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Tshi! -th‰u khi" h#o ts"i, m$ kiann tshi!-buŽ ts ̃hong-thai. 

ÒIf the root firmly anchored, there is no need to fear typhoons passing over the treetop.Ó 

Metaphor for the importance of building a good foundation. 

- Taiwanese idiom (Taiwanese Hokkien) 
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M%-kiang tshit-ngia&t-pˆn kˆi kœi, ch’ phˆ tshit-ngia&t-pˆn kˆi shœi. 

ÒFear not the ghost of mid-July*, but do fear the flood in mid-July*.Ó 

Conventional observation of the severity of flooding and landslides due to the heavy precipitations 

brought by typhoons in July. 

- Taiwanese idiom (Taiwaense Hakka, H—iliu!k dialect) 
*July in Lunar Calendar is traditional Ghost Month; it corresponds to late August - early September in Gregorian Calendar. 

 

 

 

 ÒÉand all natureÕs wildness tells the same story. Storms of every sort, torrents, 

earthquakes, cataclysms, Ôconvulsions of nature,Õ etc., however mysterious and lawless at 

first sight they may seem, are only harmonious notes in the song of creation, varied 

expressions of GodÕs love.Ó 

- John Muir, Our National Parks, Chapter 4: The Fountains and Streams of the Yosemite 

National Park  
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RŽsumŽ 
Les perturbations naturelles ont une influence importante sur la structure, la composition et le 

fonctionnement des for•ts tropicales et un r™le dans la rŽgulation des cycles biogŽochimiques. 

La frŽquence et lÕintensitŽ des perturbations naturelles sont modifiŽs par les changements 

climatiques : une meilleure connaissance de leur mŽcanisme dÕaction est nŽcessaire pour 

prŽdire les consŽquences de cette modification. La modŽlisation permet dÕŽvaluer le r™le de 

chacun des processus Žcologiques et leur lien avec les facteurs environnementaux. Les outils 

de la tŽlŽdŽtection nous informent sur la structure et le fonctionnement des for•ts ˆ large 

Žchelle, et peuvent •tre utiles ˆ la calibration et la validation des mod•les de vŽgŽtation. Dans 

cette th•se, jÕai employŽ ces deux approches pour examiner comment les for•ts tropicales sont 

fa•onnŽes par les perturbations naturelles, notamment le vent, qui est un facteur majeur de 

perturbation dans de nombreuses rŽgions tropicales. 

Dans un premier temps, jÕai ŽvaluŽ la transfŽrabilitŽ dÕun mod•le individu-centrŽ et 

spatialement explicite via un test de sensibilitŽ et la calibration des param•tres globaux. Le 

mod•le prŽdit correctement la structure de la for•t sur deux sites contrastŽs, et sa rŽponse est 

cohŽrente avec les variations du for•age climatique. La calibration dÕun petit nombre de 

param•tres clŽs a ŽtŽ nŽcessaire, dont notamment celui qui contr™le la mortalitŽ. 

Pour Žtudier la sensibilitŽ du mod•le ˆ la mortalitŽ, jÕai mis en Ïuvre un module de 

dŽg‰ts de vents fondŽ sur les principes biophysiques et couplŽ avec la vitesse de vent, afin de 

modŽliser les rŽponses de la for•t aux Žv•nements de vent extr•me. Avec lÕaugmentation du 

niveau de perturbation, la hauteur de la canopŽe diminue de mani•re constante mais la 

biomasse montre une rŽponse non-linŽaire. LÕintensitŽ du vent a un fort impact sur la hauteur 

de la canopŽe et la biomasse, mais pas la frŽquence des Žv•nements de vent extr•me. 

Finalement, jÕai testŽ si les donnŽes radar des satellites Sentinel-1 pourraient servir ˆ 

dŽtecter les trouŽes dues aux perturbations naturelles en Guyane fran•aise. Les donnŽes 

Sentinel-1 dŽtectent plus de trouŽes naturelles au-dessus de 0.2 ha que les donnŽes satellitaires 

optiques, et elles prŽsentent un patron spatial cohŽrent avec les images optiques. Le niveau de 

perturbation ne varie pas en fonction de lÕaltitude. Nous avons trouvŽ plus de perturbations 

pendant les saisons s•ches, ce qui pourrait •tre dž ˆ la rŽponse tardive des prŽcipitations plut™t 

quÕˆ la rŽponse directe de la s•cheresse. 

En conclusion, cette th•se dŽmontre que lÕintŽgration entre la modŽlisation et la 

tŽlŽdŽtection Žclairent les effets des perturbations naturelles sur les for•ts tropicales. Les 

rŽsultats qui en dŽcoulent peuvent servir ˆ Žtudier dÕautres types de perturbations et leurs 

interactions sur une large Žchelle.
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Abstract 
Natural disturbances have an important influence on the structure, composition and 

functioning of tropical forests and a role in the regulation of biogeochemical cycles. The 

frequency and intensity of natural disturbances are modified by climate change: a better 

knowledge of their mechanism of action is necessary to predict the consequences of this 

modification. Modeling allows us to evaluate the role of each of the ecological processes and 

their link with environmental factors. Remote sensing tools inform us about the structure and 

functioning of forests at large scales, and can be useful for the calibration and validation of 

vegetation models. In this thesis, I employed both approaches to examine how tropical forests 

are shaped by natural disturbances, particularly wind, which is a major disturbance factor in 

many tropical regions. 

First, I evaluated the transferability of a spatially explicit, individual-based model via 

sensitivity testing and calibration of global parameters. The model correctly predicts forest 

structure at two contrasting sites, and its response is consistent with variations in climate 

forcing. Calibration of a small number of key parameters was required, including the 

parameter controlling mortality and crown allometry. 

To investigate the sensitivity of the model to mortality, I implemented a wind damage 

module based on biophysical principles and coupled with wind speed to model forest 

responses to extreme wind events. With increasing disturbance level, canopy height decreased 

steadily but biomass showed a non-linear response. Wind intensity had a strong impact on 

canopy height and biomass, but not the frequency of extreme wind events. 

Finally, I tested whether radar data from Sentinel-1 satellites could be used to detect 

gaps due to natural disturbances in French Guiana. The Sentinel-1 data detected more natural 

gaps above 0.2 ha than the optical satellite data, and they showed a spatial pattern consistent 

with the optical images. The level of disturbance did not vary with altitude. We found more 

disturbance during dry seasons, which could be due to the delayed response of precipitation 

rather than the direct response of drought. 

In conclusion, this thesis demonstrates that the integration between modeling and 

remote sensing sheds light on the effects of natural disturbances on tropical forests. The 

resulting results can be used to study other types of disturbances and their interactions on a 

large scale.  
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GENERAL INTRODUCTION  
Forests, which are a rich reservoir for biodiversity and play an essential role in the global 

biosphere and biogeochemical cycles, are increasingly threatened by human activities and 

climate change. Natural disturbances, while being an integral element of the forest dynamics, 

are also being altered by climate change. Wind, and in particular tropical cyclones, is a major 

disturbance force that can cause considerable tree mortality, and tropical cyclones have been 

shown to be related to forest properties worldwide. However, knowledge on the mechanisms 

by which cyclonic winds drive forest structure and dynamics remains insufficient, due to the 

limitations of empirical studies, whose results are inconsistent and contingent on multiple 

factors. In order to predict and anticipate how changes in wind disturbance patterns will 

influence forest cover, structure, diversity and functioning in the future, we need both 

sufficient observational data on current forest disturbances, and a comprehensive 

understanding on how wind disturbance affects forests, including tree mortality. 

Studying the consequences of natural disturbances on forests have been facilitated by 

computer models that include detailed representations of individual-level processes. However, 

the realism and transferability of such highly detailed models need to be assessed and 

improved to make sure they are applicable over a large scale at different sites: this depends on 

a mechanistic representation of key biological processes in a forest and on the availability of 

spatially distributed data on climate and plant functional composition. In addition, tree 

mortality needs to be explicitly coupled to wind disturbances in the models to allow for 

explorations on the effects of changing disturbance patterns. Model improvement on wind-

induced tree mortality needs to be implemented in particular for species-rich, structurally 

complex tropical forests, because they are the ecosystems most impacted by climate change 

and human activities, but also the least understood. 

Finally, global-scale forest monitoring with high spatial and temporal precision is 

increasingly possible with advances in remote sensing technology and satellite data 

collection. Near-real time monitoring of natural disturbance events remains challenging, but it 

is worthwhile to address how remote sensing could further contribute to characterization of 

fine-scale disturbance patterns, which may help constrain forest model parameterization, 

and/or serve to validate model products. 

In this thesis, I studied wind disturbance from the perspectives of forest modeling and 

remote sensing. I examined the transferability of the spatially explicit individual-based model 

TROLL (Chave, 1999; MarŽchaux and Chave, 2017) by calibrating a number of empirical 

parameters at two contrasting forest sites through model inversion, and by examining model 

responses to variations in a range of globally consistent climate forcing. I then implemented a 

mechanistic model of wind-induced tree mortality, ForestGALES (Gardiner et al., 2008, 
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2000; Hale et al., 2015), into the TROLL model, in order to investigate the long-term impacts 

of recurrent wind disturbances on forest structure and dynamics. I also explored the potential 

to assess natural disturbances using synthetic aperture radar (SAR) data from the Sentinel-1 

satellite, with near-real time coverage (once every 12 days) at a fine spatial resolution (10 '  

10 meters). Using the data set treated by a deforestation detection algorithm (Ball•re et al., 

2021; Bouvet et al., 2018), I devised a protocol to select formation of natural forest gaps in 

French Guiana from 2016 to 2019 using GIS tools, and analyze their spatiotemporal pattern 

and dynamics. Figure 1 summarizes the different research topics to which I attempted to 

contribute in this thesis. 

I describe in detail the various methods and approaches used in this work and how they 

connect to each other and to the research topics, and present the results in the form of three 

scientific articles and manuscripts. Finally, I summarize and contextualize the results from the 

three articles, describe the limitations and caveats of these studies, and highlight future 

perspectives. 

 

 

Figure 1. Basic roadmap of summarized research topics of the thesis and corresponding 
chapters. 

 

Forest and the Wind of Change 

Why forests are important 

Forests are an essential part of our biosphere. They harbor the majority of terrestrial 

biodiversity on Earth, and account for the majority of terrestrial gross primary production 

(GPP), total plant biomass, and living carbon stocks (Pan et al., 2013). In addition, forests 

participate in the water cycle by replenishing atmospheric moisture, promoting local cooling 

and rainfall, and enhancing groundwater retention and filtration (Ellison et al., 2017), which 

indirectly provides benefits to nearby agricultural systems (Cohn, 2017). Forests provide 
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invaluable resources such as timber, food, medicinal plants and fresh water (Brandon, 2015), 

and also represent important spiritual and culture values (Henning, 1998; Sheil and Wunder, 

2002). Many human communities have lived in or around natural forests for many thousands 

of years: the livelihood and wellbeing of these populations especially depend on natural forest 

resources that they have actively harvested and managed (Davis and Wali, 1994; Toledo et 

al., 2003). 

Forests are tightly linked with the global carbon cycle, and thus have a crucial role in 

mitigating climate change (Mitchard, 2018). They act as a carbon sink by sequestering a large 

amount of atmospheric carbon through photosynthesis, but can also become a carbon source 

when they undergo degradation and deforestation due to logging, agricultural conversion and 

forms of land use change (Baccini et al., 2017; Bullock et al., 2020), when climate change 

induces environmental stress and alters tree species distribution and demography (growth, 

mortality and recruitment), or when climate change causes changes in patterns of disturbance 

events. Disturbances may be mild and frequent, or conversely major and rare, and the 

intensity and recurrence time of disturbance events control to a large extent forest carbon 

storage ability (Pugh et al., 2019): increases in the frequency and intensity of disturbances 

may cause substantial tree mortality, reduce forest productivity and reduce the forestÕs 

capacity to store carbon (Franklin et al., 2016). 

Forests are complex in structure and diversity, varying over a wide range of spatial and 

temporal scales, and they encompass a large array of interactions among individual trees that 

are challenging to disentangle, between trees and the abiotic environment, and between trees 

and other organisms. Tropical forests are particularly well-known for their rich biodiversity - 

they alone harbor more than half of the total terrestrial biodiversity (Gardner et al., 2010) - 

and the great complexity in their spatial structure, biogeochemical cycle and functioning 

(Mensah et al., 2020; Townsend et al., 2008). This means that their responses to climate 

change and disturbances are likely highly heterogeneous and site-specific. In addition, 

tropical forests have been under particularly strong pressure of deforestation and forest 

degradation and other forms of human disturbance in recent decades, and are also facing 

increasing threat of climate change and changes in disturbance regimes (Edwards et al., 

2019). 

 

Disturbances in forests 

The study of disturbances in ecosystems has long held a prominent place in ecology. In fact, 

some of the earliest ecological theories arose from the interest in better characterizing how 

plant communities go through ecological succession after experiencing disturbance 
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(Clements, 1916; Gleason, 1926). Disturbances are important drivers of change in forest 

structure and dynamics (Ding et al., 2012; Kurz et al., 2008; Uriarte et al., 2009). As 

anthropogenic impacts on forests around the world have intensified in recent decades, it has 

become increasingly vital to assess how disturbance regimes will  change due to 

anthropogenic effects, and how these changes will impact forest biodiversity and functioning 

(Newman, 2019; Seidl et al., 2017). Indeed, this information could aid plan appropriate 

conservation and management strategies (Charron and Hermanutz, 2016). 

One definitions of disturbance came from Grime (1977), which defined it as the Òpartial 

or total destruction of the plant biomassÓ, referring to environmental factors that determined 

plant growth strategy. Pickett and White (1985) offered a more general definition with an 

ecosystemic view: Òany relatively discrete event that disrupts the structure of an ecosystem, 

community, or population, and changes resource availability or the physical environment.Ó 

Disturbances can take the form of extreme climatic conditions, such as heatwave, drought, 

frost, heavy precipitation or high wind speed; exogenous events causing a sudden and drastic 

change in the environment, such as lightning, storm or volcanic eruption; or events involving 

an endogenous biotic component of the ecosystem, such as forest fires (which requires the 

accumulation of flammable plant biomass), or outbreaks of pests or pathogens (Reichstein et 

al., 2013; Turner, 2010). A distinction should be made between single disturbance events and 

the disturbance regime, which refers to the overall spatiotemporal pattern of disturbance 

events over a longer time period. A disturbance event can be characterized by its size (spatial 

extent of influence), duration, intensity (energy released by the disturbance), and severity 

(ecological effect of the disturbance), whereas a disturbance regime can be characterized by 

its spatial distribution, return frequency, intensity, and seasonality (Turner 2010, Newman 

2019). 

Each disturbance type has complex effects on forests, and different types of disturbances 

interact with each other in complex ways: Figure 2 provides an overview of the various 

disturbance types and their effects on various physiological processes in a forest ecosystem, 

as well as the interaction between different disturbances and processes. 
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Figure 2. Schematic diagram illustrating the impacts, interactions and feedbacks between 

extreme climate events and forest processes. Solid arrows show direct impacts; dashed arrows 

show indirect impacts. The relative importance of the impact relationship is shown by arrow 

width. Reproduced from Reichstein et al. (2013). 

 

Mild disturbance events may cause non-lethal structure damages to trees, such as loss of 

leaves and branches, and can alter physiological processes such as photosynthesis, respiration 

and growth, resulting in changes in the forestÕs carbon balance. Other changes, such as 

increased levels of volatile organic compounds, could directly affect global biochemical cycle 

(Guenther et al., 1995). More intense disturbances trigger immediate responses such as tree 

mortality and destruction of live biomass (McDowell et al., 2020; Reichstein et al., 2013). 

Disturbances may affect different species to a different degree. Species-specific response 

to disturbance could lead to changes in relative species abundance and community 

composition, triggering successional dynamics or altering the successional trajectory 

(Pulsford et al., 2016), and could also create selective pressures that shape long-term 

adaptation and evolutionary dynamics (Jentsch and White, 2019). 

At the landscape scale, disturbances cause spatial and temporal heterogeneity due to their 

sporadic occurrence and spatial location: recurrent forest fires and wind blowdowns, for 

example, create a mosaic of forest patches in different successional stages, and promote 

species diversity at the landscape scale (Magnabosco Marra et al., 2014; Turner, 2010). 

Although this thesis focuses on tree assemblages, it is important to keep in mind that 
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disturbance also have significant impact over other organisms in a forest, such as lianas and 

herbaceous plants, animals, microorganisms, as well as abiotic components such as soil 

nutrients. 

 

Wind disturbances and tropical cyclones 

Wind is an important disturbance agent with immediate and long-term effects on forests 

(Mitchell, 2013). Chronic low-intensity winds can cause plastic physiological responses in 

trees, such as the formation of flexure wood, which alter tree allometry and stature (Telewski, 

1995). Stronger winds can cause partial damage to trees through branch snapping or 

defoliation; winds above a certain intensity can exceed the treeÕs resistance, causing 

windthrows (stem breakage, uprooting; see Figure 3) (Quine et al., 2021). Although 

windthrows often lead to tree mortality, although re-sprouting capacity or multi-stemming can 

increase the probability of survival after windthrow (Su et al., 2020). 

Wind-driven disturbances come in a variety of forms. In tropical forests near the 

Equator, downburst winds can result in large areas of forest damage (Garstang et al., 1998).  

Storms are another common type of wind disturbance: tropical cyclones frequently affect 

forests in coastal regions of the subtropics, bringing strong wind and heavy precipitation (Lin 

et al., 2020). Figure 4 shows the global pattern of tropical cyclone occurrences, illustrating 

major regions where tropical cyclones often make landfall: the Western North and South 

Pacific, North Atlantic and the Indian Ocean. 

 

     

Figure 3. Spruce trees suffering from stem breakage (left) and uprooting (right) in Harz 

National Park, Germany. Photography by E-Ping Rau. 

 



 15 
 

 

Figure 4. Record tracks of tropical cyclones from 1945 to 2006, with data from the Joint 

Typhoon Warning Center (JTWC) and the U.S. National Oceanography and Atmospheric 

Administration (NOAA). Reproduced from Xi (2015). 

The formation and intensity of tropical cyclones are controlled by climate in complex 

ways. Factors predictive of tropical cyclone formation and intensity include vertical wind 

shear (change in wind speed and/or wind direction with altitude) or sea surface temperature, 

although a general theory on tropical cyclone formation is currently lacking (Walsh et al., 

2016). 

Studies have shown that tropical cyclone regime have been affected by climate change in 

recent decades, and have predicted that changes will continue in the near future: globally, 

tropical cyclone frequency is projected to decrease under climate change in most models, 

while tropical cyclone intensity is commonly projected to increase (Cha et al., 2020; Knutson 

et al., 2020). The decrease in tropical cyclone frequency is partly attributable to greater 

warming in the mid- and upper troposphere relative to the lower troposphere, which leads to a 

greater static stability of the atmosphere and reduced vertical mixing and upward mass flux, a 

phenomenon linked to tropical cyclone formation (Yoshimura et al., 2006). The increase in 

tropical cyclone frequency can be primarily attributed to the increase in sea surface 

temperature (Emanuel and Sobel, 2013). However, these predictions are debated, and there is 

considerable uncertainty and variability across basins and across models (Walsh et al., 2016). 

For example, Park et al. (2017) predicted a future increase in tropical cyclone frequency in 

the North Atlantic basin but increasing tropical cyclone frequency in the Northwest Pacific 
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basin. Increases in precipitation and storm surge risk (coastal flooding due to rising seawater 

caused by cyclonic wind) are generally predicted (Cha et al., 2020; Knutson et al., 2020). 

Some studies have predicted that dominant trajectories of TC may also change as a result of 

climate change, which could alter landfall  probability (the probability that the center of a 

tropical cyclone reaches land), regions affected by tropical cyclones and the extent of their 

impact. For example, Murakami et al. (2013) predicted an increase in tropical cylone 

occurrence around the Hawaiian islands, and Nakamura et al. (2017) predicted a poleward 

and eastward shift in tropical cyclone tracks in the Northwest Pacific basin. In light of these 

predicted changes, it is important to have a detailed understanding of how tropical cyclone 

disturbances alter forest structure, dynamics and functioning, particularly through the process 

of tree mortality induced by extreme winds (McDowell et al., 2018). 

Global comparative studies have shown that tropical cyclone occurrence is significantly 

correlated with forest structure and dynamics. Hogan et al. (2018) found that forest plots with 

intermediate cyclone storm frequency had higher variability in demographic rates 

(recruitment, growth and mortality) and functional trait divergence, compared to those with 

low or high storm frequency. Ibanez et al. (2019) found that higher tropical cyclone frequency 

and intensity correlated with shorter canopy stature and higher stem density. Ibanez et al. 

(2020) also found that tropical cyclone intensity was associated with the form of the species 

abundance distribution. However, in general, understanding of the long-term effects of 

tropical cyclones on forest composition, diversity and succession remains scarce, in large part 

due to lack of available data that include pre- and post-cyclone observations (Xi, 2015). 

At the stand level, intense winds can cause extreme damage to trees by snapping their 

stem (stem breakage) or causing their root anchors to break (uprooting) (Everham and 

Brokaw, 1996; Quine et al., 2021). Numerous studies have attempted to characterize the 

abiotic and biotic factors associated with windthrow risk by observing the proportion of trees 

that experienced windthrow at forests sites after a recent cyclone. Table 1 presents a selection 

of those studies and their main findings. Properties generally associated with a higher 

proportion of windthrow were tree size (height, diameter), allometry (height-to-diameter 

ratio), crown dimension (crown width, crown width-diameter ratio), and wood strength (wood 

density). Overall, taller, larger trees with smaller wood density were more often observed to 

be more often damaged by wind (Everham and Brokaw, 1996; Webb et al., 2014). 
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Table 1. Summary of observed predictors of cyclone-related tree damage from a selection of 

past studies. 
Study Site Cyclone Predictors of uprooting risk Predictors of stem breakage risk 

Lugo et al. 1983 Dominica Hurricane David, 

August 1979 

Diameter: positive Diameter: negative 

Bellingham et al. 

1991 

Jamaica Hurricane Gilbert, 

September 1988 

Diameter: not predictive Diameter: not predictive 

Walker et al. 1992 Luquillo, 

Puerto Rico 

Hurricane Hugo, 

September 1989 

Diameter: not predictive Diameter: not predictive 

Wood density: negative (only at 

Bisley) 

Bellingham et al. 

1996 

Yakushima, Japan Typhoon No. 13, 

September 1993 

Diameter: not predictive Diameter: not predictive 

Ostertag et al. 2005 Luquillo, 

Puerto Rico 

Hurricane Georges, 

September 1998 

Growth rate: positive 

Size: positive 

Wood density: not predictive 

Growth rate: positive 

Size: positive 

Wood density: not predictive 

Curran et al. 2008 Queensland, 

Australia 

Cyclone Larry, 

March 2006 

Tree size: not predictive 

Buttress presence: not predictive 

Tree size: not predictive 

Buttress presence: not predictive 

Wood density: negative 

Lewis & Bannar-

Martin 2011 

Kirindy Mitea, 

Madagascar 

Cyclone Fanele, 

January 2009 

Diameter: positive Diameter: positive 

Lin et al. 2011 Fushan, Taiwan Typhoon Haitang Height: positive Height: positive 

Vandecar et al. 

2011 

southern Yucat‡n, 

Mexico 

Hurricane Dean, 

August 2007 

Diameter: positive 

Height: positive 

Wood density: negative (only when 

wind speed exceeds a threshold) 

Diameter: positive 

Height: positive 

Wood density: negative (only when 

wind speed exceeds a threshold) 

Webb et al. 2014 TaÕu, 

American Samoa 

Cyclone Olaf , 

February 2005 

Wood density: negative 

Diameter: positive 

Wood density: positive 

Height: positive 

Diameter: negative 

Crown width/diameter ratio: positive 

 

However, none of the relationships between structural properties and windthrow 

probability can be universally observed in all studies. The presence, strength and direction of 

the relationship often exhibit considerable variability for different types of damage and for 

different species, and depend on a number of abiotic factors such distance from the cyclone, 

site-specific disturbance or land use legacy, and topography (orientation, slope, elevation) 

(Everham and Brokaw, 1996; Mitchell, 2013). 

In addition, although windthrow typically results in immediate tree death, it is possible 

for broken or even uprooted trees to survive and regenerate by re-sprouting (Su et al., 2020; 

Walker, 1995); conversely, a tree that has not experienced windthrow and has suffered only 

partial damage (e.g. branch snapping, defoliation) may nonetheless suffer delayed mortality, 

being more prone to resource depletion, disadvantaged in competition for light, water and 

other nutrients, or more vulnerable to disease and herbivory (Walker, 1995). This means that 

estimates of tree mortality depend on the time of observation after the cyclone event. Finally, 

other methodological differences exist between studies, such as the spatial extent of the areas 

sampled and tree properties that were observed and recorded. 
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The complex interactions among the abovementioned factors mean that making 

generalized predictions on the long-term effects of wind disturbance on forest ecosystems 

remains a significant challenge. Two strategies can be envisioned to overcome this challenge: 

one is to adopt a mechanistic approach to investigate generalizable mechanisms that control 

how wind causes tree mortality, which in turn shapes forest stand-level properties (Lin et al., 

2020; Xi, 2015); the other is to collect comprehensive large-scale observational data which 

are representative of different situations. In the following sections, I will develop how I 

attempted to contribute to a more general understanding on long-term consequences of wind 

disturbance on forests by employing both strategies in this thesis. 

 

Modeling forest ecosystems 

Forest models are an indispensable tool that helps researchers unravel the enormous 

complexity of forest ecosystems, and discover how observed forest patterns are linked to the 

myriad of interacting abiotic and biotic processes, including wind disturbance and wind-

induced mortality (Shifley et al., 2017; Shugart, 1984). They formally describe multiple 

physiological and demographic processes within forest ecosystems: simulations can be 

performed using the models to produce predictions on forest structure, dynamics and 

functioning, which can then be compared against observed data in order to test hypotheses 

(Botkin et al., 1972; Bugmann, 2001; MarŽchaux et al., 2021; PortŽ and Bartelink, 2002). 

Model simulations also allow for virtual experiments on a large spatial and temporal scale, for 

example regarding forest response to environmental changes such as increasing temperature 

or CO2 level (Feng et al., 2018; Holm et al., 2020), or the sensitivity and resilience of forest to 

various types of disturbances (Seidl et al., 2011b). All models are simplifications of reality, 

but a good forest model should contain a representation of the forest that is sufficiently 

realistic and robust in a wide range of conditions, so that the model can reliably approximate 

reality and provide answers to the research question (Prentice et al., 2015; Vanclay and 

Skovsgaard, 1997). 

 

Dynamic global vegetation models 

Dynamic global vegetation models (DGVMs) aim to model the global distribution of 

vegetation types, and are often embedded as a component of earth system models (ESMs), 

which model the interactive feedbacks between the biosphere and climate change. DGVMs 

represent the interface of vegetation and biogeochemical cycles, integrating climate, 

biogeochemistry and biophysics (carbon and nutrient cycle, energy and water vapor 

exchange), plant physiology (carbon and nutrient uptake), vegetation dynamics (tree 
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establishment, growth and mortality), as well as human-related land use changes (Prentice et 

al., 2007). Figure 5 illustrates the structure of a typical DGVM and its main modules. As 

models built with a top-down approach, DGVMs usually describe vegetation with a small 

number of plant functional types (PFTs), and include a simplified representation of vegetation 

structure and dynamics. This provides greater computational efficiency, facilitating coupling 

in ESMs for global-scale simulations, but also means that the representation of vegetation 

dynamics and structure can be simplistic and does not capture many of the important 

biological processes in the forest, such as gap dynamics, light competition, and notably 

recovery from disturbance (Fisher et al. 2018; but see Moorcroft, Hurtt, and Pacala 2001). 

Although newer-generation DGVMs have started to integrate individual-level interactions and 

physiological processes (Sato et al., 2007; Scheiter et al., 2013) and include a trait-based 

representation of vegetation to better account for functional diversity (Koven et al., 2020; 

Pavlick et al., 2013; Sakschewski et al., 2015), substantial challenges remain in adequately 

representing demographic processes. Tree mortality, in particular, is one of the most uncertain 

processes, resulting in uncertainties and low realism in model projections (Bugmann et al., 

2019; Johnson et al., 2016). This underscores the need to develop bottom-up models that 

include a detailed description of forest size structure and functional composition, as well as 

mechanistic models of stem mortality.  

 

 

Figure 5. Typical structure of a DGVM, showing main driving variables, process modules and 

state variables. (Prentice et al., 2007) 
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Gap models and individual-based models 

Individual-based models (IBMs) represent a forest with a bottom-up approach and formally 

describe key physiological (e.g. photosynthesis, respiration and carbon allocation) and 

demographic (growth, recruitment, mortality) processes that occur at the level of individual 

trees, including light competition that depends on the vertical canopy structure (Bugmann, 

2001; Pacala et al., 1996). The user supplies the model with observed data on abiotic and 

biotic conditions such as climatic forcing, species composition and characteristics. As a 

model output, patterns of forest structure, dynamics and functioning are simulated as 

emergent properties from dynamic interactions among individual trees and between 

individuals and the environment. Because of their stochastic nature, the primary use of forest 

IBMs is not to compare a single simulated forest to field measurements and expect a perfect 

match: instead, because ecological processes are explicitly represented, it is possible to 

control and alter one or more processes separately to study how they drive observed forest 

patterns, and to conduct virtual experiments to test hypotheses on how changes in abiotic and 

biotic conditions affect forests (DeAngelis and Grimm, 2014; Schmitt et al., 2020). 

Knowledge gained from these model explorations can further be used to guide the design of 

field experiments or protocols (Medlyn et al., 2016). 

Development of IBMs in forestry began around 60 years ago in response to the need to 

predict how changes in environmental conditions or forestry practice alter forest growth and 

timber yield (Shugart et al., 2018). Early forestry models used empirical observations to 

derive the relationship between the growth of a Òstandard treeÓ as a function of age, tree 

density and other site conditions. This relationship could then be scaled up to stand-level 

characteristics and forest yield, in the form of a Òyield tableÓ (Burkhart, 1990). This approach 

assumed that all the trees in a stand are identical and can be represented by the standard tree, 

which was appropriate for plantation forests, but less adapted for mixed-sized and mixed-aged 

natural forests. Later, models started to incorporate the process of size-dependent tree 

competition and mortality to follow growth and thinning of even-aged forests (Kohyama, 

1993, 1992), marking a first step toward modeling the dynamics of forest mosaics and 

emphasizing the growth and interaction of individual trees. Subsequent development of IBMs 

has benefited considerably from the increase in computing power over the past few decades, 

which has reduced constraints on model complexity and allowed for the inclusion of more 

detailed process representation. 

One particular subset of IBMs is called Ògap modelsÓ, including JABOWA (Botkin et al. 

1972) or FORMIND (Fischer et al., 2016; Kšhler and Huth, 1998). They apply the concept of 
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patch dynamics (Pickett and White, 1985), and represent forests as a mosaic of many small 

patches, of the size comparable to large trees in the forest (100 - 1000 m2), each having a 

different age and successional status and in general independent of each other. The patches 

were assumed to be horizontally homogeneous, meaning that tree position was not considered 

within each patch, and that only competition in the vertical dimension was explicitly 

considered (Bugmann, 2001; Shugart and Woodward, 2001). Figure 6 illustrates the structural 

simplifications adopted by a typical gap model. 

Other IBMs are spatially explicit, including the earliest forestry models and later-

generation IBMs such as ZELIG (Weishampel et al., 1992), SORTIE (Pacala et al., 1996; 

Uriarte et al., 2009) and TROLL (Chave, 1999; MarŽchaux and Chave, 2017). In these 

models, the spatial location of each tree individual is explicitly defined: this allows for more 

realistic simulation of individual-level interactions, such as light competition and secondary 

treefalls (caused when the trunk and crown of falling trees smash into neighboring trees). 

