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Tshil-th%ou khi" h#o ts"i$kiann tshil-buZ ts"hongthai.

Qf the root firmly anchoredthere is no need to fear typhoons passing over the tr€etop.

Metaphor for the importance btiilding agood foundation.
- Taiwanese idiom (Taiwanese Hokkien)

'(./012&34./015-
Mbkiang tshitngidp™n K'i keei, ch’ ph” tshingidpn ki shaei.
(Fear nothe ghost ofmid-July’, but do featheflood in mid-July.O

Conventional observation of the severity of flooding and landslides due to the heavy precipitations
brought by typhoons in July.

- Taiwanese idiomTaiwaense Hakka, H—dKidialec)

*July in Lunar Calendar is traditional Ghost Month; it corresponds to late Augady September in Gregorian Calendar.

OEand all natureOs wildness tells the same story. Storms of every sort, torrents,
earthquakes, cataclysms, Oconvulsions of nature,O etc., however mysterious and lawless
first sight they may seem, are only harmonious notes in the song of creatiot, varie
expressions of GodOs love.O

- John Muir,Our National ParksChapter 4: The Fountains and Streams of the Yosemite
National Park
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RZsumZ

Les perturbations naturelles ont une influence importante sur la structure, la composition et le
fonctionnementles forsts tropicales et un r™le dans la rZgulation des cycles biogZochimiques.
La frZquence et IOintensitZ des perturbations naturelles sont modifiZs par les changements
climatiques: une meilleure connaissance de leur mZcanisme dOaction est nZcessaire po
prZdire les consZquences de cette modification. La modZlisation permet dOZvaluer le r'™le de
chacun des processus Zcologiques et leur lien avec les facteurs environnermestautys
de la tZIZdZtection nous informent sur la structure et le fonat@meles forsts ~ large
Zchelle, et peuvent stre utiles " la calibration et la validation des modsles de vZgZtation. Dans
cette these, jOai employZ ces deux approches pour examiner comment les forsts tropicales sont
fasonnZes par les perturbations nat@sglhotamment le vent, qui est un facteur majeur de
perturbation dans de nombreuses rZgions tropicales.

Dans un premier temps, jOai ZvaluZ la transfZrabilitZ dOun modele-oetiniduet
spatialement explicite via un test de sensibilitZ et la calibrdéerparamstres globaux. Le
modele prZdit correctement la structure de la forst sur deux sites contrastZs, et sa rZponse est
cohZrente avec les variations du foreage climatique. La calibration dOun petit nombre de
parametres clZs a ZtZ nZcessaire, doarmoent celui qui contr™le la mortalitZ.

Pour Ztudier la sensibilitZ du modele ~ la mortalitZ, jOai mis en fuvre un module de
dZg%ots de vents fondZ sur les principes biophysiques et couplZ avec la vitesse de vent, afin de
modZliser les rZponses de la famix Zvenements de vent extreme. Avec IOaugmentation du
niveau de perturbation, la hauteur de la canopZe diminue de maniere constante mais la
biomasse montre une rZponse-indAaire. LOintensitZ du vent a un fort impact sur la hauteur
de la canopZe et ladmasse, mais pas la frZquence des Zvenements de vent extreme.

Finalement, jOai testZ si les donnZes radar des satellites Septinghient servir ~
dZtecter les trouZes dues aux perturbations naturelles en Guyane franeaise. Les donnZes
Sentinell dZtetent plus de trouZes naturellesdmssus de 0.2 ha que les donnZes satellitaires
optiques, et elles prZsentent un patron spatial cohZrent avec les images optiques. Le niveau de
perturbation ne varie pas en fonction de IQaltitude. Nous avons trouvé partudbations
pendant les saisons seches, ce qui pourrait stre dZ " la rZponse tardive des prZcipitations plut™t
quO" la rZponse directe de la secheresse.

En conclusion, cette these dZmontre que I0intZgration entre la modZlisation et la
tZIZdZtection Zarent les effets des perturbations naturelles sur les forets tropicales. Les
rZsultats qui en dZcoulent peuvent servir ~ Ztudier dOautres types de perturbations et leurs

interactions sur une large Zchelle.






Abstract

Natural disturbances have an importafiuence on the structure, composition and

functioning of tropical forests and a role in the regulation of biogeochemical cycles. The
frequency and intensity of natural disturbances are modified by climate change: a better
knowledge of their mechanism aftion is necessary to predict the consequences of this
modification. Modeling allows us to evaluate the role of each of the ecological processes and
their link with environmental factors. Remote sensing tools inform us about the structure and
functioningof forests at large scales, and can be useful for the calibration and validation of
vegetation models. In this thesis, | employed both approaches to examine how tropical forests
are shaped by natural disturbances, particularly wind, which is a majobdiste factor in

many tropical regions.

First, | evaluated the transferability of a spatially explicit, indivicheded model via
sensitivity testing and calibration of global parameters. The model correctly predicts forest
structure at two contrastinges, and its response is consistent with variations in climate
forcing. Calibration of a small number of key parameters was required, including the
parameter controlling mortality and crown allometry.

To investigate the sensitivity of the model to monalitimplemented a wind damage
module based on biophysical principles and coupled with wind speed to model forest
responses to extreme wind events. With increasing disturbance level, canopy height decreased
steadily but biomass showed a Horear responsé/Nind intensity had a strong impact on
canopy height and biomass, but not the frequency of extreme wind events.

Finally, | tested whether radar data from Sentihehtellites could be used to detect
gaps due to natural disturbances in French GuianaS&htnell data detected more natural
gaps above 0.2 ha than the optical satellite data, and they showed a spatial pattern consistent
with the optical images. The level of disturbance did not vary with altitude. We found more
disturbance during dry seaspmghich could be due to the delayed response of precipitation
rather than the direct response of drought.

In conclusion, this thesis demonstrates that the integration between modeling and
remote sensing sheds light on the effects of natural disturbantepmal forests. The
resulting results can be used to study other types of disturbances and their interactions on a
large scale.
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GENERAL INTRODUCTION

Forestswhich area rich reservoir fobiodiversityand play a essentiatole in the global
biosphereand biogeochemical cycleare increasingly threatened by human activities and
climate changeNatural disturbances, while being an integral element of the forest dynamics,
arealsobeing alteredy climate changawind, and in particular tropical cyclones, is a major
disturbancdorce that cawauseconsiderable tree mortality, and tropical cyc®havebeen
shown to beelatedto forest propertiesorldwide However, knowledge on the mechanisms
by which cyclonic winds drive forest structure and dynamics remains insufficient, the to
limitations ofempirical studiesywhose results aiaconsistent and contingent on multiple
factors.In order to predict and anticighow changes iwind disturbane patterrs will
influenceforestcover, structurediversity and functioning in the futurere need both
sufficient observational datan currentforest disturbane and a comprehensive
understanding ohow wind disturbance affestforests,includingtreemortality.

Studyingthe consequences of natural disturbances on forests have been facilitated by
computer models that include detaikegresentatianof individuatlevel processesHowever,
therealism and transferability of such highly detailed modebdrio be assessed and
improved to make sure they are applicable over a large scale at different sigspémdon
a mechanistic representation of key biological processes in a forest and on the availability of
spatially distributed datan climate and plant functional composition. In addition, tree
mortality needs to be explicitly coupled to wind disturbances in the modalewofor
explorations on the effects of changing disturbance pattéiodel improvement on wind
induced tree muality needto be implemented in particular for speerah, structurally
complex tropical forests, because theytasecosysters most impactetly climate change
and human activities, but also the least understood.

Finally, globalscale forest monitang with high spatial and temporal precision is
increasingly possible with advances in remote sensing technology and satellite data
collection. Neaireal time monitoring of natural disturbance events remains challenging, but it
is worthwhile to address homgmote sensing could furtheontribute to characterization of
fine-scale disturbance patterns, which may elpstrain forest model parameterization,
and/or serve to validate model products.

In this thesis, | studied wind disturbance fridmeperspecties of forest modeling and
remote sensing. | examined the transferability of the spatially explicit indivizhssld model
TROLL (Chave, 1999; MarZchaux and Chave, 2@j7galibrating a number of empirical
parameters at two contrasting forest sites through model inversion, and by examining model
responses to variations in a range of globally consistent climate forcing. | then implemented a

mechanistic model of winthduced tree mortality, ForestGALE®&ardiner et al., 2008,
9



2000; Hale et al., 20)5into the TROLL model, in order to investigate the ldegm impacts
of recurrentwind disturbances on forest structure and dynariiso explored the potential
to assess natural disturbascsing synthetic aperture radar (SAR) data from the Sekiti
satellite, with neareal time coverage (once every 12 days) at a fine spatial resolutibn (10
10 meters). Using the data set treated by a deforestation detection al¢Bathne et al.,
2021; Bouvet et al., 2018) devised a protocol to select formation afural forest gaps in
French Guiana from 2016 to 2019 using GIS tools, and analyze their spatiotemporal pattern
and dynamicskigure1l summarizes the different reseatopics to which | attempted to
contribute in this thesis.

| describe in detail the various methods and approaches used in this work and how they
connect to each other and to the resetoplts and present the results in the form of three
scientific articles and manuscrip&nally, | summarize and contextualize the results from the
three articles, describe the limitations and caveats of these studies, and highlight future

perspectives.

Figure 1. Basic roadmap of summarized research topickethesisand corresponding
chapters

Forestand the Wind of Change

Why forests are important

Forestsarean essentigbartof our biosphereTheyharborthe majority of terrestrial
biodiversity on Earthandaccount for the marity of terrestrial gross primary production
(GPP) totalplant biomassandliving carbon stockgéPan et al., 2013)n addition,forests
participate in the water cycle by replenishing atmospherictareispromoting local cooling
and rainfallandenhancinggroundwater retention and filtratig&llison et al., 2017)which

indirectly provicesbenefits to nearby agricultural syste(@ohn, 2017,)Forestsprovide
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invaluable resources suchtamber, food, mediciral plants and frestvater(Brandon, 2015)
and also regesentimportantspiritualandculturevalues(Henning, 1998; Sheil and Wder,
2002) Many human communitieBavelived in or around natural forests for many thousands
of years: the livelihood and wellbeing of these populatespeciallyjdepend on natural forest
resourceshatthey have activeljharvested anthanagedDavis and Wali, 1994; Toledo et
al., 2003)

Forestsare tightly linked with the global carbon cycledahus have a crucial role in
mitigating climate chang@litchard, 2018) Theyact as a carbon sink Isgquestaeng alarge
amount of atmospheric carbon through photosynthesigadmatiso become a carbon source
whentheyundergo degradaticenddeforestatiorue tologging,agricultural conversion and
forms of land use chandBaccini et al., 2017; Bullock et al., 202®When climate change
induces environmental stressd alters tree species distribution and demography (growth,
mortality and recruitmentpr whenclimate change causes changes in patterns of disturbance
events. Disturbances may be mild and frequerdpoverselymajor and rare, and the
intensity and recurrence time of disturbance events control to a large extent forest carbon
storage abilityPugh et al., 2019)ncreasgs in thdrequency and intensity afisturbances
may cause substantial tree mortaligduce foresproductivity andeduce the forestOs
capacityto storecarbon(Franklin et al., 2016)

Forests are complex in structure and diversity, varying over a wide range of spatial and
temporal scales, and they encompass a large array of interactions among individual trees that
are challenging to disentangle, between trees and the abiotic envirpantebetween trees
and other organisms. Tropical forests are particularly-kvedivn for their rich biodiversity
they alone harbor more than half of the total terrestrial biodivéGaydner et al., 2010)
and the great complexity in their spatial structure, biogeochemicalaydl&inctioning
(Mensah et al., 2020; Townsend et al., 2008js means that their responses to climate
change and disturbances are likely highly heterogeneous aispadiic. In addition,
tropical forests have been under particularly strong pressure of deforestation and forest
degradation and other forms of human disturbance in recent decades, and are also facing
increasing threat of climate change and changes in disturbance régoaesds et al.,

2019)

Disturbances inforests

The study ofdisturbancein ecosystermhaslong helda prominentplace in ecologyln fact,
some ofthe earliestecologcal theoresarose frontheinterest inbetter characteriag how
plantcommunitieggo through ecological successiafter experiencinglisturbance
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(Clements, 1916; Gleason, 192B)sturbances arenportant drivers of change in forest
structure and dynamig®ing et al., 2012; Kurz et al., 2008; Uriarte et al., 2009)
anthropogenic impacts on foresround the world hee intensifed in recent decadeg has
become increasingly vital @ssessiow dsturbance regimesill changedue to
anthropogenic effectandhow thesechangeswill impact forest biodiversity and functioning
(Newman, 2019Seidl et al., 2017)ndeed this informationcould aidplanappropriate
conservation and management stratef@#smrron and Hermanutz, 2016)

One definitions of disturban@amefrom Grime (1977) whichdefined it as th&partial
or total destruction of the plant biomass&derring to environmental factors that determined
plant growth strategyPickett and White (198%)ffered a more general definition with an
ecosystemic viewcany relatively discrete event that disrupts the structure of an ecosystem,
community, or population, and changes resource availability or the physical envir@ddment.
Disturbances catake the fom of extreme climatic conditions, such as heatwave, drought,
frost, heavy precipitation drighwind speedg exogenous events causing a sudden and drastic
change in the environment, such as lightning, storm or volcanic eruption; or events involving
an endognousbiotic componenbf the ecosystem, such fsest fires(which requires the
accumulation oflammable planbiomass), opbutbreaks opess or pathoges(Reichstein et
al., 2013;Turner, 2010)A distinction should be made between single disturbance events and
the disturbance regime, which refers to the overall spatiotemporal pattern of disturbance
eventsovera longer time period. A disturbance event can be characterizesidgat(spatial
extent of influence), duration, intensity (energy released by the disturbance), and severity
(ecological effect of the disturbance)hereasa disturbance regime can be characterized by
its spatial distribution, return frequency, intensétgd seasonality (Turner 2010, Newman
2019).

Each disturbancg/pe has complex effects on forests, and different types of disturbances
interact with each other in complesays Figure?2 providesan overview of the various
disturbancaypesand their effects on various physiological processes in a forest ecosystem,
as well as the interaction between different disturbancepracegsses.
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Figure2. Schematic diagram illustrating the impacts, interactions and feedbacks between
extreme climate events and forest processes. Solid arrows show direct ini@stoest arrows
show indirect impacts. The relatimportance of the impact relationship is shown by arrow
width. Reproduced frorReichsteiret al.(2013)

Mild disturbancesvens maycause nosethal structure damages to trees, sudossof
leavesand branchs andcan altemphysiological processes such as photosynthesis, respiration
and growthresulting inchangesn theforestOsarbonbalance. @her changessuch as
increagd levels of volatile organic compoundsuld directly affect global biochemical cycle
(Guenther et al., 1995¥ore intense disturbancésgger immediate responses such as tree
mortality and destruction dive biomasgMcDowell et al., 200; Reichstein et al., 2013)

Disturbance may affect different species to a differeleigree Speciesspecific response
to disturbance could lead to changeselativespeciesabundancandcommunity
composition triggeling successioal dynamicsor altering thesuccessioal trajectory
(Pulsford et al., 2016and could alsareateselective pressurdsatshapdongterm
adaptation and evolutionary dynam{dsntgh and White, 2019)

At thelandscape scalejsurbances causpatialand temporaheterogeneity due to their
sporadicoccurrenceand spatial locatiarrecurentforest firesand wind blowdownsfor
examplecreate a mosaic of forest patchesliifierent successional stagesd promote
species diversitat the landscape scdlagnabosco Marra et al., 2014; Turner, 2010)
Althoughthis thesidocusesontree assemhles, it is important ti&eepin mindthat
13



disturbance alshave significant impact ovetherorganismsn aforest such adianasand
herbaceous plants, animatsicroorganismsas well as abiaticomponents such as soil

nutriens.

Wind disturbances andtropical cyclones

Wind is an importantdisturbanceagentwith immediate and lontermeffects on forests
(Mitchell, 2013) Chroniclow-intensitywindscan causglastic physiabgicalresponsesm
trees, such ake formation oflexurewood which altertree allometry and statu(@elewski,
1995) Strongemwindscancause partial damage to trees through branch smappi
defoliation windsabovea certain intensitgan exceethetreeOresistancecausng
windthrows (stem breakage, uprootisgeFigure3) (Quine et al., 2021)Although
windthrowsoftenlead totreemortality, although resprouting capacity or mulstemming can
increase th@robability ofsurvivalafter windthrom(Su et al., 2020)

Wind-drivendisturbances come in a variety of f&rn tropicalforests near the
Equator,downburst winds caresult inlarge areas dbrestdamaggGarstang et al., B3).
Storms are aothercommontype of wind disturbanceropical cyclonesfrequentlyaffect
forestin coastal regions of thgubtropics, bringingtrongwind and heavy precipitatiofLin
et al., 2020)Figure4 shows the global pattern of tropical cyclone occurrences, illustrating
major regions where tropical cycloneffenmake landfallthe Western North and South
Pacific, North Atlantic and the than Ocean.

Figure3. Spruce treesuffering fromstem breakag@eft) and uprootindright) in Harz
National Park, Germanyhotography by #ing Rau.
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Figure4. Record tracks afropical cyclonsfrom 135 to 20®, with data from the Joint
Typhoon Warning Center (JTWC) and the U.S. National Oceanography and Atmospheric
Administration (NOAA) Reproduced fronXi (2015)

The formation andhtensiy of tropical cyclonesre controlled by climate in complex
ways Factors predictie of tropical cyclondormationand intensity includgertical wind
shear(change in wind speed and/or wind direction with altituaeseasurface temperatey
although a general theory tmopical cyclondormation is currently lackingWwalsh et al.,
2016)

Studies havshownthattropical cycloneegimehawe been affected by climate change in
recentdecades, andave préictedthatchangewill continuein the near futureglobally,
tropical cyclondrequencyis projectedio decrease under climate change in most nsodel
while tropical cyclonantensity is commonlyrojectedio increas€Cha et al., 2020; Knutson
et al., 2020)The decrease itmopical cyclondrequency $ partly attributable tgreater
warmingin the mid and upper tropospherelative to thdower tropospherevhich leadsto a
greaterstaticstability of theatmospherandreducedvertical mixing andupward mass fluxa
phenanenonlinked to tropical cyclone formatiofYoshimura et al., 2006 he increase in
tropical cyclondrequency caibe primarily attributed to the increase sea surface
temperaturédEmanuel and Sobel, 2013jowever these predictions adebatedandthere is
considerableincertainty and variability acrobssirs andacrossmodek (Walsh et al., 2016)
For exampleParket al. (2017)predicteda future increas intropical cyclondrequency in
theNorth Atlantic basin but increasy tropical cyclondrequency irthe NorthwestPacific
15



basin.Increases in precipitaticand storm surgask (coastal flooding due to rising seawater
caused by cyclonic windjre generally predictgha et al., 2020; Knutson et al., 2020)
Some studiefavepredicted thatdominanttrajectoriesof TC mayalsochangeas a result of
climate changewhich couldalterlandfall probability (the probabilitythatthe center of a
tropical cyclonegeaches landyegions affected biropical cyclonesand the extent of their
impact For examp, Murakamiet al. (2013)predictedan increase itropical cylone
occurrence around the Hawaiiemtands andNakamuraet al. (2017)predicteda poleward
and eastward shift itnopical cyclondracks in theNorthwestPacific basinin light of these
prediced changest isimportant tohave a detailed understandinghofv tropical cyclone
disturbancealter forest stucture, dynamics and functioning, particlyahrough the process
of tree mortalityinduced by extreme winddcDowell et al., 2018)

Global mmparative studies have shown that tropical cyclone occurreaigmificantly
correlatedwith forest structure and dynamidsoganet al.(2018)found that forest plstwith
intermediate cyclomstorm frequencyadhigher variability in demographic rates
(recruitment, growth and mortality) and functional trait divergence, compared to those with
low or high storm frequencybanezet al.(2019)found that higher tropical cycloriezquency
and intensity correlated with shorter canopy stature and higher stem diéxasigzet al.
(2020)also found that tropicalyclone intensity was associated with the form of the species
abundance distributiotdowever, in general, understandingtioélong-term effects of
tropical cyclones on forest composition, diversity and succession rescantg in large part
due to lackof available datéhatinclude pre- and postcyclone observationsi, 2015).

At the stand level, intense winds can cause extreme damage to trees by snapping their
stem (stem breakage) or causing theat anchosto break(uprooting)(Everham and
Brokaw, 1996; Quine et aR021) Numerous studies have attempted to characterize the
abiotic and biotic factors associated with windthrow risk by observing the proportion of trees
thatexperiencedvindthrow at forests sites aftarecent cycloneTable 1 presents a selection
of those studies and their main findingsopertiesgenerallyassociated witla higher
proportion of windthrowveretree size (height, diameter), allometry (heightiameter
ratio), crown dimension (crown width, crown wietflrameter ratio), and wood stigth (wood
density) Overall, taller largertrees with smaller wood density were more often observed to
be more often damaged laynd (Everham and Brokaw, 1996; Webb et al., 2014)
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Table 1. Summary of observed predictors of cyclaiated tree damage fronsalection of

Study
Lugo et al. 1983

Bellingham et al.
1991
Walker et al. 1992

Bellingham et al.
1996
Ostertag et al. 2005

Curran et al. 2008

Lewis & Bannar
Martin 2011

Lin etal. 2011
Vandecar et al.
2011

Webb et al. 2014

Site

Dominica

Jamaica

Luquillo,

Puerto Rico

Yakushima, Japan

Luquillo,
Puerto Rico

Queensland,

Australia

Kirindy Mitea,
Madagascar
Fushan, Taiwan
southern Yucatin,

Mexico

Talu,

American Samoa

past studies.

Cyclone
Hurricane David,
August 1979
Hurricane Gilbert,
September 1988
Hurricane Hugo,
September 1989

Typhoon No. 13,
September 1993

Hurricane Georges,

September 1998

Cyclone Larry,
March 2006

Cyclone Fanele,
January 2009
Typhoon Haitang
Hurricane Dean,
August 2007

Cyclone Olaf,
February 2005

Predictors of uprooting risk

Diameter: positive

Diameter: not predictive

Diameter: not predictive

Diameter: not predictive

Growth rate: positive

Size: positive

Wood density: not predictive
Tree size: not predictive

Buttress presence: not predictive

Diameter: positive

Height: positive

Diameter: positive

Height: positive

Wood density: negative (only when
wind speed exceeds a threshold)
Wood density: negative

Diameter: positive

Predictors of stem breakage risk

Diameter: negative

Diameter: not predictive

Diameter: not predictive
Wood density: negative (only at
Bisley)

Diameter: not predictive

Growth rate: psitive

Size: positive

Wood density: not predictive
Tree size: not predictive
Buttress presence: not predictive
Wood densitynegative

Diameter: positive

Height: positive

Diameter: positive

Height: positive

Wood density: negative (only when
wind speed exceeds a threshold)
Wood density: positive

Height: positive

Diameter: negative

Crown width/diameter ratio: positive

However, none of the relationships between structural propertiesiadthrow

probabilitycan beuniversally observed in all studies. The presence, strength and direction of

the relationship ofteaxhibit considerable variabilitior differenttypes of denage and for

differentspecies, and depend on a number of abiotic factors such distamdée cyclone,

site-specificdisturbancer land use legagyand topograph(orientation, slope, elevation)
(Everham and Brokaw, 1996; Mitchell, 2013)
In addition, although windthrotypically results in immediateeedeath it is possible

for broken or even uprooted trees to survive and regeneratespyaing(Su et al., 2020;

Walker, 1995) conversely, a tree thhasnot experienagwindthrow andhas sufferednly

partial damage (e.g. branch snapping, defoliation) maethelessuffer delayed mortality,

being more prone to resourdepletion disadvantaged in competition for light, water and

other nutrients, or more vulnerable to disease and herb{\Whaiker, 1995) This means that

estimates of tree mortalitglepend on the timef observation after the cyclone event. Finally,

other methodological differences exist between studies, such as theesgatitdf the areas

sampledand tree properties that were observed and recorded.
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The conplex interactionamongthe abovementioned factors mehat making
generaked prediction®n the longterm effects ofvind distubanceon forestecosystems
remairs a significantchallenge Two strategiesan be envisioned to overcome this challenge:
one is to adopd mechanistic approachitovestigate generalizable mechanisms that control
how wind causedree mortality which in turnshapegoreststandlevel propertiegLin et al.,
2020; Xi, 2015)the other igo collect comprehensiviarge scale observationaatawhich
arerepresentative of different situatioms.the following sections, | will develop how
attempted t@ontribute to anore generalinderstandingn longterm consequences wind
disturbance on foreslkyy employing both strategi@s this thesis

Modeling forest ecosystems

Forest models aran indispensable totthathelps researchewsiravelthe enormous

complexity of forest ecosystems, agidcoverhow observed forest patterns are linked to the
myriad of interacting abiotic and biotic processegluding wind disturbance and wind
induced mortalityShifley et al., 2017; Shugart, 198Zheyformally describemultiple
physiological and demographicocessewithin forest ecosystemsimulations can be
performed using the modelspooduce predictions on forest structure, dynamics and
functioning, whichcan therbe compared against observed data in order to test hypotheses
(Botkin et al., 1972; Bugmann, 2001; MarZchaux et al., 2021; PortZ and Bartelink, 2002)
Model simulatiors alsoallow for virtual experiment®n a large spatial and temposalale for
example regarding forest response to environmental changes such as increasing temperature
or CQ: level (Feng et al., 2018; Holm et al., 2026} the sensitivity and resilience furest to
various types of disturbane€Seidl et al., 2011b)All models are simplifications of reality,

but a goodorestmodel should contain a representation offtiiest that is sufficiently

realistic and robust in a wide range of conditiststhathe model cameliably approximag
redity and provide answers tthe research questi@gRrentice et al., 2015; Vanclay and
Skovsgaard, 1997)

Dynamic global vegetation models

Dynamic global vegetation models (DGVMan to model the global distribution of
vegetation types, and anéen embedded as a component of earth system models (ESMs)
which modelthe interactive feedbacks between the biosphere and climate cb&sigiels
represent the interface of vegetation and biogeochemical cycles, integrating climate,
biogeochemistry and biophysics (carbon and nutrient cycle, energy and water vapor
exchange)plant physiology (carbon and nutrient uptake), vegetation dynamics (tree
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establishment, growth and mortalitgs well adumanrelated land use charg@rentice et

al., 2007) Figure5 illustrates thestructure ofa typical DGVMand its main module#s
modelsbuilt with a topdown approachDGVMs usuallydescribevegetationwith a small
number of plant functional types (PFTahd include a simplified representation of vegetation
structure and dynamic$his provide greatercomputational efficiengyfacilitating coupling

in ESMs for globakcale simulatios, but also means that the representation of vegetation
dynamics and structuian besimplistic and does not capture many of the important
biological processes in the forest, such as gap dynangisscbmpetition, and notably
recovery from disturbandgisheret d. 2018 but seeMoorcroft, Hurtt, and Pacala 2001)
Although newegeneratiorDGVMs have started to integraitedividuallevel interactions and
physiologicalprocesse§Sato et al.2007; Scheiter et al., 2018)d includeatrait-based
representation of vegetation to better account for functional divékatyen et al., 2020;
Pavlick et al., 2013; Sakschewski et al., 20%bpstantiathallengesemain in adequalte
represeting demographic processebree mortality, in particulars one of themostuncertain
processegesulting inuncertaintieandlow realismin model projectiongBugmann et al.,
2019; Johnson et al., 201@his underscorethe needo develop bottorrup modek that

include adetailed description of forest size structure and functional composition, as well as

mechanistic models of stem mortality.

Figure5. Typical structure of a DGVM, showing main driving variables, process modules and

state variablegPrentice et al., 2007)
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Gap models and individuatbased models

Individualbased models (IBMs) represent a forest with a boetiprapproach and formally
describe key physiological (e.g. photosynthesis, respiration and carbon allocation) and
demographic (growth, recruitment, mortalifypcesses that occat the levebf individual
trees, including light competition that depsioth the vertical canopy structufugmann,
2001; Pacal et al., 1996)The user suppliethe model with observed data on abiotic and
biotic conditions such as climatic forcing, species composition and characteAstis
model outputpatterns of forest structure, dynamics and functioning are simulated a
emergent properties from dynamic interactions among individeegéand between
individuals and the environmerecause ofheir stochastic nature, tipeimaryuse of forest
IBMs is not to compare a single simulated forest to field measurements aud @xgerfect
match:instead becausecological processes are explicitly represented, it is possible to
control and alter one onoreprocesses separatety studyhow they drive observed forest
patterns, and toonductvirtual experiments to test hypotheses on how changes in abiotic and
biotic conditions affect fores{®eAngelis and Grimm, 2014; Schingt al., 202Q)
Knowledgegained from these model explorations can further be used totheidesign of
field experimend or protoco$ (Medlyn et al., 2016)

Development of IBMsn forestrybeganaround 60 years ago in response to the need to
predict how changes in environmental conditions or forestry practice alter forest growth and
timber yield(Shugart et al., 2018 arly foresty modelsused empirical observations to
derivethe relationship between the growth of a Ostandardase@@inction ofige tree
density and othesite conditionsThis relationshigouldthen be scaledp to standlevel
characteristics and forest yield the form of a Oyield tald¢Burkhart, 1990) This approach
assumed thaall the trees in a stand are identical and can be represented by the standard tree
which was appropriate for plantation foredbsit less adapted for mixaized and mixe@ged
natural forestsLater, modelsstarted tancorporate the process of sidependent tree
competition and mortality to follow growth and thinning of exagred forestéKohyama,

1993, 1992)markng afirst step toward modelinthe dynamics of forest mosaics and
emphaizing the growth and interaction of individual tre€&ibsequent development of IBMs
has benefited considerably from the increase in computing powetheveasfew decades,
which has reduced constraints on model complexityallowed for the inclusion of more
detailed procesepresentation.

Oneparticular subset of IBMis calledOgap modelsidcludingJABOWA (Botkin et al.
1972)or FORMIND (Fischer et al., 2016; KShler and Huth, 199Bheyapply the concept of
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patch dynamicgPickett and White, 1985and represe forests as a mosaic wiany small
patchesof the size comparable to large trees in the forest{1000 n%), each having a
different age and successional status and in general independent of eacfhetpatches
were assumed to be horizontally hmgeneous, meanirthattree position was not considered
within each patch, and that only competition in the vertical dimension was explicitly
consideredBugmann, 2001; l8ugart and Woodward, 200FBigure6 illustrates the structural
simplifications adopted by a typical gap model.

