
HAL Id: tel-03831483
https://theses.hal.science/tel-03831483v2

Submitted on 2 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High Performance Computing code optimizations:
Tuning performance and accuracy

Pablo de Oliveira Castro

To cite this version:
Pablo de Oliveira Castro. High Performance Computing code optimizations: Tuning performance and
accuracy. Computer Science [cs]. Université Paris-Saclay, 2022. �tel-03831483v2�

https://theses.hal.science/tel-03831483v2
https://hal.archives-ouvertes.fr

High Performance Computing code

optimizations: Tuning performance

and accuracy

Habilitation à diriger des recherches

de l'Université Paris-Saclay

présentée et soutenue à Guyancourt, le 26/10/2022, par

 Pablo DE OLIVEIRA CASTRO

HERRERO

Composition du jury

Raymond NAMYST

Professeur d’Université, Université de

Bordeaux

 Président

Paul H J KELLY

Professeur d’Université, Imperial

College

 Rapporteur

Jean-Michel MULLER

Directeur de Recherche, CNRS, LIP, ENS

Lyon

 Rapporteur

Denis TRYSTRAM

Professeur d’Université, LIG, Grenoble

INP

 Rapporteur

Christine EISENBEIS

Directrice de Recherche, INRIA, LISN,

Université Paris-Saclay

 Examinatrice

Bernd MOHR

Deputy Division Head, Juelich

Supercomputing Centre

 Examinateur

Devan SOHIER

Professeur d’Université, UVSQ,

Université Paris-Saclay

 Examinateur

 H
a
b

il
it

a
ti

o
n

 à
 d

ir
ig

e
r

d
e
s

re
ch

e
rc

h
e
s

Title : High Performance Computing code optimizations: Tuning performance and accuracy

Keywords : HPC, compilation, optimization, performance, energy, floating-point, stochastic rounding

Abstract : Since the beginning of the field of high

performance computing (HPC) after World War II,

there has been a rapid increase in computing

resources and simulation complexity. HPC fine-

grained simulation of complex systems, such as fluid

dynamics or molecular interactions, has made

possible important advances in many scientific fields

and in the industry. Reducing the cost, both in time

and energy, of computer simulations is critical. The

precision of simulations should be sufficient to

provide scientific insights but as low as possible to

save energy and computation time.

HPC relies on complex heterogeneous architectures

with massive concurrency at different execution

levels, a deep memory hierarchy, and dedicated

interconnect networks. This inherent complexity

generates an optimization space composed of many

factors such as the chosen architecture, the

algorithmic variant, the floating-point precision and

format, the compiler optimization passes, and the

thread mapping.

The first part of the manuscript presents methods to

accelerate the optimization of HPC applications. We

present the design of CERE, an open-source tool

that automatically decomposes applications into

standalone regions, called codelets. Instead of

studying the whole application, a minimal set of

codelets capturing its performance behavior serves

as a proxy for optimization. The optimization space

is further reduced by the use of adaptive sampling

techniques, which estimate the performance from a

limited number of factor combinations.

We demonstrate these techniques in different

domains, such as optimizing a seismic imaging

proto-application, and reducing simulation time

for hardware-software co-design.

The second part of the manuscript uses alternative

floating-point models, such as Monte Carlo

arithmetic, to explore the compromise between

numerical precision and performance. A

probabilistic definition of the number of

significant digits is introduced and used to

estimate the accuracy of a computation. We

discuss the design of verificarlo, an open-source

framework for numerical optimization, and

demonstrate how it can be applied to pinpoint

numerical bugs in large HPC codes such as

neuroimaging pipelines, Density Functional

Theory quantum mechanical modeling, or

structure simulations. Verificarlo is also used to

identify the parts of the code that can use smaller

floating-point formats, reducing the computation

cost. We apply these techniques to optimize the

speed and energy consumption of a conjugate-

gradient solver used in Computational Fluid

Dynamics.

Finally, we examine the challenge of reducing the

power consumption of HPC through a survey of

the literature. We advocate for sobriety in our

usage of computing resources: instead of always

reaching for more complex simulations, we should

find the right fit for our problem.

iii

Acknowledgment

I thank Paul Kelly, Jean-Michel Muller, and Denis Trystram for their careful
review of the manuscript as well as Christine Eisenbeis, Bernd Mohr, and Ray-
mond Namyst who accepted to participate in the jury. Thanks also to David
Defour and Tristan Glatard for supporting my candidacy for the habilitation à
diriger des recherches.

I thank Devan Sohier for his kind advice and corrections and for hav-
ing accompanied me throughout the preparation of this habilitation. I also
thank Thomas Dufaud and Mihail Popov for their precious feedback on the
manuscript. Finally, I would like to thank my spouse, Pierre-Aimé Agnel, for
his encouragements but also for his corrections of section 5.4.

Research work is sometimes solitary but often collective: ideas are shaped
through dialogue and exchange. I would like to thank all my co-authors without
whom the work presented here would not have been possible. In particular, I
would like to thank Eric Petit, with whom I have worked for ten years on many
joint projects such as Verificarlo. Thanks also to William Jalby and Devan
Sohier for their trust and involvement while co-advising students. I would also
like to thank the Ph.D. students I have had the privilege to co-advise - Yohan
Chatelain, El-Arar El-Mehdi, and Mihail Popov - who contributed to the results
presented here.

Finally, I would like to thank my colleagues from the Atelier d’Écologie
Politique francilien for the fruitful discussions around the climate crisis that
inspired me to write the concluding chapter.

Contents

1 Introduction 1
1.1 Optimizing high performance computing 2
1.2 Accuracy of simulation programs 3
1.3 Discussion . 5
1.4 Outline of the manuscript . 7

I Reducing the search space for HPC optimizations 9

2 Codelet extractor and replayer 11
2.1 Code isolation . 12
2.2 Related work . 13

2.2.1 Codelet extraction . 13
2.2.2 Memory capture and cache warm up 14
2.2.3 Capturing parallel regions 15
2.2.4 Comparison to related work 16

2.3 CERE: Codelet Extractor and REplayer 17
2.3.1 IR Capture and Replay Overview 17
2.3.2 Application partitioning 19
2.3.3 Partitioning OpenMP programs 20
2.3.4 Codelet checkpoint-restart strategy 21
2.3.5 Capturing the memory . 22
2.3.6 Capturing the cache state 25
2.3.7 Replay . 29

2.4 Evaluation of CERE . 29
2.5 Conclusion . 33

3 Reducing HPC search space 35
3.1 Exploiting codelet similarities . 36

3.1.1 Background on benchmark reduction methods 36
3.1.2 Clustering invocations of the same codelet 37
3.1.3 Clustering codelets with the same performance behavior . 38
3.1.4 Clustering evaluation . 41
3.1.5 Numerical Recipes evaluation 41
3.1.6 Subsetting the NAS benchmark suite 43
3.1.7 Codelets as proxies for faster performance studies 44

3.2 Adaptive sampling the performance design space 46
3.2.1 Background on sampling strategies 47

vi CONTENTS

3.2.2 ASK Architecture . 48
3.2.3 Hierarchical Variance Sampling 49
3.2.4 GBM model and HVS sampler interactions 51
3.2.5 Experimental validation 52

3.3 Conclusion . 54

4 Optimizing HPC applications 55
4.1 Auto-tuning thread affinity and compiler passes with codelets . . 55

4.1.1 Thread number and affinity optimization 57
4.1.2 Compiler pass optimization 57

4.2 Exploring runtime parameters in heterogeneous architectures . . 59
4.3 Optimizing a Seismic proto-application 61

4.3.1 Initial performance characterization with codelets 62
4.3.2 Tuning the FDTD codelet 62

4.4 Conclusion . 66

II Accuracy and performance trade-offs 69

5 Monte Carlo Arithmetic 71
5.1 Background on automatic numerical error analysis 72
5.2 Floating-point arithmetic . 73
5.3 Stochastic arithmetic . 74

5.3.1 CESTAC . 74
5.3.2 Monte Carlo Arithmetic 76
5.3.3 Estimating the numerical error with MCA 76
5.3.4 A simple example: Cramer’s rule 77

5.4 Choice of the rounding operator in MCA 78
5.4.1 Problems with nearest rounding in MCA 79
5.4.2 MCA bias when using round to nearest 80
5.4.3 Redefining the rounding operator 81
5.4.4 Bias of MCA RR . 82
5.4.5 Numerical evaluation of rounding methods 84

5.5 Probabilistic accuracy of a computation 85
5.5.1 Choice of a reference value 85
5.5.2 Probabilistic definitions of significant and contributing

digits . 85
5.5.3 Accuracy under the centered normality hypothesis 87
5.5.4 Discussion for a normal centered distribution 92
5.5.5 Accuracy in the general case 93
5.5.6 Background on Bernoulli estimation 94
5.5.7 Statistical formulation as Bernoulli trials 94
5.5.8 Evaluation . 95

5.6 Conclusion . 96

6 Verificarlo 97
6.1 Compiler passes . 99
6.2 Advantages of operating at the optimized Intermediate Represen-

tation . 99
6.3 Monte Carlo Arithmetic backend 102

CONTENTS vii

6.3.1 Implementing MCA with limited precision 102
6.3.2 Quad and MPFR backends 103
6.3.3 MCA integer backend . 104
6.3.4 Performance evaluation of the MCA backends 105

6.4 VPREC backend . 106
6.5 Cancellation Backend . 107
6.6 Post-processing . 107

6.6.1 Delta-Debug . 107
6.6.2 Verificarlo CI . 108
6.6.3 Veritracer . 109
6.6.4 Variable precision in mathematical libraries 109

6.7 Conclusion . 111

7 Numerical verification and optimization 113
7.1 Reproducibility analysis in the Europlexus simulation software . 114
7.2 Evaluating brain-imaging numerical uncertainty 118
7.3 Mixed-Precision optimization in YALES2 120

7.3.1 Adaptive precision algorithm experiment on DPCG 121
7.3.2 Validating resiliency to round-off errors 122
7.3.3 Evaluating mixed-precision version 122

7.4 Perspectives on Stochastic Rounding 124

8 Conclusion: HPC energy consumption 129
8.1 Energetic sobriety . 130
8.2 The global carbon impact of computation 131
8.3 Low-carbon electricity is not a silver bullet 131
8.4 HPC efficiency . 132

8.4.1 Dennard’s scaling: 1970-2009 132
8.4.2 Multi-Processing and accelerators: 2009-2022 133
8.4.3 Software optimizations . 133

8.5 Rebound effects . 134
8.6 Computation sobriety: when less is more 136

8.6.1 Case study in healthcare 137
8.6.2 Closing thoughts . 138

Bibliography 141

1 E Introduction

Contents
1.1 Optimizing high performance computing 2
1.2 Accuracy of simulation programs 3
1.3 Discussion . 5
1.4 Outline of the manuscript 7

Computer simulation implements mathematical models to approximate the
behavior of a system. It is often used when a closed-form analytical solution is
not available, and it has become a widely used approach to gather knowledge
in scientific fields such as physics, chemistry, biology, climatology, and social
sciences.

There is a large variety of computer models. In physical sciences, models
are usually derived from a set of differential equations that are discretized.
The simulation operates either at the particle level, computing step-by-step
interactions between a group of bodies (e.g. atoms, planets), or at the field
level, simulating the evolution of a continuous field (e.g. fluid, wave). Other
models include agent-based, discrete event, and stochastic simulations.

To motivate the need for computer models, we consider the classical n-body
problem that models the interaction of n particles through gravitational forces.
It plays a central role in understanding the motion of celestial objects. The
masses, initial positions, and velocities of the particles are given. Applying
Newton’s law of gravitation to each particle produces a system of equations
describing the motion of the particles. For n = 2, the system was solved by
Bernoulli in 1734. In Bernoulli’s solution, the positions of the particles can be
written as simple equations that directly depend on the time, the masses, and
the initial conditions. For n = 3, the problem is harder: particular cases were
explicitly solved by Euler and Lagrange but no general solution was known in
the 18th century. In 1909, Sundman gave an analytical solution of the three-
body problem as an infinite series. Unfortunately, the series converges so slowly,
that it cannot be practically computed. Moreover, the form of Sundman solu-
tion does not bring insights on the particles’ motion [98] because it can only
be expressed in a non-absolute referential. Therefore, for n ≥ 3, the n-body
problem cannot be practically solved through classical methods. On the other
hand, with a computer simulation, we can effectively compute the motion of the

2 Introduction

particles. When n is small, finite difference methods can numerically integrate
the differential equations produced by Newton’s law. Approximated methods
that simplify the computation of forces for distant particles, such as Barnes-Hut
or Fast Multipole Methods, scale to a larger number of particles.

Computer simulations have developed in parallel with the digital supercom-
puters required to execute them. Since the beginning of the field of high per-
formance computing (HPC) after World War II, there has been a rapid increase
in computing resources and simulation complexity.

ENIAC, completed in 1945, can be considered the first supercomputer and
its primary use was performing ballistic computations. ENIAC could compute
around 500 floating point operations per second (Flop/s) with vacuum tube
logic. In the sixties, various companies such as Control Data Corporation, IBM,
DEC, and others developed transistor supercomputers that were used in research
centers and business. For example, the CDC 6600 supercomputer was built in
1964 and achieved 500 kFlop/s. In the seventies and eighties, Cray Research
pushed the industry forwards with vector processors that were designed to op-
erate efficiently on large single dimension arrays. One such supercomputer, the
Cray 1 achieved 133 MFlop/s in 1976. In the nineties, supercomputers started
incorporating thousand of processors. Departing from the vector SIMD (Sin-
gle Instruction Multiple Data) model, architectures such as the Intel Paragon
had up to 3 680 processors executing different instructions for a total computing
power of 143.4 GFlop/s.

When this manuscript was written in the spring of 2022, the fastest super-
computer, Fugaku, had more than 7 million cores and achieved a peak per-
formance of 537 PFlop/s, simulating large-scale phenomena. When simulating
the n-body problem, Fukagu integrates 1.45 trillion particles per second [110].
However, these formidable simulations have a high energy cost: Fukagu requires
29MW, the average energy needed to power 23 000 homes in France.

Recently, machine learning models have generated much interest, partic-
ularly with deep neural networks (DNN) development. DNN have achieved
impressive results; for example, the natural language GPT-3 model generates
English text that is difficult to distinguish from text written by humans [40].
This feat comes at a high price: GPT-3 has 175 billion parameters and required
3 640 PFlop/s-days for training. As DNN complexity spikes, many [32, 158, 178]
challenge their energy and environmental cost.

Reducing the cost, both in time and energy, of computer simulations is criti-
cal. This requires careful optimization of the programs and the architecture but
also of the compiler and runtime. These optimizations are complex since they
involve trade-offs: in particular, the precision of the model should be sufficient to
provide scientific insights but as low as possible to save energy and computation
time. Since joining the computer science department at University of Versailles
Saint-Quentin in 2010, my research focused on optimizing HPC programs.

1.1 Optimizing high performance computing
Simulation programs are usually large, with thousands or even millions lines of
code. HPC relies on complex heterogeneous architectures with massive concur-
rency at different execution levels, a deep memory hierarchy, and dedicated
interconnect networks. This inherent complexity generates an optimization

Accuracy of simulation programs 3

space composed of multiple factors such as the chosen architecture, the algorith-
mic variant, the floating-point precision and format, the compiler optimization
passes and their parametrization, the number of threads, the thread placement,
the thread affinity, and many others.

When optimizing an HPC system, one must consider different objective func-
tions such as the time and energy spent and satisfy constraints such as the
amount of memory available or the target accuracy. Each code region, which
we will call codelet, can be tuned with different sets of factors. The search space
is formed by the cartesian product of the regions and the various factors con-
sidered. Because measuring each design point in this space exhaustively is too
costly, I have proposed methods to automate and accelerate its exploration.

A first approach, used both for auto-tuning and performance characteri-
zation, reduces the number of factor combinations that need to be measured.
In my research, I have mixed traditional design of experiment techniques with
adaptive sampling techniques that explore first the interesting [17] parts of the
HPC search space. Defining what constitutes an interesting region for explo-
ration is at the core of this approach and will be discussed in chapter 3. The
exploration is used to train surrogate performance models that act as a proxy
for the original HPC system to understand performance bottlenecks and find
optimal design points.

A different and orthogonal perspective is to break down programs into ele-
mentary regions called codelets [6]. This provides multiple advantages. Instead
of optimizing a monolithic application, one can optimize the standalone codelets
individually. Moreover, because the codelets capture elementary computation
building blocks, there is redundancy among them. Keeping a single copy among
a group of similar codelets also reduces the search space. Similarities between
codelets can be studied both statically, for example, when two code fragments
perform a similar operation, and dynamically, when two invocations of the same
codelet in time operate on a similar data set. With Mihail Popov, Ph.D. student
co-advised by William Jalby and myself, Chadi Akel, and other contributors, we
developed a compiler-based tool, CERE [18], that automatically breaks-down
large applications into standalone codelets.

The two approaches above are orthogonal, but both share a similar prin-
ciple: exploiting similarities to reduce the search space size. The similarities
can appear at the level of factors producing the same performance response
and at the level of codelets. Both approaches can be used together to reduce
the optimization cost in the factor dimensions and the codelet dimension. We
apply these techniques in different domains, such as optimizing a seismic imag-
ing proto-application [17] or reducing simulation time for hardware-software
co-design [13, 21].

1.2 Accuracy of simulation programs
Many simulations deal with physical quantities that are represented by real num-
bers. Due to finite memory, algorithms usually manipulate an approximated
representation of real numbers. One such approximation is the fixed-point rep-
resentation, which keeps a fixed number of digits in the integer and fractional
part. While simple to manipulate, it is not a good fit for programs using values
across different scales. For these programs, floating-point (FP) numbers are

4 Introduction

preferred. Inspired by the usual scientific notation, they represent a number as
a mantissa multiplied by a scaling factor.

Until the eighties, computer manufacturers used different FP representa-
tions. Nowadays, all general-purpose chips use the well-established IEEE 754
standard for Floating-Point Arithmetic. The first version of the standard was
published in 1985 and has since been regularly revised and updated. Most
codes usually default to either the binary32 (float) or the binary64 (double)
representations defined in IEEE 754.

Still, some applications could profit from smaller precisions to reduce power
and computation time. For example, DNN models do not need the full precision
provided by binary64 or binary32. Using a much lower precision for parameters
drastically reduces the storage and computation cost while preserving good ac-
curacy. This quantization has been extensively studied [83] in recent years and
has become a central optimization of DNN models. Driven by these develop-
ments, new reduced FP formats such as BF16 or FP16 are used in some GPU,
FPGA, and dedicated hardware accelerators for machine learning such as the
TPU.

Because FP numbers operate on a limited precision, not all reals can be
represented as FP numbers causing representation errors. During computations,
inexact operations require rounding and introduce small round-off errors, which
can accumulate over time. A third source of inaccuracy is called catastrophic
cancellation. When subtracting two FP values that are very close, the result
is renormalized to a smaller exponent. The renormalization can increase the
magnitude of previous rounding errors in the last digits of the mantissa.

Round-off and catastrophic cancellation errors make FP arithmetic non-
associative: accumulation of numerical errors depends on the order of opera-
tions. Because HPC architectures and optimizations rely on massive concur-
rency at the level of threads and the level of instructions, many optimizations
can affect the order of operations and, therefore, the accuracy of the computa-
tions.

Therefore, verifying the accuracy of FP computations is paramount in opti-
mizing HPC for at least two reasons,

1. Because parallelization, vectorization, and compiler optimizations change
the accuracy of computations; it is important to verify numerical accuracy
at the same time to assess the faithfulness of the computer model.

2. Reducing the precision of FP computation is a significant optimization.
Removing bits from the mantissa lowers the memory required and reduces
the communication and computation cost for FP numbers.

Both points highlight the trade-off between the precision of computer models
and their computation cost that was previously mentioned.

Numerical accuracy is usually measured through the error between the actual
computation and a reference value, such as the exact mathematical solution
or a measure obtained by experimentation. For many complex programs or
intermediate computations, a reference value is not known beforehand and might
be hard to obtain. Fortunately, it is still possible to evaluate the sensitivity of
the solution to numerical errors through stochastic methods.

In 2015, in collaboration with Eric Petit (UVSQ and later Intel Corpora-
tion) and Christophe Denis (ENS Paris-Saclay), we published the initial version

Discussion 5

of Verificarlo [19]. Verificarlo was later extended by Yohan Chatelain, Ph.D.
student co-advised by William Jalby and myself, and other contributors. Veri-
ficarlo is an open-source tool that helps verify and optimize numerical accuracy
in complex programs. Verificarlo includes different FP backends that simulate
the effect of numerical errors and the impact of using lower precision. For ex-
ample, one such backend implements Monte Carlo arithmetic (MCA) [189] that
models imprecise computations as random variables and estimates the number
of significant digits through repeated stochastic executions.

Verificarlo has been used to:

• Pinpoint, and provide insights to fix the numerical instabilities in large
simulations such as Density Functional Theory quantum mechanical mod-
eling [4], neuroimaging pipelines [12] or structure simulations [185].

• Explore the trade-off between performance and accuracy in iterative sim-
ulations [5] and mathematical libraries [3].

This applied research has been nourished by the exploration of its theoretical
underpinnings, and in particular MCA. In [185] we have proposed a probabilistic
definition for the number of significant digits and derived statistical confidence
intervals for both Gaussian and arbitrary MCA distributions. El-Mehdi El-
Arar, who is doing his Ph.D. at UVSQ, co-advised by Devan Sohier and myself,
has started studying the bias and variance of MCA computations, uncovering
interesting properties of stochastic rounding leading to less numerical errors and
faster convergence in some application domains, corroborating previous results
in the literature.

1.3 Discussion
After having introduced the two main research directions of my work, this sec-
tion discusses the choices and idiosyncrasies that have guided these efforts.

The importance of opening software research tools In computer sci-
ence, the importance of engineering is often dismissed, and implementation is
deemed less important than theory. Because of this point of view and the
pressure to quickly publish results, research software is not always polished,
published, or maintained. Research papers are sometimes published without
the accompanying software programs and experiment artifacts.

On the contrary, the computer software produced during research contributes
to the field since it helps reproduce results. Moreover, other researchers can use
well-designed software as a stepping stone for improving the work or producing
new results. Reproducibility of results is one of the pillars of the scientific
method; to fully reproduce results based on a computer simulation publishing
the software code is essential [160].

I have published the software tools developed in my research as open-source
projects. Some of them, such as Verificarlo, have become active open-source
tools used in academia and industry and received various community contribu-
tions. Through its flexible design, one can play with and quantify the effects of
alternative FP computation model. It has been used in three Ph.D. thesis as
an experimental framework.

6 Introduction

Working at the level of the compiler Developing an HPC program in-
volves a complex technological stack encompassing physical and mathematical
modeling, discretization, implementation on a high-level programming language,
compilation, runtimes, and execution on particular hardware. At each level of
this stack, opportunities for optimization arise. Often optimizing HPC appli-
cations involves a collaboration between experts at the different levels of the
stack.

I have often taken the compiler as the starting point in my research projects.
Nevertheless, this is a compromise, and there is no single correct choice: other
optimization approaches target either the high-level languages or the low-level
assembly successfully. Working at the compiler level provides an interesting
perspective, though, because it bridges the high-level and low-level ends of the
HPC stack. Both CERE and Verificarlo build upon the LLVM compiler project.
By operating at the compiler Intermediate Representation (IR) level they remain
architecture agnostic within some limits. Also, at the compiler level, we still
retain high-level information about the parallel regions, the data types, and the
source code, which we can exploit. We will continue this discussion in more
depth in chapters 2 and 7.

Dealing with HPC complexity In the early days of HPC, one could esti-
mate the performance of a program by counting the number of assembly opera-
tions and accounting for their respective latency. Such a formula to estimate the
performance of a program from its static characteristics is called an analytical
performance model. When applicable, analytical performance models are faster
than measurement or simulation.

Nowadays, analytical models are still powerful and have their place, such as
the roofline model [154] to identify performance bottlenecks or the reuse distance
to predict cache behavior. Unfortunately, with the growth of hardware and
software complexity, it is challenging to build faithful analytical performance
models. Modern micro-architectures aggressively exploit parallelism: multiple
memory operations and computations are in flight simultaneously. Memory
architectures are deep and have many layers of storage and cache. HPC pro-
grams are increasingly complex and depend on multiple software layers, includ-
ing external libraries, runtimes, and the underlying operating system. They
also exploit concurrency at many levels: SIMD, threads, processes, and some
will offload computations to an accelerator. All these factors can affect the
performance of the program. Because the exact order of the operations and
the internal state of the computing and memory nodes is unknown, the perfor-
mance of programs becomes non-deterministic [23] and cannot be completely
captured with an analytical performance model. Moreover, the performance of
a program can be affected by external factors such as network latency or syn-
chronization between nodes. When measuring the performance of a program, it
is thus important to control the influence of external factors and the machine’s
initial state. Despite these precautions, multiple executions of the same program
will give slightly different measures. Capturing the non-deterministic nature of
computer performance requires applying statistical analysis to the performance
measures.

When verifying numerical accuracy, one is also confronted with the com-
plexity of HPC programs. For well-known algorithms, bounds of the numerical

Outline of the manuscript 7

error can be proved mathematically. Exact methods have also been proposed
to derive error bounds automatically. One well-established exact method for
deriving error bounds is Interval Arithmetic [146], in which each real value in
the algorithm is replaced by an interval that contains all the possible values
of the computation. Because intervals are conservative, they tend to become
overly large when the algorithm or control flow is complex. In general, for
complex HPC programs of thousands of code lines, deriving such an analysis
is intractable and gives pessimistic bounds. In these cases, statistic techniques
based on Monte Carlo arithmetic can help understand and optimize complex
HPC programs. They are not a substitute for analytical or exact methods since
they are usually dataset dependent and do not provide deterministic bounds on
accuracy. Nevertheless, they provide a complementary tool that can bridge the
complexity gap.

1.4 Outline of the manuscript
The first part of the manuscript presents our contributions to optimizing HPC
applications. We focus on reducing the cost of exploring the HPC optimiza-
tion space either through breaking applications into small codelets or adaptively
sampling the performance search space.

In the second part of the manuscript, using alternative floating-point models,
such as Monte Carlo arithmetic, we explore the compromise between numerical
precision and performance. A probabilistic definition of the number of signifi-
cant digits is introduced and used to estimate the accuracy of a computation.
Verificarlo is applied to pinpoint numerical bugs in large HPC codes and as-
sert the impact of reducing the precision in parts of the code. We discuss new
perspectives, in particular algorithms where using a stochastic rounding mode
improves error bounds.

Finally, we examine the challenge of reducing the power consumption of
HPC. In particular, we advocate for sobriety in our usage of computing re-
sources. Computer simulation offers unique possibilities for advancing research,
yet we should be conscious of its energy cost. Instead of always reaching for
more complex simulations, we should find the right fit for our problem.

W

Part I

Reducing the search space
for HPC optimizations

2 E Codelet extractor and replayer

Contents
2.1 Code isolation . 12
2.2 Related work . 13
2.3 CERE: Codelet Extractor and REplayer 17
2.4 Evaluation of CERE 29
2.5 Conclusion . 33

This chapter includes contributions from the following publications and
software projects:

• Pablo De Oliveira Castro, Chadi Akel, Eric Petit, Mihail Popov, and
William Jalby. “Cere: Llvm-based codelet extractor and replayer for
piecewise benchmarking and optimization.” In: ACM Transactions
on Architecture and Code Optimization (TACO) 12.1 (2015), p. 6

• Mihail Popov, Chadi Akel, Florent Conti, William Jalby, and Pablo
de Oliveira Castro. “PCERE: Fine-grained parallel benchmark de-
composition for scalability prediction.” In: Parallel and Distributed
Processing Symposium (IPDPS), 2015 IEEE International. IEEE.
2015, pp. 1151–1160

• Mihail Popov, Chadi Akel, Yohan Chatelain, William Jalby, and
Pablo de Oliveira Castro. “Piecewise holistic autotuning of parallel
programs with CERE.” in: Concurrency and Computation: Practice
and Experience (2017), e4190. issn: 1532-0634. doi: 10.1002/cpe.
4190. url: http://dx.doi.org/10.1002/cpe.4190

• Pablo de Oliveira Castro, Mihail Popov, Chadi Akel, and Yohan
Chatelain. benchmark-subsetting/cere: CERE v0.3.1 release. Ver-
sion v0.3.1. Nov. 2018. doi: 10 . 5281 / zenodo . 5910793. url:
https://doi.org/10.5281/zenodo.5910793

Performance evaluation for optimization, system benchmarking, or compiler
evaluation is time and resource consuming. The expensive cost limits the num-
ber of iterations engineers can perform in a given budget. Different approaches

https://doi.org/10.1002/cpe.4190
https://doi.org/10.1002/cpe.4190
http://dx.doi.org/10.1002/cpe.4190
https://doi.org/10.5281/zenodo.5910793
https://doi.org/10.5281/zenodo.5910793

12 Codelet extractor and replayer

to overcome this limitation have been proposed by the community, such as an-
alytical models [102, 138], machine learning [47, 20], checkpoint-restart [94], or
simulations [180]. An interesting and versatile approach is code isolation [1,
131, 134, 163]. Code isolation reduces benchmarking cost and allows piecewise
optimization of an application.

This chapter presents Codelet Extractor and REplayer (CERE), an open
source framework for code isolation. CERE finds and extracts the hotspots of an
application as isolated fragments of code, called codelets. Codelets can be mod-
ified, compiled, run, and measured independently of the original application.
CERE [18] is available at http://benchmark-subsetting.github.io/cere
under the GNU Lesser General Public License. Many people have contributed
to CERE by reporting problems, suggesting various improvements or writing
actual code. In particular regarding the code development, Chadi Akel (during
an internship at UVSQ and later as a research engineer) and myself wrote the
initial version of CERE. Mihail Popov, during his Ph.D. at UVSQ, significantly
extended CERE to work on parallel OpenMP regions [21, 22]. Yohan Chatelain,
during an internship at UVSQ, improved the memory tracer.

2.1 Code isolation
Usually, in scientific applications, the hotspots represent a small fraction of
the total source lines [122]. Code isolation finds and extracts the hotspots of
an application as standalone fragments of code, called codelets. In our work,
codelets correspond to loops or openMP parallel regions in the original source
code. Codelets can be compiled and replayed independently of the original ap-
plication. For each codelet, the isolation process captures the memory working
set and the relevant machine state such as the cache content to achieve realistic
replays.

Breaking an application into independent codelets provides multiple ben-
efits. Executing isolated codelets instead of whole applications is faster and
enables piecewise evaluation and optimization of an application. Indeed, differ-
ent codelets may expose different performance bottlenecks and react differently
to optimizations. With code isolation they can be individually modified to
evaluate the payoff of new optimizations and tune performance at a fine-grain
level.

Effective code isolation raises multiple challenges. First, to be practical,
isolation must support many programming languages, applications, and opti-
mizations. Second, codelets should be replayable on a variety of target architec-
tures. Third, to achieve accurate performance measures, the memory working
set, cache state, NUMA state and thread placement must be captured and re-
stored before each replay.

CERE is an IR level code extractor framework based on LLVM that targets
representative OpenMP parallel regions or loop nests. Figure 2.1 presents the
full CERE pipeline. CERE takes as an input the source files of an application
or a benchmark suite. All the languages supported by the LLVM front-ends
(C, C++, Fortran, D, etc.) are accepted. The source loops or parallel regions
are outlined and instrumented with profiling probes to identify the applica-
tion hotspots. We filter out short regions that contribute less than 1% to the
execution time. Different invocations of the same codelet may have different

http://benchmark-subsetting.github.io/cere
https://github.com/benchmark-subsetting/cere/blob/master/THANKS

Related work 13

Applications
LLVM IR Region

outlining

Region
Capture

Fast
performance

prediction

Retarget for:
 different architectures
 different optimizations

Change: number of threads, affinity,
runtime parameters

Warmup
+

Replay

Working set
and cache

capture

Generate
codelets
wrapper

Working sets
memory dump

Codelet
Replay

Invocation
&

Codelet
subsetting

Figure 2.1: CERE workflow. Applications are partitioned into a set of codelets,
which may be pruned using different criteria. A set of representative invocations
are selected and captured. The codelets can then be replayed with different
options and on different targets.

performance behaviors, which depend on the working set and cache state of
each invocation. We use a clustering algorithm, presented in section 3.1.2 on
page 37 that analyzes the performance trace of each codelet to find a represen-
tative subset of invocations. The memory, cache, thread and NUMA state of
each selected invocation is then captured and dumped to disk. The output of
this process is a set of representative codelets and invocations, which can be
redistributed, recompiled and replayed on different systems and architectures.
The codelet set can be used as a proxy for original application in optimization
or benchmarking studies.

2.2 Related work
In this section, we review previous works on codelet extraction, working set
capture, cache capture, and practical applications of codelets.

2.2.1 Codelet extraction
A first challenge when isolating codelets is choosing the right granularity. Two
possibilities have been proposed in previous works: assembly isolation and
source code isolation. CERE explores a new level: Intermediate Representa-
tion (IR) isolation.

Assembly isolation [125, 180, 181] extracts codelets as blocks of assembly
instructions. Simpoint [180] successfully speeds up architecture simulation by
sampling a limited number of assembly codelets. Yet assembly isolation is not
practical for performance tuning because the assembly code cannot be recom-
piled with different performance flags or easily retargeted to a new architecture.
The extraction software is tied to a specific instruction set architecture. It is
also difficult to map assembly codelets to source code regions. However, this
approach is language agnostic and resilient to the compiler effect: what you
extract is what is executed.

14 Codelet extractor and replayer

Source code isolation [1, 131, 134, 163] is portable and can be easily used to
tune compiler options [10] or to select the best architecture [15]. Furthermore,
because extraction occurs at source level, before compiler transformations, the
performance information gathered during replay can be easily mapped to the
source high-level constructs. Unfortunately, source code isolation requires a
specific parser and extraction process for each language. Therefore, support-
ing multiple languages is extremely costly because writing a robust extraction
pass for complex languages, such as C++, is technically challenging. Finally,
one must ensure that the source level extraction process does not alter the per-
formance behavior of the original hotspot. Indeed, some transformations used
during source isolation may hinder compiler optimization passes [1, 134].

In our work, we explore code isolation at the IR level which provides a
good trade-off between assembly and source code isolation. We choose to target
the LLVM [129] compiler IR. CERE extraction is therefore tied to the LLVM
compiler, but it supports all LLVM front-ends and back-ends with no extra
engineering cost. Extracting codelets at the IR level is much simpler than at
the source code level which requires parsing complex input languages. It also
facilitates the process of instrumenting the code, capturing the memory and
outlining the codelet thanks to the powerful integrated flow analysis passes as
detailed in section 2.3.

IR codelets provide many performance tuning opportunities. For instance,
the codelet can be replayed using different LLVM optimization passes or ver-
sions, enabling compiler flag auto-tuning. By leveraging the available LLVM
code generation back-ends, codelets can be replayed on different architectures
to facilitate system co-design.

2.2.2 Memory capture and cache warm up
Memory capture raises two challenges: capturing the codelet working set, and
the cache hot set.

Memory capture Before replaying a codelet, the memory state from the
original execution must be restored. This ensures that the replayed execution
will be equivalent to the original one even considering data dependent branching
code.

Multiple techniques exist to checkpoint the original memory state. Code Iso-
lator [131] analyzes the static data flow of the original application to determine
which data structures need to be captured. This method produces small dumps
because only the required data are captured, but cannot deal with pointer alias-
ing. Astex [163] captures the convex hulls of the memory accesses. However, it
does not preserve the data layout information and does not remap the memory
at the same addresses during replay. Therefore,pointer based structures such as
linked lists are not supported.

Codelet Finder [1, 44] takes a full snapshot of the original application ad-
dress space. A full memory dump is very large but handles the pointer aliasing
problem since the full memory is recorded. It also preserves the relative align-
ment and offsets among data structures. Nevertheless, a full snapshot of the
application memory for each codelet can be prohibitive in terms of memory and
replay time.

Related work 15

In CERE, we propose a page level granularity snapshot. Using the memory
protection mechanism we capture the memory pages containing the working
set. During replay, we remap this set of pages at their original addresses. This
ensures that the dump remains small and fast. Furthermore, the replay works
even with complex pointer aliasing, because the memory layout is preserved.

Cache capture Capturing the memory working set of the original execution
ensures that during the replay, the data accessed are the same as during the
original run. However, it is not enough to guarantee that the replay and original
run have the same execution time. Indeed, to faithfully capture the performance
of the original region it is necessary to warm up the system to match as close
as possible the original context. This issue is referred to as the cold start bias.

Usual techniques [118] mitigate cold start bias by modeling the warm up ef-
fects during a window of time preceding the region of interest. Multiple heuris-
tics [53, 97] have been proposed to optimally determine the window’s size.

Two main approaches have been proposed in the literature for cache state
warm up in code isolation. The first approach is to warm up the cache by
running a few executions of the codelet itself [1, 44, 163]. This heuristic proves
to be efficient in many cases [1, 15]. The second, more accurate approach, warms
up the cache by replaying the history of the memory accesses in a simulator [180]
or using a warm up routine [131]. These techniques require tracing memory
accesses which is costly and incurs significant slowdowns [81].

We propose two warm up approaches. The first is an optimistic warm up
strategy that preloads the whole working set into the cache. The second, is a
page memory tracing technique, which warms the cache by replaying memory
access history at the memory page granularity.

2.2.3 Capturing parallel regions
Extending code isolation techniques to multithreaded simulations is difficult
because of the threads interactions. Wenisch et al. [201] and Van Biesbrouck et
al. [194] both propose techniques to accelerate multithreaded simulations. They
both build their model under the assumption that each thread is independent.
Therefore, they do not support explicit threads synchronization.

Perelman [162] applies the SimPoint [181] methodology to parallel appli-
cations using instruction-based sampling. However, Carlson et al. [45] and
Ardestani et al. [28] both show that instructions are not a good proxy for ex-
ecution time in multithreaded programs. Instead, they propose a time based
sampling method.

Carlson et al. [46] propose BarrierPoint, a sampling methodology which de-
tects globally synchronizing barriers in multi-threaded applications. Barrier-
Point estimates total application execution time through detailed simulation
of the most representative inter-barrier regions. Regions representativeness is
defined with micro-architecture independent information and data signatures.
BarrierPoint achieves an average speed up of 24.7 × over the NPB and Parsec
benchmarks with an average error of 0.9%. The speedup is similar to the one
achieved by CERE on parallel applications, yet the accuracy of BarrierPoint
is better. Nevertheless, accuracies are not directly comparable since Barrier-
Point measures accuracy on a functional simulator whereas PCERE measures
accuracy on real hardware.

16 Codelet extractor and replayer

Proposed techniques for sampling parallel applications are similar to our
work in that they extract representative phases from applications and allow
accurate replay. Nevertheless, all proposed techniques must be used in a simu-
lator, whereas our method is more versatile since it produces IR codelets that
can be recompiled and run both on simulators and on real hardware. Another
key difference is that BarrierPoint and the other sampling techniques do not
allow changing the number of threads at replay. Each thread configuration re-
quires a separate capture. Therefore, unlike CERE, they cannot be easily used
to evaluate parallel scalability.

2.2.4 Comparison to related work

Our work builds upon two different lines of research: code isolation and sampled
simulation of programs. Both share the same objective: accelerating perfor-
mance evaluation of programs. Code isolation extracts pieces of a program as
standalone codelets whereas sampled simulation uses a hardware simulator to
replay a small set of representatives phases in a program.

A first set of papers [1, 131, 134, 163] study code isolation. Lee and Hall [131]
introduce the concept of code isolation for debugging and iterative performance
tuning. Their tool, Code Isolator, leverages the Stanford SUIF compiler to
outline and generate codelets. They use Code Isolator on a finite element appli-
cation, LS-DYNA, to quickly evaluate the L1 cache misses of the hotspots. Petit,
Papaure, and Bodin [163] and Liao et al. [134] use code isolation for automatic
kernel tuning and specialization. Akel et al. [1] evaluate the Codelet Finder tool,
developed by Caps Entreprises [44] and study under which conditions codelets
preserve the performance characteristics of the original programs.

Sampled simulation identifies and clusters similar program phases to reduce
simulation time. Lafage and Seznec [125] propose a method to find slices of a
program that are representative for data cache simulation. It uses hierarchi-
cal clustering on two metrics: memory spatial locality and memory temporal
locality. SimPoint [180, 181] identifies similar program phases by comparing
Basic Block Vectors (BBV). Phases are samples of 100M instructions. Sim-
point reduces simulation time by removing repeated phases. BBV are pro-
gram dependent, therefore SimPoint cannot use representatives of one program
to predict another. Eeckhout, Sampson, and Calder [68] extend SimPoint by
matching inter-application phases using microarchitecture-independent features.
SimPoint and its extensions are similar to our work in that they extract repre-
sentative phases from an application. But SimPoint must be used in a simulator,
whereas our method is more versatile since the IR codelets can be recompiled
and retargeted and run both on simulators and on real hardware.

Table 2.1 compares the features of the main code isolation tools on multiple
criteria. First we compare the supported input languages, the isolation level
and the support of indirect memory accesses. Second we consider if the tool
allows replay on real hardware or is tied to a simulator. Finally, we examine
whether the tool attempts to reduce the capture size, the number of working
sets, or the number of representative codelets.

CERE: Codelet Extractor and REplayer 17

CERE Code Isolator Astex C. Finder SimPoint

Support
Language C(++), Fortran C C(++) assembly

Fortran, etc. Fortran Fortran
Extraction IR source source source assembly

Indirections yes no no yes yes

Replay
Simulator yes yes yes yes yes
Hardware yes yes yes yes no

Reduction
Capture size reduced reduced reduced full -
Working set yes manual manual manual yes

Codelet yes (cf. chapter 3) no no no yes

Table 2.1: Feature comparison of code isolation tools.

2.3 CERE: Codelet Extractor and REplayer

2.3.1 IR Capture and Replay Overview
CERE (Codelet Extractor and REplayer) targets the LLVM Intermediate Rep-
resentation. IR provides multiple advantages over source or assembly code iso-
lation techniques as discussed in section 2.2.1.

Because it operates at the IR level, CERE can use any LLVM front-ends. For
example CERE has been tested on all NAS and SPEC 2006 FP programs. While
C and C++ benchmarks used the Clang front-end, Fortran programs used the
GCC gfortran front-end through the dragonegg plugin [174]. CERE also works
on less mainstream languages. For example CERE successfully extracts codelets
from D [24] applications compiled with the LLVM D front-end, LDC.

Table 2.2 presents CERE’s capture and replay process of a selected codelet.
In Step 1, the input program is compiled to LLVM IR.

In Step 2, the region to be captured is outlined in a separate function using
the CodeExtractor LLVM pass. CodeExtractor does a flow analysis to detect
all the live-in and live-out dependencies of the region to extract [144]. This
pass simplifies the codelet extraction process, since it extracts the region code
in its own function. The codelet region is outlined in a new function. Finally,
CodeExtractor inserts a call to the outlined function in the original code. The
dependencies are preserved by passing the live-in and live-out values through
function arguments. CodeExtractor is also the starting point for our portable
memory capture mechanism discussed in section 2.3.5.

Step 3 generates the instrumented binary for memory capture. It inserts
special calls to our capture library before and after the outlined region in the
original application. The calls are used to trigger the memory and cache warm
up state captures, described in sections 2.3.5 and 2.3.6. The instrumented binary
execution generates a set of dump files that can be used during replay to restore
the memory state and to warm up the caches. The aim is to ensure that the
replay context closely mimics the original execution context.

Step 4 is the replay mechanism. It generates a wrapper to directly call the
outlined region. This wrapper performs important steps to restore the original
execution environment, such as variable cloning, cache and memory restoration.

