
HAL Id: tel-03721520
https://theses.hal.science/tel-03721520

Submitted on 12 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A generic and adaptive approach to explainable AI in
autonomic systems : the case of the smart home

Etienne Houzé

To cite this version:
Etienne Houzé. A generic and adaptive approach to explainable AI in autonomic systems : the case
of the smart home. Ubiquitous Computing. Institut Polytechnique de Paris, 2022. English. �NNT :
2022IPPAT022�. �tel-03721520�

https://theses.hal.science/tel-03721520
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
2I

P
PA

T0
22 A generic and adaptive approach to

Explainable AI in autonomic systems:
the case of the smart home

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à Télécom Paris

École doctorale n◦626 École doctorale de l’Instituat polytechnique de Paris (EDIPP)
Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Palaiseau, le 24 juin 2022, par

ETIENNE HOUZÉ

Composition du Jury :

Nicolas Maudet
LIP6, Paris Sorbonne Université Rapporteur, Président

Christian Becker
Université de Stuttgart Rapporteur

Philippe Lalanda
Université Grenoble-Alpes Examinateur

Mohamed Masmoudi
Institut de Mathématiques de Toulouse Examinateur

Jean-Louis Dessalles
Télécom Paris Directeur de thèse

Ada Diaconescu
Télécom Paris Directrice de thèse

David Menga
Ingénieur de recherche, EDF R&D Encadrant, invité

Mathieu Schumann
Ingénieur de recherche, EDF R&D Encadrant, invité

A generic and adaptive approach to Explainable AI
in autonomic systems: the case of the smart home.

Étienne Houzé

2022

2

Acknowledgements

Over the course of a 3-year work, there are many moments when things get complicated
and the horizon darkens. I had the chance to be surrounded by extraordinary people who
helped me through these years. This page is dedicated to them, even though thanking
to their value them would require many more lines.

To my advisors Ada, Jean-Louis, David and Mathieu. You have been able to motivate
me, to overcome my laziness and guide me towards improving myself. Ada and Jean-
Louis, you knew how to let me discover and understand by myself the different concepts,
difficulties and stakes of my topic. Your high expectations regarding writing quality,
proof-of-concept implementations and theoretical advances in the question of explaining
fueled my desire to get better and push further in the right direction. David, you made
me discover many new technologies, applications, theories and challenges that I had
no idea existed, opening the real of possible developments of my research. Mathieu,
your dedication to this project and many others were motivations to continue and work
towards larger scale applications and discoveries.

To Wassim. You helped me implementing the demonstrator, handling all low-level
management and devices. Without your help, the prototype would not have looked the
same, and the output would have been different. Most importantly, for three years,
you have been my friend at EDF, sharing many interesting conversations about work,
technologies and life.

To Philippe, Laurent, Nathalie, Sophie, Joëlle, Loys and all of the people from EDF.
To Ned, Julien, Maroua, Marc, Thomas and all of the people from the DIG team at
Télécom. You have been incredible colleagues and friends over the last three years. I
cannot count how many entertaining and insightful discussions I shared with you during
this time. You were the reason I enjoyed going to Palaiseau despite the three hour
commute.

To my family, my parents, my sister, my brother-in-law, my aunts, my grandmothers.
You helped me through the COVID lockdowns and always comforted me when I needed
it most. To my dad who proof-read the entire manuscript: you highlighted more typos
and stupid mistakes than I could count!

To Marie, my wife-to-be. There are some encounters that change the rest of one’s
life. Having the chance to meet you definitely changed mine.Everyday, your kindness,
your caring and your love inspire me and make me a better man.

To all of you, and to all the others with whom I discussed, exchanged and worked
over the last three years, I express my infinite gratitude. Without you, this experience
would have been drastically different and less enjoyable.

Thank you.

Contents

1 Current outcomes, stakes and goals 9
1.1 Introduction . 10

1.1.1 Smart homes . 10
1.1.2 Use cases . 11
1.1.3 Presentation of the problem . 13

1.2 Explanations . 14
1.2.1 Defining explanations . 14
1.2.2 Explanations, causality and counterfactuals 15
1.2.3 Triggering Explanation . 17

1.3 Architecture and features of smart homes 17
1.3.1 Principles of self-adaptive systems 17
1.3.2 Realization of Autonomic Systems 19

1.4 Proposed solution and outline of this thesis 21

2 XAI: a short review 25
2.1 General Context . 26

2.1.1 Artificial Intelligence . 26
2.1.2 Explainable Artificial Intelligence 30

2.2 An overview of current XAI approaches 32
2.2.1 Interpretable by design . 33
2.2.2 Post-Hoc Explanations . 35

2.3 Evaluation of XAI methods . 40
2.4 XAI and complex cyber-physical systems 42

3 An approach to explanation 45
3.1 The goals of an explanatory system for smart homes 46

3.1.1 User-wise perception . 47
3.1.2 Systemic properties . 48

3.2 A generative model for argumentative dialog 49
3.2.1 Explanation and argumentative dialog 49
3.2.2 The Conflict-Abduction-Negation process 50
3.2.3 Observations on CAN . 54

3.3 Adapting CAN to the smart home: the D-CAS algorithm 56
3.3.1 Difficulties of adapting CAN to smart homes 56
3.3.2 D-CAS: Decentralized Conflict-Abduction-Simulation 58
3.3.3 An example of D-CAS . 65
3.3.4 Analysis of the algorithm . 66
3.3.5 Handling multiple causes . 68

4

CONTENTS 5

4 Architecture Description 71
4.1 General Organization . 72
4.2 The Local Explanatory Component (LEC) 76

4.2.1 An interface between SHC variables and D-CAS propositions . . . 77
4.2.2 Reasoning on the LEC . 80
4.2.3 A generic and adaptive platform 83
4.2.4 Preserving knowledge locality and privacy 85

4.3 The Spotlight . 86
4.4 Simulators . 88
4.5 Self-* capabilities . 89

5 Implementation 95
5.1 Implementation choices . 96

5.1.1 Previous versions of the demonstrator 96
5.1.2 Implementation choices for the third version 98

5.2 Description of the demonstrator . 101
5.3 D-CAS as a tree algorithm . 106
5.4 Illustrative examples . 108

6 Abductive Inference 115
6.1 Definition of the problem . 116

6.1.1 “Naive”abductive inference . 116
6.1.2 The difficulty of defining memorability 117

6.2 Formalizing memorability . 117
6.2.1 Notions of Algorithmic Information Theory 118
6.2.2 Memorability as a complexity gap 120
6.2.3 Defining relative memorability 123

6.3 Related Works . 125
6.4 Experiments and results . 126

6.4.1 Illustration of the approach . 126
6.4.2 Illustration in smart home setups 127
6.4.3 A subjective metrics . 130

6.5 Integration into the explanatory system 131

7 Conclusion 135
7.1 Contributions . 136
7.2 Limits and possible future development 137

7.2.1 Limitation of the underlying system 138
7.2.2 User interaction . 138
7.2.3 Module implementation . 139

7.3 Final words . 140

Résumé 141

List of Figures

1.1 Examples of smart devices . 10
1.2 Generic organization of an Autonomic System 20
1.3 Different organizations of Autonomic Systems 21
1.4 Principle of the architecture . 22

2.1 Principle of an expert system . 27
2.2 Principles of deep learning . 29
2.3 Publications related to XAI . 31
2.4 General principle of XAI . 32
2.5 A taxonomy of XAI approaches. 33
2.6 Interpretability/performance trade-off 34
2.7 Principle of LIME . 36
2.8 Output of feature relevance XAI . 37
2.9 Prototype, criticism and counterfactual 39

3.1 Outline of an explainable smart home system 46
3.2 The CAN process . 50
3.3 Different knowledge distributions . 57
3.4 Knowledge distribution in D-CAS . 59
3.5 Principle of the D-CAS algorithm . 60
3.6 Evolution of internal D-CAS states . 67

4.1 Layer Organization of the Explanatory System 73
4.2 The interfaces required by D-CAS for the Spotlight and the LEC. 74
4.3 Example of an explanatory system . 75
4.4 Twin-memory architecture of a LEC . 78
4.5 Event and predicates classes . 80
4.6 Sequence diagram of the processing of a request from the Spotlight by a

LEC. 81
4.7 The modular architecture of the LEC 84
4.8 Organization of the Spotlight . 87
4.9 LEC Addition . 90
4.10 Typical use case of a LEC . 91
4.11 Deletion of a LEC . 92
4.12 Description of a SHC enriched with LEC information 93

5.1 First version of the demonstrator . 97
5.2 Interface of the second version of the demonstrator 98

6

LIST OF FIGURES 7

5.3 A RPI and a NUC . 99
5.4 Smart home model used for the third version of the demonstrator 102
5.5 General implementation principles . 104
5.6 GUI application of the demonstrator . 105
5.7 ExplanationTree class . 107
5.8 Simple D-CAS output . 110
5.9 A higher intensity triggers the simulation 110
5.10 Handling of erroneous abduction . 111
5.11 Knowledge revision in a rationale . 112
5.12 D-CAS identifying a failure . 113

6.1 Principle of event retrieval . 121
6.2 Memorability of days: the wedding example. 127
6.3 Time series data from the 4-room iCasa simulation 128
6.4 Complexity and memorability of the 4-room house 129
6.5 Memorability-based classifier ROC . 130
6.6 Memorability of events in the TV scenario 131
6.7 Effect of vocabulary on complexity . 132
6.8 Memorability-based abduction . 133

List of Tables

1.1 The three different types of inference identified by C.S. Peirce. 15
1.2 Different examples of self-adaptation management in smart homes. . . . 19

3.1 CAN reasoning example . 54
3.2 An overview of the different sub-methods of D-CAS 62
3.3 D-CAS rationale example . 65

4.1 Communication scheme . 76

5.1 Comparison between demonstrator’s versions 101
5.2 Implemented devices . 103

6.1 Relative memorability . 131

7.1 List of contributions . 137

8

Chapter 1

Smart homes explainability: current
outcomes, stakes and goals

Summary

Smart homes are cyber-physical systems that aim to fulfill different goals
(comfort, security, health-related, etc.) in an individual house. As the num-
ber of connected devices continues to increase, so does the system com-
plexity and the number of potential problematic situations. Therefore, one
should expect future smart home solutions to integrate self-explainability as
a fundamental feature. However, no current solution proposes to generate
explanations at runtime in the context of smart home systems. The purpose
of this PhD thesis is to solve this issue by designing an explanatory system
compatible with smart homes.

Two main issues can be isolated from this main goal. First, the definition
of explanation can be hard to grasp, as it is a subjective notion that has
long been studied in philosophy, epistemology and cognitive science. It is
therefore necessary to precisely define the scope and aim of the explanatory
system before going forth. Second, existing smart homes are autonomic
systems that present self-adaptation capabilities. For instance, smart devices
can be “plug-and-play”: they are automatically integrated into an existing
environment. Self-adaption is prone to surprising or unexpected behaviors
that an explanaible system should be able to handle.

In this introductory chapter, we briefly present the main problem of this
thesis by exposing the context and some examples illustrating the need for
explanations in smart homes. Then, we further define the two main notions
underlying in the issue of explanations in smart homes: the nature of expla-
nation and a description of autonomic systems. This brief analysis of the
problem allows to present a sketch of our solution that we will detail in the
following chapters.

9

10 CHAPTER 1. CURRENT OUTCOMES, STAKES AND GOALS

1.1 Introduction

1.1.1 Smart homes

In Jacques Tati’s “Mon Oncle”, a famous French movie from 1958, two of the main
characters, Mr. and Mrs. Arpel, live in a then-futuristic house equipped with all kinds of
controlled devices. This equipment allows them to live effortlessly, all the house-keeping
tasks and maintenance work being performed by machines. This movie embodies the
long-existing vision of “smart homes”, where machines would allow for greater comfort
and control over the house. However, in this same movie, the ideal smart home turns
into a catastrophe when all devices start failing, showing the potential threats and issues
of this vision.

More than 60 years later, the vision of this movie is close to completion. Technological
advances have led to the development of a variety of “smart devices”: smart heaters,
alarms, lights, presence sensors, thermometers, etc. While terminology may vary between
authors, most of these devices present connectivity, context-awareness and autonomous
features (Silverio-Fernández, Renukappa, and Suresh, 2018).Figure 1.1 shows a few
examples of currently available devices. Most of them can be remotely controlled via
a central hub, often a smartphone or a tablet, offering control and monitoring to the
house occupant.

Figure 1.1: Different smart devices available on the market: smart lights, a voice assistant
speaker, smart switches, a presence sensor. Picture taken at the Smart Home Experience
Lab (SHEL) at EDF R&D.

A smart home can be defined as a home equipped with various connected compo-
nents, such as the ones displayed in Figure 1.1, and a network enabling communication

1.1. INTRODUCTION 11

between these components to achieve predefined home-wide objectives (Ricquebourg et
al., 2006; Park et al., 2017). This definition leads to diverse implementations, ranging
from small sets of connected devices in a single room to fully-equipped buildings where
all mundane operations like heater control, light and door management are autonomous.
Smart homes can be seen as the declination of Internet-of-Things (IoT) for the individual
house.

The benefits of smart homes can be various for their users. Precisely controlling power
usage in the entire house can help optimize the overall consumption (Ricquebourg et al.,
2006; B. Zhou et al., 2016). Extending smart homes to create ensembles of systems
allows for the creation of “smart grids”, which can help electricity providers to monitor
and optimize energy distribution and integrate privately produced electricity into the
network (i.e. electricity produced by solar panels or wind turbines)(Bose, 2017; Frey,
Diaconescu, Menga, et al., 2015). Benefits also include added security with connected
alarms and health-related technologies, where smart homes can offer added autonomy to
their users (Austin et al., 2016). Also, many smart home providers advertise ease-of-use
and effortless control of the house as one of the main benefits of their systems.

However, despite these promised benefits, the adoption of smart homes remains lower
than expected (Yang, W. Lee, and H. Lee, 2018). A German survey from 2017 shows that
only one in three respondents are interested in smart home equipment (Zimmermann,
Ableitner, and Strobbe, 2017). This low figure can be interpreted as the results of several
drawbacks. (Zimmermann, Ableitner, and Strobbe, 2017) find that most cited reasons
are vulnerability issues, privacy-related question and lack of understanding. In a survey
conducted in South Korea, (Yang, W. Lee, and H. Lee, 2018) finds that the perceived
automation level plays an important role in the perception and desirability of smart home
technology. Aside from the topic of smart homes, these topics are identified as major
concerns for the future of AI in general and its acceptability (Marcus, 2020).

1.1.2 Use cases

To illustrate this perceived lack of understanding and controls in smart homes from their
user’s perspective, we present a few illustrative examples. These examples come from
field knowledge of various EDF collaborators, as well as from internal discussions and
reflections. They will be re-used as typical use cases throughout the rest of this thesis.

Example 1.1

A room in a smart home comprises a temperature regulation system, air quality
control, presence sensors, motorized windows and window shades and adaptive
lighting. It is the middle of the day. To the occupant’s surprise, the room tem-
perature suddenly drops. Therefore, he/she wonders: why is it cold here?

This case illustrate the difficulty of anwsering to the seemingly simple“why-question”
asked by the user. Due to the number of connected devices in the room, the unusual
temperature drop may come from different reasons: i) the temperature is low because
a heater is faulty and is unable to heat as expected; ii) a thermometer measures an
erroneous temperature and fools the control system into thinking the temperature of the

12 CHAPTER 1. CURRENT OUTCOMES, STAKES AND GOALS

room is correct; iii) another occupant of the house, for instance the visiting stepmother,
has decided to change the temperature target, causing discomfort to this first occupant;
iv) outdoor temperature and the house thermal performance do not allow the system to
produce enough heat to maintain an acceptable temperature; v) heating was reduced
by the system to avoid consuming too much power. If the system is unable to provide
an explanation, or at least to “point the finger” at the component responsible for the
discomfort, the occupant can potentially take wrong decisions, thus hindering the benefits
of the smart home system (Nomura and Kawakami, 2011; N. Li et al., 2020).

Example 1.2

As the user is working in his/her office, in the middle of a sunny spring day, the
window blinds roll down. As he/she is surprised by this event, he/she decides to
override the system’s decision and rolls the blinds back up.

This second example further illustrates the potential harm a misinformed decision
may cause on the system. Here, the system may have decided to lower the blinds to
protect the room from the direct sunlight and avoid using the A/C. Unknowing of this
reason, the user decides to override the command. Thus, the benefit of lower power
consumption is lost. Had the user had access to this information, he/she may have
acted differently and let the blinds down. We may also observe that in this example,
the system’s decision to lower the blinds could be due to misreadings from sensors or be
the result of a motor failure. Without further knowledge, it is impossible for the user to
appreciate the motives and make an informed decision.

Example 1.3

As the user comes back from work, he/she finds his/her home to be colder than
expected. He/she inquires the system as to why this happens, and the system is
unable to find an answer. In fact, the thermometer of the room reads a tempera-
ture that is within the predefined range of tolerance.

The discrepancy between the system’s measures and definition of cold and the user’s
perception creates a conflicting situation which is at the root of the problem presented in
this example. Here, an expected“correct”answer from the system to the user’s request
for explanation would be to identify the discrepancy and propose it as the cause of
the problem, which supposes that the system is able to i) identify its notion of cold
and confront it with the user’s preferences; ii) consider this observation as a possible
cause for the problem. In this example,a satisfactory explainable system would be able
to handle to integrate the user’s perception of cold, compare it with its own goal and
use the difference in an explanatiory reasoning. This ability is close to the notion of
self-awareness, that defines the capacity of a system to observe, model and reason about
itself (Kounev et al., 2017).

1.1. INTRODUCTION 13

Example 1.4

A room in a smart home is equipped with many sensors, including multiple tem-
perature sensors. In case of a failure from one of these sensors, how will the system
react? Should the user be warned if a single sensor failure does not impede on
the system’s ability to regulate the room’s temperature?

Example 1.4 illustrates one of the many issues coming with the multiplication of
devices. As an increasing number of connected devices are integrated into systems (Jain
and Murugesan, 2021), the possibilities of failure follow the same trend. In this case,
the failure of a single temperature sensor can either provoke an observable effect on the
temperature control system, or it can be mitigated if the system handles such case. In
both possibilities, what should the system expose to the user? Should he/she be noticed
of the failure, even if it has no noticeable impact, risking overwhelming her under low-
priority alarms (Maxwell et al., 2020a)? Would an explanatory system be able to analyze
a defect and expose it as a possible explanation for a system’s behavior?

1.1.3 Presentation of the problem

Currently, no available solution offers to generate explanations that would help the user
overcome the interrogations that could arise in the presented example scenarios. As illus-
trated through the various examples above, smart homes offer challenging environments
to explain. They are confronted with unique situations influenced by the configuration
of the home, external factors, user preferences and the required coordination between
various devices. The major companies of the field, like Google or Amazon, which already
provide an AI “assistant” for smart homes, do not offer explanation capabilities. Their
assistant usually treats explanation requests similarly to other questions from the user:
parsing the question and providing the best answer found on a remote knowledge base.

How can one develop an explanatory system that can generate explanations to the
user of a smart home? This question will be the central problem that this thesis aims to
solve. By using the term“generate”, we emphasize that the explanation provided by the
system should be customized for the current context and constructed at runtime, rather
than selected from a predefined knowledge-base. Doing so supposes finding means to
preserve the different characteristics of smart home systems such as modularity and self-
adaptation capabilities and integrating them into an operational explanatory system. At
first glance, this starting problem raises two underlying related questions.

The first problem is to define the goal of the explanatory system. This step is
necessary, in order to understand what the expected answer of the system should be and
how it can be generated. What is meant by explanation, especially in the context of
smart homes? Can we specify core characteristics of explanations that can be used to
design an automatic approach to their generation?

Second, the architectural realization of the system itself. How would an explanatory
system be organized? Should it be monolithic, centralized or decentralized? What should
be the architectural features and goals of the explanatory system? To what extent should
it follow the organization of the existing smart home system? Here, the main stakes are

14 CHAPTER 1. CURRENT OUTCOMES, STAKES AND GOALS

the integration of new devices and the potential upscaling from smart homes to smart
buildings with hundreds or thousands of rooms and devices.

1.2 Explanations

Before going further into the resolution of the problem stated by this thesis, it is necessary
to better understand the main term of the subject – explanations.

In a standard modern dictionary, one can find explanation defined as “the details
or reasons someone gives to make something clear or easy to understand” (Cambridge
Dictionary, 2020). While adequate for everyday use, this definition is based on subjective
notions that would require further clarification: “reasons”, “clear”, “understand”. In this
section, we aim to go beyond this definition by using insights from philosophy, episte-
mology and cognitive science. Our goal is to define and identify distinctive elements of
explanations from which we can start building an explanatory engine: a system that can
generate explanations for a given situation.

Since research in these fields is active and we do not have the required expertise to
settle ongoing debates, we present only established theories that are relatively consensual.
We will therefore rely on this vision of explanation to guide and motivate the choices of
implementation throughout this thesis.

1.2.1 Defining explanations

While used everyday, explanations have also been a topic of research in philosophy for a
long time: Aristotle presented in his works a vision of explanations centered around the
rhetoric and the discourse one had to produce in order to convince his partner (Trout,
2002; Hoffman and Klein, 2017; Maxwell et al., 2020b). As such, explanation serves
as a tool to expand one’s knowledge on a topic. (Lewis, 1987) defines explanation as
“someone who is in possession of some information about the causal history of some
event [. . .] [trying] to convey it to someone else”.

To formalize explanations, two main constituents are commonly distinguished: the
explanandum is the object of the explanation, the description of the phenomenon that is
to be explained; the explanans is the set of sentences which constitutes the explanations,
and from which the explanandum can be logically derived. This basic vision of explana-
tion drives the vision of scientific methodology usually found in the 20th century (Hempel
et al., 1965; Popper, 1963; Woodward, 2019).

Explanation and inference

Explanations are closely related to inference, i.e. the processes allowing one to acquire
new knowledge from known premises. Philosopher C.S. Peirce famously identifies three
main types of inference (Peirce, 1931): Abduction, Induction and Deduction. Examples
for each of these inference processes are shown in Table 1.1.

Deduction is the process of going from sound premises to their logical conse-
quences. Deduction is a valid inference process, as the soundness of the premises

1.2. EXPLANATIONS 15

Type Example Validity

Deduction
All men are mortal; Socrates is a man; Therefore Socrates
is mortal

Yes

Induction All ravens I’ve seen are black; Therefore all ravens are black No

Abduction
The grass is wet; When it rains, the grass gets wet; There-
fore it must have rained

No

Table 1.1: The three different types of inference identified by C.S. Peirce.

entails the soundness of the consequence. While it is the pillar of logical and math-
ematical reasoning, it lacks the ability to expand knowledge, as the consequences
are formally subsets of the premises, hence less strong.

Induction is also known as generalization, going from the experience to infer a
general rule. Note that this inference is not valid. In the example from Table 1.1,
if there exists a single white raven on Earth that I have never encountered, then
the consequence is wrong while the premise remains true. In the classical view of
scientific methodology, induction allows to formulate hypotheses by generalizing a
sample of observations (Hawthorne, 2021).

Abduction can be defined as“inference to the best hypothesis”1 (Magnani, 2011):
it consists of inferring the hypothesis of an observed consequence. Similar to in-
duction, this inference process is not valid: the inferred knowledge can be wrong.
In the example from Table 1.1, the wet grass may be the cause of a sprinkler rather
than the rain. Contrary to induction and deduction, abduction was formalized as
a proper inference method lately, in the 20th century. Since then, it has gained in-
creasing recognition, becoming an important element of the hypothetico-deductive
scientific method developed by Popper (Popper, 1963): scientific knowledge is
gained through consecutive operations of abduction, testing and deduction.

Overall, abductive inference is closely related to explanation, as the latter induces
the acquisition of knowledge by the explainee. (Hoffman and Klein, 2017) identifies
three main kinds of explanations: abductive explanations, retrospection and prospect on.
While abduction focuses on proposing an actual cause as an explanation, retrospection
uses an alternate world in which neither the cause nor the consequence occurred as
an explanation. Prospection, on the other hand, looks into the future and explains a
situation by unveiling its potential consequences.

1.2.2 Explanations, causality and counterfactuals

The notion of causality appears to be central in the question of explanation. More often
than not, the two notions are confounded in everyday speech (T. Miller, 2018; Hoffman
and Klein, 2017). However, one can view explanations and causality as two distinct yet
complementary notions: causality is a relation between a cause and an effect, and the

1Other definitions consider abduction as being limited to the proposal of hypotheses, separating it
from the selection of the best. However we consider here both operations as part of abductive inference.

16 CHAPTER 1. CURRENT OUTCOMES, STAKES AND GOALS

nature of this cause; while explanation is a process answering to a request (Hoffman and
Klein, 2017).

The notion of a causal link between a cause C and its effect E is difficult to define at
first glance: the wide array of possible interactions make it hard to determine a formal
and universal canvas for causality. In the 20th century, the progress of the scientific
method led to the study of causality as a mechanism. The first theories from Hume
were refined over the course of the century, notably by Pearl (Pearl and Mackenzie,
2018).

This led to the formalism of Structural Causal Models (SCM) (Peters, Janzing, and
Schölkopf, 2017), in which variables can be either exogenous or endogenous. Exoge-
nous variables are outside of the model, while the value of endogenous variables can be
obtained by applying predefined state function f to a restricted set of other variables
(exogenous or endogenous). Notably, the functions f are independent from the values
of the different variables of the models. This theory allows for the formalization of causal
interventionism (Pearl and Mackenzie, 2018). The main take of interventionism is the
notion that simple correlations and joint observations of C and E are not sufficient to
define a causal relation from C to E. Rather, it requires the consideration of the coun-
terfactual. The counterfactual from causality is related to the retrospection described
by (Hoffman and Klein, 2017), where a counterfactual is given as explanation.

To illustrate the notion of counterfactual, we can use the sentences from Example 1.5:
if I observe that there is no roof over my lawn, that it did not rain last night and that
the grass is dry (¬r,¬p,¬q). In this situation, a counterfactual can be: had it rained
last night, the grass would have been wet. To formalize this intuition, a counterfactual
p > q is defined as follows. In the current world, p is false; in all possible closest worlds
where p holds, q also holds (Lewis, 2013). The notion of the “closest” possible worlds
is important: in our example, the hypothetical world where it rained and there is a roof
over my lawn can be considered further away, and therefore does not contradict the
counterfactual p > q. (Ginsberg, 1986) proposes a formalism to understand this notion
of closeness of possible worlds in terms of logical extensions.

Example 1.5

I consider the following logical sentences:

p It rained last night

q The grass is wet

r There is a roof over my lawn

Another possibility to define counterfactuals is to rely on probabilities (Pearl and
Mackenzie, 2018; Menzies and Price, 1993): in this case, p > q if P = p is not observed
and that the occurence of P = p increases the probability of Q = q to be observed. This
definition is closer to the do-operation defined by Pearl Pearl, 2009, which proposes to
compare P (Q) to P (Q | do(Q = q)).

1.3. ARCHITECTURE AND FEATURES OF SMART HOMES 17

1.2.3 Triggering Explanation

Why do people need explanations? We have seen different motivations in Examples
1.2 and 1.1: in the first case, the user inquires about a unusual situation, while in the
second she wants to know the reason behind an apparent failure of the system. According
to (T. Miller, 2018; Hoffman and Klein, 2017; Lipton, 1990), both these explanations
are contrastive: the request tries to make up for a perceived discrepancy between the
fact, i.e. the observed situation, and the foil, the situation that the person expected,
desired, wished or takes as a reference.

Contrastive explanations are found to make up most of everyday’s explanations: in
most why-questions, (Lipton, 1990; Lombrozo, 2012) the foil is explicit but can be
formalized. For instance, in Example 1.1, in the request “Why is it cold here”, there is
a contrast between the perceived cold and the expected regulated temperature that the
control system was supposed to achieve. In Example 1.2, the explanation provided by
the system should answer why the system decided to lower the blinds, as the user instead
expected the blinds to stay open.

However, as contrastive explanations can account for most mundane situations, the
identification of the fact and the foil it contrasts against is not always trivial. Depending
on the situation, contrastive dimensions and definitions can vary: (Van Bouwel and E.
Weber, 2002) identify three distinct kinds of possible contrasts: i) Property-contrast
(“why does a have property P instead of Q?”); ii) Object-contrast (“why does a have
property P while b has Q?”); iii) Time-contrast (“why does a have property P at time t,
rather than Q at time t′?’). Which one of these contrasts is actually relevant depends
on the context and the user.

1.3 Architecture and features of smart homes

The second key element of the main problem addressed in this thesis is the architecture
of an explanatory system for smart homes. As stated in section 1.1.3, our goal is to
design a system that would preserve the main characteristics of smart homes such as
self-adaptation, scalability and runtime integration. In this section, we overview these
different properties and the architectural features enabling them in order to apprehend
them and design the explanatory system accordingly.

1.3.1 Principles of self-adaptive systems

Smart homes are cyber-physical systems in which several components communicate and
operate together towards the completion of high-level goals (Ricquebourg et al., 2006;
Mekuria et al., 2019). Similar organizations can be found in all application domains:
web infrastructures, database management systems, industry operations, etc. Their pre-
dominance comes from the rapidly growing number of connected devices and offers high
levels of performance, scalability and adaptation (Weyns, 2019). However, complexity
sometimes comes from the scale of the system, up to the point where human intervention
becomes difficult and costly. For this reason, the paradigm of Autonomic Computing
was introduced. It proposes to design systems that are “able to manage themselves

18 CHAPTER 1. CURRENT OUTCOMES, STAKES AND GOALS

given high-level goals” (Kephart and Chess, 2003), the objective being to minimize the
need for human intervention at runtime (Philippe Lalanda, McCann, and Diaconescu,
2013). The vision of Autonomic Computing led to the realization of Goal-Oriented Com-
puting, where high-level system-wide objectives “cascade”along the system to low-level
specialized objectives (Diaconescu, Frey, et al., 2016).

Autonomic Systems present four main properties that have been defined in (Kephart
and Chess, 2003; Philippe Lalanda, McCann, and Diaconescu, 2013). First, Self-
configuration is the capacity of the system to automatically find the appropriate settings
following a change to ensure a continuity in service. Second, self-optimization represents
the capacity of the system to identify the possible means of improving its performance
within its context and making relevant changes towards this aim. Third, self-healing is
key in maintainability and robustness of complex systems: it denotes the ability of the
system to react to internal or external damage, such as a component’s failure. Fourth,
self-protection is the ability to preemptively make required changes in order to prevent
damage to the system of hindrance to the system’s goals. These four characteristics are
often grouped together under the denomination of self-management, or sometimes self-
adaption, which denotes the ability of a system to“modify itself in response to changes
in its operative environment” (Weyns, 2019; Kephart and Chess, 2003; Krupitzer et al.,
2015).

The notion of Self-Adaptive System (SAS) is often found in literature and can some-
times be confounded with Autonomic Computing (Weyns, 2019). However, we can make
a distinction between the two approaches. On the one side, Autonomic Systems focus on
minimizing the need for user intervention by designing a system that can manage itself,
letting the user focus on higher-level goals (Philippe Lalanda, McCann, and Diaconescu,
2013). On the other hand, the focus of SAS is to design software and systems that
can handle changes of various kinds (configuration, environment, goals, etc.) without
hindering their overall performance and without requiring user intervention (Krupitzer
et al., 2015).

Smart homes benefit implement the paradigm of Autonomic Computing. As they
are in direct relation with a physical environment, the house, they form a Cyber-Physical
System (CPS) (Y. Liu et al., 2017). The control system therefore has to deal with the
possible variations coming from external factors of the physical environment: changes in
weather conditions, day/night cycle; as well as changes coming from interactions with
the user. As such, they benefit from all four previously exposed SAS properties. Table
1.2 illustrates these properties in smart-home context. These properties are visible in
modern smart homes devices, for instance where Amazon or Google Assistant are able to
detect and integrate compatible devices from other manufacturers, following the “plug-
and-play”principle (B. Miller et al., 2001). This capacity contributes to the adoption of
smart homes and other smart devices as they can be integrated seamlessly into existing
systems, from the end user’s perspective.

The different self-adaptation properties can be further classified, based on several
criteria (Salehie and Tahvildari, 2009). This taxonomy relies on the“5W + 1H”questions:
When to adapt,Why do we adapt,Where do we implement change,What kind of change
is required, Who should adapt and How is the adaptation performed? This leads to a

1.3. ARCHITECTURE AND FEATURES OF SMART HOMES 19

Property Example

Self-configuration

When adding a new device into a Smart Home System, the
home assistant is able to detect it and configure the device’s
location, communication protocols, goals and variables ac-
cording to the existing configuration of the entire system and
the data exposed by the device.

Self-healing

If a thermometer fails and reports erroneous temperatures, ei-
ther the thermometer itself or the smart home assistant will
identify a potential issue and alert the user, asking for replace-
ment of the device.

Self-optimization

If the system observes that one heater is far less efficient,
energy-wise, than the others, it will reduce its priority to prefer
the use of other heaters in order to reach the temperature
objectives set for the room.

Self-protection

If an attack from the exterior or a damage on a device jeop-
ardizes the integrity of the system or affects its whole per-
formance, the system is able to adapt accordingly, e.g. by
temporarily revoking network access or turning off the com-
promised components

Table 1.2: Different examples of self-adaptation management in smart homes.

variety of different self-adaptation implementations which are reviewed in (Weyns, 2019;
Krupitzer et al., 2015).

At the core of self-adaptation are the capabilities of self-observation and context-
awareness (Salehie and Tahvildari, 2009). Self-observation is the capacity of a system
to monitor its own state and behavior (Hinchey and Sterritt, 2006; Kounev et al., 2017),
while context-awareness denotes the ability of the system to monitor and know about
its operative environment (Hinchey and Sterritt, 2006). These two functions rely on
observation capabilities from the system, which can be implemented in various ways.

1.3.2 Realization of Autonomic Systems

Autonomic System components are typically classified into two categories. Managed
Resources (MR) cover the elements, sub-systems and components that are tracked and
monitored. Autonomic Manager (AM) is the part of the system that is responsible
for observing the MR and monitoring their changes. Thus, the AM can make the
necessary modifications to the MR to adapt it to external or internal factors (Weyns,
2019; Kephart and Chess, 2003; Kramer and Magee, 2009). The goal of Autonomic
Computing is that the entire adaptation process requires minimal user intervention,
which allows to focus user intervention on high-level specifications of system objectives
or management strategies. Figure 1.2 illustrates this generic architecture design. In
some implementations, AM and MR are merged into single autonomic components.
This internal observation approach, however, is often regarded as inferior and more
fragile (Krupitzer et al., 2015) and will not be further discussed here.

20 CHAPTER 1. CURRENT OUTCOMES, STAKES AND GOALS

Managed
Resources

User

Autonomic
Manager

Context
Monitoring

Monitoring

Interactions

Control

Figure 1.2: The generic organization of an Autonomic System: the Autonomic Manager
monitors the Managed Resources and the Context, to provide seamless self-adaptation
from the user’s point of view.

In centralized architectures, all Managed Resources in the system are monitored and
controlled by the same Autonomic Manager: see Figure 1.3a. While simple and easy
to set up, this architecture suffers from maintainability and robustness: upgrading part
of the system requires to update the central processing unit, which can affect all other
parts of the system; a failure on this central component can make the whole system
inoperative. Also, scalability is an issue if for large systems the Autonomic Manager is
unable to provide the necessary computational power (Weyns, Malek, and Andersson,
2010).

To circumvent these issues, one may adopt a fully decentralized approach, such as
depicted in Figure 1.3b. Every component in the system has its own autonomic man-
agement logic which observes the component and its environment and makes required
changes and communications to the other components. While vastly improving the
flexibility and robustness that the centralized approach lacks, full decentralization of
adaptation is more difficult to set up and requires coordination among AM components
to ensure coherent global behavior (Kephart and Chess, 2003).

For these reasons, a hybrid approach is often preferred, where several layers of AM
components are used, the higher-level components monitoring and controlling several
lower-level components (see Figure 1.3c). Inter-level communication ensures the required
coordination between the various components of the system. Hybridization allows various
possible configurations, (Frey, Diaconescu, Menga, et al., 2015; Weyns, 2019; Krupitzer
et al., 2015) depending on the nature of the Managed Resources.

Smart homes often adopt either centralized or hybrid adaptation logic. An example
of a centralized system would be an assistant controlling various connected lights. The
assistant would discover and communicate with each newly installed light in the system,
and update the other lights accordingly. For larger scale systems, such as an entire smart
building, sub-systems are relatively autonomous in their self-adaptation capabilities, while
communicating with a higher-level central interface for building-wide adaptation, such
as policy changes or software updates.

1.4. PROPOSED SOLUTION AND OUTLINE OF THIS THESIS 21

MR MR MR MR

AM

(a)

MR MR MR MR

AM AM AM AM

(b)

MR MR MR MR

AM AM AM AM

AM AM

(c)

Figure 1.3: Different organizations of Autonomic Systems, as described by (Frey, Dia-
conescu, and Demeure, 2012) (a) shows a fully centralized autonomic system, while (b)
shows an entirely decentralized logic and (c) shows a hybrid approach. Each component
is able to receive goals at its level (green arrow), while exposing its state (red arrow).

Autonomic Managers typically follow the MAPE paradigm, which stands for Monitor
– Analyze – Plan – Execute (Kephart and Chess, 2003). It splits the self-adaptation
process into four distinct sub-operations. In hybrid approaches, it is possible that these
four operations are not accomplished by the same entities. For instance, in the system
depicted in Figure 1.3c, the top component operates the Analyze and Plan functions,
while the lower level implements the Monitor and Execute functions. Previous work in
Autonomic Computing also defines a variation of MAPE, named MAPE-K, where the
final K stands for Knowledge. This formalism embodies the fact that the Adaptation
Logic of an Autonomic System is able to represent its past observations, plans and
actions into a knowledge base, which can be used subsequently to improve performance
or response time (Weyns, 2019; Kephart and Chess, 2003).

1.4 Proposed solution and outline of this thesis

A first look at the nature of explanations and insights from System Architecture led to
some refinements to the main problem posed in this thesis. After having defined the
concepts and stakes of explanations, it appears that the goal of this thesis is to design a
system that is coherent with the main characteristics of explanations. In Chapter 2, we
provide a brief review of existing literature in Explainable AI. This overview highlights

22 CHAPTER 1. CURRENT OUTCOMES, STAKES AND GOALS

the variety of available techniques and the current lack for approaches able to handle
smart home systems.

In response, we identify and further define in Chapter 3 six main goals for a smart
home explainable system: i) it must provide contrastive explanations for surprising sit-
uations; ii) these explanations must be shallow, in the sense that they are composed
of few elements that are causally closely related to each other; iii) the explanatory rea-
soning must be transparent, clearly identifying which components are involved in the
process; iv) the explanatory system must provide self-awareness capabilities to handle
situations originating from self-adaptation of the autonomic system; v) the proposed
architecture must be generic to handle different devices, organizations, contexts and sit-
uations; and vi) data locality and privacy must be protected. We propose a generic
explanation generation algorithm, that we name D-CAS for “Decentralized Conflict-
Abduction-Simulation”. D-CAS identifies three main steps in an explanation process:
conflict detection, abduction-based propagation and simulation of counterfactuals.

AM

Temp
Controller

AM

Window

Controller

Spotlight

User
Interface

Local Explainable AI

Requests Responses

Figure 1.4: Principle of the architecture: a lower layer handles the diversity of resources
and handles adaptation to changes. It presents a standardized knowledge representation
to a higher-level layer, which coordinates the explanation reasoning by making requests.

We present the architecture of an explanatory system that can enable our D-CAS
algorithm in Chapter 4. The principle of this architecture is show in Figure 1.4. The
explanatory system is made of two layers. A low-level layer observes the autonomic
system components via their provided observation interfaces. This layer manages the
diversity of knowledge and nature of the underlying autonomic system by providing

1.4. PROPOSED SOLUTION AND OUTLINE OF THIS THESIS 23

standardized interfaces and knowledge representation. It manages self-adaptation at the
local level, hence its qualification as “local” Explainable AI. This allows a higher-level
layer, which is named the“Spotlight”to requests on-demand investigation on conflicting
states when required. The Spotlight follows the D-CAS process to determine which state
should be investigated. The trace of the process is then exposed via a user interface. In
this organization, the Spotlight has no precise knowledge regarding the system’s state
and logic: it simply routes requests and organizes the reasoning.

In Chapter 5, we detail an implementation of the smart home explanatory system.
The proof-of-concept demonstrator comprises a physical smart home model equipped
with various sensors and controllers hosted on dedicated embedded devices. A different
computer hosts the Spotlight and the user interface. This prototype allows to replicate
some of the examples presented in this introductory chapter to illustrate how D-CAS
can generate explanations meeting our criteria in typical use cases.

In Chapter 6, we tackle an issue that is specific to our target application of con-
trastive explanations in surprising or unusual situations. Given that few previous similar
occurrences exist, most statistical or knowledge-based methods may be unable to provide
relevant hypotheses for abductive inference. To allow our explanatory system to handle
these situations, we propose a novel method for abduction, based on event memorability.
We define a metrics of memorability based on Algorithmic Information Theory, and use
events that are identified as remarkable as causal hypotheses.

Chapter 7 concludes the thesis by reviewing our different contributions and proposing
perspective to continue the work towards autonomic and explainable smart home systems.

24 CHAPTER 1. CURRENT OUTCOMES, STAKES AND GOALS

Chapter 2

How to explain AI? A short review of
modern techniques

Summary

The concept of Artificial Intelligence (AI) formally appeared in the 1950s.
According to McCarthy,“intelligence is the computational part of the ability
to achieve goals in the world”. Since its inception, AI has enabled increas-
ingly difficult tasks to be automated: planning, language analysis, speech
generation, image recognition. . . As computers and AI models became more
powerful, they started to outperform human in some tasks. However, with
the increasing complexity, interpretability of AI models plummets, raising
concerns about the understanding of critical machine-made decisions in ar-
eas such as autonomous vehicles, medical assistance or crime prediction.
To answer these concerns, recent laws evoke a“right to explanation” for AI
users, stating explanation as a critical aspect for the future development of
AI.

Faced with this new challenge, the field of Explainable AI, or XAI, appeared in
the past decade. Driven by project calls from the Defense Advanced Research
Projects Agency (DARPA) as well as legal and economic incentives, many
different tools were developed to“open the black box”of complex AI models.
Due to the diversity of AI techniques, application domains, constraints and
possible objectives implied by the term“Explainable”, many XAI approaches
exist, most of them designed for a specific task and setup.

In this chapter, we briefly review the history of AI to understand the stakes
of explainability in the field. Then, we propose a short review of the current
state of XAI, based on widely accepted taxonomies of approaches. Notably,
we will focus on some of the most popular approaches to illustrate each of the
main categories in the taxonomy. We also address the problem of explanation
evaluation and the state of XAI in complex cyber-physical systems such as
smart homes. This overview highlights the existing lack for system-wide
explainability in smart homes.

25

26 CHAPTER 2. XAI: A SHORT REVIEW

2.1 General Context

2.1.1 Artificial Intelligence

Origins

The idea of machines being able to compete with humans on tasks considered to require
intelligence is older that the first computers. In the 18th century, a dulcimer-playing
automaton impressed royal courts throughout Europe by replicating the precise move-
ments of a human player (Cave and Dihal, 2018). While this automaton was merely
a mechanical prowess and far from being called “intelligent”, it showed the interest of
building intelligent-like machines. Later on, with the beginning of the industrial era,
the predominant use of machines influenced novels and the first movies: in Fritz Lang’s
Metropolis, humanoid robots feel and think as humans.