Other IBMs arespatially explicit,including the earliedorestry modelsand later
generation IBMsuch aZELIG (Weishampel et al., 199230RTIE(Pacala et al., 1996;
Uriarte et al., 2009nd TROLL(Chave, 1999; MarZchaux and Chave, 20liv)hese
models, the spatial locatiaf each tree individual is explicitly defined: this allofes more
realistic simulation oindividuallevel interactionssuch as light competition and secondary
treefalls (caused when the trunk and crown of fallieggrsmash into neighboring trees).
Figure7 exemplifies a spatially explicit tree representation in the individaaéd model
TROLL.

Figure®6. lllustration of a forest patch (on the left) and its simplified representation in a typical

gap model (on the righ{Bugmann, 2001)
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Figure7. Representation of individual trees in a spatially explicit grid in TROlhe 3D
space of the forest stand is divided intm3OvoxelsO, and light diffusion is computed
explicitly at each timestep within each voxelnm2nsionsof each individual treéCR: crown
radius;CD: crown depthh: height;dbh:diameter at breast heiglstjeupdated at each
timestepbased on the amount of net assimilated carbon allocated to growth and allometric
relationships(MarZchaux and Chave, 2017)

Upscaling of individual-based models: the question of transferability

Due to thecost of execution (amount of data necessary for model parameterization and
demand on computational powelBMs areusuallyapplied at the forest stanigvel.
However,in recent yeargheyare increasingly being implemented at larger spatial scales
(Shugart et al., 2018Pne approach involves the development of cehased mode]svhich
group tree individuals according to their size, age, functitypa, or micreenvironmental
conditions (e.g., in gap or in understofdngo et al., 2019; Moorcroft et al., 200Another
approachnvolvesembedling IBMs as a componeim earthsystemmodels (ESMs}o
complement the shortcomings of DGVMsheTinclusion of individuabased processin
ESMsallowsthe prediction of vegetation structure and distribution from climate and plant
trait input alone, without a priori constraint, and also provides opportunities ehuatal
integrationat finer scaléFisher et al., 2018)Thesemodels often present a number of
simplificationsthemselvessuch as the cohebased approach where tree individuals with
similar properties (size, age, functional type) are grouped togetherell as the grouping of
highly diverse tree species into several Oplant functional typesO. These simplifications reduce
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thecomputational burderout also rais¢he issue of modekalism because they
underrepresent the importance of demographic stochasticity, tra@@oding triis and
functional diversity(Fisher et al., 2018; Koven et al., 2020)

Whetherrunindependently or embedded within a glebaéle modeltheappicationa
forest IBM at many sitesvera larger scalposes several challengégart from the tradeoff
betweencomputational burdeand model realisiithe issue of model transferability
inevitably arise§Wenger and Olden, 2012; Yates et al., 20W8)ich canbe summarized
with this questiononcea model has been calibrated at one site, how well doedotpeat
another site™ theory, all biological processes in a mog@ef.photosynthesis, water uptake
or carbon allocationcould be described as mechanistic functions, which are universally valid
and only depend on directly measurable input data Wetlr diological meaning, such as
climate forcing and plant traits. This would make the modelisttependent, and applicable
to any forest site in the world by only changing the environment and trait input without
affecting model performanckn reality,however site-specific data are still often used for the
formulation and calibration ahany mechanistic functionwhich meanghat their genericity
has not been fullgxplored This leads to risk of overfitting, afdnders thdransferabilityof
models In addition current knowledge for some biological processes is insufficient to
provide a completely mechanistic representation (e.g. tree mor{8litgjnann et al., 2019;
Johnson et al., 2016hey therefore have to be described with empiacalstatistical
relationshipswhich impliesthat their sitespecificity is partidy included in OfreeO parameters
that are not directly measurable.

In order to improvehetransferabilityof the modelsandto facilitate IBM upscalingthe
parameterization and process representation must be made more general and less site
dependent. Hoogeneous observationgdta with large spatial coverage, such as global
climate reanalysis or satellite data, can provide better model initializaoriocal datasets
derived from field observations or meteorological statibomaddition,when a forestBM is
appliedat locationsther than the original calibration sitecalibration will berequiredfor
some parameters. This is usually done by model inversion, which involves ob$ewing
well the simulation resultit certain observed metrics fafrest structure, dynamics or
functioning, while varyinghe parameter value@iartig et al., 2014)Model inversion could
also bea sensitivity analysiexerciseo identify processes and parametergrhichthe model
IS most sensitive, in order &ase the burden o&librationandprioritize efforts to improve
their mechanistic representation and model transferafitliiyper et al., 2020fFigure8
illustrates a general framewofdr scalinglBMs to regional or global DGVMs and land

surface models (LSMs).
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Figure8. General features of larsirface models (LSMs), dynamic global vegetation models
(DGVMs), and individuabased models (IBMs) of forests as used in global clioladéage
studiesReproduced fronshugartet al.(2015)

Some studies have explored the issues of transferability and recalilofafiooest |1BM
Lagarrigue<t al.(2015)evaluated the recalibration process of a forest tBdMsimulates
demographic process using statistical equations with spesjascific parameters (leading to
a large number of demographic parameters to be calibrated), applied to a temperate forest
with a smallnumber oftreespeciesFausett al. (2019)examinedvhetheran individual
based model performs reasonably vegitwo Amazonian forest sites with different climate
and plant traits, but only usélde overall trait distribution as input, without spesspecific
parameterizatio® To our knowledge, currently there are still few studies that examine model
transferability across tropical forests, aisbemploy a forest IBM with mechanistic, speeies
independent representation of biological processesg speciespecific plant traits as input
for parameterizationm hefirst research topiof this thesighus involvesvaluating the
transferability of an individual -based modelith a traitbased species parameterization

and mechanistic representation of individigadel processes.
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Individual -based models and wind disturbance

As noted abovein forest dynamic models, tree mortality has been identified as one of
the least constiined biological processeasforest dynamic¢Bugmann et al., 2019; Fauset et
al., 2019; Johnson et al., 201&his poses a problefor the predictive ability of forest
models in general, and represents a particularly serious challenge for our understanding of the
effects of natural disturbansen forests: increagéree mortality is one of the mastportant
direct consequences of disturbances kinotvledge abouthe exact extent and pattern of their
contribution to tree mortality igastly incompletg€Allen et al., 2010; McDowell et al., 2018)

It is therefore ofcrucialimportanceto include a mechastic representation of how tree
mortality and other processes in forest models are driven by various disturbance agents, and
in particularby wind disturbance@Mitchell, 2013; Seidl et al., 2011a)

From amechanical standpoint, wind drag induce®scillating turning movement on
the tree through its interaction with the tree crown and the trunk: when the turning moment
(torque) exceeds a certain threshold, the tree suffers from major structural failtowe alte
anchoring failure (leading to uprooting), or due to the stem yielding to the bending stress
(leading stem breakagéyumerousexperimentaktudies haveither investigatethe dynamic
interactions between wind drag and tree components viiith tinnel experimerst(Gardiner
et d., 2016) or have measured static tree resistaaagrooting througlreepulling
experimens (Nicoll et al., 2006)In recent years, a number of studies haesl wetailed
biomechanical models to explore fineale windtree interaction. Somesedtime series of
tree motion dataollected in the fieldo relate tree motion ithewind, especially its
fundamental sway frequency to its architectural propefdieskson et al., 2021, 2019b)
Otherscombined terrestrial laser scanning (TLS) datathedapproach dinite-element
analysis, which subdivides a complex structure into components with simplet@artzjel
the dynan response of trees when exposed to wind (fackson et al., 2019¢)hese
studies provide important insights baw tree structure is rekd to windtree interaction.
However, this approach requires a large amount ofdua¢e data and substantial
computation effort, and therefore generallynpractical for standevel application

Another approach involveseunhanistic wind damage risk ehes, whichmodel trees as
objects with a simpler geometry, acalculate the critical wind speed (CW8juiredfor a
tree tobe blown dowrbased on biomechanical principksa function of more easily
measurable staddvel properties, such as tree spacing and canopy height, and individual
level properties, such as height, diameter and wood stré@gtdiner et al., 2008; Pivato et
al., 2014) These models were originally developedssesthe likelihood and extent of wind
damage irforestplantatiors, andthus wereprimarily applied to evesized temperate forests.

In mixedsized natural forests, however, several difficulties are encounterediestahd
25



properties (tree spacing and capdight, etc.) are expected to vary both spatially and
temporally, andhe effect ofsheltering from neighboringgees onthe risk ofwind damage can
be important.m principle,unsheltered emergent trees are expected to be at a higher risk of
wind damagehan understory trees, even given the same size. This means that the spatial
heterogeneity of tree size and architecture needs to be accounted for when modeling the
impacts of wind disturbance, especially for subtropical and tropical f¢f2sperat et al.,
2021; Hale et al., 2012; Seidl et al., 2QBpatially explicit individuabased models (IBMs)

of forest dynamics arinerefore an appropriateodeling framework thaaddressethis need.

By integraing forest IBMs with wind damage models that prowaaeestimate ofritical

wind speed it is possible to explicitly represenpartionof tree mortality as the response to
wind disturbance antb model the effect of shelteriffgppm nearby treesn order to
understandhow wind disturbances alter tree mortality and impact forests in the long run.

Several studies hawetegrated avind-induced tree mortalitypnodulein a forest IBM:
they provide promising results that confirm the relationship betwemt @éamage and tree
height and diametéAncelin et al., 2004; Schelhaas et al., 20@RHd indicate the iportance
of within-stand heterogeneifAncelin et al., 2004; Seidl et al., 201a¥)d the role of
acclimation(Kamimura et al., 2019)Another study also incorporated the wind damage
module into a land surface model to model the effects of past storm events on forests at a
regional scal¢Chen et al., 2018)

However, these studies have mostly focused on tatetarests, with relatively
homogeneous stand structure and low species diversity compared to subtropical and tropical
forests, and most simulations were run over a relatively short time period (from one single
storm event to several decadéx)w studiesiave usedorest IBMs with awind-induced tree
mortality moduleto investigate longerm effects of wind disturbance on the structure,
dynamics and functioning of speciesh tropical forestsThe second-esearchopic of this
thesisthus involveausing individual -based modeling to widy the effects of wind

disturbance onforestswith aheterogeneoustructure and high species diversity.

Monitoring forest ecosystems

Long-term forest plots

In order to meet the enormous challenge of disentangling eadicaid biotic process in
forest ecosystems, including wind disturbance andwiddced tree mortalityit is essential
to collect and maintain standardized lalegn field data over multiple spatial scales and

levels of organization (from the molecularthe ecosystem levels) worldwide. Analyses of
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extensive field data from multiple regions, including multiple continents, allows for better
detection of both general trends and iregional differenceéSullivan et al., 2020)

One example of international collaboration with the goal of facilitating data collection
and exchange in forestry research is the establishment of ForestGEO, a global oktwork
long-term forest dynamics plots (FDPs) witlstandardized data collection protocol, and
scientists working across a wide variety of disciplines. The ForestGEO sites are established
since as early as 1980, are located on all continents, and cover a wide range of environmental
conditions (soll fertiliy, topography, rainfall pattern and disturbance regirffagpre9).

Over 7 million trees of around 12,000 species have been recorded in the Forest@aM®

to date, representing about 20% of the known global tree diversity and including 59% of all
plant families and 35% of all woody plant genéavies et al., 2021)This wealth of

information provides invaluable resources for the study of the spatial and temporal variability
of forest structure and dynamics.

Under the ForestGEO protocol, all tree individuals with a diameter (1 cm at 1.3 m
above the ground (diameter at breast height, DBH), or above buttresses or other trunk
deformities, are mapped, measured and identified, in gridded plots of typic&y I$6in
size, and repeated censuses are carried out at approximatglgdiviatervals to track their
recruitment, growth, and death. This protocol is labod timeintensive, and the
identification of the diverse tree species, especially for small stemarticularly difficult;
however, it presents several advantages. Repeated sampling of a relatively large contiguous
patch of forest allows for better monitoring of infrequent demographic events, such as tree
mortality, and reduces the risk of underséangpuncommon species. In addition, a
considerable portion of tree diversity and dynamics is found at diameters < 10 cm, and
sampling small stems sheds a new light on tree demography. Last but not least, large mapped
plots present an opportunity to monifatterns of many types of natural disturbances in
tropical forests that occur at the spatial scale of one to several hectares (e.qg., treefalls,
landslides, lightning strikes, et¢avies et al., 2021; Gora et al., 2020)
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Figure9. Global map of 71 ForestGEO Forest DynesriPlots(Davies et al., 2021)

Remote sensing

In addition to field inventory data, advances in remote sensing in recent years have also
generated forest observations with substantially enhanced spatial and temporal resolution and
extent(Lechner et al., 2020Major advances include the usdight detection and ranging

(LiDAR) technology, and the collection of improved glokable satellite data.

Also called 3D laser scanning, LIDAR uses a principle similar to raa@dsonar, and
measures the distance between the sensor and the target object or surface by emitting laser
pulses, and measuring the elapsed time between emission and reception of the laser reflection
by the sensorOs receiver: this generates point cibaidhéit can be processed by various
algorithms to reconstruct the 3D structure of the target ofijetsky et al., 2002)Airborne
LiDAR scaming (ALS) systems, mounted on aircrafts or satellites, scan the forest canopy and
can be used to map forest canopy height at the regional scale; LIDAR instruments onboard
satellites have even been used on a global §8ateard et al., 2011 with new advances such
as the GEDI project underw#é§oyle et al., 2015Figurel0illustrates the basic principle of
ALS data acquisition and processing. Canopy height information can then be used to estimate
other forest attributes such as aboveground carbon stocks or primary productivity, either
through calibration with ground measuremdptsner et al., 2012)or by linking canopy
height to other forest attributes through model predisti®sdig et al., 2018, 2017From
the vertical canopy structure in the ALS data, it is also possible to extract indikadell
information on tree size and allometry, which can help constrain allometric relatiomships i
forest modelindFerraz et al., 2016; Fischer et al., 2020, 2019; Jucker et al.,. Z7&ti@strial
LiDAR scanning (TLS), a grounddased counterpart to ALS remote sensing, involves LiDAR

scans from the ground in the forest understory, and canajen@otscale data on tree
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architecture and diameter with extremely high precision and acc{Darey, 2018) Tree
position and diameter information can facilitate tree mapping and forest plot surveys and
reduce time and co@lewnham et al., 2015T he reconstruction of 3D wheteee structure
from TLS data provides unprecedentefbrmation that can be used to study tree allometry
and architecture, as well to give more accurate estimate of aboveground {Disasg,

2018; Disney et al., 2018; Malhi et al., 2018)the ©ntext of studying wind disturbance,
airborne LIiDAR can be used to assess patterns of wind damage after a tropical cyclone
(Coomes et al., 2018; Hayashi et al., 2085 terrestrial LIDAR scanning data have been
used to constrain biomechanical models of individeraé| windtree interactiongJackson et
al., 2019b, 2019c)

Figure10. Principle of airborne lidar acquisition and data procgkauve et al., 2009)

In addition to Lidar, other types of spaceborne remote sensing use sateli¢ed
sensors that detect electromagnetic rachatovarious wavelength ranges, such as visible
light, infrared, microwave or radio waves. They can provide temporally continuous records on
forest structure and dynamics with broad spatial coverage, which can be used for model
calibration or validatioffKnapp et al., 2018; Shugart et al., 2046yl for monitoring of forest
status change and natural or human disturbance dynamics.

Multispectral optial sensors in the visible light and infrared wavelengths, such as those
on the Landsat satellites, MODIS sensor on board the Terra and Aqua satellites, and those on
the Sentinel satellites, produce optical images useful for monitoring land cover and
vegeation change. In particular, the Landsat mission has provided uninterrupted optical
imagery over the entire globe since 1972: with a high spatial resolution of 30 m and a return

frequency of 16 days, this higksolution dataset has proven invaluablddag-term
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monitoring of land cover and spatial heterogen@tgnsen et al., 2013; Vartsem et al.,

2021) In contrast, the relatively coarse spatial resolution (ranging from 250 m to 1 km) but
high temporal resolution (return frequency of 1 to 2 days) of the MODIS sensor makes it
useful for monitoring land, ocean and atmospheric prosexsairring over a small time

scale, including atmospheric water vapor, aerosol particles and cloud profsértgest al.,
1992)

Microwave radiometry involves passive sensors that measure energy emitted at the
microwave wavelength (from 1 mm to 1 m) from the Earth surface. It has been used to collect
precipitation data (e.g., Tropical Rainfall Measuring Mission, TRM®Ison et al., 2006;

Yang et al., 2006and soil moisture data (e.g., Soil Moisture and Ocean Salinity, SMOS; Soil
Moisture Active Pasgse, SMAP)(BarrZ et al., 2008; Bven et al., 2013; Ma et al., 2019;

Oliva et al., 202Q)and has also seen other uses such as for hurricane monitoring or
measurement of Arctic snow thickngs4aa8 et al., 2013; Reul et al., 2012)

Synthetic aperture radar (SAR) instruments create reconstruction of landscapes and
forest canopy by emitting radio wa pulses from a moving platform (satellite) onto the target
region (landscapes or forest cover), recording the backscattered echoes of these pulses, and
processing the echoes recorded at different times, and thus at different positions, to
reconstruct theurface shape of the target reg{gmrscht and Rinke, 1998Figurell). This
method produces images with high spatial resolution, and has the advantage over optical
imaging in that they are operational under all weather conditibhas been useful for
measumg topography (e.g. Shuttle Radar Topography Mission, SRIF&) et al., 2007)as
well as for estimating tree size and biomass, forest cover and forest loss (e.g. ALOS,
PALSAR, Sentinell) (Balzter, 2001; Reiche et al., 2016)

Hyperspectral imaging instruments (also known as imaging spectroscopy), such as
Hyperion on board of the EO satellite, detect and record the reflected radiation reflected
from the EarthOs surface over manyelength bands, producing a OspectrumO for each pixel
scanned. A currently active research direction is to utilize these spectra to identify tree
species, chemical compositions or functional traits over a large spatial scale, often combined
with machine leming procesg¢FZret and Asner, 2014, 2011; Goodenough et al., 2004)
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Figurell. Principle of synthetic aperture radar remote sensing. The sensor detects the
scatterer (target) by integrating all signals acquired during the period (length of the synthetic

array) when the scatterer falls within the antenna h@am Zyland Kim, 2011)

Using satellite remote sensing to monitor forest disturbance

Satellite imagery has been instrumental in monitoring changes in forest condition and cover
due to natural or human disturbances and deforestation dynamics, particuladbgiovatih
forested areas that are difficult to acc@sllock et al., 2020; Keenan et al., 2015dr
example, satellite data have been used to estimate tree mortality rate in tropical rainforests
(Clark et al., 2004)and todetect windthrow and disturbance patterns in forests after tropical
cyclone passaggislov and Korznikov, 2020; Negr-Juitrez et al., 2014)

Due totherelative short time frame within which natural disturbaevents occur (often
in a matter of days)in order to characterize firgcale natural disturbance dynamics, there is
a need to detect forest disturbance events with short time intervals. This can be achieved by
using data from@arreal time (NRT) foret disturbance monitoringrograms, whiclallow
management programs to respond to new deforestation events in a timely (hHamsen et
al., 2016). Forest disturbance monitoring has traditionally relied on optrabte sensing,
although a major shortcoming of optical imagery is that data availability is limited by
frequent cloud cover in the tropics, particularly during the wet season. Synthetic aperture
radar (SAR) data are not subject to these meteorologicsiraots, and could be a powerful

tool for detecting and mapping forest disturbances. Recently, a new methodology has been
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developed to provide NRT deforestation detection using SAR data collected from the
Sentinell satellite, by taking advantage of thagability of Sentinell acquisitions in both
ascending and descending orlfBallere et al., 2021; Bouvet et al., 2018Yith a revisit

period of 6 to 12 days and a spatial resolution of 10 m, this new methodology can serve as an
accurate tool for monitoring humanfdeestation, but also opens up the possibility of

studying finescale temporal and spat@tnamics of natural disturbances in Amazonian

forests, where wind could be an important disturbance dytagnabosco Marra et al., 2018;
Peterson et al., 2019)hethird research questiaof this thesighus involveghe

exploratiuon of natural disturbance dynamics in tropical forests using satellite imaging

data.

Summary

In summary our understanding dfow wind disturbance shapes forestsadvanced greatly
throughthe development ahdividualbasedorest dynamicsnodels butthe transferability

of individualbased models generaheedto bebetterassessed, artle processf wind-
induced tree mortalitpeeddo beincluded,bothto improve representation of mortality
modelsin generaland tostudy thdong-term effectof wind disturbancen tropical forests

in particular Furthermorein light of thegreatpotentialfor remote sensintechnologyand
satellite datafurther explorationshouldbe madeto harness the potential of satellite remote
sensingo provide neareal time largescale monitoring othe dynamics ofvind disturbance
impacts The main objective of thithesisis thusto contribute tahreepreviously formulated
researchopics

1.! Evaluation of the transferability of an individual -based model

2.!Investigation of the effects of wind disturbance on forestsising individual-based
modeling

3.'Exploration of natural disturbance dynamics in tropical forests using satellite
imaging data
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GENERAL METHODS

Individual -based forest dynamicsnodel: TROLL

M odel overview

The TROLL model, used for this PhD study, belongs to the family of spatially explicit
individuatbased models along with models sucls@RTIE(Pacala et al., 1996; Uriarte et

al., 2009)and FORMIND(Fischer et al., 2016; KShler and Huth, 1998)dsimulaes the
demography processes (recruitment, growth, seed production, and death) of all individual
trees (sekstanding stems) (1 cm in trunk diameter at breast height (DBH) in a forest stand
(Chave, 1999; MarZchaux and Chave, 2017)

In TROLL, the aboveground space of the forest stand is divided into 3D cells of size 1
m?3 (voxels), and no more than one tree can establish in each 1' 1 m pixel at any given time.
Each modeled tree is a 3D object defined by a set of state variables (age, DBH, height, crown
radius, crown depth, and total leaf surface area), and is assigpedesdabel inherited from
the progenitor tree. Each species label is associated with seven-speciés traits: leaf
mass per area (LMA), leaf nitrogen and phosphorus contieatsendPmasy, wood density,
threshold DBH beyond which growth efficigndeclines, asymptotic height, and a parameter
of the DBHEheight allometry ). These traits control photosynthesis, growth and other
physiological and processes.

For eachvoxel, thecumulated leaf area index (LAl,2m) is calculated as the vertical
sum of leaf area density (LAD, #m) of all the voxels situated aboite Light intensity
(photosynthetic photon flux density, PPFD, in )mol photamds?) within thevoxeli is then
computed as the fraction of solar irradiancanppytop PPFD) transntied, based on the
BeerLambert extinction law

"HS & "HS e w101 Q)
We considered only vertical light diffusiom this modeljnstead oemployingmore complex
light interceptiormodels or radiative transfer modé{éan der Zande et al., 2011; Widlowski
et al., 2013)As suchalthoughthelight extinction ratek varies in reality with zenith angle
and speciespecific leaf inclination angliitajima et al., 2005; Rich et al., 1993; Wang et
al., 2007)it is assumed to be constant in the mo@lemperature (T, jC) and vapor pressure
deficit (VPD, kPa) within the canopy are also assumed to decrease with forest daptipy
(distance from canopy tpp

In each monthly time stephotosynthesis is calculated over Hadlurly periods of a
representative day per month based on the Farguma€aemmereBerry model of G

photosynthesigFarquhar et al., 1980Atmospheric C@concentrations assumed to be
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constant, antight intensity (PPFD, Ymol photohs?!s?'), temperature (T, jC) and vapor
pressure deficit (VPD, kPa) valuis each hakhourly period are computed from the
monthly mean and a representative daily coursenétion.Underthe FCB photosynthesis
model,in light-limited conditions, carboassimilationdepends othe parameter ajuantum
carbon yield per quantum photdtfy (nol C'mol photons): this corresponds tile initial

slope of thephotosyntheticarba assimilation plotted agastirradiance and has been shown
to be an important source of uncertainties in vegetation m@Retgers et al., 2017; Zaehle et
al., 2005) In COG-limited conditions, carboassimilationmainly depends on three
parametersstomatal conductancegsf, maximum rate of carboxylatioiV¢max )mol CO2!m
2Is1) and the maximal electron transport capacli{ )mol electronsm?!s?). Stomatal
conductancés modeledollowing Medlyn et al. (2011)VemaxandJmaxarerelated to species
specific traits leaf mass per area (LMA), leaf nitrogen and phospleontent imassand

Pmasg, using the relatiogp found inDominguesetal. (2010)

Autotrophic respiration includes carbon uptake that are metabolized by plants for
maintenance or growth, and also represents a large source of uncertainty in vegetation models
(Thornley and Cannell, 2000n the absence of a precise understanding of mechanistic
causes of variation in respiration ratmpricd relationships are used in the TROLL madel
Leaf maintenance respiratidimodeled as a function speciesspecific traits (LMA,Nmass
andPmasd andpositively dependerdan temperaturAtkin et al., 2015)daytime leaf
respiration is assumed to be 40 % of night time respiréfitan et al., 2000) Sem
maintenance respiration is assumed to lo@gntional to sapwood volunand positively
dependent on temperatyfeyan et al., 1995assuming that sapwodlickness increases
with diameter at breast height (DBH) until reaching a maximum of 0.04 m. Fine root
maintenance respiration is assumed to be 50% of leaf maintenance respiaise root
and branch maintenance respirations are assumed to be 5@¥n o€spirationGrowth
respiration is assumed to be 25% of gross carbon assimilation minus the maintenance
respiration(Thornley and Cannell, 2000y hese assumptions are reasonable $tegb
approximations that are commonly made in the literature: nevertheless, it would be necessary
to provide more precise, mechanistic model representations for respiration in tee futur

The net carbon uptake (gross assimilated carbon minus respiration) is allocated into tree
growth and leaf production, which then modifies the leaf density and the light environment in
the next timestep. Allocation of net carbon assimilates into thetlyraivaboveground woody
mass (stem and branches) and tree crown (including leaves, fruits and twigs) are controlled by
two empirically derivedspecieandependent parameters respecti@lyag<o et al., 2009;

Malhi et al., 2015, 2011) eaf dynamics is modeled by partitioning spe@pscific leaf

lifespan (calculated from plant traits) into the residence timdw ée tistinct leaf age classes
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(young, mature and old): newly produced leaves enter the young leaf class, and old leaves
leave the old leaf class and turn into litterfall.

Carbon allocated to aboveground woody growth is converted into an increase in stem
volume, which is then converted into increases in diametetraadheigh{H) and diameter
(DBH) following a heightDBH allometric relationship that is described byliehaelMenten

equation

6 & 185 )

< =(s
with speciesspecifichim andan parameters estimated from local measurements of tree
heights and diameters.

The allometric relationship between crown radius (CR) and diameterfGlBi/s an
empirical norlinear relationship:

2@& | BCp=BCe. FGi< H ©)
whereCR, andCR, are general parametdisat wereestimatedased on measurements in
French Guian&Chave et al., 2005)dentical values o€R, andCR, are prescribed for all
speciegiue to the paucity of specispecific data, even though it has been demonstrated that
crown size allometry can vary within species, across species and a@sGhishker et al.,

2017; Loubota Panzou et al., 2021)

The recruitment process is modethcough a OseedO bank (representing seeds and
seedlings < 1 cm DBH) defined for each 1 ' 1 m pixel. The seed bank is emptied at the end of
each timestep, and replenished by (1) seeds produced and dispersed from neighboring pixels
and (2) a seed rain extatrio the forest stand. The current version of the model assumes that
a large olagrowth forest surrounds the simulated forest, and that there is no recruitment
limitation due to the external seed rain.

In the standard version of the TROLL model, tree alitytis modeled by the following
four processeqi) The lackground stochastic tree mortality rat® (s assumed to be
negatively dependent on speeggecific wood density (WD(Wright et al., 2010)

| &1 3 . AMN$ HID (4)
wheremmaxis the maximum value of the background mortality réte Carbon starvation
happens wén net assimilated carbon is negative over a consecutive period exceeding leaf
lifespan, and that old leaves have all died while no new leaves coptddecedassuming
no mobilizable internal carbon storagi@) Stochastic treefadl are modelethrough a
stochastic tree height threshaldcalculated for each individual tree

P& Qx . AMRs. TUHED (5)
wherehmaxis the speciespecific maximum tree heighty is a variance parameter, and , is a
standard normal random variable: if tree helybkceeds +, the tree falls with a probability

of 1 - +/h. (iv) Secondary treefathappensvhen a tree ifocated on the trajectory of the
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crown and stem of falling neighboring tree. These mortality processes are not
mechanistically linked to natural disturbance regimes such as cyclonic wind: the
implementation of windnduced tree mortality is thus an important aspect that is explored in
this thesis.

Herbaceous plants driianas are not included in the model. Ongoing model
developments includeompletemodules ofwater balance, soil nutrient dynamics, and effect
of speciesspecific dispersal limitationfopography, in particulats effectson windinduced
tree mortalitywill be explored in thighesis.

Study sites and speciesspecificparameterization

Two forest sites are explored in this theblsuragues, French GuiamaSouth America, and
Fushan, Taiwam Southeast Asial hese two sites are chosen because of their markedly
different climatic conditions anehinimal floristic overlap(no tree species occur in both
siteg.

