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Abstract

The use of batteries as backup in case of power outages is common in telecommunications networks,
since they provide critical services and need to keep their services always online. These batteries
are used in conjunction with antennas and other equipment, and strict safety usage rules must be
considered in order to guarantee that they are always available in case of a power outage. Besides,
the telecommunications operator could use these batteries in order to participate in the electricity
market provided that the grid is reliable enough, as long as the safety usage rules are respected.
Indeed, since the energy price varies over time, batteries can be used to avoid buying energy when
this price is high, and recharged when the energy price is low, a behavior that will be denoted as a
peak-shaving strategy. A second profitable way for a company to use its batteries is by performing
load curtailments. Indeed, when the power demand of a country is greater than the production,
the Transmission System Operator must take steps in order to stabilize the grid such as ask power
plants to produce more energy. Another way is to ask energy-intensive consumers to reduce their
consumption during a given time period (in which case they are said to perform a load curtailment),
by offering them a reward in exchange. In this thesis, we consider the problem of optimizing the
total energy costs using batteries installed for backup in order to participate in the energy market by
performing peak-shaving and load curtailments, with the help of a proper batteries management. Our
goal is to reduce the total energy operational expenses for the company, and maximize the rewards
received by performing load curtailments. A study of the electricity market architecture in France is
conducted to understand the demand, flexibility mechanisms and how the operational constraints in
the use of batteries of a telecommunications operator interact with the energy market. We identified
different challenges that were investigated individually to better understand the characteristics of the
underlying optimization problem and thus to develop more efficient solving methods. For each one,

mixed-integer linear programs and heuristics are then proposed to solve the related problem. Once we



ABSTRACT

investigated and understood the individual challenges, we proposed mixed-integer linear programs and
heuristics for the main problem of this thesis, which we prove to be NP-Hard, incorporating market
energy prices and the availability of batteries. Finally, simulations based on realistic data from the
French telecommunications operator Orange show the relevance of the models and heuristic proposed:
these prove to be computationally efficient in solving large scale instances, resulting in significant

savings and revenue through the optimized multi-battery energy storage management policies.

Keywords: Recherche Opérationnelle, Systeme de Stockage d’Energie a Plusieurs Batteries, Mé-
canisme de Réponse a la Demande, Effacement de la Charge, Programmation Linéaire en Nombres

Entiers Mixtes, Algorithmes de Graphes, Réseaux de Télécommunications.
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Résumé

L’utilisation de batteries de secours en cas de coupure de courant est fréquente dans les réseaux de
télécommunications, car ils fournissent des services critiques et doivent rester en ligne en permanence.
Ces batteries sont utilisées en conjonction avec des antennes et d’autres équipements, et des regles
strictes de sécurité d’utilisation doivent étre prises en compte afin de garantir qu’elles soient toujours
disponibles en cas de coupure de courant. En outre, I'opérateur de télécommunications pourrait utiliser
ces batteries afin de participer au marché de I’électricité a condition que le réseau soit suffisamment
fiable et que les regles de sécurité d’utilisation soient respectées. En effet, puisque le prix de ’énergie
varie dans le temps, les batteries peuvent étre utilisées pour éviter d’acheter de 1’énergie lorsque ce
prix est élevé, et étre rechargées lorsque le prix de I’énergie est plus bas, un comportement appelé
stratégie d’écrétement des pointes (peak-shaving en anglais). Une deuxieéme facon rentable pour une
entreprise d’utiliser ses batteries est d’effectuer des effacements de charge. En effet, lorsque la demande
d’électricité d’'un pays est supérieure a la production, le gestionnaire du réseau de transport doit
prendre des mesures afin de stabiliser le réseau, par exemple en demandant aux centrales électriques
de produire davantage d’énergie. Un autre moyen est de demander aux consommateurs intensifs en
énergie de réduire leur consommation pendant une période donnée (on dit alors qu’ils effectuent un
effacement de charge), en leur offrant une récompense en échange. Dans cette thése, nous considérons
le probleme de I'optimisation des cotits totaux de ’énergie en utilisant des batteries installées pour la
sauvegarde afin de participer au marché de I’énergie en effectuant des écrétements de pointe et des
effacements de charge, avec ’aide d’une gestion appropriée des batteries. Notre objectif est de réduire
les dépenses totales d’exploitation de I’énergie pour l'entreprise, et de maximiser les récompenses
regues en effectuant des effacements de charge. Une étude de I'architecture du marché de 1’électricité
en France est d’abord menée pour comprendre les mécanismes de flexibilité de la demande et comment

les contraintes opérationnelles dans 'utilisation des batteries d’un opérateur de télécommunications
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RESUME

interagissent avec le marché de ’énergie. Nous avons identifié différents défis qui ont été explorés
individuellement pour mieux comprendre les caractéristiques du probleme d’optimisation sous-jacent
et ainsi développer des méthodes de résolution plus efficaces. Pour chacun d’entre eux, des programmes
linéaires en nombres entiers mixtes et des heuristiques sont ensuite proposés pour résoudre le probleme
correspondant. Apres avoir exploré et compris les défis individuels, nous avons proposé des programmes
linéaires en nombres entiers mixtes et des heuristiques pour le probleme principal de cette these,
que nous prouvons étre NP-Dur, en incorporant les prix de I’énergie du marché et la disponibilité
des batteries. Enfin, des simulations basées sur des données réalistes provenant de 'opérateur de
télécommunications frangais Orange montrent la pertinence des modeles et de ’heuristique proposés :
ceux-ci se montrent efficaces en termes de calcul pour résoudre des instances a grande échelle, et des
économies et des revenus significatifs peuvent étre générés grace aux politiques optimisées de gestion

du stockage d’énergie a plusieurs batteries.

Mots-clés: Recherche Opérationnelle, Systéme de Stockage d’Energie de Multiples Batteries, Mé-
canisme de Réponse a la Demande, Effacements d’Energie, Programmation Linéaire en Nombres En-

tiers Mixtes, Algorithmes de Graphes, Réseaux de Télécommunications.
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Resumo

O uso de baterias como backup em caso de quedas de energia é comum em redes de telecomuni-
cagoes, ja que elas fornecem servigos criticos e precisam manter seus servicos sempre online. Essas
baterias sao usadas em conjunto com antenas e outros equipamentos, e regras rigidas de seguranca
de uso devem ser consideradas para garantir que elas estejam sempre disponiveis em caso de queda
de energia. Além disso, o operador de telecomunicagoes pode usar essas baterias para participar do
mercado de eletricidade, desde que a rede seja suficientemente confidvel, e desde que as regras de
seguranca de uso sejam respeitadas. De fato, como o preco da energia varia com o tempo, as ba-
terias podem ser usadas para evitar a compra de energia quando este preco é alto, e recarregadas
quando o preco da energia é menor, um comportamento conhecido como estratégia de corte de pico
(peak-shaving em inglés). Uma segunda maneira lucrativa para uma empresa é utilizar suas baterias
para realizar reducoes de carga. De fato, quando a demanda de energia de um pais é maior do que
a producao, o Operador do Sistema de Transmissao deve tomar medidas para estabilizar a rede, tais
como pedir as usinas elétricas que produzam mais energia. Outra forma é pedir aos consumidores in-
tensivos de energia que reduzam seu consumo durante um determinado periodo de tempo (nesse caso
se diz que eles realizam uma redugao de carga), oferecendo-lhes uma recompensa em troca. Nesta tese
de doutorado, consideramos o problema de otimizar os custos totais na compra de energia utilizando
baterias instaladas para backup, a fim de participar do mercado de energia realizando cortes de pico e
redugodes de carga, com a ajuda de um gerenciamento adequado das baterias. Nosso objetivo é reduzir
os gastos operacionais totais de energia para a empresa, e maximizar as recompensas recebidas pela
realizagao de redugoes de carga. Um estudo da arquitetura do mercado de eletricidade na Franca é re-
alizado primeiramente para entender os mecanismos de flexibilidade da demanda e como as restrigoes
operacionais no uso de baterias de um operador de telecomunicagoes interagem com o mercado de

energia. Identificamos diferentes desafios que foram explorados individualmente para entender melhor
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as caracteristicas do problema de otimizacao subjacente e assim desenvolver métodos de solucao mais
eficientes. Para cada um deles, programas lineares inteiros mistos e heuristicas s@o entdao propostos
como métodos de resolugao. Uma vez explorados e compreendidos os desafios individuais, propusemos
programas lineares inteiros mistos e heuristicas para o problema principal desta tese, que provamos ser
fortemente NP-Hard, incorporando os pregos de mercado da energia e a disponibilidade de baterias.
Finalmente, simulagoes baseadas em dados realistas da operadora de telecomunicagoes francesa Or-
ange mostram a relevancia dos modelos e heuristicas propostos: estes provam ser computacionalmente
eficientes na solucao de instancias de larga escala, e economias e recompensas significativas podem ser

geradas através das politicas otimizadas de gerenciamento de armazenamento de energia das baterias.

Mots-clés: Pesquisa Operacional, Sistema de Armazenamento de Energia de Multiplas Baterias,
Mecanismo de Resposta a Demanda, Peak-Shavings, Programagcao Linear Inteira Mista, Algoritmos

em Grafos, Redes de Telecomunicagoes.
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Glossary

The electricity market notations

In this report, the following notations concerning the electricity market that will be used:

e Ampere (Amps): A unit of electricity current.

e Battery: Two or more primary cells connected to provide a source of electric current.

e Circuit: A complete path through which an electric current can flow.

e Current (I): Flow of electric charge. 1 Amp = 1 Coulomb per second.

o Efficiency: Ratio of output power to input power of a device.

e Electrical Conductor: Material that can conduct electricity.

e Electrical Energy: Energy required to push electrons through the components of a circuit.
e Electricity: Type of energy that comes from electrical energy.

e Energy: Ability to do work, and work is moving something against a force, like gravity. There

are many different types of energy: light, heat, gravity, chemical and electrical energy.

e Energy Efficiency: The achievement of using less energy without reducing the benefit provided

by the end-use service.

e Kilowatt Hour (kWh): Energy represented by 1 kilowatt of power consumed for a period of 1

hour.

e Power (P): The rate at which energy is released, transmitted or converted to another form; the

rate of doing work. The unit of power is the Watt (W), equal to one Joule of energy per second.
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e Volt: The unit used to measure voltage in a circuit.
e Voltage (V): The amount of energy carried by a unit of electrical charge. 1 Volt corresponds to

energy of 1 Joule per Coulomb.

The energy storage assets notations

Let us properly define the notations concerning the energy storage assets that will be used in this

report:

e Battery Power: the rate at which a battery can deliver energy, given in Watt.
e Battery Capacity: the amount of energy that the battery can store, given in Watt hours (Wh).

e Battery Autonomy: the duration that a battery can provide its maximum power, usually given

in hours.

e Battery Lifespan: represents the number of cycles (i.e., one discharge and one recharge) that the

battery can perform before its replacement.
e Level of Discharge: the percentage of the battery that has been discharged.

e Battery Efficiency: the ratio of energy recovered from the battery, to the energy delivered to the

battery, when they return to the same state of charge.
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Introduction

Over the last few years, different aspects of the electricity market have been studied, especially with
the emergence of smart-grids (Tuballa and Abundo, [2016)). Such networks may involve multiple energy
sources, storage systems, smart-consumption and local energy production (Dang) [2009; [Koutsopoulos

et al., [2011)).

In this context, batteries can be used in different ways with the aim of reducing production and
transportation costs, reducing energy consumption, and increasing grid reliability when used as backup.
More precisely, the use of batteries as backup in case of power outages is common in telecommunica-
tions networks, since they provide critical services and need to keep their services always online (Kiehne
and Krakowski, 1984)). These batteries are used in conjunction with antennas and other equipment,
and strict safety usage rules must be considered in order to guarantee that they are always available
in case of a power outage. Besides, the telecommunications operator (company) could use these bat-
teries in order to participate in the electricity market provided that the grid is reliable enough, as
long as the safety usage rules are respected. Indeed, since the energy price varies over time, batteries
can be used to avoid buying energy when this price is high, which is known as the demand response
mechanism (Daryanian et al., |1989). The batteries will then be recharged when the energy price is
low. The energy production and demand define the energy prices over a day, which must be paid to
buy energy from a market. Such an electricity market is known as retail market, and the demand
response mechanism has been widely studied over the last decade (Torriti, [2015} |Johnson et al., [2011}
Mishra et al., 2012; [Labidi, [2019). This mechanism is based on changes in electricity use by end-use

customers from their normal consumption patterns in response to changes in energy prices over time.

Recently, another profitable way for a company to use its batteries, has emerged. In order to
illustrate how it works, let us consider a typical energy production and demand system as shown in

Figure In such a system, the energy is delivered to the customers by the electricity distributors.
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The energy is supplied from the generators to the distributors by the Transmission system Operator
(TO), which is also in charge of the network stability. Indeed, when the power demand is greater than
the production, the TO must take steps in order to stabilize the grid (i.e., ask power plants to produce
more energy). Another way is to ask energy-intensive consumers to reduce their consumption during
a given time period (in which case they are said to perform a load reduction or load curtailment),
by offering them a reward in exchange (Brown and Johnson, [1969)). Usually, such a reward depends
on the amount of energy not bought during a load curtailment, which is the case for the French
context (RTE-Portal, 2020). In addition, performing load curtailments requires to establish rules that
must be contractualized between the company and the TO (RTE-Portal, 2020).

Figure 1 — Electricity markets agents.
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Since 2016, the French telecommunications operator Orange France uses its base stations batteries
installed for backup to adjust the power consumption and perform load curtailments through the so-
called Block Exchange Notification of demand response mechanism (NEBEF) (RTE-Portal, 2020). In
this context, Orange France interacts directly with the TO thanks to its high load flexibility capacity
by participating in the so-called curtailment market through the NEBEF mechanism. This is done
by using its batteries for which strict safety usage rules need to be respected anyway. However, no

optimization strategy in such a use is taken into account.

In this thesis, we consider the problem of optimizing the total energy costs by using batteries
installed for backup in order to participate in the retail and curtailment markets, with the help of
a proper batteries management. Our goal is to reduce the total energy operational expenses for the
company, known as OPerational EXpenditure (OPEX), and maximize the rewards received from the
curtailment market. Note that the OPEX and the rewards received are represented by monetary units

and are considered simultaneously. Hence, we have a single-objective optimization problem.
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Concerning the contributions of this thesis, which are detailed in Chapter [2] we first conducted a
theoretical analysis of the problem and its properties, proving that it is a problem that aggregates dif-
ferent difficulties to solve. Different mathematical models, either approaching parts of the problem or
considering the complete problem, have been proposed and evaluated. We also present different algo-
rithms and heuristics with good computational and economical performance that are useful for solving
large real instances. Different numerical experiments are performed and confirm the performance of

the proposed methods.

This report is organized as follows: In Chapter [1} Section presents the functioning of the elec-
tricity market, and Section presents the battery storage assets and their use in telecommunication
networks. In the following, Chapter [2] presents a literature review, the positioning of this thesis and
the major challenges of the optimization problem. We detail three key aspects of the problem and
how we conducted the research by exploring these aspects in two individual sub-problems, reported
in Chapters [3] and [4] before solving the main problem, presented in Chapter For each problem
addressed in Chapters [3| [4, and [5] we present the models and algorithms proposed to solve them as
well as the experimental results obtained. Finally, in Chapter [}, we summarize our contributions, and

provide some perspectives for future work.
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Chapter 1

Contextualization

In this chapter we introduce the electricity market we are going to interact with, and the energy
assets that are used. In fact, we present elements of context, the way the market works, and specific
properties that are very important for understanding the subject, as well as the rules and constraints
considered in our work.
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1.1. THE ELECTRICITY MARKET

1.1 The electricity market

In this section we introduce the electricity market, its principles of operation and the way energy
prices are established, as well as the energy markets with which the customers can interact. We focus

on the balancing mechanism of the network and how the consumers can value their reserves of energy.

1.1.1 General functioning

1.1.1.1 Introduction

Energy is everywhere and can be divided into two main forms: kinetic energy and potential energy.
Kinetic energy is the energy contained in moving objects and potential energy is any form of energy
that can be stored for future use. We can cite many examples of energy, such as light, heat, gravity,
chemical and electrical energy. Note that one type of energy can be converted into another, but not

created or destroyed. In our work, we consider electrical energy.

Electrical energy is produced by moving particles, called electrons, with a negative charge. In
general, electrical energy moves through a wire in an electrical circuit. If electrons accumulate in an
object, but can no longer flow, it is said to be static electricity creating an electrical charge (Room,
2019). Batteries are an example of objects where electrons are stored. If an electrical conductor
touches the battery, the electrical charge is released, creating an electrical current as the electrical
energy is carried from the battery to another location by the electrons. Then we have electricity,
which is the type of energy caused by flow of electrons. The conventional direction of the electric

current is from the negative side of the charge to the positive side.

In fact, the negative side charged with an excess of electrons and the positive side with a lack
of electrons cause the electrical potential, called a voltage, to move the electrons. Such a voltage is
measured in Volts (V), and represents the pressure exerted by the charged side of an electric circuit

that pushes the charged electrons through a wire.

Another important metric in the context of electrical energy is the word current, which represents
the speed at which electrons flow through the conductor (usually a wire). Such a current is a physical
quantity that can be measured and expressed numerically, and for which the standard metric is the

ampere (A).
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1.1.1.2 Energy production, transmission and distribution

In this section we present the entire process from energy generation to energy consumption, and
the mechanisms involved. Understanding this process is important because the subject addressed in

this thesis is directly related to the transmission stage.

In the real world, energy is produced in power plants (nuclear, gas, hydroelectric, solar, etc.) and
has to be sent to the customer’s location. Thus, the electrical power is transferred via transmission

wires.

Generation: Concerned with the process of power generation, based on the conversion of natural
energy into electrical energy, several energy sources have been used over the years. Historically, thermal
power plants for energy production have been widely used throughout the world. Examples include
petroleum, nuclear, geothermal, and waste incineration power stations. Close to half (45.5%) of the
net electricity generated in the EU in 2018 came from combustible fuels (such as natural gas, coal and

oil), while a quarter (25.8%) came from nuclear power stations (Eurostat, 2020)).

In some regions, the production of energy through hydroelectric power plants is an important
alternative to thermal power plants, being a production with fewer emissions of pollutants. In Europe,
13% of all energy production in 2018 comes from hydroelectric plants (Eurostat, [2020), while in some
countries, such as Brazil, energy production from hydroelectric plants is more intense (65%) (EPEL

2017).

Recently, there has been a worldwide effort for the massive use of renewable energy production,
such as wind turbines and solar panels. The technological development of these technologies increases
efficiency, and also reduces their cost of production and installation. Consequently, the installation
of solar panels in homes and businesses is becoming increasingly common. Customers then become
“prosumers”, because they are consumers and producers of energy at the same time. As a result,
distributed energy production has been increasingly studied and is seen as a form of production for
future generations of electrical grids. However, only 15.4% of all energy production in Europe in 2018

comes from solar panels or wind power plants (Eurostat, 2020).
The agents responsible for the production are commonly called ”producers” or “generators”.
Transmission: Electric power transmission involves sending electricity from a power generation

site to an electrical substation where the voltage is transformed and distributed to consumers. When
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Figure 1.1 — General schema of power generation, transmission and distribution.

electric power is generated at a power plant, it has a tension typically between 11.7kV and 33kV.
However, its voltage is stepped up to between 100kV and 700kV before it is sent to the distribution
centers via transmission lines to reduce transmission losses. Indeed, the current is frequently reduced
and the voltage is increased. On the one hand, current reduction means a lesser number of electrons
traveling at the same point of the conductor while at the same time reducing the friction. On the
other hand, voltage increasing means a higher differential power pressure groups of electrons to flow
“more frequently”. The equipment responsible for such an increase of voltage is the transformer. Every
power plant uses a transformer to make the voltage level higher before transmission for long distances,
as illustrated in Figure In the French context, Figure illustrates transmission network in
December 2019. The illustrated panel shows in real time the hubs and transmission lines and their

working states.

A second aspect of utmost importance in power transmission is to keep the current in the trans-
mission network constant. Depending on whether production is higher or lower than consumption, the
frequency increases or decreases. However, for the smooth operation of all devices connected to the
network, it is essential that the frequency is extremely stable, which requires an almost perfect balance
at all times between production and consumption. The agent responsible for the power transmission
and at the same time of the balance of the network (i.e., keeping demand equal to production all the

time) is the "Transmission system Operator (TO)”.

In this context, the TO must take action in real time to balance demand and production. Among

the mechanisms used, we can mention the modification of energy prices to encourage an increase or

38



1.1. THE ELECTRICITY MARKET

Figure 1.2 — The French transmission grid. December 2019. source ([Ferriere, 2020)).

reduction in consumption, the use of reserves to be activated in case of a peak in demand, or even the
possibility to ask a large consumer to reduce its demand for a period of time by offering a financial

reward.

Distribution: Electricity distribution is the final step in the delivery of electricity from the high-
voltage transmission system to the end consumers. Distribution substations connect to the transmis-
sion system and step down the transmission voltage to medium voltage ranging from 2 kV to 35 kV
with the use of transformers. So-called distribution lines then transport this medium-voltage power
to distribution transformers located close to the consumers’ installations. The distribution transform-
ers are responsible for lowering the voltage so that the power can be used for lighting, industrial

equipment, and household appliances.

The agents responsible for the distribution are commonly called ”distributors” or “suppliers”.

1.1.2 Electricity commerce and pricing definition

After the liberalization and opening of the electricity markets to competition, a market where

electricity is traded before final delivery to the consumer between different actors was created. The
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wholesale market concerns negotiations between actors operating in the energy field, while the retail

market concerns negotiations between suppliers and end customers directly.

1.1.2.1 The French electricity market

Besides, France has one of the largest energy markets on the continent (Comission, 2020)). In 2019,
79.1% of all energy produced came from nuclear sources, while only 20.2% was renewable. However,
there is a movement towards reducing the use of nuclear power plants and increasing the use of
renewable energy (IEA. |2019). In the same year, renewable electricity generation exceeded fossil fuel
generation for the first time in history. Around 40% of the energy produced in the European Union
was generated from renewable energies (wind, solar, hydro and bioenergy), while fossil fuels generated

34% (Energiewende and Sandbag, 2020).

Historically, the French energy market was marked by an absolute monopoly, with EDF (Electm'cité
de France, in French) and GDF (Gaz de France, in French) being the main actors in energy production
and distribution (Marty and Reverdy, 2017). It was only in 2007, following the liberalization of
the European energy market, that France restructured its energy market. Since 2010, when France
approved the NOME law (Nowvelle Organisation du Marché de [’Electricité, in French) to promote
competition in the retail electricity market (Creti et al., 2013), any company can become an agent
in energy distribution or production. Indeed, prosumers can act in daily balance, as a reserve for
periods of greater demand such as winter, or as an immediate reserve to use when necessary (Kieny
et al., |2015). Only energy transmission does not have an open market because its management is
extremely complex. In this context, RTE (Réseau de transport d’électricité, in French) was created,

and is responsible for transmitting the energy and maintaining the balance of the network.

1.1.2.2 Wholesale market

The wholesale electricity market plays a central role in the operation of the French electricity
system by allowing the supply of electricity to be balanced with demand. On the one hand, electricity
is injected into the grid via producers or imported from other countries, and on the other hand,

electricity is extracted from the grid to satisfy final consumption and/or for export.

Concerning the agents that play a role in this part of the market, they are classified into four

different types: The generators trade and sell the output from their power plants, the suppliers trade
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electricity and then sell it to end-use customers for their consumption, the traders trade to purchase
and sell (or vice versa), thereby helping to ensure market liquidity, and the demand side management
(or load reduction) operators that profit from their customers’ lowered consumption. At any moment,
the TO ensures the real-time balance of the system if necessary. French intraday markets allow

exchanges within France up to five minutes before delivery.

Two types of products can be traded. On the one hand, spot products are traded for same-day
or next-day delivery, and on the other hand, future contracts are traded for delivery at a certain
point in the future. Concerning the spot products, they are of two types: In the Day-Ahead market,
hourly products are traded for delivery on the next day, and in the Intraday market, half-hourly,
hourly products or blocks spanning several hours are traded for delivery on the same day. Concerning
the future products and contracts, the participants can sign buyer/seller contracts for the supply of

electricity in future at a price negotiated on the contract trade date (CREL 2018).

1.1.2.3 Retail market

Since the French electricity and natural gas markets are opened to competition, consumers are free
to choose their energy supplier. In this context, consumers can choose between two types of offers: the
first is the product market, where prices are set freely by suppliers; and the second, where regulated

sales tariffs are set by the government and proposed by the incumbents.

The retail price of an electricity product, whether by regulated tariff or market price, includes
fixed costs that are identical for all suppliers and costs that vary. The fixed costs consist of the grid
access costs set by the regulatory agency CRE (Commission de Régulation de I’Energie, in French),
while the variable costs are related to the generation or supply of electricity, commercial costs, margin
or return taken by the supplier. By optimizing these costs, suppliers are able to offer lower prices to

their customers.

There exist two types of offers for which consumers can contract: so-called "Fixed price offers”,
where the price, excluding taxes, does not change during the duration of the contract, but is subject
to changes in taxes and contributions; and offers called "indexed price offers”, in which prices follow
changes in regulated sales tariffs or other wholesale market indices specified in the contract (CREL

2018).
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Formally, the retail market rule considered in our study is the following one:

e There is a maximum amount of power that the distributor can supply and which is supported

by the distribution grid;

1.1.2.4 Demand side management

Considering that the customer can opt for a contract where the price of energy varies during the
day, it is natural to think of different strategies to adapt energy consumption according to prices. In
general terms, the consumer is always interested in consuming as little as possible in the periods when
energy costs are highest, shifting consumption to periods of the day when energy is cheapest. This
strategy is commonly known as Demand Side Management (DSM) (Strbac, 2008) or as Peak-Shaving,
and has been widely adopted by different types of customers, but it has also been a growing research

topic in recent years.

The DSM also plays an important role in the sustainable and low-carbon energy transition that
aims to optimize energy use and mitigate emissions. Several elements are used in such a management:
The reallocation of power demand (reallocating the production of a certain product for example) to
different periods, or the use of batteries to store energy and allow the use of different renewable energy

sources (solar panels, wind power plants, etc.) are widely adopted (Meyabadi and Deihimi, [2017)).

The problem addressed in this thesis iterates with both the Wholesale and Retail markets by
adapting the energy consumption of telecommunications base stations. In this thesis, we consider the

base stations of the French telecommunications operator Orange.

1.1.3 The grid stability

One of the fundamental characteristics of electricity transmission is that the amount of energy
injected must equal the amount of energy extracted from the grid, which is why it is necessary to
constantly balance consumption and production. So it is necessary to ensure sufficiently far in advance

that the available means of production will be able to meet demand at any given time.

In France, transmission is done in alternating current at a frequency of 50 Hertz (refereed to as
frequency of reference) in a situation of balance between supply and demand (Legifrance, 2021)). In

the United States, transmission is at a frequency of 60 Hertz. Hence, transmission operators must
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then keep the frequency as close as possible to the reference values. If energy production is greater
than demand, the frequency increases, while the frequency decreases if production is unable to meet

demand.

1.1.3.1 Grid imbalances responses

To absorb grid imbalances between electricity production and consumption, RTE (in France),
accumulates and activates energy reserves (called balancing reserves) provided by different agents:
producers, consumers or other actors likely to inject or withdraw energy from the grid. They are of
three different types: primary, secondary, and tertiary (Portal). Each one of them is used in specific

situations.

When there is an imbalance in the grid, RTE can activate the primary reserve. This is done at
the power plant level, automatically with a delay of a few seconds to a few minutes, and involves all
Furopean power producers that are connected to the transmission system. In Europe, the primary
reserve must be able to respond to a power difference of 3,000 MW. The French system is responsible

for 540 MW.

Then, RTE can activate the secondary reserve, also automatically. In this case, only French power
producers with a production capacity exceeding 120 MW are considered. The secondary reserve in

France has a capacity of between 500 MW and 1,180 MW.

Finally, RTE has the possibility to activate the tertiary reserve (also called the adjustment mech-
anism in France), composed of French producers and consumers that are asked to participate in the
balancing mechanism, modifying very quickly their planned operational program (RTE-Portal, [2020).
Note that they can be energy producers, or large consumers that are able to reduce their consumption

for a period (strategy called load reduction).

Companies and consumers can participate in the tertiary reserve in two different ways: through a
contractualized reserve, or through a non-contractualized reserve based on available capacity. In the
case of the contractualized reserve, RTE opens a bidding process, in accordance with Article L. 321-
11 of the French Energy Code, which customers bid for. In the case of non-contractualized reserves,
customers place their extra production or reduction capacity at the disposal of RTE, which can request

the activation of the reserve when needed. Note that, in the non-contractualized model, the client
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Figure 1.3 — General schema of actions taken by RTE in case of a power outage. Source: www.services-
rte.com

is compensated only when it is requested to use its reserve, while, in the contractualized model, the

client is compensated even if RTE decides not to use its reserve.

Figure [I.3]illustrates the actions taken by RTE in the event of a power outage. Note that, when a
generator has a problem, the reserves supply the power demand as quickly as possible. Consequently,

the system frequency drops and returns to the nominal level.

In this context, the problem addressed in this thesis is based on the interaction of a telecommuni-

cations operator with the transmission operator in the French context.

1.1.3.2 Valorization of the flexibility in France

In France, there are some modalities that allow the customer to put his flexible power, which can
be activated at any time, at the disposal of the transmission operator. He can value their power

capacities (in MW) or their stored energy (MWh).

Valorization of the capacities: This type of mechanism consists in making available to the trans-
mission operator a certain amount of power that can be activated at any time according to the type

of contract adopted.

The first way to value capacities is through the tertiary reserve. The second one is through the
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capacity mechanism. In this context, the capacity mechanism aims to ensure security of electricity
supply in France during winter peak periods. It is based on the obligation to cover consumption during
peak hours by obligated actors and on the certification and evaluation of generation and reduction

capacities. This mechanism has been in force since 2017 through the NOME law.

Valorization of the energy: In this context, the customer puts his energy (or ability to reduce
his consumption) available to the transmission operator for a certain period of time, that can be
used when needed. The consumer is then paid by the market for the energy sold (or consumption
reduction requested) in euros per MWh. Reducing consumption also contributes to the regulation of
energy prices (avoiding the variable costs associated with producing additional energy in periods of

high demand).

In this context, there exist two main mechanisms in France that allow the customers to valorize

their reserves: the NEBEF mechanism, and the adjustment mechanism.

Concerning the NEBEF mechanism (Notification d’Echanges de Blocs d’Effacement, in French),
the consumer can sell the energy not consumed directly to the wholesale market. Each MWh reduced
by the consumer can be sold at the real market value. In concrete terms, this is selling the electricity
that will not be consumed on a given day, the day before (e.g., selling today the energy that will not
be consumed tomorrow). Once negotiated, the operator avoids requesting extra energy production to

balance the grid.

The consumer can participate directly to this mechanism if it has at least 100kW of capacity,
otherwise it is necessary to use an intermediate agent called aggregator. In addition, the maximum

duration of a load reduction is limited to 2 hours.

Concerning the adjustment mechanism, it assists in balancing the electric grid in real time by
allowing energy to be sold to RTE in real time for grid management purposes. Consumers make load
reduction offers, specifying the price per MWh, duration, reduction power, and conditions of use. RTE

can, at any time, activate the offers made respecting the conditions of use established in the contract.

Measurement of the effective reduction of a load curtailment: Measuring how much energy was
actually reduced by a consumer during a call for load reduction is one of the extremely important
aspects in the valuation of flexibility. In fact, it is difficult to verify that the energy effectively reduced

is equal to the amount contracted in a load curtailment offer. Furthermore, it is necessary to be
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able to distinguish a reduction in consumption due to a usual demand variation from a reduction
in consumption due to the load curtailment requested by the transmission operator. To this end,
monitoring the amount of power reduced consists firstly in estimating a reference value corresponding
to the consumer’s usual consumption before and during the power reduction call. Formally, the
reference value is the average of the power bought immediately before the load curtailment together

with the power demand forecast during the whole load curtailment (RTE-Portal, 2020]).

Once the reference value is calculated, the effective reduction realized is calculated as the difference

between the reference value and the power purchased during the load curtailment.

The problem addressed in this thesis is based on the participation to the NEBEF mechanism in

the French context.

1.1.3.3 Curtailment market rules

To participate in the NEBEF mechanism, some rules are contracted between the transmission
system operator and the customer. Formally, the curtailment market rules considered in our study

are the following ones:

e Each load curtailment performed must respect a minimal and maximal duration;

e During each load curtailment performed, the power consumption must be reduced by at least a

certain amount.

1.2 Energy storage assets

In this section we present the main types of energy storage, with emphasis on batteries. Infor-
mation about how they work, the main types, and the main use cases are also covered. Finally we
present the use of batteries in the telecommunication context and the battery inventory of the French

telecommunication operator Orange.

As such batteries are used as backup, safety usage rules must be respected for any additional uses.

These rules are also presented in this section.
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1.2.1 Introduction

Energy storage is a strategy that has been widely used around the world over the years and has
several economic, reliable, and environmental benefits. Storing energy allows us to reduce the cost of
energy production, transportation, and consumption, and to increase the reliability of the grid when
used as backup. It also allows the integration of different devices and resources, and can be used to
reduce environmental impact. However, electricity to be stored needs to be transformed into other

types of energy, such as mechanical or chemical.

Energy can be stored in different ways using different technologies, for example:

e Hydroelectric pumping: Cost-effective technology that provides stability to the electrical system
and can generate significant levels of clean energy with fast response times. Electricity is used to
pump water into a reservoir. When the water is released from the reservoir, it flows downward

through a turbine to generate electricity.

e Thermal storage: This technology allows energy to be stored in materials that allow it to be
trapped and released when needed. An example is when electricity is used to produce chilled
water or ice during periods of low demand, which is later used for cooling during periods of peak

electricity consumption.

e Batteries: Device that store energy in chemical compounds capable of generating an electrical
charge. There are many types, such as lead-acid, lithium-ion, or nickel-cadmium batteries.
The main advantages of batteries are their fast response, ease of installation, scalability, and

reliability.

We can also mention several other types of energy storage, such as compressed air, flywheels, flow

batteries and supercapacitors.

1.2.2 Battery assets

One of the most common energy storage resources are batteries. They come in different types,
capacities, and performances. Essentially, a battery is a device that stores chemical energy and converts

it into electrical energy through an electrochemical process, called electrolysis. A battery is composed
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Figure 1.4 — Electrochemical cell scheme. Source: www.science.org.au

of one or more electrochemical cells, each composed of two electrodes separated by an electrolyte, as
illustrated in Figure [[.4] An electrode is a solid electrical conductor that carries electric current. In
a battery, the electrodes are made of different materials: one that reacts with the electrolyte that
produces a current of electrons (called the anode), and another that reacts with the electrolyte that
allows the electrode to accept the electrons (called the cathode) 2015). Concerning the
electrolyte, it can be a liquid, gel, or a solid substance, but it must be able to allow the movement of

charged ions.

1.2.2.1 Battery properties

The properties of a battery, such as current, voltage, power, and range, are essential properties to

analyze before purchasing.

In the context of batteries, the voltage represents the force that the electrolysis process at the
electrodes pushes the electrons thought cells. Voltage is also known as the potential difference given
by the chemical reaction that occurs at each electrode. The amount of work that the same number
of electrons can do increases as the voltage does. Another important property is current: the number
of electrons that is given by the battery per time. It can be seen as the capacity of the electrolysis

process to release electrons.

In addition, energy is characterized by the power rate at which a battery can operate. Battery
power is calculated from the multiplication of current (Amp) and voltage (Volts) and is given in Watt.

Note that both current and voltage are important in finding out what a battery is suitable for.
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In the context of batteries, autonomy is the duration that a battery can provide its maximum
power, usually given in hours. Note that a battery with 2 hours of autonomy giving 1200W can have
its autonomy increased to 4 hours if it operates at 600W. The capacity of the battery (i.e. the amount
of energy that the battery can store, given in Watt hours (Wh)) is obtained by multiplying its power
by its autonomy. A battery with a power of 1200W and 2 hours of autonomy has a capacity of 2400
Wh, or 2.4 kWh.

Finally, the lifetime of a battery represents the number of cycles that the battery can perform
before replacement. The lifetime depends on how the battery is used (discharge intensity, frequency of
use, if it is recharged immediately and with which power rate, and the temperature) and the material

it is made of.

1.2.2.2 Recharging process

Some common batteries can be used once and are non-rechargeable. In this case, when the elec-
trodes release all the positive or negative ions into the electrolyte, there is no more electric current and
the battery reaches the end of its useful life. Some electrodes and electrolytic materials are expected
to allow a reverse electrolysis process, recharging the battery, taking the battery back to its starting

point and giving it a new life.

The recharging process is characterized by connecting a source of electricity to the battery, reversing
the chemical reaction that occurred during the discharge. However, the recharging process is not
perfect. The sending of the ions from the electrolyte back to their initial electrodes is not as clean or
as well structured as the electrodes of a new battery. The electrodes degrade with each recharge of the
battery, which means that the battery loses performance over time. In fact, the battery has a lifetime
that is given in number of recharge cycles considering some usage patterns, such as frequency of use,
temperature, or average level of discharge. This last standard is known as depth of discharge (DoD)
and is defined by the percentage of electrons passed from anode to cathode in relation to the total
number of electrons available in a complete electrolysis process. However, we will keep the notation

level of discharge instead of depth of discharge for sake of clarity.

During the recharging process, the current and voltage for recharging are key factors in keeping
batteries safe by minimizing energy loss. Each type of battery related to the technology used in its

manufacture requires a different power rate for recharging. In general, this power must be constant to
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preserve the chemical properties of the electrodes and electrolytes of a battery. Indeed, an important
aspect is the sulfation in the plate of lead-acid batteries that occurs when they are deprived of a
full charge. When too much sulfation occurs, it impacts the battery performance because it impedes
the conversion between chemical and electrical energy. Consequently, recharging lead-acid batteries

immediately after each use is commonly used (Catherino et al., 2004]).

The battery recharge time is called the Neutralization Delay, representing the duration (in hours)
for recharging the battery to its full capacity. Note that such a delay depends on the level of discharge
performed, and that the energy level in the battery does not increase linearly until the end of the
recharge. In effect, the battery recharges much faster at the beginning of the recharging delay and
slowly at the end, depending on the recharge strategy adopted and on the battery technology. In
this context, different strategies are proposed to recharge batteries while minimizing energy losses and
also keeping the recharge process safe (the internal temperature can increase considerably) (Pandzi¢
and Bobanac, |2018]). Regarding lithium batteries, different fast recharge strategies have been widely
studied, as presented in the review by Tomaszewska et al.|(2019). Regardless of the strategy adopted
or the type of battery, DoD-based recharge time predictions depending on the level of discharge have

been quite effective (Dunstan, 1996; |Guruacharya et al., 2018).

1.2.2.3 Types of batteries

Different conductive materials can be used in battery production. They are used in the electrodes
and electrolytes with an impact on efficiency, lifetime, recharge rate, energy density, and production
cost. In this section we provide more information about three types of batteries: GEL, AGM and
Lithium. In this thesis, only GEL and AGM batteries are taken into account in our experimentation.
However, lithium batteries are beginning to be used in the telecommunications context requiring

further studies, as presented in Appendix

First, in AGM (Absorbent Glass Mat) batteries the electrolyte is absorbed by capillarity onto
a fiberglass mat placed between the electrodes. In GEL batteries, the electrolyte is a solid matrix
with silica gel and sulfuric acid. More recently, lithium ion batteries have been widely adopted due
to their safety and efficiency. In this context, lithium has excellent electrochemical properties and
batteries are manufactured by combining it with different materials such as manganese dioxide, carbon

monofluoride, iron disulfide, silver chromate and others (Koksbang et al., [1994]).
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AGM batteries are more capable of providing high currents for short periods of time than GEL
batteries. In addition, AGM batteries have a lower production cost than GEL batteries. However,
GEL batteries perform better for daily use with slow and deep discharges (Victron, 2021), while AGM
batteries perform better with a level of discharge up to 80% and are preferable for use in non-regular
scenarios. As a result, GEL batteries tend to have a slightly longer life than AGM batteries. The
lifetime of AGM and GEL batteries depends essentially on the average level of discharge and the
frequency of use. The lifetime of AGM and GEL batteries can vary from 450 cycles for AGM batteries
and 500 cycles for GEL batteries with an average of level of discharge of 80 % to 1500 and 1750,

respectively, with an average of the level of discharge of 35 %.

Lithium battery technology marks the beginning of a new energy era. It has significant advantages
over AGM and GEL batteries, such as: up to 3x higher energy density (amount of energy a device
can hold per unit volume); level of discharge does not affect their lifetime, which is also longer; up to
15% higher charging efficiency; can be used in safety-critical contexts; are recyclable. Even though the
installation cost of a lithium battery is higher compared to GEL and AGM batteries, the cost per cycle
becomes lower thanks to its long lifetime. However, lithium batteries require optimal temperatures

for optimal performance, while AGM and GEL batteries are more flexible in this aspect.

1.2.3 Batteries in telecommunications

1.2.3.1 Cases of use

Batteries are used not only in data-centers as backup to prevent network outages but also on sites
together with other devices such as antennas (Kiehne and Krakowski, [1984; Nasiriani et al., [2017)).
More recently, telecommunications operators are seeking to use the large collection of batteries in
other aspects, for example, they can be used with the objective of reducing the consumption of fuel

in site generators, as presented by Marquet et al.| (2006).

In Finland, the energy generator Fortum Power and Heat Oy is looking for different uses of telecom-
munications base station batteries as power reserves to interact with the energy market (Alaperi et al.,
2017)), while the Italian telecommunications operator TIM explores the economic opportunities of us-
ing the batteries installed in its data centers in the demand-response mechanism (Bovera et al., [2018]).
In France, the telecommunication operator Orange also uses its base station batteries to participate

in the French balancing mechanism.
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1.2.3.2 Batteries safety usage rules

Since the batteries are installed for backup use, the following safety usage rules must be respected
for any use other than for backup. These rules are given and endorsed by the team of experts of

Orange France. The safety usage rules considered in our study are the following ones:

There is a minimum (and a maximum) power discharge rate for each battery in discharge;

e There is a minimum (and a maximum) amount of energy that can be stored in each battery;

Each battery must be immediately fully recharged after each use with a constant power rate;

Each battery must be fully charged at the beginning and at the end of the planning horizon;

e There is a maximum number of cycles that each battery can perform over the time horizon.

Note that the process of recharging a battery is not linear and depends on many factors such as
temperature, battery type and battery health. However, the team of experts of Orange France imposes
a constant power recharge that integrates a safe margin to simplify and assure that the battery will

be recharged at the end of the recharging period.

1.2.3.3 Orange France assets

The French telecom operator Orange has a large number of battery assets over the country on
its sites, i.e. base stations with antennas, each equipped with a battery for backup. In our work, we
have access to 5715 batteries among such sites, mainly of AGM and GEL technologies. The address of
each site is known, and the distance between two sites can be obtained by geolocating each one. We
observed that the power of each battery is equivalent to the power demand average of the site. This is
expected because the cost of maintenance of the batteries are elevate, and hence, sites have only the

backup power strictly necessary.

1.3 Summary of rules

This section summarizes all the rules that are taken into account in this thesis. They come from the

energy market and from the battery safety usage rules. The complete list of the rules is the following:
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R1 - At least a minimum amount of energy B™", given in kWh, must remain in the battery at any

time period;

R2 - The battery must be immediately fully recharged after each use with a constant power rate

Pp, given in kW, up to its maximal capacity B™®*, given in kWh;
R3 - The battery must be fully charged at the beginning and at the end of the planning horizon;

R4 - A minimum power discharge of D™, given in kW, is imposed when the battery is in discharge

mode;
R5 - The maximum power rate that the battery can deliver is limited to D™®* and given in kW;
R6 - Each battery b cannot be used more than N, times over the time horizon;
R7 - No more than P™# kW can be bought from the distributor at any time period;
R8 - The duration of each curtailment performed is bounded by A™™ and A™# time periods;

R9 - No more than pi'** kW can be bought from the distributor during the curtailment c if it is

performed.

R10 - The number of load curtailments that can be performed over the time horizon is limited to N€.

Note that rules [RIJRO] concern the safety usage rules, and rules [R7JRI0| to the energy market.

In Chapter [3] only rules and are considered, while only rules are considered in
Chapter [4l In Chapter [5] all rules are taken into account.
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Chapter 2

Positioning and major contributions

In this chapter, we present the main challenges addressed in this thesis and the outline of our

research. In addition, we review the literature, and present the industrial positioning of this thesis.
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2.1. OPTIMIZING THE ENERGY COSTS BY USING BATTERIES IN THE
ENERGY MARKET

2.1 Optimizing the energy costs by using batteries in the energy market

The main problem addressed in this thesis is the optimization of total energy costs by using
batteries originally installed for backup in telecommunications base stations in order to participate in
energy markets, with the help of a proper battery management. In this context, batteries are used
to participate in the retail market by adapting the energy consumption of the network based on the
energy prices, but also to perform load curtailments, that help to maintain the network balance, in
exchange for a financial reward. Our goal is to reduce the total operational energy expenses for the
company while maximizing the rewards received from the curtailment market. Currently, the batteries

are already used to participate in the energy markets, but no optimization strategy is explored.

The optimization problem in question must take into account some contractual rules and physical
limits of the batteries. These rules, summarized in Section which will be formally presented in
more detail in Chapters and |5, can be classified into three distinct groups as follows:

e Safety usage rules introduced in Section [1.2.3.2

e Retail market rule presented in Section [1.1.2.3

e Curtailment market rules [R8{RIQ introduced in Section [[L1.3.3

Each of these groups of rules impacts the solution of the problem in different ways, and can make
the optimization problem more difficult or easier to solve. Among these three groups of rules, only the
retail market rule have been fully explored by other studies considering batteries (Daryanian et al.,

1989; Torriti, [2015; |Johnson et al., [2011; Mishra et al., 2012} Labidi, 2019).