18 Codelet extractor and replayer

Step Output
1 Front-end: Transform the C,

C++, Fortran, D input program
into LLVM Intermediate Represen-
tation (uses Clang, dragonegg, or
LDC).

original:
%0 = load i32* %i, align 4
%1 = load i32* %s.addr, align 4
%cmp = icmp slt i32 %0, %1
br i1 %cmp, ; loop branch here
label %for.body,
label %for.exitStub ...

2 Outline: Outline the region to ex-
tract. Flow analysis is used to com-
pute all live-in and live-out values
which are passed as arguments. (see
section 2.3.4)

define internal void @outlined(i32* %i,
i32* %s.addr, i32** %a.addr) {

%0 = load i32* %i, align 4
...
ret void }

original:
call void @outlined(i32* %i,

i32* %s.addr, i32** %a.addr)

3 Capture: Insert calls to CERE
capture library. Run the instru-
mented binary to capture the run-
time state. (see sections 2.3.5 and
2.3.6)

define internal void @outlined(i32* %i,
i32* %s.addr, i32** %a.addr) {

call void @start_capture(i32* %i,
i32* %s.addr, i32** %a.addr)

%0 = load i32* %i, align 4
...
call void @end_capture()
ret void }

4 Replay: Generate minimal replay
wrapper that calls the outlined re-
gion. Compile and run replay pos-
sibly with new optimization options
or on a different architecture. (see
section 2.3.7)

define i32 @main(i32 %argc, i8** %argv){
; Allocate clone variables
%i = alloca i32
%s.addr = alloca i32
%a.addr = alloca i32*
; Restore arguments and memory
call void @restore(...)
; Call outlined region
call void @outlined(i32* %i,

i32* %s.addr, i32** %a.addr
; Anti-deadcode for live-out values
call void @antideadcode(i32* %i)}

Table 2.2: Codelet capture and replay main steps.

CERE: Codelet Extractor and REplayer 19

gromacs

core:1403 (4.7%)

19.2%

do_longrange:1264 (0.1%)

0%

do_fnbf:232 (0.76%)

78.1%

gromacs

13.5%

13.4%

inl1130:3932 (88.4%)

88.4%
inl1100:3130 (0.6%)

0.6%

inl0100:84 (0.6%)

0.6%

inl1120:3594 (0.6%)

0.6%

core:1403 (4.8%)

19.2%

do_fnbf:232 (2.55%)

78.1%

13.4%

inl1130:3932 (88.4%)

88.4%

Filtering

codelet error (%)

do_longrange 2.3
do_fnbf 1.1
inl1130 0.1
inl0100 10.1
inl1120 4.6
inl1100 7.5
core 2.5

Figure 2.2: (left) CERE call graph, before and after filtering, for SPEC 2006
gromacs. Each node represents a captured codelet. The percentage inside the
node is the codelet’s self time. Edges represent calls to other codelets, the edge
percentage is the time spent in calls to those nested codelets. (right) Replay
percentage error of gromacs codelets using Working Set warmup.

The replay IR code can be compiled with different optimization flags to find the
best performance configuration. Or it can be compiled with different back-ends
to evaluate the performance on multiple targets. The replay process is detailed
in section 2.3.7.

2.3.2 Application partitioning
To find interesting codelets for performance optimization, CERE concentrates
on the application hotspots. In scientific applications, performance is mainly
concentrated on loops. Therefore, CERE considers all the loops of the original
program as potential candidates to be extracted as codelets. For OpenMP appli-
cations, CERE considers instead the parallel regions. Then, CERE profiles the
candidate loops or parallel regions and keeps the ones significantly contributing
to the total execution time.

CERE provides two profiler modes. First, a low overhead sampling profiler
based on the Google Performance Tools library [87]. Second, an instrumentation
profiler, which is slower but more precise.

Despite our efforts to restore the original execution environment through
warm up, code reinlining, and variable cloning (see sections 2.3.6 and 2.3.7),
the codelet replay sometimes does not match the original performance. Those
ill-behaved codelets cannot be used as a performance proxy in benchmarking or
optimization studies. Therefore, CERE runs a sanity check where it replays and
profiles each codelet to ensure that only valid codelets are returned to the user.
The tolerated discrepancy threshold can be configured. Its sensitivity is pre-
sented on figure 2.3. We consider that codelets match the original performance
when the replay error is under 15%.

After collecting profile data, CERE produces an annotated call graph such
as the graph in figure 2.2. This call graph is then pruned by removing regions
contributing for less than 1% to the total execution time. Furthermore, if an
ill-behaved codelet is detected, CERE also removes it from the call graph. When
removing a region from the call graph, we propagate its self time to its parent
codelets. In our example, the time from the three inl removed regions is propa-

20 Codelet extractor and replayer

0

25

50

75

100

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Tolerated Percentage Error

%
 o

f E
xe

cu
tio

n
Ti

m
e

NAS & SPEC mean median

Figure 2.3: Mean and median captured execution time as a function of the
tolerated replay error on the NAS and SPEC 2006 FP benchmarks. The mean
is lower than the median due to the IO-intensive and short kernel benchmarks
described in section 2.4, which skew the distribution.

gated to their caller do_fnbf. In the example of figure 2.2, since all the codelets
match the original execution time, none would be removed.

The above selection algorithm extracts all the well-behaved codelets whose
contribution to the program execution time is over a given threshold. To trade
coverage for replay time, for example, when using codelets to accelerate system
benchmarking, the user wants the minimal set of codelets that can be quickly
replayed while simultaneously capturing the application performance accurately.
For this purpose, CERE includes a codelet selector that uses integer linear
programming to find an optimal codelet set. It is similar to the tuning selection
algorithm proposed by Pan and Eigenmann [157]. In the example in figure 2.2
it would drop codelets do_fnbf and core, losing less than 7.35% coverage but
significantly reducing the replay cost.

2.3.3 Partitioning OpenMP programs
In OpenMP programs, the application concurrency is described through a set
of compiler directives and library calls. For instance, a parallel region can be
declared using the directive #pragma omp parallel. Figure 2.4 shows a simple
C OpenMP program where each thread prints its thread identifier.

In most compilers, including GCC and LLVM, parallel directives are ex-
panded in the front-end before doing any code optimization. In LLVM the first
step in OpenMP expansion is outlining parallel regions. To outline a region
the compiler moves the region code inside a separate function. The compiler
preserves data dependencies by passing live-in and live-out values through the
outlined function arguments. Then the original region is replaced by a call that
spawns multiple threads running the outlined function.

Figure 2.4 shows how LLVM outlines the region code in a microtask func-
tion. kmpc fork, an OpenMP Runtime library function, spawns a pool of
threads. Then, every thread runs the outlined microtask function which de-
scribes the region parallel work.

Multithreaded execution is a well known source of nondeterminism: race
conditions and synchronization delays between threads may change the order
of the operations from one execution to the next. In particular, when multiple

CERE: Codelet Extractor and REplayer 21

void main()
{
 #pragma omp parallel
 {
 int p = omp_get_thread_num();
 printf("%d",p);
 }
}

C code

Clang OpenMP
front end

define i32 @main() {
entry:
...
call @__kmpc_fork_call @.omp_microtask.(...)
...
}

define internal void @.omp_microtask.(...) {
entry:
 %p = alloca i32, align 4
 %call = call i32 @omp_get_thread_num()
 store i32 %call, i32* %p, align 4
 %1 = load i32* %p, align 4
 call @printf(%1)
}

LLVM simplified IR

Parallel region
=

codelet

Thread execution model

Figure 2.4: Clang outlines each C parallel region as an independent IR func-
tion:omp_microtask. The call to kmpc_fork spawns a pool of threads that runs
the outlined microtask.

threads are running, each one may be executing a different region of code. This
makes it difficult to isolate a particular region of code.

To avoid thread nondeterministic issues, parallel codelets start at the be-
ginning of a parallel region and finish at the end of the region. Indeed, the
beginning of an OpenMP region is a global synchronization point where all
threads positions in the program are known. Capturing codelets at the start of
the region has another advantage: it enables changing the number of threads
at replay. Indeed, the capture happens just before the call to kmpc fork that
decides how many threads are spawned.

Lock support OpenMP uses futex (fast userspace mutexes) calls to imple-
ment the lock support on Linux. Each futex requires a kernel space wait queue.
System calls are used to request operations on the wait queue from user space.
Our memory capture only saves the user space process memory, therefore it
does not preserve the state of the futex wait queue.

To fully support replay of codelets using OpenMP lock primitives, a special
lock capture step is required that detects all the locks accessed by a codelet.
This is achieved by intercepting calls to the lock OpenMP library during capture.
Before replaying the codelet, the replay wrapper takes care to properly initialize
all the required locks in kernel space.

2.3.4 Codelet checkpoint-restart strategy
Traditional checkpoint techniques [65] can save the state of a program at any
given point. A full dump of the memory and of the register banks including the
program counter allows to restart the program after capture. Yet, this approach
requires that the replayed code keeps the same code layout and uses exactly the
same registers as during the capture. Traditional checkpointing is therefore
not suited to test compiler optimizations which may remap registers or change
code layout. Also, it limits codelet portability to architectures sharing the same
Application Binary Interface (ABI) and register layout.

Codelet based piecewise iterative optimization and architecture selection re-
quire a portable checkpoint-restart strategy. The outlining pass (Step 2 in Ta-
ble 2.2) wraps and isolates the region of interest inside a separate function. Be-
cause the region now follows a function call, we can guarantee that the accessed

22 Codelet extractor and replayer

data is either in memory or is passed as arguments to the outlined function.
This enables us to simplify the memory capture process: only the memory

and arguments to the outlined function must be recorded. Also, the outlined
function prototype acts as a clean interface that enables us to recompile and
apply transformations to the codelet before replay. Because no assumptions
about the register layout are made, codelets are portable across architectures
that do not change the memory layout, such as word size and endianness. Our
tests have shown, for example, that our codelet replayer allows to recompile
changing optimization flags, capturing on -O0 but replaying on -O3, or changing
architectures, capturing on Core Duo and replaying on Atom.

Codelet portability has been extensively tested and works across six different
Intel CPU generations (Atom, Core 2 Duo, Nehalem, Sandy Bridge, Ivy Bridge,
and Haswell) running various 64-bit Linux distributions on the NAS and SPEC
codelets. Codelet portability has also been tested between different ARMv8
architectures (ARM big.LITTLE and ThunderX2). A codelet repository for
ARMv8 is available [14].

We also tested codelet portability between an Intel Core i3 running 32-bit
Linux and an embedded target, an ARM1176JZF-S on a Raspberry Pi Model
B+ running 32-bit Linux. This test was conducted on a simple benchmark
summing the elements of a large integer array. The capture was performed on
the Core i3 system and could be faithfully replayed on the ARM embedded
target.

In a second experiment the capture was done on the same Intel Core i3,
but this time the system was 64-bit Linux; therefore some dumped pages were
over the 32 bit address space limit. The replay on the ARM system failed
because addresses over 32 bits overflowed. This example illustrates the limits
of CERE: portability does not work out of the box for systems with different
memory address sizes. Nevertheless, in this case we were able to overcome this
limitation by manually remapping the memory dump to fit the 32 bit address
space by masking the address’ upper bits. After the manual remapping, we were
able to replay the benchmark in the ARM1176JZF-S processor.

2.3.5 Capturing the memory
CERE captures codelet’s working sets by intercepting accesses to the memory
pages. First, CERE guarantees that all the memory locations accessed by the
original program are dumped. Second, because only the touched pages are
saved, the memory dump is the smallest page-granularity over-approximation.
Therefore, it can be easily stored and distributed.

Figure 2.5 shows the memory dump process. First, all the memory pages of
the process are protected and a special segmentation fault handler is set. Each
time a protected page is accessed, a segmentation fault occurs and triggers the
handler. The handler dumps the touched memory page to disk and unprotects
it before continuing the original program execution.

It is important to protect all newly allocated memory. If memory is allocated
but returned to the user unprotected, the tracer misses the access to the memory
segment. We catch all calls to the memory allocation library, such as malloc,
realloc, or memalign using the LD_PRELOAD mechanism. However, some special
memory sections must not be protected, such as the pages containing the code of

CERE: Codelet Extractor and REplayer 23

region
to capture

protect static and currently allocated
process memory (/proc/self/maps)

intercept memory allocation functions
with LD_PRELOAD

1 allocate memory

2 protect memory and return
to user program

segmentation
fault handler

1 dump accessed memory to disk

2 unlock accessed page and return
to user program

a[i]++;

memory
access

a = malloc(256);

memory
allocation

Figure 2.5: The memory dump process operates at page granularity. Each page
accessed is dumped by intercepting the first touch using memory protection
support.

94

27

106

26
51

1

367

117
131

46

89

8

472

101 96

22

0

50

100

150

200

bt cg ep ft is lu mg sp

Si
ze

 (M
B)

full dump (Codelet Finder) page granularity dump (CERE)

Figure 2.6: Comparison between the page capture and full dump size on NAS.A
benchmarks. CERE page granularity dump only contains the pages accessed by
a codelet. Therefore, it is much smaller than a full memory dump.

24 Codelet extractor and replayer

the tracing library and the segmentation fault handler itself. Therefore CERE
carefully avoids protecting its own pages and system specific memory segments.

Figure 2.6 compares the average dump size for the NAS benchmark codelets
for two techniques: CERE’s page granularity dump and Codelet Finder’s full
dump. As can be seen, the page granularity dump is 3 to 51 times smaller than
a full dump. With this technique CERE extracts light portable codelets from
industrial application with large working sets.

CERE captures the memory state at a page level granularity by only saving
touched pages. After protecting the whole target application memory, the OS
raises a signal when a memory page is touched. This signal is caught by CERE’s
handlers which unprotect and dump the memory page associated with the signal.

NUMA Aware Warm up Due to the node local first touch policy in Linux,
a page is mapped to the first thread accessing it, and therefore to the corre-
sponding NUMA domain. To guarantee that the codelet replay has the same
behavior as the original region, we must ensure that pages are mapped to the
same NUMA domains as they have been in the original run. The problem is
that pages are not necessarily bound to the same NUMA domains across the
different thread affinities. For instance, scatter runtime strategy maximizes the
number of NUMA domains while compact minimizes it.

To solve this issue, we enhance the page capture by saving, for each page,
the first thread that touches it. During parallel replay, before replaying the
codelet code, each thread touches the pages that it has saved at the capture.
Hence, pages are mapped to the NUMA domain of the thread which is the first
to touch them.

Multithreaded capture The memory must not be modified while we at-
tempt to protect it. In multithreaded capture, threads have to be stopped
before the tracing thread protects memory pages. Otherwise, CERE can at-
tempt to protect a segment which is no longer valid. Indeed, a race condition
exists: a thread may protect a page which has since been deallocated by another
running thread. To avoid the issue the tracing thread should be able to stop all
the other threads.

A first solution would be to send a SIGSTOP signal to the other threads. Yet,
sending SIGSTOP to a process stops all its threads, including the thread which
actually sent the signal. This will not work since the tracing thread will also be
stopped hanging the capture. A second solution would be to use functionalities
provided by the Oracle Solaris OS thr_suspend and thr_continue or Window
OS ResumeThread and SuspendThread which allow stopping and restarting each
individual thread. Unfortunately, the POSIX standard does not implement
these functions. It is possible to simulate stop/restart functionalities by using
a shared mutex, but this requires knowing the spawned threads in advance and
modifying their code to include calls to the mutex. Since the CERE capture
library does not make assumptions about the underlying program, we cannot
apply this solution.

To address this challenge, we leverage the ptrace mechanism. Ptrace is a
system call which allows a process called tracer to monitor another process
called tracee. Tracer can examine and change the tracee’s memory and reg-
isters. To follow a thread, the tracer must attach it with ptrace. Since this

CERE: Codelet Extractor and REplayer 25

command is per thread, the tracer must attach each thread of the tracee. (see
block Attach all threads in Fig. 2.7). So the capturing process and the ap-
plication respectively act as tracer and tracee.

When a signal is delivered to the tracee, the kernel stops the process and
sends the signal to the tracer. The ptrace API provides a mechanism called
signal injection and suppression: the tracer can choose to inject or sup-
press the signal. If the signal is injected, it is sent to the tracee. If the signal
is suppressed, it is lost and the tracee remains stopped. We use this mecha-
nism to capture the signal SIGSEGV raised when a thread touches a protected
page. Protecting or unprotecting tracee’s memory pages cannot be done from
the tracer since a process can only modify its own memory.

The code for dumping and unprotecting a page is injected by the tracer in
the tracee memory with ptrace. Then, the tracer resumes the tracee to execute
the injected code, a SIGTRAP call at the end of the injected payload returns the
focus to the tracer. (See block Memory capture Fig. 2.7)

Figure 2.7 details the capture which is composed of four successive phases:

1. Attach all threads: the tracer attaches tracee threads with the ptrace
attach command. Then it sends a SIGSTOP to each tracee to stop it.
The tracer checks that the SIGSTOP has been received for each tracee.
Once all the tracee threads are stopped the tracer is ready for the second
phase.

2. Memory Protection Mechanism: the tracer protects the whole memory
of the tracees by injecting a protecting assembly payload and restarts
the threads. If a thread was already stopped before receiving the tracer
SIGSTOP, the queued SIGSTOP signal must be cleared at restart to avoid
a deadlock.

3. NUMA first touch and page trace starts once all the memory is pro-
tected. It captures the tid of the first thread to touch each page. It also
keeps a trace of the most recently touched pages that is used to warm up
the cache state at replay.

4. Memory capture starts when the region to capture is reached. CERE
reprotects the whole memory and starts executing the region. It dumps
all touched pages that are accessed until the region ends.

2.3.6 Capturing the cache state
We address the problem of cache warm up for codelet replay previously discussed
in section 2.2.2. CERE includes three warm up strategies: Cold, Working Set,
and Page Trace.

The Cold strategy does not do any warm up before executing the codelet.
It is therefore inaccurate but has no overhead. It can be used on long codelets
for which the cold start bias is negligible.

The Working Set strategy prefetches the full working set of the codelet before
its execution. It is an optimistic strategy that assumes that the codelet working
set was already in cache in the original execution.

The Page Trace strategy mitigates cold start bias by replaying a memory
trace at a page level granularity. It is less accurate than a full memory trace

26 Codelet extractor and replayer

protect all memory

NUMA
first touch

+
page trace

wait_for_full_stop

inject_protect_code

attach_to_cloned_threads
stop_all_threads

clone()

SIGSTOP to
each thread

main()

 memory
access

 (protected
page)SIGSEGV

inject_capture_code

Acknowledgement*

resume_all_threads

PTRACE_SYSCALL
 to each thread

SIGTRAP

ptrace_syscall

wait_thread

wait_thread

TRACEETRACER

unprotect
dump
sigtrap

} Memory
Protection
Mechanism

(MPM)

} MPM

Start of codelet to capture

SIGTRAP

Memory
capture

Attach all
threads

Figure 2.7: Multithreaded capture mechanism with ptrace. Capture is split into
two distinct processes: the CERE capturing method as the tracer the studied
application as the tracee.

for (i=0; i < size; i++)
 a[i] += b[i];

... ...

array a[] pages array b[] pages

21 22 23 50 51 52...

 pages addresses

21 5051 20

46 17 47 18 48 19 49

22

...

Reprotect 20

memory

{ {

FIFO
(most recently unprotected)

warmup page trace

Figure 2.8: Cache page tracer on a simple codelet adding two arrays. Each page
access is logged. Recently unprotected pages are kept in a FIFO with N slots
(here N = 4). Once evicted from the FIFO, the pages are protected again.

CERE: Codelet Extractor and REplayer 27

lu

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50 55 60
Tolerated Error (%)

%
 o

f E
xe

cu
tio

n
Ti

m
e

cold (no warmup) working set page trace

Figure 2.9: Comparison of the three cache warm up techniques included in
CERE on NAS codelets. The plot shows the percentage of execution time as
a function of the replay error. Page Trace and Working Set warm up achieve
the best results. Page Trace is more accurate than Working Set on the LU
benchmark.

CERE ATOM 3.25 PIN 1.71 Dyninst 4.0
cg.a 19.4 98.82 222.67 896.86
ft.a 24.1 44.22 127.64 1054.70
lu.a 62.4 80.72 153.46 >>301.4
mg.a 8.9 107.69 168.61 989.53
sp.a 73.2 67.56 93.04 >>203.66

Figure 2.10: CERE capture overhead. We measure the slowdown of a full
capture run against the original application run. (The overhead takes into
account the cost of writing the memory dumps and logs to disk and of tracing
the memory accesses during the whole execution.). We compare to the overhead
of other memory tracing tools as reported by Gao et al. [81]. Gao et al. did not
measure bt, is, and ep.

28 Codelet extractor and replayer

warm up, but much faster. It provides a good trade-off between cost of codelet
capture and replay accuracy. The technique is similar to the page tracing tech-
nique in [42].

Our page tracer is implemented on top of the memory dump process de-
scribed in section 2.3.5: all the memory pages are protected, and a special seg-
mentation fault handler intercepts accesses to memory. The difference is that
unlike the memory dump in which only the first touch to a page is important,
the page tracer should capture all the memory accesses to a page.

An exact, but costly, technique involves reprotecting each page after each
access. Because this page is immediately reprotected, further accesses to the
page will provoke a segmentation fault and will be logged by the tracer. The
slowdown is too high for our purposes.

To reduce the cost of the technique, we keep the most N recently accessed
pages unprotected. The tracer uses a FIFO to track the recently accessed pages.
Each time an access to a page is detected, the page is unprotected and added to
the FIFO. The oldest page is popped from the FIFO, reprotected, and added to
the page access log. Figure 2.8 illustrates this approach on a codelet that adds
two arrays together.

If a codelet simultaneously accesses less than N separate memory streams,
the FIFO ensures that a page remains unprotected for all the consecutive
streamed accesses. Assuming a stride-one access, the page tracer handler is
only invoked every 4096 byte (for 4K pages). Therefore, we choose N higher
than the number of separate memory streams accessed by most code regions.
Kashnikov et al. [10] show that most application loops use less than 16 simulta-
neous streams. In our experiments we choose N = 64. Nevertheless, by keeping
the most recent N pages unprotected, our trace is less accurate. In the code of
figure 2.8 for instance, each cell of array a is accessed twice (it is first read then
written to), but the page tracer only sees the first access. When interpreting the
trace, one must keep this inaccuracy in mind: the trace presents which pages
were accessed but neither how many times nor the precise ordering.

Figure 2.9 compares the three warm up techniques implemented in CERE on
the NAS benchmarks. The tolerated error is the maximum percentage difference
between the original execution time and the replayed execution time. The plot
shows the percentage of execution time of NAS codelets replayed with an error
smaller than the tolerated error. For example, if we use the Cold strategy, 70%
of the execution time can be replayed with an error under 15%.

We observe that the Working Set and Page Trace strategies significantly
improve the replay accuracy. On the NAS codelets, the Page Trace strategy
is slightly better than the Working Set one. The improvement comes from LU
codelets whose irregular accesses are better captured by the Page Trace warm
up.

Figure 2.10 shows the overhead of the capture run for the NAS benchmarks.
For each benchmark we compute the slowdown between the original run-time
and a full capture run. This measure includes initialization of the capture
library, writing the dumped pages and the memory trace logs to disk for all the
codelets in the application. IS is particularly slow because one of its codelets
accesses memory randomly. This rapidly fills the pages FIFO and slows down
the tracer. Figure 2.10 also compares CERE capture cost with the overhead of
other memory tracing tools. CERE overhead is similar to ATOM 3.25 overhead
and lower than PIN 1.71 and Dyninst 4.0 overhead.

Evaluation of CERE 29

2.3.7 Replay
Once the memory and cache state are captured, a codelet can be replayed.
Because codelet replay is fast, it is useful to quickly evaluate the impact of
moving to a different architecture or changing compiler optimizations.

To replay a codelet, CERE generates the special wrapper shown in Step 4
of Table 2.2. First, it allocates clone variables for the input and output flow
dependencies to the outlined region. Second, it restores memory and cache
state. Finally, it calls the outlined region.

A first remark is that the outlined region results are not used when returning
from the call to the codelet. Therefore, LLVM dead code elimination pass is free
to fully optimize by removing this call. Clearly that is not our purpose. There-
fore, during replay we insert, for each live-out variable, a special antideadcode
call. It is an empty extern function which forces LLVM to keep the codelet’s
code, even when using highly aggressive optimization levels such as -O3.

A second remark is that the outlining compilation pass dereferences the in-
put and output dependencies. By passing the variables by reference, it is easy to
preserve the values modifications during the codelet execution. This is a classic
technique in code outliners [131, 134] which has the unfortunate side effect of
disabling many compiler optimizations. In many codelets, dereferencing makes
codelet replay slower and therefore unfit to be used as performance proxies of
the original code. We solve this problem in three steps. First, we tag each deref-
erenced pointer with the IR attribute NoAlias which informs LLVM that the
dereferenced pointer is not aliased. This is known because the extra dereference
is created by CERE outliner and used only once during replay. Second, we tag
the outlined function itself with the attribute AlwaysInline which forces LLVM
to reinline the function in the replay wrapper. Third, LLVM alias analysis op-
timization pass removes the extra layer of dereference. In section 2.4 the effect
of reinlining and marking cloned variables as NoAlias are measured. These two
techniques improve replay accuracy in eleven applications without degrading
the other benchmarks

One could think that the outlining step is unnecessary since it is reverted
later on by LLVM inliner pass. But as explained in section 2.3.4, the outlining
step guarantees that CERE finds a safe checkpoint to capture the context just
before a procedure call.

Once the replay wrapper is generated, it is compiled and possibly optimized
depending on the optimization flags selected by the user. To generate the final
replay binary, CERE uses a custom link script, that reserves the virtual memory
segments occupied by the working set pages during the memory capture. This
step is needed so that CERE can preserve the original memory layout.

2.4 Evaluation of CERE
We evaluate CERE capture coverage and replay accuracy on the NAS 3.0 serial
benchmarks and the SPEC 2006 FP benchmarks. All the benchmarks in both
test-suites are used in our evaluation, therefore CERE was tested on twenty-six
different benchmarks in total. NAS benchmarks were tested on class A and B
data sets. SPEC benchmarks were tested on ref data sets.

The experiments were performed on the machines described in table 2.3.

30 Codelet extractor and replayer

Atom Core 2 Nehalem Sandy B. Ivy B. Haswell

CPU D510 E7500 L5609 E31240 i7-3770 i7-4770
Frequency (GHz) 1.66 2.93 1.86 3.30 3.40 3.40
Cores 2 2 4 4 4 4
L1 cache (KB) 2×56 2×64 4×64 4×64 4×64 4×64
L2 cache (KB) 2×512 3 MB 4×256 4×256 4×256 4×256
L3 cache (MB) - - 12 8 8 8
Ram (GB) 4 4 8 6 16 16

Table 2.3: Test architectures.

They belong to six different Intel CPU generations (Atom, Core 2 Duo, Nehalem,
Sandy Bridge, Ivy Bridge, and Haswell) and possess quite distinct memory
hierarchies. These machines were selected to validate that CERE replay process
is portable across architectures.

We compared the replay times of the NAS codelets with memory captures
done on Core 2 and Haswell and observed no difference. We conclude that the
architecture used for capturing the memory has no significant impact on replay
accuracy. Yet for completeness, the reader should note that the final memory
capture dumps used in the following experiments were performed on the Core
2 machine for the NAS benchmarks and on Haswell for the SPEC benchmarks.

The experiments were performed with CERE v0.1.0. C and C++ bench-
marks were compiled with Clang 3.3 and Fortran benchmarks were compiled
with GCC 4.6 through dragonegg.

As discussed in section 2.3.2, we consider that a codelet is accurately replayed
if its replay performance is within 15% of the original execution time.

Performance is measured using the Time Stamp Counter which provides
a precision around 200 cycles. To ensure that the error upper bound due to
measurement noise remains approximately 10% for all codelets, we removed
codelets whose execution time was less than 2000 cycles per invocation.

Figure 2.11 shows for the NAS and SPEC 2006 FP benchmarks the per-
centage of execution time captured by codelets and the percentage of execution
time that could be accurately replayed. On average, the extracted codelets cover
97.3% of the execution time in NAS and 76.6% in SPEC.

On NAS, both coverage and replay accuracy are very high. MG matching
is a bit lower (65.1%) than the other benchmarks because of two borderline
codelets with replay errors at 16.8% and 18.5%. With a tolerated error of 20%,
we would have reached 95% coverage.

NAS codelets were replayed in two different architectures to show that CERE
reliably supports multiple architectures. The small differences in coverage be-
tween Haswell and Core 2 are due to the changes in contribution of codelets
to the execution time, for example CG spends relatively more time on I/Os on
Haswell architecture.

SPEC FP results are evaluated on the Haswell architecture. Eleven out of
eighteen benchmarks have high coverage and replay accuracy, over 75%. Here
is a list of the problems affecting the seven remaining benchmarks:

sphinx3, wrf, povray, and calculix have low coverage because most of the
time is spent in I/O operations. The current version of CERE does not capture

Evaluation of CERE 31

Core2 Haswell

0

25

50

75

100

N
AS.A

lu cg mg sp ft bt is ep lu cg mg sp ft bt is ep

%
 o

f E
xe

c.
 T

im
e

accurate replay codelet coverage

Haswell

0

25

50

75

100

SPEC
FP06

ga
mes

s

sp
hin

x3
de

alI
I

wrf

po
vra

y

ca
lcu

lix
so

ple
x

les
lie3

d
ton

to

gro
mac

s

ze
us

mp
lbm milc

ca
ctu

sA
DM

na
md

bw
ave

s

ge
msfd

td

sp
ec

ran
d

%
 o

f E
xe

c.
 T

im
e

Figure 2.11: Evaluation of CERE on NAS and SPEC FP 2006. The Coverage is
the percentage of the execution time captured by codelets. The Accurate Replay
is the percentage of execution time replayed with an error less than 15%.

NAS.A SPECFP06

0

25

50

75

100

H
aswell

lu cg mg sp ft bt is ep

ga
mes

s

sp
hin

x3
de

alI
I

wrf

po
vra

y

ca
lcu

lix
so

ple
x

les
lie3

d
ton

to

gro
mac

s

ze
us

mp
lbmmilc

ca
ctu

sA
DM

na
md

bw
ave

s

ge
msfd

td

sp
ec

ran
d

%
 o

f E
xe

c.
 T

im
e

base reinlining reinlining+noalias

Figure 2.12: Percentage of execution time accurately replayed (error < 15%)
on the NAS and SPEC FP benchmarks with different replay configurations.
Reinlining and explicitly marking cloned variables as NoAlias improve replay
accuracy in eleven benchmarks.

32 Codelet extractor and replayer

1 2 4 8 16 32
Threads

0

1

2

3

4

5

6

Ru
nt

im
e

cy
cl

es

1e8 SP compute rhs

Real
Predicted

Figure 2.13: Real vs. PCERE execution time predictions on Sandy Bridge for
the SP compute rhs codelet

codelets performing I/O because the dump does not preserve file descriptors
state. However, 100% of captured codelets match.

gamess and dealII have low coverage because most of the performance is
spent in loops taking less than 2000 cycles, which were not considered.

gamess has low matching because the only remaining codelet, covering 40%
of the execution time, is not accurately replayed. It is due to a warm up bug
which is being investigated.

calculix has low matching because of a borderline codelet isortii which has
a replay error of 16% but accounts for 10% of the running time. It is a sort
function which is very sensitive to warm up effects.

soplex has low matching because CERE fails, due to a capture bug, to replay
its main codelet covering 47.4% of the execution time.

Figure 2.12 shows that the reinlining and NoAlias-tagging performed during
the replay compilation pass are beneficial in 11 benchmarks. Overall CERE
coverage and accuracy are high in both NAS and SPEC benchmarks, showing
that CERE codelets can be efficiently used as performance proxies for many
applications.

CERE allows capturing OpenMP multithreaded programs and replay them
with a different number of threads. Popov et al. [22] shows that CERE replay
accuracy on NAS parallel benchmarks is high. As an example, in figure 2.13
we compare the real and predicted execution time on SP compute rhs parallel
codelet.

CERE has higher replay accuracy than the state of the art code isolator
tool, Codelet Finder. On NAS, Codelet Finder accurately replays 69% [1] of
the execution time, whereas CERE replays 90.9%. On SPEC, Codelet Finder
has very low replay accuracy or fails to extract codelets for many benchmarks
(the 2013 version of Codelet Finder hangs on gamess, gromacs, cactus, calculix,
tonto, specrand, and wrf), whereas CERE accurately replays 66.3% of the SPEC
execution time.

CERE includes a report generator that automatically captures the execu-
tion traces, selects representative invocations and computes coverage and re-
play accuracy of a given set of benchmarks. The user clicks on any captured
codelet in the call graph to see its invocation clustering and replay accuracy

Conclusion 33

statistics. The reports for all NAS and SPECG benchmarks can be viewed at
http://benchmark-subsetting.github.io/cere/.

2.5 Conclusion
CERE is an LLVM based Codelet Extractor and Replay framework. It finds and
extracts the hotspots of an application as codelets. Codelets can be modified,
compiled, run, and measured independently of the original application. Code
isolation reduces benchmarking cost and allows piecewise optimization of large
HPC applications.

In this chapter we have focused on the technical foundations of CERE and
its capture and replay mechanisms. We have demonstrated that CERE codelets
are a good proxy for HPC optimization since they accurately replay 66.3% of
the SPEC benchmarks.

In section 3.1 of the next chapter, we will show that similarities across
codelets can be taken advantage of. By grouping codelets into a small num-
ber of similar classes, we further reduce the cost of HPC optimization.

http://benchmark-subsetting.github.io/cere/

3 E Reducing HPC search space

Contents
3.1 Exploiting codelet similarities 36
3.2 Adaptive sampling the performance design space . . 46
3.3 Conclusion . 54

This chapter includes contributions from the following publications:

• Pablo de Oliveira Castro, Eric Petit, Asma Farjallah, and William
Jalby. “Adaptive Sampling for Performance Characterization of Ap-
plication Kernels.” In: Concurrency and Computation: Practice and
Experience (2013). issn: 1532-0634. doi: 10.1002/cpe.3097

• Pablo de Oliveira Castro, Eric Petit, Jean Christophe Beyler, and
William Jalby. “ASK: Adaptive Sampling Kit for Performance Char-
acterization.” In: Euro-Par 2012 Parallel Processing - 18th Interna-
tional Conference. Ed. by Christos Kaklamanis, Theodore S. Pap-
atheodorou, and Paul G. Spirakis. Vol. 7484. Lecture Notes in Com-
puter Science. Springer, 2012, pp. 89–101. isbn: 978-3-642-32819-0

• Pablo de Oliveira Castro, Yuriy Kashnikov, Chadi Akel, Mihail Popov,
and William Jalby. “Fine-grained Benchmark Subsetting for System
Selection.” In: Proceedings of Annual IEEE/ACM International Sym-
posium on Code Generation and Optimization. ACM. 2014, p. 132

An accurate HPC performance model captures all interactions among the
system’s elements such as: multiple cores with an out-of-order dispatch or com-
plex memory hierarchies. Building analytical models is increasingly difficult
with the complexity growth of current architectures. Instead, one often em-
pirically measures the performance by running a benchmark application under
different settings, which we will call factors.

This benchmarking can be expensive. First, HPC applications have often
large code bases and long running times; so measuring a single run can be
expensive. Moreover, as the number of considered factors grows – architecture,
cache levels, problem size, number of threads, thread mappings, and access
patterns – the size of the design space explodes and exhaustively measuring

https://doi.org/10.1002/cpe.3097

36 Reducing HPC search space

each combination of factors becomes infeasible. To mitigate the cost of the
design space exploration, we propose two complementary approaches in this
chapter.

Section 3.1 shows how breaking an application into codelets using the CERE
framework presented in chapter 2 can speedup this process. The key idea is
to minimize redundancy inside an application or benchmark suite. Instead of
measuring the whole application; we select a minimal set of codelets that capture
its performance behavior and use it as a proxy for doing the measures.

Section 3.2 presents a second approach for reducing the factor combinatorial
explosion. We sample only a limited number of factor combinations. From the
sampled points, we build a surrogate performance model to study, predict, and
improve architecture and application performance. The factors combinations
are chosen carefully through various adaptive sampling strategies that minimize
the model error while keeping the number of measures small.

3.1 Exploiting codelet similarities
In this section, we exploit similarities between codelets to find a minimal set of
benchmarks that faithfully capture the original HPC application behavior.

We address two sources of redundancy:

• Multiple invocations: Codelets that are repeatedly invoked with the
same context in an application lifetime, have the same running time for
each invocation. In applications where a single codelet is called thousands
of times, measuring only a few invocations achieves significant gains in
benchmarking time.

• Similar computation kernels: Benchmark suites share many similar
codelets: simple ones, like set-to-zero or memory copy loops, and more
complex ones, like Single-precision real Alpha X Plus Y (SAXPY) loops.
There is no need to measure multiple copies of the same code.

Our hypothesis is that codelets from the same cluster share similar perfor-
mance features and should react in the same way to architecture change or opti-
mizations. For example, memory-bound codelets will benefit from faster caches,
whereas highly vectorized codelets will benefit from wider vectors. Therefore,
by measuring a single representative per cluster we can extrapolate the perfor-
mance of all its siblings.

Using this method we achieve significant speedups in benchmarking time.
First, because only one benchmark per cluster is executed, and second, because
it uses fewer invocations than the original application.

3.1.1 Background on benchmark reduction methods
A first set of papers study similarities among programs, in order to uncover hid-
den redundancies or predict performance. Vandierendonck and Bosschere [195]
analyze SPEC CPU 2000 execution time. They group applications according to
their performance bottlenecks, showing that SPEC CPU 2000 contains redun-
dant benchmarks. Hoste et al. [104, 105, 106] use microarchitecture-independent
metrics to build a performance database that is used to predict performance of

Exploiting codelet similarities 37

new programs. Phansalkar et al. [164] use a similar approach with hardware
performance counters and statistical methods to analyze the redundancy of the
SPEC CPU 2006 benchmark suite. Compared to the whole benchmark suite,
6 integer programs and 8 floating point programs capture the weighted average
speedup with an error of 10% and 12% respectively. Bienia et al. [34] study
redundancy between SPLASH-2 and PARSEC applications with statistical and
machine learning methods They use execution-driven simulation with the Pin
tool to characterize program’s workloads and collect a large set of metrics. They
use Principal Components Analysis to improve the original feature space and
hierarchical clustering to find redundancies between applications.

A second set of papers discusses benchmark reduction methods for speeding
simulation time. Citron et al. [51] survey 173 papers from ISCA, Micro, and
HPCA conferences and criticize methods that only use a subset of applications
from the SPEC CPU benchmark suite. They demonstrate how projecting per-
formance of a subset on the whole benchmark suite can bias speedups and yield
incorrect conclusions. Contrary to existing approaches, our subsetting method
does not remove entire applications from a benchmark suite, but only removes
redundant fragments. Despite reducing the total time required for the bench-
mark suite evaluation, our method keeps the important performance information
from the whole suite.

Lafage and Seznec [125] propose a method to find slices of a program that are
representative for data cache simulation. It uses hierarchical clustering on two
metrics: memory spatial locality and memory temporal locality. SimPoint [180,
181] is a tool which identifies similar program phases by comparing Basic Block
Vectors (BBV). Phases are samples of 100M instructions. BBV are program
dependent, therefore SimPoint cannot use representatives of one program to
predict another. In constrast, our method can take advantage of similarities
across different applications. We show in Section 3.1.6 that exploiting inter-
applications redundancies reduces the number of representatives while preserv-
ing accuracy. Eeckhout et al. [68] extend SimPoint by matching inter-application
phases using microarchitecture-independent features. SimPoint and its exten-
sions are similar to our work in that they extract representative phases from an
application. But unlike CERE, SimPoint can only be used within a hardware
simulator.

3.1.2 Clustering invocations of the same codelet
Inside an application, the same codelet may be called multiple times. In many
codes two invocations of the same codelet may have different execution times.
This is due to the different working sets or initial conditions.

For example, the codelet make_ft@shell2.F90:1133 extracted from tonto
is one of the steps of a specialized Fast Fourier Transformation. In the original
application, this loop is called 3587 times with different workloads. Figure 3.1a
shows its execution trace. A cluster analysis of the invocations reveal that they
can be sorted into 4 performance behaviors, which are represented with different
colors in the figure. Other codelets such as flux_lam@flux.f:58 extracted from
bwaves, have a constant workload size but the first invocation is slower because
of cache warmup effects.

To accurately replay a codelet, we must capture each different invocation
state. When the number of invocations is high, this process becomes costly

38 Reducing HPC search space

0e+00

2e+07

4e+07

6e+07

8e+07

0 1000 2000 3000
invocation

C
yc

le
s

replay

(a) SPEC tonto make_ft@shell2.F90:1133
execution trace.

0

10

20

30

1 2 3 4 5 6 7 8
Performance classes

Fr
eq

ue
nc

y

(b) Distribution of the
number of representative
performance classes across
all NAS benchmarks.

Figure 3.1: Working set reduction: (a) A clustering analysis of tonto’s trace
detects four different performance behaviors depending on the workload. The
initial 3587 invocations are captured with only four representative replays. (b)
Most of the NAS codelets can be captured with less than four representative
working sets.

both in time and space. Fortunately, applications exhibit some regularity; and
most of the time the invocations can be reduced to a few representative classes.
Figure 3.1b shows the distribution of the number of different classes across all
NAS benchmarks. One can note that most of the codelets can be captured with
less than 4 representatives.

To automatically detect the performance classes and generate a set of rep-
resentative captures, we use CLARA clustering algorithm [116] which can cope
with large traces with more than 109 invocations found in some of our bench-
marks.

Thanks to invocations clustering, CERE is able to accelerate performance
evaluation considerably because only a representative subset of the invocations
is replayed: for example, only two out of ten thousand invocations are replayed
for codelet updateTestEv@soplex.c:204 in SPEC 2006 soplex benchmark.

3.1.3 Clustering codelets with the same performance be-
havior

The previous section showed how different invocations of the same codelet can be
clustered in a small set of classes. A second reduction in the number of replays
can be achieved by detecting and exploiting similar and repeated computation
patterns. Benchmark suites and applications naturally contain redundant com-
putation patterns across different benchmarks. For instance, two linear algebra
solvers, despite using different algorithms, will share common computation pat-
terns such as vector copy loops, inner products, or matrix-vector multiplications.

The method presented in figure 3.2 detects repeated computation patterns,
and keeeps only one representative copy of each, reducing a suite of benchmarks
to an essential set of micro-benchmarks. Because only duplicated patterns are
removed, the important performance features of the original benchmarks are
preserved.

Exploiting codelet similarities 39

Maqao

Likwid

Static & Dynamic
Profiling Vectorization ratio

FLOPS/s
Cache Misses
...[] Clustering

f1
f2
f3
...

Step A: Perform static and dynamic analysis on a reference
architecture to capture codelet's feature vectors.

BT

SP

Step B: Using the proximity between feature
vectors we cluster similar codelets and select one
representative per cluster.

Step C: CERE extracts the
representatives as standalone
codelets. A model extrapolates full
benchmark results.

Model

Sandy Bridge

Atom

Core2

Full
Benchmarks

Results

Figure 3.2: Overview of the benchmark reduction method for execution time
prediction. The reduction method can be extended to support compiler or
optimization evaluation.

Step A statically analyzes and profiles each codelet on an architecture cho-
sen as a reference. Each codelet is tagged with a feature vector containing static
and dynamic features.

Step B groups codelets sharing similar feature vectors into clusters. The
feature vector is used as a performance signature to detect similar codelets.

