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Résumé : Des études ont montré que la repré-
sentation des nuages de basse altitude est en-
core sous-estimée dans divers modèles climatiques.
Un des paramètres fondamentaux pour caractéri-
ser les propriétés microphysiques de ces nuages est
le contenu en eau liquide (LWC). Cette thèse vise
à développer un algorithme d’estimation du LWC
de ces nuages en combinant radar nuage à 95GHz
(BASTA) et radiomètre micro-ondes (MWR). On
utilise traditionnellement des relations empiriques
du type Z = aLWCb (Z étant la réflectivité ra-
dar). Cependant, ces relations ne représentent pas
toujours la variabilité de la distribution en taille des
gouttes dans un système nuageux hétérogène et ne
tiennent pas compte de l’atténuation des nuages li-
quides. Je réutilise ce concept mais la contrainte
sur le pré-facteur « a » est relachée en ajoutant des
informations supplémentaires telles que le contenu

intégré en eau liquide (LWP), ici restitué par le
radiomètre. Pour tester le comportement de l’al-
gorithme, un test de sensibilité est réalisé en uti-
lisant des profils de brouillard synthétiques issus
d’une simulation AROME. L’étude de sensibilité
ne permettant pas de valider les hypothèses mi-
crophysiques de la méthode, le LWC restitué est
comparé aux observations in-situ recueillies pen-
dant la campagne SOFOG-3D. Enfin, l’algorithme
est appliqué à 39 cas de nuages et de brouillard de
novembre 2018 à mai 2019 à l’observatoire SIRTA
afin de construire une climatologie de LWC et de
valeurs de « a ». Puisque la méthode de restitution
doit être utilisable même sans information du ra-
diomètre, nous utilisons cette climatologie comme
connaissance a priori des valeurs de « a » ce der-
nier n’étant plus contraint par le LWP.

Title : Innovative methods for retrieving cloud properties from the BASTA radar
Keywords : Clouds, Fog, Radar, Radiometer, Algorithme

Abstract : Studies have shown that the represen-
tation of low-level clouds is still underestimated in
various climate models. One of the fundamental
parameters to characterize the microphysical pro-
perties of these clouds is the liquid water content
(LWC). This thesis aims to develop an algorithm
for estimating the LWC of these clouds by combi-
ning cloud radar at 95GHz (BASTA) and micro-
wave radiometer (MWR). Traditionally, empirical
relations of the type Z = aLWCb (Z being the ra-
dar reflectivity) are used. However, these relation-
ships do not always represent the variability of the
droplet size distribution in a heterogeneous cloud
system and do not take into account the attenua-
tion of liquid clouds. I reuse this concept but the
constraint on the pre-factor "a" is relaxed by ad-
ding additional information such as the integrated

liquid water content (LWP), here retrieved by the
radiometer. To test the behavior of the algorithm,
a sensitivity test is performed using synthetic fog
profiles from an AROME simulation. As the sensi-
tivity study does not allow the microphysical hypo-
theses of the method to be validated, the retrieved
LWC is compared to the in-situ observations collec-
ted during the SOFOG-3D campaign. Finally, the
algorithm is applied to 39 cases of clouds and fog
from November 2018 to May 2019 at the SIRTA
observatory in order to build a climatology of LWC
and “a” values. Since the restitution method must
be usable even without information from the ra-
diometer, we use this climatology as a priori know-
ledge of the values of "a", the latter no longer
being constrained by the LWP.
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Résumé

Les nuages sont essentiels à de nombreux aspects de l’existence humaine sur terre. Ils
ont également un impact significatif sur le bilan énergétique de la Terre. Bien que l’effet
des nuages sur le climat soit complexe et ne soit pas entièrement compris, une grande
partie de l’incertitude concernant le réchauffement climatique est liée aux mécanismes
de rétroaction des nuages sur le climat. Des études ont montré que la représentation
des nuages de basse altitude est encore sous-estimée dans divers modèles climatiques.
La nécessité d’examiner les propriétés des nuages à différents niveaux est devenue une
priorité dans l’observation de la terre. Des observations continues et détaillées des
nuages sont nécessaires pour caractériser les propriétés des nuages à l’échelle locale et
mondiale. Les instruments de télédétection active et passive tels que les radars de nuages,
les lidars, les radiomètres dans le visible et les micro-ondes ont l’avantage de permettre
une observation continue pendant de longues périodes depuis le sol ou l’espace. Ces
capteurs fournissent des observations de l’état de l’atmosphère à plusieurs longueurs
d’onde du spectre électromagnétique et à différentes résolutions temporelles et spatiales.
Un des paramètres fondamentaux pour caractériser les propriétés microphysiques de
ces nuages de basse altitude est le contenu en eau liquide (LWC). Cette thèse vise à
développer un algorithme d’estimation du LWC de ces nuages en utilisant de manière
synergique le radar nuage (95 GHz) et le radiomètre micro-ondes (MWR). Un radar
mesure l’énergie rétrodiffusée par les gouttelettes nuageuses et elle est représentée par
le facteur de réflectivité radar (Z). Pour restituer le LWC de ces nuages, on utilise
traditionnellement des relations empiriques qui suivent une loi de puissance telle que
𝑍 = 𝑎𝐿𝑊𝐶𝑏. Cependant, ces relations ne représentent pas toujours la variabilité de la
distribution en taille des gouttes dans un système nuageux hétérogène et ne tiennent pas
compte de l’atténuation des nuages liquides. Dans cette thèse, je propose de réutiliser
le même concept, mais la contrainte sur le pré-facteur « a » est relachée en ajoutant
des informations supplémentaires telles que le contenu intégré en eau liquide (LWP),
ce dernier sera obtenu à partir du radiomètre. Mon algorithme de restitution est basé
sur une théorie d’estimation probabiliste appelée approche variationnelle. Grâce à ce
cadre flexible, lorsque l’information sur le contenu en eau liquide intégré provenant
du MWR est assimilée, le pré-facteur « a » peut également être restitué. Pour tester
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le comportement de l’algorithme de récupération, une analyse de sensibilité pour les
perturbations des paramètres clés en utilisant des profils de brouillard synthétiques est
menée en utilisant des simulations d’un modèle de prévision météorologique numérique
appelé AROME. Pour tester le comportement de l’algorithme, un test de sensibilité est
réalisé en utilisant des profils de brouillard synthétiques issus d’une simulation AROME.
L’analyse a montré que l’algorithme est très sensible au biais appliqué à LWP car il s’agit
d’une information intégrée verticalement qui va impacter l’ensemble du profil. D’autres
paramètres, tels que l’exposant « b » et des relations d’atténuation alternatives, ont moins
d’impact sur les résultats de l’algorithme. Comme le test de sensibilité ne permet pas
de valider les hypothèses microphysiques de la méthode, le LWC restitué est comparé
aux observations in-situ recueillies pendant la campagne SOFOG-3D. Les observations
d’un radar nuage et d’un radiomètre micro-ondes co-localisés sont utilisées pour restituer
LWC, et la comparaison a montré une meilleure concordance avec les observations in-
situ pour les stratus que pour le brouillard. Ce résultat est principalement lié au fait que
les mesures dans le stratus étaient réalisées dans une zone beaucoup plus homogène que
pour le brouillard. Enfin, l’algorithme est appliqué à 39 cas de nuages et de brouillard de
novembre 2018 à mai 2019 à l’observatoire SIRTA afin de construire une climatologie
de LWC et de valeurs de pré-facteur « a ». Puisque la méthode de restitution doit
être utilisable même sans information du radiomètre, nous proposons d’utiliser cette
climatologie comme connaissance a priori des valeurs du pré-facteur « a » ce dernier
n’étant pas contraint par le LWP.
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Abstract

Clouds are critical to the majority of aspects of human existence on earth. They also
have a significant impact on the earth’s energy balance. Although the effect of clouds
on the climate is complex and not fully understood, much of the uncertainty about
global warming is related to the cloud-climate feedback problem. Studies have shown
that the representation of low-level clouds is still underestimated in various climate
models. The necessity to examine the cloud properties at different levels has emerged
as a priority in earth observation. Continuous and detailed observations of clouds
are needed to characterize the cloud properties on a local and global scale. Active
remote and passive sensing instruments like cloud radars, lidars, visible and microwave
radiometers have the advantage of continuous observation for long periods from the
ground or space. One of the fundamental parameters to characterize the microphysical
properties of these low-level clouds is the liquid water content (LWC). This thesis
aims at developing an algorithm estimating LWC in low-level clouds using cloud radar
and microwave radiometer (MWR) synergy when the latter is available. A 95GHz
cloud radar measures the backscattered energy from cloud droplets in terms of radar
reflectivity factor (Z). Traditionally, empirical relations following a power law such
as 𝑍 = 𝑎𝐿𝑊𝐶𝑏 are used to retrieve the LWC of low-level liquid clouds. However,
such relationships do not always represent the variability of drop size distribution in
a heterogeneous cloud system and do not account for liquid cloud attenuation. In this
thesis, I propose using the same concept, but the constraint on ‘a’ from the power law
is released by adding extra information such as the liquid water path (LWP), which is
provided by the microwave radiometer. My retrieval algorithm is based on probabilistic
estimation theory called the variational approach. Thanks to this flexible framework,
when LWP information from MWR is assimilated, the LWC in the profile is scaled
by LWP information, and the scaling factor ’a’ can also be retrieved for each profile.
To test the behavior of the retrieval algorithm, a sensitivity analysis for perturbations
in key parameters using synthetic fog profiles is conducted using simulations from a
numerical weather prediction model called AROME. The analysis has shown that the
algorithm is very sensitive to the bias in LWP because it is a vertically integrated
information and thus plays a critical role in the retrieval. Other parameters, such as ’b’
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and alternative attenuation relationships, have less implications on the stability of the
algorithm. Because the sensitivity test is not validating the microphysical assumptions
of the method, the validation of such an algorithm is challenging, as we need reference
measurements of LWC co-located with the retrieved values. During the SOFOG-3D
campaign, in-situ measurements of LWC were collected in the vicinity of a cloud
radar and a microwave radiometer, allowing comparison against my retrieved LWC.
The comparison showed better agreement with in-situ observations for stratus clouds
than fog. This is mainly explained by the fog heterogeneity during the measurements,
cloud-fog heterogeneity is therefore an important factor in the assessment. Finally, the
retrieval algorithm is employed to build a climatology of LWC and ’a’ for 39 cloud
and fog cases from November 2018 to May 2019 at the SIRTA observatory. Since the
retrieval method must be usable without radiometer information, we propose using this
climatology as a priori knowledge for the scaling factor, which is no longer constrained
by LWP.
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Chapter 1

Introduction and Motivation

Clouds are one of the most fascinating weather phenomena observable to the naked eye,
and have puzzled humans for centuries. Clouds were first thought to be made of water
bubbles. With the advancements in science, it was confirmed that clouds consists of
microscopic water droplets and/or ice crystals suspended in atmosphere. In addition to
their role in the hydrological cycle providing us fresh water, the vertical and horizontal
transfers of energy from the smallest to the largest scales are induced by cloud water
condensation and evaporation processes.

Furthermore, clouds are strongly linked to the energy and water budgets of the Earth-
Ocean-Atmosphere system. The global radiative equilibrium is greatly influenced by
both ice clouds and liquid water clouds, with the global cloud fraction of around 60%
to 70% [King et al., 2013]. The scattered white clusters in figure 1.1 indicate the cloud
fraction (means the area that was cloudy) averaged for the month of July 2020, seen
by MODIS, a sensor on NASA’s Terra satellite. The colour range from blue indicating
no clouds to white referring to a totally cloudy pixel. A band of dense clouds around
the equator called Inter-Tropical Convergence Zone (ITCZ) is responsible for rainy and
dry seasons over tropical countries. The prominent cloud-free skies over the Sahara,
southwest Asia, Australia, and Antarctica are showing the driest areas on earth, while
clouds over ocean are common all over the globe.

When clouds reflect the incoming solar radiations back, it cools the planet. But they
also absorb terrestrial radiations from earth-atmosphere system and heats the planet
(cloud albedo effect). The net effect of clouds on earth’s radiative balance depends on
the optical and microphysical properties of clouds.

Since the beginning of climate change and global warming investigations, clouds
have been a key concern. The low-level tropical clouds are the most uncertain feedback
in current climate models [Brient and Schneider, 2016]. A comparison of five climate
models has shown that the low-level clouds are underestimated at all the latitudes [Cesana
and Chepfer, 2012]. The vertical structure of low-level clouds has been demonstrated
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1. Introduction and Motivation

Figure 1.1: Cloud Fraction. The image shows measurement from Moderate Resolution
Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite for July 2020. Figure
source: https://earthobservatory.nasa.gov/global-maps/MODAL2_M_CLD_
FR

to be inaccurately represented by many climate models [Nam et al., 2012]. These
uncertainties in the climate projections are due to the poor representation of their
microphysical properties in the models. Low-level clouds also include fog, which is
formed when supersaturated air condenses near the ground. Fog differs from cloud
only with the fact that the base of fog is at the earth’s surface, while clouds are above
the surface. Visibility at the ground reduces during fog due to the scattering of visible
radiation by droplets, which is hazardous for transportation, especially aviation. Fog
also plays an important role in the processing of aerosol particles and trace gases in the
atmosphere; for example, urban fog traps more pollutants than clouds at high altitudes
[Fišák et al., 2001]. Fog forecasts are still inaccurate due to the complexity of fine scale
processes involved in fog life cycle [Martinet et al., 2020]. Therefore, the observations of
these warm low-level clouds can advance our understanding of microphysical properties
and their representation in models.

The fundamental parameters to characterize the microphysical properties of these
low-level clouds is liquid water content (LWC), number concentration (the total number
of water droplets per cubic meter of air), and the droplet size distribution (number
of droplets per cubic meter in various droplet size bins). These parameters are not
independent, and if the droplet spectrum is known, we can compute any moment of
droplet distribution. For example, LWC is simply the sum of mass of water in each bin
and is proportional to the third moment of droplet size distribution.

To support the improvement in representation of cloud microphysical processes,
long-term and continuous observations of clouds are crucial on local and global scales.
Remote sensing instruments such as microwave radiometers, infrared radiometers, lidar,
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and cloud radars can measure radiation emitted or backscattered by cloud droplets that
carries indirect information about their properties. Active remote sensing instruments
like cloud radar and lidar can provide the vertical structure of clouds. Depending on the
platforms used, these remote sensing instruments can measure the radiative equivalents
of microphysical properties at high spatial and temporal resolution at a single point
(ground-based) or broad spatial coverage with a lower spatial resolution (satellite). The
detection capability of space borne radar is however limited for low-level clouds due to
surface contamination. Ground-based observations are particularly beneficial for low-
level cloud observations, as ground based instruments are closer to them and therefore,
better signal-to-noise ratio can be obtained.

For instance, a cloud radar works by transmitting energy in the atmosphere and
measures the power backscattered by clouds (discussed in Chapter 3). The backscattered
power received from a sampling volume (cloud droplets) is assumed proportional to the
sixth moment of the particle size distribution. But the microphysical properties of clouds
are not directly measured; instead the radiative equivalents like radar reflectivity Z are
used to infer or retrieve cloud microphysical properties of interest. Several methods and
algorithms are proposed in the literature to interpret cloud LWC from radar reflectivity Z.
For liquid-phase boundary layer clouds, traditional methods to relate radar reflectivity
with LWC include empirical relations in the form of 𝑍 = 𝑎 · 𝐿𝑊𝐶𝑏 with constant
values of 𝑎 and 𝑏 [Atlas, 1954],[Baedi et al., 2000],[Fox and Illingworth, 1997]. The
coefficients 𝑎 and 𝑏 are derived empirically from in-situ aircraft measurements of drop
size distribution. Such relationships may not adequately describe the variability present
in a continuous and inhomogeneous cloud system because of certain assumptions in
the drop size distribution (e.g., clouds without drizzle). In the past studies, algorithms
based on instrument synergies from two or more remote sensing instruments have been
shown to improve the LWC estimations of clouds using radar reflectivity [Frisch et al.,
1995],[Frisch et al., 1998],[Löhnert et al., 2004],[Illingworth et al., 2007]. However,
a comparison of some available retrieval methods have shown discrepancies in the
estimated microphysical properties due to difference in the assumptions employed to
infer cloud properties from remote sensing observations [Zhao et al., 2012]. This is
especially found to be the case when clouds and large droplets called drizzle coexist, for
which the microphysical characteristics are more complex. Some example of synergy
and retrievals are shown in Chapter 4. Generally, cloud radars also have Doppler
capabilities and a Doppler velocity spectrum is a measure of backscattered energy per
unit radial velocity. The velocity is calculated using phase shifts due to individual droplet
motion along the radar beam [Giangrande et al., 2001]. The first three moments of
Doppler velocity spectrum corresponds to total backscattered power Z (zeroth moment),
the mean Doppler velocity𝑉𝐷 (first moment) and the Doppler spectral width 𝜎𝐷 (second
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moment) [Kollias et al., 2011]. The velocity spectra of the sampled volume is a function
of hydrometeors diameters distribution, which is further used to estimate microphysical
properties.

The main objective of my thesis is to propose a methodology to retrieve liquid cloud
properties using cloud radar. In addition to the scientific question of liquid clouds,
my work is also related to the industry. Another aspect of this research is to find
new markets for the BASTA cloud radar [Delanoë et al., 2016], a ground-based 95
𝐺𝐻𝑧 FMCW (Frequency Modulated Continuous Wave) radar developed in LATMOS
and commercialized by Météomodem during my thesis. For instance, users with no
particular radar scientific expertise could appreciate an LWC product for liquid clouds
and fog using radar measurements that can be automated.

As discussed in the last paragraph, LWC retrieval using only radar reflectivity
measurements is extremely dependent on the DSD and therefore LWC retrieval directly
using radar reflectivity is under-constrained. In this thesis, to improve the accuracy
of LWC retrieval, a synergistic LWC retrieval algorithm is presented that combines
two co-located active and passive remote sensing instruments. My retrieval method
estimates the LWC using radar reflectivity Z from cloud radar and liquid water path
(LWP) from a microwave radiometer and accounts for attenuation in the radar signal
due to liquid clouds. Because the Doppler spectrum from BASTA cloud radar is not
operationally available, I decided to use the synergy of radar reflectivity Z and LWP
from microwave radiometer. The selection of an additional parameter as LWP from
a co-located microwave radiometer is because the LWP information of the profile can
scale the cloud profile and improve the accuracy of LWC estimates [Ovtchinnikov
and Kogan, 2000]. The algorithm will be detailed in the following sections where
I have chosen to combine a traditional approach to link Z and LWC (i.e., 𝑍 = 𝑎 ·
𝐿𝑊𝐶𝑏) and the knowledge of LWP (when available), which will enable the retrieval
of prefactor ’𝑎’ for each cloud profile in addition to LWC. A flexible approach is
required because a microwave radiometer does not always accompany the radar, and
therefore and independent estimate of LWP might not be available. Hence, the proposed
method must be robust enough to be applied to radar measurements in both synergy
configurations (with a microwave radiometer) and in stand-alone radar configurations
as well. A priori and the measurement errors are incorporated in the LWC retrieval
using the variational method [Rodgers, 2000]. This technique allows the estimation of
LWC which is physically consistent within the specified errors. However, to test the
robustness of the algorithm and identify how much the variations in the input variables
and errors impact the estimated LWC, a sensitivity test of the algorithm is conducted.
To do so, we need profiles of LWC, which we consider truth, and in this case, I used
synthetic profiles of LWC of a fog case from the AROME model forecast [Bell et al.,
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2021]. The synthetic values are just a representative of LWC used to simulate input
parameters of the retrieval algorithm to verify the stability of the algorithm for different
perturbations. The detailed sensitivity analysis of the algorithm is discussed in Chapter
5. Note that fog and cloud microphysical properties are comparable; this method can be
used in fog circumstances and cloud cases.

However, the sensitivity test of the algorithm does not allow us to validate the
microphysical assumptions in the retrieval method. Due to the fact that all algorithms
are based on certain assumptions and theories, cloud retrievals may differ due to the
varied assumptions. Evaluation of retrieved parameters with the observations is an
essential aspect of the applicability of remote sensing instruments. In order to compare
the estimated value of LWC with in-situ measurements, we need the simultaneous
cloud observations with cloud radar, microwave radiometer and the in-situ sensors.
Thus, I used the tethered balloon-borne measurements collected during the SOFOG-3D
campaign (described in chapter 3) to compare the LWC. The co-located observations
from radar and microwave radiometer during the campaign are used to estimate LWC
of cloud. The comparison of LWC for fog and stratus cloud with LWC measured by the
in-situ sensor is discussed in Chapter 5.

The application of this algorithm cannot be limited to case studies. The ground-
based remote sensing instruments are also beneficial for long periods of observations
of low-level clouds, therefore we propose a climatology of LWC over several months at
SIRTA observatory (presented in Chapter 3). A variety of cloud cases are selected to
estimate LWC and prefactor 𝑎, and the behaviour of retrieved parameters is analysed.
As the prefactor, 𝑎 is retrieved because additional information from the microwave
radiometer is assimilated in the retrieval, and such climatology of prefactor 𝑎 has not
been developed before, which can be helpful in establishing new retrieval methods for
low-level clouds.

Additionally, for the stand-alone radar retrieval we need to constraint the LWC
retrievals, which can be accomplished by using the climatology of liquid phase cloud.
The idea is to learn from the synergistic retrieval and utilize that knowledge to direct
the retrieval when synergy is not possible. Therefore, when the microwave radiometer
is not accompanying the radar, the radar stand-alone retrieval algorithm utilizes the
climatology of the prefactor 𝑎 to constrain the LWC. The climatology of prefactor 𝑎 as a
function of radar parameters is chosen as the a priori of the cloud profile in the algorithm
that allows the variability in the LWC retrieval. Chapter 5 ends by presenting the results
of the stand-alone retrieval technique applied to BASTA radar cloud observations.

The retrievals of the stand-alone algorithm can be improved by using a larger clima-
tology of liquid phase clouds and a better classification of hydrometeor, and the thesis is
concluded in Chapter 6. Finally, the outlook of the thesis and possible ways to improve
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the LWC retrieval method for warm clouds is presented.
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Chapter 2

Clouds

In this chapter, an introduction to fundamentals of clouds used in this thesis are presented.
Section 2.2 introduces some basic concepts of Earth’s radiative equilibrium, followed
by cloud interactions and their impacts. Finally, the chapter explains the concept of
radiative forcing and climate feedbacks.

2.1 Cloud formation and classification

The building blocks of clouds are water droplets and suspended particles of dust, sea
salt, etc., called Cloud Condensation Nuclei (CCN). These solid and liquid particles,
also called aerosols, are released into the atmosphere by a variety of natural (volcanic
ashes, ocean wave breaking) and anthropogenic processes (pollution, biomass burning,
etc.). The fundamental concepts of cloud formation in this subsection are typically
found in a basic textbook on atmospheric science, (e.g. Wallace and Hobbs [2006],
Lamb and Verlinde [2011]).

As the moist air rises through the atmosphere, it cools due to lower atmospheric
pressure. The rate of cooling can vary depending on the water content, or humidity of
the air. The cold air cannot hold as much water vapour as warm air can, therefore when air
cools and reaches dew point temperature (the temperature at which condensation occurs),
it gets saturated and the water vapour in it condenses to form a cloud droplet. This
condensation (for liquid) or deposition (for ice) of water vapour is called homogeneous
nucleation of pure water. But, the energy required for homogeneous nucleation is too
high in usual atmospheric conditions. Instead, natural clouds condenses on atmospheric
aerosol by a process known as heterogeneous nucleation. The condensation or deposition
of water vapour on these so-called cloud condensation nuclei forms the cloud droplets or
ice crystals. Most CCN consists of a mixture of soluble and insoluble components. The
formation of clouds occurs in the troposphere (the lowest layer of the earth’s atmosphere,
containing 75% of the total mass of the atmosphere). Between the boundary layer and
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the free troposphere, the concentrations of CCN drop by a factor of five over land. Once
the cloud droplet is formed, it may grow, for instance, by colliding with other droplets
and coalescing with them until they reach a sufficient size to precipitate.

We can also categorize clouds based on the phase of cloud particles. Warm clouds
or liquid water clouds are found mainly in low altitudes of the atmosphere where the
temperature is higher. Water droplets commonly remain liquid and do not freeze,
even well below 0◦C isotherm. These water droplets are referred to as supercooled
droplets. Cold clouds often involve both ice crystals and liquid water (supercooled),
and are more complicated than warm clouds. The microstructure of ice crystals is
very complex, from dendrites to columns (long, pencil-like forms) or plates (thin, flat
hexagons). High cirrus clouds are an extreme type of cold cloud, dominated by ice
crystals. Clouds containing ice particles with supercooled water droplets are called
mixed-phase clouds. Supercooled water droplets exist down to about -38◦C; beyond this
temperature, spontaneous homogeneous nucleation of an ice crystal from pure water
droplets occurs. Cumulonimbus clouds may exhibit liquid water droplets at their base
and ice crystal at their top, with mixed phases in between.