Within theNouragues Ecological Research Statitere isa 12hectare (400 m ' 300
m) plot in a moistowland tropical foresin thecenterof French Guianat is geologically
located in the Guiana Shigldndis part of he Amazonian biome. The Nouragues site
experiences two months of dry season per year, with mean annual precipitation around 3000
mm, mean annual temperature around 26;iC, and a mean relative humidity around 99%
(Bongers et al., 2001pince plot establishment in 199cecensusesvere regular conducted
(once every 5~6 years), where all sgHinding stems with DBH ( 10 cm were identified,
measured, tagged and mapped: to difi2,treespeciedave beemecordecdat the Nouragues
site (Chave et al., 2008; MarZchaux and Chave, 2017)

The Fushan Fesst Dynamics Plot (FDP) is a-Pectare (500 m ' 500 m) plot in a moist
broadleaf subtropical forest in the northeastregionof Taiwan(Su et al., 2007)it is a part
of theForestGEOnetwork(Forest Global Earth ObservatoAmndersonTeixeira et al., 2015;
Condit, 1998) The Fushan site is under influence of northeasterly monsoon in winter, and
frequent typhoon visits in summer and autumn, with mean annual precipitation around 4200
mm, mean annual temperature around 18;C, and a meamegdiamidity around 95%. Plot
elevation ranges from 600 m to 7338u et al., 2007)Since ploestablishment in 2004,
censuses were completed every five years, where alitagifling stems with a DBH (1 cm
were identified, measured, tagged and mapfredate, 110 tree specidsave been recorded at
the Fushan sitéSu et al., 2007)

Speciesspecifictrait datarequired forTROLL include leaf mass per area (LM#&im),

nitrogen angbhosphorus content per mabk4ss Pmassg!'g ), wood density\WD, g'cnt?), a
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thresholdDBH beyond which tree growth declingdnax cm), the two MichaeligVienten
parameters describirfgBH-height allomety (him, @), and regional relative abundance. At
Nouragues, a complete set of measured trait values were available for 163 species occurring
atthe site: for the other species, a combination of spapesific values and genus means or
abundanceveighted community eans were assignéMarZchaux and Chave, 2017t

Fushan, a full set of traits was available for 94 sse@presentinground90% of the tree
individuals. Themeasurement arabllectionof functional trait data follow the standardized
protocol(PZrezHarguindguy et al., 2013)

Global parameter parameterization

Apart fromln addition to speciespecific parameters, TROLL includes a set of 41 species
independent parameters (@lobalOparametersyFor the majority of these parametevalues
with high confdence from local measurement (at Nouragues, Fushan or in the Amazon area)
or from past literature are availabléhere remain &dandful of parameterfsr which it is
difficult to obtain field estimatesand that ar@reviously mentioned ageneratindhigh
uncertainty and sensitivity ithe model outputsThese parametensclude* (apparent
guantum yield)yr (variance term in stochastireefallproces¥ mmax(maximum value of
background mortality ratelCR. andCR; (speciesndependent crown radittBameter
allometric relationship), anloodandfcanopy(proportion of net assimilated carbon allocated to
woody growth and to tree crown growth, respectivedyid are the primary target of the
parameter calibration test

We performed00TROLL simulatians for both sites, while varying the value of these
parameters simultaneous (Gla-timeO approach) across uniform prior distributions
bounded within the reported value ranges. SRgandCR, exhibit strong correlation,
correlated standard normal glibutions were used as the prior. We used the principle of
model inversion to examine which parameter combinations generated model outputs that are
closest to field observations in four summary metrics of forest structure and functioning: stem
density (DBH ( 10 cm; Nio, treesha?), large stem density (DBH ( 30 crivso, treeshal),
aboveground biomass (AGB, Mwgi'), and gross primary productivity (GPP, Mg@!!yr1).
We also examined whether model inversion resulted in a large reduction of uncertainty in the
parameter values: i.e., how OinformativeO was the calibration test. This test aims to answer

Research Question 2and the results are presente€hapter 1.

37



Climate forcing

Input data required for the TROLL model include: 1) climate forcing, 2) spspasfic
functional traits, and 3) specieslependent general parameters. The TROLL model requires
the following climate forcing variables: monthly mean valokdaytime and nighttime mean
temperature, cumulated rainfall, mean wind speed, and daytime mean irradiance, daytime
mean vapor pressure deficit (VPD), and average normalized daily variation of temperature,
irradiance and VPD.

In order to provide the modelith a standardized, globally homogeneous climate forcing
that allows crossite comparison across sites, we used the-GIREBP reanalysis data set
(version 8; version 7 archived lattps://rda.ucar.addatasets/ds314)3Niovy, 2018) a

global gridded (0.5j ' 0.5j) suldaily (6-hourly) climate product resulting from the
combination of observatiebased CRU TS 3.2 dafHarris et al., 2014and modebased
NCERNCAR data(Kalnay et al., 1996)The CRUNCEP data set spans the 19116

period, we selected data in the tinagge of 1982016, for which the most observations are
available, in order to ensure higher accurd@Ggtler et al., 2001)The CRUNCEP data set
contains seven climatic variables: temperature, pretipit, wind, downward longwave and
shortwave radiations, air specific humidity, and atmospheric pressure. From them, the
climatic variables necessary for TROLL input is calculated and extracted for all data grid
points.

We performed a virtual experimentegplore model response to climate forcinmpre
precisely tovalues oftemperature, irradiance and VPEor this, weandomly sampled
subset othe CRU-NCEPdata pointghatcorrespond téowland nonwaterlimited rainforest
biomewithin the 35]NDP35;Slatitude rangeLowland was defined gmints withelevation <
1000 m, and was evaluated usalgvationdatafrom the SRTM produgtaccessible at
http://www.earthenv.org/topograpl@matulli et al., 2018)A forest was considered to het

waterlimited when its annual precipitation is larger than 2000 (Goman et al., 2015;
Wagner et al., 2016and wasvaluated using CRUICEP precipitation data. Rainforest
biome wa defined as points that fall into classes 50, 60, 70, 80, and 90RSKE3S
Global Land Cover produébr 2018 accessible at
https://maps.elie.ucl.ac.be/CCl/viewer/download.(EPA, 2017). From the set of 3753
Oreference climateO pixels which fit the criteréssampleds00data points and used their
CRU-NCEP climaticvariables to perform TROLkimulations aboth study sitefNouragues
and Fushankach time usinghe previously calibrated general parameter values.

To evaluate model sensitivity, we calculated the mean sigatky values (values over
the last 100 years of the simulation) of four summary metrics of forest structure and

functioning: stem density (DBH ( 10 cniNio, treesha?), large stem density (DBH 30 cm;
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Nso, treeshal), aboveground biomass (AGB, Mgtt), and gross primary productivity (GPP,
MgCthatlyr?l). We described the trends of model outcome and model sensitivity to each
variable, and fitted linear models with climatic variables as indepdridrms and the
summary metrics as dependent terms, and reportedpsetial coefficients as effect size
This experimentlsoaims to answelResearch Question 2and the results are presented in
Chapter 1.

Modeling wind-induced tree mortality: ForestGALES

Due to the considerable economic costs associated withimdnded failure of stems or root
anchoring, forest managers have developed tools to predmt¢herence risk ofvindthrow
events (including both stem breakage or uprootovgy the last decades order to conceive
adapted forest management strategy that minimizes this type of tree dApegérom
gualitative assessment or statistical modalschanistic models characterize the physical
processes involved in windthrowaedde<ribethe causal links between tree parameters and
susceptibility to wind damag@ his provideopportunities to test hypotheses on specific
process and make predicticaisout consequencesdfanging environmental conditions
(Gardiner et al., 2008)

Mechanistic wind damage mode&¥erk by calculating the critical wingpeed (CWS)
needed for trees to undergo windthrow, based on a set of properties easily measurable at the
stand level (e.g. tree spacing and canopy height) or at the individual level (tree height,
diameter and wood strength): this critical wind speed is toenpared with local observed or
simulated wind speed patterns to assess the probability that a windthrow event occurs.
Based on physical principles, thetical wind speed is calculated by estimatthg forcethat
are exerted by the winth anindividual tree(represented a anchoredrertical objec)d, the
bending moment this creates)d themechanical resistana# the rootanchorageand stento
the bending momenthe forcethat a tree experiencaaturally depends on thecal wind
speedwhich inturn is conditioned by the treeOs position in the canopy and the density and
height of neighboring trees its vicinity. Thebending momentreated by the force depends
on tree dimension and allometnptably the tree crownOs size, shdtributionalong the
stem lengtrand streamliningwhich influenceair drag andhe effective Olever armO length of
the represented tree objethemechanical resistance of a tree depends @tata
characteristicg¢e.g. diameter and wood strength), rowrphologyand depth, and soil
propertiesof its anchorage locatioideally, these factors could all be derived by a set of
measurable plant traiteased on physical principleln reality,someempirical relations have

to be employed, anahodels predicting the CWshould besbe describedasa hybrid of
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empirical andnechanistiapproached-or exampleas understanding of how root
architecture and soil property influences root anchoring remains relatively lifaaedcaud
et al., 2008; Stubbs et al., 2018)odeling ofuprootingrisk is often done by trepulling
experiments, which have shown tktgm mass is goodempirical predictor ofesistance to
uprooting(Nicoll et al., 2006; Peterson and Claassen, 2Q14gwise, the streamlining of
tree crowns under wind loadimg modeledusingmeasurements mind tunnel experiments
(Rudnicki et al., 2004; Vollsinger et al., 2005)

In this thesis, we chose tseForestGALES one suchwind damageisk modelthat has
seen wide application in both the forestry and the ecology research comm#sitiaad
damage risk models were originally developed to evaluate wind dameageriaged
plantation forestsstandlevel properties (e.g., tree spacing and canopy height) are often used
to parameterize the model. However, in miserkd natural forests, statelel properties
often vary dynamically, and spatial heterogeneity in the forest stand meathetatct of
neighbor sheltering can differ for each individual tree, on wind damage risk can be important.
We used an updateersion ofForestGALEShatallows parameteriation based on
individuaklevel properties, anchade further adjustments and simplifcaido implement it
in the TROLL modelin order to explore the loAgrm effects of wind disturbance on the
structure, dynamics and functioning ainaed-sized natural forest3 his workaims to

answerResearch Questios 1 and 2 and the results are presed inChapter 2.

Model overview

In technical terms, wind flow over the forest canopy can be thought of as a horizontal fluid
flow above a boundary layer: wind speed decreases as one approaches the canopy top. In
ForestGALES, horizontal wind spead (n's?) is modelled by the aerodynamic momentum
transfer model above a vegetation can@ggnteith and Unsworth, 2008, p31@nd

represented with logarithmic profilgGardiner et al., 2008, 20Q0)

VAME = Z[A\\OT]H (6)

wherez (m) isthe height aboveround kis Von Kirm$nOs constant (- 0.z)(m) is the
aerodynamic roughness of the boundary layém) is the zergplane displacemenandus-
(m!s?) is the friction velocitywhich is related to the shear stresghmncanopy surface (.,
N!m2, or kgmls?) through the following equation:

_& M VA (7
where" (kg'm3) is the air density. Assuming a regulieee spacin@f D (m), and that this
shear stress is applied uniformly on each tree, the average wind drag force received by each

tree can be represented#y’ (N). Thom (1971)showed that this is can be considered as
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exertingon the tree at the height of the z@lane displacemend). The mearbending
moment(BMmean N!m) can therefore be representeddad WH. $2. A gust factor (G,
dimensionless empirically estimated from wind tunnel experimei@srdiner et al., 1997)
is used to convert the mean bending moment to the maximum bending mBiMgat N!m),
critical for evaluating tree resistance to wind. Basedhe above equations, the maximum

bending momenrdit any point on the stem can therefore be expressed as:

a
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whereun (m!s) is windspeed at canogpp tree heighth; m). Two dimensionlessoefficients
are added to account fdifferent factors that influence the actual bending monient
accounts fothe additional moment provided by the overhanging mass of tree thatvs
displaced bywind. feaqgeaccountdor theproximity of thetree position tamewly created forest
edges, which increase its wind loading and damage risk. Trees near established edges (edges
that are created a long time ago) are assumed not to increasing wirgedakadue to tree
acclimaing to the increased wind exposung adaptive growth
Resistance to stem breakagenodeledvith the assumptiothat tree stem is completely
homogeneoysand that winenduced stress is constantly distributed at all pdetsveen the
crown base and stem bgséorgan and Cannell, 1994 he stress ithencalculated at breast
height = 1.3 m), and the stem is assumed to break when the stress exceeds the modulus of
rupture (MOR, Pha The critical bending momefdr stem breakag@crit, break N!'M) is
expressed by the following equatilones, 2013)
dogomsqg & =€y - AV@ . $c6 (9)
wherefknot (dimensionless) is a factor that accounts for weakening of the stem due to presence
of knots.
Resistance to uprooting is modeled empirically basetth@nesultsreepulling
experimentsA linear regression between the maximum recorded bending momesteand
weight SW kg) was foundo provide the best fit to the data. The critical bending moroen
uprooting Merit, uproot, N!m) is thus expressed by the following equation:
d qopixrq- & 2qgh - WN (10
whereCieq (N!mlkg?, or n?!s?) is the coefficient of thénear regression forced through zero
(with thereasoning that as stem weight approaches zero, so should the bending moment
required to uproot it)Creg Values for conifers and broadleaf species have been measured
through treepulling experiments under different soil properijescatelli et al., 2016; Nicoll
et al., 2006; Peltola et al., 2000; Peterson and Claassen, 2aii3)s range in general was
found to range from 110 to 185.
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By combining equations (9) and (10)tlviequation (8), the critical wind spe@dWS,
mis?t), at which the bending momemgtaches the critical value feither stem breakage or

uprooting can be expressed as:
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The value otheaerodynamics parameted; %) depends on multipleorest canopy

Gz (12)

properties, including tree height, tree spacing, crown depth and crown width. The latter two
depend on therownfrontal area, which in turn dependn wind speed due the
streamliningeffect: consequently, equations JEhd (12) could not be directly solved. In the
original implementationan iterative approach was ugedind an approximation of the

critical wind speedGardiner et al., 2000)

One major empirical element in the above model is the gust fagxowhich relates the
mean bending momerdalculated based on mean wind speed, to the maximum bending
moment. Its parameterization at the individual leveifficult, and yetmodel output is very
sensitiveto its value Another approach is wirectly quantify the relationship between the
maximum turning moment and the mean wind spéleds eliminating th@eed for the gust
factorandallowing the wind damage model to be more easily applied tesroed natural
forests(Hale et al., 2015, 2012Based on field measurements condueteseveral temperate
forest sitesthe hourly maximumbendingmoment(Mmax NIm) wasshown to beelated to the
hourly meancanopytop wind speedy, m!s?) through the following relationship:

dok &*g. V@ (13

Tc (N!m1g?, or kg), the turning momeubefficient(TMC; turning moments an
alternative terminology for bending momengpresents the ratio between the square of the
mean wind speed and the maximum bending moment, and was found to be related to tree
characteristics as followlale et al., 2012)

g&‘. $c6 2. 6 (14
where the constamt(kg'm3) = 111.7(Hale et al., 2015)A higherTc value represents larger
turning moment for a given wind speed. By combining equations (13) and (14), which
describe the maximum bending moment through tree properties and mean wind speed, and
equations (9) and (10), which describe the critical bendingenbthat induces stem
breakage or uprooting, we can reformulate the equations for critical wind speed as the

following:
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whereTMCaiio (dimensionless) is a factor that accounts for increase of wind loading after a
recent thinning event, and is expected to tend towards 1 through time, as trees acclimate to the
increased wind exposure by adaptive growbte that for Equation (15), dianeetat stem
base Do) is used rather than diameter at breast height (DBH) bewatisthe TMC
approach, only the bending moment atttiee base can be calculaigthle et al., 2015)

Finally, in order for the estimated canej@p critical wind speed to be compared with
meteorological data, which conventionally measure wind speed atabowve the zerplane

displacement, a wind speed conversion using the logarithmic profile is used:

2NW, —ye & ?Nwy . Z[A‘\%H Z[A7\O_A]H (17

Implementation of ForestGALES in TROLL

In this thesis, ForestGALE®as implementeds a submodel of windinduced tree mortality
in the TROLL modelAt each time stepnvhen there is an extreme wind evésge section
Wind simulation in TROLL ), each tree is evaluated to decide if it experiemgadthrow,
in which case it falls and dies. In keeping with dniginal TROLL module secondary treefall
is modeled by assuming that when a tree dies, it falls in a random direction, and increases the
death rate of trees in the impacted pixBisorderto introduce stochasticifywe assumed that
the probability ofwindthrowof each individual tree igositively related tohe difference
between th@bservedvind speedi(h) that it experiences and itsitical wind speed (CWS)
for damagethe highewu(h) is relative to CWS, the more likely the tree is to fall and Aie
logistic modelwas usedo describe the relationship betwesimd-induced tree death
probability (p) andthe difference betweean(h) andCWS (Hale et al., 2015; Valinger and
Fridman, 1999)
o & L-AL—/ ORNHBIZ Hy (18)

A crucial departure of the TROLL implementation of wind damage riskrsodbel and
the original ForestGALE#&odelis ther approach to account ftine effect of neighborhood
sheltering in a mixedized forestThe original ForestGALES model estimates cantgpy
CWS for all tree individuals regardless of its relative position in the canopy, and converts
them to atmospheric CWS for comparison with the obseatredspheriavind speed. To
account for theheltering at the sutanopy levelthe CWS calculation cabe modulated by a
competition index, which is a function of the tree height relative to neighboring tree heights,
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so that suktanopy and understory trees would have reduced wind loading and wind damage
risk compared to topanopy and emergent tre@uperat et al., 2021; Hale et al., 2012;

Quine et al., 2021)The TROLL implementation does not modify CWS with competition
index, butinstead of canopyop CWS, itcalculates individual treep CWS whichis then
compared witlthe observedreetop wind speedDuring the conversion obbserved
atmospheriavind speed tolte reetop level, the neighborhood sheltering effect is taken into
account by assuming that wind speed continues to decrease with diminishing height within
the canopyFor canopylevel or emergent treegheretree heidpt (z, m) ( H, the same

logarithmic wind speed profile as in Equations (6) and (17) is used for the conveAMA:

V) oy . Z[A\\O—]H Z[A?LH For subcanopy or understory trees, where H, the logarithmic

profile is not applicable, and tlathin-canopy wind profile is represented with the following
equation (Inoue 1963):

VAMS VA6 H. [0 A0\—=<H (19
where™& 6 -8, oee: empirical values o$, are reported in Table | &®Raupactlet al.(1996)
With this parameterization, horizontal wind speéz) within the canopy at/2 is 22% of
u(H): to reduce computational burden, we assumed thatzreéHB2 arenot directly affected
by wind, meaning thati(z) = 0. In order to account fdnorizontal canpy heterogeneity,
average top canopy heighi,(m) is calculatedor every 20 ' 20 m quadrat of the simulated
forest stand, by taking the arithmetic mean of the topdeafaining voxel layer of each pixel
within the quadrat.

In addition, n this thesis, we assumed that the aerodynamic parardetedz,Only
depended on average canopy heightr). The variation of both parameters over forest
vegetation has been explored both from theoretical afigtasnan and Sellers, 1989; Sellers
et al., 1996; Shaw and Pereira, 198a¢ through field measuremefi®aupach et al., 1991;
Shuttleworth et al., 1989)vhich showed that the overall valuedaindz range from 0."H
to 0.9H and from 0.04H to 0.08H, respectively. We therefore used the parameterizatidn of
= 0.8H andz = 0.06H, choosing an intermediate value of the reported radhgeto be
noted thatp value is expected to vary seasonally as plant area index (leaves plus woody
components) fluctuates, although here it is assumed to be coBstsed. on the above
formulation,Figurel12illustrates an example of horizontal wind speed above and within

forest canopy.
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Figurel2. Horizontal wind speed profile above and within forest canopy simulated in
TROLL, provided H = 15 m andig+10 = 12 nis™.

In Equations (15) and (1&8)esides DBH (diameter at breast height) and H (tree height),
severalbothervariables were parameterizbd individual tree characteristics calculated in the
TROLL model. MOR (frestwood modulus of rupture; Pa, kg!m!s?) wasestimated from
ovendry wood density\(VDy, glcnt) using thespeciesspecific wood trait values reported in
Greenet al.(1999) We used hardwood species for which fregifod modulus of rupture was
measuredandconverted the reported wood density at 12% moisiie: ) into ovendry
wood density using the formul&D, = 0.828 ' WDx2 (Vieilledent et al., 2018)The
relationship between ovedry wood density and freshood MOR was then fit with an
exponential function:

dv@ & LzY. /A>T eH ;¢ (20

Do (diameter at trunk base) wastimated usin@BH with a linear corrective factor:
$. & £. $c6 . SW (kg) represents fresh stem weight, aradestimated usingboveground
biomass (AGB)with a linearcorrectivefactor:wN & ™0 ®ic .

This simplified model thus still contained numerous empirical fackfsstimating SW
from AGB), %(estimatingDo from DBH), . (estimating the turning moment coefficient from
tree size)finot (@ccounting for the effect of stem knotisyge(accounting for the effect of
newly created forest edgég (accounting for the effect of overhanging crown weight when
the tree is bent under wind), aMCeatio (accounting for recent thinning eventS)nce it is
not the objective of this thesis to explore in detail the role of each of these factors, we decided
to further simplify the model by combining these factors and other constants into a single
Owind damage parametgPOEquations (15) and (1&)alculating critical wind speed for
each type of damage, could therefore be rewritten as follows:
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wherePypreak (dimensionless) and amiproot (M!s?) are free parameters thaicapsulate the
following factors, respectively:
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TheP parameters represent the overall susceptibility of a forest stand tondunckd
tree mortality: the smaller tHfevalue of a damage type is, the lower the critical wind speed is
for the same individual tree, meaning that the forest is overall morgsibse¢o wind
induced death due to that type of dam&jece these two parametenre empirical, and no
observatiorbased parameterization is possible performed a sensitivity analysis to
investigate model responses to these two parameters.
We first an 500 TROLL simulations, each time randomly drawing one value for each
parameter from a uniform prior rang@.(1, 1] for Poreakand [0,40] for Puprooy). The
simulations were run for a forest stand of 4 hectares over 500 years (6000 time steps) from
bare ground, and the windduced tree mortality suimodel was activated after a beim
period of 100 years (1200 time stepAle used the principle of model inversion to examine
which parameter combinations generated aboveground biomass (AGB) valwes ttlasest
to field-estimatedvalues. A the bestit simulations (25 simulations with the 5% smallest
deviation between simulated and field AGB) did not converge to a narrower parameter value
range, we decided to evaluate the relative contributionadf wand disturbance process to
tree mortality: we calculated the average proportion of treefalls due to each type of damage in
all timesteps in the last 100 years of the simulation where an extreme wind event happened.
The results showed that the propantaf treefalls due to tree uprooting was low compared to
those due to stem breakage. As field observations from annual mortality survey at the Fushan
site also indicatéhat the proportion of tree uprooting is low compared to that of stem
breakage, we deded to focus on winchduced stem breakage.
A second sensitivity analysis and model calibration were thus perfotimetime
including only Equation 21 as the whntduced tree mortality suimodel and a single free
parameteP. We ran 1000 TROLL simulatns, each time varying thevalueby a step of
0.005 across the range of (0, 1], with five replicates for each parameter value. The simulations
were runwith the same stand size (4 hectares), durad6f yearsi.e. 6000 time steps)
initial condition from bare groundand activation time ahe windinduced tree mortality
submodel(after a burAn period of 100 years.e.1200 time steps).
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We calculatedhe mean steadstate values (values over the last 100 years of the
simulation) of three forestrstcture metrics: stem density (DBH > 10 dip, treestha?),
LoreyOs height (basal aseaighted mean tree height, ®ourrahmati et al., 2018\nd
aboveground biomass (AGB, NMgtl). We also calculatetwo mortality statistics for trees
with DBH > 10 cm: mean annual mortality and fraction of mortality due to treefalls
(Y%Mreetan). Thesemortality statisticsvere calculateat the onset of wind disturbance (first
100 years after wind submodule activatioe. year 10B200)andat the steady state (last 100
years of simulation, i.e. year 48800). We qualitatively described trends and sensitivity of
these statistics in response to variation of parameter,\atdecalculated the fit of simulated
to field observed values of aboveground biomass

Wind simulation in TROLL

Extreme wind events are simulated in TROLL in a-step process: first, at each time step, it
randomly determines if an extreme wind event happiased on past cyclone occurrence
frequency; then, a wind speed is randomly drawn from tk&tercyclonic wind speed
distribution.This assumes thane extreme wind event at most can occur per time step.

For a given site, wcalculated thenonthly average frequency of cyclortbat have
occuredwithin a sufficiently close distance to the study,siteing thdBTrACS dataset
(International Best Track Archive for Climate Stewardship database; v04r00, archived at

https://www.ncdc.noaa.qgov/ibtracs/index.php?name4diaccess This data set contains

besttrackrecords of global tropical cyclones occurring since 1(®4t&pp et al., 2010)

A common measure of the spatial extent of tropical cyclones is the mean radius of gale
force winds(Ri7, km) : galeforce wind isby convention defined as 17.9gh Based on the
reported valueanges in the literature, we assumBd- to be 150 kn{Chan and Chan, 2012;
Lu et al., 2017; Weber et al., 201¥Ye thereforecalculated the monthly mean frequency of
recorded tropical cyclones occurring within a 480 distance from thEusharsite over the
period of 1987202Q where cglone records were the most complete for the Northwest
Pacific basin

We calculated ossite cyclonic wind speed/§i., mis?) using the wind speed records of
the selected cycloneand based otihe empirical functiothatrelates it to the distance
between the site and the cyclone cendekin) (Anthes 1982, Hsu & Babin 2008)y,.4 &

L7« . =@ —b (sinced < Ry7 by definition, it follows thalsie > 17.5 ms?). For each month,
we then fitted thé&/sie values to a Weibull distribution using tRgfunctionfitdistr in the

packageMASS(Venables and Ripley, 2002)nd used the scale and shape parameters as input

climate forcing variables.
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Exploration of effects of wind frequency and intensity

In order b examineéhow extreme windatterninfluences foreststructure, dynamicand
functioning we performediwo series of simulationgarying cyclone frequency and wind
intensity. In the first seriesye varied cyclone occurrence frequency from 0.1 to 2 times the
empirical frequencyt the Fushan sitevith a varying step of 0.1, hile maintaining wind
intensity. In the second seriesge varied the scale parameter of the wind speed distrihution
which controls thenean and median of thand speedlistribution, from 0.1 to 10 times the
empirical valueat the Fushan sitgyith a varyng step of 0.1, while maintaining empirical
frequency Five replicates were performed for each condition (in total, 100 simulations for
frequency and 500 simulations for intensi§ased on the results the sensitivity analysis,
we setP = 0.7, a value whergmulation results are close to field observations and not near
the forest tipping pointR < 0.3).The simulations were run with the same stand size (4
hectares), duration (500 years, i.e. 6000 time steps), initial condition (frengtzaind) and
activation time of the winghduced tree mortality suimodel (after a burm period of 100
years, i.e. 1200 time steps).

As in theprevious stepye calculated the mean steagtgte values (values over the last
100 years of the simulationf three forest structure metrics: stem density (DBH > 10 cm;
N1o, treesthal), LoreyOs height (basal asgaighted mean tree height, gBourrahmati et al.,
2018) and aboveground biomass (AGB, Ma'). We also calculated two mortality statistics
for trees with DBH > 10 cm: mean annual mortality and fraction of mgri@lié to treefalls
(%Mreetan). These mortality statistics were calculated at the onset of wind disturbance (first
100 years after wind submodule activation, i.e. yeaE20Q) and at the steady state (last 100
years of simulation, i.e. year 48800). Wequalitatively described trends and sensitivity of

these statistics in response to variation of parameter value.

Exploration of effects of topography

Giventhat wind speed is altered over an uneven topography, we implemented -goatirat
wind speed correion factors in the modeb account forthis topographical effector this,

we used the Global Wind Atlas (GWA) data produced through downsaailinghe WAsP
program(Badger et al., 2015; Mortensen et al., 200¢¢ acquired250 ' 250 m GWA pixels

that fall in the area covered by the 1j ' 1j CRAUCEP pixel where the Fushan site is located:
this represents a grid of 200 ' 200 GWA pixels. We normalized the GWA wind speed values
of the selected pixelso that the mean GWA wind speed is eqadhe mean CRINCEP
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wind speed. We then resampled the GWA pixels to the 20rm2fuadrat scale using bilinear
interpolation with theesamplefunction in therasterpackaggHijmans, 2020)and selected
the resampled pixels falling within the Fushan pl@a this represents a grid of 25 ' 25 =
625 resamplegixels. We used the GWA wind speed values of these resampled pixels,
normalized by thie plot-wide mean, as the wind speed correction factor for each quédeat.
wind speed correction factor ranged from 0.27 to 1.96, and was used as a proxy for
topographt heterogeneitywhentopographic effect iactivated the wind speed experienced
at each quadrat is the phide wind speed (randomly drawn from the input wind speed
distribution) multiplied by this correction factor: a value above 1 means that thespeed at
that quadrat is considered to speed up (due to exposed terrain), and vice versa when the value
is below 1.

We thenperformed simulations with and without topographical effect at the Fushan site
The simulations were run for a forest stand siz25dfiectares, but with the same duration
(500 years, i.e. 6000 time steps), initial condition (from bare ground) and activation time of
the windinduced tree mortality sumodel (after a burm period of 100 years, i.e. 1200 time
steps) as before. As inguious steps, we calculated the mean stassate values (values over
the last 100 years of the simulation) of three forest structure metrics: stem density (DBH > 10
cm; Nio, treestha?), LoreyOs height (basal argeighted mean tree height, gPourrahmati et
al., 2018) and aboveground biomass (AGB, Ma'). We perfornedlinear regressions for
each statistice quantify the effect olvind speed correction facton these quadrd¢vel

metrics values

49



Exploration of natural disturbancesin tropical forests using

satellite data

In order to developear reatime (NRT) monitoring of natural disturbances in tropical
forests, and taharacterizdine-scale spaél pattern andemporal dynamics dbrest gaps
caused byatural disturbances analyzed Sentinel synthetic aperture radar (SAR) data that
has been processed to detect forest disturbance @avémench Guiana from 2016 to 2019
used fieldderived gnthesisdata of land use in French Guiana in 2015, as wélhadsat
derived optical data product that provides detailed characterizationgsfermtropical moist
forest cover chang® separate anthropogenic from natural disturbance evemimpared the
spatial pattern of natural forest gaps detected by the Sehtdath product and by the
Landsatderived data product to ascertain tlegingruency. Finally, quantifiedthe
topographic association of forest gaps and the monthly dynamics of natural disturbance
events detected by Sentiriekatellite data. This workims to answelResearch Question 3

and the results are presentecCimapter 3.

