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Résumé synthétique en Francais

| - Introduction

Dans le cadre de cette thése nous développons une approche générique pour définir
I'optimisation de forme bayésienne de structures complexes sous critéres de stabil-
ité appliqués aux systémes de freinage. L’idée de notre approche est qu’elle peut
étre facilement adaptée a tout probléme d’optimisation de forme avec des fonctions
de type boite noire cotiteuses pour lesquelles plusieurs fonctions objective peuvent
étre définies. Nous nous concentrons largement sur deux objectifs dans cette thése,
mais néanmoins, nous accordons une attention particuliére & fournir des capacité
a s’adapter a plus de deux objectifs. En référence au domaine d’étude complexe,
I'objectif est par ailleurs de définir une stratégie de maillage automatisé robuste
avec des formulations isogéométriques. Pour la définition préliminaire de 1’approche
isogéométrique, nous nous concentrons sur une simple approche de paramétrage qui
peut étre adaptée a un paramétrage plus complexe. Nous appliquons ensuite notre
approche au probléme de crissement de frein avec traitement nécessaire de la formule
de contact et de friction sous formulation isogéométrique.

Il - Modélisation

Les méthodes des éléments finis sont des méthodes numériques largement utilisées
pour résoudre des équations différentielles, ot physiquement une solution continue
sur un domaine complexe {2 est discrétisée par éléments finis sur le domaine ;) C .
Cela nécessite la définition de formulation variationnelle/faible pour 'approximation
de la solution. La formulation variationnelle affaiblit ’exigence de solution a défini-
tion intégrale plutot que de satisfaire la solution au sens différentiel avec une forte
continuité connue comme forme forte. Nous nous en tenons principalement au point
de vue de 'approche de Galerkin définissant la forme faible ot les fonctions de test
peuvent également étre considérées comme les fonctions associées au travail virtuel
et généralise donc également le principe de travail virtuel. Pour notre application
dans cette thése qui implique le contact et le frottement, nous avons principalement
traité la dynamique autour d’un point fixe ou les perturbations autour de ce point
sont considérées comme n’ayant pas de changement relatif a I'interface de contact.
Cela signifie que nous traitons en grande partie I’hypothése d'une petite déforma-
tion et d’aucun glissement relatif, d’ot les non-linéarités spatio-temporelles associées
aux coordonnées matérielles qui sont ignorés. Cela signifie également qu’il n’y a pas
d’intérét pour la variation temporelle de €2 x [0, ] qui n’est donc pas prise en compte



dans les définitions suivantes qui sont données pour un temps arbitraire. Le but est
également de définir la formulation faible du contact et du frottement qui modélise
notre application.

Il - Modélisation numérique du contact et du
frottement

Les phénomeénes de contact et de frottement sont de nature trés discontinue. Cela
peut étre mathématiquement difficile pour gérer ces discontinuités et donc au travers
de la régularisation de ces discontinuités, le modéle de contact et de frottement doit
étre capable de décrire un comportement réaliste. La prise en compte de telles
considérations pour la modélisation numérique est également important pour les
applications sensibles aux caractéristiques de contact et de frottement. Nous nous
concentrons sur ’approximation des définitions de contact et de frottement avec des
éléments finis dans ce chapitre. Nous donnons une bréve introduction & la définition
de la dimension finie de ’espace d’approximation ,V dans le contexte a la fois de
la des méthodes éléments finis classique et des méthodes isogéométriques. Nous
nous concentrons principalement sur ’application a ’approche isogéométrique pour
définir le contact et les formulations de friction, bien que des paralléles puissent étre
établis entre les deux. Nous discutons aussi de la formulation de contact nceud a
neeud largement utilisée pour des éléments finis classiques pour étendre 'approche
de collocation dans les formulations isogéométriques.

IV - Analyse de sensibilité

L’analyse de sensibilité définit essentiellement 1’analyse de sensibilité d’une fonction
par rapport a des variations de ses paramétres. L’analyse de sensibilité globale pour
les paramétres de forme impliqués dans notre étude a été réalisée en utilisant la méth-
ode basée sur la Variance qui vient de la décomposition de Hoeffding-Sobol. Cette
méthode est basée sur la décomposition de la variance d’une fonction & sa variance
associée aux parameétres et a l'interaction entre les paramétres. Par conséquent, plus
la variance en sortie d’une fonction induite par un parameétre, plus sa sensibilité sera
élevée. La méthode est appliquée via un échantillonnge de Monte-Carlo basé sur
un plan latin hypercube pour lefficacité. FEn effet, pour évaluer le comportement
global et d’augmenter la précision pour la base de Monte-Carlo donnée 'estimation
sur le cas asymptotique présumé demande un grand nombre de calcul, ce qui est
tout simplement impossible a converger en temps raisonnable compte tenu du cofit
numérique pour évaluer les critéres de stabilité C; . Ainsi, un métamodéle basé sur
une régression par processus gaussien a été utilisée. Les critéres de stabilité donnés
par le métamodeéle peuvent donc étre exprimés par C, ~ C,.



V - Optimisation de forme - paramétrage

Dans cette section, nous détaillons le paramétrage de la forme définie par des NURBS.
Nous précisions les contraintes posées sur le pad. Nous fournissons également une
bréve description du paramétrage et de la stratégie de raffinement pour le domaine
du systéme disque-pad Q4=P),

VI - Optimisation Bayesienne

L’optimisation bayésienne est une stratégie efficace pour réduire le cotit des calculs
des fonctions objectives cotiteuses. Nous commengons les explications suivantes sans
définir les spécificités de la modélisation de la probabilité P qui est donnée comme
connu et on considére 'optimisation d’une seule fonction f(x) tel que le probléme

revienne & min f(x). L’'idée est basée sur la régle de Bayes ou la connaissance a priori
TEX

P(H) de 'hypothése H et la probabilité de la preuve £ étant donné 'hypotheése,
P(EIH), sont utilisés pour déduire la connaissance de 'hypothése étant donné la
preuve, P(H|E), ou la proportionnalité peut étre exprimé comme

P(H|E) x PEIH)P(H)

Par conséquent, P(H|E) définit I'inférence bayésienne. Dans notre contexte, I'hypothése
‘H correspond a la fonction f(x) et la preuve £ correspond a

Fio A f(21), f(22), ..., f(zn)}

ou f(z) est échantillonné sur A, : {zl,22,...,an}, avec Dy, : {X1 : n,F1 : n}.
Ceci est typiquement connu sous le nom de paysage d’espace de fonctions, puisque la
probabilité est définie sur I’espace des fonctions. Il peut étre difficile de conceptualiser
une tel paysage avec des fonctions, mais on peut imaginer I’existence d’une fonction au
sens purement probabiliste telle qu’un tirage au sort de la distribution de probabilité
est une fonction. La relation ci-dessus peut s’exprimer dans ce cas comme suit:

P(f(@)[Dyin) o< P(Dra| f(2))P(f (x))

La connaissance a priori sur une fonction, P(f(z)), est typiquement modélisé par
des corrélations spatiales. En d’autres termes, une croyance a priori est définie sur
I’espace des fonctions de telle sorte que les fonctions dans l'espace présentent en
grande partie certaines caractéristiques de corrélation totale. Avec P(f(z)) déja
défini, et étant donné la vraisemblance du points échantillonnés sur la fonction,
P(D1.,|f(x)), la connaissance a posteriori de la fonction, P(f(x)|D1.,), peut étre
déduite de la relation ci-dessus. La connaissance postérieure P(f(z)|D1.,) est en-
suite utilisée pour déduire le prochain point z,,; a échantillonner, en fonction de la
stratégie définie pour I’échantillonnage en optimisation. Le point échantillonné x4
est alors utilisé pour mettre a jour la croyance de l'antérieur P(f(x)) a la lumiére



de Dipy1 , et avec la vraisemblance P(Dy.,11|f(2)) pour en déduire un nouveau
postérieur P(f(z)|D1.n41), qui caractérise 'apprentissage. Le processus est mené par
la suite dans la perspective de trouver un point optimal pour la fonction gréace a
I’apprentissage actif, modélisé par I'optimisation bayésienne.

VIl - Optimisation de forme d'un systéme
disque-pad

Tous les résultats présentés dans la section suivante ont été obtenus pour les objectifs
définis plus haut. Le méta-modeéle GP a été défini pour les calculs trop cotiteux de
la fonction objectif Cy ot nous avons utilisé une fonction de tendance polynomiale
linéaire pour définir la moyenne a priori, la fonction de covariance ayant été définie
par le noyau Matern 5/2 considérant une corrélation spatiale anisotrope. Ainsi,
dans le contexte de I'optimisation multiobjectifs (MOBO), les points de remplissage
ont été déterminés principalement pour I’évaluation de la fonction C;. Méme si
dans notre cas, le modéle GP pour MOBO n’a été défini que pour un des objectifs,
il peut étre étendu pour une résolution avec plusieurs GP. Nous présentons une
bréve description des caractéristiques du front de Pareto obtenu pour MOBO via
un critére E'V. Les discontinuités apparaissent dans ce front de Pareto en raison
de la définition locale de I'amélioration, puisque 'optimisation nécessite plusieurs
valeurs de référence ol les discontinuités se produisent, avec dans le méme paramétre
d’optimisation pour définir la référence de Nadir (NDS) pour I'algorithme NSGA-2.
Cela signifie que les individus d’une génération donnée de NSGA-2 sont définis avec
leur référence respective des valeurs a améliorer, et le tri et le critére de nichage
(niching) non dominés sont définis sur l'espace objectif dans son ensemble - ce qui
est moins cotiteux en calcul étant donné la définition simultanée de 'amélioration
qui utilise plusieurs valeurs de référence.

VIl - Conclusion

Nous avons proposé une stratégie efficace pour gérer 'optimisation de la forme des
systémes de freinage au travers d’une simple représentation disque-pad pour la réduc-
tion du bruit de crissement. La formulation faible du contact et du frottement spéci-
fique pour la modélisation des instabilités induites par le frottement par la CEA a été
défini avec une approche isogéométrique pour la discrétisation. Ce type d’étude peut
étre envisagée pour les systémes de freinage tels qu’on les trouve dans I’automobile ou
I'industrie aéronautique, mais aussi pour d’autres applications avec des phénomeénes
de frottement, comme les systémes d’embrayage. Grace a la CEA, le critére de sta-
bilité Cs a été défini comme une fonction de type boite noire pour caractériser les
instabilités indépendantes du coefficient de frottement pour I'optimisation de forme,
ou des techniques de calcul paralléle et de réduction de modéle dynamique ont été
utilisées pour réduire le cotit de calcul du critére de stabilité.



1 Introduction

As the main objective of this thesis, we develop a generic framework to define
Bayesian shape optimisation of complex structures under stability criteria applied
to brake systems. The idea of generic framework is that it can be easily adapted to
any shape optimisation problem with expensive black-box functions for which multi-
objective Bayesian optimisation can be defined. We largely focus on two objective
problems in this thesis, but nevertheless, we give careful attention to provide flexi-
bility in adapting to more than two objectives. With reference to complex domain,
the focus was to define a robust automated meshing strategy with Isogeometric ap-
proach. For the preliminary definition of Isogeometric approach, we focus on a simple
parameterisation approach which can be adapted to more complex parameterisation
strategies for the evolution of the frame-work. We then apply the framework to the
problem of brake-squeal with necessary treatment of contact and friction formula-
tions with Isogeometric approach.

Typically in structural dynamics, characteristics of a system can be largely de-
scribed by its mass and stiffness properties which are in turn defined by its underlying
material and geometric properties. Hence, to optimise a system from the perspective
of structural dynamics requires optimisation of its material and geometric proper-
ties. Optimising geometric properties can be largely defined by shape optimisation
or topology optimisation, where if a geometry is parameterised, parametric optimi-
sation can also be achieved. The idea of shape optimisation is intuitive, where we
optimise the boundary 902 of a domain 2 for some optimum outcome, given that
the topology of € is fixed. Given a topology, admissible {2 can be expressed by the
set X,q. Mathematically, the problem of shape optimisation can be expressed as

min f(0N2) where it defines functional optimisation over admissible domains. With

NEX,q

classical gradient-based methods, this requires the definition of % which expresses
the derivative of f(0€2) with respect to the domain boundary variation 602 — typi-
cally called as shape derivative. This is essentially the idea of non-parametric shape
optimisation which involves the notion of optimising 0 in a continuum sense, where
Hadamard boundary variation method is typically considered [I], 2, B]. Hadamard
boundary variation models the continuum variation of 92 by defining perturbation
on 0f) through continuous vector field such that the shape variation is homeomor-
phic. Hence, 602 can be defined from the first-order Taylor approximation for the
perturbation of 9€2. The mathematical definition of continuous domain eventually
needs to be discretised by numerical methods, where the shape derivative of f(02)

can then be evaluated to infer variation on 0f) at every iteration. Typically,  is



discretised by finite element methods as ,Q = J elfﬂ to solve f and hence, the vari-
ation of 0f) evaluated from gradient descent is defined on the vertices of the mesh
boundary. This means that it can be convenient to use the same mesh for defining

% and for solving f. The method is mathematically rigorous and the definition

of 6];%8&? ) may not be often straight-forward with f expressed as partial differential
equation. In contrary, €2 can be parameterised as part of CAD description or by
discretisation of ) as ;€), where a domain can be expressed in a discrete sense with
finite parameters. Typically, the description of ;{2 follows from the natural extension
of finite element approach in solving differential equations, where the coordinates of
the boundary nodes are interpreted as shape parameters [4]. Given a finite set of
parameters p parameterising 0S2, the shape optimisation problem can be expressed

as mg/n f(p). Hence, the definition of shape derivative in finite dimension is defined
PEAD

by Op [5, 6]. The definition of shape through parameters limits the optimisation
of shape to X, C X4, where non-parametric shape optimisation is relatively less
bounded.

With gradient descent, naturally the question of local optimum occurs, where it
may not be a suitable strategy to explore large design space efficiently in directly
optimising a function for global optimum. While this can be overcome by multiple
initialisations, the population based nature of evolutionary algorithms have intrinsic
advantage to overcome local optimum |7, 8]. One can argue that the meta-heuristic
characteristics of evolutionary algorithms can demand more number of evaluations
for convergence to optimum. This is where the idea of Bayesian optimisation [9, [10]
can be helpful, where evolutionary algorithms can be made to be efficient by avoiding
direct evaluation of an expensive function through metamodels. Further, gradient
information for black-box functions cannot be well defined, where for gradient de-
scent to be efficient, this demands the function to have certain characteristics of
smoothness and continuity. In conclusion, gradient-based methods directly defined
for optimising a function in shape optimisation can be very restrictive to be called a
generic strategy. Hence, we focus on evolutionary algorithms which are very robust
and suitable for optimising black-box functions. The extension of evolutionary algo-
rithms to multi-objective problems is also straight-forward when fitness is defined for
optimality in multi-objective context [11I, 12], I3, 14]. The population based nature
of evolutionary algorithms allow to consider a set of optimal individuals, where indi-
viduals may not be necessarily from the same part of the design space. This allows
multiple optimal designs to be considered as population to represent wider spread
of design variations in a design space. Nevertheless, optimality in the context of
multi-objective optimisation is defined with Pareto-optimal set of solutions where in
this case, population based evolutionary algorithms have intrinsic advantage to deal
with set of solutions.

1.1€) represents an element discretising



Though the idea of non-parametric shape optimisation using evolutionary algo-
rithms is not clear or largely considered, definition of parametric shape optimisation
is straightforward where cross-over and mutation operations can be defined on finite
discrete set of parameters. This demands parameterisation of a domain €2 or at least
its boundary 0f2 by parameters as part of CAD description or considering finite el-
ement discretisation ;. With classical finite element methods, CAD description of
) and its subsequent finite element discretisation ,{) are completely different rep-
resentations, where () is typically defined by splines parameterisation purely in the
perspective of CAD and ,Q C € follows the description of Q with discrete set of
elements defined typically with Lagrange polynomials. [

With shape optimisation of 2 defined by parameters of CAD description, this de-
mands a robust meshing strategy to achieve ;€2 from 2 at every iteration. Depending
on the domain and the function to be approximated on the domain, this can be time-
consuming and often involves manual intervention. With shape optimisation defined
directly on 1,2 for coordinates of the nodes, this requires adapting mesh with the
variation of boundary nodes, where mesh distortion can be a challenging issue. The
later approach was largely found to be inefficient since finite element models can have
large number of nodes to curtail approximation error, where taking in to account of
the boundary nodes can lead to large number of parameters in optimisation. Further,
C continuity between the elements can lead to non-smooth boundary in optimisation
[15]. Hence, the idea of defining shape optimisation with parameters of smooth CAD
description was found to be a more robust approach. Early efforts of CAD description
were primarily focused on polynomial representation for smooth definition of domain
boundary [16]. This method has its limitations especially when design representa-
tion is restricted to family of polynomials where higher order polynomials can lead to
spurious oscillation, and further, it also lacks local control of design for a given poly-
nomial representation. The development of spline parameterisation was soon found
to be very efficient for CAD description with its mathematical properties [5, [17].
Most of the advantages of splines stem from the property of piece-wise polynomials
with possible continuity definition higher than Cy, where complicated shapes can be
defined with low-order polynomials. Further, the mathematical properties of spline
basis have less oscillation between interpolations, where this property is preserved
even for higher order splines. This is unlike the classical Lagrange polynomials where
oscillations become more severe as order of the polynomials grow. The piece-wise
representation also allows for local control of geometry which is very advantageous
for iterative design optimisation, while preserving continuity at intersection between

2The definition of € in a discrete sense as €2 is purely considered from the perspective of domain
definition. Even though the parameterisation in CAD with NURBS can be interpreted in a
discrete sense with finite number of knots and control points as respectively equivalent to ele-
ments and nodes of classical finite elements, given that the NURBS parameterisation completely
encompasses the domain ), we consider ) = Q with NURBS parameterisation. Nevertheless,
from function space point of view, parameterisation of {2 with NURBS is defined by finite number
of basis functions.



piece-wise polynomials. Hence, splines are largely considered as suitable choice for
parameterising geometry and widely adapted in CAD community, which is followed
by wide adaptation for shape optimisation. This still means lack of coherence between
CAD description of geometry defined by splines and analysis description of geometry
defined by piece-wise Lagrange polynomials. This lack of coherence is inconvenient in
optimisation, since solution evaluated at nodes has no relation with CAD parameters
unless explicitly defined, along with the lack of robustness in achieving ,€2 from 2.
This can be largely attributed to wide adaptation of Lagrange polynomials in finite
element method community.

Finite element method is principally based on approximation of solution in finite
dimensional function space which is classically defined by Lagrange polynomials that
parameterises ,2. This brings the idea of Isogeometric approach [18], where instead
of replacing CAD description of €2 parameterised by splines with completely differ-
ent representation of ;{2 through Lagrange polynomials to define function space for
approximation, the basis functions of splines can be directly defined for approxima-
tion given that sufficient refinement is made over initial CAD parameterisation to
curtail approximation error, where refinement over initial CAD parameterisation to
define analysis-suitable parameterisation can be easily achieved in the same paramet-
ric space of CAD description. This completely preserves the geometry and hence,
n€) = Q. The definition of function space with splines is mainly possible because the
underlying polynomials of splines are well-suited to define function space as subset
of Sobolev space for energy functionals. Further, the advantages of splines over La-
grange polynomials in CAD are also reflected in approximation properties of solution,
such as reduced oscillation in interpolation and providing higher solution continuity
between knots’] This also means that optimisation can be defined directly over the
control points of analysis-suitable parameterisation in relation to solution at the con-
trol points, where with higher-order continuity, it can avoid non-smooth shape defini-
tion of boundary that classical finite element methods with Cjy continuity suffer from.

The parameterisation with splines can be expressed as X : Q) — Q which defines
mapping from parametric space O to physical space €2, where isoparametric approach
of classical FEM comes as an intrinsic property with Isogeometric approach. Hence,
given a CAD description with suitable NURBS parameterisation, analysis-suitable
parametrisation can be defined robustly. But the notion of suitable initial parame-
terisation to define analysis-suitable parameterisation is important and can be said
as major limitation of at least body-fitted Isogeometric approach which we consider
in this thesis [19]. In reality, initial parameterisation of CAD description cannot
always be suitable to define analysis-suitable parameterisation, since there can be
more efficient ways to parameterise a geometry in the perspective of CAD which
necessarily may not be suited to define analysis-suitable parameterisation. One of
the fundamental properties with body fitted approach to achieve analysis-suitable

3Knots can be interpreted as equivalent to elements of classical FEM.
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parameterisation is that the initial parameterisation of the domain should be defined
by complete mapping from the parametric space, which can be very restrictive for
CAD description of complex domains. Hence, often in CAD, complex domains are
defined through union of trimmed domains or expressing a domain as a trimmed
domain, where with a trimmed domain, the mapping from parametric space is not
completely defined over the domain [20]. Large part of research in Isogeometric com-
munity has been focused to take in to account of trimmed domains directly through
Immersed methods rather than to define suitable initial parameterisation with which
refinement could be achieved [21, 22]. The flexibility of immersed methods which can
be generic to consider any arbitrary topology comes at the cost of accuracy, while the
accuracy of body-fitted approach comes at the cost of flexibility, where body-fitted
approach can be hard to generalize for arbitrary topology. This is nothing less to
say that advanced parameterisation strategies are also being developed with body-
fitted approach, typically by non-linear optimisation to achieve injective mapping
[23, 24] or decomposing a topology with patches [25, 26]. We do not focus on the
scope of defining advanced parameterisation strategies with body-fitted Isogeometric
approach, where we use the explicit linear discrete Coon’s patch method [27] in this
thesis. This means that only shapes which satisfy injective mapping from parametric
space with Coon’s patch method is considered for shape optimisation in this thesis.
We are aware that this can downsize the design space, but on the other hand, this
also implicitly helps to avoid shapes which are too conceptual in our application,
which stems from the nature of linear Coon’s patch method. The idea is that for
future evolution of the frame work, more advanced parameterisation can be adapted
and hence also more conceptual shapes can be considered.

