Gaussian. Simulations with non-Gaussian
pairwise correlated random variables support this idea, see Fig. 2.2.1b where uniform
(centered with variance one) entries are used. However an effective proof will require to

3Here an ! bn means that there exists ε ą 0 such that an ď p1 ´ εqbn eventually.
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overcome some of the arguments based on the Gaussiannity of the entries, such as the
Normal Comparison Lemma (Theorem 2.4) and a representation lemma (Lemma 2.9).
We do not pursue in this direction here.

2.2.2 No feasibility but a unique stable equilibrium.
Aside from the question of feasibility arises the question of stability: for a complex system,
how likely a perturbation of the solution xn at equilibrium will return to the equilibrium?
Gardner and Ashby [GA70] considered stability issues of complex systems connected at
random. Based on the circular law for large random matrices with i.i.d. entries, May
[May72] provided a complexity/stability criterion and motivated the systematic use of
large random matrix theory in the study of foodwebs, see for instance Allesina et al.
[AT15]. Recently, Stone [Sto18] and Gibbs et al. [GGRA18] revisited the relation between
feasibility and stability.

For a generic LV system

d ykptq

dt
“ ykprk ` pCyqkq , k P rns , (2.6)

Takeuchi and Adachi provide a criterion for the existence of a unique equilibrium y˚ and
the global stability of LV systems, see Theorem 3.2.1 in [Tak96].

Theorem 2.2 (Takeuchi and Adachi 1980). If there exists a positive diagonal matrix ∆
such that ∆C ` CJ∆ is negative definite, there is a unique non-negative equilibrium y˚

to (2.6), which is globally stable:

@y0 ą 0 ,
#

yp0q “ y0

yptq satisfies (2.6)
, yptq ÝÝÝÑ

tÑ8
y˚ .

Combining this result (setting I´B “ ´C) with results from Random Matrix Theory,
we can guarantee the existence of a globally stable equilibrium x˚ of (2.1) for a wide range
of parameters pρ, α, µq. Denote by

A “

"

pρ, α, µq P p´1, 1q ˆ p0,8q ˆ R ,

α ą
a

2p1 ` ρq, µ ă
1
2 `

1
2

c

1 ´
2p1 ` ρq

α2

*

(2.7)

the set of admissible parameters.

Proposition 2.3. Let Ǎn be a n ˆ n matrix with entries pǍij, i ď jq i.i.d., centered
with unit variance, with a fourth finite moment and where pǍij, Ǎjiq is a standard bivari-
ate vector for i ă j, independent from the remaining random variables, with covariance
covpǍij, Ǎjiq “ ρ. Denote by

Bn “
Ǎn

α
?
n

`
µ

n
1n1J

n . (2.8)

Consider the system (2.1) and let pρ, α, µq P A, then almost surely, matrix

pI ´ Bnq ` pI ´ Bnq
J
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Figure 2.2.2: Representation of the set of admissible parameters A by a heat map. The
set A given by (2.7) yields the existence of a unique (random) globally stable equilibrium
x˚. The x-axis corresponds to ρ, the y-axis to α and the intensity of the color µ.

is eventually positive definite: with probability one, for a given realization ω, there exists
Npωq such that for n ě Npωq, pI ´ Bω

n q ` pI ´ Bω
n qJ is positive definite. In particular,

there exists a unique globally stable non-negative equilibrium x˚.

Proof of Proposition 2.3 is provided in Section 2.4.

Remark 2.4. Notice that this result applies to a general vector rn and to non-Gaussian
random variables with a finite fourth moment. In particular, the assumption does not
involve vector rn and a small change rn Ñ rn ` δrn will not affect the stability of the
system. The finite fourth moment assumption is necessary to control λmaxpBn ` BJ

n q.

(a) Initial conditions drawn in p0, 2q, (b) Initial conditions equal to 1.

Figure 2.2.3: Representation of the dynamics of a ten-species system. For a fixed matrix
of interactions B10 with parameters pρ “ 0, α “ 2, µ “ 0q P A, we consider two distinct
initial conditions. Simulations show that the abundances converge in both cases toward
the unique globally stable equilibrium x˚ predicted by Proposition 2.3. Notice that since
α ă

a

2 logp10q » 2.14, we witness vanishing species.
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2.2.3 Estimating the number of surviving species: Towards Bunin
and Galla’s equations.

After giving conditions for the realization of a feasible equilibrium and investigating the
existence and uniqueness of a stable sub-population (i.e some species vanish), we address
the question of estimating the proportion of surviving species as a function of the model
parameters pρ, α, µq.

To our knowledge, this question has not received yet an answer at a mathematical
level of rigor and remains open. However theoretical physicists/ecologists provided a
solution to this problem supported by simulations. Tools from physics to study population
dynamics in the context of Lotka-Volterra equations were first introduced by Opper et al.
[DO89, OD92]. In 2017, Bunin [Bun17] precisely answers the question of estimating the
proportion of surviving species for the model under investigation (non-centered elliptic
model B). He uses the dynamical cavity method (a review of which can be found in
[BA17]). The key concept consists of assuming that a unique fixed point exists and
introducing a new species with new interactions in the existing system. Provided the
coherence of the assumption, an analogy between the properties of the solutions with n
and n ` 1 species yields closed-form equations that we present hereafter.

Notice that recently, similar equations were obtained by Galla [Gal18] using generating
functional techniques.

The system of equations presented hereafter is a version of Bunin’s equations without
the carrying capacity. It is similar to the equations obtained by the replicator equations
[DO89, OD92]. Notice that we mention but do not discuss the many implicit assumptions
yielding the system of equations (see Appendix 2.B for more details on the system of
equations (2.10)-(2.13)).

Let pρ, α, µq P A and x˚ given by Proposition 2.3. We first introduce the following
quantities:

ϕ “
Cardtx˚

i ą 0, i P rnsu

n
, xxy “

1
n

n
ÿ

j“1
x˚

j ,
@

x2D
“

1
n

n
ÿ

j“1
px˚

j q
2 . (2.9)

Denote by Z „ N p0, 1q and set

∆ “ p1 ` xxyµq
α

a

xx2y
.

The following system of 4 equations has 4 unknowns, among which the (supposedly ex-
isting) asymptotic limits of ϕ, xxy , xx2y, denoted (by abuse of notations) by the same
notations. The fourth unknown v is a parameter essentially related to the dynamical
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cavity method. This system is supposed to admit a unique solution:

ϕ “
1

?
2π

ż `8

´∆
e

´z2
2 dz (2.10)

xxy “
ϕ

1 ´
ρv
α

˜

p1 ` xxyµq `

a

xx2y

α
EpZ|Z ą ´∆q

¸

(2.11)

@

x2D
“

ˆ ?
ϕ

1 ´
ρv
α

˙2 ˆ

p1 ` xxyµq
2

` 2p1 ` xxyµq

a

xx2y

α
EpZ|Z ą ´∆q

`
xx2y

α2 EpZ2
|Z ą ´∆q

˙

(2.12)

v “ ϕ

ˆ

1
α ´ ρv

˙

(2.13)

The theoretical solutions of system (2.10)-(2.13) are compared with the empirical values
obtained by Monte-Carlo experiments. As shown in Fig. 2.2.4, the matching is remark-
able.

(a) ϕ versus α, (b) xxy versus α, (c)
@

x2D versus α.

Figure 2.2.4: Theoretical values of ϕ, xxy and xx2y (solid line) obtained by solving the
system (2.10)-(2.13) given the parameters (µ “ 0.2, ρ “ 0.5), compared to the empirical
values (dots) obtained by Monte-Carlo simulations (size of matrix n “ 500, number of
random samples P “ 200). The x-axis corresponds to the interaction strength α.

The impact of the correlation ρ on the proportion of the surviving species is shown in
Figure 2.2.5.

Remark 2.5. From a theoretical ecology point of view, notice that a negative correlation
(prey-predator) seems to slow down the decline of the surviving species, whereas a positive
correlation (mutualism and competition) reverses the trend. These types of results are
similar to Allesina and Tang [AT12] where they notice that prey-predator interactions
seem to stabilize the system.

2.3 Feasibility: Proof of Theorem 2.1
We assume that matrix Bn is given by (2.3) (elliptic model). The case where matrix Bn

is given by (2.5) (covariance profile model) needs extra arguments which are provided in
Appendix 2.A.
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Figure 2.2.5: Effect of the correlation ρ and the interaction strength α on the proportion
of surviving species ϕ. Each curve is plotted by resolving the system (2.10)-(2.13) in the
centered case µ “ 0.

2.3.1 Preliminary results
Extreme Value Theory (EVT) and the Normal Comparison Lemma

Let pZkqkPN be a sequence of i.i.d. N p0, 1q random variables and denote:
#

Mn “ maxkPrns Zk

|Mn “ minkPrns Zk

, α˚
n “

a

2 log n , β˚
n “ α˚

n ´
1

2α˚
n

logp4π log nq . (2.14)

Let Gpxq “ e´e´x be the Gumbel cumulative distribution function, then classical EVT
results (see for instance [LLR83, Theorem 1.5.3]) yield that for every x P R,

P tα˚
npMn ´ β˚

nq ď xu ÝÝÝÑ
nÑ8

Gpxq , P
!

α˚
np|Mn ` β˚

nq ě ´x
)

ÝÝÝÑ
nÑ8

Gpxq . (2.15)

We consider the following dependent framework: Let pZk,nqkPrns be a Gaussian vector
whose components are N p0, 1q with covariance

cov pZk,n; Zℓ,nq “
ρ

n
, |ρ| ď 1 , k ‰ ℓ .

We are interested in the behaviour of Mn “ maxkPrns Zk,n and |Mn “ minkPrns Zk,n , and
shall prove the counterpart of (2.15) with the help of the Normal Comparison Lemma
(NCL):

Theorem 2.4 (Theorem 4.2.1, [LLR83]). Suppose that pξi, i P rnsq is a gaussian vec-
tor where the ξi’s are standard normal variables, with covariance matrix Λ1 “

`

Λ1
ij

˘

.
Similarly, let pηi, i P rnsq be a gaussian vector where the ηi’s are standard normal, with
covariance matrix Λ0 “

`

Λ0
ij

˘

. Denote by ρij “ max
␣

|Λ0
ij|, |Λ1

ij|
(

and let pui, i P rnsq be
real numbers. Then:

|P tξj ď uj , j P rnsu ´ P tηj ď uj , j P rnsu|

ď
1

2π
ÿ

1ďiăjďn

ˇ

ˇΛ1
ij ´ Λ0

ij

ˇ

ˇ

`

1 ´ ρ2
ij

˘´1{2 exp
ˆ

´

1
2pu2

i ` u2
j q

1 ` ρij

˙

. (2.16)

106



Chapter 2. Equilibrium in a large Lotka-Volterra system with pairwise correlated interactions

Corollary 2.5. Recall the definition of pZk,ℓqkPrns
, Mn and |Mn above, then

P tα˚
npMn ´ β˚

nq ď xu ÝÝÝÑ
nÑ8

Gpxq , P
!

α˚
np |Mn ` β˚

nq ě ´x
)

ÝÝÝÑ
nÑ8

Gpxq . (2.17)

Proof. We apply the NCL to pZkqkPrns and pZk,nqkPrns
. Let ρij “

|ρ|

n
and unpxq “ x

α˚
n

` β˚
n,

then

|Ptα˚
npMn ´ β˚

nq ď xu ´ Ptα˚
npMn ´ β˚

nq ď xu|

“ |PtZj ď unpxq , j P rnsu ´ PtZj,n ď unpxq , j P rnsu| ,

ď
1

2π
npn ´ 1q

2
|ρ|

n

ˆ

1 ´
ρ2

n2

˙´ 1
2

exp
˜

´
u2

npxq

1 `
|ρ|

n

¸

ď K n exp
ˆ

´
u2

npxq

1 ` 1
n

˙

.

Now eventually unpxq “ α˚
np1 ` op1qq ě κα˚

n for any κ ă 1 and

n exp
ˆ

´
u2

npxq

1 ` 1
n

˙

ď n exp
ˆ

´
2κ2 logpnq

1 ` 1
n

˙

“ n
´

´

2κ2
1`ρ{n

´1
¯

.

This last term goes to zero as n Ñ 8 for a well-chosen κ sufficiently close to one. This
concludes the proof for Mn. The proof for |Mn can be handled similarly with minor
modifications.

Random Matrix Theory

Let Bn be given by model (2.3).
Lemme 2.6. Let An a nˆ n matrix with i.i.d. N p0, 1q entries for i ď j and pAij, Ajiq a
standard bivariate Gaussian vector with covariance ρ for i ă j, then the following estimate
holds true: almost surely,

lim sup
nÑ8

›

›

›

›

An
?
n

›

›

›

›

ď
?

2
`?

1 ` ρ `
?

1 ´ ρ
˘

ď 2
?

2 .

Proof. The proof relies on two arguments: the classical estimate of the asymptotic spectral
norm of a Wigner matrix [BS10, Th. 5.1] and the following decomposition of matrix
An{

?
n as linear combination of Hermitian Wigner matrices:

An
?
n

“
An ` AJ

n

2
?
n

´ i

“

i
`

An ´ AJ
n

˘‰

2
?
n

, pi2
“ ´1q . (2.18)

Notice that both matrices W 1
n “

An`AJ
n

2
?

n
and W 2

n “
ripAn´AJ

n qs
2

?
n

are Wigner matrices, with
off-diagonal variances pi ă jq:

var
˜

„

An ` AJ
n

2

ȷ

ij

¸

“
1 ` ρ

2 and var
˜

„

i
`

An ´ AJ
n

˘

2

ȷ

ij

¸

“
1 ´ ρ

2 .

Hence,

lim sup
n

›

›

›

›

An
?
n

›

›

›

›

ď lim sup
n

}W 1
n} ` lim sup

n
}W 2

n} “ 2
˜

c

1 ` ρ

2 `

c

1 ´ ρ

2

¸

An elementary analysis yields
?

2p
?

1 ` ρ `
?

1 ´ ρq ď 2
?

2 for |ρ| ď 1.
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2.3.2 Proof of Theorem 2.1 - the centered case µ “ 0
Some preparation and strategy of proof

We first prove Theorem 2.1 in the case where µ “ 0 and focus on the equation

xn “ 1n `
An

αn

?
n

xn . (2.19)

By Lemma 2.6, lim supn }An{
?
n} is a.s. bounded hence

›

›

›

›

An

αn

?
n

›

›

›

›

a.s.
ÝÝÝÑ
nÑ8

0 .

As a consequence, the resolvent Qn “ pIn ´ An{pαn

?
nqq

´1 is a.s. eventually well-defined
and the solution xn “ pxkqkPrns of (2.19) writes xn “ Qn1n. Denote by ek the kth
canonical vector of Rn. The following representation holds true (we shall often drop index
n in the following):

xk “ eJ
k x “ ekQ1 “

8
ÿ

ℓ“0
eJ

k

ˆ

A

αn

?
n

˙ℓ

1 ,

“ 1 `
1
αn

eJ
k

ˆ

A
?
n

˙

1 `
1
α2

n

eJ
k

ˆ

A
?
n

˙2

Q1 . (2.20)

Denote by

Zk,n “ eJ
k

ˆ

A
?
n

˙

1 “
1

?
n

ÿ

i

Aki and Rk,npAq “ eJ
k

ˆ

A
?
n

˙2

Q1 . (2.21)

Notice that the Zk,n’s are standard N p0, 1q however they are not independent as

covpZk,n, Zℓ,nq “
1
n

covpAkℓ, Aℓkq “
ρ

n
, k ‰ ℓ .

Introducing Mn “ maxkPrns Zk,n and |Mn “ minkPrns Zk,n, we proved in Corollary 2.5 that

P tα˚
npMn ´ β˚

nq ď xu , P
!

α˚
np|Mn ` β˚

nq ě ´x
)

ÝÝÝÑ
nÑ8

Gpxq . (2.22)

In the sequel, we often drop n and simply write RkpAq instead of Rk,npAq. Following the
same strategy as in [BN21], we notice that (2.20) yields

#

minkPrns xk ě 1 ` 1
αn

|M ` 1
α2

n
minkPrns RkpAq

minkPrns xk ď 1 ` 1
αn

|M ` 1
α2

n
maxkPrns RkpAq

,

which we can rewrite

min
kPrns

xk ě 1 `
α˚

n

αn

´

|M`β˚
n

α˚
n

´
β˚

n

α˚
n

`
minkPrns RkpAq

α˚
nαn

¯

,

“ 1 `
α˚

n

αn

´

´1 ` oP p1q `
minkPrns RkpAq

α˚
nαn

¯

,

where we have used the fact that M̌`βn

α˚
n

“ op1q, cf. (2.22). Similarly, we have:

min
kPrns

xk ď 1 `
α˚

n

αn

ˆ

´1 ` oP p1q `
maxkPrns RkpAq

α˚
nαn

˙

(2.23)

The proof in the centered case follows then from the following lemma:

108



Chapter 2. Equilibrium in a large Lotka-Volterra system with pairwise correlated interactions

Lemme 2.7. Let Rk,npAq be defined as in (2.21) and recall that αn ÝÝÝÝÑ
nÑ`8

`8, then:

maxkPrns Rk,npAq

αn

?
2 log n

P
ÝÝÝÑ
nÑ8

0 and minkPrns Rk,npAq

αn

?
2 log n

P
ÝÝÝÑ
nÑ8

0 .

The remaining of the section is devoted to the proof of Lemma 2.7.

Lipschitziannity and Gaussian concentration

We first introduce a truncated version of Rk,npAq. Let η P p0, 1q and φ : R` Ñ r0, 1s a
smooth function satisfying:

φpxq “

#

1 if x P r0, 2
?

2 ` ηs

0 if x ě 4
, (2.24)

decreasing from 1 to 0 gradually as x goes from 2
?

2 ` η to 4. Let

rRk,npAq “ φnRk,npAq where φn “ φ

ˆ
›

›

›

›

An
?
n

›

›

›

›

˙

. (2.25)

Notice that rRkpAq differs from RkpAq if φn ă 1 which happens with vanishing probability
as P tφn ă 1u “ P

␣

sn ą 2
?

2 ` η
(

ÝÝÝÑ
nÑ8

0 by Lemma 2.6. The following lemma is a first
step towards Gaussian concentration.

Lemme 2.8. Let rRk defined by (2.25) and M an n ˆ n matrix. Then the function

M ÞÑ rRkpMq “ eJ
k

ˆ

M
?
n

˙2 ˆ

I ´
M

αn

?
n

˙´1

1

is K-Lipschitz, i.e.
ˇ

ˇ

ˇ

rRkpMq ´ rRkpNq

ˇ

ˇ

ˇ
ď K }M ´ N}F (2.26)

where M,N are n ˆ n matrices, }M}F “

b

ř

ij |Mij|2 is the Frobenius norm and K a
constant independent from k and n.

The second step is to notice that rRkpAq (where A has Gaussian entries but with off-
diagonal pairwise correlations) can be in fact expressed as a Lipschitz function of i.i.d.
N p0, 1q entries.

Lemme 2.9. Consider the linear function Γ : Rnˆn Ñ Rnˆn defined by

ΓiipXq “ Xii and

$

&

%

ΓijpXq “

b

1`ρ
2 Xij `

b

1´ρ
2 Xji pi ă jq ,

ΓjipXq “

b

1`ρ
2 Xij ´

b

1´ρ
2 Xji pi ă jq .

Then

1. We have }ΓpXq}F ď Kρ}X}F where Kρ “ 2
a

1 ` |ρ| hence Γ is Kρ-Lipschitz.

2. If matrix Xn “ pXijq has i.i.d. N p0, 1q entries, then An “ ΓpXnq has i.i.d. N p0, 1q

entries on and above the diagonal (i ď j) and each vector pAij, Ajiq is a standard
bivariate Gaussian vector with covariance ρ for i ă j.
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The proof is straightforward and is thus omitted.
A consequence of this lemma is that rRkpAq “ rRkpΓpXqq is KˆKρ-Lipschitz. Applying

Tsirelson-Ibragimov-Sudakov inequality [BLM13, Theorem 5.5] finally yields:

Proposition 2.10. Let K the Lipschitz constant of Lemma 2.8 and Kρ “ 2
a

1 ` |ρ|.
Then

Emax
kPrns

´

rRkpAq ´ E rRkpAq

¯

ď 2Kρ K
a

log n .

Details of the proof are similar to those in [BN21] and are thus omitted.
Remark 2.6. Notice that φn ď 1 and that φn “ 0 if }A{

?
n} ě 4. In particular,

φn

›

›

›

›

A
?
n

›

›

›

›

ď 4 and φn }Q} ď
1

1 ´ 4α´1
n

ď 2

for n large enough. For the latter estimate, write Q “

´

I ´ A
αn

?
n

¯´1
, Q´1Q “ I and

Q “ I ` A
αn

?
n
Q, then apply the triangular inequality.

Proposition 2.11. The following estimate E rRk pAnq “ Op1q holds true, uniformly for
k P rns.

Proof. We shall prove that the variables rRk have a common distribution for k P rns, which
in particular implies that

E rRk “ E rRi , @k, i P rns and E rRk “
1
n

ÿ

iPrns

E rRi . (2.27)

Once this fact is established, the proof is straightforward:
ˇ

ˇ

ˇ
E rRk

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

1
n

ÿ

iPrns

E rRi

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

1
n
Eφn1J

ˆ

A
?
n

˙2

Q1

ˇ

ˇ

ˇ

ˇ

ˇ

ď

›

›

›

›

1
?
n

›

›

›

›

2

Eφn

›

›

›

›

A
?
n

›

›

›

›

2

}Q} “ Op1q ,

where the last equality follows from the arguments developed in Remark 2.6.
Let us now establish (2.27).
Denote by ∆σ the matrix associated to the permutation σ : rns ÞÑ rns and defined by

r∆σsij “

#

1 if i “ σpjq

0 else
.

Notice in particular that ∆σei “ eσpiq, ∆σ∆τ “ ∆στ for σ, τ two permutations and
∆σ´1 “ ∆J

σ . Denote by pijq the transposition swapping i and j, i.e. pijqi “ j, pijqj “ i

and pijqℓ “ ℓ otherwise. We consider qA “ ∆pijqA∆pijq, that is qA is obtained by swapping
A’s ith and jth column, then the ith and jth row. Observe that A and qA have the same
distribution and so is the case for RkpAq and Rkp qAq.

We have ∆2
pijq “ In, implying that qAk “ ∆pijqA

k∆pijq and then

Rip qAq “ eJ
i

ÿ

kě2

1
αk´2

n

˜

qA
?
n

¸k

1 “ eJ
i ∆pijq

ÿ

kě2

1
αk´2

n

ˆ

A
?
n

˙k

∆pijq1

“ eJ
j

ÿ

kě2

1
αk´2

n

ˆ

A
?
n

˙k

1 “ RjpAq .
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This proves that RipAq, Rip qAq, RjpAq have the same law, hence the same expectation.
Eq.(2.27) is established, which concludes the proof.

We are now in position to prove Lemma 2.7.

Proof of lemma 2.7. Recall that E rRkpAq “ E rR1. Since maxkPrns
rRkpAq ´ rR1pAq ě 0,

Markov inequality yields:

P

#

maxkPrns
rRkpAq ´ rR1pAq

αn

?
2 log n ě ε

+

ď
E
´

maxkPrns
rRkpAq ´ rR1pAq

¯

εαn

?
2 log n ,

“
E
´

maxkPrns
rRk pAq ´ E rRkpAq

¯

εαn

?
2 log n ,

“
E
´

maxkPrns

´

rRk pAq ´ E rRkpAq

¯¯

εαn

?
2 log n ,

ď

?
2K ˆ Kρ

εαn

,

where the last inequality follows from Proposition 2.10.
This implies that

maxkPrns
rRk pAq ´ rR1 pAq

αn

?
2 log n

P
ÝÝÝÑ
nÑ8

0 .

It remains to prove that

rR1 pAq

αn

?
2 log n

P
ÝÝÝÑ
nÑ8

0 and maxkPrns Rk pAq

αn

?
2 log n

P
ÝÝÝÑ
nÑ8

0 .

The arguments are similar to those in [BN21, Section 2.3]. Proof of the second assertion
of Lemma 2.7 can be done similarly. This concludes the proof.

2.3.3 Proof of Theorem 2.1 - the non centered case.
Recall that αn Ñ 8 as n Ñ 8. Denote by un “ 1?

n
1n and notice that the spectrum of

In´µunuJ
n is t1´µ, 1u, the eigenvalue 1 with multiplicity n´1. Notice in particular that if

µ ‰ 1, then I´µuuJ is invertible. So is (eventually) I´ A
αn

?
n

´µuuJ as }A{pαn

?
nq} Ñ 0

a.s. We shall also rely on the fact that }Q ´ I} ÝÝÝÑ
nÑ8

0 a.s. As a consequence,

uJQu
a.s.

ÝÝÝÑ
nÑ8

1 .

Denote by x̃ and x the vectors solutions of the equations:

x̃ “ 1 ` Bx̃ “ 1 `

ˆ

A

αn

?
n

` µuuJ

˙

x̃ and x “ 1 `
A

αn

?
n

x .

The following representations hold:

x̃ “ pI ´ Bq
´1 1 and x “

ˆ

I ´
A

αn

?
n

˙´1

1 .
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Recall that Q “ pI ´ A{pαn

?
nqq

´1. By rank one perturbation identity (Woodbury), we
have:

pI ´ Bq
´1

“ Q `
QuuJQ

1 ´ µuJQu

and

x̃ “
Q1p1 ´ µuJQuq ` µQuuJQ1

1 ´ µuJQu
“

x

1 ´ µuJQu
.

If µ ă 1 and αn ě p1`εqα˚
n then eventually, x̃ has positive components. This is no longer

the case if µ ą 1 or αn ď p1 ´ εqα˚
n. This concludes the proof of Theorem 2.1.

2.4 Stability: Proof of Proposition 2.3
Proof. We have

I ´ B ` I ´ BJ
“ 2I ´ pB ` BJ

q “ 2I ´

˜

Ǎ ` ǍJ

α
?
n

`
2µ
n

11J

¸

.

We will rely on the following condition:

2I ´ pB ` BJ
q is positive definite ô λmaxpB ` BJ

q ă 2 . (2.28)

Notice that pǍ ` ǍJq{α is a symmetric matrix with independent centered entries with
variance 2p1`ρq{α2q above the diagonal (the diagonal entries have a different distribution
from the off-diagonal entries, with no asymptotic effect). Notice that by assumption,
these entries have a finite fourth moment. In this case, it is well known that the largest
eigenvalue of the normalized matrix (or equivalently its spectral norm since the matrix
is symmetric) almost surely converges to the right edge of the support of the semi-circle
law (see [BS10, Theorem 5.2]):

λmax

˜

Ǎ ` ǍJ

α
?
n

¸

a.s.
ÝÝÝÑ
nÑ8

2
a

2p1 ` ρq

α
. (2.29)

Suppose that pρ, α, µq P A. Notice that in this case,

?
1 ` ρ

α
?

2
ă

1
2 ă

1
2 `

1
2

c

1 ´
2p1 ` ρq

α2 .

We consider three subcases

(i) µ “ 0,

(ii) µ ď
?

1`ρ

α
?

2 ,

(iii) µ P

ˆ

?
1`ρ

α
?

2 , 1
2 ` 1

2

b

1 ´
2p1`ρq

α2

˙

.
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In the centered case (i), condition (2.28) asymptotically occurs whenever α ą
a

2p1 ` ρq.
Before studying subcases (ii) and (iii), we recall a result on small rank perturbations

of large random matrices.
Notice that the trend matrix P “

2µ
n

11J admits a unique non zero eigenvalue 2µ.
Denote by H “ A`AJ

α
?

n
. We are concerned with the top eigenvalue of the symmetric matrix

H ` P . Based on a result by Capitaine et al. [CDMF09, Theorem 2.1], we have:

λmaxpH ` P q
a.s

ÝÝÝÑ
nÑ8

#

2µ `
1`ρ
α2µ

if µ ą
?

1`ρ
?

2α
,

2
?

2p1`ρq

α
else.

Consider now subcase (ii), then λmaxpH ` P q
a.s.

ÝÝÝÑ
nÑ8

2
?

2p1`ρq

α
, which is strictly lower than

2 since pρ, α, µq P A. Hence λmaxpH ` P q is eventually strictly lower than 2 in this case.
We finally consider subcase (iii). In this case,

λmaxpH ` P q
a.s.

ÝÝÝÑ
nÑ8

2µ `
1 ` ρ

α2µ
.

We shall prove that 2µ `
1`ρ
α2µ

ă 2 or equivalently

2α2µ2
´ 2α2µ ` 1 ` ρ ă 0 . (2.30)

An elementary study of the polynomial ΩpXq “ 2α2X2 ´ 2α2X ` 1 ` ρ yields that Ω’s
discriminant is positive if α ą

a

2p1 ` ρq and Ω’s roots are given by

Ωpµ˘
q “ 0 ô µ˘

“
1
2 ˘

1
2

c

1 ´
2p1 ` ρq

α2 .

Also remark that Ω
´?

1`ρ

α
?

2

¯

ă 0, so that
?

1`ρ

α
?

2 P pµ´, µ`q. In particular condition (2.30) is

fulfilled for µ P

´?
1`ρ

α
?

2 , µ
`

¯

, which is precisely subcase (iii). Hence a.s. lim supnÑ8 λmaxpH`

P q ă 2. We can then rely on Theorem 2.2 to conclude.
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Appendix

2.A Proof of Theorem 2.1: adaptations to the case
of a covariance profile

In this section, we provide the arguments to prove Theorem 2.1 in the case where matrix
B follows the model (2.5), i.e.

B “
Ãn

αn

?
n

`
µ

n
1n1J

n ,

where Ãn’s entries are i.i.d. N p0, 1q on and above the diagonal (i ď j), and pÃij, Ãjiq

is a standard bivariate Gaussian vector pi ă j) with covariance covpÃij, Ãjiq “ ρij, and
independent from the remaining random variables.

There are essentially 3 issues to resolve, to fully adapt the proof developed in Section
2.3 to the covariance profile case:

1. The decomposition (2.18) yields Ãn?
n

“ W 1
n ` iW 2

n , where W 1
n ,W

2
n are Hermitian

matrices with

var
`

rW 1
n sij

˘

“
1 ` ρij

2n and var
`

rW 2
n sij

˘

“
1 ´ ρij

2n .

Since W 1
n ,W

2
n are no longer Wigner matrices, but rather matrices with a variance

profile, an extra argument is needed to obtain an almost-sure upper bound for
lim supn }W 1

n} ` lim supn }W 2
n}.

2. The Lipschitz property for rRk,npÃnq. Essentially, we need the counterpart of Lemma
2.9 to the context of a covariance profile.

3. The control of the term E rRk,npÃq.

2.A.1 Proof of issue 1: Control of the spectral norm of a Her-
mitian matrix with a variance profile

Applying Lata la’s theorem [Lat05], we easily show that

E}W 1
n} ` E}W 2

n} ď C

where C is a constant independent from n.
Now write

W 1
n “

Υn ˝ Xn
?
n

where Υn “ pΥijq , Υij “

c

1 ` ρij

2 ,
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matrix Xn “ pXijq is a Wigner matrix with i.i.d. N p0, 1q entries on and above the
diagonal, and ˝ stands for the Hadamard product, i.e. Υn ˝ Xn “ pΥijXijq. Notice that
?
nW 1

n is 1-Lipschitz with respect to the Frobenius norm

}Xn}Frob “

d

ÿ

ij

|Xij|2 .

Hence by Gaussian concentration, we have

P
␣ˇ

ˇ

?
n}W 1

n} ´
?
nE}W 1

n}
ˇ

ˇ ą δ
(

ď 2e´ δ2
2 .

Taking δ “ ε
?
n, we obtain

P
␣ˇ

ˇ}W 1
n} ´ E}W 1

n}
ˇ

ˇ ą ε
(

ď 2e´ nε2
2 .

The same holds for W 2
n , hence the upper control:

lim sup
n

`

}W 1
n} ` }W 2

n}
˘

ď lim sup
n

`

E}W 1
n} ` E}W 2

n}
˘

ď C

almost surely. It remains to replace the truncation function φ in (2.24) by the smooth
function

ψpxq “

#

1 if x ď C ` η,

0 else.
to proceed.

2.A.2 Proof of issue 2: rRkpÃq is a Lipschitz function of Gaussian
i.i.d. random variables

It suffices to replace function Γ in Lemma 2.9 by
rΓ : Rnˆn

Ñ Rnˆn

where

rΓiipXq “ Xii and

$

&

%

rΓijpXq “

b

1`ρij

2 Xij `

b

1´ρij

2 Xji pi ă jq ,

rΓjipXq “

b

1`ρij

2 Xij ´

b

1´ρij

2 Xji pi ă jq .

and to modify accordingly the Lipschitz constant by rK “ 2
?

2 ě 2
a

1 ` maxij |ρij|.

2.A.3 Proof of issue 3: Magnitude of E rRk,npÃnq

To address this issue, we provide a quick argument which relies on Isserlis’ theorem also
called Wick’s formula (see [Jan97, Th. 1.28]), highly dependent on the Gaussiannity of
the entries.
Theorem 2.12 (Isserlis Theorem). if pX1, ¨ ¨ ¨ , Xnq is a centered normal vector, then

EpX1X2 ¨ ¨ ¨Xnq “
ÿ

Π

ź

ti,juPΠ
EpXiXjq (2.31)

where the sum is over all the partitions Π of rns into pairs ti, ju, and the product over all
the pairs contained in Π.
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Recall that:

E rRkpÃnq “
ÿ

ℓě2
E

«

eJ
k

αℓ´2
n

ˆ

Ã
?
n

˙ℓ

1

ff

“
ÿ

ℓě2

EeJ
k Ã

ℓ1
αℓ´2

n n
ℓ
2

“:
ÿ

ℓě2

Cℓ

αℓ´2
n n

ℓ
2
.

Consider a matrix An where the pairwise covariance covpAij, Ajiq “ 1. Denote by Cℓ “

EeJ
k A

ℓ 1. We will show that each quantity |Cℓ| is bounded by Cℓ. Notice that:

Cℓ “
ÿ

i1,...,iℓ`1

EpÃi1i2Ãi2i3 ...Ãiℓ,iℓ`1q . (2.32)

By Isserlis’ theorem, we have:

ˇ

ˇEpÃi1,i2Ãi2,i3 ...Ãiℓ,iℓ`1q
ˇ

ˇ ď

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

Π

ź

tj,kuPΠ
EpAijij`1Aikik`1q

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

Π

ź

tj,kuPΠ
EpAijij`1Aikik`1q “ E

`

Ai1i2 ¨ ¨ ¨Aiℓiℓ`1

˘

.

From this, we deduce that |Cℓ| ď Cℓ, hence |E rRkpÃq| ď E rRkpAq. This gives the desired
bound since E rRkpAq “ Op1q.

2.B Details on the system of equations (2.10)-(2.13)
The system of equations (2.10)-(2.13) is a re-interpretation of the final form of Bunin’s
equations to estimate the proportion of the surviving species. Note that for specific details
on the dynamical cavity method, see Bunin [Bun17]. First recall the following quantities:

ϕ “
Cardtx˚

i ą 0, i P rnsu

n
, xxy “

1
n

n
ÿ

j“1
x˚

j ,
@

x2D
“

1
n

n
ÿ

j“1
px˚

j q
2 ,

and v a parameter essentially related to the dynamical cavity method.
Starting from (2.4), the following change of variables is used

@k P rns, xk “
x˚

k
1
n

řn
j“1 x

˚
j

“
x˚

k

xxy
,

and expose nontrivial symmetries of the problem. In particular, this change induces the
study of a new system of equations where the fixed point is precisely those of the replicator
equations. Suppose that the system is at a stable equilibrium point resistant to invasions
i.e. the reintroduction of an extinct species at small abundance, automatically implies its
decay to zero.

To analyze this system, add a new species x0 and study the analogy between the
properties of the solutions with n and n` 1 species. After some computations (see Bunin
[Bun17]), one remark that if x0 ą 0 the distribution of the new invading species is a
Gaussian variable i.e.

x`
0 “

1
α ´ ρv

«

α

ˆ

1
xxy

` µ

˙

`

a

xx2y

xxy

ff

Z , Z „ N p0, 1q .
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Given x0 the abundance of the new species and using the argument of the resistance of
invasion, Bunin finally obtain the expression of abundance of the new species:

x0 “ maxp0, x`
0 q .

By an identification argument, when the new species is added to the system, it follow
the same distribution as the other. We may generalized the distribution to all the species
and after a revision of the change of variables, we recover an explicit distribution of each
species included in vector of abundances x:

@k P rns, x˚
k “ max

“

0, x˚`
k

‰

“ max
«

0, 1
1 ´

ρv
α

p1 ` xxyµ `

a

xx2y

α
Zkq

ff

, Zk „ N p0, 1q .

Notice that the distribution of the vector of abundances x is a truncated normal distri-
bution on 0 (see [CMN22]).

The last step is to find a system of 4 equations, 4 unknowns: v, xx2y and xxy and the
proportion of persistent species ϕ. Given ∆ “ p1 ` xxyµqα{

a

xx2y, we obtain equation
(2.10):

ϕ “ Ppx˚
k ą 0q ,

“ P

˜

1
1 ´

ρv
α

˜

1 ` xxyµ `

a

xx2y

α
Zk

¸

ą 0
¸

,

“ P

˜

Zk ą ´ p1 ` xxyµq
α

a

xx2y

¸

,

“ PpZk ą ´∆q “
1

?
2π

ż `8

´∆
e

´z2
2 dz .

