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Abstract

Clustering is a branch of machine learning consisting in dividing a dataset into several
groups, called clusters. Each cluster contains data with similar characteristics. Several
clustering approaches exist that differ in complexity and efficiency due to the multitude
of clustering applications.

In this thesis, we are mainly interested in centroid-based methods, more specifically
k-means and density-based methods. In each approach, we have made contributions
that address different problems.

Due to the growth of the amount of data produced by different sources (sensors,
social networks, information systems...), it is necessary to design fast algorithms to
manage this growth. One of the best-known problems in clustering is the k-means
problem. It is considered NP-hard in the number of points and clusters. Lloyd’s
heuristic has approximated the solution to this problem. This is one of the ten most
used methods in data mining because of its algorithmic simplicity. Nevertheless, this
iterative heuristic does not propose an optimization strategy that avoids repetitive
calculations. Versions based on geometric reasoning have partially addressed this
problem. In this manuscript, we proposed a strategy to reduce unnecessary compu-
tations in Lloyd’s version and the versions based on geometric reasoning. It consists
mainly in identifying, by estimation, the stable points, i.e., they no longer contribute
to improving the solution during the iterative process of k-means. Thus, calculations
related to stable points are avoided.

K-means requires a priori, from users, the value of the number of 𝑘 clusters. It
is necessary for 𝑘 to be the closest to the ground truth. Otherwise, the result of
partitioning is of low quality or even unusable. We proposed Kd-means, an algorithm
based on a hierarchical approach. It consists in hierarchizing data in a Kd-tree data
structure and then merging sub-groups of points recursively in the bottom-up direction
using new inter-group merging criteria that we have developed. These criteria guide the
merging process to estimate 𝑘 closest to real and produce clusters with a more complex
shape than sphericity. Through experimentation, Kd-means has clearly shown its
superiority over its competitors in execution time, clustering quality and 𝑘 estimation.

The density-based approach’s challenges are the high dimensionality of the points,
the difficulty to separate low-density clusters from groups of outliers, and the sep-
aration of close clusters of the same density. To address these challenges, we have
developed DECWA, a method based on a probabilistic approach. In DECWA, we
proposed 1) a strategy of dividing a dataset into sub-groups where each of them fol-
lows its probability law; 2) followed by another strategy that merges subgroups, similar
in probability law, into final clusters. Experimentally, DECWA, in high-dimensional
spaces, produces a good quality clustering compared to its competitors.

Keywords: Clustering, Partition-based clustering, Density-based clustering, Cal-



culation time acceleration

Résumé

Le clustering est une branche de l’apprentissage automatique consistant à diviser
un ensemble de données en plusieurs groupes appelés clusters. Chacun des clusters
contient des données avec des caractéristiques similaires. Plusieurs approches de clus-
tering existent qui diffèrent en complexité et en efficacité, en raison de la multitude
d’applications du clustering.

Dans cette thèse, nous nous intéressons essentiellement aux méthodes basées sur les
centroïdes plus spécifiquement les k-moyennes et aux méthodes basées sur la densité.
Dans chaque approche, nous avons apporté des contributions qui répondent à des
problèmes différents.

En raison de la croissance de la quantité de données produite par différentes sources
(capteurs, réseaux sociaux, systèmes d’information. . . ), il est nécessaire de concevoir
des algorithmes rapides pour gérer cette croissance. L’un des problèmes les plus connus
en clustering est celui des k-moyennes. Il est considéré NP-difficile en nombre de points
et de clusters. La solution de ce problème a été approximée par l’heuristique de Lloyd.
Celle-ci est l’une des dix méthodes les plus utilisées en fouille de données en raison
de sa simplicité algorithmique. Néanmoins, cette heuristique itérative ne propose pas
de stratégie d’optimisation qui évite des calculs répétitifs. Des versions basées sur le
raisonnement géométrique ont répondu en partie à ce problème. Dans ce manuscrit,
nous avons proposé une stratégie visant à réduire les calculs inutiles dans la version
de Lloyd ainsi que dans les versions basées sur le raisonnement géométrique. Elle
consiste principalement à identifier, par estimation, les points qui sont stables, c’est-
à-dire, qui ne contribuent plus à l’amélioration de la solution lors du processus itératif
de k-moyennes. Ainsi, les calculs liés aux points stables sont évités.

K-moyennes requiert a priori, de la part des utilisateurs, la valeur du nombre de
clusters 𝑘. Il est nécessaire que 𝑘 soit la plus proche de la vérité-terrain, sinon le
résultat de partitionnement est de mauvaise qualité voire inutilisable. Nous avons
proposé Kd-means, un algorithme basé sur une approche hiérarchique. Elle consiste à
hiérarchiser les données dans une structure de données du type Kd-tree puis à fusionner
des sous-groupes de points récursivement dans le sens bas-haut via de nouveaux critères
de fusion inter-groupes que nous avons développé. Ces critères guident le processus
de fusion à estimer 𝑘 le plus proche du réel et de produire des clusters ayant une
forme plus complexe que la sphéricité. À travers les expérimentations, Kd-means a
nettement montré sa supériorité, face à ses concurrents, en temps d’exécution, en
qualité de clustering et en estimation de 𝑘.

Les défis de l’approche des méthodes basées sur la densité sont la grande dimen-
sionnalité des points, la difficulté à séparer les clusters de faible densité des groupes de



points aberrants ainsi que la séparation des clusters proches de même densité. Pour y
répondre, nous avons développé DECWA, une méthode basée sur une approche proba-
biliste. Dans DECWA, nous avons proposé 1) une stratégie de division d’un ensemble
de données en sous-groupes où chacun d’eux suit sa loi de probabilité ; 2) suivie d’une
autre stratégie qui fusionne des sous-groupes, similaires en loi de probabilité, en clus-
ters finaux. Expérimentalement, DECWA, dans des espaces de grandes dimensions,
produit un clustering de qualité par rapport à ses concurrents.

Keywords: Regroupement, Regroupement basé sur les centroides, Regroupement
basé sur la densité, Accélération du temps de calcul
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2 CHAPTER I. INTRODUCTION

I.1 Research context

I.1.1 Classification

Classification of objects is an important human activity. Indeed, every day, classifi-
cation is part of our learning process; e.g., the child learns to differentiate man from
woman, cat from dog, truck from car etc. In computer science, this classification is
automated and constitutes a sub-domain belonging to machine learning (Hastie et al.,
2009). The latter cuts across several scientific fields such as biology, speech processing,
image processing etc. It has enabled them to gain new fundamental knowledge and
thus has enabled them to solve significant problems.

There are three main types of classification. Supervised classification (Alpaydin,
2010) classifies objects while knowing a priori their nature. In a supervised vehicle
classification, each object’s label or nature is known in advance; e.g., motorbike, car.
In this category, the task consists in establishing a model that best represents the data,
and then use it to make predictions about labels of new unlabelled objects not yet seen.
In unsupervised classification (Berkhin, 2006), objects are not labeled. It consists of
finding underlying structures that best represent the nature of different objects. In
semi-supervised classification (Zhu, 2008), there are labeled and unlabelled objects.
Those that are labeled are used, via strategies, to improve unsupervised classification
and to allow a supervised classification alternative when not all objects are labeled.
The advantage of this category is that it provides some knowledge in advance about the
properties of certain structures that are useful for the first two types of classification.
It also reduces the human task of expert manual labeling in the process of supervised
classification.

This manuscript focuses on unsupervised classification and, more specifically, its
important sub-domain, named clustering (Aggarwal and Reddy, 2013).

I.1.2 Clustering

Clustering is one of the most useful data analysis tasks to discover interesting groups
and patterns in the underlying data. In clustering, the objective is to partition a set of
points (also called objects, observations or simply data points) into groups (clusters)
so that the points in a cluster are more similar to each other than the points in
different clusters (Figure I.1). Each point is described by attributes that could be
called dimensions. To get a better idea of how clustering has been used in practice,
below are two different lists of use cases. In the first one clustering is generally a
pre-processing tool for other data processing methods (1), while in the second one it
is an essential solution in its own right in several application areas (2).

(1) Clustering as an pre-processing tool:



I.1. RESEARCH CONTEXT 3

Figure I.1: An example of three clusters, each containing data points

• data summarization (Kleindessner et al., 2019): data compression to give com-
pact and easier to interpret representations. Also, compression leads to a re-
duction in the use of memory space. Different strategies are implemented more
or less explicitly to ensure the level of compromise between the loss of relevant
information and memory gain;

• labeling (Trivedi et al., 2015): the user may have to opt, for a specific task, for
a supervised classification method. However, this requires the data are labeled.
The unsupervised classification is integrated into a pre-processing phase in which
it puts the points in groups. From then on, each group is associated with a label.
After the end of the pre-processing phase, the data and their associated labels
are consumed by the supervised classification method;

• outlier detection (Hodge and Austin, 2004): outliers are a portion of data, which,
due to their characteristics, are abnormally different from the majority of other
data in a dataset. These outliers can lead, the methods processing the dataset,
to biased results. Clustering is called upstream of these methods to clean the
outliers from the dataset. However, others tasks are developed specifically to
identify outliers that are not considered as errors or biases but rather as phe-
nomena in their own right; e.g., fraudulent transactions. In this case, clustering
is not a cleaner but rather a detector of rare phenomena.

(2) Clustering in different application areas:

• genetics (Kiselev et al., 2019). with the massive collection of genomic data due to
new biological techniques developed in recent years, different diseases have been
categorized according to different gene expression levels. In this way, a disease
could be rapidly detected early on via information obtained by the group;

• marketing (Huang et al., 2007). given an e-commerce site, its customers are
grouped into segments according to their characteristics. Each segment is a
group of customers with similar tastes. These segments are targeted according
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to the product that the site is trying to sell with maximum gains. This technique
leads to the facilitation or even abstraction of the conversion step from hesitant
or uninterested customers to buying customers.

There are many other application domains using clustering, such as health (Thanh
et al., 2017), aeronautics (Yang and Villarini, 2019), information retrieval (Chifu et al.,
2015), document classification (Amine et al., 2008), databases (Bentayeb and Favre,
2009) etc.

I.2 Research problems
Clustering is a powerful and useful tool for a wide range of use cases. However, it has
to face the different challenges to be successful for the areas in which it is called. De-
spite the development of successful clustering algorithms, they are gradually becoming
insufficient for various reasons; i.e. there is a continuous technological advancement,
the amount of data collected by modern companies is rapidly increasing, and the data
is becoming more and more complex. Clustering is forced to adapt to these devel-
opments to meet the needs of data scientists and enterprises. There are two main
aspects to consider when evaluating a clustering method: its execution time and data
clustering quality. The quality depends essentially on the algorithm used as well as the
users’ expectations. These two aspects guide the way to meet the challenges. These
are diverse and each of them is treated in a specific way. Below are the challenges:

• number of points. Clustering algorithms must produce a result in a reasonable
amount of time relative to the number of points contained in the dataset. This
is even more true when the method is used as a pre-processing tool for more
expensive tasks such as deep learning tasks;

• number of dimensions. This data characteristic is important because it could
make a clustering method ineffective when the number of dimensions is relatively
large. Indeed, data analysis becomes too complicated because the distances
between points tend to become more uniform. In addition, each dimension brings
its share of errors and implies biases in the clustering algorithm used.

• data distribution. The way in which points are arranged in a data space brings
involved different issues and, consequently, the development of different cluster-
ing methods. These issues are also diverse:

– outliers. datasets are not always clean, especially for real ones. They may
contain errors such as input errors, malfunctions of measuring devices, or
data collection. In addition to these errors, some data points have particular
characteristics compared to other data and errors. They could correspond
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to a different nature or even be isolated from the majority of the data. Their
identification may be necessary for the success of certain tasks. Therefore,
algorithms should be able to work in the presence of outliers, at best, to
differentiate between errors and rare phenomena relevant to data scientists;

– cluster imbalance. clusters of points in the dataset can be of different sizes.
They are a source of difficulty for algorithms because small clusters can be
confused with outliers or even absorbed by large clusters. In this sense,
knowledge or detection of certain phenomena could be neglected. Besides,
the results may be biased and not reflect the data’s natural reality and the
way the data was generated;

– cluster forms. Depending on the source that generated the clusters, each
cluster of data has a particular form to it or common to other clusters in
the same dataset. The form in itself is a significant difficulty in clustering
because it implies three assertions: a priori from the launch of a chosen
clustering algorithm, the shapes of the clusters are known, not known, or
partially known. In the case where the clusters’ forms are not known,
robust strategies with the fewest possible assumptions about the data must
be implemented to best approach the cluster shape’s true nature;

– cluster number. many algorithms require the number of clusters to be filled
in before the algorithm is run. This information is difficult to obtain and
requires a deep knowledge of the dataset. This is often not the case when
the algorithm is used as a tool to explore the data before doing specific
processing. Giving an incorrect cluster number compared to the data’s
reality leads to a partitioning of the data that is not of good quality or even
not useful.

Generally, to meet these challenges with significantly more performance and effi-
ciency, new alternatives to existing clustering algorithms suffering from specific diffi-
culties should be implemented, or existing algorithms should be revised to make them
more robust. This thesis makes contributions to both approaches.

Different clustering paradigms exist (Aggarwal and Reddy, 2013). Their difference
is explained by the fact that data is not labeled. So, each paradigm brings its own
rules to establish its cluster definition and its strategies for partitioning a dataset. In
this thesis, the focus is essentially on the paradigms of centroid-based (Reddy and
Vinzamuri, 2018) and density-based clustering methods (Kriegel et al., 2011). We
tackle the two paradigms on different issues.

Centroid-based methods consider that a cluster has a centroid that best represents
the points of the same cluster. Indirectly they minimize an objective function, i.e., they
minimize as much as possible for each cluster the variance between the points and the
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centroid (intra-cluster variance). They are based on an iterative approach, i.e., at each
iteration, the intermediate solution is improved until convergence, i.e., the maximum
possible minimization of the objective function. However, intermediate calculations
are costly when a relatively large number of points, dimensions, and clusters are to be
processed, especially when the number of iterations is large. Moreover, these methods
are sensitive to the parameters set by the users and the characteristics of the data.
In practice, these methods are run several times to choose the most optimal result.
This makes the use of these methods even more expensive and slower. This problem
is discussed in chapter III, section III.2. The contribution focuses on k-means because
it is the best-known method in this category. Also, it is widely used in practice and
implemented by the majority of known machine learning libraries.

Despite its algorithmic simplicity and wide use, k-means remains nevertheless de-
pendent on input parameters, mainly the number of clusters 𝑘. As emphasized above,
the 𝑘 value must be within a range of possible and reasonable values or even a single
potential value to produce a partitioning of the dataset that is as close as possible to
the field truth. This problem has been addressed by proposing several heuristics. In
their operation, they are based on multiple calls of k-means. However, they do not
work in certain spatial configurations of the data, i.e, dataset with overlapping clus-
ters, which lead to biased results and very long process time. Moreover, many of these
methods estimating 𝑘 require clusters to be strictly spherical, which is not always the
case in reality. This strong apriori assumption about the cluster’s shape also leads to
a bad estimation of 𝑘 if the assumption is not respected in the dataset. These problem
are addressed in chapter III, section III.3.

Density-based methods adopt another definition of a cluster, unlike centroid based
methods. A dense region, i.e., a subspace of data where the points are very close
together, represents a potential cluster or part of it (Kriegel et al., 2011). Although
these methods have less a priori assumptions about the data than the centroids-based
methods, they are sensitive to the spatial distribution of the data. Indeed, they ex-
pect at the boundaries between clusters a variation in density. The intensity of this
variance depends on the method used. Clusters of the same density with a strong
overlap are potentially considered as a single cluster. Another problem is that they
might consider a low-density cluster as a group of outliers, i.e., as points that do not
provide useful information. However, this low-density cluster may represent a real
phenomenon existing in the ground truth. Moreover, density calculations, with very
large dimensions, tend to give a clustering far from the ground truth. This problem is
called the curse of dimensionality (Donoho, 2000). These problems are dealt with in
chapter IV.
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I.3 Outline
In this manuscript, three contributions have been made. The first two are grouped
in chapter III. They deal with problematics around k-means. The third contribution,
presented in chapter IV, deals with a density-based method:

• Acceleration of k-means versions based on triangular inequality in a massive data
context. A strategy for accelerating k-means, Sk-means, is proposed. It stores
information on the movements of points during the k-means process (standard
version and optimized versions based on geometric reasoning). This information
allows not to apply useless calculations on certain points. In this way, k-means
is accelerated in execution time, especially when running in large datasets;

• Kd-means. Proposal of a clustering method that automatically estimates the
number of clusters present in a dataset. Kd-means is based on kd-tree, a hier-
archical data structure used to organize data. In Kd-tree, we introduced fusion
measures that use geometric properties used in a hierarchical process (bottom-
up). These measures guide the aggregations between sub-groups of points to
produce, at the process end, final clusters with a more complex shape than those
found by k-means and by the mixture of Gaussian models. Kd-means has the
advantage of producing quality clustering that is fast compared to competitors;

• Decwa. A clustering method capable of detecting irregularly shaped clusters.
It is based on a probabilistic approach as well as optimal transport. It has the
advantage of producing a quality clustering carried out on very large dimensions.
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II.1 Introduction
Given 𝑘 ∈ N* and 𝑋 = {𝑥1, ..., 𝑥𝑛} a set of points where 𝑥𝑖 is defined in the data space
R𝑑, the clustering aims to partition 𝑋 into a set of clusters 𝐶 = {𝐶1, ..., 𝐶𝑘} so that
the points of a cluster are as similar as possible and the points of different clusters as
dissimilar as possible. Note that a dimension corresponds to a characteristic of the
data point, e.g., if a point represents a vehicle, its characteristics could be the color,
the number of wheels, the registration, etc.

First, we overview the different clustering approaches (section II.2.2 ) and then
identify their main differences. A focus is then essentially put on partition-based
methods (section II.3 ) and density-based methods (section II.5 ) since our contribu-
tions have been made in both approaches. Another section is devoted to optimization
strategies (section II.4) for k-means. Even if they can speed up the execution time of
methods, these strategies could also improve the quality of partitioning, i.e., obtain
even more homogeneous clusters.

II.2 Clustering methods

II.2.1 Introduction

Although clustering methods have to build homogeneous clusters, they do not have
the same definition of the cluster nor on how to carry out partitioning because of the
unsupervised aspect of these methods. The clustering methods are broadly classified
into partition-based, hierarchical-based, density-based and grid-based(Aggarwal and
Reddy, 2013). We will briefly discuss these paradigms.

II.2.2 clustering methods taxonomy

Partition-based methods1. The aim of this paradigm consists in dividing a dataset 𝑋

into 𝑘 clusters according to a particular objective function. Each cluster is represented
by a centroid, also called a gravity center or center, which is not necessarily contained
in the data set. For example, in the k-means algorithm (Lloyd, 1982b), the centroid
is the arithmetic mean of all the cluster points’ values. In the k-medoid algorithm
(Kaufmann and Rousseeuw, 1987), the centroid is one of the points in the cluster
called the medoid.

To produce data partitioning, the methods of this paradigm go through an iterative
process. The partitioning is improved at each iteration compared to the previous
iteration according to the objective function until convergence. The improvement in
an iteration refers to the change of cluster for some points.

1This paradigm has another well-known name, centroid-based methods. In this manuscript, both
names are used.
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Hierarchical methods. In this paradigm, clusters are represented hierarchically,
at different granularity levels, through a tree structure called a dendrogram. In this
dendrogram, clusters are nested, i.e., they are made up of other smaller clusters.
Different strategies exist to recover clusters from the dendrogram, e.g., by cutting the
dendrogram at a given height. The recovery of a different set of clusters is possible by
cutting the dendrogram at a different height without rebuilding the tree. The methods
are divided into two groups:

• divisive: these methods proceed to a recursive dichotomy of the dataset. At each
division, one or more clusters are obtained, each of these clusters is then divided
and so on;

• agglomerative: these methods recursively agglomerate clusters. At the very
beginning, each point is a cluster. The merging is done pair by pair of clusters.
Often, a set distance is involved to calculate the similarity between two clusters.

Density-based methods. This group considers that clusters are dense regions of
points separated by less dense regions. The latter are assimilated to outliers. A cluster
is defined as follows: given a volume in a data space, the more data points there are
in this volume, the denser the volume is. Clusters are arbitrary in shape, i.e. they
can take practically any shape. Moreover, generally, there are no a priori assumptions
about the shape of clusters.

Grid-based methods. Commonly, these methods first quantify the original data
space into a finite number of cells. Partitioning operations are performed on the
quantized space (grid stucture). The main feature of this approach is its ability to
reduce processing time since similar data points fall into the same cell, and each cell
is treated as a single point. This makes the algorithms independent of the number
of objects in the dataset. However, the clustering quality is compromised by the size
of the cells chosen. The definition of quality depends on the method used and the
user. Moreover, the uniform grid (i.e. cells with the same size) may not be efficient
for very irregular data distributions. Below the common successive instructions of the
grid-based methods:

• Define a set of grid cells

• Calculate cell density

• Eliminate cells with a density lower than a threshold

• Forming clusters from contiguous cells
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II.2.3 Conclusion

We discussed the five paradigms. These one correspond to very different approaches,
although they have the same goal, i.e., to divide a dataset into several homogeneous
groups (clusters) of data points. There are several aspects involved in the differentia-
tion of the five paradigms. Without being exhaustive, below are some of them (Fahad
et al., 2014):

• what type of cluster is produced? 1) nested cluster, i.e., a cluster composed of
smaller clusters; 2) flat cluster, i.e., a whole cluster containing no sub-clusters;

• what kind of cluster shape is produced? Spherical, elliptical or arbitrary shape;

• is inner processing based on data structures? e.g., tree (hierarchical approach),
grid (grid-based approach), no structure needed for partition-based methods.

In this thesis, we focus essentially on the two following approaches: partition-based
methods (also called centroid-based methods) and density-based methods. Despite this
focus, we have used some tools from other paradigms in our contributions.

II.3 Partition-based clustering methods

II.3.1 Introduction

In this sub-section, we discuss partition-based methods. We recall that clusters each
have a center that represents the points of the cluster in these methods. First, we focus
on the best-known algorithm of this group of methods, k-means. Then we discuss its
alternatives and the reason that led to the development of these alternatives.

II.3.2 K-means

II.3.2.1 Problem definition

K-means (Forgy, 1965, Lloyd, 1982a) is one of the most widely used data clustering
algorithms. Due to its practicality in many fields of application, this algorithm has
been popular from 1965 (Jain, 2010b, Liu et al., 2012). K-means implicitly seeks to
optimize the following objective function, i.e. for each cluster, k- means minimizes the
distance between the points and their centroid:

𝑘∑︁
𝑗=1

∑︁
∀𝑥∈𝐶𝑘

𝑑𝑖𝑠(𝑥, 𝐺𝑘)2 (II.1)

where 𝐺𝑘 is the centroid of the cluster 𝐶𝑘 and 𝑑𝑖𝑠 is the distance function. It generally
corresponds to the Euclidean distance. If another distance is used, convergence is not
guaranteed unless it is proven.
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K-means is considered an optimization problem. Nevertheless, the problem is com-
binatorial and computationally NP-Hard. So, Lloyd’s algorithm (Lloyd, 1982a) (called
standard k-means or simply k-means) is an iterative heuristic has been developed to
solve approximately the k-means problem optimization. It converges to a local opti-
mum; i.e., it affords a solution that is not necessarily the optimal one.

Lloyd’s version consists of an iterative process that ends when centroids do not
change between two iterations. This process consists of two steps:

• assigning each point to the nearest centroid using the euclidean distance;

• recalculating the centroids, i.e., the average of the point values of the newly
formed clusters.

It has been shown that k-means can be seen as a probabilistic approach. Indeed
it produces about the same results as Gaussian Mixture Model (GMM) (Titterington
et al., 1985) under certain conditions. GMM considers that the points of each cluster
are sampled from a Gaussian distribution. During its process, it learns the parameters
of each Gaussian cluster via the Expectation-Maximation (EM) algorithm (Dempster
et al., 1977). When GMM imposes that the Gaussian distribution is isotropic, then, in
this case, the clusters it produces are strictly spherical, so GMM and k-means produce
similar results.

II.3.2.2 Limitations

The quality of clustering and convergence depends on the choice of the number of
clusters (𝑘), the initial centroids and the distribution of data (Jain, 2010a). These
three factors can lead to good or reasonable clustering or clustering making no sense
in practice. In figure II.1, three different data sets highlight the limitations of k-means
in the face of different data distributions. In figure II.1(a), k-means could not identify
the two elliptical clusters. Indeed, k-means only identifies spherical clusters or tries
to form spherical clusters even if they do not exist in the ground truth. In figure
II.1(b), three clusters which do not have the same cardinality in points but which are
separated. In this case, k-means failed to detect the clusters correctly. Indeed, an
area with a high density of points leads to points around or a little far away being in
the same cluster even if they are not in the ground truth. Moreover, isolated points
also strongly influence the location of the centroids. As a result, very distant points
can be found in the same cluster. In II.1(c), k-means unrolled on two clusters that do
not have the same variance; i.e., they do not have the same diameter, resulted in one
cluster absorbing another. K-means has difficulties when the clusters do not have the
same variance or with very different relative variances.

It should be noted that even if the initialization of centroids is good, the difficulties
discussed so far are not solved. Other strategies are needed to limit or solve these
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problems.
Another limit concerns the centroid representation. Indeed, the centroid is the ar-

tihmetic mean of the point values of the cluster. This representation is not appropriate
for use cases wherein the means are not meaningful or the data is not continuous and
numeric (e.g. categorical data).

Even if k-means has a probalistic equivalent via GMM. This latter requires the
user to specify the value of 𝑘, and its clustering quality is sensitive to this value.
Moreover, the EM algorithm has difficulties converging towards an optimal solution
in some cases, for example, when it faces medium-dimensional data. Consequently, to
limit this difficulty, some constraints are imposed, such as limiting spatial orientations
of clusters that can be identified.

The limitations will be discussed in more detail later in the chapter.

II.3.2.3 Versatility

One of the advantages of k-means is its versatility, i.e., at the algorithmic level, that its
subparts can be improved independently. Changing one sub-part does not necessarily
have a negative impact on another part. We distinguish two types of changes that can
be made on k-means (figure II.2). The first one is external. It consists in proposing
the most optimal possible inputs for k-means to lead it to converge more quickly
and to better optimize the objective function as opposed to providing random inputs,
which often produces a poor final result. Possible improvements include determining a
locally optimal initial set of centroids for k-means or identifying the actual number of
clusters in the dataset. The second one is internal, it consists in deploying strategies
1) to improve the clustering quality in the sense of having a good correspondence
between the result and the ground-truth and 2) to speed up the k-means execution
time. Obtaining good clustering could imply an optimized objective function but not
necessarily. The same logic applies in the sense optimized objective function to good
clustering.

II.3.3 K-means alternatives

In this part, we discuss partition-based clustering methods inherited directly from
k-means. Their development is due to k-means versatility.

II.3.3.1 K-median

K-median (Bradley et al., 1996) differs from k-means in the definition of the cluster
centroid. K-median uses the median instead of the mean to represent a cluster. Indeed,
it is known that medians are less sensitive to extremes of a list of values. The purpose of
k-median is to assign each point to the nearest median while minimizing the following



II.3. PARTITION-BASED CLUSTERING METHODS 15

(a)

(b)

(c)

Figure II.1: To the left of each figure, the ground truth (one color for a cluster). On
the right, an example of clustering by k-means. Crosses represent centroids.
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Figure II.2: K-means versality

objective function:
𝑘∑︁

𝑗=1

∑︁
𝑥𝑖∈𝐶𝑗

|𝑥𝑖 −𝐺𝑗|2 (II.2)

with |.|, for this function, is the Manhattan distance and 𝐺𝑗 is the median of
cluster 𝐶𝑗. Concretely, the result is a partitioning of the dataset into clusters, so that
the distance between each point and its median is as small as possible. Instead of
Euclidean distance, Manhattan distance is used to measure the distance between the
points and the centroids. At the algorithmic level, k-median consists of two steps as
k-means. The first one consists in assigning each point to the nearest median and the
second one in calculating the median of each cluster. The k-mediane advantage is that
it is more robust to outliers and noise.

II.3.3.2 K-medoids

In some use cases, the mean or median does not make sense in practice; e.g. if the
points are telecom network stations, then the average of the stations is meaningless.
In the k-medoid algorithm (Kaufmann and Rousseeuw, 1987), close to k-means, the
centroid’s value is taken from the data set. Therefore, the value is real because it is
not derived from an aggregation of points, as is the case in k-means and k-medoid,
where the centroid does not exist in the dataset. The centroid is called medoid. It
corresponds to the most centralized point of the cluster. The other points of the cluster
are non-medoid.

At each iteration, the points are assigned to the nearest medoid. By this, the
algorithm minimizes the quadratic sum of the dissimilarities between each point and
the medoid representing it. Indeed, the objective function is similar to that of k-
medians except that the centroid is a medoid instead of a median. Then follows the
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phase of updating the medoids, it corresponds to an iterative sub-process wherein each
iteration, a test of replacement of each medoid by a non-medoid. By calculating scoring
functions, this test verifies whether it is better to replace one medoid by another. This
phase is costly. On the one hand, the solution search space is exponential, and on the
other hand, (𝑘 − 𝑛)𝑘 tests are carried out.

II.3.3.3 K-modes

The basic concept of k-means is based on mathematical calculations (averages, Eu-
clidean distances). It is not suitable for categorical (qualitative) data. These are
discrete and even non-ordered in some cases (e.g., first names). Therefore, clustering
algorithms dedicated only to numerical data cannot be used to classify categorical
data that exist in many real-world applications. One could think about transforming
categorical data into numerical data and possibly apply k-means. However, k-means
uses numerical distances, so it could consider two close data points that are far apart
but have been assigned two close numbers. In clustering research, much effort has
been put into developing new methods for clustering categorical data. One of them is
the k-mode method (Huang, 1997), which is widely used in various applications.

k-modes is similar to k-means except that cluster centroids are modes and the
distance calculation is adapted for categorical data.

Points and modes are vectors of 𝑑 ∈ N* dimensions (attributes). The mode of an
attribute in a given cluster is the most represented or frequent value.

Formally, the objective function to be minimized is :

𝑘∑︁
𝑗=1

𝑛∑︁
𝑖=1

𝑓𝑖,𝑗𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑗) (II.3)

with 𝑓(𝑖, 𝑗) indicating whether or not the ith point belongs (binary value) to cluster
𝑗 and 𝐺𝑗 the mode of cluster 𝑗 and 𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑗) is the dissimilarity between points 𝑥𝑖

and 𝐺𝑗 and it is computed as follows:

𝑑∑︁
𝑙=1

𝜎(𝑥𝑖,𝑙, 𝐺𝑗,𝑙) (II.4)

where

𝜎(𝑥𝑖,𝑙, 𝐺𝑗,𝑙) =

⎧⎪⎨⎪⎩1 𝑥𝑖,𝑙 = 𝐺𝑗,𝑙

0 𝑥𝑖,𝑙 ̸= 𝐺𝑗,𝑙

(II.5)

with 𝑥𝑖,𝑙 and 𝐺𝑗,𝑙 are values of attribute 𝑙 of points.
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II.3.4 Conclusion

Partition-based methods perform clustering while optimizing an objective function,
which is the sum of squared errors, i.e., minimizing the squared distance between the
points and the centroid in each cluster.

The difference between these methods is essentially focused on the type of cluster
center (mean, median, medoid, mode) and the distance to compute the similarity
between points and cluster centers. Nevertheless, k-means is still widely used because
of its linear complexity as a function of the number of points and clusters. For this
reason, we are particularly interested in this method in this manuscript. Moreover, the
contributions made to k-means could be extended to other partition-based methods
with some adaptations.

II.4 Optimization strategies for k-means

II.4.1 Introduction

In this section, we discuss the optimization strategies explicitly implemented for k-
means. They are either designed for speeding up time execution or improving quality
or both. These strategies respond to different limitations of k-means. First, we address
the problem of estimating the number of clusters in the dataset. This number is a
parameter whose value is left to the free choice of the users. This parameter is essential
because it has a strong influence on the intensity of cluster homogeneity. Different
strategies have been developed to answer this problem. However, they use k-means
several times before arriving at an estimate. We discuss their concept and their limits
in more detail in subsection II.4.1.1. Another problem concerns the initialization of the
centroids (subsection II.4.1.2), which also affects the clusters’ homogeneity and is also
done manually by the users. Strategies are proposed to initialize the centroids. Some of
them do not call k-means but provide their set of centroids that they consider optimal.
They generally make k-means converge faster and improve quality. Others use k-means
several times or are complex in computation. In this case, they generally initialize the
centroids and partition the dataset into clusters. Due to this complexity, the quality is
generally better than the first centroid initialization strategies, but less so in terms of
execution time. Finally, the last problem we discuss is the high cost of computations
in k-means in a large amount of data environment. We present three fundamentally
different strategies (subsections II.4.1.3, II.4.1.4,II.4.1.5) that accelerate the execution
time of k-means. This time, optimization is totally internal to the k-means algorithm.
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Figure II.3: Estimation of 𝑘 by each of the both algorithms when clusters overlap. The
dataset contains 5 true Gaussian clusters. The respective estimates of X-means and G-means
are 67 and 26. The centroids are represented by black crosses. The horizontal and vertical
axes refer to both dimensions of the used dataset.

II.4.1.1 K estimation

Due to the unsupervised clustering nature, estimating the number of clusters (𝑘) is a
major problem. In the case where the clusters are all spherical and well distinguish-
able (without overlapping), if the user does not provide the actual value of 𝑘 then
the clustering result is unsatisfactory. In reality, this simple configuration of cluster
distribution is rare. Indeed, clusters can be of different shapes, sizes, orientations,
and localities, making the task of estimating 𝑘 more complex. This complexity is
accentuated when clusters overlap in the data but correspond to different phenomena.