Step C selects a representative for each cluster and extracts it as a stan-
dalone CERE codelet.

Performance Features To detect similar codelets we measure performance
features, both static and dynamic. Static features are useful to evaluate the
assembly code quality and to detect performance problems specific to the mi-
croarchitecture. MAQAO static loop analysis [64, 10] provides a set of static
metrics for the innermost binary loops. Examples of such metrics are the size of
the loop, the pressure on dispatch ports, the number of used registers, the type
of instructions. To compute these metrics, MAQAO disassembles and analyzes
the binary. Some MAQAO metrics, provide a lower bound on performance by
assuming that all the memory access hit the L1 cache. For benchmarks with
datasets larger than L1, those metrics are less relevant. Hardware counters help
us to overcome this issue and deal with dynamic hazards.

To characterize the dynamic behavior of codelets, we use a set of metrics pro-
vided by the Likwid tool [191]. Likwid measures hardware performance counters
and derives a set of dynamic performance metrics such as execution time, cache
misses, floating point instructions per second, or memory bandwidth.

MAQAO and Likwid produce 76 individual features. Irrelevant features add
noise that degrades the clustering and the prediction accuracy. Therefore, it is
important to wisely select features, keeping only those that adequately represent
program behavior and improve prediction.

Evaluating the 276 combinations of features is too costly. To find a good
set of features in a reasonable time, we use genetic algorithms [202]. Genetic

40 Reducing HPC search space

Likwid dynamic features
- Floating point rate in MFLOPS.s−1

- L2 bandwidth in MB.s−1

- L3 miss rate
- Memory bandwidth in MB.s−1

MAQAO static features
- Bytes stored per cycle assuming L1 hits
- Data dependencies stalls
- Estimated IPC assuming only L1 hits
- Number of floating point DIV
- Number of SD instructions
- Pressure in dispatch port P1
- Ratio between ADD+SUB/MUL
- Vectorization ratio for Multiplications (FP)
- Vectorization ratio for Other (FP+INT)
- Vectorization ratio for Other (INT)

Table 3.1: Feature set to estimate performance similarity of codelets.

algorithms (GA) start with a population of randomly generated individuals. In
our case, each individual represents a candidate feature set. This population
evolves towards an optimal solution by recombining the best individuals with
crossover and mutation operators [203].

To evaluate individuals, we consider the average prediction error of Numer-
ical Recipes [165] benchmarks on two architectures: Atom and Sandy Bridge.
Best individuals should have a high prediction accuracy on both architectures
but with a low number of representatives. To achieve this objective we choose
the fitness function: max(error_atom, error_sandybridge) × K where K is
the number of clusters. We intentionally leave Core 2 and NAS benchmarks
out of the training process to fairly evaluate how our feature set fares on new
architectures and new benchmarks.

We perform 100 GA iterations for a population size of 1000, and a mutation
probability of 0.01. The Genetic algorithm converges to the optimal feature set
presented in Table 3.1 by generation 47. The four selected dynamic features are
computed using eight performance events that can be precisely measured in a
single run without multiplexing.

Clustering The feature vectors are the codelets performance signatures. Fea-
tures are normalized to have unit variance and to be centered. Normalization
ensures that features have equal weight when computing a distance between two
feature vectors. To cluster similar codelets, we use hierarchical clustering with
Ward’s criterion [200].

Prediction Model Codelets from the same cluster share the same features
and should react in the same way to architecture or compiler changes. For
example, memory-bound codelets will benefit from faster caches, whereas highly
vectorized codelets will benefit from wider vectors. Therefore, by measuring a
single representative per cluster we can extrapolate the performance of all its
siblings.

Once the performance classes are identified, CERE selects one representa-
tive invocation per class. CERE selects the invocation closest to the medoid

Exploiting codelet similarities 41

of the cluster, in other words, the invocation most closely matching the me-
dian performance of all the invocations inside the cluster. When replaying the
benchmark, CERE extrapolates the full benchmark performance by weighting
each representative replay time according to the contribution of its performance
class in the original execution. The full prediction model is detailed in [15] and
was the fruit of a collaboration with Yuriy Kashnikov.

3.1.4 Clustering evaluation
Table 2.3 on page 30 presents the machines used for experiments. They belong to
four different Intel CPU generations (Nehalem, Core 2 Duo, Atom, and Sandy
Bridge) and possess quite distinct memory hierarchies. All the codelets are
profiled on Nehalem, the reference architecture, at step A. The representatives
are benchmarked on each target architectures (Atom, Sandy Bridge, and Core
2) at step C.

We evaluate our method using two criteria: the prediction error and the
benchmarking reduction factor. For each codelet, the prediction error is the
difference between predicted and real measurements, computed as a percentage.
The benchmarking reduction factor is the ratio between the execution times of
the representatives and the full benchmark suite. These two metrics are tied. In
practice, the more clusters we add, the more we decrease the prediction error.
However, by adding more clusters we also increase the number of representatives
and therefore the benchmarking time.

We use two benchmarks suites: 28 Numerical Recipes (NR) [165] and the
NAS SER benchmarks [30]. NR codes are simple but cover a large spectrum of
algorithms. They were used as a training set to find the feature set presented
in 3.1.3. The NAS benchmarks produce 67 codelets. They are run with CLASS
B datasets. The NAS benchmarks are used to validate that the feature set
trained on NR can be successfully applied to more complex benchmarks and
other architectures. In our initial paper [15], codelets were extracted using
Codelet Finder; later, experiments were replicated with CERE codelets [6]. The
differences in results between the two experiments were marginal.

3.1.5 Numerical Recipes evaluation
This section evaluates the clustering on NR codelets performed with the feature
set described in table 3.1. Table 3.2 shows a 14-group clustering built on the
reference architecture.

Despite depending on the reference architecture, our feature set is closely
related to architecture-independent features [105, 106]. For example, codelets
can use scalar instructions (S), vector instructions (V), or a mix of both (V +
S). We manually analyzed the vectorization of the codelets, Vec., and compared
it to the vectorization ratio, Vec. %, reported by MAQAO. They are highly
correlated.

Our assumption is that codelets in the same clusters should exhibit similar
characteristics and behavior. An initial supporting observation is that the vec-
torization is homogeneous among clusters. We evaluate cluster similarity using
two other similarity criteria.

We note that many clusters are formed of codelets with similar computation
patterns. For example, cluster 10 gathers codelets that divide elements in a

42 Reducing HPC search space

cut for K
 =

 14

C1234567891011121314

C
odelet

toeplz_1
rstrct_29
m

prove_8
toeplz_4
realft_4
toeplz_3
svbksb_3

lop_13
toeplz_2
four1_2
tridag_2
tridag_1

ludcm
p_4

hqr_15
relax2_26

svdcm
p_14

svdcm
p_13

hqr_13
hqr_12_sq
jacobi_5
hqr_12

svdcm
p_11

elm
hes_11

m
prove_9

m
atadd_16

svdcm
p_6

elm
hes_10

balanc_3

C
om

putation P
attern

D
P

: 2 sim
ultaneous reductions

D
P

: M
G

 Laplacian fine to coarse m
esh transition

M
P

: D
ense M

atrix x vector product
D

P
: V

ector m
ultiply in asc./desc. order

D
P

: F
F

T
 butterfly com

putation
D

P
: 3 sim

ultaneous reductions
S

P
: D

ense M
atrix x vector product

D
P

: Laplacian finite difference constant coefficients
D

P
: V

ector m
ultiply elem

ent w
ise in asc./desc. order

M
P

: F
irst step F

F
T

D
P

: F
irst order recurrence

D
P

: F
irst order recurrence

S
P

: D
ot product over low

er half square m
atrix

S
P

: A
ddition on the diagonal elem

ents of a m
atrix

D
P

: R
ed B

lack S
w

eeps Laplacian operator
D

P
: V

ector divide elem
ent w

ise
D

P
: N

orm
 +

 V
ector divide

D
P

: S
um

 of the absolute values of a m
atrix colum

n
S

P
: S

um
 of a square m

atrix
S

P
: S

um
 of the upper half of a square m

atrix
S

P
: S

um
 of the low

er half of a square m
atrix

D
P

: M
ultiplying a m

atrix row
 by a scalar

D
P

: Linear com
bination of m

atrix row
s

D
P

: S
ubstracting a vector w

ith a vector
D

P
: S

um
 of tw

o square m
atrices elem

ent w
ise

D
P

: S
um

 of the absolute values of a m
atrix row

D
P

: Linear com
bination of m

atrix colum
ns

D
P

: V
ector m

ultiply elem
ent w

ise

S
tride

0 &
 1 &

 −
1

stencil
0 &

 1
0 &

 1
 0 &

 2 &
 −

2
0 &

 1 &
 −

1
0 &

 1
stencil

 1 &
 −

1
4−
1

0 &
 1

0 &
 LD

A
 &

 1
LD

A
 +

 1
LD

A
 &

 0
0 &

 1
1

0 &
 1

0 &
 1

0 &
 1

0 &
 1

 LD
A

 LD
A

11
0 &

 LD
A

11

V
ec.

V
 +

 S
V

 +
 S

V
 +

 S
SSVVVSSSS

V
 +

 S
SSVVVVVVSSVV

V
 +

 S
VV

V
ec. %
 78
 83
 60
 20
 18
100
100
100
 0 8 0 0
 83
 0
 10
100
100
100
100
100
100
 0 0

100
100
 33
100
100

s
<

0.24>
0.25
0.15
0.44

<
0.42>
0.31

<
0.35>

<
0.20>

<
0.36>
0.22
0.44

<
0.32>

<
0.45>

<
0.39>

<
0.12>
0.28

<
0.17>
0.41

<
0.46>
0.34
0.34

<
0.33>
0.47
0.50
0.53

<
0.30>
0.44

<
0.47>

Table
3.2:

N
R

clustering
w

ith
14

clusters
and

speedups
on

A
tom

.
T

he
dendrogram

on
the

left
show

s
the

hierarchicalclustering
of

the
codelets.

T
he

height
of

a
dendrogram

node
is

proportional
to

the
distance

betw
een

the
codelets

it
joins.

T
he

dashed
line

show
s

the
dendrogram

cut
that

produces
14

clusters.
T

he
table

on
the

right
gives

for
each

codelet:
the

cluster
num

ber
C

,the
C

om
putation

Pattern,
the

Stride,the
Vectorization,and

the
Speedup

on
A

tom
s.

T
he

speedup
ofthe

selected
representative

is
em

phasized
w

ith
angle

brackets.

Exploiting codelet similarities 43

K = 14 K = 24 elbow

error median average median average

Atom 1.8% 12% 0% 1.70%
Sandy Bridge 3.2% 9.30% 0% 0.97%

Table 3.3: Prediction errors on Numerical Recipes with 14 and 24 clusters.

vector, cluster 11 codelets that perform a reduced sum, cluster 14 codelets that
compute element-wise multiplications on vectors or columns. The two ”Dense
Matrix x vector product” codelets have been separated because they use different
floating-point precision.

The stride captures the distance between the data points accessed by two
successive iterations of a codelet. For example, a stride of one means that the
codelet is accessing memory sequentially. A stride of zero means an access to
a constant memory location. A Leading Dimension Array (LDA) stride means
a row-wise access to a column-wise stored array. If a codelet has two or more
types of stride, we separate them with a ’&’ symbol. Stencil stride means that
the kernel uses a five points stencil to access the data. Cluster 14 is composed
only of codelets with contiguous access to memory. Cluster 11 contains only
(0 & 1) codelets: one contiguous access to sweep the vector and one constant
access for the accumulator. Other clusters have more complex stride behaviors.

Our second assumption, is that codelets with similar features have simi-
lar speedups on the target architectures. Column s on the table shows Atom
speedups. The two codelets in cluster 10 suffer high slowdowns on Atom be-
cause they use high-latency division operations. Our feature set captures this
pattern and isolates them in their own cluster.

In most of the clusters, speedups are homogeneous. Close codelets in the
dendrogram such as in clusters 2, 3, or 14 exhibit close speedups. Yet in some
clusters such as 10 or 12 the speedups are distinct. Our dendrogram cut is too
rough and a higher number of clusters is needed. In this case, 24 clusters, as
recommended by the elbow method, fix the most striking discrepancies. Yet
the 24 elbow clustering, though more conservative in terms of prediction, is less
interesting to analyze because it has many singleton clusters.

We evaluate the prediction error using the 14 clusters’ representatives on
Atom and Sandy Bridge. Table 3.3 summarizes the prediction errors. The
overall accuracy of the prediction is good. This is no surprise because the NR
were used during the feature selection training to minimize prediction accuracy.
Next section validates our method on a different set of benchmarks and one new
architecture not used during training, demonstrating that it generalizes.

3.1.6 Subsetting the NAS benchmark suite
In this section, we reuse the feature set trained on NR benchmarks and validate
our benchmark reduction method on the NAS SER suite. We also evaluate a
new target architecture Core 2.

Codelet performance prediction Figure 3.3 shows the predicted and real
execution times on Sandy Bridge. The boxes gather the codelets by applica-
tion. The applications may contain codelets coming from different clusters with

44 Reducing HPC search space

bt cg ft is lu mg sp

5

10

25

50

100

200

500

5

10

25

50

100

200

500

1000

2000

1

2

5

10

25

50

100

200

500

10

25

50

100

200

500

1000

2000

4000

1

2

5

10

25

50

100

5

10

25

5

10

25

50

100
E

xe
cu

tio
n

tim
e

(m
s

/ i
nv

oc
at

io
n)

Reference (Nehalem) Sandy Bridge real Sandy Bridge predicted

Figure 3.3: Predicted and Real execution times on Sandy Bridge compared
to the Nehalem reference execution. Each box presents the codelets extracted
from one of the NAS applications. Only three codelets in BT, LU, and SP are
mispredicted.

different speedups. The execution time on Sandy Bridge is predicted with a
median error of 5.8%. The error mainly comes from short-lived codelets (less
than 10 ms per invocation) which are more affected by measurement errors such
as instrumentation overhead. Codelets are faster on Sandy Bridge than on the
reference. It is not surprising as Sandy Bridge frequency is almost twice the
reference one. The median prediction error is 8% for Atom and 3.9% for Core 2.

Evaluating the feature-guided clustering To evaluate the quality of our
feature-guided clustering, we compare it to 1000 random clusterings. In Fig-
ure 3.4, we make K, the number of clusters, vary from 1 to 24. For each value
of K, we generate 1000 random partitionings into K clusters. We compute the
prediction error for each partitioning. The proposed feature-guided clustering
is most of the time close or better than the best random clustering. Our choice
of features and clustering yields competitive results.

3.1.7 Codelets as proxies for faster performance studies
Codelets can be used as reduced benchmarks for performance studies when
testing multiple architectures. Selecting the best computing system for a set
of applications is a costly process which requires benchmarking the applica-
tions on the different systems. We propose to reduce the benchmarking cost
by extracting a set of representative CERE codelets capturing the performance
characteristics of the original applications.

By clustering similar codelets, eighteen representative codelets were selected
and extracted using CERE. Then they were replayed in three different architec-
tures: Atom, Core 2, and Sandy Bridge (see table 2.3).

The whole application prediction is done in two steps. First, we estimate the
speedup of the part of the application covered by codelets. The application’s
codelets predictions are aggregated and weighted by their number of invocations.
Second, we assume that the speedup of the unknown part of the application is

Exploiting codelet similarities 45

Atom

Core 2

Sandy Bridge

10
20
30
40
50

10
20
30
40

10
20
30
40

0 5 10 15 20 25
Number of clusters

M
ed

ia
n

%
 e

rr
or

Worst

Median

Best

GA features

Figure 3.4: Genetic-Algorithm feature clustering compared to random cluster-
ing. For each number of clusters, from 2 to 24, 1000 random clusters are eval-
uated. Clustering with our GA feature set is consistently close or better than
the best random clustering (out of 1000).

CERE speedup
Warmup mode Working Set Page Trace
Core 2 × 30.5 × 9.9
Atom × 46.6 × 10.7
Sandy Bridge × 18.3 × 7.3

Table 3.4: Benchmarking acceleration by replaying only the representatives.
CERE replays are 7.3× to 46.6× faster than running the whole NAS.B suite.

equal to the one of the covered part.
Figure 3.5 compares the performance predicted using CERE replays to the

real performance measured by running the full benchmark suite. The perfor-
mance predictions are very close, but CERE replays are 7.3× to 46.6× cheaper
than running the full benchmarks.

Table 3.4 details the benchmark reduction cost achieved by only replaying
the selected representative codelets. We observe that the Working Set warmup
is much faster than the Page Trace warmup that has the overhead of replaying
the memory access history.

The benchmarking reduction comes from two factors. First, representatives
are benchmarked during a small number of invocations. Second, by clustering
the codelets, only the representatives have to be measured.

The data and code used are available as an IPython Notebook that al-
lows to reproduce our experiments. The notebook can be accessed at http:
//benchmark-subsetting.github.io/fgbs/.

http://benchmark-subsetting.github.io/fgbs/
http://benchmark-subsetting.github.io/fgbs/

46 Reducing HPC search space

0.12 0.15

0.83 0.83

1.55 1.59

0.0

0.5

1.0

1.5

Atom Core 2 Sandy Bridge

G
eo

m
et

ric
m

ea
n

sp
ee

du
p

Real Speedup

Predicted Speedup

Figure 3.5: NAS geometric mean speedup on three architectures. Baseline is
a NAS run on Nehalem compiled with icc 12.1.0 -O3 -xsse4.2. The pre-
dicted speedup is computed by using the replay performance of eighteen CERE
representative codelets using Working Set warmup.

3.2 Adaptive sampling the performance design
space

Adaptive sampling is a complementary approach to codelets for reducing the
cost of HPC performance characterization and optimization. Instead of sam-
pling the whole search space, we adaptively choose a small number of measures
to build a performance model.

Samples should be chosen with care to faithfully represent the whole design
space. A good sampling strategy should capture the performance accurately
with the minimal number of samples. This section presents the Adaptive Sam-
pling Kit (ASK), an open source framework that gathers state-of-the-art sam-
pling strategies and surrogate models for HPC performance characterization.
This framework was initially developed in collaboration with Eric Petit and
Jean-Christophe Beyler.

The two fundamental elements of a sampling pipeline are the sampling strat-
egy and the surrogate model.

1. The sampling strategy decides what combinations of the design space
should be explored.

2. The surrogate model extrapolates from the sampled combinations a pre-
diction on the full design space.

To reduce the number of samples, ASK implements an original adaptive
sampling strategy, Hierarchical Variance Sampling (HVS) that concentrates ex-
ploration in the most irregular regions of the design space.

The user provides ASK with a description of the design space parameters.
Then, ASK automatically selects the points that should be sampled, measure
their response, and returns a model that predicts the performance of any given
set of parameters. ASK also provides reporting and model validation modules to
assess the quality of the sampling and ease the experimental setup exploration
for performance characterization.

Adaptive sampling the performance design space 47

3.2.1 Background on sampling strategies
There are two kinds of sampling strategies: space filling designs and adaptive
sampling. Space filling designs select a fixed number of samples with sensible
statistical properties such as uniformly covering the space or avoiding clusters.
For instance, Latin Hyper Cube designs [187] are built by dividing each di-
mension into equal sized intervals. Points are selected so the projection of the
design on any dimension contains exactly one sample per interval. Maximin
designs [112] maximize the minimum distance between any pair of samples;
therefore spreading the samples over the entire experimental space. Finally,
low discrepancy sequences [63] choose samples with low discrepancy: given an
arbitrary region of the design space, the number of samples inside this region
is almost proportional to the region’s size. By construction, the sequences uni-
formly distribute points in space. These designs are often better than Random
Sampling, which may clump samples together [182].

Space filling designs choose all points in one single draw before starting
the experiment. Instead, adaptive sampling strategies iteratively adjust the
sampling grid to the complexity of the design space. By observing already
measured samples, they identify the most irregular regions of the design space.
Further samples are drawn preferentially from the irregular regions, which are
harder to explore.

The definition of irregular regions varies depending on the sampling strategy.
Variance-reduction strategies focus the sampling in regions with high variance.
The rationale is: irregular regions require more measurements to be accurately
modeled. Query-by-Committee strategies build a committee of models trained
with different parameters and compare the committee’s predictions on all the
candidate samples. Selected samples are the ones where the committee’s models
disagree the most. Adaptive Multiple Additive Regression Trees (AMART) [132]
is a recent Query-by-Committee approach based on Generalized Boosted Mod-
els (GBM) [167], it selects non-clustered samples with maximal disagreement.
Another recent approach by Gramacy et al. [93] combines the Tree Gaussian
Process (TGP) [92] model with adaptive sampling strategies [52]. For an exten-
sive review of adaptive sampling strategies please refer to Settles [179].

The Surrogate Modeling Toolbox (SUMO) [88] offers a Matlab toolbox build-
ing surrogate models for computer experiments. SUMO’s execution flow is sim-
ilar to ASK’s: both allow configuring the model and sampling strategy to fully
automate an experiment plan. SUMO focuses mainly on building and control-
ling surrogate models, offering a large set of models. It contains algorithms for
optimizing model parameters, validating the models, and helping users choose
a model. A recent approach, LOLA-Voronoi, is included, which finds trade-offs
between uniformly exploring the space and concentrating on nonlinear regions
of the space [57]. SUMO is open source but restricted to academic use and
depends on the proprietary Matlab toolbox.

ASK specifically targets adaptive sampling for performance characteriza-
tion, unlike SUMO. It includes recent state-of-the-art approaches that were
successfully applied to computer experiments [93] and performance character-
ization [132]. Simpson et al. [184] show one must consider different trade-offs
when choosing a sampling strategy: affinity with the surrogate model or stud-
ied response, accuracy, or cost of predicting new samples. Therefore, ASK
comes with a large set of approaches to cover different sampling scenarios in-

48 Reducing HPC search space

1.Bootstrap

Latin Hyper
Cube

Low Discrepancy

Maximin, . . .

3.Model

CART

GBM

TGP, . . .

4.Sampler

AMART

HVS

TGP, . . .

2.Source

2.Source

Reporter
Reports

progress and
predictive error

5.Control
Decides

when to stop
sampling

Figure 3.6: ASK pipeline

cluding Latin Hyper Cube designs, Maximin designs, Low discrepancy designs,
AMART, and TGP. Additionally, ASK includes a new approach, Hierarchical
Variance Sampling (HVS).

3.2.2 ASK Architecture
Choosing an adequate sampling strategy is not simple: for best results one must
carefully consider the interaction between the sampling strategy and the surro-
gate model [184]. Many implementations of sampling strategies are available,
but they all use different configurations and interfaces. Therefore, building and
refining sampling strategies is difficult. ASK addresses this problem by providing
a common interface to these different strategies and models. Designed around
a modular architecture, ASK facilitates building complex sampling pipelines.

When running an experiment, ASK follows the pipeline presented in Fig-
ure 3.6:

1. A bootstrap module selects an initial batch of points. ASK provides stan-
dard bootstrap modules for the space filling designs described in Sec-
tion 3.2.1: Latin Hyper Cube, Low Discrepancy, Maximin, and Random.

2. A source module, usually provided by the user, receives a list of requested
points. The source module computes the actual measurements for the
requested factors and returns the response.

3. A model module builds a surrogate model for the experiment on the sam-
pled points. Currently ASK provides CART [38], GBM [79, 167], and
TGP [93] models.

4. A sampler module iteratively selects a new set of points to measure. Some
sampler modules are simple and do not depend on the surrogate model.
For instance, the random sampler selects a random combination of factors
and the latin sampler iteratively augments an initial Latin Hyper Cube
design. Other sampler modules are more complex and base their decisions
on the surrogate model.

5. A control module decides when the sampling process ends. ASK includes
two basic strategies: stopping when it has sampled a predefined amount
of points or stopping when the accuracy improvement stays under a given
threshold for a number of iterations.

Adaptive sampling the performance design space 49

From the user perspective, setting up an ASK experiment is a three-step
process. First, the range and type of each factor is described by writing an
experiment configuration file in the JavaScript Object Notation (JSON) for-
mat. ASK accepts real, integer, or categorical factors. Then, users write a
source wrapper around their measuring setup. The interface is straightforward:
the wrapper receives a combination of factors to measure and returns their re-
sponse. Finally, users choose which bootstrap, model, sampler, control, and
reporter modules to execute. Module configuration is also done through the
configuration file. ASK provides fallback default values if parameters are omit-
ted from the configuration. An excerpt of a configuration with two factors and
the hierarchical sampler module follows:

1 "factors": [{"name": "image-size",
2 "type": "integer",
3 "range": {"min": 0, "max": 600}},
4 {"name": "stencil-size",
5 "type": "categorical",
6 "values": ["small", "medium", "large"]}],
7 "modules": {"sampler": {"executable": "sampler/HVS",
8 "params": {"nsamples":50}}}

Editing the configuration file quickly replaces any part of the ASK experiment
pipeline with a different module. For example, by replacing sampler/HVS with
sampler/latin the user replays the same experiment with the same param-
eters but using a Latin Hyper Cube sampler instead of Hierarchical Variance
Sampling. All the modules have clearly defined interfaces and are organized to
follow the separation of concerns principle [108]. This organization allows the
user to quickly integrate custom made modules to the ASK pipeline.

3.2.3 Hierarchical Variance Sampling
Many adaptive learning strategies are susceptible to bias because the sampler
makes incorrect decisions based on an incomplete view of the design space. For
instance, the sampler may ignore a region although it contains big variations
because previous samplings missed the variations.

To mitigate the problem, ASK includes the new Hierarchical Variance Sam-
pling, HVS. HVS reduces the sampling bias using confidence intervals that cor-
rect the variance estimation. HVS partitions the exploration space into regions
and measures the variance of each region. A statistical correction depending
on the number of samples is applied to obtain an upper bound of the variance.
Further samples are then selected proportionally to the upper bound and size
of each region. By using a confidence upper bound on the variance, the sampler
is less greedy in its exploration and is less likely to overlook interesting regions.
In others words, the sampler is less likely to ignore a region until the number of
sampled points is enough to confidently decide the region has low variance.

HVS is similar to Dasgupta et al. [59] proposing a hierarchical approach for
classification tasks using confidence bounds to reduce the sampling bias. The
Dasgupta et al. approach is only applicable to classification tasks with a binary
or discrete response unlike HVS.

To divide the design space into regions, HVS uses the Classification and
Regression Trees (CART) partition algorithm [38]. The splitting point is chosen
to reduce the weighted residual sum of squares in each region. After the recursive
partitioning, CART prunes the tree to optimize cross validation error. The

50 Reducing HPC search space

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

factor x

re
sp

on
se

 f(
x)

σub

s

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● samples
last iteration samples

Figure 3.7: HVS on a synthetic 1D benchmark after fifteen drawings of ten
samples each. The true response, f(x) = x5|sin(6.π.x)|, is the solid line. CART
partitions the factor dimension into intervals, represented by the boxes horizon-
tal extension. For each interval, the estimated standard deviation, s, is in a
light color and the upper bound of the standard deviation, σub, is dark. HVS
selects more samples in the irregular regions.

Adaptive sampling the performance design space 51

result of a CART partitioning is shown in Figure 3.7 where each box depicts a
region.

After partitioning, HVS samples the most problematic regions and ignores
the ones with low variance. The sampler only knows the empiric variance s2

that depends on previous sampling decisions; to reduce bias HVS derives an
upper bound of the true variance σ2. Assuming a close to normal region’s
distribution, HVS computes an upper bound of the true variance σ2 satisfying
σ2 < (n−1)s2

χ2
1−α/2,n−1

= σ2
ub with a 1 − α confidence1. To account for the sampling

uncertainty HVS uses the corrected upper bound accounting for the number of
samples drawn.

For each region, Figure 3.7 plots the estimated standard deviation s, light
colored, and upper-bound σub, dark colored. As shown in Figure 3.7, samples
are selected proportionally to the variance upper bound multiplied by the size
of the region. New samples, marked as triangles, are chosen inside the largest
boxes. HVS selects few samples in the [0, 0.5] region, which has a flat profile.

If the goal of the sampling is to reduce the absolute error of the model, then
the HVS strategy is adequate because it concentrates on high-variance regions.
On the other hand, if the goal is to reduce the relative error of the model, it
is better to concentrate on regions with high relative variance, s2

x2 . HVSrela-
tive is an alternate version of HVS using relative variance with an appropriate
confidence interval [143].

3.2.4 GBM model and HVS sampler interactions
Fitting a model is a trade-off between the model complexity and the accuracy.
When tuning the model, it is important to take into account the design space
and the sampling strategies. This section studies the interactions between the
GBM model and the HVS sampler.

Traditional regression trees approaches, such as CART [38], partition the
design space into regions and fit a constant or linear model to each region.
The partitioning is represented by a tree where each leaf corresponds to one
of the regions in the partitioning. GBM improves over CART by combining
the predictive power of many individual trees. GBM models the response as a
function f(x) where x is the input vector of factors. The function f is defined
as a linear combination of regression trees. Each regression tree models the
interactions among a subset of factors.

GBM improves the accuracy of f by minimizing a loss function, such as
1
n

∑n
i=1(yi − f(xi))

2, which computes for every point i, the mean squared error
between the measured response yi and the prediction f(xi). This formulation
implies that every xi has the same effect on the final model. Therefore, if the
space is not uniformly explored, regions with few samples will be underrepre-
sented in the loss function.

To avoid this effect, ASK takes advantage of the GBM weights feature [167],
which replaces the above loss function by

∑n
i=1 wi(yi − f(xi))

2 where wi is the
weight of point i. To remove the sampling bias introduced by the adaptive
strategy we set all weights in region r to wr = sr

nr
, where nr is the size of the

total design space occupied by region r and sr is the number of samples in region
r.

11− α = 0.9 confidence bound is default in our experiments. χ is the Chi distribution.

52 Reducing HPC search space

3.2.5 Experimental validation
This section evaluates ASK sampling strategies on the performance study of 2D
cross-shaped stencils of varying size on a parallel SMP. A wide range of scientific
applications use stencils: for instance, Jacobi computation [60, 192] uses a 2×2
stencil and high-order finite-difference calculations [66] use a 6× 6 stencil.

Later in section 4.3, we show how ASK has been used in tandem with
Codelets to optimize a finite-difference time-domain (FDTD) kernel extracted
from an industrial seismic imaging code.

The experiments were performed on two Nehalem architectures: an 8-core
dual-socket Xeon E5620 at 2.40GHz with 24GB of RAM and a 32-core four-
socket Xeon X7550 at 2.00GHz with 128GB of RAM. The OpenMP mapping
policy was set to Scatter. All the benchmarks were compiled with ICC 12.0.0
version.

All studied sampling strategies use random seeds, which can slightly change
the predictive error achieved by different ASK runs. Therefore, the median
error, among nine different runs, is reported when comparing strategies. The
strategies were called with the following set of parameters.

Samples All the strategies sampled in batches of fifty points per iteration.

Bootstrapping All the strategies were bootstrapped with samples from the
same Latin Hyper Cube design, except Random, which was bootstrapped
with a batch of random points.

Surrogate Model Tuning accurately the model parameters is important to
get accurate performance predictions. The TGP strategy uses the tgpllm
model with its default parameters and the adaptive sampling setup de-
scribed in section 3.6 of [92]. The other strategies used GBM [167]. The
detailed parameterization of the models for each experiment is described
in our paper [17].

HVS, HVSrelative used a confidence bound of 1− α = 0.9.

In the studied stencil code, Figure 3.8a, five factors can be tuned – X and Y ∈
{1, 2, 4, 8, 16} the horizontal and vertical sizes of the stencil, N ∈ [64, 2048] the
number of rows of the matrix, M ∈ [64, 2048] the number of columns of the
matrix, and T ∈ [1, 32] the number of threads.

Given the large parameter space, exhaustive exploration is infeasible, but is
possible using ASK’s adaptive sampling strategies. The error was evaluated on
an independent test set of 25 600 points.

The sampling strategies’ accuracy is measured in terms of RMSE, in Fig-
ure 3.8b. Here only the 32-core results are examined because the sampling
strategies’ accuracy was similar for both the 8 and 32-core architectures. For
RMSE, HVS outperforms all other strategies both in quality of the final model,
1.76 RMSE, and speed of convergence.

Figure 3.8c shows the performance prediction for HVS and HVSrelative on
the X × 16 stencils. Each square represents a unique (X,Y, T) configuration.
Inside each square the performance is plotted depending on the matrix size
N × M . For example the outlined left-bottom square plots the performance
predicted by HVS for a 1× 16 stencil with one thread.

Adaptive sampling the performance design space 53

samples

R
M

S
E

5

10

15

20

25
●

●

●

●

●
●

●
●

●

●

●
●

● ● ●
● ●

●
● ●

●
● ●

●
●

●
●

● ● ●

200 400 600 800 1000 1200 1400

Strategy

● AMART

HVS

HVSrelative

Latin

Random

(b) Error curves for the exploration on
32 cores. The median among nine runs
of each strategy was taken to remove
random seed effects.

T : threads

C
yc

le
s

pe
r

el
em

en
t

20

40

60

80

100
●

●

●

●

●
●

●
● ●

5 10 15 20 25 30

Model

● True response

HVSrelative model

Ideal linear scaling

(d) Scalability for the 8× 8 stencil on a
1 000× 1 000 matrix.

1 #pragma omp parallel for
2 for(i=Y; i<N-Y; i++)
3 for(j=X; j<M-X; j++) {
4 for(k=j-X; k<=j+X; k++)
5 out[i][j] += in[i][k];
6 for(l=i-Y; l<=i+Y; l++)
7 out[i][j] += in[l][j];
8 }

(a) Stencil code evaluated

1 2 4 8 16 24 3212
threads

Te
st

 s
et

H
VS

Stencils X x 16

1

2

4

8

16

X

1 2 3 4 5 6 7 8
threads

Te
st

 s
et

H
VS

re
la

tiv
e

1

2

4

8

16

X

N

M

32
-c

or
e

N
eh

al
em

8-
co

re
 N

eh
al

em

cycles per
element

(c) Stencil X × 16 predicted
performance vs. test set performance

in cycles per element.

Figure 3.8: Stencil experiments

54 Reducing HPC search space

The kernel is slowest for high Y stencils whose column order accesses stress
the cache. In comparison, X stencil’s size impact on performance is negligible.
Performance degrades for large matrices, as shown from the darker top-right
corners of each square, probably because the matrices exceed the L2 cache
capacity. Therefore, choosing an adequate blocking factor should improve the
performance. On ASK HVS’ 32-core model the mean speed-up obtained by
varying the matrix size is 1.65. Using a small matrix with a high number of
threads is detrimental because the cost of synchronization dominates.

On both 8 and 32-core targets the stencil code scales linearly up to, respec-
tively, 8 and 32 threads. As an example, the scalability of the application was
studied on the 8 × 8 stencil on a 1 000 × 1 000 matrix. Figure 3.8d shows the
performance per number of threads predicted by the HVSrelative strategy. The
prediction follows the measured true response. The matrix sizes explored fit
into the socket’s 18Mb L3 cache, additionnaly the 2D stencil benefits from data
reuse, which explains the strong scaling.

Measuring the whole design space would take centuries whereas ASK adap-
tive sampling took less than an hour of experiment time with a 1.76 RMSE.

3.3 Conclusion
This chapter presents two complementary methodologies significantly reducing
benchmarking time:

• Detecting similar codelets within an application or across different appli-
cations, to reduce a full benchmark suite to a small set of representatives
microbenchmarks, much faster to measure.

• Adaptively sampling the performance design space with a small number
of points and using a surrogate model for performance characterization or
optimization.

Chapter 4 applies these techniques on different HPC use-cases.

4 E Optimizing HPC applications

Contents
4.1 Auto-tuning thread affinity and compiler passes with

codelets . 55
4.2 Exploring runtime parameters in heterogeneous ar-

chitectures . 59
4.3 Optimizing a Seismic proto-application 61
4.4 Conclusion . 66

This chapter includes contributions from the following publications:

• Mihail Popov, Chadi Akel, Yohan Chatelain, William Jalby, and
Pablo de Oliveira Castro. “Piecewise holistic autotuning of parallel
programs with CERE.” in: Concurrency and Computation: Practice
and Experience (2017), e4190. issn: 1532-0634. doi: 10.1002/cpe.
4190. url: http://dx.doi.org/10.1002/cpe.4190

• Pablo de Oliveira Castro, Eric Petit, Asma Farjallah, and William
Jalby. “Adaptive Sampling for Performance Characterization of Ap-
plication Kernels.” In: Concurrency and Computation: Practice and
Experience (2013). issn: 1532-0634. doi: 10.1002/cpe.3097

We have presented various techniques for reducing the HPC optimization
search space. We demonstrate them in three applications: auto-tuning thread
affinity and compiler passes, finding optimal thread mapping in an heteroge-
neous ARM big.LITTLE architecture, and optimizing a seismic imaging proto-
application.

4.1 Auto-tuning thread affinity and compiler passes
with codelets

Achieving full efficiency on a given architecture requires fine tuning parameters
such as the degree of parallelism, thread placement, or compiler optimization.
Runtime and compiler standard parameter levels (such as -O3 compiler flag or
scatter thread placement) achieve good-enough performance across most of the

https://doi.org/10.1002/cpe.4190
https://doi.org/10.1002/cpe.4190
http://dx.doi.org/10.1002/cpe.4190
https://doi.org/10.1002/cpe.3097

56 Optimizing HPC applications

thread affinity xsolve ysolve zsolve rhs total

s2 0;8 32.3 23 28.5 23 106.8
c2 0;1 21.4 17.6 18.1 23.7 80.8
h2 0;16 40 32.6 23 46.1 141.7
s4 0;8;1;9 25.9 20.9 26 12.1 84.9
c4 0;1;2;3 15.5 12.7 13.8 13.2 55.2
h4 0;16;1;17 23.8 17.5 16 24.3 81.5
s8 0;8;1;9;2;10;3;11 24.4 21.9 28.6 6.9 81.8
c8 0;1;2;3;4;5;6;7 14.4 13.4 14.3 9.1 51.2
h8 0;16;1;17;2;18;3;19 17.7 14.2 13.9 13.5 59.3
s16 16 scatter 25.1 21.4 35.5 5.3 87.4
c16 16 compact 17 15 15.5 9.7 57.2
h32 32 scatter 36 31.2 38.9 6.4 112.4

Table 4.1: Execution time in megacycles of SP parallel regions across different
thread affinities with -O3 optimization. For n threads, we consider three affini-
ties: scatter sn, compact cn, and hyperthread hn. Executing SP with the c8
affinity provides an overall speedup of 1.71× over the standard (s16).

codes and architectures. But they can miss specific optimization opportunities
since they are calibrated to work well on a large panel of applications and
architectures.

There are different approaches to tuning parameters. Iterative compila-
tion [120] is a well-known automated search method for solving the compiler
optimization pass ordering problem. The idea is to apply successive compiler
transformations to a program and to evaluate them by executing the result-
ing code. Similar execution-driven studies [142] explore the efficiency of thread
placement strategies. A common method to accelerate the compiler tuning pro-
cess is to guide the search exploration through machine learning techniques such
as Genetic Algorithms (GA) [55, 80, 103, 124].

A common point of these execution-driven studies is that they require a full
program evaluation and execution to quantify the impact of a single parameter
value. Also, as regions of code do not benefit from the same parameters, an
evaluation of the full program is not able to determine the optimal parameters
for each region.

We propose to auto-tune parameters at the codelet level. Instead of evaluat-
ing parameters on the whole application, we separately evaluate them on each
codelet. This makes the exploration faster and tailored to each code region.

We consider the Scalar Penta-diagonal solver (SP) from the C version of
the NPB 3.0 OpenMP benchmarks [22]. CERE starts by profiling SP and
automatically selects representative OpenMP regions to tune. xsolve, ysolve,
zsolve, and rhs are chosen and cover 93% of SP execution time. These regions
are extracted as codelets and tuned on three factors: thread number, thread
placement, and LLVM compiler passes. Once satisfying parameters are found,
CERE produces an hybrid application where each region uses the best found
parameters.

We separate the optimization into two parts: first, we will tune thread num-
ber and affinity mapping. Second, we will optimize compiler optimizations.
Combining all the parameters explored produces an exploration space of 1800
points, which gives an insight into how costly it is to tune multiple parameters
simultaneously.

Figure 4.1 shows the performance of two SP parallel regions across this ex-

Auto-tuning thread affinity and compiler passes with codelets 57

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

rhs ysolve

5

10

20

40

80

160

320

20

40

80

160

s2 c2 h2 s4 c4 h4 s8 c8 h8 s1
6

c1
6

h3
2 s2 c2 h2 s4 c4 h4 s8 c8 h8 s1

6
c1

6
h3

2

m
eg

ac
yc

le
s

● O3 best worst s16.O3

Figure 4.1: Tuning exploration for two SP regions. For each affinity, we plot
the best, worst, and -O3 optimization sequences. Custom optimization beats
-O3 for s2,s4, and s8 on ysolve.

ploration space. We notice a strong interaction between the compiler and the
thread parameters as they both significantly impact the performances. More-
over, the best parameters are different for the two regions: scatter placement is
best for rhs while compact benefits ysolve.

4.1.1 Thread number and affinity optimization
We explore the interactions between 12 thread configurations combining differ-
ent number of threads and affinity mappings including scatter, compact, and
hyperthread. Scatter distributes the threads as evenly as possible across the
entire system. The opposite strategy, compact, assigns the threads to the cores
as closely as possible. Hyperthread acts like compact but binds multiple threads
to the same physical core to take advantage of virtual cores.

Custom parameters outperform the standard 16 threads scatter s16 -
O3 on SP. Table 4.1 shows the performance of different thread affinities compiled
with -O3. The best custom thread affinity 0;1;2;3;4;5;6;7 (single NUMA
socket) achieves a speedup of 1.71× over the standard 16 threads scatter
(two NUMA sockets).

4.1.2 Compiler pass optimization
We complete this study by exploring LLVM optimization sequences generated
by random sub-samplings of the standard -O3 optimization set. CERE makes
it possible, through codelet replay, to independently explore each region. More-
over, thanks to CERE clustering of identical invocations, it is possible to quickly
evaluate the impact of each configuration by using only a few datasets.

Figure 4.2 shows how CERE clustering can accelerate the compiler pass op-
timization. CERE estimation of the impact of each compiler pass configuration
closely matches the performance measured in the original application. ysolve
has 400 invocations with a similar performance behavior that CERE clusters
as a single performance class. Since CERE only executes one representative
invocation, tuning the region is 149× cheaper with a codelet than running the
full SP benchmark.

58 Optimizing HPC applications

LLVM middle−end optimization passes combination

C
y
c
le

s
 (

Iv
y
b
ri

d
g
e
 3

.4
G

H
z
)

6.0e+07

8.0e+07

1.0e+08

1.2e+08

0 200 400 600

real
prediction
O3

Figure 4.2: NAS SP ysolve region execution time across 1000 schedules of
random compiler combinations passes based on O3. Compilation sequences are
sorted according to their original execution time. We remove compilation se-
quences that produce the same binary. real and predicted respectively repre-
sents the original execution time and the codelet prediction based on represen-
tative invocations replay. The codelet faithfully predicts the region execution
time across the different compiler optimizations.

We systematically apply this exploration of compiler optimization sequences
on the best single NUMA configuration found above. xsolve and ysolve work
best at the default -O2 level, but a custom best sequence is found for zsolve
and rhs. Figure 4.3 shows the performance of each region compiled with the
default optimization and the best custom sequences. No single sequence is the
best for all regions. CERE hybrid compilation produces a binary where each
region is compiled using its best sequence, achieving a speedup that cannot be
reproduced using traditional monolithic compilation.