For this thesis, we consider the frame work of Bayesian optimisation, where we also
discussed the limitations of direct gradient descent for shape optimisation. Given a
design space with | parameters, if n discrete values are considered with each param-
eters to define combinations, it leads to I* combinations, where the idea is to show
the scale of increase in design space. Firstly, the idea of parametric shape optimi-
sation restricts the design space to subset of admissible shapes as &, C X,4. Even
with finite set of parameters that parameterises a shape to define sufficient shape
variations in optimisation, it can be difficult to explore the set A}, efficiently with
computationally expensive functions. Further the idea of gradient-descent in multi-
objective optimisation can be even more limiting for the definition of Pareto-optimal
solutions, where it demands a multi-objective optimisation problem to be posed as
multiple single-objective optimisation problems which can be optimised with gradient
descent |28, 29, [30]. The expression of multi-objective optimisation problem as set of
single-objective optimisation problems looses the explicit definition of optimality in
multi-objective context, where Pareto-optimal solutions are implicitly achieved with
single-objective optimisations. This implicit nature of optimising for Pareto-optimal
solutions typically demands prior idea of the Pareto-front to select parameters for
expressing a multi-objective optimisation problem as single-objective optimisation
problems,; especially for diversity of Pareto-optimal solutions. The single-objective
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optimisation problems can also be solved by evolutionary algorithms which can help
for global convergence, but nevertheless, it still preserves the limitations owing to
the implicit nature of optimising for Pareto-optimal solutions|31], 32]. But instead of
using evolutionary algorithms in solving for Pareto-optimal solutions implicitly with
multiple single objective optimisations, evolutionary algorithms can be defined to ex-
plicitly solve for Pareto-optimal solutions [33]. This is mainly because the population
based nature of evolutionary algorithms can handle set of solutions, where the fitness
of individuals can be selected to favour Pareto optimality in multi-objective context.
We consider NSGA-2 in this thesis as the evolutionary algorithm for multi-objective
optimisation[TT].

The major limitation with evolutionary algorithms is the stochastic nature of ge-
netic operators to advance solutions towards optimum at least in the context of sin-
gle objective optimisation, rather than a more mathematically sounding approach of
gradient-descent. The stochastic nature of genetic operators typically crave more iter-
ations in evolutionary algorithms to converge, which can be unrealistic with expensive
functions, for which the idea of Bayesian optimisation can be helpful. Bayesian opti-
misation is essentially based on Bayes probability of prior and posterior probabilistic
inference, where the idea is that a function can be approximated with some prior
knowledge and given the observed data on the function, posterior knowledge can be
inferred over the function with Bayes theorem [0, [I0]. With the inference of posterior
knowledge, a new infill point can be sampled to move towards optimum. The new
evaluation is then used to update the prior belief to infer a new posterior, where even-
tually with several iterations, the idea is to find global optimum. The probabilistic
inference of prior and posterior are achieved through meta-modelisation where we
focus on Gaussian-process regression/Kriging [34, B5]. With Gaussian-process re-
gression, prior and posterior inference for a given argument is defined by univariate
Gaussian distribution, where the mean reflects the prediction and the variance to
the uncertainty of the prediction in the metamodel. With the inference of posterior,
naturally choice between exploration and exploitation arises given the prediction and
the variance of the prediction, where wide range of acquisition functions exist with
different sampling characteristics, typically to balance between exploration and ex-
ploitation [36]. In essence, acquisition functions define improvement with respect to
a reference point which is typically the known optimum of the function, where at ev-
ery iteration of Bayesian optimisation, typically an acquisition function is optimised
to choose an infill point. For single objective Bayesian optimisation, optimising an
acquisition function typically involves univariate Gaussian distribution and improve-
ment is simply given by distance metric. Acquisition functions in multi-objective
Bayesian optimisation focus on sampling for improvement with respect to empirical
Pareto-front, where for higher dimensions of objective space, the natural extension of
distance metric in one dimension corresponds to hypervolume metric [37, 38]. While
most state-of-the-art acquisition functions in multi-objective Bayesian optimisation
scalarize the measure of improvement with hypervolume metric, it is well known that
the evaluation of hypervolume in higher dimensions is computationally demanding
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[39]. The definition of improvement with scalar value also looses the expression of
optimality in multiobjective context, even though the scaler value implicitly defines
improvement in multi-objective context. We choose the approach of expressing im-
provements in multi-objective context directly with Pareto-optimal solutions where
infills points can be chosen explicitly for parallelisation in the scope of improving
diversity simultaneously with each iteration [40)].

We consider the application of brake-squeal in this thesis. Brake squeal phe-
nomenon is one of the major challenges in the development of brakes concerning
NVH, where squeal noise is typically characterised by a frequency range of 1-16
KHz. The problem of brake squeal analysis has been studied for a very long time
with one of the early reviews from [4I] and is still a challenging issue due to the
immense complexities involved, where it constitutes factors from tribology of contact
interface to stability in the context of non-linear and non-smooth dynamics. It is
because of this very nature, it is widely accepted that there may not be a single
unified theory to define brake squeal phenomenon. Some of the complexities can
be attributed to modelling friction [42], where even models based on simple macro-
scopic view (Coulomb’s law) can give rise to non-smooth non-linearities which can be
hard to model analytically and numerically. The early analyses were largely based
on lumped models (mass-spring) where the discussions were primarily based on an-
alytical solutions [43, 44]. These models were quite sophisticated and some with
large degrees of freedom, which greatly improved the understanding of friction in-
duced vibration. One of the conclusive evidence was that instability occurs even at
constant coefficient of friction with the coupling of at least two degrees of freedom
by friction, where the nature of instability was known to be flutter instability [45].
Flutter-type dynamic instability defines self-excitation behaviour in the presence of
non-conservative force. In structural dynamics, this is understood as coalescence of
modes, where two modes exist at a same frequency leading to self-excitation between
the modes under favourable conditions in the presence of non-conservative force.
Friction-induced dynamic instabilities are highly nonlinear phenomena which can be
computationally expensive when defined through transient analyses and hence, un-
realistic to be considered for optimisation. Instead of explicitly modelling instability
inferred as limit-cycle with transient analysis, instability can be modelled through
analysing the stability of fixed point for the dynamical system. This is mainly possi-
ble with the hypothesis of modelling the dynamical system with contact and friction
as time-independent linear dynamical system around a fixed point, which otherwise
requires satisfying non-holonomic constraints with strong time dependence [40, [47].
Hence, the stability of such linearized systems around a fixed point can be defined
through its eigenvalues, commonly known as Complex-Eigenvalue Analysis (CEA)
[48, 49, 50]. As a complex phenomenon, many parameters can be studied and op-
timized for squeal noise during its design phase [51], [62]. We focus on shape of the
system [3], which has not been widely considered. Through CEA, we define a black-
box function which is adversely expensive for computation, to describe a criterion for
stability in shape optimization. For evaluation of the expensive black-box function,

13



we define a parallel computation strategy through dynamic model reduction. In this
thesis, we consider shape optimisation of braking system through a simple disc-pad
representation, where the simple system allows to make interesting studies by avoid-
ing the complexity of boundary conditions present in a real braking systems.

Following introduction, in the second chapter, we detail continuum description in
the scope of structural dynamics for modelling flutter-ype dynamic instability in-
duced by friction. We also extend the definitions to brake squeal applications and
define a criteria to characterise squeal for optimisation. In the third chapter, we focus
on modelling contact and friction definitions with Isogeometric approach. We also
provide a brief discussion of Isogeometric approach in relation to classical finite ele-
ment approximation space. In the fourth chapter, we discuss sensitivity analysis with
the considered approach and expose results for the application of brake-squeal. In
the fifth chapter, we define shape parametrisation with NURBS for achieving shape
optimisation, where the idea is to extend the NURBS parameterization for Isogeo-
metric analysis. We introduce Bayesian optimisation in the seventh chapter and it’s
extension to multi-objective Bayesian optimisation, followed by seventh chapter for
optimised results in our application and with the last chapter being the conclusion.
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2 Modelisation

Finite element methodd!] are widely used numerical methods in solving differential
equations, where physically a continuum solution on a complex domain 2 is discre-
tised through finite elements, where the discretised domain ;2 C ). This requires
the definition of variational /weak formulation for the approximation of solution. The
variational formulation weakens the requirement of solution with integral definition
rather than satisfying the solution in differential sense with strong continuity known
as strong form. We primarily stick with the view point of Galerkin’s approach for
defining the weak form where the test functions can also be considered to be the
functions associated with virtual work and hence also generalises for the principle of
virtual work.

For our application in this thesis which involves contact and friction, we primarily
deal with dynamics around fixed point where perturbations around a fixed point are
considered to have no relative change at the contact interface. This means that we
largely deal with the assumption of small deformation and no relative sliding, and
hence, the spatio-temporal non-linearities associated with the material coordinates
are ignored. This also means that there is no interest in temporal variation of Qx [0, ¥]
and hence not considered in the following definitions which are given for an arbitrary
time. Further, the goal is also to define weak formulation of contact and friction
which models our application.

2.1 Initial-boundary value problem

The continuum description of an initial-boundary value problem in structural dy-
namics can be expressed as

pii +V.o(u)=f in Q
u=0 on I'p (2.1)
o(u)v, =ty on Iy
where u : Q% — R3 {T'y,Ip} C 0Q, Ty T'p = 0, with 9Q defining the bound-

ary of €, and ¥, defining the normal unit vector on 0€)2. Under Isotropic material
consideration, the constitutive equations can be defined as

!By the definition of finite element methods, we also include Isogeometric method as a class of
finite element methods unless specifically stated as classical finite element methods by which we
distinguish the two approaches.
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g = 2/LL€ + )\[}f?”(é?)[ (22)

vE

where p;, = ﬁ and \p, = () are 3D Lamé parameters expressed in terms

of young’s modulus F and Poisson’s ratio v. The kinematic relation for the strain
tensor € under infinitesimal displacement is defined to be the symmetric part of the
displacement gradient as

€= %(Vu + Vau®) (2.3)

where Vu is the second-order tensor.

The Eq.(2.1) is multiplied by a weighting function dw, which also generalises for
the principle of virtual work, as follows

/ pt.du dSQ) + / V.o(u).0u dQ = / fou  Youlu=0onTlp (2.4)
0 Q Q

Applying Green’s theorem for the term [, V.o (u).0u dS2, the weak form of the
problem ({2.1)) can be defined as follows

/pfi),.éu dQ + / o(u): Vou dQ — ty.ou dl'y = / fou
Q Q In 0
Voulu =0onT'p (2.5)

where Vou = de + dw, with w being the anti-symmetric rotation tensor. Since o
is symmetric, o(u) : Véu = o(u) : de.

The displacement u and the stress field o (u).¥,, on 9 can be decomposed as
u=uVy +uVy =u, +u, and o(u).v,=o0,v,+ 0V, =0,+ 0

The above decomposition helps to prescribe normal and tangential stresses on 0f2
for Neumann boundary conditions and contact boundary conditions. The contact
boundary conditions on I'c € 90 : Ty Tp(Tc = 0 will be introduced in the
following definitions.
2.2 Modelling contact and friction
In this section, we define a short description of the concepts related to contact me-
chanics, which are important for the formulation in our application. The structural

mechanics problem with contact can be viewed as constraints imposed on boundary
of a domain, which leads to the definition of contact boundary conditions. Unlike the
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classical Dirichlet and Neumann boundary conditions which are known a priori and
hence can be prescribed directly in the Eq. , the contact boundary conditions
are unknown a priori. Given in its basic form, it can be seen as boundary nonlinearity
from the non-linear kinematic relations which are also non-smooth with multi-valued
mapping, giving rise to numerical complications. Hence, to satisfy the contact bound-
ary conditions, different formulations exist with diverse approximations based on set
of assumptions depending on the application. Nevertheless, we give the basic contact
kinematic relations on which the approximations will be defined for our application.

For simplicity, we consider a system with domains Q® and Q®) in contact. We
start with the definition of gap function defined between the domains as follows,

g = [X® - X015, (2.6)

where several methods exist for determining % ®) and ¥,,. The most easiest is to
define ¥,, as outward normal projection from the slave surface 9Q® to the master sur-
face 9Q®) which determines the corresponding & () for any given X ®. Distinguish
between master and slave is made depending on the mesh density where typically
slave surface has more elements than the master surface. Classically, the method of
closest point projection is widely used where y(b) is defined as follows

X - argmin || X® — X®)|] (2.7)
X () eonb)

where ¥, is chosen as an outward normal of 9Q®). Concerning our application, we
mostly deal with contact between flat surfaces with finite deformation, and hence the
two approaches result in nearly the same value of ? ®) for a given X® where the
problem of non-uniqueness which the closest point projection method suffers doesn’t
concern us. This is mostly achieved by projection through parameterisation of do-
mains using Isoparametric approach of FEM, where in Isogeomteric approach the
parametrisation is intrinsic. More on these definitions are discussed in

Given the definition of gap function, the contact constraints can be defined uni-
laterally for a domain in contact through the set of following conditions which are
commonly known as Signorini or Karush-Kuhn-Tucker (KKT) conditions.

7 <0 (2.8b)
9n0n =0 (2.8¢)

From the conditions, the physical interpretations are apparent, the Eq. (2.8al)
states that no penetration is allowed between the domains in contact, while the Eq.
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Figure 2.1: Illustration of Signorini conditions

states that only compressive stress is allowed at the contact boundary, where
the adhesive effects are classically ignored. The Eq. is given as complemen-
tary condition which relates the first two constraints where it can be understood that
when the compressive stress is nonzero, the gap function should be zero. It should be
noted that the above set of constraints define multi-valued mapping, shown in Fig.

21
For small deformation problems, the gap function (2.9)) can be linearised as follows

Agn = [u® — %™ 5, + go = un + g0 (2.9)

where go represents the gap function in the reference configuration. Hence, for any
incremental time, the linearized expression of the gap function will be used for the
following definitions where the condition (2.8a]) can be expressed as

Up+go>0 or u,—go<0 (2.10)
We use the later convention u,, — go < 0 for the following definitions.
Friction is defined through Coulomb-Amonton’s law which is based on threshold

conditions to define stick and slip characteristics, where no motion is allowed until
||o:|| satisfies the threshold p||o,||, expressed as follows

||| > 0 (2.11a)
llol] — plon| <0 (2.11Db)
(lloel| = plom])]aee] | = 0 (2.11c)
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Figure 2.2: Illustration of Coulomb-Amonton’s law

where p is the classical coefficient of friction. The above conditions can be inter-

preted as follows, for the stick condition ||t|| = 0, ||o|| < w]oy,| where ||o|| is inside
Coulomb’s cone in the space of traction stresses and contrarily, for the slip condition
||te|| > 0, ||o¢|| = p|on| where ||oy|| is on the Coulomb’s cone. The conditions are

graphically shown in Fig. where similar to Signorini conditions, the conditions
define multi-valued mapping.

2.3 Initial-boundary value problem with contact
and friction

The initial boundary value problem Eq.(2.1)) with unilateral conditions for contact
and friction can be given as follows

pi +V.o(u)=f in Q
u=up On FD

o(u)Vv, =ty on Iy
9n > 07 On < 07 gnan:O (212>
lee|| =0 = |lov]| — plon| <0
. U
||| #0 = o, — plog| =0
o

on FC

Unlike the classical weak form (2.5) which can be obtained through principle of
stationary action, with the action defined by Lagrangian energy functional. The
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presence of inequalities from contact and friction defines the problem in the context of
convex optimisation. Hence, the weak form of the problem has the form of variational
inequality, expressed as

/Qpﬁ.(éu — @) dQ+ /Q o(u) : (Vou — Vi) d

_/ o (G, — ) dFC—/ (50| — [[ae]]) dTe
le

—/ tn-(6u — 1) dFN—/f.((Su—'a) d0>0 (2.13)
I'n Q

where the weak form contains the simultaneous presence of two inequalities mod-
elling contact and friction. To make it complete as an initial boundary value problem,
the initial conditions can be defined as ug and 9 which satisfies the above equation
at the initial time.

The solution to the above dynamical problem is often discussed in the context of
non-smooth mechanics which we do not focus here. The existence and uniqueness
of solution to the above problem under static notion without friction was proved by
optimising the resulting convex functional over a convex domain [53] 54 55]. Also
with the static notion of friction, existence and uniqueness of solution was proved for
small friction coefficient [56]. For the above dynamic problem, time integration can
be achieved through regularisation of the multi-valued mappings from the Signorini
conditions and the Coulomb-Amonton’s law [57, B8, 59]. Such multi-
valued mapping are also seen as fundamental in defining some of the friction-induced
dynamic instabilities such as stick-slip phenomenon [60, 50]. Hence, the model for
regularization and the parameters in modelling the regularization are important de-
pending on the hypotheses that model the nature of a given instability. With regu-
larisation of the non-differentiable terms, the equation can be integrated over time
to determine instabilities which are typically of divergent or flutter type in nature.
Flutter instability is defined by self-excited oscillation, typically in the presence of
non-conservative force, which is characterised by limit cycle in the Phase-plane. This
is a very expensive strategy of determining instability, since it can require solving
the equation for several time-steps until a limit cycle could be reached. Nevertheless,
it can be the most precise way to mathematically model and analyse the nature of
instability [61].

We focus on modelling flutter-type dynamic instability through classical theories
of linear analysis, where the first-order effect of perturbation around a fixed point is
analysed. Hence, the stability of the dynamical system with frictional contact
can be characterized by determining the fixed point which is typically quasi-static
or steady-sliding equilibrium, depending on the characteristics of the external forces,
and defining the dynamics for the perturbation around the fixed point. For non-
linear systems such as the system with frictional contact, the stability can be defined
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through linearizing the perturbation around a fixed point, which brings the question
of modelling the multi-valued mappings to be linear. This is possible through reg-
ularization of the multi-valued mappings with functions through normal-compliance
approach [62] which will be discussed in detail with the case of steady-sliding equi-
librium [63]. The linear expression of perturbation around a fixed point means that
it can only characterise the nature of instability very close to the fixed point, while
the non-linear evolution of instability away from the fixed point can only be defined
by transient analysis [61]. Nevertheless, the linear definition can provide insight in
to the nature of the system, so as to have an overview of the instabilities present
which can be achieved through a single evaluation of eigenvalue analysis. As an in-
termediate step in realizing the stability analysis for the steady-sliding equilibrium,
we discuss the quasi-static insight for the above dynamical system (2.13)).

2.3.1 Quasi-static equilibrium

The dynamical problem can be expressed as quasi-static problem when the inertial
effects can be ignored, given as

/ o(u) : (Vou — Vir) d9

_/ o (Bt — 11 dFC—/ (|50 | — [Jaa]]) dTe
Fe

e

The quasi-static frictional problem characterizes the time-dependent variation of
u; with Coulomb’s conditions, which implies the presence of time-dependent exter-
nal forces ty and f. Hence, the evolution of the system can be considered as a
series of quasi-static equilibrium states, where the stability of the dynamical system
can be characterized around such equilibrium states. This means that the stability
could be defined taking in to account of the time-dependent external forces, or also
velocity-dependent friction coefficient, where the history of loading is important for
such applications. The solution to the quasi-static problem with non-uniqueness is
proved to exist under strict conditions[64].

2.3.2 Steady-sliding equilibrium

The quasi-static equilibrium can be expressed as a steady-sliding equilibrium between
at least two half-spaces when no net acceleration is present [60, 50, [63]. Similar to
quasi-static equilibrium, this can be seen as a series of equilibrium states with respect
to time where the equilibrium characteristics remain the same, except for the change
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in contact domain. Since the equilibrium characteristics remain the same for all the
time, the equilibrium state could be expressed with no time dependent forces but
purely by static forces. This also means that the knowledge of v, for o;v; at ['¢ is
known a priori, where the general notion of ¥; could be given as Vv for the known
sliding direction. Hence, the time-independent definition of Coulomb’s law could be
expressed for the so-called static state as follows

|lwe|| >0 (2.15a)
llol] = plon| <0 (2.15D)
(lloel| = plom])[lu]| = 0 (2.15¢)

The steady-sliding equilibrium explicitly defines the slip condition where the sliding
velocity is constant and hence, at the equilibrium, o, = o, on I'c. For simplicity, we
consider only one half-space of the sliding contact where the half-space is considered
to be fixed relative to the other half-space, while the other half-space moves parallel
to V; creating a sliding contact. Hence, at any time, the equilibrium state could be
expressed as

/Qa'(u) : (Vou — Vu) d2 —/ pon(||0w|| — [|uel|) dle

Te

—/ ty.(0u — u) dFN—/f.((Su—u) dQ >0 (2.16)

Since the knowledge of ¥, for u;V; at I'c is known a priori as v, and with the slip
condition for friction, the above formulation can be defined as

/Qa'(u) 1 (Vou — Vu) df2 —/ pop (0w — u). vy dle

Te
—/ ty.(0u —u) dl'y — / f(bu—u)dQ2>0 (2.17)
I'n Q

where the multi-valued mapping of friction is replaced by a smooth definition. We
now introduce the function space for defining du and w, where du and u are defined
to be from the same space K C V', with K being the convex subset of V', given as

V = {0u € (H'(Q))>*|6u = up on I'p}

K = {6u € V]éu, < g,}

£ € (L3(Q))? and t € (HV/2(0Q))?
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where (H'(€2))?3 is the Sobolev space of functions, given with the property
(H'(Q))* := {du € (L*(Q))?, Vou € (L*(2))°}

Hence, the Hilbert space induced by inner product is given through L? norm:

6wl r2 = (du, du) = [, du’dQ < co. A subspace (H'?(99))? can be defined as
the restriction of (H'(Q2))® on 0%, where (H~Y/2(0Q))% is the dual of the space
(H'Y2(09))3. Even though ¢ is typically defined to be in L?(Q2), the unknown a priori
conditions of ¢ for ¢, on I'c results in the space to be H/2(9Q). Unlike the case
for the dynamical problem or quasi-static problems which are characterized by the
presence of two simultaneous inequalities, the above problem is characterized purely
by the inequalities of the Signorini conditions, when friction is defined for the slip
condition with equality.