The development of computers in the wake of World War 2 opened up the possibility
of automated tasks. By using computational power, machines became able to compute
and solve equations, better and faster than any human. Faced with the supremacy
of machines in specialized task, but still being far from intelligence, a need for clearer
definition emerged. One of Computer Science’s founding fathers, Alan Turing, designed a
test which aims to discriminate intelligence. Stating that the ultimate test for a machine’s
intelligence was to fool a another intelligent being into being mistaken about its nature,
he designed what is now known as the Turing Test, or the “imitation game” (Turing,
1950). In this test, a human, the examiner, is conversing with the test subject using a
text terminal. The goal of the examiner is to discriminate whether he/she interacting
with a human or a machine, while the purpose of the subject is to make the examiner
thinks he/she is conversing with another human. According to Turing, an machine would
be considered intelligent if and only if it was capable of pretending to be a human to
another human, even for a few minutes.

In 1956, at the Dartmouth Conference, the term“Artificial Intelligence”was coined for
the first time (McCarthy et al., 1955; Moor, 2006; Norvig and Russel, 2010; Nils J Nilsson
and Nils Johan Nilsson, 1998). While this term is yet somehow unclear and its definition
varies from authors, a common consensual definition would be that AI is an array of
tools and computational methods by which machines perform tasks usually attributed
to intelligence. This comprises, but is not limited, to understanding and generating
Natural Language sentences, playing games, solving logical problems, recognizing images,
visualizing spatial objects.

“Good old-fashioned AI”

The first attempts of creating Artificial Intelligence focused on a logical, symbolical ap-
proach (Norvig and Russel, 2010). Based on mathematical logic, computers are able to
build a formal reasoning, going from premises to conclusion, planning and reacting to
sentences. For instance, natural language processing can be done using a grammatical
approach, by matching the various elements of the sentence with known syntactic el-
ements. Based on Chomsky’s research on formal grammars (Chomsky, 1956), natural
language parsing methods have been developed since the 1960s. The Cocke-Younger-

2.1. GENERAL CONTEXT 27

Kasami algorithm, that was discovered almost 20 years later, illustrates this paradigm:
it is capable, in polynomial time, of analyzing the correctness of a sentence within a
context-free grammar and give the corresponding syntax (Harrison, 1978).

A notable example of symbolic AI is SHRDLU (Norvig and Russel, 2010; Winograd,
1972). Written by Winograd in the early 70s, this program consists of a small world
populated with cubes, spheres, cylinders and pyramids of various colors. The program
also comprised a text interface with which a user could interact, asking SHRDLU to
describe the scene (“the red cube is on top of the red cylinder, left of the green sphere”) or
to execute actions (“Q: put the red cylinder on top of the sphere. A: This is not possible,
as the red cube is already on top of the cylinder.”). At the time, SHRDLU was stunning
in the sense that it seemed able to fully appreciate the logic of its geometric world and
understand its user’s requests. However it remained limited in its comprehension by the
simplicity of the interactions, and was never scaled to a practical application.

As the performance of computers increased, real-life applications of AI became pos-
sible. New AI systems emerged, which were able to plan and make decisions in a specific
but complex area of knowledge. These systems are named“expert systems”as they rely
on three main distinct elements: a pre-established knowledge base, an inference engine
and a user interface (Gill, 1995): see Figure 2.1. The knowledge base is directly imported
from human expertise. Then, the machine can take advantage of its raw computational
power to quickly infer consequences and answers in predefined contexts. In the 80s,
expert systems proved useful in technical applications such as engineering (Maher, 1987;
Rahman and Hazim, 1996) and health (Abu-Nasser, 2017).

Figure 2.1: Principle of an expert system: the domain-specific expertise is located in the
knowledge base, while the inference engine and the user interface are kept independent.

In hindsight, symbolic AI is often referred to as“Good old-fashioned AI”(Norvig and
Russel, 2010), emphasizing its early time of development. While sometimes considered as
old-fashioned, it still remains in use today, often used for meta-levels of more complex AI
systems and coordination. This hybridization is particularly relevant in complex systems
such as autonomous driving (Ning et al., 2021). In our approach, we adopt this hybrid
view (see Chapter 3): our high-level explanatory engine is based on symbolic AI, resulting
in a transparent approach, while the lower level tasks of analyzing data and detecting

28 CHAPTER 2. XAI: A SHORT REVIEW

conflicts, causes and consequences are left unspecified, allowing the implementation of
data-driven approaches.

Machine Learning

As the availability of data became higher and the processing performance more conse-
quent, the philosophy of AI switched from expert systems to machine learning. Instead
of relying on prerecorded human expertise, machines are initialized with a generic model
which parameters can be tweaked based on acquired data. The main appeal of this ap-
proach is that automated adjustments can be made at runtime as new data is collected
and used to update the model’s parameters (Bishop, 2006).

Current approaches to Machine Learning (ML) are based on statistics and the esti-
mation of parameters. They are divided in two main categories: supervised and unsu-
pervised. In supervised learning, the system considers observations as samples (X, Y) of
an unknown random phenomenon and tries to best estimate future outputs by searching
the best approximation Y = f(X) given currently available data. Example 2.1 illus-
trates the general idea of ML in a simple regression problem, meaning that the target Y
is continuous. Classification, the other major kind of ML problem, considers situations
where Y is discrete. Contrary to supervised learning, where the target y is known at
learning time, unsupervised learning models problems where only X is available to the
system. An example of an unsupervised learning task is clustering: the machine learns
clustering criteria that can be later used for class predictions.

Example 2.1

Without knowledge of physics or thermodynamics, we develop a program to predict
the mean temperature of a city based on its location (latitude and longitude) and
its altitude. We create a training set consisting of measures from many known
cities, resulting in the input set Xtrain = {(latParis, longParis, AltParis), . . . } and
the corresponding target values Ytarget = {TParis, TLondon, . . . }. Machine Learning
proposes to find the function f which minimizes the prediction error for these
known examples, then use f on other cities. Different functions and parameters
can be used, resulting in many various models. For instance, simplistic model will
only consider the altitude of the city and find the linear or exponential relation
which best approximates gathered values, T = f(alt). More complex models will
integrate the position of the city as well, to improve the prediction performance,
at the cost of the simplicity of the model, T = f(lat, long, alt).

Often, Machine Learning is about finding a compromise between using over-complex
models that best approximate the available data but show poor generalization capabilities
(also known as overfitting) (Goodfellow, Bengio, and Courville, 2016b) and simpler but
less accurate models. Since the set of possible functions f and parameters one could use
is enormous, many different approaches exist which focus on families of functions, for
which computable estimators exist: Linear Regression (Maulud and Abdulazeez, 2020),
Support Vector Machines (Suykens and Vandewalle, 1999) (SVM), K-Mean Cluster-
ing (Hartigan and Wong, 1979),

2.1. GENERAL CONTEXT 29

(a) (b)

Figure 2.2: A neural network. A neuron (2.2a) takes a n-dimensional input, has a n-
dimensional parameter W = (w1, . . . , wn) and returns y = f(X ·W) = f (

∑n
i=1 xiwi),

where f is a non-linear activation function. In a network, many of these neurons are
organized in layers. Each layer’s inputs are the outputs of the preceding layer (2.2b).
This kind of configuration is said to be fully-connected, as each neuron is connected
to all neurons in the previous and following layers. Various other neurons and networks
topologies exist (Goodfellow, Bengio, and Courville, 2016a).

More recently, a branch of Machine Learning was particularly scrutinized due to its
performance: Deep Learning (Goodfellow, Bengio, and Courville, 2016a). This approach
emerged with the popularization of Neural Networks, which are shown in Figure 2.2.
Networks are said to be“deep”when they comprise many hidden layers, which can result
in gigantic models with billions of parameters. While the perceptron neuron model is old
and can be traced back to the early ages of Computer Science, the popularity of Deep
Learning came in the early 2010s only (Krizhevsky, Sutskever, and G. E. Hinton, 2012).

This recent popularity is mainly due to three factors. First, Deep Neural Networks are
very flexible: their generic principle allows for all continuous functions to be approximated
using neural networks (Goodfellow, Bengio, and Courville, 2016a). Second, despite the
enormous number of possible parameters (the GPT-3 network from OpenAI requires
around 175 billion parameters (Floridi and Chiriatti, 2020)), recent research found effi-
cient algorithms to find optimal parameters based on Gradient Descent (Kingma and Ba,
2014). In addition, techniques have emerged to circumvent frequent problems encoun-
tered during learning (vanishing gradient). These heavy computations are made possible
by the development and use of Graphical Processing Units (GPU) which are able to han-
dle highly-parallelized operations and drastically reduce learning time, allowing from more
complex and more accurate networks to be developed. Third, Deep Neural Networks,
given their complexity, require an enormous amount of data to be properly trained. They
benefited from the emergence of connected devices, improvements to data collection and
processing techniques, storage and sharing devices, that made possible the construction
of adequate datasets (Goodfellow, Bengio, and Courville, 2016a).

Some of the most impressive recent achievements of AI were done using neural net-
works. Among notable examples, we can cite AlphaGo, which was the first machine to
beat a world champion at the game of Go, a game that has for a long time been thought

30 CHAPTER 2. XAI: A SHORT REVIEW

out-of-reach of AI given its complexity (Silver et al., 2017). Many applications of im-
age analysis and manipulation also benefit from Deep Learning, for instance to improve
image quality in video games using real-time de-noising and upscaling (Burgess, 2020).
Popular Deep Learning tasks also include face recognition and image classification (Patil,
Pandey, and Visrani, 2021; Goodfellow, Bengio, and Courville, 2016a) or Natural Lan-
guage Processing (NLP). Here, the recent development of the Transformer layer () led
to models such as OpenAI’s GPT-3 or Google’s BERT that demonstrate impressive text
generation and analysis capability (Floridi and Chiriatti, 2020). The potency of Neural
Networks opens future developments such as autonomous driving, since they offer real-
time analysis of sensor and camera data decision-making, mostly using recurrent Neural
Networks (Grigorescu et al., 2020).

2.1.2 Explainable Artificial Intelligence

Origins and goals

Over the decades of AI developments, the question of explainability has been an issue.
The development of expert systems and their applications led to questioning the ability
of these systems to be understood by their users. (Swartout, 1983) proposes in 1982 the
XPLAIN system to create explanations by exposing some of the rules and knowledge used
by the inference engine (Gill, 1995). However applications remained limited, due to the
difficulty of maintaining the expert knowledge base and the limited domains these systems
were used for, which reduced the need for explanations as most of their users already had
proficient knowledge in the area. In 1992, the SWALE project (SWALE Project 1992;
Leake, 2014) used case-based reasoning to provide explanations for mysterious events
such as the sudden death of a racehorse named Swale. Despite its success, no major
research followed, and explainability in AI remained a confidential topic.

However, the unprecedented growth in complexity, capability and usage of AI in
the 21st century brought forth new questions of explainability, fueled by concerns re-
garding the legal accountability of AI incidents (Doshi-Velez, Kortz, et al., 2017),
data privacy (Manikonda, Deotale, and Kambhampati, 2018), security (Hossain et al.,
2019) or performance (N. Li et al., 2020). In 2016, a major call for project from the
DARPA (DARPA, 2016) resulted in a major resurgence in research interest for Explain-
able AI, or XAI. Figure 2.3 shows this effect in the number of XAI-related publications.
The DARPA project call notably introduces model interpretability, privacy, legal respon-
sibility among the goals of XAI. It presents a general principle, depicted in Figure 2.4
to highlight the distinction between standard AI and XAI: an explainable model is the
result of the learning process, which can then be scrutinized by the end user.

XAI appears to be an important element for the development of future AI methods, be
it “Trustworthy AI” (Wing, 2020) or“Robust AI” (Marcus, 2020): both visions integrate
explainability as a key feature to enable trust between a system and its user. Trust was
also cited as a motivation for the pioneering developments of XAI (Ribeiro, Singh, and
Guestrin, 2016; DARPA, 2016). However, the relation between the explainability of an
AI system and an increase of trust is not yet confirmed. While some studies show that

1https://ieeexplore.ieee.org, accessed October, 21st 2021

https://ieeexplore.ieee.org

2.1. GENERAL CONTEXT 31

2013 2014 2015 2016 2017 2018 2019 2020 2021
0

100

200

300

400

500

600

Publication Year

N
um

be
r

of
 P

ub
lic

at
io

ns

Figure 2.3: Number of publications found on the online library IEEEXplore1 related to
keywords“XAI”,“Explainable AI”and“Interpretable AI”. As all publications were not yet
registered for year 2021, the corresponding number is temporary.

providing explanations to a user lowers the cost of mistakes (Glass, McGuinness, and
Wolverton, 2008), others find that the correlation is unclear, varying depending on the
situation and the user (Dhanorkar et al., 2021). In (Nothdurft, Heinroth, and Minker,
2013), the authors find that in some applications, the efficiency of the AI agent is the
prime factor of trust. While we keep in mind these objections, we will, for the rest of
the thesis, consider explanation as a desirable feature for AI systems, as this appears to
be the general trend of the industry.

Terminology of XAI

With the important number of publications related to XAI, as shown by Figure 2.3, a
variety of terms emerged to designate closely related yet different concepts, such as
“explainable”,“interpretable”or“transparent”. These terms are often defined in literature
reviews with some minor differences between authors (Arrieta et al., 2020; Adadi and
Berrada, 2018; Doran, Schulz, and Besold, 2017; Rojat et al., 2021; Mohseni, Zarei,
and Ragan, 2021). We will settle on using the same notations as (Arrieta et al., 2020).
Understandable AI is regarded as the target of XAI: an understandable system is intel-
ligible to its human user as a whole, without further need to detail its inner algorithmic
or data processing units. By contrast, an interpretable AI model is a model that is, by

32 CHAPTER 2. XAI: A SHORT REVIEW

Training
Data

Machine
Learning
Process

Explainable
Model

Interface

Task

Output

Explanations

Figure 2.4: General principle of XAI: an explainable model is learned from training
data. Then, as tasks are given by the user, this model is able not only to produce an
output, but also to provide explanations for its decisions via an interface. Figure inspired
from (DARPA, 2016)

design, observable and whose inner workings are understandable to a human user. On
the other hand, an explainable model is an AI model which can generate explanations,
i.e. reasons and motivations for a given decision. Note that with these definitions, an
explainable system offers post-hoc understandably.

2.2 An overview of current XAI approaches

Given the variety of challenges and AI methods exposed in the previous sections, many
different XAI solutions have been designed to tackle different aspects, challenges of the
question. Figure 2.5 gives an incomplete overview of the different kinds of approaches one
might use to explain an AI agent (Arrieta et al., 2020; Biran and Cotton, 2017; Guidotti,
Monreale, Ruggieri, Turini, et al., 2018; Papastratis, 2021; Mohseni, Zarei, and Ragan,
2021). This classification’s first distinction is based on the time of occurrence of the
explanation: post-hoc approaches provide explanations after the decision is made, i.e.
have access to the questioned point input and output to create their explanation, while
explainable by design approaches consider explainability of their model before making
decisions.

While the taxonomy presented in Figure. 2.5 is directly inspired from (Arrieta et al.,
2020), we want to emphasize that many methods do not fall clearly into one category,
and distinctions may be blurry. For this reason, (Adadi and Berrada, 2018) proposes an
alternate classification, for instance differentiating the scope of the XAI method from its
approach (intrinsic or post-hoc) and its specificity (model-specific vs model-agnostic),
thus providing a 3-dimensional taxonomy of methods. The scope of an XAI method can
be either: i) local, the model targets the explanation of single data points, e.g. justifying
why a specific image was classified as a cat; or ii) global, the method tries to make the
entire model interpretable, e.g. proposes a visual representation of the reasoning and of
the criteria used by the AI agent to categorize images.

2.2. AN OVERVIEW OF CURRENT XAI APPROACHES 33

Figure 2.5: A taxonomy of XAI approaches.

2.2.1 Interpretable by design

Aside from proposing tools to generate post-hoc explanations for black-box AI models,
XAI also advocates for the development and use of so-called transparent models (i.e.
models which parameters are visible to the user) and interpretable models (i.e. whose
inner working and decision is understandable to the user) (Arrieta et al., 2020; Adadi
and Berrada, 2018). The original call from DARPA (DARPA, 2016) was not specific
about the tools: it only emphasized the need for having access to understandable AI
models.

Examples of interpretable models

With regards to the recent history of AI and Machine-Learning, many attention is cur-
rently drawn towards Deep Neural Networks, which are inherently complex and non-
interpretable. However, this is not representative of the entirety of ML models: some of
them can be apprehended, even by a relatively inexperienced human user (Arrieta et al.,
2020). Notably, this is the case for rule-based models, which differ from the old-school
expert systems in how they acquire knowledge: instead of being recorded by a human
expert, their knowledge base is built using data extraction. While the extraction process
can be complex to understand, the resulting rule base consists of logical rules that can
be written in human-understandable fashion (Swartout, 1983).

Linear regression are among the simplest regression models in Machine Learning,
and are often used as typical examples for novices (Bishop, 2006). As they consist in
simple parameter optimization of linear combinations of variables, their predictions can be

34 CHAPTER 2. XAI: A SHORT REVIEW

easily understood by users versed in mathematics. Decision Trees are another popular
ML model that is considered interpretable (Safavian and Landgrebe, 1991; Guidotti,
Monreale, Ruggieri, Turini, et al., 2018). They consist of applying successive conditions
on variables, such as threshold comparisons, thus resulting in a tree-like branching of
tests where leaves represent the final class attribution. As these models apply successive
tests, they are interpretable by human users.

k-Nearest Neighbors (or k-NN) models are a very popular classification method whose
principle is intuitive enough to be considered interpretable (Bishop, 2006; Zhang, 2016).
To assess which class a point belongs to, the algorithm observes the k nearest neighbors
of that point. The majority class among these neighbors is then attributed to the point.
While the metrics used to define the neighborhood can be hard to grasp, the results of
k-NN clustering are often well understood (Arrieta et al., 2020).

A trade-off between interpretability and performance?

Figure 2.6: A general trade-off may appear between interpretability and performance of
a model: the higher the performance, the more numerous the parameters, the less inter-
pretable the model. Models considered as black-box are shown in red, while interpretable
models are shown in yellow.

A common intake on interpretable models is that there exists some kind of trade-off
between interpretability and performance (DARPA, 2016; Nesvijevskaia et al., 2021).
Figure 2.6 depicts illustrates this trade-off, according to (Arrieta et al., 2020). This

2.2. AN OVERVIEW OF CURRENT XAI APPROACHES 35

phenomenon comes from the correlation between the simplicity of a model and its in-
terpretability: the less parameters, the easier it is to understand a model but the less
accurate it is. This observation is coherent with the general trend of AI where Deep
Neural Networks outperform other methods in popular tasks such as image recognition
or NLP, resulting in opaque models relying on millions of parameters.

However, as noted by (Rudin, 2019), this trade-off is not always true and can lead
to the use of overly complex models, favored with the help of explainable techniques
to improve their acceptance. For some cases where structures are present in the data,
simpler models can yield equivalently good, if not better results. Think for instance of a
linear regression opposed to a Depp Neural Network: for problems where the underlying
structure is linear, the linear regression model can outperform the neural network while
being far more interpretable.

2.2.2 Post-Hoc Explanations

Post-hoc explanations occur once the decisions is made by the AI agent. As such,
they serve as a diagnostic tool and aim to identify the different criteria which were of
prime importance for the decision. Historically, this kind of XAI has been the first to
boom in 2016, with major contributions such as LIME (Ribeiro, Singh, and Guestrin,
2016) or SHAP (Lundberg and S.-I. Lee, 2017). In this category, different strategies
exist, depending on the task to be explained, and the model used for the decision.
Some approaches are model-agnostic(Arrieta et al., 2020; Guidotti, Monreale, Ruggieri,
Turini, et al., 2018), meaning that they do not depend on the internal architecture of the
model, but rather rely on observations of inputs and outputs to generate explanations.
The opposite category is model-dependent XAI, which uses knowledge about the model
to build their explanation. Model-agnostic methods are often regarded as being superior,
given they are designed to be generalized to different models and/or applications (Adadi
and Berrada, 2018). One can also argue that local explanations, as they are taking into
account the context of the specified questioned decision, are closer to the notions of
explanations presented in Chapter 1.

Feature Relevance

When a black box model classifies a data point in a given category, what were the most
important features in that decision? Even if this is not a complete explanation, having
access to this kind of information provides helping tools to apprehend and understand
how the model works. To this extent, numerous approaches propose to highlight the
feature that appear as the most relevant a model, either locally or globally. These
techniques are referred to as feature relevance approaches in reviews (Arrieta et al.,
2020; Adadi and Berrada, 2018).

A notable feature relevance approach is LIME (Ribeiro, Singh, and Guestrin, 2016),
which stands for Local Interpretable Model-agnostic Explanations. LIME proposes to
study the importance of features by generating points in the neighborhood of the ques-
tioned input and see the outcome of the model on these new points. The results are
used to build a simple local approximation of the model, which can then be used to

36 CHAPTER 2. XAI: A SHORT REVIEW

(a) (b)

(c)

Figure 2.7: Principle of LIME. To investigate why the circled data point was categorized
as blue (2.7a), LIME samples points around it and classifies them using the same model
(4-pointed stars in (2.7b)). This results in a local approximation of the decision border,
represented as a dashed line in (2.7c). This approximated border can then be used to
identify the most relevant variables for the classifier in this area.

understand the impact of the different features. Figure 2.7 illustrates the principle of
this approach.

Another notable feature relevance approach is SHAP (Lundberg and S.-I. Lee, 2017).
This technique proposes to study the Shapley values of the different features used by the
model. Shapley values are a concept from game theory (Shapley, 1953) where they are
used to quantify the relative importance of the contribution of one player in a team for
cooperative games. SHAP computes a similar metrics for variables in AI models and rank
features according to this weight. The application of SHAP can result in either a local
or a global explanation, as different domains can be used for computations (Lundberg
and S.-I. Lee, 2017).

The output of feature relevance methods can be displayed visually, especially when the
input is an image for tasks such as image classification. In this case, feature importance
can be encoded as a heatmap over the original input image highlighting which areas
or structures where prominent in the decision of the classifier. Both SHAP and LIME

2.2. AN OVERVIEW OF CURRENT XAI APPROACHES 37

propose such visual representations. Figure 2.8a illustrates an example output of LIME
visualized for an image classification task1: the highlighter area corresponds to the most
important features.

Other feature relevance approaches fully embrace the visual representation: it is
the case of GradCam (Selvaraju et al., 2017), which, contrary to the aforementioned
methods, is limited to neural networks. Grad Cam proposes to visualize the gradient
of the parameters of a neural network for image classification and use it as a tool to
highlight areas of interest in the picture. Figure 2.8b shows the output of GradCam on
an image classification task2. Note that, like LIME for image classifiers, GradCam can
be considered as visualization-based, depending on the taxonomy (Adadi and Berrada,
2018).

(a) (b)

Figure 2.8: Visual outputs of feature relevance approaches. (a) Visualization of the zone
detected by LIME as the most relevant for the classification of the image as a cat. (b)
Exposition of the gradient value using GradCam: areas with higher gradient value (in
red) are supposedly more important for the model.

Visualization

Visualization of the data and the model can be key in understanding how an AI agent
makes a decision. Data visualization techniques have been popular in Machine Learning
before the development of XAI in 2016, as they provide an appealing and useful tool
for ML practitioners to represent their model and illustrate their proposition in articles
and textbooks (Bishop, 2006). Notably, with Neural Networks, visualization of layers,
similar to what is presented in Figure 2.2b can quickly convey information regarding the
architecture of the network. For model-specific, visualization of the different activated
neurons in each layer, i.e. neurons whose output value is high, is used as explanation

1LIME code from https://github.com/marcotcr/lime
2GradCam code from https://github.com/samson6460/tf_keras_gradcamplusplus

https://github.com/marcotcr/lime
https://github.com/samson6460/tf_keras_gradcamplusplus

38 CHAPTER 2. XAI: A SHORT REVIEW

for the model’s output (Yosinski et al., 2015). Overall, most visualization techniques are
model-specific, or data-specific: tools designed for neural networks are not portable to
SVMs.

However, in some cases, visualization of the data can be used to explain the deci-
sion made by a model. For instance with classification tasks, a visual representation of
tool like t-SNE or its derivatives can provide low-dimensional visualization of complex
data (Maaten and G. Hinton, 2008). This can be sufficient to explain the classifica-
tion of points as belonging to a given class, as the cluster organization appears in the
representation (Chatzimparmpas, Martins, and Kerren, 2020).

A notable visualization-based XAI technique is Individual Conditional Expectation, or
ICE (Goldstein et al., 2015). ICE proposes model-agnostic visualization of the relations
between features of the model. It improves the existing Partial Dependence Plots (PDP)
introduced in (Friedman, 2001): while PDP only shows the evolution of the average
outcome with regards to the parameters, ICE offers a superposition of plots for different
points, showing relations that would remain unnoticed in the aggregated average.

Model Simplification

Aside from feature relevance and visualization-based methods, a third approach to post-
hoc explanation generation is to rely on model simplification. Here, the general principle
is to approximate the black-box AI model with an interpretable secondary model (Arrieta
et al., 2020; Ras, Gerven, and Haselager, 2018). The variety of possible interpretable
models (see Section 2.2.1) offers numerous possibilities of approximation.

As neural networks are often considered the most complex models (Adadi and Berrada,
2018; Castelvecchi, 2016), many methods propose to approximate them with simpler
models. (Confalonieri et al., 2019) uses a rule-based ontology to approximate classifica-
tion results by a deep network. Diverse rule-extraction techniques exist depending on the
target model (Ras, Gerven, and Haselager, 2018). Others rely on building decisions trees
from neural networks (Augasta and Kathirvalavakumar, 2012) as they are considered po-
tent and generic yet interpretable models (Safavian and Landgrebe, 1991), especially for
classification tasks.

Other model simplification approaches are model-agnostic. For instance, (S. Tan
et al., 2018) relies on distillation to train a secondary interpretable model with results
from the black-box AI agent. LIME can also be considered as a model-simplification
approach: in its process, it first uses a local linear approximation of the model to identify
its most notable feature (see Figure 2.7c where the decision border for the linear model
are displayed). A variation of LIME, named aLIME for anchor-LIME (Ribeiro, Singh, and
Guestrin, 2018) produces a local rule-based decision model approximation based on the
same principles as LIME.

Examples, Counterexamples and Counterfactuals

Producing examples or counter-examples for a decision is a technique that is often used
by humans when informally asked to explain a decision or a phenomenon (T. Miller,
2018; Hoffman, Mueller, and Klein, 2017). Some XAI methods offer to use this ap-

2.2. AN OVERVIEW OF CURRENT XAI APPROACHES 39

proache to explanations: instead of focusing on finding causes, relevant parameters or
equivalent interpretable models, they identify meaningful examples, counterexamples or
counterfactuals that they present to the user, letting him/her understand the logic of
the classification based on this information.

Prototypes and criticisms approaches (Kim, Khanna, and Koyejo, 2016) offer to yield,
for each class of an AI model, an example illustrating best the class (i.e. the prototype
of that class) and a criticism, that is an instance of a different class closest to the point.
For a point x classified as belonging to the class c, the method will give as an explanation
the point considered most representative of the class c, as well as a point from a different
class c′ that is the closest to x.

(a) (b)

Figure 2.9: The difference between prototype, criticism and counterfactual. (2.9a) for
a given point (circled), we provide a prototype (dark blue) and a criticism (dark red),
respectively a representative instance of the selected class and a most-similar-looking
instance of another class. (2.9b) for a given point, the counterfactual (light dashed)
is a hypothetical point which would have been classified differently while only slightly
different from the original.

Counterfactual XAI approaches differs from the exhibition of examples and coun-
terexamples (Verma, J. P. Dickerson, and Hines, 2021). Here, rather than finding a
previously seen datapoint that was classified the same (or differently in the case of coun-
terexample), the goal is to find a hypothetical point that has not been observed, that
would be classified differently and that is as close as possible from the original point.
This notion relates to the already mentioned logical understanding of counterfactuals
(see Section. 1.2.2 and (Lewis, 2013)).

Formally, consider a model f an input point x from a manifold X , such that f(x) = y.
For this point, an counterfactual xcounter for a class y′ ̸= y is defined as:

xcounter = Argmin
x′

max
λ

λ(y′ − f(x′)) +D(x, x′) . (2.1)

40 CHAPTER 2. XAI: A SHORT REVIEW

The first term of the minimized expression accounts for the desire that the classification
of xconter to be as close as possible to y

′, the second term accounts for the minimization of
the distance to the original point x (Wachter, Mittelstadt, and Russell, 2017). However,
the definition of this distance D is not easy, similar to the issue with defining the notion
of “closest” possible worlds in (Lewis, 2013). (Verma, J. Dickerson, and Hines, 2020)
accounts for this difficulty by describing a more complex version of Equation 2.1:

xcounter = Argmin
x′

max
λ

λ(y′ − f(x′)) + d(x, x′) + γ(x, x′) + l(x′,X) , (2.2)

where d is a standard distance (Euclidean, . . .), γ accounts for the sparsity of the
difference (how many features differ between x and x′) and l for the distance from
xcounter to the original data manifold X (even though xcounter is not an actual example,
it should be plausible). Additional terms may be included, to account for other possible
features of the counterfactual, such as feature mutability.

(Verma, J. Dickerson, and Hines, 2020) provides an overview of different possible
counterfactual generation approaches. Among them, (Wachter, Mittelstadt, and Russell,
2017) is a model-agnostic method, (Barredo-Arrieta and Del Ser, 2020) focuses on
plausible adversarial examples to assess the robustness of Neural Networks, (Rathi, 2019)
uses SHAP input to generate counterfactuals.

Counterfactual approaches are slightly different: instead of giving an existing point
belonging to a different class, they output the differences that would have made the
classifier change its decision regarding the given input point. (Wachter, Mittelstadt, and
Russell, 2017) proposes to generate such counterfactual examples to understand the
behavior of models in a model-agnostic fashion. (Barredo-Arrieta and Del Ser, 2020)
uses counterfactuals to generate plausible adversarial examples in order to assess the
robustness of Neural Networks.

2.3 Evaluation of XAI methods

The main motivations for XAI are presented in (Mueller et al., 2019) and span over many
fields. This and the fact that, as we have seen in the previous chapter, explanations
are complex matter, makes precise evaluation and comparison of XAI methods a hard
topic (Adadi and Berrada, 2018). For instance, consider the examples from Figure 2.8:
are they good explanations for the classifier’s decision? Which level of explanation are
they targeting (Maxwell et al., 2020b)? After a short survey, (T. Miller, Howe, and
Sonenberg, 2017) finds out that most XAI papers fail to integrate the social science
aspect of explanations, while this is considered a major part of the topic (T. Miller,
2018). Similarly, (Adadi and Berrada, 2018) estimates that only around 5% of XAI
literature address the issue of evaluation and identifies this as on of the major axes of
development in the future of the field. In fact, evaluating explanations is an inherently
difficult task, as the objective and the perception can vary depending on the audience (T.
Miller, 2018; Leake, 2014; Maxwell et al., 2020b).

To this matter, (Doshi-Velez and Kim, 2017) introduces three different evaluation
level to estimate the performance of an XAI method with regards to different aspects,

2.3. EVALUATION OF XAI METHODS 41

which we present in descending cost order. First, “application grounded evaluation” re-
quires humans evaluating the interpretability of the model on real world application. This
level is regarded as costly (Antunes et al., 2008) as it requires human expert evaluation on
often complex end applications, but it arguably provides the best evaluation framework.
Second, “human-grounded”evaluation relies on humans judging the performance of the
XAI system in simple tasks and toy setups. Third, “functionally-grounded” evaluation
uses both automatic metrics and proxy tasks to assess the XAI’s performance.

Since “functionally-grounded” evaluation is the cheapest, it is mostly used in XAI
literature to compare the performance of different approaches using objective metrics
from Machine Learning and Statistics: precision, accuracy, stability (Ribeiro, Singh, and
Guestrin, 2016; Schlegel et al., 2019). While not always representative of the human
understanding of explanation, these evaluations are useful to provide insight on some
approaches: for instance, (Schlegel et al., 2019) shows that LIME is unstable, being
sensitive to small perturbation in the data, and therefore cannot be suited for some
applications.

Examples for“human-grounded”evaluation frameworks can also be found. Often, hu-
man subjects are asked to choose between two or more explanation rationales in specific
toy scenarios to evaluate the relative performance of the explaining system. (Nothdurft,
Heinroth, and Minker, 2013) finds that explanation dialogues can improve user trust
towards a machine. (Larasati, De Liddo, and Motta, 2020) surveys 48 novice people
to evaluate a cancer diagnosis posed by a machine expert, depending on the kind of
justification provided: thorough, contrastive, descriptive, etc.(Cai, Jongejan, and Hol-
brook, 2019) tests the impact of visual examples in a simple task: users where asked to
draw an object, and a model had to recognize it. The experiment compares“normative”
examples, i.e. prototypes of the selected class, and “comparative” examples, i.e. proto-
types of the closest match classes. The study finds that in cases of misclassification, the
normative explanation provides visible improvement in the user’s understanding of the
misclassification.

Human-based evaluation of XAI methods requires guidelines and common tools to
provide objective comparison. (Gentile, 2021) introduces two metrics to evaluate human
perception of generated explanations: i) proxy tasks, i.e. a scenario in which the test
subject is asked to reproduce the result of the AI agent; ii) mental models, i.e. the test
subject is asked to build and represent a model of the inner workings of the agent’s
behavior. (Mohseni, Zarei, and Ragan, 2021; Tintarev and Masthoff, 2011) identify
additional criteria: computational metrics (as already presented); explanation usefulness
and satisfaction; impact on trust and reliance. Similar criteria are proposed by (Sokol
and Flach, 2020). (Mohseni, Zarei, and Ragan, 2021) consider that, as evaluation of
explanation by humans is the prime goal of XAI, it is necessary to include it to the design
process of an XAI system. They propose general guidelines for designing explainable
systems to integrate these considerations. Recently, Human-Centered XAI (HCXAI)
emerged as a response for these issues, by integrating human users at the center of the
design and explanation process of the system (Chaput, Cordier, and Mille, 2021; Ehsan
and Riedl, 2020).

42 CHAPTER 2. XAI: A SHORT REVIEW

2.4 XAI and complex cyber-physical systems

Most XAI works currently do not address the particular case of complex cyber-physical
systems, such as smart homes. Instead, they focus on “opening the black box”, i.e.
explaining the decision of a single AI agent using a given model (Adadi and Berrada,
2018; Arrieta et al., 2020; Rajani and Mooney, 2018). This follows the initial goals of
XAI from the 2016 project call (Mueller et al., 2019; DARPA, 2016) which explicitly
introduced XAI as a tool to improve the interpretability of black-box model AI agents.

However, as we have seen in Chapter 1, smart homes are complex cyber-physical
systems. They are composed of many interacting agents which collectively achieve high-
level user-defined goals (Ricquebourg et al., 2006; Mekuria et al., 2019). In smart
homes, the difficulty of explanation does not come primarily from the complexity of the
AI models used in components: as (Mekuria et al., 2019) observes, most of reasoning
smart home systems rely on rule-based or other interpretable system, at the scale of a
component. Rather, the difficulty arises form the multiplicity of sensors, actuators and
controllers. We illustrate this in Example 2.2: a problematic situation originates from
conflicting goals between a CO2 regulation system and a temperature controller. In this
situation, there is a need for system-wide explanations, a task that is not yet commonly
addressed in XAI literature.

Example 2.2

In a smart home, a room is equipped with a smart heater and a connected window,
a thermometer and a CO2 sensor. The smart heater has a built-in model of the
room’s temperature, learned using past data, that it uses to compute the adequate
power to use to maintain a given temperature within the room. At the same time,
the connected window, using its own model of the CO2 concentration in the
room, opens up, leading the temperature of the room to unexpectedly decrease.
Even though the model of the thermometer is understandable, there is a need for
another level of explanatory coordination within the smart home to generate the
following explanation to the user: “the room is cold because a window opened to
avoid high CO2 concentration”.

Autonomous cars and other self-driving vehicles pose a relatively similar problem to
explainability, as they are complex CPS (Zablocki et al., 2021; Grigorescu et al., 2020).
Furthermore, given the high cost of eventual mistakes and the possible legal concerns
regarding the responsibility of the car occupant (Doshi-Velez, Kortz, et al., 2017), they
are considered a challenging environment for XAI. Most of the explainability research,
though, focuses on the black box model driving the car, i.e. the single AI agent that
uses as input the images and data from cameras and sensors and outputs a decision
(throttle, braking, direction) (Zablocki et al., 2021). While fulfilling the goal of identi-
fying reasons for an accident, this approach leaves aside issues that can arise in complex
systems: failure of one or more components, conflicting information between sensors,
etc. Autonomous vehicle, however, differ from smart homes as their configuration does
not undergo changes during its lifespan (unless some supervised maintenance where
reconfiguration is handled by a human expert).

2.4. XAI AND COMPLEX CYBER-PHYSICAL SYSTEMS 43

Integrating explainability to self-adaptive systems remains a topic that has not yet
been entirely investigated, as few existing works address self-adaptive specific issues for
explainability. (Blumreiter et al., 2019) introduces the MABE-Ex framework, a deriva-
tive from the MAPE model that is commonly found in self-adaptive systems (Kephart
and Chess, 2003). MABE-Ex, which stands for Model-Analyze-Build-Explain adds an
additional layer of an explanatory model on top of an otherwise classic MAPE cycle.
They illustrate their approach on an autonomous vehicle, taking into consideration the
complex nature of the system. However, they do not provide any implementation ar-
chitecture. Another topic for explanation in complex CPS, presented by (Welsh et al.,
2014), is to consider self-explanation as an additional self-adaptation property that re-
quires specialized architectural features to be enabled.

In this thesis, our goal is to propose an overall method to bring explanation into self-
adaptive cyber-physical systems. Since XAI proposes a multitude of possible approaches
to explain local agent decisions, our work will focus on proposing a system-wide archi-
tecture and algorithms to aggregate the different capabilities of individual components
and integrate them into a full-fledged explanatory system.

44 CHAPTER 2. XAI: A SHORT REVIEW

Chapter 3

An approach to self-explanatory
smart homes

Summary

As current XAI research focuses on developing interpretable models, no suit-
able solution exists to generate explanations at the scale of an entire complex
cyber-physical system such as a smart home. The development of an adapted
explanatory system faces multiple difficulties, among which the heterogeneity
of components, the scope and goal of the explanation, the adaptation and
integration of runtime changes in the house environment or in the control
system.

To tackle these issues, we draw a parallel between explanations and argu-
mentative or deliberative reasoning. Both processes are based on an initial
contrast between an expected state of affairs and the actual observation.
Previous work proposed to generate an argumentative dialogue as the trace
of a conflict-solving cognitive process. We build our solution based on such
a process. This allows to put user interaction at the center of the system.

The starting point of our method is named CAN. It divides argumentative
reasoning into three main steps to which it owes its name: Conflict, Abduc-
tion and Negation. It is a centralized iterative process that propagates the
initial conflict until it eventually reaches a solution.

In this chapter, we first introduce an array of target goals for a smart home
explanatory system. We detail the CAN procedure and show how it achieves
some of these goals. Then, we present our extension of CAN, named D-
CAS, which stands for Decentralized Conflict-Abduction-Simulation. In this
process, the knowledge of the system is scattered across the different com-
ponents and all core steps of CAN are performed locally, while a central
component coordinates the interactions. This central components is min-
imal, in the sense that it does not have understanding of the system, but
acts as a mere coordinator.

45

46 CHAPTER 3. AN APPROACH TO EXPLANATION

3.1 The goals of an explanatory system for smart
homes

As we have highlighted in our literature review, no generic framework has been proposed
to address the specific issues of explanations in the context of smart homes.

We propose to design an explanatory system as presented in Figure 3.1. A physical
environment is monitored by an existing control system, which is usually constituted
of multiple connected devices and controllers. This applies to currently available smart
home systems (Mekuria et al., 2019). The user gives high-level objectives to this control
system, such as a target temperature, illumination of the room or a schedule. To make
the control system explainable, we introduce an explanatory system whose task is to
observe the state of the smart home’s environment and control system, to understand it
and to generate explanations. Ultimately, the explanatory system presents its reasoning
to the user via interactions. This overall concept is an adaptation proposed by (DARPA,
2016), shown in Figure 2.4, to adapt to the general organization of a smart home.

User
Control System

Physical
Environment

Explanatory
System

Observations

Observations

Observations

Actions
Goals

Explanations

Figure 3.1: The addition of an explanatory system to an existing control system makes
the entire system explainable, i.e. capable of generating explanations regarding its be-
havior.

However, it is still necessary to further define the objectives of the system. The
problem of explanation is indeed too general to cover every use case at once. Rather,
one needs to make choices regarding the objectives. We base our approach on the
guidelines exposed by (Mohseni, Zarei, and Ragan, 2021), integrating the goals of the
explanatory system early in the design process.

We have identified six main attributes a satisfactory smart home explanatory system
should present. These attributes can be classified into two main categories: user-wise
attributes denote the characteristics of the explanation rationale that should be presented
to the user; systemic attributes denote the properties of the explanatory system from an
architectural point of view. However this differentiation can be blurry, as some systemic
aspects may be apparent in the rationale exposed to the user, and vice-versa. We have
identified the following attributes: user-wise contrast, shallowness and transparency of
the explanatory rationale; systemic self-awareness, genericity and privacy.

3.1. THE GOALS OF AN EXPLANATORY SYSTEM FOR SMART HOMES 47

3.1.1 User-wise perception

Contrast Most explanations are contrastive, in the sense that they account for the
difference between an expected state of affairs and actual observations (T. Miller, 2018;
Lipton, 1990; Pearl and Mackenzie, 2018). We decide to focus on contrastive explana-
tions because most explanations can fall in this category as the comparison is sometimes
implicit in a why-question (Lipton, 1990). This limitation helps formalizing the notion of
explanation while still covering most use cases. Situations that do not correspond to user
expectations are when the need for explanations is most dire in automated systems (N.
Li et al., 2020): for instance, in Example 1.1 from the introduction, the user’s need for
an explanation is triggered by the contrast between the observed cold temperature and
her expectations (i.e. the room temperature being regulated by the system). The first
criterion for the explanatory system therefore is that it should work in these situations.

Focusing on contrastive explanations is a major topic. Most of the time, user ex-
pectations match his/her observations. Situations where expectations contrast with
observations are rare. In our opinion a relevant explanatory system must target these
rare situations. This can be challenging: given the scarcity of similar situations, data
collection is hard, which hinders the performance of statistical approaches. Therefore,
the overall explanation process should not rely only on data-based approach, but rather
integrate a vast array of possible methods.

Shallowness Explanations and causality are two closely related notions: the former
often requires to exhibit causes of the phenomenon to explain to account for it (T.
Miller, Howe, and Sonenberg, 2017; Hoffman and Klein, 2017). However, unraveling
the causal chain that leads to the explanandum can be a complex process and end up
generating an intricate causal graph (Ladkin and Loer, 1998). While such outputs can be
correct and particularly useful, notably when targeting expert users for maintenance tasks,
they can be perceived as confusing by typical users. For most mundane explanations,
the depth of the argumentation is limited by the number of logical steps a human can
easily handle: (T. Miller, 2018) estimates this number to be single-digit. This limitation
can be posed as a first argument for our goal of a shallow explanation: an acceptable
explanatory system will not present extensive causal chains, but rather prioritize shallower
but more acceptable sequences.