This problem has been studied for many years (Halkidi et al., 2001). Among
the most representative works are X-means(Pelleg and Moore, 2000) and G-means
(Hamerly and Elkan, 2003). They are based on information theory and probability
tools. We study them in more detail in this part. These algorithms not only estimate
the number of centroids but also propose a partitioning of the dataset. Indeed, they
correspond to hybrid solutions wrapping the k-means algorithm.

II.4.1.1.1 X-MEANS X-means (Pelleg and Moore, 2000) is a k-means based algo-
rithm that searches for the number of automatic centroids while ensuring that these
centroids best match the dataset. Starting from a minimum 𝑘 (𝑘𝑚𝑖𝑛), generally equal
to one, the algorithm iteratively adds new centroids if necessary until the maximum
value of 𝑘 (𝑘𝑚𝑎𝑥) is reached. At each iteration, the algorithm identifies the subset of
centroids that must be divided into two. This identification is made using a statistical
criterion called Bayesian Information Criterion (BIC). The latter is used for model
selection and is based on the likelihood function.

The X-means process consists of two operations that are iterated until completion:
𝐼𝑚𝑝𝑟𝑜𝑣𝑒_𝑝𝑎𝑟𝑎𝑚 and 𝑖𝑚𝑝𝑟𝑜𝑣𝑒_𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒. 𝐼𝑚𝑝𝑟𝑜𝑣𝑒_𝑝𝑎𝑟𝑎𝑚 is only the execution of
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k-means with the current 𝑘 as a parameter while 𝐼𝑚𝑝𝑟𝑜𝑣𝑒 _𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 researches where
new centroids would be added. For each centroid and its associated region of points,
three sub-operations follow each other:

• the corresponding BIC is calculated;

• k-means is executed with 𝑘 = 2, two children’s centroids are obtained;

• the BIC of the same region is calculated but taking into account the two children’s
centroids instead of their parent centroid.

If the previous BIC is smaller than the next BIC, then the parent centroid is
replaced by its two children’s centroids, or the parent centroid is retained.

II.4.1.1.2 G-means This algorithm (Hamerly and Elkan, 2003) wraps k-means and
adopts almost the same approach as X-means. Instead of the BIC criterion, the
gaussianity test (at the level of 𝛼 confidence defined by the user) on clusters is used
to decide whether to divide a centroid in two. The G-means algorithm starts with a
small number of centroids and increases the number of centroids following a hierarchical
process.

In fact, at each iteration, each centroid is assigned points, forming a cluster. Then
a statistical test of gaussianity is applied to this cluster. If the test validates the hy-
pothesis that the cluster is not Gaussian, the corresponding points must be represented
by several centroids. Hence the division of the centroid in two using a strategy pro-
posed by the authors using Principal Component Analysis (PCA) (Wold et al., 1987)
. Otherwise, if it is Gaussian, the points are represented by this centroid. Between
each division cycle, k-means is executed on all dataset and all centroids to refine the
current solution (equivalent to the 𝑖𝑚𝑝𝑟𝑜𝑣_𝑝𝑎𝑟𝑎𝑚 step of x-means).

II.4.1.1.3 Limitations The limitations of the above methods are related to the diffi-
culty of dealing with overlapping clusters, the quality of clustering (and therefore also
the value of k) they produce as well as the execution time to provide a result.

Each of the both algorithms can identify only a limited number of more or less
spherical cluster types. X-means is suitable for data whose clusters are strictly spher-
ical (Hamerly and Elkan, 2003). If other forms of clusters are present, then the esti-
mate of 𝑘 could be overestimated. On the other hand, G-means could identify clusters
whose spherical shape is less strict than that identified by X-means. If the clusters
are well spaced apart, G-means could provide the relevant value of 𝑘 (Hamerly and
Elkan, 2003). In addition to this distribution, the strict sphericity requirement must
be added to the clusters for X-means to have the same performance. If the clusters
overlap, then none of them estimates the correct value of k. Under these conditions,
X-means and G-means tend to overestimate 𝑘.
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These cases are illustrated in Figure II.3. Five Gaussian clusters have been gener-
ated but with more or less different sphericity. Two clusters are well separated from
each other, the other three overlap. The two algorithms were run on this set of 20,000
data points. The 𝑘𝑚𝑎𝑥 has been set at 140. G-means identified 26 clusters but detected
the 2 clusters well separated from the others. However, there are overfitting on the
remaining three clusters and an overestimation of 24 clusters instead of only estimat-
ing 3. X-means estimated k at 76. Overestimation is slightly higher for overlapping
clusters than for separate clusters.

In terms of execution time, the two algorithms are not suitable when the data
are massive. It is even more accentuated when the estimated value of k tends to be
significant.

II.4.1.2 Centroid initialization methods

The partitioning of the dataset is dependent on the centroid initialization step, which
by default, consists of randomly selecting 𝑘 centroids from the points in the dataset
(Celebi et al., 2013). A wrong choice of centroids leads to a partitioning of low quality
or even meaningless for the users. Depending on the applications using k-means,
centroid initializations’ level of efficiency and accuracy could be very strict.

Algorithms are available for initializing 𝑘 centroids. However, they do not necessar-
ily lead to the same result or the optimal solution. An initialization algorithm’s choice
influences two aspects: clustering quality and the execution time. A compromise is
involved, and its balance is defined according to the type of data analysis project.
Some algorithms have a higher probability of proposing an initialization that leads to
a correct result than others, i.e. a result that could be exploited by the users. In the
same way, some are faster than others without necessarily being better in quality. We
list some of them for more details but without being exhaustive.

One of the most widely used methods is Forgy’s method (Forgy, 1965). It randomly
takes 𝑘 centroids from the dataset and then assigns the remaining points to the clusters
with the closest centroid. Macqueen’s method (MacQueen, 1967) follows the same
logic except that the way of assigning points to clusters is different. Each time a
point is assigned to a cluster, its centroid is recalculated while considering the new
point. The justification behind these methods based on a quasi-random strategy is that
random selection is likely to select points in dense regions, i.e., regions that are likely
to be final clusters or contribute strongly to them. According to these randomized
methods, the points of dense regions are considered to lead to correct results. However,
in practice, these methods are likely to take outliers or points that are too close
together as centroids. This reality is due to the strategy based on chance without
any regularisation to avoid falling into these scenarios. Besides, several executions are
necessary to choose the best method to get the best result.
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The Bradley and Fayyad method (Bradley and Fayyad, 1998) is a method that
reduces the random effect compared to the above methods, starts by randomly parti-
tioning the dataset into 𝐽 subsets. These subsets are clustered using k-means initial-
ized by the MacQueen method, producing 𝐽 sets of intermediate centroids, each with
a cardinality of 𝑘. These sets of centroids are combined into a superset, which is then
clustered by k-means 𝐽 times, each time initialized with a different set of centroids.
The group of centroids that minimizes the objective function of k-means the most is
then taken as the final centroid group. Besides this method, 𝑘𝑚𝑒𝑎𝑛𝑠 + + (Arthur and
Vassilvitskii, 2007), a method recognized for its performance and efficiency. Its goal
is to identify the 𝑘 centroids furthest away from each other. Gradually, one by one, it
selects a new centroid among the points of the dataset such that this centroid is the
furthest from the other centroids possibly already existing.

The methods discussed so far are of linear temporal complexity. Other methods
have been proposed with greater complexity but more complex in operation. Among
them, the binary division method (Linde et al., 1980) takes 𝐺1 = 𝑚𝑒𝑎𝑛(𝑋) as the first
centroid. At iteration 𝑡 ∈ {1, 2, ..., 𝑙𝑜𝑔2𝑘}, each of the existing 2(𝑡−1) centroids is split
into two new centroids by subtracting and adding a fixed perturbation vector 𝑒, i.e.
𝐺𝑗 − 𝑒 and 𝐺𝑗 + 𝑒 (𝑗 ∈ {1, 2, ..., 2(𝑡−1)}). These 2𝑡 new centroids are then refined using
k-means. There are two main disadvantages associated with this method. Firstly,
there is no indication of the choice of an appropriate value for 𝑒, which determines
the split direction. Secondly, the method is computationally demanding since, after
each iteration, k-means must be run for the whole dataset. The value of 𝑒 could be
determined by the PCA method (Huang and Harris, 1993). However, the calculation
requirements are higher because of the generation of eigenvectors in PCA. Another
known method, the global k-means method (Likas et al., 2003), takes 𝐺1 = 𝑚𝑒𝑎𝑛(𝑋)
as the first centroid. At the iteration 𝑖 ∈ {1, 2, ..., 𝑘 − 1} it considers each of the 𝑛

points as a candidate for the ith (𝑖+1) centroid and runs k-means with (𝑖+1) centroids
on the data set. This method is computationally prohibitive for large datasets because
it involves 𝑛(𝑘 − 1) executing k-means on the dataset.

In short, expensive methods are deterministic and lead to a better result. They also
improve the convergence of k-means. Indeed, they correspond to hybrid and complex
approaches. However, for applications requiring a fast response time, they are not
practical. On the other hand, relatively cheaper (compared to previous methods)
methods are faster (linear complexity) and could offer correct results. Nevertheless, it
is advisable to repeat the initialization method several times to get a reasonable quality
one. This is especially true for methods based on quasi-random approaches. Moreover,
non-expensive methods are sensitive to outliers or even to the order of points, such as
Macqueen’s method (MacQueen, 1967). K-means++ (Arthur and Vassilvitskii, 2007)
presents a relatively good compromise between quality and execution time. Given its
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reasonable practicability, it is implemented in several reputable libraries of statistics
and machine learning.

II.4.1.3 Parallelization

Despite the simplicity of k-means at several levels, such as implementation, applica-
tion to various domains, and interpretation of results, it remains problematic for its
execution time in the context of large data. At several levels of the algorithm, the com-
putation time increases when its parameters increase. In the first step of k-means, at
each iteration, the more the number of points 𝑛 and the number of clusters 𝑘 increase,
the more the number of point-centroid distances increases. In the second phase, the
more 𝑛 and 𝑘 increase, the more expensive the centroids’ calculation is.

One way to reduce these costs is to parallelize computations. Various works (Ku-
cukyilmaz, 2014) have focused on parallelizing k-means to save execution time; e.g.
versions based on the MPI platform (Dhillon and Modha, 2000, Zhang et al., 2013),
or the MapReduce paradigm (Zhao, Weizhong; Ma, Huifang; He, 2009). These works
are generally based on one of the two following architectures:

• shared-memory architectures: the processors have direct access to common data
located in the main memory. However, this architecture has a small number
of processors because the bus interconnection’s physical network has a limited
data transfer capacity. The connection between the processors and the memories
becomes a bottleneck since all the processors share the same bus.

• shared-nothing architectures: the processors share neither the memory nor the
disk. Data is shared across the processors. The processors communicate by pass-
ing messages through an interconnection network. This architecture is scalable
because each processor is independent of the other processors, and communica-
tion is iter-processors could be expensive.

In the k-means version, due to its iterative aspect and the dependencies be-
tween the two phases of k-means, the exchange of intermediate results between
processors is important. Therefore k-means can be parallelized in both architec-
tures. However, these architectures have to face the communication cost, which
increases when the amount of data and the number of calculations increases.

II.4.1.4 Tree-based k-means versions

The purpose of parallelized versions of k-means is to store data on distributed memory
spaces and parallelize calculations to save execution time. Indeed, they do not seek to
propose strategies for optimizing k-means algorithmically, i.e., avoiding unnecessary
calculations.
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We discuss other k-means optimization strategies that effectively deal with this
aspect of avoiding useless computations. The first of them is based on indexing data
in a hierarchical data structure. The underlying idea of these versions is, during
the phase of assigning the point to its nearest centroid, not to calculate the distance
between the point and all other centroids. Hence the saving in execution time.

In this sense, the authors of (Kanungo et al., 2002, Pelleg and Moore, 1999) have
proposed tree-based versions of k-means. Basically, these versions work as follows:
before the k-means process, the points are indexed in a tree. Each node refers to
a set of points and its children refer to subsets whose union represents their father.
Then during the k-means process, when assigning each point to its closest cluster,
the list of centroids in the tree is propagated in the up-down direction. During the
propagation, nodes reject some centroids from the list because they are considered far
enough from their points. As soon as the list contains only one centroid for a given
node, all points of this node (including recursively nodes and children) are assigned
to this single centroid. In this way, the calculation of the distances between centroid
points is accelerated.

However, these versions are not suitable for large dimensions (usually > 20 dimen-
sions). In (Moore, 2000), the author proposes Moore’s Anchors Hierarchy algorithm
which uses a tree built with a middle-out technique. It is effective for much larger
dimensions.

In practice, these methods are much less efficient than versions of k-means based
on geometric reasoning (number of dimensions ≥ 8) (Hamerly, 2010). These versions
are discussed in the rest of this sub-section.

II.4.1.5 K-means versions based on geometric reasoning

K-means versions based on geometric reasoning remain among the most efficient and
effective accelerated versions of k-means (Lloyd version). It is based on geometric tools
and specifically and very mainly on triangular inequality, to avoid as much as possible
the computation of useless point-centroid distances in the first phase of k-means (i.e.,
the phase of searching for the nearest centroid of each point). This strategy is useful,
especially if the points do not change or change very few clusters through the iterations
of k-means. Several methods, in this sense, have been proposed.

Let us discuss on the basis of the methods based on geometrical reasoning, which
is the triangular inequality. Let three points 𝑎, 𝑏, 𝑐 defined in 𝑅𝑑 and 𝑑𝑖𝑠 a metric
distance defined as 𝑅𝑑×𝑅𝑑 → 𝑅, the triangular inequality (figure II.4) results in this
relation 𝑑𝑖𝑠(𝑎, 𝑐) <= 𝑑𝑖𝑠(𝑎, 𝑏) + 𝑑𝑖𝑠(𝑏, 𝑐) (we assume that 𝑑𝑖𝑠(𝑢, 𝑣) = 𝑑𝑖𝑠(𝑣, 𝑢) for any
points 𝑢 and 𝑣).Geometrically there is no polygonal path between 𝑎 and 𝑐 greater than
the line that directly connects them.

Note that these methods do not avoid all point-centroid distances. The rate of
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Figure II.4: Triangle inequality

calculation avoidance depends on the method and the spatial characteristics of the
data. Thus, before clustering, the dataset’s characteristics guide the users to choose
the most appropriate version of the accelerated k-mean based on geometry reasoning.
So in the remainder of this part we discuss chronologically the best known methods
belonging to this category.

In the following, by language misuse, the algorithms could be called by their name
or that of their author without being preceded by the word algorithm (e.g., Elkan
instead of Elkan’s algorithm).

II.4.1.5.1 Compare-means Compare-means (Phillips, 2002) is an accelerated ver-
sion of the Lloyd version (Lloyd, 1982a). During the phase of assigning points to their
nearest centroid, compare-means states that if centroids are spatially located very far
from the centroid representing a given point, then those centroids are also far from that
point. The idea is not to calculate the distance between this point and the centroids,
which are judged to be far enough away.

Let 𝑥𝑖, 𝐺𝑎, 𝐺𝑏 ∈ 𝑅𝑑, 𝑥𝑖 a point, 𝐺𝑏 the actual centroid of 𝑥𝑖 and 𝐺𝑎 another
centroid, compare-means asserts that if the distance between 𝐺𝑎 and 𝐺𝑏 is strictly
greater than twice the distance between the point 𝑥𝑖 and its centroid 𝐺𝑏 then the
distance between 𝑥𝑖 and 𝐺𝑎 should not be calculated because 𝐺𝑎 is indeed far enough
from 𝑥𝑖 in relation to 𝐺𝑏. This assertion is summarized in the inequation II.6 and
proved via the triangular inequality in the appendices (section .1.2).

2× 𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑏) < 𝑑𝑖𝑠(𝐺𝑏, 𝐺𝑎) (II.6)

When looping the list of centroids for each point (first phase of k-means), the
inequation validity II.6, for the given point and the current centroid, is checked. The
actual distance is only calculated between the point and the centroid if the verification
has been validated. Then, the same procedure is repeated for the next centroid. Note
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that all inter-centroid distances are computed, at the beginning of the first phase of
k-means and each iteration, to verify the inequation.

II.4.1.5.2 Sort-means Sort-means (Phillips, 2002) is an improvement of compare-
means. Indeed, for each centroid 𝐺𝑗, the other centroids are sorted in the increasing
order based on their distance from 𝐺𝑗. Thus, when looping the sorted list of centroids,
as soon as the inequality validity (same as compare-means) is verified for a centroid,
the centroids following it are not processed. Since these are more distant than the
current centroid, so their processing is useless.

II.4.1.5.3 Elkan’s version Although compare-means and sort-means reduce the cal-
culation rate of point-centroid distances, other methods, developed later, reduce it even
more under certain conditions. Among the most well-known of these methods is the
Elkan version (Elkan, 2003). It uses the triangular inequality tool several times and in
different ways to avoid unnecessary calculations. It introduces, via this tool, bounds
on the point-centroid distances. For each point 𝑥𝑖 it maintains 1) an upper bound 𝑢𝑖

on the distance between 𝑥𝑖 and the centroid 𝐺𝑣𝑖
to which it is assigned (inequation

II.7, 𝑣𝑖 is the index of the cluster containing the point whose index is 𝑖), and 2) 𝑘

lower bound, where each lower 𝑙𝑖,𝑗 is on the distance between point 𝑥𝑖 and a centroid
𝐺𝑗 (inequation II.8).

𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑣𝑖
) ≤ 𝑢𝑖 (II.7)

𝑙𝑖,𝑗 ≤ 𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑗) (II.8)

These inequalities are exploited in the first phase of k-means. In Elkan version, this
phase is subdivided into two parts: the outer test and the inner test. The outer test
checks whether the point should change cluster without looping through the list of
centroids. Concretely, it checks if 𝑢𝑖 ≤ 𝑠𝑣𝑖

is true (𝑠𝑣𝑖
is half the distance between 𝐺𝑣𝑖

and its nearest centroid). If it is true, it means that there is no other centroid closer
to 𝑥𝑖 than 𝐺𝑣𝑖

. In this case, the same test is repeated on the next point. Otherwise,
the inner test is called and loops the centroids list to determine if it is necessary to
calculate 𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑗). If 𝑢𝑖 ≤ 𝑙𝑖,𝑗 or 𝑢𝑖 ≤

𝑑𝑖𝑠(𝐺𝑣𝑖 ,𝐺𝑗)
2 then 𝐺𝑗 cannot be closer to 𝑥𝑖 than

𝐺𝑣𝑖
and the distance between 𝑥𝑖 and 𝐺𝑗 is useless.

II.4.1.5.4 Hamerly’s version Hamerly version (Hamerly, 2010) is a modified version
of Elkan. It seeks to minimize the use of inner tests in favor of outer tests. Instead of
𝑘 lower limits for each point, it sets just one. However, this does not have the same
meaning as Elkan. Instead of limiting the distance between 𝑥𝑖 and a centroid 𝐺𝑗, it
limits the minimum distance between 𝑥𝑖 and its nearest second centroid. The upper
limit remains unchanged from Elkan.
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In each iteration and for each point 𝑥𝑖, the following test must be checked:

𝑢𝑖 < 𝑚𝑎𝑥(𝑙𝑖, 𝑠𝑣𝑖
) (II.9)

If (II.9) succeeds, then it implies that no centroid is closer to 𝑥𝑖 than 𝐺𝑣𝑖. In this
case, we move on to the next point. If it fails, then 𝑢𝑖 is updated with the distance
between 𝑥𝑖 and its current centroid. The test is re-performed taking into account the
new value of 𝑢𝑖. If the test fails again, then the distances between 𝑥𝑖 and all 𝑘 centroids
are recalculated.

II.4.1.5.5 Annulus’s version Annulus (Hamerly and Drake, 2015b) is a variant of
Hamerly, implemented to optimize the assignment phase. When Hamerly fails in its
test (II.9), it must calculate the distances between point 𝑥𝑖 and all centroids. This
is where Annulus brings its touch. Instead of visiting all the centroids, only some of
them are involved in calculating the distances with the point 𝑥𝑖.This approach is a
reduction of the search space on the centroids.

𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑗)− ||𝑥𝑖|| ≤ ||𝐺𝑗′ || ≤ 𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑗) + ||𝑥𝑖|| (II.10)

The inequation (II.10) is the Annulus representation. The norms ||𝑥𝑖|| and ||𝐺𝑗′ ||
correspond respectively to the distance from 𝑥𝑖 and 𝐺𝑗′ to the origin. The Annulus
has the center at the origin, and its mathematic model is derived from the inverted
triangular inequality. Geometrically, the Annulus is the difference between two circles
with the same center as the origin. The radius of the first circle is 𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑗)− ||𝑥𝑖||.
The second larger circle has a radius of 𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑗) + ||𝑥𝑖||. So the Annulus width is
twice 𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑗). Indeed the centroids 𝐺𝑗′ are in the Annulus. So when looping the
centroids, only the centroids 𝐺𝑗′ are visited. The others are considered to be quite far
from 𝑥𝑖.

II.4.1.5.6 Exponion’s version The Exponion algorithm (Newling and Fleuret, 2016)
is a geometric improvement of the Annulus algorithm. In practice, it is faster than
the Annulus algorithm. The difference between them lies in the geometric tool used
to reduce the search space of the centroids. Instead of Annulus centered on the origin,
hyper-balls (generalized multi-dimensional circles) centered on centroids are chosen.
Geometrically, the centroid closest to 𝑥𝑖 is located on the hyper-ball centered on 𝐺𝑣𝑖

(its closest centroid in the previous iteration) of radius 𝑢𝑖 (upper bound on 𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑣𝑖
).

The two centroids closest to 𝑥𝑖 are in the hyper-ball of centroid 𝐺𝑣𝑖
with a radius of

2× 𝑢𝑖 + 𝛿𝑖 with 𝛿𝑖 = 𝑑𝑖𝑠(𝐺𝑣𝑖
, 𝐺𝑗′ ) with 𝐺𝑗′ the closest centroid to 𝐺𝑣𝑖

.
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II.4.2 Conclusion

In this part of state-of-the art, the different strategies that improve k-means efficiency
and performance are discussed (table II.1). So, optimization concerns the execution
time acceleration as well as the clustering quality or the objective function optimiza-
tion.

We first discussed methods for automatically estimating the number of 𝑘 clusters
in a dataset. More precisely, the methods (G-means and X-means) which are based
on a hierarchical process and statistical tests or tests derived from information theory.
We have shown experimentally that these estimation methods do not work properly
when real clusters overlap and that X-means does not support non-strictly spheri-
cal clusters. These data characteristics induce them to an overestimation of k and
poor clustering quality. We also discussed methods for initializing centroid 𝑘. Some
are time-consuming but deterministic, and others are less costly but not determinis-
tic and the objective function of k-means is less optimized. K-means++ stands out
from the crowd by providing a good compromise between optimizing the objective
function and the cost in time. It is de facto a standard in many automatic classifi-
cation libraries. We also discussed the k-means parallelization. There are different
parallelization paradigms, one of which is MapReduce, for distributing data and par-
allelizing computations. However, they have to deal with the network communication
management of intermediate computation results, which can be costly when 𝑘 et the
number of points are large. We then focused only on accelerating the execution time
of k-means (more precisely the Lloyd version) while maintaining the same clustering
result. Among these accelerations, the tree-based versions avoid a certain amount of
point-centroid distance computation in the first phase of k-means. In practice, when
there are more than eight dimensions, they are less performant than the k-means ver-
sions based on geometric reasoning. We have studied their geometric tools for reducing
the rate of calculation of unnecessary distances and their various methods among the
most well known. Nevertheless, these versions do not avoid all unnecessary distances.
They also generate maintenance costs to update the limits and inter-center distance
matrices at each iteration.

II.5 Density-based clustering

II.5.1 Introduction

In this part, we discuss the paradigm of density-based methods (Kriegel et al., 2011).
Contrary to centroid-based methods, it does not assume a priori assumptions on the
distribution of points. Thus, it does not expect that real clusters are necessarily
spherical or elliptical but can have any shape. It does not assign all points to clusters,
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type advantages limitations

𝑘 estimation no need to propose a value
of 𝑘

overestimation of 𝑘 and
poor clustering quality for
some spatial data configu-
rations

centroid
initialization
methods

accelerates the conver-
gence of k-means

the optimal k-means clus-
tering solution is not guar-
anteed

parallelization accelerates k-means by
storing data on a dis-
tributed data system and
performing parallel calcu-
lations

transfer of intermediate
results increasingly expen-
sive as 𝑘 and number of
points increase

trees-based
k-means
versions

accelerates k-means by re-
ducing the rate of cal-
culating unnecessary dis-
tances.

not all unnecessary dis-
tance calculations are
avoided

acceleration
techniques
based on
geometric
reasoning

Table II.1: Advantages and drawbacks of k-means optimization strategies

some of them are considered as outliers. This is useful if the data is noisy. In addition,
users do not need to specify the number of clusters in advance.

We first discuss the basic concept of this paradigm and then its most representative
methods.

II.5.2 Density-based concepts

Density-based clustering is based on the exploration of dense regions of points in the
dataset (Aggarwal and Reddy, 2013). A dense region corresponds to a subspace of
data where many points are relatively close to each other. Thus, a cluster in data
space is a contiguous region of points with a high density of points, separated from
the other clusters by less dense regions. (Kriegel et al., 2011).

The fundamental pillar of this paradigm is the consideration of a dataset as coming
from an unknown probability density function (𝑝.𝑑.𝑓). This function describes how
the dataset was generated. Indeed, it corresponds to a representation of the source
of the data. In this paradigm, through this function, one is not only interested in
assigning each point to its most appropriate cluster but also in the generator of the
cluster points to be able to subsequently generate new points in this cluster not yet
existing in the dataset. The approximate estimation of this function is carried out
by parametric or non-parametric statistical approaches. Parametric approaches con-
sider that each cluster follows a probability law known a priori and whose parameters
must be estimated. On the other hand, the density-based paradigm uses more or less
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explicitly tools of the density function’s non-parametric approaches. As mentioned
above, the cluster has an irregular shape, which implies that the density function of
the dataset or, more specifically that of the cluster, does not follow a pre-defined law.

Nevertheless, these methods do not integrate the notion of centroids, which prob-
lematic for applications requiring representatives. Moreover, the cluster definition of
density-based paradigm implies no minimization of variance in each cluster, contrary
to clustering methods based on centroids. This element differentiating them is an
important factor orienting users on which clustering method to choose.

II.5.3 Dbscan

Dbscan (Ester et al., 1996) is, by far, one of the best-known algorithms in this category.
It uses two concepts, essential to its operation, connectivity between points, and local
density in a point’s neighborhood. These concepts are controlled by two parameters
entered by the user, 𝑒𝑝𝑠 ∈ R+ and 𝑚𝑝 ∈ N*. The basic principle is to build clusters
according to the values of 𝑒𝑝𝑠 and 𝑚𝑝. To define a cluster in Dbscan, the introduction
of specific properties is essential, and these properties constitute the theoretical basis
of this paradigm for the algorithms that followed Dbscan :

• Let a point 𝑥𝑏 ∈ 𝑋, 𝑥𝑏 is an interior point if in its neighbourhood (of radius
𝑒𝑝𝑠) it has at least 𝑚𝑝 points, more formally |𝑁𝑒𝑝𝑠| ≥ 𝑚𝑝 with 𝑁𝑒𝑝𝑠 = {𝑥𝑖 ∈
𝑋|𝑑𝑖𝑠(𝑥𝑏, 𝑥𝑖) ≤ 𝑒𝑝𝑠} the points in the 𝑥𝑏 neighbourhood;

• Let 𝑥𝑎 ∈ 𝑋 and 𝑥𝑏 ∈ 𝑋 an inner point, 𝑥𝑎 is directly density-reachable from 𝑥𝑏

if 𝑥𝑎 ∈ 𝑁𝑒𝑝𝑠(𝑥𝑏)) and |𝑁𝑒𝑝𝑠| >= 𝑚𝑝;

• Let 𝑥𝑎, 𝑥𝑏 ∈ 𝑋, 𝑥𝑎 is density-reachable from 𝑥𝑏 if there is a chain of points
𝑥1, ..., 𝑥𝑡 with 𝑥1 = 𝑥𝑎 and 𝑥𝑡 = 𝑥𝑏 where 𝑥𝑖 is directly density-reachable from
x𝑖−1;

• Let 𝑥𝑎, 𝑥𝑏 ∈ 𝑋, 𝑥𝑎 and 𝑥𝑏 are density-connected if there is an third inner point
so that 𝑥𝑎 and 𝑥𝑏 are density-reachable from that point.

So a region of points, 𝑅, is a cluster if only two conditions are met :

• Maximality: ∀𝑥𝑎, 𝑥𝑏 with 𝑥𝑏 ∈, if 𝑥𝑎 is density-reachable from 𝑥𝑏 then 𝑥𝑎 ∈ 𝑅;

• Connectivity: ∀𝑥𝑎, 𝑥𝑏 ∈ 𝑅, 𝑥𝑎 and 𝑥𝑏 are densiy-connected.

Dbscan has a certain sensitivity concerning border points (points that are not
interior points but are in a neighborhood of an interior point). Indeed, if Dbscan is ex-
ecuted several times with the same parameters, the interior points remain unchanged,
whereas the border points could change cluster through different Dbscan calls. This is
due to the sorting order of the points. Also, it is not able to detect clusters of different
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densities or nested clusters of different densities. It could also produce a lot of noise
in many configurations of parameter values.

II.5.4 Denclue/Dbclasd

Denclue (Hinneburg and Keim, 1999) is an algorithm based on a probabilistic ap-
proach. It consists in modeling the probabilistic density function 𝑓 of 𝑋 from the
aggregation of influence functions. Then use 𝑓 directly to get the final clusters.

Each point is associated with an influence function. This one characterizes the
influence of the point on its neighborhood. Indeed, the probability density function at
a given point 𝑝 ∈ 𝑋 is the sum of the influence functions of all the points at 𝑝, more
formally 𝑓(𝑝) = ∑︀|𝑋|

𝑖=1 𝑦𝑖(𝑝) with 𝑦𝑖 the influence function of the point 𝑥𝑖. The type
of influence function is defined and parameterized by the user before the clustering
process. It can be, e.g., Gaussian or square wave.

From 𝑓 , particular points are identified, called attractors. They have a density
higher than a predefined threshold and are indeed local maxima of 𝑓 . A heuristic called
climbing hill is applied to assign it to its most suitable attractor for each remaining
point. The points around each attractor constitute a sub-cluster. Clusters are formed
by the agglomeration of sub-clusters whose distance is less than another predefined
threshold.

In addition, to access the neighborhood of a point more efficiently and make cal-
culations locally, Denclue uses a grid-based data structure.

Denclue is presented as generalizing from Dbscan, k-means and hierarchical ap-
proaches. Nevertheless, it inherits from these also their difficulty in detecting clusters
of very close density. A Denclue 2.0 (Hinneburg and Gabriel, 2007) version has been
proposed to automate the step size in the climbing hill and improve the quality of
points assignment to attractors. Still, it keeps almost the same solution as its prede-
cessor.

Dbclasd is another algorithm based on a probabilistic approach of the density.
Dbclasd assumes that clusters follow a uniform probability law allowing it to be
parameter-free Xu et al. (1998). However, it has difficulties to detect non-uniform
clusters because of this strong assumption. Also, it is dependent on the order in which
the points are processed. Clustering results can vary significantly from one order to
another. Dbclasd also has difficulty to separate nested densities, especially those close
in density.

II.5.5 Optics/Hdbscan

Indeed, the Dbscan parameters do not allow identifying different densities, especially
those that are imbricated. If the 𝑚𝑝 parameter is set, then very high-density clusters
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are absorbed by less dense clusters because high-density clusters require a smaller 𝑒𝑝𝑠

radius than that of less dense clusters to cover the same minimum number of points.
In this way, we lose information about the particularity of denser clusters.

Optics (Ordering Points To Identify the Clustering Structure) (Ankerst et al., 1999)
has been proposed to address this problem. The main idea is to order the points
according to local point densities to identify denser clusters. OPTICS does not produce
clustering directly but a visual hierarchical structure, called reachability-plot, allowing
users to extract clusters.

The reachability-plot is a sequence of valleys and peaks. The x-axis refers to the
points, ordinate so that the same cluster points are practically contiguous. The y-axis
is the reachability-distance, a distance introduced by OPTICS. In reachability-plot, a
cluster is a valley, i.e., points with a low reachability-distance and the peaks correspond
to cluster separations or noise points. To extract clusters, a horizontal line, called a
cut-off, is drawn at a given reachability-distance. By reading the plot from left to
right, valleys and peaks are identified from where are clusters are derived.

In short, Optics offers a visual solution where a cut is a Dbscan solution. Indeed, it
offers a multitude of Dbscan solutions. However, the automatic extraction of clusters
from the reachability-plot remains a complicated task. Hdbscan (Campello et al., 2013,
McInnes and Healy, 2017) is an algorithm that also provides a visual solution with a
hierarchical cluster structuring. Compared to Optics, it facilitates better automation
of cluster extraction. Instead of a reachability-plot, it produces a condensed cluster
tree, in which clusters have a hierarchical relationship (father-son clusters). It induces
a new mutual reachability distance quite close to the reachability-distance of Optics.
As a result, they could space out points in their new measurement space that should
not be and therefore consider points as outliers and be absorbed by other clusters.

Although these approaches solve part of the problem of varying density clusters,
they suffer from unevenly distributed density and high-dimensional datasets. They
still mismanage low-density clusters by tending to consider them as outliers or to
merge them into a higher-density cluster.

II.5.6 Conclusion

The density-based methods paradigm is based on the density notion (in the general
sense of a number of points in a given volume of data space). This concept allows
identifying any form of clusters without specifying the number of clusters a priori.
The Dbscan, Denclue, Dbclasd methods have difficulties in finding imbricated clusters
with different densities. Optics and Hdbscan have been proposed to meet this need.
Nevertheless, they have difficulties in working in high-dimensional data and dealing
with unevenly distributed densities.

