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ABSTRACT

In the context of autonomous robots, one of themost contentious topics is the notion
of risk. Indeed, no robot escapes from such a question, that is whether robots will not
cause any harm to themselves or the living beings in the surrounding environment.
Robotics arms have a finite, relatively small workspace where the risk is tackled in
a way that the robot completely stops whenever a human enters its workspace. In
mobile robotics, this notion is more complex and still an open problem. First, a rep-
resentation of the environment is needed for the robot to navigate in it. Oftentimes,
the preferred representation of the environment is the semantic one, where each ob-
stacle is stored as a single, unique entity. However, in complex scenarios or unstruc-
tured environments, detecting such obstacles is a tedious task andmissing one could
lead to disastrous events. In these cases, a metric map is used where each position
stores the information of occupancy. The most common type of metric map is the
Bayesian occupancy map. However, this type of map is not well-fitted to perform
risk assessment for continuous paths due to its discrete nature. Hence, we introduce
in this thesis a novel type of map called Lambda-Field, specially designed for risk as-
sessment. The Lambda-Fields are a counterpart of the classical Bayesian occupancy
grid. Instead of storing the probability of occupancy at each position, the Lambda-
Field stores the intensity that a collision will occur at this position: the higher the
intensity, the higher the probability of collision. Using this novel formulation, the
Lambda-Fields are able to assess a generic risk over a path. Contrary to the Bayesian
occupancy grid, the use of intensity instead of directly the probability of collision al-
lows the risk assessment framework to produce physic-based metrics that conserve
their physical units. Throughout this thesis, we present how to construct and use the
Lambda-Field in both static and dynamic environments. We demonstrate that the
Lambda-Field also possesses interesting mapping properties that induce more accu-
rate maps of unstructured environments. Using this risk definition and the Lambda-
Field, we show that our framework is capable of doing classical path planning but
also cross unstructured environments where a Bayesian occupancy grid would not
find any path.

Keywords: Mobile Robotics, Intelligent Vehicles, Risk Assessment, Occupancy Grids,
Safe Navigation
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RéSUMé

Dans le contexte des robots autonomes, l’un des sujets les plus controversés est la
notion de risque. En effet, aucun robot n’échappe à une telle question, à savoir
si ce robot ne causera aucun dommage à lui-même ou aux êtres vivants dans
l’environnement qui l’entoure. Les bras robotiques ont un espace de travail fini et rel-
ativement petit, où le risque est abordé de telle sorte que le robot s’arrête complète-
ment dès qu’un humain pénètre dans son espace de travail. En robotique mobile,
cette notion est plus complexe et reste un problème ouvert. Souvent, la représenta-
tion préférée de l’environnement est la représentation sémantique, où chaque obsta-
cle est stocké comme une entité unique. Cependant, dans des scénarios complexes
oudes environnementsnon structurés, la détectionde tels obstacles est une tâche fas-
tidieuse et en manquer un peut conduire à des événements désastreux. Dans ces cas,
une cartemétrique est utilisée, où chaqueposition stocke l’informationd’occupation.
Le type leplus courant de cartemétrique est la carte d’occupationbayésienne. Cepen-
dant, ce type de carte n’est pas bien adapté pour calculer l’évaluation du risque pour
les chemins continus en raison de sa nature discrète. Par conséquent, nous intro-
duisons dans cette thèse un nouveau type de carte appelé Lambda-Field, spéciale-
ment conçu pour l’évaluation du risque. Les Lambda-Fields sont une contrepar-
tie de la grille d’occupation bayésienne classique. Au lieu de stocker la probabilité
d’occupation à chaque position, le Lambda-Field stocke l’intensité de la probabil-
ité qu’une collision se produise à cette position : plus l’intensité est élevée, plus la
probabilité de collision est élevée. Grâce à cette nouvelle formulation, les Lambda-
Fields sont capables d’évaluer un risque générique sur un chemin. Contrairement
à la grille d’occupation bayésienne, l’utilisation de l’intensité au lieu de la probabil-
ité directe de collision permet à la méthode d’évaluation de risque de produire des
métriques basées sur la physique qui conservent leurs unités physiques. Tout au long
de cette thèse, nous présentons comment construire et utiliser le Lambda-Field dans
des environnements statiques et dynamiques. Nous montrons que le Lambda-Field
possède également des propriétés cartographiques intéressantes qui induisent des
cartes d’environnements non structurés plus précises. En utilisant cette définition
du risque et le Lambda-Field, nous montrons que notre méthode est capable de faire
de la planification de chemin classique mais aussi de traverser des environnements
non structurés où une grille d’occupation bayésienne ne trouverait pas de chemin.

Mots-clés : Robotique mobile, Véhicules Intelligents, Calcul de risque, Grilles
d’Occupation, Navigation Sécurisée
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1.1 Overview

Over the past decades, robotics sys-
tems started to prove themselves useful
in numerous applications, ranging from
environment monitoring, mines inspec-
tions, search and rescue missions to in-
telligent transportation systems. In the
one hand, robots are a fantastic replace-
ment for dangerous, tedious jobs suchas
mining operations. On the other hand,
they can also help and replace activities
prone to fatal mistakes such as driving,
yielding in the long term to safer transportation systems. As the robots become more
and more a part of our everyday life, accidents and risky events and more and more
prone to occur. These situations can happen for numerous reasons, extending from
hardware failures such as processors errors due to radiations to collisionswith people
due to excessive noise in the measurement data.

21



22 GENERAL INTRODUCTION

Although we believe there is still a long road
ahead for the robots to work in the overall com-
plexity of the world, the imaginary of people con-
ceptualize robots and their impact of society long
before the robots actually started to prove them-
selves useful. Russian-born American science-
fiction writer Isaac Asimov first used the word
‘Robots’ in 1942 in his short story ‘Runabout’. The
name ‘Robot’ itself comes from a 1920 Czech-
language play, denoting at the time a fictional
humanoid. In this book, he proposed that the
robots have to follow, in this order, the three fol-
lowing rules:

First Law A robotmay not injure a human being
or, through inaction, allow a human being
to come to harm.

Second Law A robot must obey the orders given
it by human beings except where such or-
ders would conflict with the First Law.

Third Law A robot must protect its own exis-
tence as long as such protection does not
conflict with the First or Second Law.

Of course, such laws are easier to write than actually coding them on a computer.
However, one key aspect of the robotics is retrieved in these laws, that is the guar-
anty that the robot will not harm others or himself. With reasons, we can easily no-
tice from the ongoing pop-culture that the humanity is somewhat conflicted between
two visions of the robotics. Although robotics promises to revolutionize numerous
domains and save uncountable lives in the future, there is the risk that these robots
also unintentionally harm others. As such, laws have been erected to prevent this, or,
in the current state of the robotics, framework have been built to provide guaranties
of safety.

The context of this Ph.D. thesis established itself deep within these considera-
tions. Indeed, plentiful questions remain at least partially unanswered in the litera-
ture: What is ‘safe’? In the scenariowhere the robot has to choose between twounsafe
actions, which one should it chooses? On which criteria? Will the robots ever able to
guaranty their own safety or does this notion necessarily rely on others’ choices?

In this thesis, we worked at proposing a novel framework for risk assessment for
mobile robotics that is heavily generalizable. Indeed, as we show in the next chapters,
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the notion of risk or safety is not unique and a unique definition cannot suit every
applications robotics has to offer. Using our framework, the robot is able to infer the
risk of a given path and therefore makes more informed decisions, knowing the risk
tied to every of its possible actions.

1.2 Proposed approach and contributions

More precisely, we propose a novel mapping framework, called Lambda-Field,
that provides natural ways to infer risks for a given path in the environment. The risk
stays generic in the entire mathematical derivation and is only implemented during
the experimentations phase, meaning that the risk can be adjusted depending on the
application without the need to change the mathematical theory behind it.

Figure 1.1: Example of Bayesian occupancy grid, from [1]. Left: Architectural blue-
print of a large open exhibit space. Right: Bayesian occupancy grid of the same space.
The darker the cell, the higher the probability of occupancy.

In order to provide a conservative approach, we chose to use occupancy grids to
represent the environment, where the Bayesian occupancy grid is the most popular
implementation. Figure 1.1 provides an example of such an occupancy grid for an of-
fice space. The Bayesian occupancy grid saves a tessellated environment where each
cell stores the probability of occupancy of the underlying space, where 0 denotes an
empty space (i.e., a probability of occupancy of 0) and 1 a certain obstacle at this posi-
tion. However, as studied in thismanuscript, this framework is not able to infermean-
ingful, continuous risks as the framework was simply not designed for such a task. As
such, risk assessment onBayesian occupancy grids can yield counter-intuitive behav-
iors depending of the way authors infer risks on it, potentially leading the robot into
risky paths for either itself of the other agents of the environment. Therefore, we pro-
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pose a counterpart of this occupancy theory to infer meaningful risks in occupancy
grids that does not suffer such drawbacks. Our main contributions are

A novel mapping framework, called Lambda-Field, that is specially conceived to in-
fer risks in occupancy grids. In contrast to the Bayesian occupancy grid, the
Lambda-Fields do not store the probability of collision at each position but an
intensity that can be seen as the ‘density’ of the event ‘collision’ at this position.
The higher the intensity, the more likely a collision will happen at this position.
Using this framework, one can infer the probability of collision for a path by
integrating the intensity over the path. Moreover, more complex risks can be
inferred without any change in the theory. The risk function can better char-
acterize the hazardousness of a path, as for instance colliding with a car at low
speed is indubitably safer than colliding with a pedestrian at high speed.

A comparison with the Bayesian occupancy grid: We provide a theoretical and ex-
perimental comparison with the classical Bayesian occupancy grid for static
environments. More specifically, we show that the Lambda-Fields are better
suited to store unstructured obstacles (e.g., bushes, wire fences), where the
Bayesian occupancy grid would wrongly converge in specific cases. Further-
more, we investigate the recovery rate of the frameworks, namely the speed at
which one framework can recover from a wrong estimation of a cell value and
re-converge to its true state, showing that each framework has its pros and cons.

A risk assessment method: Finally, we use our novel mapping framework to per-
formpathplanning inboth structuredandunstructuredenvironment, for static
and dynamic cases. These experimentations in real-world conditions allow us
to effectively see the practical differences the Lambda-Fields bring. In the static
case, the Lambda-Fields allow the robot to cross unstructured obstacles such as
tall grass while being aware of the potential risk of such actions, whereas in the
dynamic cases more informed decisions can be made.

Table 1.1 provides a summary of the main differences between the Bayesian oc-
cupancy grid and the Lambda-Field investigated in this manuscript. Whereas the
Bayesian occupancy grid is based on Bayesian inferences, the Lambda-Field bases
itself on the Poisson Point Process. Using this process, the stored information is no
longer a probability of occupancy but the intensity of a given event that we define
here as a collisionwith an obstacle. This formulation allows the computation of prob-
abilities of collision for a given path, namely a subset of the environment, in contrast
to the Bayesian occupancy grid that gives the probability of collision for a given po-
sition. Finally, we will demonstrate later on that for a given cell, the Lambda-Fields
can converge in the whole range of collision probability [0;1] whereas the Bayesian
occupancy grid always converges to either 0 or 1. Furthermore, the Lambda-Field
recovers in a polynomial manner whereas the Bayesian occupancy grid has a logistic
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shape (i.e., slower thanpolynomial). In amore practical point of view, thismeans that
the Lambda-Field is quicker to take into account thenew information and recover but
is slower on the long term to completely erase the false information.

Based on Stores Infers Occupancy
conver-
gence

Error
recovery

Lambda-
Field

Poisson
Point
Process

Intensity of
the event
‘collision’
𝜆 ∈ [0;∞)

Probability
of collision
for a given
subset
𝒫 ⊂ℝ𝑛

[0;1] Polynomial

Bayesian
Occupancy
Grid

Bayesian
Inference

Probability
of collision
𝑝 ∈ [0;1]

Probability
of collision
for a given
position
𝐱 ∈ ℝ𝑛

0 or 1 Logistic

Table 1.1: Outline of the main differences between the standard Bayesian occupancy
grid and the Lambda-Field.

1.3 Manuscript outline

In this manuscript, we present our framework called Lambda-Field. In a global
manner, we first try to give an overview of risk management in robotics, that ranges
from answering the question ”what is a risk?” to ”How to plan risk-aware trajecto-
ries?”. Then, we present our developed framework, starting with the theory in the
static cased, extensively comparing it to the state of the art and showing its advan-
tages. Then, we propose to extend it to the dynamic realm and once again show its
utility for risk management in accident mitigation scenarios. More specifically, the
manuscript is arranged as follows:

Part I provides a state of the art of the robotics work revolving around risk assess-
ment.

Chapter 2 gives an overview of how the risk is perceived in robotics for diverse
applications. Indeed, the notion behind this generic word is very different
depending on the context, that is either space robotics or intelligent trans-
portation systems, for instances. After a presentation of the main used
metrics, we present some frameworks that aim at generalizing the notion
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of risk for abroader class of robotics systems. Thisproblemraise several in-
teresting questions from both a philosophical and practical point of view:
‘are every risk metrics equal?’, ‘How can we translate an ethical theory to a
practical metric?’, ‘Can a robot always guaranty its own safety?’ and so on.

Chapter 3 provides a survey of the different mapping techniques, with a focus
on the metric approaches. Indeed, one cannot infer risk without at least
a way to store its surrounding environment. First, we present the seman-
tic approaches that are the preferred ones for risk assessment. However,
as argued in this chapter, such maps are not easy to build and in a con-
servative manner, metric maps are far easier to provide. Thus, we focus
this chapter on metric maps and present in depth the theory behind the
Bayesian occupancy grid that is the most popular metric map framework.
We also present an extensive survey of the extensions of the former theory
where numerous works have been built upon the framework.