Then equation (2.11):

xxy « Epx˚
kq ,

“ E
`

max
“

0, x˚`
k

‰˘

,

“ Epx˚`
k 1x˚`

k
ą0q ,

“ Epx˚`
k | x˚`

k ą 0qPpx˚`
k ą 0q ,

“ E

˜

1
1 ´

ρv
α

˜

1 ` xxyµ `

a

xx2y

α
Zk

¸

| Zk ą ´∆
¸

ϕ ,

“
ϕ

1 ´
ρv
α

p1 ` xxyµq `

ˆ

ϕ

1 ´
ρv
α

˙

a

xx2y

α
EpZk | Zk ą ´∆q .
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And then equation (2.12):
@

x2D
« Eppx˚

kq
2
q ,

“ Epmaxp0, x˚`
k q

2
q ,

“ Eppx˚`
k q

21x˚`
k

ą0q ,

“ Eppx˚`
k q

2
| x˚`

k ą 0qPpx˚`
k ą 0q ,

“ E

¨

˝

˜

1
1 ´

ρv
α

p1 ` xxyµ `

a

xx2y

α
Zkq

¸2

| Zk ą ´∆

˛

‚ϕ ,

“

ˆ ?
ϕ

1 ´
ρv
α

˙2
«

p1 ` xxyµq
2

` 2p1 ` xxyµq

a

xx2y

α
EpZk | Zk ą ´∆q `

xx2y

α2 EpZ2
k | Zk ą ´∆q

ff

,

where

EpZ1Zą´∆q “
1

2π

ż `8

´∆
e

´z2
2 zdz , EpZ21Zą´∆q “

1
2π

ż `8

´∆
e

´z2
2 z2dz .

The last equation (2.13) is intrinsically related to the dynamical cavity method and
can be incorporated in the other three equations by resolving the 2nd order polynomial
of v. Parameter v represents a major “turning point” in the understanding of the system
of equations (2.10)-(2.13) in the elliptic model.

v “ ϕ

ˆ

1
α ´ ρv

˙

.

A system of four equations and four unknowns is obtained and can be solved numerically
by evaluating the integrals. We refer to Bunin’s article [Bun17] for the uniqueness of the
solution of the system.
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Chapter 3

Impact of a block structure in large
systems of Lotka-Volterra

Abstract
The Lotka-Volterra (LV) system represents a simple, robust and versatile model used
to describe large interacting systems such as food webs or microbiomes. This model
consists of n coupled differential equations linking the abundances of the different species
present in the system. When the number of species becomes very large, the true value of
each interaction is difficult to observe or estimate, therefore the interactions between the
different species can be modeled as random variables in order to understand the system
dynamics. In this paper, we extend the LV model to describe the properties of a multi-
community model. By adding a block structure to the matrix of interactions, we study
the properties (feasibility, existence of an attrition phenomenon within each community)
of distinct communities by adjusting the inter- and intra-community interactions. In
particular, we analyze the properties and dynamics that emerge with two communities of
interacting species. The interplay between the two communities affects their respective
equilibrium and their resistance to small perturbations (stability).
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Introduction

Understanding large ecosystems and the underlying mechanisms that enable high species
diversity is a major challenge in theoretical ecology. Motivated by the seminal work
of May [May72], the emergence of random matrices has been a key mathematical step
to model high dimensional ecosystems. A better understanding of these tools has ex-
panded our understanding of the nature of interactions and food webs to achieve stability
[AT12, TPA14]. The Lotka-Volterra model [Lot25, Vol26] plays a key role in the study of
population dynamics over time. This model has been studied both in ecology and in math-
ematics. The study of the stability of this model has raised much interest [GGRA18] as
well as its feasibility i.e. conditions under which all species persist [BN21, GAS`17, Sto18].

In nature, ecological networks are rather structured and many studies have assessed the
network structures that contribute to the stability of a given community [TF10, AGB`15].
A widespread network structure in nature is the compartmentalization of food webs, also
called modularity. The underlying concept is that the network is structured in the form of
groups of nodes that interact more strongly within their group and more weakly between
groups. A mathematical formulation of modularity has been defined by Newman [New06].
Subsequently, modularity has been of great importance in ecology [GSSP`10], in complex
networks, see Variano et al. [VML04] and Fortunato [For10] for a complete review of
community detection (compartmentalization in ecology). May had already mentioned
that a multi-community structure should improve stability [May72], a hypothesis that was
later investigated by Pimm [Pim79]. Although studies show that modularity improves
the persistence (:= non-extinction of the species, generally related to their resistance
to external perturbations) of the species in the dynamical system [SB11]. Grilli et al.
[GRA16] studied the impact of modularity on the stability of the Jacobian of a system,
the so called “community matrix”.

In this article, we consider a block structure network representing the inter- and intra-
community interactions. Each block is identified by its interaction parameters, on the
one hand the strength of the interactions i.e. the standard deviation of the random part
of interactions and on the other hand a mean interaction parameter controlling on aver-
age the type of interactions (mutualism, competitiveness). The idea that the interaction
strength plays a key role in the stability of ecosystems was brought by May [May72].
Rooney et al. [RMGM06] showed that real food webs are structured such that fast and
slow channels convey stability to food webs. In this paper, we study some properties of
distinct communities in interaction, in particular feasibility (i.e. whether there exists an
equilibrium with all species at non-zero abundances) and the existence of an attrition phe-
nomenon (some species may vanish) within each community. In particular, we analyze
the properties and dynamics that emerge with two communities of interacting species.
The interplay between the two communities affects their respective equilibrium and their
resistance to small perturbations (stability). Finally, we investigate the similarities be-
tween the strength of interactions and the connectance in the Lotka-Volterra model with
respect to the stability-complexity threshold of May [May72].

Model and assumptions. The Lotka-Volterra model is a standard model in ecology
to study the dynamics of a community of species over time. This model describes the
population dynamics of a n-species system. It is defined by a system of n differential

120



Chapter 3. Impact of a block structure in large systems of Lotka-Volterra

equations
dxkptq

dt
“ xkptq

˜

rk ´ θxkptq `
ÿ

ℓPrns

Bkℓxℓptq

¸

, (3.1)

where k P rns “ t1, ¨ ¨ ¨ , nu. The abundance of species k at time t is represented by
xkptq with x “ px1, ¨ ¨ ¨ , xnq the vector of abundances. Parameter θ is the self regulation
coefficient or intra-specific interaction of each species. Parameter rk corresponds to the
growth rate of species k. The coefficient Bkℓ represents the impact of species ℓ on species k.
The matrix B, representing the interaction network, is decomposed in a block structure.
This structure differentiates different groups of species in the form of communities that
interact with each other. On the one hand, the diagonal blocks of B correspond to
interactions within each community. Each community has its own strength and type
of interaction. On the other hand, the off-diagonal blocks correspond to the impact of
the communities on each other. Within the framework of two communities, the matrix
B “ pBkℓqn,n is defined as

B “
1

?
n

ˆ

A11
α11

A12
α12

A21
α21

A22
α22

˙

`
1
n

ˆ

µ111I11J
I1 µ121I11J

I2

µ211I21J
I1 µ221I21J

I2

˙

, (3.2)

where:

• β “ pβ1, β2q,
ř2

i“1 βi “ 1 is the size by proportion of each of the blocks,

• I1 (resp I2) is a subset of rns of size |I1| :“ β1n (resp |I2| :“ β2n) matching the
index of species belonging to Community 1 (resp Community 2) where I1 “ rβ1ns

and I2 “ tβ1n ` 1, ¨ ¨ ¨ , nu,

• 1Ii
is a vector whose entries are 1’s of size βin.

• Aij is a non hermitian random matrix of size pβin, βjnq with standard Gaussian
entries i.e. N p0, 1q.

To standardize the model, we define a matrix associated to the coefficient αij of each
block as

α “

ˆ

α11 α12
α21 α22

˙

.

The associated matrix representing the strength of the interactions, i.e. their standard
deviation, is defined by

s “

ˆ 1
α11

1
α121

α21
1

α22

˙

.

The diagonal terms represent the interaction strength in each community. The off-
diagonal terms sij represent the interaction strength of the impact of the community
j on the community i. The lower the value of αij, the stronger the interactions. If αij is
very large then the interactions are absent. A mean matrix µ defined by

µ “

ˆ

µ11 µ12
µ21 µ22

˙

,

is a matrix describing the average value of interaction coefficients. By extension, it also
defines the dominant type of interactions within and among communities. A negative
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value results in interactions to be on average detrimental to the species i.e. competition,
while a positive value means the interactions are on average beneficial to the species i.e.
mutualism.

In Figure 3.0.1, an interaction matrix of a 20-species ecosystem with two communities
of different sizes is represented. The large number of parameters makes it possible to
model many ecological situations. The results of the article can be mostly extended to
the case of b blocks. In Appendix 3.C, we define the model with several (more than two)
communities.

Figure 3.0.1: Representation of an interaction matrix (3.2) of a 20 species system in the
form of a heatmap (the color tone gives information on the value of each entry of the
matrix). There are two distinct communities of different size, their characteristics are
given by the following parameters

n “ 20 ; β1 “ .75 ; s “

ˆ

1 1{3
1{10 1

˙

; µ “

ˆ

0 ´10
0 0

˙

.

Community 1 has a low impact on Community 2 whereas Community 2 has a competitive
(negative) impact on community one.

A typical example: assume two distinct groups of species following the dynamics of the
Model (3.3) (see Figure 3.0.3). Initially, the two communities are not interacting

s “

ˆ

1{2 ε
ε 1{2

˙

, ε ą 0 ,

and both are feasible in the sense that all species survive (see Figure 3.0.3 for t ă 5).
Starting from t “ 5, the two communities begin to interact more and more with each
other (α12, α21 decrease with a linear growth, see Figure 3.0.2). The persistence of species
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(i.e. the number of persisting species) decreases in both communities. The ranking of
abundances does not seem to be respected, the species that have the highest abundance
in Community 1 are not the ones that have the highest abundances when the interactions
increase. In our example, the species with the highest abundance in Community 2 becomes
extinct when the interactions between the two groups are increased.

(a) t “ 5 (b) t “ 10 (c) t “ 15

Figure 3.0.2: Representation of the evolution of the interaction matrix (3.2) when two
communities of 5-species start to interact with each other (see Figure 3.0.3). It is illus-
trated in the form of a heatmap (the color tone gives information on the value of each
entry of the matrix). In Fig. (a), at t “ 5 the two feasible communities are not interacting.
In Fig. (b), at t “ 10 the interaction strength are equal in and between the communities.
In Fig. (c), t “ 15 the inter-community interactions are strong, the communities reach a
new equilibrium at t “ 20 with vanishing species from both communities.

Properties of the dynamical system. We are interested in the impact of a block
structure of the food web on its persistence and stability. We limit the study to the
2-block case i.e. B defined in (3.2) and we focus on the model where rk “ 1, @k P rns and
θ “ 1:

dxk

dt
“ xk p1 ´ xk ` pBxqkq , k P rns . (3.3)

A key element to understand the dynamics of the LV system (3.3) is the existence of an
equilibrium x˚ “ px˚

kqkPrns such that
#

x˚
k p1 ´ x˚

k ` pBx˚qkq “ 0 , @k P rns ,

x˚
k ě 0.

(3.4)

and the study of its stability, that is the convergence of a solution x to the equilibrium
x˚: xptq ÝÝÝÑ

tÑ8
x˚ if xp0q is sufficiently close to x˚.

The Lotka-Volterra system is an autonomous differential system. If the initial con-
ditions are positive i.e. xp0q ą 0 (componentwise), it implies xptq ą 0 for every t ą 0.
However, some of the components xkptq may converge to zero if the equilibrium x˚ has
components equal to zero. In this article, we are considering two related behaviors. On
the one hand, under a feasible equilibrium x˚ ą 0 of (3.3), the equilibrium set of equations
becomes a linear equation:

x˚
“ 1 ` Bx˚ . (3.5)
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Figure 3.0.3: Dynamics of model (3.1) of 2 distinct communities of 5 species with inter-
action matrix (3.2). At t “ 0, the two communities converge to their feasible equilibrium
point and are not interacting. At t “ 5, the two communities start to interact i.e. α12
and α21 increase with a linear growth until t “ 15. Then, the two communities converges
to their new equilibrium point with persisting and extinct species in both communities.

In the context of a single community, the existence of a positive solution has been stud-
ied by Bizeul and Najim [BN21] and extended for more complex food webs in [AN21,
CEFN22]. On the other hand, if x˚ has vanishing components, the equilibrium equations
are no longer linear, and do not satisfy (3.5) anymore. We can then associate the equi-
librium with a nonlinear optimization problem which has been studied by Clenet et al.
[CMN22] in the single community case.

3.1 Feasibility
Denote by α the interaction (normalisation) parameter in the case of a unique community.
According to the work of Dougoud et al.. [DVR`18], if α is fixed (i.e. does not depend on
n) then there can be no feasible equilibrium at large n. Following this work, Bizeul and
Najim [BN21] provided the right normalization of α to have a feasible equilibrium. The
threshold corresponds to α „

a

2 logpnq above which the equilibrium is feasible almost
surely. Some extensions of these results have been made in the sparse case [AN21] and
with a mean and pairwise correlated entries [CEFN22]. In this section, conditions on the
matrices s and µ are given to get a feasible equilibrium in each community. We then
provide some ecological interpretations.

3.1.1 Theoretical analysis of the threshold

Recall the notation x “ pxkqkPrns. Denote by }x}
8

“ max
kPrns

|xk|. We are interested in the
existence of a feasible solution of the fixed point problem associated with the model (3.3).
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Consider s and µ such that I ´ B is invertible. The problem is defined by

x˚
“ 1 ` Bx˚

ô x˚
“ pI ´ Bq

´11 “ Q1 , (3.6)

where Q “ pI ´Bq´1 is the resolvent of the matrix B. The problem (3.6) admits a unique
solution. An extension of the computations of Bizeul and Najim is carried out in the
framework of a block structure network. In the sequel, one considers the centered case
µ “ 0 (see Subsection 3.1.4 for the non-zero case). Recall the Hadamard product ˝ of
two matrices A ˝ B “ pAijBijq and consider

s ˝ s “

˜

1
α2

11

1
α2

121
α2

21

1
α2

22

¸

.

We consider a matrix s which depends on n, i.e. s “ sn such that:

sn ÝÝÝÑ
nÑ8

0 ô @ i, j P t1, 2u, αij ÝÝÝÑ
nÑ8

8 .

Let Bn a matrix defined by

Bn “ V snV
J

˝
1

?
n

ˆ

A11 A12
A21 A22

˙

, (3.7)

where
V P Mnˆ2, V “

ˆ

1I1 0
0 1I2

˙

.

The spectral radius of 1?
n

ˆ

A11 A12
A21 A22

˙

a.s. converges to 1. So as long as sn is close to
zero, the matrix I ´ Bn is eventually invertible.

Theorem 3.1 (Feasibility for the 2-blocks model). Assume that matrix Bn is defined by
the 2-blocks model (3.7), µ “ 0. Let β “ pβ1, β2q, β1 ` β2 “ 1 represents the proportion
of each community. Let sn ÝÝÝÑ

nÑ8
0 and denote by s˚

n “ 1{
?

2 log n the critical threshold.
Let xn “ pxkqkPrns be the solution of (3.6).

1. If there exists ε ą 0 such that eventually
›

›psn ˝ snqβJ
›

›

8
ě p1 ` εqps˚

nq2 then

P
"

min
kPrns

xk ą 0
*

ÝÝÝÑ
nÑ8

0 .

2. If there exists ε ą 0 such that eventually
›

›psn ˝ snqβJ
›

›

8
ď p1 ´ εqps˚

nq2 then

P
"

min
kPrns

xk ą 0
*

ÝÝÝÑ
nÑ8

1 .

Sketch of proof. The first step consists in decomposing the equilibrium x˚:

x˚
k “ eJ

k x˚
“ eJ

kQ1 ,

“

8
ÿ

ℓ“0
eJ

kB
ℓ1 ,

“ 1 ` eJ
kB1 ` eJ

kB
2Q1 ,

“ 1 ` Zk ` Rk ,
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where Zk “
řn

ℓ“1 Bkℓ , @k P rns.

For the moment, we suppose @k P rns, Rk is a negligible term if n is sufficiently large.
This part of the proof has not been treated yet and relies on Gaussian concentration of
Lipschitz functionnals. However, we are confident that the techniques applied in [BN21]
will succeed in handling Rk.

The feasibility of the two communities is studied independently. Using Gaussian ad-
dition properties, a simpler form of Zk is deduced. Consider a family pŽkqkPrns of i.i.d.
random variables N p0, 1q.

If k P I1, Zk “
ÿ

ℓPI1

Bkℓ `
ÿ

ℓPI2

Bkℓ ,

„ N
ˆ

0 , β1

α2
11

˙

` N
ˆ

0 , β2

α2
12

˙

,

„

d

β1

α2
11

`
β2

α2
12
Žk .

Similarly

if k P I2, Zk „

d

β1

α2
21

`
β2

α2
22
Žk .

Given β “ pβ1, β2q, conditions on the matrix α are inferred to have:

Ppmin
kPrns

xk ą 0q “ 1 ô Ppmin
kPrns

Zk ą ´1q “ 1 . (3.8)

In order to compute a tractable form of min
kPrns

Zk, an additional approximation is made, if
n is large enough

min
kPIi

Žk „ ´
a

2 logpβinq « ´
a

2 logpnq (3.9)

min
kPrns

Zk “ min
˜
d

β1

α2
11

`
β2

α2
12

min
kPI1

Žk,

d

β1

α2
21

`
β2

α2
22

min
kPI2

Žk

¸

,

» min
˜
d

β1

α2
11

`
β2

α2
12

´

´
a

2 logpnq

¯

,

d

β1

α2
21

`
β2

α2
22

´

´
a

2 logpnq

¯

¸

,

“ min
˜

´

d

2β1 logpnq

α2
11

`
2β2 logpnq

α2
12

,´

d

2β1 logpnq

α2
21

`
2β2 logpnq

α2
22

¸

,

“ ´ max
˜

d

2β1 logpnq

α2
11

`
2β2 logpnq

α2
12

,

d

2β1 logpnq

α2
21

`
2β2 logpnq

α2
22

¸

.

Following the approximation (3.9), the condition min
kPrns

Zk ą ´1 asymptotically boils down
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to

max
˜

d

2β1 logpnq

α2
11

`
2β2 logpnq

α2
12

,

d

2β1 logpnq

α2
21

`
2β2 logpnq

α2
22

¸

ă 1 ,

ô max
ˆ

2β1 logpnq

α2
11

`
2β2 logpnq

α2
12

,
2β1 logpnq

α2
21

`
2β2 logpnq

α2
22

˙

ă 1 ,

ô max
ˆ

β1

α2
11

`
β2

α2
12
,
β1

α2
21

`
β2

α2
22

˙

ă
1

2 logpnq
,

ô
›

›psn ˝ snqβJ
›

›

8
ă

1
2 logpnq

:“ ps˚
nq

2 .

The extension to the b-block case can be found in Appendix 3.C.
Since α9

a

logpnq is the critical regime, we introduce the matrix κ defined by

κ “
α

a

logpnq
,

where κ will be Op1q at criticality, this will be convenient for ecological interpretations.
Using (3.9), the condition on κ writes

max
ˆ

2β1

κ2
11

`
2β2

κ2
12
,
2β1

κ2
21

`
2β2

κ2
22

˙

ă 1 . (3.10)

Remark 3.1. 1. If @i P t1, 2u , βi “ 1
2 and the entry of the matrix κ are equal, then

condition (3.10) gives the threshold κij ą
?

2, we find again the threshold
a

2 logpnq

in [BN21].

2. If κ12 “ κ21 “ 8, then condition (3.10) gives the feasibility conditions for each
community:

α11 ą
a

2β1 logpnq and α22 ą
a

2β2 logpnq .

For the same α, it means α ą
a

2 logpnq maxpβ1, β2q.
Remark 3.2. Assume κ11 “ κ22 “ ν1 and κ12 “ κ21 “ ν2, condition (3.10) is reformulated
as:

max
ˆ

2β1

ν2
1

`
2β2

ν2
2
,
2β1

ν2
2

`
2β2

ν2
1

˙

ă 1 .

If β1, β2 and ν2 are fixed, then the phase transition on the intra-community interactions
occurs at

ν1 ą min
˜

d

β1
1
2 ´

β2
ν2

2

,

d

β2
1
2 ´

β1
ν2

2

¸

.

In Figure 3.1.1, the phase transition is represented for a chosen set of parameters. Note
that the transition is rather smooth. However, an increase in the size of the model would
allow a smoother curve. The threshold depends on ν2, its increase (decrease of the inter-
block interactions) lowers the feasibility threshold to reach at least 1 (for communities of
the same size).
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Figure 3.1.1: Transition towards feasibility for the 2-blocks model (3.2). For each value
ν1 on the x-axis, we simulate 500 matrices B of size n “ 500 with two communities of the
same size (β1 “ β2 “ 0.5) with the inter-block interactions fixed at α21pν2q “ α21pν2q “

2
a

logpnq and compute the solution x of Theorem (3.1) at the scaling for the intra-
block interactions α11pν1q “ α22pν1q “ ν1

a

logpnq. The curve represents the proportion
of feasible solutions x obtained for the 500 simulations. The dotdashed vertical line
corresponds to ν1 “

c

β1
1
2 ´

β2
ν2

2

“ 2{
?

3.

3.1.2 Preservation of feasibility between two groups

Equation (3.10) defines a “feasibility domain” and gives a constraint in five dimensions.
The two communities of species can be studied independently i.e. the two components of
equation (3.10) respectively give the feasibility condition for each community.

• If 2β1
κ2

11
`

2β2
κ2

12
ă 1, then Community 1 is feasible.

• If 2β1
κ2

21
`

2β2
κ2

22
ă 1, then Community 2 is feasible.

The first community will be affected by the modification of the coefficient: κ11, κ12, the
second by: κ21, κ22. From a general point of view, an increase in the inter- or intra-
interaction strength will decrease the probability to have a feasible equilibrium.

An example of application: suppose we start with two feasible communities of the
same size (β1 “ β2 “ 0.5) and add interactions between these two groups, the feasibility
of the general model decreases. The feasibility domain is represented in Figure 3.1.2.
It shows a feasibility threshold where above the curve the feasible property is satisfied.
This means that the lower the values of κ11 and κ22, i.e. the stronger the interactions
within the groups, the more likely the feasibility property is lost. We can deduce that
an independent group structure is more likely to be feasible and therefore stable which
supports previous work on compartments models [SB11].
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Figure 3.1.2: Representation of the feasibility phase diagram. The feasible domain is above
the surface. The z-axis (resp x-axis) is the strength of interaction within Community 1 -
κ11 (resp Community 2 - κ22). The y-axis is the inter-community interactions κ12 “ κ21.
The colored surface illustrate the threshold between the feasibility and non-feasibility
domain in the system (3.3).

3.1.3 Impact of the community size
From another point of view, for a fixed matrix κ, the condition to have a feasible fixed
point domain can be computed as a function of the size of each community i.e. the pair
β “ pβ1, β2q. Starting from (3.10):

max
˜
d

2β1

κ2
11

`
2β2

κ2
12
,

d

2β1

κ2
21

`
2β2

κ2
22

¸

ă 1 ,

the two components are studied independently,
d

2β1

κ2
11

`
2p1 ´ β1q

κ2
12

ă 1 ô
2β1

κ2
11

`
2p1 ´ β1q

κ2
12

ă 1 ,

ô β1

ˆ

2
κ2

11
´

2
κ2

12

˙

ă 1 ´
2
κ2

12
,

ô β1 ă
1 ´ 2

κ2
12

´

2
κ2

11
´ 2

κ2
12

¯ , κ11 ă κ12 .
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In an identical manner, one has
d

2β1

κ2
21

`
2p1 ´ β1q

κ2
22

ă 1 ô β1 ą
1 ´ 2

κ2
22

´

2
κ2

21
´ 2

κ2
22

¯ , κ22 ă κ21 .

In the case where the intra-community interactions pκ11 , κ22q are smaller than the inter-
community interactions pκ12 , κ21q, we obtain an upper and a lower bound for the ad-
missible size of each community β1, β2 to have a feasible equilibrium. In Figure 3.1.3,
different cases of the feasibility zone are represented according to the inter-community
interactions pκ12 , κ21q. If the intra-community interactions are different, the community
with the lowest interaction κii is advantaged i.e. the size of the community can be larger.

(a) κ11 “ 1.2, κ22 “ 1.2 (b) κ11 “ 1.2, κ22 “ 1.4 (c) κ11 “ 1.4, κ22 “ 0.9

Figure 3.1.3: Representation of the feasibility domain depending on the fixed intra-
community interaction. In (a), (b), (c), a different scenario of intra-community interaction
is presented. Each panel represents the upper-bound (blue curve) and the lower-bound
(red curve) of the size of Community 1 as a function of the interaction between two com-
munities pκ12, κ21q. The blue area is the admissible zone to have a feasible fixed point in
(3.3). The size of community 2 is equal to β2 “ 1 ´ β1.

3.1.4 Extension to the non-centered case
Theorem 3.1 is extended to the non centered case µ ě 0. The matrix of interaction B
can be decomposed into the sum of a main matrix Ǎ and a mean matrix P ,

B “
1

?
n

ˆ

A11
α11

A12
α12

A21
α21

A22
α22

˙

loooooooomoooooooon

Ǎ

`
1
n

ˆ

µ111I11J
I1 µ121I11J

I2

µ211I21J
I1 µ221I21J

I2

˙

loooooooooooooooomoooooooooooooooon

P

.

Recalling the fixed point equation (3.6),

x˚
“ 1 ` Ǎx˚

ô x˚
“ pI ´ Ǎq

´11 “ Q1 .

Denote by
x̃ “ 1 ` Bx̃ “ 1 ` pǍ ` P qx̃ ,

the equilibrium of the non-centered system. Consider α and µ such that pI ´ Ǎq and
pI ´ Ǎ ´ P q are invertibles. Recall that Q “ pI ´ Ǎq´1, by using a special case of the
Woodbury formula

pI ´ Ǎ ´ P q
´1

“ Q ` QP pI ´ Ǎ ´ P q
´1 ,
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multiplying both side by 1,

x̃ “ x˚
` QP x̃ “ pI ´ QP q

´1x˚ .

From a heuristic point of view, when the dimension of the system becomes very large
Q « I because each entry of α converge to infinity.

The second step consists in estimating the matrix pI ´ P q´1. If matrix pI ´ P q´1 has
only non negative components and pI ´ P q´1 has no zero rows (:= a row with only 0
entries), then x̃ is positive. The second condition is impossible because if pI´P q´1 exists,
its determinant is non-zero.

Here, we only consider the case where the mean has non-negative elements µ ě 0. In
this case, the properties of class of M-matrices can help. For a survey on characterizations
of non-singular M-matrices, see [Ple77].

Definition 3.1 (M-matrix). An nˆ n matrix that can be expressed in the form sI ´C,
where C “ pcijq with cij ě 0, 1 ď i, j ď n, and s ą ρpCq, the spectral radius of C, is
called an M-matrix.

Proposition 3.2. I´P is an M-matrix if and only if pI´P q´1 exists and pI´P q´1 ě 0
component-wise.

Remark 3.3. The class of M-matrices is included in the class of P-matrices (see section
3.2) and of inverse-positive matrices i.e. matrix inverses with non-negative elements.

By identification, we are interested in the specific setting where C “ P . If all the
coefficients of the matrix P are non-negative i.e. µ ě 0 and ρpP q ă 1, then pI ´ P q is a
M-matrix. It is then sufficient to a give a condition on the spectral radius of the matrix
P .

The non-zero eigenvalues of the matrix P are the eigenvalues of the matrix diagpβqµ.
Suppose θ ‰ 0 is an eigenvalue of P “ UµUJ with U P Mnˆ2pRq defined by

U “
1

?
n

ˆ

1I1 0
0 1I2

˙

,

then there exists u such that
Pu “ θu ô UµUJu “ θu ,

ô UJUµUJu “ θUJu ,

ô diagpβqµUJu “ θUJu .

(3.11)

θ is an eigenvalue of the matrix diagpβqµ and UJu its associated eigenvector.
If µ ě 0, x̃ is feasible if:

ρ pdiagpβqµq ă 1 ô ρ

ˆˆ

β1µ11 β1µ12
β2µ21 β2µ22

˙˙

ă 1 .

For a mean matrix of rank 1, P “
µ
n
1n1J

n , the condition is µ ă 1 which is similar to
[CEFN22].
Remark 3.4. If the mean is the same for every block µ “ µ11J, µ ‰ 0, one can use the
identical arguments as in Clenet et al. [CEFN22].
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3.2 Existence of a unique equilibrium
In Section 3.1, the case of a feasible equilibrium i.e. x˚ ą 0 has been analysed. However,
in Figure 3.0.3, for t ą 15, we notice that the system can also converge to an equilibrium
with vanishing species. Here, the conditions of existence and uniqueness of an equilibrium
with vanishing species are described. Moreover, the next step will be the investigation of
the properties of the persisting species in each communities.

3.2.1 Theoretical requirement
The research of fixed points of (3.3) is equivalent to the identification of solutions of the
system (3.4). However, the number of potential solutions can be extremely large. The
works of Takeuchi [Tak96, Theorem 3.2.5] have made it possible to reduce this number by
relying on standard properties of dynamical systems. In particular, a necessary condition
for the equilibrium x˚ to be stable is that

1 ´ x˚
k ` pBx˚

qk ď 0 . (3.12)
Condition (3.12) is better known in ecology as the non-invadability condition [LM96]. In
reference to the ODE (3.3), the requirement for a given species k P rns to be non-invasive
is equivalent to:

ˆ

1
xk

dxk

dt

˙

xkÑ0`

ď 0 . (3.13)

The condition 3.13 describes the fact that if we add a species to the system at very low
abundance, then it will not be able to invade the system. As a consequence, we will now
focus on the following set of conditions:

$

&

%

x˚
k p1 ´ x˚

k ` pBx˚qkq “ 0 for k P rns ,
1 ´ x˚

k ` pBx˚qk ď 0 for k P rns ,
x˚ ě 0 componentwise .

(3.14)

This casts the problem of finding a non negative equilibrium into the class of Linear
Complementarity Problems (LCP), which we describe hereafter.

Linear Complementarity Problem (LCP). The linear complementarity problem
is a class of problems in mathematical optimization theory. It was proposed by Cottle
and Danzig in 1968 [CD68] and appears frequently in computational mechanics problems.
In particular LCP encompasses linear and quadratic programs; standard references are
[Mur88, CPS09]. Given a n ˆ n matrix M and a n ˆ 1 vector q, the associated LCP
denoted by LCP pM, qq consists in finding two nˆ 1 vectors z,w satisfying the following
set of constraints:

$

&

%

z ě 0 ,
w “ Mz ` q ě 0 ,
wJz “ 0 ô wkzk “ 0 for all k P rns .

(3.15)

Since w can be inferred from z, we denote z P LCP pM, qq if pw, zq is a solution of (3.15).
A theorem by Murty [Mur72] states that the LCP pM, qq has a unique solution pw, zq

iff M is a P -matrix, that is:
detpMIq ą 0 , @ I Ă rns , MI “ pMkℓqk,ℓPI .

In view of (3.14), we look for x˚ P LCP pI ´ B,´1q.

132



Chapter 3. Impact of a block structure in large systems of Lotka-Volterra

The equilibrium x˚ and its stability.

Definition 3.2 (Lyapunov diagonal stability). Matrix M is called Lyapunov diagonally
stable, denoted by M P Sω, if and only if there exists a diagonal matrix D with positive
elements such that DM ` MJD is negative definite i.e. all eigenvalues are negative.

Proposition 3.3 (Takeuchi et al. , 1978). If M P Sω then ´M is a P-matrix.

Recall the system (3.1) with different growth rates for each species and consider matrix
B is arbitrary,

d ykptq

dt
“ ykprk ` pp´θI ` Bqyqkq , k P rns . (3.16)

Takeuchi and Adachi (see for instance [Tak96, Th. 3.2.1]) provide a criterion for the
existence of a unique equilibrium y˚ and the global stability of the LV system.

Theorem 3.4 (Takeuchi and Adachi, [TA80]). If ´θI ` B P Sω, then LCP(θI ´ B,r)
admits a unique solution. In particular, for every r P Rn, there is a unique equilibrium
y˚ to (3.16), which is globally stable

@y0 ą 0,
#

yp0q “ y0

yptq satisfies
, yptq ÝÑ

tÑ8
y˚ .

Combining this result with RMT, we can guarantee the existence of a globally stable
equilibrium x˚ of (3.1) for a wide range of the parameters pβ,α,µq.

3.2.2 Centered case: µ “ 0
Before going into details, we make some reminders about Stieltjes transforms, a key
element of proofs in random matrix theory. We denote by

C` :“ tz P C : Impzq ą 0u

the upper half of the complex plane.

Definition 3.3 (Stieltjes transform). Let ν P PpRq a probability measure. The Stieltjes
transform of ν denoted by gν : C` Ñ C is defined by

gνpzq “

ż

R

1
λ ´ z

νpdλq , z P C` .

Remark 3.5. Let νA the empirical measure of the eigenvalues λ1, ¨ ¨ ¨ , λn of the symmetric
matrix A P MnpCq define by

νA :“ 1
n

n
ÿ

k“1
δλkpAq.

then the associated Stieltjes transform is given by

gνA
pzq “

ż 1
λ ´ z

νApdλq “
1
n

n
ÿ

i“1

1
λi ´ z

“
1
n
TrppA ´ zIq

´1
q.

where Q “ pA ´ zIq´1 is the resolvent of the matrix A.
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Proposition 3.5 (Stieltjes inversion). Let gν the Stieltjes transform of the measure ν of
finite mass νpRq. If a, b P R and νptauq “ νptbuq “ 0, then

νpa, bq “
1
π

lim
yÑ0`

Im
ż b

a

gνpx ` iyqdx ,

and
@x P R, νptxuq “

1
π

lim
yÑ0`

Impgνpx ` iyqq .

Theorem 3.6. Let µ “ 0 and assume that
›

›diagpβq
1{2 `

ps ˝ sq ` ps ˝ sq
J
˘

diagpβq
1{2›
›

2 ă 1 ,

then a.s. matrix pI´Bq`pI´BqT is eventually positive definite: with probability one, for
a given realization ω, there exists Npωq such that for n ě Npωq, pI ´Bωq ` pI ´BωqJ is
positive definite. In particular, there exists a unique (random) globally stable equilibrium
x˚ P LCP pI ´ Bω,´1q to (3.14).

Sketch of proof. From Theorem 3.4, we need to verify the Lyapunov diagonally stable
condition of the matrix p´I ` Bq P Sω by analyzing its largest eigenvalue.

p´I ` Bq ` p´I ` BJ
q “ ´2I `

1
?
n

˜

A11`AJ
11

α11
A12
α12

`
AJ

21
α21

A21
α21

`
AJ

12
α12

A22`AJ
22

α22

¸

.

Denote by H the symmetric matrix

H “
1

?
n

ˆ

H11 H12
H21 H22

˙

“
1

?
n

˜

A11`AJ
11

α11
A12
α12

`
AJ

21
α21

A21
α21

`
AJ

12
α12

A22`AJ
22

α22

¸

,

where @ i, j P t1, 2u, Hij is a matrix of size βinˆ βjn and each off-diagonal entries follow
a Gaussian distribution N

`

0, 1{α2
ij ` 1{α2

ji

˘

.
A matrix is negative definite if and only if all its eigenvalues are negatives. Here,

notice that ´2I `H is negative definite iff the top eigenvalues of H is lower than 2. The
aim of the proof is to give condition on the parameter α such that

λmax pHq ă 2 .

The matrix H has a variance profile, such a model has been studied in great details
by Erdös et al. and is linked to the theory of the Quadratic Vector Equation (QVE, see
[AEK17, AEK19] for more technical information). Given mpzq “ pm1pzq, ¨ ¨ ¨ ,mnpzqq,
the QVE associated to the matrix H is decomposed as

k P I1,´
1

mkpzq
“ z `

ÿ

ℓPI1

2
α2

11n
mℓpzq `

ÿ

I2

1
n

ˆ

1
α2

12
`

1
α2

21

˙

mℓpzq ,

k P I2,´
1

mkpzq
“ z `

ÿ

ℓPI1

1
n

ˆ

1
α2

12
`

1
α2

21

˙

mℓpzq `
ÿ

I2

2
α2

22n
mℓpzq .

Denote by 1{mpzq “ p1{m1pzq, ¨ ¨ ¨ , 1{mnpzqqJ and

S “
1
n

˜

2
α2

11
1I11J

I1 p 1
α2

12
` 1

α2
21

q1I11J
I2

p 1
α2

12
` 1

α2
21

q1I21J
I1

2
α2

22
1I21J

I2 ,

¸
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the QVE can be written in the standard form

´
1

mpzq
“ z ` Smpzq . (3.17)

Following Theorem 2.1 in Ajanki et al. [AEK19], @z P C`, Equation (3.17) has a unique
solution m “ mpzq where n´1 řmi is a Stieltjes transform of a probability measure and
the support of the associated measure is included in r´Σ,Σs, where Σ “ 2 }S}

1{2
2 .