In Section we present the major challenges identified that impact the problem solving, and

look for literature references and solving methods that may help in tackling them.

2.2 Major challenges

We identified three major challenges that make the problem potentially difficult to solve. The first
major challenge is related to the particular rules of use for batteries installed for backup in the context
of telecommunications, the so-called safety usage rules. The second challenge is related to the impact

of energy market rules, more precisely rules from the curtailment market, on the optimization of the
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battery use. Finally, the third challenge is related to the large number of batteries to be optimized.
Having a large and diverse collection of batteries, such as that of telecom operators, can cause signif-

icant bottlenecks in solving the problem.

Impact of the safety usage rules

Concerning the impact of the safety usage rules on a single Battery Energy Storage System (BESS)
management, some related studies address them individually (Daryanian et al., [1989; |Alapera et al.|
2017; [Bovera et al., 2018). More precisely, |/Alaperé et al. (2017)) consider some physical aspects, such
as a maximum discharge rate, a constant recharge power rate, and a maximum amount of cycles, while
Bovera et al.| (2018) consider the maximum amount of cycles that the battery can perform. Concerning
the rules such as recharging the batteries immediately after each use with a constant power rate and
imposing a minimum discharge power on the batteries, no previous studies have addressed them. Con-
sequently, the impact of these rules on battery management is not known, requiring further analysis

and study.

Impact of the curtailment market rules

Some studies have already addressed partially the curtailment market rules (presented in Section
in other contexts (Zhang et al., 2016} [Lan et al., [2018} [Mkireb et al., [2019). In addition, the
use of batteries in order to perform load curtailments was treated in some studies (Zakeri et al., [2017}
Nasrolahpour et al., [2017; Schillemans et al., 2018). However, no previous studies have addressed
these rules in the scenario where batteries subject to safety usage rules are used to perform load cur-
tailments. Consequently, the impact of these rules on battery management is not known, requiring

further analysis and study.

Impact of the multi-battery management

Another challenge is the optimal management of a Multiple Battery Energy Storage Systems
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(MBESS), requiring more efficient control strategies. In this context, recent studies propose different
methods to treat the dimensionality efficiently (Babazadeh et al. 2014} |Zhu et al., 2018; |Fan et al.|
2019). In our case, we consider a MBESS for which the safety usage rules must be considered,
something that no previous studies have addressed. Consequently, the impact of these rules in the

management of a MBESS is not known, requiring further analysis and study.

2.3 Literature review

Evaluation of the reserves

Smart grids aim to offer high flexibility, responsiveness and efficiency to electrical networks, and
have been widely studied (Tuballa and Abundo|, 2016). In particular, they allow better integration
of renewable and decentralized energy sources while maintaining the security of the electricity grid,
allowing for greater collaboration between the agents. In this context, batteries can be used as backup
devices. Kiehne and Krakowski| (1984) studied such a use of batteries in different parts of a telecommu-
nications system, to keep the network safe and the services active in case of a power outage. Moreover,
a study was conducted at Orange Company by Marquet et al. (2006), in order to address the use of
batteries in telecommunications systems to reduce the use of fuel and the OPEX of remote power
plants and, if possible, to remove the diesel engines that are installed in remote stations. Such bat-
teries are used in conjunction with renewable energy devices, such as solar panels and wind turbines,
in remote areas where antennas are installed without an energy supplier. In addition, the reliability
of the energy grid has been improved over the years, allowing batteries primarily installed for backup
to be used for other purposes, when they are not being used for backup (Moslehi and Kumar, [2010)).

Therefore, they can become valuable facilitators of fast controls in a smart grid.

The collaboration between the agents of a smart-grid is fundamental to the grid power balance
and can be profitable to both consumers and production agents. Prosumers, i.e., consumers who also
produce and share energy excess in the electrical network, have a fundamental role in the balancing
mechanism, as they can actively help to balance the network production and demand (Camarinha-
Matos, 2016} Zafar et al., [2018) or financially value their reserves (Zafar et al., |2018; |RTE-Portal,

2020; [Iriaj, [2019). In this context, information and communication technologies, as well as optimiza-
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tion techniques are fundamental elements to interact with the energy market. In the French energy
system, i.e., in the first European country to open all its national market structures to all consumers,
prosumers can act in daily balance, as a reserve for periods of greater demand such as winter, or as

an immediate reserve to use when necessary (Kieny et al., [2015; RTE-Portal, 2020)).

Participation in the retail market

The flexibility to re-schedule energy consumption allows prosumers to adapt their demand from
their normal consumption patterns in response to variations in the energy prices, generating savings
(Aghaei and Alizadeh) |2013). |Daryanian et al. (1989) introduced such a demand response mechanism
by using a single battery to reduce the electricity bill by exploiting the variation of the energy prices.
In their study, a battery is used in peak-time periods, where the energy costs more, and recharged in
periods where the energy is cheaper. They also consider that the batteries must be fully charged at the
beginning and at the end of the planning horizon and take into account some physical aspects, such as
a maximum discharge rate. Several later studies explore the demand response mechanism in different
usage scenarios and with various solving approaches (Hoke et al., 2013 Mishra et al 2012; |Good and
Mancarellal 2017; [Huang et al., 2014} Longe, 2016)). Among them, linear programming is widely used
as a solution method in many studies related to reducing the energy cost by optimizing the battery
use, such as in Hoke et al. (2013)); Good and Mancarella/ (2017); Marzband et al.| (2017); Moreno et al.
(2015); [Yang et al.| (2017)). As an example, Hoke et al. (2013 study the use of a battery to minimize
the cost of operating a microgrid while meeting resource constraints from conventional generators,
solar panels, and wind turbines. To address the tie-line power fluctuation and reduce the size of en-
ergy storage systems, a hierarchical control strategy for battery storage and demand-side resources is
proposed in|Wang et al. (2014)). Moreover, Good and Mancarella (2017)) treat the uncertainty in power
demand, renewable energy generation, and prices, through the use of a linear program with a robust
strategy. Another work related to the use of a battery in the demand response mechanism is the one
of Mishra et al.| (2012), who studied the impact of using storage systems on the stability of the grid.
In this case, an uncoordinated massive adoption of a demand response mechanism can overcharge the
grid in the cheap time periods, since recharging the batteries of all consumers during such periods can

cause instability in the network. In the same vein, recent studies have proposed other methods like
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neural networks and heuristics based on particle swarms in order to optimize such a battery usage, as
well as transformations of future grids into decentralized and multi-dimensional systems (Huang et al.,
2014; Longe, [2016; [Kerdphol et al., 2016). Some works evaluate with the help of simple simulation
models the potential gain and feasibility of using existing battery systems of telecommunications net-
works (Alaperd et al., 2017) and data-centers (Bovera et al., [2018) in a demand response mechanism.
More recently, batteries are being used in a demand response mechanism (without participating in the
NEBEF mechanism) to help reduce carbon emissions (van Ackooij et al.l 2020; |Wang et al., 2020)). For
example, van Ackooij et al. (2020) study a bi-objective energy management problem to reduce total
energy operation costs and carbon emissions in thermal and hydro-thermal systems. They consider
a battery to store energy for future uses, where effectiveness and efficiency are taken into account.
Indeed, batteries with high storage capacity can be very cost-effective, not only by reducing operating

costs, but also by reducing carbon emissions.

Participation in the curtailment market

One way to interact with the energy markets is to perform curtailments. In this context, a prosumer
reduces his energy consumption over a period of time by relieving the load on the network, receiving
a reward in exchange. In order to reduce energy consumption over a time period, we can either
re-schedule production or stop services. [Zhang et al.| (2016) proposed a scheduling model for power-
intensive processes in order to be able to participate in the curtailment market. When performing a
curtailment, the production is re-scheduled to reduce power consumption during the curtailment. In
the same vein, Lan et al. (2018) present an integrated resource planning model that takes into account
the curtailments. In their work, the power demand is partially controllable since wind turbines, solar
cells, diesel generators, and batteries, are considered. However, batteries are used exclusively to store

the excess of energy produced locally.

Concerning the use of an energy storage system acting as reserves in the balancing mechanism,
some recent studies have started to explore these aspects (Zakeri et al., 2017; Schillemans et al., |2018;
Nasrolahpour et al.l [2017). As an example, [Zakeri et al.| (2017) examine the market value of electrical
energy storage in the German day-ahead and balancing markets considering pumped hydro storage,

compressed air energy storage, NaS, Lead-acid, and Li-ion battery storage systems. They also propose
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a mixed-integer optimization model for profit maximization of storage in the day-ahead market. In the
same vein, Schillemans et al. (2018)) explore a strategic behavior of an ESS owner in a joint day-ahead
energy-reserve market in a bi-level optimization problem. They consider reserve activation constraints
when an energy storage system is used as a reserve and propose a framework that can be used by ESS
owners to optimize their bids to participate in the balancing mechanism. Similarly, [Nasrolahpour et al.
(2017)) propose a decision-making tool based on stochastic bi-level model to determine the strategy for

using a storage system in the curtailment market, while considering uncertainties.

In the French context, in order to benefit from performing curtailments, prosumers can be agents
in the NEBEF mechanism, which is managed by the French transmission system operator RTE (RTE-
Portal, 2020)). The economic potential of such a mechanism has been addressed in recent studies such
as [Irial (2019); |[Mkireb et al.| (2018, |2019). In particular, the work presented by [Mkireb et al. (2019))
is the first addressing the problem of evaluating the financial gain of participating in the curtailment
market through the NEBEF mechanism in the context of water supply systems. This work takes into
account demand uncertainties through a robust optimization approach. However, the authors do not
consider the possibility of using an energy storage system. Concerning the rewards received when
performing a load curtailment, the reward depends on the amount of energy that is reduced during
the load curtailment, for which the rules are previously contracted (Chrysikou et al., 2015)). In the
German context, the parliamentary chamber approved in 2016 the new legislation on energy, refereed
to as the Electricity Market Act 2.0 (BMWi, |2015). This act increases the competition in the Ger-

man balancing market by providing access to all sources of flexibility, such as flexible demand and EES.

Multi-battery management

Several works have addressed the multi-battery aspect (Shan et al., [2018; Babazadeh et al., 2014;
Zhu et all [2018; Fan et al., 2019). As an example, Babazadeh et al| (2014) propose a multiple
battery management system with different types of battery, focusing on the minimization of the
total system cost, and considering the impact of the usage on the lifetime of the batteries. In the
same vein, Zhu et al| (2018) present an adaptive dynamic program, and |[Fan et al| (2019) a convex
quadratic optimization model to optimize a multiple battery storage system properly. Concerning

the participation in the curtailment market, Shan et al.| (2018)) considers green power sources and a
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OMBSR
(Chapter 4)

* Daryanian et al. (1989) 3 ¢ Babazadeh et al. (2014)
« Alaperd et al. (2017) | e Zhuetal. (2018)
* Bovera et al. (2018) | * Fanetal. (2019)

; 1 . * and others...

Safety usage ) Multi-Battery ;
rules management
,,,,,,,,,,,,,,,,,,,,,,,,,, . .'__’""”""’"”"""’

OMBSE problem
(Chapter 5)

* Zakerietal. (2017)
e @ * Nasrolahpour et al. (2017)
| * Schillemans et al. (2018)

OBSC

&
(Chapter 3) e Zhangetal. (2016)
. e Lanetal (2018)
Curtailment market « Mkireb et al. (2019)

rules

Figure 2.1 — Major challenges and problems treated in this thesis, and some related works.

multi-storage system to perform load curtailments. However, in their work batteries are exclusively
used to store renewable energy, and no rules on the batteries usage are considered. As mentioned
before, [Zakeri et al.| (2017)), Schillemans et al.| (2018]) and Nasrolahpour et al.| (2017)) have considered
a multi-battery energy storage system in their work. However, in all these studies, only rules related
to battery limits are considered (i.e., capacity, efficiency, power). In our case, since the batteries are

installed for backup, additional rules must be taken into account.

2.4 Research outline and major contributions

Once the major challenges have been identified, we outline our research outline to explore the
impact of each one. Since the basis of our study is the management of base station batteries for uses
other than their primary backup function, the adopted strategy consists in exploring individually the
impact of (i) the curtailment market rules and (ii) the multi-battery management, considering in both
cases the safety usage rules. Once we understand the impact of the curtailment market rules and of
the growth in the number of batteries whose use must respect the safety usage rules, we address all

rules in a single problem.

Figure illustrates the intersection of the different aspects that can render the problem more
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complex and either recalls some related works or refers to the chapters addressing these problems.

2.4.1 Exploring the curtailment market rules in a single battery context

In the first part of this thesis, we explore exclusively the impact of curtailment market rules [R8{R9

together with safety usage rules without considering the multi-battery aspect. In this context,
we consider a problem with only one site and one battery so that we can understand exactly how
curtailment market rules impact battery management, and analyze what the impact on the solving
methods is. This problem is called Optimization of a Battery Storage system used by a company to

participate in the Curtailment market (referred to as OBSC), and is presented in Chapter

We identify the key aspects of the curtailment market rules that make the problem more difficult or
easier to solve, and also identify two variants that can be solved in polynomial time. Then, we model
the problem as a mixed-integer linear program, and also propose an algorithm that solves the variants

to optimality in polynomial time and that can be used as a heuristic to solve the OBSC problem.

The main contributions of this first part are:

e Modeling the constraints of the French curtailment market and the safety usage rules in the

batteries of the French telecommunications operator Orange in the form of linear equations;

e The analysis of the problem under study in order to identify the aspects that make the problem

more difficult to solve;
e Identification of two practical variants that can be solved to optimality in polynomial time;

e The proposal of an exact polynomial time algorithm, based on graph theory to solve the variants,
and that can also be used as a heuristic for OBSC. The problem can actually be reduced to the

computation of a longest path in a direct acyclic graph;

e An experimental evaluation of the economic gains related to the use of a battery installed for

backup in the curtailment market for the telecommunications operator with realistic instances.

In terms of scientific publications, two papers were published in international conferences as part
of this first study: [Silva et al.| (2019al), and |Silva et al.| (2020a). In addition, two papers were presented

in national conferences: Silva et al.| (2020c|), and |Silva et al.| (2019b).

63



2.4. RESEARCH OUTLINE AND MAJOR CONTRIBUTIONS

2.4.2 Exploring the multi-battery system management in the context of the retail market

In the second part of this thesis, we explore exclusively the impact of managing multiple batteries
together under safety usage rules without considering load curtailments. In this context, we
consider only one site equipped with multiple batteries that are used only to participate in the retail
market, and load curtailments are not allowed. The goal is to understand exactly how increasing the
number of batteries has an impact on the optimization considering safety usage rules. The reason why
we do not consider several sites equipped with a battery each, as introduced in Chapter is that the
coupling between the sites appears only when load curtailments are performed. Therefore, we can deal
optimally with each of the sites individually with an adaptation of the algorithm proposed to solve the
variants of the OBSC problem. Consequently, to explore the dimensionality aspect of the number of
batteries without load curtailments under the safety usage rules, it is necessary to consider all batteries
at the same site. This problem is so-called Optimization of a Multi-Battery Storage system in order

to participate in the Retail market (referred to as OMBSR), and is presented in Chapter

We model the problem as two different mixed-integer linear programs, and we also prove that
OMBSR is NP-Hard. Then, we propose two heuristics to solve the problem: one based on a graph

oriented approach, and the second one based on the meta-heuristic relax-and-fix.

The main contributions of this second part are:
e The proposal of two mixed-integer linear programs for OMBSR,;
e The proof that OMBSR is NP-Hard;

e The proposal of two heuristics economically and computationally efficient based on different
aspects for large-scale OMBSR, instances: one heuristic based on graph theory inspired by the
properties of the realistic instances tested; and a second heuristic based on the relax-and-fix

approach that gives better results for the general case;

e The proposal of a reduction of the Maximum Weight Budgeted Independent Set Problem on
interval graphs into the Longest Budgeted Path Problem on direct acyclic graphs, and of a

pseudo-polynomial time algorithm to solve it;

e An experimental evaluation of the economic gains related to the use of batteries installed for

backup in the retail market for the telecommunications operator.
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In terms of scientific publications, one paper was presented in an international conference (Silva
et al.; 2020b)) and published in an international journal (Silva et al., 2022). In addition, one paper was

presented in a national conference (Silva et al., |2021D)).

2.4.3 Optimizing the complete optimization problem

Finally, once we understand the impact of the curtailment market rules and of the growth
in the number of batteries whose use must respect the safety usage rules we address all aspects
in a single problem. In this context, we consider multiple sites each one equipped with a single battery
whose use must respect the safety usage rules to participate in the energy market by performing peak-
shavings and load curtailments. The whole problem is called Optimization of a Multi-Battery Storage

system participating in the Energy market (refereed to as OMBSE), and is presented in Chapter

Firstly we model the OMBSE problem as a mixed-integer linear program and we prove that OMBSE
is NP-Hard. In the following, we decompose the corresponding model using the Lagrangian relaxation
technique and solve it using the subgradient method. The resulting sub-problems of the Lagrangian
relaxation can be solved to optimality in polynomial time thanks to the algorithm proposed to solve
the variants of the OBSC problem, and the subgradient heuristic can run in polynomial time thanks
to the same algorithm. In addition, we propose a bidimensional relax-and-fix heuristic that can also

be used to solve large scale instances.

The main contributions of this third part are:

e The proposal of a mixed-integer linear program for OMBSE;
e The proof that OMBSE is NP-Hard;

e Two different decompositions of the proposed model based on the Lagrangian relaxation tech-

nique;

e The proposal of a subgradient method to solve the relaxed model reusing the algorithms proposed

for sub-problems of OBSC;

e The proposal of a bidimensional relax-and-fix heuristic that can also be used to solve large scale

instances;
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e A quantification of the economic and operational gains related to the use of batteries installed

for backup in the energy markets for the telecommunications operator.

In terms of scientific publications, one presentation was made at an international conference (Silva

et al., [2021a)) as part of this study.
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Chapter 3

Optimization of a single battery storage
system to participate in the curtailment
market

In this chapter, we consider the problem of optimizing the total energy costs of a telecommuni-
cations site using a battery installed for backup in order to participate in the retail and curtailment
markets, with the help of a proper battery management. Our goal is to reduce the total energy costs

and maximize the rewards received from the curtailment market.

Formally, the problem treated in this chapter is the Optimization of a Battery Storage system used
by a company to participate in the Curtailment market (referred to as OBSC), in order to reduce its
energy costs. The main issue is to respect the market rules and the safety usage rules while minimizing

the net total energy cost.

This chapter allows us to understand in detail the impact of curtailment market rules on battery
management. The elements presented in this chapter are the base of the algorithm presented in

Chapter [5| for solving the problem in a multi-battery framework.

Concerning the scientific contributions, we identify the aspects that make the problem more difficult
to solve, and two practical variants that can be solved to optimality in polynomial time, are presented
in Section We also model the constraints of the energy market and the safety usage rules in
the form of linear equations and we propose a mathematical programming model for the problem,
presented Section In Section we propose an exact polynomial time algorithm, based on

graph theory to solve the variants, and that can also be used as a heuristic for OBSC. Furthermore,
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a complete technical analysis of the impact of curtailments on the battery management that allowed
the development of the graph oriented approach proposed is presented in Section [3.2.2.3] Finally, an
experimental evaluation of the economic gains by solving OBSC using our solving approaches with

realistic instances is presented in Section [3.3]
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3.1. PROBLEM DESCRIPTION

3.1 Problem description
3.1.1 Problem statement

We consider the deterministic setting of OBSC that we now formally describe. Let us consider a
telecommunications operator with a power demand W;, given in kW, at each period t of a horizon of
T discrete equally-sized time periods of duration A in hours. The cost (given in monetary units) for
purchasing one unit of energy at each time period is known. In the following, for the sake of simplicity,
we consider the power price at each time period ¢ denoted by F;, obtained from the energy price by
multiplying it by A. Note that this cost is fixed by the electricity distributor, and so is the maximum
amount of power P™#* given in kW, that can be bought at any time period (i.e., rule .

For network security purposes, two rules must be respected: on the one hand, a minimum amount
of energy, denoted by B™" and given in kWh, must always remain in the battery (i.e., rule ; on
the other hand, in order to improve its lifespan, the battery must be immediately recharged after each
use, up to its maximum energy capacity, denoted by B™#* and given in kWh, with a constant power
rate Pp (i.e., rule , given in kW. Besides, a minimum power discharge per time period, denoted
by D™ and given in kW, is imposed when the battery is in discharge mode (i.e., rule [R4)). Moreover,
the battery has a maximal power rate, denoted by D™#* and given in kW, that it can release due
to current and voltage limitations (i.e., rule . Note that D™ ¢ [0, D™2X]  and that the power

demand W, is assumed to be greater than D™™ at any time period ¢ over the horizon.

The battery must also be fully charged at the beginning and at the end of the planning horizon
(i.e., rule [R3).

At each time period ¢, we assume that the reward R; (given in monetary units), that will be received
by the telecommunications operator from the transmission system operator (TO) for each energy unit
not bought from the distributor during this period provided that it belongs to a curtailment, is known.
Each curtailment has a minimum (resp. maximum) duration A™" (resp. A™3X) given as a number
of time periods, that must be respected (i.e., rule . Moreover, during each time period of a
curtailment, the telecommunications operator must reduce the power bought from the distributor by
at least a given value Pro in kW. As a consequence, for each curtailment ¢, a maximum amount of

max

power pi?®* (in kW) can be purchased from the distributor at each time period covered by ¢ (i.e.,

rule . The way such an amount is computed is imposed by the TO depending on the country.
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Figure 3.1 — (a) Battery usage to perform a curtailment; (b) Battery power during recharge.
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curtailment and on the power consumption forecast during the curtailment. This setting is considered

in our study.

Let us consider a curtailment ¢, which starts at the time period f. (first period) and ends at the
time period l. (last period).

Let us also consider u; as the power bought from the distributor at each time period ¢ (in kW). In

max

max for a given c, a reference value w., which takes into account the average power

order to compute p
demand during the curtailment and the power u; purchased at the period ¢ just before curtailment c

begins (i.e., t = f. — 1), is needed. Such a reference value is computed as follows:

B Zic:fc Wi + Uf.—1

We = 3.1
¢ lc - fc + 2 ( )
Note that the value of uy,_1 may depend on the curtailment performed before c.
Once the reference power w, is known, p*** is then computed as follows:
Pe® = max(0,w. — Pro) (3.2)

Figure [3.I}a illustrates a curtailment ¢; starting at time period 5 and ending at time period 8,
and a curtailment co starting at time period 14 and ending at time period 17. In this figure, the
violet line represents the power demand over the planning horizon. The orange area represents the
amount of energy used from the battery, the blue one the amount of energy bought from the distributor
for consumption, and the green one the amount bought for recharge. In this example, the battery is

immediately charged after ¢; with a constant power rate Pp until the end of time period 13. Note that,
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during each time period ¢ of ¢; (resp. ¢2), i.e., for each t € {5,...,8} (resp. for each ¢t € {14,...,17}),
the amount of power that can be bought is limited by pg** (resp. pgp®*). Figure b illustrates
the energy stock level in the battery over the planning horizon. During each curtailment, the battery
power capacity decreases, and, during each recharge phase, this capacity increases until the battery is

fully charged.

Recall that our goal is to manage the use of the battery while respecting both the battery safety
usage and the energy markets rules, at minimal cost. The total amount of energy savings consists of
two parts. The first part is provided by the difference between the energy prices during battery use
and recharge (i.e., when participating in the retail market in a demand response mechanism), and the
second one by the reward paid for the amount of energy not bought from the distributor (i.e., when
performing curtailments). This second part is computed either by the On Time Reward (OTR) rule,
or by the First Time Reward (FTR) rule (RTE-Portal, [2020)). If we use OTR, a variable reward R;
is considered at each time period ¢t during each curtailment (see Equation ) If we use FTR, the
reward Ry, given at the beginning of the curtailment c is considered for all time periods during the
curtailment, and then multiplied by the amount of energy not bought during this curtailment (see
Equation (3.4])). The amount of energy not bought during a given curtailment is equal to the battery
discharge over its duration. In the following, for the sake of simplicity, we consider the rewards price
per unit of power at each time period ¢t denoted by R;, obtained from the rewards price per unit of

energy by multiplying it by A.

Furthermore, we consider a telecommunications operator with only one battery and only one energy
supplier without renewable energy sources. The battery is ready for use, and no installation or set up
costs are considered. In addition, the battery must be fully charged before performing any curtailment.
No battery losses are considered either, and any curtailment performed must respect the rules of the
energy market. We also consider that the decision of when a curtailment is performed is taken by the

telecommunications operator and not imposed by the transmission system operator.

Finally, the problem stated above is referred to as OBSC in the following, and any OBSC instance
is fully defined by the following parameters: W, A, [, Pmax pmin pmax pp pmin  pmax - Amin
A™maX " Pro . and the reward policy (represented by a boolean value). The safety usage rules
and the market rules R7R9] defined in Section [I.3] are also taken into account.
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3.1.2 Practical variants

In some cases, because of specific engineering rules or technical limitations, additional constraints
must be considered. Therefore, we study some variants of the general problem which can be classified
into two main families of problems. The first one considers the case in which the possible battery
discharge levels are discrete (and will be referred to as OBSC-D). Usually, the measurement systems
used to monitor the battery charge have technical limitations that prevent from considering continuous
discharge levels. This induces a discretization of the discharge levels which depends on the accuracy

of these systems. The corresponding variants consider discharge levels given in percentage of B™a*,

Secondly, additional engineering rules can also be imposed on the battery usage to improve its
lifespan. An example is the case where the battery must stay in rest mode for at least one time period
after its complete recharge. The second family of variants studied in this work precisely considers that
the battery must necessarily be in rest mode for at least a fixed number of time periods after each
complete recharge (and will be referred to as OBSC-R). This assumption can be imposed in practice
to ensure, for instance, that the battery is indeed fully charged before being re-used, even though the

actual recharging rate is not Pp (i.e., is not a constant power rate).

In such variants, the impact of the temporal correlation between two load curtailments induced
by the computation of w. (see Equation [3.1)), as presented in Section can be handled more
easily. Thanks to this, they can be solved in polynomial time, and Section describes an efficient
algorithm to solve OBSC-D and OBSC-R. In addition, since any solution for one of these variants is
also a feasible solution for OBSC, such an algorithm can also be used as a heuristic method for solving

OBSC.

3.2 Solving approaches

In this section we present two approaches to solve the OBSC problem. First we present an exact
method based on a mixed-integer program, and later we present an algorithm for some particular

cases.
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3.2.1 Mathematical models

3.2.1.1 Mixed-integer nonlinear programming formulation

The formulation described in this section, that can be used to model OBSC as a mixed-integer
nonlinear program, will be referred to as (OBSC-MINLP). Since a curtailment c¢ starts (resp. ends)
at a time period f. (resp. I.) called first (resp. last) period, the goal is to identify, among the O(7?)
possible pairs (f,l.) over the horizon, the ones corresponding to the curtailments to be performed.
Such a decision is reflected by the value of a binary variable y.. Then, the battery discharge d. after
the curtailment ¢ has been performed is given by the difference of energy stock in the battery between
the beginning of period f. and the end of period [.. Recall that we are looking for a set of curtailments

(fesle, de) that can be performed without conflict, while minimizing the total energy cost.

Let us consider C the set of all possible pairs (f.,[.) such that A™® < [, — f. +1 < A™a_ A set
T = {ti1,...,t7} representing the discrete planning horizon over T' time periods is also considered, as
well as an auxiliary set C;, Vt € T, representing the pairs (f,l.) of all possible curtailments that can
be performed at time period ¢. In other words, C; contains all the pairs (f,l.) with f. < [, such that

Je <t <l
Decision Variables
Firstly, a solution is determined by the values of the following variables:

- x4 € [B™, BMaX] Wt € T: amount of energy available in the battery at the beginning of each
time period t, given in kWh. An additional variable x4 represents the energy available at the

end of the planning horizon.
The following additional binary variables are used to control which curtailments are performed:

- Ye, Ve € C: equal to 1 if a curtailment c starting at time period f. and ending at time period I,

is performed, and to 0 otherwise.
To model the power bought at each time period ¢, the following variables are used:

- uP €[0,W;], t € T: power bought for the demand consumption (in kW);
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- upP €0, Pg], t € T: power bought for battery recharge (in kW).

Auxiliary variables can also be used to simplify the model writing. However, they are not strictly

necessary, and could be removed and replaced by their value, obtained from the corresponding equality

constraints (3.7) and (3.12)):

-z, t € T: equal to 1 if the pair (f.,l.) of some curtailment ¢ performed is in C;, and to 0

otherwise;

max

- pi** ¢ € C: maximum amount of power in kW that can be bought at each time period ¢ €

{fey---,1c}, if a curtailment ¢ starting at time period f. and ending at time period [, is performed.

The objective function is defined as follows:

> Ry(Wi —up), if OTR (3.3)
. T
min Z Ei(uf +up) - '€ '
ier Y Rpye(es /A —z,41/A), i FTR (3.4)
ceC

The first part corresponds to the cost of buying energy, and the second one to the reward received for
each curtailment performed. The goal is to minimize the total cost. In the first case, i.e., in the case
of the OTR reward policy, W; — u? is larger than zero only if some curtailment is being performed at
each time period ¢. In the second case, i.e., in the case of the F'TR reward policy, s, — .41 gives the
amount of energy used from the battery during the curtailment, which is also the sum of the amount
of power not bought from the distributor at each time period during the curtailment. A solution is

given by the battery power capacity at each time period.

The following constraints define the state of the battery at each time period ¢:

2 = Z Ye VteT (3.5)
ceCt

Tt — T41 S ADmaXZt Vit S T (36)

— 2 4 2y < (BMX — BRI (1 — z) vte T (3.7)

Constraints (3.5)), together with the fact that z; € {0, 1} for all ¢ € T, guarantee that at most one

curtailment can be performed at each time period. Constraints (3.6)) guarantee that, if the battery
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power capacity decreases, then one curtailment must be performed, but also that the power discharge
during any time period of a curtailment is at most D™?*. Constraints (3.7 ensure that, if the battery

power capacity increases, then no curtailment is being performed.

Note that, if the battery has the same power capacity during two consecutive time periods, then
the corresponding variables z; are free. However, Constraints (3.5)) guarantee that, if a curtailment is

performed, then all z; are equal to 1 over the curtailment duration.

In the same vein, Constraints (3.8) guarantee the minimal battery discharge at each time period

where the battery is used, which is min(W;, D™®):

Ty — 41 > Amin(Wy, D™™)z — AP(1 — z) VteT (3.8)

Constraints (3.9) guarantee that a curtailment can start only if the battery is fully charged (and

hence that two consecutive curtailments cannot occur):

B™& Z Ye < T4 Vte T (3.9)
ceCy | t=fc

Since no losses are considered, the battery power balance is ensured by Constraints (3.10)), while
Constraints (3.11)) express the limit conditions:

Tpr1 — Ty = Auf + Au? — AW, Vte T (3.10)

Tty = ‘TtT+1 == Bmax (311)

The power purchased from the market is the sum of the power bought for charging the battery

(uP) and the power bought for consumption (u}), which is ensured by the following constraints:

uP = (1 — z) min(B™> /A — /A, Pg, P™ — W) Vte T (3.12)

(Wi — D)z + Wi(1 — 2) < up’ vte T (3.13)

uf <Wi(1=20) + > yep™ Vte T (3.14)
ceCy

P a0, 2=t W; J:jfﬁ B il Veel (3.15)

The power bought for charging the battery is min(Pg, P™** —W;) when it is possible to buy energy

(i.e., if zx = 0), if the capacity of the battery is not exceeded (see Constraints (3.12))). The power
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bought for consumption u must be exactly the demand forecast when the battery is charging, which

is ensured by Constraints (3.13]) and (3.14). If a curtailment is being performed, this power cannot be

larger than min(W;, p2*®*) or smaller than W — D™ which is also guaranteed by Constraints (3.13])

Cc

and . Note that imposing u’ > W; — D™a* during a curtailment also guarantees that the battery
power discharge per time period is smaller than D™#*. The value of p*®* is provided by . If the
battery is fully charged and not being used, Constraints guarantee that the amount of power
bought for recharge is equal to 0, and once more Constraints and guarantee that the
amount of power bought for consumption will be exactly the power demand, since z; and y.p2** for
each ¢ € C; are equal to 0 in this case. Note that Constraints together with Constraints
guarantee that, after a curtailment, the battery is fully charged before another curtailment can be
performed, at a constant power rate respecting the maximum power P™#* that can be bought from

the distributor at each time period. Furthermore, we assume that the value of P™#* is greater than

the power demand W; at any time period ¢t € T.

Finally, the domains of the variables are:

uP € [0, W], uP €0, Pg], x; € [B™, BmaX] vt €T (3.16)
z €{0,1} Vte T (3.17)
P e RY VeeC (3.18)
ye € {0,1} VeeC (3.19)

All the rules defined in Section are guaranteed: the safety usage rule by Constraints ,
R2 by (3.12), (3.10) and (3.16), R3 by (B.11), R4 by (3.8), [R5 by (B.6), R7by (3.12), and the
market rule by Constraints and . Note that is guaranteed by the construction of
the pairs (fe,(.) in C.

The obtained model (3.3)-(3.19) is non-linear. However, it can be linearized following the approach
proposed by McCormick (1976). The resulting model (referred to as (OBSC-MILP)) is provided in
Section B.2.1.31

3.2.1.2 Mixed-integer programming formulation for the practical variants

In this section, we present the changes applied to (OBSC-MILP) to formulate the two variants
OBSC-D and OBSC-R. Firstly, let us define D as the set of all battery discharge levels allowed in each
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variant over all the possible curtailments. For OBSC-D, the subset D is part of the input and all the
curtailments share the same set of possible discharge levels. In the case of 1% discharge levels, the set
D is {0.01B™2* 0.02B™* ...}. For OBSC-R, Section [3.2.2.2| derives such a subset D by using the fact

that the battery must necessarily be in rest mode for at least IV time periods after each recharge.

Concerning OBSC-D, a binary variable k. 4 for each ¢ € C and d € D will be used to guarantee that
the battery discharge level when performing a curtailment ¢ belongs to D. The following constraints

then ensure this point:

Ye(@f, — 11) = D kead Ve e C (3.20)
deD

> ked = Ye VeeC (3.21)

deD

Let us denote such an adaptation of (OBSC-MILP) to the variant OBSC-D, in which Con-
straints (3.20)) are linearized following the instructions given in Section [3.2.1.3] as (OBSC-D-MILP).

Concerning OBSC-R, we make use of the following constraints to guarantee that the battery is in

rest mode for at least N time periods between two consecutive curtailments:

B™ Ny <my Vie{l,..., N\ Vte{i+1,...,T} (3.22)
ceCy | t=fc

Let us denote such an adaptation of (OBSC-MILP) to the variant OBSC-R as (OBSC-R-MILP).

As mentioned before, these variants can in fact be solved in polynomial time in |D|, where |D] is

proved to be polynomial in 7" in the case of OBSC-R. Further details are provided in Section [3.2.2
3.2.1.3 Linearization of the mathematical model

For a product between a binary and a float variable b; and f; € [0, F™*¥] respectively, we can apply
the McCormick strategy (see [McCormick (1976))), which amounts to using a new variable lin_b fl-j €

[0, F™2X] to replace this product b; f;, together with the following constraints:

lin_bf! < b ™ (3.23)
linbf! < f; (3.24)
linbf! > fj — (1 — b;) Fmex (3.25)
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The non-linearities of this type in — are the products zy. (with x; € [0, B™?X]), y.pra*
(with p@* € [0, P™*]) and z:2 in (3.4), and (3.12), respectively. Thanks to (3.5), we need
to introduce only two new families of variables: lin_xyf for all ¢ in C, t in T to linearize , and
lin_ypmazx, for all ¢ in C to linearize . Then, we can simply replace w2zt by > .cc, lin_zy; in
(13.12]).

Furthermore, to linearize © = min(a, b) for a,b € [M’, M], we introduce a binary variable y € {0,1}

such that, if @ > b, then y = 1, otherwise y = 0. We can then rewrite x as follows:

r<a,z<b (3.26)
a—b<(M-M)y,b—a<(M—-M)1-y) (3.27)
r>a—(M—-M)y,x>b— (M- M)(1-y) (3.28)

In our case, we have two new families of binary variables: lin_side; for all t in T to linearize ,
and lin_sidepmax.. for all ¢ in C to linearize . In the case of (3.12)), we have u? = (1—2z;) min(a, b),
where a = B™ /A — x;/A and b = min(Pp, P™ — W;). In order to linearize this expression, we
have to multiply all the terms a and b in and by 1 — z;. Hence, we derive the following
constraints, where M’ = 0 and M = max(P™* B™a* /A):

u? < (1 —2z)(B™/A — x4 /A), uf < (1 — z¢) min(Ppg, P™* — W) (3.29)
(B™* /A — x4/A) — min(Ppg, P"** — W) < Mlin_side,

min(Pg, P — W,) — (B™/A — z,/A) < M(1 — lin_side;) (3.30)
uP > (1 — 2)(B™™ /A — 2,/ A) — M(1 — z)lin_side;,

uP > (1 — z) min(Pp, P> — W) — M(1 — 2)(1 — lin_side;) (3.31)

Note that, since uP € [0, PB], Constraints (3.31)) can be replaced by:

ul > (1 — 2)(B™™ /A — 2;/A) — Mlin_side;, uP > (1 — z) min(Ppg, P™ — W;) — M (1 — lin_side;)
(3.32)

Indeed, when z; = 0, (3.31) and (3.32)) are equivalent, and, when z; = 1, (3.29) together with
(3.32) and u” € [0, PP] ensure that u” = 0.
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In the case of (3.15)), we can rewrite such constraints as pi® = —z =
I
¢ 1Wt/+$fC/A—$fc_1/A

— min(0, — &=Y=te= ey + Pro), and linearize them by considering the terms a = 0 and
e Wtas /Dezy 1 /A
h= — ===l ltr;iﬁg tet/ + Pro, with b € [—pmax pmax],

The complete linear version of (OBSC-MINLP), referred to as (OBSC-MILP), can then be written

as follows:

Z Rt(Wt — ’LLtD)
. T
min Z Ei(uf +up) - '€ . . ' .
teT Z(Rfc/A)(lmJ?yfc - llnjylc-&-l)

ceC

thzyc

ceCy
Tt — T41 S ADmath

— 2 + Tyg1 S (Bmax o Bmin)(l o Zt)
Tt — Tg41 > Amin(Wt, Dmin)Zt - APB(l - Zt)

Bmax Z Ye < X4
ceCt | t=fe

Tip1 — x = AP +ul — W)

_ __ pmax
l’tl = iL‘tTJrl =B

AuP < BmaX _ gy — 5 Bmax | Z lin_zyy
ceCy

uP < (1 — z) min(Pg, P™™ — W;)
BM™* /A — x; /A — min(Pg, P™ — W;) < max(P™*, B"* /A)lin_side;
min(Pg, P"* — W) — B™™ /A + x; /A < max(P™, B"** /A)(1 — lin_side;)

Auf > BM** — gy — z B™® 4 Z lin_xy; — max(AP™ BM™)lin_side;
ceCy

uP > (1 — z) min(Pg, P — W) — max(P™, B3 /A)(1 — lin_side;)
(Wi — D™) 2y + Wi(1 — 2) < uf’

utD <Wi(1—z) + Z lin_ypmazx.
ceCy
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(B-11)

Vte T (3.34)
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S W s /A =51 /A

max > — P VeeC (3.41
e = I f.+2 TO ceC (3.41)
l
g AWy txp /A—xp /A
2 =fe-1 fe/ et/ — Pro < 2P™**[in_sidepmazx, Ve e C (3.42)
lc - fc +2
l
g AWy txp /A—xp_1/A
- 2i=fe-1 ; — ff_’/_ 5 fe-1/ + Pro < 2P™(1 — lin_sidepmax,) Ve e C (3.43)
I
o Wytan)A—xs_1/A
max < 2t ; — ff_{_ 5 o1/ — Pro 4 2P™(1 — lin_sidepmax.) VeceC (3.44)
P < 2P™in_sidepmazx, YeeC (3.45)
lin_zy; < y.B™ VeeC,Vte T (3.46)
lin_zyy < ay VeeC,Vte T (3.47)
lin_xyy > xp — (1 — y.) B VeeC,VteT (3.48)
lin_ypmazx. < y.P™** VeeC (3.49)
lin_ypmaz, < pi®* VeeC (3.50)
lin.ypmazx. > pa®* — (1 — y.) P YeeC (3.51)
uP € [0, W], uP €0, Pp], x; € [B™®, B™X|, 2 e {0,1}, lin_side; € {0,1} vte T (3.52)
pra* e RY y. € {0, 1}, lin_ypmaz. € [0, P™*], lin_sidepmazx. € {0,1} VeeC (3.53)
lin_xy; € [0, B™*] Vt e T,VeeC (3.54)

3.2.2 Variants solving approach

This section presents an exact graph-oriented solving method for OBSC-D and OBSC-R, based on
the enumeration of all possible curtailments that can be performed over the planning horizon. The
problem reduces to the computation of a longest path in a directed acyclic graph (DAG) whose nodes
correspond to the possible curtailments. The discrete set D of allowed battery discharge levels is an

input for this algorithm, and hence must be defined in advance.
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3.2.2.1 Graph-oriented algorithm for a discrete discharge levels

As already mentioned, a curtailment ¢ will be represented by a triple (f,l.,d.), and a solution to
the problem will consist of the curtailments (f.,!l.,d.) performed over the horizon such that A™» <
le — fe+1 < A™3_ Qriginally, the amount d. of energy not bought during the curtailment c is a
continuous variable, and all its possible values cannot be extensively enumerated. However, under
some general assumptions associated with practical cases, such as the ones mentioned in Section [3.1.2
where the variants OBSC-D and OBSC-R are defined, the possible values of d. over all curtailments

c actually belong to a discrete subset D (note that, for OBSC-D, this is true by definition).

Let us define t2 as the last recharging time period associated with curtailment ¢, and 7. = ufB as

the power bought for recharging during this period.

Property 1 For a given curtailment ¢ = (fe,l.,d.), the time period tf and the value of r. can be

computed from l. and d..

Proof. Since the battery is recharged with the power rate min(Pg, P™** — W;), the power that must
be bought for recharge at each time period ¢ € T is known. For a given curtailment ¢ = (fe,l.,d.),
the battery is necessarily in recharge at the time period t, for each t € T such that ¢t > [. and
AZi,_:llc 4 min(Pg, P — Wy) < d. (otherwise, the battery is already fully charged). The last
recharging time period tZ > I. is the last time period ¢ € T such that the battery is necessarily in
recharge, i.e., tZ is such that A Z?‘:lclﬂ min(Pp, Pm** — Wy) < d. and AZ?:ZCH min(Ppg, P™M?* —
Wy) > d.. Consequently, 7. is computed as follows:

tB—1
re =de/A— Y min(Pg, P — W)
t=l.+1

Indeed, 7. is the amount left to recharge the battery to its maximum energy capacity at the time
period tf . Note that tCB and r. depend only on the curtailment c¢ itself, and that the curtailments

performed before ¢ do not have any impact on their computation. a

If we consider two consecutive curtaiments, we have the following result:

Lemma 1 Given any two curtailments c; and c; performed consecutively in a given solution, the value

of we; (and hence ofpg;_ax) can be computed from tf;, Teis fe; and le;.
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Proof. Let ¢; and ¢; be two such curtailments. On the one hand, if ¢; starts immediately after the
full battery recharge associated with ¢; (i.e., if f., = tg, + 1), then the value of w,; is computed using
Equation 1) In this case, u fe,~1 = chj—l + 7. On the other hand, if ¢; starts at least one period
of time after the full battery recharge associated with ¢; (i.e., if f.; > tg, + 1), then there exists only

one possible value of wc;. Indeed, the power bought for recharging immediately before the curtailment

c¢; is 0, and hence, in this case, u fe,~1 = Wij—l' In both cases, the value of p?}ax is derived using
Equation (3.2)). O

The following technical result allows to propose a reformulation of the objective function in the gen-
eral case (i.e., D does not need to be discrete) for the sake of its efficient computation when D is

discrete, as it constitutes a structural result which will in particular be used to prove Property 2 (see
Section |3.2.2.2)):

Proposition 1 Let F,,; be the set of vectors ((ye)ecec, (de)eec) such that:

e for each ceC, y. € {0,1} and d. > 0,

e for each c € C and ¢ € C\ {c}, if Yo = Yo = 1, then {fe, ..., tBY N {fr,...,t5} = 0, where, for
each c € C, t2 > 1. is the integer such that d. €]A Ziﬁ_l min(Pg, P"**—W,;), A Zilcﬂ min(Pp,

pmax _ Wt)];

e for each c € C, if y. = 1, then we must have d. € [Zic:fc A max(min(W;, D™, W, — phax),
C

min(ZiC:fc A min(W;, D™max) pmax_ pminy] “ophere the value of p™2* is computed using Pmperty

and Lemma [

In any feasible solution to an instance of OBSC, we have ((ye)cec, (de)eec) € Fopt- Moreover, for any

((Ye)eecs (de)eec) € Fopt, one can obtain a feasible solution of value:

Z EtWt - Z ycch’(dm dc‘)

teT ceC

where f&(d.,d,-) is a function that can be computed in linear time, and where, for each curtailment c
such that y. = 1, ¢~ is the only curtailment such that y.— = 1 and there exists no curtailment ¢’ such
that yo = 1 and l.—- < fo <o < fo. In other words, for each curtailment c, ¢~ is the curtailment

that immediately precedes c.
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In particular, the optimal value of OBSC can be rewritten as follows:

Z EtWt Zyc d07d )

teT ((QC)cecy(dC)ceC)e-Fom

Furthermore, in the case where the value of p*®* depends only on the value of y. for each c,

fS(d.,d.-) is a continuous piecewise linear function of d. having O(T) segments.