Chapter 4 presents themain planning frameworks for robotics systems, with a
highlight on the ones used in intelligent transportation systems. We start
by presenting the global path planning algorithms which aim at finding a
trajectory to a far away goal without considering much the kinematic con-
straints of the vehicle nor the local risk. Then, we look at the local planners
which focus on following the global trajectorywhile taking into account lo-
cal constraints such as the risk or the ongoing dynamics of the robot.

Part II presents our framework. With the knowledge of how to assess risk, how to
map and how to safely plan trajectories, we argue the need of a framework able
to infer meaningful risks in metric maps and provides them to a path planning
algorithm.

Chapter 5 provides the core theory of the framework, starting from the math-
ematical derivations to real-world experimentations showing the applica-
bility of the theory. The framework is compared to theBayesianoccupancy
grid, showing the main differences and its advantages in the context of
unstructured environment. Using our framework, safer maps of unstruc-
tured environments are built and thus safer and more informed decisions
can be made by the robot.

Chapter 6 extends the former framework to the dynamic realm in the context
of urban navigation. Indeed, as argued throughout this manuscript, risk
assessment on Bayesian occupancy grids can yield incoherent decisions
from the robot. Henceforth, we show that using our framework and an im-
plementation of the risk function as the maximum gain of kinetic energy
resulting fromacollision, the robotmakes coherent decisions and canpre-
fer a more dangerous collision if that saves a pedestrian, for instance.
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Finally, we provide a general conclusion of our framework, discussing that it is
heavily generalizable and that severalworks already aimat generalizingboth themap-
ping and planning process linked to the risk management.
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STATE OF THE ART: INTRODUCTION

In this part, we present an overview of the tools a robot needs to evolve safely in a
complex environment. First, we look at how the word ‘safety’, in other word the risk,
is defined in robotics. Depending on the application, this word can hide very differ-
ent meanings that are not compatible every time. In addition to providing a taxon-
omy of the different risk metrics, we propose a small discussion about what the risk
should represent. This leads to taking a higher vision of the concept, where some
authors tried to unify the different frameworks and propose a generalized notion of
risk. Then, we present a comprehensive study of themapping techniques. Indeed, no
robot canevolvenor infer riskswithout an internal representationof theenvironment.
Particularly, we focus on the metric maps and the very popular Bayesian Occupancy
Filter (BOF). Finally, we give an introduction to the different planning techniques.
Without details, every main technique is presented with a few examples of authors
that took into account the risk into their planning. Using these three parts, a robot
should be able to effectively perceive and plan trajectories while being aware of the
underlying risk taken at each decision.

?
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CHAPTER 2

HOW SHOULD A ROBOT ASSESS RISK?

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Definition of the Risk . . . . . . . . . . . . . . . . . . . . . . . . 34
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2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.1 Introduction

In the robotics literature, the notion of risk finds its place in almost all possible
applications. Behind this generic word lies a concept deeply embedded in robotics:
what is safe for the robot?

In this chapter, we will look at how the state of the art defines the risk and thereby
see that there is not one but many definitions. Indeed, the risk defined for a rover in
the surfaceofMars isnot the sameas for anautonomouscar. In thefirst case, the rover
genuinely needs to monitor its power consumption and whether the environment in
front of it is traversable. The risk here is that the robot gets stuck in the mud or simply
runs out of power in a hazardous environment such as a sandstorm. However, the
risk for an intelligent vehicle is quite different. Even though it still has towatch out for
traversable path, this is often not an issue as the roads are made to be traversable by
such machines. In the context of autonomous vehicles, the main hazard is a collision
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with the environment or other agents such as a car or a pedestrian. Therefore, the risk
defined in these applications is directly linked to the probability of collision.

Using these few examples, we propose to divide the large notion of risk into three
main components, as shown in Figure 2.1. At first, we analyze the risk based on
traversability, used in space and agricultural robotics for instance. Then, we look at
the risk coming from collisions where the rise of intelligent vehicles leads to a great
number of interesting theories. Finally, we investigate a few examples of risk defined
as the efficiency of the task.

Collision-based

Traversability-based Efficiency-based

Risk

Intelligent Vehicles
Agricultural Robotics

Underwater Robotics
Unmanned Aerial Vehicles

Space Robotics
Surgical Robotics

Figure 2.1: Taxonomy of the risk with examples of robotic applications, divided into
three main branches that are the traversability, collision and efficiency.

Once the risk has been presented in various domains, we will discuss more in
depth of what the risk is and how to quantify it. Indeed, in this vast ocean of defi-
nitions, one can easily get lost. Some authors proposed some theories to unify the
definitions, better define what is a risk and how to assess it. This leads to a discussion
of what a risk metric should represent, philosophically and mathematically speaking.

2.2 Definition of the Risk

2.2.1 Risk As a Traversability Analysis

Motion planning constitutes a domain where several disciplines meet such as artifi-
cial intelligence, robot perception and computer vision. In light of the plurality of the
applications ofmobile robotics, the notion ofwhether the robot can safely navigate in
an environment does not have a single definition. In this section, we present the no-
tion of traversability for mobile robots in static environments. Traversability analysis
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finds its root in numerous domains such as search and rescue mission, agricultural
robotics or space robotics.

In contrast to more well-defined robotics applications where robots are designed
to evolve indoor, the notion of traversability finds its meaning where the terrains the
robots evolve in might be unsafe. For instance, in the case of search and rescue mis-
sions, the environment contains a lot of wreckage, negative obstacles and possible
hazardous threats like fire or loose electrical wires that can directly jeopardize the in-
tegrity of the robot. Figure 2.2 gives an example of environment a search and rescue
robot might need to cross. In space robotics, the main hazard is the robot getting
stuck in loose soil, leading the mission to fail since it is for now ill-advised to go to
mars and give it a hand.

Figure 2.2: Example of unmanned robot in search and rescue environment contain-
ing many hazards such as holes and loose wires, from [2].

In the following, we define the risk as a traversability metric, as done in [3]:

Traversability The capability of a ground vehicle to reside over a terrain region
under an admissible state wherein it is capable of entering given its current state, this
capability being quantified by taking into account a terrainmodel, the robotic vehicle
model, the kinematic constraints of the vehicle and a set of criteria based on which
the optimality of an admissible state can be assessed.

Thus, this formulation only takes into account the interaction between the robot and
the environment. However, in the context of static environment, no other agent can
harm the robot, therefore this definition suffices for the time being.
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Figure 2.3: Example of Digital
Elevation Map (DEM) where the
color corresponds to the eleva-
tion, from [4].

Thenotionof traversability arosefirstwith the
conception of 2D Digital Elevation Map (DEM)
[5], alternatively known as Cartesian elevation
maps [6], [7]. This was the direct extension of the
occupancy grids introduced by Elfes [8], where a
more thorough description of his work is given in
Chapter 3. The advantages of grid-based terrains,
where an example is depicted in Figure 2.3, are
that they enable rapid and efficient graph search
algorithms. Such methods are still widely used
nowadays, such as [4], [9]–[13].

The construction of DEM is preferred when
range sensors are used such as Light Detection
And Ranging (lidar). However, other sensors’

modalities might also provide useful information, such as a camera or directly the
proprioceptive information of the robot.

Henceforth, we split this section into three main parts. First, we investigate the
traversability analysis using proprioceptive analysis. Namely, what are the informa-
tion that the robot can recover using proprioceptive sensors such as IMU, odome-
try and so on. The second and third parts deal with exteroceptive analysis, mean-
ing that the robot aims to estimate the traversability of the terrains without actually
crossing it. We investigate at first traversability analysis using a range sensor, lead-
ing to a geometry-based approach. Finally, we look at the traversability analysis with
appearance-based methods, using spectroscopic sensors such as a camera.

Proprioceptive Traversability Analysis

Proprioceptive analysis of the traversability is very important to learn the slipping and
skidding models and therefore infer whether a terrain is traversable. Indeed, such in-
formation is essential for accurate motion planning [14]. As mentioned by Baril et
al. [15], the accuracy of the modeling of the robot’s dynamics highly depends on the
soil parameters and can be learned while the robot crosses the environment. Fur-
thermore, the traversability information for each type of terrain can be propagated
for unknown regions using long range sensors. As an example, Cunningham et al.
[16] predicted the slip parameter using Gaussian Processes in the context of space
robotics, using proprioceptive information as well as a camera. Figure 2.4 shows the
Marsian rover Curiosity with different types of soils that may be hazardous. As such,
it is essential to estimate and predict which soil will be the safest to cross.
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Figure 2.4: Examples of sands on Mars with very different visual appearances. Left:
Curiosity in the Bagnold Dunes. Right: Wheel slip of Curiosity in the Hidden Valley.
Image credit: NASA/JPL.

Figure 2.5: Example of hazardous
terrain in the context of space
robotics. The rover Opportunity
is trapped in the Purgatory dune
on sol 447. More than five weeks
were required to get the rover
out of the dune. Image credit:
NASA/JPL.

In the context of space robotics, themain haz-
ard is the robot to get stuck in loose soil. As
shown in Figure 2.5, a rover can easily become
trapped in loose soil, leading to the failure of the
mission. In this example, the rover Opportunity
dugmore than10 cmdeep into the soft and sandy
material of Mars’ Meridiani Planum region dur-
ing the rover’s 446th martian day. More than five
weeks were needed for the team to test, plan and
monitor the escape of this deadly sand. In that
sense, many works aimed to better understand
and predict robot-soil interactions. Shneier et
al. [17] proposed a method to learn and asso-
ciate traversability to regions of the environment,
using a fusion of external and internal sensors.
Brooks et al. [18] analyzed the ongoing vibra-
tions induced in the robot structure by thewheel-
terrain interaction to classify the type of soil the
rover is currently crossing. A vibration sensor
was mounted on the wheels, allowing the robot
to classify between gravel, Mars-1 Soil Simulant
[19] andwashed beach sand. Garcia Bermudez et
al. [20] investigated the performance of a legged
robot in distinctive rough terrains (tile, carpet
and gravel), and classified the terrains using vi-
bration data. A comparison of classifier perfor-
mance for vibration based terrain classification
can be found in [21]. In the same fashion, Ojeda
et al. [22] classified several terrains using a neu-
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ral network that feeds from different sensors sources. Angelova et al. [23] measured
the slip the robot was currently facing to learn a correlation between the terrain ap-
pearance, geometric information and the predicted slip. This method is intended to
improve navigation for rover in steep slopes and rough terrains for Mars rovers.

In another field, the notion of traversability is also deeply connected to agricul-
tural robotics. Because of the often massive vegetation hiding potential obstacles,
the evaluation of the safety of potential actions is challenging. Wellington et al. [24]
used a learning approach to teach a tractor to differentiate between safe vegetation
and hazardous obstacles such as wall or humans. Leppänen et al. [25] developed a
sensing method to determine the quality of a terrain while driving. Using a mobile
robot that can measure the vertical, horizontal and rotational strain forces affected
its wheels, they were able to compute various parameters linking the interaction be-
tween the robot and the terrain. Suchparameters can thenbe used to train a classifier
and associated them with image or range data. Bajracharya et al. [26] used a variety
of sensors to adapt to local terrains while extend proprioceptive information into the
far field, avoiding the ‘myopic’ behavior. Using sparse proprioceptive examples, the
robot was able to teach a short range geometry-based terrain classifier as well as a
long range image-based classifier, itself learning from the short range one. In the
same fashion, Howard et al. [27] proposed a method for a robot to learn traversability
from experience, and more precisely from 3D geometry and proprioceptive informa-
tion. Field tests show that the robot was effectively able to learn the traversability of
the vegetation terrains and to extend its knowledge using a vision system.

Although the aforementioned methods effectively estimate the traversability of
the terrains, it requires the robot to actually take risks by engaging this route. Hence,
this requires to have highly tolerant, maybe disposable robots to deal with the com-
ing failures and crashes. As it is not often a possibility to lose robots, the next sections
present methods to predict as precisely as possible the traversability of the surround-
ing environment without having to go through it.

Geometry-based Traversability Analysis

Thevastmajority of traversability estimationmethods relies on geometric processing.
In the set of large trends that have been explored, one can cite the main approaches
that are

• Signal processing, assuming that the terrain is a smooth 2D signal; and

• Statistical processing and extraction of moments-based features.

Other the next paragraphs, we will briefly analyze each main trend in traversability
analysis.
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Signal processing methods Although the signal processing methods are not the
most popular, they still constitute an interesting field to explore. One of the earliest
works on signal processing for traversability assessment is the work from Hoffman
et al. [28], where the roughness of the terrain is extracted using Fourier analysis. Lu
et al. [29], [30] also used Fourier analysis with a laser stripe-based structured light
sensor, classifying the terrain in front of the robot. Pai et al. [31] used wavelet de-
composition to model the terrain in different resolution levels. In rough areas, high
frequency wavelets are needed to represent the terrain. Using this observation, they
define a roughness measure based on the vanishing of the wavelet coefficients (from
coarse to fine). Figure 2.6 shows an example of wavelets analysis. For smoother ter-
rain, the wavelet coefficients quickly decrease to zero, whereas tougher terrains need
finer wavelets to be represented.

Figure 2.6: Terrain (Top) and its wavelet coefficient levels (Bottom), arrange from
fine (higher) to coarse (lower), from [31]. Tougher terrain leads to higher coefficients
for finer wavelets, whereas these coefficients quickly vanish for easily traversable ter-
rains.

Statistical processing Statistic processing of the underlying 3D information of a
terrain has been the most popular and most explored area in the domain of the
traversability. Thecore concepts goback to theworks of Langer et al. [32] andGennery
[33]. Langer et al. [32] constructed traversabilitymaps by computing elevations statis-
tics of the terrain for each cell of themap, namely theminimumandmaximumheight,
the variance and the slope. The features were then compared to hard thresholds ac-
cording to the robot’s capabilities (e.g., the maximum height it was able to climb
safely). On the contrary, Gennery [33] proposed to aggregate the different features
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into a unique cost function that was then used by a path planner algorithm. Building
on their works, numerous works have emerged during the following years. In [34], a
traversability index was defined for each cell, taking into account the roughness and
slope of the terrain. This index was used to construct a so-called ‘polar traversabil-
ity index‘ that represents the overall difficulty of traveling along the corresponding
direction. In another fashion, Andersen et al. [35] chose to use a 2D lidar inclined
toward the ground to extract local features (height, roughness, step size, curvature,
slope, width and data validity) and fed them to a classifier. Along with these tech-
niques, most of the works use of a convolution kernel to simulate the effect of the
terrain on the robot. The map is convolved with the footprint of the robot, hence
simulating the overlay of the vehicle on top of the terrain. Features representing the
traversability at this configuration are then computed for each robot’s position.

