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Chapter 1

INTRODUCTION

Earthquakes are among the deadliest and costly misfortunes that befall humanity. They
are severely disrupting natural and man-made environment inflicting devastation that
amounts to thousands of deaths and destruction of key facilities (homes, harbors, energy
and transportation networks) that reverse or inhibit the economic growth and human
activity (see OECD, 2018). Earthquakes can be separated into two categories, those that
occur naturally given the seismogenic activity of particular regions (see Kanamori & Brod-
sky, 2004b) and those that occur due to the human activity (see Elsworth et al., 2016;
Rubinstein & Mahani, 2015, among others). Indeed anthropogenic earthquake events (in-
duced or triggered seismicity) have been observed in national and international records
over the last 80 years resulting from nuclear tests, filling of dams, extraction of oil and
gas, storage of nuclear waste, geothermal energy projects as well as CO2 sequestration for
mitigation of the effects of climate change. All these activities increase the seismogenic
activity of a region and although the first two causes produce immediate results, whose
risk can be efficiently taken into account, this cannot be said for the rest of the activi-
ties given above. In fact the increase in the region seismicity will take time to develop.
It strongly depends on the properties of the geological network of faults affected by the
operations (see Hincks et al., 2018).

While the increase in regional seismicity is noticeable over a time period, we are still
not able to predict successfully the occurrence of an earthquake over a meaningful time
scale that would allow for successful reinforcement of the existing infrastructure, prevent-
ing catastrophe. Another approach to the same problem would be to mitigate the effects
of the earthquake phenomenon by successfully controlling its evolution and the transition
of the fault system form stable to unstable seismic slip (see Guglielmi et al., 2015; Raleigh
et al., 1976; Stefanou, 2018, 2019). To this end, understanding the mechanical behavior of
the fault in conjunction with other physical mechanisms, present during coseismic slip, is
of primary importance. In particular, it was recently shown in Stefanou and Tzortzopou-
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los (2020), Stefanou (2019) that earthquake like frictional instabilities can be controlled
provided that some rough boundaries of the friction are known. Therefore, studying the
mechanics of faults will allow us to define meaningful upper and lower bounds for the
frictional response during an earthquake as well as the expected earthquake acceleration
spectra for estimating the radiated energy to the earth’s surface.

As shown in Kanamori and Brodsky (2004b), the quantification of the energy released
during the earthquake is primarily divided in two parts. The dynamic part, about 5∼10%,
is the one that transforms into mechanical waves that reach to the surface. The rest of
the energy dissipates inside a narrow zone of intense deformation due to friction, and
contributes to a lesser extent in nucleating the fault rupture at the tip of the fault. The
region of intense deformation contained inside the adjacent earth blocks forming the edges
of the fault is called the fault gouge (see Figure 1.1 and Myers and Aydin (2004)). This is
a region of ultracataclastic material, product of the intense friction and fault nucleation
taking place during co-seismic slip (see Brantut et al., 2008; Myers & Aydin, 2004; Scholz,
2019; Sibson, 2003b; Sibson & Toy, 2006; Takahashi et al., 2017).

The evolution of the coseismic-slip during an earthquake is governed by the frictional
behavior of the fault gouge material under the appropriate temperature and fluid pressure
conditions at the prescribed depth inside the seismogenic zone 1. Performing an experi-
ment to gather data about the in situ behavior is problematic (see Brantut et al., 2008;
J. Sulem et al., 2004; Takahashi et al., 2017; Verberne et al., 2015; Verberne et al., 2020).
On one hand we lack the capability for large experiments in the suggested temperature
and pressure ranges, on the other hand retrieving a sample of fault gouge material from
the proper depth while keeping its stress distribution, hydraulic and thermal diffusivity
intact is very difficult (see Lee & Delaney, 1987; Mase & Smith, 1987; Rice, 2006a; Sibson,
2003b). Therefore, we have to rely on material retrieved from boreholes at the exhumed
parts of the fault, which however might be subjected to erosion for geological times, and
are not representative of the material and conditions of seismic faults (see Brantut et al.,
2008; F. M. Chester & Chester, 1998a; Myers & Aydin, 2004; Nicchio et al., 2018). More-
over, during specimen extraction the material is disturbed and separated from its initial
physico-chemo-mechanical environment, which is affects material parameters crucial dur-

1. In geophysiscs and fault mechanics, the seismogenic zone covers the entire depth of the lithosphere
0 ∼ 25 km. In this depth the temperature and lithostatic pressure allow for elastic and frictional processes
to dominate, leading to brittle faulting and seismic events (see Cook et al., 2010; Scholz, 2019).
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Figure 1.1 – Image of a fault gouge taken by Myers and Aydin (2004)

ing coseismic slip, such as thermal and hydraulic diffusivities.

In recent years sampling of fault gouge material from well monitored faults has become
more common (see Carpenter et al., 2011; Ikari et al., 2015; Niemeijer et al., 2016;
Tanikawa & Shimamoto, 2009). However, the uncertainty due to the small dimensions
of the samples (∼mm) compared to the large scale of the fault (∼km) results to addi-
tional limitations to what can be tested experimentally. Apart from the disparity of the
dimensions between the samples and physical reality, we need to also take into account the
different conditions in terms of stress, temperature, salinity, heterogeneities and asperities
distribution, prevalent in the fault gouge region (see Boullier et al., 2009; Brantut et al.,
2008; Carpenter et al., 2011; Di Toro et al., 2011b; Rempe et al., 2020; J. Sulem et al.,
2004; Takahashi et al., 2017; Verberne et al., 2015; Verberne et al., 2020, among others).
Furthermore, as we suggest in chapters 5 and 6, (see also Rice et al., 2014a) , the local-
ization instability travels along the fault gouge and, for this reason, the sample collected
might not contain the region of interest for proper characterization of the Principal Slip
Zone (PSZ) properties (see Boullier et al., 2009; Collins-craft et al., 2019; Ma et al., 2006;
Nicchio et al., 2018; Rice, 2006a). Therefore, experiments performed on such samples do
not necessarily reflect the true behavior of the fault gouge during coseismic slip. In light
of these facts we need to rely on theoretical models and results obtained from numerical
analyses, in combination with experimental observation.

Experimental evidence performed on exhumed fault gouges, points towards a localized
mode of failure that is contained is a small region with width of the order of micrometers
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to milimeters (see Lachenbruch, 1980a; Rice, 2006b; Scholz, 2019; Sibson, 2003b; J. Sulem
& Stefanou, 2016a; J. Sulem et al., 2011). This highly localized mode of failure has a lot
in common with similar modes observed in experiments on metals (see Benallal et al.,
2006; Benallal et al., 2008; Forest, Boubidi, et al., 2001; Hähner et al., 2002; Mazière
et al., 2010; Needleman & Tvergaard, 1992; Peirce et al., 1984; Ren et al., 2021; Reyne
et al., 2019), where under high strain rates the preferred failure mode is concentrated in
a region of a small finite zone of accumulated plastic deformation called a shear band. In
metals, a series of criteria have been developed for predicting localization of the uniform
shear profile near the highly strained regions of the specimens, based on experiments be-
ing conducted over a large range of shearing velocities and temperatures.

Investigating numerically the creation and post yield behavior of a specimen with a shear
band is a challenging task due to localization happening on a mathematical plane disturb-
ing the objectivity of the mesh used during the analysis (see Benallal et al., 2006; Benallal,
2005b; Benallal & Comi, 2003; Erlich et al., 1980; Forest, Boubidi, et al., 2001; Moes &
Chevaugeon, 2021; Moës et al., 2003; Moës et al., 1999; Moës et al., 2011; Muhlhaus &
Vardoulakis, 1988; Needleman, 1988; Papanastasiou & Vardoulakis, 1989; Papanastasiou
& Vardoulakis, 1992; I. Vardoulakis & Papanastasiou, 1988; Wu & Freund, 1984; Zervos
et al., 2001a; Zervos et al., 2001b). What has been observed is that as we decrease the size
of the elements used in the numerical analyses the width of the localized zone becomes
progressively smaller without showing any signs of convergence. This mesh dependency
of the numerical solution leads to serious problems in the evaluation of the dissipated
energy (the energy loss to heat during yielding of the material). In particular localization
on a mathematical plane leads to a solution of zero plastic dissipation. This is reflected
in the numerical analyses as we progressively increase the number of elements, where the
dissipated energy becomes zero corresponding to near vertical stress drop of the friction
vs slip diagram, (τ − δ) (see Needleman, 1988; Needleman & Tvergaard, 1992; Sluys &
de Borst, 1992, and chapter 3, among others). Consequently, the apparent stress-strain
response of the system is mesh dependent.

In metals, elaborate material laws have been developed taking into account viscosity,
thermal softening and higher order continua in order to tackle the above described prob-
lems and obtain more realistic results (see de Borst & Sluys, 1991; Erlich et al., 1980;
Ruina, 1983a; Shawki & Clifton, 1989; Sluys & de Borst, 1992; Sluys et al., 1993; W.
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Wang et al., 1997; H. Zbib & Aifantis, 1989). These approaches aim at regularizing the
localization of plastic strain rate to a profile of finite width. The majority of those ma-
terial laws have been tried also in the case of geomaterials, even though the frictional
softening is attributed to a broader category of natural causes such as flash heating at
the asperity contacts (see Rice, 2006a), thermal pressurization (see Lachenbruch, 1980a),
thermal decomposition of carbonate minerals (see Alevizos et al., 2014; J. Sulem & Famin,
2009; E. Veveakis et al., 2014) and lubrication due to silica gel formation (see Di Toro
et al., 2011b). Nevertheless, there is some degree of similarity between the micro grains
in metals and the quarzites present in the grains of geomaterials that allows for applica-
tion of concepts from metal plasticity to granular geomaterials (see de Borst & Duretz,
2020; Muhlhaus & Vardoulakis, 1988; Platt et al., 2014a; Rice, 2006a; Rice et al., 2014a;
Stefanou et al., 2016; J. Sulem et al., 2011; I. Vardoulakis, 2018; E. Veveakis et al., 2014).
Moreover, recently, a new approach accounting for the microstructure of granular mate-
rials in a Thermodynamical context was proposed in (see Alaei et al., 2021). The authors
of this study introduce the notion of grain temperature in conjuction with the inertial
number to predict the constitutive behavior of granular materials under various deforma-
tions regimes.

What is of interest in all these approaches is the conditions under which a uniform strain
rate profile localizes to a profile of finite or infinitesimal width. This is considered by
investigating the stability of the original uniform solution (see Benallal & Comi, 2003;
Muhlhaus & Vardoulakis, 1988; Papamichos et al., 2017; Papanastasiou & Vardoulakis,
1992; Rice, 1975; J. Sulem & Vardoulakis, 1995, among others, see chapter 3). This is
a challenging task by itself if one considers all the possible physical couplings acting at
different length and time scales suspected to influence the localization of the shear band
and the nonlinearities of the underlying material problem.

Early attempts at describing the frictional behavior and subsequent deformation inside
the fault gouge used a model of uniform shearing of a 1D layer coupled with the tempera-
ture and pressure diffusion equations (see Lachenbruch, 1980a). This approach, although
sufficient for the cases where the fault gouge width is small ∼ 100 µm, is lacking for larger
widths, where a principal slip zone accommodating the majority of the seismic slip can be
identified inside the fault gouge (see Mase & Smith, 1987; Rice, 2006a; Rice et al., 2014a).
The consideration of the dissipated energy at the adjacent parts of the fault is assumed
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to happen primarily due to friction inside the PSZ. The question then emerges, whether
the principal slip zone can be considered as an interface in the surrounding brittle rock,
in which case, the displacement can be said to localize into a mathematical plane, or it
has a certain finite width. This question is directly related to the dissipated energy, the
multiphysics couplings and the models to be used for its quantification (see Rice, 2006a;
Rice et al., 2001).

In Mase and Smith (1987), Rempel and Rice (2006), Rice (2006a, 2006b) the authors
studied the evolution of temperature and pore fluid pressure during coseismic slip. Dur-
ing seismic slip, the fault gouge is under intense plastic deformation and thus plastic work
is produced. This work is released in the form of heat in the pore fluid and the solid
skeleton of the fault gouge material. The difference in the expansivities of the fluid and
solid phase, as the pore fluid tends to expand more, leads to an increase in the pore fluid
pressure. Considering that the friction of the fault gouge material is dependent on the
confining pressure, this leads to frictional weakening of the fault gouge. This procedure
is known as thermal pressurization and is the main weakening mechanism considered in
this thesis.

Mase and Smith (1987) conducted numerical analyses in order to show the role of thermal
pressurization under isothermal drained boundary conditions, they also investigated the
role of variable slip velocity time histories during coseismic slip. By prescribing the width
of the localized region their analyses investigated the role of thermal pressurization in the
frictional strength of the fault. In Rice (2006a) the results of Mase and Smith (1987) were
obtained analytically for the case of a fault gouge localized on a mathematical plane. This
allowed the researchers to obtain estimates for the dissipation energy during coseismic
slip, and to calculate the energy necessary for the nucleation of the fault according to
Rice (1973a). The main assumptions in Rice (2006a) are that strain localizes on a math-
ematical plane, and that the boundaries of the fault gouge are sufficiently far from the
mathematical plane, where strain localizes on. Finally, another central assumption is that
during the duration of the analysis the localization remains in the same position inside
the fault gouge.

The assumptions described above are paramount for the determination of the frictional
response, the part of the overall energy budget of the seismic event that dissipates into
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heat and of the contributing energy to continue the nucleation of the fault. As such they
are a subject of vivid discussion.

Evaluation of the assumptions of slip on a mathematical plane

Thickness of strain localization

Experimental results suggest, that in fact the PSZ has a localization width of the order
of some micrometers to millimeters (see F. M. Chester & Chester, 1998a; J. S. Chester
et al., 2005; Sibson, 2003b). Therefore, it is a major simplification to assume it as being
entirelly localized on a mathematical plane. This is also noted in the models presented in
(see Andrews, 2002; Platt et al., 2014a; Rempel & Rice, 2006; Rice, 2006a; Rice et al.,
2014a; I. Vardoulakis, 1996a, 1996b) since the width of the PSZ is of paramount impor-
tance in evaluating correctly the energy budget under pre- and coseismic slip conditions,
in answering questions considering the stability of the fault (see Platt et al., 2014a; Rat-
tez, Stefanou, & Sulem, 2018; Rattez, Stefanou, Sulem, Veveakis, et al., 2018a, 2018b,
2018c), its nucleation procedure (see Rice, 1973a) and the energy escaping to the surface
in the form of seismic waves (see Kanamori & Rivera, 2006).

The existence of the finite localization width indicates the presence of a characteristic
microstructure taking part in the seismic phenomenon, whose behavior needs to be ana-
lyzed. In particular, microstructure introduces internal lengths in the material that need
to be taken into account when the thickness of the PSZ is calculated. This is important
since the estimation of the localization thickness is crucial in evaluating the dissipated
energy, the frictional post yield behavior of the fault and the criteria for fault propagation.
However, the classical Cauchy continuum used in the majority of engineering applications
to describe the mechanical behavior of geomaterials under severe plastic deformation,
lacks a characteristic length scale and can be shown to localize into a mathematical plane
of zero thickness under specific -post yield- values of the material parameters. Conditions
for simulating the microstructure affecting the mechanical behavior vary in the literature.
The approaches commonly used are the use of discrete element modeling (DEM) analyses
(see Froiio et al., 2006; Rezakhani & Cusatis, 2016, among others) as well as finite element
modeling (FEM) by micromorphic continua such as Cosserat continua (see Rattez, Ste-
fanou, & Sulem, 2018; Rattez, Stefanou, Sulem, Veveakis, et al., 2018a, 2018b; J. Sulem
et al., 2011; I. Vardoulakis, 2019).
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Apart from direct consideration of the microstucture, different regularization approaches
have been suggested in the bibliography to avoid strain localization on a mathematical
plane. One such approach is to introduce additional physics into the mechanical problem
such as heat and pore fluid diffusion processes. Nevertheless, it has been shown in chapter
3 that a Cauchy layer coupled with pressure and temperature diffusion equations does
indeed localize into a mathematical plane. Another approach to the problem is the intro-
duction of a characteristic time scale into the model through the use of rate-dependent
elasto-viscoplastic Cauchy continuum (see de Borst & Duretz, 2020; Sluys & de Borst,
1992). Again however, we show in chapters 3 and 4 that regularization of the localization
width fails. Finally, the combination of a rate dependent Cauchy material with strain rate
hardening and multiphysical couplings is shown in Platt et al. (2014a), Rice et al. (2014a)
to regularize the problem considering the apparent strain softening due to the frictional
weakening mechanism of thermal pressurization. The model used by the authors in Platt
et al. (2014a), Rice et al. (2014a) draws its inspiration from the rate and state friction
law Dieterich (1992), Rice et al. (2001), Ruina (1983a), however the authors do not solve
for the evolution of the state variable during shearing.

The role of inertia as a regularization mechanism

Considering the regularization approaches we discussed above, the question of inclusion
of inertia as an additional regularization mechanism into the problem’s modeling equa-
tions is also considered. On a physical basis, the inclusion of inertia as a regularization
mechanism stems form the potential increase of the width of the PSZ. In Rice (2006a)
it has been argued that the small diffusion lengths corresponding to the averaged fault
gouge material parameters during slip do not activate a wider region of the material and,
therefore, inertia of the PSZ is negligible. This was studied in detail in Platt et al. (2014a),
where it was found that the dynamic character of the problem does not depend at all on
the diffusion lengths, inasmuch as the ambient effective normal stress and the shear ve-
locity. It was subsequently shown that inertia leads to a widening of the localization zone
as well as stalling the localization from developing in full. Using a linear perturbation
approach it was shown that both for laboratory as well as in situ seismic processes, the
range of seismic slip velocities applied, combined with the ambient effective stresses, does
not lead to important inertial effects in all depths of the seismogenic zone.
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However, the situation might be different at the propagation front as well as the trailing
end of the fault. At the fault front velocities are calculated to severely exceed the critical
velocity indicating deviation due to inertial effects. Nevertheless, since the front propa-
gates extremely fast the inertia effects might not amount to much since the localization
is still at early stages. At the trailing end, the temperature increase due to friction and
chemical reactions leads to thermal pressurization decreasing the effective stress at the
PSZ. If we consider the current effective stress instead of the ambient, this tends to rein-
force the inertial effects leading to a widening of localization and slower friction drops. At
shallow depths this mechanism is thought to create self healing pulses although further
study is needed (see Platt et al., 2014a).

The discussion above incorporated the inertia on the fault gouge level. However, iner-
tia also plays a role in the evolution of the microstructure (see Da Cruz et al., 2005). It is
estimated in Platt et al. (2014a) that the microstructure is one order of magnitude more
sensitive to inertial effects if several assumptions considering the size and shape of the
grains hold true. This in turn means that inertia effects need to be studied on a case by
case basis considering the properties of the fault gauge. This microinertia can be taken
into account by introduction of a continuum accounting for the material microstructure
such as the Cosserat continuum corresponding to the first order micromorphic theory
(see Germain, 2014; I. Vardoulakis, 2019). Brief description of the Cosserat continuum
kinematics and balance equations are given in chapter 3. This continuum has the added
advantage that its localization width under mechanical strain softening or coupled diffu-
sion conditions remains finite. It is shown through bifurcation analysis in Rattez, Stefanou,
and Sulem (2018), Rattez, Stefanou, Sulem, Veveakis, et al. (2018a, 2018b) that intro-
duction of inertia leads to a slight increase of the localization width in a Cosserat medium.

Considering the role of inertia in the strain localization profile during coseismic slip, Platt
et al. (2014a), Rice et al. (2014a) have shown through the use of an appropriate charac-
teristic time in the non dimensionalized system of coupled partial differential equations
that its influence can be negelected except at the propagation tip. In chapter 5, section
5.2.6 we show that the inertia calculations described in (see Platt et al., 2014a; Rice et al.,
2014a) remain still valid for the Cosserat case with multiphysical couplings. Additional
information about grain inertia can be given through the use of viscosity in the constitu-
tive description to model the jiggling of the grains (among other complicated phenomena
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at the microscale) during deformation (see Alaei et al., 2021; Rognon et al., 2015). This,
has been modeled in section 5.4. In particular, we incorporated Perzyna viscoplasticity
with thermal pressurization in the framework of Cosserat micromorphic theory for the
shearing of a Cosserat layer, considering large coseismic slip via an Adaptive Lagrangian
Eulerian (ALE) method. This leads to a velocity weakening strain rate hardening model,
exhibiting stick slip events qualitatively similar to a rate and state macroscopic friction
law (see Dieterich, 1992; Ruina, 1983a).

Influence of propagating strain localization instabilities in the fault’s frictional
response

The assumption about a stationary PSZ is also a major constraint. As we suggest in chap-
ter 6, the strain localization may be traveling inside the fault gouge. The concept of the
traveling strain localization inside the fault gouge has been suggested also in Collins-craft
et al. (2019), Platt et al. (2014a), in higher spatial dimensions this traveling mode of strain
localization may give rise to eddies forming in the granular media as described in Griffani
et al. (2013), Miller et al. (2013), Rognon et al. (2015). It should be noted that similar
behavior has been observed in metals in the context of Portevin Le Chatelier shear bands
(see Benallal et al., 2006; Benallal et al., 2008; Hähner et al., 2002; Mazière et al., 2010;
Ren et al., 2021; Reyne et al., 2019).

In Benallal (2005b), Benallal and Comi (2003) the researchers have shown that in a
saturated porous Cauchy continuum the existence of imaginary part in the Lyapunov
coefficient. This leads to flutter instabilities inside the medium (see Rice, 1975). The
imaginary part of the Lyapunov exponent is responsible for a traveling localization inside
the continuum (see also chapters 4 and 5). Traveling shear bands have also been observed
in Rice et al. (2014a), where the authors have identified conditions for the existence of
the traveling perturbations. The authors note, however, that the existence of these per-
turbations are only possible in the context of periodic boundary conditions. Furthermore,
according to their model such perturbations are only possible for specific values of the
rate hardening parameter and the hydraulic diffussivity. In the context of the nonlinear
Cosserat continuum used in chapter 5 of this thesis, with perfectly plastic Drucker Prager
material law and without the introduction of mechanical strain rate hardening, we observe
traveling perturbations in a isothermal drained bounded domain for permeability values
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that are typically observed in fault gouges.

Furthermore, the effect of heat and pore fluid flow through the boundaries should not
be ignored. As we show in chapters 5 and 6, the effect of the boundaries is felt in the fault
gouge domain for the range of seismic slip velocities observed in nature. Together with
the traveling shear band, boundary effects are responsible for “ventilation” phenomena
that result in frictional regain and oscillations in the fault’s frictional response.

In chapter 6, we investigate by semi analytical methods the implications of a travel-
ing instability in the pore fluid pressure and temperature profiles of the fault gouge. We
extend our analyses from the case of the stationary shear band on an infinite domain
described in Platt et al. (2014a), Rice (2006a), Rice et al. (2014a), to the case of a mov-
ing shear band on an infinite domain. Then, we take into account the dimensions of the
fault gouge and examine the effect of the boundary conditions on the temperature and
pore fluid pressure profiles obtained by the traveling strain localization. Next, we exam-
ine bounds for the traveling velocity of the shear band inside the fault zone. Under these
considerations new bounds for the timescales of thermal pressurization are obtained. A
traveling shear band together with the new set of boundary conditions significantly change
the frictional behavior of the fault enhancing the frequency content of the acceleration
spectra that we can predict (see Aki, 1967; Brune, 1970; Haskell, 1964; Okubo et al., 2019).

Through these analyses it is found that for the typical average seismic slip velocity and
seismic slip displacement, the evolution of friction deviates from the available solutions
presented in literature (see Lachenbruch, 1980a; Rice et al., 2014a) and from the findings
presented in chapters 5 and 6. While at the small shearing analyses (initial stages), the
available solutions agree, for large coseismic slip (δ), the solution obtained in chapter 5 for
the Cosserat case with strain softening and THM couplings shows a traveling instability
developing inside the fault gouge. This behavior presents results that are qualitatively in
agreement with those obtained in chapter 6, section 6.4.2.2. The possibility of such an
instability has been discussed by Platt et al. (2014a) while evidence of such a behavior
were proposed after examination of the Chi-Chi earthquake (see Boullier et al., 2009).
Those results could present an alternative answer to the disagreement between the low
frequency seismic spectra predicted by the dynamic model concerning the frictional be-
havior during coseismic slip and the high frequency acceleration spectra inferred by the
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seismograms observations at the surface (see Madariaga et al., 1998; Tsai & Hirth, 2020).

Scope and structure of the thesis

The scope of this thesis is the quantification of the behavior of a fault during coseismic
slip. We investigate the frictional behavior of a fault gouge subjected to shear under the
influence of the apparent frictional weakening mechanism of thermal pressurization. We
are mainly interested in the role of the microstructure and the assessment of thermal
pressurization as a frictional weakening mechanism. In other words we investigate the
conditions inside the fault, when an earthquake happens and a seismic slip takes place.
Such an analysis can be used for the calculation of the energy balance, stress drop in the
material surrounding the fault as well as defining the conditions under which an earth-
quake nucleates (see Kanamori & Brodsky, 2004b; Rice, 2006a; Viesca & Garagash, 2015).

Due to strain softening, we will see in chapter 3 that strain localizes on a mathemati-
cal plane leading to mesh dependent solution for the evolution of friction and the dissi-
pated energy under imposed shear displacement. In order to avoid mesh dependency in
numerical analyses, different regularization methods have been proposed in the bibliogra-
phy. The main approaches considered, are the introduction of viscosity (see de Borst &
Duretz, 2020; Kamasamudram et al., 2021; Needleman, 1988; Peirce et al., 1984; Sluys
& de Borst, 1992; W. Wang et al., 1997), introduction of multiphysical couplings (see
Benallal, 2005a; Benallal & Comi, 2003; Jacquey et al., 2021; Lachenbruch, 1980a; Lee &
Delaney, 1987; Mase & Smith, 1987; Platt et al., 2014a; Stefanou & Gerolymatou, 2019,
among others) and finally the consideration of the material’s microstructure through the
use of first order micromorphic Cosserat continua (see De Borst, 1991; de Borst & Sluys,
1991; Forest & Sievert, 2003; Forest, 2019; Forest, Pradel, et al., 2001; Germain, 1973;
Muhlhaus & Vardoulakis, 1988; Neff et al., 2014; Papanastasiou & Vardoulakis, 1989;
Papanastasiou & Vardoulakis, 1992; Sluys et al., 1993; I. Vardoulakis, 2018; H. Zbib &
Aifantis, 1989; H. M. Zbib & Aifantis, 1992; Zervos et al., 2001b, among others). Other
approaches for regularization of strain localization in the context of a damage material
law, have been proposed based on the level set method with the discontinuous Galerkin
method as proposed in Moës et al. (2003), Moës et al. (1999), Moës et al. (2011), Shiferaw
et al. (2021) and the novel Lipschitz strain regularization localization method (Liep-field),
presented in Moes and Chevaugeon (2021). Numerical techniques for handling the local-

20



ization of plastic deformation in the context of bounary element methods have also been
proposed in Ciardo et al. (2020).

Next, we assess the regularization capability of viscosity, multiphysics and Cosserat con-
tinuum to strain localization and mesh dependence. The notion of stability is presented
in chapter 2, where the concepts of stability of the solution, fixed loci and bifurcations
are discussed in greater detail. Furthermore, we apply the method of Lyapunov stability
analysis in an introductory problem. In chapter 3 we apply Lyapunov’s first method to
the set of regularization approaches under quasistatic loading conditions. We show there,
that the proposed regularization methods, the only one capable of efficiently regularizing
the ill-posed problem is the consideration of a first order micromorphic Cosserat contiuum.

In chapter 4 we emphasize on the role of viscosity in the regularization of strain lo-
calization by considering viscosity and inertia. This problem has been studied in depth in
the literature, however, the results are conflicting. In chapter 4, we perform an in depth
analysis of the viscosity and inertia regularization approach with the help of Lyapunov
stability analysis. We complete our theoretical analysis with numerical examples, propos-
ing a criterion for the conditions under which strain localization becomes noticeable in
the numerical results. This useful result allows us to once more justify our selection of
the Cosserat continuum as the medium on which to conduct our multiphysical numerical
analyses taking the role of the microstructure into account.

In chapter 5 the main numerical results of this thesis are presented. We investigate the
frictional response of a mature fault under large coseismic slip. For our analyses we use a
linear elastic perfectly plastic first order micromorphic Cosserat continuum coupled with
the pressure and temperature diffusion equations. These couplings allow us to investigate
the influence of the mechanism of thermal pressurization in the fault’s frictional response
during coseismic slip. The above problem has also been studied in Rattez, Stefanou, and
Sulem (2018), Rattez, Stefanou, Sulem, Veveakis, et al. (2018a, 2018b, 2018c), however,
these analyses are mainly constrained to small displacements of 5 mm. In our analyses,
we apply realistic seismic slip displacements δ of 1 m under typical seismic slip velocities
in the range of 0.1 ∼ 1.0 m/s. The small size of the fault gouge (H = 1 mm) relative to
the applied shear displacement, obliges us to consider large displacements during shear-
ing. We do so by using an Adaptive Lagrangian Eulerian method (ALE). Other methods
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can be used for describing micromorphic continua under in finite strains, as described in
Forest and Sievert (2003), Forest (2020a).

Our analyses that advance well beyond the initial stages of seismic slip show a behav-
ior that diverges -spectacularly- from the existing theoretical models of uniform slip (see
Lachenbruch, 1980a; Lachenbruch, 1980b) and slip on a mathematical plane (see Mase
& Smith, 1987; Platt et al., 2014a, 2014b; Rice, 2006a; Rice et al., 2014a), when the
weakening mechanism of thermal pressurization is considered. In particular after the ini-
tial velocity weakening behavior observed in our analyses the fault gouge shows signs
of strength regain, eventually reaching a value of residual shear strength, lower than the
fault’s initial friction, but not zero as previous analyses show (see Platt et al., 2014a;
Rice, 2006a; Rice et al., 2014a). Furthermore, we note that even at the initial stages of
the analyses δ < 10 mm, a traveling wave of strain localization makes its appearance. This
result although theoretically possible in the Cauchy case (see Benallal, 2005a; Benallal
& Comi, 2003; Platt et al., 2014a; Rice et al., 2014a, for flutter instabilities) is observed
for the first time in the context of a nonlinear coupled thermal pressurization analysis
in Cosserat media. We note here that the phenomenon is similar to the emergence of
Portevin Le Chatelier bands in metals during shearing (see Benallal et al., 2006; Benallal
et al., 2008; Forest, Boubidi, et al., 2001; Mazière et al., 2010; Ren et al., 2021; Reyne
et al., 2019, among others). The periodic motion of the strain localization wave inside
the fault gouge results in oscillations of the fault’s frictional behavior. In chapter 6 we
provide an explanation for the emergence of traveling instabilities and we investigate the
conditions for their emergence and the influence of the boundaries in the period of the
resulting frictional oscillations.

We continue our investigation of the fault gouge response by introducing viscosity in
the material law. We do this in order to model the inertia of the grains and other com-
plex mechanisms of the microstructure inside the fault gouge. The addition of viscosity
to our model introduces a rate and state behavior to the model’s frictional response. We
perform a parametric analysis for the parameters of viscosity, hydraulic compressibility
and the material’s internal length. We notice that for values of the viscosity parameter
close to the corresponding rate parameter, α, of the rate and state model (see Dieterich,
1992; Rice et al., 2001; Ruina, 1983a; Scholz, 2019, among others), the numerical results
present apparent jumps, which could lead to multiple stick slip events without the use of
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any additional internal variable as in the classical rate and state friction model.

We show also that the material length has little to no influence in the numerical re-
sults, suggesting that the phenomenon is fully described by the analysis diffusion lengths
and viscosity. This is not to say that the material length scale does not affect the analysis.
The material length scale provides us with a lower bound to the thickness of the strain
localization. This way it ensures that the analyses will not be localizing on a mathematical
plane.

Thus, our enhanced model contains both the effect of thermal pressurization and the
effect of the rate and state material law. Finally, we compare our theoretical results with
the experimental results for the influence of thermal pressurization in the shear response
of rocks in a modified rotary shear apparatus found in Badt et al. (2020), Rempe et al.
(2020). The results suggest qualitative agreement between the numerical frictional re-
sponse and the observed friction derived from the experiments.

Nevertheless, the issue of the difference between the established solution of the numeri-
cal results and the theoretically predicted response described in Lee and Delaney (1987),
Mase and Smith (1987), Platt et al. (2014a, 2014b), Rice (2006a), Rice et al. (2014a)
needs to be addressed. In chapter 6 we focus on this issue by questioning the fundamental
assumptions of the classical model of slip on a mathematical plane under the influence of
thermal pressurization (see Lee & Delaney, 1987; Mase & Smith, 1987; Platt et al., 2014a,
2014b; Rice, 2006a; Rice et al., 2014a).

Following the methodology described in Rice (2006a), we recast the nonlinear bound-
ary value problem as a linear Volterra integral equation of the second kind (see Wazwaz,
2011, among others), by prescribing the localization mode and the trajectory of the strain
localization inside the fault gouge domain. We expand the current model by introduc-
ing the influence of the boundaries in the frictional response. We consider the case of
isothermal drained boundary conditions as in the case of the fully nonlinear numerical
analyses of chapter 5. Furthermore, we investigate the influence of a traveling yielding
mathematical plane to model the traveling plastic strain wave of chapter 5. In order to
solve the weakly singular integral equation of friction accounting for the role of thermal
pressurization on the unbounded domain, we make use of the methodology developed in
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Mavaleix-Marchessoux et al. (2020). Further results for the smooth kernels in the bounded
case were derived based on the work of Tang et al. (2008). We show that under the new as-
sumptions about the boundary conditions and the strain localization mode, the proposed
model justifies our numerical results.

Key points

Summarizing, this thesis intends to answer to the following challenging topics in the mod-
eling of fault gouges under seismic slip and seismic slip velocities commonly observed in
nature.

• What is the most appropriate method in modeling strain localization in fault gouges
under coseismic slip? Which method of strain regularization can avoid strain lo-
calization on a mathematical plane and mesh dependency?

• What is the frictional behavior of the fault gouge under large coseismic slip under
the influence of thermal pressurization as a frictional weakening mechanism?

• What are the effects of viscosity -grain inertia- in the frictional response of the
fault?

• How do the boundary conditions and the strain localization mode affect the pre-
dicted frictional response? Is the current model of slip on a mathematical plane
adequate in estimating the effects of thermal pressurization?

We answer these questions in the following manner:
• We evaluate different localization approaches common in engineering applications,

using the method of Lyapunov stability analysis described in chapters 2, 3, and
we prove in chapter 3 that only the Cosserat continuum, which takes the mi-
crostructure of the fault gouge into account, can avoid the strain localization on a
mathematical plane and mesh dependency.

• We investigate in depth the role of viscosity in the regularization of strain local-
ization in a classical Cauchy continuum. We do so by studying the stability of the
homogeneous solution with and without consideration of the inertia terms. Thus,
we are able to prove both theoretically and numerically that viscosity in the pres-
ence of inertia does not regularize strain localization on a mathematical plane and
mesh dependency (see chapter 4).

• In chapter 5, we focus on the main subject of this thesis, which is the numerical
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investigation of the fault’s frictional response under large coseismic slip. We use the
Cosserat continuum and couple its mechanical description of the balance of linear
and angular momentum equations with the temperature and pore fluid pressure
diffusion equations in order to account for the influence of thermal pressurization
in the fault’s frictional response. We are interested in the fault’s frictional behavior
under large coseismic slip and seismic slip rates common in field observations. To
do so, we need to account for the influence of large deformations in our analysis.
Therefore, we apply an Adaptive Lagrangian Eulerian method (ALE) to our model,
changing the mesh dimensions after each converged increment. We investigate the
influence of the rate of seismic slip in the frictional response.

• Our results indicate the existence of a lower bound for friction τmin due to the
weakening caused by thermal pressurization, which is super-ceded by a frictional
residual value τres due to frictional regain caused by the influence of the boundaries
and “ventilation” produced by a periodic wave of traveling strain localization!

• We introduce the effect of grain inertia in our model by adding viscosity in the
material description. The numerical results demonstrate a behavior qualitatively
similar to the stick slip characteristic jumps of the rate and state model.

• Our results diverge -spectacularly- form the expected behavior discussed in the clas-
sical models of friction. These are the model of slip on a mathematical plane under
the influence of thermal pressurization as described in Lee and Delaney (1987),
Mase and Smith (1987), Platt et al. (2014a), Rice (2006a), Rice et al. (2014a), and
the model of slip on a homogeneous deformation profile under adiabatic undrained
boundary conditions described in Lachenbruch (1980b).

• The derived experimental results in chapter 5 agree qualitatively well with the
experimental results in Badt et al. (2020), Di Toro et al. (2011a), Rempe et al.
(2020).

• We explain the divergence between the predictions of the theoretical model and
the fully non-linear numerical results of chapter 5. In chapter 6, we identify the
sources of this disagreement between the model of slip on a mathematical plane
and the numerical results of chapter 5. Firstly, the boundary conditions are as-
sumed at infinity and therefore, their influence is not felt at the overall response
of the model. Furthermore, the strain localization mode assumed in the model
is stationary corresponding to a divergent instability (Re[s]>0,Im[s=0, see Rice
(1975)). It has been shown in Benallal (2005a), Benallal and Comi (2003) among
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others, that flutter instabilities also possible (Re[s]>0, Im[s 6=0, see Rice (1975)),
and preferred over its stationary counterpart under specific loading conditions. We
have confirmed this in the stability analyses of chapter 5. We associate flutter in-
stabilities with a traveling mode of strain localization. Therefore, we conclude that
a traveling mode of strain localization should also be applied in the classical model.

• In chapter 6 we account for the influence of the boundaries by deriving the Green’s
function kernel for the coupled problem of thermal pressurization in the bounded
domain. Furthermore, we impose a periodic traveling strain localization profile,
by applying a closed trajectory along which the wave of strain localization moves.
Inasmuch, we investigate both the unbounded and the bounded case for the fault
gouge domain.

• Our results from the expanded model are in qualitative agreement with the numer-
ical results of chapter 5 using Cosserat theory. The existence of oscillations in the
frictional response and the residual friction value τres different than the original
zero asymptote are justified. Our results show that the effect of the boundaries is
felt inside the suggested seismic slip values for all seismic slip velocities observed
in nature (see Boullier et al., 2009; Brantut et al., 2008; Ma et al., 2006). In other
words, the influence of the boundary conditions during shearing of the fault gouge
cannot be ignored. This can be important for experiments in thermal pressuriza-
tion, calculation of the fracture energy during earthquake nucleation, evaluation
of the transition limit from stable to unstable slip, and also for inference of the
earthquake spectral characteristics detected in the surface from the fault gouge
properties observed in the field (see Aki, 1967; Brune, 1970; Rice, 1973a, 2006a;
Tsai & Hirth, 2020; Viesca & Garagash, 2015).
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Chapter 2

STABILITY AND BIFURCATION ANALYSIS

Summary

In this chapter we introduce the basic notions of stability of differential equations
together with the notions of attracting and repelling fixed points. We use Lyapunov’s
basic theorems for determination of stability. The methodology of Linear Stability
Analysis (LSA) is introduced for determining the stbility of fixed points of non linear
differental equations. We explain the concept of Bifurcation and its implications for
the fixed points and the different loci in the phase space of non linear differential
equation. Finally, we present an application of the bifurcation and linear stability
analysis in the 1D mechanical problem of the Overdamped Bead on a Rotating
Hoop (OBRH).
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Chapter 2 – Stability and Bifurcation Analysis

2.1 Stability

In this chapter we will present in summary some aspects of the stability and bifurca-
tion theory, which is central in the study of Ordinary Differential Equations (ODEs) and
Partial Differential Equations (PDEs). Broadly speaking ODEs and PDEs can be further
categorized into linear and non linear differential equations. While for the linear case a
general methodology can be applied for their solution using the superposition principle,
such a general approach is not yet possible for the non linear differential equations.

Since obtaining a solution in the non linear cases is a rather hard procedure, the in-
terest was shifted in qualitative questions regarding the nature of possible solutions of the
non linear differential equation. A solution to a non linear system of differential equations
depends on a set of unknowns of the system that constitute its state. Considering the
initial conditions of a point-particle at the beginning of observation, we note that we can
fully determine its trajectory inside the phase space 1, by integrating its rate of change in
time and taking into account the initial conditions, assuming that the trajectory is suf-
ficiently smooth. The great advantage of this approach lies in its compelling geometrical
interpretation. However, as the complexity and the order of the systems increase, such an
interpretation becomes complicated (see Schneider & Uecker, n.d.; Strogatz, 2000; Wig-
gins et al., 1990).

In the phase space for a particular system of differential equations we will encounter
a set of points whose rate of change at all times of the analysis is zero. This means that
they don’t move in the phase space and their state remains constant at all times (steady
states). We call these sets of points, fixed points (see Figure 2.1). The qualitative ques-
tions are the following: Starting from a specific set of initial conditions close to a set
of fixed points, does the system remain close to the set of points or it wonders off of it
given enough time? Is this behavior the same for points that are close to the vicinity
of the prescribed initial conditions? We can answer these questions by considering the
stability of the set of fixed points. The theory of stability of ODEs has been developed
by Aleksandr Mikhailovich Lyapunov (see Lyapunov, 1992). His methods still find great
application in problems of non linear differential equations, where questions of stability

1. By phase space we mean a multidimensional space, whose dimensions are the unknown quantities
of the system of differential equations at hand, in which all possible states of the system are represented,
each possible state corresponding to a unique point in the phase space (see Arnol’d, 2013, among others.)
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2.1. Stability

Figure 2.1 – Different types of fixed points in the phase plane. On the left we present an
attractor. All trajectories in its vicinity are asymptotically stable, it is a stable fixed point.
On the center we present a repeller. It repels all trajectories in its vicinity, consequently,
it is an unstable point. Finally, we present a saddle point on the left. It attracts the
trajectories in the vertical axis and repels the trajectories in the horizontal axis. It is an
unstable fixed point.

of the obtained solutions are of great importance. Lyapunov proposed two methods for
investigating the stability of dynamical systems (see Lyapunov, 1992). The first method
bases on the linearization of the non linear differential system around a fixed point or
set of points. After calculating the eigenvalues of the linearized system we can decide on
the stability of the non linear system. This method is well described in Brauer and Nohel
(1969), Chambon et al. (2004), Stefanou and Alevizos (2016), Strogatz (2018), among
others. We briefly refer to the theorem’s of Lyapunov (see Strogatz, 2018) for a stable and
an asymptotically stable fixed point.

Lyapunov’s theorem

Let’s consider the fixed point x? of a system ẋ = f(x), f(x?) = 0. We say that x? is
attracting if there is a δ > 0 such that lim

t→∞
x(t) = x? whenever d0 = |x(0)− x?| < δ. In

other words any trajectory starting within a distance δ from x? will converge to x?. This
does not however tell us anything about how fast or how close to the attracting point is
the particle’s trajectory at all times. It can be so that the particle initially diverges form
the x? before it manages to converge (see Figure 2.2).

Lyapunov stability stipulates that nearby trajectories remain close for all times. This
means that points that start close to the fixed point at a distance d0 < δ, δ > 0 will
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Chapter 2 – Stability and Bifurcation Analysis

always remain close to the fixed point at distance d = |x(t) − x?| < ε for all positive
times, where ε > 0 is a function of δ, ε(δ).

We say that x? is asymptotically stable if it is both attracting and stable in a Lyapunov
sense, i.e. for |x(0)− x?| < δ, |x(t)− x?| < ε(δ), and lim

t→∞
|x(t)− x?| = 0 see Figure 2.2.

Finally, we say that x? is unstable, if it is not stable. The above theorem constitutes

Figure 2.2 – Left: schematic representation of the attracting point. The trajectory starts
close to it at distance δ, before it converges to it as t→∞. Right: A trajectory is stable
in a Lyapunov sense, if it remains bounded inside a circle of radius ε for every t. The
radius ε depends on the initial distance δ.

the basis of the linearization methodology (see Brauer & Nohel, 1969; Stefanou & Alevi-
zos, 2016; Strogatz, 2000).

Lyapunov’s second method for determining stability

While the method of linearization of the non linear system around its fixed points and
calculation its stability from the equivalent linear system (Lyapunov’s first method) is
widely used in literature for a variety of applications. It is, constrained to autonomous
systems (see Brauer & Nohel, 1969). By autonomous we mean systems that have time
invariant coefficients. This arguably leaves untreated a large volume of systems whose
coefficients depend on time, called non-autonomous systems 2.

2. According to Brauer and Nohel (1969), in the cases of non autonomous systems we can prove the
asymptotic stability of the the zero solution considering that the eigenvalues of Aij(t), when t tends to
∞ are strictly negative, and that the elements of the characteristic stability matrix Aij(t), (i, j = 1, ...)
are continuous and have only a finite number of local maxima and minima in the interval T ≤ t <∞. To
prove instability, however, Lyapunov’s second method should be used instead
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Below, we will present the theorems to prove stability or instability with the help of
Lyapunov’s second method (direct method, see Brauer & Nohel, 1969). Consider the sys-
tem of autonomous differential equations:

ẋi = f(xi), (2.1)

where, f(xi) is derived from an scalar potential V , meaning f(xi) = −V, i, where the
comma is to be interpreted as the total derivative of the function V , with respect to its
arguments i , 1...n. Considering the potential function V we give the following definitions:

• The scalar function V (xi) is said to be positive definite on the set Ω if and only if
V (0) = 0 and V (xi) > 0 for xi 6= 0 ∈ Ω.

• The scalar function V(y) is said to be negative definite on the set Ω if and only if
−V (xi) is positive definite in Ω.

We can determine the stability of this conservative system with the help of the following
theorems:

• If there exists a scalar function V (xi) that is positive definite and its total derivative
in time (material derivative), dV

dt
≤ 0 on some region Ω containing the origin, then

the zero solution of ẋ = f(x) is stable.
• If there exists a scalar function V (xi) that is positive definite and its material

derivative is negative definite on some region Ω containing the origin, then the
zero solution of ẋ = f(x) is asymptotically stable.

The following instability criteria can also be derived:
• If there exists a scalar function V (x), V (0) = 0, such that the total derivative at

the origin V
dt

∥∥∥
x=0

) is either positive or negative definite on some region Ω containing
the origin, and if there exists in every neighborhood N of the origin N ⊂ Ω at least
one point αi, such that V (αi) has the same sign as the material derivative dV

dt
, then

the zero solution V (x) is unstable.
• If there exists a scalar function V such that in region Ω containing the origin, its

material derivative can be given as:

dV

dt
= λV (xi) +W (xi),

where λ > 0 is a constant and W is either identically zero, or W is a nonegative
or nonpositive function such that in every neighborhood of the origin N, N ⊂ Ω,
there is at least one point αi such that V (αi)W (αi) > 0, then the zero solution
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ẋi = f(xi) is unstable.
Lyapunov’s second method is also generalized for non linear, non-autonomous systems,
however, their study lies outside the scope of this thesis.

2.1.1 Lyapunov’s first method of stability - Linear systems of
ODE’s

We refer in brief to the theorems on which Lyapunov’s first method is based on. We will
use as reference a linear first order system of ODE’s:

ẋi = Aijxj, (2.2)

where Aij is a rectangular n × n matrix of constant coefficients, and summation over
repeated indices is implied. What is of interest here is the evolution of its solution in time.
The solution of the above system of first order linear differential equations of constant
coefficients is given by the form yi(t) = Ci exp (st), where Ci is a vector of constant
coefficients. Injecting into the system (2.2), we arrive at the following eigenvalue problem:

(Aij − sδij)Cj = 0 (2.3)

where δij is the Kronecker symbol, δij = 1 when i = j, and δij = 0 when i 6= j. Apart from
the equilibrium -trivial- solution x?i = C0

i = 0 the above eigenvalue problem has an infinite
number of solutions if det [Aij − sδij] = 0. The determinant of the characteristic matrix
gives rise to the system’s characteristic polynomial, whose roots constitute the eigenvalues
s(i) of the system. In this case the corresponding vectors Cj(s(i)) are the eigenvectors of the
system. From algebraic considerations, depending on the multiplicity of the eigenvalues
s(i), any linear combination of the eigenvectors is a solution of the linear system described
in (2.2). Considering that the characteristic polynomial of degree n has p, (1 ≤ i ≤ p)
distinct eigenvalues of multiplicity m(p) < n, (if the eigenvalue k is simple then mk = 1),
then the solution of the linear system of ordinary differential equations is described by:

x(t) =
n∑
i=1

m(i)∑
j=1

αi,jC
(i)
ij t

j−1 exp (s(i)t), (2.4)

where αij are the coefficients of the Fourier series. From the form of the solution in
equation (2.4) we can see that the behavior is defined by the eigenvalues, s(i), which affect
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the exponential terms. We can prove the following theorems for the solutions of the system
in question (see Brauer & Nohel, 1969).

• If all eigenvalues of Aij have non-positive real parts and all those eigenvalues with
zero real parts are simple, then the zero solution in system (2.2) is stable.

• If and only if all eigenvalues of Aij have negative real parts, the zero solution in
system (2.2) is asymptotically stable.

• If one or more eigenvalues of Aij have a positive real part, the zero solution in
system (2.2) is unstable.

While the method of finding the eigenvalues of the characteristic stability matrixAij, (i, j =
1, ... ∈ N ) was known before Lyapunov, the important contribution of his work, lies in
the conditions he imposed concerning when such a linearization is applicable.

2.1.2 Lyapunov’s first method of stability -Non-linear systems
of ODE’s

Unlike the linear case, where the fixed point (zero solution) is unique, in the case of
non linear systems of ordinary differential equations, ẋi = f(xi), with f(xi) a non linear
function of yi, there can be multiple fixed points. The discussion of the previous section
2.1.1 can be extented to the case of non linear systems , considering a linearization of the
non linear system in the neighborhood of its fixed points. We will express the solution xi(t)
at the fixed point constant value x0

i and its perturbation x̃i(t), xi(t) = x0
i + x̃i(t). Then

applying the above form of the solution to the non-linear system of ODE’s we obtain:

˙̃xi(t) = f(x0
i + x̃i(t)) = f(x0

i + x̃i(t))− f(x0
i ), (2.5)

where we have used the fact that ẋ0
i = 0 and f(x0

i ) = 0. Considering that the perturbation
x̃i(t) is small, the difference in the right part of equation (2.5), can be written in the form
of a Taylor series expansion as:

˙̃xi(t) = Aijx̃j(t) + g(x̃i(t)), (2.6)

where Aij = ∂fi

∂xj

∥∥∥
x=x?

i

is the linearized matrix of coefficients of the non linear system near
the fixed point x?i . The function g(x̃i(t)) is a continuous function with p(0) = 0 and lim

xi→0
=

||g(x̃i)||
||x̃i|| = 0, where || · || is the the Eucledian norm

√
x2

1 + ...+ x2
n, i = 1...n. According

to Brauer and Nohel (1969) the stability of the linearized system can be determined as
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follows:
• If all eigenvalues of Aij have negative real parts, the solution x̃i = 0 of equation

(2.6) is asymptotically stable.
• If one or more eigenvalues of Aij have a positive real part, the solution x̃i = 0 of

equation (2.6) is unstable.
We note here that in the case of the linearized systems the eigenvalues need to be strictly
negative. We cannot draw any conclusion in the case of zero eigenvalues among the nega-
tive ones, since then the linearized system does not correspond to the original non linear
case.

The above conditions can be used for determining the stability of a nonlinear system.
This is the method of Linear Stability Analysis (LSA), as it is based on the linearization
of f(xi). In section 2.2.1, we give an example of a linear stability analysis using the one
dimensional mechanical system of the Overdamped Bead on a Rotating Hoop (OBRH)
as described in Strogatz (2000).