The proof of Proposition [1]is given in Section and shows, actually, that f&(d.,d.-) is the
difference between two functions f2(d,,d,-) and fZ(d.). Intuitively, for each curtailment ¢ performed,
the value of f%(d,,d,.-) represents the economic gain associated with ¢, while the values of fZ(d,) and
f2(d.,d,-) represent the recharging cost after ¢ and the savings obtained from ¢, respectively. Fig-
ure illustrates the computation of the economic gain fCG of a curtailment based on such functions
fB and f?. In Figure [P is composed of two linear functions representing the battery recharging
cost over two intervals, [0, Pg] and [Pg, Pg + P™** — W,]. The function f2(d.,d,-) is composed of two
linear functions on intervals representing respectively the mandatory discharge imposed by Ws — p™2*
and the optional discharge performed during the curtailment. For the function f&(d.,d,-), we can

observe in Figure the marginal economic gain for each unit of energy discharge until dgreak.

Figure 3.2 — Illustration of the marginal gain of a curtailment ¢ starting at time period 2 and ending
at time period 3.
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We now define a directed graph G = (V, A), where the set of nodes V' corresponds to the set of

all possible curtailments. Note that the number of curtailments enumerated is bounded by T2|D|.
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An arc in A is defined from a curtailment ¢; (represented by the triple (fe,, ¢, dc;)) to a curtailment
cj (represented by the triple (fe;,lc;,d.;)) if ¢; can start after c;, i.e., on the one hand, if ¢; starts
after the last recharging time period associated with ¢; (i.e., fe;, > tfj ), and, on the other hand, if

le. . le. .
de; € [thjfcj A max(min(Wy, D™"), W, — pn;,ax), min(ztzjfcj A min(Wy, D™aX) Bmax — pminy] - where

c

max
Cj

the value of p is computed from the one of d., by using Property |1l and Lemma (I} Additionally,
two dummy curtailments vs = (—1,—1,0) and v, = (T + 1,T + 1,0), as well as arcs (vs,v) and (v, vy)
for each vertex v € V' \ {vs, v}, are also added to G, to allow the computation of a longest path from
vs to v;. Finally, for each arc a;; = (¢;,¢j) in G, we define the weight of a;; as the economic gain
fg(dcj,dci). For any arc as; = (vs,¢;) in G, the weight is obtained by setting u?cj_l = 0 to compute

max

pe; For any arc a;; = (¢;,v) in G, the weight is set to 0. Since the weight of each arc of G is
known, the cumulative total gain of a path p can be computed as the sum of the weights of the arcs
in p, which corresponds to the economic gain of all curtailments performed along p. By construction,
there always exists a path from vs to v; and from v; to v, for any v; € V' \ {vs, v, }. We will show that
choosing the sequence of curtailments that results in the best final economic gain without conflicts is

equivalent to choosing the longest path from v to v; in G, and we will show how we can efficiently

compute such a path:

Proposition 2 The graph G is a DAG.

Proof. A topological ordering L of V' can be obtained by sorting the vertices by increasing order of
the first time period of the curtailment associated with each one of them. If two curtailments start at
the same time period, choose a random order. Firstly, there is no arc between two vertices starting
at the same time period (there exists a conflict between two curtailments starting at the same time
period). Secondly, for any arc a = (v;,v;) of G, the curtailment associated with v; starts after the

complete recharge associated with v;. This implies that v; is always after v; in L. O

Proposition 3 Whenever the set D is discrete, the optimal value of OBSC' is equal to the length of a

longest path from vs to vy in G.

Proof. Let us assume that we are given an optimal solution to an instance of OBSC, of value OPT.
The corresponding values of the variables y. and d. = y.(z ¢, —;,41) must belong to F,,; as defined in

Proposition 1} by definition. Each such pair (y., d.) is associated with a vertex in G by definition of G,
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and all the pairs used in this optimal solution form a path from vs to v; in G from the definition of the
arcs in G. Because the weight of each such arc (v;, v;) is exactly fccj (de;,dc,), this yields a path from v,
to vy in G whose length is } .+ E;W; — OPT from Proposition (I Conversely, let us consider any path
from vs to v; in G, of length A: such a path is composed of triples (fe, I, d.), which are equivalent to
pairs (y., d.), and such pairs belong to F,, as defined in Proposition |1} by definition of the arcs in G.

Hence, this provides a feasible solution to the associated instance of OBSC, of value > .+ E;W; —\. O

Since G is a DAG, one can use Bellman’s algorithm to compute a longest path from v, to v in
linear time (e.g., see Dasgupta et al.| (2008)), i.e., in time O(|V| + |A]), which is O(T*|D|?) in our
case. Furthermore, given a longest path from v, to any vertex v in G, one can obtain a path from v;
to v; by adding the arc (v,v;). Such a path may not be a longest path, but it does provide a feasible
solution, from Proposition I This implies that we can limit the computation time and compare the

best intermediate solution obtained with the ones found by other solution methods.

As previously mentioned, the algorithm described in this section is based on the enumeration of
all triples (fe,lc,d.), and hence the set D of all possible values of d. over all curtailments ¢ must be
defined. Under some general assumptions associated with practical cases, such as the ones mentioned

in Section where the variants OBSC-D (for which D is part of the input) and OBSC-R are

defined, such a set D can be obtained as shown in the following section.

3.2.2.2 Computation of the discrete discharge levels for particular cases

In this section, we show that the set D is discrete for particular cases where the computation of

max

2% is a constant. In addition, we show how

p#* depends only on the values of f. and [, e.g., when p

to compute such a set.

There exist (at least) two particular cases for which the set D can be assumed to be discrete: when

the battery is used only to participate in the retail market, and when the computation of p{*®* does

max
C

not depend on the previous battery uses (i.e., p depends only on the values of f. and [.). In the

first case, since no curtailment is performed, the battery discharge level at each period during which

max

wexX as a big

the battery is used must only be larger than or equal to AD™™. Hence, we can see p

constant, and the Constraints (3.14) will never be saturated when the battery is in use (i.e., when
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z; = 1). In the second case, we consider the variant OBSC-R, where a rest time period is imposed after
each battery recharge. Since the battery stays at least one time period in rest mode, the amount of

power bought in the last recharging time period of a curtailment ¢; has no impact on the computation

max
C2

of pgy™ for the next curtailment cz (i.e., the value of uy, i is always Wy, 1 in Equation (3.1))).

In the following, we consider the variant OBSC-R to derive the set D. If we denote by D, the set

of all possible values of d. for a given curtailment ¢, we have D = |J, D..

Property 2 There exists an optimal solution of OBSC-R such that, for each curtailment ¢ performed,
the value of d. belongs to a known discrete subset D, such that |D.| = O(T).

Proof. For each curtailment ¢ performed, we have tZ € {l.+1,...,T}. For each value in this interval
(possibly up to some value tyax such that A Zi:}: 4 min(Ppg, PM — W) > min(ZiC: 7, Amin(Wr,

pmax) pmax _ pmin) hevond which from Proposition |1 no feasible solution can exist), the value d.
in any feasible solution must satisfy the range conditions of Proposition Therefore, there exists
d;z such that ch(dtCB,O) is the maximum value of f%(d.,d.-) over all the d.’s and d.-’s that satisfy
the range conditions of Proposition |1} Indeed, in this case, the value of d.- is irrelevant, as p{*®* is

computed by setting uy, 1 = Wy, in Equation (3.1]), and hence one may choose d.- = 0 for instance.

From Proposition [l for each ¢ performed and each value t2 € {i. + 1,...,T}, the value of any
solution ((yc)cec, (de)cec) € Fopt Where d. = dys will be at least as good as the value of any solution
such that the last recharging time period after ¢ has been performed is still tZ and d is unchanged
for any ¢ # c¢ such that y» = 1, but d. # dyp. Then, the set D, is composed of all such optimal
battery discharge levels, one for each possible value of tZ. Note that the number of elements in D, is

upper bounded by the length of the interval {l. + 1,...,T}, and hence by O(T).

Now, consider any optimal solution, a curtailment ¢; in this solution, and assume that d., ¢ D, .
Replace d, by the value in D, that yields the same value for tg. From the previous paragraph, the
value of the obtained solution is at least as good. Moreover, this new solution is also feasible, and
hence optimal. Indeed, let ¢y be the curtailment performed after ¢; in the optimal solution (if ¢y does
not exist, then we are done): since the battery stays at least one time period in rest mode after ¢y,
this means that fo, —t2 > 1 (ie, t8 € {lc; +1,..., fo, =2} C {le, +1,...,T}), and that the value

of us,, —1 in Equation 1' is Wy,, -1 (a value on which the new value of d., has no impact, as t8 did

not changed). Hence, this “local” change has not impact on the other curtailments of the considered

86



3.2. SOLVING APPROACHES

optimal solution, and we can proceed in the same way for each such curtailments, including the last

one. O

Obviously, if we consider the other variant (i.e., when the battery is used only to participate in the

retail market), then the proof is similar, except that t2 belongs to {lc, +1,..., fe,—1} C {le, +1,..., T},

Now, let us discuss some algorithmic issues. Thanks to Proposition [l we know that, in order to
compute the economic gains, we have to use the piecewise linear functions ff , fB and fCG , which can
be computed in linear time (in 7'). Hence, the optimal value of d. for a given curtailment ¢ and a
given value of tZ must necessarily be the endpoint of some segment of function f& (the associated
value for d will be referred to as a breakpoint). Note, in particular, that the number of breakpoints
dﬁreak in f& is at most one plus the number of segments of the functions fZ and f2, which are at
most T'— . and l. — f.+ 1, respectively. Therefore, for a given curtailment ¢ starting at period f. and
ending at period [, (and using the fact that here, by assumption, p*** depends only on y, i.e., on f,
and [.), one can use the function f& in order to compute all the candidate values d. in D, (keeping
only the value d. that minimizes the objective function, if several of these values yield the same value

for t5) in time O((T — 1) + (I — f- + 1)) = O(T).

It should be noticed that, when using the approach described in Section for solving OBSC-
R, an arc is defined from a curtailment ¢; = (f,,lc;,d.,) to a curtailment c; = (fe,,lc;,d.;) only if ¢;
starts at least IV + 1 time periods after the last recharging time period associated with ¢;, i.e., only if
Je; > tg + N, in addition to the bound constraints on d.;. Moreover, in this case, the running time
of the algorithm based on the computation of a longest path in a DAG is O(T*(max, |D.|)?), which
yields O(T9).

Finally, we illustrate the computation of the set D. on the example of Figure where the
curtailment ¢ that is considered starts at the beginning of time period 2 and ends at the end of the
same time period, and where we consider the values t2 € {3,4} (here, tZ cannot be larger than 4). In
this particular case, we simply have D, = {d5"*}, because d3™* gives the highest economic gain for

d. both in the first and in the second segments of fC.

87



3.2. SOLVING APPROACHES

3.2.2.3 Proof of Proposition

In this section, we provide the proof of Proposition [I] Beforehand, for the sake of a better under-
standing, we provide a reformulation of the objective function and , that we now recall. In
order to do this, and for the sake of simplicity, we define the set F of all the feasible solutions, i.e.,
F = {(y,z, z,p™, uP, uB) € {0,1} xRTT x{0,1}7 xRTC xRTT xR+ | — are satisfied}.

Then, we have:

> Ry(Wi —up), if OTR
. T
min E,(uP +uP) — ‘e
(y,z’,z,pmax,uD,uB)E}'; ! ! Z Rfcyc<wfc/A —x1,41/4), if FTR
ceC

From Constraints (3.10]), we have that u? + uP = W; + 2411/A — 24/ A for each t.

Let us consider in what follows the following cases related to the three possible battery states at

each time period t:

e Battery in discharge (x; — x44+1 > 0): from Constraints (3.6), we get z; = 1, and then, from
Constraints (3.12)), we derive uP = 0. Hence, we get uP +uP = uP = W — (2;/A — z01/A).

e Battery in recharge (x; — 2441 < 0): from Constraints (3.7), we have that z; = 0, and, from
Constraints , P > W,. Since uP < Wy, we get uf = Wy, and thus uP + uP = uP + W;.

e Battery in rest mode (x; — x411 = 0): from Constraints (3.8)), (3.13) and (3.12]), we have that
z = 0, that uP’ = W;, and that v = 0. In this case, we get uP +uP = W,.

Given that we are always in one of the three above cases for a given ¢, but not in two at the same
time, and that the power demand W; is present in the sum utB + u? in all these cases, we can then
group the power demand terms over t as > ;,c+ W;. Additionally, for any curtailment ¢ performed, the
term x411/A — x4 /A = —(x¢/A — x441/A) is present only during the battery discharge periods of ¢
(i.e., for t € {fe,... ,lc}) and the term uf is present only during the battery recharge periods of ¢
(ie., for t € {l. +1,...,tB}). Hence, we obtain:

le te
> (uf +up) ZWt+Zyc<_Z (/D =21 /D) + Y UtB>

teT teT ceC t=fc t=l.+1
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By replacing ZteT(ut + uP) by this new expression in the objective function, we get:

min Z EtWt Zyc< Z Et l‘t/A — l‘t+1/A Z Et’LLt >

(yz,z,pmxuP uB)eFr

teT ceC t=fc t=lo+1
%,_/
T1 T2
_ { Ster Ri(Wy —uf), if OTR (3.55)
e Ry ye(wp, /A —x1,41/A), if FTR :
T3

Since Wy — uP = x;/A — x441/A for any battery discharge period ¢ of any curtailment per-
formed (and W; — uP = 0 otherwise), we have 3 ,cr Ri(Wi — uP) = Y .ccve fo:fc Ry(zi/A —
xi41/A), and, since xy — 2,41 = Zi;fc(mt — Tyq1), we have Y o Rrye(zs /A — x.41/A) =
Y ecc Ye fo:fc Ry (v¢/A — x441/A). Hence, we can merge the terms T2 and T3 in Equation (3.55):

(y,7,2 prﬂdx uD ubB)eF

ZEtWt Z%( Z { (Bt 4+ Re) (/A — 21 /D) i Eul? )
=fe

E; + Rfc)(ﬂft/A —x441/A)

teT ceC t=lc.+1
— —
T1 F1(Ye,e,2e,p08% ul ub) J2(ye,e,26,pPex ul ub)

(3.56)

Note that, since the standard cost term T1 is a constant, minimizing this objective function can be
seen as maximizing the objective function 3" cc Ye(f1(Ye, Tty 26, P22, ul  ul) — folye, x4, 20, PP, uP,

uf)) over F.

Moreover, we introduce a new variable d. > 0 for each ¢ € C, which represents the overall battery
discharge level during curtailment ¢, and which is not needed in our MIP formulation, but that will
be useful to rewrite the objective function. By definition, the value of d. for each curtailment c is

xf, — x1,41 if ¢ is performed (i.e., if y. = 1), and 0 otherwise.

This yields the following new constraints:
de = ye(Tp, — T1,41) YeeC (3.57)

Note that, once the values of the variables y. are known, so are the ones of the variables z; (and
vice-versa), thanks to Constraints (3.5)). Similarly, once the values of the variables d. are known, so
are the ones of the variables p2***, thanks to Constraints (3.15)) and the fact that, from Property |1] and

max

Lemma [T} the value of p** for each ¢ € C can be computed from the values of the variables d. only.
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Furthermore, we define a new set 7' as follows: F' = {(d.)cec and ((Ye)cec, (zt)teT, (2t)teTs (D) cec,
(uf )ieT, (uf’ JteT) € F satistying (B.57)}.

For each (7,d) = ((F,.)eec, (de)eec), let F*(7,d) = {((x¢)teT, (uP)ieT, (uP)ieT) such that ((de)eec,
Yeee, (WP )ieT, (uP)ier) € F'}. We also define the set F* = {((7,.)cec,

( )cEC: (xt)tETv (Zt)tET7 ( gla
) # (}. Then, we have:

Ye
(d.)eec) such that F*(7,

max Zyc fl(yCaItaZt7pc utD?ut ) f?(y&mtvztapc utD?utB)
((ye)eec,(@t)reT (2t)teT (P )cees o
wP)eT (uf)eT)EF

l B

c E R A _ A E

(e ey (e 07) Zyc( 2. { EEt J+r Rt)gf;//A le//A)) " EtutB)
e)eCC\TNET \ZLET WPe )eels =fe t (/A — 24 =l,
(utD)tET’(“?)tGT»(dc)ceC)e]:l eC t f f t=l.+1

B

. ( max (lZ { (Ect B)@/A =2 /D) § EUB>>

= N t

@d)ers \ (@er@Pher, 2 \iof, L (B + Rp)(@/A = p41/A) P
(u)ieT)EF* (7,d)

l t
< ((E A— A c
= max <Zyc max ( Z { (B + Ry (/] /) Z Emf))
Gder \se (@er@Prer, \ 7 (B + Ry )(@e/A —zea/A) S
(uP)rer)EF2 (7.d)

fs(xtvut U ) ch(ztvutDvuP)

where F (7, d) is the restriction of the set F*(7,d) to the variables x;, uP and uf for all t € T such
that ¢ € C;. Note that the last equality comes from the fact that, once the values of all the variables .
are known, it can be checked that the only constraints in — and linking the variables
associated with time periods of different curtailments that are performed are Constraints and
(3.15). Hence, once the values of all the variables y. and of all the variables d. are known, there is no
remaining links between the variables associated with time periods of different curtailments that are

performed.

We now return to the proof of Proposition [1} that we first recall:

Proposition

Let Fopt be the set of vectors ((ye)cec, (de)eec) such that :

e for each ce€C, y. € {0,1} and d. > 0,
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e foreachc € Cand ¢ € C\{c}, ify. = yo = 1, then {fe, ..., t2 0 {fu,... ,tf = (), where, for each
c € C, tB > 1. is the integer such that d. €]A Zi;}kl min(Ppg, P™* — W), A Zilcﬂ min(Ppg,
Pmax _ Wt)],

e for each c € C, if y. = 1, then we must have d. € [Zi“: A max (min(W;, D™1), W, — pax),
min(fo: 1 A min(W;, Dmax) pmax _ pminy) - where the value of p#* is computed using Prop-
erty [l and Lemma

In any feasible solution to an instance of OBSC, we have ((yc)cec, (de)ecc) € Fopt- Moreover, for any

((ye)eee, (de)cec) € Fopt, one can obtain a feasible solution of value:

Z EtWt - Z ycch’(dm dc*)

teT ceC

where f&(d.,d,-) is a function that can be computed in linear time, and where, for each curtailment ¢
such that y. = 1, ¢~ is the only curtailment such that y,- = 1 and there exists no curtailment ¢’ such
that yo = 1 and I~ < fo < ls < f.. In other words, for each curtailment ¢, ¢~ is the curtailment

that immediately precedes c.

In particular, the optimal value of OBSC can be rewritten as follows:

> EW -

teT ((yc)c€C7(d )CEC)E}—opt

Zycfc (de, d-)

max

Furthermore, in the case where the value of p'** depends only on the value of y. for each c,

f&(d,,d,-) is a continuous piecewise linear function of d. having O(T) segments.

Proof.

Our goal is to show that, once the values ¥, of the variables y. are known, the value
MAX (), (WD), (wB))eF: (7.d) (5w, uP ,ulP) — fB (2, uP ,uP)) for each ¢ can be written as a function
fCG of the values dy of the variables d. for all ¢ € C. More precisely, for each curtailment ¢ with
J. =1, d,- and d. are the only ones needed to express f&, where ¢~ is the curtailment with 7, = 1
that directly precedes c in the solution. Moreover, for each ¢, whenever the computation of p*®* only
depends on the values 7, (see also Section , and not on the values d., for all ¢ € C, fC is a

continuous piecewise linear function of d. only.
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The first part of the proof will show that, once the values 7. of all the variables y. are known,
[B (x4, uP uP) for each c is in fact in itself a function of d. (and of d. only). Hence, once the value
d. is fixed, so is the value of f5(z;,u”,uf). Intuitively, f2(z¢,u”, uP) is in fact equal to the battery

recharging cost (in monetary units) of curtailment c.
So, we begin by fixing some ¢ € C. At each recharging time period ¢ € {l. + 1,...,t8}, no

curtailment is performed and thus z; = 0. In addition, Constraints (3.5)), (3.13) and (3.14) impose
that u” = W;. Hence, summing Equations (3.10)) from . + 1 to t — 1 yields:

rp=x,41+ A Z ul (3.58)
le1<t/<t

Note that, because of Constraints (3.9)), the curtailment ¢ can start only if the battery is fully charged,
ie., if zy, = B™*. Hence, from Constraints 1' we have d. = B™® — x; .. Using this relation
and replacing x; in (3.12)) by its expression provided by (3.58)), we have that:

uf =min(d./A— > uf, P, P™ - W) (3.59)
le+1<t/<t
This yields:
te
fPanul uf)= > Eymin(de/A— > ug, Pg, P™ — W) (3.60)
t=l.+1 le+1<t/<t

By definition of t2 (see also the proof of Property , the value of uf for each recharging time

period I, + 1 < t < tB is min(Pg, P™* — W,), and, for all t > tZ, no power bought for recharging

c

the battery is related to c. The value of u depends on the value of d. only at the last recharging
time period tCB, as shown in Property (1] Thus, we can extend the sum from tf to T', and fCB can be

rewritten as follows:
T B B t—1
Bz, uP ub) = Z Ey {min (P, P — Wy, de/A — min(d./A, Z min(Pp, P — Wtr)))}
t=le+1 t=lo+1
(3.61)

Note that, at each time period ¢ after the complete battery recharge (i.e., when Zi,_:llc 4 min(Pg,

pmax — W) > de/A, meaning that min(de/A, Y5 | min(Pg, P™ — Wy)) = dc/A), we have

min(Pg, P — W,;,d./A — d./A) = 0, and thus no power is bought for the recharge related to ¢, as

t—1

requested. Let us fix a time period # € {I. + 1,...,T}, and assume that the value of d. € [A dimlt1
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min(Pg, P — Wy), A Zg:lcﬂ min(Pg, P™** — Wy)]. Then, the sum in l) for t from I, +1to T

can be decomposed into three parts:

e fort fromil.+1tot—1,
o fort=1t¢,

e and for t from t+ 1 to 7.

In the first case, for any recharging time period t such that I, +1 < t < ¢, we have d. >
A Zg’_:llc—&-l min(Pg, P — Wy) > A Zi’:lc—i-l min(Ppg, P™** — Wy), which implies, on the one hand,
that min(d./A, Zi,;llc_H min(Pg, P™* — Wy)) = Zi;ll#l min(Pg, P™** — Wy), and, on the other
hand, that d./A — Zi,_:llcﬂ min(Pg, P"** — Wy ) > min(Pg, P™** —W,). Hence, the sum in for

t from I + 1 to 7 — 1 is equal to 312} | Eymin(Ppg, P — W,).

When t = {, we have d. > A Zi,_:llcﬂ min(Pg, PP — W) and d./A — ZET;ZCH min(Ppg, P™?* —
Wy) < min(Pg, P™* — W;). Hence, the term in lb for t = % is equal to E7((de/A — Zg,_:llc 41
min(Pg, P — Wy)).

When ¢ > I, we have d. < AYL_, .y min(Pg, P™ — Wy) < AYLT | min(Pg, P™ — W),
which implies that each term of the sum in (3.61) for ¢ from ¢ + 1 to T is equal to F; min(Pp,

P 1, d./A — doJA) = 0.
Hence, we can rewrite fZ by splitting the sum over ¢ into three parts, as follows:

t—1 t—1 T

ff(mt,u?,uf) = Z Eymin(Pg, P — W) + Ez(d./A — Z min(Pg, P" — W) + Z 0
t=l.+1 t=lc+1 t=t+1
This yields:
B -1
FB(xy,ul  ul) =(Fp)d.) A + (E; — E;) min(Pg, P™ — W;) (3.62)
t=lc.+1

Note that Zf;llc 41 (Ey — Ef) min(Pp, P — W}) is a constant, and hence fE is a linear function
of d.. The same holds for any ¢ such that I, +1 < # < T. Furthermore, the union of the intervals
[A ZE;}CH min(Pp, P™* — Wt),AZE:lCH min(Pg, P — Wy)] for I +1 < t < T covers all the

possible values of d,, as I, +1 < tZ < T. As a consequence, since all parts of fZ are linear, fZ is in
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fact a piecewise linear function of d., that we will simply denote by fZ(d.). We can even show that

fE(d.) is continuous with respect to d_.

Indeed, assume that d. = AZLZC 41 min(Pp, P™ — W) for some ¢, which implies that d. €
[A Zt 41 Min(Pp, PR — Wt),AZf:lCH min(Pg, PP — W;)] on the one hand, and that d. €
[A Zt:lc+1 min(Pg, P — W;), A Zgizlcﬂ min(Pg, P™** — W;)] on the other hand:

(i) to begin with, f2(d.) is equal to E; Zg_l 41 min(Pp, P™* — W;) + Zt l +1(Et E;) min(Pp,
pPmex — Wy) = Eymin(Pg, PM™ — Wy) + Zt L1 Bt min(Pg, P — W;) = Zt:lc—H E; min(Pp,
pmax _ 7).

(i) then, it is also equal to Py, ZE:ZC“Fl min(Ppg, P"** — W;) + ZE:ZCH(Et — E; ) min(Pg, P™% —
W) = ZLZCH Eymin(Pg, P — Wy).

As we have just shown that the value of f2(z4,u”,u) for each ¢ no longer depends on the ones

. D B : ; -
of the variables z;, u’, and u” once the value d, is known, we can rewrite MAX((), (DY, (uB),) e F2 (7.d)

(fég(ﬂlnuzs[),ut"?) - fCB(a:t,ulP,uF)) as follows:

max _ (fcs(xt?utD’utB) - ch(xtautDvutB))
((w)t,(u)e,(uP o) EF 4 (3,d)
S B
= max _(fo(=x JuP fe
((m,(uf’)t,(u?)ner:@,d)( (@ ufsul) = £:7(d2)
= - ch(aC) + max _ (ff(xhutDvutB))

(@) e, (uP )i, (uP ) €F 5 (7,d)

The second part of the proof will show that, once the values %, of all the variables y. are known,

MAX (3 (WP, (uB)e) €F2 (5.d) (f5 (w1, uP, uP)) for each ¢ € C is a function of the values d. and d.- (while
A I\ Ut
£ (z¢,uP , uP) is not), where ¢~ is the curtailment with 7,— = 1 that directly precedes ¢ in the solution.

Hence, once the values d,- and d,. are fixed, so is the value of MAX (), (WD), (uB),) e F (7.d) (f5 (24, uP,

S D B . . . .
uP)). Intuitively, MAX (41, (D)1, (uP))EF* (7,3) (f2 (x4, u’,uy’)) is in fact equal to the optimal economic
gain associated with a curtailment ¢ to be performed, which is composed of the savings induced by
not buying energy for consumption, and of the reward received when performing a curtailment.

If, for each t € {fe,...,l.}, we define G} = % if the OTR reward policy is considered, and

G| = Et+TRf‘3 if the FTR reward policy is considered, then we can rewrite the value of
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MAX( (), (W) (W) EF>(7.0) (fcs(:ct,u{?, utB)) as follows:

max B (ff(:vt,uD, uB))
((20) 6, (uP)er(uP ) ) €F2 (7,d) b

le

— max G/(.%' -
((xt)t7(utD)t’(uF)t)e‘7::(yvd)(tgj;c t\ Lt t+ ))

From Constraints , and (3.12)), we obtain that W; — D™ < u? < min(p**, W;) and
that u = 0 for all time periods during curtailment c. Therefore, from Constraints and ,
we derive that 7y — 4411 > A max(min(Wy, D™1), W, — p8%). Let us define such a lower bound on
x4 — 441 for each time period t € {f.,...,l.} as d™™. In addition, from Constraints , and
, we derive that z; — z441 < Amin(W;, D™). Let us define such an upper bound on xy — x4

for each time period t € {f,...,l.} as di"**.

From Constraints lb the battery discharge can be written as d, = « f. — Tj.+1. Hence, from
Constraints 1) we have that xy = B™* and z;,41 = B™ — d..

This implies that the value of MAX( (), (WP) (WP ))eF>(7.0) (Zic:fC Gi(xy — w441)) can be rewritten
as follows (and hence depends on the values of the variables x; only):

le
max Z Gé((l?t — .%'t+1)

t=fe
s.t.

AP <y — a0 < AP V€ {fer. .. 1} (3.63)
xp, = B™ gy 4 = B™* —{, (3.64)
xy € [B™IN, BMaX] vte {fe,...,lc+1} (3.65)

Note that, from Constraints 1) we must have that d. = Tf, — Tio41 = fo:fc(xt — Tpy1) >
Zic: 1 d™n and d. < Zic: f. d**. In addition, from Constraints 1} and 1' we have that
de = xf, — 11,41 < B™>* — B™n Thus, d. must belong to the interval [fo:fc d?in7min(2i;fc apex
Bmax _ Bmin)].

Since d,. belongs to such an interval, we have from Constraints 1’ that ;.43 = B™* — d. >
B™n Hence, for each t € {f.,...,l.}, since d™ > 0, the value of z; is also greater than B™®
from Constraints (3.63). Similarly, for each t € {f. +1,...,l. + 1}, since d™™ > 0 and xy, =
B™** from Constraints (3.64]), the value of z; is smaller than B™® from Constraints (3.63)). Thus,
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Constraints (3.65|) are always satisfied for each time period t € {f.,...,l. + 1}, and can be relaxed if

the value of d. belongs to such an interval.

Moreover, if we consider an optimal solution z’ to the problem obtained by relaxing Constraints
1} while considering that xy — x 41 = fo: fc(xt — Tpy1) = d., a solution x of same value that
respects Constraints (3.64) can be obtained as follows:

zy, = B (3.66)

Tey1 = @ + (@) — 2) YVt e {fe, .., lc} (3.67)

Indeed, we have x;,+1 = x5, — fo:fc (¢t —x441) = Bmax — fo:fc (; —},1) = Bmax —d,, as desired.
Consequently, by setting Ay = x4 — 441 for all t € {f.,...,l.}, we obtain the following equivalent

problem:

le

max Z G A
t=fe
s.t.
> Ay=de (3.68)
t€{fesmnile}
Ay € [dn ginax) Yt € {fe,. .1} (3.69)

This problem can be solved in polynomial time using a greedy algorithm that considers a list L
of time periods t ordered decreasingly by G}. In particular, in such a list, ¢; € L represents the time
period t € {f,...,l.} for which G} is the largest. An optimal solution for this problem can be obtained
by defining A, = d?;in + 0, for all t; € L, where o, > 0. Intuitively, the values of Ay, are set to di’®*
in the order defined by L. However, Constraint imposes a total amount of d., and hence this
will be possible up to a given time period t for which &, = d. — Dt,eLljzk dfj‘in — Xt eLlj<k 4

and, for the subsequent periods t;, i.e., such that j > k, we will have d;; = 0. Formally, we have:
_ : max min 3 min max .
0, = max(0, min(df}™ — df™,d. — Y A" — Y di™), VheL
t;eL|j>i t;eL|j<i

Note that (Sti = 0 if thGL‘jZ’L' d?jﬁn + Zt]‘EL|j<i di?_ax Z EC, and 6ti = min(dg_lax — dgin’ac —

min max : : .
th cLlj>i dtj — th eLlj<i dtj ) otherwise. Hence, d;, can be rewritten as follows:
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0t; = min(df™ — dP™, d, — min(d,, »_ di™+ Y dP™),  VheL
t;EL|j>i tjEL|j<i

Note that, given an optimal solution (A;)ye(s,...1.}, the values of z; that respect Constraints (3.63)
and (3.64) can be obtained as follows:

$fc — Bmax

Tep1 = o — Ay Vte{fm”-:lc}

Again, note that this implies x;,41 = x5, — Zi‘::fc (x¢ — x¢4+1) = Bmax — Ziczfc At = Bpax — de.

Finally, we can rewrite max .\ .0y, wP),)er:,9) (f5(we,uP ,uP)) as follows:

max (2 s u)
((xt)tV(utD)tv(utB)t)EF:(g7d)
= GLd™+ > G, [min (dp™ = di™ de —min(de, Y AP+ D d;l;_aX))} (3.70)
t;eL t;eL t;eL|j>i tjeL|j<i

To simplify the writing, let us define d™™ as the lower bound imposed on d., computed as
dmin =y I M and d™8* as the upper bound, computed as d™%* = min(ZiC: f. A, B — Bmin),
Now, let us fix a time period ¢;+ € L, and assume that d. € [d™® + 2t eLlj<ir (df™ — dglm), dmin 4
Yijer)j<i (diy™ — dif™)], where d™® + 37y (A — dit™) = Xy cppse A5+ Xyer)j<n A
and ™" + Yer)j<ir (™ — d?;in) = DtjeLlj>ir df;in + 2t;er)j<i- diy - Then, Equation can

be decomposed into three parts:

e for all ¢; in L such that i < i*,

e for t; = ti*,

e and for all ¢; in L such that ¢ > *.

In the first case, for any time period ¢; in L such that i < *, we have that d. > d™® 4
St erljci (AP = dP™) > d™ 437, gy (dP® — dt™), which implies that min(de, ™™ + 3 cp )<
(™ — d?;in)) = d™in 4 Dtser)j<i(di™ = d??in). Moreover, we have that d. > d™" + Dtjer]j<i (A —

dfjﬁn) > dmin 4 Yer)j<i(di™ = dfﬁ?in), since i < i* — 1, which implies that d, — d™® — Yter)j<i(di™ =

dgi“) > df;ax—dgﬁn. Then, from Equation 1j we have Ay, = x4, —x4,41 = dg_ﬁn—kdgax—dgﬁn = dp®.
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When t; = t;+, we have d, > dmin—kztjeuj@* (d?jlax—dg‘m) and d,. < dmin—kztjeujgi* (dgax—d;’;m),
ie., d. — d™n — Ytser)j<ir (A — d?;in) < dP™ — d™". Hence, from Equation , we have
Aty = Tt — Tpppr = AP + de — d™ — Yter)j<ir (™ — d?;in)-

In the third case, for any time period ¢; in L such that i > i*, we have d. < dmin—i-ztj er)j<is (A —
dfjﬁn) < dmin—l—ztjE Llj <i(dg_*ax—dg_‘in), which implies from Equation that Ay, =z, —x,41 = df™.

Thus, we can rewrite MAX (4, (D), (uB )€ F (7.d) (fcs(a:t, uP,u?P)) by splitting the sum over ¢; into

three parts, as follows:

max — (fcs(wtvutDqu))
((@)e,(uP)e,(uP))EF 2 (7,d)

= > GLd G (A —dtt = Y —dr)) Y Gt (3.71)
tyeL]i<i* tieL|i<i* ty€L|i>i*

This yields:

max (£ (@ ul uf))
() e, (uP )i, (uf ) €F 2 (7,d)
= Y GG d. -G, (dmin + Y (e dgﬂn)) + Y G (3.72)
ti€L]i<i* t;€L]i<i* ti€L|i>i*

Hence, we obtain that, for each ¢, MAX((2),,(uP)e,(uB o) EF2 (5,d) (£5 (x4, uP , uP)) is a function of d.

and d,-, that we will simply denote by ff (de,d.-), where ¢~ is the curtailment with 7,- = 1 that

directly precedes c in the optimal solution. Note that the dependence in d,. is linear, but the one in d,.-

max

wiax which in turn is used in the computation

is not, as d.- is implicitly used in the computation of p
of d™™ for each t € {f., ..., 1.}

max

However, in the case where the computation of the variables p

only depends on the values ¥,

themselves, things are different. Indeed, in this case, all terms in Equation (3.72)) are constant, except
the term G} d.. Thus, MAX (), (WD), (wB))EF: (7.d) (f5 (24, uP, uP)) is then a linear function of d, and
the same holds for any ¢+ € L. Furthermore, the union of the intervals [d™™ + 3, Ljicin (A5 —
N D P Lli<i (A5 — d"™)] for all ¢+ € L covers all the possibles values of d. in the range
[d™in d™aX] As a consequence, since all parts of the function MAX (1), (D), (uB)e)€F 5 (7,d) (ff(xt, z,ud,
utB )) are linear, it is in fact, in this special case, a piecewise linear function of d,. in the range [d™®, 2],
that we will simply denote by f(d.). We can even show that f7(d.) is continuous with respect to

d. in such a range. Indeed, let us assume that d. = d™" 4+ Y, Lli<is (dE™ — dim) for some t;+ € L,
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which implies that d. € [d™™ + 3 c i (AP — dP™), d™™ + 34 cpjici (AP — dP™)] and that

de € [d™" + ZtieL\igi* (d> — d??m), dmin 4 ZtieL\igi*+1(dgaX - di?i“)]:

(i) to begin with, f9(d.) is equal to StieLli<it G AP + G’i* (d™in + DteLli<it (dpe — dg‘in)) —
gfi* (dmin + Zti€L|i<i* (d?ilax - d}l;Illll’l)) + ZtiELHZi* G:fld?zun = ZtiEL|i<i* G:fidg‘lax + G,i* (d?;?x -
?,-l*in) + 2ter)izir Gl dp™ = Pticrji<ic GLdi™ + Xy crjisir G, di™m.
(if) then, it is also equal to 3oy cpji<i» G, A+ G, | (d™™ 37 e ppiis (AP —di™)) — (dmin+
Yterfi<is (d™ — di?m)) + Xterlizio+1 GLAE™ = Yy erjicir GLAE™ + Yperjizio GLdi™ =
Yueri<ir GLAn™ + Yy epjisi GrLdi™.

!/
b g1

Summing up, we have managed to prove that, for each ¢, we have the following result:

max

((me)t,(uP)e,(uB)e)EF* (5,d) (fés(l't’utD’utB) _ch(xtaulfDaulfB)) = ff(aCaEC_) _ch(Ec)
Te)t,\ Uy )ty )t e (Y,

Let f&(d.,d.-) = f2(d,d.-) — fB(d.) for each c. Intuitively, for any curtailment c¢ such that
Y. = 1, the value of fCG gives the best total economic gain associated with c¢. Moreover, as we have
discussed throughout the proof, we must have ((7.)cec, (dc)cec) € Fopt- In particular, for each ¢, d.

must belong to |A Ziilﬂ min(Pg, P"*-W,), A Zilcﬂ min(Ppg, P™**—W;)| because of the function
B

c

and to [d™", d™*¥] because of the function f2. Conversely, for any ((7.)cec, (de)eec) € Fopts We
have also shown how to compute ((Z;)¢, (@), (@WP):) € Fi(y,d). In other words, we have essentially
proved that F* = F,,, which, together with the computation of f%(d,,d,- ), implies the first part of
the proposition.

max
Cc

7. themselves, then f5(d.,d.-) = fJ(d.), and hence we have f&(d.) = f5(d.) — fP(d.) for each

Recall that, if the computation of the values of the variables p only depends on the values
c. Moreover, in this case, since fZ and ff are continuous piecewise linear functions of d., fCG is
also a continuous piecewise linear function for d. in such a range (Edelsbrunner et al. (1989)). The
subtraction of two piecewise linear functions can be done in linear time in function of the number of
parts of each function (Edelsbrunner et al.| (1989)); this number is at most 7 — I, for fZ and at most

le — fo+1for f7, and hence f¢ can be computed in O(T') time. O
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3.3 Numerical experiments

In order to assess the efficiency and relevance of our models and algorithms for optimizing the
savings using the demand response mechanism, we performed some numerical experiments on realistic
instances, generated from public energy costs and data related to the curtailment market, as well as

internal data from the French telecommunications operator Orange.

The two variants OBSC-D and OBSC-R are solved with the Graph-Oriented Algorithm, described
in Section that will be denoted as 0BSC-GOA. The formulation (OBSC-MILP) is solved using a
standard MILP solver, and the resulting solving method for OBSC will be denoted as 0BSC-MILP.

This section is organized as follows. Firstly, in Section we describe the instances and the
environment used in our tests. Then, in Section we present some results for the following

problems and algorithms, for different values of the time horizon discretization A:

e OBSC, solved with 0BSC-MILP;
e OBSC-D with battery discharge level per 5% and 1%, solved with 0BSC-GOA;

e OBSC-R with one rest time period, solved with 0BSC-GOA.

We explore, in Section [3.3.2] as well, the impact of the reward policy and of the characteristics of

the battery on the obtained solutions.

3.3.1 Instances description

We based our testbed on 10 urban and rural sites from the mobile 4G network from the French
telecommunications operator Orange. Each site is equipped with a battery, whose main characteristics
are reported in Table The mean, or average value, of the power demand over the horizon, denoted
by W = M, is also given. Finally, the value of B™" is set to 50% of the battery energy capacity
B™aX and D™ corresponds to 10% of D™, Figure illustrates the profile of power demand over
time for the site ”S4” in the first week of the considered month, as well as the mean values over such

a week. Such a profile is also observed for all other sites.

Concerning the data related to the distributor, we consider the unit costs from the French distribu-

tor EDF, publicly available at data.gouv.fr| (2020). Besides, the maximum amount of power P™* that
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Figure 3.3 — Power demand over the first week of the consid-
Table 3.1 — Sites char- €ted month for the site "S4”.

acteristics Daily Power Demand

1070
Site| B™ax[ pg [D™ax[ T
ST | 39.26]2.34] 5.38 | 3.93
S2 | 2.35/0.14| 0.64 | 0.47 | _
S3 [ 9.11]059] 249 [182| =7
S4_[106.33]6.38[14.50|10.63|
S5 | 6.05(0.35] 1.64 |1.21| 2
S6 | 5.39(0.22] 1.48 | 1.08 | & @[ bk
S7 | 666|04] 181 |1.33] = o
S8 | 26.36]0.81] 3.60 | 2.64 s,.
S9 | 8.64]0.52] 2.36 | 1.73 1055 |- ——
S10| 9.33]0.56] 2.51 | 1.87

1 2 3 4 5 6 7 B 92 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time periods

can be purchased per time period is established by contract for each site. In our tests, to guarantee
that the value of P™#X is greater than the power demand W; at any time period t € T, we set such a

value to 3W.

Concerning the data related to the transmission system operator, we consider rewards paid by the
French operator RTE, whose values are publicly available (see RTE-Portal). Besides, the minimum
and maximum curtailment duration are defined by contracts and are 1 and 2 hours, respectively.
Similarly, the contractualized power Pro considered is 50% of W. Note that the value of Pro is
adjusted to the case where one battery is used to perform curtailments. In a real world setting where
multiple batteries are considered, this value is much higher. Lastly, the reward policy used in France is
FTR. However, we also considered the OTR policy in our experiments. Moreover, the input values of
the power demand, unit cost, and reward, over the time horizon, are taken as average values observed

over a month.

In addition, to simplify the writing, we present the time discretization A in minutes. Hence, we
assume a daily time horizon with different time discretizations A € {15,30,60} in minutes (i.e., %, %
and 1 hour respectively), which implies that T' € {96, 48, 24}, respectively.

All tests are performed on a server computer with 4GB of RAM and 1 Intel Xeon CPU running
at 2.2GHz. The 0BSC-MILP method used to solve the (OBSC-MILP) formulation is the branch-and-
bound implemented in CPLEX 12.9, with default settings. A time limit of 15 minutes is also imposed

on the running time of each method, for all the tests performed.
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3.3.2 Experimental analysis

Numerical results for instances considering FTR as the reward method are displayed in Table
both for 0BSC-GOA and 0BSC-MILP. Concerning the variants OBSC-D and OBSC-R solved with 0BSC-
GOA, discharge levels per 5% and 1% are considered for OBSC-D, and the associated results are
displayed under the labels OBSC-D-5% and OBSC-D-1%, respectively, while, for OBSC-R, only one
rest-time period is imposed between two curtailments, and the associated results are displayed under
the label OBSC-R. In this table, column "Ref Cost” corresponds to the reference cost » .+ E;W;
(given in €), obtained when no curtailment is performed. Column "CPU” reports the solving time
in seconds, and column ”sol” the value of the best feasible solution obtained. In column ”sol” for
labels OBSC-D-5% and OBSC-D-1%, the values in green correspond to cases where solving OBSC-D
with OBSC-GOA provides better solutions than solving OBSC with 0BSC-MILP, and significantly faster.
Besides, the optimality gap (in %) obtained for (OBSC-MILP) when using 0BSC-MILP is provided in
column "gap”. It corresponds to the relative gap between the best integer solution found and the best
lower bound obtained during the search. The optimal value of the continuous relaxation of (OBSC-
MILP) obtained at the root of the search tree when using 0BSC-MILP is provided in column "relax”.
Note that, it is totally acceptable to have negative values in this column. In that case, the customer
is earning money from the market by performing curtailments. Finally, the column "savings” stands
for the percentage of savings obtained for the best feasible solution found with 0BSC-MILP, or with
0BSC-GOA for the considered variants, with respect to the reference cost. The instances prefixed with
a ”x” are the ones for which 0BSC-MILP provides an optimal solution (i.e., is actually able to prove the
optimality of the best integer solution obtained). Additional tests were also performed considering the
OTR reward policy instead of the FTR one, both for 0BSC-GOA and 0BSC-MILP, and will be discussed

in the sequel.

Computational efficiency of the methods

We begin by focusing on the algorithmic results and observe a significant impact of the time

discretization on the performance of the considered algorithms.

Concerning 0BSC-MILP, optimal values are obtained for all instances where A = 60 in less than one

second, while no optimality guarantee is observed for instances where A = 15 within the CPU time
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Figure 3.4 — Illustration of an optimal solution for the OBSC instance S4 with A = 60.
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limit. This is due to the fact that the number of variables y. in (OBSC-MILP) grows quadratically
with the number of time periods T. Moreover, the optimality gap for instances with no optimality
guarantee is quite significant for A = 15 (242% on average), while it is only 9.6% on average for
A = 30. We also observe a low-speed convergence for all the tested instances. However, even for
instances with no optimality guarantee, the best solution found gives a large reduction in the energy
bill (78.1% on average when FTR reward policy is considered). Furthermore, the reward policy also
has an impact on the computational performance since the structure of the optimal solutions can

change.