Shallowness, in the context of smart homes, can also have implications regarding
the multi-scale aspects of the system. In multi-scale architectures, the user provides
high-level goals which cascade through the different levels of the control systems to end
up defining low-level targets for the physical actuators in various devices (Diaconescu,
Di Felice, and Mellodge, 2019). In this situation, the explanatory logic should follow the
same organization: considering a given high-level explanandum, the process should not
directly consider a low-level explanans; rather, the different arguments of the rationale
process should progressively dig into the system, eventually stopping when reaching a
limit adapted to the user’s profile. The resulting explanatory process can be qualified as
shallow, in the sense that there is a limit in the depth gap between consecutive arguments
in the output.

48 CHAPTER 3. AN APPROACH TO EXPLANATION

Transparency One of the main objectives of explanatory systems is to build trust
between the machine and its user (Arrieta et al., 2020). (Wing, 2020) identifies that
transparency is a key to enabling trust. This observation is particularly true in smart
homes, as they are a part of the user’s mundane intimacy. Therefore, we pose trans-
parency of the reasoning process as an objective for smart-homes explanatory systems:
each step of the process should be exposed in the output and unambiguously identify
which component of the control system is responsible for the situation. This vision fol-
lows the definition of explanation as cognitive processes rather than a fixed given list of
causes and inference rules (T. Miller, 2018; Horne, Muradoglu, and Cimpian, 2019).

In case of error from the explanatory system, transparency allows to identify and track
down which part of the reasoning failed. This argument is already presented by (Rudin,
2019) to advocate for broader use of transparent AI models in critical applications. In
this context, transparency enables targeted feedback from either the user or the system.
In a later example, in Chapter 5, we show how this process can be used to mitigate the
impact of erroneous inferences from the explanatory system.

3.1.2 Systemic properties

Self-awareness Smart homes are examples of self-adaptive systems (Kramer and Magee,
2009): adaptation is required to reconfigure the system, to perform updates, to keep
track of objective changes or environment factors. As the control system exposed in Fig-
ure 3.1 presents self-adaptation properties, so should an explanatory system. We propose
to extend this scope by designing the explanatory system as to present self-awareness
capability. This property encompasses self-adaptation and denotes that a system is able
to react to changes by learning and modeling its behavior and environment (Kounev
et al., 2017).

A typical illustration of self-awareness for the explanatory system is a plug-and-explain
property, similar to the existing“plug-and-play”which exists in smart homes and greatly
favors their adoption by a wide audience (B. Miller et al., 2001). Here, the addition of a
new device into the control system is automatically handled by both the control system
and the explanatory system, as to integrate this new device into future explanations.
Notably, the addition of the new device can be identified as a possible cause for future
failures in the system. Another example is self-optimization: improving performance
based on perception is facilitated when process transparency enables the identification
of the component responsible for each part of the reasoning.

Genericity The configuration of each smart home differs by the multitude of device
providers, the uniqueness of the monitored physical environment, the profile of the users
and their objectives (Mekuria et al., 2019). Similar to what exists in XAI research, where
the general focus for explainable methods is towards model-agnostic solutions (Adadi and
Berrada, 2018), smart home explanatory systems should be agnostic about the architec-
ture of the control system. Also, they should provide a standardized output regardless
of the properties of the devices present in the control system and its organization. To
enable this, the explanatory system relies on standard components which self-specialize
to the underlying smart home control system, rather than to design-specific components.

3.2. A GENERATIVE MODEL FOR ARGUMENTATIVE DIALOG 49

Architectural genericity can also be transposed into the explanatory reasoning: re-
gardless of the situation, the architecture of the system or the explanandum, the prin-
ciples and algorithm of the explanatory system should remain unchanged. This process
genericity improves the understandability of the overall system, as it reduces the number
of different processes and algorithms to expose to the user. In this sense, genericity can
be understood as implying a certain form of minimalism in both the organization of the
explanatory system and its reasoning process.

Privacy Privacy concerns have been fueling the development of XAI in recent years (Mar-
cus, 2020; DARPA, 2016) and remain a major concern among smart home users (Marikyan,
Papagiannidis, and Alamanos, 2019).The explanatory engine must not pose additional
threat to its user’s privacy. Thus, our focus is to create an explanatory engine that is
able to work locally, without referring to distant computing or data. This relates to the
philosophy of Edge Computing (Shi et al., 2016), which we will later implement in our
demonstrator (see Chapter 5).

3.2 A generative model for argumentative dialog

3.2.1 Explanation and argumentative dialog

The distinction between explanation and argumentation is not always well-defined. (Bex
and Walton, 2016) finds that they differ by their goal rather than their intrinsic process:
an explanation aims to make a person understand a situation, notably by exposing causes,
hence using abductive inference and counterfactual reasoning; while an argumentation
tries to convince a person of a proposition by exposing different arguments. In fact, both
processes can be triggered by a why-question, showing that the ambiguity is also present
in natural language (Bex and Walton, 2016; Lipton, 1990). While a general consensus
exists to differentiate explanations from arguments (McKeon, 2013), we propose to
rely on the structural proximity between the two forms of reasoning. This allows to use
existing argumentative reasoning frameworks as a basis to develop an explanatory system
satisfying our different criteria.

A most notable argumentative reasoning framework is the Argumentation Theory
formalism developed after Dung’s original work (Dung, 1995). This theory considers an
Argumentation Framework as a set A over which is defined a binary “attack” relation
R. R(a, b) means that argument a attacks argument b, and therefore that b cannot be
accepted by an agent considering a. It allows to define the notion of an “acceptable
argument”a with regards to a set of arguments S ⊂ A as an argument for which every
attacker is itself attacked by an argument of S: ∀b ∈ A,R(b, a) =⇒ ∃s ∈ S,R(s, b).
This definition coincides with the intuitive notion of acceptability, i.e. that an agent
accepts an argument external to its original beliefs if it can attack any objection to this
new argument.

By offering a mathematical formalism, Dung’s theory allows to model complex
socio-logical interactions, such as legal cases (Bench-Capon, 2020) or medical case
study (Longo, Kane, and Hederman, 2012). Despite these achievements, this formalism

50 CHAPTER 3. AN APPROACH TO EXPLANATION

is too rigid to be considered in mundane argumentative dialogues: as (Dessalles, 2016)
points out, Dung’s formalism is based on the existence of a predefined graph-like repre-
sentation of the different arguments and attack relations. This condition can be hard to
satisfy in an explanatory system for smart homes, especially with regards to our goal of
contrastive explanations: as we’ve pointed out, these explanations focus on unusual sit-
uations, for which the existence of an established knowledge graph is hypothetical. The
situation of smart home systems is closer to informal argumentation dialogues, where
humans are able to form arguments and evaluate the situation at runtime (Ghadakpour,
2003).

3.2.2 The Conflict-Abduction-Negation process

In typical mundane conversations, an essential notion linking consecutive sentences is
relevance: each proposition is relevant with regards to the previous sentence. To account
for such interaction, (Dessalles, 2016) introduces a novel cognitive process named CAN,
for Conflict – Abduction – Negation. This process is centered around the notion that the
motivation for an argumentation is the solution of an initial conflict, each new argument
either helping towards its resolution or bringing forth an underlying conflict. The basic
principle of CAN is illustrated in Figure 3.2: from the consideration of a conflict, an
agent can either i) use abductive inference to propagate it to its causes; ii) negate
the currently examined conflict and thus consider an alternate world which allows the
discovery of new causes and consequences; iii) find a solution to the examined conflict,
either by performing an action effectively ending the conflict, revising its perception of
the world or, as a last resort, giving up on the conflict.

Conflict

Abduction

Negation

Solution

Figure 3.2: The CAN process. When a conflict is detected, three possible follow-ups
exist (blue arrows): perform an abductive reasoning, consider the negation or solve the
conflict (either by performing an action, revising knowledge or giving up). The two first
possibilities propagate to a new conflict (red arrows), while solving the conflict may also
raise another conflict somewhere else in the system (red dashed arrow).

3.2. A GENERATIVE MODEL FOR ARGUMENTATIVE DIALOG 51

Model CAN models the world with a triple (P ,R, ν) whose elements are the following.

P corresponds to the knowledge of the agent regarding the state of the world. For-
mally, P is a set of propositional formulae (instantiated predicates), each one
being evaluated to a given Boolean value which describes the corresponding state
of the world. For instance, to describe that the room is cold, CAN will use the
proposition cold(room) = True. The set of existing predicates corresponds to
the vocabulary of the agent, while the different objects are mapped to objects of
the world. As CAN’s goal is to approximate a cognitive process, the original contri-
bution (Dessalles, 2016) does not further specify the structure of P : the nature of
the objects used in formulae is unspecified, which is the origin of some difficulties
when seeking to implement CAN in the realistic setup (see below, Section 3.3.1).

R describes the inference knowledge of the CAN agent. In the original paper,
the proposed implementation consists of various predicative formulae (Dessalles,
2016). For instance, to express how the user understands the causal relation
between the window being open and the room being cold, CAN uses the rule
open(X) ∧ in(X, Y) ⇒ cold(Y). Note, however, that CAN does not require the
inference knowledge R to be of any specific nature. As CAN dissociates the ab-
ductive reasoning from the rest of the conflict-solving process, it only requires
that the agent is able to perform abductive reasoning, without any assumption
regarding the nature of the inference knowledge R.

ν is called the necessity. It is a numerical score corresponding to the agent’s opinion
regarding the propositions. Formally, it is a mapping from Boolean propositions
to real numbers ν : P 7→ R. For any given proposition p ∈ P , ν(p) > 0 indicates
that the agent believes or wishes p to be true, while a negative necessity means
that the agent believes or wishes p to be false. For instance, if the agent does
not want the room to be cold, this preference can be encoded as a necessity
ν(⌋≀↕⌈(∇≀≀⇕)) = −30. The absolute value of the necessity, called its intensity,
indicates the strength of the opinion. As the necessity accounts for an opinion,
it is an odd mapping: ∀p ∈ P , ν(¬p) = −ν(p). In the original CAN description,
necessities were given as inputs from the user, indicating his/her state of mind,
and as settings for the system’s preferences.

From this simple model of the agent’s knowledge, CAN then breaks down the conflict-
solving process into three separate main steps:

Conflict In CAN formalism, a conflict is defined as a discrepancy between an agent’s
prior opinion and the observed state of affairs. Formally, this occurs when the value
of a proposition p ∈ P contradicts its associated necessity ν(p): either p is true and
ν(p) < 0 or p is false while ν(p) > 0. As the CAN model is based on the solution of such
conflicts to motivate an argumentative reasoning, their detection is the first major step
of the process. A conflict is therefore modeled by a couple (P,N), where P = p is the
conflicting proposition and N = ν(p) is the corresponding necessity. The intensity of
the conflict is defined as the absolute value |N | of the necessity. This notion is essential

52 CHAPTER 3. AN APPROACH TO EXPLANATION

in CAN and serves multiple purposes. Notably, as no structured memory (e.g. LIFO
or FIFO piles) is used in CAN, intensity is used to determine which conflict should be
examined: CAN uses a greedy approach, examining the most intense conflict first.

Example 3.1

As a person comes into her office, she observes that the temperature is lower
than expected. In CAN model, this observation is formalized as a true Boolean
proposition p = cold(room). However, since the person expected the temperature
control system of the room to work properly, the person’s surprise is modeled
by supposing that the necessity is negative: ν(p) = −30. This results in a
conflict (cold(room),−30). The CAN process can start the generation of an
argumentative reasoning based on this conflict.

Abduction Abductive inference is the process of considering the hypothetical cause
of an observed phenomenon. Therefore, it is central to the study of causality (Pearl and
Mackenzie, 2018), argumentation and explanation (Hoffman and Klein, 2017; Douven,
2021). Moreover, it is commonly found in everyday reasoning (Douven, 2021). CAN
integrates abduction into its general scheme and identifies it as one of the three main
steps of argumentative reasoning. In CAN, abduction is used to propagate a conflict,
from the original phenomenon to its hypothetical causes. Formally, when a conflict
(p,N) is identified and considered, abductive reasoning can be performed by the agent,
using its knowledge of rules R and current state P . If a proposition c is thought to
be a cause for the conflicting proposition p, the conflict can be propagated to c: the
necessity ν(c) is set to either |N | or −|N |, depending on which sign is necessary to
create a conflict. The resulting conflict (c,±|N |) is subsequently considered to be the
new conflict to solve for the next iteration of the problem. However, this propagation is
conditioned by the previous necessity associated with the cause c: if |ν(c)| > |N |, the
intensity of the incoming conflict is not enough to change the agent’s opinion concerning
c. Example 3.2 illustrates how CAN uses abduction to propagate the initial problem of
the room’s temperature towards a hypothetical cause.

Example 3.2

(continuation of Example 3.1) In her understanding of the physics of the room, the
person possesses a rule open(window) =⇒ cold(room) expressing her empirical
knowledge. Based on this rule, she infers the proposition c = open(window).
As she had no prior opinion regarding it, she can propagate the conflict onto it,
setting ν(c) = −30. The new conflict to examine is now (open(window),−30).

Similar to conflicts, CAN uses a greedy approach for abduction: in case several parallel
hypotheses can be inferred from the original conflict p, CAN will process the first one, for
instance c0. The original CAN model does not specify on which criterion this order can
be established. Since this lead does not necessarily succeed, other leads will have to be
considered. This occurs effortlessly in the CAN process: since the original conflict (p,N)
still stands, it is examined anew. During this second examination, the hypothesis c0 can

3.2. A GENERATIVE MODEL FOR ARGUMENTATIVE DIALOG 53

no longer serve as a valid hypothesis: its necessity had previously been set to at least |N |
during the first abduction and can no longer satisfy the propagation condition. Therefore,
the process automatically considers the second possible cause proposed by abduction,
c1, and propagates the conflict onto it. Importantly, the propagation criterion, which
states that the conflict can be propagated only if the incoming intensity is not higher
than the existing one, induces that CAN cannot loop indefinitely (see Section 3.3.4 for
consideration regarding the termination of the process.)

Negation In CAN model, a conflict is described as (P,N), where N stands for the
necessity of the proposition P . One might notice that when one negates a conflict,
the resulting couple NEG(P,N) = (¬P,−N = ν(¬P)) also corresponds to a conflict.
This property allows CAN to propagate the conflict to its negation. As illustrated in
Example 3.3, instead of wondering why the window is open, with an intensity of 30, one
might instead wonder what prevents the window from closing, with the same intensity
of 30.

This kind of reasoning is closely related to counterfactual thinking, which we have
already identified as being a pilar for the notion of causality (see Section 1.2.2, (Hoffman
and Klein, 2017)). By considering the negation of a conflict, CAN considers the closest
state of the world where this conflict is negated, which corresponds to the understanding
of counterfactual (Lewis, 2013).

Example 3.3

(continuation of Example 3.2) Faced with the open window, to understand why it
is open, the person considers the negation of the conflict: (¬open(Window), 30),
which corresponds to wondering why is the window not closed. She finds
out that this would make the room uncomfortable, as the CO2 concentration
would become too high. In CAN formalism, this preference is encoded by
ν(high co2(room) = −20). Therefore, considering the negation raises the con-
flict (high co2(room),−20).

In CAN, negation allows to consider potential causes and consequences of conflicts
that would not have been otherwise integrated into the process. In Example 3.3, negation
allows to propagate the conflict towards the CO2 concentration within the room, and
hence to expose the following rationale: the room was cold because a window was open
by the system to ventilate it and reduce the CO2 concentration.

Solution CAN identifies three possibilities for an agent to end a conflict (p,N). First,
the agent can effectively solve it by performing an action that changes the state of the
world and therefore the value of the conflicting proposition p. Second, the agent can
revise its knowledge, i.e. considering changing the value of p without acting on the
world. For instance, the person of Example 3.2 can observe that all windows are closed,
and thus change the value of open(window), thus terminating the conflict affecting this
proposition. Third, the agent can give up on the conflict, by switching the sign of the
necessity of p. By setting ν(p) = −N , this ends the conflict as the necessity becomes
adequate with the observed value of p.

54 CHAPTER 3. AN APPROACH TO EXPLANATION

In all cases, CAN stores the new necessity of the proposition, so its intensity is used
to memorize that this proposition was considered with a certain strength. This is notably
used to avoid endlessly considering the same cause, as illustrated by Example 3.4.

Example 3.4

(Continuation of Example 3.2) Following the abductive inference, the examined
conflict is (open(window),−30). However, after checking the different windows
of the room, the person finds that none is open, and thus revise her knowledge
with open(window) = false. This revision terminates the conflict affecting the
windows. As this conflict no longer exists, CAN examines the remaining one,
i.e. (cold(room),−30). Now, the window state can no longer be proposed by
abductive inference: the propagation condition is not met, as the necessity of
open(window) is 30.

Internal state (P and ν) Examined conflict Description

P = {cold(room)}
ν(cold(room)) = −30

(cold(room),−30) Initial State

P = {cold(room), open(window)}
ν(cold(room)) = −30

ν(open(window)) = −30

(open(window),−30) Abduction
propagation

P = {cold(room),¬open(window)}
ν(cold(room)) = −30

ν(open(window)) = −30

(cold(room),−30) Knowledge
revision

P = {cold(room),¬open(window),
¬on(heater)}

ν(cold(room)) = −30
ν(open(window)) = −30
ν(on(heater)) = 30

(on(heater), 30) Abduction
Propagation

P = {¬cold(room),¬open(window),
on(heater)}

ν(cold(room)) = −30
ν(open(window)) = −30
ν(on(heater)) = 30

None Action

Table 3.1: Successive internal state of the agent during the Examples 3.1, 3.2 and 3.4
and their continuation. The transcript from this process to natural language can be
subsequently generated. For instance: “Why is it cold in the room? Using abduction, I
infer the cause may be an open window. However, I do not find this to be true. Another
cause may be that a heater is turned off. This is true. Were the heater on, the room
would no longer be cold, which solves the initial conflict.”

3.2.3 Observations on CAN

Overall, the functioning of CAN is represented in Table 3.1. It displays the internal state
P , ν of the agent during the process. This highlights the separation CAN operates be-

3.2. A GENERATIVE MODEL FOR ARGUMENTATIVE DIALOG 55

tween the logical reasoning of the agent and the argumentative rationale. Logical reason-
ing is comprised in abductive inference and during the propagation of the consequences
of a new consideration (e.g. in Example 3.3, inferring the high CO2 concentration from
the closed window). On the other hand, the general argumentative rationale is entirely
directed by CAN and is formalized by the succession of conflict examinations and chosen
steps.

This distinction allows CAN to be a minimalist process, in the sense that it uses a
small number of steps that can handle a variety of different situations. It is also min-
imalist in the information required to keep track of the ongoing process. Rather than
storing all calls and previous interactions in a pile-like structure, CAN only relies on its
set-structured knowledge representation of Boolean propositions and their associated ne-
cessities, using the propagation rule to avoid endlessly considering the same propositions.
This minimalist approach complies with the observation from (Ghadakpour, 2003; Gär-
denfors, 2004; Dessalles, 2015) that the human mind does not rely on predefined rules
or complex reasoning process; rather, it is capable of formalizing concepts and logical
rules at runtime. By clearly separating the inference process from the construction of
the general reasoning, CAN respects this cognitive ability.

The notion of necessity is the second aspect of CAN’s minimalism. By unifying the
beliefs and desires of the agent, its introduction lowers the possibilities of the model,
when compared to other approaches which keep the two notions distinct. For instance,
the Belief-Desires-Intention (BDI) model enables different types of dialogue and reason-
ing (todo). However, since the scope of CAN is limited to conflict-solving situations,
unifying beliefs and desires was not found to be detrimental (Dessalles, 2016). Rather,
its minimalism is beneficial: by using a unique metrics, it allows to define a simple propa-
gation value: a conflict (P,N) can be propagated onto another proposition Q if and only
if |ν(Q)| < |N |. In this understanding, necessity can be associated to the mutability
of propositions, CAN being allowed to consider possible causes if the intensity of the
request is high enough.

CAN can be directly implemented to generate explanations rather than conflict-
solving dialogues. Indeed, when considering the rationale exposed in Table 3.1, one can
understand the sequence of conflicts as the user discovers a causal chain and explores
hypotheses. Similarities can be observed with some approaches of scientific reasoning,
notably the Hypothetico-Deductive method (Popper, 1963). As such, when considering
the different criteria we posed for an explanatory system in Section 3.1, we observe that
CAN meet the user-wise criteria we defined in Section 3.1. The contrastive aspect of the
explanation is apparent as CAN, by nature, focuses on solving a conflict: in Example 3.1,
the corresponding why-question would be “Why is it cold in the room when I expected
the opposite?”. The shallowness of the reasoning is not guaranteed by CAN: rather, it
depends on the abduction process. However, the“one-step-at-a-time”approach by CAN
allows for a shallow reasoning in the sense that a small gap in the argument’s complexity
can be taken at a time, if the abduction process is compatible with this approach. This
approach is present in the example detailed in Table 3.1 Also, the introduction of the
give-up mechanism as part of the process and the conditioning of the propagation on the
intensity of the conflict allows to stop the reasoning once a given complexity is reached,
for instance once the problem is not worth the effort from the user to verify the situation.

56 CHAPTER 3. AN APPROACH TO EXPLANATION

Third, transparency of the reasoning is guaranteed by the small number of different steps
and the exposition of the trace of the process as an explanation.

3.3 Adapting CAN to the smart home: the D-CAS
algorithm

3.3.1 Difficulties of adapting CAN to smart homes

While CAN provides a means to conform to the user-wide goals of an explanatory system
for smart homes, the question of systemic properties is out of the scope of the original
process. In this section, we identify the current difficulties CAN would struggle with in
smart-home applications.

Localization and nature of knowledge

CAN is a centralized process, in the sense of knowledge localization: the same agent
is responsible for possessing knowledge of the world and generating the rationale using
the CAN process. Knowledge here is modeled by Boolean propositions, necessities and
inference rules. In case CAN models a discussion between different agents, knowledge
is fully shared between them: each agent will expose its state representation P and
necessities ν to others. This organization is not possible in typical smart home sys-
tems: given the diversity and heterogeneity of connected devices (Jain and Murugesan,
2021; Ricquebourg et al., 2006; Mekuria et al., 2019), they often rely on decentralized
or hybrid organizations (Krupitzer et al., 2015; Weyns, Schmerl, et al., 2013), where
high-level controllers have a partial aggregated knowledge and low-level controllers have
precise but specific knowledge acquired from measures of the shared physical environ-
ment. For instance, a controller responsible for the state of a window has no access to
the temperature measures from the neighboring room.

Some complex systems adopt a centralized knowledge approach, building and main-
taining a knowledge base covering the entirety of the system and its environment. (Alirezaie
et al., 2017) builds an ontology at the scale of a smart home for device integration, but
it is limited to simple cases. (Sukor et al., 2018) proposes an ontology framework for
activity detection. However, maintaining a knowledge base spanning the entire system
is hard, as the number of fields and interactions increases with the number and types
of devices. In addition, as many self-adaptive systems integrate some degree of decen-
tralization, a unique knowledge base would not integrate well in these architectures and
potentially hinder their flexibility and adaptation capabilities. Figure 3.3 illustrates the
difference in knowledge organization between the original CAN approach and that of a
typical smart home system.

The difficulty of maintaining a knowledge base for smart home systems does not
only come from the number of components. It also comes from the complexity of the
physical environment. In CAN, knowledge is represented by Boolean predicates P . The
original paper presented a possible implementation where the inference knowledge R is
composed of predicative formulae. As logical rules are considered easily understandable

3.3. ADAPTING CAN TO THE SMART HOME: THE D-CAS ALGORITHM 57

CAN Agent 1

CAN Agent 2

(a)

Physical Environment

Agent 3 Agent 4 Agent 5

Agent 1 Agent 2

(b)

Figure 3.3: Difference of knowledge distribution. In CAN (a), agents have are conscious
of the state of the entire world, and can share their opinion via dialogue. On the
other hand, in a smart home system (b), devices’ knowledge (in red) is limited to their
observations and their eventual connected components: the set of all variables describing
the system’s state S is not entirely covered by any individual knowledge S(k) ⊊ S.
Knowledge sharing exists through context awareness (e.g. agent 1 is aware of some
variables of agents 3 and 4, hence S(4) ∩ S(3) ̸= ∅).

by humans (Augasta and Kathirvalavakumar, 2012; Guidotti, Monreale, Ruggieri, Pe-
dreschi, et al., 2018), this guarantees that the output and reasoning of CAN is adapted
to model realistic dialogues. However, in smart homes, the state of the physical world
is complex: it can be modeled using a set of real-valued variables xi(t) which are mea-
sured by devices. The interactions between such variables are more complex than logical
rules. As a consequence, while in CAN the rule-based model R is used for both forward
inference (deduction, from causes to consequences) and backwards (abduction, from
consequences to causes), the same is not possible in real-life cyber-physical systems,
where maintaining a centralized rule-based knowledge spanning over multiple compo-
nents hinders the architecture of the existing control system.

Negation

Negation plays an important role in the CAN model, but also in reasoning in general.
As noted by (Pearl and Mackenzie, 2018; T. Miller, 2018; Menzies and Price, 1993),
negation, counterfactual and hypothetical thinking are prime components of the human
capacity of abstraction and reasoning. However, while this operation is made easy in the
CAN formalism, where it simply consists of negating a conflict, proposition and necessity,
and propagates the consequences and causes using the inference knowledge, this is not
the case in Cyber-Physical systems. Here, the system is in direct observation of a physical

58 CHAPTER 3. AN APPROACH TO EXPLANATION

environment which can not be modified at will and acts as“ground truth”. Furthermore,
as already stated, perfect inference knowledge is hard to acquire, if not impossible,
for real-life Cyber-Physical Systems, especially so when considering the multitude of
components and interactions.

Flexibility

As a cognitive process designed to model interactions and argumentative dialogue, CAN
offers a great flexibility. The prime example is that the process does not specify an order
for executing the different possible steps at each conflict examination. Rather, in the
examples provided in (Dessalles, 2016), this flexibility of order plays a role in the variety
of tasks handled by the process without adding overweight to the overall complexity
of the rationale. Considering an implementation to real-world cyber-physical systems,
such questions of decision order must be solved to guarantee the process’ reliability.
However, the resulting system must not lose the initial capability of CAN to adapt to
new situations, which is particularly essential considering the context of explanations for
unusual situations.

Another challenge arising with the adaptation of CAN to a realistic setup is the
composition of the vocabulary of predicates and their objects to form propositions. While
the approach used by CAN allows for the flexibility that is required when modeling a
cognitive process, its lack of formalism poses challenges to the implementation. What
can be identified as the objects of the predicates? How does one create a predicate, and
decide of its truth value to generate the propositions?

Finally, the original CAN proposal does not address the challenge of evaluating ne-
cessities: they are intended to reflect the agent’s opinion, inducing a ranking between
the different propositions (does the agent prioritize the temperature of the room or its
ventilation?). This choice is motivated by the requirement of modeling various behaviors
with the unique necessity score. However, it poses the problem of the implementation:
in a realistic setup, how can the system determine which necessity scores should be
associated to various propositions?

3.3.2 D-CAS: Decentralized Conflict-Abduction-Simulation

Compared to CAN, the knowledge model of used to represent the smart home explanatory
system differs: here, a physical environment E is measured and can be described using
a set S of time series variables xi(t). The evolution of these variables is governed by a
set of physical equations F . Each component k of the smart home system is monitoring
a defined subset S(k) ⊂ S and has no access to variables external to this domain (see
Figure 3.3b). The exact physical laws of F are a priori unknown, but approximations can
be possessed by components (this corresponds to components modeling all or part of the
system). Note that this notation does not differentiate between variables internal to the
control system (e.g. a device’s voltage or internal state, a switch position) and environ-
ment variables (e.g. the temperature of the room, time of day). At any given time, a set
of Boolean propositions P describes the state of the world. Here, a boolean proposition
P ∈ P is an abstraction that can be associated with a value, either true or false, to rep-

3.3. ADAPTING CAN TO THE SMART HOME: THE D-CAS ALGORITHM 59

resent the user’s perception of the world. A proposition P can therefore be understood
as a mapping P : S 7→ {0, 1} and can be represented by a word or a conjunction of
words. For instance, the proposition cold(room) ∧ room type(room, living− room)
indicates that the user feels cold in the living-room.

Considering this situation, and the previous observations on CAN, we designed a vari-
ation of CAN which specifically targets smart homes and similar complex Cyber-Physical
Systems. This algorithm is named D-CAS, which stands for Decentralized Conflict – Ab-
duction – Simulation. Two major differences with CAN are explicit in this name: i) this
new approach considers the decentralization of world knowledge and inference processes;
ii) Simulation replaces Negation. This latter change is necessary in smart homes, where
the state of the world cannot be easily mentally negated. Instead, simulation refines the
vision of Negation in the original CAN process: instead of simply“negating”an observed
state of affairs St, D-CAS runs a simulation to study the evolution of the system given
an alternative initial situation. I.E., to negate a given proposition p at time t, it con-
siders an alternate state of affairs S ′

t such that p(S ′
t) = 0, then uses known available

approximations in components to evaluate the consequences of a state changes S ′
>t.

This implementation is closely related to the notion of “thought experiments” (Brown
and Fehige, 2019) which have been identified by (Pearl and Mackenzie, 2018) as prime
examples of counterfactual reasoning.

Central
Coordinator Rationale

Configuration

Local
Explanatory
Component

Request

Local
Explanation

Figure 3.4: Knowledge distribution in D-CAS. The central Coordinator’s knowledge is
kept minimal, integrating only the current rationale and configuration information that
allows it to address the different components. Local Components, on the other hand,
contain local knowledge following the original CAN formalism: Boolean propositions P ,
inference knowledge R and necessities ν.

The principle of D-CAS is as follows. Various Local Explanatory Components (LECs)
have local knowledge of the world, both in terms of opinions (necessities ν), inference
knowledge (Rlocal) and world knowledge (Plocal). This knowledge corresponds to the
partial states S(k) accessible to one or several components k of the smart home control
system1. In addition, a central coordinator has knowledge of the explanatory rationale
and the configuration of the system (see Figure 3.4). With this setup, the coordinator

1In the architecture described later in Chapter 4, exactly one LEC is attached to each component
from the smart home.

60 CHAPTER 3. AN APPROACH TO EXPLANATION

executes the main loop of the D-CAS algorithm (see Algorithm 1) which iteratively
identifies the LEC responsible for a conflict (i.e. the component whose knowledge domain
contains the conflict) and requests it to provide a local handling of this conflict. As the
central coordinator merely routes requests and delegates conflict handling to LECs, we
call it Spotlight, as its role can be illustrated by putting the relevant component into the
spotlight.

This local handling can be understood as processing one CAN step using local knowl-
edge. The LEC is able to identify the conflict within its local knowledge and model it.
Then, depending on the situation, it can use its knowledge to i)identify a hypothetical
cause for the conflict; ii) find an action that can solve the conflict; iii) revise its knowledge
comprehension of the physical world to end the conflict. The response from the LEC
indicates which one of these options it chose, along with the result of the option (i.e.
which hypothesis is designated by abduction, which action is identified, which knowledge
is revised).

 Physical Environment

User

Local
Expert

Local
Expert

Central
Component

Local
Expert

(1)

(2)
(3)

(4)...

Figure 3.5: Principle of the D-CAS algorithm. When a user requests an explanation (1),
a central component named Spotlight identifies which local expert is responsible for the
problem. Then, the request is transferred to this expert (2) which, depending on its
knowledge on the situation can either propagate it using abduction, ask for a simulation
or give-up the conflict (3). Then, the Spotlight considers the eventual other conflicts
affecting other components (4), repeating the process.

Algorithm 1 shows the main loop of D-CAS, which runs on the Spotlight central
coordinator. This main loop is triggered by a request from the user to explain a situation.
This request is converted into a conflict-like object, which contains a proposition and
an associated conflicting necessity, following CAN’s (P,N) conflict format. Then, the
Spotlight locates which one of the LECs is responsible for the conflict’s proposition P
(line 2). If no such component exists, D-CAS stops the search for this conflict and

3.3. ADAPTING CAN TO THE SMART HOME: THE D-CAS ALGORITHM 61

backtracks. If a component is found, D-CAS delegates the request to it and retrieves
the response. Depending of the response, the Spotlight will either consider the new
conflict and responsible designated by abduction, or give up the conflict and backtrack
or run a simulation and wait for its potential outcomes.

Algorithm 1: The D-CAS algorithm: the Spotlight successively considers con-
flicts and routes the request to the most relevant component to locally process
it.
Input: A request req from the user
Result: A conflict-solving process whose trace can be exposed as an explanation
Data: Pointers to the LECs in the system
C a set of examined conflicts, G a set of considered give-ups

1 (P, N) ← analyzeRequest(req);
2 responsible ← locate(P);
3 while responsible ̸= self do
4 if responsible = null then
5 Backtrack() ;
6 end
7 answer = responsible.investigate((P, N)) ;
8 switch answer do
9 case ABDUCTION do
10 (P, N) ← Answer.Hypothesis ;
11 responsible← locate(P) ;

12 end
13 case GIVE UP do
14 Backtrack();
15 end
16 case ACTION do
17 simulator.run(Answer.Action) ;
18 Conflict ← waitForProblems() ;

19 end

20 end

21 end

Algorithm 1 relies on different sub-methods to delegate the different complex oper-
ations required in the general rationale. This delegation follows the base principle of
CAN to differentiate the explanatory rationale from the logical processes involved within
the reasoning. The different methods used in D-CAS are displayed in Table 3.2 with
the component hosting them, their signature and eventual comments. D-CAS’s use of
delegation and identification of relevant components follows the principles from auto-
nomic computing where components expose their abilities and can be called to solve the
task they are specialized in (Philippe Lalanda, McCann, and Diaconescu, 2013; Kephart
and Chess, 2003). More detail regarding the enabling of self-adaptation features for the
explanatory system will be given in the next chapter which focuses on its architectural
aspects.

62 CHAPTER 3. AN APPROACH TO EXPLANATION

Name Signature Actor Additional Comment
analyzeRequest any → (P,N) Spotlight

locate P → Pointer Spotlight

Adds the conflict to C. If
the conflict provided has
be given-up, or none is
provided, uses the highest-
intensity conflict in C. If C
is empty, returns a pointer
to the spotlight.

backtrack None Spotlight
Adds the currently examined
conflict to G and ends the
current loop.

investigate (P,N) → Response Local Expert

run (P,N) → None
Simulator Module/

Local Expert

Table 3.2: An overview of the different sub-methods of D-CAS

AnalyzeRequest The first step of the process is an interface with the user. As the user
speaks Natural Language, a mandatory step is to process the expressed sentence into a
Conflict object, which contains a proposition P and an associated necessity, similar to
the original CAN notation (Dessalles, 2016). This method is considered out of the scope
of the present thesis: as many approaches exist to handle Natural Language Processing
tasks, we estimate that this step can take advantage of existing work. Notably, voice
interactions are already a commonly found feature in smart home systems (Kowalski
et al., 2019; Jivani, Malvankar, and Shankarmani, 2018), which is especially useful for
systems designed to assist elderly people. Therefore, we do not consider this front-end
of the explanatory system as part of our contribution, and will left unspecified the exact
method analyzeRequest() and its signature in Table 3.2.

Locate In order to keep Spotlight’s knowledge minimal, no information regarding the
LEC’s local knowledge is stored in the coordinator. Rather, the Spotlight contains a
locate() method, which returns a pointer to the LEC that is most relevant to process
the given proposition. In addition, locate adds the examined conflict to the set C of
examined conflicts. This method can be understood as the Spotlight broadcasting to all
known LECs a know request containing information about the questioned proposition P
and analyzing their response to identify which LECs are competent. In their response,
LECs return an estimate of their knowledge of the proposition, which allows the Spotlight
to rank them. In case more than one LEC are competent, the Spotlight will process only
the first one, eventually exploring the other components if need be (i.e. if the exploration
of the first component fails to solve the conflict). The locate() method therefore allows
the Spotlight to implement the CAN-like reasoning without having access to the local
knowledge Plocal of LECs across the system, thus enabling the genericity property of the
system since the Spotlight is system-agnostic.

3.3. ADAPTING CAN TO THE SMART HOME: THE D-CAS ALGORITHM 63

Investigate Delegation of specialized tasks is the key element of D-CAS, extending
the differentiation principle introduced by CAN between the explanatory rationale and
logical operations. The investigate() method is the implementation of this principle
in D-CAS. With it, the Spotlight calls previously identified relevant LEC to process the
investigated conflict. This investigation by the LEC consists of examining local knowledge
and performing locally the CAN steps of conflict detection, abduction and negation. As
the exact order of these steps is not specified by CAN, we settled on using the order
exposed in Algorithm 2: the LEC first checks the state of the conflict using its local
knowledge (line 1), then checks if the intensity of the conflict is necessary to trigger an
action (line 5). Then, it tries to infer an hypothetical cause using abduction (line 9)
and if negating the conflict is possible (line 15). In this outline of the algorithm, local
knowledge in functional: it is embedded within the different methods in bold font which
the LEC executes to understand its environment.

Algorithm 2: A possible implementation of the investigate() method. In
this implementation, priority is given to potential actions, then abduction and
negation.

Input: A conflict (P,N)
Output: A Response object

1 fail ← checkConflict((P,N));
2 if fail then
3 return (GIVE UP, N) ;
4 end
5 action ← findAction(P,N));
6 if action ̸= null then
7 return (ACTION, action) ;
8 end
9 hypothesis ← abduction((P,N)) ;

10 if hypothesis ̸= null then
11 return (ABDUCTION, hypothesis);
12 end
13 negation ← findNegation((P,N));
14 if negation ̸= null then
15 return (ACTION, negation)
16 end
17 return (GIVE UP, N) ;

The investigate() method returns a Response object, which encapsulates a type
indicator among GIVE UP, ACTION and ABDUCTION, and the eventual new conflict
to consider. The ACTION response type covers both the situation when an actual
action is possible and when merely considering negation. This is due to our previous
observation on the state of negation in a cyber-physical system: as physical observations
can be interpreted as a ground-truth, negation of a current state is interpreted as a
simulation of an alternative state of affairs. A difference between the two exists at
the local scale. The action is considered practically feasible by the LEC while no such

64 CHAPTER 3. AN APPROACH TO EXPLANATION

requirement exists for the negation; but from the point of view of the Spotlight, both
of these decisions result in the same consequence: simulating an alternative state of
the world and its consequences. During the checkConflict() method, the LEC has
the opportunity to revise its knowledge: if the incoming intensity is higher than the
confidence of the LEC regarding one of its beliefs, it can revise the latter, which will
result in effectively identifying the conflict. This particular ability allows will be further
detailed in the following chapters.

Run D-CAS relies on the ability to perform simulations to observe possible outcomes
of alternate scenarios and propagate conflicts. Again, the chosen approach is to delegate
the operation from the Spotlight to specialized components via the run() method. Prior
to using this method, the Spotlight identifies which component is most capable of per-
forming a simulation by calling a method similar to the locate() method: however here
the call can also reach dedicated simulators, given that some simulation operations can
require heavy computations that LEC’s cannot perform by themselves. Upon starting
the simulation, the Spotlight notifies all LEC’s in the system, so that they can consider
the outcomes of the simulation. Thus, simulation results can raise new conflicts in case
one resulting state was associated with a negative necessity in one LEC. In this case, the
hook waitForProblems() is called, and a new conflict is considered in a new iteration
of D-CAS by the Spotlight.

In our model, all boolean propositions correspond to an action consisting of setting
the physical environment in a state where this proposition is not verified anymore. Some
of these actions correspond to do-able operations, e.g. switching on a button, shutting
down a device. Others are not directly feasible, e.g. setting outdoor’s temperature to a
given value. However, since we consider simulation as the explanatory system’s realiza-
tion of mental model, this does not constitute a problem for the system. In addition, it
is possible for LEC’s to still make a distinction between possible and impossible actions,
by flagging them and making this flag explicit in D-CAS’ output.

Backtrack Knowledge revision is mandatory when using abductive inference, as abduc-
tion is not a sound method (Magnani, 2011): there is no guarantee that the abductive
inference is correct. This “trial-and-error” methodology has been integrated into the
general scientific method by (Popper, 1963), where knowledge revision and refutation of
previous theories is a key element. Similarly, it is often found in explanatory rationale (T.
Miller, 2018). The original CAN process integrates this revision as the possibility to re-
vise predicates’ necessities or values during the process. As we’ve seen, the context of
smart homes makes such revision harder, as the physical environment cannot be directly
manipulated. However, a first revision is enabled at the level of the local component,
which can revise its interpretation of the world to modify, if need be, the meaning and
truth value of Boolean propositions.

At the Spotlight level, revision is left to the backtrack() method. This method adds
the currently considered conflict into the set of given-ups conflicts G in the Spotlight:
thus, conflicts that are present in this set can no longer be examined by the algorithm
if they have been dismissed. Furthermore, if the Spotlight was previously running a
simulation, backtrack() stops the simulation and broadcasts a message to the LECs to

3.3. ADAPTING CAN TO THE SMART HOME: THE D-CAS ALGORITHM 65

stop considering simulation outputs. Backtrack() can thus be understood as a branch-
cutting method, effectively setting the reasoning back to the root of the branch, while
using the give-up set G as a memory of the discarded option, as not to explore the same
branch again. In Chapter 5, we will describe an implementation of D-CAS based on this
tree representation.

3.3.3 An example of D-CAS

We illustrate the functioning of D-CAS by mentally processing the same situation as
presented in Examples 3.1, 3.2 and 3.3. The resulting rationale is presented in Table
3.3, detailing the C andG sets for each iteration of the algorithm, along with the requests
and their answers. The process follows the same unraveling as the one exposed with
CAN in Table 3.1. We observe the following steps. First, the LEC responsible for the
temperature makes the hypothesis that an open window causes the cold temperature.
However, asking the window LEC about it reveals that the window was in fact closed,
which results in the hypothesis being abandoned and added to G.

C G responsible Request Response

{(cold(room),−30)} ∅ LEC Temperature (cold(room),−30)
Abduction:

(open(window),−30)

{(cold(room),−30),
(open(window),−30)}

∅ LEC Window (open(window),−30)
Give up:

(open(window),−30)

{(cold(room),−30),
(open(window),−30)}

{(open(window),−30)} LEC Temperature (cold(room),−30)
Abduction:

(off(heater),−30)

{(cold(room),−30),
(open(window),−30),
(off(heater),−30)}

{(open(window),−30)} LEC Heater (off(heater),−30)
Action:

(on(heater), 30)

{(cold(room),−30),
(open(window),−30),
(off(heater),−30)}

{(open(window),−30)} LEC heater (off(heater),−30)
Give up:

(off(heater),−30)

{(cold(room),−30),
(open(window),−30),
(off(heater),−30)}

{(open(window),−30),
(off(heater), 30)}

LEC temperature (cold(room),−30)
Give up:

(cold(room),−30)

{(cold(room),−30),
(open(window),−30),
(off(heater),−30)}

{(open(window),−30),
(off(heater), 30),
(cold(room),−30)}

Spotlight None None

Table 3.3: Application of the D-CAS algorithm to the continuation of Exam-
ples 3.1, 3.2, 3.3, following the same course as Table 3.1

Then, the Temperature LEC is once again interrogated and proposes that the heater
being turned off can be the cause of the cold. The investigation then goes to the
heater, which confirms the hypothesis and proposes the action of turning it back on,
which can be simulated (or run, depending on the capability of the system). After
some time, the investigation resumes and since the heater is now turned on, the conflict
(off(heater),−30) is no longer relevant, hence discarded. Then, since the simulation
showed that the temperature increased, the conflict (cold(room),−30) is in turn dis-
carded. This concludes the rationale, as the set of given ups covers the set of considered
conflicts.