When the order of the differential equation increases or equivalently the number of the
system equations increases, the dynamics describing the particle flow in the phase space
start to become more complicated (see Strogatz, 2000; Wiggins et al., 1990). The geomet-
rical loci, which tend to attract or repel the solution trajectories are not only fixed points,
but can be shown to correspond to limit cycles, spheres or even more complex mathemat-
ical structures called strange attractors (see Strogatz, 2000). An example of non linear
systems performing oscillations approaching a limit cycle are the Duffing and Mathieu
equations in the case of two dimensional phase space (see Strogatz, 2000; Wiggins et al.,
1990). Increasing further the dimensionality of the system chaotic phenomena 3 become
possible and the topology of the fixed surfaces, becomes increasingly complicated to be
effectively described by a geometrical approach (see Strogatz, 2000; Trefethen et al., 2017;
Wiggins et al., 1990).

In the case of partial differential equations dynamic behaviors of the same form as in
the case of the ODEs is also present. We can still examine qualitative characteristics of

3. With the term chaotic we refer to those dynamical systems, whose behavior is strongly dependent on
the knowledge of their initial conditions. Small perturbations at the measurement of the initial conditions
can lead to wildly different behaviors of the system, making the dynamic system of ODEs inherently
unpredictable.
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the solution of non linear PDEs, with application of the first method of Lyapunov stability
analyses. Examples can be found in chapters 3, 4 and 5 of the present thesis. In the case
of non linear partial differential equations, the homogeneous solution can deviate towards
different possible geometrical loci indicating a periodic or aperiodic behavior is time (see
Strogatz, 2000, and chapters 3, 4, 5) and space (see Hähner et al., 2002; Mazière et al.,
2010; Turing, 1990; E. Veveakis et al., 2014, and chapter 5).

In this thesis, as we will see in chapters 3, 4 and 5 we are interested in the conditions
under which a fixed stable point corresponding to the homogeneous state of deformation
of a solid becomes unstable, leading to the change of the solution to a localized profile
of strain. When a fixed point changes its character from an attractor to a repeller (and
vice versa) or when a fixed point appears to or disappears from the phase space, we say
that the fixed point undergoes a bifurcation. In the next section, we refer to situations,
where the fixed points or loci of a non linear differential equation may change abruptly
depending on specific parameters of the solution.

2.2 Bifurcation analysis

During the evolution of a non linear phenomenon, fixed points and other attracting or
repelling loci of the non linear partial differential equation that governs it, may change
as time progresses. We refer to the sudden creation, destruction and even change of the
stability of the fixed geometrical loci of the original non linear differential equation (see
Figure 2.3). This happens when some of the terms of the original equation gradually
change in relative size. Thus the solution is subjected to sudden and abrupt changes in its
behavior (see Stefanou & Alevizos, 2016; Strogatz, 2000; J. Sulem & Vardoulakis, 1995).
One example of such a behavior can be seen in the case of an Overdamped Bead on a
Rotating Hoop (OBRH) presented below (see Strogatz, 2000, and Figure 2.4).

2.2.1 Example of bifurcation and linear stability analysis

The governing equation of the system depicted in Figure 2.4 is given by:

mrφ̈ = −brφ̇−mg sinφ+mrω2 sinφ cosφ. (2.7)
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Figure 2.3 – Left: Saddle node bifurcation diagramm of the fixed points based on the
bifurcation parameter γ. After the original stable branch gets destroyed two new sym-
metric branches take its place. One is a stable equilibrium branch (continuous thick line),
while the other is unstable (dotted line), any trajectory found close to it will eventually
drift towards the stable equilibrium branch. Right: Supercritical pitchfork bifurcation
corresponding to the equilibrium paths of the OBRH system. Here after the bifurcation
parameter takes its critical value two stable equilibrium branches are found, while the
traditional stable branch corresponding to the position at the base of the hoop becomes
unstable

Considering that the system is overdamped we can neglect the inertia term mrφ̈. Con-
sequently, the nonlinear ordinary differential equation of second order reduces to a non
linear ordinary equation of first order. The modified equation can then be written as:

bφ̇ = mgsinφ

(
rω2

g
cosφ− 1

)
. (2.8)

Inspecting the equation we can establish that there exist two fixed points where sinφ = 0,
namely, φ? = 0, φ? = π. We observe that if the hoop is rotating around its vertical axes
fast enough γ = rω2

g
> 1, then two extra fixed points occur where φ? = ± cos−1(g/rω2).

We call the parameter γ, the bifurcation parameter of the system, as it determines the
appearance, disappearance or change of stability of the fixed points of the system (equi-
librium points) in the phase space. In the right part of Figure 2.3, we plot the angles of
the fixed points from the center of the rotating hoop φ, in relation to the bifurcation pa-
rameter γ. We observe that at γ = 1, when the hoop is spinning fast enough, a bifurcation
occurs. The initial stable fixed point at the base of the hoop φ = 0, becomes unstable
and two other stable fixed points make their appearance! The bifurcation is named -after
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its shape- as a pitchfork bifurcation. Thus, we establish that a supercritical pitchfork bi-
furcation occurs at γ = 1. We can check the nature of the new fixed points (attractors,
repellers or half stable fixed points in the case of the 1D example), by performing a linear
stability analysis, LSA, as described in the previous section 2.1.1. More specifically, by
taking the first derivative of the nonlinear ODE with respect to the solution variable at
the position of the fixed points. For the new fixed points we get:

b
∂φ̇

∂φ

∣∣∣
φ=φ?

= −mrω2 sin2 φ? < 0, (2.9)

which denotes that the fixed points that occur when the hoop is spinning sufficiently fast
are stable fixed points.

On the right part of the Figure 2.3 we can see the stable and unstable equilibrium paths
based on the previous analysis. The solid lines denote the asymptotically stable fixed
points, while dashed lines denote the unstable fixed points. Noice that for the 1D problem
at hand, one can determine the stability of the fixed points graphically, by plotting the
phase space of equation 2.8. However, this is not possible for systems of higher dimen-
sionality.

Figure 2.4 – An example of a non-linear mechanical system, bead on a rotating hoop. The
angle φ is considered big enough during the phenomenon so that its sinφ, cosφ cannot
be simplified.

2.3 Key points

In this chapter we presented briefly the core notions of linear stability and bifurcation
analysis. We introduced the notion of Lyapunov stability analysis, the existence of fixed
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points in the phase space for a non-linear system of ODEs and the evaluation of their
stability properties (attractors or repellers in the 1D cases discussed in the example). We
expanded in brief the notion of stability analysis in the non linear systems and provided
the conditions under which the stability of the non linear system and its linearization
correspond to each other, leading to the methodology of Linear Stability Analysis (LSA).

Next, we discussed the change of the properties of the fixed points and their existence in
the phase space, when the response of the non linear system undergoes a bifurcation. We
applied bifurcation analysis and Linear stability analysis in the case of a simple example
(the OBRH system).

The above notion of stability and bifurcation will be used extensively in chapters 3, 4
and 5 we deal with the bifurcation and loss of stability of the homogeneous deformation
profile in solids with different material models. The loss of stability of the homogeneous
deformation is the cause of strain localization. The loss of stability can depend on several
material parameters, which ar taken as bifurcation parameters.

38



Chapter 3

STRAIN LOCALIZATION AND MESH

DEPENDENCY

Summary

Strain localization is a central topic in geomechanics as it is often related to failure
and other important physical phenomena and geological processes. In this chapter we
apply the method of Linear Stability Analysis (LSA) to evaluate the regularization
properties of material laws and constitutive models commonly used in literature. We
first show the inherent pathology of classical, Cauchy rate-independent continuum
that leads to mesh sensitivity and we present methods for alleviating/regularizing
this problem. These methods involve the use of theories that result in the introduc-
tion of characteristic time and length scales into the system. We then investigate
the conditions under which, the homogeneous deformation loses stability leading to
strain localization. One-dimensional examples are used to illustrate each regulariza-
tion approach and show the main results of our analyses.
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3.1 Introduction

Strain localization is a phenomenon which is found throughout natural and man-made
structures. It is characterized by non-linearity as well as different characteristic time and
spatial scales ranging from the near instantaneous fracture of brittle materials to the
vast geological time required for the formation of intricate patterns in the earth strata.
Strain softening is responsible for mesh dependence in numerical analyses involving the
Cauchy continuum, which is observed in a vast variety of applications in solid mechanics,
dynamics, biomechanics, geomechanics and rock mechanics. Therefore, numerical tech-
niques that correctly regularize strain localization are of great importance in the analysis
and design of engineering products and systems.

Another term that equivalently describes strain localization is the concept of “wave trap-
ping” as explained in Erlich et al., 1980; Shawki and Clifton, 1989; Wu and Freund,
1984. According to this, the strain level at which the shear tangent modulus becomes zero
propagates at zero speed, hence the strain wave becomes “trapped” Wu and Freund, 1984.
An adiabatic shear band formation criterion has been proposed in Erlich et al., 1980. In
Shawki and Clifton, 1989; Wu and Freund, 1984, the authors propose various general
power laws for the regularization of strain localization. They couple their mechanical
model of a generalized Arrhenius law with thermal softening while they constrain them-
selves to mechanical strain hardening to avoid “wave trapping” on a mathematical plane.

On a mathematical level, strain localization is understood as a bifurcation from the ini-
tial homogeneous deformation state of the structure to another equilibrium path. This
automatically raises questions concerning the uniqueness of the reference homogeneous
solution and its stability. We consider as solution u(x, t) to a Boundary Value Problem
(BVP), the function that satisfies the differential equation, while it respects the initial
conditions at time t = 0 and the boundary conditions (BC’s) at all times t. When (at
a specific time t = T < ∞) the solution u(x, t), depending on the boundary conditions
and the forcing terms of the equation, becomes independent of time t, then the solution
has reached a stable equilibrium namely u(x, t) = u?(x),∀t > T . We say then that the
solution of the problem has reached a steady state u?(x).

In analyses involving geomaterials, which are the main focus of this chapter, depend-
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ing on the type of continuum and the constitutive law used, perturbations ũ(x, t) from
the steady state u?(x) may grow overtaking the behavior of the problem. In the case of
homogeneous deformation (the specimen deforms under constant strain along its height
(see left part of Figure 3.2), growing perturbations from the homogeneous steady state
solution lead to localization of the strain profile (see Rice, 1975, 1976; J. Sulem & Var-
doulakis, 1995). For a Cauchy continuum, the question of stability of the steady state
solution of the homogeneous deformation is decided from the conditions needed such that
the determinant of the acoustic characteristic tensor of the problem is equal to zero ac-
cording to Rice (1976), Rudnicki and Rice (1975) among others.

Let us consider the uniform shearing of a 1D layer in the general case of a non linear
material law with different multiphysical couplings (see right part of Figure 3.1). This a
common application in different disciplines, however, in this chapter we will focus on the
application in geomechanics. This application justifies also the selection of the material
parameters used throughout the chapter (see Tables 3.1, 3.3). In this chapter we will
investigate the conditions for bifurcation from the homogeneous reference solution under
quasistatic conditions only. We will also assume that the layer under shear lies initially
in static-equilibrium. In this case the reference homogeneous solution is a steady state
u?(x). We call a deviation ũ(x, t) from the reference steady state, a perturbation. In the
analysis of BVPs by the Finite Element (FE) method such a perturbation from the initial
nominal solution, arises due to the introduction of geometrical or material imperfections,
variation of the initial guess of the integration algorithm or simply by the accumulation
of numerical error during the integration procedure. Based on the stability consideration
between the steady state u?(x) and the perturbed one ũ(x, t) = u?(x, t) + ũ(x, t), the
perturbed solution may become prevalent.

As mentioned above, we are interested on the conditions under which such a change
in the behavior of the problem may arise. More precisely, we will answer to the following
questions: When does the reference steady state becomes unstable? When do new fixed
points leading to localized deformation profiles make their appearance, depending on the
variation of some material parameters? What is the localization width of the perturbed
solution? We will answer these questions with the help of the Linear Stability Analysis
(LSA) introduced in the previous chapter 2.
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Figure 3.1 – Simple shear of a 1D Cauchy layer. Homogeneous deformation of a Cauchy
non linear layer under 1D simple shear, the boundary conditions refer to the general case,
when also multiphysical couplings are present.

The above questions are important, since for a perturbed solution to provide meaningful
information about the problem in question, it must give ubiquitous results for specific
quantities of the mathematical problem, such as the energy, and not break more general
and fundamental fundamental physical laws (see for example the discrete nature of ma-
terial in the micro- and nano- scales, the barrier of the speed of light in Einstein’s theory
of general and special relativity, etc). These are tests for instance, that an analysis based
on classical mechanics must hold up to. However, often the perturbed solutions obtained
by numerical solutions fail to these tests. This is when the underlying numerical model
reaches its limits and new assumptions about finer scales and more precise description of
the problem’s constituents needs to be included.

A prime example of such a case is the localization on a mathematical plane in the pre-
dicted post bifurcation regime of numerical analyses involving geomaterials, which in the
absence of viscosity can take place in infinite rate (see section 3.2.1, Figure 3.3). More-
over, localization on a mathematical plane, renders the solution obtained from numerical
methods, such as the FE method, mesh dependent. In addition, experimental evidence in
materials suggests that localization in nature does not occur on a mathematical plane,
rather it involves a small zone of finite thickness that accommodates the majority of the
deformation (see Chambon et al., 2004; F. M. Chester and Chester, 1998a; Muhlhaus and
Vardoulakis, 1988; Sibson, 2003a; I. Vardoulakis and Sulem, 1995 among others).

To remedy this inconsistency between experiments and analytical and numerical pre-
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dictions, two main approaches are often found in the literature. The first approach seeks
to incorporate a modified constitutive law including the effects of viscosity (see de Borst &
Duretz, 2020; Sluys & de Borst, 1992; Sluys et al., 1993; W. Wang et al., 1996; W. Wang
et al., 1997, and section 3.3, also described in greater detail in chapter 4). Furthermore,
the addition of multiphysical, Thermo-Hydro-Chemo-Mechanical (THMC) couplings (see
Lachenbruch, 1980b; Mase & Smith, 1987; Platt et al., 2014a; Rice, 2006a; J. Sulem &
Famin, 2009; J. Sulem & Stefanou, 2016a, among others) in order to avoid strain local-
ization on a mathematical plane have been considered. This is further explored in section
3.4. The other approach starts from the introduction of micromorphic continua, which, as
we show in section 3.5, introduce characteristic length scales to the mathematical problem
(see De Borst, 1991; de Borst & Sluys, 1991; Germain, 1973; Rattez, Stefanou, Sulem,
Veveakis, et al., 2018b; Sluys et al., 1993; J. Sulem et al., 2011; I. Vardoulakis, 2009,
among others).

When analyzing the localized strain profile of the perturbed solution with the help of
FE analyses, care must be taken so that the profile of strain localization remains con-
stant (and thus objective) upon mesh refinement. Considering that the solution indicates
strain localization on a mathematical plane, then upon mesh refinement localization will
always be constrained in one element. This is problematic for two reasons. Firstly it is not
possible in nature for deformation to localize upon a mathematical plane. Experiments
performed in the laboratory and observations in nature clearly show that deformation
is accommodated in a narrow zone of several hundred micrometers (see Needleman &
Tvergaard, 1992; Sibson, 2003a, among others). We know that nature in small scales is
discontinuous. Especially geomaterials such as sand, exhibit granular characteristics at
length scales observed by the naked eye. Secondly, localization on a mathematical plane
corresponds to zero dissipation, when the material is clearly undergoing plastic deforma-
tion and its temperature increases due to plastic work (see Alaei et al., 2021; Needleman
& Tvergaard, 1992; Rognon et al., 2015). This result also translates to the numerical
analyses. As we refine the mesh of the analysis we note that localization on the smallest
mesh dimension gradually reduces the dissipated energy to zero. Thus we cannot get an
objective estimation of the dissipated energy in such cases. This is a big problem especially
in fault mechanics where the dissipated energy is crucial for evaluating the stability and
nucleation of the fault, and estimating the energy traveling in the form of seismic waves
to the surface (see Kanamori & Rivera, 2006; Rice, 1973b). Therefore, care must be taken
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so that the perturbed solution leads to a mesh objective strain profile.

Before selecting the appropriate continuum theory for our analyses in fault mechanics, we
investigate the regularization properties of several constitutive properties in the framework
of the classical Cauchy continuum. We start with an elasto-viscoplastic rate independent
material law in section 3.3. We then consider a classical Cauchy continuum with an elas-
tic perfectly plastic material law with the influence of THM couplings (see section 3.4)
and comment on strain localization and mesh dependency. Finally, we present a Cosserat
micromorphic continuum model with an elastic plastic strain softening material law in
section 3.5. We compare the obtained numerical results in terms of their stress-strain di-
agrams and localization profiles in order to evaluate their regularization properties. This
comparizon shows that the Cosserat micromorphic continuum is the only appropriate
model for understanding the behavior of a fault gouge under coseismic slip, like the one
studied in chapter 5.

The numerical results presented here, are based on non linear quasistatic analyses. We
apply linear stability analysis under quasistatic conditions (neglecting the inertia terms),
since we consider the influence of inertia is not important during shearing of the fault
gouge under coseismic slip (see Platt et al., 2014a; Rice et al., 2014a, and the Inroduc-
tion). The influence of inertia is important, however, when the regularization properties of
the elasto-visco plastic material law are discussed (see de Borst & Duretz, 2020; Needle-
man, 1988; Sluys & de Borst, 1992; W. Wang et al., 1997). We will study this claim in
chapter 4, where the LSA methodology will be applied in the study of a material law
incorporating viscoplasticity and inertia.

Finally, we investigate in this chapter a mechanism of a traveling shear band instabil-
ity in the case of a elasto-viscoplastic material with strain hardening and strain-rate
softening. The last mechanism creates a traveling instability in the medium named the
Portevin - Le Chatelier (PLC) traveling localization phenomenon. In chapter 5, section
5.3.3, we have identified a similar mechanism in the case of an elastic perfectly plastic
Cosserat continuum with THM couplings. Here, we make use of a conceptually simpler
model, that incorporates the notion of a propagating strain localization wave inside the
continuum layer.
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3.2. Cauhy elasto-plasticity with strain softening

3.2 Cauhy elasto-plasticity with strain softening

Figure 3.2 – Simple shear of a 1D Cauchy layer. The boundary conditions refer to the
general case, when also multiphysical couplings are present. Strain localization of the
solution after bifurcation from the homogeneous steady state takes place.

In this section we investigate with the help of the LSA the preferred localization mode for
the case of a linear elastic plastic strain softening Cauchy continuum. The general PDEs
of the problem in 1D showing the body in equilibrium with its inertial forces are:

∂σ12

∂x2
= ρü1,

∂σ22

∂x2
= ρü2, (3.1)

where σij are the Cauchy stress tensor components, ρ is the material density and ui

represents the displacement in the direction i. We use the dot symbol (̇) to refer to
derivation w.r.t time. When the body is in a steady state:

∂σ?12
∂x2

= 0, ∂σ?22
∂x2

= 0, (3.2)

We apply the perturbed displacement fields u1 = u?1 + ũ1, u2 = u?2 + ũ2 and stress fields
σij = σ?ij+σ̃ij, respecting the BC’s in the BVP, u1

∥∥∥
x=0

= u1

∥∥∥
x=H

= 0, σ22

∥∥∥
x=0

= σ22

∥∥∥
x=H

=
200 MPa (see Figure 3.2). The perturbed system of partial differential equations reads:

∂σ̃12

∂x2
= ρ¨̃u1,

∂σ̃22

∂x2
= ρ¨̃u2. (3.3)

In this example we will consider the simple example of simple shear of the 1D layer. For
elastoplasticity, the yield criterion involving the shear stress tensor under the 1D simple
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shear assumption can be written as:

F (σ12, γ
p) = σ12 − τ0(γp), (3.4)

where σ12 is the shear stress and γp is the accumulated plastic strain γp =
∫ t

0 ε̇
p
12dt. The

constitutive relations for the stresses taking part in the equilibrium equations can be
written as:

σ̃12 = 2G h

1 + h
ε̃12,

σ̃22 = Kε̃22, (3.5)

where G,K are the shear and bulk moduli of the 1D material and h is the softening
parameter indicating the slope of post yielding branch of the material. The form of the
perturbation used is not at random. Since in our application the BC’s were prescribed
(u1

∥∥∥
x=0,H

= u2

∥∥∥
x=0,H

= 0), (Dirichlet boundary conditions), the values of the perturbation
at the boundaries need to be zero. From Fourier analysis of the PDE problem, we know
that every solution of the problem can be expressed as a series of sine and cosine terms.
Equations 3.3, 3.5 define a system which have solutions of the form ũi = ui exp(st +
ikx2), i = 1, 2, with gi 6= 0. Therefore, replacing the general solution in (3.5) we obtain:

− Gh
1+hk

2 − ρs2 0
0 −Mk2 − ρs2

u1

u2

 =
0

0

 (3.6)

Consequently, the determinant of the above system has to be equal to zero, leading to:

s = −ikvp
√
M

ρ
, or equivalently (3.7)

s = ±ikvs
√

h

1 + h
, (3.8)

where vp =
√

M
ρ
and vs =

√
G
ρ
are the longitudinal and shear wave velocities respectively.

The variable s is also called the Lyapunov coefficient.

Therefore, the initial stable homogeneous deformation steady state becomes unstable
and the trajectories of the solution will be repelled from the steady state of the homo-
geneous deformation towards another fixed point, when Re[s]>0. This happens when we
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3.2. Cauhy elasto-plasticity with strain softening

take h < 0. In this case the real part of the Lyapunov coefficient Re[s] is greater than zero
and the perturbation grows away from the homogeneous deformation state. Additionally
we can investigate which perturbation increases the fastest in the medium. This will give
us the new localization profile. In this case we note that the Lyapunov coefficient s is pro-
portional to the wavenumber k and therefore, inversely proportional to the wavelength
λ = 2π

k
namely, s ∼ 1

λ
(see Figure 3.3). We establish therefore, that the infinitesimal

wavelength (λ→ 0) increases the fastest. Therefore, considering h as the bifurcation pa-
rameter, when h changes sign from hardening to softening the solution will diverge from
its state of homogeneous deformation to a state where strain localizes on a mathematical
plane.
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Figure 3.3 – Plot of the Lyapunov Coefficient over a range of different wavelengths. The
infinitesimal wavelength presents the higher Lyapunov coefficient which tends to ∞.

3.2.1 Numerical example

We present here a numerical application of the above LSA analysis with the help of Finite
elements. We will study the simple shear of a 1D Cauchy layer (see Figures 3.1, 3.2) with
a linear elastic plastic strain softening material with prescribed boundary conditions and
the material law of equation (3.10). The parameters used in the numerical analyses are
shown in Table 3.1. They correspond to typical values of geomaterial parameters for rock.

Where, by Hc we denote the softening parameter used for the evolution of τ0(γp). The
strain softening parameter h used in the theoretical analysis of equations (3.10),(3.5) can

47



Chapter 3 – Strain localization and mesh dependency

the be derived as: h = τ0

∥∥∥
γp=0

Hc. We use a linear relation of the form:

τ0(γp) = τ0|γp=0(1 +Hcγ
p) (3.9)

In what follows we will use linear finite elements with reduced integration. We can confirm
the calculations above with the help of a numerical analysis shearing only one element
and convergence analyses (see Stathas & Stefanou, 2019a).

Parameters Values Units
K 1

3102 GPa
G 10 GPa
τ0|γp=0 10−1 GPa
Hc −0.25 -

Table 3.1 – Material parameters

In order to show that in a quasi static analysis the classical Cauchy continuum with
plastic softening localizes on a mathematical plane, we perform a series of numerical
analyses, where we progressively increase the number of elements. In order to provoke
the numerical solution to localize, we introduce a material imperfection in a small region
in the middle of the specimen. In each of the analyses performed the imperfection has a
size of two elements.If the solution does not localize on a mathematical plane then the
width of the strain localization will be always the size of two elements. However, we show
that the numerical solution indeed localizes on the smallest possible mesh dimension of
one element as plastic strain localizes on a mathematical plane. In Figure 3.4 on the left,
we present the frictional response of the layer with respect to the displacement on top of
the layer. We note the characteristic kink and subsequent slope reduction of the frictional
response at the post yielding branch of the σ12−δ diagram, indicating that strain localizes
in one element. On the right part we present the localization profiles at the end of the
analyses. We notice that localization is always trapped in only one element. This leads
to even smaller localization width as the mesh becomes progressively finer confirming the
theoretical results of the previous paragraph. The reduction on the localization width is
directly reflected in the decrease of the slope of friction displacement curves σ12 − δ.
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Figure 3.4 – Simple shear of an infinite layer for different number of elements. Left: Fric-
tional strength σ12 vs horizontal displacement on top of the layer δ. The analysis of one
element does not localize and can be used as a way of validating w.r.t. the theoretical
prediction of homogeneous deformation. As element number increases localization drives
the slope steeper. On the right: Localization width profiles for different number of ele-
ments. We interpret localization as the rate of increase of the plastic deformation (γ̇p).
The analysis for one element does not localize. The characteristic peak at the profiles of
the plastic strain-rate indicate that the solution localizes in one element.

3.3 Cauchy elato-vicoplsticity with strain softening
and strain-rate hardening

In this section we investigate with the help of the LSA the preferred localization mode
for the case of a linear elastic, visco-plastic strain softening and strain-rate hardening
Cauchy continuum. We use the Perzyna approach for considering elasto viscoplasticity as
described in Appendix A, the yield criterion involving the deviatoric part of the stress
tensor under the 1D simple shear assumption can be written as:

F (σ12, γ
p) = σ12 − τ0(γp), (3.10)

Following the Perzyna Plasticity approach the viscoplastic strain-rate can be defined as:

γ̇vp = F

ηF0

∂F

∂σij
, (3.11)

Considering that we apply simple shear on the BVP, the only plastic strain is the γvp =
2εvp12. Making use of the Perzyna constitutive relation and differentiating it with respect to
time we arrive at the relationship λ̈ = Ḟ

ηF0
. For a complete elasto-visco-plastic formulation

of Perzyna or consistency type in 3D we refer to the Appendix A. According to the visco-
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plastic rate form of the constitutive equation, due to the additive decomposition between
the elastic and plastic part of strain, we obtain:

σ̇12 = G(γ̇ − γ̇vp), (3.12)

where due to the form of the yield criterion, the viscoplastic multiplier is equal to the
viscoplastic strain-rate λ̇ = γ̇vp. Multiplying by ∂F

∂σ12
the equation (3.12) and applying

the consistency condition Ḟ = 0 we obtain the following relation for the viscoplastic
strain-rate:

λ̇ = 1
h+ 1 γ̇ + ηF0

h+ 1 λ̈. (3.13)

Inserting equation (3.13) into equation (3.12), we derive the material description for an
elasto-viscoplastic solid under 1D shear:

σ̇12 = hG

1 + h
γ̇ + ηF0

h+ 1 γ̈
vp, σ̇22 = Mε̇22, (3.14)

where we have taken advantage of the relation λ̈ = γ̈vp. Replacing the material equations
(3.14) into the equilibrium equation (3.3), we arrive at the following PDE describing the
BVP in question (see also Appendix A for a more general formulation):

Gh
∂2ũ1

∂x2 −
∂2ũ1

∂t2
(3 + h̄)G

v2
s

+ η̄vpG

(
∂3ũ1

∂t∂x2 −
1
v2
s

∂3ũ1

∂t3

)
, (3.15)

where vs =
√

G
ρ
, η̄vpG = ηF0. Next, we consider the following normalized quantities:

ū1 = ũ1
uc
, t̄ = t

tc
, x̄ = x

xc
. Replacing in the above equation (3.15) we arrive at the

normalized form of the equation:(
v2
c

v2
s

∂3ū1

∂t̄3
− ∂3ū1

∂x̄∂t̄

)
η̄vp

tch
+ v2

c

v2
s

3 + h

h

∂2ū1

∂t̄2
− ∂2ū1

∂x̄2 = 0, (3.16)

where vc = xc

tc
is a characteristic velocity of the problem. This equation is the normalized

elasto-visoplastic partial differential equation of equilibrium which we will study in full in
the next chapter 4. Replacing the general solution of the form ũi = ui exp(st+ ikx2), i =
1, 2 in the above equation, and considering the form of the perturbation fields respecting
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the BC’s, we arrive at the following expression for the system of PDEs:
−hk2 −

(
3+h
v2

s

)
+ ηvp

(
−sk2 − 1

v2
s
s2
)

0
0 −Mk2 − ρs2

u1

u2

 =
0

0

 (3.17)

In this chapter, based on the normalized quantities, assuming that the terms of viscosity
are larger than the ones of inertia, we can neglect the inertia terms and study the stabil-
ity of the quasistatic viscous case. We are allowed to make such a simplification based on
asymptotic and physical considerations as presented in (see also Stefanou & Gerolyma-
tou, 2019). The inertia quantified by the density term ρ, lies inside the vs =

√
G
ρ
term.

Assuming ρ = 0 we are left with the following system:−hk2 + ηvpsk2 0
0 −Mk2 − ρs2

u1

u2

 =
0

0

 (3.18)

We seek conditions for which the above system admits multiple solutions. This happens
when its determinant becomes zero (see Chambon et al., 2004; Rice, 1975; Stefanou &
Alevizos, 2016; J. Sulem & Vardoulakis, 1995, among others).

s = ±ikvp, or (3.19)

s = − h

ηvp
. (3.20)

Thus, we establish that the real part of the Lyapunov coefficient is greater than zero
(Re[s]>0). We note here, however that in this case the Lyapunov coefficient s does not
depend on k (see Figure 3.5). All perturbations from the homogeneous reference state
grow away with the same rate. In the case of strain-rate dependency in the form of an
elasto-viscoplastic material law, Needleman (1988) notes that strain localization follows
the profile of the material imperfection used for the perturbation from the nominal homo-
geneous solution. In this sense, localization does not happen anymore on a mathematical
plane, but on the width of the imperfection. Although this is a method to restore the mesh
objectivity of the numerical solution, this approach does not provide us with a framework
of correctly choosing the imperfection width. In other words, the imperfection width is
not tied to a fundamental material parameter and as a consequence we are forced to
decide on it a priori. Furthermore, an imperfection in nature, can have different origins
and we cannot possibly account for all of them in the sense that the quasistatic viscosity
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Figure 3.5 – Plot of the Lyapunov Coefficient over a range of different wavelengths. The
Lyapunov coeffixient is uniform over the whole range of wavelengths. All the perturbations
increase by the same amount no strain localization mode is preferred.

regularization model is indifferent to the size (scale) of the imprefections. In this sense,
the problem is still not regularized.

3.3.1 Numerical example

In order to illustrate the above theoretical findings, we perform non linear finite element
analyses, in which we increase progressively the number of finite elements while adding a
material imperfection in the middle of the specimen. The width of the imperfection is set
to 2 elements wide. In Figure 3.6 we present the results of our analyses fotr the simple
shear of an elasto viscoplastic layer.

On the left part of Figure 3.6 we present the shear stress σ12 vs horizontal displace-
ment on top of the layer δ. The analysis of one element does not localize and can be used
as a way of validating w.r.t. the theoretical prediction. As element number increases lo-
calization drives the slope steeper. The exact moment when localization happens depends
on the viscosity parameter η along with imperfection size and the number of elements. On
the right part of the Figure we present the localization width profiles for different number
of elements. We interpret localization as the rate of increase of the plastic deformation γp.
The localized zone is always two element wide in accordance with the imperfection width.
In this sense the results are dependent in the choice of the imperfection length and thus
mesh dependent due to the absence of a characteristic material parameter.

We continue our study of the classical Cauchy elasto viscoplastic continuum under qua-

52



3.3. Cauchy elato-vicoplsticity with strain softening and strain-rate hardening

Figure 3.6 – Simple shear of an infinite layer for different number of elements. Left:
Frictional strength τ vs horizontal displacement on top of the layer δ. On the right:
Localization width profiles for different number of elements.

sistatic conditions by exploring the influence of a smaller viscosity parameter η in the
results. We present these results in Figure 3.7. On the left part of the Figure 3.7, we show
the σ12 − δ diagrams for a small viscosity parameter η, by varying the mesh size and
the imperfection length of the specimen. While initially the results follow the localization
width, dictated by the imperfection size, we note that in later parts of the analysis, the
perturbation grows enough so that localization inside the imperfection can be observed,
thus localization on the width of one element ensues. This happens because the numerical
simulation introduces perturbations by itself due to small numerical errors in the finite
element discretization and small errors in the residual during the Newton-Raphson pro-
cedure for the numerical solution of the resulting nonlinear algebraic equations.

The influence of the viscosity parameter on the time when localization on a mathematical
plane takes place is shown on the right part of Figure 3.7. For small values of η ≤ 0.02
s, the results between the rate independent and the rate dependent cases exhibit local-
ization on the smallest possible mesh dimension almost immediately. Increasing further
the viscosity parameter η we note that we improve the convergence of the solution tied to
the localization on the smallest mesh dimension. Increasing the viscosity value to η = 2
s leads to localization being constrained to the width of the initial imperfection, Finally,
for very large values of the viscosity parameter η = 20 s we show that the analysis does
not localize at all within the prescribed range of the applied slip displacement δ values.

The localization of strain in one element in the numerical solution is a result of the growth
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of small perturbations inside the already weakened region due to imperfection. When the
viscosity parameter is high, strain localization on a mathematical plane is delayed since
it takes time for the numerical errors to accumulate and provoke the localization inside
the imperfection. Nevertheless, from a theoretical standpoint (see equation (3.20)) both
strain localization of the imperfection width and inside it, increase with the same velocity
as time progresses (same Lyapunov coefficient s). This means that eventually the strain
localization inside the localization width will become prevalent and strain will localize
on a mathematical plane. The time it takes for strain localization to accumulate in one
element inside the imperfection is related to the characteristic localization time as defined
in chapter 4.

Figure 3.7 – Simple shear of an infinite layer for different number of elements. Left:
Frictional strength τ vs horizontal displacement on top of the layer δ. The analysis of one
element does not localize and can be used as a way of validating w.r.t. the theoretical
prediction. On the right: Influence of the viscosity parameter η on the localization profiles
of an elasto-viscoplastic material with strain softening and strain-rate hardening. The
imperfection size and the number of finite element is kept constant for all the analyses.
Localization on a mathematical plane vs localization on the imperfection width vs no
localization at all, can be discerned from observing the difference in slope between the
analyses.

3.4 Strain localization in a Cauchy linear elastic, per-
fectly plastic material with multiplysical couplings

In nature phenomena rarely happen in isolation. This means that different physical pro-
cesses may happen simultaneously and affect the outcome of the overall procedure. The
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coexistence of different physical phenomena in same or different space and time scales and
the way they interact is a subject of vivid discussion (see Alaei et al., 2021; Alevizos et al.,
2014; T. J. Burns, 1985; Chambon et al., 2004; Forest & Sievert, 2003; Forest, Pradel, et
al., 2001; Jacquey et al., 2021; Lachenbruch, 1980a; Lee & Delaney, 1987; Mase & Smith,
1987; Masi et al., 2021; Neff et al., 2014; Rattez, Stefanou, Sulem, Veveakis, et al., 2018b;
Rezakhani & Cusatis, 2016; Rice, 2006a; Rice et al., 2014a; Stefanou, 2019; Stefanou &
Gerolymatou, 2019; Stefanou et al., 2010; Strogatz, 2000, among others). We expect that
phenomena coexist and interact when their characteristic time (or characteristic length in
spatial homogenization applications) are of the same order of magnitude, if the identified
phenomena differ by more than one order of magnitude in their characteristic evolution
time then they don’t interact across different scales (Principle of separation of scales).

In the case of shearing of faults, researchers have proposed the introduction of differ-
ent weakening mechanisms in the evolution of friction during coseismic slip. Apart from
the classical mechanical softening approach, we note the introduction of frictional weaken-
ing mechanisms due to melt formation under flash heating (see Rice, 2006a), fine particle
generation due to comminution breakage of grains (see Collins-Craft et al., 2020; Rattez,
Stefanou, & Sulem, 2018), thermal decomposition of minerals (see J. Sulem & Famin, 2009;
J. Sulem & Stefanou, 2016a) and lubrication due to shearing of silicate minerals causing
water release (see Di Toro et al., 2011b). The main frictional weakening mechanism we will
be investigating in the later chapters of this thesis 5 and 6, is thermal pressurization (see
Platt et al., 2014a; Rattez, Stefanou, & Sulem, 2018; Rattez, Stefanou, Sulem, Veveakis,
et al., 2018b; Rempel & Rice, 2006; Rice, 2006a; Rice et al., 2014a, among others). During
thermal pressurization the part of the fault gouge under yield (Principal Slip Zone, PSZ),
releases heat during the production of plastic work (dissipation). The release of heat to
the surroundings of the PSZ causes the temperature of the nearby pore fluid to increase.
This leads to a constrained expansion of the fuid volume at the pores of the solid, which
increases the pore fluid pressure and decreases the effective stress of the fault gouge ma-
terial. Considering that the friction of the material at the fault gouge is sensitive to the
effective confining pressure, this leads to a frictional weakening of the fault gouge.

In this section, we model the 1D simple shear of a 1D Cauchy layer with THM couplings
under isothermal drained boundary conditions in order to show the effects of coupled
processes as far it concerns strain localization. The introduction of more physics into the
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localization problem such as the coupling of the mechanical behavior of the specimen with
the heat and pore fluid diffusion equations has two opposing effects. On the one hand it
introduces apparent softening to the model due to the effect of thermal pressurization
(see chapters 5 and 6), on the other hand it is believed that the diffusion terms will help
diffuse plastic strain as pressure and temperature diffuse inside the medium, expanding
the localized zone.

We apply this fairly complex model in the hopes that strain localization will not hap-
pen again on a mathematical plane and that the localization width can be predicted
based on the introduced diffusion lengths. This constitutive model accounting for the dif-
fusion phenomena present during shearing of the fault gouge has the same multiphysical
couplings as the model of chapter 5. However, in chapter 5 the use of the Cosserat micro-
morphic continuum takes also into account the influence of the fault’s microstructure in
the localization width.

The Cauchy linear elastic perfectly plastic material model with temperature and pressure
diffusion couplings discussed in this section, will be also used to further our understanding
of the fault’s frictional behavior under large coseismic slip in chapter 6, where we investi-
gate the influence of thermal and pressure diffusion mechanisms in the context of traveling
waves of strain localization in bounded and unbounded domains. In chapter 6 we remove
the pathology of the Cacuchy continuum regarding strain localization on a mathematical
plane by the ad-hoc introduction of a Dirac discontinuity in the plastic shear strain field.

In this section we introduce the mathematical description of a material with multiphysical
couplings of pressure and temperature. We derive the non linear material behavior and
apply the LSA in order to derive the characteristic matrix of the BVP at hand (see right
part of Figure 3.2). The total strains of the problem can be formulated as:

ε̇totij = ε̇eij + ε̇pij + ε̇thij (3.21)

The relationship between the total stresses of the porous medium (σtotij ), the effective
stresses of the material (σ′ij) and the pore fluid pressure (pf > 0) is given by the Terzaghi
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principle,

σij = σ′ij − pfδij, (3.22)

where σij, σ′ij are negative in compression. For the yield criterion, we adopt a simplified
version of a more general pressure dependent yield criterion:

F (σ12, γ
p) = σ12 − τ0(1−Hcγ

p)− p′ tanφ, (3.23)

where γp = 2εp12 is the engineering plastic strain and p′ = σ′11+σ′22+σ′33
3 the effective mean

stress, negative in compression. We choose the corresponding plastic potential as:

G = σ′12 − τ0(1−Hcγ
p)− p′ tanψ, (3.24)

where ψ is the dilation angle, which in our case is taken to be zero. Due to the form of the
yield condition (equal to the plastic flow rule) no plastic deformation takes place, except
for ε̇p12. The equations of the stress increment perturbations of the 3D material are given
as:

σ̃tot11 = E

(1 + ν)(1− 2ν)(1− ν)
(
ε̃tot11 − αT̃ + ν

(
ε̃tot22 − αT̃

)
+ ν

(
ε̃tot33 − αT̃

))
− p̃f ,

(3.25)

σ̃tot22 = E

(1 + ν)(1− 2ν)(1− ν)
(
ε̃tot22 − αT̃ + ν

(
ε̃tot11 − αT̃

)
+ ν

(
ε̃tot33 − αT̃

))
− p̃f ,

(3.26)

σ̃tot33 = E

(1 + ν)(1− 2ν)(1− ν)
(
ε̃tot33 − αT̃ + ν

(
ε̃tot11 − αT̃

)
+ ν

(
ε̃tot22 − αT̃

))
− p̃f ,

(3.27)

σ̃tot12 = σ̃tot21 = 2G h

h+ 1 ε̃
tot
12 −K

ε̃22 − 3αT̃
h+ 1 tanφ (3.28)

For simple shear the following holds true: ˙̃εtot11 = ˙̃εtot33 = 0 and also ˙̃εtot13 = ˙̃εtot23 = ˙̃εtot31 = ˙̃εtot32 =
0. We prescribe the horizontal displacement under isothermal drained boundary conditions
at the edges of the model, see Figure 3.2. From the problem’s boundary conditions in 1D
we can also deduce at all times that: σ̃tot11 = σ̃tot33 = 0 while σ̃tot22 |x=−h

2
n1 = −σ̃tot22 |x= h

2
n2 = 0

due to prescribed tractions at the boundary (n1 = −n2 are the outward normal vectors
to the line domain at the boundary points). The fact that we prescribed the normal at
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the boundary means that the material is able to expand in the vertical direction therefore
ε̇22 6= 0. The linearized equations of energy and mass balance read respectively:

∂T̃

∂t
= cthT̃,ii + 1

ρC
σ̃ij ε̇

p
ij + 1

ρC
σij ˙̃εpij, (3.29)

∂p̃f

∂t
= chyp̃

f
,ii + λ∗

β∗
∂T̃

∂t
+ 1
β∗
∂ε̃totv
∂t

, (3.30)

where εv = ε11 + ε22 + ε33 denotes the volumetric part of the total strain εij. Taking into
account the above kinematical hypotheses:

∂T̃

∂t
= cthT̃,22 + 1

ρC
σ̃12ε̇

p
12 + 1

ρC
σ12 ˙̃εp12, (3.31)

∂p̃

∂t
= chyp̃,22 + λ∗

β∗
∂T̃

∂t
+ 1
β∗
∂ε̃tot22
∂t

. (3.32)

In the above we assume that in the total strain perturbation ε̃tot12 is equivalent to the
perturbation of the plastic strain ε̃p12. Finally the stress components read:

σ̃tot22 = M
(
ε̃tot22 − (1 + 2ν)α T̃

)
− p̃f , (3.33)

σ̃tot12 = 2G h

h+ 1 ε̃
tot
12 −K

1
h+ 1

(
ε̃22 − 3αT̃

)
tanφ, (3.34)

where M = E(1−ν)
(1+ν)(1−2ν) , K = 2G(1+ν)

3(1−2ν) are the longitudinal and bulk moduli respectively.
And the quasi-static equilibrium equations can be written as:

∂σ̃22

∂x2
= 0, ∂σ̃12

∂x2
= 0. (3.35)

The above linearized system accepts solutions of the form: ũ1, ũ2, T̃ , p̃ = {u1, u2, T, p} exp (st+ ikx).
Thus we arrive at the system matrix:


Mk2 0 −M(1 + 2ν)αki −ki

− K
1+h(ik)2 tanφ 2Gh

h+1(ik)2 3αK
h+1 tanφ 0

− 1
ρC

K
h+1(ik)2 1

ρC
2Gh
h+1 ikε̇

HS
12 cth(ik)2 − s+ 3αK

h+1 tanφ 0
1
β∗
iks 0 λ∗

β∗
s chy(ik)2 − s




u2

u1

T

p

 = 0,

(3.36)
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where the exponent (HS) indicates the reference homogeneous solution. For the above
solution to not have zero amplitude, the determinant of the above system needs to be
zero. In the general case, applying Krammer’s rule, we can see (by multiplication of the
diagonal terms) that the characteristic polynomial is of order n = 6. There are no known
analytical solutions for polynomial of order greater than n = 4 (see Arfken & Weber,
1999; Brown, Churchill, et al., 2009). For typical parameters for geomaterials (see Table
3.2), the corresponding Lyapunov coefficient is unbounded (s ∼ 1

λ2 ,see Figure 3.8).

Figure 3.8 – Plot of the Lyapunov Coefficient over a range of different wavelengths. The
Lyapunov coefficient is unbounded for the infinitesimal wavelength, it drops asymptoti-
cally to zero with a rate ∼ 1

λ
as we increase the wavelength. The preferred mode of strain

localization is on a mathematical plane.

In Benallal and Comi (2003), the authors study the problem of strain localization in a
fluid saturated inelastic Cauchy porous medium in the quasistatic regime. The authors
find conditions for which localization on a mathematical plane is the preferred localiza-
tion mode. They also provide conditions under which a traveling localization mode will
become prevalent. Furthermore, based on the form of the characteristic polynomial the
authors were able to provide conditions under which they can distinguish between local-
ized and diffused failure modes in fluid saturated inelastic Cauchy porous media. The
problem of strain localization in an inelastic Cauchy continuum, where both thermal and
pressure couplings are considered has been studied in its general form in Benallal (2005b).

Finally, the case of multiphysical couplings and viscosity has been studied in Jacquey
et al. (2021), Stefanou and Gerolymatou (2019). It is shown that under particular choice
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of the viscosity parameter, regularization of strain localization in a region of finite width
is possible. However, the region in which the plastic strain localizes is very small and
therefore, the heat production will lead to underwhelming temperature increases that
do not correspond to experimental results and field observations (see Bizzarri & Bhat,
2012; Blanpied et al., 1995; Boullier et al., 2009; Brantut et al., 2008; Forest, Boubidi,
et al., 2001; Kanamori & Brodsky, 2004b; Needleman & Tvergaard, 1992). Furthermore,
the resulting small localization width, neglects the existence of the microstructure of the
material. The material microstructure poses a lower bound to the thickness of the fault
gouge (see Eremeyev, 2018; Forest, 2020a, 2020b; Ren et al., 2021; Reyne et al., 2019;
J. Sulem et al., 2011, among others).

3.4.1 Numerical example

We proceed in an application of shearing of a 1D layer of a linear elastic perfectly plastic
Cauchy medium coupled with the equation of pressure and temperature diffusion. In what
follows, we will consider an introductory simplified model of 1D shear of a geometrial with
THM couplings. The material starts initially in a stress state of σ11 = σ22 = σ33 = 200
MPa, corresponding to a fault gouge lying inside the seismogenic zone ∼ 14 km under
the surface. We prescribe the horizontal displacement in the boundaries of the gouge
under isothermal drained boundary conditions for the diffusion equations. The material
parameters to be used in the subsequent numerical application are:

Parameter Value Unit
ρ 0 kg/m3

cth 1 mm2/s2

chy 10 mm2/s2

E 10 GPa
ν 0. -
α 10−5 /oC
ρC 2.8 MPa/oC
λ∗ 7.4 10−5 /oC
β∗ 8.2 10−5 MPa−1

Table 3.2 – Material parameters of a Cauchy continuum with multiphysical couplings.

In Figure 3.9, we present the shear stress σ12, horizontal displacement δ behavior of
a Cauchy continuum coupled with the pore fluid pressure and temperature equations
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3.5. Cosserat elasto-plasticity with strain softening

described in equation (3.28). Our numerical analyses localize on a mathematical plane
upon mesh refinement. Our numerical results indicate that localization happens once the
material enters the yielding region. In the right part of Figure 3.9, we can readily see that
localization takes place upon the smallest element mesh dimension indicating that the
material localizes on a mathematical plane as expected by the theoretical analysis of the
previous section. This result, in which, strain localizes on a mathematical plane, is contrary

Figure 3.9 – Simple shear of an infinite layer for different number of elements. Left:
Frictional strength τ vs horizontal displacement on top of the layer δ. On the right:
Localization width profiles for different number of elements. We interpret localization as
the rate of increase of the plastic deformation γ̇p.

to experiments and observations that clearly show that strain localization should posses
a finite width, which is constrained by a characteristic length of the material. The above
numerical findings guide us, once more, towards the use of higher order micromorphic
continua for the correct determination of the width of the principal slip zone. In chapter
5 we use a Cosserat micromorphic continuum for the determination of the principal slip
zone of a fault during coseismic slip. This continuum will help us model the frictional
response of a fault gouge during coseismic slip, where the values of the seismic slip as well
as those of the velocity of the seismic slip are typical of those observed in the field (see
Rice, 2006a; J. Sulem et al., 2004, among others).

3.5 Cosserat elasto-plasticity with strain softening

In this section we will present an example showing the regularizing properties of a Cosserat
continuum by making use of the LSA (see Figure 3.10). The theory of micromorphic con-
tinua is a general continuum theory that can be used to model heterogeneous systems with
microstructure (see Eringen, 1968; Forest & Sievert, 2003; Forest, 2020a, 2020b; Germain,

61



Chapter 3 – Strain localization and mesh dependency

Figure 3.10 – Localization profile of a Cosserat layer under 1D simple shear.

1973; Stefanou & Gerolymatou, 2019; J. Sulem & Vardoulakis, 1995; I. Vardoulakis, 2018,
2019). The Cosserat continuum belongs to a special case of micromorphic continua in
which the microstructure is considered to be made of rigid particles that can rotate in the
level of the microstructure as the macrocontinuum deforms.

Cosserat kinematics

We introduce the kinematic field of the deformation tensor γij. We define its symmetric
part γ(ij) as the macroscopic strain εij while its antisymmetric part γ[ij] is the difference
between macroscopic rotation Ωij and the microscopic rotation tensor ωij. We also take
into account the gradient of the microscopic rotation tensor κij.

γij = γ(ij) + γ[ij] = ui,j − ωij = ui,j + εijkωk, (3.37)

γ(ij) = εij = 1
2 (ui,j + uj,i) , (3.38)

γ[ij] = 1
2 (ui,j − uj,i)− ωij = Ωij − ωij, (3.39)

κij = ωi,j (3.40)

where, i, j = 1...3 sre the indices of the 3D space and by (, ) we denote the spatial deriva-
tive. The symbol εijk is the Levi-Civita permutation tensor.

A comprehensive study of the energetics of the arbitrary generalized micromorphic con-
tinua and the kinematic properties and their work conjugate quantities can be found in
(see Germain, 1973). Here we focus on the shearing of a 1D Cosserat layer, we derive the
system of the PDEs incorporating the material behavior, we find the conditions under
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3.5. Cosserat elasto-plasticity with strain softening

which multiple solutions to the system of PDEs become possible and the homogeneous
reference solution becomes unstable. Finally, we examine the strain localization profile of
the localized solution.