Since the early start of meteorological research, clouds have been classified corre-
sponding to their appearance and their altitude. Luke Howard in the early 19th century
established the classification between the three fundamental cloud classes cirrus, cumu-
lus and stratus. Clouds are classified by their altitude, either the cloud base or the cloud
top, is a commonly used parameter to distinguish low, middle and high-level clouds de-
pending on the altitude of their occurrence. Clouds are constantly evolving and can take
on an infinite variety of shapes. In 2017, World Meteorological Organization (WMO)
updated the International Cloud Atlas, classifying cloud types into ’genera’, ’species’,
and ’varieties’, similar to plant and animal classification system. The approximate height
of 10 genera of cloud for different latitudes in the troposphere is summarized in table
2.1 [WMO, 2017].

As shown in figure 2.1, high-level clouds are mainly made of ice crystals and are
usually optically thin due to low concentrations of crystals due to cold and dry air.
Mid-level clouds are made of liquid droplets and ice crystals, the ratio between both
depends on the temperature of the ambient air. Generally, the cloud base of low-level
clouds is located below 2 𝑘𝑚. Those clouds are most of the time made of liquid
droplets. Clouds with a high vertical structure with a low-level cloud base are made
of liquid droplets at their base, and ice crystals at their top are mostly associated with
thunderstorms. Cumulus, stratocumulus, stratus, and cumulonimbus are all examples
of low-level clouds, and these clouds are impacted by the topography of the surface,
such as hills, mountains, valleys, and so on. Stratus may also develop because of the
rising fog layer due to warming or an increase in wind speed. A cloud which forms at
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Table 2.1: Approximate heights of each level, and the genera occurring in different
geographical regions. Table extracted from International cloud atlas (WMO)

Level Genera Polar region Temperate
region Tropical region

High Cirrus (Ci)
Cirrocumulus (Cc)
Cirrostratus (Cs)

3-8 km 5-13 km 6-18 km

Middle Altocumulus (Ac)
Altostratus (As)

Nimbostratus (Ns)

2-4 km 2-7 km 2-8 km

Low
Stratus (St)

Stratocumulus (Sc)
Cumulus (Cu)

Cumulonimbus (Cb)

From ground
to 2 km

From ground
to 2 km

From ground
to 2 km

Figure 2.1: Cloud types and their approximate height in atmosphere. Figure extracted
from International Cloud Atlas (WMO)

the ground, lowering the visibility to less than 1 𝑘𝑚 is called Fog. This occurs when
supersaturated air condenses close to the ground. In cold environments, fog may also
consist of suspended ice crystals. It is possible to achieve supersaturation of the air by
either lowering its temperature or increasing its water vapour content, or a combination
of the two. Therefore, several meteorological conditions can lead to the formation
of fog, and fog types have been defined according to the mechanism causing the fog
formation [Gultepe et al., 2006]. The wind has been found to be a significant factor in
the development of fog; if the wind is too strong, turbulent mixing dilutes the cooling
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and moistening in a layer that is too thick for supersaturation to occur, but mild wind
may result in dew deposition rather than fog. Fog also plays an important role in the
processing of aerosol particles and trace gases in the atmosphere; for example, urban
fog traps more pollutants than clouds at high altitudes [Fišák et al., 2001]. Fog is also
associated to reduction of visibility caused by suspended microscopic droplets, which
impacts aviation industry. These are known as low-lying clouds and are influenced by
the nearby water bodies, wind conditions, and surface topographies. The interaction of
these different types of clouds with radiations is called the radiative properties of clouds
and are discussed in the next section.

2.2 Earth’s radiative balance and clouds

The sun is the primary energy source for most processes in the earth’s system. Although
the sun emits electromagnetic radiation at various wavelengths, most of the incoming
solar radiations consist of visible and parts of ultraviolet and short infrared radiations.
The electromagnetic (EM) radiations are characterized by their wavelength 𝜆, or by
its frequency 𝜈. The two variables are related as 𝜆 × 𝜈 = 𝑐, where 𝑐 is the speed of
light (𝑐 = 3 × 108𝑚𝑠−1 in vacuum). The wavelength of peak radiation emitted by an
object is inversely related to its temperature (Wien’s law). Due to the high surface
temperature of the sun (average 5500𝐾), the wavelength of peak radiation has high
intensity and shorter wavelengths, hence called shortwave(SW). The earth’s surface and
the atmosphere reflects as well as absorb these solar radiations (SW). A part of the
radiation (around 30%) is reflected, and the fraction absorbed by the earth (𝑇 ∼ 300𝐾)
is re-radiated at the longer wavelengths in the infrared region (about ∼ 10𝜇𝑚) called
longwave (LW) with relatively less intensity. Figure 2.2 presents the radiation intensity
and range of wavelengths of incoming solar radiations and the emitted radiations from
the earth. Notice that the radiation intensity on the y-axis is relative.

Several factors influence the amount of solar radiation reaching the earth’s surface
and the amount of radiation leaving the atmosphere. The interaction of radiation with
atmospheric gases, water vapour, aerosols, and clouds includes absorption, emission,
and scattering processes. These processes play a vital role in the thermodynamic
conditions of the atmosphere.

2.2.1 Scattering, absorption and extinction processes

When radiation interacts with a particle, a part of the incident energy is absorbed,
whereas the other is spatially redistributed in a non-isotropic direction. These processes
are known as the absorption and scattering processes, respectively. The absorbed part
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Figure 2.2: Incoming energy from the sun and outgoing energy from the earth relative
to the wavelengths. Figure is extracted from Understanding Global Change(UCMP)
webpage (see link) (https://ugc.berkeley.edu/background-content/re-radiation-of-heat/)

of the radiation is converted into molecular kinetic and potential energies whereas,
scattered radiation is simply redirected without any loss of energy. The extinction or
attenuation of radiation by a particle represents the sum of absorption and scattering
processes. An electromagnetic wave of intensity 𝐼𝜆 propagates along an optical path 𝑑𝑙
in an atmospheric layer gets attenuated by a factor 𝑑𝐼𝑒𝑥𝑡 which is given by:

𝑑𝐼𝑒𝑥𝑡 = −𝐼𝜆𝐾𝑒𝑥𝑡𝜆 𝑑𝑙 (2.1)

where 𝐾𝑒𝑥𝑡
𝜆

is the extinction coefficients and has unit 𝑚−1. The contributions of
scattering and absorption to the extinction of the incident beam of radiation defines the
scattering and absorption coefficient, such as:

𝐾𝑒𝑥𝑡𝜆 = 𝐾𝑎𝑏𝑠𝜆 + 𝐾 𝑠𝑐𝑎𝑡𝜆 (2.2)

Scattering is a process, which conserves the total amount of energy, but the direction
in which the radiation propagates may be altered. The amount of scattering depends
on several factors, including the wavelength of the radiation, the size of particles (or
gas molecules), the amount of particles, and the incident and scattering angles. If we
assume a spherical particle of radius 𝑟, we define a dimensionless size parameter 𝑥 to
be the ratio of the circumference of the particle to the wavelength of radiation:

𝑥 =
2𝜋𝑟
𝜆

(2.3)

Figure 2.3 shows the range of size parameters for various particles in the atmosphere
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Figure 2.3: Scattering regimes and particle types based on size parameter (𝑥), wavelength
𝜆 and radius (𝑟) (replicated from Wallace and Hobbs, 2006[Wallace and Hobbs, 2006])

and radiation in different wavelength ranges. When the particle is small compared with
the wavelength, the size parameter 𝑥 << 1, the scattering is weak and symmetrically
distributed. In this so-called Rayleigh scattering regime, the scattering is divided evenly
in the forward and backward direction, as shown in figure 2.4. The particle for which
the size parameter is comparable to the wavelength (𝑥 ≈ 1) the scattering is referred to
as Mie scattering regime [Mie, 1908]. When the particle becomes larger, the scattered
energy is increasingly concentrated in the forward direction. For 𝑥 > 50, geometric
optics methods have to be used to compute scattering properties.

Figure 2.4: Scattering of electromagnetic radiation with a spherical particle at different
wavelengths.

However, for the non-spherical particles (like ice crystals, aerosols) in the atmosphere
the size parameter can not be defined. The optical properties of such non-spherical
particles are computed using advanced computational methods, such as the T-matrix
method.

Not only the clouds droplets, the gaseous molecules in the atmosphere also interact
with radiation. Besides the major atmospheric gaseous components like molecular
nitrogen and oxygen, the minor componenets play a crucial role in the interaction with
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the radiation. These minor gaseous components of earth’s atmosphere (e.g. 𝐶𝑂2, 𝐶𝐻4,
𝑂3, and 𝐻2𝑂) are selective for both blocking and allowing the EM radiation to pass
through it. For example, the upper atmosphere blocks 100% of the gamma rays, x-rays,
and most ultraviolet light. These gases in the atmosphere also have unique spectral
signatures. The range of wavelengths over which there is relatively less absorption of
radiation by atmospheric gases are called atmospheric windows. The major windows
are the visible window, from 0.3 to 0.9 𝜇𝑚; the infrared window, from 8 to 13 𝜇𝑚; and
the microwave window, at wavelengths longer than ∼ 1𝑚𝑚 as shown in figure 2.5. e.g.,
water vapour and carbon dioxide absorb from 2.5–3 𝜇𝑚 and 5–8 𝜇𝑚.

Figure 2.5: Atmospheric windows are regions of the spectrum where most of the ra-
diations pass through the atmosphere. Figure source: https://earthobservatory.
nasa.gov/

Taking advantage of these windows, we can observe the atmosphere at various wave-
lengths. The microwave window is particularly useful because of minimal atmospheric
influences (absorption, scattering, atmospheric emissions) on microwave radiations and
therefore commonly used for microwave remote sensing.

2.2.2 Earth’s radiative equilibrium

Earth’s radiation Budget at the top of the atmosphere (TOA) describes the overall balance
between the incoming energy from the sun and the outgoing thermal (longwave) and
reflected (shortwave) energy from the earth. This flow of incoming and outgoing
energy is earth’s energy budget. The earth system (atmosphere and surface) is heated
by absorption of incoming solar radiations and cools by emitting longwave radiations
to space. These thermal infrared radiation emitted from the earth surface are re-
absorbed and re-radiated in the atmosphere many times by clouds and other greenhouse
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gases(water vapour, CO2 etc.), this process is known as the greenhouse effect. This is
responsible for the temperate climate of earth, without it the average temperature of the
planet would be about -19◦C instead of 15◦C.

Figure 2.6: Earth’s global and annual mean top-of-atmosphere (TOA) and surface energy
budget. Figure source: Stevens, Bjorn and Schwartz, Stephen E. (2012)[Stevens and
Schwartz, 2012]

Figure 2.6 illustrates the global energy balance, and the numbers represents annual
and global averages of quantities that fluctuate substantially in space and time. The
total instantaneous solar irradiance is 1360.8 𝑊𝑚−2, or 340 𝑊𝑚−2 averaged over the
global sphere. Out of the 340𝑊𝑚−2 received from the sun, about 100𝑊𝑚−2 is reflected
by clouds and atmospheric aerosols (e.g. sulfates, nitrates), leaving 240 𝑊𝑚−2 to be
absorbed by atmosphere (71-82 𝑊𝑚−2) and surface (161-168 𝑊𝑚−2). Therefore, the
planetary albedo (the fraction of SW radiation scattered back to space by the clouds,
aerosols, and surface without being absorbed) is 0.29 [Stephens et al., 2015]. The
radiative equilibrium at the TOA is balanced by emission of 237 𝑊𝑚−2 LW radiation
from the earth system. A fraction of this thermal IR radiation escapes directly to space
through the atmospheric window (the spectral band between about 8 𝜇𝑚 and 12 𝜇𝑚)
when skies are clear. But, the presence of clouds reduces the amount of SW radiation
reaching the surface and also contributes to additional IR radiation sent toward the
surface. This effect of clouds on radiation is discussed in the next subsection.

2.2.3 Cloud radiative forcing

At TOA, the cloud radiative forcing (CRF) is defined as the difference between the
downwelling (SW) and upwelling (LW) radiative fluxes in all-sky condition minus the
difference in clear sky condition.

𝐶𝑅𝐹 = (𝐹 ↓ −𝐹 ↑)𝑎𝑙𝑙𝑠𝑘𝑦 − (𝐹 ↓ −𝐹 ↑)𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦 (2.4)
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2.2. Earth’s radiative balance and clouds

The downwelling forcing (𝐹 ↓) is due to incoming SW radiations, and the upwelling
(𝐹 ↑) is due to longwave cloud radiative effect, as all the wavelengths emitted by the
earth do not reach into space. The atmosphere absorbs some of LW radiations while
allowing other wavelengths to pass through.

The cloud radiative forcing due to SW and LW radiations are always in competition.
In general, clouds with large optical thickness reflect most of the incoming shortwave
radiation inducing a cooling effect, while clouds with a low cloud-top temperature trap
outgoing longwave radiation inducing a warming effect [Hartmann et al., 1992]. Thus,
net CRF depends both on the cloud optical thickness and the cloud top temperature.

Low-level clouds have high albedo, which means that these clouds reflect a part of
incoming SW radiation back to the atmosphere. This cools the planet, and the size of
the effect is determined primarily by cloud optical depth.

High level clouds have a weaker albedo. This means that solar radiation can penetrate
deeper in the troposphere and heat the surface. These clouds also trap the IR radiation
coming from the lower atmosphere. In the current climate, the global annual mean net
CRF is about -17.1 𝑊𝑚−2 [Loeb et al., 2009]. Therefore, the net effect of clouds is
slightly cooling. However, a change in radiative forcing can modify the occurrence and
the radiative properties of clouds, which can further lead to an enhanced or weakened
cooling effect of clouds, thus exerting a radiative feedback.

2.2.4 Cloud feedback on climate

Reflection of solar radiations by clouds serves as a key feedback mechanism for climate
change. A reduction in reflection of SW radiations due to low cloud induce positive
feedback, while increase in cloud water content with warming induce negative feedback
on climate [Stephens et al., 2015]. Clouds and aerosols contribute to climate change in
a variety of ways. As shown in figure 2.7, the global radiative balance is affected by
anthropogenic forcing agents such as greenhouse gases and aerosols. When a forcing
agent alters internal energy flows in the earth system, it affects cloud cover and other
climate system components, which in turn affects the global energy budget. In contrast
to changes in the global mean surface temperature, which are slowed by the huge
heat capacity of the oceans, these adjustments often occur within a shorter time span
(generally a few weeks). These rapid adjustments are associated with changes in climate
variables that are mediated by a change in global mean surface temperature. These
variables further contribute to the amplification or dampening in global temperatures
through their effect on the radiative budget [Change, 2014].

The representation of clouds is widely regarded as the largest source of uncertainty in
estimates of climate sensitivity obtained by global climate models (GCMs) [Schneider
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2. Clouds

Figure 2.7: Overview of forcing and feedback pathways involving greenhouse gases,
aerosols and clouds. Forcing agents are in the green and dark blue boxes, with forcing
mechanisms indicated by the straight green and dark blue arrows. Figure source:
[Change, 2014]

et al., 2017]. Among all the uncertainties in climate sensitivity estimates, represen-
tation of boundary layer clouds such as stratus and stratocumulus have a significant
contribution, specifically in the sensitivity of boundary layer clouds to changing surface
and PBL (planetary boundary layer, the lowermost part of atmosphere which is directly
influenced by surface) properties [Bony and Dufresne, 2005].

Various climate sensitivity studies indicate that climate models often underestimate
the low-cloud cover and over-estimate the occurrence of mid- and high-clouds above
low-clouds furthermore, these biases can be caused due to inaccurate representation of
cloud microphysical parameters [Nam et al., 2012]. Investigation of cloud processes
leads to a better understanding of boundary layer clouds behaviour under changing
atmospheric conditions have the potential to reduce the uncertainty in model predictions
and climate sensitivity significantly [Bony and Dufresne, 2005].

In order to advance our knowledge about clouds-climate interactions, observations
at multiple scales are required to verify the theories and hypotheses about clouds.
Essentially, observations are the acquisition of information from a primary source or
a snapshot of reality, which is analysed to validate or modify the concepts. The next
chapter introduces general measurements techniques used for cloud observations.
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Chapter 3

Instruments for cloud observation

Continuous observations of clouds are required to bridge the gap between the cloud mi-
crophysical properties and their interaction with other atmospheric process on local and
global scales. These observations can help in the representation of cloud microphysical
processes in climate projections. The ability to measure cloud properties has advanced
considerably over recent years. A variety of instruments and methods are used in the
observation of clouds, such as in-situ measurements and remote sensing instruments.
All instrumentations have some weaknesses and strengths. Before selecting a sensor for
a given application, it is essential to know the suitability of the instrument. The selection
of platform for cloud observations is also dependent on a number of criteria, including
the resolution with which cloud parameters must be recorded and the intended use of
the observation. This chapter highlights in-situ and remote sensing instruments, as well
as different platforms for collecting the cloud observations.

3.1 In-situ measurements

In-situ measurements are those made at the point where the instrument is located.
These in-situ measurements bring information at very small scale and provide detailed
information of different cloud characteristics. However, they are very localized and
limited to specific time periods and regions, so they cannot provide a global view of
cloud properties. In the early days of in-situ cloud measurement, oil-coated slides were
exposed to cloudy air from an aircraft along a defined path length. Slides collide with
cloud droplets and get absorbed in oil completely, preserving them for further study.
Droplets colliding with these slides leave imprints which are proportional to the droplet
size. However, droplets less than a few microns in diameter were not captured using this
technique [Wallace and Hobbs, 2006].

Measuring meteorological information and various particles (e.g. aerosols) within
the clouds, provides reliable data of cloud microphysical parameters and thermodynamic
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3. Instruments for cloud observation

structure of clouds at local scale. The in-situ cloud sensors from the early start of meteo-
rological research have evolved from oil slides to sensitive cloud imaging and scattering
spectrometers. Because such observations are generally expensive and provide only in-
stantaneous information of the clouds, it is difficult to collect continuous measurements
of clouds using this method [Gerber et al., 1994]. Nevertheless, these observations are
crucial to improve the representation of clouds in various model simulations and also
in the development and validation of retrieval products from the satellite, airborne and
ground based observations.

These instruments can directly measure the particle size, shape, optical properties
of the cloud particles. Other cloud properties like density and fall velocity need to be
indirectly derived from the directly measured quantities. It is not possible to address
all the available instruments for clouds observations in this thesis. Still, this chapter
provides examples of commonly used in-situ techniques for the investigation of cloud
physics. The monograph Baumgardner et al. [2017], provides a detailed explanation
of different in-situ sensors and their measurement concepts with limitations. Some
cloud microphysical parameters are measured in all phase of clouds (e.g., number
concentration), therefore the sensors measuring such parameters will work for liquid,
ice and mixed phase clouds, with the variation in their sampling volumes and possible
accuracy. A few frequently used category of in-situ sensors for cloud observations are
optical array probes, imaging probes, light scattering probes and hot wire systems. In
this section, an outline of these techniques for collecting in-situ measurement of clouds
are highlighted.

Optical Array Probes consist of a laser in one of the arms of the probe, which
emits radiation of defined wavelength towards a photodiode array sensitive to the laser
light fitted in the other arm. These elements record the decreased intensity of the laser
beam due to the particle passing through the gap between arms. This difference in the
intensity is used to characterize the shape and the size of the particles. The most common
type of optical array probes is the 2D-C (Cloud) / 2D-P (Precipitation) probe that can
sample particles with diameters between 50 and 100 𝜇𝑚 and a maximum diameter of 1
𝑚𝑚. However, these optical array systems had some installation defects like diffraction
effects, out-of-focus regions of the sampling volume, which is why these sensors are not
used nowadays.

The Cloud and Precipitation Imaging Probes (CIP and PIP respectively) are also
built on the same principle. More recently, more advanced probes were developed. For
example, the 2D-S (Stereo) probe uses two laser beams crossing at right angles and illu-
minating two linear photodiode arrays [Lawson et al., 2006]. This configuration allows
a better detection of small particles (e.g. < 100𝜇𝑚), leading to a better discrimination
between small droplets and ice crystals, and can be used to give a three-dimensional
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3.1. In-situ measurements

structure of particles that cannot be determined from a single shadow image of the
particle.

Light scattering in-situ instruments quantify the size distributions of cloud droplets
also using optical sensing discussed above. Currently, all devices used to determine the
size and shape of individual cloud particles from aircraft involve use of optical detection
[Baumgardner et al., 2011]. The Forward Scattering Spectrometer Probe (FSSP), Cloud
Droplet Probe (CDP), and Cloud and Aerosol Spectrometer (CAS) etc., are in-situ probes
based on the scattering of light by individual particles within a focused laser beam.

These in-situ cloud probes operate on the idea that the intensity of scattered light is
directly proportional to the particle size. Theoretically, particle size can be estimated if
the shape and refractive index of a particle and the wavelength of the incident light is
known. The intensity of light scattered by a particle varies according to the angle with
respect to the incident light. A laser produces monochromatic light, which is focused
by lenses, and the light scattered by the particles is collected and sent to a photodetector
for analysis. Mie theory [Mie, 1908] is applied to the scattered light from particle
that pass through a focused light beam. The resulting electrical signal is digitized and
processed in several ways. The primary difference in FSSP, CDP, CAS configurations
is the angle at which the scattered light is collected, which defines the measurement
characteristics of these instruments. These laser imaging probes have significant errors,
for example, the FSSP suffers from 1) inhomogeneity across the length and width of the
laser beam, which introduces sizing errors; 2) a limited response time of the detector
electronics, which can lead to considerable underestimates of the droplet concentration;
and 3) uncertainties associated with the calibration technique.

Imaging probes have the advantage of extracting information about the shape as
well as its size by capturing an image of the particle. These probes capture images using
optical arrays, which are fundamentally a microscope with a long working distance.
Examples of few imaging probes are the Cloud and Precipitation Imaging Probes (CIP,
CIP-Gray, and PIP), the Two-Dimensional Stereo spectrometer (2D-S), and the Cloud
Particle Imager (CPI) etc.

Considering the cloud parameters under investigation, it is difficult to measure the
wide range of cloud particles of various shapes, sizes and phase using a single instrument.
The selection of in-situ sensors must depend on the range of conditions over which the
measurements are made (e.g., temperature, altitude, LWC, drop size, length scale) and
the accuracy required for those measurements. For example, the selection of particle
size range from various single particle sizing probes for airborne cloud research can be
made using the figure 3.1. The graph shows the approximate size ranges for the single
particle sizing instruments, and star(*) denotes the instrument whose upper size range
can be extended. Although some of the probes in the graph are no longer in use, new and
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more advanced versions of the in-situ probes highlighted in red are considered recently
developing technologies Baumgardner et al. [2011].

Figure 3.1: Size ranges for the single particle sizing instruments. Figure source:
Baumgardner et al. [2011]

However, by measuring the particle size spectrum, the LWC can be determined by a
simple integration of the spectrum. While considerable sizing errors can occur in the in-
situ measurements, and when the diameters in a size bin are cubed to calculate volume,
the resulting inaccuracy in the integrated liquid water content becomes significant. Thus,
a probe developed specifically for direct measurement of LWC, such as a hot wire probe,
is advised.

Hot wire devices are the instruments which expose an electrically heated wire to
the air stream. When cloud droplets come into contact with the wire, they evaporate
and reduce the resistance of the wire. In an electrical feedback loop, the resistance of
the wire is used to maintain a constant temperature. The TWC (total water content,
in case of mixed or ice clouds) is deduced from the amount of power delivered to
the wire. LWC measurements from hot-wire probes are independent observations,
which are also used for validation of measured cloud droplet size distributions from the
same aircraft. Hot wire devices are also used for LWC measurement in ice and mixed
phase clouds. Thus, hot-wire LWC measurement sensors and optical cloud probes
are generally flown together. They can be used to constrain (closure) the mass-size
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relationship for ice. However, hot-wire measurements have many limitations, including
the following: (1) they are limited to non-precipitating circumstances; (2) they are
inefficient for small droplets (< 5𝜇𝑚); (3) ice mass present in ice or mixed phase cloud
can not be distinguished.
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3.2 Remote Sensing

Remote sensing is the technique of acquiring information about a target without phys-
ically contacting it. This is accomplished by detecting the reflected or emitted energy
from the target, followed by processing and analysing that information. Devices which
detects and transform the emitted/reflected electromagnetic radiation into a signal are
called Remote sensors. Fundamentally, the energy detected by these sensors in a par-
ticular part of the electromagnetic spectrum (SODAR is one of the exception, operates
on sound waves), contains the information about the physical and/or thermodynamic
properties of the target. The sensors either detect naturally emitted energy from the
target or it emits an electromagnetic signal itself towards the direction of the target and
then detects the fraction of the signal back scattered by the target. The first case is called
passive remote sensors and the former is termed as active remote sensors. The regions
of the electromagnetic spectrum which are directly used in remote sensing are visible,
infrared and microwave ranges.

