Dynamics of lipid membrane tubes
Sami Al-Izzi

To cite this version:
Sami Al-Izzi. Dynamics of lipid membrane tubes. Other [cond-mat.other]. Sorbonne Université; University of Warwick (Coventry, Royaume-Uni), 2019. English. NNT : 2019SORUS674 . tel-03717712

HAL Id: tel-03717712
https://tel.archives-ouvertes.fr/tel-03717712
Submitted on 8 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THÈSE DE DOCTORAT
DE SORBONNE UNIVERSITÉ EN COTUTELLE AVEC UNIVERSITY OF WARWICK

Spécialité : Physique
École doctorale n°564: Physique en Île-de-France

rélisé
au UMR168 – Physico-Chimie Curie Laboratoire et MathSys CDT, University of Warwick
sous la direction de Pierre SENS et Matthew S. TURNER

présentée par

Sami Cameron AL-IZZI

pour obtenir le grade de :

DOCTEUR DE SORBONNE UNIVERSITÉ EN COTUTELLE AVEC UNIVERSITY OF WARWICK

Sujet de la thèse :

Dynamics of lipid membrane tubes

soutenue le 19 septembre 2019

devant le jury composé de :

Dr. Halim KUSUMAATMAJA Rapporteur
Dr. Ana-Suncana SMITH Rapporteur
Dr. Gareth ALEXANDER Examineur
Dr. Jacques PROST Examineur SU

Version du 30 juillet 2019, 15:48
Dynamics of Lipid Membrane Tubes

by

Sami Cameron Al-Izzi

Thesis

Submitted to the University of Warwick

& Sorbonne Université

for the degree of

Doctor of Philosophy

MathSys CDT & UMR168 Physico-Chimie Curie
Contents

List of Figures iv
Acknowledgments vi
Declarations viii
Abstract ix
Abbreviations x

Chapter 1 Introduction 1
 1.1 A short history of mechanics in cell biology 2
 1.2 Lipid molecules and their self-assembly 4
 1.3 Geometry of surfaces . 8
 1.4 The Helfrich-Canham energy . 10
 1.4.1 Some simple minimisers . 12
 1.4.2 Shape equation for a general surface 13
 1.4.3 Shape equation for axis-symmetric surfaces and formation of
 membrane tubes . 15
 1.4.4 Shape instability of a membrane tube 16
 1.4.5 Shape fluctuations of membrane tubes 18
 1.5 Fluid dynamics at cellular scales . 18
 1.6 Overview of thesis . 20

Chapter 2 Hydro-osmotic Instabilities in Active Membrane Tubes 22
 2.1 Introduction . 22
 2.2 Membrane Mechanics . 25
 2.2.1 Differential geometry of the membrane 25
 2.3 Dynamics of Active Ion Pumps . 27
 2.3.1 Case of an osmotic shock . 29
Appendix B Additional details for Chapter 3

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1</td>
<td>Differential Geometry and Exterior Calculus</td>
<td>86</td>
</tr>
<tr>
<td>B.2</td>
<td>Screening of membrane flows by bulk fluid mechanics</td>
<td>89</td>
</tr>
<tr>
<td>B.3</td>
<td>Effects of geometry on driving force</td>
<td>91</td>
</tr>
<tr>
<td>B.3.1</td>
<td>Neck (Catenoid)</td>
<td>92</td>
</tr>
<tr>
<td>B.4</td>
<td>Derivation of rate-of-deformation tensor using local constructions</td>
<td>93</td>
</tr>
</tbody>
</table>

Appendix C Additional details for Chapter 4

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1</td>
<td>Expressions for Φ_{qm}^\pm, Ψ_{qm}^\pm, Ξ_{qm}^\pm</td>
<td>95</td>
</tr>
<tr>
<td>C.2</td>
<td>Relaxation dynamics of linear Zimm model</td>
<td>97</td>
</tr>
</tbody>
</table>

Appendix D Résumé de thèse en français

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1</td>
<td>Introduction</td>
<td>98</td>
</tr>
<tr>
<td>D.2</td>
<td>Instabilités hydro-osmotiques dans les tubes membranaire actifs</td>
<td>99</td>
</tr>
<tr>
<td>D.3</td>
<td>Instabilités par cisaillement sur tubes membranaires</td>
<td>101</td>
</tr>
<tr>
<td>D.4</td>
<td>Dynamiques passives et actives des tubes membranaires</td>
<td>103</td>
</tr>
<tr>
<td>D.5</td>
<td>Discussion et perspectives</td>
<td>104</td>
</tr>
</tbody>
</table>
List of Figures

1.1 Mechanics and morphology in biology 3
1.2 Lipids and their phases .. 5
1.3 Lipid bilayer ... 6
1.4 Endomembrane system .. 7
1.5 GUVs by electro-formation 9
1.6 Principal curvature of a manifold 11
1.7 Simple surfaces that minimise the Helfrich energy 14
1.8 Membrane tube shape with axis-symmetric shape equation ... 15

2.1 Diagram of the contractile vacuole complex and instability in radial arms .. 24
2.2 Peak of growth rate as a function of tube radius 32
2.3 Comparison of growth rate with Rayleigh instability and osmotic shock .. 33
2.4 Hydro-osmotic instability growth 35
2.5 Plot of dominant wavenumber against pumping and permeation time-scales .. 36
2.6 Dominant wave-number squared plotted against final radius minus critical radius 37

3.1 Possible realizations of shear driven instabilities on membrane tubes .. 41
3.2 Shear-driven viscous normal forces on a membrane tube 47
3.3 Stead state fluctuations on sheared tube 53
3.4 Stability diagram and maximum growth for shear-driven instability .. 54

4.1 Membrane tube and it’s Fourier modes 62
4.2 $m = 0, 1$ relaxation rates 69
4.3 $m = 2, 3, 4, 5$ relaxation rates 70
4.4 Pearling instability growth rate 71
4.5 Thermal fluctuations .. 73
4.6 Active fluctuations .. 74
4.7 Effective temperature 75
4.8 Effective temperature for different external viscosities 76

A.1 Approximate solution to radial growth 82
A.2 Dominante wavenumber against cutoff 83
A.3 Dominant wavelength against pumping time-scale in the physiological regime 84
A.4 Dominant wavenumber for Osmotic Shock 84

B.1 Flow-field around membrane tube due to azimuthal flows 90
B.2 Flow-field decay rate due to bulk hydrodynamics 91
B.3 Shear instability driving term for a catenoid 93
Acknowledgments

First and foremost I would like to thank my supervisors Matthew Turner and Pierre Sens for their guidance over the past 3 years and for being fantastic people to work with. I’m deeply grateful to have had them as supervisors. Thanks to George Rowlands for the many interesting discussions about non-linear dynamics, advice and encouragement, and coffee and biscuits. I would also like to thank Shigeyuki Komura for hosting me at Tokyo Metropolitan University for 6 weeks in winter 2019, I had a great time working in Tokyo and Chapter 4 of this thesis came out of this collaboration. This visit was supported by Tokyo Metropolitan University under the Graduate Short-term Inbound and Outbound Program. Thanks to Robert Gowers for helpful comments on the draft of this thesis. I would also like to thank Ana-Suncana Smith and Halim Kusumaatmaja for agreeing to act as rapporteurs/external examiners and Gareth Alexander and Jacques Prost for agreeing to act as examiners for Warwick and Sorbonne respectively.

I was lucky enough to live with awesome people throughout my time at Warwick; thank you Chris, Sophie, Cameron, Aurelija, Clare and Andrea for putting up with me as a housemate! Thanks to everyone in MathSys/Complexity and beyond who made my time here really special. In particular the occupants of D2.05; Ayman, Iliana, Roger, Joe, Ellen, Jack; the climbing/bouldering crew; Jon, Laura, Jim; and also Jason, Rob, Aditi, Michael, Susie, Edu, Paul and Emma; thanks for making my time at Warwick really memorable. To everyone in UMR168-PCC; you made my time in Paris truly amazing! Jean-Patrick, Mathieu, Niladri and Remy; thank you for making me feel a part of “Team Sens”. Also thanks to Akifumi and all the Bio-Soft Matter Theory group at TMU for making my brief time in Tokyo
so much fun!

Finally, I would not be where I am now without the constant support of my family. They have always been there for me and have tolerated my overzealous enthusiasm for physics and maths for too many years. Mum, Dad, Hana: thank you.
Declarations

This thesis is submitted to the University of Warwick and Sorbonne Université in support of my application for the degree of Doctor of Philosophy. It has been composed by myself and has not been submitted in any previous application for any degree. Parts of the material in this thesis have been published as follows:

- Chapter 2 has been published as Hydro-osmotic Instabilities in Active Membrane Tubes - Sami C. Al-Izzi, George Rowlands, Pierre Sens & Matthew S. Turner - Phys. Rev. Lett. 120, 138102 (2018)

- Chapter 3 is currently under review as Shear-driven Instabilities in Membrane Tubes and Dyanmin-induced Scission - Sami C. Al-Izzi, Pierre Sens & Matthew S. Turner

- Chapter 4 is currently in preparation as Dynamics of Passive and Active Membrane Tubes - Sami C. Al-Izzi, Pierre Sens, Matthew S. Turner & Shigeyuki Komura
Abstract

Membrane tubes are structures ubiquitous in cells, and understanding their dynamics and morphology is of vital importance for cellular biophysics. This thesis will discuss several aspects of the dynamics of membrane tubes in situations where they are driven out of equilibrium by various biologically inspired processes. We analyse the inflation of membrane tubes and their subsequent instability due to ion pumps driving an osmotic pressure difference. This is inspired by the structure of an organelle called the contractile vacuole complex, and leads to a new instability with a much longer natural wavelength than a typical Pearling instability. The stability of membrane tubes with a shear in the membrane flow is analysed and a novel helical instability which acts to amplify the fluctuations is found. We discuss the relevance of this instability in the process of Dynamin mediated tube scission. Finally we consider the dynamics and fluctuations of a membrane tube with active forces acting on it.
Abbreviations

\(\mathbb{Z}\) - Set of Integers \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}\)
\(\mathbb{R}^n\) - \(n\)-dimensional space of Real numbers
\(\mathcal{M}^n\) - \(n\)-dimensional differentiable manifold
\(S\) - Manifold denoting the neutral plain of a lipid bilayer
\(\vec{X}\) - A vector living in \(\mathbb{R}^3\)
\(\vec{x}\) - A vector field living in the tangent bundle to a 2D manifold embedded in \(\mathbb{R}^3\)
\(H\) - Mean curvature
\(K\) - Gaussian curvature
\(\sigma\) - Surface tension
\(\kappa\) - Splay modulus
\(\bar{\kappa}\) - Saddle splay modulus
\(\Delta P\) - Pressure jump across membrane
ATP - Adenosine triphosphate
ADP - Adenosine diphosphate
GTP - Guanosine triphosphate
GDP - Guanosine diphosphate
ER - The endoplasmic reticulum
CVC - Contractile vacuole complex
Chapter 1

Introduction

From the perspective of a physicist, biology is difficult. Living systems are driven far out of equilibrium by the energy consumed in the chemical reactions necessary to sustain life, meaning these systems are well beyond the paradigm of classical statistical physics which assumes equilibrium or close to equilibrium systems [Landau and Lifshitz, 1951; Onsager, 1931a,b]. Molecular specificity is also of vital importance in many biological systems, so coarse graining systems is incredibly challenging. Further to this, biological systems are rarely specified simply in terms of their present form and function, but often depend on the systems entire evolutionary history.

Despite this physicists have made significant progress in recent years applying ideas from soft matter, statistical mechanics and information theory to problems in biology, including gene regulation [Petkova et al., 2019], evolution as an emergent phenomenon [Goldenfeld and Woese, 2011] and developmental mechanics of simple organisms [Haas and Goldstein, 2015; Höhn et al., 2015]. The success of soft matter physics based approaches comes largely from the fact that both fields share similar energy scales (such that deformations can occur due to thermal fluctuations), length and time-scales, along with biological materials having similar mechanical properties to many substances found in equilibrium soft matter physics [Doi, 2013].

This thesis will make use of ideas from soft matter physics to understand the dynamics of lipid membrane tubes. These are structures found in a variety of contexts inside the cell, and can be formed by the exertion of a localised force on a flat membrane [Derényi et al., 2002]. We will examine a variety of situations designed to capture important features of different cellular processes, typically driven by energy consuming active processes.
1.1 A short history of mechanics in cell biology

Compared with classical physics and chemistry, the study of mechano-biology is a relatively recent one. The first major attempt to describe the form and morphogenesis of living organisms using mathematics and the laws of physics was made by D’Arcy Thompson in his book “On Growth and Form” published in 1917 (and a second edition in 1942) [Thompson, 1917]. Although many of the mechanisms proposed for different morphologies have since been proven wrong, the central idea that all organisms must obey the laws of physics is quite an attractive one (particularly in light of the development of modern genetic and cell biology and the difficulties relating genotype to phenotype [Lecuit and Mahadevan, 2017]). As Thompson put it:

Cell and tissue, shell and bone, leaf and flower, are so many portions of matter, and it is in obedience to the laws of physics that their particles have been moved, moulded and confirmed. They are no exception to the rule that God always geometrizes. Their problems of form are in the first instance mathematical problems, their problems of growth are essentially physical problems, and the morphologist is, ipso facto, a student of physical science.

A particularly famous idea from Thompson comes from the final chapter called “Theory of Transformations or the comparison of related forms” which discusses how mathematical transformations can be used to compare seemingly distinct morphological aspects of animals, Fig. 1.1a. Although many of Thompsons conjectures about how this could be used to find relations between species have been proven false (a point which may seem obvious to a modern reader when viewed from the paradigm of evolution by natural selection), the chapter is almost solely responsible for the foundation of the field of morphometrics and the development of pattern theory and statistical shape analysis [Lecuit and Mahadevan, 2017]. Moreover, more general geometric ideas similar to those used by Thompson have become more popular in recent years particularly when describing the growth of elastic sheets and rods in biological morphology [Moulton and Goriely, 2014; Goriely, 2017], Fig. 1.1b.

On the scale of cells, mechanical theories really began to take off in the 1970s with the pioneering work of Helfrich, Canham and Evans providing an elastic model of the cell membrane based on curvature energies [Helfrich, 1973; Canham, 1970; Evans, 1973a]. This energy could not only explain basic morphology, such as the bi-concave shape of a red blood cell [Canham, 1970], but also more complex
Figure 1.1: Mechanics and morphology in biology: (a) figure adapted from [Thompson, 1917], from the chapter on the “Theory of Transformations” between different forms, in this case various fish. (b) figure adapted from [Moulton and Goriely, 2014], showing different solutions to simple surface accumulative growth equations (starting from the same initial conditions but with a different “growth vector”) as compared to real biological forms. Reprinted by permission from Springer Nature: Springer Nature, Journal of Mathematical Biology, Surface growth kinematics via local curve evolution - Moulton & Goriely, ©(2012)
phenomena such as red blood cell flicker [Brochard and Lennon, 1975]. It will be this energy, and its dynamical variants that will be the main subject of this thesis.

Around the same time came the work of Purcell on fluid dynamics at low Reynolds number and its implications for organisms life on the micron scale [Purcell, 1977].

Further developments in theoretical mechanics in cell biology include the viscous dynamics of rods and filaments, particularly in the context of flagella and bacteria with solenoidal and super-coiled morphologies [Goldstein et al., 1998, 2000], and the paradigm for viewing the actomyosin cytoskeleton as an “active” liquid crystalline gel where detailed balance breaking stresses act along the direction of the nematic director [Kruse et al., 2005; Prost et al., 2015].

Recently there has been a focus on active interfaces which couple the ideas of geometry and elasticity with active forces. These have been studied in the context of general formulations coupling chemical reactions to stresses and torques [Salbreux and Jülicher, 2017], more specific models for processes in morphogenesis [Morris and Rao, 2017] and in terms of practical numerical methods for solving the full non-linear equations [Torres-Sánchez et al., 2019]. It is hoped that such models may provide insight into the detailed mechanisms behind force generation and shine a light on the interplay between signalling, geometry and mechanics in biology.

1.2 Lipid molecules and their self-assembly

Living cells are complex heterogeneous structures which have evolved over millions of years to perform an enormous range of complex tasks. In order to segregate parts of the cell and compartmentalize different bio-chemical reactions, cells make use of organic molecules called lipids [Alberts et al., 2002; Phillips et al., 2010]. Lipids are thin organic molecules consisting of a head group that is hydrophilic and tail groups that are hydrophobic and hence such molecules are often called amphiphilic. By far the most common type of lipid molecules are Phospholipids consisting of a head group; made of Choline, Phosphate and Glycerol, and two tail groups comprised of fatty acids (often one of the tails contains a double bond making it unsaturated), see Fig. 1.2 Left Panel. The amphiphilic property enables lipids to self assemble into a complex array of phases depending on temperature, chemical composition, density and the solvent they are in, see Fig. 1.2 Right Panel [Koynova and Tenchov, 2013]. The self assembly into these phases is driven by the minimisation of the thermodynamic free energy of the combined water-lipid system [Safran, 1994].

A particularly important phase for cells is that of the bilayer, which in water
Figure 1.2: **Left Panel:** (A) Shows the general structure of a lipid molecule, (B) Specific chemical structure of Phosphatidylcholine, (C) Hydrophilic head and hydrophobic tail representation. Figure is a reproduction of a similar figure in [Alberts et al., 2002]. **Right Panel:** Figure taken from [Koynova and Tenchov, 2013] showing the vast phase space lipid membranes can occupy: I. Lamellar phases, II. Micelles and Liposomes & III. Non-lamellar liquid-crystalline phases.
Figure 1.3: Schematic of a symmetric lipid bilayer in the fluid phase. S denotes the mid-plane of the bilayer.

consists of two layers of lipids with heads facing outwards and tails inwards, Fig. 1.2 B(I,II). Below a critical temperature, T_m, these bilayers can be found in the gel phase (L_β, Fig. 1.2 B(I-D)) and above this temperature in the fluid phase (L_α, Fig. 1.2 B(I-F,II-L)) [Kranenburg and Smit, 2005]. For most biologically relevant scenarios we will assume we are above the critical temperature and in the fluid phase [Simons and Vaz, 2004]. This phase has been shown to behave laterally as a 2D fluid at physiological temperatures allowing for the free diffusion of lipids [Phillips et al., 2010; Simons and Vaz, 2004].

These fluid bilayers are the membranes which bound most of the cell’s internal compartments, called organelles. In Eukaryotic cells most of the lipids are produced in a large membrane bound organelle called the Endoplasmic Reticulum (ER) [Alberts et al., 2002; Nixon-Abell et al., 2016]. The ER is made up of two main sections; the rough ER is a high surface area region consisting of many folds surrounding the nucleus and the peripheral ER is a dense tubular network which is spread throughout the cell [Nixon-Abell et al., 2016]. From the ER, membrane and proteins are fissioned off in vesicles and transported to the Golgi (an organelle consisting of layers of dynamic cisternae) which, through complex interactions, sorts the composition of membranes and proteins [Mironov and Pavelka, 2009]. From here vesicular transport takes the sorted membrane/proteins to various organelles, often called post-Golgi compartments [Alberts et al., 2002; Mullins, 2005]. These processes are illustrated in Fig. 1.4.

Of course real cell membranes are made up of many more components than just pure lipids (of which there are hundreds of species), most notably trans-membrane proteins which are vital to many cellular functions. The idea of the 2D fluid acting as a matrix in which proteins can freely diffuse was first formalised in the description of the “fluid mosaic” model of cell membranes [Singer and Nicolson, 1972; Alberts
Figure 1.4: Schematic the endomembrane system in a eukaryotic cell (trans-golgi network and endosomal network) showing membrane transport from the Endoplasmic Reticulum (ER) to the plasma membrane (and vice versa). Image from [Xu and Esko, 2009]. Reprinted by permission from Springer Nature: Springer Nature, Nature Chemical Biology, A Golgi-on-a-chip for glycan synthesis - Xu & Esko, ©(2009)
et al., 2002]. This is still a significant simplification of the real picture though. In reality proteins do not simply freely diffuse in the bilayer, but in many cases actively consume energy via the hydrolysis of Adenosine triphosphate or Guanosine triphosphate to undergo mechanical/conformational changes [Phillips et al., 2010]. This activity is believed to play a key role in cell membrane organisation, in particular forming domains needed in a huge variety of biological processes. This heterogeneous picture of the cell membrane developed mainly due to the advancement of single molecule tracking techniques, and such ideas were formalised in what is called the “pickets and fences” model where the cytoskeleton and trans-membrane proteins actively interplay with the membrane to organise domains [Kusumi et al., 2005].

In-vitro systems

In recent years many techniques have been developed to probe the physical properties of lipids in simplified biomimetic systems. Such systems have the benefit of containing only a few components, removing much of the added complexity of real biological membranes. These systems have allowed detailed measurements to be made of many specific physical properties of lipids and their associated trans-membrane protein complexes. These properties include, but are not limited to, diffusion of proteins [Quemeneur et al., 2014], membrane viscosity [Hormel et al., 2014], shape fluctuations [Girard et al., 2005] and phase separation/domain formation [Sackmann and Feder, 1995].

One such system which we will regularly refer to in this thesis is that of Giant Unilamellar Vesicles or GUVs. These are large bilayer vesicles often formed by electro-formation whose composition and size can be well controlled [Angelova et al., 1992; Mathivet et al., 1996]. A schematic of this process is shown in Fig. 1.5. Another in-vitro system often used to measure physical properties of lipids and trans-membrane proteins is is that of a supported lipid bilayer, which we will not discuss in detail here [Richter et al., 2006].

1.3 Geometry of surfaces

For the remainder of this thesis we will exploit the fact that lipid membranes self assemble into large-scale structures whose thickness is much smaller than the lateral size of the membrane [Phillips et al., 2010; Safran, 1994]. As such it will be convenient to treat the membrane as a smooth 2D surface which can deform due to the exertion of forces and torques, in more mathematical language we call this surface a manifold. In order to describe such a manifold one can make use of the extensive
formalism that has been developed by mathematicians in the field of differential geometry. Differential geometry is a branch of mathematics that extends the notion of calculus in n-dimensional real space (\mathbb{R}^n) to more general curved spaces [Willmore, 2012; Frankel, 2011].

For simplicity we will restrict ourselves to discussing 2D surfaces embedded in \mathbb{R}^3 as this will be sufficient for the topics discussed in this thesis, for a detailed mathematical exposition of these ideas for n-dimensional surfaces see [Lee, 1997]. We will assume a basic knowledge of differential geometry and tensor calculus throughout (e.g. Einstein summation convention and how to raise and lower indices with the metric) but more advanced ideas such as exterior calculus will be introduced as needed.

Each point on the manifold, $p \in \mathcal{M}$, is labelled by a vector in the ambient space (\mathbb{R}^3) which we denote $X_p \in \mathbb{R}^3$. Locally we can write X as a function of two coordinates which we denote x^i where $i = 1, 2$. We can use this to define some basis vectors to the tangent space, $T(\mathcal{M})$ of the manifold

$$\vec{e}_i = \frac{\partial X}{\partial x^i} \quad \text{for} \quad i = 1, 2$$

(1.1)

from here we can define a bilinear form called the metric which enables us to ascribe a distance between points on the manifold. The metric is given by

$$dS^2 = \langle \vec{e}_i, \vec{e}_j \rangle dx^i \otimes dx^j = g_{ij} dx^i \otimes dx^j$$

(1.2)
where $\langle \cdot, \cdot \rangle$ is the inner product in \mathbb{R}^3, $dx^{i,j}$ are the basis of the cotangent space $T^* (\mathcal{M})$ and \otimes is a tensor product\footnote{The tensor product of two vectors v, w is the second rank tensor with components $(v \otimes w)^{ij} = v^i w^j$.} [Frankel, 2011].

The unit normal vector to the surface is given by $\vec{n} = \frac{\vec{e}_1 \times \vec{e}_2}{|\vec{e}_1 \times \vec{e}_2|}$. The way the normal changes along a particular direction on the manifold gives a measure of the extrinsic curvature and can be quantified in the bilinear form given by

$$b = \langle \vec{n}, \partial_j \vec{e}_i \rangle dx^i \otimes dx^j = b_{ij} dx^i \otimes dx^j$$

which is often called the second fundamental form. Because b is a self adjoint operator, we can diagonalise it along the two axes of principal normal curvature where it takes the form

$$[b]_{ij} = \begin{pmatrix} \frac{1}{R_1} & 0 \\ 0 & \frac{1}{R_2} \end{pmatrix}$$

where R_1 and R_2 are the principal radii of curvature (and eigenvalues of b) [Frankel, 2011].

The trace and determinant of b are given by the sum and product of these eigenvalues and define the mean curvature, H, and Gaussian curvature, K, in the following way

$$2H = \text{tr} (b) = b_{ii} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$K = \det b = \det b_{ij} = \frac{1}{R_1 R_2}.$$ \hfill (1.5)

A schematic of these curvatures is shown in Fig. 1.6.

The mean curvature is a purely extrinsic quantity, in that it describes how the 2D surface curves in \mathbb{R}^3. The Gaussian curvature, perhaps surprisingly, is purely intrinsic, in that it can be completely specified by just the metric and its derivatives (specifically the Riemann curvature tensor, R_{ijkl}, by the equation $K = R^{12}_{12}$). The relationship between intrinsic and extrinsic curvature is summarised by a set of equations called the Gauss-Codazzi-Mainardi equations which are a major result from differential geometry [Frankel, 2011] and have found applications recently in soft matter physics in the metric formulation of elasticity theory [Efrati et al., 2013].

\subsection{1.4 The Helfrich-Canham energy}

For a thin elastic medium there are two contributions to the elastic energy of the material; stretching and bending [Landau et al., 1986]. Since the compressional...
modulus for lipid bilayers is very large it is sufficient to consider the mechanics purely in terms of bending energy [Boal, 2002].

One way to derive the bending energy of a fluid membrane would be to do a formal thin film expansion of the 3D free energy, however the correct functional form can be inferred from simple arguments which we will describe here. This form of the free energy is an expansion in curvature to lowest order and was first proposed by [Helfrich, 1973; Canham, 1970; Evans, 1973b] in order to explain the shapes of red blood cells and artificial vesicles.

We know that the bending energy should depend on the curvature of the membrane, so must couple to the second fundamental form b, and should also be independent of local coordinate parameterizations. This means it should only depend on the trace and determinant of b, i.e. the mean and Gaussian curvature, H and K. If the bilayer is symmetric the energy should be symmetric on sending the normal $\vec{n} \rightarrow -\vec{n}$ so it can only depend on H^2 not H. This leads us to write the following energy for the membrane

$$F = \int_S \left[\frac{\kappa}{2} (2H)^2 + \bar{\kappa}K \right] dA_S$$

where κ and $\bar{\kappa}$ are the splay and saddle-splay moduli respectively. This can be generalised to include an asymmetry between the leaflets of the bilayer by introducing
some spontaneous curvature C_0

$$\mathcal{F} = \int_S \left[\frac{\kappa}{2} (2H - C_0)^2 + \bar{\kappa}K \right] dA_S. \quad (1.7)$$

We will refer to this energy as the Helfrich-Canham energy (or sometimes just Helfrich for conciseness).