Regularisation through normal compliance

The Signorini and Coulomb’s conditions represent the mathematical
model for contact and friction in macroscopic view, where such conditions have been
found through experiments to be far from the physical reality [60]. This leads to the
view of normal compliance approach to define a better approximation of the con-
tact interface, also through which regularization for the muti-valued mapping can be
achieved. Normal compliance is defined by o,, as the function of gap function g, with
a set of parameters determined largely by experiments, given as

—Op = Cn(un - gn)T" (218)

where (.); allows only positive value. This can be extended to friction as follows

||| > 0 (2.19a)
loe|| = ci(un — gn)71* <0 (2.19D)
HUtH _Ct(un_gn)TtHiLtH =0 (219C>

where the parameters c,, m,, ¢; and m; are determined from the experiments.
The normal compliance can also be applied to the previously defined quasi-static
case, where existence of a solution was proved through regularisation from normal
compliance. For steady-sliding equilibrium, ||,|| can be expressed as ||u,||.

The Eq. (2.17) can hence be defined through normal compliance as follows
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/ o(u): (Vou — Vu) d2 — / ct(tn — gn) 1 (du — u) ¥y dle
Q

Te
—/ ty.(0u —u) dFN—/f.(éu—u) dQ2 >0 (2.20)
Ty Q

The above variational inequality can be expressed as variational equality through
active set strategy, where instead of looking for the admissible displacement field that
satisfies the condition u, < g, on I'¢, as the minimizer of the above functional in
the convex set K if there exists a unique solution in the set, the set I'c is defined
a priori, called active set, at least for an incremental time in which w,, — g, — 0,
provided that u, < g, was satisfied prior to the given time. With the knowledge of
active set, the displacement field u, on I'c could be satisfied by normal compliance
given in Eq. (2.18). Hence, the above functional with inequality can be expressed
through equality as follows

/ o(u) : Vou d) — ci(un — gn) 0wV, dlc +/ Cn(Un — gn) " 0uV, dl'c
Q e

(on,6u) (o¢,6u)

I'n Q

el

J/

where the inner products (o, du) and (o, du) define the weak form of contact
and friction respectively. The definition of I'c through the active set strategy means
that tx € (L*(Q2))®. When m,, # 1 and m; # 1, the steady-sliding equilibrium can
be solved through non-linear programming like Newton-Rhapson for w.,.

We do not relate to the experimental determination of the parameters c,, m,, ¢
and my. Hence, ¢, is purely given as the penalty parameter p considering numerical
stability, which implies that for any (u, — go) > 0 defined by (u,, — go)+ is penalized
by a factor p, where the ideal would be p — oo. While ¢; is given for the ideal
slip state of the steady-sliding equilibrium as ¢; = pp. The normal compliance
approach can be viewed in general as modelling springs with certain stiffness ¢,
which resist penetration at the contact interface. We consider m,, = m; = 1, where
the parameters m,, and m; for any value other than 1 can be physically interpreted
as non-linear springs. With the above consideration of the parameters for the normal
compliance, the above functional can be expressed as follows

/ o(u): Vou dQ2 —/ wp(ty — gn) 0wV dl'o —1—/ p(uy — gn)+0u. ¥, dl¢
Q N6}

NG}

I'n Q
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where for finite deformation, the problem can be solved for u., with one incremen-
tal time step. It should be noted that non-unique solutions may exist for steady-
sliding equilibrium [63, 45]. On the other hand, it is also possible to define the
dynamics of the perturbation explicitly without inferring u.,, at least for linear case.

2.3.3 Perturbation around steady-sliding equilibrium
The perturbed state of the displacement field for any excitation of the steady-sliding
equilibrium can be given as

U= Uy + U (2.23)

where u corresponds to the perturbed displacement field. The idea is to analyse
the dynamics of the perturbation such that the stability of the dynamical system
can be determined through the onset evolution of the dynamics for the perturbation,
where it is hypothesized that the onset evolution of the dynamics can be expressed
linearly. This brings the question of linearization for the non-linear frictional contact
problem, with the sufficient approximation made in Eq. with normal compli-
ance.

Linearization of the perturbation around steady-sliding equilibrium

As a detour for generalization, we discuss the linearization of the normal compliance
terms. The contact and friction terms in Eq. (2.21)) with ¢, = p, ¢, = pp, 0 <m,, # 1
and 0 < m; # 1, can be expressed as

(O, 0U)r, = / p(un — go)7mou.¥, dl'c (2.24a)
NG}

(o4, du)r, = / pp(tn — go) 6wV, dl'c (2.24b)
e

The perturbation of the normal compliance can hence be expressed as

P(tn + un — go)™ — p(un — go)' 1" ~ p(un)}" (2.25a)
pp(Un + U = go) 1" — pp(un — go)t* = pup () (2.25b)

if it can be assumed that the parameters of the normal compliance stay the same
for the perturbation u close to the equilibrium w.,. The linearization for the degree
of the polynomial terms at u., can be defined as
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mp—1

Ap(Un) " ey = M (Un) T ey (2.26a)
me—1

App(tn) T ue, = pmep(Un) 1 u,, (2.26b)
where the expressions are still non-linear in the presence of (.). It should be noted
that the perturbation u, on I'c may not result in the same active set as the equilib-
rium due to possible separation on I'c, which introduces non-linearities defined by
(.)+. This is because the separation leads to u, — gy < 0 and hence p(u,, — go)'™ — 0
which can only be taken in to account nonlinearly. This is linearized with the hy-
pothesis that the onset of instability occurs very close to the equilibrium u., such
that I'c remains the same for the perturbation w. This means that if I'c must be
constant for u, the separation u, — go < 0 must also be penalized which can simply
be achieved by evading the operator (.), . The above hypothesis for the perturbation
of u,, on I'c¢ would have been impossible to define with Signorini conditions where ,
may lead to strict contact separation on I'c. While in the view of normal compliance,
the perturbation w, for no variation of I'c can be considered to define the variation
of 7,, and hence also its subsequent effect on o; for friction.

With the above hypothesis, the linearized weak form of contact and friction for
the dynamics of the perturbation u close to u,, can be defined as

(o, 0U)p, = My pUn Ny, 0wV, dl (2.27a)
|Ne]

(o4, du)r,, :/ M pU g, 0wV, dlc (2.27Db)
|Ne]

It should be noted that the above weak form is different from the classical weak
form of contact and friction defined by normal compliance in Eq. . The above
weak form essentially characterises force which is purely displacement-dependent,
also known as follower force. The definition of follower force can be largely said as
implicit for modelling flutter-type dynamic instability. In the case of flutter-type
instability arising from friction between solids, the main hypothesis is that the onset
of instability occurs at perturbations very close to u., such that the non-linearities
of the classical contact and friction can be effectively ignored and hence, fric-
tion phenomenon for a perturbed state w can be modelled linearly with the contact
state of u., purely by displacement-dependent forces. Hence, the hypothesis only
characterises w with the linearization of non-linearities very close to w.,, while the
characteristics of non-linearities away from ., cannot be forseen. This essentially
reflects on the possibility of utilising linear analysis such as CEA where CEA can
characterise instability of a system through eigenmodes in one computation, which
would otherwise require expensive transient analysis to find a limit cycle. This de-
fines the system to be holonomic and autonomous since the nature of follower force
depends only on generalized coordinates without explicit time dependence.
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We consider the case of m, = 1 and m; = 1 for the following discussions, where
the linearization of Egs. (2.24]) can simply be expressed as

(O, 0U)T, :/ pupdu. ¥, dle (2.28a)
|Gl

(o4, du)r,, :/ 1pUndu. vy dl ¢ (2.28b)
INe]

Dynamics of the pertubation

The initial-boundary value problem for the dynamics of the perturbation can be given
as

p(k)ﬁ(k) + V.o @)y =0 in QW

ng) (ﬂ(k)){’n = —pﬂnk)ffn, Ut(k) (ﬁ(k))\?‘k = upa;km on F(Ck)

It should be noted that for linear case, the problem can be explicitly defined
without the fore knowledge of wu.,, by defining I'c explicitly. For simplicity, we
consider the parameters p and p to be constant between the contact interface of
all the domains in contact. The subscript k distinguishes the domains in contact.
Similar to Eq. , the weak form of the differential formulation can be expressed
as

s (k ~
/ p(k)u( G —i—/ a®(@®) . véu® 40w —/ , t(ck).(Su(k) dF(Ck) =0
Q) Q) k)

re
(2.30)
The traction force to € H~'/?(I'¢) can be decomposed as follows
/(k) t(ck).éu(k) dF(Ck) = /(k)(aflk)\?n + at(k)\”/k)ﬁu(k) dF(Ck)
to to (2.31)

= [ o v,.0u®dr® + [ 69%,.0u drl
(k) (k)

C C

Hence, the Eq. (2.30]) for the ny domains in contact can be defined as
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Nk

{ / P05 su® g0 4 / O (@) : vou® 40
1 Qk) Qk)

- / o 9,.0ul ar® — / o5, ou® drg‘)}zo (2.32)
Fgf) F(C’f)

N J/ N J/

k=

<0-51k)76’U’<k)>F(k) <Ut(k>75u(k>>r(k)
c c

where o,,,0, € (H™'/?(T'¢))?. The inner products can be expressed in (H'/?(T'¢))?
space which is the restriction of u € H'(Q2) — H'/?(I'¢) through the normal compli-
ance approach, where the above equation can be defined as

Nk

Z{ / P05 su® g0 4 / O @») : Voul g0
Q) Qk)

k=1

—I—/ pu )9, 0ulk dF(Ck)—/ upu ). 0uk dF(Ck)}:O (2.33)
) i

N

-~

k k
(o] ),5u(k>>F<k) (o ),5u(k))r(k>
C C

For simplicity in expansion of the contact and friction compliance terms, we con-
sider contact between two domains Q@ and Q®, with the derlvatlon of traction
forces on Q@. Hence, the inner products (aﬁfl),éu( )r @ and (a‘t ,6u®) () can be
expressed as e

(o), 5u®)w = / PV, 0u® drly) = / pl@® —a®).v,)6u® v, dre
F(C?) F<ca)
(2.34)

<at(a),5u(a))pg> = /( ) ppt,,.ou® drl) = /< | pp[(@® — ™)., ]6u® vy, dre
re

re
(2.35)
The traction forces on Q® can snmlarl be defined from the conservation of mo-

mentum as o) = —o” and o, () —

Finite element method for approximation

We defined a suitable function space V' C (H'(2))* on which the solution u of the
functional in modelling the continuum is presumed to exist.The arbitrary variation
dwu in an infinite-dimensional function space V' can be expressed as
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fu=> 6w Yy eV (2.36)

Hence, the Eq. (2.3.3) can be defined for a system of two domains Q(® and Q®)as

a,b

S { ( / P9 v da® 4 / o (@) : Vol 4o
K Q) Q)
+ / pl@®—a9) 5, Jo™ v, ar - / ppl (@9 —a9) 9, 0" v, drg‘)>50} =0
rk k)
(2.37)
where the equation must be satisfied for any arbitrary variation of 419. ~ k defines
the domain which is not k, i.e., k = a implies ~ k = b and vice-versa.
With the finite element approach, we define a finite-dimensional function space
»V C V and hence, there is some bound for ,v; € , V. We define the approximation
of u in the same space ,V as u =~ ,u € ,V, where the above equation can be defined
as
a,b ®)
Z {/ p(k)hﬁ .h’Ui(k) dQ(k) —I—/ O'(k)(h’lNI,(k)) : Vh'vi(k) dQ(k)
n Q) Q)
=0

+ / o 6" = @™ e, drg) - / N RN drg‘>}
r Iy

C

Vol e,V (2.38)

We explain the definition of space ,V for classical finite elements in , but we
mainly explain in detail for Isogeometric methods with focus on contact in , where
the Isogeometric approach is new for the given application. But given a suitable
choice of finite-dimensional space , V', the above equation can be defined in matrix
form as

2. (a—b)

MEDT 4 (KO KEY + KE)OE =0 (2.39)

The properties of the matrices can be given as follows, where M and K are sym-
metric and positive definite. K¢ is also symmetric which essentially defines the
conservation of momentum at the interface, while Kz is non-symmetric with the
non-conservative nature of friction at slip state. Often damping matrix C is also
added purely in numerical context, typically through modal or Rayleigh damping.
In the scope of modelling rotational inertia effects, gyroscopic matrix G can also be
defined, where C and G are both velocity dependent. We do not consider damping
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and gyroscopic effects for the following discussions, where we mainly focus on contact
and friction definitions.

With the definition of finite-dimensional space , V', the steady-sliding problem can
be expressed as

a,b

> { / o®(u®) : v,o a0 - / 1P (i — ngn)+ 10 Sy dlc
” Q T'c
+/ p(hun — hgn)+ h’Ui(k).\A/n dFC — / ht%).hvfk) dFN — / hf(k).h’vgk) ds) = 0}
T'c 'y Q

Vol e, v (2.40)

where the solution to the problem corresponds to u.,. The matrix form of the
problem can be expressed as

(K(afb) 4 Kgl_b) + K%_b)>U(a*b) — F(afb) (241)

€q

2.3.4 Hypothesis of contact stiffness

We do not focus on the physical characteristics of contact stiffness in the light of
normal compliance, and its subsequent effect on CEA. It is widely known that con-
tact stiffness is correlated to contact pressure and in fact the variation of pressure
at the contact interface has been shown to be sensitive to squeal prediction. With
node-to-node contact, such variation of contact pressure can not be considered since
the strong form of contact is only satisfied discretely at nodes. In essence, contact
stiffness models the interface characteristics in a differential sense by taking in to
account of the so called asperities which are microscopic undulations in addition to
other tribological characteristics. With determining contact stiffness experimentally
in a differential sense for a contact interface, it can be extended mathematically to
define contact characteristics on the whole interface, provided the interface charac-
teristics are unvarying on the whole interface. This is not often the case with braking
systems where interface characteristics largely vary within the contact interface. This
is apparent, since in a typical braking system, contact pressure is known to be non-
uniformly distributed in the process of braking, where such pressure variations can
lead to variation in contact stiffness. But the correlation between contact pressure
and contact stiffness is not often straightforward to model mathematically. Never-
theless, for a given contact formulation, contact stiffness can be determined to be at
least close to the experimental results. But a detailed analysis of the sensitivity of
contact formulation in relation to CEA has not been largely studied.

The other major question is characterising contact stiffness for the variation of
shapes in shape optimisation, such that the characteristics of contact stiffness is
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stationary given the considered setting in optimisation. With varying contact area
in shape optimisation, either the setting of constant force or constant pressure can be
considered at the interface. Since, the precise relation between contact pressure and
contact stiffness is not mathematically known, one can only hypothesise with some
intuition. For an applied force t at the contact interface I'¢, we hypothesise that ¢ o«
Pa = ch pdl'c, where we can define pg and p; as global contact stiffness and local
contact stiffness respectively. With regards to experiments, contact stiffness can be
determined either from the perspective of pg or p; depending on the desired accuracy.
With node-to-node contact formulation which can be interpreted as collocation with
strong form, only constant force setting can be considered with non-varying pg in
optimisation, where contact stiffness between any two spatially corresponding nodes
can be defined by p; as

=2 (2.42)

m

with m being the number of contact nodes at the interface. With the weak form,
either of the setting can be considered, which we define with Isogeometric approach

in 2.7

2.4 Craig & Bampton reduction

For the ease of computation, the dynamical model can be reduced through
model reduction where we used Craig & Bampton reduction [65]. This is essentially
to take advantage of sub-structuring in shape optimisation, where only the matrices
of the sub-structures defined for shape optimisation can be computed in every iter-
ation. Craig & Bampton (C&B) reduction essentially captures the properties at the
contact interface along with the internal dynamic properties. In accordance to the
method, for a domain QM| the vector U® and the matrices K& and M® are split
between internal (u) and interface (v) degrees of freedom as follows

U§k>
K KW
[Ks@ ] 24

e8] e
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The transformation matrix T can be constructed from the composition of static
transformation ®, = K 1K, and the matrix of eigenvectors @, = [0; O, --- O]
obtained by solving the problem (K, — A?M,,)0; = 0 for the first H modes, where
the choice of H depends on the number of modes to be represented in the problem.
The matrix T can hence be defined as

© o
W_| O ©s
T [ g ; ] (2.46)

The transformation to define the reduced mass M® and stiffness K& matrices
can be realized by M = TTMT and K = TTKT, where the reduced matrices are

with .# representing the modal

expressed in the reduced coordinates Z = [ zf ]7

coordinates.

The composition of the matrices M and K can be expressed as

M= | " W 2.47
|: Mvu Mvv :| ( )
K= | . " W 2.48
|: Kvu KVV :| ( )

where for 1\7[ the sub-matrices can be expressed as 1\7qu =1, MUV = MT =
Oy (My,— M,,, K K,,) and M., = M,,-M,. K, Ko —Ko K, 1Muv+KvuK 1MuuK Koy
Similarly for K the sub-matrices can be expressed as Kuu =0,'K,0,= I Kuv =

A O 0
K,,=0and K,, = K,, — K, K !K,,, where T = 0 . 0
0 0 Mgy

Essentially, the interface degrees of freedom U, for a given domain is defined by
contact and friction degrees of freedom, where the reduced contact Ko and friction

. (a)
K matrices defined by the coordinates UL = [ g\(’b) ] , has the form

) K®  g@b) ]

K™= pfo g (2.49)
- C C -
[ a@ b ]

> (a—b K K

K= cda o (2.50)
L F F -

The reduced mass matrix of the system, M(“_b), can simply be expressed as

- M@ 0
(a—b) _
M) = { N ] (2.51)
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where the mass matrix is essentially uncoupled between the domains. But it should
be noted that, for M® | the internal U, and interface U, degrees of freedom are cou-
pled, i.e., MK = (l\A/_[slfl))T # 0. This is not true in case of the reduced stiffness matrix
of the system, K(“*b), where coupling exists through contact and friction. Hence, the
sub-structuring of the domains are essentially coupled through the interface degrees
of freedom U,, where the stiffness matrix with the definition of contact and friction
can be expressed with the matrix KSE I?) in reduced coordinates as

@ 0 0 0
g _ | 0 K&+ K + KW 0 K& + K@Y (2.52)
wer 0 0 z®) 0 '
0 KOY4REY 0 KR +RY +KY
7,(a)
where the coordinates of the matrix is defined by Z®~? = [ 7) ] , which is also

true for M=) Unlike M®, for K® there is no coupling between U, and U,
but essentially it is only K@) that couples the domains.

2.5 Brake squeal problem

Considering brake squeal, it is well known that squeal noise can be linked to modal
behaviour. Hence, it seems quite obvious to build an optimisation criterion to char-
acterise squeal noise on the presence of unstable modes which define flutter-type
instability. Given a linear system, the most efficient is to use eigenvalue analysis
where we can characterise modes through eigenvalues in one computation. The topic
of linearisation of such systems has been the discussion with previous explanations,
where we achieve linearisation of contact and friction around a fixed point.

2.5.1 Complex-eigenvalue analysis

For the following definitions, we consider an applicative example of disc-pad system
d — p as a simplified brake system, which essentially consists of two domains: a disc
QD and a pad Q®). The disc is defined as a solid annulus geometry fixed at the inner
cylindrical face. The pad is constrained to be in contact with the disc defined by u.,
and with additional constraints to avoid any rigid body modes in the system. The
description of pad shapes in optimization is detailed in section 4. The idea of defining
a simple system at least initially is to make focused studies on individual problems
by avoiding the complexity of boundary conditions present in a real braking system,
where we focus on defining a frame-work for shape optimisation of such systems.
For the following explanations, we express the matrices in normal coordinates as

33



supposed to reduced coordinates where we later define a strategy for sub-structuring
with reduced coordinates in optimisation. The problem (2.39)) for d — p system can
be defined as

2 (d—p) o
MEPT 4 (KO 4+ KEP K g — (2.53)

With the assumption of a feasible solution of the form ©e* for U, the character-
istics eigenvalue problem can be expressed as

(A2MEP) (KA L KD L K)o =0 (2.54)

It is evident that the value of A determines the state of the perturbed solution U.
Since K is non-symmetric from the definition of friction at the slip state, this can
lead to A and © being a complex value and a complex vector respectively. For a
complex value of A, the imaginary part () defines the oscillatory behaviour of U
and the real part R(\) characterizes the stability of U.

Hence, depending on the value of R(\), the stability of a mode can be categorized
into one of the following:

e R(A) > 0 unstable mode
e R(A\) < 0 stable mode
e R(\) = 0 neutral

In our system, the coefficient of friction p is the driving parameter which deter-
mines stability, such that increase in the value of p can drive the system from stable
to unstable behaviour. This type of instability is characterised by Hopf-bifurcation
where the presence of a limit cycle is determined by the occurrence of a pair of
eigenvalues £R(\,) + I(),), with A, being the eigenfrequency of two modes under-
going coalescence at p [60, 67]. The presence of this type of limit cycle defines a
self-excitation behaviour leading to flutter-type instability. This is physically under-
stood for our system as follows, the bifurcation leads to two modes with £R(\,,)

~

for a given frequency (A, ) at the point of bifurcation p, and when g > p,, the
two modes —|—3%(X#>HO) + %()‘\wuo) and _%(quo) + %(Xpuo) characterize stable and
unstable behaviours respectively, leading to mode-coalescence phenomenon [68]. The
presence of this type of instability in the range of brake squeal frequency can indicate
the presence of brake squeal noise. But, it should be noted that the magnitude of
+3(X) defines the rate of divergence which may not quantify noise level.