3.2.1 Passive sensors

Passive sensors are based on the concept of reception of energy that is naturally emitted,
transmitted or reflected from the object. From the basic concept of ideal back body
and Kirchhoff’s law, it is known that the emission from a black body depends only
on its temperature, and the higher the temperature of the body, the more it emits. By
calculating the blackbody emission using Planck’s Law, which expresses the radiance
𝐵𝜈 (𝑇) emitted by a blackbody at absolute temperature 𝑇 (in Kelvin) and frequency 𝜈 (in
𝐻𝑧)as

𝐵𝑣 (𝑇) =
2ℎ𝑣3

𝑐2
1

(exp(ℎ𝑣/𝑘𝑇) − 1) (3.1)

where ℎ is the Planck’s constant, 𝑐 is the speed of light, and 𝑘 is the Boltzmann constant.
𝐵𝜈 has dimensions of power per solid angle per area per frequency i.e. 𝑊 ·m−2·sr−1·Hz−1.
The radiances are converted into atmospheric and cloud parameters with the help of a
radiative transfer model that relates the measurement to the different radiation processes
(emission, absorption, scattering). Passive remote sensing utilizes either solar radiation
reflected at the Earth’s surface or scattered in the atmosphere, or thermal radiation
emitted by the surface or the atmosphere, to derive atmospheric or surface properties.
The passive systems operating in the visible range (430–720 𝑛𝑚) require daylight to see
the whole atmospheric column. An example of passive remote sensing is the image from
a weather satellite created from reflected visible light from the atmosphere. However,
passive sensors operating in the infrared (NIR 750–950 𝑛𝑚 and MIR 1580–1750 𝑛𝑚)
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or microwave region depend on the emissivity of the body.

Multispectral sensors are generally used in passive remote sensing to measure the
acquired quantity in multiple-band combinations. The bands include two or more
wavelengths from the visible, IR, and microwave regions. For instance, observing clouds
and the Earth’s surface in regions known as atmospheric windows (in the visible and
infrared 3–5 𝜇𝑚 and 10–15 𝜇𝑚 bands). Furthermore, by comparison of the observed
brightness temperatures with those predicted by a radiative transfer model, optical
and microphysical properties of clouds can be derived. Examples of standard passive
remote sensing instruments used in atmospheric measurements include radiometers and
sounders.

Radiometers measure the intensity of electromagnetic radiation in a specific band of
wavelengths. The principal sources of atmospheric microwave emission and absorption
are water vapour, oxygen, and cloud liquid. The spectral radiance is measured as the
brightness temperature, which is linearly related to the kinetic temperature (ability to
emit radiation) of the body. A radiometer is usually distinguished by the region of the
spectrum it covers, such as visible, infrared, or microwave. Passive microwave radiome-
ters have been used to derive temperature and humidity profiles of the Troposphere.
Multispectral radiometers can detect the radiation in multiple bands suitable for remote
sensing of certain parameters like sea surface temperature, cloud characteristics, vege-
tation and many more. Microwave radiometers measure emitted microwave radiation,
expressed in terms of brightness temperature, which can be related to the column-
integrated water content (liquid water path, LWP) and precipitation rate. However, little
information about the spatial structure can be retrieved.

Sounders make use of all three radiative transfer phenomena, namely absorption,
scattering, and emission. Atmospheric sounders generally make passive measurements
of the distribution of IR or microwave radiation emitted by the atmosphere, from which
vertical profiles of temperature and humidity through the atmosphere are obtained. The
sounders differ from radiometers by estimating temperature and humidity profiles rather
than path integrated values. Oxygen or carbon dioxide is usually used as a ‘tracer’ for
the estimation of temperature profiles, since they are relatively uniformly distributed
throughout the atmosphere, so atmospheric temperature sounders measure radiation at
wavelengths emitted by these gases. For humidity profiling, either IR or microwave
wavelengths specific to water vapour are used. Microwave sounders have the ability to
sound through cloud and hence offer nearly all-weather capability. However, their spatial
resolution (both vertical and horizontal) is generally lower than the IR instruments.
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3.2.2 Active sensors

Active sensors, on the other hand, provide their energy source for illumination. In
particular, the sensor actively transmit the EM radiation and measures the backscatter
returned to it. The backscattered signal carries information about different properties
of the target, and the travelling time of the pulse (or equivalent) allows an accurate
estimate of the distance of the target. Active sensors conveys information about the
surface characteristics of the target.Besides wavelengths from the sun, these sensors can
evaluate the target in other wavelengths, such as microwaves. Thus, better control over
target illumination is possible in active remote sensing. However, the energy required
to illuminate the target sufficiently is quite large. The radiation-particle interaction
phenomena in the atmosphere introduced in chapter 2 are significant in active remote
sensing. Examples of active sensors frequently used for atmospheric measurement
are lidar, radar, scatterometer etc. The following section highlights lidar and radar
instruments in detail.

Lidar

These systems emit a laser pulses of specific wavelengths in the atmosphere. This pulse
is scattered by the atmospheric particles and undergo attenuation, and the attenuated
backscattered signal is measured. Lidar wavelength is mainly located in the near UV
(355 𝑛𝑚), visible (532 𝑛𝑚) and near infrared (1064 𝑛𝑚) part of the electromagnetic
spectrum. As shown in the basic schematic of lidar in figure 3.2, an optical assembly
(usually a telescope), collects part of the scattered radiation and the detected signal is
then amplified, digitized and processed to retrieve atmospheric parameters. The lidar
signal is scattered by the molecular constituent of air, aerosols and cloud particle and
the intensity of backscattered depends on the integral extinction along the way back and
forth.

Figure 3.2: Basic schematics of a lidar system. Figure source: Comerón et al. [2017]

The backscattering phenomenon is parametrized by the atmospheric backscatter
coefficient, 𝛽𝜆 (𝑚−1 · 𝑠𝑟−1), and total backscatter is the sum of the contribution of the air
molecules and the cloud particles in the sampled volume: 𝛽𝜆 = 𝛽𝑚𝑜𝑙𝜆

+𝛽𝑝𝑎𝑟
𝜆

. The apparent
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backscatter measured by lidar is a function of the two-way transmission coefficient of
the atmosphere along the path:

𝛽𝑎 (𝑅) = 𝛽(𝑅)𝑒−2
∫ 𝑅

0 𝛼(𝑧)𝑑𝑧 (3.2)

where 𝛼 is the extinction coefficient in 𝑚−1 and R is the atmospheric path length in 𝑚.
Note that this equation doesn’t account for multiple scattering.

However, the lidar typically measures the attenuated lidar signal 𝑃𝜆 (𝑅) as a function
of distance between lidar and target R:

𝑃𝜆 (𝑅) =
𝐾𝜆

𝑅2 𝛽𝑎 (𝑅, 𝜆)𝑂𝜆 (𝑅)𝑃𝜆0 (𝑅)

where 𝑃𝜆 (𝑅) is the backscattered power (in 𝑊) received from range 𝑅, 𝑃𝜆0 is the
emitted power, 𝑂𝜆 (𝑅) is the overlap function and 𝐾𝜆 is the lidar system constant. The
backscattering coefficient 𝛽 and the extinction 𝛼 depend on the scattering properties
of the particles and the molecules. They are linked by a parameter 𝑆 called the lidar
ratio (or extinction-to-backscatter ratio) expressed in steradian (sr) which is defined as
follows:

𝑆 =
𝛼

𝛽
(3.3)

Lidars are used to retrieve the aerosol profile, boundary layer dynamics, and cloud
base height, particularly when lidar is pointing vertically upwards. But, this instrument
has the disadvantage of being strongly attenuated by cloud droplets. Thus, a ground
based vertically pointing lidar usually cannot provide information about the upper limit
of clouds or fog layers. However, they provide more accurate measurements of cloud
base heights in the lower altitude. Cloud base heights are commonly measured with
zenith-pointing laser ceilometers, a type of lidar. This device is frequently used to
determine cloud ceilings (base) at airports and therefore called ceilometer. It works by
emitting a laser beam (infrared or ultraviolet transmitter) and the return from the clouds
base are detected by a photocell in the receiver.

The equations presented in this section, are described considering the elastic lidar
for rayleigh scattering. Mie scattering is referred in the elastic scattering from spherical
particles whose size is comparable to or larger than the wavelength of the laser. Note
that the backscattered lidar signal typically consists of elastic scattering from both
molecules and particles and also of inelastic scattering due to rotational Raman transition
in molecules. Inelastic scattering occurs when the molecule (or atom) first absorbes the
incident wave and uses the incoming energy to change its rotational or vibrational state.
This results in a change in the frequency of the scattered wave. Therefore, Raman lidar
systems detect signals at different wavelengths.
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Figure 3.3: Radar Schematic

Radar

Radar system works in much the same way as lidar, with the big difference that it uses
radio waves (𝜈 < 300𝐺𝐻𝑧) instead of laser light. The antenna system produces and
emits the electromagnetic waves of a defined wavelength, and the characteristics of
radar are essentially determined by the properties of how the radio wave interacts with
a physical

object (e.g., rain, cloud droplet, airplane, etc.). The figure 3.3 shows a typical
schematic of a radar where a transmitter (TX) or antenna transmits the electromagnetic
wave towards the target, and the reflected echo is collected at the receiver (RX) end where
the signal is amplified, and information about the target is retrieved. Only a fraction of
emitted energy is back-scattered by atmospheric constituents such as raindrops, clouds;
therefore, meteorological radar receivers are very sensitive instruments.

The choice of radar frequency depends on the application requirements. The radar
frequency is actually a frequency band which is designated by a code letter. For
example, S-band (2–4 𝐺𝐻𝑧), C-band (4-8 𝐺𝐻𝑧) and X-band (8-12.5 𝐺𝐻𝑧) are used for
meteorological applications related to precipitation, hail, and shorter-range hydrology.
In order to observe clouds, shorter wavelengths than rain radars are used. Radars
operating at millimetre wavelength such as K-band (18-27𝐺𝐻𝑧), K𝑎-band (27-40𝐺𝐻𝑧),
and W-band (75-110 𝐺𝐻𝑧) are more sensitive to small cloud droplets and ice-crystals
[Lhermitte, 1990]. In particular, radars operating at 35 𝐺𝐻𝑧 (8.7 𝑚𝑚 wavelength, 𝐾𝑎-
band) or 95 𝐺𝐻𝑧 (3.16 𝑚𝑚 wavelength, W-band) are called cloud radars, because the
atmospheric attenuation related to water vapour and oxygen reaches a local minimum
at these frequencies [Liou, 2002]. However, due to short wavelengths, 𝐾𝑎 and W-band
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radar signals are prone to get attenuated due to rain droplets in the path.

While travelling through the atmosphere, the power density decreases due to ex-
tinction by particles in its path. Consider a target at a distance 𝑅, then the average
backscattered power 𝑃𝑟 (𝑅) for the transmitted power 𝑃𝑡 is given by:

𝑃𝑟 (𝑅) =
𝐶

𝑅2 𝐿𝜎𝑣 (3.4)

where 𝜎𝑣 the backscattering radar cross-section integrated over a unit volume, 𝐿 is
the coefficient linked to attenuation and𝐶 is called radar factor, a function of transmitted
power 𝑃𝑡 , antenna geometry, and wavelength. In the equation (3.4), 𝜎𝑣 and 𝐿 are the
parameters dependent on atmospheric composition (gases, hydrometeors etc.).

The backscattering cross-section 𝜎𝑣 is a quantity that indicates the part of energy
which is scattered back towards the direction of incidence. For a hydrometeor, it is
a function of the diameter 𝐷 (and shape), its refractive index 𝑚 and the wavelength
𝜆 of the interacting radiation, i.e., 𝜎𝑣(𝐷, 𝑚, 𝜆). Mie [1908] proposed a solution for
cross-section of homogeneous spherical particles using Maxwell’s equations, given as

𝜎 =
𝜆2

4𝜋

����� ∞∑︁
𝑛=1

(−1)𝑛 (2𝑛 + 1) (𝑎𝑛 − 𝑏𝑛)
�����2 (3.5)

where the Mie coefficients 𝑎𝑛 and 𝑏𝑛 are spherical Bessel functions depending on 𝑚
and size parameter 2𝜋𝑟/𝜆. This theory provides an accurate description of the problem,
but comes at a high computational cost. The Rayleigh approximation is a representative
and valid approximation for different type of scattering calculations. Since liquid cloud
particles are much smaller than 𝑚𝑚 wavelengths, and a simplification of equation (3.5)
therefore leads to the Rayleigh approximation (2𝜋𝑟/𝜆 << 1) for spherical droplets, then
𝜎𝑣 can be expressed as

𝜎𝑣 =
𝜋5

𝜆4 |𝐾 |
2𝐷6 with 𝐾 =

𝑚2 − 1
𝑚2 + 2

(3.6)

where the dielectric constant |𝐾 |2 depends on the complex index of refraction 𝑚.
However, the Rayleigh approximation has a significant limitation. It is only valid for
small particles compared to the wavelength, and the reason can be seen in figure 3.4.
At most of the radar wavelengths, the Rayleigh approximation can be used for cloud
particles and small hydrometeors. But with larger meteorological particles (e.g. large ice
crystals, hail), the exact Mie solution should be considered because the backscattering
cross-section shows an oscillatory behaviour. For even bigger objects, the scattering
cross-section of the target approaches their geometric cross-section. It should be noted
that both the Mie and the Rayleigh regime discussed here are valid for spherical particles
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Figure 3.4: Normalized back scattering cross-section 𝜎/𝜋𝑎 as a function of size param-
eter 2𝜋𝑎/𝜆 for sphere, considering 𝑎 is the radius of the sphere.

only. In case of non-spherical particles, a computationally much more expensive method
called T-Matrix method has been frequently used to model the scattering properties of
particles. Another method to estimate scattering properties for large and complex
particles is the discrete dipole approximation (DDA) method. DDA method splits up a
single particle into a finite array of polarizable points, for which the dipole moments are
estimated in response to the local electric field. However, liquid-phase clouds mainly
consist of small spherical liquid water droplets and hence the T-matrix and DDA methods
goes beyond the scope of this thesis.

The average power backscattered by the particles distributed in a volume𝑉 is propor-
tional to radar reflectivity, 𝜂 which is actually the sum of back scattering cross-section
of individual particles over the unit volume. The radar reflectivity 𝜂 is a characteristic
quantity of the target, and its definition does not imply any assumption on the scattering
medium. However, in case of standard mereological radars, the condition of Rayleigh
approximation remains valid for most of the atmospheric targets except hail. Therefore,
radar reflectivity according to Rayleigh approximation becomes

𝜂 =
1
𝑉

∑︁
𝑉

𝜎𝑖 =
𝜋5

𝜆4 |𝐾 |
2
∫ 𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛

𝐷6𝑛(𝐷)𝑑𝐷 (3.7)

where the integral is called radar reflectivity factor 𝑍 , which represents the average
characteristic of the scatterers distributed in the volume and Z is expressed in 𝑚𝑚6 ·𝑚−3

as
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𝑍 =

∫
𝐷6𝑛(𝐷)𝑑 (𝐷) (3.8)

where 𝑛(𝐷) is the particle size distribution, which tells us how the droplets of clouds
are distributed across the range of sizes. This parameter will be described in detail in
section 4.1.

The radar reflectivity factor Z is independent of wavelength, which makes it easier
to compare measurements obtained with different radars, and it is usually given in units
of 𝑑𝐵𝑍 = 10 log10(𝑍) due to its large dynamic range. However, equation 3.8 is true
only if the Rayleigh approximation is valid. If the scattering volume does not satisfy the
condition of Rayleigh approximation, the particle in the radar volume are characterized
by the equivalent reflectivity factor 𝑍𝑒, which is equal to the reflectivity factor of liquid
spherical particles producing the same signal with in Rayleigh approximation.

𝑍𝑒 =
𝜆4 |𝐾𝑤 |2

𝜋5 𝜂 (3.9)

where |𝐾𝑤 |2 is the dielectric factor of water and 𝜂 is radar reflectivity as defined in
equation 3.7.

However, in case of liquid cloud droplets, the wavelength of the radar signal is large
enough and therefore the Rayleigh regime will remain valid. In the last few decades
microwave radars have been developed, which can detect all types of non-precipitating
clouds well before large hydrometeors are formed up to distances of a few kilometres. As
the radar backscattering cross-section is inversely proportional to fourth power of radar
wavelength (𝜆) (refer equation 3.6), and so does the backscattered power. Hence, the
shorter wavelengths indicate greater sensitivity of the radar, this means that these radars
can detect smaller particles. However, higher sensitivity also signifies that the signal
will be affected or attenuation by different particles in the atmosphere. The cloud radar
operating at 95𝐺𝐻𝑧 is capable of penetrating dense and thick cloud layers, allowing a
complete scan of deep clouds. A key feature of the cloud radar is the ability to provide
information of multiple cloud layers, even if the lowest layer completely obscures the
sky.

3.3 Instruments used in this study

In this thesis, a method to estimate the microphysical characteristics of low-level clouds
and fog is presented (in chapter 5) using a cloud radar and microwave radiometer synergy.
Observations from BASTA cloud radar colocated with the HATPRO (Humidity And
Temperature PROfiler) microwave radiometer at SIRTA observatory and SOFOG-3D
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field experiment are utilized. The fundamental concept of these remote sensing instru-
ments is already introduced in this chapter, and this section describes these instruments
and their capabilities in further depth. While the SIRTA observatory and SOFOG-3D
experiment observation sites are detailed in section 3.5. The retrievals of the cloud mi-
crophysical parameter using the mentioned synergy are compared with measurements
from an in-situ sensor called CDP. To ensure that this section covers all instrumentation
utilized in this research, the in-situ sensor is also described here.

3.3.1 BASTA cloud radar

A 95𝐺𝐻𝑧 FMCW radar called BASTA [Delanoë et al., 2016] developed in LATMOS
(Laboratoire Atmosphères, Observations Spatiales) is operational at SIRTA observatory
since 2010 (shown in figure 3.5). In addition to its first prototype operational at SIRTA,
several other BASTA radars are working over different locations around the globe.

Figure 3.5: A vertically pointing BASTA cloud radar at SIRTA

This Doppler cloud radar uses the frequency-modulated continuous wave (FMCW)
technique, rather than pulses, making it less expensive than standard cloud radars by
reducing the emitted power. The principle of FMCW radar is same as the radar principle
discussed in the previous section, except that the radar transmits the continuous wave of
energy whose frequency varies between 𝐹0+Δ 𝑓 and 𝐹0−Δ 𝑓 with a constant time period
𝑇𝑚 with 𝐹0 as the central frequency and Δ 𝑓 is half of the frequency band. The wave,
which is returned by a target situated at a range 𝑅, is received after time Δ𝑡 = 2𝑅/𝑐
where 𝑐 is the speed of wave propagation in the given medium. The radar returned
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signal is convolved (mixed) with the transmitted signal, and the beat frequency 𝑓𝑏 can
be defined such that

𝑓𝑏 = 2Δ 𝑓 × Δ𝑡

𝑇𝑚
(3.10)

The acquisition of the signal occurs only for half of the total time period 𝑇𝑚 to avoid
echo from other chirp, which costs 3 𝑑𝐵𝑍 loss in sensitivity in BASTA. The range
resolution is calculated as

𝑅 =
𝑐

2 × 2Δ 𝑓
(3.11)

The advantage of FMCW radar is that the range resolution is inversely propor-
tional to the frequency modulation, and hence can be regulated. To increase it,
it is sufficient to increase the value of Δ 𝑓 . The detailed descriptions of BASTA
cloud radar and its operating characteristics can be found in Delanoë et al. [2016]
and http://basta.projet.latmos.ipsl.fr/. A ground-based vertically pointing
BASTA radar measures radar reflectivity and Doppler velocity of the atmospheric targets
at four different resolution modes depending on the specific application. In particular,
the 12.5𝑚 vertical resolution mode is dedicated to fog and low level clouds and is limited
to 12 𝑘𝑚 range height. The 25 𝑚 mode is suitable for liquid and ice mid-tropospheric
clouds and covers the vertical extent from minimum range of 40 𝑚 to 18 𝑘𝑚. Further-
more, the 100𝑚 resolution is ideal for optically-thin high-level ice clouds with maximum
detectable range of 24𝑘𝑚. The portability and compact size makes BASTA a powerful
research tool that has been deployed on various platforms, including ships, aircraft etc.
during various field campaigns (e.g., EUREC4A (eur), Sea2cloud (sea), SOFOG-3D
(sof) etc). Some Doppler cloud radar can also record the radar Doppler spectrum of the
return radar echo over a range of sampled Doppler velocities. However, the Doppler
spectrum is not operationally available with BASTA, and we are investigating ways to
enhance this capability, in order to perform a spectral analysis of the signal.

Cloud radar calibration is necessary to perform the retrieval of physical cloud pa-
rameters from the measured backscattered power. As the radar consists of large number
of components, the internal calibration of radar is to determine all the instrumental
constants and their gain and losses. Unfortunately, it is quite challenging to determine
the exact power budget through each electronic components and their gains. Because
different radar configurations require different approaches, a common approach is the
external calibration, which characterize the complete system at once. This approach
is based on the idea of an external target with known reflectivity factor at a known
distance should give the expected backscattered power from radar. Then the calibration
constant is defined as the difference in reflectivity between the measured reflectivity and
the actual one. The calibration accuracy of BASTA is obtained about 2 𝑑𝐵 from the
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Figure 3.6: A multichannel HATPRO Microwave radiometer.

uncharacterized reference target. The detailed method used to calibrate BASTA cloud
radar is elaborated in Delanoë et al. [2016] and Toledo et al. [2020].

3.3.2 HATPRO microwave radiometer

A 14-channel HATPRO (Humidity And Temperature Profiler) MWR manufactured by
Radiometer Physics GmbH (RPG) is operational at SIRTA observatory. Figure 3.6
shows a picture of 14 channel HATPRO MWR of G4 series.

HATPRO MWR is a passive instrument, converting the naturally emitted down-
welling radiative energy emitted from the atmosphere within two spectral bands: the
first one focuses on the 22.24 𝐺𝐻𝑧 water vapour absorption band up to 31 𝐺𝐻𝑧 while
the second one is centred on the 60 𝐺𝐻𝑧 oxygen complex band (51–59 𝐺𝐻𝑧). Through
the use of calibration coefficients, detected intensities are then directly converted into
brightness temperatures. A retrieval technique is then needed to convert the brightness
temperature spectra into vertical profiles of temperature, humidity as well as liquid water
path. In general, statistical methods (linear, quadratic regressions or neural networks)
trained from simulated MWR observations from a database of radiosoundings or model
analyses are used [Cimini et al., 2006]. Optimal estimation retrievals combining an a
priori estimate of the atmospheric state with observations through an iterative process
can also be used [Martinet et al., 2020]. In this study, LWP retrievals based on MWR ob-
servations have been retrieved through quadratic regressions trained from a database of
radiosoundings for SIRTA while for SOFOG3D, neural networks trained from AROME
short-term-forecasts have been used. MWRs are only sensitive to the total liquid water
content present in the vertical profile [Ware et al., 2002]. Humidity profiles can be
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retrieved with a limited vertical resolution due to the smoother weighting functions for
K-band channels. Temperature profiles show a better vertical resolution, which can be
improved through the use of different elevation angles (generally from 90 to 5.4◦ above
the ground).

If there is a single layered liquid cloud, MWR thus provide a direct estimate of the
LWP for the cloud column. The LWP measurements of the column are unaffected by
ice clouds above liquid clouds. The time resolution of LWP measurements used in this
study is 1 second, with brief interruptions due to boundary layer scans. The missing
measurements during boundary layer scans are interpolated to the BASTA observation
frequency. The uncertainty of the MWR for LWP is expected to range between 10 𝑔𝑚−2

and 20 𝑔𝑚−2 [Crewell and Löhnert, 2003, Marke et al., 2016] particularly dependent on
the absolute calibration errors of MWR and uncertainties in retrieval algorithms.

3.3.3 Cloud Droplet Probe (CDP) on tethered balloon during SOFOG-
3D experiment

The tethered balloon mounted with in-situ sensor called Cloud Droplet Probe (CDP)
which is designed to measure cloud droplet size distribution from 2 𝜇𝑚 to 50 𝜇𝑚. The
CDP probe housing contains the forward scatter optical system, which includes a laser
heating circuit, photodetectors, and analogue signal conditioning and an appropriate data
system can also calculate various other parameters including particle concentrations,
effective diameter (ED), Median Volume Diameter (MVD), and LWC [Lance et al.,
2010]. This instrument (shown in figure 3.7) is designed and commercialized by Droplet
Measurement Technology and the specifications are given in table 3.1. As introduced in
section3.1, the operation of the probe is based on the Mie scattering theory [Mie, 1908].
In particular, when a cloud droplet passes through the laser beam, the photodetectors
of the probe measure the intensity of the forward scattered light over the angles 4-
12◦. Then, the light is equally distributed (by a beam splitter) between the qualifier,
which recognize a countable particle, and the sizer, which is used for the particle size
estimation. The sampling rate of CDP was 10 sec during SOFOG-3D campaign.