Study site: French Guiana

French Guiana, an overseas territory of France, is situated in equatorial South America,
adjacent to Suriname and Brazil. 95% of its surface area is covered-dnpwlth tropical
rainforestyBeck et al., 2018; Keenan et al., 2Q1&)d inselberg features (isolated rock hills
rising above the surrounding foresivered lowlands) are canon due to its geographical
location within the Guiana Shield. Forests in French Guiana typically experience a long wet
season from December to June (monthly precipitatio®&5D mm) and a dry season from
July to November (monthly precipitation 2IB0 mn). A minor dry season (monthly
precipitation 178870 mm) sometimes occurs around March for approximately one and a half
months, with considerable interannual variabiiBpnal et al., 2008)

Anthropogenic deforestation in French Guiana is mainly due to smallholder agriculture,
forest exploitation (e.gelectivelogging road building, andnotablygold mining(alluvial or
in steep valleysfAlvarezBerr'os and Mitchell Aide, 2015; Rahm et al., 2Q0141though
French Guiana is not affected by tropical cyclones, strong wind events caused by downburst
storms have been suggested to be an important disturbance agent and ecological driver in the
northwestern and central Amaz(vlagnabosco Marra et al., 2018; Negidudrez et al.,
2018; Peterson et al., 2018)owever the influence of this disturbance factomiartheastern

Amazonian forests in the Guiana Shisddion remaingo be elucidated.
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Sentinell SAR data

Sentinell is a satellite constellation comprised of Sentin®land Sentinel B, launched in
2014 and 2016 respectively by the European Space Agency (E$#global coverage,
short revisit period (60 12 days) and fine resolution (10 of)Setinetl satellites make them
anidealoptionfor NRT forest monitoringSentinell satellites are equipped wi@iband
(wavelength 7.5 3.75 cm) SAR sensors, which work by emitting radio wave pulses from the
sakllite onto the land surface and recording the backscatters of the pulse TWee/dwee
dimensional structure of the detected can then be reconstrugpeddegsing the backscatters
recorded at different moments (and therefore at different positidimsght and Rinke, 1998)
Figurell provides an overview of the principle of SAR remote sensing system.

Thewavelengthof C-bandradio waveallows it topartially penetrate into the forest
canopy: itsbackscatter ithusaffected by multiple factors of tlggound and canopy
componentssuch asanopystructure, canopy or soil moisture content, surface roughness and
topography(Askne et al., 1999; Pulliainen et al., 1998% a resultdisturbed areas aret
necessarily characterized byregycharge of backscattentensity A new method of
deforestation detection has been developeBduwetet al.(2018) This method bypasses the
problem of variability in absote backscatter intensity, and instead detects SAR shiaglow
which occur due to the sideoking geometryof SAR sensor systemas the radar pulses
arrive the surface at an angéeme areas do not receive any radar pulse duesidy
obstacleswhich includetrees at the borddretween forest and ndorest areas. The shadow
signals that appear (or disappeatlowing deforestation events are characterized by a sharp
decrease in the backscatter in the time series. As this sigsed from a purelgeometrical
effect it is expected to be less temporally variable ti@nabsolute backscatter intenseyd
can thus be used as an indicatofooéstloss.Figure13 provides an illustration of the
principle of the shadow detection meth®tis method has been successfully tested and
validated in Per@Bouvet et al., 2018nd in French Guian@allere et al., 2021jor
anthropogenic deforestation detection.

In this studywe acquiredSentinell SAR time series that has previously been processed
using the shadow methpith the form of a raster data product that containdistiirbed
pixels that has been detected in French Guiana from January 1st, 2016rtdb&regest,
2019 (henceforth the Sentinkldatasgt The pixel values are the time of disturbance,
originally in number of days since April 3rd 2014, (date of the SenliAedatellite launch),
adjusted to the number of days since January 1st, 2016 stubisfor simplicity.l used the
clumpfunction in therasterR packagdHijmans, 2020}o cluster contiguous disturbed pixels
into patches, and converted the raster layer into a vector layer containing polygons that each

represent a disturbance patch in Q@%1S.org, 2021)
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Figure13. The principle of the shadow detection methadSAR satellite dateReproduced
from (Bouvet et al., 2018)

Landsat-derived tropical moist forest cover data

The Landsat satellitamission led by NASA and USGS;onsists 6 a series of satellites that
havegenerated continuous optical imagery of the entire globe at a spatial resolution of 30 m
since 1974Woodcock et al., 2008A recent study, conducted by the Joint Research Center
(JRC) of the European Commission, reprocessed the full Landsat archiveduoe a

dataset that characterizes land cover change and disturbance status of tropical moist forests
(TMF) from 1982 to 202QVancutsem et al., 202I)hree data layers ¢iis data product
(henceforth the JRCMF datasetwere used in this studyh® OTransition mapO layers
summarize theverallforest cover change of each TMF pixel at the end of the observation
period,classifying pixels into categories includingdisturbed forests, forest degradation
(shortterm disturbances due to either natural or anthropogenic causes), deforestation (long
term conversion of forest to ndarest cover) and neforest cover (permanent or seasonal

water body, notforest vegetation or nevegetation cover such as road or buigd) the
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ODegradation yearO and ODeforestation yearO layers show the year a pixel has been degraded
or deforested for the first time, respectively.

In this studywe acquired the JRCMF dataset for thentire extent of French Guiara
created a raster layer that included all disturbed pixels (the union of pixels classified as
OdegradationO and OdeforestationO in the transition map), andaisegpthection in the
rasterR packagd€Hijmans, 2020j}o cluster contiguous disturbed pixels into patches, and
converted the raster layer into e@ctor layer containing polygons that each represent a
disturbance patch in QGI®GIS.org, 2021)

Identifying and selecting forest gaps caused by natural disturbance

In order to compare the Sentiriebndthe JRCTMF datasebver the same time period,
retained onhyJRGTMF patcheghatoverlap only with pixels of degradation year fr@@i6

to 2019, andhat do not covedeforested pixel§pixels with a defined deforestation year)
Our reasoningdor excluding deforestation evenssthatit is defined in the JRO MF dataset
aspixels thathave undergone a complete and permanent conversion from forestftoresin
cover (such as agriculture or water surface), and thergtion@dd not be considered as natural
disturbancenduced forest gaps.

In order to delimit a study zone with minimal &\wf anthropogenic disturbances, where
most detected forest gaps are likely due to natural disturbaacguired the summary data of
land use in French Guiana in 2015, and added#tra Suffer around the areas of
anthropogenic disturbance activities lre summary data. Through visual observation,
identified and manually drew two zones that are far from the majority of anthropogenic
disturbances, one in the north and one in the s&igfure14). | then excluded the Sentirgl
and TMF disturbance patches outside of the study zone.

| further excluded patches with size < 0.2 ha, based on the reasoning that the smallest
patches are more likely to be misidentifications or artifacts (false positives). The minimum
size threshold of 0.2 ha was chosen based on the reported minimum detdatagea for
disturbance patches for the Sentihelataset iBallere et al. (2021)

| also exclude@ small proportion offregularshaped, largsizedpatches situated near
or within topographical features (e.g., hills or inselbenggh the assumptions thttese are
either artifacts odisturbancesvens occurringat the edgdetween forestand the non
forests, and thus represent a different pattern than disturbdamea gap dynamicg:or this,|
created a Ondorest coverO mask that includgithe na-forest pixels in théransition map
layer of the JRETMF dataseplusa 300m buffer corresponding téive JRGTMF pixels),
andexcluded all disturbance patches overlapping with thefoi@st mask.

53



Characterization of natural forest gap patterns and dynamics

In order toverify that the Sentinel dataset detects forest gaps with higher precision and
sensitivity, and that the overall gap patternassistehwith the JRGdata product, |
guantified and compared the total number of gaytal tisturbed areas, and the gae
frequency distribution for both datasets. | alsually examined and compared the spatial
patterns of théorest gapsn bothdatased, and quantified the proportion géographical
matchbetweerthe two datasetdoth forall gaps and folarge gaps (sizé€ 0.5 ha)

| then characterized the spatial distribution and temporal dynamics of thegiapsst
detected in the &htinell datasetSpecifically, Icalculatedhe ratio of disturbed area to total
areafor each etvation clasen 50-meter binsto see if the level of disturbance is correlated
with topographical factors.dlsocomparedhe monthly dynamics of total disturbed areas
with themonthly dynamic®f precipitationand water deficito see if there argeasonal

variations in the level of disturbance.

Figurel4. The entire extent of French Guiana (gray line), the region of frequent
anthropogenic disturbance activities (blue) and the study zone (green). Underlying layer:
GoogleSatellite Hybrid.
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CHAPTER 1: Transferability of an individual - and trait -

based forest dynamics model: a test case across the tropics

Accepted inEcological Modelling

This papeexplores the transferability of a spatially explicit individbaked forest dynamics
model, TROLL, by applyingt at two forest sites with contrasting climatic condition and
floristic composition. We tested the sensitivity of empirical parameters coagdittecontrol

key processes, calibrated parameter values using field data based on the principle of model
inversion, and explored model response to a wide range of realistic climatic vafiaison.

work contributes to answépuestion 2
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1.1 Abstract

Individualbased forest models (IBMs) are useful to investigate the effect of environment on
forest structure and dynamics, but they are often restricted {gpsitdfic applications. To

build confidence for spatially distributed simulations, model texasility, i.e. the ability of

the same model to provide reliable predictions at contrasting sites, has to be thoroughly
tested. We tested the transferability of a spatially explicit forest IBM, TROLL, with a trait
based species parameterization globalgridded climate forcing, by applying it to two sites
with sharply contrasting climate and floristic compositions across the tropics, one in South
America and one in Southeast Asia. We identified which parameters are most influential for
model calibratiorand assessed the model sensitivity to climatic conditions for a given
calibration. TROLL produced realistic predictions of forest structure and dynamics at both
sites and this necessitates the recalibration of only three parameters, namely photosynthesis
efficiency, crown allometry and mortality rate. All three relate to key processes that constrain
model transferability and warrant further model development and data acquisition, with
mortality being a particular priority of improvement for the current geran of vegetation
models. Varying the climatic conditions at both sites demonstrate similar, and expected,
model responses: GPP increased with temperature and irradiance, while stem density and
aboveground biomass declined as temperature increasedimbte dependence of

productivity and biomass was mediated by plant respiration, carbon allocation and mortality,
which has implications both on model development and on forecasting of future carbon
dynamics. Our detailed examination of forest IBM traradfdity unveils key processes that
need to improve in genericity before reliable lasgale implementations can be envisioned.

56



1.2 Introduction

Forests harbor more than half of the total terrestrial biodiveiGaydner et al., 201@nd
contribute to climate change mitigati(llison et al., 2017; Mchard, 2018)However,

forest disturbances are important drivers of canopy cover change and they will likely impac
tropicalforest structurediversity, and functioning in the futu(Eeng et al., 2018; Malhi et

al., 2009; Zemp et al., 2017)hese projections depend on a detailederstanding of the
processes that link the abiotic environment and forest dynamics, as can be achieved through
integration into simulation mode(Eisher et al., 2018; Shugart et al., 201&)nfronting the
robustness, reliability and realism of such models is crucial to gain confidence in their
predictions(Prentice et al., 2015)

Dynamic global vegetation models (DGVMs) adopt a coarse representation of the
coupling between vegetation abgeochemical cycles. Their simplified description of
vegetation dynamics assume a limited set of vegetation structure and summarize plant
diversity with a few plant functional types (PFTs). Modern DGVMs simulate demographic
processes and trait variabjligFisher et al., 2010; Koven et al., 2020; Sakschewski et al.,
2015; Sato et al., 2007; Scheiter et al., 20H®)wever, difficulties remain in representing
plant recruitment and mortality, translating into uncertainties in model projections of forest
dynamics(Fisher et al., 2018)

Unlike DGVMs, individualbased forest models (IBMs) explicitly simulate tree
establishment, growth, competition, and mortality, simulating forest structure and dynamics at
the stand scal@Bugmann, 2001; DeAngelis and Grimm, 2014; Fischer et al., 2016; Shugart,
1984) Forest IBMs adopt a fingrained representation of the diversity and structure of tree
assemblages, which facilitates the exploration of mbs@eLies forest respondesclimate
variability (MarZchaux et al., 2021pne dawback is that the calibration of forest IBMs is
data demanding, and requires data at a fine spatial and temporal scale. For this reason, IBMs
have traditionally been restricted to steswdile application, and even if their extension to
regional or globascale is technically possib{8hugart et al., 2018, 201®ne fundamental
chalenge is to explore the model validity across space.

At the heart of model upscaling is the question of model transfergbilgynger and
Olden, 2012; Yates et al., 2018)hen a model has been calibrated at one site, how well does
it simulate the vegetation dynamics at another site? Model transferability hinges upon how
well the model is able to capture forest processes at any giveansiten whether the same
biogeochemical and biophysical processes hold acrosgFyléss et al., 2017; Sullivan et
al., 2020) For instance, procesmsed models couple forest processes to environmental
drivers in a generic way, through mechanistic modules, such as photosynthesis)ptake,

allocation. These processes are parameterized locally through measurable traits with
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consistent biological and ecological meaning (e.g. functional traits). This means that, in
theory, a completely procebased model should be transferablany site, provided that
measurements of the environmental drivers (e.g., climatic variables) and relevant traits of all
locally present tree species are available.

However, for some processes, current knowledge is insufficient to develop generic
functiors, and a simplified representation is necessary to encapsulate finer processes mediated
by environmental, biogeographic or evolutionary factors. As a result, part of the site
specificity is hidden in the model equations and parameters themselves. Tdsgecsiic
parameters need to begalibrated from one site to the other to ensure reliable simulation
outputs, which increases calibration efforts and hampers transfer@bglitpnann and Huth,
2015; MarZchaux et al., 202Bven generic equations have typically been formulated using
input data from specific sites and under specific conditions, which will not always be
consistent with the data provided for model initiafian at other site@Huber et al., 2018)

This issue is especially important for tropical forests, which have high variability in
composition, structure and functioningtiwn and between sites, making model transferability
and upscaling a greater challer{@astanho et al., 2016; Johnson et al., 2016; Tenah et

al., 2008)

Model transferability in part depends on the availability of standardized and spatially
distributed data on forest structure and functieor. examplesite-specific information can be
prescribed for a model through trhised datan floristic diversity(Fyllas et al., 2014,
MarZchaux and Chave, 201df)remote sensing daggischer et al., 2019; Joetzjer et al.,

2017; Shugart et al., 201%)onsistent climatic boundary rditions, derived fromweather
modelsand data assimilation systems, also increase model transfer@hulgsnann and
Fischlin, 1996; Fauset et al., 201%his also facilitates the evaluation of how a model
responds to changes in climate forcing conditidmsexample,n light-limited tropical
rainforests, we expect that GPP will exhibit weakly positive or even negative relationship
with increasing temperature, due to increasing competition, mortality and faster turnover
(Allen et al., 2010; Clark et al., 2010; McDowell et al., 2018)

Another way to improve odel transferability is to convert modules that are impjicitl
site-specific into more generic formulations that encodespeific conditions only through
dependence on environmental and floristic composifidrs can be facilitated by performing
tests to identify model processes that are currently particigéelgpecific: the improvement
of the representation of those procesta®ugh theoretical and empirical work across
multiple sites, should then be prioritized. For instance, we expect that outputs of forest IBMs
will be highly sensitive tparameters afnortality, and a more accurate mechanistic
representation of mortality should improve the reliability of model projections under

58



conditions beyond the range of the original calibration data (Johnson et al., 2016; Bugmann et
al., 2019). Although severalusties have explored the issue of transferability of forest IBMs
(Bugmann and Solomon, 1995; Lagarrigues et al., 2015; Ma et al., 2017; Shuman et al.,
2015) they have so far been limited to temperate and boreal forests witrelogpecies

diversity.

In this study, we explored the conditions of transferability of a forest IBM between two
contrasting tropical forest sites chosen to maximize dissimilarity in geography, floristic
composition and environmental conditions, evaluasearately the effect of parameter
calibration and of climate forcing. We asked the following questions:

(1) How well does a locally calibrated forest IBM perform when transferred at another
site? We expect a degradation of model performance with néuiimeg at the contrasting
site.

(2) What key parameters determine model performance during model transfer? We
expect that, since most fundamental processes are captured by generic formulations in the
model, only few parameters will be identified as in neeecalibration: these parameters
point to limitations in model representation of the underlying processes.

(3) What are the expected responses to climatic conditions? In the absence of water
limitation, as in lightlimited rainforests, GPP should incseawith temperature and

irradiance, while biomass should depend less on temperature.

1.3 Materials and methods

1.3.1Model description

The TROLL model is a spatially explicit individubhsed model in which the aboveground
space of a forest standdivided into 3D cells of size 1 hihereafter called voxel§have,

1999; MarZchaux and Chave, 2Q13dlar iradiance (photosynthetic photon flux density,
PPFED) is computed inside each voxel as the irradiance fraction transmitted immediately
above the focal voxel. We considered only vertical light transmittance in the canopy; for trees
at the edge of the simuéatt plot, we simulate light interception only for the part of the crown
that is inside the plot, and then scale total assimilation with crown radius. At most, one tree
can establish in each 1' 1 m pixel at any given time, and onlyssatfding stems ( 1 in

trunk diameter at breast height (DBH) are explicitly modelled (herbaceous plants and lianas
are not included). The effects of topography and water balance are not modeled. Seeds and
seedlings < 1 cm DBH are indirectly modeled as part of a regenecatigmartment, with

inputs from an external seed rain and seed production within the simulated stand. Each
modelled tree is a 3D object, characterized by DBH, height, crown radius, crown depth, total
59



leaf surface area, and age. Trees are assigned sppsudg trait values, which influence
processes such as photosynthesis, growth and mortality.

At each monthly timestep, the model simulates carbon assimilation (photosynthesis),
respiration, carbon allocation and growth for each tree, and also simulateksgpezsal or
tree death when conditions are met. Tree growth is the result of an explicit balance between
carbon assimilation (photosynthesis) and respiration. Carbon assimilation is represented with
the C3 photosynthesis modé&larqihar et al., 1980Q)which depends on temperature,
irradiance, vapor pressure deficit (VPD), and atmosphericad@centration. During a
monthly timestep, photosynthesis is calculated overti@lfly periods of a representative
day (monthly mean value$ ttmperature, irradiance and VPD); atmospherie CO
concentration is assumed constant. Stomatal conductance is modelled foNtediyg et al.
(2011) We define the parameter * (quantum carbon yield per quantum photon) as the initial
slope of the photosynthetic carbon assimilation against irradiance curve; this parameter
controls carbon uptake in lighmited conditiongFarquhar tal., 1980) The value of *
depends on environment and species, and it has been shown to be an important source of
uncertainty in vegetation mod€lBomingues et al., 2014; Mercado et al., 2009)

After the gross assimilated carbon is calculated from the photosynthesis model, net
assimilated carbon is calculated as the gross assimilatedrcminus respiration. Net
assimilated carbon is then allocated into biomass in different organs based on parameters of
fixed fractions, resulting in tree growth and leaf flush dynamics in the same timestep. The
resulting changes in tree height, crowash and position, and leaf density will then
influence the calculation of the light environment and photosynthesis of each tree in the next
timestep.

The allometric relationship relating tree height and DBH is assumed to be species
specific, while dometiic functions relating DBH and crown size are assumed the same for all
trees. Crown radius grows as a function of DBH, following alimear relationship? @&
| B=BC. FGi< H\whereCR, andCR, are general parameters provided in input. Hémgher
CRu indicates larger crowns for trees of all sizes, whereas higReindicates that larger
trees have disproportionately larger crowns than smaller trees. Identical valiiesanid
CR, are prescribed for all species given the paucity of availdataeven if it is
acknowledged that crown size allometry can vary within species, across species and across
sites(Jucker et al., 2017; Loubota Panzou et al., 2021)

In TROLL, tree mortality results from several processes: (i) stochastic mortality,
modelled as function of a maximal background mortality maged a linearly decreasing
relationship with speciespecific wood density (WD), so thaty s & I M™. N$ (
being positive, m is the maximal possible value of the mortality rate); (ii) carbon starvation if
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net assimilated carbon is negative over aseountive period exceeding leaf lifespan, so that

old leaves have all died while no new leaves could be produced (assuming no internal carbon
storage); and (iii) stochastic treefall events, assumed to depend on a tree height threshold,
where the parameteC represents the variability of this threshold. BotAndvC hence

summarize complex processes that are not modeled mechanistically.

A schematic diagram, which illustrates the structures and processes controlling the
individuat and communitytevel dynames of a forest in the TROLL model, can be found in
MarZchauxand Chave (201 7Appendix S5, Figure S1). Necessary inputs for a run of
TROLL include (i) climate forcing data for the simulated location, (ii) spespesific
parameters of plant traits for the simulated forest, and (iii) spemependent paramese
The source code of TROLL (v2.5) is written in C++ and is available at
https://github.com/troitode/troll On a computing clusteraeh simulation o200 ' 200 m

and 500 years uses around 15 milCBU time.

1.3.2Global climate forcing

The TROLL model requires the following climate forcing variables: monthly mean values of
daytime and nighttime mean temperature, cumulated rainfall, mean wind speed, and daytime
mean irradiance, daytime mean vapassure deficit (VPD), and average normalized daily
variation of temperature, irradiance and VPD.

We used the CRWCEP reanalysis as a standardized climate forcing (version 8; version
7 archived ahttps://rda.ucar.edu/datasets/ds31¥(8iovy, 2018) The CRUNCEP data set
is a global gridded (0.5j ' 0.5j) sudaily (6-hourly) climate product spanning the 199116

period. It provides seven climatic variables: temperature, precipitation, wind, downward
longwave and shortwave radiations, air specific humidity, and atmospheric pressure, resulting
from the combination oflwservatioAdbased CRU TS 3.2 datHlarris et al., 2014and model

based NCERNCAR data(Kalnay et al., 1996)We constructed reference monthly mean
conditions based on the time range 12806, a period for which the most observations are
available, in order to ensure higher accurd@Ggtler et al., 2001)and calculated and

extracted climatic variables necessary for TROLL input (Appendix A).

1.3.3Study site and species parameterization

We parameterized the TROLL model for Nouragues, French Guiana, South America, and
Fushan, Taiwan, Southeast Asia. Aside from the difference in climatic patterns, there is no

floristic overlap between Nouragues and Fushan, and tree trait distributiortvab thiees
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differ widely: for example, there is no overlap in the interquartile range of leaf mass per area
(LMA; g.m) values (41.62 73.86 at Fushan, and 82.7111.45 at Nouragues) and of wood
density (g.cr¥) values (0.464 0.524 at Fushan, artd600- 0.727 at Nouragues).

The Nouragues Ecological Research Station includesheedtare (400 m ' 300 m) plot
in a moist lowland tropical forest, part of the Amazonian biome. The Nouragues site
experiences two months of dry season per year, with nmearabprecipitation around 3000
mm, mean annual temperature around 26;C, and a mean relative humidity around 99%
(Bongers et al., 2001pince plot establishment in 1994, censuses were completed regularly
(2001, 2007, 2012, 2017). All sedtanding stems DBH ( 10 cm were identified, measured,
tagged andnapped. The plot has 622 tree spe(@isave et al., 2008; MarZchaux and Chave,
2017)

The Fushan Forest Dynamieot (FDP) is a 2fhectare (500 m ' 500 m) plot in a moist
broadleaf subtropical forest in the northeast of Tai(gnet al., 2007)and is a part of
ForestGEO (Forest Global Earth ObservatduyglersonTeixeira et al., 2015; Condit, 1998)

The Fushan site is under influence of northeasterly monsoon in winter, and frequent typhoon
visits in summer and autumn, with mean annual precipitation around 4200 mm, mean annual
temperature around 18;C, and a mean relative humidity around 95%. Péitaieanges

from 600 m to 733 niSu et al., 2007)Since plot establishment in 2004, censuseew

completed every five years, where all sginding stems with a DBH ( 1 cm were identified,
measured, tagged and mapped, with a total of 110 recorded tree species in(Seqtial.,

2007)

Speciesspecific parameters of TROLL include leaf mass per area (LNtA?g
nitrogen and phosphorus content per masssNPnassg'g?), wooddensity (decn3),
maximum DBH (cm), DBFheight allometric parameters, and regional relative abundance.
We implemented all 622 species in the model for the Nouragues site: a complete set of
measured trait values were available for 163 species, and fah#respecies, a combination
of speciesspecific values and genus means or abundaighted community means were
assignedMarZchaux and Chave, 201Fpr the Fushan site, we implemented 94 species for
which a complete set of measured trait values were available: this represents ca. 90% of the
trees. The methodology of data collection is detailed in AppdBidix

Climatic data were extracted from the CRICEP dataset at both sites. We also used
local climate data, in order to force the model simulations. At Nouraguesheenhy
meteorological data are available from 2013 to 2019, recorded 400 m away frdot (d¢ p
05'N, 52j 41' W). At Fushan, daily meteorological data are available from 1991 to 2012, with
hourly data from 2013 to 2016, recorded at a meteorological station 3 km east of the forest
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plot (24j 45/ N, 121 35/ E). A comparison of the local veggidded climatic conditions is
provided in Appendix C.

For all simulations, we simulated forest regeneration from bare soil for a reference plot
area of 4 hectares (200 m ' 200 m) for a duration of 500 years (6000 monthly timesteps):
based on trial simuten, after 500 years, the forest has reached a steady state.

1.3.4Global parameter calibration

In addition to speciespecific parameters, TROLL includes a set of 41 spéctegpendent
parameters (or OglobalO parameters). The majority of these pareamebe measured
empirically: initialization (plot size, initial size and leaf densities of trees etc.) and trait
variability (intraspecific variation and covariance). Other parameters could vary across sites
and they are the primary target of this study

We first performed a preliminary sensitivity analysis on five parameters tested in a
previous studyMarZchaux and Chave, 201Which revealed that the model had a low
sensitivity to thdight extinction coefficientK), and to carbon allocation fractiorigsodand
fcanopy We also found that stem density was not adequately estimated at Fushard(®ppe
D): we hypothesized that asymmetric light competition and tree mortality may be factors
shaping stem density. Thus, we focused on the calibration of five parameteZsCR,,

CRy, m; Table 1) for which it is difficult to obtain precise field estitegm We examined model
responses by varying these parameters across a range of values, while using fixed values
taken from literature for all other parameters, includiffgood andfcanopy

For *, vCandm, we generated uniform prior distributions, boeddvithin the reported
value rangeCR: andCR,, the slope and intercept of the {sgnsformed crown radius to
DBH relationship are strongly correlated, so we generated correlated standard normal
distributions using the Cholesky decomposition assuminggasBnOs r of 0.8, then
transformed them to Beta prior distributions (of Beta(2, 2)), bounded within the empirically
observed value ranges.

We performed 500 calibration runs for both study sites. For each simulation, three
parameters (*yC andm) were radomly drawn from the uniform prior distribution, and the
two crown allometry parameterSk. andCRy,) were drawn as a pair from the correlated Beta
prior distributions. Goodness of fit was assessed using four summary metrics: stem density
(DBH (10 cm; N1o, treesha?), large stem density (DBH ( 30 cniNso, treesha?),
aboveground biomass (AGB, Mgit), and gross primary productivity (GPP, Mg@lyr1).

These metrics summarize both forest structure and functioning and overall constrain the
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model well. Enpirical values for these metrics were obtained from census dadtigofdtso
and AGB, and from a global gridded database for @R&tlani and Parazoo, 2020)
For each summary metric and each simulation, we calculated the-statalyalue
(defined as the mean over the last 100 years of simulation), and qualitativeipetbsends
of model outcome and model sensitivity to each parameter using scatter plots of parameters
against output metrics (Appendix E). Model goodrafsit was derived from individual
summary statistics using an Euclidean distance between thewothuletrics and empirical
values (centered and scaled), and we reported median and interquartile range of parameter
values of the simulations with the 10% best overall fit (i.e., 50 best simulations out of 500).
We quantified parameter OinformativenessCthe degree to which the dispersion of the
posterior parameter distribution is reduced compared to the prior distribution, using the ratio
between the interquartile range (IQR) of the ¥simulations to that of all simulations: a
smaller ratio inctates higher parameter informativeness. Finally, we reported the temporal
trends of the four summary metrics, and discussed their fit with field observation values.

Table 1. Parameters of the TROLL model calibrated at the two tropical forest sites.

Description Prior range
* guantum carbon yield per quantum photon 0.0300.110 (Mercadet al. 2009)
vC variability of the tree heighdlependent stochastic treefall process  0.0-0.15
CR. intercept of the logransformed CFDBH allometry 1.5-2.8 (Fischeet al. 2020)
CR,  slope of the logransformedCR-DBH allometry 0.4-0.8 (Fischeet al.2020)
m maximal background mortality rate 0.0050.045

1.3.5Forest response talimatic conditions: a virtual experiment

To study the dependence of forest strucauré dynamics on temperature, irradiance and

VPD, we performed the following simulated experiméntthe CRUNCEP dataset, we

selected a subset of points corresponding to lowlandlilgited rain forest within the 35jN

D35iS latitude range, based onwagon (< 1000 m), climate (annual precipitation > 2000

mmlyr®; Guan et al., 2015; Wagner et al., 2Q&8)d land cover (ESA OforestO CCI Land

Cover classe$0, 60, 70, 80, and 904t both study sites, we thgerformed 500

simulations, each time using the three climatic variables at a randomly sampled gomt wit

the selected subset, and using Ooptimal parameter valuesO, the general parameter values of the
one simulation that provided the best overall fit during calibration with the initial climatic

condition (Table 2). The aim of this experiment is to explbeeresponse of a forest stand as

its climate forcing changes, with a range and correlation structure between the climatic
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variables that are realistic for tropical forests, and to examine if this climate effect is
consistent between sites.

To select theaference pixels, we used precipitation data from @RLEP, the C3S
Global Land Cover product for 2018&8ccessible at
https://maps.elie.ucl.ac.be/CCl/viewer/download.@BpA, 2017, and elevation data from
the SRTM product (accessible at http://www.earthenv.org/topogrgpmatulli et al.,
2018) We used thg@dal_translateutility to rescale the Land Cover data (300 m ' 300 m) and
elevation data (1 km ' 1 km) to match the spatial scale of ENRLEP (0.5; ' 0.5j). This
resulted ina set of 3753 Oreference climateO pixels, of whichmd®mly sampled 500
usingthe corresponding climatic variables to force simulations for both Fushan and
Nouragues.