Example of mode shapes for the disc-pad system obtained through CEA are shown

in the Figures [2.3] and

We discuss the empirical observations from the post-processing of mode shapes,
even though the results are highly subjective and depend on the value of p which is
typically determined from experiments in the light of normal compliance. Typically
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Figure 2.3: Example of disc-pad stable modes (Achieved with Isogeometric method)
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Figure 2.4: Example of disc-pad unstable modes, where the displacement field is con-
sidered only for real-part of the eigenvector (Achieved with Isogeometric

method)
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at low frequencies, the mode shape of the pad follows the shape of the disc with corre-
spondence in displacement field at the contact interface. While at higher frequencies,
the behaviour is complicated to understand, but relatively large difference in magni-
tude of displacement field between the disc and the pad was observed. Further, the
unstable modes lead to definition of eigenvectors in complex-plane for displacement
field, which was not considered for representation in Figure [2.4, For intuition, a
complex eigenvalue with non-zero real and imaginary parts, defines the phase-lag in
the displacement field for an eigenvector and hence, the stable equilibrium position
of the displacement field for an eigenvector is never achieved simultaneously.

2.5.2 Stability criterion in optimisation

In the context of shape optimization, the idea is to define a criterion for optimization
independent of the coefficient of friction p, such as to reduce the influence of u in
defining optimal shapes. This is because the parameter y is mostly uncertain in real
world?] and also instabilities could be easily averted at lower values of u. Hence, to
define a criterion which characterizes instability for a geometric shape X independent
of u, we define the criterion as follows

CX) = [ maa{R(AL(X))} du (2.55)

where A = {\!--- A0} is a set of eigenvalues of the system. The criterion is es-
sentially a black-box function defined by maximum of the real part in A,(X) at a
given value of p, integrated over p. Typically, it can be too unrealistic or optimistic
to minimise the criterion over the whole range of squeal frequency (1 to 16 K Hz)
and hence, the set A can be chosen for a specific range of frequency. This can also
be a better strategy in defining meta-model for Cs, since the meta-model can be
more accurate in characterising the behaviour of modes over a specific range of fre-
quency than the whole range. Even though, no correlation can be implied between
max{R(A,(X))} and noise level, choosing max{R(A,(X))} is essential to define
some smoothness for Cs in optimisation. Hence the choice of max{#(A,(X))} does
not necessarily characterise noise level but the presence of instability which can be
accounted for squeal noise. Nevertheless, the Utopian goal of Cs = 0 defines lack of
instabilities and hence characterising noise level may not be a concern if such a goal
could be reached in optimisation.

Evaluation of C can be computationally expensive, but with the aid of model
reduction and parallel computing, it can be made to be efficient. In the following,
we give the general frame-work for evaluating Cs. The reduced stiffness matrices of
the multi-patch disc can be defined with C&B method as

2In the scope of uncertainty, we do not consider random perturbation of ; with in a contact surface
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yAC
) (2.56)

yAS
U
defining the degrees of freedom on F(Cfl) . The matrix is essentially the same in

optimisation where we consider optimisation only on Q2P. Hence, for a given definition
of shape, the following matrix is computed

where the matrix is defined by the coordinates Z@ = [ } , with Uy

K®P —

0 K® (2:57)

7® ]

The evaluation of Cy demands the definition of K(@P) for several values of (. Since
it is the property of interface, the characteristics at the interface can be decoupled
as interface degrees of freedom U, in C&B reduced coordinates. For the definition
of ngfp) (refer #} i can be factored out as ,uK;fi*p)\ uzl. The idea is that for

the evaluation of (g, with numerical integration defined over u, the matrix K%d_p)| "

does not need to be evaluated for discrete values of p, but instead K%d*p )] , can be
computed as /LK&S_’)) |1, where K;ﬂj_p) in this case is computed only once with p = 1.

The computational cost of evaluating Cs with numerical integration for discrete
values of i can be reduced through parallel computation. The only varying parameter
for parallelisation is p for the definition of Kg_p), hence the computation of the
matrices M®), K@) K(Cd ) and K%d_p) | =1 are achieved on single core. Further with
M@ and K@ already computed, the reduced matrices of M@ and K@P can
also be defined on single core as

- M@
(d-p) _
NP — [ 0 X (2.58)
Z(@) 0 0 0
~(d - (d - (d,
K(d_p) _ O va) + K(C) AO K(C p) (2 59)
we 0 0 Z®) 0 '
0 K 0 K®+KP

where the matrices are expressed in coordinates Z(4~P). Similarly, the matrix

K%d_p)| u=1 can be expressed in Z(4-P) coordinates as

3Tt should be noted that in the context of multi-patch parameterisation, detailed in §,F(CSi ) corre-

sponds to F(gl), where the contact interface is defined to be on Q1)

p)

4KE§7P) |u=1 can be interpreted as KgF computed with u =1
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0 0 0 o0
2@ o )
o 0 0 K
R =g 0 5 ok (2.60)
0 KpY o KP

pn=1
The evaluation of Cs with numerical integration can be expressed as

/ mar{ROAL(X) i~ S mas{R(A, (X))} w, (2.61)

1i€l0,1]

where ; can be spaced evenly in the interval [0, 1]. Hence, on each parallel core,
the matrix KS(; Jff) can be computed as

- (d— S (d— ~ (d—
KSor = KGo" + K |z (2.62)

Along with the definition of KS&E), the computation in parallel cores is defined
for Eq. (2.54)) in reduced coordinates, where in each core, the computation of the
characteristics eigenvalue problem in reduced coordinates can be expressed as

(WM L KP4 KO e =0 (2.63)

This eventually leads to the evaluation of maz{R(A, (X))} in each parallel core
and hence with the evaluation of maz{R(A, (X))} on all parallel cores, Cs can be
computed from 0 maz{R(A, (X))} w;.
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3 Numerical modelling of contact
and friction

Contact and friction phenomena are highly discontinuous in nature at least in the
essence of mathematical elegance . It can be mathematically challenging
to handle such discontinuities and hence through regularisation of such disconti-
nuities, the model for contact and friction should be able to describe the desired
characteristics. Taking in to account such considerations for numerical modelling is
also important for applications sensitive to contact and friction characteristics. We
focus on approximation of contact and friction definitions in ([2.29) with finite ele-
ment approach. We give a short introduction for the definition of finite-dimensional
approximation space ,V in the context of both classical FEM and Isogeometric ap-
proach. We primarily focus on view from Isogeometric approach for defining contact
and friction formulations, though parallels could be drawn between the two. We also
discuss the widely used node-to-node contact formulation of classical finite element
methods to extend the intuition of collocation approach in Isogeometric approach.

3.1 Finite-dimensional function space

3.1.1 Classical finite element approach

In classical finite element method, typically a domain €2 is discretised as

Qr = a0 (3.1)

n§) is the discretisation of {2 by union of elements, with .2 being the domain of an
element. €2 is typically parameterised by polynomials like Lagrange or Hermitian
polynomials, where the parameterisation in R3can be expressed as

GZX(xvya Z) = ZelNi(a:;yyZ)el-Pi (32)

i=1
where P, defines the coordinates of the node i, with . N;(E) being the inter-
polating function of the node i. With Isoparametric approach, {2 is expressed as
mapping from a parametric space 282, where 4Q € R? is typically defined by cube:
[—1,1] x [-1,1] x [=1,1]. This approach avoids the problem of explicitly referring
to each element with generalised coordinates, which is also convenient for defining
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numerical quadrature with in elements. ;2 can be expressed directly in parametric
coordinates 2 := [£, 7, (] that parameterises () as

n

aX(8) = ZelNi(E)el-Pi (3.3)
i=1
With this notion, the approximation of a solution u at element level can be ex-
pressed as

n

elu(E) - ZelNi(E)elui (34)

=1

The approximation of solution u over ,€) can be roughly expressed as

AU = Zelu (3.5)

el

We provide a short description of parameterising ;{2 with Lagrange polynomials,
where such elements are known as Lagrange elements. In 1-dimension, Lagrange
polynomial of order n — 1 can be expressed in parametric coordinates as

n

§—¢&
& — &

For higher dimensions, the interpolation functions are defined by tensor product,
where in R3, the interpolation function can be expressed as

Nz(é) =

i=1,ji

(3.6)

Ni(€,n, ) = N (E)Nik(n) Ni(€) (3.7)

In classical FEM, the main idea is that the space , V' is defined by N, that defines
n§) as basis functions. The solution continuity over ,{2, which is known as compat-
ibility condition is preserved by defining | J €2 such that common nodes and edges
are defined between elements. This means that common interpolation function is
defined for common nodes between elements. This implicitly defines Cy continuity
of solution between adjacent elements, unless explicitly constraints are defined for
solution continuity between elements.

3.1.2 Isogeometric approach

With the isoparametric approach of classical FEM, the parametrisation ;X is local
to €2, where the parametrisation , X over ,( is explicitly achieved by | J 2. Typi-
cally, 12 is defined from CAD definition of €2 which is parametrised by NURBS. Even
though ;€ is defined over 2, there is no innate relation between the two which makes
it harder to achieve a robust definition of €2 from (2. This brings the idea of Isoge-
ometric approach where the parameterisation of ,€2 from 2 is defined with in same
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parametric space, typically through NURBS. Isogeometric approach was developed
to merge design and analysis descriptions of a geometry through same class of basis
functions [69] [70], where the basis functions used for defining a geometry are also used
for approximation of solutions in the context of finite element approach. The param-
eterisation of a geometry defined with mapping from a parametric space is achieved
through NURBS with a set of basis functions, where its subsequent analysis-suitable
parameterisation which is usually more refined with a new set of increased number
of basis functions is defined with in the same parametric space. This means that
»§{ can be achieved robustly from €2 by defining refinement with in the parametric
space that defines 2. Since ,{2 defines the geometry also as CAD parameterisation,
no distinguish can be made between 2 and ,{2, hence Q2 = ;). But distinguish is
certainly made in the sense of parameterisations, where initial parameterisation X
of € is purely defined as design description in the perspective of CAD, while the
analysis-suitable parameterisation X of  is defined by refinement over X consider-
ing accuracy for approximation of solution.

We start with the definition of B-spline functions with extension to B-spline curves,
from which NURBS curves are introduced with the definition of a weighing parameter
and a non-uniform knot vector. This is followed by description of higher dimensional
geometries through extension by tensor product definition.

The B-spline basis functions can be defined by Cox de Boor’s formula as follows,

Nio (€) = { I &G<E<&in (3.8)

0 otherwise

Nip-1(§) + @Nz#l,pfl (€) (3.9)
£Z+P+1 §z+1

§—&

Nip (6) ivp — &

where p is defined recursively for p > 0 to obtain a curve of degree p, which starts
with a piecewise constant at p = 0. Naturally, a uniform knot vector can be defined
as & = {&1,&, -+, &npi1 ), where any & — &4 is uniformly spaced. For a uniform
knot vector, the bases span with continuity C?~! between the knots, where it satisfies
partition of unity > 1 | N;,, (&) = 1 for [§,, {,41], with n being the number of control
points. Further, the span of any N;, (§) is defined in [§;, §i4p11], and N;, () > 0, VE.

The knot vector need not be equidistant and the multiplicity of a knot & by M in
the knot vector decreases the continuity by C?~M across the knot &;, which defines a
non-uniform knot vector. The multiplicity M = p for the first knot and the last knot
defines a open knot vector, where the basis functions model interpolation between
the first and the last knots. The basis functions defined with an open knot vector
satisfies partition of unity V¢. Through B-spline basis functions and a knot vector
& =1{&, - ,&4pr1}, a B-spline curve can be defined with coefficients of the basis
functions as follows
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X&) = D Nip(©) P (3.10)

where with a open knot vector for a curve, the ends of the curve are C°. The
coefficients P; € R? are the control points, with d being the dimension of the space.
The definition of a weighing parameter w; > 0 associated with a re spective basis
function N;, normalized defines rational B-splines where it respects the partition of
unity, given as follows

ZZZ sz Zp( >Pl~ (3.11)

R”J

The parameter w; provides a new dimension for controlling the geometry through
projective transformation, while the affine transformation is achieved by P; . Hence,
the combination of non-uniform knot vectors and rational basis functions define
NURBS. Further, if all weights are the same, NURBS is simply a B-spline with
non-uniform knot vector.

The higher dimensional NURBS are a natural extension of its 1-dimensional pre-
cursor through tensor product definition where the order of the tensor is the same
as the dimension of the geometry. For a 2-dimensional geometry, the tensor product
NURBS surface is defined as follows

n

Z Rip(§)Rjq(n) Pi (3.12)

i=1 j=1

which is supported by knot vectors & = {&1,- -, {nqprrf and g = {1, -, g1}
for the domain [&1, &mrgr1] X [, Mmagr1], With n X m net of control points P; ;.
Similarly, to define volume, the tensor product NURBS volume is defined as follows

n m l
Xo(&n. ¢) = Z Z Z i,p 1) Ry, T(C) i3,k (3.13)
i=1 j=1 k=1 R, J‘;(E)
where the knot vectors are given as & = {&1,- -+, &oqpr1} M = {1, s Nmtgr1}
and ¢ = {1, -+ ,(4r+1}- The above expression can be simply expressed in matrix

form as X, (E) = R(E)P.

The main idea with Isogeometric approach is to define the space , V' with NURBS
basis functions which parameterises the geometry. The parameterisation of a do-
main 0 € R? as an initial geometric description through NURBS can be expressed

as quk)(é(k)) = R(k)(é(lj))f’(k), X : Q) — Q, where X defines the mapping from
the parametric domain €2 to the physical domain ) — for simplicity, we consider
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the parameterisation of the domain € through a single patch: [£1,- -, &nppra] X
M1, s Mmtqr1) X [Cs -, Qary1) - The analysis-suitable parameterization X E] can
be achieved through the refinement of X — X with one or several of the refinement
methods (h, p and k), where X can be defined as X,(E) = R(E)P to take in to
account of the modified knot vectors and control points — more on parameterisation
and refinement for our applicative example of disc-pad system is discussed in. It
should be noted that the mapping for parameterisation is for the whole domain, i.e.,
X: Q050 contrary to mapping X of Isoparametric approach which is only local
to an element {).

3.2 Contact and friction discretization

It should be noted that the following definition of contact and friction approxima-
tions are specific for modelling flutter-type dynamic instability with CEA, detailed
in This can also be seen as analogous to the classic mesh-tying problem.

3.2.1 Idea of collocation method from classical finite element
method (Node-to-Node contact)

We discuss the classical collocation method of Node-to-Node contact in classical
FEM [71], mainly to provide intuition for extending collocation method to Isoge-
ometric approach. The Lagrange interpolating polynomials define unity at nodes,
which is typical of interpolating polynomials in classical FEM —In the sense of inter-
polation, nodes can be thought as coefficients in generalised or natural coordinates
which are essentially interpolated. This property means that nodes lie on the sur-
face discretised by Lagrange elements, which brings the intuition of Node-to-Node
contact where the contact is defined between nodes of conforming meshes at the con-
tact interface. Node-to-Node contact can be essentially considered as the collocation
method where the strong form of contact or friction definition is satisfied at the nodes
in T'c. Considering Eq. ([2.38), for classical FEM with Lagrange elements, the space
»V is defined by the bases ,v; of Lagrange polynomials.

The contact definition of the initial-boundary value problem Eq. (2.29)) can be
defined in finite element context as

(k)

haflk)(hﬁ(k))\?n:—phﬂn Vv, on F(Ck) (3.14)

where for a system with two domains Q@ and Q® in contact, with confirming
mesh at ng) and Fg), it can be said that for any node ¢ € I‘(Cia), there exists a unique

IFor simplicity of the notation, we define X to be the default notation for analysis-suitable pa-
rameterization of a domain Q € R3
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node j € Fg) ) that forms contact. Hence, the contact force for a given node ¢ € F(Ca)

in contact with a node j € F(Cb) can simply be expressed with Node-to-Node contact
as

pl(na® — ™). 0,9, 0 = pl@® —al”).9,]v, (3.15)
a:hvj =1

hU;

~(b
ZVzGQ(a) hU( )'U,( 2) and h’U/( ) — ZVJEQ(b) hU
tion is defined at the nodes itself, the bases hv( ) — hvj(-b) =1 for Lagrange elements
or typically for elements in classical FEM. The above equation is stated specifically

for linear case, where normal compliance terms are expressed to be linear.

7 (@) (b) ~ ()

where ,u Since the colloca-

As an alternative interpretation, the collocation method can also be defined from

the weak form of contact (3.19) as

(haﬁa)mvga))py = /( pl(pa® —a®) 3,0l v, dr ) —

a)
I‘C

pl(@® — @) %,]%,  (3.16)

if the weighting functlon h’v of the weak form is defined to be the Dirac-delta
function (6p(.)) as hv = (5D( —a®) .

Similarly, the friction definition of the initial-boundary value problem Eq. (2.29)
can be defined in finite element context as

hat(k)(hﬂ(k))\?k:,uphﬁn(k)f/k on Fg«{) (317)

Similar to the definition of contact force, the tangential force of friction can be
defined with Node-to-Node collocation as

ulp(u®™ — pu'™)., ]V, = plp(w;” —u;”). 9, ¥y (3.18)
hvga):hv](.b)zl

The interpretation of collocation from weak form can also be defined with friction,

similar to Eq. . For the d — p system, the friction force can be resolved in to

tangential and radial components relative to the disc axis. Since, the relative sliding

velocity is negligible in the radial direction, the frictional force component of the

radial direction is also negligible and hence often ignored.

While physically, Node-to-Node formulation is more intuitive, there is no restric-
tion for collocation to be achieved elsewhere rather than exclusively at nodes where

hu(a) = ! = 1. This already gives intuition for collocation with Isogeometric

7 _hj

26p(@™ —a®) : ol =0, val® #a® and ol = 1if al® = a®
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approach where the control points need not be physically on the surface to achieve
an equivalent collocation formulation. A very similar interpretation of nodes can be
defined by taking average over knots in NURBS, known as Greville abscissae which
are physically on the surface and hence can be defined for collocation [72] [73]. Nev-
ertheless, we expand the weak form of contact and friction ((3.19) & (3.20)) with
[sogeometric approach from which collocation can be achieved explicitly in place of
quadrature schemes. This approach also aids in considering area which can be more
effective for approximation of contact pressure, though not very precise as expensive
mortor based approaches .

Some of the limitations of Node-to-Node contact formulation can be owed to mesh-
ing. Given that we focus on shape optimisation, Node-to-Node formulation places
severe constraints in meshing, where structured meshing must be preferred to de-
fine confirming meshes at the contact interface. Depending on the design space in
shape optimisation, this may not be a very robust strategy, since structured meshing
can severely restrict mesh adaptation to avoid distorted elements that can effect the
Isoparametric definition of integrals. On the other hand, it is well known that un-
structured mesh definition may not also lead to robust meshing with classical FEM.
Due to such complications with meshing, Isogeometric approach can be considered
by choosing a robust parameterization strategy which would be rather difficult with
classical FEM. We also remind that defining an initial Parametrisation may also be
cumbersome with Isogeomtric approach but given a well-defined initial parameteri-
sation, Isogeometric approach can achieve robust refinement. Although the compli-
cations with meshing for classical FEM can be avoided with contact formulations
that do not demand confirming meshes at the interface, empirically, we find that de-
veloping such formulations with Isogeometric approach can be more advantageous in
shape optimisation. The effect of contact formulation to the prediction of instabilities
with CEA has not been largely studied, where the interest is on the contact char-
acteristics pertaining to the dynamics of the perturbation @ rather than w., (2.23).
This also comes as limitation to choosing the right contact and friction formulations
considering computational cost and developing more advanced models.

3.2.2 Expansion of contact and friction weak forms with
Isogeometric approach

A detailed review of contact definitions with Isogeometric approach can be found in
[74]. The Isogeometric approach for approximation of the solution u is achieved
through the same NURBS bases R, ;5. For a vector-valued function space , V', the
vectorial definition of the bases R;;, € R® can be defined as

Rk 0 0
0 U R; U 0
0 0 Rk
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where in matrix form, R; ;x(2) := 0 R; ;i x(E) 0
0 0 R, ;1(B)

which is taken in to account through the definition of the matrix R(Z) and the
vector P as

R(E) = [Rl 11(8) - Rn,m,l(E)}
P=[Py - Puus |\, Pyu=[P5, Pl Pyl

In a abstract sense, the bases R, ;;(E) in parametric space is transformed to the
bases ¢; ;x(x,y, 2) in physical space using the push-forward operator o, where the
bases ¢; is defined with the property ¢; = ¢, ;x(X) = R; ;jx(E) o X '. Hence, the
approximation of a field variable on €2 is defined through all the bases (;bi spanning
the finite-dimensional function space ®. For Isogeometric approach, we express the
finite-dimensional space ,V as ®, and its associated bases ,v; as ¢;. The approx-
imation of w € ® can be defined as u = ) ., ¢iu;, expressed in matrix form as

Wt = N(X)U, where

N(X):[(ﬁl(X) (ﬁnXle(X)}

O[O0~ Tud] - O [ T 7]

Hence, the approximation of (a%a),éu(a»r@ (3.19) and <a§a’,5u<a>>r<a) (3.20) in
C C

the function space ® can be defined as

@dﬂ¢@m@=£mmw®—u N drE Vel € B (3.19)
C

(o™, d ) = pp[(@® — a®™) 9, )9" v ars V™ e @ (3.20)

The parameterization of the domains Q® and Q®) defined through NURBS can be
expressed as X® = R®(E®) and X® = R(®)(E®)). For the perturbed displace-
ment field w around a equilibrium u., (, I'c was hypothesized to be stationary,
where the effect of w for a stationary I'c was modelled through the normal compli-
ance approach. Hence, I'c is known a prior from the solution ., in solving for an
equilibrium configuration. Further, I'c : g, = 0, i.e., X® ¥,, = X® %,,, where v,,
in this case is taken to be the outward normal prOJectlon from the slave side F( 2)

to the master side F( ). This means that X® : X® (X @), hence for X® that
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a)

parametrizes F , a projection exists that maps X® on F((,]*D) as % () For the fol-

lowing explanatlons we detail the derivation of traction forces on F(a) which can be
extended to F dependlng on the considered contact formulation.