CERE evaluates thread affinities and compiler optimizations on SP, respec-
tively 5.84× and 4.52× times faster than a full application evaluation while
keeping a low average error of 2.33%. CERE autotuning achieves a 0.82× per-
formance speedup over the standard parameters levels.

rhs zsolve xsolve+ysolve total

8.6

9.0

9.4

13

14

15

16

27.5

30.0

32.5

50

55

60

hy
br

id O2 O3

rh
s−

be
st

z−
be

st

hy
br

id O2 O3

rh
s−

be
st

z−
be

st

hy
br

id O2 O3

rh
s−

be
st

z−
be

st

hy
br

id O2 O3

rh
s−

be
st

z−
be

st

compiler optimizations

gi
ga

cy
cl

es
 −

 c
om

pa
ct

 8

Figure 4.3: Violin plot execution time of SP regions using best NUMA affinity.
Measures were performed 31 times to ensure reproducibility. When measuring
total execution time, hybrid compilation outperforms all other optimization
levels, since each region uses the best available optimization sequence.

Exploring runtime parameters in heterogeneous architectures 59

Figure 4.4: Juno big.LITTLE ARM architecture

4.2 Exploring runtime parameters in heteroge-
neous architectures

Tuning through CERE codelets is flexible and can be extended to new do-
mains. In this section, we consider the problem of mapping and tuning a paral-
lel application over a heterogeneous architecture such as the ARM big.LITTLE
Juno development board. This study was done within the Mont-Blanc 3 Eu-
ropean research project, which explored architecture designs for an ARM high-
performance computer. The architecture, as shown in Fig. 4.4, combines two
clusters: one big dual-core A57 and one little A53 quad-core. Each cluster has
its own L2 cache, but they can share data through a cache-coherency interface.

Mapping a parallel application to this architecture is challenging because of
the compute imbalance between the A53 and A57 and the difficulty in estimat-
ing the communication cost between clusters. Through CERE codelets, one can
quickly test different mapping and scheduling strategies to find the best configu-
ration. We demonstrate this by exploring PARSEC Blackscholes configurations
on the Juno board.

PARSEC Blackscholes computes option pricing by solving a Partial Differ-
ential Equation. PARSEC OpenMP implementation is embarrassingly parallel
except for the data initialization phase. We use CERE to capture the main
parallel region found at Blackscholes.m4.cpp line 368.

We systematically explored the available thread affinities. The horizontal
axis of Figure 4.5 shows the fourteen considered mappings: the first four are ho-
mogeneous executions on the A53; the next two are homogeneous executions on
the A57; the final eight are heterogeneous mappings. We used the OpenMP de-
fault static scheduling strategy, which divides loops iterations into equally sized
chunks across the different threads. The time of each execution was measured
using the cntvct_el0 cycles register [29]. To ensure that CERE estimates were
correct, we validated each run execution time against the execution time of the
original benchmark.

Running Blackscholes on the fourteen configurations took 1.42 seconds when
using the CERE codelet and 60.53 seconds when running the original bench-
mark. Despite this significant speedup, the CERE estimates are very accurate
across all configurations.

When a homogeneous cluster is used, either A53 or A57, we see that Blacksc-
holes linearly scales as expected from an embarrassingly parallel benchmark. On
the other side, performances on heterogeneous configurations are limited by the
work imbalance. Let us consider heterogeneous mappings with three threads.
We observe similar performance when using two A53 cores or two A57 cores.
Since the workload is equally divided across the different cores, performance

60 Optimizing HPC applications

0,000

0,002

0,004

0,006

0,008

0,010

1 2 1 2 1 2 1 2 1 2

1 2 3 4 1 1 2 2 3 3 4 4

A53 A57 Heterogeneous

Ex
e

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

CERE Static Original Static CERE Guided Original Guided

Figure 4.5: Execution time of PARSEC Blackscholes 64K in a Juno board.
The horizontal axis shows the thread mapping across the four A53 and two
A57 cores. The numbers in the first (respectively second) line are the number
of threads mapped on A57 (respectively A53) cores. The first two categories
consider homogeneous mappings, and the last category considers heterogeneous
mappings. For each mapping, we both consider static and guided scheduling
strategies. For each scheduling, we validate the time estimated by CERE to the
time measured in the original benchmark.

Optimizing a Seismic proto-application 61

is limited by the workload running on the A53 cluster. Similarly, A53 cores
limit performance across the other heterogeneous mappings with two and four
threads.

To take advantage of the A53 cores, we propose to switch the scheduling
policy for loop iterations from static to the OpenMP guided. Instead of equally
dividing the loop iterations across the cores, the guided policy considers a work
queue of loop iterations grouped into chunks. When a thread finishes its chunk,
it retrieves the next chunk from the top of the queue. While this OpenMP
policy improves work-balancing by considering the target processors, it also
introduces an overhead. To partially reduce this overhead while preserving
work-balancing, guided starts with large chunks and reduces them through the
execution. Figure 4.5 demonstrates the benefits of the guided scheduling over
the default OpenMP policy. Using guided scheduling achieves a speedup of
1.29× compared to the default policy over the best mapping strategy. CERE
remains faithful to the original executions across the different guided mappings
while quickly finding the best scheduling strategy.

This study on the big.LITTLE ARM architecture demonstrates that CERE
autotuning capabilities can easily be applied to problems involving heteroge-
neous architectures by simultaneously considering different number of threads,
thread mapping strategies, and scheduling polices. Within the Mont-Blanc
project, codelets were also used to accelerate GEM5 architectural simulations [13].

4.3 Optimizing a Seismic proto-application

In this section, we consider the optimization of a seismic proto-application which
was developed by Asma Farjallah in her Ph.D. thesis [71].

Reverse Time Migration (RTM) [31] is a commonly used application for
seismic imaging applications. The first step in RTM consists of building syn-
thetic seismograms based on a model of the crust. This process is called seismic
modeling. The second step is a retro-propagation of the waves recorded during
exploration campaigns. These waves are the reflection of vibrations sent into
the earth. The seismic model is adjusted using the collected data in order to get
the actual image of the subsurface. For geophysical imaging, one can solve the
wave equation numerically using three distinct approaches: spectral method,
strong formulation, and weak formulation [199].

Here we consider the strong formulation of the partial differential equa-
tion, which offers a good trade-off between image accuracy and computational
cost. We focus on a finite-difference time-domain (FDTD) implementation in
an isotropic medium. The equation governing the wave propagation in such a
medium is,

1

c2
∂2U

∂t2
= ∆U,

where U designates the wave field and c the velocity, constant in our case. In a
finite-difference approach, each field value is updated using a combination of its
neighboring values. Figure 4.6 shows the discretization of the wave equation.
The number of neighbors in each direction defines the spatial order of the stencil.
Our implementation uses the centered explicit stencil shown in figure 4.6. In
the following, p denotes the half order of the stencil. For example, in figure 4.6,

62 Optimizing HPC applications

2p is equal to 8, which corresponds to the order of the Taylor expansion in each
dimension of the space.

x

y

z

U t+1
i,j,k =2U t

i,j,k − U t−1
i,j,k + c2∆t2

(
1

∆x2

p∑
m=−p

bmU t
i+m,j,k

+
1

∆y2

p∑
m=−p

bmU t
i,j+m,k +

1

∆z2

p∑
m=−p

bmU t
i,j,k+m

)

Figure 4.6: Discretization of the pressure field U using a stencil of order 2p in space
and 2 in time. ∆t and (∆x,∆y,∆z) designate discretization steps in time and space
respectively. bm are constant coefficients weighting neighboring values that are the
result of the Taylor expansion. A 3D centered stencil of order 8 (p = 4) is used.

4.3.1 Initial performance characterization with codelets
We applied codelet extraction on the seismic proto-application. We focused on
the dominant codelet, FDTD, which takes 91.1% of the original execution time.
This FDTD codelet performs the stencil computation described in the previous
section and is called 3000000 in the original proto-application.

Using the clustering codelet-similarity analysis described in section 3.1.3
on page 38 we found that FDTD codelet is very close to two NAS codelets:
BT/rhs.f:266-311 and SP/rhs.f:275-320. The three codelets have a very
similar computation pattern: a three nested loop with a Jacobi stencil compu-
tation. Our feature set captures this similarity and gathers the three codelets
in the same cluster.

In the FDTD cluster, the selected representative is the codelet from BT
BT/rhs.f:266-311. Reusing our previously built codelet model (cf. section 3.1.6),
we predicted FDTD on different target architectures without any additional
benchmarking cost. We estimate the performance of FDTD on different archi-
tectures with the following errors: Atom, 7%, Core 2, 3%, and Sandy Bridge,
10%.

We also applied the compiler pass search presented in section 4.1.2 on the
FDTD codelet which provided a speed-up of 1.11× over the -O3 baseline.

4.3.2 Tuning the FDTD codelet
Performance optimization of stencil computations is widely studied by the com-
munity [60]. Common optimizations target data locality through spatial and

Optimizing a Seismic proto-application 63

temporal cache blocking, loop tiling, and padding. Most of these optimizations
are machine-dependent and need to be manually tuned, for instance, by se-
lecting the best blocking size and padding width. Performance modeling helps
the tuning process by exploring the performance trade-offs in large parameter
spaces.

Using ASK (cf. section 3.2 on page 46), we explore the following parameters
of the FDTD kernel:

• the grid size (X,Y, Z) where each dimension is independently selected in
the range [768 : 1536] by steps of 128,

• the half stencil order p in [1 : 8],

• the number of threads in {4, 8, 16, 32},

• the number of blocks (NX,NY,NZ) respectively on X direction in {1, 2,
4, 8, 16}, Y and Z directions in {4, 16, 32, 64, 128},

• the variant of the algorithm. We considerer two variants, isotropic and
isotropic-split, that will be described later.

The possible factor combinations amount to more than 2.7 million. In order
to evaluate the error, we measure the real response of 3225 randomly selected
points, which represent more than 60 hours of experiments on the 32-core ma-
chine. Since the test set is small compared to the design space, confidence
intervals of the prediction error are computed using 1000 ordinary bootstrap
iterations [69].

Using ASK, a GBM performance model of the kernel is built using the HVS
800 points sampling. Figure 4.7 shows the RMSE and mean percentage error
for the three sampling strategies. The experiment is stopped after 16 sampling
steps to show ASK capability of building a performance model with a limited
number of samples. The most accurate model is built using HVS and GBM
with a final mean error of 7.71% and an RMSE error of 4.14.

The GBM model offers a useful feature that allows sorting the model factors
by their relative influence. Figure 4.8 shows the relative influence of the different
factors considered in our experiment. The relative influence is computed using
the method proposed by Friedman in [79] and determines how much a given
variable affects the response in the GBM model. Dominant factors of perfor-
mance are the order of the stencil, the code variant, number of blocks on X and
Y , and the number of threads. Figure 4.8 gives an insight into the parameters
to consider in priority to enhance performance. The following paragraphs give
more details on the way these parameters affect performance. The metric used
is the number of cycles required per lattice update.

The Variant Influence We consider two variants of the FDTD implemen-
tation. The first variant, isotropic computes the Laplacian in a triple nested
loop. In the second variant, isotropic-split, the inner loop is split into p
smaller loops. Each split loop corresponds to one of the bp factored blocks. Fig-
ure 4.9 shows that the number of cycles per update increases for both variants
as the stencil order increases. Yet, for high stencil orders with 2.p > 10, the
isotropic variant is significantly more costly than the isotropic-split vari-
ant. The goal of loop splitting is to lower the register pressure and the number

64 Optimizing HPC applications

6

9

12

15

200 400 600 800
samples

R
M

S
E

Strategy

HVS

HVSrelative

Random

10

15

20

25

30

35

200 400 600 800
samples

M
ea

n
%

 E
rr

or

Strategy

HVS

HVSrelative

Random

Figure 4.7: Root mean square error and Mean percentage error for the three
tested strategies in the FDTD case study. The error is evaluated against a
randomly selected test set of 3225 points. The vertical black lines show the
bootstrap confidence intervals.

0

20

40

60

or
de

r

va
ria

nt NX NY T X NZ Y Z

factor

re
la

tiv
e

in
flu

en
ce

 (
%

)

Figure 4.8: Relative influence of input factors in the FDTD kernel. The influence
determines how much a factor affects the response. For the GBM model, it is
computed as described in [79].

Optimizing a Seismic proto-application 65

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8
stencil half−order (p)

cy
cl

es
 p

er
 u

pd
at

e Algorithm Variant

isotropic

isotropic−split

Figure 4.9: Performance of the isotropic and isotropic-split code variants.
For p larger than five, the isotropic-split version is significantly faster.

of concurrent memory streams. It is particularly effective on large loop bodies,
such as the ones needed by high-order stencils.

The Blocking Influence This section studies the impact of the spatial cache
blocking on performance in the isotropic-split variant with p = 4. Results
are similar for other configurations. Cache blocking aims to increase data lo-
cality by reusing data before eviction from the cache. The stencil computation
can be blocked across the three dimensions.

Figure 4.10 illustrates the impact of blocking on the innermost dimension
X. The grid is tiled with blocks: increasing the number of blocks reduces each
block size. Performance deteriorates as the number of blocks on dimension X
increases. Indeed, for small block sizes on X, the hardware prefetcher streams
additional data, which are evicted from the cache before being used. Therefore,
using small X block sizes result in an increase in memory traffic. The number
of blocks in the X dimension should be kept low.

On the other hand, the outer Y and Z loops should be blocked to make
the data working set of all the threads fit the cache. Figure 4.11 shows the
correlation between the number of Y blocks and the number of threads. With
many threads, configurations with a high number of Y blocks are the best. All
the threads in the same socket share the same Last Level Cache (LLC). As the
number of threads increases, the cache budget per thread decreases, requiring
smaller block sizes. Blocking across Z also helps, but the pay-off is smaller since
it exposes less data reuse. Similar conclusions can be found in other studies on
performance optimization of stencil computations, such as [151, 168].

Scalability This section studies the strong scalability of a stencil of order
8 (p = 4) with the best variant and blocking parameters determined in the
previous analysis. The selected parameters are isotropic-split, p = 4, NX =
1, NY = 128, and NZ = 32.

Figure 4.12 shows the scalability for two different grid sizes.

66 Optimizing HPC applications

0

10

20

30

40

50

60

1 2 4 8 16
Number of blocks on X dimension

cy
cl

es
 p

er
 u

pd
at

e

Figure 4.10: Performance of differ-
ent X blocking configurations. The
size of the blocks is inversely pro-
portional to the number of blocks.
Large block sizes across X exhibit
the best performance.

4 threads 8 threads

16 threads 32 threads

20

30

40

50

60

20

30

40

50

60

4 16 32 64 128 4 16 32 64 128
Number of blocks on Y dimension

cy
cl

es
 p

er
 u

pd
at

e

Figure 4.11: Performance of different
Y blocking configurations. For a high
number of threads, reducing the Y block
size improves performance.

The kernel scales well up to 16 threads. ASK pinpoints a potential scalability
problem: at 32 threads the speedup is around 26. Since the results are extrap-
olated from the model, we verify this result by direct measurement. Despite
small local discrepancies, the model predicts the general trend.

4.4 Conclusion
This chapter concludes the first part of the manuscript by applying the previ-
ously presented techniques to accelerate HPC optimization studies.

First, we presented how CERE tunes thread number, affinity, and compiler
optimizations at the same time on a scalar penta-diagonal solver from the NPB
3.0 OpenMP benchmarks. We also showed that CERE efficiently explores the
thread mapping on an Aarch64 big.LITTLE heterogeneous architecture. Both
of these use-cases are detailed in our paper [21] which applies the methodology
systematically to all the NPB 3.0 benchmarks and presents additional experi-
ments and details.

Second, we showed how CERE and adaptive sampling ease the study and
optimization of a seismic proto-application. The model generated by ASK al-
lowed us to tune the variant and the blocking factor, and detect a scalability
problem in the FDTD kernel.

Conclusion 67

●

●

●

●

●

●

●

●

size = 896x896x768 size = 1280x1280x1024

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32
threads

sp
ee

d
up model

● HVS

True response

Figure 4.12: Scalability for the isotropic-split implementation with half
order p = 4, NX = 1, NY = 128, and NZ = 32. The speedup is computed
using the single thread performance with the same parameters.

Part II

Accuracy and performance
trade-offs

5 E Monte Carlo Arithmetic

Contents
5.1 Background on automatic numerical error analysis . 72
5.2 Floating-point arithmetic 73
5.3 Stochastic arithmetic 74
5.4 Choice of the rounding operator in MCA 78
5.5 Probabilistic accuracy of a computation 85
5.6 Conclusion . 96

This chapter includes contributions from the following publications:

• Christophe Denis, Pablo de Oliveira Castro, and Eric Petit. “Verifi-
carlo: Checking Floating Point Accuracy through Monte Carlo Arith-
metic.” In: 23nd IEEE Symposium on Computer Arithmetic, ARITH
2016, Silicon Valley, CA, USA, July 10-13, 2016. 2016, pp. 55–62.
doi: 10.1109/ARITH.2016.31. url: http://dx.doi.org/10.
1109/ARITH.2016.31

• Devan Sohier, Pablo de Oliveira Castro, François Févotte, Bruno
Lathuilière, Eric Petit, and Olivier Jamond. “Confidence Intervals for
Stochastic Arithmetic.” In: ACM Transactions Mathematical Soft-
ware 47.2 (Apr. 2021). issn: 0098-3500. doi: 10.1145/3432184.
url: https://doi.org/10.1145/3432184

Modern computers use the IEEE-754 standard for implementing floating
point (FP) operations [147]. Each FP operand is represented with a limited
precision. Single precision numbers have 23 bits in the fractional part and double
precision numbers have 52 bits in the fractional part. This limited precision may
cause numerical errors such as absorption or catastrophic cancellation which
can result in loss of significant bits in the result. Floating Point computations
are used in many critical fields such as structure, combustion, astrophysics or
finance simulations. For simple algorithms, such as summation, bounds of the
numerical error have been derived mathematically [100].

One useful metric to evaluate the numerical accuracy of a computation is
the number of significant digits which measures the relative numerical error by
counting the number of accurate digits in the FP mantissa against a reference.

https://doi.org/10.1109/ARITH.2016.31
http://dx.doi.org/10.1109/ARITH.2016.31
http://dx.doi.org/10.1109/ARITH.2016.31
https://doi.org/10.1145/3432184
https://doi.org/10.1145/3432184

72 Monte Carlo Arithmetic

Unfortunately, for many complex programs or intermediate computations, an
exact reference value is not known beforehand. To overcome this problem, we
turn to Monte Carlo arithmetic (MCA), a stochastic method introduced by Stott
Parker [189], that simulates the effect of numerical errors and directly estimates
the number of significant digits.

In MCA numerical errors are modeled by introducing random perturbations
at each FP operation turning the outputs of a simulation code into realizations
of a random variable. Performing a statistical analysis of a set of sampled
outputs allows to stochastically approximate the impact of numerical errors on
the code results.

5.1 Background on automatic numerical error
analysis

Automatic methods for deriving bounds on round-off errors can be loosely cat-
egorized into two categories: exact methods and approximate methods.

Exact methods give a conservative and proven bound on the error of a com-
putation. One well established exact method for deriving error bounds is In-
terval Arithmetic [146], in which each real value in the algorithm is replaced
by an interval that contains all possible outcomes of the computation. The op-
erations are redefined to handle intervals operands and guarantee that the re-
sulting interval provide rigorous bounds on the computation. Multiple software
frameworks [166, 171, 172] for interval arithmetic have been released. Interval
arithmetic have been applied to derive error bounds and optimize numerical
methods [115, 145], linear algebra [96], and physical simulation [62]. Because
intervals are conservative, they tend to become overly large when the algorithm
or control flow is complex. It is possible to refine the analysis by consider-
ing a union of interval subdivisions [99] or more sophisticated objects such as
zonotopes [90] or affine arithmetic [84]. Instead of relying on intervals, FPTay-
lor [186] uses a Taylor expansion of a computation with error terms to find the
maximum numerical error. Finally, floating point proof assistants [35, 36, 61]
can derive semi-automatic certified proofs on floating point errors on small pro-
grams. However, the use of such methods is not always tractable, especially for
complex programs with data dependent control paths. In that case the solution
often rapidly diverges to a dramatic overestimation of the error [139].

On the other hand, approximate methods do not provide deterministic bounds
on the numerical error and depend on the input data, but are able to efficiently
analyze large and complex programs, such as found in industrial codebases. A
first set of methods estimate the numerical error by comparing the IEEE-754 re-
sult to a computation performed in higher-precision. FpDebug [33] uses shadow
memory for detecting accuracy problems with Valgrind by computing in higher
precision. Similarly, Herbgrind [173] is another tool based on Valgrind that can
automatically localize floating-point errors and find the causes of inaccuracies
by tracking operations dependencies.

A second set of approximate methods simulate errors as random variables.
The CESTAC [50, 198] method models round-off errors by randomly rounding
FP values upwards or downwards equiprobably. CESTAC is implemented in the
CADNA [127] library which synchronously computes three CESTAC orbits for

Floating-point arithmetic 73

each FP value to estimate statistically the numerical error. Verrou [73, 196] is
an open-source floating point diagnostic tool based on CESTAC and MCA. It
leverages Valgrind [149] to transparently intercept floating point operations at
runtime and replace them by their random rounding counterpart. The interpo-
sition at runtime allows to address large and complex-code applications with no
intervention of the end-user, much like our own tool, verificarlo (cf. chapter 6).

CESTAC, while a pioneer method in automatic numerical estimation, has
some shortcomings for the statistical estimation of errors as discussed in sec-
tion 5.3.1. An alternative stochastic model is Monte Carlo Arithmetic (MCA),
introduced by Stott Parker[189], which is the main topic of this chapter.

5.2 Floating-point arithmetic
Normalized floating-point numbers F ⊂ R form a subset of the real numbers,
the elements of which can be written as x = ±m × βe−p, where β is the basis,
βp−1 ≤ m < βp is an integer mantissa, e ∈ Z is the exponent, and p is the
working precision. For x ∈ F and β and p given, the couple (m, e) satisfying the
previous equations is unique. In this chapter, we restrict ourselves to normalized
floating point numbers, excluding special cases of the IEEE-754 norm such as
±0, NaNs, ±∞, and denormals.

When a program is run on an IEEE-754 compliant processor, the result of
each floating-point operation y ◦ z is replaced by a rounded value. For example,
the default rounding mode, round(y ◦ z), rounds to the nearest representable,
tying to an even mantissa.
Definition 5.2.1. For x ∈ R, Upward rounding dxe and downward rounding
bxc are defined by:

dxe = min{y ∈ F : y ≥ x}, bxc = max{y ∈ F : y ≤ x},

clearly, bxc ≤ x ≤ dxe, with equalities if and only if x ∈ F .
Lemma 5.2.1. βp−ebxc = Tβp−exU. where TxU is the integer part of x.
Proof. If x ∈ F , then βp−ex ∈ Z and bxc = x, the result follows. If x ∈ R− F ,
then βp−ebxc, βp−edxe ∈ Z, and bxc < x < dxe, then βp−ebxc < βp−ex <
βp−edxe. We thus have

βp−ebxc ≤ Tβp−exU < βp−edxe.

Since dxe − bxc = βe−p, then βp−edxe − βp−ebxc = 1 and

βp−ebxc ≤ Tβp−exU < βp−ebxc+ 1.

Let us assume that x is a real that is not representable: x ∈ R/F . The
distance between the two floating-point numbers enclosing x is ε(x) = dxe −
bxc = βe−p.
Definition 5.2.2. The fraction of ε(x) rounded away for x /∈ F , as shown in
figure 5.1, is

θ(x) =
x− bxc
dxe − bxc

=
x− bxc
ε(x)

.

For x ∈ F , we define θ(x) = 0.

74 Monte Carlo Arithmetic

bxc dxex

1
2ε(x)

θ(x)ε(x)

Figure 5.1: θ(x) is the fraction of ε(x) to be rounded away.

5.3 Stochastic arithmetic
The standard FP error model [100] bounds the error of a real computation
y ◦ z = x ∈ R for the elementary operations ◦ ∈ {+,−, ∗, /} assuming no
underflow or overflow with

x̂ = round(y ◦ z) = x(1 + δ),

where the relative error δ = x̂−x
x satisfies |δ| ≤ u and u = 1

2β
1−p is the unit

round off.
The key idea in Stochastic Arithmetic methods, such as MCA or CESTAC, is

to replace the error term δ in each operation by a random variable that simulates
the rounding errors. A computation is run multiple times in order to produce a
set of output results (i.e. a set of realizations or samples of the random variable
modeling the program output). The samples are then statistically analyzed in
order to assess the quality of the result.

Let us denote by x ∈ R the reference mathematical result. Different values
can be defined for this result:

• x̂ = fl(x) is the value computed with IEEE-754 arithmetic and the default
rounding;

• X1, X2, . . . , Xn are the values returned by n runs of the program using
stochastic arithmetic. These are seen as n realizations of the same random
variable X.

The density of random variable X is unknown, but some of its characteristics
can be estimated using n sample values (X1, . . . , Xn). In particular:

• the expected value µ = E[X] can be estimated by the empirical average
value of Xi, µ̂ = 1

n

∑n
i=1 Xi;

• the standard deviation σ =
√

E[(X − µ)2] can be estimated by the em-
pirical standard deviation, σ̂ =

√
1

n−1

∑n
i=1 (Xi − µ̂)

2.

5.3.1 CESTAC
CESTAC defines a stochastic arithmetic which randomly rounds FP values up-
wards or downwards equiprobably:

cestac(x) =

{
bxc with probability 1/2

dxe with probability 1/2

Stochastic arithmetic 75

In CESTAC [197], the average µ̂ of three samples is taken as the computed
result, and the analysis then estimates the accuracy of this quantity, seen as an
approximation of the real value x.

Definition 5.3.1. The CESTAC number of exact significant bits is defined as
the number of bits in common between x and µ̂:

scestac = − log2
∣∣∣∣x− µ̂

x

∣∣∣∣ .
In order to estimate the number of exact significant digits, the CESTAC

analysis is based on two hypotheses:

1. the distribution X is normal, and

2. the distribution X is centered on the mathematical result µ = x.

Since X is assumed normal, one can derive the following Student t-distribution
interval with confidence (1− α):

µ ∈
[
µ̂± τn σ̂√

n

]
,

where n is the number of samples, and τn is the 1− α
2 quantile of the Student

distribution with n− 1 degrees of freedom.
The maximum error between µ and µ̂ is bounded by this interval for a normal

distribution; it follows [133] that an estimated lower bound for the number of
exact significant bits is given by

scestac = − log2
∣∣∣∣µ− µ̂

µ

∣∣∣∣ ≈ − log2
∣∣∣∣µ− µ̂

µ̂

∣∣∣∣ > − log2
(

τn σ̂√
n |µ̂|

)
︸ ︷︷ ︸

ŝcestac

. (5.1)

This definition suffers from a few shortcomings. First, the two hypotheses,
while reasonable in many cases, do not always hold [49, 115]: the normality as-
sumption of X is not always true [189, p. 49] (also see section 7.1) and CESTAC
is biased and not centered on the mathematicl result [9, 189]. The robustness
of CESTAC with respect to violations of these hypotheses is discussed in [50].

Second, and more important, the CESTAC definition of the number of signif-
icant digits may not necessarily be the most useful for the practitioner. Often-
times, the objective of the numerical verification process consists in evaluating
the precision of the actual IEEE computer arithmetic. CESTAC does not evalu-
ate the number of significant digits of the IEEE result but rather of the average
of the CESTAC samples. But in practice, the IEEE result does not match µ̂.

Last, with this definition, a problem clearly appears when considering the
asymptotic behavior of the bound: ŝcestac −−−−−→

n→+∞
+∞. Increasing the number

of samples arbitrarily increases the number of significant digits computed by
CESTAC. On the one hand, this is expected because, according to the definition
proposed, any computation is actually infinitely precise when n → ∞ since the
strong law of large numbers states that the empirical average is in this case
almost surely the expected value. On the other hand, however, this asymptotic
case also questions the pertinence of the CESTAC metric for the evaluation of
the quality of the results produced by IEEE-754 computations.

76 Monte Carlo Arithmetic

5.3.2 Monte Carlo Arithmetic
MCA simulates the effect of different FP precisions by operating at a virtual
precision t. To model errors on a FP value x at virtual precision t, it uses the
function

inexact(x) = x+ βe−tξ,

where e = blogβ |x|c + 1 is the order of magnitude of x and ξ is a uniformly
distributed random variable in the range

(
− 1

2 ,
1
2

)
.

During the MCA run of a given program, the result of each FP operation
is replaced by a perturbed computation modeling the losses of accuracy [8, 76,
189]. Three possible expressions can be substituted to y ◦ z, defining variants
of MCA:

1. Random Rounding (RR) only introduces perturbation on the output:
round(inexact(y ◦ z))

2. Precision Bounding (PB) only introduces perturbation on the input:
round(inexact(y) ◦ inexact(z))

3. Full MCA (MCA) introduces perturbation on operand(s) and the result:
round(inexact(inexact(y) ◦ inexact(z)))

Stott Parker shows that in most cases RR mode captures the effect of round-
off errors, while PB mode captures the effect of catastrophic cancellations. Using
stochastic arithmetic, the result of each FP operation is replaced with a random
variable modeling the losses of accuracy resulting from the use of finite-precision
FP computations. Since the result of each FP operation in the program is in
turn used as input for the following FP operations, it is natural to assume that
the outputs of the whole program in stochastic arithmetic are random variables.

Stott Parker explores different distribution choices for ξ. Yet, as he shows,
the uniform distribution is preferred because it makes each MCA RR operation
unbiased as shown in section 5.4.4.

The magnitude of the ξ is chosen so that the maximum stochastic error
matches the maximum IEEE-754 rounding error at virtual precision t.

5.3.3 Estimating the numerical error with MCA
In his study of MCA, Stott Parker proposes a definition for the number of
significant digits. He lays this definition on the habits of biology and physics
regarding the precision of a measurement: if an MCA-instrumented program is
seen as a measurement instrument1, then the number of significant digits can
be defined as the number of digits expected to be found in agreement between
successive runs/measurements.

Definition 5.3.2 (Stott Parker). With the notations defined above, the MCA
number of significant bits is defined as

smca = − log2
∣∣∣∣σµ
∣∣∣∣ .

1In most applications, a measurement is modeled by a random variable following a normal
distribution.

Stochastic arithmetic 77

This definition, which computes the magnitude of the coefficient of variation,
is a form of signal-to-noise ratio: if most random samples share the same first
digits, these digits can be considered significant. On the contrary, digits varying
randomly among sampled results are considered noise. Another way of giving
meaning to this definition is to consider fl(x) as one possible realization of the
random variable X. As such, its distance to µ is characterized by σ. A problem
with the MCA definition of significant bits is that it is empirical: the actual
meaning of significance is not clearly laid, as well as the consequences one can
draw from it.

The MCA number of significant bits can be estimated by

ŝmca = − log2
∣∣∣∣ σ̂µ̂
∣∣∣∣ , (5.2)

a quantity which can be computed regardless of any hypothesis on the distri-
bution of X. However, since the number of samples n is finite, ŝmca is only an
approximation of the exact value smca.

5.3.4 A simple example: Cramer’s rule
To illustrate how MCA can estimate the numerical accuracy we use a simple
synthetic example proposed by Kahan [114]: solving an ill-conditioned linear
system, (

0.2161 0.1441
1.2969 0.8648

)
x =

(
0.1440
0.8642

)
(5.3)

The exact and IEEE binary64 solutions of equation (5.3) are:

x =

(
2
−2

)
x̂ =

(
1.9999999958366637
−1.9999999972244424

)
(5.4)

To keep the example simple, the floating-point solution xieee has been ob-
tained by solving the system with the naive C implementation of Cramer’s
formula in double precision, as shown in listing 5.1.

Code listing 5.1: Solving 2x2 system a.x = b with Cramer’s rule
1 void solve(const double a[4], const double b[2], double x[2]) {
2 double det = a[0] * a[3] - a[2] * a[1];
3 double det0 = b[0] * a[3] - b[1] * a[1];
4 double det1 = a[0] * b[1] - a[2] * b[0];
5 x[0] = det0/det;
6 x[1] = det1/det;
7 }

The condition number of the above system is approximately 2.5×108, there-
fore we expect to lose at least log2(2.5× 108) ≈ 28 bits of accuracy or, equiva-
lently, 8 decimal digits. By comparing the IEEE and exact values, we see that
indeed the last 8 decimal digits differ. The number of common bits between x
and x̂ = fl(x) is given by

sieee = − log2
∣∣∣∣x− x̂

x

∣∣∣∣ ≈ (28.8
29.4

)
.

Now let us use MCA to estimate the number of significant digits. We compile
the above program with verificarlo (cf. chapter 6) which transparently replaces

78 Monte Carlo Arithmetic

3 2 1 0 1 2 3
1e 8

0
1
2
3
4
5
6
7

1e7

4 2 0 2 4
Theoretical quantiles

2

1

0

1

2

Or
de

re
d

Va
lu

es

1e 8 Probability Plot

Figure 5.2: Normality of Cramer X[0] sample

every FP operation by its noisy MCA counterpart. Here a virtual precision
of 52 is used to simulate round off errors. Then, we run the produced binary
n = 10 000 times and observe the resulting output distribution X.

Both X[0] and X[1] are normal with high Shapiro-Wilk test p-values 73 %
and 74 % respectively.2 Figure 5.2 shows the distribution and quantile-quantile
(QQ) plots for X[0], for which the empirical average and standard deviation are
given by

µ̂ ≈ 1.99999999909,

σ̂ ≈ 5.3427× 10−9.

Using Stott Parker’s formula (5.2) to compute ŝmca for X[0], we get a figure
close to the expected value 28.8:

ŝMCA = − log2
∣∣∣∣ σ̂µ̂
∣∣∣∣ ≈ 28.48. (5.5)

But how confident are we that ŝmca is a good estimate of smca? Could
we have used a smaller number of samples and still get a reliable estimate of
the results quality? Section 5.5 presents a novel probabilistic formulation to
get a confidence interval for the number of significant bits with and without
assumption of normality that can answer these questions. But before venturing
further, we will examine and correct some rounding issues in MCA original
definition.

5.4 Choice of the rounding operator in MCA
Stott Parker original definition of MCA RR [189] uses the default IEEE-754
nearest mode to round the inexact computation: for x /∈ F and p = t then
MCA RR is defined as rr(x) = round(inexact(x)).

Using nearest round mode can produce surprising results when |x| is close to
βe−1. MCA looses some important properties, in particular it becomes biased.

2Interestingly X[0] fails the Anderson-Darling test, 27 % p-value, due to some anomalies
on the tail.

Choice of the rounding operator in MCA 79

Ff1 = βe−1

m1

f2

m0

f0

x

ε
2ξ− ε

2 + ε
2

ε
β

ε

Figure 5.3: Rounding carry-out when x is close to a power of the base.

This section studies the problems that arise when defining MCA using round-
to-nearest and fixes them by redefining the rounding operator used in MCA.

5.4.1 Problems with nearest rounding in MCA

When |x| is close to βe−1, a carry out can happen during rounding. In that
case the exponent of inexact(x) might be smaller by one compared to the expo-
nent of x. Let us examine closely what would happen in that case when using
nearest rounding. To simplify the analysis we will consider x > 0, but the same
reasoning applies for x < 0 by reversing the rounding direction.

Let us consider the representable f1 = βe−1. The next representable is
f2 = f1 + ε with ε = βe−p. The previous representable is f0 = f1 − ε

β because
the distance between two representables changes when crossing a power of the
base. The midpoints between f0 and f1, and between f1 and f2, are noted
m0 and m1 respectively. Figure 5.3 places these three representables and their
midpoints on the F axis.

We recall that

round(x− βe−p/2) ≤ round(inexact(x)) ≤ round(x+ βe−p/2))

round(x− ε

2
) ≤ round(inexact(x)) ≤ round(x+

ε

2
).

This interval is represented as a double arrow in the top of figure 5.3. An incor-
rect rounding can only happen if the inexact value is lower than the midpoint
m0

x− ε

2
< m0

x < f1 −
ε

2β
+

ε

2

x < βe−1

(
1 +

β−p

2
(β − 1)

)

In particular for base 2, when

2e−1 ≤ x < 2e−1(1 + 2−p−1), (5.6)

random rounding can return f0 which is neither bxc = f1 nor dxe = f2.

80 Monte Carlo Arithmetic

We can illustrate the issue with a numerical example taking p = 3 and β = 2,
let’s choose x = 20(1 + 2−5) = 1.00001, so e = 1, f1 = 1.00, and f0 = 0.111, all
floating point numbers noted in binary.

Since −2e−p−1 < 2e−pξ < 2e−p−1, −0.000111 is an admissible realization
for which round(x+ 2e−pξ) = round(1.00001− 0.000111) = round(0.111011) =
0.111 = f0. In this example, because x is close to a power of two, round(inexact(x))
has three possible realizations 0.111, 1.00 and 1.01. This does not match our ex-
pectations for a well-behaved stochastic rounding operator since x is not always
rounded to one of its closest representables.

5.4.2 MCA bias when using round to nearest
The previous rounding issue also introduces a bias in MCA RR, in other words
MCA RR samples are not centered around the exact value x. Let us show it for
base 2.

Theorem 5.4.1. When p = t, β = 2 and 2e−1 ≤ x < 2e−1(1 + 2−p−1), MCA
RR is biased and

E(round(inexact(x))) = x+
1

2
θ(x)ε− ε

8
.

Proof.

E(round(inexact(x+ εξ))) =

f0 P(x+ εξ < m0) + f1 P(m0 < x+ εξ < m1) + f2 P(m1 < x+ εξ)

=
(
f1 −

ε

2

)
P(x+εξ < m0)+f1 P(m0 < x+εξ < m1)+(f1 + ε)P(m1 < x+εξ)

Ff1 = βe−1

m1

f2

m0

f0

x

ε
2ξ− ε

2 + ε
2

ε
2

ε

θ(x)ε

Because x+ εξ is uniformly distributed in (x− ε/2, x+ ε/2),

=
(
f1 −

ε

2

)(ε
4
− θ(x)ε

) 1

ε
+ f1

(ε
4
+

ε

2

) 1

ε
+ (f1 + ε) θ(x)ε

1

ε

= f1 −
ε

8
+

3

2
θ(x)ε and f1 = x− θ(x)ε

= x+
1

2
θ(x)ε− ε

8

Choice of the rounding operator in MCA 81

5.4.3 Redefining the rounding operator
As shown in section 5.4.1, problems arise when inexact changes the exponent
of x, in that case the ε used during rounding does not match the ε used in the
inexact function. To fix these issues, we propose to use a consistent ε in both
operations.

Definition 5.4.1. For any βe−1 ≤ |x| < βe, we define the rounding operator
for a given ε = βe−p as

roundε(x) = bx+ ε/2c = bx+ βe−p/2c = βe−pTβp−ex+ 1/2U.

The previous definition matches the behavior of round to nearest when ε =
ε(x) = βe−p.

Definition 5.4.2. We redefine MCA Random Round (RR) as

rr(x) = roundε(x)(inexact(x))

• For x ∈ F , rr(x) = x.

• For x /∈ F ,

rr(x) = roundε(x)(x+ βe−tξ)

= bx+ βe−tξ + βe−p/2c

where ξ ∼ U(−1/2, 1/2).

Under this new definition, MCA RR uses a consistent ε = ε(x) for inexact
and round. Let us show that this fixes the problems presented in last section.
First, we show that for p = t, MCA RR can only return one of the two closest
representables.

Lemma 5.4.1. rr(x) = roundε(x)(inexact(x)) ∈ {bxc, dxe}.

Proof. For x representable, the result follows from the definition: inexact(x) =
x. Let us consider the case where x /∈ F with bxc < x < dxe and e = ex.

rr(x) = roundε(x)(x+ βe−pξ)

Because − 1
2 < ξ < 1

2 and round is non-decreasing we have,

roundε(x)(x− βe−p/2) ≤ rr(x) ≤ roundε(x)(x+ βe−p/2)

βe−pTβp−e(x− βe−p/2) + 1/2U ≤ rr(x) ≤ βe−pTβp−e(x+ βe−p/2) + 1/2U

βe−pTβp−exU ≤ rr(x) ≤ βe−pTβp−ex+ 1U
bxc ≤ rr(x) ≤ dxe

In the following theorem 5.4.2 we revisit a result previously proved by Stott
Parker: MCA RR at p = t is equivalent to stochastic rounding [56, 75]. In-
terestingly, this equivalence is true only under the new definition which uses a
consistent ε but is not true with the original round to nearest operator of MCA.

82 Monte Carlo Arithmetic

Theorem 5.4.2. When p = t,

roundε(x)(inexact(x)) =

{
bxc with probability 1− θ(x)

dxe with probability θ(x)

where θ(x) = (x− bxc)/(dxe − bxc).

Proof.

ρ = roundε(x)(inexact(x))
= bx+ βe−pξ + βe−p/2c
= βe−pTβp−ex+ ξ + 1/2U

= bxc+ βe−pTθ(x) + ξ + 1/2U

then,

P(ρ = bxc) = P(Tθ(x) + ξ + 1/2U = 0)

= P(−1− θ(x) < ξ + 1/2 < 1− θ(x))

= 1− θ(x) because ξ + 1/2 ∼ U(0, 1)

and because of lemma 5.4.1,

P(ρ = dxe) = 1− P(ρ = bxc) = θ(x)

5.4.4 Bias of MCA RR
We examine the bias of MCA RR when defined using roundε(x). We consider
three cases, t = p, t > p, and t < p.

Theorem 5.4.3. MCA RR is unbiased when t = p:

E(rr(x)) = x.

Proof. When t = p,

E(roundε(x)(inexact(x))) = bxc(1− θ(x)) + dxeθ(x)
= bxc+ (dxe − bxc)θ(x)
= bxc+ x− bxc = x

In verificarlo we use MCA RR to estimate the rounding errors of computer
programs, and in that case we usually select p = t which simulates the rounding
error at the working precision. In that most usual case theorem 5.4.3 tells us
that the resulting samples will be centered around the exact result.

Let us now examine the bias when t 6= p. When t > p, MCA RR is biased.
For example, consider t = 10, p = 3, and x = 1.01001 in base β = 2.

E(roundε(x)(inexact(x))) = E(roundε(x)(x+ 2−10ξ)) = 1.01 6= x

Choice of the rounding operator in MCA 83

For t < p, Theorem 2 of Stott Parker’s manuscript [189, p. 34] states that
MCA RR is unbiased; as shown below, the proof does not hold when β is even
and x is close to a power of the base.

Theorem 5.4.4. When t < p, MCA RR is biased when β is even and unbiased
when β is odd.

Proof. Let t < p.
E(rr(x)) = E(roundε(x)(x+ βe−tξ))

Since the random variable ξ is uniformly distributed in (−1/2, 1/2), we can
rewrite it as

ξ = 0.r1r2r3r4 . . .− 1/2,

where ri are random digits in base β drawn from a uniform discrete distribution.
The ri form the random fractional part of a FP number in (0, 1). Then,

βe−tξ = βe−t0.r1r2r3r4 . . .− βe−t/2.

Since p− t > 0, we can shift the mantissa by p− t digits,

βe−tξ = βe−p(r1r2 . . . rp−t + 0.rp−t+1rp−t+2 . . .)− βe−t/2.

Now going back to the expectation,

E(rr(x)))
= E(roundε(x)(x+ βe−p(r1 . . . rp−t + 0.rp−t+1 . . .)− βe−t/2))

= E(βe−pTβp−ex+ (r1 . . . rp−t + 0.rp−t+1 . . .)− βp−eβe−t/2 + 1/2U)

= E(βe−pTβp−ex+ (r1 . . . rp−t + 0.rp−t+1 . . .)− βp−t/2 + 1/2U)

= βe−p E(r1 . . . rp−t) + βe−p E(Tβp−ex+ 0.rp−t+1 . . .− βp−t/2 + 1/2U)).