Roboticists discovered quite quickly that deterministic systems were not able to
tackle every problem robotics has to offer. In that sense, a number of approaches fo-
cused on modeling uncertainties in terrain perception and traversability estimation.
The foundations in this fieldwerebrought byKavraki et al. [9] andGennery [33]. Singh
et al. [36] modeled errors and uncertainties in their work, introducing the notions of
‘certainty’ and ‘goodness’ to create traversability maps. The goodness of a cell was de-
terminedby the suitability for travel, whereas the certaintywas simply the confidence
over the shape of the terrain in the cell.

Another interesting approach, instead of extracting basic statistics for each cell,
is to look at the shape of the terrain. As highlighted by Labussière et al. [37], a point
cloud carries a lot of information and shapes such as edges, surfaces and scattered
points (denoted in the article as curveness, surfaceness and pointness) that can be re-
trieved. Following this idea, Lalonde et al. [38] classified lidar data based on their lin-
earness, surfaceness and scatterness, and for natural terrain analysis. Figure 2.7 gives
an example of what each quantity represents. In more rigorous terms, the saliency
features are extracted using the theory of tensor voting, introduced by Medioni et
al. [39]. The local point distribution is captured by the decomposition into principal
components of the covariance matrix of the 3D points position. This leads to a set of
three couples of eigenvalues and eigenvectors. In the case of scattered points (Point-
ness), no eigenvalue is predominant over the other. Indeed, no direction is ‘preferred’
by the point cloud. However, in the case of a surface (Surfaceness), one eigenvalue
is significantly smaller than the other, meaning that the point cloud only have two
preferred direction (e.g., the point cloud represented the ground only span in the xy
plane). Finally, an edge (Curveness) only has one preferred direction, meaning that
two eigenvalues are negligible compared to the third. Similarly, Heckman et al. [40]
detected potential negative obstacles using a three-step method. They first classify
the terrain using the aforementioned method of tensor voting, label the occlusions
in the point cloud with ray tracing, then label negative obstacles as transitions from
visible to occluded regions.
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Surfaceness

Curveness/Linearness

Pointness/Scatterness

Figure 2.7: Canonic example of what surfaceness, curveness and pointness represent.
In the case of a cuboid, the surfaceness represents the faces of the shape, whereas the
curveness is linked to the edges and the pointness to its corners.

Following the same trend, Goldberg et al. [41] introduced the Grid-based Esti-
mation of Surface Traversability Applied to Local Terrain (GESTALT). This system re-
trieves numerous information about the terrains such as step, roughness, pitch and
border hazards. With these features, terrains were classified as definitely traversable,
definitely not traversable and unknown by thresholding the goodness value (i.e., the
suitability for travel) of each cell.

The notion of negative obstacles is also deeply investigated in the literature. Neg-
ative obstacles such as holes are often defined by the lack of data at this location.
Larson et al. [42], [43] proposed a method based on the geometry of the 3D point
cloud to classify negative obstacles. Their method, called Negative Obstacle Detec-
toR (NODR), classifies potential negative obstacles by detecting gaps, an absence of
data, where there could exist a ditch, cliff, or negative slope. They concluded that a
mixture ofNODR, for long range detection, and a Support VectorMachine (SVM) clas-
sifier, for short range assessment, leads to the best results. Chen et al. [44] designed a
method todetect traversable road regions frompositive andnegativeobstacles, based
on lidar histograms. Murarka et al. [45] used a stereo vision system as well as motion
cues to detect both obstacles and negative obstacles (called drop-offs). Drop-offs are
detected on the depth-map, where edges are classified beforehand. Comparing the
motion of features above and below the edge, the system is able to infer whether the
edge represents a negative obstacle. However, previous works assume that a negative
obstacle is necessary lethal for the robot, even though it may be passable depending
on the robot’s structure and its dynamic at the time of traversal.

In that sense, some works aimed at taking into account vehicle dependant vari-
ables. One of the earliest works was done by Siméon [46] that took into account the
relation between the terrain structure and its relation to the vehicle’s model. Using
a polyhedron approximation of the robot, contact points with the terrain were com-
puted and each position associated with a robot configuration was labeled as admis-
sible if it was collision-free and answered the stability conditions. The collision-free
condition only states that the robot can safely rest in this posewithout collision, while
the stability condition states that the center of gravity of the robot must lie inside the
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projected polygon of the robot on the ground. Both conditions are summarized by
Figure 2.8.

Figure 2.8: Conditions for a robot to be in
an admissible state, from [46].

Furthermore, more complex models
and configurations are studied in their
subsequent works [47], [48]. However,
most likely due to the limited compu-
tational capabilities at the time, such
works did not thrive until years later.
Bonnafous et al. [49] defined the ‘danger’
of a placement taking into account the
angle of each axle of the robot. A place-
ment is then said to be safe if all the an-
gles of the axles are belowa certain value,
and otherwise the position is said to be
dangerous. Kubota et al. [50] proposed
an alternative approach where the robot
is modeled as a cuboid, and defined a
traversable area as a position where the
rover can stay stably. Criteria of stability

were then inferred from the robot’s and terrain’s geometry. Vandapel et al. [51] used
an aerial lidar to classify the traversability of the ground. They first removed the veg-
etation of the scans, computing in the same time the associated confidence of the
underlying reconstruction. Then, a robot footprint was superposed on the elevation
map to infer its roll, pitch and ground clearance, that were after remapped between
0 (non-traversable) and 1 (traversable). Using the static performance of the vehicle,
these values were thresholded and labelled as non-traversable and traversable. More
recently, [52] defined a ‘Dynamic Mobility Index’ that explicitly takes into account
the dynamic mobility of the rover. The metric is generated using dynamic simula-
tions of the robot over various paths, that are examined through various metrics that
are the stability, wheel slippage, elapsed time and energy consumption. Finally, in
the context of articulated robots, Papadakis et al. [53] proposed a method to estimate
the optimal state of the tracked robot over a 3D terrain patch. Kruijff et al. [54] used
3D reconstructed terrains from collapsed sites to learn and regress the mobility of
the robot. Norouzi et al. [55] employed physics-based prediction of contact support
points with the environment, using a reconfigurable robot. They used this informa-
tion to plan safe paths guaranteeing the stability of the robot, taking into account its
ability to change its configuration. Table 2.1 gives an overview of the presented meth-
ods based on geometric analysis for several application domains. The references are
characterized by which features they take into account, namely the Terrain (Ter), the
robot’s attributes (Rob), the stability constraints (Stab) and the kinematic constraints
(Kin).
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Figure2.9: Lidarmeasurements (projected
on the 𝑥𝑦 plane in red) and resulting oc-
cupancy grid during a heavy snowstorm in
Quebec city, Canada. As easily seen, the
lidar measurements are heavily impacted
by the weather.

Primarily using range sensors such
as lidars, such methods do not suffer
from lightning conditions or shadows.
Even though Papadakis [3] suggested
that geometrical methods are invariant
to smoke and poor weather, we argue
that lidar sensors are still quite impacted
by such events. Figure 2.9 shows a snap-
shot of an experiment conducted dur-
ing a heavy snowstorm in Quebec city.
A 3D lidar was mounted on the robot
and a simple occupancy grid was pro-
cessed based on the measurements. The
measurements are massively impacted
by the snow and the recurrent flur-
ries, yielding to a very noisy occupancy
grid. One can infer that geometric-
based methods will have a hard time try-
ing to process such level of noise in the
environment. Another key aspect is that
range sensors are still more expensive,
heavier andenergy-consuming thanpas-
sive sensors such as cameras. These
points are particularly important for in-
telligent vehicles and space robotics, where the payload is one of the key aspect in
the specifications of the robot.

Appearance-based Traversability Analysis

Under the previous stated remarks concerning traversability analysis using
geometric-based methods, another complementary aspect is the use of appearance-
based methods to estimate the traversability of a given terrain. In contrast to
the geometric-based methods, appearance-based methods are well suited for
traversability inference of flat terrains where the robot can still get stuck, such as soft,
sandy material shown on Figure 2.5 and Figure 2.10. Using only visual features, Guo
et al. [70] proposed a method based on a SVM model that was trained to distinguish
between different traversability classes using the robot odometry when crossing
terrains of a given type. Andrakhanov et al. [69] proposed a similar pipeline, first
processing the images to extract the color, texture and geometry parameters of the
image and then feeding them to a deep-learning classification unit that classified the
environment as traversable, conditionally traversable given the dynamic of the robot,
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References Application Criteria
Ter/Rob/Stab/Kin

Hoffman et al. [28] Planetary •/−/−/−
Siméon [46] Planetary •/•/•/−
Simeon et al. [47] Planetary •/•/•/−
Wright et al. [48] Planetary •/•/•/−
Gennery [33] Planetary •/−/−/−
Singh et al. [36] Planetary •/−/−/−
Stentz [56] Planetary •/−/−/−
Kelly [57] Planetary •/−/−/−
Kubota et al. [50] Planetary −/•/−/−
Wettergreen et al. [58] Planetary •/−/−/−
Helmick et al. [59] Planetary •/•/−/•
Goldberg et al. [41] Planetary •/•/−/•
Huntsberger et al. [60] Planetary •/•/−/•
Ishigami et al. [52] Planetary •/•/•/•
Langer et al. [32] Natural •/−/−/−
Pai et al. [31] Natural •/−/−/−
Bonnafous et al. [49] Natural •/•/•/•
Vandapel et al. [51] Natural •/•/−/−
Thrun et al. [61] Desert •/−/−/−
Lalonde et al. [38] Natural •/−/−/−
Heckman et al. [40] Natural •/−/−/−
Dubbelman et al. [62] Natural •/−/−/−
Larson et al. [42] Natural •/−/−/−
Larson et al. [43] Natural •/−/−/−
Lu et al. [29], [30] Natural •/−/−/−
Kuthirummal et al. [63] Natural and Structured •/−/−/−
Bellone et al. [64] Structured •/−/−/−
Montemerlo et al. [65] Structured •/−/−/−
Ferguson et al. [66] Structured •/−/−/−
Andersen et al. [35] Structured •/−/−/−
Ye [34] Structured •/−/−/−
Joho et al. [67] Structured •/−/−/−
Murarka et al. [45] Structured •/−/−/−
Molino et al. [68] Search and Rescue •/•/−/−
Papadakis et al. [53] Search and Rescue •/•/•/•
Norouzi et al. [55] Search and Rescue •/•/•/•

Table 2.1: Excerpt of works tackling traversability analysis with geometric methods,
adapted from [3].
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Figure 2.10: Example of terrain classification using a camera, from [69]. The image is
classified here into four classes, sky, cloud, grass and sand.

or non-traversable. In the context of planetary exploration, Howard et al. [71] and
Howard et al. [72] regressed the terrain traversability by measuring terrain roughness,
slope, discontinuity and hardness. The roughness was computed using the size,
disparity and concentration of rocky regions, whereas the slope was estimated using
a neural network. Discontinuity was measured by looking at the multiple horizon
lines and their distances between each other. Finally, the hardness was estimated
with the textures of the environment.

Figure 2.11: Example of
traversability classification
using super-pixels, from [73].
Red colored area represents
non-traversable area and
green colored area represents
traversable area.

In another fashion, Angelova et al. [23] performed
a classification of the different terrain types to esti-
mate the slippage of the robot. Kim et al. [73] used
super-pixels, suggesting that classification at pixel-
level is too prone to noise to be manageable. They
managed better classification using super-pixels, re-
sulting in more effective navigation in complex en-
vironments as shown in Figure 2.11. Alternatively,
Filitchkin et al. [74] classified the terrain using ro-
bust features (SURF) and a SVM classifier for a legged
robot. Using the classification, the quadruped robot
was able to adjust its gait depending on the terrain it
was crossing. Similarly, Khan et al. [75] used SURF
features to classify outdoor terrains. Yandun Narváez
et al. [76] used both infrared and color images to
classify agricultural terrains (sand, grass, pavement,
gravel & litterfall and straw-covered). Finally, Chavez-Garcia et al. [77] trained a con-
volutional neural network that inferred the traversability of aerial images, returning a
traversability map that takes into account the orientation of the robot. The classifier
is trained for a specific robot’s locomotion type, thereby inferringmore accurately the
traversability of the terrain.
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Figure 2.12: Example of path
planning on Magnetic Res-
onance Image (MRI), from
[78].

Finally, appearance-based traversability analysis
can be found in other very different fields compared
to mobile robotics. In the context of biomedical
robotics, Caborni et al. [78] proposed a method for
efficiently plan a steerable flexible probe for neuro-
surgical intervention, as shown by Figure 2.12. Using
MRI, the aim was to plan for the least risk path (i.e.,
the path that yields the better chance of survival and
the least sequela for the patient). Vaillant et al. [79] in-
troduced an equation for cost calculation on apath in
a brain, that is very similar to the ones used in mobile

robotics.

In overall, appearance-based methods are a well suited answer for the aforemen-
tioned problems of geometric-based methods, at the cost of being dependent on the
lighting conditions. An overview of the presented appearance-basedmethods can be
found in Table 2.2. Using conjointly both approaches, when possible, will yield the
best results available.