Table 3.1: Specifications of in-situ cloud droplet probe mounted on tethered balloon

Laser 658 𝑛𝑚, up to 50 𝑚𝑊
Measured Particle Size Range 2 𝜇𝑚 – 50 𝜇𝑚

Typical Sample Area 0.24 𝑚𝑚−2

Number Concentration Range 0 – 2,000 𝑐𝑚−2

CDP probes are associated to sizing and undercounting errors, which depend on
both the diameter of the droplet and its position inside the sampling area. With various
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Figure 3.7: A CDP probe. Image courtesy (https://www.dropletmeasurement.
com/product/cloud-droplet-probe/)

upgrade in the electronics and the design of the probe, 27% undercounting and 20%
to 30% oversizing bias at ambient droplet concentrations of 500 𝑐𝑚−3, were reported
[Lance, 2012].
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3.4 Observation platforms

The sensors are mounted on various platforms to acquire information about a target
under investigation. Based on the altitude above the earth’s surface, the platform can
be classified as the ground-based (including shipborne), airborne, and space-borne
platforms. In this section, we will just give a few examples as illustration.

Ground-based platforms like tripods, cranes, ground vehicles and towers are com-
mon examples. Ground-based instruments are frequently used to monitor atmospheric
phenomenon for long term. These types of platforms are relatively inexpensive, stable,
and due to their low altitude, provide high-resolution data of the lower atmosphere. Sen-
sor quality control of instruments on ground-based platforms are considerably easier.
Multiple instruments can be co-located to measure different atmospheric parameters.

Airborne platforms include airplanes, helicopters, UAVs, high-altitude aircraft,
and free-floating and tethered balloons. The airborne configuration can have several
advantages, as one can easily target a system and follow its development and motion. This
special viewing geometry can also allow a better description of the cloud top than ground
based instruments (being crucial when instruments are very sensitive to attenuation in
the low troposphere). A research aircraft can be equipped with a variety of active and
passive remote sensors, as well as in-situ probes. For example, RASTA (RAdar SysTem
Airborne) is a 94𝐺𝐻𝑧 (W-band) Doppler cloud radar and multi-wavelength lidar that
can be deployed on a research aircraft (e.g., Falcon 20) to investigate about cloud,
aerosol, and convection properties. RASTA can be operated in several configurations,
the 6 antennas configuration allows one to retrieve 3D cloud dynamic above and below
the aircraft. The RALI (RAdar and LIdar) project combines RASTA and a triple-
wavelength dual-polarization lidar, with high spectral resolution and Doppler capability
at 355 𝑛𝑚, for characterization of the macrophysical, microphysical, radiative, and
dynamical properties of clouds, aerosols, and convection. This project began in 1993,
and additional information about this aerial platform and observation system may be
found at http://rali.projet.latmos.ipsl.fr/. Such aircraft based airborne
platforms can be expensive.A UAV, on the other hand, is a small remotely piloted
aircraft. It is intended to be inexpensive, a modest payload capacity, and operate without
or with a short runway. Cameras, infrared sensors, radar can be mounted on UAV.
It communicates through the satellite, and an onboard computer controls the payload
and stores data from sensors. The tethered balloon platform is an airborne platform
which includes a tethered balloon filled with helium gas and a rack for mounting
electronic equipment and instruments under the balloon. Depending on their size and
capacity, tethered balloons can even have a payload of 200 kg. Tethered balloons as a
sensor platform have many advantages, such as low operating cost and high resolution
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profiling of the meteorological and radiative properties over the entire PBL from the
surface to its top. The balloon can remain at one location for hours, thus is able to
provide time series of PBL variables, which is very important for studying boundary
layer transition, surface-air interaction, and PBL process including aerosol and trace
gases parameterization. With appropriate sensor packages, it can provide continuous
monitoring of air pollutants and portable weather stations below 1000 𝑚. However, the
use of tethered balloons is limited to the lowermost 1–2 𝑘𝑚 levels in light wind and in
areas with little air traffic.

Space borne platform Since airborne platform cannot fly for long time period
(i.e., months or years), space borne platforms are very useful in remote sensing to
provide long term and wider view of the target area. The satellites are used for the
space borne remote sensing, which moves in their orbit around the planet. The type
of sensor on the platform and the orbit that the platform travels is based upon the type
of monitoring and data collection needed. One of the main interest of space borne
platforms is to have long-term records of global observations, which can be used to
assess weather and climate prediction models. As spaceborne sensors are well placed
on stable platforms, they have fewer problems with distortion than airborne sensors. The
benefits of using space borne remote sensing includes broad coverage, repeated coverage
of an area of interest, lower cost per coverage area. Weather satellites have completely
transformed weather analysis and forecasting. The constellation of satellites called
A-Train (https://atrain.nasa.gov/) includes different passive and active sensors
for monitoring clouds and aerosols properties. One of the space borne millimeter-
wavelength cloud radar is the CloudSat [Stephens et al., 2002] launched in 2006, which
has a vertical resolution of 500 𝑚. However, low temporal and spatial resolution is the
primary draw back of satellite based sensors.
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3.5 Observation sites and field campaigns used in this
study

As described above, ground based remote sensing overcomes the limitation of low spatial
resolution captured by satellite based sensors. Because I am focusing on low level clouds,
ground based remote sensing instruments provides high spatial and temporal resolution
of clouds properties, especially for low-level clouds being closer to them with minimum
influence of atmospheric noise. Observations from multi-instrument like cloud radar,
lidar, radiometer etc. collocated at atmospheric measurement site for example SIRTA
(France), JOYCE (Germany), Cabauw (Netherlands), Chilbolton (UK) etc., provides
valuable insights of fine scale atmospheric processes and cloud microphysical properties.
In this section, I describe the observation sites and instrumentation used in my research.
Data from SOFOG-3D field campaign, as well as the French observatory near Paris are
used in this research, and these observation sites are outlined in the next section.

3.5.1 SIRTA

Figure 3.8: SIRTA observatory. Image courtesy (https://sirta.ipsl.fr/index.
html)

SIRTA (Site Instrumental de Recherche par Télédétection Atmosphérique) is a multi-
instrumental atmospheric observatory located 20 𝑘𝑚 in the south of Paris, at the univer-
sity campus of École Polytechnique, in Palaiseau. The area round the observatory is a
semi-urban environment with trees, fields, houses, and some industrial buildings. Many
atmospheric variables have been continuously recorded since 2002 [Haeffelin et al.,
2005]. The altitude of the site is 156 𝑚 above mean sea level and various ground based
instruments are set up on the platform as shown in image 3.8. Additionally, a 30 𝑚 mast
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equipped with sensors for measurement of turbulent and radiative fluxes is also setup at
SIRTA. Sensors for temperature, humidity and pressure measurement are installed at 2
𝑚 above ground, as well as a wind vane and anemometer installed at 10𝑚 above ground.
SIRTA has a surface radiative flux station to monitor the downwelling solar and infrared
components of the surface radiation budget. A sonic anemometer and a closed-path
infrared gas analyser are installed to measure turbulent sensible and latent heat fluxes
at 2 𝑚 with the eddy covariance method. At depths of 5, 20, and 100 centimetres,
the ground heat flux is also monitored. Soil temperature and moisture are measured at
different levels of soil, and a thermometer monitors the skin temperature of ground. A
multi-wavelength sun-photometer, is exploiting the visible and near-infrared end of the
spectrum to monitor aerosol properties at SIRTA. In addition to surface measurements,
radiosondes launches at around 11 and 23 UTC from the Trappes Météo-France station
which is located 15 𝑘𝑚 west of SIRTA, are collected on a regular basis to provide
atmospheric temperature and humidity profiles.

As already highlighted in the earlier sections, the advantages of ground-based remote
sensing instruments in terms of their ability to provide continuous observations make
them particularly well suited for monitoring fine scale processes involving complex
interactions between clouds, aerosols, and radiative and dynamic processes. SIRTA
observatory also houses remote sensing instruments such as radars, lidars, and radiome-
ters. A CHM15K ceilometer operating at 1064 𝑛𝑚 produces a 15 𝑚 resolution vertical
profile of (attenuated) light backscatter. This wavelength is extremely sensitive to cloud
droplets, allowing for reliable cloud detection. Since the cloud rapidly attenuates the
ceilometer beam, further characterization of the cloud profile above the cloud base is per-
formed by the 95𝐺𝐻𝑧 cloud radar named BASTA. A 14-channel HATPRO microwave
radiometer (MWR) is also operational since 2010 which provides brightness temper-
ature measurements in 7 oxygen and 7 water vapour bands. The vertically integrated
liquid water path (LWP) and integrated water vapour (IWV) of the whole atmospheric
column, as well as profiles of temperature and humidity up to 10 𝑘𝑚 can be retrieved
from these measurements. The HATPRO MWR and vertically oriented BASTA radar
both are operational at SIRTA since 2010, and these instruments are detailed in the
section 3.3. SIRTA has also deployed a fog monitor FM-120 (Droplet Measurement
Technologies) to characterize fog properties. Individual droplets are counted and sized
using a forward scattering probe inside a compact measurement chamber that samples
a steady flow of air using active ventilation.

Many research activities focusing on the dynamics and properties of clouds at
different levels are utilizing the observations and the instrument synergies offered from
SIRTA. More information about the observations and the data set from SIRTA can be
found at https://sirta.ipsl.fr/. The observations of clouds acquired by remote
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sensing devices at SIRTA between November 2018 and May 2019 are used in this study.

3.5.2 SOFOG-3D

SOFOG-3D stands for SOuth west FOGs 3D experiment for processes study and the
related field experiment was conducted between October 2019 to March 2020 in the
South-West region of France, which is particularly prone to fog occurrence. Because,
aviation sector all around the world is severely hindered due to fog and hence observations
and specific research for fog is necessary to improve fog forecast. The primary goal of
this field experiment was to advance the understanding of fog processes by exploring
both horizontal and vertical variability of fog layers, and finally improve fog forecasts
by numerical weather prediction (NWP) models.

Figure 3.9: SOFOG-3D campaign super site

In order to provide a 3D characterization of fog through detailed observations of
dynamics, radiation, microphysics and surface fluxes, a number of in-situ and remote
sensing instruments were deployed to collect the observations of various characteristics
of fog. The supersite is located at Saint-Symphorien commune of France and is centred
at 44◦24’44.5 N, 0◦35’51.5 W covering a surface of around 5 𝑘𝑚 as shown in figure
3.9. Simultaneous measurements from various remote sensing instruments like BASTA
cloud radar with scanning capability as well as vertically pointing, HATPRO Microwave
radiometer, Doppler lidar were collected to better understand the spatiotemporal evo-
lution of fog. In addition to the remote sensing instruments on the super site, detailed
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measurements of meteorological conditions, aerosol properties, fog microphysics, wa-
ter deposition, radiation budget, heat and momentum fluxes are collected to provide 3D
structure of the boundary layer during fog events. A 50 𝑚 tower equipped with sen-
sors to measure the turbulence in the vertical structure of boundary layer was installed.
During the field campaign, in-situ observations from radiosonde tethered balloon and
Unmanned Aerial Vehicle (UAV) fleet were collected on a regular basis. Around the
super-site, a larger domain of 300 x 200 𝑘𝑚2 with network of 6 MWR (underlined in
figure 3.9) and about 50 surface meteorological stations were set up to collect detailed
observations of fog processes.

In the following part of the thesis, I present different methods from the literature to
estimate the LWC of warm clouds using ground-based remote sensing instruments. As
discussed in this chapter, the cloud radar measurements can be used to derive macro- and
microphysical parameters of clouds; therefore, several methods from the literature are
presented in the next chapter. In-situ measurements of clouds are used to compare the
retrieval parameters from the algorithm and used to develop an empirical relationship.
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Chapter 4

Prerequisites and overview of the
literature for LWC retrieval

As demonstrated in the previous chapter, remote sensing sensors offer the radiative
equivalents of cloud microphysical parameters. These observations necessitate the use
of advanced algorithms in order to infer various cloud properties. This chapter, discusses
fundamental microphysical parameters relevant to warm clouds applied in my thesis,
followed by the classification methods used to identify radar-detected hydrometeors.
Furthermore, this chapter presents some available techniques for estimating the liquid
water content of clouds based on cloud radar observations, particularly in the context of
low-level liquid phase clouds.

4.1 Microphysical parameters of liquid phase clouds

Clouds in the liquid phase typically originate in the lower troposphere, where temperature
anywhere within the cloud is not colder than 0◦C, and only liquid water droplet exists.
Generally, these clouds have a vertical extent of a few hundred meters. Clouds in the
liquid phase are mostly composed of small spherical liquid water droplets that are non-
uniformly distributed vertically or horizontally. Warm clouds form when condensation
occurs on an activated CCN (introduced in section 2.1) and develops to form a liquid
droplet. Collisions, coalescence, deformation and evaporation are subsequent processes
that occur in clouds. The amount of liquid water per cubic meter is a microphysical
parameter measured in warm clouds. The droplet size distribution (DSD) is another
important parameter used to characterize cloud microphysics and various processes
related to clouds. The number of drops measured as a function of diameter 𝐷 in a
sample represents the drop size distribution 𝑛(𝐷). The drop size distribution 𝑛(𝐷) is
already introduced in 3.8, which is a representative parameter of particles (droplets) in

49



4. Prerequisites and overview of the literature for LWC retrieval

the given cloud volume to define the radar reflectivity. The DSD, 𝑛(𝐷), is defined as
the number concentration of particles in a size interval 𝐷 to 𝐷 + 𝑑𝐷 per unit volume,
and the total concentration (or the total number of particles per unit volume) 𝑁 can be
written in lognormal distribution as:

𝑛(𝐷) = 𝑁

𝐷𝜎ln𝐷
√

2𝜋
exp

[
−1

2

(
ln𝐷 − ln𝐷𝑚

𝜎ln𝐷

)2
]

(4.1)

where 𝐷 and 𝐷𝑚 are the diameter and median diameter respectively and 𝜎𝑙𝑛𝐷 is the
logarithmic width of the distribution. The total number of droplets of all sizes in the
unit volume of air is represented by 𝑁 , which is expressed using 𝑛(𝐷) such as

𝑁 =

∫ ∞

0
𝑛(𝐷)d𝐷 (4.2)

In cloud microphysics, the droplet size distribution is generally characterized in
terms of its moments, as they can be related to the remote sensing observations under
certain assumptions. To express the properties of the droplet size distribution in this
sense, the 𝑎𝑡ℎ moment of the droplet size distribution is used such that:

⟨𝐷𝑎⟩ =
∫ ∞
0 𝐷𝑎𝑛(𝐷)d𝐷∫ ∞

0 𝑛(𝐷)d𝐷
=

1
𝑁

∫ ∞

0
𝐷𝑎𝑛(𝐷)d𝐷 (4.3)

where 𝑎 is the integral moment of cloud drop size distribution, 𝑁 is the number
concentration as expressed in equation (4.2), which is the zeroth moment of drop size
distribution. Similarly, LWC is proportional to the third moment of DSD which is also
the integration over the total mass of the DSD expressed as:

𝐿𝑊𝐶 =
4
3
𝜋𝜌w

∫ ∞

0
𝐷3𝑛(𝐷)d𝐷 =

4
3
𝜋𝜌w𝑁

〈
𝐷3〉 (4.4)

where 𝜌𝑤 is the density of liquid water.

The typical values of LWC and 𝑁 in the continental stratus clouds from different
in-situ and satellite measurements are observed 0.28 𝑔𝑚−3 and 250 (droplets per cubic
centimetre), whereas for fog the number concentration and can go down to 15 and LWC
could be as low as 0.06 𝑔𝑚−3 ([gre]). Clearly, the vertical structure of the cloud LWC
depends on the DSD characteristics, and these are mainly affected by processes such as
droplet nucleation activity at cloud base, adiabatic growth of droplets above cloud base,
entrainment-mixing processes of air at cloud top, and collision-coalescence.

The values of LWC determined from the equation (4.4) for a vertically inhomoge-
neous cloud profile, can be extended to a function of range 𝑅 above cloud base, and thus
the integration of the LWC over the cloud height results in the liquid water path (LWP):
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𝐿𝑊𝑃 =

∫ ℎ𝑐𝑡

ℎ𝑐𝑏

𝐿𝑊𝐶 (𝑅)𝑑𝑅 (4.5)

where ℎ𝑐𝑏 is the height at cloud base and ℎ𝑐𝑡 is the height at cloud top.
The proportionality between the moments of DSD forms the basis of the various

methods to retrieve the microphysical and optical cloud properties from the surface
remote sensing observations, and it is commonly used in the meteorology community
(Frisch et al. [1995]Frisch et al. [1998]Sassen and Liao [1996]). It allows us to infer
the moments of the DSD from the observed radar reflectivity as defined in equation 3.8,
into the microphysical parameters like LWC and effective radius.

4.2 Classification of hydrometeors

In order to interpret microphysical characteristics of clouds using radar observations, a
robust hydrometeor classification is necessary. Accurate classification of hydrometeors
can provide not only detailed information about the hydrometeor composition of clouds,
but also distinguish unwanted targets such as airborne plankton (dust particles and
pollens suspended in the air). After classifying the target, a specific retrieval method
is employed to retrieve the microphysical parameters. For instance, there are separate
retrieval techniques for pure liquid and pure ice clouds, which are often relevant to single-
phase cloud systems. A precise target classification scheme can make a considerable
contribution to operational nowcasting applications based on radar observations. In
the context of cloud radar, signal processing includes classifying surrounding noise
and hydrometeor signal. Various approaches have been proposed in the literature to
further characterize the hydrometeors that have been identified by radar. Although, it is
important to know the several types of hydrometeors. Clouds, fog, rain, snow, hail, dew,
and snow are all examples of well-known hydrometeors. AMS glossary of meteorology
defines hydrometeor as ’Any product of condensation or deposition of atmospheric water
vapour, whether formed in the free atmosphere or at the earth’s surface; also, any water
particle blown by the wind from the earth’s surface’[AMS]. Note that snow or water on
the ground is, by convention, not considered a hydrometeor. There are many ways of
classifying hydrometeors, one of which is as follows:

1. Suspended liquid or solid particles, for example, cloud, fog, ice fog, aerosols

2. Liquid precipitation, for example, drizzle and rain

3. Solid (frozen) precipitation, for example, snow, hail, ice pellets or crystals

4. Freezing precipitation, for example, freezing drizzle and freezing rain
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Low-level clouds are often observed with rain and drizzle, and because larger droplets
like drizzle and rain can cause strong attenuation of the radar signal, hence it is very
important to classify the hydrometer and apply the relevant retrieval method to estimate
microphysical properties accurately. Particularly in thick liquid clouds, drizzle and
liquid cloud droplets frequently coexist. In such cases, the classification is commonly
developed using various theoretical or observational values of radar variables, and using
them as thresholds to distinguish clouds and drizzle. For instance, Frisch et al. [1995],
Vivekanandan et al. [2020] used radar reflectivity thresholds to differentiate clouds and
drizzle. Between -15 𝑑𝐵𝑍 and -20 𝑑𝐵𝑍 are the empirically determined thresholds to
separate drizzle from pure liquid cloud reflectivity in the cloudy areas. Classification
methods based on analysis of Doppler spectrum from a profiling cloud radars is also
used to distinguish the phase of the droplet showing certain signatures in the recorded
spectra [Acquistapace et al., 2017].

As my thesis is focused on LWC retrieval methods for low level clouds, therefore
I used the available hydrometeor classification scheme and proceed to develop LWC
estimates. This target classification level 2 (L2 from now onwards) product of vertically
pointing BASTA radar currently has phase discrimination of liquid cloud, rain, drizzle
and ice. The classification method is based on melting layer detection using the radar
reflectivity (𝑍) and velocity (𝑉𝐷) gradients of the cloud profile. The height of the
melting layer give a proxy of liquid or ice phase distinction. Further, fall velocity of the
hydrometeor is used to distinguish between liquid cloud, drizzle and rain. The velocity of
droplets falling faster than 1.5𝑚𝑠−1 are considered rain and velocity of droplets less than
0.5𝑚𝑠−1 is considered as liquid cloud droplet. Radars also detect boundary layer insects,
large dust particles and pollens suspended in the air, these non-hydrometeors detected by
radar are called airborne planktons. I separated these boundary layer airborne planktons
manually by looking at the onset close to ground from noon to evening. These airborne
planktons can be a reason for uncertainties in LWC retrieval, which is detailed in section
5.2.4.

Nevertheless, there are more sophisticated target classification schemes available
in literature. Because a detailed classification of hydrometeors using only one remote
sensing instrument can be challenging, since no individual instrument can unambigu-
ously classify cloud phase for all clouds under all meteorological conditions. Hence, a
multi-sensor approach is beneficial for the classification of hydrometeor. Many target
classification schemes employ a combination of active and passive remote sensing instru-
ments like cloud radar, lidar, microwave radiometer, and radiosonde, (e.g., CLOUDNET
[Hogan and Connor, 2004],[Illingworth et al., 2007],[Shupe, 2007]). These approaches
can distinguish between liquid, ice, mixed phase, drizzling, raining, and snowing clouds,
aerosols and insects. However, the accurate classification of phase in a mixed phase
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cloud is very complex. Differences in scattering processes between radar and lidar
allows improved target classification and detection of spherical water droplets and other
non-hydrometeors (aerosol and airborne planktons) below cloud base. After determin-
ing the category of hydrometeors, the next aspect is to evaluate how these hydrometers
are interacting with the radiation and impacting the radar measurements.

4.3 Atmospheric Attenuation

Attenuation is the exponential decay of radiation (amplitude, power) during the trans-
mission through the medium. In meteorology, the atmospheric attenuation is caused by
gases and the hydrometeors. Water vapour and oxygen are the two primary atmospheric
gases that contribute to gaseous attenuation. At millimetre wavelengths, the contribu-
tion from oxygen is relatively less, but the contribution from water vapour can be quite
large and is very sensitive to the amount of water vapour in the atmosphere. In case of
hydrometers, attenuation due to clouds, precipitation, ice and melting layer is described
differently. The impact of attenuation is taken into account in radar equation (3.4)
where the parameter 𝐿 indicates attenuation. By definition, attenuation is the loss in the
transmitted power 𝑑𝑃 is a function of distance 𝑑𝑅 in a two-way attenuating medium.
As the wavelength of the radar decreases, the attenuation also increases through each
medium. Attenuation by atmospheric gases is relatively small at low temperatures, at
high temperatures and frequencies, the attenuation is significantly higher and must be
corrected for. Despite the enhanced sensitivity with the shorter wavelength, cloud radars
are also associated with attenuation issues. Even though W-band radars work in one
of the water vapour transmission windows, absorption due to water vapour can reach
2 𝑑𝐵𝑘𝑚−1 depending on temperature and humidity in the lower troposphere [Kollias
et al., 2007]. Two-way atmospheric attenuation of about 0.5 𝑑𝐵 for humidity less than
45% was observed by Delanoë et al. [2016], however the atmospheric attenuation can
vary depending on the latitudes. Attenuation by rain is significant at 95𝐺𝐻𝑧 and there is
an additional attenuation due to wet radome which can reach almost 20 𝑑𝐵 as observed
by BASTA [Delanoë et al., 2016]. The radome attenuation is significantly reduced by
installing a very powerful blower in BASTA. Clearly, the radar reflectivity measured by
the cloud radar is biased by attenuation due to mentioned hydrometers and gases and
therefore these attenuation biases must be eliminated before it can be used. In cases of
ground based vertically pointing radar, when looking at low-level liquid clouds, attenu-
ation due to ice and melting layer is not necessary to be considered. However, there is
still a need to account for cloud droplets and atmospheric gas attenuation, though.

At cloud radar wavelengths, cloud particles are sufficiently small and attenuation
(extinction) by clouds satisfies the condition of Rayleigh approximation. Moreover, for
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Figure 4.1: Attenuation by clouds and water vapour at 95𝐺𝐻𝑧. Figure source: Vali and
Haimov [2001]

such small particles, the scattering is small compared to absorption (equation 2.2). In
fact, the extinction by absorption due to cloud particle is proportional to the volume of
liquid particles. This proportionality of attenuation with cloud liquid water content can
be presented as

𝐴 = 𝑘𝑐 × 𝐿𝑊𝐶 (4.6)

where 𝑘𝑐 is the coefficient of attenuation by cloud per unit density in 𝑑𝐵𝑘𝑚−1

and is dependent on wavelength and the temperature. Figure 4.1 shows the extinction
coefficient per 𝑔𝑚−3 of liquid water content (LWC) for clouds alone, and for the total
attenuation including cloud and water vapour using the approximation given by Liebe
[1985] [Vali and Haimov, 2001].