Common problems with existing density-based clustering approaches are related
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to the difficulty of dealing with low-density clusters, clusters close to similar densities,
and high-dimensional data. The other limitation relates to their inefficiency in dealing
properly with nested clusters of different shapes and uneven distribution of densities.

II.6 Discussion
We discussed the methods of two paradigms. First, we reviewed partition-based meth-
ods with a particular focus on k-means. Several limitations were identified regarding
k-means and its environment:

• k-means and its associated reasoning-based versions are increasingly expensive
in execution time as the data quantity increases;

• the computational cost of 𝑘 automatic estimation methods makes them slow on
large datasets;

• the 𝑘 estimation methods deviate excessively from the real 𝑘 cluster number in
their estimation when clusters overlap or when the constraints they impose on
real cluster forms are not respected.

In the density-based methods paradigm, the methods have difficulties working on
high-dimensional spaces and correctly managing low density clusters or clusters close
to the same density.

In the following chapters, we respond to the above-mentioned limitations with
three different contributions, one chapter with two contributions responding to the
limitations of k-means. The other chapter responds to the limitations of density-based
methods.
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III.1 Introduction
In this chapter, our contributions focus on the k-means algorithm. Improvements
concern both execution time and partitioning results.

In the literature, two main limitations related to k-means have been identified. The
first one is the execution time of k-means, which becomes longer and longer as datasets
get more massive. So, k-means has difficulties in scaling because it has a temporal
complexity proportional to 𝑘𝑛𝑡 with 𝑡 the number of iterations, 𝑘 number of clusters
and 𝑛 number of points (Jain, 2010b). Indeed, the calculation cost in a single iteration
increases significantly as 𝑛 and 𝑘 increase. This limitation remains true for accelerated
versions of geometry-based k-means even though they perform fewer calculations than
the standard version. Typically k-means is used for pre-processing applications. Its
usage time must be fast. In a large data environment, this property could be lost.

The other limit consists in requiring the user, for k-means, to predefine the value
of 𝑘. Thus, determining inaccurately value of 𝑘 has a direct negative impact on the
clustering quality. Different solutions have been proposed to estimate the relevant
number 𝑘 of clusters (Hamerly and Elkan, 2003, Pelleg and Moore, 2000). Among the
limitations of these solutions, we show three major ones:

• they call k-means several times on the same data. Consequently, in a large
data context, repetitive access to data caused by the repetitive use of k-means
on the same data make them computational time-consuming or unusable for
applications that require applications that require a relatively fast response time;

• they hardly support overlapped clusters. This problem can lead to two different
cases. i) overestimating the number of clusters exaggeratedly compared to the
actual number, thus producing a very poor clustering quality. ii) significantly
increasing the processing time;

• they pose a priori a strong hypothesis on the shape of the real cluster. Thus,
X-means seeks to form isotropic Gaussian clusters (i.e. strictly spherical clusters
where the dimensions have the same variance). G-means seeks to form Gaussian
clusters (i.e. spherical or elliptical). In reality, clusters may not be Gaussian and
could have a complex shape integrating more or less spherical sub-forms.

In response to the limitations mentioned, we propose two different contributions
to k-means:

• sk-means: a solution designed to meet the first limitation, i.e., the one related
to execution time. Sk-means aims to accelerate the execution time of standard
k-means (Lloyd’s version) and its versions based on geometric reasoning while
having a near similar partitioning result. Indeed, the acceleration is due to the
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Figure III.1: Type of cluster forms: a) spherical clusters b) clusters of different ellip-
ticity and orientation, c) clusters more complex than elliptical clusters.

exploitation and storage of information on the movements of the points through
different iterations to avoid repetitive and useless calculations;

• Kd-means: a solution addressing the limitations related to the a priori estimation
of the number of clusters, i.e., the limitations related to the estimation execu-
tion time, the overlap of real clusters, and the strong assumption on the shape
of clusters. Kd-means estimates the number of 𝑘 clusters for large datasets.
Indeed, Kd-means is an algorithm based on the KD-tree(Bentley, 1975) data
tree structure and a hierarchical process. In the first step, the data and their
corresponding metadata are hierarchized in Kd-tree. These data, organized in
groups in the Kd-tree leaves, are merged progressively from bottom to top to
form final clusters. To guide point group merges, we have defined several new
inter-cluster merge criteria to support complex and overlapping clusters more
effectively. Kd-means is better suited than its competitors for large datasets and
pre-processing tasks for data analysis projects requiring a reasonable response
time.

In this chapter, the sections III.2 and III.3 are devoted respectively to Sk-means
and Kd-means. Each of these sections is divided into two parts: 1) the presentation
and explanation of the solution process; 2) and the solution robustness experimental
validation against its competitors.
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III.2 SK-means

Symbols Meaning
𝑛 number of data points
𝑋 𝑋 = {𝑥1, . . . , 𝑥𝑛} is a dataset
𝑘 number of clusters
𝐶 𝐶 = {𝐶1, . . . , 𝐶𝑘}, is a set of clusters,
𝐺 𝐺 = {𝐺1, . . . , 𝐺𝑘}, is a set of centroids,

each cluster 𝐶𝑗 is associated with its centroid 𝐺𝑗

𝑑𝑖𝑠(𝑥𝑖, 𝑥𝑗) 𝑑𝑖𝑠 is a distance between the points 𝑥𝑖 and 𝑥𝑗

𝑠 𝑠 = {𝑠𝑖|𝑖 = 1...𝑛} set of stability levels,
each point 𝑥𝑖 is associated with its stability level 𝑠𝑖.

Table III.1: Symbols

III.2.1 Introduction

In the standard version of k-means (Lloyd’s version), and especially in its assignment
phase, 𝑛 × 𝑘 distances are calculated at each iteration with 𝑛 the number of points
and 𝑘 the number of clusters to be identified. This phase is formulated as a problem
of finding the nearest neighbor for each point, except that the neighbor of a point is
not any point but a centroid. Each point is then assigned to its neighboring centroid
cluster. In this context, the larger 𝑛 and 𝑘 are, the higher the computational cost.
This cost is even higher if the distance function is also computationally expensive.

As we have seen in the literature, several accelerated versions of k-means have
been proposed. Among them, the versions based on geometric reasoning whose most
essential tool is the triangular inequality. These versions focus precisely on the k-
means first phase. Their goal is to identify each point’s closest neighbor while being
computationally less expensive than Lloyd’s version.

In order for versions based on geometrical reasoning to generate run-time acceler-
ations, they rely on new variables they have introduced and calculations associated
with them. It should be noted that the gain (in execution time) should absorb these
additional costs. In some cases, these costs may exceed the gain.

Each point is assigned variables, called bounds. These variables’ function is to
ensure the validation of tests using triangular inequality to minimize the number of
point-centroid distance calculations. Nevertheless, they must be maintained and up-
dated at least once at each iteration. If the tests fail, further updates may be required.
E.g., in the Elkan version, each point is associated with an upper bound and 𝑘 lower
bounds, which means that a total 𝑛 + 𝑛 * 𝑘 limits must be managed at each iteration
for the whole dataset. Updates result in either addition or subtraction adjustments or
distance calculations.
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One of the reasons for these costs is that the information on the data points’ long-
term movements during the iterations is not exploited for the following iterations(note
that a movement of a point means that it changes cluster). Whether in k-means or its
accelerated versions, there is no information saved on the long-term dynamicity of the
points during the process (i.e., during a sufficiently long number of iterations). Instead,
the accelerated versions focus more on the nearest neighbor (centroid) problem for a
given iteration without having a strategy with a global view on all iterations where
information can be exchanged even between two inconsequential and distant iterations.
In short, the information of one iteration is lost for the following iterations and, more
particularly, the iterations that are a bit distant.

The objective of our contribution in this section is to propose a novel strategy to
reduce the additional computational cost of Lloyd’s version and the versions based on
geometric reasoning while keeping the partitioning almost identical. This strategy can
be integrated into the standard version of k-means (Llyod version) and its accelerated
versions based on geometric reasoning. The integration of the strategy in these versions
always allows them to work with the external environment. Indeed, they can always
be coupled with the same centroid initialization methods as if they did not integrate
the strategy and support the same distance metrics, including Euclidean distance.

III.2.2 Optimization strategy

In this sub-section, we introduce the strategy, as well as elements containing it, whose
goal is to accelerate standard k-means and its geometry-based accelerated versions.

During the k-means process (including its geometry-based versions), there are sev-
eral point categories defined by the movement degree of the points (the cluster change
of a point in an iteration is a movement):

• points move from one cluster to another in a recurrent way. These points are
very dynamic;

• points that move less frequently, they are less dynamic;

• points, which during a series of consecutive iterations, change clusters, then from
a given iteration, they remain attached to a cluster until the process end;

• points that do not move from the first iteration, they are assigned to a cluster
to which they will remain fixed until the process end.

The points of the first group are very dynamic, they are the ones that keep the
process going. So, as soon as the points in this category no longer change cluster then
the k-means process ends. So, we focus mainly on the last three categories.

Our goal is to identify the least dynamic points, i.e. belonging to one of the last
three categories. Indeed, these points represent a significant cost in time because they
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Figure III.2: K-means process of three clusters. Illustration of the clusters and their
kernels evolving according to the point movements.

are involved in unnecessary calculations, tests, and comparisons. We propose to track
the stability of each point. Let 𝑠 = {𝑠𝑖|𝑖 = 1...𝑛} be the set of values on the point
stability. The value of 𝑠𝑖 indicates the number of successive iterations a point has
remained fixed to a cluster; i.e., it has not changed clusters during this number of
iterations. This set stores information on the points’ stability over the long term,
which allows to see the evolution of each point individually and to classify each point
according to the three categories mentioned above.

As a consequence of the introduction of 𝑠, we define for each cluster 𝐶𝑗 two different
parts corresponding to two data disjoint subsets: the kernel 𝐼𝐶𝑗 ⊆ 𝐶𝑗 and the outer
part 𝐶𝑗∖𝐼𝐶𝑗. The kernel consists of points fixed to the cluster 𝐶𝑗 until the process
end. The outer part is the point set that are likely to change cluster in the following
iterations. Before the process begins, 𝐼𝐶𝑗 = ∅, while the other part is equal to 𝐶𝑗. By
using the information about the points’ stability in 𝑠, the 𝐼𝐶𝑗 kernel is gradually fed
during the process. Each time a point is considered to be stabilizing, it is moved into
the kernel. We call this point as passive. In this example III.2, we will show how points
are moved between the kernels and the outer parts through different iterations. In the
example, a k-means process of three clusters is schematized. At iteration 𝑡 (𝑡 > 1,
which does not correspond to the process beginning), a kernel is already constituted
in each cluster. In clusters 𝐶1 and 𝐶2, there are still points (red points) that can
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change clusters. In cluster 𝐶3, the kernel is equivalent to the whole cluster. However,
it could receive new points from the other clusters in the following iterations. At
iteration 𝑡 + 𝑎(𝑎 > 1), clusters 𝐶1 and 𝐶2 lose points, which were not in the kernel, to
𝐶3. On the other hand, cluster 𝐶3 considers these points unstable (red) and, therefore,
not integrated into its kernel. At iteration 𝑡 + 𝑏(𝑏 > 𝑎), 𝐶3 integrates the points into
the kernel, gained at iteration 𝑡+𝑎, because they are considered passives. At the same
time, it gains two other points from 𝐶1, but it considers them dynamic. Among the
three points considered as dynamic in 𝐶2 at iteration (𝑡+𝑎), 𝐶2 considers two of them
as passive at iteration 𝑡 + 𝑏. Nevertheless, the rest remained dynamic. The question
that arises is why this point has not been given the same consideration as the other
two, whereas from iteration 𝑡 to iteration 𝑡 + 𝑏− 1, they were all dynamic. There are
two possible answers to this. The first one indicates that if the dynamic point is fixed
to the 𝐶2 cluster from iteration 𝑡 to 𝑡 + 𝑏, then the two other passive points are fixed
to the 𝐶2 cluster before their dynamic neighbor, i.e., before the iteration 𝑡 until their
integration in the 𝐶2 kernel. The second considers that if the third points are set to
𝐶2 from 𝑡, then the dynamic point has at least once changed cluster between 𝑡 and
𝑡 + 𝑏, and the others have not.

During all these iterations of the example, 𝑠 was updated and used to integrate
points into kernels. Indeed, before the process was launched, all 𝑠𝑖 is equal to zero. At
each iteration, for any point 𝑥𝑖 that does not belong to a kernel and does not change
cluster during two successive iterations, then 𝑠𝑖 is incremented. Otherwise, it is reset
to zero.

As soon as a point integrates a kernel, it is no longer treated in the following
iterations in the calculation of point-centroid distances because it is considered passive.
Consequently, most likely, its current centroid remains closest to it compared to the
other centroids until the end of the process.

To assert that a point is passive and therefore sufficiently justified to integrate
it into a kernel, so we defined the following condition setting the minimum stability
threshold of a point according to its cluster changes :

Definition III.1. Given 𝑟 ∈ N*, 𝑥𝑖 ∈ 𝑋 a data point, 𝑥𝑖 is passive if at least during 𝑟

successive iterations, it has not changed cluster.

As soon as the point 𝑥𝑖 is considered stabilizing, i.e., 𝑠𝑖 ≥ 𝑟, it is passive because it
is integrated into the kernel and is no longer the object of calculations in the subsequent
iterations. On the other hand, active points (points outside the kernel) continue to be
involved in calculations until they are passive. The value of 𝑟 must be large enough to
ensure that the kernel centroid containing 𝑥𝑖 is always the closest after the qualification
of 𝑥𝑖 as passive.

The value of 𝑟 is calculated from an estimator 𝐸 that we have developed. It
depends on several characteristics of the data. The relationship between 𝑟 and these
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Figure III.3: The description of the point state during a k-means process integrating
Sk-means. Circles refer to the point state. once the passive point, it is no longer
involved in the calculations in the following iterations.

characteristics is shown in the experimental part III.2.5. In this same part we infer
the model of 𝐸.

III.2.3 Intact convergence

In the following, we discuss the convergence of k-means and its versions that inte-
grate the Sk-means strategy. However, before detailing this aspect, we introduce the
following definition (see also figure III.3):

Definition III.2. Given 𝑥𝑖 ∈ 𝑋 a given point, 𝑥𝑖 is stable if it 1) passive (i.e. it
respects the definition III.1) and 2) its centroid (that of the iteration in which 𝑥𝑖

became passive) remained the closest until the k-means process end. If the second
condition is not met then the point is passive non-stable.

The convergence property of k-means (Lloyd’s version and the versions based on
geometrical reasoning) is maintained even if they integrate the Sk-means strategy.
Convergence means that the values of all centroids do not change during two successive
iterations. This means that the objective function has been locally optimally optimized
according to the initial centroids (the objective function result differs according to the
spatial positions of the initial centroids). In our case, convergence, in addition to its
first meaning, could also be due to the change of all active points into passive points.

A first element contributing to the k-means convergence is that there is a finite
number of ways to divide a set of 𝑛 points into 𝑘 clusters. This number is an a priori
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known integer equivalent to the Stirling number 𝑠𝑡 = 1
𝑘!
∑︀𝑘

𝑗=0(−1)𝑘−𝑗
(︁

𝑘
𝑗

)︁
𝑗𝑛 (Graham

et al., 1994). So, it depends only on 𝑛 and 𝑘. This number remains unchanged
even if some data points become passive. Moreover, in a k-means (integrating or not
sk-means) run, only a few of 𝑠𝑡 possible solutions are produced (one possibility by
iteration). However, this first element in itself is not enough. It is necessary to show
that k-means, iteratively, improves the partitioning more and more according to the
objective function until reaching the final partitioning. From the optimization view
point, this consists in minimizing the k-means objective function (𝑠𝑠𝑒) monotonically
at each iteration until the minimum possible local solution is obtained. Note that
both phases of k-means contribute to this minimization. So we will show that Lloyd’s
version and the versions based on geometric reasoning integrating Sk-means converge.
We show this in the first phase and then in the second phase.

Let 𝑎 = {𝑎𝑖|𝑖 = 1...𝑛} with 𝑎𝑖 the index (natural number) of the cluster to which
point 𝑥𝑖 has been assigned. Let 𝑎′ = {𝑎′

𝑖|𝑖 = 1...𝑛} where 𝑎′
𝑖, corresponds to the new

index of the centroid of point 𝑥𝑖, replacing 𝑎𝑖.
First phase. Let 𝐺 be the set of centroids where 𝐺𝑗 is the centroid of cluster 𝐶𝑗,

the objective function (also called intra-cluster variance or sum of squared errors(𝑠𝑠𝑒))
that k-means minimizes is defined as follows:

𝑃 (𝑋, 𝐺, 𝑎) =
𝑛∑︁

𝑖=1
𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑎𝑖

)2 (III.1)

If the objective function 𝑃 must decrease monotonically during iterations, so the
following equation must be respected:

𝑃 (𝑋, 𝐺, 𝑎′)− 𝑃 (𝑋, 𝐺, 𝑎) =
𝑛∑︁

𝑖=1
(𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑎′

𝑖
)2 − 𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑎𝑖

)2) ≤ 0 (III.2)

If we reduce 𝑃 to the individual level of each point, we get:

𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑎′
𝑖
)2 − 𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑎𝑖

)2 ≤ 0 (III.3)

When the point is active, the inequation III.3 is necessarily respected. Indeed, if
𝑥𝑖 changes cluster, i.e. 𝑎𝑖 ̸= 𝑎′

𝑖 then 𝐺𝑎′
𝑖

is necessarily closer to 𝑥𝑖 than 𝐺𝑎𝑖
because

the first phase of k-means looks for the nearest centroid for each point. If 𝑥𝑖 does not
change cluster, III.3 is true because the difference in its left part is zero.

If the point is passive, whether it is stable or not, then III.3 is null. It acts on 𝑃 as if
it was active but except that it does not change cluster (i.e., 𝑎𝑖 = 𝑎′

𝑖). Thus, removing
points from the point-centroid distance calculations in the k-means first phase, this
phase still reduces the intra-cluster variance between the points and the centroid of
each cluster.
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Second phase
Let 𝐺′ be the set of new centroid values calculated from 𝐺. We show that the intra-

cluster variance of each cluster (local 𝑠𝑠𝑒 of the cluster) is reduced from one iteration
to another. We show that this variance is minimized optimally at each iteration by
updating centroids using the arithmetic mean. We reason with the Euclidean distance
for this phase, but the underlying idea remains the same for other distances, i.e.,
showing that the intra-cluster variance decreases monotonically.

Let the intra-cluster variance 𝑃 (𝑋, 𝐺′
𝑗, 𝑎′) = ∑︀

∀𝑥𝑖∈𝐶𝑗
𝑑𝑖𝑠(𝑥𝑖, 𝐺′

𝑗)2 (we consider that
𝐶 is up to date with respect to a’). Since 𝑃 (𝑋, 𝐺′

𝑗, 𝑎′) is quadratic (and therefore
convex) (Jain, 2010a) then it is optimal when the derivative of 𝑃 (𝑋, 𝐺′

𝑗, 𝑎′) is zero:

𝑑𝑃 (𝑋, 𝐺′
𝑗, 𝑎′)

𝑑𝐺′
𝑗

=
∑︁

∀𝑥𝑖∈𝐶𝑗

2(𝑥𝑖 −𝐺′
𝑗) = 0 (III.4)

,which implies
𝐺′

𝑗 = 1
|𝐶𝑗|
×

∑︁
∀𝑥𝑖∈𝐶𝑗

𝑥𝑖 (III.5)

, hence

𝑃 (𝑋, 𝐺′
𝑗, 𝑎′)− 𝑃 (𝑋, 𝐺𝑗, 𝑎′) =

∑︁
∀𝑥𝑖∈𝐶𝑗

𝑑𝑖𝑠(𝑥𝑖, 𝐺′
𝑗)2 −

∑︁
∀𝑥𝑖∈𝐶𝑗

𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑗)2 ≤ 0 (III.6)

The active, stable passive and non-stable passive points, in this phase, are not
differentiated because their values, at a given iteration, in a given cluster 𝐶𝑗, are
taken into account in the calculation of the new arithmetic mean, the centroid average
𝐺′

𝑗.
Note that the arithmetic mean is not the value that minimizes the second phase at

best for other distances; e.g, for the Manhattan distance, the median is chosen instead
of the average. In this case, another version is obtained, k-medians instead of k-means.

III.2.4 Integration

In this part, we show how Sk-means fits into the different versions of k-means. First
of all, we recall that Lloyd’s version and the versions based on geometric reasoning
are made of two main steps repeated in an iterative process. The first step consists
in assigning each point to the cluster whose centroid is closest. The second step
recalculates the centroids of the clusters.

At a given iteration and at a visit of a given point iteration in the first phase,
we differentiate two other steps named outer test and inner test. The outer test step
allows deciding whether to iterate to the next point because the current point does
not change cluster at the current iteration. Before the decision, in the outer test, some
tests are run via variables called bounds framing the point-centroid distances. If the
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tests pass, then calculating the distances between the point and the k centroids is
avoided. If not, the inner test is then activated. The latter conducts additional tests,
via bounds, in order not to calculate all the distances between the point and the other
centroids, i.e., some distances must be calculated while others must not.

We have integrated Sk-means in four algorithms: Lloyd’s (Lloyd, 1982a), Compare-
means (Phillips, 2002), Sort-means (Phillips, 2002) and Exponion (Newling and
Fleuret, 2016) versions (they are called original algorithms). The latter resulted, via
integration, in optimized versions. The algorithm 1 describes how Sk-means integrates
with the original versions. The algorithm is general and adapted to these versions.
The adaptation of this algorithm to one of the original versions results in the optimized
version. Among the inputs of this algorithm is the value of 𝑟. This value is either
calculated using our 𝐸 estimator or the user provides it. Then the set of 𝑠 is initialized
to 0 for each of the points of 𝑋. In each iteration, in the first phase, we iterate on the
points’ indexes. Then, the outer test and inner test are eventually triggered. Indeed,
depending on the k-means version, the outer test and the inner test are both triggered,
only one of the both, or neither of the two. If at least one is used, the tests associated
with the original version are used. After these tests, we check if the point has changed
the cluster. If it is the case, we check if the point is likely to become passive using
the value of 𝑟. If it becomes passive, then its index is removed from the list of point
indices. In other words, at the next iteration, we no longer iterate on this point until
convergence. Then follows the second step, which is the updating of the clusters’ cen-
troids. Then other updates of the variables specific to the original version are carried
out, i.e., calculations of new values of the bounds associated with each point. In this
case, when the point is passive, the bounds of the point are no longer updated.

Lloyd’s version does not intrinsically have a computational optimization strategy
compared to algorithms based on geometric reasoning. So it does not have the inner
test and the outer test. Consequently, it is the version that takes the most advantage
of the Sk-means strategy. Compare-means and Sort-means do not adopt the outer-test
and therefore focus on the inner test. Exponion exploits the outer test and the inner
test. The effect of Sk-means on versions based on geometrical reasoning is twofold.
First, the outer test and inner test for passive points are removed, which means that
bounds calculations and point-center distance calculations are avoided. Secondly, the
updating of the passive point bounds, which requires additional calculations, is also
removed.

We ran Sk-means on a sample dataset to show its benefits. The dataset used has
100,000 two-dimensional points and consists of 11 real clusters, some of which are con-
tiguous. The purpose of k-means is then to identify these clusters. We have launched
on the dataset the versions benefiting from Sk-means (OLloyd, OSort, OCompare and
OExponion) and the versions not benefiting from Sk-means (Lloyd, Sort, Compare
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Algorithm 1 Sk-means
Input: 𝑘,𝐺,𝑋,𝑟
Output: 𝐶

1: 𝑠 ← {0∀𝑖 = 1...𝑐𝑎𝑟𝑑(𝑋)}
2: convergence ← true
3: while convergence = true do
4: {first step}
5: for 𝑖 in 𝑖𝑛𝑑𝑒𝑥𝑒𝑠 do
6: {outer test is conducted}
7: if outer test fails then
8: 𝑘𝑜𝑙𝑑 ← 𝑎𝑖 {with 𝑎𝑖 the index of the cluster to which point 𝑥𝑖 is closest}
9: {inner test}

10: {tests, specific to a given version of k-means, are performed in order to
modify 𝑎𝑖 or not}

11: if 𝑎𝑖 ̸= 𝑘𝑜𝑙𝑑 then
12: 𝑠𝑖 ← 𝑠𝑖 + 1
13: if 𝑠𝑖 ≥ 𝑟 then
14: 𝑖𝑛𝑑𝑒𝑥𝑒𝑠 ← 𝑖𝑛𝑑𝑒𝑥𝑒𝑠∖𝑖
15: end if
16: else
17: 𝑠𝑖 ← 0
18: end if
19: end if
20: end for
21: {second step}
22: {centroids update}
23: {update of the boolean variable convergence}
24: {updates of variables specific to a given version of k-means}
25: end while

and Exponion). The 𝑟 stability value was estimated by our 𝐸 estimator.
To see Sk-means’ benefits, we used three results produced by each of the eight ver-

sions: data partitioning, execution time, and the number of centroid-point calculations
performed. In figure III.4, we compare each version of k-means to its optimized version
(i.e., integrating Sk-means) in terms of execution time and the number of performed
calculations. In terms of the number of performed calculations, the optimized versions
avoid on average 66% calculations than the original versions. This results into the fact
that Optimized versions are significantly faster by two to more than three times than
their original associated versions. As an example, the optimized version of Lloyd’s
avoided 71% of calculations compared to the original, which resulted in the optimized
version being 3.4 times faster. Even if the optimized versions are faster, the cluster-
ing results proposed by the optimized and non-optimized versions are similar (figure
III.5). This shows that removing the points from the distance calculation operations,
considered passive by Sk-means, does not really influence the data partitioning.
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Figure III.4: On the left, the optimized versions (Sk-means) and the original associated
versions are compared in execution time. On the right, these versions are compared
in the number of distance calculations performed.
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Figure III.5: Clustering results proposed by the different versions of k-means. Each
color represents a cluster. Names beginning with O correspond to the names of the
optimized versions. The optimized versions produce the same clustering result.
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III.2.5 Experimental assessments

III.2.5.1 Introduction

In this part, the Sk-means robustness against competitors is assessed.
First of all, we will also study how the 𝐸 estimator was constructed experimentally

(part III.2.5.2). Then, using this estimator, we will show that the algorithms that
benefit from the Sk-means strategy are significantly faster than the corresponding
versions that do not benefit from it while having almost identical partitionings (part
III.2.5.4). Various data sets have been used to show this gain.

III.2.5.2 Experimental protocol for the estimator 𝐸

In part III.2.2, we discussed about the estimator 𝐸 estimating the minimum number
of successive iterations (noted 𝑟) during a point must remain attached to a cluster to
be considered a passive point. In this section, we explain the experimental approach
that led to this estimator.

Before starting experiments, we postulate that the value 𝑟 depends on the number
of points, the dimension, the number of clusters, and the spatial distribution of the
initial centroids. In other words, this dependence means that the value 𝑟 is defined
according to the data characteristics (controlled by parameters). To verify this postu-
late, three steps were performed. First, different synthetic data sets were generated.
Then on each of them, k-means was run. Then, statistical tests were applied to the
launches’ results, which led to the validation of the postulate and the 𝐸 estimator’s
inference.

Data generation. This step aims to generate datasets that are varied enough
for better representativeness of the synthetic and real data encountered in practice.
The data sets are generated in hyper-cubes (generalized multi-dimensional cubes). A
hyper-cube, associated with a single dataset, allows to frame the dataset and control
the data’s spatial distribution. To obtain varied data sets, the values of different pa-
rameters characterizing the datasets have been varied (see table III.3). As an example,
the inter-cube distance is one of the parameters for obtaining various data sets. Its
influence is clear in the figures III.6 and III.7 showing two data sets of eight clusters
of the same dimension (𝑑) and each having the same number of points (𝑛). By hav-
ing an inter-cube distance of 0.2, the dataset (figure III.6) is easier to cluster (under
certain conditions), in the sense that the same clusters could be found as they are in
the ground truth. With a distance of −0.2, the clusters are overlapping (figure III.7),
which makes the dataset much more difficult to cluster. Between the two levels of
difficulty, other values of inter-cube distance make it possible to have data sets that
are more or less complicated to cluster.

In addition to the choices of the data characteristics, there are different types of
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Parameter Value set
dataset cardinality(𝑛 = |𝑋|) {2× 103,1× 104,2× 104,4× 104,5× 105,1× 105,

2× 105,4× 105,6× 105,1× 106}
dataset dimension (𝑑) {2,4,6,8,10}
number of real clusters (𝑐) {4,8,12,16,20,25,30}
inter-cube distance {-0.2,-0.1,0,0.1,0.2}

Table III.2: Parameter value range

expression:

• centroid initialization method (which we refer to as 𝑖𝑚). Two methods have
been chosen: 1) random choice of initial centroids, so there is no guarantee that
the centroids are chosen correctly in order to have a reasonable local optimal
solution according to the objective function of k-means; 2) k-means++, another
alternative, is chosen because globally it proposes centroids which are sufficiently
far from each other and which leads to k-means generally producing a better
clustering than the random method. Nevertheless, in a concern of generality as
underlined above, we wish to study the initialization method’s influence on 𝑟.
Consequently, a parameter (𝑠𝑝) is proposed to characterize the spatial distribu-
tion of the initial centr oids. It is calculated as follows: given 𝑙𝑚𝑎𝑥 the maximum
value of the pairwise distances(between centroids) and a hyper-rectangle encom-
passing these centroids, 𝑠𝑝 is equal to the ratio of 𝑙𝑚𝑎𝑥 to the maximum length
of the hyper-rectangle. Another type of calculation of 𝑠𝑝 has been tested, but it
is less efficient as shown below in the experimental results;

• the cluster number to be identified by k-means and its accelerated versions
(𝑘). Indeed, 𝑘 is equal to the real cluster number in the dataset (i.e., 𝑐 = 𝑘).
Despite this, in practice, the variation of the parameters 𝑠𝑝, inter-cube distance
and 𝑖𝑚 leads to challenging datasets in the sense that several centroids can be
in the same cluster or have very close or overlapping clusters as outlined above,
which makes their clustering difficult.

A total of 1750 synthetic datasets were generated, and 3500 experiments were
carried out. The results are analyzed graphically before being statistically validated.

III.2.5.3 Experimental inference of estimator 𝐸

Visual results. Graphically a monotony of scatterplots defined on two variables
(parameters) is expected to state that these variables are dependent. Concretely,
monotony consists in the fact that the more one variable increases in value, the more
the other variable studied increases or otherwise decreases (one direction only, not
both).

In figure III.8(a), in general, the scatterplot tends to grow, i.e., the more the number
of points increases, the more the number of iterations increases as well. In figure
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Figure III.6: a cube of eight well-separated clusters (inter-cube distance = 0.2).

Figure III.7: A cube of eight overlapping clusters (inter-cube distance = −0.2).

III.8(b), the scatterplot, formed from the dimension (𝑑) and the number of iterations,
visibly tends to grow even though the tendency seems to be less than that of the
previous scatterplot. If the scatterplot is cleaned from the few points that are far from
the mass of the remaining points on each value of the dimension, the visual monotony
is slightly stronger. In figure III.8(c), the scatterplot has a decreasing monotony but
with a less pronounced slope than that of the scatterplot defined on 𝑛 (figure III.8(a)).
This decrease means that, globally, the greater 𝑘 is, the fewer iterations there are. In
figure III.8(d), a decreasing trend is noted. Even if noise is present around the majority
of the points (dense region), it still maintains the general decreasing trend. We infer
from this scatterplot that the closer the centroids(the smaller the 𝑠𝑝 ) are to each other
(i.e., the distance between two centroids is small compared to the inter-point distances
of the whole dataset), the greater the number of iterations.
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In summary, graphically, we conclude that there is monotony in the four scatter-
plots III.8(a,b,c,d). Therefore there is dependence between the number of iterations
and the other parameters 𝑘, 𝑑, 𝑛 and 𝑠𝑝.

𝑇 (𝑘, 𝑑, 𝑛) = 𝑙𝑜𝑔2(
𝑓1 * 𝑛 * 𝑓2 * 𝑑

𝑓3 * 𝑘
) (III.7)

The function 𝑇 (𝑘, 𝑑, 𝑛) models these monotonies. Knowing that the scatterplots in-
volving 𝑛 and 𝑑 have an increasing monotony, they are put in the numerator, whereas
𝑘 is in the denominator because its corresponding scatterplot is decreasing. Neverthe-
less, the real numbers 𝑓1, 𝑓2, 𝑓3 are used to weight the importance of influence on 𝑟 of
𝑛, 𝑑 and 𝑘, respectively. In practice, the number of iterations is generally very small
or even negligible compared to the values of 𝑛,𝑑 and 𝑘. Intuitively, the binary loga-
rithmic is adapted. Moreover, the factor 𝑓4 is integrated to either increase or decrease
the logarithmic.

𝐸(𝑘, 𝑑, 𝑛, 𝑠𝑝) = 𝑓4 * 𝑇 (𝑘, 𝑑, 𝑛) * (1− 𝑠𝑝) (III.8)

From 𝑇 , 𝐸(𝑘, 𝑑, 𝑛, 𝑠𝑝) is inferred. The spatial distribution of the initial centroids
has a non-negligible influence on the total number of iterations, hence its inclusion in
𝐸. The factor (1− 𝑠𝑝) corresponds to an increasing version of the scatterplot III.8(d)
to mean that the closer the centroids are to each other (i.e., the larger (1− 𝑠𝑝) is), the
greater 𝑟 = 𝐸(𝑘, 𝑑, 𝑛, 𝑠𝑝).