For simple shear in 1D conditions linear and angular momentum balance leads to:

∂τ12

∂x2
= ρü1,

∂τ22

∂x2
= ρü2,

∂µ32

∂x2
+ τ21 − τ12 = Iω̈c3, (3.41)

where τij, µij, i, j = 1...3 are the components of the stress and generalized stress tensor.
We note that in the case of a Cosserat material both the stress and the generalized stress
tensor are not symmetric. This is also true for their work conjugate quantities. In the case
of homogeneous deformation at steady state (u?i (x), i = 1, 2, ω?3(x) = 0), the asymmetry
of the stress tensor τ ?[ij] is zero. In this case the Cosserat moments (generalized forces) are
also zero µ?32 = 0. Therefore, in this state, the Cosserat continuum is equivalent to the
classical Cauchy continuum (see right part of Figure 3.2). Applying a perturbation to the
initial stable configuration leads to the following system of perturbed PDEs:

∂τ̃12

x2
= ρ¨̃u1,

∂τ̃22

∂x2
= ρ¨̃u2

∂m̃32

∂x2
+ τ̃21 − τ̃12 = I ¨̃ωc3 (3.42)

For elastoplasticity, the simplified yield criterion we present in equation (3.10), is adapted
to Cosserat as follows:

F (τ12, γ
p) = τ(12) − τ0(γp), (3.43)

where τ(12) is the symmetric part of the τ21 stress, which participates to the linear mo-
mentum equilibrium equation and γp = 2

∫ t
0 γ̇

p
(12)dt. Applying the elastoplastic analysis

of the previous section, and assuming an associative flow rule we arrive at the following
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relations for the material incremental behavior under mechanical softening:

τ̃12 = 2G h

1 + h
γ̃(12) + 2η1Gγ̃[12] = G

h

1 + h

∂ũ1

∂x2
+ 2Gcω̃3,

τ̃22 = Mγ̃22 = M
∂ũ2

∂x2
,

µ̃32 = 4GR2κ̃32 = 4η1GR
2∂ω̃3

∂x2
, (3.44)

where η1 indicates the stress asymmetry and R is the characteristic length, which we
call Cosserat radius. We note here that any ratio of the material coefficients can be
used for the derivation of a characteristic length (see Mindlin, 1963). We note again that
due to the prescribed boundary conditions of the BVP, the general solution is given by
[ũ1, ũ2, ω̃3]T = [g1, g2, g3]T exp (st+ ikx2). The system of PDEs can then be written as:


−G h

h+1k
2 − ρs2 0 2η1Gik

0 −Mk2 − ρs2 0
−2η1Gik 0 −4η1GR

2k2 + 4η1G



g1

g2

g3

 = 0, (3.45)

where the influence of the rotational moment of microinertia I was neglected. When the
determinant of the above system becomes zero, the amplitudes of the general solution
are different than zero, (see Chambon et al., 2004; Rice, 1975; Stefanou & Alevizos, 2016;
J. Sulem & Vardoulakis, 1995, among others). Considering that I is equal to zero for
simplicity we obtain:

s = ikvp or (3.46)

s = ±ikvs
√

h

h+ 1

√√√√√η1
(
1 + 1

k2R2

)
+ h+1

h
η1
k2R2 + 1 . (3.47)

The system is unstable when Re[s] > 0 or, equivalently when h < 0 (softening) and
η1
(
1 + 1

k2R2

)
+ h+1

h
> 0. The latter condition leads to a critical wavelength λcr:

λ > λcr = 2πR
√
−1 + h

h
− η1. (3.48)

The wavelength of the perturbation has to be larger than this critical value for localization
to occur, see Figure 3.11. We note here that λcr is proportional to the Cosserat internal
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3.5. Cosserat elasto-plasticity with strain softening

length, R. If R → 0 we retrieve the same condition for strain localization with the 1D
example presented in section 3.2 for a Cauchy continnum.

Figure 3.11 – Plot of the Lyapunov Coefficient over a range of different wavelengths for a
Cosserat elastoplastic continuum. The Lyapunov coefficient is positive and bounded over
a region where λ > λcr. This means that the strain in the case of the Cosserat continuum
cannot localize on a mathematical plane.

3.5.1 Numerical analysis

In the case of a Cosserat linear elasto- plastic strain softening material under quasi static
conditions, it has been shown with the help of a Lyapunov stability analysis in Muhlhaus
and Vardoulakis (1988) and also numerically in de Borst and Sluys (1991) that strain
localization will lead to mesh independent results. The parameters used in the case of a
Cosserat material are presented in Table 3.3. In the analyses presented here, no matter
the discretization of the specimen’s mesh, localization will always happen on a width dic-
tated by the fastest growing wavelength of the stability analysis. This is larger than the
infinitesimal wavelength (λcr > 0). We present these results in Figure 3.12, On the left
part of Figure 3.12, we see that the shear stress displacement diagrams τ21 − δ present
a converging response. This is also true for the localization profiles of the analyses per-
formed with increasing number of elements (decreasing mesh size). The localization profile
converges to a specific width controlled by the fastest growing wavelength derived from
the Lyapunov stability analysis. By Hc we denote the softening parameter used for the
evolution of τ0(γp). We use a linear relation of the form:

τ0(γp) = τ0|γp=0(1 +Hcγ
p) (3.49)
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Parameters Values Units
K 1

3102 GPa
G 10 GPa
Gc 10 GPa
τ0|γp=0 102 MPa
Hc −2 -
R 0.01 mm

Table 3.3 – Intact material parameters

Where γ̇p = 2γ̇p(12) and h = Hcτ0

∥∥∥
γp=0

according to equations (3.43)(3.44). We establish

Figure 3.12 – Simple shear of an infinite layer for different number of elements. Left:
Frictional strength τ vs horizontal displacement on top of the layer δ. The analysis of one
element does not localize and can be used as a way of validating w.r.t. the theoretical
prediction. Adding more elements into the model results to the slope during plastic soft-
ening remaining the same due to localization being bounded by the material constant λcr.
On the right: Localization width profiles for different number of elements. We interpret
localization as the rate of increase of the plastic deformation γ̇p. The analysis for one
element does not localize. We notice that localization converges to a value bounded by
the material constant λcr.

here, that indeed localization in Cosserat elasto-plastic strain softening materials is inde-
pendent from the mesh size and the imperfection width. This result extends also in the
case of rate dependent Cosserat material with strain softening and strain-rate harden-
ing. In the next section, we investigate another configuration for rate dependency that
results in a traveling instability. Our motivation for this numerical investigation lies in
the numerical results obtained in chapter 5 and the Appendix C. We see in chapter 5 that
traveling waves of strain localization are present in the results of the numerical analyses.
Moreover, in appendix C we have identified conditions for traveling instabilities to occur,
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3.5. Cosserat elasto-plasticity with strain softening

in the case of Cauchy elasto-viscoplastic continua with strain softening and strain-rate
hardening. It has been shown in W. Wang et al. (1997) that a traveling instability can
develop in the elasto viscoplastic Cauchy continua with strain hardening and strain-rate
softening. We investigate under which conditions such a traveling instability can develop
in the simple Cosserat mechanical models of our analyses. The results are presented in
the next section.

3.5.2 Portevin Le Chatelier phenomenon in Cosserat elasto-
viscoplasticity with strain hardening and strain-rate soft-
ening.

Figure 3.13 – Localization profile of a Cosserat layer under 1D simple shear. The material
law is elasto-viscoplastic with strain hardening and strain-rate softening. In this case a
traveling localization emerges (in red) whose width is λcr. This shear band travels inside
the Cosserat layer with velocity v, along a region of the layer which is plastified, and has
a width of hp.

In the post bifurcation regime of Cosserat micromorphic continua, the case of linear elasto-
viscoplastic strain hardening, strain-rate softening materials present special interest. Such
materials, exhibit a particular kind of instability when the Portevin Le-Chatelier (PLC)
phenomenon takes place. This instability mode refers to a localized plastic strain-rate pro-
file that travels inside the medium as shearing evolves (see Figure 3.13). In the framework
of metal plasticity on classical Cauchy continua, it has been studied extensively, and has
been tied to the existence of limit cycles and the Hopf-Andropov bifurcation (see Hähner
et al., 2002; Mazière et al., 2010; W. Wang et al., 1997). We emphasize here, however,
that in this configuration of strain hardening and strain-rate softening care must be taken
such that the dissipation of the material at all times is positive (D ≥ 0), i.e. the system
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does not produce energy. For the 1D case studied here (see Figure 3.14) the dissipation
is given by:

D = τ12γ̇
vp
12 = (τ 1

12 + τ 2
12)γ̇vp12 ,

= ηvp(γ̇vp12)2 + τyγ̇
vp
12 + hγvp12 γ̇

vp
12 ≥ 0, (3.50)

where we separate the influence of the visocity and plasticity components τ 1
12, τ

2
12 re-

spectively. We note further that, h > 0 is the strain hardening modulus, and ηvp < 0 is
the strain-rate softening parameter and γ̇vp12 ≥ 0 the viscoplastic strain internal variable.
Solving the inequality we show that the viscoplastic strain rate should obey:

γ̇vp12 ≤
τy + hγvp12
|ηvp|

. (3.51)

at all times.

Figure 3.14 – Elasto-viscoplastic material configuration and description in 1D.

In Figure 3.15 we obtain similar results for the case of an elasto-viscoplastic Cosserat
continuum with strain softening and strain-rate hardening. In Figure 3.15 the localization
profile along the 1D dimensional domain is plotted for different times during the analysis.
We note that the localization travels along the layer. Moreover the phenomenon is periodic
as the traveling shear band is reflected in the boundaries. We note that after the first period
the subsequent profiles appear at the same positions as before on top of the profile at past
times. The question of traveling instabilities in the framework of a Cauchy continuum with
multiphysical couplings has been addressed in Benallal (2005b), Benallal and Comi (2003).
There, the authors identified regimes for which traveling instabilities may occur. However,
the numerical difficulties of our current algorithm to achieve convergence obstruct us from
a detailed analysis in exploring instabilities of this kind in the Cauchy framework.
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Figure 3.15 – Evolution of the shear band inside the layer as a function of time. The shear
band travels inside the layer.

3.6 Key points

In this chapter different material models were investigated together with different contin-
uum descriptions, in order to evaluate their ability in assuring mesh independent results for
the prediction of the width of the localization zone (principal slip zone) under quasistatic
conditions. It has been shown that under strain softening only the Cosserat continuum is
able to assure mesh independent results and a mesh independent localization width. In
particular introduction of multiphysical couplings in the case of a classical Cauchy con-
tinuum was shown to not regularize the problem. This leads us to consider the Cosserat
continuum for the estimation of localization width and the dissipated energy in chapter 5
of the Thesis. Viscoplasticity was also considered in its ability to regularize localization in
the case of a Cauchy continuum. On the base of a simple example, it has been shown that
in quasistatic analyses such a claim is unfounded. However, the ability of viscoplasticity
to assure mesh independent results in the presence of inertia terms is still a matter of
vivid discussion. We discuss further this topic in the next chapter 4.
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Chapter 4

THE ROLE OF VISCOUS REGULARIZATION

IN DYNAMICAL PROBLEMS, STRAIN

LOCALIZATION AND MESH DEPENDENCY

Summary

Strain softening is responsible for mesh dependence in numerical analyses concern-
ing a vast variety of fields such as solid mechanics, dynamics, biomechanics and
geomechanics. Therefore, numerical methods that regularize strain localization are
paramount in the analysis and design of engineering products and systems. This is
also the case in fault mechanics. In this chapter we revisit the elasto-viscoplastic,
strain-softening, strain-rate hardening model as a means to avoid strain localization
on a mathematical plane (“wave trapping”) in the case of a Cauchy continuum. Go-
ing beyond previous works (de Borst and Duretz, 2020; Needleman, 1988; Sluys and
de Borst, 1992; W. Wang et al., 1997), we assume that both the frequency ω and the
wave number k belong to the complex plane. Therefore, a different expression for
the dispersion relation is derived. We prove then that under these conditions strain
localization on a mathematical plane is possible. The above theoretical results are
corroborated by extensive numerical analyses, where the total strain and plastic
strain rate profiles exhibit mesh dependent behavior.
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4.1 Introduction

Going beyond and expanding on existing results of chapter 3, we revisit, in this chapter,
the role of viscosity for the regularization of the classical Cauchy continuum in the pres-
ence of inertia. Considerable amount of research has been made on viscous regularization
of localization under both quasi-static and dynamic conditions (see Loret and Prevost,
1990; Needleman, 1988; Sluys and de Borst, 1992). In particular, for the quasi-static case,
it is noted that the elasto-viscoplastic Cauchy medium based on a power law for the vis-
coplasticity description, will exhibit strain localization on a mathematical plane, except
if a particular procedure for the time integration takes place see Needleman, 1988. Fur-
thermore, it is mentioned in Sluys and de Borst, 1992 that the regularizing properties of
the elasto-viscoplastic medium are present only in the context of dynamical analyses, due
to the regularizing role of the higher order inertial terms, which are naturally introduced.
Moreover, for the dynamic case, a conclusion taken from Needleman, 1988; Sluys and
de Borst, 1992 is that the selection of a consistency or Perzyna yield condition for the
viscoplastic model is preferred over a power law based on the fact that the third order
terms of the Partial Differential Equation (PDE), gradually vanish in the latter as strain
softening occurs.

As it has been already presented in Abellan and de Borst, 2006 and in particular in de
Borst and Duretz, 2020 the formulation of the elasto-viscoplastic material model, specifi-
cally the position of the damper element into the idealized viscoplastic configuration, is of
great importance. It has been shown in de Borst and Duretz, 2020 that a solution localizes
into a mathematical plane once the configuration of the viscosity dashpot, the plasticity
element and the elastic spring are in series. The present chapter addresses stability and lo-
calization questions for the parallel configuration as studies are not conclusive yet. Hence
the elasto-viscoplastic model with strain softening, which involves a parallel connection
between the plasticity element and the dashpot, is examined at present using bifurcation
and Lyapunov stability analysis. In particular, we examine in detail the stability of the
reference solution of uniform deformation of the elasto-viscoplastic problem. This will help
us then to choose in the next chapters, the appropriate continuum for modeling the shear
behavior of a fault gouge.

In previous works (de Borst and Duretz, 2020; Needleman, 1988; Sluys and de Borst,
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1992; W. Wang et al., 1997), the question of localization of the deformation was ad-
dressed by looking at the propagation velocity of localization. In particular it is mentioned
in Sluys and de Borst, 1992 that the original ill-posed problem of strain-softening plastic-
ity presents imaginary wave speeds corresponding to standing waves, which cannot extend
the localization zone. As mentioned above, this is thought to be remedied by the intro-
duction of viscosity. It is also stated in these works that to properly test the conditions
under which strain localization is present in the non-linear elasto-viscoplastic problem,
we would require a closed form analytical expression for the solution, which until now is
impossible. Since no analytical known way exists in solving the softening, rate-dependent
plasticity problem, the focus was shifted in the derivation of the dispersion relationships.
Namely, in the previous, it was assumed that if every mode has a real velocity, then the
corresponding part of the deformation will propagate and, therefore, it will not concen-
trate in only one element of the model as it would be the case with a standing wave.

An additional argument that is presented in Sluys and de Borst, 1992; W. Wang et al.,
1996, is the dispersive character of the partial differential equation, which is assumed to
further regularize the problem as the deformation front widens due to the different velocity
of the deformation modes. In all these works, the dispersion relation was derived based on
the assumption that the circular frequency ω and consequently, the wave velocities c are
real, while the wavenumber k is complex: k = kr + kii, kr, ki = α ∈ R, indicating spatial
attenuation of the derived deformation modes, thus leading to characteristic localization
length l = 1

α
. However, we find no reason to strictly assume ω ∈ R, which makes an

important difference in the analysis. The concept of imaginary frequency can be shown
to correspond to the real and negative square of the wave velocity c, which leads to diver-
gence growth according to Benallal and Comi, 2003; A. Bernard et al., 2001; Chambon
et al., 2004; Deschamps et al., 1997; Gerasik and Stastna, 2010; Mainardi, 1984, 1987;
Marion, 2013; Rice, 1975, 1976; Stefanou and Alevizos, 2016 (see also equation (4.22)
in section 4.2.3.2). In a physical context imaginary frequencies ω are important in the
description of physical phenomena as shown in the kinematic theory developed by Hayes,
1970 and Poeverlein, 1962.

In this chapter we depart from this main assumption by assuming both ω, k ∈ C, thus
considering the problem in its general form. Furthermore, due to application of the Lya-
punov analysis we are interested in the magnitude of the imaginary part of ω, ωi = Im[ω],
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which controls the evolution of the amplitude of the perturbations and therefore, the sta-
bility of the reference homogeneous deformation state. We argue that if the amplitude of
the mode with zero wavelength increases faster than that of the others, then this mode
will dominate the deformation profile and strain localization on the mathematical plane
will be possible. Theoretical proofs are presented at first showing this phenomenon and
also, the emergence of traveling waves of strain localization in some cases. The theoreti-
cal results are corroborated then by numerical analyses where the total strain and plastic
strain profiles exhibit mesh dependent behavior. These analyses provide counter examples
to viscous regularization in dynamical problems.

4.2 The elasto-viscoplastic wave equation

4.2.1 Problem description

Let us consider a body under homogeneous small deformation lying at rest. The equilib-
rium equation of a homogeneous deformation profile is given as:

σ?ij,j = 0, (4.1)

where σ?ij is the developed stress field (for the mathematical definitions see section 3.2 in
3.2).Considering a perturbation ũi to the reference displacement field u?i of homogeneous
deformation, we find a relationship between the perturbed stress and displacement ũ fields,
according to the conservation of linear momentum:

(σ?ij + σ̃ij),j = ρ¨̃ui, (4.2)
σ̃ij,j = ρ¨̃ui, (4.3)

where ρ is the density of the material. Both displacement and stress variations are arbi-
trary respecting only the boundary and loading conditions such that ũi = 0, σ̃i,jnj = 0
at the boundary of the body, where displacement and loading conditions are specified,
respectively. In order to continue with the bifurcation analysis of the problem we need to
look first at the elasto-viscoplastic constitutive law we take into account.
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4.2.2 Elasto-viscoplastic constitutive relations

As mentioned in section 4.1 a variety of yield criteria and flow rules are available for
modeling viscoplasticity. Here we use the von Mises yield criterion with strain-hardening
(softening) and the Perzyna viscoplasticity approach (see J.-P. Ponthot, 1995; W. Wang et
al., 1997). In the Appendix A, we present also an alternative formulation for viscoplasticity,
the consistency approach (see Heeres et al., 2002; W. M. Wang et al., 1996, 1997). We
show that the linearized descriptions of these two alternatives to rate dependent visco-
plasticity match leading to the same linearized stability differential equation and the same
conclusions for their stability.

4.2.2.1 von Mises yield criterion Perzyna approach

In an elasto-viscoplastic formulation the following relations hold as given in De Borst,
1991; W. M. Wang et al., 1996; W. Wang et al., 1996; W. Wang et al., 1997:

F (σij, ε̄vp) = 0, (4.4)
ε̇ij = ε̇eij + ε̇vpij , (4.5)
σ̇ij = M e

ijkl (ε̇kl − ε̇
vp
kl ) , (4.6)

ε̇vpij = λ̇
∂F

∂σij
=
(
F

ηF0

)n
∂F

∂σij
, n = 1, (4.7)

ε̄vp =
∫ t

0
˙̄εvpdt, (4.8)

where F = F (σij, ε̄vp) is the yield function incorporating the effects of strain hardening
through the use of the accumulated deviatoric viscoplastic strain ε̄vp.The effects of strain
rate hardening are taken into account by the viscosity coefficient η applied in the defini-
tion of the viscoplastic strain rate ˙̄εvp, respectively. The viscoplastic multiplier λ̇ is given
directly by the Perzyna viscoplasticity law defined above. The von Mises yield criterion
with strain-hardening (softening) for the Perzyna approach reads (see W. M. Wang et al.,
1996; W. Wang et al., 1996; W. Wang et al., 1997):

F (σij, ε̄vp) =
√

3J2(σij)− (F0 + hε̄vp), (4.9)

where F0 is the initial yield strength of the material, h is a parameter indicating strain
hardening of the material (h < 0 indicates strain softening) with increasing accumulated
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plastic strain and The rate of the accumulated plastic strain is defined as ˙̄εvp =
√

2
3 ε̇
vp
ij ε̇

vp
ij .

From the above definitions we conclude that ε̄vp = λ, ˙̄εvp = λ̇. We define the viscoplastic
potential Ω(σij, λ, λ̇) as:

Ω(σij, λ, λ̇) = F (σij, λ)− F0F
−1(λ̇η) = 0 (4.10)

The time derivatives of the yield condition and the viscoplastic potential in this case are
the following:

Ḟ = ∂F

∂σij
σ̇ij + ∂F

∂λ
λ̇, (4.11)

Ω̇ = ∂Ω
∂σij

σ̇ij + ∂Ω
∂λ̄

λ̇+ ∂Ω
∂λ̇

λ̈ = 0. (4.12)

Now the consistency condition is valid for the visocplastic potential: λ̇Ω = 0 λ̇ ≥ 0, Ω ≤ 0,
where during plastic loading Ω̇ = 0.

Alternatively one can define the concistency von Mises yield condition (inserting an extra
term g ˙̄εvp in the yield condition, g > 0 indicating hardening) and assume that after the
material reaches the yield limit the viscoplastic strain-rate is given by solving the corre-
sponding consistency condition (λ̇F = 0, F = 0, λ̇ > 0, see Appendix A). The results
between Perzyna and consistency viscoplasticity criteria are the same as far as monotonic
loading is applied and non-holonomic behavior of the material is excluded, provided that
we assign g = ηF0 in the yield criterion. In the case of stress reversal and subsequent
unloading, however, the results between the consistency approach and the Perzyna model
will be different due to the elasto-viscoplastic component that the Perzyna model predicts
during unloading (see Heeres et al., 2002).

In what follows the principal results of the elasto-viscoplastic bifurcation analysis are pre-
sented. A full derivation of the elasto-viscoplastic constitutive relations for both Perzyna
and concistency viscoplasticity criteria is presented in the Appendix A. Applying equation
(4.9) to equations (4.6) and (A.1.10) of the Appendix A, we arrive at the relationship for
the stress rate σ̃ij:

σ̃ij = M e
ijkl

(
ε̃kl −

C

−h+ C
ε̃kl + hbkl

−h+ C
˙̃λ
)
, (4.13)
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where in order to simplify the notation we have replaced accordingly:

∂Ω
∂λ̇

= h,

C = ∂Ω
∂σij

M e
ijkl

∂Ω
∂σkl

,

bkl = ∂Ω
∂λ̇

∂Ω
∂σkl

. (4.14)

4.2.3 Derivation of the perturbed equation

We proceed now in deriving the general linearized perturbed equation of equilibrium for
the given material law under monotonic loading. Inserting equation (4.13) into equation
(4.3) and taking into account the spatial derivative of equation (4.7), we obtain:

M e
ijkl

(
ε̃kl,j −

C

−h+ C
ε̃kl,j + h

−h+ C
˙̃εkl,j −M e−1

ijklρ
...
ũ i

)
= ρ¨̃ui, (4.15)

This equation describes the spatio-temporal evolution of perturbations from the reference
solution of homogeneous deformation in 3D.

4.2.3.1 Shearing of a viscous Cauchy layer

We constrain our analysis to the study of 1D problems, since they constitute the simplest
case to study localization and the regularization effects coming from the above material
law. In this way direct parallels can be drawn between our work and the main bulk
of literature on the subject de Borst and Duretz, 2020; Needleman, 1988; Sluys and de
Borst, 1992; W. M. Wang et al., 1996. For the shearing of an 1D layer we assume that
the shearing is coaxial to the direction of x1 and that the body deforms in the direction
x1. Therefore ũi = [0, ũ2]T = [0, ũ]T . Since we are in a state of 1D deformation, only
the derivatives along the 1D axis, x1, survive, therefore we set ∂ũ2

∂x1
= ∂ũ

∂x
. Taking into

account the appropriate material constant M e
ijkl = De

2121 = G, we proceed in deriving the
perturbed linear momentum equation for the shearing of an 1D elasto-viscoplastic layer:

Gh̄
∂2ũ

∂x2 −
∂2ũ

∂t2
(3 + h̄)G

v2
s

+ η̄vpG

(
∂3ũ

∂t∂x2 −
1
v2
s

∂3ũ

∂t3

)
= 0, (4.16)

where vs =
√

G
ρ
and η̄vpG = ηF0 = g.
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This coincides with the elasto-viscoplastic equation derived by de Borst and Duretz, 2020;
Sluys and de Borst, 1992; W. M. Wang et al., 1996, 1997. However, the equation derived
above describes the evolution of a perturbation from the initial homogeneous deformation
state. It will not be used as a description of the total behavior of the material as it ne-
glects the material behavior in unloading and we are not interested in the solution of the
elasto-plastic problem but only at the stability of the homogeneous deformation state, in
order to draw conclusions about strain localization(see Lemaitre et al., 2020).

Here we note that the equation (4.16) has time independent coefficients (autonomous
system, see Brauer and Nohel, 1969). Thus, incorporating a linear law for strain softening
and strain rate hardening allows us to investigate stability according to Lyapunov’s first
method (Lyapunov, 1992; Mawhin, 2005). Incorporation of more general material laws
including non-linear effects in strain softening and strain rate hardening would result in a
non autonomous system. As such stability of the solution for the wavenumbers (kr) and
wavelengths (λ) of interest should be studied using Lyapunov’s second (global) method.
However, such an investigation lies outside the scope of this chapter. Here we investigate
the capability of a simple elasto-viscoplatic law with linear strain softening and linear
strain-rate hardening as the one described in de Borst and Duretz, 2020; W. Wang et al.,
1997, to regularize the width of the localization in dynamical elasto-viscoplastic analyses.

As mentioned in W. Wang et al., 1997, this equation contains two components, a classi-
cal elastoplastic wave equation plus the higher order rate-dependent terms. The nature
of this differential equation is defined by the higher order derivatives. It is also stated
in Sluys and de Borst, 1992 that, in the limit of high viscosity η̄vp → ∞, only the rate
terms contribute, since they travel with the elastic wave velocity. In this case, the implied
deformation pulse will travel with the corresponding elastic wave velocity as predicted in
Loret and Prevost, 1990 and Needleman, 1988.

4.2.3.2 Normalizing the 1D elasto-viscoplastic wave equation.

We consider ū = u
uc
, t̄ = t

tc
, x̄ = x

xc
, where uc, tc, xc are the characteristic displacement,

time and length, respectively. Applying these definitions to equation (4.16) we obtain:
(
x2
c

v2
st

2
c

∂3ū

∂t̄3
− ∂3ū

∂x̄2∂t̄

)
η̄vp

tch̄
+ x2

c

v2
st

2
c

3 + h̄

h̄

∂2ū

∂t̄2
− ∂2ū

∂x̄2 = 0. (4.17)
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Introducing the characteristic velocity vc = xc

tc
, the result is written as:

(
v2
c

v2
s

∂3ū

∂t̄3
− ∂3ū

∂x̄2∂t̄

)
η̄vp

tch̄
+ v2

c

v2
s

3 + h̄

h̄

∂2ū

∂t̄2
− ∂2ū

∂x̄2 = 0. (4.18)

The above equation is linear and has solutions of the form:

ū(x̄, t̄) = A exp [i(k̄x̄− ω̄t̄)], (4.19)

where k̄, ω̄ ∈ C and A ∈ R is a constant indicating the wave amplitude. Finally,
inserting the non-dimensional solution (4.19) into the normalized equation (4.18) we arrive
at:

k̄2v2
s(h̄t̄c − iη̄vpω̄)− v2

c ω̄
2[(3 + h̄)t̄c − iη̄vpω̄] = 0. (4.20)

It is worth emphasizing that the choice of assuming both ω̄, k̄ ∈ C is not studied exten-
sively in the literature. However, examples of the notion can be found in Mainardi, 1984,
1987; Marion, 2013.

Replacing V = vc

vs
, T = η̄vp

tc
and solving the above for k̄ we obtain:

k̄1,2 = ±

√√√√V 2ω̄2(3 + h̄− iT ω̄)
(h̄− iT ω̄)

. (4.21)

The above equation can be also derived directly by use of a Fourier transform on equation
(4.18). Expanding k̄, ω̄ in imaginary and real parts, k̄ = k̄r + k̄ii, ω̄ = ω̄r + ω̄ii as
explained in Hayes, 1970; Maugin, 2007; Poeverlein, 1962 indicates that in our analysis the
dependence of the amplitude of the solution has both a spatial and a temporal component.
In particular the non-dimensional solution can be written as:

ū(x̄, t̄) = exp (−k̄ix̄+ ω̄it̄) exp[i(k̄rx̄− ω̄r t̄)], (4.22)

where, without loss of generality, the amplitude constant in front of the exponential terms
of solution (4.22) is set to unity. The first factor in the right hand side of equation (4.22)
indicates a quantity that increases or decreases based on the relationship between (ω̄it̄
and k̄ix̄). In this chapter, we define that an observer moving along x̄ with a velocity ci,
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such that the amplitude profile exp (−k̄ix̄+ ω̄it̄) remains constant, is moving with the
amplitude velocity:

ci = ω̄i

k̄i
. (4.23)

Conversely the second factor of equation (4.22) indicates the classical wave solution. An
observer moving with a velocity cr such that the phase exp [i(k̄rx̄− ω̄r t̄)] remains constant
is said to be moving with the phase velocity Marion, 2013; Pain and Beyer, 1993; Sluys
and de Borst, 1992:

cr = ω̄r

k̄r
. (4.24)

According to the definition of Lyapunov for continuous dynamical systems Mawhin, 2005;
Rattez, Stefanou, and Sulem, 2018, for an equilibrium solution to be unstable, the am-
plitude of the initial perturbation must increase in time. According to Lyapunov sta-
bility analysis, a partial solution of the partial differential equation (4.18) is given by
ū(x̄, t̄) = exp (s̄t̄+ ik̄x̄), where s̄ is the Lyapunov exponent s̄ = −iω̄. From this we
conclude that the important term whose sign determines the stability of the reference
solution, corresponding to homogeneous deformation (4.19), is the imaginary part of ω̄,
i.e. ω̄i. Therefore, for the perturbation to grow in amplitude, the term exp (−k̄ix̄+ ω̄it̄)
must be increasing as the wave travels. Localization on a mathematical plane will happen
if we can find appropriate ω̄i, k̄i terms for the amplitude to be constantly increasing the
fastest for the smallest possible wavelength λ̄→ 0 (k̄r = 2π

λ̄
→∞).

4.3 Dispersion analysis

4.3.1 Solution of the dispersion equation

Equation (4.21) consists of two multivalued functions k̄1(ω̄), k̄2(ω̄) in the complex set
ω̄ ∈ C. Introduction of branch cuts along selected points of unambiguous value is needed
for their study on the values of their argument ω̄ Arfken and Weber, 1999.
Noticing the square powers of V 2, ω̄2 inside the root, equation (4.21) can be simplified
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yielding:

k̄1,2(ω̄) = ±V
(

3 + h̄

h̄

) 1
2

ω̄

(
3 + h̄

T
i+ ω̄

) 1
2
(
h̄

T
+ ω̄

)− 1
2

. (4.25)

Each of the two solutions contains right and left propagating waves based on the sign
combinations of ω̄r, k̄r. The second solution k̄2(ω) presents the exact same points of inter-
est as the first. The difference lies in the −1 factor between the two solutions. This factor
according to the Euler identity can be written as eiπ = −1 and ,therefore, indicates a
change in the argument of the second solution. Figure 4.1 shows 3D plots of k̄1(ω̄), k̄2(ω̄).
The colors on the right of Figure 4.1 are changed indicating a change of the argument
from the upper half of the imaginary plane to the lower half of it, meaning that the two
solutions k̄1,2(ω̄) behave differently when it comes to the spatial amplification/attenuation
coefficient k̄i. In particular, k̄1(ω̄) predicts only attenuation waves, while k̄2(ω̄) consists
of amplification waves. This change indicates that the waves in Figure 4.1 travel in the
same direction with opposite imaginary part of k̄(ω̄). To us the propagation direction of
the wave is not important because of spatial symmetry of the solution (4.21).

In the next section the points of interest of the k̄1(ω̄) are presented and their behav-
ior is explained in the form of branch cuts and poles. As discussed previously, the same
behavior is valid for k̄2(ω̄). We choose to draw further conclusions in the form of plots over
line from the combination of the two solutions k̄1,2(ω̄). In particular, we focus on the posi-
tive real parts of the solutions k̄1r(ω̄), k̄2r(ω̄) > 0 as well as the positive imaginary parts of
the solutions k̄1i(ω̄), k̄2i(ω̄) > 0. Thus, we investigate the function k̄(ω) = |k̄r(ω̄)|+i|k̄i(ω̄)|
as shown later in Figure 4.4.

4.3.2 Poles and zeros

Studying equation (4.25), the following points can be readily specified in the above form:
• The third factor indicates a zero at the origin: ω̄O1 = 0.
• The fourth factor becomes zero at position: ω̄O2 = −3+h̄

T
i.

• The last factor indicates the presence of a pole at: ω̄P1 = − h̄
T
i.

• The value of the function at complex infinity ω̄P2 →∞ is found to be infinite in a
complex sense, limω̄→ω̄P2 k̄1(ω̄)→∞.
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For the purposes of our analysis the behavior of the dispersion function at the poles
ω̄P1, ω̄P2 is very important as it will be shown to promote localization on a mathematical
plane. Because of the fractional powers of the second and third term, equation (4.25) is a

Figure 4.1 – On the left: Complex 3D plot of the k̄1(ω̄) solution (4.21). On the right:
Complex 3D plot of the k̄2(ω̄) solution (4.21). Values on vertical axis indicate the solution’s
magnitude, where the coloring indicates the argument of the function. Along the branch
cut discontinuity, the difference in color indicates the jump in the argument of k̄1(ω̄).

multivalued equation, since it is affected by the values of the argument. In order to remove
the ambiguity from the function we need to constrain it in such a way that each value
of the function corresponds to only one argument. For this we introduce branch cuts. A
branch cut is a discontinuity in the function that is defined by arbitrarily joining the two
points defined as branch points. The branch points are defined as points of unambiguous
value, where the argument of the function is exactly known for a particular value of the
function and the values corresponding to other points in a region sufficiently close to the
branch point depends on the argument of the complex number inserted in the function.
Two such points for the complex function f(ω̄) = ω̄

1
2 are ω̄ = 0, and |ω̄| → ∞, ω̄ ∈ C,

because for these particular numbers the value of the function is always zero and infinity
respectively. However, around them the value of the function depends on the argument
of the complex number (see below).

We can translate this result to other points in the complex plane, namely to ω̄O2, ω̄P1.
In a region close and around ω̄O2 = −i3+h̄

T
the complex number with starting point ω̄O2

that follows the curve surrounding ω̄O2 changes its argument by 2πi. However, the factor(
3+h̄
iT
− ω̄

) 1
2 only changes by πi, meaning that there is a sign difference between the start-

ing and the end position along the closed curve at the same point. Similarly, the same
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happens in the region near the pole ω̄P1, where for every 2πi that the relative complex
number starting at ω̄P1 changes following the surrounding curve, the factor

(
h̄
iT
− ω̄

)− 1
2

changes by −πi. However at complex infinity (ω̄ →∞), both previous points are entailed
by the curve at infinity. Therefore, the total change in the argument is πi− πi = 0. This
means that, ω̄P2 it is not a branch point (it does not belong to the branch cut). The
simplest cut is the one that follows the line defined by the two branch points as shown
in Figure 4.2. Since the point at complex infinity is not a branch point then it can be
expected to be an isolated singular point, namely a pole of n-order or an essential sin-
gularity Arfken and Weber, 1999; Brown, Churchill, et al., 2009. In this case it can be
proven to be a simple pole as shown in Appendix B

Introducing the mapping ω̄ = 1
z
we notice ω̄ → ∞ can be written as 1

z
when z → 0.

The properties of this mapping are explained in Brown, Churchill, et al., 2009 and in the
Appendix B.

Figure 4.2 – Contours of the solution (4.21) indicating with red color the position of the
branch points and with cyan the branch cut line that connects them.

The plots showing the poles and zeros of the function k̄1(z) with the mapping are shown
in Figure 4.3. On the right part of the Figure the region around the poles and infinity is
shown while on the left a detail is presented where the zero value ω̄O2 - that due to the
mapping is found closer to the origin - is shown.
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Figure 4.3 – Complex 3D plot of the k̄1(z) where z = 1
ω̄
. On the left part of the Figure the

behavior in the region near ω̄ infinity ω̄P2 and the pole at ω̄P1 is presented.We notice the
two poles lying at positions ω̄P2 : z = 0 and ω̄P1 lying at ωP1 : zp = −5i respectively. On
the right the region close to the pole at infinity z = 0 is plotted. We notice the existence
of the zero ω̄O2 that due to the mapping now lies at z = 0.05 extremely close to z = 0,
inside the unit circle.

4.3.3 Localization on a mathematical plane

Localization will happen when the amplitude of a particular perturbation mode as shown
in equation 4.22 is found to be continuously increasing faster than the rest. If this hap-
pens for the perturbation of the smallest possible wavelength λ̄→ 0 that corresponds to
k̄r →∞ then localiazation on a mathematical plane takes place.

As stated in the previous paragraphs without loss of generality we focus on the posi-
tive real and imaginary parts of the function |k̄(ω̄)| = |k̄r| + |k̄i|i. |k̄(ω̄)| has the same
poles ω̄P and zeros ω̄O as the original k̄(ω̄) with the added simplification that only the
positive argument values of both functions k̄1(ω̄), k̄2(ω̄) are plotted. This simplifies our
analysis with regards to the sign of k̄i, which contributes to the exponential growth of
the amplitude, but it is not crucial for the time evolution of the perturbation which is
determined by ω̄.

First we focus to the pole value at ω̄P1 which is shown in the left 3D plot of Figure 4.4.
There the pole ω̄P1 and the first zero ω̄O1 are shown. The pole lies at the value ω̄P1 = − h̄

T̄
i

with h̄ < 0, corresponding to a real and positive Lyapunov exponent s̄ = iω̄ = h̄
T̄
> 0.
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Figure 4.4 – Complex 3D plot of the k̃(ω̄) combination of the two solutions. This envelope
incorporates all the waves that travel to the positive part of the axis together with the
highest spatial amplification coefficient. On the left: Complex 3D Plot of ˜̄k(ω̄) = |k̄r|+i|k̄i|
for values of ω̄r, ω̄i close to the pole value ω̄P1 = 0.2i. On the right: Complex 3D Plot of
˜̄k
(

1
z

)
= |k̄r|+ i|k̄i| for values of ω̄r, ω̄i close to infinity, when zP2 = 0,

(
1
z

)
→∞ and the

pole value ω̄P1 = 0.2i→ zP1 = −5i

Since for k̄r(ω̄) → ∞ when ω̄ = ω̄P1, we conclude that localization on a mathematical
plane is possible (λ̄ = 2π

k̄r
→ 0), while in this case the rate of increase of the perturbation

amplitude is bounded. This is a new result that the analysis in the complex frequency
domain allowed us to obtain, and wouldn’t have been possible without this consideration.
Note also that other localization criteria (see Rice, 1976; Rudnicki and Rice, 1975) are
not applicable to the problem at hand.

The imaginary frequency ω̄i of the pole ω̄P1, where k̄r tends to infinity, indicates the
growth rate of the perturbation with infinitesimal wavelength. Its inverse is called here,
“characteristic growth time of the perturbation” (T ?).

The perturbation growth coefficient for viscoplastic media is bounded in contrast to rate-
independent media where the perturbation growth coefficient is infinite when the condi-
tions for strain localization are met (s̄ ≈ 1

λ̄
). However, in both cases strain localization

happens on a mathematical plane and, therefore, this analysis shows that viscoplasticity
does not regularize this problem even in the presence of inertia terms.

The behavior of |k̄(ω̄)| at ω̄ → ∞ meaning ω̄ = ω̄P2 cannot be captured in this plot.
For this reason we perform a change of variables in ω̄, replacing with ω̄ = 1

z
. Now the
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non-dimensional M1 M2
material parameters stable unstable
V̄ = vc

vs
0.25 0.25

T̄ = g
tcG

0.15 0.15
h̄ = h

G
0.03 -0.03

Table 4.1 – Non-dimensional material parameters used for the numerical analyses

value of ω̄ at infinity corresponds to z = 0. The function k̄(z) is plotted on the right of
Figure 4.4, where we capture the value at ω̄P2 → ∞ when z = 0 (ω̄P2) and at the pole
ω̄P1 = 1

zP1 .The second zero value is also captured in the line plots of Figures 4.6 and 4.7
with the help of the transformation k̄(z). In this case k̄(z) tends to infinity. Therefore ωP2

also constitutes a localization point.

4.3.4 Characterization of the waves in the complex plane

Having qualitatively described the behavior of the solutions of the dispersion equation we
proceed with assigning specific values to the dimensionless parameters according to the
material parameters taken from de Borst and Duretz, 2020. These values are presented
in Table 4.1 and describe the case of a viscoplastic material obeying the von Mises yield
criterion with strain-hardening (h > 0) and strain-rate hardening (g > 0), M1, as well as
the case of strain-softening (h < 0) and strain-rate hardening (g > 0), M2.

We focus our attention on the case M2. By standing waves here we refer to profiles
stationary in space whose values, however, depend on time due to the exponential growth
coefficient ω̄i. The contours of the real |k̄r| and imaginary parts |k̄i| of the combination of
solutions near the pole ωP1 are presented in Figure 4.5. We can define three cases for an
1D elasto-viscoplastic medium expanding to infinity in both directions around the origin:

4.3.4.1 Case 1: Standing waves

We focus our attention on the line where Re[ω̄] = ω̄r = 0 (see also Figure 4.5, Case 1).
In this case standing waves are present in the medium. The amplitude of these standing
waves is dependent on the values of k̄i, ω̄i. When k̄i > 0, while ω̄i = 0, the amplitude
of the standing wave decreases with the distance from the origin as shown in equation
(4.22). However, if ω̄i > 0, then the value of the amplitude of the oscillations at fixed
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Figure 4.5 – Contourplot of k̄r, |k̄i| for values of ω̄r, ω̄i close to the pole value ω̄P = −0.2i.
The contour closer to k̄ → 0 is presented with blue color.

positions, will grow exponentially with time. Thus strain localization will happen inside
a length λ̄ = 2π

k̄r
.

Along the imaginary axis (ω̄r = 0), there is only one position where k̄r →∞. This is the
pole at ω̄P1 which constitutes a branch point of the dispersion relation (4.20) (see also
Figure 4.6-asymptote). In this point k̄r(ω̄P1)→ ±∞ as well as k̄i(ω̄P1)→ ±∞. We notice
that the value of ω̄i at the pole is a cutoff value. There are no higher values of ω̄i for which
standing waves are possible since k̄r = 0 for ω̄i > ω̄P1(see also Figure 4.6). For a pertur-
bation from the initial homogeneous state to grow with time we are interested only in
ω̄i > 0. Therefore the behavior of k̄r for ω̄i < 0 is of no consequence for the stability of the
homogeneous deformation, since all these modes will eventually die-off with time. From
the above, we conclude that since the infinitesimal wavelength λ̄ = 2π

k̄r
→ 0 for the highest

possible value of ω̄i strain localization on a mathematical plane is inevitable. We empha-
size again that classical approaches as described in de Borst and Duretz, 2020; W. Wang
et al., 1997 neglect the existence of the imaginary frequencies and therefore, are unable
to find the pole ω̄P1, failing to predict localization on a mathematical plane. Note that
other localization criteria (see Rice, 1976; Rudnicki and Rice, 1975), are also not applicable
to the problem at hand due to the introduction of rate dependency (elasto-viscoplasticity).

Next, we investigate the influence of k̄i to the evolution of the amplitude of the per-
turbation. Looking at Figure 4.7 and considering the solution branch of equation (4.21)
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we notice that k̄i →∞ for ω̄ = ω̄P1. Therefore, a standing wave with solution parameters
(ω̄, k̄) defined the same as the pole ω̄P1 will exhibit localization on a mathematical plane
as distance x̄ from the origin increases.

Figure 4.6 – Left: Evolution of k̄r with respect to ω̄i for parameter values ω̄r close to the
pole value ω̄P1 = 0.2i indicating traveling waves around the pole (ω̄r 6= 0). Right: |kr|
along the lines of ω̄r = const for a range of values of ω̄i close to infinity.For z̄r = 0 the
imaginary axis ω̄i is parallel to the imaginary axis zi. Therefore The detail around zi = 0
is indicative of the behavior of function k̄(ω̄) as ω̄r = 0, ω̄i →∞.

Figure 4.7 – Evolution of k̄i with respect to ω̄i for parameter values ω̄r close to the pole
value ω̄P1 = 0.2i indicating traveling waves around the pole (ω̄r 6= 0). Left: |k̄i(ω̄)| along
the lines of ω̄r = const for a range of values of ω̄i, detail around the pole region ω̄P1.
Right: |k̄i(1

z
)| along lines of constant zr. For zr = 0 the imaginary axis ω̄i is parallel to

the imaginary axis zi. Therefore The detail around zi = 0 is indicative of the behavior of
function k̄(ω̄) as ω̄r = 0, ω̄i →∞.

4.3.4.2 Case 2: Traveling waves of zero temporal attenuation

Another important case seen in bibliography Abellan and de Borst, 2006; de Borst and
Duretz, 2020; Sluys and de Borst, 1992; W. Wang et al., 1996; W. Wang et al., 1997 is that
of the traveling waves where the imaginary part of angular frequency is zero ω̄i = 0 (see
Figure 4.5, Case 2). Therefore the Lyapunov exponent is also zero (s = −iω̄i = 0). In this
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case the amplitude growth is dependent only on k̄i: ū(x̄, t̄) = exp(−k̄ix̄) exp[(k̄rx̄− ω̄r t̄)].
The parameter k̄i corresponds to the parameter α in de Borst and Duretz, 2020; Sluys
and de Borst, 1992; W. Wang et al., 1996; W. Wang et al., 1997 and its inverse l = α−1

is thought to constitute a critical length that is supposed to regularize the problem,
damping the waves of higher wavenumber k̄r and therefore avoiding strain localization
on a mathematical plane. Here we show that in fact depending on the solution branch of
equation (4.21) the contribution of k̄i to the solution’s behavior can instead be positive,
indicating amplification of perturbations of higher wavenumber k̄r. We focus our attention
on Figure 4.8. We follow the red line corresponding to ω̄i = 0. We notice that the dispersion
relation predicts k̄r = 0 for (ω̄r, ω̄i) = (0, 0). As we move away from the origin along the
direction of ω̄r we notice a quasi-linear increase of the wavenumber k̄r. Figure 4.8 shows
that |k̄r| increases monotonically and tends to infinity for |ω̄r| → ∞. The latter can
be proven mathematically (see Appendix B). From this we establish that perturbations
whose wavelength tends to zero λ̄→ 0 are admissible. Next we proceed on examining the
rate of increase of their amplitude with respect to distance k̄i.

-30 -20 -10 10 20 30

10

20

30

-0.4 -0.2 0.2 0.4

1

2

3

4

5

6

7

Figure 4.8 – Dispersion curves (ω̄r, k̄r) for different values of parameter ω̄i along the line
of zero temporal coefficient ω̄i = 0 (case 2). With red color and the value passing from
the pole ω̄P1 = 0.2i purple color. Detail of the dispersion for low values of ω̄r is shown on
left.

Figure 4.9 shows that for ω̄r tending to infinity, the value of |k̄i| increases monotonically
and tends to a ceiling value k̄i → c ∈ R. The latter can be proven mathematically (see
Appendix B). Therefore, when k̄r(ω)→∞, k̄i < 0 takes its maximum absolute value (see
Figures 4.8, 4.9), we notice that the amplitude of the perturbation of zero wavelength λ̄ is
increasing the fastest as the perturbation travels through the medium. Therefore, strain
localization on a traveling mathematical plane will happen.

We note here, that the original approach of de Borst and Duretz, 2020; Sluys and de
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Borst, 1992; W. Wang et al., 1996; W. Wang et al., 1997 does not take into account the
possibility of a positive value for k̄i. In all the previous works the attenuation coefficient
ᾱ = k̄i is considered negative. Thus spatial amplification of the highest wavenumber k̄r
(infinitesimal wavelength λ̄→ 0) is not considered in these works.

4.3.4.3 Case 3: The general case of traveling waves,

Based on Figure 4.5 and the diagrams of Figures 4.6, 4.7, 4.8 and 4.9 very general cases
of traveling waves can be examined. In Figures 4.6 and 4.7 we examine the evolution of
k̄r, k̄i with respect to the imaginary part of the frequency ω̄i, by considering the real part
of the angular frequency ω̄r as a parameter.

We already presented case 1 of standing waves ω̄r = 0 where the influence of the pole
leads to strain localization due to ω̄i > 0 for k̄r(ω̄) → ∞ as seen on the left diagram of
Figure 4.6. For the rest of the values of the parameter ω̄r, the wavenumber k̄r is bounded.
Therefore, no strain localization on a mathematical plane will take place in these cases.

In Figures 4.8 and 4.9 temporal amplification ω̄i is introduced as a parameter, keep-
ing ω̄r as the independent variable. Figure 4.8 is indicative of the dispersion relation of
the medium. Away from ω̄r = 0 the dispersion relation ω̄r, k̄r becomes linear for all values
of ω̄i and the resulting traveling waves have a common phase velocity. We notice here that
as ω̄r →∞, k̄r(ω̄r, ω̄i)→∞. For the waves with the same value for the parameter ω̄i > 0
this means that the growth of their amplitude in time is the same. For large real angu-
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Figure 4.9 – Evolution of k̄i for different values of temporal coefficient ω̄i including the
case zero temporal attenuation/amplification ω̄i = 0 to the pole value ω̄P1 = 0.2i. For
traveling waves around the pole (ω̄r 6= 0) the spatial attenuation coefficient k̄i is reaching
an upper bound. Figure on left presents the curve of |ki| along the lines of ω̄i = const for
a range of values of ω̄r while Figure on right presents a detail around the pole region ω̄P1.
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lar frequencies ω̄r the spatial amplification coefficient |k̄i| presents a ceiling value. This
result is already proven for ω̄i = 0 (see Appendix B). The ceiling value depends on the
parameter value ωi, namely it increases as the parameter ω̄i increases. The ceiling value
of the amplification coefficient k̄i corresponds to a wavenumber k̄r that tends to infinity
k̄r → ∞. This result shows that in the general case of traveling waves with infinitesimal
wavelength λ̄ = 2π

k̄r
→ 0, strain localization on a traveling mathematical plane will happen

due to the combination of k̄i < 0 and ω̄i > 0, provided that k̄r →∞.

In the above we focused mainly on limit cases related to strain localization in a elasto-
viscoplastic strain-softening (h < 0), strain rate-hardening medium (g > 0). For a more
general, qualitative description of a traveling monochromatic pulse, we refer to Appendix
C.1. In this Appendix we refer also to the connection between strain localization and the
interplay between phase and amplitude velocities.

4.3.4.4 Behavior of the pole at infinity ωP2

Based on the behavior close to infinity, ω̄ → ∞ or z → 0, we get k̄(ω̄) = k̄(1
z
) → ∞. In

contrast to real infinity that can be either positive or negative or indeterminate based on
whether we approach the value of z from above or below zero, complex infinity (∞) is
indeterminate as at the pole value ω̄P2 the limit along each direction surrounding the pole
indicates differences in the real and imaginary parts of k̄(ω̄). Since around a simple pole like
ω̄P2, where ω̄P2

r →∞, ω̄P2
i →∞ the argument of a complex function changes by a full 2π

radians, the two limiting cases for the value of k̄(ω̄P2) are Re[k̄] = k̄r →∞, Im[k̄] = k̄r → 0
and Re[k̄] = k̄r → 0, Im[k̄] = k̄r → ∞. Since k̄r → ∞ when ω̄ = ω̄P2, we conclude again,
that localization on a mathematical plane is possible. Since, localization on a mathematical
plane happens for values of ω̄ →∞, the rate of increase of the perturbation amplitude as
given by the Lyapunov exponent s̄ = −iω̄i is unbounded.

4.3.4.5 Influence of the pole ω̄P1

By expanding the solution space allowing for complex ω̄i we allow a connection with the
Lyapunov exponent s̄ used in stability analyses. The new solution space is richer regarding
the perturbations we can introduce in the visco-elastoplastic medium. Some key charac-
teristics retained by the solution from the definitions already found in the literature, is the
exclusion of standing waves of infinitesimal length that grow with an infinite Lyapunov
coefficient as in the case of the pure ill-posed rate-independent plasticity problem.
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The introduction of the parameter T = η̄vp

tc
allows for the existence of a zero value on the

imaginary axis. This zero in turn plays the role of the branch point, forcing the argument
of the pole ω̄P2 at infinity to turn by π/2 thus nullifying the real part of k̄(ω̄) along the
imaginary axis. If that zero was not there, then the point at infinity would be a branch
point, therefore strain localization on a mathematical plane would happen for infinite ω̄i
as in the case of a strain-softening rate-independent material.