66 CHAPTER 3. AN APPROACH TO EXPLANATION

3.3.4 Analysis of the algorithm

The D-CAS algorithm was designed to be the driving mechanism of a house-wide ex-
planatory system for smart homes. As we’ve identified before, CAN meets our user-wise
requirements, by providing a transparent, contrast-focused and shallow process, in the
sense that we’ve defined in Section 3.1. D-CAS builds upon this basis by keeping the
main concepts of conflict detection, solution and propagation of CAN. As such, the ob-
servations made for CAN remain true for D-CAS regarding the compliance to user-wise
explanatory goals. However, the adaptation of D-CAS to the context of smart homes
brings other questions: are there cases where D-CAS can endlessly loop and not termi-
nate ? How does it scale up ? Also, we study the question of dealing with situations
where a conjunction of causes is identified by abduction.

Termination

To evaluate the termination of D-CAS, we make the assumption that all invoked sub-
methods terminate. Given that we do not specify implementation for these methods for
now, we need to rely on such hypothesis to continue our reasoning2. We also make the
assumption that the knowledge of the system is finite, i.e. it can be entirely expressed
using a finite set P of propositions scattered across the different components. If both
of these conditions are met, D-CAS is guaranteed to terminate when given as input a
request carrying a conflict (P,N).

The sketch of the proof of this termination is as follows. Consider the set P =
⋃
Pi of

all the propositions describing the conflict. Consider M the highest preference intensity
set for any component in the system: M = maxP(|ν(P)|). This maximum is well-
defined since the set P is finite. We consider the state of all possible “internal states”
of D-CAS, which can be described as the set of examined conflicts C and the set of
given-ups G. An internal state is terminal if all the conflicts in C are covered by G,
i.e. ∀(P,N) ∈ C, (P,N ′) ∈ G, |N ′| ≥ |N |, as the propagation of conflict can no longer
occur once such a state is reached. Also, following our preliminary assumption of a finite
set of propositions P , only a finite number of internal states are possible. The existence of
at least one terminal state is also guaranteed, since (C = any,G = {(P,M)|∀P ∈ P})
is a terminal state (all propositions have been given-up with the maximum intensity).

We observe that, for each iteration of the algorithm, the effect on the internal state
is the following: i) if no responsible for the conflict is identified, or the target LEC
abandons the conflict, the process adds the currently examined conflict (P,N) to G;
ii) if abduction is used, then a new conflict (Pabd, Nabd) is added to C; iii) if an action
or negation is found, potential new conflicts (Pnew, Nnew) can be added to C. In case
the action raised no other conflicts, the two possibilities are as follow: either the action
succeeded in solving the conflict, in which case the next iteration will add it to G as it
is no longer found by the LEC; or the action did not succeed, in which case the next
iteration will also add the conflict to G as no suitable solution was found. Therefore, for

2This assumption is not very restrictive: for real-world application, we can consider fixing a time
limit on delegate methods, thus ensuring their termination by return a default value.

3.3. ADAPTING CAN TO THE SMART HOME: THE D-CAS ALGORITHM 67

each iteration, D-CAS cannot explore the same state twice as a new element is appended
either to C or G. This behavior of D-CAS is illustrated in Figure 3.6.

Simulation

Solution

Abduction

Figure 3.6: Evolution of the internal D-CAS state: with the available mechanisms, no
loop can exist in the process, as all operations result by adding an element to either C
or G. In the abduction result, PC and NC denote the proposed cause proposition and
intensity, respectively.

As the algorithm cannot loop, it explores a finite set of possible states, among
which exists at least one terminal state (consisting in giving up everything). D-CAS
is guaranteed to stop in a finite number of iterations. With our first hypothesis of
termination of all delegate methods, this guarantees that D-CAS reaches a terminal state.
However, this termination does not guarantee that D-CAS finds an optimal solution. In
fact, this optimization is hard to define, given the subjectivity of the user’s perception in
the definition of optimal explanation (Nothdurft, Heinroth, and Minker, 2013). In our
proof-of-concept demonstrator results, in Chapter 5, we will further analyze the output
of D-CAS and how it can be ground to explanatory discussions with the user.

Scaling and adaptation

D-CAS does not require the Spotlight to actively maintain system-wide knowledge base.
As it requires only pointers to the LECs contained in the system, memory scaling is linear
for the Spotlight. As the system grows in complexity, the different LECs need to be
more complex, eventually needing better models to take interaction into consideration.
However, given that smart homes have a specific organization, local components can
integrate this knowledge in order to simplify their model. E.g., in big buildings, rooms
can be made aware only of their neighbors to model their temperature evolution. This
hierarchical organization is often mentioned in existing smart homes research (Lippi,
Mariani, and Zambonelli, 2021; Mekuria et al., 2019).

Following the principle of genericity identified in Section 3.1, the Spotlight keeps no
knowledge regarding the state of the physical environment: all specialization is delegated

68 CHAPTER 3. AN APPROACH TO EXPLANATION

to the diverse components present in the system. D-CAS’ generic approach is illustrated
in an example we provided in a communication (E. Houzé, Dessalles, et al., 2021): we
studied the possibility of using D-CAS3 in problematic scenarios where communication
between different experts was required to gain knowledge of a complex causal chain of
events. The first example is the case of a self-driving car, where accountability can be
discussed between the driver, the manufacturer or local authorities; the second example
tackled a fictive crime committed under the influence of hate speech and fake news on
social media, where knowledge is scattered across the social media company, the author
of the fake news and the criminal. In both examples, D-CAS can be used to model
possible interactions and help formalizing the necessary interactions between experts.

D-CAS continues the principle of the CAN procedure by keeping communications
minimal: different outcomes can be unified by the same message. This is particularly
true for the give-up operation. From a reasoning standpoint, an unresponsive component
and a component that does not find a possibility to continue the reasoning are equally
treated as give-ups. This allows for only a handful of required methods which have been
described here, allowing to handle a diversity of situations. Also, the genericity of the
high-level concepts can enable privacy, by limiting the knowledge of component variables
to the sole expert in this component: e.g. the Spotlight has access to the knowledge
that there is a problem in a given component, while the exact nature of this problem
remains known to this component only. This characteristic, alongside local reasoning,
enables the privacy goal we aim to.

We proposed self-awareness as a defining characteristic for an truly explainable sys-
tem. By using D-CAS, the explanatory system observes the underlying control system
and integrates this self-observation knowledge into its exposed reasoning. The question
of self-optimization (Krupitzer et al., 2015) is also permitted by D-CAS: the step-by-step
approach allows to identify when a part of the reasoning is erroneous. For instance, a bad
abductive reasoning is contradicted by a subsequent simulation. Using this insight, the
explanatory system can alert components of their mistakes, which can trigger low-level
adaptation from components to mitigate their errors.

Other self-adaptation properties are enabled by D-CAS: supposing that all compo-
nents have self-observation capabilities (which we will describe in the next Chapter),
D-CAS allows an adaptive reasoning. If a component observes a local change and
proposes it as a possible causal hypothesis via abduction, D-CAS will consider this hy-
pothesis, hence integrating the change into the generated explanation. Similarly, if a
component is added into the system at runtime, it can directly acknowledge itself to
the Spotlight and subsequently respond when D-CAS investigates knowledge within its
expertise range, hence enabling the desired“plug & explain” feature.

3.3.5 Handling multiple causes

Given the complex nature of smart homes, it is a priori common that a single phenomenon
originates from a conjunction of causes. In this chapter, we have defined CAN as

3In this paper, we introduced D-CAS as “D-CAN”, using Negation instead of Simulation. This is
because these examples were meant to be mental considerations rather than applications to CPS, and
therefore did not require to explicitly invoke simulation in negation.

3.3. ADAPTING CAN TO THE SMART HOME: THE D-CAS ALGORITHM 69

operating over “proposition”which are abstract objects that can be assigned a Boolean
value to transcribe a state of the world. In this aspect, it is possible that such a
proposition P is in fact a conjunction of several propositions P = P1 ∧ P2 ∧ . . . , i.e.
P is true if and only if the world is in a state S for which propositions P1, P2, . . . , are
true. The way CAN is designed, a proposition has to be entirely handled by a single
component.

However, it is easy to find a situation where this is not the case. Consider, for in-
stance, the situation presented in Example 3.1: the abduction might very well conclude
that it is cold indoor because of the proposition cold(outdoor)∧open(window), propo-
sition that is likely to be handled by two different components of the house. How would
D-CAS operate when confronted to such a situation?

A first approach would be to consider both causes by interrogating each component.
However, this approach brings several downsides. First, it violates the principle of D-CAS
that explanations are sequential processes. This principle facilitates the transparency
of the reasoning as it corresponds to the actual process operated by humans when
formulating an explanation (T. Miller, 2018). Second, it brings technical difficulties with
regards to simulating counterfactuals and pursuing the reasoning: as the formulation
of the counterfactual to several propositions covered by different components is harder
than identifying an alternate state which would make a single proposition false. Third,
it paves the way towards possible breaches to our shallowness goal: the integration of
context. In fact, each conjunction can be almost endlessly augmented by including the
context. In the previous example, why not consider cold(outdoor) ∧ open(window) ∧
not(fire) ∧ off(heater) ∧ not(sunny) ∧ . . . ? Where should one draw the line ?

For all these reasons, we deem it better to keep D-CAS in the minimal form presented
here, and follow the greedy approach introduced by CAN when considering multiple
causes. First, the abductive reasoning favors the hypothesis that is most mutable, i.e.
that is the easiest to be considered (or simulated). Mutability is measured with intensity,
a high intensity denoting that the the proposition can hardly be modified (and therefore
requires an important incoming conflict to be considered). In our previous example of the
open window, outdoor temperature is less mutable than the window, as one can simply
close the latter. Hence, the abductive reasoning will favor this option. In addition, each
proposition is handled by the component most relevant to answer it. If other components
are available for this, they are at first discarded. They can be interrogated again through
a specific request from the user. Such situation will be presented in the implemented
demonstrator in Chapter 5

70 CHAPTER 3. AN APPROACH TO EXPLANATION

Chapter 4

Architecture Description

Summary

The D-CAS algorithm allows an explanatory system to generate a shallow,
contrast-focused and transparent rationale to answer explanation requests
from the user. Its knowledge decentralization is designed to comply to the
constraints of application to smart-home systems. However, D-CAS alone is
not sufficient to fulfill all the goals set for a smart home explanatory system.
Doing so requires to consider an adequate component organization that is
based on the principles of genericity, self-awareness and privacy protection
while allowing D-CAS to operate.

The Local Explanatory Component (LEC) is the basic element required by
D-CAS. It must possess local knowledge of the autonomic control system of
the house, observe it and map its measures to the propositions used by D-
CAS. As the underlying smart home system configuration is a priori unknown,
we design LECs so that each LEC is associated to a unique Smart Home
Component (SHC), i.e. a controller or a device from the underlying smart
home autonomic system. LECs handle local adaptation: as the SHCs can be
updated or modified at runtime, the organization of the paired LEC observe
these changes and integrate them into the explanatory reasoning. Also,
the heterogeneity of possible devices and controllers is handled at the local
level in order to enable seamless system-wise integration. For these reasons,
we design LECs as generic frameworks where the D-CAS functions, namely
conflict identification, abductive inference and counterfactual simulation are
handled by modules that can be modified, updated, added or deleted at
runtime. This architecture of LECs is currently under review for a patent.

The LECs are then integrated into the explanatory system, by communicating
with the Spotlight, which in addition to its coordination role in D-CAS
also serves as a naming and directory service for the explanatory system,
keeping updated information of LECs present in the system. Formalized
communications between explanatory components are also defined.

71

72 CHAPTER 4. ARCHITECTURE DESCRIPTION

4.1 General Organization

The D-CAS algorithm presented in the previous chapter relies on knowledge decentraliza-
tion and central coordination. A generic process hosted in a central component generates
the explanatory rationale by delegating requests to various specialized components (see
Figure 3.5). These latter posses local knowledge of the state of the physical environ-
ment and its evolution, which they use to answer the delegated requests. In addition,
high-power components may specialize in simulating complex interactions in the house.
The general architecture of the explanatory system must therefore follow this general
organization and include the different components. Its two main objectives are: i) to
preserve the features and capabilities of the existing smart home control system, i.e. self-
organization, self-healing, self-protection, plug-and-play features should not be hindered
by the addition of the explanatory system; ii) to enable the realization of the systemic
goals defined for the explanatory system, namely self-adaptation, privacy protection and
genericity.

The organization of the smart home control system is a priori unknown. In current
systems, different architectures exist (Frey, 2013): i) centralized (Banerjee et al., 2018),
e.g. a central unit controlling diverse connected heaters; ii) hybrid (IBM Co., 2005;
Weyns, Schmerl, et al., 2013), e.g. a central hub connected to a temperature con-
trol hub and a home security hub, each managing its own heaters and alarms; iii) fully
decentralized, e.g. several connected heaters using the home network to communicate
goals and measures in order to coordinate. While the smart home system organiza-
tion may vary, and rely on different communication technologies (Han and Lim, 2010;
Wenbo, Quanyu, and Zhenwei, 2015), the explanatory system aims to be generic, i.e.
organization- and implementation-agnostic. In this regard, we only define two require-
ments for the autonomic system: i) it is composed of one or several components (a
generic term including both devices and controllers) which should expose some or all
of their characteristics and measures to external scrutiny1; (ii) it must include some
kind of naming and directory service that lists the different components present in the
system and their characteristics. In short, the smart home control system is considered
to be a complex system, with undetermined organization and presenting an accessible
registry and interfaceable components. Existing smart home systems meet these require-
ments (Ricquebourg et al., 2006; Marikyan, Papagiannidis, and Alamanos, 2019; Kafle
et al., 2017), and similar principles are followed in smart home simulations (Philippe
Lalanda and Hamon, 2020).

Following the logic exposed in Chapter 3, the explanatory system is added on top of
this existing smart home system. Figure 4.1 illustrates the resulting layered organization.
The smart home control system is depicted here with a layer of controllers and a layer
of devices to emphasize the plurality of roles in this system. To preserve its features, the
smart home system is not aware of its observation by the explanatory system: therefore,
the addition of the latter does not impede on the capabilities of the former. The LECs
constitute the lower level of the explanatory system, interfacing directly with the Smart
Home Components and their exposed variables. By Smart Home Components (SHCs),

1For security reasons, this scrutiny can be limited to a list of selected authorized agents, in our case
the relevant LECs.

4.1. GENERAL ORGANIZATION 73

we designate their roles either devices or controllers from the original smart home system,
conforming to our objective of being agnostic of the organization of the smart home
control system. On top of this layer, the Spotlight acts as the naming and directory
service for the explanatory system. This layered organization also follows the abstraction
of the observations: the state of the physical environment is measured using variables,
which are then translated into Boolean propositions with which D-CAS operates. The
latter are a simple proxy for natural language words that are used by the user. Hierarchy
of abstractions is a common tool in Software Engineering to achieve genericity of the
upper layers with regards to the lower layers, which is the goal here. In addition, similar
architecture can be found in goal-oriented architectures for autonomic systems, where
high-level goals are progressively translated into lower-level objectives (Diaconescu, Di
Felice, and Mellodge, 2019).

Physcial Environment

Devices

Controllers

Local Explanatory Components (LECs)

Spotlight

User InterfaceWords

Boolean Propositions

Variables

O
bs

er
va

tio
ns

Smart
Home
Components
(SHCs)

Explanatory
System

Figure 4.1: The Explanatory System consists of two additional layers to the existing
smart home control system. The smart home system is unaware of the explanatory
system on top of it, and, as such, entirely independent.

The roles of the Spotlight and LECs are defined by the D-CAS algorithm: LECs
possess local knowledge that they use to identify which Boolean propositions correspond
to their observations of the control system, to propose causal hypotheses and understand
the consequences of actions. Their number is not specified by D-CAS. On the other hand,
the Spotlight is defined as a unique and central component, that has no knowledge of
the system’s state, but keeps an updated list of pointers to LECs. These requirements
can be formalized by defining the components’ blueprints as programming interfaces, as
shown in Figure 4.2.

Our proposed solution for LEC organization is to rely on a one-to-one pairing: a LEC
is assigned to each Smart Home Component, be it a controller or a device. The associated
LEC is responsible for understanding the SHC: for instance the LEC attached to a window
controller is able to detect conflicts regarding the window, know its state, potential motor
or sensor failures, infer possible causes for its opening/closing. In addition, the window
LEC knows that its attached component is able to open or close the window. The
one-to-one pairing between LECs and SHCs offers several benefits:

74 CHAPTER 4. ARCHITECTURE DESCRIPTION

I Spotlight

set<Conflict>P
set<Conflict>G

locate(P, N): *LEC
backtrack(P, N)

I LEC

float know(P, N)
bool canRun(P, N)
Response investigate(P, N)
void run(P, N)
Conflict findNegation(P, N)
Conflict abduction(P, N)
Conflict findAction(P, N)

pointers to

0**n

Figure 4.2: The interfaces required by D-CAS for the Spotlight and the LEC.

Knowledge Distibution: It delegates the responsibility of knowledge distribution to
the existing autonomic control system of the house: since the competence domain of
each LEC corresponds to the one of its associated SHC, its capabilities are limited to
those of the SHC. For instance, a “smart” window blind that is aware of the presence
of lights in the room will expose this knowledge to its LEC, eventually enabling new
abductive inference. As we will later discuss, this feature is interesting with regards to
adaptation. Indeed, if we consider that the control system is able to self-organize to
best adapt to the layout and goals of the house (Lippi, Mariani, and Zambonelli, 2021;
Diaconescu, Mata, and Bellman, 2018), the explanatory system can benefit from this
capacity and integrate this self-adaptation capability.

Reasoning Transparency: Directly associating each Smart Home Component to a
LEC improves the transparency of the D-CAS algorithm: in the explanation process, each
call to a LEC corresponds to a call to the knowledge of a specific SHC. This makes the
reasoning more traceable, as it exhibits which components of the house control system
are involved.

Edge Comuting: A one-to-one pairing facilitates integration of the edge computing
paradigm: operations are performed as close as possible to where data originate (i.e.
devices and controllers) (Shi et al., 2016). Edge computing typically aims at improving
security, reliability and adaptation of cyber-physical systems, as opposed to cloud com-
puting. As such, this design choice is consistent with the goals of privacy defined in
Chapter 3.

Self-Adaptation: Pairing SHCs to LECs adds a layer of computing which can han-
dle the observation and integration of local adaptation. This prevents the rest of the
explanatory system to reconfigure itself following a local change. For instance, if a con-
figuration change affects the window (e.g. a software update, a motor replacement),
handling the subsequent adaptation is the role of the LEC attached to it. The rest of
the system will not have to revise its knowledge.

Figure 4.3 depicts an example of the organization of the explanatory system within
a smart home. While the smart home organization is hierarchical, with high-level con-
trollers monitoring several lower-level devices, the structure of the explanatory system

4.1. GENERAL ORGANIZATION 75

AM

Temp
Controller

AM

Window

Controller

LEC LEC LEC LEC LEC

Spotlight

User
Interface

LEC

Obs Obs Obs Obs Obs

Obs

Figure 4.3: A smart home is controlled by an existing autonomic system made of devices
(green) and managers (yellow). All of these components are observable, exposing an in-
terface“Obs”. Local Expert Components (LECs), in red, read values from their attached
component, in a one-to-one pairing; a Spotlight component, in light orange, monitors
the entirety of the explanatory system. The Spotlight is itself observable, and a LEC can
be attached to it, which allows for self-observation of the explanatory system. Interfaces
provided by the LECs and the Spotlight are detailed in Figure 4.2.

does not follow the same organization: each LEC is directly connected to the Spotlight,
providing the minimal coordination required between explanatory components. However,
note that the control system organization can be available to the LECs via their observa-
tion interface. This interface, named“Obs”defines read-only access to some variables of
the SHC and is compatible with the Autonomic Computing Paradigm (Philippe Lalanda,
McCann, and Diaconescu, 2013). In Figure 4.3, for instance, the temperature controller
manages the heater and the thermometer. Hence, it has access to some of their variables,
which can therefore be observed by its attached LEC. Similarly, a context-aware SHC
makes this context available to its attached LEC. Therefore, the explanatory system can
benefit from the knowledge distribution of the underlying smart home system without
having to specifically adapt to it: in case of re-configuration of the control system, the
explanatory system observes the changes and incorporate them. Figure 4.3 also illus-
trates the potential issue of conflicting goals, as the window here is shared between the

76 CHAPTER 4. ARCHITECTURE DESCRIPTION

air quality and the temperature system. Control-wise aspects of this situation have been
studied in (Diaconescu, Mata, and Bellman, 2018). These situations can be handled by
D-CAS and preset necessities: for instance, D-CAS can propose to close the window as
a solution, which would raise a conflict with a necessity transcribing the CO2 controller’s
goal (in this situation, necessities are used to prioritize conflicts and avoid endless loops,
see Chapter 5).

The necessary communications between components of the explanatory system can
be categorized in two main types: D-CAS related communications and communications
necessary for the self-observation of the explanatory system. Table 4.1 details the differ-
ent types of exchanged messages. Generally, a message consists of a header indicating
its type and a data field. Note the existence of the wildcard header UNDEF which allows
for additional features and information communication, enabling possible extensions of
the original system.

Type Sender / Receiver Data Description Comments

EXPLAIN Spotlight → LEC Conflict (P,N) Calls the investigate()
method on the LEC

RESPONSE LEC → Spotlight Response (T, (P,N)) Response of the
investigate() method

KNOW Spotlight → LEC Conflict (P,N)
KNOWN LEC → Spotlight Knowledge score

RUN
Spotlight → LEC
& Simulator

(P,N) Simulation of P

CAN_RUN
Spotlight → LEC
& Simulator

(P,N) Similar to KNOW,
for simulation

PING All components None
PONG All components OK / ERROR

INFO LEC → Spotlight LEC Description Language Sent by the LEC upon
configuration change

UNDEF LEC ↔ Spotlight Undefined Used to ask info and
modular functionalities

Table 4.1: The message types exchanged between the components of the Explanatory
System to enable D-CAS and self-adaptation.

In the next sections, we detail the nature and behavior of each component type of
the explanatory system.

4.2 The Local Explanatory Component (LEC)

As defined by teh D-CAS algorithm, the LECs must present the interface shown in
Figure 4.2. In addition, as we’ve discussed in Chapter 3, the role fo the LEC is to keep
an updated local description knowledge Ploc, inference knowledge Rloc and necessity
knowledge νloc. As such, tt serves as an intermediate between the high-level reasoning
of D-CAS and the heterogeneous Smart Home Components. LECs are associated with

4.2. THE LOCAL EXPLANATORY COMPONENT (LEC) 77

SHCs, following a one-to-one pairing. This design choice implies that LECs should be
light-weight components hosted on edge computing devices. In the rest of this section,
we detail the internal organization of a LEC and how it works. This section is made of
four parts. In Subsection 4.2.1, we define how LECs interpret their observations into
higher-level representations. In Subsection 4.2.2, we detail what happens in the LEC
when it is called on by the Spotlight, via its investigate method, to examine a conflict.
Ine Subsection 4.2.3, we detail the modularity of the LEC. Then, in Subsection 4.2.4,
we show how the design of the LEC enables privacy-compliant communications.

4.2.1 An interface between SHC variables and D-CAS proposi-
tions

The role of interpreting local variables exposed by the SHC towards D-CAS-ready Boolean
propositions is central to the implementation of the algorithm. This operation consists
of evaluating a set of Boolean propositions to form the local knowledge Ploc based on
the observations from the attached component. Several challenges have to be accounted
for in this process.

First, this interpretation has to fully comply with the principle of knowledge lo-
cality underlying in the one-to-one pairing. LECs should be able to understand and
communicate the state of their observed component without having to disclose any of
its actually measured variables. This requirement further improves the genericity of
the resulting overall system. As a result, the interpretation operation can be seen as a
privacy-compliant encoding of low-level, private observations into higher-level disclosable
propositions.

Another challenge is the different nature of propositions and variables. Propositions
are used by D-CAS to represent the user’s description of the world using Boolean word-
like propositions (Dessalles, 2016), e.g. hot(room) or open(window). Notably, the
meaning of these propositions, i.e. the mapping with the measured state S of the world,
is not fixed and can evolve with time or the context. In Example 4.1, the interpretation
of the proposition hot(room) varies with the context. This conceptualization of runtime
predicate definition has been mentioned by (Ghadakpour, 2003) and further analyzed
by (Dessalles, 2015) within the framework of“conceptual spaces”. By contrast, variables
transmitted by the SHC correspond to physical measures, settings or commands that
represent a “ground truth” that, once recorded, should not be disputed. In addition, it
is important to keep track of past measures, without having to re-interpret all of them
once a proposition’s interpretation has been modified.

Example 4.1

A smart thermometer is located in a room and associated with its corresponding
LEC. The LEC’s interpretation role is to translate the different readings from the
thermometer into propositions such as“hot(room)”or“cold(room)”. However, this
translation should adapt to the user: for instance, a room temperature of 19◦C
can be considered“hot”if the user is away, while it is“normal”if the user is present.

78 CHAPTER 4. ARCHITECTURE DESCRIPTION

To handle these challenges, we have designed a particular memory architecture for the
LEC. Its principle is to rely on twin-memories of distinct natures. One is designed to store
events, i.e. high-level timestamped representations of a subset of measured variables.
The other stores predicates, i.e. Boolean functions operating on events stating whether
an event corresponds to a given proposition.

Formally, an event object is defined as as 3-tuple e = (t, l, X):

e =

t ∈ N
l ∈ L
X = (x1, . . . , xn) ∈ Rn

, (4.1)

where t designates the timestamp of the event, usually encoded as a long integer (mil-
liseconds since epoch), l is a label identifying the event’s type, and X is a vector of
characteristics defining the event. This definition of events is similar to generic spatio-
temporal events defined by (Y. Tan, Vuran, and Goddard, 2009) in the context of CPS.
Once an event is stored in this memory, it cannot be revised: in that sense, the event
memory can be considered as a Read-Only Memory for the rest of the LEC. It guarantees
the existence of a trace of the past measures from the SHC, materialized in the LEC’s
design by the existence of a dedicated memory, represented in green in Figure 4.4

Interface/Central Unit

Events

Exposed
variables

from the SHC

D-CAS Request
from the
Spotlight

LEC

Predicates

Abduction
Unit

Interpretation
Unit

Figure 4.4: The twin-memory architecture of the LEC: events are stored in a designated
memory, and cannot be changed afterwards. On the other hand, predicates are designed
to be modified at runtime, to express the volatility of the user’s notions. Purple arrows
indicate the flow of data from the SHC, while yellow arrows show the process of a request
from the Spotlight during a D-CAS iteration (see Figure 4.6). The simulation unit is
omitted for the sake of clarity, its role being similar to that of the abduction unit.

While being high-level representations of subsets of observed variables, possibly ag-
gregating them over some duration, event objects remain closely related to the variables
observed by the LEC and do not fit into the D-CAS model presented in Chapter 3. D-
CAS reasons using Boolean propositions. An additional layer of abstraction is therefore
necessary. It is implemented in the LEC by predicates. Predicates are boolean functions
mapping an event recorded by the LEC and additional arguments to a Boolean proposi-
tion. In that sense, they are close to the usual definition of predicates in mathematical

4.2. THE LOCAL EXPLANATORY COMPONENT (LEC) 79

logic: symbols representing a property or relation over one or several variables. Formally,
a predicate of arity n is defined by:

p =

{
E × Nn 7→ (P , {0, 1})
(e, k1, . . . , kn) 7→ (rep(p, e), {0, 1})

, (4.2)

where k1, . . . , kn denote the n integer-encoded additional arguments, P denotes the set
of Boolean propositions as used by D-CAS, E the set of events, and rep a representation
function which gives the proposition corresponding to the predicate without supposition
regarding its value. To illustrate this, consider the notion of“hot”. A naive approach is to
consider a room to be hot if the measured temperature of this room is above a predefined
threshold, for instance 20◦. The corresponding predicate is phot, of arity 0, defined as
phot(e) = (hot(e.room), e.temp > 20◦C). Similarly, spatial notions can be described:
an event e occurring in a room k can be defined as whether the event e, in its dictionary of
characteristicsX, has a location variable corresponding to room k. Thus, pin is defined
as a predicate of arity 1, which maps e and k to (in(e, roomk), e.location = roomk).

Contrary to events, that are immutable once stored, predicates can be modified at
runtime to account for the possible meaning changes previously evoked. For instance,
the threshold of 20 that is used in the phot predicate can be modified at runtime: this
changes which events are considered hot, modifying the perception of recorded events
without modifying them.

Following the formal definitions from Equations 4.1 and 4.2, events and predicates can
be implemented in Object-Oriented Programming (OOP) languages using the scheme
presented in Figure 4.5. Here, the predicate presents two public methods evaluate() and
toProposition(): the former corresponds to the mapping presented in Equation 4.2, the
latter to the rep(p, e). In accordance to our definition of predicates as mutable objects,
the evaluate method can be revised at runtime to adapt to a new interpretation of a
notion. For the rest of the implementation description, propositions are defined as String
objects, which correspond to the words they describe in natural language.

A specialized unit of the LEC, named“Interpretation Unit”, is responsible for analyzing
monitored variables from the attached SHC and detect events. This unit, visible on
Figure 4.4, is also responsible for creating predicates from the same observations and
possibly modifying them if need be. The internal organization of this unit will be further
described in Section 4.2.3.

The Interpretation Unit is also responsible for evaluating preference necessities, de-
noted νloc in Figure 3.4. These necessities encompass the knowledge of the component
regarding its different goals. For instance, the temperature controller goal, given a
temperature target, will associate negative necessities to propositions corresponding to
situations where the target is not reached. This kind of pre-computed necessities (which
are computed prior to the explanation reasoning) is used to possibly limit conflict prop-
agation. They can also be used to indicate the confidence of the LEC in its knowledge:
for instance, a sensor that is known to be prone to failures can be assigned relatively
low necessities, meaning that it would be possible, during the explanation process, to
revise its knowledge. This possibility is further explored in the example implemented in
Section 5.4.

80 CHAPTER 4. ARCHITECTURE DESCRIPTION

C Event

final long timestamp
final Label label
final Map<String, Object>characteristics

C Predicate

List<Object>signature

boolean evaluate(Event, List<Object>arguments)
String toProposition(Event, List<Object>arguments)

Interprets

Figure 4.5: Class definitions of events and predicates. Naming conventions are based
on Java language. Fields of the Event class are final, following their introduction as
immutable high-level representation of past observations.

4.2.2 Reasoning on the LEC

When the Spotlight requests the LEC to provide more information about a conflict, by
calling its investigate method, the LEC uses its internal knowledge to find the appropriate
answer. The overall process, shown in Figure 4.6, is further detailed in this subsection.

(01) The interface of the LEC receives the request, which contains a conflict (P,N)
object, as defined in D-CAS formalism (see Chapter 3). (02) The LEC then checks
with its memory of predicates if it contains elements that could have generated the
proposition P . This confirmation operation is prime, as it bridges the gap between the
Boolean proposition used for the D-CAS rationale and the variables exposed by the SHC
which have been processed by the LEC and stored as events. For the LEC, this operation
consists of identifying whether a recorded event e from the event memory and a predicate
p from the predicate memory can evaluate the desired proposition P to be true. That
is, whether the following equation is true:

∃
e ∈Events
p ∈Predicates

(a1, . . . , an) ∈Args(p)

∣∣∣∣∣∣∣ p(e, a1, . . . , an) = (P, True) , (4.3)

where Args(p) denotes the set of admissible arguments for predicate p.
(03) In case this search is successful, the process continues within the LEC: the

identified event e, the predicate p and the arguments (a1, . . . , an) are passed to the
abduction unit (04). This specialized unit possesses inference knowledge which it can
use, alongside access to the event (05) and predicate memories (06), to propose possible
hypotheses and evaluate their likeliness. Then, the most fitting one, according to the
abduction unit, is returned, as exposed in Chapter 3 (07). This result is presented as a
new conflict (C,NC), where C is the proposed hypothetical cause proposition and NC

its associated necessity. In parallel, the Simulation Unit of the LEC (not represented

4.2. THE LOCAL EXPLANATORY COMPONENT (LEC) 81

Figure 4.6: Sequence diagram of the processing of a request from the Spotlight by a
LEC.

in Figure 4.4) is requested to identify a possible action to revert the examined conflict
(08). The Simulation Unit has access to the events (09) and predicates (10) memories
to gain additional knowledge of the context. It then returns its best proposal as a couple
(A,NA) (11). In the example depicted here, the LEC choses the abductive hypothesis
as the best result, and returns it to the Spotlight (12). result can then be transmitted
back to the Spotlight if the propagation criterion is met (i.e. this hypothesis has not
yet been considered with a higher intensity). This choice is made by comparing the
necessities NA and NC : a lower intensity denoting an easily mutable proposition. In
case no suitable predicate is found that corresponds to the request of the Spotlight, the
returned RESPONSE object contains a give-up instruction, with additional information
detailing that the LEC was unable to understand the proposition (15).

In D-CAS formalism, necessities model the agent’s opinion regarding its observed
Boolean propositions. AS they are a unifying metrics for conflict intensities, they are

82 CHAPTER 4. ARCHITECTURE DESCRIPTION

present in several units of the LEC. Necessities that translate prior opinion regarding
beliefs and wishes are handled by interpretation modules, that can assign some Boolean
propositions with necessities to translate the Autonomic System’s goals into the explana-
tory reasoning. For instance, cold(room) may be associated with a negative necessity,
as the system’s goal is that this proposition is not realized. Another possible source
of necessity can be the evaluation of a probability by the interpretation module. For
instance, a proposition fault(component) may be associated with a strongly negative
necessity, showing that the component considers this proposition as being highly unlikely,
considering its observations.

Necessities are used in the process shown in Figure 4.6 to quantify the quality of
the causal hypotheses and actions proposed by the Abduction and Simulation Units.
The necessity NC of the returned hypothesis C is a number such that −|N | ≤ NC ≤
|N |, conforming to the propagation condition of D-CAS that no hypothesis with higher
necessity than the incoming conflict can be considered. The exact intensity |NC | is
computed by the Abduction Unit to measure its confidence in the hypothesis: |NC | = |N |
shows a full confidence, while a small value shows that the unit thinks the causal link is
unlikely (but has no better suggestion). As this necessity NC is later transmitted back
to the Spotlight (12), an unlikely hypothesis will be treated as a low-intensity conflict
by the rest of the system. Thus, it avoids making potentially harmful or complicated
decisions following a bold claim. For instance, if an Abduction Unit suggests, with low
confidence, that switching off the entire electric system might solve the room being too
hot, the low intensity attributed to the hypothesis will not be enough for the system
to consider doing so. Similarly, the score NA given to the action A (11) denotes the
confidence of the Simulation Unit that this action might revert the conflict. Thus, a
simple comparison between the values NA and NC can be used to identify the response
to return to the Spotlight.

In case the proposition is understood by the LEC, i.e. there is a predicate p in its
knowledge that corresponds to the proposition P , but no event e is found that makes the
proposition true, the Central Unit notifies the Interpretation Unit of the mismatch (13).
This notification can trigger a knowledge revision, and the Interpretation Unit may revise
the meaning of p. (14) The realization of this revision is conditioned on the intensity
|N | of the incoming conflict and the confidence of the Interpretation Unit regarding the
definition of p. For instance, if (P,N) = (failure(component),−50), and that the
Interpretation Unit knows that this particular component has a history of past failures,
it may admit that it is currently failing, thus changing the definition of p = failure()
so that it is realized. Conversely, if the Interpretation Unit is confident enough that the
component is not undergoing any failure, it may refuse to revise its knowledge, resulting
in a GIVE-UP response to the Spotlight (15).

Note that the inference knowledge R defined in CAN formalism and used by D-CAS
to perform both abductive inference and imagine the consequences of counterfactual
actions (i.e. simulations) is implemented in separate abduction and simulation units in
the LEC. This follows our general implementation principle of separating functions to
allow for a better adaptation. This principle is further extended to enable modularity.

4.2. THE LOCAL EXPLANATORY COMPONENT (LEC) 83

4.2.3 A generic and adaptive platform

The LEC is directly connected to a SHC which can undergo different changes, either
internal (changes of configuration, software update, goal changes) or external (displace-
ment within the house, change of external conditions). At its level, the SHC implements
context-aware self-adaptation as it is the case in many smart devices/controllers (Silverio-
Fernández, Renukappa, and Suresh, 2018). (P. Lalanda, Gerber-Gaillard, and Chollet,
2017) introduce a smart home simulation platform integrating context-aware compo-
nents, and (Marikyan, Papagiannidis, and Alamanos, 2019) even define the“smart”prop-
erty of devices as being strongly correlated with this self-adaptation capability. Therefore,
this requirement of SHC being able to locally handle changes is coherent with state-of-
the-art development. In consequence, the LEC should also adapt to these changes and
integrate them into its knowledge to propose them in subsequent explanatory reasoning.
This is done by observing the exposed state of the SHC and analyzing it, in the same
way as other data is processed by the LEC. Thus, self-observation-related events can be
extracted by the Interpretation Unit of the LEC: e.g. an event labeled event/move is
created after the LEC observes that the exposed location of the component changed.
Here, the characteristics field of this event includes the from an to positions of the
device, the name of the device that moved and its type. As it is detected and stored in
the event memory of the LEC, this event can then be proposed and integrated to the
explanatory rationale as any other event.

Knowledge of the attached component is prone to change following software updates
and context modifications. In addition, as events of different nature can be recorded
and handled by the same LEC (e.g. configuration events, error events, temperature
events can all be recorded by the LEC attached to a thermometer), it is reasonable
to adopt a modular approach to this knowledge representation as it allows for better
configuration and customization. The LEC can be seen as a generic local platform, where
each of the main units, namely Interpretation, Abduction and Simulation, are divided
into smaller specialized “plug-and-play” modules. Figure 4.7 shows this organization:
upon the common Communication Interface, different modules can be added, updated
or removed at runtime. A Manager integrated to the LEC keeps track of the changes
and accordingly stores changes, maintaining an up-to-date Internal Context. Similar to
SHC observation, this self-observation is recorded as events in the event memory. Thus,
addition or update of LEC capabilities can be integrated into future rationale.

Another role of the LEC adaptation logic is to keep track of meaning modification
of predicates. As these changes transcribe a meaning shift for certain concepts, it
is important to keep track of them. This capability is achieved via monitoring when
updates are made to predicates in the predicate memory. Thus, when an interpretation
module updates a predicate to adapt to a new environment or knowledge, this update
is recorded by the manager. Subsequently, another Interpretation Module can analyze
the recorded modification and create a corresponding event (and predicates). This event
can thereafter be integrated into the explanatory rationale as any other would. To
illustrate this, consider Example 4.2: the predicate pcold has changed its threshold as
a reaction from the user request that the room feels cold. The change is recorded as
a second event of type predicate change, with characteristics such as the old and

84 CHAPTER 4. ARCHITECTURE DESCRIPTION

LEC Communication Interface

Manager

I2 I3

I1

Predicates

Events

A3A2

A1

S1S2

Internal
Context

SpotlightAttached SHC

Exposed State

Figure 4.7: The modular architecture of the LEC. Here, modules I1, I2 and I3 are
interpretation modules; modules A1, A2 and A3 are abduction modules; modules S1 and
S2 are simulation modules. A local manager keeps track of the internal configuration
and keeps an updated context which can be accessed by the different modules. This
context contains information regarding the types and capabilities of modules (e.g. their
vocabulary in terms of variables and propositions, their software version). The manager
can then expose some of the internal changes of the LEC to the exterior, using Boolean
propositions resulting to the application of predicates to recorded events.

new threshold values. Then, it can be integrated into the rationale, allowing D-CAS
to propose the following answer: “it was cold because the temperature threshold was
inadequate and had to be changed”.

As the LEC is made of many specialized modules, these modules have to be defined.
Since they require specific knowledge of the SHC, namely its variables and logic, it
seems adequate to rely on a component-based approach. We suppose that, alongside
their usual specifications, SHC’s are able, when they are integrated into the system, to
expose the required modules and their characteristics to their LEC. The Spotlight, which
will be further detailed in Section 4.3, then creates the LEC as requested and ensures it
is connected. The responsibility of the SHC’s explainability is left to the component’s
manufacturer, which arguably possesses expertise over the component’s workings, use
cases and abilities. This specification is described in Section 4.5

4.2. THE LOCAL EXPLANATORY COMPONENT (LEC) 85

Example 4.2

A user experiences unusually low temperature in a fully-equipped smart room.
He/she inquires the explanatory system for this situations. D-CAS identifies the
issue to be the competence of the temperature controller and forwards the request
to it. However, the temperature controller does not consider the room to be cold.
But given the high discomfort of the user, the intensity of the conflict is high
enough for the controller’s LEC to reconsider the meaning of its predicates. It
changes the detection threshold of the cold predicate. This change is monitored
by the LEC’s self-adaptation capabilities: in reaction, an event is recorded to store
this meaning change. This event can later be proposed as the final explanation:
the room was cold because the temperature threshold was too low and had to be
reconsidered.

The exact inner working of the Interpretation, Abduction and Simulation Modules is
considered out of the scope of this thesis. Each of these topics raises scientific ques-
tions that would require significant developments. For instance, the problem of mapping
human-understandable concepts such as D-CAS propositions to streams of measured
variables could be addressed through data mining, anomaly detection or NLP; or the
abductive inference problem could be examined by using current XAI solutions. For in-
stance, feature-relevance methods, such as LIME (Ribeiro, Singh, and Guestrin, 2016),
can identify the most significant parameters to a component’s decision and generate cor-
responding propositions as possible causal hypotheses. Some naive implementations that
were used for the development of our proof-of-concept demonstrator will be described
in Chapter 5. Chapter 6 will focus on a novel method for abductive inference based on
proposing memorable events as relevant causes.

4.2.4 Preserving knowledge locality and privacy

To preserve privacy, inter-component communications do not disclose measures from
the SHC, nor events or predicates. Rather, they exchange the outputs of the predicate
functions, i.e. the propositions and their values (in our implementations, Strings and
Boolean values). This isolation allows to keep potentially critical information at the local
level, and avoids unmaintainable knowledge base: for instance the thermometer LEC
from Example 4.1 will only disclose the information (hot(room), true), without further
indicating the meaning of this word. This separation between syntax and semantics is
analogous to what is observed in the“Chinese Room”counter-argument to AI: processing
Chinese characters is a different ability than actually understanding them (Searle, 1980).

In the smart home explanatory system, this distinction allows communications be-
tween devices while preserving the locality of knowledge: only propositions, i.e. symbolic
representation of the observation and interpretation of the LEC, are communicated, while
their actual meaning remains localized within the relevant component. The existing twin-
memory architecture can be further improved towards privacy and shallowness: by using
an additional disclosure level to the predicates stored in a LEC, it is possible to only
disclose their associated propositions to selected components. This is similar to existing

86 CHAPTER 4. ARCHITECTURE DESCRIPTION

methods that preserve critical data within smart home systems (B. M. Jakobsson and
A. K. Jakobsson, 2021). Example 4.3 below presents a possible application of such levels
to the explanatory system.