To evaluate model sensitivity, we used the same four summary mikichlf, AGB,
GPP). For each metric, we calculated the stestaite value of each simulation (mean value of
the last 100 simulated years), and described the trends of model outcome and model
sensitivity to each variable using scatter plots of climatic variables agatpstt metrics. In
order to quantify the degree of influence of each climatic variable, we fitted linear models
with climatic variables as independent terms and the summary metrics as dependent terms,
and reported senpartial coefficients as effect siz&ssumptions for linear models were
tested and confirmed; two sample points with temperature lower than 15;C were identified as
high-leverage points, but their inclusion did not significantly deviate the statistical estimates
(Appendix F).

Table 2. Optimaparameter values (parameter values of the simulation with best overall fit) at
each site. Values in parentheses indicate the interquartile range of 50 $iesilations.

Parameter Fushan Nouragues
* 0.071 (0.07@0.089) 0.074 (0.0730.082)
vC 0.099 (0.0280.070)  0.031 (0.0290.111)
CRa 1.93 (1.8332.080)  2.10 (1.99(02.163)
CR 0.51 (0.51(00.610)  0.57 (0.52380.618)
m 0.006 (0.00990.017)  0.023 (0.01P0.032)

1.3.6Data analysis

Data processing, statistical analysis and visualization were performed in RR3Go0e
Team, 2019)Apart from those already mentioned elsewhere, R packmgpst2 ggpubr,
ncdf4 raster, data.table geosphergesp, tidyr, extRemesandBIOMASSwere used for this
study(Dowle and Srintasan, 2020; Gilleland and Katz, 2016; Hijmans, 2020, 2019;
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Kassambara, 2020; Pierce, 2019; Rdybechain et al., 2017; Venables and Ripley, 2002;
Wickham, 2020, 2016)

1.4 Results

Model outcomes were highly sensitive toCR, andm, and to a lesser extent@R,. Higher
guantum yield (*) led to higher larggtem density and AGB and a sharp increase in
productivity. Higher overall crown size (largéR. values) led to lower stem density and
AGB, and a slight increase in productivitts relationship with largstem density and AGB
was nonlinear at Fushan. Higher mortality rates) (ed to reduced largstem density and

AGB (Figure E1 & E2). The parameter values corresponding to the simulation maximizing
the goodness of fit were silar between the two sites for * al@R,, but differed markedly

for vC, CRs andm (Table 2).

We used the IQR ratio as measure of parameter informativeness: lower IQR ratio
signifies higher informativeness. The most informative parameter was founCt,be
informative at both sites (0.55 at Fushan and 0.38 at Nouragues). * was informative at
Nouragues (0.38) but less so at Fushan (0.78)mamds informative at Fushan (0.33) but
less so at Nouragues (0.76)R, andvC were only moderately informative (vasi > 0.6 at
both sites) (Figure 1).

Temporal change of all four summary statistids,(N3o, AGB and GPP) were
gualitatively similar at both sites, showing sigmoidal increase for stem denilitdeBs1(N3o).
We observed , a gradual increase of AGB apitirencrease and stabilization of GPP at both
sites, and an initial overshoot Nfo at Nouragues but not at Fushan (Table 3, Figure 2). At
Nouragues, all steaeltate estimated metric values showed a good fit to field values; at
FushanNio was underestiated (ca. 14%), GPP was overestimated (ca. 9%, N&rahd
AGB showed reasonably good fit to field values. Both climate forcings yielded similar model
outputs, matching well field observatiomo values were similafzo and AGB values were
slightly lower when using groundased climate forcing at Fushan, and GPP values were
markedly lower when using growtidsed climate forcing at both sites (Figure 2).
Medianclimate values across sampled pixels were: temperature = 26.25;C, irradiance =
207.6 Wm2, VPD = 0.644 kPa. Temperature, irradiance and VPD all had significant effects
on simulated forest structure and functioning, although effect sizes varied. Temperature effect
on Nio was strongly negative at Fushan but+sagnificant at Nouragues; it hatteng
negative effects oNzpand AGB but a weak positive effect on GPP at both sites. Irradiance
had a positive effect on all four metrics at both sites, and are especially strong for GPP. VPD
had weakly negative effects on GPP at both sites; its etiadtse other three metrics were

weakly positive at Fushan and nsignificant at Nouragues. Overall, effect sizes were weaker
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at Nouragues than at Fushan (except for irradiance effe®ssamd AGB) (Figure 3, Table

4).

Table 3. Percentage differencetlveen summary statistics of the optimal simulation
(simulation with the best overall fit) and the mean empirical value. Values in parentheses

indicate the interquartile range of percentage differences of the 5fitlsasulations.
Nouragees

Metrics Fushan
Nio -14.4% (18.1%D0.8%) -2.5% (9.0%D12.4%)
Nao -5.9% (14.9%D5.3%)  0.1% (8.4%D4.2%)
AGB -3.1% (17.4%D3.3%)  2.9% (9.4%D1.0%)
GPP 8.6% (5.69D28.5%)  -2.9% (6.3%D5.6%)

Table 4. Effect size of each climatic variable on the outpettics at both sites, expressed in
semipartial correlation coefficients. Effect sizes with absolute values larger than 0.3 are

indicated in bold. Italic indicates negnificant effectsy§ > 0.05).

Fushan Nouragues
N1o Nso AGB GPP N1o Nso AGB GPP
Temperature -0.341 -0.553  -0.489 0.135 -0.049 -0.385 -0.413 0.032
Irradiance 0.251 0.296 0.329 0.953 0.142 0.436 0.476 0.947
VPD 0.228 0.230 0.183 -0.226 0.061 0.039 0.027 -0.202

67



Figure 1. Prior (gray) and posterior (black) distributions for five parameters: * (Quantum
yield), vC (treefall parameterCR. andCR; (intercept and slope terms of the crown radius
allometry), andn (background mortality). Results are reported for thehBn site (Taiwan),
and for the Nouragues siterénch Guiana). Curves represent density functions, and vertical
lines represent median value of the distributions. Shaded areas indicate interquartile range
(IQR) of prior (light gray) and posterior (darkayy distributionsIQR ratio is calculated as
the posterior divided by prior IQR: lower IQR ratio is thus indicative of a higher parameter

informativeness.
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Figure 2. Successional dynamics of Hassimulations at the Fushan and Nouragues sites, for
four variables. Green shades represent the interquartile range, and gray shades represent the
entire range of variation. Solid lines: median value of thefitestmulations (black: gridded

climate forcing; dark green: ground climate forcing); dashed:liempirical values.
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Figure 3. Effect of climatic conditions on forest structure and functioning at both sites (red:
Fushan; black: Nouragues). Triangles indicate the simulations done under climatic condition
of the original site.

1.5Discussion

In thisstudy, we tested the transferability of a forest IBM, and demonstrated that the model
predicts forest structure and functioning with reasonable accuracy at two spetiesest

sites in different bioregions. Parameters controlling photosyntheticesftizi crown

allometry and background mortality were found to be key for model calibration. We showed
that calibration could help identify influential processes in-traged forest IBMs and

suggests that there is potential of IBM upscaling with improepdessentation of influential

processes and parameter estimation.
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1.5.1Transferability of an individual -based model

The TROLL model was designed to incorporate a detailed representation of forest diversity
while remaining relatively easy to parameteriza &orest site, by prescribing each species

using a set of commonly measured trélitsrZchaux and Chave, ). This approach

alleviates the calibration burden of model tran@iEAngelis and Grimm, 2014)and

facilitates the implementation of largeale testing of individuddased models. However, not

all parameters used in the model are directly observable or easily measurable in the field:
some are integrators of multiple processes not attplrepresented within the model. So the
issue of model transferability still stands, and we here ask whether a calibrated parameter set
for one site performs well elsewhere.

We estimated model parameters through model inversion, comparing model outputs
against field observatior{slartig et al., 2012)This approach has been used for several
DGVM parameterizations, usually by calibrating against edsariance datéchii et al.,

2010; Pappas et al., 2013; Restr€pmupe et al., 2017Here, goodnessf-fit depends on

four summary statistics of forest structure (stem density) and functioning (biomass and
productivity) that are usually available in fiehventory data or global gridded data. In the
future, the approach could be improved by using the whole height or diameter distribution of
the simulated forest, or by adopting a likelihdmabed approadiartig et al., 2014, 2012)

We calibrated the model at twordrasted tropical forest sites. In spite of their marked
differences in climatic conditions, species composition and functional diversity, the simulated
forests matched field observations by calibrating a limited subset of parameters. This supports
the view that forest models with traitased parameterization are capable of capturing site
specific characteristics that underpin community dynamics and structure at a given forest site.
We speculate that the use of tla#tsed species parameterization contebuio the reduced
need for refitting (i.e., higher model generici(Zhristoffersen et al., 2016; Fisher et al.,

2018; Fyllas et al., 2014; Pappas et al., 20R&)ameters that do differ across sfest to

potential improvements in the model, a discussion we now turn to.

1.5.2Parameter calibration

We performed calibrations for three parameters that influence predicted forest structure and

functioning: photosynthetic efficiency (*), crown allome{iCR.), and tree mortalityn). As

* represents the actual quantum yield of photosynthesis (the amount of fixed carbon per light
flux absorbed by the chloroplasts), higher * value results in higher carbon assimilation (when
light is limiting) and higher @P. This parameter only leads to a moderate increase in large

stem densityNso) and AGB, and an even smaller effect on overall stem demsidy (
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indicating that forest demography and biomass accumulation are not solely conditioned by
productivity, but &o hinge on respiration, carbon allocation, and carbon residence time
(clvarez-D?vila et al., 2017; Johnson et al., 2016; Malhi et al., 2015)

Modd calibration was not sensitive to TROLLOs speciéspendent carbon allocation
parametersAppendixD), but it should be pointed out that carbon allocation does vary across
and even within specié¢Malhi et al., 2015; Negr—nfrez et al., 2015] herefore, including
a more mechanistic or trattediated representation of carbon allocation may unveié
heterogeneity in forest dynamics, and is an important objective in future model development
(MerganiOovt et al., 2019; Negrdufrez et al., 2015; Schippers et al., 2015; Trugman et al.,
2019)

In TROLL, crown allometry directly controls light use efficiency and tree competition.
Higher CR, values mean that trees have wider crowrs given diameter, and achieve higher
carbon assimilation rates due to increased light interception, leading to the observed pattern of
increase in GPP with increas€&.. Wider crowns also create more intense shading for
smaller trees in the understonydacause higher tree turnover and mortality, leading to the
observed pattern of decreasing stem density and AGB. Stand structure also strongly depends
on the level of prescribed inteand intraspecific variability of crown allometry, which
determine how @mplementarity in crown architecture could increase light use efficiency and
promote coexistend@retzsch, 2019; Villedent et al., 2010)

Mortality is an important calibration parameter in TROLL. Tree mortality is a complex
process, and in current IBMs, it is often modeled empirically, and thus remains one of the
main sources of model uncertaifBugmann et al., 2019)n the FORMND model, the
mortality rate is empirically correlated with environmental variables such as precipitation and
soil property, which vary across spd&&dig et al., 2018, 20175uch simplifications limit
our ability to explore how different causes of tree mortality impact forest structure
(McDowell et al., 2018)

Natural disturbance events such as fire, drought or wind are responsible for a significant
proportion oftree mortality(Fischer et al., 2018; McDowell et al., 2018; Peterson et al.,

2019) and they impact forest structure and functiorfibgnez et al., 2019; Magnabosco
Marra et al., 2018; Pugh et al., 2018he two forest sites selected for this stddpend on
different wind disturbance regimes: notably, Fushan is influenced by frequent tropical
cyclonegDowdy et al., 2012; Lin et al., 201, Mhile Nouragues is not exposed to cyclones.
At Nouragues, TROLL simulates an overshoot of stem density during early succession,
indicating selfthinning, but not at Fushan. One hypothesis for this pattern is that cyclone
shape a more open canopy at Fushan, resulting in a less interieeseify. This may also
explain why the optimal value for the mortality rate) (s lower at Fushan than at Nouragues.
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It would be important to devise more mechanistic representations of disturbance events in
TROLL.

1.5.3Upscaling of individual-based models

Various efforts have been made to upscale IBMs to the regional or glaballsdividual

based approaches have been coupled to or developed within DF&Her et al., 2018;
Sakschewski et al., 2015; Sato et al., 2@6fepresenta@hortprocessedMa et al. (2017)
prescribed environmental data for simulations of the FORCCHIN IBM model at several flux
tower sitesand validated the simulated carbon flux against flux tower &&i@ig et al.

(2018, 2017aperformed regionalization for the FORMIND model by calibrating the
mortality paraneter at a number of sites and correlating it with environmental variables
(precipitation and soil properties), and performing simulations at sites over the entire Amazon
using mortality parameters predicted from the environmental variables. Simulatenlakemp
dynamics ofcanopy height were then compared with remote sensing data to determine the
succession status of each site, which was then used to generate Avidezestimation of

other forest attributes such as biomass and productivity.

Yet, these studs assigned trees to a small number of plant functional types that relied
on empirical parameterization. Our study, although smaller in scope, is a proof of concept
demonstrating that traliased IBM upscaling is achievable with minimal calibration and is
therefore realistic in the tropics, provided that trait measurements exist and tree floristic
composition is available at the focal site. Moreover, since model output contains detailed
information about forest composition, TROLL could also help answerghant diversity
responds to environmental changes.

With every forest model, assumptions are made about which parameters are species
dependent and which are not. The model described here, TROLL, is designed with the aim to
contain as much specispecificinformation that is currently available. For an individual
based model, this choice does not necessarily incur higher computational burden than the
plant functional type approach, since in both cases every individual tree is simulated.
However, supplying imdels with speciespecific information requires considerably more
parameterization effort. With the ongoing collection effort of plant traits in permanent plots
around the world, the assembly of global trait datab@ssdersonTeixeira et al., 2015;

Chave etl., 2009; Kattge et al., 2028hd development of techniques to measure new plant
traits, we expect that it will be easier to generalize this approach to many sites. Here we show
that of the speciemdependent parameters, only a few requiresptfic calibration for

realistic model output to be achieved, and identifying these parameters helps identifying
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priorities for future theoretical and modeling development, as well as for field measurements
(Medlyn et al., 2016)

1.5.4Climate impact on forests using IBMs

Another important part of assessing transferability of forest IBMs consists in evaluating how
the model responds to environmental forcing, an important step in understanding how forests
respond to climate chang®hugart et al., 2018WWe here examined the effect of climate

forcing without the need of +ealibration(Fauset et al., 2019; Shugart et al., 20M3ny

forest IBMs prescribe climatic conditions based on locally measuredMatet al., 2017;

Shuman et al., 2015yet it is immrtant to provide a consistent climate forcing condition even

at places where local measurements do not exist, and to ensure comparability among sites.
The integration of the gridded CRNICEP climate dataset as model input fulfills this

condition, and thugurther simplifies largescale implementation.

TROLL simulations at the Fushan and Nouragues sites with different climatic conditions
demonstrate that the model reproduces a general pattern of climatic response that remain
nearly identical upon model trsi@r, with only quantitative differences between sites. The
simulatedpositive relationship of GPP with temperature and irradiance and the negative
relationship with VPD are in agreement with expectat{delhi et al., 2015; Reyer,
2015)Under the current model version, VPD constrains leaf stomatal conductance in the
photosynthesis process, and we found a weak effect of VPD. As water availabitieyao$
the key climatic factors that shape forest dynamics and functi¢gliveyez-Divila et al.,

2017; Feng et al., 2018; Galbraith et al., 2010; Poorter et al.,,Z0itAer investigation of
forest response to drought and soil water stress is nhecessary, and willdmishef ffuture
model development.

At both sites, we observed a decoupling between the response of productivity and that of
stem density and AGB. With increasing temperature, GPP increased while large tree density
and AGB decreased. These observations are consistent with empirical $tadgowed
that productivity is a poor predictor of biomass in-gtdwth tropical forestéJohnson et al.,

2016; Malhi et al., 2015Biomass accumulation is controlled by numerous processes other
than carbon assimilation, including mortality, functional composition, and size structure
(Allen et al., 2010; Bugmann et al., 2019; Johnson et al., 2016)

TheFushan site responded more to variation in climatic conditions than Nouragues. One

interpretation of this finding is that the native bioclimatic conditions afrbigues were

closer to the average condition of reference climatic conditions, whereas Fushan has a fringe
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climatic condition (subtropical). Consequently, constraining the Fushan forest to average

tropical forest climatic conditions had more effect thath@Nouragues forest.

1.5.5Conclusion and perspectives

We have demonstrated that a detailed exploration of the calibration and transferability of trait
based forest IBMs offers an opportunity to assess the genericity of model assumptions. Even
though ou results are based on model simulations, they do pave the way towards a much
more systematic exploration of model behavior across a wide range of sites that are
representative of a variety of forest types.

We here identify two main priorities for futunedividuatbased model development: 1)
including more detailed and mechanistic representation of important physiological processes,
such as disturbanadriven tree mortalitfSeidl| et al., 2014, 2011a; Uriarte et al., 20@&)d
2) improving constraints of key parameters with detailed and spatially distributed data, such
as informing crown allometry with remote sensing d&alders et al., 2018; Fischer et al.,

2020; Shugart et al., 2013)ith the help ofimprovements in these two directions, we argue
that upscaling of individuabased vegetation models with detailed, tb@sed species
description need not be associated with high calibration burden, and that they have great
potential for largescale implenentation.
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1.7 Supplementary data

Appendix A: generation of monthly mean climatic variables for TROLL
input
Automated global reanalysis climate data calculation and extraction
The CRUNCEP data are stored in NetCDF format, and the following variables are available:
Tair for air temperature (Kyain for precipitation (mm)WindNandWindEfor each of the
two horizontal directional components of wind speetstin SWdownfor incoming short
wave mdiation exposure {@?), Qair for air specific humidity, an&Surffor surface
atmospheric pressure (Pa). We retrieved data for the period from 1980 to 2016, a period when
many direct observations complemented mdidesed inferences in CRNCEP.

We processed the CRNCEP data across the entire land surface on Earth tieng
Climate Data Operators (cdo) tq@8chulzweida, 20199nd stored the results in NetCDF
files, with a total of 74 files (2 files for each year). For each year, one file contains the
monthly mean values of the following climatic variables: mean, maximum and minimum
daily temperature (jC), mean and maximum daily irradiancer(¥), mean and maximum
daily VPD (vapor pressure deficit, kPa), as well as monthly total precipitation (mm); another
file contains the @ourly average wind speed {g#), calculated as the quadraticerage of
the two wind speed components. Irradiance was calculated as thevalientadiant
exposure, divided by the time length of each measurement interval (6 hours, i.e. 6 ' 3600 =
21600 seconds). VPD was calculated from temperature (T, jC), aifispeenidity (R,
unitless), and surface atmospheric pressure (P, kPa) with the following eq(iatioks
1981; Monteith and Unsworth, 2008)

o

a . & ji®LLYL | A O At (AD)
" n C.
TS &M Mg (A2)

whereVPsatis the temperaturdependent saturated vapor pressure.
Subsequently, we used an R script to extract the monthly climatic variables from the files
for a geographic coordinate, and generated a text file that is used as an input file for TROLL.
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Appendix B: Data at Fushan FDP

At Fushan FDP, local meteorological data, daily from 1991 to 2012 and hourly from 2013 to
2016, was recorded at a meteorological station three kilometers east of Fushan FDP (24 45/
N, 121 35/ E). Temperature and humidity were measoyeziRotronic MP101A

meteorological probe, precipitations by a tipping bucket rain gauge, irradiance by an E20
Silicon pyranometer (Homeray), and instantaneous wind speed by a Wind Monitor Model
05103 (Young).

In Fushan FDP, the sampling of functionalttavas conducted in 2009, where 1 to 26
individuals per species were chosen randomly according to accessibility of tree canopy, and 1
to 3 intact and mature leaves or leaflets exposed to sunlight were collected for each
individual. Collected leaves werealed in Ziploc bag with wet paper towels and kept in an
insulated cooler box in order to prevent from water loss until transport back to the field
station. There, the fresh weight of the leaves was measured to a precision of 0.1 mg, and they
were scannedith a flatbed scanner within 12 hoursdf aregLA, cn?) was quantified with
the software ImaggRasband, n.d.)The leaf samples were subsequently esed at 80 |C
for 72- 96 hours, until constant dry weight. Leaf mass per area (LMA&?gwere then
calculated as dry weight divided by fresh leaf gRérezHarguindeguy et al., 2013)

Nitrogen and phosphorus conteNf.gssandPmass g!gt) were determined by the microplate
method(Huang et al., 2011, lida et al., 2014)

Wood density (WD, gn3) was measured following the ForestGEO wood density
measurement protoc@Condit, 2008; lida et al., 2014)y taking wood core samples of
randomly chosen individuatsutside the plot, measuring fresh volume by water displacement
method and dry weight after ovelnying at 80 jC. Wood density was calculated as dry
weight divided by fresh volume.

The allometric relationship between DBH and tree height (H) in the TROldehveas
assumed to follow a Michaelienten function with two parameters, asymptotic height
(hmay and the Michaelis constaranf, numerically equal to the diameter at which the tree
height is half ohmax

6 &GRLA (B1)

(>=5<
Although DBH values for all individuals were available, tree heights were only
measured for 1 to 18 individuals for each species, depending on the accessibility of tree
individuals. Due to the scarcity of availabiteight data, a hierarchical Bayesian model was
used to estimate model parameters: the model assumed that the Spedies Michaelis
Menten parametelsnax, iandan, i for species are distributed normally around common
hyperparameterisnaxandan (Molto et al., 2014)Parameters are close to the hyperparameters
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when data points are scarce éoparticular species, while the species parameters dominate
when data points are numerous for the species. Calculations were carried out with the
software STAN and the R packaB&tan(Stan Development Team, 2016a, 2016b)
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Appendix C: comparisons of different climate forcing sources.

The comparison between threenatic variables (temperature, precipitation, irradiance)
extracted from CRENCEP data and ground station data showed that apart from minor
differences, the climatic variables were largely congruent betweenNEEEP and ground
measures for the two groustiidy sites, the main difference being that seasonal variability
for irradiance and precipitation was noticeably larger in ground data than ifNCERP data
at Fushan (Figure C2).

FigureC1. Comparison of climatic variables from CRNCEP gridded datar groundbased

data at Nouragues.
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Figure C2. Comparison of climatic variables from CRGEP gridded data or growfhsed

data at Nouragues.
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Appendix D: preliminary parameter calibration

In the preliminary calibration tests, three other parametems eatibrated besides the
parameters * and. k, the light extinction coefficient, describes the proportion of light
extinction by each canopy laydoodrepresents the fraction of assimilated carbon allocated
to aboveground wood (branches and stem) fargyrepresents the fraction allocated to
canopy (twigs, leaves, and reproductive organs) (Table D1). We conducted the calibration
tests following the same procedure as described in the main text, performing 500 simulations
and selecting simulations thithe 10% best overall fit (i.e., 50 simulations). The results
indicated that model output was weakly sensitivie tmodel sensitivity tdwood andfcanopy
was nonnegligible, but the overall model output did not deviate clearly from the observed
valuerange no matter what their calibrated values were (Fig. D1 & D2). As a result, in all
subsequent simulations we set a constant value for these three paramekemseftrose the
lower bound value of 0.5 since reported values for forest ecosystemsngettel. (2014)
are primarily cluster around 0.5. For the allocation parameters, an intermediate value within
the reported range was chosé&nd = 0.35,fcanopy= 0.25).

k light extinction coefficient 0.500.95 (Cournaet al.2002, Zhangpt al.2014)
* guantum carbon yield per quantum photon 0.0300.110 (Mercadet al. 2009)

fwood fraction of NPP allocated to aboveground wood 0.20-0.45 (Arageoet al. 2009, Malhiet al.2011)
fecanopy ~ fraction of NPP allocated to canopy 0.20-0.45 (Arageoet al. 2009, Malhiet al.2011)
m maximal background mortality rate 0.0050.045

Table D1. Parameters of the TROLL model calibrated at the two tropical forest sites in

preliminary tests.
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Figure D1. Calibration of TROLL general parameters for Fuskidight extinction
coefficient; *: quantum yieldfwood @andfcanopy Carbon allocation to different plant organs;
background mortality). Horizontal blue lines are observed values from field censuses. Each

point represents one simulation, and red pantsbesfit simulations.
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Figure D2. Calibration of TROLL general parameters for Nouradadigit extinction
coefficient; *: quantum yieldfwood @andfcanopy Carbon allocation to different plant organs;
background mortality). Horizontal blue lis@re observed values from field censuses. Each

point represents one simulation, and red points ardibesnulations.
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FigureD3. Prior (grey) and posterior (black) density distributions for parameter values
(k: light extinction coefficient; *: quatum yield;fwood @ndfcanopy carbon allocation to
different plant organsn: background mortality). Solid vertical lines indicate median and
dashed vertical lines indicate interquartile range (IQR). Parameter informativeness is
calculated as the ratio tweeen IQR of bestit simulations and that of all simulations.

84



Appendix E: parameter calibration

We conducted calibration tests on five parameters: * (quantum carbon yield per quantum
photon),vC (variability of the tree heighdependent stochastic treefall proc&sB), CR,
(intercept and slope terms of the Hwgnsformed CFDBH allometry), andn (maximal
background mortality rate), following the procedure as described in the main text, pegformi
500 simulations and selecting simulations with the 10% best overall fit (i.e., 50 simulations).
The results showed that model output was strongly sensitiveGB.*andm, and to a lesser
exten toCR..

Figure E1. Calibration of TROLL general paraars (*: quantum yieldyC: treefall
parameterCR, andCRy: intercept and slope terms of the crown radius allomatry;
background mortality) for Fushan. Horizontal blue lines are observed values from field
censuses. Each point represents one simulaiahred points are the bdgtsimulations

(10% best simulations).
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Figure E2. Calibration of TROLL general parameters (*: quantum ywédireefall
parameterCR, andCRy: intercept and slope terms of the crown radius allomatry;
background mort#l) for Nouragues. Horizontal blue lines are observed values from field
censuses. Each point represents one simulation, and red points are-tihesibagations
(10% best simulations).
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Appendix F: verification of assumptions for linear model for thesampled

climate experiment

N10 N30

AGB GPP
Figure A. Diagnostic plots of linear model for the sampled climate experiment at
Fushan, with each summary statistics as dependent variables and the three climatic variables
(temperature, irradian@nd VPD) as independent variables. The four graphs represent
respectively residual linearity, residual normality, residual homoscedasticity, and presence or
absence of leverage points (influential points).
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N10 N30

AGB GPP
FigureF2 Diagnostigplots of linear model for the sampled climate experiment at
Nouragues, with each summary statistics as dependent variables and the three climatic
variables (temperature, irradiance and VPD) as independent variables. The four graphs
represent, respectivelsesidual linearity, residual normality, residual homoscedasticity, and
presence or absence of leverage points (influential points).
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CHAPTER 2: Wind speed controls forest structure in
subtropical forests exposed to cyclones: a case study using

an individual -based model

Submittedto Frontiersin Forest and Global Change

This papeimplements the mechanistic wind damage model ForestGALES in the individual
based based model TROLL, examines model sensitivity and response to the process of wind
inducedtree mortality, investigated the effects of factors such as varying frequency and
intensity of extreme winds on forest structure and dynamics, and explores a simple
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2.1 Abstract

Extreme windblowdown events can significantly modify the structure and composition of
forests, and the predicted shift in tropical cyclone regimes due to climate change could
strongly impact forests across the tropics. In this study, we coupled an indivehesl and
spatially-explicit forest dynamics model (TROLL) with a mechanistic model estimating wind
damage as a function of tree size, traits, and allometry (ForestGALES). We assimilated
floristic trait data and climate data from a subtropical forest site in Tamvexplore the

effect of wind regimes on forest properties. We found that the average canopy height and
biomass stocks decreased as wind disturbance strength increased, but biomass stocks showed
a nonlinear response. Above a wind intensity threshold,dastbpy height and biomass
drastically decreased to nemaro, exhibiting a transition to a néorest state. Wind intensity
strongly regulated wind impact, but varying wind frequency did not cause discernible effects.
The implementation of withistand t@ographic heterogeneity led to weak effects on within
stand forest structure heterogeneity at the study site. In conclusion, the intensity of wind
disturbances can greatly impact forest structure by modifying mortality. Indixbcsald

modeling provides Eamework in which to investigate the impact of wind regimes on
mortality, other factors influencing windduced tree mortality, as well as interaction

between wind and other forms of forest disturbances and human land use legacy.
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2.2 Introduction

Natural disturbances shape forest structure, composition and dynamics, and play a substantial
role in controlling the global carbon cydqRugh et al., 2019; Reichstein et al., 2018)nd is

a major source of natural disturbances and an important driver of tree mdtiadiayelli et

al., 2016;Mitchell, 2013) while wind can cause partial tree damages such as branch snapping
and defoliation, extreme wind events can lead to tree death, mainly through as stem breakage
and tree uprooting. In particular, extremmavdisturbances generated by tropical cyclones in
regions such as the Caribbgango et al., 2000and the northwestern Pacificin et al.,

2011)have been shown to coaltiforest structure at a global scéi¢éogan et al., 2018; Ibanez

et al., 2020)with one notable effect being the reduction of cartugaght with increased

cyclone frequency and intensiipanez et al., 2019Lyclone regimes are projected to

change in the futur@.in et al., 2020)with a generaincrease in cyclone intensity and
interregional differences in the trend of cyclone frequdieytson et al., 2020)n order to
anticipate how sucbhanges will affect communitynd ecosysterscale properties, it is

essential to deepen our understanding of the mechanisms through which cyclonic winds
regulate tree mortalitywhich remains one of the demographic processes that are less well
constrained in forest ecosyste(Bsigmann et al., 2019; Koch et al., 2021)

However, it remains intrinsically difficutb reachgeneralconclusions on factors driving
wind-induced tree mortality based on empirical studies: these studies rely on observations of
forest damage after individual cyclone events, which are both limited in their temporal extent,
and driven by caingent factors such as cyclone trajectory and f@rogo, 2008)andhuman
land use legac{Kulakowski et al., 2011; Schwartz et al., 201If) various studies, a higher
probability and level of damage has been found to be correlated to tree characteristics such as
larger diametefHalder et al., 2021; Ostertag et al., 2Q0&)ger heigh{Dunham and
Cameron, 2000; Vandecar et al., 2QXk)lower wood densit{Curran et b, 2008; Webb et
al., 2014) However, the size dependence of damage can vary with tree gpeckisl5)and
damage typ€Everham and Brokaw, 199&nd some studies even did not observe any size
effect on tree damagd8ellingham et al., 1996)n addition,wind impact on trees can vary at
fine scales within a given forest and for a given speciesjrabspeed interacts in complex
ways withterrain topography, often acceleratindhéitops and mountain ridges, and
decelerating in leeward valleyBelcher et al., 2011; Ruel et al., 1998% a result, windward,
exposed terrains can experience heavier wind damage than leeward regions and valleys
(McEwan et al., 2011; Yap et al., 2016yt see de Toledet al.2012)

Recently, a number of studies have contributed to a more mechanistic understanding of
wind-tree interactionsat a finer scale. To do sthey modelled the response of trees or-tree

like structures when exposed to wind drag using the felément metho@ackson et al.,
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2019b, 2019c; Moore and Maguire, 200&8)d used continuously collected field data to relate
tree motion to architectural propertigackson et al., 2021, 2019&hese studies provide
important insights into the mechanisms underlying vineg interaction. However, the
response of trees to wind depends not only on individual characteristicssdohahe tree
neighborhood, anthore specifically on the presence and the relative size of neighboring
trees, which influences wind shelterirag an illustration, wind typically has a
disproportionate impact on emergent, unsheltered (Bagserat et al., 2021; Hale et al.,
2012; Seidl et al., 2014MHence, the impact of wind on a forest stand is more than the sum of
the impacts on single trees: the heterogeneity of forest structure and compositibe must
accounted for when modeling the impacts of wind, especially for mixed sized forests.