References Application Criteria
Ter/Rob/Stab/Kin

Howard et al. [71] Planetary •/−/−/−
Howard et al. [72] Planetary •/−/−/−
Angelova et al. [23] Natural •/−/−/−
Kim et al. [73] Natural •/−/−/−
Guo et al. [70] Natural •/•/−/−
Andrakhanov et al. [69] Natural •/−/−/−
Chavez-Garcia et al. [77] Natural •/•/−/−
YandunNarváez et al. [76] Natural •/−/−/−
Khan et al. [75] Natural and structured •/−/−/−
Filitchkin et al. [74] Natural and structured •/−/−/−
Caborni et al. [78] Neurosurgery •/−/−/−
Vaillant et al. [79] Neurosurgery •/−/−/−

Table 2.2: Excerpt of works tackling traversability analysis with appearance-based
methods, adapted from [3].
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2.2.2 Risk As a Collision Analysis

As seen in the previous section, mobile robots already have a hard time assessing risk
in a traversability-based approach. This method mainly deals with the wheel-ground
interactions, in order to avoid the robot of getting stuck in loose soil. However, amore
intuitive risk is also to take into account as soon as our robot will take the road (or the
planet, depending on the application): is the path collision-free? As opposed to the
traversability approaches,wewill here assume that the robot canonlybe inoneof two
states. The robot can either be free of collision, therefore safe (i.e., the risk is null), or
either currently collides with an obstacle such as a boulder, a vehicle or a pedestrian,
and therefore not being safe (i.e., the risk is not null).

Figure 2.13: Example of scenario a mobile robot might encounter, from [80]. In this
case, a ‘risky’ event is the robot colliding with either the pedestrian or the other vehi-
cle.

Without any doubt, collision-based risk assessment has been the risk the most
studied in the context of intelligent vehicles. Indeed, in an urban environment, the
main concern is to avoid at all cost any collision with the environment but also with
the other agents. Figure 2.13 shows an example of such scenario. The robot, in the
right of the picture, is currently going through a crossroad with multiple other agents.
Another vehicle is coming on the other lane, while a pedestrian is crossing the street.
As such, any decision of the robot has to take into account the possibility that it will
result in a collision with either the environment or one of the agents.

But first, why do we assume that a collision is risky? While we will deeply dis-
cuss this matter in Section 2.3, it is interesting to find a good intuition in the case
of collision-based risks. Collisions, in themselves, are not bad; their consequences,
however, are often undesirable. Let us consider the following example depicted in
Figure 2.13 where a pedestrian is crossing the road, and assume that the robot does
not have the time to stop. In this scenario, the robot has three choices which are
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1. Brake and collide with a wall, if possible;

2. Brake and collide with the pedestrian; and

3. Brake, swerve and collide with the vehicle on the other lane.

For each choice, we may ask ourself what is the associated risk. For the first one, the
risk is indubitably the damages to the vehicles induced by the collision. However, in
the two other cases, another risk is present, which is the damages done to the collided
agents. In that sense, we may prefer to collide with a wall even if it is, for the vehicle,
more dangerous than collide with the pedestrian.

Collision-based risk assessment also finds its roots in other fields. For instance,
Haddadin et al. [81] studied extensively the injuries from robotics arms. Indeed,
manipulators can not only cause blunt trauma but also contusions, stab/puncture
wounds, abrasions or lacerations. Although interesting, we will limit this section to
the field of intelligent vehicles.

In this section, we investigate how the related works choose to define and man-
age collision-based risks. We split the section into three main parts, namely the de-
terministic indicators, the probabilistic ones, and the new trend in robotics that is the
learning approaches.

Deterministic approaches

Historically speaking, the deterministic approaches were the first to be developed.
Many indicators have emerged, taking into account different types of criticality. In
that sense, Fraichard et al. [82] and Fraichard [83] proposed a framework to guaranty
that the robot will not create any collision, using the concept of ‘Inevitable Collision
State’. The aim of the robot is to always avoid such state where a collision becomes
inevitable. This theory provides safety criteria, saying that the robot should always
consider its own dynamics, the environment object’s future behavior and reason over
a quasi-infinite time horizon. However, such criteria are hard to entirely respect in
complex environments such as the open road. Furthermore, the research does not
address what to do if the robot is in an inevitable collision state: should the robot
brake, steer, or engage in an evasive maneuver? Thus, more fitted metrics have been
developed in parallel for intelligent vehicles where accident might always happen.

In the context of intelligent vehicles, the first andmost simple risk is the change of
velocity between the vehicles due to the collision. Brännström et al. [84] stated that
in case of inevitable collision, the systemhas to brake asmuch as possible to limit the
velocity at the time of collision. Although such metric seems too simple to effectively
work in every scenario, it can yield more complex metrics that cover more situations.
Labayrade et al. [85] proposed a collision mitigation system whose aim is to decrease
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the kinetic energy dissipated during a collision through emergency braking. In the
case where the collision between the vehicle and the obstacle is inevitable (and the
vehicle does not have a choice of which obstacle it collides with), decreasing the dis-
sipated kinetic energy reduces to brake as much as possible before the impact but
also choosing the right angle of collision. Various works [86]–[89] chose to model the
vehicles as geometrical shapes such as ellipses, circles or polygons. The risk was then
defined as the amount of overlap between the shapes. Using generic motion-based
object detection, Keller et al. [90] proposedamethod tomitigate collisionswithpedes-
trian by either braking or steering. Noh et al. [91] assessed collision risk on highway
in order to take the best course of actions.

Despite the growing number of risk metrics for intelligent vehicles, the Time To
Collision (TTC) continues to be the most popular. Introduced by Hayward [92], the
TTC measures the remaining time the driver has left before a collision happens, as-
suming constant velocity. This metric, despite its age, remains the most used in the
domain of intelligent vehicles. This is due to its simplicity, low computational time
and is easily improvable. Table 2.3 gives some examples of TTC metrics developed
over the years. However, as pointed by Laugier et al. [93], the TTC metric suffers
from its lack of context and becomes less and less effective as the time horizon in-
creases. Figure 2.14 shows some examples where the TTC can underestimate and
overestimate the risk. In the first example of a crossroad where all the obstacles are
stopped, the TTC will be set to infinite, therefore meaning that the situation in one
hundred percent safe. However, such scenarios are one of the most hazardous situ-
ations as many accidents happen in intersections. In the second example, because
of the road’s curvature, the TTC results in a high risk even though the situation is not
risky.

Figure 2.14: Limitations of the TTC metric, from Laugier et al. [93]. Because it lacks
context, the TTC can underestimate the risk at intersection (left figure) or overesti-
mate it in simple scenarios such as a road turn (right figure).

In parallel, other metrics have been developed for risk assessment in road scenar-
ios. Allen et al. [98] proposed the Post-Encroachment Time (PET)metric, which is the
time between the moment that an obstacle last occupied a position and the moment
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Approach Description Contribution

TTC [92], [94] Definition of the TTC Introduction of the metric
[92]whereas Lee [94] demon-
strated that the TTC is an
easy metric to be picked up
by the driver and is sufficient
for collision mitigations.

Extended TTC
[95]

Extend the TTC indicator Improved safety indicators
using vehicles trajectories,
used to counter the TTC
that may vary too much over
time.

Improved
TTC for immi-
nent danger
[87]

Takes into account the accel-
eration, lane-changing ma-
neuvers and trajectories that
are not constrained by lane-
based concepts

The focus is to propose a
metric that is not just an
‘expected or actual time-to-
collision’ but a metric that
measures the imminent dan-
ger faced by the driver (the
possibility that an accident
will happen) if he/she con-
tinues on the current trajec-
tory

More accurate
TTC [96]

Improve the TTC calcula-
tions between two vehicles
colliding at constant speed
along a straight path

Improve the TTC calcula-
tions with a more accurate
method taking into account
the geometry of the vehicles
and remove a dependency
to a parameter that was hard
to tune.

TTC for un-
constrained
vehicle mo-
tion [97]

Generalize the TTC metric
for 2D environments

Generalize the TTC calcula-
tions to unconstrained vehi-
cles motion, therefore work-
ing for all general traffic sce-
narios.

Table 2.3: Some examples of TTC measures
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where the robot reaches the same position. This metric is particularly interesting for
highway situations but does not translate well tomore complex environments. In the
same context, Hupfer [99] introduced the Deceleration to Safety Time (DST) metric,
processing the required deceleration that has to be applied to the vehicle to maintain
a given safety time with the other vehicles. Hillenbrand et al. [100] used the Time To
React (TTR) metric to calculate the remaining time to avoid an imminent collision by
emergency braking, steering, or a ‘kick-down’ maneuver such as leaving the collision
zone early enough.

In amore empiricalmanner, Richards [101] publisheda study relating the relation-
ship between the speed of the vehicles and the risks of fatal injuries for pedestrians
and car occupants. For instance, Figure 2.15 shows the relation between the impact
speed and the severity of the injuries for frontal collisions. Such metrics, at the cost
of relying on real accident data, can offer more nuanced approaches as they do not
rely on parameters and thus yield more meaningful decisions.

Figure 2.15: Relation between the impact speed of the vehicle and the severity of the
collision for the pedestrian, from [101].

Probabilistic approaches

Subsequently, the deterministic approaches started to show their limitations. Indeed,
their main asset is their low complexity and therefore low computational time. How-
ever, such strength somewhat fades away as computer’s capabilities grow. These
methods are not able to deal with the unpredictable. Following the large trend of the
probabilistic robotics [1], the aforementioned methods were extended to the proba-
bilistic realm, of which we give here an overview here.
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Figure 2.16: Example of terrain where de-
terministic prediction of the robot’s dis-
placementwould fail: because of the snow,
the robot’s skidding and slipping are al-
most impossible to estimate accurately.

The uncertainty can be taken into ac-
count in multiple ways. At first, one can
model the uncertainty of the robot’s dis-
placements. Indeed, in every collision-
based risk assessment system, a predic-
tion step is involved. In contrast to
traversability based systems where the
robot can assess the traversability by
safely crossing it (e.g., at low speed),
a collision-based system aims to avoid
all the collisions. Therefore, the sys-
tems need to predict the robot behavior
and assess the confidence on each com-

mand. As an example, let us imagine a robot as depicted on Figure 2.16 evolving in
a sub-arctic environment. Because of the deep snow of uneven density, the robot’s
displacements are hindered and heavy slippage and skidding make any accurate es-
timation of the displacements impossible. As such, any deterministic method would
only take into account the most probable motion, even if there are little chances that
its actual displacement is near the estimation. These problems are specially critical
in the case where the robot has to negotiate sharp turn or plan in a crowded environ-
ment, i.e., where the robot has little room for maneuvers. In the context of intelligent
vehicles, the same problem arises when, for instance, snow or heavy rain is falling
on the road. Mesbah [102] wrote a survey of stochastic methods for Model Predictive
Control (MPC), allowing robots to planwhile taking into account its future probabilis-
tic motions.

On the other hand, the decisions of the other agents in the environment are al-
most always unknownby the robot. Henceforth, it becomes critical to reasonover the
possible futuremovements of the agents instead of only themost probable one, often
assuming that the obstacles keep their velocity anddirection constant over the risk as-
sessment horizon. This assumption is not necessarily bad but deteriorates for longer
time horizons. For instance, short TTC metrics using this assumption are close to the
reality and yield correct decisions for accidents mitigation. However, in more com-
plex scenarios where the aim is to avoid entering an accident scenario (e.g., adapting
its speed before crossing an intersection), context and hypothesis have be taken into
account. As such, probabilistic methods have been developed to tackle these cases.
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Figure 2.17: Example of conservative ap-
proach from [103], where the region be-
low the plane was observed and the re-
gion on top is predicted. For a known
trajectory (on the far left), the most prob-
able prediction is not enough to provide
safety guaranties. Instead, a conservative
approach thresholds the probability distri-
bution, yielding to a wider prediction but
that is almost sure to contain the real fu-
ture trajectory.

It is worth noting that dealing with
probabilistic obstacle often lead to a
far greater computational cost and com-
plexity in the theory. As such, many
works aim at dealing with these cases by
using a conservative approach that re-
move the complexity of the probabilis-
tic approaches and fall back on deter-
ministic works. Benenson et al. [103]
extended the work of Fraichard [83] to
take into account that sensors only yield
partial and uncertain information about
the environment. As dealing with proba-
bilistic obstacles prevent the framework
from generating safety guaranties, they
proposed to use a conservative world
model by thresholding the probability
distribution, as shown in Figure 2.17. Us-
ing this thresholding method, the frame-
work can deal with deterministic obstacles and guaranty the safety of the robot under
the condition that the probability of the obstacles being outside the conservative set
is negligible. Finally, they use a ‘harm value’ to characterize the environment at each
point. This value can take into account numerous factors such as the occupancy, the
type of obstacles, and so on. A path is said to be safe only if its harm value is zero for
every position of the path. Bouraine et al. [104] extended the aforementioned work
with a more tight conservative approach and the introduction of Braking Inevitable
Collision State that allows robots to evolve in a limited field-of-view environment.

In another fashion, [105] proposed a risk mitigation framework that assigns a
Probability of Collision with Injury Risk (PCIR) value to each position of the environ-
ment. Contrary to [103], this risk takes into account that the higher the speed of the
vehicle is, the deadlier is a collision. They propose to weight the injuries (e.g., injury
to the vehicle, to the collided pedestrian, and so on) and therefore leave the risk def-
inition generic for each application. We will come back to this very interesting no-
tion in the next chapters. Sandblom et al. [106] modelled the dynamic obstacles as
probabilistic entities for autonomous braking in case of collision. Likewise, Althoff
et al. [107] considered uncertainties coming from the measurements and the possi-
ble behaviors of other traffic participants, yielding a probability of crash for a specific
trajectory.

Berthelot et al. [108] extended the TTC metric to the probabilistic domain using
states estimations of the surrounding vehicles. In the same way, Eggert [109] pro-
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posed a generalization of the TTC metric. They used the TTC to define a risk as the
expectancy of the damages to the car over the prediction time.