<h0'£f)7¢i(a)>p<a> =
() [(N(a)(X(a)) %M q’)(a) Vi dF(a) qu(a @ c o
1—1 a
(3.21)

(hafa),¢i(a)>rg> =
/(1> up[(N(a)(X(a)>ﬁ(a) _ N(M(%(b))ﬁ'(b)) Vn]¢ Sy dF(a) v(ﬁ‘(:)ﬂa) c d®
s 1<t

(3.22)

where in matrix form,

Gijr(X)V" 0 0
¢i-{’ = O (bi,j,k(X)\A/y 0
0 0 Gi .1 (X)V?

The expression for (ha,(la), (]bfa))F(a) and (hat(a), qﬁi(a))r(a) can be further expanded as
C C

(o', ¢i(a)>r<ca> =
(a) & (a) @ & V—N® 5 e gre
[ @08 N) (69,)(~N® 5,0 art

v¢i(:)rg> e ®® (3.23)

(o', ¢i(a)>r(cg> =

/ L@ T (NW9,) (@ 9) (NPT dr
Lo

where

NV := [¢1(X)‘7 ¢n><m><l(X)"7}
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We expand the terms of the form fr(a) qb(a)N ) (X (®) dFS‘) in Eq. (3.23) and

Eq. ( , given as

/( | SO N (X P))gre —
re

[ [ X4 (X (X)) arg)

nxmxI1

[, 67X )80 (X)) | (325)
Lo

where the mtegral is sunultaneously deﬁned over the bases of the two contact do-
mains, since @ € H-Y/2(F®). and ¢® € H-/2(T'Y). Even though the definition

of integral is possible for ¢§b>(§ ®)(X @) on F(g), for dissimilar meshes at the con-

tact interface, the definition of numerical quadrature scheme for the integral demands

domain decomposition to find the common span: ¢'(Z)r‘a> ﬂqb,(g(m [75,[76]. This means
el el

that the mtegral can only be defined through a quadrature scheme specific on the

span of qb e or ¢o o for which the projection qb a>q,’) er® # 0. Alternatively,

this can be Vlewed as the projection of ¢‘(e)r“"" on d)'er(b) for which the relation of
el e

weak sense should hold, given as

/ Lo+ 4] AT =

FC
[ 06+ ol ) (320)
re

where it verifies the conservation of momentum at the contact interface. We satisfy
the relation in an approximate sense, where we consider the integral ch ¢; dI'c on

one of the domains — in this case I'® — through collocation as fr(c‘"‘) d)i(a)dfg)
Y vier® iqbi(a) where I® is the set of points on F((?) which depends on the collocation

scheme [73] [77]. Hence, for Eq. (3.26)), the integral for the projection of (ﬁi(a) on the
bases in H-Y2(T'%) and H-/2(T%)) can be given through collocation as

3For simplicity of the expansion, we ignore the unit vectors ¥,, and ¥,
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STl i+ o i iel )=
Viel (@)
i a) 4 b ; a) 4 b
ST o™il + o wigiel) ] (3.27)

vieI(a)

where 9™ = ¢ (( X @) and ‘p® = ¢(b)(%(b) (!X @))). This implicitly satisfies
the conditions for conservation of momentum even though the integral fr(a) (qbl(a)) (¢§b)) dI’g} )
C
may not be defined accurately. But this can effect the continuity of the solution,

which is typically verified through Patch-test. For any 2, the following relation also
holds

I b e gl ]~
i ()i (b i@ @0 ‘.t

This means that any quantity defined through collocation at ¢ over iqbi(a) is pro-
jected equally over the bases in H-Y2(T%) and H-Y2(T™). It should be noted
that the collocation strategy can be replaced by a numerical quadrature scheme as
fr(g?) qbi(a) ar g‘) D vierm W i¢i(a) where I® in this case corresponds to the quadra-

ture points with *w being the quadrature weights. But the notion of “w on ¢® €
H‘l/Q(FgD)) may not be realistic when *w is defined for ¢® ¢ H‘1/2(F(Ca)).

The Eqgs. (3.23) and (3.24]) defined through collocation can be expressed as

(o™, ) =
ST Pl ) (N® 9, (¢ 9,)(—N® 5,0 arg
vieI()

Vo' e ®® (3.29)

ier®

(hor ¢>i(a)>1<a> =

S (oM 9)CN® 5, (6.0 (- N 9, )T ar)
vieI (@)
Vo' e ®® (3.30)

ier®

or alternalively can be expressed as
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where ‘N := ["¢1 -+ ‘Pnxmx]
Similar to the Isoparametric approach in the classical FEM, the integral is defined

over the parametric domain €2, where the above expression takes the form

Ko Ke"l=
> PIR®2,)"(RW 5,)  (R®.5,)T (=" R® .%,)]|f T[T

viel(®)
(3.33)
Ky Kp) =
Z [Np[(zR(a){’t)T(lR(a)Vn) (zR(a){,t)T(_zR(b){,n)] |1J(a)” U(a—b)
viel(®)
(3.34)

where ‘R := R(*E), with *E being the collocation point in the parametric space.
i=2(®) is the corresponding map of X (°) in the parametric space, which can determined
through Newton-Rhapson method in solving for X (*EM) = y(b)(X(a) ((E®)).
Hence, there exists a mapping *E® — ‘E(®) for which X ® (*E®) = X ®((E®)).

From the conservation of momentum at the interface, the following relation holds
ol = —o” and a'ga) = —a',gb). Hence, the traction stresses on F(C]? ) can be similarly

defined as
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Y PR (—'R®.9,)  (RP.9,)"(RV.9,)| [T T (3.35)

> PIRD )" (= RW%,)  (RP %) (R %,)]|f T[T (3.36)

vicI(a)

With the above definitions, the matrices Kg_b) and Kg?_b) for the system can be
given as

g _ | K&K K@) _ K Kp”
¢ = |gha g | and = |gba  g®
c c F F
It should be noted that, for the Eqs. (3.35) and (3.36) even though the integral
should be defined over I'® as (,o®), ¢-(b)>F(b>, the collocation points I® are deter-

mined only on I'®, where its corresponding projection on I'®) is defined through

the projection X ®. This is commonly also known as one-pass. The Eqs. (3.35)

and (3.36]) can be further simplified based on the relation (3.28)), where the following
could be stated

‘97" = 3 el i =Te" (3.37)

% (a)
?ier(

‘9" = D il =g (3.33)
Y )

This is similar to the lumping approach where the off-diagonal terms of a row on a
given domain is summed to the diagonal. It should be noted that, also the following
relation holds

Y i ip” =gl (3.39)

(a)
v
¢1€F('1)

> i =te” (3.40)

(b)
¢1€F(b)

which preserves conservation of momentum at the interface
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As a side note, It is well known that the choice of master and slave can lead to
bias with one pass. The bias can be eliminated by the so called two-pass formulation
where after one pass, the role of the master and the slave is switched, and the average
of the projections is taken in to account, given for Fg) as

<h0'(a), ¢§a)>1(a,b) —

n

52

1 X 1
§<h0'7(za)7 ¢i( )>1<a) + §<h0'7(zb)> ¢i(b)>1<b> (3.41)
L @ Lo ,m

§<h0't ,¢i >I(a) +§<h0't >¢i >I(b) (3-42)



4 Sensitivity analysis

Sensitivity analysis essentially defines analysis of sensitivity of a function with respect
to change in parameters. Global sensitivity analysis for the involved shape parameters
was performed using the Variance-based method which comes from Hoeffding-Sobol
decomposition [78]. This method is based on decomposing the variance of a func-
tion to its variance associated with the parameters and the interaction between the
parameters. Hence, higher the variance in output of a function induced by a pa-
rameter infers higher sensitivity. The method is applied through Monte-Carlo based
estimation defined by latin hypercube sampling for efficiency. In effect, to evaluate
the global behaviour and to increase the accuracy for the given Monte-Carlo based
estimation on the presumed asymptotic case demands a large computation of design
points, which is simply impossible to converge with a reasonable time given the com-
putational cost to evaluate the stability criteria Cs. Hence, a metamodel based on
Gaussian process regression was used, detailed in The stability criteria given
by the metamodel can hence be expressed as C’s ~ (.

To understand the effect of the shape parameters on the stability criteria, the first-
order and the total-order sensitivity indices are computed. The first-order indices
define the contribution of a given parameter to the change in unconditional variance
V(C’s), while the total-order indices add to it the contribution of all the higher-order
interactions on the given parameter. The general expression of the first-order index

S; and the total-order index S;; can be defined as

V(Cy)
Sy=1-— VXNi(EXi (AC’S‘XNZ)) (42)
V(Cs)

where Vy, (Ex_. (Cs|X;)) is the variance of the conditional expectation on the func-
tion of the stability criteria C. evaluated by conditioning the parameter X; for sev-
eral values across the bounded design space and similarly, Vy_ (Ex,(Cs|X.;)) is the
variance of the conditional expectation obtained by conditioning all the parameters
except for X;.

The described probability measures are estimated based on the estimators pro-
posed in [79]. The Monte-Carlo based estimation for the given estimators require
two matrices Y4 and Y'? of equal size with rows and columns representing the de-
sign points and the parameters respectively. To evaluate the first order index of the
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ith parameter, all the parameters of Y'# are unchanged except for the ith parameter
(ith column of the matrix) which is replaced by the ith parameter of Y4 to obtain
the matrix Y;?. Similarly, to evaluate the total-order index of the ith parameter,
all the parameters of YZ are changed with the parameters of Y4 except for the ith
parameter to obtain the matrix Y;?. Hence, the matrices Y;” and Y,? represent the
conditioning of the parameters with respect to the matrix Y4, which in a sense is
used to evaluate the conditional probability terms and also to describe the effective
unconditional variance, as given by the estimators. For n parameters and p design
points, it requires evaluation of (n+ 1)p design points to evaluate S; or Sy; for all the

n parameters.

We consider sensitivity analysis of the disc-pad system with classical shapes (given
in table for the setting of constant force at the interface 2.3.4 The contact
formulation was achieved through Node-to-Node contact and the convergence test
for the contact formulation is given in [0.1]

Disc Pad
Thickness External Internal | Thickness Internal External Angle
radius  radius radius radius  (degree)
min 125.e-4 15.e-2 25.e-3 11.e-3 8.e-2 11.e-2 26
max 2.e-2 16.e-2 4.e-2 15.e-3 9.e-2 12.e-2 50

Table 4.1: Parameter range in meters

The value of p was chosen to be 1500 and hence evaluating a total of 24000 design
points with metamodel to define first-order and total-order indices. The evaluation
was repeated for different sample sets to check for convergence which was observed
to be not difficult with the chosen p value, given an estimated standard error for the
indices of no more than 0.02.

As it can be observed, the first-order indices show relatively high values for the
thickness of the disc and the pad. The total-order indices also increase relatively for
the two parameters. Further, the global variance of C, can be largely attributed to
independent effect of the parameters rather than interaction between them.

The results are also shown with closed second-order indices, combining independent
effects and interaction between any two parameters.
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5 Shape optimisation setting

In this section, we detail shape optimization defined through NURBS parameteri-
zation of shapes for the pad, with its associated constraints and objectives for op-
timization. We also provide a short description of parameterization and refinement
strategy for the disc-pad system domain (4P,

5.1 NURBS parameterisation of shape for

optimisation
The optimization is defined for the boundary 8F(Cp ) of the planar surface F(Cp) of
the pad which is in contact with the disc, where the thickness of the pad and the
design parameters of the disc are set to be constant. The geometry of Fg) ) can be
parameterized through NURBS as

XP(Em) = D> Rl Ry P (1)

Hence, in this setting, the shape optimization is defined for the shape of the NURBS
curves Xc(l)(s), x? (1), Xég)(u)and X£4)(v) which parameterizes 8Fg) that encloses

the surface X P (&,m), as shown in Figure where the curves can be expressed as
(5.2)

This leads to the problem of defining the parameterisation Xs(p) (&,m) given the
four parametric curves Xél)(s), x® (1), Xc(g)(u) and XY (v). The parameterisation
should be characterized by injective mapping which is ensured if the Jacobian does
not vanish. For X : Q — Q, verifying Jacobian on € in transfinite sense would
be impossible, for which it can be verified in a finite sense with the property of
determinant-Jacobian function for a NURBS parameterisation. The definition of de-
terminant of Jacobian for a NURBS parameterisation can be expressed as a function

of higher-order NURBS to the NURBS parameterisation, given as
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The condition for injective mapping |J (X (€,n))| > 0 for (&,1) € [0,1]? can be
said to be satisfied if O;; > _0, which is a sufficient condition but not a necessary
one. This is because, if [J(X(£,7))| = 0 for any point on boundary, even though
|J(X.(€,m))] > 0on (0,1)%, O;; < 0. To obtain a more restrictive convex hull for
tighter Jacobian bound, B-splines can be reduced to Bezier patches by internal knot
refinement. Nevertheless, O; ; is often considered to check the validity of a param-
eterisation for injectivity, especially in the scope of defining optimisation to achieve
an injective parameterisation.

The general idea behind Isogeometric approach is that given an initial parame-
terisation X of a domain Q with NURBS, analysis-suitable parameterisation X can
be achieved with in the same parametric space, through addition or manipulation
of knots and control points. But achieving initial parameterisation with injective
mapping can be a difficult challenge especially for arbitrary definition of shapes in
an optimisation, where to achieve a quality parameterisation with injective map-
ping can be even more challenging. The problem of defining X is more related to
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computer-aided design (CAD), where the role of CAD is typically not focused on
defining X'. This is because, for the illustration of CAD, there can be multiple ways
to parametrise a domain, that may not necessarily be suited for defining an approx-
imation space ,V in the context of isogeometric analysis as ® E] A typical approach
in CAD is that a complicated domain being defined as a trimmed domainE] (Fig.

or union of several trimmed domains.

For the definition of a trimmed domain, since only essential part of the mapping
that defines the domain from the parametric space to the physical space is consid-
ered, it does not place severe restriction over the complete parametric space to be
mapped to the domain, illustrated in. This can be better in the context of designing
where a surface can be loosely defined to contain a closed curve, but may not be
suitable for defining ®. One could say that for Q C ., with Q parameterised by
X, and given the bases ¢; := R, ;x(E) o X!, only the bases ¢; defining Q can be
considered for approximation. This is essentially the approach of the immersed meth-
ods, where typically the bases ¢; defining (2 is distinguished with material properties
at the quadrature points, along with local refinement at the boundary of Q C
through hierarchical refinement. Though immersed methods can have more flexibil-
ity in defining , V', we do not focus on such approaches owing to its novelty which
can require immense time to develop. We purely focus on defining X : Q2 — Q which
can be called body-fitted parameterisation. The point is that to achieve body-fitted
injective parameterisation for any shape as initial parameterisation can be too de-
manding from purely the perspective of CAD (Fig. [5.2).

For complex shapes, it is typically preferred to define analysis-suitable parame-
terisation directly, rather from a prior definition of initial parameterisation, where
analysis-suitable parameterisation with sufficient refinement can be well suited to
define injective parameterisation. From the perspective of CAD, this makes no dif-
ference as along as body-fitted injective parameterisation is achieved and hence, some-
times, no distinguish can necessarily be made between initial and analysis-suitable
parameterisations (Fig. [5.2). Nevertheless, given the complexity of defining initial
or analysis-suitable parameterisation, it is seen as a more robust strategy to define
»V compared to classical FEM. It should also be reminded that a complex domain
can also be defined through multiple patches, where each patch corresponds to body-
fitted parameterisation. But this also requires a more robust strategy to split a
complex domain in to patches for any arbitrary definition of shape, at least for a
fixed topology. Nevertheless, we adapt multi-patch parameterisation as a strategy
for local refinement and sub-structuring in optimisation.

For the scope of this thesis, we consider discrete Coon’s patch method as a pre-
liminary approach for the parameterisation part of the Bayesian shape optimisation

1To distinguish the space , V in the context of isogeometric approach, we define ® to be ,V
2The definition of © as a trimmed domain can be defined as Q C Q, where @ — Qy
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(a) Parameterisation with trimmed domain

(b) Body-fitted non-injective parameterisation

(c) Body-fitted injective parameterisation

Figure 5.2: Examples of parameterisation with NURBS
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framework. The idea is to adapt a more advanced parameterisation strategy for fu-
ture evolution of the framework.

The parameterization of X" (¢,m) with the above four curves (5.2)) by discrete
Coon’s patch method can be given as

XP(&n) = XD (s)(1 =& + XP(w)(€) + XP ()1 =) + X () (n)
= XV0)(1 -1 —n) = XD (D)1~ &)(n)
= XP0)(O)1 —n) - XP(W)(E)m) (5.4)

where the Coon’s patch method is an explicit linear method and hence computa-
tionally efficient in realising parameterisation, but the method doesn’t guarantee in-
jective mapping. In our experience, the shapes realised through Coon’s patch method
that doesn’t satisfy injective mapping are largely too conceptual for pad shapes and
hence, given the complexity of realising parameterisation for such shapes, we only
stick with the shapes realised through Coon’s patch method for which injective prop-
erty is satisfied.

In the scope of shape optimisation, xP (f n) can be defined as the function to
be optimised, on which constraints can be imposed. We define Constraint set 1,
which contains constraints intrinsic of the boundary curves . For simplicity ow-
ing to the preliminary definition of framework, in order to limit the parameters in
optimization, we restricted the degree of each curve to 2 and hence, this leads to
the surfaceX " (&,n) with the property p = ¢ = 2, and each curve is defined only
through three control points which are just enough to define a curve of degree 2.
Furthermore, the optimisation is defined only for the position of the control points
P, for w;; = 1 ([3.11)), i.e, we considered the optimization of the NURBS geome-
try only through affine transformation without considering projective transformation.

While the end control points will be constrained relative to the disc domain, given
in Constraint set 3, we impose constraint on the mid-control point of each curve
segment. The control points for any curve segment can be expressed as P;, P, and
Pj, where P, and Pj define the end control points. If the initial configuration of the
curve can be expressed as a line segment P, P; with Py = @, then the constraint
on P, can be expressed relative to the initial configuration as P, L P, P;.

Constraints between curve segments are given as Constraint set 2 which contains
constraints to confirm injective mapping, which also implicitly preserves topology.
Injective parameterisation can be said to be achieved if |J(X (£, 7))| does not vanish
on all Q. With the mid-control points constrained, the set of constraints for testing
this condition was realised geometrically, given as
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Constraint set 2:

{
wPU{XP )N XM ()} =0
s, t,u,v € (0,1)
{XD0)(1 =8+ XP(0)()} N {XP(0+ As)(1 =€) + XD 0+ Au)(§)} =0
{XPM)A =+ XPMOIN{XD (1 - As)(1— &) + XP (1 - Au)(§)} =0
{XP(0)(1 = n) + XM 0)(n)} N{XP(0+ At)(1 =) + XD (0 + Av)(n)} =0
{(XPM)(1 =)+ XD @)} n{XP (1 = At) (1 =)+ XD (1 - Av)(n)} =0

where A represents an arbitrary small variation. The first constraint avoids inter-

section between the curves except for the end points. Satisfying the first constraint
which guarantees a fixed topology does not assure injective parameterisation through
Coon’s patch method, for which the last set of four constraints are necessary. The
last set of four constraints implicitly avoid concave intersection between the curves.
Given that the curves do not intersect except for convex intersection at the end
points, and with constraints on the mid-control points, injective parameterisation
can be achieved with Coon’s patch method.

Further, the definition of the pad surface to be with in the bounds of the disc
surface is given through a box constraint as follows

Constraint set 3:

(Xaany < XP(En) < Xoy) : {IIX Dy X o)t VX X011 =0 (5.6)

where the choice of X,y and X4 depends on the design choice for the domain
of the disc to be in contact with the pad. Further, the box constraint is adapted
to limit the redundancies in geometric description i.e, to limit the scope for a given
shape to be defined in more than one way with in the same design space. To avoid
this type of redundancy, we restrlcted the domain through box constraints for at
least two curves X' () and XV ( ) of the four curves, such that the intersection of
their domains is a null set. This leads to restriction of the design space with compro-
mise on reducing the redundancies. Hence, we avoided some of the redundancies on
empirical notion, such that the restricted design space has lesser meaningful designs.
This maybe an interesting anomaly to investigate, since the redundancies may lead
to larger design space with more severe multi-modality.

We further impose an inequality constraint in order to avoid designs with smaller
contact surface, given as
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Constraint 4:

Area(Xs(p) (57 77)) > Amin (5'7)

- & (p) ) .
where Area(X®(&,n)) : Je ), |‘9)§§ X a)(;s? |d€dn and the choice of A,,;, depends
on the minimum contact surface area that is required on the Pareto-front, since max-

imization of Area(Xép) (&,m)) is defined to be one of the objectives.

The definition of the shape of X" (&,7n) through this strategy means that there is
no requisite for a reference configuration to define optimization, but instead the pad
shapes are defined through random generation of curves with C° continuity between
them. We assume that this restricts bias to any specific shape and hence encouraging
more randomness in defining a meaningful geometry. This highly restricts the use of
gradient-based approaches for optimization, since the constraints are also black-box
and may have discontinuities. Some of the limitations can also be attributed to lack
of exploring classical shapes such as the annulus sector pad shapes in our application
even though such shapes are already a subset of the the design space defined. The
randomness in the definition of shapes can lead to higher probability of failure for
the constraints, and hence more constraint evaluation in optimisation.

Finally, the objectives for the Multi-objective optimization can be posed as opti-
mization of the following functionals:

o Objective 1: min Co(XP (&, n) | S(A(X P € [I0KHz, 13K Hz))
o Objective 2: mazx Area(XP(¢,n))

where the optimisation of the functionals are defined over the space of NURBS
functions. Since we fixed the order and the number of control points of the NURBS
surface X P (&,m), the optimisation is restricted to a fixed number of control points.
Further, the shape optimisation is considered for the setting of constant pressure at
the interfacd2.3.4] for varying contact area.