In light of these challenges, dynamic forest models that are both spatpligit and
individuatbased could be useful since they link external environmental comslit
community and ecosysteracale properties, through individdalel processes such as
mortality, while explicitly accounting for spatiotemporal heterogeneity of fo(E&sher et
al., 2016; Seidl et al., 2014y including extreme wind disturbances in the climate forcing of
these models, it is possible to represent mortality in a more mechanistic fashion, and generate
standlevel predictions about forest respons&viod disturbances, which could then be
compared with forest inventory or remote sensing data. Several indiadsed models
(Ancelin et al, 2004; Kamimura et al., 2019; Schelhaas et al., 2007; Seidl et al., 2014; Uriarte
et al., 2009and land surface modgl€hen et al., 2018have incorporated windthrow or
storm damage models. However, these models are mainly limited to teniperste with
relatively homogeneous stand structdre.the best of our knowledge, there is currently no
forest dynamics model that implements cyclonic extreme wind forcing and simulates its
effects on individualevel mortality processes fsubtropicaland tropical forests, even
though tropical cyclones cause substantial impacts on these ecosystems with high biodiversity
and carbon stocks

In this study, we explore the communityde consequences of wind disturbances, using
a modelbased approach. We qaad a wind disturbance module to an individonased forest
model, and created forcing conditions from tropical cyclone records and wind speed data. We
parameterized this model for the Fushan forest in Taiwan, located in a cpotorgeregion,
and exploed how extreme wind events impact tree mortality and forest structure and
dynamics. Specifically, we addressed the following questions:

(1) How do windinduced tree mortality impact forest structure and dynamics? We
expect that the presence of widluced tree mortality would cause a reduction in average
canopy height due to higher vulnerability of tall trees to wind damage. This cdulthin

increase light availability in the understory and facilitate tree establishment, leading to an
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increase in stem density. We also expect that total mortality as well as the fraction of
mortality due to treefalls would increase.

(2) How do changes indquency and intensity of extreme wind events lead to shifts in
forest dynamics and structure? We expect that higher wind frequency and intensity would
result in more windnduced mortality for large trees, which in turn would increase the extent
of canopyheight reduction and stem density increase.

(3) How does topographical heterogeneity within a forest stand influence wind damage
patterns?Ve expect that the inclusion of topography would lead to a higher heterogeneity in
forest structure, with lower capp height and higher stem density on more exposed terrains.

2.3 Material and methods

2.3.1 Description of the TROLL model

The TROLL model is a spatially explicit individubhsed model that divides the

aboveground space of a forest stand into 3D cebizef1 ni (voxels). Solar irradiance inside
each voxel is computed as the irradiance fraction transmitted from immediately above the
focal voxel(Chave, 1999; MarZchaux and Chave, 20p) more than one individual tree

can establish in each 1' 1 m pixel at any given time, and onlyssaifding stems (1 cm in

DBH (diameter at biast height, measured at 1.3 m above ground, or 20 cm above deformities
or buttresses if present) are explicitly modelled (herbaceous plants and lianas are not
included). Seeds and seedlings < 1 cm in DBH are not directly modeled, but represented as
part ofa seed/seedling pool. Each modelled tree is characterized by its DBH, height, crown
size (radius and depth), total leaf surface area, and age. Trees are assignedmueies

traits, which control photosynthesis, growth as well as other physiol@ydalemographic
processes. At each monthly time step, trees grow depending on the balance between carbon
acquisition based on a C3 photosynthesis m@ewluhar et al., 198@nd respiration, with
assimilated carbon allocated int@ed or leaf production. élghtDBH allometric relations

are prescribed at the species level, while the E2Bbvn size allometry is assumed to be
speciesndependentTree mortality in TROLL is represented by several processes: (i)
stochastic tree death,heeassumed to be negatively dependent on spgpexsfic wood

density (WD)(Wright et al., 201Q)l 4 & I M™. N$ , ($is positive, sanis the maximal
possible value of the mortality rate), (inrbon starvation, when net assimilated carbon is
negative over a consecutive period exceeding leaf lifespan, so that old leaves have all died
while no new leaves could be produced, (iii) stochastic treefall, dependent on aspecies
specific tree height thskold related to maximum realized tree height, and (iv) secondary

treefall, when a tree is affected by a falling neighboring tree. To more explicitly link tree
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mortality to exogenous factors such as wind disturbance, we updated the treefall module for
this study to simulate treefall more mechanistically (cf. below).

Inputs for a typical run of TROLL (v3.0) include 1) monthly mean climate forcing data
for the simulated location, 2) average trajectory of daily climatic variation, 3) syspaesic
plant trats for the simulated forest, and 4) spedradependent general parameters, including
those related to the stochastic tree death and treefall. The source code of TROLL (v3.0) is

written in C++ and is available dritps://github.com/trolcode/troll On a computing cluster,

each simulation 0200 ' 200 m and 500 years uses around 15 minutes of computer
processing unit (CPU) time.

2.3.2 Modeling treetop wind speeds in a mixeekized forest

Horizontal wind speed decreases as one approaches the canopy top from above the canopy.
This is modelled by the aerodynamic momentum transfer model above a vegetation canopy
(Monteith and Unsworth, 2008, p310)he horizontal wind speed profile with height is

represented with the following equation:

VANE XTYZ[A\\OT]H if z( H (1a)

whereu(2) (mis?) is the horizontal wind speed at heiglftn) above ground or a
displacement surfack,= 0.41 is the von Kirm¥n constant, ahdm!s?) is the friction
velocity. Parametet is called the zerplane displacement height, am@he aerodynamic
roughness. Botl andz@re dependent on canopy heigh{m), and much research has
explored the variation in both parametdi@ndz over forestvegetationDorman and Sellers,
1989; Raupach et al., 1991; Shaw and Pereira, 1982; Shuttleworth et al. |d9g®erald
ranges from 0.7 H to 0.9 H, aagifrom 0.04 H to 0.08 H for tropical forests. For this study,
we chose the intermediate valuesief 0.8 H andyp = 0.06 H.These values are consistent
with dense and tall evergreen forest vegetation as simulated in the SiB2(8wltk et al.,
1996)

The aerodynamic momentum transfer model (1a) is ampficable above the canopy. In
this study, we decided to apply an additional model to represent wind (Inoue 1963):

VAME VASH 1 SM™ MW6H ifz<H (1b)
where™& 6 —S, oee ; empirical values of, are reported in Table | ®aupa&h et al.
(1996) With this parameterization, horizontal wind speé) at a height ob —W & j °®6
and within the canopy at H/2 is 66% and 22%i(6f), respectively. To reduce computational
burden, we assumed that trees whose height is lower thamdré2not directly affected by
wind. To account focanopy height heterogeneity and neighbor tree shelteringalwelated
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canopy heighH for every 20 ' 20 m quadrat by taking the arithmetic mean of the top leaf
containing voxel layer of each pixel withihe quadrat.

From the CRUNCEP reanalysis dataset, we obtained empirical atmospheric wind speed
values (cf. the OClimate forcingO section below), which are conventionally measured at 10 m
above ground or above a displacement surface. In order to obtain the horizodtspeed
experienced by each tree, we applied the following equation, derived from equation (1a), to
convert horizontal atmospheric wind speed &t10,u(d + 10), into topcanopy wind speed
u(H) within each20 ' 20 m quadrat

»lm

~—o0
VA H& VA —L; H. ?2_20 & VA —LjH.

na

Xa"Ya
*x¢ 0 F@&< H

)

Finally, for each tree with height> H/2, we computedi(h) using either Equations (1a) or
(1b).

2.3.3 Modeling windinduced tree death: critical wind speed

To simulate the impact of extreme widisturbance, we assumed that winduced treefall is
a stochastic process whose probability depends on the difference betweenttiye wieel
speedu(h) exerted on a tree of heigh{m), and a trespecific critical wind speed (CWS).
The highem(h) is relative to CWS, the more likely the tree is to fall and die. In this stugly
used a logistic model to relate the wimduced tree death probability ta(l) PCWS) (Hale
et al., 2015Valinger and Fridman, 1999)

o & LA —/ OAXATHBIZ Hy (3)

For the estimation of CWS, we followed the approach of ForestGALES, a wind damage
risk model originally developed for ewsized and everspace plantation forest@Gardiner
et al., 2008, 200(ut then adapted for use with individual trees in more complex forest
structure§Duperat et al., 202 Hale et al., 2015, 2012; Quine et al., 20EbrestGALES
explores the biomechanical conditions under which the tree, simplified as an anchored
vertical object, will break (causing stem breakage) or lose root anchorage (causing uprooting)
whensubiject to a turning moment caused by wind loading.

Importantly, the formulation of Equation (3) departs from that of ForestGALES, where
the control of wind speed on mortality is defined to be u(H), theamopy wind speed. To
account for the reduced iragt of wind within forest canopies, the CWS in ForestGALES can
be modulated by a competition index, so that trees within the canopy are less exposed to wind
damage than tepanopy treeg¢Duperat et al., 2021; Hale et al., 2012; Quine et al., 2021)
the present formulation, CWS does nepdnd on the tree neighborhood, but the probability
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of wind-induced tree death depends on wind speed at tree height, as computed from Equations
(1a) and (1b).

At our study site, field observations indicate that the proportion of tree uprooting is low
compaed to that of stem breakage (Appendix A). We therefore focused onvduaded
stem breakage. The critical wind speed (CW&;Yrinducing stem breakage and treefall is

calculated by the following equatig¢hale et al., 2015)

€

< |7
NW & " . ﬂgjg——o (4)

where DBH (m) is the trediameter at breast height, ab®R (Pa, kdm!s?) is the fresh
wood modulus of rupture. Westimated MOR from ovedry wood density (WD, g cr)
through the following exponential relationsl{{preenet al. 1999 see Appendix B):

dv@ & LzY. /AT H ;¢ (5)

Tc is the turning moment coefficient (kg), which relates the square of mean wind speed
(m?!s?) to the maximum turning moment (kef!s?) experienced by an individual tree. We
used the following empirical eqtion forTc (Hale et al., 2012)

5& . $c6 2. Q (6)
where the constamt(kg'm3) = 111.7(Hale et al., 2015)A higherTc value means larger
turning moment for a given wind speed.

The wind danage parametd? (unitless) is standpecific and determines the overall
susceptibility of a forest stand to wiraduced tree death: the smalRewalue is, the lower
the critical wind speed is for any given tree under the same condition, meaning tbet¢she
is overall more susceptible to whnaduced tree death. It encapsulates multiple constants and
corrective factors, as well as factors in the original equésea Haleet al. 2015, Equations
11 and 12; also see Appendix t@at are difficult to estimate, and whose interpretation is
beyond the scope of this study. The valu® @fas thus tuned here by means of a sensitivity

analysis (see below).

2.3.4 Climatic forcing

The TROLL model requires the following monthly mean dim variables: daytime and
nighttime mean temperature, daytime mean irradiance, and daytime mean vapor pressure
deficit (VPD). We used the CRNCEP dataset to provide the monthly climate forcing, a
global gridded (0.5j ' 0.5j) suldaily (6-hourly) climateproduct spanning the 192D16

period (version 8; version 7 archivedhdtips://rda.ucar.edu/datasets/ds3104\3lovy, 2018)

It was constructed by combining observatimsed CRU TS 3.2 dafdarris et al., 2014and
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modetbased NCERNCAR data(Kalnay et al., 1996)We used CRLNCEP variables for the
19802016 period, for which the most observatiores availablgKistler et al., 2001)

We estimated the monthly average frequency of cyclones occurring within a sufficiently
close distance to the study site. For this, we used the IBTrACS dataset (lotedriaest
Track Archive for Climate Stewardship database; v04r00, archived at

https://www.ncdc.noaa.qgov/ibtracs/index.php?name4diaccesy which contains records of

global topical cyclones occurring since 194&napp et al., 2010)A common measure of the
spatial extent of tropical cyclones is the mean radigmtEforce winds, by convention

defined as 17.5 tg'. Based on the range of reported values in the literature, we assumed the
mean radius of galforce winds Ry7, km) to be 150 knfChan and Chan, 2012; Lu et al.,

2017; Weber et al., 2014¥hus, for a given site, we calculated thenthly mean frequency

of recorded tropical cyclones occurring within a k80 distance from the site over the period

of 1987%2020. At Fushan, cyclone occurrence frequency was highest from July to September
(~ 0.5 cyclones per month); on average, totauahcyclone frequency was around 1.84
cyclones per year.

For the selected tropical cyclone records, we calculatesitemryclonic wind speed
(Vsie, mis?) using the empirical function that relates the radial variation of the tangential wind
speed beyonthe radius of maximum sustained wind in mature tropical cyclones (Anthes
1982, Hsu & Babin 20058,,.4 & Lz~ . -~ @. b, whered (km) is the distance between the
site and the cyclone center. Sinte Ri7 by definition, it follows thawsie > 17.5 ms?t. We
then fitted the ossite cyclonic wind speed values of each month to a Weibull distribution,
using the functioffitdistr in the R packagMASS(Venables and Ripley, 2002)nd used the
scale and shape parameters as input climate forcing variables. At Fushan,-tberyd¥sice
distribution is rightskewed, with 1st quartile = 18.89s%, median = 20.60 tg*, and 3rd
quartile = 25.18 s,

The coupling of TROLL to wind disturbances was performed as follows. At each time
step, the occurrence of an extreme wind event was drawn from a cyclone occurrence
probability, assuming that one extreme wind event at mosbceur per time step. If an
extreme wind event occurred, we drew a random wind speed value from the input wind speed
distribution. We accounted for canopy heterogeneity and neighbor tree sheltering by only
considering trees with height > H/2 as being egabto wind disturbance, where H represents
guadratwide average top canopy height, calculated by the mean value of the top leaf
containing voxel height of each pixel within the quadrat. For each exposed tree, we converted
atmospheric wind speed(d + 10), to its treetop wind speedy(h) (Equation 2, 1a and 1b),
and calculated its critical wind speed (EquationMg. then compared the two wind speed
values, and determined if windduced tree death happens through a stochastic process,
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dependent on a logfic function of the difference between the two wind speeds (Equation 3).
Secondary treefall was modeled by assuming that when each tree dies, it falls in a random
direction and increases the death rate in the impacted pixels.

2.3.5 Study site angparameterization

We parameterized the TROLL model with wimdiuced tree mortality for a forest site of
Taiwan. The Fushan Forest Dynamics Plot (FDP) is-aeZfare (500 m ' 500 m) plot in a
moist broadleaf forest in the northeastern region of Taiwaet{&L2007), part of
ForestGEO (Forest Global Earth Observat¢ArdersonTeixeira et al., 2015; Condit, 1998)
Fushan is under strong influence of the northeasterly monsoon in winter and frequent typhoon
visits in summer and autumn, with mean annual precipitation around 4200 mm, mean annual
temperature around 18;C, and a mean relative humidity around 95%. Plot elevation ranges
from 600 m to 733 niSu et al., 2007)it was established in 2004 and censused every five
years since then: all sedfanding stems with a DBH ( 1 cm were identified, measuredgeidg
and mapped, with a total of 110 recorded tree species in th¢plet al., 2007)

Speciesspecific plant functional traits that TROLL requires as input parameters include
leaf mass per area (LMA!m?), nitrogen and phosphorus conte{ssandPmass 9'g?),
wood density (WD, lgnr3), maximum DBH (cm), DBFheight allometric parameters and
regional relative abundance. These traits were measured at Fushan according to ForestGEO
protocol(lida et al., 2014jor 94 species, covering ca. 90% of the censused trees. Climatic
variables were extracted from the CRICEP dataset at the geographic coordinates closest to
Fushan FDP (24j 45' N, 121; 32' E).

Stem density and aboveground biomass (AGB) estimations waitalde at Fushan
from census data. In order to estimatesda tree mortality, we used data from the annual tree
mortality survey, which has been conducted at Fushan following ForestGEO protocol since
2017. The mortality survey records the number of desghs and cause of death (standing,
uprooted, or broken) of a subset of censused (feedano et al., 2021)Jsing the mortality
data at Fushan spanning 2017 to 2020, we calculated the mean annual mortality rate for all
trees DBH > 10 cm, as well as the proportion oftaldy attributed to treefall. For the
detailed protocol of attribution of mortality factors, see Appendix A.

Unless otherwise specified, for all simulations, we simulated forest regeneration from
bare soil for a reference plot area of 4 hectares (20@260'm) for a duration of 500 years
with a monthly timestep. Since we aimed to examine the effects of extreme wind on mature
forest, the windnduced tree mortality suimodel was activated after a X@8ar spin up

phase.
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2.3.6 Sensitivity analysis

The windinduced tree mortality suimodel includes a single paramelefunitless). To
investigate model responses to its value, we conducted a sensitivity analysis by varying the
value ofP across a range of (0, 1], with a varying step of 0.005: for ealcle, we performed

five replicates of TROLL simulations (a total of 1000 simulations).

We calculated the steadyate values (mean over the last 100 years of the simulation) of
three structure metrics: stem density (DBH > 10 Niw; treesthat), LoreyO$eight (basal
areaweighted mean tree height, (Mourrahmati et al2018) and aboveground biomass
(AGB, Mg'ha?). For trees with DBH > 10 cm, we also calculated two mortality statistics:
mean annual mortality and fraction of mortality due to treef@8l(ccrar). We reported
mortality statistics at the onset of widdturbance (year 101200, i.e. first 100 years after
wind submodule activation) and after reaching the steady state (yeéar50Q1 i.e. last 100
years of simulation). We qualitatively described trends and sensitivity of these statistics in

responsed variation of parameter value.

2.3.7 Effects of wind frequency and intensity

To examine how the frequency and intensity of extreme wind events influence forests, we
performed two series of simulations: 1) we varied cyclone occurrence frequency fran20.1 t
times the empirical frequency (obtained from cyclone-trask data), with a varying step of
0.1, while maintaining wind intensity; 2) we varied the scale parameter of the wind speed
distribution (parameter controlling mean and median of the Weitstititwuition), from 0.1 to

10 times the empirical values (estimated from the cyclonetizest wind speed distribution),
with a varying step of 0.1, while maintaining empirical frequency. Five replicates were
performed for each condition (in total, 100 siations for frequency and 500 simulations for
intensity were performed). We 9@t 0.7 based on the results of the sensitivity analysis,
where simulation results are close to field observations and not near the forest tipping point (P
< 0.3). As in prevaus steps, we calculated the steathte values (mean over the last 100
years of the simulation) of stem density (DBH > 10 cm) ¢treg), LoreyOs height (m),
aboveground biomass (AGB, Mgil), as well as mean annual mortality and fraction of
mortality due to treefalls (¥Meeran) for trees with DBH > 10 cm. We qualitatively described
trends and sensitivity of these statistics in response to variation of wind frequency and

intensity.
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2.3.8 Effects of topography on wind disturbances

In the original TRQL and ForestGALES model, the effect of topography was not taken into
account. Based on the knowledge that wind speed is altered over an uneven topography, we
implemented quadratcale wind speed correction factors in the model that account for these
topogaphical effectsFor this, we used the Global Wind Atlas (GWA) data, which are
produced through downscaling using the WAsP program (Mortezissn2001),

incorporating surface elevation and aerodynamic roughness lengths (Badg2015). We
obtained 250 ' 250 m GWA pixels that fall in the area covered by the 1j ' 1j ENRCEP

pixel where the Fushan site is located: this represents a grid of 200 ' 200 GWA pixels. We
normalized the GWA wind speed values of the selected pixels sin¢hatean GWA wind
speed is equal to the mean GRICEP wind speed. We then resampled the GWA pixels to
the 20m ' 20m quadrat scale using bilinear interpolation withrésamplefunction in the
rasterpackaggHijmans, 2020)and selected the resampled pixels falling within the area of
the Fushan plot: this repsents a grid of 25 ' 25 = 625 resampled pixels. We used the GWA
wind speed values of these resampled pixels, normalized by th@igiotmean, as the wind
speed correction factor for each quadrat.

The wind speed correction factor ranged from 0.27 to &9 was used as a proxy for
topographic heterogeneity: if topographic effect is implemented, the wind speed experienced
at each quadrat is the phaide wind speed (randomly drawn from the input wind speed
distribution) multiplied by this correction facta value above 1 means that the wind speed at
that quadrat is considered to speed up (due to exposed terrain), and vice versa when the value
is below 1.

We performed simulations with and without topographical effect at the Fushan site for a
plot area o5 hectares (500 ' 500 m), and examined the relationship between gleadiat
steadystate values (mean over the last 100 years of the simulation) of stem density (DBH >
10 cm) (treelha?), LoreyOs height (m), aboveground biomass (AGBh##yand the
topographic effect by performing linear regressions for each statistics as a function of
guadratlevel wind speed correction factés comparison, we also calculated thserved
relationship between forestructural heterogeneity topographic heteroggnbesed on
census data #he Fushan FDPAppendix D).

2.3.9 Data analysis

Data processing, statistical analysis and visualization were performed in RR3Go0e
Team, 2019)Apart from those already mentioneldewhere, R packagggplot2 cowplot

ncdf4 BIOMASSgeospheresp, andtidyr were used for this studypowle and Srinivasan,
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2020; Hijmans, 2019; Jackson et al., 2019b; Pierce, 2019; Régohain et al., 2017,
Wickham, 2020, 2016; Wilke, 2020)

2.4 Results

2.4.1 Sensitivity analysis

As theP parameter value decreased (stronger wmaldiced tree mortality), both average
canopy height (LoreyOs height) and aboveground biomass (AGB) decreased, although AGB
showed a humghaped pattern (Figure 1): at I®walues P < 0.3), canopy height and
biomass decreased to extremely low levels, suggesting a transition from foresfdoeabn
state. Stem densityN{o) only slightly decreased, but showed an abrupt increase around the
transition point oP = 0.15 before decreasing again at loReflues.

Mean annual mortality and fraction of mortality due to treefall§l{%r.i) increased as
P decreased, althoughMfgcetan €xhibited an erratic nonlinear response. Both statistics were
markedly lower at the end of the simulation (after the steady state has been reached) than
immediately after the onset of wind forcing (Figure 2).

2.4.2 Effects of wind frequency and intensity

None of the forest structure and mortality statistics showed significant change with varying
wind frequency. On the other hand, as wind intensity increased, stem dBigitayerage

canopy height (Lorey®sight) and aboveground biomass (AGB) all decreased (with a-hump
shaped response for aboveground biomass), and mean mortality and the fraction of mortality
due to treefalls (¥Mreera) iNcreased, especially at higher wind intensity, where thezezar

level canopy height and biomass suggested a transition from forest-foraststate as

observed during the sensitivity test (Figure 3).

2.4.3 Effects of topography on wind disturbances

Implementing the topographic effect, we found weak but significéatiorships between
topographic wind speed correction and forest structure. Results of linear regressions showed
that stem density (DBH > 10 ciNy0) was not significantly related to wind speed correction
(p=0.09), but average canopy height (Lorey's igigecreased and aboveground biomass
(AGB) increased significantly at quadrats with higher wind speed correction factors
(signifying more exposed terrain) (Figure 4, Table 1).
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Table 1. Slope estimates of linear models of each que¥etforeststructure metrics to the
wind speed correction factor, withvalues in parentheses. N.S.: ragnificant > 0.05).
Nio: stem density (DBH > 10 cm). LoreyOs height: basalveeggted mean tree height.

AGB: aboveground biomass.

Without topography With topography
Nio (treeshal) 10.76(N.S.) -8.13(N.S))
LoreyOs height (m) -0.02(N.S.) -0.52 (< 0.01)
AGB (Mg'ha?) -5.78(N.S.) 92.00(< 0.01)
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Figure 1. Summary statistics of the simulated forests, in relation to the critical wind speed
parameteP (smallerP means stronger effec()A) Nio, density of stems with DBH > 10 cm
(treesha?); (B) LoreyOs height, basal ateeighted mean tree heigm); (C) AGB,
aboveground biomass (Mwt). Shaded areas represent the value range of five replicates for
each simulation conditioiashed lines represent simulation value with no wind disturbance,

and Solid lines represent field observations.
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Figure 2.(A) Mean annual mortality rate aifB) fraction of mortality attributed to treefalls
(Y%Myreeran) for trees with DBH > 10 cm, in relation to the critical wind speed pararReter
(smaller P means stronger effect). Shaded areas represent theanghkiefrfive replicates for
each simulation condition. Black without border: mean values of the first 100 years after wind
onset (year 10200). Red with border: mean values of the last 100 years of simulation (year
401-500). Dashed lines represent simwatvalue with no wind disturbance, and solid lines
represent field observations.
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Figure 3. Simulated forest structure in relation to extreme wind freqénck) and

intensity(F - J), relative to empirical values from cyclone bestck data. For siulations

with varying frequency, empirical wind intensity were used, and vice versa. Shaded areas
represent the value ranges of five replicates for each simulation con@idt).N1o, density
of stems with DBH > 10 cm (trekst?). (B, G) LoreyOs height, basal aseeighted mean tree
height (m).(C, H) AGB, aboveground biomass (Mwgi?). (D, I) mean annual mortality rate.
(E, J) %Myeetan, fraction of mortality due to treefalls. Dashed lines represent simulation value

with no wind disturlance, and solid lines represent field observations.
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Figure 4. Simulated quadrkgvel forest structure statistics as a function of the topography
related wind speed correction factor of each quadrat. A correction factor > 1 means that the
guadratlevel wind speed is accelerated, , and a correction factor < 1 means that the-quadrat
level wind speed is decelerated. Shaded areas represent interquartile ranges (IQR), calculated
within a moving window frame (0.025) across the whebexis value range and thé&nearly
interpolated to the-axis value at each quadrat. Black without border: without topography
correction. Red with border: with topography correction. Solid lines represent the linear
regression curvéA) Nio, density of stems with DBH > 10 cm (@gtha?). (B) LoreyOs height,
basal areaveighted mean tree height (ni) AGB, aboveground biomass (Mgi'). For all
structure statistics, the quadraide values are converted to the corresponding heatiaie

values.
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2.5 Discussion

In this study, wencluded a model of winthduced tree mortality in a forest individezdsed
model, and simulated how windduced tree mortality affects the structure and dynamics of a
subtropical forest. We found that wimtuced tree mortality had a large negativeactmpn
canopy height and a more complex influence on stem density and biomass. The comparison
of tree mortalityat the onset of wind disturbance and at the steadyrstatals forest

acclimation and adaptation to repeated wind disturbances. Wind inteasitipund to exert a
strong control on wind impact, while wind frequency did not. Implementation of topographic
heterogeneity showed a weak but significant effect on watand canopy height and

biomass at the Fushan site: this implementation coul@ sexa basis to incorporate more

complex windterrain interactions in individuddased models.

2.5.1 Effects of windinduced tree death

In response to increasing susceptibility to winduced tree death, canopy height was found
to decrease sharply. According to the wind damage mog¢le,proportional tdbBH?*' H

(EQ. 6), andCW StembreaiS proportional to (DBHF/ Tc)Y2 (Eq. 4): it this follows that
CWStembreakiS proportional to (DBH H)Y2. Hence, wind damage risk is higher for trees with
a smaller diameteto-height ratio, and the observed reduction of canopy height may be
caused by the fact that taller trees are in general mposea and less protected by the
sheltering of neighboring trees, meaning that they experience highéogregend speed and
higher wind damage rigfDuperat et al., 2021; Hale et al., 201&)corollary of this

hypothesis is that tree height in the canopy tregome more homogenous as the effect of
wind-induced tree mortality strengthef@hi et al., 2015; Van Bloem et al., 200The hump
shaped response of biomass, althougéxpected, could be attributed to the joint effect of the
selection of trees with denser wood and the reduction of larger trees, which contribute the
most to total forest biomass.

A transition from forest to neforest state around = 0.3 was apparentyhere stem
density increased abruptly as canopy height and biomass decreasedzermeahis increase
in stem density likely reflects a light condition that favors more smaller trees to establish as
the forest canopy opens up. As the effect of windudisinces grew even stronger, even these
smalktheight trees started to be affected due to the absence of sheltering from taller trees,
causing stem density to decrease as well.

Total mortality increased with disturbance intensity, but only starting froomdrthe
transition point, and the steadtate fraction of mortality due to treefalls decreased as
disturbance intensity increased; in addition, both mortality statistics were markedly lower at
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the end of the simulation than at the onset of wind distughdrttese observations suggest

that longterm exposure to wind disturbances results in plastic acclimation as well as
adaptation through the selection of more resistant species. Forest acclimation and adaptation
could account for the low immediate mortal#fyer a cyclone passage observed in some
empirical studieg¢Bellingham et al., 1992; Walker, 199Bnd a model simulation study also
showed that acclimation could regulate forest response to wind disturbances, especially at the
forest edg€Kamimura et al., 209). In this study, the selection of trees with allometric traits

of larger diameteto-height ratio and higher wood density could cause adaptation, but plastic
acclimation was not taken into account as the model did not allow traits to vary plastically
over the lifetime of an individual, and trait variations were not inheritable. In the future, it
would be highly interesting to explore the emmlutionary dynamics that results from

temporally plastic trait variability and the inheritance of more wasistant traits.