More precisely, if FTR is considered, then the curtailments tend to start in the time periods when
the reward prices are high. If OTR is considered, then the reward paid in a time period is the same
independently of when a curtailment starts (i.e, only the difference of prices is taken into account to

decide whether a curtailment is to be performed or not).

Indeed, as expected, the additional computational experiments show that instances with an opti-
mality guarantee and A = 30 were solved faster with the OTR policy than with the FTR one (15%
faster on average). In addition, for instances without optimality guarantee, considering the OTR
policy yields optimality gaps smaller than the ones obtained when considering the FTR policy (137%
and 154% on average, respectively).

Concerning OBSC-D and OBSC-R solved with 0BSC-GOA, all instances are solved in less than 30

seconds with the FTR policy. We observe that, as expected, the cardinality of the set of discrete
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Table 3.2 — 0BSC-MILP and 0BSC-GOA results for instances considering FTR as the reward method.

Instances 0BSC-MILP OBSC-D-5% OBSC-D-1% OBSC-R
Site | A |Ref Cost| CPU(s)| sol |gap(%)| relax [sav(%)|CPU(s)| sol [sav(%)|CPU(s)| sol [sav(%)|[CPU(s)| sol [sav(%)
*S1]60 3269 0.7 1464 0 -7870 55 3.7 1669 49 1.0 1506 54 1.0 1657 49
*S2160 393 0.6 176 0 -942 55 1.0 194 51 1.0 180 54 1.0 206 48
*S3]60 1518 0.6 679 0 -3650 55 1.0 711 53 1.0 691 54 1.0 804 47
*S4160 8866 0.8 3973 0 -21291 55 1.0 4478 49 1.0 4092 54 1.0 4790 46
*S5[60 1008 0.6 452 0 -2422 55 1.0 465 54 1.0 459 54 1.0 524 48
*S6 |60 899 0.6 402 0 -2161 55 1.0 415 54 1.0 409 54 1.0 481 47
*S7]60 1110 0.6 500 0 -2666 55 1.0 520 53 1.0 506 54 1.0 624 44
*S8160 2197 0.6 983 0 -5280 55 1.0 1014 54 1.0 1000 54 1.0 1142 48
*S9[60 1440 0.9 644 0 -3461 55 1.0 664 54 1.0 656 54 1.0 748 48
*S10[60 1556 0.7 695 0 -3734 55 1.0 718 54 1.0 709 54 1.0 806 48
S1|30 3269 900.0 858 5.8 -13743 74 1.0 1070 67 2.1 914 72 1.0 1187 64
S2130 393 900.0 105 12 -1645 73 1.0 125 68 2.1 109 72 1.0 143 64
S3130 1518 900.0 398 11.0 -6374 74 1.0 453 70 3.1 408 73 1.0 570 62
S4130 8866 900.0 | 2339 11.4 |-37188 74 1.0 2861 68 2.1 2457 72 1.0 3339 62
*S5130 1008 875.2 265 0 -4230 74 1.0 298 70 3.1 271 73 1.0 395 61
S6|30 899 900.0 235 6.9 -3774 74 1.0 266 70 3.1 242 73 1.0 342 62
*S7]30 1110 843.1 292 0 -4656 74 1.0 331 70 3.1 298 73 1.0 418 62
*S8130 2197 812.4 575 0 -9222 74 1.0 650 70 3.1 590 73 1.0 789 64
*S930 1440 692.1 375 0 -6044 74 1.0 426 70 3.1 387 73 1.0 539 63
S10 (30 1556 900.0 408 10.3 -6523 74 1.0 459 70 3.1 426 73 1.0 568 63
S1|15 3269 900.0 309 252 -14865 91 2.1 429 87 26.3 279 91 4.1 535 84
S2|15 393 900.0 46 215 -1782 88 1.1 45 89 26.3 32 92 3.1 58 85
S3[15 1518 900.0 147 257 -6894 90 1.0 150 90 26.4 119 92 4.1 226 85
S4|15 8866 900.0 927 245 -40235 90 1.0 1148 87 26.2 743 92 3.1 1412 84
S5|15 1008 900.0 125 221 -4575 88 1.0 103 90 26.3 79 92 4.1 152 85
S6|15 899 900.0 100 236 -4083 89 1.0 89 90 26.3 72 92 3.0 135 85
S7[15 1110 900.0 93 283 -5037 92 1.0 113 90 26.3 90 92 3.1 182 84
S8|15 2197 900.0 214 246 -9975 90 1.1 217 90 26.3 176 92 3.2 313 86
S9|15 1440 900.0 137 241 -6537 91 1.0 143 90 26.2 116 92 4.1 230 84
S10(15 1556 900.0 173 224 -7057 89 1.0 140 91 26.2 124 92 3.1 242 84
mean | 60| 2225.6 0.67 [996.8 0 -5347.7 55 1.27 [1084.8| 52.5 1 1020.8 54 1 1178.2| 47.3
mean | 30| 2225.6 | 862.28 | 585 5.74 [-9339.9| 73.9 1 693.9 69.3 2.8 610.2 72.7 1 829 92.7
mean | 15| 2225.6 900 227.1 242 -10104 | 89.8 1.13 257.7 89.4 26.28 183 91.9 3.5 348.5 84.6
*Instances with optimality guarantee

discharge levels D directly impacts the solving time for OBSC-D. This is due to the fact that the
number of enumerated curtailments (and hence of vertices) grows linearly in |D|, which means that

the number of arcs grows quadratically in |D].

Notice that one interesting aspect of the 0BSC-GOA solving method is that we observe a fast increase
in the size of the graph used to compute the longest path, both in terms of the number of nodes and
arcs. A clever implementation of an algorithm computing the longest path in a DAG allowed us to
solve optimally instances with a number of nodes up to 87k and a number of arcs up to 3.1 billions.

However, the longest path in larger graphs could not be computed within 15 minutes.

Finally, to confirm the relevance of our approaches, we illustrate in Figure the profile of solu-
tions given by OBSC-MILP in the case of site S4, when A = 60. Such a profile is also observed for all
other sites. The power demand over the time horizon is represented by the violet curve, the energy
prices by the red one, and the reward paid by the TO by the green curve. We observe that, in the
proposed optimal strategy, 5 curtailments are performed, and the cost of the energy bill is reduced by
55.18%. Among such a reduction, 16.55% are obtained by exploiting the variations of the energy price,

i.e., by participating in the retail market through the demand response mechanism. Seemingly, the
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great variety of the curtailments involved in such an optimal solution confirms the practical relevance

of our approach.

Impact of the parameters on the economic gain

We now focus on the economic aspects of the solutions, and observe that a substantial gain is
obtained by participating in the curtailment market, as the average savings range from 55% for A = 60
up to 90% for A = 15, compared to the reference cost. Such values confirm that participating in the
curtailment market can generate significant gains for the company. Moreover, we observe that the
reward policy has a direct impact on the savings that can be generated. Table shows the savings
obtained on average for OBSC and its variants considering FTR and OTR as reward policy. When the
FTR policy is considered instead of OTR, the economic gain obtained increases significantly, from 88%
to 105% on average. A similar but smaller increase is observed in the variants solved with 0BSC-GOA.
Note that, when the savings are higher than 100%, the cost of buying energy decreases to zero and
the telecommunications operator starts earning money by participating in the curtailment market.
The value of the time discretization A has also an impact on the total amount of savings, since a
better battery management policy can be obtained by a finer discretization of the time horizon. This
is observed in Table for instances where A = 15, in comparison with the ones with A = 60,
despite the fact that no optimality guarantee is achieved for such instances. The savings obtained
using OBSC-MILP are 89.8% (resp. 55%) on average for A = 15 (resp. A = 60) with respect to the

reference cost.

Concerning the OBSC-D variant solved with 0BSC-GOA, considering discharge levels per 5% gives
on average an economic gain 2.5% smaller than the one obtained with 0BSC-MILP on the instances
with A = 60, for which an optimality guarantee is always achieved. Note that such a gap increases
on average when the value of the time discretization decreases, and grows up to 4% for instances with
optimality guarantee and A = 30. Moreover, we observe that the battery discharge discretization
helps to reduce this gap, since more curtailments are enumerated. For battery discharge levels per
1%, the savings obtained are on average only 1% smaller than the ones obtained with 0BSC-MILP on

the instances with optimality guarantee.

Concerning the instances solved with 0BSC-MILP without optimality guarantee, OBSC-D with

battery discharge levels per 1% always gives better savings when A = 15. Such savings are on average
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2.5% higher than the best ones obtained by solving these instances with 0BSC-MILP. In some cases,
even with battery discharge levels per 5%, the savings obtained are higher. However, the solutions
obtained with OBSC-R always provide smaller savings than the ones provided by the best solutions
found with OBSC-MILP.

Since any solution obtained by solving OBSC-D or OBSC-R is also a feasible solution for OBSC,
such a solution can be used as a heuristic solution. As observed in Table [3.2] when the discretization
of the battery discharge becomes finer, the solutions obtained for the OBSC-D variant give higher
savings, but the solving time increases. To analyze the impact of the battery discharge discretization
on the savings obtained and on the computation time required, additional tests on 0BSC-GOA with a
time limit extended to one hour were run. Figure [3.5] illustrates the profile of savings obtained and
the running times for different battery discharge discretizations, ranging from 5% of B™#* to 0.01%
of B™** for A € {15,20,30,60} in the case of site S1. Such a profile is also observed for all other
sites. In addition, the reward policy considered is F'TR. We can observe that the savings obtained with
a battery discharge discretization smaller than 1% of B™#* tends to stabilize, and the running time
tends to increase exponentially. Moreover, when the discretization of the battery discharge becomes
too small (i.e., discharge per 0.1% of B™* or less), 0BSC-GOA is stopped after one hour, and the best
feasible solutions obtained give much less savings than the ones obtained with battery discharge levels
per 1% (from 89% to 14% when A = 15). We conclude that solving OBSC using OBSC-D with battery
discharge levels per 1% or 0.5% gives a good trade-off between the quality of the solutions obtained

and the solving time.

Furthermore, we explored the characteristics of the battery installed and their impact on the
economic gain obtained. Hence, additional tests were run considering the battery capacity B™#* in
the range {5W,10W} (5 and 10 hours supplying W) and Pp in the range {0.15B™* 0.30B™*}. We
observed that a higher Pg allows us to obtain better savings, which is due to the fact that we can make
a better use of time periods with lower prices, by recharging the battery faster during such periods.
Moreover, a lower Pg tends to increase the average recharging cost, because the unitary energy price
can increase during the recharging time. Concerning the battery capacity, we observed that a higher
value of B™* allows to take advantage of potential high energy prices during a curtailment, further
discharging the battery. Hence, a large amount of energy can be used from the battery and bought

cheaper to recharge the battery, increasing the savings obtained by performing curtailments.
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Figure 3.5 — Results obtained by solving OBSC
using different battery discharge discretizations
for the instance S1 with FTR reward policy.
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3.4 Conclusion

This chapter focuses on the use of batteries that were originally installed as backup in the energy
market. In particular, we have considered the OBSC problem optimizing the total energy costs by
using a battery installed for backup in order to participate in the retail and curtailment markets, with
the help of a proper battery management. As a resolution method, a mixed-integer linear program is
proposed and solved using a standard solver, and any of its optimal solutions provides a strategy for
using the battery at optimum cost. We also identified two practical variants of the problem, and proved
them to be polynomial by providing an efficient graph-oriented algorithm to solve them. This solving
method, which can be used only with discrete battery discharge levels, is based on the enumeration
of all possible curtailments that can be performed over the planning horizon. Then, it computes a

longest path in a directed acyclic graph whose nodes correspond to the possible curtailments.

As a result, we observed that participating in the curtailment market generates great savings (88%
with FTR and 105% with OTR on average), hence reducing the energy OPEX of the company, and
proving the premise of this study. A series of tests on realistic instances coming from the French

context was performed, in order to analyze the mathematical model as well as the main properties of
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such instances. We observed in particular that 0BSC-MILP could not achieve an optimality guarantee
for all instances. However, even for instances without such an optimality guarantee, the best solution
obtained already generates savings from 55% up to 90% on average, which represents a substantial
reduction in electricity bill for the company. The reward policy and the battery capacity seem to
be the parameters that have the greatest impact on these potential savings. Concerning the variants
solved with the graph-oriented algorithm OBSC-GOA, all the instances were solved to optimality, and
the results we obtained proved the economical relevance of such variants (only 2.5% worst than the
optimal solutions of OBSC on average for the instances for which the optimality guarantee is achieved),
by providing good approximate solutions for the general problem, and hence by being good and fast

heuristics to solve it.

Concerning the performance of our algorithms, we observed that for instances in our testbed, the
value of the time discretization and the reward policy are the parameters that have the most impact
on the solving time. We considered a time limit of 15 minutes for solving each instance, and, in this
aspect, 0BSC-GOA proved to be computationally efficient, while we observed that the solving time of

0BSC-MILP increases fast when some parameters increase.

Once we understand well the impact of curtailments on battery management, the issues that
make such management more complex, and how to solve them, we can use the knowledge acquired
in the management of an energy asset composed of several batteries. Note that, for the sake of
clarity, rules [R6] and were not considered in this chapter because they are more pertinent when
multiple batteries are used to prevent that one battery is used much more than others. In addition, the
solving approaches proposed remains valid with minor changes. Indeed, we must change the Bellman’s

algorithm to store at each node the value of the best path considering the number of steps.

In the following, we will explore the management of multiple batteries being used in the curtailment

market and reuse some of the algorithms and methods proposed in this chapter.
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Chapter 4

Optimization of a multi-battery storage
system to participate in the retail market

After studying in detail the impact of curtailment market rules on the management of a battery,
we are now interested in measuring and treating the dimensionality of the management of multiple
batteries that are subject to the safety usage rules. Hence, in this chapter we consider the problem
of optimizing total energy costs of a telecommunications site using the batteries installed for backup
to participate in the retail market. Our goal is therefore to reduce the total energy costs for the
company with a proper battery management. Note that the load curtailments are not considered, and

the batteries can only be used to perform peak-shavings.

Formally, the problem treated in this chapter is the Optimization of a Multi-Battery Storage system
participating in the Retail market (referred to as OMBSR), in order to reduce the total energy cost
for the company. The main issue is to manage multiple batteries while respecting the energy market

rules and the safety usage rules and minimizing the total energy cost.

This chapter allows us to understand in detail the impact of increasing the number of batteries
on the optimization problem. We also explore the strategy of decomposing the OMBSR problem
into sub-problems that can be solved more efficiently. Such a strategy is further incorporated in the

algorithm presented in Chapter [5] to solve the same problem with load curtailments.

Concerning the scientific contributions, we formally define the problem and we present two math-
ematical programming models for OMBSR in Section We also give the proof that OMBSR is
NP-Hard, via a reduction from the 3-Partition problem, in Section We propose two heuristics

based on different aspects for large-scale OMBSR instances: one heuristic based on graph theory
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inspired by the properties of the realistic instances tested; and a second heuristic based on the relax-
and-fix approach that gives better results for the general case. These heuristics are presented in
Section [4.4] In the same section, we present a reduction of the Maximum Weight Budgeted Inde-
pendent Set Problem on interval graphs into the Longest Budgeted Path Problem on direct acyclic
graphs, and we propose a pseudo-polynomial time algorithm to solve it. We also performed numerical

experiments with realistic instances, that are presented in Section
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4.1. PROBLEM STATEMENT

4.1 Problem statement

We consider a deterministic framework with a single telecommunication site similar to the one

described in Chapter 3| defined by the parameters A, E, W, and P™a*,

Concerning the battery assets, the site is equipped with a set B of batteries. Each battery b € B is
defined by the parameters B{)nm, By#x, Pp,, D{)nin, and D;"** as described in Chapter 3| and is subject
to the same usage rules defined in Section In addition to these usage rules, the number of
times that each battery can be used is limited to preserve its life time (i.e., rule . The rule is

now relevant to avoid that one battery is used more often than the others.

Concerning the energy market rules, only the rule [R7] related to the retail market, is taken into

account.

Recall that our goal is to use the batteries while respecting the energy retail market rules, and
keeping the network safe (i.e. respecting the battery safety usage rules) at minimal cost. The total
amount of energy savings that can be obtained is provided by the difference between the energy prices
during a battery use and its recharge. The amount of energy not bought during the battery use is

equal to the battery discharge.

The problem stated above is referred to OMBSR, in the following, and any of its instances is fully
described by the following parameters (some of which are vectors or sets): W, A, E, Pmax B pmin,
Bmax  pp pwin - pmax and N. The safety usage rules and the market rule of the problem
are the same as the ones defined in Chapter

4.2 Mathematical formulations
4.2.1 Mixed-integer nonlinear program based on enumeration of batteries cycles

The formulation that models OMBSR described in this section is a mixed-integer nonlinear program
that will be referred to as (OMBSR-MINLP’). This formulation is inspired by the mathematical model

proposed for the OBSC problem presented in Chapter (3] based on the enumeration of battery uses.

Since a battery discharge starts (resp. ends) at a time period f (resp. [) called first (resp. last)
period, the goal is to identify, among the O(|B|T?) possible triples (b, f,1) (b,c = (f,1)) over the

horizon, the ones to be performed. Such a decision is reflected by the value of a binary variable v, .
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4.2. MATHEMATICAL FORMULATIONS

for each battery b and for each discharge during the interval c¢. Then, the battery discharge level d
during the time period interval ¢ is given by the difference of energy stock in the battery between the
beginning of period f and the end of period [. Recall that we are looking for a set of discharges (f, 1, d)
that can be performed for each battery while respecting the market and the battery safety usage rules

and such that total energy cost is minimized.

Let us consider C as the set of all possible pairs (f,1) such that 1 <1 — f+1 < T. The set
T ={t1,...,tr} represents the discrete planning horizon over T time periods, and the set C;, Vt € T,
represents the pairs (f, 1) of all possible battery discharges that can be performed at time period ¢. In

other words, C; contains all the pairs (f,[) with f <[ such that f <t <.
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4.2. MATHEMATICAL FORMULATIONS

Decision Variables

Firstly, a solution is determined by the values of the following variables:

- apt € [BPM,BMX], Vb € B, Vt € T: amount of energy available in each battery b at the
beginning of each time period ¢, in kWh. An additional variable ;741 represents the energy

available at the end of the planning horizon.

The following additional binary variables are used to control which discharge intervals are per-

formed:

- Ybe, Ve €C, Vb € B: equal to 1 if the battery b is discharged during the time interval ¢ = [f,1],

starting at time period f and ending at time period [, and to 0 otherwise.
To model the power bought at each time period t, the following variables are used:
- uP €[0,W;],t € T: power bought for the demand consumption at time period ¢ (in kW);

- uft € [0,Pp,],Vb € B, t € T: power bought for the recharge of battery b at time period ¢ (in
kW).

Auxiliary variables can also be used to simplify the model writing. However, they are not strictly

necessary, and could be removed and replaced by their corresponding value:

- Zpt, VE €T, Vb € B: equal to 1 if the battery b is discharged at time period ¢, and to 0 otherwise;

The objective function is defined as follows:

minZEt(Zuft + ul) (4.1)

teT beB

The objective function minimizes the total cost of purchasing energy. A solution is given by the

stock of energy in each battery at each time period, provided by the values of the x;; variables.

The following constraints define if each battery is in discharge or not at each time period t:

i =D Ube VbeBYte T (4.2)
ceCy

Tpt — Toar1 < ADYP 2y Vbe B,VteT (4.3)

—aps + w01 < APp, (1= 250) — Amin(Wy, D)z, Vb e BVt e T (4.4)
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Constraints , together with the fact that z,, € {0,1} V¢ € T, guarantee that for each battery
b, at most one discharge can be performed at each time period. Constraints guarantee that,
if the energy stock of a battery decreases, then the battery is in discharge mode, ie., z,; = 1.
Constraints ensure that, if the energy stock of a battery increases, then the battery cannot be
in discharge mode, i.e., 254 = 0. Note that, together with Constraints to Constraints , the
battery can have the same energy stock during two consecutive time periods only if the battery is fully
charged, otherwise a minimal discharge of min(W;, Di"") or a recharge of uft is imposed. Besides,
Constraints guarantee a maximum power discharge per time period of D}"®* when the battery

is in discharge mode.

Note that, if the battery has the same energy stock during two consecutive time periods, then the
corresponding variables z;; are free. However, Constraints (4.2)) guarantee that, if a battery discharge

is performed, then 2, is equal to 1 for each t over the discharge duration.

Constraints (4.5) guarantee that a battery can start being discharged only if the battery is fully

charged:
B > ype < g Vbe BYteT (4.5)
ceCy ‘ t=f

upy = (1= zp) min(BY™ /A =z, /A, Pp,, P — W) Vbe B,Vte T (4.6)
Z(xb,tﬂ —Tpy) = Z Au{ft + Aul — AW, VteT (4.7)
beB beB

Tpi41 — Tht = Auft — ADy™ 2, Vbe B VteT (4.8)
Tpie1 — Tpr < Aug VbeBVteT (4.9)

The power bought for charging each battery is min(Pp,, P™* — W,;) when it is possible to buy
energy (i.e., if z,, = 0), if the capacity of the battery is not exceeded (see Constraints ) Note
that two batteries can be used at the same time: either both are in discharge mode; or one is in
discharge and another recharging; or both are in recharge mode. Constraints together with
Constraints guarantee that the power bought to recharge a battery is related to the corresponding
battery, preventing the exchange of power between two batteries (i.e., when the energy obtained from

the discharge of one battery is used to recharge another).

Since no losses are considered, the energy stock balance of the batteries are ensured by Con-

straints (4.7). Besides, Constraints (4.7) together with the bounds on v impose a maximum cumu-
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lative discharge of all batteries at the same time period, equal to the power demand W;. Indeed, note

that the domain of variables u}” limits such a maximal discharge to W;.

The network capacity is modeled by Constraints (4.10]).

> uft + ul < pmax vt e T (4.10)
beB

Furthermore, Constraints (4.11]) guarantee that each battery will be used at most N, times over
the time horizon, while Constraints (4.12]) express the limit conditions:

D e <N Vbe B (4.11)
ceC
xb,tl = xb,IT+1 = BlI)naX Vb S B (412)

Finally, the domains of the variables are:

uP € [0, W] vte T (4.13)
Ulft € [0, Pp,], xp € [BM™, B, 2,4 € {0,1} Vbe B, VteT (4.14)
Yve € {0,1} Vb e B,VeeC (4.15)

The obtained model (4.1)-(4.14) is non-linear. However, it can be linearized following the approach
proposed by [McCormick (1976). The resulting model (referred to as (OMBSR-MILP’)) is provided in
Section [4.2.3]

4.2.2 Alternative mixed-integer nonlinear program

The main problem with the (OMBSR-MILP’) formulation is that the number of (f,[) pairs enu-
merated can potentially be large and strongly impact the size of the model and hence the solving time.
Considering that curtailments are not allowed in OMBSR, it is possible to model the problem in an
implicit way without the need to enumerate all the discharge duration of batteries. Consequently, the

size of the model is reduced.

The formulation of OMBSR described in this section will be referred to as (OMBSR-MINLP).
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Decision Variables

Firstly, the same families of variables SUb,t,UtD ,uft, and z,; from the formulation presented in

Section [4.2.1] are considered.

In addition to those ones, the following additional variables are used to control the state of each

battery:

- bifﬁ” € {0,1},Vb € B, Vt € T: equal to 1 if the battery b starts being discharged at time period

t, and to 0 otherwise.

The objective function is defined as follows:

min Y B ufy +up) (4.16)

teT beB
The objective function minimizes the total cost of purchasing energy. A solution is given by the stock

of energy in the batteries at each time period, provided by the values of the x;; variables.

The following constraints define if each battery is in discharge or not at each time period t¢:

Tpt — Tha+1 < ADY 2z Vb e BVt €T (4.17)

— Zpt + Tpry1 < APp, (1 — 2p¢) — Amin(W, D,ﬂnin)zb’t Vb e BVt €T (4.18)

Constraints guarantee that, if the energy stock of a battery decreases, then the battery is
in discharge mode, i.e., z,; = 1. Constraints ensure that, if the energy stock of a battery
increases, then this battery cannot be in discharge mode, i.e., 2,; = 0. Note that, together with
Constraints and , these constraints ensure that the battery can have the same energy
stock during two consecutive time periods only if the battery is fully charged, otherwise a minimal
discharge of min(W;, D) (if z,; = 1) or a recharge of uft (if 2,4 = 0) is imposed. Moreover,
Constraints guarantee a maximum power discharge per time period of D;*®* when the battery

is in discharge mode.

In the same vein, Constraints (4.19) and (4.20) ensure that bgft‘”t = 1 if the battery b starts being

discharged at time period t; otherwise, this variable is free.

Byt > 20 — Zpg Vb e BVt € T\{1} (4.19)

B = 2, Vb€ B (4.20)
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Constraints (4.21)) guarantee that each battery b can start being discharged only if it is fully charged
(and hence together with Constraints (4.22)) that the battery starts being recharged immediately after

each use, up to its maximum capacity):
B;,na"bgf;“"t < Ty Vb e B,VteT (4.21)

The power purchased in the retail market at each time period ¢ is the sum of the power bought for

charging the batteries (3 ;<5 uft) and the power bought for consumption (u), which is ensured by

the following constraints:

upy = (1= zp,) min(B*™ /A — 34/ A, Pp,, P™™ — W) Vb e BVt T (4.22)
Yo (@1 —xp) =AY ugy + Auf — AW, Vte T (4.23)
beB beB

T4l — Tht > Auft — ADy™ 24 Vbe B,VteT (4.24)
Thil = Tht < Auft Vbe BVt e T (4.25)

The power bought for charging each battery is min(Pg,, P™*) when it is possible to buy energy
(i.e., if 2,4 = 0), if the capacity of the battery is not exceeded (see Constraints ) Note that
several batteries can be used at the same time: some of them can be in discharge mode and others
recharging. Constraints together with Constraints guarantee that the power bought to
recharge a battery is related to the corresponding battery, preventing the exchange of power between
two batteries (i.e., when the energy obtained from the discharge of one battery is used to recharge

another).

Since no losses are considered, the energy balance of the batteries is ensured by Constraints (4.23]).
Moreover, Constraints (4.23)) impose a maximum cumulative discharge of all batteries at the same

time period equal to the power demand W;.

The network capacity is modeled by Constraints (4.26]).

> up +uf < P Vte T (4.26)
beB

Furthermore, Constraints (4.27) guarantee that each battery will be used at most N}, times over
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the time horizon, while Constraints (4.28) express the limit conditions:

OBt < N Vb € B (4.27)
teT
Tht, = xb,tT+1 = Bll)nax Vbe B (428)

Finally, the domains of the variables are:
uP € [0, W] Vte T (4.29)
up, € [0, Pp,), xps € [BIM™, By*™], 2,4 € {0, 1}, b5 € {0,1} Vb e BVt €T (4.30)

The obtained model (4.16)-(4.30)) is non-linear. However, it can be linearized following the approach
proposed by |[McCormick (1976). The resulting linear model (referred to as (OMBSR-MILP)) is

provided in Section
4.2.3 Mathematical model linearizations

In this section, we present the linearization of the mathematical models (OMBSR-MINLP) and
(OMBSR-MINLP’), which have a single nonlinear constraint (i.e., Constraint (4.6 in the case of
(OMBSR-MINLP’), and Constraint (4.22)) in the case of (OMBSR-MINLP)) that is the same in both

mathematical formulations.

Firstly, let us rewrite Constraints (4.6|) (i.e., also Constraints [4.22)) as follows:
uft = (1 — zp¢) min(By"™* /A — x4 /A, Pp,, P — W)

= min(By"™* /A — x4+ /A, min(Pp,, P — W}))

— min(By ™ 21 /A — xp 21 /A, min(Pp,, P™* — W;)z.) (4.31)

For a product between a binary variable b; and a variable f; € [0, F™**], we can apply the Mc-
Cormick strategy as described in Section The non-linearities of this type in Constraints
(i.e., corresponding to Constraints and to Constraints are the products xy ;24 ¢, with xp,; €
[0, B***] for b in B, t in 7. We define the new family of variables lin_zz,, Vb € B,Vt € T and the

related constraints:

linxzyy < 2z, By Vbe BVt e T (4.32)
linxzy, < py Vb e BVt €T (4.33)
linewzpy > xpp — (1 — 2p4) By™™ Vbe BVt €T (4.34)
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Furthermore, to linearize © = min(a, b) for a,b € [M’, M], we introduce a binary variable y € {0,1}
as described in Section In our case, we have the new family of binary variables lin_sidey; for
all t in 7 and b in B to linearize the min in Constraints (i.e., corresponding to Constraints |4.6)
and to Constraints . We have uft = (1 — %) min(a,b), where a = B"™*/A — x3;/A and
b = min(Pp,, P™* — W;). In order to linearize this expression, we first multiply all the terms a and
b in and by 1 — z,;. Hence, we derive the following constraints, where M’ = 0 and
M = max(P™, B"*/A) :

uB, < (1= 2, (B /A — 2 /A) , b, < (1 - 2,) min(Pp,, P™ — ;) (4.35)
(By"™ — xp) — Amin(Pp,, P — W) < AMlin_sidey; ,

min(Pp,, P™ — W) — (B /A — zy,/A) < M(1 — lin_sidey.) (4.36)
u{ft > (1= 2p)(By™ /A —ap e JA) — M(1 — zp¢)lin_sidep s ,

u{ft > (1 — zp¢) min(Pp,, P — Wy) — M (1 — zp4)(1 — lin_sidey, ;) (4.37)

Note that, since uft € [0, Pp,|, Constraints 1’ can be replaced by:

“lft > (1= zp)(By™ /A —apy /A) — Mlin_sidey;

upy > (1 = zpy) min(Pp,, P — W) — M(1 — lin_sidey,;) (4.38)

Indeed, when 2,; = 0, (4.37)) and (4.38)) are equivalent, and, when z;,; = 1, Constraints (4.5)) together
with Constraints l' and uft € [0, Pp,] ensure that uft =0.

Proposition 4 The continuous relazation of (OMBSR — MILP) and (OMBSR — MILP’) have the

same optimal value.

PRrOOF To prove that the solutions sets of these continuous relaxation are equivalent, we present
two functions to transform any solution of the continuous relaxation version of (OMBSR — MILP),
denoted by (OMBSR — LP), into a feasible solution of the continuous relaxation of (OMBSR —
MILP’), denoted by (OMBSR' — LP), and vice-versa.

Firstly, let us prove that any feasible solution of (OM BSR— LP) can be transformed into a feasible
solution of (OMBSR' — LP) as follows:

1. Zpy < xpy, for each b€ Band t € T;
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2. Zps < 2py, foreachbe Band t € T;
3. ﬂft — ubEft, for each be Band t € T;
4. ﬂf) %uf), for each t € T;

5. Set values for y;, . such that 3 .cc, Yy = 2, and Ecect‘f:t Ube = bgft‘m.

Note that we can rewrite the expression } .cc, U aS D cec,|f=t Ybe + Docec,_y Ybe = 2ceCy|i=t—1 Yb.c-
Rewriting such an expression we have that > cc,|f—s Yb.e = Xocec, Ybe = 2ocec,_y YbeT2oceC,_1|i=t—1 Yb.c-
Hence, the relation 3 .cc,|r=t Ybe = Docec, Ybe — Docec;_, Ybe is valid for any ¢ € T and is equivalent
to Constraints when > cec, Upe = bt and Y cce,|f=t Upe = biff” which is already satisfied in
any solution of (OMBSR — LP). We can conclude that Steps 1 to 5 produce a feasible solution for
(OMBSR' — LP) and that Constraints (4.2)), and are directly satisfied.

Secondly, let us prove that any solution of (OMBSR' — LP) can be transformed into a feasible
solution of (OM BSR — LP) as follows:

—_

. Xpt < Tpy, foreach b e Band t € T;
2. 2yt Zpy, foreach be Band t € T;
3. uft — ﬂfft, foreachbe Bandt e T;

4. uP « up, for each t € T;

ot

BT = Yeecyjimf Ybe for each b€ Band t € T.

Note that Constraints (4.17)}4.18)14.23]|4.24}14.25/l4.26)4.28]14.32114.38)) are trivially satisfied because they
are present in (OMBSR' — LP). In addition, Constraints (4.21) and (4.27) are satisfied because

Constraints (4.5) are equivalent to (4.21) and > ;7 > ceci|t=f Yb,c is equivalent to > .cc Ypc, which
is equivalent to 35,7 03", Moreover, from Constraints (4.2), we have that z,; = 3 .cc, Y for

each t € T. Then, by performing an elementary operation between two constraints (i.e., for each b,

subtracting (4.2) for ¢ — 1 from Constraints (4.2|) for ¢), we have that z;; — 2p1—1 = Y. .cc, Ybc- Hence,
the relation zp; — 2511 = > cec, Yb,e 18 valid, and Constraints (4.19) and (4.20) are satisfied.

Such transformations are valid and the transformed solutions are equivalent because the batteries

are used at the same time periods and with same discharge (resp. recharge) power levels as the original
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solutions. Consequently, the power bought for consumption and recharge at each time periods are the

same which gives the same solution value, i.e., savings.

The claimed result follows. O

4.3 Complexity analysis

In this section we present a complexity proof for OMBSR. We reduce the 3-Partition problem,

which is a strongly NP-Complete problem, into a particular case of OMBSR.

Theorem 1 OMBSR is strongly NP-Hard.

PROOF Let us consider an instance of the 3-Partition problem composed by a set A of 3m integers
ai,...,a3m and a bound B € N such that % < ay < g, for all a; in A. Besides, let us consider that
>a;eA @ = mB. The question is whether A can be partitioned into m triplets Ay, ..., A, such that
> a;e, @i = B for all Ag, such that, if there exist m partitions Ay such that for each one the sum of

its elements is B, then each subset 4; must contain exactly 3 elements because of % <a; < g.

Now let us consider an OMBSR instance with a time horizon T composed by 2m time periods.
Moreover, let us consider a constant power demand W of B over the horizon and an energy price equal
to 1 at the odd time periods and 0 at the even time periods, i.e., £ = (1,0,1,0,...,1,0). Then, let us
consider that 3m batteries with different capacities such that (Ba* — Bn) /A > DX are installed
such that % < Dpin < Dinax = g, < %. We also consider that ),z D' = mB. The others instance

parameters are:

° Pmax — 2B
e Pp, = B"*/A, for all bin B

e Ny=1, for all bin B

Let us consider a solution for such an instance which costs 0. In this case, the batteries are used to
supply all the power consumption in the time periods that energy costs 1 and recharged when it costs
0, otherwise the total cost would be strictly greater than 0. Hence, the total energy used from the

batteries over the horizon is mB. Since N, = 1, together with P™#* = 2B, if there exists a solution
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with cost 0, all the 3m batteries are used once and, more precisely, 3 batteries are used at odd time
periods with a discharge of D;***. In addition, if all batteries are used, each one is used during one

time period.

Hence, the set of batteries used at each odd time period gives us a solution to an instance of
the 3-Partition problem where the integers a; are equivalent to Dy***. Similarly, from a 3-Partition
problem solution, a solution of cost 0 for the associated OMBSR instance can be constructed. Then,

OMBSR is by reduction a strongly NP-Hard problem. |

For small and simple instances with T" < 4 and with a constant power demand for example, a
similar proof can be obtained from a reduction of the Partition problem, which is NP-Complete. In

this case, pseudo-polynomial time dynamic programming can be used to solve the problem.

4.4 Solving heuristics

In this section we present two heuristics for solving large-scale instances of the OMBSR problem.
In fact, since OMBSR is an NP-Hard problem, large-scale instances cannot be solved to optimality in

polynomial time unless P is equal to N P.

4.4.1 Graph oriented approach

This section presents a graph-oriented temporal decomposition heuristic, refereed to as OMBSR-G-

HEU, based on:

e The decomposition of each OMBSR, problem into sub-problems that are individually solved to
optimality;

e The selection of a subset of the solutions obtained for the sub-problems that respects the maximal

number of battery uses IV, and that yields a solution to the initial OMBSR instance.

Two integral parameters v and 4’ (> 0) are considered in this heuristic: v is the number of time
periods in each sub-problem, and +' is used to define the first time period of each sub-problem. More

precisely, the heuristic is composed of four steps:
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1. Decomposition of the OMBSR, problem into sub-problems: We construct [T/9']—1 sub-problems
OMBSR,; for i in {1,...,([T/~']—1)}, each one being defined over a reduced time horizon 7; of
time periods starting at a time period multiple of 7/, i.e., T; = {((i — 1)y +1),..., (=17 +v)}
and with at most N} = [Nyy/T'] battery uses.

2. Resolution of each OMBSR, sub-problem: From the (OMBSR-MILP) formulation based on T
and Ny, we derive the formulation for each OMBSR; by considering 7; and Ny instead. Then, an
optimal solution S; for each OMBSR,; is obtained by solving this formulation with a mixed-integer

linear program solver.
3. Select a subset of solutions 5; that gives a feasible solution for OMBSR:

(a) Construction of a solution conflict graph: A graph G = (V, E) is created, where each node
v; in V represents the optimal solution S; of OMBSR; found at Step 2, with a weight w,,
equal to its value. An edge e = (v;,v;) is added if any battery in the corresponding solution
S; is used at a time period t € 7; N T} and if any battery (not necessarily the same) is used

in the solution S; at the same time period. Note that G is an interval graph.

(b) Computation of a Maximum Weight k-Budgeted Independent Set Problem (MWkBIS) of G:
We rely on an integer linear program for the MWKBIS problem (described in Section
on interval graphs, with |B| additional constraints limiting the number of use of each battery
b € B to Ny (i.e., the limit of use N, of each battery is considered as an artificial budget) in
the selected nodes. The complete formulation, denoted by (MWEkBIS-MILP), is presented
in Section Then, an optimal solution is obtained by solving it with a standard
MILP solver. Note that such a computation can be done fast because we consider a small

number of batteries installed in our realistic instances.

4. Construction of a solution for OMBSR: Firstly, the heuristic solution to the initial OMBSR
problem is equal to a standard solution where no battery is used. Then, for each node v; of the
solution provided at Step 4 by solving (M WkBIS-MILP), we replace the standard solution over
T; by the solution S; found at Step 2.

For the sake of clarity, we illustrate, in Figures [£.1] and the steps of the heuristic on an illustrative
OMBSR instance over a week (i.e., v = 1, and T' = 24 x 7 = 168) where N, = 3 for all b € B,
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Figure 4.1 — Decomposition of an OMBSR in- S T~
. . w2 = 1€ wi=1.5€ we=1€
Stance over a Week (l'e'7 T = 168) lntO SUb_ Period that at least one battery is in use in Si Node present in the optimal solution
problems OMBSR; to OMBSRg, assuming v =
48 and +' = 24. The curves represent the power Figure 4.2 — Example of a conflict graph associ-

demand observed (orange line) and the interpo- ated with the decomposition of the OMBSR in-
lation (black line). In this instance, N, = 3,Vb € stance presented in Fig. where N, = 3,Vb €
B. B, and of the resulting MWKkBIS solution.

and for the following choice of parameters: v = 48 and 4’ = 24. Note that, the values of w of this
instances is illustrated by the orange curve. The interpolation (i.e., the black curve) is shown for
the sake of highlighting the periodicity of the data. A heuristic solution for this OMBSR instance is
thus obtained by considering the battery usage in the solutions 57, S4 and Sg found for sub-problems
OMBSR, OMBSR,4 and OMBSRg, respectively.

4.4.1.1 Maximum weight budgeted independent set problem

The Maximum Weight Budgeted Independent Set problem (MWBIS) consists in selecting the
independent set S* of a graph G = (V, E), with weights w,, for v € V and cost f3,, for v € V| that gives
that highest total weight (i.e., > ,cs+wy) and that respects a given budget B (i.e., Y cg fv < B).
Kalra et al.| (2017) proposes an integer linear program to solve the MWBIS problem. For interval
graphs, the MWBIS problem can be solved with a pseudo-polynomial time algorithm based on the
Bellman’s algorithm to compute the longest path of a direct acyclic graph. Indeed, an interval graph
G’ = (V/,E’) can be described by the sequence J = {Ji,...,J,} of its maximal cliques (see
De Queiroz et al.| (2016]) for the computation of J from G). A direct acyclic graph G’ = (V', A) can

be obtained as follows:

1. For each vertex v; € V', create a corresponding one vl in V7

2. For each maximal clique J; € J, and for each v; € J;, add an arc in A’ from the vertex

v; € V' corresponding to v; to all vertices vy € V' with weight w,; and cost 3,; such that the
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corresponding vertices v, € V7 belongs to any sequence Jj, € 7, such that J; < Jj, in J;
3. Add two artificial vertices v/, and v} in V';
4. Add an arc from v, to each vertex v] € V' \ {v/} with weight 0 and cost 0;
5. Add an arc from each vertex v, € V' \ {v}, v} to v with weight w,, and cost 3,,;

The computation of the maximal independent set of G” is equivalent to computing the longest
path from s to v in G’. Indeed, by construction, any path in G’ represents an independent set of
GY. The computation of the longest path of a direct acyclic graph can be done in O(|V’| + |4’|) time
using the Bellman’s algorithm (Dasgupta et al. |2008]). In the case of the MWBIS problem when a
maximal budget B is given, a modification in the Bellman’s algorithm can be done by storing at each
vertex v; € V' the best known path from v; to v} with different weights up to B. Hence, such a
modified version of the algorithm is pseudo polynomial, in space and in CPU time, with complexity

O(IB|(JV'| + |A’])). In our study, the budget B is bounded by the number of time periods T', which

guarantees a polynomial complexity.

An extension of the MWBIS problem is to consider k-budgets, denoted as the Maximum Weight
k-Budgeted Independent Set problem (MWKBIS). Formally, it consists in selecting the independent
set S* of a graph G = (V, E), with weights w,, for v € V and k-cost K, defined as fj ,, for each
v € V,k € K, that gives that highest total weight (i.e., >, cg+ wy) and that respects the budgets B, for
each k € K (i.e., >, cs B < By for each k € K). The same reduction from the Maximal Independent
Set (MIS) of an interval graph to the computation of the longest path of a DAG can be done and
the Bellman’s algorithm can be adapted to support k-budgets with complexity O(|B|*I(|V] 4 |A])).
Since the number of budgets corresponds to the number of the batteries and that the values of By, are
bounded by T, the algorithm is pseudo-polynomial. In this thesis, we chose to extend the formulation
proposed by Kalra et al.| (2017) to consider k budgets (i.e., to consider multiple budgets N;). Since

the sites of instances considered in our work do not have a high number of batteries installed, this

part of the problem can be solved efficiently with a conventional MILP solver.

We consider that the interval graph G = (V, E), the list J of maximal cliques (i.e., the intervals)
of the topological increasing representation of G' on the start time of the intervals, the weights w,, and
the solutions 5; for all v; € V' are given, as well as the values of N, for all b € B. Then, the following

auxiliary parameters are considered:
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® [, the number of times that the battery b is used in the solution S; (i.e., the "cost” of selecting

the node v; in the budget Ny).

e Vj: set of nodes v; in the clique j € J.

The following variables are considered:

e 1z, € {0,1}: equal to 1 if the node v; is taken into the final solution, and to 0 otherwise.

Finally, (MWkBIS-MILP) can be written as follows:

v, €V
s.t. > ay, <1 VieJ (4.39)
v; €V
> Bow; < Ny Vb e B (4.40)
v, EV
Ty, € {0,1} Yo, €V (4.41)

4.4.1.2 Alternative conflict graph construction

The standard version of this heuristic considers that an edge is added between two nodes if at least
one battery is used in the solution of the corresponding nodes as described at Step 3a. However, such
an edge creation criteria can be modified by distinguishing which battery is used at each time period
to create a conflict edge. Formally, an edge e = (v;,v;) is added if a battery b in the corresponding
solution S; is used at a time period ¢ € 7; N T; and if the same battery b is used in the solution S; at
the same time period ¢t. However, the computation of the Maximum Weighted Budgeted Independent
Set at Step 4 can no longer be done in pseudo-polynomial time as presented in Section [£.4.1.1] because

there is no guarantee that G is an interval graph anymore.