The visco-elastoplastic medium discussed here under the expansion of its dispersion equa-
tion solution negates the instantaneous localization of deformation, however as dictated
by the pole ω̄P1 amplification of the infinitesimal wavelength perturbation is still possible.
In other words, the value of the Lyapunov exponent s̄ = −iω̄i becomes bounded due to
viscoplasticity but this is not true for the value of the wavenumber k̄r. Our approach
of treating the problem of stability in the complex domain shows that localization on a
mathematical plane is possible due to the existence of the pole ω̄P1, which the classical
approach described in de Borst and Duretz, 2020; Sluys and de Borst, 1992; W. Wang
et al., 1996; W. Wang et al., 1997 fails to predict.

4.3.4.6 Comparison to case M1 (stable configuration)

For case M1 we note that h̄ = 0.03 > 0. In this case the points of interest of the dispersion
relation (4.25) change leading to different behavior than the one previously presented. The
relationships for the determination of zeros and poles of the function remain the same
(see section 4.3.2).

For these numerical values, the pole ω̄P1 is reflected due to the change of sign of h̄ around
the Real axis. This however is not true for the he zero ω̄O1 since the sign of (−3 +h) does
not change (provided that |h̄| < 1). This change will move the branch cut defined on the
imaginary axis below the origin ω̄O1. Since now the pole lies on ω̄i < 0 the perturbations
of infinitesimal length corresponding to it λ̄ → 0, k̄r → ∞ are attenuated with time,
therefore strain localization on a mathematical plane is not possible in this case.
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4.4 Numerical analysis

In this section, two sets of numerical analyses are performed in order to verify the stability
and possible strain localization of the elasto-viscoplastic strain softening (h < 0), strain-
rate hardening (g > 0) wave equation. Two sets of analyses were performed. In the first
set, a 1D model of an elasto-viscoplastic infinite string was used on which, the linear
differential equation of third order (equation (4.18)) is numerically solved for a variety of
initial conditions. We comment on the displacement profiles that develop with time and we
verify the theoretical findings of section 4.3. In the second set, we proceed in numerically
solving the fully non-linear problem. The difference between these two sets of analyses,
lies in the fact that in the second case unloading is allowed to take place. Therefore, we
can investigate its influence on the strain localization profiles. The non linear numerical
analyses show also strain localization and mesh dependency.

4.4.1 Linearized model: Model description

To model the infinite string a large length and the Sommerfeld open boundary conditions
were used. The latter can be used since the partial differential equation in question is
linear and by use of the Fourier transform can be shown to have partial solutions in the
form of A exp(i(ω̄t̄− k̄x̄)). Three modes of inducing the perturbation from the reference
homogeneous state were examined making use of non zero initial conditions for the string
displacement. This is achieved by varying the shape of the perturbation with three dif-
ferent ways: an initial pinch of the string at the middle, a cosine pulse centered in the
middle as well as a Gaussian distribution centered at the middle.

Two sets of parameters were used for the analyses, where the sign of the hardening param-
eter h̄ varies between positive or negative in order to compare between strain-hardening
and a strain-softening material as shown in Table 4.1. The material parameters used
in the unstable case are those provided by de Borst and Duretz, 2020. The numerical
analyses were performed using the method of Finite Differences. In particular a central
difference scheme was used for the spatial discretization of the PDE problem, the domain
of length L = 15m is discretized into 250 segments, resulting in a coupled system of
ODE’s which was solved by the algorithm IDA of the MathematicaTM software package
Wolfram Research, 2020.

93



Chapter 4 – The role of viscous regularization in dynamical problems, strain localization and
mesh dependency

4.4.1.1 Pinching

We present in Figure 4.10 the behavior of the string after an initial pinching -application
of initial displacement conditions at the middle node of the discretized domain. Mesh con-
vergence analysis has shown that, in the unstable case M2, the localization width is equal
to the mesh size. Therefore, the elasto-viscoplastic formulation does not regularize the
underlying problem as presented in the introduction and the solution is mesh dependent.
This is in accordance with the theoretical results presented in subsections 4.3.4.1, 4.3.4.2,
4.3.4.3. We note also that the strain hardening material of the M1 case does not lead to
strain localization as expected (see section 4.3.4.6).
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Figure 4.10 – Evolution of the pinching perturbation at different times. Left: strain hard-
ening material case M1. On the right: strain softening material case M2.

4.4.1.2 Monochromatic cosine pulses

The behavior of the string after application of cosine initial conditions for the two sets of
parameters (see Table 4.1) is presented in Figure 4.11. Again we notice a localization of
deformation for the case of strain softening. In order to verify the theoretical prediction,
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Figure 4.11 – Evolution of the cosine perturbation at different times. Left: strain hardening
material case M1. On the right: strain softening material case M2.

that the elasto-viscoplastic medium with strain softening localizes on a mathematical
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plane under dynamic loading conditions, we superpose three different cosine perturbations
in the medium by varying the width of each perturbation as shown in Figure 4.12. The
perturbation wavelengths are λ̄: 1, 5, 10, corresponding to perturbation widths of 0.5 ,2.5
, 5. In Figure 4.12, the position of the perturbations from left to right is x̄ = 3.75 →
λ̄ = 10, x̄ = 7.5 → λ̄ = 1 and x̄ = 11.24 → λ̄ = 5 respectively. Figure 4.12 shows
that localization is accumulating faster for the smallest perturbation length, verifying the
theoretical findings of section 4.3.
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Figure 4.12 – Evolution of the different wavelength cosine perturbations. Faster strain
localization is observed for the smallest wavelength.

4.4.1.3 Centered Gaussian initial condition

In Figure 4.13 we present the behavior of the string after a gaussian perturbation of the
initial conditions -application of initial gaussian displacement conditions centered at the
middle node of the discretized domain. In the strain softening case M2, we notice that the
localization of the deformation is contained into a narrow band of finite length, dependent
on the width of the initial perturbation as shown on the right of Figure 4.13.

We emphasize, that the lower bound of localization is a result of the mesh discretiza-
tion. Further increase of the mesh will lead to narrower bands as expected by theory
mesh dependency. In Figure 4.14 we compare among the perturbation profiles at different
times for Gaussian perturbations of varying width. As in the previous case, the narrowest
perturbation localizes the fastest.
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Figure 4.13 – Evolution of the Gaussian perturbation at different times. Left: strain hard-
ening material case M1. On the right: strain softening material case M2.
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Figure 4.14 – Evolution of different Gaussian perturbations varying in their width. Faster
strain localization is observed for the smallest wavelength.

4.4.2 Fully non-linear problem

In order to model the effect of viscous regularization on the strain localization and possi-
ble mesh dependence in fully nonlinear cases without neglecting the effect of unloading,
a series of dynamic numerical analyses was performed using the finite element analysis
program ABAQUS (Smith, 2009). The fully implicit Newmark scheme was used. The pa-
rameters used for the Newmark scheme correspond to the trapezoidal rule (α = 0, β =
1
4 , γ = 1

2) in order to avoid numerical damping.

The use of a User Material Subroutine (UMAT) was favored in order to incorporate
the Perzyna elasto-viscoplastic constitutive material law into ABAQUS. The material pa-
rameters leading to mesh independent solution were taken from de Borst and Duretz,
2020, see Table 4.2. These values are quite low for real physical applications, but they are
used following de Borst and Duretz, 2020 in order to allow direct comparisons. Configura-
tion D1 corresponds to a set of material parameters that seems to lead to regularization
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Figure 4.15 – 2D model of a layer subjected to shear.

of strain localization and therefore to mesh independent results. However, as it will be
shown, this is not always the case. Configuration D2 corresponds to a set of parameters
leading to strain localization and ,therefore, to mesh dependent results. Care was taken
to remove additional viscosity from the analysis except for the one strictly prescribed by
the material. The analyses were performed using 2D solid, reduced integration elements
CPE4R.

analyses D1 D2
mesh independence Yes No Units
ρ 1250 1250 kg

m3

G 20000 20000 Pa
h -200 -1000 Pa
c 20 20 Pa
ηvp = g

F0
50 25 s

Table 4.2 – Material parameters used for the ABAQUS numerical analyses. The first set
of parameters is taken from de Borst and Duretz, 2020.

We study the pure shear of a 1D layer of length L (see Figure 4.15). This is an example
used in the available literature de Borst and Duretz, 2020; W. Wang et al., 1996; W.
Wang et al., 1997 and, therefore, we can compare directly the observed behavior in our
analyses to the one mentioned by other researchers. In order to avoid bending, we block
displacements along the length of the model. A shear traction τ0 = 14 Pa is applied in-
stantaneously on top of the model and it propagates towards the fixed end at the base of
the layer. We extract our results after the pulse has returned to the free end of the model.
For the duration of the analysis the time increment is kept smaller than ∆t = 0.001 s,
which is smaller than the time ∆CFL needed for the elastic wave to traverse the smallest
element dimension of the mesh as specified by the Courant-Friedrichs-Lewy (CFL) crite-
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analyses (D1, D2) ∆t
element number [s]
25 0.001
50 0.001
100 0.001
200 0.001
400 0.0002
800 0.0002

Table 4.3 – Time increment ∆t measured in seconds, used for the ABAQUS numerical
analyses, such that the CFL yield criterion is satisfied for each mesh discretization.

rion. Considering the length of the model L = 1 m, and the material parameters of Table
4.2 leading to the elastic shear wave velocity cg =

√
G
ρ

= 4 m
s
, for a mesh discretization

of 200 elements, we obtain: ∆tCFL = 1
200∗4 = 0.00125 s. The time increment selected for

all analyses is given in Table 4.3.

To investigate whether an analysis is mesh dependent or not we plot the profiles over
the length of the model of the engineering total shear strain γ12 and shear plastic strain
rate γ̇p12 for different number of elements. Results are given at the end of the analysis for
time t = 0.5 s.

From Figure 4.16, we establish that the solution obtained with the parameters of D1
de Borst and Duretz, 2020 is mesh independent as the total strain γ12 and the plastic
shear strain rate γ̇p12 profiles are spread over the model length and converge upon mesh
refinement. From the analysis of de Borst and Duretz, 2020 we can extract the so called
“material length scale” of the problem, which is equal to l = 2ηvpc√

ρG
= 0.4 m, (based on a

yield function and Perzyna material law of the form F = τ12 − c − hγp12, γ̇
p
12 = λ̇ = F

ηvpc

respectively). This is in close agreement with the total strain and plastic strain profiles we
present in Figures 4.16. It should be noted, however, that the above relation of de Borst
and Duretz, 2020 does not take into account the softening slope of the material. To this
end the relation available in W. M. Wang et al., 1996 can be used instead.

However, for the same material parameters of configuration D1 but for L=10 m the
response of the model is completely different. We present the profiles of total shear strain
and normalized plastic shear strain γ12, ˙̄γp12 in Figure 4.17. The results are taken at time
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Figure 4.16 – On the left: Total shear strain γ12 profiles at the end of the analysis for
different mesh discretization of the model for the material set D1. On the right: Normalized
plastic shear strain rate, ˙̄γp12, profiles with respect to the maximum plastic shear strain rate
over the model, γ̇p12,max, at the end of the analysis for different mesh discretization, for the
material parameters set D1. The response converges to a mesh independent solution as
the number of elements increases. The results agree well with the material length defined
by de Borst and Duretz, 2020. In both plots a detail near the region of interest 0.1 m
is plotted. The response was plotted without averaging between the mesh nodes (i.e. the
stress computed at the Gauss points is shown).

t = 4.0 s after the stress pulse is reflected and has passed the middle of the bar for a sec-
ond time. To maintain a constant mesh density near the base of the cantilever, where the
highest strain gradients are observed, we apply the same uniform mesh as in the analyses
of 1 m, in the 1 m region close to the cantilever support. We vary then the mesh in the
rest of the cantilever by progressively increasing the element size to reduce calculation
cost. Again the time increment of the analyses is kept smaller than the one specified by
the CFL criterion for the smallest elements in the mesh (see Table 4.3). We notice that
strain and plastic strain localize on one element and the solution does not show any signs
of converging upon mesh refinement. The profiles show narrower localization for finer dis-
cretizations as expected by the theoretical analysis in section 4.3.

As we discuss later in section 4.4.3, we change the specimen’s length such that the char-
acteristic growth time of the perturbation T ? is smaller than the time the stress wave
takes to complete a round trip along the specimen’s height. Thus the localization can
grow sufficiently to be noticeable in the results. In section 4.3.3, we define the charac-
teristic growth time T ? as the inverse of the pole frequency ω̄P1, found in section 4.3.
Therefore, according to the above results we can conclude that the analyses with the
material set parameters D1 constitute a counterexample, about the beneficial role of vis-
cous regularization in strain localization and mesh dependency. We emphasize here that
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the only thing that changed in the analysis is the length of the specimen from 1 m to 10 m.

Finally, we present in Figure 4.18 another set of material parameters (see Table 4.2,
D2) that lead again to a mesh dependent behavior. Again we change the specimen’s ma-
terial parameters such that the analysis time is larger than the characteristic growth time
(T ?) of the perturbation, in order for the localization instability to grow sufficiently. The
results are taken at time t = 0.36 s after the pulse of initial stress is reflected and has
passed the middle of the bar for a second time. Mesh dependence is again observed. Thus
we have shown with two different counter examples (increase of the specimen’s length
and change of the material parameters) that viscous regularization does not lead to mesh
independent results.

Figure 4.17 – On the left: Total shear strain γ12 profiles at time equal to 4s for different
mesh discretizations of the model for the material set D1 (increased length to 10 m). Mesh
dependence of the solution is observed. On the right: Normalized plastic shear strain rate,
˙̄γp12, profiles with respect to the maximum plastic shear strain rate over the model, γ̇p12,max,
at time t equal to 4 s for different mesh discretizations, for the material set D1 (increased
length to 10 m). The response localizes to a mesh dependent solution as the number of
elements increases. In both plots a detail near the region of interest 0.1 m from the support
is plotted. The response was plotted without averaging between the mesh nodes (i.e total
strain and plastic strain rate are computed at the Gauss points).

4.4.3 Discussion on the conditions for observing strain localiza-
tion and mesh dependency

The difference observed in localization behavior of the analyses can quantitatively be ex-
plained with the use of the theoretical findings of section 4.3. For the material parameters
of the configuration D1 the position of the pole lies in ω̄P1 = 0.2 s−1, (see also equation

100



4.4. Numerical analysis

Figure 4.18 – On the left: Total shear strain γ12 profiles at time equal to 0.36s for different
mesh discretization of the model for the material set D2. Mesh dependence of the solution
is observed. On the right: Normalized plastic shear strain rate, ˙̄γp12, profiles with respect
to the maximum plastic shear strain rate over the model, γ̇p12,max, at time t equal to 0.36
s for different mesh discretizations, for the material set D2. The response localizes to a
mesh dependent solution as the number of elements increases. In both plots a detail near
the region of interest 0.1 m from the edge of the support is plotted. The response was
plotted without averaging between the mesh nodes (i.e total strain and plastic strain rate
are computed at the Gauss points).

(4.22), Figure 4.5 and section 4.4.1). This corresponds to a characteristic time for the per-
turbation to grow T ? = 5 s. This is much larger than the time of 0.5 s which is required for
reaching steady state when L = 1 m. Consequently, strain localization on a mathematical
plane and, therefore, mesh dependency in numerical analyses cannot appear because they
don’t have enough time to be noticeable. In our opinion this is why mesh dependency was
not observed in previous works.

If we keep the material parameters the same and increase the length of the specimen
we can increase the duration of the simulation without changing the dynamic character
of the analysis. We provide, therefore, time to the increasing perturbation to grow. This
is precisely what happens when L = 10 m. In this case the analysis time for the pulse
to return at the free end of the for the 1D layer is 5 s, as a result strain localization has
enough time to grow and appear in the numerical results, see Figure 4.17.

Another way for observing mesh dependency is by changing the material parameters
instead of the length of the specimen. The parameter set D2 corresponds to a character-
istic frequency increase ω̄P1 to the value of 2 s−1, leading to a characteristic time of 0.5
s for the perturbation to grow. This is equal to the analysis time the shear pulse takes
to make a full trip back and forth for the 1D layer of length 1 m. Therefore, in case D2,
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localization has more than enough time to develop and becomes visible before the system
reaches its steady state (end of transient regime), see Figure 4.18.

Summarizing, comparing the total time of the dynamic analysis t? and the characteristic
growth time of the perturbation T ?, taken from calculating the inverse of the character-
istic frequency T ? = 1

ω̄P 1 , we have shown that viscoplasticity will lead to localization on
the mathematical plane when t? > T ?. In the dynamic analyses localization on a mathe-
matical plane is progressive. Therefore, only conclusions about the necessary time needed
for the localization mode to grow can be drawn.

According to our calculations, we have shown that viscoplasticity does not regularize the
problem irrespective of any considerations for the magnitude of strain softening h < 0 and
strain rate hardening g > 0 moduli. In other words based on our theoretical developments,
and the counter-examples presented in this section, viscoplasticity does not regularize
strain localization neither does it remedy mesh dependency. Nevertheless, viscoplasticity
slows down the growth of the underlying instabilities and, therefore, the occurrence of
mesh dependency

4.5 Key points

In this chapter we investigated the regularization properties of elasto-viscoplasticity re-
garding strain localization and mesh dependency under the presence of inertia. Even
though for quasi-static cases it is well-known that elasto-viscoplasticity of Perzyna or
consistency type do not regularize strain localization (Needleman, 1988; Sluys and de
Borst, 1992) in the dynamical case the situation was not clear.

Our approach is both theoretical and numerical. After deriving the equilibrium equa-
tion of the model under strain-softening (h < 0), strain-rate hardening (g > 0) elasto-
viscoplasticity, we study the Lyapunov stability of states of uniform/homogeneous defor-
mation. In order to avoid unnecessary complexity we focus on a 1D shearing example.
Our mathematical analysis differs from previous ones ( see de Borst and Duretz, 2020;
Needleman, 1988; Sluys and de Borst, 1992; W. Wang et al., 1997) by considering the
frequency ω̄ to be a complex number in addition to the complex wavenumber k̄. This is
an important point for investigating the stability of the homogeneous, reference state as
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it enables the study of perturbations that can grow with time (see also Lemaitre et al.,
2020; Rice, 1976). It is also naturally justified by Lyapunov stability analyses presented
in chapters 2 and 3.

Next, we proceed in finding the dispersion relationship between the complex wave number
k̄ and the complex frequency ω̄ for an arbitrary perturbation. The dispersion equation
presents a pole, which is responsible for strain localization on a mathematical plane and
thus for mesh dependency. More specifically, the wavenumber becomes infinite, k̄r →∞,
and the wavelength, λ̄→ 0, for strain-softening, strain-rate hardening, which means that
localization on a mathematical plane is indeed possible in this system (see section 4.3.4).
We have also made an extensive discussion about the possibility of traveling waves in the
medium ( see section 4.3.4) and their relation to strain localization and wave attenua-
tion. Several qualitative observations of the poles of the dispersion equation are provided
in section 4.3.4. The analysis is completed by some additional observations about the
behavior of propagating sinusoidal monochromatic pulses and their relation with strain
localization and phase cr and amplitude ci velocities (see Appendix C.1).

We juxtapose our theoretical findings with 1D numerical analyses of an infinite layer.
In particular, in section 4.4.1, we investigate the effects of the perturbation mode on the
localization mode. The perturbation is introduced in different shapes via various initial
conditions. The theoretical relationship between the width of the perturbation and its
rate of increase is confirmed. We also confirm that the smallest perturbations propagate
the fastest leading to strain localization and mesh dependency. Based on these results we
conclude that the elasto-viscoplastic model with strain softening and in the presence of
inertia effects is unable to restrict the classical Cauchy continuum from localizing on a
mathematical plane.

However, our analysis up to this stage, is based on a linearized version of the problem
that does not take unloading into consideration. For this purpose, we perform fully nonlin-
ear, dynamic numerical analyses using the ABAQUS commercial Finite Element software
(Smith, 2009) with a strain-softening, strain-rate hardening, Perzyna elasto-viscoplastic
user material (UMAT). An implicit Newmark scheme was employed. Special attention
was given to avoid any artificial numerical damping in order to guarantee that the right
partial differential equations are solved. The results are consistent with the theoretical
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findings of sections 4.2 and 4.3 and the numerical results of section 4.4.1 and show that
mesh dependent solutions are indeed possible. It is worth noticing that for given material
parameters the duration of the excitation has to be long enough in order to allow the
instability to grow enough and be visible before the system reaches a steady state. This
is why strain localization was not identified in previous works.

Our theoretical analyses show that viscoplasticity and inertia do not regularize strain
localization and mesh dependency, irrespective of the magnitude of strain softening and
strain rate hardening. These results can be important for any computational method in
the analysis and design of engineering products and systems in a vast variety of appli-
cations in the fields of solid mechanics, dynamics, biomechanics and geomechanics. Our
numerical analyses confirm the theoretical findings and provide counter-examples showing
that viscosity and inertia do not regularize strain localization and mesh dependency.

Based on the results of this chapter, we conclude that the only way to obtain reliable
information from numerical analyses, where strain softening is a key factor of the model
is to abandon the Cauchy continuum. To this end, in the next chapters we will choose
the Cosserat micromorphic continuum. More specifically, in chapter 5, which contains the
main findings of this thesis, we will use the Cosserat micromorphic continuum for simu-
lating the role of the microstructure during the shearimg of a mature fault gouge, where
thremal pressurization is the only weakening mechanism introducing apparent strain soft-
ening in our model.
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Chapter 5

NUMERICAL INVESTIGATION OF FAULT

FRICTION UNDER THERMAL

PRESSURIZATION DURING LARGE

COSEISMIC SLIP

Summary

In this chapter, we study the role of thermal pressurization in the frictional response
of a fault under large coseismic slip. We investigate the role of the seismic slip veloc-
ity, mixture compressibility, characteristic grain size and viscosity parameter in the
frictional response of the coupled Thermo-Hydro Mechanical problem, taking into
account the fault’s microstructure. Starting from the mass, energy and momentum
balance for Cosserat continua we derive the equations of our model, which is closed
using perfect plasticity and Perzyna viscoplasticity. We investigate both the rate
independent as well as the rate dependent frictional response and compare with ex-
isting models found in literature, namely the rate and state friction law (Dieterich,
1992,Ruina, 1983b). We show that our model is capable of predicting strain rate
hardening and velocity softening without the assumption of a state variable. We
observe traveling instabilities inside the layer that lead to oscillations in the fault’s
frictional response like in the case of Portevin Le Chatelier (PLC) effect. This be-
havior is not captured by existing numerical analyses presented in Rattez, Stefanou,
and Sulem (2018), Rattez, Stefanou, Sulem, Veveakis, et al. (2018a, 2018b) and go
beyond the established models of uniform shear (Lachenbruch, 1980b) and shear on
a mathematical plane (Rice, 2006b), which predict a strictly monotonous behavior
during shearing. Experimental analyses, which have managed to insulate thermal
pressurization from other weakening mechanisms (Badt et al., 2020), corroborate
our numerical results.
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5.1 Introduction

In this chapter we focus on the role of thermal pressurization as the main culprit behind
frictional stress drop (apparent strain softening). We do so by considering the energy, mass
moment, angular moment balance and Thermo-Hydro-Mechanical (THM) couplings, that
account for the friction drop during coseismic slip (Rattez, Stefanou, and Sulem, 2018;
Rattez, Stefanou, Sulem, Veveakis, et al., 2018b). This problem was first analyzed in
Lachenbruch, 1980b using a classical Cauchy continuum in the case of homogeneous de-
formation inside the PSZ. However, the stability of the proposed homogeneous solution
is not guaranteed and growing perturbations of the plastic strain field are possible due to
the apparent softening introduced to the model from thermal pressurization. More specif-
ically, we show in chapter 3 that, the general solution of a homogeneous deformation in
the case of apparent softening under THM couplings is unstable. Furthermore, the solu-
tion is shown to localize on a mathematical plane of zero thickness. This leads to mesh
dependent results in the case of finite element analyses.

Rice (2006a), expanding on the solution of Mase and Smith (1987), presented a solu-
tion to the above problem for a strain localization profile concentrated on a plane of
zero thickness taking into account the mass and energy balance equations for the THM
couplings. It was later shown by Rice et al. (2014b) and platt2014stability through the
use of a strain rate hardening friction law that the solution for a localization profile of
finite thickness lies between the two solutions tending to the solution of localization on a
mathematical plane as shear velocity δ̇ (apparent softening) and seismic slip displacement
δ increases.

Strain regularization directly affects the width of the PSZ, where the majority of the
stored elastic and potential energies of the fault dissipate, directly affecting the energy
budget of the earthquake phenomenon. Failure in avoiding strain localization on a math-
ematical plane leads to mesh dependent results and therefore wrong estimations of the
dissipated energy. In the general case of a two way coupling in the system of balance
equations, introduction of strain rate hardening to the apparent strain softening problem
of thermal pressurization has been shown to not regularize the problem of strain local-
ization (see chapter 3). Another way of regularizing the problem is taking into account
the microstructure of the material in the fault gauge (Muhlhaus & Vardoulakis, 1988; I.
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Vardoulakis, 2018)). This can be done through the modeling of the PSZ with a higher
order micromorphic continuum (see Forest, Pradel, et al., 2001; Germain, 1973, among
others). One such continuum is the Cosserat continuum, that introduces characteristic
lengths to the problem thus avoiding strain localization on a mathematical plane. In the
work of Rattez, Stefanou, and Sulem, 2018; Rattez, Stefanou, Sulem, Veveakis, et al.,
2018b the influence of the Cosserat radius and THM couplings in the strain localization
width of the PSZ was investigated with the use of linear stability analyses and nonlinear
finite element analyses. The nonlinear finite element analyses have shown that apparent
softening is increasing while the localization width is decreasing, as the seismic slip veloc-
ity increases. However, the investigated slip distance in these analyses was very limited,
and only a rate independent constitutive law was used.

In this chapter we expand on the above mentioned works by investigating the role of
seismic slip velocity in the apparent frictional softening and the formation of shear bands
(PSZ) inside a fault that is subjected to large coseismic slip observed in earthquakes.
Moreover, we investigate both the rate independent and rate dependent cases. In agree-
ment with Platt et al. (2014a), Rattez, Stefanou, and Sulem (2018), Rattez, Stefanou,
Sulem, Veveakis, et al. (2018b), Rice et al. (2014a), the PSZ is modeled together with
THM couplings to illustrate the role of thermal pressurization in the evolution of the
fault’s frictional response.

Large displacements were taken into account for the analyses presented in this chap-
ter since the seismic slip is three (3) orders of magnitude larger that the dimensions of
the PSZ. Therefore, an adaptive Lagrangian Eulerian method (ALE) was used in order to
apply large displacements. We find that after sufficient slip δ has occurred, the PSZ tends
to regain part of its strength. The percentage of the regained strength is dependent on
the fault’s slip velocity δ̇ as well as the height of the PSZ. The increase of friction in the
later parts of the analysis is attributed to the existence of a traveling instability inside the
PSZ, which indicates the existence of a limit cycle. The analyses agree qualitatively with
the recent experimental results ot Badt et al. (2020) and can capture important aspects
of the rate and state model, namely strain rate hardening and velocity weakening.

This chapter is structured as follows. In section 5.2 we proceed with the formulation
of the shear band model subjected to large coseismic slip (∼ 1 m). In section 5.3 we elab-
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orate further on the effect of the seismic slip velocity on the shear strength of the fault
as well as the localization profiles of the principal slip zone. From the non-linear analyses
performed, we monitor the evolution of the solution after the onset of bifurcation from
the homogeneous displacement field. We notice therefore, a traveling instability inside
the medium, which is connected with the appearance of a limit cycle (Strogatz, 2000) in
the later stages of the analysis. This limit cycle is responsible for the oscillatory behav-
ior of the fields inside the shear band. This behavior naturally enhances the frequency
content of the near fault earthquake spectra (see Aki, 1967; Brune, 1970; Haskell, 1964;
Tsai and Hirth, 2020) since the frictional response is no longer monotonically decreasing.
The traveling shear band instability discussed in this chapter is also found in metals when
similar thermal diffusion mechanisms are considered (see Hähner et al., 2002; Mazière
et al., 2010). We continue our analysis introducing rate dependence in our model through
the use of Perzyna type viscoplasticity. This enhances our model with strain rate harden-
ing in the case of velocity stepping, while retaining the strain softening response at later
stages of the analyses. These characteristics of the response are similar to the response of
a rate and state friction law (see Dieterich, 1992; Rice et al., 2001; Ruina, 1983a), largely
adopted in the fault mechanics community, without the need of introducing an additional
state variable. Finally, we present a comparison of the numerical results of this chapter
with the experimental findings in Badt et al. (2020), where thermal pressurization was
studied in the absence of other weakening mechanisms.

5.2 Problem description

5.2.1 The role of the microstructure in strain localization

In this section we summarize the THM equations that govern the behavior of the PSZ
taking into account the role of the microstructure. Here we consider the microstructure of
the medium to be made of rigid particles with six degrees of freedom inside the medium,
three translations ui and three rotations ωi, i = 1, ...3. The need to switch from a clas-
sical Boltzman Cauchy continuum to a Cosserat micromorhic continuum of first order,
stems from the beneficial effects of regularization of strain localization. In a strain soft-
ening elastoplastic material, such as in the case of geomaterials, it has been proven in
both quasistatic and dynamic regimes (I. Vardoulakis, 1996a) that strain localizes in a
mathematical plane, thus rendering the solutions derived from numerical analyses mesh
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dependent, affecting the amount of the calculated dissipated energy (see chapter 3).

Strain regularization of the corresponding elasto-plastic strain softening medium is of
paramount importance. Several researchers have tried to regularize the above problem
with the introduction of viscosity effects (see Needleman, 1988; W. Wang et al., 1997,
among others), however, numerical analyses in chapters 3, 4 suggest that viscous regu-
larization is not capable of regularizing the problem neither in quasi-static or dynamic
conditions. Therefore, the only other way of regularizing the problem without postulating
an ad-hoc material law is with the use of higher order micromorphic continua such as
the Cosserat continuum, which account for the size of the microstructure (see de Borst &
Sluys, 1991; Forest & Sievert, 2003; Forest, Boubidi, et al., 2001; Forest, Pradel, et al.,
2001; Muhlhaus & Vardoulakis, 1988; I. Vardoulakis, 2018).

5.2.1.1 Cosserat kinematics

We present here, in a more general formulation of the Cosserat continuum kinematics we
introduced in chapter 3. We consider the kinematic field of the deformation tensor γij.
We define its symmetric part γ(ij) as the macroscopic strain εij while its antisymmetric
part γ[ij] is the difference between macroscopic rotation Ωij and the microscopic rotation
tensor ωij. We also take into account the gradient of the microscopic rotation tensor κij.

γij = γ(ij) + γ[ij] = ui,j − ωij = ui,j + εijkωk, (5.1)

γ(ij) = εij = 1
2
(
u′i,j + u′j,i

)
, (5.2)

γ[ij] = 1
2
(
u′i,j − u′j,i

)
= 1

2 (ui,j − uj,i)− ωij = Ωij − ωij, (5.3)

κij = ωi,j (5.4)

where εijk is the Levi-Civita permutation tensor.

5.2.1.2 Linear and angular momentum balance equations

As is the case with Cosserat strains γij, the Cosserat stress tensor τij is also not sym-
metric. The gradient of micro rotations introduces also Cosserat moments (also called
couple stresses) µij to the balance equations. In contrast to Cauchy continua, τij can be
decomposed into a symmetric, τ(ij) = σij, and a non-zero antisymmetric τ[ij] part. The
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balance equations can then be written as:

τij,j − ρ
∂2ui
∂t2

= 0,

µij,j − εijkτjk − ρI
∂2ωi
∂t2

= 0, (5.5)

where ρ and I are, respectively, the density and microinertia, which are considered
isotropic here.

5.2.2 Energy balance equation

The conservation of energy in a quasi-static transformation, where the material yields
producing heat in the form of plastic work, namely dissipation, is expressed, assuming
Fourier’s law, as:

ρC

(
∂T

∂t
− cthT,ii

)
= σij ε̇ij + τ[ij]γ̇[ij] + µijκ̇ij, (5.6)

where cth = kT

ρC
, kT are defined as the thermal diffusivity and thermal conductivity of the

medium respectively. We neglect the advective derivative, since the porosity of the solid
skeleton, χ, of the fault gouge is very small, leading to small fluid velocities resulting from
Darcy’s law, (see Rattez, Stefanou, Sulem, Veveakis, et al., 2018b, for the full derivation).

5.2.3 Mass balance equation

In the case of porous media as the one discussed here, the medium consists of both a
fluid phase and a solid phase (insoluble to the fluid), which we consider to communicate
perfectly in whole. Meaning no effects of tortuosity and no distinction between principal
and secondary pore fluid network will be taken into account. The two phases communicate
with each other by acting forces to one another due to different deformation properties
(see Coussy, 2004; Puzrin & Houlsby, 2001; Stefanou et al., 2016). Finally, the local form
of the mixture mass balance equation is given according to Rattez, Stefanou, Sulem,
Veveakis, et al. (2018b):

∂p

∂t
=chyp,ii + λ∗

β∗
∂T

∂t
− 1
β∗
∂εv
∂t
, (5.7)
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where chy = χ
ηfβ∗

is the hydraulic diffusivity expressed with the help of the porosity
of the solid skeleton χ and the pore fluid viscosity ηf , while β∗ = nβf + (1 − n)βs,
λ∗ = nλf + (1− n)λs are the mixture’s compressibility and expansivity respectively (see
I. Vardoulakis, 1986). Finally, β(s,f) and λ(s,f) are the compressibilities and thermal ex-
pansivities per unit volume of the respective fluid and solid phase.

During shearing of a fault, friction at the principal slip zone (PSZ) is responsible for
the dissipation of the elastic unloading energy into heat. The plastic work produced that
way contributes to the energy equation (5.6). Temperature increase leads to pressure in-
crease according to mass balance equation (5.7). In what follows the Terzaghi theory of
effective stress is assumed to hold true.

5.2.4 Cosserat thermo-elastoplasticity

The general constitutive equations in elasticity for a centrosymmetric Cosserat material
relating stresses and Cosserat moments to Cosserat strains and curvatures are given by
I. Vardoulakis (2018):

τij =Ce
ijklγkl,

µij =M e
ijklκkl. (5.8)

The elastic stiffness tensors Ce
ijkl,M

e
ijkl are derived from

Ce
ijkl =

(
K − 2

3G
)
δijδkl + (G+Gc) δikδjl + (G−Gc) δilδjk, (5.9)

M e
ijkl =

(
L− 2

3M
)
δijδkl + (M +Mc) δikδjl + (M −Mc) δilδjk. (5.10)

We notice that additionally to the elastic moduli used by the Cauchy media (K,G) de-
noting isotropic compression and shear moduli respectively, four additional constants are
added Gc, L,M,Mc referring to the anti-symmetric part of Cosserat deviatoric stresses,
the spherical part of Cosserat moments, the symmetric and anti-symmetric deviatoric
parts of the Cosserat moments respectively. The rate independent elastoplastic constitu-
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tive relations for the coupled THM problem are given as follows:

τ̇ij = Cep
ijklγ̇kl +Dep

ijklκ̇kl + Eep
ijklṪ δkl (5.11)

µ̇ij = M ep
ijklκ̇kl + Lepijklγ̇kl +N ep

ijklṪ δkl. (5.12)

The superscript (ep) denotes the elastoplastic matrices during loading, whose detailed
expressions are given in Appendix D.

5.2.5 Large displacements

Since our analyses reach displacements far greater than the 1D model’s geometrical di-
mensions, we need to take into account large changes in the volume of the element along
with rotations of the reference frame. Our application involves pure shearing of the layer
and therefore, the displacement derivatives with respect to x1 axes are zero. We notice
that the displacement parallel to the x2 direction is expected to be small. This is because
no additional loading will be applied in the vertical direction during shearing, while from
the plastic potential we have that for a mature fault the dilatancy angle is very low β ∼ 0
as discussed in Rice, 2006a; J. Sulem and Stefanou, 2016a. The thermal expansion and
compressibility coefficients are also very small so that in the observed temperature and
pressure range their effects are minimal. Therefore, the deformation tensor Fij can be
written in matrix form as:

F =
 ∂x1
∂X1

∂x1
∂X2

∂x2
∂X1

∂x2
∂X2

 =
1 + ∂u1

∂X1
∂u1
∂X2

∂u2
∂X1

1 + ∂u2
∂X2

 ≈
1 ∂u1

∂X2

0 1

 , (5.13)

where Xi, xi are the reference and current configuration coordinates, respectively. From
the above we establish that detF ≈ 1. Therefore no large volume changes are expected
to take place during the shearing phase of the analysis. This conclusion is supported also
by the numerical findings in which the volumetric strain is adequately small εv < 0.005.
To account for any effects that large displacements may introduce to our model we have
also run a series of analyses based on an Arbitrary Lagrangian Eulerian (ALE) method,
(see Donea et al., 2004), where at every iteration we update the new mesh position. The
change in the mesh is kept at every converged increment otherwise the cumulative change
is discarded and the procedure starts anew.

The question of the plastic work due to large rotations of the microstructure can be
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covered with the help of the ALE approach considering an additive decomposition of the
curvature tensor into an elastic and a plastic part. A more general description of the
Cosserat continuum in elasto-plasticity under large deformations can be found in Forest
and Sievert (2003), Forest (2020a). There, the authors adopt the multiplicative decom-
position for the deformation tensor Fij into the elastic and plastic parts F e

ij, F
p
ij, while

again the additive decomposition for the curvature tensor κij is pursued.

5.2.6 Normalized system of equations.

Equations (5.5), (5.6), (5.7) constitute the nonlinear system that describes the behavior
of the fault. We define the following dimensionless parameters, x̄ = x

H0
, t̄ = t

t0
,

ūi = ui

u0
, τ̄ij = τij

τ0
, µ̄ij = µij

µ0
, T̄ = T

T0
, p̄ = p

τ0
, where H0, t0, τ0, µ0, T0, p0 are charac-

teristic length, time, stress, moment, temperature and pressure quantities, respectively.
Furthermore, we note that there are specific relations between the characteristic moment
µ0, H0, τ0 based on their dimensions i.e. µ0 = τ0H0.

The non-linear, normalized equations of the problem are given then as:

τ̄ij,j − I1
∂2ūi
∂t̄2

= 0,

µ̄ij,j − εijkτ̄jk − I2
∂2ωi
∂t̄2

= 0,

∂T̄

∂t̄
= ctht0

H2
0

∂2T̄

∂x̄2 −
τ0

T0
(σ̄ij ε̇ij + τ̄ij γ̇ij + µ̄ijκ̇ij) ,

∂p̄

∂t
= chyt0

H2
0

∂2p̄

∂x̄2 + λ∗

β∗
T0

p0

∂T̄

∂t̄
− 1
β∗p0

∂εv
∂t̄

, (5.14)

where, I1 = ρu0H0
t20τ0

and I2 = ρI
t20τ0

. We consider the following characteristic dimensions and
their relations, in order to investigate properly the effect of each term in the behavior of
the system:

H0 = u0 = R, τ0 = p0 = σn − pinit, T0 = (σn − pinit)β∗
λ∗

, t0 = R

V
, (5.15)

where R is the Cosserat radius of the continuum particles, σn, pinit are the normal stress
(constant during the analysis) and the initial pore fluid pressure, respectively, and V is
the constant shear velocity applied at the boundaries of the layer. Here we emphasize that
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different scaling parameters may be chosen for the non dimensionalization of the system.
In particular in J. Sulem et al., 2011 the authors chose to scale time with the help of the
thermal diffusivity (t0 = R2

cth
).

Another candidate for time non dimensionalization are the characteristic timescales found
in the homogeneous shear solution defined by Lachenbruch, 1980b or the shear on a plane
defined by Mase and Smith, 1987. These solutions involve parameters such as the diffusiv-
ities cth, chy in the normalization of time. However, as explained in Platt et al. (2014a),
Rice (2006a), Rice et al. (2014a), these quantities can significantly change during shear-
ing of the fault gouge. We will apply here the time scaling chosen in Rice et al., 2014b,
t0 = ρCH0

fΛδ̇ . Apart from not containing the diffusion parameters itself, this scaling has
the advantage that it keeps the inertia effects independent of the diffusion parameters of
the system. Application of this scaling in the system of equations (5.14), indicates the
influence of the layer’s height in the numerical analyses. We will make use of this later in
section 5.3.4. Applying the scaling to the non dimensionalized system of equations (5.14)
we obtain:

τ̄ij,j − I1
∂2ūi
∂t̄2

= 0,

µ̄ij,j − εijkτ̄jk − I2
∂2ωi
∂t̄2

= 0,

∂T̄

∂t̄
= cthρC

H0fΛδ̇
∂2T̄

∂x̄2 −
τ0

T0
(σ̄ij ε̇ij + τ̄ij γ̇ij + µ̄ijκ̇ij) ,

∂p̄

∂t
= chyρC

H0fΛδ̇
∂2p̄

∂x̄2 + λ∗

β∗
T0

p0

∂T̄

∂t̄
− 1
β∗p0

∂εv
∂t̄

, (5.16)

where I1 = ρ
τ0

(
fΛδ̇
ρC

)2
, I2 = I

ρτ0

(
fλδ̇
CH0

)2
. We observe that the height of the layer influences

the diffusion terms of the system (5.16), and the rotational inertia of the microstructure.
Increase of the layer’s height H decreases the efficiency of the diffusion terms, further
intensifying thermal pressurization.

Platt et al. (2014b), Rice et al. (2014b) investigated the role of inertia in the localization
width of the principal slip zone in the constant seismic slip velocity analyses. They con-
cluded that inertia does not significantly affect the width of the localized zone except at
the propagation tip where the inertial number is significantly high and the localization
profiles widen. Additionally, the role of the microstructure (inertia of the grains) was in-
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vestigated in the linear perturbation analyses in J. Sulem et al., 2011. It is found that for
the in situ observed seismic slip velocities up to ∼ 1 m/s, the localization width does not
change significantly compared to the case where inertia is neglected.

For the nominal parameter values used in our analysis (see Table 5.2) and a maximum
seismic slip velocity δ̇ = 1 m/s, using the scaling for time (t0 = R2

cth
), assuming spheri-

cal particles of radius R we can deduce the effect of the inertia terms on the above non
dimensionalized, non-linear system of partial differential equations,

I1 = ρ
δ̇2

τ0
= 1.810−5 � 1, and I2 = 8πρ2δ̇2R3

15τ0
= 7.810−17 � 1 (5.17)

For lower values of δ these parameters are even smaller. Therefore we establish that both
the inertia of the gouge as well as the inertia of the grains are negligible for the nominal
parameters used in this analysis and the corresponding terms can safely be omitted. We
note here that this result is independent of the choice between the two proposed scaling
alternatives presented in this section.

5.2.7 Linear stability analysis

In what follows we refer to the shearing of a 1D layer under constant shear slip velocity at
the boundaries as discussed in Lachenbruch, 1980b; Rice, 2006b. From now on, in order
to reduce notation complexity we remove the (¯) sign from the normalized unknowns. We
apply a perturbation φ̃(xl, t) = [τ̃ij(xl, t), µ̃ij(xl, t), T̃ (xl, t), p̃(xl, t)] to the homogeneous
solution φ∗(t) = [τ ∗ij(t), µ∗ij(xl, t), T ∗(t), p∗(t)]. Applying the perturbed solution φ∗ + φ̃

to the above system of equations we obtain the linearized perturbed system,

τ̃ij,j = 0,
µ̃ij,j − εijkτ̃jk = 0, (5.18)
∂T̃

∂t
= ctht0

x2
0
T̃,ll −

τ0

T0

(
σ∗ij ε̃ij + τ ∗[ij]γ̃[ij] + µ∗ijκ̃ij

)
, (5.19)

∂p̃

∂t
= chyt0

x2
0
p̃,ll + λ∗

β∗
T0

p0

∂T̃

∂t
− 1
β∗p0

∂ε̃v
∂t

. (5.20)

We note here that we consider only perturbations of the plastic deformation and curvature
tensors in order for equation (5.19) to be valid. We inject the constitutive relations of equa-
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tion (D.1.19) into the linearized system (5.20), expressing the total linearized strains γ̃ij
and curvatures κ̃ij with respect to the perturbed displacements ũi and Cosserat rotations
ω̃ci as presented in Rattez, Stefanou, and Sulem, 2018:

Cep
klmn(ũm,nl + εmnqω̃

c
q,l) + Eep

klmnT̃,lδmn +Dep
klmnω̃

c
m,nl − p̃,lδkl = 0, (5.21)

M ep
klmnω̃

c
m,nq + Lepklmn(ũm,nq + εmnqω̃

c
q,l)− εklm(Cep

lmnq(ũn,q + εnqrω̃
c
r)

+ Eep
lmnqT̃ δnq +Dep

lmnqω̃
c
n,q − p̃δlm) = 0, (5.22)

∂T̃

∂t
= ctht0

x2
0
T̃,ll −

τ0

T0

(
τ ∗ij(ũi,j − εijkω̃k) + µ∗ijω̃i,j

)
, (5.23)

∂p̃

∂t
= chyt0

x2
0
p̃,ll + λ∗

β∗
T0

p0

∂T̃

∂t
− 1
β∗p0

∂ũk,k
∂t

. (5.24)

We note here, that in order to obtain equation (5.23), we neglect the perturbations of the
elastic deformation and curvature fields in comparison to their plastic counterparts. We as-
sume shearing under constant shear slip velocity δ̇, and therefore, the layer is sheared under
linear in time Dirichlet boundary conditions. Moreover, we assume shearing of the layer un-
der isothermal and drained boundary conditions for the temperature and pressure diffusion
equations. We introduce a perturbation [ũi, ω̃i, T̃ , p̃] = [u0, ω0, T0, p0] exp(st̄) exp(ikx̄jnj),
k = 2π

λ
that satisfies the boundary conditions therefore λ = h

2πN , where N is an integer
satisfying the boundary conditions.

In this chapter we are mainly interested in the shearing of a 1D layer (see Figure 5.1). In
this context only the derivatives along the x2 axis survive, therefore, the above system is
reduced as follows:

Cep
2222ũ2,22 +Dep

2232ω̃
c
3,22 + Eep

2222Ṫ,2 − p̃,2 = 0, (5.25)
Cep

1212(ũ1,22 + ε123ω̃
c
3,2) +Dep

1232ω̃
c
3,22 = 0, (5.26)

M ep
3232ω̃

c
3,22 + Lep3212(ũ1,22 + ε123ω̃

c
3,2) + Cep

2112(ũ1,2 + ω̃c3)− Cep
1221(ũ2,1 − ω̃c3)

+Dep
2132ω̃

c
3,2 +Dep

1232ω̃
c
3,2 = 0, (5.27)

∂T̃

∂t
= ctht0

x2
0
T̃,22 −

τ0

T0
(τ ∗21(−ω̃3) + τ ∗12(ũ2,1 + ω̃3) + µ∗32ω̃3,2) , (5.28)

∂p̃

∂t
= chyt0

x2
0
p̃,22 + λ∗

β∗
T0

p0

∂T̃

∂t
− 1
β∗p0

∂ũ2,2

∂t
. (5.29)
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Figure 5.1 – 1D consolidated Cosserat layer under shear.

5.2.8 Traveling instabilities

In this section, we advance beyond the linear stability analyses carried out in Rattez,
Stefanou, Sulem, Veveakis, et al. (2018b), as we are mainly concerned with the behavior
of the imaginary part of the complex eigenvalues defining the Lyapunov coefficient (s).
In the context of Lyapunov stability analysis the eigenvalues with positive real part show
that the system is unstable. Moreover, if the eigenvalue in question is complex then the
instability is characterized as a flutter instability see (Brauer and Nohel, 1969). In partial
differential equations though, the appearence of imaginary parts in s is associated to the
nucleation of traveling waves as presented in Platt et al. (2014b), Rice et al. (2014b)
and chapter 4. More specifically, by assuming a perturbation φ̃ of complex frequency
ω = ωr + ωii and complex wavenumber k = kr + kii,

φ̃ = φ0 exp[i(ωt̄− kx̄)]. (5.30)

The Lyapunov coefficient s = iω can then be expressed as sr = Re[s] = Re[iω] = −ωi,
si = Im[s] = Im[iω] = iωr leading to:

φ̃ = φ0 exp(−ωit̄+ kix̄) exp[i(ωr t̄− krx̄)] = exp(sr t̄+ kix) exp[i(sit+ krx̄)]. (5.31)

From the above expressed form of the perturbation we observe that in case of a complex
Lyapunov coefficient, traveling perturbations appear in the medium, as the second factor
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or equation (5.31) becomes a sinusoidal.

The existence of the traveling perturbations together with the special kind of drained,
isothermal, Dirichlet (essential) boundary conditions of the PDE system leads to reflec-
tions of the traveling perturbation inside the fault gouge and may lead to the appearance
of a limit cycle. Characterization of the bifurcation leading to the appearance of the limit
cycle as a Hopf (subcritical, supercitical) or global bifurcation in this system of 4 PDEs
lies outside the scope of this thesis. We note here that the applied boundary conditions are
extremely important for the behavior of the instability. In the case of adiabatic undrained
boundary conditions the spatial profiles of pressure and temperature do not allow for a
reflection of the traveling instability at the boundaries and therefore, the perturbation
stations in one of the boundaries of the model.

The existence of a limit cycle, and the traveling instability is a characteristic of the
Portevin Le Chatelier effect found in metals (see Hähner et al., 2002; Mazière et al., 2010;
W. Wang et al., 1997, among others). In these cases the systems of PDEs in question are
kept intentionally small, by two equations namely, the balance law, the diffusion equation
and an a priori assumption of the plastic strain rate λ profile see (Hähner et al., 2002).
Consequently the identified limit cycle in these works, is attributed to the diffusion mech-
anisms present in the medium and the inherent coupling between balance and diffusion
equations.

The perturbed linearized system depends on time due to the energy and mass balance
equations. The Lyapunov exponent is then introduced in the system due to the first
derivative of temperature and pressure, indicating that the polynomial characterizing the
stability of the system is of second order. In this chapter we are interested in the condi-
tions under which linearized stability analyses provides us with complex roots of positive
real part, that indicate a traveling instability as explained above. We note that from the
linear stability analysis of the previous system around the solution of homogeneous defor-
mation, such a condition is not possible. This, however, is not guaranteed as one ventures
more into the perturbed equilibrium path.

Assuming a correspondence exists between the apparent softening and a mechanical soft-
ening parameter, we expect flutter instabilities to be present once the system starts ex-
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hibiting a softening behavior. In addition to mechanical softening (if present), in our
analyses apparent softening is expected due to the terms of thermal pressurization and
the Terzaghi theory of effective stress.

In Figure 5.2 we present the effect of the softening parameter h on the localization length
λr of the maxima of the real and imaginary parts (sr, si) of the Lyapunov coefficient s. We
note that the value of the real part of Lyapunov coefficient sr is negative for perturbations
of zero wavelength, therefore no localization on a mathematical plane can occur, indepen-
dently of the softening parameter h. This is to be expected in the case of a Cosserat
continuum due to the introduction of an internal length. Initially for small values of soft-
ening the wavelengths corresponding to the maxima of sr, si to not match. The wavelength
corresponding to the growing perturbation exhibits an unbounded positive real part and
zero imaginary part for the Lyapunov coefficient. This means that at the initial stages of
the analysis the instability is not traveling in the medium. However, as yielding contin-
ues and thermal pressurization leads to more pronounced softening, the imaginary part
catches up with the real part, meaning that both the maxima of the real and imaginary
parts of the Lyapunov coefficient s occur for the same perturbation wavelength. This leads
to a traveling instability inside the layer (see Figure 5.2) and section 5.3.