Fulgenzi et al. [110] presented a navigation algorithm that detects and tracks ob-
stacles on-line. Their contribution is to assume typical motion patterns represented
by a Hidden Markov Model (HMM). Wang et al. [111] defined the risk as the proba-
bility of collision, but used two methods to compute it: the first indicator shows how
probable a collision will happen in the near future, whereas a second long-term risk
indicator informs of a collision possibility over the whole time horizon. In the same
context, Oboril et al. [112] proposed to model the risk as the expectation of the colli-
sion severity. They modeled the collision severity using an inelastic collision model
but argued that more sophisticated ones can be used if further information is avail-
able.

Finally, one can provide some examples in personal assistance robotics. Rios-
Martinez et al. [113] proposed to add to the standard risk of collision the risk of distur-
bance, defined as breaking social rules such as crossing between two people talking.
Ogorodnikova [114] defined the risk as a sum taking into account among others the
likelihood of avoidance, the severity of the collision and human interactions.

Learning approaches

Figure 2.18: Example of learned
traversability from [115], where
collision-free zones are in green,
otherwise red.

Since the last decade, the explosion in compu-
tational performances of the machines allowed
the learning methods to get a second wind and
thrive inmany robotics applications. Without im-
plying that non-learning approaches will be out-
performed by the latter, such approaches yield
interesting results in a great number of domains
[116]. Maier et al. [115] proposed to learn colli-
sion free zones in an image using a sparse range
sensor on the head of the robot, as shown in
Figure 2.18. Indeed, because of the position of
the range sensor, the robot would have to tilt his
head numerous times to assess the risk of the en-
tire environment. They taught the robot to learn
from the range measurements, identifying the
traversable areas (in the sense of collision-free
zone) with only a camera. In the same fashion,
Kostavelis et al. [117] usedSVMclassifiers to sepa-
rate the traversable and non-traversable environ-
ments with a stereo vision sensor. Heo et al. [118]
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presented amethod to learn and detect collisions in the context of industrial robotics:
as human-robot interactions tend to increase over the years, safe but also reliable
framework for collision detection are needed. A neural network is trained to learn
collision signals while limiting the false negatives, leading to safe and efficient in-
teractions. Learning approaches have the quality to better generalize than standard
approaches, with the drawback of being very little explainable and yielding no guar-
anties of the framework output. Furthermore, large datasets have to be used, whose
constructions can be tedious. Koert et al. [119] taught a robotic arm to grasp and plan
collision-free trajectories, while generalizing enough to be able to adapt in other en-
vironments than the one they were taught in. Malm et al. [120] takes the discussion
further by suggesting that detecting a collision is not sufficient for safe robotics. As an
example, a robotics arm can stuck an operator between itself and the wall, therefore
detecting a collision and stopping. However, in this configuration, stopping is not
the best course of action since the robot is still applying pressure over the operator
and the wall, harming the human. The robot would better choose to detect the col-
lision and move the arm elsewhere (without of course colliding anything else). This
study embeds a notion that is not very much discussed in the robotics community,
that is the post-collision risk assessment. Most works stop at avoiding a collision or
minimizing the collision if inevitable, but it is also important to look at what happens
after (e.g., colliding a pedestrian then a wall is far more dangerous for the pedestrian
than if the car just stopped right after the collision). However, dealingwith such cases
add another layer of complexitywhile there is not yet a consensus onhow to dealwith
the risk in pre-collision scenarios.

2.2.3 Risk As an Efficiency Analysis

In the last two sections, we looked at the risk from two very different perspectives. The
first one focuses on the interaction between the robot and the ground to assess if a
robot is able to enter and leave it without harm. The second one targets the collisions
with the robot and theenvironment, taking into account thatneither the robotnor the
environment is invincible and therefore encounters at high velocity can cause harm.
In this section, we discuss and investigate one last form of risk, that is the risk coming
from efficiency. Although less common, it remains one of the key aspect to take into
account in many applications.

Let us consider some examples to better grasp this concept. For a rover on Mars,
energy efficient planning is mandatory. As such, it can be very risky to send the robot
on a long trajectory thatmight deplete its energy reserves and leave it in a tedious situ-
ation such as a sandstorm that will cover its solar panels and hamper it from recharg-
ing its batteries. In the context of search and rescue robotics, efficiency is the first
goal of the robot. Its aim is to find as many as possible endangered people even if
it means endangered itself if it does not stop him from continuing its mission (i.e.,
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finding more people). The main risk can be seen as an efficiency problem, where the
robot has to be as fast as possible. Of course, traversability and collision based risks
have to be considered since crashing means failing to find other people.

Some authors chose to oppose the notion of efficiency and risk [121], since col-
lision and traversability risks are often inversely affected by the speed. Feyzabadi et
al. [122] proposed to separate the efficiency from the risk in an industrial application
by maximizing the efficiency under the constraint that the risk is bounded to a used-
defined value. In this framework, the risk is generic and take into account both the
position in the environment but also the action the robot underwent to reach this
location.

Figure 2.19: Rover used in the experimen-
tation from [52]. In this scenario, the risk
of running low on energy is as risky as en-
tering a low traversable area.

On the opposite, Ishigami et al. [52]
and Martin et al. [123] take into ac-
count the energy consumption as one
of the traversability factor for the robot.
In [52], the path evaluation takes into
account both the energy consumption
and elapsed time, among traversability-
basedmetrics. As such, the rover (shown
in Figure 2.19) is able to chose more effi-
cient paths that can be less traversable.
Martin et al. [123] constructed large
scale traversability maps taking into ac-
count the slip but also the power con-
sumption, allowing the robot to plan
paths more efficiently in the environ-

ment. Finally, Sakayori et al. [124] created an energy-efficient trajectory planning
method for a wheeled robot in slope ascending scenarios. Using extensive simula-
tions, the robot estimates the power consumption for a given slope and approximates
it with a neural network. Working with the calculated model, the robot is then able to
generate efficient trajectories to climb hills.
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2.3 What is a Good Risk Metric?

In the last section, we presented the main trends in risk assessment. However, as
one can easily notice, many definitions exist and may not equivalently quantify the
true danger of a situation. In parallel to themore applied aforementioned researches,
some authors tried to bring together the definitions, proposing a unifying framework.

First, we present a short discussion on the more philosophical aspects of the risk.
Then, we discuss the main trends of the unification of the risk definitions.

2.3.1 The contradiction of the utilitarianism

The utilitarianism is an ethical theory based on the maximisation of the happiness
and well-being for all affected individuals. This ethical position emerged in the 18th
century andhasbeenfirst formulatedby JeremyBentham. In [125], hedefinedanovel
definitionofmoral: any action ismeasuredby the amount of good it does to theworld.
This theory is classified as consequentialist, where each action is not goodor badby it-
self but is defined as its consequences on theworld (i.e., the individuals). Therefore, it
strongly opposes deontological morals, such as the one developed by Emanuel Kant,
where an action is intrinsically good or bad. Over the years, the utilitarianism evolved
toward a more complex moral. Whereas Bentham was only considering instant grat-
ifications, its disciple, John Stuart Mill, proposed to replace it with a broader notion
that he called happiness [126]. Thehappiness distinguishes several types of pleasures
where some are more valuable than others (e.g., long term health is more valuable
than a short pleasure such as eating a cake). The main appeal of the utilitarianism in
the case of risk management is its mathematical formulation. Indeed, the utilitarian-
ism wants to maximize the happiness of the world. As such, one does need a metric
to evaluate this happiness, and therefore yield a metric that is able to evaluate the
change of happiness any action would yield. Of course, doing such computation is
realistically impossible: however, a robot might be able to approximate it in a given
scenario, assuming rightfully that its actions will not change the state of the world
outside a given region around it.

Using the theory of the utilitarianism, the risk is simply the amount of happiness
theworldwould lose compared to the best decision the robotmight take (i.e., the one
maximizing the happiness). As shown by Karnouskos [127], in the hypothetical sce-
nario where an intelligent vehicle has only two choices, either colliding with a group
of pedestrian or throwing itself of a cliff, hence killing the one person in the car, the
utilitarian choice would be to kill the occupant of the car instead of the pedestrians.
At this point, one can ask himself if, at first, there truly is a better solution over the
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other. Indeed, the opposite point of view also makes sense. As called in [127] as the
‘self-safety’ approach, it aims at always thinking first of the safety of its occupants.
In overall, this opposition between the two approaches is paradoxically reflected by
the public mass: although more people would like to see utilitarian cars on the street,
they are less prone to buy a self-driving car if it is configured to prioritize the safety of
the pedestrians over the occupant.

Indeed, the problem is far more complex than a simple utilitarian calculation or
a deontological approach: as said by Ernst Tugendhat, a doctor willing to save five
patients does not have the right to kill a perfectly healthy person for its organs, even
though the utilitarian cost would dictate to do so. This problem can be translated into
a driving scenariowhere somepedestrians cross the street even though the crosswalk
light was red.

This discussion could last for an entire book, but we can easily see that it seems
that no risk calculation will easily surpass the others in every situation. Therefore,
the risk in robotics in often simplified to avoid collisions or not be the one to cause
them1, as proposed by Fraichard [83] and Shalev-Shwartz et al. [128]. Other works,
like ours Laconte2020, [80], [129], choose to keep a utilitarian approach, minimiz-
ing the overall damages in case of an inevitable accident. Furthermore, as robots can
only estimate the state of the world, the decisions often involve probabilistic move-
ments. Majumdar et al. [130] proposed a formalization on how a robot should distill
the probabilistic estimation into a single number that is the risk or the utilitarian cost
of an action.

2.3.2 Unification frameworks

In this section,we investigate themain trends that tried tounify andproposeageneric
framework for risk management.

Inevitable state collision

Inhiswork, Fraichard et al. [82] defined thenotionof inevitable collision state: a robot
is said to be safe if it never enters such state, defined as a state where a collision in the
near future is impossible to avoid. This notion is extended in [83] where the author
proposed safety criteria that are meant to better understand key aspects relative to
the safety issue. The criteria are

1. to decide its futuremotion, a robotic system should consider its own dynamics;

1Hence leaving the utilitarian dilemma to the others agents.
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2. to decide its future motion, a robotic system should consider the environment
objects’ future behaviour; and

3. to decide its futuremotion, a robotic systemshould reasonover an infinite time-
horizon.

The third point can be relaxed to the extent that the time horizon should contain the
time required to reach the goal state. Then, it is shown that the inevitable collision
state framework does take into account the three criteria, therefore yielding a conser-
vative, safe framework.

Figure 2.20: Example of small
robot (Roomba) that is not harm-
ful even in case of collision with a
pet or furniture.

In the same paper [83], the authors discussed
whether safe robotics systems exist in 2007. The
emphasis is on ‘harmful’ robots defined here as
robots whose size and dynamics make them po-
tentially harmful for themselves or their environ-
ment. Small robots such as a Roomba shown
in Figure 2.20 are not harmful in this definition
and do not have to take into account the above
criteria, as bumping into a pet or furniture is,
citing [83], ‘no big deal’. Although the authors
chose to completely separate ‘harmful’ robots
from ‘harmless’ ones, this consideration will be
the premises of more complex risk metrics. In-
deed, the risk is therefore intrinsically linked to
the force of collision, itself dependent on the
mass of the robot. In the case of harmful robots,
even though lots of robots have been successfully evolving in crowded environments
such as a warehouse or a museum, it has been shown that each system does violate
at least one of the above safety criteria. Although effectively avoiding collision, one
can ask which agent is truly responsible for avoiding the collisions. Indeed, it is sug-
gested that instead of the robot perfectly avoiding the pedestrian, it is actually the
other agents that took care of the collision avoidance. As such, putting the robot in
an environment with blind people would lead poor results.

Taking into account the remark that dynamic obstacles coupled with limited field
of viewyield tonumerousproblemsandprevent formal guaranties of safety, Bouraine
et al. [104], [131] relaxed the notion of inevitable collision state to the passive motion
safety. This weaker level of safety states that, in case where a collision must happen,
the robot will be at rest. It echoes to the last section discussion, where the robot will
here leave the risk (i.e., utilitarian) calculation and management to the other agents,
namely the crowd or the other robots. As such, the aim is to avoid at all cost a state
called braking inevitable collision state, that is a state where the robot is not able to
stop before the collision. The authors argued that passive motion safety can be too
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limited, and more sophisticated levels of motion safety could be explored, such as
the passive friendly motion safety introduced by Macek et al. [132]. This safety re-
quirement guaranties that if a collision is inevitable from the robot’s point of view,
the robot will be at rest and the other actor in the collision will have the time to either
stop or avoid the collision.

Alternatively, Benenson et al. [103] defined the notion of safe motion: a robot is
said to be safe if it can be guaranteed that its motion will not harm himself or its sur-
roundings. Once again, it is necessary to explicitly define what is behind the word
‘harm’: here, a robot can harm itself by traversing inadequate terrains (e.g., water,
negative obstacles) or pushing itself out of its range of dynamic stability, while it can
harm its surrounding by colliding with it. Compared to the previous framework, it
also takes into account amore traversability-based riskmanagement, as talked in sub-
section 2.2.1.

Safety validation of automated driving

In the specific case of self-driving vehicles, robots have already started to cohabitwith
human drivers. As such, several approaches exist to validate the safety of the meth-
ods that are implemented in these vehicles. Safety validation is often understood in
the sense that a mathematical proof can be given. However, such an assertion can
be extremely hard to obtain. Indeed, compared to industrial robots where very few
agents are around the robot and the environment is fairy well controlled, intelligent
vehicles are expected to meet numerous different actors and situations.