Figure [£.3]illustrates the impact of such a modification in the edge creation criteria. In the example
illustrated the site is equipped with two identical batteries by and by. In addition, we consider a
constant power demand over the time horizon of 1kW and the parameters v = 4 and 7' = 2. Based on
these parameters, 4 sub-problems will be considered: OMBSR;, OMBSR,, OMBSR3 and OMBSR4
with solutions S1, S2, S3 and S4, respectively (see Figure d). Hence, the graph G created in OMBSR-

G-HEU is composed by 4 nodes. For the standard edge creation criteria (C1 in the example), an edge
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Example to illustrate the arc creation criteria

kw

Power Demand 20 Energy Prices —— Power Demand
10 30 Energy Prices
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12 3 4 5 6 7 8 t 1 2 3 4 5 6 7 8 .. Energy stock in Battery 1
KW K . — — Energy stock in Battery 2
2.0 |:C1 2-0""'“"'.,: s mmm Discharge of Battery 1
b) RN ——1 Recharge of Battery 1
10 Discharge of Battery 2
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 1 Recharge of Battery 2
T 2 3 & 5 6 7 8 °f T 2 3 a4 56 7 8 f
- y By — B — 2. 0kWh
. PTG Dyer = Dyt = LOKW
R ~ Dpin = pyin — 1.0k
c) 1.0 L — Pp, = Pg, = 0.5kW
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1 2 3 4 5 6 7 8 12 3 4 5 6 7 8 Savings:
S1:1.5€ S2:0.5€
G for C2
y=4y =2 Gfm,%% o°r,§\ $3:0.0€  $4:0.0€
( (3)
d) Sl S4——t—— ? ~ ‘ In the soluti
5 2 @ o 4\) n the solution
s3 4 (' )NOT in the solution

Savings=1.5€  Savings=2.0 €

Figure 4.3 — Tllustration of the edge creation criteria for OMBSR-G-HEU with v = 4 and ' = 2 for a
given instance with 2 identical batteries.

will be added between solutions S1 and S2, because at time period 4, at least one battery is used in the
solutions of both sub-problems (i.e., the battery 1 is recharging at time period 4 in S1 and the battery
2 is in discharge at the same time period in S2). Note that no battery is used in S3 and in S4. In fact,
the energy prices are constant from time period 5 and using batteries is not profitable. Consequently,
the solution of C'1 is composed exclusively by S1, giving savings of 1.5€ (Figure b illustrates the
power bought and the energy level of the batteries for C1). However, with the modified edge creation
criteria (C2 in the example), the corresponding graph G has no edge because the batteries used in S1
and S2 are not the same one. Hence, the solution provided by OMBSR-G-HEU with C'2 is composed by
S1 and S2, giving savings of 2.0€ (Figure c illustrates the power bought and the energy level of
the batteries for C2). Note that the optimal solution for this example is the same one as the solution
obtained with C2. On the one hand, the solutions obtained with the modified edge creation criteria
tends to generate more savings. On the other hand, there is no guarantee that the resulting graph G
is an interval graph. Figure illustrates an example considering v = 4 and +/ = 1 with 2 batteries
for which the graph G is not an interval graph when the modified edge creation criteria (criteria C2)
is considered instead of criteria C'l. In this example, the graph G obtained considering the criteria

C1 is a complete graph and an interval graph. However, the graph G obtained when C?2 is considered
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e — G for C1 == Discharge of Battery 1
! : : : : 1 1 Recharge of Battery 1
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— o"‘o Interval Graph Discharge of Battery 2
[ | ; ; ‘ Recharge of Battery 2
S2
— G for C2 y=4y =1
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[ —

Figure 4.4 — Illustration of the impact of the edge creation criteria on the chordal properties of the
graph G created by OMBSR-G-HEU.

is no longer an interval graph.
4.4.2 Relax-and-fix approach

This section presents a relax-and-fix heuristic (Suerie and Stadtler} 2003) for solving OMBSR based

on:

e The partial relaxation of the binary variables of the mathematical model described in Section

e The resolution of the resulting model in which the number of binary variables is small enough

to be solved with a conventional MILP solver through a branch-and-bound method;

e The fixation of the values of a subset of variables from the optimal solution obtained in the

previous step.

Such steps compose one iteration of the heuristic, which is executed several times as described in
the following. The main idea is to define sets of variables, denoted as windows, that will be relaxed

and fixed in each iteration.

The proposed heuristic designates the time horizon in three windows: frozen, decision and relazed
ones. In the frozen window, the values of the variables are fixed to the optimal values obtained in the
previous iterations. In the decision one, the integrity constraints are observed. In the relaxed window
the integrity constraints are relaxed. To this end, two integer parameters 0 and ¢’ (0 < ¢’ < 0) are
considered in this heuristic: ¢ is the number of time periods of the decision window (i.e., for which
the integrity of the binary variables is maintained), and ¢’ represents the scrolling window, in number

of time periods, for which the values of the corresponding variables are fixed in each iteration.
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Let us denote as 7/, 7% and 7" the set of time periods of the frozen, decision and relaxed
windows, respectively. Formally, for a given OMBSR instance composed of |7| time periods, and its

mathematical model M, each iteration i of the heuristic is composed of four steps:

1. Definition of the sets 7/, 7% and 77: T/ = {1,....8'i — 1)} Vi > 2 or P ifi = 1, T¢ =
{('Gi—1)+1,...,8(i—1)+6}and T" =T \ (T/ UTY);

2. Relaxation of the integrality constraints in M in the relazed window: for each ¢t in 7" (in the

case of (OMBSR-MILP) all variables z;,; and by'#"" for each b in B € {0,1});
3. Solve the model M;

4. Setting the values of a subset of variables in 7% in M: For each binary variable with index ¢ in
{o'(i=1)+1,...,8(i = 1) + '} (ie., in the case of (OMBSR-MILP), all variables z,; and by

for each b in B), fix the value of the variable to its optimal value obtained at Step 3.

Concerning the iterations of the heuristic, Steps 1 to 4 will be executed [ L5 97 + 1 times (i.e., for

ie{l,..., [TT_,‘S} +1}. Note that in the first iteration the frozen window does not exist (i.e., 7/ = 0),
and, in the last one, the relaxed one does not exist (i.e., 7" = ). In the last iteration, if a feasible
solution for M is found, it is also a feasible solution for the whole problem due to the fact that in each

iteration Step 4 respects all the constraints of the model.

Figure [4.5]illustrates the three windows of the model obtained from Steps 1 and 2 of the relax-and-
fix procedure for two consecutive iterations 7 and i + 1. In this example the time horizon is composed
of 168 time periods and the parameter values are § = 48 and ¢’ = 24. The frozen window at Step 3
in iteration ¢ is composed by 24 time periods for which the optimal values of the variables previously
computed are fixed. The decision window is composed by 48 time periods and the relazed window
by 96 time periods. Note that at Step 4 of iteration 4, the values of the first ¢’ time periods of the
decision window are fixed at their optimal values obtained at Step 3. In the iteration i+ 1, the frozen

window at Step 3 is then composed by 48 time periods.

One of the advantages of the proposed heuristic is that it is able to produce good upper bounds
for the problem in a short running time. Note that the efficiency of this heuristic depends directly on

the values of the parameters § and ¢'.

129



4.5. NUMERICAL EXPERIMENTS

Step 3: solve the
model partially
relaxed

[teration |
A

Step 4: Fix the
variables of the &
first periods in T¢

Step 3: solve the
model partially
relaxed

[teration i+1
A
N
i
S
[e9)
~
N
©
o
>
o
=
iN
>
[e¢]

Step 4: Fix the
variables of the §”
first periods in T¢

Figure 4.5 — llustration of the three windows obtained from Steps 1 and 2 of the relax-and-fix procedure
on iterations ¢ and ¢ + 1 of an instance containing 168 time periods, considering § = 48 and ¢’ = 24.

4.5 Numerical experiments

In order to assess the efficiency and relevance of our solving approaches for optimizing the savings
that can be obtained from the demand-response mechanism, we performed some numerical experiments
on realistic instances. Several sites with different consumption profiles and settings are considered,
generated from internal data of the French telecommunications operator Orange. The energy costs

are taken from public historic data of the French retail market.

Three solving approaches are considered. Firstly, the default branch and bound algorithm of the
commercial solver CPLEX performed on the formulations (OMBSR-MILP) and (OMBSR-MILP’),
that will be denoted by OMBSR-MILP and OMBSR-MILP’, respectively. Secondly, the general heuristic
presented in Section [4.4.1] parameterized by (v,7') € {(48,24),(36,12),(24,12)}, that will be de-
noted by OMBSR-G-HEU. Finally, the relax-and-fix heuristic presented in Section parameterized
by (8,0") € {(48,24),(24,12)}, that will be denoted by OMBSR-RF-HEU. The arguments (essentially the
periodical structure of energy costs and demand of our data) for choosing these parameters for the
tested instances are given in Section We observe that the recharging process of the batteries
takes on average between 12 and 20 hours when they are discharged up to B{)ni“. Hence considering

0 = 48 allows explore different discharge levels in different periods of the day.
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Figure 4.6 — Power demand over a week of two instances generated from data of a given site.

The numerical experiments are organized as follows. Firstly, in Section we describe the
instances and the settings used in our tests. Then, in Section we present the results of OMBSR
instances solved using OMBSR-MILP, OMBSR-MILP’, OMBSR-G-HEU and OMBSR-RF-HEU. Note that, in this
section, we present and describe a synthetic table of results, grouped by the number of batteries and
number of time periods. The complete numerical results are available in (Silva),|2021)). In the following,

we discuss the computational results and we analyse the economic impacts in Section 4.5.3

4.5.1 Instances description

We based our testbed on 100 urban and rural sites from the fixed network of the French telecom-
munications operator Orange. The power consumption and the mean, or average value, of the power
demand over the horizon, denoted by W = M, is also given. Moreover, the power demand of 50
sites is faithfully generated considering the observed data without any random variation. In contrast,
the power demand of 50 sites is generated with a randomness of 25% of the original observed data.
Figure [4.6]illustrates the power demand of two instances based on the data of a given site: Figure
illustrates the power demand of an instance faithfully generated from original data, and Figure

the power demand with a randomness of 25%.

Each site is equipped with at most 5 batteries, whose main properties are provided in what follows.
The autonomy of the batteries varies between 20 and 60 hours. Besides, two types of batteries are

installed (GEL and AGM), the recharge power rate Pp, being dependent of each type:

1. Pg, = 1.95% of B}***/A for GEL batteries;

2. Pp, = 3.34% of B;*** /A for AGM batteries.
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max

In addition, the minimal power discharge D{,mn is 10% of Dy™*, which is different for each battery b.
Finally, the value of Bgnin is 50% of the battery energy stock capacity, and each battery cannot be
used more than 144 times over a year. More precisely, the value of IV, considered in our tests is 3

times the number of weeks.

Concerning the data related to the distributor, we consider the unit energy prices from the French
distributor EDF, publicly available at |data.gouv.fr (2020)). Besides, the maximum amount of power
that can be purchased per time period P™?* is established in a contract. In our tests, to guarantee
that the value of P™#* ig greater than the power demand W; at any time period ¢t € T, we set such a

value to 3W.

Moreover, we assume time horizons of length one, two or three weeks with time discretization
of 60 minutes (i.e., A = 1 and T" € {168,336,504}). The input values of the power demand, unit
energy price, and reward over the time horizon, are taken as average observed values. Our tests were

performed on 300 instances.

All tests were performed on a server computer with 4GB of RAM and 1 Intel Xeon 2.2GHz CPU.
The method used to solve the (OMBSR-MILP) and (OMBSR-MILP’) formulations is the branch-
and-bound implemented in CPLEX 12.9, with default settings. The running time is limited to 30
minutes for each instance. We limited the running time to 30 minutes because no significant gains
were observed when running some instances for 3 hours, i.e., for those instances, we observe solutions
that give on average 0.114% more savings when the running time is extended. Moreover, the optimality
gap decreases on average by 19% when the running time is set to 3 hours (i.e., it decreases on average

from 50.84% when running time is set to 30 min to 40.53% with running time set to 3 hours).

4.5.1.1 Parameters tuning

The way the parameters values of OMBSR-HEU are set is based on the real observed data for the
instances considered in our testbed. Firstly, we observed a daily periodicity in the energy prices and
power demand over the time horizon. Figures[4.7] and illustrate such a periodicity for a site over
a week. We observe that the energy usually costs more in the afternoon which is also the period of
the day with the highest power demand. In addition, the energy tends to cost less during the night
following which is also the period where the power demand decreases. Hence, using batteries in the

day and recharging them during the night appears to be the best strategy to reduce the total energy
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cost for the company. Secondly, by analyzing the properties of the batteries we observe that they can
be used for 9 hours on average and they need about 17 hours on average to be fully recharged. Hence,

a complete battery cycle takes 26 hours on average.

Finally, for the graph based heuristic we consider the parameters v = 48 (we have that 26 < 48 <
24 4+ 26 = 50) and 7' = 24 due to the daily periodicity observed. The value of the parameter v = 48
is chosen because a complete cycle can be done in any time period of the periodicity of 24 hours. As
close 7 is to 50, more flexibility on the use of the batteries is allowed. The same periodicity is observed

for all sites over a week.

4.5.2 Numerical results

In this section we present the results concerning OMBSR instances solved with OMBSR-MILP, OMBSR-
MILP’, OMBSR-G-HEU and OMBSR-RF-HEU. A detailed version of the experiments is available in (Silva,

2021)). The experimental analysis will be provided in the next section.

Table shows the numerical results concerning OMBSR, instances solved with OMBSR-MILP. In
this table, each row stores the average of the results for a subset of instances, grouped by the number | 5|
of batteries installed in the site and by the number of weeks considered. Column W rand corresponds
to the randomness variation in the power demand of instances. Column Stand. Cost corresponds to
the average of the standard cost, i.e., the cost when no battery is used, equal to >, F;W;. Column
W and Ppg report the mean of W and Pg, respectively. Besides, the average running time, given
in seconds, and the average reduction in the total energy cost, given in %, are provided in columns
CPU Time and savings. In addition, column Final GAP reports the average optimality gap, i.e., the
relative gap between the value of the best integer solution obtained by CPLEX and the best lower
bound computed. Column LR savings and GAP at root reports the average savings achieved by

the continuous relaxation, and the average optimality gap reached at the root of the branch and bound
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tree, respectively. Furthermore, columns Nb of Var, Int Var and Nb of Const. report the mean

number of variables, the mean percentage of integer variables and the mean number of constraints,

respectively.
Table 4.1 — OMBSR-MILP results
W Stand. W Pp CPU Final LR GAP | Nbof | Int | Nb of
rand v | /4 Cost (kW) | (kW) | Time (s) | GAP | savings | savings | at root | Var | Var | Const.
0% 1 1 634.6 € 3.74 | 0.78 341 | 0.1% | 2.45% | 4.08% 69% | 1176 | 43% 2523
0% 1 2 585.1 € 3.45 | 0.39 1800 | 33.8% | 2.50% | 4.19% 107% | 2184 | 46% 4710
0% 1 3 585.3 € 3.45 | 0.23 1800 | 41.7% | 2.41% | 4.02% 134% | 3192 | 47% 6897
0% 1 4 713.2 € 4.20 | 0.22 1800 | 49.9% | 2.30% | 3.99% 144% | 4200 | 48% 9084
0% 1 5 507.4 € 2.99 | 0.14 1800 | 54.3% | 2.44% | 4.27% 180% | 5208 | 48% | 11271
0% 2 1]1269.8 € 3.74 | 0.78 1800 | 36.3% | 2.48% | 4.23% 127% | 2352 | 43% 5043
0% 2 2111699 € 3.45 | 0.39 1800 | 52.8% | 2.51% | 4.35% 132% | 4368 | 46% 9414
0% 2 3111695 € 3.44 | 0.23 1800 | 64.6% | 2.31% | 4.17% 163% | 6384 | 47% | 13785
0% 2 414265 € 4.20 | 0.22 1800 | 68.2% | 2.26% | 4.13% 165% | 8400 | 48% | 18156
0% 2 5(1017.6 € 3.00 | 0.14 1800 | 73.8% | 2.35% | 4.42% 183% | 10416 | 48% | 22527
0% 3 1]1904.8 € 3.74 | 0.78 1800 | 47.2% | 2.48% | 4.28% 126% | 3528 | 43% 7563
0% 3 217528 € 3.44 | 0.39 1800 | 65.0% | 2.45% | 4.40% 142% | 6552 | 46% | 14118
0% 3 317537 € 3.44 | 0.23 1800 | 70.2% | 2.31% | 4.22% 172% | 9576 | 47% | 20673
0% 3 4121400 € 4.20 | 0.22 1800 | 72.4% | 2.26% | 4.18% 181% | 12600 | 48% | 27228
0% 3 51| 1527.6 € 3.00 | 0.14 1800 | 79.0% | 2.34% | 4.46% 239% | 15624 | 48% | 33783
25% 1 1 634.6 € 3.74 | 0.78 1560 | 39.5% | 2.28% | 3.98% 116% | 1176 | 43% 2523
25% 1 2 585.1 € 3.45 | 0.39 1459 | 35.1% | 2.53% | 4.33% 142% | 2184 | 46% 4710
25% 1 3 585.3 € 3.45 | 0.23 1483 [39.3% | 2.51% | 4.28% 161% | 3192 | 47% 6897
25% 1 4 713.2 € 4.20 | 0.22 1545 | 36.3% | 2.30% | 3.90% 137% | 4200 | 48% 9084
25% 1 5 507.4 € 2.99 | 0.14 1800 | 50.4% | 2.52% | 4.37% 195% | 5208 | 48% | 11271
25% 2 1]1269.8 € 3.74 | 0.78 1800 | 64.8% | 2.23% | 4.12% 114% | 2352 | 43% 5043
25% 2 211699 € 3.45 | 0.39 1800 | 62.3% | 2.45% | 4.49% 210% | 4368 | 46% 9414
25% 2 3111695 € 3.44 | 0.23 1800 | 64.3% | 2.43% | 4.44% 159% | 6384 | 47% | 13785
25% 2 4114265 € 4.20 | 0.22 1800 | 63.7% | 2.21% | 4.05% 167% | 8400 | 48% | 18156
25% 2 5]11017.6 € 3.00 | 0.14 1800 | 72.0% | 2.41% | 4.52% 174% | 10416 | 48% | 22527
Table 4.2 — OMBSR-MILP with a warm-up results

w Stand. w CPU Final . CPU Time | Final GAP savings
rand st | {12 Cost (kW) Time (s) | GAP SAVINES | Warmed (s) Warmed Warmed
0% 1 1 634.6 € 3.74 341 0.1% 2.45% 618 0.5% 2.45%
0% 1 2 585.1 € 3.45 1800 | 33.8% 2.50% 1 800 33.0% 2.50%
0% 1 3 585.3 € 3.45 1800 | 41.7% 2.41% 1 800 41.7% 2.40%
0% 1 4 713.2 € 4.20 1800 | 49.9% 2.30% 1 800 52.0% 2.28%
0% 1 5 507.4 € 2.99 1800 | 54.3% 2.44% 1 800 54.4% 2.43%
0% 2 1] 12698 € 3.74 1800 | 36.3% 2.48% 1 800 37.0% 2.48%
0% 2 2 | 1169.9 € 3.45 1800 | 52.8% 2.51% 1 800 57.3% 2.44%
0% 2 3|1 1169.5 € 3.44 1800 | 64.6% 2.31% 1 800 65.1% 2.31%
0% 2 4| 14265 € 4.20 1800 | 68.2% 2.26% 1 800 74.5% 2.18%
0% 2 5| 1017.6 € 3.00 1800 | 73.8% 2.35% 1 800 73.1% 2.37%

Table [£.2] stores the numerical results concerning the OMBSR instances solved with OMBSR-MILP
with a warm-up, i.e., when the solution from OMBSR-RF-HEU is given to CPLEX as a starting solution.
In this table, each row stores the average of the results for a subset of instances, grouped by the number

|B| of batteries installed in the site and by the number of weeks considered in the optimization. Column
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W rand corresponds to the randomness variation in the power demand of instances. Column Stand.
Cost corresponds to the average of the standard cost, i.e., the cost when no battery is used, equal to
> e EtWi. Column W reports the mean of W. Besides, the average running time, given in seconds,
and the average reduction in the total energy cost, given in %, when (OMBSR-MILP) is solved without
a warm-up are provided in columns CPU Time and savings. In addition, column Final GAP reports
the value of the average optimality gap, i.e., the relative gap between the value of the best integer
solution obtained by CPLEX and the best lower bound computed, when (OMBSR-MILP) is solved
without a warm-up. Column CPU Time Warmed, Final GAP Warmed and savings Warmed report
the mean CPU time, given in seconds, the mean optimality gap and the mean savings obtained when
(OMBSR-MILP) is solved with a warm-up, respectively. Note that columns CPU Time and Final GAP
are the same ones presented in Table

Table 4.3 — OMBSR-MILP’ numerical results

W Stand. W C.PU Final LR GAP* Nb Nb of | Int | Nb of
rand e | /4] Cost (kW) T(I;r)le GAP | savings | savings | at root | of Pairs | Var Var | Cons.
0% 1] 1 634.6 € 3.74 | 1090 1.5% | 2.45% | 4.08% 1% 14112 | 15120 | 96% 2522
0% 1] 2 585.1 € 3.45 | 1 800 42.3% | 2.52% | 4.19% 86% 14112 | 30072 | 96% 4708
0% 1 3 585.3 € 3.45 | 1 800 52.3% | 2.39% | 4.02% 110% 14112 | 45024 | 96% 6894
0% 1| 4| 7132 € 4.20 | 1 800 67.4% | 2.21% | 3.99% | 127% 14112 | 59976 | 96% 9080
0% 1] 5 507.4 € 2.99 | 1800 | 1252.3% | 1.69% | 4.27% | 109% 14112 | 74928 | 96% | 11266
0% 2| 1]12698¢€ 3.74 - - - - - 56448 | 58464 | 98% 5042
0% 2| 2]11699 € 3.45 - - - - - 56448 | 116592 | 98% 9412
0% 2| 3]11695€ 3.44 - - - - - 56448 | 174720 | 98% | 13782
0% 2| 414265 € 4.20 - - - - - 56448 | 232848 | 98% | 18152
0% 2| 5]10176 € 3.00 - - - - - 56448 | 290976 | 98% | 22522
0% 3| 1]1904.8 € 3.74 - - - - - | 127008 | 130032 | 98% 7562
0% 3| 217528 € 3.44 - - - - - | 127008 | 259560 | 99% | 14116
0% 3| 3|1753.7¢€ 3.44 - - - - - | 127008 | 389088 | 99% | 20670
0% 3 412140.0 € 4.20 - - - - - | 127008 | 518616 | 99% | 27224
0% 3| 5]15276¢€ 3.00 - - - - - | 127008 | 648144 | 99% | 33778
25% 1] 1 634.6 € 3.74 | 1 600 56.2% | 2.20% | 3.98% 86% 14112 | 15120 | 96% 2522
25% 1 2 585.1 € 3.45 | 1521 44.9% | 2.48% | 4.33% 118% 14112 | 30072 | 96% 4708
25% 1] 3] 58.3€ 3.45 | 1595 69.2% | 2.30% | 4.28% 64% 14112 | 45024 | 96% 6894
25% 1| 4 713.2 € 4.20 | 1640 53.8% | 2.20% | 3.90% 99% 14112 | 59976 | 96% 9080
25% 1] 5 507.4 € 2.99 | 1800 69.6% | 2.41% | 4.3™% | 103% 14112 | 74928 | 96% | 11266
25% 2| 1/12698 € 3.74 - - - - - 56448 | 58464 | 98% 5042
25% 2| 2]11699 € 3.45 - - - - - 56448 | 116592 | 98% 9412
25% 2| 3]|1169.5€ 3.44 - - - - - 56448 | 174720 | 98% | 13782
25% 2 411426.5 € 4.20 - - - - - 56448 | 232848 | 98% | 18152
25% 2| 5]10176¢€ 3.00 - - - - - 56448 | 290976 | 98% | 22522
25% 3] 1119048 € 3.74 - - - - - | 127008 | 130032 | 98% 7562
25% 3| 2]17528¢€ 3.44 - - - - - | 127008 | 259560 | 99% | 14116
25% 3| 3]1737¢€ 3.44 - - - - - | 127008 | 389088 | 99% | 20670
25% 3| 4]2140.0 € 4.20 - - - - - | 127008 | 518616 | 99% | 27224
25% 3| 5]15276¢€ 3.00 - - - - - | 127008 | 648144 | 99% | 33778

Table [4.3] stores the numerical results concerning the OMBSR instances solved with OMBSR-MILP’.
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In this table, each row stores the average of the results for a subset of instances, grouped by the number
|B| of batteries installed in the site and by the number of weeks considered in the optimization. Column
W rand corresponds to the randomness variation in the power demand of instances. Column Stand.
Cost corresponds to the average of the standard cost, i.e., the cost when no battery is used, equal to
> e EtWi. Column W reports the mean of W. Besides, the average running time, given in seconds,
and the average reduction in the total energy cost, given in %, are provided in columns CPU Time and
savings, respectively. In addition, column Final GAP reports the value of the average optimality
gap, i.e., the relative gap between the value of the best integer solution obtained by CPLEX and the
best lower bound computed. Column LR savings and GAP* at root reports the average savings
achieved by the continuous relaxation, and the average optimality gap reached at the root of the
branch and bound tree, respectively. Note that for some instances a feasible solution was not reached
at the root of the branch and bound tree. Furthermore, columns Nb of Pairs, Nb of Var, Int
Var and Nb of Const. report the mean number of pairs (f,!) in (OMBSR-MILP’), the mean number
of variables, the mean percentage of integer variables and the mean number of constraints, respectively.
Note that such tests were performed only for instances optimized over one week. For instances with

two or three weeks the creation time takes more than 30 minutes.

Table 4.4 — OMBSR-G-HEU numerical results

- (48.24) (36.12) (24.12)
A AR
Time (s) Time (s) Time (s)
0% 1 1 634.6 € 3.74 2 2.19% 3 2.07% 2 1.60%
0% 1 2 585.1 € 3.45 8 2.44% 6 2.24% 4 1.96%
0% 1 3 585.3 € 3.45 41 2.36% 15 2.14% 7 1.86%
0% 1 4 7132 € 4.20 193 2.29% 59 2.11% 11 1.85%
0% 1 5 507.4 € 2.99 252 2.45% 125 2.24% 17 2.04%
0% 2 1] 12698 € 3.74 4 2.23% 6 2.12% 5 1.69%
0% 2 2| 1169.9 € 3.45 16 2.41% 13 2.27% 9 1.97%
0% 2 311695 € 3.44 81 2.36% 30 2.18% 14 1.88%
0% 2 4| 14265 € 4.20 390 2.29% 119 2.14% 22 1.87%
0% 2 5| 1017.6 € 3.00 520 2.44% 229 2.29% 34 2.05%
0% 3 1| 19048 € 3.74 7 2.22% 8 2.21% 7 1.70%
0% 3 2| 17528 € 3.44 25 2.41% 20 2.36% 14 1.96%
0% 3 3| 1753.7€ 3.44 123 2.36% 48 2.27% 22 1.89%
0% 3 4 | 2140.0 € 4.20 580 2.29% 196 2.22% 34 1.86%
0% 3 5| 1527.6 € 3.00 791 2.44% 375 2.38% 53 2.05%
25% 1 1 634.6 € 3.74 125 2.25% 81 2.09% 9 1.79%
25% 1 2 585.1 € 3.45 81 2.43% 27 2.27% 8 1.97%
25% 1 3 585.3 € 3.45 163 2.48% 73 2.22% 12 1.83%
25% 1 4 713.2 € 4.20 81 2.18% 27 2.02% 7 1.71%
25% 1 5 507.4 € 2.99 173 2.48% 65 2.32% 13 2.08%
25% 2 1| 12698 € 3.74 260 2.23% 158 2.11% 17 1.82%
25% 2 2 | 1169.9 € 3.45 173 2.44% 55 2.29% 17 2.02%
25% 2 3| 1169.5 € 3.44 343 2.45% 130 2.27% 25 1.92%
25% 2 4 | 14265 € 4.20 170 2.19% 54 2.05% 14 1.73%
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Table 4.4 continued from previous page
= (48.24) (36.12)

(24.12)

o T | o [ &80 [ | &0 T [0 Tan
Time (s) Time (s) Time (s)
25% 2 51| 1017.6 € 3.00 352 2.48% 129 2.31% 26 2.10%
25% 3 1| 1904.8 € 3.74 397 2.23% 254 2.18% 26 1.82%
25% 3 2| 17528 € 3.44 265 2.45% 92 2.39% 26 2.03%
25% 3 3| 1753.7€ 3.44 514 2.46% 211 2.37% 37 1.95%
25% 3 4 | 2140.0 € 4.20 262 2.17% 90 2.14% 21 1.75%
25% 3 5 | 1527.6 € 3.00 548 2.47% 210 2.43% 39 2.10%

Table [4.4] stores the numerical results concerning the OMBSR instances solved with OMBSR-G-HEU
considering the parameters (v,7") € {(48,24),(36,12),(24,12)}. In this table, each row stores the
average of the results for a subset of instances, grouped by the number |B| of batteries installed in the
site and by the number of weeks considered in the optimization. Column W rand corresponds to the
randomness variation in the power demand of instances. Column Stand. Cost corresponds to the
average of the standard cost, i.e., the cost when no battery is used, equal to > ;. E;W;. Column W
reports the mean of W. Besides, the average running time, given in seconds, and the average reduction

in the total energy cost, given in %, are provided in columns CPU Time and savings for each pair of

values (,v') considered, respectively.

Table 4.5 stores the numerical results concerning the OMBSR instances solved with OMBSR-RF-HEU
considering the parameters (0,d’) € {(48,24), (24,12)}. In this table, each row stores the average of
the results for a subset of instances, grouped by the number |B| of batteries installed in the site and by
the number of weeks considered in the optimization. Column W rand corresponds to the randomness
variation in the power demand of instances. Column Stand. Cost corresponds to the average of the
standard cost, i.e., the cost when no battery is used, equal to > ;.7 E;W;. Column W reports the
mean of W. Besides, the average running time, given in seconds, and the average reduction in the

total energy cost, given in %, are provided in columns CPU Time and savings for each pair of values

(6,0") considered, respectively.

Table 4.5 — OMBSR-RF-HEU numerical results

W Stand. W (48.24) (48.24) (24.12) (24.12)

rand e Cost (kW) CPU savings CPy savings
Time (s) Time (s)

0% 1 1 634.6 € 3.74 4 2.14% 2 2.02%

0% 1] 2 585.1 € 3.45 76 | 2.22% 7| 2.18%

0% 1] 3 585.3 € 3.45 340 | 2.13% 17 | 1.99%

0% 1 4 713.2 € 4.20 792 | 2.10% 89 | 1.96%
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Table 4.5 continued from previous page

W Stand. W (48.24) (48.24) (24.12) (24.12)
rand wesls | 4] Cost (kW) CPU savings CPU savings
Time (s) Time (s)
0% 1 ) 507.4 € 2.99 854 | 2.27T% 161 | 2.16%
0% 2 1112698 € 3.7 10 | 2.07% 8| 2.15%
0% 2 211169.9 € 3.45 243 | 2.16% 26 | 2.27%
0% 2 311169.5 € 3.44 759 | 2.09% 67 | 2.17%
0% 2 4| 1426.5 € 4.20 1211 2.01% 304 | 2.08%
0% 2 5(11017.6 € 3.00 1299 | 2.23% 642 | 2.27%
0% 3 11]11904.8 € 3.74 22 | 2.20% 19 | 2.25%
0% 3 217528 € 3.44 409 | 2.28% 65 | 2.34%
0% 3 311733.7€ 3.44 1249 | 2.24% 153 | 2.26%
0% 3 41 2140.0 € 4.20 1777 | 2.14% 594 | 2.17%
0% 3 51 1527.6 € 3.00 1800 | 2.32% 1063 | 2.34%
25% 1 1 634.6 € 3.7 413 | 2.09% 109 | 1.99%
25% 1 2 585.1 € 3.45 402 2.25% 34| 218%
25% 1 3 585.3 € 3.45 542 | 2.28% 85 | 2.16%
25% 1 4 713.2 € 4.20 349 | 2.04% 42 1.94%
25% 1 5 507.4 € 2.99 703 | 2.32% 105 | 2.27%
25% 2| 112698 € 3.74 779 | 1.98% 343 | 2.04%
25% 2 2111699 € 3.45 683 | 2.20% 118 | 2.31%
25% 2 311169.5 € 3.44 883 | 2.23% 301 | 2.29%
25% 2 4| 1426.5 € 4.20 700 1.96% 140 | 2.01%
25% 2 511017.6 € 3.00 1156 | 2.25% 385 | 2.33%

4.5.3 Experimental analysis

In the following we analyse the results presented in the previous section.

We begin by focusing on the running time and observe a significant impact of the number of time
periods and number of batteries installed on the performance of all algorithms. Indeed, we observe
that the size of the problem increases as the number of batteries installed and the number of time

periods increase.

Concerning OMBSR-MILP, optimal values are obtained only for 19 instances where sites have a single
battery with a week time horizon, corresponding to 7.6% of all the tested instances. For all other
instances, no optimality guarantee is observed within the CPU time limit. Moreover, the optimality
gap observed is significant, varying from 33.8% on average for instances where the site is equipped

with 2 batteries for a one-week time horizon, up to 79% on average for larger instances where the site
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is equipped with 5 batteries for a three-week time horizon. However, the best solution found gives a
reduction in the energy bill (2.38% on average) even for the instances with no optimality guarantee.
In addition, the optimality gap found at the root of the branch and bound tree is higher than the final
optimality gap obtained (153% and 54%, respectively), which shows that CPLEX is able to improve
the bounds over the iterations. We observe that 57.9% of instances solved to optimality have a well
defined periodicity, i.e., with no randomness in the power demand. In addition, the average gap for
those instances is smaller compared to instances with power randomness of 25% (47.6% and 52.8% for
instances with one or two weeks, respectively). Hence, OMBSR-MILP tends to perform slightly better for
instances with no randomness in the power demand. In spite of the fact that the number of variables
and constraints grows linearly with the number of time periods, even for instances with a single
battery installed for which we can use the algorithm proposed in Chapter [3] to solve in polynomial
time, OMBSR-MILP cannot reach an optimality guarantee within the CPU time limit for instances with

a single battery for a two-week time horizon or more.

Supplementary results are displayed in Table for OMBSR-MILP when an initial solution is given
to CPLEX. In these tests, we set the initial solution as the solution obtained from OMBSR-RF-HEU.
We aim to analyze if CPLEX is able to obtain a first feasible solution or to converge to an optimal
solution. We tested only instances with one and two weeks time horizon with randomness of 0%, for a
total of 100 instances. We observe that the final solution obtained by CPLEX when an initial solution
is given is better than the ones with no initial solution for 48% of the instances tested. The solutions
obtained are 1.48% better on average. However, no optimality guarantee is obtained for any instance

tested that is not solved to optimality with no initial solution.

Concerning OMBSR-MILP’, only instances with one-week time horizon are tested. In this context,
optimal values are obtained only for 14 instances where the site has a single battery installed, corre-
sponding to 14% of all instances tested. For all other instances, no optimality guarantee is observed
within the CPU time limit. Moreover, the optimality gap observed is significant, varying from 1.5%
on average for some instances where the site is equipped with a single battery, up to 1250% on average
for larger instances where the site is equipped with 5 batteries. However, the best solution found gives
a reduction in the energy bill (2.29% on average) even for the instances with no optimality guarantee.
In addition, the optimality gap found at the root of the branch and bound tree is higher than the

final optimality gap obtained reached. However, no feasible solution is obtained at the beginning of
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the branch and bound method for some instances. Indeed, the values of Column Final GAP can
be higher than the values of Column GAP* at root because harder instances are not considered to
compute the value of Column GAP* at root. In fact, for instances with two-weeks time horizon, the
model takes too much time to be created because of the computation of the set C;. We can observe
that the number of variables and constraints increases much faster in (OMBSR — MILP') than in
the (OMBSR — MI1LP) model.

Concerning OMBSR-G-HEU, all instances with one, two or three weeks time horizon are solved in
less than 30 minutes. We also observe that the number of batteries installed and the number of time
periods have an impact on the running time. Instances with 4 or 5 batteries with three-weeks time
horizon require more computational effort because of the large number of sub-instances to be solved,
which are also harder to solve because of the combinatorial aspect related to the use of the batteries
installed. In addition, the parameters v and 4" impact the running time of each sub-problem obtained
and the number of sub-problems. In fact, with a small value of «, the number of sub-problems increases
but the running time required to solve each of one them decreases. Moreover, we observe that the
running time grows linearly with the number of time periods and quadratically with the number of

battery installed. Concerning +', the number of sub-problems to solve increases as 7' increases.

Concerning OMBSR-RF-HEU, 90% of all instances with one, two or three weeks time horizon tested
are solved in less than 30 minutes. Only instances with three-weeks time horizon with 5 batteries
could not be solved in 30 minutes. We also observe that the number of batteries installed and the
number of time periods have an impact on the running time. Instances with 4 or 5 batteries and
three-weeks time horizon require more computational effort because of the large number of iterations
needed to be performed, as Step 2 is slower because of the combinatorial aspect related to the use of
the batteries installed. In addition, the parameters § and ¢’ impact the running time of each iteration
and the number of iterations. We observe that the running time decreases as the values of § and ¢’
decrease. In fact, with a small value of § the number of iterations increases but the running time of
each one decreases because of the small number of integer variables considered at Step 2. Moreover,
the running time grows linearly with the number of time periods and quadratically with the number

of batteries installed.

Finally, to confirm the relevance of the approaches proposed, we illustrate in Fig. [£.9] the profile

of the best solution found by OMBSR-MILP in the case of Site 7, where 3 batteries are installed, and
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Figure 4.9 — Hlustration of the best solution found by OMBSR-MILP for an OMBSR instance with 3
batteries with a week time horizon. a) Energy stock in each battery, and b) Power demand and power
bought over the time horizon.

must be with one-week time horizon. The variety of the use of the batteries is observed in all other
sites for OMBSR-MILP, OMBSR-MILP’, OMBSR-G-HEU and OMBSR-RF-HEU. The power demand over the
time horizon is represented by the blue curve and the power effectively bought by the orange one
(see Fig. 4.9b). The energy capacity of each battery installed is represented by the curves in green,
purple, and yellow (see Fig. [4.9a). Firstly, we can observe that batteries can be used at different time
periods. In this context, their first use and recharge are performed together, but, in the following,
they are used independently from each other. Even during the same battery discharge, there can be
different powers, such as in the second use of Battery-3. Moreover, a battery can be in discharge mode
while another one is recharging (e.g., the third use of Battery-1 and Battery-3), and the impact on the
maximal number of battery uses imposed (i.e., N = 3) is observed for Battery-2, that stays a long
time in rest mode for this reason. In this example, the energy bill is reduced by 2.70%, confirming the
practical relevance of our approaches, and the large variety of battery uses illustrates the need for a

fast decision-making tool.

We now focus on the economic aspects of the solutions, and observe a reduction in the energy bill
for all solution approaches proposed, confirming that participating in the retail market can generate
savings for the company. Furthermore, no substantial gain is observed by increasing the number of
batteries installed in a site, since the sum of the powers of all batteries installed on the site is equivalent

to W, i.e., > opes Dy = W. Indeed, the savings obtained are mainly limited by the maximal number
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of battery uses and by the fact that the sum of the powers of all batteries installed is equivalent to
the average of its power demand. Moreover, the impact of N, in the savings is observed in all solving
methods. The number of times that each battery is used in any solution is exactly N, independently

of the solving method used.

Concerning the OMBSR-MILP results, the savings obtained by the best solution found are of 2.39%
on average for instances with one, two or three weeks time horizon. Even for instances with 5 batteries,
the savings are quite the same and the gap is the same on average, such as represented in Table
Furthermore, we observe similar savings and final gaps on average for instances with a randomness in
the power demand, for instances without randomness in the power demand and when an initial solution
is given to CPLEX. However, when exploring instances having up to 24 weeks such as presented by
Silva et al. (2022) for which results are available in (Silva, 2021), we can observe that the savings
obtained by the best solution found decrease significantly when the time horizon and the number of
batteries installed increase. Such savings decrease from 2.48% to 0.26%, on average, for large instances

with 24 weeks time horizon.

Concerning the OMBSR-MILP’ results, the savings obtained by the best solution found are slightly
smaller (2.28% on average) compared to the savings obtained by OMBSR-MILP. However, we can observe
that the difference of savings obtained with OMBSR-MILP’ and OMBSR-MILP grows with the number of
batteries installed. In fact, there is no substantial gain, neither in CPU time nor in the savings, that

justifies the use of OMBSR-MILP’ instead of OMBSR-MILP.

Concerning OMBSR-G-HEU, the savings obtained are higher compared to the savings obtained with
OMBSR-MILP as the number of batteries installed increases. For instances with a single battery installed
(for which optimality guarantee is obtained with OMBSR-MILP), savings obtained using OMBSR-G-HEU
are only 0.25% smaller on average for v = 48 and +' = 24, which seems acceptable for a heuristic that
performs 120 times faster, on average, for these instances. In addition, the parameters v and 7/ impact
the quality of the solutions obtained. We observe that large values of v contributes to better savings,
which is totally expected because, as v becomes smaller, the algorithm starts losing opportunities of
batteries usages that could give better savings. In our tests, the savings obtained with v = 48 and
v = 24 are larger (0.13% larger on average compared to v = 36 and 7/ = 12, and 0.45% larger on
average compared to v = 24 and 7' = 12), and the combination v = 24 and v’ = 12 is more sensitive

to variations in the power demand (we observe savings 0.12% larger with a randomness of 25%).
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Figure 4.10 — Tllustration of the best solution found by OMBSR-G-HEU for different values of v and ~/
for an OMBSR instance.

To illustrate the impact of the parameters v and +' on the savings that can be obtained for an
OMBSR instance, Figure provides the solution for different values of those parameters. In this
example, we consider a time horizon composed of 8 time periods and a constant power demand of 1kW.
In addition, only one battery is considered with D™ = Dmin — Pp — (0.5kW. In the first scenario
(i.e., scenario S1 for v = 4 and 7' = 4), only two sub-problems will be considered by OMBSR-G-HEU
(i.e., from time periods 1 to 4 and from 5 to 8). In both sub-problems, the optimal solutions consist
in not using the battery. Then, the saving obtained is 0. In the scenario 2 and 4 (i.e., scenario S2 for
v =4 and 7/ = 3 and scenario S4 for v = 2 and 7/ = 1), the sub-problems considered (i.e., from time
periods 1 to 4, 4 to 7, 7 to 8 for S2 and from time periods 1 to 2, 2to 3,3 to 4,4 to 5, 5to 6, 6 to 7 and
7 to 8 for S4) allow to use the battery at time period 4 and recharge it at time period 5, giving savings
of 0.5€ in both cases. In the third scenario (i.e., scenario S3 for v = 4 and +' = 2), the sub-problems
considered (i.e., from time periods 1 to 4, 3 to 6, 5 to 8 and 7 to 8) allow to use the battery at time
periods 3 and 4 by recharging it at time periods 5 and 6, giving savings of 1€. We can observe in this
example the impact of the energy prices, of the power demand and of the battery properties on the
solution obtained for the values of the parameters v and +/ that we consider. Indeed, for a given set of
parameters v and 7/, the solution obtained can be far from the optimal one in function of the energy
prices, power demand and batteries properties. To illustrate that, if an instance has high power prices
at the end of the time horizon of the sub-problems (i.e., scenario S2 of Figure , the gap from the
solutions obtained to the optimal one depends mainly on the energy prices, and hence we can have

potentially low savings. For this example, the gap from the optimal solution is (E4 — E5)Pp€, which
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(E4—FE5)Pp
E3+E,—Es—FEg)Pp )%

corresponds to (1 — 0

Concerning OMBSR-RF-HEU, the savings obtained are higher compared to the savings obtained with
OMBSR-MILP as the number of batteries installed increases. Moreover, for instances with a single battery
installed (for which optimality guarantee is obtained with OMBSR-MILP), savings obtained using OMBSR-
RF-HEU are only 0.31% smaller on average, which seems acceptable for a heuristic that performs 80
times faster, on average, for these instances. In addition, the parameters ¢ and ¢’ impact the quality of
the solutions obtained. We observe that large values of § contributes to better savings, which is totally
expected. Comparing the results obtained with OMBSR-G-HEU and OMBSR-RF-HEU, we can observe that
OMBSR-G-HEU gives better solutions (i.e., savings 0.15% larger on average) for the instances tested.

Moreover, we can observe that, even if both heuristics yield good savings, OMBSR-G-HEU performed 3

times faster on average than OMBSR-RF-HEU for the instances tested.

4.6 Conclusion

This chapter addresses the impact of managing multiple batteries. In particular, we have considered
the OMBSR problem that consists in optimizing the management of a multi-battery energy storage
system in order to reduce the total energy costs, by participating in the demand response mechanism
performing exclusively peak-shavings. We proposed two mixed-integer linear programs, and any of
their optimal solutions provides a strategy for using the batteries so as to reduce as much as possible
the total energy cost. We have shown that the OMBSR problem is NP-Hard, and two heuristics are
proposed to solve large-scale instances. Moreover, we have used these approaches to solve OMBSR. on

realistic instances.

As a result, we firstly observe that using batteries installed for backup to perform peak-shavings can
generate savings. Concerning the solving approaches, we observe in particular that both mathematical
models could achieve an optimality guarantee only for a small part of the instances within the time
limit. However, even for instances without such an optimality guarantee, the best solution obtained
already generates savings. The number of times that each battery can be used seems to be the
parameter that has the greatest impact on those savings. Indeed, the number of times that each
battery b is used in any solution is exactly Ny, independently of the solving method used. In contrast,

no substantial gain was observed by increasing the number of batteries available (since the sum of
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the powers D™ of all batteries is equivalent to the average power demand), the time horizon or
the average power demand, i.e., the value of W. However, the use of multiple batteries is desirable
for safety reasons and to increase the lifetime of the batteries. Concerning the heuristics, the results
obtained proved their economical relevance, by providing better solutions compared to the best ones
obtained by the mixed-integer linear programs on large-scale instances. Furthermore, OMBSR-G-HEU
proved to be more efficient for instances with a well defined periodicity in the power demand and

prices, while OMBSR-RF-HEU proved to be more efficient for the general case.

Concerning the performance of our algorithms, we observe that the number of batteries installed
and the time horizon are the parameters that have the most impact on the solving time. We consider
a time limit of 30 minutes for solving each instance, and, in this aspect, the heuristics proved to be
computationally efficient, while we observe that the solving time for the mixed-integer linear programs

proposed increases fast.

In the following, we will explore the management of multiple batteries that are used to perform
load curtailments, and reuse some of the algorithms and methods proposed in this chapter to develop
fast solving approaches. Local search approaches could also be used to solve instances with periodicity

in the data (for instance, in the power demand), such as the ones that we have considered.
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Chapter 5

Optimization of a multi-battery storage
system to participate in the energy markets

In this chapter, we consider the complete problem of this thesis which is optimizing total energy
costs of telecommunications sites using batteries installed for backup to participate in the energy
market using proper battery management. We extend the problem defined in Chapter [3| to a multi
site setting where the batteries are allowed to perform peak-shavings as well as load curtailments.
However, contrary to the problem treated in Chapter [4], each site is equipped with a single battery,

which is the case of the French telecommunications operator Orange.