Figure 5.2 – On the left: Real part of the two roots of the characteristic polynomial for
different values of the hardening parameter h. There is always a critical wavelength value
λcr greater than zero, for which the Lyapunov exponent tends to infinity. On the right:
Imaginary parts of the roots for the same softening values. As softening intensifies, positive
real values of s with non zero imaginary part appear on a λr 6= 0, leading to a traveling
perturbation of a non zero critical wavelength.

For the value of the softening parameter h = −0.50 that produces the traveling pertur-
bation of finite width, we further examine the effect of a non negative imaginary part in
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the wavenumber k = kr +kii. The imaginary part of k is responsible for the change of the
perturbation amplitude with space. In a bounded problem such as the one discussed here,
its effect is not important as the amplitude will remain bounded with distance. It is of in-
terest, however, to examine whether traveling instabilities are possible in the more general
context. For a given value of the softening parameter h and treating ki as a parameter,
the plots of the real and imaginary part of the roots of the characteristic polynomial s1,2

are shown in Figure 5.3. In the left part of Figure 5.3, we notice that localization on a
mathematical plane is avoided for any ki, since for λr = 0 the real part of the Lyapunov
coefficient s tends to −∞. This is in contrast with viscous regularization, where it was
recently shown that strain localization on a mathematical plane is always possible (see
chapters 3, 4). This behavior is owed to the internal length introduced in the Cosserat
continuum that regularizes effectively strain localization.

Figure 5.3 – On the left: Real part of the two roots of the characteristic polynomial
for different values of the attenuation coefficient ki. The two roots start negative and
eventually they pass to positive values for the real part of s. The wavelength each root
changes its sign as well as the maximum value reached are characteristics of the value of
ki. On the right: Imaginary parts of the roots for the same softening values and values
of the attenuation coefficient ki. For ki 6= 0, the magnitude of the imaginary part of the
roots Im[s1, s2] starts from∞ when λr = 0 and slowly attenuates. This is in high contrast
to the behavior exhibited when ki = 0. The perturbation increasing the fastest is the one
lying on ki = 0.

On the right part of Figure 5.3 we notice that the behavior of the imaginary part of the
roots s1, s2 is symmetric around ki = 0, as expected. Therefore, we focus our attention
to values of ki > 0. The roots present a positive real part for a range of values of λr (see
Figure 5.3). For ki 6= 0 the positive real part is bounded and obtains its maximum value
as λr tends to ∞. The wavelength value, where the real part of the Lyapunov exponent
changes sign from negative to positive, as well as the maximum positive value depend on
the value of the parameter ki (see left part of Figure 5.3). The maximum value of the
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imaginary part of s1,2 is obtained for λr → 0 and then it slowly attenuates as λr → ∞.
We conclude that traveling perturbations of unbounded increasing amplitude and finite
width are possible in the case (sr > 0, si 6= 0, ki = 0).

5.3 Numerical Analyses

A 1D model of a Cosserat layer was used, where shear displacement was applied to the
boundaries of the layer, while rotations were blocked at both ends. Figure 5.1 describes the
model in more detail. The layer was discretized using 80 finite elements, with quadratic
shape functions for the displacement field ui and linear shape functions for the rotations
ωi. Reduced integration scheme was used for the displacement field compared to full for
the rotation field (see Godio et al., 2016). These element parameters were taken as a re-
sult of a mesh convergence investigation of different shape functions and number of Gauss
points that was performed in a previous work in order to find the optimal mesh description
(see Stathas & Stefanou, 2019a). The mesh characteristics are summarized in Table 5.1.
The Cosserat material properties used to describe a mature fault in the seismogenic zone
are summarized in Table 5.2, where a relatively high value for the friction coefficient µ has
been used with respect to the values provided in Rempel and Rice (2006), Rice (2006a),
Rice et al. (2014a) and path averaged values for λ∗, β∗ were considered, as proposed in
Rice, 2006b; Rice et al., 2014a.

ui ωi

Element type Quadratic Linear
Integration scheme Reduced Full
Number of elements 80

Table 5.1 – Mesh properties of the problem.

To illustrate the role of seismic slip velocity in the post peak behavior of the fault, we
apply two different shear velocity-stepping programs to the model at hand. First we im-
plement a three step procedure described in section 5.3.1 which includes, consolidation of
the layer to the stresses and pressure at a depth representative of the seismogenic zone
(7 km) followed by slow shear of the layer and then by fast shear for a shear slip of 10
mm at each stage. The second program in section 5.3.2 involves initial consolidation and
then shear with constant slip velocity, δ̇, ranging from as slow as 0.01 m/s to 1.0 m/s for
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a total of 100 mm of seismic slip δ.

Parameters Values Properties Parameters Values Properties
K 20. 103 MPa µ 0.5 -
G 10. 103 MPa β 0 -
Gc 5. 103 MPa λ∗ 13.45 10−5 /oC
L 103 MPa mm2 β∗ 8.2 10−5 MPa−1
M 1.5 MPa mm2 ρC 2.8 MPa/oC
Mc 1.5 MPa mm2 chy 12.0 mm2/s2

R 0.01 mm cth 1.0 mm2/s2

σn 200 MPa αs 10−5 /oC
p0 66.67 MPa χ 12. 10−15 m2

Table 5.2 – Material parameters of a mature fault at the seismogenic depth (see Rattez,
Stefanou, & Sulem, 2018; Rice, 2006b).

A second series of analyses were also run, where the seismic slip displacement is set to 1 m
and the seismic slip velocity to 1 m/s - typical values observed in nature during large co-
seismic slip. These analyses go far beyond the previous limit of 5 mm presented in Rattez,
Stefanou, and Sulem (2018), Rattez, Stefanou, Sulem, Veveakis, et al. (2018a), and allow
us to observe new and interesting phenomena. The higher seismic slip displacement, allows
us a deeper understanding of the phenomenon of thermal pressurization since it is shown
that a traveling instability is formed inside the gouge due to the existence of a limit cycle
in later parts of the analysis (see Figure 5.16). This behavior is new compared to previous
analyses on the same mechanism of thermal pressurization done with simpler models (see
Lachenbruch, 1980b; Rice, 2006b; Rice et al., 2014b) and it resembles behavior speci-
fied in other analyses with different physical mechanisms taken into account, such as the
comminution of grains and evolution of the microstructure (see Collins-Craft et al., 2020).

Finally, in section 5.3.4, we illustrate here the effect of the boundaries in the travel-
ing velocity v of the PSZ inside the shear band, by considering two different shear bands
of height 1 mm and 2 mm respectively subjected to the same seismic slip displacement
δ=1 m with seismic slip velocity δ̇=0.5 m/s. We note, based on the scaled system of
equations (5.16), that the two configurations described here, differ only in the diffusion
terms. Namely, the thicker layer diffuses pressure and temperature slower, exhibiting more
pronounced apparent softening due to thermal pressurization.
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5.3.1 Shearing of a mature fault under low slip (δ = 10 mm) and
velocity stepping

To better understand the effects of the applied shearing rate δ̇ in thermal pressurization
and the overall effects of the boundary, as mentioned above, we proceed with the appli-
cation of a velocity stepping shearing procedure. After consolidation (see Table 5.3), the
layer is sheared with varying slip velocity δ̇ in two steps. At each step a target displace-
ment δ of 5 mm at each end is reached for a total of 10 mm at the end of the analysis.
The shear velocity δ̇ during the first shear step is 0.01 m/s. For the second (final) step we
ran different analyses under different applied constant shear velocity. The range of shear
velocity values spans from 0.01 m/s to 1 m/s.

STEP Slip δ mm Slip velocity δ̇ m/s
0 Consolidation - -
1 Shear 5 0.01
2 Shear 5 0.01 0.1 1.0

Table 5.3 – Loading program for the analyses performed using the three step procedure.

We intent to investigate the effect of the shearing rate on the frictional response of the
layer. We investigate the predictions of our model concerning the apparent softening in
the layer’s frictional response subjected to isothermal (∆T=0) drained (∆p=0) boundary
conditions. In Figure 5.4 we compare the different shear stress τ seismic slip displacement
δ responses for the different velocities applied at the final step of the analyses and we
show the profiles of strain localization rate γ̇p over the layer’s height. We observe that the
increase of slip velocity δ̇ has a weakening effect on the τ − δ diagram as observed also
by Rattez, Stefanou, and Sulem, 2018; Rattez, Stefanou, Sulem, Veveakis, et al., 2018b.
This happens due to the fact that a fast increase in the heat production term of equation
5.6 leads to an increase in the thermal pressurization term of equation 5.7, which in turn
increases pressure and intensifies weakening due to the application of Terzaghi principle
σeff = σn + p, (p > 0 water pressure, σeff , σn > 0 in tension). The increase of slip ve-
locity leads also to narrower localization zones, which are in agreement with the steeper
post-peak response observed in τ, δ diagrams.
Finally, we investigate the influence of the boundary conditions of pressure and tempera-
ture to the behavior of the problem. Their influence to the frictional response is of great
importance as they control the effect of diffusion on leading temperature and pressure
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Figure 5.4 – Left: τ − δ response of the layer for different slip velocities δ̇ applied (velocity
stepping). We observe that as the shearing rate increases, the softening behavior becomes
more pronounced as a result of smaller localization widths due to the smaller characteristic
diffusion time. Right: Profiles of strain localization rate inside the layer for different slip
velocities δ̇ applied at the end of the analysis. Higher shearing velocities correspond to
more localized plastic strain rate γ̇p profiles.

increase (∆T,∆p) away from the localized zone. On the left part of Figure 5.5 we present
the curves of τ − δ, for slip velocity δ̇ at the final step of the analysis of 1 m/s, for
Adiabatic-Undrained (qT = qp = 0), Isothermal-Drained (∆T = ∆p = 0), Isothermal-
Undrained (∆T = qp = 0) and Adiabatic-Drained conditions (qT = ∆p = 0). We observe
that undrained boundary conditions influence the response the most as they tend to fol-
low on the solution of uniform adiabatic undrained shear Lachenbruch, 1980b for small
slip velocities δ̇ = 0.01 m/s. The difference at the peak strength between drained and
undrained conditions has to do with the frequency our algorithm saves the output as well
as the time increment used by the analysis (automatic time stepping). Furthermore, on
the right of Figure 5.5 we present the plastic strain-rate profiles γ̇p for different boundary
conditions applied at the end of the analysis. We observe that for the given seismic slip
of 10 mm, localization width is dependent on the seismic slip velocity applied and not on
the boundary conditions.

Based on the above results, we conclude that the true response of the fault gouge is
very much dependent on the applied boundary conditions. Normally a kind of Robin
boundary condition should be employed to better approximate the physical conditions.
However, since this interaction between fluxes and essential boundary conditions is not
yet sufficiently documented in the existing literature, the isothermal (∆T = 0), drained
(∆p = 0) boundary conditions are closer to the real conditions due to the highly damaged
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Figure 5.5 – Left: τ−δ response of the layer for different boundary conditions applied. An
envelope is created between Isothermal drained (δT = ∆p = 0) and Adiabatic-Undrained
(qT = qp = 0) conditions. At the slow slip part of the analysis in the case of adiabatic
undrained boundary conditions, thermal pressurization is present from the beginning. In
this case, the initial stress at the start of the fast shear is lower and thus the stress drop
is smaller. Right: Profiles of strain localization rate inside the layer for different boundary
conditions. Since Cosserat material parameters and coseismic slip velocity δ̇ remain the
same in all cases, the localization width does not change.

regions encapsulating the fault gouge.

The thermal diffusivity of the fault gouge and the surrounding damaged zone (surrounding
folliations) presents less variations than the corresponding hydraulic diffusivities. Thermal
diffusivity of the fault gouge material is of the same order of magnitude as the diffusivity
of the damaged zone (see for instance Tanaka et al., 2007). For the much more crucial
hydraulic diffusivity parameter (see Aydin, 2000), the hydraulic diffucivity ratio between
the mature fault gouge and the surrounding folliated rock can be shown to differ up to 4
orders of magnitude, with diffusivity of the folliated rock being greater than that of the
gouge. Furthermore, according to in situ observations (see Ingebritsen & Manga, 2019) of
increased water discharge to aquifiers, the ratio is expected to increase even more during
coseismic slip. Therefore, we can estimate the ratios of thermal, rth, and hydraulic, rhy,
diffusivities between the fault gouge material and the nearby damaged material:

rth = crcth
cfgth
∼ 1, rhy =

crchy

cfghy
∼ 104 (5.32)

These parameters, further justify our choice of setting the boundary conditions in the rest
of the chapter to isothermal ∆T = 0 drained ∆P = 0.
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5.3.2 Shearing of a mature fault under moderate slip (δ = 100
mm), and variable slip velocities

To better illustrate the dependence of the fault behavior to the velocity of seismic slip δ̇, we
run a second part of analyses for the case of isothermal drained conditions (∆T = ∆p = 0)
in which the intermediate part of slow shear velocity has been omitted and the fault model
is immediately subjected to fast slip velocity rates after initial consolidation. Furthermore,
the target seismic displacement δ has been increased to 100.0 mm. We aim that way to
examine in more detail the fault’s response under displacement scales commonly observed
in nature at variable slip rates. Fast slip rates would correspond to the fault gouge being
in the center of the fault rupture area. For the numerical steps of the simulations see
Table 5.4

STEP Height h mm Slip δ mm Slip velocity δ̇ m/s
0 Consolidation 1 - -
1 Shear 100.0 {0.01, 0.05, 0.1, 0.25, 0.50, 0.75, 0.90, 1.0}
0 Consolidation 1 - -
1 Shear 1000.0 1.0
0 Consolidation 1 - -
1 Shear 1000.0 0.5
0 Consolidation 2 - -
1 Shear 1000.0 0.5

Table 5.4 – Loading program for the analyses performed using the two step procedure.

In Figure 5.6 we present the shear stress τ with seismic slip on top of the layer δ response
for the point on top of the layer. We plot the τ − δ response for different values of seis-
mic slip velocity. It can be clearly seen from the results that two behaviors are present
depending on the shear velocity. If the slip velocity is low, then the layer accommodates
the heat produced from the plastic work during yielding of the material and both heat
and pressure diffuse efficiently away from the yielding zone, which has a comparatively
large localization width lloc as shown in Figure 5.7. As slip velocity increases the post
peak softening response is seen in larger parts of the analysis before eventually diffusion
dominates and peak shear strength is restored. However, shear strength is only partially
restored for the analyses of large shear velocities.

In the left part of Figure 5.6 the response of the layer obtained from the numerical
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Figure 5.6 – Left: τ − δ response of the layer for different velocities. Isothermal, drained
boundary conditions ∆T = ∆p = 0 are applied. Frictional strength regain is observed due
to the diffusion at the boundaries. The frictional response presents oscillations due to the
traveling plastic strain rate instability. A smaller residual friction value is achieved. Right:
Fitted τ − δ response of the layer for different velocities. Isothermal, drained boundary
conditions ∆T = ∆p = 0 are applied. All analyses at the start reach the peak strength
τ = 66.67 MPa. As slip δ progresses an increase of the residual shear stress τ takes place.

analyses of first row of Table 5.4 is presented. We notice the existence of oscillations in
the frictional response for all velocities apart from the very small (δ̇ = 0.01 m/s). The
oscillations start during the apparent softening branch of the analysis frictional response.
They are affected by the boundaries of the model, namely in the case of undrained, adia-
batic boundaries the shear band travels to one of the boundaries and then persists at this
position, while for isothermal drained conditions an oscillatory response is present.

In the right part of Figure 5.6 we present the τ − δ fit of the numerical results. The
fit is used to simplify conceptually the results and highlight the main findings of the
numerical analyses. The fit contains the initial frictional weakening and subsequent fric-
tional regain due to the diffusion at the boundaries of the model. Furthermore, the effect
of the oscillations is highlighted. The fit passes through the middle of the oscillations of
the numerical analyses. Thus, we conclude that due to the oscillations, friction is not fully
restored to its initial value. There exists a residual value of friction at the later stages of
the slip. For the fitted curves τ − δ, we employ a function composed of an exponential
decay and a logistic curve.

τ(δ, δ̇) = a(δ̇) exp
[
−b(δ̇)δ

]
+ c(δ̇)
d(δ̇) + exp [ − f(δ̇)(δ − g(δ̇))

] , (5.33)
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where α(δ̇), b(δ̇), c(δ̇), d(δ̇) are the interpolation parameters, dependent on δ̇.

Figure 5.7 – Left: 3D fitted surface of τ with slip distance δ and velocity δ̇. Right: lloc− δ
response of the localization width inside the layer for different boundary shear velocities
applied at the boundaries.We notice that the localization width is oscillating for the small
to intermediate range of shear velocities δ̇ = 0.01−0.25 m/s. This is due to the interaction
between the diffusion lengths of pressure and temperature.

On the left part of Figure 5.7, we present the frictional surface that corresponds to the
fit of the previous paragraph. Through the use of two dimensional interpolation of the
results of Figure 5.6, we are able to estimate the frictional response of the fault gouge
over a region of low to moderate seismic slips (δ = 0 ∼ 0.1 m) and seismic slip velocities
(δ̇ = 0.1 ∼ 1 m/s).

On the right part of Figure 5.7, we present the evolution of the shear band width for
the different seismic slip velocities. In order to estimate the localization width in each
case a curve according to equation (5.34) described in Rice, 2006b was selected for fitting.

γ̇p =A+ B√
1πD

exp
[
−1

2

(
y − C
D

)2]

lloc =2
√

2 ln(2)D (5.34)

It is clear that large velocities lead to narrower localization widths lloc. We observe that for
large velocities localization width is not monotonously decreasing, but rather it exhibits
some noise as shearing progresses. This goes beyond the results of Rattez, Stefanou, and
Sulem (2018), Rattez, Stefanou, Sulem, Veveakis, et al. (2018b), where the localization
width was shown to progressively decrease until it remains constant. This behavior has
to do with the fact that the instability exhibited here by the material is a traveling wave
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instability. This can be seen in the τ, γ̄21 response, where a periodic increase and loss of
strength is observed in the post peak response for all velocities above 0.01 m/s.

This jerky behavior, which is a characteristic of a Portevin Le Chatelier effect can be re-
sponsible for higher frequency instabilities during seismic slip and enhance the frequency
content of an earthquake event as discussed in Aki, 1967; Brune, 1970; Haskell, 1964; Tsai
and Hirth, 2020. The observed behavior is primarily due to the applied isothermal drained
boundary conditions. In the case of adiabatic undrained conditions the shear band can be
shown to travel towards a boundary, where it is trapped for the duration of the analysis
and the results obtained in this case are closer to those derived in the case of uniform
shear (Lachenbruch, 1980b).

5.3.3 Shearing of a mature fault for large slip δ = 1 m and co-
seismic slip velocity δ̇ = 1 m/s.

Figure 5.8 – Left: Evolution of τ with slip distance δ. We observe that after sufficient time
has passed the oscillations have stabilized in amplitude and frequency partially recovering
the layer’s initial shear strength. The steady state reached around which the oscillations
take place is reached after a slip of 1.0 m. The value of friction at the steady state is
a result of the interplay between the rate of work dissipated into heat and the diffusion
properties of the fault gouge.

In order for the observed oscillations to fully develop in amplitude for the analyses with
high slip rate δ̇ we apply a very large shear displacement. Figure 5.8, presents the τ, δ
response for a slip velocity δ̇ of 1 m/s and an applied slip δ = 1 m. As can be seen from
the above analysis the shear strength of the layer is eventually oscillating around a new
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residual strength value, which is smaller than the original peak strength.

Left part of Figure 5.9 shows the profiles of plastic strain rate γ̇p and accumulated plastic
strain γp at the end of the analysis. It is clear that the shear band travels across the ma-
terial since the accumulated plastic strain profile is larger in width than the localization
width of the instability. This is one major difference compared to small slip rates, which
our analyses under large displacements allowed to highlight (see Figure 5.6).

Figure 5.9 – Left: Profiles of shear strain rate and accumulated plastic shear strain γ̇p, γp
at the end of the analysis for applied slip δ = 1 m and slip rate δ̇ =1 m/s. Since the two
profiles differ, we conclude that the localization oscillates inside the layer. Localization
does not travel the whole of the layer due to the boundary conditions applied. Right:
Profiles of pressure and temperature p, T at the end of the analysis for applied slip δ = 1
m and slip rate δ̇ =1 m/s. Diffusion at the boundaries leads to extremely high values of
temperature ∆T =2000 oC.

Finally, the right part of Figure 5.9 presents the profiles of temperature T and pressure
p at the end of the analysis. We observe that the temperature reached is much higher
than the one required for the onset of melting for the minerals present in the seismogenic
zone Rice, 2006b. This has to do with the relatively high friction coefficient µ used in
our analyses. A moderate value of µ=0.25 would roughly halve the temperature observed.
This does not preclude though other mechanisms, such as chemical effects Alevizos et al.,
2014; J. Sulem and Famin, 2009; J. Sulem and Stefanou, 2016a; E. Veveakis et al., 2014,
that might become dominant after thermal pressurization becomes impossible.

A cycle of friction during the oscillation of the shear band inside the fault gouge is sep-
arated in two stages: First the band travels inside the medium which corresponds to a
weakening phase of the frictional response. The weakening phase takes place as the band
travels across a hot region of the layer in which case according to equation (5.20) the pres-
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sure increases as ∆T is positive. Next, as the band travels inside the fault gouge expanding
the yield zone, it approaches the boundaries. Close to the boundaries, temperature and
pressure diffusion are more efficient. In particular, near the boundary, temperatures are
lower as dictated by the parabolic profile of temperature T (see Figure 5.9) due to dif-
fusion. The high diffusion gradients result in the cooling of the region, where the shear
band is present. This in turn leads to a decrease in the applied pressure, therefore, the
layer regains part of its strength. During each cycle the yield region is slightly increas-
ing and the oscillations grow in period, since the yield zone is progressively expanding,
and in amplitude, since the cooling effect becomes more pronounced and the temperature
gradients become steeper.

5.3.4 Effect of the layer’s height on the oscillations behavior

Figure 5.10 – Left: Frictional strength evolution of two layers of width 1 mm (dashed ,
blue, diamond curve) and 2 mm (solid, red, triangle curve) under the same seismic slip
velocity δ̇ = 0.5 m/s. Right: Profiles of accumulated plastic strain rate at the end of the
two analyses. Yielding has not yet fully developed in the case of thickness of 2 mm.

In order to investigate how the boundaries affect the evolution of the traveling instability
and of the frictional behavior inside the medium we compare the response between two
layers of different height, 1 mm and 2 mm respectively, under a constant seismic slip
velocity of 0.5 m/s (see Figure 5.10). We notice that the two layers exhibit the same re-
sponse during the initial stages of thermal pressurization, however, the layer of thickness
2 mm reaches an overall lower minimum and a lower value for the residual shear strength.
These values are essentially controlled by the diffusion processes. In the case of 1 mm,
diffusion to the boundaries is more efficient and the layer regains more of its strength.
Furthermore, diffusion is affected by the traveling instability inside the medium. In the
case of the wider layer, from the period of the frictional strength oscillations (see inset of
left part of Figure 5.10) we deduce that it takes almost twice the time for the traveling
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instability to cross through the layer. Therefore, temperature and pressure diffuse slower
over the height of the layer. The period of the oscillations depends mainly on the distance
between the layer’s boundaries.

The oscillations in the frictional response of the layer are dependent both in period and
in amplitude on the height of the layer. Oscillations of higher amplitude occur in the
case of the shorter layer height, where the plastic zone has more time to develop and
the diffusion gradients close to the boundary are steeper. It is of paramount importance
to take into account the slopes of τ w.r.t. δ both at the beginning and at the oscilla-
tion phase since they are vital for the instability nucleation in the various stick and slip
models (see Dieterich, 1992; Rice, 1973c; Ruina, 1983b). For high velocities (0.5 ∼ 1
m/s) the slope at the beginning is the steepest and controls the energy balance (and the
radiated energy), in contrast, for relatively small velocities (0.1 ∼ 0.3 m/s, see Figure
5.6) the trend might be different leading to radically different instability conditions. By
calculating the radiated energy from an earthquake and having an accurate value for the
seismic slip velocity δ̇, we can estimate the width of the fault gouge during the earthquake.

We note here that based on the discussion of section 5.2.6, applying a scaling that takes
both into account the effect of coseismic velocity δ̇ and the characteristic height of the
layer H0, allows us to verify the above results. In essence we note that keeping the velocity
constant an increase in the layer’s height affects only the diffusion terms. In particular
the characteristic diffusion time t0 doubles in the case of the thicker layer, indicating that
the frictional regain due to the boundary effects will take more to develop. Note also that
doubling the height of the layer leads to the doubling of the period in the thicker layer,
indicating that the phenomenon is dependent on the diffusion properties of the fault gouge
and its boundaries, and not on the internal length of the microstructure (Cosserat radius
R).

5.4 Introduction of viscosity - rate and state phe-
nomenology

Until now, a characteristic that is absent in the rate independent version of our model is
the immediate positive frictional increase due to a sudden increase in the shearing velocity
(α > 0 in the context of a rate and state friction model, see Dieterich (1992), Rice et al.
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(2001), Ruina (1983a), Ruina (1983b)). Adopting rate and state friction as a reference,
as shown in Figure 5.11, this means that our model misses some necessary physics at the
microscale like a creep mechanism at the asperity scale level and a notion of a state vari-
able describing the contact behavior over time. This can be remedied by the introduction
of viscosity in the present model which will lead to a strain rate hardening (or softening)
description. The THM coupled model discussed here with the introduction of viscosity,
can replicate the immediate effects of rate and state model, without the introduction of
extra material parameters or the notion of an internal state variable indicating the contact
history.

Figure 5.11 – Rate and state phenomenology (image taken from Tzortzopoulos et al.,
2021).

Another important difference between our model and the general rate and state fric-
tional response is the absence of a state variable ψ indicating the state of the contacts in
the region of interest. As a result our model does not exhibit memory effects as well as
the lower bound for the frictional response is not achieved by reaching the steady state
w.r.t. ψss, rather it is a function of the THM-couplings i.e. how efficient diffusion leads
temperature and pressure away from the localized yielding region. It should be empha-
sized however that the role of the state variable ψ is ambivalent, in the sense that rate
and state formulations do not necessarily respect the basic thermodynamic principles,
since they mostly result from fittings to experimental results. Furthermore, we still lack
data in the pressure and temperature ranges usually expected at the seismogenic depth,
therefore, the parameters used in these laws are crucial concerning the prediction of the
frictional evolution during a seismic event Rice, 2006a; Rice et al., 2001. Recently, empha-
sis has been given into the thermodynamically consistent derivation of granular material
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constitutive laws (see Alaei et al., 2021). These novel constitutive material formulations,
lead to thermodynamically consistent models with the introduction of granular inertia
effects, that successfully capture the rate and state behavior observed in the laboratory
experiments under the laboratory observed temperature range.

In this section we investigate the role of viscosity in the frictional behavior of the fault
during coseismic slip. We assume a Perzyna elasto-viscoplastic material introducing strain
rate hardening effects through the use of a viscosity parameter η. A velocity stepping pro-
cedure is followed in which the fault is initially slipping with a small seismic slip velocity
(δ̇0 = 0.01 m/s) for a small seismic slip displacement (δ = 10 mm). Then an immediate
increase in the seismic slip rate is enforced in the model (δ̇ = 1.0 m/s) to expose the rate
dependence (see Dieterich, 1992; Rice et al., 2001; Ruina, 1983a). We continue shearing
until the seismic slip δ̇ reaches a value of 100 mm. Then, we perform a series of parametric
analyses to determine the influence of the viscosity parameter η (s), mixture compress-
ibility β∗ (MPa−1), Cosserat radius R (mm) and the seismic slip velocity δ̇ (m/s) in the
frictional response of the fault.

Figure 5.12 – Evolution of the fault’s shear strength for a rapid change in shear rate δ̇
changes from 0.01 to 1.0 m/s, for different values of the viscosity parameter η (s). For large
values of the viscosity parameter η (star curve), stress drops and kinks corresponding to
stick slip events are presented.

In Figure 5.12 we present the effect of the viscosity parameter in the frictional re-
sponse of the fault for a sudden increase of the seismic slip rate from δ̇0 = 0.01 m/s to
δ̇ = 1.0 m/s. We observe that increasing the viscosity parameter η, the system becomes
more sensitive to the sudden change of velocity reaching higher levels of peak frictional
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strength due to strain rate hardening. Three values are tested for the viscosity parameter
η = [0.005s, 0.025s, 0.05s] while the other material parameters are taken from Table 5.2.
The lowest value corresponds to a meager increase in the fault’s frictional strength due to
the change in the shearing rate and is well in agreement with the results for the rate in-
dependent model. The frictional response initially reaches a minimum leading to velocity
weakening. Afterwards, friction starts increasing due to pressure diffusion and strain-rate
hardening. For the other values of the viscosity parameter the frictional strength increase
is important. This change in the viscosity parameter also affects the minimum value of
the frictional strength and its corresponding seismic slip displacement δ. For the higher
viscosity parameter η = 0.05 (s) there are secondary frictional stress kinks that corre-
spond to stick slip events during the shearing of the fault.

The viscosity parameter η introduced in the THM model accounts for the positive shear
rate dependence coefficient (α) of the rate and state model. Typical values for the non-
dimensional coefficient α for faults, lie in the range of 10−4 − 10−3, thus the lower values
of η of our analyses leading to the estimation of α = ∆τ/

[
ln( δ̇

δ̇0
)(σn − pf )f

]
= 2 10−4

correspond well to the stress rate increase predicted by the rate and state model (assum-
ing scaling of η with Ė = δ̇

h
= 1000 s−1).

Figure 5.13 – Evolution of the fault’s shear strength for viscous parameter η for common
values of the rate and state parameter α = 10−4 − 10−3 large seismic slip displacements
δ = 2 m. The strain rate hardening leads to a constant increase of the center of the
oscillations, that tend to reach the overstrength value.

Next, we apply a higher seismic slip displacement δ of 2 m during the stage of fast shear
for the low values of the viscosity parameter in order to capture the response of our model
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for larger seismic slips. In the right part of Figure 5.13 we present the shear stress, seismic
slip displacement (τ, δ) evolution for shearing of a fault gouge with viscosity parameters η
in the range of [0.005 s to 0.075 s] for a seismic slip velocity, during the fast shear step, of
δ̇ = 1 m/s. We note the small strain rate increase of the stress due to η and the shear stress
drop due to the apparent velocity weakening. The viscosity parameter enables the fault
gouge to regain its overstrength in the latter analysis stages, since viscosity increases the
localization width reducing the efficiency of thermal pressurization. We notice also that
the oscillatory frictional response moves upward as seismic slip increases, while the oscil-
lation maxima trace a curve of viscous evolution.

The oscillatory behavior of the frictional strength diagram could give rise to so called
stick slip events in experiments. Thermal pressurization cannot completely halt strain
rate hardening, mainly due to the increased localization width the model exhibits. We
still can trace, however, a region of mild increases in the shear strength that can be used
as an estimation of the characteristic weakening length, Dc, of the order of some centime-
ters. We note here that the estimation of the Dc in the context of thermal pressurization
is different than in the case of rate and state in the sense that in the case of rate and state
friction Dc is independent of the shearing velocity (see Ruina, 1983b, among others). In
our case the characteristic distance depends on the shear velocity δ̇ the viscous parame-
ter η and the internal length R and pressure- temperature diffusion lengths of the problem.

Next, we explore the influence of the internal length (Cosserat radius) R, in the evo-
lution of the fault’s frictional strength for a sudden change in the shearing rate from
δ̇ = 0.01 m/s to 1 m/s (see Figure 5.14). We notice that an increase in the value of R
leads to higher shear overstrength due to the fast change in the shear rate. However, the
post peak behavior changes little for values of R varying from 0.1Rref to 10Rref where
Rref is the Cosserat radius value in Table 5.2. For R = 100Rref the increase in over-
strength is substantial and the results show a faster regain of the strength and a higher
minimum for the frictional strength after the initial apparent softening response.

In Figure 5.14 on the right we present the influence of the mixture compressibility pa-
rameter β∗ in the frictional response of the fault for a value of the viscosity parameter
η = 0.025 s and a fast seismic slip velocity of δ̇ = 1 m/s. The parameter β∗ affects two
terms in the equation (5.7), namely the hydraulic diffusivity parameter chy = κ

β∗
, where κ
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Figure 5.14 – Left: Evolution of the fault’s shear strength for a rapid change in shear rate δ̇
from 0.01 to 1.0 m/s, for different values of the internal length (Cosserat radius) parameter
R (mm). The response is largely unaffected by the increase of the internal length. Right:
Evolution of the fault’s shear strength for a rapid change in shear rate δ̇ changes from 0.01
to 1.0 m/s, for different values of the mixture’s compressibility parameter β? (MPa−1).
Increasing mixture’s compressibility leads to milder stress drop.

is the permeability of the solid skeleton, and the term concerning the pressure decrease due
to the porosity increase. Both these terms are affected the same by an increase (decrease)
of β∗, however, the influence of the thermal pressurization term λ∗

β∗
decreases (increases)

respectively. Taking the β∗ value for which we run the rate independent analyses as a ref-
erence value β∗ref (see Table 5.2), this corresponds to a smoother in the case of β∗ = 10β∗ref
or steeper (in the case of β∗ = 0.1β∗ref ) decrease of the peak frictional strength during the
initial stages of the slip. The parameter β∗ also controls the minimum frictional strength
of the fault and the seismic slip δ for which, the frictional strength increase due to diffusion
will become prevalent. The results agree qualitatively well with the behavior observed in
Badt et al., 2020 for higher compressibilities due to the formation of gouge material at
the initial stages (see next section).

Finally, in Figure 5.15, we explore the influence of the shearing velocity in the fric-
tional strength behavior of the fault for constant compressibility and viscosity parameters
βs = βsref and η = 0.05 respectively. After the initial slow shear δ̇ = 0.01 m/s, we vary
the fast shear velocity from δ̇=0.1 m/s to 1.0 m/s. The model exhibits two distinct be-
haviors, according to the prescribed seismic slip velocity values δ̇. For the low velocities
δ̇ = 0.1 ∼ 0.2 m/s we observe periodic kinks in shear strength during the phase of shear
strength increase. For higher velocities we observe a snap-back behavior during the ap-
parent softening phase of the model. Furthermore a secondary stick slip event is observed
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Figure 5.15 – Frictional strength evolution of a Perzyna viscoplastic layer (η = 0.05 s)
under variable seismic slip velocities for a slip of δ = 100 mm.

during the strength regaining phase of the simulation due to the diffusion.

The above results suggest that with the introduction of viscosity, our model can describe
the rate and state phenomenology. For different values of the viscosity parameter η as well
as the permeability β∗, stick slip behavior can be observed. This behavior suggests that
our model of thermal pressurization together with a Perzyna viscoplastic law applied on a
conceptually simple Drucker Prager yield criterion can capture a lot of the characteristics
proposed by heuristic, phenomenological models like the rate and state friction lwa and
its variations. Moreoverit can give further insights about the physical processes taking
place during coseismic slip.

5.5 Comparison with existing analytical solutions

We compare the nonlinear numerical solutions under adiabatic, undrained conditions
(qT = qp = 0) and isothermal, drained condtitions (∆T = ∆p = 0) to the reference
analytical solutions obtained in bibliography for uniform shear of the layer (Lachenbruch,
1980b), as well as the concentrated shear on the mathematical plane (Mase and Smith,
1987; Rice, 2006a). The results are presented in Figure 5.16.

For adiabatic undrained conditions, the Cosserat numerical solution with THM couplings
tends to the Lachenbruch solution after sufficiently large slip δ. For isotropic drained
conditions the numerical solution initially lies in between the reference analytical solu-
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Figure 5.16 – Comparison between the available numerical and analytical solutions for
adiabatic undrained and isotropic drained conditions. The response of the Cosserat-THM
model with isothermal drained boundary conditions (black-triangle line) lies close to the
response of the slip on a plane solution provided in Rice (2006b) (purple-square line). In
the numerical model, localization is not constrained in a mathematical plane, leading to
a steeper softening branch since more heat is produced in the yielding region enhancing
thermal pressurization. Diffusion at the boundaries transfers heat and pressure away from
the yielding region leading to partial strength regain causing a disagreement in the results.
For the case of adiabatic undrained conditions, the Cosserat THM model (red-diamond
line) eventually reaches the Lachenbruch solution (yellow-circle line).

tions, however the solution diverges as the seismic slip accumulates due to the existence
of the limit cycle that restores part of the residual shear stress of the fault in later part of
the analyses (traveling waves of strain localization). This tendency was also observed in
the numerical analyses in Mase and Smith, 1987, where the authors applied seismic slip
pulses of different shape and duration showing a tendency for frictional restrengthening.
However, the analytical solution of the above problem in Rice (2006a) does not show this
behavior. The reason is that the model in Rice, 2006b is solved in a linear manner assum-
ing that the frictional strength τ(t) is fully described by an arbitrary function of time,
while yielding is constrained on a fixed mathematical plane, thus neglecting the ventila-
tion phenomena that take place due to the interaction between a moving heat source and
temperature and pressure diffusion along the height of the layer. In the next chapter we
will extend this solution to cover the aforementioned phenomenaand thus, to represent
better the main underlying physics captured by the detailed numerical simulations pre-
sented in this chapter.
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It is worth pointing out, that The traveling instability discussed here has been observed
also in Platt et al., 2014b; Rice et al., 2014b. However, the authors of this study applied
periodic boundary conditions at the edges of the fault gouge instead of the isothermal
drained conditions employed here. Furthermore, no connection was made in their model
about the origin of these instabilities. In this chapter we have identified the source of the
traveling oscillations as an instability resulting from a Hopf bifurcation. While our anal-
yses and the model proposed in Platt et al., 2014b; Rice, 2006a; Rice et al., 2014b agree
well with the dynamic weakening role of thermal pressurization at the initial stages of the
phenomenon, they diverge in later stages of the analyses in particular due to the role of
the boundary conditions affecting thermal and hydraulic diffusion in the fault gouge.

5.6 Comparison with existing experimental studies

The results of the numerical analyses presented in section 5.3 are also observed in experi-
ments (see Badt et al., 2020; Di Toro et al., 2011a; Rempe et al., 2020). A great challenge
seen in experimental studies about the role of thermal pressurization is the isolation of
all other slip weakening mechanisms in particular those of flash heating, silicate forma-
tion and thermal decomposition of minerals. Even bigger challenge is the replication of
the exact temperature and pressure conditions of the seismogenic zone in the laboratory.
Therefore, comparisons of analytical results to experimental findings are of a qualitative
nature.

In Di Toro et al., 2011a the authors, have accumulated a large body of experiments
performed at rates and displacement ranges comparable to those during seismic slip. The
experiments were performed in a range of normal stresses of the order of 0.6 to 20 MPa.
The authors advocate that for seismic slip velocities of the order of 1 m/s the frictional
stress drop is around 0.2−0.4 of the initial strength with higher drop as the normal stress
increases. This tendency is also present in our analyses (see Figure 5.10). Furthermore, the
obtained experimental frictional response presents oscillations, which could be attributed
to Portevin Le Chatelier traveling instabilities during shearing of the specimen. The au-
thors of this study also introduce the thermal weakening distance Dth that scales with the
applied effective pressure on the specimen. From extrapolation of the available data to the
pressure ranges found in the seismogenic zone they estimate the weakening distance Dth

to the order of centimeters. This observation is consistent with our analyses. We note here
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that the boundary conditions (adiabatic, undrained) vs (isothermal,drained), the height
of the specimen and the thermal and hydraulic diffusivities (cth, chy), affect the calculation
of Dth. In particular, fully saturated (wet) specimens of larger height under isothermal
drained conditions will drop to lower values of friction before the effect of the boundaries
becomes noticeable (see also section 5.3.4). The ratio between thermal and hydraulic dif-
fusivities (Lewis number Le = cth

chy
), controls the effectiveness of thermal pressurization.

We note here that the value of chy affects the characteristic time after which the effects
of the boundaries will be felt in the frictional response. Therefore, the minimum value of
the frictional response is controlled both by the ratio of the diffussivities cth, chy as well
as the height of the layer.

In the experiments performed in Badt et al., 2020, care was taken in order for the effect
of thermal pressurization to be isolated from other weakening mechanisms. The authors
of this study performed velocity stepping experiments in a rotary shear apparatus, with
velocities of order 2.5 ∼ 5 mm/s, well below the seismic range, under normal stresses of
20 ∼ 25 MPa and confining pressure of 20 ∼ 49 MPa. The specimens height was 30 mm.
Their results suggest that frictional strength drops during the initial stages of thermal
pressurization while depending on the evolution of the microstructure inside the fault
(formation of fault gouge particles) partial regaining of the frictional strength is possible.
The authors specify that steeper stress drop and restrengthening are observed in younger
specimens that have not yet been subjected to large shear displacements (δ < 1 m) be-
fore the experiment. For specimens subjected to prior displacement the authors observe
smoother stress drop and less tendency to regain frictional strength. They attribute this
behavior to the formation of fault gouge inside the specimen that significantly affect the
fault’s compressibility coefficient β∗ and therefore, the hydraulic diffusivity cth.

Comparing with our numerical results and extrapolating to the in situ pressure range, we
observe that our model agrees very well with the experimental findings for the younger
specimens (see Figure 5.17). Since our model does not possess a memory mechanism to
account for the damage of the microstructure and therefore for the change in permeabil-
ity, it suffices to say that the older specimens could be modeled with higher values for
the hydraulic diffusivity chy. An expansion to our model could be made by taking into
account a microstructure evolution model as the one considered in Collins-Craft et al.,
2020. We note here, that based on the scaled system (5.16), the experimental results ob-
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tained during shearing of a specimen with height H = 30 mm under a slip rate δ̇ = 5
mm, are comparable to our numerical experiments with fault gouge height H = 1 mm
and coseismic slip velocities in the range of δ̇ = 100 ∼ 300 mm/s.

Figure 5.17 – Qualitative comparison between experimental (left part of Figure) and
numerical results (right part of Figure) examining the role of thermal pressurization. The
experimental results were taken from Badt et al., 2020. In both cases shear velocity δ̇
and permeability χ influence heavily the results. Both the experiment and the numerical
analysis predict frictional strength regain after the stress drop due to shear. The oscillatory
frictional strength behavior of the numerical analyses is also present in the experiments
of Badt et al., 2020.

5.7 Key points

In this chapter the shearing of a fault gouge was studied under a variety of seismic slip ve-
locities δ̇ and seismic slip displacements δ. First a linear stability analysis was performed,
indicating the possibility of traveling instabilities present in the medium. This result is
further validated by the numerical results presented in section 5.3.3. The effect of the
seismic slip velocity δ̇ on the apparent softening of the layer was presented, as well as
the influence of the different boundary conditions considering the energy (5.6) and mass
balance (5.7) equations. It is shown that at the initial stages of the shearing (seismic slip
δ=10 mm), after localization, the apparent softening follows the same decreasing behavior
in all cases (see Figure 5.5). The response, however, changes as the slip δ accumulates
as shown in Figure 5.16. Next, we investigate the influence of the seismic slip velocity
δ̇ on the frictional behavior under isothermal drained conditions (∆T = ∆p = 0) for a
seismic slip of 100 mm, see Figure 5.6. It is shown that after the initial slip rate-dependent
apparent softening, the layer tends to regain part of its strength τ , as slip δ accumulates
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due to the existence of a limit cycle.

The residual strength recovered is dependent on the seismic slip rate δ̇,the thermal and
hydraulic diffusivity properties (cth, chy) and the height h of the layer. Furthermore, we
study the effects of the seismic slip rate on the evolution of the localization width lloc.
We notice the decrease of the localization width due to the increase in seismic slip veloc-
ity δ̇. This decrease indicates that localization width is no longer dependent only on the
Cosserat radius R, rather it is also dependent on the apparent softening due to thermal
pressurization. There is an oscillatory behavior present in localization width particularly
for low velocities. As the seismic slip rate increases, this oscillatory interaction reduces
substantially. This further highlights the interplay between the different characteristic
lengths in our model in particular, between the Cosserat radius and the diffusion lengths.

Next, we study the evolution of the frictional resistance τ with seismic slip δ for a rate
independent material applying even larger seismic slip. In particular, we impose a real-
istic seismic slip displacement of 1 m and seismic slip velocity of 1 m/s. The oscillatory
behavior first described in Figure 5.6 for smaller slip is also present in Figure 5.8 for
large coseismic slip. We notice that in Figure 5.8 oscillations stabilize in frequency and
amplitude. This implies a partial recovery of the fault strength without it being explicitly
implied by the mechanical behavior of the model as in the case of rate and state fric-
tion laws (see Dieterich, 1992; Rice et al., 2001; Ruina, 1983a). Therefore, the traveling
instability mechanism might work also in the progressive healing of the fault during coseis-
mic slip (see Platt et al., 2014a; Rice, 1973a; Rice et al., 2014a; Viesca & Garagash, 2015).

Considering the oscillatory behavior of the fault’s frictional strength, which is observed
during the isothermal drained analyses as well as the initial stages of the adiabatic
undrained analyses, it is a result of the traveling instability inside the slip zone. The
width and period of the oscillations are dependent on the geometrical properties of the
band namely its height as they are the result of the high pressure and temperature dif-
fusion gradients. A similar result was achieved under periodic boundary conditions in
Rice et al., 2014b, however the authors did not comment on the nature of the traveling
instability. A very important consequence of the traveling shear strain rate instability is
the fact that field observations regarding the principal slip zone and its width may not
be accurate as it is impossible to know the strain rate history of the band (see Figure
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5.9). As a consequence the principal slip zone may be smaller than the one identified by
current experimental methods. Traveling instabilities may also offer an explanation to the
formation of parallel slip zones as the ones examined in Nicchio et al., 2018.

We conclude our analyses, assuming a rate dependent material through the implementa-
tion of an elasto-viscoplastic Perzyna material with THM couplings. We notice that our
model exhibits a strain rate hardening behavior after the sudden change of the shear rate.
We further note that the value of the viscosity parameter η controls important aspects of
the simulation such as the overstrength achieved due to the shearing rate, the existence
and the magnitude of traveling instabilities (oscillations) in the solution as well as the
steady state the material reaches after sufficient shearing for varying shear rates. Overall,
our Cosserat THM model with viscoplasticity is exhibiting a lot of the characteristics of
a rate and state phenomenological model indicating that the procedure of thermal pres-
surization has still a lot of potential explaining the frictional strength drop during an
earthquake together with the fault nucleation.

Finally, it can be shown that the results of the above numerical analyses agree quali-
tatively well with the experimental results obtained in Badt et al., 2020, where the ther-
mal pressurization mechanism was studied in isolation to different frictional weakening
mechanisms. Considering the evolution of the fault’s frictional strength with accumulated
seismic slip we observe that a single value for the characterization of the critical slip dis-
tance Dc is not possible. Namely according to Figure 5.8, the fault strength drops almost
immediately after a slip of few centimeters to a minimum value close to 1/3 of the initial
strength, this result agrees with extrapolations from experimental data to higher confining
stresses Di Toro et al., 2011a. However, the final value around which the residual strength
oscillates is reached for a slip distance of 0.4 m (see Figure 5.8). The latter result agrees
with the estimation of Rempel and Rice, 2006; Rice, 2006a.

Our nonlinear analyses of a classical Drucker-Prager material with Cosseart microstruc-
ture and rate dependent Perzyna viscoplasticity together with the THM couplings, have
shown that thermal pressurization can exhibit characteristics of a rate and state friction
law namely, slip rate hardening as well as transition of friction to different steady states
according to the shearing velocity δ̇ (velocity weakening), the viscosity parameter η and
the mixture compressibility β∗ without the need for the incorporation of the internal fric-
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tional state ψ variable and its evolution law.

Our results are in contrast to the classical models of THM proposed in Lachenbruch,
1980b; Rice, 2006b that assume only monotonic reduction of the shear frictional strength
during the seismic event. In order to understand the extreme difference between the
predictions of the model described in Lachenbruch (1980a), Rice (2006a) and our numer-
ical results, we revisit in chapter 6 the main assumptions of the theory of Rice (2006a)
considering a traveling mode of strain localization and the boundary conditions.We will
examine how each one of these parameters affect the theoretical predictions and justify
our numerical results.
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Chapter 6

EXPANSION OF THE FRICTIONAL SLIP

MODEL IN CASES OF TRAVELING STRAIN

LOCALIZATION MODES AND BOUNDED

FAULT GOUGES

Summary

In this chapter, we study the effect of the strain localization mode and boundary
conditions in the evolution of the frictional shear strength of a fault under coseis-
mic slip. We consider thermal pressurization as the main weakening mechanism. We
make the assumption that the seismic slip is localized on a mathematical plane. We
solve the linear Volterra integral equation of the second kind provided in Rice, 2006a,
for different strain localization modes, temperature and pore fluid pressure bound-
ary conditions, departing from the original assumptions of a stationary instability
on an unbounded domain. We investigate the influence of a traveling instability
inside the fault gouge considering isothermal, drained boundary conditions for the
bounded and unbounded domain respectively. We compare our results to the ones
available in Lachenbruch, 1980b; Lee and Delaney, 1987; Mase and Smith, 1987 and
Rice (2006a). Our results establish that when a stationary strain localization profile
is applied on a bounded domain, the boundary conditions lead to a steady state,
where total strength regain is achieved. In the case of a traveling instability such a
steady state is not possible and the fault only regains part of its frictional strength,
depending on the seismic slip velocity and the traveling velocity of the shear band.
In this case frictional oscillations increasing the frequency content of the earth-
quake are also developed. Our results indicate a reappraisal of the role of thermal
pressurization as a frictional weakening mechanism and its role in earthquake nu-
cleation (see Rice, 1973b; Viesca & Garagash, 2015) and control (see Stefanou &
Tzortzopoulos, 2020; Stefanou, 2019; Tzortzopoulos, 2021)
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6.1 Introduction

The results of the previous chapter concerning the influence of the weakening mechanism
of thermal pressurization diverge -spectacularly- from the expected behavior based on the
model of Rice (2006a). Furthermore, we note that the results of chapter 5, indicate the
divergence to take place long before the completion of the seismic slip δ. This holds true
for the range of commonly observed seismic slip velocities δ̇ ∈ {0.1 ∼ 1} m/s and seismic
slip displacements δ ∈ {0.1 ∼ 1} m. In this chapter we investigate the reasons for this
divergence between the theoretical results and their implications for the appreciation of
thermal pressurization as one of the main weakening mechanism during coseismic slip.

The results of sections 5.3.2, 5.4 (see Figures 5.6,5.14) lead us to the assumption that
it is the hydraulic and thermal parameters of the fault that affect mainly thermal pressur-
ization and not the radius of the Cosserat medium, which is a parameter connected with
the grain size and the material properties of the granular medium. We will use this ob-
servation to propose a conceptually simpler model accounting for thermal pressurization.
The new model incorporates the geometrical characteristics of the model in chapter 5. We
assume that the yield (dissipation) obeys a Coulomb friction law with Terzaghi effective
stress and is confined in only one point in the layer. Outside the layer the medium behaves
elastically. This allows to avoid solving a BVP for the mechanical part, which significantly
simplifies the problem.