Other contributions to the energy can also be considered, for example surface tension, σ and, if the membrane is closed, a pressure jump across the membrane, ΔP. Including both of these contributions, the full free energy reads

$$\mathcal{F} = \int_S \left[\frac{\kappa}{2} (2H - C_0)^2 + \bar{\kappa}K + \sigma \right] dA_S - \int \Delta P dV \quad (1.8)$$

where $S = \partial V$.

We can make use of a theorem from differential geometry, called the Gauss-Bonnet theorem, to simply the energy further in some cases [Frankel, 2011]. The Gauss-Bonnet theorem states that for some 2D differentiable manifold \mathcal{M} with boundary $\partial \mathcal{M}$

$$\int_{\mathcal{M}} K dA = 2\pi \chi (\mathcal{M}) - \int_{\partial \mathcal{M}} k_g ds \quad (1.9)$$

where $\chi (\mathcal{M})$ is the Euler characteristic of the manifold and k_g is the geodesic curvature at the boundary. This result is surprising as it states that, for a closed manifold, the integral of the Gaussian curvature over the manifold is a constant that only depends on topology. This means that for cell membranes the saddle-splay moduli only enters the energy at the boundary, and that if we consider a closed membrane or membranes of infinite extent then we can neglect the contribution of Gaussian curvature to the free energy (as long as we have no changes in topology).

1.4.1 Some simple minimisers

To gain a better understanding of the Helfrich Energy we will consider some simple geometrically constrained minimisers (the simplest example of which is a flat membrane).

The first non-trivial surface we will consider is that of a sphere of radius R. The free energy for this is given by

$$\mathcal{F}_{\text{sphere}} = 2\pi \kappa \left(\frac{2}{R} - C_0 \right)^2 R^2 + 4\pi \sigma R^2 - \frac{4}{3} \Delta P R^3 \quad (1.10)$$
which when minimised for variations in R gives the following relation

$$\frac{\kappa C_0^2 + 2\sigma}{R} = \Delta P + \frac{2\kappa C_0}{R_0^2}$$

(1.11)

which reduces to

$$\Delta P = \frac{2\sigma}{R}$$

(1.12)

when $C_0 = 0$, which is just the Laplace law for a spherical soap film. This tells us something quite remarkable, the bending energy of the membrane does not give any contribution to the optimal radius of a sphere. The radius here is just set by the length-scale given by $\frac{\sigma}{\Delta P}$, the only length-scale in the Helfrich Energy which does not involve the bending rigidity, κ.

The second case we will consider, and which is highly relevant for the rest of this thesis, is that of a tube of radius R. The free energy per unit length is given by

$$F_{\text{tube}} = 2\pi R \left[\left(\frac{1}{R} - C_0 \right)^2 + \sigma \right] - \pi R^2 \Delta P.$$

(1.13)

Minimising with respect to variations in R leads to the relation

$$-\frac{\kappa}{2R^2} + \frac{\kappa C_0^2}{2} + \sigma - \Delta PR = 0$$

(1.14)

which reduces to

$$R = \sqrt{\frac{\kappa}{2\sigma}}$$

(1.15)

when $C_0 = 0$ and $\Delta P = 0$. This means that the natural size of a tube is set by the natural length-scale of the membrane $\epsilon = \sqrt{\frac{\sigma}{F}}$. ϵ is the scale over which deformations persist in a close to flat membrane. This scale is set due to the balance between forces from the bending energy wanting to expand the radius of the tube and those from surface tension which attempt to minimise the surface area of the membrane.

1.4.2 Shape equation for a general surface

In the previous section we made use of geometric simplifications to gain some intuition about the forces which govern membrane shape. Here we consider the more general problem of the shape equation for an arbitrary surface. The partial differential equation whose solutions describe the minimisers of the Helfrich energy can be found by setting the first variation of the energy with respect to perturbations in the shape to zero. To derive this rigorously, one must make use of some rather
Figure 1.7: Simple surfaces that minimise the Helfrich energy, (A) a tube of radius
\[R = \sqrt{\frac{\kappa}{2\sigma}} \] (with no pressure jump or spontaneous curvature) and (B) a sphere of
radius \[R = \frac{2\sigma}{\Delta P} \] (with no spontaneous curvature).

messy differential geometry to account for the variations in the metric etc. For
simplicity we will only state the results here, but details of the full calculation can
be found in [Zhong-Can and Helfrich, 1989].

The full shape equation for a membrane which minimises the Helfrich energy
is given by

\[\kappa \left[2\Delta_{LB} H - (4H + C_0) \left(H^2 - K - \frac{C_0}{2} H \right) \right] + 2H\sigma = \Delta P \tag{1.16} \]

where \[\Delta_{LB} = -\frac{1}{\sqrt{|g|}} \partial_i \left(\sqrt{|g|} g^{ij} \partial_j (\cdot) \right) \] is the Laplace-Beltrami operator for a scalar
field on the manifold (defined with the same sign convention as in Ref. [Arroyo
and DeSimone, 2009]). This is a 4th-order non-linear PDE in the “height” of the
membrane and in general there are no analytical solutions to the full equation,
except in some simplified cases, for example [Rautu, 2018] and references therein.

Full solutions to the general problem are usually found via either gradient
descent methods, e.g. Surface Evolver [Brakke, 1992], or using more sophisticated
finite element methods to solve the shape equation via Willmore flow [Elliott and
Stinner, 2010; Barrett et al., 2016]. We will not present a full account of these
methods here as they will not be used in this thesis.
1.4.3 Shape equation for axis-symmetric surfaces and formation of membrane tubes

A simplified case that is useful to consider is that of axis-symmetric surfaces as, not only does the shape equation reduce to a boundary value ODE problem, but it turns out that many membrane shapes found in nature are approximately axis-symmetric (for example red blood cells) [Jülicher and Seifert, 1994; Seifert, 1997]. Here we will label the axis of symmetry Z and parametrize the surface in terms of angle from the normal, $\psi(S)$, where S is the arclength, see Fig. 1.8 inset.

The radial and symmetry axis coordinates are given by

$$\partial_S R = \cos \psi; \quad \partial_S Z = -\sin \psi,$$

(1.17)
and the shape equation becomes [Jülicher and Seifert, 1994; Dévényi et al., 2002]

\[\partial^3 S \psi = -\frac{1}{2} (\partial S \psi)^3 - \frac{2 \cos \psi}{R} \partial^2 S \psi + 3 \frac{\sin \psi}{2R} (\partial S \psi)^2 + \frac{3 \cos^2 \psi - 1}{2R^2} \partial S \psi \\
+ \frac{\sigma}{\kappa} \partial S \psi - \frac{\cos^2 \psi + 1}{2R^2} \sin \psi + \frac{\sigma}{\kappa R} \sin \psi - \Delta P \frac{\kappa}{\kappa}. \quad (1.18) \]

In practice this equation is difficult to integrate numerically due to being very unstable and computationally intensive semi-implicit methods are often required [Rahimi and Arroyo, 2012]. It is often easier to solve the first integral of this equation numerically [Dévényi et al., 2002], which is given by

\[\partial^2 S \psi \cos \psi = -\frac{1}{2} (\partial S \psi)^2 \sin \psi - \frac{\cos^2 \psi}{R} \partial S \psi + \frac{\cos^2 \psi + 1}{2R^2} \sin \psi \\
+ \frac{\sigma}{\kappa} \sin \psi - \Delta P \frac{\kappa}{2\kappa} R - \frac{f}{2\pi\kappa R}. \quad (1.19) \]

where \(f \) is a constant of integration that can be associated with a point force acting along the \(Z \) axis at \(R = 0 \). An alternative way of deriving this equation is to use a Hamiltonian field theory formulation of the Helfrich energy by introducing conjugate momenta. In that case the first integral of the shape equation is found as one of Hamilton’s field equations [Jülicher and Seifert, 1994].

Solving Eq. 1.19 for a close to flat membrane (\(\psi \ll 1 \)) gives the Green’s function for the shape at linear order in the shape perturbation

\[Z_{\text{lin}} (R) = Z_0 - \frac{2f}{2\pi \sqrt{2\pi \sigma} \sigma} \sqrt{\frac{\kappa}{2\sigma}} \left[\log \left(\frac{R}{\sqrt{2R}} \right) + K_0 \left(\frac{R}{\sqrt{2R}} \right) \right] - \Delta P \frac{R^2}{2\sigma}. \quad (1.20) \]

Note that, for large distances away from the point force, the shape depends logarithmically on \(R \) [Dévényi et al., 2002].

The full non-linear equation can be solved numerically, either with a shooting methods [Dévényi et al., 2002] or a relaxation scheme [Powers et al., 2002]. In the case of the shooting method with boundary conditions at zeros given by a ring (\(R = R_{\text{ring}} \)) and zero curvature (\(\partial S \psi = -\sin \psi/R \)), the shape is found by shooting in \(\psi \) (essentially shooting for the value of the force) and setting the \(\partial^2 S \psi \) just using Eq. 1.19, then finding the curve that crosses the \(Z \) axis. The solutions to this are shown in Fig. 1.8.

Using these numerics it is possible to find the force needed to pull a tube and even study the equilibrium interaction between two tubes [Dévényi et al., 2002]. To understand the force needed to pull a tube we will use a simpler model which, neglects the energy of the neck and cap of the tube, which gives the correct result
for long tubes (as the energy of the base and cap are negligible as $L \to \infty$). The free energy of a membrane tube of length L is given by

$$
F_{\text{tube}} = F_{\text{tube}} L = \left(\frac{\pi \kappa}{R} + 2 \pi \sigma R \right) L - f L,
$$

(1.21)

taking the derivative with respect to the tube length, L, setting to zero and making use of the expression for the equilibrium radius of a pressure-less tube (Eq. 1.15), gives the force needed to hold a tube at length L

$$
f = \frac{2 \pi \kappa}{R} = 2 \pi \sqrt{2 \sigma \kappa},
$$

(1.22)

which agrees with numerical solutions for long tubes found in [Derényi et al., 2002; Powers et al., 2002]. This corresponds to the interesting fact that, beyond some critical threshold in the small deformation regime, the force required to pull a tube is independent of its length.

1.4.4 Shape instability of a membrane tube

An interesting question to ask is the following: for what values of bending energy, κ, and surface tension, σ, is a tube of radius, R, stable to small undulations in its shape.

If we parametrize the radius of a tube as $r(\theta, z) = R + u(\theta, z)$ we can write the free energy as an expansion in u and its derivatives. We can choose to write u in terms of its Fourier modes as follows

$$
u(\theta, z) = \sum_{q,m} \bar{u}_{q,m} e^{iqz + im\theta},
$$

(1.23)

where $q = \frac{2\pi n}{L}$ (where $n \in \mathbb{Z}$) and m are the Fourier variables conjugate to z and θ respectively.

If we assume all undulations preserve the volume of the tube we can show that $\bar{u}_{0,0} = -\frac{1}{2R} \sum_{q,m} |\bar{u}_{q,m}|^2$, and the free energy of the membrane tube can be written in the following way [Gurin et al., 1996; Komura and Lipowsky, 1992]

$$
\mathcal{F} = \mathcal{F}_{\text{tube}} + \mathcal{F}^{(2)},
$$

(1.24)
where

\[\mathcal{F}^{(2)} = \sum_{q,m} |\bar{u}_{q,m}|^2 \frac{\kappa}{2R^2} \left((\tilde{q}^2 + m^2)^2 - \frac{1}{2} \tilde{q}^2 - \frac{5}{2} m^2 + \frac{3}{2} - \frac{R^2 \sigma}{\kappa} (1 - \tilde{q}^2 - m^2) \right) \]

(1.25)

where \(\tilde{q} = qR \).

For \(m \geq 1 \) this is always stable, however for the \(m = 0 \) modes there is a possible instability. For zero bending energy this instability would simply correspond to the classical Rayleigh-Plateau instability [Rayleigh, 1892; Tomotika, 1935], and the second variation in the free energy would be negative for all \(\tilde{q} = qR < 1 \) and for any a value surface tension. In the case of a membrane tube with bending rigidity the criterion for this instability becomes

\[\sigma > \sigma_c = \frac{3 \kappa}{2R^2} \]

(1.26)

which we will generally refer to as the criterion for a Pearling instability on a membrane tube throughout this thesis [Bar-Ziv and Moses, 1994; Nelson et al., 1995; Gurin et al., 1996]. When the full fluid dynamical problem is treated it can be shown that the fastest growing wavelength of the instability has the universal behaviour of \(\tilde{q}_{\text{max}} \sim 0.6 \) for any surface tension sufficiently past the instability threshold \((\sigma \gtrsim \sigma_c) \) [Nelson et al., 1995] (although the exact number does depend on the relative viscosity between inside and outside [Boedec et al., 2014]).

1.4.5 Shape fluctuations of membrane tubes

The bending energy for a lipid bilayer has a rigidity comparable to the energy scale of thermal fluctuations, typically \(\kappa \sim 10k_B T \) where \(k_B \) is Boltzmann’s constant and \(T \) is temperature [Boal, 2002]. Because of this the bilayer is highly susceptible to thermal fluctuations. As the free energy expansion in the previous section is Gaussian, we can compute the fluctuation spectrum in Fourier space exactly by making use of the equipartition result from statistical mechanics [Landau and Lifshitz, 1951; Safran, 1994]

\[\langle |\bar{u}_{q,m}|^2 \rangle = \frac{1}{Z} \int \mathcal{D}\bar{u}_{q,m} \bar{u}_{q,m} \bar{u}_{q,m}^* e^{-\mathcal{F}^{(2)}/(k_B T)} \]

(1.27)

where \(\mathcal{D}\bar{u}_{q,m} = \prod_{q,m} d\bar{u}_{q,m} \) and \(Z \) is the partition function given by

\[Z = \int \mathcal{D}\bar{u}_{q,m} e^{-\mathcal{F}^{(2)}/(k_B T)} \]

(1.28)
which gives the result
\[
\langle |\tilde{u}_{q,m}|^2 \rangle = \frac{k_B TR^2}{\kappa \left((\tilde{q}^2 + m^2)^2 - \frac{1}{2} \tilde{q}^2 - \frac{5}{2} m^2 + \frac{3}{2} \right) - R^2 \sigma (1 - \tilde{q}^2 - m^2)}.
\]

(1.29)

It is interesting to note that the \(m = 1 \) modes diverge in the small \(\tilde{q} \) limit as in this limit the fluctuations are essentially just a local translation of the cross section, thus the energy they cost tends to zero as \(\tilde{q} \) goes to zero. An in depth discussion of the critical fluctuations of membrane tubes can be found in Ref. [Fournier and Galatola, 2007].

1.5 Fluid dynamics at cellular scales

Here we will present a brief discussion of fluid dynamics at the scale of cell biology, this subject is vast so we will not attempt to discuss many of the subtleties in depth, but refer the reader to other resources e.g. [Happel and Brenner, 1983; Purcell, 1977].

The equations of fluid dynamics are generally specified in terms of a continuity equation and momentum rate equation [Landau and Lifshitz, 1959]. The continuity equation is given in terms of the velocity, \(\vec{v} \), and density, \(\rho \), of a fluid
\[
\partial_t \rho + \vec{\nabla} \cdot (\rho \vec{v}) = J
\]
where \(J \) is a source/sink of mass in the fluid. In the case where the fluid is incompressible \(\rho = \text{Const.} \), and has no sources or sinks, this reduces to the incompressibility condition
\[
\vec{\nabla} \cdot \vec{v} = 0.
\]

(1.31)

The rate of change of momentum is given in terms of velocity \(\vec{v} \), density \(\rho \), fluid stress tensor \(T = T^{ij} \vec{e}_i \otimes \vec{e}_j \) and external force per unit volume \(\vec{f} \) which are related by the Navier-Stokes equation
\[
\rho \left(\partial_t \vec{v} + \vec{v} \cdot \vec{\nabla} \vec{v} \right) = \vec{\nabla} \cdot T + \vec{f}.
\]

(1.32)

In the case of an incompressible Newtonian fluid the stress tensor is given by
\[
T^{ij} = \eta \left(\nabla^i v^j + \nabla^j v^i \right) - P g^{ij}
\]
where \(\eta \) is the viscosity, and \(P \) the pressure. We can write the equation in dimensionless form by making use of the viscosity and density along with some characteristic
length-scale L and velocity v_0,

$$
\partial_t \tilde{u} + \tilde{u} \cdot \nabla \tilde{u} = \frac{\eta}{Lv_0 \rho} \left(\nabla \cdot \tilde{T} + \tilde{f} \right) = \frac{1}{Re} \left(\nabla \cdot \tilde{T} + \tilde{f} \right)
$$

where \tilde{u} is dimensionless velocity, \tilde{t} dimensionless time, \tilde{T} dimensionless stress and $Re = \rho v_0 L/\eta$ is the Reynolds number of the flow. The Reynolds number is a dimensionless number which can be viewed as the ratio of viscous to inertial forces in the fluid; for large Reynolds number inertial forces dominate and the fluid is often in a highly non-linear regime. For small Reynolds numbers viscous forces dominate and the system can be viewed as over-damped. If we consider some estimates of these parameters at the scale of cells we might choose the following [Purcell, 1977; Milo and Phillips, 2015]

$$
\eta \sim 10^{-3}\text{Pa s} \\
\rho \sim 10^{3}\text{Pa s}^2 \text{ m}^{-2} \\
L \sim 10^{-6}\text{m} \\
v_0 \sim 10^{-6}\text{m s}^{-1} \\
\Rightarrow \text{Re} \sim 10^{-6}.
$$

In this limit the equations of motion reduce to the Steady Stokes equations along with incompressibility

$$
\eta \nabla^2 \tilde{u} = \nabla P - \tilde{f}; \quad \nabla \cdot \tilde{u} = 0 \quad (1.36)
$$

which will be used throughout the rest of this thesis.

1.6 Overview of thesis

In this thesis we will aim to examine the dynamics of membrane tubes driven by various out of equilibrium processes designed to mimic situations in cell biology. The goal is to understand the physics underlying cellular processes with minimal models that capture the important biology and mechanics.

Chapter 2 deals with the shape instability of membrane tubes due to an osmotic pressure difference driven by ion pumps. These ion pumps consume ATP to actively move ions across the membrane against their concentration gradient. When oriented inwards we show that the increase in osmotic pressure causes the tube to swell, eventually leading to a Pearling-like instability, but with a much
longer wavelength. This problem is inspired by the Contractile Vacuole Complex found in many single-celled freshwater organisms [Allen, 2000]. This organelle is responsible for regulating the osmotic pressure inside the cell by acting as a pump to remove excess water, and thus maintain cell volume. This tubular instability forms a vital part of the pumping cycle as the bulges collect water to be emptied into the main vesicle of the pump.

Chapter 3 focuses on the dynamics of membrane tubes where there is a shear gradient in the azimuthal fluid flow of the membrane, in part inspired by the action of Dynamin in fissioning membrane tubes and necks of vesicles [Roux et al., 2006; Roux, 2014]. By employing the methods of covariant hydrodynamics we analyse the stability of perturbations to the membrane tube’s shape under this shear rate. We find a helical instability in the membrane tube shape whose handedness is set by the shear rate. Because of advection with the ground-state flow, the pitch length of the instability decreases until the shape eventually becomes stable, however we show that this instability provides significant amplification to the fluctuation spectra of the tube. This amplification gives rise to large non-equilibrium fluctuations of the tube that may play an important role in the, as yet, ill understood process of Dynamin mediated scission (perhaps via friction mediated scission similar to Ref. [Simunovic et al., 2017]).

The final section, Chapter 4, considers the full relaxation dynamics of membrane tubes (with variable surface tension) and their statistical mechanics under passive and active fluctuations. Here we consider a simple model of generic active fluctuations which break detailed balance in the system [Gov, 2004]. We compute the fluctuation spectra for these stochastic processes acting on the tube and the “effective temperature” of the Fourier modes of the tube shape. We discuss possible experiments to measure these fluctuations and how varying the viscosity could be used to quantify the activity in the system.
Chapter 2

Hydro-osmotic Instabilities in Active Membrane Tubes

In this chapter we study a membrane tube with unidirectional ion pumps driving an osmotic pressure difference. A pressure driven peristaltic instability is identified, qualitatively distinct from similar tension-driven Rayleigh type instabilities on membrane tubes. We discuss how this instability could be related to the function and biogenesis of membrane bound organelles, in particular the contractile vacuole complex. The unusually long natural wavelength of this instability is in agreement with that observed in cells. The analysis also provides a more general framework with which to approach hydrodynamic instabilities where slow driving is dominant.

2.1 Introduction

The “blueprint” for internal structures in living cells is genetically encoded but their spatio-temporal organisation ultimately rely on physical mechanisms.

A key contemporary challenge in cellular biophysics is to understand the physical self-organization and regulation of organelles [Mullins, 2005; Chan and Marshall, 2012]. Eukaryotic organelles bound by lipid membranes perform a variety of mechanical and chemical functions inside the cell, and range in size, construction, and complexity [Alberts et al., 2002]. A quantitative understanding of how such membrane bound organelles function have applications in bioengineering, synthetic biology and medicine. Most models of the shape regulation of membrane bound organelles invoke local driving forces, e.g. membrane proteins that alter the morphology (often curvature) [Heald and Cohen-Fix, 2014; Shibata et al., 2009; Jelerčić and Gov, 2015]. However other mechanisms, such as osmotic pressure, could play
an important role [Gonzalez-Rodriguez et al., 2015].

Membrane tubes are ubiquitous in cells, being found in organelles such as the endoplasmic reticulum and various post-Golgi compartments [Alberts et al., 2002]. Models for their formation typically involve the spontaneous curvature of membrane proteins [Shibata et al., 2009] or forces arising from molecular motors attached to the membrane that pull tubular tethers as they move along microtubules [Yamada et al., 2014]. Many of these tubules may contain trans-membrane proteins that can alter the osmotic pressure by active transport of ions. Most work on the biogenesis of cellular organelles has focused on their static morphology and generally not on their non-equilibrium dynamics. In what follows we consider an example in which the out-of-equilibrium dynamics drives the morphology, Fig. 2.1. Our study is inspired by the biophysics of an organelle called the Contractile Vacuole Complex but additionally reveals a new class of instabilities not previously studied that are of broad, perhaps even universal, physiological relevance.

The Contractile Vacuole Complex (CVC) is an organelle found in most freshwater protists and algae that regulates osmotic pressure by expelling excess water [Komsic-Buchmann et al., 2014; Stock et al., 2002; Allen, 2000; Naitoh et al., 1997; Docampo et al., 2013]. Its primary features are a main vesicle (CV) that is inflated by osmosis and periodically expels its contents through the opening of a large pore - probably in response to membrane tension - connecting it to the extracellular environment, thereby regulating cell volume [Patterson, 1980; Docampo et al., 2013]. Water influx into the CVC is due to an osmotic gradient generated by ATP-hydrolyzing proton pumps in the membrane that move protons into the CVC [Stock et al., 2002; Heuser et al., 1993; Nishi and Forgac, 2002; Fok et al., 1995]. In many organisms such as Paramecium multimicronucleatum, the CVC includes several membrane tubular arms connected to the main vesicles, which are thought to be associated with the primary sites of proton pumping and water influx activity [Tominaga et al., 1998]. The tubular arms do not swell homogeneously in response to water influx, but rather show large undulatory bulges with a size comparable to the size of the main CV, leading us to speculate that this might even play a role in CV formation de novo. These tubular arms appear to be undergoing a process similar to the Pearling or Rayleigh instability of a membrane tube under high tension [Rayleigh, 1892; Tomotika, 1935; Powers and Goldstein, 1997; Bar-Ziv and Moses, 1994; Bar-Ziv et al., 1997; Gurin et al., 1996; Nelson et al., 1995; Boedec et al., 2014] or an axon under osmotic shock [Pullarkat et al., 2006], but with a much longer natural wavelength: Rayleigh instabilities have a natural wave length $\lambda \sim R$ where R is the tube radius. Here we derive the dynamical evolution of a membrane
Figure 2.1: (a) Microscopy image of the contractile vacuole in *paramecium multimicronucleatum* adapted from [Tani et al., 2000]. (b) Diagram of the contractile vacuole complex. The tube is shown connected to the main body of the CV (left). As ions are pumped in, increasing the osmotic pressure, the tube undergoes a swelling instability and undulations develop with some wavelength λ. This phenomenon is observed in the contractile vacuoles of many protists, e.g. *paramecium multimicronucleatum* [Patterson, 1980; Allen, 2000]. (c) Schematic of a membrane tube with ion pumps and surface undulations. A cartoon of a representative ion pump is shown in the top right.
tube driven out-of-equilibrium by osmotic pumping, which results in a much longer natural wavelength for the instability.

In the CVC, the tubular arms are surrounded by a membrane structure resembling a bicontinuous phase made up of a labyrinthine tubular network called the smooth spongiome (SS). We assume this to represent a reservoir of membrane keeping membrane tension constant and uniform during tube inflation.

2.2 Membrane Mechanics

The CVC is comprised of a phospholipid bilayer membrane. This bilayer behaves in an elastic manner [Helfrich, 1973; Phillips et al., 2010]. At physiological temperatures these lipids are in the fluid phase [Alberts et al., 2002; Phillips et al., 2010]. For simplicity we will treat the bilayer as a purely elastic, fluid membrane in the constant tension regime, neglecting the separate dynamics of each leaflet. The membrane free energy involves the mean curvature H and surface tension σ [Helfrich, 1973; Safran, 1994; Nelson et al., 2004] and is given by

$$\mathcal{F} = \int_{S} dA \left(\frac{\kappa}{2} (2H)^2 + \sigma \right) - \int \Delta P dV,$$

where dA and dV are the area and volume elements on S, κ is the bending rigidity, and ΔP is the pressure difference between the fluid inside and outside the tube (see also Eq. 1.7).