Formally, the problem treated in this chapter is the Optimization of a Multi-Battery Storage system
in order to participate in the Energy market (referred to as OMBSE), in order to reduce the total
energy cost for the company. The main issue is to respect the market rules and the safety usage rules

while minimizing the net total energy cost by performing peak-shavings and load curtailments.

Concerning the scientific contributions, we formally define the problem and we present two math-
ematical programming models for OMBSE in Section We also proof in Section that the
OMBSE problem is strongly NP-Hard, via a reduction from the 3-Partition problem. In the following,
we propose two solving heuristics for the problem: firstly we present in Section a bidimensional
relax-and-fix based on the solving approach presented in Section and then, in Section a de-
composition solving method based on a Lagrangian relaxation and on the subgradient method that

integrates the approach proposed in Chapter 3] We also performed numerical experiments with real-
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istic instances that are provided in Section [5.6]
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5.1. PROBLEM STATEMENT

5.1 Problem statement

We consider a deterministic framework, extending to the one considered in Chapter [3] to a multi
site setting composed by a set of telecommunication sites S, each equipped with a single battery. Each
site s in S has a power demand W, given in kW, for each time period ¢ € 7, and the limit of power
Pnax given in kW, that can be bought at any time period. The power cost F; is the same for all sites

at each time period t € T.

Concerning the battery assets, each site is equipped with a single battery. Since each site is
equipped with only one battery, we denote by bs the battery installed at site s. Indeed, each battery
bs of each site s € § is defined by the parameters Bg’:in, By, PBbS,D{Em andDy** as described in
Chapter 3] and by N;, as described in Chapter [4, and is subject to the same usage rules[RIJR6| defined
in Section [L.3]

Concerning the energy market, the same rules apply. In addition to these rules, the number
of curtailments that can be performed over the horizon is limited by a given number N¢ imposed by

the transmission system operator (RTE-Portal)) (i.e., rule [R10].

Since batteries from multiple sites will be used to perform the same load curtailment, the customer

must reduce the total power bought from the distributor by Pro over all sites together (i.e., the

max

maxX can be purchased from the distributor considering all sites together

maximum amount of power p
at each time period during a load curtailment c¢). Hence, the value of w, for a curtailment ¢, which

starts at the time period f. and ends at the time period [., is thus computed as follows:

Zses(Ef;fc Wit + s f.-1)
lc - fc + 2

c =

(5.1)

Note that Equation (5.1]) is valid for all sites, including the ones for which the battery installed is
not used during a load curtailment (i.e., even if the battery of a site is recharging, the power bought
max

by the corresponding site will be considered in the computation of w.). The computation of p*®* is

the same one as in Equation (3.2]).

Recall that our goal is to use the batteries while respecting the electricity markets rules and keeping
the network safe (i.e., respecting the battery safety usage rules), at minimal cost. As described in

Chapter [3| the total amount of energy savings consists of two parts. The first part is provided by
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5.2. MATHEMATICAL FORMULATION

the difference between the energy prices during a battery use and its recharge, and the second one
by the reward paid the minimal reduction Pro during each load curtailment. Note that, differently
from Chapter |3 the reward paid by the transmission system operator is not related to the total load
reduction, but only to the power contractualized. The customer can reduce more than Pro if the
difference of energy prices between the duration the curtailment and the recharge of the battery is
profitable. The reward policy considered to compute this second part is the First Time Reward (FTR),

which is the reward policy in the French context.

The problem stated above is referred to as OMBSE in the following, and any of its instances is
fully described by the following parameters (some of which are vectors or sets): W, A, E, Pm S/
pwin pmax . pp - pmin . pmax N AminG Amax - poo - RN¢ and the reward policy (represented by
a boolean value). The same safety usage rules and energy market rules as the ones

defined in Section [1.3] are taken into account.

5.2 Mathematical formulation
5.2.1 Mixed-integer nonlinear program

The formulation that models OMBSE described in this section is a mixed-integer nonlinear program
that will be referred to as (OMBSE-MINLP). Similarly to (OBSC-MINLP), we will consider the same
set C and we are looking for a set of curtailments (f.,l., d.) that can be performed without conflict,

max oD and u? used

while minimizing the total energy cost. Hence, the same family of variables z, y, p
in the model (OBSC-MILP) presented in Section is considered. In addition, since the batteries
can also be used to reduce the total energy cost by performing peak-shavings when they are not

bsta'rt

being used to perform load curtailments, the same families of variables z and used in the model

(OMBSR-MILP’) presented in Section to compute the number of times that each battery is used

are necessary.
Decision Variables

Firstly, a solution is determined by the values of the following variables:

- Tyt € [Bgrslin, Bp**], Vs € §, Vt € T: amount of energy, in kWh, available in the battery bs of

each site s at the beginning of each time period ¢. An additional variable x3, ;1 represents the
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energy stock at the end of the planning horizon.

The following binary variables are used to control which curtailments are performed as described

in Chapter 3}

- y. € {0,1}, Ve € C: equal to 1 if a curtailment ¢ starting at time period f. and ending at time

period [, is performed, and to 0 otherwise.

- pex >0, Ve € C: maximum amount of power (in kW) that can be bought at each time period
t € {fe,...,lc}, if a curtailment c¢ starting at time period f. and ending at time period . is

performed.

Note that variables z are related to peak-shavings, and variables y to the curtailments. Hence, the
batteries can be used when no curtailments are performed (i.e., the case where the values of variables
y are equal to 0 and the values of variables z for some batteries are set to 1). In the same vein, if a
curtailment is performed (i.e., the value of some variable y is equal to 1), a subset of batteries must

be in discharge mode (i.e., the values of variables z are equal to 1).

The following additional variables are used to control the state of each battery bs:

- zpt €4{0,1},Vs € S, Vt € T: equal to 1 if the battery installed at site s is in discharge mode at

time period ¢, and to 0 otherwise;

- bizft"t € {0,1},Vs € S, Vt € T: equal to 1 if the battery installed at site s starts being discharged

at time period ¢, and to 0 otherwise.

Note that variables z and b9 are necessary to compute how many times each battery is used, as in

Chapter [4] because the batteries can also be used to perform peak-shavings.

To model the power bought at each time period ¢, the following variables are used:

- ub, € [0,W,,],Vs € S,t € T: power bought for the demand consumption of the site s at time
period ¢ (in kW);

- uf; 1 € [0, PBbS},Vs € S, t € T: power bought for the recharge of the battery installed at site s
at time period t (in kW).
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Note that, the total power load reduction d. after the curtailment ¢ has been performed is given

by the sum of the difference of p®* and the power bought at each site s at time t (i.e., ubB; T ugt)

for each t between the beginning of period f. and the end of period ..

The objective function is defined as follows:

min Z E, Z(uﬂt + ugt) - Z yeRs Pro(le — fo+ 1) (5.2)
teT  seS ceC

The objective function is composed of two parts: the first one corresponds to the total energy cost
spent on purchasing energy, and the second one to the reward received for each curtailment performed.
A solution is given by the energy stock of the batteries at each time period (the values of the x_;

variables) and by the curtailments performed (the values of the y. variables).

The following constraints define the state of each battery at each time period t:

Thot — oy 1 < ADp 25, 4 VseS,Vte T (5.3)

— Tp, ¢t =+ Ty t+1 < APBbS (1 — zbs’t) — ADgzianS¢ Vs € S,Vt cT (54)

Constraints ([5.3)) guarantee that, if the energy stock of a battery decreases, then the battery is in
discharge mode, i.e., 2, + = 1. Constraints (5.4]) ensure that, if the energy stock of a battery increases,
then this battery cannot be in discharge mode, i.e., 2 + = 0. Moreover, Constraints (5.3) guarantee

a maximum power discharge per time period of Dy’** when the battery is in discharge mode.

In the same vein, Constraints (5.5) and (5.6) ensure that bnglt” = 1 if the battery of the site s

starts being discharged at time period t.
bpt’ = 2t = 2,01 Vs e S,vt e T\{1} (5.5)
Dhty = 2buta Vse S (5.6)

Constraints (5.7)) guarantee that the battery of each site s can start being discharged only if it is fully
charged (and hence together with Constraints (/5.8]) that the battery starts being recharged immediately

after each use, up to its maximum capacity):
Bé‘:axbiz‘f[t < Tyt VseS,Vte T (5.7)

The power purchased in the retail market at each time period ¢ is the sum of the power bought for

charging the batteries (3 ,cg ub'i +) and the power bought for consumption (3> .cs ugt) of all sites,
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which is ensured by the following constraints:

u{z’t = (1 = 2z, ¢) min(By™ /A — my, /A, Pp, , P — W) VseS,Vte T (5.8)
Ty 441 — Thyt = Aulit + Augt — AW, VseS,VteT (5.9)
Wi(1—2zp, 1) < ugt Vs € §,Vt € T (5.10)

The power bought for charging each battery is min(Pp, , P;"** — W) when it is possible to buy
energy (i.e., if 2, ; = 0), if the capacity of the battery is not exceeded (see Constraints ) Note
that several batteries can be used at the same time: some of them can be in discharge mode and
others recharging. Since no losses are considered, the energy stock balance of each battery is ensured
by Constraints . Moreover, Constraints impose a maximum power discharge rate of the
battery at the same time period equal to the power demand W, ; and Constraints ([5.10|) guarantee
that if the battery is not used (i.e. 2, = 0), the power bought for consumption is equal to the power
demand Wy;. In addition, together with Constraints and , Constraints and
ensure that the battery can have the same energy stock during two consecutive time periods only if
the battery is fully charged, otherwise a minimal discharge of Dg;in (if zp, + = 1) or a recharge of ub'i t
(if zp,+ = 0) is imposed.

If a curtailment ¢ = (f., l.) is being performed at a time period ¢, Constraints ([5.11]) guarantee that

max

wa% imposed on such a curtailment in each

the total power bought from the market respects the limit p
time period between f. and [.. The value of p*®* is provided by Constraints ([5.12)). Constraints (/5.13))

C

guarantee that at most one curtailment is performed at each time period.

Sl uf )<Y PP =Dy + Y yept™ vt e T (5.11)
SES SES ceCy ceCy
S ses(Xhm sy Waw + To, g /A — 2y, 1/ A
pglax — maX(O, SGS( tffc 1 Syt 7f/ 7f / ) - PTO) VC E C (512)
le — fe+2

dwe<l vte T (5.13)
ceCy

The network capacity is modeled by Constraints ((5.14)).
ug, 4 + uly < PP VseSVte T (5.14)
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Furthermore, Constraints ([5.15]) guarantee that the battery of each site s will be used at most N,
times over the time horizon, while Constraint (5.16)) limits the maximum number of curtailments that

can be performed. In addition, Constraints (5.17)) express the limit conditions.

Dbt < N, Vs €S (5.15)
teT
> ye < N° (5.16)
ceC
Loty = Toutry, = By, VseS (5.17)

Finally, the domains of the variables are:

ye € {0,1},p™ e R VeeC (5.18)
uly € 10, Wyl uf , €0, Pg, |, w0 € [B™, B, 2,4 € {0, 1}, 55'%" € {0,1} VseS,VteT
(5.19)

The obtained model (5.2))-(5.19) is non-linear. However, it can be linearized following the ap-
proach proposed by McCormick (1976]). The resulting linear model (referred to as (OMBSE-MILP))
is provided in Section [5.2.2]

5.2.2 Linearization of the mathematical model

The first non-linearity treated is between a binary and a float variable, linearized using McCormick
strategy as described in Section In the model —, they correspond to the products
Tp, tYe and zp, p2p, ¢ (With ap 4 € [O,B{f:ax]) in and , respectively. We need to introduce
two new families of variables: lin_zyy , forallcinC, sin S, ¢ in {fe — 1, fc} to linearize , and
lin_zxy, ¢ for all s in S and ¢ in T to linearize (5.8)). Note that the non-linearity corresponding to
the product between the variables x and y cannot be rewritten as we did in Chapter [3| because the

batteries can be used for peak-shavings. Indeed, the family of variables lin_zyy_, is necessary.

The second non-linearity treated is the expression z = min(a,b) for a,b € [M’, M], such as de-
scribed in Section and present in and . Hence, we introduce two new families of
variables: lin_sideU By, ¢ for all s in S, ¢t in T to linearize , and lin_sidepcmaz,. for all ¢ in C to
linearize . In the case of , we have ufﬁt = (1 - zp,,¢) min(a, b), where a = By /A —xp_ /A

and b = min(Pg, , P{"* — Ws;). In order to linearize this expression, we have to multiply all the

terms a and b in (3.26)) and (3.28]) by 1 — 2z, ; as we have done in Section |3.2.1.3
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In the case of (b.11f), we can integrate the variable y. of the multiplication y.p2** into (5.12) by
0 Do ees(ve if:ch Wy o +YcTbs, fo /| A=YcTbs, fo—1/D)

143 max
rewriting p'®* as max(0, 7.2 — y.Pro). Hence, we have that
l
We ) i Ws o Hycg s/ D—Yeg fo1/D)
p®* = max(a,b), where a = 0,b = Lses t=fe-1 Sl’tif - — yePro. We can

then use similar equations used to linearize the expression x = min(a, b) in Section |3.2.1.3[to linearize

the expression « = max(a,b), where M = Y s maxie7 Wy and M’ = —Pro.

Finally, the complete linear version of OMBSE-MINLP (referred to (OMBSE — MILP)) can be

rewritten as follows:

min Z E; Z(uivt + Ugt) - ZchchTO(lc - fC + 1)

teT  seS ceC

Tyt — Ty 41 < ADy ¥ zp, 4 Vse S,vte T (5.20)
— Tyt + Toy 441 < AP, (1 — z5,4) — ADP™ 2, Vs e SVt e T (5.21)
LTt > Zh, 0 — Zba01 Vs e S,vt e T\{1} (5.22)
b = 2oy VseS (5.23)
Byt < ap, Vse S,vteT (5.24)
uf < BP™JA — /A — 2y (BEEA A+ lin_az, /A VseS,vte T (5.25)
ug o < (1= 2, ¢) min(Pp, , P — W) VseSVteT (5.26)
“li,t > B /A — a1 A — 2y By A+ lin_xzy, /A — Mlin_sideU By, VseS,Vte T (5.27)
up ¢ > (1= 2, ) min(Pp, , P — W) — M(1 — lin_sideU By, ;) Vse S, VteT (5.28)
(Bp™ — wp, 1) — Amin(Pp, , Py"™ — W) < Mlin_sideU By, 4 VseS,VteT (5.29)
min(Pg, , PP — W) — (BP™ /A — 2y, /A) < M(1 — lin_sideU By, ;) VseS,Vte T (5.30)
Toy 141 — Tpy = Dup, + Auly — AWy, VseS,Vte T (5.31)
Wie(1 = 2,0) < gy VseSVte T (5.32)
DWliuf ) <Y OPMEA= Yy + > P VteT (5.33)
€S €S ceCy ceCt

pe™* =0 VeeC (5.34)
P > > ses(Ye fo?:fc—l Wi +lin_zyg /A —linzyy ;. 1/A) —wPro VeeC (5.35)

- lc_fc+2
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l . .
¢ o Wepy + lin_xyft A —lin_zys . /A
_ DsesWeXlpig 1 War — ?_/:.séfc/ Y. go-1/ ) + y.Pro < (M — M")lin_sidepcmaz.
c Jc

VeeC (5.36)

l 4 )
f_r 1+ lin_xyy A —lin_zyt /A
DsesWe =g W Ys. 1./ Yoo, fo—1/D)  Pro < (M — M)(1 — lin_sidepemaz,)

lc - fc +2

VeeC (5.37)
pex < (M — M')(1 — lin_sidepcmaz.)

VeeC  (5.38)

l . .
s e s o Wep + lin_xys A —lin_zy?e , /A
pénax < > es(y Zt =for1 it ybs7fc/ Yo, fe 1/ ) — e Pro+
le — fe+2
(M — M"lin_sidepcmazx. VeeC (5.39)

dowe <l vte T (5.40)
ceCy
up  +ully, < PR VseS,VteT (5.41)
S OB <N, VseS (5.42)
teT
D ye < N° (5.43)
ceC
lin_vyy < yeBp™ VeeC,Vse S, Vvt e {fc—1, f.} (5.44)
lin_xyy > wp, o — (1 — ye) Bp™ VeeC,Vse SVt e {f.— 1, f.} (5.45)
lin_wyy < Tp, VeeC,Vs € S,Vt e {f.— 1, f.} (5.46)
lin_xyy ;>0 VeeC,Vs € S,Vt € {fc—1, f.} (5.47)
lin_zzy,, 4 < xp, 4 VseS,Vte T (5.48)
lin_xzy,; < zp, 1 By Vse S,Vte T (5.49)
lin_xzy, e > xp,0 — (1 — 2p,0) By Vse S,Vte T (5.50)
lin_xz,, ¢+ > 0 Vs e S,Vte T (5.51)
Thoty = Totpyy = Bpo VseS (5.52)
ye €{0,1},p™* ¢ RT VeeC (5.53)
uly € 10, Wyl ,uf , €0, Pp, |, w0 € [B™, B, 2,4 € {0, 1}, 55'%" € {0,1} (5.54)
lin_xzy, s € [0, By, lin_sideU By, ¢ € {0,1} Vs € S,Vt € T (5.55)
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lin_xyy_, € [0, By, VeeC,Vse SVt e {f. — 1, f.} (5.56)

lin_sidepcmaz,. € {0,1} Vee C (5.57)

5.3 Complexity analysis

In this section we present a complexity proof for OMBSE. We reduce the 3-Partition problem,

which is a strongly NP-Complete problem, into a particular case of OMBSE.

Theorem 2 OMBSE is strongly NP-Hard even with constant energy prices and power demand.

PROOF Let us consider an instance of the 3-Partition problem composed by a set A of 3m integers

ai,...,a3m and a bound B € N such that % < a; < g, for all a; in A. Besides, let us consider that

> a;en @ = mB. The question is whether A can be partitioned into m triplets Ay, ..., A;, such that

> a;e, @i = B for all Ay. Note that, if there exist m partitions Ay such that for each one the sum of
B

its elements is B, then each subset A; must contain exactly 3 elements because of % <a; < 3.

Now let us consider an OMBSE instance with a time horizon 7 composed by 6m time periods.
Moreover, let us consider that 3m sites equipped with different capacities Dy’** = a, = B;™* JA —
B{:in /A are installed such that % < D{;:in <Dy =ap < g. Then, let us consider a constant power

[T

demand W = B over the horizon for each site and a constant energy price E., i.e., E = E; '. We also

consider that } . cs D" = mB. The others instance parameters are:

o PMax — 9B for each s € S

S

Pp, = B"*/A, for all sin S

b
e Ny, =1,forall sin S

e N°=m

Amin — Aax _— 1

R ={FE,,0,0,0,0,0}"

Pro=20B
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Let us consider a solution for such an instance which costs ) siteT EtWst — mProEc. In this
case, since the energy prices E; are constant, the batteries are used to perform m curtailments starting
at time periods where the reward prices are equal to E., otherwise the total cost would be strictly
greater than ZsES,tE’T EWsi — mProE.. Since each battery can be used once, together with the
properties D@ = B JA — B{)fm /A and % < D{f:in < Dy < g, each battery can be in discharge
for at most one time period with a power discharge rate of Dy'**. Furthermore, if m curtailments
are performed, at least mB are discharged from the batteries. Note that, since  ,cs Dy** = mB,
exactly 3 batteries are used to perform each curtailment, otherwise at least one curtailment would not

be performed. In the same vein, if a battery starts being discharged before the curtailment to increase

max
C

the value of p'®*, at least 4 batteries would be needed to perform the curtailment. Hence, at most m—1

curtailment could be performed. Then, if there exists a solution with cost > s e EtWst —mProEe,

m curtailments are performed for which exactly three batteries are used to perform each one.

Hence, the set of batteries used to perform each curtailment gives us a solution to an instance
of the 3-Partition problem (where each integer ap, is equal to D{};ax). Similarly, from a 3-Partition
problem solution, a solution of cost }_ . SteT EWs i — mProE, for the associated OMBSE instance
can be constructed using each battery once to perform curtailments starting at the time periods where

the reward price is equal to E.. Then, OMBSE is by reduction a strongly NP-Hard problem.

The OMBSE problem remains weakly NP-Hard even for small instances when 7' < 4, by a similar

reduction from the Partition Problem which is weakly NP-Complete. 4

5.4 Bidimensional relax-and-fix heuristic

In this section we present a bidimensional relax-and-fix heuristic for OMBSE, for which a model

M is considered, obtained by relaxing the integrity constraints on a subset of variables of the model.

Let us define the four windows considered in the approach that group the variables of M:
e Frozen window: variables that have their values fixed;

e Decision window: variables for which all constraints are preserved;

¢ Relaxed window: variables for which all constraints are relaxed.

In addition, we consider:
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5.4. BIDIMENSIONAL RELAX-AND-FIX HEURISTIC

e Fixing window: variables that have their values fixed at the end of each iteration;

Firstly, as proposed in Chapter [d, we apply a decomposition based on the time horizon. We

!

consider a decision window composed by 6;me time periods and a fixing window of d;,,,,. time periods.

Secondly, to improve the computational efficiency of the approach, we also propose a decomposition
based on the number of sites. Indeed, the windows will be defined not only by the parameters J¢;me

and ¢} but also by dg;e and ¢’ , defined as the following:

ime’ site’

Otime: number of time periods of the decision window;

;L . . . o
time: umber of time periods of each iteration;

dsite: numMber of sites of the decision windows;

! ie: number of sites of the decision window for which variables will be fixed at each iteration.

The time periods (resp. the sites) are partitioned into the subsets 77, 7, 'Ta, T (resp. SF, 8, Sa, S")

representing the variables in the frozen, decision, firing and relared windows, respectively.
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The complete bidimensional relax-and-fix heuristic used in our tests is formally described as follows:

for ¢519" from 1 to T — Stime with step &, do

o T/ {1,...,tstert — 1}

° Td s {tstart7 o ’tstart + (5time}

° 7-c_l — {tstart, L ’tstart + 51/€ime}

o T — {tstart + 1,...,T}

for s from 1 to S — Oy with step 8., do
o ST« {1,... st 1}

° S(_i s {Sstart, . Sstart 4 5site}
° Sd — {Sstart, . Sstart 4 6;ite}

o 8"« {sftart 11 ..., S}
e Construct a model Mystart gstart, such that the variables:
- Tt Zb, ts bsif‘t”, “£t7u£,t are fixed for all t € T/,s € S and for all t € 7'&, se ST
- Ye, PP are fixed for all ¢ € Cy,t € T7;
- 2,0 b5 € {0,1} for all t € T4, s € 8%
-y, €{0,1} for all ¢ € Gy, t € T i
- Zbo ot bii‘ftrt c0,1]forallt € T ,s€ S, forallt € T4\ T¢ s € ST, and for all
teTlsedS,
-yc€0,1] forall c€ Cy,t € TT.
e Solve Mtstart7sstart
e I'ix the variables xp, 4, 2p, ¢, bsiftrt, ugt, ubit for all ¢t € 7'&7 s € 8% to the obtained
optimal values

end

e Fix the variables y., pg'®* for all c € G, 1 € 74 such that l. is smaller than or equal to the

last time period of 7% to the obtained optimal values

end

: start ,, D B max
return variables xy, ;, 2, ¢, 0 ot Usits Up, 45 Yer De

Algorithm 1: Bidimensional relax-and-fix heuristic

|T\*(5n/me*5£me) |S‘7(5§ft676;ite).

Note that the number of iterations of the heuristic is

time site

Figure [5.1] illustrates the windows and the related variables for an instance composed by 7 sites

managed over a week. We can observe that the decision window scrolls over the time horizon and over

the sites for variables z, z, u”, u® and %%t and over the time horizon for variables y.
Byax [A—BpP /A
Py P —max(7))

Lemma 2 Algorithm always returns a feasible solution if dpime > max([
S.

D,Vs e

PROOF To ensure that we always return a feasible solution for the problem, two main aspects must be
analyzed: the feasibility of the curtailments that can be performed (i.e., if Constraints (5.11)-(5.13)),
(5.16)), and (5.18)) are respected) and the feasibility of each battery management until the end of the
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Windows related to variables x, z, u?, u?, pstart = = = Decision window path over iterations

Number of Sites

si 7

Windows related to variables y (organized by the sets C, )

1 M
“ PN N Time Horizon/'\ Y

T T
T

Figure 5.1 — Illustration of bidimensional relax-and-fix heuristic windows.

time horizon (i.e., if Constraints (5.3)-(5.10), (5.14)-(5.15), (5.17), and (5.19) are respected).

Concerning the battery management, the only case where no feasible solution could be reached is

when the battery cannot be fully recharged until the end of the time horizon considering its initial
state at the beginning of the decision window of the last iteration. Indeed, if the number of time
periods in the decision window (i.e. the value of dyme) is large enough to fully recharge the battery
until the time period T, there is always a solution that consists only of fully recharging the battery.

Bmax A_Bmin A
Formally, 04, must be larger than max(fmin( P /Pmaxfmgx(w)ﬂ ),Vs € S (if it is the case, the battery
bs " S

can always be fully charged until the time period tr).

Concerning the curtailments (i.e., variables y and p2***), their values are fixed only for curtail-
ments that end at the end of the time horizon 7¢. Since the variables corresponding to the batteries

management of all sites are already fixed (i.e., variables z, z, u”, u” and b%"*), the values of variables
y are fixed respecting Constraints (5.11))-(5.13)), (5.16)), and ([5.18)).

Finally, we have that a feasible solution that respects the battery management (i.e., related to

Constraints (5.3)-(5.10), (5.14)-(5.15)), (5.17), and (5.19)) and the curtailments performed (i.e., related
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5.5. LAGRANGIAN RELAXATION BASED SOLVING METHOD

to Constraints (5.11)-(5.13]), (5.16]), and (5.18))) is always reached, the heuristic always returns a feasible
solution for the model (5.3))-(5.19)). O

B /A~ Bin A
min(PBbs ,Pmax_max(W))

The definition of &4 greater or equal to max([ 1),Vs € S is considered in

the numerical experiments presented in Section [5.6

5.5 Lagrangian relaxation based solving method

Decomposition-based computational methods have been widely used to solve many large-scale
optimization problems, including mixed-integer linear programming problems and combinatorial opti-
mization problems. The key idea is usually to relax certain constraints (refereed to as hard constraints)
to make the relaxed problems relatively easier to solve in order to obtain approximations or bounds

for the original problem.

5.5.1 Lagrangian relaxation

A commonly used method is the Lagrangian relaxation where easy sub-problems are solved several
times, and a penalty related to the relaxed constraints is considered in the objective function of each

sub-problem. Such penalties are known as Lagrangian multipliers and are updated at each iteration.

Let us consider the following optimization problem:

Z* =min ¢'x (5.58)
s.t.

Az <b (5.59)
Dx<e (5.60)
xz €Ny (5.61)

where Constraints (5.59) make the problem harder to solve (i.e., the problem subject to
Constraints and can be solved in polynomial time). Let us also denote by A > 0 the
Lagrangian multipliers (also refereed to as dual variables) associated with Constraints . By
relaxing Constraints , the obtained Lagrangian problem is the following:
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Zp(\) =min ¢'z + X\ (Az —b) (5.62)
s.t.

Dzx<e (5.63)
x € Np, (5.64)

Note that, since the values of the multipliers A are positive, if Constraints ((5.59)) are not satisfied,

it becomes a penalization in the objective function ([5.62)).

Furthermore, it is well known that Zp gives a lower bound, refereed to as Wppg, for —
(i.e. Zp < Z*) for any A > 0. In the same vein, any solution x that satisfies Constraints —,
refereed to as Zyp(z), yields an upper bound for (5.62)-(5.64) (i.e. Z* < Zyp). If Zp(\) = Zyp(x)
for a solution x, then we have that x is an optimal solution for the problem —. The key
aspect of the algorithm is to find good upper and lower bounds. Such a relaxation can be used in a
model that is linear or not. In our case, we consider the model (OM BSE — MILP). One algorithm

that is commonly used is the Subgradient Algorithm, which is explained in next section.

5.5.1.1 Mathematical model decomposition

In the case of (OMBSE — MINLP), Constraints (5.11)) and (5.12)) will be relaxed. In addition,
we can rewrite Constraints ((5.12]) and (5.11)) as a single constraint and relax the formulation with only
one set of Lagrangian multipliers: A\} > 0 for all t € 7. Hence, the nonlinear version of the Lagrangian

optimization problem (refereed to as (OM BSENE)) can be written as follows:
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min Y B Y (uf , +uP) =Y yeRy Pro(le — fo+1)

teT  seS ceC
YN Wl )= DR =Y )
teT SES seS ceCy
ZSGS(Zi?:fC—l Ws,t/ + xbs,fc/A - xbs,fc_l/A)
— Z ye max (0, — PTO)}
ceCt lc B fc + 2

s.t.
Constraints ([5.345.10),(5.13H5.19))
M>0 vt € T(5.65)

Note that such a relaxation can also be applied to (OM BSE — MILP) in Constraints ((5.33} [5.39)
and ([5.4415.47)), which is the model considered in our tests. In this case, the Lagrangian multipliers

are following ones:

e A\ for each ¢ in T for Constraints (5.33);
e A2 for each c in C for Constraints (5.35));
e \!3 for each c in C for Constraints (5.36));
° )%74 for each ¢ in C for Constraints (5.37));
e A\ for each ¢ in C for Constraints (5.38));
° )\56 for each ¢ in C for Constraints (5.39));

1,7
i )‘c,s,t

for each ¢in C, s in § and t in {f. — 1, f.} for Constraints 1’
. )\i”ss’t for each cin C, s in S and t in {f. — 1, f.} for Constraints 1’

1
ALY

c,s,t

for each ¢cin C, sin S and t in {f. — 1, f.} for Constraints |D

Note that Constraints ((5.34]) and ([5.47]) are not relaxed since they are not linking constraints between
different sites and can be solved separately in the sub-problems of each site. Finally, the linear version
of the Lagrangian optimization problem applied to (OM BSE — MILP) (refereed to as (OM BSEY))

can be written as follows:
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min Z E; Z(ubB;t + utD) - ZchchTO(lc — fe+ 1)

teT  seS ceC
1,1 max max

+Z)‘t (Z(u£t+uli,t)_zpsa(1—Zyc)—zpca)

teT SES seES c€Cy ceCy

NeesWe Xl Wy +lin_xyf o /A —linxys , /A)

+ Z )\i72(_pIcnaX + s€ c t fc 1 S l bs27fc bs,fc 1 _ ycPTO)

ceC c fc +

SeesWe S W, v linczyy o /A —linxys . /A

“FZ)\}:’S(— sES( CLipl=f.—1 "V st l bs,fc/ bs,fe 1/ ) +yCPTO

ceC c fc + 2

— (M — M")lin_sidepemaz,)

SeesWe Sk Wy +linwys o /A —lin_ayf . /A)
+Z)\i74( seS\Jc Lig/=f.—1 " st bs,fec bs,fe—1

_ CP
lo— fot 2 getro

ceC
— (M — M")(1 — lin_sidepcmazx.))

+ Z LS (pmax — (M — M')(1 — lin_sidepcmaz..))

ceC
Yoses(y Zl?: Wy +linzy; , /A —linzy] , _/A)

+Z)\(1:76(p£nax _ LuseS\Ieiat/=f—1""5 l b52’fc bsfe—1 +y.Pro

eeC c fc +

— (M — M")lin_sidepcmaz.)

+ 3 Neseglinwys, , — yeBE™) /A

ceC,seSte{fe—1,fc}
b Al b (- g BEA

ceC,seSte{fe—1,fc}
+ Z )\ijg,t(lin,a:ygs P YA (5.66)

ceC,seSte{fe—1,f}
s.t.

Constraints (5.2015.32)), (5.4015.43)), (5.48[5.57)

At >0 vt e T (5.67)
A2 > 0,057 > 0,00 > 0,A° > 0,AL0 >0 Ve € C (5.68)
Al = 0,005, > 0,000, >0 VeeC,VseS,Vte{f.—1,f} (5.69)

In this thesis, we chose the linear Lagrangian decomposition (OM BSRY) because the sub-problems

obtained can be solved efficiently by reusing the approaches proposed in Chapter [3}
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5.5.2 The subgradient optimization

The subgradient method is an algorithm for minimizing a non-differentiable convex function, and is
very similar to the regular gradient method for differentiable functions (Shor} |2012). The subgradient
method is much slower than Newton’s method, but it is much simpler and can be applied to a much

larger variety of problems.

By combining the subgradient method with primal or dual decomposition techniques, it is some-
times possible to develop a simple algorithm for a problem. Such a use is well explored by [Bertsekas
(1999)), which is a good reference on the subgradient method combined with primal or dual decompo-
sition.

More precisely, when updating the values of A, the goal is to maximize the lower bound (i.e., the

value of Zr ). Hence, we are solving the following problem:

ney Ao

We use a subgradient optimization method relying on the following scheme:

ML = max{AF + t(Az* — b),0}

where t;, > 0 is a step size. The most popular choice of the step size tj is:

Or(Zup — Zp(A\¥))

t pu—
" [ Ak — |2

where Zy g is the best upper bound known and 6, € (0, 2[ (Boyd et al., [2003). The value of 6 can

be fixed for all iterations or it can vary in each iteration depending on the progress of the algorithm.
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The general scheme of the subgradient algorithm is as follows:

e Initialization // initial structures, Lagrangian multipliers, step-size, 0, ...
e BUP < 400 // Best upper bound reached

e BLB + -00 // Best lower bound reached

ek=0

while k£ < I'™#* and stopping criteria is not reached do

e Solve the sub-problems presented in Section
e Run the Lagrangian heuristic (see Section
e Update the best bounds reached (BUP and BLB)

e Update the best solution obtained (Bsol)

e Update the Lagrangian multipliers

ek=k+1

end
return BU P, BLB, Bsol

Algorithm 2: Standard subgradient algorithm

5.5.2.1 Sub-problems structure

In order to compute the lower bound at each iteration of the subgradient method, the relaxed
problem (OM BSE¥) has to be solved to optimality. Fortunately, such a Lagrangian relaxation of the

formulation has a particular structure that allows us to solve it optimally in O(T?) time.
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Firstly, let us rewrite the objective function (5.66]) by isolating each family of variables as follows:

min
STEAND Y (Wl +ub) (5.70a)
teT teT

le
+ 3 ye( = B Pro(le = fo+ 1)+ 2 A Y0 PP™ 4 Pro(=A” + A0 = At 4+ AL)

ceC t=fc seS
le
1,7 1,8 , , , , Wit
+ Z BIEI:aX/A(_Ac,S,t_‘_AC,s,t)+((>‘i2 _)‘23—’_)‘&4 _)‘i 6)2 Z I _; +2))
s€Ste{fe—1,fc} seSt=fc—1"¢ ¢
(5.70b)
le
3 (= DA = A2 AL 4 AL (5.70¢)
ceC t=fc
. )\1,2 _ )\1,3 + A1,4 _ )\1,6 17 18 1.9
+ Z Z lzn*xyg&fc/A( ‘ l c_ f _:2 ° + )\C:s:fc o /\C:S7fc + )\C:Safc> (570d)
ceC seS ¢ ¢
. _/\1,2 4 )\1,3 _ )\1,4 4 )\1,6 17 18 19
+ Z Z lzn,a:ygs7fc_1/A( c 2 d ; +c2 A A fe1 — As o1 )\cjs7fc_1) (5.70e)
ceC seS
. 1,7 1,8 1,9
+ Z Z lln,"lfygs,fc+1/A ()\Ca57fc+1 - Ac,s,fc—i-l + )\C,S,fc-i-l) (570f)
ceC seS
+ Z lin_sidepemaz (M — M')(=A23 + AL 4 AL5 — \LO) (5.70g)
ceC
1,8 1,9 1,8 1,9 1,8 1,9
+ Z xbs,t/A( Z ()‘c,s,t - )‘c,s,t) + Z ()‘c,s,t - )‘c,s,t) + Z (/\c,s,t - Ac,s,t))
seSteT ceC|fe=t c€C|fe—1=t ceC|lc+1=t
(5.70h)
— 3 NP LI (M - M) (=M = AL - > Ae's B /A (5.701)
teT,se€S ceC ceC,seSte{fe—1,f.}

Looking closely at this objective function, we can observe clearly that the whole problem can be solved

decomposed. Formally, we can split the whole problem into five sub-problems:

1. Sub-problem 1:

min (5.70af) + (5.70A])

s.t.

Constraints (5.20{— 5.32), (5.41]—{5.42)), (5.48 — 5.52f), and (5.55)

This sub-problem, concerning the variables x,_ ;, u{i t ugt, 2t bg’;cft”t, lin_xzy, 4, and lin_sideU By, 4

foreach t € T, s € S, and w3, 741 for each s € S, corresponds to solving the peak-shaving prob-

lem (i.e., formally the DSM problem) for each site s € S with the energy prices equal to E; —1—)\,} 1
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(i.e., (5.70a))) and with an additional penalty in the energy stock of the batteries (5.70h)). In fact,
such a sub-problem for each site s considering a single battery can be solved with the algorithm

presented in Chapter [3| with some adaptations.

Essentially, for each site s, the algorithm must be initialized with the following parameters:

[ ) Rt = [0|T|]
° Amin =1
max A
o AMAX — LB;;‘mi(, | (or large enough)
bs
L] PTO =0

° wC:PSmax
[ ] Et :Et+>\%’1

e Number of rest time periods=0
and the following modifications in GOA are needed:

e since the battery discharges at each time period during each curtailment ¢ = (f, [, d.)
enumerated are known, the penalty from (5.70hf) must be considered at each time period ¢

during the curtailment to compute the gain.

e for each arc a linking two curtailments ¢; = (f¢,,le,, de, ), and c2 = (fey, ley, dey ), the penalty
from ([5.70h)) must be considered for each time period ¢t € {l., +1,..., fo, — 1} considering
that the battery will stay fully charged in this interval

e Replace the computation of the longest path in the DAG G created by the computa-
tion of the Maximum Weighted Budgeted Independent Set (MWBIS) of the interval graph
G’ obtained from G, using the modification of the Bellman’s algorithm proposed in Sec-

tion [4.4.1.1] The budget is the value of Nj.

The complexity of the algorithm proposed is O(T%). Since each site s can be treated separately
and since there is no correlation between the curtailments enumerated (i.e., w. = PM¥), a

parallelization is allowed.
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2. Sub-problem 2:

min (|5.708))

s.t.

Constraints ([5.40)) and ([5.43))
ye € {0,1}, Ve e C

This sub-problem, concerning the variables y. for each ¢ € C, corresponds to selecting the most
profitable curtailments based on their coefficients imposed by the objective function .
Such a sub-problem can be translated into the Maximum Weighted Budgeted Independent Set
(MWBIS) of an interval graph, such as described in Section using the modification of
the Bellman’s algorithm proposed in Section with the budget set to N¢. The complete

algorithm to solve the second sub-problem is the following:
(a) for each curtailment ¢ € C, set the gain g(c), is the coefficient defined in ([5.70b)) for each
variable ..
(b) for each curtailment ¢ € C, if g(c) is greater than or equal to zero, set y. = 0.

(c) compute the MWBIS with for which the budget is number of nodes with the remaining

curtailments considering —g(c).
(d) the optimal value of this sub-problem is the one given by the algorithm multiplied by -1.

(e) the value of each variable y. is equal to 1 if the corresponding curtailment is selected by

(MWBIS), and to 0 otherwise.

3. Sub-problem 3:

min (5709

s.t.

P € |0, Z max(Ws )], Ve e C
sES

This sub-problem, concerning the variables p{*®* for each ¢ € C, can be solved in linear time as

follows:
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e For each c € C, set p™®* = Y ,cgmax(W,;) if the coefficient of the variable in (5.70c|) is

negative, and pi'®* = 0 otherwise.

4. Sub-problem 4:

min

s.t.

lin_ryy, ; € [0, Bp*], c€C,s € S;t € {fe — 1, fe}

This sub-problem, concerning the variables lin_zyy , for each c € C,s € §,t € {fe =1, f¢}, can

be solved in linear time as follows:

e Foreachce C,s € S,t € {fc—1, f.}, set lin_zyy_, = B,!** if the coefficient of the variable

in (5.70d)), (5.70€) or (5.70f) is negative, and lin_zyp , = 0 otherwise.

5. Sub-problem 5:

min (5.70g)

s.t.

lin_sidepcmaz. € {0,1}, Ve € C

This sub-problem, concerning the variables lin_sidepcmazx,. for each ¢ € C, can be solved in

linear time as follows:

e For each ¢ € C, set lin_sidepcmax,. = 1 if the coefficient of the variable in (5.70g]) is negative,

and lin_sidepcmax. = 0 otherwise.

Note that Equation (5.70i) is constant and can be computed independently.
5.5.2.2 Lagrangian heuristic

In order to compute a feasible solution for the problem at each iteration of the subgradient method,

which also gives an upper bound for the value of the optimal solution, a Lagrangian heuristic is used.
Firstly, the relaxed solution obtained by solving the sub-problems satisfies all the Constraints

(B-201-33), (p-41), (5-42), (5.48)-(5.52), and (5.54)-(5.55) related to the variables p, 1, uf ,, ul, 2, ;
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and bgz“t’"t for each t € 7 and s € S, and xp, 741 for each s € S. Hence, the values of such variables

are maintained in the Lagrangian heuristic.

The second step consists in computing the values of variables y, for which Constraints (5.3445.40]),
(5.43)-(5.47)), (5.53)),(5.56)), and (5.57) are relaxed, implying that the solution obtained by solving the

sub-problems may not satisfy the original constraints. Hence, we aim to select a subset of curtailments

that can be performed (i.e., to fix the values of variables y), i.e., that satisfies Constraints ([5.3445.40]),
(5.43)-(5.47), (5.53)),(5.56)), and (5.57) which is satisfies batteries safety usage rules (i.e., values of

D

variables x,u” u”,z and b*'*! obtained by solving the sub-problems), and that gives the highest

revenue.

The Lagrangian heuristic proposed runs in O(7?) time, as described in the following steps:

keep the values of the variables xy,_ 4, u{i " ugt, 2+ and biiat’"t in the optimal solution obtained ;

e for each ¢ = (f.,l.) € C, compute the value of w. and the value of p*** from the values of the
power demand Wy and from the power bought u? +u{z for each site s € S at time period f.—1.

Then, set y. = 0 if there exists at least one time period t € {f.,[.} such that Zses(uiyt —i—ugt) >

max.

Pc s

e for each ¢ = (f.,l.) € C such that the corresponding variable y. was not fixed to 0 in the previous

step, set the economic gain of the curtailment to g. = R¢ Pro(lc — fe +1);

e compute a MWBIS with a budget equal to N¢ with the remaining curtailments (i.e., the ones
for which the value of y. is not fixed yet), considering the values of g.. Then, for each ¢, set the
value of the variable y. to 1 if the corresponding curtailment is in the MWBIS with a budget
equal to N€¢ and to 0 otherwise. Note that the values of all y. computed in this way satisfy

Constraints ([5.3445.40)), (5.43))-(5.47), (5.53)),(5.56)), and (5.57);

e The value of the complete feasible solution is given by the following expression:

Y Bilug g+ ub) =Y Yele

seSteT ceC
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Figure 5.2 — Example of the evolution of the bounds considering a fixed step size

5.5.3 Bounds improvements

A key aspect of the Lagrangian relaxation is to ensure a good gap between the upper and lower
bounds. The difference between them gives us an optimality gap. If both bounds are equal, we have

the guarantee that the feasible solution is an optimal solution of the problem.

5.5.3.1 Lower bound improvement

When analyzing the lower bound, the step size is a key point for its good improvement. On the
one hand, if the step size is too large, the lower bound value will vary between two intervals and, in
the general context, will not increase. On the other hand, if the step size is too small, it will tend
to increase slowly. Therefore, more iterations are needed to increase the value of the lower bound.
We observe (see Figure a periodicity in the values of the lower bound because the value of the
step size is too large. Indeed, at each iteration, the algorithm computes a subgradient to update the
Lagrangian multipliers and updates them using the value of the step size. However, as the step size is
too big, in the next iteration, the algorithm tends to rectify the Lagrangian multipliers with a direction
that is opposite to the one computed in the previous iteration. Hence, the values of the Lagrangian

multipliers, and hence the value of the lower bound, do not converge.

One strategy to improve lower bounds is to adapt the step size dynamically during execution. One
of the best-known methods for performing such an adaptation is to consider a step size of ¢/ vk in each
iteration k, where c is a constant. Another way to update the step size is per every Y iterations, where
Y is a constant. Figure illustrates the progressive increasing of the lower bound (orange line) on

an (OMBSFE") instance, considering that the step-size is updated as 1/vk after 10 iterations (i.e.,
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Figure 5.3 — Example of the evolution of the bounds considering a dynamic updated step-size of 1/ Vk
after 10 iterations, where k is the number of the iteration.

Y = 10). In this example, we still see the periodicity of the interval between each 10 iterations and
the impact of updating the step size after 10 iterations. Updating the step size values at each iteration
could potentially increase the value of the best lower reached (purple line), and hence, improve the

optimality gap. However, it requires a fine tuning of the constant ¢ used to compute the step size.

5.5.3.2 Upper bound improvement

When analyzing the upper bound, the Lagrangian heuristic is the key point for its good improve-
ment. On the one hand, if the heuristic is not able to compute good feasible solutions, the ones
reached will be far from a potential optimal solution, and thus the gap between upper and lower
bounds increases. On the other hand, if the heuristic gives a near optimal solution to the problem, it

may require too much time and resources.