Previous researchers (see Lachenbruch, 1980b; Rempel & Rice, 2006; Rice, 2006a; Viesca
& Garagash, 2015) have examined thermal pressurization as the main frictional weakening
mechanism, in their effort to provide realistic estimates for the dissipation and fracture
energy during the earthquake nucleation phase. In their analyses the response was as-
sumed to be bounded by two regimes, the initial adiabatic undrained stage corresponding
to uniform seismic slip across the fault gouge (see Lachenbruch, 1980b) and the final state
where the seismic slip is sufficiently concentrated in a region, called the principal slip zone
(PSZ), inside the fault gouge (see Rice et al., 2014b). Then as a first approximation the
width of the principal slip zone was assumed to be zero (slip on a mathematical plane).
The frictional response of the fault then transitions as the slip evolves from the uniform
shear response to the localized response.
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Mase and Smith, 1987 studied the effects of frictional heating on the thermal, hydraulic
and mechanical response of the fault and provided numerical solutions, via a finite element
procedure, for drained and undrained boundary conditions, assuming a fault gouge with a
fixed localization width under homogeneous deformation. The fault layer boundaries are
taken to infinity. Later, Lee and Delaney (1987), based in the work of Carslaw and Jaeger
(1959) and Mase and Smith (1987), solved the coupled thermal pressurization equations
for a variety of arbitrary thermal loading conditions and duration excluding, however, the
material behavior form their considerations.

Naturally the question of the material dissipative behavior is of paramount importance
for two reasons. Firstly it indicates the intensity of the thermal loading since for a ge-
omaterial, yield strength and dissipation are mainly connected to the spherical part of
the effective stress tensor. Secondly it directly influences the shape of the principal slip
zone and therefore the profile of the thermal load. The coupled problem, where the in-
crease of the pore fluid pressure affects the frictional strength of the fault was first studied
analytically in Rice, 2006a. There, the author, by assuming a specific plastic strain rate
profile, which corresponds to a stationary strain localization on a mathematical plane,
couples pore fluid pressure and the fault’s frictional response, providing for the first time
analytical estimates for the energy of the fault system that is lost to dissipation and the
advancement of slip.

From the procedure described above (see Rice, 2006a), we conclude that the obtained
results are heavily dependent on the plastic strain rate profile selected. The authors in
Rempel and Rice (2006), Rice (2006a) comment on this and they proceed in using profiles
of different shape in their analyses, noting however that due to the nature of the Cauchy
continuum and equilibrium considerations, such profiles are strictly not applicable under
such a kind of analysis. In the above works the initial choice of the plastic strain rate
profile to correspond on a mathematical plane was dictated by the localization mode
valid for a Cauchy continuum that exhibits a softening behavior. However, we know that
localization in nature is not happening on a mathematical plane, rather it is contained
in a small region of finite width (see chapter 5 and Muhlhaus and Vardoulakis (1988),
J. Sulem et al. (2011), the questions of equilibrium were also discussed in I. Vardoulakis
(1996a, 1996b, 2000b), where a second gradient model was introduced to properly account
for the changes in equllibrium due to the introduction of localized profile of finite width).
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This of course immediately calls into question the results of the analyses in Rempel and
Rice (2006), Rice (2006a). In order to answer this critique Platt et al. (2014b), Rice et al.
(2014b) developed a model based on a material law assuming strain rate strengthening
coupled with the thermal pressurization equations. Their model then localizes on a zone
of finite width respecting equilibrium considerations.

Nevertheless, the previous analysis is constrained by two fundamental assumptions. First,
it is assumed that the boundaries of the fault gouge lie far away and they don’t affect
the temperature and pressure diffusion evolution at least during the timescales required
for the evolution of the earthquake phenomenon. Secondly, they do not account for all
types of instabilities possibly present in a (Cauchy) continuum coupled with pressure and
temperature diffusion equations. In particular it was shown in Benallal, 2005b; Benallal
and Comi, 2003 that under stress states common in faults the preferred mode of instabil-
ity might not be that of the divergence kind described in Rice, 1975, rather it can be a
“flutter” type instability, herein shown to be a traveling instability. From a mathematical
point of view this instability is manifested by the appearance of a Lyapunov exponent
with imaginary parts. The transition form a stationary instability of divergence type to
a flutter traveling instability is called a Hopf bifurcation. For more details we refer to
sections 3.4,3.5.2 of chapter 3 and section 5.2.8 of chapter 5, where we have shown that
traveling instabilities are present in the linear stability analysis for Cauchy and Cosserat
continua under strain hardening and strain-rate softening or apparent softening due to
multiphysical couplings.

In this chapter, we are primarily concerned with the fault gouge behavior when the effects
of the boundary conditions cannot be ignored and when the principal slip zone is allowed
to travel inside the fault gouge (see results of detailed simulations in section 5.3). We
find that under these conditions the frictional response of the fault significantly differs
compared to the one obtained in Rice, 2006a for values of the seismic slip δ and seis-
mic slip velocity δ̇ that are representative of real seismic events. In section 6.2 we briefly
present the basic equations of our model and the methodology obtained in Rempel and
Rice, 2006; Rice, 2006a. Due to the added complexity of the moving principal slip zone
and the boundary conditions that affect the kernel of the linear Volterra integral equation
of the second kind, its solution by means of classical solution techniques such as Laplace
transform, Adomian decomposition Method and Taylor series expansion face a lot of con-
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vergence difficulties (see Wazwaz, 2011). The main difficulties in the numerical solution of
the derived integral equations stem from the fact that the kernel of the problem consists
of the difference between exponentials that have vastly different decay rates, and the fact
that for the unbounded case the convolution integral contains a weakly singular kernel.

To account for these numerical challenges we apply a novel procedure using the Z-
Transform and the Convolution Quadrature Method (Z-CQM) (Mavaleix-Marchessoux
et al., 2020). In section 6.3.1 we present the basic application of the Z-CQM procedure in
the case on non homogeneous linear integral equations, and we comment on the properties
of the Z-Transform, that allow us to calculate efficiently the solution to our numerical
applications. The Z-CQM procedure is used in the cases involving an unbounded domain,
where numerical integration becomes challenging because of the existence of a weakly sin-
gular kernel in the convolution integrals.

For the case involving a periodic strain localization traveling on a bounded domain, we
used a Spectral Collocation Method with Lagrange basis functions (SCML), for the solu-
tion of general Volterra integral equations of the second kind, based on the work of Tang
et al. (2008). This method is more general and can handle the more challenging case of
a periodic traveling thermal load on the bounded domain, which is intractable by use of
the Z-CQM method.

Having described our model and the solution procedure, we present in section 6.4 a series
of applications showcasing the differences with the analyses in Rice, 2006a. The applica-
tions include the frictional responses of: (a) a stationary PSZ on a bounded isothermal
drained domain, (b) a moving PSZ on an unbounded isothermal drained domain, and (c)
a moving PSZ on a bounded isothermal drained domain. The original solution in Rice
(2006a) is obtained as a special case of the more general solutions presented here and is
taken as reference (see Figure 6.1).

Throughout section 6.4, we compare the numerical results obtained for the different cases
of boundary conditions and strain localization modes by solving the basic integral equation
(6.16) against the reference solution obtained in Rice, 2006a. We can expand our general
numerical results, following the solution of equation (6.16), in the cases of micromorphic
Cosserat continua. Thus, the results of the present chapter constitute a benchmark to
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explain the fault frictional behavior under the more realistic modeling hypotheses con-
sidered in the chapter 5. We show that the introduction of traveling instabilities inside
the fault gouge naturally enhances the frictional response with oscillations, which in turn
enhances the ground acceleration spectra with higher frequencies Aki, 1967; Brune, 1970
as observed in nature. Our results are important in the context of experiments for the
description of the weakening behavior due to thermal pressurization, for controlling the
transition from steady to unsteady slip and for the nucleation of the fault. They are also
important in earthquake control, as they provide bounds for the apparent friction coef-
ficient with slip and slip-velocity (see Stefanou & Tzortzopoulos, 2020; Stefanou, 2019;
Tzortzopoulos, 2021).

6.2 Thermal pressurization model of slip on a plane

During shearing of a layer under constant seismic slip displacement δ̇ and constant normal
stress σn the profile of the shear strain rate γ̇(x, t) will vary from the initially uniform
solution to a slip completely confined on a mathematical plane within the fault zone.
Considering that the region of the fault gouge is saturated with water at its pores, frictional
heating will then lead to temperature increase T (x, t) and subsequent pore fluid pressure
increase p(x, t). The description of the above frictional weakening mechanism requires the
coupling of the mechanical equilibrium equation with those of mass and energy equilibria.
In the case of simple shear of a 1D layer under constant total normal stress, the system
of equations can then be written as:

σ12,2 = 0, σ22,2 = 0 (6.1)
∂T

∂t
= cthT,22 + σ12γ̇

p
12 + σ22γ̇

p
22, (6.2)

∂p

∂t
= chyp,22 + Λ∂T

∂t
, (6.3)

where σ12 is the shear stress, σ22 is the normal stress,cth, chy are the thermal and hy-
draulic diffusivities and Λ = λ?

β? is the thermal pressurization coefficient dependent on
the mixture’s coefficient of thermal expansion λ? and compressibility β? (see also chapter
5). The material of the layer is elastic perfectly plastic with a linear dependence on the
effective pressure p′ = σ′kk

3 = 1
3(σkk − p) following the Mohr-Coulomb yield criterion. Fol-

lowing the notation in Rice (2006a), we will rename the shear and normal stress in order
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to enhance readability. Therefore, σ12(t) = τ(t) and σ22(t) = σn(t). The Mohr-Coulomb
yield criterion is given then by:

f(τ, σn) = τ(t)− f(σn − p(x, t)), (6.4)

where, f is the friction coefficient, to be taken constant in our analyses. Furthermore, we
take into account the shearing of a mature fault gouge. In this case we note that the fault
gouge material has undergone fully the stages of cataclasis and bresciation, therefore, the
dilation of the fault gouge during shear will be negligible. This means that the normal
plastic strain rate γ̇p22 is zero, which renders the component of the plastic work due to
yielding in the normal direction zero (zero dilatancy). We can therefore write γ̇p12 = γp.
The heat equation is then written:

∂T

∂t
= cthT,22 + τ(t)γ̇p(x, t), (6.5)

During yielding of the layer the shear strength capacity in the yielding region is given by
τcr(x, t) = f(σn− p(x, t)). The layer yields in the position where the pore fluid pressure is
maximum, p(x, t) = pmax(t), which in turn presents the minimum shear strength τcr,min(t).
The equilibrium equation (6.1) dictates that ∂τ

∂x
= 0 throughout the layer, meaning that

shear stress is constant along the layer. Therefore, in order for equilibrium to be satisfied
inside the layer, the shear stress of the layer, τ(t), must be equal to the shear strength
at the point, where pore fluid pressure is maximum, τ(t) = τcr,min. In essence, the value
of friction in the yielding region dictates the shear stress value along the height of the layer.

For the mathematical description of the phenomenon of thermal pressurization the dis-
tribution of the plastic strain rate γ̇pij is of primary importance. Considering the case of a
mature fault, temperature increase (6.5) and consequently, thermal pressurization depend
on the plastic shear strain rate profile γ̇p12 = γ̇p.

Based on the discussion in Rempel and Rice (2006), Rice (2006a) we focus on two cases for
the plastic strain rate distribution. The first case in which the shear rate remains uniform
corresponds to a case of adiabatic undrained boundary, was first discussed in Lachenbruch,
1980b, where an analysis for the coupling terms and the second order advection terms
was performed. However, we have shown in chapter 3 that in the case of classical Cauchy
continuum, the profile of the homogeneous deformation is unstable and will localize on a
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mathematical plane. Furthermore, we cannot be sure about the conditions constraining
the flow of heat and pore fluid to the surrounding foliated rockmass (boundaries of the
fault gouge). It has been observed that in the case of mature faults, heat and pore fluid,
flow away from the fault gouge are promoted (see Aydin, 2000). Therefore, the second case
of the perturbed solution corresponding to a localization of strain on the mathematical
plane presents more interest. Modeling this problem, we will provide a reasonable basis
for calculating pressure and temperature maxima during an earthquake in cases where
the temperature and pore pressure diffusion characteristic lengths are greater than the
thickness of the principal slip zone (PSZ).

We investigate two distinct modes of strain localization on a mathematical plane. The
first case corresponds to a stationary profile γ̇p(x, t) = δ̇ δDirac(x) indicating a divergent
growth instability, where δ̇ is the rate of the coseismic slip. In the second case a traveling
plastic strain rate profile is assumed indicating a flutter type instability (see Benallal,
2005b; Benallal and Comi, 2003; Rice, 1975). In the latter case, assuming the localization
travels with a velocity v inside the fault gouge leads to the following description of the
plastic strain rate profile:

γ̇p(x, t) = δ̇ δDirac(x− vt). (6.6)

δDirac(x) is the Dirac-delta distribution.

The process of thermal pressurization indicates that in the yielding region, which from
now on is assumed to be a mathematical plane, the temperature is increasing due to the
heat provided form the mechanical dissipation. The position of the yielding mathematical
plane indicates the position of a point thermal source, which subsequently leads to an
increase of pore fluid pressure in the layer. For the purposes of our analyses we prescribe
the trajectory of the thermal load inside the layer to always travel with the plastic strain
rate profile. The results of our analysis are valid as long as the position of the yielding
plane (and thermal source) coincides with the position of the maximum pore fluid pres-
sure in the layer. In the case of constant traveling velocity of the shear band 1, we have
proven that this assumption holds true (see Appendix I).

1. We will continue to use the terms of shear band or PSZ, even though the thickness of the yielding
region is zero.
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Knowing the form of the profile of the shear plastic strain-rate in γ̇p(x, t) (equation (6.6)),
the two way coupled problem in the form of temperature and pressure diffusion equations
is given by:

• Heat diffusion BVP:

∂T

∂t
= cth

∂T

∂x2 + 1
ρC

τ(t)δ̇δDirac(x− vt),

T
∥∥∥
x=0

= T
∥∥∥
x=H

= 0,

T (x, 0) = 0, (6.7)

where T (x, t) is the unknown change in temperature in the fault gouge layer of
height H. The fault gouge is considered to be in isothermal boundary conditions
during shearing. The coupled pressure problem is given by:

• Pressure diffusion BVP, in its Homogeneous form:

∂∆p
∂t

= chy
∂∆p
∂x2 + Λ∂T

∂t
,

∆p
∥∥∥
x=0

= ∆p
∥∥∥
x=H

= p(x, t)− p(x, 0) = 0,

p(x, 0) = p0, (6.8)

where ∆p(x, t) is the unknown pressure difference between the fault gouge layer
and the boundaries, while p0 is the initial pore fluid pressure, that is kept constant
at the boundaries of the fault gouge (drained boundary conditions).

We note that the above formulations are also valid in the case of an unbounded doamin
considering H → ±∞. The pressure problem affects also the temperature BVP through
the value of shear stress (fault friction), τ(t), in the yielding region. According to the
Mohr-Coulomb yield criterion, subtracting the initial pressure p0 we get:

τ(t) = f(σn − p0)− f∆pmax(t). (6.9)

We note here that once we know the form of the plastic strain-rate profile γ̇p(x, t) as in
equation (6.7) the only unknown is the fault friction τ(t). We can find the solution of the
temperature equation T (x, t) in terms of the unknown fault friction τ(t) and replace into
the pressure equation, which can then also be described as an unknown function of friction.
Finally, we can define the value of fault friction τ(t) by inserting the pressure solution
∆p(x, t) into the material equation (6.9) and solving for τ(t). The above equations have
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constant coefficients and since the loading is prescribed (based on the unknown τ(t)), the
system has been transformed to a one-way coupled set of linear differential 1D diffusion
equations of the form:

∂u(x, t)
∂t

= c
∂2u(x, t)
∂x2 + 1

k
g(x, t),

a1
∂u

∂n1

∥∥∥
x=0

+ b1u
∥∥∥
x=0

(t) = f1(t), t > 0,

a2
∂u

∂n2

∥∥∥
x=H

+ b2u
∥∥∥
x=H

(t) = f2(t), t > 0,

u(x, 0) = I(x), (6.10)

where u(x, t) is the unknown function (e.g. the temperature T (x, t)), fi, i = 1, 2 are the
values of the general Robin boundary conditions with coefficients (ai, bi, i = 1, 2), I(x)
is the initial condition and g(x, t) is the loading function (here related to frictional dissi-
pation). We denote by c the diffusivity and by k the conductivity of the material.

We can find the solution to the above BVP by application of the Green’s theorem, which
for the general diffusion case in 1D reads (see Cole et al., 2010):

u(x, t) =
∫ H

0
G(x, x′, t, c)I(x′)dx′ + c

k

∫ t

0

∫ H

0
g(x′, t′)G(x, x′, (t− t′), c)dx′dt′

+ c
∫ t

0

2∑
i=1

[
fi(t′)
ai

G(x, x′i, (t− t′), c)
]
dt′ − α

∫ t

0

2∑
i=1

fi(t′)G(xi, x′, (t− t′), c)
n′i

∥∥∥∥∥
x′=xi

 dt′,
(6.11)

where G(x, x′, (t − t′), c) is the appropriate Green’s function. The first two terms corre-
spond to the initial condition I(x, 0) and the loading term g(x, t) respectively. The terms
α, k represent the diffusivity and the conductivity of the unknown quantity u(x, t) respec-
tively. The third term is important for non homogeneous Neumann and Robin boundary
conditions while the fourth term refers to non homogeneous Dirichlet boundary conditions.
In what follows the last two terms in equation (6.11) are omitted due to the existence of
homogeneous Dirichlet boundary conditions in the problems of temperature and pressure
difference diffusion at hand.

Applying the solution in terms of the Green’s function (6.11) to problems (6.7),(6.8)
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we obtain the solution in terms of the Green’s function specific to each diffusion problem.

T (x, t) = cth
kT

∫ t

0

∫ ∞
−∞

gT (x′, t′)G(x, x′, t− t′, cth)dx′dt′, (6.12)

p(x, t)− p0 = chy
kH

∫ t

0

∫ ∞
−∞

gH(x′, t′)G(x, x′, t− t′, chy)dx′dt′, (6.13)

where cth, kT are the thermal diffusivity, conductivity pair and chy, kH are their hydraulic
counterparts. Similarly (gT , gH) are the loading functions, while G(x, x′, t − t′, c) is the
Green’s function kernel for the thermal (c = cth) and pressure (c = chy) diffusion problems
respectively.

In the case of the coupled pressure problem (6.8) with the temperature as a loading
function, we are interested in rewriting the system’s response with the help of the dissi-
pative loading ( 1

ρC
τ(t)γ̇p) of the temperature equation (6.7). This way we can connect the

pressure response p(x, t) to the fault friction τ(t) which is the main unknown. We can do
this by replacing in the expression of T (x, t) in the pressure diffusion equation (6.8) the
temperature impulse response of equation (6.7) due to a impulsive (Dirac) thermal load.
This way the response obtained from the pressure diffusion equation is a Green’s function
kernel that contains the influence of an impulse thermal load (see Appendix E for detailed
derivation in the cases of 1) a bounded domain for a stationary impulsive thermal load
and 2) an unbounded domain ubjected to a moving impulsive thermal load). The pressure
solution can then be written as:

p(x, t)− p0 = C
∫ t

0

∫ ∞
−∞

gT (x′, t′)G?(x, x′, t− t′, chy, cth)dx′dt′, (6.14)

where C = Λδ̇
ρC(chy−cth) and G?(x, x′, t − t′, chy, cth) is the Green’s function kernel of the

pressure equation (6.8) containing the influence of an impulse thermal load from the tem-
perature equation (6.7).

Having found the pressure solution p(x, t) as a function of gT we can then replace (6.14)
into the material description equation (6.9). For the case of 1D shear τ under constant nor-
mal load σn that we will consider throughout the chapter, the material law is transformed

157



Chapter 6 – Expansion of the frictional slip model in cases of traveling strain localization
modes and bounded fault gouges

into the integral equation:

τ(t) = f(σn − p0)− C
∫ t

0

∫ ∞
−∞

gT (x′, t′)G?(x, x′, t− t′, chy, cth)dx′dt′ (6.15)

Due to the concentrated nature of the thermal load (Dirac distribution) the integral
equation (6.15) can be brought to its final form:

τ(t) = f(σn − p0)− C
∫ t

0
τ(t′)G?(x, t− t′, chy, cth)

∥∥∥
x=x′(t′)

dt′ (6.16)

The above integral equation is a linear Volterra integral equation of the second kind. We
note here that this equation is valid only at the position of the yielding plane which has
to coincide with the position of the maximum pressure inside the layer (x = x′(t′)), which
we have proven to hold true for all cases studied here (see Appendix I).

6.2.1 Cases of Interest

Having derived the linear Volterra integral equation of the second kind (6.16), we turn
our attention in the cases of interest concerning our analyses. We consider four cases for
the loading and boundary conditions concerning the evaluation of the fault friction during
coseismic slip. We first separate between stationary and traveling modes of strain local-
ization and then we further discriminate between unbounded and bounded domains. The
separation of the fault’s frictional response into these categories leads to four different
expressions for the Green’s function kernel G?(x, x′, t− t′, chy, cth) in equation (6.15).

Here we will provide the analytical expressions, for the kernels to be substituted into
equation (6.15). In naming the Green’s function kernels we used the subscript naming
conventions of Cole et al. (2010). Namely for diffusion in 1D line segment domains, the
letter Xαβ is adopted, where α, β are the left (x = 0) and right x = H boundaries of
the domain respectively. They can take the values 0 or 1 indicating an unbounded or a
bonded domain respectively, under homogeneous Dirichlet boundary conditions.

We begin by introducing the Green’s function kernels of the unbounded X00 and the
bounded X11 cases in the case of a 1D diffusion equation under homogeneous Dirichlet
boundary conditions.
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6.2. Thermal pressurization model of slip on a plane

For the unbounded case we use:

GX00(x, x′, t− t′, c) = 1
2
√
πc(t− t′)

exp
[
− (x− x′)2

4c(t− t′)

]
. (6.17)

Similarly for the bounded case we use:

GX11(x, x′, t− t′, c) = 2
L

∞∑
m=1

exp
[
−m2π2c

t− t′

H2

]
sin

(
mπ

x

H

)
sin

(
mπ

x′

H

)
. (6.18)

We note here that c can be either cth or chy depending on the diffusion problem in ques-
tion. The kernels G?

Xαβ(x, x′, t − t′, chy, cth) of the pressure diffusion problem based on
the impulse of the frictional response for given boundary strain localization modes and
boundary conditions are given by:

• Stationary mode of strain localization
• Unbounded domain, α = 0, β = 0, x′ = 0, (see Rice, 2006a)

G?
X00(x, t− t′, chy, cth) = chyGX00(x, 0, t− t′, chy)− cthGX00(x, 0, t− t′, cth).

(6.19)

• Bounded domain α = 1, β = 1, , x′ = 0

G?
X11(x, t− t′, chy, cth) = chyGX11(x, 0, t− t′, chy)− cthGX11(x, 0, t− t′, cth).

(6.20)

• Traveling mode of strain localization
• Unbounded domain, α = 0, β = 0, x′ = vt′:

G?
X00(x, t− t′, chy, cth) = chyGX00(x, vt′, t− t′, chy)− cthGX00(x, vt′, t− t′, cth).

(6.21)

• Bounded domain, periodic trajectory in time, α = 1, β = 1, x′ = x(t′):

G?
X11(x, t− t′, chy, cth) = chyGX11(x, x(t′), t− t′, chy)− cthGX11(x, x(t′), t− t′, cth).

(6.22)

In section 6.4 we present the frictional response obtained from the solution of equation
(6.16) for the different Green’s function kernels defined above.
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6.3 Methods for the numerical solution of linear Volterra
integral equations of the second kind

The solution of linear integral equations of the second kind can be sought with a variety of
different analytical and numerical methods. From an analytical standpoint, these meth-
ods include methods from operational calculus namely, Laplace, Fourier or Z-Transform
(see Brown, Churchill, et al., 2009; Churchill, 1972), the use of Taylor expansions for the
integrand inside the integral and the method of Adomian decomposition (see Wazwaz,
2011). The case of a stationary yielding mathematical plane described in Rice (2006a),
has been solved making use of the Laplace transform. Those methods depend on the con-
volution property of the integral in the integral equation to transform it into a simpler
algebraic equation. The challenge then lies in the inversion of the relation obtained in
the auxillary (frequency) domain back to the time domain. However, as the complexity
of the Green’s function kernels and the loading function increases due to the introduction
of boundary conditions and different assumptions concerning the trajectory of the shear
band along the fault gouge, such an inversion is not always possible. We are then forced
to use numerical methods for the solution of the above Volterra integral equation.

The above analytical methods have also their numerical counterparts, with the use of
the Inverse Fast Fourier Transform (IFFT) being a central part in most numerical so-
lution procedures. Still even with the use of IFFT , the inversion from the frequency
domain remains a challenge. Here we will refer to another class of numerical methods
called spectral collocation methods, which solve the integral differential equation directly
in the time domain. These methods are conceptually easy to use, and since no inversion
is required, they are able to handle very general cases of Green’s function kernels and
loading functions.

In what follows we will make use of the Z-Transform and Convolution Quadrature Method
(Z-CQM) procedure (see Chaillat et al., 2009, and section 6.3.1) and the Spectral Collo-
cation Method with Lagrange basis functions (SCML) (see Tang et al., 2008, and section
6.3.2) for the numerical solution of the integral equation (6.16).

More specifically in the cases of an unbounded domain, where the kernel of the pres-
sure diffusion equation is weakly singular and the loading function is stationary or mov-
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ing with a constant velocity v, we will make use of the Z-CQM procedure, while in the
cases of more complex loading conditions (periodic movement of the thermal load) inside
bounded domains, where the kernel presents no analytical challenges, the SCLM colloca-
tion method will be used instead. The choice between the two methods is mainly made due
to the difficulty in the generalization of the Z-CQM procedure to more general loading
and boundary conditions.

6.3.1 Z-Transform convolution quadrature method (Z-CQM)
for integral differential equations

Before we continue with the applications to the shearing of a fault gouge, we present in
brief the method used for calculating the convolutional integrals present in the integral
equation (6.16). For more details see Mavaleix-Marchessoux et al., 2020.

First, we rewrite the Green’s function kernel with the help of its inverse Laplace transform:

τ(t) = f(σn − p0)− C
∫ t

0
τ(t′) 1

2πi

∫ γ+i∞

γ−i∞
G−1(s, chy, cth) exp s(t− t′)dsdt′, (6.23)

where G−1(s, chy, cth) is the inverse Laplace transform of the Green’s function. We note
here that γ is a real number who is bigger than the pole with the largest real part in the
s complex plane. Since we know that the original problem has a solution that is bounded
and, therefore, the integral expression on the right of equation (6.23) remains bounded,
we can exchange the integration order, namely:

τ(t) = f(σn − p0)− C 1
2πi

∫ γ+i∞

γ−i∞
G−1(s, chy, cth)

∫ t

0
τ(t′) exp s(t− t′)dt′ds. (6.24)

We note next that the integral inside the integrand of equation (6.24) can be written as
the solution h(t, s) to the ordinary differential equation problem:

∂h

∂t
= sh(t) + τ(t), h(0) = 0, t ≥ 0. (6.25)
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To continue with our calculation, we sample the equation into n times with 1
∆t being the

sampling frequency. The integral equation is then transformed:

τ [n] = f(σn − p0)u[n]− C 1
2πi

∫ γ+i∞

γ−i∞
G−1(s, chy, cth)h[n, s]ds, (6.26)

where τ [n] is the sampled unknown friction and u[n] is the sampled Heaviside step func-
tion. Applying next the Z-Transform on both sides of equation (6.26), we obtain:

T (z) = f(σn − p0) z

z − 1 − C
1

2πi

∫ γ+i∞

γ−i∞
G−1(s, chy, cth)H(z, s)ds. (6.27)

Next we proceed by deriving an expression for H(z). Sampling the differential equation
that relates h(t), τ(t) by applying the Backward Euler difference scheme we arrive at:

h[n]− h[n− 1]
∆t = sh[n] + τ [n], h[0] = 0. (6.28)

Applying the Z-Transform on the auxiliary problem (6.28), we obtain H(z) with respect
to T (z), namely:

H(z, s) = T (z) 1
z−1
z∆t − s

. (6.29)

Replacing back into equation (6.27) and noting that we can replace the integral along the
line with a contour integration, we finally obtain:

T (z) = f(σn − p0) z

z − 1 − CG
−1
(
z − 1
z∆t , chy, cth

)
T (z), (6.30)

which we can solve for T (z) provided (1 +CG−1
(
z−1
z∆t , chy, cth

)
) is not singular. Reversing

the transform, we can calculate the values of τ [n] at the sampling points tn = n∆t.

By making use of the Z-Transform we have transformed the original problem of the
linear Volterra equation of the second kind into an algebraic equation, which we can solve
directly for T (z). Applying the inverse of the Z-Transfrom (see Appendix G) we arrive
finally at the frictional evolution of the fault w.r.t. time, τ(t).
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6.3.2 Collocation method

As we will see in section 6.4, although the Z-Transform method allows for calculation of
the fault’s frictional response for the cases of traveling strain localization on the unbounded
domain and stationary strain localization on the bounded domain, its generalization in
the case of a traveling instability on the bounded domain is not straightforward. This is
due to the complexity of the traveling loading function. In particular, following the pro-
cedure described above and in Appendix F we arrive at a system of functional equations
for the determination of the frictional response, which is a rather complicated procedure
for the solution of a conceptually simple problem. The situation complicates even further
if we want to study a periodic traveling strain localization as the one of chapter 5; there
the procedure described in Appendic F reaches its limits.

We, therefore, turn towards a different, more efficient approach for the numerical solu-
tion of the integral equation in the case of a bounded domain subjected to a periodically
traveling thermal load. Based on the work of Tang et al. (2008), we apply a spectral col-
location method for the calculation of the frictional response. Spectral methods allow for
evaluation of the solution in the whole domain of the problem yielding exponential degree
of convergence. The principle of the method is the substitution of the unknown quantity
inside the integral equation by a series of polynomials that constitute a polynomial basis.
We then opt for the minimization of the residual between the exact and the approximate
solution at specific points inside the problem’s domain. We choose to approximate the
frictional response in the space of the Lagrange polynomials. In order to make use of the
exponential degree of convergence of the spectral method we transform and calculate both
the integral equation and its convolution integral in the interval [−1, 1] (see Appendix H).

We solve for the values of the frictional response at the Gauss-Legendre integration points
that allow for an efficient computation of the integral in the modified integral equation.
Different quadrature or integration rules can be used for the calculation of the integral and
the solution of the integral equation. The choice of the quadrature or integration rule de-
pends on the expected properties of the solution. Calculation on the same Gauss-Legendre
integration points for the equation and the convolution integral allows for optimal inter-
polation of the solution in the space of Lagrange polynomials and exponential convergence
of the results (see Tang et al., 2008; Wazwaz, 2011). Another popular choice is the cal-
culation of the residual at the Gauss-Lobatto integration points. The last option allows
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us to evaluate exactly the values of the unknown function at the beginning and the end
of the interval of interest, however, the efficiency of the interpolation decreases (see Tang
et al., 2008).

More specifically, we write the solution of the linear Volterra integral equation of the
second kind (6.16) in the form of a series τ(t) = ∑∞

k=0 τkFk(t), where Fk(t) are the basis
functions and k indicates the kth Lagrange polynomial used in the solution summation:

∞∑
k=0

τkFk(tl) = f(σn − p0)− C
∫ t

0

∞∑
k=0

τkFk(t′)G(H,T )(τl − t′, chy, cth)dt′. (6.31)

By performing a series of change of variables (see appendix H) we are able to write the
equivalent algebraic equation as:

ul + C
1 + xl

2

N∑
k=0

uk

 N∑
p=0

K(xl, s(xl, θp))Fk(s(xl, θp))wp

 = f(σn − p0), 0 ≤ l ≤ N.

(6.32)

By adopting the indicial notation with summation over repeated indices our system is
written as:

(δm,n + Am,n)un(tm) = g, (6.33)

or in matrix form:

(I + A)u = g, (6.34)

where Am,n = C 1+xm

2

N∑
n=0

(
N∑
p=0

K(xm, s(xm, θp))Fn(s(xm, θp))wp
)
and g = σn− p0. We can

then solve the algebraic system to find the interpolation coefficients uj of the numerical
solution. Due to the properties of the Lagrange polynomials the coefficients uk are also
the values of the numerical solution at the specific times tk.

6.4 Applications

In this section we will present the evolution of the frictional strength τ(t) for the different
cases of loading and boundary conditions described in section 6.2.1. The available values
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for the fault gouge properties considered homogeneous along its height are given in Table
6.1.

Parameters Values Properties Parameters Values Properties
G 10. GPa β 0 -
σn 200 MPa αs 10−5 /oC
p0 66.67 MPa χ 1210−15 m2

Table 6.1 – Material parameters of a mature fault at the seismogenic depth (see Rattez,
Stefanou, & Sulem, 2018; Rice, 2006b).

6.4.1 Stationary strain localization mode

6.4.1.1 Stationary strain localization on an unbounded domain

The solutions for the temperature field on an infinite layer under a stationary point source
thermal load were first derived in Carslaw and Jaeger (1959). Mase and Smith (1987) and
Andrews (2005), present temperature field solutions for stationary distributed thermal
loads. Later in Lee and Delaney (1987) the authors used the above temperature solutions
to derive the pressure solution fields p(x, t) of the coupled pore fluid pressure equation.

In the work of Rempel and Rice, 2006; Rice, 2006a the authors introduce a methodology
for the determination of the coupled frictional response of a Cauchy layer under constant
shear rate. The results for the stationary instability on an infinite domain have already
been derived in Rice (2006b) for yielding on a mathematical plane, and further expanded in
the case of distributed yield in Rempel and Rice (2006). In this case a closed form analyt-
ical solution is possible: τ(δ) = f(σn − p0) exp( δ

L? ) erfc(
√

δ
L? ), L? = 4

f2

(
ρC
Λ

)2 (√chy+√cth)2

δ̇
.

In Figure 6.1 we present the results of slip on a stationary mathematical plane based on
the above mentioned analytical solution.

We note that this solution is dependent on the seismic slip rate δ̇. The dependence of
the fault friction on the seismic slip rate δ̇ (velocity weakening) has been shown in exper-
iments (see Badt et al., 2020; Harbord, Brantut, Spagnuolo, & Toro, 2021; Rempe et al.,
2020, among many others).
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Figure 6.1 – Left: τ − δ response of the layer for different slip velocities δ̇ applied. Due
to the constant isothermal drained conditions at the boundary near infinity the solution
tends asymptotically to the zero steady state solution.

6.4.1.2 Stationary strain localization on a bounded domain

When the yielding region (PSZ) is wholly contained on a mathematical plane one might
assume that the true boundaries of the fault gouge play little role in the evolution of the
phenomenon, simulating the fault gouge region as an infinite layer. However, the validity
of this model depends heavily on the pressure and temperature diffusion characteristic
times in comparison to the total evolution time of the seismic slip. In essence, the ques-
tion is: Does the phenomenon evolve so fast that the boundaries do not play a role in the
overall frictional response?

This is a valid question, considering that in experiments and in the majority of the nu-
merical simulations, we need to assign some kind of boundary conditions to the problem
in question. We address this question by investigating the case of a stationary instability
(point thermal source) in the middle of a bounded domain representing the fault gouge,
with the linear Volterra integral equation of the second kind (6.16). We do so by apply-
ing the new form of the kernel G?

X11(x, x′, t − t′, chy, cth), which takes into account the
boundary conditions of coseismic slip, pressure and temperature discussed in the previ-
ous chapter 5. Namely, the domain of the fault gouge was assumed to have a width of
H = 1 mm. We remind also that the boundary conditions correspond to an isothermal
(T (0, t) = T (L, t) = 0) drained (p(0, t) = p(L, t) = p0) case.
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In order to solve equation (6.16) for the new kind of boundary conditions, we need to
derive the new expressions for the Green’s function kernel for the thermal diffusion and
coupled pore fluid pressure diffusion equations on the bounded domain. The expression
for the bounded Green’s function kernel under Dirichlet boundary of the heat diffusion
equation (6.18), can be found by applying the method of separation of variables according
to Cole et al., 2010.

Equation (6.18) is termed the long co-time Green’s function kernel. A mathematically
equivalent short co-time solution can be constructed making use of the Green’s kernel
defined for the infinite domain case via the method of images, however, its form is signif-
icantly more complicated than (6.18) and is not convenient for the numerical procedures
used in this chapter. Namely the short co-time solution is best suited when studying tran-
sient diffusion at the very start of the phenomenon. For fast timescales we don’t need a
lot of terms for the short co-time series to converge to the expected degree of accuracy.
However, for large timescales after the initiation of the phenomenon the large co-time
solution converges faster. Furthermore, the form of the large co-time solution is simpler
and can be integrated numerically faster than that of the short co-time.

Next, we need to obtain the Green’s function for the coupled pore fluid pressure dif-
fusion equation. This is done by solving the coupled pressure differential equation on
the bounded domain, using the method of separation of variables. We note that the two
diffusion problems (thermal and coupled pore fluid pressure) are bounded by Dirichlet
boundary conditions on the same domain and therefore, their Fourier expansions belong
to the same Sturm-Liouville problem. This allows us to express, for the first time in the
literature, the Green’s function kernel of the coupled temperature diffusion system on a
bounded domain due to an impulsive thermal load. Full derivation details are shown in
Appendix E, where we prove that the kernel in question can be given in a manner similar
to the original expression for the infinite domain case found in Lee and Delaney, 1987.

Next, we apply the kernel of equation (6.18) in the equation (6.16). Using the Z-CQM
procedure as described in Mavaleix-Marchessoux et al., 2020, the values of friction at
specific values of time (t) and seismic slip displacement (δ) can be derived for different
seismic slip velocities (δ̇). The results of such an analysis are presented in Figure 6.2.
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Figure 6.2 – τ − δ response of the layer for different slip velocities δ̇ applied. We observe
that as the shearing rate increases, the softening behavior becomes more pronounced. For
typical values of the seismic slip displacement we note that the effect of the boundaries
becomes important. Due to the existence of a steady state the fault recovers all of its
strength lost to thermal pressurization at the beginning of the phenomenon.

We note here that contrary to the results obtained in the case of the infinite layer in Rem-
pel and Rice, 2006; Rice, 2006a, where the frictional response is decreasing monotonously
(see also Figures 6.2,6.3), in the case of the stationary thermal load on a bounded layer the
frictional response is eventually influenced by the boundaries of the domain (see Figure
6.3). Since the conditions on the boundaries are constant in time and the frictional source
provides heat to the layer at a rate that is bounded by a constant ( 1

ρC
τ(t)δ̇ ≤ 1

ρC
τ0δ̇ = M),

the temperature field will eventually reach a steady state. This in turn means that at the
later stages of the phenomenon the temperature profile will remain constant in time, there-
fore its rate of change ∂T

∂t
will become zero. Consequently, the phenomenon of thermal

pressurization will cease, leading to rapid pore fluid pressure decrease due to the diffusion
at the boundaries. As a result pore fluid pressure will return to its ambient value, and
therefore, friction will regain its initial value too.

It is important to note here that as we show in Figure 6.3, frictional regain happens
well inside the time and coseismic slip margins observed in nature during evolution of the
earthquake phenomenon. Of course frictional regain depends on the height of the layer.
Namely as the height of the layer increases, the stress drop due to thermal pressurization
at the initial stages becomes larger and the fault gouge recovers its frictional strength
slower and in later stages of slip. However, the height of the fault gouge H=1 mm cor-
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Figure 6.3 – Comparison of the τ − δ response of the layer for an applied slip velocity
δ̇ = 1000 mm/s. We see that the influence of the boundaries becomes important from the
early stages of coseismic slip. In the bounded case, due to the existence of a steady state
the fault tends to recover all of its strength lost to thermal pressurization at the beginning
of the phenomenon. namely for a typical value of coseismic slip δ = 1000 mm, the fault
has recovered more than half of its initial frictional strength.

responds to typical values from fault observations around the globe (see Myers & Aydin,
2004; Rice, 2006a; Sibson, 2003a; J. Sulem et al., 2004, among others). Furthermore, based
on the significantly higher hydraulic, and to a lesser extent thermal, diffussivities of the
surrounding damaged zone (see Aydin, 2000, and chapter 5), we conclude that the as-
sumption of isothermal drained conditions at the boundaries of the fault gouge as a first
approximation, is also justified 2. Therefore, the a priori assumption that an infinite layer
describes adequately well the fault gouge during seismic slip should, in our opinion, be
revised.

6.4.2 Traveling mode of strain localization

In the available literature Rice, 2006a, 2006b and the subsequent works Platt et al., 2014b;
Rempel and Rice, 2006; Rice et al., 2014b one of the main assumptions is that the princi-
pal slip zone (PSZ), which is described by the profile of the plastic strain rate (localized on
a mathematical plane or distributed over a wider zone) remains stationed during shearing
of the infinite layer. In this work we depart from this assumption, by assuming that the
principal slip zone is traveling inside the fault gouge.

2. For a nature fault gouge the ratio of the hydraulic permeability of the fault gouge to the surrounding
damaged zone lies between rhy = kf

hy

kd
hy

= 102 ∼ 106
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Two cases will be discussed, the first one discusses the implications of a traveling shear
band inside the infinite layer, while the other case focuses on a moving shear band inside
the bounded layer. The difference between a stationary and a moving shear band is that in
the second case a steady state 3 for temperature and consequently pressure is not possible,
since the profile of temperature constantly changes due to the thermal load constantly
moving around the domain. This ensures that thermal pressurization never ceases. Thus,
the value of the residual friction τres depends on the fault gouge’s thermal and hydraulic
properties (cth, chy), the coseismic slip velocity δ̇, and the traveling velocity of the strain
localization mode (v). This has serious implications for the frictional response of the layer
during shearing. More specifically, as the load does not stay stationary, thermal pressur-
ization does not have enough time to act by increasing the pore fluid pressure. Therefore,
according to the Mohr-Coulomb yield criterion, friction does not vanish as in the case of
Rice (2006a). Instead friction reaches a residual value τres different than zero. This is cen-
tral for the dissipated energy (see Andrews, 2005; Kanamori & Brodsky, 2004b; Kanamori
& Rivera, 2006, among others) and the control of the fault transition from steady to un-
steady seismic slip (see Stefanou & Tzortzopoulos, 2020; Stefanou, 2019; Tzortzopoulos,
2021).

6.4.2.1 Traveling mode of strain localization on the unbounded domain.

Here we consider the shearing of a fault gouge, whose boundaries are taken at infinity. In
what follows, we distinguish between the seismic slip velocity δ̇ and the velocity of the
traveling shear band v. In Figure 6.4, we consider the PSZ (moving point heat source) to
travel inside the fault gouge with a velocity v=50 mm/s, while different values for the rate
of coseismic slip parameter δ̇ are taken into account. The shear band velocity v taken here
is in agreement with observations from the numerical results of chapter 5. Contrary to the
results obtained in the case of a stationary strain localization studied in Rice (2006a), our
results indicate the existence of a lower bound in the frictional strength τres, dependent
on the rate of seismic slip δ̇ (see Figure 6.5).

In Figure 6.4, we observe that an increase in seismic slip velocity δ̇ leads to a decrease
of the frictional plateau. Since the plateau reached in these cases is other that the initial
friction value corresponding to the ambient pore fluid pressure, we conclude that ther-

3. A steady state for the temperature T (x, t) and pressure p(x, t) fields is reached when their rates of
change become zero, ∂T

∂t = 0, ∂p
∂t = 0
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Figure 6.4 – τ − δ response of the layer for different slip velocities δ̇ applied. We observe
that as the shearing rate increases, the softening behavior becomes more pronounced.
Higher seismic slip rates correspond to lower residual values for friction.

mal pressurization is still present in the model’s response. This is true since the profile of
temperature changes continuously, the maximum temperature, Tmax, moves around in the
same way as the yielding plane, therefore, the rate of change of the temperature field ∂T

∂t
,

which is the cause of thermal pressurization does not vanish, rather it becomes constant.

Figure 6.5 – Comparison of the τ−δ frictional response between a moving and astationary
strain localization (PSZ ) on an unbounded domain. The assumption of a traveling strain
localization leads to a plateau of non zero residual friction τres.

In Figure 6.6, we plot the frictional response of the fault for a given seismic slip ve-
locity δ̇ = 1000 mm/s treating the shear band velocity v as a parameter. We notice that
the slower moving shear bands force the fault to faster and larger frictional strength drops,
before they eventually reach a plateau. This is consistent with the observations made in
Rice (2006a), where the stationary shear band that presents an infinite negative slope at
the start of the slip δ and tends asymptotically to zero as δ increases, can be treated as a
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special case of the model of traveling localization mode as the shear band velocity tends
to zero (v = 0). Again we emphasize that for this frictional behavior to hold true, we
need to secure that the position of the yielding plane (PSZ) coincides with that of the
maximum pore fluid pressure pmax. This is proven in Appendix I.

Figure 6.6 – Frictional response τ of the layer for different slip velocities δ̇ applied. For low
traveling velocities the response tends to the behavior of stationary slip on a mathematical
plane. As the traveling velocity increases the drop in friction becomes smaller.

6.4.2.2 Traveling mode of strain localization on the bounded domain.

Figure 6.7 – Schematic representation of a fault gouge of height H = 1 mm, under seismic
slip δ. The plastified region (brown color) is denoted with a thickness of h = 0.6 mm. The
traveling strain localization on a mathematical plane (red color) is moving periodically
inside the region h with velocity v.
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In this section we investigate the frictional response of the layer of height H = 1 mm,
when the plastic strain localization travels inside a predefined plastified region with a
width h = 0.6 mm as shown in Figure 6.7. This is the same plastified region thickness as
the one predicted by our numerical model in chapter 5 (see Figures 5.9). Based on the
numerical results of chapter 5, we apply a periodic mode of traveling strain localization,
with a constant velocity v = 30 mm/s. We prescribe the trajectory of the yielding plane
by the following equation:

x(t) = H
2 + h

2HTr(vt), (6.35)

where H is the height of the layer, h is the width of the plastified region, v is the velocity
of the strain localization and Tr(·) is the triangle wave periodic function. The period is
given by T = 2h

v
. Because of the complexity of the loading function, the application of the

Z-CQM procedure is presented separately in Appendix F. Moreover, the application of
this numerical approach becomes cumbersome if not impossible for this case as explained
in more details in Appendix F.
Instead, the resulting linear Volterra integral equations of the second kind will be solved
numerically by making use of the spectral collocation method, that solves the correspond-
ing algebraic system described in equations (6.32) and (6.33).

We observe that as the shearing rate increases, the softening behavior becomes more
pronounced. For typical values of the seismic slip displacement we note that the effect
of the boundaries becomes important. The frictional response presents oscillations due
to the periodic movement of the strain localization. Since the strain localization is con-
stantly moving, a steady state is not possible for the fields of temperature and pressure
(∂T
∂t
6= 0 → ∂p

∂t
6= 0). This means that the friction presents a residual value, τres, which is

lower than the fully recovered value of the stationary bounded case. Assuming the mate-
rial parameters cth, chy and the height of the layer H constant, characteristics such us the
oscillations amplitude A, circular frequency ω and the residual value of friction τres are
controlled by three parameters, the height of the plastified region inside the layer, h, the
velocity of the strain localization mode, v, and the seismic slip rate applied at the fault
gouge, δ̇.

We note here that for given fault gouge properties (cth, chy,H) and seismic slip veloc-
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Figure 6.8 – τ − δ response of the bounded layer for different slip velocities δ̇ applied.
A periodic traveling localization mode is applied. We observe that as the shearing rate
increases, the softening behavior becomes more pronounced. For typical values of the
seismic slip displacement we note that the effect of the boundaries becomes important.
Because the periodic traveling localization mode is constantly moving, a steady state is
not possible. This means that the friction presents a residual value lower than the fully
recovered value of the stationary bounded case.

ity δ̇ the residual frictional response presents a minimum for adequate selection of the
plastified region and the velocity of the traveling strain localization mode (h, v). Consid-
ering that the fault gouge during elastic unloading will reach the smallest possible value
of the residual friction dictated by the problem setting at hand, we expect that the values
for the width of the plastified region h and the velocity of the strain localization mode v
can be determined by minimizing the elastic energy i.e residual friction τres near the end
of the seismic slip.

In Figure 6.9, we present a comparison between the friction developed during shearing
of a bounded fault gouge with a seismic slip velocity δ̇ = 1000 mm/s when the shear
band is considered to travel with a velocity v = 20 mm/s inside a plastified region of
height h = 0.4 mm, and the model of slip on a stationary mathematical plane presented
in section 6.4.1.1 and in Rice (2006a). The two responses differ. We note that the travel-
ing strain localization presents a milder slope at the beginning of thermal pressurization
w.r.t. the solution of Rice (2006a). This happens because the yielding plane moves towards
the isothermal drained boundaries that function as heat and pressure sinks. The periodic
movement of the yielding plane (thermal load) inside the layer leads to frictional oscilla-
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tions. The crests of the oscillation correspond to the time the load approaches the fault
gouge boundaries, while troughs correspond to the time the PSZ is closer to the middle of
the layer. We note here that the average friction inside the layer, τave, is increasing due to
the diffusion of pressure and temperature at the boundaries of the fault gouge. We note
also that the oscillatory movement of the fault gouge moves excess heat and pressure to-
wards the boundaries of the fault gouge leading to a ventilation phenomenon that further
enhances the recovery of frictional strength. It is likely that removing the invariance along
the slip direction would lead to vortices and other convective phenomena inside the layer
(see Griffani et al., 2013; Miller et al., 2013; Rognon et al., 2015). However, 2D and 3D
phenomena inside the fault gouge are not explored here.

Figure 6.9 – Comparison of the τ − δ frictional response between a moving periodic
strain localization on a bounded domain and a stationary strain localization (PSZ) on
an unbounded domain. The influence of the boundary conditions becomes clear from the
initial stages of the coseismic slip δ. The average frictional response, τave, in the case of
the periodic strain localization exhibits frictional regain due to diffusion at the boundaries
and ventilation phenomena from traveling inside the plastified region h.

The results obtained here (see Figure 6.8, 6.9), present a qualitative agreement with those
of chapter 5. The difference in the values is due to the assumption of Dirac load in this
chapter in order to preserve the equilibrium inside the band. Assuming a distribution of
the yielding rate γ̇p that is not singular while respecting the equilibrium conditions along
the layer -as it is the case for the Cosserat continuum- would allow for higher minima in the
frictional response, because the thermal load due to yield in this case will be distributed,
leading to more efficient diffusion at the initial stages of thermal pressurization.
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6.5 Key points

In this chapter a series of analytical results have been obtained for the coupled thermal
and pore fluid pressure diffusion equations. We follow the methodology developed in Rem-
pel and Rice, 2006; Rice, 2006a, and we expand it to the cases of bounded domains and
moving thermal loads resulting from traveling (flutter) instabilities on a Cauchy contin-
uum (see Benallal, 2005b; Benallal & Comi, 2003; Platt et al., 2014a; Rice, 2006a; Rice
et al., 2014a).

To handle the integral differential equations a new method named the Z-CQM procedure,
was used based on the work of Mavaleix-Marchessoux et al., 2020. This is the first time
this procedure is used for the solution of linear Volterra integral equations of the second
kind. The method can handle the weakly singular kernels that appear in the unbounded
case and the stationry thermal load on the bounded case. However, its generalization in
the case of a periodic traveling strain localization inside the bounded domain, which is in
accordance with the numerical results of chapter 5, is not straightforward (see Appendix
F). Therefore, we apply a more general methodology, the spectral collocation method for
the numerical solution of the more complicated case.