Sivak et al. [133] wrote a survey of the general limitations and safety challenges in
the context of self driving vehicles. The first and not the least is the aforementioned
problemof road sharing. Not all crashes are causedby thedriver (AI or human). Some
accidents are direct causes of other road participants such as pedestrians that jump
on the road, dysfunctional brakes, environmental hazards (e.g., potholes or dense
fog). As provided in [133], a simple example of a drunk pedestrian stepping unex-
pectedly on the road is a perfect example showing that perfect safety does not exist.
Because of the short distance between the car and the pedestrian, there might not
be the time to stop or at least divert the trajectory enough to avoid him. However,
an artificial intelligence would have a quicker response time than a human driver
and therefore can brake sooner, leading to a smaller injury for the pedestrian. Fig-
ure 2.21 gives another example of a vehicle that cannot guaranty its own safety, as
any other agent can choose to collide with the robot. The second point is the vehicu-
lar factors: some crashes are caused by vehicle failures, such as dysfunctional brakes
or sensors failures. In overall, [133] argued that given the complexity of the hardware
needed for autonomous driving, vehicular failures will occur more frequently com-
pared to conventional vehicles. Finally, environmental factors also hinder the road
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safety. Even if such cases are more and more tackled successfully, potholes, debris
or suddenweather changes still represent a challenge and current sensors and frame-
work might not be able to take them entirely into account.

Figure 2.21: Example of scenario
from [128]where the autonomous
vehicle (in yellow) cannot guar-
anty its own safety, since any
other agent (in red) can crash into
it without the autonomous vehi-
cle being able to evade it.

Given these considerations, we conclude that
the issue of safety validation cannot be ‘solved’,
as in proven mathematically with absolute cer-
tainty, at least without assuming numerous con-
ditions such as sun illumination, other agents,
perfect road and so on. Junietz et al. [134] and
Serban et al. [135] provide an evaluation of the
current safety validation methods. As stated in
[135], the current ISO standard for intelligent ve-
hicles, ISO 26262, fails to cover emergent con-
cerns related to autonomous decisions (i.e., path
planning). Indeed, the ISO 26262 standard only
provides a way to manage functional safety thor-
ough the system and every subsystem, but does
not concern decision making. As such, Serban
et al. [135] proposed a first step toward a safety
analysis for autonomous behavior, based on the
ISOnorm. Further research is however needed to
converge to a usable framework.

Finally, we present one formal model that is
currently employed in many autonomous vehi-
cles, that is the Responsibility-Sensitive Safety
(RSS) from Mobileye. In [128], they proposed a
method to formalize and standardize safety assurance that is scalable to production
and commercialization. As argued in [135], they state that system safety is necessary
but not sufficient. Indeed, a bug-free autonomous vehicle can perfectly crash in ev-
ery pedestrian it sees. They propose a system called RSS that is constructed around
five rules: 1) Do not hit someone from behind; 2) Do not cut-in recklessly; 3) Right-
of-way is given, not taken; 4) Be careful of areas with limited visibility; and 5) If you
can avoid an accident without causing another one, you must do it. Then, each rule
is formalized and integrated into the framework. However, such a method assumes
perfect detection of the other agents, thing that is still nowadays quite challenging.

Quantification of a stochastic risk

In contrast to the last section, the following methods do not require a perfect knowl-
edge of the world. Instead of dealing with known obstacles, they deal with proba-
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bilistic environments. First, one can assume a finite world, i.e., a world defined by a
finite set of states and actions that allow transition between the states. A simple ex-
ample would be a domestic robot charged to water the plant: the states of its world
are {watered,dry} and the only action is watering the plant. Figure 2.22 shows the
graphical representation of such worlds. Each state evolves using an action from the
robot, where the states are composed of characteristics (e.g., is the plant watered or
the ambient temperature).

Figure 2.22: Example of environment representation in a finite world, from [136].
Each state 𝑠𝑖 is composed by several characteristics 𝑐𝑗 that are linked by relations 𝑟𝑘.
The world change state using operators (i.e., actions) 𝑜𝑥.

Using this representation, Ertle et al. [136] quantify the risk of an action the robot
might undergo using a triplet that is 1) what can happenwith this action; 2) how likely
is that; and 3) what are the consequences. In our toy example where the robot has to
water a plant, one can think of the risk to miss the plant and water a power outlet,
for instance. Using the above formalism, the triplet would be 1) water+electricity; 2)
Probability tomiss the plant pot and touch a power outlet; and 3) Probability of injury.
Although interesting, such method requires high-level information about the world
and does not yield a risk metric but a triplet that is harder to use in, for instance, path
planning algorithm.

As such, Majumdar et al. [130] provided a comprehensive study of risk quantifi-
cation. As discussed earlier, any artificial intelligence needs to assign a cost to each
action, that is a mapping from a change in the environment caused by the action to
a real number. Section 2.2 gives numerous examples of such mapping, including the
well-known probability of collision for intelligent vehicles. Before this amount of dif-
ferent metrics, Majumdar et al. [130] tried to answer the question of what constitute
a ‘good’ risk metric. In order to provide such answer, they propose several axioms
that should have a risk metric. They illustrate their axioms using a risk that is the
monetary cost of each action (e.g., an accident is costly, colliding with a pedestrian
is even more expensive, whereas driving without accident only costs the price of the
gas). Then, they demonstrate that somemetrics, although quite popular, do not fulfill
the axioms and therefore lead to unreasonable choices. As an example, for an action
that leads to the event 𝐶 (e.g., the force of collision induced by the action, where 0 in-
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dicates that no collision happened), one has different ways to convert the probability
distribution to a real number. Figure 2.23 shows the most popular methods to quan-
tify a probabilistic risk. The expected value as well as the worst case constitute simple
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Figure 2.23: Illustration of the most used risk metrics. From left to right: Expected
cost, Mean-Variance, Conditional Value at Risk, and Worst case.

and reasonable metrics, in the sense that they satisfy all the axioms. However, they
demonstrate that the well known ‘Mean-Variance’ metric, that sums the mean of the
distribution and the variance times a real factor, does not satisfy the axioms and thus
leads to inconsistent riskmetrics in certain situations. As such, thismetric should not
be used. Finally, a more complex metric is the Conditional Value at Risk (CVaR) and
gives another point of view of a distribution. Whereas the expected value answers the
question ‘What should I expect from this action?’ and the worst case obviously an-
swers ‘What is the worst thing that could happen?’, the CVaR answers the most com-
plex question ‘If something goes bad, how bad is it?’. More mathematically speaking,
the CVaR corresponds to the expected value given that the random variable is in the
long tail of probability 𝛼 (gray area in Figure 2.23). Using the theory and the axioms
developed in [130], one can easily choose a metric that will not lead inconsistent re-
sults once deployed in the field.

Figure 2.24: Illustration of the
method, from [137]. The robot
navigates between randomly
moving obstacles.

As an example of risk assessment using CVaR,
Hakobyan et al. [137] proposed a method to nav-
igate between randomly moving obstacles. Fig-
ure 2.24 illustrates the problem: given a list of
obstacles randomly moving in the environment,
the robot needs to find a way to reach its goal
while taking the minimum possible risk. To do
so, they formulated the problem as a random
variable which represents the distance the robot
needs to travel to reach a safe region (i.e., a re-
gion outside the obstacles). Then, they defined
the problem of path planning under the condi-
tion that the CVaR of the distance does not go beyond a fixed threshold. Using this
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method, they effectively planned trajectories for a quadrotor in a 3D environment,
adjusting the safety and conservativeness of the motions.

2.4 Conclusion

In this chapter, we provided a glance of the main methods to assess risk in the
main robotics applications. The risk assessment is divided into three main compo-
nents, which are the traversability, collision and efficiency. The first one covers the in-
teraction between the robot and the ground, answering whether the robot can safely
navigate at this position or not. The second one focuses on the possible collisions the
robot might engender while moving. Finally, the third looks at the efficiency of the
task thatmayvary fromoneapplication to theother, from theenergy consumed to the
speed of the completion of the task. After a better understanding of these methods, a
more in-depth discussion of the risk was presented. First, we showed that a risk met-
ric is not an easy thing to create and that no obvious solution is available. Then, we
presented some attempts to formalize it, that generalizes the aforementioned meth-
ods of Section 2.2. Whereas some frameworks succeed at proposing a risk assessment
formalization, it needs much information that is not always available. Finally, a more
theoretical study has shown that not all risk metrics are consistent and some are ob-
jectively better than others.
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3.1 Introduction

In the context of mobile robotics, the first key process of any autonomous system
is the mapping of the environment. As the robot evolves in an unknown world, it
needs to create a representation of any threat or object that might hinder its mission.
For instance, a rover onMarsmaps the traversability of the soil, whereas an intelligent
vehiclemaps the static obstacles (e.g., walls, fences) aswell as dynamicobstacles such
as pedestrians and cars.

In this chapter, we focus on the creation of collision-based maps that store an
information of occupancy. First, we look at the semantic techniques, where each ob-
stacle or hazard is stored as a single, known entity. This leads to the creation of topo-
logicalmaps, wherewe concentrate on the application of thesemaps in the context of
autonomous vehicles. Once such map stores the static environment, we investigate
the detection and tracking of dynamic obstacles.

65
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Conversely, the metric maps store the information of occupancy for each given
position in the environment. As such a field is not storable, thewell known solution is
to tessellate the environment into cells. Figure 3.1 provides example of both semantic
and metric maps.

Although being more attractive in many applications, semantic maps tend to be
more computationally expensive and do not work as well in case of complex, noisy
environments.

Figure 3.1: Example of semantic map (Left, from [138]) where each hazard is identi-
fied as a particular entity. On the contrary, a metric map (Right, from [1]) stores the
information of occupancy for each position in the environment: the darker the cell,
the higher the probability of occupancy.

3.2 Semantic Approaches

Semantic approaches choose to represent the environment as a set of entities. En-
tities can represent dynamic obstacles such as pedestrians or cars but can also cor-
respond to static obstacles, such as walls or poles. In this section, we split the dis-
cussion into two distinctive parts: first, we investigate the mapping of static environ-
ment, leading to the creation of topological maps, with a focus on its application to
autonomous vehicles. Then, we present a survey of the methods of detection of dy-
namic obstacles that can aggregate the topological map already constructed.

3.2.1 Topological Mapping

Topological maps [139]–[141] represent the environment in an abstract manner us-
ing a graph, where nodes depict distinctive elements of the scene and arc models po-
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tential relation between them. These maps have the advantage of being simple and
compact, scale better and require less storage space than their counterpart, the met-
ric maps. Garcia-Fidalgo et al. [142] proposed a comprehensive study of the vision-
based topological mapping techniques. As suggested in their article, localization and
mapping are intrinsically related.

Figure 3.2: Example of urban environment.
As done in [143], the elements of the en-
vironment can be stored as distinct enti-
ties that were in this case walls and round-
abouts.

Aynaud et al. [144] used topological
maps to localize the robot in urban envi-
ronments. Using Bayesian networks, the
robot was able to infer the best feature
to detect in order to precise its localiza-
tion in the map. Delobel et al. [143] en-
hanced the framework by proposing to
refine the map in the same time, adjust-
ing the position of thewalls. As such, the
robot was capable of questioning the in-
formation contained in themap and cor-
rect them if necessary.

Representation of roads

Topological maps are fitted to represent somewhat structured environments of
known features. For instance, such maps would not perform well in unstructured
environments where a lot of obstacles such as bushes, tall grass and hills populate
the environment. In the case of autonomous vehicles, and more particularly in the
case of highway navigation, the environment is very well known and structured. The
static environment simply consists of lanes where the vehicles evolve. For instance, a
topological representation of this environment can be a sequence of waypoints that
are the center of the lanes of the roads.

Figure 3.3: Example of lane
detection for topological road
mapping with a lidar (green)
and a camera (blue), from
[145].

For instance, Kasmi et al. [146] proposed to use
topologicalmaps to localize a vehicle in its way, using
digitalmaps such asOpenStreetMap (OSM). Because
of the low definition of the aforementioned maps as
well as the noise on the GPS localization, the vehi-
cle also detects lanes to better estimate its position,
as shown in Figure 3.3. Using these detections, an
autonomous vehicle can easily perform localization,
remapping and trajectories planning.

In a more global point of view, such map can be
created from on-board sensors, aerophotogramme-
try or even satellite images. The Defense Advanced
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Research Projects Agency (DARPA) challenges [147],
[148] proposed more sophisticated maps containing lanes, lane crossings and lane
mergers. Each lane also contained information such as its width and speed limit.
Urmson et al. [149] used a graph model of the DARPA maps for the self-driving car
Boss (Carnegie Mellon University), claiming the first place in the 2007 DARPA Urban
Challenge. Each node denoted a waypoint and directional edges betoken lanes that
connect thenode to all otherwaypoints it can reach. Costswere assignedon the edges
taking into account the time of traversal, length of the lane and the complexity of the
environment. However, manual labelling of the road shapes were necessary for the
car.

Figure 3.4: example of OSM
map from [150].

In that sense, Haklay et al. [150] and Ramm et
al. [151] proposed an open source, cooperative map-
ping framework called OpenStreetMap (OSM). OSM
is a collaborative project aiming at creating a free ed-
itable map of the world. The motivation for such en-
terprise is the restrictions on use or the availability
of map information across the world, as well as the
rise of inexpensive small satellite navigation devices.
The framework creates semanticmapsbasedon three
main components that are nodes, ways and relations.
Other road properties are given as properties of the
following elements:

Nodes are point-shaped geometric elements which are used to represent space
points in terms of latitude and longitude. Moreover, Nodes are the only prim-
itives with position information. Therefore, all other primitives depend on
Nodes to locate themselves;

Ways are a list of nodes arranged in a certain order that represent away such as roads,
railways or pedestrian walkways; and

Relations are used to model logical or geographic relationship between objects
(nodes or ways). For instance, a bus route is represented as a relation between
several nodes representing the bus stops.

Bender et al. [152] proposed a high definition topological road map called lanelet
map, for the self-driving vehicle Bertha. The lanelet map includes both geometri-
cal and topological features of road networks, such as roads, lanes, and intersec-
tions, using atomic interconnected drivable road segments. For the self-driving car
Bertha, the authors chose to manually annotate all the elements and properties of
the map. The lanelet map was successfully tested throughout an autonomous jour-
ney of 103 km on the historic Bertha Benz Memorial Route. Because of the growing
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need for larger maps, Bastani et al. [153] proposed a method seeking to automate the
generation of topologicalmapusing aConvolutionalNeuralNetwork (CNN) on aerial
images. The test on aerial images covering 24 km2 of 15 cities achieved an average er-
ror of 5%ona junction-by-junctionmatchingmetric. With the same intent,Wegner et
al. [154] used Conditional RandomField (CRF) tomodel the structure of the road net-
work, segment it into super-pixels and adding paths to connect these regions. Mnih
et al. [155] used satellite images and CNNs to gather road segments, using the spatial
coherence of the scene to improve performance.