In addition to this approximation to determine the attenuation at 95 𝐺𝐻𝑧, Lhermitte
[1990] also calculated approximately 4 𝑑𝐵𝑘𝑚−1 per 𝑔𝑚−1 attenuation due to liquid water
at temperature between 0◦ to 20◦C using Mie calculations. When using measurements
from 95 𝐺𝐻𝑧 radar to determine LWC, the radar reflectivity must be corrected for
attenuation, which can range between 0 and 4 𝑑𝐵𝑘𝑚−1. The detailed discussion about
incorporating attenuation in the LWC estimation method is presented in the section
5.2.3. After the attenuation correction, the radar reflectivity can be used to infer cloud
microphysical properties like LWC, and the techniques to link radar reflectivity 𝑍 with
LWC are illustrated in the next section.
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4.4 Cloud radar based techniques for LWC retrieval

As already stated, the estimation of LWC from remote sensing instruments like cloud
radar requires one to invert the observations parameters in order to obtain the cloud
liquid water content. Various methods such as empirical methods, statistical methods,
probabilistic methods, Doppler spectral analysis etc, are generally employed. The
proportionality between the moments of DSD (explained in section 4.1) forms the basis
of the method to retrieve the microphysical properties of clouds from the surface remote
sensing observations.

Cloud radars at 95𝐺𝐻𝑧 have the major advantage of the frequency which is ideal for
observing cloud as it lies within a part of the spectrum which experiences relatively low
absorption in the atmosphere, whilst being high enough to resolve small particles like
cloud droplets by Rayleigh scattering [Lhermitte, 1990]. The development of various
techniques to estimate cloud liquid water content using W-band cloud radars are briefly
discussed in the next few sections.

4.4.1 Empirical relation

As introduced in section 3.1, the in-situ particle size spectra of clouds can be measured
by sensitive cloud probes. Universal 𝑍 − 𝐿𝑊𝐶 relations proposed in the literature are
derived using these in-situ measurements of droplet spectra from a research aircraft
flying through clouds [Atlas, 1954],Sauvageot and Omar [1987], [Fox and Illingworth,
1997]. The in-situ sensors such as forward-scattering spectrometer probe (FSSP), cloud
droplet probe (CDP) (described in chapter 3) are used to collect the cloud microphysical
parameters (e.g. DSD, LWC). These microphysical parameters, are correlated to obtain
a linear relationship in log space. For instance, the DSD collected from in-situ cloud
sensor can be used to estimate radar reflectivity factor 𝑍 and 𝐿𝑊𝐶 by calculating sixth
and third moment of DSD respectively. Then, the logarithmic Z (in 𝑚𝑚6𝑚−3) and LWC
(in 𝑔𝑚−3) dataset are fitted to a linear relation using the least squares criterion for the
best fit. However, there are further steps including filtering of larger droplets from of
spectra, and a detailed analysis of deriving empirical relations is discussed by Baedi
et al. [2000] with the validation of derived Z-LWC relations using air-borne radar and
lidar measurements.

In order to derive such relationships, various field campaigns focusing different
types of clouds over different geographical location for example CLARE’98 (UK),
CAMEX-3 (Florida, USA), DYCOMS-II (the Pacific) have been conducted. A brief
description of these campaign data set, and their implementation to retrieve LWC from
radar reflectivity using different types of the Z-LWC relationships, can be found in
Krasnov and Russchenberg [2005]. A typical form of relating radar reflectivity Z with
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Table 4.1: Z-LWC relation from literature

Reference Z-LWC relation 𝑙𝑛𝑎 Cloud type
Atlas [1954] 𝑍 = 0.048 · 𝐿𝑊𝐶2.0 -3.0365 Clouds without Drizzle
Sauvageot and
Omar [1987] 𝑍 = 0.03 · 𝐿𝑊𝐶1.31 -3.5065 Non-precipitating stratocu-

mulus and cumulus
Fox and Illing-
worth [1997] 𝑍 = 0.012 · 𝐿𝑊𝐶1.16 -4.4228 Non-precipitating marine

stratocumulus
Baedi et al.
[2000] 𝑍 = 0.015 · 𝐿𝑊𝐶1.17 -4.1997 Stratocumulus clouds

Wang and Geerts
[2003] 𝑍 = 0.044 · 𝐿𝑊𝐶1.34 -3.1235 Non-precipitating marine

stratus
Krasnov and
Russchenberg
[2005]

𝑍 = 323.59·𝐿𝑊𝐶1.58 5.7794 Drizzle clouds

cloud liquid water content LWC is a power law equation is

𝑍 = 𝑎 · 𝐿𝑊𝐶𝑏 (4.7)

where 𝑎 and 𝑏 are constant coefficient and 𝑍 is in 𝑚𝑚6𝑚−3 and LWC is in 𝑔𝑚−3. If
𝑍 is known, LWC can be calculated. The value of coefficients 𝑎 and 𝑏 varies from 0.012
for marine stratocumulus cloud (Fox and Illingworth [1997]) to 323.59 for drizzling
cloud (Krasnov and Russchenberg [2005]) and the exponent 𝑏 varies between one and
two. Table 4.1 shows details of empirical 𝑍 − 𝐿𝑊𝐶 relations from literature for a given
cloud type. The column 𝑙𝑛𝑎 is the natural log of prefactor 𝑎, and this is discussed in
chapter 5.

The empirical method requires only radar reflectivity information to estimate LWC
of the cloud. But, the performance of all 𝑍 − 𝐿𝑊𝐶 relationships listed in table 4.1
depends strongly on cloud microphysics, which varies with changing ambient conditions.
Considering natural variability of cloud droplet spectra, it is difficult to find a universal
𝑍 − 𝐿𝑊𝐶 relationship. The empirical approach is also based on certain approximations
in DSDs which widely vary within the cloud and among different cloud systems. This
can be shown analytically, if we replace 𝑛(𝐷) from equation (4.1) to equation (4.4) and
(3.8), only one of the three unknowns, i.e. 𝜎𝑙𝑛𝐷 , 𝐷𝑚 or 𝑁 can be eliminated using
two equations. A unique 𝑍 − 𝐿𝑊𝐶 relation may be obtained if other two parameters
are known [Ovtchinnikov and Kogan, 2000]. Theoretically, 𝑍 − 𝐿𝑊𝐶 the relationship
is derived by assuming the shape of the DSD. Therefore, the relationship derived for
a given DSD will not be valid for other DSD. Note that the empirical Z-LWC relation
do not account for attenuation of signal by gaseous molecules, cloud and rain droplets
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when propagating through the atmosphere. Generally, the attenuation increases with
increasing frequency, which should be considered before interpreting Z.

4.4.2 Spectral Analysis

The advancements in cloud radar signal processing allow one to compute the radar
Doppler power spectrum in addition to the observed mean Doppler velocity. Doppler
spectrum observed by radar is defined as the function of the backscattering cross-section
of the droplets in the detection volume with respect to their fall velocity Giangrande et al.
[2001]. The idea behind the Doppler spectrum is that the motion of a meteorological
target induces a Doppler frequency shift on the radar signal. Because many particles
are moving with their speed and direction, the radar backscattered signal thus contains
combined information of all the frequency shifts created by the different particles.
Hence, the backscattered radar signal is a function of the full range of frequency shifts,
is called the Doppler spectrum. Furthermore, with the assumption that fall velocity is
a function of droplet size, the power spectrum is related to the drop size distribution.
Typically, the first three moments of the radar Doppler spectrum, i.e., total power, mean
Doppler velocity, and velocity variance, are used in radar spectral analysis [Kollias et al.,
2011].

The analysis of Doppler spectra helps separate the phase of hydrometeors by identi-
fying their signature shape and the number of local maxima in the Doppler spectrum, as
stated in the section 4.2. Higher moments of the Doppler spectrum, e.g., Doppler spec-
trum skewness, are used to classify particles such as cloud droplets and drizzle droplets
[Acquistapace et al., 2017]. However, in the context of this thesis, as the Doppler spectra
are not operationally available with the vertically pointing BASTA radar, we decided to
concentrate on developing a method to estimate LWC using radar-microwave radiometer
synergy. We foresee utilizing Doppler spectra operationally and making the most of the
cloud information from BASTA cloud radar.

4.4.3 Multi-sensor retrieval techniques

Given the inherent heterogeneity of cloud droplet spectra, finding a universal 𝑍 − 𝐿𝑊𝐶
relationship in the form of equation (4.7) with constant coefficients is challenging.
Radar, lidar, and microwave radiometers are among the most suitable remote sensing
instruments used to observe cloud properties. Due to different operating frequency, each
of these instruments provides a unique perspective of cloud information. For instance,
a lidar sensor can detect the cloud base efficiently, but the lidar signal weakens as it
passes into the cloud, making it difficult to reach the cloud top. Conventional microwave
radiometers measure the path-integrated microphysical equivalents of the cloud profile
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(e.g., brightness temperature). Because of short wavelengths, cloud radars, on the other
hand, can detect even the smallest cloud droplets and ice crystals, but they are typically
not sensitive enough to identify the small droplets at the cloud base, instead they are most
adequate for detecting cloud tops. Combining these devices is therefore an effective
approach to obtain the cloud microphysical properties.

Therefore, to improve the accuracy of LWC estimates, additional information such
as 𝑁 and (or) integrated Liquid water path (LWP) has been used with radar reflectivity.
However, the complexity of estimating LWC increase many folds due to the presence
of drizzle with cloud in the profile. If drizzle drops are present in the radar volume,
they contribute substantially to the radar reflectivity factor because of larger droplet
size in Rayleigh regime (𝛼𝐷6)). Since the concentration of drizzle drops is rather low
compared to the concentration of the smaller droplets, their contribution to the LWC is
small. Therefore, the empirical and theoretical obtained 𝑍 − 𝐿𝑊𝐶 relationships will
produce biased results when there is drizzle present in liquid water clouds.

Because radar and lidar are both differently sensitive to droplet size, by radar to
the larger droplets, and lidar to the smaller ones. When combined, better insights are
obtained in the microstructure of the clouds.

Cloud radar when combined with a microwave radiometer which gives the total liquid
water path in the cloud, and the properties like mean droplet size, number concentration
can be derived. The combination of instruments with cloud radar is highlighted in the
next section, where a few methods from available literature are introduced.

Combination of active sensors

Lidar is the optical counterpart of meteorological radar, which is discussed in chapter
3.2.2. Very smaller particles in the atmosphere can be identified at optical wavelengths.
This remote sensing instrument is also used for analysing thin cirrus clouds in synergy
with cloud radars. Due to the shorter wavelength, lidar is more sensitive to small
particles because most of the cloud particles are larger than the typical lidar wavelengths
(355 𝑛𝑚, 532 𝑛𝑚, and 1064 𝑛𝑚) therefore clouds fall with in the optical scattering
regime. Whereas radar complements lidar by representing large particles in DSD.

In the Rayleigh regime, as the radar reflectivity factor is proportional to the sixth
moment of the DSD (Eq. 3.8), while in case of the lidar instruments, the measured
backscatter signal is related to optical extinction, which is proportional to the second
moment of the DSD. A common approach to utilize radar-lidar synergy is to define
the characteristic droplet diameter that is represented by the ratio of radar reflectivity
to the lidar extinction (𝑍/𝛼) [Krasnov and Russchenberg, 2005] and the ratio of radar
reflectivity to the lidar backscatter (𝑍/𝛽) [Zhang et al., 2021].

Krasnov and Russchenberg [2005] used the ratio of radar reflectivity to lidar ex-
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tinction coefficient(𝑍/𝛼) to classify clouds into ’without drizzle’, ’with light drizzle’ or
’with heavy drizzle’ in the vertical profile. Further, they used the empirical 𝑍 − 𝐿𝑊𝐶
relations from previous studies to estimate LWC in the classified profile. Although, this
technique is more realistic than using empirical 𝑍 − 𝐿𝑊𝐶 relation, which may not be
appropriate for any form of drizzling clouds. It is worth highlighting that this method
can fail to categorize drizzle in the cloud for thick stratus clouds, as lidar signal cannot
reach the cloud top. Estimation of microphysical properties of drizzle falling below the
cloud base of is also challenging due to the mentioned reason. The radar-lidar synergy
have shown satisfactory results to retrieve vertical profiles of mean diameter(𝐷0), LWC
of drizzle, and drizzle liquid water flux below cloud base [O’Connor et al., 2005].

Although, use of lidars for remote sensing of liquid water clouds is limited because of
the strong attenuation of the signals in liquid water clouds; however, these are very useful
for determining cloud base in case of microphysical analysis of fog (e.g., [Wærsted et al.,
2017]), classification of hydrometeors ([Illingworth et al., 2007]), and estimation of ice
microphysical parameters ([Delanoë and Hogan, 2008]). Nevertheless, in the context of
estimation of LWC in liquid water clouds, we have to opt for a stronger synergy of radar
and microwave radiometers, which is discussed in the next section. Although, we do
not exclude the use of lidar in the future, as the cloud microphysical properties and the
optical extinction are related and therefore, valuable information of cloud microphysics
can be found [Sarna et al., 2021].

The multi-sensor approach towards retrieving LWC from radar measurements also
includes two radars at different wavelengths. Since attenuation is proportional to LWC
within the Rayleigh backscattering regime, the differences between the Z measurements
at a certain height give information on attenuation and thus on LWC [Hogan et al., 2005].

Radar-microwave radiometer

Cloud radar in synergy with passive microwave radiometer (MWR) have been proposed
in several studies for retrieving liquid water content of clouds. Ovtchinnikov and Kogan
[2000] evaluated the accuracy of different liquid water retrieval algorithms based on
empirical Z-LWC power law relationships by comparing the Z and LWC obtained from
cloud droplet spectra generated by the LES (Large Eddy Simulation) model. With
these comparisons, Ovtchinnikov and Kogan [2000] concluded that the performance
of the retrieval algorithms can be significantly improved by introducing an additional
constraint based on the independently measured liquid water path.

Furthermore, the combination of radar reflectivity factor Z and LWP from MWR
has been introduced by Frisch ([Frisch et al., 1995],[Frisch et al., 1998],[Sassen and
Liao, 1996]) to retrieve cloud properties. The retrieval methods based on combination
of Z and brightness temperature 𝑇𝑏 (a measure of radiance emitted by a grey body) from
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MWR has shown much better estimates than any empirical relation for liquid water
clouds (Löhnert et al. [2001]). These methods also assume a gamma or log-normal
distribution of DSD and a modelled relation between the radar reflectivity and the LWC.
Then the estimated LWC is matched with the LWP obtained from the MWR using various
approaches. In addition to LWC, effective radius (𝑟𝑒) can also be determined due to the
relation of effective radius and the particular radius moments of DSD. However, if this
assumption in DSD differs from the actual DSD, that can add considerable inaccuracies
in the retrievals [Miles et al., 2000]. Drizzle drops, significantly increase the radar
reflectivity factor which contribute as Rayleigh scatterers (𝛼𝐷6) whereas, have a minor
impact on the LWC since their concentration is often very low in comparison to the
smaller droplets. This is why, all radar reflectivity based approaches are restricted to
liquid clouds without the presence of drizzle in the radar volume, and thus the empirical
and theoretical Z-LWC relationships produce biased results when applied to drizzling
clouds.

Retrieval methods based on a combination of MWR brightness temperature, cloud
radar reflectivity and radiosonde profiles of temperature and humidity with prior infor-
mation on the moments of DSDs from in-situ data sets of non-drizzling and drizzling
clouds proposed by Löhnert et al. [2004] retrieves the LWC using conditional probability
are applicable to drizzling clouds as well.

It is more accurate to use a combination of passive and active remote sensing
instruments to estimate LWC than to rely solely on radar information. However, it is
not necessary that these sensors are always collocated. There can be cases when the
additional instrument is not operational. Using only radar information, how the retrieval
of LWC can be optimized? In the next chapter, we will go through a methodology for
retrieving LWC for liquid water clouds, which uses additional information when it is
accessible and adapts to use a climatology when extra information is unavailable.
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Chapter 5

LWC estimation using
radar-microwave radiometer synergy

5.1 Introduction

The previous chapters addressed the cloud microphysical parameters such as cloud liquid
water content and various ways to observe the clouds. Active and passive remote sensing
instruments are suitable for long-term cloud observations from space and the ground.
These sensors measure the radiative equivalents and therefore, we need to develop
methods to estimate cloud micro physical from the radiative equivalents measured by
the remote sensors. At 95 GHz (3.2 𝑚𝑚), the Rayleigh regime is still valid as the
radar wavelength is nearly two orders of magnitude longer than the observed cloud
droplet size, which is invariably less than 50 𝜇𝑚 [Miles et al., 2000]. Therefore,
radar reflectivity can be considered proportional to the sixth moment of the droplet
spectrum and whereas, LWC is proportional to the third moment of the droplet spectrum.
However, Mie scattering becomes significant at larger sizes, such as drizzle droplets. As
already described in section 4.4.1, the LWC calculated using any Z-LWC relationships
listed in table 4.1 depends strongly on cloud microphysics, which varies significantly
with changing ambient conditions. Due to the inherent heterogeneity of cloud droplet
spectra, it is challenging to establish a universal Z-LWC relationship. Since the shape of
droplet spectrum changes significantly within the cloud structure, the retrieval of LWC
using only Z information will not be accurate even if the most appropriate empirical
relation for the cloud type is used. To reduce the uncertainties due to unknown droplet
spectra, a synergy of two or more active and passive sensors providing additional cloud
information with sophisticated retrieval techniques has been used in several studies,
which are discussed in section 4.4.3. Following the objective of the thesis to develop
an LWC retrieval algorithm using BASTA cloud radar measurements, a method based
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on the optimal estimation technique is discussed in this chapter. This retrieval method
demonstrates radar-microwave radiometer synergy to retrieve LWC of warm clouds and
accounts for attenuation due to cloud droplets. The LWC retrieval algorithm works
in two different modes, radar-microwave radiometer synergistic mode (when MWR
accompanies radar) and the radar stand-alone mode. The main goal of this method is to
make the most of the LWC retrieval when additional information is available with radar
measurement, and utilize this a priori knowledge to improve the LWC retrievals when
this additional information is not available.

The content of this chapter has been submitted to the Atmospheric Measurement
and Techniques journal, and is under review at the time of writing this thesis, with
the title ’Climatology of estimated LWC and scaling factor for warm clouds using
radar–microwave radiometer synergy’. The discussion is available through the following
link: https://amt.copernicus.org/preprints/amt-2022-3/. The instrumen-
tation for cloud observations used in the publication is already described in chapter 3,
and the various techniques and perquisites to estimate LWC using radar measurement are
described in chapter 4. Therefore, this chapter starts with the methodology developed
to estimate the LWC of liquid water clouds during my thesis. The optimal estima-
tion technique is described in section 5.2.1, incorporate a priori information of desired
variables, and the forward model detailed in section 5.2.3 converts these variables into
observation parameters. In this algorithm formulation, the measure of uncertainty in
observations, forward model and, a priori acts as weights in the retrieved quantities.
Section 5.3 elaborates the sensitivity analysis of the retrieval algorithm using the syn-
thetic profile, and the validation of retrieval with in-situ measurements is discussed in
section 5.4. After evaluating the performance of the retrieval algorithm, section 5.5
focuses on the derivation of the climatology of the retrieved parameters. Finally, the
BASTA stand-alone retrieval using climatology is discussed in section 5.6.

5.2 Methodology of LWC retrieval

The objective of the algorithm is to retrieve 𝐿𝑊𝐶 using radar reflectivity measurements
and 𝐿𝑊𝑃 derived from MWR when the latter is available. The integrated liquid water
content in the cloud column constrains the vertical profile of 𝐿𝑊𝐶 which is strongly
related to reflectivity profile. There are several methodologies for modelling such al-
gorithms, including analytical methods, machine learning techniques, and others. The
technique proposed in this chapter is framed within the context of optimal estimation
theory [Rodgers, 2000]. This approach combines a priori information and uncertainties
in the observations, the way we represent them and is easily expandable to accom-
modate additional information from multiple instruments. This retrieval method must
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be able to combine active and passive remote sensing instruments to derive the most
possible accurate climatology of liquid cloud properties and also work when only radar
observations are available (i.e. stand-alone version). This must be achieved using a
common framework. Such a technique has been widely applied in previous studies
[Löhnert et al., 2001, Hogan, 2007, Delanoë and Hogan, 2008]. Synergistic retrieval
combining radar and microwave radiometer in order to estimate liquid cloud properties
has been already proposed by Löhnert et al. [2001]. In their approach, they directly as-
similate brightness temperature (𝑇𝑏) and humidity profiles from microwave radiometer.
The method presented here aims at providing more flexibility when the microwave is
not available. Therefore, we do not directly assimilate brightness temperatures but the
microwave radiometer product (𝐿𝑊𝑃) and the associated uncertainties are taken into
account. In standalone mode, when only radar is available, our method relies on a priori
knowledge of liquid cloud properties and their link with radar measurements. This a
priori information will be built using climatology derived when radar and microwave
radiometer are simultaneously available.

Figure 5.1, which represents the block diagram of the method illustrates how the
input parameters (Z and LWP) are used to retrieve the output variables (𝐿𝑊𝐶 and 𝑙𝑛𝑎,
where 𝑙𝑛𝑎 comes from the power law relation Z-LWC presented in equation 4.7), will
support the discussion in the next sections.

Forward Model
‘F’

Error in 
LWC

Error 
in lna

Z

LWP

LWC

lna

A Priori

Error in Z Error in 
LWP

‘y’
Observations

‘x’
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Measurement Errors 

LWC lna

Error in a priori

Figure 5.1: Schematic of LWC retrieval algorithm.
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5.2.1 Optimal estimation formulation

The optimal estimation [Rodgers, 2000] is a retrieval approach in which the measured
quantities are related to unknown atmospheric parameters using a Forward model. If
’𝑦’ is the measurement and ’𝑥’ is the unknown parameter, then the forward model ’𝐹’
and errors ‘𝜖’ can be mathematically written as

𝑦 = 𝐹 (𝑥) + 𝜖 (5.1)

where error due to measurements and forward model are accounted in 𝜖 . The forward
model is a mathematical description of the atmosphere as a function of the measure-
ments and the atmospheric states. From equation 5.1, to retrieve 𝑥 (atmospheric states)
as 𝑥 = 𝐹−1(𝑦−𝜖), it is essential to have good knowledge of 𝐹 before physically inverting
it because such operators are generally complex and non-invertible. This problem is
referred as the inverse problem. An example of solution of inverse problem is a prob-
abilistic optimization based on Gauss-Newton method [Rodgers, 2000] by minimizing
the cost function 𝐽 as:

2𝐽 = 𝛿𝑦𝑇𝑅−1𝛿𝑦 + 𝛿𝑥𝑇𝑎𝐵−1𝛿𝑥𝑎 (5.2)

And the forward model is linearized about the state vector 𝑥 at 𝑖𝑡ℎ iteration, then 𝑦
can be written as

𝑦 = 𝐹 (𝑥𝑖) + 𝐾𝑖 (𝑥 − 𝑥𝑖) (5.3)

where K is called the Jacobian matrix, containing the partial derivative of measurement
with respect to state parameter. Minimization of cost function leads to iterative solution
for the state at 𝑖 + 1 iteration

𝑥𝑖+1 = 𝑥𝑖 + 𝐴−1 [𝐾𝑇𝑅−1𝛿𝑦 + 𝐵−1𝛿𝑥𝑎] (5.4)

where 𝐴−1 = 𝐾𝑇𝑅−1𝐾 + 𝐵−1 gives the error covariance matrix of optimized solution
of 𝑥 after convergence is achieved. 𝑅 is the error covariance matrix accounting for
observation and forward model errors, 𝐵 is the error covariance matrix for ’a priori’
information and 𝑥𝑎 denotes the a priori of the state vector. A prior or background
information of the unknowns (generally derived from the climatology or model), is used
to constrain the inverse problem. The retrieval starts with the ’first guess’(can be a
priori) of the states, and the forward model is then applied to simulate the values of
measurements. The states are updated until the simulated and measured quantities are
close enough and convergence is achieved.

Convergence is assessed at each iteration using the following variable to estimate
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the closeness of the observations with the model:

𝐺 = |𝐽 (𝑖) − 𝐽 (𝑖 − 1) |

where ’𝑖’ is the iteration number.
For every iteration, 𝐺 examines the absolute gradient of cost function and achieves

the convergence when the difference between two successive cost functions is negligible.
In this scenario, the retrieval converges when 𝐺 is of the order of, 10−7 which indicates
that the additional iteration is not adding prominent change in the retrievals.

5.2.2 Definition of the state and observation vectors

The state vector ’𝑋’ is the vector of unknowns, must contain all the variables to retrieve.
The observation vector ’𝑌 ’ is driven by the available observations. In our case, the radar
reflectivity for ’n’ vertical levels and 𝐿𝑊𝑃 (when microwave radiometer is available)
are the parameters in the observation vector. These two vectors are also defined in the
way that we can link them through the forward model. The forward model accounting
for radar attenuation will be described in details in section 5.2.3.