It is found that contrary to the case of a stationary thermal load on an unbounded
domain described in Rice, 2006a, taking into account the existence of the boundary con-
ditions at the ends of the fault gouge plays an important role at the frictional evolution
of the fault for a range of values of the seismic slip velocities commonly observed during
earthquake events. Namely, for a seismic slip δ of 1 m under a seismic slip velocity δ̇=1
m/s, the influence of the boundaries becomes important after the first 0.4 m of slip. It
is shown that under the influence of homogeneous Dirichlet conditions on the bounded
domain, a steady state is reached for the temperature field, which in turn implies that
the effects of thermal pressurization progressively attenuate until it completely ceases. In
this case the temperature rise inside the fault gouge is well above the limit of chemical
decomposition and melting of quartzites (see Brantut et al., 2008; Kanamori & Brodsky,
2004a; Rice, 2006a; J. Sulem & Famin, 2009). Absence of widespread melting observations
in faults, however, indicates that other possible frictional weakening mechanisms will be-
come prevalent.
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Furthermore, the effects of a moving thermal load corresponding to a traveling strain
localization (flutter instability) inside the fault gouge, were examined under both un-
bounded and bounded boundary conditions. In both cases, traveling instabilities showed
the existence of a plateau in the frictional strength of the fault, τres (see Figures 6.4, 6.8).

In the case of the traveling load on the unbounded domain, the fact that the load changes
its position constantly leads to a non zero change of the temperature field (∂T (x,t)

∂t
6= 0) and

constant influence of the pore fluid pressure profile by the thermal pressurization term.
Moreover, because the thermal load changes its position, temperature does not have time
to accumulate in one point and provoke a pressure increase that eliminates fault friction.
Instead fault friction reaches a plateau (see Figure 6.4). This is an important result since
it directly influences the dissipation energy produced during seismic slip.

Moreover, we examined the influence of the velocity of the strain localization (moving
thermal load) in the frictional evolution. We established based on our analyses that the
faster traveling shear bands have a smoother stress drop at the first stages of the analysis
and they reach a higher plateau of frictional strength, see Figure 6.6. When the velocity of
the shear band tends to zero we retrieve the solution described in Rice (2006a) as expected.

Next, a traveling instability was applied into a bounded domain with homogeneous Dirich-
let boundary conditions. Again the results show that the frictional strength of the fault
reaches a plateau and is not fully recovered as in the case of a stationary instability (see
Figure 6.8). The reason is the change of the thermal load position during the analysis
and the subsequent change of the temperature profile leading to a non attenuating ther-
mal pressurization phenomenon. Again the plateau reached, differs based on the traveling
velocity of the shear band v, which ranges in the order of 20 ∼ 50 mm/s according to
the numerical analyses of chapter 5. In this case it is shown that in contrast to the case
of a stationary thermal load on the bounded domain the fault never recovers entirely its
frictional strength since the effects of thermal pressurization never cease.

The results presented above clearly show a strong dependence of the fault’s frictional
behavior in both the fault gouge boundary conditions and the type of instability per-
mitted into the medium. These results can be used as a preliminary model in order to
evaluate qualitatively the results obtained by numerical analyses taking into account the
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microstructure of the fault gouge material, where discerning between the effects of the
different mechanisms affecting the frictional response of a fault undergoing thermal pres-
surization is more involved. The results of the fully non-linear numerical analyses with
the Cosserat micromorphic continuum of chapter 5 agree qualitatively with the results
from the linear model of this chapter. This indicates that the driving cause behind the ob-
tained results is the diffusion from the thermal and hydraulic couplings to the mechanical
description. The microstructure follows to a lesser extend. Its use in the solution of the
BVP presented in chapter 5 is required in order for the dissipation and the meta-stable
frictional response of the fault gouge to be calculated correctly excluding mesh depen-
dency from the numerical results.

In conclusion, our results show that for typical values of seismic slip δ and seismic slip
velocity δ̇, the effects of the boundaries of the fault gouge cannot be ignored. This means
that those effects need to be accounted in both numerical analyses and laboratory ex-
periments. The influence of different kind of boundary conditions needs to be studied.
The introduction of a traveling (flutter-type) strain localization mode is an important
aspect of our model. Its presence increases the frequency content of the earthquake and
it prevents the bounded fault gouge from fully recovering its frictional shear strength due
to the diffusion at the boundaries. The existence of oscillations and the reduction of the
peak residual frictional strength are also important in understanding the transition form a
stable to unstable seismic slip and subsequent fault nucleation (see Rempel & Rice, 2006;
Rice, 1973b, 2006a; Viesca & Garagash, 2015). Furthermore, the existence of non zero up-
per and lower bounds in the fault’s frictional behavior (τmin, τres), has serious implications
for any attempt in controling the transition form stable (aseismic) to unstable (coseismic)
slip (see Stefanou & Tzortzopoulos, 2020; Stefanou, 2019; Tzortzopoulos, 2021).
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Chapter 7

CONCLUSIONS AND FUTURE

PERSPECTIVES

7.1 Conclusions

In this work we focused on describing the behavior of a fault gouge under the influence
of multiphysical couplings during large coseismic slip. The role of thermal pressurization
as a frictional weakening mechanism during coseismic slip was taken into consideration.
We studied different approaches of strain regularization in an effort to correctly regular-
ize strain localization on a mathematical plane in the presence of nominal or apparent
strain softening. Out of detailed comparison of the numerical results in chapters 3 and 4
and mathematical arguments, we concluded that the first order micromorphic Cosserat
continuum is the best choice for regularizing strain localization on a mathematical plane
in our analyses. Furthermore, application of the Cosserat continuum allows us to con-
sider the role of the microstructure during shearing of the fault. In chapter 5, we studied
the influence of the seismic slip velocity δ̇ and the boundary conditions in the frictional
behavior of a fault gouge. The effect of rate dependency within the framework of rate
and state frictional modeling was also examined. We note that our numerical analyses
are in qualitative agreement with the experimental results of other researchers (see Badt
et al., 2020; Rempe et al., 2020), whose experiments lie in the same range of normalized
parameters. Finally, in chapter 6, we verify the numerical results of chapter 5 by studying
the basic model of seismic slip on a mathematical plane under the weakening mechanism
of thermal pressurization available in Rice (2006a). We expand the theoretical model of
thermal pressurization by expanding on its assumptions namely applying more realistic
boundary conditions and a traveling strain localization mode.

Getting into the details, in chapter 3 we investigated by means of numerical analyses,
the ability of different material laws in the frame of a Cauchy continuum to regularize
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strain localization as the solution bifurcates from the homogeneous deformation. Our anal-
yses took place under quasistatic conditions, which is an acceptable idealization of the
problem at hand. We investigated 1) viscosity regularization, 2) regularization through the
use of multiphysical couplings in the case of a classical Cauchy continuum, and 3) regular-
ization through the use of a first order micromorphic Cosserat continuum. In particular,
we investigated the ability of viscosity to regularize strain localization on a mathematical
plane. In the context of quasistatic analysis such a regularization is possible, however,
it requires that the exact dimensions of the localization are known a priori. In addition,
such an approach relies heavily on the accuracy of the numerical solver. We show that by
reducing the solver accuracy, the numerical results indicate localization on a mathemati-
cal plane. Next, we examined the classical Cauchy continuum coupled with multiphysics
equations, describing the generation of heat due to yielding and the subsequent pore fluid
pressure increase due to thermal pressurization. This formulation introduces to the classi-
cal continuum the internal lengths due to the diffusion terms in the heat and mass transfer
equations. Nevertheless, through the use of numerical analyses and bifurcation analyses,
in chapter 3 we have shown that the introduction of multiphysical couplings in the case of
a classical Cauchy continuum, does not regularize strain localization on a mathematical
plane. The lack of an inherent length scale in the material description of the classical
Cauchy continuum is the reason for the localization on a mathematical plane and mesh
dependency of the numerical results.

The case of elasto-viscoplasticity of Perzyna or concistency type in the presence of inertia
has been studied in particular in chapter 4. While the available literature in this subject is
affluent, no conclusive results have been reached on the subject of viscous regularization
in the framework of a classical Cauchy continuum. Following on the work of de Borst
and Duretz, 2020; Loret and Prevost, 1990; Needleman, 1988; Sluys and de Borst, 1992;
W. Wang et al., 1997, we apply the method of linear stability analysis for investigating
the stability and post bifurcation regime of a classical elasto-viscoplastic Cauchy con-
tinuum under homogeneous deformation. We expand previous attempts of studying the
regularization properties of viscoplasticity (see de Borst & Duretz, 2020, among others),
by assuming that both the circular frequency ω and the wavenumber k of the perturba-
tion are complex numbers. A new dispersion relation is derived, which involves a pole on
the complex plane, whose existence was ignored in previous attempts in studying viscous
regularization. This pole is responsible for strain localization on a mathematical plane.
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The theoretical results were also tested numerically with the use of commercial software
Abaqus, (Smith, 2009) and application of a user material of Perzyna type. We examined
the dynamic behavior of the elasto-viscoplastic momentum equation under different kinds
of initial conditions and we have established that viscous regularization does not prevent
strain localization and mesh dependency. Our dynamical numerical analyses in the con-
text of elasto-viscoplasticity were fully nonlinear taking into account elastic unloading of
the region outside the strain localization. We have shown that linear strain softening and
linear strain-rate hardening (Perzyna viscoplasticity) do not regularize strain localization
on a mathematical plane and mesh dependency. Theoretical and numerical analyses have
led us to the formulation of a criterion which indicates conditions for the perturbation of
infinitesimal wavelength to grow and be noticeable in numerical analyses.

Through the theoretical and numerical analyses in the above chapters, we have shown
that only the Cosserat continuum among the ones explored, being also the simplest mi-
cromorphic continuum, is able to regularize strain localization by means of a material
parameter (internal length), which constitutes a characteristic of the material. In chapter
5 going beyond the works of Rattez, Stefanou, and Sulem, 2018; Rattez, Stefanou, Sulem,
Veveakis, et al., 2018b, we perform numerical analyses of a fault gouge under large co-
seisimic slip using a Cosserat linear elastic perfectly plastic material, coupled with the
energy and pore fluid pressure diffusion equations. To this end, the in house developed
code Numerical Geolab (Stefanou, 2021) software was used, which is based on the open
source FeniCs finite element library (see Alnæs et al., 2015). We expand the previous nu-
merical results, which achieved a coseismic slip of 0.5 mm, presented in Rattez, Stefanou,
and Sulem (2018), Rattez, Stefanou, Sulem, Veveakis, et al. (2018a, 2018b), by consid-
ering large coseismic slip of δ = 1000 mm in relation to the small fault gouge thickness
of H = 1 mm. To this end, we make use of the updated Lagrangian, Eulerian method
(ALE), in order to study the fault gouge frictional evolution over large seismic slip and
different seismic slip velocities.

Moreover, we investigate the effect of the boundary conditions at the beginning of the slip
incorporating Dirichlet or Neumann boundary conditions for the temperature and pore
fluid pressure diffusion equations as well as their combinations. As expected, the results
form an envelope defined by the isothermal drained response and the adiabatic undrained
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response as upper and lower bound respectively. Next, we examine the influence of dif-
ferent seismic slip shearing velocities in the localization width inside the fault gouge. We
note that smaller shear velocities δ̇ correspond to larger localization widths, and that
the localization width for larger velocities (δ̇ > 0.7 m/s) stays constant after the initial
localization at the start of the analysis. We note furthermore, the existence of frictional
regain due to the effect of the isothermal drained boundary conditions and the emergence
of a traveling instability, moving inside the fault gouge.

The traveling instability affects the frictional response of the fault during shearing. In
particular, the traveling instability is responsible for the faster diffusion of heat inside the
fault gouge (“ventilation”), thus mitigating the effect of thermal pressurization. We note
also that the effect of thermal pressurization is constrained due to isothermal drained
conditions used in the numerical simulations. The interaction between the boundaries of
the fault gouge and the traveling instability leads to the instability performing a periodic
motion inside the yielding region. The existence of a traveling instability may explain
observations, where adjacent fault gouges are found (see Nicchio et al., 2018), or the fault
gouge is found to be unusually large, (see Platt et al., 2014b; Rice, 2006a; Rice et al.,
2014b).

We propose a mathematical explanation for the emergence of the traveling instability
in terms of the imaginary part of the Lyapunov exponent. We find that by increasing
the softening parameter, the solution bifurcates from the initial fixed point, as a limit
cycle makes its appearance in the phase space. Thus, due to the Hopf bifurcation present
in the phase space of the numerical analysis, traveling instabilities become possible. We
investigate the effect of the height of the fault gouge in the period of the oscillations of
the traveling shear band. Based on the appropriate scaling performed in chapter 5, we
find that indeed the shearing velocity δ̇ and the height of the layer directly influence the
non dimensionalized diffusion coefficient ¯chy of the normalized coupled partial differential
equations. For instance, when a layer that is two times thicker than the reference, while
we shear both of them equally fast the non dimensionalized diffusion coefficient ¯chy of the
thicker layer is halved. This leads to lower minima of fault friction and to an increase
in the period of the frictional oscillations. In general, this oscillations behavior may in-
dicate an increase in the frequency spectrum of the earthquake that may explain better
the surface observations concerning the higher frequencies in the spectral content of the
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earthquake (see Aki, 1967; Brune, 1970; Haskell, 1964; Tsai and Hirth, 2020).

Finally, we enhance our numerical model by adding viscosity. It is found that the introduc-
tion of strain-rate hardening of Perzyna type, leads our model to exhibit characteristics
that are close to those of the rate and state phenomenological friction law proposed in the
literature (see Dieterich, 1992; Ruina, 1983a). The combination of multiphysical couplings
and viscosity allows our model to describe both frictional jumps due to the sudden change
in the seismic slip rate and the apparent softening due to the seismic slip rate as in the
rate independent case. Furthermore, we emphasize that depending on the value of the
viscosity parameter, our model can lead to stick slip events similar to those described in
Kanamori and Rivera, 2006; Scholz, 2019 at the latter stages of the analyses.

Our results and the theoretical predictions of the model described in Rice (2006a) di-
verge significantly. The difference in the calculated responses motivates us to make an
inquiry on the original assumptions of the frictional slip model proposed in Rice (2006a),
Rice et al. (2014b). This model investigates the frictional response of the principal slip
zone of the fault under coseismic slip, taking into account the frictional weakening mech-
anism of thermal pressurization. The approach followed in Rice (2006a), assumes that the
principal slip zone (PSZ) is contained in a mathematical plane, and that the boundaries
of the fault gouge are considered to be at infinity. This leads inevitably to a stationary
shear band, with isothermal, drained boundary conditions at infinity. Moreover, in Rice
(2006a), the yielding region is contained on a mathematical plane. Furthermore, its fric-
tional value during plastic loading is given by a Mohr-Coulomb yield criterion dependent
on the Terzaghi stress, while the domain outside the shear band is considered to be rigid,
assuring the equilibrium of the shear stress. This approach leads finally to the solution of a
linear Volterra integral equation of the second kind for the determination of the frictional
response of slip on a mathematical plane. However, we find the assumptions about 1) the
unbounded domain and 2) the localization mode of the infinite layer to be restrictive.

Departing from the previous approach, we assume that the boundaries of the fault gouge
are not at infinity, but that the fault gouge is well formed with a specific height as also
shown in Rattez, Stefanou, and Sulem (2018), Rattez, Stefanou, Sulem, Veveakis, et al.
(2018a, 2018b). Due to the in situ thermo- hydraulic properties of the rock mass outside
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the fault gouge, it is considered to act more as a thermostat and a pressostat leading to
isothermal, drained boundary conditions at the boundaries (see chapter 5, section 5.3.4
for more details). We evaluate the frictional response based on this assumption, and we
find that the effects of drainage become apparent before the seismic slip reaches its final
value. This by itself indicates the positive influence of the boundary conditions in miti-
gating the weakening of the frictional strength of the fault. We applied different values of
seismic slip velocity δ̇ and we have established that in the case of a stationary principal
slip zone (PSZ) due to the drainage at the boundaries the fault tends to regain all of it
strength. A new steady state different than the one predicted in Rempel and Rice, 2006;
Rice, 2006a; Rice et al., 2014b is found. Frictional regain is faster for the slowest seismic
slip velocities since the initial frictional weakening due to thermal pressurization is less
pronounced. This is in contrast to the case highlighted in the literature described in Lee
and Delaney, 1987; Mase and Smith, 1987; Rice, 2006a, where due to the boundary condi-
tions set to infinity, the frictional shear strength is monotonously decreasing. We note that
in all cases the majority of the frictional regain (∼ 60%) happens during shearing of 1 m
of seismic slip displacement, therefore, the frictional regain during important earthquakes
can become substantial (see Sibson, 2003a).

Next, we investigate the role of the localization mode in the frictional evolution of the
fault friction. In chapter 5, making use of a Cosserat micromorphic continuum under the
weakening mechanism of thermal pressurization, we have noticed traveling instabilities
taking place inside the fault gouge. Furthermore, according to Benallal and Comi, 2003,
in a saturated Cauchy continuum exhibiting apparent softening due to the pore fluid
pressure, an initial divergence instability might give rise to a flutter (traveling) instabil-
ity. Similar behavior has been noticed in numerical analyses by Collins-Craft et al., 2020,
where the damage and evolution of the microstructure of a Cosserat micromorphic con-
tinuum is taken into account. Indications of a traveling shear band in situ observations
have been given in Badt et al., 2020; Nicchio et al., 2018 (according to our interpretation
of their experimental results). Therefore, we first consider the case, where such a traveling
instability develops in an infinite domain. Contrary to the stationary case, where a steady
state is reached and the frictional response of the fault tends to zero, in this case friction
reaches a constant non zero value. The residual value of friction depends on the seismic
slip velocity δ̇ and the velocity of the traveling shear band v. We have established that
higher values of seismic slip velocity, δ̇, indicate lower values for the remaining frictional
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strength due to the increase of thermal pressurization. By varying the velocity of the shear
band v, we change the time the thermal load acts along the layer’s height. As the thermal
load moves faster along the the layer’s height thermal pressurization becomes less efficient
due to “ventilation” phenomena. This leads to higher residual shear strength of the layer.
Non zero residual shear strength at the later stages of the seismic slip indicates major
changes to the estimations for the dissipation of energy inside the fault, and the earth-
quake nucleation criteria and rupture propagation (see Andrews, 2005; Kanamori and
Rivera, 2006; Lykotrafitis et al., 2006; Rice, 1973b; Rosakis et al., 1999). The existence of
lower and upper bounds of friction during coseismic slip under thermal pressurization are
of major importance for applications concerning the control of the transition from stable
(aseismic) to unstable (coseismic) slip (see Stefanou & Tzortzopoulos, 2020; Stefanou,
2019; Tzortzopoulos, 2021).

Summarizing, the main findings of this thesis are:

• We investigated under the general assumption of quasistatic conditions, the reg-
ularization properties of different material models under plastic strain softening,
involving a) a Cauchy continuum with: 1)viscosity of Perzyna and concistency
type, 2) THM couplings, and b) a first order micromorphic Cosserat continuum.
We show with the help of Lyapunov stability analysis and numerical analyses that
the simplest model capable of regularizing strain form localizing on a mathematical
plane is the Cosserat first order micromorphic continuum. This happens due to the
introduction of internal lengths in the material behavior.

• We have also studied with the help of Lyapunov stability analysis the regularization
properties of the Cauchy strain softening, strain-rate hardening Perzyna or consis-
tency elastoviscoplastic model in the presence of inertia. To do so we have made
extensive use of complex analysis to show the existence of a pole in the positive
imaginary axis, neglected by former attempts that studied this problem. We have
proven both theoretically and numerically with the use of fully non linear dynamic
analyses, that viscoplasticity in the presence of inertia leads to strain localization
on a mathematical plane. Our analyses and results were published in the CMAME
journal Stathas and Stefanou (2022c).

• We apply the above conclusion in the modeling of a fault gouge under large co-
seismic slip. We introduce the influence of THM couplings in our model that lead
to apparent strain softening due to the frictional weakening mechanism of thermal
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pressurization. We advance further than the analyses presented in Rattez, Ste-
fanou, and Sulem (2018), Rattez, Stefanou, Sulem, Veveakis, et al. (2018a, 2018b)
by applying realistic seismic slip values that are orders of magnitude larger (m)
than the height of the fault gouge (mm). We consider the influence of large dis-
placements in the numerical results of our analyses by implementing an Adaptive
Lagrangian Eulerian (ALE) procedure.

• We explored different combinations of boundary conditions, ranging from isother-
mal drained to adiabatic undrained. Their influence in the fault’s frictional response
at the early stages of the coseismic slip was taken into account.

• The numerical results of the above described analyses indicate that our model dur-
ing the later stages of coseismic slip recovers a large part of its frictional strength
initially lost to thermal pressurization. This is true due to diffusion at the bound-
aries of the model.

• Furthermore, the above numerical results present frictional oscillations during the
later stages of coseismic slip. This is due to the existence of a traveling strain
localization inside the fault gouge.

• We investigated the influence of the height of the layer in the layer’s residual friction
and the period of the frictional oscillations. We find that applying the same seismic
slip velocity, while doubling the height of the layer leads to lower minima in the
frictional response with meager and slower frictional recovery in comparison to the
reference case. Furthermore, the period of the oscillations inside the thicker layer
increases as does also the width of the plastified region. These observations are in
agreement with the conclusions derived from the normalized form of the coupled
THM system of PDEs.

• We further extend our model by taking into account strain rate hardening of
Perzyna type (viscosity effects). We find that intrduction of viscosity in the THM
coupled system leads to our model exhibiting rate and state phenomenology, with-
out us making any assumption for the existence of internal memory state variables
as in the, phenomenological, rate and state friction laws (see Dieterich, 1992; Ruina,
1983a).

• We observe that the numerical analyses performed concerning the influence of
the THM couplings in the fault’s frictional response are in close agreement with
experiments performed on wet rocks, where care was taken to isolate Thermal
pressurization as the only frictional weakening mechanism present during shear (see
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Badt et al., 2020). We note here that numerical analyses and experimental results
were done on the same parameter range for the non dimensionalized diffusion
equations, therefore the numerical and experimental results are comparable.

• Our numerical results diverge spectacularly from the predictions of the thermal
pressurization model during slip on a mathematical plane described in Rice (2006a).
We explain this difference by investigating the assumptions presented in Rice
(2006a). In particular, the model in Rice (2006a) assumes that seismic slip takes
place on a stationary mathematical plane lying inside an infinite (unbounded do-
main) under isothermal drained boundary conditions. In our opinion, these as-
sumptions are very restrictive. Considering the Volterra integral equation of the
second kind described in Rice (2006a), we study the frictional evolution when the
boundaries are taken into account in a bounded domain. Furthermore, based on
the numerical results of chapter 5 we apply a traveling strain localization instead
of a stationary one. The response obtained by solving the linear Volterra integral
equation of the second kind is in qualitative agreement with the numerical results of
the THM analyses, indicating a reappraisal of the frictional weakening mechanism
of thermal pressurization.

• In preforming the analyses of chapter 6 different numerical methods were used. To
tackle the numerical challenges posed by the Green’s function kernels inside the
linear Volterra integral equation of the second kind, we used two different methods
availlable in the literature. For the singular kernels resulting from diffusion on an
unbounded domain, the Z-Transform with Convolution Quadrature Method (Z-
CQM) procedure was used. This is the first time this method is used for the solution
of linear Volterra integral equations of the second kind. While for the bounded
domain, with periodic traveling yielding plane (thermal load due to dissipation) a
more general Spectral Collocation Method with Lagrange basis functions (SCML)
was used.

• In order to investigate the response of the coupled thermal, pressure diffusion prob-
lem in chapter 6 for a isothermal drained bounded domain, the Green’s function
kernel describing the pressure response for an impulsive thermal load was derived
for the first time in the literature.

• Finally, our results provide new boundaries for the minimum and residual friction
during coseismic slip. This has important implications for the energy dissipated
during coseismic slip, therefore affecting the energy equilibrium during coseismic
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slip (see Andrews, 2005; Kanamori & Brodsky, 2004b), the criteria that are cur-
rently in use for fault nucleation (see Rempel & Rice, 2006; Rice, 1973a, 2006a;
Viesca & Garagash, 2015), as well as any attempt in controlling the transition
from aseismic to coseismic slip (see Stefanou & Tzortzopoulos, 2020; Stefanou,
2019; Tzortzopoulos, 2021).

Perspectives

In this thesis we studied theoretically and numericaly, the frictional response of the fault
gouge when thermal pressurization is considered as the main weakening mechanism during
coseismic slip and large deformations. The role of the microstructure, the shear velocity
and the introduction of viscosity was studied in particular. This work can be expanded
to incorporate some crucial characteristics emerging from the interactions of the grains
at the microscale and other THM couplings. Namely:

• A new yield condition might be added based on the grain interactions at the
microscale and incorporating damage of the material particles (see Alaei et al.,
2021; Collins-Craft et al., 2020).

• The effect of other weakening mechanisms such as thermal decomposition of min-
erals should be also considered (see J. Sulem and Famin, 2009; E. Veveakis et al.,
2007).

• The mechanism of flash heating Rice, 2006a should be also implemented as a
precursor to thermal pressurization in combination with other thermal weakening
mechanisms (I. Vardoulakis, 2000b).

• The model we use in this thesis for the determination of the fault gouge frictional
behavior during coseismic slip is a model at the mesoscale, where we incorporate the
behavior of the microscale through the use of the Cosserat continuum. We should
incorporate in our analyses a more detailed description of the microstructure, which
can be used at the level of the auxillary problem in upscaling techniques such as
asymptotic homogenisation (see Bakhvalov & Panasenko, 1989; Forest, Pradel, et
al., 2001; Froiio et al., 2006; Rezakhani & Cusatis, 2016; Sanchez-Palencia, 1986)

• Taking into account a more detailed description of the microstructure requires finer
discretization in the spatial and time domains. This in turn increases the compu-
tational cost of any numerical procedure, especially in what concerns the material
algorithm. We intend on solving this problem by incorporating a Thermodynamics-
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based Artificial Neural Network both for the material behavior and upscaling to
the macrostructure (TANN, see Masi & Stefanou, 2021; Masi et al., 2021).

We note here that the specific boundary conditions used (isothermal, drained), together
with the traveling instability, lead to increased temperatures inside the fault gouge. How-
ever, the absence of pseudodactylites inside the fault gouge (see Brantut et al., 2008;
Kanamori and Rivera, 2006; Sibson and Toy, 2006), indicates that such increased tem-
peratures are not possible. This indicates that the influence of boundary heterogeneities,
the role of the microstructure in the formation of an adequate yield criterion taking into
account the comminution of the grains (see Collins-Craft et al., 2020), and the coexistence
of other weakening mechanisms such as thermal decomposition of minerals (see J. Sulem
and Famin, 2009) should be also taken into account.

Following the findings of our research, we propose that the role of the boundary con-
ditions should be investigated in depth experimentally. In particular, the interaction of
the traveling shear band with the regions adjacent to the fault gouge will give us insights
about the formation of the fault gouge. This way we can also investigate the heterogeneity
in the material parameters inside the fault gouge and the adjacent region. By incorporat-
ing earth blocks in vertical direction, adjacent to the fault, into the analysis, we expect
to increase more the frequency content of the produced earthquake. This is due to the
relative movement of the blocks along the height of the rockmass.

The above point can be comnbined with the frictional oscillations present in the model’s
frictional response. Through the use of a Fast Fourier Transform (FFT) procedure we
can calculate the acceleration spectra obtained in the rock and compare with existing
observations leading to additional answers in the problem of absence of higher frequencies
from the calculated seismic spectra based on the current models (Aki, 1967; Brune, 1970;
Tsai & Hirth, 2020). Furthermore, we propose that there is a relationship between the
thickness of the fault gouge and the oscillatory frequency of the frictional oscillations.
Thus, by identifying the high frequencies of the seismic response spectrum observed at
the earth’s surface, correlations could be made for identifying the thickness of the fault
gouge and the amplitude of the frictional oscillations.

Our analyses have indicated a relationship between the layer’s height, the rate of co-
seismic slip, the velocity of the PSZ inside the fault gouge and the period of the frictional
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oscillations. We intend on examining further the theoretical results in order to define the
velocity of the traveling strain localization, PSZ based on our coupled simplified THM
model.

In our analyses, we have always assumed that the slip distribution during the seismic
event is uniform, by shearing with a constant average seismic slip velocity. However, this
is not true and it is expected that the majority of the slip happens in the middle of the
fault and not near the propagating fracture tips. This leaves us with different seismic
slip and seismic slip velocity distributions, that will affect thermal pressurization and the
effect of drainage and the localization mode in the final results (see Harbord, Brantut,
Spagnuolo, and Di Toro, 2021; Lee and Delaney, 1987; Mase and Smith, 1987; Platt et al.,
2014b). We can obtain a preliminary estimate of such a change by modifying the shearing
velocity of the thermal load in the simplified linear model of chapter 6, based on the
slip-rate evolution determined by elasto-dynamic analyses of specific faults.

The frictional response obtained by our analyses, can be used as an interface law for
the sliding between earth blocks during coseismic slip. Implementing the proposed fric-
tional law, with strain-rate dependence due to the viscous parameter and weakening due
to thermal pressurization will give us realistic results concerning the energy partition dur-
ing coseismic slip.

Finally, this thesis is mainly concerned with the determination of the frictional response
under coseismic slip. This constitutes one branch of interest for the CoQuake project,
which provided support for the completion of this thesis. The derived results allow us to
present new bounds for the minimum and residual values of friction during coseismic slip,
when the mechanism of thermal pressurization is the only frictional weakening mechanism
taken into account. In addition, the existence of frictional oscillations is also an important
aspect of our model, because during evolution of the coseismic slip the frictional slope of
the weakening part of the oscillation can be lower than that of the main softening branch
at the initial phase of the slip. These observations are central for control applications
considering the transition from unstable (coseismic) to stable (aseismic) slip, which con-
stitute the other branch of the CoQuake project (see Stefanou & Tzortzopoulos, 2020;
Stefanou, 2019; Tzortzopoulos, 2021).
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Appendix A

APPENDIX A

A.1 Derivation of the Elasto-viscoplastic wave equa-
tion.

In this Appendix the results presented in section 4.2 are obtained in detail.

A.1.1 Elasto-viscoplastic constitutive relations

A.1.1.1 Perzyna model.

In a Perzyna elasto-viscoplastic formulation the following relations hold:

F (σij, ε̄vp) = 0, (A.1.1)
ε̇ij = ε̇eij + ε̇vpij , (A.1.2)
σ̇ij = M e

ijkl (ε̇kl − ε̇
vp
kl ) , (A.1.3)

ε̇vpij = λ̇
∂F

∂σij
=
(
F

ηF0

)n
∂F

∂σij
n = 1, (A.1.4)

ε̄vp =
∫ t

0
˙̄εvpdt. (A.1.5)

where F (σij, ε̄vp) is the yield function incorporating the effects of strain hardening through
the use of the accumulated viscoplastic strain ε̄vp. We note that in this formulation the
consistency condition is not respected. During plastic loading we we can find states where
F > 0, while during unloading of the material, we see that viscoplastic stresses are still
present even though F < 0.

We follow the approach described in Lorefice et al., 2008; J. P. Ponthot, 2002; J.-P.
Ponthot, 1995 in order to derive the elasto-viscoplastic stress, strain, strain rate, material
behavior. We start by considering the von Mises yield criterion:
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F (σij, ε̄vp) =
√

3J2(σij)− F0 − hε̄vp, (A.1.6)

assuming dependence of yield on the deviatoric invariant of the stress tensor J2(sij) =√
1
2sijsij, and ε̄

vp =
√

2
3ε
vp
ij ε

vp
ij where sij = σij− σii

3 . From the above definitions we conclude
that ε̄vp = λ, ˙̄εvp = λ̇. We define the viscoplastic potential Ω(σij, λ, λ̇) as:

Ω(σij, λ, λ̇) = F (σij, λ)− F0F
−1(λ̇η) = 0. (A.1.7)

Now the consistency condition is valid for the visocplastic potential: λ̇Ω = 0 λ̇ ≥ 0, Ω ≤ 0.
During plastic loading Ω̇ = 0 leading to:

Ω̇ = ∂Ω
∂σij

σ̇ij + ∂Ω
∂λ̄

λ̇+ ∂Ω
∂λ̇

λ̈ = 0, (A.1.8)

multiplying (A.1.3) by ∂Ω
∂σij

. replacing ε̇vpij with help from (A.1.4) and replacing the term
in the lefthandside with equation (A.1.8) we finally get:

− ∂Ω
∂λ

λ̇− ∂Ω
∂λ̇

λ̈ = ∂Ω
∂σij

M e
ijkl

(
ε̇kl − λ̇

∂Ω
∂σkl

)
. (A.1.9)

Grouping together the terms of λ̇ and solving for λ̇ we get:

λ̇ =
∂Ω
∂σij

M e
ijkl

−∂Ω
∂λ

+ ∂Ω
∂σij

M e
ijkl

∂Ω
∂σkl

ε̇kl +
∂Ω
∂λ̇

−∂Ω
∂λ

+ ∂Ω
∂σij

M e
ijkl

∂Ω
∂σkl

λ̈. (A.1.10)

Inserting (A.1.24) into (A.1.15) we obtain:

σ̇ij = M e
ijkl

ε̇kl − ∂Ω
∂σij

M e
ijkl

∂Ω
∂σkl

−∂Ω
∂λ

+ ∂Ω
∂σij

M e
ijkl

∂Ω
∂σkl

ε̇kl +
∂Ω
∂λ̇

∂Ω
∂σkl

−∂Ω
∂λ

+ ∂Ω
∂σij

M e
ijkl

∂Ω
∂σkl

λ̈

 , (A.1.11)

replacing the time derivative with a variation taking advantage of the definition of varia-
tion we arrive at the constitutive equation describing the perturbed field of stress σ̃ij.

σ̃ij = M e
ijkl

ε̃kl − ∂Ω
∂σij

M e
ijkl

∂Ω
∂σkl

−∂Ω
∂λ

+ ∂Ω
∂σij

M e
ijkl

∂Ω
∂σkl

ε̃kl +
∂Ω
∂λ̇

∂Ω
∂σkl

−∂Ω
∂λ

+ ∂Ω
∂σij

M e
ijkl

∂Ω
∂σkl

˙̃λ
 . (A.1.12)
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A.1.1.2 Consistency model.

In a concistency elasto-viscoplastic formulation the following relations hold:

F (σij, ε̄vp, ˙̄εvp) = 0, (A.1.13)
ε̇ij = ε̇eij + ε̇vpij , (A.1.14)
σ̇ij = M e

ijkl (ε̇kl − ε̇
vp
kl ) , (A.1.15)

ε̇vpij = λ̇
∂F

∂σij
, (A.1.16)

ε̄vp =
∫ t

0
˙̄εvpdt. (A.1.17)

The viscoplastic multiplier λ̇ is given by the consistency condition

Ḟ = 0, λ̇F = 0, (A.1.18)

where F (σij, ε̄vp, ˙̄εvp) is the yield function incorporating the effects of strain and strain-
rate hardening through the use of the accumulated viscoplastic strain ε̄vp and its rate ˙̄εvp

respectively. The time derivative of the yield condition in this case is given as:

Ḟ = ∂F

∂σij
σ̇ij + ∂F

∂ε̄vp
˙̄εvp + ∂F

∂ ˙̄εvp
¨̄εvp = 0, (A.1.19)

starting from the von Mises yield criterion:

F (σij, ε̄vp, ˙̄εvp) =
√

3J2(σij)− F0 − hε̄vp − g ˙̄εvp, (A.1.20)

assuming dependence of yield on the deviatoric invariant of the stress tensor J2(sij) =√
1
2sijsij, and ˙̄εvp =

√
2
3 ε̇
vp
ij ε̇

vp
ij where sij = σij − σii

3 , we obtain that λ̇ = ˙̄εvpij therefore the
yield criterion as well as the consistency condition can be written as:

F (σij, λ, λ̇) = 0, (A.1.21)

Ḟ = ∂F

∂σij
σ̇ij + ∂F

∂λ
λ̇+ ∂F

∂λ̇
λ̈ = 0, (A.1.22)
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multiplying (A.1.15) by ∂F
∂σij

. replacing ε̇vpij with help from (A.1.16) and replacing the term
in the lefthandside with equation (A.1.22) we finally get:

− ∂F

∂λ
λ̇− ∂F

∂λ̇
λ̈ = ∂F

∂σij
M e

ijkl

(
ε̇kl − λ̇

∂F

∂σkl

)
. (A.1.23)

Grouping together the terms of λ̇ and solving for λ̇ we get:

λ̇ =
∂F
∂σij

M e
ijkl

−∂F
∂λ

+ ∂F
∂σij

M e
ijkl

∂F
∂σkl

ε̇kl +
∂F
∂λ̇

−∂F
∂λ

+ ∂F
∂σij

M e
ijkl

∂F
∂σkl

λ̈, (A.1.24)

Inserting (A.1.24) into (A.1.15) we obtain:

σ̇ij = M e
ijkl

ε̇kl − ∂F
∂σij

M e
ijkl

∂F
∂σkl

−∂F
∂λ

+ ∂F
∂σij

M e
ijkl

∂F
∂σkl

ε̇kl +
∂F
∂λ̇

∂F
∂σkl

−∂F
∂λ

+ ∂F
∂σij

M e
ijkl

∂F
∂σkl

λ̈

 , (A.1.25)

Replacing the time derivative with a variation taking advantage of the definition of vari-
ation we arrive at the constitutive equation describing the perturbed field of stress σ̃ij.

σ̃ij = M e
ijkl

ε̃kl − ∂F
∂σij

M e
ijkl

∂F
∂σkl

−∂F
∂λ

+ ∂F
∂σij

M e
ijkl

∂F
∂σkl

ε̃kl +
∂F
∂λ̇

∂F
∂σkl

−∂F
∂λ

+ ∂F
∂σij

M e
ijkl

∂F
∂σkl

˙̃λ
 . (A.1.26)

A.1.2 Derivation of the perturbed equation

Inserting (A.1.26) into (4.3) we arrive at:

M e
ijkl

ε̃kl,j − ∂F
∂σij

M e
ijkl

∂F
∂σkl

−∂F
∂λ

+ ∂F
∂σij

M e
ijkl

∂F
∂σkl

ε̃kl,j +
∂F
∂λ̇

∂F
∂σkl

−∂F
∂λ

+ ∂F
∂σij

M e
ijkl

∂F
∂σkl

˙̃λ,j

 = ρ¨̃ui. (A.1.27)

Substituting (A.1.16) into the last term of the right hand side of eq. (A.1.27) such that
ε̇vpkl = ∂F

∂σkl
λ̇ we arrive at:

M e
ijkl

ε̃kl,j − ∂F
∂σij

M e
ijkl

∂F
∂σkl

−∂F
∂λ

+ ∂F
∂σij

M e
ijkl

∂F
∂σkl

ε̃kl,j +
∂F
∂λ̇

−∂F
∂λ

+ ∂F
∂σij

M e
ijkl

∂F
∂σkl

˙̃εvpkl,j

 = ρ¨̃ui, (A.1.28)
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rewriting ˙̃εvpkl = ˙̃εkl −M e−1
ijkl

˙̃σij :

M e
ijkl

ε̃kl,j − ∂F
∂σij

M e
ijkl

∂F
∂σkl

−∂F
∂λ

+ ∂F
∂σij

M e
ijkl

∂F
∂σkl

ε̃kl,j +
∂F
∂λ̇

−∂F
∂λ

+ ∂F
∂σij

M e
ijkl

∂F
∂σkl

˙̃εkl,j −
∂F
∂λ̇
M e−1

ijkl

−∂F
∂λ

+ ∂F
∂σij

M e
ijkl

∂F
∂σkl

˙̃σij,j

 = ρ¨̃ui,

(A.1.29)

inserting finally (4.3) we obtain:

M e
ijkl

ε̃kl,j − ∂F
∂σij

M e
ijkl

∂F
∂σkl

−∂F
∂λ

+ ∂F
∂σij

M e
ijkl

∂F
∂σkl

ε̃kl,j +
∂F
∂λ̇

−∂F
∂λ

+ ∂F
∂σij

M e
ijkl

∂F
∂σkl

˙̃εkl,j −
∂F
∂λ̇
M e−1

ijkl

−∂F
∂λ

+ ∂F
∂σij

M e
ijkl

∂F
∂σkl

ρ
...
ũ i

 = ρ¨̃ui.

(A.1.30)

A.1.2.1 1D Example: shearing of a viscous Cauchy layer

We proceed in deriving the perturbed linear momentum equation for the shearing of a
1D elasto-visoplastic Cauchy layer. The basic kinematic equations and the constitutive
relations with the von Mises yield criterion with linear strain and strain-rate harden-
ing/softening, are given as follows:

F (τ, λ, λ̇) =
√

3τ − τ̄(λ)− ηF0λ̇, (A.1.31)
γ̇ = γ̇el + γ̇vp, (A.1.32)

γ̇vp = λ̇
∂F

∂τ
= F

ηF0

∂F

∂τ
, (A.1.33)

τ̄(λ) = F0 +Hλ = F0 + H√
3
γvp, (A.1.34)

where τ is the shear stress, γ = 2ε12 = 2ε21 = u2,1 is the engineering shear strain, F0 is
the initial yield strength. H is a hardening/softening material parameters with units of
pressure (MPa), while η is the viscosity parameter with units of time s.

Applying the procedure described above and taking advantage of the viscosity poten-
tial F (τ, λ, λ̇) assuming the consistency condition Ḟ = 0, we obtain the following:

Ḟ = ∂F

∂τ
τ̇ + ∂F

∂λ
λ̇+ ∂F

∂λ̇
λ̈ = ∂F

∂τ
τ̇ − ∂τ̄

∂λ
λ̇− ηF0λ̈, (A.1.35)

τ̇ = G (γ̇ − γ̇vp) . (A.1.36)
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Multiplying the above equation (A.1.36) with ∂F
∂τ

and replacing ∂F
∂τ
τ̇ we get:

τ̇
√

3 = G (γ̇ − γ̇vp)
√

3, (A.1.37)

ηF0λ̈+ ∂τ̄

∂λ
λ̇ = G (γ̇ − γ̇vp)

√
3, (A.1.38)

separating λ̇ we obtain:

λ̇ = Gγ̇
√

3
−∂τ̄
∂λ

+ 3G
− ηF0λ̈

−∂τ̄
∂λ

+ 3G
, (A.1.39)

substituting λ̇ to the original equation for the calculation of τ̇ :

τ̇ = G

(
γ̇ − 3G

∂τ̄
∂λ

+ 3G

)
+ GηF0

√
3λ̈

∂τ̄
∂λ

+ 3
, (A.1.40)

substituting 1
G
∂τ̄
∂λ

= H
G

= h̄ (linear mechanical softening) we arrive finally at:

τ̇ = G

(
h̄

h̄+ 3

)
γ̇ + ηF0

h̄+ 3
γ̈vp. (A.1.41)

It should be noted that the results derived until now can be also obtained using the
Perzyna model instead of the consistency approach in the case of monotonic loading (no
stress reversal, so that the rate dependent unloading overstress of the Perzyna model
is not taken into account). Using the Perzyna material we assume the existence of the
viscoplastic potential Ω(τ, λ, λ̇) which constitutes a region outside the yield function that
the stress vector τ is indeed applicable. The time derivative of the yield function F (τ, λ)
is then given as:

Ḟ = ηF0λ̈ = ∂F

∂τ
τ̇ + ∂F

∂λ
λ̇ = ∂F

∂τ
τ̇ − ∂τ̄

∂λ
λ̇. (A.1.42)
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Using the same arguments as before, (multiplying (A.1.36) by ∂F
∂τ

and substituting (A.1.42))
we arrive at the same expression for λ̇ and τ̇ . Perturbing and replacing (A.1.41) in equation
(4.3) we obtain:

G
h̄

3 + h̄

∂γ̃

∂x
+ ηF0

3 + h̄

∂ ˙̃γvp
∂x

= ρ¨̃u, (A.1.43)

G
h̄

3 + h̄

∂γ̃

∂x
+ ηF0

3 + h̄

(
∂ ˙̃γ
∂x
− 1
G

∂ ˙̃τ
∂x

)
= ρ¨̃u, (A.1.44)

G
h̄

3 + h̄

∂2ũ

∂x2 − ρ
∂2ũ

∂t2
+ ηF0

(3 + h̄)

(
∂3ũ

∂t∂x2 −
1
v2
s

∂3ũ

∂t3

)
= 0, (A.1.45)

Gh̄
∂2ũ

∂x2 −
∂2ũ

∂t2
(3 + h̄)G

v2
s

+ η̄vpG

(
∂3ũ

∂t∂x2 −
1
v2
s

∂3ũ

∂t3

)
= 0, (A.1.46)

where vs =
√

G
ρ
, η̄vpG = ηF0.

A.1.2.2 Normalizing the 1D elasto-viscoplastic wave equation.

We consider ū = u
uc
, t̄ = t

tc
, x̄ = x

xc
. Applying and differentiating into (A.1.46) we arrive

at: (
x2
c

v2
st

2
c

∂3ū

∂t̄3
− ∂3ū

∂x̄2∂t̄

)
η̄vp

tch̄
+ x2

c

v2
st

2
c

3 + h̄

h̄

∂2ū

∂t̄2
− ∂2ū

∂x̄2 = 0. (A.1.47)

Introducing the characteristic velocity vc = xc

tc
, the result is written as:

(
v2
c

v2
s

∂3ū

∂t̄3
− ∂3ū

∂x̄2∂t̄

)
η̄vp

tch̄
+ v2

c

v2
s

3 + h̄

h̄

∂2ū

∂t̄2
− ∂2ū

∂x̄2 = 0. (A.1.48)

A.1.2.3 Dispersion relationship

Inserting into the normalized equation (A.1.48) the nondimensional solution assuming
both k̄, ω̄ ∈ C :

ū(x̄, t̄) = exp i(k̄x̄− ω̄t̄), (A.1.49)

we arrive at:

h̄k̄2tcv
2
s − ik̄2v2

s η̄
vpω̄ − (3 + h̄)t̄cv2

c ω̄
2 + iv2

c η̄
vpω̄3 = 0. (A.1.50)
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Appendix B

APPENDIX B

B.1 Behavior of the dispersion relation near infinity.

B.1.1 Properties of the inverse transform ω̄ = 1
z

We present here in more detail the inverse transform ω̄ = 1
z
based on Brown, Churchill,

et al., 2009. The inverse transform allows the analysis of the behavior of a function close
to ∞ by inverting the independent variable. Therefore, as the independent variable ω̄
tends to ∞, its inverse transform z tends to 0. More specifically the points lying outside
the unit circle centered at the origin of the ω̄ complex plane are mapped inside the circle,
while the opposite is true for the points initially inside the unit circle. The points lying
on the unit circle remain on the circle.

When a point ω̄ = ω̄r + ω̄ii is the image of a nonzero point z = zr + zii under the
transformation ω̄ = 1/z, the relationship between the real and imaginary parts in original
ω̄ and transformed z complex planes respectively are given as:

zr = ω̄r
ω̄2
r + ω̄2

i

and zi = − ω̄i
ω̄2
r + ω̄2

i

, (B.1.1)

ω̄r = zr
z2
r + z2

i

and ω̄i = − zi
z2
r + zi

. (B.1.2)

When A,B,C,D ∈ R are real numbers satisfying the condition B2+C2 > 4AD, the equation

A(z2
r + z2

i ) + Bzr + Czi + D = 0 (B.1.3)

represents a circle or a line on the complex plane z. In particular, when A = 0 the equation
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of a line is returned while when A 6= 0 by completing the squares we get:

(
zr + B

2A

)2

+
(
zi + C

2A

)2

=

√
B2 + C2 − 4AD

2A

 . (B.1.4)

The above equation represents a circle under the condition mentioned previously. Similarly
by substitution of zr, zi we find:

D(ω̄2
r + ω̄2

i ) + Bω̄r − Cω̄i + A = 0. (B.1.5)

From the equations (B.1.3),(B.1.5) above it is clear that:

— A circle in the z-plane (A 6= 0) not passing through the origin (D 6= 0) is trans-
formed into a circle not passing through the origin in the ω̄-plane.

— A circle in the z-plane (A 6= 0) passing through the origin (D = 0) is transformed
into a line not passing through the origin in the ω̄-plane.

— A line in the z-plane (A = 0) not passing through the origin (D 6= 0) is transformed
into a circle passing through the origin in the ω̄-plane.

— A line in the z-plane (A 6= 0) passing through the origin (D = 0) is transformed
into a line passing through the origin in the ω̄-plane.

From the above remarks we conclude that in the two complex planes the directions of the
real and imaginary axes coincide. Furthermore every line passing from the origin retains
its direction.

For our analyses we need to examine the behavior of k̄1,2(ω̄) along lines of constant
ω̄r = c1, ω̄i = c2. The geometrical loci on the complex z-plane are given by equations:

(
zr −

1
2c1

)2
+ z2

i =
( 1
c1

)2
, (B.1.6)

z2
r +

(
zi + 1

2c2

)2
=
( 1
c2

)2
. (B.1.7)

We notice that due to the inverse transform properties, lines parallel to the real axis Re,
lying in one half of the complex ω̄-plane are transformed into circles passing through the
origin, whose center lies on the opposite imaginary half of the z-plane.
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B.1.2 Application of the inverse mapping describing the point
at complex infinity.

Applying this mapping in equation (4.25) yields:

k̄1(z) = V
1
z

(
3 + h̄

iT
− 1
z

) 1
2
(
h̄

iT
− 1
z

)− 1
2

, (B.1.8)

where the following relations hold between the components of ω̄, z in their respective
complex plane:

zr = ω̄r
ω̄2
r + ω̄2

i

, zi = −ω̄i
ω̄2
r + ω̄2

i

. (B.1.9)

Taking the limit as z → 0 and expanding the root terms as Taylor series around z → 0
we obtain:

lim
z→0

k̄1

(1
z

)
= V

1
z

1− 1
2

3 + h̄

iT
z + 1

8

(
3 + h̄

iT

)2

z2 + ...

 1

1−
(

1
2

3+h̄
iT
z − 1

8

(
3+h̄
iT

)2
z2 + ...

) .
(B.1.10)

We notice the pattern in the denominator of the last term that we can replace with the
Taylor series of 1

1−x around x→ 0 leading to:

lim
z→0

k̄1 (z) =V 1
z

1− 1
2

3 + h̄

iT
z + 1

8

(
3 + h̄

iT

)2

z2 + ...

1 +
1

2
3 + h̄

iT
z + 1

8

(
3 + h̄

iT

)2

z2 + ...

 +

+
1

2
3 + h̄

iT
z + 1

8

(
3 + h̄

iT

)2

z2 + ...

2

+ ...

 .
(B.1.11)

From the above polynomial only the factor 1
z
tends to ∞, therefore z = 0⇔ ω̄P2 →∞ is

a pole of first order Brown, Churchill, et al., 2009.

For the real part of k̄ at the pole ω̄P2 as zr tends to ∞ applying de l’ Hopital rule
we can prove:
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lim
z̄r→0+

Re
[
k̄1,2(z̄r + βi)

]
= lim

z̄r→0+

±V 1 4

√√√√√(3 + h)2 + T12

z2
r

h2 + T12

z̄2
r

cos
(

1
2 arg

(
3+h− iT 1

z̄r

h− iT 1
z̄r

))
z̄r

 = ±∞,

(B.1.12)

where β = 0 in the case of traveling waves.
Furthermore, for the imaginary part of k̄(z) at the pole ω̄P2 as zr tends to∞ we can prove
that k̄i → ±c ∈ R using the de l’ Hôpital rule:

lim
z̄r→0

Im
[
k̄1,2(z̄r + 0i)

]
= lim

z̄r→0

±V 1 4

√√√√√(3 + h)2 + T12

z2
r

h2 + T12

z̄2
r

sin
(

1
2 arg

(
3+h− iT 1

z̄r

h− iT 1
z̄r

))
z̄r

 = ±c

(B.1.13)

The value of k̄i(ω̄) is independent of whether we move towards the left or the right of the
real axis ω̄r. It only depends on the solution branch k̄1(ω̄), or k̄2(ω̄) we follow. (see Figure
4.9).
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Appendix C

APPENDIX C

C.1 Stability and localization of a monochromatic si-
nusoidal propagating pulse

The stability of the homogeneous deformation for a strain-softening (h < 0) strain-rate
hardening (g > 0) material, was examined based on the amplification (unstable) or
attenuation (stable) of an arbitrary perturbation. When looking only at the case of a
monochromatic propagating sinusoidal pulse, two velocities could be identified. These are
the amplitude velocity, ci, and the phase velocity, cf (see section 4.3). Examining equation
(4.22) we notice that the amplitude term can be described as an exponential function in
x̄ traveling along x̄-axis with velocity ci. Similarly, the periodic part which travels with a
velocity of cr. A monochromatic sinusoidal pulse, whose amplitude varies with time and
distance, is given as:

p̄(x̄, t̄) =
[
H(k̄rx̄− ω̄r t̄)−H(k̄rx̄− ω̄r t̄− 2π)

]
ū exp (−k̄ix̄+ ω̄it̄) exp (i(k̄rx̄− ω̄r t̄)),

(C.1.1)

p̄(x̄, t̄) =
[
H(x̄− cr t̄)−H(x̄− cr t̄− 2π)

]
ū exp

(
−(x̄− cit̄)

)
exp (i(x̄− cr t̄)).