2.5.2 Effects of wind frequency and intensity

Increasing wind intensity negatively affects forest stature and biomass stocks, consistent with
results of globakcale studies that showed a clear empirical relationship between higher
cyclore intensity and lower overall forest stat(it@anez éal., 2019) however, varying wind
frequency did not cause any effect on forest structure. Forest response to disturbance must be
considered by placing the return period of the disturbance events in perspective with the life
span of the affected orgam (Turner and Dale, 1998as trees can live for decades or even
centuries in a forest, they can be exposed to centennial disturbance events. Therefore, a forest
could be capable of acclimating and adapting to frequent cyclone visits without suffering
caastrophic loss, as long as their intensity is within the tolerance range of the forest. On the
other hand, extremely intense cyclones, even when occurring on a centennial basis, could be
sufficient to cause severe consequences on forest structure amthfypteven threaten the

very persistence of the forest ecosystem. In light of predictions on future increase in tropical
cyclone intensitf{Knutson et al., 2020}his result suggests that forest ecosystems in cyclone
prone areanay risk undergoing profound structural modifications or even state shifts, and

more intensive and preemptive monitoring would be needed to anticipate the consequences
(Newman, 2019)Modeling scenarios of simultaneous modifications of wind frequency and
intensity, as well as gradual changes of the wind regime over the courseiofulaticn
(non-stationary extreme winds) should also be explored, in order to improve the realism of
disturbance forcing.
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2.5.3 Effect of topography

Topography alters the impact of extreme wind on forests in complex ways, even though many
studies have found that exposed locations tended to be subject to more severe wind damage
than sheltered locatiorfMagnabosco Marra et al., 2014; Ruel et al., 1988)his study, we
introduced a simple correction factor to model the effect of quaddat topographic

heterogeneity, based on the assumpthat wind speed accelerates locally on exposed terrain
such as hilltop and mountain ridges, and decelerates locally in sheltered terrain such as
valleys(Belcher et al., 2011; Mitchell, 2013)he results showed a weak but siigant effect

of topographic heterogeneity on canopy height and biomass stocks within the forest plot at
Fushan: average canopy height was higher at more exposed quadrats, and the increase of
aboveground biomass at more exposed quadrats was consistetiteliumgshaped

response of biomass as wind disturbance strength increased (Figure 1). The weak effect size
could reflect the fact that trees at Fushan, even those at exposed terrains, are well adapted to
the simulated wind level. Nevertheless, the olesbrelationship between quadsatle forest
structure statistics and elevation at the Fushan site was stronger and exhibited a different
pattern, with higher stem density and lower average canopy height at more exposed quadrats,
but no variations in bioass (Appendix D). This suggests that it is highly probable that our
preliminary implementation did not fully capture the effects of the topography. In the future,

it is crucial to refine the model representation of topographic effects by considering idw wi
interacts with finetscale features such as tognopy topography, and factors such as wind
direction. Parameterization for topography currently comes from a data setrat 250

resolution, and employing more fiseale data could also improve topographic

representation. Nevertheless, this preliminary exploration could serve as a framework under
which to further investigate how topography mediates the effect of wind disturbances in an
individuatbased model.

2.5.4 Challenges of model representation of wikkinduced tree mortality

The first and foremost challenge when simulating wind disturbance in a-sizestiforest is

the description of the wind profile: since the individbased model TROLL does not

prescribe fixed stankbvel characteristics (notably top canopy height), nfantors that

control wind profile dynamically change across time and space. Wind speeds above the tree
canopy are commonly modeled by a logarithmic pr¢flaupach et al., 1991Wwhich is the
approach taken in the ForestGALES modéle aerodynamic parameters used in the

logarithmic profile have been shown to depend on the plant area index, and as such, they are

expected to vary seasonally. A detailed parameterization has recently been proposed based on
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remotesensing LAl and canopy height products, which could help accoutttigorariability
and enhance realism of wind profile model{bg et al., 2021)

In this study, we further assumed that the wind speed experienced by trees within the
canopy follows an exponenliadecreasing profiléinoue, 1963)and that trees well below
the displacement height in effect do not experience wind disturbance; other equations have
been derived to describe the decreasing wind speed profile within cgkmogsfin et al.,

2004; Raupach and Thom, 198ahd measurements have also been made (Raupach et al.
1996). Significant variations in wind profile could exist due to the heterogeneity of forest
structural characteristics, such aaflarea index, stem density and spa¢ibg Santana et al.,
2017; Lalic et al., 2003; Moon et al., 2016) addition, the interaction of horizontal winds

with the canopy structure creates turbulent eddy structures, whose effects have not yet been
explored in the current mod@le Langre, 2008a; Raupach et al., 1996)

The original ForestGALES model estimated critical wind speeddtr types of wine
induced damage, tree uprooting and stem breakage. In a preliminary test, we simulated both
processes, but found that few tree uprooting occurred compared to stem breakage (Appendix
C). This is consistent with the empirical mortality syre¢ Fushan, where many more dead
trees exhibit stem breakage than uprooting (Appendix C). This has motivated our decision to
simplify model representation and focus on stem breakage. One further motivation for
ignoring tree uprooting is that it is largedgntrolled by root anchoring, which is currently
still difficult to represent mechanistically and to parameterize for all tree species, due to our
limited understanding on root traits and the physics underlyingsmbinteraction. In the
future, effors should be made to devote more attention to the process of root anchoring.

Lastly, although we parameterized speapscific wind susceptibility using plant traits
to the extent possible, and assumed that the free parameter P was identical foreai timeetr
forest standP may in reality still be speciespecific due to factors such as wood deformities,
stem tapering, relative allocation of total biomass to stem weight, as well as the capacity for
defoliation that reduces wind loading. These faatordd all contribute to model uncertainty,
and further investigation is needed to better constrain them in future model developments.

2.5.5 Field mortality survey data

In this study, we retrieved data from the annual mortality surveys conducted in FEDestG
sites, in the hope of calibrating the model using empirical mortality data as a complement to
inventory data. The survey data could inform us on the number of tree deaths and treefalls
that occur within the forest plot, and simulated mortality rateesti@ood correspondence

with observed values calculated from the survey data, but inferring the cause of tree death
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from the observed damage modes of the dead trees has proven to be difficult. A tree may
experience multiple damages successively or simetasly, which would all contribute to
causing treefall, or it may experience damage after its death: these different scenarios could
not be distinguished lyost hoaecords of observed damage on dead trees. In addition, a
large proportion of stem breakaged uprooting in the understory are likely to be caused
secondarily by treefall events of neighboring trees, and not directly by wind.

As a consequence, it is possible that the field observed numbers of tree deaths with
uprooting or stem breakage wereamrestimation of the winthduced uprooting or stem
breakage events in reality. However, the observed fraction of tree deaths due to treefalls were
considerably lower than the simulated values, suggesting that there might be additional
acclimation and aptation phenomena limiting treefalls, which were not accounted for in the
current model. Nevertheless, the annual mortality survey data still contain the most detailed
fine-scale records on tree mortality in speaiel natural forests available to dasad the
observed patterns of damage modes, while not sufficient to calibrate the model, still served as
a heuristic basis that inform on patterns of tree death.

2.5.6 Perspectives

In a mixedsized natural forest, natural thinning and gap dynamics frédguendify tree

density and local stand height, causing changéeeitevel of physical shelterirfigpom
neighboring trees: the wind loading and damage risk of a tree may change considerably as its
sheltering status changes even when its size do€Quwote and Gardiner, 1995; Schelhaas et
al., 2007; Seidl et al., 2014 the current implementation of the wind damage model, local
sheltering is accounted for lopnsidering a treeOs height with respect to local canopy top
height, simulating withircanopy wind attenuatioand assigning a height threshold under
which a treas not considered to experience wind disturbances. A finer representation of the
effect of local sheltering could be achieved mgliding a Ocompetition indexO, calculated
based on a treeOs relative size to neighboring trees, in the formulationes@settirning
moment Tc), so that local sheltering is represented as a continuous variation and not as a
cutoff point(Duperat et al., 2021; Hale et al., 201&)en though the choice of competition
index is not trivial and requires careful consideratioreddition, theTc equation is currently
empirically fitted at a limited number of temperate plantation forest sites, and its
transferability to the tropics and to mixszed natural forests needs to be examined in more
detail: recent works of firgcale mesurement of tree movement in response to wind in
natural forests represent the first step to overcome this challéamgleson et al., 2020, 2019c,
2019b)
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The current model could be further refined by including other aspects of wind impact on
trees, such as successive damages that do not immediately cause death but increases delayed
mortality (Tanner et al., 2014; Walket995) coping mechanisms such as defoliation
(reduction of wind drag at the cost of temporary lower productivity) asgn@uting
(allowing survival even after stem breakage). Other factors influencing tree mortality, such as
preexisting stem rottingraleformities, interactions with other forms of disturbance such as
insect attacks, fire and drougiMewman, 2019; Reichstein et al., 2013; Seidl et al., 2011a)
as well as human land use legacy and fragment@taurance and Curran, 2008; Schwartz et
al., 2017; Uriarte et al., 2009ould also be considered conjointly with the wind disturbance
model. Parameter calibration and model validation could alsmjp@ved with the help of
high-resolution satellite data that monitor wind gap formation and dyngBadisre et al.,

2021; Hayashi et al., 2015; Kislov and Korznik@020)

Finally, although the current study focuses on the impacts of wind on a cyclome
forest, the model we developed could also be applied to explore wind vulnerability of forests
that are less accustomed to wind disturbances, as well as the effectdipédbwind
blowdown events, which are thought to shape the structure and dynamics of Amazonian
forest(Magnabosco Marra et al., 2018; Negidudrez et al., 201®8eterson et al., 2019)he
exploration of more forest settings and wind regimes could help us go beyond single forest
plots and take into account landscaged regionalevel heterogeneity in the model
(Peereman et al., 2020; Seidl et al., 20iprder to explore the consequences of wind

disturbance at a landscape or even regional level.

2.5.7 Conclusion

In this study, we explored the effects of winduced tre mortality and longerm

consequences of wind disturbances at a subtropical forest, and the results indicate that wind
disturbances could have strong negative effects on forest structure when intensity is strong,
which has strong implications given thejected increase in tropical cyclone intensity. This
modeling framework of windhduced tree mortality, including the preliminary

implementation of topographic effects, could serve as the basis for improving representation
of the mortality processes ingetation models, deepen our mechanistic understanding of

how wind disturbances act on forest over a larger spatial scale in conjunction with other types
of disturbance, as well as generate predictions on the future of natural forests in response to
the chaging wind regime.
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2.7 Supplementary data

Appendix A: estimation of on-site mortality values

The dataset used to calculate mortality rate and proportion of mortality attributed to each
cause were four years ahnual mortality survey data, conducted from 2017 to 2020 for a
subset of the censused trees selected following ForestGEO pr@toatdno et al., 2021)

For each survey, each surveyed tree was assigned a label for its survival status (OK: Oalive
with no damageO, A: Oalivéh damageO, D: OdeadO, NF: Onot foundO, X: Odead stem in
living individual®), and a label for its damage mode (S: Ostanding (with canopy damage)O, B:
Obroken stemO, U: Ouprooting (with root bole exposure)O, BU: Oboth broken stem and
uprootingO). Aftendracting tree tag, DBH, status and mode labels from each survey data, we
simplified the data structure by grouping status OOKO, OXO and OAO as alive tree individuals,
and grouping status ONFO and ODO as dead tree individuals, and merged the ddtufrom the
different years.

In Fushan, the survey reported a high incidence of Ozombie treesO, which are trees that
were recorded as dead in one year, but found to be actually alive in the next year, due to the
re-sprouting of basal shoots. In order to exclutese entries to the best of our ability, we
considered only trees that were alive in 2017 and ended up dead in 2020 to be a OrealO death
event, and calculated mortality rate by the proportion of death events to the number of all
alive trees in 2017. Thisumber will still be an overestimation, due to the fact that a
proportion of trees recorded as dead since 2019 or 2020 may not actually be dead yet, and
may still possess the ability to-sprout in subsequent years. The mortality rate over three
years (s, 2017- 2020) was converted to annual mean mortaliyd) by the following
equation:

| g) &LMALMI ,H (A1)

These values were compared with estimates calculated from census daieevyidarf

intervals, and were found to be of similar range (Table Al).

Table A1. Mean annual mortality rate in different diameter classes.

From mortality survey From census

DBH (1 cm 0.0517 0.0461
DBH > 10 cm 0.0201 0.0289
DBH > 30 cm 0.0172 0.0101

To determine the most likely cause of mortality, we referred back to the mode label that
indicates the type of damage in the year that a tree is last recorded dead. Damage mode labels
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OUO and OBO indicate tree uprooting (root bole exposure) and stepe besalkatively, and

were treated as such. OBUO indicates that both uprooting and stem breakage were observed:
we divided trees in this category into two parts, and attributed them equally to stem breakage
and uprooting. Finally, we calculated the fractafrdead trees observed with stem breakage
(YMbreal) OF uprooting (Muproo, as well as the total fraction of tree deaths due to treefalls
(YMyreetar; labeled with OUO, OBO or OBUO) and the fraction of tree deaths due to other causes
(%Motner; labeledwith OSO) (Table A2).

Table A2. Proportion of tree mortality attributed to different causes per diameter classes
(%Mtreefall = %Moreak + %Muproot)-

%Mopreak %Muproot YMireefall %Mother
DBH (1 cm 44% 4% 48% 52%
DBH > 10 cm 51% 8% 57% 42%
DBH > 30 cm 45% 12% 59% 41%
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Appendix B. Relation between wood density and green modulus of rupture
for hardwoods

The table for speciespecific wood traits reproduced below is taken fil@reenet al.(1999)
including only hadwood species for which green modulus of rupture was measured. Wood
density at 12% moisture (&) was converted into oveary wood density () using the

formula D, = 0.828 D2 (Vieilledent et al., 2018)T'he relationship between oweiny wood
density and green modulus of rupture was then fit to an exponential function (Equation 5).

Table B1. Wood traits for a selection of hardwood species.

Commonspecies name Ovendry wood Green modulus of rupture
density (g crm) (MPa)
African mahogany 0.38 51
afrormosia 0.56 102
andiroba 0.49 71
angelique 0.55 78.6
azobe 0.80 116.5
banak 0.38 38.6
Brazilian rosewood 0.73 97.2
bulletwood 0.78 119.3
cativo 0.37 40.7
ceiba 0.23 15.2
courbaril 0.65 88.9
cuangare 0.28 26.7
dark red meranti 0.42 64.8
degame 0.61 98.6
determa 0.48 53.8
goncalo alves 0.77 83.4
greenhart 0.73 133.1
hura 0.35 43.4
ilomba 0.37 37.9
Indian rosewood 0.69 63.4
ipe 0.84 155.8
iroko 0.49 70.3
jarrah 0.61 68.3
jelutong 0.33 38.6
kaneelhart 0.88 153.8
kapur 0.59 88.3
karri 0.75 77.2
kempas 0.65 100
kruing 0.63 82
light red meranti 0.31 455
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limba

macawood
manbarklak

manni

marishballi

merbau

mesaw

mora

obeche

opepe

paraangelim

pau marfim

peroba rosa

pilon

piquia

primavera

ramin

robe

sande

santa maria

sapele

sepetir

shorea baulau group
spanish cedar
sucupira

sucupira bowdichia
teak

tomillo

true mahogany
wallaba

white meranti
yellow meranti
Aerican beech
American basswood
American chestnut
American elm
American sycamore
balsam poplar cottonwood
bigleaf maple
bigtooth aspen
bitternut pecan hickory
black ash

black cherry

0.35
0.86
0.80
0.53
0.80
0.59
0.48
0.71
0.27
0.58
0.58
0.67
0.60
0.59
0.66
0.37
0.48
0.48
0.45
0.48
0.50
0.51
0.62
0.37
0.68
0.71
0.50
0.41
0.41
0.71
0.50
0.42
0.53
0.31
0.36
0.41
0.41
0.28
0.40
0.32
0.55
0.41
0.41

41.4
153.8
117.9

77.2
117.9

88.9

55.2

86.9

35.2

93.8
100.7

99.3

75.2

73.8

85.5

49.6

67.6

74.5

58.6

72.4

70.3

77.2

80.7

51.7
118.6

120
80

57.9

62.1

98.6

67.6

55.2

59
34
39
50
45
27
51
37
71
41
55
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black cottonwood
black locust

black maple

black red oak
black tupelo

black walnt

black willow

blue ash

bur white oak
butternut
cherrybark red oak
chestnut white oak
cucumber tree magnolia
Eastern cottonwood
green ash
Hackberry
honeylocust

laurel red oak

live white oak
mockernut tree hickory
northern red oak
nutmeg hickory
oregon ash
overcup white oak
paper birch

pecan hickory
pignut hickory

pin red oak
postwhite oak
gquaking aspen

red alder

red maple

Rock elm
sassafras

scarlet red oak
shagbark hickory
shellbark hickory
silver maple
Slippery elm
southern magnolia
southern red oak
sugar maple

swamp chestnut white oak

0.29
0.57
0.47
0.51
0.41
0.46
0.32
0.48
0.53
0.31
0.56
0.55
0.40
0.33
0.46
0.44
0.55
0.52
0.73
0.60
0.52
0.50
0.46
0.52
0.46
0.55
0.62
0.52
0.55
0.31
0.34
0.45
0.52
0.38
0.55
0.60
0.57
0.39
0.44
0.41
0.49
0.52
0.55

34
95
54
57
48
66
33
66
50
37
74
55
51
37
66
45
70
54
82
77
57
63
52
55
44
68
81
57
56
35
45
53
66
41
72
76
72
40
55
47
48
65
59
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swamp white oak

sweet birch
sweetgum
tanoak

water hickory
water red oak
water tupelo
white ash
white oak
willow red oak
yellow birch

yellow poplar

0.60
0.54
0.43
0.53
0.51
0.52
0.41
0.50
0.56
0.57
0.51
0.35

68
65
49
72
74
61
50
66
57
51
57
41




Appendix C: description of the original ForestGALES model

In the original ForestGALES model, critical wind speed (CWS) is calculated for two types of
tree damage: stem breakage and tree uprooting. Based twapproach, which relates
maximum turning moment to mean wind speed, the critical wind speed fordahgpes of

tree damag#llows the following relatior{(Hale et al., 2015, 20)2

X—a

t.z{C . ]l fo.tt
) 1/ . 3
: NW>-ngqg(1 & ,k ua. S 0Y e Ts . S ME (C1)
. X-a
By, . Zf X
PNWy 4 g &  k—= 05 SRE C2
X+q-%)h S35 “Frmwr- fc . SZB -D¢5T/ (C2)

MOR, the modulus ofupture (Pa, kign'tls?), is related to wood density and was
estimated using Equation (3), the turning moment coefficient (kg), relates the square of
mean wind speed to the maximum turning moment, in a relationship described in Equation
(6). do (diameter at trunk base, 0 m) was converted from DBH (diameter at breast height, 1.3
m) by a linear corrective factdn: & £. $c6 .

Creg (M?!s?) is an empirical parameter which depends on soil and rooting d&gth.
values have been measured througkpulling experiments for conifers and broadleaf
specieqgLocatelli & al., 2016; Nicoll et al., 2006; Peltola et al., 2000; Peterson and Claassen,
2013) and were found to range from 110 to 18%/(kg) represents fresh stem weight, and is
related to total aboveground biomass (AGB) through a linear proportional fabta:
™ @ic .

Several other corrective factors were present in this mhgghccounts for the presence
of knots reducing wood strengthggeaccounts for the position of the tree relative to a newly
created forest edg&:waccounts for overhanging crown weight when the tree is bent;
TMCatio accounts for the increasing wind loading after thinning due to reduced neighbor tree
sheltering. By combining these factors, as well as other corrective factors into a single wind
damag parameteP, the equations was simplified and rewritten as:

| €
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wherePsembreadS UNitless andPuprootinghas the unit of ist. They encapsulate the
following factors respectively:
" »-gJsqg(l & ¥q O @'o @1)*_ H—§'YO @g]hg . G . «d? q(_%*"©_a (CS)
" X+q**-%)h & quho G\F+§e;;]hg . G . «d? q(_%*"©_a (C6)
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As stated in the main text, tiReparameters determine the overall susceptibility of a
forest stand to winthduced tree mortality: the smallePavalue for a damage type is, the
lower the critical wind speed is for any given tree in a forest stand, meaning that the forest is
overall more susceptible to windduced damage and death of that type.

We performed a preliminary sensitivity analysis teeistigate model responses to the
two free parameter&siembreaUnitless) andPuprooting (M!s?). We chosg0.01, 1] for the value
range ofPstembrea@nd(0, 40] for the value range d?uprooting and randomly drew 500 values
from within each value range for use in TROLL simulations. We calculated the stadely
values (mean over the last 100 years of the simulation) of three structure metrics: stem density
(DBH > 10 cm:Nio, treestha?), LoreyOs$eight (basal areaeighted mean tree height, m)
(Pourrahmati et al2018) and aboveground biomass (AGB, Mag') (Figure C1). We then
performed model calibration based on aboveground biomass, by calculating the absolute
difference between simulation and field observation values, scaled by the standard deviation
of thesimulation values. We selected the simulations having the 5% best fit (25 out of 500
simulations).

As the parameter values of the bieissimulations were scattered and did not converge
to a narrower value range (Figure C1), we turned to evaluate theeaeantribution of each
wind disturbance process to tree mortality, in the goal of simplifying the model. For each
bestfit simulations, we calculated the proportion of treefalls due to each wind disturbance
process, averaged over all timesteps wherextreme wind event happened in the last 100
years of the simulation. The results showed that the proportion of treefalls due to tree
uprooting was lowr compared tahe proportion of treefalls due sbem breakage (Figure
C2). Based on these preliminargués, we decided to focus on the process of widdced
stem breakage for this study.
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Figure C1. Summary statistics of the simulated forests, in relation to the critical wind speed
parameter®uprooting@NdPstembrea(Smaller value means strongefeet). N1o: density of stems
with DBH > 10 cm. LoreyOs height: basal ave@ghted mean tree height. AGB:
aboveground biomass. Dashed lines represent simulation value with no wind disturbance, and
Solid lines represent field observations. Red diasirapé points: simulations having the
5% best fit.

Figure C2. Histogram of the proportion of treefalls due to each of the two wind disturbance
processes for the 25 bdgtsimulations in the preliminary calibration test.
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Appendix D. Observed s$ructural heterogeneityat the Fushan FDP in

relation to topographic heterogeneity

Quadratlevel mean elevation at the Fushan forest plot ranges from 616 to 730 m. The linear
regression resultsased on field census dafaowed that stem densitii0) increased with
elevation, average canopy height (Ld@keight) decreased with elevation, while

aboveground biomass (AGB) did not vary significantly in relation to elevation (Figure D1,
Table D1).

Figure D1. Quadratvide (20 m ' 20 m) forest summary statistics a¢ thushan site, as a
function of the quadrat elevation above sea level. Shaded areas represent interquartile ranges
(IQR), calculated within a moving window frame (2 m) across the whabasxvalue range
and then linearly interpolated to thexis value ieach quadrat. Solid lines represent the
linear regression curvéA) Nio, density of stems with DBH > 10 cm (tréfes!). (B) LoreyOs
height, basal areaeighted mean tree height (i) AGB, aboveground biomass (Ngi?).
The quadratvide values wereonverted to corresponding hectariele values.
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Table D1. Slope estimates of linear models of each quidtforest structure metrics to
the wind speed correction factor, wittvalues in parentheses. N.S.: rgnificant p >
0.05).N1o: stem densy (DBH > 10 cm). LoreyOs height: basal ave@hted mean tree

height. AGB: aboveground biomass.

Nio (treeshal) 5.37 (< 0.001)
LoreyOs height (m) -0.012 (< 0.001)
AGB (Mg'hal) -0.12 (N. S))
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CHAPTER 3: Detecting Natural Disturbances in Tropical
Forests Using Sentinell SAR Data: a Test in French

Guiana

In preparationto be submittedo Remote Sensing of Environment

This papedescribes the synthetic aperture radar (SAR) data set, collected by Skntinel
satellite, with high temporal and spattaverage, and previously treated with an algorithm

based on the shadowing effect of SAR data to detect deforestation {8whest et al.,

2018) In this paper, we present a protocol to further process ttasdausing GIS tools, in

order to select a subset of disturbance events that are considered to be due to natural causes
and not human activities, and describe the apadittern andemporaldynamics of natural
deforestation patches in French Gui&moan 2016 to 2019This work contributes to answer

Question 3
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3.1 Abstract

Natural disturbancexeate forest gaps in a heterogeneous manner, and drive gap dynamics
which shapes forest structure, diversity and functioning. Neatine@almonitoring of the

extent and pattern of natural disturbance in tropical forests is necessary for a better
understading of how they shape tropical forests, over different spatial and temporal scales.
especially in light of ongoing changes in natural disturbance regimes due to climate change.
Satellite remote sensing provide letggm forest monitoring, but optical igeas are limited in
availability by frequent cloud cover in the tropics. In this study, we used radar data from
Sentinell satellites, which have been successfully used for the detection of anthropogenic
disturbances, and examined if they could also rglidbtect natural disturbance events in
French Guiana, in a zone with low level of anthropogenic disturbances delimited using land
use data. Compared to Landdatived optical data, Sentingéldata detected around three
times as many natural forest gapsid #oth datasets exhibited consistent spatial pattern and
sizefrequency distribution, even though level of colocation is low between the two datasets.
Disturbance level was not found to vary with elevation. Disturbance level was higher in dry
seasons, bwvhich could be due to the lagged effects of the wet seasons because of the
increase in disturbance level before climatic water deficit rises. In conclusion, this study
demonstrated the capacity of Sentibhebadar data to detect and characterize $wak pattern

and dynamics of forest gaps due to natural disturbances, and that this information could
enhance our knowledge on largeale variations in environmental factors control gap
dynamics. Future directions include examining the influence of othegtaphical variables,
exploring the possibility of expanding natural disturbance monitoring to the regional level,
and using for calibration and validation of vegetation models that simulate the effects of

disturbance events.

3.2 Introduction

Tropical forests harbor a high level of biodiversity, and play an essential role in the global
biosphere and biogeochemical cydl&ardner et al., 2010; Mitchard, 2018; Pan et al., 2013)
Tropical forestare threatened by deforestation and degradé@@aacini et al., 2017; Bullock
et al., 2020)but also bychanges in natural disturbance pattgfrankin et al., 2016; Pugh et
al., 2019) While much research concetthe quantification of anthropogenic disturbances in
tropical forestsnatural disturbances are also important because canopy gaps control both
forest structure and compositifidunteret al., 2015; Shugart, 1984)

Natural canopy openings span a wide range of sizes: individual treefalls can create small
gap openings in the forest canopy, while larger forest gaps can be triggered by disturbance

events such as storms, tornadoes ordiahels. The size and nature of the gaps caused by
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natural disturbances are also influenceddpography, soil types and soil moisture content
(Belcher et al., 2011; Dupuy et al., 2005; Nicoll et al., 2006; Ruel et al.,.1998)

Forest gaps locally create environmental heterogeneity and contrasting opportunities for
regeneration, for both ligldemanding and shatelerant spees(Chazdon et al., 1996; Van
Der Meer et al., 1998 he disturbance dynamics that create a mosaic of forest patches,
within which plant recruitment occurs, protes species coexisten@iEntsch and White,

2019; Kohyama, 1993and has been advanced as an important factor of why tropical forest
tree diversity is higliConnell, 1978; Wright, 2002)

The systematicharacterization of the impact of natural disturbances on forests is a
notoriously difficult challage. In the field, it is nearly impossible to monitor the falling of
trees over large areas and in near-tieag (NRT), that is, with aninimal time lag between
the occurrence of disturbance events and their detection. Such a rapid monitoring system, in
addition to its practical values for timely adequate managemearitbfopogenic
deforestation and degradation, is also an important tool for detecting more precisely the
impact of natural disturbances.

Earth observing satellite imagengas already made aajor contribution to forest
monitoring. It has beeunsed to monitor patterns and dynamics of natural and anthropogenic
disturbance over large areas and at global ¢satee.g. Achd et al., 2010; Bullock et al.,

2020; Keenan et al., 2019)/ith its medium spatial resolution and revisit period (30 m and 16
days, respectively) as well as extensive timespan (optical data continuously collected since
1972),the Landsat program haedn pivotal to the development of a continuous monitoring
system of forest cover chanfjg¢ansen et al., 2016, 2013; Woodcock et al., 2008)

In arecent study conducted by the Joint Research Center (JRC) of the European
Commission, the full Landsat archives were reprocessed to produce a detailed
characterization of disturbancelated tropical moist forest (TMF) cover change over the last
three deades (from 1982 to 202QYancutsem et al., 2021) his data product (henceforth
referred to as JRCMF) describes the annual transition status of each forest pixel, and
provides a valuable context for large degtemtaand deforestation evenidhere exist other
data productsvith a submonthly temporal resolutiomased on optical satellites, but since
tropical forests are frequently occluded by clouds and haze, NRT monitoring cannot be
achieved with opticabasedsatellite dataNon-optical satellites, such as synthetic aperture
radar (SAR) offer a promising alternative.

SAR transmitsnicrowavelength radar pulses and receives the backscattered radiation
signal(Kirscht and Rinke, 1998 his technology is operational under all meteorological
conditions(Balzter, 2001)and has been used to detect and map forest disturbance events at a
large scalé¢Reiche et al., 2016 he application of SAR data in NRT forest disturbance
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monitoring has thus far been limited, due to the difficulty of radar data processing and
interpretation, as well as the incomplsgatial or temporal coverage of past SAR missions
(Bouvet et al., 2018; Reiche et al., 2016)

The deployment of the two Sentirekatellitesdy the European Space Agency (ESA)
since 2014 is a new opportunity for NRT forest monitoring. Senlirsatellites are equipped
with C-band (wavkength 7.5 3.75 cm) SAR instruments, have global coverage, shorter
revisit period than Landsat (6 to 12 days), and high spatial resolution (18bahdC
backscatter from the disturbed area is composed of multiple components, including the
ground backsdter attenuated by the canopy layer, and the backscatter from the canopy,
which are affected by multiple factors of the surface conditions, such as 3D vegetation
structure, canopy or soil moisture content, surface roughness, and topddsipig et al.,

1999; Pulliainen et al., 1999y hus, Sentinel is a good candidate to NRT monitoring of
tropical deforestatio(Reiche et al., 2021 However, deforested or degraded areas are not
necessarily characterized by a step change of backscatter.