This information gives an asymptotic bound on the support of the matrix H associated
with (3.17) i.e. asymptotically @ε ą 0 for a given realization ω, there exists Npωq;
@n ě Npωq

λmax pHq ď 2 }S}
1{2
2 ` ε .

Recall that ´2I ` H is negative definite iff λmax pHq ă 2. This condition is fulfilled if

2 }S}
1{2
2 ă 2 ,

or equivalently
}S}2 ă 1 .

Notice that this condition is sufficient but not necessary. Given the particular shape of
the matrix S, computing its norm is equivalent to computing the norm of a matrix of size
2 ˆ 2

}S}2 “
›

›diagpβq
1{2 `

ps ˝ sq ` ps ˝ sq
J
˘

diagpβq
1{2›
›

2

“

›

›

›

›

›

ˆ

β1 0
0 β2

˙1{2
˜

2
α2

11

1
α2

12
` 1

α2
211

α2
12

` 1
α2

21

2
α2

22

¸

ˆ

β1 0
0 β2

˙1{2
›

›

›

›

›

2

.

which completes the proof, we can then rely on Theorem 3.4 to conclude.
Remark 3.6.

1. In the context of a unique community, suppose that α “ α11J, then the previous
condition takes the simpler form α ą

?
2 which was already stated in [CMN22].

Indeed, starting from the condition of Theorem 3.6, the condition on the matrix is
›

›

›

›

›

ˆ

1{2 0
0 1{2

˙1{2 ˆ2{α2 2{α2

2{α2 2{α2

˙ˆ

1{2 0
0 1{2

˙1{2
›

›

›

›

›

2

“

›

›

›

›

ˆ

1{α2 1{α2

1{α2 1{α2

˙
›

›

›

›

2
,

which has eigenvalues 2{α2 and 0. The same sufficient condition is obtained 2{α2 ă

1 ô α ą
?

2.

2. The proof in the b-blocks case is provided in Appendix 3.C. The condition given
there is similar to Theorem 3.6.

3. The condition given in Theorem 3.6 is sufficient to guarantee a unique solution
to LCP pI ´ B,1q but not necessary, although it provides more information and
guarantees the global stability. This condition might be relaxed finding the bound
associated to the P-matrix property of I ´ B (see Appendix 3.D).
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Spectrum: a computer based approach. Theorem 3.6 only provides sufficient con-
ditions for the existence of a unique stable equilibrium and is based on the rough asymp-
totic upper bound estimation Σ “ 2 }S}

1{2
2 . We can assess the sharpness of this bound by

comparing it to the limiting spectrum of matrix H, which can be plotted via numerical
simulations. An efficient way to compute numerically the spectrum of the matrix H comes
from the system of non linear equations (3.17).

Starting from the QVE (3.17) associated to the matrix H, the system takes the simpler
form

#

´ 1
µ

“ z `
2β1
α2

11
µ ` β2p 1

α2
12

` 1
α2

21
qν ,

´ 1
ν

“ z ` β1p 1
α2

12
` 1

α2
21

qµ `
β2
α2

22
ν ,

where @k P I1, mkpzq “ µpzq and @k P I2, mkpzq “ νpzq. All the knowledge of (3.17) rely
on µpzq and νpzq. Then, using RMT theory, the resolvent G of the symmetric matrix H
can be approximated by

Gpzq “ pH ´ zIq
´1

» diagpµpzq1J
I1 , νpzq1J

I2q .

From Remark 3.5, the trace of the resolvent is equal to the Stieltjes transform

gpzq “
1
n
TrpGq » β1µpzq ` β2νpzq

of the spectral measure. Finally, the spectral density can be obtained using a the Stieltjes
inversion (Prop. 3.5). The spectral density of the matrix H can be computed numerically
by an iterative scheme. The initial condition of the two measurements pµ, νq is µ0 “ ν0 “

´1
z
. Then, the iterative scheme

#

´ 1
µp

“ z `
2β1
α2

11
µp´1 ` β2p 1

α2
12

` 1
α2

21
qνp´1

´ 1
νp

“ z ` β1p 1
α2

12
` 1

α2
21

qµp´1 `
2β2
α2

22
νp´1

,

converge to µ8 “ lim
pÑ`8

µp and ν8 “ lim
pÑ`8

νp. The last step consist of using the property
of the Stieltjes inversion (Prop.3.5).
Remark 3.7. To handle the Stieltjes inversion (Prop.3.5) numerically, it is similar as start-
ing with z “ x ` ϵi, ϵ « 10´3.

In Figure 3.2.1, the estimation of the spectral density by the numerical method is
represented for different types of interactions in the blocks of the matrix H. The threshold
given by 2 }S}

1{2
2 appears to be sharp.

3.2.3 Non centered case pµ ‰ 0q

The extension to the non-centered case (µ ‰ 0) may be mathematically tractable using
the QVE theory. However, at this point we shall consider the case where all the coefficients
αij are equal to a constant α.

Proposition 3.7. Let θmax “ λmaxpdiagpβqpµ ` µJqq. Let α “ α11J, α ą
?

2 and
assume that if θmax ą

?
2{α,

θmax P

˜?
2
α

, 1 `

c

1 ´
2
α2

¸

,
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(a) β “ r1{2, 1{2s, α “

ˆ?
2

?
2

?
2

?
2

˙

(b) β “ r1{2, 1{2s, α “

ˆ

2 1
1 8

˙

(c) β “ r1{2, 1{2s, α “

ˆ

1 2
8 1

˙

(d) β “ r3{4, 1{4s, α “

ˆ

1{3 1{5
1 1{2

˙

Figure 3.2.1: Spectrum (histogram) of the Hermitian random matrix H (n “ 1000),
conditions on pβ,αq are given in each panel. The solid line represents the distribution
of the spectrum computed by the numerical approach. The dashed vertical line indicates
the upper bound of the largest eigenvalue of H given by 2 }S}

1{2
2 .

then a.s. matrix pI´Bq`pI´BqT is eventually positive definite: with probability one, for
a given realization ω, there exists Npωq such that for n ě Npωq, pI ´Bωq ` pI ´BωqJ is
positive definite. In particular, there exists a unique (random) globally stable equilibrium
x˚ P LCP pI ´ Bω,´1q to (3.14).

Proof. In order to have the existence of a unique globally stable equilibrium, it is sufficient
that matrix

´I ` B ` p´I ` BJ
q “ ´2I ` H ` P̃ ,

is negative definite where

H “
1

α
?
n

ˆ

A11 ` AJ
11 A12 ` AJ

21
A21 ` AJ

12 A22 ` AJ
22

˙

,

P̃ “
1
n

ˆ

2µ111I11J
I1 pµ12 ` µ21q1I11J

I2

pµ21 ` µ12q1I21J
I1 2µ221I21J

I2

˙

.

Recall that ´2I ` pB ` BJq is negative definite if and only if the largest eigenvalue of
B ` BJ is lower than 2 i.e.

λmaxpB ` BJ
q ă 2 . (3.18)

137



Chapter 3. Impact of a block structure in large systems of Lotka-Volterra

Remark 3.8. In [CMN22], an admissible zone is described for a rank 1 mean matrix where
the condition on the strength of the interactions is α ą

?
2.

The matrix H is a GOE (Gaussian Orthogonal Ensemble) matrix, its spectrum con-
verges almost surely to the semi-circular law of support r´2

?
2

α
, 2

?
2

α
s.

The theory of random matrices gives precise information about the spectrum of the
matrix H ` P̃ . In particular, matrix P̃ may create outliers whose positions depend on α
and the eigenvalues of the matrix P̃ .

In Capitaine et al. [CDMF09, Th. 2.1], they describes the impact of a mean matrix
of a finite rank symmetric matrix on the spectrum. In particular, they give the exact
location of the spikes in the case of a symmetric matrix H and a mean symmetric matrix
of finite rank which is the case here.

First of all, matrix P̃ is a deterministic symmetric matrix of fixed finite rank r and
has J eigenvalues θ1 ą ¨ ¨ ¨ ą θJ independent of N. To recover the largest eigenvalues, it is
sufficient to study the matrix of dimension 2 (see (3.11) for details)

diagpβqpµ ` µJ
q .

Denote by the largest eigenvalue by

θmax “ λmaxpdiagpβqpµ ` µJ
qq

Using the results of Capitaine et al. [CDMF09], the largest eigenvalue of matrix H ` P̃
converges to

λmaxpH ` P̃ q
a.s

ÝÝÝÑ
nÑ8

#

θmax ` 2
α2θmax

if θmax ą
?

2
α
,

2
?

2
α

else.

Assume first that θmax ď
?

2
α

, then λmaxpH ` P̃ q
a.s.

ÝÝÝÑ
nÑ8

2
?

2
α

, which is strictly lower than 2
if α ą

?
2. Hence λmaxpH ` P̃ q is eventually strictly lower than 2 under this condition.

Assume now that θmax ą
?

2
α

, then

λmaxpH ` P̃ q
a.s.

ÝÝÝÑ
nÑ8

θmax `
2

α2θmax
.

We are interested in the conditions for which θmax ` 2
α2θmax

ă 2 or equivalently

α2θ2
max ´ 2α2θmax ` 2 ă 0 . (3.19)

An elementary study of the polynomial ξpXq “ α2θ2
max ´ 2α2θmax ` 2 yields that ξ’s

discriminant is positive if α ą
?

2,

ξpθ˘
maxq “ 0 ô θ˘

max “ 1 ˘

c

1 ´
2
α2 ,

and ξ
´?

2
α

¯

ă 0, so that
?

2
α

P pθ´
max, θ

`
maxq. In particular condition (3.19) is fulfilled if

θmax P

˜?
2
α

, 1 `

c

1 ´
2
α2

¸

.

Under this condition, (3.19) is fulfilled and a.s. lim supnÑ8 λmaxpH ` P̃ q ă 2.
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Remark 3.9. In the simplest case where the two communities are of equal size β “
`1

2 ,
1
2

˘

,
the analytical formula for the two eigenvalues are

θ1 “
1
2

”

µ11 ` µ22 `
a

pµ12 ` µ21q2 ` pµ11 ´ µ22q2
ı

,

θ2 “
1
2

”

µ11 ` µ22 ´
a

pµ12 ` µ21q2 ` pµ11 ´ µ22q2
ı

.

Ecological interpretation of the condition. In this section, an analysis of the impact
of the mean parameter µ is achieved. We are interested in the sensitivity of mutualism and
competition to the uniqueness and existence of an equilibrium when the two interacting
communities are of the same size. One defines the function ψ by

ψpµ11, µ12, µ21, µ22q “
1
2

”

µ11 ` µ22 `
a

pµ12 ` µ21q2 ` pµ11 ´ µ22q2
ı

,

corresponding to the largest eigenvalue θ1 of B ` BJ if θ1 ą
?

2{α.
The impact of the mean interaction coefficient µ12 on the largest eigenvalue is quan-

tified by
Bψ

Bµ12
“

µ12 ` µ21

2
a

pµ12 ` µ21q2 ` pµ11 ´ µ22q2
,

Bψ

Bµ12
ą 0 ô µ12 ą ´µ21 .

If the type of effect of Community 2 on Community 1 (µ12) has the opposite behav-
ior than the type of effect of the Community 1 on 2 (µ21) i.e. competition/mutualism
or mutualism/competition, then the equilibrium is likely to be unique globally stable.
Conversely, this helps explain the following rather counter-intuitive phenomenon: when
the competition between the communities increases, the left support of the spectrum is
strongly affected. However, if µ is of rank 2 then the right edge of the spectrum will
also be affected when the second eigenvalue exceeds a certain threshold. Suppose that
µ21 is negative, then the stronger the competition of µ12 will be, the more chance of
losing the stability condition. This phenomenon does not appear in the case of a single
community where the increase in competition does not affect stability (see [CMN22]).
This phenomenon is shown in Figure 3.2.2. In this example, we increase the competition
of Community 2 on Community 1, stability is lost when exceeding a certain threshold
[AT12].

In Figure 3.2.3, the behavior of ψ as a function of the variable µ12 is represented by
a parabola whose minimum is obtained in µ12 “ ´µ21 “ 2. The general conclusion is
that opposite inter-communities interactions behaviors between two community stabilize
the ecosystem whereas a mostly competitive or mutualistic type of relationship has the
opposite behavior.

The same arguments can be performed on the diagonal terms, in particular to Com-
munity 1 µ11.

Bψ

Bµ11
“

1
2 `

µ11 ´ µ22

2
a

pµ12 ` µ21q2 ` pµ11 ´ µ22q2
.

Bψ

Bµ11
ą 0 ô

a

pµ12 ` µ21q2 ` pµ11 ´ µ22q2 ` µ11 ´ µ22 ą 0 ,

ô
a

pµ12 ` µ21q2 ` pµ11 ´ µ22q2 ą µ22 ´ µ11 .
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(a) α “
?

2 , µ “

ˆ

´2 ´2
´2 ´2

˙

(b) α “
?

2 , µ “

ˆ

´2 ´4
´2 ´2

˙

(c) α “
?

2 , µ “

ˆ

´2 ´7
´2 ´2

˙

Figure 3.2.2: Spectrum (histogram) of the Hermitian random matrix B `BJ (n “ 1000,
α “

?
2). The solid line represents the semi-circular law. In Fig. 3.2.2a, µ “ ´2 and there

is a unique negative outlier. In Fig. 3.2.2b, µ12 “ ´4 and one can notice the presence
of one outlier and the other outlier is contained in the bulk of the semi-circular law. In
Fig. 3.2.2c, µ12 “ ´7, the competition has reach a threshold with 2 outliers outside the
bulk including on the right-side disturbing the stability. The dashed line indicates its
theoretical value.

On the one hand, if µ11 ą µ22 this is always true, on the other hand by taking the square,
one has pµ12 ` µ21q2 ą 0 which is also true for any matrix µ. The behavior of intra-
community mean is the same as in the one-community case: a negative mean does not
affect stability, but a positive mean will have a very strong impact on the top eigenvalue
and therefore stability.

Remark 3.10. The most general case could be treated by complex computations leading
to implicit equations on the conditions and therefore difficult to interpret. A non-sharp
bound by the triangular inequality

›

›H ` P̃
›

›

2 ď }H}2 `
›

›P̃
›

›

2 “ }H}2 ` maxp|θ1| , |θ2|q .

This is not optimal in the sense that when competitive interactions are added the largest
positive eigenvalue is not always influenced. However, if the mean matrix P̃ is large, it is
anticipated that the eigenvalues that come out of the bulk are still “not too far” from the
expected value.

140



Chapter 3. Impact of a block structure in large systems of Lotka-Volterra

Figure 3.2.3: Representation of the function ψp¨, µ12q by a parabola. The perturbed

matrix is set µ “

ˆ

´2 µ12
´2 ´2

˙

.

3.3 Persisting species
In Section 3.2, we have presented conditions on the matrix α,µ and the proportion of
community β for the existence of a globally stable equilibrium x˚ to (3.1) under the non-
invadability condition. The vector x˚ is random and depends on the realization of matrix
B. Moreover since α has fixed components and does not depend on n, the equilibrium
x˚ will feature vanishing components in the case of many communities (see the original
argument for a unique community in [DVR`18] and the discussion in [BN21]). In an
ecological context, we define two categories of species in the vector x˚, the persisting
species (non-vanishing components x˚

k ą 0) and the vanishing components corresponding
to the species going to extinction with x˚

k “ 0 and xkptq ÝÝÝÑ
tÑ8

0 .
In this section, we are interested in the properties (proportion, variance, distribution)

of non-vanishing components of the equilibrium x˚ for each community; we also describe
the distribution of the persisting species x˚

k ą 0 which turns out to be a truncated Gaus-
sian.
Remark 3.11. The Gaussianity assumption facilitates the explanation of the heuristics
but does not seem necessary for the result to hold. In Figure 3.3.3, the entries are not
considered Gaussian anymore but the two first moment EpBkℓq and Ep|Bkℓ|

2q cöıncide. In
this case, the distribution of the persisting species still matches the truncated Gaussian.

3.3.1 A heuristics of the number of persisting species
Assume that the considered ecosystem has two distinct interacting communities. The set
of persisting species in community i P t1, 2u is defined as

S1 “ tk P I1, x
˚
k ą 0u ; I1 “ r1, β1ns ,

S2 “ tk P I2, x
˚
k ą 0u ; I2 “ rβ1n ` 1, ns .
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Given the random equilibrium x˚, we introduce the following quantities for each commu-
nity i P t1, 2u

p̂i “
|Si|

|Ii|
, m̂i “

1
|Si|

ÿ

kPIi

x˚
k, σ̂2

i “
1

|Si|

ÿ

kPIi

px˚
kq

2 .

Denote by Z „ N p0, 1q a standard Gaussian random variable and by Φ the cumulative
Gaussian distribution function:

Φpxq “

ż x

´8

e´ u2
2

?
2π

du .

Heuristics 3.1. Let pα,µq and assume that either condition of Theorem 3.6 or Proposi-
tion 3.7 holds, then the following system of six equations and six unknowns pp1, p2,m1,m2, σ1, σ2q

p1 “ 1 ´ Φpδ1q , (3.20)
p2 “ 1 ´ Φpδ2q , (3.21)
m1 “ 1 ` λ1 ` ∆1EpZ|Z ą δ1q , (3.22)
m2 “ 1 ` λ2 ` ∆2EpZ|Z ą δ2q , (3.23)

pσ1q
2

“ p1 ` λ1q
2

` 2p1 ` λ1q∆1EpZ|Z ą δ1q ` ∆2
1EpZ2

|Z ą δ1q , (3.24)
pσ2q

2
“ p1 ` λ2q

2
` 2p1 ` λ2q∆2EpZ|Z ą δ2q ` ∆2

2EpZ2
|Z ą δ2q , (3.25)

where

∆i “

d

p1pσ1q2 β1

α2
i1

` p2pσ2q2 β2

α2
i2

; λi “ p1m1β1µi1 ` p2m2β2µi2 ; δi “
´1 ´ λi

∆i

, (3.26)

admits a unique solution pp˚
1 , p

˚
2 ,m

˚
1 ,m

˚
2 , σ

˚
1 , σ

˚
2 q and @ i P t1, 2u

p̂i
a.s.

ÝÝÝÑ
nÑ8

p˚
i , m̂i

a.s.
ÝÝÝÑ
nÑ8

m˚
i and σ̂i

a.s.
ÝÝÝÑ
nÑ8

σ˚
i .

There is a strong matching between the parameters obtained by solving (3.20)-(3.25)
and their empirical counterparts obtained by Monte-Carlo simulations. This is illustrated
in Fig. 3.3.1.

3.3.1.1 Construction of the heuristics

Getting information about the fixed point is equivalent to solving the LCP problem

x˚
k

˜

1 ´ x˚
k `

n
ÿ

ℓ“1
Bkℓx

˚
ℓ

¸

“ 0 , @k P rns .

Consider the random variables:

@k P rns, Žk “
ÿ

ℓPS1YS2

Bkℓx
˚
ℓ .

We assume that asymptotically the x˚
ℓ ’s are independent from the Bkℓ’s, an assumption

supported by the chaos hypothesis, see for instance Geman and Hwang [GH82]. Denote by
Ex˚ “ Ep ¨ | x˚q the conditional expectation with respect to x˚. Notice that conditionally
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(a) Parameters pp˚
1 , σ˚

1 , m˚
1q versus α21{α12. (b) Parameters pp˚

2 , σ˚
2 , m˚

2q versus α21{α12.

Figure 3.3.1: Comparison between the theoretical solutions pp˚
1 , p

˚
2 , σ

˚
1 , σ

˚
2 ,m

˚
1 ,m

˚
2q of

(3.20)-(3.25) and their empirical Monte Carlo counterpart (the star marker) as functions
of the off-diagonal block interaction strength α12{α21. The left column is associated to
the properties of Community 1. The rigth column is associated to the properties of Com-
munity 2. Matrix B has size n “ 100 and the number of Monte Carlo experiments is 500.
The parameters are µ “

ˆ

0 0
0 0

˙

, α “

ˆ

3 α12
α21

?
2

˙

, β “
`1

2 ,
1
2

˘

. When off-diagonal

block interaction α´1
12 , α

´1
21 increases, the number of persisting species p˚ decrease but their

variance σ˚ and mean m˚ increase.
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to x˚, the Žk’s are independent Gaussian random variables, whose two first moments can
easily be computed, see Appendix 3.B for the details

@k P Ii, Ex˚pŽkq “ p̂1m̂1β1µi1 ` p̂2m̂2β2µi2 ,

@k P Ii, varx˚pŽkq “ p̂1σ̂
2
1
β1

α2
i1

` p̂2σ̂
2
2
β2

α2
i2
.

Notice that the fact that Ex˚ and varx˚pŽkq only depend on p̂1, p̂2, m̂1, m̂2, σ̂1, σ̂2 (that
are converging quantities) supports the idea that Žk is unconditionally a Gaussian random
variable with moments:

EŽk “ p˚
1m

˚
1β1µi1 ` p˚

2m
˚
2β2µi2 and varpŽkq “ p˚

1pσ˚
1 q

2 β1

α2
i1

` p˚
2pσ˚

2 q
2 β2

α2
i2
,

where p˚
1 , p

˚
2 , m

˚
1 , m

˚
2 σ

˚
1 , σ

˚
2 are resp. the limits of p̂1, p̂2, m̂1, m̂2, σ̂1, σ̂2. We can intro-

duce two families of standard Gaussian random variables pZkqkPI1 and pZkqkPI2 :

@k P Ii, Zk “
Žk ´ EpŽkq
b

varpŽkq

“
Žk ´ p˚

1m
˚
1β1µi1 ` p˚

2m
˚
2β2µi2

b

p˚
1pσ˚

1 q2 β1
α2

i1
` p˚

2pσ˚
2 q2 β2

α2
i2

.

To simplify the following computations, we denote:

∆˚
i “

d

p˚
1pσ˚

1 q2 β1

α2
i1

` p˚
2pσ˚

2 q2 β2

α2
i2

; λ˚
i “ p˚

1m
˚
1β1µi1 ` p˚

2m
˚
2β2µi2 ; δ˚

i “
´1 ´ λ˚

i

∆˚
i

.

Here, λ˚
i (resp ∆˚

i ) corresponds to the average effect of the interactions on the community
i (resp average variance of the interactions on the community i).

Consider the equilibrium x˚ “ px˚
kqkPrns, the definition of the LCP equilibrium implies

if k P S1 Y S2:

x˚
kp1 ´ x˚

k ` pBx˚
qkq “ 0 and 1 ` pBx˚

qk “ 1 ` Žk ą 0 .

We finally obtain the following relationship for the persisting species:

x˚
k “ 1 ` λ˚

i ` ∆˚
i Zk if k P Si . (3.27)

Heuristics (3.20)-(3.21). We can write the first two equations:

Ppx˚
k ě 0|k P S1q “ 1 ´ Φpδ˚

1 q ,

and
Ppx˚

k ě 0|k P S2q “ 1 ´ Φpδ˚
2 q .

We finally obtain (3.20) and (3.21):

p˚
1 “ 1 ´ Φpδ˚

1 q .

p˚
2 “ 1 ´ Φpδ˚

2 q .
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Heuristics (3.22)-(3.23). Our starting point is the following generic representation of
an abundance at equilibrium (either of a persisting or vanishing species) in the case k P Si:

x˚
k “ p1 ` λ˚

i ` ∆˚
i Zkq 1tZkąδ˚

i u

“ p1 ` λ˚
i q 1tZkąδ˚

i u ` p∆˚
i Zkq 1tZkąδ˚

i u .

Summing over Si and normalizing,
1

|Si|

ÿ

kPSi

x˚
k “ p1 ` λ˚

i q
1

|Si|

ÿ

kPSi

1tZkąδ˚
i u ` ∆˚

i

1
|Si|

ÿ

kPSi

Zk1tZkąδ˚
i u,

m̂i
paq
“ p1 ` λ˚

i q ` ∆˚
i

|Ii|

|Si|

1
|Ii|

ÿ

kPIi

Zk1tZkąδ˚
i u,

m̂i
pbq
» p1 ` λ˚

i q ` ∆˚
i

1
PpZ ą δ˚

i q
EpZ1tZąδ˚

i uq,

m̂i » p1 ` λ˚
i q ` ∆˚

i EpZ | Z ą δ˚
i q.

where paq follows from the fact that |Si| “
ř

kPSi
1tZkąδ˚

i u (by definition of Si), pbq from
the law of large numbers 1

|Ii|

ř

kPIi
Zk1tZkąδiu ÝÝÝÑ

nÑ8
EZ1tZąδ˚

i u and |Si|

|Ii|
ÝÝÝÑ
nÑ8

PpZ ą δ˚
i q

with Z „ N p0, 1q. It remains to replace m̂i by its limit m˚
i to obtain heuristics 2. We

finally obtain the 3rd and 4th equations:

m˚
1 “ 1 ` λ˚

1 ` ∆˚
1EpZ|Z ą δ˚

1 q

m˚
2 “ 1 ` λ˚

2 ` ∆˚
2EpZ|Z ą δ˚

2 q

Heuristics (3.24)-(3.25). By similar computations, one can obtain similarly the 5th
and 6th equations:

pσ˚
1 q

2
“ p1 ` λ˚

1q
2

` 2p1 ` λ˚
1q∆˚

1EpZ|Z ą δ˚
1 q ` p∆˚

1q
2EpZ2

|Z ą δ˚
1 q

pσ˚
2 q

2
“ p1 ` λ˚

2q
2

` 2p1 ` λ˚
2q∆˚

2EpZ|Z ą δ˚
2 q ` p∆˚

2q
2EpZ2

|Z ą δ˚
2 q

General properties of the ecosystem Information on the properties of the total
proportion of the block can be computed.

1. Proportion of persisting species.

Ppx˚
k ě 0q “ Ppx˚

k ě 0|k P I1qPpk P I1q ` Ppx˚
k ě 0|k P I2qPpk P I2q ,

p˚
“ p˚

1β1 ` p˚
2β2 .

2. Mean square of the abundance of the persisting species.

Eppx˚
kq

2
q “ Eppx˚

kq
2
|k P I1qPpk P I1q ` Eppx˚

kq
2
|k P I2qPpk P I2q ,

pσ˚
q

2
“ pσ˚

1 q
2β1 ` pσ˚

2 q
2β2 .

3. Mean of the abundance of the persisting species

Epx˚
kq “ Epx˚

k|k P I1qPpk P I1q ` Epx˚
k|k P I2qPpk P I2q ,

m˚
“ m˚

1β1 ` m˚
2β2 .
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3.3.2 Distribution of the persisting species
We may recall the following representation of the abundance x˚

k of a persisting species
when k P Si:

x˚
k “ 1 ` λ˚

i ` ∆˚
i Zk if k P Si,

where Zk „ N p0, 1q and Zk ą δ˚
i “ δipp

˚
i ,m

˚
i , σ

˚
i q defined in (3.27). This representation

allows to characterize the distribution of x˚
k of each community. It turns out that the

persisting species of each community follow a truncated Gaussian distribution.

Heuristics 3.2. Let pα,µq and assume that either condition of Theorem 3.6 or Proposi-
tion 3.7 holds and let pp˚

1 , p
˚
2 ,m

˚
1 ,m

˚
2 , σ

˚
1 , σ

˚
2 q be the solution of the system (3.20)-(3.25).

Recall the definition (3.26) of λi, ∆i, δi and denote by δ˚
i “ δipp

˚
i ,m

˚
i , σ

˚
i q. Let x˚

k ą 0 be
a positive component of x˚ belonging to the community i, then:

Lpx˚
kq ÝÝÝÑ

nÑ8
L
ˆ

1 ` λ˚
i ` ∆˚

i Z

ˇ

ˇ

ˇ

ˇ

Z ą δ˚
i

˙

,

where Z „ N p0, 1q. Otherwise stated, asymptotically @k P Si, x
˚
k admits the following

density

fkpyq “
1tyą0u

Φp´δ˚
i q

1
∆˚

i

?
2π

exp
#

´
1
2

ˆ

y

∆˚
i

` δ˚
i

˙2
+

. (3.28)

The heuristics simply follows from the fact that if x˚
k is a persisting species and k P Si

then
x˚

k “ 1 ` λ˚
i ` ∆˚

i Zk,

conditionally on the fact that the right hand side of the equation is positive, that is
Zk ą δ˚

i . A simple change of variable yields the density - details are provided in Appendix
3.B.

Fig. 3.3.2 illustrates the matching between the theoretical distribution obtained by
3.28 and a histogram obtained by generating the interaction matrix for 2 communities.
In Figure 3.3.3, the validity of heuristics in the case of non-Gaussian entries is illustrated.

3.3.3 Toward a general case
In the heuristics 3.1 and 3.2, we are restricted to conditions to have unique and globally
stable equilibrium on (α,µ) given by Theorem 3.6 and Proposition 3.7.

(i) On the one hand, in Theorem 3.6, we assume that µ “ 0 and give condition on α.

(ii) On the other hand, in Proposition 3.7, we assume α “ α11J. The first condition is
α ą

?
2 and we give conditions on µ depending of α.

However, in Figure 3.3.4, we notice that the results remain convincing for couples (α,µ)
beyond these assumptions. For this reason, we shall use in the sequel the heuristics beyond
the conditions of Theorem 3.6 and Proposition 3.7. We remain confident that by using
the QVE theory for the non-centered case, we could extend the conditions over (α,µ) to
have a unique and globally stable equilibrium beyond conditions (i) and (ii).
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Figure 3.3.2: Distribution of persisting species in each community. The x-axis represents
the value of the abundances and the histogram is built upon the positive components
of equilibrium x˚ associated to each community. The blue-solid line (resp. red-solid
line) represents the theoretical distribution of Community 1 (resp. Community 2) for
parameters pα,µq as given by Heuristics 3.2. The entries are Gaussian N p0, 1q and the
parameters are set to

n “ 1000 , µ “

ˆ

0.5 0.5
0 0

˙

, α “

ˆ

2 3
3 3

˙

, β “

ˆ

1
2 ,

1
2

˙

.

3.3.4 Diversity is contagious

In Figure 3.0.3, adding interactions between two feasible communities disturb the persis-
tence of the ecosystem i.e. beyond a given threshold, some species go extinct. Using the
heuristic equations (3.20)-(3.25), the evolution of the proportion of persisting species in
each communities can be quantified. Understanding the effect of species richness in each
communities becomes an important endeavour. In particular, the effect of the species
richness of Community 1 on Community 2 when interactions are added (see Figure 3.3.5).
In Figure 3.3.6, we represent the impact of the species richness of Community 1 (which de-
pends mainly on α11) on Community 2. When Community 1 has more persisting species
(larger α11), its impact is smaller on the persistence decay of Community 2. We con-
clude that there is a contagion of diversity: the higher the persistence of a community,
the less its impact will be harmful on the other communities. This can be compared to
a spatial averaging or insurance effect: the more persistent species there are in the ac-
tive community, the more interactions the passive community will receive i.e. functional
complementarity in the communities (see Loreau et al. [LNI`01, LMG03]). From an evo-
lutionary standpoint, contagious diversity has been studied by Calcagno et al. [CJL`17]
where diversity favours diversification.
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Figure 3.3.3: Distribution of persisting species in each community. The x-axis represents
the value of the abundances and the histogram is built upon the positive components
of equilibrium x˚ associated to each community. The solid lines (blue for Community
1, red for Community 2) represents the theoretical distribution for parameters pα,µq as
given by Heuristics 3.2. The entries are uniform Up´

?
3,

?
3q with variance 1 and the

parameters are set to

n “ 1000 , µ “

ˆ

0 0
0 0

˙

, α “

ˆ

2 1.5
3 4

˙

, β “

ˆ

1
2 ,

1
2

˙

.

Notice in particular that the theoretical distribution matches even with non-Gaussian
entries.

3.3.5 Feedback effect
A natural question that emerges is the existence of a feedback effect. In Figure 3.3.7, a
diagram of the situation is represented, two communities are interacting, the impact of
Community 1 on Community 2 is increasing. When this increase occurs, if Community
1 has higher persistence then Community 2 is less severely affected (see section 3.3.4).
However, when Community 2 is affected, there is a feedback loop affecting Community
1. The evolution of the persistence is represented in Figure 3.3.8. A decrease of the
persistence p˚

1 is observed when the interaction increases i.e. α21 decreases. The feedback
effect is negative, which produces a detrimental cycle: if Community 1 is less persistent, it
affects Community 2 more negatively, which in turn affects Community 1 more strongly.
The decline in persistence between two interacting communities is not linear but has a
double negative effect, hence the importance of maintaining persistent communities and
not neglecting feedback phenomena when dealing with ecosystems (see Loreau [LNI`01]).

3.3.6 Type of food web interactions
In the previous sections, the impact of the strength of interactions α was investigated
without the mean interaction parameter µ “ 0. However, particular types of food webs
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(a) Parameters pp˚
1 , σ˚

1 , m˚
1q versus α21{α12. (b) Parameters pp˚

2 , σ˚
2 , m˚

2q versus α21{α12.

Figure 3.3.4: Comparison between the theoretical solutions pp˚
1 , p

˚
2 , σ

˚
1 , σ

˚
2 ,m

˚
1 ,m

˚
2q of

(3.20)-(3.25) and their empirical Monte Carlo counterpart (the star marker) as func-
tions of the off-diagonal block interaction strength α12{α21. The left column is associated
to the properties of Community 1. The right column is associated to the properties of
Community 2. Matrix B has size n “ 100 and the number of Monte Carlo experiments
is 500. The parameters are µ “

ˆ

´0.3 ´0.5
0.3 ´0.3

˙

, α “

ˆ

2 α12
α21

?
2

˙

, β “
`1

2 ,
1
2

˘

. When

off-diagonal block interaction α´1
12 , α

´1
21 increases, the number of persisting species p˚ de-

crease but their variance σ˚ and mean m˚ increase.

(mutualism, competition, antagonistic) arise in nature and their consequences could be
related to specific patterns. The use of the mean parameter µ of the matrix B allows to
control the sign of interactions (on average) in each block, and therefore the nature of the
food web.

Inter-community interactions. Let us consider two communities whose interactions
are initially mostly competitive (µ12 “ µ21 ă 0), mutualistic (µ12 “ µ21 ą 0) or antago-
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Figure 3.3.5: Diagram of the experience of the impact of the species richness of Community
1 on Community 2. The off-diagonal block A12 is set to 0, α12 Ñ 8.

Figure 3.3.6: Heatmap of the proportion of persisting species p˚
2 in Community 2. The x-

axis represents the impact of Community 1 on Community 2 by increasing the off-diagonal
interaction strength α21. The y-axis represents the interaction strength in Community 1
which is directly related to the proportion of persistent species p˚

1 .

nistic (µ12 “ ´µ21).
Remark 3.12. From a theoretical standpoint, in order to have pairwise antagonistic inter-
actions within the community, we would have to add a correlation parameter ρ between
the pairs of interactions. Antagonistic relationships appears when ρ ă 0. Here, an inverse
relationship between the inter-community parameter µ12 “ ´µ21 increases the number of
antagonistic interactions on average.

The previous results (see Figure 3.1.2) indicate a decrease in persistence in both com-
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Figure 3.3.7: Diagram of the experience of a feedback effect. The off-diagonal interaction
strength α12 is set to a constant. The interaction of Community 1 on Community 2 α21
is enhanced.

Figure 3.3.8: Representation of the feedback effect. Proportion of the persisting species p˚
1

in Community 1 when increasing the interaction strength of Community 1 on Community
2 (α21 decreases).

munities with no mean (µ “ 0) when there is an increase in inter-community interactions.
In Figure 3.3.9, we consider these three different cases. The impact on persistence is the
same for mutualistic and competitive interactions. However, for an antagonistic relation-
ship, the community benefiting from the interaction (here Community 2) will have a better
persistence [TF10, AT12]. Inversely Community 1 will be deficient of the interaction.
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(a) Community 1 (b) Community 2

Figure 3.3.9: Representation of the impact of the type of inter-community interactions.
The two figures illustrates the persisting species in each community (Community 1 in
Fig. 3.3.9a, Community 2 in Fig. 3.3.9b) as a function of the inter-community interaction
strength pα12 “ α21q. Three types of inter-community are investigated:

Antagonist µa “

ˆ

0 ´0.4
0.4 0

˙

,

Mutualism µm “

ˆ

0 0.4
0.4 0

˙

,

Competition µc “

ˆ

0 ´0.4
´0.4 0

˙

.

Intra-community interactions. The type of inter-community interactions has an ef-
fect on persistence within communities. The type of intra-community interactions can
also have a significant effect. For this purpose, we compare the persistence of Community
2 under the condition that Community 1 is mostly competitive or mutualistic. In Figure
3.3.10, we notice that when interactions are added (α21), and the type of interaction is
mostly competitive in Community 1 then the persistence of Community 2 is less affected.
The idea is that if competition is strong within Community 1, then the abundances will
be more homogeneous in Community 1 and therefore the effect will be weaker on Commu-
nity 2. Conversely, a mutualistic community will have a greater and more heterogeneous
abundance and its effect will be strongly increased over the other communities.