Example 4.3

A heat pump is a critical equipment in a smart home. During winter, a compo-
nent of the heat pump defects, provoking perceptible consequences on the house
temperature. This defect is identified by some autonomic component which raises
some error code, e.g. 102. The user feels the temperature drop and investigates
why this situation occurred. By asking the D-CAS system, he/she is at first pre-
sented with the simple failure(pump) proposition. This may be sufficient for
some occupants, but an experienced user or a technician would gain more insight
from the proposition internal_failure(pump, code102).

Here, different comprehension levels are set to enable distinct options depending on
the target of the explanation, for instance between an average user and an expert. In
such circumstances, the handling of the deeper investigation level is left to D-CAS: by
setting a higher necessity threshold on the predicate with higher disclosure level, D-CAS
will first propose the high-level predicates. Then, if the user reiterates his/her request
with more intensity, this will allow disclosing lower-level predicates. This possibility is in
line with the shallowness goal of the system, as well as a first response to the question
posed by (Maxwell et al., 2020a) concerning the existence of several levels of explanation.

4.3 The Spotlight

In Chapter 3, we introduced the Spotlight as a central component orchestrating the
D-CAS algorithm to generate a system-wide explanatory reasoning. To implement the
interface presented in Figure 4.2, the Spotlight does not need to have knowledge about
the state of the system and its environment, but only to keep an updated base of
pointers to the different LECs in the system. To acquire more knowledge, for instance
about the different components capabilities, the Spotlight relies on calls to the different
components2. Given that the Spotlight must already keep this knowledge of the system
and its central position, it makes sense to localize the naming and directory service of
the explanatory system in the Spotlight.

Relying on a single component for system-wide adaptation may introduce vulnerability
with regards to reliability of the system. However, given that the Spotlight does not need
to keep a specialized knowledge, its role can be easily overtaken by a back-up component
in case of failure. This possible redundancy of the Spotlight is a common paradigm within
Cyber-Physical Systems (Rajkumar et al., 2010), where robustness of the system is a
key feature, especially for critical applications (electric grid management, heavy industry
applications).

2While there is no requirement for it, implementations can include some kind of buffered storage of
the LECs’ capabilities to decrease the number of communications.

4.3. THE SPOTLIGHT 87

The Spotlight itself presents self-adaptation features, as it updates its knowledge
to the configuration of the system. Similar to LECs, its capabilities can be upgraded
or updated following the same modular architecture. Its internal organization is shown
in Figure 4.8: a base communication interface serves to the D-CAS module, which
implements the algorithm seen in Chapter 3. An Explanatory Architecture Manager
is responsible for tracking the different changes occurring in the rest of the system:
addition, removal, change, failure of one or several LECs. Additionally, a module manager
allows different extension modules to use the communication interface to eventually add
new capabilities to the explanatory system at runtime. For instance, an “intercom”
module can be added to allow communication between LECs, turning the Spotlight into
a “middle agent” (Decker, Sycara, and Williamson, 1997): e.g. the window LEC sends
a message, via the Spotlight, to the thermometer LEC to gain some knowledge, which
could potentially improve the component’s overall explanatory capability. This kind of
additional communications is enabled by the specification of a wildcard communication
type in our specification in Table 4.1.

D-CAS Process

Locate()
Backtrack()
sets G, C

Communication Interface

System Knowledge (pointers to LEC's and simulators)

Explanatory
Architecture

Manager

User Interface

Smart Home
Autonomic System LECs

Simulators

Updates UsesUses

"Obs"
Interface

ManagerInternal
Context

Module 1Module 2

Module 3

Module Manager

Uses

Figure 4.8: The spotlight is composed of a fixed D-CAS operating module, a knowledge
base of pointers to all LECs in the system, an autonomic management unit and a
communication interface with all other components in the system. Additional modules
can be plugged in to offer additional services to LECs.

However, contrary to LECs, the Spotlight’s self-observation capability is not directly
integrated into the explanatory process: when an internal change occurs, it is not trans-
lated into usable D-CAS knowledge. This choice is in accordance with the principle of
generic design exposed in Chapter 3 which implies that the Spotlight has only minimal

88 CHAPTER 4. ARCHITECTURE DESCRIPTION

knowledge. Allowing the Spotlight to have internal predicates and events would have
breached this design. However, the Spotlight implements the “Obs” interface: some of
its internal context is exposed via a manager, which allows to attach a LEC to the Spot-
light, resulting in what is shown in Figure 4.3. This Spotlight LEC is registered into the
Spotlight’s naming and directory service and contains knowledge regarding the general
organization of the explanatory and control system. Hence, it can be included, as any
other LEC, in a D-CAS reasoning. This allows to include self-observation propositions
into the explanation, e.g. device added(dev id) or device removed(dev id).

4.4 Simulators

D-CAS integrates simulation as the continuation of the Negation operation that is orig-
inally present in CAN (Dessalles, 2016). By simulation, we designate the operation that
considers the potential outcomes of an alternative scenario, similar to counterfactual
thinking. In D-CAS, simulation, as abduction and interpretation of propositions, is dele-
gated to expert components. To account for the diversity of available tools to simulate
the system’s behavior, the method described in Chapter 3 left their implementation and
characteristics unspecified.

The requirements defined by D-CAS for the simulators are that they can expose the
range of their knowledge, i.e. whether they are able to perform a given action, encoded
as a conflict (P,N), perform this action and then broadcast its results action to the
other LECs present in the system. This broadcast operation can be achieved by relying
on the Spotlight’s knowledge of the system’s composition. To prevent unnecessary
computations in trivial cases, simulators can implement a safeguard that is similar to
the propagation condition used for abduction modules. If the intensity |N | of the action
(P,N) to simulate is not high enough, the simulator can refuse to perform the operation.
Here, necessity is used as a mutability score, similar to one of its original use in CAN.

A first range of simulation methods relies on localized expert knowledge, for instance
in the form of a finite set of rules, Bayesian models or case-based reasoning. Numerical
methods relying on neural networks have long been considered too complex and power-
hungry to be realistically embedded in edge devices. However, the emergence of parsi-
monious neural networks enables high-performance simulators which can be embedded
into low-power devices (Bompard et al., 2020). As previously stated, defining the inner
working of these modules is considered out of the scope of this research. Given their
small computational requirements, it is possible for such methods to be implemented
at the LEC level, similarly to abduction methods. In Figure 4.7, a simulation module
is present in the LEC to provide such capabilities. The presence of these lightweight
simulation modules directly in the LEC can provide tools for abduction validation. For
instance, the module can perform a quick simulation to check if its proposed hypothesis
is coherent with simulation results.

It is also possible to rely on heavier simulation methods, often modeling the entirety
of the building. Among them, we can cite the paradigm of the “digital twin” (Negri
et al., 2019), which aims to reproduce the behavior of an entire system. Since this kind

4.5. SELF-* CAPABILITIES 89

of simulation requires heavier computations, it can be hosted on a distinct device, as in
Figure 4.3.

Simulating interactions between devices is a challenging issue for scalability: the
number of possible one-to-one interactions increases as the square of the number of
variables within the system. However, models of the system may include prior knowledge
about its organization which would decrease the complexity of the simulation model: for
instance by considering interactions within the same room, and room interactions at a
greater level, one can simplify the simulation of a large building. This kind of multi-scale
approach is already widely-used in complex systems simulation, for instance for the study
of grid-level power consumption (Albouys-Perrois et al., 2022).

Integration of new devices into existing simulators is handled the same way as classical
handling of devices. In case a dedicated module handles system-wide simulations, it is
notified of the new device addition, and can access its exposed characteristics. Thus,
if need be, the newly added device can be injected into the simulation model. For
instance, our first implementations of the demonstrator were based on a smart home
simulator named iCasa (Philippe Lalanda and Hamon, 2020). This software handles
runtime injection of new modules and components, which would be suited for its adoption
as a system-wide simulator, adding new devices as described by their specifications.

Regardless of their hosting device, all simulators must be able to broadcast their re-
sults to their surroundings. This can be achieved by consider context-aware components:
simulators know with which components they can send their results to. Simulators’ out-
put can consist of data streams, similar to data generated by real devices. This similarity
allows LECs to process the data regardless of its origin, be it real observations or sim-
ulations. It is also possible that a simulator requires a certain kind of interpretation
module to make sense of its results; in which case the simulator module should expose
this requirement in one of its characteristics to allows its integration into the system.

4.5 Self-* capabilities

Self-awareness, implies many self-* capabilities (e.g. self-observation or self-adaptation)
and the ability for the system to model its own behavior and integrate it in its reason-
ing (Kounev et al., 2017). In Chapter 3, we identified this ability as a target goal for a
smart home explanatory system. This is particularly exemplified with what we call the
“plug-and-explain” capability. Since the introduction of a new device can lead to un-
precedented situations which may require explanation, this feature is particularly set as
a target for a convincing smart home explanatory system. We propose to study how the
architecture described in this chapter is compliant with the principles of self-awareness.

The sequences presented in Figures 4.9, 4.10 and 4.11 show the integration process
of a new component in the smart home control system, its typical use over its lifespan
and its possible removal. The prerequisite for these sequences is that the new device
presents a description exposing its capabilities in terms of explanation, and that this
description is somehow handled by the naming and directory service of the smart home
autonomic system which is accessible to the Spotlight.

90 CHAPTER 4. ARCHITECTURE DESCRIPTION

Figure 4.9: Sequence Diagram illustrating how the explanatory system integrates a new
SHC into it by creating the corresponding LEC. A blue arrow indicates actions initiated
by the user, black arrows interactions involving the Smart Home Autonomic System
and red arrows intra-explanatory system communications, which are detailed below in
Table 4.1.

The sequence of Figure 4.9 is typical of self-integration: upon its addition, a newly
introduced component exposes its characteristics to an autonomic registry of the control
system. This registry is exposed and periodically observed by the Spotlight. Upon ob-
serving a change, the Spotlights then triggers the creation of a new LEC. This creation
uses the information exposed by the SHC as the “recipe” for this new LEC. Here, the
information exposed by the SHC should therefore include the number and types of ab-
duction, interpretation and simulation modules, which SHC variables are exposed, how
to access them and other possibly useful characteristics.

Figure 4.10 also shows the process of a configuration change at the level of a LEC:
in case the observed component presents self-adaptive abilities, the LEC observes these
changes via the exposed state and context of the component, similar to what is pro-
posed by (P. Lalanda, Gerber-Gaillard, and Chollet, 2017). In this case, the necessary
configuration changes are handled locally by the autonomic manager of the LEC. Once
such changes have been performed, the necessary information is exposed to the Spotlight
through an INFO message (see Table 4.1) which contains a description of the current
state, configuration and perceived context of the LEC.

This sequence illustrates how the explanatory engine implements Adaptation Logic
at two distinct levels: LECs can individually follow changes occurring within their knowl-
edge domain or internal to their attached components, as occurs during their typical

4.5. SELF-* CAPABILITIES 91

Figure 4.10: Typical use case of a LEC: the component periodically observes its SHC, and
performs the required configuration changes when needed. In case a D-CAS rationale is
run, it exchanges information with the Spotlight.

use cases; the Spotlight tracks and monitors changes happening in the entire system
and facilitates communication between the different components, which is required for
runtime integration, i.e. “plug-and-explain”. The final step of a LECs life cycle is shown
in Figure 4.11: its deletion follows the one of its attached SHC, and it notified to the
Spotlight.

Our self-observation logic is based on a generic description language for the different
components of the explanatory system. Our choice here is to design this description
as an extension of existing description languages for smart components, such as the
Smart Object Description Language proposed by (Burmeister, Burmann, and Schrader,
2017). This language enables integration and observation of smart devices within a
smart home: for instance, components expose their capabilities (e.g. temperature man-
agement, window control, security control). A similar exposure is available in the smart
home simulator (Philippe Lalanda, McCann, and Diaconescu, 2013) where an autonomic
manager is able to detail representations of the different components in the house. Our
resulting description language is specified in Figure 4.12.

As previously mentioned, all these communications follow the principle of locality
of knowledge: events and predicates are never communicated between components, as
they remain limited to their host LEC.

92 CHAPTER 4. ARCHITECTURE DESCRIPTION

Figure 4.11: Deletion of a LEC following the removal of its attached SHC from the smart
home system.

Overall, the architecture organization of the explanatory system fulfills the target
goals defined in Chapter 3: it relies on generic platforms which are specialized by imple-
menting specifications that are exposed by SHCs via their description. This specialization
consists of: i) specific interpretation modules, which associate D-CAS knowledge model
to observed physical variables; ii) specific abduction and simulation modules which im-
plement local causal knowledge. The twin-memory basis of the LECs enables the locality
of events and predicates meanings, as only the propositions are exchanged between com-
ponents without disclosing their meaning. Self-adaptation of the explanatory system is
performed via observation of the SHC and self-observation: eventual changes are lo-
cally recorded as events, which can be used to define propositions and integrated into
explanatory reasoning.

4.5. SELF-* CAPABILITIES 93

Figure 4.12: Description of an SHC enriched with the description of the attached LEC.
This kind of description can be used both for the integration and change adaptation of
either the SHC or the attached LEC (addition or change of a module). The highlighted
fields may not be publicly disclosed, as they contain potentially critical information re-
garding the structure of the component. By contrast, the characteristics fields are
exposed to other components in both the control and the explanatory system.

94 CHAPTER 4. ARCHITECTURE DESCRIPTION

Chapter 5

Realization of a Proof-of-Concept
Demonstrator

Summary

To test the feasibility and the performance of both the D-CAS algorithm
exposed in Chapter 3 and the explanatory system architecture detailed in
Chapter 4, we realize a proof-of-concept demonstrator. This implementation
models a smart home equipped with the explanatory system. In this chapter,
we describe the three successive versions of the demonstrator that were
realized over the course of this research. We motivate changes between
versions.

The latest implementation is built upon a physical smart home model using
physical sensors and edge computing units. The control system uses an
event-based framework to provide the necessary observation and adaptation
capabilities. The explanatory system is written in Python and observes the
control system via REST requests. An additional web interface is added
to interact with both the control system and the explanatory system. This
interface includes a visual representation of the output rationale of D-CAS,
where the different steps are nodes of a tree graph. This representation
allows to grasp the entirety of the explanatory rationale.

We evaluate the performance of the demonstrator qualitatively by testing dif-
ferent situations that reproduce the examples exposed in Chapter 1. These
examples are inspired from on-field experience of EDF employees and mo-
tivate the development of the smart home explanatory system. As such,
they represent simple and yet challenging situations to explain, showing the
potential of the system along with its limits. To evaluate the performance of
the demonstrator, we tested different situations which we deemed interest-
ing to explain. Most of them reproduce the examples exposed in Chapter 1
which are inspired from field reports by EDF employees.

95

96 CHAPTER 5. IMPLEMENTATION

5.1 Implementation choices

Over the course of the research, three consecutive versions of the demonstrator have
been realized. Each one targets specific aspects of the explanatory system. These various
goals, and the lessons learnt from the limitations of the previous trials are visible in a wide
range of aspects: communication protocols, hardware, software and data storage differ
between versions. Before describing the latest and most advanced version to greater
extent, we first briefly review the previous drafts.

5.1.1 Previous versions of the demonstrator

First Version The first version of the demonstrator aimed at showing the feasibility
of using a decentralized knowledge of predicates to generate system-wide explanations.
It was implemented in Java upon the iCasa platform. iCasa is a pervasive computing
platform (Philippe Lalanda and Hamon, 2020; P. Lalanda, Gerber-Gaillard, and Chollet,
2017) that proposes a smart home simulator implementation. This simulator contains a
context manager which allows the addition of custom self-aware, context-aware compo-
nents. It is based on OSGi (Tavares and Valente, 2008), a toolkit to enable component
and service-oriented programming in Java. As such, this technology is used for various
IoT applications (Wu, Liao, and Fu, 2007; C. Lee, Nordstedt, and Helal, 2003). In
this version, each component, both of the control system and the explanatory system,
consisted of an iPOJO object (Escoffier, Hall, and Philippe Lalanda, 2007), i.e. a Java
class augmented with annotations to specify the OSGi-specific capabilities of each com-
ponent. Thanks to the iCasa-provided managers, each of these components can publish
its services and requirements and expose its state, which enabled the realization of a
first adaptive explanatory system. In addition, a Graphical User Interface (GUI) was also
implemented in this component-based approach. Figure 5.1 shows this interface.

This version allows to play basic scenarios and run a first draft of the D-CAS algo-
rithm to generate explanations in this context. It validated the main D-CAS principles:
separation of knowledge (predicates encoding the state of the world are stored in dif-
ferent components) and a rationale based on conflict identification and propagation.
However, this implementation presented some major issues that required modifications
and, ultimately, the development of another distinct version.

First, despite being written as different components, the LECs are operating in the
same runtime environment as the SHC, and are monitored by by a unique manager. This
close relationship questions our genericity principle: the LECs are too much integrated
within the iCasa environment to be considered generic, they rely on the same technology
as the control system implementation. Second, this demonstrator is written in Java,
which, while being an industry-grade programming language, can be seen as too rigid
to suit the purpose of a proof-of-concept demonstrator. As the research progresses, the
implementation undergoes major revisions and changes, at the same time for the D-
CAS algorithm itself, knowledge representation and explanatory component capabilities.
Third, as iCasa runs on a single machine, it is not possible to demonstrate the compliance
of our architecture “physically” with smart-home hardware capabilities and inter-device
communications; similarly, it not possible to experience the “plug-and-explain” feature

5.1. IMPLEMENTATION CHOICES 97

Figure 5.1: Interface of the first version of the demonstrator, written in Java. On the left
hand side, a panel shows the LECs and the propositions they know, each assigned with
a value and a necessity. In the top right corner, the existing iCasa web interface shows
the simulated room with four devices. In the bottom right corner, a list of true and
false propositions, and buttons allowing basic interaction with the simulation (opening
a window, changing outdoor temperature to a fixed low value).

of the explanatory system, as the addition of new hardware at runtime is not managed.
Fourth, the interface between propositions and variables is not satisfactory: proposi-
tions were limited to predefined threshold comparisons and events were associated to a
proposition’s value switch, which limited the observation capability of the explanatory
system. This change alone requires major modifications, and motivates a new draft of
the demonstrator.

Second version To tackle the first two limitations identified in the demonstrator’s
first version, a new implementation was realized. The layered architecture presented
in Figure 4.1 is strictly followed by isolating the explanatory engine and the control
system. Again, the smart home physical environment corresponds to the iCasa smart
home simulation, and controllers are implemented as iPOJO components upon this
basis. The explanatory system is implemented in Python, a language that is well-known
within the Computer Science community for its flexibility and that appears as a prime
choice as a prototyping language. Its main downside is its speed, as it is an interpreted
language. However, this is not an issue in the current context of designing architectures
and algorithms. The Python layer interacts with the iCasa instance hosting the smart
home environment and control system by using the REST API exposed by iCasa. This
directly follows the guideline that the explanatory merely observes the control system,
without the latter being aware of this observation. In addition, a web interface shown

98 CHAPTER 5. IMPLEMENTATION

in Figure 5.2 is also implemented. As the GUI is now based on web technologies and
languages (JavaScript and Bootstrap), it is arguably more polished than the previous
one. It also introduces the visual representation of D-CAS explanatory output as a tree,
which will be further presented in Section 5.3.

Figure 5.2: Interface of the second version of the demonstrator. It controls both the
Python-written explanatory system and the iCasa simulator underneath.

The goal of this version is to instantiate the possible genericity and self-adaptation
allowed by the architecture in an implementation. With a better isolation of the explana-
tory system from the control system technologies, this version is able to generate the
same explanations than the first one, using D-CAS to coordinate calls between different
LECs. It also introduces LECs as generic platforms upon which different modules can
be added, depending on the SHCs exposed characteristics. However, this adaptability is
for now limited to only predefined modules, limiting its capability.

While this version brings more flexibility and independence between the different
layers of the architecture, it still faces some issues. First, it lacks the desired adaptive
characteristics and fails to implement the architecture in a realistic setup: all components
are still run on the same machine, a mid-range laptop that is not representative of existing
smart-home hardware. Notably, no specific communication protocol is defined between
components as they all are hosted in the same application. Second, the variables-
proposition interface does not differ from the first draft, and still lacks the desired
adaptability and flexibility.

5.1.2 Implementation choices for the third version

As the main goal of the demonstrator is to show the ability of D-CAS and the underlying
explanatory system to work in realistic environment, we realized a third version of the
demonstrator that aims to rely on hardware sensors and on the physical environment.
Contrary to previous versions, the explanatory engine is now scattered across several
hardware devices and the control system interacts with physical devices.

5.1. IMPLEMENTATION CHOICES 99

Hardware

A wide range of hardware computing units can be found in smart home projects: from
task-specific Field Programmable Gate Array (FPGA) that are highly efficient (Alhafidh
et al., 2018) to generic x86-based or ARM-based CPU. The main characteristic of smart
home computing units is to be a low-power equipment that can be embedded directly
into devices. For the purpose of our demonstrator, we decided to settle on using Rasp-
berry Pi’s (RPI): these small ARM-based computers are frequently found in smart home
projects (Wen and Wang, 2018) and benefit from a large community, which means that
most software is ported and can run on RPI. Notably, specific GNU/Linux distributions
exist for RPIs, allowing to use a well-known and reliable Operating System (OS). Be-
ing the size of a credit card and costing less than a hundred dollars, it is reasonable
to consider a smart home system relying on several RPIs, each in charge of a handful
of devices. To allow several devices to be handled by a single RPI, we use “hats”, i.e.
extension cards that plug into the RPI’pins and add separate slots for different devices,
visible on Figure 5.3.

Figure 5.3: A RPI equipped with its hat and connected sensors. Below, a NUC hosts
the Spotlight, user interface and general manager of the system. Both hardware devices
are connected to the local network over WiFi.

The central component of the explanatory system, which hosts the user interface,
the Spotlight and the general manager for the smart home control system, requires more
power than RPIs. Notably, it can host additional system-wide simulation engines that
require heavy computations; also, as it hosts the web interface, it has to handle modern
front-end frameworks, adding overweight. In a realistic implementation this component
can be a small central unit integrated to a fixed location within the house (e.g. within

100 CHAPTER 5. IMPLEMENTATION

the electric panel) or in a central control touchscreen tablet. In our implementation, we
use an Intel NUC, which is a fully-fledged x86-based computer that is able to handle
heavier operations. Figure 5.3 shows the relative size of a NUC compared to a RPI.

Software technologies

To store data, facilitate data transfer between controllers and track the evolution of the
model system’s state (see Section 5.2), it is necessary to rely on a database. Here, our
main decision criteria are: i) the choice of a lightweight DataBase Management System
(DBMS) that can be hosted on the RPIs; ii) existing adoption within IoT applications
to be in line with existing technologies; iii) ease of use; iv) support of data streams. We
settle to use a key-value based DBMS, as they are identified to be suited for cache-like
operations (Kuzochkina, Shirokopetleva, and Dudar, 2018) which corresponds to our
application: the database is designed to cache values recorded by the various compo-
nents. Our final choice is to rely on Redis (Amghar, Cherdal, and Mouline, 2018), which
is a in-memory DBMS; i.e. data are stored on RAM which results in fast operations.
In addition, Redis provides native support for Raspberry Pi’s and data-stream objects,
which suits our needs to store sensor data from the control system. Redis’ identified
downside is a poor scalability (Amghar, Cherdal, and Mouline, 2018) but this poses no
issue regarding the desired scope of our demonstrator.

Inter-device communication is operated using the standard TCP/IP framework, which
is most frequently represented as a 5-layered protocol: application, transport, internet,
link and physical layers, each layer encapsulating the previous one, guaranteeing com-
munication integrity and routing to the right agent (Forouzan, 2002). We rely either
on WiFi connectivity or on wired connection to the local network. Other protocols are
common in IoT applications: Bluetooth Low Energy (BLE) (Gomez, Oller, and Paradells,
2012) and ZigBee (Safaric and Malaric, 2006) are two widely used ones, often used in
low-power devices running on battery (Siekkinen et al., 2012). However, the universal
use of TCP/IP, its native support by nearly all devices and computers favored its adop-
tion in our demonstrator. At the application layer, we use two different communication
technologies.

Between components of the explanatory system, communications are handled by
using an implementation of the communication messages described in Table 4.1 over
the MQTT protocol. MQTT is a widespread communication pub/sub protocol spe-
cially targeting IoT applications or other resource-limited devices (Hunkeler, Truong, and
Stanford-Clark, 2008). MQTT uses a broker to route the messages between different
connected clients, allowing the latter to subscribe and publish to defined communication
channels. In our implementation, the broker is integrated to the NUC, which corresponds
to its generic role as system manager. Each component of the explanatory system then
subscribes to a channel corresponding to its name. Therefore, a LEC wishing to com-
municate to the Spotlight simply has to publish a message to the“Spotlight”channel.
Note that MQTT can rely either on TCP/IP (which we use) or ZigBee or BLE, which
covers most IoT and smart home applications.

On the contrary, communication between the explanatory system and the control
system relies on a HTTP REST API. This implementation is coherent with the obser-

5.2. DESCRIPTION OF THE DEMONSTRATOR 101

vation data flow implied by our layered organization depicted in Figure 4.1: the control
system is observed, but does not interact with the explanatory system. As they are widely
adopted for server-client applications, REST requests are complying with this approach.
Further, REST allows to easily integrate system control into a web interface and allows
for distant control and monitoring of the smart home model.

Whereas the explanatory system is implemented in Python to benefit from the mod-
ularity and the ease-of-use of this scripting language, the control system requires a more
lightweight approach. As there is no clear consensus of programming language for smart
home systems (Mekuria et al., 2019), we settled on using a Golang-written event-driven
framework named Flogo (Software, 2020). This ultra lightweight software handles vari-
ous triggers (REST requests, periodic events) and executes small re-usable pieces of code
called “actions”. An application can be defined as a collection of triggers and actions
linked together. Its light weight and re-usability are targeted specifically towards IoT
applications (Valtolina et al., 2019).

Table 5.1 summarizes the different technologies used in the successive demonstrator
versions, alongside the goals defined for each version.

Version 1 Version 2 Version 3

SHC Language Java (iCasa) Java (iCasa) Go (Flogo)
Physical environment iCasa iCasa Home model
Hardware PC PC NUC and RPIs
Explanatory
System
Language

Java Python Python

External
Communication

CLI REST API REST API and CLI

Internal
Communication

None None MQTT

Goals
Decentralized LECs
D-CAS prototype

Genericity
Self-adaptation

Privacy
Twin-memory LEC
Realistic hardware

Table 5.1: Comparison between objectives and characteristics of the three consecutive
demonstrator versions.

5.2 Description of the demonstrator

The demonstrator is based on a Smart Home model that was originally built for a
previous PhD thesis conducted at Télécom Paris (Frey, 2013). This smart home model
is composed of several rooms that are visible on Figure 5.4. Each room is equipped with
various hardware sensors and hosts the devices described in Table 5.2. As presented,
these devices all correspond to Flogo application that is run in a designated thread and
hosted on a RPI. Given the number of available RPIs, we settled to use one RPI for each
room of the home. This corresponds to a realistic smart home architecture: low-power
edge computing units hosting one or several components (Hadwan and Reddy, 2016).

102 CHAPTER 5. IMPLEMENTATION

Figure 5.4: The smart home model, built upon the basis originally from (Frey, 2013).
The NUC and RPIs are located beneath the model, wired sensors and actuators are
visible in several equipped rooms. Other rooms only have a LED indicating the presence
of the user.

The variety of implemented devices allows to model some interesting interactions
between goals, actions and devices: the presence of the user can modify the temperature
target set for the temperature controller, the light, the CO2 concentration in the room.
Each device Flogo application gathers data and writes its output into a designated
stream on the Redis database hosted on the RPI. In this implementation, the Redis
database is used to implement the “Obs” interface specified in our architectural design
(see Figure 4.3): it provides a convenient way to standardize the access to the data.
One local control manager runs on each of the RPI and handles requests for device
addition, deletion or modification. The manager is written in Flogo, too. In addition, it
also handles a designated field on the local Redis database. This field can be accessed
by other SHCs, thus providing basic context-aware capabilities for the components (P.
Lalanda, Gerber-Gaillard, and Chollet, 2017). This makes the local control manager
observable, so it is possible to pair a LEC to it, to integrate its knowledge into the
explanatory system).

The resulting general implementation is shown in Figure 5.5. On the same RPI hard-
ware, several SHCs are running alongside their attached LEC, following the architecture
principles from Chapter 4. Here, the LECs subscribe to stream entries on the Redis
database, which are where the SHCs write their values. In case an update occurs in
a SHC, the information flow is as follows: the local control manager exposes the new
characteristics of the component, which are observed by the general manager located on
the NUC. Then, the Spotlight observes the change, in particular if the LEC-related field

5.2. DESCRIPTION OF THE DEMONSTRATOR 103

Type Hardware Description
External Ther-
mometer

Potentiometer Sets the outdoor temperature
using the potentiometer

Internal Ther-
mometer

None Measures the temperature
computed for the room

Light LED (button)
Represents a light
Can be manipulated either
via the button or
a presence sensor

Temperature Con-
troller

Potentiometer
Selects a target temperature
for the room and
controls the heaters

Presence Sensor LED Lights up if a
person is in the room

Window LED (button)
Operated either via
a controller or the
button

CO2 Sensor None
Measures the CO2 concentration
computed for the room

CO2 Controller None
Can open the
window if CO2 concentration
is too high

Table 5.2: The different types of devices implemented in the model house. Each device
corresponds to a Flogo application hosted on the RPI corresponding to its room.

is modified. When needed, it then transmits a POST request to the local LEC manager,
which installs, removes or updates the necessary modules on the affected LECs.

The NUC hosts the Spotlight, along with the global manager for the smart home
control system. This latter exposes a rest API that can be used by other components
to access to the current organization of the control system: RPIs’ IP addresses, hosted
devices and their characteristics. In addition, the NUC hosts the MQTT broker and a
Redis database, in which the Spotlight registers additions and changes of configuration,
which allows, as previously mentioned, to pair up a designated LEC to analyze these
readings and integrate them into the explanatory rationale. The NUC also hosts the web
server providing the GUI. Screenshots from this interface are shown in Figure 5.6.

While using physical devices such as light sensors, potentiometers, thermometers, the
scale of the model and the desired evolution speed make it unpractical to rely on physical
variables only: for instance, thermal phenomena are hard to replicate at this scale. To
cope with this, we instead rely on computed variables from a physical model. Thus, room
temperatures, CO2 concentration and user presence are computed room-wise: a specific
script runs on the NUC to compute each of these variables for each room of the model,
and writes the variables into the room’s RPI local database. Each variable can then be
read by the various hosted devices. For instance, the evolution of the temperature Tk

of each room is defined by a heat equations which takes into account heat transfer with

104 CHAPTER 5. IMPLEMENTATION

Device

Device

Device

SpotlightCentral
Manager

REST

MQTT
Broker

Web Server

REST

Local LEC
Manager

REST

Local Control
Manager

REST

SHC SHC SHCLEC LEC LEC

RPI

NUC

GUI

Figure 5.5: Implementation overview. The NUC hosts the Spotlight and the general
manager of the control system, both presenting a REST interface used for observation. It
also hosts a database to store past and current general system state, the MQTT broker for
explanatory system communications and the web server providing the GUI. A RPI hosts a
local LEC manager that presents a REST interface: this allows the Spotlight to command
the creation of new LECs. It also hosts the local control manager that supervises the
integration and configuration of several SHCs: these latter can be connected to hardware
devices (buttons, potentiometers, LED’s), and store their measures onto a local database.

5.2. DESCRIPTION OF THE DEMONSTRATOR 105

(a)

(b)

(c)

Figure 5.6: Three views of the GUI application to monitor and control the demonstrator.
(a) presents an overview of the control system components, and a plot of measures from
a selected component. (b) is the interface to add or modify existing SHCs. (c) offers
an overview of the LECs present in the system, their modules and recorded events, and
the CLI to interact with the Spotlight, notably to start an explanatory rationale.

106 CHAPTER 5. IMPLEMENTATION

neighboring rooms, outdoor temperature and active heaters in the room:

T t+1
k = K1

 ∑
h∈heaters

Qh − k2(T
t
k − T t

out)− k3
∑

k′∈N(k)

(T t
k − T t

k′)

 . (5.1)

Note that coefficient k2, which states how much heat is lost to the outside, can vary,
depending on whether a window is open in the room or not. The CO2 concentration
computation is simpler: it is increased by a fixed value at every iteration when a user is
present and decreased when one or several windows are open. For clarity, the physical
model script is not displayed on Figure 5.5.

5.3 D-CAS as a tree algorithm

D-CAS’s design revolves around propagating conflicts and exposing the process as a
potential explanation for the problematic situation. The visualization of the output is a
key factor in the perception of the explanation. Visual explanations have been covered by
some studies in XAI and presented as an approach to explanation on its own in our review
in Chapter 2. It follows that sometimes visualization alone can help comprehension of
a model (Maaten and G. Hinton, 2008). However, the problem here is different, in the
sense that our objective is to find an adequate representation of a rationale rather than
a model.

The topic of knowledge representation has been addressed in different disciplines.
Mind maps are visualization tools that rely on associations and hierarchical organization
of concepts to represent knowledge (T. Buzan and B. Buzan, 2006): from general
concepts, specifications and related examples are presented in linked nodes. However,
mind maps focus on representing related ideas rather than stories or reasoning. (Tsilionis
et al., 2021) propose a standardized representation of users’ stories that can be found
in agile methods. This approach allows to identify similarities between stories. This
technique originally avoids redundancy and helps the development process by improving
the analysis of possible use cases. It uses a tree-based representation with different
branches spanning for each identified sub-problem from an original issue. Similar graph
representations are common when addressing causality: causal models are commonly
represented using graphs (Peters, Janzing, and Schölkopf, 2017; Pearl, 2009; Akleman
et al., 2015).

D-CAS complies with this tree representation, as a root issue, that is the starting
point of the rationale, is propagated onto sub-problems via abduction and simulation,
resulting in different branches. Our implementation of D-CAS in the Spotlight directly
features this construct. Figure 5.7 shows the object descriptions of the ExplanationTree:
each main element of D-CAS is associated with a Node type, which contains relevant
information regarding the operation, such as the component that performed it, the
examined conflict, etc. The general ExplanationTree object encapsulates the G and C
sets from D-CAS which store the given-ups and the examined conflicts, respectively.
Operations on these sets are then handled directly by the append() method of the
tree: as a node is added into the rationale, its conflict (or give-up) is added to the

5.3. D-CAS AS A TREE ALGORITHM 107

corresponding set. A pointer keeps track of the currently active node, which represents
the part of the rationale that is currently examined (i.e. the ongoing conflict) by D-CAS;
subsequent nodes are appended to this active node. Contrary to the rationale presented
in the theoretical D-CAS algorithm in Chapter 3, we transfer here the entirety of the
rationale tree to the LECs when they are requested to examine a conflict. As trees
encapsulate information about considered and given-up conflicts, this prevents the need
for further communication between the LECs and the Spotlight (so as not to propose
already discarded hypotheses, for instance).

C Node

Conflict conflict
String component
List<Node>children
String comment
String LEC name

C Abduction

Conflict hypothesis

C Action

Conflict action
C GiveUp C Root

C ExplanationTree

Root root
Node activeNode
Node lastNode
Set<Conflict>C
Set<Conflict>G

void append(Node)
Node get active()

Contains

Figure 5.7: Class diagram of the ExplanationTree object handling D-CAS representation
and rationale.

The implementation of D-CAS used in the demonstrator allows to interact with the
rationale, gaining benefits from its step-by-step approach: since the state of D-CAS is
contained in the sets G and C, it is possible, at every given step, to stop the current
exploration, manipulate the current examinations and beliefs of the explanatory system,
and resume the rationale with this new setup. The tree representation of the algorithm
makes this process easier, as it allows to isolate and identify each step of the process
with the ID of the corresponding node. As a result, a new version of D-CAS is presented
in Algorithm 3. This version appears more concise as the append method of the tree
object contains most of the logic for the explanation: it appends a node to the tree
and then, depending on the new node’s type, it adds its conflict to the set of given-ups.
Similarly, the get active() method returns the active node of the tree, to which will be
appended the next node.

At line 12 of Algorithm 3, the broadcast method is responsible for sending post-hoc
feedback to all components. The tree object encapsulates the entirety of the reasoning
so far: the conflicts that have been considered, the conflicts that have been abandoned,
how which component handled which request and whether its handling was correct.
Transmitting this information to all elements of the explanatory system enables the

108 CHAPTER 5. IMPLEMENTATION

Algorithm 3: The tree version of D-CAS.

Input:
Result: A Tree object containing the rationale
Data: Pointers to LECs in the system

1 tree← Tree(root conflict = (P,N));
2 while tree.get active() ̸= tree.root do
3 current conflict← tree.get active().conflict;
4 responsible← locate(current conflict);
5 response node = responsible.investigate(tree);
6 tree.append(response node);
7 if type(response node) = ActionNode then
8 simulator.run(response node);
9 waitForConsequences();

10 end

11 end
12 broadcast(tree);
13 return tree;

modules of the LECs to improve their parameters and organization for better performance
in future requests.

The final output of the D-CAS method is the tree object which can subsequently be
displayed and interacted with in the GUI. In the current version of the demonstrator, the
visualization tools are made using the React D3 Tree1 library.

5.4 Illustrative examples

The demonstrator’s purpose is to provide examples to better understand the behavior
of D-CAS in various situations. It is also to test its ability to generate an rationale that
complies with our defined goals in simple yet realistic situations. These situations aim at
being representative of typical use cases where questions regarding the system’s behavior
may arise. These examples remain theoretical, in that they have been purposefully
designed to illustrate distinct situations and abilities of D-CAS.

All of the scenarios are possible continuations of Example 1.1 exposed in the intro-
duction to this thesis. It represents the typical situation of a user coming back from
work and finding him/herself into a cold room, which is surprising as the temperature
control system is supposedly regulating it. As the motivation for this scenario, we ar-
gued in Chapter 1 that this setup can be the result of various causes, hence making the
explainability of the system an important feature as it helps identifying the cause and
possibly fixing the issue.

The experimental setup described in this chapter allows to model a situation where a
window is open; or a faulty thermometer reports erroneous measures; or the temperature

1https://github.com/bkrem/react-d3-tree

https://github.com/bkrem/react-d3-tree

5.4. ILLUSTRATIVE EXAMPLES 109

setting is inadequate. These different scenarios which all share the common starting
point of the room being surprisingly (or annoyingly) cold. This base conflict is encoded
as (cold(room),−30), the −30 necessity being arbitrarily set as the default value for an
annoyance question from the user. In the following scenarios, we examine how D-CAS
can unravel the situation and handle potential difficulties.

Readers may note that these examples are not meant to be limiting. Their simplicity
comes from implementation limitations. They mostly involve simple causal relations that
can be understood by human users without machine help. Notably, they do not corre-
spond to situations where the AI is at fault for a situation (e.g. following an erroneous
classification from a black box model). However, the presented examples mainly serve
as proof-of-concept examples to demonstrate the ability of D-CAS to generate a system-
wide reasoning without having any requirement regarding the nature of knowledge (rules,
statistical models, etc.). Furthermore, we may also argue that the explanatory role of
an AI in the context of a smart home would not be limited to its own decisions, but
rather help identifying other interactions, such as an open window causing the room
temperature to be lower than expected.

The implemented modules (abduction, interpretation and simulation) are kept as
simple as possible throughout these scenarios: the goal here is to demonstrate the dif-
ferent possibilities offered by D-CAS rather than proposing advanced time series analysis
or causal abduction methods. As previously stated, this is considered out of the scope
of this research, as it would be worth another independent research. For this reason, all
interpretation modules are designed as threshold-based event detectors and abduction
modules rely on predefined rules corresponding to our intuitive listing of possible causes.
E.g. the LEC attached to the temperature controller lists open windows, outdoor cold
and heater being turned off as possible causes for indoor cold. Another possibility for
abduction inference is to consider “memorable” events as possible causes: this will be
studied in Chapter 6.

For all tree rationales displayed in this section, an interactive version is available
online on our website explainableai.fr. This interactive display allows to present
each tree step by step and, for each step, shows the sets of examined and given-up
conflicts and the comment embedded in the tree’s active node.

An open window The first, and arguably simplest case, is to identify a causal relation
such as an open window causing the room to be cold. Such knowledge can be easily
encoded into an abduction module on the temperature controller as a rule in the form

open(w) ∧ type(w, Window) ∧ location(w, room) =⇒ cold(room) . (5.2)

Using this inference mechanism, the temperature controller can propose the open win-
dow as a cause for the cold, without any further knowledge of the situation (since the
temperature controller does not have access to the state of the window). The proposed
hypothesis is sent back to the Spotlight, which then investigates the LEC attached to the
window. This latter confirms that the window is open, and identifies a possible action
to revert this state: close(window). Here, however, the simulation module of the LEC
refuses to perform the action: its intensity is not high enough to“bother”computing the

explainableai.fr

110 CHAPTER 5. IMPLEMENTATION

output. Therefore, the conflict is finally given up, resulting in the rationale presented in
Figure 5.8.

Figure 5.8: D-CAS output for the simple situation of the explanation: “It is cold in the
room because a window is open”

Going deeper Following the previous example, the user wants more information about
why was the window open, in the first place. He/she has two possibilities: either ask
the system directly why the window is open, considering it as the starting conflict, or
repeating the same question on the room’s temperature, with a higher intensity. In both
cases, the intensity will now be high enough to trigger the simulation of the closing of the
window. This simulation first confirms that the hypothesis is correct, as the simulated
room’s temperature rises back. Second, it shows a possible reason why the window is
open: as the simulation goes on, the CO2 concentration becomes too high. This was an
existing goal of the control system, therefore a conflict (high co2(room),−20) is raised
by the LEC attached to the CO2 controller. This conflict is examined by D-CAS, but its
intensity of 20 is not enough to revise the previously examined window. Hence, as no
other solution is found, it is given up. The resulting rationale is shown in Figure 5.9 and
illustrates how forward inference using simulation enables to propose goals as causes for
actions of the control system.

Figure 5.9: The tree rationale for the in-depth inquiry of the window hypothesis: a
simulation is run to validate the inferred hypothesis and to find a cause for the window
being open. Here, the corresponding explanation rationale is the following: “It is cold in
room1 because the Window1 is open. It was open because closing it would provoke the
CO2 concentration to rise too high.”

5.4. ILLUSTRATIVE EXAMPLES 111

Handling erroneous hypotheses Abductive inference is by nature an inference pro-
cess that is prone to mistakes. D-CAS offers a robust framework that can handle such
mistakes. Abiding to our goal of transparency, such mistakes are not hidden in D-CAS,
rather, they are explicitly displayed to the user, since they can provide informative feed-
back to understand the rationale of the system. Mistake handling in D-CAS is straight-
forward: in the process, each LEC remembers on which conflict it had been called. In
the event the same LEC is asked a second time about the same conflict, it can analyze
what its previous proposal was and see the effect on the rationale tree (using information
embedded in nodes). For instance, it can see if its previously proposed hypothesis was
not confirmed by other components, or if a simulation of its counterfactual proved un-
successful. This reflection is made easier by our tree implementation, where the entirety
of the rationale topology is transmitted to LECs. At this step, the LEC can operate on
its modules to incorporate the new knowledge and improve their future behavior.