Because r1r2 . . . rp−t is an uniformly distributed integer in [0, βp−t − 1] we have

E(rr(x))) = βe−p(βp−t − 1)/2 + βe−p E(Tβp−ex+ 0.rp−t+1 . . .− βp−t/2 + 1/2U)).

First, let us show that when β is odd MCA RR is unbiased.

E(rr(x))) = βe−p(βp−t − 1)/2+

βe−p E(Tβp−ex+ 0.rp−t+1 . . .− ((βp−t − 1)/2− 1/2) + 1/2U))

= E(βe−pTβp−ex+ (0.rp−t+1 . . .− 1/2) + 1/2U)) because (βp−t − 1)/2 ∈ N

= E(roundε(x)(x+ βe−pφ)) where φ ∼ U(−1/2, 1/2)

= x by applying theorem 5.4.3.

Second, let us show that when β is even MCA RR is biased.

E(rr(x)))
= βe−p(βp−t − 1)/2 + βe−p E(Tβp−ex+ 0.rp−t+1 . . .− βp−t/2 + 1/2U))

= βe−p((βp−t − 1)/2− βp−t/2) + βe−p E(Tβp−ex+ 0.rp−t+1 . . .+ 1/2U)

= −βe−p/2 + βe−p E(T(βp−ex+ 1/2) + (0.rp−t+1 . . .− 1/2) + 1/2U)

= −βe−p/2 + E(roundε(x)((x+ βe−p/2) + βe−pφ)) (5.7)
where φ ∼ U(−1/2, 1/2).

84 Monte Carlo Arithmetic

Now let us consider two sub-cases depending on the value of x.
First, x+ βe−p/2 and x have the same exponent when

βe−1 ≤ |x+ βe−p/2| < βe.

In that case, ε(x + βe−p/2) = ε(x) and theorem 5.4.3 applies to equation 5.7
giving

E(rr(x)) = −βe−p/2 + (x+ βe−p/2) = x.

Second, when x ≥ βe − βe−p/2 or x > −βe−1 − βe−p/2, the result is biased.
Let us consider, for example, βe − βe−p/2 < x < βe, then

roundε(x)((x+ βe−p/2) + βe−pφ) = b(x+ βe−p/2) + βe−pφ+ βe−p/2c.

We note y = (x+ βe−p/2) + βe−pφ+ βe−p/2. By considering the range of φ,

(x+ βe−p/2)− βe−p/2 + βe−p/2 < y < (x+ βe−p/2) + βe−p/2 + βe−p/2

x+ βe−p/2 < y < x+ 3× βe−p/2.

Now by considering the range of x,

βe − βe−p/2 + βe−p/2 < y < βe + 3× βe−p/2

bβec ≤ byc ≤ bβe + 3× βe−p/2c.

But 3× βe−p/2 < ε(βe) = βe−p+1 (because β ≥ 2), so bβe + 3× βe−p/2c = βe.
Therefore byc = βe, and

E(roundε(x)((x+ βe−p/2) + βe−pφ)) = βe,

going back to equation 5.7 gives

E(rr(x)) = −βe−p/2 + βe < x,

so there is a bias when β is even and x is close to a power of the base.

5.4.5 Numerical evaluation of rounding methods
We will now demonstrate on a numerical example the issues with the original
MCA rounding and how they are fixed under the new definition.

Table 5.1 compares MCA RR with p = t = 24 with the original rounding and
with the corrected one. For each method, we compute 100 000 samples of rr(x)
for x = 1.0 + 2−u with u increasing from 23 to 27. We compute the sampling
bias as the difference between the value of x and the mean of the samples.

For u < 26, both methods are well-behaved, and the sampling average is
close to the exact result x.

For u = 26, x = 1 + 2−26 < 2e−1(1 + 2−p−1), from the previous analysis in
section 5.4.1 we expect the original MCA definition to fail. This is confirmed
numerically as the original definition produces 12522 samples where the result
was rounded to f0. On the contrary, the corrected definition always round to
either bxc or dxe. The sampling bias is two orders of magnitude lower with our
corrected computation.

Probabilistic accuracy of a computation 85

round to nearest (Stott Parker) roundε(x)(inexact(x))
f0 bxc dxe bxc dxe

x 1− 2−24 1 1 + 2−23 bias 1 1 + 2−23 bias
1 + 2−23 0 0 100000 0 100000 0 0
1 + 2−24 0 49855 50145 1.7e-10 49974 50026 3.1e-11
1 + 2−25 0 74972 25028 3.3e-11 75072 24928 -8.6e-11
1 + 2−26 12522 75089 12389 7.3e-09 87580 12420 9.54e-11
1 + 2−27 18688 75052 6260 1.1e-08 93723 6277 -3.22e-11

Table 5.1: Comparison of MCA with round to nearest and roundε(x) with p =
t = 24. 100 000 RR samples were collected, we report the distribution of results
and the bias.

5.5 Probabilistic accuracy of a computation
In this section we will define the probabilistic accuracy of a computation. We
consider the output of a program performing FP operations as a random vari-
able X. The output is a random variable either because the program is in-
herently nondeterministic or because we are artificially introducing numerical
errors through MCA, or another stochastic arithmetic model.

5.5.1 Choice of a reference value
The accuracy of a result must be defined against a reference value. When a real
mathematical result is known, it is a natural choice. If the program is determin-
istic when executed in IEEE arithmetic, the IEEE result is one straightforward
choice for the reference value. If the program is nondeterministic, one can also
choose as reference, the empirical average of X. Finally, a third option consists
in computing the accuracy against a second random variable Y , which allows
computing the accuracy between runs of the same program or allows finding the
accuracy between two different programs, such as when comparing two different
versions or implementations of an algorithm. We will write the reference value
x when it is a constant and Y when it is another random variable.

Four types of studies can be led, depending on whether we are interested
in absolute or relative error, and whether we have a reference value. We have
reduced the four types of problems to study the random variable Z whose dis-
tribution represents the error of a computation in a broad sense.

reference x reference Y
absolute precision Z = X − x Z = X − Y
relative precision Z = X/x− 1 Z = X/Y − 1

5.5.2 Probabilistic definitions of significant and contribut-
ing digits

To define the significance of a digit we use Stott Parker’s 1
2ulsp algorithm [189,

p. 19]. The significant bit is at the rightmost position at which the digits differ

86 Monte Carlo Arithmetic

by less than one half unit in the last place. That is to say, two values x and y
have s significant digits iff

|x− y| <1

2
× 2ey−s = 2−s+(ey−1) (scaled absolute error)

|x/y − 1| <1

2
× 21−s = 2−s (relative error) (5.8)

Without loss of generality, to unify the definition for the relative and scaled
absolute cases, in the following sections we assume ey = 1. When working with
absolute errors, one should therefore shift the number of digits by (ey − 1), the
normalizing term3.

The first quantity of interest is the probability that the result is signifi-
cant up to a given bit for a MCA computation. By generalizing equation 5.8
to random variables, we define the probability of the k-th digit being significant
as P

(
|Z| < 2−k

)
.

Definition 5.5.1. For a given stochastic computation, the k-th bit of Z is said
to be significant with probability p if

P
(
|Z| < 2−k

)
> p.

The number of significant digits in Z with probability p is defined as the
largest number ssto ∈ R such that

P
(
|Z| < 2−ssto

)
> p.

Note that, by definition, if the k-th bit of Z is significant with probability
p, then any bit of rank k′ 6 k is also significant with probability p. In the
following, when not otherwise specified, the simple notation s will refer to the
ssto notion defined above.

The second quantity we will consider is the probability that a given bit
contributes to the precision of the result: even if a bit on its left is already
wrong, a bit can either improve the result precision, or deteriorate it. As noted
in [189, p.45]: ”In other words, in inexact values it can be worthwhile to carry
a nontrivial number r of random least significant bits”. Because the expected
result of Z is 0, a bit will improve the accuracy if it is 0 and deteriorate it if it
is 1.

Definition 5.5.2. The k-th bit of Z is said to be contributing with probability p
if and only if it is 0 with this probability, i.e. if and only if

P
(⌊
2k |Z|

⌋
is even

)
> p.

Now, the k-th bit of Z is 0 if and only if there exists an integer i such that,⌊
2k |Z|

⌋
= 2i

⇔ 2i 6 2k |Z| < 2i+ 1

⇔ 2−k(2i) 6 |Z| < 2−k(2i+ 1). (5.9)
3When Y is a random variable, we choose eY = blog2 |E[Y]|c+ 1.

Probabilistic accuracy of a computation 87

One should note that the notions of significance and contribution are distinct,
but related: if there are s significant bits with probability p, then all bits at
ranks c 6 s are contributing, with probability p. Indeed,

P
(
|Z| < 2−s

)
> p

⇒ ∀c 6 s, P (2c |Z| < 1) > p

⇒ ∀c 6 s, P
(⌊

2c |Z|
⌋
= 2× 0

)
> p.

However, the k-th bit of Z being contributing with probability p does not
imply that all bits at ranks k′ < k are also contributing4. This prevents the
definition of such a notion as the number of contributing bits.

In the following, we study these two properties, significant and contribut-
ing bits, under the normality assumption (section 5.5.3) and in the general case
(section 5.5.5).

5.5.3 Accuracy under the centered normality hypothesis
In this section we consider that Z is a random variable with normal distribution
N (0, σ). In practice, we only know an empirical standard deviation σ̂, measured
over n samples. Because Z is normal, the following confidence interval [176,
p. 282] with confidence 1− α based on the χ2 distribution with (n− 1) degrees
of freedom is sound 5:

(n− 1)σ̂2

χ2
α/2

6 σ2 6
(n− 1)σ̂2

χ2
1−α/2

. (5.10)

It is important to note that σ is the standard deviation of Z and not of X.
For example, when taking a second independent random variable Y as reference,
if X and Y both follow a distribution N (µ, σ′), Z = X −Y follows N (0,

√
2σ′).

Significant bits

The theorem below is a more precise restatement of Stott Parker’s Theorem
1 [189, p. 23]: “the difference in the orders of magnitude of the mean µ and the
standard deviation σ measures the number of significant digits of X (if µ 6= 0,
σ 6= 0).” We define the notion of “measuring the number of significant digits”
as the estimation of the probability that a given bit is significant at a given
confidence level. We then prove that the number of significant bits is given
by − log2

µ
σ as exposed by Stott Parker (since in a relative precision analysis,

σZ = σX

x = σ
µ if X is normal and centered at the reference value), but adjusted

by a quantity that depends only on the target probability and confidence level.

Theorem 5.5.1. For a normal centered error distribution Z ∼ N (0, σ), the
s-th bit is significant with probability

ps = 2F

(
2−s

σ

)
− 1,

4Although, it is the case for example when Z follows a Gaussian distribution.
5This interval is bilateral. If we were only interested in a lower bound for significant and

contributing bits we could use the unilateral bound σ2 6 (n− 1)σ̂2/χ2
1−α.

88 Monte Carlo Arithmetic

with F the cumulative distribution function of the normal distribution with mean
0 and variance 1.

Proof. The probability that the k-th bit is significant is P
[
|Z| < 2−k

]
= P

[
Z < 2−k

]
−

P
[
Z < −2−k

]
. Now P

[
Z < −2−k

]
= 1−P

[
Z < 2−k

]
by symmetry of the nor-

mal distribution, so that P
[
|Z| < 2−k

]
= 2P

[
Z < 2−k

]
− 1. Therefore,

P
[
|Z| < 2−k

]
= 2P

[
Z

σ
<

2−k

σ

]
− 1 = 2F

(
2−k

σ

)
− 1.

The number of significant digits with probability p is s such that 2F
(

2−s

σ

)
−

1 = p, i.e. F
(

2−s

σ

)
= p+1

2 ⇔ 2−s

σ = F−1
(
p+1
2

)
, so that

s = − log2 (σ)− log2
(
F−1

(
p+ 1

2

))
.

The above formula is remarkable because, whatever σ, the confidence inter-
val to reach a given probability is constant and can be computed from a table
for F−1. Therefore, one just needs to subtract a fixed number of bits from
− log2(σ) to reach a given probability, as illustrated in figure 5.4.

In practice, only the sampled standard deviation σ̂ can be measured, but it
can be used to bound σ thanks to the χ2 confidence interval in equation (5.10).
This allows computing a sound lower bound ŝcnh on the number of significant
digits in the Centered Normality Hypothesis:

s > − log2 (σ̂)−

[
1

2
log2

(
n− 1

χ2
1−α/2

)
+ log2

(
F−1

(
p+ 1

2

))]
︸ ︷︷ ︸

δcnh︸ ︷︷ ︸
ŝcnh

. (5.11)

Again, this formula is interesting since ŝcnh can be determined by just mea-
suring the sample standard deviation σ̂ and shifting − log2(σ̂) by a value δcnh,
which only depends on a few parameters: the size of the sample n, the confi-
dence 1−α and the probability p. This is an improvement over the proposition
of [189, p.23] to use a confidence interval on the estimate of µ. Instead, we
propose a confidence interval directly on the quantity of interest, namely, the
number of significant digits.

Numerical application

Let us consider the X[0] variable from the ill-conditioned Cramer system from
section 5.3.4. Statistical tests did not reject the normality hypothesis for X[0].
Here we would like to compute the number of significant digits relative to the
mean of the sample with a 99 % probability. We consider the relative error, Z =
X[0]
µ̂ −1 → N (0, σ). Here σ will be estimated from σ̂ with the χ2 95 % confidence

interval presented in equation (5.10). Computing δcnh for n = 10 000, p = 0.99
and 1− α = 0.95, yields δcnh ≈ 1.4. Recalling the sampled measurements from
section 5.3.4, we get − log2(σ̂) ≈ 28.5.

Probabilistic accuracy of a computation 89

10 5 0 5 10 15 20
k+ log2(σ)

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y

s-th bit significant
s= − log2(σ)

Figure 5.4: Profile of the significant bit curve: when the dashed line is positioned
on the − log2 σ abscissa, the curve corresponds to the probability that the result
is significant up to a given bit.

20 25 30 35 40 45 50
k

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pr
ob

ab
ilit

y

30 samples
empirical
CI lower bound

20 25 30 35 40 45 50
k

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pr
ob

ab
ilit

y

10000 samples
empirical
CI lower bound

Figure 5.5: Significant bits for Cramer x[0] variable computed under the normal
hypothesis using 30 and 10000 samples. The Confidence Interval (CI) lower
bound is computed by using the probability of theorem 5.5.1 and bounding σ
with a 95% Chi-2 confidence interval.

90 Monte Carlo Arithmetic

−3× 2−k −2× 2−k −1× 2−k 0 1× 2−k 2× 2−k 3× 2−k 4× 2−k 5× 2−k
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Figure 5.6: Normal curve; the gray zones correspond to the area where the k-th
bit contributes to make the result closer to 0 (whatever the preceding digits).

Therefore, at least 28.5 − 1.4 = 27.1 bits are significant, with probability
99 % at a 95 % confidence level. Figure 5.5 shows that the proposed confidence
interval closely matches the empirical probability on the X[0] samples. When
the number of samples increases, the confidence interval tightness increases.

Contributing bits

In the previous section we computed the number of significant bits. Now we
are interested in the number of contributing bits: even if a bit is after the last
significant digit, it may still contribute partially to the accuracy if it brings the
result closer to the reference value.

The theorem below gives an approximation of the number of contributing
bits which has the same property as theorem 5.5.1: this approximation computes
the number of bits to shift from − log2(σ̂) to obtain the contributing bits based
on the same few parameters (sample size n, confidence 1−α and probability p),
and the shift being independent of σ̂.

Theorem 5.5.2. For a normal centered error distribution Z ∼ N (0, σ), when
2−c

σ → 0, the c-th bit contributes to the result accuracy with probability

pc ∼
2−c

2σ
√
2π

+
1

2
. (5.12)

More precisely, we can bound pc as follows

1

2
+

2−c

2σ
√
2π

− (2−c)
3
(4e−3/2 + 1)

12σ3
√
2π

6 pc 6
1

2
+

2−c

2σ
√
2π

+
(2−c)

3
(4e−3/2)

12σ3
√
2π

(5.13)

Proof. Please refer to our detailed paper [185] for the proof.

If we wish to keep only bits improving the result with a probability greater
than p, then we will keep c contributing bits, with

c = − log2(σ)− log2
(
p− 1

2

)
− log2

(
2
√
2π
)
. (5.14)

Probabilistic accuracy of a computation 91

0 5 10 15 20
c+ log2(σ)

0.2

0.4

0.6

0.8

1.0

0.5

0.7
pr

ob
ab

ilit
y

c-th bit significant (approximation)
c= − log2(σ)

Figure 5.7: Profile of the contribution bit curve: when the dashed line is posi-
tioned on the − log2 σ abscissa, the curve corresponds to the approximation 5.12
of the probability that the bit contributes to the result accuracy. The shaded
area represents the bound on the error given by equation 5.13.

As before, this formula can be further refined by replacing σ with σ̂ and
adding a term taking into account the confidence level:

c > − log2(σ̂)−

[
1

2
log2

(
n− 1

χ2
1−α/2

)
+ log2

(
p− 1

2

)
+ log2

(
2
√
2π
)]

︸ ︷︷ ︸
ĉcnh

.

Figure 5.7 plots the approximation of equation 5.12. We note that for a
centered normal distribution the probability of contribution decreases monoton-
ically towards 0.5. Close to 0.5, bits become more and more indistinguishable
from random noise since their probability is not affected by the computation.

The approximation of equation 5.12 is tight for k > − log2 σ: in this case, the
absolute error of the approximation formula is less than 2 %. The probability
of contribution at k = − log2 σ is 0.7. Therefore, equation 5.14 can be safely
used for probabilities less than 0.7. We want to find the limit after which
bits are random noise. This limit corresponds to a probability of 0.5 and the
approximation is tight for p < 0.7.

Numerical application

Figure 5.8 shows that the approximation proposed in this section tightly esti-
mates the empirical samples in Cramer x[0] example.

If we consider a 51 % threshold for the contribution of the bits we wish
to keep, then we should keep c = − log2(σ) − log2(p − 1

2) − log2(2
√
2π) =

− log2(σ) + 4.318108. As in section 5.5.3, we estimate − log2(σ) with a 95 %
Chi-2 confidence interval, and compute c = 32.8.

This means that with probability 51% the first 32 bits of the mantissa will
round the result towards the correct reference value. After the 34th bit the
chances of rounding correctly or incorrectly are even: the noise after the 34th
bit is random and does not depend on the computation. Bits 34 onwards can
be discarded.

92 Monte Carlo Arithmetic

30 35 40 45 50
k

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pr
ob

ab
ilit

y

30 samples
empirical
CI lower bound

30 35 40 45 50
k

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pr
ob

ab
ilit

y

10000 samples
empirical
CI lower bound

Figure 5.8: Contributing bits for Cramer x[0] variable computed under the
normal hypothesis using 30 and 10000 samples with the approximation of equa-
tion 5.12.

0 . . . 25 26 27 28 29 30 31 32 33 34 . . . 52

− log2 σ > 28.45

− log2(p
′ − 1

2
)− log2(2

√
2π) ≈ +4.32− log2

(
F−1

(
p+1
2

))
≈ −1.37

significant at p = .99

contributing at p′ = .51

significant at p = .50

random noise

Figure 5.9: Summary of results on the X[0] Cramer example. 28.45 ≈ − log2 σ̂−
1
2 log2

(
n−1

χ2
1−α/2

)

5.5.4 Discussion for a normal centered distribution
Under the normality hypothesis, the quantity − log2 σX

|µX | introduced by Stott
Parker is pivotal, but needs to be refined. In our framework, Stott Parker’s
definition maps to Z = X

|µX | −1, which computes the relative error to the mean.
In this case Stott Parker’s formula computes the position of the bit until which
the result has 68 % chance of being significant, and that contributes to the result
precision with a probability of 70 %.

However, from this bit, for each desired probability level, there is a simple
way to compute a quantity by which to move back to be sure that the result is
significant. It is also easy to compute a quantity by which to move forward in
order to guarantee that all bits contributing more than a fixed level are kept.
Figure 5.9 demonstrates this on the Cramer’s example.

We recall from section 5.3.4 that in this example

ŝmca = − log2
∣∣∣∣ σ̂X

µ̂X

∣∣∣∣ = − log2(σ̂) ≈ 28.48

First a lower bound, 28.45, on − log2 σ is computed with the Chi-2 95 % con-
fidence interval. With this confidence level, it is a lower bound of smca (as

Probabilistic accuracy of a computation 93

introduced in definition 5.3.2). It is also a lower bound of ssto with 68 % proba-
bility (as introduced in definition 5.5.1). To compute a lower bound on bits that
are significant with probability 99 %, we simply subtract 1.37 from this num-
ber. By adding 4.32 to this number we get the number of bits that contribute
or round towards the reference with a probability of 51 %. The remaining bits
in the mantissa are random noise.

It is important to understand the difference between contributing and sig-
nificant bits. To illustrate this difference, we show in figure 5.9 the number of
significant bits with 50 % probability which we estimate at 29 bits (28.45 shifted
by +0.57 bits). We deduce, since the probability of significant bits decreases
monotonically, that bits in the range 30-33 are significant with a probability
under 50 %; in other words they are likely to be non significant. Yet taken
individually, these bits are contributing with probability over 51%. Therefore,
bits in the range 30-33 still contain useful information about the computation
and cannot be considered random noise. It is up to the practitioner to decide
how many bits to keep depending on their use-case.

Taking this into account, we propose to give a result, by printing all con-
tributing bits at the chosen probability and confidence levels and an annota-
tion bounding the error term at the chosen probability and confidence levels.
This would result, for k = − log2 σ, in the following: for an absolute error with
dk+(ey−1)+4.318108e bits with the annotation ±2bk+(ey−1)−1.365037c at 99 %;
for a relative error with dk + 4.318108e and ±2bk−1.365037c × y at 99 % for a
relative error. In this notation, only digits that are likely to round correctly
the final result with a probability greater than 1 % are written; the error at
probability 99 % is written. In decimal, this notation takes up to two additional
digits (4.318108× log10 2 ≈ 1.29 digits) that are probably wrong, but still have
a chance to contribute to the result precision. As an example, using this nota-
tion to display the IEEE-754 result of Cramer’s X[0] yields, with 9 contributing
digits and 8 significant digits:

1.999999996 ± 1.4e-08 (at 99% with confidence 95%).
These 10 digits contain all the valuable information in the result, and are the
only ones that it would make sense to save, for example in a checkpoint-restart
scheme.

5.5.5 Accuracy in the general case
The hypothesis that the distribution Z is normal, or that it has expectation
0 is not always true. We propose statistical tools to study the significance of
bits as well as their contribution to the result accuracy that do not rely on any
assumption regarding the distribution of the results.

To address the problem in the general case we reframe it in the context of
Bernoulli estimation, which is interesting because:

• it does not rely on any assumptions on the distribution of Z;

• it provides a strong confidence interval for determining the number of
significant digits when using stochastic arithmetic methods;

• thanks to a more conservative bound, it allows to estimate a priori in all
cases for a given probability and confidence a safe number of samples to
draw from the Monte Carlo experiment.

94 Monte Carlo Arithmetic

5.5.6 Background on Bernoulli estimation
In the next section, we restate the problem of estimating the number of signif-
icant bits as a series of estimations of Bernoulli parameters. We present here
some basic results on such estimations.

Consider a sequence of independent identically distributed Bernoulli exper-
iments with an unknown parameter p and outcomes (pi). Each value of the
parameter p gives a model of this experiment, and, among them, we will only
keep an interval of model parameters under which the probability of the given
observation is greater than α. The set of possible values for p will then be
called a confidence interval of level 1− α for p: if the actual value of p is not in
the confidence interval computed from the outcome, it means that the observed
outcome was an “accident” the probability of which is less than α.

A case of particular interest in our study is the one when all experiments
succeed. Then, the probability of this outcome is pn under the model that the
Bernoulli parameter value is p. We then reject models (i.e., values of p) such
that pn < α ⇔ n ln(p) < ln(α). Now, ln(p) 6 p− 1 and ln(p) ∼ p− 1 is a first
order approximation when p is close to 1. Thus, taking p < 1 + ln(α)

n leads to
a probability of the observation less than α, and one can reject these values of
p. In particular, taking 1 − α = 95 %, we keep values of p greater than 1 − 3

n ,
and

[
1− 3

n , 1
]

is a 95 % confidence interval. This result is known in clinical
trials’ literature as the Rule of Three [70]. Vice versa, in an experiment with no
negative outcome, one can conclude with confidence 1− α that the probability
of a positive outcome is greater than p after

⌈
ln(α)
ln(p)

⌉
positive trials.

The general case can be dealt with by using the Central Limit Theorem,
which shows that for a number n of experiments large enough (with respect
to p̂ = 1

n

∑
pi),

√
n(p̂ − p)/(p̂(1 − p̂)) is close to a Gaussian random variable

with law N (0, 1). This approximation is known to be unfit in many cases, and
can be improved by considering p̃ = 1

n+4 (
∑

pi + 2) rather than p̂ as shown by
Brown et al. [39] (this paper also presents other estimators to build confidence
intervals in this situation; in particular, it proposes a revised method when p̃ is
close to 0 or 1, a situation in which the confidence interval below may be overly
optimistic). Then, with F the cumulative distribution function of N (0, 1),[

p̃−
√
p̃(1− p̃)/nF−1(1− α/2), p̃+

√
p̃(1− p̃)/nF−1(1− α/2)

]
is a 1−α confidence interval for p. If we focus on a lower bound on the parameter
p, we can also use

[
p̃−

√
p̃(1− p̃)/nF−1(1− α), 1

]
as a confidence interval of

level 1− α.
Thus, from n independent experiments, of which ns have been a success, we

can affirm with confidence 95 % that the probability of success is greater than
ns+2
n+4 − 1.65

√
(ns+2)(n−ns+2)

(n+4)3 . We can note that when ns = n, this confidence
interval is valid, but much more conservative than the one obtained above, that
can thus be preferred in this particular case.

5.5.7 Statistical formulation as Bernoulli trials
Now, for each of the four discussed settings, presented in section 5.5.1, we can
form two series of Bernoulli trials based on collected data.

Probabilistic accuracy of a computation 95

reference x reference Y
absolute precision Z = X − x Z = X − Y
relative precision Z = X/x− 1 Z = X/Y − 1

When the reference is a constant x, we consider n samples Xi. We form N
pieces of data by computing Zi = Xi − x or Zi = Xi/x− 1 respectively.

When the reference is another random variable Y , we form N pieces of data
by computing Zi = Xi − Yi or Zi = Xi/Yi − 1. In the case where X = Y and
we study the distance between samples of a random process, this requires 2N
samples from X.

From these N pieces of data, we form Bernoulli trials by counting the number
of success of

Sk
i = 1|Zi|<2−k

for studying k-th bit significance, and

Ck
i = 1b2k|Zi|c is even

for studying k-th bit contribution, where 1 is the indicator function.
From these two Bernoulli samples, the estimation can be made as above to

determine the probability that the k-th bit is significant and the probability
that it contributes to the result, for any k. The result can then be plotted as
two probability plots, one for significance, the other for the contribution. The
significance plot is non-increasing by construction, should start at 1 if at least
one bit can be trusted, and tends to 0. The contribution plot should tend to
1
2 in most cases, since the last digits are pure noise and are not affected by the
computation.

5.5.8 Evaluation
The main goal of the Bernoulli formulation is to deal with non normal distri-
butions. In this section, we evaluate the Bernoulli estimate on Cramer’s X[0]
samples which follow a normal distribution. This is to keep a consistent example
across the whole paper and to compare the results with the Normal formulation
estimates. Later, in section 7.1, we will apply the Bernoulli estimate to distri-
butions produced by the industrial simulation code EuroPlexus, some of which
are not normal.

Figure 5.10 plots the significance and the contribution per bit probabilities
for X[0] using the Bernoulli estimation. The estimation closely matches the
empirical results. It is interesting to compare the Bernoulli estimates with 30
samples to the Normal estimates in figures 5.5 and 5.8. The Bernoulli estimates
are less tight and more conservative. This is expected since they do not build
upon the normality assumption of the distribution.

If we are only interested in the number of significant digits, we can consider
the Bernoulli trial with no failed outcomes since it provides an easy formula
giving the required number of samples. In this case, the number of needed
samples is n = d− ln α

ln p e. We then determine the maximal index k for which the
first k bits of all n sampled results coincide with the reference:

ŝb = max
{
k ∈ {1, 2, . . . , 53} such that ∀i ∈ {1, 2, . . . , n} , Sk

i is true
}
. (5.15)

96 Monte Carlo Arithmetic

20 25 30 35 40 45 50
k

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pr
ob

ab
ilit

y

significant (30 samples)
empirical
CI lower bound

20 25 30 35 40 45 50
k

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pr
ob

ab
ilit

y

significant (10000)
empirical
CI lower bound

20 25 30 35 40 45 50
k

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pr
ob

ab
ilit

y

contributing (30 samples)
empirical
CI lower bound

20 25 30 35 40 45 50
k

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pr
ob

ab
ilit

y

contributing (10000)
empirical
CI lower bound

Figure 5.10: Significance and contribution per bit for variable X[0] of the
Cramer’s system with 30 and 10000 samples.

We applied this method to the X[0] sample from section 5.3.4. Assuming
a (1 − α) = 95% confidence interval and a probability of p = 99% of getting s
significant digits, we gather n = 299 samples. Among the collected samples, the
27th digit is sometimes different compared with the reference solution, but the
first 26 digits coincide for all samples. Therefore, we conclude with probability
99% and 95% confidence, that the first ŝb = 26 binary digits are significant.

5.6 Conclusion
In this chapter we presented Monte Carlo Arithmetic, a stochastic arithmetic
method, which we use to estimate numerical accuracy in computer programs.
Unlike exact methods, MCA do not provide formal proofs of correctness. MCA
provides accuracy assessments which are valid only for the specific set of input
data that were used at run-time. Similarly to other run-time based analysis,
it requires using numerous test cases to maximize the coverage of the analysis.
On the other hand, MCA scales well to programs with greater code size and
complexity and do not suffer from the intractability problems of exact methods.

We also proposed novel probabilistic measures of accuracy: the number of
significant and contributing digits. We also give confidence intervals for these
measures of accuracy in the normal and general cases. Thanks to the confidence
intervals we can decide how many samples are needed when estimating the
numerical error through MCA.

In the next chapter, we will introduce verificarlo, a tool for automatic error
analysis in large simulation programs.

6 E Verificarlo

Contents
6.1 Compiler passes . 99
6.2 Advantages of operating at the optimized Interme-

diate Representation 99
6.3 Monte Carlo Arithmetic backend 102
6.4 VPREC backend . 106
6.5 Cancellation Backend 107
6.6 Post-processing . 107
6.7 Conclusion . 111

This chapter includes contributions from the following publications and
software projects:

• Christophe Denis, Pablo de Oliveira Castro, and Eric Petit. “Verifi-
carlo: Checking Floating Point Accuracy through Monte Carlo Arith-
metic.” In: 23nd IEEE Symposium on Computer Arithmetic, ARITH
2016, Silicon Valley, CA, USA, July 10-13, 2016. 2016, pp. 55–62.
doi: 10.1109/ARITH.2016.31. url: http://dx.doi.org/10.
1109/ARITH.2016.31

• Yohan Chatelain, Pablo de Oliveira Castro, Eric Petit, David Defour,
Jordan Bieder, and Marc Torrent. “VeriTracer: Context-enriched
tracer for floating-point arithmetic analysis.” In: 25th IEEE Sympo-
sium on Computer Arithmetic, ARITH 2018, Amherst, MA, USA.
June 25th-27th, 2018. 2018

• Yohan Chatelain, Eric Petit, Pablo de Oliveira Castro, Ghislain Lar-
tigue, and David Defour. “Automatic exploration of reduced floating-
point representations in iterative methods.” In: Euro-Par 2019 Par-
allel Processing - 25th International Conference. Lecture Notes in
Computer Science. Springer, 2019

• E. Brun, D. Defour, P. De Oliveira Castro, M. Istoan, D. Mancusi,
E. Petit, and A. Vaquet. “A Study of the Effects and Benefits of
Custom-Precision Mathematical Libraries for HPC Codes.” In: IEEE

https://doi.org/10.1109/ARITH.2016.31
http://dx.doi.org/10.1109/ARITH.2016.31
http://dx.doi.org/10.1109/ARITH.2016.31

98 Verificarlo

Transactions on Emerging Topics in Computing 9.3 (2021), pp. 1467–
1478. doi: 10.1109/TETC.2021.3070422

• David Defour, Pablo de Oliveira Castro, Matei Istoan, and Eric Pe-
tit. “Custom-Precision Mathematical Library Explorations for Code
Profiling and Optimization.” In: 27th IEEE Symposium on Computer
Arithmetic, ARITH 2020. 2020, pp. 121–124

• Pablo de Oliveira Castro, Eric Petit, Yohan Chatelain, Alan Va-
quet, Aurélien Delval, Killian Babilotte, Greg Kiar, Christophe De-
nis, Robert Lim, Matei Istoan, Nicolas Bouton, Marius Ghertescu,
David Defour, and Olivier Jamond. verificarlo/verificarlo: Verificarlo
v0.7.0. Version v0.7.0. Jan. 2022. doi: 10.5281/zenodo.5833766.
url: https://doi.org/10.5281/zenodo.5833766

Verificarlo is an open-source tool, built upon the LLVM compiler [129], to
analyze and optimize floating point computation in large programs. Verificarlo
is available at http://www.github.com/verificarlo/verificarlo under an
open source license.

Development on verificarlo started as a collaboration with Eric Petit, who
at the time was working at UVSQ and now has moved to Intel, and Christophe
Denis at ENS Cachan. Over the years, many people have contributed to the
project. Yohan Chatelain, in particular, has extended significantly verificarlo
during his Ph.D. thesis at UVSQ and continues to do so in his current post-
doctoral work.

Verificarlo replaces at compilation time each floating point operation by a
custom call. After compilation, the program can be run with various backends,
such as Monte Carlo Arithmetic backend, or Variable Precision backend.

Figure 6.1 shows a bird’s eye view of the verificarlo pipeline. It has special-
ized compiler passes that replace all FP operations by callbacks. The compiler
passes also collect contextual information to locate numerical errors precisely in
the code source and call stack.

Verificarlo includes seven backends which are extensively documented in the
user manual. The four more important backends are:

• mca and mca-int backends which replace standard IEEE-754 computa-
tions by Monte Carlo Arithmetic.

• vprec backend which simulates the effect of using mixed-precision in a

Figure 6.1: Bird’s eye view of the verificarlo pipeline.

https://doi.org/10.1109/TETC.2021.3070422
https://doi.org/10.5281/zenodo.5833766
https://doi.org/10.5281/zenodo.5833766
http://www.github.com/verificarlo/verificarlo
https://github.com/verificarlo/verificarlo/graphs/contributors

Compiler passes 99

program.

• cancellation backend which can be used to detect catastrophic cancel-
lations.

The latest version of verificarlo fully support OpenMP, Pthread and MPI
parallel programs and backends have been designed to be reentrant and keep a
coherent state between threads of execution. The state of the pseudo-random
number generator uses thread-local storage variables which are local to each
thread. The thread local seed is initialized when it is first accessed. This lazy
initialization can handle dynamic thread spawning.

6.1 Compiler passes
Verificarlo relies on the LLVM compiler to instrument FP instructions. Like
most compilers, LLVM architecture has three major components:

• The Frontend parses the source code, checks for errors, and produces an
annotated Abstract Syntax Tree (AST). The AST produced is dependent
on the particular source code language. It is translated to an independent
Intermediate Representation (IR) language.

• the Middle-end optimizes and simplifies the code by applying multiple
analysis and transformations passes on the IR. Depending on the opti-
mization level, different sets of passes are selected.

• the Backend translates the IR to a specific instruction set assembly.

To transparently support multiple languages and architectures, verificarlo
instruments the code through middle-end passes. Verificarlo includes two passes:
VFCInstrument and VFCFuncInstrument. Both passes implement the standard
LLVM ModulePass abstract class which operates on a whole compilation unit
at the IR level.

VFCInstrument is responsible for replacing FP instructions by function calls
to specific verificarlo hooks. This is quite straightforward but requires careful
handling of vector operations and other corner cases such as comparison opera-
tions. Figure 6.2 shows a simple IR code extract before and after applying the
VFCInstrument pass. The two FP subtractions on lines 3 and 5 are replaced
by calls to the hook float _floatsub(float, float). The original operands
are passed as function arguments and the return of the hook call is used as the
result.

VFCFuncInstrument instruments library and user defined functions. It will
be presented in section 6.6.4

6.2 Advantages of operating at the optimized In-
termediate Representation

Verificarlo instruments FP operations at the optimized Intermediate Represen-
tation level (IR). First, because the IR representation is independent of the

100 Verificarlo

1 ; Before applying VFCInstrument
2
3 %30 = fsub float %28, %29
4 %31 = load float, float* %7, align 4
5 %32 = fsub float %30, %31
6 store float %32, float* %6, align 4
7 %33 = load float, float* %8, align 4
8 store float %33, float* %5, align 4
9 br label %34
10
11 ; After applying VFCInstrument
12
13 %30 = call float @_floatsub(float %28, float %29)
14 %31 = load float, float* %7, align 4
15 %32 = call float @_floatsub(float %30, float %31)
16 store float %32, float* %6, align 4
17 %33 = load float, float* %8, align 4
18 store float %33, float* %5, align 4
19 br label %34

Figure 6.2: A short IR excerpt from a Kahan summation algorithm before and
after applying VFCInstrument pass.

1 float sum = f[0];
2 float c = 0.0, y, t;
3
4 for (int i=1;i<n;i++) {
5 y = f[i] - c;
6 t = sum + y;
7 c = (t - sum) - y;
8 sum = t;
9 }

10
11 return sum;

Figure 6.3: Kahan compensated summation: with -O3 -ffast-math flags the
compiler simplifies and removes the computation of the compensation term c.

source language used, verificarlo can operate on any source language supported
by the LLVM ecosystem that includes C and C++ through clang and Fortran
through flang.

Second, the instrumentation pass is done after all the other front-end and
middle-end optimization passes (which include all the floating point optimiza-
tions such as -ffast-math or -freciprocal-math). The interposition at com-
piler level takes into account the compiler optimization effect on the generated
FP operation flow. On the other hand, Frechtling et al. [76] leverage source-to-
source rewriting of floating point operations through the CIL tool for program
transformation [148] to instrument a C program with MCA. Source rewriting
approaches [76, 197] may hinder and miss compiler optimizations, since opti-
mizations happen after FP interposition.

Third, instrumenting FP operations at the IR level allows to reduce the cost
of this interposition by optimizing its integration with the original code.

In the following, we demonstrate the importance of capturing compiler ef-
fects on a standard use case: Kahan’s compensated summation algorithm [100,
p. 83] shown on figure 6.3. The C implementation is particularly sensible to

Advantages of operating at the optimized Intermediate Representation 101

verificarlo cil + mcalib

508.1252

508.1254

508.1256

508.1258

−O0 −O3 −ffast−math −O0 −O3 −ffast−math
flags

su
m

Figure 6.4: One thousand MCA RR samples of Kahan summation:
CIL+MCALIB is unable to capture the compiler effect on Kahan’s summation
because it operates at the source level. On the other hand verificarlo operates
after compiler optimizations and correctly shows that the -O0 version is more
precise than the -O3 -ffast-math version thanks to the compensation term c.

-O0 -O3 -ffast-math
CADNA 7 7
CIL+MCALIB 7.3 7.3
verificarlo 7.3 5.8

Table 6.1: Number of significant digits estimated. Verificarlo is the only tool
that detects that -O3 -ffast-math introduces a loss of accuracy.

compiler optimizations when floating point associativity rules are relaxed with -
ffast-math -O3. The compiler uses simple common sub-expression elimination
and rewrites line 9 as sum = sum + f[i] which is the naive non-compensated
summation.

Using verificarlo and CIL+MCALIB [76] we measured 1000 sample execu-
tions of the Kahan summation code compiled with -O3 -ffastmath and -O0.
The input array contains 1000 random single precision floats in the interval
[0, 1] and therefore has a condition number of 1. Only Random Rounding MCA
errors were considered in this study.

Figure 6.4 compares the results between verificarlo and CIL+MCALIB. On
one hand, CIL+MCALIB is unable to detect any difference between the two
versions. Table 6.1 shows the number of significant digits predicted by CADNA,
CIL+MCALIB and verificarlo for an array of 100000 floats. Again, CADNA
and CIL+MCALIB are blind to compiler optimizations because they operate at
source level. On the other hand, verificarlo correctly shows the loss of accuracy
in the -O3 -ffast-math version.

102 Verificarlo

6.3 Monte Carlo Arithmetic backend
As previously discussed in chapter 5, Monte Carlo Arithmetic is a powerful
framework to understand the numerical stability of a function or program.

We recall that the result in Monte Carlo Arithmetic of x = y ◦ z with
◦ ∈ {+,−, ∗, /} and y, z ∈ F is computed as:

• mca(y ◦ z) = round(inexact(inexact(y) ◦ inexact(z))) in full MCA mode,

• mca(y ◦ z) = round(inexact(y ◦ z)) in RR mode,

The inexact function models FP errors with ξ an uniformly distributed ran-
dom variable in the range

(
− 1

2 ,
1
2

)
• When x is representable, inexact(x) = x

• When x is inexact, inexact(x) = x+ 2ex−tξ

where t is the virtual precision and ex = Tlog2(x)U + 1 is the order of mag-
nitude of x.

In Stott Parker model’s, all the operations performed in the right-hand side
before the final rounding must be done in infinite precision. The final round
operator (either IEEE-754 round-to-nearest or the corrected round operator in
section 5.4.3), round the result to the machine precision p, ensuring that the
MCA computation fits into the memory allocated for the original IEEE 754
result. Therefore, when instrumenting a program with Monte Carlo backend,
verificarlo does not need to change the memory layout.

6.3.1 Implementing MCA with limited precision
When implementing MCA in software we cannot use infinite precision to com-
pute the inexact terms. Let us consider the addition between two positive
representables x = y + z with ey ≥ ez and ex = ey. When summing, both
values are normalized to the largest exponent ey; so the mantissa of z is shifted
to the right by (ex − ez) bits as shown in figure 6.5.

inexact(x) = y + z + 2ex−tξ = 2ex(my + 2ez−exmz + 2−tξ)

Because t ∈ [0, p], the ξ mantissa left position is between 0 and p. Because
ξ ∼ U(−1/2, 1/2), the first bit of the ξ mantissa is zero and is followed by
an infinite number of random bits. We can separate the sum of the stochastic
mantissa into two different terms: the bits of ξ that coincide with round-off bits
and the remaining infinite random bits. The first term requires an addition with
2p+ (ex − ez) bits. The second term would require an adder of infinite length,
fortunately it can be handled with the adder’s sticky bit [85, p. 19]. Because
the remaining infinite random bits contain a one almost surely, we capture their
effect in the final rounding by setting the sticky bit to one.

Nevertheless, this leaves us with a computation that must be performed with
2p+ (ex − ez) bits. With binary64 numbers, p = 53 and normal exponents are
in [−1022, 1023], therefore we have a required precision up to 2151 bits which
is much too costly.

Monte Carlo Arithmetic backend 103

precision normalized to ex

p p+ (ex − ez) 2p+ (ex − ez)

my

mz

+

mx round-off

. . .2tξ with t ≤ p

Figure 6.5: MCA computation inexact(x) = inexact(y + z) with ex = ey.