More resilient community. A natural question is which type of community is better
able to withstand the impact of other communities. In Figure 3.3.11, we observe that
the larger the mean of Community 2, the better the community’s persistence. Upon
comparison with Figure 3.3.10, the two heatmaps appear similar with the exception of
a permutation. A mostly mutualistic community µ22 “ 0.4 is as resistant to the impact
of any community as a standard community which is resistant to a mostly competitive
community µ11 “ ´0.4 and therefore less affected.

Some additional summary graphs. Given the number of parameters of the model,
it is possible to test many possibilities. See appendix 3.E for other types of effects.
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Figure 3.3.10: Heatmap of the proportion of persisting species p˚
2 in Community 2. The

x-axis corresponds to the impact of Community 1 on Community 2 by increasing the
off-diagonal interaction strength α21. The y-axis corresponds to the disturbance µ11
in Community 1 which is directly related to the average type of interactions (mutual-
ism/competition). The parameters are

µ “

ˆ

µ11 0
0 0

˙

, α “

ˆ

2 8

α21 2

˙

, β “

ˆ

1
2 ,

1
2

˙

.

3.4 Parallel between connectance and interaction strength
In this article, we have mainly focused on the impact of the parameter α i.e. on the
observation of the behavior of the model when the strength of the interactions varies. In
his work [May72], May provided a stability threshold depending on three factors (n, σ, C)
in the case of a single size community. n is the dimension of the system, σ is the variance
of the interactions, and C is the average proportion of non-zero values in the community
matrix. These three factors summarize the properties of the community matrix (the
Jacobian) which represents the impact between species around the equilibrium. The
stability condition is given by

σ
?
nC ă 1 .

When compared to the matrix model (3.2) as a Jacobian matrix, the factor n is absorbed
by σ which is of order Opn´1{2q by construction. The second factor σ is identified with our
1{α - the inverse of the interaction strength and the last is the connectance C. Following
these remarks, May’s criterion with (3.2) is rewritten with our notations as

?
C

α
ă 1 .

The objective of this section is to discuss through simulations whether the parameters
of connectance C and strength of interactions α may exactly offset or mimic each other in
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Figure 3.3.11: Heatmap of the proportion of persisting species p˚
2 in Community 2. The

x-axis corresponds to the impact of Community 1 on Community 2 by increasing the
off-diagonal interaction strength α21. The y-axis corresponds to the disturbance µ11
in Community 1 which is directly related to the average type of interactions (mutual-
ism/competition). The parameters are

µ “

ˆ

´0.4 0
0 µ22

˙

, α “

ˆ

2 8

α21 2

˙

, β “

ˆ

1
2 ,

1
2

˙

.

their effects on feasibility, stability and persistent species properties. In physical terms,
is there a composite parameter that completely determines the feasibility in the Lotka-
Volterra model? In particular, can we make a parallel between the connectance and the
strength of interactions?

In the sequel, we can define the connectance as a function (similarity) on the strength
of the interactions by

C “ fpαq “
1
α2 , @α P r1,8q . (3.29)

Remark 3.13. The similarity relation is only defined for α ě 1 whereas for 1{
?

2 ă α ă 1,
the Lotka-Volterra model (3.3) admits a unique equilibrium [Bun17].

Similar interaction matrix To compare the similarities between connectance and
interaction strength in the model, we define a new interaction matrix BS that does not
depend on interaction strength. From (3.2), one can define B̃ whose interaction strength is
the same for all matrices i.e. α “ 11J and S the adjacency matrix of a specific stochastic
block model, then

BS
“ S ˝ B̃ ,

where ˝ corresponds to the Hadamard product between two matrices.
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Remark 3.14. In the rest of the section, we assume that all graphs are undirected. If
species k interacts with species ℓ, reciprocally species ℓ interacts with species k. This
specific choice reduces the type of relationship that we can have in our model, “absolute”
commensalism and amensalism (in the sense that BS

kℓ ‰ 0 and BS
ℓk “ 0) are not repre-

sented. However, we can consider that this type of relationship is taken into account if
we have a significantly greater relationship of one species on another than the reverse.

A brief reminder about Erdös-Rényi (ER) graphs denoted by Gpn, pq. It is a graph
with n vertices. It is assumed that there is an edge between two vertices with probability
p independent from every other edge. (see [Bol98] for a review on random graphs). The
adjacency matrix associated to this graph is symmetric and contains on average pnpn´1q

entries equal to 1. We associate the connectance C “ p, we say that if p “ Op1q, then the
graph is dense which will be the study case. The case of an interaction matrix BS where
S is an adjacency graph of an Erdös-Rényi matrix has been already considered by May
in the context of the Jacobian.

Let consider a subclass of stochastic block model (see [Abb18, LW19] for review on
SBM). Let an ecosystem have b communities C1, ..., Cb, let β “ pβ1, ..., βbq be the sizes
of each community such that

řb
i“1 βi “ 1. A SBM is a random graph whose vertices

are partitioned into b communities. Given P :“ ppij, 1 ď i, j ď b, pij P r0, 1s) a sym-
metric matrix, there exists an edge between vertex u P Ci and v P Cj with probability
pij independent from every other edge. To summarize, each block corresponds to an ER
graph where the final adjacency matrix S is symmetric. We associate a connectivity ma-
trix C “ P with @1 ď i, j ď b, pij “ Op1q i.e. each graph associated to each block is
dense. In ecology and in general, SBMs are used to cluster the species in communities
(see [BDB`11, MM17].

In Figure 3.4.1, the adjacency matrices of an Erdös Renyi graph and an SBM are
illustrated.

(a) Erdös Renyi (b) Stochastic Block Model

Figure 3.4.1: Representation of an adjacency matrix of the interactions of an ecosystem of
size n “ 200. In Fig (a), an Erdös Renyi graph of parameter Gp200, 0.25q is illustrated. In

Fig (b) a graph of a symmetric Stochastic Block model of parameter P “

ˆ

0.6 0.25
0.25 0.1

˙

.
A red colored cell indicates Skℓ “ 1, on the contrary, a white colored cell indicates that
there is no interaction Skℓ “ 0.
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3.4.1 Standard case: a unique community
Two types of matrices are compared if there is a single community: BS vs. B where S is
the adjacency matrix of an ER graph, B is defined in (3.2) with α “ 1

α
11J and µ “ 0

for both models.

Feasibility Following the work of Bizeul and Najim [BN21], the feasibility threshold is
given by αn “

a

2 logpnq. From (3.29),

Cn “ fpαnq “
1

2 logpnq

corresponds to the feasibility transition for the matrix BS. In Figure 3.4.2, we observe
that the feasibility threshold is consistent. Even if the normalization term 1{

?
n is always

Figure 3.4.2: Transition towards feasibility for the model BS. For each value κ “

α2{ logpnq on the x-axis, we simulate 500 matrices BS of size n “ 500 and compute
the solution x of Theorem (3.1) adapted to BS at the scaling Cnpκq “ 1{κ logpnq. The
curve represents the proportion of feasible solutions x obtained for the 500 simulations.
The dotdashed vertical line corresponds to κ “ 2.

present, the transition threshold in Cn “ 1{2 logpnq expresses a rather large proportion of
interactions in an ecosystem. For example, the critical connectance threshold for a system
with 1000 species is C “ 1{4. For C ą 1{4, the probability that a random LV system
with 1000 species admits a feasible equilibrium decreases quickly.

Persisting species The second step consists of testing the properties of the persisting
species in the model. In the case of a single community, the heuristics has been established
by Clenet et al. [CMN22]. In two separate procedures, we compute empirically the
properties of the two models B and BS. In Figure 3.4.3, we observe that the two models
seem to match for the 3 properties: proportion of persisting species, mean and root
mean square of persisting species. The remark 3.11 on the Gaussian assumption can be
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completed when the connectance between species is inferior than 1. There exists a trade-
off between the strength of the interactions (α) and the connectance C in the LV model
with a single community.

(a) Proportion of persisting species (b) Mean of the persisting species

(c) Root mean square of the persisting species

Figure 3.4.3: Comparison between the empirical solutions (properties) pp˚,m˚, σ˚q of
matrix B and BS as functions of the interaction strength α and connectance C “ fpαq.
Matrix B and BS has size n “ 100 and the number of Monte Carlo experiments is 300.
The mean is fixed to zero µ “ 0.

3.4.2 Many communities: Stochastic Block Model
The results for a single community can be extended to several communities using the
framework of this paper. Suppose, there are two communities where B is defined by (3.2)
with interactions between two symmetric communities

β “ pβ1, β2q , α “

ˆ

α11 α12
α12 α22

˙

, µ “ 0 .

The connectance model is defined by the matrix BS where S is an adjacency matrix of a
symmetric Stochastic Block Model defined by

β “ pβ1, β2q , C “ fpαq “

ˆ

1{α2
11 1{α2

12
1{α2

12 1{α2
22

˙

.

Two specific properties are studied, the global stability and the properties of persisting
species in each community (proportion of persisting species, mean and root mean square
of the persisting species).
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Global stability properties

Conjecture 3.1. Let µ “ 0 and
›

›diagpβq
1{2 `C ` CJ

˘

diagpβq
1{2›
›

2 ă 1 ,

then a.s. matrix pI ´ BSq ` pI ´ BSqJ is eventually positive definite: with probability
one, for a given realization ω, there exists Npωq such that for n ě Npωq, pI ´ pBSqωq `

pI ´ pBSqωqJ is positive definite. In particular, there exists a unique (random) globally
stable equilibrium x˚ P LCP pI ´ pBSqω,´1q to (3.14).

The significance of the conjecture inequality is simple to formalize. Assume that there
are two communities of the same size β1 “ β2 “ 1{2 and recall that the matrix C is
symmetric. The condition then becomes }C} ă 1.

The histogram of the real eigenvalues of the B`BJ matrix seems similar to that of the
BS ` pBSqJ matrix. In figure 3.4.4 the histogram of the matrix BS ` pBSqJ is compared
to the distribution and the theoretical bound of the matrix B`BJ. The result motivates
the conjecture.

(a) β “ r1{2, 1{2s, C “

ˆ

1{2 1{2
1{2 1{2

˙

(b) β “ r1{2, 1{2s, C “

ˆ

1{4 1
1 1{64

˙

(c) β “ r1{2, 1{2s, C “

ˆ

1{9 1{25
1{25 1{4

˙

(d) β “ r1{4, 3{4s, C “

ˆ

1{9 1{25
1{25 1{4

˙

Figure 3.4.4: Spectrum (histogram) of the Hermitian random matrix BS ` pBSqJ (n “

1000), condition on pβ,Cq are given in each sub-figures. The solid line represents the
distribution of the spectrum computed by the numerical approach. The dashed vertical
line indicates the upper bound of the largest eigenvalue of B ` BJ given by 2 }S}

1{2
2 .
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Properties of the persisting species We compare the two models for the properties
of persisting species with two communities. The heuristics have been established in the
section 3.3. We compute empirically the properties of the models B and BS. In figure
3.4.5, we look at these properties for each community: proportion of persisting species,
mean and root mean square. The results show curves that merge into each others and
confirm the similarity between connectance C and interaction strength α when there are
several communities.

3.4.3 Many communities with mean interaction parameter µ ‰ 0
In the framework of a community matrix, we consider a certain interaction trend µ ‰ 0.
We distinguish two types of model:

B “
A

α
?
n

`
µ

n
11J

and

BS
“ S ˝ B̃, B̃ “

A
?
n

`
µ

n
11J

where S is the adjacency matrix of an ER graph Gpn,Cq, C “ fpαq.
We have seen in section 3.2, that when we change the trend µ of the matrix, the

stability can be affected by a “spike” eigenvalue that goes out of the bulk. We observe
that for the matrix BS, we apply the graph structure on matrix B̃. This implies that
the spike eigenvalue of the matrix will be less pronounced because only a proportion C
of components are affected. If we want a perturbation equivalent to that of the matrix B
we should add a trend µ̃ “ αµ in matrix BS.

Individually, each species can undergo a larger mean interaction strength while re-
maining stable. We fall back on a complexity result in the sense that the BS matrix is
less complex in terms of the number of interactions.

3.4.4 Partial conclusion

The SBM model is a type of food web that has been widely used in ecological models.
We choose a symmetric SBM, this allows to give a reasonable ecological condition so that
the interaction between two species is always reciprocal. We show numerically that in the
framework of the Lotka-Volterra model (3.3) choosing a type of network with connectivity
is equivalent to being interested in a model where all species are connected with a variable
interaction strength. In the Lotka-Volterra multi-community model, the relation between
connectance and interaction strength is C “ fpαq. Even if the meaning is different, we
fall back on the same stability criteria as for the Jacobian in the paper of May [May72].

However, when the interaction matrix has a interaction trend, its effect is weaker in
the case of a matrix with a lower connectance because it affects fewer interactions. It is
possible to find an equivalent by increasing the trend and finding spikes of the same size.

A numerical study has been performed, a challenge would be to compare theoretically
the difference between the two models and find the same similarities.
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(a) Parameters pp˚
1 , σ˚

1 , m˚
1q versus α21{α12. (b) Parameters pp˚

2 , σ˚
2 , m˚

2q versus α21{α12.

Figure 3.4.5: Comparison between the empirical solutions of matrix B and BS as functions
of the off-diagonal block interaction strength α12{C12. The left column is associated to the
properties of Community 1 pp˚

1 ,m
˚
1 , σ

˚
1 q. The right column is associated to the properties

of Community 2 pp˚
2 ,m

˚
2 , σ

˚
2 q. Matrix B and BS has size n “ 100 and the number of

Monte Carlo experiments is 300. The parameters are

µ “

ˆ

0 0
0 0

˙

, α “

ˆ

2 α12
α12 1

˙

, C “ fpαq, ,β “

ˆ

1
2 ,

1
2

˙

.
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3.5 Discussion

In this paper, we describe a model of the dynamics of species abundances when interaction
among species is structured in multiple communities. The main interest is to outline the
effect of a block structure on the stability and persistence of the species. Specifically, we
describe the dynamics and properties of each community in the system (proportion of
persisting species, mean and root mean square of the abundances of persisting species)
and their effect on each other. We define an interaction matrix per block which has
several characteristics such as the strength of the interactions 1{α, the mean interaction
trend matrix µ and the size of the community β. In this context, we focused most of our
analysis to the case of two interacting communities. However, our results are scalable to
multiple communities.

At first, we extend the feasibility results found by Bizeul and Najim [BN21] in the
case of a block structure. A feasibility threshold was found in the form of an inequality
that must be verified to have a feasible community set. This complements the recent
results on interactions with a sparse structure [AN21] and interactions with a correlation
profile [CEFN22]. We notice that to maintain the feasibility of two communities, we
have to minimize interactions between the communities. Moreover, the community with
weaker interactions will be able to display a larger total abundance in the ecosystem
while maintaining the feasibility threshold. We extend the feasibility result in the case of
a strongly mutualistic community µ ě 0. However, for our model not to have exploding
abundances, it is necessary to keep the mean interaction trend relatively low, as is already
well known for mutualistic Lotka-Volterra models.

Subsequently, we studied what happens below the feasibility threshold where species
can become extinct. Theoretical conditions were given for a unique globally stable equi-
librium in the model (3.3) with persisting and vanishing species. This result is given
by Lyapunov conditions related to a result of Takeuchi and Adachi [TA80] and random
matrix theory. These stability results had been found in the case of a single community
by Clenet et al. [CMN22]. This complement the properties of stability in the Lotka-
Volterra system that has been studied by Stone [Sto18] and Gibbs et al. [GGRA18].
Recent random matrix methods allow us to describe the spectrum of a block matrix and
plot it numerically. Furthermore, we extended the result with the addition of an inter-
action trend in each community. Communities with with opposite dominant interactions
(e.g. mutualistic vs. competitive) are more likely to result in a unique globally stable
equilibrium. Later on, we showed that whereas in the single community case where a
competition trend does not affect the stability [CMN22], when there are communities
have mostly competition interactions, it destabilize the system [AT12]. An antagonistic
network between two communities is more stable than a mutualistic or competitive one.

In a last open sub-section, hints to give sufficient and necessary conditions to obtain
a unique equilibrium are given. These conditions provided by Murty [Mur72] are related
to the results on the P-matrices associated with the LCP problem.

In a third part we give heuristics on the persisting species (proportion, mean and root
mean square of their abundances). These heuristics have also been found in the case of
a single community by Clenet et al. [CMN22]. From a physicist point of view and using
the methods of Bunin [Bun17] and Galla [Gal18], Barbier et al. [BABL18] and Poley et
al. [PBG22] have extended the heuristics in the block and cascade model. Previously,
obtaining properties on persisting species in the LV model (not normalized by

?
n) has
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already been done by Servan et al. [SCG`18] where they consider a different growth rate
for each species. The study of the stability and properties of persisting species in the LV
system was also carried out by Pettersson et al. [PSNJ20, PSJ20]. From an ecological
point of view, heuristics are deduced from the properties of interactions between multiple
communities. A first consequence is that diversity is contagious: a feasible community
has less negative effect on the persistence of the communities it interacts with. The larger
the fraction of persistent species in a community, the less harmful its effect on other
communities. The second is the existence of a feedback between the effects of communities
on one another. Indeed, this causes a detrimental cycle between communities.

The average type of interaction in the food web plays a major role (competition,
mutualism, antagonism). For example, when two communities interact mainly through
mutualism or mainly through competition between them, the persistence of species in
both communities ends up being the same (see Figure 3.3.9). However, for an antagonistic
inter-community interaction (µ12 “ ´µ21), the community benefiting from the interaction
will have a larger fraction of persisting species. In the case of the type of intra-community
interaction will also affect species persistence: if a community is mostly competitive, it will
have less effect on other communities, while a mutualistic community will have a stronger
negative effect on other communities (see Figure 3.3.10). Overall, the most resilient
communities (i.e. with the highest fraction of persisting species) are those mutualistic
communities which benefit from inter-communities antagonistic interactions

In a last open section, we discuss the similarities between the strength of interactions
and the connectance in the Lotka-Volterra model. The general conclusion is that the same
equivalence between connectance and strength of interaction is found as in the works of
May [May72] on the stability-complexity threshold in the case of several communities.
The analysis of a symmetric SBM network that has been studied a lot in ecology [MM17]
can be done through the prism of a block model with varying interaction strength.

Many mathematical and ecological questions remain unanswered in this type of model.
First, a rigorous mathematical proof of the heuristics presented here would be of

interest although the LCP procedure induces a statistical dependence a priori difficult to
handle. This issue is still pending in the single community case [CMN22] and appears to
be challenging to address.

Second, we could extend the heuristics for two different scenarios. On the one hand, it
would be interesting to add pairwise correlation between species. This has already been
done by physicists, see [BABL18, PBG22]. In the study of feasibility, it has been shown
that a correlation profile does not play a role on the feasibility threshold [CEFN22]. On
the other hand, for the sake of complexity, we have chosen to set the growth rates equal
to the same value rk “ 1, @k P rns. It would be relevant to control the distribution
of the growth rate as in [SCG`18] or to consider structural stability as Saavedra et al.
[SRB`17], i.e. by how much can the growth rates be perturbed (initially all equal to 1)
without changing the type of equilibrium x˚ obtained.

Two subsections of the paper are based on simulations: the extension of the condi-
tions for a single globally stable equilibrium using the equivalence between P-matrix and
the LCP problem [Mur72] and the analysis of the trade-off of May connectance versus
interaction strength in the Lotka-Volterra model. In both cases, both problems are based
on RMT results.

The applications in ecology are numerous on this type of model. We could consider a
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spatial structure accounting for spatial proximity in the sense that two close communities
tend to be more strongly connected. For example, in an aquatic environment, we could
imagine the existence of an up/down gradient in a water column. In figure 3.5.1, a
situation where three communities are involved is illustrated

(a) (b)

Figure 3.5.1: In (a), a representation of the gradient of interaction between three commu-
nities in a water column is represented. The blue arrows correspond to strong interaction
strength due to their spatial proximity. On the opposite, the communities 1 and 3 are
separated, the green arrow represents a weaker interaction. In (b), the block matrix as-
sociated with this type of model is displayed. The colors of the blocks match the colors
of the arrows. The red color block corresponds to intra-community interactions.

Originally introduced by R.T. Paine [Pai66, Pai69], the concept of keystone species in
ecology is widespread i.e. one species controls the coexistence of the others, if we remove
it, we lose species with whom it was interacting. Mouquet et al. [MGMC13] suggested to
extend the concept of keystone species to communities. One could analyze in the block
system the existence of a keystone community that would have disproportionately large
effect on other communities. In a metacommunity dynamic, Resetarits et al. [RCL18]
have studied the keystone community concept where patches have a strong effect on other
patches.

One could imagine that the same species is present several times in the system, but
in different blocks, see Gravel et al. [GML16]. In this case, the inter-blocks represent
interactions between spatially isolated communities (so should be less strong). If each
diagonal or non-diagonal block is a copy of the same interaction pattern (possibly slightly
perturbed) and we can add linear effect to the system to represent emigration and immi-
gration, then we could study the feasibility properties of this system. In [GML16], they
found that it works best when the dispersion is intermediate.

Last but not least, it would be relevant to compare the patterns obtained with data in
ecology as in the recent article by Hu et al. [HAB`21] in the case of a single community.
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Appendix

3.A Numerical methods
Simulations were performed in Python. All the figures and the code will be available on
Github.

Simulations on the properties of persisting species are performed in two different ways.
The theoretical solutions are obtained resolving numerically the system of equations of
heuristics 3.1. We use a solver (cf. scipy.optimize) to find a local minimum of the function
defined by the system of equations (a modification of the Powell hybrid method). The
empirical solutions are computed using a Monte Carlo experiment. We simulate a large
number of matrix matrix B, we resolve the associated LCP problem using the Lemke’s
algorithm. Then, we use the LCP solution to calculate the properties of the persisting
species: proportion of survivors, etc. Finally, we make an average on the ensemble of
experiments. The Lemke algorithm is implemented in the lemkelcp package and can
be found on Github [Lam19]. The dynamics of the Lotka-Volterra are achieved by a
Runge-Kutta of order 4 (RK4) implemented in the code.

3.B Remaining computations

3.B.1 Moments of Žk

We compute hereafter the conditional mean and variance of Žk “ pBx˚qk with respect to
x˚. We rely on the following identities @k P Ii, @ℓ P Ij and @o P Iq :

EBkℓ “
µij

n
, EpB2

kℓq “
1

α2
ijn

`
µ2

ij

n2 »
1

α2
ijn

, EBkℓBko “
µijµiq

n2 pℓ ‰ oq .

We first compute the conditional mean:

@k P Ii, Ex˚pŽkq “
ÿ

ℓPrns

EpBkℓqx
˚
ℓ “

ÿ

ℓPS1

EpBkℓqx
˚
ℓ `

ÿ

ℓPS2

EpBkℓqx
˚
ℓ

“
µi1

n

ÿ

ℓPS1

x˚
ℓ `

µi2

n

ÿ

ℓPS2

x˚
ℓ ,

“ µi1
|I1|

n

|S1|

|I1|

1
|S1|

ÿ

ℓPS1

x˚
ℓ ` µi2

|I2|

n

|S2|

|I2|

1
|S2|

ÿ

ℓPS2

x˚
ℓ ,

“ µi1 β1 p̂1 m̂1 ` µi2 β2 p̂2 m̂2 .
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We now compute the second moment:

@k P Ii, Ex˚pŽ2
kq “ Ex˚

˜

ÿ

ℓPrns

Bkℓx
˚
ℓ

¸2

“ Ex˚

ÿ

ℓ,oPrns

BkℓBkox
˚
ℓx

˚
o ,

“
ÿ

ℓPS1YS2

EpB2
kℓqx

˚2
ℓ `

ÿ

ℓ‰o

EpBkℓBkoqx˚
ℓx

˚
o ,

“
1

α2
i1n

ÿ

ℓPS1

x˚2
ℓ `

1
α2

i2n

ÿ

ℓPS2

x˚2
ℓ `

ÿ

ℓ‰o

µijµiq

n2 x˚
ℓx

˚
o ,

paq
»

β1p̂1σ̂
2
1

α2
i1

`
β2p̂2σ̂

2
2

α2
i2

`
ÿ

ℓ,oPS1YS2

µijµiq

n2 x˚
ℓx

˚
o ,

pbq
“

β1p̂1σ̂
2
1

α2
i1

`
β2p̂2σ̂

2
2

α2
i2

` pµi1 β1 p̂1 m̂1 ` µi2 β2 p̂2 m̂2 q
2 ,

where the approximation in paq follows from the fact that

1
n2

ÿ

ℓ,oPrns

x˚
ℓx

˚
o “

1
n2

ÿ

ℓ‰o

x˚
ℓx

˚
o ` O

ˆ

1
n

˙

,

and pbq follows from the fact that
ÿ

ℓ,oPS1YS2

µijµiq

n2 x˚
ℓx

˚
o “

ÿ

ℓPS1,oPS1

µijµiq

n2 x˚
ℓx

˚
o `

ÿ

ℓPS1,oPS2

µijµiq

n2 x˚
ℓx

˚
o

`
ÿ

ℓPS2,oPS1

µijµiq

n2 x˚
ℓx

˚
o `

ÿ

ℓPS2,oPS2

µijµiq

n2 x˚
ℓx

˚
o ,

“
|I1|2

n2
|S1|2

|I1|2
1

|S1|2
µ2

i1

˜

ÿ

ℓPS1

x˚
ℓ

¸2

`
|I1|

n

|I2|

n

|S1|

|I1|

|S2|

|I2|
µi1µi2

1
|S1|

˜

ÿ

ℓPS1

x˚
ℓ

¸

1
|S2|

˜

ÿ

oPS2

x˚
o

¸

` ...

“ β2
1 p̂

2
1µ

2
i1m̂

2
1 ` 2β1β2p̂1p̂2µi1µi2m̂1m̂2 ` β2

2 p̂
2
2µ

2
i2m̂

2
2 ,

“ pµi1 β1 p̂1 m̂1 ` µi2 β2 p̂2 m̂2 q
2 .

We can now compute the variance:

@ k P Ii, varx˚

´

Žk

¯

“ Ex˚

´

Ž2
k

¯

´

´

Ex˚Žk

¯2
“

β1p̂1σ̂
2
1

α2
i1

`
β2p̂2σ̂

2
2

α2
i2

.

3.B.2 Details of Heuristics 3
In the case k P Si:

x˚
k “ p1 ` λ˚

i ` ∆˚
i Zkq 1tZkąδ˚

i u

“ p1 ` λ˚
i q 1tZkąδ˚

i u ` p∆˚
i Zkq 1tZkąδ˚

i u .
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Taking the square, we get:

px˚
kq

2
“ p1 ` λ˚

i q
2 1tZkąδ˚

i u

“ 2 p1 ` λ˚
i q ∆˚

i 1tZkąδ˚
i u `

`

p∆˚
i q

2Z2
k

˘

1tZkąδ˚
i u .

Summing over Si and normalizing, we get

1
|Si|

ÿ

kPSi

px˚
kq

2
“ p1 ` λ˚

i q
2 1

|Si|

ÿ

kPSi

1tZką´δ˚
i u

` 2 p1 ` λ˚
i q ∆˚

i

1
|Si|

ÿ

kPSi

Zk1tZką´δ˚
i u

` p∆˚
i q

2 1
|Si|

ÿ

kPSi

Z2
k1tZkąδ˚

i u .

Finally, we conclude by replacing the empirical means by their limits

1
|Si|

ÿ

kPSi

Zj
k1tZkąδ˚

i u “ EpZj
| Z ą δ˚

i q , j “ 1, 2 ,

and get

σ̂2
i “ p1 ` λ˚

i q
2

` 2 p1 ` λ˚
i q ∆˚

i EpZ | Z ą δ˚
i q

` ∆2
iEpZ2

| Z ą δ˚
i q .

It remains to replace σ̂i by its limit σ˚
i to obtain (3.24)-(3.25).

3.B.3 Density of the distribution of the persistent species.
Assume that x˚ ą 0, and let f “ R Ñ R be a bounded continuous test function. We have
@k P Si

Efpx˚
kq “ E

„

f p1 ` λ˚
i ` ∆˚

i Zkq

ˇ

ˇ

ˇ

ˇ

Zk ą δ˚
i

ȷ

,

“

ż 8

´8

f p1 ` λ˚
i ` ∆˚

i uq
1tuąδ˚

i u

1 ´ Φpδ˚
i q

e´ u2
2

?
2π
du ,

“

ż 8

0
fpyqe

´ 1
2

ˆ

y

∆˚
i

`δ˚
i

˙2
1

?
2πΦp´δ˚

i q∆˚
i

dy ,

hence the density of x˚
k, @k P Si .

3.C Extension to the b-blocks model

3.C.1 Model
Within the framework of b communities,the matrix B “ pBkℓqn,n is defined as
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B “
1

?
n
V sV J

˝ A `
1
n
V µV J , (3.30)

where

V P Mnˆb, V “

¨

˚

˚

˚

˝

1I1 0 ¨ ¨ ¨ 0
0 1I2 ¨ ¨ ¨ 0
... ... . . . ...
0 0 ¨ ¨ ¨ 1Ib

˛

‹

‹

‹

‚

, A “

¨

˚

˝

A11 ¨ ¨ ¨ A1b
... . . . ...
Ab1 ¨ ¨ ¨ Abb

˛

‹

‚

,

s “

¨

˚

˝

1{α11 ¨ ¨ ¨ 1{α1b
... . . . ...

1{αb1 ¨ ¨ ¨ 1{αbb

˛

‹

‚

, µ “

¨

˚

˝

µ11 ¨ ¨ ¨ µ1b
... . . . ...
µb1 ¨ ¨ ¨ µbb

˛

‹

‚

,

• β “ pβ1, β2, .., βbq,
řb

i“1 βi “ 1 is the size by proportion of each of the blocks.

• Ii is a subset of rns of size |Ii| :“ βin matching the index of species belonging to
Community i.

• 1Ii
is a entry wise vector of 1 of size βin.

• Aij is a non-Hermitian random matrix of size pβin, βjnq with reduced centered Gaus-
sian entries i.e. N p0, 1q.

3.C.2 Feasibility
We consider a growing scaling matrix

sn ÝÝÝÑ
nÑ8

0 ô @i, j P t1, bu, αij ÝÝÝÑ
nÑ8

8 .

Let Bn a matrix defined by
Bn “ V snV

J
˝

1
?
n
A . (3.31)

The spectral radius of 1?
n
A a.s. converges to 1. So as long as sn is close to zero, the

matrix I ´ Bn is eventually invertible.

Theorem 3.8 (Feasibility for the b-blocks model). Assume that matrix Bn is defined
by the b-blocks model (3.31), µ “ 0. Let β “ pβ1, β2, .., βbq,

řb
i“1 βi “ 1 represents

the proportion of each community. Let sn ÝÝÝÑ
nÑ8

0 and denote by s˚
n “ 1{

?
2 log n. Let

xn “ pxkqkPrns be the solution of (3.6).

1. If there exists ε ą 0 such that eventually
›

›psn ˝ snqβJ
›

›

8
ě p1 ` εqps˚

nq2 then

P
"

min
kPrns

xk ą 0
*

ÝÝÝÑ
nÑ8

0 .

2. If there exists ε ą 0 such that eventually
›

›psn ˝ snqβJ
›

›

8
ď p1 ´ εqps˚

nq2 then

P
"

min
kPrns

xk ą 0
*

ÝÝÝÑ
nÑ8

1 .
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Sketch of proof. Starting from the decomposition the equilibrium x˚:

x˚
k “ 1 ` Zk ` Rk ,

where Zk “
řn

ℓ“1 Bkℓ , @k P rns and we suppose @k P rns, Rk is a negligible term if n is
sufficiently large.

The feasibility of the b communities is studied independently. Using Gaussian addition
properties, a simpler form of Zk is deduced. Consider a family pŽkqkPrns of i.i.d. random
variables N p0, 1q.

If k P Ii, Zk “

b
ÿ

j“1

ÿ

ℓPIj

Bkℓ ,

„

b
ÿ

j“1
N

ˆ

0 , βj

α2
ij

˙

,

„

g

f

f

e

b
ÿ

j“1

βj

α2
ij

Žk .

Given β “ pβ1, β2, .., βbq, conditions on the matrix α are inferred to have

Ppmin
kPrns

xk ą 0q “ 1 ô Ppmin
kPrns

Zk ą ´1q “ 1 .

In order to compute a tractable form of min
kPrns

Zk, an additional approximation is made, if
n is large enough

min
kPIi

Žk „ ´
a

2 logpβinq » ´
a

2 logpnq . (3.32)

min
kPrns

Zk “ min
iPrbs

¨

˝

g

f

f

e

b
ÿ

j“1

βj

α2
ij

min
kPIi

Žk

˛

‚ ,

» min
iPrbs

¨

˝

g

f

f

e

b
ÿ

j“1

βj

α2
ij

´

´
a

2 logpnq

¯

˛

‚ ,

“ min
iPrbs

¨

˝´

g

f

f

e

b
ÿ

j“1

2βj logpnq

α2
ij

˛

‚ ,

“ ´max
iPrbs

¨

˝

g

f

f

e

b
ÿ

j“1

2βj logpnq

α2
ij

˛

‚ .

Following the approximation (3.32), the condition min
kPrns

Zk ą ´1 asymptotically boils
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down to

max
iPrbs

¨

˝

g

f

f

e

b
ÿ

j“1

2βj logpnq

α2
io

˛

‚ă 1 ,

ô max
iPrbs

˜

b
ÿ

j“1

2βj logpnq

α2
ij

¸

ă 1 ,

ô max
iPrbs

˜

b
ÿ

j“1

βj

α2
ij

¸

ă
1

2 logpnq
,

ô
›

›psn ˝ snq
2βJ

›

›

8
ă

1
2 logpnq

:“ pα̌˚
nq

2 .

Notice that the non-centered case can be treated in the same principle for several
communities.

3.C.3 Existence of a unique equilibrium
3.C.3.1 Centered case

Denote by H symmetric the matrix

H “

¨

˚

˝

H11 ¨ ¨ ¨ H1b
... . . . ...
Hb1 ¨ ¨ ¨ Hbb

˛

‹

‚

,

where @ i, j P rbs, Hij is a matrix of size βin ˆ βjn and each off-diagonal entries follow a
Gaussian distribution N p0, 1{α2

ij ` 1{α2
jiq.

The Quadratic Vector Equation (QVE) associated to the matrix H is decomposed as

k P Ii, ´
1

mkpzq
“ z `

b
ÿ

j“1

ÿ

ℓPIj

1
n

ˆ

1
α2

ij

`
1
α2

ji

˙

mℓpzq .

Given mpzq “ pm1pzq, ¨ ¨ ¨ ,mnpzqq, denote by 1{mpzq “ p1{m1pzq, ¨ ¨ ¨ , 1{mnpzqq and
S “ 1

n
V ps ` sJqV J the QVE can be written in the standard form

´
1

mpzq
“ z ` Smpzq . (3.33)

Following Theorem 2.1 in Ajanki et al. [AEK19], @z P C, Equation (3.33) has a unique
solution m “ mpzq and the support of the associated measure is included in r´Σ,Σs ,
Σ “ 2 }S}

1{2
2 . This information gives a bound to the support of the matrix H associated

with (3.33). In particular, λmax pHq ď 2 }S}
1{2
2 . Recall that ´2I ` H is negative definite

if λmax pHq ď 2. The final condition, which is non-sharp, to have a unique globally stable
equilibrium is

2 }S}
1{2
2 ă 2 ô }S}2 ă 1 ,
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Given the particular shape of the matrix S, computing its norm is equivalent to computing
the norm of a matrix of size b

}S}2 “
›

›diagpβq
1{2 `

ps ˝ sq ` ps ˝ sq
J
˘

diagpβq
1{2›
›

2 .

which completes the proof: we can then rely on Theorem 3.4 to conclude.

3.C.4 Persisting species
Let pα,µq satisfying the condition for x˚ to be a unique stable equilibrium. The following
system of 3b equations and 3b unknowns p “ pp1, p2, .., pbq, m “ pm1,m2, ..,mbq, σ “

pσ1, σ2, .., σbq

@i P rbs, pi “ 1 ´ Φpδiq ,

@i P rbs, mi “ 1 ` λi ` ∆iEpZ|Z ą δiq ,

@i P rbs, pσiq
2

“ p1 ` λiq
2

` 2p1 ` λiq∆iEpZ|Z ą δiq ` ∆2
iEpZ2

|Z ą δiq ,

where

∆i “

g

f

f

e

b
ÿ

j“1
pjpσjq2 βj

α2
ij

; λi “

b
ÿ

j“1
pjmjβjµij ; δi “

´1 ´ λi

∆i

,

admits a unique solution pp˚, m˚, σ˚q and @ i P rbs

p̂i
a.s.

ÝÝÝÑ
nÑ8

p˚
i , m̂i

a.s.
ÝÝÝÑ
nÑ8

m˚
i and σ̂i

a.s.
ÝÝÝÑ
nÑ8

σ˚
i .