In Figure 5.10, we see an example of an erroneous abduction. Here, the implemented
module of the Temperature Controller LEC proposed two hypotheses for the room being
cold: the heater being turned off or the window being open. They are associated with a
score that translates the frequency these causes have been observed by the manufacturer.
Initially, the preferred cause is the heater being turned off. However, here, the proposed
hypothesis cannot be confirmed by the observation from the heater LEC. Therefore, the
hypothesis is given up, with metadata in the corresponding node indicating that this give-
up was due to the conflict not being observed. Following this dead end, the Temperature
Controller’s LEC can examine the next possible hypothesis, the window being open. In
addition, the knowledge of the rationale tree and embedded data is used by the LEC to
update its modules: here, the scores associated with the two possible causes are revised
to include this knowledge. In future calls, the window may be preferred to explain the
cold in the room.

Figure 5.10: An example of how D-CAS handles the mistake of a component. An
erroneous hypothesis is eventually given up while the initial conflict still persists, which
leads the LEC to understand its mistake and modify accordingly its inference knowledge.
Here, the global rationale may be: “It is cold in the room. The component proposed
that the heater was turned off, but the Heater LEC did not confirm it. The Temperature
LEC proposes another cause: some window is open. The window component confirmed
the cause, but could not explore the conflict further.”

112 CHAPTER 5. IMPLEMENTATION

Changing interpretation A typical case for the integration of self-adaptation into an
explanatory rationale is when an adaptation change can be proposed as the cause for a
strange phenomenon. For instance, consider the revision of a predicate’s meaning, as
this is allowed in our architecture. Here, the revision of the meaning can be exposed as
a reason for the anomaly. If the definition for the word cold had to be revised, maybe
this revision is the cause for the perception of the cold, since the system was wrongly
understanding the temperature as being correct?

Figure 5.11: Since the interpretation of the world’s events does not coincide with the
upcoming request, the LEC attached to the temperature controller is able to revise its
interpretation by increasing the threshold of the cold predicate.

In Figure 5.11, the exposed rationale follows this situation: the user felt cold in the
room, but the LEC failed to associate any existing event with the predicates contained
in the request. However, given the intensity of the request, the interpretation module in
the LEC that is responsible for the understanding of cold observes that it simply has to
change the predicate’s threshold by a small amount to match the user’s observation. The
predicate’s meaning is therefore modified, which is observed and recorded as a separate
event in the LECs memory. An abduction module of the LEC then proposes that this
change might be the reason for the room being cold. Therefore, the resulting output
from D-CAS is that it is cold in the room because the definition of cold had to be
changed to match the user’s perception of the season.

Discovering a failure The last example we present in this chapter highlights a capa-
bility that is enabled by knowledge revision: discovering failures. Consider the rationale
presented in Figure 5.12: the LEC attached to the temperature controller, within its
abductive knowledge, has a rule stating that:

failure(h)∧device type(h, heater)∧location(h, room) =⇒ cold(room) , (5.3)

which indicates that it is possible that a heater failure be responsible for the cold. Using
this knowledge, the component designates this proposition as being the potential cause,
and the Spotlight forwards the request to the LEC attached to the heater. The latter
receives the instruction to examine the predicate failure which, however, does not
corresponds to its current observations: the heater controller is not reporting any failure
state.

However, depending on the incoming intensity, the LEC may revise its knowledge of
failure: maybe some readings from the SHC can be interpreted as a failure? In case the
intensity is high enough to modify its interpretation of failure, the LEC considers that its
current observations are compatible with this state, and therefore validates the cause.
The entire process is done without requiring the SHC to effectively report a failure: the

5.4. ILLUSTRATIVE EXAMPLES 113

Figure 5.12: In this example, the rationale proposed by D-CAS finds a failure that
had not been monitored by the control system: belief revision allows the Temperature
Controller LEC to propose that its observation is erroneous, which is then traced back
to a possible failure of the indoor thermometer (upper branch). Since no simulation nor
abduction is then proposed by the thermometer LEC, D-CAS then explores the other
possible hypotheses: the heater being turned off (middle branch) and the window being
open (bottom branch).

LEC“guessed”that a failure occurred by considering the request from the spotlight and
comparing its intensity with the estimated cost of accepting a failure. This particular case
of knowledge revision shows the potential offered by D-CAS, which isolates observations
from interpretations: it can identify otherwise undetected failures and integrate them
into the explanatory rationale.

The rationale presented in Figure 5.12 is more complex: after proposing the failure
of the thermometer as a first abduction hypothesis, the system is unable to prove that
this cause is the correct one: here, no implemented module is able to simulate the con-
sequences of a non-failure state, or the possible causes of the failure. Hence, this lead
is given up. The rationale then goes on to two other possible causes that are discarded:
the heater is proposed, but, as it is turned on, the conflict cannot be confirmed by the
specialized LEC. Then, the window is proposed, but, this time, no window LEC has been
placed in the system. Exploration of this branch thus stops for lack of specialized compo-
nent to confirm or discard the proposition. Overall, the text generated by this rationale
could be: “It is cold because the measure may be erroneous. This may come from a
failure in the thermometer. However, Thermometer int1 LEC cannot be confirmed by
simulation or further propagation. Another possible cause for cold(room1) is the heater
being turned off. This cause is discarded because Heater LEC does not confirm the
conflict. Another possible cause for cold(room1) is the window being open. This cause
is discarded because no component can explore it. No other solution is found, giving up
on the conflict.” This example illustrates the transparency and shallowness principles of
the explanation: each tentative cause is presented, alongside its responsible component,
and the entire reasoning is exposed, rather than merely the deepest cause.

Overall, the implementation presented in this chapter demonstrates the possibility
of using D-CAS and the architecture described in Chapter 4 in a realistic setup. The

114 CHAPTER 5. IMPLEMENTATION

different examples show the complexity of the task, with numerous explanation variations
emerging from the same initial situation. In all of these situations, the same D-CAS
principles enable the development of a reasoning that can be visually presented to the
user, detailing the causal chain and relevant components. However, the performance of
this demonstrator is limited to the basic implementations of the specialized abduction,
interpretation and simulation modules. The topic of abduction, which is essential for
the explanatory reasoning, is particularly challenging. In the next chapter, we describe
a method allowing the discovery of new hypotheses in abnormal situations, when other
classical statistics-based methods may fail, due to the lack of previous data.

Chapter 6

Hypotheses for abductive inference

Summary

The question of abductive inference has been identified as one of the key
mechanisms in explanation and is present as such in D-CAS, alongside sim-
ulation of counterfactual. However, while many simulation solutions can be
realistically integrated into our explanatory system and handle integration of
new devices, abduction remains a hard topic that we have not yet covered.

While existing XAI methods can be perceived as possibilities for abductive
inference, e.g. using feature relevance technique such as LIME and propose
the most relevant parameters as causal hypotheses, their use relies on past
data. This approach is not suited for the cases where explanations are most
useful, i.e. unusual and surprising situations that D-CAS aims at solving.

To tackle this challenge, we propose a novel approach to abduction. Given
that D-CAS is robust to erroneous abductions, as it can give-up a lead if
it proves unsuccessful, we propose an approach that, similar to humans, is
able to propose hypotheses in situations where no minimal prior knowledge
is available. This approach is based on a measure of memorability of events
and proposes the most memorable event as a hypothesis for a situation.
We’ve tested this approach on examples from the smart home context to
illustrate how this measure fares in comparison with human understanding
of memorability.

This chapter reproduces most of the content and results of a journal arti-
cle (É. Houzé, Dessalles, et al., 2022).

115

116 CHAPTER 6. ABDUCTIVE INFERENCE

6.1 Definition of the problem

6.1.1 “Naive” abductive inference

Abductive inference proposes to consider true causal hypotheses to an observed phe-
nomenon. This reasoning tool has been identified as the major role in scientific method-
ology (Popper, 1963), where a researcher formulates hypotheses using abduction then
tests them via experimentation. However, contrary to deduction, that is the inference
model used in mathematics and formal reasoning, abduction is not sound and can be
complex. (Magnani, 2011; Pearl and Mackenzie, 2018; T. Miller, 2018) identify that
abduction is the most common inference in mundane life: humans often infer causes for
their observations. However, abduction is also complex to understand, as it can come in
various ways.

To illustrate this phenomenon, consider Example 6.1. The user is confronted with
a surprising event. He/she uses abductive inference to hypothesize that the new TV is
the cause of the strange behavior observed from the rest of the equipment. Depending
on the information available to the user, this inference process can originate from three
possible ways. First, if the user had read the manual of the TV or the equipment,
he/she may have come across indications of the possible effects of switching on the
TV: this knowledge is similar to having a rule-based model (or any other model) of
the phenomenon and using backward chaining to identify possible causes (Leake, 1995).
Alternatively, if the user previously observed similar behavior (e.g. in a store, at a friend’s
house), he/she might have inferred from this past observations that the cause may be
the TV: here, this is similar to case-based reasoning for abductive inference (Sun, Finnie,
and K. Weber, 2005). Finally, it may occur that the user had neither model knowledge
nor previous observations for this phenomenon. However, he/she is still able to perform
the abductive inference and identify the TV as the cause. In this context, the user relies
on the observation that the new TV is memorable, as it is the first time it is switched
on. As a consequence, it appear logical for him/her to propose it as the cause for a
posterior memorable event (the dimming of the lights).

Example 6.1

A smart home user is sitting in his/her room, which is equipped with connected
devices such as a smart speaker, light bulbs, presence sensors, blinds, etc. He/she
switches on the brand new smart TV that he/she has just installed as a replacement
to an old one. As the TV is switched on, the lights in the room dim and the window
blinds roll down. The user quickly understands that the TV caused this reaction
from the room equipment.

While the two first methods rely on previous knowledge specific to the encountered
phenomenon, the third one only requires common sense to distinguish memorable events
from“background noise”. It then proposes something memorable as a possible cause: this
kind of reasoning is what we call a“naive”abductive inference, in the sense that it requires
no specific knowledge of the system. With this characteristic, naive abduction appears

6.2. FORMALIZING MEMORABILITY 117

suited to propose possible hypotheses when face with completely new, unexpected or
mysterious phenomena.

6.1.2 The difficulty of defining memorability

Naive abduction, as we have seen, relies on a sense of memorability to select which events
are most prone to be relevant hypotheses. Having a theoretical and computable measure
for memorability would therefore open up new possibilities for abduction, especially in
situations where other methods fail to provide insight. In addition, being able to compute
a memorability score for recorded events can be useful in itself: for instance, a system
may be able to summarize what happened in the house during the owner’s absence by
selecting only the most memorable events; or it could be used as a criterion to discard
most events and avoid overloading the limited resources of embedded devices with non
memorable events.

However, defining memorability is far from obvious, given the wide range of events to
consider: how can one decide whether a temperature measure is more or less memorable
than a light measurement or a movement? Given the number of devices to consider,
many events of different natures, units and magnitudes are recorded by a smart home
control system. This first difficulty is inherent to the heterogeneous nature of the data
collected. However, the common sense of memorability is that record-breaking events
are somehow more remarkable than average ones: for instance, the hottest day in the
year is more remarkable than the average autumn day.

The second difficulty is that, to be useful in the context of “naive abduction”, the
measure of memorability should not rely on any previous knowledge regarding the events
that are analyzed. For instance, no prior magnitude nor common values are known to
the agent. The only available information is the memory of past events, with no existing
order. By using the definition of events from Equation 4.1, an event is defined as a
3-tuple E = (t, l, X). The knowledge of the state of the system available to the agent
is a memory M that corresponds to an unordered set of recorded events.

6.2 Formalizing memorability

In our general endeavor of bridging sensor data to human perception of the world, we
have relied on events and predicates. We will therefore re-use these notions here, as to
provide a formal canvas for describing what happens in the house, what is measured,
and how it can be deemed memorable or not.

For the sake of clarity and simplicity, for the rest of this chapter, we use the proxy
that an integer n can be encoded using L(n) = log2(n) bits. This approximation does
not change the dominant term of the expression, which is log2(n). In case of prefix-free
encoding, the exact length is L(n) = ⌊log2(n)⌋ + 2⌊log2(⌊log2(n)⌋ + 1)⌋ + 1 (Elias,
1975).

118 CHAPTER 6. ABDUCTIVE INFERENCE

6.2.1 Notions of Algorithmic Information Theory

Complexity as the length of the shortest program Many objects can be repre-
sented by using a finite binary string: think of the binary representation of numbers,
binary encoding of Unicode characters or, more generally, digital representations of im-
ages, songs, videos, 3D models, etc. Therefore, we can restrict ourselves to finite binary
strings x ∈ {0, 1}∗ without loss of generality. How can one estimate the complexity of a
string x? Length is not sufficient: consider x1 = 00000000 and x2 = 10110001. While
both are 8-bit strings, x1 can be considered simpler than x2 as it is merely a repetition of
8 zeroes. Is there a method that could be used to compute a measure of this complexity?

Algorithmic Information Theory (AIT) studies the quantity of information contained
in such objects. By contrast with the usual notion from Information Theory, such
as Shannon’s entropy (Shannon, 1948), the prime difference is that AIT studies ob-
jects, while Information Theory focuses on processes: as such Shannon’s entropy is de-
fined for random variables, while AIT provides definitions of information for any object.
AIT originated with the concomitant discovery of what is now known as Kolmogorov
Complexity by Solomonoff (Solomonoff, 1964), Kolmogorov (Kolmogorov, 1965) and
Chaitin (Chaitin, 1966). This notion of complexity is distinct from time or space com-
plexity measures that are often used in Computer Science.

Rather, Kolmogorov Complexity focuses on the quantity of information one would
need to generate a binary string x. Formally, we consider a Universal Turing Machine
U , i.e. an abstract computer-like machine that can perform any possible computation,
given some input program p. Given such a machine U , complexity of a string x can
be defined as the length of the shortest program that would result in x if used in the
machine U .

KU(s) = min{L(p)|U(p) = s} . (6.1)

To illustrate this definition, consider the string x1 = 00000000 and x2 = 10110001
that we have already mentioned. We can use a modern programming language, such as
Python, to represent a Universal Turing Machine in a more readable way1. In Python,
the shortest program that produces x1 is p1 =“return(8 ∗ ‘0’)”. On the other hand, the
shortest program p2 outputting x2 is “return(“10110001”)”: there is no more concise
manner to write this string, in Python. Hence, using Equation 6.1, the complexity of
each string is equal to the length of these shortest programs p1 and p2. KPython(x1) =
L(p1) = 13 characters and KPython(x2) = L(p2) = 18 characters. Using this metrics,
x1 is simpler than x2.

Universal Kolmogorov Complexity However, this definition poses the problem of
introducing on an arbitrary Turing Machine U (or an arbitrary programming language).
This is not an issue, considering the Invariance Theorem (M. Li, Vitányi, et al., 2008)
which states that the choice of the Machine U ultimately does not matter. The sketch
of the proof is as follows. Consider two Machines U and U ′. Since they are both
universal Turing Machines, there exists a finite program q which emulates U on U ′,

1Like all other common programming languages, Python is Turing-complete, i.e. it can emulate a
Universal Turing Machine (within hardware limitations).

6.2. FORMALIZING MEMORABILITY 119

i.e. ∀p, U(p) = U ′(q :: p), where :: denotes the concatenation operation. Let p∗ be the
shortest program that yields a string x on the machine U . By definition, L(p∗) = KU(x).
If we consider the program q :: p∗, we have that U ′(q :: p∗) = U(p∗) = x. Therefore, the
complexity of x on the machine U ′ is at most the length of q :: p∗. Formally, KU ′(x) ≤
L(q :: p∗) = L(p∗) + L(q). Which yields KU ′(x) ≤ KU(x) + L(q). Note that L(q)
does not depend on the string x we consider. Therefore, in general, KU ′ ≤ KU + L(q).
By considering the other direction, with the same reasoning, we can conclude that there
exists a constant CU,U ′ such that, for any binary string x, |KU(x)−KU ′(x)| ≤ CU,U ′ .

Thanks to the invariance theorem, we understand that, up to an additional constant,
all Turing Machines produce the same complexity measure. Therefore, we can drop the
specification of the choice of U in Definition 6.1 to get a universal definition:

K(s) = min{L(p)|U(p) = s} . (6.2)

Application to randomness While probabilistic approaches only consider generation
processes, a major application of complexity is to define a sense of randomness of an
object once it has been generated. Consider the first n decimals of π, that we denote
πn. A short computer program can provide any number of π digits by implementing an
approximation formula. Therefore, it is possible to encode the πn with only log2(n) bits
of information, plus the length Lπ of the computation program, which does not depend
on n: K(πn) = log2(n) + Lπ. Alternatively, consider a number x of n digits generated
via a truly random process. By definition, there is no deterministic program that, given
the first digits of x, can predict the next ones. Thus, the shortest program to output
x is to explicitly write all n digits of x in the program. Hence K(x) ≈ L(x) = n (M.
Li, Vitányi, et al., 2008). In this example, while both πn and x have the same length,
one can be encoded in significantly less bits than the other. More generally, in terms of
Kolmogorov complexity, random strings are incompressible: there exist no significantly
shorter program to describe them than enumerating all of their characters.

Using AIT to define unexpectedness Using the length of the shortest generating
program as a definition for the complexity of objects allows to model cognitive percep-
tions. A case in point is the perceived complexity of random events, which cannot be
accounted for by standard probabilities. For instance, consider the event of a national
lottery resulting in the numbers 1, 2, 3, 4, 5 and 6 being drawn out of all 50 possible
numbers2. This result would for sure appear somehow simple and surprising, or memo-
rable3. However, when only considering probabilities, the 1,2,3,4,5,6 outcome is as likely
as any other, e.g. 12,27,31,28,40,43, roughly 2.35× 10−8.

To account for such situations, (Dessalles, 2008a) introduces the notion of unexpect-
edness: the 1,2,3,4,5,6 sequence is unexpected because it is simpler to describe than
expected: instead of having to spell 6 unrelated numbers, one only has to mention that
it is the sequence of the first 6 numbers. This notion can be formalized using insights

2This situation occurred in South Africa on Dec, 1st 2020, when the national lottery drew number
5, 6, 7, 8, 9 and 10.

3It did in South Africa! In fact, the result seemed so simple that it raised suspicion and an investi-
gation was conducted.

120 CHAPTER 6. ABDUCTIVE INFERENCE

from Kolmogorov Complexity: by modeling a person’s cognition as a universal Turing
Machine U , one can express the unexpectedness of an event, such as drawing 1,2,3,4,5,6
in the lottery as:

Unex(e) = CW (e)− C(e) (6.3)

where C(e) denotes the shortest description the person’s machine U needs to describe
the event e, and CW (e) denotes the description that the “world machine”W requires
to generate the event e. In the case of the lottery draw, this difference is large, which
accounts for the surprising perception of the event.

While it models the cognitive perception of unusual phenomena better than usual
probabilities, unexpectedness cannot be applied as such in a computational system. In-
deed, this definition is impractical: it relies on the introduction of the world machine
W that models the expected generation process the world requires to generate events.
This notion is at best ill-defined for realistic applications, and would require an access to
causal knowledge that would make the whole purpose of identifying memorable events for
abduction obsolete. Also, Kolmogorov Complexity is non computable. As demonstrated
in (M. Li, Vitányi, et al., 2008), computing the exact value of Kolmogorov complexity
for any object implies the ability of finding the shortest programs running on a Tur-
ing Machine. However, some programs do not terminate, and their identification, also
known as the Halting problem (Lucas, 2021) cannot be done programmatically. Hence,
Kolmogorov complexity can be at best bounded, but not computed.

6.2.2 Memorability as a complexity gap

For the context of smart homes, we implement an approach similar to unexpectedness,
defining memorability as a difference between the expected situation and the actual ob-
servation. We need to define a measure of the complexity of situations that is consistent
with the perceptions described in 6.1 and that can be computed. We propose to start
from the consideration that memorable events or object tend to require less words to
be described. For instance, consider how“the day of my wedding”appears simpler that
“the 10th of September of 2022” even though both sentences unambiguously designate
a single day. Similarly, “last year’s hottest day” requires less information than “the 23rd

day of 8 months ago”. Therefore, we propose to define a formal framework to estimate
this description length for events, and compare it with an expected description length.

Here, the notion of event is similar to what we have previously defined in Equation 4.1:
events are described by a label, a timestamp and a set of characteristics, and they are
detected by LECs in the system. We consider an agent that has recorded an unordered
set of event, that we call its memory M . We use the already-defined predicates to model
human language. The agent knows a finite set of predicates, and their arguments, that
we call its vocabulary V .

By associating words to predicates, the agent can describe an event as follows. A
predicate π, with an additional argument k, maps events from the memory M to a
Boolean value: π(·, k) :M 7→ {0, 1}. We can define a corresponding filter fπ,k as an
operation selecting all events that are valued true by the predicate π and its argument
k:

fπ,k(M) = {e ∈M | π(e, k) = 1} . (6.4)

6.2. FORMALIZING MEMORABILITY 121

As predicates can be interpreted as qualifiers, filters represent operations that return
all events compatible with the qualifier of the corresponding predicate. It can also be
understood as an SQL request retrieving elements matching certain conditions from a
database.

Since filters yield another set of events, it is possible to compose them. The applica-
tion of successive filters narrows down the number of considered event for each iteration,
until eventually one or no event remains. The composite operation corresponds to using
the conjunction of predicate-defined propositions to qualify the resulting events. Fig-
ure 6.1 illustrates this principle on the sentence “last year’s hottest day”: it results on
consecutively applying filters associated with the predicates hot rank(·, 1), year(·, 1),
event type(·, day).

Figure 6.1: Principle of event retrieval. A memory of events is filtered using successive
filters derived from predicates. At the end of the process, a single element is left: we
say that this event has been retrieved by the filters sequence, called a retrieval path.

If a succession of filters f1, f2, . . . , fn, when applied to the memory M , results in
a single event being included in the final output, we say that this event is retrieved by
the sequence of filters (or predicates). In that case, the filters sequence (f1, f2, . . . , fn)
is called a retrieval path RP of event e, and we write RP(M) = e. If each filter fi is
described using L(fi) bits of information, then the description of the event e retrieved
by the path (f1, f2, . . . , fn) would be at most the sum of these complexities. Indeed, it
is possible to unambiguously describe the event with the description of the filters. By
considering the minimal length of such a retrieval path p,

Kdesc(e) = min
RP|RP(M)=e

∑
f∈RP

L(f) . (6.5)

122 CHAPTER 6. ABDUCTIVE INFERENCE

The value Kdesc(e) defined in Equation 6.5 is what we call the description complexity
of an event e, as it is approximating the length of the shortest description of the event
e. This value is dependent on the vocabulary, i.e. the set of predicates known to the
agent, from which filters are defined, and the memory, i.e. the past experience of the
user. As such, it is a subjective metrics. However, this is a desired property: the naive
notion of memorability that we try to coin with this approach is itself highly reliant on
the user.

A filter being entirely defined by the predicate π and its argument list k, we can
describe a filter fπ,k by describing π and k. Since π comes from the agent’s vocabulary,
which is finite and well-defined, it is possible to describe it by giving its index within
the vocabulary. Hence,4 L(π) ≤ log(|V |). On the other hand, the optional argument k
can be described by using a binary string representation, e.g. if k is a number, then we
consider L(k) the length of the binary representation of k. Equation 6.5 becomes:

Kdesc(e) = min
V

{∑
i

L(πi) + L(ki) | fπ1,k1 ◦ . . . fπn,kn(M) = {e}

}
. (6.6)

The description complexity of an event e that has been recorded by the agent is defined as
the shortest length of predicates from its vocabulary V that can unambiguously describe
the event e from the agent’s memory.

When considering an event e, what would be its expected complexity? A usual way
to proceed is to consider the average complexity measured for other similar events from
the memory M . The notion of similarity is not easy to define. Since we already use
predicates to describe events, we consider the following definition: the neighborhood
Nπ,k of an event e is the set of events from the memory M that satisfy the same
predicate π(·, k):

Nπ,k(e) = {e′ ∈M |π(e′, k) ∧ e′ ̸= e} . (6.7)

By using the convention that Nπ,k = ∅ if e does not verify π(·, k), we can define the
expected description complexity Kexp(e) of an event as the average complexity of events
across all neighborhoods:

Kexp(e) =

∑
π,k

∑
e′∈Nπ,k(e)

Kdesc(e
′)∑

π,k |Nπ,k|
. (6.8)

From this, we can define the memorability of an event e, according to the agent with
memory M and vocabulary V , as:

M(e) = |Kdesc(e)−Kexp(e)| . (6.9)

Note that a major difference with the definition of unexpectedness in Equation 6.3 is the
use of absolute values. This change is motivated by the observation that events that
appear unusually complex can be deemed remarkable, too. The original definition of
unexpectedness handled this situation by relying on a non-computable complexity. For

4It is possible to consider some predicates as being “simpler” than others: for instance, we can use
Huffman-like encoding of predicates to consider the most frequent words simpler.

6.2. FORMALIZING MEMORABILITY 123

instance, in the“Pisa Tower effect”(Dessalles, 2008b), the Pisa Tower is considered very
simple despite being, at first glance, more complex to describe (given that, in addition to
its architectural description, one has to specify that it is leaning). This is because, when
considering the human description complexity C(e), this particular tower is considered
part of the common knowledge. The Pisa Tower is famous and directly “stored” in the
person’s memory. Hence, it requires minimal information to be described, its name only
being sufficient to describe it. On the other hand, any other tower in Italy would be more
complex, as it would require to be described using the Pisa Tower as a basis. Hence,
using the definition of Equation 6.3, the Pisa Tower is remarkable, because its unique
complex feature (leaning), makes it more famous and simple than other comparable
towers. However, this kind of self-reference implies non-computability of complexity. For
this reason, we settle on introducing absolute values to account for the same kind of
effects while keeping a computable metrics.

As all notions used for the computation of memorability in Equation 6.9 have been
defined and rely only on a finite number of computations, it is possible to implement an
algorithm to evaluate the memorability of events from a memory and a given vocabulary
of predicates. Algorithm 4 is an example of such implementation: it iterates over possible
retrieval paths constructed from the vocabulary, from shortest to longest. At each
iteration, it considers all possible predicates, applies the corresponding filter (line 13). If
the resulting memory is a singleton event, the complexity of this event is set accordingly
(line 15). Otherwise, the memory resulting from the filter application is appended to
the list of memories to explore during the following iteration (line 17). The termination
of this algorithm comes from the condition in line 10: if the complexity of the currently
considered retrieval path exceeds the maximum complexity of all events, which is bounded
by some finite value B, the algorithm exits the innermost loop without appending anything
to be explored during the next iteration. As the length of retrieval paths increases with
the number of iterations, the algorithm is guaranteed to terminate once every path
shorter that B has been explored, and there are finitely many such paths.

6.2.3 Defining relative memorability

For the purpose of performing “naive” abduction, as introduced in Section 6.1, one
needs the refinement of the memorability we have defined. Indeed, during an abductive
inference, the agent has more than the mere knowledge of its past observations and
vocabulary that were supposed in the definition of memorability. The agent also has
knowledge of the phenomenon it wants to explain. This additional knowledge should be
included in some form in the definition of a metrics that can be used for abduction. We
propose the definition of“conditional memorability”, which comes from plain memorability
that was defined in Equation 6.9.

Conditional Kolmogorov complexity K(x | y) is defined as the length of the shortest
program p that, when augmented by appending y to itself:

K(x | y) = min
p∈{0,1}∗

{L(p) | U(p :: y) = x} , (6.10)

where :: denotes the concatenation operation. Non-computability and invariance theorem
can be directly extended to conditional complexity.

124 CHAPTER 6. ABDUCTIVE INFERENCE

Algorithm 4: Iterative computation of the approximate complexity

1 currentexplore ← [(M, 0)] ;
2 futureexplore ←[] ;
3 pass← 0 ;
4 K(e)← B ;
5 while currentexplore ̸= [] and pass < max pass do
6 for (Mprev, Kprev) ∈ currentexplore do
7 for π ∈ P do
8 for k ∈ {0, 1}∗ do
9 Kcurrent ← L(π) + L(k) + Kprev ;

10 if Kcurrent > maxcomplex then
11 break ;
12 end
13 M′ ← fπ,k(Mprev) ;
14 if M′ = {e} then
15 K(e)← min(K(e), Kcurrent) ;
16 else
17 futureexplore.append((M

′, Kcurrent));
18 end

19 end

20 end

21 end
22 currentexplore ← futureexplore ;
23 futureexplore ← [] ;
24 pass← pass+ 1;

25 end

Considering the definition of conditional complexity, we introduce the conditional
memorability M(c|e) as its counterpart. We apply the same definitions as plain mem-
orability, but append a term ke to all description complexity formulas as an additional
argument to all predicate filters used in the original equation 6.5. The string ke encodes
the event e that we want to account for. Conditional description complexity is defined
as:

Kdesc(c | e) = min
V

{∑
i

L(πi) + L(ki) | fπ1,k1::ke ◦ . . . fπn,kn::ke(M) = {c}

}
. (6.11)

Note that the addition of ke is“free”in terms of complexity: the length of this description
of e is not included in the total sum, which corresponds to the fact that this information
is an input of the problem and is therefore excluded from the computation. An example
of the difference between plain complexity and conditional complexity is a time stamp
retrieval predicate: an event A that occurred a long time ago is a priori complex to
describe. However, given another event B that occurred the same day as A, A becomes
simpler to describe, given that information about B is already provided.

6.3. RELATED WORKS 125

The definition of conditional memorability directly comes from conditional complexity,
and is similar to the interpretation we made of plain memorability (Equation 6.9):

M(c | e) = |Kdesc(c | e)−Kexp(c | e)| . (6.12)

This definition of conditional complexity can be used to perform abductive inference. In
Example 6.1, we expect that, given the observation of the light dimming, the usage of
the brand new TV will be remarkable: it occurred just prior to the light dimming, in the
same room and is unique as this object was never used before. Therefore, conditional
memorability should highlight this event as being a good candidate hypothesis to account
for the strange phenomenon.

6.3 Related Works

Our examination of memorability as a tool for abductive inference is new, to the best of
our knowledge. However, other practical applications have already been considered for
AIT, some of them related to the notions of causality and knowledge discovery.

Inductive inference was one of the original motivations that led to the definition of the
notion of complexity by R. Solomonoff (Solomonoff, 1964; M. Li, Vitányi, et al., 2008).
In his works, he introduces the notion of algorithmic probability of a string m(x) as the
chance of a randomly chosen program would generate the output x. This probability is
closely related to complexity, as the relation − log(m(x)) = K(x) +O(1) directly links
the two notions together. Deriving from this concept, Solomonoff introduced a universal
predictive machine: a conceptual computer that could provide the best possible guess
regarding the future state of an evolving world, thus“solving”the induction problem. This
has notably been applied to create a“Universal Artificial Intelligence”(Hutter, 2004).

Regarding Causal Inference, Kolmogorov complexity can be relevant, too. No-
tably, it is consistent with the formal definition of causal relations between variables.
A causal relation A → B means that there exists a random noise NB and a de-
terministic function fB such that B = fB(A,NB) (Peters, Janzing, and Schölkopf,
2017). In this case, (Janzing and Schölkopf, 2010) showed that the complexity of
the joint probability distribution is simpler in the direct rather then inverse direction:
K(P(A)) + K(P(B | A)) < K(B) + K(P(A | B)). Here, complexity confirms the
intuition that, when facing a causal phenomenon, it is simpler to consider conditional
probabilities that are consistent with the causal direction.

“Isolation Forests”(F. T. Liu, Ting, and Z.-H. Zhou, 2008; Hariri, Kind, and Brunner,
2021) relies on a method that is globally similar to ours for identifying outlier points in
datasets. Here, a set of random binary tree classifiers are generated: dichotomous cuts
are randomly realized until all points have been singled out. The number of cuts required
to isolate each point its called the isolation depth of the point for this random binary tree
classifier. By repeating the process, (M. Li, Vitányi, et al., 2008) estimates the average
isolation depth for each point, and labels as outliers those that have low depth. This
method can be interpreted using AIT: each cut corresponds to information, regarding
which variable and value is used. Therefore, points that require less cuts (and have
lower isolation depth), require less information to be singled out. Thus, this method

126 CHAPTER 6. ABDUCTIVE INFERENCE

also identifies as outliers points that require less information to be described. However,
compared to ours, it is restrained to homogeneous data and does not define a relative
complexity for points. By contrast, our usage of predicates allows to circumvent these
two limitations.

6.4 Experiments and results

All experiments presented in this section are available as Jupyter Notebooks on https:

//github.com/EtienneHouze/memorability_code.

6.4.1 Illustration of the approach

To illustrate how our approach to memorability works, we first introduce a simple exam-
ple: consider that an agent has a memory of the past days. One of them is the agent’s
wedding, while the others have nothing particular. Thus, we consider a memory M of
several thousand events, all labeled“day”. The agent’s vocabulary contains 2 time pred-
icates: days ago(e, k) is true if the event e occurred k days ago; days from(e, k, e′) is
true if the event e occurred k days relative to another event e′; marriage(e) is true if
the event corresponds to the agent’s wedding.

The resulting memorability computed on these events is shown in Figure 6.2. Several
observations regarding our method can be made from this plot. First, the wedding day
(circled) corresponds to a peak in the computed memorability, as do the most recent
days on the right end. This is the expected behavior, as these days are memorable, either
by their uniqueness or by their recentness. Second, the“derivative”can be discontinuous
around 0. This also was to be expected, as the absolute value operation in the definition
of Equation 6.9 introduces discontinuity in the derivative when reaching the origin. Third,
most of the events are part of a “main sequence” that corresponds to designating them
with the time of their occurrence; this sequence is logarithmic, as the binary code length
of a number is logarithmic.

Also, this experiment illustrates, as we have already evoked, the ill-definition of
the “least memorable” events: consider, for instance, the event on the far left side of
the graph. The corresponding day, which is the oldest recorded, is the most complex to
describe with our vocabulary. However, its memorability, given that it is a difference with
the average complexity, is not 0. We can quantity this phenomenon. By considering a
situation where most events’ complexity is a logarithm, the average complexity Kexp of
an event in a memory of size N is

Kexp(e) ≈
∑ 1

N
log(k) =

1

N
log(N !) =

1

N
log

[(
NNe−N

√
2πN

)
(1 + o(1))

]
= log(N) + 1 +

1

2N
log(2πN) + o

(
1

N

)
.

(6.13)

Considering that the most complex event has a complexity of Kdesc(e) = log(N) + C,
where C is a constant with regards to the size N of the memory (C accounts for the

https://github.com/EtienneHouze/memorability_code
https://github.com/EtienneHouze/memorability_code

6.4. EXPERIMENTS AND RESULTS 127

Figure 6.2: Memorability of days in the example of the agent’s wedding. The wedding
(circled) is clearly visible as being a remarkable event.

complexity of the predicate, not its argument), we can estimate the memorability of this

most complex event to be around C + 1
2N

log(N) + o
(

log(N)
N

)
. While this memorability

gap is set to be bounded within a finite range, we can extrapolate that complexity is
ill-defined when it is within this range.

6.4.2 Illustration in smart home setups

We have conducted two distinct experiments to reproduce typical situations that may
arise in the smart home context and observe how our memorability metrics can identify
remarkable events and be used for abduction, following the “naive abduction” principle
of proposing relevant causes.

A house with several rooms

Setup description In this first setup, we used the iCasa simulator (Philippe Lalanda
and Hamon, 2020) to run a simulation spanning over a long time period of more than
a year (420 days). A 4-room house is modeled, each room’s temperature being con-
trolled by a basic system. We monitor the temperature for all rooms and the outdoor
environment. The resulting time series, visible in Figure 6.3 is then processed by a ba-
sic event detection module: an event is recorded to describe each day (maximum and
minimum outdoor temperature), as well as when temperatures rise over or lower under
predetermined threshold or when a device is added or removed. Over the course of the
simulation, outdoor temperature randomly varied to introduce some noise. At specific
times, we intervened to create anomalies (unusually high or low outdoor temperatures,
addition/removal of a component). This resulted in 560 events, spanning over a duration
of 420 days, which are stored in the agent’s memory.

128 CHAPTER 6. ABDUCTIVE INFERENCE

Figure 6.3: Time series of recorded temperatures over 420 days of simulation in iCasa.
We display outdoor temperatures (in red) and indoor temperature of one room. Some
handmade anomalies are visible on the graph (temperature highs and lows).

Analysis The agent has a vocabulary composed of the predicate rank(e, k1, k2) which
is true if the event e is ranked kth

1 alongside the kth
2 axis, day(e, k) which indicates

whether the event occurred on day k, location(e, k) indicates whether e occurred in
location k and label(e, k) whether e is labeled k. For categorical arguments, such as
the label, the axis or the label, the encoding of k is frequency-based: for instance, the
most frequent label is encoded as 1. The computed complexities for events are displayed
in Figure 6.4a.

Similar to Figure 6.2, a general sequence of events with logarithmic complexity is
visible: this corresponds to events for which the best description is to specify their
type and date of occurrence. In the corresponding memorability (Figure 6.4b), the
phenomenon of the ill-defined “least memorable” events is also visible, notably on the
left end of the graph. As predicted by Equation 6.13, this phenomenon is limited in
amplitude. Some events stand out as particularly memorable: recent events, which is
a common feature of our approach, and exceptional phenomena which correspond to
handmade events in the simulation: for instance, event labeled 20 corresponds to the
hottest day recorded, which was manually set.

Our memorability score does not aim at replacing anomaly detection techniques. A
memorability-based detection fares quite well: it flags events with a memorability above
a given threshold. We can then compare, for a given threshold, the flagged events with
the events that were manually generated, thus computing the False Positive Rate (FPR)
and the True Positive Rate (TPR) of the method. By varying the threshold, we can
obtain values, which can then be plotted to create the Receiver Operator characteristic
(ROC) curve of the detector (Figure 6.5). This method is often used to assess the
performance of a classifier: a good method will hold a high TPR across many FPR
values. Here, we can see that the memorability-based classifier is able to identify most
of the manually-generated events. However, high scores are given to recent events. This
phenomenon is a voluntary feature that mimics a short-term bias, but it hinders the
performance of a detection method by making old memorable events harder to detect
with a simple threshold comparison.

6.4. EXPERIMENTS AND RESULTS 129

(a)

(b)

Figure 6.4: Computed complexity and memorability of events in the 4-room house sce-
nario. (a) shows the complexity of events with label “day” (blue), “device removed”
(orange), “device added” (cyan), “cold” (gray) and“hot” (red). (b): memorability of the
same events. Some remarkable events are annotated.

A brand new TV

Setup description For the second scenario, we implement Example 6.1 that was
presented in the introduction to this chapter. For this, we generate a series of events
with two different labels: “light” events correspond to the lighting of the room over a
duration of one hour; “TV”events occur when the TV is switched on, and they contain
the TV model in their characteristics. After having generated similar events over a period
of several months, we introduce a new TV and we switch it on. This is recorded as a
“TV” event, with the new TV name as a characteristic. Subsequently, the dimming of
the light is also recorded as a“light”event. In total, as the record spans over 100 days,
around 2500 events are considered, most of them being“light”events.

The vocabulary of predicates contains the following elements: daytime(e) states
whether e occurred during daytime, nighttime(e) whether it occurred during nighttime,

130 CHAPTER 6. ABDUCTIVE INFERENCE

Figure 6.5: The ROC curve of the memorability-based classifier. This result is obtained
by varying the detection threshold. Ground truth classification consists of 20 manually
annotated events that correspond to hand-made perturbations in the simulation

low light(e) and high light whether e is an event where the light is low or high,
day(e, kD) and hour(e, kH) whether e occurred kD days ago at hour kH . A predicate
device(e, k) indicates the type of the device corresponding to the event e; notably, this
predicate is used to discriminate the new TV.

Analysis The resulting memorability scores are shown in Figure 6.6. The same main
sequence of logarithmic events appears, similar to Figures 6.2 and 6.4b. In addition, two
other sequences are visible. Some light events appear notably more memorable than the
rest: they correspond to“dark”events occurring during daytime: since they are rare, they
require less information to be described than the majority of light events, thus appearing
more memorable. TV events, as they are a rarer event label than light events, appear as
being more memorable, in overall. The smart TV usage, being unambiguously described
by referring to the TV’s model, appears as significantly memorable. So does the light
dimming, based on its recentness and its occurrence during daytime.

Table 6.1 exposes the three most memorable events relative to the light dimming
event following the use of the smart TV, using the conditional memorability defined in
Equation 6.12. It appears that this metrics identifies the smart TV usage as the most
memorable event, knowing the subsequent light-dimming event. Here, the result of the
computation follows the scenario of Example 6.1: the most memorable event, relative to
the observation of the dimming of the lights, is the fact that the brand new smart TV
has just been turned on. Therefore, based on this sense of memorability only, one can
propose that this event is the cause of the dimming, without any additional knowledge
regarding how the TV operates.

6.4.3 A subjective metrics

By essence, memorability remains a subjective notion. Each individual may consider
different events as being memorable, based on their knowledge and past experience. For

6.5. INTEGRATION INTO THE EXPLANATORY SYSTEM 131

Figure 6.6: Memorability of the events in the TV scenario. The events corresponding
to the first use of the new TV and the subsequent light dimming are circled. They are
considered as memorable by our metrics.

Event ID Description Relative memorability (bits)
2513 Use of smart TV 16.76
2427 Last use of the old TV 14.81
2411 Second-last use of the old TV 11.21

Table 6.1: The three most memorable events, relatively to the light dimming event.

instance, a person living in France will consider some ancient buildings as being non
memorable, while they may stand out from the point of view of a foreign tourist. This
phenomenon is accounted for in the definition of unexpectedness (Dessalles, 2013).

Our metrics, while being formally defined in Equation 6.9, is subjective, too. Here,
memorability is defined relative to a given memory M of events and vocabulary V of
predicates. To understand the effect of vocabulary, we compute the description com-
plexity for events from the TV scenario with different vocabularies. The results are
presented in Figure 6.7: the introduction of daytime and nighttime predicates be-
tween Figures 6.7a and 6.7b leads to visible changes as low-light daytime events can be
described more simply. In Figure 6.7c, the introduction of a select predicate, which
can select any event from the memory at the cost of log(N) bits creates an upper bound
for event complexity. This introduces a threshold phenomenon: all events that would
otherwise cost more than log(N) bits can be described more effectively by designating
them by their ID among all other events. The relevance of allowing this ID-based re-
trieval method is not clear, as the exact functioning of human memory is not comparable
to that of a computer (Rubin and Umanath, 2015).

6.5 Integration into the explanatory system

In this chapter, we have defined and formalized the notions of memorability and condi-
tional memorability. We argue that they can be used for abductive inference in some

132 CHAPTER 6. ABDUCTIVE INFERENCE

(a)

(b)

(c)

Figure 6.7: Description complexity computed with different vocabularies for the TV ex-
ample scenario. In (a), the vocabulary only covers the event type and time of occurrence.
In (b), a predicate to describe daytime or nighttime occurrence is added, which discrimi-
nates some low-light events as being less complex. In (c), a predicate to select any event
with its ID is added: this introduces an upper limit cor complexity, which corresponds
to the cost of this generic selection predicate.