2.2.1 Differential geometry of the membrane

For the membrane tubes in which we are interested we parametrise the bilayer as an embedding in \mathbb{R}^3. Utilising the cylindrical symmetry of the membrane tube we write this as a surface of revolution about the z axis with radius $r(z, t)$. This means that we will only consider squeezing (peristaltic) modes in our analysis. In Cartesian coordinates this surface is parametrised by the vector $\vec{R} = (r \cos \theta, r \sin \theta, z)$, i.e. by the normal cylindrical polar coordinates. From this we can induce coordinates on the manifold as

$$\vec{e}_1 = \frac{\partial \vec{R}}{\partial \theta} = (-r \sin \theta, r \cos \theta, 0) \quad (2.2)$$

$$\vec{e}_2 = \frac{\partial \vec{R}}{\partial z} = (\partial_z r \cos \theta, \partial_z r \sin \theta, 1). \quad (2.3)$$
This allows for the definition of a Riemannian metric as

$$g_{ij} = \vec{e}_i \cdot \vec{e}_j \text{ for } i, j = \{1, 2\},$$ \hspace{1cm} (2.4)

Hence the metric and its inverse are

$$g = \begin{bmatrix} r^2 & 0 \\ 0 & 1 + (\partial_z r)^2 \end{bmatrix}, \quad g^{-1} = \begin{bmatrix} \frac{1}{r^2} & 0 \\ 0 & \frac{1}{1 + (\partial_z r)^2} \end{bmatrix}. \hspace{1cm} (2.5)$$

To find the curvature of S we need to know how the normal vector, \vec{n}, to the surface S varies. We can write this normal vector as

$$\vec{n} = \frac{\vec{e}_1 \times \vec{e}_2}{|\vec{e}_1 \times \vec{e}_2|} = \frac{1}{\sqrt{1 + (\partial_z r)^2}} (\cos \theta, \sin \theta, -\partial_z r). \hspace{1cm} (2.6)$$

From this we can find the second fundamental form $b_{ij} = \vec{n} \cdot \vec{e}_{i,j}$ where the comma denotes a partial derivative. Taking the determinant and trace of

$$b^j_i = \frac{1}{\sqrt{1 + (\partial_z r)^2}} \begin{bmatrix} -\frac{1}{r} & 0 \\ 0 & \frac{\partial_z r}{1 + (\partial_z r)^2} \end{bmatrix}, \hspace{1cm} (2.7)$$

we find the mean and Gaussian curvatures

$$2H = \frac{1}{\sqrt{1 + (\partial_z r)^2}} \left(\frac{\partial_z r}{1 + (\partial_z r)^2} - \frac{1}{r} \right) \hspace{1cm} (2.8)$$

$$K = \frac{-\partial_z r}{r \left(1 + (\partial_z r)^2\right)^\frac{3}{2}}. \hspace{1cm} (2.9)$$

Assuming radial symmetry and integrating over the volume of the tube we obtain

$$\mathcal{F} = 2\pi \int_{-\infty}^{\infty} dz \left[\frac{\kappa}{2 r} \frac{1}{\sqrt{1 + (\partial_z r)^2}} \left(\frac{\partial_{zz} r}{1 + (\partial_z r)^2} - \frac{1}{r} \right)^2
+ \gamma r \sqrt{1 + (\partial_z r)^2} - \frac{1}{2} r^2 \Delta P \right] \hspace{1cm} (2.10)$$

where $r(z, t)$ is the radial distance of the axisymmetric membrane from the cylindrical symmetry axis and z measures the coordinate along that axis.

We use Eq. 2.10 as a model for the free energy of a radial arm of the CVC. Ion pumps create an osmotic pressure difference that drive a flux of water to permeate
through the membrane. We calculate the dominant mode of the hydro-osmotic
instability resulting from the volume increase of the tube lumen. We write the
radius of the tube as $r(z,t) = R + u(z,t)$, with u assumed small, and make use
of the Fourier representation $u(z,t) = \sum_q \bar{u}_q e^{iqz}$. Absorbing the $q = 0$ mode into
$R = R(t)$ allows us to write $\int u \, dz = 0$. The free-energy per unit length can be
written at leading order as

$$ F = F^{(0)} + \frac{\pi}{R} \sum_q \alpha(q)|\bar{u}_q|^2 $$

(2.11)

where

$$ \alpha(q) = \frac{\kappa}{R^2} \left((qR)^4 - \frac{(qR)^2}{2} + 1 \right) + \gamma(qR)^2 - \Delta PR $$

(2.12)

and

$$ F^{(0)} = 2\pi \left(\frac{\kappa}{2R} + \gamma R - \frac{1}{2} \Delta PR^2 \right) $$

(2.13)

Identifying the static pressure difference ΔP with the Laplace pressure
$P_L = -\kappa/(2R^3) + \gamma/R$, the point at which the $q = 0$ mode goes unstable can be identified:
the membrane tube is unstable for tube radii $R > \sqrt{3}R_{eq}$ where $R_{eq} = \sqrt{\frac{\kappa}{2\gamma}}$ is the
equilibrium radius of a tube with $\Delta P = 0$. This criterion for the onset of the
instability is the same as the Rayleigh instability on a membrane tube [Gurin et al.,
1996], however the instability is now driven by pressure not surface tension. This is
a crucial difference. It leads to a qualitatively different evolution of the instability,
as we now show. In what follows we are interested in the dynamics of the growth of
unstable modes after the cylinder has reached radius $\sqrt{3}R_{eq}$. Our initial condition
is a tube under zero net pressure, although the choice of initial condition is not

2.3 Dynamics of Active Ion Pumps

We assume that the number of proton pumps moving ions from the cytosol into
the tubular arm depends only on the initial surface area, i.e. it is fixed as the tube
volume (and surface) varies.

We denote the number of ions per unit length in the tube as n and write an
equation for the growth of n as

$$ \frac{dn}{dt} = \begin{cases}
0, & t \in (-\infty, 0) \\
2\pi \beta R_{eq}, & t \in [0, \infty)
\end{cases} $$

(2.14)
where β is a constant equal to the pumping rate of a single pump multiplied by the initial area density of pumps. This assumes that the ion pumps are diffusing sufficiently fast so as to be homogeneously distributed, this assumption is chosen so as to simplify the calculations. The ion pumps are assumed to switch on at $t = 0$ and that the tube was in thermal equilibrium prior to that time.

The density of ions, ρ_I, can be obtained by solving Eq. 2.14 and dividing by volume per unit length, $v(t)$,

$$\rho_I = \frac{n(t)}{v(t)} = \frac{n_0}{v(t)} + \frac{2\pi \beta R_{eq} t}{v(t)}.$$ \hspace{1cm} (2.15)

The growth of the tube radius is driven by a difference between osmotic and Laplace pressure [Chabanon et al., 2017]. This means the rate equation for the increase in volume can be written in terms of the membrane permeability to water. Assuming that the water permeability (number of water permeable pores) is constant during tube inflation, we write the volume permeability per unit tube length $\mu' = 2\pi R_{eq} \mu$, where μ is the (initial) permeability of the membrane. Thus

$$\frac{dv}{dt} = \mu' (k_B T (\rho_I - \rho_I (t = 0)) - \Delta P)$$ \hspace{1cm} (2.16)

where the osmotic pressure is approximated by an ideal gas law. This can be transformed into an equation for $R(t)$ on the time interval $t \in [0, \infty)$. We identify ΔP with the Laplace pressure. This leads to

$$\frac{d\tilde{R}}{d\tilde{t}} = \frac{\tau_{pump}}{\tau_\mu} \frac{1}{\tilde{R}} \left(\frac{\tilde{t}}{\tilde{R}^2} + \left(\frac{1}{\tilde{R}} \right) \left(\frac{1}{\tilde{R}^2} - 1 \right) \right)$$ \hspace{1cm} (2.17)

where $\tilde{\sigma} = \frac{\sigma}{k_B T \rho_I (t = 0)}$, $\tau_{pump} = \frac{R_{eq} \rho_I (t = 0)}{2 \beta}$, $\tilde{t} = \frac{t}{\tau_{pump}}$, $\tilde{R} = \frac{R}{R_{eq}}$, and $\tau_\mu = \frac{R_{eq}}{\mu' k_B T \rho_I (t = 0)}$. τ_{pump} and τ_μ represent the time-scales of pumping and permeation of water respectively. The experimental time-scale for radial arm inflation is consistent with a value of $\tau_{pump} \sim 1 - 10^{-1}$s. These dynamics assume our ensemble conserves surface tension, not volume (as in the usual Rayleigh instability). This proves to be a crucial difference.

Values of $R_{eq} = 25\text{nm}$, $\sigma = 10^{-4}\text{N m}^{-1}$ and hence κ are estimated using experimentally measured values from [Zimmerberg and Kozlov, 2006; Koster et al., 2003]. We take a typical ionic concentration in the cytosol of a protist for $\rho_I(t = 0) = 3.0 \times 10^5 \mu\text{m}^{-3}$ (around 10 mMol) [Stock et al., 2002; Phillips et al., 2010; Jackson, 2006]. Making an order of magnitude estimate of β from the literature on the CVC [Stock et al., 2002; Allen and Fok, 1988; Tani et al., 2000] leads to estimates.
of $\beta \sim 10^6$-$10^9 \mu m^{-2}s^{-1}$. Temperature is taken as $T = 310K$. The permeability of polyunstaurated lipid membranes is thought to be around $\mu = 10^{-4} \mu m Pa^{-1}s^{-1}$ [Olbrich et al., 2000]. This permeability could be much larger in the presence of water channels but we find that our results are rather insensitive to increasing the value of μ because, for physiological parameter values, our model remains in the rapid permeation regime, i.e. $\tau_\mu/\tau_{pump} \ll 1$. This permits a multiple time-scales expansion [Murray, 1992] of Eq. 2.17. With $\tilde{\gamma} \sim 10^{-3} \ll 1$ we find the approximate asymptotic solution

$$\tilde{R}(t) = \left(\frac{t}{\tau_{pump}} + 1 \right)^{1/2} + O \left(\frac{\tau_\mu}{\tau_{pump}} \right). \quad (2.18)$$

This solution agrees well with numerical solutions to Eq. 2.17, see Appendix A for more details.

2.3.1 Case of an osmotic shock

We can consider a tube with a fast-acting tension reservoir (something similar to the smooth spongiome), undergoing osmotic shock. It is interesting to understand the dominant wavelength selection in such a case as the system may be easier to implement in vitro than systems involving unidirectional ion pumps. If the radial expansion of the membrane is driven by a hypo-osmotic shock, the radial dynamics are governed by the following growth equation

$$\frac{d\tilde{R}}{d\tilde{t}} = \frac{1}{\tilde{R}} \left(\frac{1}{\tilde{R}^2 \rho_0} + \left(1 + \tilde{\sigma} \right) \left(\frac{1}{\tilde{R}^2} - 1 \right) \right) \quad (2.19)$$

where $\tilde{t} = \frac{t}{\tau_{pump}}$, $\tilde{\sigma} = \frac{\sigma}{k_B T R_{eq} \rho_0}$, $\tilde{R} = \frac{R}{R_{eq}}$, $\tau_\mu = \frac{R_{eq}}{\mu k_B T \rho_0}$ and $\Delta \rho = \rho_0 - \rho_{\text{shock}}$ is the change in ionic density of the outside medium due to osmotic shock. Note that the normalisation chosen here is different from the one used for ion pumps.

2.4 Dynamical instability in the axis-symmetric shape perturbation

We now proceed to deriving the dynamical equations for the Fourier modes. The equations governing the solvent flow are just the standard inertia free fluid equations for velocity field \vec{v}. These are the continuity and Stokes equations for incompressible
\[\vec{\nabla} \cdot \vec{v} = 0; \quad \vec{\nabla} P = \eta \nabla^2 \vec{v} \quad (2.20) \]

where \(P \) is the hydrodynamic pressure and \(\eta = 10^{-3} \text{Pa} \cdot \text{s} \) the viscosity. The linearised boundary conditions are: \(v_r |_{r=R} = \dot{u} + v_p \), where \(v_p \) is the permeation velocity (proportional to the hydrodynamic pressure jump across the membrane: \(v_p = \mu \Delta P |_{r=R} \), and \(v_z |_{r=R} = 0 \). The second condition is justified by invoking the membrane reservoir as a mechanism for area exchange.

If we write the velocity field in terms of a stream function \(\psi \) as

\[\vec{v} = \frac{1}{r} (\partial_z \psi \vec{e}_r - \partial_r \psi \vec{e}_z) \quad (2.21) \]

the continuity equation is automatically satisfied, and the Stokes equations can be solved to give

\[
\psi = \begin{cases}
\sum_q A_1 q r I_1(qr) + B_1(qr)^2 I_0(qr) & r < R \\
\sum_q A_2 q r K_1(qr) + B_2(qr)^2 K_0(qr) & r > R
\end{cases} \quad (2.22)
\]

in the interior of the tube, where \(A_{1,2} \) and \(B_{1,2} \) are found from the boundary conditions. \(I_\nu(x) \) and \(K_\nu(x) \) are modified Bessel functions of the first and second kind respectively.

From here we use the equation \(v_p = \mu (\Delta P) |_{r=R} \), where \(\Delta P |_{r=R} \) is the hydrodynamic pressure jump across the tube membrane, and use the solution of the interior and exterior hydrodynamic pressure from the Stokes equations to find a value of \(v_p \). In Fourier space this gives

\[\bar{v}_p = \hat{u}_q \left(\frac{1}{2q\eta \chi(q)\mu} - 1 \right)^{-1} \quad (2.23) \]

where

\[\chi(q) = \frac{I_0 (I_0 - 1)}{qR I_0^2 - 2I_0 I_1 - qR I_1^2} - \frac{K_0^2}{qRK_0^2 + 2K_0 K_1 - qRK_1^2}. \]

The force balance equation at the membrane reads

\[(P - 2\eta \partial_r v_r) |_{r=R} = f \quad (2.24) \]

where \(f \) is the force required to displace the membrane to \(u \) and can be found from the free energy. Substituting the velocity and pressure fields into this gives the
dynamic equation for the modes \bar{u}_q

$$\dot{\bar{u}}_q = -\frac{\alpha_L(q)}{2\eta R} X(q) \left(1 - 2q\mu\chi(q)\right) \bar{u}_q$$

(2.25)

$$X(q) = I_0 \left(qR I_0 - I_1\right) + \frac{K_0 \left(qR K_0 - K_1\right)}{qR \left(K_1^2 - K_0^2\right) + 2K_1 K_0}$$

(2.26)

with the shorthand $I_\nu = I_\nu(qR)$ and $K_\nu = K_\nu(qR)$ [Gurin et al., 1996]. The elastic response function $\alpha_L(q)$ is obtained by replacing the pressure ΔP by the Laplace pressure $\Delta P_L = \gamma/R - \kappa/(2R^3)$, which gives

$$\alpha_L(q) = \frac{\kappa}{R^2} \left((qR)^4 - \frac{1}{2}(qR)^2 + \frac{3}{2}\right) + \gamma ((qR)^2 - 1).$$

(2.27)

Eq. 2.25 can be used to describe the dynamical instability of a membrane tube subjected to different driving mechanisms; an increase of membrane tension (Rayleigh instability), an osmotic shock, or the slow active pumping mechanism we are primarily interested in. In the limit $qR \ll 1$ this gives

$$\dot{\bar{u}}_q = -\alpha_L(q) \left(\frac{q^2 R(t)}{8\eta} + \frac{2\mu R(t)}{R_{eq}^2}\right) \bar{u}_q$$

(2.28)

where \bar{u}_q is the Fourier representation of u in the z direction. The response function α_L is obtained by replacing the static pressure difference by the Laplace pressure ΔP_L in Eq. 2.12. Note that the term involving μ, capturing mode growth due to permeation, is only relevant for wavelengths $\lambda > 100R_{eq}$, hence we will discard it in our analysis for simplicity (but retain it in the numerics for completeness). The growth rate for a given mode is now time dependent, hence the mode amplitude cannot be obtained from the maximum of the growth rate, but depends on the growth history and must be obtained by solving the full, time-dependent problem.

We identify the instability as being fully developed when our linearised theory breaks down. We define the dominant mode of the instability, called \hat{q}, as the first mode with an amplitude reaching $\sqrt{\langle|\bar{u}_{\hat{q}}|^2\rangle} = R_{eq}$ (a choice that does not influence our results, see Appendix A). We define the time when this occurs as $t = t_{final}$.

We define the instantaneous growth rate $G(\hat{q}) = \frac{\dot{\bar{u}}_\hat{q}}{\bar{u}_\hat{q}}$ from Eq. 2.25. This growth rate shows a peak as a function of q. The location of the peak depends on how the instability is driven. Starting with a stable tube under zero pressure with radius R_0 and membrane tension σ_0, the instability can be driven by an increase of tension $\sigma > \sigma^* = 3\sigma_0$ (see Eq. 1.26) at constant volume (Rayleigh instability), or by an increase in volume (or radius) $R > R^* = \sqrt{3}R_0$ at constant tension (Osmotic instability).
Figure 2.2: Location of the peak of the growth rate ($\tilde{q}^* \equiv R_{eq} q^*$) for a tube under constant tension, as a function of the tube radius. The initial tube radius R_{eq} corresponds to the equilibrium radius of a tube under zero pressure.

instability). In the former case, and in the limit $\sigma \gg \sigma^*$, the growth rate reaches a universal shape with a peak at $R_0 q^* \simeq 0.6$. The most unstable wavelength is thus entirely set by the initial tube geometry (its radius R_0). In the latter, the peak of the growth rate depends on the time-dependent radius and does not reach any sort of universal behaviour. In fact the location of the peak is a non-monotonic function of the radius, first increasing, then decreasing with increasing radius. Its largest possible value is $R_0 q^* \simeq 0.2$ and occurs for $R \simeq 2.35 R_0$, see Fig. 2.2.

The growth rate relation is quantitatively different from a Rayleigh instability due to the driving mechanism. The functional dependence of the growth rate relation depends on the polynomial $\alpha_L(q)$ describing the membrane mechanics in q space, Eq. 2.27. The Rayleigh instability is driven by a surface tension $\sigma > 3\kappa/(2R_0^2)$ at constant volume ($R(t) = R_0$), so that the magnitude of the q^4 term in Eq. 2.27 doesn’t change. In the case of osmotic pressure however, the instability is driven by a change in volume caused by the osmotic pressure, i.e. $R > \sqrt{3\kappa/(2\sigma)}$. This increases the prefactor to the q^4 term which means that the higher q modes are stabilised compared to the Rayleigh case. This means that the dominant wavelength is skewed towards smaller q, Fig. 2.3.

As the fastest growing mode changes in time, it is the cumulative growth that is important. This means we must integrate the growth of each \tilde{q} mode over time, accounting for fluctuations.
Figure 2.3: Normalized growth rate relation for a membrane tube undergoing a Rayleigh instability ($R_0 \sim 10^{-2}\mu m$, $\mu = 0$, $\kappa = 10k_B T$, $\sigma = 89\sigma_0$, where $\sigma_0 = \kappa/(2R_0^2)$) or responding to an osmotic shock under constant membrane tension ($R(t = 0) = R_{eq} = 10^{-2}\mu m$, $\mu = 10^{-4}\mu m Pa^{-1}s^{-1}$, $\kappa = 10k_B T$, $R(t) = 2.35$). These parameters are chosen such that they illustrate the growth rate relations in the high tension limit for the Rayleigh instability (blue curve), or correspond to the maximal peak wavelength in the case of osmotic shock (orange curve). The dispersion relation for the Rayleigh instability is obtained from Eq. 2.25, with constant radius and the limit $\mu \to 0$. For comparison the typical growth rate for physiological parameters in the case of slow pumping (with $R = \sqrt{3} + 0.05$) is also shown (green curve).

The fluctuations of modes with wavenumber q about the radius $R(t)$ follow the dynamics of the Langevin equation based on Eq. 2.28

$$\dot{\bar{u}}_q = -\frac{\alpha L(q)}{\eta(q)} \bar{u}_q + \zeta_q$$ \hspace{1cm} (2.29)

where $\eta(q) = 8\eta/(Rq^2)$ and ζ_q, the thermal noise, has the following statistical properties

$$\langle \zeta_q \rangle = 0$$ \hspace{1cm} (2.30)

$$\langle \zeta_q(t_1)\zeta_{q'}(t_2) \rangle = \delta_{qq'}\delta(t_1 - t_2) k_B TR \frac{k_B T R}{\pi\eta(q)}.$$ \hspace{1cm} (2.31)

Here the thermal noise is found using the equipartition theorem, and thus only gives the fluctuations of the $m = 0$ mode.

Solving this Langevin equation for $\langle |\bar{u}_q|^2 \rangle$, using an initial condition of an
equilibrium tube and the approximate form of $\tilde{R}(t) = \sqrt{1 + \tilde{t}}$ (Eq. 2.18) we find an integral equation for the mode growth by using the standard methods of Itô calculus [Särkkä and Solin, 2019]

$$\langle |\bar{u}_q|^2 \rangle = \frac{k_B T}{2\kappa \pi (1 + \tilde{q}^4)} e^{(F(0) - F(\tilde{t}))} + e^{-F(\tilde{t})} \int_0^{\tilde{t}} \frac{k_B T \tilde{q}^2 (\tilde{r} + 1) \tau_p}{\kappa \pi} e^{F(\tilde{r})} d\tilde{r} \quad (2.32)$$

where t' is a time variable integrating over the noise kernel (in units of τ_p), $\tau_\eta = 8 R_\text{eq}^3 \eta / \kappa$, $\tilde{q} = q R_\text{eq}$ and

$$F(t) = \frac{2 \tau_p \tilde{q}^2 \tilde{R}(t)}{15 \tau_\eta} \left(40 - 5 \tilde{t} + \tilde{q}^2 \tilde{R}(t)^2 \left(3 \tilde{t} - 2 + 6 \tilde{q}^2 \tilde{R}(t)^2 \right) \right). \quad (2.33)$$

Integrating this numerically, together with Eq. 2.18, we can find the dynamics of the modes. The distribution of mode amplitude against q is shown in Fig. 2.4. Although the smallest q modes go unstable first, they have very slow growth and so the mode that dominates the instability arises from the balance between going unstable early (favouring low q) and growing fast (favouring higher values of q).

We can compute numerically the natural wavelength associated with the dominant mode, \hat{q}, the first to reach $\sqrt{\langle |\bar{u}_q|^2 \rangle} = R_\text{eq}$, see Fig. 2.5. This gives a dominant wavelength $\lambda \sim 100 R_\text{eq} \sim 2 \mu m$ for parameters consistent with the CVC, much larger than that found in the Rayleigh instability, but consistent with observations of the CVC [Allen, 2000]. Understanding why this is the case is not straightforward by inspection of the growth equation Eq. 2.32, but is more easily done by considering the time-dependent growth rate Eq. 2.28. Indeed, at the time $t = t_{\text{final}}$, the dominant mode \hat{q} whose amplitude reaches $\sqrt{\langle |\bar{u}_q|^2 \rangle} = R_\text{eq}$ is very close in value to the fastest growing mode (the peak of the instantaneous growth rate) at that particular time, written q^*, which can be derived analytically as a function of the tube radius from Eq. 2.28. As a result of the quasi-static driving of the instability by the ion pumps, the final radius is always only marginally above the critical radius $\sqrt{3} R_\text{eq}$.

The fastest growing mode can be expressed in terms of $\delta \tilde{R}(t_{\text{final}}) = \frac{\delta \tilde{R}}{R_\text{eq}} = \tilde{R}(t_{\text{final}}) - \sqrt{3}$, Fig. 2.6. It is important to note that whilst the growth rate relation does give a good approximation to the dominant wavelength, there is a difference due to the history encoded in the full dynamical description.

The peak of the growth rate relation can be found analytically ($\frac{dG}{dq} |_{q^*} = 0$),
Figure 2.4: Plot of the distribution of mode amplitude $\sqrt{\langle \bar{u}_q^2 \rangle}$ against scaled wavenumber $\tilde{q} = qR_{eq}$ for $\tilde{t} = 2.0$ (solid), 2.04 (dashed) and 2.08 (dash-dotted), the time when the first mode reaches $\sqrt{\langle \bar{u}_q^2 \rangle} = R_{eq}$, $\tau_q/\tau_{pump} \sim 10^{-6}$. $R_{eq} = 25\text{nm}$, $\sigma = 10^{-4}\text{N m}^{-1}$ and $\rho_{f}(t = 0) = 3.0 \times 10^8\mu\text{m}^{-3}$

and in the small \tilde{q} limit is

$$
(q^*)^2 = -\frac{1}{6} - \frac{16\eta\mu}{3R_{eq}} + \frac{1}{6\tilde{R}^2} + \frac{\sqrt{-17 + 4\tilde{R}^2(1 + 8\frac{\eta\mu}{R_{eq}}) + \tilde{R}^4(1 + 32\frac{\eta\mu}{R_{eq}}(-1 + 32\frac{\eta\mu}{R_{eq}}))}}{6\tilde{R}^2}
$$

(2.34)

to leading order in $\delta\tilde{R}(t_{final})$, in the $\mu \to 0$ limit, this can be expressed as $q^* = \frac{(\delta\tilde{R}(t_{final}))^{1/2}}{\sqrt{2(3)^{1/4}}}$. This is the main factor contributing to the long wavelength/small q instability. While a qualitatively similar regime exists for tension driven instabilities, it is only valid very close to the instability threshold and its observation would require
a very precise tuning of the tension. Far from threshold, the Rayleigh or Pearling instability shows a universal relationship $\hat{q} \sim 0.6 R_{eq}$ [Bar-Ziv et al., 1997; Powers and Goldstein, 1997; Bar-Ziv and Moses, 1994; Boedec et al., 2014].

A related limit is that of an osmotic shock (which we detail in Appendix A). The difference between the Rayleigh and osmotic shock instabilities is due to the growth rate having a different response when driven by a volume change compared to surface tension. The constant volume (Rayleigh) instability might be of limited relevance for the morphological changes of cellular membrane tubes, as cellular membranes typically contain a host of membrane channels, including water channels, which allow fairly rapid water transport across the membrane. The osmotic instability that we analyse here recognises the presence of active pumps in the organelle membrane, which can drive osmotic changes in the organelle lumen [Allen, 2000]. There is some correspondence between the fast pumping limit in Fig. 2.5 (τ_{η}/τ_{pump} large) and the osmotic shock situation. The instantaneous growth rates have the same dependence in the tube radius, but have a different time dependences.
as the dynamics of tube inflation is different in both cases. The osmotic shock limit is most likely not physiologically accessible to ion pumps. Crucially, one can see in Fig. 2.5 that the instability length scale is set by dynamical parameters, most importantly the ratio of the viscosity and pumping time-scales. Varying $\tau_\eta/\tau_{\text{pump}}$ has the effect of changing the time-scale over which the modes go unstable. It is fortuitous that the dominant wavelength does not depend strongly on the pumping rate, the parameter we can estimate least accurately (see Appendix A). This suggests a robustness to the wavelength selection that may have important implications for the CVC’s biological function. In the physiologically accessible range of parameters for pumping and permeation, this length scale is much larger than the asymptotic limit for either the Rayleigh instability or the osmotic shock instability.