Figure III.8(e) shows the relationship between 𝑟 (by extension 𝐸) and the number
of iterations. The factor 𝑓4 is set to 2 and 𝑓1,𝑓2 and 𝑓3 to 1. The monotony is
much stronger compared to those of the other parameters. The scatterplot is more
concentrated and less noisy. The monotony is increasing, which shows that the total
number of iterations and 𝐸 evolve in the same direction.

Statistical results. The 𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 test is a statistical measure used to confirm or
disprove the dependence (or correlation) hypothesis between two variables. It produces
two values: the correlation level and the p-value. The correlation is between -1 and 1,
where 0 indicates independence of the variables, and the closer the value is to 1 or -1,
the stronger the correlation. The p-value indicates the probability of making an error
by rejecting the assumption (called the null hypothesis) that the two variables are
independent. In a classical hypothesis test, a significance threshold 𝑠𝑔 is set to decide
whether or not to reject the null hypothesis. Generally 𝑠𝑔 = 0.04, but in our study,
𝑔𝑠 = 0.01 is set to be more demanding. Note that even if the level of correlation is
strong, but the p-value is higher than 𝑠𝑔, then we declare that there is independence.

According to the table results III.3, the null hypothesis is rejected for 𝑟 and 𝑛 be-
cause the probability of error (p-value) is 0. Moreover, their correlation rate is in line
with this probability of erroneous results. It is 0.88 for 𝑛 and 0.93 for 𝑟, which repre-
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Parameter correlation p-value
𝑛 0.88 0.00
𝑑 0.13 1.60𝑒−14

𝑘 −0.28 9.91𝑒−65

1− 𝑠𝑝 0.47 3.37𝑒−190

𝑟 0.93 0.0

Table III.3: Spearman’s test results on the correlations between 𝑘,𝑑,𝑛, 𝑠𝑝 and 𝑟, and the
total number of iterations that k-means took to converge.

sents a solid correlation. Concerning 𝑘, 𝑑 and 1−𝑠𝑝, the p-value is negligible compared
to 𝑠𝑔, and therefore, the null hypothesis is rejected. The dimension 𝑑 has the least
influence on the number of iterations, although it is correlated with it. The spatial
distribution of the initial centroids, as underlined graphically, has an important influ-
ence on the number of iterations. Another type of 𝑠𝑝 calculation tested, as mentioned
above, consists in dividing the average of the pairwise distances (between centroids)
over the maximum length of the hyper-rectangle. So, the test on 1 − 𝑠𝑝 produced
a p-value of 4.00 × 10−59, which shows the existence of a correlation. Nevertheless,
the correlation is 0.27. It is weaker than the first type of calculation of 𝑠𝑝 (0.47).
The value of 𝑘 is a negative correlation, which validates the decreasing monotony seen
graphically. In sum, the null hypothesis is rejected for all parameters, and thus, the
dependence between 𝑘, 𝑑, 𝑛, 𝑠𝑝, and 𝑟, and the total number of iterations is validated.

III.2.5.4 Experimental protocol for comparing algorithms

We evaluate the Sk-means strategy applied to Lloyd’s (Lloyd, 1982a), Compare-means
(Phillips, 2002), Sort-means(Phillips, 2002) and Exponion (Newling and Fleuret, 2016)
versions. So, our optimized versions associated with these algorithms are Ollyod,
OCompare-means, Osort, OExponion. The datasets (table III.4) used are of different
cardinalities and dimensions and are of different types (images, sensory data, synthetic
data). All algorithms have been coded in python 3.6.

An experiment consists in running each of the eight algorithms (the four versions of
k-means and their optimized versions via Sk-means) on a given dataset whose entries
are :

• 𝑘 ∈ {8, 60, 200, 500}

• method of initialization (random, k-means++).

A total of 384 experiments (8 algorithms × 2 initialization methods × 4 values of
𝑘 × 6 datasets ) have been launched. In each experiment concerning an optimized
algorithm, the stability value 𝑟 is estimated.

Through these experiments, execution time (including calculation execution time
of 𝑟) and quality are evaluated. In this section, the quality concerns the objective
function minimization of k-means (𝑠𝑠𝑒), the algorithm having best minimized the
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(a) (b)

(c) (d)

(e)

Figure III.8: Different scatterplots each involving the total number of iterations, which
k-means took to converge, depending on another parameter (𝑛, 𝑑, 𝑘, 𝑠𝑝, 𝑟).
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Data name d n Description
birch 2 100000 a list of Gaussian clusters organised in a data space divided into

10x10 squares
covtype 54 150000 remote measurements of ground cover
cup98 56 95412 dataset proposed by KDD98

mnist50 50 60000 database of handwritten digits (MNIST), having undergone
a random projection.

mnist784 784 70000 database of handwritten digits (original MNIST)
vehicle 100 98528 database of vehicles whose characteristics are obtained from seismic and

acoustic sensors

Table III.4: Description of the datasets used to evaluate Sk-means

function is considered better. The LLoyd, Compare-means, Sort-means and Exponion
algorithms all produce the same 𝑠𝑠𝑒 value.

III.2.5.5 Results analysis

Figure III.9: Gain in execution time of the optimized version compared to the original
version as a function of 𝑘.

In figure III.9, we show the gain brought by the optimized version compared to
its original version. A first observation is that the larger 𝑘 is, the more expensive the
algorithms are. This is expected because the computational complexity of k-means
increases when 𝑘 increases. On all values of 𝑘, the original Lloyd’s version is clearly
the most expensive in execution time because it has no intrinsic optimization strategy.
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Nevertheless, the gain brought by the Lloyd optimized version compared to its origi-
nal version varies from 3.4 to 5.4 times. The original version of Exponion is the least
expensive. The gain is from 1.2 to 2.8 times, brought its optimized version. The orig-
inal and optimized versions of the compare-means and sort-means are more expensive
than the Exponion (original and optimized). However, they tend to have the same
acceleration level as the latter, as the 𝑘 increases. At 𝑘 = 500, the optimized Exponion
(time=111s) is overtaken by the optimized versions of compare-means (time=87s) and
sort-means (time=85s) . The gains of these two algorithms, on different values of 𝑘,
are stable as for the other algorithms, ranging from 3.7 to 4.8 for compare-means and
from 3.4 to 4.8 for sort-means. All in all, the versions benefiting from Sk-means bring
an overall gain that is not negligible, especially when 𝑘 is large.

This table III.5 compares the different versions of k-means compared to Lloyd’s
version in terms of execution time. The experiments’ results, launched on the same
data set and at the same value of 𝑘 but different by the initialization of the centroids,
are averaged in this table (in fact, the average of two experiments).

Oexponion and Osort remain, on average, the favorites for practically all datasets.
They have benefited the most from the Sk-means strategy. In small and large dimen-
sions with a very high 𝑘 value, the gains brought by the optimized versions can be very
significant (191× for {Oexponion,birch,𝑘 = 500}, 149× for {Osort,covtype,𝑘 = 500},
97× for {Osort,cup98,𝑘 = 500}. On two datasets, when 𝑘 = 8, Exponion is better
than OExponion. In all other datasets, Oxponion is better, and in many cases, very
much better. The other optimized versions are, in all cases, better than their original
associated versions. The optimized algorithms are always better than Lloyd, which is
not the case for the original compare and sort (mnist784). For very large dimensions,
these two algorithms have difficulty to outperform Lloyd except slightly at 𝑘 = 500.
In this configuration, Oexponion outperforms all the others.

The quality mentioned above is measured from the relative difference. Let 𝐴 be an
algorithm to evaluate and 𝐵 be a reference algorithm, the relative difference is equal:

Δ𝑠𝑠𝑒 = 𝑠𝑠𝑒𝐴 − 𝑠𝑠𝑒𝐵

𝑠𝑠𝑒𝐵

(III.9)

The smaller the difference, the closer A and B are in terms of clustering results.
In all cases (table III.6), in absolute value, Δ𝑠𝑠𝑒 is less than 0.01 (i.e. 1%) except for
birch at 𝑘 = 200 which is at 0.012 exceeding very slightly the 1%. The difference is null
in several cases or even negative (at cup98, 𝑘 = 8) i.e., slightly better quality for the
optimized versions. For each dataset and k value, the optimized versions have almost
the same rate of difference. This shows that the optimized versions converge almost
at the same speed in terms of the number of iterations. Moreover, it is experimentally
observed that there are always fewer iterations in the optimized versions than in the
original versions.
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k
data name method 8 60 200 500

birch

compare 3.55 13.36 19.45 21.35
exponion 18.03 33.57 58.25 80.46

lloyd 1.00 1.00 1.00 1.00
ocompare 23.14 95.93 133.62 113.08
oexponion 18.96 76.29 160.69 191.12

olloyd 7.03 7.96 7.17 5.41
osort 24.72 109.03 135.64 105.60
sort 4.13 26.12 61.31 75.38

covtype

compare 3.46 10.34 15.24 18.64
exponion 7.00 16.63 23.90 32.32

lloyd 1.00 1.00 1.00 1.00
ocompare 5.10 30.88 73.04 111.16
oexponion 4.02 23.63 53.04 92.80

olloyd 1.56 3.12 4.91 6.31
osort 5.65 38.77 94.18 149.50
sort 3.79 15.90 32.85 61.07

cup98

compare 2.64 7.32 10.17 11.84
exponion 4.66 4.46 5.83 7.74

lloyd 1.00 1.00 1.00 1.00
ocompare 7.05 22.11 57.07 87.23
oexponion 5.81 7.61 19.20 31.11

olloyd 2.77 3.39 6.21 8.03
osort 7.53 26.33 66.43 97.85
sort 2.88 9.59 14.97 22.71

mnist50

compare 4.54 5.89 6.58 7.21
exponion 16.65 9.91 8.54 6.62

lloyd 1.00 1.00 1.00 1.00
ocompare 12.80 53.24 29.34 16.25
oexponion 16.38 37.58 20.57 11.11

olloyd 2.88 9.29 4.45 2.21
osort 14.56 60.25 32.82 18.05
sort 5.27 7.41 8.37 9.15

mnist784

compare 0.88 1.01 1.13 1.17
exponion 2.90 4.03 3.12 1.99

lloyd 1.00 1.00 1.00 1.00
ocompare 1.75 5.18 5.34 4.78
oexponion 3.09 8.84 9.48 5.48

olloyd 1.83 5.33 6.05 4.03
osort 1.74 5.23 6.22 4.78
sort 1.04 1.19 1.13 1.19

vehicle

compare 0.98 1.47 1.66 1.88
exponion 5.06 2.95 2.28 2.17

lloyd 1.00 1.00 1.00 1.00
ocompare 5.05 4.92 7.64 7.92
oexponion 10.51 5.50 5.85 5.71

olloyd 4.72 4.27 4.81 4.13
osort 4.87 5.32 7.64 7.99
sort 1.05 1.45 1.72 1.90

Table III.5: Number of times the algorithms are accelerated compared to Lloyd’s
version. Algorithms beginning with the letter o refer to algorithms that have benefited
from the Sk-means strategy. The numbers in bold correspond to the best acceleration
for a given dataset and 𝑘.
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k
Data name Method 8 60 200 500

birch

ocompare 0.003 0.009 0.012 0.008
oexponion 0.003 0.009 0.012 0.008
olloyd 0.003 0.009 0.012 0.008
osort 0.003 0.009 0.012 0.008

covtype

ocompare 0 0.002 0.003 0.005
oexponion 0 0.002 0.003 0.005
olloyd 0 0.002 0.003 0.005
osort 0 0.002 0.003 0.005

cup98

ocompare -0.005 0.001 0.003 0.006
oexponion -0.005 0.001 0.003 0.006
olloyd -0.005 0.001 0.003 0.006
osort -0.005 0.001 0.003 0.006

mnist50

ocompare 0 0.008 0.002 0.001
oexponion 0 0.008 0.002 0.001
olloyd 0 0.008 0.002 0.001
osort 0 0.008 0.002 0.001

mnist784

ocompare 0 0.001 0.001 0.001
oexponion 0 0.001 0.001 0.001
olloyd 0 0.001 0.001 0.001
osort 0 0.001 0.001 0.001

vehicle

ocompare 0.001 0.001 0.001 0.001
oexponion 0.001 0.001 0.001 0.001
olloyd 0.001 0.001 0.001 0.001
osort 0.001 0.001 0.001 0.001

Table III.6: Relative difference in SSE between each optimized algorithm and the
LLoyd version.

III.2.6 Conclusion

K-means (Lloyd’s version) is one of the best known and most used partitioning algo-
rithms.

Nevertheless, it becomes more and more expensive to calculate as the number of
points (𝑛) and the number of clusters (𝑘) increase. This is particularly true in the k-
means first phase, which requires calculating the distance between each point and the
𝑘 centroids. This is impractical in a large dataset environment. Therefore, k-means
versions based on geometric reasoning have been developed to reduce point-centroid
distance calculations in this phase. However, their computational complexity also
increases as the 𝑛 and 𝑘 increase. Moreover, for each point, the variables (bounds) are
updated at each iteration.

Therefore, we have developed Sk-means, a strategy that further reduces the number
of distances between points and centroids. Its objective is to detect stable points as
quickly as possible, i.e., points that will not change the cluster before the process end.
For each cluster, we defined two different parts (kernel and outer part) to separate the
dynamic points (i.e., very likely to change cluster) from those that are not or slightly
dynamic. Indeed, the core concentrates the stable points and the passive points (points
in the process of stabilization). On the other hand, the outer part contains dynamic
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points. We have also designed an estimator (𝐸) to decide whether the point is passive
or dynamic.

The advantage of this strategy occurs when the kernel absorbs a point. In this
case, this point is no longer involved in point-centroid distance calculations until the
process end. This means that 𝑘 distances are avoided at each iteration for this point.
In addition, in versions based on geometric reasoning, the bounds associated with this
point are no longer maintained and updated. The higher the number of points in the
kernels, the more advantageous our strategy is.

Experimentally, k-means versions integrating Sk-means are up to 191 times faster
than Lloyd’s version. A version with Sk-means can be up to 5 times faster than its
original non-optimized version.

Moreover, overall, the relative error between partitionings is below 1%. Therefore,
the objective functions of k-means versions with Sk-means and those without Sk-means
provide almost the same local solutions, i.e. i.e. the differences in terms of clustering
results are negligible.
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III.3 KD-means

Symbols Meaning
𝑛 number of data points
𝑑 dimension of data points
𝑋 𝑋 = {𝑥1, . . . , 𝑥𝑛} is a dataset, with 𝑥𝑖 ∈ R𝑑

𝑘 number of clusters
𝐶 𝐶 = {𝐶1, . . . , 𝐶𝑘}, is a set of clusters,
𝐺 𝐺 = {𝐺1, . . . , 𝐺𝑘}, is a set of centroids,

each cluster 𝐶𝑗 is associated with its centroid 𝐺𝑗

𝑑𝑖𝑠(𝑥𝑖, 𝑥𝑗) 𝑑𝑖𝑠 is a distance between the points 𝑥𝑖 and 𝑥𝑗

𝑤 number of leaf nodes in the Kd-tree data structure
𝜐 index used to refer to a leaf node, or to iterate on a list

of leaf indices annotated ϑ
ℎ𝑗 it corresponds to a hyper-rectangle encompassing the points

of cluster 𝐶𝑗

Table III.7: Symbols

III.3.1 Introduction

As we have pointed out, three limitations have been identified concerning estimators
for estimating the number of clusters 𝑘, namely:

• the overlap of clusters in the ground-truth leads estimators to deviate exagger-
atedly from real 𝑘;

• the execution time is long because k-means is called at each iteration, and this
time is even longer when there is an overlap of clusters;

• estimators constrain clusters to have a particular shape (spherical, elliptical).

So, we propose Kd-means to address these limitations. First, we give a global
overview of the steps of the solution in III.3.2. Then, we detail these steps correspond-
ing mainly to the Kd-tree data structure and the information stored in it (III.3.3), the
construction of the data structure (III.3.4), the initialization of Kd-tree leaves (III.3.5),
the hierarchical merging of clusters (III.3.6) and the cluster regularization (III.3.7).

This is followed by experimental validation of Kd-means on large and varied
datasets in III.3.8. The Kd-means robustness against its competitors is demonstrated
in terms of 𝑘 estimation, the quality of clustering (similarity between partitioning and
ground-truth) and execution time.
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Figure III.10: Overall solution for estimating the value of 𝑘 and clustering.

III.3.2 Overview

The solution is composed of three main parts (figure III.10):

• the storage and organization of the dataset 𝑋 provided by the user in a data
structure (Kd-tree);

• the processing is done on this structure to estimate 𝑘 (Merging task);

• optional improvement of the results of the previous step (Cluster regularization).

We opted for the Kd-tree (Bentley, 1975) data structure to fulfill the roles of
storage and data organization. A Kd-tree is a binary tree representing a hierarchical
subdivision of space using splitting planes that are orthogonal to the dimensions 1. In
Subsection III.3.3.1, we discuss the advantages of Kd-tree as well as the method that
builds the Kd-tree in III.3.3.

In the processing part, first of all, each leaf’s points are processed independently
from the points on the other leaves (see III.3.5). This process results in several clusters
in the leaf. As a result, in each leaf, several clusters are constituted. Then the clusters
of the nodes are merged recursively from the leaves to the root according to rules and
algorithms defined in part III.3.6. These are built to manage cluster shapes as well as
cluster overlap.

The final step is a regularization phase (part III.3.7). It detects small clusters and
decides whether they remain separate from other clusters, or they should be merged
with other clusters. This phase avoids having an overestimation of 𝑘 due to small
clusters.

1do not confuse the 𝑘 of Kd-tree, which is just the dimension of the data stored in the tree while
the 𝑘 of k-means which corresponds to the number of clusters
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III.3.3 Data structure elements

III.3.3.1 Kd-tree

Kd-tree puts points that are spatially close together in the same node (Bentley, 1975).
This property is exploited by several machine learning methods to accelerate calcula-
tions related to point space. One of the best-known cases is the k-closest neighbor’s
algorithm (Cover and Hart, 2006). This property is advantageous to us in two cases.
First of all, it partly addresses the problem of k-means because it groups the most
similar points possible in the same node. Second, it provides an optimized spatial sub-
division of space to accelerate data processing. It recursively splits the whole dataset
into partitions, like a decision tree acting on numerical datasets (Gan et al., 2007).
The root node represents the whole data space, while the leaves are the smallest pos-
sible partitions of the data space. So, a node is either a leaf, i.e., a node without child
nodes, or an internal node, i.e., a node with two child nodes.

III.3.3.2 Node components

To allow the node merging step (III.3.6) to run, all nodes each have at least one cluster.
Note that the clusters are formed in the leaf nodes during the leaf initialization step
(III.3.5). On the other hand, in the internal nodes, they are dynamically constituted
during the node merging step. Each cluster is associated with:

• the indexes referring to its points. Therefore, the data points are not stored in
the node (by extension in the whole tree) but are accessible via the indexes;

• the arithmetic mean of its points, representing its centroid;

• the sum of the squared deviations (between its points and its centroid), also
called sse;

• its hyper-rectangle, a geometrical object used because of its advantages in terms
of set calculation and set representation in Kd-means. This object is detailed
in the part III.3.3.3. Note that in each node, we annotate 𝜁 its list of hyper-
rectangles.

The internal nodes also have, in particular, the splitting dimension index 𝑠𝑑 as well
as the associated value 𝑠𝑣. These two values are used in the construction phase of the
Kd-tree (part III.3.4).

III.3.3.3 Hyper-rectangle

As outlined above, each cluster is associated with a hyper-rectangle. The latter is a
necessary element for the node merging step. Formally, it corresponds to the smallest
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possible rectangle (generalized to 𝑛 dimensions) covering all the data points of a set.
It is defined by the following equation:

𝐻 = {𝑥𝑖|∀𝑖 𝑥𝑚𝑛 ≤ 𝑥𝑖 ≤ 𝑥𝑚𝑥} (III.10)

where, 𝑚𝑛 and 𝑚𝑥 respectively represent indexes of the lower (𝑚𝑖𝑛𝑠) and upper
(𝑚𝑎𝑥𝑒𝑠) bounds of the hyper-rectangle. Indeed, 𝑚𝑖𝑛𝑠(𝑚𝑎𝑥𝑒𝑠) is a vector correspond-
ing to the minimum (maximum) values of each dimension of a cluster’s points(see
figure III.11).

In our case, we consider a hyper-rectangle as a geometric object to approximate the
overall spatial distribution of a set of points contained in the node. In other words, each
of the clusters of a node is geometrically represented by a hyper-rectangle. From this
representation results, in KD-means, in time-saving on the calculations that involve
sets (a set is a cluster of points). For example, to calculate a distance between two
sets or perform a set operation involving at least two sets, their corresponding hyper-
rectangles could be used. Therefore, instead of visiting all the data points of the sets,
it is only necessary to use the 𝑚𝑖𝑛𝑠, and 𝑚𝑎𝑥𝑒𝑠 vectors of the hyper-rectangles for
the above calculations. This greatly saves much time on large amounts of data.

Figure III.11: A 2-dimensional hyper-rectangle 𝐻 and the associated bounds 𝑚𝑎𝑥𝑒𝑠 and
𝑚𝑖𝑛𝑠 located on the corners (upper right and lower left). The dataset has two dimensions
(𝑑0 and 𝑑1). The circles represent the points of the dataset. The 𝑚𝑎𝑥 (resp. 𝑚𝑖𝑛) function
returns the maximum (resp. minimum) of the values in each dimension. Although the
example deals with a two-dimensional space, the hyper-rectangle can also be defined in a
space of more than two dimensions.

III.3.4 Data structure construction

In this part, we focus on the strategy we adopted to build Kd-tree.
The Kd-tree is built from top to bottom. In the beginning, Kd-tree contains only

one node (root), then from this one, two child nodes are formed. Then the nodes are
recursively divided until the leaves are created. Each child node represents a sub-space
of points. The union of the sub-spaces of both child nodes corresponds to the point
space of their father. In the following, we focus on the splitting strategy of the internal
nodes.
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Figure III.12: Example of the Kd-tree instantiation method on a two-dimensional space.
The method is also applicable to spaces of more than two dimensions.

The partitioning of a data space of an internal node (i.e., not the leaf) is performed
mainly based on two cutting elements that must be specified: a given dimension (𝑠𝑑)
of the node data space and a value of this dimension (𝑠𝑣). Thus the points whose
value at the dimension 𝑠𝑑 is less (resp. greater) than 𝑠𝑣, then they are assigned to the
child node, which is called 𝑙𝑒𝑠𝑠𝑐ℎ𝑖𝑙𝑑 (resp. 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑐ℎ𝑖𝑙𝑑). This process is carried out
recursively from the root to the leaves.

The figure III.12 illustrates this process through an example. On the left of the
figure, a two-dimensional data space (axis 1 and axis 2, axis and dimension are used
interchangeably) and the right the associated Kd-tree. At the beginning of the process,
Kd-tree contains only the root. To divide it in two, the dimension "axis 1" is assigned
to 𝑠𝑑 and the value 0.5 to 𝑠𝑣. As a consequence, the data space is divided into two
at the vertical red line. A 𝑙𝑒𝑠𝑠𝑐ℎ𝑖𝑙𝑑 node (resp. 𝑟𝑖𝑔ℎ𝑡𝑐ℎ𝑖𝑙𝑑 node) is instantiated to
represent the points which are to the left (resp. to the right) of the red line (i.e., their
value on axis 1 is less (resp. greater) than 0.5). At this level, 𝑙𝑒𝑠𝑠𝑐ℎ𝑖𝑙𝑑 represents only
the subspace on the left and 𝑟𝑖𝑔ℎ𝑡𝑐ℎ𝑖𝑙𝑑 only the subspace on the right. If we focus
at the level of the left child of the root, 𝑠𝑑 = 𝑎𝑥𝑖𝑠2 and 𝑠𝑣 = 0.4, the corresponding
subspace is divided in two at the black horizontal line. From this node, two child
nodes result. The same procedure is used for the right thread of the root.

Several rules for splitting nodes are proposed to choose the optimal dimension and
associated value for correct data separation. Among them, we opted for sliding mid-
point splitting rule (Samet, 2005) because it provides an optimized data organization
than other classical rules (Maneewongvatana and Mount, 1999). This performance on
others is explained because:

• it does not produce empty nodes or nodes whose data space is very sparse (i.e.,
a very large space, specifically at the sides, compared to the data it represents
when it should be small);
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• it is less expensive. Indeed, the classical rules choose the median as the cutting
value 𝑠𝑣. In contrast, the sliding midpoint splitting rule chooses the middle of
the points ((𝑚𝑎𝑥 + 𝑚𝑖𝑛)/2), which is less expensive. The dimension 𝑠𝑑 chosen
is the one that is the longest (𝑚𝑎𝑥−𝑚𝑖𝑛).

Note even with this splitting rule, theoretically there is no guarantee on the limit
of the depth that Kd-tree can have, the trees could be very deep (so the time of tree
construction is increased). As a result, we have added two stopping conditions to avoid
deep trees. These two conditions are performed at the beginning of the method that
partitions the node in two. If one of the conditions is verified then the node is not
divided and it is considered as a leaf:

• the depth of the leaf is limited to 𝑙𝑜𝑔(𝑛) to save construction time compared to
the normal time taken if the depth is not limited. The root has a depth of 1;

• each node is limited by a minimum number of points annotated ψ. It is not
interesting to have leaves with a number of points close to one in a context of
massive data. This would result in a very long Kd-tree construction time and
therefore make our solution unsuitable for near real-time applications. Besides,
if the sum of the number of points of the node is less than 2 * ψ then it is a
leaf. Indeed, two cases are possible if this limit is not defined. Either the two
children will be leaves if their number of points (size) is less than ψ. Either the
size of one will be greater than ψ and therefore the other is a leaf. In the latter
case a difference in depth will occur which brings a certain imbalance of the tree.
This condition limits the number of small leaves and the depth of the tree, and
contributes to the tree’s balance.

III.3.5 Leaf initialization

After building the Kd-tree, we estimate in each leaf (we annotate 𝜐 the leaf node’s
index) the number of clusters. At the same time, the clusters are produced. For
this we have adapted G-means (Hamerly and Elkan, 2003) called 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝐾 (see
Algorithm 2). It takes into account the problem related to G-means concerning the
exaggerated overestimation of the number of clusters in the case of overlapping. Then,
the 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝐾 algorithm produces a limited number of clusters in the leaves. Indeed,
at each iteration 𝑡, 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝐾 produces 𝑘𝑡 clusters. We introduce 𝜌 a threshold that
controls the maximum number of clusters to produce. Let 𝑤 be the number of leaves
that Kd-tree has, 𝜌 is then defined as follows:

𝜌 =

⎧⎪⎨⎪⎩
√

𝑘𝑚𝑎𝑥, if 𝑤 ≥
√

𝑘𝑚𝑎𝑥

𝑘𝑚𝑎𝑥

𝑤
, otherwise

(III.11)
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Algorithm 2 InitializeLeaf
Input: 𝑘𝑚𝑎𝑥,𝑋,𝜐
Output: 𝜁

1: 𝐿𝐷 ← 𝑥𝜐 ⊂ 𝑋
2: Γ, 𝑘, 𝐼 ← 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝐾(𝐿𝐷, 𝑘𝑚𝑎𝑥)
3: { 𝐼 is defined as {𝐼𝑗|𝑗 = 1..𝑘} with 𝐼𝑗 the set of point indices of cluster 𝑗 and Γ

set of centroids.}
4: {For each cluster, a hyper-rectangle is instantiated as well as its 𝑠𝑠𝑒 is calculated.}

5: for 𝑗 = 1 to 𝑗 = 𝑘 do
6: 𝜁𝑗

𝐼 ← 𝐼𝑗

7: 𝜁𝑗
𝐺 ← Γ𝑗

8: 𝜁𝑗
𝑚𝑎𝑥𝑒𝑠 ← 𝑚𝑎𝑥(𝐿𝐷𝐼𝑗

)
9: 𝜁𝑗

𝑚𝑖𝑛𝑠 ← 𝑚𝑖𝑛(𝐿𝐷𝐼𝑗
)

10: end for

As soon as 𝑘𝑡 ≥ 𝜌 then 𝑘𝑡 is chosen for the leaf. Note that 𝑘𝑡 could be up to 2𝑡. This
case occurs when all centroids have been divided into two new centroids because they
have not been evaluated as Gaussian. Note that even if the total number of clusters in
all leaves exceeds 𝑘𝑚𝑎𝑥, then our merging algorithms bring this number closer to the
real 𝑘 of the dataset.

If we assume that in equation III.11, only the second condition exists, this would
cause 𝜌 to tend towards a value of 1 or 0. Indeed for a given value of 𝑘𝑚𝑎𝑥, the
greater 𝑤 is the greater the 𝜌 tends towards 1 if 𝑤 ≤ 𝑘𝑚𝑎𝑥. When 𝑤 > 𝑘𝑚𝑎𝑥 then 𝜌

tends towards 0. These cases could make the solution ineffective because they would
underestimate the number of clusters in the leaf and, by extension, underestimate
the number of clusters in the tree dataset. The first condition is essential to balance
between having an underestimation of 𝑘 if there is only the second condition and
having an overestimation of 𝑘 if there is no condition that would limit the value of 𝑘.

After estimating 𝑘 in the leaf 𝜐, each cluster produced is represented by a hyper-
rectangle along with the associated aggregate calculations (arithmetic mean (𝐺) and
the sum of the squared differences between the points and 𝐺 (𝑠𝑠𝑒)).

III.3.6 Node merging

The leaf initialization step produces clusters of points in each leaf. These clusters
do not necessarily represent the final clusters, i.e., the clusters that the user has as
output. In order to obtain the final clusters, the leaves’ clusters are used as inputs in
a hierarchical process from bottom to top.

In order to obtain final clusters, we have developed an algorithm called �global
merger. It consists in recursively merging clusters from the leaves to the root. The
final clusters are indeed in the root. The nodes are processed according to the post-
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fixed path, i.e., each node is processed after each of its children is processed. Indeed,
processing a node consists in executing another algorithm, �local merger, on its clusters.
The purpose of this algorithm is to merge as many clusters as possible in a given node.
The �local merger result contains at least:

• new clusters resulting from the merge if at least two clusters have been merged;

• clusters that may not have been merged.

So, for a given node, when the results (clusters) are produced in its child nodes,
then �local merger is applied on this node. In this case, the algorithm has as input the
child results. This merger operation is repeated recursively from child nodes to the
parent node. And this, up to the root (see the example III.13 for more clarity).

Figure III.13: Process of hierarchical bottom-up merging of clusters. Square shapes are
leaves, while circle shapes are internal nodes. The merging process starts with the leaves
and gradually and hierarchically reaches the root. The leaves only play the role of children
while the internal nodes are first parents and then children. Each color, involving three
nodes, represents a fusion operation. The child nodes are processed if they are not already,
then the father node is processed in turn using the results of its child nodes.

To summarize, the �global merger algorithm visits the nodes according to the post-
fixed path. At each visit, the �local merger algorithm is executed on a set of clusters.
In this one, we apply the merger test process per cluster pair (figure III.14).

In the following, we introduce some definitions (part III.3.6.1) in order to detail
the hierarchical merging process (part III.3.6.2).

In the following, we first introduce definitions used by the local merger algorithm
(by extension also by the merge test process). Then we discuss the properties of the
mergeability concept, i.e., the properties that guide the decision to merge or not a
cluster pair. Then we detail the merge test process (using the mergeability concept)
then the local merger algorithm.
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Figure III.14: Merger test process (MTP) is nested in the local merger algorithm, which in
turn is nested in the �global merger algorithm. MTP could be called multiple times during
�local merger execution in a node.

III.3.6.1 Definitions

Definition III.3. Let 𝜁 be a set of hyper-rectangles, the 𝑚𝑎𝑥𝑒𝑠 (resp. 𝑚𝑖𝑛𝑠) associated
with 𝜁 is a vector where the ith element corresponds to the maximum (resp. minimum)
value of the ith dimension of the 𝑚𝑎𝑥𝑒𝑠 (respectively 𝑚𝑖𝑛𝑠) vectors of 𝑧𝑒𝑡𝑎:

𝜃(𝜁) =

⎧⎪⎨⎪⎩𝑚𝑖𝑛𝑠 = 𝑚𝑖𝑛({𝜁ℎ.𝑚𝑖𝑛𝑠|ℎ ∈ [1...𝑐𝑎𝑟𝑑(𝜁)]})

𝑚𝑎𝑥𝑒𝑠 = 𝑚𝑎𝑥({𝜁ℎ.𝑚𝑎𝑥𝑒𝑠|ℎ ∈ [1...𝑐𝑎𝑟𝑑(𝜁)]})
(III.12)

with 𝑐𝑎𝑟𝑑() a function that returns the number of elements of a set, and 𝑚𝑖𝑛()
(resp. 𝑚𝑎𝑥()) a function that returns the minimum (resp. maximum) value of a given
set.

Definition III.4. Let 𝑃 = {(𝑢, 𝑣)|𝑢, 𝑣 ∈ N ∩ [1; 𝑘] and 𝑢 ̸= 𝑣} a list of index pairs of
hyper-rectangles of a node. We consider the index pairs (𝑢, 𝑣) and (𝑣, 𝑢) equivalent
and consequently P contains only one of them. The Average of the Pairwise Distances
is calculated by the following function:

𝑎𝑝𝑑(𝜁) =
∑︀

(𝑢,𝑣)∈𝑃 ||𝐺𝑢 −𝐺𝑣||
𝑐𝑎𝑟𝑑(𝑃 ) (III.13)

with 𝐺𝑢 and 𝐺𝑣 the centroids, respectively, of the points of the hyper-rectangles
ℎ𝑢 and ℎ𝑣.