To be efficient, our implementation will limit both the precision in which
inexact terms are computed and the number of random bits in ξ. In verifi-
carlo we choose to use an extended precision of 2p. This follows Stott Parker
recommendations [189, p. 38].

An extended precision of 2p bits requires drawing p random bits for ξ. In-
deed, for the maximum virtual precision t = p, the stochastic bits are shifted
just after the mantissa,

inexact(x) = x+ 2ex−pξ = 2ex(mx + 2−pξ) for x > 0

Limiting the precision to 2p bits allows a much faster implementation of
MCA, in particular for binary32 operands which can use the native binary64
type for extended computations. Truncating the precision introduces a relative
error of at most 2−2p, which is negligible compared to the machine precision
2−p.

Similarly, when working with the full MCA mode, the inexact function is
applied on the operands and the computation is performed with 2p bits of
precision.

6.3.2 Quad and MPFR backends
The original MCA backend of verificarlo relied on mcalib [76]. Mcalib uses the
GNU MPFR multi-precision floating-point library to perform the operations
in extended precision. This simplifies the implementation since the extended
precision operations are handled by a general library, but is not particularly
efficient.

To optimize the original backend, we decided to use more efficient extended
precision computations. When the original operands’ type is binary32, we can
use the standard binary64 IEEE-754 computations to compute the MCA result
since it offers more than twice the precision of binary32. This is particularly
efficient because binary64 computations are done in hardware.

When the original operands’ type is binary64, we use GCC libquadmath.
This library implements a quadruple precision format with a mantissa of 112
bits; on current architectures the quadruple operations are emulated in software.
This faster MCA backend is called the quad backend.

104 Verificarlo

Using binary64 and quadruple types for performing the computation handles
nicely the case of denormalized values. Denormal operands, once converted to
the extended precision, become normal.

6.3.3 MCA integer backend
The julia library StochasticRounding.jl [121] uses integer operations to per-
form the stochastic rounding. It was possible to extend their approach to com-
pute the MCA inexact function using integers. I am grateful to François Fevotte
who suggested this idea.

We recall the original definition

inexact(x) = x+ 2ex−tξ,

which we can write using the sign and mantissa of x as

inexact(x) = 2ex((−1)sxmx + 2−tξ).

In the MCA integer backend we start by interpreting x as an integer i. The
first α bits of i contain the sign and the exponent, then bits α + 1 to α + p
contain the pseudo-mantissa.

Then, we generate p random bits to form mξ the mantissa of ξ. The first
bit acts as a sign bit in two-complement. We shift the mantissa to the right by
α+ t− 1 bits, ensuring that the sign is extended during the shift. Next, we add
the shifted random mantissa and i together,

i+ (mξ >> (α+ t− 1))

Finally, we interpret back the result as a FP value and round it.
It is possible that the addition of i with the shifted random bits trigger a

carry-out that increases or decreases the final exponent. Fortunately, this case
is correctly handled on the integer computation because the IEEE-754 biased
exponent representation ensures that an underflow or overflow from the mantissa
carries on correctly to the exponent.

This particular case where an underflow changes the final exponent, cor-
responds exactly to the problematic case where x is close to a power of two
demonstrated in section 5.4. When working with floating point numbers we
had to be careful (cf. section 5.4.3) to use a consistent ε in the rounding op-
erator. Interestingly, working with integers avoids the problem when p = t.
Indeed, the stochastic noise in the mantissa is naturally reinterpreted when the
exponent is decreased. So after moving across a power of two boundary, the
stochastic noise is halved. This ensures when t = p that the MCA integer back-
end avoids the rounding issues and matches the corrected MCA RR definition
in section 5.4.3.

Let us illustrate this with the numerical example in section 5.4 with x =
1.00001 × 20. We will only consider the pseudo-mantissas and ignore the sign
and exponent bits in our notations. The pseudo-mantissa of x is 00001 since
the initial 1 bit is implicit.

The minimal ξ mantissa in two-complement is 101, we arithmetically shift it
to the right by t−1 = p−1 = 2 bits getting 11101. Now we can compute the sum
as 00001 + 11101 = 11110. The mantissa underflows in two-complement so the

Monte Carlo Arithmetic backend 105

verificarlo backends
original IEEE MCA quad MCA integer

Kahan binary32 1.34s 2.36s (×1.7) 6.28s (×4.7) 7.76s (×5.8)
Kahan binary64 1.34s 2.34s (×1.7) 105s (×78) 64s (×48)
NAS CG A 0.80s 6.41s (×8) 173s (×216) 128s (×160)

Table 6.2: Execution time (and slowdown) for a Kahan sum of 100 millions
elements and for the NAS CG A using different verificarlo backends.

resulting exponent decreases by one. The final result is inexact(x) = 1.1111×2−1

which is above the midpoint 0.1111, so after the final rounding the result will
be 1.0.

6.3.4 Performance evaluation of the MCA backends
Simulating MCA on software is costly, this section compares the performance
of the two previous MCA backends. Their overhead is measured on two bench-
marks: the Kahan summation algorithm and the NAS CG conjugate gradient
benchmark. Experiments were performed on a 6 core Coffee Lake i7-9850H at
2.60GHz with 15Gb of memory. The Kahan summation algorithm was run on an
array with 100 million elements. NAS CG benchmark was run on dataset class
A. The setup for both benchmarks can be found within the tests/ directory
shipped with verificarlo source-code.

Table 6.2 shows the execution time and overheads for the different back-
ends. The IEEE backend in verificarlo, is a dummy backend where the FP hook
mirror the standard IEEE-754 operation. It offers debugging possibilities and
also provides a baseline to measure the instrumentation cost. On the Kahan
benchmark, we see that just by diverting FP operations through called hooks
we pay a 1.7 slowdown.

We observe that when summing binary32 elements with Kahan’s algorithm,
the overhead of the MCA backends translates into a slowdown factor between
4.7 and 5.8. Here the overhead is limited because the extended precision can be
computed natively in hardware using a binary64 type.

Summing binary64 elements has a much higher cost because we have to
emulate quadruple precision. The MCA quad backend has a ×78 slowdown,
whereas the MCA integer backend has a ×48 slowdown. This shows that adding
the ξ inexact term with integer types is significantly faster in the binary64 case.

For the NAS conjugate-gradient, which uses the binary64 type, we observe
a ×8 slowdown for instrumentation cost, a ×215 slowdown for the MCA quad
backend, and a ×160 slowdown for the MCA integer backend. Compared to
the Kahan sum the overhead is higher since NAS CG is vectorized, and vector
operations are serialized by the backends.

The large overhead difference in both MCA quad and MCA integer backends
between binary32 and binary64 shows the high cost of emulating quadruple
precision in software through GCC libquadmath. While emulating MCA for
binary32 has a reasonable overhead, it is costly to use MCA on large binary64
programs. Fortunately, different MCA samples can be run in parallel with good
scaling.

106 Verificarlo

r tbinary16

s exponent pseudo-mantissa

Figure 6.6: By setting e = 5 and t = 10, VPREC simulates a binary16 embedded
inside a binary32. Opaque bits represent the new exponent range and precision
available. The sign remains the same.

Nevertheless, a more efficient solution would be to take advantage of a hard-
ware MCA implementation. Yeung et al. [205] have investigated MCA imple-
mentation at the hardware level through specialized FPGA coprocessors; but
this prototype is not generally available to the practitioner. Stochastic round-
ing is more limited than MCA, since it only covers the RR mode with t = p.
Nevertheless, it is used by machine-learning applications, which has fostered the
development of specialized accelerators such as the Graphcore IPU and Intel’s
Loihi implementing stochastic rounding.

6.4 VPREC backend
The VPREC backend emulates FP formats that can fit into the IEEE-754 bi-
nary64 format. As illustrated in figure 6.6, VPREC allows to modify the bit
length of the exponent r ∈ [1, 11] and the pseudo-mantissa t ∈ [0, 52].

At each instrumented floating-point operation, VPREC rounds the operands
in (r, t), converts them to binary64, performs the operation in double precision
and finally rounds the result in (r, t), and stores it in standard binary64 double
representation. Converting the result back to double enables graceful degrada-
tion if some external libraries are not instrumented.

In VPREC, the custom FP representation is fully simulated in software. This
allows to measure the effect of mixed-precision configurations or specialized FP
hardware before doing the actual porting effort.

To correctly simulate a lower format different points must be addressed.

• Overflow and underflows must be correctly handled. If a computation falls
outside the target virtual range, VPREC returns ±∞ for overflows and
±0 for underflows.

• Rounding in the virtual precision t is achieved by adding one ulp at pre-
cision t+ 1 followed by a truncation at t bits.

• Denormals are treated separately in the backend with a specific code path.

Unlike stochastic backends such as MCA, VPREC requires a single execu-
tion of the program. We observe a reasonable slowdown on full scale parallel
applications ranging from ×2.6 to ×16.8 for very FP intensive codes.

We should note that VPREC performs the computation in binary64 which
might trigger a first hardware rounding at 53 bits followed by a second rounding
at precision t. Therefore VPREC might be subject to double-rounding issues.
Figueroa [74] studies double rounding while emulating a lower precision format
on a higher format. He shows that when t ≤ p−1

2 double rounding is innocuous

Cancellation Backend 107

for the basic operations. Therefore, for t ≤ 26 VPREC rounding is correct, and
for t > 26 VPREC rounding is only faithful.

Many tools and strategies have been developed for exploring mixed precision
in computer programs [91, 126, 170]. A review of these works and a comparison
with VPREC is given in our paper [5].

6.5 Cancellation Backend
When subtracting two nearby FP values y and z, the most significant digits
cancel. The result x = y − z is renormalized, by shifting left the mantissa by
the number of cancelled digits.

Not all cancellations should be considered numerical bugs. In particular,
when y and z are two nearby exact values, subtracting y and z is an exact
operation by the Sterbenz lemma.

On the other hand, when y and z are inexact computations which have
accumulated rounding errors in the last digits; the renormalization will promote
non-significant digits and increase the magnitude of the error. This effect is
called catastrophic cancellation.

The cancellation backend is able to automatically detect cancellations. Can-
cellations can only happen when subtracting two nearby FP values. Therefore,
the backend only instruments additions and subtractions. In the following,
y, z ∈ F are the operands and x ∈ F the result,

x = y ◦ z where ◦ ∈ {+,−}

The number of digits cancelled can be easily computed by comparing the
exponents of the operands and the exponent of the result. This method was
first proposed by Craft HPC [126] and is also used in Verrou [196]. The backend
computes δ as

δ = max(ey, ez)− ex

A cancellation implies that δ is positive and in that case δ is the number of
cancelled digits. The backend offers the possibility of reporting all cancellations
for which δ is larger than a user-configured threshold. To simulate how the effect
of cancellations propagates within complex programs, the cancellation backend
can be combined with MCA Precision Bound mode.

6.6 Post-processing
Besides the already presented backends, verificarlo includes a set of post-processing
tools to explore and analyze numerical bugs and optimization opportunities.
These tools are extensively described in the verificarlo user manual. In the
following, we will present the major ones.

6.6.1 Delta-Debug
Delta-Debug [206] is a general bug reduction method that allows to efficiently
find a minimal set of conditions that trigger a bug. Here, we are going to consider

108 Verificarlo

the set of floating-point instructions in the program. Verificarlo Delta-Debug
post-processing is built upon the stochastic delta-debug library developed by
Bruno Lathuilière in the scope of Verrou [196] and Interflop projects.

In verificarlo we can use Delta-Debug for different objectives such as:

• finding a minimal set of instructions responsible for a numerical instability;

• finding a minimal set of instructions that cannot be run in lower precision.

Table 6.3 shows a simple Delta-Debug execution to find a reduced instruction
set responsible for a numerical instability. By testing instructions sub-sets and
their complement, Delta-Debug is able to find smaller failing sets step by step.
It stops when it finds a failing set where it cannot remove any instruction. In
this case, Delta-Debug finds a minimal failing set (ddmin) of size 1 (which is
therefore also minimum). However, there is no guarantee of unicity.

Step Instructions with MCA noise Numerically Stable
1 1 2 3 4 stable
2 5 6 7 8 unstable
3 5 6 . . stable
4 7 8 unstable
5 7 . unstable
Result (ddmin) 7 .

Table 6.3: Example of Delta-Debug bug minimization

By default, our Delta-Debug implementation iterates to find all the possible
different ddmin sets. At the end, it produces the rddmin-cmp set which is the
complement of the union of the ddmin sets. The rddmin-cmp set therefore
includes the stable instructions and excludes the unstable instructions.

In verificarlo’s tutorial, we give a complete example on how Delta-Debug can
be used to fix an numerical bug in an iterative computation of the decimals of π.
In the context of the TREX European Center of Excellence, François Coppens
has used verificarlo’s delta-debug on the Cornell-Holland Ab-initio Materials
Package (CHAMP) application to detect opportunities for mixed-precision.

6.6.2 Verificarlo CI
Verificarlo CI is a continuous integration workflow for verificarlo. It tracks
the numerically quality of an application over the course of its development on
GitHub or GitLab. When launching verificarlo-CI for the first-time, it configures
the CI system so each version of code pushed to the repository is checked through
verificarlo.

The user can then add specific probes to the application regression test
suites. For example, the call vfc_probe_check ensures that a test computed
value reaches a given precision.

For each pushed code version, verificarlo-CI ensures that all the numerical as-
sertions are valid. It then produces a detailed report that includes the measured
numerical accuracy for each probed value and a list of the failed assertions.

Post-processing 109

Verificarlo-CI has been developed by Aurelien Delval, during his internship
at UVSQ funded by the TREX European Center of Excellence. It is used to
continuously track the numerical accuracy of the Quantum Monte Carlo kernel
library during its development.

6.6.3 Veritracer
VeriTracer automatically instruments an application and traces the accuracy of
floating-point variables over time with one of the MCA backends. VeriTracer
enriches the visual traces with contextual information such as the call site path
in which a value was modified to understand how the floating-point errors prop-
agate in complex codes.

VeriTracer was developed by Yohan Chatelain during his Ph.D. at University
of Versailles. At the time, in a collaboration with Marc Torrent from CEA, we
wanted to study the numerical stability within ABINIT [86]. ABINIT calculates,
from the quantum equations of density functional theory (DFT), the optical,
mechanical, vibrational, and others observable properties of materials.

Two important challenges in VeriTracer was to efficiently handle the vast
amount of recorded data and to provide contextual information to correctly
interpret the data. In this section we will give a simple example of VeriTracer
outputs; more details about this work are found in Yohan Chatelain’s thesis
manuscript [48].

We consider the simp_gen function which computes an integral by Simpsons’
rule over a generalized 1D-grid. This function is called within Simp_gen is called
many times in ABINIT and appears in 31 different call-site paths (CSP).

VeriTracer used MCA RR with 53 bits of virtual precision to simulate IEEE
round-off error in double precision. After post-processing, VeriTracer produces
figure 6.7, which represents the number of significant digits for each call to
simp_gen. Each point has a color that depends on its CSP. Many CSPs only
correspond to a single call to simp_gen and are not easily identifiable on the
figure.

Among the four main CSPs, we observe several downward spikes that corre-
spond to accuracy loss in the Simpsons’ integral computation. Up to six digits
of precision are lost in some of the calls.

Since simp_gen can be modeled as a large dot product computation, we tried
to rewrite it using the compensated dot2 [72] operator. Dot2 is an error-free-
transformation that compensates numerical errors through an error correcting
term [155]. VeriTracer was run on the compensated simp_gen implementation.
In 30 out of the 31 CSPs, the compensated algorithm fully fixed the precision
loss. Interestingly, one of the CSPs (in red color) was not fixed by dot2. A
dependency analysis of the code shows that simp_gen’s inputs in the failing
CSP are themselves produced by upstream calls to simp_gen. The precision
loss seems to be tied to the complex dependencies between the multiple calls
and requires further study.

6.6.4 Variable precision in mathematical libraries
The default verificarlo pass only instruments the standard algebra and com-
parison operators. Nevertheless, some simulation codes make extended usage of
calls to mathematical functions. For example the neutronic solver PATMOS [41]

https://github.com/TREX-CoE/qmckl
https://github.com/TREX-CoE/qmckl

110 Verificarlo

(a) Original

(b) Compensated

Figure 6.7: Profiles produced by VeriTracer of simp_gen. Several accuracy losses
present in the original version (a) are improved by the compensated algorithm
Dot2 (b). Each color maps one of the 31 distinct call-site paths. Dot2 improved
30 out of 31 call-site paths.

spends 70% of the execution time in calls to the libm mathematical library. To
study such codes, the VFCFuncInstrument in verificarlo instruments library and
user functions.

First, the pass maintains a lightweight stack-trace of the called functions;
allowing us to retrieve the calling context. The stack-trace is updated at each
function prologue and epilogue. Stack unwinding libraries such as libunwind or
the backtrace() call also provide the stack-trace. But these functions need to
unwind the frame-pointer chain for each call. Verificarlo has a trace mode where
the calling context is recorded for each FP call; in this case unwinding the stack
is much too costly compared to updating the stack-trace twice per function.

Second, the pass captures and instruments the scalar arguments and return
values of functions. This is useful to build a profile of the range and precision
used for each argument and return value. Optionally, VFCFuncInstrument can
apply the vprec backend on each argument or return value to reduce its precision.
Using this feature, one can measure the effect of reducing the precision during
function calls; such as calls to mathematical library functions.

Recent mathematical libraries, such as the Intel MKL Vector Math (VM) li-
brary, implement different precision presets for each call. The profile data col-
lected with VFCFuncInstrument can be used to speculatively select the math-
ematical function implementation with the appropriate precision for a given
scenario.

This pass was developed in the context of Matei Istoan’s post-doctorate
and Alan Vaquet’s internship in collaboration with David Defour at UPVD
and Eric Petit at Intel. FuncInstrument has allowed to study and optimize the
Satellite Tracker Application SGP4 and the CEA’s neutronic solver PATMOS.

Conclusion 111

The details of this work are published in our papers [3, 7].

6.7 Conclusion
We presented verificarlo, an open-source project for debugging and optimizing
numerical precision. Verificarlo instruments applications through an LLVM IR
pass. Each FP operation is transparently captured and redirected to one of the
backends.

Monte Carlo Arithmetic backends introduce stochastic rounding noise in
each operation, allowing through the statistical analysis proposed in chapter 5
to estimate the number of significant digits produced by a program.

VPREC backend simulates an execution in reduced precision. This is useful
to measure the potential benefit of a mixed-precision version of a program. The
backend allows us to decide which parts of the code could benefit from lower
precision.

7 E Numerical verification and op-
timization

Contents
7.1 Reproducibility analysis in the Europlexus simula-

tion software . 114
7.2 Evaluating brain-imaging numerical uncertainty . . . 118
7.3 Mixed-Precision optimization in YALES2 120
7.4 Perspectives on Stochastic Rounding 124

This chapter includes contributions from the following publications:

• Devan Sohier, Pablo de Oliveira Castro, François Févotte, Bruno
Lathuilière, Eric Petit, and Olivier Jamond. “Confidence Intervals for
Stochastic Arithmetic.” In: ACM Transactions Mathematical Soft-
ware 47.2 (Apr. 2021). issn: 0098-3500. doi: 10.1145/3432184.
url: https://doi.org/10.1145/3432184

• Gregory Kiar, Yohan Chatelain, Pablo de Oliveira Castro, Eric Petit,
Ariel Rokem, Gaël Varoquaux, Bratislav Misic, Alan C. Evans, and
Tristan Glatard. “Numerical uncertainty in analytical pipelines lead
to impactful variability in brain networks.” In: PLOS ONE 16.11
(Nov. 2021), pp. 1–16. doi: 10.1371/journal.pone.0250755. url:
https://doi.org/10.1371/journal.pone.0250755

• Yohan Chatelain, Eric Petit, Pablo de Oliveira Castro, Ghislain Lar-
tigue, and David Defour. “Automatic exploration of reduced floating-
point representations in iterative methods.” In: Euro-Par 2019 Par-
allel Processing - 25th International Conference. Lecture Notes in
Computer Science. Springer, 2019

• El-Mehdi El-Arar, Sohier Devan, Pablo De Oliveira Castro, and Eric
Petit. “Stochastic rounding variance and probabilistic bound: a new
approach.” In: HAL preprint (submitted) (2022). url: https://
hal.archives-ouvertes.fr/hal-03722888

In this chapter, we present how verificarlo has been applied to real applica-

https://doi.org/10.1145/3432184
https://doi.org/10.1145/3432184
https://doi.org/10.1371/journal.pone.0250755
https://doi.org/10.1371/journal.pone.0250755
https://hal.archives-ouvertes.fr/hal-03722888
https://hal.archives-ouvertes.fr/hal-03722888

114 Numerical verification and optimization

tions.
Section 7.1 presents a study of the numerical stability in Europlexus, which

resulted from a collaboration with Olivier Jamond at CEA. The aim was to
ascertain if a buckling benchmark could be used as a numerical regression test
when porting Europlexus to newer architectures.

Section 7.2 characterizes the numerical stability of Dipy, a Python toolchain
for analyzing Magnetic Resonance brain images. This study was led by Greg
Kiar, during his Ph.D. at the Montreal Neurological Institute and McGill Uni-
versity.

Section 7.3 uses the VPREC backend to optimize the Deflated Conjugate
Gradient Solver (DPCG) used by YALES2. This study was led by Yohan Chate-
lain during his Ph.D. thesis at UVSQ. Using mixed-precision lowers the com-
munication, computation, and energy cost of DPCG.

Finally, section 7.4 presents some perspectives and ongoing works around
stochastic rounding.

7.1 Reproducibility analysis in the Europlexus
simulation software

Europlexus is a fast transient dynamic simulation software co-developed by
CEA, European Commission JRC, and other industrial and academic part-
ners. The current source code has grown to about 1 million lines of Fortran 77
and Fortran 90. Europlexus has two main fields of application: simulation of
severe accidents in nuclear reactors to check the soundness of the mechanical
confinement barriers of the radioactive matters for the CEA; and simulation of
explosions in public places to measure their impact on the surrounding citizens
and structures for the JRC.

It handles several non-linearities, geometric or material, some of which lead
to a loss of unicity of the evolution problem considered. This is, for example, the
case for some configurations with frictional contact between structures or when
the loadings cause fracture and fragmentation of the matter. Another obvious
source of bifurcations of the dynamical system is the dynamic buckling.

Due to the non-associativity of FP arithmetic, the introduction of parallel
processing in Europlexus raises a difficulty for the developer and the users:
the solutions of a given simulation may differ when changing the number of
processors used for the computation. We show here how verificarlo’s significant
digits estimate helps the developer to design relevant non-regression tests. To
this end, we study a simple case that could serve as a non-regression test and
symptomatic of a non-reproducibility related to FP arithmetic. It involves a
vertical doubly clamped column to top and bottom plates. Vertical pressure is
applied by lowering the top plate, which causes buckling of the column. The
column is modeled as a set of discrete elements (here segments) connected at
moving points called nodes.

The left plot in figure 7.1 shows the result after 300 simulation time-steps
with the out-of-the-box Europlexus software using standard IEEE arithmetic.
The sequential result is deterministic and does not change when run multiple
times. We wish to study how the simulation is affected by numerical errors.

We run the same simulations but this time using the verificarlo [8] compiler

Reproducibility analysis in the Europlexus simulation software 115

0.15 0.10 0.05 0.00 0.05 0.10 0.15
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

z

0
1
2
3
4

5
6

789
10

11
12

13
14
15
16

IEEE execution

0.15 0.10 0.05 0.00 0.05 0.10 0.15
0.0

0.1

0.2

0.3

0.4

0.5

0.6

100 MCA samples

Figure 7.1: Europlexus buckling simulation of a doubly clamped column subject
to a vertical pressure. The nodes of the column are labeled in the plot from 0 to
16. The left plot shows the deterministic and reproducible results produced by
an IEEE-754 run of the simulation. In the right plot, a two-digits numerical error
is simulated by collecting one hundred MCA samples with verificarlo (t = 50).
The buckling direction is completely dominated by the small numerical error
introduced.

to introduce MCA randomized FP errors with a precision of t = 50. The cost to
instrument the whole Europlexus software and its accompanying mathematical
libraries was low. In particular, no change to the source code was necessary
thanks to the transparent approach of verificarlo.

The right plot in figure 7.1 shows the result of one hundred verificarlo execu-
tions. The direction of the buckling is chaotic and entirely dominated by the FP
errors introduced. This is not surprising as the buckling direction is physically
unstable.

When parallelizing Europlexus or making changes to the code, it is important
to check that there is no regression on standard benchmarks. Changing the
order of the FP operations may introduce rounding errors. As we just saw, even
minor numerical errors change the buckling direction making such a benchmark
unsuitable for classical non-regression tests.

The distribution of the nodes’ positions on the x-axis is normal, but whatever
the node, there are no significant digits among the samples. The variation
between samples is substantial on the x-axis; the x position clearly cannot be
used as a regression test.

The distribution along the z axis is more interesting as it is non-normal for all
the nodes. Figure 7.2 shows the quantile-quantile plot for node 1 (Shapiro-Wilk
rejects normality with W = 0.9 and p = 1.8e− 06). Because the distribution on
the z axis is non-normal, we should apply the Bernoulli significant bits estimator.
In this study, we measure the number of significant bits considering the relative
error against the sample mean.

To test the robustness of the proposed confidence interval, we computed the
Bernoulli’s estimate on the first 30 samples of the distribution. This corresponds
to a probability of 90% with 95% confidence. We also computed the Normal
estimate on the first 30 samples with the same probability and confidence.

Figure 7.3 compares the estimates to the empirical distribution observed on

116 Numerical verification and optimization

0.004 0.002 0.000 0.002 0.004 0.0060

50

100

150

200

250

300

2 1 0 1 2
Theoretical quantiles

0.004

0.002

0.000

0.002

0.004

Or
de

re
d

Va
lu

es

Probability Plot

Figure 7.2: Non normality of buckling samples on z axis and node 1. Shapiro
Wilk rejects the normality hypothesis.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
node

1

2

4

8

16

32

52

z s
ig

ni
fic

an
t b

its

empirical (100 samples)
bernoulli 90% estimate (30 samples)
normal 90% estimate (30 samples)

Figure 7.3: Significant bits on the z axis distribution. Bernoulli’s estimation
precisely captures the behavior (except for node 2). The normal formula over-
estimates the number of digits; this is expected since the distribution is strongly
non-normal.

Reproducibility analysis in the Europlexus simulation software 117

1 2 3 4 5 6 7 8 9 101112131415
node

0.2

0.1

0.0

0.1

0.2

z r
el

at
iv

e
er

ro
r

Bernoulli

1 2 3 4 5 6 7 8 9 101112131415
node

0.2

0.1

0.0

0.1

0.2

z r
el

at
iv

e
er

ro
r

Normal

samples in CI
outliers
confidence interval

samples in CI
outliers
confidence interval

Figure 7.4: Relative error between the samples and the mean of the z-axis distri-
bution. The shaded envelope corresponds to the computed confidence interval
with 30 samples. Black dots are samples that fall inside the CI. Red crosses
are outliers that fall outside the CI. In the Bernoulli case, only 3 samples out
of 70 fall outside of the interval; which is compatible with the 90% probability
threshold.

100 samples. The Bernoulli estimate on 30 samples is precise and accurately
predicts the number of significant bits (except for node 2). The clamped node
16 has a fixed position, and therefore all its digits are significant. The other
nodes have between 2 and 10 significant digits depending on their position.

Figure 7.4 shows the expected relative error on each node. We see that the
Bernoulli estimate is robust and only mis-predicts the error on three samples
of node 2. On the other hand, as expected, the Normal formula is not a good
fit in this case due to the strong non-normality of the distribution: the normal
estimate is too optimistic and fails to capture the variability of the distribution.

The previous experiments show that the x-axis has no significant digits and
that the z-axis distribution has between 2 and 10 significant digits. For example,
node 6 has 4 significant digits on the z-axis. Therefore, if the practitioner uses
the z-axis position in this benchmark as a regression test, she should expect
the first four digits of the mantissa to match in 90% of the runs. If the error is
higher, then a numerical bug has probably been introduced in the code.

Another possibility for the practitioner is to adapt the benchmark slightly
to make it more robust to numerical noise so it can be used in regression tests.
For example, we can introduce a small perturbation in the numerical model
by slightly moving node 2 along the x-axis. Then the buckling is expected
to always occur in the same direction. Figure 7.5 shows what happens when
node 2 is slightly displaced: the buckling becomes deterministic and robust to
numerical noise: 51 bits are significant for the x-axis and z-axis samples with
90% probability; the two bits of precision lost correspond to the stochastic noise
introduced. In this case, stochastic methods allow checking that the benchmark
has become deterministic and assessing its resilience to noise.

118 Numerical verification and optimization

0.15 0.10 0.05 0.00 0.05 0.10 0.15
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

z

fragilized

IEEE execution

0.15 0.10 0.05 0.00 0.05 0.10 0.15
0.0

0.1

0.2

0.3

0.4

0.5

0.6

100 MCA samples

Figure 7.5: Europlexus buckling simulation with a fragilized node 2. By weak-
ening the column, the physical process becomes reproducible in the presence of
small numerical noise.

7.2 Evaluating brain-imaging numerical uncer-
tainty

Connectomics is the study of the networks in the brain. Studying connections
in the brain is important to understand connectopathies such as Alzheimer’s
Disease or Schizophrenia. In humans, connectomes are obtained by processing
Magnetic Resonance Imaging (MRI) through complex software pipelines. G.
Kiar et al [12] used verificarlo to evaluate the numerical uncertainty in the
analytical software pipelines used to produce connectomes.

Their study used the Nathan Kline Institute Rockland Sample (NKI-RS)
which contains high-fidelity imaging and phenotypic data from over 1000 in-
dividuals. First, MRI datasets are preprocessed using the standard FSL [111]
library which corrects eddy-current movements, aligns the images, and subsam-
ples the diffusion data.

Second, the preprocessed data is passed to Dipy [82] which generates the
structural connectomes. Dipy offers two analysis pipelines. A deterministic
pipeline estimates tensors at each voxel with a solid angle model and gener-
ates streamlines using the EuDX algorithm. A probabilistic pipeline fits a con-
strained spherical deconvolution model at each voxel and generates streamlines
by iteratively sampling the fiber orientation distributions.

In collaboration with G. Kiar and T. Glatard, Dipy was compiled with ver-
ificarlo to evaluate the pipelines’ sensitivity to numerical noise. Dipy itself is
coded in Python, and depends on a complex software stack that uses Numpy,
Cython, LAPACK, and BLAS. To facilitate the study and ensure future repro-
ducibility, we developed Fuzzy, a docker image that contains a full Dipy stack
compiled with verificarlo. In Fuzzy [11], all the FP operations in libraries and
interpreters are routed to a verificarlo backend. G. Kiar applied MCA pertur-
bations on the full software stack (dense perturbations) or only in the Dipy
Python calls (Sparse perturbations). Here we only present dense perturbations
results. For a detailed analysis, we refer the reader to the original paper [12].

Figure 7.6 plots the number of significant digits of the produced connectomes

Evaluating brain-imaging numerical uncertainty 119

Figure 7.6: Significant digits in connectomes across MCA samples, subsambles,
sessions, and subjects.

on different sets of experiments. In all experiments 20 samples of MCA RR at
precision 53 were produced.

• across MCA measures the significant digits of the connectomes between
different MCA samples of the same input dataset.

• across subsamples measures the significant digits on different subsamples
of the same imaging diffusion data. The subsamples come from the same
subject and the same acquisition session.

• across sessions measures the significant digits between different acquisition
sessions on the same subject.

• across subjects measures the significant digits between different individu-
als.

When exploring the variability across subsamples, sessions, and subjects, the
number of significant digits progressively drops.

The precision of the connectome for a fixed input perturbed with MCA RR
can be high, with some edges reaching 16 significant decimal digits. Neverthe-
less, the precision varies and for some edges drops to only 2 significant digits.
We observe that the macro-scale network structure is stable but specific edge
weights are affected by MCA.

Connectomes are often used as input to machine learning models used to
predict brain-phenotype relationships. Kiar et al. used MCA perturbed con-
nectomes to evaluate the robustness of machine learning models to numerical
errors in the analytical processing pipeline of MRI. They used Principal Com-
ponent Analysis followed by a Logistic Regression Classifier to predict the Body
Mass Index (BMI) of a subject from their connectome.

Figure 7.7 reports the accuracy, F1 score, and explained variance for the
BMI classification. The distribution of the accuracy and F1 score for the per-
turbed models is centered around the reference scores. Nevertheless, the stan-
dard deviation is high, and a few perturbed outliers drop below random classifier

120 Numerical verification and optimization

Figure 7.7: Variability in BMI classification on an MCA RR perturbed connec-
tome.

performance. The numerical uncertainty should be accounted for when inter-
preting the results of brain-phenotype models. As previous works show, careful
statistical analysis is needed to interpret neuro-imaging studies [107].

Kiar et al. use verificarlo to study the numerical variability in brain imaging
studies. MCA distributions help them estimate numerical errors in connectomes
and bound the precision one can expect from further models. They have also
used MCA as a data-augmentation technique [119].

7.3 Mixed-Precision optimization in YALES2
YALES2 is a parallel CFD library that aims at solving the unsteady Navier-
Stokes equations in the low-Mach number approximation for multiphase and
reactive flows. A projection method enforces the mass-conservation constraint
on the flow thanks to the resolution of a Poisson equation at each time step.
The solver in YALES2 relies on the Deflated Preconditioned Conjugate Gradient
(DPCG) [137, 152]. This algorithm builds a coarse grid from the fine mesh by
merging a fixed number of elements in super-cells. The general principle of
deflation is the following. The coarse grid is used to converge the low-frequency
eigenmodes of the solution, which represent the long-range interactions of the
Poisson equation. This requires much less work than performing a classical CG
on the fine mesh, which is only used to obtain the remaining high frequencies
in a small number of iterations.

The deflated operator is solved in iterdef iterations using a usual CG method
such that the convergence criteria convcrit is met. The solution is then ex-
panded and injected into the main CG loop on the finer grid. This whole process
is repeated until the maxnorm of the fine grid residual is below a threshold. In
both CG solvers (on coarse and fine grids), the system is preconditioned by the
inverse of the diagonal. In all experiments, we constrained the total number of
iterations performed by the algorithm to be below 1% of additional iterations

Mixed-Precision optimization in YALES2 121

maxnorm
maxnorm IEEE

iterdef
iterdef IEEE

convcrit
convcrit IEEE

virtual precision
binary32 mantissa size

0

25

50

75

it
er

de
f

10−6

10−3

100

m
ax

no
rm

co
nv

cr
it

0 20 40 60

Iteration

0

10

20

30

vi
rt

ua
lp

re
ci

si
on

0 20 40 60

Iteration

Figure 7.8: Adaptive precision searching on YALES2’s DPCG with the deflated
part (left) and the entire code (right). On both plots, we can see that our
reduced precision solution follows the reference IEEE convergence profile.

compared to the original.
The representative use case we focus on is the PRECCINSTA burner [128].

It is a well-known lab-scale burner used to validate combustion CFD solvers. We
use 3 different mesh sizes of 1.75 million, 40 million and 870 million tetrahedral
elements. For all configurations, the super-cell size in the coarse grid was set to
500 elements. We set the max norm of residual convergence criteria to 10−8.

To reduce the search space, we consider two sets of functions. The first
set, named deflated, is the set of functions used on the coarse grid to solve the
deflated operator. The second set, named all, contained all the functions used
to solve the fine grid operator.

7.3.1 Adaptive precision algorithm experiment on DPCG
We applied VPREC backend on the 1.75M mesh case to explore valid variable
precision implementation. We statically set the exponent range to 8-bits in
VPREC exploration.

Figure 7.8 shows the result of the exploration. In both graphs, the x-axis
represents the number of iterations on the fine grid. In the top plot, the right
y-axis represents, on the same scale, the norm maxnorm of the residual between
two successive iterations and the convergence criterion convcrit of the deflated
operator. The left y-axis represents iterdef , the number of iterations on the
deflated operator. In the bottom plot, the y-axis represents the virtual precision
used to compute the given iteration on the x-axis.

Figure 7.8 (left) shows that less than 23 bits of precision are required for the
deflated operator on the 1.75 million elements mesh, with an average precision
of 18 bits. Therefore, the deflated operator can be computed with binary32,

122 Numerical verification and optimization

IEEE
VPREC MCA (29 samples)
binary32 MCA (29 samples)

0 20 40 60

Iteration

10−8

10−6

10−4

10−2

100

m
ax

no
rm

0 20 40 60

Iteration

Figure 7.9: Resiliency of VPREC and binary32 configurations. In red is the
IEEE maxnorm convergence for reference. The blue envelope shows the 29 MCA
samples for the previously found VPREC configuration. Green envelop shows
the 29 MCA samples for the binary32 configuration. All samples converge,
showing the resiliency of both configurations.

resulting in a mixed-precision implementation detailed in section 7.3.3.
Figure 7.8 (right) shows the results of the proposed explorations on both

coarse and fine grids at the same time. We notice that, contrary to the deflated
experiment, the required precision increases over iterations. This is expected
because the solver needs more and more precision to converge as it refines the
solution.

7.3.2 Validating resiliency to round-off errors
We use MCA as the second step of our VPREC analysis to find a configuration
resistant to round-off errors. We model this process as a Bernoulli trial. We
run 29 MCA samples to simulate the effect of rounding errors. If any sample
fails to converge, we conclude that the solution is not robust to round-off errors.
On the other hand, if all samples converge, we conclude that the probability of
convergence in the presence of round-off errors is 90% with a 0.95 confidence
level, thanks to the confidence intervals from section 5.5.5.

Figure 7.9 shows that the VPREC solution found in the previous section is
robust and converges for all the samples. Since the solution is very close to the
binary32 precision, our objective is to achieve a robust binary32 configuration.
The binary32 constant-precision configuration represented by the light red en-
velop in figure 7.9 converges in 57 to 63 iterations in the presence of round-off
errors for all samples. This demonstrates that it is possible to safely rewrite the
coarse grid operator of DPCG in binary32.

7.3.3 Evaluating mixed-precision version
The deflated operator of DPCG can be computed within the binary32 format
for most iterations, as shown in previous sections. To validate the results,

Mixed-Precision optimization in YALES2 123

we compiled a mixed-version of YALES2 where the deflated operator can be
executed either in binary32 or binary64 format.

We evaluated the mixed-precision version on the three different grids of
PRECCINSTA and 10−9 convergence criteria. We limit the exploration al-
gorithm to double and single precision since we are not running on variable
precision hardware.

We use CRIANN cluster constituted of 366 bi-socket Intel Xeon E5-2680
nodes and Intel Omnipath interconnect. We gather statistics using IPM inter-
face for Intel MPI.

Convergence

As predicted by our methodology, the computation converges, and all versions
satisfy all accuracy constraints on the results. However, we noticed that larger
experiments require extra initial double-precision iterations on the deflated grid.
For example, two and four extra double-precision iterations are necessary for the
40M and 870M mesh. This is coherent with the observations of Cools et al. [54]
about the importance of being precise in the first iteration of a CG recurrence.
In these larger cases, it is necessary to switch the deflated grid from single to
double precision when the deflated convergence criteria approach the threshold
of single-precision ∼ 10−8.

This effect did not appear in the smaller case with 500 elements per group.
One explanation requiring further verification is that the granularity difference
between the two grid levels is larger on the small mesh, and therefore the errors
on the coarse grid iteration are less impacting on the fine grid iterations [137].

Communication and execution time

We measure a 28% to 67% reduction in the communication volume. Since DPCG
is mostly bounded by communication latency, the performance gain is limited
when the number of processors grows for a given size falling from 28% speedup
to -2% slowdown on strong-scaling experiments. However, on the configuration
that is used in production for this code, the expected speedup for daily usage
will be in the 10% range.

Energy reduction

To evaluate the energy consumed, we used the Running Average Power Limit
(RAPL) interface that is present in Intel processors. RAPL estimates the power
consumption of different hardware domains such as the cores, the package, and
the memory. Unlike a Watt-meter, RAPL does not directly measure power.
Instead, it combines multiple hardware performance counters into a micro-
architecture power consumption model.

In our experiments, we aggregated the power of two domains: the package
domain, which contains the CPU and cache memories, and the memory domain.
We instrumented the code to measure the energy in the deflated CG iterations
for a single process. Figure 7.10 compares the energy consumed per iteration
for the binary32 and binary64 versions. We measure a 16.6% energy gain for a
single process.

This measure does not account for the energy reduction due to reduced com-
munications; our setup cannot measure this directly, but the simple model used

124 Numerical verification and optimization

●

●

87.4

104.8

90

100

110

binary32 binary64
Precision

E
ne

rg
y

/ I
te

ra
tio

n
(m

W
)

Average energy for the deflated CG iteration with different precisions

Figure 7.10: Energy per iteration of the deflated CG for a single Yales2 process
(measured on an Intel Core i7-4770).

in [27] estimates that the energy gains are proportional to the communication
reduction in a communication-bound iterative solver.

Using VPREC backend, we explored the precision requirements over time,
choosing an optimal precision for each application phase. Our methodology goes
beyond mixed-precision approaches by exploring precision configurations at the
bit level. Tailoring the precision of Yales2’s DPCG achieved consequent savings
in performance and energy.

7.4 Perspectives on Stochastic Rounding

In theorem 5.4.2 on page 82 we showed that MCA RR with t = p is equivalent
to Stochastic Rounding (SR), first proposed in the 1950s by von Neumann and
Goldstine [150]. While verificarlo indirectly uses this rounding mode to estimate
the accuracy of a program, SR is also used as a replacement for the IEEE-754
default rounding mode in some computation domains. In 2021, El-Mehdi El-
Arar started working on his Ph.D. at UVSQ, co-advised by Devan Sohier and
myself. We are investigating the probabilistic properties of SR and in particular,
its forward error bounds in different algorithms.

Previously, it has been demonstrated that in multiple domains such as neu-
ral networks, ODEs, PDEs, and Quantum mechanics [56], SR provides better
results compared to the IEEE-754 default rounding mode. M. P. Connolly and
Mary [136] show that SR successfully prevents the phenomenon of stagnation.
Recent works by Ipsen, Zhou, Higham, and Mary have computed SR probabilis-
tic error bounds for basic linear algebra kernels. For example, the inner product

Perspectives on Stochastic Rounding 125

SR probabilistic bound of the forward error is proportional [109] to
√
nu instead

of nu for the round to nearest (RN) default mode.
El-Arar et al. [2] proposes a new approach to characterize SR errors based on

the computation of the variance. We pinpoint common error patterns in a set
of numerical algorithms and propose a lemma that bounds their variance. For
each probability and through Bienaymé–Chebyshev inequality, this bound leads
to better probabilistic error bound in several situations. Our method has the
advantage of providing a tighter probabilistic bound for all algorithms fitting
our model. This section will succinctly illustrate the advantage of using SR over
RN when computing the inner product. For a detailed exposition of this work
and proof of the error bounds, please refer to [2].

Consider the inner product y = a>b, where a, b ∈ Rn. We evaluate the
product from left to right, i.e, si = si−1 + aibi, starting with s1 = a1b1, and
finishing with y = sn = a1b1+ ...+anbn. Let us note ŷ a computed result either
with RN or SR. The condition number using the 1-norm of the inner product is

K1 =

∑n
i=1|aibi|

|
∑n

i=1 aibi|
.