Figure 7 exemplifies a spatially explicit tree representation in the individual-based model 

TROLL. 

 

 

 

Figure 6. Illustration of a forest patch (on the left) and its simplified representation in a typical 

gap model (on the right) (Bugmann, 2001). 
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Figure 7. Representation of individual trees in a spatially explicit grid in TROLL. The 3D 

space of the forest stand is divided into 1-m3 ÒvoxelsÓ, and light diffusion is computed 

explicitly at each timestep within each voxel. Dimensions of each individual tree (CR: crown 

radius; CD: crown depth; h: height; dbh: diameter at breast height) are updated at each 

timestep based on the amount of net assimilated carbon allocated to growth and allometric 

relationships. (MarŽchaux and Chave, 2017). 

 

Upscaling of individual-based models: the question of transferability 

Due to the cost of execution (amount of data necessary for model parameterization and 

demand on computational power), IBMs are usually applied at the forest stand level. 

However, in recent years, they are increasingly being implemented at larger spatial scales 

(Shugart et al., 2018). One approach involves the development of cohort-based models, which 

group tree individuals according to their size, age, functional type, or micro-environmental 

conditions (e.g., in gap or in understory) (Longo et al., 2019; Moorcroft et al., 2001). Another 

approach involves embedding IBMs as a component in earth system models (ESMs) to 

complement the shortcomings of DGVMs. The inclusion of individual-based processes in 

ESMs allows the prediction of vegetation structure and distribution from climate and plant 

trait input alone, without a priori constraint, and also provides opportunities of data-model 

integration at finer scale (Fisher et al., 2018). These models often present a number of 

simplifications themselves, such as the cohort-based approach where tree individuals with 

similar properties (size, age, functional type) are grouped together, as well as the grouping of 

highly diverse tree species into several Òplant functional typesÓ. These simplifications reduce 
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the computational burden, but also raise the issue of model realism because they 

underrepresent the importance of demographic stochasticity, tradeoffs among traits and 

functional diversity (Fisher et al., 2018; Koven et al., 2020). 

Whether run independently or embedded within a global-scale model, the application a 

forest IBM at many sites over a larger scale poses several challenges. Apart from the tradeoff 

between computational burden and model realism, the issue of model transferability 

inevitably arises (Wenger and Olden, 2012; Yates et al., 2018), which can be summarized 

with this question: once a model has been calibrated at one site, how well does it perform at 

another site? In theory, all biological processes in a model (e.g. photosynthesis, water uptake 

or carbon allocation) could be described as mechanistic functions, which are universally valid 

and only depend on directly measurable input data with clear biological meaning, such as 

climate forcing and plant traits. This would make the model site-independent, and applicable 

to any forest site in the world by only changing the environment and trait input without 

affecting model performance. In reality, however, site-specific data are still often used for the 

formulation and calibration of many mechanistic functions, which means that their genericity 

has not been fully explored. This leads to risk of overfitting, and hinders the transferability of 

models. In addition, current knowledge for some biological processes is insufficient to 

provide a completely mechanistic representation (e.g. tree mortality) (Bugmann et al., 2019; 

Johnson et al., 2016): they therefore have to be described with empirical and statistical 

relationships, which implies that their site-specificity is partially included in ÒfreeÓ parameters 

that are not directly measurable. 

In order to improve the transferability of the models and to facilitate IBM upscaling, the 

parameterization and process representation must be made more general and less site-

dependent. Homogeneous observational data with large spatial coverage, such as global 

climate reanalysis or satellite data, can provide better model initialization than local datasets 

derived from field observations or meteorological stations. In addition, when a forest IBM is 

applied at locations other than the original calibration site, recalibration will be required for 

some parameters. This is usually done by model inversion, which involves observing how 

well the simulation results fit certain observed metrics of forest structure, dynamics or 

functioning, while varying the parameter values (Hartig et al., 2014). Model inversion could 

also be a sensitivity analysis exercise to identify processes and parameters to which the model 

is most sensitive, in order to ease the burden of calibration and prioritize efforts to improve 

their mechanistic representation and model transferability (Huber et al., 2020). Figure 8 

illustrates a general framework for scaling IBMs to regional or global DGVMs and land 

surface models (LSMs). 
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Figure 8. General features of land-surface models (LSMs), dynamic global vegetation models 

(DGVMs), and individual-based models (IBMs) of forests as used in global climate-change 

studies. Reproduced from Shugart et al. (2015). 

 

Some studies have explored the issues of transferability and recalibration of forest IBM: 

Lagarrigues et al. (2015) evaluated the recalibration process of a forest IBM that simulates 

demographic processes using statistical equations with species-specific parameters (leading to 

a large number of demographic parameters to be calibrated), applied to a temperate forest 

with a small number of tree species. Fauset et al. (2019) examined whether an individual-

based model performs reasonably well on two Amazonian forest sites with different climate 

and plant traits, but only used the overall trait distribution as input, without species-specific 

parameterizations. To our knowledge, currently there are still few studies that examine model 

transferability across tropical forests, and also employ a forest IBM with mechanistic, species-

independent representation of biological processes, using species-specific plant traits as input 

for parameterization. The first research topic of this thesis thus involves evaluating the 

transferability of an individual -based model with a trait-based species parameterization 

and mechanistic representation of individual-level processes. 
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Individual -based models and wind disturbance 

As noted above, in forest dynamic models, tree mortality has been identified as one of 

the least constrained biological processes in forest dynamics (Bugmann et al., 2019; Fauset et 

al., 2019; Johnson et al., 2016). This poses a problem for the predictive ability of forest 

models in general, and represents a particularly serious challenge for our understanding of the 

effects of natural disturbances on forests: increased tree mortality is one of the most important 

direct consequences of disturbances, but knowledge about the exact extent and pattern of their 

contribution to tree mortality is vastly incomplete (Allen et al., 2010; McDowell et al., 2018). 

It is therefore of crucial importance to include a mechanistic representation of how tree 

mortality and other processes in forest models are driven by various disturbance agents, and 

in particular by wind disturbances (Mitchell, 2013; Seidl et al., 2011a). 

From a mechanical standpoint, wind drag induces an oscillating turning movement on 

the tree through its interaction with the tree crown and the trunk: when the turning moment 

(torque) exceeds a certain threshold, the tree suffers from major structural failure due to root 

anchoring failure (leading to uprooting), or due to the stem yielding to the bending stress 

(leading stem breakage). Numerous experimental studies have either investigated the dynamic 

interactions between wind drag and tree components with wind tunnel experiments (Gardiner 

et al., 2016), or have measured static tree resistance to uprooting through tree-pulling 

experiments (Nicoll et al., 2006). In recent years, a number of studies have used detailed 

biomechanical models to explore fine-scale wind-tree interaction. Some used time series of 

tree motion data collected in the field to relate tree motion in the wind, especially its 

fundamental sway frequency to its architectural properties (Jackson et al., 2021, 2019b). 

Others combined terrestrial laser scanning (TLS) data and the approach of finite-element 

analysis, which subdivides a complex structure into components with simpler parts, to model 

the dynamic response of trees when exposed to wind drag (Jackson et al., 2019c). These 

studies provide important insights on how tree structure is related to wind-tree interaction. 

However, this approach requires a large amount of fine-scale data and substantial 

computation effort, and is therefore generally impractical for stand-level application. 

Another approach involves mechanistic wind damage risk models, which model trees as 

objects with a simpler geometry, and calculate the critical wind speed (CWS) required for a 

tree to be blown down based on biomechanical principles as a function of more easily 

measurable stand-level properties, such as tree spacing and canopy height, and individual-

level properties, such as height, diameter and wood strength (Gardiner et al., 2008; Pivato et 

al., 2014). These models were originally developed to assess the likelihood and extent of wind 

damage in forest plantations, and thus were primarily applied to even-sized temperate forests. 

In mixed-sized natural forests, however, several difficulties are encountered: stand-level 
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properties (tree spacing and canopy height, etc.) are expected to vary both spatially and 

temporally, and the effect of sheltering from neighboring trees on the risk of wind damage can 

be important. In principle, unsheltered emergent trees are expected to be at a higher risk of 

wind damage than understory trees, even given the same size. This means that the spatial 

heterogeneity of tree size and architecture needs to be accounted for when modeling the 

impacts of wind disturbance, especially for subtropical and tropical forests (Duperat et al., 

2021; Hale et al., 2012; Seidl et al., 2014): spatially explicit individual-based models (IBMs) 

of forest dynamics are therefore an appropriate modeling framework that addresses this need. 

By integrating forest IBMs with wind damage models that provide an estimate of critical 

wind speed , it is possible to explicitly represent a portion of tree mortality as the response to 

wind disturbance and to model the effect of sheltering from nearby trees, in order to 

understand how wind disturbances alter tree mortality and impact forests in the long run. 

Several studies have integrated a wind-induced tree mortality module in a forest IBM: 

they provide promising results that confirm the relationship between wind damage and tree 

height and diameter (Ancelin et al., 2004; Schelhaas et al., 2007), and indicate the importance 

of within-stand heterogeneity (Ancelin et al., 2004; Seidl et al., 2014) and the role of 

acclimation (Kamimura et al., 2019). Another study also incorporated the wind damage 

module into a land surface model to model the effects of past storm events on forests at a 

regional scale (Chen et al., 2018). 

However, these studies have mostly focused on temperate forests, with relatively 

homogeneous stand structure and low species diversity compared to subtropical and tropical 

forests, and most simulations were run over a relatively short time period (from one single 

storm event to several decades). Few studies have used forest IBMs with a wind-induced tree 

mortality module to investigate long-term effects of wind disturbance on the structure, 

dynamics and functioning of species-rich tropical forests. The second research topic of this 

thesis thus involves using individual -based modeling to study the effects of wind 

disturbance on forests with a heterogeneous structure and high species diversity. 

 

Monitoring forest ecosystems 

Long-term forest plots 

In order to meet the enormous challenge of disentangling each abiotic and biotic process in 

forest ecosystems, including wind disturbance and wind-induced tree mortality, it is essential 

to collect and maintain standardized long-term field data over multiple spatial scales and 

levels of organization (from the molecular to the ecosystem levels) worldwide. Analyses of 
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extensive field data from multiple regions, including multiple continents, allows for better 

detection of both general trends and inter-regional differences (Sullivan et al., 2020). 

One example of international collaboration with the goal of facilitating data collection 

and exchange in forestry research is the establishment of ForestGEO, a global network of 

long-term forest dynamics plots (FDPs) with a standardized data collection protocol, and 

scientists working across a wide variety of disciplines. The ForestGEO sites are established 

since as early as 1980, are located on all continents, and cover a wide range of environmental 

conditions (soil fertility, topography, rainfall pattern and disturbance regimes) (Figure 9). 

Over 7 million trees of around 12,000 species have been recorded in the ForestGEO network 

to date, representing about 20% of the known global tree diversity and including 59% of all 

plant families and 35% of all woody plant genera (Davies et al., 2021). This wealth of 

information provides invaluable resources for the study of the spatial and temporal variability 

of forest structure and dynamics. 

Under the ForestGEO protocol, all tree individuals with a diameter ( 1 cm at 1.3 m 

above the ground (diameter at breast height, DBH), or above buttresses or other trunk 

deformities, are mapped, measured and identified, in gridded plots of typically 16-50 ha in 

size, and repeated censuses are carried out at approximately five-year intervals to track their 

recruitment, growth, and death. This protocol is labor- and time-intensive, and the 

identification of the diverse tree species, especially for small stems, is particularly difficult; 

however, it presents several advantages. Repeated sampling of a relatively large contiguous 

patch of forest allows for better monitoring of infrequent demographic events, such as tree 

mortality, and reduces the risk of undersampling uncommon species. In addition, a 

considerable portion of tree diversity and dynamics is found at diameters < 10 cm, and 

sampling small stems sheds a new light on tree demography. Last but not least, large mapped 

plots present an opportunity to monitor patterns of many types of natural disturbances in 

tropical forests  that occur at the spatial scale of one to several hectares (e.g., treefalls, 

landslides, lightning strikes, etc.) (Davies et al., 2021; Gora et al., 2020). 
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Figure 9. Global map of 71 ForestGEO Forest Dynamics Plots. (Davies et al., 2021) 

 

Remote sensing 

In addition to field inventory data, advances in remote sensing in recent years have also 

generated forest observations with substantially enhanced spatial and temporal resolution and 

extent (Lechner et al., 2020). Major advances include the use of light detection and ranging 

(LiDAR) technology, and the collection of improved global-scale satellite data. 

Also called 3D laser scanning, LiDAR uses a principle similar to radar and sonar, and 

measures the distance between the sensor and the target object or surface by emitting laser 

pulses, and measuring the elapsed time between emission and reception of the laser reflection 

by the sensorÕs receiver: this generates point cloud data that can be processed by various 

algorithms to reconstruct the 3D structure of the target object (Lefsky et al., 2002). Airborne 

LiDAR scanning (ALS) systems, mounted on aircrafts or satellites, scan the forest canopy and 

can be used to map forest canopy height at the regional scale; LiDAR instruments onboard 

satellites have even been used on a global scale (Simard et al., 2011), with new advances such 

as the GEDI project underway (Coyle et al., 2015). Figure 10 illustrates the basic principle of 

ALS data acquisition and processing. Canopy height information can then be used to estimate 

other forest attributes such as aboveground carbon stocks or primary productivity, either 

through calibration with ground measurements (Asner et al., 2012), or by linking canopy 

height to other forest attributes through model predictions (Ršdig et al., 2018, 2017). From 

the vertical canopy structure in the ALS data, it is also possible to extract individual-level 

information on tree size and allometry, which can help constrain allometric relationships in 

forest modeling (Ferraz et al., 2016; Fischer et al., 2020, 2019; Jucker et al., 2017). Terrestrial 

LiDAR scanning (TLS), a ground-based counterpart to ALS remote sensing, involves LiDAR 

scans from the ground in the forest understory, and can generate plot-scale data on tree 
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architecture and diameter with extremely high precision and accuracy (Disney, 2018). Tree 

position and diameter information can facilitate tree mapping and forest plot surveys and 

reduce time and cost (Newnham et al., 2015). The reconstruction of 3D whole-tree structure 

from TLS data provides unprecedented information that can be used to study tree allometry 

and architecture, as well to give more accurate estimate of aboveground biomass (Disney, 

2018; Disney et al., 2018; Malhi et al., 2018). In the context of studying wind disturbance, 

airborne LiDAR can be used to assess patterns of wind damage after a tropical cyclone 

(Coomes et al., 2018; Hayashi et al., 2015), and terrestrial LiDAR scanning data have been 

used to constrain biomechanical models of individual-level wind-tree interactions (Jackson et 

al., 2019b, 2019c). 

 

 

Figure 10. Principle of airborne lidar acquisition and data process. (Chauve et al., 2009) 

 

In addition to Lidar, other types of spaceborne remote sensing use satellite-mounted 

sensors that detect electromagnetic radiation in various wavelength ranges, such as visible 

light, infrared, microwave or radio waves. They can provide temporally continuous records on 

forest structure and dynamics with broad spatial coverage, which can be used for model 

calibration or validation (Knapp et al., 2018; Shugart et al., 2015) and for monitoring of forest 

status change and natural or human disturbance dynamics. 

Multispectral optical sensors in the visible light and infrared wavelengths, such as those 

on the Landsat satellites, MODIS sensor on board the Terra and Aqua satellites, and those on 

the Sentinel-2 satellites, produce optical images useful for monitoring land cover and 

vegetation change. In particular, the Landsat mission has provided uninterrupted optical 

imagery over the entire globe since 1972: with a high spatial resolution of 30 m and a return 

frequency of 16 days, this high-resolution dataset has proven invaluable for long-term 
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monitoring of land cover and spatial heterogeneity (Hansen et al., 2013; Vancutsem et al., 

2021). In contrast, the relatively coarse spatial resolution (ranging from 250 m to 1 km) but 

high temporal resolution (return frequency of 1 to 2 days) of the MODIS sensor makes it 

useful for monitoring land, ocean and atmospheric processes occurring over a small time 

scale, including atmospheric water vapor, aerosol particles and cloud properties (King et al., 

1992). 

Microwave radiometry involves passive sensors that measure energy emitted at the 

microwave wavelength (from 1 mm to 1 m) from the Earth surface. It has been used to collect 

precipitation data (e.g., Tropical Rainfall Measuring Mission, TRMM) (Olson et al., 2006; 

Yang et al., 2006) and soil moisture data (e.g., Soil Moisture and Ocean Salinity, SMOS; Soil 

Moisture Active Passive, SMAP) (BarrŽ et al., 2008; Brown et al., 2013; Ma et al., 2019; 

Oliva et al., 2020), and has also seen other uses such as for hurricane monitoring or 

measurement of Arctic snow thickness (Maa§ et al., 2013; Reul et al., 2012). 

Synthetic aperture radar (SAR) instruments create reconstruction of landscapes and 

forest canopy by emitting radio wave pulses from a moving platform (satellite) onto the target 

region (landscapes or forest cover), recording the backscattered echoes of these pulses, and 

processing the echoes recorded at different times, and thus at different positions, to 

reconstruct the surface shape of the target region (Kirscht and Rinke, 1998) (Figure 11). This 

method produces images with high spatial resolution, and has the advantage over optical 

imaging in that they are operational under all weather conditions. It has been useful for 

measuring topography (e.g. Shuttle Radar Topography Mission, SRTM) (Farr et al., 2007), as 

well as for estimating tree size and biomass, forest cover and forest loss (e.g. ALOS, 

PALSAR, Sentinel-1) (Balzter, 2001; Reiche et al., 2016). 

Hyperspectral imaging instruments (also known as imaging spectroscopy), such as 

Hyperion on board of the EO-1 satellite, detect and record the reflected radiation reflected 

from the EarthÕs surface over many wavelength bands, producing a ÒspectrumÓ for each pixel 

scanned. A currently active research direction is to utilize these spectra to identify tree 

species, chemical compositions or functional traits over a large spatial scale, often combined 

with machine learning process (FŽret and Asner, 2014, 2011; Goodenough et al., 2004). 
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Figure 11. Principle of synthetic aperture radar remote sensing. The sensor detects the 

scatterer (target) by integrating all signals acquired during the period (length of the synthetic 

array) when the scatterer falls within the antenna beam (van Zyl and Kim, 2011). 

 

Using satellite remote sensing to monitor forest disturbance 

Satellite imagery has been instrumental in monitoring changes in forest condition and cover 

due to natural or human disturbances and deforestation dynamics, particularly in old-growth 

forested areas that are difficult to access (Bullock et al., 2020; Keenan et al., 2015). For 

example, satellite data have been used to estimate tree mortality rate in tropical rainforests 

(Clark et al., 2004), and to detect windthrow and disturbance patterns in forests after tropical 

cyclone passage (Kislov and Korznikov, 2020; Negr—n-Ju‡rez et al., 2014). 

Due to the relative short time frame within which natural disturbance events occur (often 

in a matter of days),  in order to characterize fine-scale natural disturbance dynamics, there is 

a need to detect forest disturbance events with short time intervals. This can be achieved by 

using data from near-real time (NRT) forest disturbance monitoring programs, which allow 

management programs to respond to new deforestation events in a timely manner (Hansen et 

al., 2016),. Forest disturbance monitoring has traditionally relied on optical remote sensing, 

although a major shortcoming of optical imagery is that data availability is limited by 

frequent cloud cover in the tropics, particularly during the wet season. Synthetic aperture 

radar (SAR) data are not subject to these meteorological constraints, and could be a powerful 

tool for detecting and mapping forest disturbances. Recently, a new methodology has been 
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developed to provide NRT deforestation detection using SAR data collected from the 

Sentinel-1 satellite, by taking advantage of the availability of Sentinel-1 acquisitions in both 

ascending and descending orbits (Ball•re et al., 2021; Bouvet et al., 2018). With a revisit 

period of 6 to 12 days and a spatial resolution of 10 m, this new methodology can serve as an 

accurate tool for monitoring human deforestation, but also opens up the possibility of 

studying fine-scale temporal and spatial dynamics of natural disturbances in Amazonian 

forests, where wind could be an important disturbance agent (Magnabosco Marra et al., 2018; 

Peterson et al., 2019). The third research question of this thesis thus involves the 

exploratiuon of natural disturbance dynamics in tropical forests using satellite imaging 

data. 

 

Summary 

In summary, our understanding of how wind disturbance shapes forests has advanced greatly 

through the development of individual-based forest dynamics models, but the transferability 

of individual-based models in general needs to be better assessed, and the process of wind-

induced tree mortality needs to be included, both to improve representation of mortality in 

models in general, and to study the long-term effects of wind disturbance on tropical forests 

in particular. Furthermore, in light of the great potential for remote sensing technology and 

satellite data, further explorations should be made to harness the potential of satellite remote 

sensing to provide near-real time, large-scale monitoring of the dynamics of wind disturbance 

impacts. The main objective of this thesis is thus to contribute to three previously formulated 

research topics: 

 

1.! Evaluation of the transferability of an individual -based model 

 

2.! Investigation of the effects of wind disturbance on forests using individual-based 

modeling 

 

3.! Exploration of natural disturbance dynamics in tropical forests using satellite 

imaging data 
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GENERAL METHODS  

Individual -based forest dynamics model: TROLL  

Model overview 

The TROLL model, used for this PhD study, belongs to the family of spatially explicit 

individual-based models along with models such as SORTIE (Pacala et al., 1996; Uriarte et 

al., 2009) and FORMIND (Fischer et al., 2016; Kšhler and Huth, 1998), and simulates the 

demography processes (recruitment, growth, seed production, and death) of all individual 

trees (self-standing stems) ( 1 cm in trunk diameter at breast height (DBH) in a forest stand 

(Chave, 1999; MarŽchaux and Chave, 2017). 

In TROLL, the aboveground space of the forest stand is divided into 3D cells of size 1 

m3 (voxels), and no more than one tree can establish in each 1 ' 1 m pixel at any given time. 

Each modeled tree is a 3D object defined by a set of state variables (age, DBH, height, crown 

radius, crown depth, and total leaf surface area), and is assigned a species label inherited from 

the progenitor tree. Each species label is associated with seven species-specific traits: leaf 

mass per area (LMA), leaf nitrogen and phosphorus content (Nmass and Pmass), wood density, 

threshold DBH beyond which growth efficiency declines, asymptotic height, and a parameter 

of the DBHÐheight allometry (ah). These traits control photosynthesis, growth and other 

physiological and processes. 

For each voxel, the cumulated leaf area index (LAI, m2!m-2) is calculated as the vertical 

sum of leaf area density (LAD, m2!m-3) of all the voxels situated above it. Light intensity 

(photosynthetic photon flux density, PPFD, in )mol photons!m-2!s-1) within the voxel i is then 

computed as the fraction of solar irradiance (canopy-top PPFD) transmitted, based on the 

Beer-Lambert extinction law: 

""#$ %& ""#$ '()*+,-*+ . / 0 1. 2345                                       (1) 

We considered only vertical light diffusion in this model, instead of employing more complex 

light interception models or radiative transfer models (Van der Zande et al., 2011; Widlowski 

et al., 2013). As such, although the light extinction rate k varies in reality with zenith angle 

and species-specific leaf inclination angle (Kitajima et al., 2005; Rich et al., 1993; Wang et 

al., 2007), it is assumed to be constant in the model. Temperature (T, ¡C) and vapor pressure 

deficit (VPD, kPa) within the canopy are also assumed to decrease with forest canopy depth 

(distance from canopy top). 

In each monthly time step, photosynthesis is calculated over half-hourly periods of a 

representative day per month based on the Farquhar-von Caemmerer-Berry model of C3 

photosynthesis (Farquhar et al., 1980). Atmospheric CO2 concentration is assumed to be 
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constant, and light intensity (PPFD, )mol photons!m-2!s-1), temperature (T, ¡C) and vapor 

pressure deficit (VPD, kPa) values for each half-hourly period are computed from the 

monthly mean and a representative daily course of variation. Under the FCB photosynthesis 

model, in light-limited conditions, carbon assimilation depends on the parameter of quantum 

carbon yield per quantum photon (*, mol C!mol photons-1): this corresponds to the initial 

slope of the photosynthetic carbon assimilation plotted against irradiance, and has been shown 

to be an important source of uncertainties in vegetation models (Rogers et al., 2017; Zaehle et 

al., 2005). In CO2-limited conditions, carbon assimilation mainly depends on three 

parameters: stomatal conductance (gs), maximum rate of carboxylation (Vcmax, )mol CO2!m-

2!s-1) and the maximal electron transport capacity (Jmax, )mol electrons!m-2!s-1). Stomatal 

conductance is modeled following Medlyn et al. (2011). Vcmax and Jmax are related to species-

specific traits leaf mass per area (LMA), leaf nitrogen and phosphorus content (Nmass and 

Pmass), using the relationship found in Domingues et al. (2010). 

Autotrophic respiration includes carbon uptake that are metabolized by plants for 

maintenance or growth, and also represents a large source of uncertainty in vegetation models 

(Thornley and Cannell, 2000). In the absence of a precise understanding of mechanistic 

causes of variation in respiration rate, empirical relationships are used in the TROLL model. 

Leaf maintenance respiration is modeled as a function of species-specific traits (LMA, Nmass 

and Pmass) and positively dependent on temperature (Atkin et al., 2015); daytime leaf 

respiration is assumed to be 40 % of night time respiration (Atkin et al., 2000). Stem 

maintenance respiration is assumed to be proportional to sapwood volume and positively 

dependent on temperature (Ryan et al., 1995), assuming that sapwood thickness increases 

with diameter at breast height (DBH) until reaching a maximum of 0.04 m. Fine root 

maintenance respiration is assumed to be 50% of leaf maintenance respiration. Coarse root 

and branch maintenance respirations are assumed to be 50% of stem respiration. Growth 

respiration is assumed to be 25% of gross carbon assimilation minus the maintenance 

respiration (Thornley and Cannell, 2000). These assumptions are reasonable first-step 

approximations that are commonly made in the literature: nevertheless, it would be necessary 

to provide more precise, mechanistic model representations for respiration in the future. 

The net carbon uptake (gross assimilated carbon minus respiration) is allocated into tree 

growth and leaf production, which then modifies the leaf density and the light environment in 

the next timestep. Allocation of net carbon assimilates into the growth of aboveground woody 

mass (stem and branches) and tree crown (including leaves, fruits and twigs) are controlled by 

two empirically derived, species-independent parameters respectively (Arag‹o et al., 2009; 

Malhi et al., 2015, 2011). Leaf dynamics is modeled by partitioning species-specific leaf 

lifespan (calculated from plant traits) into the residence times in three distinct leaf age classes 
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(young, mature and old): newly produced leaves enter the young leaf class, and old leaves 

leave the old leaf class and turn into litterfall. 

Carbon allocated to aboveground woody growth is converted into an increase in stem 

volume, which is then converted into increases in diameter and tree height (H) and diameter 

(DBH) following a height-DBH allometric relationship that is described by a Michael-Menten 

equation: 
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with species-specific hlim and ah parameters estimated from local measurements of tree 

heights and diameters. 

The allometric relationship between crown radius (CR) and diameter DBH follows an 

empirical non-linear relationship: 

?@& / ABCD=BCE. FG:;< H                                                  (3) 

where CRa and CRb are general parameters that were estimated based on measurements in 

French Guiana (Chave et al., 2005). Identical values of CRa and CRb are prescribed for all 

species due to the paucity of species-specific data, even though it has been demonstrated that 

crown size allometry can vary within species, across species and across sites (Jucker et al., 

2017; Loubota Panzou et al., 2021). 

The recruitment process is modeled through a ÒseedÓ bank (representing seeds and 

seedlings < 1 cm DBH) defined for each 1 ' 1 m pixel. The seed bank is emptied at the end of 

each timestep, and replenished by (1) seeds produced and dispersed from neighboring pixels 

and (2) a seed rain external to the forest stand. The current version of the model assumes that 

a large old-growth forest surrounds the simulated forest, and that there is no recruitment 

limitation due to the external seed rain. 

In the standard version of the TROLL model, tree mortality is modeled by the following 

four processes. (i) The background stochastic tree mortality rate (m) is assumed to be 

negatively dependent on species-specific wood density (WD) (Wright et al., 2010): 

I & I J(K . AL M N$ HOOOO                                             (4) 

where mmax is the maximum value of the background mortality rate. (ii) Carbon starvation 

happens when net assimilated carbon is negative over a consecutive period exceeding leaf 

lifespan, and that old leaves have all died while no new leaves could be produced, assuming 

no mobilizable internal carbon storage. (iii) Stochastic treefalls are modeled through a 

stochastic tree height threshold +, calculated for each individual tree: 

P & QJ(K . AL M RS . TUTHOOOO                                          (5) 

where hmax is the species-specific maximum tree height, vT is a variance parameter, and , is a 

standard normal random variable: if tree height h exceeds +, the tree falls with a probability 

of 1 - +/ h. (iv) Secondary treefall happens when a tree is located on the trajectory of the 
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crown and stem of a falling neighboring tree. These mortality processes are not 

mechanistically linked to natural disturbance regimes such as cyclonic wind: the 

implementation of wind-induced tree mortality is thus an important aspect that is explored in 

this thesis. 

Herbaceous plants and lianas are not included in the model. Ongoing model 

developments include complete modules of water balance, soil nutrient dynamics, and effect 

of species-specific dispersal limitation. Topography, in particular its effects on wind-induced 

tree mortality, will be explored in this thesis. 

 

Study sites and species-specific parameterization 

Two forest sites are explored in this thesis: Nouragues, French Guiana in South America, and 

Fushan, Taiwan in Southeast Asia. These two sites are chosen because of their markedly 

different climatic conditions and minimal floristic overlap (no tree species occur in both 

sites). 

Within the Nouragues Ecological Research Station, there is a 12-hectare (400 m ' 300 

m) plot in a moist lowland tropical forest in the center of French Guiana: it is geologically 

located in the Guiana Shield, and is part of the Amazonian biome. The Nouragues site 

experiences two months of dry season per year, with mean annual precipitation around 3000 

mm, mean annual temperature around 26¡C, and a mean relative humidity around 99% 

(Bongers et al., 2001). Since plot establishment in 1994, tree censuses were regular conducted 

(once every 5~6 years), where all self-standing stems with DBH ( 10 cm were identified, 

measured, tagged and mapped: to date, 622 tree species have been recorded at the Nouragues 

site (Chave et al., 2008; MarŽchaux and Chave, 2017).  

The Fushan Forest Dynamics Plot (FDP) is a 25-hectare (500 m ' 500 m) plot in a moist 

broadleaf subtropical forest in the northeastern region of Taiwan (Su et al., 2007). It is a part 

of the ForestGEO network (Forest Global Earth Observatory; Anderson-Teixeira et al., 2015; 

Condit, 1998). The Fushan site is under influence of northeasterly monsoon in winter, and 

frequent typhoon visits in summer and autumn, with mean annual precipitation around 4200 

mm, mean annual temperature around 18¡C, and a mean relative humidity around 95%. Plot 

elevation ranges from 600 m to 733 m (Su et al., 2007). Since plot establishment in 2004, 

censuses were completed every five years, where all self-standing stems with a DBH ( 1 cm 

were identified, measured, tagged and mapped: to date, 110 tree species have been recorded at 

the Fushan site (Su et al., 2007). 