From the power law relation of Z-LWC in equation (4.7) the constants 𝑎 and 𝑏

are dependent on many microphysical parameters such as the particle size, number
concentration and other ambient conditions. Through this kind of relationships we can
associate a 𝐿𝑊𝐶 value to a reflectivity value, adding 𝐿𝑊𝑃 retrieved by the microwave
radiometer we can release one more constrain and adjust one of the parameters of the
Z-LWC relationship that varies with each profile. This is because the retrieved LWC
is constrained by the observed LWP. The choice of using the pre-factor 𝑎 is motivated
by its capability to adjust the whole profile of 𝐿𝑊𝐶 regardless of the reflectivity and 𝑎
shows a much higher variability than 𝑏. Note that the impact of variability in 𝑏 will be
assessed in section 5.3.1.

The state and observational vectors are defined as follows:

𝑋 =

©­­­­­«
𝑙𝑛𝐿𝑊𝐶1

...

𝑙𝑛𝐿𝑊𝐶𝑛

𝑙𝑛𝑎

ª®®®®®¬
, (5.5)

𝑌 =

©­­­­­«
𝑙𝑛𝑍1
...

𝑙𝑛𝑍𝑛

𝑙𝑛𝐿𝑊𝑃

ª®®®®®¬
(5.6)
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To account for the large dynamic range of the observations within a profile, this
algorithm uses the logarithm of the state variables and measured quantities, which also
prevent the unrealistic retrieval of negative values.Therefore, the linear relation between
Z and LWC in log space in the form of, 𝑦 = 𝑚𝑥 + 𝑐 where 𝑙𝑛𝑎 represents intercept and
𝑏 is the gradient of the line can be written as:

ln 𝑍 = ln 𝑎 + 𝑏 × ln 𝐿𝑊𝐶 (5.7)

The logarithm of a priori coefficient 𝑎 is referred to as scaling factor, and logarithm also
enables visualizing the wide range of 𝑎. Although, the observation vector 𝑦 may not
incorporate LWP when it is unavailable, however by adding the LWP in the observation
with Z, the forward model allows retrieving 𝑙𝑛𝑎 in addition to LWC.

The state and observation vectors are defined as shown in equation (5.5) and (5.6).
The errors in measurement are tested using a synthetic profile of observations, and de-
tailed in the section 5.3.1.The most suitable error in observation vector is set as 25% and
10% respectively for Z and LWP. As mentioned in section 3.3.2, LWP estimates from
MWRs have an expected uncertainty of ±20 𝑔𝑚−2. However, this uncertainty estimation
also depends on the MWR calibration and retrieval algorithm uncertainties, an approx-
imate evaluation of the LWP measurements using longwave radiation measurements
demonstrates an RMSE in LWP of around 5–10 𝑔𝑚−2 during fog with LWP< 40 𝑔𝑚−2

[Wærsted et al., 2017]. Thus, to minimize the errors due to the measurement uncer-
tainties, the LWP is assimilated only when the measured LWP is greater than 10 𝑔𝑚−2

because the relative error for low LWP values from HATPRO is significantly higher
than for high LWP values. Although, 10% error in LWP is very small when compared
to expected error, but the profiles with LWP values below 10 𝑔𝑚−2 are already excluded
from retrievals, implying that there is less error to be considered. A detailed analysis
of errors in measurement of Z and LWP are explained in section 5.3.1, covering the
sensitivity analysis of retrieval algorithm using synthetic profile.

Prior knowledge of the state parameters enables the retrieval to be constrained in order
to avoid unrealistic solutions, especially when additional measurements are missing. a
priori information usually consists of long-term climatology or model outputs of state
parameters, i.e. LWC and 𝑙𝑛𝑎. For example, from various in-situ measurements of LWC
in fog or liquid cloud it is known that LWC in the cloud is not equally distributed vertically
and is strongly related to reflectivity. A priori of LWC dependent on reflectivity should
be more suitable than a constant LWC profile. In this retrieval, a LWC profile derived
from the empirical relation is used as the a priori with an a priori error of 1000% (or 10)
for both LWC and 𝑙𝑛𝑎. Note that the errors are presented in logarithm and the error in the
a priori is considered high, because LWP measurements are available to constrain the
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retrievals. Even so, a priori information is vital in case of missing LWP measurements,
which plays an important role in case of LWC retrieval using only radar observations and
climatology. In such a case, expected error in the a priori will be considered less. In case
of low LWP observations, retrieval depends on a priori which is taken from Atlas [1954]
empirical relation and therefore, the scaling factor is not retrieved for such profiles. The
retrieval of LWC for the profiles with LWP < 10𝑔𝑚−2 incorporates attenuation in the
retrievals, rather than just applying empirical relationships.

5.2.3 Description of the forward model and Jacobian matrix

The forward model is an approximation of the physical phenomenon represented as a
function of measurement and state variables. In order to expand the retrieval when
additional measurement is available, it is recommended to describe the forward model
for each element of the observation vector. The forward model for radar links radar
reflectivity to LWC using the equation (5.7). Furthermore, LWP as additional informa-
tion constrains LWC using equation (4.5) and allows the retrieval of scaling factor 𝑙𝑛𝑎.
When additional information is unavailable, the retrieval constrains LWC using 𝑙𝑛𝑎 cli-
matology, which is elaborated in section 5.6. The microphysical model for attenuation
consideration is discussed in next subsection 5.2.3.

Forward model for attenuation correction

As described in section 4.3, water vapour and oxygen are the two primary atmospheric
gases that contribute to microwave absorption. Even though W-band radars work in
one of the water vapour transmission windows, absorption due to water vapour can
exceed 1 𝑑𝐵𝑘𝑚−1 depending on temperature and humidity in the lower troposphere.
Despite the fact that attenuation by atmospheric gases is relatively small, attenuation
due to liquid clouds droplets can diminish the advantages of W-band radar observation,
particularly in the liquid cloud case. According to Lhermitte [1990], the attenuation due
to liquid droplets is more problematic as it depends on drop size distribution, which is
not known in general. Since attenuation due to liquid cloud is dependent on temperature
and density of cloud droplets and clouds consists of randomly distributed, spherical
droplets of diameter less than 100 microns, the 95-GHz microwave absorption can
be adequately described by the Rayleigh approximation. Various theoretical studies
have been conducted to determine the attenuation due to liquid cloud and drizzle at
different temperatures. For example, at 10◦C, Lhermitte [1990] calculated 4.2 𝑑𝐵𝑘𝑚−1

per 𝑔𝑚−3 of liquid water attenuation, while Liebe et al. [1989] obtained 4.4 𝑑𝐵𝑘𝑚−1

by using the Rayleigh approximation. On the other hand, Vali and Haimov [2001]
assumed spherical hydrometeor and obtained the general solution for absorption (and
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scattering) at W-band using Mie approximation. Extinction due to liquid cloud at
95GHz using simultaneous and co-located cloud measurements of drop-size distribution,
LWC, temperature, and pressure for maritime stratus clouds was comparable with the
theoretical studies mentioned above. This study further concludes that, for around 10◦C
and pressures close to 900 𝑚𝑏, the one-way attenuation ’A’ in 𝑑𝐵𝑘𝑚−1 was found to be
linearly dependent on LWC, and expressed as:

𝐴 = 0.62 + 4.6 × 𝐿𝑊𝐶 in 𝑑𝐵𝑘𝑚−1, (5.8)

where 0.62 𝑑𝐵𝑘𝑚−1 represents gaseous absorption.

Vivekanandan et al. [2020] calculated attenuation ’A’ as a function of reflectivity
Z for cloud droplets and drizzle using power law fit. Reflectivity and attenuation are
simulated using DSDs collected from VOCALS field experiment [Wood et al., 2011],
with Z being proportional to sixth moments and attenuation being proportional to third
moments of DSDs. The DSDs for cloud and drizzle droplets are separated by -17 𝑑𝐵𝑍
threshold for simulated reflectivity and, therefore, as given by equation 5.9 and 5.10 for
clouds and drizzle respectively.

𝐴 = 18.6 × 𝑍0.58𝑑𝐵𝑘𝑚−1 (5.9)

𝐴 = 1.68 × 𝑍0.9𝑑𝐵𝑘𝑚−1 (5.10)

However, even with power law fit, the range of attenuation calculated is 0 to 4
𝑑𝐵𝑘𝑚−1, which is almost the same order of attenuation per kilometre calculated using
linear relations proposed in previous studies. Equation (5.8) is used to calculate attenua-
tion due to liquid water in the forward model. As this study is focusing over the retrieval
of LWC and its climatology, attenuation as a function of LWC, will adjust with retrieved
LWC for cloud and drizzle without categorizing the hydrometeor on the basis of for-
ward modelled reflectivity. It is worth noting that all the attenuation relation mentioned
above were derived using DSDs collected from marine clouds, and the calculation of
attenuation relation for continental clouds is prospective. Finally, a sensitivity test for
considering inconsistent attenuation in the forward model will be discussed in section
5.3.3.

The attenuation correction is achieved within the forward model by correcting at
a particular gate to estimate the associated attenuation, and then using it to correct at
all subsequent gates. Therefore, the forward model estimates the two-way attenuation
corresponding to LWC using equation 5.8, and then corrects the forward modelled

68



5.2. Methodology of LWC retrieval

reflectivity to account for the estimated attenuation. Since the radar is vertically pointing,
it is presumed that the lowest gate (closest to the radar) remains unattenuated due to
the liquid droplets, whereas all gates above are affected by liquid droplets present in the
preceding gates. As the radar beam passes through the cloud profile it gets attenuated
due to liquid, as a result the top most cloud pixels of the profile are the most attenuated.
To summarize, each cloud pixel is corrected for the two-way attenuation caused by liquid
clouds along the path of the radar beam.

The Jacobian formulation

The Jacobian is a matrix representing the sensitivity of the forward model. It consists
of partial derivatives of all the element of 𝑌 vector with respect to 𝑋 vector. Since the
forward model update the element of measurement vector at each iteration, thus, at each
iteration step the Jacobian 𝐾 is re-evaluated and for a profile of ’𝑛’ cloud pixels as

𝐾 =
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(5.11)

𝐾 consist of (𝑛+1)× (𝑛+1) elements with top 𝑛×𝑛 elements are partial derivative of
reflectivity with LWC and last row corresponds to constrain LWC at each cloud pixel with
total LWP. The (𝑛 + 1)𝑡ℎ column corresponds to the relation between radar reflectivity
and scaling factor (𝑙𝑛𝑎) and the very last element is set to zero because 𝑙𝑛𝑎 is not related
to LWP measurements. Therefore, for 𝑛 cloud pixels in a profile, the forward model
will evaluate a Jacobian of (𝑛 + 1) × (𝑛 + 1) to retrieve the state vector corresponding
to radar reflectivity and LWP measurements. The attenuation in forward modelled
reflectivity due to liquid cloud droplets is accounted at every iteration. The Jacobian
matrix incorporates the two-way attenuation ‘𝐴’ at each cloud pixel by calculating the
partial derivatives of ‘A’ with respect to LWC at each cloud pixel. It is worth noting that
the attenuation due to gaseous absorption is not accounted in the Jacobian matrix because
L2 reflectivity is already corrected for it. The value of attenuation corresponding to the
𝑙𝑛𝑎 parameter is assumed zero.

The forward model errors are the errors associated to the mathematical model which
relates the measurements with the atmospheric physical parameters. The relationships
described in the forward model are not necessarily perfect and hence incorporate error
in the retrieval. As mentioned already, Z is closely related to LWC of cloud and hence
forward model for reflectivity is represented by equation 5.7. In this equation, the errors
in Z are taken into error in measurement for Z, whereas 𝑙𝑛𝑎 and 𝐿𝑊𝐶 are retrieved
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parameters. As exponent 𝑏 is taken constant, there is a possibility to incorporate error in
forward model due to 𝑏, which is discussed in sensitivity analysis in section 5.3.6. The
error incorporated because of model representation of attenuation due to liquid cloud is
also discussed in the sensitivity analysis. The cloud liquid water is also constrained by
LWP as the summation of LWC for the given cloud column, as shown in equation 4.5.
Therefore, the forward model for LWP is simple and therefore, error in the estimation
of LWC due to forward model is neglected.

5.2.4 Discussion of the retrieval uncertainty

Other sources of error in the retrieval algorithm are discussed in this section. Doppler
rRadars also detect boundary layer insects, large dust particles and pollens suspended
in the air as a result of the convective boundary layer that grows in the morning hours
and matures shortly after the midday [Geerts and Miao, 2005]. These so-called air-
borne planktons developed due to onset of convective boundary layer, contaminate
the reflectivity profile. Therefore, the unwanted signal in the radar reflectivity due to
airborne planktons must be removed before estimating LWC. Additionally, all the cloud
above 2500 𝑚 are anticipated to be mixed phase or ice cloud which cannot be addressed
in the same way as liquid cloud and therefore clouds above 2500 𝑚 are excluded.
The data set employed in this study indicates that the majority of the liquid cloud are
observed below 2500 𝑚. However, because the height of the melting layer changes with
season and geographical location, it would be appropriate to determine the height of the
melting layer to differentiate liquid and mixed phase clouds. The LWP measurements
from MWR are unaffected by overlying ice cloud, but accounts for liquid in the overlying
mixed phase cloud, which adds error in the LWC retrieval. Therefore, all such cloud
profiles are removed before deriving climatology. The profiles with LWP less than or
equal to 10 𝑔𝑚−2, the retrieved LWC is not used for climatology due to high relative
error in low LWP values.

Fog on the other hand, causes droplet deposition on the radome and hence contributes
towards substantial amount of attenuation in the radar reflectivity which is not accounted
in the retrieval. It is worth noting that a blower to remove the droplet deposition on
BASTA at SIRTA is installed since 2019 which has substantially reduced the wet radome
attenuation after rain. Although, the retrieval assumes completely dry radome for all the
cases, including clouds immediately after rain and drizzle. Since the retrieval algorithm
deals with two independent measurements and therefore the two instruments have distinct
observation frequency which is addressed by interpolating the LWP measurements into
the radar temporal resolution and hence acts as additional source of error.

Due to the coupling of transmitting and receiving antennas of radar, the vertically
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pointing radar misses a few lowest gates close to the ground. These unavailable gates do
not impact the information about the clouds aloft, but the missing information of thin fog
causes over estimation in LWC for the first few available gates. The overestimation is due
to the fact that retrieval forces the assimilated LWP of the profile by constraining it over
available range gates and hence overestimates the LWC for available gates. The most
appropriate way to overcome this issue is to use scanning radar, but for vertically pointing
radar we assume that the properties of fog remain the same between the first available
gates and the ground, and thus reflectivity is extrapolated (extended) downwards for
the unavailable range gates. The extension of range gates is particularly significant
for SOFOG-3D experiment cases, which are specifically concerned with fog processes.
However, the extension of range gates may introduce inaccuracy into LWC retrieval for
fog, as the reflectivity of fog at the surface is not always equal to the reflectivity of the
first available gates, particularly for dissipating fog.

5.2.5 Analysis of the method when microwave radiometer is avail-
able

This section describes the analysis of retrieval when applied to various cloud types.
As detailed in section 5.2, the retrieval technique is applied to reflectivity data from
95 GHz BASTA radar with LWP estimates from co-located RPG HATPRO microwave
radiometer for various cloud cases from SIRTA. Between November 2018 to May 2019,
39 cloud and fog cases at SIRTA observatory are selected to address the algorithm’s
implementation on warm clouds. The data set contains a relatively large number of
cloudy cases, including fog and light drizzle. A detailed discussion of retrieval and
algorithm implementation is elaborated for a typical example of cloud in the next
subsection.

Illustration of retrieval of 05 February 2019 case at SIRTA

A case study of one of the selected cloudy cases from SIRTA on 05 February 2019
is presented in figure 5.2. Figure 5.2(a) and (b) presents the time height plot of radar
reflectivity and velocity, respectively. LWP estimated by the radiometer alone through
quadratic regression is interpolated at radar time of observation as shown in figure 5.2(d).
The retrieved LWC for the cloud pixels is plotted in figure 5.2(c) and the retrieved scaling
factor for each profile is shown in figure 5.2(e).

There were no overlapping clouds observed in this instance, and the airborne plank-
tons were removed manually. A dense cloud from midnight with cloud base close to
ground dissipates before noon and the formation stage of a fog is initiated after the
sunset. The liquid water path remains below 100 𝑔𝑚−2 throughout the day. The radar
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Figure 5.2: (a) Radar reflectivity (b) Vertical velocity (c) Retrieved LWC, (d) LWP and
(e) Retrieved 𝑙𝑛𝑎 for 05 February 2019 case at SIRTA.
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Doppler velocity, displayed in figure 5.2(b), shows variation in the velocity of the cloud
droplets, ranging from -1.5 to 1 𝑚𝑠−1. Within the cloud, the velocities are typically low
and decrease toward the cloud top, when they approach 0 𝑚𝑠−1. Cloud droplets have
terminal velocities of only a few centimeters per second, when drizzle droplets develop,
the terminal fall velocity increases. Reflectivity values reach 0 𝑑𝐵𝑍 for a few profiles
indicating drizzle in the beginning (between 00:00 to 03:00 hrs). As indicated by radar
observations, higher reflectivity values due to drizzle, yet LWP is nearly identical for
the cloud with reflectivity as low as -35 𝑑𝐵𝑍 and contributes the least to LWP. This
also explains why it is critical to have LWP information to constrain LWC retrievals,
particularly for profiles with drizzle within the cloud and when it evaporates fully before
reaching the ground. Figure 5.2(c) indicates a general increase in LWC towards the
cloud top, and the retrieved LWC is less than 0.3 𝑔𝑚−3. The scaling parameter has a
wide range from -6 to +3 which supports empirical values of 𝑎 in table 4.1. The value
of 𝑙𝑛𝑎 changes for each profile. Therefore, this case illustration shows that the retrieval
of LWC and scaling factor can be utilized to derive a climatology of scaling factor for
different cloud types. It is worth noticing that the retrieval algorithm deals with all
the variations of cloud types, and the behavior of scaling factor must be studied. The
next section elaborates the robustness of the retrieval algorithm for various sensitivity
parameters.

5.3 Sensitivity analysis of retrieval algorithm using syn-
thetic data

The goal of this section to verify the consistency of the retrieval behavior and to assess
the sensitivity of the algorithm to inputs, errors and hypotheses. Sensitivity analysis does
not replace a proper validation of algorithm retrievals, in section 5.4 a comparison with
in-situ measurement is discussed. Like every other algorithm, this retrieval algorithm
also suffers from some fundamental uncertainties which must be addressed. To do so,
we use a sensitivity analysis approach. It can also be referred to as ‘what-if’ analysis,
where the input parameters of the model are varied one by one. As shown in the
schematic of the retrieval algorithm in figure 5.1, the retrieval is sensitive to not only
input parameters but also other settings like the a priori, expected errors in measurement
and a priori information. To quantify the sensitivity of the retrieval algorithm, real
observations are not used because the true profile of LWC from an in-situ sensor is not
always available. Instead, synthetic data which contains all the characteristics of real
observations are used to evaluate the performance of the algorithm. Maahn et al. [2020]
highlighted major benefits of using synthetic data to test algorithms and models. First
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and foremost, systematic forward model errors cancel each other, and second, we know
the true atmospheric state 𝑋𝑡𝑟𝑢𝑡ℎ, which can be compared with the retrieved optimal
result 𝑋𝑟𝑒𝑡 . Hence, considering the mentioned advantages, we are using synthetic data
for the sensitivity analysis of the retrieval algorithm.

The flowchart of sensitivity analysis is presented in figure 5.3 where sensitivity
parameters are the parameters in the retrieval algorithm which are perturbed, and the
impact is tested. The objective is to formulate input parameters from truth and by
feeding synthetic observation to the retrieval algorithm, the result should match with the
truth. In the block diagram, synthetic observations (Z and LWP) are fabricated using
the forward model. The block inside the dashed line is the same as shown inside the
dashed line in figure 5.1 with all the sensitivity parameters.

LWC (AROME)

Forward model for 
Z with attenuation

Z, LWP

LWC Retrieval 
ALGORITHM

Compare LWC Make the change in 
Sensitivity 
Parameters

Retrieved LWC

Figure 5.3: Flow chart for sensitivity analysis of retrieval algorithm.

However, we are aware of the fact that the retrieval errors might be different when
observed in real observation scenario, which are already discussed in the section 5.2.3
for real observations. The error in retrieved LWC with respect to what we consider as
true LWC is calculated using the equation (5.12), (5.13), and (5.14) for all the sensitivity
test.

1. Root mean squared error

𝑅𝑀𝑆𝐸 =

√︄
Σ𝑛0 (𝐿𝑊𝐶𝑟𝑒𝑡 − 𝐿𝑊𝐶𝑡𝑟𝑢𝑒)2

𝑛
(5.12)
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2. 𝑅2 (coefficient of determination) quantifies the degree of any linear correlation
between observations (𝐿𝑊𝐶𝑡𝑟𝑢𝑒) and retrievals (𝐿𝑊𝐶𝑟𝑒𝑡). The general definition
of 𝑅2 regression score function is:

𝑅2 = 1 − 𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
(5.13)

where 𝑆𝑆𝑟𝑒𝑠 is residual sum of squares and 𝑆𝑆𝑡𝑜𝑡 is total sum of squares.

3. Mean absolute percentage error: It measures the accuracy of the retrieval in
percentage.

𝑀𝐴𝑃𝐸 =
100
𝑛

Σ𝑛0

����𝐿𝑊𝐶𝑡𝑟𝑢𝑒 − 𝐿𝑊𝐶𝑟𝑒𝑡𝐿𝑊𝐶𝑡𝑟𝑢𝑒

���� (5.14)

where 𝐿𝑊𝐶𝑟𝑒𝑡 and 𝐿𝑊𝐶𝑡𝑟𝑢𝑒 are retrieved and true LWC respectively, and 𝑛 is the number
of data points. Analysis of each sensitivity parameter is presented in the next section.

5.3.1 Description of synthetic data

Synthetic data of LWC can be prepared from empirical relations, satellite observations,
theoretical adiabatic LWC or model forecasts. For this sensitivity analysis, we opted
to include physical parameters of 16 November 2018 fog structure simulated by the
AROME model. The selection requirement for this instance is that it contains a number
of LWC profiles with LWP ranging from 20 to 240 𝑔𝑚−2 to evaluate the behaviour of
the algorithm.

AROME is a French convective scale NWP model, operational since 2008 covering
France and western Europe providing high-resolution simulations of fog forecasts at 1.3
𝑘𝑚 of horizontal resolution and 90 vertical levels of 144 profiles. Detailed setup of the
AROME model and fog forecast is explained in Bell et al. [2021]. LWC of a fog structure
from AROME short-term forecasts at the nearest grid location of SIRTA is considered
as the true atmospheric state. In this case, we are considering only liquid droplets, with
no overlapping of liquid or ice clouds aloft. Profiles of LWC simulated by AROME are
used to synthesize observation parameters like radar reflectivity using the previously
defined power law relation and the liquid water path of each profile by integrating true
LWC at each pixel. The forward model (block in red) consisting of the power law
relation and attenuation correction model for deriving the synthetic profile of Z using
coefficients 𝑎 and exponent 𝑏 is taken from Atlas [1954] the empirical relation. The
two-way attenuation correction applied to Z is calculated from equation (5.8). Figure
5.4(a) shows the distribution of true LWC as a function of time and height, and the
synthetic profile of Z is plotted in figure 5.4(b) and in figure 5.4(c) LWP calculated by
integrating true LWC.
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Figure 5.4: Simulations from AROME model for 16 November 2018 showing (a)True
LWC in 𝑔𝑚−3, (b) Synthetic reflectivity and (c) LWP.

One of the most obvious sources of uncertainty in the retrieval is the observation
(calibration errors and instrumental noise) and forward model errors. The forward model
errors tested in this sensitivity analysis are the variation in attenuation consideration and
the variation in exponent 𝑏. As the observation vector, 𝑌 contains measurements
from two independent instruments, bringing random and uncorrelated errors within the
elements of Y [Maahn et al., 2020]. The deposition of liquid droplets on the radome
introduce an additional bias in radar observations. This is tested by analyzing the impact
of possible biases in Z. The next sections cover the sensitivity analysis of the retrieval
algorithm for perturbations in different parameters.

5.3.2 Sensitivity analysis of impact of error in observation

The input for synergistic retrieval in the observation vector 𝑌 consists of concatenated
observations from the cloud radar and the radiometer. Each instrument has different
errors, and it is worth mentioning that in case of radar observations, instrumental errors
are considered for each gate whereas for the LWP measurement from the radiometer the
observation error is estimated over the entire cloud profile i.e. an integrated measure-
ment. By varying the weight of instrumental error from each observation (Z and LWP)
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and keeping the rest constant, impact on the retrieved LWC is compared with the true
LWC.

Observation errors are assumed to be independent, and the synthetic observations
of Z and LWP are calculated using true LWC, as shown in figure 5.4. Equation (5.8) is
used to calculate attenuation due to liquid water in the synthetic profile as well as in the
forward model. A priori for LWC is calculated using synthetic reflectivity and scaling
factor from empirical relation proposed by Fox and Illingworth [1997]. Since we are
looking at the impact of observation error, the retrieved parameters should have the least
contribution from a priori and therefore high error in a priori (1000% in this case) is
considered. Because a priori of LWC is calculated from synthetic Z, a priori of LWC
must be different from true LWC to minimize the contribution of a priori which forces
retrieval to be close to true LWC.