2.5 Conclusion

We have developed a model for a water-permeable membrane containing uni-directional ion pumps. Hydro-osmotic instabilities realised in cells may be expected to usually lie in this class. Deriving dynamical equations for a membrane tube, we identify an instability driven by this osmotic imbalance. This has a natural wavelength that is set by dynamical parameters, specifically the ratio of the pumping time-scale to viscous time-scale, and is significantly longer than a Rayleigh or Pearling instability. Interestingly it is of the same order as seen in the CVC radial arm suggesting that
this is a possible mechanism behind the radial arm morphology. It is also interesting
to note that the size of the bulge formed by the instability is of a similar order of
magnitude to the size of the main CVC vesicle. We speculate that this instability
may provide a mechanism for biogenesis of the CV from a featureless active tube.
We intend to further address the question of this *organellogenesis* in future work
along with implementing more realistic area-tension relations [Boedec et al., 2014].
Chapter 3

Shear-driven Instabilities on Membrane Tubes

Motivated by the mechanics of Dynamin-mediated membrane tube scission we use covariant hydrodynamics to analyse the stability of fluid membrane tubes subjected to shear flow in azimuthal direction. We find a novel helical instability driven by the membrane shear flow which has its onset at shear rates that may be physiologically accessible under the action of Dynamin and could also be probed using in-vitro experiments on membrane nanotubes, e.g. using magnetic tweezers. We discuss how such an instability may play a role in the mechanism for Dynamin-mediated membrane tube scission.

3.1 Introduction

The covariant hydrodynamics of fluid membranes has been a subject of much interest in the soft matter and biological physics community in recent years, both for the general theoretical features of such systems [Cai and Lubensky, 1994, 1995; Fournier, 2015] and their application to biologically relevant processes [Sens, 2004; Arroyo and DeSimone, 2009; Brochard-Wyart et al., 2006; Morris and Turner, 2015; Morris, 2017]. Such systems couple membrane hydrodynamics with bending elasticity and have been shown to display complex visco-elastic behaviour in geometries with high curvature [Rahimi et al., 2013].

Membrane tubes are highly curved and are found in many contexts in cell biology, including the endoplasmic reticulum and the necks of budding vesicles [Kaksonen and Roux, 2018]. Such tubes can be pulled from a membrane under the action of a localized force (such as from molecular motors) [Derényi et al., 2002; Yamada
et al., 2014; Cuvelier et al., 2005]. They are stable due to a balance between the forces from bending energy, involving the bending rigidity κ, and from the surface tension σ and have equilibrium radius $r_0 = \sqrt{\frac{\kappa}{2\sigma}}$ [Zhong-Can and Helfrich, 1989].

One of the simplest ways to drive flows on the surface of these tubes is to impose a velocity in the azimuthal direction. The analysis of shape changes induced by such flows is the subject of this chapter. Two possible mechanisms for realizing such flows via in-vitro and in-vivo experiments are shown in Fig. 3.1.

The fission of membrane tubes plays an important role in many cellular processes, ranging from endocytosis to mitochondria fission [McClure and Robinson, 1996; Frank et al., 2001]. The key component of the biological machinery required to induce membrane fission is a family of proteins called Dynamin which hydrolyse GTP into GDP [Antonny et al., 2016; Roux et al., 2006]. Dynamin is a protein complex that oligomerizes to form polymers which wrap helically around membrane tubes [Antonny et al., 2016; Roux et al., 2010; Shlomovitz et al., 2011]. Although there is clear evidence that Dynamin undergoes a conformational change when it hydrolyses GTP, there is not yet a consensus on the exact method of fission [Roux, 2014; Kozlov, 1999, 2001; McDargh et al., 2016; McDargh and Deserno, 2018], although recent coarse-grained simulations have shed some light on the possible role of constriction and de-polymerisation [Pannuzzo et al., 2018]. It has been shown experimentally that, upon hydrolysis of GTP, Dynamin (counter)rotates rapidly whilst constricting [Roux et al., 2006]. The rotation frequency can be of order 10Hz [Roux et al., 2006], giving a mechanism for the generation of flows in the azimuthal direction.

Another possible way of driving such flows is by pulling a small tube from a Giant Unilamellar Vesicle (GUV) or cell with magnetic tweezers and using magnetic field oscillations to spin an attached bead [Crick and Hughes, 1950; Hosu et al., 2007; Monticelli et al., 2016].

3.2 Covariant fluid dynamics of membranes

The membrane behaves as a viscous fluid with 2D viscosity η_m. The ratio of this viscosity over the viscosity of the bulk aqueous fluid, η, gives a length scale, $L_{SD} = \frac{\eta_m}{\eta}$, called the Saffman-Delbrück length [Saffman and Delbruck, 1975; Saffman, 1976; Henle and Levine, 2010]. This is the distance over which bulk hydrodynamics screens membrane flows in planar geometry. In the case of a membrane tube, the screening length is modified due to geometric effects and becomes $\sqrt{L_{SD} r_0}$ [Henle and Levine, 2010]. We will consider dynamics on a scale less than this, such that the dominant dissipation mechanism involves the membrane flows. This means that we can neglect
Figure 3.1: Possible realizations of shear driven instabilities on membrane tubes (shown in orange throughout). a) Dynamin on the neck of a budding vesicle. Under hydrolysis of GTP the protein constricts and (counter)rotates, prior to fission of the tube. This rotation drives a significant shear flow on the neck of the vesicle. b) A GUV with membrane tube pulled by magnetic tweezers; the magnetic bead can be spun in order to drive flows in the azimuthal direction on the tube. c) Sketch of the growth of the helical instability described in this letter, the final stage is a possible pathway to tube fission due to non-linear effects. The basis vectors on the membrane \vec{e}_i where $i = r, \theta, z$, length of tube, L, and equilibrium radius, r_0, are labelled. Middle panel shows shear direction.

bulk flows on sufficiently short length-scales (sufficiently short tubes), so long as we match to physically appropriate conditions at the tube ends. Such approaches have been used to great effect in understanding membrane dynamics on scales shorter...
than the screening length [Morris and Turner, 2015; Morris, 2017; Bahmani et al., 2016]. For further details see Appendix B.

We need to construct force balance and mass conservation equations on a moving membrane which we will denote by a 2D Riemannian manifold \(\Gamma \). As \(\Gamma \) will be embedded in \(\mathbb{R}^3 \) we denote vector fields living in \(\mathbb{R}^3 \) with an arrow above them, for example \(\vec{x} \), and vector fields living in the tangent bundle of \(\Gamma \) by bold typeface, e.g. \(\vec{x} \).

The position of \(\Gamma \) will be denoted by \(\vec{X}_\Gamma (x_1, x_2) \), which depends locally on two coordinates of \(\mathbb{R}^3 \). This allows for the definition of a basis on \(\Gamma \), \(\vec{e}_i = \partial_i \vec{X} \).

The surface has velocity, \(\vec{V} = \vec{v} + w\vec{n} \) where \(\vec{v} = v^i \vec{e}_i \). \(\Gamma \) is equipped with a metric \(ds^2 = g_{ij} dx^i dx^j \), where \(g_{ij} = \vec{e}_i \cdot \vec{e}_j \), this and its inverse act to raise and lower indices respectively (the action by the metric of raising and lower of indices will sometimes be denoted by the \(\sharp \) and \(\flat \) signs respectively, see Appendix B). The triad \((\vec{e}_1, \vec{e}_2, \vec{n} = \vec{e}_1 \times \vec{e}_2) \) forms a local frame on \(\Gamma \). We also denote the second fundamental form on \(\Gamma \) as \(dB = b_{ij} dx^i dx^j \) where \(b_{ij} = \vec{n} \cdot (\partial_j \vec{e}_i) \). The connections along the tangent and normal bundles are defined in the following way

\[
\partial_i \vec{e}_j = C^{k}_{ij} \vec{e}_k; \quad \partial_i \vec{n} = -b_{ij} \vec{e}_j
\]

where \(C^{k}_{ij} = \frac{1}{2} g^{km} (\partial_j g_{mk} + \partial_k g_{jm} - \partial_m g_{jk}) \) are Christoffel symbols [Frankel, 2011]. We will also define the mean curvature, \(H \), and Gaussian curvature, \(K \), in the following manner

\[
2H = b_{ij}; \quad K = \det (b_{ij}).
\]

We assume the membrane behaves like a zero-Reynolds number fluid in the tangential direction [Happel and Brenner, 1983] and has bending energy given by the usual Helfrich energy [Helfrich, 1973].

Formally, the rate-of-deformation tensor for a manifold is defined as the Lie-Derivative of the metric along the velocity field \((\vec{V} = \vec{v} + w\vec{n}) \), which can be shown to be equal to [Marsden and Hughes, 1994; Arroyo and DeSimone, 2009]

\[
d = \mathcal{L}_{\vec{V}} (g) = \frac{1}{2} \left(\nabla v^\flat + (\nabla v^\flat)^T \right) - bw
\]

where \(\nabla \) is the covariant derivative and \(\flat \) denotes the action of the metric to “lower” the index. The first two terms are covariant versions of the standard rate-of-deformation tensor, whereas the third term describes the coupling between curvature, \(b \), and the velocity normal to the membrane, \(w \). See Appendix B for a brief heuristic derivation of this using local constructions.
We can find the continuity equation (incompressibility condition) for the membrane by taking the trace of the rate-of-deformation tensor, \(d \). This gives

\[
\nabla \cdot \mathbf{v} = 2Hw, \tag{3.4}
\]

which is simply the Euclidean continuity equation modified to account for the normal motion of the membrane.

The membrane also has associated curvature energies given by the Helfrich energy [Helfrich, 1973]

\[
E_{\text{Hel}} = \int_{\Gamma} d\mathcal{A} 2\kappa H^2 \tag{3.5}
\]

the time derivative of which depends only on \(w \) and is given by [Rahimi et al., 2013]

\[
\partial_t E_{\text{Hel}} = \dot{E}[w] = \int_{\Gamma} w \left(\kappa \left[-2\Delta_{LB} H + 4H \left(H^2 - K \right) \right] \right) d\mathcal{A}. \tag{3.6}
\]

Defining the Rayleigh dissipation functional for the membrane in the following way

\[
W_\Gamma = \int_{\Gamma} \eta_m d : dd\mathcal{A} \tag{3.7}
\]

describes the fluid behaviour of the membrane by accounting for the energy dissipation in the fluid due to the viscosity. From this a complete dissipation functional for the system can be defined as

\[
G = W_\Gamma + \dot{E} + \int_{\Gamma} \sigma \left(\nabla \cdot \mathbf{v} - 2Hw \right) d\mathcal{A} \tag{3.8}
\]

imposing incompressibility of membrane with Lagrange multiplier, \(\sigma \), which corresponds to surface tension. Performing functional variation with respect to the components of the surface velocity yields the force balance equations for the membrane, see Ref. [Arroyo and DeSimone, 2009] for details.

Force balance normal to the membrane means the normal elastic and viscous forces must sum to zero, leading to the following

\[
\kappa \left[2\Delta_{LB} H - 4H \left(H^2 - K \right) \right] + 2\sigma H + 2\eta_m \left[b^i_j \nabla_i v^j - 2 \left(2H^2 - K \right) w \right] = 0. \tag{3.9}
\]

Here \(\kappa \) is the bending rigidity of the membrane and \(\Delta_{LB} = -\star d \star d \) is the Laplace-Beltrami operator (where \(\star \) is the Hodge star and \(d \) is the exterior derivative, for definitions of these see Appendix B). Note that we are using a geometrical definition of \(\Delta_{LB} \) that is analogous to a curl-curl operator on a manifold, hence the sign dif-
ference with the usual Laplacian operator in the shape equation. This is a modified form of the shape equation first derived by Zhong-Can & Helfrich [Zhong-Can and Helfrich, 1989], but with the addition of viscous normal forces given by fluid flow on the membrane. The term coupling the second fundamental form and gradients in tangential velocity can be thought of as the normal force induced by fluid flowing over an intrinsically curved manifold. This term is of fundamental importance in the present study as it drives a shape instability. The other non-standard term \(\sim (2H^2 - K) w \) is the dissipative force associated with the normal velocity, inducing flows in the tangential direction on a curved surface.

Force balance in the tangential direction gives

\[
\eta_{m} \left[\Delta_{LB} v^i - 2Kv^i + 2 \left(b^{ij} - 2Hg^{ij} \right) \nabla_j w \right] - \nabla^i \sigma = 0 \tag{3.10}
\]

which is the modified form of the 2D Stokes equations. The new terms, coupling Gaussian curvature with tangential velocity, and curvature components with the gradients in normal velocity, come from the modified form of the rate-of-deformation tensor which accounts for the curved and changing geometry of the membrane. The term \(\sim K v^i \) describes the convergence/divergence of streamlines on a curved surface. The term \(\sim \left(b^{ij} - 2H g^{ij} \right) \nabla_j w \) describes the forces induced tangentially by the dynamics of the membrane.

3.3 The Shear-driven Instability of Membrane Tubes

We consider a ground-state membrane tube \((w = 0)\) of length \(L\) in cylindrical coordinates \((r, \theta, z)\) with radius \(r_0 = \sqrt{\frac{\sigma_0}{2\kappa}}\) and impose a velocity \(v = v_0 \hat{e}_\theta\) at \(z = 0\) (which can be interpreted as the edge of an active Dynamin ring, for example). Making use of the azimuthal symmetry the continuity and Stokes equations reduce to an ODE that admits the solution

\[
v^{(0)} = (v_0 - \Omega z) \hat{e}_\theta \tag{3.11}
\]

where the exact value of \(\Omega\) depends on the boundary condition at \(z = L\).

We consider a problem of a membrane tube attached to a flat membrane at \(z = L\) where \(L \ll L_{SD}\). We treat this flat membrane as an effective “impedance” acting at the end of the tube, as such we do not balance the shape equations at \(z = L\).

We may want to consider a tube attached to a sheet of membrane that has some friction associated to some underlying molecular interactions. For example,
consider that the tube has been pulled from the plasma membrane which is attached to the acto-myosin network [Kaksonen and Roux, 2018]. We model this using D’arcy’s equation on the sheet

\[\frac{1}{r} \partial_r \left(r \partial_r v \right) - \frac{v}{r^2} - \frac{\lambda}{\eta_m} v = 0 \quad (3.12)\]

where \(\lambda\) is a friction coefficient associated with the adhesions and \(v\) is the velocity in the \(\theta\) direction on the sheet (in standard planar polar coordinates). The solution to this equation is of the form \(v = AK_1 \left(\sqrt{\frac{\lambda}{\eta_m} r} \right)\), where \(K_i(x)\) is a modified Bessel equation of the second kind of order \(i\). We solve both geometries for some velocity \(v_L\) and then balance torques to find the ground-state velocity of the tube.

This leads a velocity profile on the tube (where the flow just follows the standard Stokes equations) of the form Eq. 3.11 where \(\Omega = \frac{v_0 \sqrt{\frac{\lambda}{\eta_m} r_0}}{1 + L \sqrt{\frac{\lambda}{\eta_m} r_0}}\). In the limit \(\lambda \to 0\) we recover the solution with no friction, where \(\Omega = \frac{2v_0}{2L + r_0}\).

We can now make a perturbation about this ground state in \(r(z, \theta, t) = r_0 + u(\theta, z, t), \quad v = v^{(0)} + \delta v^\theta(\theta, z, t) \hat{e}_\theta + \delta v^z(\theta, z, t) \hat{e}_z, \quad \sigma = \sigma_0 + \delta \sigma(\theta, z, t)\) and \(w = \partial_t u\). Note that all components of differential forms are given in the basis \(d\theta, dz\) hence the different dimensions in components. We will also make use of the discrete Fourier transform, \(f(\theta, z, t) = \sum_{q,m} \hat{f}_{q,m}(t) e^{iqz + im\theta}\), where \(\hat{f}_{q,m}\) is the discrete Fourier Transform of \(f(\theta, z)\) with \(m \in \mathbb{Z}\). We will use this to write Eqs. 3.4, 3.9, 3.10 in Fourier space up to linear order in the perturbations.

To linear order the metric and its inverse on the membrane are

\[
[g_{ij}] = \begin{bmatrix}
 r_0^2 + 2r_0u & 0 \\
 0 & 1
\end{bmatrix} ; \quad g^{-1} = [g^{ij}] = \begin{bmatrix}
 \frac{1}{r_0} - \frac{2u}{r_0^2} & 0 \\
 0 & 1
\end{bmatrix}
\quad (3.13)
\]

The second fundamental form (and its mixed index version) are given by the following at linear order

\[
[b_{ij}] = \begin{bmatrix}
 \partial^2_\theta u - r_0 - u & \partial_\theta u & \partial^2 z u \\
 \partial z u & \partial^2_\theta u & \partial^2 z u
\end{bmatrix} ; \quad [b_{ij}] = \begin{bmatrix}
 \frac{\partial^2_\theta u}{r_0} - \frac{1}{r_0} - \frac{u}{r_0^2} & \partial_\theta u & \partial^2 z u \\
 \partial z u & \partial^2_\theta u & \partial^2 z u
\end{bmatrix}
\quad (3.14)
\]
which gives mean and Gaussian curvature

\[2H = b_{ij} = b_{ij}g^{ij} = \frac{\partial^2 u}{r_0^2} - \frac{1}{r_0} + \frac{u}{r_0^2} + \partial^2 z \]

\[K = \det \left(b_i^j \right) = \det \left(b_{ik}g^{kj} \right) = -\frac{\partial^2 u}{r_0} \]

(3.15)

The Christoffel symbols are the following

\[C^\theta_{ij} = \begin{bmatrix} \frac{\partial u}{r_0} & \frac{\partial u}{r_0} \\ \frac{\partial u}{r_0} & 0 \end{bmatrix} ; \quad C^z_{ij} = \begin{bmatrix} -r_0\partial_z u & 0 \\ 0 & 0 \end{bmatrix} \]

(3.16)

which can be used to find the covariant derivative of the velocity field on the membrane \(v = (v + \delta v^\theta)\vec{e}_\theta + \delta v^z\vec{e}_z \)

\[\nabla v = \begin{bmatrix} \frac{1}{r_0}\partial_\theta \delta v^\theta & \partial_\theta \delta vz \\ -\frac{\Omega}{r_0} + \frac{1}{r_0}\partial_z \delta v^\theta & \partial_z \delta vz \end{bmatrix} \]

(3.17)

We will make use of this to calculate the viscous part of the normal membrane response in the shape equation

\[b^2 : \nabla v = -\frac{1}{r_0^2}\partial_\theta \delta v^\theta - \frac{\Omega}{r_0}\partial_z \delta vz + \]

(3.18)

We also note here the Hodge duals of the fundamental forms as this provides a natural way to compute Laplacians on manifolds (see Appendix B for general expressions of Hodge stars)

\[*\text{vol}^2 = 1; \quad *1 = \text{vol}^2 \]

\[*d\theta = \left(\frac{1}{r_0} - \frac{u}{r_0^2} \right) dz \quad *dz = -(r_0 + u)d\theta \]

(3.19)

where \(\text{vol}^2 \) is the volume 2-form on the surface. From this we find the Laplacian of the mean curvature \(-\star d \star dH \) in order to derive the bending rigidity dominated response. After some lengthy algebra and taking the Fourier representation \(u = \sum_{q,m} \tilde{u}_{q,m}e^{iqz+im\theta} \) with similar transforms for \(\sigma = \sigma_0 + \delta \sigma \) and the surface velocity components, we can write the shape equation as a linear response theory. This gives the linear response of the normal force balance is the following

\[F_{q,m} \tilde{u}_{q,m} + F^\sigma_{q,m} \delta \sigma_{q,m} + F^\theta_{q,m} \delta v^\theta_{q,m} + F^z_{q,m} \delta v^z_{q,m} + G_{q,m} \delta w_{q,m} = 0 \]

(3.20)
where $F_{q,m}^u = \frac{4\sigma^2}{\pi} \left[\tilde{q}^4 + m^4 + 2\tilde{q}^2 m^2 - 2m^2 + 1 \right] - \frac{2m \tilde{q} \Omega}{r_0^3}$, $F_{q,m}^\sigma = \frac{1}{r_0}$, $F_{q,m}^\theta = \frac{2\eta m \tilde{q}}{r_0^3}$, $F_{q,m}^z = 0$ and $G_{q,m} = \frac{2m}{r_0^2}$ where $\tilde{q} = qr_0$.

Note the sign of the final term in the $F_{q,m}^u$ coefficient suggests that the shear flow could lead to an instability in the $m \neq 0$ modes. The force distribution on the tube is shown in Fig. 3.2. Note that the $(m \rightarrow -m, \tilde{q} \rightarrow -\tilde{q})$ symmetry of the force defines a "handedness" which changes upon reversing the direction of the shear rate.

In order to find the 2D Stokes equations to linear order we need to calculate the Laplace-Beltrami operator of the velocity field $v = \left(\frac{v_0(z) + \delta v}{r(\theta,z)} \right) (\frac{\partial}{\partial \theta}) + \delta v^z \left(\frac{\partial}{\partial z} \right)$.

First we lower the velocity with the metric and act on it with the exterior derivative giving (to linear order)

$$dv^b = \left[-r_0 \Omega + \partial_z uv_0 - u \Omega + r_0 \partial_\theta \delta v^\theta \right] dz \wedge d\theta + \partial_\theta \delta v^z dz \wedge d\theta$$

(3.21)

next, taking the Hodge star of this and using the asymmetry of the wedge product and the fact that $\text{vol} = \sqrt{|g|} d\theta \wedge dz$ we find

$$\ast dv^b = \Omega - \frac{\partial_z u}{r_0} v_0 - \partial_z \delta v^\theta + \frac{\partial_\theta \delta v^z}{r_0}.$$

(3.22)
Taking the exterior derivative of this gives
\[d \ast dv^\flat = \left[-\frac{\partial z u}{r_0} - \frac{\partial z \delta v^\theta}{r_0} - \frac{\partial z u \Omega}{r_0} \right] dz \]
\[+ \left[\frac{\partial \theta u}{r_0} v_0 - \frac{\partial z \delta v^\theta}{r_0} + \frac{\partial \theta \theta}{r_0} \right] d\theta \] (3.23)
taking the Hodge star of this and applying the inverse metric leads to
\[\left(- \ast d \ast dv^\flat \right)^2 = \frac{1}{r_0^2} \left[-\partial z z u v_0 - r_0 \partial z z \delta v^\theta + \partial z \delta v^\theta - \partial z u \Omega \right] \left(\frac{\partial}{\partial \theta} \right) \]
\[+ \left[\frac{\partial z u v_0}{r_0^3} + \frac{1}{r_0} \partial z \theta \delta v^\theta - \frac{1}{r_0^2} \partial \theta \theta \delta v^\theta \right] \left(\frac{\partial}{\partial z} \right). \] (3.24)

The contribution to the Stokes equations from the Gaussian curvature is given by
\[-2Kv = \frac{2\partial^2 z}{r_0^2} \left(\frac{\partial}{\partial \theta} \right) \] (3.25)
and from the gradient in the normal velocity we have
\[2(b - 2Hg) \cdot \nabla w = 2 \left[\left(\frac{-1}{r_0^3} 0 \right) + \frac{1}{r_0} \left(\frac{1}{r_0^3} 0 1 \right) \right] \left(\frac{\partial w}{\partial r_0} \right) \]
\[= \frac{2}{r_0} \frac{\partial w}{\partial z} \left(\frac{\partial}{\partial z} \right). \] (3.26)

Taking Fourier transforms of these we can find the 2D Stokes equations in Fourier space
\[\left(\eta_m \left[-\frac{m^2}{r_0^2} \tilde{\delta v^\theta}_{q,m} - \frac{iq \Omega}{r_0} \tilde{\delta v^\theta}_{q,m} + \frac{r^2}{r_0^2} \tilde{\delta v^\theta}_{q,m} - \frac{1}{r_0^3} \tilde{\delta v^\theta}_{q,m} \right] - \frac{im}{r_0} \tilde{\delta \sigma}_{q,m} \right) \]
\[= \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \] (3.27)
where \(\oplus \) denotes convolution between the two Fourier transforms in \(q \) space. This comes from using the convolution theorem \(F(f \cdot g) = F(f) \oplus F(g) \). The continuity equation reads
\[im \delta v^\theta_{q,m} + i \tilde{q} \delta \tilde{v}^\theta_{q,m} + \delta w_{q,m} = 0. \] (3.28)

From this point it is just a matter of algebra to find the response functions \(\delta v^\theta_{q,m}, \delta \tilde{v}^\theta_{q,m} \) and \(\delta \sigma_{q,m} \) in terms of \(\tilde{u}_{q,m} \) and \(\tilde{w}_{q,m} \).
where time is normalised according to

Thus we have the following identity

The modes become unstable when the real part of the growth rate changes sign to $\Re \{ F(m, q) \} > 0$, which occurs for

We note that $\Re \{ F(0, q) \} < 0$ for all \tilde{q}, meaning that the $m = 0$ peristaltic mode is always linearly stable. This is not the case for the $|m| = 1$ mode, which is the first to be driven unstable. The stability diagram for the $|m| = 1$ mode is plotted.
in Fig. 3.4 with the black line in both the main figure and the inset. This means that, beyond a certain rotation speed, a helical mode will grow, with pitch length initially set by the length of the tube. The divergence of the growth rate for small \tilde{q} is removed by the bulk hydrodynamics, however this is at a length scale much longer than the tube length. This helical instability is a new type of membrane instability, distinct from the usual peristaltic (Pearling) instabilities found in membrane tubes [Nelson et al., 1995].