3.C.5 Distribution of the persisting species
Let pα,µq satisfying the condition for x˚ to be a unique stable equilibrium. x˚ the solution
of (3.14) and let pp˚, m˚, σ˚q the solution of the Heuristics. Recall the definition (3.26)
of λi, ∆i, δi and denote by δ˚

i “ δipp
˚
i ,m

˚
i , σ

˚
i q. Let x˚

k ą 0 a positive component of x˚

belonging to the community i, then:

Lpx˚
kq ÝÝÝÑ

nÑ8
L
ˆ

1 ` λ˚
i ` ∆˚

i Z

ˇ

ˇ

ˇ

ˇ

Z ą δ˚
i

˙

,

where Z „ N p0, 1q. Otherwise stated, asymptotically @k P Si, x
˚
k admits the following

density

fkpyq “
1tyą0u

Φp´δ˚
i q

1
∆˚

i

?
2π

exp
#

´
1
2

ˆ

y

∆˚
i

` δ˚
i

˙2
+

. (3.34)

3.D Necessary and sufficient condition of P-matrix
As a reminder, Murty [Mur72] states that the LCP pI ´ B,´1q has a unique solution
iff I ´ B is a P -matrix. The condition given in Theorem 3.6 is sufficient to guarantee a
unique solution to LCP pI´B,1q but not necessary, although it provides more information
and guarantees the global stability. This condition might be relaxed finding the bound
associated to the P-matrix property of I´B. In this section, we present, from a heuristic
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point of view, the information on the potential bound to have the existence of a unique
equilibrium to the LCP problem.

First, recall the definition of P-matrix with its equivalent given by Fiedler and Pták
[FP66].

Theorem 3.9 (Theorem 1.3 [FP66]). The following properties of a square matrix M are
equivalent:

1. All principal minors of M are positive

detpMIq ą 0 , @ I Ă rns , MI “ pMkℓqk,ℓPI ;

2. All real eigenvalues of M and its principal submatrices are positive.

The main issue is to understand the spectrum of the centered matrix B i.e. µ “ 0.
According to the Theorem 3.9, one has the implication

sup
IĂrns

ρpBI
q ă 1 ñ @ I Ă rns, det

`

I ´ BI˘
ą 0

where BI is the main sub-matrix of index I ˆ I. If we conjecture that the spectral radius
of any main sub-matrix of B is smaller than the radius of B i.e.

sup
IĂrns

ρpBI
q ă ρpBq ,

then in the single community case i.e. α “ α11J, one has ρpBq ă 1 ô α ą 1. To
conclude α ą 1 implies the existence of a unique equilibrium to the LCP problem. This
sufficient condition is possibly necessary.

When considering many communities, an open question is the conjecture on the exis-
tence of a similar bound depending on the parameters α and β.

Given V I a variance profile of matrix B associated to I Ă rns. In the case of two
communities, V I is a main sub-matrix of

V “
1
n

˜

1
α2

11
1I11T

I1
1

α2
12

1I11T
I2

1
α2

21
1I21T

I1
1

α2
22

1I21T
I2

¸

.

By RMT properties, Najim et al. [CHNR21] prove the convergence of the spectral measure
for a non-Hermitian matrix with variance profile. The convergence of the spectral radius
of B is not established but is expected. The spectral radius of B is computed from the
variance profile V

ρpBq “ ρpV q “ ρ

˜

ˆ

β1 0
0 β2

˙1{2
˜

1
α2

11

1
α2

121
α2

21

1
α2

22

¸

ˆ

β1 0
0 β2

˙1{2
¸

.

Finally, if we establish the same conjecture as in the single community case, we would
have

sup
IĂrns

ρpV I
q ă ρpV q ă 1 .

To conclude ρpV q ă 1 is a sufficient (and possibly necessary) condition to the existence
of a unique equilibrium to the LCP problem.
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Remark 3.15. The spectral radius of matrix V
˜

ˆ

β1 0
0 β2

˙1{2
˜

1
α2

11

1
α2

121
α2

21

1
α2

22

¸

ˆ

β1 0
0 β2

˙1{2
¸

represents the radius of the disc which supports the limiting eigenvalue distribution. The
module of the second eigenvalue is the radius of an inner disc where we can witness higher
concentration of the eigenvalues, see Figure 3.D.1.

(a) β “ r1{2, 1{2s, α “

ˆ

3 1{3
10 1

˙

(b) β “ r3{4, 1{4s, α “

ˆ

3 1{3
10 1

˙

(c) β “ r1, 0s, α “

ˆ

3 1{3
10 1

˙

(d) β “ r0, 1s, α “

ˆ

3 1{3
10 1

˙

Figure 3.D.1: Spectrum of non-Hermitian matrix B in the complex plan (n “ 1000), see
caption in each sub-figure for the setting of pβ,αq. The solid line circle represents the
boundary of the circular law and concentration circles associated to the eigenvalues of the
variance profile matrix V . In plot (c)-(d), the conditions of the circular law are met.

Remark 3.16. A comparison with the bound when there is a single community shows that
the same result is obtained. The spectrum of the matrix of rank 1

1
2α2

ˆ

1 1
1 1

˙

,

has two eigenvalues 0 and 1
α2 . The condition for a single-community is recovered 1

α2 ă

1 ô 1 ă α.
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3.E Additional graphs: type of food web interactions
Here we summarize with 6 graphs (see Figure 3.E.1) the effects on the persistence of each
community according to the type of interactions. For this purpose we define 4 disturbance
matrices

µMM “

ˆ

0.4 µ12
µ21 0.4

˙

, µMC “

ˆ

0.4 µ12
µ21 ´0.4

˙

,

µCM “

ˆ

´0.4 µ12
µ21 0.4

˙

, ,µCC “

ˆ

´0.4 µ12
µ21 0.4

˙

.

For each of these matrices, an analysis of the antagonistic (µ12 “ ´µ21 “ 0.4), mutualistic
(µ12 “ µ21 “ 0.4) and competitive (µ12 “ µ21 “ ´0.4) case is performed.
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(a) Persistence of Community 1 (p1), antago-
nistic (µ12 “ ´µ21 “ 0.4).

(b) Persistence of Community 2 (p1), antago-
nistic (µ12 “ ´µ21 “ 0.4).

(c) Persistence of Community 1 (p1), mutual-
istic (µ12 “ µ21 “ 0.4).

(d) Persistence of Community 2 (p2), mutual-
istic (µ12 “ µ21 “ 0.4).

(e) Persistence of Community 1 (p1), compet-
itive (µ12 “ µ21 “ ´0.4).

(f) Persistence of Community 2 (p1), compet-
itive (µ12 “ µ21 “ ´0.4).

Figure 3.E.1: Representation of the effect of the type of foodweb interactions. Each plot
illustrate the proportion of the persisting species as a function of the interaction strength
between Community 1 and Community 2.
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Chapter 4

A probabilistic perspective of the
hierarchical competition-colonization
trade-off model

Abstract
Introduced and analyzed by Tilman, the hierarchical competition-colonization trade-off model
represents a system of species competing for a set of habitat patches. In this model, the competi-
tion is hierarchical: the dynamics of each species’ occupancy within the metacommunity depends
on its colonization and extinction rates. For a better understanding of the restrictions induced
on the colonization rate in a large-dimension system, we propose a probabilistic interpretation of
the model by looking at colonization parameters following a given probability distribution. Our
aim is to determine the distribution maximizing the coexistence between the species. Based on
this information, we can assess species occupancies and characterize the assembly process of the
ecosystem. To answer this question, we first carried out analytical and simulation-based work to
investigate the optimal distribution, persistence and stability. Second, we analyzed two different
types of assembly processes: a “all-at-once approach” starting from a pool of species by letting
the dynamics elapse, and a “invasion sequence approach” developing an invasion sequence that
involves a historical contingency effect.

The hierarchical competition-colonization trade-off model represents a first step in our un-
derstanding of species-rich metacommunities. From a mathematical point of view, we find in-
formation on the stability and persistence of the model allowing the whole or a sub-population
of species to coexist. We continue this investigation by providing insights into the shape of the
distribution of the colonization rate. On the one hand, for a wide range of distributions, we
found that if species are thrown together all at once, on average one in two species persists
indefinitely. On the other hand, when species try to invade in a random sequence, the heavier
the distribution “tail”, the higher the probability of coexistence. Subsequently, the comparison
of the two assembly processes shows us that the invasion sequence approach seems to be much
more restrictive in terms of the number of persisting species due to historical contingencies and
extinction cascades.

To conclude, this probabilistic perspective of the hierarchical competition-colonization trade-
off model allows to put forward and compare two different types of distinct assemblages and
gives conditions for many species to coexist under the competition-colonization trade-off.
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Introduction

Motivations
Understanding the functioning of large ecosystems represents an important challenge in
theoretical ecology. The complexity of these systems makes it necessary to use mathemat-
ical modeling. Regarding the Lotka-Volterra model [Lot25, Vol26], early mathematical
models did not take into account the spatial structure of habitats to understand the
mechanisms underlying species coexistence. However, under the impulse of the research
of MacArthur [Mac84] in population biology and geography and the formulation of the
theory of island biodiversity by MacArthur and Wilson in 1967 [MW67], the consideration
of spatial dynamics became a major issue in ecology. Subsequently, a theory derived from
different concepts (patch dynamics, species sorting, mass effect, neutral theory) emerged:
the metacommunity. More recently, the metacommunity framework has subsumed several
concepts, notably niche theory, ecological filtering, dispersal limitation, patch dynamics
and the importance of stochasticity, under a unified theoretical umbrella, with the aim of
pushing the field further in the direction of scientific, refutable community ecology (see
Leibold et al. [LHM`04] for a review).

One of the most popular model of spatially structured environment is the competition-
colonization (C-C) trade-off model. It belongs to the class of patch dynamics models
where the interest is in modeling the occupancy of a species in the landscape and not its
abundance. The considerable advantage of this model is its simplicity, allowing for both
theoretical and empirical research. The origin of this model goes back to the work of
Levins et al. [Lev69, LC71] who introduced a simple model of colonization and extinction
dynamics. This model assumes a patch-occupancy where the main driver is the ability
of the population to disperse between different patches while being subject to extinction.
This metapopulation model has subsequently been extended and integrated into many
empirical and theoretical works (see Hanski [Han99] for a review). Later on, Levins’
model has been extended to a multiple species framework. The C-C trade-off model has
emerged as an important object where the main idea is to keep few parameters, but to
find a simple rule to make species coexist, the competition-colonization trade-off.

In a first step, this model was studied in the framework of a hierarchical competition
i.e. the most competitive species is the worst colonizer. In early work, Hastings [Has80]
was interested in studying disturbance in the model where he demonstrated the so-called
“Intermediate Disturbance Hypothesis”. Then, Nee and May [NM92] added habitat de-
struction to the model. Further research was carried out for two competing species by
Hanski [Han83] and for a general form of the hierarchical competition-colonization trade-
off model by Tilman [Til94] and including the impact of habitat destruction by Tilman
et al. [TMLN94]. Kinzig et al. [KLD`99] finally analyze the high diversity limit in the
hierarchical C-C model.

In the case of non-hierarchical competition, the classical paradigm between competi-
tion and colonization was studied by Amarasekare et al. [Ama03] and Yu and Wilson
[YW01] in the replacement competition case. Subsequent analyses are also found in
[PR98]. Calcagno et al. [CMJD06a] gave a new impulse in response to Yu and Wilson
by taking into account competition and a preemption parameter. Empirical research has
also been conducted by Cadotte [Cad07] to study the intermediate disturbance hypoth-
esis (IDH) related to the C-C trade-off model. In fact, the IDH is not supposed to be a
metapopulation scale assumption but rather a local scale assumption. Fox [Fox13] has
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argued extensively that this assumption is shown (in a mathematical sense) not to be pos-
sible i.e. no model of local dynamics predicts the IDH under realistic assumptions. This
type of model has been extended in other fields than ecology, in particular on host-parasite
interactions by May and Nowak [MN94, NM94, MN95].

More recently, the C-C model is still the subject of considerable attention with exten-
sions for higher-order competition [LBL20], dispersal network [ZBN`21], multimodality
in diversity–disturbance relationships [ML02, LBB22].

In this article and to clarify the restrictions induced on the colonization rate in a
large-dimension system, we propose a probabilistic interpretation of the hierarchical C-C
model. We consider communities that emerge through the model dynamics from an initial
random pool where the colonization parameters are sampled from a specific probability
distribution. A link can be formally established between the C-C model and the Lotka-
Volterra model (see appendix of [CMJD06a]) providing a new proof of the global stability
of the system. This probabilistic approach aims at understanding the distribution and
characteristic outcomes that maximizes coexistence between species. Surprisingly, a uni-
versality result appears for the distribution of number of persisting species from a pool
of many species. Furthermore, we challenge this universality result when communities
are assembled one-at-a-time from a regional pool [SA21]. This different assembly process
shows different dynamics properties going from linear to logarithmic growth. Patterns of
competition colonization trade-off appears showing the importance of finding a balance
between competitors and colonizers.

Model
Commonly called the competition-colonization trade-off model, it is an extension of the
well-known Levins [Lev69] model to n-species. Its most general form is provided in
Calcagno et al. [CMJD06a]

dpiptq

dt
“ cipiptq

˜

1 ´

n
ÿ

j“1
pjptq

¸

´ mipiptq

` cipiptq
ÿ

j‰i

pjptqηij ´ piptq
ÿ

j‰i

cjpjptqηji , @ i P rns ,

(4.1)

where piptq P r0, 1s represents the occupancy of species i at a given time t, mi is the
extinction rate of species i, ci represents the colonization rate of species i, ηij corresponds
to the probability that species i takes over a patch already occupied by species j if it
lands there.

The first term of the equation represents the colonization of species i into empty
patches, the second term of the equation represents the extinction of patches where species
i is currently present. The third term corresponds to the colonization of species i into
patches occupied by other species, the weakness of species j present in a patch is repre-
sented by the competition term ηij. Conversely, the last term of the equation represents
the patches of species i that are subject to colonization by other species. The species i is
weakened by species j according to the competition factor ηji.

In this paper, we focus on its simplified version which corresponds to Hastings’ and
Tilman’s version where we assume that the competition is hierarchical (referred as the
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HT model). The HT model represents a system of species competing for a set of habitats
(patch). It is a metacommunity model where competition is hierarchical: the dynamics
of each species within the population depends only on its colonization rate (c) and its
extinction rate (m).

Hastings [Has80] was concerned about the effects of disturbance mi “ m, @ i P rns

on species richness and considered the extinction rate of each species the same. The
HT model in its more similar form to the C-C model was introduced by Tilman and
represented as

dpiptq

dt
“ cipiptq

˜

1 ´

i
ÿ

j“1
pjptq

¸

´ mipiptq ´

˜

i´1
ÿ

j“1
cjpjptqpiptq

¸

, @ i P rns , (4.2)

where piptq P r0, 1s corresponds to the occupancy of species i at a given time t, ci P

R˚
` corresponds to the colonization rate of the species i where species are arranged in

increasing order of c i.e. c1 ă ¨ ¨ ¨ ă cn, mi P R` corresponds to the extinction rate of
species i and

ηij “

#

1 if i ă j ,

0 otherwise.

The term ηij reflects the additional requirement intrinsically related to the model:
the establishment of a competitive hierarchy between species. The main idea consists in
having the first species as the best competitor but the poorest colonizer. Each species
added to the system must be a better colonizer and a poorer competitor. The key idea
to have a stable coexistence of a maximum number of species is that high colonization
rates could offset the competition due to other species by invading the patch (sites) that
are not occupied.

Denote by c “ pc1, ..., cnqJ the vector of colonization rates. Without loss of generality,
it is assumed that the colonization rates are sorted in increasing order i.e.

c1 ă c2 ă ... ă cn .

This means that species 1 is the most competitive and species n the least competitive.
From a probability theory viewpoint, a sorted independent identically distributed (i.i.d.)
random sample from a continuous distribution is an order statistic of a statistical sample.
For standard properties of order statistics see Appendix 4.B.2 (for a more detailed review,
see Arnold et al. [ABN08]).

The purpose of this article is to improve our understanding of spatially structured
communities comprising many species. However, when the number of species becomes
very large, it is challenging and costly to collect data. In general, it is easier to have
an estimate of the ratio c{m for a Levins model (on the one hand, it is linked to the
equilibrium, on the other hand, if we can estimate a number of colonization events, we
will necessarily relate it to a number of extinctions to be able to make something of it).
Here, we suppose that the colonization rates c follow a certain probability distribution
with continuous positive density. From an empirical point of view, this is justified insofar
as we wish to know if there are distributions independent of the exact values of the
colonization parameters. We note Bertrand’s paradox on distributions that Calcagno
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et al. [CMJD06b] take up in their answer to Adler [Adl06]. The thinking process is
similar to May’s seminal paper [May72] on the community matrix where he assumes
that around the equilibrium point the effect of one species on another has a certain
statistical distribution. and to the numerous works that followed on the effect of different
distributions. Subsequently, many works have followed to understand the effect of the
diverse distributions, in particular Allesina et al. [AT12, AT15, GRA16].

Many questions arise as follow-up:

• Is it possible to find a statistical distribution that maximizes the coexistence between
the species?

• Given a certain distribution, can we predict the expected number of coexisting
species?

• Given the statistical distribution maximizing the coexistence, what is the occupancy
of the persistent species?

Notation
See Appendix 4.B for more details on the probability distribution.

• Uniform distribution of support r1, 2s is Upr1, 2sq or ’Uniform 1’.

• Uniform distribution of support r1, cmaxs is Upr1, cmaxq or ’Uniform cmax ´ 1’.

• Pareto distribution of support r1,8q with parameter a is Ppaq or ’Pareto a’.

• Exponential distribution of support r1,8q with parameter λ is Epλq or ’Exponential
λ’.

• Log-Cauchy distribution of support r0,8q with parameter µ, σ is LCp0, 1q or ’Log-
Cauchy’.

4.1 Dynamics and connection with the Lotka-Volterra
model

4.1.1 Set of admissible solutions
At this point, without concern for the dynamics of the system (4.2), many properties of
the model can be obtained in a simple form [Til94]. In detail, equilibrium occupancy of
each species p˚ “ pp˚

1 , ..., p
˚
nq can be computed with iterative equations. Given p˚, one

can deduce the proportion of empty space when i species are present

hi “ 1 ´

i
ÿ

j“1
p˚

j .

The results obtained by Tilman for the occupancies, empty space and colonization rate
are recalled in section 4.A.1.

Assume the extinction rates are all equal i.e. @i P rns, mi “ m. At this point, the
conditions for species coexistence only relate to the choice of the parameters c. The
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invading condition of a species depends only on its colonization rate and the state of
the system. At equilibrium with n species present in the system, a species invades and
persists if and only if

cn`1 ą
m

h2
n

,

where cn`1 corresponds to the colonization rate of the invading species and hn to the
proportion of empty patches before invasion. This condition forces the new species to be
a better colonizer than the previous ones. These conditions can be written for all species
and make up the admissible set for the colonization rate.

An example of a two-species system Consider the two-species version of the model
(4.2), species 1 is the most competitive, species 2 the least competitive. Assume that both
species have the same extinction rate m. The dynamics is governed by a two-equation
system:

dp1ptq

dt
“ c1p1ptqp1 ´ p1ptqq ´ mp1ptq “ p1ptqpc1p1 ´ p1ptqq ´ mq ,

dp2ptq

dt
“ c2p2ptqp1 ´ p1ptq ´ p2ptqq ´ mp2ptq ´ c1p1ptqp2ptq .

At equilibrium, the occupancy of species 1 is

p˚
1 “ 1 ´

m

c1
,

which corresponds to the fixed point value of the Levins model [Lev69]. For species 2, the
occupancy is

p˚
2 “ 1 ´

m

c2
´

ˆ

1 `
c1

c2

˙

p˚
1 .

Using the two equilibrium equations, we can deduce the constraints of coexistence between
the species

c1 ą m ; c2 ą
c2

1
m
.

The constraints for a two-species system in the space of admissible solutions is illus-
trated by a density plot for two different probability distributions in Figure 4.1.1. We
observe that each distribution gives a different number of red admissible points.

Graphical representation in the n-species system A natural question concerns
the distribution of the vector c having a maximum of point in the admissible set. From
a graphical perspective, we can see the sequence of conditions on an interval. Given a
sample of colonization rates c.
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(a) Uniform Upr0, 3.5sq (b) Exponential Ep1q

Figure 4.1.1: Given two species with the same extinction rate m “ 1, we sample c “

pc1, c2q by a given distribution (in (a) uniform, in (b) exponential) and sort them c1 ă c2.
Each sample pc1, c2q is represented by a point in space, the number of samples is 300. If
the couple coexist, the point is red. Otherwise, the point is blue. The set of conditions C
is represented as red solid lines.

• As a simple requirement, the colonization rate must be greater than the extinction
rate, otherwise the species goes to extinction. Is c1 ą m?

• If no, species 1 does not invade and the new condition is c2 ą m?

• If c1 ą m, species 1 invades the system and add a new condition. This condition
has been referred to as the niche shadow in [KLD`99]. According to Meszéna et al.
[MGPM06], this is similar to limiting similarity. Is c2 ą c2

1{m?

• If yes, species 2 invades the system and adds a new niche shadow etc.

Remark 4.1. From a theoretical standpoint, we can compute the probability of coexistence
by simple integral computations. However, without fixing the density function f of the
colonization rates c, the computations are untractable. Given a fixed distribution f , we
can compute analytically the integral (in small dimension). In the contrary case, we
can estimate the integral numerically by using standard Python library or Monte Carlo
experiments.
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Admissible sets for the colonization rates Consider a species pool of n species in
which the colonization rates are randomly drawn from a given distribution following the
dynamics of (4.2). Assume the extinction rate is the same for all species @i P rns, mi “ m.
Let S Ă rns be the subset of indices of the persisting species. The components of the
equilibrium vector p˚ can be classified into two classes: the persisting species, i P S such
that p˚

i ą 0 and the vanishing species, i P Sc such that p˚
i “ 0.

The conditions on the colonization rate vector c are formulated in order to have
coexistence between the species in the form of a set. The set of admissible solutions
represents a series of algebraic conditions and depends on c and m

Cm “

$

’

&

’

%

x P Rn
` : x2i ą

´

śi´1
j“1 x2j`1

¯2

m
´

śi´1
j“1 x2j

¯2 ; x2i`1 ą
m
´

śi
j“1 x2j

¯2

´

śi´1
j“1 x2j`1

¯2

,

/

.

/

-

. (4.3)

The standard case (m “ 1) will be denoted C. These conditions are obtained using the
recursion formula in the Appendix 4.A.2. The equations for the occupancy p˚ for each
species as a function of the colonization rate c˚ and the fraction of empty patches formulas
(already obtained in [Til94]) are re-computed.

How to maximize the coexistence between the species in the HT model? From a down-
to-earth point of view, one could just choose a vector of colonization rates satisfying c P C
corresponding to the case where all species coexist and survive. However, this condition
is very stringent. To simplify this restriction, it is assumed that only a subset fulfills the
conditions cS P C where cS : tci, i P Su.

The coexistence problem can be reinterpreted as: given a finite number of species with
colonization rates taken from a given finite support, how many species can be chosen so
that they all persist?

If cS P C, Pp|S| “ k | nq .

This problem is equivalent to check 2n possibilities, either the presence or the absence
of the species. However, since the problem includes a competitive hierarchy, if the first
species has the opportunity to invade, it cannot be displaced by the next species. The
most competitive species will always have priority. We end up testing only n conditions
by following a decision tree (see Figure 4.1.2).

To sum up, the system follows the dynamics given by equation (4.2) starting from a
pool of n species. The vector of colonization rate c is sampled from a positive probability
distribution and we sort the c in increasing order. The aim is to assess if cS P C, Pp|S| “ k |

nq, the remaining colonization rates for a fixed n. A schematic way to solve this problem
is to browse a tree represented in Figure 4.1.2. From an algorithmic standpoint, a version
is presented in pseudo-algorithm 1 which keeps the persistent species at the equilibrium
point. We define this algorithm or ecosystem construction as all-at-once metacommunity
process.

4.1.2 Relation with the Lotka-Volterra model and global stabil-
ity of the equilibrium

Introduced at the beginning of the 20th century by Lotka [Lot25] and Volterra [Vol26],
the Lotka-Volterra (LV) model is one of the most popular models in ecology. One of its
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1

c1 ď m c1 ą m

2

c2 ď m c2 ą m

2

c2 ď
c2

1
m c2 ą

c2
1

m

3

Ø

c3 ď m

t3u

c3 ą m

3

t2u

c3 ď
c2

2
m

t2, 3u

c3 ą
c2

2
m

3

t1u

c3 ď
c2

1
m

t1, 3u

c3 ą
c2

1
m

3

t1, 2u

c3 ď
c2

2m

c2
1

t1, 2, 3u

c3 ą
c2

2m

c2
1

Figure 4.1.2: Decision tree for a 3-species system. The path of the binary tree selects the
persisting species. At each node, the path on the right corresponds to the survival of the
species, the one on the left to the extinction of the species. At the end, the root indicates
the indexes of the persisting species.

strengths is its versatility: many models can be related to an LV model including, in par-
ticular, the extension of the Levins’ metapopulation model to several species. We revised
the HT model as a Lotka-Volterra model and gives a demonstration of the uniqueness and
global stability of the equilibrium point of (4.2). Notice that Tilman [Til94] and Hastings
[Has80] also carries out this problem in appendix of their articles.

First, we reformulate the HT model as a Lotka-Volterra model

dpi

dt
“ cipi

˜

1 ´

i
ÿ

j“1
pj

¸

´ mipi ´

˜

i´1
ÿ

j“1
cjpjpi

¸

, @ i P rns ,

ô
dpi

dt
“ pipri ´ pApqiq “ pi

˜

ri ´

n
ÿ

j“1
Aijpj

¸

, @ i P rns , (4.4)

ô
dp

dt
“ diagppqpr ´ Apq ,

where

ri “ ci ´ mi , @ i P rns and A “

¨

˚

˚

˚

˚

˚

˝

c1 0 0 ¨ ¨ ¨ 0
c1 ` c2 c2 0
c1 ` c3 c2 ` c3 c3

. . .
... . . . 0

c1 ` cn cn

˛

‹

‹

‹

‹

‹

‚

.

Generally, r “ pr1, ..., rnq is understood as a growth rate and corresponds here to the
dynamics of the species i without interactions. If the colonization rate is superior to the
extinction rate, the species survives and grows indefinitely, otherwise, the species vanishes.
However, this must be interpreted carefully because pi P r0, 1s, therefore r can not be
clearly understood without A. The matrix A corresponds to a matrix of interactions, it
is a competitive interaction matrix because ´Aij ă 0, @i, j P rns. The impact of species
j ă i on species i is ci ` cj. On the one hand, this interaction coefficient depends on the
colonization of cj, the higher the colonization rates of better competitors, the less easy
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Algorithm 1 All-at-once metacommunity
Require: n ě 0
c Ð list
for l P r1, ns do Ź Creation of a random vector

randomly choose cnew from a probability distribution;
c Ð rc, cnews;

end for
c Ð Sortedpcq; Ź Ascending sorting algorithm
for j P r1, lenpcqs do Ź Selection by the tree of the persisting species

S Ð m;
if crjs ď S then

delpcrjsq;
else

S Ð crjs2{S;
end if

end for

it is for a species to persist. On the other hand, the presence of the ci coefficient is less
intuitive and intrinsically related to the model (4.2). The ci comes out of the matrix term
and states that we do not recolonize the patches where we are present.

Feasible fixed point To study the behavior of pptq, t Ñ `8, we characterize the
equilibrium of the system (4.4). An equilibrium p˚ is defined as a vector satisfying

@i P rns,
dp˚

i

dt
“ 0 ô p˚

i pri ´ pAp˚
qiq “ 0 .

If A is non-singular and a feasible fixed point exists i.e. p˚
i ą 0, @i P rns, then the

equilibrium p˚ can be explicitly determined by

p˚
“ A´1r .

The condition on the vector c to have all species coexisting is c P Cm. These conditions
are very restrictive. We are rather interested to determine a subsystem of species which
coexist at equilibrium.

Fixed point with vanishing species In general, we consider cases in which there is
no feasible equilibrium. A particular attention is given to the fixed point where some
species may vanish i.e piptq ÝÝÝÝÑ

tÑ`8
0. In the following, we show that equation (4.4) has a

unique globally stable equilibrium.
A unique equilibrium p˚ to (4.4) is globally stable if for every p0 ą 0, the solution to

(4.4) which starts at pp0q “ p0 satisfies

pptq ÝÝÝÑ
tÑ8

p˚ .

Definition 4.1 (P-matrix). A square matrix M is said to be a P -matrix if and only

1. All principal minors of M are positive

detpMIq ą 0 , @ I Ă rns , MI “ pMkℓqk,ℓPI .
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2. All real eigenvalues of M and its principal submatrices are positive.

Proposition 4.1. The matrix A defined in (4.4) is a P -matrix.

Proof. c is positive and A is a lower triangular matrix. The proof rely on two properties
of the triangular matrix.

First, the eigenvalues of a lower triangular matrix are the diagonal entries of the
matrix. Second, each principal submatrices of A are a lower triangular matrix and there
eigenvalues correspond to a subset of c ą 0. Using definition 4.1 ends the proof.

In graph theory, the matrix A represents a directed graph.

Definition 4.2 (Directed cycle). A directed cycle in a directed graph A is a non-empty
directed path in which only the first and last vertices are equal.

Since the matrix A is triangular, A represents a directed acyclic graph i.e. there is
no cycle in the graph. Consequently, ´A is composed of cycles of length one (a cycle on
himself).

Theorem 4.2 (Takeuchi et al. [TAT78]). Suppose that ´A has only cycles of length one.
Then the system (4.4) and every reduced system of (4.4) have a nonnegative and globally
stable equilibrium point for each r P Rn iff A is a P -matrix.

To conclude, relying on Theorem 4.2, the system (4.4), equivalent to (4.2), has a
unique globally stable equilibrium point p˚ independently of the parameter values i.e. for
any initial condition p0, colonization rate c and extinction rate m.

4.1.3 Dynamics of the model
In a given landscape of patches, suppose there is a pool of species whose dynamics is (4.2).
It is assumed that for i P rns, ci are i.i.d. random variables on R˚

`. After drawing, sort the
ci in increasing order. The continuous dynamics is given by the differential equations (4.2)
and the behavior is simple. Independently of the parameters pc,mq of the model and the
initial condition, the dynamics converges to a unique equilibrium p˚ “ pp˚

1 , ...., p
˚
nq.

In fact, direct information on the persistent species is given by the conditions (4.3). If
one waits long enough, the equilibrium is reached. This equilibrium is saturated because
it is resistant against invasion of absent species [HS98]. Let i P Sc, the indices of the
extinct species, then:

ˆ

1
pi

dpi

dt

˙

piÑ0`

ď 0 .

By construction, the dynamics of the model (4.2) can be understood in two equivalent
directions (see Figure 4.1.3). On the one hand, there is a primary ecosystem with a pool
of n species that have different initial occupancies. The ecosystem changes continuously
according to the ODE of the model. On the other hand, the ecosystem is assumed to
be initially empty and species try to invade it sequentially in a random order. When a
species tries to invade the system at a certain time t, it can cause the extinction of other
species, but also the expansion of other species that were already present in the system.
Indeed, the particularity is that a species that has invaded the system, even if it becomes
extinct, it can invade again at any time.
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(a) All-at-once metacommunity
(b) Sequential invasion without ex-
clusions

Figure 4.1.3: Diagrams of the two types of construction of the model (4.2) dynamics
are represented for a ecosystem. The ellipse corresponds to the habitat and the points
corresponds to the species. In Fig. (a), standard dynamics is shown. In Fig. (b), the
assembly dynamics is represented with an invasion of each species.

Remark 4.2. A permanent extinction never occurs in the dynamics of the model. However,
the vanishing components corresponding to the species going to extinction with p˚

i “ 0
and piptq ÝÝÝÑ

tÑ8
0 .

Both types of construction are represented in Figure 4.1.4. The ecosystem is composed
of 7 species. We observe a convergence of the two dynamics towards the same equilibrium
which is true for infinitely long periods. We notice that the disturbances generated by the
first method are mainly located at the beginning of the dynamics whereas in the second
case, each invasion generates disturbances.

(a) All-at-once metacommunity (b) Sequential invasion without exclusions

Figure 4.1.4: The two types of construction of the model (4.2) dynamics are represented
for a ecosystem of 7 species (n “ 7). In Fig. (a), all-at-once metacommunity is shown
with a starting pool of 7 species with random initial conditions. The abundance or habitat
proportion of each species as a function of time is displayed. In Fig. (b), the sequential
invasion without exclusions is represented with an invasion of each species at a regular
time interval.

4.1.4 Choice of the extinction rate
In this paper, we focus on a specific HT model form (4.2) similar to the study of Hastings
[Has80] . The extinction rate is equal for each species i.e. @i P rns, mi “ m. Without this
condition, the set of admissible solutions Cm in (4.3) cannot be defined. In this paper, the
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main interest is on the colonization rate c. However, studying the model with different
extinction rates is an intriguing perspective.

Without loss of generality and in a framework where the interest is on c, we could have
chosen an extinction rate equal to m “ 1 for all species. However, we will maintain the
term m (when possible) to have common results. We begin with equation (4.2) where we
divide the equation by m

dpi

dt
“ pici

˜

1 ´

i
ÿ

j“1
pj

¸

´ mpi ´

˜

i´1
ÿ

j“1
cjpjpi

¸

, (4.5)

ô
dpi

dt

1
m

“ pi
ci

m

˜

1 ´

i
ÿ

j“1
pj

¸

´ pi ´

˜

i´1
ÿ

j“1

cj

m
pjpi

¸

.

One can define a new vector c1 where c1
i “ ci

m
@i P rns. Considering m fixed, the analyses

can proceed equivalently on c or c1:

dpi

dt

1
m

“ pic
1
i

˜

1 ´

i
ÿ

j“1
pj

¸

´ pi ´

˜

i´1
ÿ

j“1
c1

jpjpi

¸

. (4.6)

The equilibrium of equation (4.6) is similar to (4.5) with m “ 1. The factor 1{m has
only an impact on the speed of the convergence. We incorporate the extinction rate m
into the colonization rate, this corresponds to sample the ratio c1

i “ ci{m from a positive
probability distribution. Denote by C 1 the series of algebraic conditions associated with
the vector c1, then

c1
P C 1

ô c P Cm .

4.2 All-at-once metacommunity dynamics: persistent
species in the hierarchical competition-colonization
trade-off model

In the section 4.1, the set of admissible solutions C has been defined, this gives information
about the number of persistent species in the model (4.2). Information on the dynamics
was given to narrow the focus of the analysis to C. We have all the necessary mathematical
conditions to find a statistical distribution that maximizes the probability of coexistence
between the species and to have information about the species richness which can coexist
on average.

4.2.1 An invariance of species richness
Evolution of the species richness Given c sampled from a positive probability dis-
tribution, the species richness k after a sufficiently long time and after removal of species
that are going to extinction as a function of the number of species in the initial pool n is
on average n{2,

Ep|S| “ k|nq “
n

2 .
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This result is shown by heuristic analysis and numerical simulations in the next section.
Notice that the number of species in the initial pool n is equivalent to the number of species
that can invade the system at any time. The function of the species richness according to
the number of invasions is represented in Figure 4.2.1. All the supports of the distributions
start at m which implies that no species is repressed by lack of colonization. Notice that
on average half of the species coexist independently of the distribution of the colonization
rate. For example, if we have 1000 species at the beginning, on average 500 will remain
in the end, whether the c is drawn from a uniform or a power law distribution.

Figure 4.2.1: Representation of the species richness of the persistent species k as a function
of the number of species in the initial pool n for different distributions. The curve is
derived using Monte Carlo simulations by computing P “ 300 times the algorithm 1
and averaging the number of persistent species. Independently of the distribution, the
behavior of the curve is f : x Ñ x{2.

A subsidiary issue is the distribution of the persistent species. Is it possible to describe
the distribution of the persistent species Pp|S| “ k | nq?

Distribution of the number of persistent species On average we observe that
half of the persisting species remain, what is the distribution of the number of persisting
species i.e. if the pool of species is n what is the probability that there is |S| “ k persistent
species?

The result is non-trivial. Independently of the distribution of the colonization rates c,
the distribution of the number of persistent species is close to the binomial distribution
Bpn, 1

2q if n is large i.e.

Pp|S| “ k | nq „
nÑ8

ˆ

n

k

˙

1
2n
.

This is consistent with Ep|S| | nq “ n{2.
In Figure 4.2.2, the vicinity of the curves for different distributions is shown, the result

is obvious. The symmetry of the binomial distribution indicates that the probability of
having very few persistent species is the same as almost all persistent species.
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Figure 4.2.2: Representation of the distribution of the number of persistent species for a
initial pool of n “ 1000 species and for different distribution of colonization rate. Each
curve is derived using Monte Carlo experiments by computing P “ 100000 times the
algorithm 1 and store the values obtained to form the outline of a histogram. The red
curve corresponds to the density function of the binomial distribution Bpn, 1

2q.

4.2.2 Elements of proof of this invariance
Niche shadows From the definition of the admissible set C for the colonization rate,
the odd condition is

c2i`1 ą

´

śi
j“1 c2j

¯2

´

śi´1
j“1 c2j`1

¯2 .

Given l2i`1 the minimum threshold required for the colonization rate of species 2i ` 1 to
settle in the system, we have by definition:

l2i`1 “

´

śi
j“1 c2j

¯2

´

śi´1
j“1 c2j`1

¯2 .