(C.1.2)

The Heaviside terms H( · ) are multiplied to the original monochromatic solution to
indicate the start and end of the monochromatic signal. Therefore, they travel with the
velocity of the periodic wave. In this way we can describe the amplitude that corresponds
to the wavelength of the pulse at a specific time. Based on equation (C.1.2) the relationship
between the velocities of the two exponential terms comprising the pulse is indicative of
the stability and possible strain localization of the solution. In particular the following
cases are possible.

— ci < 0, cr > 0
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— ci > 0, cr > 0
— ci > 0, cr < 0
— ci < 0, cr < 0

The negative signs in ci, cr refer to the wave moving opposite to the positive direction
defined by the positive x̄-axis. In the first case described above ci < 0, cr > 0 (see left part
of Figure C.1), the perturbation is moving towards the positive part of the x-axis while
the amplitude towards the negative. Due to the construction of the amplitude function
(negative exponential) this has as an effect that every perturbation is attenuating with
time. Therefore stability of the reference solution of homogeneous deformation is ensured
and strain localization cannot take place.

In the second case both amplitude and phase are moving towards the positive part of
the x̄-axis as shown on the right part of Figure C.1 and the left part of Figure C.2. In
this case the behavior of the perturbation is defined by the relative magnitudes of the
velocities |ci|, |cr|. If |ci| < |cr| then the velocity of the negative exponential is lower than
that of the perturbation. Therefore, the amplitude of the perturbation is attenuated and
the reference solution is stable (see right part of Figure C.1). In the opposite case, where
the perturbation travels slower than the amplitude velocity, the perturbation grows, ren-
dering the reference solution unstable (see left part of Figure C.2). Since the amplitude
is increasing the fastest at the peak behind the pulse, displacement is localizing close to
the tip and localization to the smallest mesh dimension is inevitable.

In the third case when ci < 0, cr < 0, again the amplitude function and the pertur-
bation are traveling towards the negative direction (see left part of Figure C.2, right part
of Figure C.3). Again the question of stability and localization is dependent on the rela-
tive magnitudes of the two velocities |ci|, |cr|. In this case, if the perturbation is traveling
slower than the amplitude |cr| < |ci| then the amplitude of the perturbation is decreasing
and no localization happens (see left part of Figure C.3). When we consider the case
where |cr| > |ci| then the amplitude of the perturbation is increasing exponentially. The
amplitude is increasing the fastest for the tip closer to the front of the pulse and localiza-
tion to the smallest wavelength cannot be avoided (see right part of Figure C.2.

In the final case ci > 0, cr < 0, the perturbation is moving towards the negative part
of the x̄-axis while the amplitude towards the positive (see right part of Figure C.3). Due
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Figure C.2 – Conditions for the growth of the perturbation. Left: Evolution of the per-
turbation (blue curve) and its amplitude (red curve) at different times for ci > cr > 0.
Right:Evolution of the perturbation (blue curve) and its amplitude (red curve) at different
times for 0 > ci > cr. The propagating pulse is the multiplication of the red and blue
curves.

to the negative exponential spatial profile of the amplitude function, the amplitude of the
perturbation is always increasing the fastest at the tip in front of the pulse. Therefore, in
this final case, the solution is unstable and strain localization is possible with the smallest
possible wavelength.

Figure C.1 – Conditions for decaying perturbation. Left: Evolution of the perturbation
(blue curve, exp (i((̄x)− cr t̄)) and its amplitude (red curve, exp (−(x̄− cit̄))) at different
times for ci < 0 < cr. Right: Evolution of the perturbation (blue curve) and its amplitude
(red curve) at different times for cr > ci > 0. The propagating pulse is the multiplication
of the red and blue curves.
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Figure C.3 – Conditions for the decay and growth of the perturbation. Left: Evolution
of the perturbation (blue curve) and its amplitude (red curve) at different times for
0 > cr > ci, decay of perturbation. Right: Evolution of the perturbation (blue curve) and
its amplitude (red curve) at different times for ci > 0 > cr, growth of perturbation. The
propagating pulse is the multiplication of the red and blue curves.
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Appendix D

APPENDIX D

D.1 Constitutive relations

The devolopement of the thermo-elasto-plastic constitutive ralations that follow is based
on J. Sulem et al., 2011 and Rattez, Stefanou, Sulem, Veveakis, et al., 2018b. Since
we follow a small strain approach, the strain rate and the curvature rate tensor can be
decomposed into their elastic, plastic and thermal parts. Large displacements are then
taken into account through an updated Lagrangian approach. In what follows we make
the assumption that the curvature tensor stays unaffected by a change of temperature.
Therefore strain rate and curvature rate tensors are decomposed as Lemaitre et al., 2020:

γ̇ij =γ̇eij + γ̇pij + γ̇thij ,

κ̇ij =κ̇eij + κ̇pij (D.1.1)

Thermal strain rates can be expressed as γ̇thij = αṪ δij, where α is the thermal expansion
coefficient. For the calculation of the plastic strain rate, we first define a yield function
F = F (τij, σij, γp, εpv), which we assume to be dependent only on the first and second
stress tensor invariants as well as the deviatoric and spherical parts of the accumulated
plastic strain tensor F = F (τ, σ, γp, εpv). A more complete approach in a thermodynamical
framework that takes into account grain breakage and the consequent evolution of the
internal lengths can be found in Collins-Craft et al., 2020. Following standard arguments
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of elasto-plasticity and by use of the consistency condition Ḟ we obtain:

τij = Ce
ijkl

(
γ̇ij − γ̇pij − γ̇thij

)
, (D.1.2)

µij = M e
ijkl

(
κ̇ij − κ̇pij

)
, (D.1.3)

γ̇pij = γ̇p
∂Q

∂τij
, (D.1.4)

κ̇pij = γ̇p
∂Q

∂µij
, (D.1.5)

Ḟ = ∂F

∂τij
τ̇ij + ∂F

∂µij
µ̇ij + ∂F

∂γp
γ̇p + ∂F

∂εpv
ε̇pv = 0, (D.1.6)

Ḟ = ∂F

∂τ
τ̇ + ∂F

∂σ
σ̇ + ∂F

∂γp
γ̇p + ∂F

∂εpv
ε̇pv = 0. (D.1.7)

Where by Q, γ̇p we denote the plastic potential and the plastic multiplier respectively. We
note that in the present context a common criterion for both Cosserat stresses and mo-
ments has been assigned to the material. We continue by defining the hardening modulus
Hs as:

Hs =− ∂F

∂γp
. (D.1.8)

Assuming a linear dependence of the yield and plastic potential functions to τ, σ as is the
case in a Drucker-Prager material, which we will later use in the numerical analyses, the
following relations hold for the plastic multiplier and the rate of volumetric plastic strain:

γ̇p = γ̇p and ε̇pv = βγ̇p (D.1.9)

where β is the dilatancy angle. Multiplying (D.1.2) by ∂F
∂τij

and (D.1.3) by ∂F
∂µij

then
adding together and taking advantage of the fact that ∂F

∂τij
τ̇ij + ∂F

∂µij
µ̇ij = ∂F

∂τ
τ̇ + ∂F

∂σ
σ̇, the

consistency condition yields:

γ̇p = < 1 >
Hp

(
∂F

∂τij
Ce
ijkl(γ̇kl − αṪ δkl)

)
+ ∂F

∂µij
M e

ijklκ̇kl. (D.1.10)

Simplifying the notation we get:

γ̇p = < 1 >
Hp

(bFkl(γ̇kl − αṪ δkl) + bFklκ̇kl), (D.1.11)
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with

Hp = ∂F

∂τij
Ce
ijkl

∂Q

∂τkl
+ ∂F

∂µij
M e

ijkl

∂Q

∂µkl
+Hs (D.1.12)

< 1 >=

1 if F = 0 and γ̇p > 0

0 otherwise
(D.1.13)

and

bFkl = ∂F

∂τijCe
ijkl

, (D.1.14)

bQij = Ce
ijkl

∂Q

∂τkl
, (D.1.15)

bFMkl = ∂F

∂µijM e
ijkl

, (D.1.16)

bQMij = M e
ijkl

∂Q

∂µkl
. (D.1.17)

(D.1.18)

Using (D.1.4),(D.1.5) and (D.1.11) in (D.1.2) we obtain:

τ̇ij = Cep
ijklγ̇kl +Dep

ijklκ̇kl + Eep
ijklṪ δkl (D.1.19)

µ̇ij = M ep
ijklκ̇kl + Lepijklγ̇kl +N ep

ijklṪ δkl (D.1.20)

with

Cep
ijkl = Ce

ijkl −
< 1 >
Hp

bQijb
F
kl,

Dep
ijkl = −< 1 >

Hp

bQijb
FMkl,

Eep
ijkl = −

(
Ce
ijkl −

< 1 >
Hp

bQijb
F
kl

)
,

Lepijkl = −< 1 >
Hp

bQMijb
F
kl,

M ep
ijkl =

(
M e

ijkl −
< 1 >
Hp

bQMijb
FMkl

)
,

N ep
ijkl = < 1 >

Hp

bQMijb
F
kl. (D.1.21)
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Appendix E

APPENDIX E

E.1 Derivation of the coupled pore fluid pressure dif-
fusion kernel.

In this section we derive the coupled pore fluid pressure diffusion kernel for the cases of a
bounded domain subjected to a stationary Dirac load and an unbounded domain under
a moving Dirac load. Our procedure follows the discussion in Lee and Delaney, 1987
where the same problem was solved for a stationary Dirac thermal load on an unbounded
domain.

E.1.1 Stationary thermal load, coupled pore fluid pressure Green’s
kernel for a bounded domain.

In the case of the bounded domain we proceed by applying the method of separation
of variables and then expanding the solution to a Fourier series. We note here that the
coupled system of pressure and temperature diffusion equations have the same form of
linear partial differential operators and boundary conditions and therefore their solution
belongs to the same space of Sturn-Liouville problems. In essence the two solutions have
the same eigenfunctions. In the case of the bounded domain the Temperature diffusion
equation has the solution given in Cole et al., 2010:

T (x, t) =
∞∑
n=1

2
HρC

∫ t

0

∫ ∞
−∞

g(x′, t′) exp
[
−λ2cth(t− t′)

]
sin (λnx) sin (λnx′)dx′dt′,

(E.1.1)

where λn is the Sturm-Liouvile eigenfunction coefficient, λn = nπ
H , H is the length of the

bounded domain. The eigencondition for the homogeneous Dirichlet boundary condtitions
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are given by:

sin
(
nπ

H H
)

= 0, λn = nπ

H , n = 1, 2, ... (E.1.2)

We note here that the homogeneous pressure diffusion partial deifferential equation on
the above bounded domain has the same boundary conditions. Therefore, the pore fluid
pressure solution can be written with the same eigenfunctions as above. Replacing the
pore fluid pressure eigenfunction expansion p̃(x, t) = p(x, t) − p0 = ∑∞

i=n p̃n sin nπx
H into

the coupled pressure diffusion partial differential equation,

∂p̃(x, t)
∂t

− chy
∂2p̃(x, t)
∂x2 = Λ∂T (x, t)

∂t
,

p̃(x, 0) = 0,
p̃(0, t) = p̃(H, t) = 0, (E.1.3)

we obtain:
∞∑
n=1

∂p̃n(t)
∂t

sin λnx+ chy
∞∑
n=1

λ2
np̃n(t) sinλnx = 2Λ

HρC

∞∑
n=1

sin λnx
∂Tn(t)
∂t

, (E.1.4)

where Tn(t) is given as:

Tn(t) =
∫ t

0

∫ ∞
−∞

g(x′, t′) exp
[
−λ2

ncth(t− t′)
]

sin λnx′dx′dt′.

Isolating each eigenfunction sin λnx we arrive at the following first order linear differential
equations involving the unknown coefficient p̃n(t) and the loading coefficient Tn(t) for each
particular component of the solution series expansion.

∂p̃n(t)
∂t

+ chyλ
2
np̃n(t) = 2Λ

HρC
∂Tn(t)
∂t

, t ≥ 0. (E.1.5)

Applying the Laplace transformation in the field of time:

sP̃n(s) + chyλ
2
nP̃n(s) = 2Λ

HρC
s

s+ λ2
ncth

∫ ∞
−∞

G(x′, s) sinλnx′dx′. (E.1.6)

P̃n(s) = 2Λ
HρC

s

(s+ λ2
ncth)(s+ λ2

nchy)

∫ ∞
−∞

G(x′, s) sinλnx′dx′ (E.1.7)
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Applying the inverse of the Laplace transform gives us:

p̃n(x, t) = 2Λ
HρC

∫ t

0

∫ ∞
−∞

g(x′, t′)chy exp [−λ2
nchy(t− t′)]− cth exp [−λ2

ncth(t− t′)]
chy − cth

sin λnx′dx′dt′

(E.1.8)

Finally, in the series expansion p̃(x, t) = ∑∞
n=1 p̃n(t) sinλnx we move the summation under

the integral sign and we obtain:

p̃(x, t) = 2Λ
HρC

∫ t

0

∫ ∞
−∞

g(x′, t′)
∞∑
n=1

chy exp [−λ2
nchy(t− t′)]− cth exp [−λ2

ncth(t− t′)]
chy − cth

sin λnx sin λnx′dx′dt′
.

(E.1.9)

We recognize the term in the second line of equation (E.1.9) as the Green’s function kernel
of the coupled pressure diffusion partial differential equation. This expression has the
added advantage that the influence of the thermal load on the pressure p̃(x, t) = p(x, t)−p0

solution is straightforward. Noticing that for a general diffusion problem on a bounded
domain under homogeneous Dirichlet boundary conditions the Green’s function kernel is
given by:

GX11(x, x′, t− t′, c) = 2
H

∞∑
n=1

exp
[
−λ2

nc
t− t′

H2

]
sin λnx sin λnx′. (E.1.10)

The Green’s function kernel of the coupled pressure differential equation on the bounded
domain is then given as:

GX11(x, x′, t− t′, cth, chy) = chyGX11(x, x′, t− t′, chy)− cthGX11(x, x′, t− t′, cth)
chy − cth

.

(E.1.11)

Finally, the pressure solution can be given as:

p(x, t)− p0 = p̃(x, t) = Λ
ρC

∫ t

0

∫ ∞
−∞

g(x′, t′)GX11(x, x′, t− t′, cth, chy)dx′dt′ (E.1.12)

This result agrees with the formula provided in Lee and Delaney, 1987; Rice, 2006a for
the unbounded domain.
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E.1.2 Moving thermal load, coupled pore fluid pressure Green’s
kernel for a unbounded domain.

Here, we present the derivation of the Green’s function kernel of the coupled pressure
diffusion equation for an unbounded domain under moving thermal load. Note here, that
the Green’s function kernel is independent of the type of loading (stationary or moving),
it depends on the kind of the differential operator and the boundary conditions. What
differs here in the form of the Green’s function kernel is the velocity dependence, since we
want to connect the pressure evolution not with the stationary Green’s function but with
the moving Dirac thermal load, that can be written as g(x, t) = δ̇

ρC
τ(t)δ(x−vt). In essence

we need to only prescribe the velocity dependence of x′ = f(v, t′) in the Green’s function
kernel for the unbounded domain under Dirichlet conditions GX00(x, x′, (t − t′), chy, cth).
We provide a full description and then compare the results. The coupled system of tem-
perature and pore fluid pressure diffusion equations in the unbounded domain is given
by:

∂T (x, t)
∂t

− cth
∂2T (x, t)
∂x2 = δ̇

ρC
τ(t)δ(x− vt), −∞ < x <∞, 0 < t <∞

∂p̃(x, t)
∂t

− chy
∂2p̃(x, t)
∂x2 = Λ∂T (x, t)

∂t
, −∞ < x <∞, 0 < t <∞,

T (x, 0) = 0,
limT (x, t)‖x=−∞,x=∞ = 0,
p̃(x, 0) = 0,
lim p̃(x, t)‖x=−∞,x=∞ = 0 (E.1.13)

To account for the moving load we perform a change of variables on the original system
(E.1.13) where ξ = x − vt, η = t so that we attach a frame of reference to the moving
load. In this case and by suitable application of the chain rule we can write:

∂T (ξ, η)
∂η

− v∂T
∂ξ
− cth

∂2T (ξ, η)
∂ξ2 = 1

ρC
τ(t)δ(ξ), −∞ < ξ <∞, 0 < η <∞,

∂p̃(ξ, η)
∂eta

− v∂p̃(ξ, η)
∂ξ

− chy
∂2p̃(ξ, η)
∂ξ2 = Λ∂T (ξ, η)

∂η
, −∞ < ξ <∞, 0 < η <∞

T (ξ, 0) = 0,
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limT (ξ, η)‖ξ=−∞,ξ=∞ = 0,
p̃(ξ, 0) = 0,
lim p̃(ξ, η)‖ξ=−∞,ξ=∞ = 0 (E.1.14)

Applying a Fourier transform in space and a Laplace transform in time on the system of
partial differential equations (??) we obtain:

sT (k, s)− v(ik)T (k, s)− cth(ik)2T (k, s) = 1
ρC

τ(s),

sP̃ (k, s)− v(ik)P̃ (k, s)− cth(ik)2P̃ (k, s) = ΛsT (k, s). (E.1.15)

Solving the above algebraic system (??) we obtain:

T (k, s) = 1
ρC

τ(s)
s− v(ik) + cthk2 , (E.1.16)

P̃ (k, s) = Λτ(s)
ρC

s

(s− v(ik) + cthk2)(s− v(ik) + chyk2) (E.1.17)

Inverting the Laplace and then the Fourier transform yields:

T (x, t) = δ̇

ρC

∫ t

0

τ(t′)
2
√
πcth(t− t′)

exp
[
− (x− vt′)2

4cth(t− t′)

]
dt′, (E.1.18)

p̃(x, t) = Λδ̇
ρC(chy − cth)

∫ t

0

τ(t′)
2
√
π(t− t′)

(
√
chy exp

[
− (x− vt′)2

4chy(t− t′)

]
−
√
cth exp

[
− (x− vt′)2

4cth(t− t′)

])

dt′.

By inspection we note that these are the same expressions as the ones presented in (6.17),
where x′ was replaced by x′ = vt′ and c = cth, or c = chy respectively.
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Appendix F

APPENDIX F

F.1 Frictional behavior for a traveling thermal load
on a bounded domain.

We continue our analysis by applying a traveling instability on the bounded domain.
Again we assume that the traveling plastic strain localization is wholly contained on a
mathematical plane moving with a velocity v. The plastic strain rate is allowed to travel
inside the plastified region of the layer h. We note that the plastified region h does not
contain the whole layer. This is also the case in the non linear analyses of chapter 5,
where due to the influence of the layer’s boundary conditions the plastified region is
smaller than the fault gouge thickness. The integral equation for the determination of the
fault’s frictional behavior in this case is given by:

τ(t) = f(σn − p0)− fΛδ̇
ρC(chy − cth)

∫ t

0
τ(t′)GX11(x, vt′, t− t′, cth, chy))

∥∥∥
x=0.5L

dt′,

(F.1.1)

where,

GX11(x, vt′, t− t′, cth, chy) =
∞∑
m=1

chy exp
[
−m2π2chy

t− t′

H2

]
sin

(
mπ

vt

H

)
sin

(
mπ

vt′

H

)

−
∞∑
m=1

cth exp
[
−m2π2cth

t− t′

H2

]
sin

(
mπ

vt

H

)
sin

(
mπ

vt′

H

)
.

(F.1.2)

We rewrite equation (F.1.1) with the help of αm = mπv
H , replacing the sin (αmt),sin (αmt′)

terms, with the help of the exponential trigonometric identity, sinω = exp (iω)−exp (−iω)
2i ,
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distributing the exponentials we arrive at:

τ(t) = f(σn − p0)

− fΛδ̇
2HρC(chy − cth)

∫ t

0
τ(t′)

∞∑
m=1

K(v, t− t′,m) exp (iαm(t+ t′))dt′

− fΛδ̇
2HρC(chy − cth)

∫ t

0
τ(t′)

∞∑
m=1

K(v, t− t′,m) exp (−iαm(t+ t′))dt′

− fΛδ̇
2HρC(chy − cth)

∫ t

0
τ(t′)

∞∑
m=1

K(v, t− t′,m) exp (iαm(t− t′))dt′

− fΛδ̇
2HρC(chy − cth)

∫ t

0
τ(t′)

∞∑
m=1

K(v, t− t′,m) exp (−iαm(t− t′))dt′.

(F.1.3)

where K(v, t,m) = chy exp
[
−α2

mchy

v2 (t)
]
− cth exp

[
−α2

mcth

v2 (t− t′)
]
, we note here that t+ t′

can be expressed as 2t − (t − t′), making use of the exponential identities the above
expression can be written as:

τ(t) = f(σn − p0)

−
∞∑
m=1

fΛδ̇ exp (2iαmt)
2HρC(chy − cth)

∫ t

0

∞∑
m=1

τ(t′)K1(v, t− t′,m)dt′

−
∞∑
m=1

fΛδ̇ exp (−2iαmt)
2HρC(chy − cth)

∫ t

0

∞∑
m=1

τ(t′)K2(v, t− t′,m)dt′

−
∞∑
m=1

fΛδ̇
2HρC(chy − cth)

∫ t

0

∞∑
m=1

τ(t′)chyK1(v, t− t′,m)dt′

−
∞∑
m=1

fΛδ̇
2HρC(chy − cth)

∫ t

0

∞∑
m=1

τ(t′)chyK2(v, t− t′,m)dt′,

(F.1.4)

where:

K1(v, t,m) = chy exp
[
−
(
α2
mchy
v2 + iαm

)
(t)
]
− cth exp

[
−
(
α2
mcth
v2 + iαm

)
(t)
]
,

K2(v, t,m) = chy exp
[
−
(
α2
mchy
v2 − iαm

)
(t)
]
− cth exp

[
−
(
α2
mcth
v2 − iαm

)
(t)
]
.

(F.1.5)

Now every term in the above summations corresponds to a convolution integral and the
modified CQM Z-Transform method can be applied. In contrast to previous cases we note
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that the first two summation terms contain an exponential term to an imaginary power
(exp 2iαmt) that indicates an oscillation in time.

The convolution integrals defined in equation (F.1.4) require a special handling during
the application of the CQM method. We start for equation (F.1.4). We start by rewriting
the kernel with the help of its inverse Laplace transform.

τ(t) = f(σn − p0)

− fΛδ̇
4LρCπi

∞∑
m=1

∫ γ+i∞

γ−i∞

∫ t

0
τ(t′)G1

X11(s,m) exp [−s(t− t′) + iαm2t]dt′ds

− fΛδ̇
4LρCπi

∞∑
m=1

∫ γ+i∞

γ−i∞

∫ t

0
τ(t′)G2

X11(s,m) exp [−s(t− t′)− iαm2t]dt′ds

− fΛδ̇
4LρCπi

∞∑
m=1

∫ γ+i∞

γ−i∞

∫ t

0
τ(t′)G1

X11(s,m) exp [−s(t− t′)]dt′ds

− fΛδ̇
4LρCπi

∞∑
m=1

∫ γ+i∞

γ−i∞

∫ t

0
τ(t′)G2

X11(s,m) exp [−s(t− t′)]dt′ds

(F.1.6)

where G1
X11(s,m), G2

X11(s,m), G3
X11(s,m), G4

X11(s,m) are given by:

G1
X11(s,m) = 1

chy−cth

chy 1
s+

(
α2

mchy

v2 + iαm
) − cth 1

s+
(
α2

mcth

v2 + iαm
)
 , (F.1.7)

G2
X11(s,m) = 1

chy−cth

chy 1
s+

(
α2

mchy

v2 − iαm
) − cth 1

s+
(
α2

mcth

v2 − iαm
)
 . (F.1.8)

Here, for the first two terms in equation (F.1.6), we make the observation that the integrals
involving the quantities of (t − t′), t′ are solutions to the first order linear differential
equations:

dh1m(t)
dt

= (s+ 2αmi)h1m(t) + τ(t) exp [−2αmit], h1(0) = 0, t ≥ 0, (F.1.9)

dh2m(t)
dt

= (s− 2αmi)h2m(t) + τ(t) exp [2αmit], h2(0) = 0, t ≥ 0, (F.1.10)

while the integrals in the last two terms are solutions to the first order linear differential
equation (6.25). We apply next the Z-Transform to the sampled linear integral equation
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(F.1.6).

T (z) = f(σn − p0) z

z − 1 −
fΛδ̇

4LρCπi

( ∞∑
m=1

∫ γ+i∞

γ−i∞
G1
X11(s,m)H1(z,m)ds

+
∫ γ+i∞

γ−i∞
G2
X11(s,m)H2(z,m)ds

+
∫ γ+i∞

γ−i∞
G1
X11(s,m)H(z,m)ds

+
∫ γ+i∞

γ−i∞
)G2

X11(s,m)H(z,m)ds
)

To evaluate T (z) we need the expressions of H1(z,m), H2(z,m), H(z,m) as functions of
T (z). While the expression for H(z,m) remains the same as the one derived in the main
text (see equation (6.28)), the sampled differential equations (F.1.9),(F.1.10) at points
tn = n∆t are transformed with the help of the Z-Transform properties to:

z − 1
z∆t H1(z,m) = (s+ 2αm∆t i)H1(z,m) + T ( z

exp [2αm∆t i] ), (F.1.11)

z − 1
z∆t H2(z,m) = (s− 2αm∆t i)H2(z,m) + T ( z

exp [−2αm∆t i] ). (F.1.12)

The transformed auxiliary functions are given as:

H1(z,m) =
T ( z

exp [2αm∆t i])
z−1
z∆t − (s+ 2αm∆t i) , (F.1.13)

H2(z,m) =
T ( z

exp [−2αm∆t i])
z−1
z∆t − (s− 2αm∆t i) . (F.1.14)

Applying then into equation (F.1.11) we obtain:

T (z) = f(σn − p0) z

z − 1 −
fΛδ̇

4LρCπi

∞∑
m=1

(∫ γ+i∞

γ−i∞
G1
X11(s,m)

T ( z
exp [2αm∆t i])

z−1
z∆t − (s+ 2αm∆t i)ds

+
∫ γ+i∞

γ−i∞
G2
X11(s,m)

T ( z
exp [−2αm∆t i])

z−1
z∆t − (s− 2αm∆t i)ds+

∫ γ+i∞

γ−i∞
G1
X11(s,m) T (z)

z−1
z∆t − s

ds

+
∫ γ+i∞

γ−i∞
G2
X11(s,m) T (z)

z−1
z∆t − s

ds

)
.

(F.1.15)
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Applying the Cauchy residue theorem of complex analysis on equation (F.1.15) we get:

T (z) = f(σn − p0) z

z − 1 −
fΛδ̇

2HρC

∞∑
m=1

(
G1
X11

(
z − 1
z∆t − 2αm∆t i

)
T

(
z

exp [2αm∆t i]

)

+G2
X11

(
z − 1
z∆t + 2αm∆t i

)
T

(
z

exp [−2αm∆t i]

)
+G3

X11

(
z − 1
z∆t

)
T (z)

+G4
X11

(
z − 1
z∆t

)
T (z)

)
.

(F.1.16)

Contrary to the previous cases examined in the main text, in this case the equation
obtained is a functional equation, and the problem is not simplified. We make the following
observations:

• According to the value of αm = mπv
H we note that the denominators of the func-

tional terms lie on the unit circle of the complex z plane. This is a very important
information since for finding the inverse of the transformation we need to integrate
along a closed contour containing the origin. To simplify our calculations we can
take the contour to be a concentric circle to the unit circle in the z plane under
the term that we include all the poles of T (z). We can then evaluate the integral
by calculating the values of the functional expression at points coincident to the
scaled unit circle points used in the expression definition.

• It is always the kernel that controls the poles and branch cuts of T (z), the kernel
in this case has not changed from the one used in the bounded case, therefore the
same circle with radius of integration 1.1 is valid for the purposes of our analysis.

• By letting m increase, eventually we arrive at repeated values of the denomina-
tors in T ( z

exp 2αmi
), T ( z

exp−2αmi
). Because the transform has an inverse, the values of

T ( z
exp 2αmi

), T ( z
exp−2αmi

) have to lie on the same Riemann sheet. Moreover, our ker-
nel presented no branch cuts therefore, we don’t need to account for the possibility
of double values of T .

• As we apply the values around the unit circle increasing m on the above functional
expression, we see that we get extra m + k,m − k terms due to the form of the
equation. We note that according to the previous observations, they can safely be
neglected since the values on the unit circle constitute a k × k system of indepen-
dent unknowns and equations whose determinant is non zero.
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• Generalizing even more we can treat each of the different T ( z
exp 2αmi

), T ( z
exp−2αmi

)
scalings of T (z) as independent functions Ti(z). This way of reasoning produces a
system of unknown independent functions. By evaluating at the scaled points to
the unit circle the functional system reduces to the algebraic system defined above.

We know that our problem is stable and causal. This means that all of the potential
poles of T (z) must lie inside the unit circle, and the region of convergence of T (z) is
the whole z complex plain except the region interior to the unit circle. We choose to
integrate along a circle centered at the origin of the z plane with radius R = 1.1 m. We
choose to sample the points on the circle every ∆t = 0.0001 (s). Based on the observa-
tions above, we evaluate the functional equation (F.1.16) at the points along the circle
z = 1.1 exp [2αk∆t i] = 1.1 exp

[
2kπ v∆t

H i
]
. We note that when

(
k v∆t

H

)
is a whole num-

ber, our selection process will have traveled around the circle one time. For a first pass
around the circle we require that kmax = H

v∆t . Increasing k more than kmax− 1 will result
in a repetition of the algebraic equations due to the observations established above. In
this case the algebraic equations that will be produced by substitution to the functional
equation (F.1.16) won’t be independent. The following system of unknown points is found:

k = 0

T (1.1) = f(σn − p0) z

z − 1

∥∥∥∥∥
z=1.1

− Λδ̇
2HρC

∞∑
m=1

(
G1
X11(z, βm)

∥∥∥∥∥
z=1.1

T (1.1 exp [(β0 − βm)i])

+G2
X11(z, βm)

∥∥∥∥∥
z=1.1

T (1.1 exp [(β0 + βm)i])

+G3
X11(z, βm)

∥∥∥∥∥
z=1.1

T (1.1) +G4
X11(z, βm)

∥∥∥∥∥
z=1.1

T (1.1 exp [β0i])
)
.

(F.1.17)

k = 1

T (1.1 exp [β1i]) = f(σn − p0) z

z − 1

∥∥∥∥∥
z=1.1

− Λδ̇
2HρC

∞∑
m=1

(
G1
X11(z, βm)

∥∥∥∥∥
z=1.1

T (1.1 exp [(β1 − βm)i])
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+G2
X11(z, βm)

∥∥∥∥∥
z=1.1

T (1.1 exp [(β1 + βm)i])

+G3
X11(z, βm)

∥∥∥∥∥
z=1.1

T (1.1 exp [β1i]

+G4
X11(z, βm)

∥∥∥∥∥
z=1.1

T (1.1 exp [β1i])
)
. (F.1.18)

k = kmax − 1

T (1.1 exp [βki]) = f(σn − p0) z

z − 1

∥∥∥∥∥
z=1.1 exp [βk i]

− Λδ̇
2HρC

∞∑
m=1

G1
X11(z, βm)

∥∥∥∥∥
z=1.1 exp [βk i]

T (1.1 exp [(βk − βm)i])

+G2
X11(z, βm)

∥∥∥∥∥
z=1.1 exp [βki]

T (1.1 exp [(βk + βm)i])

+G3
X11(z, βm)

∥∥∥∥∥
z=1.1 exp [βk i]

T (1.1 exp [βki])

+G4
X11(z, βm)

∥∥∥∥∥
z=1.1 exp [βk i]

T (1.1 exp [βki])
 .

(F.1.19)

Where βm = 2mπ v∆t
H , βk = 2kπ v∆t

H . We note again that based on our observations that
non zero values of T(z) are found when the argument of z lies between ([0, 2π)) which in
turn implies that only the values of T(z) whose argument lies between βk − βm ≥ and
βk +βm < 2π are taken into account. Having calculated all the values that are important,
we are left with a system that can be solved algebraically for their determination. There-
fore, calculating the contour integrals for the numerical inversion of the Z-Transform
becomes once again possible.

All this discussion covers only the case, where the strain localization travels to one direc-
tion inside the plastified region of the fault gouge. However form chapter 5 we knot that
the strain localization travels periodically inside the plastified region of the fault gouge.
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We will not pursue this further however, since this solution procedure becomes more in-
volved and it lies outside the scope of this Thesis.

Another way of handling the problem is to use the method of the Adomian Decomposi-
tion Wazwaz, 2011. This way the functions needed for the determination of the original
unknown are always known based on the previous step of the Adomian method. Since the
method is sensitive to the number of terms and the integral calculation we can use the
CQM Z-Transform method to handle the successive convolutions. Finally, the colloca-
tion method used in chapter 6 of this thesis is in our opinion the most efficient method
of solving the problem when periodic loading paths are studied.
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Appendix G

APPENDIX G

G.1 Properties of the Z-Transform

In this appendix we present the properties of the Z-Transform, which we use in the
numerical methods of chapter 6.

G.1.0.1 Definition of the Unilateral Z-Transform

We define the discrete time signal x[n] for n ≥ 0. The single-sided or unilateral Z-
transform is defined as:

X(z) = Z{x[n]} =
∞∑
n=0

x[n]z−n. (G.1.1)

G.1.0.2 Definition of the Inverse Z−1-Transform

It’s inverse can be calculated via the relation:

x[n] = Z−1{X(z)} = 1
2πi

∮
C
X(z)zn−1dz. (G.1.2)

We note that C is a counterclockwise closed curve encircling the origin and lying entirely
inside the region of convergence. For a causal function x(t) sampled at a sampling period
∆t, resulting in the discrete representation x(tn) = x[n], the curve C must encircle all the
poles of the transformed function X(z). The inversion of the Z-Transform can be further
simplified as we will see below by making use of the discrete time Fourier transform and
(DTFT), which finally can be reduced to the discrete Fourier transform (DFT) assuming
the discrete time signal to be part of a periodic function. For numerical reasons we are
interested in cases of stable systems, where the Z-Transform contains |z| = 1 in its region
of convergence. In this case small numerical errors during the calculation do not grow as
time progresses.
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To handle the inversion of the transformed function X(z) along the closed curve C, we
take into account the Cauchy residue theorem of complex analysis and choose to integrate
along a circle containing the origin and the poles of the function X(z). The radius of the
circle to be used is ρ. The contour integral along the curve C encircling all the poles of the
function X(z) can be numerically evaluated by making use of a trapezoidal rule, where
since the curve is closed the initial and final positions coincide.

x(tn) = 1
L

L−1∑
p=0

X(zp)zn−1
p , ∀n ∈ [0,M ], (G.1.3)

where M is the total number of steps. A suitable selection for the parameters L, ρ is
discussed in Mavaleix-Marchessoux et al. (2020). Since z = ρ exp 2πip

L
, the Z-Transform

is equivalent to the discrete Fourier transform (DFT) X(zn) =
M∑
n=0

xnρ
n exp 2πipn

L
. Calcu-

lating the Z-Transform and its Inverse can be done by applying the DFT to the finite
sequences (xnρn)Mn=0, Xpρ

−p)L−1
p=0 respectively. A high sampling frequency fsample = 1

∆t is
required to counter aliasing based on the Nyquist stability criterion.

G.1.0.3 Properties of the Z-Transform

Here, we provide the properties of the Z-Transform we make use of in chapter 6.
— Linearity:

α1x1[n] + α2x2[n]→ α1X1(z) + α2X2(z). (G.1.4)

— First difference backward:

x[n]− x[n− 1]→ (1− z−1)X(z), x[n] = 0, ∀n < 0. (G.1.5)

— Scaling in the Z domain:

αnx[n]→ X(α−1z). (G.1.6)

— Convolution:
∫ t

0
x1(t− t′)x2(t′)dt′ → X1(z)X2(z). (G.1.7)
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Appendix H

APPENDIX H

H.1 Collocation Methodology

In order to apply the collocation methodology to the linear Volterra integral equation of
the second kind in chapter 6, (6.16), we make use of the collocation methodology described
in Tang et al. (2008). The integral equation is given as:

τ(t) = f(σn − p0)− C
∫ t

0
τ(t′)G?(t− t′, chy, cth)dt′, t ∈ [0, T ], (H.1.1)

where f(σn−p0), G?(t, cth, chy) are given functions, and τ(t) is the unknown function. We
begin by performing a change of variables from t ∈ [0, T ] to x ∈ [−1, 1]. The change of
variables reads:

t = T
1 + x

2 , x = 2t
T
− 1

The Volterra integral equation can then be written:

u(x) = f(σn − p0)− C
∫ T 1+x

2

0
G?(T 1 + x

2 − t′, chy, cth)dt′, x ∈ [−1, 1], (H.1.2)

where u(x) = τ(T 1+x
2 ). In order for the collocation method solution to converge exponen-

tially we require that both the integral equation (H.1.2) and the integral inside (H.1.2)
are expressed inside the same interval [−1, 1]. To do this first we change the integration
bounds from t′ ∈ [0, T 1+x

2 ] to s ∈ [−1, x].

u(x) = f(σn − p0)− C
∫ x

0
K(x, s, chy, cth)ds, x ∈ [−1, 1], , (H.1.3)

where K(x, s) = T
2G

? T
2 (x − s), chy, cth). Next, we set the N + 1 collocation points xi ∈

[−1, 1] and corresponding weights ωi according to the Gauss-Legendre quadrature formula.
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The integral equation (H.1.3) must hold at each xi:

u(xi) = f(σn − p0)− C
∫ xi

0
K(xi, s, chy, cth)ds, i ∈ [0, N ], , (H.1.4)

The main hindrance in solving equation (??) accurately, is the calculation of the integral
with variable integration bounds. For small values of xi, the quadrature provides little
information for u(s). We handle this difficulty by yet another variable change where we
transfer the integration variable s ∈ [−1, xi] to θ ∈ [−1, 1] via the transformation:

s(x, θ) = 1 + x

2 θ + x− 1
2 , θ ∈ [−1, 1]. (H.1.5)

Thus, equation (??) is transformed into:

ui + 1 + xi
2

N∑
j=0

uj
N∑
p=0

K(xi, s(xi, θ))u(s(xi, θp))ωj = f(σn − p0), i ∈ [0, N ] (H.1.6)

In order to apply the collocation method according to the Gauss Legendre quadrature
we express the solution u(s(xi, θj)) with the help of Lagrange interpolation polynomials
Fj(s(xi, θj)) as a series: u(s(xi, θj)) ∼

N∑
k=0

ujFj(s(xi, θj))

ui + 1 + xi
2

N∑
j=0

uj

 N∑
p=0

K(xi, s(xi, θ))Fj(s(xi, θp))ωp

 = f(σn − p0), i ∈ [0, N ].

(H.1.7)

In order to assure an exponential degree of convergence we choose that the set of Gauss-
Legendre quadrature points for the numerical evaluation of the integral {θj}Nj=0 coincides
with the set of collocation points {xj}, where the integral equation is evaluated. Rear-
ranging the terms and applying Einstein’s summation over repeated indices yields the
system of algebraic equations:

(δij + Aij)uj = g(xi), (H.1.8)

where, Aij = 1+xi

2

N∑
j=0

(
N∑
p=0

K(xi, s(xi, θ))Fj(s(xi, θp))ωp
)
, g(xi) = f(σn − p0) and uj the

unknown quantities. Since the Gauss-Lagrange quadrature was assumed the interpolation
coefficients uj calculated at each xj are also the value of the interpolation at xj.
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Appendix I

APPENDIX I

I.1 Proof that the maximum of pressure and the posi-
tion of the yielding plane (thermal load) coincide

In this appendix we will present the central part of our argument in chapter 6 concerning
the applicability of a traveling strain localization mode. I chapter 6 we have argued that in
order for the strain localization mode to be applicable to the problem at hand it needs to
satisfy the equations of equilibrium and it should warrant that the prescribed localization
motion corresponding to the position of the yielding plane inside the layer satisfies also
the condition that it coincides with the maximum of the pressure profile inside the layer
at all times (see Rice, 2006a).

I.1.1 Proof of pressure Maxima for the traveling strain localiza-
tion on an bounded domain.

To this end, provided that the function we search for is sufficiently smooth except maybe
at a finite number of points, we make use of our tools from calculus that indicate the
use of the first and second order derivatives to decide upon the position and the kind
of the extremalities of the unknown function. We start our discussion with the case of a
traveling localization on a bounded mathematical domain. In this case the derived kernel
of the coupled pressure temperature diffusion equation is bounded and smooth at all
times t ∈ [0,∞). The pressure profile at all times t, for a traveling strain localization
mode ˙γ(x, t) = δ̇δDirac(x− vt) (and thermal load 1

ρC
τtδ̇δDirac(x− vt)) at position x = vt

is given by the relation:

p(x, t)− p0 = 2Λδ̇
HρC(chy − cth)

∫ t

0
τ(t′)

∞∑
m=0

K(x, t, t′,m)dt′ (I.1.1)
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whereK(x, t, t′,m) =
(
chy exp

(
−m2π2chy

t−t′
H2

)
− cth exp

(
−m2π2cth

t−t′
H2

))
sin

(
mπ x

H

)
sin

(
mπ vt

′

H

)
).

The first derivative of equation (I.1.1) is given by:

∂p(x, t)
∂x

= 2Λδ̇mπ
H2ρC(chy − cth)

∫ t

0
τ(t′)

∞∑
m=0

∂K(x, t, t′,m)
∂x

dt′ (I.1.2)

where ∂K(x,t,t′,m)
∂x

=
(
chy exp

(
−m2π2chy

t−t′
H2

)
− cth exp

(
−m2π2cth

t−t′
H2

))
cos

(
mπ x

H

)
sin

(
mπ vt

′

H

)
.

We note that for ∂p
∂x

= 0 we need to find x such that:

Π(x, t′,m) = Re
[
cos

(
mπ

x

H

)
sin

(
mπ

vt′

H

)]
= 0. (I.1.3)

We write the above product with the help of the exponential function.

Π(x, t′,m) = Re
[

exp imπ x
H + exp−imπ x

H
2

exp imπ vt′H − exp−imπ vt′H
2i

]
= 0, (I.1.4)

Π(x, t′,m) = Re
[

1
4i

(
exp

(
imπ

x+ vt′

H

)
+ exp

(
−imπx− vt

′

H

)

− exp
(
imπ

x− vt′

H

)
− exp

(
−imπx+ vt′

H

))]
= 0. (I.1.5)

Transforming again the above summation with the help of the Euler relations into sin (·)+
i cos (·) and using the trigonometric equalities between the arguments of the opposite sign
we arrive at:

cos
(
mπ

x− vt′

H

)
− cos

(
mπ
−x+ vt′

H

)
= 0, (I.1.6)

which is true ∀t ∈ [0,∞) when x = vt′. Thus we know that p(x, t) − p0 presents an
extremum an the position of the traveling yielding plane. We need to prove that this
extremum is also maximum for every t > 0. For this we take the second derivative of
equation (I.1.1).

∂2p(x, t)
∂x2 = 2Λδ̇m2π2

H3ρC(chy − cth)

∫ t

0
τ(t′)

∞∑
m=0

∂2K(x, t, t′,m)
∂x2 dt′, (I.1.7)

where ∂2K(x,t,t′,m)
∂x2 = −

(
chy exp

(
−m2π2chy

t−t′
H2

)
− cth exp

(
−m2π2cth

t−t′
H2

))
sin

(
mπ x

H

)
sin

(
mπ vt

′

H

)
.

Evaluating the second derivative in equation (I.1.7) with respect to x at the position
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x = vt′ ∂
2p(x,t)
∂x2

∥∥∥
x=vt′

we see that for t > 0 equation (I.1.7) is always negative. This means
that the extremum at x = vt′ is also a maximum.

I.1.2 Proof of pressure Maxima for the traveling strain localiza-
tion on an unbounded domain.

In the case of the unbounded domain due to the form of the coupled temperature and
pressure kernel, GT,P (x, t − t′, cth, chy), (see Lee & Delaney, 1987) resulting in a weakly
singular convolution integral, such a derivation is not trivial. While we can ensure the
convergence of the integral in a Riemann sense for the original integral and verify the
position of its extremalities we cannot directly calculate its second derivative since the
resulting integral corresponds to a hyper singular divergent integral. To answer questions
about its convergence we need to apply the notion of Hadamard regularization.

We notice, however, that this question is a special case of the pressure maxima of a
traveling strain localization on a bounded domain of height H, when H tends to ∞, see
section I.1.1.
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Titre : Modelisation des failles sismiques

Mot clés : analyse de stabilite de Lyapunov ; Theorie de bifurcation ; Regularization ; Continuum micromorphe de Cosserat ;

Ondes progressives ; Pressurisation thermique

Résumé : Lors d’un glissement sismique, l’énergie libérée
par la décharge élastique des blocs de terre adjacente peut être
séparée en trois parties principales : L’énergie qui est rayonnée
à la surface de la terre (∼ 5% du budget énergétique total),
l’énergie de fracture pour la création de nouvelles surfaces de
faille et enfin, l’énergie dissipée à l’intérieur d’une région de la
faille, d’épaisseur finie, que l’on appelle le “fault gouge ". Cette
région accumule la majorité du glissement sismique. Estimer
correctement la largeur de fault gouge est d’une importance
capitale pour calculer l’énergie dissipée pendant le séisme, le
comportement frictionnel de la faille et les conditions de nucléa-
tion de la faille sous la forme d’un glissement sismique ou asis-
mique.
Dans cette thèse, approches différentes de régularisation ont
été explorées pour l’estimation de la largeur de localisation de
la zone de glissement principal de la faille pendant le glissement
cosmique. Celles-ci comprennent l’application de la viscosité et
des couplages multiphasiques dans le continuum classique de
Cauchy, et l’introduction d’un continuum micromorphe de Cos-
serat du premier ordre. Tout d’abord, nous nous concentrons
sur le rôle de la régularisation visqueuse dans le contexte des
analyses dynamiques, en tant que méthode de régularisation
de la localisation des déformations. Nous étudions le cas dy-
namique d’un continuum de Cauchy classique adoucissant à la
déformation et durcissant à la vitesse de déformation. En ap-
pliquant l’analyse de stabilité de Lyapunov, nous montrons que
l’introduction de la viscosité est incapable d’empêcher la locali-
sation de la déformation sur un plan mathématique et la dépen-
dance de du maillage des éléments finis.
Nous effectuons des analyses non linéaires en utilisant le conti-

nuum de Cosserat dans le cas de grands déplacements par
glissement sismique de fault gouge par rapport à sa largeur.
Le continuum de Cosserat nous permet de rendre compte de
l’énergie dissipée pendant un séisme et du rôle de la micro-
structure dans l’évolution de la friction de la faille. Nous nous
concentrons sur l’influence de la vitesse de glissement sismique
sur le mécanisme d’assidument frictionnel de la pressurisation
thermique. Nous remarquons que l’influence des conditions aux
limites dans la diffusion du fluide interstitiel à l’intérieur de fault
gouge, conduit à une reprise du frottement après l’affaiblisse-
ment initial. De plus, un mode de localisation de déformation en
mouvement est présent pendant le cisaillement de la couche,
introduisant des oscillations dans la réponse du frottement. Ces
oscillations augmentent le contenu spectral du séisme. L’intro-
duction de la viscosité dans le mode ci-dessus, conduit à un
comportement de "rate and state" sans l’introduction d’une va-
riable interne. Nos conclusions sur le rôle de la pressurisation
thermique pendant le cisaillement de fault gouge sont en ac-
cord qualitatif avec les nouveaux résultats expérimentaux dis-
ponibles.
Enfin, sur la base des résultats numériques, nous étudions les
hypothèses du modèle actuel de glissement sur un plan ma-
thématique proposent à la littérature. Le rôle des conditions
aux limites et du mode de localisation des déformations dans
l’évolution du frottement de la faille pendant le glissement sis-
mique. Le cas d’un domaine délimité et d’un mode de locali-
sation de la déformation en mouvement est examiné dans le
contexte d’un glissement sur un plan mathématique sous pres-
surisation thermique. Nos résultats étoffent le modèle original
dans un contexte plus général.

Title: Numerical modeling of earthquake faults
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Thermal pressurization

Abstract: During coseismic slip, the energy released by the
elastic unloading of the adjacent earth blocks can be separated
in three main parts: The energy that is radiated to the earth’s
surface (∼ 5% of the whole energy budget), the fracture energy
for the creation of new fault surfaces and finally, the energy dis-
sipated inside a region of the fault, with finite thickness, which is
called the fault gauge. This region accumulates the majority of
the seismic slip. Estimating correctly the width of the fault gauge
is of paramount importance in calculating the energy dissipated
during the earthquake, the fault’s frictional response, and the
conditions for nucleation of the fault in the form of seismic or
aseismic slip.
In this thesis different regularization approaches were explored
for the estimation of the localization width of the fault’s principal
slip zone during coseismic slip. These include the application
of viscosity and multiphysical couplings in the classical Cauchy
continuum, and the introduction of a first order micromorphic
Cosserat continuum. First, we focus on the role of viscous reg-
ularization in the context of dynamical analyses, as a method for
regularizing strain localization. We study the dynamic case for
a strain softening strain-rate hardening classical Cauchy contin-
uum, and by applying the Lyapunov stability analysis we show
that introduction of viscosity is unable to prevent strain localiza-
tion on a mathematical plane and mesh dependence.
We perform fully non linear analyses using the Cosserat contin-

uum under large seismic slip displacements of the fault gouge
in comparison to its width. Cosserat continuum provides us with
a proper account of the energy dissipated during an earthquake
and the role of the microstructure in the evolution of the fault’s
friction. We focus on the influence of the seismic slip velocity to
the weakening mechanism of thermal pressurization. We notice
that the influence of the boundary conditions in the diffusion of
the pore fluid inside the fault gouge, leads to frictional strength
regain after initial weakening. Furthermore, a traveling strain lo-
calization mode is present during shearing of the layer intro-
ducing oscillations in the frictional response. Such oscillations
increase the spectral content of the earthquake. Introduction of
viscosity in the above mode, leads to a rate and state behav-
ior without the introduction of a specific internal state variable.
Our conclusions about the role of thermal pressurization during
shearing of the fault gouge, agree qualitatively with newly avail-
able experimental results.
Finally, based on the numerical findings we investigate the as-
sumptions of the current model of a slip on a mathematical
plane, in particular the role of the boundary conditions and
strain localization mode in the evolution of the fault’s friction
during coseismic slip. The case of a bounded domain and a
traveling strain localization mode are examined in the context of
slip on a mathematical plane under thermal pressurization. Our
results expand the original model in a more general context.
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