5.2 Isogeometric parameterization and refinement
strategies for the disc-pad system domain with
contact considerations

For the following, we do not focus on the mesh sensitivity for CEA or the stability
criterion Cs, but instead the below refinement strategies can be seen as to realise the
classical mesh refinement considerations for a contact problem, where more elements
are typically defined on I'c and at the vicinity of OI'¢ to capture more accurately
the contact characteristics and the strong solution gradient. This is especially more
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challenging with local refinement for NURBS parameterization, hence we expose here
some strategies to achieve local refinement. Empirically, the refinement at I'c and
around OI'¢ seems to effect the results of CEA and converges with sufficient refine-
ment, but a more qualitative assessment of the sensitivity has not been developed
here, since it requires a detailed study of not only the refinement but also the contact
formulation and the nature of modelling contact stiffness.

The planar parameterization X ®) can be easily extended to define Q®) as X ®) con-
sidering the thickness of the pad through the tensor product definition (3.13), given
a NURBS line along the thickness. The disc domain Q@ was realised by multi-patch
parameterization XW = Xy x4 ¢ achleve local reﬁnement on F( ) The

surface parameterlzatlon for the disc patchesX s ) and X4 s ) can be achieved through
the concept of revolved surface, detailed in [I7], which assures robust injective pa-
rameterisation since the curve to be revolved is a straight line perpendicular to the
disc axis, given that the stralg;ht line does not pass through the ax1s The planar
parameterlzatlonsX andX can be extended to X and X{* respectively,
similar to achieving X

For any refinement, the space for parameterisation remains the same i.e, (§,7,() €
[0,1]% and the refinement is defined only through manipulation or addition of knots
and control point to achieve an analysis-suitable parameterisation. After an analysis-
suitable parameterisation, to take i 1n to account of the additional control points and
the manipulated knot vectors, X and X can be expressed as X and XV,
Hence, the NURBS bases associated with X ) and X ) are used to define the space
for approximation in isogeometric approach. It should be noted that often analysis-
suitable parameterisation is achieved directly in the scope of defining an injective
parameterisation, since for complex shapes, analysis-suitable parameterisation with
sufficient refinement can be well suited to define injective parameterisation. Hence,
often no distinguish can be made between initial and analysis-suitable parameteri-
sations, since the definition of body-fitted initial parameterisation in the context of
CAD may already demand sufficient refinement to achieve even an elementary injec-
tive parameterisation. Since we only choose designs for which injective parameterisa-
tion exists with Coon’s patch method, it is safe to say that for any analysis-suitable
injective parameterisation achieved through Coon’s patch method, initial injective
parameterisation can also be achieved by Coon’s patch method. Hence, we talk in
the context that initial parameterisation of CAD does not have sufficient refinement
to define the space , V' and hence we explicitly define analysis-suitable parameteri-
sation through refinement.

Normally across the boundary 9I'¢ of a contact domain I'¢, there is drastic change
in the solution gradient and hence, the parameterization needs special attention owing
to the continuity of the NURBS bases. The tensor product property of the NURBS
gives further challenge for local refinement which is usually desired on I'. These chal-
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lenges can be largely overcome by adaptation of NURBS bases to T-splines [69] or
THB-splines [80], but requires extensive adaptation. Hence, we defined a multi-patch
parameterization strategy through collocation and projection of properties defined on
control points between two merging surfaces, which was simple and efficient for our
application with fewer adaptation. Even though the considered multi-patch approach
only considers C? solution continuity between the patches, the post-processing of the
mode shapes show sufficient smoothness in displacement field across the patches,
shown in Figure [5.3

Figure 5.3: Anatomy of parameterization for the disc-pad system, shown here for
Mode 9, Frequency: 3630 Hz

The multi-patch parameterization of Q@ to break the NURBS tensor product def-
inition is shown in Figure where one patch X contains the contact domain
ng ) defined through a fine mesh by A-refinement and the other patch X*) with
a relatively coarse mesh sufficient to capture the required dynamic properties. And
different strategies were used to reduce the solution smoothness induced by the conti-
nuity of the NURBS approximation across the boundary 8I‘(c(} 2) where typically strong
solution gradient exists. For pad shapes where the knot lines on X can be aligned
with 8F(g 1), h-refinement can be used with finer refinement around 8Fgl 1), while the

contact domain F(Cd V) jtself is discretized by h-refinement through a relatively coarse

mesh compared to the refinement around 8I‘(g 1), but finer than the rest of the do-

main. For pad shapes where the knot lines on X" cannot be aligned with the
boundary 81“(0(1 1), we purely relied on h-refinement with much finer refinement. For
the shape optimization, we used the later strategy due to random definition of shapes.
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6 Bayesian optimization

Bayesian optimization is an effective strategy for optimising computationally ex-
pensive objective functions [10] [8I]. We begin the following explanations without
defining the specifics of modelling the probability P which is given as knowledge and
considering the optimisation of a single function f () for mezg f(x). The idea is based

on Bayes rule where the prior knowledge P(#) of the hypothesis H and the likeli-
hood of the evidence £ given the hypothesis, P(E|H), are used to infer the posterior
knowledge of the hypothesis given the evidence, P(H|E), where the proportionality
can be expressed as

PHIE) x P(EIH)P(H) (6.1)

Hence, P(H|E) defines Bayesian inference. In our setting, the hypothesis H corre-
sponds to the function f(x) and the evidence & to Fi., : {f(x1), f(x2), ..., f(xn)}
where f(x) is sampled on Xy, : {@1, ®a, ..., @&}, with Dy, 0 { X1, Fin}. This is typ-
ically known as function-space view, since the probability is defined on the space of
functions. It can be hard to conceptualise such view with functions, but it is possible
if one can imagine the existence of a function in a mere probabilistic sense such that
a random draw from the probability distribution is a function. The relation can
be expressed in this case as

P(f(@)[D1:n) o< P(Dral f(2))P(f () (6.2)
The prior over a function, P(f(x)), is typically modelled through spatial corre-
lation which is assumed to be known a priori, where the hypothesis is that a given
function exhibits certain characteristics of spatial correlation which can be general-
ized globally. In other words, a prior belief is defined over the space of functions,
such that the functions in the space largely exhibit certain characteristics of spa-
tial correlation. With the prior P(f(x)) defined, and given the likelihood of the
points sampled on the function, P(Dy.,|f(x)), the posterior knowledge of the func-
tion, P(f(z)|D1.), can be inferred from the relation (6.2)). The posterior knowledge
P(f(x)|D1.n) is then used to infer the next point x,,; to be sampled, depending on
the strategy set for sampling in optimization. The sampled point @, is then used to
update the belief of the prior P(f(x)) in the light of Dy.,41, and with the likelihood
P(D1ns1|f(x)) to infer a new posterior P(f(x)|Di.ny1), which characterizes active
learning. The process is run subsequently with the prospect of finding the global
optimum for the function through active learning, models Bayesian optimization.
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6.1 Gaussian process regression/Kriging

With the general idea of Bayesian optimisation for a function, we can now define
the notion of modelling P which is typically defined through Gaussian process (GP)
[34]. While a Gaussian distribution defines distribution over a random variable or
in the case of a multi-variate Gaussian distribution over random variables, a GP
defines distribution over a function, such that each draw from a GP is a function.
For some intuition of the following explanations, this can be thought in a discrete
sense as all the points, of a function drawn from a GP as being related through a
dependent multi-variate Gaussian distribution such that each point is a univariate
Gaussian distribution over a value of the function.

The prior over a function can hence be defined as GP prior, where the advantage
of modelling the prior as Gaussian means that it preserves the conditioning of the
Gaussian prior given the likelihood to infer the posterior as Gaussian as well. This
is advantageous for Bayesian optimisation, since inferring the posterior as Gaussian
presents the prediction as mean and the uncertainty of the prediction as variance,
which provides a decisive knowledge to construct an acquisition function to sample
more efficiently. The GP posterior defined through Bayesian inference from condi-
tioning a GP prior given the likelihood of the sampled points over the function, char-
acterizes a regression model, known as GP regression. Hence, the meta-modelisation
of the function f(x) can be defined through GP regression.

The GP prior P(f(x)) over f(x) can be expressed as

where the distribution constitutes a mean function p(x) and a covariance function
k(z,z'). The function p(x) can be seen as the deterministic part which captures the
general trend of f(z), while the covariance function k(z,2’) models the stochastic
trend which is the spatial correlation between any f(x) — p(x) and f(x') — p(z’).
The deterministic part u(x) is largely modelled as a constant or through polyno-
mials, which is demanding to estimate a priori and also higher degree polynomial
trend functions can lead to overfitting over the sampled points. Hence, care should
be taken in defining the general trend such that some spatial correlation exists with
respect to the trend. Recently, focus has also been in defining p(a) with Polynomial
chaos expansion approach.

The spatial correlation is modelled by hyperparameters @ which are the constants
known a priori in a covariance function cov(f(x) — u(x), f(x') — p(x')), where the
choice of the covariance function depends on the application. Even though the prior
knowledge is defined to be known, it is often determined from the light of the sampled
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points. Hence, to define the prior over k(x, w/), the hyperparameters are estimated
a priori from the sampled points, which is usually achieved by optimising the likeli-
hood function for arg maze L(F|@). More on optimising for hyperparameters will be
detailed in the upcoming explanations, where @ often contains parameters to model
p(x) in addition to the hyperparameters.

With @ determined, the GP prior P(f(x)) can now be defined. The conditioning
of P(f(x)) with the likelihood of the sampled points Dj., results in a GP posterior
P(f(x)|D1.n, 0) which can be viewed in a finite-dimensional sense as the posterior
joint Gaussian distribution of P(f(x7)), P(f(x3)), ..., P(f(x*)) across rest of the
function where its arguments & has not been sampled, i.e. &} ¢ X}.,.

To move on from the abstractness of GP to a practical finite-dimensional Gaussian
distribution useful for making inference at an arbitrary point x* € X', given the
sampled points Xi.,, the properties of multi-variate Gaussian distribution allow to
isolate a part of the GP prior P(f(x)) to define a joint Gaussian distribution of only
the sampled points X}., and an argument &* where the inference is to be made, where
the joint distribution can be expressed as

P(f (@) ww)] [h@yne) ... kaues) ko)

: —N 2NN : ' : : 6.4
P(f () wwn)| (k@) . kanw) kewan| | O
P(f(a) wa)| [k e . ko) ko)

The above joint distribution can be partitioned to define the mean and the covari-
ance for the sampled points and the point to be inferred as

k(xy,x1) ... k(xy,x,) k(xy,x*) p(xy)
Y= : : 3 = : (X)) =] (6.5)
k(xay, 1) ... k(xg, ) k(x,,x*) p(xy)

The conditioning of the joint distribution Eq.(6.4)) defined by the prior knowledge
of 8 with the sampled data D gives the prediction for * as follows

P(f()|D,0) = N(p(a;) + 7' (F — p(X)), k(" ") - ='='S7)  (6.6)

() 52(")

where the function f(x) approximated by the Gaussian process regression model

can be defined as f(x) := N(ji(z), 5 (x)).
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6.1.1 Covariance function and Hyperparameters

The choice of the covariance function and the estimation of the hyperparameters
in defining spatial correlation are important since they are the determining factors
that distinguish the above distribution for a given observation. The hyperparam-
eters parameterizes spatial correlation through smoothness or correlation length or
sometimes both [[| for which a large class of covariance functions exist to choose from
depending on the application. The most commonly used in engineering optimisation
are the Gaussian and the Matérn class of covariance functions, where for isotropic
correlation, the Gaussian covariance function can be defined as

be ) = eon( o l1P) (6.7

where h := [hy, ho, -+ ], h = (f(x) —p(x)) — (f(2') — p(2")) and @ is considered
to be in R'. This is defined with only a single hyperparameter 6 since it assumes the
spatial correlation to be isotropic. The anisotropic consideration of spatial correlation
can be defined as

k() —exp( kgl:—z > (6.8)

where it leads to determining | no. of #. The Gaussian covariance function models
spatial correlation only with correlation length defined through the factor 92, while
the smoothness for the variation of h is defined for a fixed power 2. The Matérn
class of covariance functions provide flexibility in modelling smoothness through a
predefined parameter v, where the function can be expressed for anisotropic variation
as

2;022“ ) (@k\hk\)vs(@) (6.9)

where G and B are the Gamma function and the Bessel function of order v re-
spectively. The value of v is typically defined to be 5/2 or 3/2, where as v — o0, it
converges to squared exponential function and for v = 1/2, it simply characterizes
an exponential function. The Gaussian covariance makes strong smoothness assump-
tion with the infinite differentiability of the function which can be unreal and hence,
Matérn class of functions are typically preferred which are v — 1 times differentiable.
We used Matérn with v = 5/2, expressed as

Tt should be noted that the parameters modelling smoothness and correlation length are not inde-
pendent, but rather interdependent such that parameters modelling smoothness has influence on
correlation length and vice-versa. But largely, smoothness parameters can be said to quantify
the gradient factor for the variation of h, while correlation length parameters can be said to
quantify the influence of the points on each other for the variation of h

70



bz, z) i02(1 J Yol %)ex% _ \/5|khk

)
; (6.10)
£ b 36 0

With the definition of a covariance function, the optimisation of the hyperparam-
eters to model the prior (6.4) is given by argmazge L(F|0), where L(F|0) defines
the likelihood of the observed data given the hyperparameters, defined by the joint
probability as

L(F|(8), 0(6)) = ———eap| - =B ZHF = pld)

6.11
2ro?) [z 207 o10

In optimising the above function for maximum likelihood, the function can be
simplified by taking the natural logarithm while preserving the monotonicity of the
function as

(F = p(X)"E7HF — (X))

202

1
In(L) = —~n(27) — gzn(&) — 5|3 -

> (6.12)

The definition of the logarithm preserves the monotonicity of the function and
hence also the optimum point of the function. Mean can be defined as p = X6,
when modelled as regression with hyperparameters 8, E|, where X defines a matrix
of size n x p, with p being the number of linear combination of functions defined
for regression. The maximum likelihood estimate of g in this case is simply the

maximum likelihood estimate of 8,, which can be deduced from 8?9(5) =0 as

6, = (XT="X) XIS F (6.13)

which is simply the minimiser for generalized least-squares. This is apparent, since
the minimiser of 8, can be viewed as the minimisation of the generalised least-squares
problem given as

3 (F = (X, 0,))' 7T — (X, 6,))

0, = argming, 5,2 (6.14)

Similarly, the maximum likelihood estimate for o can be defined from 81&9 =0
as

5= (F—-X0,)'="(F-X0,) (6.15)

Substituting the maximum likelihood estimates of é“ and & in to Eq.(6.12), and
with the constants removed as affine terms, one obtains

In(L(8)) ~ —2in(5%(9)) - %znyz(oz)\ (6.16)

20 :={6,} U {0}, where 0,, and Ox correspond to the hyperparameters of g and ¥
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The above function can be typically expected to be multimodal and hence the
optimisation is typically achieved with Genetic algorithm (GA) for global conver-
gence, followed by the best individuals from the GA as seeds for the quasi-newton
algorithms like BFGS for local convergence. As a variation, quasi-newton schemes
are also applied with in GA for the best individuals in each generation to define the
parent population of the next generation.

6.2 Acquistion function

The Bayesian inference P(f(x})|Din, 0) can be used in sampling for optimisation
from the inference of the prediction fi(z*) and the uncertainty 62(x*) of the predic-
tion. Naturally, question arises for the goal of sampling in balance between explo-
ration and exploitation. Exploration can viewed as the means to gain more knowledge
about the function especially where high uncertainty is reflected by the GP posterior.
But with pure exploration, it diverts the goal in search for a global optimum with the
consequence of reducing the uncertainty over the knowledge of the function, unless
reducing the uncertainty also exposes the global optimum as a repercussion which
happens rarely. In contrast, exploitation focuses on parts of the function which is
inferred to define optimum through the prediction from the GP posterior. Pure ex-
ploitation in optimisation can be viewed as more optimistic with the predictions and
hence can underestimate the uncertain parts reflected by the GP posterior.

This is where sampling through an acquisition function plays an important role in
guiding the search for optimisation where the construction of the acquisition function
can be adapted to set the balance between exploration and exploitation depending
on the objective, for which a wide range of acquisition functions exist. In general,
acquisition functions define improvement with respect to a reference value f(x™)
through a probabilistic metric, where f(ax™') typically corresponds to the utopian
value P of the function, at least in the context of single objective optimisation. While
in multi-objective optimisation the definition of utopian value corresponds to em-
pirical Pareto front which will be discussed later. We will introduce some of the
acquisition functions for single-objective optimisation which will be referred for the
upcoming explanations. As defined before, we consider the case of optimising f(x)
for m)gn f(x) for the following explanations and hence the utopian value f (w++)ﬂ is

defined by &t = argmingcx,,, f(x:).
Probability of Improvement (PI) for any GP outcome f (x) is given as

Pl(z) =P(f(z) < f(z")) (6.17)

3Utopian value is the observed optimum value of the function
4We use the notation f(z*1) to define the Utopian value as reference value and f(x*) to define
an arbitrary reference value
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where,

P(f(z) < f(z*)) = ODF(ﬂ(w) ;(f(w++)) (6.18)

x)

P1I gives more weight on exploitation than exploration in optimisation. This can
be seen with the following case, where for a point with low variance for g < f(x™™)
reflects more scope for improvement than for a point with the same i but larger
variance, where PI reflects more focus on exploitation which leads to highly exhaus-
tive search locally. PI is the same when both points have i = f(z*") and when
g > f(xtT), the point with larger variance has larger PI, where PI reflects focus on
exploration. This means that PI focuses on exploration unless there is no possibility
for exploitation, where in real world, this leads to exhaustive search locally around
the best points before moving on to the next exploration search. To overcome this
effect, a trade-off parameter & > 0 is introduced, given as

Pl(z) =P(f(x) < f(x") + &) (6.19)

where typically & is set to be higher initially in an optimisation to drive explo-
ration, and decreases to zero by the end of the optimisation to drive exploitation. Pl
clearly lacks a good balance between exploration and exploitation for which Expected
Improvement ET is typically deemed to be effective.

EI is the expectation of the improvement, E(I(x)), where the improvement is

typically defined with respect to the utopian value f(zt+) as I(x) = f(zt+) — f(x).
The expectation of the improvement, EI(z|f(z**))[]can hence be expressed as

f($++) oA
El(x) = E(I(z)) = / I(m)PDF(W)df(w) (6.20)

—00

For intuition, the above expression can be given as

[ s@pDr (e ) (o)
ODF (f(m*f()—)ﬂ(@))

TV
fcen

El(e) = (f(ff*)

(6.21)

where f., is the first moment of area/centroid of the PDF' (%) € (—oo, f(zt1)]

on the axis of f(x). Hence, FI can be understood as the measure of f., with

SFor simplicity, we define EI(z|f(z*1)) as EI(x) unless we want to emphasize the use of f(z* )
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respect to the reference value f(x™), given as f(x™") — fen, weighted by the

C’DF(

%) which is simply PI(x). Thetermf_fc(jﬂ) fx )pDF(f(fc —ji(z)) )df( )

can be seen as the measure of E(f(x)) in the interval (—oo, f(a*+)], where it de-
fines the expected value rather than the expected improvement defined by EI with
respect to a reference value. We elaborate these definitions since it will be useful for
definitions to extend EI to MOO.

Overall, EI provides better trade-off between exploration and exploitation, unlike
the greedy nature of PI which primarily focuses on exploitation. This is because the
term f(x™t) — fen, weighted by PI provides the additional factor in ET to balance
the search for exploration. The above expression of EI can be simplified as

El(@) = (f(z*) - /l(fv))CDF(f ("”HA)(‘)’A‘(‘"”))) ; a—@:)zapp(f <f"+*>(;)ﬂ<w>>)

o(x o

(6.22)

Similar to Eq. (6.19), it is possible to control the trade-off between exploration
and exploitation by introducing & > 0 to the above expression as follows

The other common acquisition function is defined with the bound of f(), where
for a function to be minimised, the lower confidence bound can be defined as

LCB(z) = ji(x) — ed(x) (6.24)

where ¢ > 0. It is quite intuitive to think that LC'B favours exploration over
exploitation. It is apparent that each acquisition function will give rise to distinct
sampling behaviour and hence, the choice of the acquisition function depends on the
goal for sampling. Similar to the approach of maximising Eq. , the optimisation
of the acquisition functions can be achieved with the combination of GA and quasi-
newton algorithms to determine the infill point x*.

6.3 Multi-objective optimisation

For MOO, the problem can be formulated as

min f(x) (6.25)

xreX
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where f = [fi(z), -, fm(@)], f: X CR' = & C R™, with S being the objective
space. The definition of optimality in single objective optimisation is defined with
minimum or maximum of a function. While in MOO for a set of functions to be
minimised, where typically the functions can not be minimised simultaneously with-
out conflict between the objectives, where minimising one function can implicitly
maximise the other. Hence, the definition of optimality in MOO is given by Pareto
optimality which defines optimality considering the best compromise between the
objectives.

Hence, any two vectors x,, x, € X, and x, # x, the following conditions can be
stated for Pareto-dominance to define Pareto-optimality on mz’)r(t f(x), given as
xe

o x, X, (x,weakly dominates xy) i.f.f. Vi, fi(x,) < fi(xy)
o x, < x, (x,dominates &) i.f.f. &, 2z, & Ji s.t fi(x,) < fi(zxy)

e x, ~ x;, (neither dominates the other) i.f.f. , £ o, and x, £ x,

where i € {1,---, m}. Any x, € X can be said as Pareto-optimal i.f.f. fx;, €
X s.t. x, < xy, given x, # x,. Hence, the Pareto-optimal set/Non-dominated solu-
tions(NDS) & and Non-dominated points (NDS)/Pareto-front f(?) can be defined
as follows

o P ={x, € X :x, # xp, Py € X 5.1 Vi, fi(xy) < filxy) & Fi 5.t fi(xy) <
fi(zs)}

o f(2):={f(z),xc 7}

Hence, Pareto-front in the context of MOO corresponds to the optimal solution of a
function. Often distinguish is made between the true Pareto-front which corresponds
to the true optimal of a function in single objective case and the observed Pareto-
front known as empirical Pareto-front which corresponds to the known optimal of
a function in single objective case. For the following definitions, we define NDS as
empirical Pareto-front unless otherwise specified. Similar to the Utopian point in
Single objective optimisation, Utopian point in MOO corresponds to a vector of all
the known optimal solutions in §. While the Nadir point defines the opposite, if
the optimal points are defined to be the minimum of functions in MOO, Nadir point
defines the maximum of all the functions in the NDS.