Notice a recursive formula for the li

c2i`1 ą l2i`1 “
c2

2i

li
.

In an equivalent way, the same computations can be performed for the even condition,
then we obtain a general recurrence formula:

ci`1 ą li`1 “
c2

i

li
. (4.7)

By definition, the interval pci, li`1q is called the niche shadow of species ci where li`1
correspond to the minimum threshold required for the colonization rate of species i ` 1
to settle in the system i.e. ci`1 ą li`1.
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Remark 4.3. If ci has a narrow niche shadow i.e. ci{li « 1, then ci`1 can be close to ci and
consequently many species might coexist in the final community (the so-called ”infinite
niche packing” [KLD`99]).

Given Xi a random variable describing the amount by which ci exceeds its bound i.e.
Xi “ ci ´ li. If the number of species in the initial pool n is large and the distribution
of the colonization rates is sufficiently dense (close to each other), in the case of a finite
support Xi will be small Xi „ Opn´1q. From (4.7)

li`1 “
c2

i

li
,

“
pli ` Xiq

2

li
,

“ li ` 2Xi `
X2

i

li
,

li`1 « li ` 2Xi . (4.8)

Remark 4.4. The relation li`1 « li `2Xi is important and already gives indications on the
number of species present in the system on average. Indeed, the interval rli, li`1s contains
one species and is of size 2Xi where Xi is a random variable of unknown distribution of
order 1{n.

Proof in the uniform case Assume that n is sufficiently large, for convenience m “ 1
and c „ Upr1, 2sq. Under the assumption (4.8), the assembly process is invariant to
shifting the ci and the problem is equivalent to m “ 0 and c „ Upr0, 1sq. The aim
consists in proving that the probability to have k persistent species from a pool of n
species is Pp|S| “ k|nq „ Bpn, 1{2q according to the conditions (4.3).

Given c1 “ x i.e. the probability that the first species falls in the interval px, x ` dxq

is
P pc1 P px, x ` dxqq “ fpxqdx .

The probability that the species 2, ..., b ` 1 fall in the interval px, 2xq (i.e. these species
are excluded by species 1) is

P pci P px, 2xq, i P r2, bsq “ pF p2xq ´ F pxqq
b .

The probability that the remaining n´b´1 species fall in the interval p2x, 1q (distributed
according to the original distribution left-truncated at 2x independently of the first b` 1
species) is

P pci P p2x, 1q, i P rb ` 1, nsq “ p1 ´ F p2xqq
n´b´1 .

A combinatorial argument allows to compute the number of possibilities: n!{pb!pn´1´bq!q.
Let β1 be a random variable corresponding to the number of species excluded by the

first species. To compute the probability that β1 “ b i.e. excludes the subsequent b ă n´1
species, we integrate over the possible values of x (note that x runs only up to 1{2 when
b ă n ´ 1, because x ą 1{2 implies that all subsequent n ´ 1 species are excluded). We
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will deal with that case separately below.

P pβ1 “ bq “

ż 1{2

0

n!
b!pn ´ 1 ´ bq!fpxqpF p2xq ´ F pxqq

b
p1 ´ F p2xqq

n´1´bdx

“

ż 1{2

0

n!
b!pn ´ 1 ´ bq!p2x ´ xq

b
p1 ´ 2xq

n´1´bdx

“

ˆ

n

b

˙

pn ´ bq

ż 1{2

0
xb

p1 ´ 2xq
n´1´bdx

“

ˆ

n

b

˙

pn ´ bq

ż 1

0

1
2b
ub

p1 ´ uq
n´1´b 1

2du , pu “ 2xq ,

“

ˆ

n

b

˙

pn ´ bq
1

2b`1

ż 1

0
ub

p1 ´ uq
n´1´bdu ,

“

ˆ

n

b

˙

pn ´ bq
1

2b`1 Bpb ` 1, n ´ bq .

where we have recognized the beta function in the last line and because b and n are
integers, the beta function

Bpb ` 1, n ´ bq “
b!pn ´ b ´ 1q!

n! .

This cancels with the earlier combinatorial factor and we finally find

P pβ1 “ bq “
1

2b`1 .

In the case b “ n ´ 1, we can use a standard geometric series argument

P pβ1 “ n ´ 1q “ 1 ´

n´2
ÿ

b“0

1
2b`1 “ 1 ´

n´1
ÿ

b“1

1
2b

“ 1 ´
1 ´ 1

2n

1
2

“
1

2n´1 .

If the truncated distribution is a rescaled instance of the original distribution as for the
uniform distribution, then we can find the probability that a particular subset of species
α1, α2, ...αk survives by simply multiplying the probabilities that the first species excludes
b1 “ α2 ´α1 ´ 1 species, the remaining n´ b1 ´ 1 are distributed uniformly on px, 1q. By
rescaling, we find that the probability that the second survivor (the minimum among the
remaining n´b1 ´1 species) excludes b2 “ α3 ´α2 ´1 species, and so on. For convenience,
we specify the subset of coexisting species by the sequence of gaps: bi “ αi`1 ´ αi ´ 1.
Ultimately, we find the probability of a particular sequence of k survivors by computing

P

˜

k
č

i“1
tβi “ biu

¸

“

k
ź

i“1
Ppβi “ biq ,

“

k´1
ź

i“1

1
2bi`1 ˆ

1
2bk

,

“
1

2
řk

i“1 bk`k´1
.
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The final factor (1{2bk) has a reduced power because the kth (final) survivor must
exclude all remaining species. By definition,

řk
i“1 bi “ n ´ k, so the probability of *any*

particular set of survivors is

P

˜

k
č

i“1
tβi “ biu

¸

“
1

2n´1 .

This probability does not depend on the particular sequence β1, ...βk, or even on k. This
implies that the probability of finding k survivors is just the number of possible sets of
k survivors, multiplied by the probability of each. Since the first species always survives,
we have

P p|S| “ k | nq “

ˆ

n ´ 1
k ´ 1

˙

1
2n´1 ,

which is the binomial distribution Bpn ´ 1, 1{2q.

Insight in the general case In this section, we present a non-rigorous intuition to
extend this result to a certain class of distributions. Assume that c is distributed according
to an arbitrary distribution with support on rm,8q, PDF fpxq and CDF F pxq. As above,
we shift to obtain support on r0,8q and fix m “ 0. The probability that the first species
excludes b species is

P pβ1 “ bq “

ż 8

0

n!
b!pn ´ 1 ´ bq!fpxqpF p2xq ´ F pxqq

b
p1 ´ F p2xqq

n´1´bdx . (4.9)

The assumption comes from the fact that the density of species 1 is close to zero when
n becomes large. Consequently, the integral (4.9) can be approximated, first we truncate
the integral at the median, as in the uniform case. This choice avoids integrating over
negative probabilities. When b “ n ´ 1, we instead integrate up to 8.

P pβ1 “ bq «

ż F ´1p 1
2 q

0

n!
b!pn ´ 1 ´ bq!fpxqpF p2xq ´ F pxqq

b
p1 ´ F p2xqq

n´1´bdx .

The second argument consider the density of the colonization rate of species 1. The
integral (4.9) is dominated by the behavior near x “ 0 because the colonization rate c1
has high probability to be close between r0, ϵs, ϵ ą 0, then

P pβ1 “ bq «

ż ϵ

0

n!
b!pn ´ 1 ´ bq!fpxqpF p2xq ´ F pxqq

b
p1 ´ F p2xqq

n´1´bdx .

The last argument is the less rigorous and gives an insight of the behavior in general
distribution, we use a linear approximation to write F p2xq “ 2F pxq which is poor as x
becomes large, but for distributions with high density at 0 (m, in the original frame) and
sufficiently light tails, the integral will be dominated by the behavior near x “ 0, where
the linear approximation is good.

P pβ1 “ bq «

ż F ´1p 1
2 q

0

n!
b!pn ´ 1 ´ bq!fpxqpF pxqq

b
p1 ´ 2F pxqq

n´1´bdx .
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The rest of the proof consists in pursuing the uniform case example. We use the substi-
tution u “ 2F pxq. This implies du “ 2 fpxqdx, so we have

P pβ1 “ bq “

ˆ

n

b

˙

pn ´ bq

ż 1

0

1
2b
ub

p1 ´ uq
n´1´b 1

2du “
1

2b`1 ,

exactly as in the uniform case and 1
2b for b “ n`1. Consequently, we can find the probabil-

ity of an particular sequence of survivors by multiplying the probabilities of
Şk

i“1tβi “ biu.

4.2.3 Properties of the persisting species
In the previous section, we showed a precise description of the number of persisting species
in the model (4.2) as a function of the starting n pool. A natural question is to understand
the properties of the persisting species (proportion of habitat, empty space left, impact
of the extinction rate) as in the work of Tilman [Til94] or Kinzig et al. [KLD`99].

Evolution of the fraction of empty patches

The fraction of empty patches features the first interesting property as a consequence of
the “all-at-once” equilibrium described above. In a counter-intuitive way even when the
size of the ecosystem is very large at the beginning n Ñ `8, hn, it does not necessarily
converge towards 0. In the single-species Levins model with parameter pc,mq, the fraction
of empty patches is given by m{c i.e. the higher the colonization rate, smaller the fraction
of empty patches. In the n-species model, the conclusion is similar, we have the relation
hi „ pm{ciq

1{2

hi “ 1 ´

i
ÿ

j“1
p˚

j ,

“
mhi´1 `

ři´1
j“1 mp

˚
j

cihi´1
,

hi

m
“
hi´1 `

ři´1
j“1 p

˚
j

cihi´1
,

“
1

cihi´1
.

using the fact that hi ă hi´1, one obtain the same equality as in Kinzig et al. [KLD`99],
c

m

ci`1
ď hi ď

c

m

ci

. (4.10)

This equation shows that to have an idea of the empty space, it is sufficient to have a
good approximation of cn “ max

iPrns
ci. In the appendix 4.B.3, we recall the maximum distri-

butions of different distributions (uniform, Exponential, Pareto) and we give a heuristic
to compute numerically the maximum of a family of r.v for a finite n.

The simplest example is that of a finite support. In figure 4.2.3, we compare the
relation hi „ pm{ciq

1{2 for a uniform distribution and a Beta distribution. Theoretically
in the case of the uniform distribution, consider n standard i.i.d. random variables Ui „
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(a) Upr1, 2sq (b) Betap1, 1q

Figure 4.2.3: Comparison between the empirical and theoretical bounds of the fraction
of empty spaces (hn) as a function of the size of the initial pool of species. In panel
(a), this relationship is illustrated in the case where c follows a uniform distribution (of
max = 2) and the theoretical estimation is 1{

?
2. In panel (b), the same relationship is

given when c follows a Beta distribution of parameters Betap1, 1q and compared to the
empirical estimation of the maximum of the Beta function as a function of n applied to
the expression 1{

?
cn.

Upr1, cmaxsq, EpmaxUiq ÝÑ cmax. In the case of the Beta distribution, we use the heuristic
of the empirical approximation.

When the distribution of c has infinite support, theory states that when the number
of species tends to infinity, the fraction of empty spaces tends to zero. However, when n
is too small, the prediction is not accurate because of the gap between ci`1 and ci. The
standard example is the Pareto distribution which is shown in Figure 4.2.4 with the upper
and lower bound given in (4.10).

Figure 4.2.4: Comparison between the empirical and theoretical bounds of the fraction of
empty spaces (hn) as a function of the size of the initial pool for the Pareto distribution
Pp1q. The dotted lines represent the upper bound (red) and lower bound (blue) of (4.10)
computed using the heuristics to obtain an estimation of the maximum for a fixed n.

From an ecological point of view, the empty space in the habitat depends mostly on
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the colonization capacity of the best colonizing species.

Occupancies

The distribution of the occupancies has been studied by Kinzig et al. [KLD`99]. In this
paragraph, the main result is illustrated. They give a relationship between occupancies
and colonization rates, they show that p˚pcq9c´3{2 when extinction rate is equal to 1.
The most competitive species tends to occupy a larger share of the landscape than the
most colonizing species.

In figure 4.2.5 we plot the power distribution relationship between the occupancies
and the colonization rate p˚pcq „ c´3{2 for an ecosystem with n “ 100000 species for two
different uniform distributions. The matching is quite remarkable.

(a) Upr1, 2sq (b) Upr1, 6sq

Figure 4.2.5: Representation of the occupancies at equilibrium p˚ as a function of the
colonization rates c. The occupancy of a species is associated to its colonization rate is
computed for a ecosystem of n “ 100000 species. A moving average is used to smooth
out all the points. In Fig.(a), the uniform distribution of support r1, 2s is plotted and the
red curve represents the power distribution 1{c3{2. In Fig.(b), the uniform distribution of
support r1, 6s is plotted and the red curve represents the power distribution 5{c3{2.

In Figure 4.2.6, the empirical distribution in the case of an exponential distribution
Ep1q is displayed. The result is quite intriguing and different. The beginning of the
curve seems to decrease and then there is an increase in the proportion of habitat. This
is the effect of the tail of the distribution. Indeed, the exponential distribution has an
infinite support, very colonizing species can be present in the system and recover a large
proportion of habitat.

Impact of the extinction rate

The impact of the extinction rate or the diversity disturbance relationship has been largely
studied and introduced in Hastings [Has80] in the HT model. The number of species in
the system differs according to the extinction rate and the number of persistent species as
a function of the extinction rate gives an optimal threshold i.e intermediate disturbance
hypothesis. The number of persisting species reaches a peak when the left support of the
probability distribution is at m. Let cmin, the left edge of the support of the distribution.

195



Chapter 4. A probabilistic perspective of the hierarchical competition-colonization trade-off model

Figure 4.2.6: Representation of the occupancies at equilibrium p˚ as a function of the
colonization rates c. The occupancy of a species is associated to its colonization rate is
computed for a ecosystem of n “ 100000 species. A moving average is used to smooth
out all the points. The case of an exponential distribution Ep1q of colonization rates is
represented.

The standard example of a value cmin “ 1 is studied. At m “ cmin, it is the conver-
gence to the binomial distribution, half of the species survive independently of the chosen
distribution (see Figure 4.2.1).

The edge effect is more accentuated when the distribution has high density close to
cmin.

Mathematically, the causes of the loss of species richness are explained when m ‰ cmin
by

• if m " cmin, a large part of the density of the distribution is truncated with the
first condition ci ą m, @i P rns. Species that have a lower colonization rate than the
extinction rate cannot survive.

• m ! cmin: a large part of the density of the distribution is truncated with the
second condition, if we suppose that c1 is very close to mmin “ 1, then c2 ą

c2
1

m
« 1

m
.

Species whose colonization rate is less than the inverse of the extinction rate cannot
survive. If cmin starts far from m, it implies larger and larger niche shadows, because
the first species takes up a large part of the patches (and so the next one must be
considerably better colonizer, etc. by domino effect).

From an ecological point of view, an increased extinction rate of all species is generally
associated with a decrease in species richness. However, it is not intuitive that a decrease
in extinction rate implies a decrease in species richness. In the context of abundances,
Fox [Fox13] argues that the intermediate disturbance hypothesis should be abandoned. In
the HT model, a decrease in extinction rate implies a supremacy of the most competitive
species at the expense of the others, hence the decrease in extinction.

In the case of mmin “ 1, we represent in figure 4.2.7 the impact of the extinction rate
on the species richness in the case of two uniform distributions of different support. We
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can observe that if we take two extinction rates: m1 “ 1.3 and m2 “ 1{m1 “ 0.77, the
species richness is the same. A larger distribution support will tend to reduce the impact
of the extinction rate, as a higher density on the left side of the support increases the
deterioration of the ecosystem.

Figure 4.2.7: Representation of species richness as a function of extinction. Two dis-
tributions are identified Upr1, 2sq (blue line) and Upr1, 3sq (orange line) whose left edge
cmin “ 1. The right red vertical lines represent m1 “ 1.3 and the left m2 “ 1{m1 “ 0.77.

4.3 Sequences of invasions and community assembly
In section 4.2, the all-at-once metacommunity dynamics was presented in an ecosystem
with a starting species pool where the model evolves according to the dynamics (4.2).
We have seen that this approach is equivalent to considering an empty ecosystem at the
beginning, adding species one by one and considering that they can invade the system
again at any time. Here we want to consider what would happen if an extinct species was
condemned to never return to the system. This has potential realism (when compared
to a real assembly process) and allows to answer new questions such as the effects of
invasions in communities. This approach is called the assembly process or invasion se-
quences [MDC`17, RR85, Cas90, RZB`09, RBL`19, Tok04]. It consists in starting from
an empty system and filling it through a series of invasions. We define an iterative process
where at each time step a species tries to invade the system and is then confronted with
an invasion condition. If this invasion condition is satisfied, it can enter the system and
potentially displace species from the system. These displaced species will not be able to
re-enter the system afterward so the composition of the system at any point in time does
not only depend on which species have tried to invade but also on the order in which
they have tried to do so. The invasion condition related to C evolves each time a new
species enters the system. The invasion of a species depends on the current state of the
system and therefore depends on the invasions that have been carried out in the past.
This implementation of the model has a historical contingency that was not present in
the all-at-once metacommunity dynamics and reveals different outcomes.
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4.3.1 Description of the invasion process and extinction cas-
cades

Dynamics of the invasion process

The sequential invasion process follows the dynamics described by the system (4.2). We
start from an empty system and we inject one species after the other into the system. Each
species is characterized by its colonization rate which is randomly drawn following the
same probability distribution. The invasion of a new species can cause the extinction of
one or more species. In Figure 4.3.1, a diagram of the situation is illustrated. Each species
is injected into the system at very low occupancy pl „ ε ą 0 and we let the dynamics
elapse. If the occupancy of a species converges to 0, the species is considered extinct and
is removed from the system. According to Theorem (4.2), there exists a unique globally
stable equilibrium.

Figure 4.3.1: Sequential invasion process in an ecosystem. The ellipse corresponds to the
habitat and the points corresponds to the species. For each new species, a new colonization
rate cnew is drawn. The left diagram represents the possibility (or not) of invasion of a
new species in an ecosystem. The right diagram represents the situation of invasion of a
new species leading to the extinction of a species present in the ecosystem.

Three types of situations can be observed when new species attempts to invade. Con-
sider the situation of a system by an interval with the presence of the niche shadows (i.e.
the interval of exclusion created by each species in the system by the condition defined by
C) of the different species of the system. The niche shadows are represented by a shaded
green zone.

• The new species cannot invade if its colonization rate falls into the niche shadow of
a species in the community. In this case the equilibrium of the system remains the
same (same species, same occupancies).

• The new species invades and the system converges to a new equilibrium that includes
the new species.
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• The new species invades and generates an extinction cascade when its niche shadow
affects other species and challenges all the shadow niches in the system. The system
converges to a new equilibrium that includes the new species but without some
of the more colonizing species, depending on the location of the new species niche
shadow and the shifts it implies in the niche shadows of all other species.

In the figure 4.3.2, we represent the dynamics of the system as a result of the successive
invasions. A first observation is the fast convergence of the system towards its new
equilibrium. The invasion of a less competitive species does not affect the abundance
of more competitive species. However, it does change the abundance of less competitive
species and can cause extinctions. We note the extinction of species 3 and 5 during the
invasion of species 6.

Figure 4.3.2: Representation of the sequential invasion dynamics with an invasion of each
species (6 in total) at a regular time interval. The dynamics of the system between each
invasion corresponds to (4.2).

The dynamics of the sequential invasion process indicates convergence to a new unique
globally stable equilibrium at each invasion (see Theorem 4.2). Finally, in the study
of the sequential invasion process, the restriction to analyze the conditions of invasions
by reducing the dynamic phase between invasions (and species removed) is sufficient.
Without loss of generality, we can describe the dynamics where each iteration corresponds
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to an invasion. At each iteration, suppose we wait long enough for our system to reach
an equilibrium. The dynamics of the system by iteration is represented for different
distributions in Figure 4.3.3. The growth of the species richness is no longer linear (30
species in the system after 1000 invasions), the system evolves in an irregular way with
invasions and extinctions of species.

(a) Upr1, 2sq (b) Pp2q

Figure 4.3.3: Dynamics of the species richness as a function of the invasion trials in the
sequential invasion process. In both figures the extinction rate is m “ 1.

Historical contingencies

The impact of the order of invasions is important in the sequential invasion process,
which gives rise to historical contingencies i.e. the probability of invasion of a new species
depends strongly on the past. This is the main difference with the all-at-once metacom-
munity which does not admit this phenomenon because all species can invade the system
at any time. In Figure 4.3.4, all orders of invasions are tested in a unique 9 species
framework. It highlights the historical contingencies phenomenon for different distribu-
tions. We observe that the distribution seems to have a rather small variance (around
„ 3 possible values of species richness).

To avoid the bias of a single realization and have a general idea of the distribution,
we observe a histogram of the number of persisting species in a very simple case with 6
species with a sample of 500 realisations (see Figure 4.3.5). We observe that depending
on the order of invasion, the range of values goes from a single species persisting to all
species persisting. We also notice that the distribution of the number of persisting species
depends strongly on the distribution of colonization rates. However, the behavior of the
distribution looks like a unimodal distribution. This is related to the sequential invasion
process which is similar to the all-at-once metacommunity because there are not many
extinctions at the beginning of an invasion sequence.

Formalization of the sequential invasion process

The purpose of this section consists in formalizing the iterative sequential invasion process.
When a species wants to invade the system, there are two main scenarios (we combine
the invasions with 0+ extinctions):

1. failure of the invasion of the new colonizer,

200



Chapter 4. A probabilistic perspective of the hierarchical competition-colonization trade-off model

(a) Upr1, 2sq (b) Upr1, 11sq (c) LCp0, 1q ` 1

(d) Pp1q (e) Pp2q (f) Pp5q

Figure 4.3.4: Histogram of the distribution of the number of persisting species after the
invasion of 9 species. The extinction rate is m “ 1. All order of invasions are tested
and each plot corresponds to a different distribution for the drawing of the new values of
colonization rate.

(a) Upr1, 2sq (b) Upr1, 11sq (c) LCp0, 1q ` 1

(d) Pp1q (e) Pp2q (f) Pp5q

Figure 4.3.5: Histogram of the distribution of the number of persistent species after 6
invasions for a large number of realizations P “ 500. The extinction rate is m “ 1. All
720 orders of invasions are tested and each plot corresponds to a different distribution for
the drawing of the new values of colonization rate.

2. success of the invasion: zero, one or more species vanish.

Consider an initial failure zone or niche shadow zone (if the colonization rate of the
invading species falls in this zone, it does not invade) depending on the extinction rate
F0 “ r0,ms. The colonization rate of a new species cnew trying to invade the system is
drawn from a chosen positive probability distribution. There exists two main options
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1. cnew P F0, the species fails,

2. cnew R F0, the species invades.

If the species invades, a new failure zone is defined F1 “ r0,ms Y rcnew, c
2
new{ms as well

as a vector of colonization of the species present after one iteration c1
1 “ pcnewq. If the

species fails, the empty vector after one iteration c0
1 is defined.

Given ck
l “ pc1, ..., ckq the vector of colonization rate of the k species in the system after

l iteration. The failure zone Fk associated to the k species in the system corresponds to
an union of intervals

Fk
“ r0,ms Y

¨

˚

˝

t k
2 u
ď

i“1

»

—

–

x2i,

´

śi
j“1 x2j

¯2

´

śi´1
j“1 x2j`1

¯2

fi

ffi

fl

˛

‹

‚

ď

¨

˚

˝

t k`1
2 u
ď

i“1

»

—

–

x2i´1,

´

śi´1
j“1 x2j`1

¯2

´

śi´1
j“1 x2j

¯2

fi

ffi

fl

˛

‹

‚

.

(4.11)

This union of intervals represents a non-admissible invasion set evolving through the
sequential invasion process. By construction, they are disjoint intervals. On the opposite,
we define by Ak “ r0,`8qzFk the admissible set.

Given a new species trying to invade the system with a colonization rate cnew drawn
from a chosen probability distribution, there are two options:

1. cnew P Fk, the species fails,

2. cnew R Fk, the species invades.

In case of failure, we can define the vector at the next iteration: ck
l “ ck

l`1. In the case of
success, the problem is more complex, the next paragraph deals with its description.

Update of the non-admissible zone The second case is more sophisticated (the
species invades). The invasion of a new species into the system can have important
consequences on the conditions of the failure zone and the species present in the system.
Two sub-scenarios are distinguished.

At iteration l, after the invasion, the new colonization rate cnew is added to the vector
of colonization rate of the species present ck

l “ pc1, .., ckq. We seek the index i such that
ci ă cnew ă ci`1 and define a new vector: ck`1

l “ pc1, ..., ci, cnew, ci`1, .., ckq. Recall the set
of admissible conditions

C “

$

’

&

’

%

x P Rn
` : x2i ą

´

śi´1
j“1 x2j`1

¯2

´

śi´1
j“1 x2j

¯2 ; x2i`1 ą

´

śi
j“1 x2j

¯2

´

śi´1
j“1 x2j`1

¯2

,

/

.

/

-

.

Two corresponding cases depending on the impact on the species present in the system
are considered

• if ck`1
l P C, the species invades without causing extinction, update Fk Ñ Fk`1

using the new vector of colonization ck`1
l Ñ ck`1

l`1 .
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• if ck`1
l R C, up to the value cnew, the conditions are fulfilled because the invasion of

a less competitive species does not affect the more competitive species. Then, we
go through the rest of the vector, each time a condition is not met, we delete the
associated species and re-compute the niche shadows. At the end of the process, d
species are extinct, we obtain a new vector ck`1´d

l`1 .

If d ą 0, this is called an extinction cascade.

Algorithm As for the all-at-once metacommunity process, the sequential invasion pro-
cess algorithm is described by the pseudo code given in the Algorithm 2. It is possible
to optimize the algorithm by keeping in memory the right bounds of the intervals of Fk.
This avoids having to recompute the set Fk at each iteration and allows to check that
a species does not invade faster at each iteration i.e. the selection by the tree start at
the index of cnew. Recall that in contrast to the all-at-once metacommunity process, the

Algorithm 2 Sequential invasion process
Require: n ě 0
c Ð list
S Ð m
for l P r1, ns do

randomly choose cnew from a probability distribution;
c Ð rc, cnews;
c Ð Sortedpcq; Ź Ascending sorting algorithm
for j P r1, lenpcqs do Ź Selection by the tree of the remaining species

S Ð m;
if crjs ď S then

delpcrjsq;
else

S Ð crjs2{S;
end if

end for
end for

order of appearance of species is important due to historical contingencies. This effect
can be illustrated by a small example: c1 “ 4, c2 “ 5, c3 “ 20.

• c2 Ñ c3 Ñ c1, only species 1 survives (species 3 does not invade).

• c2 Ñ c1 Ñ c3, species 1 and species 3 survive (species 2 collapses but species 3
invades because 42 “ 16 ă 20).

Analytical insights

At iteration l, assume that k species are present in the system. Given cnew, the colonization
rate of a new species drawn from a chosen probability distribution with density function
f , then the probability that the new species invades is

Ppcnew R Fk
q “ 1 ´

ż

Fk

fpxqdx . (4.12)
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The probability that there is no extinction cascades i.e. ck`1
l P C is difficult to express

due to its strong dependence on the past events. The arrival of the new species depends
on the state of the system just as the species present in the system depend on the past
states of the system. However, insights on the probability of the number of extinction
cascades are addressed in the next paragraph.

Extinction cascades

Extinction cascades [CBB`11, PA13, VAN15, RZVM17] are the key events that disrupt
the system. Unlike the all-at-once metacommunity process, which allows a species to
invade the system at any time, the sequential invasion process does not provide for tran-
sient species. Let xl be the number of species in the system at iteration l, the following
recurrence equation determines the behaviour of the species richness in the ecosystem

xl`1 “

#

xl ` 1 ´ el if cnew R F ,

xl if cnew P F ,
(4.13)

where cnew corresponds to the colonization rate of the invader and ek the number of ex-
tinctions if the new species invades (see Witting et al. [WTL00] for a practical application
of probability to extinction cascades).

If an invader manages to invade by being a very good colonizer then F will not change
significantly. However, if an invader is very competitive with a very low colonization rate,
then the set F will be severely affected.
Remark 4.5. This sequence indicates that the growth of the number of species in the
system is a combination of two phenomena:

• the probability of invasion,

• the magnitude of the extinction cascades.

In the following section, we will see that the speed of dynamics of the richness of the
system seems logarithmic (see Figure 4.3.9a). Either the probability of invasion decreases
with time, or the number of extinction cascades increases.

Theoretical toy model

From a theoretical standpoint, the recursion equation (4.13) can be presented as a toy
model in order to understand the underlying mechanisms of the sequential invasion pro-
cess. Given a starting condition x0 “ 0 at the beginning of the sequential invasion process
i.e. there is initially no species in the system and xl the number of persisting species at
iteration l. We define a recurrence relation depending on random variables

xl`1 “ Xlpxl ` Yl ´ p1 ´ YlqpZl ´ 1qq ` p1 ´ Xlqxl , (4.14)

where Xl „ Bp1, pX
l q are independent random variables, pX

l correspond to the probability
of an invasion at iteration l. The random variables Yl „ Bp1, pY

l q are independent, pY
l

is the probability that there is no extinction after an invasion occurring at iteration l.
The random variables Zl „ LpλZ

l q are independent and L is an unknown distribution and
λZ

l P r1,8q (the “1” comes from the fact that there is a minimum of one extinction). The
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mean of the distribution λZ
l corresponds to the number of extinctions after an invasion at

iteration l.
The ’toy model’ is an approximation of the sequential invasion process. We seek esti-

mates of the three parameters defining the r.v. given in equation (4.14). The estimators
of the parameters for the binomials X, Y are the classical estimators of the mean. For
the parameter of Z, we assume an underlying Poisson model, we compute the classical
estimator of the mean.

In Figure 4.3.6 when cnew „ Upr0, 1sq, the dynamics of the quantities ppX
l , p

X
l , λ

Z
l ´ 1q

is illustrated as a function of interval of invasions i.e. we estimate each parameter in an
interval @ i P N˚, r100pi ´ 1q, 100is Ă r0, ns by averaging the values every 100 time steps.
We notice that the probability of invasion is slightly higher than 0.5. When a species
invades, it has a probability close to 1{3 of avoiding extinction and if it does, on average
1.5 species will be ejected from the landscape. The recurrence formula (4.14) can be

Figure 4.3.6: Representation of the parameters ppX
l , p

X
l , λ

Z
l ´ 1q as a function of interval

of invasions. A interval of invasions i P r1, 20s corresponds to r100pi ´ 1q, 100is. In this
example, the sequential invasion process count n “ 2000 invasions in total and cnew is
sampled from a uniform distribution Upr0, 1sq. Each interval l provides an estimator of
the parameters. The red dotted horizontal lines are indicators plotted respectively at 1{3
and 1{2.

rewritten in a simpler form

xl`1 “ xl ` Xlp1 ´ Zl ` YlZlq ,

“

l
ÿ

k“1
Xkp1 ´ Zk ` YkZkq .

Recall that @k P N˚, Xk, Yk, Zk are independent by construction (Z is the r.v. of the
number of extinctions conditional on there being one after an invasion, Y is the r.v. that
says there are no extinctions conditional on there being an invasion, X is the r.v. that
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says there is an invasion), then

Epxl`1q “

l
ÿ

k“1
EpXkq p1 ´ EpZkq ` EpYkqEpZkqq ,

“

l
ÿ

k“1
pX

k p1 ´ λZ
k ` pY

k λ
Z
k q .

Given, vk “ pX
k p1 ´ λZ

k ` pY
k λ

Z
k q the increment to the expected species richness between

invasion k and k ` 1. From a heuristics standpoint, the habitat is non-saturated if

vk „ Opk´a
q, a ď 1 ñ Epxl`1q ÝÝÝÑ

lÑ8
8 .

A naive computation is to use the values of Figure 4.3.6, we notice the value vk ÝÝÝÑ
kÑ8

0,
but how fast?

In Figure 4.3.7, we compare vk to k´1, we notice that vk seems to decrease slowly. The
value of the slope gives -a where vk „ k´a. From a mathematical point of view, this is a
promising way to understand rigorously the dynamics of xl and to show that the habitat
is not saturated in the sequential invasion process.

Figure 4.3.7: Comparison of the the increment to the expected species richness vk and
k´1 the threshold to get an infinite sum of vk.

To motivate the model (4.14), by estimating the parameters ppX
l , p

X
l , λ

Z
l q as a function

of interval of invasions, we reproduce the (mean) of the growth of the sequential invasion
process for two different distributions in Figure 4.3.8.

4.3.2 Dynamics of the system over time and final composition
As in the all-at-once metacommunity process, we are interested in understanding the
dynamics of the sequential invasion process over time and the properties of the species
that inhabit the system to grasp the trade-off between competition and colonization.
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(a) Upr1, 2sq (b) Pp5q

Figure 4.3.8: Dynamics of the species richness as a function of the number of invasions in
the sequential invasion process. The extinction rate is m “ 1. In both figures, the blue
curve represents the empirical mean of P1 “ 1000 sequential invasion process. The orange
curve represents mean of P2 “ 1000 curve of toy model (4.14) where the parameters
ppX

l , p
X
l , λ

Z
l q are estimated in each interval of invasions of size 100.

Dynamics of the species richness

In the context of the dynamics of the sequential invasion process over invasions, we notice
that regardless of the distribution chosen, the system tends to saturate or at least seems
to be growing very slowly. In Figure 4.3.9a, we represent the dynamics of the species
richness over the iterations (invasion trials) for some benchmark distributions (uniform,
Pareto/Power, Log-Cauchy). At the beginning, we note a very fast growth reminiscent of
the all-at-once metacommunity dynamics, then a consequent slowing down. If we compare
the performances of each distribution, colonization rates sampled by a Log-Cauchy has
higher species richness than Pareto and the uniform distributions. Regular distributions
seem to have a weaker performance than heavy-tail distributions which seem to perform
equally well in the Pareto case. An increase in the maximum value of the support of
regular distributions does not improve the situation such as the uniform Upr1, 11sq, which
has worse species richness than uniform Upr1, 2sq.

The shape of the curves suggest a logarithmic relationship between the species richness
and the number of invasion trials (see Figure 4.3.9b). One could think of habitat size
variation where more habitat tends to contain more species with a form of saturation
caused by extinctions, dispersion, prey-predator interaction, etc.

Distribution of species richness One of the major results in the all-at-once meta-
community process is the convergence of the distribution of the realized species richness
to a binomial distribution. For a given number of invasions, we want to have an idea of
the distribution of the richness of the system. In Figure 4.3.10, we represent a histogram
of the number of species for a large sample of system. A comparison is established with a
Binomial distribution with an estimator of the mean and variance. The species richness
distribution appears to be symmetric, but it is close to the binomial distribution. Many
“peaks” appear in the density shape (see Fig. 4.3.10-b).
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(a) Standard scale (b) Log-log scale

Figure 4.3.9: Representation of the species richness of the assembly as a function of the
invasions for different distributions. The curve is derived using Monte Carlo simulations
by computing P “ 2000 times the algorithm 2 and averaging the number of persistent
species. In panel (a) the plot corresponds to the standard case, whereas panel (b) is the
same plot using log-log scale.

(a) Upr1, 2sq (b) Upr1, 11sq (c) LCp0, 1q

(d) Pp1q (e) Pp2q (f) Pp5q

Figure 4.3.10: Histogram of the species richness for a fixed number of invasions (n “ 2000).
The histogram is derived using Monte Carlo simulations by computing P “ 2000 times
the algorithm 2 which corresponds to the size of the sample for the histogram. In each
plots, the red curve corresponds to a Binomial mass function adjusted to the mean and
variance estimators of the sample.

Impact and dynamics of extinction cascades

In section 4.3.1, the phenomenon of successive extinctions taking place when a certain
type of species invades the system has been carefully defined. It was deduced that these
extinctions are a major cause of the phenomenon of habitat saturation. The purpose of
this section is to quantify numerically the extinction cascades in order to describe precisely
the sequential invasion process.

In Figure 4.3.11, the frequency of occurrence of the cascade is represented for a very
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large number of systems. To take into account the effect of extinction on the state of the
system i.e. the species richness is not similar for every distribution, the size of the cascade
is studied in proportion to the size of the final system. Here, we decide to normalize by
the state of the final system. However, we could normalize by the size of the system at
the time the cascade takes place.

Figure 4.3.11: Distribution of the size of extinction cascades as a function of the size of
the cascade normalized by the final number of species in the system. We realize a Monte
Carlo experiment for a system of size n “ 1000 and perform the sequential invasion
process P “ 1000 times.

On the one hand, by comparing the different distributions, the regular distributions
undergoes much more important cascades in relation to the final size of the system. On
the contrary, the Log-Cauchy distribution seems to be much less affected by the cascade
phenomenon. Finally, if we look at the Pareto distribution, we observe the heavier the
tail, the more extinction cascades occur. For regular distributions, a similar phenomenon
is observed, a larger support implies a larger cascade.

On the other hand, the frequency to have at least one extinction is higher for the
sequential invasion process with heavy-tailed distribution (see Figure 4.3.12)

The invasion of a competitor species is more likely to affect the species present in the
system (a more detailed study is made in section 4.3.3) and cause extinction cascades
because species invasions cannot ever cause extinctions of species with lower colonization
rates. This phenomenon depends mainly on the density of the distribution of colonization
rates, a trade-off between a strong density on the left and a strong tail on the right must
be found.