This analysis neglects the advection in \tilde{q} given by Eq. 3.33. This corresponds to the $m \neq 0$ modes being advected with the ground-state flow and adding more turns to the helices, thus increasing \tilde{q}. As this advection will eventually stabilise the mode, what really matters is the maximum size the fluctuation reaches before it is damped. To calculate this we solve Eq. 3.33 with the initial condition $\tilde{u}_{q,1} = u_0 \delta(q - \tilde{q}_0)$, which can then be used to calculate the amplification of a given mode, $\tilde{u}_{q,1}/u_0$. The solution to Eq. 3.33 is given by the method of characteristics as

$$\tilde{u}_{q,m}(t) = u_0 \delta(\tilde{q} - \tilde{q}_0 - m\tilde{\Omega}t)e^{f(q,m)}$$

(3.36)

where

$$f(q,m) = \frac{1}{60} \left[-20m^2(2 + 3\tilde{q}^2)\tilde{\Omega}\tilde{\xi}^2 + 30m^3\tilde{q}\tilde{\Omega}^3 - 6m^4\tilde{\xi}\tilde{\Omega}^4
- 30\tilde{\xi}(5 + 4\tilde{q}^2 + \tilde{q}^4 - \tilde{\Omega}) + 15m\tilde{\xi}(-4\frac{i\tilde{\Omega}\eta_n}{r_0\sigma_0} + t(8\tilde{q} + 4\tilde{q}^3 - \tilde{\Omega})\tilde{\Omega}) \right.
\left. - \frac{60}{m\tilde{q}\tilde{\Omega} - m^2\tilde{\xi}\tilde{\Omega}^2} + \frac{15}{m}(-\tilde{q}^{-2} + \frac{4}{\tilde{q}\tilde{\Omega}} + \frac{1}{(\tilde{q} - m\tilde{\xi})^2}) \right]$$

(3.37)

and includes the advection of the undulation by the ground-state flow, thus shortening the wavelength of the undulation, i.e. $\tilde{q} = \tilde{q}(\tilde{t}) = \tilde{q}_0 + m\tilde{\Omega}\tilde{t}$. Because of this advection any \tilde{q} mode which is initially unstable will be advected to stability and the mode will eventually decay. If our system was purely deterministic this would kill the instability in the long time limit, however as the bending rigidity of the membrane has comparable energy to the thermal energy ($\kappa \sim 10k_BT$ where k_B is Boltzmann’s constant and T is the temperature) the \tilde{q} spectrum is constantly fed by thermal fluctuations. This means that, to understand the full dynamics of the system we should solve Eq. 3.33 with the addition of a stochastic term describing thermal noise.
3.3.1 Solution to the fluctuation spectrum with thermal noise

Adding a thermal noise term to Eq. 3.33 we get a Stochastic Partial Differential Equation (SPDE) in (\tilde{t}, \tilde{q}) given by

$$\partial_{\tilde{t}} \tilde{u}_{q,m} = -\tilde{\Omega} m \partial_{\tilde{q}} \tilde{u}_{q,m} + F'(q,m) \tilde{u}_{q,m} + \partial_{\tilde{t}} \xi_{t,q,m} \tag{3.38}$$

where

$$\langle \partial_{\tilde{t}} \xi_{t,q,m} \partial_{\tilde{t}}' \xi_{t',q',m'} \rangle = \frac{2k_B T}{\kappa} \left(\frac{m^2 + \tilde{q}^2}{2\tilde{q}^4} \right)^2 \delta_{q,q'} \delta_{m,m'} \delta (\tilde{t} - \tilde{t}') \tag{3.39}$$

is chosen such that we recover the equipartition result of equilibrium statistical mechanics when $\tilde{\Omega} = \tilde{v}_0 = 0$. We define $F'(q,m) = F(q,m) - \dot{m} \tilde{v}_0$. Eq. 3.38, with initial data $\tilde{u}_{q,m}(0) = u_0(q,m)$, is the stochastic version of a Cauchy problem [Chow, 2014].

In order to solve this SPDE we make use of the method of Stochastic Characteristics [Chow, 2014]. In Itô form the thermal noise is written as

$$\xi_{t,q,m} = \sqrt{B(q,m)} dW_{t,q,m} \tag{3.40}$$

where $\langle dW_{t,q,m} dW_{t',q',m'} \rangle = \delta_{m,m'} \delta_{q,q'} dt$ and $B(q,m) = (m^2 + \tilde{q}^2)/\tilde{q}^4$.

Eq. 3.38 is equivalent to the Itô integral

$$\tilde{u}_{q,m}(\tilde{t}) = u_0(\tilde{q}, m) - m \tilde{\Omega} \int_0^{\tilde{t}} \partial_{\tilde{q}} \tilde{u}_{q,m}(s) ds + \int_0^{\tilde{t}} \left[F'(q,m) \tilde{u}_{q,m}(s) ds + \xi_{s,q,m} \right]. \tag{3.41}$$

In order to solve this we introduce the following characteristics

$$\phi_t(q) = \tilde{q} + m \tilde{\Omega} \int_0^t ds = \tilde{q} + m \tilde{\Omega} \tilde{t}$$

$$\eta_t(q,r) = r + \int_0^t \eta_s (q,r) F'(\phi_s(q), m) ds + \int_0^t \sqrt{B(\phi_s(q), m)} dW_{t,m,q} \tag{3.42}$$

for certain regularity conditions on the noise these stochastic integral equations have a unique solution that defines a stochastic flow of diffeomorphism. This leads to the solution to the stochastic Cauchy problem, posed by Eq. 3.38 and its initial data, which is given by

$$\tilde{u}_{q,m} = u_0(\phi^{-1}_t(q), m) \exp \left[\int_0^t F'(\phi_s(y), m) ds \right] \bigg|_{y=\phi^{-1}_t(q)}\tag{3.43}$$

$$+ \int_0^t \exp \left[\int_\tau^t F'(\phi_s(y), m) ds \right] \sqrt{B(\phi_t(y), m)} dW_{t} \bigg|_{y=\phi^{-1}_t(q)}.$$
Evaluating the integrals in the exponentials we find
\[
f'(q, m, t) = \int F'(\phi_t(y), m) dt
\]
\[
= -15m^5\Omega(mt\Omega + q) - 40m^2(mt\Omega + q)^6
+ 60m(m^2 - 1)\Omega(mt\Omega + q)^3\log(mt\Omega + q) - 30(6m^4 - 2m^2 + 1)(mt\Omega + q)^4
+ 10m^4(m^2 - 1)^2 + 60(2m^6 - 2m^4 + m^2)(mt\Omega + q)^2 - 6(mt\Omega + q)^8
+ 15m\Omega(mt\Omega + q)^3\right]\left(60m\Omega(mt\Omega + q)^3\right)^{-1} - i\dot{m}v_0 t
= f(q, m, t) - i\dot{m}v_0 t.
\]
(3.44)

We want to consider the steady state of the fluctuations at a time when any dependence on this initial data has decayed so, by taking the complex conjugate of Eq. 3.43 squared and averaging we find
\[
\langle |\tilde{u}_{q,m}|^2(\tilde{t}) \rangle = e^{2f(\tilde{q} - m\tilde{\Omega}_t, \tilde{t})} \int_0^{\tilde{t}} B \left(\tilde{q} + m\tilde{\Omega} (\tau' - \tilde{t}), m \right) e^{-2f(\tilde{q} - m\tilde{\Omega}_t, \tau')} d\tau'. \tag{3.45}
\]
where we have input the characteristic curves and their inputs explicitly and neglected the term describing the dynamics of the initial data as we are only interested in the steady state.

If we consider the case of the \(m = 1\) mode then the equilibrium fluctuations are known to be critical in the \(\tilde{q} \to 0\) limit [Fournier and Galatola, 2007]. Because of this we introduce a cut of wavenumber \(\tilde{q}_0\) that corresponds to the length-scale of the longest fluctuation on the finite tube. This implies that the noise kernel of our system has only localized support on the interval \(\tau' - \tilde{t} \in [\frac{\tilde{q}_0 - \tilde{q}}{\tilde{\Omega}}, 0]\), so we can change variables to integrate over this interval. Thus, the \(m = 1\) steady state fluctuations are given by
\[
\langle |\tilde{u}_{q,1}|^2(0) \rangle = e^{2f(\tilde{q}, 1, 0)} \int_{\frac{\tilde{q}_0 - \tilde{q}}{\tilde{\Omega}}}^{0} B (\tilde{q} + \tilde{\Omega} \tau', 1) e^{-2f(\tilde{q}, 1, \tau')} d\tau'. \tag{3.46}
\]

The steady states of \(\langle |\tilde{u}_{q,1}|^2 \rangle\) and the \(z\) part of their spatial gradients in Fourier space \(\tilde{q}^2 \langle |\tilde{u}_{q,1}|^2 \rangle\) are plotted in Fig. 3.3 for \(\tilde{\Omega} = 1\) and \(\tilde{q}_0 = 0.2\). We also plot the equivalent thermal fluctuations given by Eq. 1.29 with \(m = 1\)
\[
\langle |\tilde{u}_{q,1}|^2 \rangle = \frac{k_B T}{\kappa \tilde{q}^2 (\tilde{q}^2 + 2)}. \tag{3.47}
\]
Figure 3.3: The steady state fluctuations for a sheared tube (Eq. 3.46) and their Fourier “gradients” in the z direction \((\|F(e_z \cdot \nabla u)\|^2 = \tilde{q}^2 \langle \tilde{u}_{q,1}^2 \rangle) \) with shear rate, \(\tilde{\Omega} = 1 \), and long wavelength cut-off, \(\tilde{q}_0 = 0.2 \). We choose the bending rigidity to be \(\kappa = 10k_B T \). The dashed red line shows the equivalent thermal fluctuations.
Figure 3.4: Figure showing the zero of $F(q, m = 1)$ as a function of \tilde{q} and $\tilde{\Omega}$ (Eq. 3.35). The region above the black line is unstable. The blue dot-dashed line shows the value of $\tilde{\Omega}$ for which the steady state becomes non-linear as a function of \tilde{q}, which we denote the region above this line as “Non-linear deformation”. The inset shows the same plot on a linear scale, with the red dashed line showing the low \tilde{q} expansion of the stability criterion.

which we plot as a red dashed line.

In fact it is the gradient terms which break the linearisation conditions due to the advection and amplification increasing the gradients. To find a criterion for “Non-linear deformation” (and hence very large fluctuations), we can find where the gradients become of $\sim \mathcal{O}(1)$ by solving $(1 + q_{\text{max}}^2)\langle |\tilde{u}_{q,1}|^2 \rangle_{\tilde{q} \rightarrow \tilde{q}_{\text{max}}} = 1$ for $\tilde{\Omega}$ given \tilde{q}_0, where q_{max} is the \tilde{q} value for the peak of the steady state fluctuations, Eq. 3.46. This gives us a line on the $(\tilde{q}_0, \tilde{\Omega})$ plane that gives a conservative estimate of when non-linear effects become important. A stability diagram for the $m = 1$ mode in $(\tilde{q}, \tilde{\Omega})$-space is plotted in Fig. 3.4 along with the criterion for non-linear deformation (blue dot-dashed).
3.4 Discussion

In the small \tilde{q} limit, the threshold shear (Eq. 3.35) is $\tilde{\Omega} \approx 2\tilde{q}$, see S.I.). The shear rate is $\Omega \sim \frac{2\pi \nu}{L}$, where ν is the spinning frequency. Assuming that the cut-off wavenumber of the tube is associated with a fundamental mode $\tilde{q}_0 = \frac{2\pi r_0}{L}$, gives the critical spinning frequency for the onset of instability as

$$\nu_{\text{crit}} \approx \frac{2\sigma_0}{\eta_m}$$

The functional form of the critical frequency can be explained using a scaling analysis of Eq. 3.9. For $q \sim 1/L$, the first order correction to the curvature scales like $H \sim \frac{u}{L^2}$ so that the elastic force-per-unit-area scales like $f_{\text{el}} \sim \frac{u \sigma_0}{L^2}$, while the off-diagonal components of the second fundamental form scale like $b \sim \frac{u r_0}{L}$ and hence the viscous force-per-unit-area scale like $f_{\text{vis}} \sim \eta_m \frac{\tilde{\Omega} u}{r_0 L} \sim \frac{u \eta_m \nu}{L^2}$. Balancing these forces gives a critical frequency $\nu_{\text{crit}} \sim \frac{\sigma_0}{\eta_m}$.

Typical membranes in the fluid (liquid disordered) phase have viscosities $\eta_m \sim 10^{-8} - 10^{-7}$ Pa m s [Hormel et al., 2014] (higher in the liquid ordered phase). However, much higher values have been associated with tubes pulled from living cells, $\eta_m \sim 10^{-7} - 10^{-5}$ Pams [Brochard-Wyart et al., 2006]. Effective viscosities may be higher still if the neck is crowded with proteins. If we assume the surface tension takes a physiologically typical value of $\sigma_0 \sim 10^{-5}$ Nm$^{-1}$ [Roux, 2014; Antonny et al., 2016], this gives a critical frequency of $\nu_{\text{crit}} \sim 1 - 100$Hz in the small \tilde{q} limit. It is more likely that Dynamin will be found on short tubes with $\tilde{q}_0 \sim 1$ so, reading off from Fig. 3.4 we find $\tilde{\Omega} \sim 5$ for the stability criterion and $\tilde{\Omega} \sim 50$ for the non-linearity criterion which corresponds to frequencies of $5 - 500$Hz and $50 - 5000$Hz. Dynamin has been measured to have rotational frequencies $\nu \sim 10$Hz [Roux et al., 2006], suggesting the instability could be accessible to Dynamin for the higher values of viscosity found in cells [Brochard-Wyart et al., 2006]. The criterion for non-linearity is rather conservative as it is based on the variance of the fluctuations (one third of the fluctuations will be breaking the linearity condition at this point). It is also likely to significantly underestimate the size of fluctuations, which, in the case of Dynamin, are likely to be dominated by active processes rather than thermal noise (see Chapter 4), and is further damped by the hard cut-off at \tilde{q}_0.

A natural way for the instability/fluctuations to progress in the non-linear regime is fission of the tube, which is of particular significance given that the exact mechanism for Dynamin mediated fission is unknown. This effect may be amplified due to friction with the cytoskeleton [Brochard-Wyart et al., 2006; Simunovic et al., 2017] impeding the supply of membrane to the growing fluctuations. As
the instability/fluctuations grow the surface tension will increase, either narrowing
the tube or causing Pearling [Nelson et al., 1995]. An increase in tension has been
shown to accelerate spontaneous tube fission [Morlot et al., 2012] and friction im-
peding membrane flow has been shown experimentally to scission tubes [Simunovic
et al., 2017]. The increase in fluctuations is also likely to promote the formation
of hemi-fused states, which can be an important intermediate for fission [Pannuzzo
et al., 2018]. This picture of fission, promoted by membrane hydrodynamics just
outside the active Dynamin site, is consistent with the experimental observation
that the location of fission is near the edge of the active Dynamin site rather than
directly under it [Morlot et al., 2012]. The time-scale over which the instability
grows is of the order of \(\tau \approx 10^{-2} \) s, which is sufficiently fast to be consistent
with the Dynamin-induced fission process [Dar et al., 2015].

Although we have provided evidence that a membrane instability can be
driven by the rotation of Dynamin, our study is based on the simplified geometry
of a cylindrical tube, rather than the neck of a budding vesicle, a location where
Dynamin might typically act in-vivo. While our approach becomes analytically
intractable for such complex membrane geometries we can gain some intuition into
how the driving force per unit area of the instability changes with the geometry of
the neck region. We do this by considering the term in the normal force balance
equation that is responsible for driving the instability. Given the helical symmetry
of the instability we infer that this driving force-per-unit-area goes like the mixed
derivative in the shape, \(f_{\text{driving}} \sim \eta_{bb'} \nabla_i v^j \). The term which acts like the shear rate
on the tube now depends on \(z \) and we must calculate it numerically, see Appendix
B. In the case of a catenoid neck this leads to an amplification of the driving force
by (only) a factor of 2 near the active site \((z = 0) \), for details see Appendix B.
Whilst a relatively small effect, this is qualitatively consistent with the experimental
observation that Dynamin fission of a tube in-vitro often occurs near the GUV neck
[Morlot et al., 2012] and that fission on the necks of a budding vesicles in-vivo occurs
faster than it does on long tubes [Morlot et al., 2010; Roux, 2014].

A second possibility for the non-linear growth is a stable non-equilibrium
shape driven by the membrane flow. In this case it is worth noting an analogy
between the membrane tube instability that we discuss here and elastic rods un-
der torsion that deform nonlinearly into plectonemes [Audoly and Pomeau, 2010].
We suggest that it may also be possible (under some conditions) for the unstable
membrane tube to develop fluid plectonemes, similar to those actually seen in ex-
periments on long tubes covered in Dynamin [Roux et al., 2006; Morlot et al., 2010].
A possible experiment to better understand the non-linear evolution of the
fluctuations and determine whether these hydrodynamic effects alone are sufficient to induce fission would involve a short tube pulled from a GUV or cell by magnetic tweezers that then spin its end, Fig. 3.1b. This would also enable experimentalists to test our predictions more quantitatively. The instability should also arise in a longer tube, however the quantitative nature of our predictions would likely require modifications due to screening of membrane flow by the ambient fluid. In this case we expect that the unstable wavelength would then be set by the screening length $\sqrt{L_{SD} r_0}$ rather than the tube length [Henle and Levine, 2010; Ferziger and Peric, 2002] and that our results would continue to hold at the scaling level.

In summary, we have developed a hydrodynamic theory that predicts an instability on fluid membrane tubes that is driven purely by a shear in the membrane flow. Such flows are shown to first drive a helical instability, which is quite distinct from any previously identified instabilities of fluid membrane tubes. This instability, although eventually advected to stability by the flow is shown to be able to produce a significant increase in the fluctuation spectra of a membrane tube. We predict that this instability is physiologically accessible to Dynamin but has not previously been considered in models of its function [Lenz et al., 2008; Morlot et al., 2010]. This instability may provide a mechanism for Dynamin-mediated tube fission mechanism, e.g. due to increasing tension in the amplified steady state or in the subsequent non-linear deformation regime.
Chapter 4

Dynamics of Passive and Active Membrane Tubes

Utilising the Onsager formulation, we derive dynamical equations for the small deformation limit relaxation of a fluid membrane tube allowing for a contrast of ambient viscosity and variations in surface tension due to the deformations. Computing the relaxation rates, we recover results previously found in the case of purely axis-symmetric perturbations along with new results for higher order angular (m) modes. We explain the long and short wavelength limits of these modes making use of various asymptotic arguments. Adding stochastic terms to our dynamical equations which describe passive thermal forces and “active” forces, we compute expressions for the mean-square fluctuations and effective temperature associated with the addition of active fluctuations. Finally we discuss how one might measure these fluctuations in experiment and infer the properties of the active forces.

4.1 Introduction

Membrane tubes, formed by bilayers of phospholipid molecules, are structures ubiquitous in cells. They are vital to the function of many organelles including the peripheral Endoplasmic Reticulum (ER) [Nixon-Abell et al., 2016] and membrane nanotubes, which have been implicated as an important pathway in inter-cellular signalling [Abounit and Zurzolo, 2012]. Membrane tubes can be formed from a flat membrane by the action of a local force normal to the membrane (such as molecular motors, actin or curved proteins coating the membrane) [Derényi et al., 2002; Cuvelier et al., 2005; Yamada et al., 2014].

From a statistical mechanics perspective there has been significant work on
the thermal fluctuations of membrane tubes [Fournier and Galatola, 2007; Komura and Lipowsky, 1992]. A striking prediction from these theories is that the bending modes of the tube are critical in the long wavelength limit and it would be expected that an-harmonic terms in the free energy will dominate the excess area and length fluctuations [Fournier and Galatola, 2007]. This has become relevant recently as it was shown that optical tweezers techniques can be used to infer the power spectral density of such fluctuations on tubes pulled from Giant Uni-Lamellar Vesicles (GUVs) [Valentino et al., 2016]. A related topic of interest is the statistical mechanics of tubular networks [Tlusty and Safran, 2000; Tlusty et al., 2000] and on the length fluctuations of tubes held by a fixed force [Barbetta and Fournier, 2009].

Work on the dynamics of membrane tubes has focused on the simplified axisymmetric case, in particular the dynamics of the Pearling instability of membrane tubes [Bar-Ziv and Moses, 1994; Boedec et al., 2014; Nelson et al., 1995; Gurin et al., 1996], and the dynamics of tether pulling from a GUV or cell [Evans and Yeung, 1994; Nassoy et al., 2008; Brochard-Wyart et al., 2006]. A further area of study is that of particle mobility laterally within the membrane [Henle and Levine, 2010; Rahimi et al., 2013]. These examples provide insight into how the curved geometry of the membrane tube can lead to interesting physics, in the form of visco-elastic couplings [Rahimi et al., 2013] and non-Newtonian rheological behaviour [Brochard-Wyart et al., 2006; Evans and Yeung, 1994].

In this chapter we will focus on the dynamics of membrane tubes, deriving equations of motion from an Onsager framework (in the manner of [Fournier, 2015; Sachin Krishnan et al., 2016, 2018]) and analysing the relaxation behaviour in Fourier space. We then consider the case where stochastic forces act on the membrane and derive the statistical behaviour of the shape undulations, in particular focusing on the case where active noise dominates. Here the term active refers to a noise term which breaks the fluctuation dissipation theorem. Such active membrane systems have been theoretically studied extensively in the case of flat membranes [Prost and Bruinsma, 1996; Ramaswamy et al., 2000; Gov, 2004] and spherical vesicles [Sachin Krishnan et al., 2018; Turlier et al., 2016]. These descriptions have also proved useful when compared to experiments with active proteins in GUVs [Manneville et al., 2001] and in the analysis of red blood cell flicker [Turlier et al., 2016; Gov and Safran, 2005].

We derive the fluctuation spectra for active tubes and calculate the effective temperature of such fluctuations. We then discuss possible ways to quantify the parameters in our active fluctuations model from experiment. Finally we discuss some open problems in the study of membrane tubes and the study of active
membranes more generally.

4.2 Membrane tube dynamics

4.2.1 Geometry

We take the membrane to be a manifold, $\Gamma \subset \mathbb{R}^3$, locally equivalent to \mathbb{R}^2. Vectors in the ambient space will be notated at $\vec{x} \in \mathbb{R}^3$ and vectors in the tangent bundle to the manifold as $x \in T(\Gamma)$.

We parametrise the manifold, Γ, with the vector

$$\vec{r} = (r(\theta,z,t) \cos \theta, r(\theta,z,t) \sin \theta, z)$$

(4.1)

where $r(\theta,z,t) = r_0[1 + u(\theta,z,t)]$, see Fig. 4.1(a). We will consider the small deformation limit where $u \ll 1$. Local coordinates can be induced on the surface by taking derivatives with respect to θ and z, giving $\vec{e}_\theta = \partial_\theta \vec{r}$ and $\vec{e}_z = \partial_z \vec{r}$, respectively. A complete triad can be defined by $\{\vec{e}_\theta, \vec{e}_z, \vec{n}\}$ where $\vec{n} = (\vec{e}_\theta \times \vec{e}_z)/|\vec{e}_\theta \times \vec{e}_z|$ is the normal vector to the surface. The metric and second fundamental (bilinear) forms are then defined as $g = g_{ij}dX^i dX^j = \vec{e}_i \cdot \vec{e}_j dX^i dX^j$ and $b_{ij} = b_{ij} dX^i dX^j$ where

$$b_{ij} = \vec{n} \cdot \partial_j \vec{e}_i.$$

This can be used to define the mean curvature, $H = b_{ii}/2$, and Gaussian curvature, $K = \det b_{ij}$.

The membrane is assumed to behave as a fluid in the tangential direction so we define a vector field, $v \in T(\Gamma)$, as the flow velocity of lipids in the membrane. We assume v is of the same order as u and perturb around a ground-state with no flow.

4.2.2 Free energy

The free energy of an incompressible fluid membrane can be written using the Helfrich-Canham-Willmore energy [Helfrich, 1973; Canham, 1970] (Eq. 1.7)

$$F_{\text{el}} = \int dA \left[\sigma + \frac{\kappa}{2} (2H)^2 \right],$$

(4.2)

where σ is surface tension, κ the bending rigidity and the area element is given by $dA = \sqrt{|g|} d\theta dz$. We have integrated out the contribution from the Gaussian curvature and saddle splay modulus by assuming no changes in topology and a tube of infinite length. We also neglect spontaneous curvature for simplicity ($C_0 = 0$).

The area element and the mean curvature squared are given, up to second
order by,

\[dA \approx r_0 \left[1 + u \left(\frac{r_0^2 \partial_z^2 u + \partial_\theta^2 u}{2} \right) \right] d\theta dz, \quad (4.3) \]

\[H^2 \approx \frac{1}{r_0^2} \left[1 - r_0^2 \partial_z^2 u + \partial_\theta^2 u + u \left(\frac{2u(r_0^2 \partial_z^2 u + 3\partial_\theta^2 u) - r_0^2 (\partial_z u)^2}{2} \right) + (r_0^2 \partial_z^2 u + \partial_\theta^2 u)^2 + (\partial_\theta u)^2 + 3 u^2 \right]. \quad (4.4) \]

If we take the full free energy \(F = \mathcal{F}_{el} - \int dV \Delta P \), where \(\Delta P = P^- - P^+ \) is the hydrostatic pressure jump across the membrane, then the ground-state \(r = r_0 \) must satisfy the modified Laplace equation

\[\frac{\sigma}{r_0} - \frac{\kappa}{2r_0^3} - \Delta P = 0, \quad (4.5) \]

in order to minimise the free energy.

For the Onsager formulation of membrane dynamics, we need to know the rate of change of the free energy. This is given by

\[\dot{F} = \int d\theta dz \left[\frac{\kappa}{r_0^2} \left(\frac{3}{2} u + r_0^2 \partial_z^2 u + r_0^2 \partial_\theta^2 u + \frac{5}{2} \partial_\theta^2 u + 2r_0^3 \partial_\theta^2 \partial_z^2 u + \partial_\theta^2 u \right) \right. \]

\[- \sigma (u + r_0^2 \partial_z^2 u + \partial_\theta^2 u) \left. \right] r_0 \dot{u}, \quad (4.6) \]

where dot indicates time derivative and we have made use of Eq. 4.5 (or equivalently the constraint that total volume is preserved \(\int d\theta dz u = -(1/2) \int d\theta dz u^2 \)). Note that \(\dot{F} \) is a functional only of the normal velocity \(v_n = r_0 \dot{u} + O(u^2) \) and not the tangential components of membrane velocity, \(v \).

4.2.3 Dissipation and constraints

We will consider only the dissipation due to the ambient fluid as this is the dominant dissipative mechanism at large length-scales [Seifert and Langer, 1994]. We define the velocity in the ambient fluid as \(\vec{V} = V^\alpha \vec{e}_\alpha \) where we use Greek indices to denote summation over coordinates in \(\mathbb{R}^3 \). The dissipation functional for the bulk fluid is given by [Landau and Lifshitz, 1959]

\[\mathcal{P}^\pm = \int_{\mathcal{V}^\pm} dV^\pm \eta^\pm D^\pm_{\alpha \beta} D^{\alpha \beta \pm}, \quad (4.7) \]
Figure 4.1: (a) Cross section of a membrane tube with some undulation $r_0 u(\theta, z, t)$ about the radius r_0. Here η^\pm label the viscosity of the exterior and interior ambient fluid respectively. (b) Surface plots of the Fourier decompositions, $u = \sum_{q,m} u_{qm} e^{iqz+im\theta}$ for $q = 1$.
where η^\pm is the viscosity of the exterior and interior regions respectively (and similarly for the other \pm superscripts), as shown in Fig. 4.1(a), and $D^{\pm}_{\alpha\beta} = (\nabla_\alpha V^\pm_\beta + \nabla_\beta V^\pm_\alpha)/2$ is the rate-of-deformation tensor.

At the scale of cell membranes (10 nm–100 μm) viscous dissipation dominates the energy dissipation in the fluid, hence we neglect the contribution from inertia and assume zero Reynolds number [Happel and Brenner, 1983].