Before moving on to the Multi-objective Bayesian optimisation (MOBO), we in-
troduce some of the standard approaches in MOO, since most of the approaches in
MOBO has influence of the standard approaches where in MOBO typically acqui-
sition functions are replaced for expensive functions and optimised in the context
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of MOO. Broadly MOO approaches can be classified in to two, where one approach
typically converts MOO in to a set of single objective optimisations and optimise
with classical single objective strategies. While the other approach works directly
in the context of MOO, where Pareto-dominance measures are used directly in opti-
misation. The former approach is typically based on aggregation procedures, where
a vector of objectives are scalarized by summation with assigning weights to each
objective. Hence optimising the scalar function with different set of weights, one
can obtain a set of Pareto-optimal points. The simplest of them can be given as
S " wifi(x), where w; > 0 and > " w; = 1. The major drawback is that due to linear
scalarziation, only convex parts of the Pareto-front can be found. To over come this
problem, the optimisation can be defined for any one function with other functions
as constraints, or through modifying the scalarization as »_." w;(fi(x))P, where the
parameter p should be defined a priori, which demands a priori knowledge of the
Pareto-front. The other approach to generalize for non-convex type of Pareto-front
is based on Tchebychev aggregartion which is simply the weighted norm in L, metric
as p — 00, given as

maz wi(| fi(z) — fi(z")]) (6.26)

where fi(z'*1) is the Utopian value of f;. Normally the above term is augmented
to avoid weakly Pareto-optimal solutions as

maz wi(fi(@) — fi(z"1))) + 5 Z |fil) — fi(z™)] (6.27)

where 3 can be any sufficiently small value. The main drawback with scalarization
of the MOO problem is that it is hard to define a generic frame work considering
flexibility, where it is highly sensitive to the parameters which need to be defined
or actively learned with prior knowledge of the optimisation problem, where such
prior knowledge are typically unknown. The other major drawback is also with en-
hancing diversity which cannot be often explicitly achieved with a priori definition of
weight vectors. This is also a set back in applications to define a focused search on
the Pareto-front. This can be overcome with penalty boundary insertion strategies
which further require a good prior knowledge of parameters to initialize.

The other class of approaches in dealing with MOO are nature-inspired approaches
which are meta-heuristic, where we focus on GA which belongs to the class of Evo-
lutionary Algorithms. GAs are inspired from concepts based on evolution such as
fitness, natural selection, cross-over and mutation to guide the search for optimisa-
tion. GAs are typically more robust, and can handle discontinuities well. Constraint
definitions are also more easy and generic with GAs. GAs developed for MOO share
the same advantages along with other major advantages well-suited for MOO, where
it allows the possibility to utilise the optimality measure in MOO such as Pareto-
dominance and diversity directly. There are several methods exist under the concept
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multi-objective GAs, where typically the difference comes in defining the fitness mea-
sures and niching. We use NSGA-2 where the fitness measures are defined based on
the ranking of the Pareto-front and the crowding distance. Some other typical vari-
ation of fitness measures are defined based on quality indicators of the Pareto-front
such as Hypervolume (also known as S-metric) and epsilon indicators.

6.4 Multi-objective Bayesian optimisation

Similar to the MOO problem, the Multi-objective Bayesian optimisation (MOBO)
can be defined as through the scalarization approach of converting a multi-objective
problem in to an aggregate set of single objective problems, where typically Aug-
mented Tchebycheff aggregation is used. In [82], GP for the scalarized function is
fitted and the subsequent definition of ET is optimised. [83] defined a variation of the
approach, where the GP models are independently fitted to each objective function
and the ET of the GP meta-models are scalarized, where the optimization of ET is
defined in parallel for the aggregation. Further variations with scalarization approach
typically involves the Penalty boundary insertion to maintain diversity of the NDS.

A more direct extension of the MOBO comes form the extension of the concept of
ET to MOO in a direct or indirect sense. EI for a single objective optimization can
be seen as the measure of improvement in lesbegue norm, and hence, a more direct
extension of the FI for MOO leads to the defintion of improvement with lesbegue
measure in higher dimensions, also known as S-metric or Hypervolume metric. This
approach was introduced in [84] which can be seen as the extension of SMS—FEMOA
[85]. Similar to the definition of improvement for a single objective case with respect
to Utopian value, in MOO, the improvement is defined with respect to the empirical
Pareto-front typically bounded by Nadir point. The hypervolume (HV') can be given
as

HV(F(P5)|R) = z( U (Fe): Fp) < fla) < R}) (6.28)

F(p)ef(ZPs)

where % is the lesbegue measure in R™ when f(x) € R™, bounded by the reference
point R € R™. The hypervolume improvement (HVI) can be defined as the hyper-
volume dominated by a point f, with respect to the Pareto-front f(Zs) bounded
by R, given as

HVI(fo|f(Zs),R) = HV(f(Ps) N fo|R) — HV (f(Zs)IR) (6.29)

Similar to defining the expectation of improvement E(I(x)) in single-objective
case, for the multi-objective case, the expectation is defined over HV I as E(HV I(x)),
given as
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EHVI(z|f(Zs),R) = /f( - HVI(f()|f(Ps),R).PDF(f(x))df (x)
(6.30)

where f N (ﬁ,,f]) is the prediction defined by multivariate independent nor-
mal distribution E] Even though there exists some correlation between the predic-
tions through which Pareto-optimal solutions are presumed to exist, the multi-variate
Gaussian prediction is defined to be independent to avoid complexity, i.e., 3 is diag-
onal. And hence for the joint distribution f(z), PDF(f(x)) := [, PDF(JC'%I“')
The maximum of FHV I can be chosen as the infill point for an iteration in MOBO
where batch selection cannot be defined since the scalar value of EHV I contains no
metric to compare for diversity. Any target based improvement is defined through
weights or truncation applied to the EHVI [86, 87]. But the main disadvantage
of this method is that it requires the computation of m dimensional hypervolume,
where the integration is typically achieved by expensive Monte-Carlo methods. But
recently, a formula has been proposed for any number of dimensions but the com-
plexity still increases exponentially with number of objectives. Another approach
similarly defined with S-metric is based on LOB but still requires the expen-
sive evaluation of HV' [ for LC B prediction to optimise for the maximum of HV' I to
choose the infill points. Further if the LC'B is dominated, penalty value is assigned
to avoid plateaus of the criterion.

The other approach is given in [88] for two objective case, where this approach
interprets the geometric nature of E in single-objective case — detailed in -
and extends to multi-objective case to define an equivalent metric. The improvement
I(x) is modelled implicitly by the Euclidean distance (L, norm) between the centroid
feen and the nearest point frear € F(Ps) to feen. Hence, E(I(x)) in this case is
given as the product of ||feen — frnear|| and the probability P(f(x) < f(Zs)|R) for
the given prediction f(z) that can dominate f(Zs) bounded by R. f.., can be cal-
culated from f.., = %. For any prediction that does not dominate the
Pareto-front, the improvement is given by so called augmented improvement. With
the evaluation of the integral for higher dimensional f (x), this method can become
cumbersome.

ET has been extended to targeted MOO simply as the product of all the ETs of
each objective, given as

mEI(z|R) = f[ El(z|R) (6.31)

This approach is computationally efficient for a targeted search, since it only deals
with univariate distributions and hence, analytical evaluation of the criteria and gra-

6The multi-variate Gaussian prediction is obtained through defining a joint distribution of inde-
pendent univariate Gaussian predictions from GP meta-models
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dient is possible for many objectives. One of the main concerns with this approach is
choosing the reference vector R considering the target which is presumed to be part
of the true Pareto-front, and hence, the main emphasis of this approach is defining
a proper R for the target. In fact this approach is equivalent to FHV I under some
hypothesis when R is also a non-dominated point. As a default, the preference to the
reference value is given to the centre of the Pareto-front, where the centre is identi-
fied by the closest point in Eucledian measure on the Utopian-Nadir line. With the
user provided aspiration point R,, R is adapted dynamically by projecting the closest
point of the empirical Pareto-front to the broken line joining R, to the Utopian and
the Nadir point.

Another approach was introduced in [40, 89] where EI functions are treated as
objectives and optimised in multi-objective context typically with MOEA algorithms
like NSGA-2. The main advantage of this approach is that it is generic, since it
preserves the generic characteristics of NSGA-2 and also the analytical evaluation
of EI criterion. Further, the optimisation of EI functions with NSGA-2 results in
Pareto-optimal solutions where it expresses optimality explicitly in the context of
MOO. This is unlike the previous approaches where optimality is expressed with
scalar value which does not provide much information in multi-objective context.
This is efficient since we are dealing with Pareto-optimal set of solutions from which
infill points can be chosen for diversity or targeted search, or even it provides the
choice to scalarize with quality indicators. Constraints can also be handled easily
as part of NSGA-2 based on ranking for degree of constraint violation or even com-
pletely removing the individuals violating constraints from the population and hence
discouraging such individuals for future generations.

6.4.1 Multiple reference points strategy

The main drawback with this approach is defining a reference value for EI in the
context of MOO, where typically Utopian or Nadir value is chosen as reference. With
single objective, the definition of improvement with FI can be expressed with re-
spect to a reference value f(x™') as EI(x|f(x™)), where f(x™) typically corresponds
to the Utopian value f(x*"). While in the context of MOO, the Utopian value of
a function to seek improvement can be unrealistic on some parts of the objective
space. With MOO of ET functions, it should be noted that the idea of choosing
a reference value independently for each EI function implicitly defines a reference
point in multi-objective context, where we do not explicitly focus on the choice
of reference point. As well-known, EI(x|f(x™1)) can be extended to MOO through
EHVI(x|f(Ps), R) where improvement for a multi-variate gaussian prediction f ()
is defined with respect to the empirical Pareto-front f(Z#s) bounded by R, rather
than a specific reference value f(x™). But the evaluation of integration to define
EHVI for a multi-variate gaussian prediction can be cumbersome for large number
of objectives, while also the measure of improvement is purely expressed in scalar
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value. Hence, we extend the work of Jeong by defining multiple reference values in
the MOO of EI functions to define infill points for MOBO, also while preserving the
generic characteristics of the approach. This means that instead of a single reference
value, a given prediction can have its own reference value which is realistic to define
improvement. This requires a precise definition for realistic reference value to seek
improvement, for which we define in a probabilistic sense with the following expla-
nation.

The MOO of EIs for mi}} f(x) can be defined as
xre

1+ m-+

mag[ BI (@lfi@") - EI (@lfn(a™) (632

We consider the perspective from a single-objective maz E1(x|fi(z™") in the above
MOO, so as to detail the independent effect of defining a reference value fi(z'") for
max EI(z|f(x™) in characterising the Pareto-optimal solutions. While a Pareto-
front could be achieved with a single reference value fi(x'™) for maz E1(z|fi(x'™),
the resolution to define improvement is only efficient for a subset of the decision space
depending on the GP prediction relative to fi(z'"). This can be seen through the

following cases for Ef]( as follows:

Casel: For [ii(z) £ oi(x) > fi(x™), EI (z|fi(x't))~0

minfi(x)

| | | (6.33)
Case2: For jii(x) £ 6i(x) < fi(x™), EI (x|fi(x™))~ fi(lx'") — fi(x)

min fi(x)

Case 1 shows that the choice of the Utopian value fi(z'") to seek improvement
for a subset of = in the objective space where fi;(x) & 6i(x) > fi(x'*) can have no
probabilistic chance for improvement and hence, to seek for improvement in this case
can be said as being too greedy. While this is insignificant in the context of single-
objective optimization where these measures can be ignored, zero or infinitesimal
values provide less resolution for comparison to define NDS for MOO.

Case 2 shows that the measure of improvement is simply given by distance between
the prediction fij(x) and the reference value f('*), which can only be acceptable in
cases where there is no realistic reference value to seek improvement. This is possible
when choosing Nadir value as reference, which can be said as being too pessimistic
for improvement. The pessimistic sense of seeking improvement can be seen as lack of
risk for exploration in the parts of the objective space where fi;j(x)+di(x) < fi(z'™)

and hence the absence of the uncertainty term d;(x) in evaluating E}I( ; The above

two cases show the limitations of using a single reference value for EI and hence,
it can be efficient to define improvements locally in the objective space. The above

"The following cases are shown specifically for the case of min fi(x), while for max fi(x), the
relations are inversed
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cases are graphically shown in Fig. [6.1

Case 1 Case 2

36(x) 46(x)

EI (f(x)]x)
26(x)

minf(x)

16(x)

N(f(x), 6(x))

max o
(NG, 6())
T T T T

4 6(x) 26(x) 0 26(x) 46(x)
fOh) = A)

Figure 6.1: Variation of Eff( )( f(x™)|x) for change in reference value f(x™)

To avoid being too optimistic or pessimistic to define improvement, it can be said
that for any two predictions f; and i/, with choosing a reference value for K1 in the
context of multi-objective optimisation, we can define the following properties,

o i=ji N6 > = EI(f)> EI(f)
o [ii> i Ao =6 = EI(f)> EI(f))

We largely seek to achieve the above properties unless no suitable reference value
can be defined. As a first thought, this can be overcome by choosing an appropriate
reference value fi(z'*) depending on the prediction f.(a:) But choosing a reference
value fi(x't) to define EI depending on where fi(z) lies in the objective space can
make the improvements hard to be compared, since different predictions can have
different definition of improvement depending on the choice of reference value. The
comparison is also essential for defining NDS for optimization in the context of MOO.
Hence, we augment the EI to have a common frame of reference for comparison,
where we consider the axes of the objective space itself as the frame of reference for
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comparison. The augmentation of ET with fi(z'") as reference value is given through
the criterion expected value (EV | as follows

V (z|fi(z™)) = filz'") - (wlf.( ")) (6.34)
mmf, (z) mlnf. (
The definition of E'V avoids the problem of comparing improvements with several
reference values, but the above two cases take a different role for the E'V criterion,
given as

Casel : For jii(z) & 6i(x) > fi(z™), (33|f( ") = fi(z')

il (@)

| (6.35)
Case 2 : For jia) £ 6(2) < @™, EV (elfla™) ~ i)

(@)

For Case 1, in the context of E'I, the improvement becomes infinitesimal or zero
for comparison. While in the context of EV, this leads to the problem of over-
estimation, where the value of E'V becomes the reference value itself and hence, an
unrealistic reference value can lead to overestimation of improvement. Similarly, the
difference in context between E'I and FV can be seen for Case 2, where EV simply
converges to fi(x). This means that two predictions with the same ji(x) but different
gi(x) will have the same preference. The above cases are graphically shown in Fig.

We give the explanation in avoiding the above cases with EV criterion since it is
much easier to work in the coordinates of the objective space. As defined before,
Case 1 can be avoided by seeking improvement with respect to a reference value
which is more realistic for improvement rather than being too greedy. The real-
istic scope of improvement considering f;(z'") can be defined through the CDF :
P(fi(x) < fi(x')) for any GP outcome fi(x) : N'(fii(), 6i(x)). We here remind that
the given CDF is essentially the Probability of Improvement criterion (PI). Hence,
the CDF constituting to zero for any reference value can be said as being too greedy
for improvement, where there can be a limit set for the C'DF measure to be consid-
ered with compromise on greed. The limit could be set in terms of fij(x) — edi(z )
where we seek for P(fi(x) < fi(z™)) > P(fi(x) < fii(x) — e6i(x)), with € being the
parameter to be defined. A higher value of ¢ means higher the greed to seek improve-
ment, but the balance to set the limit could be otherwise seen as the acceptable risk
that can be considered for exploration. The higher risk with considering higher value
of € for fii(x) — edi(x) may reap higher benefits but this could be otherwise, since
there is equal probability for fi(x) > fi(x) + edi(x). Hence, this requires the right

8We here remind that the expected value can also be otherwise defined as E(f(z)) in the interval
(o0, f(xt)] (detailed in (6.21)) contrary to EI which is defined as E(f(zt+) — f(x)), but
considering E/( f (z)) leads to similar properties as ET in comparing with several reference values

9We give the relation in terms of LOB, since for any f(zt) : P(f(x) < f(z=T)) > P(f(z) <
j(x) — e6(x)), the following relation holds f(xz™) > ji(x) — e (x)
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Figure 6.2: Variation of E}{ )( f(x™)|x) for change in reference value f(x™)

balance for the choice of ¢ with acceptable risk for exploration.

For MOO, the most feasible improvement that we can look for is with respect
to the empirical Pareto-front fi(Zs) = {fi(p1), fi(p2), .-, filp))} of the observed
samples. But, there can be multiple p; : fi(p;) < fi(x ) - ea,(:c), where we choose

the p; which gives the minimum value of EK : The choice of the minimum value
man fi(x

of EX : for a function to be minimised averts Case 2 which defines the pessimistic
man fi(x

choice of reference value, unless it is not possible when no suitable reference value

exists. In overall, the above definitions provide the balance between greed and being

pessimistic for improvement through the parameter e. The above definitions could

be expressed as follows

x| Ps,€) = mi EV (filp)|x
WEV (@l Ps €)= min( BV (fi(pi)lx)) (6.36)

P = {fi(p:) > fii(z) — edi(x),Vp; € Ps}

where the discrete optimisation of ngg ( E i ( fi(pi)|x)) can be implicitly satisfied
pPi€ESs manf;

through defining NDS with E}/( )(az|<@5, €), though it may not be a good strategy.

Alternatively, from the nature of proportionality for E}/ (fi(py)|x)) o< fi(p:), shown
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in Fig. [6.2 the most suitable reference value f;(p?) to achieve min ( EV  (fi(pi)|x))

Pi€Ps minfi( )

can be simply given as f(p!) = mw}% f(pi). In short, we deﬁne the Eq. (6.36]) as E'V
EO

criterion for the following discussions. In the scope of achieving diversity, for any
prediction f; : fi(x) — edi(x) > max fi(Ps), EV criterion can be adapted as follows
EV )(a:|max fi(Zs)) = max fi(Ps) + Ef]( )(:B|max fi(Zs)), where the goal is to

maz fi(
extend the Pareto-front beyond the inferred Nadir value.

The given definitions allow to define E'V criterion in the place of FI, where the
problem (6.32)) can be defined as follows

min (®| Ps,€) - - (@|Zs. )] (6.37)

reX [mznﬁ( ) ml”fm(

The MOO can be achieved through NSGA-2, which leads to Pareto-optimal so-
lutions &¢. The independent definition of improvement allows to work with only
univariate Gaussian distributions and hence, large number of EV criteria can be
optimised with relatively ease with a robust multi-objective optimisation tool.

The choice of fi(p;) € fi(¥s) independently for each E}/; )(a:L@g, €) means that
it can implicitly lead to choosing a reference point g, := [f1(p;) € fi(Ps) - fm(Di) €
fm(Ps)]e R™ E”ﬂ from a grid of points ¢4 := {f1(Ps) x - - - X fn(Ps)}. This means
that f(Xs) C ¢4, where ¢ also contains points dominating or be dominated by
points in the set f(Zs), which includes the Utopian point: g, < f(Zs) and the
Nadir point: Vi, f(p;) = go. The idea of defining improvement F¢p) € Jgpy
(Fig. 16.3) is apparent, where the intention is to dominate a given empirical Pareto-
front point f(p;) € f(Fs). But the implicit definition of a reference point g, € ¢
means that improvements cannot only be defined to dominate f(p;), but multiple
Pareto-front points in the set f(Zs), where the ideal goal for domination would be
the Utopian point.

With population based evolutionary strategy of NSGA-2, for a given population,
the optimisation is simultaneously defined with several reference points in the objec-
tive space and hence, individuals in a given generation of NSGA-2 are defined with
their respective reference point. Since the improvements are defined as expected val-
ues FV in the objective space, comparison can be made to define non-dominated
sorting and niching operations. This implicitly models optimisating set of E'I func-

tions: ma:z[ EI - FEI }---mam[ EI --- EI ]}intheobjective

TE€EXg, Lminfi(x) min fm(x) mGXg(A) min f1(x) min fm(x)

10Tt should be noted that the choice of p; is independent for each f;
g, is an arbitrary point in ¢ with index o

2sp@) e g ={[ BV (elf) -

=111
Xy, = {z] I, (x) € Ty, x € X}

BV (@M = min fp)e e X,

m
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Figure 6.3: Illustration of the set Jz« and its associated subsets

R4
« R8
v
S N
Il .
()
"o
24
- R12
24 .
)
4
o
s
> G
> 7
g
R16
I T T T T }
0.0 0.2 0.4 0.6 0.8 10
EV (fi | {Rl’ RG’ R]]v R16}»€ = 05)
minf

Figure 6.4: An example for optimization of EV



space, with each element: max [ El - FEI } in the set defined with a unique

xeXy, Lminfi(x) min fm(x)

reference point g,, illustrated in Figl6.5|

An example for the optimisation of is shown in Fig. , for a simple
MOO test functions set: ZDT1 of two dimensions (m = 2). In this case, f(Ps) =
{Rl7 R67 RH, R16}7 G = {Rl7 s ,Rlﬁ} = {Rl X R6 X R11 X Rlﬁ}. The Pareto front
f(Ps) is defined by the reference points Ry, Rg, Rig, Ri1, Rig, where two of the ref-
erence points Rg and Ry; belong to #s. This means that Z, € Jg, and Hg,, € Jr,
independently define domination over Rg and Ry; respectively, as .#gr, =< Rg and
r;, = Ry1. For Ryg, something interesting happens, where Ryg ¢ &5 but is purely
an outcome of the implicit definition of grid ¢. In this case, Rig < {Rg, Ry1}, hence
also #r,, = {R¢, Ri1}, i.e., any improvement .#g,, € Jr,, can dominate the two
Pareto-front points Rg and Ry;. Hence, ¢ consists of reference points to define im-
provement with respect to any f(p;) or combination of several f(p;) € f(Ps). ¢
also contains points g, : f(#s) = g, where improvement defined with such points
are essential in guiding the solutions to define &¢. The reference points Ry and R
are also weakly dominated by the points in the set f(Zs), where in this case, 7,
defines improvement intermediate between R; and Rg, and similarly, .#g,, defines
improvement intermediate between Ry; and Ry. In this example, the Utopian point
corresponds to Ryz <X f(Zs) and the Nadir point corresponds to Ry, where all the
points in ¢4 dominates Ry.