We are also interested in understanding the distribution of the number of extinctions
following an invasion for a fixed number of invasions. In a rather naive approach, we
compare the distribution of the number of extinctions following an invasion (via sampling
of many systems) in the figure 4.3.13 to a Poisson distribution. The match is not perfect
but gives an idea of the distribution to be explored. The identification works much better
in the case of a Pareto distribution than in the case of a uniform distribution where the
distribution of the number of extinctions is more strongly right-skewed than expected.
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Figure 4.3.12: Probability to have at least one extinction as a function of the invasion
trials. We realize a Monte Carlo experiment for a system of size n “ 1000 and perform
the sequential invasion process P “ 1000 times.

(a) Upr1, 2sq (b) Upr1, 11sq (c) LCp0, 1q ` 1

(d) Pp1q (e) Pp2q (f) Pp5q

Figure 4.3.13: Histogram of the number of extinctions for a fixed number of invasion
n “ 1000 computed for a large number of sequential invasion process P “ 500. The red
point corresponds to the Poisson distribution with a estimated mean.

Another important issue is the dynamics of the amplitude of the cascades. The sat-
uration phenomenon indicates the increase of the regularity of the inputs/outputs of the
species in the system. Figure 4.3.12 confirms this hypothesis with a saturation of the
cascades phenomena with each iteration. The behavior of the Pareto distributions are
similar. Like the general system, and independently of the distribution, the probability to
have at least one extinction seems to stabilize or converge to a state that is self-regulating.
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Impact of the extinction rate

The impact of the extinction rate is similar as what was observed under the “all-at-
once” implementation of the model. Assume cmin “ 1, a representation of the species
richness as a function of the extinction rate is displayed in Figure 4.3.14. Independently
of the distribution of the colonization rate of the new invaders, the threshold remains at
m “ cmin.

The most striking example is the effect of the extinction rate on the Log-Cauchy
distribution, it is a distribution which tends to take values very close to cmin “ 1, the
change of species richness around the extinction rate m “ 1 is important. For the Pareto
distribution, at the extinction rate m “ 1, the dynamics is the same independently of
the parameter that we choose. However, we observe that a lower parameter a increases
coexistence of the species. The left density of the Pareto function is weaker when the
parameter is small and the tail of the distribution is increasingly heavy. Consequently,
a change in extinction near cmin will less affect a heavier-tailed Pareto distribution. To
conclude, the intermediate disturbance hypothesis [Has80] is satisfied in the sequential
invasion process as in the Top down process.

Figure 4.3.14: Representation of species richness as a function of extinction for standard
distributions. The threshold of the extinction rate is at m “ cmin “ 1.

Species occupancies

Complementary information to the number of species in the system is their occupancies
p˚. The distribution of the colonization rate has an effect on species richness, we notice
that it can also have an effect on species occupancies.

A first noteworthy observation (see Figure 4.3.15) is the difference between the uniform
distribution and the ’heavy-tail’ distributions. On the one hand, in Figure 4.3.15(a), the
distribution is heavily positively skewed whereas few species have a large proportion of
habitat. On the other hand, in Figure 4.3.15(b-d), (heavy-tail distributions) some species
occupy a large part of the habitat. However, we do not notice any difference between the
different distributions.
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(a) Upr1, 2sq (b) LCp0, 1q ` 1

(c) Pp1q (d) Pp5q

Figure 4.3.15: Representation of a histogram of the occupancy for a fixed number of
invasions n “ 1000. The histogram is derived using Monte Carlo simulations by computing
P “ 100 times the algorithm 2 and recovering the associated proportion of habitat of each
final system.

In the all-at-one metacommunity process, Kinzig et al. [KLD`99] proved that species
occupancies were related to their colonization rates through a power law.

In the sequential invasion implementation of the model, the problem appears more
complex. To analyze species occupancies, we observe in Figure 4.3.16 the amount of
space taken by a species according to species rank i.e. species are ranked according to their
colonization rate. For the Log-Cauchy distribution, we observe a phenomenon of “hump”
which seems also present in the uniform distribution. This “hump” phenomenon indicates
that species that are good competitors and good colonizers at the same time occupy the
most space. The comparison of the different parameters of the Pareto distribution is also
very interesting: the weaker the parameter (heavier the tail), the weaker the density on
the left. A low density on the left indicates a faster increase in species occupancy with
species colonization rank while conversely, a late increase is due to a higher density on the
left. The remarks on the Pareto example can be transposed to the case of the uniform
distribution.

Remark 4.6. A related problem is the distance of each colonization rate and its below
niche shadows threshold. The density of the spacing could give a more precise idea of this
hump.
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Figure 4.3.16: Plot of the occupancy as a function of the rank of colonization rate at
iteration n “ 1000. We use a Monte Carlo experiment P “ 1000 and average the occu-
pancy values for each rank. For the last ranks, we truncate the graph if we do not have
a sufficient number of values (i.e. ¡10) to obtain an average.

Dynamics of the fraction of empty patches

Previously, we were interested in species occupancies according to their colonization rates.
However, an important question is the amount of space that the whole community will
occupy. In Figure 4.3.17, we represent the dynamics of the fraction of empty patches
during the sequential invasion process. A first observation is that the fraction of empty
patches seems to converge to a given limit for any distribution of colonization rate. Fur-
thermore, the convergence towards the final fraction of empty patches seems fast, in 200
invasions, we have a precise idea of the remaining fraction of empty patches.

Figure 4.3.17: Representation of the fraction of empty patches as a function of the number
of invasions. We use a Monte Carlo experiment P “ 1000 and average the fraction of
empty patches values at each iteration.

In the all-in-once metacommunity process, equation (4.10) describes precisely the frac-
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tion of empty patches hn when n becomes large. From Figure 4.3.18, independently of
the distribution, the estimate seems to be correct in the sequential invasion process. The
estimate obtained analytically under the all-at-once implementation of the model phnq

seems to be correct also when the model is implemented using sequential invasions.

(a) Upr1, 2sq (b) Upr1, 11sq

Figure 4.3.18: Comparison between the empirical and theoretical bound of the fraction
of empty patches (hn) as a function of the size of the initial pool. In Fig. (a) the uniform
distribution Upr1, 2sq is plotted, the theoretical estimation is computed by 1{

?
2. In Fig.

(b) the uniform distribution Upr1, 2sq is plotted, the theoretical estimation is computed
by 1{

?
11.

If we compare the fraction of empty patches to the species richness in the system, the
Pareto distribution of the colonization rate is a good example of less fraction of empty
patches does not necessarily imply richer communities: the increase in the number of
species in the Pareto case a “ 1 and a “ 5 is similar and yet the fraction of empty
patches is very different. The uniform distribution with a larger support has less fraction
of empty patches. Note again that in the sequential invasion process, what matters is the
colonization rate of the largest species present in the system.

Development of the habitat diversity

In addition to species richness, we want to describe the dynamics of the system with other
measures of diversity. We introduce two standard measures of diversity [Whi72, Jos06],
the Shannon index defined by

H 1
“ ´

n
ÿ

i“1

pi

1 ´ hn

log
ˆ

pi

1 ´ hn

˙

, (4.15)

where hn corresponds to the empty space hn “ 1 ´
řn

i“1 pi. For comparison purpose with
species richness, the Hill number of order 1 will be considered eH 1 . The second diversity
index is the inverse Simpson index (:= Hill number of order 2)

1
λ

“
1

řn
i“1

´

pi

1´hn

¯2 . (4.16)

These two measures of diversity are Hill numbers (Shannon’s exponential version and
Simpson’s inverse), their maximum value is equal to the species richness. These are more
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refined measures of diversity than species richness because they take into account the
(evenness) of occupancy between species.

Diversity indices do not respond similarly to changes in the distribution of colonization
rates. An important marker is that the diversity is greater in the case of the uniform
distribution when the right-hand support is larger, whereas in Figure 4.3.9a, the final
species richness of the system is lower when the right-hand edge of the uniform distribution
support grows. The intuition of this phenomenon is the strong impact of the density on the
right. We also observe that Log-Cauchy distribution seems less “out of the box” than for
species richness. The behavior of its diversity index is equivalent to Pareto distribution.
However, if we compare the different Pareto distributions, the result is clear: the heavier
the tail, the higher the diversity.

The uniform distribution appears to have a smaller gap between its species richness
and diversity than the heavy-tailed distributions. The heavier the tail of the distribution,
the more similar the competitors will be and the larger the colonizers will be and stay in
the system.

(a) Hill number of order 1 (b) Inverse Simpson index

Figure 4.3.19: Representation of the diversity index of the assembly as a function of the
invasions for different distributions. The curve is derived using Monte Carlo simulations
by computing P “ 2000 times the algorithm 2 and averaging the number of persistent
species. In Fig. (a), the Hill number of order 1 is plotted using the exponential of H 1

defined in (4.15). In Fig. (b), the Inverse Simpson index is illustrated from equation
(4.16).

Distribution of the final vector of colonization rate

For a fixed number of invasions, we are interested in the distribution of the colonization
rates of the persistent species. This information provides an indication of the impact of
niche shadows on the distribution of c. In Figure 4.3.20, for 500 invasions, the cumula-
tive distribution function (CDF) of the final colonization rates c is represented when the
colonization rates of species attempting to invade is drawn from a uniform distribution
compared to the theoretical CDF of the uniform distribution. We observe that indepen-
dently of the support of the uniform law the curvature of the CDF is the same. Moreover,
we observe three distinct phases. In a first phase, a rapid increase of the CDF is observed,
showing the persistence of many competitive species (with low c). In a second phase, we
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have a slowing down of the curve growth, then in a last phase an increase of the slope of
the CDF which shows an accumulation of good colonizers.

(a) Upr1, 2sq (b) Upr1, 11sq

Figure 4.3.20: Representation of the empirical CDF after the sequential invasion of the
colonization rate of the persistent species after 500 invasion trials. The curve is derived
using Monte Carlo simulations P “ 1000. In both plots, the red dotted line represents
the respective CDF of the initial distribution of the colonization rate.

The example of the Pareto distribution is shown in Appendix 4.D. The CDF is charac-
terized by initially rapid growth and then significantly slow growth. The shape is similar
to a CDF of the standard Pareto distribution.

4.3.3 Properties of the invaders
Previously, we focused on the study of the general dynamics of the system over time:
richness, diversity, extinction cascades, etc. This system depends on invasions of new
species. In this section we are specifically addressing the properties of invading species
over time.

Probability of invading the system

A first natural question is whether it is increasingly difficult to invade the system as it
builds up. Moreover, considering the lth invasion of the system, will it be more difficult
to invade the system at the next iteration (fluctuation of the invasion probability)?

The probability to invade the system at an iteration l is defined in equation (4.12).
This probability changes with time depending on the state of the system F and the
distribution of the colonization rates of the persistent species. The complexity of the
random failure zone F restricts us to a numerical computation of this integral over the
iterations. We represent the numerical results for the different distributions in figure
4.3.21 as well as the auto-correlation of each time series.

In general, unlike the all-at-once metacommunity process, we observe a probability
that seems slightly higher than 0.5. This may be due to a size effect since the richness
of the system is small and asymptotically, we may expect a convergence toward 0.5.
The invasions remain frequent during the dynamics of the system and it is mainly the
extinction cascades which “drive” the dynamics of the general system. We have seen that
the extinction cascades are frequent.
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In Figure 4.3.21, two distinct behaviors appear between heavy-tailed variables (Pareto,
Log-Cauchy) and uniform variables. In the case of heavy-tailed variables, we observe a
convergence of the invasion probability with little noise. Conversely, in the uniform case,
the dynamics of the system does not seem completely clear with a lot of noise, even though
a trend is emerging.

However, a common feature of the sequential invasion processes is the positive corre-
lation between the number of invasion attempts and the invasion probability.

(a) Upr1, 2sq (b) Upr1, 11sq

(c) Pp1q (d) Pp2q

(e) Pp5q (f) LCp0, 1q ` 1

Figure 4.3.21: Dynamics of the probability of a new species to invade the system as a
function of the number of invasions. We distinguish the 6 cases of standard distributions
(a)-(f). The noisy curve corresponds to an average of several sequential invasion processes.
In each graph, the blue curve corresponds to a smoothing filter. In each case, the right
plot is an autocorrelation function of the left plot.

Remark 4.7. See appendix 4.D for an alternative method of computing the probability of
invasion.

Feature of an invader

We are interested in the properties of the invaders. In particular, we would like to know
as the number of invasion trials becomes large and the number of species in the system
increases whether the invaders have particular features. The numerical method used is
for a given system, we compare the mean and variance of the colonization rates c of the
invaders at different time intervals (see Figure 4.3.22).
Remark 4.8. A second numerical method is presented in Appendix 4.D by performing a
moving average on the realized colonization rates and average the time series for different
sequential invasion processes.

With both methods, we observe similar trends. We can classify the results in two
categories: the distributions of initial c values with finite mean and variance and the
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(a) Mean Upr1, 2sq (b) Variance Upr1, 2sq

(c) Mean Pp2q (d) Variance Pp2q

(e) Mean Pp5q (f) Variance Pp5q

Figure 4.3.22: Representation of the mean and variance of the colonization rates of the
invaders at different time interval. We consider an sequential invasion process of size
n “ 50000, which we split into a set of intervals of size 50 r0, 1000s Y r1000, 2000s Y

r2000, 3000s... Y r49000, 50000s. In each interval, the mean and variance of the coloniza-
tion rates of the invaders are computed. The plots (a)-(b) correspond to the uniform
distribution Upr1, 2sq, the plots (c)-(d) correspond to Pareto a “ 2, the plots (e)-(f) cor-
respond to Pareto a “ 5.

distributions with infinite variance i.e. Pareto with parameter a ď 2 or the Log-Cauchy
distribution.

In the case of finite-variance distributions (see Figure 4.3.22-a,c), the properties of the
invaders remain constant with little noise over the iterations. The mean and variance of
the colonization rates of the invaders remain constant over time, the profile of the invaders
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does not change over the iterations.
In the case of a distribution with infinite variance (see Figure 4.3.22-b), the mean

and the variance the colonization rates of the invaders fluctuate over time with “peaks”
which correspond to the cases where species with very large colonization rate invade
the system. We observe that the fluctuation remains very strong despite the peaks. This
fluctuation will be even stronger in cases where the mean also tends to infinity (for example
Log-Cauchy). However, there is no “trend” in the sense that the peaks seem to appear
randomly and the variations behave like noise.

To conclude, regardless of the distribution of the initial colonization rates, the profile
of the invaders seems to remain constant over the iterations. However, during an invasion,
the system tends to change, the type of invader can play an important role. We quantify
its impact in the next section.

Impact of an invader

When a species invades the system, we have seen in section 4.3.2 it can involve extinction
cascades. These extinctions will depend on the general colonization parameter distribution
but also on the colonization parameter of the invader. In Figure 4.3.23 the mean value of
the colonization rate of the invader is displayed for each extinction cascade effect.

Regardless of the distribution, we notice simply that the lower the colonization rate,
the greater the chance of implying a extinction cascade effect. From an ecological point
of view, the idea is that if the colonization rate is low, the species is very competitive and
will displace the species already present in the system. We notice that the difference in
scale is due to the distribution of the colonization rate, the bending of the curve will be
greater than the right tail of the probability density is light (difference between U1 and
U10 and P1, P2, P5).

(a) Upr1, 2sq (b) Upr1, 11sq (c) LCp0, 1q ` 1

(d) Pp1q (e) Pp2q (f) Pp5q

Figure 4.3.23: Mean of the colonization rates of the invaders as a function of the number
of extinctions cascades it creates. This experiment is done only once in a large sequential
invasion process n “ 200000.
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4.3.4 Properties of resistant species

The main focus has been on describing the properties of the invaders. When a species
invasion occurs, a possible scenario is the extinction cascade: one or more species become
extinct as a result of the invasion. In this type of iterative process, what is the ability
of a species to resist to invasions? In this part, we quantify empirically, which species
(in terms of colonization value) are more likely to “resist” these invasions. We know that
competitors are more resilient, we expect high c values to come and go faster than low
values. However, we suspect that it is difficult to stack up a lot of small values of c, so
we would finally like to quantify the distribution of the c’s that resist as a function of
time, in order to answer the question: is there a growing fraction of the colonization rate
support that resists invasions?

Properties of the colonization rate of the persistent species

General metrics for studying the dynamics of persisting species is the average (see Figure
4.3.24) and median (see Figure 4.3.25-b) of the colonization rates of persisting species as
a function of invasion trials.

We distinguish three different behaviors: when the distribution of colonization rates of
the species attempting to invade admits a finite variance, the mean converges to 1. This
indicates that the proportion of highly competitive species tends to grow in the system
and that colonizing species do not seem to stay in the system “on average”. When the
mean and variance of the distribution is infinite (Pareto 1, Log-Cauchy), we have jumps
in the mean of the survivors. This suggests that a highly colonizing species enters the
system and is not displaced by more competitive species for a significant amount of time.
The last case is infinite variance but finite mean distribution (Pareto 2), the trend seems
to be increasing even if the curve is noisy.

(a) Upr1, 2sq (b) Upr1, 11sq (c) LCp0, 1q

(d) Pp1q (e) Pp2q (f) Pp5q

Figure 4.3.24: Mean of the colonization rate of the persisting species as a function of the
number of invasions trials. The curve is derived using Monte Carlo simulations P “ 1000
of many sequential invasion process.
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In a second step, we look at the curve of colonization rates as a function of rank for a
different number of invasions trials (see Figure 4.3.25). For each of these curves, we look
at a box plot to see the distribution of colonization rates.

We distinguish again two cases: the case of the regular distribution (uniform 1) and
the case of a heavy-tailed distribution with a finite mean and variance (Pareto 3). In the
case of the uniform distribution, we again observe a decrease in the colonization rates of
the persistent species as the number of invasions trials increase, the mass of colonization
rates approaches 1. However, we do not observe a reduction of the values of colonization
present in the system. We observe a similar behavior for the heavy-tailed distribution
with a decrease of the median without much change for the colonizing values (we remain
in a case where the variance and the mean are finite).

(a) Uniform Upr1, 2sq

(b) Pareto Pp3q

Figure 4.3.25: The left plots are representations of the colonization rates as a function of
colonization rank for a different number of invasions. For each of these curves, on the right
plots, we compute a box plot which gives additional information on the distribution of
colonization rates. A Monte Carlo experiment is realized for P “ 1000 sequential invasion
processes to obtain the functions on the left plots.

Lifetime of a species in the system

It was observed that under some distributions, competitive species seem to become a
majority in the system while in other cases a pool of colonizing species tends to remain
in the system. Another way to illustrate this phenomenon is to study the average time a
species survives in the system.
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In Figure 4.3.26, we represent the mean colonization rate cage of species persisting
till age. In the case of regular distributions, we observe that long-lived species have a
low average c while short-lived species have a higher average c. In the case of heavy-
tailed distributions, colonizers seem to persist longer in the system. Numerically, the
large values taken by the heavy-tailed distributions can cause some issues in the graphical
representations, there is not really a relation between lifetime and colonization rates for
heavy-tailed distribution.

(a) Upr1, 2sq (b) Upr1, 11sq (c) LCp0, 1q

(d) Pp1q (e) Pp2q (f) Pp5q

Figure 4.3.26: Representation of the mean value of colonization rate as a function of its
lifetime in the system for n “ 1000 invasions.

Discussion
Analyzed by Tilman [Til94], the HT model (competition-colonisation trade-off with hier-
archical competition) represents a first step in our understanding of species-rich metacom-
munities. In this paper, we bring a new perspective to the HT model (4.2) by studying
the behavior of the model when colonization rates are randomly distributed and a large
number of species is considered. The question is whether species can coexist to form a
metacommunity with many species under the strict conditions of this model. To carry
out this investigation, we identified two different types of sequential invasion processes:

1. a all-at-once metacommunity process starting from a initial pool of species in the
landscape or from an equivalent point of view starting from an empty system with
an invasion sequence where it is assumed that all species can invade at any time,

2. a sequential invasion process developing an invasion sequence that involves a histor-
ical contingency effect.

First, from a mathematical standpoint, we are interested in the behavior of the system
of n equations (4.2). As already mentioned by Calcagno et al. [CMJD06a], there is an
equivalence between the C-C trade-off model and the Lotka-Volterra model (4.4). From
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a new perspective, using the Theorem of Takeuchi et al. [TAT78], we show that there
is a unique globally stable equilibrium of system (4.2). This important aspect makes
it possible to overlook transient dynamics in the study of model (4.2) for both types
of implementations. We recall the conditions of coexistence depending on the coloniza-
tion rates in the form of a set of admissible conditions (4.3). The number of persistent
species at equilibrium p˚ is computed simply using this set. Like Hastings [Has80], we
restrict our analysis to a fixed extinction rate equal for all the species, which simplifies
the computations.

All-at-once metacommunity
Intuitively, in light of the quadratic conditions of the set of admissible solutions (4.3), one
could assume that the coexistence of many species is complicated. However, we show that
when n is large enough, then the number of persistent species is distributed according
to a binomial distribution (Figure 4.2.2), and that half of the species coexist (Figure
4.2.1). Furthermore, we show that coexistence does not depend on the distribution of
colonization rates in the all-at-once metacommunity. In particular, we can consider very
different colonization distributions: uniform, Exponential, Pareto, Log-Cauchy, etc.

In a second part, we study the properties of persistent species by recalling some results
of Kinzig et al. [KLD`99]. The dynamics of the fraction of empty patches depends
only on the colonization rate of the best colonizer in the system. A distribution with
bounded support may let a greater fraction of empty patches, whereas if the support
of the distribution is large, the empty space will be filled. In addition, the distribution
of the occupancies of each species as a function of its colonization rates follow a power
law p9c´3{2 when c is drawn from any uniform distribution. However, for heavier-tailed
distributions, the best colonizers will also be able to occupy a large fraction of the available
patches. As a final point, we clarify the intermediate disturbance hypothesis that had
been observed by Hastings [Has80] where optimal coexistence between species occurs when
m “ cmin i.e. the left bound of the support of the different distributions (Figure 4.2.7).

Sequential invasion process and extinction cascades
Compared to the all-at-once approach, the sequential invasion process is much more re-
strictive i.e. diversity accumulates much more slowly when species cannot re-invade with-
out a concomitant invader to help the new species. The number of persisting species
saturate with a logarithmic growth due to historical contingencies and extinction cas-
cades (Figure 4.3.9). In contrast to the all-at-once metacommunity process, there is no
universality result under this implementation, every result depends on the distribution
chosen to draw the colonization rates of species attempting to invade. The dynamics of
the species richness depends on the distribution of the colonization rate of the new in-
vaders. Regular distributions of colonization rates such as the uniform distribution have
a worse coexistence probability than heavier-tailed distributions. The phenomenon of
extinction cascades is a key element of the saturation phenomenon (Figure 4.3.11). Its
study allows us to understand the difference in performance between the distributions.
With each iteration, the phenomenon of extinction cascades also seems to stabilize. We
reach a system where the inputs/outputs seem to compensate one another independently
of the distribution. The impact of the extinction rate is not the most important element,
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however the intermediate disturbance hypothesis still drives the impact of the extinction
rate (Figure 4.3.14). Species occupancies are affected by the the distribution of the col-
onization rates. On the one hand, a major difference is observed between regular and
heavy-tailed distributions. On the other hand, when we study the occupancy of species
by their colonization rank, we observe that the greater the density of the distribution on
the left, i.e. there are more competitive species trying to invade the system, the lower the
proportion of competitive species. In the extreme case of the Log-Cauchy distribution,
we observe that there is a balance of species importance with small and large colonization
rates to occupy a larger part of the patches. An additional point on the distribution of
landscape is the fraction of empty patches, the conclusion is unambiguous: the heavier
the tail the smaller the fraction of empty patches (Figure 4.3.17). The fraction of empty
patches is similar to the all-at-once metacommunity process (Figure 4.3.18). In addition
to the study of species richness, two diversity indices (Hill number of order 1, Inverse
Simpson index :“ Hill number of order 2) are studied. The behavior of diversity is the
same as species richness. On the one hand, the diversity of species that persist when
colonization rates are drawn into the uniform distribution is high; on the other hand the
diversity of species that persist when colonization rates are pulled into the Log-Cauchy
distribution is significantly lower. In general, the heavier the tail, the greater the diversity
(Figure 4.3.19).

Independently of the distribution, we can make several general observations, first
of all the probability of invasion decreases with time to converge to a value close to 1

2
(Figure 4.3.21). The properties (mean, variance) of the colonization rates of the invaders
is constant over the iterations and depends intrinsically on the initial distribution (Figure
4.3.22). Ultimately, the extinction cascade is greater when the invader has a colonization
rate that is low and therefore the more competitive a species, the stronger its impact on the
extinction of other species (Figure 4.3.23). However, there are some notable differences
between regular (uniform) and heavy-tailed (Pareto, Log-Cauchy) distributions. First,
the probability of invasion is much less noisy in the case of heavy-tailed distributions.
This can be explained by the lower number of extinction cascades and thus the system
changes less over time. Secondly, the distribution of invaders seems to remain constant
when colonization rates are drawn following a regular distribution while in the other case,
the properties of the invaders fluctuate a lot over time even if the trend remains constant.
The reason is the very small and very large values that the colonization rates can reach
and this has an effect on the mean colonization rate which implies extinction cascades.

In the case of regular distributions of colonization rates, the species that appear to
remain in the system are the most competitive (Figure 4.3.24). There is a system that
becomes more and more competitive and few colonizing species manage to stay in the
system (Figure 4.3.25). This could explain the small increase of species in the system.
Finally the community of persistent species keeps a smaller and smaller fraction of the
species that try to invade the system. Conversely, heavy-tailed distributions behave dif-
ferently, with colonizing species managing to maintain themselves even if the competing
species remain key species in the system (Figure 4.3.26).

To conclude, a partial answer is that the species that will tend to stay in the system the
longest are the competitive species because they are less subject to extinction cascades.
On the one hand, if there are many competitive species in the system, the competitive
species will have more difficulty to invade the system. On the other hand, the colonizing
species will succeed in invading the system without changing (much) its structure (which
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is facilitated by a heavy-tailed density function). However, when a competitive species
succeeds in invading the system, it will tend to push out some of the best colonizing
species. Finally, we find that a good balance between competition and colonization pro-
mote coexistence i.e. if too many species are competitive, then no one can invade the
system and conversely too many colonizers gives a more volatile system.

Perspectives
While keeping a probabilistic structure of the c colonization rates, a first natural per-
spective would be to introduce more complexity to model 4.2, such as new parameters, to
understand their impact on the all-at-once metacommunity and the convergence to the
binomial distribution or the sequential invasion process. In this paper, a fixed extinction
rate has been assumed for all species mi “ m, @i P rns. However, one could consider a
different extinction rate as in Tilman’s historical paper [Til94] and observe its effect. The
impact of an multimodal disturbance factor as in Liao et al. [LBB22] could give different
results. One could also study the impact of habitat loss as in the paper by Nee and May
[NM92], Tilman [TMLN94] or more recently Li et al. [LBL20]. In this paper, explicit
spatial structure linking patches is not considered, we assume a global dispersal ability.
In nature, habitats are structured [HO00, OH01] i.e. paths from one patch to another
can be indirect, adding spatial structure would undoubtedly affect our quantitative re-
sults [GB12, WBvN`21], as in Zhang et al. [ZBN`21] where they showed that network
heterogeneity (i.e. variation in the number of links between patches) promotes species
coexistence in hierarchical competitive communities.

The major extension would be to monitor the effects of a more general version of the
hierarchical competition-colonization trade-off model (4.2). Indeed, this model has been
criticized for being based on unrealistic assumptions. In particular, this model assumes
that worse colonizers always out-compete better ones, regardless of how similar their
colonization rates i.e. perfectly asymmetric competition. Calcagno et al. [CMJD06a]
studied the competition-colonization trade-off model 4.1 relaxing the hierarchical com-
petition assumption assuming that there is preemption (:“ a species present in a patch
has an ability to resist invasion of a new species). They found that the effects of these
changes were more nuanced, but did not fundamentally alter the ability of the trade-off to
maintain coexistence. Calcagno et al. showed that relaxing this assumption can actually
favor coexistence. This is especially likely when competition is not perfectly asymmetric,
suggesting that these assumptions might “cancel out” to some extent.

Although in the study of the sequential invasion process, we consider only the col-
onization rate of the invader sampled from the same distribution. We could consider
that the distribution of colonization rates change due to environmental conditions. If
the distribution of invaders change, habitat and persistent species in the system will be
subject to new constraints. We could measure the “resistance” of the different distribu-
tions against others and therefore give arguments to an optimal distributions. We could
choose a metric between the two distributions and see how it changes over time: speed
of growth, extinction cascades increase and arguments of the kind (competitor/colonizer)
has a better resistance in the system.

Similarity with the Lotka-Volterra model has been already suggested by Calcagno et
al. [CMJD06a]. Surprisingly, the behavior of a standard Lotka-Volterra random system is
the same. Servan et al. [SCG`18] showed that when interaction coefficients are sampled
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independently from a symmetric distribution with mean zero, the number of coexisting
species from a pool of size n is also distributed as Bpn, 1

2q. They considered a scenario
where all species are statistically equivalent and interactions are essentially unstructured,
while we consider communities with strongly hierarchical interactions. The fact that the
final distribution of the persistent species are identical in these highly dissimilar cases
suggests the possibility that this behavior is a more general result of ecological dynamics
where species possess some symmetry by emerging from ecological mechanisms.

Stability in model (4.1) is still an open-question. In the LV form (4.4), the interaction
matrix is similar to an anti-symmetric predator-prey matrix [YA73, RW84]. From a
theoretical standpoint, the diversity-stability debate has not found a clear mechanism
to propose an alternative to May’s results [May72]. Spatial dynamics and the study of
patch dynamics could be a possible alternative for the stability of ecosystem dynamics
and provide an answer to the stability paradox.

Last but not least, a rigorous proof in the case of the all-at-once metacommunity
process could help to improve our understanding of the universality mechanisms associated
with the model. However, the task is not simple due to the inerrant nonlinear conditions
associated with the set of conditions of an admissible solution (4.3).
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Appendix

Numerical methods
Simulations were performed in Python.

4.A Theoretical background

4.A.1 Reminder of Tilman’s article
The following equations are reminders of the ones obtained by Tilman (1994). At equi-
librium, the species i will occupy p˚

i proportion of habitat

p˚
i “ 1 ´

mi

ci

´

i´1
ÿ

j“1

„

p˚
j p1 `

cj

ci

q

ȷ

.

Remark 4.9. Denote by hi the proportion of empty space left when i species are present
in the model.

• If the extinction rate of every species is equal to mi “ 0, @i P rns, regardless of the
colonization rate of the other species, it is always the most competitive one that
will remain in the end and colonize the whole space i.e p1ptq ÝÝÝÝÑ

tÑ`8
1.

• If we develop the above equality, we obtain an upper bound for each species: @i P

rns, p˚
i ď hi´1 ´ mi

ci
. Even if a species is very colonizing, it will never be able

to colonize more than the space it has been given. This condition illustrates the
regulation of competition.

Apart from the number of species and whether the extinction rate is superior than
one, at equilibrium there is always empty space. It may be briefly recalled in Levins
one-species model, the fraction of empty patches corresponds to 1 ´ m

c
. The fraction of

empty patches when i species are present is given by

hi “ 1 ´

i
ÿ

j“1
p˚

j “
mihi´1 `

ři´1
j“1 p

˚
jmj

cihi´1
.

The fraction of empty patches is necessarily greater than mi

ci
and therefore the landscape

is necessary occupied by 1 ´ m
cn

(see section 4.2.3 for precise estimation of the fraction of
the empty patches).
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Selection of the parameter Throughout the paper, the extinction rate of all species
is equal to mi “ m, @i P rns. The relevance of the paper relates to the choice of
the parameter c. The possibility of a species to invade the system depends only on its
colonization rate and the state of the system. At equilibrium, a species will be able to
invade the system and persist if and only if

cn ą
m

h2
n´1

, (4.17)

where cn corresponds to the colonization rate of the invading species and hn´1 to the
fraction of empty patches of the system.

Condition (4.17) is very strong and assumes that each species wanting to invade the
system is always less competitive and always more invasive. The condition will be re-
worded based on the colonization rates of other species. These strong constraints will
allow the creation of the all-at-once metacommunity model.

4.A.2 Condition on the colonization rate and occupancy
In this part, we find Tilman’s conditions by another approach. Assume the ci are arranged
in increasing order and the dynamics of the species is

dpi

dt
“ pi

«

ci ´ m ´ ci

i
ÿ

j“1
pj ´

i´1
ÿ

j“1
cjpj

ff

.

The equation that gives the non-trivial equilibrium (pi ą 0) can be written as follows

1 ´
m

ci

´

i
ÿ

j“1
pj ´

i´1
ÿ

j“1

cjpj

ci

“ 0 . (4.18)

One way to solve this equation in the case where pi ą 0, @i P rns is to introduce the
fraction of empty patches hi defined by

hi “ 1 ´

i
ÿ

j“1
pj . (4.19)

Equation (4.18) can then be rewritten as

´m ` cihi´1 ´ cipi ´

i´1
ÿ

j“1
cjpj “ 0 . (4.20)

For the iteration i ´ 1, we can replace ci´1hi´2 ´ ci´1pi´1 by ci´1hi´1, which gives

´m ` ci´1hi´1 ´

i´2
ÿ

j“1
cjpj “ 0. (4.21)

We then remove (4.20) from (4.21) to obtain a recurrence equation linking p and h

pi “

ˆ

1 ´
ci´1

ci

˙

hi´1 ´
ci´1

ci

pi´1 , (4.22)
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then we can complete using equation (4.19) rewritten

hi “ hi´1 ´ pi “
ci´1

ci

phi´1 ` pi´1q . (4.23)

The equations (4.22) and (4.23) can be written as vector equations using the following
notations

Xi “

ˆ

pi

hi

˙

, A “

ˆ

´1 ´1
1 1

˙

, B “

ˆ

0 1
0 0

˙

,

(4.22) and (4.23) are then expressed as

Xi “

ˆ

ci´1

ci

A ` B

˙

Xi´1. (4.24)

A2 “ 0, B2 “ 0, AB “

ˆ

0 1
0 1

˙

BA “

ˆ

1 1
0 0

˙

ABA “ A BAB “ B

Suppose we have
X2i`1 “ pαiA ` βiBqX0, (4.25)

with p0 “ 0 and h0 “ 1. Applying twice in a row the recurrence (4.24) and the simple
computations, we obtain

X2i`3 “

ˆ

c2i`2

c2i`3
A ` B

˙

X2i`2 “

ˆ

c2i`2

c2i`3
AB `

c2i`1

c2i`2
BA

˙

X2i`1 . (4.26)

By injecting proposition (4.25) into equation (4.26), we find that

X2i`3 “

ˆ

c2i`2

c2i`3
AB `

c2i`1

c2i`2
BA

˙

pαiA ` βiBqX0 “

ˆ

c2i`2

c2i`3
αiA `

c2i`1

c2i`2
βiB

˙

X0 . (4.27)

That is, the following recurrence relations:

αi`1 “
c2i`2

c2i`3
αi (4.28)

βi`1 “
c2i`1

c2i`2
βi (4.29)

(4.30)

Given α0 “ m{c1, c0 “ m and β0 “ 1, we derive the general expressions of the coefficients
for i ą 0

αi “

i
ś

j“0
c2j

i
ś

j“0
c2j`1

,

βi “

i´1
ś

j“0
c2j`1

i
ś

j“1
c2j

.
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In the same way, if we suppose

X2i “ pγiA ` δiBqX1, p1 “ 1 ´ m{c1, h1 “ m{c1 .

The same method of calculation shows

X2i`2 “

ˆ

c2i`1

c2i`2
A ` B

˙

X2i`1,

“

ˆ

c2i`1

c2i`2
AB `

c2i

c2i`1
BA

˙

X2i,

“

ˆ

c2i`1

c2i`2
γiA `

c2i

c2i`1
δiB

˙

X1.

This leads to the fact that

γi “

i´1
ś

j“0
c2j`1

i
ś

j“1
c2j

, (4.31)

δi “

i´1
ś

j“1
c2j

i´1
ś

j“1
c2j`1

. (4.32)

(4.33)

It has therefore been shown, with equations (4.28)-(4.29) and (4.31)-(4.32), that the
recurrence (4.24) can be decomposed and solved between even and odd indices as follows

X2i`1 “

¨

˚

˚

˝

i
ś

j“0
c2j

i
ś

j“0
c2j`1

A `

i´1
ś

j“0
c2j`1

i
ś

j“1
c2j

B

˛

‹

‹

‚

.

ˆ

0
1

˙

, (4.34)

X2i “

¨

˚

˚

˝

i´1
ś

j“0
c2j`1

i
ś

j“1
c2j

A `

i´1
ś

j“1
c2j

i´1
ś

j“1
c2j`1

B

˛

‹

‹

‚

.