Our system has several constraints which, in the Onsager formulation, will be imposed using Lagrange multipliers [Doi, 2013]. Firstly, the membrane and ambient fluid are incompressible so must satisfy the following conditions

$$\nabla_\alpha V^{\alpha\pm} = 0, \quad (4.8)$$

for the bulk fluid (where \pm correspond to the exterior and interior velocities respectively) and

$$\nabla_i v^i - 2v_n H = 0, \quad (4.9)$$

for the membrane, where $v_n = r_0 \dot{u} + O(u^2)$ is the normal velocity of the surface. Further constrains come in the form of no slip and no permeation boundary conditions on the bulk fluid at the membrane

$$(V^{\alpha\pm}|_{r_0})^i = v^i, \quad V^{\tau\pm}|_{r_0} = r_0 \dot{u}. \quad (4.10)$$

4.2.4 Rayleighian and equations of motion

To derive the full equations of motion using the Onsager formulation, we must first write down the Rayleighian [Doi, 2011; Landau and Lifshitz, 1959; Fournier, 2015; Sachin Krishnan et al., 2016]. The full Rayleighian for the system is found by taking the sum of the rate-of-change of free energy for the system, Eq. 4.6, and the energy dissipations (half the work done on the system), Eq. 4.7, and adding in the constraints on the system using using Lagrange multipliers. This formulation is equivalent to Onsagers kinetic equation with reciprocal coefficients, but recast as a variational formalism, with the advantage that finding the correct pairs of fluxes and forces is now trivial as they are obtained by the variational principle automatically
[Onsager, 1931a,b; Doi, 2011]. Thus our Rayleighian reads

\[
R = P^+ + P^- + \dot{J} + \int_{\partial V} dA \zeta (\nabla_i v_i + \dot{u}) - \int_{V^+} dV^+ P^+ \nabla_\alpha V^{\alpha+} - \int_{V^-} dV^- P^- \nabla_\alpha V^{\alpha-} + \int_{\partial V} dA \left[\mu_+^+ \left((V^{\alpha+}|_{r_0})^i - v^i \right) + \mu_-^- \left((V^{\alpha-}|_{r_0})^i - v^i \right) + \lambda^+ (V^+|_{r_0} - r_0 \dot{u}) + \lambda^- (V^-|_{r_0} - r_0 \dot{u}) \right],
\]

where \(\zeta, P^\pm, \mu^\pm_i \) and \(\lambda^\pm \) are Lagrange multipliers imposing the constraints of constant area, constant volume, no slip and no permeation respectively. Note that we choose the signs of \(\zeta \) and \(P^\pm \) so that they correspond to pressure and surface tension variation respectively (however this is arbitrary).

We now proceed to use Onsager’s principle and minimise the Rayleighian to find the equations of motion for the membrane [Doi, 2013]. Taking variations of Eq. 4.11 with respect to \(V^{\alpha\pm}|_{r_0} \) yields

\[
\mp \eta^\pm D^\pm_{ri} - \mu^\pm_i = 0,
\]

\[
\mp \eta^\pm D^\pm_{ri} \pm P^\pm - \lambda^\pm = 0,
\]

showing that \(\mu^\pm_i \) and \(\lambda^\pm \) correspond to the traction forces acting on the membrane.

Extremising with respect to \(v^i \) gives

\[
\nabla_i \zeta - \mu^+_i - \mu^-_i = 0,
\]

or eliminating the Lagrange multipliers

\[
\nabla_i \zeta + \eta^+ D^+_{ri} - \eta^- D^-_{ri} = 0,
\]

which is simply tangential force balance on the membrane.

Taking variations with respect to \(r_0 \dot{u} \) and eliminating \(\lambda^\pm \) gives normal force balance on the membrane as

\[
\frac{\kappa}{r_0^3} \left(\frac{3}{2} u + r_0^2 \frac{\partial^2 u}{\partial z^2} u + r_0^4 \frac{\partial^2 u}{\partial z^2} + \frac{5}{2} \frac{\partial^2 u}{\partial z^2} u + 2r_0^2 \frac{\partial^2 u}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{\partial^4 u}{\partial z^4} \right) - \frac{\sigma}{r_0} (u + r_0^2 \frac{\partial^2 u}{\partial z^2}) + \frac{\zeta}{r_0} - \eta^+ D^+_{rr} + P^+ + \eta^- D^-_{rr} - P^- = 0.
\]

Varying with respect to \(\zeta \) gives the membrane incompressibility condition, Eq. 4.9.

Varying with respect to \(P^\pm \) and \(V^{\alpha\pm}_\alpha \) gives the usual Stokes equations and
incompressibility condition
\[\eta^\pm \nabla^2 V^\alpha = \nabla^\alpha P^\pm, \quad \nabla^\alpha V^\alpha = 0. \] (4.17)

This approach has allowed us to derive the fully coupled equations of motion for the system by just considering the relevant dissipation functionals and system constraints and deriving everything from a variational principle.

4.2.5 Fourier space decomposition

Next we solve the bulk fluid dynamics equations and thus calculate their traction forces on the membrane. To do this we make use of the known solution to the Stokes equations in cylindrical coordinates given by [Happel and Brenner, 1983]

\[\vec{V}^\pm = \nabla \phi^\pm + \nabla \times (\psi^\pm \vec{e}_z) + r \partial_r \nabla \xi^\pm + \partial_z \xi^\pm \vec{e}_z, \] (4.18)

\[P^\pm = -2\eta^\pm \partial_z^2 \xi^\pm, \] (4.19)

where \((\phi^\pm, \psi^\pm, \xi^\pm)\) are scalar functions that each satisfy the Laplace equation. We decompose these functions in Fourier space in \(\theta\) and \(z\) in terms of the coordinate systems harmonic basis

\[
\begin{pmatrix}
\phi^\pm \\
\psi^\pm \\
\xi^\pm
\end{pmatrix}
= \sum_{q,m}
\begin{pmatrix}
\Phi_{qm}^\pm \\
\Psi_{qm}^\pm \\
\Xi_{qm}^\pm
\end{pmatrix}
\Pi_{qm}^\pm (r) e^{iqz + im\theta},
\] (4.20)

with

\[
\Pi_{qm}^\pm (r) = \begin{cases}
\Pi_{qm}^+ (r) = K_m(qr), \\
\Pi_{qm}^- (r) = I_m(qr),
\end{cases}
\] (4.21)

where \(I_m(qr)\) and \(K_m(qr)\) are modified Bessel functions of the first and second kind, respectively.

We now take the Fourier transform of our equations where we define the Fourier transform as \(f(\theta, z) = \sum_{q,m} f_{qm} e^{iqz + im\theta}\), the form of surfaces given by the \(m\) mode perturbations is shown in Fig. 4.1(b).

Applying the boundary conditions on the bulk flow in Fourier space allows us to find \((\Phi_{qm}^\pm, \Psi_{qm}^\pm, \Xi_{qm}^\pm)\) in terms of our variables \((v^\theta, v^z, \dot{u})\). The boundary con-
ditions in Fourier space read
\[
\begin{pmatrix}
 r_0 \dot{u}_{q,m} \\
 v_{q,m}^\theta \\
 v_{q,m}^z
\end{pmatrix} =
\begin{pmatrix}
 \Phi_{q,m}^\pm \vartheta \Pi_{q,m}^\pm + (im/r)\Psi_{q,m}^\pm \Pi_{q,m}^\pm + \Xi_{q,m}^\pm \vartheta^2 \Pi_{q,m}^\pm \\
 (im/r)\Phi_{q,m}^\pm \Pi_{q,m}^\pm - \Psi_{q,m}^\pm \vartheta \Pi_{q,m}^\pm + im\Xi_{q,m}^\pm [\vartheta \Pi_{q,m}^\pm - \Pi_{q,m}^\pm /r] \\
 iq\Phi_{q,m}^\pm \Pi_{q,m}^\pm + irq\Xi_{q,m}^\pm [\vartheta \Pi_{q,m}^\pm + \Pi_{q,m}^\pm /r]
\end{pmatrix}
\bigg|_{r=r_0}.
\tag{4.22}
\]

We can make use of the continuity equation to eliminate \(v_{q,m}^\theta = r_0 (qv_{q,m}^z - i\dot{u}_{q,m})/m\) and find \((\Phi_{q,m}^\pm, \Psi_{q,m}^\pm, \Xi_{q,m}^\pm)\) in terms of \(\dot{u}_{q,m}\) and \(v_{q,m}^z\), which are given in Appendix C.

In Fourier space, the components of the tangential force balance equation read
\[
\begin{align*}
\theta : & \quad i m \frac{\zeta_{q,m}}{r_0} + \eta^+ \left[r \partial_r (V_{q,m}^{\theta+}/r) + \frac{im}{r} V_{q,m}^{r+} \right] \bigg|_{r=r_0} \\
& \quad - \eta^- \left[r \partial_r (V_{q,m}^{\theta-}/r) + \frac{im}{r} V_{q,m}^{r-} \right] \bigg|_{r=r_0} = 0,
\tag{4.23}
\end{align*}
\]
\[
\begin{align*}
z : & \quad iq \zeta_{q,m} + \eta^+ \left(iq V_{q,m}^{r+} + \partial_r V_{q,m}^{z+} \right) \bigg|_{r=r_0} \\
& \quad - \eta^- \left(iq V_{q,m}^{r-} + \partial_r V_{q,m}^{z-} \right) \bigg|_{r=r_0} = 0.
\tag{4.24}
\end{align*}
\]
Solving for \(v_{q,m}^z\) and \(\zeta_{q,m}\) allows us to write \((\Phi_{q,m}^\pm, \Psi_{q,m}^\pm, \Xi_{q,m}^\pm)\) in terms of \(\dot{u}_{q,m}\). Hence we can now write the normal force balance equation in Fourier space (in dimensionless units) as
\[
B \dot{u}_{q,m} = - Au_{q,m},
\tag{4.25}
\]
where
\[
A(\tilde{q}, m) = (\tilde{q}^2 + m^2) \frac{1}{2} - \frac{5}{2} \tilde{q}^2 + \frac{3}{2} - \sigma (1 - \tilde{q}^2 - m^2),
\tag{4.26}
\]
\[
B(\tilde{q}, m) = \frac{\zeta_{q,m} \vartheta}{u_{q,m}} \left(P_{q,m}^+ - \eta (\chi + 1) \partial_r V_{q,m}^{r+} + \eta (\chi - 1) \partial_r V_{q,m}^{r-} - P_{q,m}^- \right) \bigg|_{r=r_0},
\tag{4.27}
\]
where \(\sigma = \sigma r_0^2 / \kappa, \eta = \eta^+ + \eta^-, \chi = (\eta^+ - \eta^-) / \eta\) and \(\tilde{q} = q r_0\).

The exact form of \(B\) is in general too complex to write down except for the
\[m = 0 \] case where it is
\[
B(\tilde{q}, 0) = \eta(1 + \tilde{q}^2) \left[\frac{(\chi - 1) I_1^2}{2\tilde{q}I_1I_0 - \tilde{q}^2 (I_0^2 - I_1^2)} + \frac{(\chi + 1) K_1^2}{2\tilde{q}K_1K_2 - \tilde{q}^2 (K_1^2 - K_2^2)} \right],
\]
(4.28)
where the modified Bessel functions are evaluated at \(r = r_0 \). For larger values of \(m \), we will evaluate \(B \) numerically using Mathematica.

It is interesting to note that, compared with the spherical case, there are more degrees of freedom for the tube as the \(m \) and \(\tilde{q} \) modes are not coupled as they are in the case of spherical harmonics [Sachin Krishnan et al., 2016].

4.3 Relaxation dynamics

Here we will consider the relaxation dynamics for all the modes, in particular examining their asymptotic behaviour. We will make use of these results later when analysing the active fluctuations of a membrane tube in Sec. 4.5.

For some initial condition at \(t = 0 \), the solution to Eq. 4.25 is given by \(u_{qm}(t) = u_{qm}(0)e^{-\lambda t} \), where \(\lambda = A/B \). In this section we will analyse the form of \(\lambda \) to understand the stability and relaxation dynamics of the Fourier modes in membrane tube’s shape. The relaxation rate for each \((\tilde{q}, m)\) mode is given by \(\lambda \). This describes the rate at which an undulation in the tube’s radius decays back to the ground-state. These rates are plotted as a function of wave-number in the \(z \) direction, \(\tilde{q} \), in Figs. 4.2 and 4.3. Throughout we will fix the total viscosity \(\eta \) and vary the relative viscosity \(\chi = (\eta^+ - \eta^-)/\eta \) so the plots are shown in units of associated with the time-scale of the total viscosity given by \(\tau = \eta\tilde{q}^3/\kappa \).

First, we discuss \(m = 0 \) modes. For values of \(\sigma = \kappa/(2r_0^2) \), corresponding to an equilibrium ground-state with no net pressure, the undulations are always stable so \(\lambda \geq 0 \). The scaling behaviour of \(\lambda \) in the small \(\tilde{q} \) regime \((\tilde{q} \ll 1) \) is computed for the \(m = 0 \) mode, where we find

\[
B(\tilde{q}, 0) \approx \frac{\eta}{\tilde{q}^2} \left[2(\chi - 1) + \frac{\chi + 1}{2\log(2/\tilde{q}) - 1 - 2\gamma} \right],
\]
(4.29)
where \(\gamma = 0.577\ldots \) is the Euler-Mascheroni constant. This gives the scaling behaviour \(\lambda \sim \tilde{q}^2 \) in the small \(\tilde{q} \) regime, see Fig. 4.2(a).

As would be expected, in the large \(\tilde{q} \) limit the scaling behaviour is like that of a flat membrane where \(\lambda \sim \tilde{q}^3 \) and all relative viscosities converge to a universal relaxation rate (a consequence of the approximate symmetry between the interior and exterior at such small length scales), see Fig. 4.2(a).
The scaling behaviour for \(m = 1 \) is evaluated numerically and shown in Fig. 4.2(b). For large values of \(\tilde{q} \) the relaxation rate scales like that of a flat membrane (for the same reason as the \(m = 0 \) modes). However, at small values of \(\tilde{q} \), some interesting behaviour is encountered which is strongly dependent on the relative viscosity. As \(\tilde{q} \to 0 \), the external dissipation due to the tube being dragged through the fluid dominates the relaxation rate (the internal motion simply corresponds to locally translating the cross section of the tube so gradients in velocity, and hence dissipation, become small). In this limit the tube behaves like an elastic rod in terms of its relaxation and tends slowly towards \(\lambda \sim - (\gamma + \log \tilde{q}) \tilde{q}^2 \) in the long wavelength limit. This scaling behaviour for a continuous Zimm model of an elastic rod under tension in the long wavelength limit with small deflections is discussed in Appendix C.

The case \(\chi = -1 \) corresponds to \(\eta^+ = 0 \), hence in the long wavelength limit there is essentially no friction, and the \(m = 1 \) mode relaxation rate diverges as \(\tilde{q} \to 0 \). The crossover between interior to exterior dominant dissipation means that in the \(\eta^+ \ll \eta^- \) limit, the relaxation rate can be non-monotonic in \(\tilde{q} \), increasing at intermediate \(\tilde{q} \) before being screened by the exterior viscosity at long wavelengths, as seen in the case \(\chi = -0.95 \) in Fig. 4.2(b).

For higher modes of \(|m| \geq 2\), the dissipation is dominated in the long wavelength regime by the gradients in velocity induced by the cross sectional deformations of the tube. Thus, as \(\tilde{q} \) decreases, the relaxation rate becomes constant, see Fig. 4.3. This constant increases with \(m \) as each successive mode costs more bending energy to excite, so will relax faster. The high \(\tilde{q} \) limit again behaves like a flat membrane with \(\lambda \sim \tilde{q}^3 \) for all \(m \).

4.4 Pearling instability

For the \(m = 0 \) mode, there is an instability when the tube is placed under high surface tension [Boedec et al., 2014]. The growth rate or dispersion relation of such an instability is given by

\[
-\lambda = -\frac{A(\tilde{q}, 0)}{B(\tilde{q}, 0)} = -\frac{\tilde{q}^4 - \frac{1}{2} \tilde{q}^2 + \frac{3}{2} - \tilde{\sigma}(1 - \tilde{q}^2)}{\eta(1 + \tilde{q}^2)\left(\frac{(\chi-1)I_0^2}{2\tilde{q}I_1 I_0 - \tilde{q}^2(I_0^2 - I_1^2)} + \frac{(\chi+1)K_0^2}{2\tilde{q}K_1 K_2 - \tilde{q}^2(K_1^2 - K_0^2)}\right)},
\]

(4.30)
Figure 4.2: Plot of decay rate, λ, against wavenumber, \tilde{q} for u_{qm} (a) $m = 0$ and (b) $m = 1$ for varying relative viscosity $\chi = (\eta^+ - \eta^-)/\eta$ (keeping η fixed as the rate λ has been non-dimensionalized by the viscous time associated with the total viscosity, $\tau = \eta^3_0/\kappa$). Surface tension is given by $\tilde{\sigma} = 1/2$ such that the ground-state has no hydrostatic pressure jump.
Figure 4.3: Plot of decay rate, λ, against wavenumber, \tilde{q}, for the modes u_{qm} ($m = 2, 3, 4, 5$) where λ has been non-dimensionalized by the viscous time, $\tau_\eta = \eta r_0^3/\kappa$.

Surface tension is given by $\tilde{\sigma} = 1/2$ such that the ground-state has no hydrostatic pressure jump. Changing χ does not change the form of the relaxation rate for these modes.

where, again, the modified Bessel functions are evaluated at $r = r_0$. The threshold for the instability at $\tilde{q} = 0$ is given by $\tilde{\sigma} > 3/2$ or $\sigma > 3\kappa/(2r_0^2)$, which corresponds to the point when $A(0, 0)$ changes sign [Nelson et al., 1995; Gurin et al., 1996].

This instability is analogous to the Rayleigh-Plateau instability in a column of fluid [Tomotika, 1935; Rayleigh, 1892], where forces arising from the interface surface tension, σ act to minimise the total interface area-to-volume ratio, and thus the fluid breaks up into spherical droplets. Similar forces arise in the case of membrane tubes although these are counteracted by the presence of membrane bending rigidity, κ. The exact form of this instability growth-rate was found previously in Ref. [Boedec et al., 2014], where only axisymmetric perturbations were considered, and was shown to converge with earlier works when variations in surface tension were neglected [Nelson et al., 1995; Gurin et al., 1996; Powers, 2010].

For large surface tension $\tilde{\sigma}$ and similar values of viscosity ($\chi \sim 0$), the maximum of the growth rate, $-\lambda$, rapidly converges to the wave-number $\tilde{q}^* \approx 0.6$. The growth rate, $-\lambda$, is plotted in Fig. 4.4 for different values of relative viscosity χ. Note that short wavelength perturbations, $\tilde{q} \geq 1$, are always stable as the surface tension terms in $A(\tilde{q}, 0)$ are always positive for $\tilde{q} \geq 1$.

70
Figure 4.4: Plot of the growth rate for the pearling instability on a membrane tube, $-\lambda$, against wavenumber, \tilde{q}, for varying values of relative viscosity χ. The dimensionless surface tension is set to $\tilde{\sigma} = \sigma \tilde{r}_0^2 / \kappa = 100$.

4.5 Fluctuations of membrane tubes

We now consider the relaxation dynamics of the tube under thermal and active fluctuations, this is given by adding thermal and active forces to the force balance equation

$$B \dot{u}_{qm} = -A u_{qm} + \xi^\text{th}_{qm} + \xi^\text{ac}_{qm},$$

(4.31)

where ξ^th and ξ^ac denote the passive and active forces respectively. The statistical properties of the thermal noise are given in the standard way

$$\langle \xi^\text{th}_{qm}(t) \rangle = 0,$$

(4.32)

$$\langle \xi^\text{th}_{qm}(t) \xi^\text{th}_{qm'}(t') \rangle = \frac{2k_B T}{\kappa} B \delta_{qq'} \delta_{mm'} \delta(t - t'),$$

(4.33)

where k_B is Boltzmann’s constant and T is the temperature. For the active fluctuations we write

$$\langle \xi^\text{ac}_{qm}(t) \rangle = 0,$$

$$\langle \xi^\text{ac}_{qm}(t) \xi^\text{ac}_{qm'}(t') \rangle = \frac{F(q, m)^2}{2} e^{-|t - t'|/\tau^*} \delta_{qq'} \delta_{mm'},$$

(4.34)
where τ_* is the correlation time of the active forces and the physics of the active processes will be captured in our choice of active force density, $F(q, m)$ [Gov, 2004]. We will consider only the simplest case where for direct forces acting on the membrane, $F(q, m) = F = \text{Const.}$, although in principle more realistic models could be considered [Turlier et al., 2016; Manneville et al., 2001].

4.5.1 Thermal fluctuations

First we consider the case when there are no active fluctuations, $\xi_{qm}^{ac} = 0$. Solving Eq. 4.31 by Fourier transform in time (assuming any initial conditions have decayed away) yields the following covariance

$$
\langle u_{qm}(t) u^*_{q'm'}(t') \rangle^{\text{th}} = \frac{k_B T}{\kappa A} e^{-|t-t'|A/B} \delta_{qq'} \delta_{mm'},
$$

(4.35)

and the equal time covariance is given by

$$
\langle |u_{qm}|^2 \rangle^{\text{th}} = \frac{k_B T}{\kappa \left[(\tilde{q}^2 + m^2)^2 - \frac{1}{2} \tilde{q}^2 - \frac{5}{2} m^2 + \frac{3}{2} - \tilde{\sigma}(1 - \tilde{q}^2 - m^2) \right]},
$$

(4.36)

which is the standard result of the equipartition theorem [Fournier and Galatola, 2007], also given in Eq. 1.29. The equal time covariance is plotted against \tilde{q} in Fig. 4.5 for $m = 0, 1, 2, 3$. Here the surface tension is chosen to be commensurate with the equilibrium tube radius with no hydrostatic pressure.

A striking prediction given by this theory is the divergence of the $m = 1$, i.e., criticality, in the long wavelength limit. This criticality is due to the $m = \pm 1$ modes being one-dimensional Goldstone modes (they only locally translate the cross-section of the tube which does not alter the energy in the long wavelength limit). The equilibrium properties of such fluctuations, such as excess area and length fluctuations, are discussed in detail in Ref. [Fournier and Galatola, 2007]. It is expected that due to the uni-dimensional character of these modes that the criticality will be preserved, even in the anharmonic regime [Fournier and Galatola, 2007].

4.5.2 Active fluctuations

Turning our attention to the case of active fluctuations, we will find the statistical properties of the shape fluctuations due to purely active noise. We assume that the active and thermal noise terms are uncorrelated, hence the total shape fluctuations can be found by simply adding the active and passive contributions.
To find the covariance we Fourier transform in time with the convention
\[u(t) = \int \frac{d\omega}{2\pi} u(\omega)e^{i\omega t}, \]
and find the covariance
\[\langle u_{qm}(\omega)u_{q'm'}(-\omega') \rangle_{ac} = \frac{F^2\tau_s \delta_{qq'} \delta_{mm'} \delta(\omega - \omega')}{(A^2 + B^2\omega^2)(1 + \tau_s^2\omega^2)}. \]
(4.37)

Inverting the Fourier transform for \(\omega \) and \(\omega' \) gives the covariance in time, which after some algebra gives
\[\langle u_{qm}(t)u^*_{q'm'}(t') \rangle_{ac} = \frac{F^2\tau_s}{2A} \frac{Ate^{-|t-t'|/\tau_s} - Be^{-|t-t'|A/B}}{A^2\tau_s^2 - B^2} \delta_{qq'} \delta_{mm'}, \]
(4.38)

which gives the variance
\[\langle |u_{qm}|^2 \rangle_{ac} = \frac{F^2\tau_s}{2A(A\tau_s + B)}. \]
(4.39)

As this depends on the dissipation in the system (through the presence of \(B \)), it is immediately obvious that the fluctuations are non-equilibrium. If we assume that the activity correlation time is an order of magnitude more than the viscous time-scale, \(\tau_s \sim 10\tau = 10p_0^2/\kappa \), and that the forces exerted to the membrane is \(f \sim 1pN \) over an area \(r_0^2 \), then \(F \sim 0.1 - 1 \) [Sachin Krishnan et al., 2018]. Using these parameters along with \(\chi = 0, F = 0.5 \) we can plot the active fluctuations.
Figure 4.6: Equal time covariance for active fluctuations of the membrane tube plotted against wave-number \tilde{q} for modes $m = 0, 1, 2, 3$. We choose $\sigma = \kappa/(2r_0^2)$, $\chi = 0$, $F = 0.5$ and $\tau_\ast = 10\tau = 10\eta r_0^3/\kappa$.

Eq. 4.39, in Fig. 4.6.

The same divergence at small \tilde{q} is observed in the $m = 1$ modes (with the same exponent as in the thermal case). The $m = 0$ mode shows a peak, the position of which can be shifted by changing the value of the active time-scale, τ_\ast, (relative to the viscous time-scale, $\tau = \eta r_0^3/\kappa$). The decay in active fluctuations of the $m = 0$ mode as $\tilde{q} \to 0$ is due to the viscous damping making such non-equilibrium fluctuations unfavourable.

A simple observable to calculate is the effective temperature as a function of Fourier parameters, this is given by

$$\frac{T_{\text{eff}}(\tilde{q}, m)}{T} = 1 + \frac{\langle |u_{qm}|^2 \rangle_{\text{ac}}}{\langle |u_{qm}|^2 \rangle_{\text{th}}}, \quad (4.40)$$

This is plotted in Fig. 4.7 for the same parameters of $F = 0.5$, $\tau_\ast = 10\tau = 10\eta r_0^3/\kappa$, $\chi = 0$ and $\tilde{\sigma} = 1/2$. This shows that for long tubes the highest effective temperature is found in the $m = 1$ modes and that these are likely to dominate the spectrum.

Measuring the temperature of fluctuations of long tubes, for example those pulled from GUVs [Valentino et al., 2016], and varying the viscosity of the exterior fluid may provide a way to quantify the magnitude and time constant of such active correlations in experiment. Figure 4.8 shows the effective temperature of the $m = 1$
We choose $\sigma = \kappa/(2r_0^2)$, $\chi = 0$, $F = 0.5$ and $\tau_\ast = 10\tau = 10\eta r_0^3/\kappa$.

modes for varying relative viscosity χ, along with the asymptotic result predicted using a Zimm model for such modes, see Appendix C.

4.6 Discussion

In this chapter we have investigated the active and passive dynamics of fluid membrane tubes. Using Onsager’s variational formalism we have calculated the full relaxation dynamics for the Fourier modes in the shape of the membrane tube, assuming a small deformation limit, and analysed the asymptotic limits of the relaxation rates. This work accounts for variations in surface tension, previously only considered in the axisymmetric case [Boedec et al., 2014], and also viscosity contrast between the interior and exterior ambient fluid.