6.5. INTEGRATION INTO THE EXPLANATORY SYSTEM 133

circumstances. Notably, memorability can be used to propose original hypotheses when
other abductive forms of reasoning fail, due to lack of prior knowledge, for instance. As
such, memorability-based abduction can be integrated into our smart home explanatory
system as abduction modules that detect internal memorable events and propose them
as causes. A low score can be given to this method, so it is only used in last resort.
However, the relevance of this approach is limited: by design, most internal events are
already handled by the LECs’ understanding of its functioning and hence integrated into
other abduction methods (i.e. having causal model of its working).

Another possibility is to implement memory-based abduction across several compo-
nents. This is shown in Figure 6.8. First, an interpretation module on a LEC identifies
a recorded event as being remarkable, given its knowledge of past observations and
predicates. Then, this module notifies other LEC’s of its observation by sending the
Boolean proposition describing it, and how memorable this is. Components that are
equipped with the corresponding abduction module can register this proposition. Then,
in a subsequent D-CAS call, these modules can propose the memorable proposition as a
hypothesis.

Figure 6.8: Principle of a memorability-based abduction. A first LEC identifies an event
as being memorable, and notifies other LECs of this occurrence by sending the proposi-
tions describing the event. In a subsequent D-CAS call, this Boolean proposition can be
suggested as a causal hypothesis by the abduction module.

Note that this situation could also be handled by considering the addition of the
Smart TV: when the TV is integrated into the smart home system, the Spotlight su-
pervises its addition to the explanatory system. This configuration change is observed
by the LEC attached to the Spotlight. If this LEC is using the memorability module,
it will interpret this component addition as remarkable, since this is the first time such
module is in the system. Hence, it will notify other modules of the Boolean proposition
added(t)∧devicetype(t, smartTV). This process results in a rationale identifying the
TV’s addition as the cause for the strange light dimming event. While being arguably
different from what is proposed in Figure 6.8, this output is likely to inform the user
about the situation.

134 CHAPTER 6. ABDUCTIVE INFERENCE

Memorability-based abduction bears no guarantee regarding the accuracy of its hy-
potheses. However, as we have discussed in Chapter 5, erroneous abductive proposals can
be handled by D-CAS: the high-level rationale identifies a hypothesis as being erroneous
if subsequent simulations are inconclusive or if the proposed conflict is not confirmed. It
is possible for future refinements of the system to integrate feedback into memorability-
based abduction to improve predictions. However, this is considered out of scope, as the
first goal of naive abduction is to provide hypotheses in no-knowledge context.

Chapter 7

Conclusion

Summary

As explanation is identified as a multidisciplinary issue, this research has
made progress alongside different axes. In this concluding chapter, we
present an overview of the different contributions. Then we discuss the
main limitations of the current state of the explanatory system, which pave
the way towards future improvements.

Four main contributions can be identified in this thesis. First, we have de-
fined and illustrated the different requirements for an explanatory engine in
Cyber-Physical Systems such as smart homes. Second, we have provided
a general framework for the generation of explanations in the context of
complex systems, where knowledge is scattered across multiple components.
Third, we presented an architecture that enables the previously defined al-
gorithm into realistic smart home systems. Fourth, we provided a novel way
to propose candidate hypotheses in abductive inference based on a newly
introduced measure of memorability: this aims to implement the intuitive
human approach of proposing past memorable events as relevant hypotheses
when faced with unprecedented phenomena.

The main objective of this research was to demonstrate the feasibility of a
smart home explanatory system and design its main elements. While the
proposed architecture and algorithm meet the expectations we set, many
open questions remain before realizing an entirely explainable smart home
system.

135

136 CHAPTER 7. CONCLUSION

7.1 Contributions

The main question posed in the introduction to this thesis was “How can we design an
explanatory system that is compatible with the different characteristics of a smart home
system?” In this thesis, we have broken down the question into different steps, to each
one we have brought an answer:

First, we defined, in Chapter 3, the six main characteristics that the explanatory
system should present to comply to the desires and restrictions of a smart home. This
list resulted from the review of existing constraints, approaches and goals of XAI in
Chapter 2. The six defined goals are: explanation’s shallowness, transparency, contrastive
nature, privacy compliance, self-adaptation and genericity.

The second major contribution of this thesis is the definition of the D-CAS algorithm,
exposed in Chapter 3, and its tree-based variation in Chapter 5. D-CAS is based on
the principle that contrastive explanation can be generated by exposing the trace of a
conflict-solving process. It brings a minimal representation of the system’s knowledge as
Boolean propositions that can be given necessities to represent opinions. The centralized
part of the process merely redirects requests to local experts that are able to perform
the operations of conflict identification, abduction and simulation using their knowledge.
The original D-CAS process is refined by proposing to integrate it tightly with a tree
representation of the rationale: this allows for a visual representation of the output.

A third contribution is the design of the architecture enabling the proposed D-CAS
algorithm and preserving the self-adaptive features of the existing smart home. In the
solution that we present in Chapter 4 and implement in Chapter 5, the general organi-
zation is to define one LEC to each existing Smart Home Component. The LEC is itself
a generic platform, upon which are integrated specialized modules that are defined by
specifications exposed by the SHC. These modules are responsible for the interpretation
(i.e. mapping measures to propositions), abduction (proposing causes) and simulation
(imagining consequences).

A fourth contribution, exposed in 6, is a novel way to apprehend abduction. As
we have identified abduction as an essential part of explanations, it is necessary for the
explanatory system to be able to propose hypotheses. In case a hypothesis proves to
be erroneous, it can later be discarded by the D-CAS algorithm. In case there is no
previous knowledge regarding past occurrences of the phenomenon, nor understanding
of the underlying physics, the system must still be able to propose relevant ideas. Here,
we bring forth the argument that, when facing similar situations, humans can consider
memorable past events as being possible causal hypotheses. We defined a notion of
memorability based on Algorithmic Information Theory.

These various contributions resulted in several communications over the course of
the research. Table 7.1 lists them with their corresponding references.

In addition to the contributions that are exclusive to this PhD thesis, another research
was conducted on a method to identify causal relations in a Smart Home environment and
expose them as a Causal Bayesian Network. This work comes from an original idea from
Mr. Kanvaly Fadiga, then a student at Télécom Paris, and led to a communication in the
2021 ACSOS Conference (Fadiga et al., 2021). The Causal Bayesian Graph generated
by this approach can be integrated as inference knowledge for abductive reasoning. This

7.2. LIMITS AND POSSIBLE FUTURE DEVELOPMENT 137

Type Description Reference

Workshop Paper
Communication focused on the

decentralized architecture

(E. Houzé, Diaconescu,
Dessalles, Menga, and
Schumann, 2020)

Doctoral Symposium
Paper

Brief description of the overall
approach of the thesis

(É. Houzé, 2021)

Workshop Paper
Using D-CAS in Multi-Agent

causal discovery for
Policy-Making

(E. Houzé, Diaconescu, and
Dessalles, 2022)

Conference Paper
Communication focused on the

description of D-CAS
(E. Houzé, Dessalles, et al.,

2021)

Conference Paper
(Second author) Learning causal

Bayesian Networks in smart
homes using do-operations

(Fadiga et al., 2021)

Journal Article
The concept of memorability
and its use for abduction

(É. Houzé, Dessalles, et al.,
2022)

Conference Paper

(Accepted) In-depth
presentation of the generic

architecture for the explanatory
system

(E. Houzé, Diaconescu,
Dessalles, and Menga,

2022)

Patent
(Submitted, under review)

Design of a LEC, twin-memory
(É. Houzé, Menga, et al.,

2021)

Table 7.1: List of contributions (communications, article and patent)

research can be envisioned as a novel way to discover possible causal relations between
variables in the smart home. Starting from considering all possible relations (i.e. a
fully connected graph of causal influence), the method performs simulations to test the
outcomes of do-operation, as defined by (Pearl, 2009). The method is able to handle
non-doable variables, i.e. variables which cannot be simulated, to some extent.

An extended version of the work, currently under review, has been submitted to the
journal ”Transactions on Adaptive and Autonomic Systems” in early 2022. This exten-
sion tackles the challenge of scalability to larger systems. As is, the method originally
presented at ACSOS 2021 scaled as the number of variables to consider squared. Us-
ing existing knowledge of the hierarchical organization of the system can discard many
relations, effectively lowering the complexity of the process to linear.

7.2 Limits and possible future development

The main focus of this research was to develop the base architecture and algorithm to
power explanatory systems that are able to handle the various types of situations that
arise during spontaneous use of a smart home. While the examples provided in Chapter 5
illustrate some singular use cases and interaction possibilities, several major limitations
remain in the system. These limitations can lead to further research to develop specific
aspects of the overall system.

138 CHAPTER 7. CONCLUSION

7.2.1 Limitation of the underlying system

When we introduced the architectural principles of our explanatory system in Chapter 4,
we motivated the one-to-one pairing of existing smart home components with LECs by
the fact that this allows self-organization capabilities of the underlying control system to
be used by the explanatory system as well. However, this choice comes with limitations:
as the structure of the explanatory system follows that of the underlying control system,
its handling of proposition is limited to the latter. For instance, in its current state, the
explanatory system cannot handle propositions spanning over multiple components, or
combinations: consider Example 7.1. This limit results of a design choice, as explained
in Section 3.3.5: considering the possibility of multi-component propositions results in
a significant increase of proposition combinations to explore, bringing a complexity that
infringes on the shallowness principle. This example is similar to the“Firing Squad”causal
structure (Akleman et al., 2015), where causal responsibility is shared among different
actors: the solution here can be to identify the common confounding factor.

Example 7.1

An unusually low temperature is felt in the room. It comes from the fact that
several windows are open. Here, using D-CAS correctly identifies a window as
being the responsible cause, but closing just window is not enough to end the
conflict. Therefore, D-CAS fails to a correct solution for this conflict, which
would be: “It is cold because all windows are open in the room”

To circumvent this issue, we propose two possibilities. First, shifting the organization
responsibility entirely to the underlying control system. Self-organizing systems (Banzhaf,
2009) aim to best adapt their organization to requirements and constraints of the en-
vironment. This can be useful in smart home context, and has already been considered
in (Diaconescu, Mata, and Bellman, 2018). In Example 7.1, a self-organizing con-
trol system can identify that there is a requirement for a room-wide window manager,
which would later be integrated into the explanatory system and be responsible of a
any window open predicate. A second possibility is to directly adapt the organization
of the explanatory system to account for these situations without modifying the under-
lying control system. For instance, it is possible to consider certain types of feedback
that would lead to the addition of new LECs in charge of specific inter-components
propositions, rather than being attached to just one component.

7.2.2 User interaction

We have defined shallowness and transparency as two requirements for the general ex-
planatory system presented in this thesis. This may result in arguably unnecessarily heavy
outputs (as seen in the failure discovery example from Chapter 5 where all possibilities
are displayed). Future improvements to the method can be made by considering better
integration of interaction to learn from the user’s specific needs and wishes. In the pro-
posed implementation of Chapter 5, user interaction uses a CLI and a GUI that displays
past rationales as trees. Interaction is here limited to asking questions about predicates

7.2. LIMITS AND POSSIBLE FUTURE DEVELOPMENT 139

that are already known to the system, and, once an explanatory tree output is presented,
explore another possible path by changing considered necessities. It remains far from
the Natural Language that is targeted by the explanatory system. Ease of interaction
comes as a major requirement since many smart home applications target elder peo-
ple (Zimmermann, Ableitner, and Strobbe, 2017; Mekuria et al., 2019) who are more
prone to use voice interaction and other NLP-based interfaces (Jivani, Malvankar, and
Shankarmani, 2018; Kowalski et al., 2019).

By design, our approach is meant to be coupled with a Natural Language Processing
(NLP) unit (which can be comprised in the User Interface layer in Figure 4.1). This
coupling is facilitated by the use of Boolean propositions in the explanatory rationale.
However, these propositions need to be in line with the user’s experience to be relevant.
A future development is to identify and learn predicates at runtime, based on previous
user interactions. A proposed lead for further research is to identify the contrastive
dimensions of events, and design predicates to name them. For instance, learning the
concepts of cold or hot as deviations from room temperature prototypes (Dessalles,
2015), discarding other dissimilar dimensions, which limits the impact of the curse of
dimensionality1.

7.2.3 Module implementation

The performance of the explanatory system presented in this thesis is hard to evaluate:
even though it satisfies the six main goals we defined, as we have seen in the implemented
examples of Chapter 5, its ability to explain situations is limited to the performance of its
constituting components. Namely, the abduction, interpretation and simulation modules.
While the issue of multi-component propositions has been discussed above, individual
modules remain a major axis of improvement for the system. In Chapter 6, we presented a
novel approach for abduction that is consistent with our global design. Other approaches
for abduction can be derived from popular XAI approaches. For instance, one could use
Anchors (Ribeiro, Singh, and Guestrin, 2018) to derive meaningful predicates, which
can then be proposed as possible causal hypotheses when looking for the cause of an
observation.

The approach of learning causal models by performing do-operations on a digital
twin that we explored in (Fadiga et al., 2021) can also be used as a basis for abduc-
tion modules. By discovering the causal relations between variables, this method can
generate abductive hypotheses for observation, without relying on pre-existing rule base
knowledge.

Our architecture is modular and is intended to benefit from the addition of sev-
eral tools for abductive reasoning, simulation or predicate interpretation. As we have
illustrated with Example 6.1 concerning abduction, parallel methods can be used de-
pending on the knowledge available to the system. The same is true with interpretation
and simulation: threshold-based interpretation, similar to what is implemented in the
demonstrator, is adequate for notions such as temperature or window states. More ad-

1This“curse”accounts for counter-intuitive phenomena occurring when considering high-dimensional
data. For instance, two points that differ by a small amount across many dimensions are far apart when
using standard euclidean metrics.

140 CHAPTER 7. CONCLUSION

vanced processing, such as anomaly detection (Cook, Mısırlı, and Fan, 2019) can be
used in parallel to detect device failures from time series data. As many approaches can
be used, the overall explanatory system will benefit from future advances in XAI, data
analysis and simulation tools.

7.3 Final words

Explaining a machine-made decision is an important challenge for AI for the years to
come. In this thesis, we tackled the question of designing an explanatory system for
smart homes. While the target application is quite narrow, the general principles and
methods presented in this thesis aim to be generic. The reach of these advances goes
beyond the initial application domain, and should remain relevant to future explainable AI
systems which focus on interactions with a physical environment: autonomous cars and
vehicles, all kinds of “smart”devices and smart-device-based systems, self-aware control
systems, etc.

In smart homes, the challenge does not come from the intrinsic complexity of the
models used (they are often simple) but rather from the variety of devices, the inter-
actions with the user, the possible failures and the importance and uniqueness of the
context. Therefore, we propose an approach that differs from most of state-of-the-art
XAI systems: we focus on a high-level organization that generates an explanation as a
conflict-solving rationale, composing from knowledge scattered across various specialized
components. The intuition behind this approach is that explainability in complex sys-
tems requires two kinds of operations. First, low-level operations that identify the causes
and consequences of phenomena by standard means that are not necessarily explainable
or transparent. Second, a higher-level explanation generation process that uses these
operations to build a system-wide reasoning. This process must be understandable by
the user, as the explanation consists of the generation itself. It must be a transpar-
ent and shallow process, allowing inter-component communication to solve system-wide
problematic situations.

The realization of a demonstrator allowed us to illustrate the behavior of our approach
in various situations in which the issue to explain originated either from a conflict between
goals, from a component’s failure or just from the default behavior of the system that
was not understood by the user. The general D-CAS algorithm allows to handle this
variety of situations while providing standard operations and requirements, component-
wise. This approach aims to pave the way towards future improvements by allowing the
development and integration of more advanced interpretation, abduction and simulation
modules into the explanatory system. The modular and generic architecture developed in
this thesis revolves around the possibility to add new features, vocabulary and reasoning
tools without major modification to the system.

Résumé

Chapitre 1

L’explicabilité de l’Intelligence Artificielle (IA) a connu, au cours de la dernière décennie,
un essor remarquable, tant par le nombre de publications que par la variété des approches
proposées. Cette tendance peut s’expliquer par l’importance grandissante des IA dites
“bôıtes noires”dans des prises de décisions, parfois critiques. Parmi les exemples les plus
notables, nous pouvons citer les véhicules autonomes ou les algorithmes d’attribution de
prêt en fonction des caractéristiques de l’emprunteur. Également, le cadre légal a évolué,
avec notamment la mention d’un“droit à l’explication”dans le RGPD européen entré en
vigueur en 2018.

Dans ce contexte, la capacité d’un système intelligent à pouvoir proposer des explica-
tions à ses décisions et aux situations, parfois surprenantes, rencontrées par l’utilisateur.
Cette caractéristique contribue à construire ce que l’on pourrait appeler une IA de confi-
ance, qui permettrait d’améliorer l’acceptabilité de la technologie auprès du grand public.
Les maisons intelligentes, notamment, font actuellement face à ce genre de défi.

Définies comme une collection d’équipements connectés qui, au sein d’une mai-
son, œuvrent collectivement à l’accomplissement d’objectifs de haut niveau, elles sont
aujourd’hui relativement cantonnées à un marché de niche. L’apport de systèmes ca-
pables de s’expliquer permettrait d’améliorer cette situation. Pour ce faire, considérons
l’exemple suivant: une pièce, pourtant équipée d’un système de contrôle de la tempéra-
ture, est inhabituellement froide. L’utilisateur se demande pourquoi cette situation se
produit, et aimerait que le système puisse lui offrir une explication, ou tout du moins
des pistes. Ici, avoir accès à une explication pourrait permettre à l’utilisateur de remar-
quer qu’un composant ne fonctionne pas comme prévu, ou qu’un objectif est mal défini,
ou que les capacités de régulation du système ont été mal évaluées. Ce supplément
d’information permettant l’amélioration de la performance globale du système.

Chapitre 2

La recherche sur le thème de l’explicabilité de l’ IA s’est développée depuis le milieu des
années 2010, entrâınant un nombre croissant de publications sur le sujet. Cet engoue-
ment suit la parution, en 2016, d’un appel à projets de la part de la DARPA (Agence
Américaine de Projets de Recherche pour la Défense) qui identifie l’explicabilité et la
transparence des modèles comme un enjeu majeur du futur de l’IA.

141

142 CHAPTER 7. CONCLUSION

De nombreuses méthodes d’explication de décisions prises par des modèles ont été
développées, permettant de couvrir une grande variété de techniques d’IA. Deux ap-
proches principales de l’explicabilité peuvent notamment être identifiées. La première
est de privilégier des modèles considérés comme “transparents”, au détriment parfois
d’un performance légèrement plus faible: arbres de décision, modèles linéaires.

La deuxième approche concerne l’explication “post hoc”, c’est-à-dire qui tente de
fournir à posteriori des explications pour des décisions prises par un modèle complexe
“bôıte noire”. De nombreuses méthodes proposent des approximations, locales ou glob-
ales, du modèle afin de générer une explication. Une des techniques les plus connues,
LIME, propose d’évaluer la décision du modèle sur des points voisins de la valeur à expli-
quer afin de faire une approximation linéaire locale, qui permet ensuite d’identifier quelles
variables ont la plus forte influence sur le résultat. Par exemple, cette méthode permet
d’isoler les parties d’une image qui ont permis à un réseau de neurones de classifier une
image comme étant celle d’un chien.

Chapitre 3

Bien que désirable, l’explication des maisons intelligentes est pour le moment non pro-
posée par les systèmes disponibles sur le marché, et n’est pas non plus directement
envisageable à partir de l’état de l’art en IA explicable. Nous avons identifié pour cela
trois causes majeures.

• Les maisons intelligentes sont des systèmes hétérogènes, composés de nombreux
équipements aux caractéristiques différentes: par exemple, un radiateur et une
lampe ne vont pas utiliser la même logique, les mêmes interfaces de communi-
cation. Ce problème est en grande partie en dehors du scope de l’IA explicable,
qui se concentre majoritairement sur les modèles complexes monolithiques, tels
des réseaux de neurones profonds. En comparaison, même si chaque équipement
d’une maison intelligente, si pris individuellement, peut être simple, les interactions
et influences à l’échelle du système doivent être prises en compte et expliquer.
L’hétérogénéité des maisons intelligentes entrâıne deux desirata majeurs pour le
système explicatif: le respect de la localité des connaissance et la généricité.

• L’utilisateur de la maison est la cible du système d’explication. Or, on peut
supposer qu’il n’a pas de connaissances préalables en Machine Learning ou en
informatique. Il faut donc que le système soit capable de générer une explica-
tion conforme à la définition“naturelle”d´explication, sans fournir une vision trop
technique. L’étude des sciences humaines fournit plusieurs caractéristiques d’une
réponse explicative correcte qu’il faut donc respecter.

1. L’explication doit être contrastive, c’est-à-dire qu’elle doit répondre à une dif-
férence entre les observations et les attentes de l’utilisateur. Cela correspond
à l’idée qu’une explication est nécessaire lorsqu’une situation n’est pas con-
forme à ce que l’on attendait, ou ce que l’on voulait. Au contraire, si tout se
déroule comme prévu, l’utilisateur n’exprime que peu un désir d’explication.

7.3. FINAL WORDS 143

2. Une personne ne peut retenir qu’un nombre restreint d’étapes dans un raison-
nement causal. Typiquement, cette valeur est entre cinq et sept. Cela impose
donc un raisonnement peu“profond”, dans le sens où une châıne de causalités
trop longue n’est pas désirable.

3. L’explication doit pouvoir être compréhensible de l’utilisateur: chaque étape
doit être clairement identifiable, tant par rapport à ce qui la précède dans le
raisonnement que par rapport au système. Ainsi, toute proposition dans le
raisonnement doit pouvoir être reliée au composant qui l’a proposée.

• Les maisons intelligentes sont autonomiques, c’est-à-dire qu’elles sont capables de
s’auto-gérer afin de réaliser au mieux les objectifs de haut niveau définis par ses
administrateurs humains. Par exemple, une maison intelligente peut changer sa
configuration et sa logique afin d’intégrer un nouveau composant, de palier à la
panne d’un équipement. Ces capacités sont très utiles à l’utilisation mais peuvent
mener à des situations nécessitant une explication, de par un changement non
prévu par l’utilisateur. Un système explicatif de maison intelligente doit donc être
capable de réaliser une sorte d’auto-conscience.

Afin de relever ces différents défis, nous nous basons sur une modèle existant perme-
ttant de générer des raisonnement de résolution de conflits. Ce modèle se nomme CAN:
Conflit-Abduction-Négation. Il propose de découper le raisonnement explicatif en trois
grande étapes. Un conflit est défini lorsque l’état du monde, décrit par une proposition
booléenne, est en contradiction avec l’opinion que l’agent s’en faisait, encodée par un
nombre positif ou négatif, appelée nécessité. Afin de résoudre un tel conflit, CAN explore
ses causes possibles: c’est le procédé d’inférence par abduction. Si une cause est ainsi
identifiée, elle est considérée comme le nouveau conflit à résoudre par le modèle. Enfin,
CAN peut considérer la négation d’un conflit comme nouveau conflit à examiner. Par
exemple, au lieu de se demander pourquoi la fenêtre est ouverte, CAN examine ce qui
l’empêche de se fermer.

CAN parvient à modéliser des discussions entre humains, mais n’est pas initialement
conçu pour un système réaliste ou décentralisé. Il convient donc de l’adapter, ce qui
est la première contribution majeure de cette thèse. À cette fin, on considère que la
connaissance du système est divisée entre plusieurs domaines de connaissances locaux,
par example couvrant un ou plusieurs équipements chacun. À chacun de ces domaines
locaux, nous introduisons un composant explicatif local (LEC). Ce composant est chargé
de réaliser, sur son domaine local, les différentes étapes définies par CAN: la détection
de conflits, la proposition d’hypothèses par abduction et la recherche d’actions possi-
bles afin de mettre fin au conflit. Afin de coordonner les différents composants locaux,
nous ajoutons au système un composant central, nommé Spotlight. L’ajout de ce co-
ordinateur n’enfreint pas notre principe de localité des connaissances : en effet, il n’a
connaissance que de la présence des autres experts locaux, pas de l’état du système. Par
cet aspect, on peut le rapprocher d’un service de“pages jaunes”fréquemment utilisé dans
les architectures autonomiques. Le processus résultant s’appelle D-CAS, pour “Decen-
tralized Conflict Abduction Simulation”. Notons que la négation, processus cognitif de
haut niveau, est remplacé par la simulation qui correspond aux capacités d’un système
réaliste.

144 CHAPTER 7. CONCLUSION

Chapitre 4

Afin de mettre en œuvre l’approche D-CAS, il convient de spécifier l’architecture du
système de maison intelligente explicable. Un système existant est supposé présenter
des caractéristiques autonomiques, et donc notamment être observable. Ainsi, nous
ajoutons une couche de composants explicatifs locaux chargés d’observer ces composants
observables. Les composants explicatifs locaux présent, à leur tour, une interface de
communication générique basée sur les prérequis définis par D-CAS. Le Spotlight utilise
ces interfaces génériques afin de coordonner le raisonnement.

Reste cependant le problème du passage des observations enregistrées par le système
existant aux propositions booléennes utilisées par D-CAS dans son raisonnement. La
difficulté réside ici principalement dans le fait que les propositions peuvent changer de
sens au cours du temps, selon le contexte, là où les observations sont immuables: ce
qui a été observé ne peut plus être remis en question par la suite. Par exemple, la
température enregistrée un certain jour ne peut être revue ; en revanche, si ce jour est
suivi de plusieurs journées de fortes chaleurs, on aura tendance à relativiser la sensation
de chaleur.

On peut résoudre ce problème en définissant deux objets intermédiaires : les événe-
ments et les prédicats. Les événements sont des agrégats d’observations, regroupées sous
forme d’un triplet (l, t,X), où l est une étiquette indiquant la nature de l’événement,
t son horodatage et X un ensemble de caractéristiques. Un prédicat est une fonction
booléenne, associant à un événement e et à des arguments optionnels une propositions
booléenne P avec sa valeur de vérité. Notons que la table de vérité d’un prédicat peut
être modifiée, permettant de modéliser la définition variable que l’on peut donner à un
même mot.

Cette interprétation des observations en propositions peut être intégrée dans les
LECs : deux mémoires stockent respectivement les prédicats et les événements. Une
unité d’interprétation est responsable de la détection des événements et de la définition
et mise à jour des différents prédicats. La connaissance d’inférence est située dans une
unité d’abduction et une unité de simulation, proposant des hypothèses causales ou
des causes possibles, respectivement. Chacune de ces unités peut être constituée de
différents modules pouvant être ajoutés, supprimés ou modifiés en cours d’exécution,
conformément aux principes autonomiques. Cela permet une modularité qui peut être
intégrée au raisonnement du système via une capacité d’auto-observation des LECs.

Chapitre 5

Nous proposons une implémentation de la méthode D-CAS et de l’architecture proposée
dans un démonstrateur preuve de concept. Ce démonstrateur est réalisé sur une ma-
quette de maison intelligente, équipée de différents capteurs (température, présence,
fenêtres, CO2). Les capteurs sont hébergés sur des Raspberry Pi avec leur composant
explicatifs locaux, afin de reproduire un système embarqué réaliste. Le Spotlight, ainsi
que l’interface utilisateur et différents utilitaires, est hébergé sur une unité centrale. Les

7.3. FINAL WORDS 145

communications entre les différentes unités ont lieu sur le réseau local via le protocole
TCP/IP.

Nous proposons cinq scénarios émergeant d’une situation initiale similaire : il fait froid
dans une pièce pourtant équipée d’un système de régulation de la température. Les résul-
tats de D-CAS sont présentés sous la forme d’arbres, visibles interactivement sur notre
site internet https://explainableai.fr/treeVisualizer. Bien que d’apparence
simpliste, ces scénarios illustrent les différentes capacités de D-CAS (révision des con-
naissances, modularité, détection de panne, réaction en cas d’hypothèse erronée).

Chapitre 6

Nous avons identifier que la faculté à proposer des hypothèses causales pertinentes
est d’une importance capitale dans le procédé de raisonnement explicatif. Cependant,
comme notre système vise à expliquer des situations inhabituelles, le manque de modèle
ou de données existantes peut rendre inutilisables la plupart des approches classiques
s’appuyant sur les statistiques ou les modèles préexistants.

Nous proposons une approche générique à ce genre de situation : en cas d’absence de
données, on peut simplement suggérer un événement mémorable comme cause possible à
une observation surprenante. Cette proposition nécessite de pouvoir définir formellement
la notion de mémorabilité. Pour ce faire, nous nous appuyons sur la théorie algorithmique
de l’information. Nous adaptons la définition de la surprise d’un objet, en définissant
qu’un événement mémorable est significativement plus simple ou plus complexe à décrire
que prévu.

La complexité de description peut être définie comme la manière la plus courte,
mesurée en nombre de bits d’information nécessaires, de décrire de manière non ambiguë
un événement parmi tous les autres événements passés. Il est possible de formaliser cette
intuition via les prédicats préalablement définis dans nos travaux. On peut donc définir la
complexité de description comme la longueur de la plus courte combinaison de prédicats
qualifiant uniquement l’événement souhaité.

En approchant la complexité attendue par la moyenne de complexité des événements
similaires, la similarité pouvant être exprimée par le nombre de prédicats conjointement
réalisés, on peut définir et calculer de manière algorithmique une mesure de mémora-
bilité des événements. Nous illustrons cette approche sur quelques exemples simples,
retrouvant par exemple l’intuition que le jour de mariage d’une personne lui apparâıt
mémorable.

Chapitre 7

Le mémoire se conclue par un récapitulatif des différentes contributions et publications.
Même si la motivation première des travaux est d’expliquer des situations inhabituelles
dans une maison intelligente, notre approche se veut généraliste, permettant d’envisager
des applications à d’autres domaines et types de systèmes.

https://explainableai.fr/treeVisualizer

146 CHAPTER 7. CONCLUSION

Bibliography

Abu-Nasser, Bassem (2017). “Medical expert systems survey”. In: International Journal
of Engineering and Information Systems (IJEAIS) 1.7, pp. 218–224.

Adadi, Amina and Mohammed Berrada (2018). “Peeking inside the black-box: a sur-
vey on explainable artificial intelligence (XAI)”. In: IEEE access 6. Publisher: IEEE,
pp. 52138–52160.

Akleman, Ergun et al. (2015).“A theoretical framework to represent narrative structures
for visual storytelling”. In: Proceedings of bridges 2015: mathematics, Music, art,
architecture, culture, pp. 129–136.

Albouys-Perrois, Jérémy et al. (2022).“Multi-agent simulation of collective self-consumption:
Impacts of storage systems and large-scale energy exchanges”. In: Energy and Build-
ings 254, p. 111543. ISSN: 0378-7788. DOI: https://doi.org/10.1016/j.
enbuild.2021.111543. URL: https://www.sciencedirect.com/science/
article/pii/S0378778821008276.

Alhafidh, Basman M Hasan et al. (2018). “FPGA hardware implementation of smart
home autonomous system based on deep learning”. In: International Conference on
Internet of Things. Springer, pp. 121–133.

Alirezaie, Marjan et al. (2017). “An ontology-based context-aware system for smart
homes: E-care@ home”. In: Sensors 17.7. Publisher: Multidisciplinary Digital Pub-
lishing Institute, p. 1586.

Amghar, Souad, Safae Cherdal, and Salma Mouline (2018).“Which NoSQL database for
IoT Applications?” In: 2018 International Conference on Selected Topics in Mobile
and Wireless Networking (MoWNeT), pp. 131–137. DOI: 10.1109/MoWNet.2018.
8428922.

Antunes, Pedro et al. (2008). “Structuring dimensions for collaborative systems evalu-
ation”. In: ACM computing surveys (CSUR) 44.2. Publisher: ACM New York, NY,
USA, pp. 1–28.

Arrieta, Alejandro Barredo et al. (2020). “Explainable Artificial Intelligence (XAI): Con-
cepts, taxonomies, opportunities and challenges toward responsible AI”. In: Informa-
tion Fusion 58. Publisher: Elsevier, pp. 82–115.

Augasta, M Gethsiyal and Thangairulappan Kathirvalavakumar (2012). “Reverse engi-
neering the neural networks for rule extraction in classification problems”. In: Neural
processing letters 35.2. Publisher: Springer, pp. 131–150.

Austin, Johanna et al. (2016).“A smart-home system to unobtrusively and continuously
assess loneliness in older adults”. In: IEEE journal of translational engineering in health
and medicine 4. Publisher: IEEE, pp. 1–11.

147

https://doi.org/https://doi.org/10.1016/j.enbuild.2021.111543
https://doi.org/https://doi.org/10.1016/j.enbuild.2021.111543
https://www.sciencedirect.com/science/article/pii/S0378778821008276
https://www.sciencedirect.com/science/article/pii/S0378778821008276
https://doi.org/10.1109/MoWNet.2018.8428922
https://doi.org/10.1109/MoWNet.2018.8428922

148 BIBLIOGRAPHY

Banerjee, Amit et al. (2018). “Centralized framework for controlling heterogeneous ap-
pliances in a smart home environment”. In: 2018 International Conference on Infor-
mation and Computer Technologies (ICICT). IEEE, pp. 78–82.

Banzhaf, Wolfgang (2009). “Self-organizing Systems.” In: Encyclopedia of complexity
and systems science 14. Publisher: Citeseer, p. 589.

Barredo-Arrieta, Alejandro and Javier Del Ser (2020).“Plausible Counterfactuals: Audit-
ing Deep Learning Classifiers with Realistic Adversarial Examples”. In: arXiv preprint
arXiv:2003.11323.

Bench-Capon, Trevor JM (2020). “Before and after Dung: Argumentation in AI and
Law”. In: Argument & Computation 11.1-2. Publisher: IOS Press, pp. 221–238.

Bex, Floris and Douglas Walton (2016). “Combining explanation and argumentation in
dialogue”. In: Argument & Computation 7.1. Publisher: IOS Press, pp. 55–68.

Biran, Or and Courtenay Cotton (2017).“Explanation and justification in machine learn-
ing: A survey”. In: IJCAI-17 workshop on explainable AI (XAI). Vol. 8, p. 1.

Bishop, Christopher M (2006). Pattern recognition and machine learning. springer.
Blumreiter, Mathias et al. (2019). “Towards self-explainable cyber-physical systems”.

In: 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C). IEEE, pp. 543–548.

Bompard, Manuel et al. (May 2020). “Procédé de construction de réseau de neurones
pour la simulation de systèmes physiques”. WO2020094995. URL: https://data.
inpi.fr/brevets/WO2020094995?q=adagos#WO2020094995.

Bose, Bimal K (2017). “Power electronics, smart grid, and renewable energy systems”.
In: Proceedings of the IEEE 105.11. Publisher: IEEE, pp. 2011–2018.

Brown, James Robert and Yiftach Fehige (2019).“Thought Experiments”. In: The Stan-
ford Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Winter 2019. Meta-
physics Research Lab, Stanford University. URL: https://plato.stanford.edu/
archives/win2019/entries/thought-experiment/.

Burgess, John (2020).“Rtx on—the nvidia turing gpu”. In: IEEE Micro 40.2. Publisher:
IEEE, pp. 36–44.

Burmeister, Daniel, Florian Burmann, and Andreas Schrader (2017). “The smart object
description language: modeling interaction capabilities for self-reflection”. In: 2017
IEEE International Conference on Pervasive Computing and Communications Work-
shops (PerCom Workshops). IEEE, pp. 503–508.

Buzan, Tony and Barry Buzan (2006). The mind map book. Pearson Education.
Cai, Carrie J, Jonas Jongejan, and Jess Holbrook (2019).“The effects of example-based

explanations in a machine learning interface”. In: Proceedings of the 24th Interna-
tional Conference on Intelligent User Interfaces, pp. 258–262.

Cambridge Dictionary (2020). Explanation. URL: https://dictionary.cambridge.
org/dictionary/english/explanation (visited on 05/22/2020).

Castelvecchi, Davide (2016). “Can we open the black box of AI?” In: Nature News
538.7623, p. 20.

Cave, Stephen and Kanta Dihal (2018). “Ancient dreams of intelligent machines: 3,000
years of robots”. In: Nature 559.7715. Publisher: Nature Publishing Group, pp. 473–
475.

https://data.inpi.fr/brevets/WO2020094995?q=adagos#WO2020094995
https://data.inpi.fr/brevets/WO2020094995?q=adagos#WO2020094995
https://plato.stanford.edu/archives/win2019/entries/thought-experiment/
https://plato.stanford.edu/archives/win2019/entries/thought-experiment/
https://dictionary.cambridge.org/dictionary/english/explanation
https://dictionary.cambridge.org/dictionary/english/explanation

BIBLIOGRAPHY 149

Chaitin, Gregory J (1966). “On the length of programs for computing finite binary se-
quences”. In: Journal of the ACM (JACM) 13.4. Publisher: ACM New York, NY,
USA, pp. 547–569.

Chaput, Rémy, Amélie Cordier, and Alain Mille (2021). “Explanation for Humans, for
Machines, for Human-Machine Interactions?” In: AAAI-2021, Explainable Agency in
Artificial Intelligence WS.

Chatzimparmpas, Angelos, Rafael M Martins, and Andreas Kerren (2020).“t-viSNE: In-
teractive Assessment and Interpretation of t-SNE Projections”. In: IEEE transactions
on visualization and computer graphics 26.8. Publisher: IEEE, pp. 2696–2714.

Chomsky, N. (Sept. 1956).“Three models for the description of language”. In: IRE Trans-
actions on Information Theory 2.3, pp. 113–124. ISSN: 2168-2712. DOI: 10.1109/
TIT.1956.1056813.

Confalonieri, Roberto et al. (2019).“An Ontology-based Approach to Explaining Artificial
Neural Networks”. In: arXiv preprint arXiv:1906.08362.

Cook, Andrew A, Göksel Mısırlı, and Zhong Fan (2019). “Anomaly detection for IoT
time-series data: A survey”. In: IEEE Internet of Things Journal 7.7. Publisher: IEEE,
pp. 6481–6494.

DARPA (Aug. 2016). Explainable Artificial Intelligence. Broad Agency Anouncement
DARPA-BAA-16-53. DARPA.

Decker, Keith, Katia Sycara, and Mike Williamson (1997).“Middle-agents for the inter-
net”. In: IJCAI (1), pp. 578–583.

Dessalles, Jean-Louis (2008a). “Coincidences and the encounter problem: A formal ac-
count”. In: Proceedings of the 30th Annual Conference of the Cognitive Science
Society. Ed. by Bradley C. Love, Ken McRae, and Vladimir M. Sloutsky. Austin, TX:
Cognitive Science Society, pp. 2134–2139.

Dessalles, Jean-Louis (2008b). The Pisa Tower effect. URL: https://simplicitytheory.
telecom-paris.fr/Pisa.html (visited on 03/02/2022).

Dessalles, Jean-Louis (2013).“Algorithmic simplicity and relevance”. In: Algorithmic prob-
ability and friends - LNAI 7070. Ed. by David L. Dowe. Berlin, D: Springer Verlag,
pp. 119–130. DOI: 10.1007/978-3-642-44958-1_9.

Dessalles, Jean-Louis (2015).“From conceptual spaces to predicates”. In: Applications of
conceptual spaces: The case for geometric knowledge representation. Ed. by Frank
Zenker and Peter Gärdenfors. Dordrecht: Springer, pp. 17–31. DOI: 10.1007/978-
3-319-15021-5_2.

Dessalles, Jean-Louis (2016).“A Cognitive Approach to Relevant Argument Generation”.
In: Principles and Practice of Multi-Agent Systems, LNAI 9935. Ed. by Matteo Bal-
doni, Cristina Baroglio, and Floris Bex. Springer, pp. 3–15.

Dhanorkar, Shipi et al. (2021). “Who needs to know what, when?: Broadening the Ex-
plainable AI (XAI) Design Space by Looking at Explanations Across the AI Lifecycle”.
In: Designing Interactive Systems Conference 2021, pp. 1591–1602.

Diaconescu, Ada, Louisa Jane Di Felice, and Patricia Mellodge (2019). “Multi-Scale
Feedbacks for Large-Scale Coordination in Self-Systems”. In: 2019 IEEE 13th Inter-
national Conference on Self-Adaptive and Self-Organizing Systems (SASO). IEEE,
pp. 137–142.

https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/TIT.1956.1056813
https://simplicitytheory.telecom-paris.fr/Pisa.html
https://simplicitytheory.telecom-paris.fr/Pisa.html
https://doi.org/10.1007/978-3-642-44958-1_9
https://doi.org/10.1007/978-3-319-15021-5_2
https://doi.org/10.1007/978-3-319-15021-5_2

150 BIBLIOGRAPHY

Diaconescu, Ada, Sylvain Frey, et al. (2016).“Goal-oriented holonics for complex system
(self-) integration: Concepts and case studies”. In: 2016 IEEE 10th International
Conference on Self-Adaptive and Self-Organizing Systems (SASO). IEEE, pp. 100–
109.

Diaconescu, Ada, Pembe Mata, and Kirstie Bellman (2018). “Self-integrating organic
control systems: from crayfish to smart homes”. In: ARCS Workshop 2018; 31th
International Conference on Architecture of Computing Systems. VDE, pp. 1–8.

Doran, Derek, Sarah Schulz, and Tarek R Besold (2017).“What does explainable AI really
mean? A new conceptualization of perspectives”. In: arXiv preprint arXiv:1710.00794.

Doshi-Velez, Finale and Been Kim (2017). “Towards a rigorous science of interpretable
machine learning”. In: arXiv preprint arXiv:1702.08608.

Doshi-Velez, Finale, Mason Kortz, et al. (2017). “Accountability of AI under the law:
The role of explanation”. In: arXiv preprint arXiv:1711.01134.

Douven, Igor (2021). “Abduction”. In: The Stanford Encyclopedia of Philosophy. Ed.
by Edward N. Zalta. Summer 2021. Metaphysics Research Lab, Stanford Univer-
sity. URL: https : / / plato . stanford . edu / archives / sum2021 / entries /

abduction/.
Dung, Phan Minh (1995). “On the acceptability of arguments and its fundamental role

in nonmonotonic reasoning, logic programming and n-person games”. In: Artificial
intelligence 77.2. Publisher: Elsevier, pp. 321–357.

Ehsan, Upol and Mark Riedl (2020).“Human-centered Explainable AI: Towards a Reflec-
tive Sociotechnical Approach”. In.

Elias, P. (1975).“Universal codeword sets and representations of the integers”. In: IEEE
Transactions on Information Theory 21.2, pp. 194–203. DOI: 10.1109/TIT.1975.
1055349.

Escoffier, Clément, Richard S Hall, and Philippe Lalanda (2007). “iPOJO: An exten-
sible service-oriented component framework”. In: IEEE International Conference on
Services Computing (SCC 2007). IEEE, pp. 474–481.

Fadiga, Kanvaly et al. (2021). “To do or not to do: finding causal relations in smart
homes”. In: Proceedings of the 2021 IEEE International Conference on Autonomic
Computing and Self-Organizing Systems (ACSOS). eprint: 2105.10058. Online:
IEEE, pp. 110–119.

Floridi, Luciano and Massimo Chiriatti (2020). “GPT-3: Its nature, scope, limits, and
consequences”. In: Minds and Machines 30.4. Publisher: Springer, pp. 681–694.