Species-specific trait data required for TROLL include leaf mass per area (LMA, g!m-2), 

nitrogen and phosphorus content per mass (Nmass, Pmass g!g-1), wood density (WD, g!cm-3), a 
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threshold DBH beyond which tree growth declines (dmax, cm), the two Michaelis-Menten 

parameters describing DBH-height allometry (hlim, ah), and regional relative abundance. At 

Nouragues, a complete set of measured trait values were available for 163 species occurring 

at the site: for the other species, a combination of species-specific values and genus means or 

abundance-weighted community means were assigned (MarŽchaux and Chave, 2017). At 

Fushan, a full set of traits was available for 94 species, representing around 90% of the tree 

individuals. The measurement and collection of functional trait data follow the standardized 

protocol (PŽrez-Harguindeguy et al., 2013). 

 

Global parameter parameterization 

Apart from In addition to species-specific parameters, TROLL includes a set of 41 species-

independent parameters (or ÒglobalÓ parameters). For the majority of these parameters, values 

with high confidence from local measurement (at Nouragues, Fushan or in the Amazon area) 

or from past literature are available. There remain a handful of parameters for which it is 

difficult to obtain field estimates, and that are previously mentioned as generating high 

uncertainty and sensitivity in the model outputs. These parameters include * (apparent 

quantum yield), vT (variance term in stochastic treefall process), mmax (maximum value of 

background mortality rate), CRa and CRb (species-independent crown radius-diameter 

allometric relationship), and fwood and fcanopy (proportion of net assimilated carbon allocated to 

woody growth and to tree crown growth, respectively), and are the primary target of the 

parameter calibration test. 

We performed 500 TROLL simulations for both sites, while varying the value of these 

parameters simultaneous (Òall-at-a-timeÓ approach) across uniform prior distributions 

bounded within the reported value ranges. Since CRa and CRb exhibit strong correlation, 

correlated standard normal distributions were used as the prior. We used the principle of 

model inversion to examine which parameter combinations generated model outputs that are 

closest to field observations in four summary metrics of forest structure and functioning: stem 

density (DBH ( 10 cm; N10, trees!ha-1), large stem density (DBH ( 30 cm; N30, trees!ha-1), 

aboveground biomass (AGB, Mg!ha-1), and gross primary productivity (GPP, MgC!ha-1!yr-1). 

We also examined whether model inversion resulted in a large reduction of uncertainty in the 

parameter values: i.e., how ÒinformativeÓ was the calibration test. This test aims to answer 

Research Question 2, and the results are presented in Chapter 1. 
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Climate forcing 

Input data required for the TROLL model include: 1) climate forcing, 2) species-specific 

functional traits, and 3) species-independent general parameters. The TROLL model requires 

the following climate forcing variables: monthly mean values of daytime and nighttime mean 

temperature, cumulated rainfall, mean wind speed, and daytime mean irradiance, daytime 

mean vapor pressure deficit (VPD), and average normalized daily variation of temperature, 

irradiance and VPD. 

In order to provide the model with a standardized, globally homogeneous climate forcing 

that allows cross-site comparison across sites, we used the CRU-NCEP reanalysis data set 

(version 8; version 7 archived at https://rda.ucar.edu/datasets/ds314.3/) (Viovy, 2018), a 

global gridded (0.5¡ ' 0.5¡) sub-daily (6-hourly) climate product resulting from the 

combination of observation-based CRU TS 3.2 data (Harris et al., 2014) and model-based 

NCEP-NCAR data (Kalnay et al., 1996). The CRU-NCEP data set spans the 1901-2016 

period, we selected data in the time range of 1980-2016, for which the most observations are 

available, in order to ensure higher accuracy (Kistler et al., 2001). The CRU-NCEP data set 

contains seven climatic variables: temperature, precipitation, wind, downward longwave and 

shortwave radiations, air specific humidity, and atmospheric pressure. From them, the 

climatic variables necessary for TROLL input is calculated and extracted for all data grid 

points. 

We performed a virtual experiment to explore model response to climate forcing, more 

precisely to values of temperature, irradiance and VPD. For this, we randomly sampled a 

subset of the CRU-NCEP data points that correspond to lowland non-water-limited rainforest 

biome within the 35¡N Ð 35¡S latitude range. Lowland was defined as points with elevation < 

1000 m, and was evaluated using elevation data from the SRTM product,  accessible at 

http://www.earthenv.org/topography (Amatulli et al., 2018). A forest was considered to be not 

water-limited when its annual precipitation is larger than 2000 mm (Guan et al., 2015; 

Wagner et al., 2016), and was evaluated using CRU-NCEP precipitation data. Rainforest 

biome was defined as points that fall into classes 50, 60, 70, 80, and 90 in the ESA C3S 

Global Land Cover product for 2018, accessible at 

https://maps.elie.ucl.ac.be/CCI/viewer/download.php (ESA, 2017). From the set of 3753 

Òreference climateÓ pixels which fit the criteria, we sampled 500 data points and used their 

CRU-NCEP climatic variables to perform TROLL simulations at both study sites (Nouragues 

and Fushan), each time using the previously calibrated general parameter values. 

To evaluate model sensitivity, we calculated the mean steady-state values (values over 

the last 100 years of the simulation) of four summary metrics of forest structure and 

functioning: stem density (DBH ( 10 cm; N10, trees!ha-1), large stem density (DBH ( 30 cm; 
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N30, trees!ha-1), aboveground biomass (AGB, Mg!ha-1), and gross primary productivity (GPP, 

MgC!ha-1!yr-1). We described the trends of model outcome and model sensitivity to each 

variable, and fitted linear models with climatic variables as independent terms and the 

summary metrics as dependent terms, and reported semi-partial coefficients as effect size. 

This experiment also aims to answer Research Question 2, and the results are presented in 

Chapter 1. 

 

Modeling wind-induced tree mortality: ForestGALES 

 

Due to the considerable economic costs associated with wind-induced failure of stems or root 

anchoring, forest managers have developed tools to predict the occurrence risk of windthrow 

events (including both stem breakage or uprooting) over the last decades, in order to conceive 

adapted forest management strategy that minimizes this type of tree damage. Apart from 

qualitative assessment or statistical models, mechanistic models characterize the physical 

processes involved in windthrows and describe the causal links between tree parameters and 

susceptibility to wind damage. This provides opportunities to test hypotheses on specific 

process and make predictions about consequences of changing environmental conditions 

(Gardiner et al., 2008). 

Mechanistic wind damage models work by calculating the critical wind speed (CWS) 

needed for trees to undergo windthrow, based on a set of properties easily measurable at the 

stand level (e.g. tree spacing and canopy height) or at the individual level (tree height, 

diameter and wood strength): this critical wind speed is then compared with local observed or 

simulated wind speed patterns to assess the probability that a windthrow event occurs. 

Based on physical principles, the critical wind speed is calculated by estimating the force that 

are exerted by the wind on an individual tree (represented as an anchored vertical object), the 

bending moment this creates, and the mechanical resistance of the root anchorage and stem to 

the bending moment. The force that a tree experiences naturally depends on the local wind 

speed, which in turn is conditioned by the treeÕs position in the canopy and the density and 

height of neighboring trees in its vicinity. The bending moment created by the force depends 

on tree dimension and allometry, notably the tree crownÕs size, shape, distribution along the 

stem length and streamlining, which influence air drag and the effective Òlever armÓ length of 

the represented tree object. The mechanical resistance of a tree depends on its stem 

characteristics (e.g. diameter and wood strength), root morphology and depth, and soil 

properties of its anchorage location. Ideally, these factors could all be derived by a set of 

measurable plant traits based on physical principles. In reality, some empirical relations have 

to be employed, and models predicting the CWS should best be described as a hybrid of 
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empirical and mechanistic approaches. For example, as understanding of how root 

architecture and soil property influences root anchoring remains relatively limited (Fourcaud 

et al., 2008; Stubbs et al., 2019), modeling of uprooting risk is often done by tree-pulling 

experiments, which have shown that stem mass is a good empirical predictor of resistance to 

uprooting (Nicoll et al., 2006; Peterson and Claassen, 2013). Likewise, the streamlining of 

tree crowns under wind loading is modeled using measurements in wind tunnel experiments 

(Rudnicki et al., 2004; Vollsinger et al., 2005). 

In this thesis, we chose to use ForestGALES, one such wind damage risk model that has 

seen wide application in both the forestry and the ecology research communities. As wind 

damage risk models were originally developed to evaluate wind damage in even-aged 

plantation forests, stand-level properties (e.g., tree spacing and canopy height) are often used 

to parameterize the model. However, in mixed-sized natural forests, stand-level properties 

often vary dynamically, and spatial heterogeneity in the forest stand means that the effect of 

neighbor sheltering can differ for each individual tree, on wind damage risk can be important. 

We used an updated version of ForestGALES that allows parameterization based on 

individual-level properties, and made further adjustments and simplifcations to implement it 

in the TROLL model, in order to explore the long-term effects of wind disturbance on the 

structure, dynamics and functioning of a mixed-sized natural forests. This work aims to 

answer Research Questions 1 and 2, and the results are presented in Chapter 2. 

 

Model overview 

In technical terms, wind flow over the forest canopy can be thought of as a horizontal fluid 

flow above a boundary layer: wind speed decreases as one approaches the canopy top. In 

ForestGALES, horizontal wind speed (u, m!s-1) is modelled by the aerodynamic momentum 

transfer model above a vegetation canopy (Monteith and Unsworth, 2008, p310), and 

represented with a logarithmic profile (Gardiner et al., 2008, 2000): 
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where z (m) is the height above ground, k is Von K‡rm‡nÕs constant (- 0.4), z0 (m) is the 

aerodynamic roughness of the boundary layer, d (m) is the zero-plane displacement, and u* 

(m!s-1) is the friction velocity, which is related to the shear stress on the canopy surface (., 

N!m-2, or kg!m-1!s-2) through the following equation: 

_ & M` VY
a                                                           (7) 

where "  (kg!m-3) is the air density. Assuming a regular tree spacing of D (m), and that this 

shear stress is applied uniformly on each tree, the average wind drag force received by each 

tree can be represented by #D2 (N). Thom (1971) showed that this is can be considered as 
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exerting on the tree at the height of the zero-plane displacement (d). The mean bending 

moment (BMmean, N!m) can therefore be represented as Ab MWH. _$ a. A gust factor (G, 

dimensionless), empirically estimated from wind tunnel experiments (Gardiner et al., 1997), 

is used to convert the mean bending moment to the maximum bending moment (BMmax, N!m), 

critical for evaluating tree resistance to wind. Based on the above equations, the maximum 

bending moment at any point on the stem can therefore be expressed as: 
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                                      (8) 

where uh (m!s) is wind speed at canopy-top tree height (h, m). Two dimensionless coefficients 

are added to account for different factors that influence the actual bending moment. fCW 

accounts for the additional moment provided by the overhanging mass of tree crown that is 

displaced by wind. fedge accounts for the proximity of the tree position to newly created forest 

edges, which increase its wind loading and damage risk. Trees near established edges (edges 

that are created a long time ago) are assumed not to increasing wind damage risk, due to trees 

acclimating to the increased wind exposure by adaptive growth. 

Resistance to stem breakage is modeled with the assumption that tree stem is completely 

homogeneous, and that wind-induced stress is constantly distributed at all points between the 

crown base and stem base (Morgan and Cannell, 1994). The stress is then calculated at breast 

height (z = 1.3 m), and the stem is assumed to break when the stress exceeds the modulus of 

rupture (MOR, Pa). The critical bending moment for stem breakage (Mcrit, break, N!m) is 

expressed by the following equation (Jones, 2013): 
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where fknot (dimensionless) is a factor that accounts for weakening of the stem due to presence 

of knots. 

Resistance to uprooting is modeled empirically based on the results tree-pulling 

experiments. A linear regression between the maximum recorded bending moment and stem 

weight (SW, kg) was found to provide the best fit to the data. The critical bending moment for 

uprooting (Mcrit, uproot, N!m) is thus expressed by the following equation: 

d 'q%-rX+q**- & ?qgh . wN                                              (10) 

where Creg (N!m!kg-1, or m2!s-2) is the coefficient of the linear regression forced through zero 

(with the reasoning that as stem weight approaches zero, so should the bending moment 

required to uproot it). Creg values for conifers and broadleaf species have been measured 

through tree-pulling experiments under different soil properties (Locatelli et al., 2016; Nicoll 

et al., 2006; Peltola et al., 2000; Peterson and Claassen, 2013), and its range in general was 

found to range from 110 to 185. 
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By combining equations (9) and (10) with equation (8), the critical wind speed (CWS, 

m!s-1), at which the bending moment reaches the critical value for either stem breakage or 

uprooting, can be expressed as: 
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The value of the aerodynamics parameters (d, z0) depends on multiple forest canopy 

properties, including tree height, tree spacing, crown depth and crown width. The latter two 

depend on the crown frontal area, which in turn depends on wind speed due to the 

streamlining effect: consequently, equations (11) and (12) could not be directly solved. In the 

original implementation, an iterative approach was used to find an approximation of the 

critical wind speed (Gardiner et al., 2000). 

One major empirical element in the above model is the gust factor (G), which relates the 

mean bending moment, calculated based on mean wind speed, to the maximum bending 

moment. Its parameterization at the individual level is difficult , and yet model output is very 

sensitive to its value. Another approach is to directly quantify the relationship between the 

maximum turning moment and the mean wind speed, thus eliminating the need for the gust 

factor and allowing the wind damage model to be more easily applied to mix-sized natural 

forests (Hale et al., 2015, 2012). Based on field measurements conducted at several temperate 

forest sites, the hourly maximum bending moment (Mmax, N!m) was shown to be related to the 

hourly mean canopy-top wind speed (u, m!s-1) through the following relationship: 

d OJ(K & • B . Va                                                       (13) 

TC (N!m-1!s2, or kg), the turning moment coefficient (TMC; turning moment is an 

alternative terminology for bending moment), represents the ratio between the square of the 

mean wind speed and the maximum bending moment, and was found to be related to tree 

characteristics as follows (Hale et al., 2012): 

• B & ‘ . $c6 a . 6                                                    (14) 

where the constant # (kg!m-3) = 111.7 (Hale et al., 2015). A higher TC value represents larger 

turning moment for a given wind speed. By combining equations (13) and (14), which 

describe the maximum bending moment through tree properties and mean wind speed, and 

equations (9) and (10), which describe the critical bending moment that induces stem 

breakage or uprooting, we can reformulate the equations for critical wind speed as the 

following: 
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where TMCratio (dimensionless) is a factor that accounts for increase of wind loading after a 

recent thinning event, and is expected to tend towards 1 through time, as trees acclimate to the 

increased wind exposure by adaptive growth. Note that for Equation (15), diameter at stem 

base (D0) is used rather than diameter at breast height (DBH) because with the TMC 

approach, only the bending moment at the tree base can be calculated (Hale et al., 2015). 

Finally, in order for the estimated canopy-top critical wind speed to be compared with 

meteorological data, which conventionally measure wind speed at 10 m above the zero-plane 

displacement, a wind speed conversion using the logarithmic profile is used: 
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Implementation of ForestGALES in TROLL  

In this thesis, ForestGALES was implemented as a sub-model of wind-induced tree mortality 

in the TROLL model. At each time step, when there is an extreme wind event (see section 

Wind simulation in TROLL ), each tree is evaluated to decide if it experiences windthrow,  

in which case it falls and dies. In keeping with the original TROLL module, secondary treefall 

is modeled by assuming that when a tree dies, it falls in a random direction, and increases the 

death rate of trees in the impacted pixels. In order to introduce stochasticity, we assumed that 

the probability of windthrow of each individual tree is positively related to the difference 

between the observed wind speed u(h) that it experiences and its critical wind speed (CWS) 

for damage: the higher u(h) is relative to CWS, the more likely the tree is to fall and die. A 

logistic model was used to describe the relationship between wind-induced tree death 

probability (p) and the difference between u(h) and CWS (Hale et al., 2015; Valinger and 

Fridman, 1999): 

• & L–AL —/ 0 AXA7H0 BfŽ HH                                              (18) 

A crucial departure of the TROLL implementation of wind damage risk sub-model and 

the original ForestGALES model is their approach to account for the effect of neighborhood 

sheltering in a mixed-sized forest. The original ForestGALES model estimates canopy-top 

CWS for all tree individuals regardless of its relative position in the canopy, and converts 

them to atmospheric CWS for comparison with the observed atmospheric wind speed. To 

account for the sheltering at the sub-canopy level, the CWS calculation can be modulated by a 

competition index, which is a function of the tree height relative to neighboring tree heights, 
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so that sub-canopy and understory trees would have reduced wind loading and wind damage 

risk compared to top-canopy and emergent trees (Duperat et al., 2021; Hale et al., 2012; 

Quine et al., 2021). The TROLL implementation does not modify CWS with competition 

index, but instead of canopy-top CWS, it calculates individual tree-top CWS, which is then 

compared with the observed tree-top wind speed. During the conversion of observed 

atmospheric wind speed to the tree-top level, the neighborhood sheltering effect is taken into 

account by assuming that wind speed continues to decrease with diminishing height within 

the canopy. For canopy-level or emergent trees, where tree height (z, m) ( H, the same 

logarithmic wind speed profile as in Equations (6) and (17) is used for the conversion: VAWH&

V] = x“ . Z[A
\ 0 ]
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\ ^
H” . For sub-canopy or understory trees, where z < H, the logarithmic 

profile is not applicable, and the within-canopy wind profile is represented with the following 

equation (Inoue 1963):  

VAWH& VA6 H. / 0 ˜ Ax0 \ –< H                                             (19) 

where ™& 6 –š› œ• : empirical values of š›  are reported in Table I of Raupach et al. (1996). 

With this parameterization, horizontal wind speed u(z) within the canopy at H/2 is 22% of 

u(H): to reduce computational burden, we assumed that trees z < H/2 are not directly affected 

by wind, meaning that u(z) = 0. In order to account for horizontal canopy heterogeneity, 

average top canopy height (H, m) is calculated for every 20 ' 20 m quadrat of the simulated 

forest stand, by taking the arithmetic mean of the top leaf-containing voxel layer of each pixel 

within the quadrat. 

In addition, in this thesis, we assumed that the aerodynamic parameters d and z0Oonly 

depended on average canopy height (H, m). The variation of both parameters over forest 

vegetation has been explored both from theoretical angles (Dorman and Sellers, 1989; Sellers 

et al., 1996; Shaw and Pereira, 1982) and through field measurements (Raupach et al., 1991; 

Shuttleworth et al., 1989), which showed that the overall values of d and z0 range from 0.7 H 

to 0.9 H and from 0.04 H to 0.08 H, respectively. We therefore used the parameterization of d 

= 0.8 H and z0 = 0.06 H, choosing an intermediate value of the reported range. It is to be 

noted that z0 value is expected to vary seasonally as plant area index (leaves plus woody 

components) fluctuates, although here it is assumed to be constant. Based on the above 

formulation, Figure 12 illustrates an example of horizontal wind speed above and within 

forest canopy. 
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Figure 12. Horizontal wind speed profile above and within forest canopy simulated in 

TROLL, provided  H = 15 m and ud+10 = 12 m!s-1. 

 

In Equations (15) and (16), besides DBH (diameter at breast height) and H (tree height), 

several other variables were parameterized by individual tree characteristics calculated in the 

TROLL model. MOR (fresh-wood modulus of rupture; Pa, or kg!m-1!s-2) was estimated from 

oven-dry wood density (WDb, g!cm-3) using the species-specific wood trait values reported in 

Green et al. (1999). We used hardwood species for which fresh-wood modulus of rupture was 

measured, and converted the reported wood density at 12% moisture (WD12) into oven-dry 

wood density using the formula WDb = 0.828 ' WD12 (Vieilledent et al., 2018). The 

relationship between oven-dry wood density and fresh-wood MOR was then fit with an 

exponential function: 

dv@ & Lž~Ÿ. / Aa~ x . f: EH. L¡ ¢                                         (20) 

D0 (diameter at trunk base) was estimated using DBH with a linear corrective factor: 

$“ & £ . $c6 . SW (kg) represents fresh stem weight, and was estimated using aboveground 

biomass (AGB) with a linear corrective factor: wN & ™O. O¤ic . 

This simplified model thus still contained numerous empirical factors: $ (estimating SW 

from AGB), % (estimating D0 from DBH), . (estimating the turning moment coefficient from 

tree size), fknot (accounting for the effect of stem knots), fedge (accounting for the effect of 

newly created forest edge), fCW (accounting for the effect of overhanging crown weight when 

the tree is bent under wind), and TMCratio (accounting for recent thinning events). Since it is 

not the objective of this thesis to explore in detail the role of each of these factors, we decided 

to further simplify the model by combining these factors and other constants into a single 

Òwind damage parameterÓ, P. Equations (15) and (16), calculating critical wind speed for 

each type of damage, could therefore be rewritten as follows: 
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where Pbreak (dimensionless) and and Puproot (m!s-1) are free parameters that encapsulate the 

following factors, respectively: 

" sqg(1 & ¥A¦ O. O£u O. Oe1)*- H–§_. •Ÿ . eg]hg . eBf . •d? q(-%*¨©x–a           (23) 

" X+q**- & ¥A?qgh O. O™H–§_. eg]hg . eBf . •d? q(-%*¨©x–a                     (24) 

The P parameters represent the overall susceptibility of a forest stand to wind-induced 

tree mortality: the smaller the P value of a damage type is, the lower the critical wind speed is 

for the same individual tree, meaning that the forest is overall more susceptible to wind-

induced death due to that type of damage. Since these two parameters are empirical, and no 

observation-based parameterization is possible, we performed a sensitivity analysis to 

investigate model responses to these two parameters. 

We first ran 500 TROLL simulations, each time randomly drawing one value for each 

parameter from a uniform prior range ([0.01, 1] for Pbreak and [0, 40] for Puproot). The 

simulations were run for a forest stand of 4 hectares over 500 years (6000 time steps) from 

bare ground, and the wind-induced tree mortality sub-model was activated after a burn-in 

period of 100 years (1200 time steps). We used the principle of model inversion to examine 

which parameter combinations generated aboveground biomass (AGB) values that are closest 

to field-estimated values. As the best-fit simulations (25 simulations with the 5% smallest 

deviation between simulated and field AGB) did not converge to a narrower parameter value 

range, we decided to evaluate the relative contribution of each wind disturbance process to 

tree mortality: we calculated the average proportion of treefalls due to each type of damage in 

all timesteps in the last 100 years of the simulation where an extreme wind event happened. 

The results showed that the proportion of treefalls due to tree uprooting was low compared to 

those due to stem breakage. As field observations from annual mortality survey at the Fushan 

site also indicate that the proportion of tree uprooting is low compared to that of stem 

breakage, we decided to focus on wind-induced stem breakage. 

A second sensitivity analysis and model calibration were thus performed, this time 

including only Equation 21 as the wind-induced tree mortality sub-model and a single free 

parameter P. We ran 1000 TROLL simulations, each time varying the P value by a step of 

0.005 across the range of (0, 1], with five replicates for each parameter value. The simulations 

were run with the same stand size (4 hectares), duration (500 years, i.e. 6000 time steps), 

initial condition (from bare ground) and activation time of the wind-induced tree mortality 

sub-model (after a burn-in period of 100 years, i.e. 1200 time steps). 
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We calculated the mean steady-state values (values over the last 100 years of the 

simulation) of three forest structure metrics: stem density (DBH > 10 cm; N10, trees!ha-1), 

LoreyÕs height (basal area-weighted mean tree height, m) (Pourrahmati et al., 2018), and 

aboveground biomass (AGB, Mg!ha-1). We also calculated two mortality statistics for trees 

with DBH > 10 cm: mean annual mortality and fraction of mortality due to treefalls 

(%Mtreefall). These mortality statistics were calculated at the onset of wind disturbance (first 

100 years after wind submodule activation, i.e. year 101Ð200) and at the steady state (last 100 

years of simulation, i.e. year 401Ð500). We qualitatively described trends and sensitivity of 

these statistics in response to variation of parameter value, and calculated the fit of simulated 

to field observed values of aboveground biomass. 

 

Wind simulation in TROLL  

Extreme wind events are simulated in TROLL in a two-step process: first, at each time step, it 

randomly determines if an extreme wind event happens based on past cyclone occurrence 

frequency; then, a wind speed is randomly drawn from the on-site cyclonic wind speed 

distribution. This assumes that one extreme wind event at most can occur per time step. 

For a given site, we calculated the monthly average frequency of cyclones that have 

occurred within a sufficiently close distance to the study site, using the IBTrACS data set 

(International Best Track Archive for Climate Stewardship database; v04r00, archived at 

https://www.ncdc.noaa.gov/ibtracs/index.php?name=ib-v4-access). This data set contains 

best-track records of global tropical cyclones occurring since 1945 (Knapp et al., 2010). 

A common measure of the spatial extent of tropical cyclones is the mean radius of gale-

force winds (R17, km) : gale-force wind is by convention defined as 17.5 m!s-1. Based on the 

reported value ranges in the literature, we assumed R17 to be 150 km (Chan and Chan, 2012; 

Lu et al., 2017; Weber et al., 2014). We therefore calculated the monthly mean frequency of 

recorded tropical cyclones occurring within a 150-km distance from the Fushan site over the 

period of 1987-2020, where cyclone records were the most complete for the Northwest 

Pacific basin.  

We calculated on-site cyclonic wind speed (Vsite, m!s-1) using the wind speed records of 

the selected cyclones, and based on the empirical function that relates it to the distance 

between the site and the cyclone center (d, km) (Anthes 1982, Hsu & Babin 2005):Oª ›%-g &

Lž~« . ¬ @x –b (since d < R17 by definition, it follows that Vsite > 17.5 m!s-1). For each month, 

we then fitted the Vsite values to a Weibull distribution using the R function fitdistr in the 

package MASS (Venables and Ripley, 2002), and used the scale and shape parameters as input 

climate forcing variables.  
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Exploration of effects of wind frequency and intensity 

In order to examine how extreme wind pattern influences forest structure, dynamics and 

functioning, we performed two series of simulations varying cyclone frequency and wind 

intensity. In the first series, we varied cyclone occurrence frequency from 0.1 to 2 times the 

empirical frequency at the Fushan site, with a varying step of 0.1, while maintaining wind 

intensity. In the second series, we varied the scale parameter of the wind speed distribution, 

which controls the mean and median of the wind speed distribution, from 0.1 to 10 times the 

empirical value at the Fushan site, with a varying step of 0.1, while maintaining empirical 

frequency. Five replicates were performed for each condition (in total, 100 simulations for 

frequency and 500 simulations for intensity). Based on the results of the sensitivity analysis, 

we set P = 0.7, a value where simulation results are close to field observations and not near 

the forest tipping point (P < 0.3). The simulations were run with the same stand size (4 

hectares), duration (500 years, i.e. 6000 time steps), initial condition (from bare ground) and 

activation time of the wind-induced tree mortality sub-model (after a burn-in period of 100 

years, i.e. 1200 time steps). 

As in the previous step, we calculated the mean steady-state values (values over the last 

100 years of the simulation) of three forest structure metrics: stem density (DBH > 10 cm; 

N10, trees!ha-1), LoreyÕs height (basal area-weighted mean tree height, m) (Pourrahmati et al., 

2018), and aboveground biomass (AGB, Mg!ha-1). We also calculated two mortality statistics 

for trees with DBH > 10 cm: mean annual mortality and fraction of mortality due to treefalls 

(%Mtreefall). These mortality statistics were calculated at the onset of wind disturbance (first 

100 years after wind submodule activation, i.e. year 101Ð200) and at the steady state (last 100 

years of simulation, i.e. year 401Ð500). We qualitatively described trends and sensitivity of 

these statistics in response to variation of parameter value. 

 

Exploration of effects of topography 

Given that wind speed is altered over an uneven topography, we implemented quadrat-scale 

wind speed correction factors in the model to account for this topographical effect. For this, 

we used the Global Wind Atlas (GWA) data produced through downscaling with the WAsP 

program (Badger et al., 2015; Mortensen et al., 2001). We acquired 250 ' 250 m GWA pixels 

that fall in the area covered by the 1¡ ' 1¡ CRU-NCEP pixel where the Fushan site is located: 

this represents a grid of 200 ' 200 GWA pixels. We normalized the GWA wind speed values 

of the selected pixels, so that the mean GWA wind speed is equal to the mean CRU-NCEP 
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wind speed. We then resampled the GWA pixels to the 20 ' 20 m quadrat scale using bilinear 

interpolation with the resample function in the raster package (Hijmans, 2020), and selected 

the resampled pixels falling within the Fushan plot area: this represents a grid of 25 ' 25 = 

625 resampled pixels. We used the GWA wind speed values of these resampled pixels, 

normalized by their plot-wide mean, as the wind speed correction factor for each quadrat. The 

wind speed correction factor ranged from 0.27 to 1.96, and was used as a proxy for 

topographic heterogeneity: when topographic effect is activated, the wind speed experienced 

at each quadrat is the plot-wide wind speed (randomly drawn from the input wind speed 

distribution) multiplied by this correction factor: a value above 1 means that the wind speed at 

that quadrat is considered to speed up (due to exposed terrain), and vice versa when the value 

is below 1. 

We then performed simulations with and without topographical effect at the Fushan site. 

The simulations were run for a forest stand size of 25 hectares, but with the same duration 

(500 years, i.e. 6000 time steps), initial condition (from bare ground) and activation time of 

the wind-induced tree mortality sub-model (after a burn-in period of 100 years, i.e. 1200 time 

steps) as before. As in previous steps, we calculated the mean steady-state values (values over 

the last 100 years of the simulation) of three forest structure metrics: stem density (DBH > 10 

cm; N10, trees!ha-1), LoreyÕs height (basal area-weighted mean tree height, m) (Pourrahmati et 

al., 2018), and aboveground biomass (AGB, Mg!ha-1). We performed linear regressions for 

each statistics to quantify the effect of wind speed correction factor on these quadrat-level 

metrics values. 
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Exploration of natural disturbances in tropical forests using 

satellite data 

In order to develop near real-time (NRT) monitoring of natural disturbances in tropical 

forests, and to characterize fine-scale spatial pattern and temporal dynamics of forest gaps 

caused by natural disturbances, I analyzed Sentinel-1 synthetic aperture radar (SAR) data that 

has been processed to detect forest disturbance events in French Guiana from 2016 to 2019. I 

used field-derived synthesis data of land use in French Guiana in 2015, as well as Landsat-

derived optical data product that provides detailed characterization of long-term tropical moist 

forest cover change to separate anthropogenic from natural disturbance events. I compared the 

spatial pattern of natural forest gaps detected by the Sentinel-1 data product and by the 

Landsat-derived data product to ascertain their congruency. Finally, I quantified the 

topographic association of forest gaps and the monthly dynamics of natural disturbance 

events detected by Sentinel-1 satellite data. This work aims to answer Research Question 3, 

and the results are presented in Chapter 3. 

 

Study site: French Guiana 

French Guiana, an overseas territory of France, is situated in equatorial South America, 

adjacent to Suriname and Brazil. 95% of its surface area is covered by old-growth tropical 

rainforests (Beck et al., 2018; Keenan et al., 2015), and inselberg features (isolated rock hills 

rising above the surrounding forest-covered lowlands) are common due to its geographical 

location within the Guiana Shield. Forests in French Guiana typically experience a long wet 

season from December to June (monthly precipitation 250Ð550 mm) and a dry season from 

July to November (monthly precipitation 100Ð180 mm). A minor dry season (monthly 

precipitation 170Ð370 mm) sometimes occurs around March for approximately one and a half 

months, with considerable interannual variability (Bonal et al., 2008). 