The scaling behaviour of the relaxation modes is analysed and characterised in both the long and short wavelength limits. Unsurprisingly, in the short wavelength limit we recover the scaling behaviour of a flat membrane for all angular modes. More interesting behaviour is found in the long wavelength limit, particularly in the case of the bending modes ($m = \pm 1$), where we find a relaxation rate that scales like that of the normal modes of an elastic rod in a viscous fluid. We can also reproduce the Pearling instability growth rate found in Ref. [Boedec et al., 2014]
Figure 4.8: Effective temperature of the membrane tube with both thermal and active fluctuations, Eq. 4.40, plotted against wave-number \tilde{q} for modes $m = 1$ for different values of relative viscosity χ. All other parameters are chosen as follows $\sigma = \kappa/(2r_0^2)$, $F = 0.5$ and $\tau_\ast = 10\tau = 10\eta r_0^2/\kappa$. The dotted line shows the asymptotic approximation found by using a Zimm model for a rod in a viscous fluid.
which is recovered when we set $m = 0$ and choose a sufficiently high value of surface tension ($\sigma > 3\kappa/(2r_0^2)$). These relaxation dynamics are significantly different from those found for flat membranes [Fournier, 2015; Seifert and Langer, 1994] or for spherical vesicles [Sachin Krishnan et al., 2016]. In the case of the spherical vesicles the system can be written purely in terms of a sum over one Fourier variable due to the coupling imposed by spherical symmetry. This does not happen in the case of the tube as \tilde{q} and m are independent of one another.

We then make use of these relaxation equations to compute the fluctuation spectra for passive thermal fluctuations and a simple minimal model of active fluctuations [Sachin Krishnan et al., 2018; Gov, 2004]. The active noise clearly breaks the fluctuation dissipation theorem, due to the presence of dissipative terms in the mean-square fluctuations, see Eq. 4.39. The active noise also shows the same criticality of the bending modes ($m = 1$) in the long wavelength limit found in thermal fluctuations [Fournier and Galatola, 2007].

We compute the effective temperature of the system with both thermal and active fluctuations and show that, for long tubes, the clearest signature of this active noise is in the bending modes ($m = 1$). This should be a measurable prediction with current experimental setups, e.g. using a similar approach seen in Valentino el. al. [Valentino et al., 2016] and changing the external viscosity. This could be used to infer information about the size of forces and activity time-scales for different sources of activity (assuming they can be reconstituted \textit{in-vitro}). Perhaps the most pressing open question in the field of active membranes is what functional form is best used to represent the active fluctuations. The simple model of a direct force used in this paper, though used successfully throughout the literature to describe real systems [Gov, 2004; Prost and Bruinsma, 1996; Sachin Krishnan et al., 2018], does not respect force balance at the level of an individual fluctuation. More complex models of activity have been proposed for specific situations, for example using dipole forces and allowing fluid permeation of the membrane [Manneville et al., 2001], however a general framework is lacking and the effect of different models of active noise on observable phenomena is not yet well understood.

For future work, it would be interesting to consider the effects of different formulations of activity (both in tubes and other scenarios). It would also be interesting to consider the effect of a visco-elastic ambient fluid as this may give a better approximation to the cytoplasm in cells. Not only would this give potentially richer dynamics, due to the presence of of an additional time-scale, but it could also be useful in understanding more realistic biological processes [Komura et al., 2015; Nixon-Abell et al., 2016; Abounit and Zurzolo, 2012].
Lipid membrane tubes are abundant inside cells and their dynamics have been implicated in many important processes. In this thesis we have considered some theoretical models of simple situations, designed to mimic important processes in biology, in an attempt to elucidate the underlying physics. Here we briefly outline some possible future directions of research and extensions to the work in the three main chapters of the thesis.

5.1 Hydro-osmotic instabilities

The main key extension to this work would be considering the effects of a finite length tube, e.g. a finite tube surrounded by a “cytosol” opening into a reservoir at lower osmotic pressure. This would lead to gradients in the concentration of ions inside the tube, and hence a gradient in pressure which could then drive flows. This model with small perturbations to the radius (or a sphere/tube geometry if beyond the threshold for a hydro-osmotic instability) could be used to compute a steady state of flux into the tube across the membrane and out into the exterior reservoir. It would be instructive to use such a simple model to analyse whether it can be used for osmoregulation and what constraints are set on the system.

Beyond simple tubes there is significant biological motivation to study the behaviour of such instabilities in tubular networks, both from the contractile vacuole literature [Allen, 2000] and the peripheral endoplasmic reticulum [Nixon-Abell et al., 2016]. Such an investigation would likely require numerical approaches either using surface evolver for the statics [Brakke, 1992] or more sophisticated finite element methods for the full dynamics [Elliott and Stinner, 2010; Barrett et al., 2016].
5.2 Shear-driven instabilities

In the case of the shear-driven instability the main result is an amplification of the fluctuations due to shear in the azimuthal flow field on the membrane tube. Again finite element simulations might provide one route to better understanding this problem. However this could be might prove difficult as most current methods for covariant hydrodynamics do not incorporate fluctuations, which are vital to this phenomenon.

Perhaps the most promising future direction would be to consider experiments similar to the magnetic tweezers setup proposed in Chapter 3. This would give some indication as to how important these shear effects are for real systems, particularly for parameters when the fluctuation amplification is beyond linear analysis. This experiment may prove difficult as oscillations may be introduced to the tube from the magnetic trap so shape undulations may not be purely caused by the shear rate.

The helical geometry of Dynamin could also be considered in more detail and we could also look at the effect of hydrodynamics on other similar proteins (ESCRT for example) [McDargh and Deserno, 2018; Lenz et al., 2008; De Franceschi et al., 2019]. This work would most likely have to be performed numerically or with coarse grained hydrodynamic models as the complex geometry of the ground-state would make the full covariant hydrodynamics intractable [Arroyo and DeSimone, 2009].

5.3 Dynamics of active membrane tubes

In the case of more general theories of active membranes it may be instructive, in the first instance, to consider close to flat membranes (Monge gauge). It would be worth developing a simple model of active fluctuations which does not break force balance locally. One way to do this might be to consider fluctuating quadrapoles acting normal to the membrane and to see if this makes any difference in the fluctuation spectra when compared with the simple direct force model used in Chapter 4 and much of the literature [Gov, 2004]. This would also differ from some of the more physically realistic models of active membranes by having true active fluctuations as opposed to thermal fluctuations coupling to dipole fields which cause the fluctuation dissipation theorem to break down [Manneville et al., 2001].

In terms of experimental verification for membrane tubes it appears that \textit{in-vitro} experiments on tubes pulled from GUVs might soon have the resolution required to measure active fluctuations [Valentino et al., 2016]. In order to be
able to compare the experiments meaningfully with theory it would be necessary to calculate how the fluctuation spectrum is modified by a finite length tube and how length fluctuations come into play [Barbetta and Fournier, 2009]. This would be important so as to know exactly which modes should be fitted with the power spectral density inferred from experiment (in the current experimental paper only axis-symmetric modes are considered).

5.4 Conclusion

In conclusion, we have developed several theoretical models of dynamical processes in lipid membrane tubes. These models have been heavily inspired by real processes in cell biology, and our analysis has allowed us to understand some of the physics underlying these processes. There are still many outstanding questions in both theory and experiment, with the interplay between the two makes this an exciting area to work as a theorist.
Appendix A

Additional details for Chapter 2

A.1 Approximate solution for slow pumping

Fig. A.1 shows the agreement between the asymptotic solution to the radial dynamics: $\tilde{R}(t) = (1 + t/\tau_{\text{pump}})^{1/2}$ (Eq. 2.18) and the full numerical solution of Eq. 2.17.

We can find the radius $R(q)$ at which the mode q first goes unstable by finding the zero of the $\alpha(q)$ polynomial, Eq. 2.12, defining $R(q) = \sqrt{3}R_{eq} + \delta R(q)$. For the small q limit and assuming $\frac{\delta R(q)}{R_{eq}}$ is small we find

$$\frac{\delta R(q)}{R_{eq}} \approx \sqrt{3} \left(R_{eq}q \right)^2.$$ \hspace{1cm} (A.1)

Using Eq. A.1 with the approximate solution for $R(t)$ gives a formula for the time the mode q first goes unstable

$$t_q^* \approx \tau_{\text{pump}} \left(2 + 6\tilde{q}^2 \right)$$ \hspace{1cm} (A.2)

where $\tilde{q} = qR_{eq}$.

A.2 Defining the dominant wavelength

Defining the dominant wavelength of a time dependent growth rate is in general a difficult task; as the peak of the dispersion relation is time dependent we must instead consider the full growth history of each mode. We define the dominant mode at linear order to be the first one to have $\langle |\bar{u}_q|^2 \rangle = CR_{eq}^2$ where $C = 1$. It is therefore a sensible thing to check that the chosen value of the cutoff, C, has a minimal effect on our results, i.e. the dominant wavelength at linear order should be constant for $C \sim 1$. Plotting \tilde{q}^* against C, Fig. A.2, shows a weak logarithmic dependence of the
Figure A.1: **Top:** plot showing approximate solution (dots, Eq. 2.18) and full numerical solution (solid line, Eq. 2.17) for radius growth due to ion pump osmotic pressure. **Bottom:** plot showing the absolute error between the approximate solution and numerical solution.

dominant wavenumber on C. The only pronounced effect for a cutoff around linear ($C \sim 1$) order might be to shift the values in the fast pumping limit by $<5\%$, the values for physiological parameters remain virtually unaffected.
A.3 Weak dependence of dominant wavelength on the pumping rate in the physiological range

The asymptotic solution presented in the main paper is valid for parameter estimates consistent with the CVC. It is of interest to see how the wavelength of the instability varies with pumping rate in this limit. The wavelength of the instability varies with pumping rate but very weakly (slower than logarithmically). The wavelength for time-scales consistent with the CV pumping is $\lambda \sim 1\mu m$ which is of the correct order of magnitude for the CV and much larger than the tube radius. The weak dependence of the wavelength on the pumping provides a robust mechanism of size regulation, Fig. A.3.

A.4 Osmotic shock

Inserting the time-dependent solution of Eq. 2.19 in the growth equation Eq. 2.25 (including thermal noise, as in Eq. 2.29) gives access to the evolution of the amplitude of the different modes. The exact value of the dominant \tilde{q} depends on the permeability μ (or the time-scale τ_μ) and the magnitude of the shock $\Delta \rho/\rho_0$. A 3D plot of how this varies is shown in Fig. A.4. Comparison with the behaviour that
Figure A.3: Plot of dominant length, λ, of instability against ratio of viscous to pumping time-scales $\tau_\eta/\tau_{\text{pump}}$ for the asymptotic solution found in the main paper (Eq. 2.18). Here $\tau_\eta/\tau_\mu = 10^{-4}$. This plot is essential a cross-section of Fig. 2.5 in the main paper for $\tau_\eta/\tau_\mu = 10^{-4}$, but plotting wavelength instead of wavenumber \tilde{q}^*.

Figure A.4: Surface plot showing the dominant wave-number of an instability driven by osmotic shock when varying permeation time-scale, τ_μ, and shock magnitude $\Delta\rho/\rho_0$.

arises in the presence of ion pumps (Fig. 2.5) shows that the peak value of the dominant mode is the same in both case, and corresponds by the peak of Fig. 2.2. This peak occurs for fast pumping ($\tau_\eta/\tau_\mu > 10^{-2}$ - Fig. 2.5) or for strong osmotic shock ($\Delta\rho/\rho_0 > 10$ - Fig. A.4), showing that these two situations are somewhat similar. However the details are different due to the different dynamics of tube inflation in
both cases.

The drop off in dominant wavelength of the osmotic shock instability when permeability and shock magnitude are very large is caused by the decrease of the peak of the growth rate relation at very large radii (Fig. 2.2). This happens because of a decrease in the contribution of the bending rigidity to the energy at large radii and small \tilde{q}. The surface tension contribution to the energy remains, hence the instability starts to be dominated by surface tension. The only contribution of the bending terms is to increasingly stabilise the larger values of \tilde{q}, thus pushing the peak wavelength to lower \tilde{q}. Interestingly the bending rigidity in this limit acts in a qualitatively similar manner to a large difference in viscosities discussed in the original fluid jet papers [Rayleigh, 1892; Tomotika, 1935].

A.5 Note on numerical implementation

All the numerics shown in Fig. 2.4 and Fig. 2.5 of the main paper are implemented using a discrete Fourier transform, as such the autocorrelation function, $\langle |\bar{u}_q|^2 \rangle$ has units of [Length]^2, this choice of implementation is used to simplify the criterion for the fully developed instability. The longest mode in real space is chosen to be $10^4 R_{eq}$, this corresponds to a small enough spacing for the q space to approximate a continuum.
Appendix B

Additional details for Chapter 3

B.1 Differential Geometry and Exterior Calculus

Here we present a “users guide” to the style of geometric notation used in the main paper. We do not focus on mathematical rigour here, for a more formal treatment see [Frankel, 2011].

If we define a manifold \mathcal{M}^n where the derivative of a curve at point $p \in \mathcal{M}^n$ gives an element of the tangent space $X_p \in T_p(\mathcal{M}^n)$, we can express this in terms of a coordinate basis

$$X_p = X^i \left(\frac{\partial}{\partial x^i} \right)_p = X^i (\mathbf{e}_i)_p$$

where Einstein summation over mixed indices is implicit.

If we choose a family of curves on \mathcal{M}^n with continuous derivatives we can extend the definition of the tangent space to the tangent bundle on \mathcal{M}^n, $T(\mathcal{M}^n) = \bigcup_p T_p(\mathcal{M}^n)$. This extends the definition of a vector to a vector field on the the manifold, $X \in T(\mathcal{M}^n)$.

The dual of $T(\mathcal{M}^n)$ can be defined as the cotangent space $T^*(\mathcal{M}^n)$. An element of this space, a 1-form, is defined in the following way $\omega \in T^*(\mathcal{M}^n)$

$$\omega(X) \rightarrow \mathbb{R}. \quad (B.2)$$

In coordinate notation

$$\omega(X) = \omega_i X^j dx^i \frac{\partial}{\partial x^j} = \omega_i X^j \delta^i_j = \omega_i X^i. \quad (B.3)$$

In general a type (p, q) tensor field, T is defined in the following way

$$T(X_1, ..., X_p, \omega_1, ..., \omega_q) \rightarrow \mathbb{R} \quad (B.4)$$
where \(X_1, \ldots, X_p \in T(M^n)\) and \(\omega_1, \ldots, \omega_q \in T^*(M^n)\).

We can define a type \((2,0)\) metric tensor on the manifold as
\[
g(\cdot, \cdot) : g(X, Y) \to \mathbb{R} \quad \text{(B.5)}
\]
where \(X, Y \in T(M^n)\).

\[
g(\cdot, \cdot) = ds^2 = g_{ij}dx^i dx^j = \vec{e}_i \cdot \vec{e}_j dx^i dx^j \quad \text{(B.6)}
\]
which allows a mapping between vectors and 1-forms.

The exterior or wedge product between two 1-forms is defined as the totally asymmetric tensor product
\[
\omega_1 \wedge \omega_2 = \omega_1 \otimes \omega_2 - \omega_2 \otimes \omega_1. \quad \text{(B.7)}
\]

A \(p\)-form, \(\alpha\), can be defined from \(p\) 1-forms as
\[
\alpha = \omega_1 \wedge \ldots \wedge \omega_p. \quad \text{(B.8)}
\]

This has the following property
\[
\omega_1 \wedge \ldots \wedge \omega_r \wedge \ldots \wedge \omega_s \wedge \ldots \omega_p = -\omega_1 \wedge \ldots \wedge \omega_s \wedge \ldots \wedge \omega_r \wedge \ldots \omega_p \quad \text{(B.9)}
\]
for any two \(s, r\). Or in coordinate notation
\[
a_{i \ldots r \ldots s \ldots j} = -a_{i \ldots s \ldots r \ldots j} \quad \text{(B.10)}
\]
where \(\alpha = \alpha_{i \ldots j} dx^i \wedge \ldots \wedge dx^j\).

This along with the metric leads to the natural geometric definition of the volume form \(\text{vol}^n := \sqrt{g} dx^1 \wedge \ldots \wedge dx^n\), where \(g := \det(g_{ij})\).

The exterior derivative, \(d\), of a smooth function \(f\) is just its differential
\[
df = \frac{\partial f}{\partial x^i} dx^i. \quad \text{(B.11)}
\]

The Hodge star operator, \(* : \tau^*(M)^{(k)} \to \tau^*(M)^{(n-k)}\), is defined by the Hodge inner product of two differential forms \(\alpha\) and \(\beta\)
\[
\alpha \wedge * \beta = (\alpha \cdot \beta) \text{vol}^n \quad \text{(B.12)}
\]
in coordinate notation we have

\[\star \alpha = \epsilon_{i_1 \ldots i_n} \sqrt{\det g} \varepsilon^{i_1 j_1 \ldots} g^{i_2 j_2} \cdots g^{i_k j_k} dx^{i_{k+1}} \wedge \cdots \wedge dx^{i_n} \]

(B.13)

where \(\epsilon \) is the totally asymmetric tensor.

A diffeomorphism is a map between two manifolds that is smooth, one-to-one, onto and has a smooth inverse. The Lie derivative is a natural object to use in continuum mechanics as it describes how a vector field \(Y \) changes along the flow generated by a vector field \(X \). If \(\phi(t) = \phi_t \) is a diffeomorphism parametrised by \(t \) and describing the local flow generated by \(X \), where \(t \) is defined such that \(\lim_{t \to 0} \phi_t(X) = X \), then we define the Lie derivative of a vector field \(Y \) with respect to a vector field \(X \) as follows

\[[\mathcal{L}_X Y]_x = \lim_{t \to 0} \frac{[\phi_{-t} Y_{\phi_t x} - Y_x]}{t} = X(Y) - Y(X) \]

(B.14)

as such \(\mathcal{L}_X Y \) is a vector field on \(\mathcal{M}^n \). Similar identities can be derived for more general tensors [Frankel, 2011].

We will define the Laplace-Beltrami operator as

\[\Delta_{LB} = -\star d \star d \]

(B.15)

which for scalar \(\phi \) and vector \(\nu \) is the following in index notation

\[\Delta_{LB} \phi = -\frac{1}{\sqrt{|g|}} \partial_i \left(\sqrt{|g|} g^{ij} \partial_j \phi \right) \]

\[\Delta_{LB} \nu^q = -\sqrt{|g|} \epsilon_{np} \epsilon_{kl} g^{pq} g^{nm} \partial_m \left(\sqrt{|g|} g^{kl} \partial_j (v^r g_{rl}) \right) \]

(B.16)

where the later formula is not usually given in the literature as it is simpler to work with exterior calculus identities (which is how we will proceed).

One final point of note is that we will use the \(b \), \(\sharp \) notation to denote raising and lowering of indices for conciseness. For example, if \(\nu \in \mathcal{T}(\mathcal{M}^n) \) and \(\omega \in \mathcal{T}^*(\mathcal{M}^n) \), then

\[\nu^b = g_{ij} \nu^j dx^i = v_i dx^i \]

\[\omega^b = g^{ij} \omega_j \hat{e}_i = \omega^i \hat{e}_i. \]

(B.17)
B.2 Screening of membrane flows by bulk fluid mechanics

We will consider hydrodynamics on a static membrane tube (i.e. we assume that the cylindrical geometry is stable to perturbations in shape). In the limit of small inertia the 3D velocity field, \vec{u}, satisfies the continuity and Stokes equations

$$\nabla \cdot \vec{u} = 0; \quad \eta \nabla^2 \vec{u} = \nabla P$$ \hspace{1cm} (B.18)

where P is the pressure and η the viscosity. This is coupled to the membrane velocity at the boundary with a no-slip condition.

Stress balance at the membrane is imposed by the 2D continuity and Stokes equations and, for surfaces of zero Gaussian curvature, can be written as

$$\nabla_i v^i = 0; \quad \eta_m \Delta_{LB} v_i - \nabla_i \sigma = t^+_i + t^-_i$$ \hspace{1cm} (B.19)

where η_m is the (2D) membrane viscosity, σ is the surface tension, $v = v^i e_i$ is the tangential membrane velocity and Δ_{LB} is the Laplace-Beltrami operator (formally this corresponds to $\Delta_{LB} = \delta d$ where d is the exterior derivative and δ is the co-differential). The combined operator δd is the generalization of the curl-curl operator to a manifold and acts like a Laplacian [Rahimi et al., 2013; Arroyo and DeSimone, 2009]. The symbols t^+_i are the traction forces from the bulk fluid acting on the membrane (\pm denoting interior and exterior respectively)[Arroyo and DeSimone, 2009; Fournier, 2015].

We will consider a system of a membrane tube with radius $r_0 = \sqrt{\frac{\kappa}{2\sigma_0}}$, where κ is the bending rigidity of the membrane and σ_0 is the equilibrium surface tension. This is the radius which minimizes the Helfrich Hamiltonian for a fluid membrane

$$\mathcal{F} = \int_{\Gamma} dA_{\Gamma} \left(2\kappa H^2 + \sigma_0 \right)$$ \hspace{1cm} (B.20)

where Γ and dA_{Γ} denote the manifold describing the neutral surface of the membrane and its associated area element, and H is the mean curvature [Zhong-Can and Helfrich, 1989]. For typical membrane tubes fissioned by Dynamin $r_0 \approx 10$ nm [Roux, 2014].

We use standard cylindrical coordinates (r, θ, z) and take the boundary condition for flow on the membrane to be $v \big|_{z=0} = v_0 \vec{e}_\theta$, we treat this as an approximation to the flow induced by Dynamin.

We can then solve Eq. B.18 & Eq. B.19, making use of symmetry $v = v(z) \vec{e}_\theta$,
Figure B.1: Flow field for the ground-state of the spinning membrane tube with radius \(r_0 = 1.0 \), and Saffman-Delbrück length \(\frac{L_{SD}}{r_0} = \frac{\eta_m}{\eta r_0} = 10^4 \). The boundary condition on the tube at \(z = 0 \) is \(v(0) = v_0 \) where \(\frac{v_0}{r_0} = 10^3 \text{s}^{-1} \).

\[\vec{u} = u(r, z) \vec{e}_\theta \] they reduce to

\[\frac{1}{r} \partial_r (r \partial_r u_\theta) + \partial_z^2 u_\theta - \frac{u_\theta}{r^2} = 0 \]

\[\eta_M \partial_z^2 v + t^+ + t^- = 0 \] \hspace{1cm} (B.21)

where \(t^+ = \lim_{r \to r_0} \eta r \partial_r \left(\frac{\partial_r u^\pm}{r} \right) \). We can now solve this numerically by direct methods (taking a Neumann boundary condition for the bulk flow at \(z = 0 \) and \(u = 0 \) at large distance and \(r = 0 \)) [Ferziger and Peric, 2002]. The flow field computed by this method can be seen in Fig. B.1.

To understand how the flow field on the membrane varies with Saffman-Delbrück length it is helpful to examine the analytic solutions to the coupled membrane bulk system in Fourier space. The flow field on the membrane in response to a point force in the \(\theta \) direction, \(F_\theta \), was found analytically in Ref. [Henle and Levine, 2010], and in the limit \(r_0 \ll L_{SD} \) this gives

\[v \approx v_0 \vec{e}_\theta \exp \left[-\frac{\sqrt{2}|z|}{\sqrt{L_{SD} r_0}} \right]. \] \hspace{1cm} (B.22)
Figure B.2: Flow-field decay rate, λ (with units Length$^{-1}$) against Saffman-Delbrück length L_{SD} for tube spinning velocity at $z = 0$ given by $\frac{v_0}{r_0} = 10^3$ s$^{-1}$.

In the original paper our boundary condition corresponds to $v_0 = \frac{F\pi}{4\pi\eta m} \sqrt{\frac{L_{SD}}{2r_0}}$. Note that this is θ independent as the $m = 0$ Fourier mode dominates the bulk dynamics in this limit, so each cross-section of the tube rotates with a constant velocity. This means that the flow on a tube is screened like $v \sim e^{-|z|\lambda}$ where $\lambda = \frac{\sqrt{2}}{\sqrt{L_{SD}r_0}}$. This approximate analytical expression can be compared to numerical solutions where we find that it reproduces the correct power law relation between λ and L_{SD}, see Fig. B.2.

For flows with large $L_{SD}/r_0 \sim 10^3 - 10^4$ this gives a screening length of order $100r_0$ so as long as we consider flows where $L \lesssim 10r_0$ then membrane dissipation should dominate.

B.3 Effects of geometry on driving force

To try and understand the effect of the instability in more complex geometry (in particular with non-zero Gaussian curvature in the ground state), we need to consider the term driving the instability as the full calculation becomes intractable very quickly. All the forces acting normal to the membrane which drive the instability are due to the term $b^i \nabla_i v^j$, in particular the driving force (per area) is set by the linear
response coefficient of the mixed second derivative of the shape, $k_{\theta z}(z)$ which is now a function of z due to change in geometry (specifically the non-constant gradient in the flow field ground state). The driving force per unit area scales like

$$f_{\text{driving}} \sim 2\eta m k_{\theta z}(z) \frac{\partial^2 u}{\partial \theta \partial z}$$

(B.23)

so we will consider how $k_{\theta z}(z)$ changes as we change the geometry of our ground-state.

For some general axisymmetric ground-state parametrized by the vector $\vec{X} = (r(z) \cos \theta, r(z) \sin \theta, z)$ with ground-state flow field $v0(z) \vec{e}_\theta$ we find (up to linear order in perturbations)

$$b_{ij} \nabla_i v^j = a_{z000} \delta v_z + a_{z100} \delta_z v_z + k_{\theta z} \frac{\partial^2 u}{\partial \theta \partial z} + b_{z001} \partial_\theta \delta v_\theta + k_\theta \partial_\theta u$$

(B.24)

where

$$a_{z000} = -r'(z) - 2r'(z)^3 - r(z)^5 + r(z)^2 r'(z) r''(z)^2 r(z)^2 (1 + r'(z)^2)^{5/2}$$

$$a_{z100} = \frac{r''(z)}{(1 + r'(z)^2)^{3/2}}$$

$$k_{\theta z} = \left[- v0(z) r'(z) - v0(z) r'(z)^3 + r(z) v0'(z) + r(z) r'(z)^2 v'(z) + r(z) v0(z) r'(z) r''(z) \right] \times \left(r(z)^2 (1 + r'(z)^2)^{5/2} \right)^{-1}$$

$$b_{z001} = \frac{1}{r(z)^2 \sqrt{1 + r'(z)^2}}$$

$$k_\theta = \frac{v0(z)}{r(z)^3 \sqrt{1 + r'(z)^2}}$$

(B.25)

B.3.1 Neck (Catenoid)

To consider the effect of the instability in a more realistic *in-vivo* situation, for example on the neck of a budding vesicle, we look at the ground state flows and $k_{\theta z}$ on a catenoid, $r(z) = r_0 \cosh \left(\frac{z}{r_0} \right)$. The ground state surface flow is solved numerically with boundary conditions $v(0) = 1$, $v(2) = 0$ taking $r_0 = 1$ and $L = 2$ for simplicity. From this we can evaluate $k_{\theta z}$ and compare to the case of a tube. This is shown in Fig. B.3. Note the amplification of $k_{\theta z}$ by a factor of 2 near the centre of the catenoid when compared to the tube. The consequences of this for
Figure B.3: Left: plot of the catenoid with radius \(r_0 = 1 \). Right: Plot of the force linear response coefficient for the mixed shape derivative (i.e. the term in the normal force that goes like \(f \sim k_{\theta z} \partial_{\theta z} u \)) for the helical shape perturbations on such a surface.

dynamin are discussed in the main paper.