Forouzan, Behrouz A (2002). TCP/IP protocol suite. McGraw-Hill Higher Education.
Frey, Sylvain (2013).“Generic architectures for open, multi-objective autonomic systems:

application to smart micro-grids”. PhD Thesis. Paris, ENST.
Frey, Sylvain, Ada Diaconescu, and Isabelle Demeure (2012). “Architectural integration

patterns for autonomic management systems”. In: 9th IEEE International Conference
and Workshops on the Engineering of Autonomic and Autonomous Systems (EASe
2012).

Frey, Sylvain, Ada Diaconescu, David Menga, et al. (2015). “A generic holonic control
architecture for heterogeneous multiscale and multiobjective smart microgrids”. In:
ACM Transactions on Autonomous and Adaptive Systems (TAAS) 10.2, pp. 1–21.

https://plato.stanford.edu/archives/sum2021/entries/abduction/
https://plato.stanford.edu/archives/sum2021/entries/abduction/
https://doi.org/10.1109/TIT.1975.1055349
https://doi.org/10.1109/TIT.1975.1055349

BIBLIOGRAPHY 151

Friedman, Jerome H (2001). “Greedy function approximation: a gradient boosting ma-
chine”. In: Annals of statistics. Publisher: JSTOR, pp. 1189–1232.

Gärdenfors, Peter (2004). Conceptual spaces: The geometry of thought. MIT press.
Gentile, Davide (2021). “Evaluating human understanding in XAI systems”. In: CHI 21

Conference.
Ghadakpour, Laleh (2003). “Le système conceptuel, à l’interface entre le langage, le

raisonnement et l’espace qualitatif: vers un modèle de représentations éphémères”.
French. PhD thesis. Palaiseau: École polytechnique.

Gill, T Grandon (1995).“Early expert systems: Where are they now?”In: MIS quarterly.
Publisher: JSTOR, pp. 51–81.

Ginsberg, Matthew L (1986).“Counterfactuals”. In: Publisher: Citeseer.
Glass, Alyssa, Deborah L. McGuinness, and Michael Wolverton (2008). “Toward Estab-

lishing Trust in Adaptive Agents”. In: Proceedings of the 13th International Confer-
ence on Intelligent User Interfaces. IUI ’08. event-place: Gran Canaria, Spain. New
York, NY, USA: Association for Computing Machinery, pp. 227–236. ISBN: 978-1-
59593-987-6. DOI: 10.1145/1378773.1378804.

Goldstein, Alex et al. (2015).“Peeking inside the black box: Visualizing statistical learning
with plots of individual conditional expectation”. In: journal of Computational and
Graphical Statistics 24.1. Publisher: Taylor & Francis, pp. 44–65.

Gomez, Carles, Joaquim Oller, and Josep Paradells (2012).“Overview and evaluation of
bluetooth low energy: An emerging low-power wireless technology”. In: Sensors 12.9.
Publisher: Molecular Diversity Preservation International, pp. 11734–11753.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016a). Deep learning. MIT press.
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016b).“Machine learning basics”.

In: Deep learning 1.7. Publisher: MIT press Cambridge, MA, USA, pp. 98–164.
Grigorescu, Sorin et al. (2020). “A survey of deep learning techniques for autonomous

driving”. In: Journal of Field Robotics 37.3. Publisher: Wiley Online Library, pp. 362–
386.

Guidotti, Riccardo, Anna Monreale, Salvatore Ruggieri, Dino Pedreschi, et al. (2018).
“Local rule-based explanations of black box decision systems”. In: arXiv preprint
arXiv:1805.10820.

Guidotti, Riccardo, Anna Monreale, Salvatore Ruggieri, Franco Turini, et al. (2018). “A
survey of methods for explaining black box models”. In: ACM computing surveys
(CSUR) 51.5. Publisher: ACM New York, NY, USA, pp. 1–42.

Hadwan, H Hamid and YP Reddy (2016). “Smart home control by using raspberry pi
and arduino uno”. In: Int. J. Adv. Res. Comput. Commun. Eng 5.4, pp. 283–288.

Han, Dae-Man and Jae-Hyun Lim (2010). “Design and implementation of smart home
energy management systems based on zigbee”. In: IEEE Transactions on Consumer
Electronics 56.3. Publisher: IEEE, pp. 1417–1425.

Hariri, Sahand, Matias Carrasco Kind, and Robert J. Brunner (2021).“Extended Isolation
Forest”. In: IEEE Transactions on Knowledge and Data Engineering 33.4, pp. 1479–
1489. DOI: 10.1109/TKDE.2019.2947676.

Harrison, Michael A (1978). Introduction to formal language theory. Addison-Wesley
Longman Publishing Co., Inc.

https://doi.org/10.1145/1378773.1378804
https://doi.org/10.1109/TKDE.2019.2947676

152 BIBLIOGRAPHY

Hartigan, John A and Manchek A Wong (1979).“Algorithm AS 136: A k-means clustering
algorithm”. In: Journal of the royal statistical society. series c (applied statistics) 28.1.
Publisher: JSTOR, pp. 100–108.

Hawthorne, James (2021). “Inductive Logic”. In: The Stanford Encyclopedia of Philos-
ophy. Ed. by Edward N. Zalta. Spring 2021. Metaphysics Research Lab, Stanford
University. URL: https://plato.stanford.edu/archives/spr2021/entries/
logic-inductive/.

Hempel, Carl G et al. (1965).“Aspects of scientific explanation”. In.
Hinchey, Michael G and Roy Sterritt (2006). “Self-managing software”. In: Computer

39.2. Publisher: IEEE, pp. 107–109.
Hoffman, Robert R and Gary Klein (2017). “Explaining explanation, part 1: theoretical

foundations”. In: IEEE Intelligent Systems 32.3. Publisher: IEEE, pp. 68–73.
Hoffman, Robert R, Shane T Mueller, and Gary Klein (2017). “Explaining explanation,

part 2: Empirical foundations”. In: IEEE Intelligent Systems 32.4. Publisher: IEEE,
pp. 78–86.

Horne, Zach, Melis Muradoglu, and Andrei Cimpian (2019).“Explanation as a Cognitive
Process”. In: Trends in Cognitive Sciences 23, pp. 187–199. DOI: 10.1016/j.tics.
2018.12.004.

Hossain, Eklas et al. (2019). “Application of big data and machine learning in smart
grid, and associated security concerns: A review”. In: Ieee Access 7. Publisher: IEEE,
pp. 13960–13988.

Houzé, Étienne (2021).“A generic and decentralized approach to XAI for autonomic sys-
tems: application to the smart home”. In: 2021 IEEE International Conference on Au-
tonomic Computing and Self-Organizing Systems Companion (ACSOS-C), pp. 301–
303. DOI: 10.1109/ACSOS-C52956.2021.00079.

Houzé, Etienne, Jean-Louis Dessalles, et al. (2021).“A Decentralized Explanatory System
for Intelligent Cyber-Physical Systems”. In: Available on demand.

Houzé, Etienne, Ada Diaconescu, and Jean-Louis Dessalles (Jan. 2022). “Using Decen-
tralized Conflict-Abduction-Negation in Policy-Making”. In: JURIX Conference.

Houzé, Etienne, Ada Diaconescu, Jean-Louis Dessalles, and David Menga (2022). “A
generic and modular architecture for self-explainable smart homes”. In: Proceedings
of the 2022 ACSOS Conference. Ed. by IEEE.

Houzé, Etienne, Ada Diaconescu, Jean-Louis Dessalles, David Menga, and Mathieu Schu-
mann (Aug. 2020). “A Decentralized Approach to Explanatory Artificial Intelligence
for Autonomic Systems”. In: ACSOS 2020 Conference Proceedings, Companion.

Houzé, Étienne, Jean-Louis Dessalles, et al. (2022). “What Should I Notice? Using
Algorithmic Information Theory to Evaluate the Memorability of Events in Smart
Homes”. In: Entropy 24.3. ISSN: 1099-4300. DOI: 10 . 3390 / e24030346. URL:
https://www.mdpi.com/1099-4300/24/3/346.

Houzé, Étienne, David Menga, et al. (2021). “Dispositif explicatif du fonctionnement
d’un équipement”.

Hunkeler, Urs, Hong Linh Truong, and Andy Stanford-Clark (2008).“MQTT-S—A pub-
lish/subscribe protocol for Wireless Sensor Networks”. In: 2008 3rd International
Conference on Communication Systems Software and Middleware and Workshops
(COMSWARE’08). IEEE, pp. 791–798.

https://plato.stanford.edu/archives/spr2021/entries/logic-inductive/
https://plato.stanford.edu/archives/spr2021/entries/logic-inductive/
https://doi.org/10.1016/j.tics.2018.12.004
https://doi.org/10.1016/j.tics.2018.12.004
https://doi.org/10.1109/ACSOS-C52956.2021.00079
https://doi.org/10.3390/e24030346
https://www.mdpi.com/1099-4300/24/3/346

BIBLIOGRAPHY 153

Hutter, Marcus (2004). Universal artificial intelligence: Sequential decisions based on
algorithmic probability. Springer Science & Business Media.

IBM Co. (2005). An architectural blueprintfor autonomic computing. Tech. rep.
Jain, Sarika and San Murugesan (2021). “Smart Connected World: A Broader Perspec-

tive”. In: Smart Connected World. Springer, pp. 3–23.
Jakobsson, Bjorn Markus and Arthur Kwan Jakobsson (Dec. 2021). “Privacy and the

management of permissions”.
Janzing, Dominik and Bernhard Schölkopf (2010).“Causal inference using the algorithmic

Markov condition”. In: IEEE Transactions on Information Theory 56.10. Publisher:
IEEE, pp. 5168–5194.

Jivani, Farzeem D, Manohar Malvankar, and Radha Shankarmani (2018).“A Voice Con-
trolled Smart Home Solution with a Centralized Management Framework Imple-
mented Using AI and NLP”. In: 2018 International Conference on Current Trends
towards Converging Technologies (ICCTCT). IEEE, pp. 1–5.

Kafle, Ved P. et al. (2017). “Scalable Directory Service for IoT Applications”. In: IEEE
Communications Standards Magazine 1.3, pp. 58–65. DOI: 10.1109/MCOMSTD.
2017.1700027.

Kephart, Jeffrey O and David M Chess (2003). “The vision of autonomic computing”.
In: Computer 36.1. Publisher: IEEE, pp. 41–50.

Kim, Been, Rajiv Khanna, and Oluwasanmi O Koyejo (2016).“Examples are not enough,
learn to criticize! criticism for interpretability”. In: Advances in neural information
processing systems 29.

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980.

Kolmogorov, Andrei Nikolaevich (1965).“Three approaches to the definition of the con-
cept “quantity of information””. In: Problemy peredachi informatsii 1.1. Publisher:
Russian Academy of Sciences, Branch of Informatics, Computer Equipment and . . .,
pp. 3–11.

Kounev, Samuel et al. (2017). Self-Aware Computing Systems. English. 1st ed. Springer,
Cham. ISBN: 978-3-319-47472-4.

Kowalski, Jaros\law et al. (2019). “Older adults and voice interaction: a pilot study
with Google Home”. In: Extended Abstracts of the 2019 CHI Conference on Human
Factors in Computing Systems, pp. 1–6.

Kramer, Jeff and Jeff Magee (2009).“A rigorous architectural approach to adaptive soft-
ware engineering”. In: Journal of Computer Science and Technology 24.2, pp. 183–
188.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet classifica-
tion with deep convolutional neural networks”. In: Advances in neural information
processing systems 25.

Krupitzer, Christian et al. (2015).“A survey on engineering approaches for self-adaptive
systems”. In: Pervasive and Mobile Computing 17. Publisher: Elsevier, pp. 184–206.

Kuzochkina, Anna, Mariya Shirokopetleva, and Zoia Dudar (2018).“Analyzing and Com-
parison of NoSQL DBMS”. In: 2018 International Scientific-Practical Conference
Problems of Infocommunications. Science and Technology (PIC S T), pp. 560–564.
DOI: 10.1109/INFOCOMMST.2018.8632133.

https://doi.org/10.1109/MCOMSTD.2017.1700027
https://doi.org/10.1109/MCOMSTD.2017.1700027
https://doi.org/10.1109/INFOCOMMST.2018.8632133

154 BIBLIOGRAPHY

Ladkin, Peter and Karsten Loer (1998).“Analysing aviation accidents using wb-analysis–an
application of multimodal reasoning”. In: AAAI Spring Symposium. AAAI.

Lalanda, P., E. Gerber-Gaillard, and S. Chollet (2017). “Self-Aware Context in Smart
Home Pervasive Platforms”. In: 2017 IEEE International Conference on Autonomic
Computing (ICAC), pp. 119–124. DOI: 10.1109/ICAC.2017.1.

Lalanda, Philippe and Catherine Hamon (2020). “A service-oriented edge platform for
cyber-physical systems”. In: CCF Transactions on Pervasive Computing and Interac-
tion 2.3. Publisher: Springer, pp. 206–217.

Lalanda, Philippe, Julie A McCann, and Ada Diaconescu (2013). Autonomic computing:
principles, design and implementation. Springer Science & Business Media.

Larasati, Retno, Anna De Liddo, and Enrico Motta (2020). “The Effect of Explanation
Styles on User’s Trust”. In: IUI 2020.

Leake, David B (1995).“Abduction, experience, and goals: A model of everyday abductive
explanation”. In: Journal of Experimental & Theoretical Artificial Intelligence 7.4.
Publisher: Taylor & Francis, pp. 407–428.

Leake, David B (2014). Evaluating explanations: A content theory. Psychology Press.
Lee, Choonhwa, David Nordstedt, and Sumi Helal (2003). “Enabling smart spaces with

OSGi”. In: IEEE Pervasive computing 2.3, pp. 89–94.
Lewis, David (1987).“Philosophical Papers: Volume 2”. In.
Lewis, David (2013). Counterfactuals. John Wiley & Sons.
Li, Ming, Paul Vitányi, et al. (2008). An introduction to Kolmogorov complexity and its

applications. Vol. 3. Springer.
Li, Nianyu et al. (2020). “Explanations for human-on-the-loop: A probabilistic model

checking approach”. In: Proceedings of the IEEE/ACM 15th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, pp. 181–187.

Lippi, Marco, Stefano Mariani, and Franco Zambonelli (2021). “Developing a “Sense of
Agency” in IoT Systems: Preliminary Experiments in a Smart Home Scenario”. In:
2021 IEEE International Conference on Pervasive Computing and Communications
Workshops and other Affiliated Events (PerCom Workshops). IEEE, pp. 44–49.

Lipton, Peter (1990). “Contrastive explanation”. In: Royal Institute of Philosophy Sup-
plements 27. Publisher: Cambridge University Press, pp. 247–266.

Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou (2008). “Isolation Forest”. In: 2008
Eighth IEEE International Conference on Data Mining, pp. 413–422. DOI: 10.1109/
ICDM.2008.17.

Liu, Yang et al. (2017). “Review on cyber-physical systems”. In: IEEE/CAA Journal of
Automatica Sinica 4.1. Publisher: IEEE, pp. 27–40.

Lombrozo, Tania (2012). “Explanation and abductive inference.” In: Publisher: Oxford
University Press.

Longo, Luca, Bridget Kane, and Lucy Hederman (2012).“Argumentation theory in health
care”. In: 2012 25th IEEE International Symposium on Computer-Based Medical
Systems (CBMS). IEEE, pp. 1–6.

Lucas, Salvador (2021).“The origins of the halting problem”. In: Journal of Logical and
Algebraic Methods in Programming 121. Publisher: Elsevier, p. 100687.

Lundberg, Scott M and Su-In Lee (2017). “A unified approach to interpreting model
predictions”. In: Advances in Neural Information Processing Systems, pp. 4765–4774.

https://doi.org/10.1109/ICAC.2017.1
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1109/ICDM.2008.17

BIBLIOGRAPHY 155

Maaten, Laurens van der and Geoffrey Hinton (2008). “Visualizing data using t-SNE”.
In: Journal of machine learning research 9.Nov, pp. 2579–2605.

Magnani, Lorenzo (2011). Abduction, reason and science: Processes of discovery and
explanation. Springer Science & Business Media.

Maher, Mary Lou (1987).“Expert systems for civil engineers: technology and application”.
In: ASCE.

Manikonda, Lydia, Aditya Deotale, and Subbarao Kambhampati (2018).“What’s up with
privacy? User preferences and privacy concerns in intelligent personal assistants”. In:
Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, pp. 229–
235.

Marcus, Gary (2020). The Next Decade in AI: Four Steps Towards Robust Artificial
Intelligence.

Marikyan, Davit, Savvas Papagiannidis, and Eleftherios Alamanos (2019).“A systematic
review of the smart home literature: A user perspective”. In: Technological Forecasting
and Social Change 138. Publisher: Elsevier, pp. 139–154.

Maulud, Dastan and Adnan M Abdulazeez (2020). “A Review on Linear Regression
Comprehensive in Machine Learning”. In: Journal of Applied Science and Technology
Trends 1.4, pp. 140–147.

Maxwell, Winston et al. (2020a). “Identifying the’Right’Level of Explanation in a Given
Situation”. In: Proceedings of the First International Workshop on New Foundations
for Human-Centered AI (NeHuAI), Santiago de Compostella, Spain, p. 63.

Maxwell, Winston et al. (2020b). “Identifying the’Right’Level of Explanation in a Given
Situation”. In: Proceedings of the First International Workshop on New Foundations
for Human-Centered AI (NeHuAI), Santiago de Compostella, Spain, p. 63.

McCarthy, John et al. (Aug. 1955). “A proposal for the dartmouth summer research
project on artificial intelligence”. In: AI magazine (reprint) 27.4, pp. 12–12.

McKeon, Matthew W (2013). “On the rationale for distinguishing arguments from ex-
planations”. In: Argumentation 27.3. Publisher: Springer, pp. 283–303.

Mekuria, Dagmawi Neway et al. (2019). “Smart home reasoning systems: a systematic
literature review”. In: Journal of Ambient Intelligence and Humanized Computing.
Publisher: Springer, pp. 1–18.

Menzies, Peter and Huw Price (1993). “Causation as a secondary quality”. In: The
British Journal for the Philosophy of Science 44.2. Publisher: Oxford University Press,
pp. 187–203.

Miller, B.A. et al. (2001). “Home networking with Universal Plug and Play”. In: IEEE
Communications Magazine 39.12, pp. 104–109. DOI: 10.1109/35.968819.

Miller, Tim (2018). “Explanation in artificial intelligence: Insights from the social sci-
ences”. In: Artificial Intelligence.

Miller, Tim, Piers Howe, and Liz Sonenberg (2017).“Explainable AI: Beware of inmates
running the asylum or: How I learnt to stop worrying and love the social and be-
havioural sciences”. In: arXiv preprint arXiv:1712.00547.

Mohseni, Sina, Niloofar Zarei, and Eric D Ragan (2021).“A multidisciplinary survey and
framework for design and evaluation of explainable AI systems”. In: ACM Transactions
on Interactive Intelligent Systems (TiiS) 11.3-4. Publisher: ACM New York, NY,
pp. 1–45.

https://doi.org/10.1109/35.968819

156 BIBLIOGRAPHY

Moor, James (2006).“The Dartmouth College artificial intelligence conference: The next
fifty years”. In: Ai Magazine 27.4, pp. 87–87.

Mueller, Shane T et al. (2019). Explanation in human-AI systems: A literature meta-
review, synopsis of key ideas and publications, and bibliography for explainable AI.
English. Tech. rep. Defense Technical Information Center.

Negri, Elisa et al. (2019).“FMU-supported simulation for CPS digital twin”. In: Procedia
manufacturing 28. Publisher: Elsevier, pp. 201–206.

Nesvijevskaia, Anna et al. (2021).“The accuracy versus interpretability trade-off in fraud
detection model”. In: Data & Policy 3. Publisher: Cambridge University Press.

Nilsson, Nils J and Nils Johan Nilsson (1998). Artificial intelligence: a new synthesis.
Morgan Kaufmann.

Ning, Huansheng et al. (2021). “A Survey on Hybrid Human-Artificial Intelligence for
Autonomous Driving”. In: IEEE Transactions on Intelligent Transportation Systems.
Publisher: IEEE.

Nomura, Tatsuya and Kayoko Kawakami (2011). “Relationships between robot’s self-
disclosures and human’s anxiety toward robots”. In: 2011 IEEE/WIC/ACM Interna-
tional Conferences on Web Intelligence and Intelligent Agent Technology. Vol. 3.
IEEE, pp. 66–69.

Norvig, Peter and Stuart Russel (2010). Artificial Intelligence: a Modern Approach.
3rd ed. Prentice Hall.

Nothdurft, Florian, Tobias Heinroth, and Wolfgang Minker (2013).“The impact of expla-
nation dialogues on human-computer trust”. In: International Conference on Human-
Computer Interaction. Springer, pp. 59–67.

Papastratis, Ilias (2021). “Introduction to Explainable Artificial Intelligence (XAI)”. In:
https://theaisummer.com/. Accessed: December 2021. URL: https://theaisummer.
com/xai/.

Park, Eunil et al. (2017). “Comprehensive approaches to user acceptance of Internet
of Things in a smart home environment”. In: IEEE Internet of Things Journal 4.6,
pp. 2342–2350.

Patil, Tejashri, Sweta Pandey, and Kajal Visrani (2021).“A review on basic deep learning
technologies and applications”. In: Data science and intelligent applications. Springer,
pp. 565–573.

Pearl, Judea (2009). Causality: Models, Reasoning and Inference. 2nd. USA: Cambridge
University Press. ISBN: 0-521-89560-X.

Pearl, Judea and Dana Mackenzie (2018). The book of why: the new science of cause
and effect. Basic Books.

Peirce, Charles Sanders (1931). Collected papers of charles sanders peirce. Harvard Uni-
versity Press.

Peters, Jonas, Dominik Janzing, and Bernhard Schölkopf (2017). Elements of causal
inference: foundations and learning algorithms. MIT press.

Popper, Karl R (1963). “Science as falsification”. In: Conjectures and refutations 1.
Publisher: Routledge and Keagan Paul London, pp. 33–39.

Rahman, S and O Hazim (1996).“Load forecasting for multiple sites: development of an
expert system-based technique”. In: Electric Power Systems Research 39.3. Publisher:
Lausanne [Switzerland]: Elsevier Sequoia, 1977-, pp. 161–170.

https://theaisummer.com/xai/
https://theaisummer.com/xai/

BIBLIOGRAPHY 157

Rajani, Nazneen Fatema and Raymond J. Mooney (2018). “Ensembling Visual Expla-
nations”. In: Explainable and Interpretable Models in Computer Vision and Machine
Learning. Ed. by Hugo Jair Escalante et al. Cham: Springer International Publishing,
pp. 155–172. ISBN: 978-3-319-98131-4. DOI: 10.1007/978-3-319-98131-4_7.
URL: https://doi.org/10.1007/978-3-319-98131-4_7.

Rajkumar, Ragunathan et al. (2010).“Cyber-physical systems: The next computing rev-
olution”. In: Design Automation Conference, pp. 731–736. DOI: 10.1145/1837274.
1837461.

Ras, Gabriëlle, Marcel van Gerven, and Pim Haselager (2018). “Explanation methods
in deep learning: Users, values, concerns and challenges”. In: Explainable and inter-
pretable models in computer vision and machine learning. Springer, pp. 19–36.

Rathi, Shubham (2019). “Generating counterfactual and contrastive explanations using
SHAP”. In: arXiv preprint arXiv:1906.09293.

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin (2016). “Why should I trust
you?: Explaining the predictions of any classifier”. In: Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining. ACM,
pp. 1135–1144.

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin (2018).“Anchors: High-precision
model-agnostic explanations”. In: Thirty-Second AAAI Conference on Artificial Intel-
ligence.

Ricquebourg, Vincent et al. (2006).“The smart home concept: our immediate future”. In:
2006 1st IEEE international conference on e-learning in industrial electronics. IEEE,
pp. 23–28.

Rojat, Thomas et al. (2021). “Explainable Artificial Intelligence (XAI) on TimeSeries
Data: A Survey”. In: arXiv preprint arXiv:2104.00950.

Rubin, David C and Sharda Umanath (2015). “Event memory: A theory of memory for
laboratory, autobiographical, and fictional events.” In: Psychological review 122.1.
Publisher: American Psychological Association, p. 1.

Rudin, Cynthia (2019). “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead”. In: Nature Machine Intelli-
gence 1.5. Publisher: Nature Publishing Group, pp. 206–215.

Safaric, Stanislav and Kresimir Malaric (2006).“ZigBee wireless standard”. In: Proceed-
ings ELMAR 2006, pp. 259–262. DOI: 10.1109/ELMAR.2006.329562.

Safavian, S Rasoul and David Landgrebe (1991). “A survey of decision tree classifier
methodology”. In: IEEE transactions on systems, man, and cybernetics 21.3. Pub-
lisher: IEEE, pp. 660–674.

Salehie, Mazeiar and Ladan Tahvildari (2009). “Self-adaptive software: Landscape and
research challenges”. In: ACM transactions on autonomous and adaptive systems
(TAAS) 4.2. Publisher: ACM New York, NY, USA, pp. 1–42.

Schlegel, Udo et al. (2019). “Towards a rigorous evaluation of xai methods on time
series”. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop
(ICCVW). IEEE, pp. 4197–4201.

Searle, John R (1980).“Minds, brains, and programs”. In: Behavioral and brain sciences
3.3. Publisher: Cambridge University Press, pp. 417–424.

https://doi.org/10.1007/978-3-319-98131-4_7
https://doi.org/10.1007/978-3-319-98131-4_7
https://doi.org/10.1145/1837274.1837461
https://doi.org/10.1145/1837274.1837461
https://doi.org/10.1109/ELMAR.2006.329562

158 BIBLIOGRAPHY

Selvaraju, Ramprasaath R et al. (2017). “Grad-cam: Visual explanations from deep net-
works via gradient-based localization”. In: Proceedings of the IEEE international con-
ference on computer vision, pp. 618–626.

Shannon, Claude Elwood (1948). “A mathematical theory of communication”. In: The
Bell system technical journal 27.3. Publisher: Nokia Bell Labs, pp. 379–423.

Shapley, Lloyd Stowell (1953). “A Value for n-Person Games”. In: Contribution to the
Theory of Games 2, pp. 303–317.

Shi, Weisong et al. (2016). “Edge computing: Vision and challenges”. In: IEEE internet
of things journal 3.5, pp. 637–646.

Siekkinen, Matti et al. (2012). “How low energy is bluetooth low energy? comparative
measurements with zigbee/802.15. 4”. In: 2012 IEEE wireless communications and
networking conference workshops (WCNCW). IEEE, pp. 232–237.

Silver, David et al. (2017). “Mastering the game of go without human knowledge”. In:
Nature 550.7676. Publisher: Nature Publishing Group, pp. 354–359.

Silverio-Fernández, Manuel, Suresh Renukappa, and Subashini Suresh (2018). “What is
a smart device?-a conceptualisation within the paradigm of the internet of things”.
In: Visualization in Engineering 6.1. Publisher: Springer, pp. 1–10.

Software, TibCo (2020). The Flogo Project. URL: https://www.flogo.io/ (visited
on 02/27/2022).

Sokol, Kacper and Peter Flach (2020). “Explainability fact sheets: a framework for sys-
tematic assessment of explainable approaches”. In: Proceedings of the 2020 Confer-
ence on Fairness, Accountability, and Transparency, pp. 56–67.

Solomonoff, Ray J (1964).“A formal theory of inductive inference. Part I”. In: Information
and control 7.1. Publisher: Elsevier, pp. 1–22.

Sukor, Abdul Syafiq Abdull et al. (2018).“Semantic knowledge base in support of activity
recognition in smart home environments”. In: International Journal of Engineering and
Technology 7.4. Publisher: Science Publishing Corporation, pp. 67–72.

Sun, Zhaohao, Gavin Finnie, and Klaus Weber (2005).“Abductive case-based reasoning”.
In: International Journal of Intelligent Systems 20.9. Publisher: Wiley Online Library,
pp. 957–983.

Suykens, Johan AK and Joos Vandewalle (1999).“Least squares support vector machine
classifiers”. In: Neural processing letters 9.3. Publisher: Springer, pp. 293–300.

SWALE Project (1992). https://homes.luddy.indiana.edu/leake/projects/
swale/.

Swartout, William R (1983). “XPLAIN: A system for creating and explaining expert
consulting programs”. In: Artificial intelligence 21.3. Publisher: Elsevier, pp. 285–
325.

Tan, Sarah et al. (2018). “Distill-and-compare: Auditing black-box models using trans-
parent model distillation”. In: Proceedings of the 2018 AAAI/ACM Conference on
AI, Ethics, and Society, pp. 303–310.

Tan, Ying, Mehmet C. Vuran, and Steve Goddard (2009).“Spatio-Temporal Event Model
for Cyber-Physical Systems”. In: 2009 29th IEEE International Conference on Dis-
tributed Computing Systems Workshops, pp. 44–50. DOI: 10.1109/ICDCSW.2009.
82.

https://www.flogo.io/
https://homes.luddy.indiana.edu/leake/projects/swale/
https://homes.luddy.indiana.edu/leake/projects/swale/
https://doi.org/10.1109/ICDCSW.2009.82
https://doi.org/10.1109/ICDCSW.2009.82

BIBLIOGRAPHY 159

Tavares, Andre L.C. and Marco Tulio Valente (Aug. 2008). “A Gentle Introduction to
OSGi”. In: SIGSOFT Softw. Eng. Notes 33.5. Place: New York, NY, USA Publisher:
Association for Computing Machinery. ISSN: 0163-5948. DOI: 10.1145/1402521.
1402526. URL: https://doi.org/10.1145/1402521.1402526.

Tintarev, Nava and Judith Masthoff (2011). “Designing and Evaluating Explanations
for Recommender Systems”. In: Recommender Systems Handbook. Ed. by Francesco
Ricci et al. Boston, MA: Springer US, pp. 479–510. ISBN: 978-0-387-85820-3. DOI:
10.1007/978-0-387-85820-3_15.

Trout, Joseph D (2002). “Scientific explanation and the sense of understanding”. In:
Philosophy of Science 69.2, pp. 212–233.

Tsilionis, Konstantinos et al. (2021).“Conceptual Modeling Versus User Story Mapping:
Which is the Best Approach to Agile Requirements Engineering?” In: International
Conference on Research Challenges in Information Science. Springer, pp. 356–373.

Turing, Alan M. (1950).“Computing Machinery and Intelligence”. In: Mind 59, pp. 433–
460.

Valtolina, Stefano et al. (2019).“Facilitating the development of iot applications in smart
city platforms”. In: International Symposium on End User Development. Springer,
pp. 83–99.

Van Bouwel, Jeroen and Erik Weber (2002). “Remote causes, bad explanations?” In:
Journal for the Theory of Social Behaviour 32.4. Publisher: Wiley Online Library,
pp. 437–449.

Verma, Sahil, John Dickerson, and Keegan Hines (2020). “Counterfactual explanations
for machine learning: A review”. In: arXiv preprint arXiv:2010.10596.

Verma, Sahil, John P. Dickerson, and Keegan Hines (May 2021).“Counterfactual Expla-
nations for Machine Learning: Challenges Revisited”. In: CHI21 Extended Proceed-
ings. Yokohama, Japan: ACM.

Wachter, Sandra, Brent Mittelstadt, and Chris Russell (2017).“Counterfactual explana-
tions without opening the black box: Automated decisions and the GDPR”. In: Harv.
JL & Tech. 31, p. 841.

Welsh, Kris et al. (2014). “Self-explanation in adaptive systems based on runtime goal-
based models”. In: Transactions on Computational Collective Intelligence XVI. Springer,
pp. 122–145.

Wen, Xinlong and Yunliang Wang (2018).“Design of smart home environment monitoring
system based on raspberry Pi”. In: 2018 Chinese Control And Decision Conference
(CCDC), pp. 4259–4263. DOI: 10.1109/CCDC.2018.8407864.

Wenbo, Yan, Wang Quanyu, and Gao Zhenwei (2015). “Smart home implementation
based on Internet and WiFi technology”. In: 2015 34th Chinese Control Conference
(CCC). IEEE, pp. 9072–9077.

Weyns, Danny (2019).“Software Engineering of Self-adaptive Systems”. In: Handbook of
Software Engineering. Ed. by Sungdeok Cha, Richard N. Taylor, and Kyochul Kang.
Cham: Springer International Publishing, pp. 399–443. ISBN: 978-3-030-00262-6.
DOI: 10.1007/978-3-030-00262-6_11.

Weyns, Danny, SamMalek, and Jesper Andersson (2010).“On decentralized self-adaptation:
lessons from the trenches and challenges for the future”. In: Proceedings of the 2010

https://doi.org/10.1145/1402521.1402526
https://doi.org/10.1145/1402521.1402526
https://doi.org/10.1145/1402521.1402526
https://doi.org/10.1007/978-0-387-85820-3_15
https://doi.org/10.1109/CCDC.2018.8407864
https://doi.org/10.1007/978-3-030-00262-6_11

160 BIBLIOGRAPHY

ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems,
pp. 84–93.

Weyns, Danny, Bradley Schmerl, et al. (2013). “On patterns for decentralized con-
trol in self-adaptive systems”. In: Software Engineering for Self-Adaptive Systems
II. Springer, pp. 76–107.

Wing, Jeannette M. (2020). Trustworthy AI.
Winograd, Terry (1972).“Understanding natural language”. In: Cognitive psychology 3.1.

Publisher: Elsevier, pp. 1–191.
Woodward, James (2019).“Scientific Explanation”. In: The Stanford Encyclopedia of Phi-

losophy. Ed. by Edward N. Zalta. Winter 2019. Metaphysics Research Lab, Stanford
University. URL: https://plato.stanford.edu/archives/win2019/entries/
scientific-explanation/.

Wu, Chao-Lin, Chun-Feng Liao, and Li-Chen Fu (2007). “Service-oriented smart-home
architecture based on OSGi and mobile-agent technology”. In: IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews) 37.2. Publisher:
IEEE, pp. 193–205.

Yang, Heetae, Wonji Lee, and Hwansoo Lee (2018). “IoT smart home adoption: The
importance of proper level automation”. In: Journal of Sensors 2018. Publisher: Hin-
dawi.

Yosinski, Jason et al. (2015).“Understanding neural networks through deep visualization”.
In: arXiv preprint arXiv:1506.06579.

Zablocki, Éloi et al. (2021).“Explainability of vision-based autonomous driving systems:
Review and challenges”. In: arXiv preprint arXiv:2101.05307.

Zhang, Zhongheng (2016). “Introduction to machine learning: k-nearest neighbors”. In:
Annals of translational medicine 4.11. Publisher: AME Publications.

Zhou, Bin et al. (2016).“Smart home energy management systems: Concept, configura-
tions, and scheduling strategies”. In: Renewable and Sustainable Energy Reviews 61.
Publisher: Elsevier, pp. 30–40.

Zimmermann, Gottfried, Tobias Ableitner, and Christophe Strobbe (2017).“User Needs
and Wishes in Smart Homes: What Can Artificial Intelligence Contribute?” In: 2017
14th International Symposium on Pervasive Systems, Algorithms and Networks. IEEE,
pp. 449–453.

https://plato.stanford.edu/archives/win2019/entries/scientific-explanation/
https://plato.stanford.edu/archives/win2019/entries/scientific-explanation/

Titre : Une approche générique et adaptative de l’IA Explicable pour les systèmes autonomiques: le cas de la
maison intelligente

Mots clés : IA Explicable, Maison Intelligente, Système Autonomique

Résumé : Les maisons intelligentes sont des
systèmes cyber-physiques dans lesquels de nom-
breux composants intéragissent les uns avec les
autres pour accomplir des objectifs de haut niveau
comme le confort ou la sécurité de l’occupant. Ces
systèmes autonomiques sont capables de s’adapter
sans demander d’intervention de la part de l’utilisa-
teur: ce fonctionnement autonomique est difficile à
comprendre pour l’occupant. Ce manque d’explicabi-
lité peut être un frein à l’adoption plus large de tels
systèmes.
Depuis le milieu des années 2010, l’explicabilité des
modèles complexes d’IA est devenue un sujet de
recherche important. La difficulté à expliquer les
systèmes autonomiques ne vient pas de la com-
plexité des composants, mais plutôt de leur capacité
d’adaptation qui peut entraı̂ner des changements de
configurations, de logique ou d’objectifs. Par ailleurs,
l’hétérogénéité des dispositifs présents dans une mai-
son intelligente complique la tâche.
Afin de répondre à ces difficultés, nous propo-
sons d’ajouter à un système autonomique de mai-
son intelligente un système explicatif dont le rôle
sera d’observer les différents contrôleurs, capteurs
et équipements présents pour générer des explica-
tions à l’occupant. Nous définissons six objectifs pour
un tel système. 1) Produire des explications contras-
tives, c’est-à-dire qui visent les situations inattendues
ou non voulues. 2) Produire des explications peu pro-
fondes, dont les éléments sont causalement proches.
3) Être transparent: exposer son raisonnement et
quels composants sont impliqués dans le processus.
4) Être capable de réflexivité, d’exposer ses propres
états et changement d’état comme explications à un
phénomène. 5) Être générique, pouvoir s’adapter à
des composants et des architectures de systèmes au-
tonomiques variées. 6) Respecter la protection des

données et favoriser les traitement local, au plus près
du capteur.
Notre réflexion a abouti à un système explicatif dans
lequel un composant central, nommé le “Spotlight”
est guidé par l’algorithme D-CAS qui identifie trois
éléments dans le processus: la détection de conflits
par interprétation des observations, la propagation
par abduction et la simulation de conséquences pos-
sibles. Ces trois étapes sont réalisées par des compo-
sants explicatifs locaux qui sont tour à tour interrogés
par le Spotlight. Chaque composant local est relié à
un capteur, actionneur ou contrôleur du système au-
tonomique, et agit comme un expert dans le domaine
associé. Cette organiasation permet l’ajout de nou-
veaux composants, intégrant leurs connaissances au
sein du système global sans demander de reconfigu-
ration. Nous illustrons ce fonctionnement en réalisant
un prototype générant des explications sur des cas ty-
piques.
Nous proposons que les composants explicatifs lo-
caux soient des plateformes génériques pouvant
être spécialisées par l’ajout de modules dont nous
définissons les interfaces. Cette modularité permet
d’intégrer des techniques diverses d’interprétation,
d’abduction et de simulation. Notre système visant
particulièrement des situations inhabituelles pour les-
quelles les données peuvent être rares, les méthodes
d’abduction basées sur les occurences passées sont
inapplicables. Nous proposons une approche nou-
velle : estimer la mémorabilité des événements afin
d’utiliser les plus notables comme hypothèses perti-
nentes à un phénomène surprenant.
Notre approche de haut niveau de l’explicabilité a une
visée générique, et pose les bases pour des systèmes
intégrant des modules plus avancés, permettant de
garantir l’explicabilité d’une maison intelligente, mais
aussi d’autres systèmes cyber-physiques.

Title : A generic and adaptive approach to Explainable AI in autonomic systems: the case of the smart home.

Keywords : Explainable AI, Smart Home, Autonomic System

Abstract : Smart homes are Cyber-Physical Systems
where various components cooperate to fulfill high-
level goals such as user comfort or safety. These auto-
nomic systems can adapt at runtime without requiring
human intervention. This adaptation is hard to unders-
tand for the occupant, which can hinder the adoption
of smart home systems.
Since the mid 2010s, explainable AI has been a topic
of interest, aiming to open the black box of complex
AI models. The difficulty to explain autonomic sys-
tems does not come from the intrinsic complexity of
their components, but rather from their self-adaptation
capability which leads changes of configuration, logic
or goals at runtime. In addition, the diversity of smart
home devices makes the task harder.
To tackle this challenge, we propose to add an expla-
natory system to the existing smart home autonomic
system, whose task is to observe the various control-
lers and devices to generate explanations. We define
six goals for such a system. 1) To generate contrastive
explanations in unexpected or unwanted situations. 2)
To generate a shallow reasoning, whose different ele-
ments are causaly closely related to each other. 3) To
be transparent, i.e. to expose its entire reasoning and
which components are involved. 4) To be self-aware,
integrating its reflective knowledge into the explana-
tion. 5) To be generic and able to adapt to diverse
components and system architectures. 6) To preserve
privacy and favor locality of reasoning.
Our proposed solution is an explanatory system in
which a central component, name the “Spotlight”,

implements an algorithm named D-CAS. This algo-
rithm identifies three elements in an explanatory pro-
cess: conflict detection via observation interpretation,
conflict propagation via abductive inference and simu-
lation of possible consequences. All three steps are
performed locally, by Local Explanatory Components
which are sequentially interrogated by the Spotlight.
Each Local Component is paired to an autonomic de-
vice or controller and act as an expert in the related
knowledge domain. This organization enables the ad-
dition of new components, integrating their knowledge
into the general system without need for reconfigura-
tion. We illustrate this architecture and algorithm in a
proof-of-concept demonstrator that generates expla-
nations in typical use cases.
We design Local Explanatory Components to be ge-
neric platforms that can be specialized by the addition
of modules with predefined interfaces. This modula-
rity enables the integration of various techniques for
abduction, interpretation and simulation. Our system
aims to handle unusual situations in which data may
be scarce, making past occurrence-based abduction
methods inoperable. We propose a novel approach:
to estimate events memorability and use them as re-
levant hypotheses to a surprising phenomenon.
Our high-level approach to explainability aims to be
generic and paves the way towards systems inte-
grating more advanced modules, guaranteeing smart
home explainability. The overall method can also be
used for other Cyber-Physical Systems.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Current outcomes, stakes and goals
	Introduction
	Smart homes
	Use cases
	Presentation of the problem

	Explanations
	Defining explanations
	Explanations, causality and counterfactuals
	Triggering Explanation

	Architecture and features of smart homes
	Principles of self-adaptive systems
	Realization of Autonomic Systems

	Proposed solution and outline of this thesis

	XAI: a short review
	General Context
	Artificial Intelligence
	Explainable Artificial Intelligence

	An overview of current XAI approaches
	Interpretable by design
	Post-Hoc Explanations

	Evaluation of XAI methods
	XAI and complex cyber-physical systems

	An approach to explanation
	The goals of an explanatory system for smart homes
	User-wise perception
	Systemic properties

	A generative model for argumentative dialog
	Explanation and argumentative dialog
	The Conflict-Abduction-Negation process
	Observations on CAN

	Adapting CAN to the smart home: the D-CAS algorithm
	Difficulties of adapting CAN to smart homes
	D-CAS: Decentralized Conflict-Abduction-Simulation
	An example of D-CAS
	Analysis of the algorithm
	Handling multiple causes

	Architecture Description
	General Organization
	The Local Explanatory Component (LEC)
	An interface between SHC variables and D-CAS propositions
	Reasoning on the LEC
	A generic and adaptive platform
	Preserving knowledge locality and privacy

	The Spotlight
	Simulators
	Self-* capabilities

	Implementation
	Implementation choices
	Previous versions of the demonstrator
	Implementation choices for the third version

	Description of the demonstrator
	D-CAS as a tree algorithm
	Illustrative examples

	Abductive Inference
	Definition of the problem
	``Naive'' abductive inference
	The difficulty of defining memorability

	Formalizing memorability
	Notions of Algorithmic Information Theory
	Memorability as a complexity gap
	Defining relative memorability

	Related Works
	Experiments and results
	Illustration of the approach
	Illustration in smart home setups
	A subjective metrics

	Integration into the explanatory system

	Conclusion
	Contributions
	Limits and possible future development
	Limitation of the underlying system
	User interaction
	Module implementation

	Final words

	Résumé