Anthropogenic deforestation in French Guiana is mainly due to smallholder agriculture, 

forest exploitation (e.g. selective logging, road building), and notably gold mining (alluvial or 

in steep valleys) (Alvarez-Berr’os and Mitchell Aide, 2015; Rahm et al., 2017). Although 

French Guiana is not affected by tropical cyclones, strong wind events caused by downburst 

storms have been suggested to be an important disturbance agent and ecological driver in the 

northwestern and central Amazon (Magnabosco Marra et al., 2018; Negr—n-Ju‡rez et al., 

2018; Peterson et al., 2019). However, the influence of this disturbance factor in northeastern 

Amazonian forests in the Guiana Shield region remains to be elucidated. 
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Sentinel-1 SAR data 

Sentinel-1 is a satellite constellation comprised of Sentinel-1A and Sentinel-1B, launched in 

2014 and 2016 respectively by the European Space Agency (ESA). The global coverage, 

short revisit period (6 to 12 days) and fine resolution (10 m) of Setinel-1 satellites make them 

an ideal option for NRT forest monitoring. Sentinel-1 satellites are equipped with C-band 

(wavelength 7.5 - 3.75 cm) SAR sensors, which work by emitting radio wave pulses from the 

satellite onto the land surface and recording the backscatters of the pulse waves. The three-

dimensional structure of the detected can then be reconstructed by processing the backscatters 

recorded at different moments (and therefore at different positions) (Kirscht and Rinke, 1998). 

Figure 11 provides an overview of the principle of SAR remote sensing system. 

The wavelength of C-band radio wave allows it to partially penetrate into the forest 

canopy: its backscatter is thus affected by multiple factors of the ground and canopy 

components, such as canopy structure, canopy or soil moisture content, surface roughness and 

topography (Askne et al., 1999; Pulliainen et al., 1999). As a result, disturbed areas are not 

necessarily characterized by a sharp change of backscatter intensity. A new method of 

deforestation detection has been developed by Bouvet et al. (2018). This method bypasses the 

problem of variability in absolute backscatter intensity, and instead detects SAR shadowing, 

which occur due to the side-looking geometry of SAR sensor systems: as the radar pulses 

arrive the surface at an angle, some areas do not receive any radar pulse due to nearby 

obstacles, which include trees at the border between forest and non-forest areas. The shadow 

signals that appear (or disappear) following deforestation events are characterized by a sharp 

decrease in the backscatter in the time series. As this signal arises from a purely geometrical 

effect, it is expected to be less temporally variable than the absolute backscatter intensity, and 

can thus be used as an indicator of forest loss. Figure 13 provides an illustration of the 

principle of the shadow detection method. This method has been successfully tested and 

validated in Peru (Bouvet et al., 2018) and in French Guiana (Ball•re et al., 2021) for 

anthropogenic deforestation detection. 

In this study, we acquired Sentinel-1 SAR time series that has previously been processed 

using the shadow method, in the form of a raster data product that contains all disturbed 

pixels that has been detected in French Guiana from January 1st, 2016 to December 31st, 

2019 (henceforth the Sentinel-1 dataset). The pixel values are the time of disturbance, 

originally in number of days since April 3rd 2014, (date of the Sentinel-1A satellite launch), 

adjusted to the number of days since January 1st, 2016 in this study for simplicity. I used the 

clump function in the raster R package (Hijmans, 2020) to cluster contiguous disturbed pixels 

into patches, and converted the raster layer into a vector layer containing polygons that each 

represent a disturbance patch in QGIS (QGIS.org, 2021). 
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Figure 13. The principle of the shadow detection method for SAR satellite data. Reproduced 

from (Bouvet et al., 2018). 

 

Landsat-derived tropical moist forest cover data 

The Landsat satellite mission, led by NASA and USGS, consists of a series of satellites that 

have generated continuous optical imagery of the entire globe at a spatial resolution of 30 m 

since 1972 (Woodcock et al., 2008). A recent study, conducted by the Joint Research Center 

(JRC) of the European Commission, reprocessed the full Landsat archives to produce a 

dataset that characterizes land cover change and disturbance status of tropical moist forests 

(TMF) from 1982 to 2020 (Vancutsem et al., 2021). Three data layers of this data product 

(henceforth the JRC-TMF dataset) were used in this study. The ÒTransition mapÓ layers 

summarize the overall forest cover change of each TMF pixel at the end of the observation 

period, classifying pixels into categories including undisturbed forests, forest degradation 

(short-term disturbances due to either natural or anthropogenic causes), deforestation (long-

term conversion of forest to non-forest cover) and non-forest cover (permanent or seasonal 

water body, non-forest vegetation or non-vegetation cover such as road or buildings); the 
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ÒDegradation yearÓ and ÒDeforestation yearÓ layers show the year a pixel has been degraded 

or deforested for the first time, respectively. 

In this study, we acquired the JRC-TMF dataset for the entire extent of French Guiana. I 

created a raster layer that included all disturbed pixels (the union of pixels classified as 

ÒdegradationÓ and ÒdeforestationÓ in the transition map), and used the clump function in the 

raster R package (Hijmans, 2020) to cluster contiguous disturbed pixels into patches, and 

converted the raster layer into a vector layer containing polygons that each represent a 

disturbance patch in QGIS (QGIS.org, 2021). 

 

Identifying and selecting forest gaps caused by natural disturbance 

In order to compare the Sentinel-1 and the JRC-TMF dataset over the same time period, I 

retained only JRC-TMF patches that overlap only with pixels of degradation year from 2016 

to 2019, and that do not cover deforested pixels (pixels with a defined deforestation year). 

Our reasoning for excluding deforestation events is that it is defined in the JRC-TMF dataset 

as pixels that have undergone a complete and permanent conversion from forest to non-forest 

cover (such as agriculture or water surface), and therefore should not be considered as natural 

disturbance-induced forest gaps. 

In order to delimit a study zone with minimal level of anthropogenic disturbances, where 

most detected forest gaps are likely due to natural disturbance, I acquired the summary data of 

land use in French Guiana in 2015, and added a 5-km buffer around the areas of 

anthropogenic disturbance activities in the summary data. Through visual observation, I 

identified and manually drew two zones that are far from the majority of anthropogenic 

disturbances, one in the north and one in the south (Figure 14). I then excluded the Sentinel-1 

and TMF disturbance patches outside of the study zone. 

I further excluded patches with size < 0.2 ha, based on the reasoning that the smallest 

patches are more likely to be misidentifications or artifacts (false positives). The minimum 

size threshold of 0.2 ha was chosen based on the reported minimum detected surface area for 

disturbance patches for the Sentinel-1 dataset in Ball•re et al. (2021). 

I also excluded a small proportion of irregular-shaped, large-sized patches situated near 

or within topographical features (e.g., hills or inselbergs), with the assumptions that these are 

either artifacts or disturbance events occurring at the edge between forests and the non-

forests, and thus represent a different pattern than disturbance-driven gap dynamics. For this, I 

created a Ònon-forest coverÓ mask that included all the non-forest pixels in the transition map 

layer of the JRC-TMF dataset plus a 300-m buffer (corresponding to five JRC-TMF pixels), 

and excluded all disturbance patches overlapping with the non-forest mask. 
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Characterization of natural forest gap patterns and dynamics 

In order to verify that the Sentinel-1 dataset detects forest gaps with higher precision and 

sensitivity, and that the overall gap pattern is consistent with the JRC-data product, I 

quantified and compared the total number of gaps, total disturbed areas, and the gap size-

frequency distribution for both datasets. I also visually examined and compared the spatial 

patterns of the forest gaps in both datasets, and quantified the proportion of geographical 

match between the two datasets, both for all gaps and for large gaps (size (  0.5 ha). 

I then characterized the spatial distribution and temporal dynamics of the forest gaps 

detected in the Sentinel-1 dataset. Specifically, I calculated the ratio of disturbed area to total 

area for each elevation class in 50-meter bins, to see if the level of disturbance is correlated 

with topographical factors. I also compared the monthly dynamics of total disturbed areas 

with the monthly dynamics of precipitation and water deficit to see if there are seasonal 

variations in the level of disturbance. 

 

 

Figure 14. The entire extent of French Guiana (gray line), the region of frequent 

anthropogenic disturbance activities (blue) and the study zone (green). Underlying layer: 

Google Satellite Hybrid.  
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CHAPTER 1: Transferability of an individual - and trait -

based forest dynamics model: a test case across the tropics 
Accepted in Ecological Modelling. 

This paper explores the transferability of a spatially explicit individual-based forest dynamics 

model, TROLL, by applying it at two forest sites with contrasting climatic condition and 

floristic composition. We tested the sensitivity of empirical parameters considered to control 

key processes, calibrated parameter values using field data based on the principle of model 

inversion, and explored model response to a wide range of realistic climatic variation. This 

work contributes to answer Question 2. 
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1.1 Abstract 

Individual-based forest models (IBMs) are useful to investigate the effect of environment on 

forest structure and dynamics, but they are often restricted to site-specific applications. To 

build confidence for spatially distributed simulations, model transferability, i.e. the ability of 

the same model to provide reliable predictions at contrasting sites, has to be thoroughly 

tested. We tested the transferability of a spatially explicit forest IBM, TROLL, with a trait-

based species parameterization and global gridded climate forcing, by applying it to two sites 

with sharply contrasting climate and floristic compositions across the tropics, one in South 

America and one in Southeast Asia. We identified which parameters are most influential for 

model calibration and assessed the model sensitivity to climatic conditions for a given 

calibration. TROLL produced realistic predictions of forest structure and dynamics at both 

sites and this necessitates the recalibration of only three parameters, namely photosynthesis 

efficiency, crown allometry and mortality rate. All three relate to key processes that constrain 

model transferability and warrant further model development and data acquisition, with 

mortality being a particular priority of improvement for the current generation of vegetation 

models. Varying the climatic conditions at both sites demonstrate similar, and expected, 

model responses: GPP increased with temperature and irradiance, while stem density and 

aboveground biomass declined as temperature increased. The climate dependence of 

productivity and biomass was mediated by plant respiration, carbon allocation and mortality, 

which has implications both on model development and on forecasting of future carbon 

dynamics. Our detailed examination of forest IBM transferability unveils key processes that 

need to improve in genericity before reliable large-scale implementations can be envisioned.  



 57 
 

1.2 Introduction  

Forests harbor more than half of the total terrestrial biodiversity (Gardner et al., 2010) and 

contribute to climate change mitigation (Ellison et al., 2017; Mitchard, 2018). However, 

forest disturbances are important drivers of canopy cover change and they will likely impact 

tropical forest structure, diversity, and functioning in the future (Feng et al., 2018; Malhi et 

al., 2009; Zemp et al., 2017). These projections depend on a detailed understanding of the 

processes that link the abiotic environment and forest dynamics, as can be achieved through 

integration into simulation models (Fisher et al., 2018; Shugart et al., 2018). Confronting the 

robustness, reliability and realism of such models is crucial to gain confidence in their 

predictions (Prentice et al., 2015). 

Dynamic global vegetation models (DGVMs) adopt a coarse representation of the 

coupling between vegetation and biogeochemical cycles. Their simplified description of 

vegetation dynamics assume a limited set of vegetation structure and summarize plant 

diversity with a few plant functional types (PFTs). Modern DGVMs simulate demographic 

processes and trait variability (Fisher et al., 2010; Koven et al., 2020; Sakschewski et al., 

2015; Sato et al., 2007; Scheiter et al., 2013). However, difficulties remain in representing 

plant recruitment and mortality, translating into uncertainties in model projections of forest 

dynamics (Fisher et al., 2018). 

Unlike DGVMs, individual-based forest models (IBMs) explicitly simulate tree 

establishment, growth, competition, and mortality, simulating forest structure and dynamics at 

the stand scale (Bugmann, 2001; DeAngelis and Grimm, 2014; Fischer et al., 2016; Shugart, 

1984). Forest IBMs adopt a fine-grained representation of the diversity and structure of tree 

assemblages, which facilitates the exploration of mixed-species forest responses to climate 

variability (MarŽchaux et al., 2021). One drawback is that the calibration of forest IBMs is 

data demanding, and requires data at a fine spatial and temporal scale. For this reason, IBMs 

have traditionally been restricted to stand-scale application, and even if their extension to 

regional or global scale is technically possible (Shugart et al., 2018, 2015), one fundamental 

challenge is to explore the model validity across space. 

At the heart of model upscaling is the question of model transferability (Wenger and 

Olden, 2012; Yates et al., 2018): when a model has been calibrated at one site, how well does 

it simulate the vegetation dynamics at another site? Model transferability hinges upon how 

well the model is able to capture forest processes at any given site, and on whether the same 

biogeochemical and biophysical processes hold across sites (Fyllas et al., 2017; Sullivan et 

al., 2020). For instance, process-based models couple forest processes to environmental 

drivers in a generic way, through mechanistic modules, such as photosynthesis, water uptake, 

allocation. These processes are parameterized locally through measurable traits with 
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consistent biological and ecological meaning (e.g. functional traits). This means that, in 

theory, a completely process-based model should be transferable to any site, provided that 

measurements of the environmental drivers (e.g., climatic variables) and relevant traits of all 

locally present tree species are available. 

However, for some processes, current knowledge is insufficient to develop generic 

functions, and a simplified representation is necessary to encapsulate finer processes mediated 

by environmental, biogeographic or evolutionary factors. As a result, part of the site-

specificity is hidden in the model equations and parameters themselves. These site-specific 

parameters need to be re-calibrated from one site to the other to ensure reliable simulation 

outputs, which increases calibration efforts and hampers transferability (Lehmann and Huth, 

2015; MarŽchaux et al., 2021). Even generic equations have typically been formulated using 

input data from specific sites and under specific conditions, which will not always be 

consistent with the data provided for model initialization at other sites (Huber et al., 2018). 

This issue is especially important for tropical forests, which have high variability in 

composition, structure and functioning within and between sites, making model transferability 

and upscaling a greater challenge (Castanho et al., 2016; Johnson et al., 2016; Townsend et 

al., 2008). 

Model transferability in part depends on the availability of standardized and spatially 

distributed data on forest structure and function. For example, site-specific information can be 

prescribed for a model through trait-based data on floristic diversity (Fyllas et al., 2014, 

MarŽchaux and Chave, 2017) or remote sensing data (Fischer et al., 2019; Joetzjer et al., 

2017; Shugart et al., 2015). Consistent climatic boundary conditions, derived from weather 

models and data assimilation systems, also increase model transferability (Bugmann and 

Fischlin, 1996; Fauset et al., 2019). This also facilitates the evaluation of how a model 

responds to changes in climate forcing conditions: for example, in light-limited tropical 

rainforests, we expect that GPP will exhibit weakly positive or even negative relationship 

with increasing temperature, due to increasing competition, mortality and faster turnover 

(Allen et al., 2010; Clark et al., 2010; McDowell et al., 2018). 

Another way to improve model transferability is to convert modules that are implicitly 

site-specific into more generic formulations that encode site-specific conditions only through 

dependence on environmental and floristic composition. This can be facilitated by performing 

tests to identify model processes that are currently particularly site-specific: the improvement 

of the representation of those processes, through theoretical and empirical work across 

multiple sites, should then be prioritized. For instance, we expect that outputs of forest IBMs 

will be highly sensitive to parameters of mortality, and a more accurate mechanistic 

representation of mortality should improve the reliability of model projections under 
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conditions beyond the range of the original calibration data (Johnson et al., 2016; Bugmann et 

al., 2019). Although several studies have explored the issue of transferability of forest IBMs 

(Bugmann and Solomon, 1995; Lagarrigues et al., 2015; Ma et al., 2017; Shuman et al., 

2015), they have so far been limited to temperate and boreal forests with low tree species 

diversity. 

In this study, we explored the conditions of transferability of a forest IBM between two 

contrasting tropical forest sites chosen to maximize dissimilarity in geography, floristic 

composition and environmental conditions, evaluating separately the effect of parameter 

calibration and of climate forcing. We asked the following questions: 

(1) How well does a locally calibrated forest IBM perform when transferred at another 

site? We expect a degradation of model performance with no fine-tuning at the contrasting 

site. 

(2) What key parameters determine model performance during model transfer? We 

expect that, since most fundamental processes are captured by generic formulations in the 

model, only few parameters will be identified as in need of recalibration: these parameters 

point to limitations in model representation of the underlying processes. 

(3) What are the expected responses to climatic conditions? In the absence of water 

limitation, as in light-limited rainforests, GPP should increase with temperature and 

irradiance, while biomass should depend less on temperature. 

 

1.3 Materials and methods 

1.3.1 Model description 

The TROLL model is a spatially explicit individual-based model in which the aboveground 

space of a forest stand is divided into 3D cells of size 1 m3 (hereafter called voxels; Chave, 

1999; MarŽchaux and Chave, 2017). Solar irradiance (photosynthetic photon flux density, 

PPFD) is computed inside each voxel as the irradiance fraction transmitted immediately 

above the focal voxel. We considered only vertical light transmittance in the canopy; for trees 

at the edge of the simulated plot, we simulate light interception only for the part of the crown 

that is inside the plot, and then scale total assimilation with crown radius. At most, one tree 

can establish in each 1 ' 1 m pixel at any given time, and only self-standing stems ( 1 cm in 

trunk diameter at breast height (DBH) are explicitly modelled (herbaceous plants and lianas 

are not included). The effects of topography and water balance are not modeled. Seeds and 

seedlings < 1 cm DBH are indirectly modeled as part of a regeneration compartment, with 

inputs from an external seed rain and seed production within the simulated stand. Each 

modelled tree is a 3D object, characterized by DBH, height, crown radius, crown depth, total 
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leaf surface area, and age. Trees are assigned species-specific trait values, which influence 

processes such as photosynthesis, growth and mortality. 

At each monthly timestep, the model simulates carbon assimilation (photosynthesis), 

respiration, carbon allocation and growth for each tree, and also simulates seed dispersal or 

tree death when conditions are met. Tree growth is the result of an explicit balance between 

carbon assimilation (photosynthesis) and respiration. Carbon assimilation is represented with 

the C3 photosynthesis model (Farquhar et al., 1980), which depends on temperature, 

irradiance, vapor pressure deficit (VPD), and atmospheric CO2 concentration. During a 

monthly timestep, photosynthesis is calculated over half-hourly periods of a representative 

day (monthly mean values of temperature, irradiance and VPD); atmospheric CO2 

concentration is assumed constant. Stomatal conductance is modelled following Medlyn et al. 

(2011). We define the parameter * (quantum carbon yield per quantum photon) as the initial 

slope of the photosynthetic carbon assimilation against irradiance curve; this parameter 

controls carbon uptake in light-limited conditions (Farquhar et al., 1980). The value of * 

depends on environment and species, and it has been shown to be an important source of 

uncertainty in vegetation models (Domingues et al., 2014; Mercado et al., 2009). 

After the gross assimilated carbon is calculated from the photosynthesis model, net 

assimilated carbon is calculated as the gross assimilated carbon minus respiration. Net 

assimilated carbon is then allocated into biomass in different organs based on parameters of 

fixed fractions, resulting in tree growth and leaf flush dynamics in the same timestep. The 

resulting changes in tree height, crown shape and position, and leaf density will then 

influence the calculation of the light environment and photosynthesis of each tree in the next 

timestep. 

The allometric relationship relating tree height and DBH is assumed to be species-

specific, while allometric functions relating DBH and crown size are assumed the same for all 

trees. Crown radius grows as a function of DBH, following a non-linear relationship: ?@&

/ ABCD= BCE. FG:;< H where CRa and CRb are general parameters provided in input. Hence higher 

CRa indicates larger crowns for trees of all sizes, whereas higher CRb indicates that larger 

trees have disproportionately larger crowns than smaller trees. Identical values of CRa and 

CRb are prescribed for all species given the paucity of available data, even if it is 

acknowledged that crown size allometry can vary within species, across species and across 

sites (Jucker et al., 2017; Loubota Panzou et al., 2021). 

In TROLL, tree mortality results from several processes: (i) stochastic mortality, 

modelled as function of a maximal background mortality rate m and a linearly decreasing 

relationship with species-specific wood density (WD), so that: I gƒƒ & I M ™. N$  (�  

being positive, m is the maximal possible value of the mortality rate); (ii) carbon starvation if 
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net assimilated carbon is negative over a consecutive period exceeding leaf lifespan, so that 

old leaves have all died while no new leaves could be produced (assuming no internal carbon 

storage); and (iii) stochastic treefall events, assumed to depend on a tree height threshold, 

where the parameter vC represents the variability of this threshold. Both m and vC hence 

summarize complex processes that are not modeled mechanistically. 

A schematic diagram, which illustrates the structures and processes controlling the 

individual- and community-level dynamics of a forest in the TROLL model, can be found in 

MarŽchaux and Chave (2017) (Appendix S5, Figure S1). Necessary inputs for a run of 

TROLL include (i) climate forcing data for the simulated location, (ii) species-specific 

parameters of plant traits for the simulated forest, and (iii) species-independent parameters. 

The source code of TROLL (v2.5) is written in C++ and is available at 

https://github.com/troll-code/troll. On a computing cluster, each simulation of 200 ' 200 m 

and 500 years uses around 15 min of CPU time. 

 

1.3.2 Global climate forcing 

The TROLL model requires the following climate forcing variables: monthly mean values of 

daytime and nighttime mean temperature, cumulated rainfall, mean wind speed, and daytime 

mean irradiance, daytime mean vapor pressure deficit (VPD), and average normalized daily 

variation of temperature, irradiance and VPD. 

We used the CRU-NCEP reanalysis as a standardized climate forcing (version 8; version 

7 archived at https://rda.ucar.edu/datasets/ds314.3/) (Viovy, 2018). The CRU-NCEP data set 

is a global gridded (0.5¡ ' 0.5¡) sub-daily (6-hourly) climate product spanning the 1901-2016 

period. It provides seven climatic variables: temperature, precipitation, wind, downward 

longwave and shortwave radiations, air specific humidity, and atmospheric pressure, resulting 

from the combination of observation-based CRU TS 3.2 data (Harris et al., 2014) and model-

based NCEP-NCAR data (Kalnay et al., 1996). We constructed reference monthly mean 

conditions based on the time range 1980-2016, a period for which the most observations are 

available, in order to ensure higher accuracy (Kistler et al., 2001), and calculated and 

extracted climatic variables necessary for TROLL input (Appendix A). 

 

1.3.3 Study site and species parameterization 

We parameterized the TROLL model for Nouragues, French Guiana, South America, and 

Fushan, Taiwan, Southeast Asia. Aside from the difference in climatic patterns, there is no 

floristic overlap between Nouragues and Fushan, and tree trait distribution at the two sites 
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differ widely: for example, there is no overlap in the interquartile range of leaf mass per area 

(LMA; g.m-2) values (41.62 - 73.86 at Fushan, and 82.71 - 111.45 at Nouragues) and of wood 

density (g.cm-3) values (0.464 - 0.524 at Fushan, and 0.600 - 0.727 at Nouragues). 

The Nouragues Ecological Research Station includes a 12-hectare (400 m ' 300 m) plot 

in a moist lowland tropical forest, part of the Amazonian biome. The Nouragues site 

experiences two months of dry season per year, with mean annual precipitation around 3000 

mm, mean annual temperature around 26¡C, and a mean relative humidity around 99% 

(Bongers et al., 2001). Since plot establishment in 1994, censuses were completed regularly 

(2001, 2007, 2012, 2017). All self-standing stems DBH ( 10 cm were identified, measured, 

tagged and mapped. The plot has 622 tree species (Chave et al., 2008; MarŽchaux and Chave, 

2017). 

The Fushan Forest Dynamics Plot (FDP) is a 25-hectare (500 m ' 500 m) plot in a moist 

broadleaf subtropical forest in the northeast of Taiwan (Su et al., 2007), and is a part of 

ForestGEO (Forest Global Earth Observatory; Anderson-Teixeira et al., 2015; Condit, 1998). 

The Fushan site is under influence of northeasterly monsoon in winter, and frequent typhoon 

visits in summer and autumn, with mean annual precipitation around 4200 mm, mean annual 

temperature around 18¡C, and a mean relative humidity around 95%. Plot elevation ranges 

from 600 m to 733 m (Su et al., 2007). Since plot establishment in 2004, censuses were 

completed every five years, where all self-standing stems with a DBH ( 1 cm were identified, 

measured, tagged and mapped, with a total of 110 recorded tree species in the plot (Su et al., 

2007).  

Species-specific parameters of TROLL include leaf mass per area (LMA; g!m-2), 

nitrogen and phosphorus content per mass (Nmass, Pmass g!g-1), wood density (g!cm-3), 

maximum DBH (cm), DBH-height allometric parameters, and regional relative abundance. 

We implemented all 622 species in the model for the Nouragues site: a complete set of 

measured trait values were available for 163 species, and for the other species, a combination 

of species-specific values and genus means or abundance-weighted community means were 

assigned (MarŽchaux and Chave, 2017). For the Fushan site, we implemented 94 species for 

which a complete set of measured trait values were available: this represents ca. 90% of the 

trees. The methodology of data collection is detailed in Appendix B. 

Climatic data were extracted from the CRU-NCEP dataset at both sites. We also used 

local climate data, in order to force the model simulations. At Nouragues, semi-hourly 

meteorological data are available from 2013 to 2019, recorded 400 m away from the plot (4¡ 

05' N, 52¡ 41' W). At Fushan, daily meteorological data are available from 1991 to 2012, with 

hourly data from 2013 to 2016, recorded at a meteorological station 3 km east of the forest 
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plot (24¡ 45/ N, 121¡ 35/ E). A comparison of the local versus gridded climatic conditions is 

provided in Appendix C. 

For all simulations, we simulated forest regeneration from bare soil for a reference plot 

area of 4 hectares (200 m ' 200 m) for a duration of 500 years (6000 monthly timesteps): 

based on trial simulation, after 500 years, the forest has reached a steady state. 

 

1.3.4 Global parameter calibration 

In addition to species-specific parameters, TROLL includes a set of 41 species-independent 

parameters (or ÔglobalÕ parameters). The majority of these parameters can be measured 

empirically: initialization (plot size, initial size and leaf densities of trees etc.) and trait 

variability (intraspecific variation and covariance). Other parameters could vary across sites 

and they are the primary target of this study. 

We first performed a preliminary sensitivity analysis on five parameters tested in a 

previous study (MarŽchaux and Chave, 2017), which revealed that the model had a low 

sensitivity to the light extinction coefficient (k), and to carbon allocation fractions: fwood and 

fcanopy. We also found that stem density was not adequately estimated at Fushan (Appendix 

D): we hypothesized that asymmetric light competition and tree mortality may be factors 

shaping stem density. Thus, we focused on the calibration of five parameters (*, vC, CRa, 

CRb, m; Table 1) for which it is difficult to obtain precise field estimates. We examined model 

responses by varying these parameters across a range of values, while using fixed values 

taken from literature for all other parameters, including k, fwood and fcanopy. 

For *, vC and m, we generated uniform prior distributions, bounded within the reported 

value range. CRa and CRb, the slope and intercept of the log-transformed crown radius to 

DBH relationship are strongly correlated, so we generated correlated standard normal 

distributions using the Cholesky decomposition assuming a PearsonÕs r of 0.8, then 

transformed them to Beta prior distributions (of Beta(2, 2)), bounded within the empirically 

observed value ranges. 

We performed 500 calibration runs for both study sites. For each simulation, three 

parameters (*, vC and m) were randomly drawn from the uniform prior distribution, and the 

two crown allometry parameters (CRa and CRb) were drawn as a pair from the correlated Beta 

prior distributions. Goodness of fit was assessed using four summary metrics: stem density 

(DBH ( 10 cm; N10, trees!ha-1), large stem density (DBH ( 30 cm; N30, trees!ha-1), 

aboveground biomass (AGB, Mg!ha-1), and gross primary productivity (GPP, MgC!ha-1!yr-1). 

These metrics summarize both forest structure and functioning and overall constrain the 
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model well. Empirical values for these metrics were obtained from census data for N10, N30 

and AGB, and from a global gridded database for GPP (Madani and Parazoo, 2020). 

For each summary metric and each simulation, we calculated the steady-state value 

(defined as the mean over the last 100 years of simulation), and qualitatively described trends 

of model outcome and model sensitivity to each parameter using scatter plots of parameters 

against output metrics (Appendix E). Model goodness-of-fit was derived from individual 

summary statistics using an Euclidean distance between the simulated metrics and empirical 

values (centered and scaled), and we reported median and interquartile range of parameter 

values of the simulations with the 10% best overall fit (i.e., 50 best simulations out of 500). 

We quantified parameter ÒinformativenessÓ, i.e. the degree to which the dispersion of the 

posterior parameter distribution is reduced compared to the prior distribution, using the ratio 

between the interquartile range (IQR) of the best-fit simulations to that of all simulations: a 

smaller ratio indicates higher parameter informativeness. Finally, we reported the temporal 

trends of the four summary metrics, and discussed their fit with field observation values. 

 

Table 1. Parameters of the TROLL model calibrated at the two tropical forest sites.  

 Description Prior range 

*  quantum carbon yield per quantum photon 0.030-0.110 (Mercado et al. 2009) 

vC variability of the tree height-dependent stochastic treefall process 0.0-0.15 

CRa intercept of the log-transformed CR-DBH allometry 1.5-2.8 (Fischer et al. 2020) 

CRb slope of the log-transformed CR-DBH allometry 0.4-0.8 (Fischer et al. 2020) 

m maximal background mortality rate 0.005-0.045 

 

1.3.5 Forest response to climatic conditions: a virtual experiment 

To study the dependence of forest structure and dynamics on temperature, irradiance and 

VPD, we performed the following simulated experiment. In the CRU-NCEP dataset, we 

selected a subset of points corresponding to lowland light-limited rain forest within the 35¡N 

Ð 35¡S latitude range, based on elevation (< 1000 m), climate (annual precipitation > 2000 

mm!yr-1; Guan et al., 2015; Wagner et al., 2016), and land cover (ESA ÔforestÕ CCI Land 

Cover classes: 50, 60, 70, 80, and 90). At both study sites, we then performed 500 

simulations, each time using the three climatic variables at a randomly sampled point within 

the selected subset, and using Òoptimal parameter valuesÓ, the general parameter values of the 

one simulation that provided the best overall fit during calibration with the initial climatic 

condition (Table 2). The aim of this experiment is to explore the response of a forest stand as 

its climate forcing changes, with a range and correlation structure between the climatic 
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variables that are realistic for tropical forests, and to examine if this climate effect is 

consistent between sites. 

To select the reference pixels, we used precipitation data from CRU-NCEP, the C3S 

Global Land Cover product for 2018 (accessible at 

https://maps.elie.ucl.ac.be/CCI/viewer/download.php; ESA, 2017), and elevation data from 

the SRTM product (accessible at http://www.earthenv.org/topography) (Amatulli et al., 

2018). We used the gdal_translate utility to rescale the Land Cover data (300 m ' 300 m) and 

elevation data (1 km ' 1 km) to match the spatial scale of CRU-NCEP (0.5¡ ' 0.5¡). This 

resulted in a set of 3753 Òreference climateÓ pixels, of which we randomly sampled 500, 

using the corresponding climatic variables to force simulations for both Fushan and 

Nouragues. 

To evaluate model sensitivity, we used the same four summary metrics (N10, N30, AGB, 

GPP). For each metric, we calculated the steady-state value of each simulation (mean value of 

the last 100 simulated years), and described the trends of model outcome and model 

sensitivity to each variable using scatter plots of climatic variables against output metrics. In 

order to quantify the degree of influence of each climatic variable, we fitted linear models 

with climatic variables as independent terms and the summary metrics as dependent terms, 

and reported semi-partial coefficients as effect size. Assumptions for linear models were 

tested and confirmed; two sample points with temperature lower than 15¡C were identified as 

high-leverage points, but their inclusion did not significantly deviate the statistical estimates 

(Appendix F). 

 

Table 2. Optimal parameter values (parameter values of the simulation with best overall fit) at 

each site. Values in parentheses indicate the interquartile range of 50 best-fit simulations. 