ˆ

1 ´ m
c1

m
c1

˙

. (4.35)

In terms of pi, this yields

p2i`1 “

i´1
ś

j“0
c2j`1

i
ś

j“1
c2j

´

i
ś

j“0
c2j

i
ś

j“0
c2j`1

, (4.36)

p2i “
m

c1

i´1
ś

j“1
c2j

i´1
ś

j“1
c2j`1

´

i´1
ś

j“0
c2j`1

i
ś

j“1
c2j

“

i´1
ś

j“0
c2j

i´1
ś

j“0
c2j`1

´

i´1
ś

j“0
c2j`1

i
ś

j“1
c2j

. (4.37)
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It may also be noted that the equations (4.34) and (4.35) provide expressions for hi

(the unoccupied habitat by species 1 to i) at equilibrium. As long as all species persist:

h2i`1 “

i
ś

j“0
c2j

i
ś

j“0
c2j`1

, (4.38)

h2i “

i´1
ś

j“0
c2j`1

i
ś

j“1
c2j

. (4.39)

By manipulating these two equations, we see that: hi “

´

ci´1
ci

¯

hi´2, which gives a
decrease rate of hi for every two species added.

For species i to persist in the system, its equilibrium given by (4.36) or (4.37) must
be positive. This implies that the conditions for species persistence can be given as

p2i`1 persist ô c2i`1 ą m

˜

i
ź

j“1
c2j

¸2

{

˜

i´1
ź

j“0
c2j`1

¸2

, (4.40)

p2i persist ô c2i ą

˜

i´1
ź

j“0
c2j`1

¸2

{

»

–m

˜

i´1
ź

j“1
c2j

¸2
fi

fl . (4.41)

We can reorder the inequalities (4.40)-(4.41), so that the conditions of coexistence can
be written as (c0 “ m)

1 ă
c1

c0
ă
c2

c1
ă
c1

c0

c3

c2
ă
c2

c1

c4

c2
ă
c1

c0

c3

c2

c5

c4
ă ...

stopping inequalities with on the right a fraction where the largest index of the numerator
is equal to the index of the last persistent species.

4.B Reminders of probability

4.B.1 Definition of standard distribution
For reproductibility purposes, we recall some standard positive probability distribution.
Each distribution is defined by a random variables X following the probability distribution
function (PDF) f and the cumulative distribution function (CDF) F . We denote by

1ra,bspxq “

#

1 if x P ra, bs,

0 else,

the characteristic function.
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Definition 4.3 (Continuous uniform). The continuous uniform distribution Upra, bsq
describes an experiment where there is an arbitrary outcome that lies between certain
bounds: pa, bq P R2

`,

fpx; a, bq “
1

b ´ a
1ra,bspxq , F px; a, bq “

x ´ a

b ´ a
1ra,bspxq ` 1rb,`8qpxq.

Given X a random variable following the distribution Upra, bsq

EpXq “
a ` b

2 , VarpXq “
pb ´ aq2

12

Definition 4.4 (Pareto). The Pareto distribution Ppaq is a power distribution distribu-
tion with shape a, support r1,`8q,

fpx; aq “
a

xa`1 1r1,`8qpxq , F px; aq “

ˆ

1 ´
1
xa

˙

1r1,`8qpxq.

Given X a random variable following the distribution Ppaq:

EpXq “

#

a
a´1 if a ą 1,
`8 otherwise

, VarpXq “

#

a
pa´1q2pa´2q

if a ą 2,
`8 otherwise.

The Pareto PDF fpar can be expressed as a function of the exponential PDF fexp:

fparpx; aq “ fexpplogpxq; aq

Definition 4.5 (Log-normal). The log-normal distribution Lognormalpµ, σ2q, µ P R and
σ ą 0, is a probability distribution of a random variable whose logarithm is distributed
in accordance with a Normal distribution.

fpx, µ, σq “
1

xσ
?

2π
exp

ˆ

´
plogpxq ´ µq2

2σ2

˙

1p0,`8qpxq,

F px, µ, σq “ Φ
ˆ

logpxq ´ µ

σ

˙

1p0,`8qpxq,

where Φ corresponds to the CDF of the normal distribution N p0, 1q.
Given X a random variable following the distribution Lognormalpµ, σ2q:

EpXq “ eµ`σ2{2 , VarpXq “ peσ2
´ 1qe2µ`σ2

Definition 4.6 (Log-Cauchy). The log-Cauchy distribution LogCauchy(µ, σ),µ P R and
σ ą 0, is a probability distribution of a random variable whose logarithm is distributed
in accordance with a Cauchy distribution.

fpx;µ, σq “
1
xπ

„

σ

plogpxq ´ µq2 ` σ2

ȷ

1p0,`8qpxq,

F px, µ, σq “
1
2 `

1
π

arctan
ˆ

logpxq ´ µ

σ

˙

.

Mean and variance are infinite.
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Definition 4.7 (Exponential). The exponential distribution Epλq, λ ą 0 is a continuous
analogue of the geometric distribution.

fpx, λq “ λe´λx1r0,`8qpxq , F px, λq “ 1 ´ e´λx1r0,`8qpxq.

Given X a random variable following the distribution Epλq:

EpXq “
1
λ
, VarpXq “

1
λ2

4.B.2 Reminder on order statistics
Given a sample of iid random variables X “ pX1, ¨ ¨ ¨ , Xnq distributed by the density
function f and F stand for the cumulative distribution function. We denote the order
statistics: Xp1q, ¨ ¨ ¨ , Xpnq by sorting the realization of X by increasing order. In particular,
on the one hand Xp1q correspond to the smallest value and the minimum of X and on the
other hand Xpnq “ maxpX1, ...., Xnq.

• One can defined each order statistics by its probability density function

fXpkq
pxq “

n!
pk ´ 1q!pn ´ kq!fpxqF pxq

k´1
p1 ´ F pxqq

n´k .

• The joint density function of the order statistics is

fpxp1q, ...., xpnqq “ n!
˜

n
ź

i“1
fpxpiqq

¸

1xp1qă....ăxpnq
.

• The joint density function of Xpkq and Xplq, 1 ď k ă l ď n is

fXpkq,Xplq
px, yq “

n!
pk ´ 1q!pl ´ 1 ´ kq!pn ´ lq!fpxqfpyqˆ

rF pxqs
k´1

rF pyq ´ F pxqs
l´1´k

r1 ´ F pyqs
n´l .

• The joint density function of Xpkq, Xplq and Xpmq, 1 ď k ă l ă m ď n is

fXpkq,Xplq,Xpmq
px, y, zq “

n!
pk ´ 1q!pl ´ 1 ´ kq!pm ´ l ´ 1q!pn ´ mq!fpxqfpyqfpzqˆ

rF pxqs
k´1

rF pyq ´ F pxqs
l´1´k

rF pzq ´ F pyqs
m´1´l

r1 ´ F pzqs
n´m .

• In the case of a large sample of n order statistics, if F is continuous non zero, an
application of the multivariate central limit theorem and the delta method yields

Xptnpuq „ N
ˆ

F´1
ppq,

pp1 ´ pq

nrfpF´1ppqqs2

˙

.

where p P p0, 1q and t. . . u denote the integer part.

For more information on order statistics, I suggest the reader to look at Arnold et al.
[ABN08].
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4.B.3 Properties of the maximum
To be able to compare the distributions in the different sequential invasion processes, we
obtain information on Xpnq “ maxpX1, ¨ ¨ ¨ , Xnq. In particular, we get information about
the mean of this random variable. One can explicit the mean of a positive random variable
in terms of the survival function

EpXpnqq “

ż `8

0
PpXpnq ą xqdx .

Continuous uniform Since the uniform distribution has a finite support, given X “

pX1, ¨ ¨ ¨ , Xnq „ Upra, bsq:
EpXpnqq ÝÝÝÝÑ

nÑ`8
b .

Exponential Given X “ pX1, ¨ ¨ ¨ , Xnq „ Epλq, the right edge of the support is infinite,
we have

EpXpnqq “

ż `8

0
1 ´ p1 ´ e´λx

q
ndx ,

“

ż `8

0
1 ´

n
ÿ

k“0

ˆ

n

k

˙

p´1q
ke´λkxdx ,

“

ż `8

0

n
ÿ

k“1

ˆ

n

k

˙

p´1q
k´1e´λkxdx ,

“

n
ÿ

k“1
p´1q

k´1
ˆ

n

k

˙
ż `8

0
e´λkxdx ,

“

n
ÿ

k“1
p´1q

k´1
ˆ

n

k

˙

1
λk

.

Pareto Given X “ pX1, ¨ ¨ ¨ , Xnq „ Ppaq, the right edge of the support is infinite and
a ą 2 to have a finite variance:

EpXpnqq “

ż `8

0
1 ´

ˆˆ

1 ´
1
xa

˙

1r1,`8qpxq

˙n

dx ,

“ 1 `

ż `8

1
1 ´

ˆ

1 ´
1
xa

˙n

dx ,

“ 1 `

ż `8

1
1 ´

n
ÿ

k“0
p´1q

k 1
xak

ˆ

n

k

˙

dx ,

“ 1 `

n
ÿ

k“1
p´1q

k´1
ˆ

n

k

˙
ż `8

1

1
xak

dx ,

“ 1 `

n
ÿ

k“1
p´1q

k´1
ˆ

n

k

˙„

´
1

pak ´ 1qxak´1

ȷ`8

1
,

“ 1 `

n
ÿ

k“1
p´1q

k´1
ˆ

n

k

˙

1
pak ´ 1q

.
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Log-Cauchy Since the mean and variance of the Log-Cauchy are infinite, we deduce
the mean of the maximum is as well infinite.

An empirical point of view For a fixed n, it is always possible to compute empirically
the value of the maximum provided that the mean does not tend to infinity. A Monte Carlo
(MC) method can be used, the maximum of a random vector of the desired distribution
is computed a large number of times and its empirical mean is computed. Assuming
that the mean of the maximum is increasing with respect to n (which is not completely
absurd).

If a desired maximum value is given, it is possible by a fixed point method to find the
parameters of the distribution giving this maximum. This way of proceeding can be a
bit shaky because our function only returns an “approximation” of the maximum of the
distribution. However, if the MC process is repeated a large number of times, a reasonable
approximation can be obtained.

4.B.4 Reminder on heavy-tailed distribution
A heavy-tailed distribution is a probability distribution whose tail is not exponentially
bounded i.e. given X a random variables and F its CDF the moment generating function
of X, MXptq, is infinite for all t ą 0 which mean

ż

etxdF pxq “ 8, @t ą 0 .

In others words, given Gpxq “ PpX ą xq the survival function of X, the distribution is
heavy-tailed if

lim
xÑ8

etxGpxq “ 8, @ t ą 0 .

In this paper, common heavy-tailed distribution are Pareto distribution and Log-Cauchy
distribution is considered as “super heavy-tailed” distribution because it exhibits a loga-
rithmic decay which is heavier than the Pareto distribution.

The reference we are working with is Foss et al. [FKZ13].

4.C An optimal density function
Is it possible to find a continuous density function f which optimize the probability of
coexistence of n species in the process (beyond a universality result)? This section is an
open ended part to understand the intuitive idea of a heavy tailed distribution. In the
sequel, the extinction rate is m “ 1.

The 2-species case
Let begin with a system of two species with colonization rates c1 and c2, two random
variables with density function f . We would like to maximize

P “ max
fPD

2
ż `8

1

ż `8

x2
fpxqfpyq1xăydydx ,

where D is the class of density function.

235



Chapter 4. A probabilistic perspective of the hierarchical competition-colonization trade-off model

This kind of problem seems mathematically intractable even less when the dimension
will increase. To circumvent this problem, we can express the density function as a sum
of Dirac

fpxq “
1
n

n
ÿ

i“1
δai

pxq .

The idea behind this is have some insights about the distribution of the mass. The vector
of the mass is given by a “ pa1, ¨ ¨ ¨ , anq P Rn

`. We could approximate the Dirac by a
selection of well chosen functions or get information about the cumulative distribution
function F . By replacing f by the sum of Dirac

P “ max
aPRn

`

2
n2

n
ÿ

i“1

n
ÿ

j“1
1taią1u1tająa2

i u1tająaiu

To maximize P , we have to choose @i, ai ą 1, i.e. colonization rates cannot be less
than 1. There is a major loss of the mass if the support of the density is below the
extinction rate. In addition, there is the following implication aj ą a2

i ñ aj ą ai. Let
ai, i P rns in a increasing order

1 ă a1 ă a2 ă ¨ ¨ ¨ ă an .

Then
P “ max

aPp1,`8qn

2
n2

n
ÿ

i“1

n
ÿ

jąi

1tająa2
i u .

Finally, the condition on the vector of mass a to maximize coexistence between two
species is

an ą a2
n´1 ą a4

n´2 ą ¨ ¨ ¨ ą a2n´1

1 .

The ratio between two mass is getting bigger and bigger

ai

ai´1
ą a2i´2

1 ą expp2i´2 logpa1qq ą eexpppi´2q logp2qq .

The main idea is that if n Ñ 8 we pick two colonization rate pc1, c2q from the set a we
are a.s. that the condition of coexistence is satisfied.
Remark 4.10. Given ai, i P rns in a increasing order with 1 ă a1 ă a2 ă ¨ ¨ ¨ ă an and
a1 “ 1 ` ϵ, then the minimal value of a2 must be a2 “ p1 ` ϵq2. With the same arguments,
we find

a3 “ p1 ` ϵq4 , a4 “ p1 ` ϵq8, ai “ p1 ` ϵq2i´1
“

2i´1
ÿ

k“0

ˆ

2i´1

k

˙

ϵk .

The 3-species case
Using the same arguments as in the 3-species case and considering a vector of mass
a “ pa1, . . . , anq,

P “ max
fPD

6
ż `8

1

ż `8

x2

ż `8

y2{x2
fpxqfpyqfpzq1xăy1yăzdzdydx ,
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P “ max
aPRn

`

6
n3

n
ÿ

i“1

n
ÿ

j“1

n
ÿ

k“1
1taią1u1tająa2

i u1
#

aką
a2

j

a2
i

+1tająaiu1takąaju .

Following the same assumptions of the 2-species case and with the arguments

aj ą a2
i ô a2

j ą a2
i aj , ak ą a2

j {a2
i ñ ak ą aj ,

P “ max
aPp1,`8qn

6
n3

n
ÿ

i“1

n
ÿ

jąi

n
ÿ

kąj

1tająa2
i u1

#

aką
a2

j

a2
i

+ .

Finally if @j ą i, aj ą a2
i then for k ą j, we have ak ą a2

j ą
a2

j

a2
i
. This implies that the

first condition controls the sum. One can count

1
n3

n
ÿ

i“1

n
ÿ

jąi

n
ÿ

kąj

1 ÝÝÝÝÑ
nÑ`8

1
6 .

Finally, by switching to a continuous distribution, we would have a heavy density on the
left side and a heavy-tail on the right side. These conditions are sufficient to find an
optimal density for a finite number of species. If the number of species becomes infinite,
then the probability of falling on the same mass would no longer be 0. This section
gives an idea of the balance between competition and colonization found in the sequential
invasion process.

4.D Additional graphics

Sequential invasion process
Distribution of the colonization rate

(a) Pp1q (b) Pp2q (c) Pp5q

Figure 4.D.1: Representation of the empirical CDF after the sequential invasion of the
colonization rate of the persistent species after 500 invasion trials. The curve is derived
using Monte Carlo simulations P “ 1000.

Feature of an invader

We perform a moving average on the realized colonization rates and average the time
series for different sequential invasion processes (see Figure 4.D.2).
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(a) Upr1, 2sq (b) Pp2q

Figure 4.D.2: Representation of a moving average on the colonization rates of the invaders
for a sequential invasion process of size n “ 1000. A Monte Carlo experiment is realized
P “ 100 times by getting times series of the moving average curve on the colonization
values and average the time series of P sequential invasion process. In Fig. (a), the plot
corresponds to the uniform distribution Upr1, 2sq. In Fig. (b), the plot corresponds to the
Pareto distribution with parameter a “ 2.

Properties of the invaders

We can also compute a good intuition of the probability by keeping in memory for all
invasion trials if a species invades (or not) the system. (see Figure 4.D.3) One can repeat
the process many times and have an “average” at time l that a species invades the system.
One obtains a series of values which are decorrelated from each other.

Figure 4.D.3: Representation of the probability of an invader as a function of the invasion
trials (left) and its auto-correlation curve (right). The probability is computed by a
Monte-Carlo experiment. We run P sequential invasion process and keep a binary vector
where the value is 1 if the species invades at invasion trial l, 0 otherwise. We average
all the binary vectors and obtain for each invasion trial l a probability of invasion. A
smoothing function is also drawn. The right graph corresponds to an auto-correlation
plot of the left curve.
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Conclusion
From a general perspective, this thesis is based on the development of mathematical and
numerical techniques for the analysis of theoretical models of ecosystems. In particular,
I am interested in developing a better understanding of the diversity of species and the
complexity of their interactions. This represents a huge challenge in theoretical ecology
and the complexity of the system requires mathematical models. The aim is to improve
our understanding of their properties (feasibility, stability, persistence) in order to preserve
biodiversity, save endangered species or manage exploited species in a sustainable way.
Future disturbances will heavily affect ecosystems and preventing and understanding these
changes may be one of the major challenges of ecological research.

In order to explain the coexistence of species, three issues need to be considered, the
relative importance of which is still unknown... The abiotic constraints and the niche
of the species i.e. species sorting [LHM`04] shows that we find species adapted to their
environment. The dispersion of species and the spatial structure of the environments
i.e. mass effect explain that clumsy species will coexist as long as they are able to
disperse well and that their habitats of predilection are not far. The role of interactions
between species as a driver of species coexistence remains to this day a major issue in
ecology. We are thinking mostly about competition, but we need to broaden this to all
types of interactions. The idea is that phenomena like Paine’s keystone predation [Pai66]
are probably important elements in understanding species coexistence (= if we better
understand interactions and their impact on the number of persistent species, we should
understand cases where neither species sorting nor mass effect give us the keys).

From a more specific point of view, the objective of my thesis was to elaborate a
quantitative analysis of large Lotka-Volterra models based on Random Matrix Theory.
The theory of random matrices is a powerful mathematical tool still in full expansion with
many unsolved problems so far. Numerous matrix structures have been studied creating
a direct link to the many types of interaction or food-web matrices between species within
the same community.

Starting from the beginning, it is May [May72] who introduced the use of random
matrices in ecology by emphasizing a paradox between diversity and stability. Following
May’s work, many efforts have been made to study particular structures of the random
Jacobian matrix also called “community matrix”, in particular the work of Allesina et al.
[AT12, AGB`15, GAS`17]. However, the study of the Jacobian only gives information on
the stability of a system around the equilibrium. The Lotka-Volterra model considering a
random interaction matrix is a first step towards a more sophisticated system. This model
is simple (the Aij has few distribution parameters), versatile because many models can be
written in the form of an LV model like the competition-colonization trade-off model and
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robust in its dynamic behavior (cyclic, chaos, equilibrium). The large-scale version of the
LV model has undergone many studies in recent years, on topics such as the feasibility
of an equilibrium [BN21], the stability of the Jacobian of the LV model with dependence
between the interaction matrix and the vector of abundances [GGRA18, Sto18] and struc-
tural stability [RSB14, GAS`17, SRB`17, RSB14]. Servan et al. [SCG`18] have given
results on coexistence in a feasible sub-population model. My thesis work is positioned
at the center of gravity between the work of Bizeul and Najim, Servan et al. [SCG`18]
and results using physics-based tools such as the dynamical cavity method physicists use
to study the LV model [Bun17, Gal18].

In Chapter 1, we give sufficient conditions for the existence and uniqueness of a globally
stable equilibrium with vanishing species in a community. This study is carried out in the
framework of a random interaction matrix with two main parameters, α controlling the
interaction strength and µ controlling the dominant type of interaction. We give heuris-
tics to find properties of this equilibrium such as the proportion of persistent species, as
well as the variance and mean of their equilibrium abundances. We observed that an
increase in the strength of interaction between species increases the number of extinc-
tions. In nature, interactions between species are constantly changing and affected by the
environment. Under the assumptions that environmental conditions influence interaction
strengths, we have endeavored to study the consequences of a sudden change of environ-
mental conditions, expressed through a decrease in parameter α. Solving numerically the
Lotka-Volterra system confirms the predictions given by heuristics, i.e. that a increase of
the interaction strength negatively affects equilibrium species richness. In this context, a
analysis of diversity measure suggests that mutualistic interactions imply shorter transient
dynamics.

In Chapter 2, we extend the feasibility results of Bizeul and Najim [BN21] to the case
of pairwise correlated interactions. We consider a correlation profile where the correlation
can be different between the different pairs of interactions. The main outcome is that the
correlation between the interactions does not influence the feasibility threshold. Moreover,
we give sufficient conditions for the existence of a unique globally stable equilibrium for a
sub-population of persisting species. In order to proceed we combine results by Takeuchi
and Adachi [TA80] the stability of LV systems with Random Matrix Theory results. We
finally conclude on estimating the proportion of persisting species. At a physical level
of rigor, we state the open problem, recall Bunin’s and Galla’s equations and provide
simulations of a closed-form system of equations to compute the proportion of persisting
species.

In Chapter 3, we investigate the LV model to describe the properties of a multi-
community model. By adding a block structure to the matrix of interactions, we study
the properties (feasibility, existence of an attrition phenomenon within each community)
of distinct communities by adjusting the inter- and intra-community interactions. In par-
ticular, we analyze the properties and dynamics that emerge with two communities of
interacting species. New patterns emerge when considering interacting communities. The
interplay between the two communities affect their respective equilibrium and their re-
sistance to small perturbations (stability). From an ecosystem point of view, this means
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understanding the coexistence between communities with different properties that inter-
act with each other. A numerical similarity study is carried out between a model where
the strength of the interactions varies and a model where the connectance in each of
the communities varies, which gives an interaction matrix known as the Stochastic Block
Model (Bernouilli version). This similarity is analyzed through the stability condition
given historically by May [May72].

In Chapter 4, we analyze a multi-species occupancy model representing a system of
hierarchical competition between species where the dynamics of each species’ occurrences
within the metacommunity depends mainly on its colonization rate and its extinction
rate. For a better understanding of the restrictions induced on the colonization rate
in a large-dimension system, we propose a probabilistic interpretation of the model by
looking at colonization parameters following a given probability distribution. We carried
out analytical and simulation-based work to investigate the optimal distribution. From
a mathematical point of view, we elucidate the stability and persistence of the model
allowing the whole or a sub-population of species to coexist using its similarity with the
Lotka-Volterra model. Second, we analyzed two different types of approaches: a all-at-
once metacommunity process starting from a pool of species by letting the dynamics
elapse, and a sequential invasion process developing an invasion sequence that involves a
historical contingency effect. On the one hand, surprisingly in the all-at-once metacom-
munity process we find a universality result on the distribution of persistent species for a
wide range of distributions. We find that on average the proportion of persistent species is
one half. On the other hand, in the sequential invasion process, the heavier the right-hand
side “tail” of the distribution of the colonization rate of the invaders, the higher the prob-
ability of coexistence. Subsequently, the comparison of the two approaches shows us that
the sequential invasion process seems to be much more restrictive in terms of the number
of persisting species due to historical contingencies and extinction cascades. To conclude,
this probabilistic perspective of the hierarchical competition-colonization trade-off model
allows to put forward and compare two different types of distinct assemblages and gives
conditions for many species to coexist under the competition-colonization trade-off.

Take-home messages
The bottom line of this thesis is that some details are important for understanding the
dynamics and diversity of large Lotka-Volterra systems or related models.. In particular,
the strength of the interactions (Chapter 1) and the block structure (Chapter 3) have an
important impact on the properties and stability of an equilibrium where some species
vanish. However, I have shown that pairwise correlation has no impact on the feasibility
of the equilibrium (Chapter 2).

I found a heuristic to improve the understanding and relationship between impor-
tant properties of the equilibrium such as the proportion of persistent species, mean and
variance of persistent species for a general Lotka-Volterra model (Chapter 1) and its
extensions (Chapter 3). However, if we follow the same approach for the competition-
colonization trade-off model, we would have a much simpler result for the proportion of
persistent species i.e. half of the species persist (Chapter 4).

From an ecological perspective, the species richness and stability of ecosystems are
properties that cannot be studied without taking into account the interactions between
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species (Chapters 1 and 2) and the spatial structure (Chapters 3 and 4).

Perspectives
Many perspectives have been discussed at the end of each chapter, I have decided to
select five of them whose future issues are important for the understanding of community
dynamics and also from the mathematical standpoint.

In the model of Lotka-Volterra in the context of this thesis, we identified three types
of interaction: mutualism (µ ą 0, ρ ą 0), competition (µ ă 0, ρ ą 0) and predation
(µ « 0, ρ ă 0). In chapter 2, we considered the feasibility problem in a system with
pairwise correlated entries. However, in chapter 1 and 3, we only deal with the cases where
there is no correlation between the interactions because it is mathematically more difficult
to handle these cases. This reduces the general nature of the model. Moreover, with tools
coming from physics, one may obtain a number of results (see Bunin [Bun17] in the unique
community case and Poley et al. [PBG22] in the block case). Using mathematical (not
physicists’) methods, we are confident that such extensions are possible, but might hinge
on more sophisticated developments. If an interaction matrix has a block structure, one
could consider correlations in the broader sense of community instead of individual. In
this system, we would have similarities between communities according to their degree of
correlation.

Recently, many researchers have been interested in exploring higher-order interactions
i.e. interactions among three or more species [MS17, GBMSA17, GLL22]. A more distant
perspective would be to extend work on pairwise correlations in random matrices to
higher-order correlations. Korkmazhan et al. [KD22] show that high-order correlations
in species interactions lead to complex diversity-stability relationships when studying the
“community matrix” or random Jacobian. This type of interactions leads to particular
random matrix spectra. Aceituno et al. [ARS19] studied matrix spectra in the case where
there are higher-order cyclic correlations between k-tuples matrix entries.

A promising method to prove heuristics in larger cases would be the use of the Approxi-
mate Message Passing (AMP) algorithm which has distant similarities with the dynamical
cavity method. AMP has the advantage of having many mathematically rigorous results
[FVRS21, MR16, CT21, JM12].

In this thesis, we were mainly interested in equilibrium properties. However, the Lotka-
Volterra model can exhibit other behaviors such as chaos or multi-equilibrium dynamics.
In nature, we also find out of equilibrium dynamics. To study this type of behavior,
many theories have been developed such as the permanence [Jan87, LM96, JS98, HS98].
A system is called permanent if no species become extinct where the boundaries act
as repeller. Another category of non-equilibrium dynamics is the transient species (i.e.
species that may persist over a long time period followed by rapid changes in dynamics)
investigated by Hastings et al. [Has01, HAC`18].

In Chapter 1, a model was defined where the strength of the interactions vary, which
could be represented by climate disruption acting on the variability of ecosystems. How-
ever, no quantitative indication of this rate of change was given. In the context of the
periodic model with αptq, we would like to explain in detail the phenomenon of return
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to equilibrium, in particular the speed of convergence or resilience. The rate of the re-
turn to equilibrium used by the “standard” theorists depends on the real part of the
largest eigenvalue of the Jacobian. Eventually what we observe is that if the strength
of the interactions is weak, then the largest eigenvalue will be small and consequently
the return to equilibrium will be fast. If the strength of the interactions increases, the
dominant eigenvalue will be closer to 0 and the return to equilibrium slower. The second
phenomenon is that the rate of return to equilibrium depends directly on the abundance
of the species. We observe in the seasonal dynamics that the greater the abundance of a
species, the faster it will return to an equilibrium. This is a good explanation to say that
when a species converges too fast to 0 then it may never return to the system over a short
period of time (in the sense that it will never regain its initial abundance). Arnoldi et al.
[ALH16, ABLH18] have extensively studied measures of stability such as the resilience or
reactivity of a system. A further theoretical study of the LV model could provide a more
quantitative answer. In Chapter 1, we have limited the analysis to the case of a single
sudden incident, but other types of fluctuations for the interaction strength could be con-
sidered for a better understanding of habitat conservation phenomena. For example, a
seasonal model could be appropriate to describe the evolution of the dynamics over the
seasons.

It is known that if the trajectory stays in a compact space where xk ą 0, @k P rns (i.e.
in some cases of chaotic attractors or cyclic dynamics), then the long-term average of the
vector of abundances i.e.

x̌ “
1
T

ż T

0
xptqdt .

is equal to x̌ “ B´11, the same formula to determine a feasible equilibrium.
Could the LCP theory be used in the same way to describe a cyclic phase where some

species vanish? In line with this problem, one could be interested in the distribution of
species over time and their variations.

A paper released in 2013 by Säterberg et al. [SSE13] has shown that the disappearance
of ecological interactions or functional extinctions precedes population extinctions. In
other words, a species already loses links with its neighbors at the beginning of the decline,
making other species around it disappear long before it has itself disappeared. A naive
answer would be to study the impact of sparsity (i.e. the average number of interactions
per species) on the model. Paradoxically, in chapter 3, we have shown that decreasing the
number of interactions increases the stability. However, this only happens when r ą 0 and
each species can survive independently of the others. It would be interesting, but probably
difficult, to study a model where some species are strongly dependent on interactions with
other species for their survival i.e. r ă 0. The robustness of the LCP pM, qq results to the
q value would be a starting point to analyze this type of dynamics. One could possibly use
the structural stability as the work of Saavedra et al. [SRB`17] on results with positive
r and see how far one can move the vector r without changing the attractor.

In chapter 4, a probabilistic perspective on the competition-colonization trade-off model
with hierarchical competition was given, i.e. the competition parameter is intrinsic to the
model and the coexistence of species depends only on the colonization and extinction
rates. The study of stability in the model designed in Calcagno et al. [CMJD06a] could
lift the veil on the stability-complexity debate. Spatial dynamics and the study of patch
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dynamics may be a possible answer to the stability-diversity paradox. As the model can be
rewritten as a Lotka-Volterra model, we could consider random competitions parameter
and a random colonization rates.

Recall model in [CMJD06a],

dpi

dt
“ cipi

˜

1 ´

n
ÿ

j“1
pj

¸

´ epi ` cipi

ÿ

j‰i

pjηij ´ pi

ÿ

j‰i

cjpjηji , @ i P rns ,

where pi represents the occupancy of species i. Parameter e is the extinction parameter
of all species. Parameter ci represents the colonization parameter of the species i and ηij

corresponds to probability that a population of species i can locally overtake an established
population of species j

This system can be represented in the form of a Lotka Volterra competition scheme
with asymmetric interactions.

dpi

dt
“ pi

˜

ci ´ e `

n
ÿ

j“1
pj pciηij ´ cjηji ´ ciq

¸

, @ i P rns .

Given η “ pηijqn,n be a square matrix of size n and

c “ pciqn , p “ ppiqn , e “ 1e , DpJ
“ p

dp1

dt
,
dp2

dt
, ¨ ¨ ¨ ,

dpn

dt
q .

We can then rewrite the equation in a matrix form

Dp “ diagppq
“

c ´ e ` pdiagpcqη ´ ηJdiagpcq ´ c1J
qp
‰

,

“ diagppqpc ´ e ` Apq ,

with A “ B ´ C “ diagpcqη ´ ηJdiagpcq ´ c1J,

C “

¨

˚

˚

˚

˚

˚

˝

c1 c1 ¨ ¨ ¨ c1
c2 c2 c2
...
...
cN cN cN

˛

‹

‹

‹

‹

‹

‚

,

B “

¨

˚

˚

˚

˚

˚

˝

0 c1η12 ´ c2η21 ¨ ¨ ¨ c1η1n ´ cnηn1
c2η21 ´ c1η12 0 c2η2n ´ cnηn2

...

...
cnηn1 ´ c1η1n 0

˛

‹

‹

‹

‹

‹

‚

.

Matrix B is a real antisymmetric matrix, the nonzero eigenvalues of B are non-real and
C is a rank one matrix, therefore it admits 0 as an eigenvalue of multiplicity n ´ 1.

In an effort to extend the study of the intermediate disturbance hypothesis, Liao et al.
[LBB22] analyzed the competition-colonization trade-off model in the case of multimodal-
ity in diversity disturbance hypothesis. At the end, they discuss the storage effect as a
temporal niche segregation i.e. species are specialized in different phases of environmental
fluctuations [MSS22]. If we understand the impact of the ηij matrix in the system, we
could imagine varying a matrix ηptq over time and observe the behavior of the system as
in Chapter 1.
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Last but not least, in this thesis, no relation with data has been carried out. Instead,
the use of models and the theory of random matrices helps understand what could theo-
retically happen in the absence of information. The development of this theory provides a
better understanding of the underlying mechanisms that ensure the coexistence of species
in large ecosystems. A major challenge for future research in this field would be to work
with large datasets and determine whether they are consistent with what we observe the-
oretically. Recently, Hu et al. [HAB`21] compared the theoretical Lotka-Volterra phase
diagram with experimental data from a laboratory trial. Regarding the Tilman-Hastings
model, there are probably ways to apply it to more epidemiological data (see the applica-
tion of Slatkin [Sla74] by Madec and Gjini [MG20]). With the rise of artificial intelligence
tools to collect data and machines in laboratories that are increasingly sophisticated to
work with many species, we might be able to better understand the functioning of mi-
crobiota [CSF15] or large ecosystems. Finally, I think that the complementarity between
theoretical and empirical ecology is very important and represents a beneficial cycle for
both fields. In view of the recent climate emergency and the stakes of maintaining ecosys-
tems, which is a major issue in ecology, we must act now!
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Étude des grands systèmes de Lotka-Volterra : l’écologie théorique à travers
les matrices aléatoires

Mots clés : Écologie théorique, Systèmes dynamiques, Matrice aléatoire, Lotka-Volterra,
Écologie des communautés, Stabilité, Diversité, Faisabilité, Métacommunauté.

La diversité des espèces et la complexité de leurs interactions représentent un défi important en
écologie théorique. La difficulté à analyser ces systèmes rend nécessaire le recours à la modélisation
mathématique. Le système de Lotka-Volterra forme un modèle simple, robuste et polyvalent utilisé
pour décrire de grands systèmes en interaction tels que les réseaux trophiques ou les microbiomes. Ce
modèle est constitué de n équations différentielles couplées reliant les abondances des différentes espèces
présentes dans le système. Lorsque le nombre d’espèces devient très important, les paramètres du modèle
sont trop nombreux pour pouvoir être observés ou estimés correctement. Par conséquent, les interactions
entre les différentes espèces peuvent être modélisées comme des variables aléatoires afin de comprendre
la dynamique du système. Dans cette thèse, je développe une analyse quantitative des grands systèmes
de Lotka-Volterra en m’appuyant sur la théorie des matrices aléatoires et des simulations numériques. Je
me focalise d’abord sur l’existence d’une sous-population stable dont je décris les propriétés à l’équilibre.
Ensuite, j’étudie l’existence d’un seuil critique permettant la faisabilité de l’équilibre (:= toutes les espèces
du système survivent) lorsque les interactions sont corrélées par paires. Une meilleure compréhension de
ces phénomènes permet d’étendre ces propriétés à une structure d’interaction par blocs décrivant un
modèle multi-communautés. J’analyse les propriétés (faisabilité, existence d’un phénomène d’attrition
au sein de chaque communauté) de communautés distinctes en ajustant les interactions inter- et intra-
communautaires. Dans une dernière partie, je propose une interprétation probabiliste d’un modèle de
compétition multi-espèces dans lequel on modélise non pas l’abondance des espèces à un niveau local mais
leurs occurrences par site au niveau du paysage. J’examine dans ce modèle le compromis compétition-
colonisation lorsque les paramètres de colonisation suivent une distribution de probabilité donnée. Les
résultats obtenus dans ces différents chapitres démontrent l’existence de “lois asymptotiques” régissant
le comportement des modèles écologiques lorsque le nombre d’espèces devient très grand.

Large Lotka-Volterra model: when random matrix theory meets theoretical
ecology

Keywords: Theoretical ecology, Dynamical systems, Random matrix, Lotka-Volterra, Com-
munity ecology, Stability, Diversity, Feasibility, Metacommunity.

The diversity of species and the complexity of their interactions represent a huge challenge in theoret-
ical ecology. The system’s complexity requires mathematical modelisation. The Lotka-Volterra system
forms a simple, robust and versatile model used to describe large interacting systems such as food webs
or microbiomes. This model consists of n coupled differential equations linking the abundances of the
different species present in the system. When the number of species becomes very large, the model
parameters are too large to be observed or estimated precisely. Therefore, the interactions between the
different species can be modeled as random variables to understand the dynamics of the system. In this
thesis, I develop a quantitative analysis of large Lotka-Volterra systems based on random matrix theory
and numerical simulations. I first focus on the existence of a stable subpopulation for which I describe
the equilibrium properties. Then, I study the existence of a critical threshold that allows the feasibility
of equilibrium (:= all species in the system survive) when the interactions are pairwise correlated. A bet-
ter understanding of these phenomena allows to extend these properties to a block interaction structure
describing a multi-community model. I analyze the properties (feasibility, existence of attrition within
each community) of distinct communities by adjusting the inter- and intra-community interactions. In a
final section, I propose a probabilistic interpretation of a hierarchical competition-colonization trade-off
model in which we model not the abundance of species at a local level but their occurrences by patch at
the landscape level. I examine in this model the competition-colonization trade-off when the coloniza-
tion parameters follow a given probability distribution. The results obtained in these different chapters
show the existence of “asymptotic laws” governing the behavior of ecological models when the number of
species becomes very large.
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