Table 5.1 shows the combinations of errors in measurements of Z and LWP consid-
ered in the retrieval, and the errors are calculated for retrieved LWC with reference to
true LWC. Cases 3 and 4 in table 5.1 are indicating that the retrieval is more sensitive to
errors in LWP as compared to errors in Z with approximately the same mean absolute
percentage error in LWC of 7% whatever the assumed errors in Z. This is because for
each profile there is only one LWP value which impacts the whole profile for given error
but for error in reflectivity, only the associated pixel is impacted. With the increase
in percentage errors in LWP measurement from 1 to 100%, the RMSE in LWC is also
increased approximately 100 times, further demonstrating the high sensitivity of the
algorithm to the LWP.

Delanoë and Hogan [2008] likewise incorporates a 1 𝑑𝐵𝑍 uncertainty in the mea-
surement of Z for ice cloud retrieval using 95 GHz radar with lidar and microwave
radiometer. However, error in LWP has very low difference in MAPE and RMSE when
1% to 10% error is considered. Therefore case 6 in table 5.1, is an optimum balance of
observational error for Z and LWP. This combination of error in measurement is used
in all the retrieval cases presented in section 5.2.5 and 5.4.1.

Table 5.1: Different configurations of error in measurement and respective statistical
errors in retrieved LWC w.r.t. true LWC

Case Error Error RMSE 𝑅2(𝐿𝑊𝐶) MAPE(%)
in Z in LWP (LWC) (LWC)

1. 1% (0.043 dB) 1% (1.01 𝑔𝑚−2) 0.000209 0.99999 0.05783
2. 100% (4.34 dB) 1% (1.01 𝑔𝑚−2) 0.000245 0.99999 0.15286
3. 1% (0.043 dB) 100% (2.71 𝑔𝑚−2) 0.021870 0.98495 7.37329
4. 100% (4.34 dB) 100% (2.71 𝑔𝑚−2) 0.021832 0.98499 7.43851
5. 25% (1.08dB) 50% (1.64 𝑔𝑚−2) 0.006013 0.99874 2.05276
6. 25% (1.08dB) 10% (1.1 𝑔𝑚−2) 0.000454 0.99999 0.17123
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5.3.3 Sensitivity analysis of impact of attenuation due to liquid
droplets model

In this section, the sensitivity of the attenuation model considered in the algorithm to
retrieve LWC is highlighted. Wet radome can cause up to 20 𝑑𝐵𝑍 of two-way attenuation
due to rain in the reflectivity [Delanoë et al., 2016], but attenuation due to fog is far
less than 20 𝑑𝐵𝑍 . Two attenuation relations for liquid clouds from literature are used
to test the sensitivity of the algorithm. Equation (5.8) is proposed by Vali and Haimov
[2001] in which attenuation is a function of LWC (abbreviated as att(LWC) in table
5.2) and the relationship in equation (5.9) is proposed by Vivekanandan et al. [2020]
where attenuation is the function of radar reflectivity factor (abbreviated as att(Z) in
table 5.2). Both of these relationships are derived using in-situ observation from 95
GHz radar mounted on a research aircraft. Forward model with different attenuation
relationships in the algorithm is tested for synthetic Z and LWC. To fabricate synthetic
Z, the power law relation with 𝑎 = 0.012 and 𝑏 = 2 (in equation (4.7)) is used. Different
combinations of attenuation correction in synthetic profile and in the retrieval algorithm
are tested, as shown in table 5.2. a priori for state parameters is calculated from Atlas
[1954] empirical relation with error in a priori as 1000% and the measurement errors
for Z and LWP are considered 25% and 10% as discussed in section 5.3.2. Finally, the
comparison of bias in LWC for attenuation model is shown in figure 5.5.

Table 5.2: Variation in error in a priori and different errors calculated w.r.t. true LWC

Attenuation correction Forward model RMSE 𝑅2(LWC) MAPE(LWC)%
in synthetic profile attenuation (LWC)

Z (attLWC) Att (LWC) 0.000204 0.999998 0.056426
Z (attLWC) Att (Z) 0.008286 0.997535 2.780574

Z (attZ) Att (LWC) 0.008012 0.997687 2.660039
Z (attZ) Att (Z) 0.000206 0.999998 0.057094

Retrieved LWC considering same attenuation correction in synthetic Z profile and
in forward model, RMSE is 0.0002 and MAPE is as low as 0.05% as all the parameters
are identical. But when the attenuation relation is exchanged for synthetic profile and
the forward model, MAPE increase to 2.7%. Figure 5.5 shows the bias in LWC when
different attenuation relation is used in the forward model and synthetic profile. The
distribution of bias in LWC over the profile is different because attenuation due to LWC
estimated by two relation is different, and thus the estimated LWC is also different. A
similar test for attenuation with different ‘𝑎’ in the power law relation gives the same
errors when the retrieved LWC is compared with true LWC. Bias in LWC for considering
same attenuation relation in synthetic profile and forward model is found close to zero.
Therefore, the sensitivity test for attenuation indicates that attenuation correction of Z
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Figure 5.5: Bias in retrieved LWC with respect to true LWC for different attenuation
consideration in the retrieval algorithm

has very low-impact, and it can bring up to 2.7% mean absolute percentage error in
retrieved LWC when wrong attenuation model is used.

5.3.4 Sensitivity analysis of bias in Z and LWP

Bias in observation is the systematic error added in measurement, which can be due
to the error in calibration of any instrument or transfer function of the measurement.
Similarly, threshold value of MWR also adds a systematic error in LWP measurement.
Therefore, it is necessary to test the behavior of retrieval algorithm for such systematic
biases in measurement. For the test cases of biases, error in observation vector in
considered 25% and 10% for Z and LWP with a priori of LWC is calculated using
𝑎 = 0.012 proposed in Fox and Illingworth [1997] and 𝑎 = 0.012 is used as 𝑙𝑛𝑎 a priori.
This test is to analyze the impact of bias in measurement on retrieval, therefore the a
priori should have minimum contribution and hence 1000% error in a priori of LWC
and 𝑙𝑛𝑎 is considered. In this analysis, only one of the two observations is biased at
a time to see the individual impact on retrieval. It is assumed that the bias in Z is 2
𝑑𝐵𝑍 considering that error in calibration in BASTA radar measurements is around 1 to
2 𝑑𝐵𝑍 [Toledo et al., 2020]. The bias in LWP estimation is considered 10 𝑔𝑚−2 which
is supported by Wærsted et al. [2017] for this sensitivity test.

Table 5.3: Error in retrieved LWC due to bias in Z and LWP

Case Bias RMSE(LWC) 𝑅2(LWC) MAPE(LWC)%
1. LWP-10 (gm−2) 0.029413 0.96343 11.246633
2. LWP+10 (gm−2) 0.030236 0.97184 11.542570
3. Z-2 (dBZ) 0.000355 0.99999 0.131603
4. Z+2 (dBZ) 0.000558 0.99998 0.210887

79



5. LWC estimation using radar-microwave radiometer synergy

The order of error in retrieved LWC with respect to true LWC is much higher for 10
gm−2 bias in LWP than 2 𝑑𝐵𝑍 bias in Z. However, the bias in two measurements is not
comparable because parameter Z is measured over each pixel and LWP is a single point
measurement for the whole column. Since the bias applied on Z applies on each cloud
pixel and bias applied in LWP is integrated for whole profile, however, 11% MAPE in
LWC is observed which is again indicating the sensitivity of retrieval for LWP. Another
reason for the difference in LWC is due to the fact that Z is in log space and error in
observation allows more spread in Z (25%) than in LWP (10%) therefore the impact on
LWP is larger. The bias in Z is propagated in 𝑙𝑛𝑎, but the bias in LWP directly impacts
LWC. The simultaneous biases in Z and LWP have been also tested, which reveals that
the bias in LWP is dominating over the bias in Z with 11% MAPE when mentioned
biases are considered in Z and LWP.

5.3.5 Sensitivity analysis of LWP assimilation

The impact of adding LWP information in the retreival is evaluted by comparing LWC
retrievals in the situation where LWP information is assimilated with those in the case
where it is not assimilated. For the case when LWP is not assimilated, the prefactor a is
not retrieved and hence kept constant. Different values of scaling factor lna are selected
from various empirical relations listed in the table 4.1, and the error in retrieved LWC
is calculated with respect to true LWC for each fixed value of scaling factor lna.

In this subsection, the synthetic profile of Z is fabricated using the power law with
constant a and b proposed by [Atlas, 1954] and LWC provided by the AROME model.
The table 5.4 contains the scaling factors taken from the empirical relations used to
retrieve LWC without LWP assimilation. The MAPE is calculated for retrieved LWC for
each lna value. In the table 5.4 the highest value of MAPE is observed when 𝑎 = 0.012,
and the lowest value is for 𝑎 = 0.048 which is the exact value of lna used to fabricate
Z. As the value of scaling factor lna differs from the scaling factor used to fabricate the
synthetic profile (here lna from [Atlas, 1954] relation), the error in retrieved LWC w.r.t.
true LWC also increases.

Table 5.4: Error in retrieved LWC for fixed a and LWP is not assimilated

Empirical relation a lna MAPE (LWC)%
Fox and Illingworth [1997] 0.012 -4.42 109.48
Sauvageot and Omar [1987] 0.03 -3.50 27.956

Krasnov and Russchenberg [2005] 323.59 5.77 98.82
Atlas [1954] 0.048 -3.05 0.0021

On the other hand, when the LWP information is assimilated in the retrieval, the
MAPE in retrieved LWC compared to true LWC is 0.171%. However, it is not nec-
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essary that the LWP is always accurate, as LWP is also a retrieved parameter and can
have random errors. Therefore, one must test the retrieval algorithm when the LWP
information is biased. The retrieval technique is now evaluated for different biases in
LWP information. As already mentioned, when we assimilate LWP information, the
scaling factor can vary. We tested the retrieval with varying biases, as shown in table
5.5. The highest value of LWP in the synthetic profile is approximately 240 gm−2, and
the highest bias added in LWP is ±50𝑔𝑚−2 which indicates 56 % MAPE in LWC. The
error in retrieved LWC due to such high biases in LWP is much less than the error when
the diverse value of lna are taken in the retrieval. These errors are summarised in the
figure 5.6 where the olive green bars indicate the MAPE in LWC for different values of
lna taken in the retrieval without LWP assimilation. The blue color bars are the MAPE
in LWC for various biases in assimilated LWP. It is clear from this comparison that the
assimilated LWP, even with bias, has lower error than the retrieval case that do not use
LWP assimilation.

Table 5.5: Error in retrieved LWC for various biases in assimilated LWP

Case Bias (gm−2) MAPE [LWC] (%)
1. LWP ±5 5.5
2. LWP ±10 11.23
3. LWP ±20 22.71
4. LWP ±50 56

Figure 5.6: Errors in retrieved LWC when LWP is not assimilated, as compared to those
when LWP is assimilated with biases. The Y-axis represents the MAPE in LWC, and
the X-axis shows the value of lna taken from empirical relations and biases in LWP

.
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5.3.6 Sensitivity of parameter b

The exponent 𝑏 from the power law equation (4.7) is considered 2 for all the cases
discussed in this chapter, however the range of parameter b in the literature is proposed
from 1 to 2. To test the impact of variation in 𝑏 on the retrieval algorithm, the value of
𝑏 used to fabricate synthetic observations Z and LWP, and 𝑏 in the forward model are
same. Keeping all the other settings constant, the error in retrieved LWC should be due
to changing 𝑏. Table 5.6, shows the range of b and the respective error in retrieved LWC
with respect to true LWC. The retrieved LWP matches with the assimilated LWP only
the distribution of LWC is changed observed least for 𝑏 = 2. Figure 5.3.6 shows that the
cost function is also least for 𝑏 = 2 and MAPE in LWC is twice when the value of 𝑏 is
taken 1.

Figure 5.7: (a) Cost function and (b) Retrieved 𝑙𝑛𝑎 for different 𝑏 values

There is negligible impact of variation in 𝑏 over 𝑙𝑛𝑎 as shown in figure and the error

Table 5.6: Error in retrieved LWC for different b values

Case 𝑏 value RMSE (LWC) 𝑅2(𝐿𝑊𝐶) MAPE (LWC)
1. b=1 0.00069 0.99998 0.35599
2. b=1.2 0.00064 0.99998 0.301158
3. b=1.4 0.00059 0.99998 0.260569
4. b=1.6 0.00054 0.99998 0.227267
5. b=1.8 0.00050 0.99999 0.198041
6. b=2 0.00045 0.99999 0.171237
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in LWC is between 0.35% to 0.17%. The convergence is achieved with less cost function
and MAPE in LWC is also least for 𝑏 = 2 case. Because 𝑙𝑛𝑎 is allowed to be variable in
the forward model, it is most likely that the change in 𝑏 is compensated by the change
in 𝑙𝑛𝑎.

5.3.7 Analysis of the sensitivity exercise

In conclusion, since this sensitivity test was performed on a synthetic profile, the overall
impact of uncertainty of each parameter on the retrieval can be very different when
applied to a real profile. However, an estimate of errors can be made using this exercise.
The error in observation must be chosen very carefully for retrievals. 25% error in Z
is also supported by realistic calibration error of BASTA radar which was calculated
between 1 and 2 𝑑𝐵𝑍 using 20 𝑚 mast [Toledo et al., 2020] where 25% error in Z
corresponds to 1.08 𝑑𝐵𝑍 . This combination of 25% and 10% error in measurement has
only 0.17% MAPE when tested with synthetic profile, which is why this combination
is used in the algorithm. a priori must be considered only to stabilize the retrievals for
unavailable measurements, otherwise the error in a priori can be kept high. A prior
is a constraint for the entire retrieval, hence the uncertainty in the retrieval must be
smaller than the error in a priori. Otherwise, the retrieval does not add any information
from the observations [Maahn et al., 2020]. Attenuation by liquid cloud droplets is yet
unknown for continental cloud however the available relations from literature proposed
for marine clouds is used in the retrievals might bring up to 2.7% error in retrieved LWC.
Retrieval is very sensitive to bias in LWP as LWP is point information for whole cloud
column, therefore error in observation and biases in Z and LWP both play a very critical
role in the retrieval. Sensitivity of retrievals for parameter b is showing the least error
when 𝑏 = 2 because this is the same used to fabricate Z synthetic from the true LWC.
Nevertheless, it is worth noting even with other values of 𝑏 the MAPE is not exceeding
0.35%.

5.4 Comparison of LWC retrieval with in-situ data

In-situ measurements of cloud and fog are required to validate the distribution of LWC
with time and height. In general, in-situ measurements of cloud microphysical parame-
ters are collected using a research aircraft mounted with sensors flying inside the cloud.
During the SOFOG-3D field experiment, a tethered balloon equipped with in-situ sen-
sors was used to collect the microphysical parameters of fog. This approach is much
more economical than the research aircraft flying inside cloud, however the trajectory of
the balloon cannot be fully controlled, and the measurements are limited to the lower-
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most 1–2 𝑘𝑚 level. Simultaneous measurements using remote sensing instruments like
BASTA cloud radar, microwave radiometer and automatic weather stations were also
collected for various fog cases [Martinet et al., 2020]. Since the LWC retrieval algo-
rithm described in previous sections essentially works with liquid clouds including fog,
measurements collected during the SOFOG-3D experiment are well suited to validate
the algorithm. The input for the algorithm is taken from vertically pointing cloud radar
reflectivity and LWP estimates from MWR measurements. Retrieved LWCs are then
compared with the measured LWC using in-situ sensors.

5.4.1 Presentation of the case study of 09 February 2020

One fog case study observed at the super-site (44.4◦N,−0.6◦E) on 9th February 2020
is presented to compare retrieved LWC with in-situ measurements collected from the
tethered balloon. This case is selected because fog and stratus were observed, allowing
us to validate the algorithm for two different cloud types at once. The observations
from vertically pointing radar and MWR are used to retrieve LWC with exactly the
same algorithm described in previous sections. During this experiment, MWR was
set up to collect boundary layer scan at lower elevation angle down to 4◦ every 10
minutes and therefore the LWP is interpolated for such gaps. Relying on the previously
led sensitivity study, error in observations for Z and LWP is taken as 25% and 10%
respectively, with a priori information calculated from Atlas [1954] empirical relation.
Error in a priori is considered 1000% which is the same as mentioned in section
5.2.3 when MWR information is available. As stated in section 5.2.3, radar misses a
few low level gates near the ground due to antenna coupling, which contains critical
fog information. The properties of fog are assumed to remain constant between the
first available gates and the ground, and thus reflectivity is extrapolated (extended)
downwards for the unavailable range gates. The fog shown in figure 5.8 sustained for 4
hours and then started dissipating to form a stratus cloud. Figure 5.8(a) illustrates radar
reflectivity extended to the lowest gates, whereas in figure 5.8 (b) Doppler velocity is
plotted only for the available gates. Higher velocity at the fog top are indicating the
entrainment process causing the dissipation of fog after 04:00 hours. The visibility
observed at the super-site is also less than 1000 𝑚 until 04:00 hours. The discontinuity
in radar reflectivity close to 200 𝑚 is due to the beam overlap correction used in L2
product of BASTA. The distribution of retrieved LWC over time and height is shown in
figure 5.8(c) along with the trajectory of the tethered balloon. Figure 5.8(d) and (e) are
the plots for LWP and retrieved 𝑙𝑛𝑎 respectively for this case.
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Figure 5.8: (a) Radar reflectivity Z (b) Vertical velocity (c) Retrieved LWC, (d) LWP
and (e) Retrieved 𝑙𝑛𝑎 for 09 February 2020 case at SOFOG-3D super-site. Tethered
balloon trajectory over retrieved LWC is shown in black line.
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5.4.2 Comparison between in-situ and radar measurements

To compare the retrieved LWC with in-situ measurement, the co-location of tethered
balloon data with BASTA reflectivity points is accomplished by determining the closest
radar gate that corresponds to the balloon height. In figure 5.9(b) and (c) the black
dashed line indicates that the visibility is more than 1000 𝑚 from 04:00 hours onwards
and therefore separates fog and stratus cloud. Since the balloon also contaminates

Figure 5.9: (a) Radar reflectivity and balloon path (b) Comparison of radar reflectivity
with reflectivity calculated from CDP using DSD at the altitude of balloon (c) Compar-
ison of retrieved LWC with in-situ LWC at the altitude of balloon.

the radar measurement, therefore all the co-located points when the tethered balloon
was within the radar detection range are eliminated. The maximum distance observed
between the tethered balloon and BASTA radar was 700 𝑚. Radar reflectivity factor
from in-situ measurements is calculated using the 6th moment of the droplet distribution
measured by CDP. Note that the radar reflectivity is still in the Rayleigh regime as the
measurements from CDP cannot exceed 50 𝜇𝑚. The co-located points with reflectivity
less than -40 𝑑𝐵𝑍 are masked because the signal-to-noise ratio for radar is low.

In figure 5.9(b) the radar reflectivity from BASTA and CDP are compared for the
co-located points and indicates a clear bias for fog and relatively much better agreement
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for stratus cloud with -4.44 𝑑𝐵𝑍 mean bias for fog and 0.89 𝑑𝐵𝑍 for stratus cloud. The
bias is calculated as the difference between 𝑍𝐵𝐴𝑆𝑇𝐴 and 𝑍𝑖𝑛−𝑠𝑖𝑡𝑢. The root mean square
error (RMSE) in Z is 5.2 𝑑𝐵𝑍 for fog and 2.8 𝑑𝐵𝑍 for stratus. Figure 5.9 (c) shows the
comparison of the retrieved LWC values with LWC observed by CDP at the co-located
points of the balloon trajectory. The mean bias in LWC for fog is 0.06 𝑔𝑚−3 and for
stratus cloud is 0.009 𝑔𝑚−3. The root mean square error (RMSE) in LWC for fog is
0.082 𝑔𝑚−3 and 0.056 𝑔𝑚−3 for stratus. The comparison of retrieved LWC with in-situ
observations of LWC from CDP resulted in a root-mean-square error of 0.067 𝑔𝑚−3

including fog and stratus.

For a well-calibrated radar, the reflectivity estimated from in-situ sampling should
match with the radar reflectivity if both the instruments are sampling the same cloud
column and have a similar sensitivity to DSDs. The sensitivity of the CDP sensor is
limited to sample the droplet diameters from 2 to 50 𝜇𝑚, while radar can sample a
wider range of DSDs and is more sensitive to the largest droplets. The variations in
comparison with in-situ observations are noticed when the balloon is close to the cloud
edge, where a slight difference in altitude can have a significant impact on Z and LWC
due to the heterogeneity of this area.

The observed differences in simulated Z and radar measurements could be explained
by the vertical and horizontal heterogeneity of the fog, which strongly depends on the fog
maturity. To further investigate the fog stages, a broader perspective beyond the vertical
profile of fog is required. Multiple remote sensing and in-situ instruments were operated
simultaneously as part of the SOFOG-3D campaign to explore various fog properties.
A 95 GHz scanning radar called BASTA-mini has been centered 1 𝑘𝑚 away from the
vertically pointing radar, and the 360◦ scan of fog is presented in figure 5.10(a) and (b).
Plane Polarised Indicators (PPI) of scanning radar shown in figure 5.10, are collected at
4◦ elevation angle. Note that this low elevation of radar can also be contaminated by the
ground clutter, indicating locally high reflectivity. In the figure 5.10(b), a larger spread
of fog is observed, which is due to the development of thicker fog.

Due to the constant evolution of fog stages and the horizontal heterogeneity of fog,
the sampled volume away from the vertically pointing radar will also have distinct Z
and LWC. As shown in figure 5.10(b), the distribution of reflectivity in the left and
right-hand side of scanning radar is different. Therefore, the mismatch in Z and LWC
can be explained by different radar and CDP sampling volumes. As the fog lifted into
stratus cloud around 04:00 hours, we can observe a better agreement in figure 5.9(b) and
(c), which could be explained by a more homogeneous situation. Furthermore, as shown
in figure 5.9(a), samples are not collected at the cloud edge for stratus and therefore have
lesser uncertainties in Z and LWC.

In order to have a better idea of the representativeness of CDP in-situ data, a scatter
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a) Scan at 01:07 hours b) Scan at 03:14 hours

Figure 5.10: Scans of BASTA-mini collected for fog at 4◦ elevation angle. The vertically
pointing radar shown as a blue dot was located 1 km away from the scanning radar and
the cross represents the location of the balloon

plot of retrieved LWC with radar reflectivity from BASTA radar and in-situ measurement
of LWC with simulated radar reflectivity using DSD compared with empirical Z-LWC
relationships in figure 5.11. In-situ measurements are separated for fog and stratus clouds
where magenta colour denotes fog, yellow-green (Chartreuse) colour denotes the stratus
cloud, and the respective linear fits are also plotted. Various Z-LWC relations for clouds
are included in table 4.1, but are not proposed for fog. In Dupont et al. [2018], linear fits
for fog are proposed based on in-situ observations from the tethered balloon and BASTA
cloud radar at SIRTA. As a reference for fog, Flight1, Flight2, and Flight3 in the figure
5.11 are the fits for three fog instances computed by relating LWC observations from a
light optical aerosol counter (LOAC) sensor to BASTA measurements, as described in
Dupont et al. [2018]. These Z-LWC fits for fog are obtained by finding the linear fit of
LWC from LOAC sensor to the radar reflectivity Z of the closest gate from vertically
pointing BASTA radar. We compared the behaviour of in-situ fog measurement during
the SOFOG-3D campaign to that of other fog relationships. As illustrated in figure
5.11, no empirical relation from the literature, including the one derived in fog, seems
to be able to represent the in-situ observations of this fog situation. However, the scatter
for in-situ measurements of stratus represents a good correlation with other empirical
relations as well as with the linear fits for fog from Dupont et al. [2018]. The in-situ
measurements separated for fog and stratus clearly show different characteristics and
also indicate that different reflectivity values for the same LWC can be obtained, as
shown in figure 5.11. This could be because of the diverse droplet spectra in stratus and
fog.
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Figure 5.11: Comparison of in-situ LWC and radar reflectivity relation with available
literature for fog and clouds

The impact of various DSD characteristics during the fog stages in the simulation
of different radiation fogs is discussed in Maier et al. [2012]. In the Raleigh regime
Z values might get larger as fog develops due to the increase in droplet radius, while
the LWC may remain constant. This introduces a non-linear relation between LWC and
radar reflectivity Z. The variability within each fog stage exhibited unique properties
depending on the fog event [Maier et al., 2012].