Parameter Fushan Nouragues 

*  0.071 (0.070 Ð 0.089) 0.074 (0.073 Ð 0.082) 

vC 0.099 (0.022 Ð 0.070) 0.031 (0.029 Ð 0.111) 

CRa 1.93 (1.833 Ð 2.080) 2.10 (1.990 Ð 2.163) 

CRb 0.51 (0.510 Ð 0.610) 0.57 (0.523 Ð 0.618) 

m 0.006 (0.005 Ð 0.017) 0.023 (0.017 Ð 0.032) 

 

1.3.6 Data analysis 

Data processing, statistical analysis and visualization were performed in R 3.3.0 (R Core 

Team, 2019). Apart from those already mentioned elsewhere, R packages ggplot2, ggpubr, 

ncdf4, raster, data.table, geosphere, sp, tidyr, extRemes, and BIOMASS were used for this 

study (Dowle and Srinivasan, 2020; Gilleland and Katz, 2016; Hijmans, 2020, 2019; 
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Kassambara, 2020; Pierce, 2019; Rejou-Mechain et al., 2017; Venables and Ripley, 2002; 

Wickham, 2020, 2016). 

 

1.4 Results 

Model outcomes were highly sensitive to *, CRa and m, and to a lesser extent to CRb. Higher 

quantum yield (*) led to higher large-stem density and AGB and a sharp increase in 

productivity. Higher overall crown size (larger CRa values) led to lower stem density and 

AGB, and a slight increase in productivity; its relationship with large-stem density and AGB 

was non-linear at Fushan. Higher mortality rates (m) led to reduced large-stem density and 

AGB (Figure E1 & E2). The parameter values corresponding to the simulation maximizing 

the goodness of fit were similar between the two sites for * and CRb, but differed markedly 

for vC, CRa and m (Table 2). 

We used the IQR ratio as measure of parameter informativeness: lower IQR ratio 

signifies higher informativeness. The most informative parameter was found to be CRa, 

informative at both sites (0.55 at Fushan and 0.38 at Nouragues). * was informative at 

Nouragues (0.38) but less so at Fushan (0.78), and m was informative at Fushan (0.33) but 

less so at Nouragues (0.75). CRb and vC were only moderately informative (values > 0.6 at 

both sites) (Figure 1). 

Temporal change of all four summary statistics (N10, N30, AGB and GPP) were 

qualitatively similar at both sites, showing sigmoidal increase for stem densities (N10 and N30). 

We observed , a gradual increase of AGB and rapid increase and stabilization of GPP at both 

sites, and an initial overshoot of N10 at Nouragues but not at Fushan (Table 3, Figure 2). At 

Nouragues, all steady-state estimated metric values showed a good fit to field values; at 

Fushan, N10 was underestimated (ca. 14%), GPP was overestimated (ca. 9%,), and N30 and 

AGB showed reasonably good fit to field values. Both climate forcings yielded similar model 

outputs, matching well field observations: N10 values were similar, N30 and AGB values were 

slightly lower when using ground-based climate forcing at Fushan, and GPP values were 

markedly lower when using ground-based climate forcing at both sites (Figure 2). 

Median climate values across sampled pixels were: temperature = 26.25¡C, irradiance = 

207.6 W!m-2, VPD = 0.644 kPa. Temperature, irradiance and VPD all had significant effects 

on simulated forest structure and functioning, although effect sizes varied. Temperature effect 

on N10 was strongly negative at Fushan but non-significant at Nouragues; it had strong 

negative effects on N30 and AGB but a weak positive effect on GPP at both sites. Irradiance 

had a positive effect on all four metrics at both sites, and are especially strong for GPP. VPD 

had weakly negative effects on GPP at both sites; its effects on the other three metrics were 

weakly positive at Fushan and non-significant at Nouragues. Overall, effect sizes were weaker 
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at Nouragues than at Fushan (except for irradiance effects on N30 and AGB) (Figure 3, Table 

4). 

 

 

Table 3. Percentage difference between summary statistics of the optimal simulation 

(simulation with the best overall fit) and the mean empirical value. Values in parentheses 

indicate the interquartile range of percentage differences of the 50 best-fit simulations. 

Metrics Fushan Nouragues 

N10 -14.4% (-18.1% Ð 0.8%) -2.5% (-9.0% Ð 12.4%) 

N30 -5.9% (-14.9% Ð 5.3%) 0.1% (-8.4% Ð 4.2%) 

AGB -3.1% (-17.4% Ð 3.3%) 2.9% (-9.4% Ð 1.0%) 

GPP 8.6% (5.6% Ð 28.5%) -2.9% (-6.3% Ð 5.6%) 

 

 

Table 4. Effect size of each climatic variable on the output metrics at both sites, expressed in 

semi-partial correlation coefficients. Effect sizes with absolute values larger than 0.3 are 

indicated in bold. Italic indicates non-significant effects (p > 0.05). 

 Fushan Nouragues 

 N10 N30 AGB GPP N10 N30 AGB GPP 

Temperature -0.341 -0.553 -0.489 0.135 -0.049 -0.385 -0.413 0.032 

Irradiance 0.251 0.296 0.329 0.953 0.142 0.436 0.476 0.947 

VPD 0.228 0.230 0.183 -0.226 0.061 0.039 0.027 -0.202 
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Figure 1. Prior (gray) and posterior (black) distributions for five parameters: * (quantum 

yield), vC (treefall parameter), CRa and CRb (intercept and slope terms of the crown radius 

allometry), and m (background mortality). Results are reported for the Fushan site (Taiwan), 

and for the Nouragues site (French Guiana). Curves represent density functions, and vertical 

lines represent median value of the distributions. Shaded areas indicate interquartile range 

(IQR) of prior (light gray) and posterior (dark gray) distributions. IQR ratio is calculated as 

the posterior divided by prior IQR: lower IQR ratio is thus indicative of a higher parameter 

informativeness. 
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Figure 2. Successional dynamics of best-fit simulations at the Fushan and Nouragues sites, for 

four variables. Green shades represent the interquartile range, and gray shades represent the 

entire range of variation. Solid lines: median value of the best-fit simulations (black: gridded 

climate forcing; dark green: ground climate forcing); dashed lines: empirical values. 
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Figure 3. Effect of climatic conditions on forest structure and functioning at both sites (red: 

Fushan; black: Nouragues). Triangles indicate the simulations done under climatic condition 

of the original site. 

 

1.5 Discussion 

In this study, we tested the transferability of a forest IBM, and demonstrated that the model 

predicts forest structure and functioning with reasonable accuracy at two species-rich forest 

sites in different bioregions. Parameters controlling photosynthetic efficiency, crown 

allometry and background mortality were found to be key for model calibration. We showed 

that calibration could help identify influential processes in trait-based forest IBMs and 

suggests that there is potential of IBM upscaling with improved representation of influential 

processes and parameter estimation. 
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1.5.1 Transferability of an individual -based model 

The TROLL model was designed to incorporate a detailed representation of forest diversity 

while remaining relatively easy to parameterize at a forest site, by prescribing each species 

using a set of commonly measured traits (MarŽchaux and Chave, 2017). This approach 

alleviates the calibration burden of model transfer (DeAngelis and Grimm, 2014) and 

facilitates the implementation of large-scale testing of individual-based models. However, not 

all parameters used in the model are directly observable or easily measurable in the field: 

some are integrators of multiple processes not explicitly represented within the model. So the 

issue of model transferability still stands, and we here ask whether a calibrated parameter set 

for one site performs well elsewhere. 

We estimated model parameters through model inversion, comparing model outputs 

against field observations (Hartig et al., 2012). This approach has been used for several 

DGVM parameterizations, usually by calibrating against eddy-covariance data (Ichii et al., 

2010; Pappas et al., 2013; Restrepo-Coupe et al., 2017). Here, goodness-of-fit depends on 

four summary statistics of forest structure (stem density) and functioning (biomass and 

productivity) that are usually available in field inventory data or global gridded data. In the 

future, the approach could be improved by using the whole height or diameter distribution of 

the simulated forest, or by adopting a likelihood-based approach (Hartig et al., 2014, 2012). 

We calibrated the model at two contrasted tropical forest sites. In spite of their marked 

differences in climatic conditions, species composition and functional diversity, the simulated 

forests matched field observations by calibrating a limited subset of parameters. This supports 

the view that forest models with trait-based parameterization are capable of capturing site-

specific characteristics that underpin community dynamics and structure at a given forest site. 

We speculate that the use of trait-based species parameterization contributes to the reduced 

need for refitting (i.e., higher model genericity) (Christoffersen et al., 2016; Fisher et al., 

2018; Fyllas et al., 2014; Pappas et al., 2016). Parameters that do differ across sites point to 

potential improvements in the model, a discussion we now turn to. 

 

1.5.2 Parameter calibration 

We performed calibrations for three parameters that influence predicted forest structure and 

functioning: photosynthetic efficiency (*), crown allometry (CRa), and tree mortality (m). As 

* represents the actual quantum yield of photosynthesis (the amount of fixed carbon per light 

flux absorbed by the chloroplasts), higher * value results in higher carbon assimilation (when 

light is limiting) and higher GPP. This parameter only leads to a moderate increase in large 

stem density (N30) and AGB, and an even smaller effect on overall stem density (N10), 
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indicating that forest demography and biomass accumulation are not solely conditioned by 

productivity, but also hinge on respiration, carbon allocation, and carbon residence time 

(çlvarez-D‡vila et al., 2017; Johnson et al., 2016; Malhi et al., 2015). 

Model calibration was not sensitive to TROLLÕs species-independent carbon allocation 

parameters (Appendix D), but it should be pointed out that carbon allocation does vary across 

and even within species (Malhi et al., 2015; Negr—n-Ju‡rez et al., 2015). Therefore, including 

a more mechanistic or trait-mediated representation of carbon allocation may unveil more 

heterogeneity in forest dynamics, and is an important objective in future model development 

(Mergani0ov‡ et al., 2019; Negr—n-Ju‡rez et al., 2015; Schippers et al., 2015; Trugman et al., 

2019). 

In TROLL, crown allometry directly controls light use efficiency and tree competition. 

Higher CRa values mean that trees have wider crowns at a given diameter, and achieve higher 

carbon assimilation rates due to increased light interception, leading to the observed pattern of 

increase in GPP with increased CRa. Wider crowns also create more intense shading for 

smaller trees in the understory and cause higher tree turnover and mortality, leading to the 

observed pattern of decreasing stem density and AGB. Stand structure also strongly depends 

on the level of prescribed inter- and intraspecific variability of crown allometry, which 

determine how complementarity in crown architecture could increase light use efficiency and 

promote coexistence (Pretzsch, 2019; Vieilledent et al., 2010). 

Mortality is an important calibration parameter in TROLL. Tree mortality is a complex 

process, and in current IBMs, it is often modeled empirically, and thus remains one of the 

main sources of model uncertainty (Bugmann et al., 2019). In the FORMIND model, the 

mortality rate is empirically correlated with environmental variables such as precipitation and 

soil property, which vary across space (Ršdig et al., 2018, 2017). Such simplifications limit 

our ability to explore how different causes of tree mortality impact forest structure 

(McDowell et al., 2018). 

Natural disturbance events such as fire, drought or wind are responsible for a significant 

proportion of tree mortality (Fischer et al., 2018; McDowell et al., 2018; Peterson et al., 

2019), and they impact forest structure and functioning (Ibanez et al., 2019; Magnabosco 

Marra et al., 2018; Pugh et al., 2019). The two forest sites selected for this study depend on 

different wind disturbance regimes: notably, Fushan is influenced by frequent tropical 

cyclones (Dowdy et al., 2012; Lin et al., 2011), while Nouragues is not exposed to cyclones. 

At Nouragues, TROLL simulates an overshoot of stem density during early succession, 

indicating self-thinning, but not at Fushan. One hypothesis for this pattern is that cyclones 

shape a more open canopy at Fushan, resulting in a less intense self-thinning. This may also 

explain why the optimal value for the mortality rate (m) is lower at Fushan than at Nouragues. 
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It would be important to devise more mechanistic representations of disturbance events in 

TROLL. 

 

1.5.3 Upscaling of individual-based models 

Various efforts have been made to upscale IBMs to the regional or global scale. Individual-

based approaches have been coupled to or developed within DGVMs (Fisher et al., 2018; 

Sakschewski et al., 2015; Sato et al., 2007) to represent cohort processes. Ma et al. (2017) 

prescribed environmental data for simulations of the FORCCHIN IBM model at several flux 

tower sites, and validated the simulated carbon flux against flux tower data. Ršdig et al. 

(2018, 2017a) performed regionalization for the FORMIND model by calibrating the 

mortality parameter at a number of sites and correlating it with environmental variables 

(precipitation and soil properties), and performing simulations at sites over the entire Amazon 

using mortality parameters predicted from the environmental variables. Simulated temporal 

dynamics of canopy height were then compared with remote sensing data to determine the 

succession status of each site, which was then used to generate Amazon-wide estimation of 

other forest attributes such as biomass and productivity.  

Yet, these studies assigned trees to a small number of plant functional types that relied 

on empirical parameterization. Our study, although smaller in scope, is a proof of concept 

demonstrating that trait-based IBM upscaling is achievable with minimal calibration and is 

therefore realistic in the tropics, provided that trait measurements exist and tree floristic 

composition is available at the focal site. Moreover, since model output contains detailed 

information about forest composition, TROLL could also help answer how plant diversity 

responds to environmental changes. 

With every forest model, assumptions are made about which parameters are species-

dependent and which are not. The model described here, TROLL, is designed with the aim to 

contain as much species-specific information that is currently available. For an individual-

based model, this choice does not necessarily incur higher computational burden than the 

plant functional type approach, since in both cases every individual tree is simulated. 

However, supplying models with species-specific information requires considerably more 

parameterization effort. With the ongoing collection effort of plant traits in permanent plots 

around the world, the assembly of global trait databases (Anderson-Teixeira et al., 2015; 

Chave et al., 2009; Kattge et al., 2020) and development of techniques to measure new plant 

traits, we expect that it will be easier to generalize this approach to many sites. Here we show 

that of the species-independent parameters, only a few require site-specific calibration for 

realistic model output to be achieved, and identifying these parameters helps identifying 
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priorities for future theoretical and modeling development, as well as for field measurements 

(Medlyn et al., 2016). 

 

1.5.4 Climate impact on forests using IBMs 

Another important part of assessing transferability of forest IBMs consists in evaluating how 

the model responds to environmental forcing, an important step in understanding how forests 

respond to climate change (Shugart et al., 2018). We here examined the effect of climate 

forcing without the need of re-calibration (Fauset et al., 2019; Shugart et al., 2018). Many 

forest IBMs prescribe climatic conditions based on locally measured data (Ma et al., 2017; 

Shuman et al., 2015), yet it is important to provide a consistent climate forcing condition even 

at places where local measurements do not exist, and to ensure comparability among sites. 

The integration of the gridded CRU-NCEP climate dataset as model input fulfills this 

condition, and thus further simplifies large-scale implementation. 

TROLL simulations at the Fushan and Nouragues sites with different climatic conditions 

demonstrate that the model reproduces a general pattern of climatic response that remain 

nearly identical upon model transfer, with only quantitative differences between sites. The 

simulated positive relationship of GPP with temperature and irradiance and the negative 

relationship with VPD are in agreement with expectations (Malhi et al., 2015; Reyer, 

2015).Under the current model version, VPD constrains leaf stomatal conductance in the 

photosynthesis process, and we found a weak effect of VPD. As water availability is one of 

the key climatic factors that shape forest dynamics and functioning (çlvarez-D‡vila et al., 

2017; Feng et al., 2018; Galbraith et al., 2010; Poorter et al., 2017), further investigation of 

forest response to drought and soil water stress is necessary, and will be the focus of future 

model development. 

At both sites, we observed a decoupling between the response of productivity and that of 

stem density and AGB. With increasing temperature, GPP increased while large tree density 

and AGB decreased. These observations are consistent with empirical studies that showed 

that productivity is a poor predictor of biomass in old-growth tropical forests (Johnson et al., 

2016; Malhi et al., 2015). Biomass accumulation is controlled by numerous processes other 

than carbon assimilation, including mortality, functional composition, and size structure 

(Allen et al., 2010; Bugmann et al., 2019; Johnson et al., 2016). 

The Fushan site responded more to variation in climatic conditions than Nouragues. One 

interpretation of this finding is that the native bioclimatic conditions of Nouragues were 

closer to the average condition of reference climatic conditions, whereas Fushan has a fringe 
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climatic condition (subtropical). Consequently, constraining the Fushan forest to average 

tropical forest climatic conditions had more effect than on the Nouragues forest. 

 

1.5.5 Conclusion and perspectives 

We have demonstrated that a detailed exploration of the calibration and transferability of trait-

based forest IBMs offers an opportunity to assess the genericity of model assumptions. Even 

though our results are based on model simulations, they do pave the way towards a much 

more systematic exploration of model behavior across a wide range of sites that are 

representative of a variety of forest types. 

We here identify two main priorities for future individual-based model development: 1) 

including more detailed and mechanistic representation of important physiological processes, 

such as disturbance-driven tree mortality (Seidl et al., 2014, 2011a; Uriarte et al., 2009), and 

2) improving constraints of key parameters with detailed and spatially distributed data, such 

as informing crown allometry with remote sensing data (Calders et al., 2018; Fischer et al., 

2020; Shugart et al., 2015). With the help of improvements in these two directions, we argue 

that upscaling of individual-based vegetation models with detailed, trait-based species 

description need not be associated with high calibration burden, and that they have great 

potential for large-scale implementation. 
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1.7 Supplementary data 

Appendix A: generation of monthly mean climatic variables for TROLL 

input  

Automated global reanalysis climate data calculation and extraction 

The CRU-NCEP data are stored in NetCDF format, and the following variables are available: 

Tair for air temperature (K), rain for precipitation (mm), WindN and WindE for each of the 

two horizontal directional components of wind speed (m!s-1), SWdown for incoming short-

wave radiation exposure (J!m-2), Qair for air specific humidity, and PSurf for surface 

atmospheric pressure (Pa). We retrieved data for the period from 1980 to 2016, a period when 

many direct observations complemented model-based inferences in CRU-NCEP. 

We processed the CRU-NCEP data across the entire land surface on Earth using the 

Climate Data Operators (cdo) tool (Schulzweida, 2019) and stored the results in NetCDF 

files, with a total of 74 files (2 files for each year). For each year, one file contains the 

monthly mean values of the following climatic variables: mean, maximum and minimum 

daily temperature (¡C), mean and maximum daily irradiance (W!m-2), mean and maximum 

daily VPD (vapor pressure deficit, kPa), as well as monthly total precipitation (mm); another 

file contains the 6-hourly average wind speed (m!s-1), calculated as the quadratic average of 

the two wind speed components. Irradiance was calculated as the short-wave radiant 

exposure, divided by the time length of each measurement interval (6 hours, i.e. 6 ' 3600 = 

21600 seconds). VPD was calculated from temperature (T, ¡C), air specific humidity (R, 

unitless), and surface atmospheric pressure (P, kPa) with the following equations (Buck, 

1981; Monteith and Unsworth, 2008): 
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where VPsat is the temperature-dependent saturated vapor pressure. 

Subsequently, we used an R script to extract the monthly climatic variables from the files 

for a geographic coordinate, and generated a text file that is used as an input file for TROLL. 
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Appendix B: Data at Fushan FDP 

At Fushan FDP, local meteorological data, daily from 1991 to 2012 and hourly from 2013 to 

2016, was recorded at a meteorological station three kilometers east of Fushan FDP (24¡ 45/ 

N, 121¡ 35/ E). Temperature and humidity were measured by a Rotronic MP101A 

meteorological probe, precipitations by a tipping bucket rain gauge, irradiance by an E20 

Silicon pyranometer (Homeray), and instantaneous wind speed by a Wind Monitor Model 

05103 (Young). 

In Fushan FDP, the sampling of functional traits was conducted in 2009, where 1 to 26 

individuals per species were chosen randomly according to accessibility of tree canopy, and 1 

to 3 intact and mature leaves or leaflets exposed to sunlight were collected for each 

individual. Collected leaves were sealed in Ziploc̈ bag with wet paper towels and kept in an 

insulated cooler box in order to prevent from water loss until transport back to the field 

station. There, the fresh weight of the leaves was measured to a precision of 0.1 mg, and they 

were scanned with a flatbed scanner within 12 hours. Leaf area (LA, cm2) was quantified with 

the software ImageJ (Rasband, n.d.). The leaf samples were subsequently oven-dried at 80 ¡C 

for 72 - 96 hours, until constant dry weight. Leaf mass per area (LMA, g!m-2) were then 

calculated as dry weight divided by fresh leaf area (PŽrez-Harguindeguy et al., 2013). 

Nitrogen and phosphorus content (Nmass and Pmass, g!g-1) were determined by the microplate 

method (Huang et al., 2011; Iida et al., 2014).  

Wood density (WD, g!cm-3) was measured following the ForestGEO wood density 

measurement protocol (Condit, 2008; Iida et al., 2014), by taking wood core samples of 

randomly chosen individuals outside the plot, measuring fresh volume by water displacement 

method and dry weight after oven-drying at 80 ¡C. Wood density was calculated as dry 

weight divided by fresh volume. 

The allometric relationship between DBH and tree height (H) in the TROLL model was 

assumed to follow a Michaelis-Menten function with two parameters, asymptotic height 

(hmax) and the Michaelis constant (ah), numerically equal to the diameter at which the tree 

height is half of hmax: 
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Although DBH values for all individuals were available, tree heights were only 

measured for 1 to 18 individuals for each species, depending on the accessibility of tree 

individuals. Due to the scarcity of available height data, a hierarchical Bayesian model was 

used to estimate model parameters: the model assumed that the species-specific Michaelis-

Menten parameters hmax, i and ah, i for species i are distributed normally around common 

hyperparameters hmax and ah (Molto et al., 2014). Parameters are close to the hyperparameters 
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when data points are scarce for a particular species, while the species parameters dominate 

when data points are numerous for the species. Calculations were carried out with the 

software STAN and the R package RStan (Stan Development Team, 2016a, 2016b). 
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Appendix C: comparisons of different climate forcing sources. 

The comparison between three climatic variables (temperature, precipitation, irradiance) 

extracted from CRU-NCEP data and ground station data showed that apart from minor 

differences, the climatic variables were largely congruent between CRU-NCEP and ground 

measures for the two ground study sites, the main difference being that seasonal variability 

for irradiance and precipitation was noticeably larger in ground data than in CRU-NCEP data 

at Fushan (Figure C1-2). 

 

 
Figure C1. Comparison of climatic variables from CRU-NCEP gridded data or ground-based 

data at Nouragues. 
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Figure C2. Comparison of climatic variables from CRU-NCEP gridded data or ground-based 

data at Nouragues. 
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Appendix D: preliminary parameter calibration  

In the preliminary calibration tests, three other parameters were calibrated besides the 

parameters * and m: k, the light extinction coefficient, describes the proportion of light 

extinction by each canopy layer; fwood represents the fraction of assimilated carbon allocated 

to aboveground wood (branches and stem), and fcanopy represents the fraction allocated to 

canopy (twigs, leaves, and reproductive organs) (Table D1). We conducted the calibration 

tests following the same procedure as described in the main text, performing 500 simulations 

and selecting simulations with the 10% best overall fit (i.e., 50 simulations). The results 

indicated that model output was weakly sensitive to k; model sensitivity to fwood and fcanopy, 

was non-negligible, but the overall model output did not deviate clearly from the observed 

value range no matter what their calibrated values were (Fig. D1 & D2). As a result, in all 

subsequent simulations we set a constant value for these three parameters. For k, we chose the 

lower bound value of 0.5 since reported values for forest ecosystems in Zhang et al. (2014) 

are primarily cluster around 0.5. For the allocation parameters, an intermediate value within 

the reported range was chosen (fwood = 0.35, fcanopy = 0.25). 

 

k light extinction coefficient 0.50-0.95 (Cournac et al. 2002, Zhang et al. 2014) 

*  quantum carbon yield per quantum photon 0.030-0.110 (Mercado et al. 2009) 

fwood fraction of NPP allocated to aboveground wood 0.20-0.45 (Arag‹o et al. 2009, Malhi et al. 2011) 

fcanopy fraction of NPP allocated to canopy 0.20-0.45 (Arag‹o et al. 2009, Malhi et al. 2011) 

m maximal background mortality rate 0.005-0.045 

Table D1. Parameters of the TROLL model calibrated at the two tropical forest sites in 

preliminary tests.  
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Figure D1. Calibration of TROLL general parameters for Fushan (k: light extinction 

coefficient; *: quantum yield; fwood and fcanopy: carbon allocation to different plant organs; m: 

background mortality). Horizontal blue lines are observed values from field censuses. Each 

point represents one simulation, and red points are best-fit simulations. 
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Figure D2. Calibration of TROLL general parameters for Nouragues (k: light extinction 

coefficient; *: quantum yield; fwood and fcanopy: carbon allocation to different plant organs; m: 

background mortality). Horizontal blue lines are observed values from field censuses. Each 

point represents one simulation, and red points are best-fit simulations. 
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Figure D3. Prior (grey) and posterior (black) density distributions for parameter values 

(k: light extinction coefficient; *: quantum yield; fwood and fcanopy: carbon allocation to 

different plant organs; m: background mortality). Solid vertical lines indicate median and 

dashed vertical lines indicate interquartile range (IQR). Parameter informativeness is 

calculated as the ratio between IQR of best-fit simulations and that of all simulations. 
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Appendix E: parameter calibration 

We conducted calibration tests on five parameters: * (quantum carbon yield per quantum 

photon), vC (variability of the tree height-dependent stochastic treefall process) CRa, CRb 

(intercept and slope terms of the log-transformed CR-DBH allometry), and m (maximal 

background mortality rate), following the procedure as described in the main text, performing 

500 simulations and selecting simulations with the 10% best overall fit (i.e., 50 simulations). 

The results showed that model output was strongly sensitive to *, CRa and m, and to a lesser 

exten to CRb. 

 

 

 

Figure E1. Calibration of TROLL general parameters (*: quantum yield; vC: treefall 

parameter; CRa and CRb: intercept and slope terms of the crown radius allometry; m: 

background mortality) for Fushan. Horizontal blue lines are observed values from field 

censuses. Each point represents one simulation, and red points are the best-fit simulations 

(10% best simulations). 
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Figure E2. Calibration of TROLL general parameters (*: quantum yield; vC: treefall 

parameter; CRa and CRb: intercept and slope terms of the crown radius allometry; m: 

background mortality) for Nouragues. Horizontal blue lines are observed values from field 

censuses. Each point represents one simulation, and red points are the best-fit simulations 

(10% best simulations). 
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Appendix F: verification of assumptions for linear model for the sampled 

climate experiment 

  

N10 N30 

  

AGB GPP 

Figure F1. Diagnostic plots of linear model for the sampled climate experiment at 

Fushan, with each summary statistics as dependent variables and the three climatic variables 

(temperature, irradiance and VPD) as independent variables. The four graphs represent 

respectively residual linearity, residual normality, residual homoscedasticity, and presence or 

absence of leverage points (influential points). 
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Figure F2. Diagnostic plots of linear model for the sampled climate experiment at 

Nouragues, with each summary statistics as dependent variables and the three climatic 

variables (temperature, irradiance and VPD) as independent variables. The four graphs 

represent, respectively, residual linearity, residual normality, residual homoscedasticity, and 

presence or absence of leverage points (influential points). 
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CHAPTER 2: Wind speed controls forest structure in 

subtropical forests exposed to cyclones: a case study using 

an individual -based model 
Submitted to Frontiers in Forest and Global Change. 

This paper implements the mechanistic wind damage model ForestGALES in the individual-

based based model TROLL, examines model sensitivity and response to the process of wind-

induced tree mortality, investigated the effects of factors such as varying frequency and 

intensity of extreme winds on forest structure and dynamics, and explores a simple 

implementation of topographic heterogeneity. This work contributes to answer Questions 1 

and 2. 
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2.1 Abstract 

Extreme wind blowdown events can significantly modify the structure and composition of 

forests, and the predicted shift in tropical cyclone regimes due to climate change could 

strongly impact forests across the tropics. In this study, we coupled an individual-based and 

spatially-explicit forest dynamics model (TROLL) with a mechanistic model estimating wind 

damage as a function of tree size, traits, and allometry (ForestGALES). We assimilated 

floristic trait data and climate data from a subtropical forest site in Taiwan to explore the 

effect of wind regimes on forest properties. We found that the average canopy height and 

biomass stocks decreased as wind disturbance strength increased, but biomass stocks showed 

a nonlinear response. Above a wind intensity threshold, both canopy height and biomass 

drastically decreased to near-zero, exhibiting a transition to a non-forest state. Wind intensity 

strongly regulated wind impact, but varying wind frequency did not cause discernible effects. 

The implementation of within-stand topographic heterogeneity led to weak effects on within-

stand forest structure heterogeneity at the study site. In conclusion, the intensity of wind 

disturbances can greatly impact forest structure by modifying mortality. Individual-based 

modeling provides a framework in which to investigate the impact of wind regimes on 

mortality, other factors influencing wind-induced tree mortality, as well as interaction 

between wind and other forms of forest disturbances and human land use legacy. 
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2.2 Introduction 

Natural disturbances shape forest structure, composition and dynamics, and play a substantial 

role in controlling the global carbon cycle (Pugh et al., 2019; Reichstein et al., 2013). Wind is 

a major source of natural disturbances and an important driver of tree mortality (Locatelli et 

al., 2016; Mitchell, 2013): while wind can cause partial tree damages such as branch snapping 

and defoliation, extreme wind events can lead to tree death, mainly through as stem breakage 

and tree uprooting. In particular, extreme wind disturbances generated by tropical cyclones in 

regions such as the Caribbean (Lugo et al., 2000) and the northwestern Pacific (Lin et al., 

2011) have been shown to control forest structure at a global scale (Hogan et al., 2018; Ibanez 

et al., 2020), with one notable effect being the reduction of canopy height with increased 

cyclone frequency and intensity (Ibanez et al., 2019). Cyclone regimes are projected to 

change in the future (Lin et al., 2020), with a general increase in cyclone intensity and 

interregional differences in the trend of cyclone frequency (Knutson et al., 2020). In order to 

anticipate how such changes will affect community- and ecosystem-scale properties, it is 

essential to deepen our understanding of the mechanisms through which cyclonic winds 

regulate tree mortality, which remains one of the demographic processes that are less well 

constrained in forest ecosystems (Bugmann et al., 2019; Koch et al., 2021). 

However, it remains intrinsically difficult to reach general conclusions on factors driving 

wind-induced tree mortality based on empirical studies: these studies rely on observations of 

forest damage after individual cyclone events, which are both limited in their temporal extent, 

and driven by contingent factors such as cyclone trajectory and force (Lugo, 2008) and human 

land use legacy (Kulakowski et al., 2011; Schwartz et al., 2017). In various studies, a higher 

probability and level of damage has been found to be correlated to tree characteristics such as 

larger diameter (Halder et al., 2021; Ostertag et al., 2005), larger height (Dunham and 

Cameron, 2000; Vandecar et al., 2011), or lower wood density (Curran et al., 2008; Webb et 

al., 2014). However, the size dependence of damage can vary with tree species (Xi, 2015) and 

damage type (Everham and Brokaw, 1996), and some studies even did not observe any size 

effect on tree damage (Bellingham et al., 1996). In addition, wind impact on trees can vary at 

fine scales within a given forest and for a given species, as wind speed interacts in complex 

ways with terrain topography, often accelerating at hilltops and mountain ridges, and 

decelerating in leeward valleys (Belcher et al., 2011; Ruel et al., 1998). As a result, windward, 

exposed terrains can experience heavier wind damage than leeward regions and valleys 

(McEwan et al., 2011; Yap et al., 2016) (but see de Toledo et al. 2012). 