Figure illustrates the solutions obtained with CPLEX solving (OMBSE — MILP) and with
the Lagrangian relaxation after 50 iterations for a small instance with 2 sites. For this example,
the solution (b) obtained with the subgradient costs 4% more than the solution (a) obtained with
CPLEX. Note that the batteries uses in the two solutions are quite similar for this example, and both
solutions perform 10 curtailments each, 4 of which in the same periods. These similarities indicate
that the Lagrangian heuristic can give good solutions from the structural point of view. However,
improvements can still be done concerning the periods where curtailments are performed. Looking
more closely at solution (a), 5 curtailments start at one of the 15 time periods that yield the greatest

rewards, compared to only 1 in solution (b).

One proposed improvement (refereed to as Init) is a better way to initialize the Lagrangian mul-
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Figure 5.4 — Solutions obtained with (a) CPLEX solving the (OM BSE — MILP) model, and (b) with
the Lagrangian relaxation for an instance with 2 sites managed over a week.
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tipliers )\% 1 in order to induce the battery discharges, and thus curtailments that could start at the
periods of highest rewards. Formally, the improvement proposed, applied in the initialization proce-

dure of Algorithm [2| can be described as follows:

e Enumerate all pairs (f,1) for f,1 € T,1— f+1>A™8 | — f+1 < A" The set of such pairs

will be refereed to as CT.

e Create a conflict graph G = (V, E) where each node v € V corresponds to a pair ¢ € CT,

and there is an edge e = (v1,v2) between v; and vy if there exists a temporal conflict between

1 = (flvll) and ¢y = (f27l2) (i'e'7 if {fla" '7l1} N {f27"'al2} # ®)

e Compute a MWBIS with a budget equal to N¢, considering as weight of each vertex v; the value
w(v;) = Ry, Pro(l; — fi +1). Note that G is an interval graph, and hence such a computation
can be done efficiently with the algorithm proposed in Section Let us define the set of

vertices in the solution as V.

e For each v; € VT, update the Lagrangian multipliers by setting )\i’l = Ey foreacht € {f;,... i},
and 0 otherwise. Note that we increase artificially the interest of performing peak-shavings during

the time periods f; to [;, that allows load curtailments to be performed.

Figure illustrates a solution obtained with the Lagrangian relaxation using the Lagrangian
multipliers initialization for the same instance used in Figure Firstly, the solution obtained costs
only 1% more than the one obtained in Figure a, which corresponds to a reduction of 75% of
the gap obtained in solution illustrated in Figure b (i.e., a reduction from 4% to 1%). Moreover,
7 of the 10 curtailments performed are also present in the solution of Figure [5.4la. In addition, 5

curtailments start at one of the 15 time periods that yield the greatest rewards.

However, the value of the lower bound is drastically affected, and hence it takes many more
iterations to reach the same lower bound of Figure In the example of Figure [5.6, the best lower
bound reached after 50 iterations (purple line) is smaller than the one obtained previously. A second
proposed improvement is to reset all Lagrange multipliers to zero at the end of the first iteration (see

Algorithm (3]), since in our tests the best upper bound is always reached at the first iteration.

Finally, the complete Lagrangian based method used in our tests is formally described as follows:
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e Init // initial structures, Lagrangian multipliers, step-size, 0, ...
e BUP < +00 // Best upper bound reached

e BLB + -0 // Best lower bound reached

o k=0

while k < I™* and stop criteria is not reached do

e Solve the sub-problems presented in Section
e Run the Lagrangian heuristic (see Section
e Update the best bounds reached (BUP and BLB)
e Update the best solution obtained Bsol
if k==1 then
| set all the Lagrangian multipliers to 0
else
| update the Lagrangian multipliers
end
=1/ \/E;
ek=k+1
end

return BU P, BLB, Bsol

Algorithm 3: Lagrangian based heuristic

5.6 Numerical results

In order to assess the efficiency and relevance of our solving approaches for the OMBSE problem,
we performed some numerical experiments on realistic instances. Several instances composed by many
sites with different consumption profiles and settings are considered, generated from internal data of
the French telecommunications operator Orange. The energy costs are taken from public historic data

of the French retail market (RTE-Portal).

The three solving approaches presented are considered. Firstly, the default branch and bound
algorithm of the commercial solver CPLEX performed on the formulation (OMBSE-MILP), that is
denoted by OMBSE-MILP. Secondly, the general relax-and-fix heuristic presented in Section param-
eterized by (0time, Orime) € {(36,12),(24,12)}, and (Jsite, 0Ly) = (1,1), that is denoted by OMBSE-HEU.
The arguments (essentially the periodicity of energy costs and demand of our data) for choosing these

!/

time> for the instances tested are the sames as the ones presented in Chapter

parameters d¢jme and o
Finally, the Lagrangian decomposition method with the subgradient method presented in Section
and with the improvements, that is denoted by OMBSE-LAG.

The numerical experiments are organized as follows. Firstly, in Section we describe the
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instances and the settings used in our experiments. Then, in Section [5.6.2] we present the results of
OMBSE instances solved using OMBSE-MILP, OMBSE-HEU, and OMBSE-LAG. We discuss the computational

results and we analyze the economic aspects of the solutions obtained in Section [5.6.3

5.6.1 Instances description

We based our testbed on urban and rural sites similar to the site considered in Chapter (4] for
which a random variation of 25% is considered in some sites. In addition, we assume a weekly time
horizon with time discretization A = $ (i.e., 30 minutes), which implies that 7' = 336. Such a time
discretization is the one considered by the transmission system operator that imposes the minimal

duration of 30 minutes, i.e., 1 time period in our tests.

Each site is equipped with one battery, whose main properties are provided in what follows. The
autonomy of each battery varies between 20 and 60 time periods. Besides, two types of batteries are

installed: GEL and AGM, for which the recharge power rate Pp,_is as follows:

1. Pp, =1.95% of B"*/A for GEL batteries;

2. Pp,, = 3.34% of By /A for AGM batteries.

In addition, the minimal power discharge D,Ij:in is 10% of Dy*** which is different for each battery bs
in all instances. Finally, the value of B{;:in is 50% of the battery energy stock capacity Bpi#*, and each

battery cannot be used more than 2 times per day (i.e., N, = 14) RTE-Portall

Concerning the data related to the distributor, we consider the unit prices from the French distrib-
utor EDF, publicly available at ldata.gouv.fr| (2020). Besides, the maximum amount of power PM2*
that can be purchased per time period is established by contract for each site. In our tests, to guar-
antee that the value of P;"®* of each site s is greater than the power demand W, ; at any time period

t € T, we set such a value to 3W.

Concerning the data related to the transmission system operator, we consider rewards paid by the

French operator RTE, whose values are publicly available (see RTE-Portal). Besides, the minimum

and maximum curtailment duration are defined by contract and are % and 2 hours (i.e., A™I = 1

and A™* = 4 because we consider A = 1/2), respectively. Similarly, the contractualized power

Pro considered varies in function of the sum of the maximum powers of all sites together. In other
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words, Pro € {25%,50%, 75%,100%} of 3" s Dy (denoted as D™). Moreover, no more than 10

curtailments are allowed over a week (i.e., N¢ = 10).

In addition, to simplify the writing, we present the time discretization A in minutes. The input
values of the power demand, unit cost of energy, and reward over the time horizon, are taken as average

observed values. Our tests were performed on 240 instances.

All tests were performed on a server computer with 4GB of RAM and 1 Intel Xeon 2.2GHz
CPU. The method used to solve (OMBSE-MILP) formulation is the branch-and-bound implemented
in CPLEX 12.9, with default settings. The running time is limited to 1 hour for each instance. The
number of iterations of the Lagrangian relaxation is limited to 50. No improvements on the bounds and
on the solutions were observed considering more iterations in preliminary tests with some instances.
We also limit the CPLEX CPU time to solve each intermediate model at each iteration of OMBSE-HEU

to 3 minutes.

5.6.2 Numerical results

In this section we present the results for OMBSE instances solved with OMBSE-MILP, OMBSE-HEU

and OMBSE-LAG. The analysis of the results is presented in Section [5.6.3

Table 5.1 — OMBSE-MILP results

Pro S| Stand. |Lin Relax|sol reduc | Opt. GAP at |CPU Nb of |% of
(% of D™) Cost (€)|(€) (€) (%) |GAP (%)|root (%)|Time (s)|Var  |bin var
2 |18.0 15.1 15.5 13.6 |25 11 3600 9387 [50.0
3 142.6 35.7 37.3 12.5 3.8 16 3600 12075 [47.2
5 [118.1 99.8 104.3 |11.6 |4.0 15 3600 17451 |44.2
25 10 |287.6 242.0 256.8 |10.7 |54 11 3600 30891 |41.3
25 |795.2 672.4 756.6 |4.9 ]10.7 15 3600 71211 |39.1
50 [1980.8 |1673.5 |1980.4/0.0 |[15.3 419 3600 138411(38.3
1004 056.5 |3 423.6 |4 056.5|0.0 |[15.4 578 3600 272811|37.9
2 |18.0 12.7 14.2 20.8 |9.7 23 3600 9387 |50.0
3 |42.6 31.0 34.2 19.7 |9.1 27 3600 12075 [47.2
5 [118.1 86.2 97.8 17.2 114 28 3600 17451 |44.2
50 10 |287.7 210.7 243.3 |1564 |13.0 22 3600 30891 |41.3
25 |795.8 581.0 693.7 ]12.8 |16.0 27 3600 71211 [39.1
50 [19794 |1437.6 |1979.1]0.0 |27.1 743 3600 138411(38.3
1004 055.7 |2 962.8 |4 055.7{0.0 |26.7 1054 3600 272811|37.9
2 |18.0 11.1 13.9 22.6 |19.7 34 3600 9387 |50.0
3 142.6 26.2 33.8 20.6 |22.2 38 3600 12075 [47.2
5 |118.0 73.0 96.5 18.2 |24.0 38 3600 17451 |44.2

75
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Table 5.1 continued from previous page

Pro ) S| Stand. |Lin Relax|sol reduc | Opt. GAP at |CPU Nb of |% of

(% of D™) Cost (€)|(€) (€) (%) |GAP (%) |root (%) |Time (s)|Var  |bin var
10 |287.6 176.9 245.7 |14.6 |27.7 33 3600 30891 |41.3
25 (796.2 499.8 709.7 109 [29.3 37 3600 71211 |39.1
50 [1979.8 |1243.2 |1979.2/0.0 [36.9 1048 3600 138411(38.3
100|4 055.6 |2 530.5 |4 055.6/0.0 |[37.4 1538 3600 272811|37.9
2 [18.0 8.9 14.7 18.0 |38.9 47 3600 9387 |50.0
3 |42.6 21.3 36.8 13.5 |41.8 50 3600 12075 [47.2
5 118.2 59.4 104.4 |11.7 |42.7 49 3600 17451 [44.2

100 10 |287.7 145.4 272.2 |5.4 [46.2 46 3600 30891 |41.3
25 |795.8 401.5 769.5 |3.3 |47.6 49 3600 71211 |39.1
50 |[1980.7 |1004.9 |1979.7/0.1 [49.0 1377 3600 138411(38.3
100|4 056.3 |2 054.0 |4 056.3|0.0 |49.1 2016 3600 272811|37.9

Table 5.2 — OMBSE-HEU results with (Oime.0;,,0) € {(24.12).(36.12)} and (0sjte-0%y.) = (1.1)

time site

|ST{ (Otime-Otime) | (Osite-0%;) | Stand. Cost (€)|sol (€) |reduc (%) |CPU Time (s) |Nb Iter
2 |24.12 1.1 18.0 15.5 13.7 9089 54
2 136.12 1.1 18.0 154 14.2 8837 52
3 |24.12 1.1 42.6 37.5 11.9 14048 81
3 136.12 1.1 42.6 36.5 14.3 13583 78
4 (24.12 1.1 72.3 64.5 10.9 18841 108
4 136.12 1.1 72.3 64.2 11.2 18280 104

Table [5.1] shows the numerical results concerning the OMBSE instances solved with OMBSE-MILP.
In this table, each row stores the average of the results for a subset of instances, grouped by the number
|S| of sites of the instances, and by the power contractualized Pro. Note that the results for both
types of power demand W (i.e., observed or randomized) are grouped because the results are similar
for both cases. Column Stand. Cost corresponds to the average of the standard cost, i.e., the cost
when no batteries are used, equal to ZteT,se s EiW, . Column Lin Relax reports the mean of the
optimal value of the continuous relaxation of (OMBSE — MI1LP). Columns sol and reduc store the
mean of the solution value in monetary units, and the average reduction in the total energy cost, given
in %, respectively. Besides, the average optimality gap, i.e., the value of the relative gap between the
value of the best integer solution obtained by CPLEX and the best lower bound computed, given in
%, and the average relative gap reached at the root of the branch and bound tree, given in %, are
provided in columns Opt. GAP and GAT at root. Column CPU Time provides the average running

time given in seconds. In addition, columns Nb of Var and % of bin var report the mean number
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of variables, and mean the percentage of binary variables, respectively.

Table 5.3 — OMBSE-LAG results

Pro . S| Stand. |Sub LB|Sub UB Opt CPU sol |reduc
(% of D™™) Cost (€)| (€) (€) |GAP (%)|Time (s)| (€) | (%)
2 18.0 15.2 15.6 2.50 147 15.62 13.2
3 [42.6 36.2 37.1 2.60 139 37.14 12.8
5 [118.1 100.8 |103.4 [2.60 160 103.43 |12.4
25 10 |287.6 244.2 252.5 3.30 240 252.45 |12.2
25 |795.2 678.3 1699.7 |3.10 575 699.71 |12.0
50 |1980.8 |1690.1 |1 740.9 {2.90 1019 1740.87|12.1
100|4 056.5 |3 460.2 |3 591.4 [3.70 2 291 3 591.39|11.5
2 |18.0 13.0 14.2 8.30 135 14.15 21.2
3 [42.6 31.4 33.3 5.70 142 33.33 21.8
5 [118.1 87.4 93.3 6.30 175 93.25 21.0
50 10 |287.7 213.8 2286 |6.50 297 228.57 120.5
25 |795.8 589.7 1628.3 |6.10 777 628.22 |21.1
50 [1979.4 |1461.1 |1 554.0 {6.00 1263 1 553.96|21.5
100 |4 055.7 |3 002.7 |3 249.5 |7.60 2 661 3249.71(19.9
2 |18.0 11.3 13.7 17.60 135 13.72 23.7
3 |42.6 26.7 30.2 11.60 151 30.21 29.1
5 1118.0 74.3 82.3 9.70 196 82.27 30.3
75 10 |287.6 180.2 |204.0 |11.70 333 203.99 [29.1
25 |796.2 508.0 |564.1 10.00 788 564.13 [29.1
50 |1979.8 |1263.8|1429.4 |11.60 1512 1 429.39|27.8
100|4 055.6 |2 577.5 |2 921.5 [11.80 3130 2 921.58(28.0
2 |18.0 9.1 13.3 31.50 135 13.35 25.7
3 142.6 21.8 29.9 27.00 152 29.88 29.9
5 118.2 60.7 70.6 14.10 207 70.64 40.2
100 10 |287.7 148.8 |176.8 |15.80 368 176.82 |38.5
25 |795.8 410.3 |490.9 |16.40 856 490.93 |38.3
50 |1980.7 |1027.8 |1 206.8 |14.80 1578 1206.71|39.1
100|4 056.3 |2 101.4 |2 597.6 [19.10 3 446 2 597.90(36.0

Table stores the numerical results concerning the OMBSE instances solved with OMBSE-HEU
using the parameters (time, Orime) € {(36,12),(24,12)}, and (dsite, 0ie) = (1,1). In this table, each

time
row stores the average of the results for a subset of instances, grouped by the number |S| of sites of

the instances, and by the values of d4jme and dy;,,.. Column Stand. Cost corresponds to the average
of the standard cost, i.e., the cost when no batteries are used, equal to } ;c7 scs EtWs t, while column
sol stores the mean of the solution values, given in monetary unit, obtained with OMBSE-HEU. Besides,

the average reduction in the total energy cost, given in %, and the average running time, given in
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seconds, are provided in columns reduc and CPU Time. Furthermore, column Nb of It reports the
mean number of iterations of the algorithm. Note that only small instances (i.e., instances with up to

4 sites) were solved with OMBSE-HEU because of the high CPU Time necessary.

Concerning the results obtained with OMBSE-LAG, Table stores these results, grouped by the
number |S| of sites of the instances, and by the power contractualized Pro. Note that the results
for both types of power demand W (i.e., observed or randomized) are grouped because the results
are similar for both cases. Column Stand. Cost corresponds to the average of the standard cost,
Le., the cost when no batteries are used, equal to  ;c7 ses EtWs . Besides, Columns Sub LB and
Sub UB, report the mean value of the best lower and upper bounds obtained with OMBSE-LAG, given
in monetary units, respectively. In addition, the average running time, given in seconds, is provided
in column CPU Time. Furthermore, columns sol and reduc store the mean of the solution values in

monetary units, and the average reduction in the total energy cost, given in %, respectively.

5.6.3 Experimental analysis

In the following we analyze the results presented in the previous section.

We begin by focusing on the running times and observe a significant impact of the number of
sites on the performance of all algorithms. Indeed, we observe that the size of the problem increases
in function of the number of sites, and that the problem becomes harder to solve because of the
combinatorial aspects and dependence of the sites (i.e., when batteries of multiple sites are used

together to perform a load curtailment).

Concerning OMBSE-MILP, for all instances, including the ones with only 2 sites, no optimality
guarantee is observed within the CPU time limit. Moreover, the optimality gap observed is significant,
varying from 2.5% on average for instances composed of 2 sites, up to 49% on average for larger
instances composed of 100 sites. We observe that the value of the best solution found gives a reduction
in the energy bill of 12.8% on average for small and medium instances. However, for large instances
composed of 100 sites, the best feasible solution given by CPLEX does not use the batteries (i.e. it is
the standard one). We observe that the mixed-integer linear formulation proposed has a continuous
relaxation quite good, when compared to the standard cost. The relative gap between both values
for the instances tested is in average about 50% for instances with 100 sites, and in average 17% for

small instances. This implies that, in the worst scenario (that happens for large instances), the best
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lower bound given by CPLEX is exactly the optimal value of the continuous relaxation, and the best
upper bound (i.e., value of a feasible solution) is the standard solution when no batteries are used.
In addition, the optimality gap found at the root of the branch and bound tree is higher than the
final optimality gap obtained (it varies from 11% for instances with 2 sites, to 2016% for instances

~max

with 100 sites and Pro = 100% of D), which shows that CPLEX is able to improve the bounds
over the iterations. We also observe that the randomness in the power demand has no impact on the
performance of the algorithm. Furthermore, the number of variables grows linearly in the number of

sites, and about 43% of those variables are binary ones, which makes the branch and bound method

implemented in CPLEX slower.

In the following, we analyze the results obtained with OMBSE-HEU, based on the best heuristic
proposed in Chapter However, it does not work as well as OMBSE-HEU requires too much running
time. We observe that CPLEX is not able to solve to optimality the model partially relaxed obtained
at each iteration of the algorithm. This implies that each iteration of the algorithm takes at least 3
minutes. Hence, we could observe that, even for small instances composed of 2 sites, OMBSE-HEU takes

about 3 hours. Consequently, we tested only instances with up to 4 sites.

Concerning the results obtained with OMBSE-LAG, we observe firstly that much less CPU time is
required than for OMBSE-MILP and OMBSE-HEU, and that this time increases linearly in function of
the number of sites of the instance. This is to be expected because of the fact that the Lagrangian
heuristic runs in polynomial time, and that each site corresponds to one sub-problem to be solved at
each iteration. But, even for small instances composed of 2 sites, the subgradient algorithm does not
give an optimality guarantee (i.e., the lower and upper bounds obtained by OMBSE-LAG do not converge
to the same value). However, we observe optimality gaps smaller than with OMBSE-MILP, varying from
2.5%, for small instances, to 19% for instances with 100 sites, against optimality gaps varying from
2.5% to 49% for the same size of instances with OMBSE-MILP. Another important aspect is that there is
no dependence between the sub-problems, which allows them to be solved separately and in parallel.
In our tests, we consider only one CPU, but the algorithm performance could be increased by solving

the sub-problems in parallel.

We now focus on the economic aspects of the solutions, and observe a reduction in the energy bill
for all solving approaches proposed, confirming that participating in the energy market can generate

savings for the company. Furthermore, we observe similar gains whether the power demand is ran-
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domized or not, because of the fact that the batteries properties and the number of load curtailments
that can be performed are the aspects that limit the most the savings that can be generated. Indeed,
the number of load curtailments performed in any solution obtained (except when CPLEX gives the

standard one) is exactly N¢, independently of the solving method.

Concerning OMBSE-MILP, the values of best solutions found give on average savings of 11% for
instances with at most 10 sites, with an optimality gap of 3.1% on average for such instances. However,
for larger instances, savings generated by the best solution obtained decrease significantly. In some
cases, for instances with 100 sites, the solution obtained does not give savings. We observe that the
value of Pro impacts directly the savings obtained, which is to be expected because of the fact that
the reward received per curtailment depends on the power contractualized Pro. However, if the value
of Pro is too high, this implies that all the batteries must be used to perform each load curtailment.
This reduces the possibility of use of the batteries for peak-shaving, as well as the number of possible
load curtailments that can be performed. In our tests, we observe that having a Pro equal to 75% of
the total power asset yields savings at most 11% higher. Furthermore, we observe similar savings and
final gaps on average for instances with a randomness in the power demand and for instances without

such a randomness.

Concerning OMBSE-HEU, the savings obtained are similar to the ones obtained with OMBSE-MILP
for small instances. Such a reduction is 12.3% on average for the instances tested. However, even for
small instances, OMBSE-HEU requires much more CPU time (3600 seconds with OMBSE-MILP against
13700 seconds on average with OMBSE-HEU). However, even for the instances tested, we observe that

adjusting the values of djme and 0} to 36 and 12, respectively, allows us to obtain solutions with

ime
/
time

better savings (1% higher on average compared to d¢ime and o equal to 24 and 12, respectively).

Concerning OMBSE-LAG, we observe that it runs faster and gives better solutions than OMBSE-MILP
and OMBSE-HEU. The savings obtained vary from 11.5% on average, for instances with Pro=25% of
D™ and 100 sites, to 40.2% on average, when Pro=100% of D™ and there are 5 sites. In addition,
the optimality gap obtained with OMBSE-LAG increases with the value of Prp, but is still smaller than
the ones obtained with OMBSE-MILP. However, unlike OMBSE-MILP, the savings obtained tend to be
larger when Pro is equal to 100% of the power asset. Analyzing the results, we observe that the
solutions obtained with OMBSE-LAG tend to perform the maximal number of curtailments possible

and a small number of peak-shavings. Hence, the savings obtained come mainly from the rewards
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Figure 5.7 — Results obtained by solving OMBSE instances with OMBSE-MILP and OMBSE-LAG.

received by performing curtailments. Furthermore, comparing the lower bounds of OMBSE-MILP and
OMBSE-LAG, we observe that the second method gives better lower bounds, and, consequently, better
optimality gaps. In short, having solutions with a quality guarantee as good as the solution itself is

fundamental to use such methods in a production environment.

To illustrate the impact of the parameter Pro on the savings and optimality gap, Figure
illustrates the savings, given in %, for OMBSE-MILP and OMBSE-LAG, and Figure m illustrates the
optimality gap, given in %, for the same methods. Note that, as OMBSE-MILP requires too much CPU
time and only few tests were performed, there is not enough data to integrate in these figures. We can
observe that the savings obtained with OMBSE-MILP decrease when Pro=100% of D™, which is not
the case with OMBSE-LAG. In addition, we can observe that the optimality gap increases as the value

of Pro increases in both methods, but OMBSE-LAG gives smaller gaps than OMBSE-MILP.

To illustrate the impact of the number of sites on the savings and optimality gap given by OMBSE-
MILP and OMBSE-LAG, Figure illustrates the savings, given in %, for OMBSE-MILP and OMBSE-LAG,
and Figure [5.8b| illustrates the optimality gap, given in %, for the same methods, in function of the
number of sites on the instances. Firstly, we can observe that the cost reductions obtained with
OMBSE-LAG are always higher than the ones obtained with OMBSE-MILP, even for small instances, when
Pro is higher than 50%. In addition, OMBSE-MILP is not able to find other solution than the standard
one given to CPLEX as starting solution for instances with 50 sites or more. In fact, the best solution
obtained with OMBSE-MILP in these cases are the standard ones, i.e., when batteries are not used
to perform peak-shavings or load curtailments. Furthermore, savings obtained with OMBSE-LAG stay

quite constant as the number of sites increases, which gives a perspective of savings for instances even
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Figure 5.8 — Results obtained by solving OMBSE instances with OMBSE-MILP and OMBSE-LAG.

larger than 100 sites. Secondly, concerning the optimality gap for OMBSE-LAG and OMBSE-MILP, we
can observe that the ones obtained with OMBSE-MILP increase between instances with 0 and 50 sites.
For larger instances, such gaps stabilize because of the fact that the optimal value of the continuous
relaxation (i.e., the best lower bound given by CPLEX for such cases) also stabilizes compared to the
standard solution. Concerning the optimality gaps obtained with OMBSE-LAG, they are much smaller

than the ones obtained with OMBSE-MILP, and tend to increase slowly as the number of sites increases.

5.7 Conclusion

This chapter addresses the OMBSE problem, that consists in optimizing the total energy cost using
batteries installed for backup to participate in the energy markets via a proper battery management.
We propose a mixed-integer linear program whose solutions provide a strategy for using the batteries
so as to reduce the total energy cost. We have shown that the OMBSE problem is strongly NP-Hard,
and two heuristics are proposed: the first one is based on the relax-and-fix strategy already explored
in Chapter 4] and the second one is based on a Lagrangian relaxation which allows to decompose the
problem into sub-problems which are easier to solve. Moreover, we have used these approaches to

solve the OMBSE problem on realistic instances.

As a result, we firstly observe that using batteries installed for backup in the balancing mech-

anism may generate savings. Concerning the solving approaches, we observe in particular that the
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mathematical model solved with a branch and bound algorithm could not achieve an optimality guar-
antee for any instance within the time limit, even for the small ones. However, even without such
an optimality guarantee, the best solution obtained already generates savings. The number of times
that each battery can be used and the number of load curtailments that can be performed seem to
be the parameters that have the greatest impact on those savings. In contrast, no reduction in the
electricity bill compared to the standard value was observed by increasing the number of sites of the
instances. Concerning the heuristic OMBSE-HEU, it gives solutions with savings similar to the ones ob-
tained with OMBSE-MILP, but requires much more CPU time. From a practical point of view, its use in
a production environment is not feasible. Concerning OMBSE-LAG, the results obtained proved its eco-
nomical relevance, by providing better solutions compared to the best ones obtained with OMBSE-MILP
or OMBSE-HEU, and with better optimality gaps. Furthermore, we observe that the power contrac-
tualized Pro has an important impact on the solutions obtained: with higher values, the solutions
yield more savings, but if it is too high (i.e., Ppo=100% of Dmax), it can limit the use of batteries to
perform peak-shavings. From a theoretical point of view, OMBSE-LAG reuses the algorithms proposed
in Chapters [3| and [4, which allows us to solve large-scale instances faster while keeping good quality

of the solutions obtained.

Concerning the performance of our algorithms, we observe that the number of sites is the parameter
that impacts the most the solving time. We consider a time limit of 1 hour for solving each instance,
and, in this aspect, the Lagrangian heuristic OMBSE-LAG proves to be computationally efficient, while
we observe that the solving time for the mixed-integer linear program proposed and the bidimensional
relax-and-fix heuristic increases fast. From a practical point of view, the use of OMBSE-LAG is feasible

in a production context due to the fact that its sub-problems can be solved separately and in parallel.

From a research perspective, we observed that the best feasible solution obtained with OMBSE-LAG
is obtained in the first iterations and is not improved over the iterations. Exploring other Lagrangian
heuristics to improve the search for feasible solutions in the Lagrangian relaxation at each iteration
of the subgradient method is fundamental to obtain solutions better than the ones already obtained.
Furthermore, the problem treated in this chapter can be extended to a scenario where sites are equipped

with multiple batteries. The solving approaches proposed can be adapted and are still valid.
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Chapter 6

Conclusion and Perspectives

6.1 Conclusion

This Ph.D. thesis explored different possibilities for using batteries of a telecommunications opera-
tor primarily used as backup in energy markets. More precisely, we explored the use of such batteries
to perform peak-shavings, but also to perform load curtailments in order to reduce the total energy
cost for the company. First, we identified different challenges related to the use of batteries in different
contexts that needed a deeper analysis to better understand the difficulties as well as the opportuni-
ties. Next, these challenges were investigated individually, and each time exact and heuristic methods
were proposed. Finally, the complete problem with all the rules and possibilities of battery use was

explored and solving methods based on the obtained results were designed.

For each one of the corresponding optimization problems, we have designed:

e For the OBSC problem:

— A mathematical model considering the constraints of the French curtailment market and

the safety usage rules in the batteries;

— An exact polynomial time algorithm based on graph theory to solve two variants, and that

can also be used as a heuristic.
e For the OMBSR problem:

— Two mixed-integer linear programs: one based on the enumeration of all possibilities of

batteries use, and a second one without enumeration;

189



6.1. CONCLUSION

— The proof that OMBSR is strongly NP-Hard;

— Two heuristics based on different aspects for OMBSR: one heuristic based on graph theory
inspired by the properties of the realistic tested instances, and a second heuristic based on

the relax-and-fix approach, that gives better results for the general case.
e For the OMBSE problem:

— A mixed-integer linear program;

The proof that OMBSE is strongly NP-Hard;

A Lagrangian based approach that reuses the algorithms proposed for sub-problems of

OBSC;

— A bidimensional relax-and-fix heuristic;

In order to assess the efficiency and relevance of the models and algorithms proposed, several numerical
experiments were performed on realistic instances, generated from public energy costs and data related
to the curtailment market, as well as internal data from the French telecommunications operator

Orange.

In the first case study, i.e. the OBSC problem, we observed that participating in the curtailment
market generates large savings for the company. We also identified which rules make the problem
difficult to solve, and we observed that the methods proposed to solve the variants of the problem that

are polynomial are also economically suitable when used as heuristics for the OBSC problem.

In the second case study, i.e., the OMBSR problem, we analyzed the impact of managing multiple
batteries when they are used exclusively to perform peak-shavings. We have observed that increas-
ing the number of batteries installed makes the problem difficult to solve. In fact, we prove that it is
strongly NP-Hard. The proposed mathematical models are unable to solve realistic instances when us-
ing a standard MILP solver, and the proposed heuristics proved to be economically and algorithmically

efficient when the number of installed batteries increases.

In the third case study, i.e., the OMBSE problem, we returned to the initial problem of this
thesis where batteries can be used to perform both peak-shavings and load curtailments in a multi-
battery setting. We observed that using the batteries generates reductions in the energy bill and is

economically profitable for the company. We also observed that the proposed mathematical model is
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not able to solve realistic instances to optimality with a standard MILP solver. Hence, by applying
the Lagrangian relaxation to the proposed model, and using the subgradient algorithm along with
the methods proposed in Chapter [3| to solve the sub-problems, it proved to be computationally and
economically efficient to solve realistic instances. Concerning the bidimensional relax-and-fix heuristic,
it did not prove to be efficient in solving the OMBSE problem because each iteration remains difficult

to solve, requiring long computation times.

We can conclude that the use of batteries installed for backup of a telecommunications operator
in the energy market is economically profitable. If these batteries are used to perform peak-shavings
and load curtailments, the gains obtained can be considerably high. Moreover, even if the batteries
are used only for peak-shaving, the gains that can be obtained already represent an important value

for the company.

6.2 Research Perspectives
6.2.1 Scientific Perspectives

During this thesis, several aspects were addressed and some of them require further research.
From a theoretical point of view, the complexity of the problem addressed in Chapter [3| concerning
the management of a battery that is used to perform curtailments is still an open issue. Only two

polynomial variants have been identified.

In the same vein, several solving methods have been proposed for the different problems addressed
that strongly depend on the setup parameters. Exploring in detail such parameters, as well as identi-
fying the best values of these parameters for specific classes of problems, is of fundamental importance

to obtain better results and computational performance.

In Chapters[4land 5| heuristics based on the relax-and-fix technique and Lagrangean decomposition
were proposed. However, other solving methods can be applied to the problem addressed in this thesis.

Dynamic programming in particular cases, alternative heuristics and nonlinear programs could be used.

Another perspective of research is the scenario where sites are equipped with multiple batteries.
In fact, Chapter [5] treats the problem considering sites equipped with a single battery because it is the
current case at Orange France. However, data-centers and central base stations are frequently equipped

with a pool of batteries that could also be used in the energy markets, but they are not considered
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in this thesis. Along the same lines, the possibility of installing batteries, and thus considering a
set-up installation cost, to improve the ability to perform peak-shavings and load curtailments is also

a perspective of future research.

We describe some possible extensions in the following section.

6.2.2 Industrial Perspectives

During the course of this thesis some questions and opportunities have emerged, leading to three
perspectives of future works to explore the use of batteries of a telecommunications operator in the

energy market.

Firstly, sharing batteries between neighboring base stations is a topic discussed internally in the
company, for which research is ongoing (Foucault et al. |2016]). In this context, adding to the problem
the decision of which base stations need to have a battery to supply neighboring stations is a challenge
to be explored and that can generate considerable cost savings for the company. Once a battery is
shared, the efficiency of sending power between two stations must be considered. Appendix [A] reports
an in-depth analysis of sending power from one station to the other considering physical aspects in

the power transmission.

The second perspective is related to the use of lithium batteries, also installed for backup, to
participate in the energy markets. Lithium batteries are more efficient, more flexible in their use and
better able to withstand different temperatures. After several conversations with the expert team of
Orange France, we report in Appendix [B]an analysis of such a type of batteries and the changes to be

made in our models and algorithms to integrate them.

The third research perspective is related to the integration of renewable energy together with
batteries to perform peak-shavings and load curtailments. A large-scale integration of solar panels
and wind turbines changes significantly the net power load patterns of production and consumption,
requiring complex management systems (Luo et al., 2015; Shaker et all 2016]). Internally at Orange,
the use of solar panels and wind turbines is a subject of studies for the evolution of the energy network
of the base stations (Marquet et al., 2006). Indeed, maintaining the stability and reliability of power
network, together with the battery safety usage rules in order to participate in the energy market, is

a real challenge that needs further research.
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Gestion optimale des systemes de stockage
d’énergie dans les réseaux de
télécommunications pour ’intégration de
mesures incitatives des marchés de I’énergie

7.1 Abstract

L’utilisation de batteries de secours en cas de coupure de courant est fréquente dans les réseaux
de télécommunications, car ils fournissent des services critiques qui doivent étre toujours en ligne. De
plus, ces batteries peuvent étre utilisées pour participer au marché de 1’énergie, a condition que les
regles de sécurité d’utilisation des batteries soient respectées. Dans cette these, nous considérons le
probleme de l'optimisation des colits totaux de I’énergie en utilisant des batteries installées pour la
sauvegarde afin de participer au marché de I’énergie en effectuant des écrétements de pointe et des
effacements, avec ’aide d’une gestion appropriée des batteries. Différents challenges ont été explorés
individuellement pour comprendre les propriétés du probléme d’optimisation, et ainsi développer des
méthodes de résolution efficaces. Des programmes linéaires mixtes et des heuristiques sont proposés,

et des simulations basées sur des données réalistes montrent leur pertinence.

7.2 Introduction

Au cours des dernieres années, différents aspects du marché de ’électricité ont été étudiés, notam-
ment avec I’émergence des smart-grids (Tuballa and Abundol 2016]). Ces réseaux peuvent impliquer de

multiples sources d’énergie, des systemes de stockage, une consommation intelligente et une produc-
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tion locale d’énergie (Dang, |2009; [Koutsopoulos et al., |2011). Dans ce contexte, les batteries peuvent
étre utilisées de différentes maniéres dans le but de réduire les cotuts de production et de transport,
de réduire la consommation d’énergie et d’augmenter la fiabilité du réseau lorsqu’elles sont utilisées
comme systeme de secours. Plus précisément, 1'utilisation de batteries comme systeme de secours en
cas de coupure de courant est courante dans les réseaux de télécommunications, car ils fournissent des
services critiques et doivent rester en permanence en ligne. (Kiehne and Krakowski, 1984). Ces bat-
teries sont utilisées en conjonction avec des antennes et d’autres équipements, et des regles strictes de
sécurité d’utilisation doivent étre prises en compte afin de garantir qu’elles soient toujours disponibles
en cas de panne de courant.. En outre, opérateur (entreprise) de télécommunications pourrait utiliser
ces batteries afin de participer au marché de I’électricité a condition que le réseau soit suffisamment
fiable et que les regles de sécurité d’utilisation soient respectées. En effet, puisque le prix de 1’énergie
varie dans le temps, les batteries peuvent étre utilisées pour éviter d’acheter de 1’énergie lorsque ce
prix est élevé, ce que I'on appelle le mécanisme de réponse a la demande. (Daryanian et al., 1989)). The
batteries will then be recharged when the energy price is low. Les batteries seront ensuite rechargées
lorsque le prix de I’énergie est bas. La production et la demande d’énergie définissent les prix de
I’énergie sur une journée, qui doivent étre payés pour acheter de I’énergie sur un marché. Un tel
marché de I'électricité est connu sous le nom de marché de détail, et le mécanisme de réponse a la
demande a été largement étudié au cours de la derniere décennie (Torriti, [2015; |Johnson et al., |2011;
Mishra et al., [2012; Labidi, 2019)). Ce mécanisme est basé sur les changements dans la consommation
d’électricité des clients finaux par rapport a leurs habitudes de consommation normales, en réponse

aux variations des prix de 1’énergie dans le temps.

Récemment, une autre facon rentable pour une entreprise d’utiliser ses batteries, est apparue.
Depuis 2016, 'opérateur de télécommunications francais Orange France utilise les batteries de ses sta-
tions de base installées pour la sauvegarde afin d’ajuster la consommation électrique et d’effectuer des
réductions de charge par le biais du mécanisme de réponse a la demande appelé Notification d’échange
de blocs (NEBEF). (RTE-Portal, 2020). Dans ce contexte, Orange France interagit directement avec
la TO grace a sa grande capacité de flexibilité de la charge en participant au marché d’effacement via le
mécanisme NEBEF. Pour ce faire, elle utilise ses batteries pour lesquelles des régles strictes de sécurité
d’utilisation doivent de toute fagon étre respectées. Cependant, aucune stratégie d’optimisation dans

une telle utilisation n’est prise en compte.
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Dans cette these, nous considérons le probleme de I'optimisation des cotits totaux de I’énergie en
utilisant des batteries installées pour la sauvegarde afin de participer aux marchés de détail et de
réduction, avec 'aide d’une gestion appropriée des batteries. Notre objectif est de réduire les dépenses
opérationnelles totales de Ientreprise, connues sous le nom d’OPerational EXpenditure (OPEX), et
de maximiser les récompenses recues du marché d’effacement. Notez que les OPEX et les récompenses
recues sont représentées par des unités monétaires et sont considérées simultanément. Par conséquent,

nous avons un probléeme d’optimisation a objectif unique.

Concernant les contributions de cette these, nous avons d’abord effectué une analyse théorique
du probleme et de ses propriétés, prouvant qu’il s’agit d’un probleme qui agrege différentes difficultés
a résoudre. Différents modeles mathématiques, abordant des parties du probleme ou considérant le
probleme complet, ont été proposés et évalués. Nous présentons également différents algorithmes et
heuristiques avec de bonnes performances en termes de calcul et d’économie, qui sont utiles pour
résoudre de grandes instances réelles. Différentes expériences numériques sont réalisées et confirment

la performance des méthodes proposées.

7.3 Regles industrielles

Cette section résume l’ensemble des regles qui sont prises en compte dans cette these. FElles

proviennent du marché de I’énergie et des regles d’utilisation de la sécurité des batteries.

R1 - Au moins une quantité minimale d’énergie B™", exprimée en kWh, doit rester dans la batterie

a tout moment;

R2 - La batterie doit étre immédiatement rechargée completement apres chaque utilisation avec une

puissance constante Pg, exprimée en kW, jusqu’a sa capacité maximale B™®* exprimée en kWh;
R3 - La batterie doit étre entierement chargée au début et a la fin de I'horizon de planification;

R4 - Une puissance minimale de décharge de D™, donnée en kW, est imposée lorsque la batterie

est en mode de décharge;
R5 - La puissance maximale que la batterie peut fournir est limitée a D™ et est exprimée en kW;
R6 - Chaque batterie b ne peut étre utilisée plus de N, fois sur I’horizon temporel;
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R7 - Il n’est pas possible d’acheter plus de P™#* kW au distributeur sur une période donnée;
RS8 - La durée de chaque réduction effectuée est limitée par des périodes de temps de A™® et AMaX;

R9 - p®* kW peuvent étre achetés au distributeur pendant 'effacement c s’il est effectué;

R10 - Le nombre d’effacements qui peuvent étre effectuées sur I’horizon temporel est limité a N€.

Notez que les regles concernent les régles d’utilisation de la sécurité, et les regles au
marché de I’énergie. En Section [7.5] uniquement les régles et sont considérées, tandis
que seules les regles sont considérés dans la Section En section[7.7] toutes les regles

sont pris en compte.

7.4 Positionnement et principales contributions

Dans cette section, nous présentons les principaux défis abordés dans cette thése et le plan notre

recherche.

7.4.1 Optimiser les coiits de ’énergie en utilisant des batteries sur le marché de I’énergie

Le probleme principal abordé dans cette these est 'optimisation des cotits totaux de 1’énergie en
utilisant des batteries installées a ’origine pour le secours dans les stations de base de télécommuni-
cations afin de participer aux marchés de ’énergie, avec ’aide d’une gestion appropriée des batteries.
Dans ce contexte, les batteries sont utilisées pour participer au marché de détail en adaptant la consom-
mation d’énergie du réseau en fonction des prix de 1’énergie, mais aussi pour effectuer des réductions
de charge, qui aident a maintenir ’équilibre du réseau, en échange d’une récompense financiere. Notre
objectif est de réduire les dépenses énergétiques opérationnelles totales de 'entreprise tout en max-
imisant les récompenses recues du marché d’effacement. Actuellement, les batteries sont déja utilisées

pour participer aux marchés de 1’énergie, mais aucune stratégie d’optimisation n’est explorée.

Le probleme d’optimisation en question doit tenir compte de certaines regles contractuelles et
des limites physiques des batteries. Ces régles, résumées dans la Section qui seront présentés
formellement de maniére plus détaillée dans les Sections et [T.7] peuvent étre classées en trois

groupes distincts, comme suit:
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e Regles de sécurité d’utilisation
e Régle du marché de détail

e Regles du marché d’effacements
7.4.2 Principaux défis

Nous avons identifié trois défis majeurs qui rendent le probleme potentiellement difficile & résoudre.

Impact des regles d’utilisation de la sécurité

En ce qui concerne 'impact des regles d’utilisation de la sécurité sur la gestion d’un seul sys-
teme de stockage d’énergie par batterie (BESS), certaines études connexes les abordent individuelle-
ment (Daryanian et al., [1989; Alapera et al., 2017; Bovera et al |2018]). Plus précisément, Alaperé
et al| (2017) prend en compte certains aspects physiques, tels qu'un taux de décharge maximal, un
taux de recharge constant et un nombre maximal de cycles, tandis que Bovera et al.|[(2018) il considere
le nombre maximum de cycles que la batterie peut effectuer. En ce qui concerne les régles telles que
recharger les batteries immédiatement apres chaque utilisation avec un taux de puissance constant et
imposer une puissance de décharge minimale aux batteries, aucune étude antérieure ne les a abordées.
Par conséquent, 'impact de ces régles sur la gestion des batteries n’est pas connu, ce qui nécessite une

analyse et une étude plus approfondies.

Impact des régles du marché d’effacement

Certaines études ont déja abordé partiellement les regles du marché d’effacement dans d’autres
contextes (Zhang et al., 2016; Lan et al., 2018; Mkireb et al.l [2019). En outre, I'utilisation de batteries
pour effectuer des réductions de charge a été traitée dans certaines études (Zakeri et al., 2017; Nas-
rolahpour et al., [2017; |Schillemans et al., |2018). Cependant, aucune étude précédente n’a abordé ces
regles dans le scénario ou les batteries soumises a des regles d’utilisation de sécurité sont utilisées pour
effectuer des réductions de charge. Par conséquent, I'impact de ces régles sur la gestion des batteries

n’est pas connu, ce qui nécessite une analyse et une étude plus approfondies.
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Impact de la gestion multi-batteries

Un autre défi est la gestion optimale d'un systeme de stockage d’énergie a batteries multiples
(MBESS), nécessitant des stratégies de controle plus efficaces. Dans ce contexte, des études récentes
proposent différentes méthodes pour traiter efficacement la dimensionnalité : (Babazadeh et al., |2014;
Zhu et al., [2018; |[Fan et al., 2019). Dans notre cas, nous considérons un MBESS pour lequel les regles
d’utilisation de la sécurité doivent étre considérées, ce qu’aucune étude précédente n’a abordé. Par
conséquent, I'impact de ces regles dans la gestion d’'un MBESS n’est pas connu, ce qui nécessite une

analyse et une étude plus approfondie.

7.4.3 Apercu de la recherche et principales contributions

Une fois les principaux défis identifiés, nous tracons les grandes lignes de notre recherche pour

explorer I'impact de chacun d’entre eux.