B.4 Derivation of rate-of-deformation tensor using local constructions

If we consider a membrane which when un-deformed, \(\mathcal{M} \), and is approximately flat then its line element (metric) can be written

\[
ds^2 = dx^2 + dy^2. \tag{B.26}
\]

If we deform this manifold by the vector \((\phi_x, \phi_y, \psi) \) to a new manifold \(\mathcal{M}' \) and choose coordinates \(x, y \) such that the second fundamental form of of \(\mathcal{M}' \) is given by

\[
b = \begin{pmatrix} dx & dy \\ \end{pmatrix} \begin{pmatrix} k_1 & 0 \\ 0 & k_2 \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix}. \tag{B.27}
\]

The new metric on the surface \(\mathcal{M}' \) is given by \(ds'^2 = (dx')^2 + (dy')^2 \) where, to lowest order,

\[
\begin{align*}
dx' &= (1 - k_1 \psi) (1 + \partial_x \phi_x) \, dx + \partial_y \phi_x \, dy \\
dy' &= (1 - k_2 \psi) (1 + \partial_y \phi_y) \, dy + \partial_x \phi_y \, dx.
\end{align*} \tag{B.28}
\]
so the new metric is given by

\[ds'^2 = (1 - 2k_1 \psi - 2 \partial_x \phi_x) \, dx^2 + 2 (\partial_x \phi_y + \partial_y \phi_x) \, dxdy + (1 - 2k_2 \psi - 2 \partial_y \phi_y) \, dy^2 \]

(B.29)

up to linear order in the variables \((\phi_x, \phi_y, \psi)\) and their derivatives.

If we assume \((\phi_x, \phi_y, \psi) = \Delta t (v_x, v_y, w) = \Delta t \vec{V}\), where \(\vec{V}\) is the membrane velocity then we can write

\[
L = \frac{1}{2} [ds'^2 - ds^2] = \Delta t \left[(\partial_x v_x - k_1 w) \, dx^2 + (\partial_x v_y + \partial_y v_x) \, dxdy + (\partial_y v_y - k_2 w) \, dy^2 \right]
\]

(B.30)

and dividing by \(\Delta t\) and taking the limit \(\Delta t \to 0\) gives the rate of deformation tensor

\[
d = \left[\frac{1}{2} (\nabla_i v_j + \nabla_j v_i) - w b_{ij} \right] \, dx^i \otimes dx^j.
\]

(B.31)
Appendix C

Additional details for Chapter 4

C.1 Expressions for Φ^{\pm}_{qm}, Ψ^{\pm}_{qm}, Ξ^{\pm}_{qm}

Here we give expressions for the scalar Laplace function decompositions for the Stokes equations after imposing the boundary condition, Eq. 4.22 and making use of the continuity equation to eliminate v^θ_{qm}. This gives

$$\Phi^+_qm = 2r_0 \left[\tilde{q} \left(4iv^z_{qm} - 3\tilde{q}r_0 \dot{u}_{qm} \right) K^{2}_{m-1} - 4m (\tilde{q}r_0 \dot{u}_{qm} - 2iv^z_{qm}) K^{2}_{m-1} K^{1}_{m}
ight]$$

$$+ 4 \left(r_0 \dot{u}_{qm} + iv^z_{qm} \right) K^{2}_{m} - \tilde{q}^2 r_0 \dot{u}_{qm} K^{2}_{m+1} \right] \times \left[\tilde{q}^3 K^{3}_{m-1}
ight]$$

$$+ 2 \left(9m - 8 \right) \tilde{q}^2 K^{2}_{m-1} K^{1}_{m} + 4\tilde{q} \left(m (m - 8) - 2\tilde{q}^2 \right) K^{2}_{m-1} K^{2}_{m}$$

$$- 8m \left(m^2 + \tilde{q}^2 \right) K^{3}_{m} + \tilde{q}^3 K^{3}_{m+1} \right]^{-1}, \tag{C.1}$$

$$\Psi^+_qm = r_0 \left[-8K^{2}_{m} \left(v^z_{qm} \left(m^4 + 2(m + 1)m \tilde{q}^2 + \tilde{q}^4 \right) - i\tilde{q}r_0 \dot{u}_{qm} \left(m(3m + 2) + \tilde{q}^2 \right) \right)
ight.$$}

$$+ 8\tilde{q} K_{m-1} K_{m} \left(\left(m^3 + (m - 2)\tilde{q}^2 \right) v^z_{qm} - i(m - 2)\tilde{q}r_0 \dot{u}_{qm} \right)$$

$$+ 2\tilde{q}^2 \left(3K^{2}_{m-1} + K^{2}_{m+1} \right) \left(\left(m^2 + \tilde{q}^2 \right) v^z_{qm} - i\tilde{q}r_0 \dot{u}_{qm} \right) \right]$$

$$\times \left[m \tilde{q} \left(8 \left(m^3 + m \tilde{q}^2 \right) K^{3}_{m} - 7\tilde{q}^3 K^{3}_{m-1} - \tilde{q}^3 K^{3}_{m+1} \right)
ight.$$}

$$+ 2(8 - 9m)\tilde{q}^2 K_{m} K^{2}_{m-1} + 4\tilde{q} \left(2\tilde{q}^2 - (m - 8)m \right) K^{2}_{m} K_{m-1} \right]^{-1}, \tag{C.2}$$

95
\[\Xi_{qm} = r_0 \left[-8iK_m^2 (v_{qm}^2 (m^2 + q^2) - i(m + 1)\bar{q}r_0 \bar{u}_{qm}) \\
+ (6i q^2 K_{m-1}^2 + 2i \bar{q}^2 K_{m+1}^2) v_{qm}^2 - 8\bar{q}K_m K_{m-1} (\bar{q}r_0^2 \bar{u}_{qm} - imv_{qm}^2) \right] \\
\times \left[\bar{q} \left(-8 (m^3 + m\bar{q}^2) K_m^3 + 7\bar{q}^3 K_{m-1}^3 + \bar{q}^3 K_{m+1}^3 \right) \right. \\
+ 2(9m - 8)\bar{q}^2 K_m K_{m-1}^2 + 4\bar{q} ((m - 8)m - 2\bar{q}^2) K_m^2 K_{m-1}^2 \left. \right]^{-1}, \tag{C.3} \]

\[\Phi_{\bar{q}m} = r_0 \left[I_m^2 ((m^2 - 1) r_0 \bar{u}_{qm} - i\bar{q}v_{qm}^2) + \bar{q}I_{m-1}^2 (\bar{q}r_0 \bar{u}_{qm} - iv_{qm}^2) \right. \\
- 2mI_m I_{m-1} (\bar{q}r_0 \bar{u}_{qm} - iv_{qm}^2) \left. \right] \times \left[\bar{q} (\bar{q}^2 I_{m-1}^3 \right. \\
+ (2(m - 2)m - \bar{q}^2) I_m^2 I_{m-1} + (2 - 3m)\bar{q}I_m I_{m-1}^2 + m\bar{q}I_m^3 \left. \right]^{-1}, \tag{C.4} \]

\[\Psi_{\bar{q}m} = r_0 \left[-2I_m I_{m-1} (m^3 v_{qm}^2 + (m - 1)\bar{q}^2 v_{qm}^2 - i(m - 1)\bar{q}r_0 \bar{u}_{qm}) \right. \\
+ \bar{q}I_{m-1}^2 \left((m^2 + \bar{q}^2) v_{qm}^2 - \bar{q}ir_0 \bar{u}_{qm} \right) \left. \right] \\
+ iI_m^2 (r_0 \bar{u}_{qm} (2m(m + 1) + \bar{q}^2) + i\bar{q}v_{qm}^2 (m(m + 2) + \bar{q}^2)) \right. \\
\times \left[m\bar{q} (\bar{q}^2 I_{m-1}^3 \right. \\
+ (2(m - 2)m - \bar{q}^2) I_m^2 I_{m-1} \left. \right] \left. \right. \\
+ (2 - 3m)\bar{q}I_m I_{m-1}^2 + m\bar{q}I_m^3 \right]^{-1}, \tag{C.5} \]

\[\Xi_{\bar{q}m} = r_0 \left[I_m I_{m-1} (-\bar{q}r_0^2 \bar{u}_{qm} + 2imv_{qm}^2) + I_m^2 ((m + 1) r_0 \bar{u}_{qm} + i\bar{q}v_{qm}^2) \right. \\
- i\bar{q}v_{qm}^2 I_{m-1}^2 \left. \right] \times \left[\bar{q} (\bar{q}^2 I_{m-1}^3 \right. \\
+ (2(m - 2)m - \bar{q}^2) I_m^2 I_{m-1} \left. \right] \left. \right. \\
+ (2 - 3m)\bar{q}I_m I_{m-1}^2 + m\bar{q}I_m^3 \right]^{-1}, \tag{C.6} \]

where the modified Bessel functions \(K_\nu, I_\nu \) are evaluated at \(r = r_0 \).
C.2 Relaxation dynamics of linear Zimm model

Here we consider the relaxation dynamics of small planar normal perturbations to a thin elastic rod whose position is given by

$$\vec{r} = (x(t) \cos qz, 0, z),$$ \hspace{1cm} (C.7)

and has geodesic curvature $k_g = -q^2 x \cos qz$.

We will assume $x(t)$ is small compared with the scales we are considering such that the elastic force-per-unit length on the rod is given by

$$\vec{f} = (-A \nabla^2 k_g + Tk_g, 0, 0) = (-A q^4 x \cos qz - T q^2 x \cos qz, 0, 0),$$ \hspace{1cm} (C.8)

where A is the bending rigidity of the rod and T is the tension [Audoly and Pomeau, 2010].

We can now write the dynamics of this rod as a continuous Zimm model

$$\dot{\vec{r}} = -\int d\vec{s} \Lambda (\vec{r} - \vec{s}) \vec{f}(\vec{s}),$$ \hspace{1cm} (C.9)

where

$$\Lambda (\vec{r} - \vec{s}) = \frac{1}{8\pi \eta |\vec{r} - \vec{s}|} \left[I - \frac{(\vec{r} - \vec{s}) \otimes (\vec{r} - \vec{s})}{|\vec{r} - \vec{s}|^2} \right]$$ \hspace{1cm} (C.10)

is the Oseen tensor [Doi and Edwards, 1986].

At linear order and in the long wavelength limit (we choose a short wavelength cut-off of the rod radius, r_0) this gives

$$\dot{x} \approx \frac{(A q^4 + T q^2) \text{Ci}(q r_0)}{4\pi \eta} x,$$ \hspace{1cm} (C.11)

where $\text{Ci}(q r_0) = -\int_{r_0}^{\infty} dx' \cos(qx')/x'$. This gives a relaxation rate that scales like $-\lambda \sim - (\gamma + \log \tilde{q}) \tilde{q}^2$ in the small \tilde{q} limit, where γ is the Euler constant. This agrees with the scaling of a membrane tubes bending mode in the long wavelength limit.
Appendix D

Résumé de thèse en français

Les tubes membranaires sont des structures omniprésentes dans les cellules, et la compréhension de leur dynamique et de leur morphologie est d’une importance cruciale pour la biophysique cellulaire. Cette thèse aborde plusieurs aspects de la dynamique des tubes membranaires dans des situations où ils sont déséquilibrés par divers processus inspirés par des phénomènes biologiques. Nous analysons le gonflement de tubes due à des pompes ioniques entraînant une différence de pression osmotique, ainsi que les instabilités qui en résultent. Ceci est inspiré par la structure d’un organelle appelé le vacuole contractile, et conduit à une nouvelle instabilité avec une longueur d’onde naturelle beaucoup plus longue que celle résultant d’une instabilité de type pearling. La stabilité des tubes membranaires présentant un écoulement de cisaillement à leur surface est également analysée. Nous avons découvert et analysé une nouvelle instabilité hélicoïdale qui conduit à l’amplifications des fluctuations du tube. Nous discutons de la pertinence de cette instabilité dans le processus de scission des tubes induite par la dynamin. Enfin, nous considérons la dynamique et les fluctuations d’un tube membranaire sur lequel agissent des forces actives.

D.1 Introduction

Ensuite, nous décrivons plus en détail l’auto-assemblage des lipides en structures en bicouches membranaires (en particulier dans la phase désordonnée des liquides) et discutons de l’importance de ces membranes comme interfaces entre différents compartiments cellulaires dans les cellules eukaryotes. Étant donné que ces structures sont généralement très minces, elles peuvent être considérées comme des structures 2D entourées par un environnement 3D. Nous introduisons quelques outils de géométrie différentielle pour décrire de telles surfaces (variétés). À partir de là, nous discutons des travaux fondamentaux de Helfrich, Evans et Canham qui ont menés à la définition d’une énergie de courbure pouvant être utilisée pour décrire les formes des bicouches lipidiques.

Nous discutons des formes simples d’énergie minimale, telles que des sphères et des tubes, avant d’énoncer l’équation de forme complète pour décrire une surface arbitraire. En nous limitant aux surfaces possédant une symétrie axiale, nous discutons des solutions qui correspondent à une membrane soumise à force ponctuelle, Fig. 1.8. Nous discutons les considérations énergétiques expliquant l’instabilité classique de perlage d’un tube membranaire, qui est observée lorsque la tension superficielle dépasse un seuil critique.

Nous discutons la mécanique statistique de la membrane soumise aux fluctuations thermiques et obtenons le résultat de l’équipartition pour les ondulations quadratiques moyennes d’un tube membranaire. Enfin, nous fournissons une brève discussion de la dynamique des fluides aux échelles cellulaires, en particulier de la façon dont les termes inertiels dans les équations hydrodynamiques peuvent être négligés à cette échelle.

D.2 Instabilités hydro-osmotiques dans les tubes membranaire actifs

Dans ce chapitre, nous étudions un tube membranaire doté de pompes ioniques unidirectionnelles entraînant une différence de pression osmotique. Ceci est inspiré d’un organelle trouvé dans de nombreux protistes d’eau douce (organismes eucaryotes unicellulaires) appelé le complexe vacuole contractile, Fig. 2.1a. Cet organelle agit comme une pompe pour éliminer l’excès d’eau des cellules et constitue ainsi un mécanisme d’osmorégulation. Le vacuole contractile est dotée de pompes à protons unidirectionnelles sur toute sa surface qui consomment de l’ATP pour transporter des protons contre leur gradient de concentration, ce qui entraîne une différence de pression osmotique qui permet à la vésicule principale de se remplir d’eau. Un pore ancre cette vésicule à la membrane plasmique. Lorsque la vésicule est complètement
gonflée, ce pore s’ouvre et la pression de Laplace expulse l’eau.

La vésicule principale est entourée de 5 à 10 bras en forme de tubes membranaires, eux aussi recouverts de pompes à ions, qui se gonflent sous l’effet de la différence de pression osmotique et semblent ensuite subir une instabilité montrant un gonflement hétérogène, Fig. 2.1a, b. Ces protubérances ont des tailles caractéristiques bien supérieures à celles d’une instabilité typique de Pearling.

Nous étudions ce mécanisme en considérant un tube membranaire infini recouvert de pompes à ions qui transportent des ions à travers la membrane à un taux constant par unité de surface. Nous calculons la croissance du tube en raison de cette augmentation de la pression osmotique, Eq. 2.18, et considérons les perturbations linéaires sur cet état fondamental en évolution constante. Parce que le tube est initialement stable, toutes les onductions initiales seront amorties. Nous incluons donc un terme de forçage stochastique choisi qui conduirait aux fluctuations thermiques si le tube était en équilibre. La résolution de la dynamique stochastique complète pour le déplacement quadratique moyen des onductions conduit une instabilité avec un nombre d’onde naturel \(\tilde{q} = q r_0 \sim 0.05 – 0.1 \) (où \(r_0 \) est le rayon d’équilibre du tube) pour des valeurs de paramètres compatibles avec des expériences d’électrophysiologie sur le vacuole contractile. Cela correspond à une longueur d’onde d’environ 1 à 10 microns, ce qui est du même ordre de grandeur que celle des protubérances observées dans le vacuole contractile.

La raison de cette grande longueur d’onde est que le fonctionnement lent des pompes à ions conduit à une dynamique qui reste à tout moment très proche du seuil d’instabilité, de sorte que seules les longueurs d’onde élevées sont rendues instables. Cela est également dû au fait que le taux de croissance des différents modes possède un pic pour un vecteur d’onde \(\tilde{q} \) qui est une fonction non monotone de rayon du tube, avec un maximum pour \(\tilde{q} = 0.2 \). Pour l’instabilité classique du perlage, le taux de croissance possède un pic pour un vecteur d’onde \(\tilde{q} = 0.6 \) entièrement déterminé par la géométrie du tube. Ce qui contribue également à expliquer la longueur d’onde plus élevée de notre instabilité, voir Fig. 2.2, 2.3. Il s’avère également que cette sélection de longueur d’onde est très robuste aux modifications de nos paramètres. La longueur d’onde exacte est définie par le rapport des temps caractéristiques de pompage ionique et de dissipation visqueuse. Cependant, une modification de plusieurs ordres de grandeur de ce paramètre ne conduit qu’à une variation un facteur de deux de la longueur d’onde.

Nous avons développé un modèle de membrane perméable à l’eau contenant des pompes à ions unidirectionnelles. Les instabilités hydro-osmotiques observées devraient appartenir à cette classe d’instabilités. En dérivant des équations dyna-
miques pour un tube membranaire, nous identifions une instabilité provoquée par ce déséquilibre osmotique. Cela à une longueur d’onde naturelle qui est définie par les paramètres dynamiques, en particulier le rapport entre l’échelle de temps de pompage et l’échelle de temps visqueuse, et qui est nettement plus longue que celle de l’instabilité de Rayleigh ou de Pearling. Il est intéressant de noter que la longueur d’onde obtenue est du même ordre que celle observée dans les bras radiaux du complexe vacuole contractile, ce qui suggère qu’il s’agit d’un mécanisme possible pour expliquer la morphologie de ces bras. Il est également intéressant de noter que la taille latérale des excroissances formées par l’instabilité est du même ordre de grandeur que la taille de la vésicule principale du complexe vacuole contractile. Nous supposons que cette instabilité peut fournir un mécanisme pour la biogénèse du vacuole contractile à partir d’un tube actif sans particularité. Nous avons l’intention d’aborder plus avant la question de cette organellogénèse dans nos travaux futurs.

D.3 Instabilités par cisaillement sur tubes membranaires

Motivés par la mécanique de la scission des tubes membranaires induite par la dynamine, nous utilisons l’hydrodynamique covariante pour analyser la stabilité des tubes membranaires soumis à un flux de cisaillement dans la direction azimutale. L’hydrodynamique covariante des membranes de fluide a suscité un vif intérêt au sein de la communauté des spécialistes de la matière molle et de la physique biologique au cours des dernières années, tant pour les caractéristiques théoriques générales de tels systèmes que pour leur application à des processus biologiquement pertinents. Ces systèmes associent l’hydrodynamique des membranes à l’élasticité de courbure et se sont révélés présenter un comportement viscoélastique complexe dans les géométries à forte courbure.

L’un des moyens les plus simples de décrire les écoulements à la surface de ces tubes consiste à imposer une vitesse dans la direction azimutale. L’analyse des modifications de forme induites par de tels écoulements est le sujet de ce chapitre. La Fig. 3.1 illustre deux mécanismes possibles pour réaliser de tels écoulements via des expériences in vitro et in vivo. La fission des tubes membranaires joue un rôle important dans de nombreux processus cellulaires, allant de l’endocytose à la fission des mitochondries. Le composant clé de la machinerie biologique nécessaire pour induire la fission membranaire est une famille de protéines appelée Dynamin, qui hydrolyse le GTP en GDP. La dynamine est un complexe protéique qui s’oligomérise pour former des polymères qui s’enroulent en hêlice autour des tubes membranaires. Il est clairement établi que Dynamin subit un changement de conformation suite à l’hydrolyse...
du GTP. Cependant, il n’existe pas encore de consensus sur la méthode exacte de fission, bien que des simulations numériques récentes aient montrées le rôle probable de la con striction et de la dépolymérisation. Il a été démontré expérimentalement que, lors de l’hydrolyse du GTP, la dynamine tourne rapidement tout en se rétrécissant. La fréquence de rotation peut être de l’ordre de 10Hz, donnant un mécanisme pour la génération de flux de membrane dans la direction azimutale. Un autre moyen possible de générer de tels écoulements consiste à extraire un petit tube d’une vésicule unilamellaire géante (GUV) ou d’une cellule avec des pinces magnétiques appliquant une force sur une bille magnétique fixée à la membrane et à utiliser des oscillations de champ magnétique pour faire tourner la bille.

Nous analysons la stabilité d’un tube membranaire soumis à un taux de cisaillement Ω aux perturbations de la forme, de la vitesse de surface et de la tension de surface. En résolvant les équations hydrodynamiques à la surface, nous pouvons écrire une équation dynamique pour les perturbations du rayon en fonction des modes de Fourier. Cela montre qu’il existe une instabilité héliocida le entraînée par le cisaillement avec une longueur de pas définie par la taille du tube. Ceci est analogue à une instabilité similaire dans une tige élastique torsadée à chaque extrémité. Cependant, en raison de la nature fluide de la surface, la forme est modifiée par l’écoulement de l’état fondamental, ce qui entraîne l’ajout de spires supplémentaires à l’hélice à chaque tour. Cette advection stabilise finalement la croissance de l’hélice et conduit à un état stationnaire hors d’équilibre. Pour comprendre les implications de ce mécanisme d’amplification, nous résolvons la l’équation différentielle stochastique dans la forme afin de tenir compte des fluctuations thermiques Eq. 3.38. Ceci nous permet de calculer les fluctuations quadratiques moyennes de l’état stationnaire, Fig. 3.3. Nous estimons la vitesse de rotation nécessaire pour obtenir des déformations non-linéaires et discutons des implications possibles de ce mécanisme d’amplification de la fluctuation sur la scission du tube par la Dynamin, Fig. 3.4.

En résumé, nous avons développé une théorie hydrodynamique qui prédit une instabilité sur des tubes membranaires fluides qui est uniquement provoquée par un cisaillement constant de la membrane. On montre que de tels écoulements provoquent d’abord une instabilité héliocida le, ce qui est tout à fait distinct de toute instabilité précédemment identifiée des tubes membranaires fluides. Cette instabilité conduit à un état stationnaire associé à une augmentation significative du spectre de fluctuation d’un tube membranaire. Nous prédisons que cette instabilité est physiologiquement accessible à la Dynamin, bien que ce phénomène n’ait encore jamais associé à la fonction de la Dynamin. Cette instabilité constitue mécanisme qui pourrait conduire à la scission des tubes, par ex. suite à une augmentation de tension
membranaire dans l’état hors d’équilibre, où à l’évolution non-linéaire de la forme d’un tube sous cisaillement.

D.4 Dynamiques passives et actives des tubes membranaires

Le but de ce travail est d’obtenir des équations générales d’évolution d’un tube membranaire soumis à une distribution de forces fluctuantes arbitraire due à des phénomènes actifs. En utilisant la formulation Onsager, nous dérivons des équations dynamiques pour la relaxation de la déformation d’un tube membranaire fluide permettant un contraste de viscosité entre l’intérieur et l’extérieur du tube, ainsi que des variations de tension superficielle dues aux écoulements de membrane. Pour obtenir les équations complètes du mouvement en utilisant la formulation de Onsager, nous devons d’abord écrire le Rayleighian. Le Rayleighian complet pour le système est obtenu à partir de la somme du taux de changement d’énergie libre pour le système, Eq. 4.6, et des dissipations d’énergie (la moitié du travail effectué sur le système), Eq. 4.7, et en ajoutant les contraintes sur le système en utilisant des multiplicateurs de Lagrange. Cette formulation équivaut à l’équation cinétique de Onsager avec des coefficients réciproques, mais est obtenu par formalisme variationnel, avec l’avantage que la recherche des couples de flux et de forces corrects est maintenant triviale puisqu’elle dérive directement du principe variationnel. Cette approche nous a permis d’obtenir les équations de mouvement couplées pour le système en prenant simplement en considération les fonctions de dissipation pertinentes et les contraintes du système et en tirant toutes les conséquences d’un principe variationnel.

En utilisant la transformée de Fourier et la solution connue aux équations de Stokes en 3D, nous pouvons trouver une équation de relaxation pour les perturbations de forme, équation 4.25. Nous considérons la dynamique de relaxation pour tous les modes, en examinant en particulier leur comportement asymptotique. Nous montrons que le mode \(m = 0 \) donne le même comportement de relaxation et l’instabilité de Pearling que l’on trouve dans d’autres articles qui ne prennent en compte que les perturbations à symétrie axiale, Fig. 4.2a, 4.3. Nous analysons également le comportement de mise à l’échelle pour des valeurs plus élevées de \(m \).

Le mode \(m = 1 \) a un comportement intéressant dans la limite des grandes longueurs d’onde, où il se comporte comme une tige élastique, Fig. 4.2b. Les valeurs les plus élevées \(m = 2, 3, 4... \) ont toutes un comportement de relaxation similaire, résumé à la Fig. 4.4.

Sur la base de ces tax de relaxation, nous examinons la dynamique des fluc-
tuations thermiques passives et des fluctuations actives. Dans ce cas, “actif” fait référence aux fluctuations ne satisfaisant pas le théorème de fluctuation-dissipation. Nous calculons les fluctuations quadratiques moyennes pour les fluctuations passives et actives et calculons la “température effective” de chaque mode m en fonction de \tilde{q}, Fig. 4.7. Nous discutons de la façon dont la variation de la viscosité externe pourrait permettre de mesurer la contribution des fluctuations actives dans une expérience sur un tube extrait d’un GUV. Pour les travaux futurs, il serait intéressant d’examiner les effets de différentes formulations d’activités (à la fois dans les tubes et dans d’autres scénarios). Il serait également intéressant de considérer l’effet d’un fluide ambiant visco-élastique, car cela pourrait donner une meilleure approximation du cytoplasme dans les cellules. Cela donnerait non seulement une dynamique potentiellement plus riche, en raison de la présence d’une échelle de temps supplémentaire, mais pourrait également être utile pour comprendre des processus biologiques plus réalistes.

D.5 Discussion et perspectives

Les tubes membranaires lipidiques sont abondants à l’intérieur des cellules et leur dynamique a été impliquée dans de nombreux processus importants. Dans cette thèse, nous avons examiné quelques modèles théoriques de situations simples conçus pour imiter des processus importants en biologie, l’objectif étant de les utiliser pour éclaircir la physique sous-jacente. Dans ce chapitre, nous décrivons brièvement certaines orientations futures possibles de la recherche et des extensions du travail dans les trois chapitres principaux de la thèse.
Bibliography