The following bounds on the forward error with SR, where u = β1−p and
γn(u) = (1 + u)n − 1, have been proved:

• Deterministic bound [100] for RN,

|ŷ − y|
|y|

≤ K1γn(u/2), (Det)

• Probabilistic bound based on the Azuma-Hoeffding inequality for SR proved
by Ipsen and Zhou [109],

|ŷ − y|
|y|

≤ K1

√
uγ2n(u)

√
ln 2

λ
with probability at least 1− λ, (AH)

• Probabilistic bound based on the Bienaymé-Chebyshev inequality for SR
(ours [2]),

|ŷ − y|
|y|

≤ K1

√
γn(u2)

√
1

λ
with probability at least 1− λ. (BC)

The deterministic bound, (Det), applies to round to nearest and is propor-
tional to nu/2. The probabilistic bounds apply to SR computations and are
tighter because they grow proportionally to

√
nu.

We show in [2] that BC is the tightest bound when n increases because√
γn(u2) ≤

√
uγ2n(u) for all n ≥ 1.

To showcase the advantage of using Bienaymé-Chebyshev method for large n,
we present a numerical application of the inner product for vectors with positive
FP values chosen uniformly at random between 0 and 1. The inner product uses
binary32 precision. Figure 7.11 plots 30 SR realizations, the IEEE-754 round
to nearest (RN) computation, and the three previous bounds with 1− λ = 0.9.

For smaller n, AH and BC bounds are comparable with a slight advantage
for AH. However, for a large n, the AH bound grows exponentially faster than
the BC bound. Asymptotically, the BC bound is therefore much tighter.

126 Numerical verification and optimization

105 106 107

n

10 6

10 4

10 2

100

102

104

Er
ro

r

SR-nearness
Deterministic bound
AH bound
BC bound
RN-binary32
SR-average

1 = 0.9

Figure 7.11: Probabilistic bounds with probability 1− λ = 0.9 vs deterministic
bound of the computed forward errors of the inner product with u = 2−23.

Perspectives on Stochastic Rounding 127

When n increases, a single instance of SR in binary32 precision is more
accurate than binary32 RN. This is because the summation terms are chosen
uniformly between 0 and 1. Terms that are drawn too close to zero are absorbed.
With binary32 RN the absorptions errors are biased and will add up. On the
other hand, SR avoids stagnation and mitigates absorption errors.

If we choose the terms in (−1, 1), SR and binary32 RN have the same be-
havior. In this case, the absorption errors for binary32 RN compensate because
positive and negative errors are equidistributed. Should we choose the terms
in (1/2, 1), there are no absorptions for n < 224, and on this domain, SR and
binary32 RN behave similarly. For larger sums, later terms are absorbed in
binary32 RN which behaves poorly.

For large vectors, using stochastic rounding instead of the default nearest
rounding improves the computation accuracy of the inner product because of
its robustness to absorptions.

Implications for MCA RR

In section 5.3.2 we showed that MCA RR was designed to capture the accumu-
lation of rounding errors with an IEEE-754 computation. Indeed, in most of
the programs we have studied, IEEE-754 computations are within the range of
the distribution of MCA RR values.

However, for some algorithms, MCA RR is more accurate than round to
nearest, for example, by avoiding stagnation during sums. In particular, the
previous experiment shows that MCA RR with t = p (corresponding to SR)
deviates from IEEE-754 round to nearest behavior for large n.

When using MCA RR to estimate numerical accuracies, we should account
for the cases where MCA RR diverges from round to nearest. Fortunately, they
are easy to detect by computing the deviation between the SR samples and the
IEEE-754 value.

Section 5.5.1 discusses the importance of choosing an adequate reference to
compute the significant digits. Taking the IEEE-754 round to nearest compu-
tation as reference directly flags cases where IEEE-754 and MCA RR deviate.
When taking as reference the average of SR values or the expected mathematical
result, we need additionally to monitor the deviation against IEEE-754.

If a deviation between MCA RR and IEEE-754 is detected, it probably sig-
nals an accuracy problem and warrants investigation. For example, Stott Parker
shows that for summations [189, p. 46] MCA RR is unbiased. Therefore, a de-
viation between MCA RR and IEEE-754 indicates that IEEE-754 has diverged
from the expected mathematical result. In such a case, monitoring the deviation
detects the numerical bug, but depending on the chosen reference, the number
of significant digits computed will not necessarily be representative.

To conclude, the fact that MCA RR sometimes computes more accurately
than IEEE-754 round to nearest does not invalidate its usage for error detection.
However, the deviation between IEEE-754 and MCA RR should be monitored
as part of this analysis.

8 E Conclusion: HPC energy con-
sumption

Contents
8.1 Energetic sobriety . 130
8.2 The global carbon impact of computation 131
8.3 Low-carbon electricity is not a silver bullet 131
8.4 HPC efficiency . 132
8.5 Rebound effects . 134
8.6 Computation sobriety: when less is more 136

Faced with an unprecedented climate crisis, reducing our environmental im-
pact is paramount. HPC’s direct effects on the environment are twofold.

First, producing HPC hardware involves complex industrial processes and
depends on costly resources such as rare-earth elements. Large areas are mined
to extract rare-earth elements with major ecological and health impacts. Min-
ing releases toxic and radioactive materials that poison the land and the people
around the extraction sites. Moreover, rare-earth mines operate in developing
countries where the labor cost is low and environmental regulations are less
strict, leading to human rights abuses and child labor to satisfy the demands
of the high-tech industry. Disposing of obsolete HPC hardware is also prob-
lematic, and waste is often exported to developing countries. For example,
the Agbogbloshie district in Ghana has become one of the largest dumps where
electronic waste is dismantled under unsafe conditions with harmful health [130]
and environmental effects.

Second, HPC requires energy to fabricate the hardware and perform the
computations, which translates into greenhouse gas emissions, particularly car-
bon dioxide emissions. Reducing these emissions is critical to mitigate global
warming.

However, HPC also has indirect effects on the environmental crisis. The
technological advances it brings can cause rebound effects where the efficiency
gained increases demand for computation. Paradoxically, the increased demand
can result in a net increase in carbon emissions and new hardware manufacture,
worsening the ecological impact.

130 Conclusion: HPC energy consumption

My research has focused on optimizations at the compiler, operating system,
and software levels. Therefore, in this survey, I look at the environmental impact
through the prism of power consumption and the associated carbon emissions.
This choice is guided by my research field and does not imply that the other
topics, such as rare-earth extraction, are less important.

One could think that optimizations reducing the computation cost of a code
also improve the power consumption. Instead, the gained efficiency often amor-
tizes an increase in the computation size or the simulation complexity. In that
case, the larger problem size offsets the gained efficiency, and the net effect is
that the power consumption stays the same or even increases.

The climate crisis is shifting the focus to reducing energy consumption and
limiting the environmental impact of computations. Improving the computation
efficiency might not be enough and could even be counterproductive because of
rebound effects. I think more sobriety in our computation demands is required;
in particular, instead of pushing for larger and more complex models, we should
aim for the smallest model satisfying the required accuracy.

8.1 Energetic sobriety
We are in the midst of an ecological crisis, documented extensively by the scien-
tific community [141]. One major aspect of this crisis is global warming, which
calls for a drastic reduction of our carbon footprint. The Stratégie Nationale Bas
Carbone is the French national roadmap for reaching carbon-neutrality in 2050;
its last revision in 2020 operates under the hypothesis that France will reduce
its energy consumption by 40% either through increased efficiency or sobriety.
In this context, improving energy efficiency is paramount when optimizing HPC
programs and architectures.

The TOP500 and Green500 lists have ranked the computing and power effi-
ciency of the top supercomputers. In 2013, the most efficient supercomputer in
these lists achieved 3208 MFlop/s/W; in 2022, the most efficient supercomputer
achieved 39.4 GFlop/s/W. In a decade, the energy efficiency has been multiplied
by 12. Efficiency improvements result from improvements in chip manufactur-
ing technology, the use of specialized accelerators, and careful optimization of
applications.

However, this efficiency improvement comes with a comparable increase in
computation capacity. The total computing capacity of the TOP500 list has
gone from 228.6 PFlop/s in 2013 to 3 EFlop/s in 2022, representing a 13 times
increase in computing capacity.

When considering the net carbon impact of HPC, the efficiency savings are
lost due to the increased computation demand. One might wonder whether
HPC is subject to rebound effects (discussed in section 8.5), where the efficiency
gained in a technology fosters its widespread adoption, nullifying the net energy
savings.

Another option to reduce HPC’s power budget is to compute less. Often,
the trend is to reach for the more complex and fine-grained models available,
which come with an increased computation cost. But we should not aim for the
most precise and accurate computation when a simpler or less precise model
would do the job. As demonstrated in section 7.3 with floating-point numbers,
reducing the precision of the model can save computation and energy.

The global carbon impact of computation 131

8.2 The global carbon impact of computation

Most studies that evaluate the carbon impact of computation do not specifi-
cally focus on HPC centers but consider the broader ecosystem of data centers
which, besides high-performance computations, also runs data-oriented internet
services.

Data centers worldwide use an estimated 200TWh [113] each year, represent-
ing 1% of the global energy demand and 0.3% of the global carbon emissions.
That figure is under-estimated because it does not account for the embodied
emissions [78] of data centers: the carbon emitted to fabricate the servers and
their surrounding infrastructure.

When personal digital devices, mobile phone networks, and televisions are
also included, the whole information and communication technology (ICT) car-
bon footprint is estimated to be 1.8%-2.8% of the global carbon emissions [77].
Embodied emissions are important in the ICT sector: they represent 23% of the
total carbon impact. In France, the part of embodied emissions is even higher
because the carbon intensity of French electricity is low. Therefore, besides
reducing computations, it is essential to prolong the lifetime of ICT appliances.

A 1.8%-2.8% total carbon footprint for ICT might appear unimportant. In
particular, when compared to the carbon emitted by the industry (29.4%), trans-
portation (16.2%), or residential sectors (10.9%) [95]. Nevertheless, it should
be put into perspective since the demand for HPC, particularly AI, is growing
quickly; for example, it is estimated that DNN computations have increased by
a 300 000 factor from 2012 to 2018 [178].

While this discussion focuses on carbon impact to keep matters simple, as
mentioned in the introduction, ICT raises other important sustainability issues
such as rare-earth mining and electronic waste.

8.3 Low-carbon electricity is not a silver bullet

To mitigate the carbon impact, some computation-centers buy renewable energy
on the grid [159] or are built close to renewable energy sources such as geothermic
plants. Others perform their computations when the demand on the grid is low,
reducing their operation cost since they buy the electricity at a premium price
and optimize the usage of the grid scheduling computation when there is a
surplus of electricity.

Despite these strategies, Freitag et al. [77] conclude renewable energies are
not a silver bullet due to their limited availability with current technology. They
note that renewable energy is a scarce resource and that any energy taken by
ICT will not be available for other uses.

The carbon intensity of electricity in France is low, in 2021, the annual
average was 36 gCO2/kWh, as reported by Réseau de Transport d’Électricité
(RTE). Indeed, 92% of french electricity comes from low-carbon production
methods: 69% comes from nuclear power plants, 12% from hydroelectric power
stations, 7% from wind turbines, and 3% from solar panels. Nevertheless, only
25% of the French final energy consumption comes from electricity. Fossil fuel’s
annual energy consumption was 1005TWh in 2021, which represents 61% of the
final energy mix.

132 Conclusion: HPC energy consumption

Due to the low carbon intensity of electricity, some argue that reducing com-
puting energy consumption in France will not significantly lower the national
carbon footprint and advocate focusing on decarbonating other sectors such
as transport or heating, which depend mainly on fossil fuels. Yet, moving to
electric heaters and cars will increase the required electricity budget drastically.
Satisfying such an increase in electricity demand is impossible with the current
electricity production infrastructure and scaling the renewable and nuclear pro-
duction is a complex challenge [169] with multiple technological uncertainties.
Given the forecasted growth of the ICT sector, reducing ICT energy consump-
tion appears necessary to free renewable electricity for decarbonating heating,
transport, or other essential industries.

Many countries still depend massively on fossil fuels for their energy pro-
duction. For example, in 2021, US carbon intensity was 379 gCO2/kWh, ten
times more than France. The world average carbon intensity in 2021 is 442
gCO2/kWh. The low carbon intensity in France is the exception and not the
rule.

8.4 HPC efficiency

8.4.1 Dennard’s scaling: 1970-2009
From 1946 to 2009, the power efficiency of processors doubled every 1.57 years [123].
This efficiency gain was achieved mainly through improvements in the litho-
graphic and chemical manufacturing process of semiconductors, which reduced
the gate length of transistors in each generation of processors.

Current logic circuits use Complementary Metal Oxide Semiconductor (CMOS)
transistors. The power consumption of a CMOS gate is modeled by two terms
representing the dynamic and static power, respectively,

P = 1/2.C.V 2.f︸ ︷︷ ︸
Pdynamic

+V.Ileak︸ ︷︷ ︸
Pstatic

where C is the equivalent charge capacity of the gate, V the voltage applied
to the gate, f the clock frequency of the gate double-transitions (rising and
falling), and Ileak the intensity of the leak currents.

In 1975, Dennard observed that for each new transistor generation, the tran-
sistor dimensions were reduced by 30% through manufacturing improvements.

This has the following implications:

• The voltage and capacitance also diminish by 30% since they vary linearly
with the transistor size.

• The propagation time diminishes by 30% since the distance is reduced and
the frequency grows by 42% since it varies inversely to the propagation
time.

• The surface area is reduced by 50% ≈ 0.7× 0.7.

Given these changes, Pdynamic should be roughly halved in each new tran-
sistor generation,

∆Pdynamic = ∆C.∆V 2.∆f = 0.7× 0.72 × 1

0.7
≈ 0.5

HPC efficiency 133

Assuming that the static power is small, the power dissipation per surface
unit remains constant across CPU generations. Indeed, the surface is halved for
each generation, but so is the power dissipation. In practice, CPU manufacturers
have used the surface gain to double the number of transistors in each generation
and because the frequency also increases by 42%, the computing efficiency in
FLOPS/W has improved across generations.

These observations, called Dennard’s scaling, were empirically verified from
1970 to 2009. However, the rate of scaling has started slowing since 2009.
The main reason is that with the continuing miniaturization of transistors, leak
currents increase, which in turn increases the static power limiting the minia-
turization of transistors and efficiency scaling [37].

8.4.2 Multi-Processing and accelerators: 2009-2022
Because frequency scaling has reached a limit, chip manufacturers turn to other
strategies to improve FLOP/s. We have seen two main trends in this last decade.
First, manufacturers have started increasing the number of processing elements
per socket. For applications that expose enough fine-grained independent tasks,
massive parallelism improves the performance despite the frequency limit. Sec-
ond, there is increased usage of specialized processors such as GPU (Graphical
Processing Units), TPU (Tensor Processing Units), FPGA (Field Programmable
Gate Arrays). These processors target massively parallel applications where
tasks are mostly synchronous and execute the same operations. They excel in
specific domains such as dense linear algebra computations, machine learning,
crypto-currencies mining, and others. Specialized processors tailored to a par-
ticular application domain can achieve impressive performance and often better
power efficiency.

In this decade, power efficiency in computing elements has continued to
improve due to technological advances and reductions in idle power. Efforts
have also been made to optimize the other components in an HPC system,
such as memory, storage, network interfaces, or power converters. The top
two machines in the Green500 list for November 2021 illustrate the previous
trends. The first supercomputer, MN-3, achieves 39.38 GFlops/W with 1 664
MN cores, specialized chips for matrix arithmetic. The second supercomputer,
SSC-21, achieves 33.96 GFlops/W with 16 704 AMD EPYC 7543 cores. In
recent years, AMD has significantly improved the power consumption [177, 190]
of general-purpose CPUs.

As discussed in section 8.1, when comparing the most efficient supercomput-
ers between 2013 and 2021, we see a 12× improvement in power efficiency. This
trend is also true for internet data centers, Masanet et al. [140] shows that, in
the last decade, server efficiency has improved owing to more efficient CPUs,
storage-drive density and efficiency gains, better server utilization thanks to
virtualization, and better data-center power usage effectiveness.

8.4.3 Software optimizations
Current processors offer multiple idle modes. For example, Intel processors have
different P-States and C-States. In P-States, the CPU is active but operates
in a power-saving mode. C-States are sleep modes, which turn off parts of the

134 Conclusion: HPC energy consumption

system, deep C-States offer substantial energy saving during idle time, but there
is a transition delay from P-States to C-States to wake up the processor.

P-States are based on DVFS (Dynamic Voltage Frequency Scaling) [135]:
voltage and frequency are reduced to decrease the static and dynamic power,
as modeled in equation 8.4.1. P-States are either changed by the operating
system or runtime governors [204] or are directly managed by the hardware itself,
depending on the workload. For some HPC applications, DVFS can achieve up
to 16.5% [188] energy savings without significantly reducing their performance.
The key idea is to reduce the frequency and voltage during the less computation-
intensive phases or selectively reduce them for the uncore components [26].

On the application side, many factors affect the energy efficiency such as the
choice of the algorithm and the data structures. The language, optimization,
and compiler also impact the energy used. In general, compiled languages tend
to be more energy-efficient [161] than interpreted languages. Yet, many factors
are at play, and one should be careful when comparing languages since the
results depend on the developers’ implementation and expertise.

Often, optimizations that improve the performance also improve energy sav-
ing. For example, the DPCG mixed-precision optimization proposed in sec-
tion 7.3 improves both the performance and the energy savings. Since the en-
ergy consumed is the product of the power and the computation time, reducing
the computation time shrinks the energy product. In some corner cases, opti-
mizations for energy and execution time are different, but on most platforms,
the optimizations improving execution time also improve energy [156]. For this
reason, the LLVM Compiler does not offer a specific optimization level targeting
energy.

8.5 Rebound effects
In 1865, the economist William S. Jevons observed that Watt improvements of
the steam engines’ efficiency was accompanied by an increase in coal consump-
tion. Watt’s engine efficiency fostered its adoption by a wide range of industries.
Jevons paradox, also called the rebound effect, states that an increase in effi-
ciency in resource use will generate an increase in resource consumption rather
than a decrease.

Gossart [89] reviews the literature on rebound effects of ICT. He distin-
guishes different levels of rebound effects.

• Direct rebound effects increase the spread of ICT technologies.

• Indirect rebound effects happen when increasing ICT efficiency reduces the
cost of goods or services produced with ICT. This indirect cost reduction
increases the consumption of other resources.

• Economy-wide rebound effects structurally change production and con-
sumption patterns, potentially increasing production and associated car-
bon emissions in other fields.

As previously seen in section 8.4, from 1970 to 2009, the power efficiency of
processors doubled every 1.57. Nevertheless, Hilty, Lohmann, and Huang [101]
show that in the same period, the computation power for personal computers

Rebound effects 135

Figure 8.1: Evolution over time of the first 100 systems in the TOP500 list.
Peak is the theoretical peak computing performance. Each point is an HPC
system. Box plots span from the first to the third quartile. The blue line is a
linear regression on the individual HPC systems’ metrics. Because the vertical
axis is logarithmic, Peak and Efficiency follow roughly a geometric growth.

doubled every 1.5 years. Moreover, the number of installed computers doubled
every three years from 1980 to 2008. The increase in computation demand offset
efficiency gains. The continuous improvements in chip manufacturing cost and
frequency lead to quick obsolescence of old slower models and an explosion in
demand. This is an example of a direct rebound effect in CPUs.

For HPC, the 12 × efficiency improvement achieved between 2013 and 2022
is shadowed by a 13 × computation power increase. Figure 8.1 confirms this
trend by looking at the evolution of the first 100 systems in the TOP500 super-
computer list in the last decade. The geometric growth of the energy efficiency
is offset by a geometric growth of the peak computation power. This results in
a moderate growth in power consumption.

The same is true for data-centers, for which increases in demand are balanced
by efficiency gains, producing a net power increase of 6% from 2010 to 2018 [140].
All in all, despite large efficiency gains, the net effect is an increase in carbon
emissions.

In the last decade, the growth of the total power consumption has been
moderate. But with the slowing down of CMOS scaling, there is a risk that the
efficiency improvements in processors will reach a limit [77]. In that scenario,
increases in computation volume would directly translate into higher energy
consumption and carbon emissions.

Few studies directly quantify the indirect and economy-wide rebound effects
of ICT. Yet, in its last report [183], the ICPP working group III recognizes re-
bound effects in digitalization as a risk towards carbon emissions increase since
they “have the potential to steeply increase energy efficiency in all end-use sec-

136 Conclusion: HPC energy consumption

Figure 8.2: Computation power required to train AI systems, data and figure
by OpenAI [25]. From 2012, AI computation demands have become steeper
doubling every 3.4 months.

tors through material input savings and increased coordination. […] economic
growth resulting from higher energy and labour productivities can increase en-
ergy demand and associated GHG [Green House Gas] emissions. Importantly,
digitalization can also benefit carbon-intensive technologies”.

8.6 Computation sobriety: when less is more

In computer simulations, efficiency gains are often leveraged to increase model
complexity or size. Much like in Jevons’ paradox, efficiency gains can increase
computation and data storage capacity demands.

For example, Neural Networks have received many optimizations in the last
decade. Codes have been optimized to run on GPU and, later, on dedicated
architectures such as Google Tensor Processing Unit. Algorithms and data rep-
resentations have been optimized [43]. For example, networks exploit smaller
floating-point formats, such as bfloat16, to reduce bandwidth, computation
time, and storage size.

Despite the optimizations, the training cost of neural networks has spiked [193].
Figure 8.2 shows that from 2012 onwards, the training cost for AI systems dou-
bles every 3.4 months. The training cost from 2012 to 2018 has grown by a
×300 000 factor.

Schwartz et al. [178] studies different generations of image recognition neural
networks. In figure 8.3, Schwartz compares the accuracy, the training cost, and

Computation sobriety: when less is more 137

Figure 8.3: Accuracy (acc.) vs. computation (FPO) for AI neural networks
identifying objects in the ImageNet dataset. Figure from Schwartz et al. [178].
acc. is the top-1 accuracy percentage. FPO is the total number of floating point
operations required for training the network. params is the number of model
parameters.

the number of parameters. The accuracy, expressed as a percentage, is the
success rate in an object recognition task. The training cost is measured as the
number of floating-point operations used during training. The number of model
parameters is also reported.

Schwartz et al. [178] shows that there are diminishing returns on accuracy.
The accuracy gains are marginal for a linear increase in computation power and
model complexity.

Schwartz shows that in the last decade, linear accuracy gains have required
an exponential increase in model complexity and computation cost. Such as
trend appears unsustainable. It appears necessary to weigh higher accuracy’s
benefits against the increased computation cost. Since the needed accuracy
depends on the model finality, it is difficult to draft general guidelines. Never-
theless, Schwartz et al. [178] advocates for systematically reporting the model
efficiency, such as the total FLOP or energy used during training, alongside
the accuracy. Considering an efficiency metric makes it possible to select the
smallest model satisfying the target accuracy.

8.6.1 Case study in healthcare
To illustrate the previous discussion with a concrete case study, I turn to the
work of D’Acremont [58] and her colleagues at the Swiss Tropical and Public
Health Institute. They have developed e-POCT, an algorithm for the manage-
ment of febrile illnesses in resource-limited countries [117]. D’Acremont dis-
cusses the diminishing returns of AI models when applied to healthcare.

e-POCT uses Classification and Regression Trees to help diagnose Tanzanian

138 Conclusion: HPC energy consumption

children with febrile illnesses and recommends adequate treatment. e-POCT is
embedded on an Android tablet which gathers data from different sources: ob-
jective measures from an oxymeter, hemoglobinometer and glucometer; Point
of Care (POC) tests for Malaria or VIH; clinical signs observed by the treating
clinician. The algorithm follows the classification tree step-by-step, suggesting
tests to perform and, when reaching a leaf establishing a diagnosis, recommend-
ing treatment, or referring the patient for higher-level care. In a randomized
trial in Tanzania with 1 586 children, e-POCT improved clinical outcomes while
reducing antibiotic prescription from 30% to 11%.

The World Health Organization has produced the Integrated Management of
Childhood Illness (IMCI), a strategy to help treat children’s illnesses in resource-
limited countries. Interestingly, IMCI contains paper-based classification trees
similar to the ones produced by e-POCT. Yet unlike the IMCI classification
tree, e-POCT algorithm is tailored and trained using real data, which reflects
the statistical prevalence of diseases in Tanzania [175]. This training allows
fitting the CART model to the target population.

After an initial successful field trial for e-POCT, the development contin-
ues in the DYNAMIC [67] Study, which would deploy a more sophisticated AI
systems to continuously collect patient data and adapt the algorithm. Such
a solution incurs higher carbon emissions because it requires more computing
power and increases the amount of data collected and transmitted.

There seems to be a law of diminishing returns at play. On the low end
of the technology spectrum, we have paper-based classification algorithms like
the ones proposed in IMCI. In the middle, we have the tablet-based e-POCT
algorithm, where the algorithm is static and updated manually. At the high
end of the spectrum, we have sophisticated AI algorithms that require dedicated
HPC servers and continuous data collection.

Developing countries are strongly affected by climate change. Among other
problems, droughts, floods, or air pollution caused by the environmental crisis
negatively affect the health of children in Africa. Fabricating the tablets used
for e-POCT currently involves child labor in rare-earth mines where children
are exposed to pollutants. D’Acremont [58] wonders if the increased accuracy
of diagnosis with the more sophisticated solutions would justify the increased
carbon emissions.

A first step to guide the technical choice would require precisely quantifying
the environmental impact of the different solutions by estimating the power
consumption and performing a life-cycle assessment of the hardware involved.
This impact should be weighed against the potential improvements in healthcare
that each solution brings and how well the local clinicians and patients will
accept the technology. Choosing an appropriate model involves complex social
and environmental factors and requires considering all ethical factors.

8.6.2 Closing thoughts
D’Acremont study perfectly illustrates the dilemma of choosing the right com-
plexity for a computation model and shows that the most accurate and advanced
technological solution is not necessarily the better one when all factors are con-
sidered.

The field of HPC offers many choices and avenues for optimization. First, we
choose the physical phenomena to model and the finesse of the discretization.

Computation sobriety: when less is more 139

Then, we select a target machine that will execute the program. Finally, we
write an implementation algorithm and apply different optimizations at the level
of the programming language, the compiler, or the operating system. Usually,
this process is not sequential and requires back-and-forths to find a good fit
between the model, the implementation, and the architecture.

Despite significant optimizations targeting the model, the software, and the
hardware; the demand for computation keeps rising. Indeed, the efficiency
gained is harnessed to increase the model complexity. Curbing HPC power
consumption might not be a technical issue but a methodological one. Like
D’Acremont, we need to consider how many resources we dedicate to a given
computation. It is not possible to answer this question in general. The allocated
resources must be weighed against the expected requirements and outcomes for
the computation, which are specific, contextual, and political questions.

Yet remaining general, we can question the tendency to always go for the
more complex or accurate model. Going for the most accurate model is a short-
cut that saves us from thinking about the fit between the model and our research
question. Yet, I believe that questioning this fit before running the computa-
tion would help us reduce the size of models and increase the quality of our
research. For example, in image recognition, there is a tendency nowadays
to go for DNNs regardless of the problem because of their flexibility. In many
cases [153], thinking about the structure of the problem beforehand allows using
classical computer-vision methods that are as efficient and less costly.

Simulation has changed the way we do science, creating a new epistemologi-
cal tool that stands between experiment and theory, and bringing incredible sci-
entific advances in many fields. However, faced with a shrinking energy budget,
we should carefully consider when simulation is needed and not use it blindly.
After all, the most environmentally friendly code is the one that is not run.

W

Bibliography

Personal bibliography
[1] Chadi Akel, Yuriy Kashnikov, Pablo de Oliveira Castro, and William

Jalby. “Is Source-code Isolation Viable for Performance Characteriza-
tion?” In: Parallel Processing Workshops (ICPPW), 2013 42nd Interna-
tional Conference on. IEEE. 2013.

[2] El-Mehdi El-Arar, Sohier Devan, Pablo De Oliveira Castro, and Eric
Petit. “Stochastic rounding variance and probabilistic bound: a new
approach.” In: HAL preprint (submitted) (2022). url: https://hal.
archives-ouvertes.fr/hal-03722888.

[3] E. Brun, D. Defour, P. De Oliveira Castro, M. Istoan, D. Mancusi, E.
Petit, and A. Vaquet. “A Study of the Effects and Benefits of Custom-
Precision Mathematical Libraries for HPC Codes.” In: IEEE Transac-
tions on Emerging Topics in Computing 9.3 (2021), pp. 1467–1478. doi:
10.1109/TETC.2021.3070422.

[4] Yohan Chatelain, Pablo de Oliveira Castro, Eric Petit, David Defour, Jor-
dan Bieder, and Marc Torrent. “VeriTracer: Context-enriched tracer for
floating-point arithmetic analysis.” In: 25th IEEE Symposium on Com-
puter Arithmetic, ARITH 2018, Amherst, MA, USA. June 25th-27th,
2018. 2018.

[5] Yohan Chatelain, Eric Petit, Pablo de Oliveira Castro, Ghislain Lartigue,
and David Defour. “Automatic exploration of reduced floating-point rep-
resentations in iterative methods.” In: Euro-Par 2019 Parallel Process-
ing - 25th International Conference. Lecture Notes in Computer Science.
Springer, 2019.

[6] Pablo De Oliveira Castro, Chadi Akel, Eric Petit, Mihail Popov, and
William Jalby. “Cere: Llvm-based codelet extractor and replayer for
piecewise benchmarking and optimization.” In: ACM Transactions on
Architecture and Code Optimization (TACO) 12.1 (2015), p. 6.

[7] David Defour, Pablo de Oliveira Castro, Matei Istoan, and Eric Petit.
“Custom-Precision Mathematical Library Explorations for Code Profil-
ing and Optimization.” In: 27th IEEE Symposium on Computer Arith-
metic, ARITH 2020. 2020, pp. 121–124.

https://hal.archives-ouvertes.fr/hal-03722888
https://hal.archives-ouvertes.fr/hal-03722888
https://doi.org/10.1109/TETC.2021.3070422

142 BIBLIOGRAPHY

[8] Christophe Denis, Pablo de Oliveira Castro, and Eric Petit. “Verificarlo:
Checking Floating Point Accuracy through Monte Carlo Arithmetic.” In:
23nd IEEE Symposium on Computer Arithmetic, ARITH 2016, Silicon
Valley, CA, USA, July 10-13, 2016. 2016, pp. 55–62. doi: 10.1109/
ARITH.2016.31. url: http://dx.doi.org/10.1109/ARITH.2016.31.

[9] El-Mehdi El Arar, Devan Sohier, Pablo de Oliveira Castro, and Eric
Petit. “The Positive Effects of Stochastic Rounding in Numerical Al-
gorithms.” In: 29th IEEE Symposium on Computer Arithmetic ARITH
2022. 2022. doi: 10.48550/ARXIV.2207.03837. url: https://hal.
archives-ouvertes.fr/hal-03716058.

[10] Yuriy Kashnikov, Pablo de Oliveira Castro, Emmanuel Oseret, and William
Jalby. “Evaluating architecture and compiler design through static loop
analysis.” In: High Performance Computing and Simulation (HPCS),
2013 International Conference on. IEEE. 2013, pp. 535–544.

[11] Greg Kiar, Yohan Chatelain, Tristan Glatard, Ali Salari, Pablo de Oliveira
Castro, michaelnicht, Antoine Hébert, and Mayank Vadariya. verificar-
lo/fuzzy: [v0.6.0] 2022/01/07. Version v0.6.0. Jan. 2022. doi: 10.5281/
zenodo.5838384. url: https://doi.org/10.5281/zenodo.5838384.

[12] Gregory Kiar, Yohan Chatelain, Pablo de Oliveira Castro, Eric Petit,
Ariel Rokem, Gaël Varoquaux, Bratislav Misic, Alan C. Evans, and Tris-
tan Glatard. “Numerical uncertainty in analytical pipelines lead to im-
pactful variability in brain networks.” In: PLOS ONE 16.11 (Nov. 2021),
pp. 1–16. doi: 10.1371/journal.pone.0250755. url: https://doi.
org/10.1371/journal.pone.0250755.

[13] MB3 D6.5 Initial report on automatic region of interest extraction. Tech.
rep. Mont-Blanc project, 2016. url: https://bit.ly/3RqSPzK.

[14] Pablo de Oliveira Castro. Montblanc3 ARM64 codelet repository. 2018.
url: https://benchmark-subsetting.github.io/cere/montblanc3-
arm64-codelets/ (visited on 10/27/2021).

[15] Pablo de Oliveira Castro, Yuriy Kashnikov, Chadi Akel, Mihail Popov,
and William Jalby. “Fine-grained Benchmark Subsetting for System Se-
lection.” In: Proceedings of Annual IEEE/ACM International Symposium
on Code Generation and Optimization. ACM. 2014, p. 132.

[16] Pablo de Oliveira Castro, Eric Petit, Jean Christophe Beyler, and William
Jalby. “ASK: Adaptive Sampling Kit for Performance Characterization.”
In: Euro-Par 2012 Parallel Processing - 18th International Conference.
Ed. by Christos Kaklamanis, Theodore S. Papatheodorou, and Paul G.
Spirakis. Vol. 7484. Lecture Notes in Computer Science. Springer, 2012,
pp. 89–101. isbn: 978-3-642-32819-0.

[17] Pablo de Oliveira Castro, Eric Petit, Asma Farjallah, and William Jalby.
“Adaptive Sampling for Performance Characterization of Application
Kernels.” In: Concurrency and Computation: Practice and Experience
(2013). issn: 1532-0634. doi: 10.1002/cpe.3097.

[18] Pablo de Oliveira Castro, Mihail Popov, Chadi Akel, and Yohan Chate-
lain. benchmark-subsetting/cere: CERE v0.3.1 release. Version v0.3.1.
Nov. 2018. doi: 10.5281/zenodo.5910793. url: https://doi.org/10.
5281/zenodo.5910793.

https://doi.org/10.1109/ARITH.2016.31
https://doi.org/10.1109/ARITH.2016.31
http://dx.doi.org/10.1109/ARITH.2016.31
https://doi.org/10.48550/ARXIV.2207.03837
https://hal.archives-ouvertes.fr/hal-03716058
https://hal.archives-ouvertes.fr/hal-03716058
https://doi.org/10.5281/zenodo.5838384
https://doi.org/10.5281/zenodo.5838384
https://doi.org/10.5281/zenodo.5838384
https://doi.org/10.1371/journal.pone.0250755
https://doi.org/10.1371/journal.pone.0250755
https://doi.org/10.1371/journal.pone.0250755
https://bit.ly/3RqSPzK
https://benchmark-subsetting.github.io/cere/montblanc3-arm64-codelets/
https://benchmark-subsetting.github.io/cere/montblanc3-arm64-codelets/
https://doi.org/10.1002/cpe.3097
https://doi.org/10.5281/zenodo.5910793
https://doi.org/10.5281/zenodo.5910793
https://doi.org/10.5281/zenodo.5910793

GENERAL BIBLIOGRAPHY 143

[19] Pablo de Oliveira Castro et al. verificarlo/verificarlo: Verificarlo v0.7.0.
Version v0.7.0. Jan. 2022. doi: 10.5281/zenodo.5833766. url: https:
//doi.org/10.5281/zenodo.5833766.

[20] Eric Petit, Pablo de Oliveira Castro, Tarek Menour, Bettina Krammer,
and William Jalby. “Computing-Kernels Performance Prediction Using
DataFlow Analysis and Microbenchmarking.” In: International Workshop
on Compilers for Parallel Computers. 2012.

[21] Mihail Popov, Chadi Akel, Yohan Chatelain, William Jalby, and Pablo
de Oliveira Castro. “Piecewise holistic autotuning of parallel programs
with CERE.” In: Concurrency and Computation: Practice and Experience
(2017), e4190. issn: 1532-0634. doi: 10.1002/cpe.4190. url: http:
//dx.doi.org/10.1002/cpe.4190.

[22] Mihail Popov, Chadi Akel, Florent Conti, William Jalby, and Pablo de
Oliveira Castro. “PCERE: Fine-grained parallel benchmark decomposi-
tion for scalability prediction.” In: Parallel and Distributed Processing
Symposium (IPDPS), 2015 IEEE International. IEEE. 2015, pp. 1151–
1160.

General bibliography
[23] A.R. Alameldeen and D.A. Wood. “Variability in architectural simula-

tions of multi-threaded workloads.” In: The Ninth International Sympo-
sium on High-Performance Computer Architecture, 2003. HPCA-9 2003.
Proceedings. 2003, pp. 7–18. doi: 10.1109/HPCA.2003.1183520.

[24] A. Alexandrescu. The D Programming Language. Pearson Education,
2010. isbn: 9780132654401.

[25] Dario Amodei, Danny Hernandez, Girish Sastry, Jack Clark, Greg Brock-
man, and Ilya Sutskever. AI and Compute. OpenAI. May 16, 2018. url:
https://openai.com/blog/ai-and-compute/ (visited on 05/30/2022).

[26] Etienne André, Remi Dulong, Amina Guermouche, and François Trahay.
“DUF: Dynamic Uncore Frequency scaling to reduce power consump-
tion.” In: Concurrency and Computation: Practice and Experience 34.3
(2022), e6580.

[27] Hartwig Anzt, Jack Dongarra, Goran Flegar, Nicholas J Higham, and
Enrique S Quintana-Ortı́. “Adaptive precision in block-Jacobi precondi-
tioning for iterative sparse linear system solvers.” In: Concurrency and
Computation: Practice and Experience (2017), e4460.

[28] Ehsan K Ardestani and Jose Renau. “ESESC: A fast multicore simulator
using time-based sampling.” In: High Performance Computer Architec-
ture (HPCA2013), 2013 IEEE 19th International Symposium on. IEEE.
2013, pp. 448–459.

[29] ARM. ARM Cortex-A57 MPCore Processor Technical Reference Manual
revision r1p1. 2016.

[30] David H Bailey et al. “The NAS parallel benchmarks summary and pre-
liminary results.” In: Supercomputing, 1991. Supercomputing’91. Proceed-
ings of the 1991 ACM/IEEE Conference on. IEEE. 1991, pp. 158–165.

https://doi.org/10.5281/zenodo.5833766
https://doi.org/10.5281/zenodo.5833766
https://doi.org/10.5281/zenodo.5833766
https://doi.org/10.1002/cpe.4190
http://dx.doi.org/10.1002/cpe.4190
http://dx.doi.org/10.1002/cpe.4190
https://doi.org/10.1109/HPCA.2003.1183520
https://openai.com/blog/ai-and-compute/

144 BIBLIOGRAPHY

[31] Edip Baysal. “Reverse time migration.” In: Geophysics 48.11 (Nov. 1983),
p. 1514. issn: 1070485X. doi: 10.1190/1.1441434.

[32] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmar-
garet Shmitchell. “On the Dangers of Stochastic Parrots: Can Language
Models Be Too Big?” In: Proceedings of the 2021 ACM Conference on
Fairness, Accountability, and Transparency. FAccT ’21. Virtual Event,
Canada: Association for Computing Machinery, 2021, pp. 610–623. isbn:
9781450383097. doi: 10.1145/3442188.3445922. url: https://doi.
org/10.1145/3442188.3445922.

[33] Florian Benz, Andreas Hildebrandt, and Sebastian Hack. “A dynamic
program analysis to find floating-point accuracy problems.” In: ACM
SIGPLAN Notices. Vol. 47. 6. ACM. 2012, pp. 453–462.

[34] Christian Bienia, Sanjeev Kumar, and Kai Li. “PARSEC vs. SPLASH-
2: A quantitative comparison of two multithreaded benchmark suites on
chip-multiprocessors.” In: Workload Characterization, 2008. IISWC 2008.
IEEE International Symposium on. IEEE. 2008, pp. 47–56.

[35] Sylvie Boldo, Jean-Christophe Filliâtre, and Guillaume Melquiond. “Com-
bining Coq and Gappa for certifying floating-point programs.” In: In-
ternational Conference on Intelligent Computer Mathematics. Springer.
2009, pp. 59–74.

[36] Sylvie Boldo and Guillaume Melquiond. “Flocq: A unified library for
proving floating-point algorithms in Coq.” In: Computer Arithmetic (ARITH),
2011 20th IEEE Symposium on. IEEE. 2011, pp. 243–252.

[37] Shekhar Borkar and Andrew A Chien. “The future of microprocessors.”
In: Communications of the ACM 54.5 (2011), pp. 67–77.

[38] L. Breiman, J. Friedman, R. Olshen, C. Stone, D. Steinberg, and P. Colla.
“CART: Classification and regression trees.” In: Wadsworth: Belmont,
CA (1983).

[39] Lawrence D Brown, T Tony Cai, and Anirban DasGupta. “Interval esti-
mation for a binomial proportion.” In: Statistical science (2001), pp. 101–
117.

[40] Tom B Brown et al. “Language models are few-shot learners.” In: arXiv
preprint arXiv:2005.14165 (2020).

[41] Emeric Brun, Stéphane Chauveau, and Fausto Malvagi. “Patmos: A pro-
totype Monte Carlo transport code to test high performance architec-
tures.” In: Proceedings of International Conference on Mathematics &
Computational Methods Applied to Nuclear Science & Engineering, Jeju,
Korea. 2017.

[42] Ariel N Burton and Paul HJ Kelly. “Performance prediction of paging
workloads using lightweight tracing.” In: Future Generation Computer
Systems 22.7 (2006), pp. 784–793.

[43] Maurizio Capra, Beatrice Bussolino, Alberto Marchisio, Guido Masera,
Maurizio Martina, and Muhammad Shafique. “Hardware and software
optimizations for accelerating deep neural networks: Survey of current
trends, challenges, and the road ahead.” In: IEEE Access 8 (2020), pp. 225134–
225180.

https://doi.org/10.1190/1.1441434
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922

GENERAL BIBLIOGRAPHY 145

[44] CAPS. Codelet Finder. 2013. url: http://www.caps-entreprise.com/.
[45] Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. “Sampled Sim-

ulation of Multi-Threaded Applications.” In: Performance Analysis of
Systems and Software (ISPASS), 2013 IEEE International Symposium
on. IEEE. 2013, pp. 2–12.

[46] Trevor E Carlson, Wim Heirman, Kenzo Van Craeynest, and Lieven
Eeckhout. “BarrierPoint: Sampled Simulation of Multi-Threaded Appli-
cations.” In: Proceedings of the IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS). 2014.

[47] John Cavazos, Christophe Dubach, Felix Agakov, Edwin Bonilla, Michael
FP O’Boyle, Grigori Fursin, and Olivier Temam. “Automatic perfor-
mance model construction for the fast software exploration of new hard-
ware designs.” In: Proceedings of the 2006 international conference on
Compilers, architecture and synthesis for embedded systems. ACM. 2006,
pp. 24–34.

[48] Yohan Chatelain. “Outils de débogage et d’optimisation des calculs flot-
tants dans le contexte HPC.” Theses. Université Paris-Saclay, Dec. 2019.
url: https://tel.archives-ouvertes.fr/tel-02614237.

[49] Françoise Chatelin. “On the general reliability of the CESTAC method.”
In: C. R. Acad.Sci. Paris 1 (1988), pp. 851–854.

[50] Jean-Marie Chesneaux and Jean Vignes. “On the robustness of the CES-
TAC method.” In: C. R. Acad.Sci. Paris 1 (1988), pp. 855–860.

[51] Daniel Citron. “MisSPECulation: partial and misleading use of SPEC
CPU2000 in computer architecture conferences.” In: ACM SIGARCH
Computer Architecture News. Vol. 31. 2. ACM. 2003, pp. 52–61.

[52] D.A. Cohn. “Neural network exploration using optimal experiment de-
sign.” In: Neural Networks 9.6 (1996), pp. 1071–1083.

[53] Thomas M Conte, Mary Ann Hirsch, and Kishore N Menezes. “Reducing
state loss for effective trace sampling of superscalar processors.” In: Com-
puter Design: VLSI in Computers and Processors, 1996. ICCD’96. Pro-
ceedings., 1996 IEEE International Conference on. IEEE. 1996, pp. 468–
477.