Recently, a new gap detection algorithm has been developed using Skuiate|
(Ballere et al., 2021; Bouvet et al., 2018his method doesot rely on absolute backscatter
intensity to detect gap formation, but is based on the detection of SAR shadowing. Shadowing
occurs in SAR images due to the sldeking characteristics of SAR systems, which create
areas that are blocked by higher objeatd that cannot be reached by any radar pulse: these
obstacles could be topographical features such as mountain peaks, but could also be edges
between forest and ndorest areas. When a forest patch is deforested, shadows appear or
disappear at some dbiedges, and are characterized by a sharp decrease in the backscatter
across the forest edge. As this signal reflects structural change, it is expected to be more
persistent and less temporally variable than the level of backscatter within the deforested
and can thus be used as an indicator of the anthropogenic or natural loss of forest cover. This
method has been successfully tested and validated ir(Bauuet et al., 2018nd in French
Guiana(Ballere et al., 2021jor anthropogenic deforestation detien.

In this study, we explore whether the Senth&AR data product could be used to
investigate finescale spatiotemporal patterns of forest gaps caused by natural disturbances in
old-growth forests. We contrast the Sentiheb AR product with théandsatderived JRE
TMF product.Specifically, weasked the following questions: 1) How well do the spatial
patterns of natural forest gaps detected by Sertinghtch those of the JRUMF product?

2) What is the size distribution of natural forest gaps&/Bat is the temporal trend of natural

forest gaps in the SentiréINRT analysis?
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3.3 Methods

3.3.1 Study site

French Guiana is a French overseas territory situated in equatorial South America, adjacent to
Suriname and Brazil. Its surface area totalS88kn¥, approximately 95% of which is

covered by olegrowth foresKeenan et al., 2015)nselberg features (isolated rock hills

rising above the surrounding foresivered lowlands) are common, due to its geographical
location within the Guiana Shield. French Guiana is part of the Amazon biome, has a tropical
rainforest climat€Beck et al., 2018with a long wet seasondim December to June (rainfall
from 250 to 550 mm per month) and a dry season from July to November (100 to 180 mm of
rainfall per month). A minor dry season with reduced rainfall (170 to 370 mm per month)
sometimes marks the period around March for apprately one and a half months, with
considerable interannual variabilifBonal et al., 2008)The main causes of anthropogenic
deforestation are smallholder agriculture, forest exploitation (e.g. selective logging, road
building), and most notably gold mining (mostly alluvial or in steep vall@lsarezBerr'os

and Mitchell Aide, 2015; Rahm et al., 201A)Jthough tropical cyclones do not affect French
Guiana, studies have shown that strong wind caused by events such as downburst storms is an
important disturbance agemtthe northwestern and central Amazblegr—Jduirez et al.,

2018, 2017, Peterson et al., 20180d could be an important driver of biomaksersity and
functional patterns of the Amazonian for@gtagnabosco Marra et al., 2018, 2014pwever,

the extent to which wind disturbance affects northeastern Amazonian forests in the Guiana
Shield region remains unclear. Elevation data are available for the entire extent of French
Guiana from the SRTM 1 Ar8econd Global data product (tiles2ibiN, 53Eb65;W), at a
resolution of 1 arsecond (approximately 30 mete(s)SGS, 2015)

3.3.2 Forest gaps detected by the SentireISAR time series

Sentinell SAR time series were processed aBatlere et al. (2021}o produce a raster data

of disturbance events for the entire French Guiana atma 4€nle (hereafter referredds the

S1 dataset). The S1 dataset contains all pixels detected as having experienced disturbance
from January 1st, 2016 to December 31st, 2019. The value of each pixel is its time of
disturbance. Originallijn number of days since April 3rd 2014, the datéhe SentinellA

satellite launch, it was adjusted to the number of days since January 1st, 2016 in this study for
clarity. The S1 dataset has already been used for the netinrealetection of anthropogenic
disturbances in French Guiana, and shohigtl detection accuracy for deforestation events
larger than 0.2 ha (i.e. 20 S1 pixels) during validaf®allere et al., 2021)
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We used thelumpfunction in therasterR packag€Hijmans, 2020}o create a raster
layer of forest gaps for the S1 datasdtiere contiguous S1 pixels were grouped into the same
gap and assigned a unique number. We then converted the raster layer into a vector layer
containing polygons that each represent a forest gap . For each gap, we calculated ifs area (m
converted to hetares), start date (earliest disturbance date in all pixels), finish date (latest
disturbance date in all pixels), median date (median value of disturbance date in all pixels),

and mean elevation (m).

3.3.3 Forest gaps detected e Landsatderived tropical moist forest

cover data

For the Landsadlerived JRETMF data producfvVancutsem et al., 202%yopical moist
forest (TMF) is defineds all closed forests in the humid tropics with two main forest types,
thetropical rain forest and the tropical moist deciduous fd@stinger, 1993)

The JRCTMF dataset contains raster layers that depict the spatial distribution and status
of the TMFs, with three data layers important for the purpose of this study. The OTransition
mapO layers summarize the sequential forest cover change of each TMF pixel at the end of the
latest observation period, includingdisturbed forests, forest degradation (shtenm
disturbances due to either natural or anthropogenic causes), deforestatigerrgiong
conversion of forest to neflorest cover) and neforest cover (permanent or seasonal water
body, nonrforest vegetatio or nonrvegetation cover such as road or buildingéke
ODegradation yearO and ODeforestation yearO layers show the year a pixel has been degraded
or deforested for the first time, respectively. A more detailed description of the data layers in
the JRCTMF dataset can be found in Appendix A (see Supplementary information).

In this study, we acquired the JRB/F dataset for the 10i10; tile encompassing
French Guiana (10 N, 60 W). To compare the -JRG- dataset and the S1 dataset over the
same period, weetained only forest gaps that have been created due to disturbance during the
20162019 period. To this end,enfirst created a raster layer that included all disturbed pixels
(the union of degraded and deforested pixels) in QGIS, and useldityfunction in the
rasterR packagé€Hijmans, 2020}o create aiaster layer of forest gaps for thRGTMF
dataset, where contiguous JR®IF pixels were grouped into the same gap and assigned a
unique patch number. We then converted the raster layer into a vector layer containing
polygons that each represent a fogegt. Out of these gaps, we retained those that contained
only forest degradation or deforestation pixels from 2016 to 2019. For each gap, we
calculated its area (hectares), start year (earliest disturbance year in all pixels), finish year
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(latest disturbnce year in all pixels), median year (median value of disturbance year in all

pixels), and mean elevation (m).

3.3.4 Criteria for retention of natural forest gaps

In order to retain only forest gaps caused by natural disturb&moceshose obtained imé

S1 and the JRCMF datasetwe delimited a study zone using the land use summary data of
French Guiana in 2015 (data and metadata available at:
https://catalogue.geoguyane.fr/geonetwork/srv/fre/catalog.search#/metadata/3difsRitH 4 f
48b280d204a215a8a099 The land use summary datapict areas with verified human

activities, including such as agriculture, logging and goiking. We added a-km buffer

around all areas of human activities, assuming that human activities are spatially aggregated,
and thus mainly occur near other existing hurdesturbed areas. By visually observing this

zone of frequent human activities, wientified and manually delineated two study zones that
were deemed to be far from most anthropogenic disturbances, one in the north and the other
in the south of the territoryand excluded the S1 and JR®IF gaps located outside of the

study zoneThe sudy zone has a total area of ca. 25,698 8,100 km in the north,

13,590 kmi in the south), around one fourth of the total area of French G(Fanmae 1)

We also excluded gaps smaller than 0.2 hectare, based on the reasoning that these
smallest detected gaps run a higher risk of being misidentifications or artifacts (false
positives). The choice of 0.2 hectare as a size threshold was based on the raporech m
detected surface area for disturbance patches for the S1 {BtdRet et al., 2021)

A preliminary visual inspection of the retained gaps in the study zone revealed that a
small proportion of them have distinctly different morphology from the majority of the gaps.
They have irregular shapes, wiheas larger than Ottectare and situated near or within
topographical features that correspond to-wegetated surfaces such as hills, inselbergs or
water bodies. In addition to representing the-megetated surfaces themselves, we theorized
that thes gaps could also be disturbances occurring in the transition zone between the forest
and the nofvegetated surfaces, or artifacts when the shadowing method could not accurately
detect forest edges within a primarily afamest backdrop. Although the patteand
dynamics of these disturbance events are also interesting in their own right, they are likely
distinct from the gap dynamics driven by natural disturbances in the interior of an intact
forest. We therefore chose to exclude them from the analyie rurrent study, by selecting
all the Onotforest coverO pixels in the Transition map layer of the TRE product, and
adding a 304 buffer (distance of five JRCMF pixels) around the neforest pixels to
create a mask of Ontorest coverO regiongycexcluded all gaps overlapping with the nion

131



forest mask. We expect that the majority of the retained forest gaps walibed by natural
disturbancesAll data layers were projected to the WGS 84 / UTM zone 22N Coordinate
Reference System (EPSG:326B2fore processing in QGI®GIS.org, 2021)A detailed
description of théorest gap selection procedure in QGIS and R can be found in Appendix B.

Figure 1. The entire extent of French Guiana (gray line), the region of frequent anthropogenic
disturbance activities (blue) and the study zone (green). Underlying layer: GotadléeSa
Hybrid.
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3.3.5 Comparison of natural forest gaps detected in S1 and JROMF datasets

We visually examined and compared the spatial patterns of the retained forest gaps detected
by the S1 and the JROMVIF dataset, and quantified the proportion aékgaps andarge gaps
(size( 0.5 ha) that overlap in the two datas€ts: both datasets, we also quantified the size

distribution of all gaps in lo¢pg scales.

3.3.6 Influence of topography and temporal dynamics on natural forest gaps

For the naturalorest gaps detected in the S1 dataset, we quantified the distortogdt-area

ratio by elevation classes in-50 bins, and performed linear models to examine if there was a
significant relationship between elevation (midpoint value of each elevédiss) and
disturbedto-totalarea ratio, for both study zones separately as well as combined.

We also quantified the monthly dynamicgatial disturbed arean relation to that of the
following climatic variablesprecipitation, climatic water deficfCWD, mm), and mean
hourly maximum wind speed (81). We retrieved precipitation data from the 3IMERG
multi-satellite monthly time series, and surface maximum wind speed data from the MERRA
2 modelgenerated hourly time series (detailed description dtaila Appendix A). For both
dataset, wextracted data fahe 204E2019 periodin order to be able to examine if lagged
effect of climatic conditions from previous years could contribute to the temporal pattern of
disturbance during the study period. Bdracted values for the extent of both the north and
the south study zone, and calculated an average monthly precipitation over the two study
zones.

CWD results from the difference between evapotranspiration and precipitation: assuming
monthly evapotranspiration level is around 100 mm, CWD = 0 when monthly precipitation >
100 mm, and becomes progressively negative as monthly precipitation decreasabdtel
threshold. As such, we estimated CWD in this study as follows: suppowitiy (CWD at
January 1) = 0 and equakngth months of 30 day€wWD (CWD at dayi starting from
January 1) = Min[0, CWD;-1) + (Pi - 100)/30], whereP; is the monthly precipitation of the
month containing day We then converted daily CWD to mean monthly CWD by calculating
its arithmetic mean. We hypothesized thigther soil water content during the wet season
would weaken root anchorage, leading tghieir probability of treefalls and consequently
more number and total area of forest gdgaes and Miniat, 2017; Osman and Barakbah,
2006)
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3.4 Results

3.4.1 Comparison of natural forest gaps detected by the S1 and JRIGAF

datasets

A total 0f 3,524 S1 (area: 1,019.2 ha, or 0.039% of the study zone) andJRGIBVIF gaps
(area: 382.7 ha, or 0.015% of the study zevexeretained (Table 1). Thus, S1 detected
about three times as many gaps as-JRAE, and the total disturbed area was also ativete
times higherThe South study zone contained both a higher density of gaps and a higher
proportion of disturbed area to total area (Table 1). 172 large gaps (size ( 0.5 ha) were
detected in the S1 dataset, representing 5% of total gap nhumbers antith#gap area,
while 141 large gaps were detected in the-JRO- dataset, representing 13% of total gap
numbers and 27% of total gap area. The-JR&- dataset thus detected a higher proportion
of large forest gaps than the S1 dataset.

Comparing S1 andRGTMF gap location, very fewaps were collocated: out of all
3,524 gaps in the S1 dataset, only 59 had an overlap with-dNRQap (ca. 2%). The
percentage rose ta. 16% folarge gapsdize ( 0.5 ha)out of all172 large gaps the S1
dataset, 2 had an overlap with a JRTMF gap.

Most of the forest gaps exhibited a scattered distribution with no apparent aggregation
(Figure 2). Two regions in the study zone showed noticeably different spatial patterns of the
forest gaps between the two datagse® Appendix C for further detail).

The median S1 gap size was 0.25 ha, versus 0.27 ha feFNIR@aps. Gap size
showed a power law distribution: the tmy gap sizdrequency curve had a slope of €8
(Figure 3). The shapefiles of the retainedsyapboth datasets, the shapefile of the study
zone, as well as the raster file of the {iorest mask are provided as Supplementary Material.

Table 1. Basic summary statistics of the study zone area and the number and total area of
forest gaps in both tisets during the 208019 period.

Total North South
Study zone area (kin 25690 12100 13590
s Number of gaps 3,524 (0.14 per k@) 1,445(0.12 per k) 2,079(0.15 per k)
Total area (ha) 1,019.2 (0.039%)  425.4 (0.035%) 593.8 (0.046%)
Number of gaps 1,008 (0.04 per k 259(0.02 per kM 749(0.06 per kM
JRCTME gap (0.04 per ki (0.02 per ki) (0.06 per k)

Total area (ha)  382.7 (0.015%) 98.8 (0.008%) 283.9 (0.021%)
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Figure 2. Example of scatterédstributed forest gaps in (A) JROMF (left) and (B)
Sentinell (right) datasets. Gap colocation is low. Each dashed grid line is 2 km apart. The
inset shows the extent of French Guiana (gray), study zone (yellow), anddghtect the

example zone in the panels (ca. 16'ki6 km).

Figure 3. Sizdrequency distribution of forest gaps in both datasets iidggcale (bins of
10°1 for gap size), over the study zone during the 28069 period.
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3.4.2Influence of topography and temporal dynamics of natural forest gaps

The disturbedo-totalarea ratio did not show any clear trend with increasing elevation
(Figure 4): linear models showed that the elevation effect wasigariicant for the north
study zone{ = 0.15), he south study zone € 0.10), and for both zones combingad=(
0.25).0Over the 20182019 period, annual disturbed areas ranged from 185.6 to 380.7
hectares (254.8 ha on average) in the S1 datasedpandlarea fraction of new forest gaps
ranged from 0.007% to 0.014%he time series of the monthly total disturbed area showed
that disturbances predominantly occurred in the second half of the year, during the dry season
(Figure 5). The only exception was March to May in 2017, when distoelsgreaked during
the wet season, especially in the south zéhemonthly dynamics of climatic water deficit
(CWD, mm) showed that at each disturbance peiakyrbancdevel started increasing before
CWD started decreasir{§igure6). The monthly dynantis of maximum wind speed was not

observed to have clear trend with disturbance level (Figure 7).
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Figure 4. Disturbedo-totalarea ratio by elevation class (60bins) for gaps from the S1
dataset over the study zone during the P20@9 period.
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Figure 5. Monthly dynamics gdrecipitation (mm) antbtal disturbed area for gaps from the
S1 dataset over the study zone during the 22089 period. Each bar represents monthly
total disturbed area, and the red curve represents monthly total premipitati
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Figure6. Monthly dynamics o€limatic water deficit (mm) antbtal disturbed area for gaps
from the S1 dataset over the study zone during theE2O1® period. Each bar represents
monthly total disturbed area, and the red curve represents maottilpriecipitation.
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Figure7. Monthly dynamicof average hourly maximum wind speed$) andtotal
disturbed area for gaps from the S1 dataset over the study zone during tH20291&eriod.
Each bar represents monthly total disturbed area, anddh®irve represents monthly total
precipitation.
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3.5 Discussions

In this study, we explored the potential of Sentihé&br detection of forest gaps caused by
natural disturbances. A product derived from SentIn8AR data and a recently published
Landsat-derived tropical moist forest cover data product were processed along historical
forest cover and land use data to obtain records of forest gaps likely to be natural in origin.
We found that although gap colocation was very low between the two dattasets,
respectivegapsize distribution followed a similar power law relationship for gaps above 0.2
hectare Therefore, although the comparison of data products is not a real ground truthing
exercise, it does bring confidence that the gap opening events detected with the new Sentinel
1 product are not artifacts caused by the OshadowingO algorithm. The disttotadrea

ratio did not show significant trends with increasing altitude, but the temporal dynamics of
natural forest gaps revealed a clear pattern of higher natural disturbance level during dry
seasonsfurther examination of the timing of the incsean disturbance level suggested that

it could be due to the delayed effect of the wet seasons, which weaken root anchorage and
increase treefall risk, rather than the direct effect of the increased water stress during dry

seasons.

3.5.1 Comparison of sptial patterns of natural forest gaps detected by the

two datasets

Visually, the retained forest gaps in the two datasets exhibited globally similar spatial pattern,
with low level of aggregation. Compared to the JR@F dataset, the Sentingéldataset
detected three times as many natural forest gaps. This can partly be explained bynthe 0.2
size threshold, based on the threshold above which the shadowing method detected forest
gaps with high confidence in Sentirfetlata, which effectively excluded dllet + and 2pixel
gaps (covering 0.09 and 0.18 ha, respectively) in the originalTNRdataset. Since-@ixel
gaps are 0.2Fectare gaps with a size between @2d0.26 rectare(above 2 pixels and
below 3 pixels) size class cannot be quantified cdyrégtthe JRETMF dataset. This
demonstrates the advantage of the finer spatial resolution of the S&ndatellite data.
Although only around 2% of S1 gaps overall were collocated with DRE ones, for
most of these pairs disturbances occurred duhaegame year (coarsest temporal resolution
from the JRETMF annual dataset). Collocation was higher (ca. 15% of all the S1 gaps) for
large gaps (size ( 0.5 ha): this lends confidence for the capability of the S1 to accurately
detect large natural foresags.
The lack of highlyaggregated clusters of gaps or lineathyaped gaps along rivers in the

retained dataset, which would strongly suggest anthropogenic disturbances such as agriculture
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or goldmining, demonstrated that the exclusion mask based osyrasty of human

activities was a reliable basis on which to delimit regions with low levels of anthropogenic
disturbance. The noritentral part of the south zone contained an unusually high density of
JRGTMF patches (Appendix C, Figure C2): this anomadyrrants further inspection, but it

is suspected that those areas are actually under the influence of anthropogenic disturbances as

well, possibly due to proximity to the town of Maripasoula.

3.5.2 Gap size distribution of natural forest gaps

The gap sie distribution of both datasets followed a similar power law relationship,
meaning that log(number of gaps) and log(gap size) exhibited a linear relationship, with the
slope estimated around.9. Past quantifications of forest gap size distribution in Zonia
using a combination of plot data, airborne Lidar data and Landsat satellite data reported a
slope value of2.5 Esp’rito-Santo et al., 2014yvhile another study using airborne Lidar data
at two Brazilian Amazonian sites reported slope values of thimtplinear relationship
ranging from 1.8B2.16 to 2.868.26, depending on how gaps were defi(tddnte et al.,

2015) The slope of the lefpg gap sizdrequency distribution obtained in this study is thus
consistent with past reported values. This would support the hypothesis that the scaling
component of forest gap size distribution is invariablessdiffering environmental and
floristic conditions, and that gap scaling could reflect convergent filling rules of the three
dimensional space in forest cand@sner et al., 2013)Although few studies have attempted
to explain the biological or ecological causes of the gap scaling relationship, they likely
involve light limitation and asymmetrical light competition, as well as canopy responses to
treefals (for instance, how initial treefall propagates in the canopy and causes secondary
treefall).

The detection of intermediatézed natural forest gaps (2@®10°* or ca. 0.72.5 ha) by
Sentinell satellites can be contrasted to the studizfgyrito-Santo et al. (2014where only
Lidar data were used for the detection of intermediate gap®10bha), anl where Landsat
satellite data were used only for detection of large gaps caused by blowdown events (( 5 ha).
This suggests that the Senthiesatellite data could be used for forest gap detection over a
wider range of spatial scales than Landbaivedoptical satellite data, and that they could be
complementary to airborne Lidar data for the detection of intermeslizgd forest gaps, due
to their larger spatial coverage and continuous temporal coverage.

The study of natural forest gaps was limitedehtergaps larger than 0.2dtre. Natural
forest gaps can actually be much smaller, and airborne LiD#dged studies are typically
able to detect gaps down to 108 (®.01 ra) (Goulamoussene et al., 201%yhile plot surveys
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report gaps down to 10103 ha) (Esp’rito-Santo et al., 2014 he annual area fraction of

new forest gaps reported in this study (0ED?14%) is several orders of magnitude smaller

than most documented values (1%saulamoussene et al. (201 7). 76.5% inHunter et al.

(2015) 1.9911.18% inDalagnol et al. (202}) This is likely due to our inability to detect very
small disturbance events (< 0.2 ha). Bgtylating the number of gaps to the @D2 ha

range (0.01 ha being the pixel size of Sentindhta) using the slope of the modeled gap size
distribution (ca-2.8, using a lodog linear model), 1.8 ' 10additional forest gaps (covering

an additionabrea of ca. 1.7 ' 18km?) should be accounted fduring the thregrear period

Adding this extrapolated number to our first estimate, the annual total area of new forest gaps
is estimated to be 568 Krman average. This would represent ca. 2.2% of the total study zone

area, a value more in line with the literat(ifeinter et al., 2015)

3.5.3 Temporal trend of natural forest gaps

Few studies in the literature explored the temporal and seaso@dsions of forest gap

dynamics in tropical fores{but see Dalagnol et al., 202T)hanks to the fine temporal

resolution of Sentinel data, we werable to quantify monthly dynamics of natural forest

gaps over a large spatial extent. Our restiétarly showed that natural disturbances, both in
terms of occurrences and spatial extent, were much higher during the dry season compared to
the wet one, cdrary to our original hypothesis that there would be higher disturbance level
during wet season.

Many abiotic factors could contribute to the seasonality of tree mortality and gap
formation. Higher level of precipitatidoringshigher soil water content,vich could lead to
weakenedoot anchorage andcreasednortality risk due to tree overturnintn support of
this, a study has observed that tree mortality in Central Amazonia was higher in wetter
months, even in years with overall drou@ghleixo et al., 2019)On the other hand, higher
water deficit in dry seasons coutttreasecompetition for waterand thereby also increase
mortality due to heightenatsk of hydraulic failurgMcDowell et al., 2018)In support of
this, a studyusing multiple airborne Lidar observations across the Amazon found that higher
water deficit was related to higher gapdtions(Dalagnol et al., 2021 However, as our
results demonstrated, snapshot observations of disturbance level could produce correlations
that do not reflect actual causal relationship, and continuaes\ations of finescale timing
of disturbance events is necessary to uncover the possible environmental factors driving the
dynamics of natural disturbance level.

One important aspect to consider about seasonality of disturbance is that extreme

environmental conditions and weather events do not always trigger immediate mortality, but

143



could cause delayed effects of increase in mort@ilgixo et al., 2019)indeed, we observed

that within the monthly dynamics, disturbance level started increasing before climatic water
deficit increased, which would support the hypothesisttie@higher disturbance level in dry
seasons is caused by the wet seasons that precede them, rather by the environmental condition
of the dry seasons themselves. This result highlighted that-slatgeemote sensing

observations of disturbance could fai reveal correlations that reflect actual causal link

between environmental factors and natural disturbance dynamics, and continuous

observations are necessary to capture thestaée disturbance dynamics in relation to
environmental changes with higthconfidence.

Wind is another important disturbance agent, and could often be the determining factor
of the moment treefall and tree death actually occur for a tree, even when other underlying
causes (e.g., water stress, disease, senescence) contriteuteath(Aleixo et al., 2019)

However, in this study, disturbance level was not found to be related to monthly average of
hourly maximum wind speed. This mag tue to the longerm climatic data used in this

study, which do not sufficiently capture locally wind speed maximum actually controlling
treefall probability, and that more firseale estimation of wind speed will be necessary to
uncover its relationshipith largescale disturbance level. Another possibility is that wind

acts primarily on a spatial scale that is under the 0.2 ha size threshold used in this study, and
therefore many gaps exhibiting seasonality due to wind speed dynamics were filtdrgd out

the current metho(see, e.g.Dalagnol et al., 2021)

The two disturbance peaks that did not follow the general pattern of higher disturbances
during the dry season, one in January 2016 and the other one in-MantR017 (especially
in the south study zone), as well as the exceptionally high disturbance peak in September
2016 during the wet season, also deserves attention. One hypothesithissthaikceptional
peaks could be caused by the drought effect of the 2015/16 EIl Ni—o, which could be directly
responsible for the peaks in January 2016 peak and September 2016, and indirectly for the

2017 peak through delayed response to climatic events.

3.5.4 Perspectives

In this study, no significant relationship was found between the occurrence of natural forest
gaps and elevatiolalagnol et al. (20213lso found that topographic predictors did not

explain regionakcale variation of gap occurrence in Amazonia: in contrast, soil and
hydrological factors such as higher solil fertility, higher water deficit and higher level of
flooding or waterlogging havieeen observed to be related to higher forest gap fractions at the
site scaldGoulamoussene et al., 201@) at the regional scal@leixo et al., 2019; Dalagnol
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et al., 2021)They did not find significant link between mean wind speed and reegoakd
gap fractions, even though wind is acknowledged to be an importambdiste agent in
Amazonia(Magnabosco Marra et al., 2018; Negi3udrez et al., 2018; Peterson et al., 2019)
In the future, one important research directiothiss to investigate how the temporal
dynamics of environmental factors such as wind speed, water deficit and
flooding/waterlogging correlates with the fine temporal dynamics of forest gaps provided by
Sentinell data. In addition, the interaction betwaeultiple factors, such as between wind
and topographical factors (e.g., windward vs. leeward slope), or between wind and soil water
content, should also be explored as potential factors capable of explaining gap dynamics
variability (Goulamoussene et al., 2017)

Information on natural forest gaps detected by Sentirsaltellites could also aid
validation and development of vegetation models, through the comparison between spatial
patterns of forest gaps detedtby satellite data and produced by model simulations. In
particular, spatial poippattern analyses seek to explore hypotheses about the links between
ecological processes and the patterns they prq@etzin et al., 2014; Wiegand and
Moloney, 2014)and could thus be used to examine if treefall or mortality processes
represented in a model (disturbammeduced or otherwise)emerate landscagseale patterns
of forest gaps that are consistent with satellite observations.

As a verification of the utility of Sentindl data for natural forest gap detection, this
study also provides a crucial first step in the endeavor of extgtiigngap detection method
to an entire region, e.g. Amazonia. For this, the mapping of regoiland use will be
necessary to aid in determining the relevant study zone.

In conclusion, this study demonstrated the utility of Senrtin@AR data to detéc
natural canopy openings in near reale, and is therefore a benchmark for establishing a
monitoring system for undisturbed tropical forests, potentially over a larger spatial extent.
This information could also serve as a basis for futurematiel fusion in the study of

natural disturbances.
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3.7 Supplementary data

Appendix A: detailed dataset description

JRC-TMF dataset

The JRCTMF dataset includes raster layers that depict the spatial distribution of the TMFs
and $iow the land cover status change of each TMF pixel. The OTransitiommaap
ClassesO and OTransition msybtypesO layers provide a summary of the sequential forest
transition at the end of the latest observation period, classified into generalc{assEa0 and
more detailed OsubtypesO respectilélg.main classes in the Transition Map lapetude

1) undisturbed forests (without any observed disturbance during the period of Landsat
monitoring), 2) forest degradation (shtetm disturbances, weth may be of either natural or
anthropogenic causes), 3) deforestation (famgh conversion of forest to ndarest cover),

4) forest regrowth (vegetative growth on a previously deforested pixel), 5) ongoing
degradation/forestation (disturbance eventsait@d since 2018, for which it is not yet
possible to determine whether it should be attributed to degradation or deforestation), 6) water
body (permanent or seasonal), and 7) other land cover (includingMBrvegetation such as
savannah or shrublandgraculture, or norvegetation cover such as road or buildings).

The OUndisturbed and degraded TMFO layer is a simplification of the Transition Map
layer, and shows the spatial extent of both undisturbed and degraded tropical moist forests.
The OAnnual chae collectionO layers depicts the extent and status of the TMF (degradation,
deforestation or regrowth) for each year, with one layer for each year in the observation
period. The ODegradation yearO and ODeforestation yearO layers show the year a pixel has
been degraded or deforested for the first time, respectively. Other layers characterize the
disturbance duration and intensity, as well as the number of observations. The dataset is freely
available ahttps://forobs.jrc.ec.europa.eu/TMMith a user guide that contains detailed

technical description of the dataset.

Monthly time seriesof climatic conditions

Data of monthly dynamics ofr@cipitation(mm) were taken frona single multisatellite
precipitation productwhich assimilates data fro@lobal Precipitation Missio(GPM)
constellation andther precipitationrelevant satellite passive microwave sensbhe data
product was assimilatetirough version 6 of the Integrated MgatellitE Retrievals for

GPM (IMERG) unified algorithm, gridded at 0.1j resolution (GPM_3IMERGMffman et

al., 2019). Data of dynamics of monthly average of hourly maximum wind speésfm

were taken from a modélased MERRA2 data product, which isgobal atmospheric
reanalysis produced by NASA Global Modeling and Assimilation Office (GMAO) using the

Goddard Earth Observing System Model (GEOS) version4.12.
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