Recently, High-Definition (HD) maps were born to tackle intelligent vehicle prob-
lematics. Such maps provide very precise (centimeter-level) maps and contain rich
information about theworld. However, one can easily suspect that creatingHDmaps
is very costly. Indeed, such maps need inherent frequent and precise updates that
need a lot of resources. As such, only private corporations can usually create enough
data to manufacture these maps and sell them. Zoller [156] assessed and ranked the
top vendors that are HERE, Google, Mapbox and TomTom.

3.2.2 Dynamic Obstacle Detection

Whereas the last section only covers the mapping of the static environment, many
robotic applications also need to monitor the dynamic obstacles that populate the
environment. We present in this section the main trends in dynamic obstacle detec-
tion, that can be classified into threemain categories: cluster, geometric and learning
based. Whereas Petrovskaya et al. [157] alsomention a fourth category that is the grid-
based methods, these frameworks are studied in Section 3.3.

Cluster-basedModels

Figure 3.5: Example of cluster-
ing algorithm on lidar data, from
[158].

Cluster based methods rely on segmenting the
environment into groups of data, called clus-
ters, that are more similar to each other than to
those in other groups. In the specific context
of robotics and range measurements, the aim is
to aggregate the measurements such that each
group of data represents an obstacle such as a
pedestrian or a car. Figure 3.5 shows an exam-
ple of such clustering in the case of pedestrians
crossing the road in front of the robot. One can
also notice clusters on the right of the figure that
correspond to a fence and a tree.
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Zhang et al. [159] proposed to associate to each cluster a bounding box and infer
whether a cluster is a vehicle or not depending on the box size. Fayad et al. [160] di-
rectly took into account the shape of the detected objects to optimize the clustering
step. As such, the system was able to infer the shape of the obstacles and track them
over time, while fusing the estimation with a camera. Peng et al. [161] filtered the
point cloud beforehand and perform an identification step after the clustering, lead-
ing to the labelling of three classes that are lines (e.g., a wall), circles (e.g., a pedes-
trian) and rectangles (e.g., a car). In a similar fashion, Catapang et al. [162] identified
the shape of the clusters with an inexpensive 2D lidar PulsedLight LIDAR-Lite v1.

Clustering is also done using cameras: Chen et al. [163] used a stereo camera to
cluster super-pixels in the images. Merging the super-pixels according to their bound-
ary types and their movements, they were able to effectively detect moving obstacles
in the scene. Using a fusion of a camera and a lidar, Hwang et al. [158] segmented
obstacles in the context of intelligent vehicles, focusing on cars, pedestrians and cy-
clists. After each sensor independently provides obstacles detections, the results are
fused and a final detection is given as a result. Finally, Matti et al. [164] also fused
information from a lidar and a camera to detect pedestrians. First, the point cloud re-
trieved from the lidar was pre-processed (down-sampled and ground extraction) and
obstacles were clustered. The cluster were then filtered depending on their size (e.g.,
a pedestrian cannot measure 3 meters). The camera classified the validated clusters
and yielded a score for each detection.

Geometric-basedModels

Geometric models employ non-parametric filters such as the particle filter [157]. In
contrast to the last section, segmentation and association are not required steps since
geometric data automatically fits data to targets. Petrovskaya et al. [165] presented a
geometric-based method for detection and tracking of moving vehicles, as shown in
Figure 3.6, that was designed for the self-driving car Junior from Stanford University
[166], which finished in second place in the 2007 DARPA Urban Challenge.

Figure 3.6: Obstacles detection (purple rectangles) from lidar measurements (in yel-
low) based on geometric models, from [165]. Left: Without size estimation. Right:
With size estimation.
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Figure 3.7: Example of scenario
where a clustering algorithm
would fail to estimate the true
shape of the obstacles (in gray)
because of an occlusion, from
[165]. Geometric models do not
have this problem as the shape
of the obstacles is taken into
account.

Using their method, the detections are more
accurate than standard clustering. Indeed, as
shown in Figure 3.7, clustering algorithms have
troubles dealing with occlusions. In the example,
the car depicted in gray is wrongfully detected
as two obstacles (that can for instance be inter-
preted as two cyclists) and therefore can lead to
hazardous decisions. Using the geometricmodel
of a vehicle, a model-based method is able to
rightfully estimate the shape of the gray vehicle.
Thework of Petrovskaya et al. [165]was improved
byHe et al. [167] to better fit the geometry and es-
timation the motion of the obstacles throughout
the entire tracking process. The geometry of the
obstaclewas alsobetter estimatedby adding tem-
poral dependencies. Ess et al. [168] used a stereo
rig mounted on a mobile platform to categorize,
track and predict the future behaviors of obsta-
cles. Vu et al. [169] used a data-driven approach
to interpret the laser measurements as hypothesis of moving objects trajectories over
a sliding window of time. The trajectories were modelled as a sequence of detection
of shapes that satisfy the motion constraints of the obstacles. Because of the high
computational demands of this method, they used Monte-Carlo techniques to reach
real-time capability. Wang et al. [170] adopted a similar approach of model-based de-
tections but did not assumeprior categories for the obstacles. Instead, a Bayes filter is
responsible for joint estimation of the pose of the sensor, the geometry of the static lo-
cal background, the dynamics and geometry of objects. Xu et al. [171] chose tomodel
regions of interest to reduce and optimize the detection of obstacles in a context of
autonomous navigation. They only look at targets inside the regions of interest and
use the detections to keep a safe distance to the obstacles. Finally, Mertz et al. [172]
proposed a detection and tracking framework relying on multiple lidar sources that
can be 2D or 3D. Using a combination of segments and features in the point cloud,
they associated the measurements to obstacles and keep updated a list of current ob-
stacles.

LearningModels

Since the last decade, the learning approaches have gained tremendous popularity.
Although the field started decades ago, the rise of powerful Graphical Processing
Unit (GPU)s lead the field to re-birth and proposemany advances in numerous appli-
cations. Many consider the field to have been reborn around 2012 with the AlexNet
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neural network [173] that classify images: thanks to the advance in GPU technolo-
gies, the network was able to be fully trained without any human expert in the loop,
leading to a drastic increase in both computational needs and accuracy compared to
state-of-the-art networks at the time. After, legion of networks have flooded the field,
where Alom et al. [174] provided an extensive study. For instance, one can cite the
You Only Look Once (YOLO) network from Plastiras et al. [175] and its numerous im-
provements over the years: not only does the network classify images, it also provides
bounding boxes (i.e., position) of each detection.

Figure 3.8: Example of incoherent results
a neural network can yield in case of small
perturbations, from [176]. The images
(Left) have been slightly modified with an
additive noise (Middle) and all yield the
class ‘Ostrich’ after modification (right).

Although learning methods provide
excellent results in many applications
such as obstacle detection and tracking,
there exist some drawbacks. The sim-
plest and telling example is the lack of ex-
plainability and guaranties. Indeed, be-
cause of the inherent learning phase of
the networks, it becomes unclear what it
learnt and in which extent the network
will work. In some applications, hav-
ing outliers is not dangerous nor partic-
ularly bothersome, such as Optical Char-
acter Recognition (OCR). However, one
can easily imagine that a network em-
bedded in an intelligent vehicle calcu-
lating trajectories needs absolute confi-
dence about its choices: because of a
rain droplet on the camera, the network
could infer incoherent choices that com-
promise the safety of both the occupants

and the pedestrians in the scene. Figure 3.8 shows an example of what a small per-
turbation can do to a neural network. In this case, the network AlexNet [173] was
feeding on slightly disrupted images (the perturbation is depicted in the middle col-
umn). Without the perturbation, all the images were correctly assessed by the net-
work. However, even though a human eye cannot distinguish differences between
the initial image and the disrupted one, the perturbations lead the network to infer
with high confidence that all images depict an ostrich. Thus, critical systems such as
autonomous vehicles need to rely on other methods to at least confirm the output of
the network. Henceforth, neural networks can be seen as sensors and, as any other
sensor, need to be monitored and filtered since it is prone to noise and outliers.

Théodose et al. [138] proposed a network built on the fusion of 3D point clouds
and RGB images for 3D objects detection regardless of point cloud density. To do
so, the network first takes a color image and augments the point cloud with features
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information. Then, the point cloud is cut into voxels and projected onto a plan to cre-
ate a Bird Eye View (BEV) of the environment where detections are made. Huval et al.
[177] evaluated deep learning algorithms for autonomous learning, concluding that
the field holds promise while using the network developed by Sermanet et al. [178].
Mutz et al. [179] proposed a scenario of leader-following, demonstrating that generic
learning algorithms can provide effective tracking of a vehicle without re-training for
this specific scenario. The generic neural network was developed by Held et al. [180]
and called GOTURN, for Generic Object Tracking Using Regression Networks. GO-
TURN is a pre-trained deep neural network capable of tracking generic objects with-
out further training or object-specific fine-tuning.

3.3 Metric Approaches

In contrast to semantic approaches, metric maps do not require identifying enti-
ties to map the environment. Instead, they store the information of occupancy for
each position in the environment. However, a field 𝑓 ∶ ℝ𝑛 → ℝ (i.e., an occupancy
value for each nD position of the environment) has an infinite number of degrees of
freedom, therefore is not storable on a machine. The most generic, popular solution
is to tessellate the environment into cells of fixed size and assume that the field is con-
stant inside the cells1 Other methods choose to represent the field in another basis,
using Gaussian processes for instance.

In this section, we provide an extensive survey of the occupancy grid method,
namely the Bayesian occupancy grid framework. First, we present the main lines of
the theory of the Bayesian framework that is used as a base by many works. Then, we
investigate more thoroughly the different trends that emerged since the first appear-
ance of the Bayesian Occupancy Filter (BOF) and how they augmented the frame-
work. Figure 3.9 shows the taxonomy of the different branches of the BOF that will be
explained throughout this section.

1One can also look at it from a signal processing point of view. The field is then sampled under the
assumptionofNyquist–Shannon sampling theorem,meaning that thefieldhas amaximum frequency.
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Figure 3.9: Taxonomy of the occupancy grid framework, divided into the main trends. Each arrow represents an improvement of the
framework.
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3.3.1 The Bayesian Occupancy Grid

The Bayesian Occupancy Grid (BOG) has been initially proposed by Elfes [8], where
manyworks branches out from this theory. As the static occupancymappingwhile be
extensively studied in the next chapters, we first explain the theory behind it as done
in [1]. Then, we investigate the branches that emerged from the initial work of Elfes
[8].

Estimation of the static environment

In this section, as well as for this thesis, we assume that the poses of the robot are
known. That is, another framework is able to give reliable, not necessary precise, es-
timation of the robot’s position and orientation. For instance, the Iterative Closest
Point (ICP) algorithm can provide such information from lidar data. Under this as-
sumption, the problem of mapping the environment using metric measurements is
fairly straightforward. The problem can be decomposed as a graph, as shown in Fig-
ure 3.10. The robot has poses 𝑥𝑡 and measures at each step the environment, lead-
ing to the measurements 𝑧𝑡 that are dependent on the environment 𝐦 (i.e., the
map). The aim of the framework is to estimate the variable𝐦 given 𝑥𝑡 and 𝑧𝑡.

m

x

tz

t+1x

t+1zt−1z

xt−1 t

Figure 3.10: Graphmodeling of themapping problem from [1]. Each node represents
a variable whereas arrows represent dependencies between them.

The environment is represented as a field𝐦 of random variables that correspond
to the tessellation of the continuous field 𝑓 ∶ ℝ𝑛 →ℝ. For simplicity reasons, the fol-
lowing theory is presented in 2D but is easily transposable to 3D environments for
Unmanned Aerial Vehicle (UAV). The map𝐦 is then a collection of random variables,
each one representing a small portion of the environment. Mathematically speaking,
we seek the posterior probability over maps given the data, that is

ℙ⒧𝐦|𝑧1∶𝑡,𝑥1∶𝑡⒭ . (3.1)
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The notation 𝑧1∶𝑡,𝑥1∶𝑡 stands for the sets 𝑧1,𝑧2,…,𝑧𝑡 ,𝑥1,𝑥2,…,𝑥𝑡 that are respec-
tively the set of the robot’s measurements and the set of its poses up to the time 𝑡. As
already stated, the map𝐦 corresponds to a field of random variables, that is

𝐦= 𝑚𝑖 , (3.2)

where 𝑖 ∈ J0,𝑁−1K is the index of the i-th cell, for a map tessellated into𝑁 cells. Each
variable 𝑚𝑖 can only take two values that are ‘occupied’ (denoted occ) or ‘free’ (de-
noted free), meaning that the cell actually contains either an obstacle or is free to
cross. In order to simplify the notations, we abbreviate ℙ⒧𝑚𝑖 = occ⒭ by ℙ⒧𝑚𝑖⒭ and
ℙ⒧𝑚𝑖 = free⒭ by ℙ⒧¬𝑚𝑖⒭.