Definition III.5. The minimum distance between two hyper-rectangles ℎ𝑢 and ℎ𝑣 is
calculated as follows:

𝑚𝑖𝑛𝐻(ℎ𝑢, ℎ𝑣) = ||0− 𝑓 || (III.14)

where 𝑓 = 𝑚𝑎𝑥({0, 𝑚𝑎𝑥({ℎ𝑢.𝑚𝑖𝑛𝑠− ℎ𝑣.𝑚𝑎𝑥𝑒𝑠, ℎ𝑣.𝑚𝑖𝑛𝑠− ℎ𝑢.𝑚𝑎𝑥𝑒𝑠})}).
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Lemma III.6. Given two datasets 𝐿 ⊆ R𝑑 and 𝑀 ⊆ R𝑑 with 𝑛1 = 𝑐𝑎𝑟𝑑(𝐿) and
𝑛2 = 𝑐𝑎𝑟𝑑(𝑀), if the sum of squared errors (𝑠𝑠𝑒) of 𝐿 and 𝑀 are as follow:

𝑞𝑙 =
𝑛1∑︁
𝑖=1
||𝐿𝑖 − 𝐿̄||2

𝑞𝑚 =
𝑛2∑︁
𝑖=1
||𝑀𝑖 − 𝑀̄ ||2

then the sum of squared errors of 𝐵 = 𝐿 ∪𝑀 is:

𝑞𝑏 = 𝑞𝑢 + 𝑞𝑚 + 𝑛1||𝐿̄− 𝐵̄||2 + 𝑛2 * ||𝑀̄ − 𝐵̄||2 (III.15)

where 𝐵̄ is computed as the average of the weighted averages

𝑛1𝐿̄ + 𝑛2𝑀̄

𝑛1 + 𝑛2
(III.16)

The formula III.15 allows calculating the 𝑠𝑠𝑒 of 𝐵 from the 𝑠𝑠𝑒 of 𝐿 and 𝑀 2. It
represents a considerable gain because there is no need to iterate on the points of 𝐵.

Proof. We are trying to calculate the sum of two 𝑠𝑠𝑒:

𝑞𝑏 =
𝑛1∑︁
𝑖=1
||𝐿𝑖 − 𝐵̄||2⏟  ⏞  

𝑞𝑙𝑏

+
𝑛2∑︁
𝑖=1
||𝑀𝑖 − 𝐵̄||2⏟  ⏞  

𝑞𝑚𝑏

Let focus on the first term of this equation:

𝑞𝑙𝑏 =
𝑛1∑︁
𝑖=1
||𝐿𝑖 − 𝐵̄||2 =

𝑛1∑︁
𝑖=1
||(𝐿𝑖 − 𝐿̄) + (𝐿̄− 𝐵̄)||2

=
𝑛1∑︁
𝑖=1
||𝐿𝑖 − 𝐿̄||2 + 2

(︃
𝑛1∑︁
𝑖=1

(𝐿𝑖 − 𝐿̄)
)︃

(𝐿̄− 𝐵̄) + 𝑛1||𝐿̄− 𝐵̄||2

But:
𝑛1∑︁
𝑖=1

(𝐿𝑖 − 𝐿̄) =
𝑛1∑︁
𝑖=1

𝐿𝑖 −
𝑛1∑︁
𝑖=1

𝐿̄ = 𝑛1𝐿̄− 𝑛1𝐿̄ = 0

So 𝑞𝑙𝑏 = 𝑞𝑙 + 𝑛1||𝐿̄ − 𝐵̄||2. If we repeat the same calculation for the second term
𝑞𝑚𝑏 then we obtain equation III.15.

2We consider the 𝑠𝑠𝑒 of 𝐿 and 𝑀 respectively 𝑞𝑙 and 𝑞𝑚 already calculated, which is the case
because the 𝑠𝑠𝑒 are calculated entirely only in the leaves, but in the internal nodes the formula III.15
is used.
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III.3.6.2 Mergeability concept

We focus on the detection of clusters that k-means could detect (i.e., clusters close
to strict sphericity) and less spherical clusters present in real data. So our goal is,
first, to capture natural clusters as defined in section III.1, i.e., clusters with spherical,
elliptical or more complex shapes, e.g., curved elliptical shapes. Secondly, to identify
these clusters even if they overlap with each other. To achieve these two objectives,
it is necessary to define the properties that lead to consider that two clusters can be
merged. We have set two properties to allow us to evaluate the mergeability between
any two clusters, i.e., to determine the certainty level of the hypothesis that two
clusters belong to the same cluster is true. The first one is connectivity. It corresponds
to the level of proximity between the masses of points of two clusters. A mass of
points is the smallest sub-space of a cluster concentrating the majority of the points
practically. The second property corresponds to the spatial proximity between the two
clusters without necessarily their masses being close. The stronger the connectivity
and proximity between two clusters, the stronger the mergeability. Proximity alone
is not enough to state that two clusters are mergeable because two clusters may be
contiguous or overlapping without their two masses being close to each other. In this
case, connectivity is necessary.

Figure III.15: criteria-based merging process between two hyper-rectangles 𝑥 and 𝑦. This
process is called merger test.

III.3.6.3 Merger test process (MTP)

We define a set of four criteria (represented as inequalities) to evaluate how much
two clusters correspond to the same cluster and therefore, to decide whether two
clusters can be merged following the properties that we have mentioned. So, these
criteria involve measures of proximity and connectivity between clusters. Note that
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the verification of the hypothesis that two clusters must be merged is done via their
hyper-rectangles ℎ𝑢 and ℎ𝑣. As shown in figure III.15, the sequence of these criteria
forms the merge test process. This test verifies if the clusters of ℎ𝑢 and ℎ𝑣 belong to the
same natural cluster. The test follows a precise order of the criteria. First of all, the
first criterion must be validated before moving on to the second criterion; otherwise,
the process stops. Similarly, the second criterion must be validated to activate the
third criterion. If the latter is not checked, then the fourth criterion is triggered. It is
therefore not necessary that the third criterion is validated to call the last one.

Note that merging several clusters means merging their associated hyper-rectangles.
This also involves calculating the weighted average of the already calculated averages
(of the point values) of the hyper-rectangles; concatenating the sets of indices; calcu-
lating the 𝑠𝑠𝑒 according to the equation III.15; and calculating the 𝑚𝑖𝑛𝑠 and 𝑚𝑎𝑥𝑒𝑠

vectors according to the equation III.12.

Criterion 1. Let 𝑚𝑖𝑛𝑠 and 𝑚𝑎𝑥𝑒𝑠 the limits of a defined data space ∈ R𝑑 and 𝜁

the hyper-rectangles set belonging to this space then two clusters represented by the
hyper-rectangles ℎ𝑢 ∈ 𝜁 and ℎ𝑣 ∈ 𝜁 are possibly mergeable if:

Δ𝐺 <
τ

𝜖
(III.17)

where τ = 𝑎𝑝𝑑(𝜁), Δ𝐺 = ||𝑥𝐺 − 𝑦𝐺|| and 𝜖 ∈ N*.

Criterion 1 is based on the proximity measure. It checks whether two hyper-
rectangles are close enough to be possibly considered mergeable. It is based on the
average of the pairwise distances between centroids (𝑎𝑝𝑑) to approximate the average
distance between clusters of a node without calculating the distances between all point
pairs of all clusters. The pairwise distances reduce the bias brought by the very distant
centroids from the majority of other centroids. The value of 𝜖 controls the boundary
between the qualifiers "distant" and "close" when referring to the distance between
clusters of ℎ𝑢 and ℎ𝑣. If this criterion is verified, then other criteria must be verified to
confirm the fusion between ℎ𝑢 and ℎ𝑣. Note that the higher the value of 𝜖 is, the fewer
hyper-rectangles validate the criterion. Moreover, if 𝜖 = 1, then a significant amount
of hyper-rectangles will validate the criterion. This could lead to further unnecessary
tests and probably to a non-merger result because if two clusters are very far apart,
then there is no merger. The 𝜖 value is to be adjusted according to the strictness level
of the "enough close" notion required by the criterion.

Criterion 2. Let ℎ𝑢 and ℎ𝑣 two hyper-rectangles, Δ𝐶 the distance between the centers
of ℎ𝑢 and ℎ𝑣 and Δ𝐺 the distance between the centroids of the clusters 𝐶𝑢 and 𝐶𝑣. If
Δ𝐺 < Δ𝐶 then ℎ𝑢 and ℎ𝑣 are possibly mergeable.

Criterion 2 refines the set of hyper-rectangles from the first criterion. It estimates
how strong the connectivity between the two clusters is. We know that a hyper-
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rectangle is the smallest rectangular envelope covering all the data points in a cluster.
We could then decide that the center of the hyper-rectangle would correspond approx-
imately to the centroid of the cluster if the cluster points are uniformly distributed
with some sphericity. So the cluster with these characteristics is probably a natural
cluster apart. As a result, the closer the distance between centroids (Δ𝐺) is to the
distance between centers (Δ𝐶), the smaller the probability of merging ℎ𝑢 and ℎ𝑣. This
probability is considered null when Δ𝐺 ≥ Δ𝐶. Figure III.16 illustrates an example
that validates this criterion.

The first two criteria make it possible to identify relatively close clusters. However,
they also consider that two clusters are distant if their centroids are also distant,
even if the two clusters are contiguous. The latter could occur if the majority of
points surround the centroid while a minority is far from the centroid. However, these
criteria are based only on the distances applied to centroids and centers. Two clusters
could be considered as close, but one or more clusters could be located between them.
In this case, they cannot be merged directly. They could only be if at least one cluster
between them merges with them. The following two criteria require stricter distances
and more robust connectivity to avoid directly merging two nearby clusters separated
by other clusters.

Figure III.16: Example of the situation that validates the criterion 2. Blue circles are
data points. The orange and black lines represent respectively, the distance between
centroids and the distance between centers of the hyper-rectangles 𝑥 and 𝑦.

Criterion 3. Let be ℎ𝑢 and ℎ𝑣 two hyper-rectangles. We merge ℎ𝑢 and ℎ𝑣 when Criteria
1 and 2 are verified and if 𝑚𝑖𝑛𝐻(ℎ𝑢, ℎ𝑣) = 0 and Δ𝐺 < Δ𝐶 * 𝜆 with 𝜆 ∈]0; 1]

Criterion 3 only deals with contiguous or overlapping hyper-rectangles. Indeed
𝑚𝑖𝑛𝐻(𝑥, 𝑦) returns 0 if the two hyper-rectangles overlap or if their distance is zero.
Also, a connectivity constraint is added. It results in a constraint on the proximity
between centroids: for two hyper-rectangles ℎ𝑢 and ℎ𝑣, the distance between centroids
must be less than Δ𝐶 * 𝜆. The smaller 𝜆, the more the notion of "close enough"
between clusters to match the same cluster is strict.
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Criterion 4. Let ℎ𝑢 and ℎ𝑣 two hyper-rectangles and 𝜖 ∈ N*. We merge ℎ𝑢 and ℎ𝑣

when:

• Criteria 1 and 2 are verified,

• 𝑚𝑖𝑛𝐻(𝑥, 𝑦) ≤ τ
𝜖
,

• 𝑒𝑣𝑜 ≤ 𝑡ℎ_𝑒𝑣𝑜 ∈ R+ where:

𝑒𝑣𝑜 = |𝑠𝑠𝑒𝑢∪𝑣 − (𝑠𝑠𝑒𝑢 + 𝑠𝑠𝑒𝑣)|
𝑠𝑠𝑒𝑢∪𝑣

(III.18)

with 𝑠𝑠𝑒 is the sum of the squared errors and 𝑠𝑠𝑒𝑢∪𝑣 the 𝑠𝑠𝑒 of the 𝐶𝑢 and 𝐶𝑣

data points union

Unlike Criterion 3, to validate Criterion 4 hyper-rectangles are not necessary to be
contiguous but a maximum distance is required. Two clusters may not be contiguous
or maybe nearly contiguous. A threshold on the distance between them is necessary to
prevent a cluster from interposing between them. This results in the following inequity:
the distance 𝑚𝑖𝑛𝐻(𝑥, 𝑦) must be less than τ

𝜖
. The criterion also adds a requirement on

the compactness of 𝐶𝑢 and 𝐶𝑣 clusters. To do this, it uses the homogeneity measure
called sum of square error (𝑠𝑠𝑒). In this criterion, we choose to limit the quantity of
𝑠𝑠𝑒 for possible mergers. Indeed, two clusters are merged only if their 𝑒𝑣𝑜 value is
less than the limit is 𝑡ℎ_𝑒𝑣𝑜. The latter is entered by the user. However, 𝑡ℎ_𝑒𝑣𝑜 is
adapted according to the value of Δ𝑘 provided Equation III.19. The latter evaluates
the difference between the value of 𝑘𝑚𝑎𝑥 and the total sum of the values of 𝑘 specific
to each leaf (∑︀𝜐∈ϑ 𝑘𝜐) with ϑ the index list of all Kd-tree leaves. The purpose of this
adaptation is to approach the estimated 𝑘 value on the entire dataset at 𝑘𝑚𝑎𝑥 and
avoid an overestimation of 𝑘 compared to 𝑘𝑚𝑎𝑥. If 𝛿𝑘 ≥ 1 it means ∑︀𝜐∈ϑ 𝑘𝜐 is at least
equal to 𝑘𝑚𝑎𝑥 and therefore 𝑡ℎ_𝑒𝑣𝑜 will be unchanged. Otherwise, if 𝑘𝑚𝑎𝑥 >

∑︀
𝜐∈ϑ 𝑘𝜐

then 𝑡ℎ_𝑒𝑣𝑜 is recalculated according Equation III.20.

𝛿𝑘 = |1− 𝑘𝑚𝑎𝑥∑︀
𝜐∈ϑ 𝑘𝜐

| (III.19)

𝑡ℎ_𝑒𝑣𝑜 =

⎧⎪⎨⎪⎩𝑡ℎ_𝑒𝑣𝑜, if 𝛿𝑘 ≥ 1

𝑡ℎ_𝑒𝑣𝑜 + 𝛿𝑘, otherwise
(III.20)

III.3.6.4 Local merger algorithm

.
Algorithm 3 (�local merger) allows us to merge clusters whose representative hyper-

rectangles are included in the 𝜁 set. 𝜁 hyper-rectangles are associated with a list of
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Algorithm 3 Local merger
Input: 𝜁, τ, 𝑡ℎ_𝑒𝑣𝑜
Output: 𝜁

1: 𝑚𝑒𝑟𝑔𝑒𝑑← 𝑇𝑟𝑢𝑒
2: 𝑖𝑡← 0
3: 𝑜𝑙𝑑_𝑐𝑎𝑟𝑑_𝑙ℎ← 𝑐𝑎𝑟𝑑(𝜁)
4: while 𝑚𝑒𝑟𝑔𝑒𝑑 = 𝑇𝑟𝑢𝑒 do
5: ℎ𝑢 ← 𝜁𝑖𝑡

6: 𝑇 ← {𝑖𝑡}
7: 𝑡𝑚𝑝_𝑖𝑛𝑑𝑒𝑥𝑒𝑠← {0, ..., 𝑜𝑙𝑑_𝑐𝑎𝑟𝑑_𝑙ℎ}
8: 𝑡𝑚𝑝_𝑖𝑛𝑑𝑒𝑥𝑒𝑠← 𝑡𝑚𝑝_𝑖𝑛𝑑𝑒𝑥𝑒𝑠∖{𝑖𝑡}
9: for 𝑖 𝑖𝑛 𝑡𝑚𝑝_𝑖𝑛𝑑𝑒𝑥𝑒𝑠 do

10: ℎ𝑣 ← 𝜁𝑖

11: Δ𝐺← ||𝐺𝑢 −𝐺𝑣||
{Criteria 1}

12: if Δ𝐺 < τ
𝜖

then
13: Δ𝐶 ← ||ℎ𝑢.𝑚𝑖𝑛𝑠+ℎ𝑢.𝑚𝑎𝑥𝑒𝑠

2 − ℎ𝑣 .𝑚𝑖𝑛𝑠+ℎ𝑣 .𝑚𝑎𝑥𝑒𝑠
2 ||

14: 𝑒← 𝐹𝑎𝑙𝑠𝑒
{Criteria 2}

15: if Δ𝐺 < Δ𝐶 then
16: 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑋𝑌 ← 𝑚𝑖𝑛𝐻(ℎ𝑢, ℎ𝑣)

{Criteria 3}
17: if 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑋𝑌 = 0 and Δ𝐺 < Δ𝐶 * 𝜆 then
18: 𝑒← 𝑇𝑟𝑢𝑒
19: end if

{Criteria 4}
20: if 𝑒 = 𝑇𝑟𝑢𝑒 and 𝑒𝑣𝑜 ≤ 𝑡ℎ_𝑒𝑣𝑜 and 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑋𝑌 ≤ τ

𝜖
then

21: 𝑒← 𝑇𝑟𝑢𝑒
22: end if ‘
23: if 𝑒 = 𝑇𝑟𝑢𝑒 then
24: 𝑇 ← 𝑇 ∪ 𝑖
25: end if
26: end if
27: end if
28: if 𝑐𝑎𝑟𝑑(𝑇 ) > 1 then
29: 𝜁 ← 𝑚𝑒𝑟𝑔𝑒(𝑇 )

{The new hyper-rectangles are placed at the end of the list}
30: end if
31: 𝑛𝑒𝑤_𝑐𝑎𝑟𝑑_𝑙ℎ← 𝑐𝑎𝑟𝑑(𝜁)
32: if 𝑜𝑙𝑑_𝑐𝑎𝑟𝑑_𝑙ℎ < 𝑛𝑒𝑤_𝑐𝑎𝑟𝑑_𝑙ℎ then
33: 𝑜𝑙𝑑_𝑐𝑎𝑟𝑑_𝑙ℎ← 𝑛𝑒𝑤_𝑐𝑎𝑟𝑑_𝑙ℎ
34: 𝑖𝑡← 0
35: else
36: if 𝑖𝑡 + 1 < 𝑛𝑒𝑤_𝑐𝑎𝑟𝑑_𝑙ℎ then
37: 𝑖𝑡← 𝑖𝑡 + 1
38: else

𝑚𝑒𝑟𝑔𝑒𝑑← 𝐹𝑎𝑙𝑠𝑒
39: end if
40: end if
41: end for
42: end while
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ascending ordered numerical indices. Thus the indices of the first and last elements
of 𝜁 are respectively 0 and 𝑐𝑎𝑟𝑑(𝜁) − 1. We consider ℎ𝑢 to be a temporary variable
of hyper-rectangle type that runs through the 𝜁 elements. The algorithm process is
as follows. First, we assign the first element of 𝜁 to ℎ𝑢. This one is now a hyper-
rectangle representing a cluster. We then check if all the other clusters represented
by hyper-rectangles ℎ𝑣 are mergeable with the cluster represented by ℎ𝑢. If ℎ𝑢 is not
mergeable to any of them, then the next hyper-rectangle in 𝜁 is assigned to ℎ𝑢. On
the other hand, if it is mergeable to at least one hyper-rectangle, then the concerned
hyper-rectangles merge, resulting in a new hyper-rectangle (merging operated by the
𝑚𝑒𝑟𝑔𝑒 function). In this case, the first item of freshly reconstituted 𝜁 is reassigned to
ℎ𝑢. This procedure is repeated until ℎ𝑢 is the second last element of 𝜁, and there are no
more mergers. At the level of the fusion test process, the first two criteria only select
the hyper-rectangles candidates ℎ𝑣 for the merger. At the same time, they reduce the
number of hyper-rectangles to be processed in the other two criteria. While the last
two decide whether to merge ℎ𝑢 and ℎ𝑣 or not.

III.3.6.5 Global merger

Algorithm 4 Global merger
Input: 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙,𝑡ℎ_𝑒𝑣𝑜
Output: 𝜁

1: 𝜁 ← 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙.𝑙𝑒𝑠𝑠.𝜁
⋃︀

𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙.𝑔𝑟𝑒𝑎𝑡𝑒𝑟.𝜁
2: 𝑚𝑖𝑛𝑠, 𝑚𝑎𝑥𝑒𝑠← 𝜃(𝜁)
3: if card(internal.greater.𝜁)> 1 then
4: τ ← 𝑎𝑝𝑑(𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙.𝑔𝑟𝑒𝑎𝑡𝑒𝑟.𝜁)
5: 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙.𝑔𝑟𝑒𝑎𝑡𝑒𝑟.𝜁 ← 𝑙𝑜𝑐𝑎𝑙𝑀𝑒𝑟𝑔𝑒𝑟(𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙.𝑔𝑟𝑒𝑎𝑡𝑒𝑟.𝜁, τ , 𝑡ℎ_𝑒𝑣𝑜)
6: end if
7: if card(internal.less.𝜁)> 1 then
8: τ ← 𝑎𝑝𝑑(𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙.𝑙𝑒𝑠𝑠.𝜁)
9: 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙.𝑙𝑒𝑠𝑠.𝜁 ← 𝑙𝑜𝑐𝑎𝑙𝑀𝑒𝑟𝑔𝑒𝑟(𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙.𝑙𝑒𝑠𝑠.𝜁, τ , 𝑡ℎ_𝑒𝑣𝑜)

10: end if
11: 𝜁 ← 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙.𝑙𝑒𝑠𝑠.𝜁

⋃︀
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙.𝑔𝑟𝑒𝑎𝑡𝑒𝑟.𝜁

12: τ ← 𝑎𝑝𝑑(𝜁)
13: 𝜁 ← 𝑙𝑜𝑐𝑎𝑙𝑀𝑒𝑟𝑔𝑒𝑟(𝜁, τ , 𝑡ℎ_𝑒𝑣𝑜)

The global merger fusion algorithm can be seen as a layer that envelops the algo-
rithm local merger. Intuitively, for a given internal and parent node, a good part of the
clusters of one of its children is closer to each other than to the other child’s clusters.
So we process the clusters of a child node locally but in the data space of the parent
node. Hence the proposal of the global merger algorithm. It performs the merging of
clusters node by node using the local merger algorithm. It starts first with the chil-
dren of the "internal" node and then concatenates the hyper-rectangles lists of both
children to form the list of hyper-rectangles of the internal node. Finally, local merger
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is applied to internal. On the other hand, the value of 𝑎𝑝𝑑 changes from one node to
another because it depends only on the concerned node’s clusters. Consequently, if
two clusters have not been merged into one of the two children nodes, they could be
merged into the parent node.

III.3.7 Cluster regularization

This subsection discusses the strategy we have defined to identify clusters that should
not be as such but rather be part of another cluster. The previous step algorithms
could produce small (in a number of points) but compact clusters. A small cluster
is located in three cases: either it is a natural cluster different from the others, or it
is part of an agglomeration of small clusters that represent a single cluster, or it is
part of a large cluster. The definition of a small cluster has no objective purpose. We
consider the definition of the small cluster resulting from the work (Ailon et al., 2013)
as a cluster with a number of points less than

√
𝑛 with 𝑛 the size of the cluster.

We have developed an algorithm that makes it possible to match a small cluster to
one of the three cases. The goal of the algorithm is to get as many natural clusters as
possible. Knowing that our solution’s final result is in the root of the tree, then this
algorithm is unrolled only in this one. The algorithm consists of two parts that are
executed consecutively once. The first identifies the small clusters and then merges
those that are close to each other. The second re-identifies small clusters from the new
list of small clusters from the first part and affects those close to large clusters. If a
small cluster has not undergone a merger operation in both parts, it is considered a
separate natural cluster.

One of the reasons for the presence of small clusters is due to Criteria 3 and 4 where
the limit of the minimum distance between hyper-rectangles is very strict. Indeed, if
the minimum distance between two hyper-rectangles, at least one of which is a small
cluster, is greater than this limit, they cannot be merged. This limit is respectively
equal to 0 in Criterion 3 and τ

𝜖
in Criterion 4. The τ

𝜖
limit is more flexible than the

first one. It was used in both parts of the algorithm to define the boundary between
"close" and "distant" w.r.t the distance between hyper-rectangles.
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III.3.8 Experimental assessments

III.3.8.1 Introduction

We compare Kd-means to known methods of estimating 𝑘 from literature (X-means
(Pelleg and Moore, 2000) and G-means (Foina et al., 2011, Hamerly and Elkan, 2003)).
We show that our solution is faster than current methods while ensuring better clus-
tering quality on massive data. The datasets used are various (synthetic and real).
We also show its efficiency through a use case on a hyperspectral image. Moreover,
we give recommendations on the values that the parameters of our solution could take
(the minimum size of an internal node ψ and limit 𝑡ℎ_𝑒𝑣𝑜 of Equation III.20).

III.3.8.2 Experimental protocol

Our solution and the compared algorithms were implemented in python 3.6. Moreover,
k-means++ (Arthur and Vassilvitskii, 2007) is used for initializing the centroids before
applying Elkan algorithm.

Different values are assigned to parameters 𝑘,𝑑, 𝑛, 𝑡ℎ_𝑒𝑣𝑜 and ψ to study the
sensitivity of our algorithm to these parameters. All combinations of the values of
these parameters have been tested:

• 𝑘 ∈ [10, 32, 80]

• 𝑑 ∈ [4, 6, 8]

• 𝑛 ∈ [1× 106, 2× 106, 4× 106]

• 𝑡ℎ_𝑒𝑣𝑜 ∈ [0.05, 0.10, 0.15, 0.20, 0.25, 0.30]

• ψ ∈ [4, 8, 10, 12]

The parameter 𝑘 represents the actual number of clusters in the dataset. The
above-mentioned values of 𝑘, 𝑑 and 𝑛 are valid only for synthetic datasets. These
three parameters are used to generate synthetic datasets. For the real data sets, the
values of these parameters are in table III.8.

An experiment is structured as follows:

• first of all, then all combinations of the values of the five parameters mentioned
just above are defined;

• then, either the experiment si to be performed on a synthetic dataset, so this
one is generated according to the above-mentioned parameters’ values. If it is
on a real dataset, so this one is loaded;

• finally, the estimation of 𝑘 is performed by the three algorithms.
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For each combination of these parameters, the experiment is conducted five times.
We set the values of 𝜖 and 𝜆 in the different criteria as follows:

• 𝜖 has been defined as 2 and 10 respectively in Criteria 1 and 4. The value 2 is
the least strict while 10 is the most strict;

• in the cluster regularization algorithm, 𝜖 = 8 in the first part of the algorithm.
If there are still small clusters left, then the second part is executed. In this case
𝜖 = 4;

• in Criterion 3, 𝜆 = 0.75. As a result, Δ𝐺 must be less than 75% of Δ𝐶.

We allow our algorithm and X-means to search up to 𝑘𝑚𝑎𝑥 = 5𝑘 centroids.

III.3.8.2.1 Synthetic data We generated synthetic data so as to have overlapping
and Gaussian clusters. These synthetic data have the following properties:

• a cluster is a set of data that follows a normal distribution. For generating this
set, a semi-positive covariance matrix and an average (a vector) are generated
randomly. Indeed, the covariance matrix values allow to define a cluster shape
that is not isotropic (strictly spherical), and that can have different variances
separately on an arbitrary basis of directions and not necessarily on those of the
dimensions;

• there are at least two overlapping clusters;

• if the centroid of one cluster is in the hyperectangle of another cluster, then we
consider that the maximum degree of overlap has been exceeded. So as a result
at least one of the clusters concerned is replaced by a new cluster;

• clusters do not have the same number of points. The cardinalities are chosen
randomly so that their sum is equal to the total number of points 𝑛 defined
previously.

III.3.8.2.2 Real data The real data comes from three known sources: Openml, UCI,
and Kaggle. They are all of a numerical type. These data are used in other research
projects to perform benchmarking machine learning methods (van Rijn et al., 2014).
The values of real 𝑘, 𝑛 and 𝑑 are given in Table III.8. The data sets used are diverse,
and they can be organized into several groups:

• black and white or grayscale images; clustering is applied directly to the pixels
in this case. 𝐸𝑚𝑛𝑖𝑠𝑡 and 𝐹𝑎𝑠ℎ𝑖𝑜𝑛𝑚𝑛𝑖𝑠𝑡 contain images respectfully on the first
ten digits, clothing, and shoes. Each image was flattened to form a single vector.
And each vector has been assigned its corresponding class (label);
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dataset k d n
vehicle 4 18 1000000
satimage 6 36 1000000
japaneseVowels 9 14 1000000
fourier 10 76 1000000
pendigits 10 16 1000000
fashionmnist 10 784 70000
ldpa 11 5 164860
walking 22 4 149332
letter 26 16 999999
zernike 47 47 1000000
emnist 62 784 697932

Table III.8: Real data sets characteristics.

• 4-band multispectral images; they characterize different types of soil. The cor-
responding dataset is 𝑠𝑎𝑡𝑖𝑚𝑎𝑔𝑒;

• sounds; the 𝐽𝑎𝑝𝑎𝑛𝑒𝑠𝑒𝑉 𝑜𝑤𝑒𝑙𝑠 dataset is a set of digitized Japanese vowel sounds.
Each sound is associated with a speaker;

• historization of people’s activities; the 𝑙𝑑𝑝𝑎 dataset is a collection of the po-
sitions of sensors present on people to identify the movement they perform at
a given time. The 𝑤𝑎𝑙𝑘𝑖𝑛𝑔 dataset is a set of people’s activities designed to
determine the authors;

• images represented by a set of characteristics. These are related to the ob-
jects to be identified and are extracted from the images.. For example, in the
𝐹𝑜𝑢𝑟𝑖𝑒𝑟 dataset, each record is a set of coefficients of the character (between
0 and 9) shapes. Similarly, in 𝑍𝑒𝑟𝑛𝑖𝑘𝑒, each instance is a rotation invariant
Zernike moments of the digit image(between 0 and 9). In 𝑃𝑒𝑛𝑑𝑖𝑔𝑖𝑡𝑠 each indi-
vidual is a sequence of positions characterizing a digit. In 𝐿𝑒𝑡𝑡𝑒𝑟, each instance
of a letter of the English alphabet contains statistical moments and edge counts
of the given letter. In 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒 dataset a data point is just a set of geometric
characteristics of a given vehicle;

III.3.8.2.3 Metrics for evaluating experimental results For evaluating the results
of the three algorithms, we used three metrics: first, the execution time (Δ𝑡) of the
algorithm, the relative difference (Δ𝑘)(Bennett and Briggs, 2014) between the 𝑘 ac-
tual value and the 𝑘 estimated value, and finally, the distance between the actual
partitioning and the partitioning proposed by the algorithm.

The relative difference is calculated as follows:

Δ𝑘 = |𝑘𝑟𝑒𝑎𝑙 − 𝑘𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑|
𝑘𝑟𝑒𝑎𝑙

(III.21)

The relative difference compares two measurements relative to a reference measure-
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ment (𝑘𝑟𝑒𝑎𝑙). In our case, the relative difference is better than the absolute difference
|𝑘𝑟𝑒𝑎𝑙− 𝑘𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑| because the latter does not consider the measurement scale, e.g., the
difference between 10 and 11 is not the same as between 1000 and 1001.

The more the relative difference Δ𝑘 tends towards 0, the closer the estimated value
𝑘 is to that of the ground truth.

The variation of the information (𝑣𝑖) (Meilă, 2003) was used as a distance between
two partitionings. It measures the amount of information gained and lost for a dataset
passing from a partition A to another partition B. It respects the three properties of
triangular inequality. So the smaller the 𝑣𝑖 is, the closer the partitionings are to each
other.

Kd-means G-means X-means
k d n Δ𝑡 Δ𝑡 (× slower than Kd-means)
10 4 1× 106 39.7 344.3(8.7) 816.2(20.6)

2× 106 65.4 774.1(11.8) 1420.5(21.7)
4× 106 117.4 1517.3(12.9) 2203.6(18.8)

6 1× 106 41.9 396.4(9.5) 1101.5(26.3)
2× 106 72.9 926.9(12.7) 1869.9(25.7)
4× 106 133.7 1628.0(12.2) 3061.4(22.9)

8 1× 106 45.9 386.0(8.4) 789.4(17.2)
2× 106 81.2 823.1(10.1) 1253.5(15.4)
4× 106 153.6 1727.2(11.2) 2378.8(15.5)

32 4 1× 106 77.6 535.6(6.9) 2817.2(36.3)
2× 106 132.5 1152.8(8.7) 4831.0(36.5)
4× 106 233.7 2468.4(10.6) 7628.1(32.6)

6 1× 106 79.2 586.7(7.4) 3689.9(46.6)
2× 106 146.9 1375.6(9.4) 7880.7(53.7)
4× 106 260.2 2485.1(9.5) 7901.8(30.4)

8 1× 106 82.2 665.7(8.1) 2491.6(30.3)
2× 106 154.9 1383.3(8.9) 3740.0(24.2)
4× 106 299.5 2883.7(9.6) 5037.7(16.8)

80 4 1× 106 141.5 781.9(5.5) 7807.2(55.2)
2× 106 283.2 1673.6(5.9) 14147.0(50.0)
4× 106 570.8 3417.8(6.0) 21887.1(38.3)

6 1× 106 148.3 893.0(6.0) 10385.8(70.1)
2× 106 285.4 1892.4(6.6) 22403.6(78.5)
4× 106 578 4039.2(7.0) 37716.6(65.3)

8 1× 106 151.5 1016.0(6.7) 7834.6(51.7)
2× 106 308.2 1708.6(5.5) 21824.6(70.8)
4× 106 626.4 3581.8(5.7) 47130.8(75.2)

Table III.9: Comparison of the three algorithms executed on synthetic data. Note that Δ𝑡
is expressed in seconds. In the Δ𝑡 sub-column of the G-means and X-means columns, the
number in brackets represents how many times our algorithm is faster than the compared
algorithm.