Recently, a number of studies have contributed to a more mechanistic understanding of 

wind-tree interactions at a finer scale. To do so, they modelled the response of trees or tree-

like structures when exposed to wind drag using the finite-element method (Jackson et al., 
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2019b, 2019c; Moore and Maguire, 2008), and used continuously collected field data to relate 

tree motion to architectural properties (Jackson et al., 2021, 2019a). These studies provide 

important insights into the mechanisms underlying wind-tree interaction. However, the 

response of trees to wind depends not only on individual characteristics, but also on the tree 

neighborhood, and more specifically on the presence and the relative size of neighboring 

trees, which influences wind sheltering: as an illustration, wind typically has a 

disproportionate impact on emergent, unsheltered trees (Duperat et al., 2021; Hale et al., 

2012; Seidl et al., 2014). Hence, the impact of wind on a forest stand is more than the sum of 

the impacts on single trees: the heterogeneity of forest structure and composition must be 

accounted for when modeling the impacts of wind, especially for mixed sized forests. 

In light of these challenges, dynamic forest models that are both spatially-explicit and 

individual-based could be useful since they link external environmental conditions to 

community- and ecosystem-scale properties, through individual-level processes such as 

mortality, while explicitly accounting for spatiotemporal heterogeneity of forests (Fischer et 

al., 2016; Seidl et al., 2014). By including extreme wind disturbances in the climate forcing of 

these models, it is possible to represent mortality in a more mechanistic fashion, and generate 

stand-level predictions about forest response to wind disturbances, which could then be 

compared with forest inventory or remote sensing data. Several individual-based models 

(Ancelin et al., 2004; Kamimura et al., 2019; Schelhaas et al., 2007; Seidl et al., 2014; Uriarte 

et al., 2009) and land surface models (Chen et al., 2018), have incorporated windthrow or 

storm damage models. However, these models are mainly limited to temperate forests with 

relatively homogeneous stand structure. To the best of our knowledge, there is currently no 

forest dynamics model that implements cyclonic extreme wind forcing and simulates its 

effects on individual-level mortality processes for subtropical and tropical forests, even 

though tropical cyclones cause substantial impacts on these ecosystems with high biodiversity 

and carbon stocks. 

In this study, we explore the community-wide consequences of wind disturbances, using 

a model-based approach. We coupled a wind disturbance module to an individual-based forest 

model, and created forcing conditions from tropical cyclone records and wind speed data. We 

parameterized this model for the Fushan forest in Taiwan, located in a cyclone-prone region, 

and explored how extreme wind events impact tree mortality and forest structure and 

dynamics. Specifically, we addressed the following questions: 

(1) How do wind-induced tree mortality impact forest structure and dynamics? We 

expect that the presence of wind-induced tree mortality would cause a reduction in average 

canopy height due to higher vulnerability of tall trees to wind damage. This could in turn 

increase light availability in the understory and facilitate tree establishment, leading to an 
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increase in stem density. We also expect that total mortality as well as the fraction of 

mortality due to treefalls would increase. 

(2) How do changes in frequency and intensity of extreme wind events lead to shifts in 

forest dynamics and structure? We expect that higher wind frequency and intensity would 

result in more wind-induced mortality for large trees, which in turn would increase the extent 

of canopy height reduction and stem density increase. 

(3) How does topographical heterogeneity within a forest stand influence wind damage 

patterns? We expect that the inclusion of topography would lead to a higher heterogeneity in 

forest structure, with lower canopy height and higher stem density on more exposed terrains. 

 

2.3 Material and methods 

2.3.1 Description of the TROLL model 

The TROLL model is a spatially explicit individual-based model that divides the 

aboveground space of a forest stand into 3D cells of size 1 m3 (voxels). Solar irradiance inside 

each voxel is computed as the irradiance fraction transmitted from immediately above the 

focal voxel (Chave, 1999; MarŽchaux and Chave, 2017). No more than one individual tree 

can establish in each 1 ' 1 m pixel at any given time, and only self-standing stems ( 1 cm in 

DBH (diameter at breast height, measured at 1.3 m above ground, or 20 cm above deformities 

or buttresses if present) are explicitly modelled (herbaceous plants and lianas are not 

included). Seeds and seedlings < 1 cm in DBH are not directly modeled, but represented as 

part of a seed/seedling pool. Each modelled tree is characterized by its DBH, height, crown 

size (radius and depth), total leaf surface area, and age. Trees are assigned species-specific 

traits, which control photosynthesis, growth as well as other physiological and demographic 

processes. At each monthly time step, trees grow depending on the balance between carbon 

acquisition based on a C3 photosynthesis model (Farquhar et al., 1980) and respiration, with 

assimilated carbon allocated into wood or leaf production. Height-DBH allometric relations 

are prescribed at the species level, while the DBH-crown size allometry is assumed to be 

species-independent. Tree mortality in TROLL is represented by several processes: (i) 

stochastic tree death, here assumed to be negatively dependent on species-specific wood 

density (WD) (Wright et al., 2010): I gƒƒ & I M™. N$ , ($ is positive, so m is the maximal 

possible value of the mortality rate), (ii) carbon starvation, when net assimilated carbon is 

negative over a consecutive period exceeding leaf lifespan, so that old leaves have all died 

while no new leaves could be produced, (iii) stochastic treefall, dependent on a species-

specific tree height threshold related to maximum realized tree height, and (iv) secondary 

treefall, when a tree is affected by a falling neighboring tree. To more explicitly link tree 
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mortality to exogenous factors such as wind disturbance, we updated the treefall module for 

this study to simulate treefall more mechanistically (cf. below). 

Inputs for a typical run of TROLL (v3.0) include 1) monthly mean climate forcing data 

for the simulated location, 2) average trajectory of daily climatic variation, 3) species-specific 

plant traits for the simulated forest, and 4) species-independent general parameters, including 

those related to the stochastic tree death and treefall. The source code of TROLL (v3.0) is 

written in C++ and is available on https://github.com/troll-code/troll. On a computing cluster, 

each simulation of 200 ' 200 m and 500 years uses around 15 minutes of computer 

processing unit (CPU) time. 

 

2.3.2 Modeling tree-top wind speeds in a mixed-sized forest  

Horizontal wind speed decreases as one approaches the canopy top from above the canopy. 

This is modelled by the aerodynamic momentum transfer model above a vegetation canopy 

(Monteith and Unsworth, 2008, p310). The horizontal wind speed profile with height is 

represented with the following equation: 
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where u(z) (m!s-1) is the horizontal wind speed at height z (m) above ground or a 

displacement surface, k = 0.41 is the von K‡rm‡n constant, and VY (m!s-1) is the friction 

velocity. Parameter d is called the zero-plane displacement height, and z0Othe aerodynamic 

roughness. Both d and z0Oare dependent on canopy height H (m), and much research has 

explored the variation in both parameters d and z0 over forest vegetation (Dorman and Sellers, 

1989; Raupach et al., 1991; Shaw and Pereira, 1982; Shuttleworth et al., 1989). In general, d 

ranges from 0.7 H to 0.9 H, and z0 from 0.04 H to 0.08 H for tropical forests. For this study, 

we chose the intermediate values of d = 0.8 H and z0 = 0.06 H. These values are consistent 

with dense and tall evergreen forest vegetation as simulated in the SiB2 model (Sellers et al., 

1996). 

The aerodynamic momentum transfer model (1a) is only applicable above the canopy. In 

this study, we decided to apply an additional model to represent wind (Inoue 1963):  

VAWH& VA6 H·¸¹ §M™AL M W–6 Ḧ     if z < H                              (1b) 

where ™& 6 –š› œ• ; empirical values of š›  are reported in Table I of Raupach et al. 

(1996). With this parameterization, horizontal wind speed u(z) at a height of b —W“ & ¡ ~º®6  

and within the canopy at H/2 is 66% and 22% of u(H), respectively. To reduce computational 

burden, we assumed that trees whose height is lower than H/2 were not directly affected by 

wind. To account for canopy height heterogeneity and neighbor tree sheltering, we calculated 
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canopy height H for every 20 ' 20 m quadrat by taking the arithmetic mean of the top leaf-

containing voxel layer of each pixel within the quadrat. 

From the CRU-NCEP reanalysis dataset, we obtained empirical atmospheric wind speed 

values (cf. the ÒClimate forcingÓ section below), which are conventionally measured at 10 m 

above ground or above a displacement surface. In order to obtain the horizontal wind speed 

experienced by each tree, we applied the following equation, derived from equation (1a), to 

convert horizontal atmospheric wind speed at d + 10, u(d + 10), into top-canopy wind speed 

u(H) within each 20 ' 20 m quadrat:  
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Finally, for each tree with height h > H/2, we computed u(h) using either Equations (1a) or 

(1b). 

 

2.3.3 Modeling wind-induced tree death: critical wind speed 

To simulate the impact of extreme wind disturbance, we assumed that wind-induced treefall is 

a stochastic process whose probability depends on the difference between the tree-top wind 

speed u(h) exerted on a tree of height h (m), and a tree-specific critical wind speed (CWS). 

The higher u(h) is relative to CWS, the more likely the tree is to fall and die. In this study, we 

used a logistic model to relate the wind-induced tree death probability to (u(h) Ð CWS) (Hale 

et al., 2015; Valinger and Fridman, 1999): 

• & L–AL —/ 0 AXA7H0 BfŽ HH                                                   (3) 

For the estimation of CWS, we followed the approach of ForestGALES, a wind damage 

risk model originally developed for even-sized and even-spaced plantation forests (Gardiner 

et al., 2008, 2000) but then adapted for use with individual trees in more complex forest 

structures (Duperat et al., 2021; Hale et al., 2015, 2012; Quine et al., 2021). ForestGALES 

explores the biomechanical conditions under which the tree, simplified as an anchored 

vertical object, will break (causing stem breakage) or lose root anchorage (causing uprooting) 

when subject to a turning moment caused by wind loading. 

Importantly, the formulation of Equation (3) departs from that of ForestGALES, where 

the control of wind speed on mortality is defined to be u(H), the top-canopy wind speed. To 

account for the reduced impact of wind within forest canopies, the CWS in ForestGALES can 

be modulated by a competition index, so that trees within the canopy are less exposed to wind 

damage than top-canopy trees (Duperat et al., 2021; Hale et al., 2012; Quine et al., 2021). In 

the present formulation, CWS does not depend on the tree neighborhood, but the probability 
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of wind-induced tree death depends on wind speed at tree height, as computed from Equations 

(1a) and (1b). 

At our study site, field observations indicate that the proportion of tree uprooting is low 

compared to that of stem breakage (Appendix A). We therefore focused on wind-induced 

stem breakage. The critical wind speed (CWS, m!s-1) inducing stem breakage and treefall is 

calculated by the following equation (Hale et al., 2015): 
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where DBH (m) is the tree diameter at breast height, and MOR (Pa, kg!m-1!s-2) is the fresh-

wood modulus of rupture. We estimated MOR from oven-dry wood density (WD, g cm-3) 

through the following exponential relationship (Green et al. 1999, see Appendix B): 

dv@ & Lž~Ÿ. / Aa~ x . f: H. L¡ ¢                                            (5) 

TC is the turning moment coefficient (kg), which relates the square of mean wind speed 

(m2!s-2) to the maximum turning moment (kg!m2!s-2) experienced by an individual tree. We 

used the following empirical equation for TC (Hale et al., 2012): 

• B & _ . $c6 a . Q                                                      (6) 

where the constant # (kg!m-3) = 111.7 (Hale et al., 2015). A higher TC value means larger 

turning moment for a given wind speed. 

The wind damage parameter P (unitless) is stand-specific and determines the overall 

susceptibility of a forest stand to wind-induced tree death: the smaller P value is, the lower 

the critical wind speed is for any given tree under the same condition, meaning that the forest 

is overall more susceptible to wind-induced tree death. It encapsulates multiple constants and 

corrective factors, as well as factors in the original equation (see Hale et al. 2015, Equations 

11 and 12; also see Appendix C) that are difficult to estimate, and whose interpretation is 

beyond the scope of this study. The value of P was thus tuned here by means of a sensitivity 

analysis (see below). 

 

2.3.4 Climatic forcing 

The TROLL model requires the following monthly mean climatic variables: daytime and 

nighttime mean temperature, daytime mean irradiance, and daytime mean vapor pressure 

deficit (VPD). We used the CRU-NCEP dataset to provide the monthly climate forcing, a 

global gridded (0.5¡ ' 0.5¡) sub-daily (6-hourly) climate product spanning the 1901-2016 

period (version 8; version 7 archived at https://rda.ucar.edu/datasets/ds314.3/) (Viovy, 2018). 

It was constructed by combining observation-based CRU TS 3.2 data (Harris et al., 2014) and 
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model-based NCEP-NCAR data (Kalnay et al., 1996). We used CRU-NCEP variables for the 

1980-2016 period, for which the most observations are available (Kistler et al., 2001). 

We estimated the monthly average frequency of cyclones occurring within a sufficiently 

close distance to the study site. For this, we used the IBTrACS dataset (International Best 

Track Archive for Climate Stewardship database; v04r00, archived at 

https://www.ncdc.noaa.gov/ibtracs/index.php?name=ib-v4-access), which contains records of 

global tropical cyclones occurring since 1945 (Knapp et al., 2010). A common measure of the 

spatial extent of tropical cyclones is the mean radius of gale-force winds, by convention 

defined as 17.5 m!s-1. Based on the range of reported values in the literature, we assumed the 

mean radius of gale-force winds (R17, km) to be 150 km (Chan and Chan, 2012; Lu et al., 

2017; Weber et al., 2014). Thus, for a given site, we calculated the monthly mean frequency 

of recorded tropical cyclones occurring within a 150-km distance from the site over the period 

of 1987-2020. At Fushan, cyclone occurrence frequency was highest from July to September 

(~ 0.5 cyclones per month); on average, total annual cyclone frequency was around 1.84 

cyclones per year. 

For the selected tropical cyclone records, we calculated on-site cyclonic wind speed 

(Vsite, m!s-1) using the empirical function that relates the radial variation of the tangential wind 

speed beyond the radius of maximum sustained wind in mature tropical cyclones (Anthes 

1982, Hsu & Babin 2005):Oª ›%-g & Lž~« . ¬ @x –b, where d (km) is the distance between the 

site and the cyclone center. Since d < R17 by definition, it follows that Vsite > 17.5 m!s-1. We 

then fitted the on-site cyclonic wind speed values of each month to a Weibull distribution, 

using the function fitdistr in the R package MASS (Venables and Ripley, 2002), and used the 

scale and shape parameters as input climate forcing variables. At Fushan, the year-round Vsite 

distribution is right-skewed, with 1st quartile = 18.85 m!s-1, median = 20.60 m!s-1, and 3rd 

quartile = 25.18 m!s-1. 

The coupling of TROLL to wind disturbances was performed as follows. At each time 

step, the occurrence of an extreme wind event was drawn from a cyclone occurrence 

probability, assuming that one extreme wind event at most can occur per time step. If an 

extreme wind event occurred, we drew a random wind speed value from the input wind speed 

distribution. We accounted for canopy heterogeneity and neighbor tree sheltering by only 

considering trees with height > H/2 as being exposed to wind disturbance, where H represents 

quadrat-wide average top canopy height, calculated by the mean value of the top leaf-

containing voxel height of each pixel within the quadrat. For each exposed tree, we converted 

atmospheric wind speed, u(d + 10), to its tree-top wind speed, u(h) (Equation 2, 1a and 1b), 

and calculated its critical wind speed (Equation 4). We then compared the two wind speed 

values, and determined if wind-induced tree death happens through a stochastic process, 
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dependent on a logistic function of the difference between the two wind speeds (Equation 3). 

Secondary treefall was modeled by assuming that when each tree dies, it falls in a random 

direction and increases the death rate in the impacted pixels. 

 

2.3.5 Study site and parameterization  

We parameterized the TROLL model with wind-induced tree mortality for a forest site of 

Taiwan. The Fushan Forest Dynamics Plot (FDP) is a 25-hectare (500 m ' 500 m) plot in a 

moist broadleaf forest in the northeastern region of Taiwan (Su et al. 2007), part of 

ForestGEO (Forest Global Earth Observatory) (Anderson-Teixeira et al., 2015; Condit, 1998). 

Fushan is under strong influence of the northeasterly monsoon in winter and frequent typhoon 

visits in summer and autumn, with mean annual precipitation around 4200 mm, mean annual 

temperature around 18¡C, and a mean relative humidity around 95%. Plot elevation ranges 

from 600 m to 733 m (Su et al., 2007). It was established in 2004 and censused every five 

years since then: all self-standing stems with a DBH ( 1 cm were identified, measured, tagged 

and mapped, with a total of 110 recorded tree species in the plot (Su et al., 2007). 

Species-specific plant functional traits that TROLL requires as input parameters include 

leaf mass per area (LMA, g!m-2), nitrogen and phosphorus content (Nmass and Pmass, g!g-1), 

wood density (WD, g!cm-3), maximum DBH (cm), DBH-height allometric parameters and 

regional relative abundance. These traits were measured at Fushan according to ForestGEO 

protocol (Iida et al., 2014) for 94 species, covering ca. 90% of the censused trees. Climatic 

variables were extracted from the CRU-NCEP dataset at the geographic coordinates closest to 

Fushan FDP (24¡ 45' N, 121¡ 32' E). 

Stem density and aboveground biomass (AGB) estimations were available at Fushan 

from census data. In order to estimate on-site tree mortality, we used data from the annual tree 

mortality survey, which has been conducted at Fushan following ForestGEO protocol since 

2017. The mortality survey records the number of tree deaths and cause of death (standing, 

uprooted, or broken) of a subset of censused trees (Arellano et al., 2021). Using the mortality 

data at Fushan spanning 2017 to 2020, we calculated the mean annual mortality rate for all 

trees DBH > 10 cm, as well as the proportion of mortality attributed to treefall. For the 

detailed protocol of attribution of mortality factors, see Appendix A. 

Unless otherwise specified, for all simulations, we simulated forest regeneration from 

bare soil for a reference plot area of 4 hectares (200 m ' 200 m) for a duration of 500 years 

with a monthly timestep. Since we aimed to examine the effects of extreme wind on mature 

forest, the wind-induced tree mortality sub-model was activated after a 100-year spin up 

phase. 
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2.3.6 Sensitivity analysis 

The wind-induced tree mortality sub-model includes a single parameter P (unitless). To 

investigate model responses to its value, we conducted a sensitivity analysis by varying the 

value of P across a range of (0, 1], with a varying step of 0.005: for each value, we performed 

five replicates of TROLL simulations (a total of 1000 simulations). 

We calculated the steady-state values (mean over the last 100 years of the simulation) of 

three structure metrics: stem density (DBH > 10 cm; N10, trees!ha-1), LoreyÕs height (basal 

area-weighted mean tree height, m) (Pourrahmati et al., 2018), and aboveground biomass 

(AGB, Mg!ha-1). For trees with DBH > 10 cm, we also calculated two mortality statistics: 

mean annual mortality and fraction of mortality due to treefalls (%Mtreefall). We reported 

mortality statistics at the onset of wind disturbance (year 101 - 200, i.e. first 100 years after 

wind submodule activation) and after reaching the steady state (year 401! - 500, i.e. last 100 

years of simulation). We qualitatively described trends and sensitivity of these statistics in 

response to variation of parameter value. 

 

2.3.7 Effects of wind frequency and intensity 

To examine how the frequency and intensity of extreme wind events influence forests, we 

performed two series of simulations: 1) we varied cyclone occurrence frequency from 0.1 to 2 

times the empirical frequency (obtained from cyclone best-track data), with a varying step of 

0.1, while maintaining wind intensity; 2) we varied the scale parameter of the wind speed 

distribution (parameter controlling mean and median of the Weibull distribution), from 0.1 to 

10 times the empirical values (estimated from the cyclone best-track wind speed distribution), 

with a varying step of 0.1, while maintaining empirical frequency. Five replicates were 

performed for each condition (in total, 100 simulations for frequency and 500 simulations for 

intensity were performed). We set P = 0.7 based on the results of the sensitivity analysis, 

where simulation results are close to field observations and not near the forest tipping point (P 

< 0.3). As in previous steps, we calculated the steady-state values (mean over the last 100 

years of the simulation) of stem density (DBH > 10 cm) (trees!ha-1), LoreyÕs height (m), 

aboveground biomass (AGB, Mg!ha-1), as well as mean annual mortality and fraction of 

mortality due to treefalls (%Mtreefall) for trees with DBH > 10 cm. We qualitatively described 

trends and sensitivity of these statistics in response to variation of wind frequency and 

intensity. 
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2.3.8 Effects of topography on wind disturbances 

In the original TROLL and ForestGALES model, the effect of topography was not taken into 

account. Based on the knowledge that wind speed is altered over an uneven topography, we 

implemented quadrat-scale wind speed correction factors in the model that account for these 

topographical effects. For this, we used the Global Wind Atlas (GWA) data, which are 

produced through downscaling using the WAsP program (Mortensen et al. 2001), 

incorporating surface elevation and aerodynamic roughness lengths (Badger et al. 2015). We 

obtained 250 ' 250 m GWA pixels that fall in the area covered by the 1¡ ' 1¡ CRU-NCEP 

pixel where the Fushan site is located: this represents a grid of 200 ' 200 GWA pixels. We 

normalized the GWA wind speed values of the selected pixels so that the mean GWA wind 

speed is equal to the mean CRU-NCEP wind speed. We then resampled the GWA pixels to 

the 20m ' 20m quadrat scale using bilinear interpolation with the resample function in the 

raster package (Hijmans, 2020), and selected the resampled pixels falling within the area of 

the Fushan plot: this represents a grid of 25 ' 25 = 625 resampled pixels. We used the GWA 

wind speed values of these resampled pixels, normalized by the plot-wide mean, as the wind 

speed correction factor for each quadrat. 

The wind speed correction factor ranged from 0.27 to 1.96, and was used as a proxy for 

topographic heterogeneity: if topographic effect is implemented, the wind speed experienced 

at each quadrat is the plot-wide wind speed (randomly drawn from the input wind speed 

distribution) multiplied by this correction factor: a value above 1 means that the wind speed at 

that quadrat is considered to speed up (due to exposed terrain), and vice versa when the value 

is below 1. 

We performed simulations with and without topographical effect at the Fushan site for a 

plot area of 25 hectares (500 ' 500 m), and examined the relationship between quadrat-level 

steady-state values (mean over the last 100 years of the simulation) of stem density (DBH > 

10 cm) (trees!ha-1), LoreyÕs height (m), aboveground biomass (AGB, Mg!ha-1) and the 

topographic effect by performing linear regressions for each statistics as a function of 

quadrat-level wind speed correction factor. As comparison, we also calculated the observed 

relationship between forest structural heterogeneity topographic heterogeneity, based on 

census data at the Fushan FDP (Appendix D). 

 

2.3.9 Data analysis 

Data processing, statistical analysis and visualization were performed in R 3.3.0 (R Core 

Team, 2019). Apart from those already mentioned elsewhere, R packages ggplot2, cowplot, 

ncdf4, BIOMASS, geosphere, sp, and tidyr were used for this study (Dowle and Srinivasan, 
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2020; Hijmans, 2019; Jackson et al., 2019b; Pierce, 2019; Rejou-Mechain et al., 2017; 

Wickham, 2020, 2016; Wilke, 2020). 

 

2.4 Results 

2.4.1 Sensitivity analysis 

As the P parameter value decreased (stronger wind-induced tree mortality), both average 

canopy height (LoreyÕs height) and aboveground biomass (AGB) decreased, although AGB 

showed a hump-shaped pattern (Figure 1): at low P values (P < 0.3), canopy height and 

biomass decreased to extremely low levels, suggesting a transition from forest to non-forest 

state. Stem density (N10) only slightly decreased, but showed an abrupt increase around the 

transition point of P = 0.15 before decreasing again at lower P values. 

Mean annual mortality and fraction of mortality due to treefalls (%Mtreefall) increased as 

P decreased, although %Mtreefall exhibited an erratic nonlinear response. Both statistics were 

markedly lower at the end of the simulation (after the steady state has been reached) than 

immediately after the onset of wind forcing (Figure 2). 

 

2.4.2 Effects of wind frequency and intensity 

None of the forest structure and mortality statistics showed significant change with varying 

wind frequency. On the other hand, as wind intensity increased, stem density (N10), average 

canopy height (LoreyÕs height) and aboveground biomass (AGB) all decreased (with a hump-

shaped response for aboveground biomass), and mean mortality and the fraction of mortality 

due to treefalls (%Mtreefall) increased, especially at higher wind intensity, where the near-zero 

level canopy height and biomass suggested a transition from forest to non-forest state as 

observed during the sensitivity test (Figure 3). 

 

2.4.3 Effects of topography on wind disturbances 

Implementing the topographic effect, we found weak but significant relationships between 

topographic wind speed correction and forest structure. Results of linear regressions showed 

that stem density (DBH > 10 cm, N10) was not significantly related to wind speed correction 

(p = 0.09), but average canopy height (Lorey's height) decreased and aboveground biomass 

(AGB) increased significantly at quadrats with higher wind speed correction factors 

(signifying more exposed terrain) (Figure 4, Table 1). 
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Table 1. Slope estimates of linear models of each quadrat-level forest structure metrics to the 

wind speed correction factor, with p-values in parentheses. N.S.: non-significant (p > 0.05). 

N10: stem density (DBH > 10 cm). LoreyÕs height: basal area-weighted mean tree height. 

AGB: aboveground biomass. 

 Without topography With topography 

N10 (trees!ha-1) 10.76 (N.S.) -8.13 (N.S.) 

LoreyÕs height (m) -0.02 (N.S.) -0.52 (< 0.01) 

AGB (Mg!ha-1) -5.78 (N.S.) 92.00 (< 0.01) 
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Figure 1. Summary statistics of the simulated forests, in relation to the critical wind speed 

parameter P (smaller P means stronger effect): (A) N10, density of stems with DBH > 10 cm 

(trees!ha-1); (B) LoreyÕs height, basal area-weighted mean tree height (m); (C) AGB, 

aboveground biomass (Mg!ha-1). Shaded areas represent the value range of five replicates for 

each simulation condition. Dashed lines represent simulation value with no wind disturbance, 

and Solid lines represent field observations. 
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Figure 2. (A) Mean annual mortality rate and (B) fraction of mortality attributed to treefalls 

(%Mtreefall) for trees with DBH > 10 cm, in relation to the critical wind speed parameter P 

(smaller P means stronger effect). Shaded areas represent the value range of five replicates for 

each simulation condition. Black without border: mean values of the first 100 years after wind 

onset (year 101-200). Red with border: mean values of the last 100 years of simulation (year 

401-500). Dashed lines represent simulation value with no wind disturbance, and solid lines 

represent field observations. 
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Figure 3. Simulated forest structure in relation to extreme wind frequency (A - E) and 

intensity (F - J), relative to empirical values from cyclone best-track data. For simulations 

with varying frequency, empirical wind intensity were used, and vice versa. Shaded areas 

represent the value ranges of five replicates for each simulation condition. (A, F) N10, density 

of stems with DBH > 10 cm (trees!ha-1). (B, G) LoreyÕs height, basal area-weighted mean tree 

height (m). (C, H) AGB, aboveground biomass (Mg!ha-1). (D, I) mean annual mortality rate. 

(E, J) %Mtreefall, fraction of mortality due to treefalls. Dashed lines represent simulation value 

with no wind disturbance, and solid lines represent field observations. 
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Figure 4. Simulated quadrat-level forest structure statistics as a function of the topography-

related wind speed correction factor of each quadrat. A correction factor > 1 means that the 

quadrat-level wind speed is accelerated, , and a correction factor < 1 means that the quadrat-

level wind speed is decelerated. Shaded areas represent interquartile ranges (IQR), calculated 

within a moving window frame (0.025) across the whole x-axis value range and then linearly 

interpolated to the x-axis value at each quadrat. Black without border: without topography 

correction. Red with border: with topography correction. Solid lines represent the linear 

regression curve. (A) N10, density of stems with DBH > 10 cm (trees!ha-1). (B) LoreyÕs height, 

basal area-weighted mean tree height (m). (C) AGB, aboveground biomass (Mg!ha-1). For all 

structure statistics, the quadrat-wide values are converted to the corresponding hectare-wide 

values. 
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2.5 Discussion 

In this study, we included a model of wind-induced tree mortality in a forest individual-based 

model, and simulated how wind-induced tree mortality affects the structure and dynamics of a 

subtropical forest. We found that wind-induced tree mortality had a large negative impact on 

canopy height and a more complex influence on stem density and biomass. The comparison 

of tree mortality at the onset of wind disturbance and at the steady state reveals forest 

acclimation and adaptation to repeated wind disturbances. Wind intensity was found to exert a 

strong control on wind impact, while wind frequency did not. Implementation of topographic 

heterogeneity showed a weak but significant effect on within-stand canopy height and 

biomass at the Fushan site: this implementation could serve as a basis to incorporate more 

complex wind-terrain interactions in individual-based models. 

 

2.5.1 Effects of wind-induced tree death 

In response to increasing susceptibility to wind-induced tree death, canopy height was found 

to decrease sharply. According to the wind damage model, TC is proportional to DBH2 ' H 

(Eq. 6), and CWSstembreak is proportional to (DBH3 / TC)1/2 (Eq. 4): it thus follows that 

CWSstembreak is proportional to (DBH / H)1/2. Hence, wind damage risk is higher for trees with 

a smaller diameter-to-height ratio, and the observed reduction of canopy height may be 

caused by the fact that taller trees are in general more exposed and less protected by the 

sheltering of neighboring trees, meaning that they experience higher tree-top wind speed and 

higher wind damage risk (Duperat et al., 2021; Hale et al., 2012). A corollary of this 

hypothesis is that tree height in the canopy may become more homogenous as the effect of 

wind-induced tree mortality strengthens (Chi et al., 2015; Van Bloem et al., 2007). The hump-

shaped response of biomass, although unexpected, could be attributed to the joint effect of the 

selection of trees with denser wood and the reduction of larger trees, which contribute the 

most to total forest biomass. 

A transition from forest to non-forest state around P = 0.3 was apparent, where stem 

density increased abruptly as canopy height and biomass decreased to near-zero. This increase 

in stem density likely reflects a light condition that favors more smaller trees to establish as 

the forest canopy opens up. As the effect of wind disturbances grew even stronger, even these 

small-height trees started to be affected due to the absence of sheltering from taller trees, 

causing stem density to decrease as well. 

Total mortality increased with disturbance intensity, but only starting from around the 

transition point, and the steady-state fraction of mortality due to treefalls decreased as 

disturbance intensity increased; in addition, both mortality statistics were markedly lower at 
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the end of the simulation than at the onset of wind disturbance. These observations suggest 

that long-term exposure to wind disturbances results in plastic acclimation as well as 

adaptation through the selection of more resistant species. Forest acclimation and adaptation 

could account for the low immediate mortality after a cyclone passage observed in some 

empirical studies (Bellingham et al., 1992; Walker, 1991), and a model simulation study also 

showed that acclimation could regulate forest response to wind disturbances, especially at the 

forest edge (Kamimura et al., 2019). In this study, the selection of trees with allometric traits 

of larger diameter-to-height ratio and higher wood density could cause adaptation, but plastic 

acclimation was not taken into account as the model did not allow traits to vary plastically 

over the lifetime of an individual, and trait variations were not inheritable. In the future, it 

would be highly interesting to explore the eco-evolutionary dynamics that results from 

temporally plastic trait variability and the inheritance of more wind-resistant traits. 