Once Z; is obtained optimising Eq. with NSGA-2, the problem leads to
choosing infill points among &¢. For the ease of following explanations, we can define
aset Yo, = {go{Jg, N F(P3)} # 0,9, € 9}. Firstly, we discuss the preference of
choosing .7, € Jy,|g, € Y, since . The part of f(Z¢) defined by g, as reference
value can hence be expressed as f (@g“) = {Jg4, N f(P4)}, where the choice of an
infill point in the set J,, can be narrowed down to choosing a point 7y, € (). A
suitable measure to quantify .#; with respect to g, can be given through hypervolume
metric as

HVI( Ay lgo) = [T = BV (@If) (6.38)

min fi(x)

where the calculation of HV' I is simply given by product of ETI in each objec-

tive, since f — E}/( )(az\ fi) = Ef[( )(a:\ f), which is analytical irrespective of the
dimensions. In this case, HVI(%,, |g,) is equivalent to EHV I(x|g,) which is also

similar to mEI. Hence, the most suitable choice of .7, € f(£7%) is which maximises
HVI(4,,\g,), expressed as magx HVI (fgo]go)m.

< go 9o

14 HVI(I, |go) = HVI(Ig,|g
ez (Z9.190) o, P (Z9.190)
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The definition of f(Z¢) with respect to several reference points makes it suitable
for multipoint selection, where a point can be selected from Jg4 Vg, € %@S with
max HVI1(,|g,). This can be impractical for parallelization, since typically the

9o ejgo
size of 9, can grow rapidly and also the improvement with respect to some points

can be very low to bring any considerable HVI. But to make choice among g, € 9,
for a limited number of parallelisation requires definition of improvement with respect
to f(Ps). The choice of max HVI(.Z,, |g,) expresses the best HV I with respect to

9o 9o

go, but it makes no relation of HV I relative to f(Zs). While HV I relative to f(Zs)
can simply be expressed as HVI(.Z|f(Zs), R)E], this is quite an expensive strategy
to pick an infill point from ¢, since this requires evaluation of HVI(Z|f(Zs),R)
for all .# € &¢. But with the edge of defining .# with respect to a reference value g,
as S, it can be said that the relation of .7, with respect to f(Zs) can be defined
by counting the HVI(g,|f(Zs), R) with HVI(.%,|g,), expressed as

HV 1y(I4,|f(Ps),R) = HVI(Ig,|90) + HVI(go|f(Zs), R) (6.39)

The idea is that instead of defining HVI(.Z|f(Zs),R) for all & € P, the
computation of higher complexity HVI((.)|f(Zs),R) is limited to the reference
points g, € ¥».. Hence, with the definition of HVI((.)|f(Zs),R) for a g, € ¥»_,
the definition of HV'I for any improvement .7, € J, is given by product relation
in . For sequential selection, the infill point from &¢ to define the maximum
HV I relative to f(Zs) can be expressed as

x' =arg max{HVIw(ﬂgo(m)|f(93), R)lg, € 9»,,x € X} (6.40)

reX

For v multipoint selection, given that number of points in the set %gg is greater
than v, the first v maximum in the set: {jmam HV 1y(I,|f(P5),R), 90 € 9, }

9o gdo

can be chosen. Choosing max HV 1y(Z, |f(Zs), R) with respect to each reference
90€Jg0
point can implicitly achieve diversity. But to be even more specific with diversity,

P can be clustered through K-means and a point can be sampled from each cluster
for maz HVI14(#|f(Zs) , such that points sampled from each cluster are defined
by unique reference points. If points sampled from different cluster share the same
reference point, then in this case, a different mechanism has to be adapted to sample
more than one point with respect to a given reference point, which we do not focus
here.

The other simple approach can be defined also by clustering improvements in #¢
through K-means and a point can be sampled from each cluster considering uncer-
tainty, given by sum of uncertainty of the GP models. Hence, this strategy tries to
reduce uncertainty on the GP meta-models for the points in &g, rather than to seek

15 # is an arbitrary improvement point where we do not focus on the reference point with which it
is defined, contrary to .7,
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improvement through quality indicators. But care should be taken, since adjacent
points between adjacent clusters can have the same measure of uncertainty and hence
can lead to samples for parallelization from the same part of the design space.

Effect of ¢ in choosing reference values

We show the effect of € through the following plots, where the idea is to show the
behaviour for a range of predictions. The range is defined for fi(x) € [50,200], distin-
guished with color scale and &(x) € [5, 50] defined on the vertical axis. The horizontal
axis defines the EV criteria with four possible reference values {62.5, 75,100, 150} to
choose for any prediction. Firstly, to have a general idea, we give the plot of fi(x)
against o(x).

50

40

6(x)

T
50 100 150 200

Alx)

Figure 6.6: Plot of fi(x) against 6(x)

As it can be seen in Fig[6.6] a property in cannot be achieved with choosing
fi(x) for improvement since i = ' A6 > 6f = EI(f) ¥ EI(f). With
EV criterion, as shown in Figs. the properties are satisfied. It should
be that, € only influences the choice of reference value but not the magnitude of
improvement. Nevertheless, the role of € in choosing a reference value implicit effect
in defining improvement. From the discontinuities, it can be observed that for lower
¢ values, the points were pessimistic in choosing its respective reference value, where
the points became more optimistic with higher values of €. This can be inferred with
the reference value 62.5, where for any given 4; more points were considered as €
increases. It should be noted that as e increases, only choice of the reference value
changes. This can be better observed with the blue points which are largely defined
by 62.5 as reference value, is nearly unchanging for any value of e.
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Some of the special cases where it converges to Utopian value and Nadir value as

reference is shown in Figs. and 6.8
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7 Shape optimisation of disc-pad
system

All the results presented in the following discussion were obtained for the objectives
defined in The GP meta-model was defined for the computationally expensive
objective function Cs where we used a linear polynomial trend function to define the
prior mean and the covariance function was defined by Matern 5/2 kernel consider-
ing anisotropic spatial correlation. Hence, in the context of MOBOQO, the infill points
were determined primarily for the evaluation of the function Cs. Even though in our
case, the GP model for MOBO was defined only for one of the objectives, it can be
extended for MOBO with multiple GPs.

We present a brief description on the characteristics of the Pareto-front obtained
for MOBO through an E'V criterion. The discontinuities appear in the Pareto-front
of Figure due to local definition of improvement, since the optimization is de-
fined with multiple reference values where the discontinuities occur, but with in the
same optimization setting to define NDS through NSGA-2. This means that the in-
dividuals in a given generation of NSGA-2 are defined with their respective reference
values to seek improvement, but the non-dominated sorting and niching are defined
on the objective space as a whole —which is less computationally expensive given the
simultaneous definition of improvement which use several reference values.

The optimization for the infill points through NSGA-2 was defined with the fol-
lowing parameters:

e Population size: 200

e No. of generations: 50

e Crossover definition: Simulated Binary crossover (SBX)
e SBX distribution index: 8

e Crossover probability: 0.9

e Mutation definition: Polynomial Mutation

e Polynomial Mutation index: 20

e Mutation probability: 0.2
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Figure 7.1: Optimization for infill points with EV criterion and —Area(XP). The
colored points represent the population, with each color representing a
generation obtained through NSGA-2. The black squared points are the
empirical Pareto-front points (P(¢,)) in the objective space and the ver-
tical lines correspond to the empirical Pareto-front points which are used
as reference values for the EV criterion. (We here remind that the coor-
dinates of the E'V criterion correspond to the coordinates of the objective
space)

Mutation probability was restricted due to more probability for failure with con-
straints in defining XP. This is balanced with increase in the population size and
the number of generations for convergence.

In general, with E'V criterion, the initial generation starts with largely individuals
whose eligibility for reference value will be far from the Utopian value —where the
eligibility depends on the parameter € in f and through the progression of the
generations will reach the individuals which will be eligible for improvement regard-
ing the Utopian value. This is shown in Figure for the E'V criterion with € = 1,
along with comparison for FI criterion in Figure with Utopian value as reference,
where a same GP model was used for both the cases.
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When comparing Figure and Figure [7.3] the optimization of ET with Utopian
value as reference has some correspondance to the optimization of £V with Utopian
value as one of the reference values, which can be seen at the Iteration 50 for both
the cases. This is quite expected since the improvement related to the Utopian value
is the same for both the criteria atleast in the region where some probability for im-
provement exists given through the parameter e for the EV criterion. In the region
where improvement was not possible to be defined for the EV given an Utopian value,
the resolution for F'I was very poor, which happens as Area(Xg’) increases. But for
the EV, for a larger Area(XP), the optimization was defined with a reference value
more probable. The above comparison shows the limitation of defining improvement
based on a single reference value where we chose Utopian value to define the ET
criterion, and hence justifies the definition of improvement with E'V criterion in our
application. The limitation of a single reference value can also be shown through
Nadir value which we did not expose here, but a theoretical justification to this lim-
itation was given in .

Though in the above case there was a possibility to define some improvement
linked with the Utopian value for the E'I criterion, but it cannot be in general. This
is possible when the Utopian value may correspond to the extremum of the func-
tion, where the E'I with Utopian value as reference can fail to define improvement
completely since there can be no possibility to define improvement related to a given
extremum. But the E'V criterion can adapt to define improvement with respect to
the next possible reference value.

Though we have not provided results to show the effect of the parameter ¢, it
is also possible to infer through that the discontinuities in the NDS will be-
come stronger with increase in the value of € and converges to the case similar to
ET with Utopian value as reference, except in different coordinates. The opposite
is true with decrease in € where the E'V converges to I with Nadir value as reference.

We discussed the optimization to determine the infill points and now we show
its consequence in the objective space for improvement in NDS of the sampled ar-
guments. The improvement of the NDS for the sampled arguments in the objective
space through the progression of iterations for MOBO with the E'V criterion is shown

in the Figure[7.4]
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Figure 7.4:
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The MOBO optimization (shown in Figure was initiated with an initial sample
size of 50 which satisfy the constraints after Latin-Hypercube sampling (LHS) and
an addition of 48 infill points were added, with 3 points per iteration for a total of
16 iterations. As it can be seen, the initial samples did not cover any designs with
larger Area(Xﬁ), which is due to very few designs in this region and hence, all the
designs with larger Area(Xﬁ) were purely obtained in the process of optimization.
The improvement in the NDS can also be seen where all the NDS in the final iteration
were obtained through the infill points. We also see some overlap of infill points but
clustering through K-means in the design space shows that the overlapping points
mostly correspond to completely different clusters, as seen in Figure [7.5, which also
indicates the multi-modality of the function Cs. The multi-modality maybe also due
to the redundancies in the design space as explained in section . The overlapping
can also be attributed to the choice of infill points from the NDS obtained for the
optimization of the infill points, where we did not choose any metric for diversifica-
tion but with the metric of uncertainity..
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—Area(XP). Clustering of the infill points, with each color represent-
ing a cluster and black points representing the initial samples
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The following measures of time are given in an approximate sense for a general no-
tion of the time involved in the given MOBO. We used a 10 physical cores (286 64)
machine, equipped with 252G'B of ECC RAM. It took a total of 53 hours to reach
the given empirical Pareto-front, for which 36 hours were spent on optimisation of
the infill points, which was necessary given the design space and the constraints
involved. Each iteration of NSGA-2 took approximately 150 seconds, where most
of the time was spent on constraint evaluation, and hence 50 iterations in NSGA-2
took 2 hours to find the converged pareto-front for MOO of the infill points. The
evaluation of the stability criteria C took around 22 minutes with parallelization,
where the parallelization was initialized for 20 friction coefficients between 0 to 1.
With the availability of 10 cores, the parallelization was achieved in two batches,
with a minute taken for each batch. This would have otherwise taken an additional
20 minutes to evaluate C';. Since the parallelization was defined for the evaluation of
C,, this restricted the use of parallelization in MOBO, at least given the resources.
After analysis of the time involved in each step of the MOBO, we realized that it
would have been better to utilize parallelization for MOBO rather than evaluating
Cs, since it would have cut time in our case to 47 hours, given that three infill points
were chosen for evaluation of C per iteration in MOBO.

We expose some of the shapes from the objective space in Figure [7.6] It can be
observed that, largely for a given Area(XP) to achieve a low value of Cy(XP), the
pad shapes prefer to align more radially to the the disc than rather tangentially. It
also seems that the pad shapes prefer to achieve a shape with three vertices, even
though the shapes are defined with four vertices i.e., four curves of C° continuity
between them, where one of the vertices is smoothed out with some continuity or
one of the edges was defined to be very small to mimic a three vertices configu-
ration. The existence of very few solutions when Area(XP) is larger can be at-
tributed to lack of design space where this explains the lack of improvement related
to Cs(XP) in this region. While, in the region of the objective space for smaller
Area(XP), there is more flexibility in defining the pad designs X and hence, better
improvement in solutions relative to Cs(XP) were obtained. We also obtained an
interesting solution from this region with no instability as it can be observed, i.e.,
Cs(XP) | I(A(XP)) € [I0KHz 13KH2] =0 .
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Figure 7.6: A sample of shapes from the objective space are shown. Black points
represent the initial samples, Orange points represent the infill points
and the NDS obtained after 16 iterations of MOBO are highlighted in
red.
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For a given initial sample, we provide a comparison in the objective space for the
infill points obtained with the E'V criterion against the same number of infill points
obtained through the ET criterion, given in the Figure [7.7] where more NDS were
found to be obtained through the EV criterion. The hypervolume comparison be-
tween the two cases corresponds to sample 1 in Figure [7.8] which was considered
with infill points from 15 iterations.
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Figure 7.7: Objective space :  Cs(XP)|S(A(XP)) € [I0KHz,13KHz] vs

—Area(XP). Comparison of infill points obtained between EV and EI
criteria for an initial sample. Black points represent the initial samples.
Orange and green points represent infill points obtained by EV and ET
respectively, with red highlights for the NDS.
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In order to show the effect of initial samples to the improvement achieved through
MOBO with ET and E'V criteria in the objective space, the optimisation was per-
formed with 5 different initial samples for 15 iterations, with 3 infill points per iter-
ation. The hypervolume improvement comparison is shown in Figure [7.§ where EV
criterion outperforms for all initial samples. We here remind that the infill points
were chosen not with the goal of HV'I but to reduce the uncertainty of the solu-
tions from each cluster of the NDS obtained for the optimization of infill points,
but consequently, this shows better improvement with E'V criterion because of bet-
ter resolution in defining the NDS. Further, the overall variation of the dominated
hypervolume for each criterion, with comparison between the criteria are shown in

Figure
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Figure 7.8: Comparison between FV and ET criteria for hypervolume improvement
of NDS linked with the NDS of the initial samples, shown for a five set
of initial samples.
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samples, obtained for the same set of initial samples in Figure @
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8 Conclusion

We proposed an efficient strategy to deal with the shape optimization of brake sys-
tems through a simple disc-pad representation for squeal noise reduction. The weak
formulation of contact and friction specific for modelling friction induced instabilities
through CEA was defined with isogeometric approach for discretisation. This kind
of study may be considered for braking systems as found in automotive or aeronautic
industry, but also for other applications with friction phenomena, such as clutch.
Through CEA, the stability criterion Cs was defined as a black-box function to char-
acterize the instabilities independent of friction coefficient for the shape optimization,
where parallel computation and dynamic model reduction techniques were used to
reduce the computational cost of the stability criterion.

In parameterizing the computational domain for the disc-pad system with NURBS,
a multi-patch parameterization strategy was realized for the disc domain to achieve
local refinement at the contact interface. While, the parameterization of the pad
shapes was achieved through the discrete Coon’s patch method. Hence, the design
space in shape optimization was constrained to the pad shapes for which injective
parametrization exists with the Coon’s patch method. This was found to provide
satisfactory shapes which are less conceptual for a pad design at the reduced cost
of more advanced parameterization techniques which require expensive optimization,
though we are interested in such conceptual shapes for future works. The injective
parameterization obtained through the Coon’s patch method was also found to have
a good quality parameterization required for CEA, where it can be difficult to de-
fine a robust meshing for even such shapes with the classical finite elements without
severe element distortion. Though we are aware that the meshing can be achieved
irrespective of the domain with the classical finite elements when robustness is not
questioned, which is simply not possible with the body-fitted NURBS parameteri-
zation. Nevertheless, provided an intial parameterization for a design description,
the sub-sequent analysis-suitable parameterization can be easily achieved which is
the underpinning of the Isogeometric approach, but defining an injective initial pa-
rameterization can be cumbersome at least for a shape optimization with arbitrary
definition of shapes, or given a parameterization scheme, the question also arises for
the bounds of the design space where a good quality parameterization exists.

Moving on to MOBO, the expensive stability criterion was approximated through
a GP meta-model and a MOO was defined for minimizing the instability and maxi-
mizing the contact area. The NDS were obtained through MOBO for a given number
of iterations where a new criterion 'V was defined as an extension of the classical ET
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criterion for better resolution in MOO. The infill points obtained at each iteration of
the MOBO were observed to provide consistent improvement in the NDS. Further,
the hypervolume metric of the NDS was found to be better with the F'V criterion
compared to the EI criterion for the considered MOQO, where the comparison was
made with five random initializations. Some of the shapes from the NDS and the
worst performing shapes were shown for comparison, where some empirical observa-
tions were discussed. It was also clear from the optimization that the instabilities
at some narrow frequency range as much as 3 KHz can be reduced or completely
eliminated through shape optimization irrespective of the friction coefficient. We are
aware that real-life braking systems can involve more complex non-linearities, with
more complex domain rather than a simple disc-pad representation which can effect
the understanding of the dynamics. Nevertheless, the above frame work with CEA
and the disc-pad system can be used for preliminary understanding of the dynamics
purely linked with shapes in a design process, where CEA is already widely used in
industries for squeal analyses. The optimization framework of MOBO could also be
extended with more complex considerations for which the meta-heuristic approach
is more generic irrespective of the objective functions and the constraints present,
where we only tested for a bi-objective case with GP meta-modelisation for one of
the objectives.

For future scope, it is important to consider experimental validation of contact
stiffness and sensitivity of the characteristics to be inferred in relation to modelling
contact and friction. It can be a good starting to expand the optimisation with
robustness consideration, given that suitable parameterisation strategy is developed
with in the scope of body-fitted Isogeometric approach to achieve any possible shape
variation. Typical geometries in application are far more complex and in the scope
of defining a generic parameterisation scheme, Immersed method seem to be a more
viable approach or even defining a generic strategy to decompose a topology with
multiple patches. This is especially useful to capture design features such as holes
which can sometimes be sensitive to the defined application. We tested the Bayesian
optimisation for the prescribed only for biobjective problem
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9 Annexe

9.1 Mesh sensitivity for Node-to-Node contact

In relation to the expensive evaluation of the stability criteria, mesh convergence
study was performed for the influence of mesh at the contact interface and outside
the contact interface. The eigenmodes reflecting maximum instability as predicted
by the maximum positive real part of the complex eigenvalues are only of interest
to us and hence taken in to account to check for convergence. It should be noted
that contact formulation can have some influence on mesh convergence with CEA,
where no clear studies has been performed. In this case, we define convergence with
node-to-node contact formulation.

The dynamic properties with respect to maximum instability show little variation
for change in mesh size out of the contact region for a given shape and number of
contact points. The comparison is shown through a model with highly coarse mesh
as in Fig. against a model with the same shape but for a relatively fine mesh as
in Fig. 9.2 while maintaining the same number and position for the contact points.
The mismatch in frequencies between the models is shown in Fig. where the
range for frequency is zoomed to a pair of frequencies which induce mode coalescence
predicted to cause the maximum instability. The shift in unstable frequencies and
the point of bifurcation of the maximum real part as shown in Fig. are observed
to be very low for change in mesh size.

Though the variation of the mesh out of the contact interface is shown to have
a little influence on the maximum instability, the variation of mesh at the contact
interface is observed to have a considerable effect on the dynamic properties. This
can be seen by comparing results of the models in Fig. and Fig. against the
models in Fig. and Fig. [0.6] which are of the same shape. Hence, it is intuitive to
assume a large number of contact points, since the contact interface is a continuum
after all. The convergence is shown with large number of contact points in Fig.
and Fig. with plot for bifurcation of the real part in Fig. and frequencies
inducing maximum instability in Fig. [9.7]

The definition of the contact points can be observed to have significant influence
on the maximum real part of the complex eigenvalues and hence also the stability
criteria, which demands a good mesh definition to define a robust stability criteria
in optimisation. For this reason, we defined a structured mesh as in Fig. where
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Figure 9.1: Node plot for a coarse mesh of the disc geometry with contact nodes
represented in red
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Figure 9.2: Node plot for a relatively fine structured mesh of the disc geometry with
contact nodes represented in red
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Figure 9.5: Node plot for a fine mesh with contact nodes represented in red
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Figure 9.6: Node plot for a relatively finer mesh compared to especially on the
contact interface with contact nodes represented in red
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Figure 9.9: Considered mesh definition

linear hexahedral elements are largely used through out the model with smaller ele-
ments at the contact interface, while the region outside of contact interface is defined
by larger elements. The difference in mesh density is compromised by introducing
3D wedge elements to maintain a structured mesh.
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