III.3.8.3 Runtime analysis

If we consider the three algorithms’ performance according to the metric Δ𝑡, Kd-
means takes the least time to provide a clustering result. This is true in synthetic
and real data and regardless of the value of 𝑘, 𝑑 and 𝑛. Our algorithm is 5.5 to 12.9
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Kd-means G-means X-means
dataname Δ𝑡 Δ𝑡 (× slower than Kd-means)
vehicle 38.6 60530.8(1566.6) 281.5(7.3)
satimage 54.5 34595.7(635.3) 1151.0(21.1)
japaneseVowels 75.6 55220.1(730.5) 534.8(7.1)
pendigits 31 40806.3(1316.9) 759.2(24.5)
fourier 91.6 38210.3(417.0) 2791.2(30.5)
fashionmnist 58.6 954.1(16.3) 697.0(11.9)
ldpa 12.5 5996.6(480.7) 132.3(10.6)
walking 14.7 3254.1(220.8) 93.7(6.4)
letter 57.8 22502.6(389.5) 6272.4(108.6)
zernike 118.1 35710.8(302.3) 5583.1(47.3)
emnist 948.6 46224.8(48.7) 36029.7(38.0)

Table III.10: Comparison of the three algorithms, on real data, with respect to execution
time(Δ𝑡).

times faster than G-means and 15.4 to 75.2 times faster than X-means in synthetic
data, respectively. The same trend occurs in real data, but from 16.3 to 1566.6 times
compared to G-means and from 6.4 to 108.6 times compared to X-means. Maximum
execution times were reached for all three algorithms at 𝑑 = 8, 𝑛 = and 𝑘 = 80 in the
synthetic data. In this combination, the elapsed execution times are 10.43 minutes
for Kd-means, 59.41 minutes for G-means, and 13h05 for X-means. In the real data,
the maximums are reached in the configuration 𝑑 = 784, 𝑛 = 697932 and 𝑘 = 62
for X-means and Kd-means. That is 15.48 minutes for Kd-means and 10 hours for
X-means. In the case of G-means, the maximum is even higher comparing to the other
algorithms, and it is reached at 16.48 hours (𝑘 = 4, 𝑑 = 18, 𝑛 = 1× 106).

III.3.8.4 Cluster quality analysis

Kd-means is better than other algorithms in estimating k with good clustering quality
in synthetic and real data.

In the synthetic data, Kd-means does not exceed 0.47 in Δ𝑘 and 1.2 in 𝑣𝑖. X-
means even reaches Δ𝑘 = 3.72 and 𝑣𝑖 = 3.4. The same for G-means with Δ𝑘 = 8.1
and 𝑣𝑖 = 2.8. The decrease in Δ𝑘 G-means when 𝑘 increased in the synthetic data
is due to the presence of many Gaussian clusters that are well separated from each
other. Kd-means has a better estimate of good quality than the others. In terms of 𝑣𝑖,
it is, on average, 2.46 and 3.05 better than G-means and X-means. Same performance
in Δ𝑘, it is better on average by 2.83 (G-means) and 4.29 (X-means). It could be
pointed out that G-means is better than X-means in terms of quality (𝑣𝑖) in several
combinations of (𝑘, 𝑑, 𝑛).

In real data, the Kd-means maxima do not exceed Δ𝑘 = 3.81 and 𝑣𝑖 = 7.2. They
are higher for X-means and G-means, they reach respectively (Δ𝑘 = 4.73, 𝑣𝑖 = 8.6)
and (Δ𝑘 = 555.5, 𝑣𝑖 = 12.5). The values of Δ𝑘 and 𝑣𝑖 are higher in real data than in
synthetic data. Indeed, the distributions of clusters in real data are more complex than
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Kd-means G-means X-means
k d n k(Δ𝑘) vi k(Δ𝑘) vi k(Δ𝑘) vi
10 4 1× 106 8.4(0.17) 0.4 74.0(6.4) 2.2 45.7(3.57) 2.5

2× 106 8.3(0.21) 0.5 91.0(8.1) 2.4 45.7(3.57) 2.5
4× 106 8.3(0.18) 0.5 87.0(7.7) 2.3 44.6(3.46) 2.4

6 1× 106 8.6(0.15) 0.4 69.2(5.92) 2.2 46.0(3.6) 2.3
2× 106 8.1(0.2) 0.5 89.0(7.9) 2.5 46.1(3.61) 2.3
4× 106 8.0(0.23) 0.5 79.1(6.91) 2.2 45.9(3.59) 2.3

8 1× 106 7.4(0.39) 0.8 63.2(5.32) 2.6 45.9(3.59) 1.5
2× 106 6.9(0.37) 0.8 71.3(6.13) 2.8 45.5(3.55) 1.6
4× 106 6.0(0.41) 0.9 78.9(6.89) 2.8 46.2(3.62) 1.6

32 4 1× 106 35.4(0.38) 0.9 99.3(2.1) 1.9 148.4(3.64) 2.9
2× 106 31.4(0.35) 0.8 114.1(2.57) 2.0 147.6(3.61) 2.9
4× 106 27.3(0.36) 1.0 132.1(3.13) 2.1 145.2(3.54) 2.9

6 1× 106 40.2(0.47) 0.9 101.0(2.16) 1.8 150.2(3.69) 2.7
2× 106 34.6(0.44) 0.9 122.5(2.83) 2.1 149.1(3.66) 2.7
4× 106 29.1(0.44) 1.0 107.9(2.37) 1.7 135.9(3.25) 2.7

8 1× 106 35.7(0.36) 1.0 115.2(2.6) 2.2 149.0(3.66) 1.9
2× 106 37.2(0.42) 1.0 126.8(2.96) 2.3 148.1(3.63) 1.8
4× 106 36.4(0.46) 0.9 136.5(3.27) 2.6 133.8(3.18) 1.8

80 4 1× 106 90.5(0.24) 0.9 144.1(0.8) 1.5 368.2(3.6) 3.3
2× 106 88.3(0.29) 1.0 170.4(1.13) 1.8 373.1(3.66) 3.3
4× 106 83.0(0.3) 1.2 186.9(1.34) 2.0 366.6(3.58) 3.4

6 1× 106 96.2(0.37) 0.9 167.0(1.09) 1.6 376.1(3.7) 3.2
2× 106 97.4(0.39) 0.9 186.2(1.33) 1.8 375.0(3.69) 3.2
4× 106 92.8(0.4) 1.1 200.4(1.51) 1.7 363.3(3.54) 2.9

8 1× 106 57.5(0.28) 1.2 207.8(1.6) 2.0 377.2(3.71) 2.2
2× 106 98.6(0.43) 0.9 150.2(0.88) 1.4 373.6(3.67) 3.2
4× 106 99.2(0.47) 1.0 166.9(1.09) 1.5 377.7(3.72) 3.2

Table III.11: Comparison of the three algorithms, executed on synthetic data, with respect
to the quality of clustering(vi) and the k estimation.

Kd-means G-means X-means
dataname k(Δ𝑘) vi k(Δ𝑘) vi k(Δ𝑘) vi
vehicle 3.0(0.28) 2.9 2226(555.5) 11.8 16.0(3.0) 5.3
satimage 28.9(3.81) 2.7 1177(195.17) 8.8 28.7(3.78) 3.8
japaneseVowels 9.4(0.83) 4.5 3377(374.22) 12.5 32.0(2.56) 7.7
pendigits 29.1(1.91) 3.6 2574(256.4) 9.1 32.0(2.2) 4
fourier 39.2(2.92) 3 1309(129.9) 8 57.3(4.73) 3.9
fashionmnist 10.9(0.11) 3.3 533(52.3) 7.1 32.0(2.2) 4
ldpa 32.5(1.96) 6.3 1766(159.55) 10.8 47.2(3.3) 7.1
walking 39.6(1.35) 6.7 1257(56.14) 10 100.7(3.58) 8.4
letter 59.7(1.3) 7.2 1581(59.81) 11.1 117.0(3.5) 8.6
zernike 86.9(1.08) 5.3 1157(23.62) 9 128.0(1.72) 6.4
emnist 45.6(0.26) 6 3073(48.56) 8.6 256.0(3.13) 6.7

Table III.12: Comparison of the three algorithms, on real data, with respect to the quality
of clustering(vi) and the k estimation.

synthetic clusters (Gaussian). As a result, these complex representations of clusters
are difficult to capture completely point by point. This increase is much higher for
G-means because it tends to identify Gaussian clusters in particular. However, clusters
in real data are not necessarily Gaussian because they are not constituted by Gaussian
distribution generators. As a result, G-means makes an excessive overestimation of k
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(therefore Δ𝑘 high) compared to Kd-means. Our algorithm is the least affected by
the gaussianity aspect of the clusters. Because, in its operation, gaussianity is not
explicitly sought.

III.3.8.5 Clustering complexity analysis of real data

Figure III.17: Real datasets characterized by overlap and eccentricity measurements.

In this sub-section, we analyze the intrinsic complexity of the real datasets. For
each dataset, we evaluate its difficulty to be clustered. For this, we used two metrics:
eccentricity and overlap. These make it possible to characterize the problems to which
Kd-means responds. Eccentricity is a positive real number that characterizes the shape
of a set of points (Chekanov and Proudfoot, 2010). If it is equal to 0, the shape is
strictly spherical, and when it approaches 1, it tends towards a very elongated elliptical
shape. When it is equal to 1, it corresponds to another more complex shape. It is
calculated in the following way for two-dimensional datasets:

𝑒𝑐𝑐 =
√︃

1− 𝑏2

𝑎2 (III.22)

Where b is the smaller half axis (i.e., half the length of a dimension) and a is the larger
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half axis.
For datasets of more than two dimensions, the eccentricity is estimated as follows.

First of all, all pairs of dimensions of a dataset are listed. Then the eccentricity is
calculated for this dataset at the level of each pair. Then the average of all eccentricities
is calculated. This is done for each class independently. Then the maximum of the
eccentricities of the classes is calculated. Note that a class is a set of points belonging,
in the ground truth, to the same group or phenomenon. The choice of the maximum
is justified by the fact that if there is a class with a complex form, the algorithms for
estimating 𝑘 have more difficulties, even if other classes with simpler forms are in the
same dataset. This difficulty is reflected in the clustering quality produced as well as
in the overestimation of 𝑘 with respect to reality.

The measure of overlap is a positive value between 0 and 1, which indicates at the
global level of the dataset the level of overlap between classes of points. The value
0 indicates that there is no overlap, and 1 indicates that the classes are practically
confused. It is calculated as follows. First of all, for each data point, we calculate
its distance to 𝑝 (set to 11) nearest neighbors, then we count the number of points
belonging to the same class as the current point in its neighborhood. Intuitively, if
there are many points not belonging to the same class as the current point in its
neighborhood, it means that it is close to one or more other classes. So there is
overlapping. A threshold of 25% is set at which overlapping is considered to exist.
That is to say that at least 25% of points in the neighborhood of the current point
must be different from it to consider the point as contributing to overlapping. Finally, a
ratio is calculated by counting the points generating overlapping over the total number
of points.

In figure III.17, we notice that all datasets have a strong ellipticity concerning the
class shapes (eccentricity > 0.69 for all real datasets). Almost 72% of the datasets
have an eccentricity higher than 0.95. This means that classes at this level have more
difficult shapes than the elliptical one. Almost all of them correspond either directly
to images or datasets related to images. The most difficult datasets could be those
with high eccentricity and a high degree of overlap. Taking tables III.10 and III.12
into account, they correspond to walking, letter, ldpa, emnist, and zernike. In the case
of Kd-means, it succeeds in estimating the number of clusters closest to real 𝑘 while
maintaining good quality and a short execution time compared to competitors. This
is the case when it is used on the most complex datasets either with a high overlapping
rate (e.g., vehicle overlapping rate > 0.6) or with elliptic classes or with a complex
shape (e.g., zernike eccentricity > 0.9981 or fashionmnist eccentricity equal to 1.0).
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Synthetic data Real data
th_evo Δ𝑘 vi Δ𝑡 Δ𝑘 vi Δ𝑡
0.05 0.3 0.8 213.2 1.7 4.9 132.5
0.10 0.3 0.8 203.1 1.6 4.8 144.5
0.15 0.3 0.8 198.2 1.5 4.7 134.0
0.20 0.3 0.8 193.5 1.4 4.7 141.1
0.25 0.3 0.9 188.6 1.2 4.5 136.5
0.30 0.4 1.0 183.8 1.3 4.6 130.5

Table III.13: Performance of our algorithm as a function of the value of 𝑡ℎ_𝑒𝑣𝑜

Synthetic data Real data
ψ Δ𝑘 vi Δ𝑡 Δ𝑘 vi Δ𝑡
4 0.5 1.1 195.0 1.3 4.2 131.1
8 0.3 0.8 201.5 1.2 4.4 141.3
10 0.3 0.7 200.0 1.4 4.8 136.1
12 0.3 0.8 190.5 1.9 5.3 137.5

Table III.14: Performance of our algorithm as a function of the value of ψ

III.3.8.6 Parameter sensitivity analysis

We analyze the three metrics (Δ𝑡, 𝑣𝑖 and Δ𝑘) according to 𝑡ℎ_𝑒𝑣𝑜 and ψ. This is
done in both data contexts (real and synthetic).

In Tables III.13 and III.14, 𝑡ℎ_𝑒𝑣𝑜 and ψ do not have a particular influence on the
execution time of Kd-means. Indeed, the range (the difference between the maximum
and minimum values) of Δ𝑡 does not exceed 10.2 seconds concerning ψ. It is about 30
seconds for 𝑡ℎ_𝑒𝑣𝑜. If we take into account the Δ𝑡 magnitude of the three algorithms,
these differences are negligible.

In the synthetic data, concerning ψ, the values of Δ𝑘 are identical except for
ψ = 4 where the value is slightly higher than the others by 0.2. The values of 𝑣𝑖 have
a maximum difference of 0.4. This difference is 0.1 when ψ ∈ [8, 10, 12] for which 𝑣𝑖

is minimal. At ψ = 4 Δ𝑘 is slightly higher by 0.3 compared to the rest. In real data,
the range is 1.1 for 𝑣𝑖 but at 0.2 if ψ ∈ [4, 8]. This range is 0.7 for Δ𝑘 but drops to
0.2 for ψ ∈ [4, 8, 10].

Concerning 𝑡ℎ_𝑒𝑣𝑜 in the synthetic data, the values of Δ𝑘 and 𝑣𝑖 have a range of
0.2. In real data, the respective ranges of Δ𝑘 and 𝑣𝑖 are 0.5 and 0.4. They drop to
0.2 when ψ ∈ [0.20, 0.25, 0.30] for Δ𝑘 and ψ ∈ [0.15, 0.20, 0.25, 0.30] for 𝑣𝑖.

The observed ranges of the two metrics 𝑣𝑖 and Δ𝑘 are lower than those of the
same metrics of the competitor’s algorithms in the real and synthetic data. However,
if we are stricter by just accepting ranges less than or equal to 0.2, then the optimal
values, when the data are Gaussian, are ψ ∈ [8, 10, 12] and 𝑡ℎ_𝑒𝑣𝑜 taking all the
values tested. When the data is real (not necessarily Gaussian clusters), the optimal
values are ψ ∈ [4.8] and 𝑡ℎ_𝑒𝑣𝑜 ∈ [0.20, 0.25, 0.30].
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III.3.8.7 Hyperspectral image use case

To see more concretely the Kd-means use, we propose to study a use case consisting in
segmentation of a hyperspectral image named Pavia (figure III.18.a). Also, we com-
pare the results of Kd-means and the Gaussian Mixture Model(GMM) (Titterington
et al., 1985) method. Because the latter can detect spherical and elliptical clusters,
nevertheless, it does not correspond to an estimator of 𝑘. It is then necessary to pro-
vide to GMM the 𝑘 value. We provide as an input to GMM the exact number of
clusters present in the ground truth. On the other hand, we let Kd-means estimate
this value automatically.

(a) (b)a
2 (c)

(d) (e)

Figure III.18: a) Original RGB color image, b) Ground truth classes, c) Projection of
the Pavia hyperspectral image on two of the most informative axes generated by PCA
d) result produced by Kd-means, e) result produced by GMM.
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class asphalt meadows gravel trees metal sheets
overlapping rate 0.225 0.172 0.907 0.325 0.033

class bare soil bitumen bricks shadows
overlapping rate 0.729 0.489 0.423 0.001

Table III.15: Overlapping rate of each of the nine classes of Pavia. The rate is calculated
as detailed in subsection III.3.8.5 but adapted to the class level instead of the entire dataset.

Pavia has a size of 610*610 pixels with 103 bands. The image is an aerial view of
the university taken with the ROSIS sensor (figure III.18.a). It consists of 9 classes
(figure III.18.b). The table III.15 and the figure III.18.c (projection of the image on
two axes (or new dimensions) produced by PCA3 to have a global idea on the spatial
arrangement of the classes) inform about the clustering difficulty of Pavia. In the
table, each class is associated with an overlapping rate. All classes are all overlapping.
The least overlapping one is the 𝑠ℎ𝑎𝑑𝑜𝑤𝑠 class, as we can see in the figure fig:pavia.c,
it is separated from the others. Otherwise, the overlap of the other classes is clearly
established in the figure. Moreover, the eccentricity is evaluated at 0.98, so there are
classes with a shape at least elliptical if not more complex or irregular.

The task related to this image is to segment it into different parts, each belonging
to a given class. Usually, clustering is used as part of the pre-processing step before
using an algorithm specific to the type of hyperspectral image to produce a final
result. In our case, we cluster directly on the raw image to maintain the clustering
difficulty mentioned above. Therefore, the results produced by Kd-means and GMM
are considered as intermediate results in a more global hyperspectral image processing
framework.

The results produced by Kd-means and GMM are in figures III.18.d and III.18.e,
respectively. To analyze these results, we rely on the figures III.18.a and III.18.b
corresponding to the original image of Pavia 4. The desired goal is to have an object
whose color is as plain or homogeneous as possible because, in this way, the object’s
geometrical structure is identified. Based on this criterion, we can see that the objects’
overall structures are relatively better preserved in the Kd-means results, which results
in a better overall homogeneity of the objects compared to the GMM results. However,
overall, the results of both methods are close and reasonable for a pre-processing step.
This observation is reflected in more detail in figures III.19 and III.20. The first figure
relates to each class its level of impurity. The fewer clusters that represent all class
points, the less impurity the class has. To measure this, we use the Gini Impurity

3PCA(Principal component analysis) is a method that reduces a dataset defined in 𝑞-dimensional
data space to another 𝑝-dimensional data space with 𝑞 > 𝑝 while keeping as much relevant information
as possible. In our case, this method allows us to visualize the approximate arrangement between
the different classes of the dataset.

4A color present in different figures do not identify the same object(one instance of a class, e.g.,
meadows is a class, and an object is a meadow located in a zone of the image), i.e., a color of an
object in one of the three figures b,d and e (figure III.18) could correspond to another color in the
other two remaining figures.
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Figure III.19: Gini impurity index for each class. The index is framed between 0 and
1; the more it tends towards 0, the purer the class is.

Figure III.20: On the right, the comparison of GMM and Kdmeans by boxplots. Solid
circles are the Gini results. On the left, the boxplot legend.

Index. In six classes, Kd-means has less impurity than GMM. Among these six classes
are the overlapping gravel class (overlapping rate = 0.907) and the less overlapping
shadows class (overlapping rate = 0.001). A difference in impurity between Kd-means
and GMM of nearly 6% is found to the advantage of Kd-means. In the second figure
III.20, the results’ distribution is presented through boxplots. In the latter, the Kd-
means median (0.24) is lower than that of GMM (0.36), i.e., Kd-means, globally,
produces purer classes. Moreover, the results’ dispersion, measured by the interquartile
range, is smaller in Kd-means than in GMM, which shows that Kd-means has greater
stability in Gini purity than GMM.

In estimating the final clusters, Kd-means found 12, including two clusters with a
cardinality of 1 and 4. Without taking into account these last two clusters, we could
say that it produced 10 clusters.
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To sum up, Kd-means produced a quality result globally better than GMM. Indeed,
the values of vi of Kd-means and GMM are 1.29 and 1.63, respectively. This shows
that Kd-means globally managed to capture more information from the field truth
than GMM. Taking into account all the comparative results, Kd-means represents a
good alternative to GMM.

III.3.9 Conclusion

In this part, the main objective is to estimate the actual number of clusters in a dataset
and, at the same time, to build these clusters.

In the literature, several solutions have been proposed to meet this objective. The
X-means and G-means methods are among the best known and most efficient. They
are based on information theory and statistical tools. However, these methods devi-
ate excessively in the estimation of k when the clusters are not strictly spherical or
elliptical or when the clusters overlap. Consequently, the clustering quality is nega-
tively impacted, i.e., the actual clusters have not been identified correctly. Moreover,
X-means and G-means, iterative methods, use k-means on all points at each iteration.
This makes them expensive for large datasets.

In response to these limitations, we have developed Kd-means, a solution based
on the Kd-tree binary hierarchical data structure. It identifies clusters with spherical,
elliptical, and even more complex shapes in large datasets. And this, even if the
clusters overlap.

Kd-means consists of four consecutive steps:

• structuring and organization of data in Kd-tree. Kd-tree allows to pre-cluster
the data, i.e., to put in the same node similar points. In this structure, we have
integrated the hyper-rectangle geometric tool (a rectangle generalized to multidi-
mensional data spaces) to frame a group of points while allowing to approximate
the group’s spatial distribution. Moreover, it allows quick calculations between
two groups of points because there is no more need to visit these groups’ points.
This tool is used in the following steps;

• leaf initialization. once kd-tree is built, we find groups of points, called clusters
in the leaves. So each leaf has its own clusters that are independent of those of
the other leaves;

• Merging of clusters. Clusters in the leaves may not correspond to the real
clusters, i.e., they correspond to the final clusters’ subclusters and should be
merged. For this reason, we have proposed a merge test process (MTP) to eval-
uate whether two clusters should be merged or not. Using this process, clusters
are merged recursively in a hierarchical way from the leaves to the root;
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• Regularization. At the end of the previous step, small clusters (in number of
points) can be isolated from larger clusters. This step makes it possible to assign
small clusters to the larger ones, agglomerate small clusters to form a single one
or consider them separate clusters.

Experimentally, Kd-means has been compared to X-means and G-means on various
data sets (synthetic and real). It has been shown that Kd-means could be better in
runtime up to more than 1500 times. Moreover, in the estimation of real 𝑘 and clus-
tering quality Kd-means is much better than its competitors. It was also compared to
GMM (Gaussian Mixture Models) 5 on a hyper-spectral image where GMM was given
the real number of clusters 𝑘 to identify, and Kd-means had to estimate this number
automatically. Overall, in this application framework, the results were encouraging
for Kd-means on the clustering quality and the estimation of 𝑘.

III.4 Conclusion
In this chapter, we have developed two solutions for different problems. The first,
Sk-means, is a strategy that reduces the number of unnecessary calculations in k-
means and its associated versions based on geometric reasoning. So its goal is to
reduce execution time in a large dataset environment. The second solution, kd-means,
automatically estimates the number of clusters while forming them. Kd-means also
addresses its competitors’ limitations, such as the strong constraint on cluster shape,
cluster overlapping, and long execution time in a large dataset environment.

So far, we have contributed to the paradigm of partition-based methods (El Malki
et al., 2019b)(El Malki et al., 2019a)(El Malki et al., 2020b). The next chapter focuses
on the density-based methods paradigm (adopting a different cluster definition than
the previous paradigm)(El Malki et al., 2020a). In the following, we do not focus on
the execution time but the clustering quality and the data’s high dimensionality.

5GMM is a probabilistic approach that produces both spherical and elliptical clusters. Neverthe-
less, it requires the number of clusters to be provided a priori.
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IV.1 Introduction
In this chapter, we focus on the density-based methods paradigm. It takes a differ-
ent clustering approach from the paradigm based on partitioning methods, and more
specifically, on the cluster’s definition. As a result, the paradigms, in practice, may
have different applications. In this paradigm, a cluster is a dense region of points
separated from other clusters by less dense regions (Kriegel et al., 2011). This def-
inition has allowed these methods to detect arbitrary-shaped clusters. Nevertheless,
density-based clustering has difficulties in detecting clusters having low densities re-
garding high-density clusters. Low-density clusters are either considered as outliers
or included in another cluster. Moreover, near clusters of similar densities are often
grouped in one cluster. Finally, density-based clustering does not manage well in
high-dimensional data (Kriegel et al., 2009).

Our proposals consist of a new way to divide datasets into homogeneous groups in
terms of density, a novel agglomerative method based on the Wasserstein metric, and
a new clustering algorithm, called Decwa, based on spatial density and probabilistic
approach.

First, we present the global approach of our solution (section IV.3), then we detail
each of its steps. Finally, we experimentally evaluate the robustness of the solution on
various data sets (section IV.9).

IV.2 Notations
In addition to table IV.1, we give more information about the cluster, sub-cluster, and
distance probability density function.

Cluster. we consider a cluster as a contiguous region of points where density follows
its own law of probability. Formally, we represent a cluster 𝐶𝑖 by a set of pairwise
distances between the points contained in the cluster 𝐶𝑖. This set is annotated 𝐷𝑖 and
follows any law of probability. 𝐷𝑖 is computed via any distance defined as 𝑋×𝑋 → R+

that has to be at least symmetric and reflexive.
Sub-cluster. It corresponds to a subset of a cluster. The latter can be made up of

several sub-clusters. In the solution intermediate steps, the sub-clusters are produced
and used so that in the last step, a cluster set is returned.

Distance probability density function (distance 𝑝.𝑑.𝑓). It characterizes the prob-
ability law of the distances between the points of a group (cluster or sub-cluster). In
other words, it informs about the group spatial density as well as the source that
generated the points.
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Symbols Meaning
𝑋 𝑋 = {𝑥1, . . . , 𝑥𝑛}, 𝑛 = |𝑋| is a dataset
𝐶 𝐶 = {𝐶1, . . . , 𝐶𝑐}, 𝑐 = |𝐶| is a set of clusters,

𝐶𝑖, 𝐶𝑗 𝐶𝑖 ∈ 𝐶, 𝐶𝑗 ∈ 𝐶 are clusters
𝐷 𝐷 = {𝐷1, . . . , 𝐷|𝐷|} is a set of distance distributions

𝐷𝑖, 𝐷𝑗 𝐷𝑖 ∈ 𝐷, 𝐷𝑗 ∈ 𝐷 are distance distributions
𝐷′ the set of distances
𝐺 𝐺 = (𝑉, 𝐸) is an undirected weighted graph
𝑉 𝑉 = {𝑣1, . . . , 𝑣|𝑉 |} is a set of vertices

𝑣𝑥, 𝑣𝑦 𝑣𝑥 ∈ 𝑉 , 𝑣𝑦 ∈ 𝑉 are vertices
𝐸 {𝑒1, . . . , 𝑒|𝐸|} is a set of edges
𝑒𝑞 𝑒𝑞 ∈ 𝐸 is an edge

(𝑣𝑥, 𝑣𝑦, 𝑤𝑞) (𝑣𝑥, 𝑣𝑦, 𝑤𝑞) = 𝑒𝑞 is an edge, (𝑣𝑥, 𝑣𝑦) ∈ 𝑉 2, 𝑤𝑞 ∈ N
𝑤𝑞 𝑤𝑞 is the weight associated to the edge 𝑒𝑞

𝐺𝑚𝑖𝑛 𝐺𝑚𝑖𝑛 = (𝑉 𝑚𝑖𝑛, 𝐸𝑚𝑖𝑛) is a Minimum Spanning Tree
𝑠𝑔𝑖, 𝑠𝑔𝑗 𝑠𝑔𝑖 ⊂ 𝐺, 𝑠𝑔𝑗 ⊂ 𝐺 are sub-graphs

f {𝑙1, ..., 𝑙𝑡, ..., 𝑙|f|} is a set of mid-distances
ℵ𝑡, ℘𝑡 sets of connected sub-graphs at 𝑡𝑡ℎ iteration
||𝐶𝑖 − 𝐶𝑗|| a spatial distance between 𝐶𝑖 and 𝐶𝑗

𝑤𝑠(𝐷𝑖, 𝐷𝑗) 𝑤𝑠 is the probabilistic distance between 𝐷𝑖 and 𝐷𝑗

𝜆 𝜆 is the spatial distance threshold
𝜇 𝜇 is the probabilistic distance threshold

Table IV.1: Symbols

Figure IV.1: Overview



94CHAPTER IV. DECWA: DENSITY-BASED CLUSTERING USING WASSERSTEIN DISTANCE

(a) Compound, a dataset with clusters of different densities

(b) Histogram representation of the distances in the MST for Compound dataset

Figure IV.2: Density detection
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IV.3 DECWA overview
With the different steps described further, DECWA is able to detect small distance
variations and thus to separate near clusters of same density by detecting the overlap-
ping regions or the small interval between them. Moreover, it allows DECWA to solve
the problem of low-density clusters by isolating its points. In addition, as DECWA
uses distance 𝑝.𝑑.𝑓 to extract richer information from pairwise distances, it is more
likely to benefit from the qualities of a distance suited for high dimensional data.

The proposed solution consists of four consecutive steps (In the figure IV.1, an
example of the four steps of the solution through a dataset.):

1. graph-oriented modeling of the dataset. The first step transforms the dataset
𝑋 (figure IV.1.a) into a 𝑘-nearest neighbor graph (𝑘𝑛𝑛𝑔) representation where
nodes are points and edges are pairwise distances. This in order to perform clus-
tering on the distance space (one-dimensional) instead of the multi-dimensional
coordinate space. (IV.1.b,𝑘 = 5 i.e there are 5 edges per node in the example).
The graph is then reduced to its Minimum Spanning Tree (𝑀𝑆𝑇 ) in order to
keep significant distances (IV.1.c).

2. probability density estimation. The second step consists in calculating the 𝑝.𝑑.𝑓

from the significant distances of the MST. This 𝑝.𝑑.𝑓 is used to determine the
extraction thresholds used to separate the different groups of spatial densities
(IV.1.d,IV.1.e).

3. graph division. The third step consists in extracting sub-graphs from the MST
according to extraction thresholds and identifying corresponding sub-clusters
homogeneous in terms of spatial density (IV.1.f). To check whether sub-clusters
should be merged because they might belong to the same cluster, the next step
is performed.

4. agglomeration of sub-clusters. The fourth step is to agglomerate sub-clusters
according to spatial and probabilistic distances (IV.1.g). Here, Wasserstein dis-
tance measures the similarity between probability distributions to regroup similar
sub-clusters. Agglomeration is guided by mergeability tests.

IV.4 Graph-oriented modeling of the dataset
The first step consists in associating a new representation to the dataset 𝑋. From this
representation in the following steps, the distance 𝑝.𝑑.𝑓 is calculated, and then sub-
clusters are extracted. First, we discuss the representation and then how to generate
it.
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We have associated to 𝑋 defined in a coordinate space, a distance space. The
Decwa steps are carried out on inter-point distances instead of the original coordi-
nates of the points. This allows to capture information on the different densities
without referring directly to the points and performing probabilistic modeling on a
uni-dimensional space instead of a multi-dimensional space. Indeed, a subset of dis-
tances represents several separated areas of similar densities in 𝑋. In figure IV.2, both
representations are shown. Figure IV.2(a) is the coordinate space representation of
Compound dataset as well as figure IV.2(b) is its corresponding representation using
the frequency of pairwise distances where each color represents a level of density. In
figure IV.2(a) the same density is shared by several separated groups of points in the
coordinate space.

To generate the new distance space of 𝑋, we calculate distances between the points
of the dataset. Our computation strategy of pairwise distances is based on the 𝑘-
nearest neighbor method (Aggarwal and Reddy, 2013). The 𝑘-nearest neighbor graph
highlights the local relationships between each point and its surrounding points in
the data space. By extension, these relations make it possible to better capture the
different spatial densities with local precision.

Therefore, the first step is the construction of the 𝑘-nearest neighbor graph of the
dataset. From the dataset 𝑋, an undirected weighted graph annotated 𝐺 = (𝑉, 𝐸)
is constructed, where 𝑉 = {𝑣1, 𝑣2...} is the set of vertices representing data points,
and 𝐸 = {𝑒𝑞 = (𝑣𝑥, 𝑣𝑦, 𝑤𝑞)|𝑣𝑥 ∈ 𝑉, 𝑣𝑦 ∈ 𝑉, 𝑤𝑞 ∈ R+} is the set of edges between data
points. For each point, we determine 𝑘 edges to 𝑘-nearest neighbor points. The weight
𝑤𝑞 of each edge 𝑒𝑞 is the distance between the two linked points 𝑣𝑥 and 𝑣𝑦.

To gain efficiency and accuracy, it is possible to get rid of many unnecessary dis-
tances. We favor short distances, avoiding keeping too large distances in the 𝑘-nearest
neighbors. To obtain dense (connected) sub-graphs, we generate a Minimum Spanning
Tree (MST) from 𝐺. Constructing the MST of 𝐺 consists in minimizing the number
of edges while minimizing the total sum of the weights and keeping 𝐺 connected.
The interest of the MST in clustering is its capability to detect clusters of irregular
boundaries (Zahn, 1971). As the MST, denoted 𝐺𝑚𝑖𝑛, is built thanks to the 𝑘𝑛𝑛𝑔,
therefore, 𝑘 must be superior to a certain value so that the algorithm has enough edges
to construct an optimal MST. Except for that matter, the value of 𝑘 has no further
influence as the MST will model the dataset.

IV.5 Probability density estimation
The overall objective of the 𝑝.𝑑.𝑓 estimation is to extract new information to delimit
sub-clusters.