 

2.5.2 Effects of wind frequency and intensity 

Increasing wind intensity negatively affects forest stature and biomass stocks, consistent with 

results of global-scale studies that showed a clear empirical relationship between higher 

cyclone intensity and lower overall forest stature (Ibanez et al., 2019); however, varying wind 

frequency did not cause any effect on forest structure. Forest response to disturbance must be 

considered by placing the return period of the disturbance events in perspective with the life 

span of the affected organism (Turner and Dale, 1998): as trees can live for decades or even 

centuries in a forest, they can be exposed to centennial disturbance events. Therefore, a forest 

could be capable of acclimating and adapting to frequent cyclone visits without suffering 

catastrophic loss, as long as their intensity is within the tolerance range of the forest. On the 

other hand, extremely intense cyclones, even when occurring on a centennial basis, could be 

sufficient to cause severe consequences on forest structure and potentially even threaten the 

very persistence of the forest ecosystem. In light of predictions on future increase in tropical 

cyclone intensity (Knutson et al., 2020), this result suggests that forest ecosystems in cyclone-

prone area may risk undergoing profound structural modifications or even state shifts, and 

more intensive and preemptive monitoring would be needed to anticipate the consequences 

(Newman, 2019). Modeling scenarios of simultaneous modifications of wind frequency and 

intensity, as well as gradual changes of the wind regime over the course of the simulation 

(non-stationary extreme winds) should also be explored, in order to improve the realism of 

disturbance forcing. 
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2.5.3 Effect of topography 

Topography alters the impact of extreme wind on forests in complex ways, even though many 

studies have found that exposed locations tended to be subject to more severe wind damage 

than sheltered locations (Magnabosco Marra et al., 2014; Ruel et al., 1998). In this study, we 

introduced a simple correction factor to model the effect of quadrat-wide topographic 

heterogeneity, based on the assumption that wind speed accelerates locally on exposed terrain 

such as hilltop and mountain ridges, and decelerates locally in sheltered terrain such as 

valleys (Belcher et al., 2011; Mitchell, 2013). The results showed a weak but significant effect 

of topographic heterogeneity on canopy height and biomass stocks within the forest plot at 

Fushan: average canopy height was higher at more exposed quadrats, and the increase of 

aboveground biomass at more exposed quadrats was consistent with the hump-shaped 

response of biomass as wind disturbance strength increased (Figure 1). The weak effect size 

could reflect the fact that trees at Fushan, even those at exposed terrains, are well adapted to 

the simulated wind level. Nevertheless, the observed relationship between quadrat-scale forest 

structure statistics and elevation at the Fushan site was stronger and exhibited a different 

pattern, with higher stem density and lower average canopy height at more exposed quadrats, 

but no variations in biomass (Appendix D). This suggests that it is highly probable that our 

preliminary implementation did not fully capture the effects of the topography. In the future, 

it is crucial to refine the model representation of topographic effects by considering how wind 

interacts with finer-scale features such as top-canopy topography, and factors such as wind 

direction. Parameterization for topography currently comes from a data set at 250-m 

resolution, and employing more fine-scale data could also improve topographic 

representation. Nevertheless, this preliminary exploration could serve as a framework under 

which to further investigate how topography mediates the effect of wind disturbances in an 

individual-based model. 

 

2.5.4 Challenges of model representation of wind-induced tree mortality 

The first and foremost challenge when simulating wind disturbance in a mixed-sized forest is 

the description of the wind profile: since the individual-based model TROLL does not 

prescribe fixed stand-level characteristics (notably top canopy height), many factors that 

control wind profile dynamically change across time and space. Wind speeds above the tree 

canopy are commonly modeled by a logarithmic profile (Raupach et al., 1991), which is the 

approach taken in the ForestGALES model. The aerodynamic parameters used in the 

logarithmic profile have been shown to depend on the plant area index, and as such, they are 

expected to vary seasonally. A detailed parameterization has recently been proposed based on 
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remote-sensing LAI and canopy height products, which could help account for this variability 

and enhance realism of wind profile modeling (Liu et al., 2021). 

In this study, we further assumed that the wind speed experienced by trees within the 

canopy follows an exponentially decreasing profile (Inoue, 1963), and that trees well below 

the displacement height in effect do not experience wind disturbance; other equations have 

been derived to describe the decreasing wind speed profile within canopy (Ancelin et al., 

2004; Raupach and Thom, 1981), and measurements have also been made (Raupach et al. 

1996). Significant variations in wind profile could exist due to the heterogeneity of forest 

structural characteristics, such as leaf area index, stem density and spacing (De Santana et al., 

2017; Lalic et al., 2003; Moon et al., 2016). In addition, the interaction of horizontal winds 

with the canopy structure creates turbulent eddy structures, whose effects have not yet been 

explored in the current model (de Langre, 2008a; Raupach et al., 1996). 

The original ForestGALES model estimated critical wind speed for both types of wind-

induced damage, tree uprooting and stem breakage. In a preliminary test, we simulated both 

processes, but found that few tree uprooting occurred compared to stem breakage (Appendix 

C). This is consistent with the empirical mortality survey at Fushan, where many more dead 

trees exhibit stem breakage than uprooting (Appendix C). This has motivated our decision to 

simplify model representation and focus on stem breakage. One further motivation for 

ignoring tree uprooting is that it is largely controlled by root anchoring, which is currently 

still difficult to represent mechanistically and to parameterize for all tree species, due to our 

limited understanding on root traits and the physics underlying root-soil interaction. In the 

future, efforts should be made to devote more attention to the process of root anchoring. 

Lastly, although we parameterized species-specific wind susceptibility using plant traits 

to the extent possible, and assumed that the free parameter P was identical for all the trees in a 

forest stand, P may in reality still be species-specific due to factors such as wood deformities, 

stem tapering, relative allocation of total biomass to stem weight, as well as the capacity for 

defoliation that reduces wind loading. These factors could all contribute to model uncertainty, 

and further investigation is needed to better constrain them in future model developments. 

 

2.5.5 Field mortality survey data 

In this study, we retrieved data from the annual mortality surveys conducted in ForestGEO 

sites, in the hope of calibrating the model using empirical mortality data as a complement to 

inventory data. The survey data could inform us on the number of tree deaths and treefalls 

that occur within the forest plot, and simulated mortality rates showed good correspondence 

with observed values calculated from the survey data, but inferring the cause of tree death 
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from the observed damage modes of the dead trees has proven to be difficult. A tree may 

experience multiple damages successively or simultaneously, which would all contribute to 

causing treefall, or it may experience damage after its death: these different scenarios could 

not be distinguished by post hoc records of observed damage on dead trees. In addition, a 

large proportion of stem breakage and uprooting in the understory are likely to be caused 

secondarily by treefall events of neighboring trees, and not directly by wind.  

As a consequence, it is possible that the field observed numbers of tree deaths with 

uprooting or stem breakage were an overestimation of the wind-induced uprooting or stem 

breakage events in reality. However, the observed fraction of tree deaths due to treefalls were 

considerably lower than the simulated values, suggesting that there might be additional 

acclimation and adaptation phenomena limiting treefalls, which were not accounted for in the 

current model. Nevertheless, the annual mortality survey data still contain the most detailed 

fine-scale records on tree mortality in species-rich natural forests available to date, and the 

observed patterns of damage modes, while not sufficient to calibrate the model, still served as 

a heuristic basis that inform on patterns of tree death. 

 

2.5.6 Perspectives 

In a mixed-sized natural forest, natural thinning and gap dynamics frequently modify tree 

density and local stand height, causing changes in the level of physical sheltering from 

neighboring trees: the wind loading and damage risk of a tree may change considerably as its 

sheltering status changes even when its size does not (Quine and Gardiner, 1995; Schelhaas et 

al., 2007; Seidl et al., 2014). In the current implementation of the wind damage model, local 

sheltering is accounted for by considering a treeÕs height with respect to local canopy top 

height, simulating within-canopy wind attenuation, and assigning a height threshold under 

which a tree is not considered to experience wind disturbances. A finer representation of the 

effect of local sheltering could be achieved by including a Òcompetition indexÓ, calculated 

based on a treeÕs relative size to neighboring trees, in the formulation of the treeÕs turning 

moment (TC), so that local sheltering is represented as a continuous variation and not as a 

cutoff point (Duperat et al., 2021; Hale et al., 2012), even though the choice of competition 

index is not trivial and requires careful consideration. In addition, the TC equation is currently 

empirically fitted at a limited number of temperate plantation forest sites, and its 

transferability to the tropics and to mixed-sized natural forests needs to be examined in more 

detail: recent works of fine-scale measurement of tree movement in response to wind in 

natural forests represent the first step to overcome this challenge (Jackson et al., 2020, 2019c, 

2019b). 
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The current model could be further refined by including other aspects of wind impact on 

trees, such as successive damages that do not immediately cause death but increases delayed 

mortality (Tanner et al., 2014; Walker, 1995), coping mechanisms such as defoliation 

(reduction of wind drag at the cost of temporary lower productivity) and re-sprouting 

(allowing survival even after stem breakage). Other factors influencing tree mortality, such as 

preexisting stem rotting or deformities, interactions with other forms of disturbance such as 

insect attacks, fire and drought (Newman, 2019; Reichstein et al., 2013; Seidl et al., 2011a), 

as well as human land use legacy and fragmentation (Laurance and Curran, 2008; Schwartz et 

al., 2017; Uriarte et al., 2009), could also be considered conjointly with the wind disturbance 

model. Parameter calibration and model validation could also be improved with the help of 

high-resolution satellite data that monitor wind gap formation and dynamics (Ball•re et al., 

2021; Hayashi et al., 2015; Kislov and Korznikov, 2020). 

Finally, although the current study focuses on the impacts of wind on a cyclone-prone 

forest, the model we developed could also be applied to explore wind vulnerability of forests 

that are less accustomed to wind disturbances, as well as the effects of localized wind 

blowdown events, which are thought to shape the structure and dynamics of Amazonian 

forest (Magnabosco Marra et al., 2018; Negr—n-Ju‡rez et al., 2018; Peterson et al., 2019). The 

exploration of more forest settings and wind regimes could help us go beyond single forest 

plots and take into account landscape- and regional-level heterogeneity in the model 

(Peereman et al., 2020; Seidl et al., 2014), in order to explore the consequences of wind 

disturbance at a landscape or even regional level. 

 

2.5.7 Conclusion 

In this study, we explored the effects of wind-induced tree mortality and long-term 

consequences of wind disturbances at a subtropical forest, and the results indicate that  wind 

disturbances could have strong negative effects on forest structure when intensity is strong, 

which has strong implications given the projected increase in tropical cyclone intensity. This 

modeling framework of wind-induced tree mortality, including the preliminary 

implementation of topographic effects, could serve as the basis for improving representation 

of the mortality processes in vegetation models, deepen our mechanistic understanding of 

how wind disturbances act on forest over a larger spatial scale in conjunction with other types 

of disturbance, as well as generate predictions on the future of natural forests in response to 

the changing wind regime. 
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2.7 Supplementary data 

Appendix A: estimation of on-site mortality values 

The dataset used to calculate mortality rate and proportion of mortality attributed to each 

cause were four years of annual mortality survey data, conducted from 2017 to 2020 for a 

subset of the censused trees selected following ForestGEO protocol (Arellano et al., 2021). 

For each survey, each surveyed tree was assigned a label for its survival status (OK: Òalive 

with no damageÓ, A: Òalive with damageÓ, D: ÒdeadÓ, NF: Ònot foundÓ, X: Òdead stem in 

living individualÓ), and a label for its damage mode (S: Òstanding (with canopy damage)Ó, B: 

Òbroken stemÓ, U: Òuprooting (with root bole exposure)Ó, BU: Òboth broken stem and 

uprootingÓ). After extracting tree tag, DBH, status and mode labels from each survey data, we 

simplified the data structure by grouping status ÒOKÓ, ÒXÓ and ÒAÓ as alive tree individuals, 

and grouping status ÒNFÓ and ÒDÓ as dead tree individuals, and merged the data from the four 

different years. 

In Fushan, the survey reported a high incidence of Òzombie treesÓ, which are trees that 

were recorded as dead in one year, but found to be actually alive in the next year, due to the 

re-sprouting of basal shoots. In order to exclude these entries to the best of our ability, we 

considered only trees that were alive in 2017 and ended up dead in 2020 to be a ÒrealÓ death 

event, and calculated mortality rate by the proportion of death events to the number of all 

alive trees in 2017. This number will still be an overestimation, due to the fact that a 

proportion of trees recorded as dead since 2019 or 2020 may not actually be dead yet, and 

may still possess the ability to re-sprout in subsequent years. The mortality rate over three 

years (m3, 2017 - 2020) was converted to annual mean mortality (mann) by the following 

equation: 

I ()) & L MAL MI uHx–u                                                                   (A1) 

These values were compared with estimates calculated from census data with five-year 

intervals, and were found to be of similar range (Table A1). 

 

Table A1. Mean annual mortality rate in different diameter classes. 

 From mortality survey From census 

DBH ( 1 cm 0.0517 0.0461 

DBH > 10 cm 0.0201 0.0289 

DBH > 30 cm 0.0172 0.0101 

 

To determine the most likely cause of mortality, we referred back to the mode label that 

indicates the type of damage in the year that a tree is last recorded dead. Damage mode labels 
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ÒUÓ and ÒBÓ indicate tree uprooting (root bole exposure) and stem breakage respectively, and 

were treated as such. ÓBUÓ indicates that both uprooting and stem breakage were observed: 

we divided trees in this category into two parts, and attributed them equally to stem breakage 

and uprooting. Finally, we calculated the fraction of dead trees observed with stem breakage 

(%Mbreak) or uprooting (%Muproot), as well as the total fraction of tree deaths due to treefalls 

(%Mtreefall; labeled with ÒUÓ, ÒBÓ or ÒBUÓ) and the fraction of tree deaths due to other causes 

(%Mother; labeled with ÒSÓ) (Table A2). 

 

Table A2. Proportion of tree mortality attributed to different causes per diameter classes 

(%Mtreefall = %Mbreak + %Muproot). 

 %Mbreak %Muproot %Mtreefall %Mother 

DBH ( 1 cm 44% 4% 48% 52% 

DBH > 10 cm 51% 8% 57% 42% 

DBH > 30 cm 45% 12% 59% 41% 
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Appendix B. Relation between wood density and green modulus of rupture 

for hardwoods 

The table for species-specific wood traits reproduced below is taken from Green et al. (1999), 

including only hardwood species for which green modulus of rupture was measured. Wood 

density at 12% moisture (D12) was converted into oven-dry wood density (Db) using the 

formula Db = 0.828 D12 (Vieilledent et al., 2018). The relationship between oven-dry wood 

density and green modulus of rupture was then fit to an exponential function (Equation 5). 

 

Table B1. Wood traits for a selection of hardwood species. 

Common species name 
Oven-dry wood 

density (g cm-3) 

Green modulus of rupture 

(MPa) 

African mahogany 0.38 51 

afrormosia 0.56 102 

andiroba 0.49 71 

angelique 0.55 78.6 

azobe 0.80 116.5 

banak 0.38 38.6 

Brazilian rosewood 0.73 97.2 

bulletwood 0.78 119.3 

cativo 0.37 40.7 

ceiba 0.23 15.2 

courbaril 0.65 88.9 

cuangare 0.28 26.7 

dark red meranti 0.42 64.8 

degame 0.61 98.6 

determa 0.48 53.8 

goncalo alves 0.77 83.4 

greenhart 0.73 133.1 

hura 0.35 43.4 

ilomba 0.37 37.9 

Indian rosewood 0.69 63.4 

ipe 0.84 155.8 

iroko 0.49 70.3 

jarrah 0.61 68.3 

jelutong 0.33 38.6 

kaneelhart 0.88 153.8 

kapur 0.59 88.3 

karri 0.75 77.2 

kempas 0.65 100 

kruing 0.63 82 

light red meranti 0.31 45.5 
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limba 0.35 41.4 

macawood 0.86 153.8 

manbarklak 0.80 117.9 

manni 0.53 77.2 

marishballi 0.80 117.9 

merbau 0.59 88.9 

mesaw 0.48 55.2 

mora 0.71 86.9 

obeche 0.27 35.2 

opepe 0.58 93.8 

para-angelim 0.58 100.7 

pau marfim 0.67 99.3 

peroba rosa 0.60 75.2 

pilon 0.59 73.8 

piquia 0.66 85.5 

primavera 0.37 49.6 

ramin 0.48 67.6 

robe 0.48 74.5 

sande 0.45 58.6 

santa maria 0.48 72.4 

sapele 0.50 70.3 

sepetir 0.51 77.2 

shorea baulau group 0.62 80.7 

spanish cedar 0.37 51.7 

sucupira 0.68 118.6 

sucupira bowdichia 0.71 120 

teak 0.50 80 

tomillo 0.41 57.9 

true mahogany 0.41 62.1 

wallaba 0.71 98.6 

white meranti 0.50 67.6 

yellow meranti 0.42 55.2 

Aerican beech 0.53 59 

American basswood 0.31 34 

American chestnut 0.36 39 

American elm 0.41 50 

American sycamore 0.41 45 

balsam poplar cottonwood 0.28 27 

bigleaf maple 0.40 51 

bigtooth aspen 0.32 37 

bitternut pecan hickory 0.55 71 

black ash 0.41 41 

black cherry 0.41 55 
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black cottonwood 0.29 34 

black locust 0.57 95 

black maple 0.47 54 

black red oak 0.51 57 

black tupelo 0.41 48 

black walnt 0.46 66 

black willow 0.32 33 

blue ash 0.48 66 

bur white oak 0.53 50 

butternut 0.31 37 

cherrybark red oak 0.56 74 

chestnut white oak 0.55 55 

cucumber tree magnolia 0.40 51 

Eastern cottonwood 0.33 37 

green ash 0.46 66 

Hackberry 0.44 45 

honeylocust 0.55 70 

laurel red oak 0.52 54 

live white oak 0.73 82 

mockernut tree hickory 0.60 77 

northern red oak 0.52 57 

nutmeg hickory 0.50 63 

oregon ash 0.46 52 

overcup white oak 0.52 55 

paper birch 0.46 44 

pecan hickory 0.55 68 

pignut hickory 0.62 81 

pin red oak 0.52 57 

post white oak 0.55 56 

quaking aspen 0.31 35 

red alder 0.34 45 

red maple 0.45 53 

Rock elm 0.52 66 

sassafras 0.38 41 

scarlet red oak 0.55 72 

shagbark hickory 0.60 76 

shellbark hickory 0.57 72 

silver maple 0.39 40 

Slippery elm 0.44 55 

southern magnolia 0.41 47 

southern red oak 0.49 48 

sugar maple 0.52 65 

swamp chestnut white oak 0.55 59 
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swamp white oak 0.60 68 

sweet birch 0.54 65 

sweetgum 0.43 49 

tanoak 0.53 72 

water hickory 0.51 74 

water red oak 0.52 61 

water tupelo 0.41 50 

white ash 0.50 66 

white oak 0.56 57 

willow red oak 0.57 51 

yellow birch 0.51 57 

yellow poplar 0.35 41 
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Appendix C: description of the original ForestGALES model 

In the original ForestGALES model, critical wind speed (CWS) is calculated for two types of 

tree damage: stem breakage and tree uprooting. Based on the TC approach, which relates 

maximum turning moment to mean wind speed, the critical wind speed for the two types of 

tree damage follows the following relation (Hale et al., 2015, 2012): 
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MOR, the modulus of rupture (Pa, kg!m-1!s-2), is related to wood density and was 

estimated using Equation (5). TC , the turning moment coefficient (kg), relates the square of 

mean wind speed to the maximum turning moment, in a relationship described in Equation 

(6). d0 (diameter at trunk base, 0 m) was converted from DBH (diameter at breast height, 1.3 

m) by a linear corrective factor: b“ & £ . $c6 . 

Creg (m2!s-2) is an empirical parameter which depends on soil and rooting depth. Creg 

values have been measured through tree-pulling experiments for conifers and broadleaf 

species (Locatelli et al., 2016; Nicoll et al., 2006; Peltola et al., 2000; Peterson and Claassen, 

2013), and were found to range from 110 to 185. SW (kg) represents fresh stem weight, and is 

related to total aboveground biomass (AGB) through a linear proportional factor: wN &

™O. O¤ic . 

Several other corrective factors were present in this model: fknot accounts for the presence 

of knots reducing wood strength; fedge accounts for the position of the tree relative to a newly 

created forest edge; fCW accounts for overhanging crown weight when the tree is bent; 

TMCratio accounts for the increasing wind loading after thinning due to reduced neighbor tree 

sheltering. By combining these factors, as well as other corrective factors into a single wind 

damage parameter P, the equations was simplified and rewritten as: 
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where Pstembreak is unitless and Puprooting has the unit of m!s-1. They encapsulate the 

following factors respectively: 

" ›-gJsqg(1 & ¥A¦ O. O£u O. Oe1)*- H–§•ŸO. Oeg]hg . eBf . •d? q(-%*¨©x–a         (C5) 

" X+q**-%)h & ¥A?qgh O. O™H–§eg]hg . eBf . •d? q(-%*¨©x–a                     (C6) 
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As stated in the main text, the P parameters determine the overall susceptibility of a 

forest stand to wind-induced tree mortality: the smaller a P value for a damage type is, the 

lower the critical wind speed is for any given tree in a forest stand, meaning that the forest is 

overall more susceptible to wind-induced damage and death of that type. 

We performed a preliminary sensitivity analysis to investigate model responses to the 

two free parameters, Pstembreak (unitless) and Puprooting (m!s-1). We chose [0.01, 1] for the value 

range of Pstembreak and (0, 40] for the value range of Puprooting, and randomly drew 500 values 

from within each value range for use in TROLL simulations. We calculated the steady-state 

values (mean over the last 100 years of the simulation) of three structure metrics: stem density 

(DBH > 10 cm; N10, trees!ha-1), LoreyÕs height (basal area-weighted mean tree height, m) 

(Pourrahmati et al., 2018), and aboveground biomass (AGB, Mg!ha-1) (Figure C1). We then 

performed model calibration based on aboveground biomass, by calculating the absolute 

difference between simulation and field observation values, scaled by the standard deviation 

of the simulation values. We selected the simulations having the 5% best fit (25 out of 500 

simulations). 

As the parameter values of the best-fit simulations were scattered and did not converge 

to a narrower value range (Figure C1), we turned to evaluate the relative contribution of each 

wind disturbance process to tree mortality, in the goal of simplifying the model. For each 

best-fit simulations, we calculated the proportion of treefalls due to each wind disturbance 

process, averaged over all timesteps where an extreme wind event happened in the last 100 

years of the simulation. The results showed that the proportion of treefalls due to tree 

uprooting was lower compared to the proportion of treefalls due to stem breakage (Figure 

C2). Based on these preliminary results, we decided to focus on the process of wind-induced 

stem breakage for this study. 
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Figure C1. Summary statistics of the simulated forests, in relation to the critical wind speed 

parameters Puprooting and Pstembreak (smaller value means stronger effect). N10: density of stems 

with DBH > 10 cm. LoreyÕs height: basal area-weighted mean tree height. AGB: 

aboveground biomass. Dashed lines represent simulation value with no wind disturbance, and 

Solid lines represent field observations. Red diamond-shaped points: simulations having the 

5% best fit. 

 

 

Figure C2. Histogram of the proportion of treefalls due to each of the two wind disturbance 

processes for the 25 best-fit simulations in the preliminary calibration test.  
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Appendix D. Observed structural heterogeneity at the Fushan FDP in 

relation to topographic heterogeneity 

Quadrat-level mean elevation at the Fushan forest plot ranges from 616 to 730 m. The linear 

regression results based on field census data showed that stem density (N10) increased with 

elevation, average canopy height (LoreyÕs height) decreased with elevation, while 

aboveground biomass (AGB) did not vary significantly in relation to elevation (Figure D1, 

Table D1). 

 

 

Figure D1. Quadrat-wide (20 m ' 20 m) forest summary statistics at the Fushan site, as a 

function of the quadrat elevation above sea level. Shaded areas represent interquartile ranges 

(IQR), calculated within a moving window frame (2 m) across the whole x-axis value range 

and then linearly interpolated to the x-axis value at each quadrat. Solid lines represent the 

linear regression curve. (A) N10, density of stems with DBH > 10 cm (trees!ha-1). (B) LoreyÕs 

height, basal area-weighted mean tree height (m). (C) AGB, aboveground biomass (Mg!ha-1). 

The quadrat-wide values were converted to corresponding hectare-wide values. 
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Table D1. Slope estimates of linear models of each quadrat-level forest structure metrics to 

the wind speed correction factor, with p-values in parentheses. N.S.: non-significant (p > 

0.05). N10: stem density (DBH > 10 cm). LoreyÕs height: basal area-weighted mean tree 

height. AGB: aboveground biomass. 

 

N10 (trees!ha-1) 5.37 (< 0.001) 

LoreyÕs height (m) -0.012 (< 0.001) 

AGB (Mg!ha-1) -0.12 (N. S.) 
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CHAPTER 3: Detecting Natural Disturbances in Tropical 

Forests Using Sentinel-1 SAR Data: a Test in French 

Guiana 
In preparation, to be submitted to Remote Sensing of Environment. 

This paper describes the synthetic aperture radar (SAR) data set, collected by Sentinel-1 

satellite, with high temporal and spatial coverage, and previously treated with an algorithm 

based on the shadowing effect of SAR data to detect deforestation patches (Bouvet et al., 

2018). In this paper, we present a protocol to further process this data set using GIS tools, in 

order to select a subset of disturbance events that are considered to be due to natural causes 

and not human activities, and describe the spatial pattern and temporal dynamics of natural 

deforestation patches in French Guiana from 2016 to 2019. This work contributes to answer 

Question 3. 
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3.1 Abstract 

Natural disturbances create forest gaps in a heterogeneous manner, and drive gap dynamics 

which shapes forest structure, diversity and functioning. Near real-time monitoring of the 

extent and pattern of natural disturbance in tropical forests is necessary for a better 

understanding of how they shape tropical forests, over different spatial and temporal scales. 

especially in light of ongoing changes in natural disturbance regimes due to climate change. 

Satellite remote sensing provide long-term forest monitoring, but optical images are limited in 

availability by frequent cloud cover in the tropics. In this study, we used radar data from 

Sentinel-1 satellites, which have been successfully used for the detection of anthropogenic 

disturbances, and examined if they could also reliably detect natural disturbance events in 

French Guiana, in a zone with low level of anthropogenic disturbances delimited using land 

use data. Compared to Landsat-derived optical data, Sentinel-1 data detected around three 

times as many natural forest gaps, and both datasets exhibited consistent spatial pattern and 

size-frequency distribution, even though level of colocation is low between the two datasets. 

Disturbance level was not found to vary with elevation. Disturbance level was higher in dry 

seasons, but which could be due to the lagged effects of the wet seasons because of the 

increase in disturbance level before climatic water deficit rises. In conclusion, this study 

demonstrated the capacity of Sentinel-1 radar data to detect and characterize fine-scale pattern 

and dynamics of forest gaps due to natural disturbances, and that this information could 

enhance our knowledge on large-scale variations in environmental factors control gap 

dynamics. Future directions include examining the influence of other topographical variables, 

exploring the possibility of expanding natural disturbance monitoring to the regional level, 

and using for calibration and validation of vegetation models that simulate the effects of 

disturbance events. 

 

3.2 Introduction 

Tropical forests harbor a high level of biodiversity, and play an essential role in the global 

biosphere and biogeochemical cycles (Gardner et al., 2010; Mitchard, 2018; Pan et al., 2013). 

Tropical forests are threatened by deforestation and degradation (Baccini et al., 2017; Bullock 

et al., 2020), but also by changes in natural disturbance pattern (Franklin et al., 2016; Pugh et 

al., 2019). While much research concerns the quantification of anthropogenic disturbances in 

tropical forests, natural disturbances are also important because canopy gaps control both 

forest structure and composition (Hunter et al., 2015; Shugart, 1984). 

Natural canopy openings span a wide range of sizes: individual treefalls can create small 

gap openings in the forest canopy, while larger forest gaps can be triggered by disturbance 

events such as storms, tornadoes or landslides. The size and nature of the gaps caused by 
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natural disturbances are also influenced by topography, soil types and soil moisture content 

(Belcher et al., 2011; Dupuy et al., 2005; Nicoll et al., 2006; Ruel et al., 1998). 

Forest gaps locally create environmental heterogeneity and contrasting opportunities for 

regeneration, for both light-demanding and share-tolerant species (Chazdon et al., 1996; Van 

Der Meer et al., 1998). The disturbance dynamics that create a mosaic of forest patches, 

within which plant recruitment occurs, promotes species coexistence (Jentsch and White, 

2019; Kohyama, 1993), and has been advanced as an important factor of why tropical forest 

tree diversity is high (Connell, 1978; Wright, 2002). 

The systematic characterization of the impact of natural disturbances on forests is a 

notoriously difficult challenge. In the field, it is nearly impossible to monitor the falling of 

trees over large areas and in near real-time (NRT), that is, with a minimal time lag between 

the occurrence of disturbance events and their detection. Such a rapid monitoring system, in 

addition to its practical values for timely adequate management of anthropogenic 

deforestation and degradation, is also an important tool for detecting more precisely the 

impact of natural disturbances. 

Earth observing satellite imagery has already made a major contribution to forest 

monitoring. It has been used to monitor patterns and dynamics of natural and anthropogenic 

disturbance over large areas and at global scale (see e.g. Achard et al., 2010; Bullock et al., 

2020; Keenan et al., 2015). With its medium spatial resolution and revisit period (30 m and 16 

days, respectively) as well as extensive timespan (optical data continuously collected since 

1972), the Landsat program has been pivotal to the development of a continuous monitoring 

system of forest cover change (Hansen et al., 2016, 2013; Woodcock et al., 2008). 

In a recent study conducted by the Joint Research Center (JRC) of the European 

Commission, the full Landsat archives were reprocessed to produce a detailed 

characterization of disturbance-related tropical moist forest (TMF) cover change over the last 

three decades (from 1982 to 2020) (Vancutsem et al., 2021). This data product (henceforth 

referred to as JRC-TMF) describes the annual transition status of each forest pixel, and 

provides a valuable context for large degradation and deforestation events. There exist other 

data products with a sub-monthly temporal resolution, based on optical satellites, but since 

tropical forests are frequently occluded by clouds and haze, NRT monitoring cannot be 

achieved with optical-based satellite data. Non-optical satellites, such as synthetic aperture 

radar (SAR), offer a promising alternative. 

SAR transmits microwave-length radar pulses and receives the backscattered radiation 

signal (Kirscht and Rinke, 1998). This technology is operational under all meteorological 

conditions (Balzter, 2001), and has been used to detect and map forest disturbance events at a 

large scale (Reiche et al., 2016). The application of SAR data in NRT forest disturbance 



 128 
 

monitoring has thus far been limited, due to the difficulty of radar data processing and 

interpretation, as well as the incomplete spatial or temporal coverage of past SAR missions 

(Bouvet et al., 2018; Reiche et al., 2016). 

The deployment of the two Sentinel-1 satellites by the European Space Agency (ESA) 

since 2014 is a new opportunity for NRT forest monitoring. Sentinel-1 satellites are equipped 

with C-band (wavelength 7.5 - 3.75 cm) SAR instruments, have global coverage, shorter 

revisit period than Landsat (6 to 12 days), and high spatial resolution (10 m). C-band 

backscatter from the disturbed area is composed of multiple components, including the 

ground backscatter attenuated by the canopy layer, and the backscatter from the canopy, 

which are affected by multiple factors of the surface conditions, such as 3D vegetation 

structure, canopy or soil moisture content, surface roughness, and topography (Askne et al., 

1999; Pulliainen et al., 1999). Thus, Sentinel-1 is a good candidate to NRT monitoring of 

tropical deforestation (Reiche et al., 2021). However, deforested or degraded areas are not 

necessarily characterized by a step change of backscatter. 