7.4.4 Exploration des regles du marché de ’écrétement dans un contexte de batterie unique

Dans la premiere partie de cette these, nous explorons exclusivement 'impact des regles du marché
d’effacement ainsi que des regles d’utilisation de sécurité sans considérer ’aspect multi-
batteries. Dans ce contexte, nous considérons un probleme avec un seul site et une seule batterie afin
de comprendre exactement 'impact des regles du marché d’effacement sur la gestion des batteries, et
d’analyser I'impact sur les méthodes de résolution. Ce probleme s’appelle Optimisation d’un systeme
de stockage par batterie utilisé par une entreprise pour participer au marché d’effacement (appelé

OBSC), et est présenté dans la Section

Les principales contributions de cette premiére partie sont :

e Modélisation des contraintes du marché francais d’effacement et des regles d’utilisation de la
sécurité dans les batteries de 'opérateur frangais de télécommunications Orange sous forme

d’équations linéaires;

e [’analyse du probleme étudié afin d’identifier les aspects qui rendent le probleme plus difficile a

résoudre;
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e Identification de deux variantes pratiques qui peuvent étre résolues a l'optimal en temps poly-

nomial;

e La proposition d’un algorithme exact polynomial, basé sur la théorie des graphes pour résoudre
les variantes, et qui peut également étre utilisé comme une heuristique pour OBSC. Le probléeme

peut en fait étre réduit au calcul du plus long chemin dans un graphe orienté sans cycle;

e Une évaluation expérimentale des gains économiques liés a 'utilisation d’une batterie installée
en secours sur le marché de la réduction des émissions pour 'opérateur de télécommunications

avec des instances réalistes.

En termes de publications scientifiques, deux articles ont été publiés dans des conférences interna-
tionales dans le cadre de cette premiere étude : Silva et al.| (2019a)), et Silva et al.| (2020a). En outre,
deux articles ont été présentés dans des conférences nationales : [Silva et al.| (2020c), et |Silva et al.

(2019D).

7.4.5 Explorer la gestion des systemes multi-batteries dans le contexte du marché de détail

Dans la deuxieme partie de cette these, nous explorons exclusivement 'impact de la gestion de
plusieurs batteries ensemble sous les regles d’utilisation de sécurité sans considérer les efface-
ments. Dans ce contexte, nous considérons un seul site équipé de plusieurs batteries qui ne sont
utilisées que pour participer au marché de détail, et les effacements ne sont pas autorisées. Ce prob-
leme est appelé Optimisation d’un systeme de stockage multi-batteries afin de participer au marché

de détail (appelé OMBSR), et est présenté dans la section

Les principales contributions de cette deuxieéme partie sont :

e La proposition de deux programmes linéaires en nombres entiers mixtes pour OMBSR;
e La preuve que OMBSR est NP-Hard;

e La proposition de deux heuristiques économiquement et computationnellement efficaces basées
sur différents aspects pour les instances OMBSR. & grande échelle : une heuristique basée sur
la théorie des graphes inspirée par les propriétés des instances réalistes testées; et une seconde

heuristique basée sur ’approche relax-and-fix qui donne de meilleurs résultats pour le cas général;
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e La proposition d’une réduction du Maximum Weight Budgeted Independent Set Problem sur les
graphes d’intervalles en Longest Budgeted Path Problem sur les graphes acycliques directs, et

d’un algorithme en temps pseudo-polynomial pour le résoudre;

e Une évaluation expérimentale des gains économiques liés a 1'utilisation de batteries installées

pour la sauvegarde sur le marché de détail pour 'opérateur de télécommunications.

En termes de publications scientifiques, un article a été présenté dans une conférence internationale
(Silva et al. 2020b)) et publié dans une revue internationale (Silva et al., 2022). En outre, un article

a été présenté lors d’une conférence nationale ((Silva et al., [2021Db))).

7.4.6 Le probleme d’optimisation complet

Enfin, une fois que nous avons compris I'impact des regles du marché d’effacement et de
la croissance du nombre de batteries dont I'utilisation doit respecter les regles de sécurité d’utilisation
IR1HR6| nous abordons tous les aspects dans un seul probleme. Dans ce contexte, nous considérons
plusieurs sites, chacun équipé d’une seule batterie dont 'utilisation doit respecter les regles de sécurité
d’utilisation pour participer au marché de I’énergie en effectuant des écrétements de pointe et des
effacements. L’ensemble du probléme est appelé Optimisation d’un systeme de stockage multi-batteries

participant au marché de 1’énergie (référencé comme OMBSE), et est présenté dans la section
Les principales contributions de cette troisieme partie sont :
e La proposition d’un programme linéaire en nombres entiers mixtes pour OMBSE;
e La preuve que OMBSE est NP-Hard;
e Décompositions du modele proposé basées sur la technique de relaxation lagrangienne;

e La proposition d’'une méthode de sous-gradient pour résoudre le modele relaxé en réutilisant les

algorithmes proposés pour les sous-problemes d’OBSC;

e La proposition d’une heuristique bidimensionnelle de relaxation et de correction qui peut égale-

ment étre utilisée pour résoudre des instances a grande échelle;

e Une quantification des gains économiques et opérationnels liés a I'utilisation des batteries instal-

lées en secours sur les marchés de ’énergie pour l'opérateur de télécommunications.
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En termes de publications scientifiques, une présentation a été faite a une conférence interna-

tionale (Silva et al.l 2021a)) dans le cadre de cette étude.

7.5 Optimisation d’un systeme de stockage avec une batterie pour participer
au marché d’effacement.

Formellement, le probleme traité dans cette section est I'optimisation d’un systeme de stockage
par batterie utilisé par une entreprise pour participer au marché d’effacement (appelé OBSC), afin
de réduire ses cotits énergétiques. L’enjeu principal est de respecter les regles du marché et les regles
d’utilisation de la sécurité tout en minimisant le cotit total net de I'énergie. Cette section nous permet
de comprendre en détail I'impact des regles du marché d’effacement sur la gestion des batteries. Les
éléments présentés dans cette section sont la base de 'algorithme présenté dans le Chapitre pour

résoudre le probleme dans un cadre multi-batteries.

7.5.1 Description du probleme

7.5.1.1 Enoncé du probleme

Nous considérons le cadre déterministe de ’OBSC que nous décrivons maintenant formellement.
Considérons un opérateur de télécommunications ayant une demande de puissance Wi, exprimée en
kW, a chaque période ¢t d’un horizon de T périodes de temps discretes de taille égale et de durée Delta
en heures. Le colt (exprimé en unités monétaires) de 'achat d’une unité d’énergie a chaque période
est connu. Dans la suite, pour des raisons de simplicité, nous considérons le prix de 1’électricité a
chaque période t, noté Fy, obtenu a partir du prix de I’énergie en le multipliant par A. Notez que ce
cout est fixé par le distributeur d’électricité, de méme que la quantité maximale de puissance P™*,

donnée en kW, qui peut étre achetée a n’importe quelle période (c’est-a-dire la regle .

Pour des raisons de sécurité du réseau, deux regles doivent étre respectées : d’une part, une
quantité minimale d’énergie, notée B™" et donnée en kWh, doit toujours rester dans la batterie (ex,
regle ; d’autre part, afin d’améliorer sa durée de vie, la batterie doit étre rechargée immédiatement
apres chaque utilisation, jusqu’a sa capacité énergétique maximale, désignée par B™** et exprimée en
kWh, avec un taux de puissance constant Pp (c’est-a-dire la regle , exprimé en kW. En outre,

une puissance minimale de décharge par période de temps, notée D™" et donnée en kW, est imposée
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lorsque la batterie est en mode de décharge (c’est-a-dire la regle . De plus, la batterie a un taux
de puissance maximal, noté D™?* et donné en kW, qu’elle peut libérer en raison des limitations de
courant et de tension (c’est-a-dire la regle . Notez que D™ € [0, D™%], et que la demande de
puissance W; est supposée étre supérieure & D™ & n’importe quelle période ¢ de ’horizon. La batterie

doit également étre entierement chargée au début et a la fin de 'horizon de planification (c’est-a-dire
la regle .

A chaque période de temps ¢, nous supposons que la récompense R; (donnée en unités monétaires),
qui sera regue par I'opérateur de télécommunications de la part du gestionnaire de réseau de transport
(TO) pour chaque unité d’énergie non achetée au distributeur pendant cette période, a condition qu’elle
fasse partie d’un effacement, est connue. Chaque effacement a une durée minimale (resp. maximale)
A™ (tesp. A™X) donnée comme un nombre de périodes, qui doit étre respectée (c’est-a-dire la regle
RE|). En outre, pendant chaque période d’effacement, 'opérateur de télécommunications doit réduire

la puissance achetée au distributeur d’au moins une valeur donnée Pro en kW. En conséquence,

max

max (en kW) peut étre achetée au

pour chaque effacement ¢, une quantité maximale de puissance p

distributeur & chaque période couverte par ¢ (c’est-a-dire la regle[R9)). Le mode de calcul de ce montant

max

X est basé sur la consommation réelle

est imposé par ’OT selon le pays. En France, le calcul de p
d’électricité immédiatement avant ’effacement et sur la consommation prévue pendant 1’effacement.
Ce parametre est considéré dans notre étude. Considérons un effacement ¢, qui commence a la période

fe (premiére période) et se termine a la période [. (derniére période).

Considérons également u; comme la puissance achetée au distributeur a chaque période de temps
t (en kW). Afin de calculer p** pour un ¢ donné, une valeur de référence w., qui prend en compte
la puissance moyenne appelée lors de I'effacement et la puissance u; achetée a la période ¢ juste avant

le début de la réduction ¢ (c’est-a-dire ¢t = f, — 1), est nécessaire. Une telle valeur de référence est

calculée comme suit : l
2y Wit ug

w 7.1
¢ lc - f et 2 ( )
Notez que la valeur de uy,_1 peut dépendre de la réduction effectuée avant c.
Une fois la puissance de référence w,. connue, p."** est alors calculé comme suit:
pe™ = max(0,w. — Pro) (7.2)

Rappelons que notre objectif est de gérer 'utilisation de la batterie tout en respectant a la fois la
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sécurité d’utilisation de la batterie et les regles des marchés de I'énergie, a moindre couit. Le montant
total des économies d’énergie se compose de deux parties. La premiere partie est fournie par la
différence entre les prix de I’énergie lors de I'utilisation et de la recharge de la batterie (c’est-a-dire lors
de la participation au marché de détail dans un mécanisme de réponse a la demande), et la seconde
par la récompense payée pour la quantité d’énergie non achetée aupres de le distributeur (c’est-a-dire
lorsqu’il effectue des effacements). Cette seconde partie est calculée soit par la régle On Time Reward
(OTR), soit par la regle First Time Reward (FTR) (RTE-Portal, 2020). Si nous utilisons OTR, une
récompense variable R; est considérée & chaque période t lors de chaque effacement. Si nous utilisons
FTR, la récompense Ry, donnée au début de I'effacement c est considérée pour toutes les périodes
pendant 'effacement, puis multipliée par la quantité d’énergie non achetée pendant cet effacement.
La quantité d’énergie non achetée lors d’un effacement donné est égale a la décharge de la batterie sur
sa durée. Dans ce qui suit, par souci de simplicité, nous considérons le prix de récompense par unité
de puissance a chaque période de temps t noté Ry, obtenu a partir du prix de récompense par unité

d’énergie en le multipliant par A.

De plus, nous considérons un opérateur de télécommunications avec une seule batterie et une seule
énergie fournisseur sans sources d’énergie renouvelables. La batterie est préte a ’emploi, et aucun cotit
d’installation ou de configuration n’est pris en compte. De plus, la batterie doit étre completement
chargée avant d’effectuer toute réduction. Aucune perte de batterie n’est considérée non plus et toute
réduction effectuée doit respecter les regles du marché de I’énergie. Nous considérons également que
la décision d’effectuer un effacement est prise par 'opérateur de télécommunications et non imposée

par le gestionnaire de réseau de transport.

Enfin, le probleme énoncé ci-dessus est appelé OBSC dans ce qui suit, et toute instance OBSC
est entierement définie par les parametres suivants: W, A, E, Pmax pmin  pmax  pg, pmin  pmax
R, A™n AmaX Dr, et la politique de récompense (représentée par une valeur booléenne). Les
reégles d’utilisation de sécurité et les régles de marché définies dans la Section [7.3] sont

également prises en compte.

7.5.1.2 Variantes pratiques

Dans certains cas, en raison de regles d’ingénierie spécifiques ou de limitations techniques, des

contraintes supplémentaires doivent étre prises en compte. Par conséquent, nous étudions quelques
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variantes du probleme général qui peuvent étre classées en deux grandes familles de problemes. La
premiere considere le cas ou les niveaux de décharge possibles de la batterie sont discrets (et seront
appelés OBSC-D). Habituellement, les systemes de mesure utilisés pour surveiller la charge de la
batterie ont des limitations techniques qui empéchent de considérer des niveaux de décharge continus.
Ceci induit une discrétisation des niveaux de décharge qui dépend de la précision de ces systemes. Les

variantes correspondantes considerent les niveaux de rejet donnés en pourcentage de B™a*.

Deuxiemement, des regles d’ingénierie supplémentaires peuvent également étre imposées sur 'utilisation
de la batterie pour améliorer sa durée de vie. Un exemple est le cas ou la batterie doit rester en mode
repos pendant au moins une période de temps apres sa recharge complete. La deuxieme famille de
variantes étudiée dans ce travail considere précisément que la batterie doit nécessairement étre au re-
pos pendant au moins un nombre de temps déterminé apres chaque recharge compléte (et sera appelée
OBSC-R). Cette hypothese peut étre imposée en pratique pour s’assurer, par exemple, que la batterie
est bien chargée avant d’étre réutilisée, méme si le taux de recharge réel n’est pas Pp (c’est-a-dire n’est

pas un taux de puissance constant).

Dans de telles variantes, I'impact de la corrélation temporelle entre deux effacements de charge
induits par le calcul de w. (voir Equation , peut étre traité plus facilement. Grace a cela, ils
peuvent étre résolus en temps polynomial. De plus, étant donné que toute solution pour l'une de
ces variantes est également une solution réalisable pour OBSC, un tel algorithme peut également étre

utilisé comme méthode heuristique pour résoudre OBSC.

7.5.2 Résultats expérimentaux

En tant que méthode de résolution, a programme linéaire & nombre entier mixte (appelé 0BSC-MILP)
est proposé et résolu le probleme OBSC a 'aide d’un solveur standard, et chacune de ses solutions
optimales fournit une stratégie d’utilisation la batterie a un cout optimal. Concernant les variantes,
nous avons prouvé qu’elles étaient polynomiales en fournissant un algorithme orienté graphes efficace

(appelé 0BSC-GOA) pour les résoudre.

En conséquence, nous avons observé que participer au marché d’effacement génere de grandes
économies (88% avec FTR et 105% avec OTR en moyenne), réduisant ainsi 'OPEX énergétique de
Ientreprise, et prouvant la prémisse de cette étude. Une série de tests sur des instances réalistes

provenant du contexte francais a été réalisée, afin d’analyser le modele mathématique ainsi que les
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principales propriétés de telles instances. Nous avons notamment observé que 0BSC-MILP ne pouvait
pas atteindre une garantie d’optimalité pour toutes les instances. Cependant, méme pour les cas sans
une telle garantie d’optimalité, la meilleure solution obtenue génere déja des économies de 55% a 90%
en moyenne, ce qui représente une réduction substantielle de la facture d’électricité pour ’entreprise.
La politique de récompense et la capacité de la batterie semblent étre les parametres qui ont le plus
d’impact sur ces économies potentielles. Concernant les variantes résolues avec 'algorithme orienté
graphes 0BSC-GOA, toutes les instances ont été résolues a 'optimalité, et les résultats que nous avons
obtenus ont prouvé la pertinence économique de telles variantes (seulement 2,5% pire que les solutions
optimales d’OBSC en moyenne pour les instances pour lesquelles la garantie d’optimalité est atteinte),
en fournissant de bonnes solutions approchées au probleme général, et donc en étant de bonnes et

rapides heuristiques pour le résoudre.

Concernant les performances de nos algorithmes, nous avons observé que pour les instances de
notre banc de test, la valeur de la discrétisation temporelle et la politique de récompense sont les
parametres qui ont le plus d’impact sur le temps de résolution. Nous avons considéré une limite de
temps de 15 minutes pour résoudre chaque instance, et, dans cet aspect, 0BSC-GOA s’est avéré efficace
du point de vue informatique, tandis que nous avons observé que le temps de résolution de 0BSC-MILP

augmente rapidement lorsque certains parametres augmentent.

Une fois que ’on a bien compris I'impact des coupures sur la gestion des batteries, les probléemes qui
rendent cette gestion plus complexe, et comment les résoudre, nous pouvons utiliser les connaissances
acquises dans la gestion d’un actif énergétique composé de plusieurs batteries. Notez que, par souci de
clarté, les regles[R6] et n’ont pas été prises en compte dans ce chapitre car elles sont plus pertinentes
lorsque plusieurs batteries sont utilisées pour éviter qu’'une batterie ne soit utilisée beaucoup plus
que d’autres. De plus, les approches de résolution proposées restent valables avec des modifications

mineures.

7.6 Optimisation d’un systeme de stockage multi-batteries pour participer
au marché de détail

Formellement, le probléeme traité dans ce chapitre est l'optimisation d’'un systéeme de stockage
multi-batteries participant au marché de détail (appelé OMBSR), afin de réduire le cout total de

I’énergie pour l'entreprise. L’enjeu principal est de gérer plusieurs batteries tout en respectant les
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regles du marché de ’énergie et les regles de sécurité d’utilisation et en minimisant le colt total de
I’énergie.

Ce chapitre nous permet de comprendre en détail 'impact de I’augmentation du nombre de bat-
teries sur le probléme d’optimisation. Nous explorons également la stratégie de décomposition du
probleme OMBSR en sous-problemes pouvant étre résolus plus efficacement. Une telle stratégie est en
outre incorporée dans 'algorithme présenté au chapitre [7.7 pour résoudre le méme probleéme avec les
effacements. Le probleme OMBSR et toutes ses instances sont entierement décrits par les parametres
suivants (dont certains sont des vecteurs ou des ensembles) : W, A, E, P™% mathcal B, B™", Bmax,
Pg, D™n D™aX ot N Les regles d’utilisation de sécurité et la regle de marché du probleme
sont les mémes que celles définies au chapitre

7.6.1 Résultats expérimentaux

Nous avons proposé deux programmes linéaires a nombres entiers mixtes, et chacune de leurs
solutions optimales fournit une stratégie d’utilisation des batteries afin de réduire autant que possible
le colt énergétique total. Nous avons montré que le probleme OMBSR est NP-difficile, et deux
heuristiques sont proposées pour résoudre les instances a grande échelle. La premiere est basée sur la
stratégie Relax and Fix (appelée OMBSR-RF-HEU), et une seconde basée sur la décomposition temporelle
basée sur la périodicité de la demande d’électricité et des prix (appelée OMBSR-G-HEU). De plus, nous

avons utilisé ces approches pour résoudre OMBSR sur des instances réalistes.

Concernant les approches de résolution, nous observons en particulier que les deux modeles math-
ématiques n’ont pu atteindre une garantie d’optimalité que pour une petite partie des instances dans
le délai imparti. Cependant, méme pour les instances sans une telle garantie d’optimalité, la meilleure
solution obtenue génere déja des économies. Le nombre de fois que chaque batterie peut étre utilisée
semble étre le parametre qui a le plus d’impact sur ces économies. En effet, le nombre de fois que
chaque batterie b est utilisée dans une solution est exactement Ny, indépendamment de la méthode de
résolution utilisée. En revanche, aucun gain substantiel n’a été observé en augmentant le nombre de
batteries disponibles (puisque la somme des puissances D™#* de toutes les batteries équivaut a la puis-
sance moyenne appelée), 'horizon temporel ou la puissance moyenne appelée , c’est-a-dire la valeur
de W. Cependant, l'utilisation de plusieurs batteries est souhaitable pour des raisons de sécurité et

pour augmenter la durée de vie des batteries. Concernant les heuristiques, les résultats obtenus ont
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prouvé leur pertinence économique, en fournissant de meilleures solutions par rapport aux meilleures
obtenues par les programmes linéaires en nombres entiers mixtes sur des instances a grande échelle.
De plus, OMBSR-G-HEU s’est avéré plus efficace pour les instances avec une périodicité bien définie de
la demande de puissance et des prix, tandis que OMBSR-RF-HEU s’est avéré plus efficace pour le cas
général.

Concernant les performances de nos algorithmes, nous observons que le nombre de batteries instal-
lées et ’horizon temporel sont les parametres qui ont le plus d’impact sur le temps de résolution. Nous
considérons une limite de temps de 30 minutes pour résoudre chaque instance, et, dans cet aspect,
I’heuristique s’est avérée efficace du point de vue informatique, tandis que nous observons que le temps

de résolution des programmes linéaires en nombres entiers proposés augmente rapidement.

7.7 Optimisation d’un systeme de stockage multi-batteries pour participer
aux marchés de ’énergie

Dans cette section, nous considérons le probleme complet de cette theése qui consiste a optimiser les
colits énergétiques totaux des sites de télécommunications utilisant des batteries installées en secours

pour participer au marché de I’énergie en utilisant une bonne gestion des batteries.

Formellement, le probléeme traité dans ce chapitre est 'optimisation d’'un systéme de stockage
multi-batteries afin de participer au marché de 1’énergie (appelé OMBSE), afin de réduire le cotit total
de I'énergie pour l’entreprise. L’enjeu principal est de respecter les regles du marché et les regles
d’usage de sécurité tout en minimisant le cout total net de I’énergie en effectuant des écrétages et des
effacements. Le probleme OMBSE et toutes ses instances sont entierement décrits par les parametres
suivants (dont certains sont des vecteurs ou des ensembles) : W, A, E, P™  mathcalS, B™",
Bwax  pp pmin . pmax . N AminG Amax - pno - RN et la politique de récompense (représentée par
une valeur booléenne). Les mémes regles d’utilisation de sécurité et les regles du marché de
I’énergie que celles définies dans la Section sont prises en compte.

7.7.1 Résultats expérimentaux

Nous proposons un programme linéaire mixte en nombres entiers, référencé OMBSR-MILP, dont

les solutions fournissent une stratégie d’utilisation des batteries afin de réduire le cott énergétique
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total. Nous avons montré que le probleme OMBSE est fortement NP-Dur, et deux heuristiques sont
proposées : la premiére est basée sur la stratégie relax-and-fix déja explorée dans la Section 7.6
référencée comme OMBSE-HEU, et la seconde est basée sur une relaxation lagrangienne qui permet de
décomposer le probleme en sous-problemes plus faciles a résoudre, référencés OMBSE-LAG. De plus, nous

avons utilisé ces approches pour résoudre le probleme OMBSE sur des instances réalistes.

De ce fait, on observe tout d’abord que l'utilisation de batteries installées en secours dans le
mécanisme d’équilibrage peut générer des économies. Concernant les approches de résolution, nous
observons en particulier que le modele mathématique résolu avec un algorithme de branchement et
de limite n’a pu atteindre une garantie d’optimalité pour aucune instance dans la limite de temps,
méme pour les plus petites. Cependant, méme sans une telle garantie d’optimalité, la meilleure
solution obtenue génere déja des économies. Le nombre de fois que chaque batterie peut étre utilisée
et le nombre d’effacements qui peuvent étre effectués semblent étre les parametres qui ont le plus
d’impact sur ces économies. En revanche, aucune diminution de la facture d’électricité par rapport
a la valeur standard n’a été observée en augmentant le nombre de sites des instances. Concernant
I’heuristique OMBSE-HEU, elle donne des solutions avec des économies similaires a celles obtenues avec
OMBSE-MILP, mais nécessite beaucoup plus de temps CPU. D’un point de vue pratique, son utilisation
dans un environnement de production n’est pas envisageable. Concernant OMBSE-LAG, les résultats
obtenus ont prouvé sa pertinence économique, en fournissant de meilleures solutions par rapport aux
meilleures obtenues avec OMBSE-MILP ou OMBSE-HEU, et avec de meilleurs écarts d’optimalité. De plus,
on observe que la puissance contractualisée Pro a un impact important sur les solutions obtenues :
avec des valeurs plus élevées, les solutions rapportent plus d’économies, mais si elle est trop élevée
(ie, Pro=100 % de D™), il peut limiter I'utilisation de batteries pour effectuer des écrétements de
pointe. D’un point de vue théorique, OMBSE-LAG réutilise les algorithmes proposés dans les sections
et ce qui nous permet de résoudre plus rapidement les instances & grande échelle tout en gardant

de bonnes qualité des solutions obtenues.

Concernant les performances de nos algorithmes, nous observons que le nombre de sites est le
parametre qui impacte le plus le temps de résolution. Nous considérons une limite de temps de 1
heure pour résoudre chaque instance, et, dans cet aspect, ’heuristique lagrangienne OMBSE-LAG s’avere
efficace du point de vue informatique, tandis que nous observons que le temps de résolution pour le

programme linéaire en nombres entiers mixte proposé et I’heuristique bidimensionnelle relax-and-fix
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augmente rapidement. D’un point de vue pratique, 'utilisation de OMBSE-LAG est faisable dans un

contexte de production du fait que ses sous-problemes peuvent étre résolus séparément et en parallele.

7.8 Conclusion et perspectives
7.8.1 Conclusion

Cette these a exploré différentes possibilités d’utilisation des batteries d’un opérateur de télécom-
munications principalement utilisées comme sauvegarde sur les marchés de I’énergie. Plus précisément,
nous avons exploré 1'utilisation de telles batteries pour effectuer des écrétements de pointe, mais aussi
pour effectuer des effacements de charge afin de réduire le cott énergétique total de ’entreprise. Pre-
mierement, nous avons identifié différents défis liés a ’utilisation des batteries dans différents contextes
qui nécessitaient une analyse plus approfondie pour mieux comprendre les difficultés ainsi que les op-
portunités. Ensuite, ces défis ont été étudiés individuellement, et a chaque fois des méthodes exactes
et heuristiques ont été proposées. Enfin, le probleme complet avec toutes les regles et possibilités
d’utilisation de la batterie a été exploré et des méthodes de résolution basées sur les résultats obtenus

ont été congues.

Pour chacun des problemes d’optimisation correspondants, nous avons congu:
e Pour le probleme OBSC :

— Un modele mathématique tenant compte des contraintes du marché francais de 'effacement

et des regles de sécurité d’usage dans les batteries;

— Un algorithme de temps polynomial exact basé sur la théorie des graphes pour résoudre

deux variantes, et qui peut également étre utilisé comme heuristique.
e Pour le probleme OMBSR :

— Deux programmes linéaires en nombres entiers mixtes : un basé sur I’énumération de toutes
les possibilités d’utilisation des batteries, et un second sans énumération;

— La preuve que OMBSR est fortement NP-difficile;

— Deux heuristiques basées sur des aspects différents pour OMBSR : une basée sur la théorie
des graphes inspirée des propriétés des instances réalistes testées, et une seconde heuristique

basée sur 'approche relax-and-fix, qui donne de meilleurs résultats pour le cas général.
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e Pour le probleme OMBSE :

Un programme linéaire en nombres entiers mixtes ;

La preuve que OMBSE est fortement NP-Dur;

Une approche basée sur la relaxation lagrangienne qui réutilise les algorithmes proposés

pour les sous-problemes d’OBSC ;

Une heuristique bidimensionnelle relax-and-fix;

Afin d’évaluer D'efficacité et la pertinence des modeles et algorithmes proposés, plusieurs expérimen-
tations numériques ont été réalisées sur des instances réalistes, générées a partir des coiits publics de
I’énergie et des données liées au marché de I'effacement, ainsi que des données internes de I'opérateur

de télécommunications frangais Orange.

On peut conclure que l'utilisation des batteries installées en secours d’un opérateur de télécommu-
nications sur le marché de I’énergie est économiquement rentable. Si ces batteries sont utilisées pour
effectuer des écrétages et des effacements de charge, les gains obtenus peuvent étre considérablement
élevés. De plus, méme si les batteries ne sont utilisées que pour I’écrétement des pics, les gains qui

peuvent étre obtenus représentent déja une valeur importante pour I’entreprise.

7.8.2 Perspectives de recherche

7.8.2.1 Perspectives scientifiques

Au cours de cette these, plusieurs aspects ont été abordés et certains d’entre eux nécessitent des
recherches plus approfondies. D’un point de vue théorique, la complexité du probleme abordé dans
la Section concernant la gestion d’une batterie qui est utilisée pour effectuer des effacements est

encore un probléeme ouvert. Seuls deux variants polynomiaux ont été identifiés.

Dans la méme veine, plusieurs méthodes de résolution ont été proposées pour les différents prob-
lemes abordés qui dépendent fortement des parametres de configuration. L’exploration en détail de
ces parametres, ainsi que l'identification des meilleures valeurs de ces parametres pour des classes
de problemes spécifiques, sont d’une importance fondamentale pour obtenir de meilleurs résultats et

performances de calcul.

Dans les sections [7.0] et des heuristiques basées sur la technique relax-and-fix et la décom-
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position lagrangienne ont été proposées. Cependant, d’autres méthodes de résolution peuvent étre
appliquées au probléeme abordé dans cette these. La programmation dynamique dans des cas partic-

uliers, des heuristiques alternatives et des programmes non linéaires pourraient étre utilisés.

Une autre perspective de recherche est le scénario ou les sites sont équipés de plusieurs batteries.
En effet, la Section [7.7] traite le probléme en considérant des sites équipés d’une seule batterie car c¢’est
le cas actuel chez Orange France. Cependant, les data-centers et les stations de base centrales sont
fréquemment équipés d’un parc de batteries qui pourraient également étre utilisés sur les marchés de
I’énergie, mais ils ne sont pas pris en compte dans cette these. Dans le méme ordre d’idées, la possibilité
d’installer des batteries, et donc d’envisager un cott d’installation d’implantation, pour améliorer
la capacité a effectuer des écrétages et des effacements de charge est également une perspective de

recherche future.

7.8.2.2 Perspectives industrielles

Tout d’abord, le partage de batteries entre stations de base voisines est un sujet discuté en interne
dans l’entreprise, pour lequel des recherches sont en cours (Foucault et al., 2016|). Dans ce contexte,
ajouter a la problématique le choix des stations de base qui doivent disposer d’une batterie pour
alimenter les stations voisines est un challenge a explorer et qui peut générer des économies de cotits
considérables pour I’entreprise. Une fois qu’une batterie est partagée, 'efficacité de 'envoi de puissance

entre deux stations doit étre prise en compte.

La seconde perspective est liée a I'utilisation de batteries au lithium, également installées en secours,
pour participer aux marchés de ’énergie. Les batteries au lithium sont plus efficaces, plus flexibles

dans leur utilisation et mieux & méme de résister a différentes températures.

La troisieme perspective de recherche est liée a I'intégration des énergies renouvelables avec les bat-
teries. Une intégration a grande échelle de panneaux solaires et d’éoliennes modifie considérablement
les modeles de charge électrique nette de production et de consommation, nécessitant des systemes de
gestion complexes (Luo et al., 2015} Shaker et al. |[2016). En interne chez Orange, I'utilisation de pan-
neaux solaires et d’éoliennes fait ’objet d’études pour ’évolution du réseau énergétique des stations
de base (Marquet et al., [2006). En effet, maintenir la stabilité et la fiabilité du réseau électrique, ainsi
que les regles d’utilisation de la sécurité des batteries afin de participer au marché de ’énergie, est un

véritable défi qui nécessite des recherches plus approfondies.
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Appendix A

Power transmission between base stations

In this appendix we introduce the possibility of performing power transfer between sites in the
context of telecommunications. Some essential elements such as transmission losses and equipment
needed to perform the transfer are presented. In fact, energy is produced in power plants (nuclear,
gas, hydroelectric, solar, etc.) and has to be sent to the customers location. Thus, the electrical power
is transferred via transmission wires over the country, and such a transfer is subject to the resistivity

of the wires, causing losses.

A.1 Transmission loss

Concerning the transmission loss, when an electron travels through a wire or other conductor
material it encounters resistance, i.e., an hindrance to the flow of electrons. Such a resistance appears
due to collisions of the electrons with fixed atoms within the conducting material. In this context, each
conductor material has its own resistivity (i.e., the conducting ability of a material measured in Ohm
per meter). Most of the wires are made of copper which has a low resistivity (1.7 x 1078 Ohm-meter)
and low production cost compared to silver (1.59 x 108 Ohm-meter) or gold (2.2 x 10~% Ohm-meter)

Bird (2013). Hence, the longer the wire, the more resistance there will be, causing high losses.

To reduce transmission losses while maintaining the same power transmission rate, the current
is frequently reduced as much as possible and the voltage is increased. On the one hand, current
reduction means a smaller number of electrons traveling at the same point of the conductor at the
same time, reducing the friction. On the other hand, voltage increasing means a higher differential

power that pressures groups of electrons to travel "more frequently”. The equipment responsible for
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such an increase of voltage is called the Transformer. Every power plant uses a transformer to increase

the voltage level before transmission for long distances.

In the context of batteries, if a power from a battery is sent over a long distance, a transformer is
needed at the start and end points. The battery itself has a voltage limit imposed by the electrolysis
process, requiring such an additional equipment. Therefore, batteries are usually installed close to the

customer, eliminating the need for a transformer, which reduces the operational cost.
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Examples of transmission loss

Let us consider a power plant that must send 5kW from a start point to an end point which
are | = 1km away and connected by a copper wire. The copper line has a material constant p of
0.017(2%"2 and a cross-section of A = 10mm? (Bird, [2013)). The voltage for the transmission is 1kV

and the current (I) for transmission is i%%%((VVV)) =5A.

We can also compute the total resistance R of the wire as R = p*% = 0.0179’”7”12 * 11(?7?107)1"‘2 = 1.79).
Hence, we have a total resistance of 1.7Q per km of copper line considering a cross-section of 10mm?.
Finally, we are able to compute the total transmission power loss considering a current of 5A4. The
total power loss P is computed as P = I?R, where I is the current and R the line resistance. This

implies that we have a power loss of P = 25 % 1.7 = 42.5W, corresponding to 0.85% of 5kW.
Battery power transmission

Let us consider a typical AGM battery as a power source with a current of 19A and a voltage of
55V. The battery releases 1045W of power in one hour at its maximum power capacity. However, with
a resistance of 1.7€) per km, 613W will be lost in transmission over 1km, corresponding to 58.7% of the
total power sent. An alternative would be to either increase the wire diameter or reduce the current.
Considering a scenario where the same 1045W are transmitted in 5 hours instead of 1 hour (i.e., 3.8A
current), 24.54W (2.34%) would be lost in such a transmission. We can also consider another scenario
where these 1045W are sent with 19A current to the customer 20 meters away. In this context, the
line resistance is 0.0349 and the power lost in such transmission is 12.2W, corresponding to 1.17%

loss.

If a transformer is installed together with the battery for power transmission, the transmission
losses are reduced. Let us consider a transformer where the voltage is transformed from 12V to 220V,
implying a reduction in current from 19A to 4.75A. In this case, to send the same 1045W in one hour
over a distance of 1km, approximately 38.4W will be lost, representing about 3.67%. This example

illustrates the importance of a transformer in electric power transmission.

A.2 Transmission in telecommunications networks

The network reliability of telecommunications sites has been improved over the years, allowing to

reduce the number of backup devices in sites of some regions (Foucault et al., 2016). In this context,
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Figure A.1 — Power sharing grid considering transmission losses up to 25%

installing a remote power solution for some sites with a shared power system dramatically reduces
costs of maintenance, since it decreases the intervention time needed to get to the site. [Foucault et al.
(2016) present remote power solutions, called Remote Feeding Telecom (RFT), with shared power
plants, as well as the physical and economic impacts on power transmission. In this context, base
stations equipped with a RFT system are connected to sites without an energy storage asset and have

the ability to send data and power over hybrid cables.
Energy assets sharing

In telecommunications context, the energy assets sharing between sites is desirable for future
networks, especially with the 5G network deployment. However, considering a battery that sends
1kW thought a 2.5mm? wire to another site 800 meters away, the power loss will be about 10%. For
sites close to each other, and such that the transmission loss is smaller than 25% considering the
battery installed, the power sharing of energy assets can be allowed. Figure illustrates the grid
of energy assets sharing between the Orange France sites considering a power transmission loss up
to 25%, which covers the whole French territory, and for which a large number of power sharing is
possible. In this context, some of the sites will be central power stations with direct connections with
remote power stations without a battery asset. The power transmission between sites is traditionally
performed through a copper wire of 2.5mm? with resistivity of 1.7 x 108 Ohm-meter (Foucault et al.,

2016).

Figure [A2] illustrates a possible case where batteries are shared between sites: sites in orange are
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Figure A.2 — Energy power sharing schema

equipped with one battery, the site in green is a central power station, and sites in blue are remote

sites without a battery. The edges represent the possibility of sharing energy between sites.
Perspectives of research

The use of hybrid fiber-coaxial cables that can transport data and optical energy to powering

electric or electronic devices remotely, formally called Power Over Fiber (PoF), has recently become

a new subject of research (Rosolem and Roka, 2017). The main interest of this technology is that

besides the advantages of optical fibers such as immunity to electromagnetic interference and electrical
insulation, the PoF eliminates the use of metallic cable, which improves the reliability and the security
of the system. At Orange France, the use of the PoF technology is under study, as it seems to be the
reality in next years. Consequently, the possibility of sharing batteries between sites requires future

research to integrate such aspects in the models and solving approaches proposed in this thesis.
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Appendix B

Lithium batteries in telecommunications

In this appendix we introduce the use of lithium batteries in the telecommunications context. Some

essential elements such as the recharging profile and the efficiency are presented.

In this thesis, we only considered GEL or AGM batteries in our tests. However, batteries of different
technologies, such as lithium, are increasingly present in our daily lives. In the telecommunications
context it is no different, and several applications using lithium batteries have been proposed thanks
to the advantages of this technology (Eaves and Shaffer, 2007)). Lithium batteries are more efficient,

more flexible in their use and better able to withstand different temperatures.

In this context, the team of experts from the French telecommunications company Orange has
explored the use of lithium batteries in base stations for backup. Consequently, it is important to
consider this type of batteries, and its rules and limits of use, in the models and algorithms proposed

in this thesis.

B.1 Recharging process

After several conversations with the expert team, we have concluded that the safety usage rules
R} summarized in Section are still valid for lithium batteries. Concerning the rule
the battery must still be recharged with a constant power rate Pp, up to its maximal capacity B™#*,
but its recharge can be delayed. Indeed, lithium batteries do not need to be recharged immediately
after each discharge for physical reasons, but delaying the recharging of the battery induces a risk to
the company since they are installed for backup purposes. However, delaying the recharge of some

batteries for some periods of time can increase the gains significantly since the recharge can benefit
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from better power purchase prices.

Considering that the maximal delay of recharge of a battery b is given by Af, the rule can be

rewritten as follows:

R2’ - The battery must start being recharged at most A time periods after each discharge with a

constant power rate Pp, given in kW, up to its maximal capacity B™®*, given in kWh;

To integrate these rules in the models proposed, we must change the constraints that define the
values of variables u{i + in the models proposed. Hence, for a given battery bs in a site s, the following

new family of variables will be considered:

e gyt €{0,1},Vt € T: equal to 0 if the recharge start of the battery b, is delayed (i.e., the value
of the variable ufs + 1s equal to 0), and to 1 otherwise (i.e., the value of the variable ufs 1+ takes

the values defined in .

Note that variables z act on the activation of constraints of recharge (see Constraints (B.1]) and
B.2)) below).

In addition, the constraints that define the values of variables ub'i .+ must be replaced by the following

constraints:
ug = (1= 2p,4)@o, s min(B™ /A — @y 1 /A, Pp, , P — W) vte T (B.1)
Abst—1 < Qo t + 2ot Vte T (B.2)
#'=max(1,t—1)
Yo artae>1 Vte T (B.3)

t'=max(1,t—AR)

Note that Constraints and guarantee partially the rule because the maximal delay A"
to start the recharge is not guaranteed. Hence, Constraints imposes that the recharging process
starts at most AT time periods after the battery discharge.

Note that two new non-linearities are introduced in Constraints namely the product between
two binary variables z and x, that can be easily linearized, and the product between the variables ¢

and x, that can be treated with the McCormick strategy (McCormick, [1976). Concerning the graph
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oriented approach proposed in Chapter [3| the number of nodes in the graph used to compute the

longest path will increase by a factor of A,
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Smart grid and optimization of flexible || Ccnam
network interactions with energy markets

Résumé :

L’utilisation de batteries de secours en cas de coupure de courant est fréquente dans les réseaux de
télécommunications, car ils fournissent des services critiques et doivent rester en ligne en permanence.
Ces batteries sont utilisées en conjonction avec des antennes et d’autres équipements, et des regles strictes
de sécurité d’utilisation doivent étre prises en compte afin de garantir qu’elles soient toujours disponibles
en cas de coupure de courant. En outre, 'opérateur de télécommunications pourrait utiliser ces batteries
afin de participer au marché de I'électricité a condition que le réseau soit suffisamment fiable et que
les regles de sécurité d’utilisation soient respectées. En effet, puisque le prix de I’énergie varie dans le
temps, les batteries peuvent étre utilisées pour éviter d’acheter de I’énergie lorsque ce prix est élevé, et
étre rechargées lorsque le prix de ’énergie est plus bas, un comportement appelé stratégie d’écrétement
des pointes (peak-shaving en anglais). Une deuxiéme fagon rentable pour une entreprise d’utiliser ses
batteries est d’effectuer des effacements de charge. En effet, lorsque la demande d’électricité d’un pays
est supérieure a la production, le gestionnaire du réseau de transport doit prendre des mesures afin de
stabiliser le réseau, par exemple en demandant aux centrales électriques de produire davantage d’énergie.
Un autre moyen est de demander aux consommateurs intensifs en énergie de réduire leur consommation
pendant une période donnée (on dit alors qu'ils effectuent un effacement de charge), en leur offrant une
récompense en échange. Dans cette these, nous considérons le probleme de 'optimisation des cotts
totaux de ’énergie en utilisant des batteries installées pour la sauvegarde afin de participer au marché de
I’énergie en effectuant des écrétements de pointe et des effacements de charge, avec ’aide d’une gestion
appropriée des batteries. Notre objectif est de réduire les dépenses totales d’exploitation de 1’énergie
pour lentreprise, et de maximiser les récompenses regues en effectuant des effacements de charge. Une
étude de l'architecture du marché de 1’électricité en France est d’abord menée pour comprendre les
mécanismes de flexibilité de la demande et comment les contraintes opérationnelles dans 'utilisation des
batteries d’un opérateur de télécommunications interagissent avec le marché de I’énergie. Nous avons
identifié différents défis qui ont été explorés individuellement pour mieux comprendre les caractéristiques
du probleme d’optimisation sous-jacent et ainsi développer des méthodes de résolution plus efficaces.
Pour chacun d’entre eux, des programmes linéaires en nombres entiers mixtes et des heuristiques sont
ensuite proposés pour résoudre le probleme correspondant. Apres avoir exploré et compris les défis
individuels, nous avons proposé des programmes linéaires en nombres entiers mixtes et des heuristiques
pour le probleme principal de cette these, que nous prouvons étre NP-Dur, en incorporant les prix de
I’énergie du marché et la disponibilité des batteries. Enfin, des simulations basées sur des données réalistes
provenant de l'opérateur de télécommunications francais Orange montrent la pertinence des modeles et
de I’heuristique proposés : ceux-ci se montrent efficaces en termes de calcul pour résoudre des instances
a grande échelle, et des économies et des revenus significatifs peuvent étre générés grace aux politiques
optimisées de gestion du stockage d’énergie a plusieurs batteries.

Mots-clés: Recherche Opérationnelle, Systeme de Stockage d’Energie de Multiples Batteries, Mécanisme
de Réponse a la Demande, Effacements d’Energie, Programmation Linéaire en Nombres Entiers Mixtes,
Algorithmes de Graphes, Réseaux de Télécommunications.
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Smart grid and optimization of flexible || Ccnam
network interactions with energy markets

Abstract : The use of batteries as backup in case of power outages is common in telecommunications
networks, since they provide critical services and need to keep their services always online. These bat-
teries are used in conjunction with antennas and other equipment, and strict safety usage rules must be
considered in order to guarantee that they are always available in case of a power outage. Besides, the
telecommunications operator could use these batteries in order to participate in the electricity market
provided that the grid is reliable enough, as long as the safety usage rules are respected. Indeed, since
the energy price varies over time, batteries can be used to avoid buying energy when this price is high,
and recharged when the energy price is low, a behavior that will be denoted as a peak-shaving strategy.
A second profitable way for a company to use its batteries is by performing load curtailments. Indeed,
when the power demand of a country is greater than the production, the Transmission System Operator
must take steps in order to stabilize the grid such as ask power plants to produce more energy. Another
way is to ask energy-intensive consumers to reduce their consumption during a given time period (in
which case they are said to perform a load curtailment), by offering them a reward in exchange. In this
thesis, we consider the problem of optimizing the total energy costs using batteries installed for backup
in order to participate in the energy market by performing peak-shaving and load curtailments, with
the help of a proper batteries management. Our goal is to reduce the total energy operational expenses
for the company, and maximize the rewards received by performing load curtailments. A study of the
electricity market architecture in France is conducted to understand the demand, flexibility mechanisms
and how the operational constraints in the use of batteries of a telecommunications operator interact
with the energy market. We identified different challenges that were investigated individually to better
understand the characteristics of the underlying optimization problem and thus to develop more effi-
cient solving methods. For each one, mixed-integer linear programs and heuristics are then proposed to
solve the related problem. Once we investigated and understood the individual challenges, we proposed
mixed-integer linear programs and heuristics for the main problem of this thesis, which we prove to be
NP-Hard, incorporating market energy prices and the availability of batteries. Finally, simulations based
on realistic data from the French telecommunications operator Orange show the relevance of the models
and heuristic proposed: these prove to be computationally efficient in solving large scale instances, result-
ing in significant savings and revenue through the optimized multi-battery energy storage management
policies.

Keywords: Recherche Opérationnelle, Systeme de Stockage d’Energie a Plusieurs Batteries, Mécanisme
de Réponse a la Demande, Effacement de la Charge, Programmation Linéaire en Nombres Entiers Mixtes,
Algorithmes de Graphes, Réseaux de Télécommunications.
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