[54] Siegfried Cools, Emrullah Fatih Yetkin, Emmanuel Agullo, Luc Giraud,
and Wim Vanroose. Analysis of rounding error accumulation in Conju-
gate Gradients to improve the maximal attainable accuracy of pipelined
CG. Research Report RR-8849. Inria Bordeaux Sud-Ouest, Jan. 2016.
url: https://hal.inria.fr/hal-01262716.

[55] Keith D Cooper, Philip J Schielke, and Devika Subramanian. “Optimiz-
ing for reduced code space using genetic algorithms.” In: ACM SIGPLAN
Notices. Vol. 34. 7. ACM. 1999, pp. 1–9.

[56] Matteo Croci, Massimiliano Fasi, Nicholas J Higham, Theo Mary, and
Mantas Mikaitis. “Stochastic rounding: implementation, error analysis
and applications.” In: Royal Society Open Science 9.3 (2022), p. 211631.

http://www.caps-entreprise.com/
https://tel.archives-ouvertes.fr/tel-02614237
https://hal.inria.fr/hal-01262716

146 BIBLIOGRAPHY

[57] K. Crombecq, D. Gorissen, D. Deschrijver, and T. Dhaene. “A Novel
Hybrid Sequential Design Strategy for Global Surrogate Modeling of
Computer Experiments.” In: SIAM Journal on Scientific Computing 33
(2011), p. 1948.

[58] Valérie D’Acremont. Santé, Technologies, Environnement : Quels com-
promis éthiques ? Université de Lausanne. Nov. 27, 2021. url: https:
//youtu.be/oKcy_cY0QOw.

[59] S. Dasgupta and D. Hsu. “Hierarchical sampling for active learning.” In:
Proceedings of the 25th international conference on Machine learning.
ACM. 2008, pp. 208–215.

[60] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D.
Patterson, J. Shalf, and K. Yelick. “Stencil computation optimization
and auto-tuning on state-of-the-art multicore architectures.” In: Proceed-
ings of the 2008 ACM/IEEE conference on Supercomputing. IEEE Press.
2008, pp. 1–12.

[61] Florent De Dinechin, Christoph Quirin Lauter, and Guillaume Melquiond.
“Assisted verification of elementary functions using Gappa.” In: Proceed-
ings of the 2006 ACM symposium on Applied computing. ACM. 2006,
pp. 1318–1322.

[62] Olivier Dessombz, Fabrice Thouverez, J-P Laı̂né, and Louis Jézéquel.
“Analysis of mechanical systems using interval computations applied to
finite element methods.” In: Journal of Sound and Vibration 239.5 (2001),
pp. 949–968.

[63] U.M. Diwekar and J.R. Kalagnanam. “Efficient sampling technique for
optimization under uncertainty.” In: AIChE Journal 43.2 (1997), pp. 440–
447.

[64] Lamia Djoudi, Denis Barthou, Patrick Carribault, Christophe Lemuet,
Jean-Thomas Acquaviva, and William Jalby. “Maqao: Modular assembler
quality analyzer and optimizer for itanium 2.” In: The 4th Workshop on
EPIC architectures and compiler technology, San Jose. 2005.

[65] Jason Duell. “The design and implementation of Berkeley lab’s linux
checkpoint/restart.” In: Lawrence Berkeley National Laboratory (2005).

[66] H. Dursun, K.I. Nomura, L. Peng, R. Seymour, W. Wang, R. Kalia, A.
Nakano, and P. Vashishta. “A multilevel parallelization framework for
high-order stencil computations.” In: Euro-Par 2009 Parallel Processing
(2009), pp. 642–653.

[67] Dynamic Study. Project web page. 2022. url: https://dynamic-study.
com/.

[68] Lieven Eeckhout, John Sampson, and Brad Calder. “Exploiting program
microarchitecture independent characteristics and phase behavior for re-
duced benchmark suite simulation.” In: Workload Characterization Sym-
posium, 2005. Proceedings of the IEEE International. IEEE. 2005, pp. 2–
12.

[69] B. Efron and R. Tibshirani. “Bootstrap methods for standard errors,
confidence intervals, and other measures of statistical accuracy.” In: Sta-
tistical science 1.1 (1986), pp. 54–75.

https://youtu.be/oKcy_cY0QOw
https://youtu.be/oKcy_cY0QOw
https://dynamic-study.com/
https://dynamic-study.com/

GENERAL BIBLIOGRAPHY 147

[70] Ernst Eypasch, Rolf Lefering, C K Kum, and Hans Troidl. “Probability
of adverse events that have not yet occurred: a statistical reminder.” In:
BMJ 311.7005 (1995), pp. 619–620. issn: 0959-8138. doi: 10.1136/bmj.
311.7005.619. eprint: http://www.bmj.com/content/311/7005/619.
url: http://www.bmj.com/content/311/7005/619.

[71] Asma Farjallah. “Preparing depth imaging applications for Exascale chal-
lenges and impacts.” Theses. Université de Versailles-Saint Quentin en
Yvelines, Dec. 2014. url: https://tel.archives-ouvertes.fr/tel-
01165085.

[72] Francois Févotte and Bruno Lathuilière. LibEFT: a library implementing
Error-Free transformations. 2017. url: https : / / www . github . com /
ffevotte/libeft.

[73] François Févotte and Bruno Lathuilière. “VERROU: a CESTAC evalu-
ation without recompilation.” In: International Symposium on Scientific
Computing, Computer Arithmetics and Verified Numerics (SCAN). Up-
psala, Sweden, Sept. 2016.

[74] Samuel A. Figueroa. “When is Double Rounding Innocuous?” In: SIGNUM
Newsl. 30.3 (1995), pp. 21–26. issn: 0163-5778. doi: 10.1145/221332.
221334. url: https://doi.org/10.1145/221332.221334.

[75] George E Forsythe. “Reprint of a note on rounding-off errors.” In: SIAM
review 1.1 (1959), p. 66.

[76] Michael Frechtling and Philip H.W. Leong. “MCALIB: Measuring sen-
sitivity to rounding error with Monte Carlo programming.” In: ACM
Transactions on Programming Languages and Systems 37.2 (2015), p. 5.

[77] Charlotte Freitag, Mike Berners-Lee, Kelly Widdicks, Bran Knowles,
Gordon Blair, and Adrian Friday. The climate impact of ICT: A re-
view of estimates, trends and regulations. 2021. doi: 10.48550/ARXIV.
2102.02622. url: https://arxiv.org/abs/2102.02622.

[78] Charlotte Freitag, Mike Berners-Lee, Kelly Widdicks, Bran Knowles,
Gordon S. Blair, and Adrian Friday. “The real climate and transforma-
tive impact of ICT: A critique of estimates, trends, and regulations.” In:
Patterns 2.9 (2021), p. 100340. issn: 2666-3899. doi: https://doi.org/
10.1016/j.patter.2021.100340. url: https://www.sciencedirect.
com/science/article/pii/S2666389921001884.

[79] J.H. Friedman. “Greedy function approximation: a gradient boosting ma-
chine.(English summary).” In: Ann. Statist 29.5 (2001), pp. 1189–1232.

[80] Grigori Fursin et al. “Milepost gcc: Machine learning enabled self-tuning
compiler.” In: International Journal of Parallel Programming 39.3 (2011),
pp. 296–327.

[81] Xiaofeng Gao, Michael Laurenzano, Beth Simon, and Allan Snavely. “Re-
ducing overheads for acquiring dynamic memory traces.” In: Workload
Characterization Symposium, 2005. Proceedings of the IEEE Interna-
tional. IEEE. 2005, pp. 46–55.

[82] Eleftherios Garyfallidis, Matthew Brett, Bagrat Amirbekian, Ariel Rokem,
Stefan Van Der Walt, Maxime Descoteaux, Ian Nimmo-Smith, and Dipy
Contributors. “Dipy, a library for the analysis of diffusion MRI data.” In:
Frontiers in neuroinformatics 8 (2014), p. 8.

https://doi.org/10.1136/bmj.311.7005.619
https://doi.org/10.1136/bmj.311.7005.619
http://www.bmj.com/content/311/7005/619
http://www.bmj.com/content/311/7005/619
https://tel.archives-ouvertes.fr/tel-01165085
https://tel.archives-ouvertes.fr/tel-01165085
https://www.github.com/ffevotte/libeft
https://www.github.com/ffevotte/libeft
https://doi.org/10.1145/221332.221334
https://doi.org/10.1145/221332.221334
https://doi.org/10.1145/221332.221334
https://doi.org/10.48550/ARXIV.2102.02622
https://doi.org/10.48550/ARXIV.2102.02622
https://arxiv.org/abs/2102.02622
https://doi.org/https://doi.org/10.1016/j.patter.2021.100340
https://doi.org/https://doi.org/10.1016/j.patter.2021.100340
https://www.sciencedirect.com/science/article/pii/S2666389921001884
https://www.sciencedirect.com/science/article/pii/S2666389921001884

148 BIBLIOGRAPHY

[83] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Ma-
honey, and Kurt Keutzer. “A survey of quantization methods for efficient
neural network inference.” In: arXiv preprint arXiv:2103.13630 (2021).

[84] Khalil Ghorbal, Eric Goubault, and Sylvie Putot. “The Zonotope Ab-
stract Domain Taylor1+.” In: International Conference on Computer
Aided Verification (CAV). 2009. doi: 10 . 1007 / 978 - 3 - 642 - 02658 -
4_47.

[85] David Goldberg. “What every computer scientist should know about
floating-point arithmetic.” In: ACM computing surveys (CSUR) 23.1 (1991),
pp. 5–48.

[86] Xavier Gonze et al. “ABINIT: First-principles approach to material and
nanosystem properties.” In: Computer Physics Communications 180.12
(2009), pp. 2582–2615.

[87] Google Performance Tools v2.2.1. Version v2.2.1. url: http://code.
google.com/p/gperftools.

[88] D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq.
“A surrogate modeling and adaptive sampling toolbox for computer based
design.” In: The Journal of Machine Learning Research 11 (2010), pp. 2051–
2055.

[89] Cédric Gossart. “Rebound effects and ICT: a review of the literature.”
In: ICT innovations for sustainability (2015), pp. 435–448.

[90] Eric Goubault and Sylvie Putot. “Static analysis of numerical algo-
rithms.” In: International Static Analysis Symposium. Springer. 2006,
pp. 18–34.

[91] Stef Graillat, Fabienne Jézéquel, Romain Picot, François Févotte, and
Bruno Lathuiliere. “PROMISE: floating-point precision tuning with stochas-
tic arithmetic.” In: Proceedings of the 17th International Symposium
on Scientific Computing, Computer Arithmetics and Verified Numerics
(SCAN). 2016, pp. 98–99.

[92] R.B. Gramacy. “tgp: An R package for Bayesian nonstationary, semi-
parametric nonlinear regression and design by treed gaussian process
models.” In: Journal of Statistical Software 19.9 (2007), p. 6.

[93] R.B. Gramacy and H.K.H. Lee. “Adaptive design and analysis of super-
computer experiments.” In: Technometrics 51.2 (2009), pp. 130–145.

[94] Christopher Haine, Olivier Aumage, Enguerrand Petit, and Denis Barthou.
“Exploring and Evaluating Array Layout Restructuration for SIMDiza-
tion.” In: Proceedings of the 27th international conference on Languages
and Compilers for Parallel Computing. LCPC’14. 2014.

[95] Max Roser Hannah Ritchie and Pablo Rosado. “CO2 and Greenhouse
Gas Emissions.” In: Our World in Data (2020). url: https://ourworldindata.
org/co2-and-other-greenhouse-gas-emissions.

[96] Eldon Hansen. “Interval arithmetic in matrix computations, Part I.” In:
Journal of the Society for Industrial and Applied Mathematics, Series B:
Numerical Analysis 2.2 (1965), pp. 308–320.

https://doi.org/10.1007/978-3-642-02658-4_47
https://doi.org/10.1007/978-3-642-02658-4_47
http://code.google.com/p/gperftools
http://code.google.com/p/gperftools
https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions
https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions

GENERAL BIBLIOGRAPHY 149

[97] John W Haskins Jr and Kevin Skadron. “Memory reference reuse la-
tency: Accelerated warmup for sampled microarchitecture simulation.”
In: Performance Analysis of Systems and Software, 2003. ISPASS. 2003
IEEE International Symposium on. IEEE. 2003, pp. 195–203.

[98] Malte Henkel. “Sur la solution de Sundman du problème des trois corps.”
In: Philosophia Scientiae 5.2 (2001), pp. 161–184.

[99] Timothy Hickey, Qun Ju, and Maarten H Van Emden. “Interval arith-
metic: From principles to implementation.” In: Journal of the ACM (JACM)
48.5 (2001), pp. 1038–1068.

[100] Nicholas J. Higham. Accuracy and stability of numerical algorithms.
Siam, 2002.

[101] Lorenz Hilty, Wolfgang Lohmann, and Elaine M Huang. “Sustainabil-
ity and ICT-an overview of the field.” In: Notizie di POLITEIA 27.104
(2011), pp. 13–28.

[102] Sunpyo Hong and Hyesoon Kim. “An integrated GPU power and perfor-
mance model.” In: ACM SIGARCH Computer Architecture News. Vol. 38.
3. ACM. 2010, pp. 280–289.

[103] Kenneth Hoste and Lieven Eeckhout. “Cole: compiler optimization level
exploration.” In: Proceedings of the 6th annual IEEE/ACM international
symposium on Code generation and optimization. ACM. 2008, pp. 165–
174.

[104] Kenneth Hoste and Lieven Eeckhout. “Comparing benchmarks using key
microarchitecture-independent characteristics.” In: Workload Character-
ization, 2006 IEEE International Symposium on. IEEE. 2006, pp. 83–
92.

[105] Kenneth Hoste and Lieven Eeckhout. “Microarchitecture-independent
workload characterization.” In: Micro, IEEE 27.3 (2007), pp. 63–72.

[106] Kenneth Hoste, Aashish Phansalkar, Lieven Eeckhout, Andy Georges,
Lizy K John, and Koen De Bosschere. “Performance prediction based
on inherent program similarity.” In: Proceedings of the 15th international
conference on Parallel architectures and compilation techniques. ACM.
2006, pp. 114–122.

[107] Jean-Michel Hupé. “Statistical inferences under the Null hypothesis: com-
mon mistakes and pitfalls in neuroimaging studies.” In: Frontiers in neu-
roscience 9 (2015), p. 18.

[108] Walter L. Hürsch and Cristina Videira Lopes. Separation of Concerns.
Tech. rep. College of Computer Science, Northeastern University, 1995.

[109] Ilse CF Ipsen and Hua Zhou. “Probabilistic error analysis for inner prod-
ucts.” In: SIAM journal on matrix analysis and applications 41.4 (2020),
pp. 1726–1741.

[110] Tomoaki Ishiyama, Kohji Yoshikawa, and Ataru Tanikawa. “High Per-
formance Gravitational N-body Simulations on Supercomputer Fugaku.”
In: International Conference on High Performance Computing in Asia-
Pacific Region. 2022, pp. 10–17.

150 BIBLIOGRAPHY

[111] Mark Jenkinson, Christian F Beckmann, Timothy EJ Behrens, Mark
W Woolrich, and Stephen M Smith. “Fsl.” In: Neuroimage 62.2 (2012),
pp. 782–790.

[112] M.E. Johnson, L.M. Moore, and D. Ylvisaker. “Minimax and maximin
distance designs.” In: Journal of statistical planning and inference 26.2
(1990), pp. 131–148.

[113] Nicola Jones. “How to stop data centres from gobbling up the world’s
electricity.” In: Nature 561.7722 (2018), pp. 163–167.

[114] William Kahan. “Numerical Linear Algebra.” In: Canadian Mathematical
Bulletin. 1966, pp. 756–801.

[115] William Kahan. “The improbability of probabilistic error analyses for
numerical computations.” In: UCB Statistics Colloquium, Evans Hall edi-
tion. 1996, p. 20.

[116] Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an
introduction to cluster analysis. Vol. 344. John Wiley & Sons, 2009.

[117] Kristina Keitel et al. “A novel electronic algorithm using host biomarker
point-of-care tests for the management of febrile illnesses in Tanzanian
children (e-POCT): A randomized, controlled non-inferiority trial.” In:
PLOS Medicine 14.10 (Oct. 2017). Publisher: Public Library of Science,
pp. 1–29. doi: 10.1371/journal.pmed.1002411. url: https://doi.
org/10.1371/journal.pmed.1002411.

[118] Richard E. Kessler, Mark D Hill, and David A Wood. “A comparison
of trace-sampling techniques for multi-megabyte caches.” In: Computers,
IEEE Transactions on 43.6 (1994), pp. 664–675.

[119] Gregory Kiar, Yohan Chatelain, Ali Salari, Alan C Evans, and Tris-
tan Glatard. “Data augmentation through Monte Carlo arithmetic leads
to more generalizable classification in connectomics.” In: arXiv preprint
arXiv:2109.09649 (2021).

[120] Toru Kisuki, P Knijnenburg, M O’Boyle, and H Wijshoff. “Iterative com-
pilation in program optimization.” In: Proc. CPC’10 (Compilers for Par-
allel Computers). 2000, pp. 35–44.

[121] Milan Kloewer. StochasticRounding.jl project. 2020. url: https://github.
com/milankl/StochasticRounding.jl (visited on 12/13/2021).

[122] Donald E Knuth. “An empirical study of Fortran programs.” In: Software:
Practice and Experience 1.2 (1971), pp. 105–133.

[123] Jonathan Koomey, Stephen Berard, Marla Sanchez, and Henry Wong.
“Implications of historical trends in the electrical efficiency of comput-
ing.” In: IEEE Annals of the History of Computing 33.3 (2010), pp. 46–
54.

[124] Scott Robert Ladd. Acovea: Analysis of compiler options via evolutionary
algorithm. 2007.

[125] Thierry Lafage and André Seznec. “Choosing representative slices of pro-
gram execution for microarchitecture simulations: A preliminary appli-
cation to the data stream.” In: Workload characterization of emerging
computer applications. Springer, 2001, pp. 145–163.

https://doi.org/10.1371/journal.pmed.1002411
https://doi.org/10.1371/journal.pmed.1002411
https://doi.org/10.1371/journal.pmed.1002411
https://github.com/milankl/StochasticRounding.jl
https://github.com/milankl/StochasticRounding.jl

GENERAL BIBLIOGRAPHY 151

[126] Michael O Lam, Jeffrey K Hollingsworth, Bronis R de Supinski, and
Matthew P LeGendre. “Automatically adapting programs for mixed-
precision floating-point computation.” In: Proc. of the 27th International
conference on supercomputing. ACM. 2013, pp. 369–378.

[127] Jean-Luc Lamotte, Jean-Marie Chesneaux, and Fabienne Jézéquel. “CADNA_C:
A version of CADNA for use with C or C++ programs.” In: Computer
Physics Communications 181.11 (2010), pp. 1925–1926.

[128] G Lartigue, U Meier, and C Bérat. “Experimental and numerical inves-
tigation of self-excited combustion oscillations in a scaled gas turbine
combustor.” In: Applied thermal engineering 24.11-12 (2004), pp. 1583–
1592.

[129] Chris Lattner and Vikram Adve. “LLVM: A compilation framework for
lifelong program analysis & transformation.” In: Code Generation and
Optimization, 2004. CGO 2004. International Symposium on. IEEE.
2004, pp. 75–86.

[130] Tamba S. Lebbie, Omosehin D. Moyebi, Kwadwo Ansong Asante, Julius
Fobil, Marie Noel Brune-Drisse, William A. Suk, Peter D. Sly, Julia Gor-
man, and David O. Carpenter. “E-Waste in Africa: A Serious Threat to
the Health of Children.” In: International Journal of Environmental Re-
search and Public Health 18.16 (Aug. 11, 2021), p. 8488. issn: 1661-7827.
doi: 10.3390/ijerph18168488.

[131] Yoon-Ju Lee and Mary Hall. “A code isolator: Isolating code fragments
from large programs.” In: Languages and Compilers for High Performance
Computing. Springer, 2005, pp. 164–178.

[132] B. Li, L. Peng, and B. Ramadass. “Accurate and efficient processor per-
formance prediction via regression tree based modeling.” In: Journal of
Systems Architecture 55.10-12 (2009), pp. 457–467.

[133] Wenbin Li. “Numerical accuracy analysis in simulations on hybrid high-
performance computing systems.” PhD thesis. University of Stuttgart,
2013. isbn: 978-3-8440-1990-2. url: http://d-nb.info/1035203235.

[134] Chunhua Liao, Daniel J Quinlan, Richard Vuduc, and Thomas Panas.
“Effective source-to-source outlining to support whole program empiri-
cal optimization.” In: Languages and Compilers for Parallel Computing.
Springer, 2010, pp. 308–322.

[135] Yongpeng Liu and Hong Zhu. “A survey of the research on power man-
agement techniques for high-performance systems.” In: Software: Practice
and Experience 40.11 (2010), pp. 943–964.

[136] N. J. Higham M. P. Connolly and Théo Mary. “Stochastic rounding and
its probabilistic backward error analysis.” In: 43, No. 1, pp. A566–A585
(2021). doi: https://doi.org/10.1137/20M1334796.

[137] Mathias Malandain, Nicolas Maheu, and Vincent Moureau. “Optimiza-
tion of the deflated Conjugate Gradient algorithm for the solving of el-
liptic equations on massively parallel machines.” In: Journal of Compu-
tational Physics 238 (2013), pp. 32–47. issn: 0021-9991. doi: https:
/ / doi . org / 10 . 1016 / j . jcp . 2012 . 11 . 046. url: http : / / www .
sciencedirect.com/science/article/pii/S0021999112007280.

https://doi.org/10.3390/ijerph18168488
http://d-nb.info/1035203235
https://doi.org/https://doi.org/10.1137/20M1334796
https://doi.org/https://doi.org/10.1016/j.jcp.2012.11.046
https://doi.org/https://doi.org/10.1016/j.jcp.2012.11.046
http://www.sciencedirect.com/science/article/pii/S0021999112007280
http://www.sciencedirect.com/science/article/pii/S0021999112007280

152 BIBLIOGRAPHY

[138] Gabriel Marin and John Mellor-Crummey. “Cross-architecture perfor-
mance predictions for scientific applications using parameterized mod-
els.” In: ACM SIGMETRICS Performance Evaluation Review. Vol. 32.
1. ACM. 2004, pp. 2–13.

[139] Matthieu Martel. “An Overview of Semantics for the Validation of Nu-
merical Programs.” In: International Workshop on Verification, Model
Checking, and Abstract Interpretation. 2005. isbn: 978-3-540-30579-8.

[140] Eric Masanet, Arman Shehabi, Nuoa Lei, Sarah Smith, and Jonathan
Koomey. “Recalibrating global data center energy-use estimates.” In: Sci-
ence 367.6481 (2020), pp. 984–986.

[141] Valérie Masson-Delmotte et al. Climate change 2021: the physical science
basis. Contribution of working group I to the sixth assessment report of
the intergovernmental panel on climate change. 2021.

[142] Abdelhafid Mazouz, Denis Barthou, et al. “Performance evaluation and
analysis of thread pinning strategies on multi-core platforms: Case study
of spec omp applications on intel architectures.” In: High Performance
Computing and Simulation (HPCS), 2011 International Conference on.
IEEE. 2011, pp. 273–279.

[143] AT McKay. “Distribution of the Coefficient of Variation and the Ex-
tended t Distribution.” In: Journal of the Royal Statistical Society 95.4
(1932), pp. 695–698.

[144] Dmitry Mikushin, Nikolay Likhogrud, Eddy Zheng Zhang, and Christo-
pher Bergström. KernelGen–the design and implementation of a next
generation compiler platform for accelerating numerical models on GPUs.
Tech. rep. Technical Report 2013/02, University of Lugano, July 2013.
http://www. old. inf. usi. ch/file/pub/75/tech_report2013. pdf, 2013.

[145] Ramon E Moore. Methods and applications of interval analysis. Vol. 2.
Siam, 1979.

[146] Ramon E Moore, R Baker Kearfott, and Michael J Cloud. Introduction
to interval analysis. Vol. 110. Siam, 2009.

[147] Jean-Michel Muller, Nicolas Brisebarre, Florent De Dinechin, Claude-
Pierre Jeannerod, Vincent Lefevre, Guillaume Melquiond, Nathalie Revol,
Damien Stehlé, Serge Torres, et al. Handbook of floating-point arithmetic.
Springer, 2018.

[148] George C Necula, Scott McPeak, Shree P Rahul, and Westley Weimer.
“CIL: Intermediate language and tools for analysis and transformation
of C programs.” In: Compiler Construction. Springer. 2002, pp. 213–228.

[149] Nicholas Nethercote and Julian Seward. “Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation.” In: ACM SIGPLAN 2007
Conference on Programming Language Design and Implementation (PLDI).
San Diego, California, USA, 2007.

[150] John von Neumann and Herman H. Goldstine. “Numerical inverting of
matrices of high order.” In: Bulletin of the American Mathematical Soci-
ety 53 (1947), pp. 1021–1099.

GENERAL BIBLIOGRAPHY 153

[151] Anthony Nguyen, Nadathur Satish, Jatin Chhugani, Changkyu Kim, and
Pradeep Dubey. “3.5-D Blocking Optimization for Stencil Computations
on Modern CPUs and GPUs.” In: Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis. SC ’10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 1–13. isbn: 978-1-4244-7559-9. doi: http://dx.doi.
org/10.1109/SC.2010.2.

[152] Roy A Nicolaides. “Deflation of conjugate gradients with applications to
boundary value problems.” In: SIAM Journal on Numerical Analysis 24.2
(1987), pp. 355–365.

[153] Niall O’Mahony, Sean Campbell, Anderson Carvalho, Suman Harapana-
halli, Gustavo Velasco Hernandez, Lenka Krpalkova, Daniel Riordan, and
Joseph Walsh. “Deep learning vs. traditional computer vision.” In: Sci-
ence and information conference. Springer. 2019, pp. 128–144.

[154] Georg Ofenbeck, Ruedi Steinmann, Victoria Caparros, Daniele G. Spamp-
inato, and Markus Püschel. “Applying the roofline model.” In: 2014 IEEE
International Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS). 2014, pp. 76–85. doi: 10.1109/ISPASS.2014.6844463.

[155] Takeshi Ogita, Siegfried M Rump, and Shin’ichi Oishi. “Accurate sum
and dot product.” In: SIAM Journal on Scientific Computing 26.6 (2005),
pp. 1955–1988.

[156] James Pallister, Simon J Hollis, and Jeremy Bennett. “Identifying com-
piler options to minimize energy consumption for embedded platforms.”
In: The Computer Journal 58.1 (2015), pp. 95–109.

[157] Zhelong Pan and Rudolf Eigenmann. “Fast, automatic, procedure-level
performance tuning.” In: Proceedings of the 15th international confer-
ence on Parallel architectures and compilation techniques. ACM. 2006,
pp. 173–181.

[158] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel
Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean. “Car-
bon Emissions and Large Neural Network Training.” In: arXiv:2104.10350
[cs] (Apr. 23, 2021). arXiv: 2104.10350. url: http://arxiv.org/abs/
2104.10350 (visited on 06/07/2021).

[159] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel
Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean. “Car-
bon Emissions and Large Neural Network Training.” In: arXiv:2104.10350
[cs] (Apr. 23, 2021). arXiv: 2104.10350. url: http://arxiv.org/abs/
2104.10350 (visited on 06/07/2021).

[160] Roger D Peng. “Reproducible research in computational science.” In:
Science 334.6060 (2011), pp. 1226–1227.

[161] Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha,
João Paulo Fernandes, and João Saraiva. “Energy efficiency across pro-
gramming languages: how do energy, time, and memory relate?” In: Pro-
ceedings of the 10th ACM SIGPLAN International Conference on Soft-
ware Language Engineering. Vancouver BC Canada: ACM, Oct. 23, 2017,
pp. 256–267. isbn: 978-1-4503-5525-4. doi: 10.1145/3136014.3136031.
url: https://dl.acm.org/doi/10.1145/3136014.3136031.

https://doi.org/http://dx.doi.org/10.1109/SC.2010.2
https://doi.org/http://dx.doi.org/10.1109/SC.2010.2
https://doi.org/10.1109/ISPASS.2014.6844463
https://arxiv.org/abs/2104.10350
http://arxiv.org/abs/2104.10350
http://arxiv.org/abs/2104.10350
https://arxiv.org/abs/2104.10350
http://arxiv.org/abs/2104.10350
http://arxiv.org/abs/2104.10350
https://doi.org/10.1145/3136014.3136031
https://dl.acm.org/doi/10.1145/3136014.3136031

154 BIBLIOGRAPHY

[162] Erez Perelman, Marzia Polito, J-Y Bouguet, Jack Sampson, Brad Calder,
and Carole Dulong. “Detecting phases in parallel applications on shared
memory architectures.” In: Parallel and Distributed Processing Sympo-
sium, 2006. IPDPS 2006. 20th International. IEEE. 2006, 10–pp.

[163] Eric Petit, Guillaume Papaure, and François Bodin. “Astex: a hot path
based thread extractor for distributed memory system on a chip.” In:
Proceedings of Compilers for Parallel Computers workshop (CPC2006).
2006.

[164] Aashish Phansalkar, Ajay Joshi, and Lizy K John. “Analysis of redun-
dancy and application balance in the SPEC CPU2006 benchmark suite.”
In: ACM SIGARCH Computer Architecture News. Vol. 35. 2. ACM. 2007,
pp. 412–423.

[165] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling. Numerical recipes: The art of scientific computing. Cambridge
university press, 1986.

[166] Nathalie Revol and Fabrice Rouillier. “Motivations for an arbitrary pre-
cision interval arithmetic and the MPFI library.” In: Reliable computing
11.4 (2005), pp. 275–290.

[167] G. Ridgeway. “Generalized Boosted Models: A guide to the gbm pack-
age.” In: Update 1 (2007), p. 1.

[168] Gabriel Rivera and Chau-Wen Tseng. “Tiling optimizations for 3D scien-
tific computations.” In: Proceedings of the 2000 ACM/IEEE conference
on Supercomputing (CDROM). Supercomputing ’00. Washington, DC,
USA: IEEE Computer Society, 2000. isbn: 0-7803-9802-5.

[169] RTE. Futurs Énergétiques 2050 - Principaux résultats. Tech. rep. Oct.
2021.

[170] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Dem-
mel, William Kahan, Koushik Sen, David H Bailey, Costin Iancu, and
David Hough. “Precimonious: Tuning assistant for floating-point preci-
sion.” In: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis. ACM. 2013, p. 27.

[171] Siegfried M Rump. “INTLAB—interval laboratory.” In: Developments in
reliable computing. Springer, 1999, pp. 77–104.

[172] Siegfried M Rump. “Verification methods: Rigorous results using floating-
point arithmetic.” In: Acta Numerica 19 (2010), pp. 287–449.

[173] Alex Sanchez-Stern, Pavel Panchekha, Sorin Lerner, and Zachary Tat-
lock. “Finding root causes of floating point error.” In: Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 2018, pp. 256–269.

[174] D Sands. “Reimplementing llvm-gcc as a gcc plugin.” In: Third Annual
LLVM Developers’ Meeting. 2009.

GENERAL BIBLIOGRAPHY 155

[175] Olga De Santis, Mary Kilowoko, Esther Kyungu, Willy Sangu, Pas-
cal Cherpillod, Laurent Kaiser, Blaise Genton, and Valérie D’Acremont.
“Predictive value of clinical and laboratory features for the main febrile
diseases in children living in Tanzania: A prospective observational study.”
In: PLOS ONE 12.5 (May 2, 2017), e0173314. issn: 1932-6203. doi:
10.1371/journal.pone.0173314. url: https://journals.plos.org/
plosone/article?id=10.1371/journal.pone.0173314 (visited on
05/10/2022).

[176] Gilbert Saporta. Probabilités, analyse de données et statistiques (3eme
édition). Editions Technip, 2011.

[177] Robert Schöne, Thomas Ilsche, Mario Bielert, Markus Velten, Markus
Schmidl, and Daniel Hackenberg. “Energy Efficiency Aspects of the AMD
Zen 2 Architecture.” In: 2021 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE. 2021, pp. 562–571.

[178] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. “Green
AI.” In: arXiv:1907.10597 [cs, stat] (Aug. 13, 2019). arXiv: 1907.10597.
url: http://arxiv.org/abs/1907.10597 (visited on 02/03/2021).

[179] B. Settles. “Active Learning Literature Survey.” In: Science 10.3 (1995),
pp. 237–304.

[180] Timothy Sherwood, Erez Perelman, and Brad Calder. “Basic block dis-
tribution analysis to find periodic behavior and simulation points in ap-
plications.” In: Parallel Architectures and Compilation Techniques, 2001.
Proceedings. 2001 International Conference on. IEEE. 2001, pp. 3–14.

[181] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
“Automatically characterizing large scale program behavior.” In: ACM
SIGARCH Computer Architecture News. Vol. 30. 5. ACM. 2002, pp. 45–
57.

[182] P. Shirley et al. “Discrepancy as a quality measure for sample distribu-
tions.” In: Proceedings of Eurographics¿ 91. Eurographics Society. 1991,
pp. 183–94.

[183] P.R. Shukla et al. Mitigation of Climate Change. Contribution of Working
Group III to the Sixth Assessment Report of the Intergovernmental Panel
on Climate Change. 2022.

[184] T.W. Simpson, D.K.J. Lin, and W. Chen. “Sampling strategies for com-
puter experiments: design and analysis.” In: International Journal of Re-
liability and Applications 2.3 (2001), pp. 209–240.

[185] Devan Sohier, Pablo de Oliveira Castro, François Févotte, Bruno Lathuil-
ière, Eric Petit, and Olivier Jamond. “Confidence Intervals for Stochas-
tic Arithmetic.” In: ACM Transactions Mathematical Software 47.2 (Apr.
2021). issn: 0098-3500. doi: 10.1145/3432184. url: https://doi.org/
10.1145/3432184.

[186] Alexey Solovyev, Marek S Baranowski, Ian Briggs, Charles Jacobsen,
Zvonimir Rakamarić, and Ganesh Gopalakrishnan. “Rigorous estimation
of floating-point round-off errors with symbolic taylor expansions.” In:
ACM Transactions on Programming Languages and Systems (TOPLAS)
41.1 (2018), pp. 1–39.

https://doi.org/10.1371/journal.pone.0173314
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0173314
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0173314
https://arxiv.org/abs/1907.10597
http://arxiv.org/abs/1907.10597
https://doi.org/10.1145/3432184
https://doi.org/10.1145/3432184
https://doi.org/10.1145/3432184

156 BIBLIOGRAPHY

[187] M. Stein. “Large sample properties of simulations using Latin hypercube
sampling.” In: Technometrics (1987), pp. 143–151.

[188] Mathieu Stoffel and Abdelhafid Mazouz. “Improving Power Efficiency
Through Fine-Grain Performance Monitoring in HPC Clusters.” In: 2018
IEEE International Conference on Cluster Computing (CLUSTER). IEEE.
2018, pp. 552–561.

[189] Douglas Stott Parker. Monte Carlo Arithmetic: exploiting randomness
in floating-point arithmetic. Tech. rep. CSD-970002. UCLA Computer
Science Dept., 1997.

[190] Lisa T Su, Samuel Naffziger, and Mark Papermaster. “Multi-chip tech-
nologies to unleash computing performance gains over the next decade.”
In: 2017 IEEE International Electron Devices Meeting (IEDM). IEEE.
2017, pp. 1–1.

[191] Jan Treibig, Georg Hager, and Gerhard Wellein. “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments.” In: Par-
allel Processing Workshops (ICPPW), 2010 39th International Confer-
ence on. IEEE. 2010, pp. 207–216.

[192] Jan Treibig, Gerhard Wellein, and Georg Hager. “Efficient multicore-
aware parallelization strategies for iterative stencil computations.” In: J.
Comput. Science 2.2 (2011), pp. 130–137.

[193] Denis Trystram, Romain Couillet, and Thierry Ménissier. Apprentis-
sage profond et consommation énergétique : la partie immergée de l’IA-
ceberg. The Conversation. Dec. 8, 2021. url: http://theconversation.
com/apprentissage-profond-et-consommation-energetique-la-
partie-immergee-de-lia-ceberg-172341 (visited on 05/30/2022).

[194] Michael Van Biesbrouck, Timothy Sherwood, and Brad Calder. “A co-
phase matrix to guide simultaneous multithreading simulation.” In: Per-
formance Analysis of Systems and Software, 2004 IEEE International
Symposium on-ISPASS. IEEE. 2004, pp. 45–56.

[195] Hans Vandierendonck and Koen De Bosschere. “Many benchmarks stress
the same bottlenecks.” In: Workshop on Computer Architecture Evalua-
tion Using Commercial Workloads. 2004.

[196] Verrou. Project repository. 2018. url: https://github.com/edf-hpc/
verrou.

[197] Jean Vignes. “Discrete Stochastic Arithmetic for Validating Results of
Numerical Software.” In: Numerical Algorithms 37.1-4 (2004), pp. 377–
390.

[198] Jean Vignes and Michel La Porte. “Error Analysis in Computing.” In:
Proceedings of IFP 1974. IFP. 1974, pp. 610–614.

[199] Jean Virieux, Henri Calandra, and R.É. Plessix. “A review of the spec-
tral, pseudo-spectral, finite-difference and finite-element modelling tech-
niques for geophysical imaging.” In: Geophysical Prospecting 59.5 (2011),
pp. 794–813. doi: 10.1111/j.1365-2478.2011.00967.x.

http://theconversation.com/apprentissage-profond-et-consommation-energetique-la-partie-immergee-de-lia-ceberg-172341
http://theconversation.com/apprentissage-profond-et-consommation-energetique-la-partie-immergee-de-lia-ceberg-172341
http://theconversation.com/apprentissage-profond-et-consommation-energetique-la-partie-immergee-de-lia-ceberg-172341
https://github.com/edf-hpc/verrou
https://github.com/edf-hpc/verrou
https://doi.org/10.1111/j.1365-2478.2011.00967.x

GENERAL BIBLIOGRAPHY 157

[200] Joe H. Ward. “Hierarchical Grouping to Optimize an Objective Func-
tion.” In: Journal of the American Statistical Association 58.301 (1963),
pp. 236–244. doi: 10.1080/01621459.1963.10500845. eprint: http://
www.tandfonline.com/doi/pdf/10.1080/01621459.1963.10500845.
url: http://www.tandfonline.com/doi/abs/10.1080/01621459.
1963.10500845.

[201] Thomas F Wenisch, Roland E Wunderlich, Michael Ferdman, Anastas-
sia Ailamaki, Babak Falsafi, and James C Hoe. “SimFlex: statistical
sampling of computer system simulation.” In: IEEE Micro 26.4 (2006),
pp. 18–31.

[202] Darrell Whitley. “A genetic algorithm tutorial.” In: Statistics and com-
puting 4.2 (1994), pp. 65–85.

[203] Egon Willighagen. GNU R package ‘genalg’. 2013. url: http://cran.r-
project.org/web/packages/genalg/.

[204] Rafael J. Wysocki. CPU Performance Scaling — The Linux Kernel doc-
umentation. url: https://www.kernel.org/doc/html/v5.18/admin-
guide/pm/cpufreq.html (visited on 05/23/2022).

[205] Jackson H.C. Yeung, Evangeline F.Y. Young, and Philip H.W. Leong.
“A monte-carlo floating-point unit for self-validating arithmetic.” In: Pro-
ceedings of the 19th ACM/SIGDA international symposium on Field pro-
grammable gate arrays. ACM. 2011, pp. 199–208.

[206] Andreas Zeller. Why Programs Fail. Second. Boston: Morgan Kaufmann,
2009. isbn: 978-0-12-374515-6.

https://doi.org/10.1080/01621459.1963.10500845
http://www.tandfonline.com/doi/pdf/10.1080/01621459.1963.10500845
http://www.tandfonline.com/doi/pdf/10.1080/01621459.1963.10500845
http://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500845
http://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500845
http://cran.r-project.org/web/packages/genalg/
http://cran.r-project.org/web/packages/genalg/
https://www.kernel.org/doc/html/v5.18/admin-guide/pm/cpufreq.html
https://www.kernel.org/doc/html/v5.18/admin-guide/pm/cpufreq.html

	Introduction
	Optimizing high performance computing
	Accuracy of simulation programs
	Discussion
	Outline of the manuscript

	I Reducing the search space for HPC optimizations
	Codelet extractor and replayer
	Code isolation
	Related work
	Codelet extraction
	Memory capture and cache warm up
	Capturing parallel regions
	Comparison to related work

	CERE: Codelet Extractor and REplayer
	IR Capture and Replay Overview
	Application partitioning
	Partitioning OpenMP programs
	Codelet checkpoint-restart strategy
	Capturing the memory
	Capturing the cache state
	Replay

	Evaluation of CERE
	Conclusion

	Reducing HPC search space
	Exploiting codelet similarities
	Background on benchmark reduction methods
	Clustering invocations of the same codelet
	Clustering codelets with the same performance behavior
	Clustering evaluation
	Numerical Recipes evaluation
	Subsetting the NAS benchmark suite
	Codelets as proxies for faster performance studies

	Adaptive sampling the performance design space
	Background on sampling strategies
	ASK Architecture
	Hierarchical Variance Sampling
	GBM model and HVS sampler interactions
	Experimental validation

	Conclusion

	Optimizing HPC applications
	Auto-tuning thread affinity and compiler passes with codelets
	Thread number and affinity optimization
	Compiler pass optimization

	Exploring runtime parameters in heterogeneous architectures
	Optimizing a Seismic proto-application
	Initial performance characterization with codelets
	Tuning the FDTD codelet

	Conclusion

	II Accuracy and performance trade-offs
	Monte Carlo Arithmetic
	Background on automatic numerical error analysis
	Floating-point arithmetic
	Stochastic arithmetic
	CESTAC
	Monte Carlo Arithmetic
	Estimating the numerical error with MCA
	A simple example: Cramer's rule

	Choice of the rounding operator in MCA
	Problems with nearest rounding in MCA
	MCA bias when using round to nearest
	Redefining the rounding operator
	Bias of MCA RR
	Numerical evaluation of rounding methods

	Probabilistic accuracy of a computation
	Choice of a reference value
	Probabilistic definitions of significant and contributing digits
	Accuracy under the centered normality hypothesis
	Discussion for a normal centered distribution
	Accuracy in the general case
	Background on Bernoulli estimation
	Statistical formulation as Bernoulli trials
	Evaluation

	Conclusion

	Verificarlo
	Compiler passes
	Advantages of operating at the optimized Intermediate Representation
	Monte Carlo Arithmetic backend
	Implementing MCA with limited precision
	Quad and MPFR backends
	MCA integer backend
	Performance evaluation of the MCA backends

	VPREC backend
	Cancellation Backend
	Post-processing
	Delta-Debug
	Verificarlo CI
	Veritracer
	Variable precision in mathematical libraries

	Conclusion

	Numerical verification and optimization
	Reproducibility analysis in the Europlexus simulation software
	Evaluating brain-imaging numerical uncertainty
	Mixed-Precision optimization in YALES2
	Adaptive precision algorithm experiment on DPCG
	Validating resiliency to round-off errors
	Evaluating mixed-precision version

	Perspectives on Stochastic Rounding

	Conclusion: HPC energy consumption
	Energetic sobriety
	The global carbon impact of computation
	Low-carbon electricity is not a silver bullet
	HPC efficiency
	Dennard's scaling: 1970-2009
	Multi-Processing and accelerators: 2009-2022
	Software optimizations

	Rebound effects
	Computation sobriety: when less is more
	Case study in healthcare
	Closing thoughts

	Bibliography