Classically, density-based methods explicitly or implicitly search for the densest
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Algorithm 5 Elbow research
Input: 𝑒𝑥𝑡𝑟𝑒𝑚𝑎
Output: 𝑒𝑙𝑏𝑜𝑤

1: 𝑒𝑙𝑏𝑜𝑤 ← 0
2: 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒← 0
3: for ℎ ∈ 𝐻 do
4: {If there is an increase in the number of extremes and update authorization, the

elbow value is modified}
5: if 𝑒𝑥𝑡𝑟𝑒𝑚𝑎(ℎ) > 𝑒𝑥𝑡𝑟𝑒𝑚𝑎(ℎ− 1) AND 𝑒𝑙𝑏𝑜𝑤 = 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 then
6: 𝑒𝑙𝑏𝑜𝑤 = ℎ
7: end if
8: {If there is a decrease in the number of extremes, the update is authorized in

line 5}
9: if 𝑒𝑥𝑡𝑟𝑒𝑚𝑎(ℎ) < 𝑒𝑥𝑡𝑟𝑒𝑚𝑎(ℎ− 1) then

10: 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑒𝑙𝑏𝑜𝑤
11: end if
12: end for

areas from a 𝑝.𝑑.𝑓 𝑓 : 𝑋 → R+. They correspond in 𝑓 to the zones around the peaks
(included) called level sets (Hartigan, 1975). Let 𝑙 > 0 be a density threshold, a level
set is a set of points defined as {𝑥𝑖|𝑓(𝑥𝑖) > 𝑙}. This threshold 𝑙 is on both sides of the
bell (level set) centered around the peak. The sets of points {𝑥𝑖|𝑓(𝑥) ≤ 𝑙} are either
considered as outliers or assigned to denser clusters. This approach is not suitable for
capturing clusters of different densities.

Another solution (Hartigan, 1975), based on the hierarchical approach, cuts 𝑓 at
different levels 𝑙 to better capture clusters of different densities. In our case, 𝑓 is defined
as 𝑓 : 𝐷′ → R+ with 𝐷′ the set of distances. We consider in our case that a level set
has two thresholds that are not necessarily equal. Areas of 𝑓 below these thresholds
are not considered as outliers. They are the less frequent distances that correspond to
phenomenons with fewer points such as overlapping areas or small clusters.

For estimating the 𝑝.𝑑.𝑓 , we use the Kernel Density Estimation (𝐾𝐷𝐸) (Davis
et al., 2011). Its interest lies in the fact that it makes no a priori hypothesis on the
probability law of distances. The density function is defined as the sum of the kernel
functions 𝐾 on every distance. The commonly used kernels are Gaussian, uniform,
triangular, etc. The 𝐾𝐷𝐸 equation is below:

̂︀𝑓ℎ(𝑧𝑡) = 1
(𝑛− 1)ℎ

𝑛−1∑︁
𝑖=1

𝐾
(︂

𝑧𝑡 − 𝑧𝑖

ℎ

)︂
(IV.1)

In our case, 𝑧𝑡 and 𝑧𝑖 correspond to the distances contained in 𝐺𝑚𝑖𝑛. We have
𝑛 = |𝑋| (number of nodes in 𝐺𝑚𝑖𝑛), and 𝑛− 1 is the number of distances.

The smoothing factor ℎ ∈ [0; +∞] is called the bandwidth. It acts as a precision
parameter, and in our case, it influences the number of peaks detected in the 𝑝.𝑑.𝑓 and
therefore, the number of different densities. A commonly used method to estimate ℎ
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Algorithm 6 Graph division process
Input: 𝐺𝑚𝑖𝑛 = (𝑉 𝑚𝑖𝑛, 𝐸𝑚𝑖𝑛),f = {..., 𝑙𝑡, 𝑙𝑡+1, ...}
Output: ℘1

1: ℘|f| ← ∅
2: ℵ|f| ← (𝑉 𝑚𝑖𝑛, 𝐸𝑚𝑖𝑛)
3: for 𝑡← |f| − 1 to 1 do
4: 𝐸𝑡 ← {𝑒𝑞 ∈ 𝐸𝑡+1|𝑤𝑞 < 𝑙𝑡}
5: 𝑉𝑡 ← {𝑣𝑞 ∈ 𝑉𝑡+1|∃(𝑣𝑞, 𝑣𝑦, 𝑤𝑞) ∈ 𝐸𝑡 ∨ (𝑣𝑥, 𝑣𝑞, 𝑤𝑞) ∈ 𝐸𝑡}
6: ℵ𝑡 ← (𝑉𝑡, 𝐸𝑡)
7: ℘𝑡 ← ℘𝑡+1 ∪ {(𝑉𝑡+1 ∖ 𝑉𝑡, 𝐸𝑡+1 ∖ 𝐸𝑡)}
8: end for
9: ℘1 ← ℘1 ∪ ℵ1

is Silverman’s rule of thumb (Silverman, 1986). Most existing algorithms estimating
ℎ focus on having a bias-variance trade off and are not well suited for our algorithm.
Intuitively, we want to have important phenomenons represented as peaks in the es-
timated 𝑝.𝑑.𝑓 and we want the best precision possible while avoiding noise to appear
as peaks on the curve. Therefore, the solution we propose aims at finding when noise
begins to generate peaks on the curve, it is based on the Elbow method (Satopaa
et al., 2011). Indeed, the curve corresponding to the number of extrema associated
with each value of ℎ tends to have an Elbow shape. The proposed method finds 𝑒𝑙𝑏𝑜𝑤,
the first point of the last peak in this curve, 𝑒𝑥𝑡𝑟𝑒𝑚𝑎(ℎ), with ℎ ∈ 𝐻 and 𝐻 the set
of possible bandwidths. It is detailed in algorithm 5.

IV.6 Graph division
The purpose of the distance 𝑝.𝑑.𝑓 is to associate to each distance its density. The

latter is a number that quantifies the intensity of the distance appearance frequency.
The current step’s goal is to extract the different density groups from the distance
𝑝.𝑑.𝑓 and the minimum spanning tree 𝐺𝑚𝑖𝑛. Each group represents a finite list of
sub-clusters. The difficulty lies in how to extract these groups.

To separate different densities, the distance 𝑝.𝑑.𝑓 the decomposed into several
parts via cuts. The significantly different densities are detected with the peaks of
the distance 𝑝.𝑑.𝑓 curve. To separate highly represented distances to less represented
distances, we consider an extraction threshold as the mid-distance between each max-
imum and its consecutive minimum, and conversely between each minimum and its
consecutive maximum. Mid-distances allow capturing regions that are difficult to de-
tect (low-density regions, or dense regions containing few points). Another interesting
consequence concerns overlapping regions that have the same densities. These regions
are often very difficult to capture properly, whilst our mid-distance approach makes it
possible to detect these cases because overlapping between regions induces a density
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Figure IV.3: Comparison of the division result (on the left of the figure) with actual
clusters for jain dataset (right)

variation. Once the mid-distances (ordered list called f) are identified on the 𝑝.𝑑.𝑓.

curve, we apply a process (algorithm 6) to treat successively the list of mid-distances
in descending order. We generate sub-clusters, from the nodes of 𝐺𝑚𝑖𝑛, and sets of
distances of sub-clusters, from the edges of 𝐺𝑚𝑖𝑛.

From 𝐺𝑚𝑖𝑛, via the process, we extract connected sub-graphs ℘𝑡 where all the nodes
that are exclusively linked by edges greater or equal than the current mid-distance 𝑙𝑡.
A node linked to an edge greater or equal to the 𝑙𝑡 and another edge less than the 𝑙𝑡

is not included. A sub-cluster 𝐶𝑖 is composed of points that belong to one connected
sub-graph. For each sub-cluster, we produce its associated set of distances 𝐷𝑖 from
edges between nodes of the sub-graph. A residual graph ℵ𝑡 is made up of edges whose
distances are less than 𝑙𝑡, and all the nodes linked by these edges. This residual graph is
used in the successive iterations. The residual graph can consist of several unconnected
sub-graphs. At the last iteration (i.e. at the level of 𝑙1), the residual graph ℵ1 is also
used to generate sub-clusters and associated sets of distances. After this step, some
sub-graphs are close to each other while having a similar 𝑝.𝑑.𝑓 . According to our
cluster characteristics, they should be merged. Figure IV.3 shows a comparison of the
division result and the actual clusters for jain dataset. Figure IV.3 (a) is the result of
the division. However, clusters are homogeneous it appears that many can be merged
and still respect our cluster characteristics. Figure IV.3 (b) is the ground truth.

The connected sub-graphs of 𝐺𝑚𝑖𝑛 have edge weights that are homogeneous overall.
Indeed, the weight values of a connected sub-graph, annotated 𝑠𝑔𝑖 are framed between
consecutive thresholds 𝑙𝑡 ∈ f, 𝑙𝑡+1 ∈ f, which guarantees its homogeneity in terms of
spatial density.

Let us consider the list of mid-distances f, and a connected sub-graph 𝑠𝑔𝑖 with
the weighted edges 𝐸𝑖. Suppose that f is iterated consecutively in descending order
as illustrated in algorithm 6. In a given iteration 𝑡, the current threshold is 𝑙𝑡. One
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of the two following situations is performed: either ∀𝑒𝑞 ∈ 𝐸𝑖, 𝑤𝑞 < 𝑙𝑡, in which case
no action is taken on 𝑠𝑔𝑖; or else if ∃𝑒𝑞 ∈ 𝐸𝑖, 𝑤𝑞 ≥ 𝑙𝑡 then from 𝑠𝑔𝑖 is extracted a
set of connected sub-graphs called ℵ𝑡 with 𝑤𝑞 < 𝑙𝑡 and another set of connected sub-
graphs ℘𝑡 with 𝑤𝑞 ≥ 𝑙𝑡. At this point, for all edges into ℵ𝑡, 0 < 𝑤𝑞 < 𝑙𝑡. At the
next iteration, ℵ𝑡 undergoes the same processing for the threshold 𝑙𝑡−1. If ∃𝑤𝑞 ≥ 𝑙𝑡−1,
the set of sub-graphs ℘𝑡−1 is extracted from ℵ𝑡. In this case, for all edges into ℘𝑡−1,
𝑙𝑡−1 ≤ 𝑤𝑞 < 𝑙𝑡.

While homogeneous sub-clusters are constituted, some are close and have a similar
density. They should be merged according to our definition of cluster. Therefore, the
next step consists in identifying these sub-clusters to agglomerate them.

IV.7 Agglomeration of sub-clusters
This step aims at generating clusters from sub-cluster agglomeration. The main dif-
ficulty of this step is to determine which sub-clusters should be merged. When the
distances between two sub-clusters are close, it is difficult to decide whether or not to
merge them.

To arbitrate this decision, we use their density, represented as the distance 𝑝.𝑑.𝑓 .
Only sub-clusters that near spatially and have similar distance 𝑝.𝑑.𝑓 will be merged.
As an example, at the top of the figure IV.4, two clusters 𝐶𝑖 and 𝐶𝑗 are indeed sub-
clusters of the same cluster. Spatially, they are contiguous. In terms of probability law,
at the bottom of the same figure, they are also close because their 𝑝.𝑑.𝑓 are similar,
which in practice translates into similarity in spatial density.

To fulfill these objectives, we define the two following conditions. Given two sub-
clusters 𝐶𝑖 and 𝐶𝑗, the first condition is that these sub-clusters must be spatially
close enough. To ensure this, ||𝐶𝑖 − 𝐶𝑗|| ≤ 𝜆 must be respected, with 𝜆 ∈ R+. It is
necessary to determine the distance between sub-clusters (||𝐶𝑖 − 𝐶𝑗||) to verify this
condition. However, calculating every pairwise distance between two sub-clusters is
a time-consuming operation. Therefore, we propose another solution based on 𝐺𝑚𝑖𝑛.
We consider that the value of the edge linking sub-graphs corresponding to 𝐶𝑖 and 𝐶𝑗

as the distance between 𝐶𝑖 and 𝐶𝑗. Because of the MST structure, we assume that
this distance is nearly the minimum distance between the points of 𝐶𝑖 and 𝐶𝑗.

The second condition relates to the similarity of the distance distributions 𝐷𝑖 and
𝐷𝑗. The purpose of this condition is to ensure 𝑤𝑠(𝐷𝑖, 𝐷𝑗) ≤ 𝜇, with 𝜇 ∈ R+, and 𝑤𝑠

the Wasserstein distance. We have opted for the Wasserstein distance as a measure
of similarity between probability distributions. Two advantages of this distance led us
to its choice (Villani, 2009):

• it seamlessly takes into account the geometric shape of the 𝑝.𝑑.𝑓. curves;
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Figure IV.4: In the top sub-figure, two clusters 𝐶𝑖 and 𝐶𝑗 are shown. In the lower
sub-figure, on the left the distance 𝑝.𝑑.𝑓 of 𝐶𝑖 and on the right the distance 𝑝.𝑑.𝑓 of
𝐶𝑗

• if the two distributions are very close, then the small difference will be captured
by Wasserstein, allowing a fine precision.

We introduce now an iterative process (algorithm 7) for merging sub-clusters. First
of all, it identifies the edge set 𝐸𝑔 ⊂ 𝐸𝑚𝑖𝑛 containing only nodes whose respective sub-
graphs are different. Then it runs an iterative sub-process consisting in iterating on the
edges of 𝐸𝑔. For each edge 𝑒𝑞 ∈ 𝐸𝑔 we verify that ||𝐶𝑖−𝐶𝑗|| ≤ 𝜆 and 𝑤𝑠(𝐷𝑖, 𝐷𝑗) ≤ 𝜇.
In this case, 𝐶𝑖 and 𝐶𝑗 are merged. This is operated by the union of 𝐷𝑖, 𝐷𝑗 and 𝑤𝑞

and considering the points of 𝐶𝑖 and 𝐶𝑗 as belonging to the same sub-graph. Note that
if 𝑚𝑖𝑛(|𝐷𝑖|, |𝐷𝑗|) ≤ 1 then only the first condition applies as 𝑤𝑠 can’t be calculated
with this cardinality. The iterative sub-process is repeated until there are no longer
merges. The last iteration does not result in any merging and the points of the clusters
whose cardinality is 1 are considered as outliers. As an example, the result obtained
on the jain dataset corresponds exactly to the real clusters as on the right side of the
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figure IV.3.

IV.8 Parameter estimation
In the merging phase, 𝜆 and 𝜇 are metric thresholds for 𝑑 and 𝑤𝑠. Therefore they are
defined in ]0, +∞[. It is difficult for users to operate with this unbounded interval.
In this sub-section, the objective is to map this interval to a bounded interval defined
between 0 and 1. We argue that a bounded interval is more meaningful for users.

We consider 𝑚 ∈ R+, 𝑀 ∈ R+ respectively the lower bound and the upper bound
of 𝐷′ the set of distances and 𝛾, 𝜏 ∈]0, 1] , so 𝜆, 𝜇 are simplified as follows:

𝜆 = 𝛾 * (𝑀 −𝑚) + 𝑚 (IV.2)

𝜇 = 𝜏 * (𝑀 −𝑚) + 𝑚 (IV.3)

So when merging sub-clusters, the spatial distance between sub-clusters can never
be greater than 𝑀 and not smaller than 𝑚, hence the equation IV.2. The 𝛾 factor is
a hyperparameter that indicates the level of severity on the merge. If it is equal to 1,
the less strict value, it tends to allow all sub-clusters to be merged and inversely if it is
near to 0. Similarly, the factor 𝜏 (equation IV.3) is also a hyperparameter and has the
same effect on the probabilistic distance. Equation IV.3 is justified by the fact that
the Wasserstein distance is bounded between 0 and (𝑀 −𝑚). The lower bound is 0
because Wasserstein is a metric. The following evidence proves that the upper bound
is (𝑀 −𝑚).

Proof. Given 𝑈 : Ω→ 𝐷′ and 𝑉 : Ω→ 𝐷′ two random variables with 𝐷′ ⊂ R+ and Ω
the set of possible outcomes. 𝐷′ is the set of distances in our case, 𝑈 and 𝑉 represents
two sub-clusters and their inner distances. According to (Ramdas et al., 2015) the
first Wasserstein distance between the distributions of 𝑈 and 𝑉 is:

𝑤𝑠(𝑢, 𝑣) =
∫︁ +∞

−∞
|𝐹𝑈(𝑢)− 𝐹𝑉 (𝑣)|𝑑𝑢𝑑𝑣 (IV.4)

𝐹𝑈 and 𝐹𝑉 are respectively the Cumulative Distribution Function (𝐶𝐷𝐹 ) of 𝑈

and 𝑉 . Let 𝑚 be the lower bound of 𝐷′ and 𝑀 the upper bound of 𝐷′, so 𝐹𝑈(𝑢) =
𝐹𝑉 (𝑣) = 0 for 𝑢, 𝑣 ∈ 𝐼 =] −∞; 𝑚[ and 𝐹𝑈(𝑢) = 𝐹𝑉 (𝑣) = 1 for 𝑢, 𝑣 ∈ 𝐼 ′ =]𝑀 ; +∞[
according to 𝐶𝐷𝐹 definition and because 𝐷′ is bounded between m and M.

Then,

𝑤𝑠(𝑢, 𝑣) =
∫︁

𝐼
|𝐹𝑈(𝑢)−𝐹𝑉 (𝑣)|𝑑𝑢𝑑𝑣+

∫︁ 𝑀

𝑚
|𝐹𝑈(𝑢)−𝐹𝑉 (𝑣)|𝑑𝑢𝑑𝑣+

∫︁
𝐼′
|𝐹𝑈(𝑢)−𝐹𝑉 (𝑣)|𝑑𝑢𝑑𝑣
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𝑤𝑠(𝑢, 𝑣) =
∫︁

𝐼
|𝐹𝑈(𝑢)−𝐹𝑉 (𝑣)|𝑑𝑢𝑑𝑣+

∫︁ 𝑀

𝑚
|𝐹𝑈(𝑢)−𝐹𝑉 (𝑣)|𝑑𝑢𝑑𝑣+

∫︁
𝐼′
|𝐹𝑈(𝑢)−𝐹𝑉 (𝑣)|𝑑𝑢𝑑𝑣

⇐⇒ 𝑤𝑠(𝑢, 𝑣) =
∫︁

𝐼
|0− 0|𝑑𝑢𝑑𝑣 +

∫︁ 𝑀

𝑚
|𝐹𝑈(𝑢)− 𝐹𝑉 (𝑣)|𝑑𝑢𝑑𝑣 +

∫︁
𝐼′
|1− 1|𝑑𝑢𝑑𝑣

⇐⇒ 𝑤𝑠(𝑢, 𝑣) =
∫︁ 𝑀

𝑚
|𝐹𝑈(𝑢)− 𝐹𝑉 (𝑣)|𝑑𝑢𝑑𝑣

By definition, 𝐹𝑈 : 𝐷′ → [0; 1] and 𝐹𝑉 : 𝐷′ → [0; 1], therefore
∫︀𝑀

𝑚 𝐹𝑈(𝑢)𝑑𝑢 ≤
(𝑀 −𝑚)× 1 and

∫︀𝑀
𝑚 𝐹𝑉 (𝑣)𝑑𝑣 ≤ (𝑀 −𝑚)× 1.

As 𝐹𝑈 and 𝐹𝑉 are positive functions :

𝑤𝑠(𝑢, 𝑣) =
∫︁ 𝑀

𝑚
|𝐹𝑈(𝑢)− 𝐹𝑉 (𝑣)|𝑑𝑢𝑑𝑣 ≤

∫︁ 𝑀

𝑚
𝐹𝑈(𝑢)𝑑𝑢 ≤𝑀 −𝑚

Figure IV.5 illustrates this proposition with an example. The two curves are 𝐹𝑈 and
𝐹𝑉 . Grey area between them corresponds to the area actually measured by Wasserstein
and the rectangle area is the upper bound for 𝑤𝑠(𝑢, 𝑣).
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Figure IV.5: Maximum possible area between two CDF
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Algorithm 7 Sub-cluster merger
Input: 𝐷, ℘1 = {..., 𝑠𝑔𝑖, ..., 𝑠𝑔𝑗, ...}, 𝜆 ≥ 0, 𝜇 ≥ 0
Output: ℘1

1: 𝐸𝑔 ← ∅
2: for all 𝑒𝑞 ∈ 𝐸𝑚𝑖𝑛|𝑒𝑞 = (𝑣𝑥, 𝑣𝑦, 𝑤𝑞) do
3: if 𝑣𝑥 ∈ 𝑠𝑔𝑖 ∧ 𝑣𝑦 ∈ 𝑠𝑔𝑗 ̸=𝑖 then
4: 𝐸𝑔 ← 𝐸𝑔 ∪ {𝑒𝑞}
5: end if
6: end for
7: repeat
8: 𝜖← 0
9: for all 𝑒𝑞 ∈ 𝐸𝑔 do

10: if 𝑤𝑞 < 𝜆 then
11: // 𝐷𝑖 (respectively 𝐷𝑗) is associated to 𝑠𝑔𝑖 (𝑠𝑔𝑗)
12: if 𝐷𝑖 ≤ 1 ∧𝐷𝑗 ≤ 1 then
13: //the subgraph 𝑖 and/or 𝑗 as small, so it is considered close to the other

w.r.t. wasserstein distance.
14: 𝛿 ← −1
15: else
16: // wasserstein distance 𝑤𝑠 between 𝐷𝑖 and 𝐷𝑗 is computed
17: 𝛿 ← 𝑤𝑠(𝐷𝑖, 𝐷𝑗)
18: end if
19: if 𝛿 < 𝜇 then
20: // agglomeration of 𝑠𝑔𝑖 and 𝑠𝑔𝑗

21: 𝐷 ← (𝐷 ∖𝐷𝑖) ∖𝐷𝑗

22: 𝐷 ← 𝐷 ∪ {𝐷𝑖 ∪𝐷𝑗 ∪ {𝑤𝑞}}
23: ℘1 ← (℘1 ∖ 𝑠𝑔𝑖) ∖ 𝑠𝑔𝑗

24: ℘1 ← ℘1 ∪ {𝑠𝑔𝑖 ∪ 𝑠𝑔𝑗 ∪ {𝑒𝑞}}
25: 𝜖← 𝜖 + 1
26: end if
27: end if
28: end for
29: until 𝜖 = 0
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IV.9 Experimental assessments

IV.9.1 Introduction

We conducted an experimental study to show the effectiveness and the robustness of
DECWA compared to state-of-the-art density-based methods. It was applied to a va-
riety of synthetic and real datasets, using different distances depending on the data.
First, an analysis comparing DECWA to other concurrent algorithms is performed.
We showed that DECWA outperforms well known state-of-the-art density-based algo-
rithms in clustering quality.

An other study followed concerns the influence of two internal parameters of
DECWA: the bandwidth (ℎ) and the k-nearest neighbors (𝑘). In this study, we com-
pare the different strategies for estimating these two parameters while maintaining a
good clustering quality.

IV.9.2 Experiment protocol

IV.9.2.1 Algorithms

DECWA was compared to DBCLASD (Xu et al., 1998), DENCLUE (Hinneburg and
Gabriel, 2007) and HDBSCAN (Campello et al., 2013). For the experiments conducted
in this chapter, DECWA used the Gaussian kernel in the division phase. Algorithm
parameter values are defined through the repetitive application of the random search
approach (1000 iterations). This, in order to obtain the best score that the four
algorithms can have. DBCLASD (parameter-free and incremental) was subject to the
same approach but by randomizing the order of the data points because it is sensitive
to it. The hierarchical structure proposed by HDBSCAN is exploited by the Excess Of
Mass (EOM) method to extract clusters, as used by the authors in (Campello et al.,
2013).

Clustering quality is measured by the commonly used metric named Adjusted Rand
Index (𝐴𝑅𝐼) (Hubert and Arabie, 1985). In addition, we also report the ratio of
outliers produced by each algorithm for each dataset.

IV.9.2.2 DECWA environement

Several algorithms (e.g. Kruskal (Kruskal, 1956), Boruvka (Nešetřil et al., 2001), Prim
(Prim, 1957)) exist to generate an MST. DECWA uses Kruskal algorithm to build the
MST, it has a complexity of 𝑂(|𝐸|𝑙𝑜𝑔(|𝐸|)) with |𝐸| the cardinal of edges. Kruskal is
faster than Boruvka and Prim in sparse graphs (few edges) while Prim and Boruvka
take less time than 𝐾𝑟𝑢𝑠𝑘𝑎𝑙 in dense graphs (Kershenbaum and Van Slyke, 1972).
As 𝐺 is a 𝑘-nearest neighbor graph, it is often sparse because of the small value of 𝑘

which is studied in sub-section IV.9.5.
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During the merging process, DECWA runs through 𝐺𝑚𝑖𝑛 and therefore evaluates
edges in an order which has a small influence over the result. Multiple sorting methods
were tested and DECWA is not very sensitive to the order (ARI difference on average
is less than 4% in the worst case). We obtained the best results by sorting edges by
weight in ascending order, therefore, we suggest this sorting method for DECWA.

To cut 𝑝.𝑑.𝑓 , different methods are tested and evaluated. Inspired by Hartigan’s
level set idea, the minima in the 𝑝.𝑑.𝑓 curve are tested to separate distance groups
(44% ARI on average). The G-means algorithm, based on Gaussian Mixture Models,
was tested to separate distance groups by considering them as sub-populations of a
Gaussian mixture distribution (57% ARI on average). In the end, our mid-distance
solution has better performances (67% ARI on average).

Dataset Dimensions Size LD SD
jain 2 373
compound 2 399 x x
pathbased 2 300 x
cluto-t7.10k 2 10000
iris 4 150 x
cardiotocography 35 2126
plant 65 1600 x x
GCM 16064 190 x x
new3 26833 1519 x
kidney_uterus 10936 384 x

Table IV.2: Characteristics of data sets.

IV.9.2.3 Synthetic datasets

The two-dimensional, jain, compound, pathbased (Fränti and Sieranoja, 2018), and
cluto-t7.10k (Karypis et al., 1999) datasets are synthetic. They contain clusters of
different shapes and spatial densities( i.e. clusters are not necessarily generated by the
same law of probability). For these data, the Euclidean distance was used.

IV.9.2.4 Real datasets

The cardiotocography dataset (Ayres-de Campos et al., 2000) is a set of 2126 fetal
cardiotocogram records, with 35 attributes providing vital information on the state of
the fetus. The records are grouped into 10 classes, therefore 10 clusters are expected.
Canberra distance was applied to it. Plant dataset (Mallah et al., 2013) is considered
as a classification problem. It consists of 1600 leaves of 100 different classes. Each
leaf is characterized by 64 shape measurements retrieved from its binary image. The
Euclidean distance was used on Plant. Another known dataset, Iris (Dua and Graff,
2017) (150 iris flowers, 4 dimensions, 3 classes) was used with the Manhattan distance.
A collection of two very large biological datasets were tested. The first dataset, GCM
(Ramaswamy et al., 2001), is used to diagnose the type of cancer (14 classes). It
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DECWA DBCLASD DENCLUE HDBSCAN
Dataset ARI outliers(%) ARI outliers(%) ARI outliers(%) ARI outliers(%)
jain 0.94 0.00 0.90 0.03 0.45 0.06 0.94 0.01
compound 0.95 0.05 0.77 0.06 0.82 0.05 0.83 0.04
pathbased 0.76 0.00 0.47 0.03 0.56 0.00 0.42 0.02
cluto-t7.10k 0.95 0.03 0.79 0.06 0.34 0.00 0.95 0.10
iris 0.77 0.04 0.62 0.07 0.74 0.00 0.57 0.00
cardiotocography 0.47 0.04 0.24 0.17 0.47 0.02 0.08 0.28
plant 0.18 0.03 0.04 0.07 0.14 0.17 0.04 0.38
GCM 0.46 0.05 0.18 0.18 0.24 0.06 0.27 0.27
new3 0.41 0.01 0.09 0.45 0.08 0.13 0.13 0.27
kidney_uterus 0.80 0.00 0.53 0.08 0.56 0.09 0.53 0.26
Average 0.67 0.02 0.46 0.12 0.44 0.06 0.48 0.16

Table IV.3: Experimental results

consists of 190 tumor samples. Each one represented by the expression levels of 16063
genes. The second dataset (kidney_uterus) is proposed by expO (EXpression Project
For Oncology) (Stiglic and Kokol, 2010). It consists of 384 tumor samples to be
classified into two classes (kidney or uterus). Each sample is the expression level
of 10937 genes. Given that the attributes all correspond to the same nature (gene
expression) then the Bray-Curtis distance was applied to it. New3 (Han and Karypis,
2000), a very high-dimensional dataset, is a set of 1519 documents grouped into 6
classes. Each document is represented by the term-frequency (𝑇𝐹 ) vector of size
26833. Each element of this vector is the frequency of the 𝑖𝑡ℎ term in the document.
The cosine distance was used to measure the similarity between documents.

IV.9.3 Results and discussion

The results are reported in the table IV.3 (best scores are in bold). 𝐿𝐷 column
stands for low-density, it means that the datasets have at least one low-density cluster
comparing to others. 𝑆𝐷 stands for near clusters of similar densities, it means that
the marked datasets have at least two overlapping clusters with similar densities.

In many cases, DECWA outperforms competing algorithms by a large margin on
average 23% (e.g. jain dataset, ARI margin is 0.94 − 0.45 = 0.49). DECWA has
the best results in datasets with low-density clusters (e.g. compound and GCM ). In
this case, there is an ARI margin of 20% on average in favor of DECWA. Though
datasets with very high dimensions are problematic for the other algorithms, DECWA
is able to give good results. Indeed, there is an ARI margin of 29% on average in
favor of DECWA for the last three datasets. Near clusters of similar densities are also
correctly detected by DECWA. Some datasets like iris, kidney_uterus and pathbased
have overlapping clusters and yet DECWA separates them correctly. There is an ARI
margin of 23% in favor of DECWA for datasets having this problematic.

The outlier ratio is not relevant in case of a bad ARI score because in this case,
although the points are placed in clusters, clustering is meaningless. DECWA is the
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one that returns the least outliers on average while having a better ARI score.
We conducted a statistical study, as recommended in (Demsar, 2006), to confirm

the significant difference in performance between the algorithms and the robustness
of DECWA comparing to the others. The overall concept of the study has two steps.
1) First, a statistical test (Iman-Davenport(Sheskin, 2007)) is performed to determine
if there is a significant difference between the algorithms at the ARI level. 2) If
so, a pairwise comparison of algorithms is performed, via a post-hoc test (Shaffer
(Shaffer, 1986)), to identify the gain of one method over the others. Both tests return
a p-value (in the case of the second test, it is returned for each comparison). The
p-value allows us to decide on the rejection of the hypothesis of equivalence between
algorithms. To reject the hypothesis, the p-value must be lower than a significance
threshold 𝛼 that we set at 0.01. The p-value by returned the first test is 5.38𝑒−5.
It is significantly small compared to 𝛼. This means that the algorithms are different
in terms of ARI performance. Second, these differences are analyzed by the Shaffer
Post-hoc test. It returns a 𝑝-value for each test on a pair of algorithms. Indeed, for
the case of DECWA, the p-value is much lower than 𝛼 when comparing DECWA to
others (7.5𝑒−4 with DBCLASD, 4.6𝑒−3 with DENCLUE and 3.0𝑒−3 with HDBSCAN),
which proves that DECWA is significantly different from the others. For the others,
the p-value is equal to 1.0 in all the tests concerning them, which statistically shows
that they are equivalent. The ranking of the algorithms according to the ARI was
done by Friedman’s aligned rank (Garía and Herrera, 2008). DECWA is ranked as
the best. All in all, DECWA is significantly different from the others and is the best
performing.

IV.9.4 h estimation

This experiment aims to find the best method to determine the value of ℎ using Elbow
approach. For these tests, we use Yellowbrick’s implementation (Satopaa et al., 2011)
of Elbow Method, Silverman’s rule of thumb (Silverman, 1986), and the proposed
method. Yellowbrick is able to give one point or to detect several points in the elbow,
therefore we test two other methods by selecting a point among them. The first method
is to take the median point among the set of proposed points. The intuition behind
this method is that doing so ℎ is less likely to induce noise than the last proposed
point while being more precise than the first point. The second method is based
on the observation that actual phenomenons, resulting in clusters, are likely to induce
stable peaks on the 𝑝.𝑑.𝑓 curve. Therefore this method finds the point with the biggest
plateau on the 𝑒𝑥𝑡𝑟𝑒𝑚𝑎(ℎ) curve. Fig. IV.6 shows the Elbow shaped curve obtained
for jain, a synthetic dataset, and the points found by every solution. On this example,
our method found ℎ = 0.17 which induce 3 extrema in the estimated 𝑝.𝑑.𝑓 . Table IV.4
shows the evaluation of each method on the presented datasets. This experiment is
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pm yellowbrick biggest plateau median silverman
dataset ARI ouliers ARI ouliers ARI ouliers ARI ouliers ARI ouliers
jain 0.94 0.00 0.94 0.00 0.94 0.00 0.94 0.00 1.00 0.00
compound 0.91 0.03 0.91 0.02 0.89 0.10 0.89 0.10 0.91 0.02
pathbased 0.61 0.02 0.44 0.00 0.68 0.00 0.61 0.02 0.68 0.00
cluto-t7.10k 0.91 0.02 0.55 0.00 0.49 0.01 0.49 0.01 0.93 0.03
iris 0.70 0.09 0.60 0.01 0.70 0.09 0.72 0.09 0.58 0.02
cardiotocography 0.38 0.05 0.38 0.03 0.36 0.06 0.36 0.06 0.47 0.04
plant 0.18 0.03 0.11 0.00 0.12 0.01 0.18 0.02 0.20 0.03
GCM 0.43 0.09 0.44 0.04 0.43 0.18 0.43 0.18 0.44 0.04
new3 0.40 0.04 0.42 0.03 0.40 0.04 0.40 0.01 0.40 0.05
kidney_uterus 0.77 0.00 0.80 0.02 0.65 0.03 0.35 0.04 0.51 0.00
Average 0.62 0.04 0.56 0.01 0.57 0.05 0.54 0.06 0.61 0.02

Table IV.4: Comparison of methods for estimating ℎ. Pm refers to our proposed
method.

conducted using 𝑘 = 𝑙𝑜𝑔(|𝑉 |). Our proposed method achieves good scores and is even
able to catch up Silverman’s rule of thumb on average.

IV.9.5 k estimation

As explained in this paper (Gower and Ross, 1969), the MST can be used for ag-
glomerative clustering, which is the case for DECWA. However, it is also pointed out
that the exact distances may be lost during the process of creating the MST. A con-
nected graph is recommended before applying an MST generation algorithm because
it contains inter-sub-cluster relationships. These relations are useful to better ensure
the DECWA merging part. The value of 𝑘 must be large enough for the graph to be
connected. The authors of (Brito et al., 1997) stipulate that for 𝑘𝑛𝑛𝑔 to be connected
𝑘 is chosen to the order 𝑙𝑜𝑔(|𝑉 |).