Recently, a new gap detection algorithm has been developed using Sentinel-1 data 

(Ball•re et al., 2021; Bouvet et al., 2018). This method does not rely on absolute backscatter 

intensity to detect gap formation, but is based on the detection of SAR shadowing. Shadowing 

occurs in SAR images due to the side-looking characteristics of SAR systems, which create 

areas that are blocked by higher objects and that cannot be reached by any radar pulse: these 

obstacles could be topographical features such as mountain peaks, but could also be edges 

between forest and non-forest areas. When a forest patch is deforested, shadows appear or 

disappear at some of its edges, and are characterized by a sharp decrease in the backscatter 

across the forest edge. As this signal reflects structural change, it is expected to be more 

persistent and less temporally variable than the level of backscatter within the deforested area, 

and can thus be used as an indicator of the anthropogenic or natural loss of forest cover. This 

method has been successfully tested and validated in Peru (Bouvet et al., 2018) and in French 

Guiana (Ball•re et al., 2021) for anthropogenic deforestation detection. 

In this study, we explore whether the Sentinel-1 SAR data product could be used to 

investigate fine-scale spatiotemporal patterns of forest gaps caused by natural disturbances in 

old-growth forests. We contrast the Sentinel-1 SAR product with the Landsat-derived JRC-

TMF product. Specifically, we asked the following questions: 1) How well do the spatial 

patterns of natural forest gaps detected by Sentinel-1 match those of the JRC-TMF product? 

2) What is the size distribution of natural forest gaps? 3) What is the temporal trend of natural 

forest gaps in the Sentinel-1 NRT analysis? 
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3.3 Methods 

3.3.1 Study site 

French Guiana is a French overseas territory situated in equatorial South America, adjacent to 

Suriname and Brazil. Its surface area totals 83,534 km2, approximately 95% of which is 

covered by old-growth forest (Keenan et al., 2015). Inselberg features (isolated rock hills 

rising above the surrounding forest-covered lowlands) are common, due to its geographical 

location within the Guiana Shield. French Guiana is part of the Amazon biome, has a tropical 

rainforest climate (Beck et al., 2018), with a long wet season from December to June (rainfall 

from 250 to 550 mm per month) and a dry season from July to November (100 to 180 mm of 

rainfall per month). A minor dry season with reduced rainfall (170 to 370 mm per month) 

sometimes marks the period around March for approximately one and a half months, with 

considerable interannual variability (Bonal et al., 2008). The main causes of anthropogenic 

deforestation are smallholder agriculture, forest exploitation (e.g. selective logging, road 

building), and most notably gold mining (mostly alluvial or in steep valleys) (Alvarez-Berr’os 

and Mitchell Aide, 2015; Rahm et al., 2017). Although tropical cyclones do not affect French 

Guiana, studies have shown that strong wind caused by events such as downburst storms is an 

important disturbance agent in the northwestern and central Amazon (Negr—n-Ju‡rez et al., 

2018, 2017; Peterson et al., 2019), and could be an important driver of biomass, diversity and 

functional patterns of the Amazonian forest (Magnabosco Marra et al., 2018, 2014). However, 

the extent to which wind disturbance affects northeastern Amazonian forests in the Guiana 

Shield region remains unclear. Elevation data are available for the entire extent of French 

Guiana from the SRTM 1 Arc-Second Global data product (tiles of 2Ð5¡N, 53Ð55¡W), at a 

resolution of 1 arc-second (approximately 30 meters) (USGS, 2015). 

 

3.3.2 Forest gaps detected by the Sentinel-1 SAR time series 

Sentinel-1 SAR time series were processed as in Ball•re et al. (2021) to produce a raster data 

of disturbance events for the entire French Guiana at a 10-m scale (hereafter referred to as the 

S1 dataset). The S1 dataset contains all pixels detected as having experienced disturbance 

from January 1st, 2016 to December 31st, 2019. The value of each pixel is its time of 

disturbance. Originally in number of days since April 3rd 2014, the date of the Sentinel-1A 

satellite launch, it was adjusted to the number of days since January 1st, 2016 in this study for 

clarity. The S1 dataset has already been used for the near real-time detection of anthropogenic 

disturbances in French Guiana, and showed high detection accuracy for deforestation events 

larger than 0.2 ha (i.e. 20 S1 pixels) during validation (Ball•re et al., 2021). 
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We used the clump function in the raster R package (Hijmans, 2020) to create a raster 

layer of forest gaps for the S1 dataset, where contiguous S1 pixels were grouped into the same 

gap and assigned a unique number. We then converted the raster layer into a vector layer 

containing polygons that each represent a forest gap . For each gap, we calculated its area (m2, 

converted to hectares), start date (earliest disturbance date in all pixels), finish date (latest 

disturbance date in all pixels), median date (median value of disturbance date in all pixels), 

and mean elevation (m). 

 

3.3.3 Forest gaps detected by the Landsat-derived tropical moist forest 

cover data 

For the Landsat-derived JRC-TMF data product (Vancutsem et al., 2021), tropical moist 

forest (TMF) is defined as all closed forests in the humid tropics with two main forest types, 

the tropical rain forest and the tropical moist deciduous forest (Grainger, 1993). 

The JRC-TMF dataset contains raster layers that depict the spatial distribution and status 

of the TMFs, with three data layers important for the purpose of this study. The ÒTransition 

mapÓ layers summarize the sequential forest cover change of each TMF pixel at the end of the 

latest observation period, including undisturbed forests, forest degradation (short-term 

disturbances due to either natural or anthropogenic causes), deforestation (long-term 

conversion of forest to non-forest cover) and non-forest cover (permanent or seasonal water 

body, non-forest vegetation or non-vegetation cover such as road or buildings). The 

ÒDegradation yearÓ and ÒDeforestation yearÓ layers show the year a pixel has been degraded 

or deforested for the first time, respectively. A more detailed description of the data layers in 

the JRC-TMF dataset can be found in Appendix A (see Supplementary information). 

In this study, we acquired the JRC-TMF dataset for the 10¡ ' 10¡ tile encompassing 

French Guiana (10 N, 60 W). To compare the JRC-TMF dataset and the S1 dataset over the 

same period, we retained only forest gaps that have been created due to disturbance during the 

2016Ð2019 period. To this end, we first created a raster layer that included all disturbed pixels 

(the union of degraded and deforested pixels) in QGIS, and used the clump function in the 

raster R package (Hijmans, 2020) to create a raster layer of forest gaps for the JRC-TMF 

dataset, where contiguous JRC-TMF pixels were grouped into the same gap and assigned a 

unique patch number. We then converted the raster layer into a vector layer containing 

polygons that each represent a forest gap. Out of these gaps, we retained those that contained 

only forest degradation or deforestation pixels from 2016 to 2019.  For each gap, we 

calculated its area (hectares), start year (earliest disturbance year in all pixels), finish year 
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(latest disturbance year in all pixels), median year (median value of disturbance year in all 

pixels), and mean elevation (m). 

 

3.3.4 Criteria for retention of natural forest gaps 

In order to retain only forest gaps caused by natural disturbances from those obtained in the 

S1 and the JRC-TMF dataset, we delimited a study zone using the land use summary data of 

French Guiana in 2015 (data and metadata available at: 

https://catalogue.geoguyane.fr/geonetwork/srv/fre/catalog.search#/metadata/3d681d4f-b8bd-

48b2-80d2-04a215a8a099). The land use summary data depict areas with verified human 

activities, including such as agriculture, logging and gold mining. We added a 5-km buffer 

around all areas of human activities, assuming that human activities are spatially aggregated, 

and thus mainly occur near other existing human-disturbed areas. By visually observing this 

zone of frequent human activities, we identified and manually delineated two study zones that 

were deemed to be far from most anthropogenic disturbances, one in the north and the other 

in the south of the territory, and excluded the S1 and JRC-TMF gaps located outside of the 

study zone. The study zone has a total area of ca. 25,690 km2 (12,100 km2 in the north, 

13,590 km2 in the south), around one fourth of the total area of French Guiana (Figure 1). 

We also excluded gaps smaller than 0.2 hectare, based on the reasoning that these 

smallest detected gaps run a higher risk of being misidentifications or artifacts (false 

positives). The choice of 0.2 hectare as a size threshold was based on the reported minimum 

detected surface area for disturbance patches for the S1 dataset (Ball•re et al., 2021). 

A preliminary visual inspection of the retained gaps in the study zone revealed that a 

small proportion of them have distinctly different morphology from the majority of the gaps. 

They have irregular shapes, with areas larger than 0.5 hectare, and situated near or within 

topographical features that correspond to non-vegetated surfaces such as hills, inselbergs or 

water bodies. In addition to representing the non-vegetated surfaces themselves, we theorized 

that these gaps could also be disturbances occurring in the transition zone between the forest 

and the non-vegetated surfaces, or artifacts when the shadowing method could not accurately 

detect forest edges within a primarily non-forest backdrop. Although the pattern and 

dynamics of these disturbance events are also interesting in their own right, they are likely 

distinct from the gap dynamics driven by natural disturbances in the interior of an intact 

forest. We therefore chose to exclude them from the analysis in the current study, by selecting 

all the Ònon-forest coverÓ pixels in the Transition map layer of the JRC-TMF product, and 

adding a 300-m buffer (distance of five JRC-TMF pixels) around the non-forest pixels to 

create a mask of Ònon-forest coverÓ regions, and excluded all gaps overlapping with the non-
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forest mask. We expect that the majority of the retained forest gaps will be caused by natural 

disturbances. All data layers were projected to the WGS 84 / UTM zone 22N Coordinate 

Reference System (EPSG:32622) before processing in QGIS (QGIS.org, 2021). A detailed 

description of the forest gap selection procedure in QGIS and R can be found in Appendix B. 

 

 

Figure 1. The entire extent of French Guiana (gray line), the region of frequent anthropogenic 

disturbance activities (blue) and the study zone (green). Underlying layer: Google Satellite 

Hybrid.  
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3.3.5 Comparison of natural forest gaps detected in S1 and JRC-TMF datasets  

We visually examined and compared the spatial patterns of the retained forest gaps detected 

by the S1 and the JRC-TMF dataset, and quantified the proportion of total gaps and large gaps 

(size (  0.5 ha) that overlap in the two datasets. For both datasets, we also quantified the size 

distribution of all gaps in log-log scales. 

 

3.3.6 Influence of topography and temporal dynamics on natural forest gaps 

For the natural forest gaps detected in the S1 dataset, we quantified the disturbed-to-total-area 

ratio by elevation classes in 50-m bins, and performed linear models to examine if there was a 

significant relationship between elevation (midpoint value of each elevation class) and 

disturbed-to-total-area ratio, for both study zones separately as well as combined. 

We also quantified the monthly dynamics of total disturbed areas in relation to that of the 

following climatic variables: precipitation, climatic water deficit (CWD, mm), and mean 

hourly maximum wind speed (m!s-1). We retrieved precipitation data from the 3IMERG 

multi-satellite monthly time series, and surface maximum wind speed data from the MERRA-

2 model-generated hourly time series (detailed description available in Appendix A). For both 

dataset, we extracted data for the 2014Ð2019 period, in order to be able to examine if lagged 

effect of climatic conditions from previous years could contribute to the temporal pattern of 

disturbance during the study period. We extracted values for the extent of both the north and 

the south study zone, and calculated an average monthly precipitation over the two study 

zones. 

CWD results from the difference between evapotranspiration and precipitation: assuming 

monthly evapotranspiration level is around 100 mm, CWD = 0 when monthly precipitation > 

100 mm, and becomes progressively negative as monthly precipitation decreases below that 

threshold. As such, we estimated CWD in this study as follows: supposing CWD1 (CWD at 

January 1st) = 0 and equal-length months of 30 days, CWDi (CWD at day i starting from 

January 1st) = Min[0, CWD(i - 1) + (Pi - 100)/30], where Pi is the monthly precipitation of the 

month containing day i. We then converted daily CWD to mean monthly CWD by calculating 

its arithmetic mean. We hypothesized that higher soil water content during the wet season 

would weaken root anchorage, leading to higher probability of treefalls and consequently 

more number and total area of forest gaps (Hales and Miniat, 2017; Osman and Barakbah, 

2006). 
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3.4 Results 

3.4.1 Comparison of natural forest gaps detected by the S1 and JRC-TMF 

datasets  

A total of 3,524 S1 (area: 1,019.2 ha, or 0.039% of the study zone) and 1,008 JRC-TMF gaps 

(area: 382.7 ha, or 0.015% of the study zone) were retained (Table 1). Thus, S1 detected 

about three times as many gaps as JRC-TMF, and the total disturbed area was also about three 

times higher. The South study zone contained both a higher density of gaps and a higher 

proportion of disturbed area to total area (Table 1). 172 large gaps (size ( 0.5 ha) were 

detected in the S1 dataset, representing 5% of total gap numbers and 12% of total gap area, 

while 141 large gaps were detected in the JRC-TMF dataset, representing 13% of total gap 

numbers and 27% of total gap area. The JRC-TMF dataset thus detected a higher proportion 

of large forest gaps than the S1 dataset. 

Comparing S1 and JRC-TMF gap location, very few gaps were collocated: out of all 

3,524 gaps in the S1 dataset, only 59 had an overlap with a JRC-TMF gap (ca. 2%). The 

percentage rose to ca. 16% for large gaps (size ( 0.5 ha): out of all 172 large gaps in the S1 

dataset, 27 had an overlap with a JRC-TMF gap. 

 Most of the forest gaps exhibited a scattered distribution with no apparent aggregation 

(Figure 2). Two regions in the study zone showed noticeably different spatial patterns of the 

forest gaps between the two datasets (see Appendix C for further detail). 

The median S1 gap size was 0.25 ha, versus 0.27 ha for JRC-TMF gaps. Gap size 

showed a power law distribution: the log-log gap size-frequency curve had a slope of ca. -2.8 

(Figure 3). The shapefiles of the retained gaps in both datasets, the shapefile of the study 

zone, as well as the raster file of the non-forest mask are provided as Supplementary Material. 

 

Table 1. Basic summary statistics of the study zone area and the number and total area of 

forest gaps in both datasets during the 2016Ð2019 period. 

 Total North South 

Study zone area (km2) 25690 12100 13590 

S1 
Number of gaps 3,524 (0.14 per km2) 1,445 (0.12 per km2) 2,079 (0.15 per km2) 

Total area (ha) 1,019.2 (0.039%) 425.4 (0.035%) 593.8 (0.046%) 

JRC-TMF 
Number of gaps 1,008 (0.04 per km2) 259 (0.02 per km2) 749 (0.06 per km2) 

Total area (ha) 382.7 (0.015%) 98.8 (0.008%) 283.9 (0.021%) 
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Figure 2. Example of scattered-distributed forest gaps in (A) JRC-TMF (left) and (B) 

Sentinel-1 (right) datasets. Gap colocation is low. Each dashed grid line is 2 km apart. The 

inset shows the extent of French Guiana (gray), study zone (yellow), and the extent of the 

example zone in the panels (ca. 16 km '  16 km). 

 

 

Figure 3. Size-frequency distribution of forest gaps in both datasets in log-log scale (bins of 

100.1 for gap size), over the study zone during the 2016Ð2019 period. 



 136 
 

3.4.2 Influence of topography and temporal dynamics of natural forest gaps 

The disturbed-to-total-area ratio did not show any clear trend with increasing elevation 

(Figure 4): linear models showed that the elevation effect was non-significant for the north 

study zone (p = 0.15), the south study zone (p = 0.10), and for both zones combined (p = 

0.25). Over the 2016Ð2019 period, annual disturbed areas ranged from 185.6 to 380.7 

hectares (254.8 ha on average) in the S1 dataset, and annual area fraction of new forest gaps 

ranged from 0.007% to 0.014%. The time series of the monthly total disturbed area showed 

that disturbances predominantly occurred in the second half of the year, during the dry season 

(Figure 5). The only exception was March to May in 2017, when disturbances peaked during 

the wet season, especially in the south zone. The monthly dynamics of climatic water deficit 

(CWD, mm) showed that at each disturbance peak, disturbance level started increasing before 

CWD started decreasing (Figure 6). The monthly dynamics of maximum wind speed was not 

observed to have clear trend with disturbance level (Figure 7). 

 



 137 
 

 

Figure 4. Disturbed-to-total-area ratio by elevation class (50-m bins) for gaps from the S1 

dataset over the study zone during the 2016Ð2019 period.  
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Figure 5. Monthly dynamics of precipitation (mm) and total disturbed area for gaps from the 

S1 dataset over the study zone during the 2016Ð2019 period. Each bar represents monthly 

total disturbed area, and the red curve represents monthly total precipitation.  
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Figure 6. Monthly dynamics of climatic water deficit (mm) and total disturbed area for gaps 

from the S1 dataset over the study zone during the 2016Ð2019 period. Each bar represents 

monthly total disturbed area, and the red curve represents monthly total precipitation. 
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Figure 7. Monthly dynamics of average hourly maximum wind speed (m!s-1) and total 

disturbed area for gaps from the S1 dataset over the study zone during the 2016Ð2019 period. 

Each bar represents monthly total disturbed area, and the red curve represents monthly total 

precipitation.  
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3.5 Discussions 

In this study, we explored the potential of Sentinel-1 for detection of forest gaps caused by 

natural disturbances. A product derived from Sentinel-1 SAR data and a recently published 

Landsat-derived tropical moist forest cover data product were processed along historical 

forest cover and land use data to obtain records of forest gaps likely to be natural in origin. 

We found that although gap colocation was very low between the two datasets, their 

respective gap size distribution followed a similar power law relationship for gaps above 0.2 

hectare. Therefore, although the comparison of data products is not a real ground truthing 

exercise, it does bring confidence that the gap opening events detected with the new Sentinel-

1 product are not artifacts caused by the ÒshadowingÓ algorithm. The disturbed-to-total-area 

ratio did not show significant trends with increasing altitude, but the temporal dynamics of 

natural forest gaps revealed a clear pattern of higher natural disturbance level during dry 

seasons: further examination of the timing of the increase in disturbance level suggested that 

it could be due to the delayed effect of the wet seasons, which weaken root anchorage and 

increase treefall risk, rather than the direct effect of the increased water stress during dry 

seasons. 

 

3.5.1 Comparison of spatial patterns of natural forest gaps detected by the 

two datasets 

Visually, the retained forest gaps in the two datasets exhibited globally similar spatial pattern, 

with low level of aggregation. Compared to the JRC-TMF dataset, the Sentinel-1 dataset 

detected three times as many natural forest gaps. This can partly be explained by the 0.2-ha 

size threshold, based on the threshold above which the shadowing method detected forest 

gaps with high confidence in Sentinel-1 data, which effectively excluded all the 1- and 2-pixel 

gaps (covering 0.09 and 0.18 ha, respectively) in the original JRC-TMF dataset. Since 3-pixel 

gaps are 0.27 hectare, gaps with a size between 0.2 and 0.26 hectare (above 2 pixels and 

below 3 pixels) size class cannot be quantified correctly by the JRC-TMF dataset. This 

demonstrates the advantage of the finer spatial resolution of the Sentinel-1 satellite data. 

Although only around 2% of S1 gaps overall were collocated with JRC-TMF ones, for 

most of these pairs disturbances occurred during the same year (coarsest temporal resolution 

from the JRC-TMF annual dataset). Collocation was higher (ca. 15% of all the S1 gaps) for 

large gaps (size ( 0.5 ha): this lends confidence for the capability of the S1 to accurately 

detect large natural forest gaps. 

The lack of highly-aggregated clusters of gaps or linearly-shaped gaps along rivers in the 

retained dataset, which would strongly suggest anthropogenic disturbances such as agriculture 



 142 
 

or gold-mining, demonstrated that the exclusion mask based on past survey of human 

activities was a reliable basis on which to delimit regions with low levels of anthropogenic 

disturbance. The north-central part of the south zone contained an unusually high density of 

JRC-TMF patches (Appendix C, Figure C2): this anomaly warrants further inspection, but it 

is suspected that those areas are actually under the influence of anthropogenic disturbances as 

well, possibly due to proximity to the town of Maripasoula. 

 

3.5.2 Gap size distribution of natural forest gaps 

The gap size distribution of both datasets followed a similar power law relationship, 

meaning that log(number of gaps) and log(gap size) exhibited a linear relationship, with the 

slope estimated around -2.9. Past quantifications of forest gap size distribution in Amazonia 

using a combination of plot data, airborne Lidar data and Landsat satellite data reported a 

slope value of -2.5 (Esp’rito-Santo et al., 2014), while another study using airborne Lidar data 

at two Brazilian Amazonian sites reported slope values of the log-log linear relationship 

ranging from 1.88Ð2.16 to 2.86Ð3.26, depending on how gaps were defined (Hunter et al., 

2015). The slope of the log-log gap size-frequency distribution obtained in this study is thus 

consistent with past reported values. This would support the hypothesis that the scaling 

component of forest gap size distribution is invariable across differing environmental and 

floristic conditions, and that gap scaling could reflect convergent filling rules of the three-

dimensional space in forest canopy (Asner et al., 2013). Although few studies have attempted 

to explain the biological or ecological causes of the gap scaling relationship, they likely 

involve light limitation and asymmetrical light competition, as well as canopy responses to 

treefalls (for instance, how initial treefall propagates in the canopy and causes secondary 

treefall). 

The detection of intermediate-sized natural forest gaps (10-0.7Ð100.4 or ca. 0.2Ð2.5 ha) by 

Sentinel-1 satellites can be contrasted to the study by Esp’rito-Santo et al. (2014), where only 

Lidar data were used for the detection of intermediate gaps (10-1Ð101 ha), and where Landsat 

satellite data were used only for detection of large gaps caused by blowdown events (( 5 ha). 

This suggests that the Sentinel-1 satellite data could be used for forest gap detection over a 

wider range of spatial scales than Landsat-derived optical satellite data, and that they could be 

complementary to airborne Lidar data for the detection of intermediate-sized forest gaps, due 

to their larger spatial coverage and continuous temporal coverage. 

The study of natural forest gaps was limited here to gaps larger than 0.2 hectare. Natural 

forest gaps can actually be much smaller, and airborne LiDAR-based studies are typically 

able to detect gaps down to 100 m2 (0.01 ha) (Goulamouss•ne et al., 2017), while plot surveys 
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report gaps down to 10 m2 (10-3 ha) (Esp’rito-Santo et al., 2014). The annual area fraction of 

new forest gaps reported in this study (0.007Ð0.014%) is several orders of magnitude smaller 

than most documented values (1% in Goulamouss•ne et al. (2017), 1.7Ð5.5% in Hunter et al. 

(2015), 1.5Ð11.18% in Dalagnol et al. (2021)). This is likely due to our inability to detect very 

small disturbance events (< 0.2 ha). Extrapolating the number of gaps to the 0.01Ð0.2 ha 

range (0.01 ha being the pixel size of Sentinel-1 data) using the slope of the modeled gap size 

distribution (ca. -2.8, using a log-log linear model), 1.8 ' 107 additional forest gaps (covering 

an additional area of ca. 1.7 ' 103 km2) should be accounted for during the three-year period. 

Adding this extrapolated number to our first estimate, the annual total area of new forest gaps 

is estimated to be 568 km2 on average. This would represent ca. 2.2% of the total study zone 

area, a value more in line with the literature (Hunter et al., 2015). 

 

3.5.3 Temporal trend of natural forest gaps 

Few studies in the literature explored the temporal and seasonal dimensions of forest gap 

dynamics in tropical forests (but see Dalagnol et al., 2021). Thanks to the fine temporal 

resolution of Sentinel-1 data, we were able to quantify monthly dynamics of natural forest 

gaps over a large spatial extent. Our results clearly showed that natural disturbances, both in 

terms of occurrences and spatial extent, were much higher during the dry season compared to 

the wet one, contrary to our original hypothesis that there would be higher disturbance level 

during wet season. 

Many abiotic factors could contribute to the seasonality of tree mortality and gap 

formation. Higher level of precipitation brings higher soil water content, which could lead to 

weakened root anchorage and increased mortality risk due to tree overturning. In support of 

this, a study has observed that tree mortality in Central Amazonia was higher in wetter 

months, even in years with overall drought (Aleixo et al., 2019). On the other hand, higher 

water deficit in dry seasons could increase competition for water, and thereby also increase 

mortality due to heightened risk of hydraulic failure (McDowell et al., 2018). In support of 

this, a study using multiple airborne Lidar observations across the Amazon found that higher 

water deficit was related to higher gap fractions (Dalagnol et al., 2021). However, as our 

results demonstrated, snapshot observations of disturbance level could produce correlations 

that do not reflect actual causal relationship, and continuous observations of fine-scale timing 

of disturbance events is necessary to uncover the possible environmental factors driving the 

dynamics of natural disturbance level. 

One important aspect to consider about seasonality of disturbance is that extreme 

environmental conditions and weather events do not always trigger immediate mortality, but 
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could cause delayed effects of increase in mortality (Aleixo et al., 2019): indeed, we observed 

that within the monthly dynamics, disturbance level started increasing before climatic water 

deficit increased, which would support the hypothesis that the higher disturbance level in dry 

seasons is caused by the wet seasons that precede them, rather by the environmental condition 

of the dry seasons themselves. This result highlighted that single-date remote sensing 

observations of disturbance could fail to reveal correlations that reflect actual causal link 

between environmental factors and natural disturbance dynamics, and continuous 

observations are necessary to capture the fine-scale disturbance dynamics in relation to 

environmental changes with higher confidence. 

Wind is another important disturbance agent, and could often be the determining factor 

of the moment treefall and tree death actually occur for a tree, even when other underlying 

causes (e.g., water stress, disease, senescence) contribute to its death (Aleixo et al., 2019). 

However, in this study, disturbance level was not found to be related to monthly average of 

hourly maximum wind speed. This may be due to the long-term climatic data used in this 

study, which do not sufficiently capture locally wind speed maximum actually controlling 

treefall probability, and that more fine-scale estimation of wind speed will be necessary to 

uncover its relationship with large-scale disturbance level. Another possibility is that wind 

acts primarily on a spatial scale that is under the 0.2 ha size threshold used in this study, and 

therefore many gaps exhibiting seasonality due to wind speed dynamics were filtered out by 

the current method (see, e.g., Dalagnol et al., 2021). 

The two disturbance peaks that did not follow the general pattern of higher disturbances 

during the dry season, one in January 2016 and the other one in March-April 2017 (especially 

in the south study zone), as well as the exceptionally high disturbance peak in September 

2016 during the wet season, also deserves attention. One hypothesis is that these exceptional 

peaks could be caused by the drought effect of the 2015/16 El Ni–o, which could be directly 

responsible for the peaks in January 2016 peak and September 2016, and indirectly for the 

2017 peak through delayed response to climatic events. 

 

3.5.4 Perspectives 

In this study, no significant relationship was found between the occurrence of natural forest 

gaps and elevation. Dalagnol et al. (2021) also found that topographic predictors did not 

explain regional-scale variation of gap occurrence in Amazonia: in contrast, soil and 

hydrological factors such as higher soil fertility, higher water deficit and higher level of 

flooding or waterlogging have been observed to be related to higher forest gap fractions at the 

site scale (Goulamouss•ne et al., 2017) or at the regional scale (Aleixo et al., 2019; Dalagnol 



 145 
 

et al., 2021). They did not find significant link between mean wind speed and regional-scale 

gap fractions, even though wind is acknowledged to be an important disturbance agent in 

Amazonia (Magnabosco Marra et al., 2018; Negr—n-Ju‡rez et al., 2018; Peterson et al., 2019). 

In the future, one important research direction is thus to investigate how the temporal 

dynamics of environmental factors such as wind speed, water deficit and 

flooding/waterlogging correlates with the fine temporal dynamics of forest gaps provided by 

Sentinel-1 data. In addition, the interaction between multiple factors, such as between wind 

and topographical factors (e.g., windward vs. leeward slope), or between wind and soil water 

content, should also be explored as potential factors capable of explaining gap dynamics 

variability (Goulamouss•ne et al., 2017). 

Information on natural forest gaps detected by Sentinel-1 satellites could also aid 

validation and development of vegetation models, through the comparison between spatial 

patterns of forest gaps detected by satellite data and produced by model simulations. In 

particular, spatial point-pattern analyses seek to explore hypotheses about the links between 

ecological processes and the patterns they produce (Getzin et al., 2014; Wiegand and 

Moloney, 2014), and could thus be used to examine if treefall or mortality processes 

represented in a model (disturbance-induced or otherwise) generate landscape-scale patterns 

of forest gaps that are consistent with satellite observations. 

As a verification of the utility of Sentinel-1 data for natural forest gap detection, this 

study also provides a crucial first step in the endeavor of extending the gap detection method 

to an entire region, e.g. Amazonia. For this, the mapping of region-wide land use will be 

necessary to aid in determining the relevant study zone. 

In conclusion, this study demonstrated the utility of Sentinel-1 SAR data to detect 

natural canopy openings in near real-time, and is therefore a benchmark for establishing a 

monitoring system for undisturbed tropical forests, potentially over a larger spatial extent. 

This information could also serve as a basis for future data-model fusion in the study of 

natural disturbances. 

 

3.6 Acknowledgments and author contributions 

This work was supported by the ÒInvestissement dÕAvenirÓ grants managed by the Agence 

Nationale de la Recherche (CEBA, ref. ANR-10-LABX -25-01; TULIP, ref. ANR-10-LABX -

0041; ANAEE-France: ANR-11-INBS-0001). 

EPR, JC and NL designed the research; EPR conducted the research; NL, JC, MB, AB and 

TK provided assistance and inputs in methodology; MB and PJ provided data used for 

analyses; all authors proofread and edited the paper.  



 146 
 

3.7 Supplementary data 

Appendix A: detailed dataset description 

JRC-TMF dataset 

The JRC-TMF dataset includes raster layers that depict the spatial distribution of the TMFs 

and show the land cover status change of each TMF pixel. The ÒTransition map - main 

ClassesÓ and ÒTransition map - subtypesÓ layers provide a summary of the sequential forest 

transition at the end of the latest observation period, classified into general Òmain classesÓ and 

more detailed ÒsubtypesÓ respectively. The main classes in the Transition Map layer include: 

1) undisturbed forests (without any observed disturbance during the period of Landsat 

monitoring), 2) forest degradation (short-term disturbances, which may be of either natural or 

anthropogenic causes), 3) deforestation (long-term conversion of forest to non-forest cover), 

4) forest regrowth (vegetative growth on a previously deforested pixel), 5) ongoing 

degradation/forestation (disturbance events initiated since 2018, for which it is not yet 

possible to determine whether it should be attributed to degradation or deforestation), 6) water 

body (permanent or seasonal), and 7) other land cover (including non-TMF vegetation such as 

savannah or shrubland, agriculture, or non-vegetation cover such as road or buildings). 

The ÒUndisturbed and degraded TMFÓ layer is a simplification of the Transition Map 

layer, and shows the spatial extent of both undisturbed and degraded tropical moist forests. 

The ÒAnnual change collectionÓ layers depicts the extent and status of the TMF (degradation, 

deforestation or regrowth) for each year, with one layer for each year in the observation 

period. The ÒDegradation yearÓ and ÒDeforestation yearÓ layers show the year a pixel has 

been degraded or deforested for the first time, respectively. Other layers characterize the 

disturbance duration and intensity, as well as the number of observations. The dataset is freely 

available at https://forobs.jrc.ec.europa.eu/TMF/, with a user guide that contains detailed 

technical description of the dataset. 

 

Monthly time series of climatic conditions 

Data of monthly dynamics of precipitation (mm) were taken from a single multi-satellite 

precipitation product, which assimilates data from Global Precipitation Mission (GPM) 

constellation and other precipitation-relevant satellite passive microwave sensors. The data 

product was assimilated through version 6 of the Integrated Multi-satellitE Retrievals for 

GPM (IMERG) unified algorithm, gridded at 0.1¡ resolution (GPM_3IMERGM; Huffman et 

al., 2019);. Data of dynamics of monthly average of hourly maximum wind speed (m!s-1) 

were taken from a model-based MERRA-2 data product, which is a global atmospheric 

reanalysis produced by NASA Global Modeling and Assimilation Office (GMAO) using the 

Goddard Earth Observing System Model (GEOS) version 5.12.4.  














































