In figure 5.12 the retrieved LWC from the algorithm with respect to BASTA re-
flectivity is plotted in blue scatter, and it matches only with the in-situ observations
for stratus and other empirical Z-LWC relations. In-situ fog indicates relatively less
LWC than stratus cloud at the same radar reflectivity. For the sake of comparison with
Dupont et al. [2018], we also related the in-situ LWC obtained during SOFOG-3D with
co-located radar reflectivity from BASTA. By correlating in-situ measurements of LWC
with cloud radar reflectivity, it is assumed that the radar and in-situ sensor are observing
the same cloud volume; however, distance between the balloon and the nearest gate
of cloud radar can incorporate uncertainties. In addition to this, the sensitivity of the
in-situ sensor (CDP) and radar (BASTA) is considered the same, despite the fact that
the sensitivity varies with DSDs. Generally, the cloud probes under sample the true
DSD of the volume due to their limited sensitivity to droplets. As shown in figure 5.13,
the Z-LWC fits from in-situ observation are in neighborhood to other empirical relation
for reflectivity less than -30 𝑑𝐵𝑍 . Since the power-law relations are valid only in the
Rayleigh regime, the in-situ observation agrees with other empirical relations for low
reflectivity. Reflectivity values greater than -30 𝑑𝐵𝑍 may be attributed to larger droplets,
which may or may not include a higher LWC. However, a significantly better correlation
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Figure 5.12: Comparison of in-situ LWC and radar reflectivity relation with retrieved
LWC and BASTA radar reflectivity relation

of in-situ fit for stratus cloud with empirical relation by Baedi et al. [2000] (proposed
for stratocumulus clouds) indicates representativeness of in-situ observations for stratus.
The fit for in-situ fog observation still indicates less LWC at the same reflectivity and
does not match with any empirical relation. These observations imply that these are
either collected for large droplets beyond the CDP limit or from a sampling volume
distinct from the one cloud radar samples.

Figure 5.13: Scatter plot for relation between LWC measured from CDP with radar
reflectivity from cloud radar, compared with available literature

Unfortunately, the limited in-situ observations collected for fog and stratus here do
not represent a validation of the retrieval; however, this comparison highlights that there
are situations more complicated than the other. Due to the non-uniform distribution of
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LWC in cloud or fog, homogeneity plays a key role while validating with the in-situ
measurements. It is unfair to expect LWC to match when simulated reflectivity from
in-situ does not match radar measurement. In order to validate such an algorithm,
in-situ measurements at different heights for the same volume that radar samples are
needed. However, if the in-situ observation platform is positioned in proximity to the
radar sampling volume, it may also contaminate the radar observations. Therefore, the
in-situ measurements must be collected from a homogeneous cloud to compare with
the retrievals. Particularly for fog, more continuous DSD measurements as well as the
vertical profiles during distinct fog episodes are required to produce more significant
results.

5.5 Statistical analysis of retrievals to derive climatology

The primary objective of this statistical analysis is to derive a climatology of LWC and
𝑙𝑛𝑎 in order to allow the algorithm to be able to retrieve LWC for fog and low-level liquid
clouds even when additional measurements are not available. A comparison of retrieved
LWC with in-situ LWC measurements for fog and stratus cloud from the SOFOG-3D
experiment is already presented in section 5.4.1. In this section, the climatology is
developed from the retrieval technique discussed in section 5.2.5 using the larger data
set from SIRTA measurements for a variety of cloud and fog incidents that occurred
between November 2018 and May 2019. Statistical analysis to derive a climatology of
LWC and scaling factor is presented in this section. Figure 5.14 presents the histogram
of observed parameters followed by retrieved parameters for the selected observation
set.

The histogram of the retrieved scaling factor 𝑙𝑛𝑎 indicates that, the highest values
of occurrence are around -3 which is close to the 𝑙𝑛𝑎 a priori value from [Atlas, 1954]
the empirical relation plotted as the red line, but it is not precisely the same. The
variational framework allows variability in the 𝑙𝑛𝑎 retrieval. The assimilation of LWP
brings enough information to retrieve 𝑙𝑛𝑎 and the spread around the a priori value is
directly linked to the a priori error value. Table 4.1 indicates the 𝑙𝑛𝑎 values for various
cloud types proposed in the literature, which agree well with the range of retrieved 𝑙𝑛𝑎
values. Note that there is one single 𝑙𝑛𝑎 value for a given profile, but its value can
potentially be used to differentiate clouds from drizzle. All the profiles with rain and
drizzle reaching ground are removed for the statistics, however light drizzle with clouds
and fog is discussed.

Since the algorithm does not assimilate LWP for the profiles with LWP less than 10
𝑔𝑚−2, LWP histogram in the figure 5.14(b) has no value below 10 𝑔𝑚−2 and the LWP
for the majority of cloud profiles is less than 120 𝑔𝑚−2, but some profiles have a value
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Figure 5.14: Histogram of (a) Radar reflectivity(Z) (b) LWP from MWR (c) Retrieved
LWC (d) Retrieved 𝑙𝑛𝑎 for 39 cloudy days, and the red line in 𝑙𝑛𝑎 histogram indicates
the a priori of 𝑙𝑛𝑎 from table 4.1

Figure 5.15: Retrieved LWC as a function of radar reflectivity Z for 39 cloudy days,
with reference plot of various empirical relation for different cloud types.
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of LWP up to 400 𝑔𝑚−2.

The parameter LWC is indicating the range up to 0.6 𝑔𝑚−3 which includes light
drizzle, while the highest number of cloud pixels have LWC value less than 0.2 𝑔𝑚−3. In
figure 5.15, retrieved LWC is plotted as a function of radar reflectivity for the 39 cloud
cases, with Z-LWC empirical relationships from literature for various cloud types. The
black line represents a priori of the retrieval algorithm, and the higher concentration
of density points overlaps with the black line is due to the profiles with LWP<10 𝑔𝑚−2

where the retrieval of LWC is based on only Atlas empirical relation. All these profiles
are not considered in the climatology of 𝑙𝑛𝑎. However, the wide range retrieval points
indicates that the algorithm allows LWC retrieval for a variety of cloud types. The
slope of Z-LWC relationship is dependent on the value of 𝑏 in equation 5.7 and because
the retrieval method considers 𝑏 = 2, the slope of the total retrieval in figure 5.15 is
constant. However, retrieval allows variability in 𝑙𝑛𝑎 which could partly compensates
for 𝑏 as well.

As already described, knowing LWP allows us to retrieve 𝑙𝑛𝑎 and adjust the rela-
tionship between LWC and Z. However, when only BASTA measurements are available,
we need to rely on an a priori value for 𝑙𝑛𝑎. Thanks to this climatology we could both
define the optimal value for this a priori and also eventually propose to parametrise this
value, for instance it is envisioned to relate the scaling factor to radar reflectivity and/or
Doppler velocity. As Z and V are observed for each cloud pixel and only one value of
𝑙𝑛𝑎 is retrieved for a given cloud profile, one single reflectivity or velocity information
should be associated with 𝑙𝑛𝑎. We propose to summarise the reflectivity and velocity
information to the mean or maximum value of the profile, in order to have one value per
profile.

Maximum and minimum velocities of the cloud column are associated with the
updrafts and downdrafts, which may not represent the complete profile for 𝑙𝑛𝑎. There-
fore, we rely on the mean velocity of the profile. The density plot of mean velocity
as a function of 𝑙𝑛𝑎 is plotted in figure 5.16(a) indicating that mean velocity of most
profiles is concentrated between -0.5 to 0.1 𝑚𝑠−1 which is compatible with liquid cloud
sedimentation velocity. Mean velocity close to 0 𝑚𝑠−1 with 𝑙𝑛𝑎 values ranging from
-4 to -2 implies pure clouds, whereas few profiles with the mean velocity less than
-0.5 𝑚𝑠−1 must be impacted by the drizzle droplets in the profile. Standard deviation
plotted in the red line indicates that the variability of 𝑙𝑛𝑎 is very high for the profiles
with mean velocity below -0.5 𝑚𝑠−1. Due to the large standard deviation, 𝑙𝑛𝑎 cannot
be associated with mean velocity, however velocity information can be used to classify
drizzle droplets. As illustrated in figure 5.16(b), a substantially stronger association is
observed between maximum radar reflectivity and 𝑙𝑛𝑎 of the profile. For most of the
cloud columns, maximum reflectivity is observed between -30 to -15 𝑑𝐵𝑍 . As maxi-
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mum reflectivity also represents the drizzle in cloud, the maximum reflectivity above
-10 𝑑𝐵𝑍 is suspected to indicate drizzle in cloud. High value 𝑙𝑛𝑎 for reflectivity above
0 𝑑𝐵𝑍 , also supports the empirical relation for drizzle by Sauvageot and Omar [1987]
as shown in table 4.1 where the 𝑙𝑛𝑎 is given as 5.77. The standard deviation of 𝑙𝑛𝑎 is
also high for profiles with maximum reflectivity above -10 𝑑𝐵𝑍 . The standard deviation
of 𝑙𝑛𝑎 is lowest between -30 to -20 𝑑𝐵𝑍 . The one-dimensional linear fit relating 𝑙𝑛𝑎
and maximum radar reflectivity for clouds columns, is shown in black dashed line in
figure 5.16 (b). As maximum reflectivity of the profile is showing better correlation
with 𝑙𝑛𝑎 and the mean 𝑙𝑛𝑎 (red dashed line) coincides with linear fit. Therefore, the
one dimensional linear equation relation between 𝑙𝑛𝑎 and maximum reflectivity(𝑍𝑚𝑎𝑥)
is given by

𝑙𝑛𝑎 = 0.186 · 𝑍𝑚𝑎𝑥 + 1.829 (5.15)

Figure 5.16: Correlation of (a) Mean velocity of the profile versus 𝑙𝑛𝑎 and (b) Maximum
reflectivity of the profile versus 𝑙𝑛𝑎 for each cloud profiles, where colour bar indicates
the number of profiles

However, from an investigation by selecting 15 fog cases out of 39 cloud cases
indicated that the coefficients of linear fit are slightly different for fog profile.

𝑙𝑛𝑎 = 0.149 · 𝑍𝑚𝑎𝑥 + 0.591 (5.16)

To utilize the above relationships, it is necessary to differentiate between liquid cloud
aloft and fog. This can be easily done by determining the cloud base height to identify
fog, and hence specific climatology is applied to the profile.
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5.6 BASTA standalone LWC retrieval using climatology

In this section, we describe the stand-alone approach and its assessment using MWR
LWP retrieval as a reference. The climatological relation of 𝑙𝑛𝑎 as a function of
maximum radar reflectivity in the profile is used for the BASTA standalone retrieval
when MWR observations are unavailable.

5.6.1 BASTA standalone LWC retrieval approach

The radar is not always accompanied by a MWR and therefore a solution must be
proposed to improve the retrieval with knowledge of 𝑙𝑛𝑎 a priori. Since LWP information
is not assimilated, thanks to the 𝑙𝑛𝑎 climatology for clouds and fog derived in section
5.5, this information can be used as 𝑙𝑛𝑎 a priori. 𝑙𝑛𝑎 for the profile can be linked to the
maximum value of reflectivity detected in the profile using equation (5.15) and (5.16)
for clouds and fog respectively.

In this case, the observation vector ’𝑦’ contains only radar reflectivity of each cloud
pixel, with 25% error in measurement, whereas the state vector still contains LWC and
𝑙𝑛𝑎 both. Therefore, the Jacobian for a cloud profile with 𝑛 cloud pixels will have
𝑛 × (𝑛 + 1) elements. The variational method also allows us to control the contribution
of a priori information in the retrieval by providing error in a priori. A strong a
priori of 𝑙𝑛𝑎 is required to constrain LWC retrieval therefore, low error in a priori of
𝑙𝑛𝑎 is employed. In these standalone retrieval cases, 100% error in a priori of 𝑙𝑛𝑎 is
used, because the standard deviation of 𝑙𝑛𝑎 in figure 5.16 is approximately 1 which is
equivalent to 100% error in a priori. The climatology of 𝑙𝑛𝑎 for fog from equation
(5.16) is applied to the profile with cloud base less than 80 𝑚. Retrieval of LWC should
be constrained by LWC a priori only to avoid non-physical values, therefore the error in
a priori of LWC is taken 1000%. In BASTA standalone retrieval setup, a priori of LWC
is calculated using Atlas [1954] relation exactly the same as radar-MWR synergistic
retrieval.

5.6.2 BASTA standalone LWC retrieval first assessment using LWP
retrieved from MWR

With the details given above, LWC retrieval algorithm is adapted to utilize climatology of
scaling factor with only radar reflectivity measurements from SIRTA. BASTA standalone
retrieval algorithm is applied to the 39 selected cloud and fog cases from SIRTA.

Due to the absence of in-situ sensors at SIRTA for recording the distribution of the
LWC in cloud and fog, the integrated LWP from the HATPRO microwave radiometer
is utilized to assess the quality of the retrieved LWC for BASTA stand-alone retrieval.
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Figure 5.17: Comparison of retrieved LWP with LWP retrieved by HATPRO, where the
black line represents the exact match of LWP for given profile.

Figure 5.18: Percentage error in retrieved LWP with respect to LWP measured by MWR
at SIRTA.

The retrieved LWP is calculated by vertically integrating the retrieved LWC. Because
LWP information is not assimilated and strong 𝑙𝑛𝑎 a priori derived from climatology
is constraining the retrieval, and hence 𝑙𝑛𝑎 is not a retrieved parameter. However, the
variational framework allows 𝑙𝑛𝑎 to adjust around its climatology depending on radar
reflectivity. In this case 𝑙𝑛𝑎 values falls within the range of known values from literature
as shown in table 4.1.

Figure 5.17 presents the comparison of retrieved LWP from BASTA stand-alone
retrieval with LWP retrieved from HATPRO microwave radiometer. Number density
of profiles with LWP ranging from 10 to 250 𝑔𝑚−2 are compared with LWP from
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BASTA stand-alone retrieval. Profile with retrieved LWP less than 50 𝑔𝑚−2 shows
good agreement with LWP from HATPRO. For the profile with higher LWP an increase
in bias is clearly observed in figure 5.17, and the mean bias in LWP obtained as the
difference between LWP from HATPRO and retrieved is -21 𝑔𝑚−2. The mean absolute
percentage error in LWP w.r.t. LWP from HATPRO is 57.15%. The relative error in
LWP shown in figure 5.18 indicates that the majority of clouds has less than 35% error
in retrieved LWP. Because the climatology of the scaling factor constrains the retrieval,
effective estimation of LWC can be made using only radar information when additional
information is unavailable. By investigating the origin of biases, we discovered that
the profiles with light drizzle droplets characteristics tend to overestimate the LWP by
a large margin. The improvement in standalone retrieval can be made by classifying
clouds with and without drizzle and using specific 𝑙𝑛𝑎 climatology for them.

The next chapter concludes this thesis and suggest the possible improvement in the
retrieval algorithm.
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Chapter 6

Conclusion and outlook

The liquid water content of warm clouds (including fog) is a fundamental parameter for
characterizing their microphysical properties. The primary objective of this thesis was
to develop an algorithm which allows one to retrieve water content from the combination
of the BASTA cloud radar and a microwave radiometer. Various aspects of developing
this algorithm are covered in this thesis, which are summarised in the next section. I
will also recall the current limitations of the method and introduce some potential ways
to improve the methodology.

In addition to the scientific question of liquid clouds, my work is also related to
the industry. Another aspect of this research is to find new markets for the BASTA
cloud radar. Users with no particular radar scientific expertise could appreciate an LWC
product for liquid clouds and fog using radar measurements that can be automated. My
retrieval is also constrained by the current measurement capabilities of this radar, which
explains that I mainly use the reflectivity as information.

6.1 Conclusion

The vertical structure of low-level clouds has been demonstrated to be inaccurately rep-
resented by many climate models [Nam et al., 2012]. These uncertainties in the climate
projections are due to the poor representation of the cloud microphysical properties in
the models. Understanding low-level cloud dynamics under changing atmospheric cir-
cumstances will help to minimize model uncertainty and climate sensitivity [Bony and
Dufresne, 2005]. To support the improvement in representation of cloud microphysical
processes, long-term and continuous observations of clouds are crucial on local and
global scales. The introductory chapter 1, presents the motivation to focus on clouds
and their observations. In chapter 2, I presented the fundamentals of clouds in the atmo-
sphere and their interaction with radiation. The concepts of Earth’s radiative equilibrium
and the climate implications of diverse clouds have been introduced.
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Cloud radars are ideal remote sensing instruments to scan multi layered clouds with
which we can determine macrophysical features such as cloud base and cloud top as
well as microphysical features such as water content. A brief discussion on various
remote sensing and in-situ measurement techniques for cloud observation are discussed
in chapter 3. Since the interaction of atmospheric constituents with radiation changes
with wavelength, therefore measurements of clouds at different wavelength can reveal
different information. Hence, we also introduced the potential of the combination
between active and passive sensors. Synergy of cloud radar with lidar is used for
separating drizzle in radar volume and determining cloud and fog base. The synergy
of passive microwave radiometer with radar showed significant improvement in LWC
estimation by adding integrated water content to scale the LWC estimate, and therefore
this synergy is employed in this retrieval algorithm.

The microphysical parameters of liquid water cloud and the quantities measured
by remote sensing instruments mentioned above can be related under certain assump-
tions. Considering capabilities of cloud radar observations, chapter 4 of this thesis
highlighted several methodologies and prerequisites for converting the radar observa-
tions into LWC. For improvement in the accuracy of LWC estimation, prerequisites such
as the classification of hydrometeors is a significant aspect of radar application. Because
each hydrometer have certain characteristics, and therefore their retrieval methods are
different.

Chapter 5 contains the main part of my work and its content has been submitted to the
Atmospheric Measurement and Techniques journal. An algorithm for LWC estimation
of warm clouds is proposed using a vertically pointing radar and microwave radiometer
synergy. This algorithm is based on the hypothesis that LWC is related to reflectivity
with a power-law fit, and one of the constants of the Z-LWC relationship (equation 4.7)
is allowed to vary according to LWP of the same cloud profile which is retrieved by
a colocated MWR. The scaling factor 𝑙𝑛𝑎 of the relationship, is retrieved while the
exponent 𝑏 is assumed constant. Therefore, the technique proposed in this study is
equivalent to finding a suitable Z-LWC relationship consistent with the measured LWP
for each cloud profile. This synergistic retrieval algorithm works seamlessly for liquid
clouds and fog without prescribing the cloud type. The uncertainties in the retrieval are
analysed in the sensitivity analysis of the algorithm. The retrieval algorithm is tested on
a synthetic profile for different perturbations in sensitivity parameters. This sensitivity
analysis is useful to identify how much the variations in the input variables and errors
impact the estimated LWC.

Furthermore, the retrievals are compared against in-situ measurements for a fog
and cloud case collected during the SOFOG-3D field campaign. The comparison of
LWC values estimated using this synergistic retrieval algorithm revealed that LWC was
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more consistent with stratus cloud than fog. From this experience, we note that a
homogeneous cloud system is required for the comparison of retrieved LWC with in-situ
measurements, or else the in-situ sensors must sample the same cloud or fog volume as
radar. To assess the accuracy of algorithm for LWC estimates in various clouds types,
in-situ measurements of several types of warm clouds like fog, low level stratus clouds
with and without drizzle are required.

The proposed algorithm is implemented to a set of cloud and fog instances observed
at SIRTA and the analysis is discussed in this thesis. The observations of cloud and fog
instances from several months are utilized to build a climatology of LWC and scaling
factor. The application of derived climatology to estimate LWC for stand-alone radar
observations is also presented. By utilizing the climatology of the scaling factor, this
radar stand-alone method can provide continuous retrieval of LWC for warm clouds even
in the absence of radiometer and other additional measurements. The standalone method
uses climatology of scaling factor as a priori information that allows the variability in the
LWC retrieval in the stand-alone mode. Such climatologies can be helpful in establishing
new retrieval methods for low-level clouds.Although this climatology is developed using
measurements from SIRTA observatory for limited cloud scenarios, a more extensive
data collection from several measurement locations might be used to generate a more
robust climatology of scaling factor.

6.2 Outlook

Although the current retrieval technique provides LWC estimates of liquid clouds and
fog, some improvements can still be made in the retrieval algorithm. The perspectives of
possible future investigations are presented in this section. Note that the BASTA radar
will have some new capabilities in the future that could benefit to the LWC retrieval (for
instance the Doppler spectrum information).

The retrieval algorithm could be updated with an improved target classification
scheme to apply two different scaling factors in one profile, especially when drizzle
and cloud co-occur. Also, for multi-layered liquid clouds, different 𝑙𝑛𝑎 might be
prescribed for each cloud layer with proper classification of hydrometeors. Improved
classification of hydrometers for the BASTA stand-alone retrieval will improve the LWC
retrieval because the range of scaling factor varies for different categories. Further, the
climatology of scaling factor for different cloud types will improve the LWC retrieval.
As mentioned in the section 5.2.4, the radar reflectivity profiles can be contaminated by
particles in the boundary layer. In the retrieval method, these airborne planktons must
be categorized and hence not processed as hydrometeors. Ultimately, a sophisticated
algorithm for the classification of hydrometeors to distinguish between fog, liquid cloud,
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drizzle and airborne planktons (non-hydrometeor) is necessary.

Drizzle in clouds is a substantial source of error in the retrieval. In general, the
liquid water clouds and fog can have bimodal populations of drops, which means that
the droplets in the clouds are of two characteristic droplet size, one representing cloud
droplets, the other of drizzle-sized drops. Because drizzle droplets are significantly
larger than cloud droplets, power law may not be applicable in the Mie regime. As
a result, the forward model exclusively for drizzle must incorporate Mie scattering
or eventually another kind of relationship to link Z and LWC. A prospective work
for such cloud columns is planned to separate drizzle and cloud pixels using Doppler
velocity information and develop a forward model for drizzle. The variational framework
discussed here can be modified to incorporate additional measurements, such as Doppler
velocity.

Another current limitation of our synergistic retrieval method is that it is applicable
to profiles with LWP values greater than 10 𝑔𝑚−2. A better a priori of 𝑙𝑛𝑎 can be
proposed in future to estimate accurate LWC for low LWP profiles. Additionally, this
retrieval method is not applicable when a mixed phase cloud overlap the liquid cloud
layer, whereas ice cloud above the liquid cloud does not impact the LWC retrieval of the
liquid layer. Therefore, the retrieval methods focusing on mixed-phase clouds can be
developed.

While validating the LWC retrievals with in-situ measurements, the colocation of the
in-situ probe and radar volume is necessary (homogeneity is the key of the comparison as
the volume sampled are not the same). We used in-situ measurements from the tethered
balloon platform which was limited for fog observations, however the retrieval algorithm
can be validated with in-situ measurements from aircraft or UAVs flights with in-cloud
sensors for diverse liquid clouds. A variety of in-situ sensors could be utilized for
validating retrieved LWC at different height. Since UAVs and balloons travel at a slower
speed than airplanes, which would allow them to sample the clouds more thoroughly.
Note that some sites cannot be overflown by aircraft for safety reason. UAVs can be
more efficient in terms of controlling them remotely, as the path of tethered balloons
cannot be controlled. These platforms can, however, interfere with the radar signal. In
order to avoid contaminating the radar signal, the samples must be taken from a volume
that is close enough and least obstructing the radar. Before comparing the estimated
values with in-situ data, it is necessary to verify if the cloud volume represented by radar
and in-situ sample are the same. A well mixed or homogeneous cloud systems is ideal
for validating such algorithms.

Although single ground based radar measurement may not yield a reliable estimate of
the cloud properties, a prolonged series of observations can help to develop climatologies
for different geographical locations and provide information on the regional variation in
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the nature of warm clouds. Therefore, ground-based remote-sensing networks should be
supported and extended because they represent an indispensable tool for measurement
of parameters that are not accessible from space.

As the majority of radars are equipped with Doppler capability, the recorded Doppler
spectra also be might be used to improve the categorization of hydrometers. Another
possibility is to incorporate machine learning approaches to distinguish the hydrometeor
seen by radar. Because Doppler spectra also give information about the droplet spectrum
and its variability, and therefore LWC retrieval method can be improved for varying
spectra.

The integration of multiple remote sensors is the reliable approach to generate more
precise LWC profiles. Cloud radars with multichannel passive microwave radiometers
and lidar can provide a more comprehensive view of clouds at multiple wavelengths,
and the estimation of cloud microphysical properties is more accurate. Using such
synergies, improvement in representation of clouds in climate models can be attained.

In order to improve this LWC retrieval algorithm in future and develop a LWC
product, the implementation of the retrieval method for long-term data sets of various
cloud cases under a variety of climatic conditions is essential to better depict the diversity
of clouds and identify scenarios in which the retrieval works and those in which it does
not. The resulting long-term statistics of the cloud property retrievals will provide
additional information on the sensitivity, the uncertainty and other limitation of warm
cloud retrievals. This could be useful in refining our approaches for estimating LWC
using cloud radar measurements.

There are many ways to improve the algorithm with sensors synergies and better
parameterization. It is also worth emphasizing that synergistic techniques, combining
other radars working at different frequency bands, MWR, and lidar, can improve the
retrieval algorithm. Measurements from radar and lidar integrated unit such as BALI
could be useful for improving the algorithm. Long-term measurements using well-
calibrated remote sensing instruments will ultimately help us better understand the
relationship between clouds and other fine-scale processes in the atmosphere.
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