In Table. IV.5, we compared the distances between sub-clusters retained by the
MST and the distance between the two closest points each belonging to a different
sub-cluster. On previously used datasets, for 𝑘 = 3 a notable percentage of edges are
different (2.3%), however it decreases as 𝑘 gets bigger : 0.2% for 𝑘 = 𝑙𝑜𝑔(|𝑉 |) and
0% for 𝑘 =

√︁
|𝑉 |. This results are shown in 𝑑𝑖𝑓𝑓 𝑒𝑑𝑔𝑒𝑠 column. Another experiment

was carried out to study the influence of 𝑘 on the DECWA final result and see if it is
efficient in the case where 𝑘 is of the order of 𝑙𝑜𝑔(|𝑉 |). For each dataset, DECWA is
called with 𝑘 = 3, 𝑘 = 𝑙𝑜𝑔(|𝑉 |) and 𝑘 =

√︁
(|𝑉 |). The value of ℎ is estimated by our

proposed Elbow method. The values of 𝛾 and 𝜏 are set by using the random-search
strategy. We have found (table IV.5) that the greater the 𝑘, the better the ARI. But
between 𝑘 = 𝑙𝑜𝑔(|𝑉 |) and 𝑘 =

√︁
(|𝑉 |) the difference is only of 0.02. Regarding the

outlier ratio, the difference between 𝑘 = 𝑙𝑜𝑔(|𝑉 |) and others is negligible. 𝑛𝑐𝑠𝑏 stands
for the number of connected subgraphs in case where 𝐺 is not connected. On average,
the smaller the 𝑛𝑐𝑠𝑏, the larger the ARI. At the same time, 𝑛𝑐𝑠𝑏 decreases as 𝑘 grows.
In the context of DECWA, the connectivity of the graph brings a better precision
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Figure IV.6: Elbow shaped curve of extrema in function of ℎ for jain dataset

k ARI outliers(%) ncsb diff edges (%)
3 0.57 0.02 3.50 2.3
𝑙𝑜𝑔(|𝑉 |) 0.65 0.03 1.50 0.2√︀

(|𝑉 |) 0.67 0.02 1.10 0

Table IV.5: Influence of k

in terms of clustering but it is not a prerequisite. If 𝑘 = 𝑙𝑜𝑔(|𝑉 |) or 𝑘 =
√︁

(|𝑉 |),
even if the connectivity is not fully ensured DECWA remains efficient. Therefore,
𝑘 = 𝑙𝑜𝑔(|𝑉 |) might be a valid choice to consider rather than 𝑘 =

√︁
|𝑉 | if speed is

required.

IV.10 Conclusion
Density-based methods can detect clusters with arbitrary shapes. However, they have
difficulties operating in high-dimensional data and separating outliers from low-density
clusters or close clusters of similar density.

To face these difficulties, we proposed Decwa, a solution based on a probabilis-
tic approach and the spatial density concept. First of all, it structures the dataset
in a minimum spanning tree (MST), where the nodes are the points and the edges
are the distances between points, in order to obtain a unidimensional space of inter-
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point distances. A density probability function (𝑝.𝑑.𝑓) is applied to this new space
to identify the level of representability of different distances. From this function and
the MST, sub-clusters of points with different spatial densities are extracted. This
is carried out by a strategy we have developed based on particular thresholds called
mid-points to obtain the most homogeneous sub-clusters possible in density. Thus, in
a high-dimensional data space, low-density clusters and outliers are separated as well
as clusters that are densely and spatially close. Some sub-clusters are then merged
(because belonging to the same real cluster) by a process based on the MST we have
designed. This in order to bring the final result closer to the ground-truth. The inter-
sub-cluster merging is carried out according to conditions based on the minimum
spatial inter-cluster distance and the Wasserstein inter-cluster probabilistic distance.

Experimentally, DECWA (El Malki et al., 2020a) has been compared to density-
based methods among the best known and performing methods in the literature on
various data sets and different distances. DECWA is significantly better than competi-
tors with a margin of 23% in clustering quality. More precisely, on high dimensional
datasets, it outperforms competitors by a wide margin of 29%. DECWA is better by
20% and 23%, respectively, on datasets with low-density clusters and datasets with
densely and spatially close clusters.



Chapter V

Conclusion & Perspectives

Clustering is a technique used to find automatically relationships in data that are either
too slow or too difficult to analyze by humans (Aggarwal and Reddy, 2013). It has the
advantage of being able to find relationships in more than three dimensions, which is a
limitation for humans in terms of analysis. The main particularity of clustering is that
it works on unlabeled data, i.e., without knowing a priori their nature (e.g., if the data
is vehicles, nature can be the car, bicycle, plane, etc.). Concretely, clustering aims to
divide a dataset into several groups of points (clusters) so that a cluster’s points are
as similar as possible.

Despite being widely used in practice, clustering has to face different challenges:

• in addition to the difficulty of storing large datasets, there is a more important
problem, which is the automatic analysis of this data to derive knowledge.

• the greater the number of dimensions, the more difficult it is for clustering meth-
ods to work correctly;

• due to its unsupervised aspect, knowledge of the actual number of clusters ex-
isting in a dataset is difficult to access;

• another challenge lies in the internal structure of the data. Indeed, datasets
could correspond to data distributions that are difficult to exploit.

Different clustering methods exist and are grouped into paradigms. In this
manuscript, we are interested in two of them: partition-based methods and density-
based methods. In the first paradigm, we focus on k-means (Llyod’s version (Lloyd,
1982a)) because it is algorithmically practical and is one of the most widely used
algorithms in data analysis.

In this manuscript, we have presented three contributions to address the problems
mentioned above. For each paradigm, different problems are solved. For k-means, we
made two contributions Sk-means and Kd-means. In the paradigm of density-based
methods, we developed the Decwa solution.

113



114 CHAPTER V. CONCLUSION & PERSPECTIVES

Sk-means
The k-means standard version (Lloyd’s version (Lloyd, 1982a)) divides a data set

of size n into k clusters while minimizing an objective function (the quadratic error). It
improves data partitioning from one iteration to the next until convergence. However,
this version becomes more and more expensive as 𝑘 and 𝑛 increase, which is impractical
for large sets of points. Moreover, it does not include strategies to avoid unnecessary
and repetitive calculations. So to reduce the latter, versions of k-means based on
geometric reasoning (Newling and Fleuret, 2016) have been developed. They are
based on a property of distance metrics, called triangular inequality, attempting to
avoid calculating unnecessary point-centroid distances. Nevertheless, this strategy
does not avoid all unnecessary and repetitive calculations through several iterations.

To address this problem, we proposed an optimization strategy, called Sk-means,
to reduce more unnecessary calculations in Lloyd’s version and in versions based on
geometric reasoning. Its main objective is to detect the points where the calculations
performed on them do not improve the data partitioning. These points correspond to
points that no longer change cluster from a given iteration to the end of the process of
a k-means version. First of all, we introduced, for each cluster, two types of subsets.
The first one is the kernel of the cluster. It contains only points called passive. They
correspond to points considered as not improving clustering if they are subject to
distance calculations. These calculations are then considered unnecessary. The second
is the outer part containing points of the cluster that are likely to change cluster and
thus contribute to clustering evolution. During iterations, the points move from the
outer part to the kernel. We have designed an estimator 𝐸 to estimate at which
iteration the point of the outer part must pass into the kernel. The advantage of this
strategy occurs as soon as the points switch into the kernel. At that moment, the
points are no longer involved in the calculations until the k-means process end. So
at each iteration, 𝑘 distances are avoided for all points belonging to the kernel. In
addition, in versions based on geometric reasoning, the variables associated with each
point of the kernel are no longer updated and maintained. This is not the case for
the points in versions not adopting Sk-means where the variables are treated at each
iteration. So, the Sk-means advantages result in significant time-saving. This gain is
all the more important as 𝑛, 𝑘 and the number of iterations is large.

Two types of experiments were conducted. The first allowed the model of the 𝐸

estimator to be inferred. 1750 synthetic data sets were generated, having different
cardinalities, dimensions, number of clusters and data spatial distributions. A total of
3500 experiments were launched. The results were visually and statistically validated
to infer 𝐸. In the second experiment, versions of k-means integrating Sk-means (Lloyd,
Compare-means, Sort-means and Exponion) were compared against their original as-
sociated versions while using our 𝐸 estimator. The datasets are various (synthetic
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and real), including images. A total of 384 experiments have been launched wherein
each one we compare a version with Sk-means with its associated original version (i.e.,
without Sk-means).

The comparison criteria were the execution time and the relative difference between
the final values proposed by the objective functions (i.e., the minimum quadratic errors
they found at the end of the k-means process). In execution time, versions with Sk-
means are up to 191 times faster than Lloyd’s version. They are up to more than five
times faster than the non-Sk-means related versions. Apart from this time saving, the
overall relative difference is negligible and does not exceed 1%. This shows that the
data partitionings calculated by the versions with and without Sk-means are practically
similar.

In terms of short-term perspectives, the passive nature of the points could be
extended to clusters as well. Suppose the cluster has no output and input of points
from a given iteration and during a certain number of consecutive iterations. In that
case, it is considered as not contributing to the partitioning evolution. So this cluster
is removed from calculations involving inter-center distances to save more execution
time.

In the medium term, we could extend the previous perspective by considering
that the cluster is passive if there are few entries and exits of points. These points are
probably at the cluster boundary, and their influence on data partitioning is negligible.
This new consideration increases the time saving because the cluster will be considered
passive more quickly in a k-means version process compared to the previous definition
of cluster passivity. Another improvement could be made on the 𝐸 estimator. Cur-
rently, the 𝐸 estimator produces a global estimate, i.e., it considers that all points
stabilize at the same speed. The goal here is to individualize the stability estimate,
i.e., to consider that each point has its own speed of stabilization. This could be done
by integrating into the 𝐸 model the distance between the point and its centroid. If
it is very close to the centroid, then it should stabilize faster than the one far away
from it. Another perspective could be to study the behavior of Sk-means, at least its
adaptation to Lloyd’s version, in shared-memory and shared-nothing architectures.

Kd-means
K-means requires from the user the number of 𝑘 clusters before forming the clusters.

If the user provides a wrong value of 𝑘, then the data partitioning may not make sense
or be unusable. The estimation of 𝑘 has been studied in the literature. The X-
means and G-means methods are among the best known and most efficient. They
correspond to iterative methods based on information theory and, more generally, on
the probabilistic approach.

These methods have limitations on different aspects. First, they require iteratively
executing k-means on the entire data set. Thus they are more and more expensive as
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the number of points and the number of iterations increases. Second, they exaggerate
on the 𝑘 real value estimate when the shapes of the clusters are not Gaussian (i.e.,
G-means and X-means expect the real clusters to be respectively Gaussian (spherical
or elliptical) and isotropic Gaussian (strictly spherical)) or the clusters overlap.

We have designed Kd-means to automatically estimate 𝑘 while meeting the above
limitations. It can detect clusters of more complex shapes (thus not necessarily Gaus-
sian) even if they overlap. Kd-means is based on a hierarchical binary Kd-tree data
structure and a hierarchical process. Kd-means consists of four consecutive steps.
Firstly, the data are organized hierarchically through Kd-tree. This organization can
be seen as a binary and recursive subdivision of the data. We have formulated condi-
tions on the construction of Kd-tree so that it is not very deep and does not contain
leaves with few points, to be suitable for large data sets. The second step forms clus-
ters in each of the Kd-tree sheets. These clusters are indeed sub-clusters of the final
clusters returned to the user. So after this step, a hierarchical process is launched on
Kd-tree to merge clusters. The merge is performed recursively from the leaves to the
root. In the root are then the final clusters. To carry out this process and meet the
limits of overlapping and shapes of clusters, we have developed four criteria for inter-
cluster merging. As soon as one seeks to verify the mergeability of two clusters, the
criteria must be validated to merge them. The fourth step is optional and consists in
improving the final data partitioning. It either assigns small clusters to larger clusters
or groups the small clusters together to form a single cluster, or considers the small
clusters as separate clusters because they are quite far apart from each other.

We compared the robustness of Kd-means against G-means and X-means. The
types of data experienced are varied. 135 large synthetic data sets were generated
with different cardinalities, dimensions and number of real clusters. Similarly, 11
large and real data sets were used, including spectral images, black/white or grayscale
images, sound and logs. The comparison was performed on three different metrics: 𝑘

estimation accuracy, partitioning quality and execution time. The experiments clearly
showed that Kd-means is very competitive compared to G-means and X-means, even
if the clusters overlap or have a complex shape. As a result, it is much better in
quality and accuracy in estimating 𝑘. In addition, it was up to 1500 times faster than
competitors.

In the short term, we could evaluate our solution to other tree data structures.
For example, using Quadtree or Octree(Samet, 2005) instead of Kd-tree allows having
for each node up to four child nodes or eight. This assumes that the data space is
recursively divided into four or eight instead of two. So by increasing the number of
child nodes, we would expect a better separation of the data.

In the medium term, another close alternative to Kd-tree could be Ball-tree. In the
latter, the subspaces of data resulting from partitioning correspond to hyperspheres.
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So, if we use Ball tree in our solution, the calculations of fusion tests are performed
on hyper-spheres instead of hyper-rectangles. The spatial distribution of the clus-
ter points could be more accurate with hyper-spheres than hyper-rectangles although
they are more expensive to compute. Another interesting binary tree data structure
to implement is Vantage point trees (Vp-tree)(Nielsen et al., 2009). The process of
partitioning spaces does not depend on the dimension but the distance metric. For
each node, its left child node is associated with a hyper-sphere. The other child is as-
sociated with everything external to this hyper-sphere. Another perspective consists
in associating a weight vector to each data point where each ith weight corresponds
to the degree of belonging of the point to cluster j. This weight is calculated accord-
ing to its distance from each of the centroids or hyper-rectangles. This operation is
performed only at the Kd-tree root.

Decwa
The third contribution deals with the density-based methods paradigm. It corre-

sponds to a different clustering approach compared to partition-based methods, mainly
on cluster definition. A cluster is a dense region of points separated from other clusters
by less dense regions. This paradigm’s methods can detect clusters of arbitrary shapes
without having to inform the number of clusters a priori.

Nevertheless, they present difficulties when dealing with complex spatial data dis-
tributions. Among these difficulties, they may consider low-density clusters considered
as groups of outliers or have them absorbed by a cluster of greater density while these
low-density clusters represent a phenomenon in their own right. Moreover, they can
lead clusters of similar density and very close in space to form a single cluster when
they should not be. The third difficulty is related to the phenomenon of the curse of
dimensionality. Indeed, when the data are of very high dimensionality, the methods
may not work properly as for low dimensionality data.

We have designed, Decwa, a density-based clustering algorithm based on a prob-
abilistic approach. Decwa proposes a new way of dividing into homogeneous clusters
and a new way of aggregating clusters. In an environment of high dimensional data
spaces, these two methods lead to the separation, on the one hand, between low-density
clusters and outliers and, on the other hand, between clusters that are close in density
and spatially. Decwa consists of four consecutive steps. First, the dataset is projected
on a one-dimensional space via the minimum spanning tree (MST) where nodes are
points and edges are inter-point distances. So the new space consists only of spatial
inter-point distances. Then, from this space, a probability density function (𝑝.𝑑.𝑓)
is computed to obtain different distances’ representation level. Then the process of
dividing the set of points into clusters begins. In this process, we have proposed a
new way of extracting clusters via the 𝑝.𝑑.𝑓 jointly exploited with the MST. It results
on homogeneous clusters on the aspect of spatial density, i.e., each cluster follows its
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own probability law. These clusters are only intermediate and may need to be merged
to produce final clusters. For this, we have proposed an agglomeration method. Two
clusters are merged if only they are relatively close spatially and in probability laws.
The spatial proximity is based on the distance proposed by the user, while the prob-
abilistic proximity is calculated by Wasserstein distance. Agglomeration is performed
using the MST to avoid having to recalculate the inter-point distances.

Experimentally, we compared the robustness of Decwa against Hdbscan, Denclue
and Dbclasd, the most well-known and efficient methods among density-based meth-
ods. The datasets used are quite varied in type, cardinalities and dimensions. The
actual data include biological, medical, botanical and textual data. Different distances
have been used, including Cosine, Manhattan, Braycurits and Euclidean distances. In
terms of clustering quality, Decwa outperformed its competitors by a wide margin of
23%. Especially on very high dimensional data (containing up to 26833 dimensions),
Decwa is, on average, 29% better than the others. Moreover, Decwa has the best
results on datasets with low-density clusters with a margin of 20%. For datasets with
similar density and spatial clusters, it is better with a margin of 23%.

In the short term, other kernels of the kernel density estimation method could be
tested. For example, apart from the Gaussian kernel used in Decwa, it is interesting
to study the impact of cosine, triangular, triweight and uniform kernels during cluster
extraction. Moreover, Decwa could be experimented on more complex data such as
multidimensional time series.

In the long term, Decwa could belong to the multi-view clustering methods ap-
proach (Fu et al., 2020). At this stage, it will be able to cluster data from heteroge-
neous data sources. Indeed, data could be represented under different views. A view
corresponds to a data representation. In the presence of these different data sources,
it is necessary to deploy strategies that extract the most useful knowledge from each
source to produce a global clustering closer to the ground truth than using only one
data source.
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In this part, we complete the content of the related work chapter as well as the
Kd-means experimental part.

.1 Additional related work
We extend the the optimization strategies for k-means section II.4. Indeed in this
section, we discussed the optimizations brought specifically to k-means. In the ap-
pendices, specifically in .1.1, we discuss optimization techniques for supervised and
unsupervised classification methods. Then in .1.2, we complete the part on k-means
versions based on geometric reasoning (II.4.1.5).

.1.1 General strategies

This sub-section extends the optimization strategies for k-means section II.4. We
discuss strategies that improve algorithms’ execution time (supervised, unsupervised
or semi-supervised). The first three strategies focus on distances, i.e., functions that
measure similarity between points. Indeed, distance is an essential function in many al-
gorithms performing classification. So accelerating the distance calculation accelerates
the algorithms’ execution time. The last strategy is devoted to dimension processing.
The distance functions and other tools necessary for classification are executed on data
points and thus on their dimensions. In this sense, dimensions are also concerned with
optimization strategies. These could lead to considerable execution time acceleration
and improve classification quality if the reduced format data are more reliable for
classification methods than the original data.

.1.1.1 Distance reformulation

The distance, a function measuring the similarity between two points, can be broken
down into several independent parts. Some parts can be calculated and stored in
advance of the process of an algorithm and remain unchanged. Only the other parts
could be calculated during the process. In this way, the calculation of distances is
accelerated in time. As an example, the squared Euclidean distance can be expressed
from the inner products (equation 1). So in this equation, if we consider that 𝑥𝑖 is
a point in the dataset known in advance and 𝑐 is another point that remains to be
determined during the process, we could still calculate and store < 𝑥𝑖, 𝑥𝑖 > in advance
(Hamerly and Drake, 2015a).

||𝑥𝑖 − 𝑐||2 =< 𝑥𝑖, 𝑥𝑖 > −2 < 𝑥𝑖, 𝑐 > + < 𝑐, 𝑐 > (1)
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.1.1.2 Reduced distance

To speed up the process execution time, the clustering algorithms replace the distances
they usually use with faster alternatives called reduced distances (Hamerly, 2010). A
reduced distance is an amount of dissimilarity that is more efficient to compute than
the actual distance, but which preserves relative rankings. It is suitable when one is
not looking for the value of the actual distance itself but just the relative orders of the
points in relation to a given point as generated by the actual distance. In this case, it
is more convenient to use an alternative distance than the actual distance.

For example, in k-means, the used distance is the Euclidean distance. The alter-
native distance could be the squared Euclidean distance; this avoids calculating the
square root.

.1.1.3 Partial distance search (PDS)

PDS (Bei and Gray, 1985) is a way to speed up the search for the nearest points.
It is used in algorithms where knowledge of exact distances is not necessary but only
minimal distance. This is the case for k-means, when searching for the nearest centroid
for a given point 𝑥. Suppose we already have 𝑚 the distance between 𝑥𝑖 and 𝑐1 and
want to know if 𝑐2 is closer to 𝑥𝑖 than 𝑐1. The distance between 𝑥 and 𝑐2 can be
computed according to the equation 2. The value of 𝑝 is the dimension index such
that 0 ≤ 𝑝 < 𝑑 with 𝑑 the number of dimensions. As 𝑝 is incremented, the sum in the
equation 2 increases. If it exceeds 𝑚, for a value of 𝑝, the distance calculation is then
stopped because it cannot be close to 𝑥𝑖 more than 𝑐1 even if the distance calculation
process continues to the last dimension.

𝑑𝑖𝑠(𝑥𝑖, 𝑐2) =
𝑑−1∑︁
𝑝=0

𝑑𝑖𝑠(𝑥𝑖,𝑝, 𝑐2,𝑝) (2)

.1.1.4 Dimensionality reduction

The calculation of distances between points involves taking into account the dimensions
of these points. Indeed, the greater the number of dimensions, the more expensive the
distance is. Another consequence of having a large number of dimensions is that the
data space volume is very large. As a result, in this space, data points often constitute
a small unrepresentative dataset, making the classification task challenging. This
problem is known as the curse of dimensionality.

The dimensionality reduction (Cunningham and Ghahramani, 2014) is a solution
to reduce the both problems. It is an operation transforming a dataset from a large
dimensional space to a smaller dimensional space. Although it is used for 2D or 3D
visualization, it used to keep only the important information in the data and to reduce
the algorithms’ execution time (Boutsidis et al., 2010). Dimensionality reduction is
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type advantages limitations

distance re-
formulation

speed up distance calcula-
tions

requires to store for
each point a list of
pre-calculated results

reduced dis-
tance

not suitable for methods
requiring precise distances

pds speeds up distance
calculations on high-
dimensional data

dimensionality
reduction

reduces the algorithmic
complexity in time of the
calculations performed on
the points because the
dimension is considerably
reduced

classification quality af-
fected if significant useful
information is lost

Table 1: Advantages and drawbacks of general optimization strategies

usually applied upstream of the classification process. It is at the process beginning
that the space resulting from the dimensionality reduction is exploited.

Different approaches to dimension reduction exist. Dimension selection (Chan-
drashekar and Sahin, 2014) consists in choosing as many as possible non-redundant and
reliable dimensions according to pre-defined metrics. Another known approach, based
on linear algebra (e.g., PCA, SVD) (Boutsidis et al., 2010, Tipping and Bishop, 1999),
performs a projection from the high dimensional data space into a lower-dimensional
space while trying to preserve essential properties of the original data. This projection
leads to new dimensions. The reduction is also carried out by deep neural networks
(autoencoders)(Makhzani et al., 2015). They consist in learning how to encode a
dataset and then decode it to reproduce the original data. Indeed, the data in en-
coded format represents the dataset in lower dimensions that could be used by other
algorithms.

We point out that the reduction of dimensionality could have a significant time cost.
If several executions of the classification method are performed and the reduction of
dimensionality is called once. In that case, there could be a significant time-saving.

.1.1.5 Conclusion

The first three above-mentioned strategies (table 1) are dedicated to accelerating the
distance calculation. The distance reformulation decomposes the distance function
into sub-functions, among which the results are obtained and stored in advance of
the classification process. It requires nevertheless to store for each point a list of
pre-calculated results. The reduced distance strategy associates to a distance another
equivalent one less costly in time. During the process, the alternative is used instead of
the actual distance. Even if both distances do not produce the same similarity values,
they propose the same ordered list of points (e.g., in case of sorting task). The partial
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distance search (PDS) approximates a distance value between two points using only
a subset of dimensions to assert a given hypothesis is true. It is applicable for large
spaces and also when actual distance values are not required. The reduced distance and
PDS strategies are not suitable for classification methods requiring precise distances.
However, they are suitable for nearer neighbor calculations, usually requiring only
sorting the points. The fourth strategy, dimensionality reduction, does not implicitly
accelerate the execution time but it could contribute to it indirectly. The strategy
produces another subset of dimensions from the original dimensional space. This new
space is then consumed by a classification method. Although this space reduction
could lead to an acceleration of runtime, the classification quality could be poorer or
even worse if there was too much loss of useful information during the reduction.

.1.2 Compare-means

2× 𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑏) < 𝑑𝑖𝑠(𝐺𝑏, 𝐺𝑎) (3)

We complete the section on versions of k-means based on geometric reasoning and
particularly Compare-means (II.4.1.5.1).

Let 𝑥𝑖, 𝐺𝑎, 𝐺𝑏 ∈ 𝑅𝑑, 𝑥𝑖 a point, 𝐺𝑏 the actual centroid of 𝑥𝑖 and 𝐺𝑎 another centroid.
In the following, we prove that Compare-means assertion based the inequation 3 is
true. Indeed, the assertion states that if this inequation is validated, then 𝐺𝑎 cannot
be closer to 𝑥𝑖 than 𝐺𝑏. Therefore, there is no need to calculate the distance between
𝑥𝑖 and 𝐺𝑎. To prove the veracity of the assertion , the following triangular inequality
is used:

𝑑𝑖𝑠(𝐺𝑎, 𝐺𝑏) ≤ 𝑑𝑖𝑠(𝐺𝑎, 𝑥𝑖) + 𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑏) (4)

which implies
𝑑𝑖𝑠(𝐺𝑎, 𝐺𝑏)− 𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑏) ≤ 𝑑𝑖𝑠(𝐺𝑎, 𝑥𝑖) (5)

, by replacing in the left side 𝑑𝑖𝑠(𝐺𝑎, 𝐺𝑏) by II.6 (inequality that compare-means
considers true), we obtain :

2× 𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑏)− 𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑏) ≤ 𝑑𝑖𝑠(𝐺𝑎, 𝑥𝑖) (6)

So 𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑏) <= 𝑑𝑖𝑠(𝐺𝑎, 𝑥𝑖) which proves that if 2 × 𝑑𝑖𝑠(𝑥𝑖, 𝐺𝑏) < 𝑑𝑖𝑠(𝐺𝑎, 𝐺𝑏) then
necessarily 𝐺𝑎 cannot be closer to 𝑥𝑖 than 𝐺𝑏.
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.2 Kd-means

.2.1 BIRCH

Although it has some similarity with Kd-means because it performs clustering via a
tree structure called CF-Tree, it is nevertheless not comparable to Kd-means because
it has not been specifically developed to estimate the number of clusters 𝑘. Moreover,
Birch should be followed by another clustering algorithm (e.g., k-means) to refine its
clustering result. Consequently, the problem of estimating 𝑘 clusters reappears because
𝑘 is necessary to produce the final result of clusters. However, we experimented Birch
to study the clustering results produced by its hierarchical process.

Birch (Balanced Iterative Reducing and Clustering Hierarchies) (Zhang et al., 1996)
is a clustering method proposing a hierarchical data structure called CF-tree in which
it integrates the points. In CF-tree, each node can have no more than 𝐵 subclusters
whose radius 𝑅 does not exceed a threshold 𝑇 . The Birch process consists of sequen-
tially integrating the points into CF-Tree. At each given point, the tree is traversed to
the nearest leaf, and then the nearest subcluster is identified in the leaf. If the addition
of this point in this subcluster involves 𝑅 > 𝑇 , then a new subcluster is added. If
adding leads to the number of subclusters exceeding 𝐵, then the leaf is split in two,
which are initialized with the furthest subclusters. Then the others are assigned to one
of the two nearest leaves. This task of updating and adding nodes is repeated from
child to father up to the root. If, during the process, the tree does not fit in memory,
then the tree is rebuilt while aggregating the subclusters. One of its advantages is that
it does not require the value of 𝑘. Nevertheless, it tends to produce a large number of
clusters. A clustering algorithm is usually needed (k-means or hierarchical clustering
algorithm) that clusters the final Birch results. This brings us back to the problem of
how to estimate 𝑘. Moreover, the clusters it produces are spherical, so it has the same
limitations as k-means in terms of the types of clusters to be found.

In this part we compare the Birch (Zhang et al., 1996) clustering algorithm with
the three others presented in the section III.3.8 . Note that we consider the same
three metrics used to compare the three algorithms. In the experiments we focus only
on subclusters of the CF-tree leaves. The value of threshold 𝑇 has been initialized
as follows: 𝑇 = 𝑅𝑟𝑜𝑜𝑡 * 𝑞 where 𝑅𝑟𝑜𝑜𝑡 the average distance between the points and
the centroid of 𝑋 and 𝑞 ∈]0, 1]. 𝑇 is then updated during Birch execution when the
CF-Tree is reconstructed as recommended by the Birch authors. Similarly, the number
of subclusters per node 𝐵 was also tuned. So, 𝐵 =

√︁
𝑐𝑎𝑟𝑑(𝑋) * 𝑏 with 𝑋 the dataset

and 𝑏 ∈]0.1]. The results in the table correspond to the mean of the results.
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.2.1.1 Analysis of Birch’s results

Overall, in synthetic datasets, Birch overestimates the number of clusters compared to
the actual 𝑘 and even to the number of clusters produced by Kd-means and G-means.
Birch overestimates with respect to X-means for 𝑘 = 10 and 𝑘 = 32. The sensitivity of
Birch to the order of the point entries, the overlap and shape of the clusters (Birch tends
to capture only spherical clusters), the maximum number of subclusters required for
each node, and the dataset’s size results in Birch results that are not very homogeneous.
For a given real 𝑘 and two datasets with the same data generation process (synthetic
datasets), it could produce from the first dataset hundreds of subclusters and the other
thousands. For example, for 𝑘 = 10 and 𝑑 = 8, Birch produces 12622 subclusters for
𝑛 = 1 × 106 and 170 subclusters for 𝑛 = 4 × 106. In case of real datasets, Birch
overestimates 𝑘 in a very exaggerated way compared to competitors and the real 𝑘.
Except for the dataset japeneseVowels when Birch is compared to G-means, both
overestimate 𝑘.

Compared to quality measurement 𝑣𝑖, Kd-means is clearly better than Birch. It
outperforms it on all datasets. Birch slightly outperforms X-means and/or G-means,
e.g. for (𝑘 = 10, 𝑑 = 6, 𝑛 ∈ {2 × 106, 4 × 106}) and (𝑘 = 10, 𝑑 = 8, 𝑛 = 4 × 106)
in synthetic datasets. In real datasets, Birch produces better quality in only three
datasets compared to G-means but on average it has a 𝑣𝑖 of 11.9 compared to 9.7 for
G-means. It exceeds X-means only on one dataset.

In terms of time execution, even though it is incremental, the construction of CF-
tree is slow. For 𝑘 = 10, the maximum time performed by the other three algorithms
is 3061 seconds (X-means), while the minimum time for Birch is 5296 seconds on syn-
thetic datasets. The same trend is observed for the other 𝑘 values. The average time
executions (in seconds) of the four algorithms on the actual data are respectively for
Birch, G-means, X-means, and Kd-means of 54,731, 25,770 , 4,938 and 136. Birch is
more than twice as slow as G-means and 402 times slower than Kd-means. Several
factors explain the slowness of Birch. They include 1) Calculating the distance be-
tween the point that is about to be added and several nodes and subclusters at each
depth of CF-tree. 2) Calculating the distance between several subclusters in order to
merge or fragment the node. 3) Constantly update and eventually split parent nodes
recursively when adding a point. 4) Reconstruction of the CF-tree when it no longer
fits in memory. 5) Medium and large dimensional datasets are difficult to support. 6)
sensitivity to the order of points.

In summary, according to the analyses made on the quality measure 𝑣𝑖 and the
estimate of 𝑘, Birch should be coupled with another algorithm to refine and aggregate
the clusters it has produced. Depending on the execution time, it is slow compared to
competitors. Coupling it to another algorithm (e.g., k-means) takes even more time,
and the user has to provide as an input to the added algorithm a value of 𝑘.
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Birch
k d n k(estimated) vi Δ𝑡
10 4 1× 106 5025 5.82 5296

2× 106 637 2.76 31726
4× 106 3920 4.31 84728

6 1× 106 119 2.85 6040
2× 106 48 1.34 30705
4× 106 169 1.60 89192

8 1× 106 12622 3.24 10943
2× 106 1968 2.34 41103
4× 106 170 1.70 62366

32 4 1× 106 8881 4.72 9222
2× 106 224 1.77 53734
4× 106 6885 4.41 105730

6 1× 106 2080 1.79 11120
2× 106 403 2.71 39967
4× 106 553 1.95 98346

8 1× 106 1618 1.91 11528
2× 106 231 1.92 68853
4× 106 218 1.58 134361

80 4 1× 106 377 1.99 9757
2× 106 460 1.50 54712
4× 106 377 1.78 214153

6 1× 106 1003 2.13 9047
2× 106 140 1.52 46668
4× 106 6642 1.81 169094

8 1× 106 357 1.78 12314
2× 106 371 1.26 32205
4× 106 341 1.34 165503

Table 2: Experimental results from Birch’s execution of the synthetic data. Note that Δ𝑡
is expressed in seconds.

dataset k d n k(estimated) vi Δ𝑡
vehicle 4 18 1× 106 185367 14.9 19878
satimage 6 36 1× 106 78816 8.8 15977
japaneseVowels 9 14 1× 106 133 8.3 5586
fourier 10 76 1× 106 121954 6.4 15513
pendigits 10 16 1× 106 70560 15.9 39768
fashionmnist 10 784 70000 36655 12.8 217
ldpa 11 5 164860 87375 14.6 381
walking 22 4 149332 20076 7.1 159
letter 26 16 999999 10580 11.6 18430
zernike 47 47 1× 106 81693 16.6 49564
emnist 62 784 697932 92767 14.1 55956

Table 3: Experimental results from Birch’s execution of the real data. Note that Δ𝑡 is
expressed in seconds.
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