The problem with estimating the variable 𝐦 is its dimensionality. Indeed, the
number of cells that form the map is very large and can easily reach the tens of thou-
sands, as the one shown in Figure 3.1. For instance, a map with 10,000 cells (e.g., a
map of 10×10m2 with cells of size 0.1×0.1m2) leads to a variable 𝐦 that can take
210,000 values. As such, estimating the posterior probability of this variable is in-
tractable. The solution is to assume that all the variables𝑚𝑖 are independent of each
other: using this, the problem breaks down at estimating each posterior individually,
that are

ℙ⒧𝑚𝑖 |𝑧1∶𝑡,𝑥1∶𝑡⒭ , 𝑖 ∈ J0,𝑁−1K. (3.3)

Using this equation, one can use the Bayes rule to find a more convenient form:

ℙ⒧𝑚𝑖 |𝑧1∶𝑡,𝑥1∶𝑡⒭ =
ℙ⒧𝑧𝑡,𝑥𝑡 |𝑚𝑖,𝑧1∶𝑡−1,𝑥1∶𝑡−1⒭ℙ⒧𝑚𝑖 |𝑧1∶𝑡−1,𝑥1∶𝑡−1⒭

ℙ⒧𝑧𝑡,𝑥𝑡 |𝑧1∶𝑡−1,𝑥1∶𝑡−1⒭

= ℙ⒧𝑧𝑡,𝑥𝑡 |𝑚𝑖⒭ℙ⒧𝑚𝑖 |𝑧1∶𝑡−1,𝑥1∶𝑡−1⒭
ℙ⒧𝑧𝑡,𝑥𝑡 |𝑧1∶𝑡−1,𝑥1∶𝑡−1⒭

,
(3.4)

using the first Markov assumption that the state𝑚𝑖 is enough to estimate the robot’s
pose and measurement 𝑥𝑡,𝑧𝑡. Applying a second time the Bayes rule, we obtain

ℙ⒧𝑚𝑖 |𝑧1∶𝑡,𝑥1∶𝑡⒭ =
ℙ⒧𝑚𝑖 |𝑧𝑡,𝑥𝑡⒭ℙ⒧𝑧𝑡,𝑥𝑡⒭ℙ⒧𝑚𝑖 |𝑧1∶𝑡−1,𝑥1∶𝑡−1⒭

ℙ⒧𝑚𝑖⒭ℙ⒧𝑧𝑡,𝑥𝑡 |𝑧1∶𝑡−1,𝑥1∶𝑡−1⒭
. (3.5)

Similarly, we have for the opposite event ¬𝑚𝑖

ℙ⒧¬𝑚𝑖 |𝑧1∶𝑡,𝑥1∶𝑡⒭ =
ℙ⒧¬𝑚𝑖 |𝑧𝑡,𝑥𝑡⒭ℙ⒧𝑧𝑡,𝑥𝑡⒭ℙ⒧¬𝑚𝑖 |𝑧1∶𝑡−1,𝑥1∶𝑡−1⒭

ℙ⒧¬𝑚𝑖⒭ℙ⒧𝑧𝑡,𝑥𝑡 |𝑧1∶𝑡−1,𝑥1∶𝑡−1⒭
. (3.6)
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The log odds ratio of the probability yields to the cancellation of various hard to
calculate terms. The log odds ratio of an event 𝑒 is defined by

𝑙(𝑒) = ln⒧ ℙ(𝑒)
1−ℙ(𝑒)⒭ , (3.7)

and the probability ℙ(𝑒) can be easily retrieved from the log odds ratio with the for-
mula

ℙ(𝑒) = 1− 1
1+exp ⒧𝑙(𝑒)⒭ . (3.8)

This representation wraps probabilities from [0,1] to [0,+∞), yielding to an elegant
update equation for the Bayes filter while avoiding truncation problems for probabil-
ities near 0 and 1 on a computer [1].

Going back to the estimations of ℙ⒧𝑚𝑖 |𝑧1∶𝑡,𝑥1∶𝑡⒭ and its complement given by
Equation 3.5 and Equation 3.6, we use its log odds representation 𝑙𝑡 ⒧𝑚𝑖⒭ for the time
𝑡, leading after the various cancellations to

𝑙𝑡 ⒧𝑚𝑖⒭ = ln
ℙ⒧𝑚𝑖 |𝑧1∶𝑡,𝑥1∶𝑡⒭
ℙ⒧¬𝑚𝑖 |𝑧1∶𝑡,𝑥1∶𝑡⒭

= ln
ℙ⒧𝑚𝑖 |𝑧𝑡,𝑥𝑡⒭

1−ℙ⒧𝑚𝑖 |𝑧𝑡,𝑥𝑡⒭
Sensor information

− ln ℙ⒧𝑚𝑖⒭
1−ℙ⒧𝑚𝑖⒭

Prior 𝑙0⒧𝑚𝑖⒭

+ 𝑙𝑡−1 ⒧𝑚𝑖⒭ .
Previous estimation

(3.9)

Oftentimes, no prior on the map is available, leading to ℙ⒧𝑚𝑖⒭ = 0.5 hence 𝑙0 ⒧𝑚𝑖⒭ = 0.

Figure 3.11: Example of measure-
ment model from [1].

The sensor information is called the inverse
sensor model as it reasons from effects to causes:
it provides information about the world condi-
tioning on a measurement caused by this world.
It is possible to obtain complex and accurate
inverse model from the conventional measure-
ment model, as shown in details by Thrun et al.
[1]. Figure 3.11 shows an example of an inverse
measurement model, where the darkness rep-
resents the likelihood of occupancy. Although
quite simple, this type of inverse sensor model
yields good results and will be used in the follow-
ing of this thesis as it allows simple and fair com-
parison with the contributions presented later.

Using Equation 3.9, the robot can effectively
update its belief about the environment and cre-
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ate a Bayesian occupancy grid. Using this theory
as a base, many works enhanced the framework in different ways. At first, we will
look at the authors who optimized the storage and processing of the map for 2D and
3D environments. Then, we investigate its applications for autonomous vehicles that
started with [184] and ultimately lead to a robust framework for metric mapping in
dynamic, urban environments. Finally, we present parallel works that tried to answer
various limitations of the aforementioned theory such as the tessellation of the map,
or tried to apply machine learning algorithm to better take into account the context.

Improvement of the spatial representation

As stated in the beginning of this section, the occupancy field 𝑓 ∶ ℝ𝑛 → ℝ needs to
be stored. Following this problem, the most popular solution is to tessellate the envi-
ronment into cells of fixed size and assume that the field is constant inside each cell.
However, representing very large environments with high resolution can still impose
prohibitive memory requirements. Furthermore, representing a high frequency en-
vironment such as a garden takes as much memory than mapping an empty space,
which is counter-intuitive. As such, Kraetzschmar et al. [181] proposed to extend the
notion of Quadtrees to represent probabilistic fieldsmore efficiently. As shown in Fig-
ure 3.12, the environment is represented as a tree where each node (i.e., a portion of
the environment) is either a leaf or contains 4 nodes (i.e., sub-portions of the envi-
ronment) itself: if the node contains a homogeneous value, the framework assumes
that it is not necessary to subdivide this portion of the map. In the case where this
area has a high variance regarding the measurements, it is then necessary to split it
into smaller cells. Using this rule, Figure 3.12-Left shows the map explored in full de-
tails whereas Figure 3.12-Right shows a coarser view of it. The framework achieved
to store maps with one to two orders of magnitude smaller than the respective map
with fixed-sized cells.

Following this idea, Wurm et al. [182] proposed to represent the 3D environment
using an octree, which is the 3D counterpart of the quadtree where each node if ei-
ther a leaf or possesses eight children. Figure 3.13 shows an example of a 3D occu-
pancy grid representing a tree, for different resolution levels. Each node stores the
log odds ratio of occupancy and the occupancy of a node is defined in a conservative
manner as the maximum log odds occupancy of its children. As such, path-planning
algorithms can perform in coarser environmentswithout additional risks. Compared
to Kraetzschmar et al. [181] who considered several classes uniformly distributed in
the probability of occupancy [0,1], Wurm et al. [182] proposed to only consider two
classes: stable and unstable nodes. A node is said to be stable if it reaches the log
odds ratios thresholds 𝑙min or 𝑙max. If a node is stable, then its children can be pruned
and the node becomes a leaf. Otherwise, the node needs to be split into smaller re-
gions and the children are kept. The results demonstrate that the approach is able to
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Figure 3.12: Example of probabilistic quadtrees from [181]. The quadtree on the right
represents the environment with a coarser view than the one on the left.

model the environment in an accurate way and at the same time minimizes memory
requirements.

Figure 3.13: Example of octrees at different resolution representing the same environ-
ment (a tree), from [182].

TheBayesian Occupancy Filter

In this section, we look at the main trend of Figure 3.9 that developed the framework
called Bayesian Occupancy Filter (BOF). Coué et al. [184] suggested that most obsta-
cles tracking algorithms are based on objectmodels. Such techniqueswork quitewell
in simple environments such as freeways, where only a few different obstacles are to
be considered (e.g., cars and trucks). However, inmore complex environments, these
approaches usually fail as they feature numerous obstacles of very diverse shapes and
behaviors. As said by Saval-Calvo et al. [211], multi-target tracking implies necessary
knowledge of 1) whether a new sensor measurement corresponds to an existing track
or not; 2) whether existing tracks should be maintained or deleted; and 3) whether
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new tracks should be created. This problem is intractable in urban traffic scenar-
ios which involve numerous appearances and disappearances of numerous, rapidly
evolving obstacles. Answering this problem, they proposed a metric map that com-
bines a spatial occupancy gridwith a velocity grid, leading to a four-dimensionalmet-
ric space. This framework is based on Bayesian probabilities, hence the name. Never-
theless, this formulation does not reach real-time computations. Tay et al. [197] and
Tay et al. [198] enhanced the initial framework of Coué et al. [184], where the main
advantage with regard to the initial formulation is the use of velocity information to
reduce the computational cost, improve predictability and reduce the overall noise
in the estimation of the map.

Figure 3.14: Illustration of the Bayesian Occupancy Filter (BOF), from [185]. The sen-
sors provide measurements that are used to construct a four-dimensional grid: each
2D spatial cell has a 2D grid representing the sampled distribution of its probabilistic
velocity. Chen et al. [185] also proposed to identify the obstacles using the Bayesian
occupancy map.

Chen et al. [185] augmented the framework with a new formulation that signifi-
cantly reduced the computational complexity and therefore enabled the framework
to reach real-time capabilities. Furthermore, they show that using the BOF output to
detect and extract objects from themetric space leads to a great reduction of the com-
plexity of data association. The formulation developed by Coué et al. [184] and Chen
et al. [185] leads to numerous works that branched out in various ways, as it can be
seen on Figure 3.9. Llamazares et al. [196] extended the standard BOF that works in a
two-dimensional spatial environment (i.e., a ‘flat’ world) by adding a third dimension
that represents the height. To do so, they discretized the third dimension into three
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separate layers that cover the entire vertical space the robot spans in. Each layer is a
2D world that can be estimated using the standard BOF formulation.

Gindele et al. [186] proposed a variant of the BOF using prior map knowledge,
called BayesianOccupancy Filter Using priorMap knowledge (BOFUM). Their frame-
work predicts cell transitions more accurately by enriching the motion models of the
obstacles with prior knowledge derived from the cell’s context. They took advantage
of the fact that object motion is often heavily dependent on its location in a scene. In
the case of urban scenarios, it is more likely that a car will follow the course of a lane
instead of driving perpendicular to it or on the sidewalks. These behaviour patterns
can be anticipated to some degrees by looking at the geometric structure of the traffic
situation. The prior knowledge of the map can be obtained from navigation systems,
satellites images or simply from a road map such as OSM. Figure 3.15 shows an ex-
ample of scenario where BOFUM leads to better estimations. In the case where a car
is approaching a junction, a simple BOF would only estimate the future state of the
car using its velocity, whereas BOFUM use the map prior to better estimate its future
state, effectively splitting the occupancy into two branches at the junction.

(a) Map Information (b) Initialization (c) Prediction without
uncertainty

(d) Simple BOF (e) BOFUM without
map knowledge

(f) BOFUM with map
knowledge

Figure 3.15: Example of BOFUM framework where the information of occupancy is
showed with a red scale, from [186]. (a) A car approaches a junction where it can go
either left or right. (b) At this time, the occupancy grid clearly identifies the obstacle
(dark square). (c) Deterministic prediction of the vehicle state. (d) Prediction using a
simple BOF. (e) BOFUMprediction if nomap prior is available. (f) BOFUMwithmap
prior.
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More specifically, BOFUM integrates prior knowledge in the prediction model us-
ing a reachabilitymatrix that represents the likelihood of an object contained in a cell
to reach another. In their article, they assumed three types of terrains, being {Lane,
Sidewalk, Unknown}. Using these classes, they modeled that an obstacle which is not
on the terrain Lane is likely a pedestrian and therefore does not have a preferred direc-
tion, whereas an obstacle in the terrain Lane is likely a car that will not often change
lane and nor leave the road. BOFUM has been used by Brechtel et al. [187] where
they proposed to use a similar approach to the particle filter, leading to a speedup
of at-least forty times compared to the classical BOFUM. As such, the framework be-
comes real-time and therefore applicable in real-world scenarios. They also gave an
advanced process model with motion uncertainties, showing the importance of pro-
cessing uncertainties in the detected obstacles.

In parallel, Danescu et al. [190], [191]workedon anewapproachbased onparticle
filters to estimate the occupancies and velocities of the cells. This method will be
later referred as Sequential Monte Carlo Bayesian Occupancy Filter (SMC-BOF). It
is based on three main steps, that are 1) Prediction of the particles; 2) Process the
measurements; and 3) Resample the particles. Nuss et al. [192] built on the previous
framework and proposed to not only use a lidar sensor but also a Radio Detection
And Ranging (radar) sensor that is able to sense velocity information using Doppler
effect. Fusing the information coming from the two sensors, they showed that the
map converges quicker while reducing ghost movements (i.e., stationary obstacles
that are wrongly inferred as moving).

Using thework of Danescu et al. [190], Tanzmeister et al. [193] used theDempster-
Shafer theory to model the static and dynamic environment. Compared to the stan-
dard probability theory, the theory of Dempster-Shafer is able to model the unknown
in the environment and can be seen as a generalization of the Bayesian theory. Oh et
al. [210] modified the SMC-BOF to better handle conflicting information that can be
caused bymulti-sensors or dynamic environment, for instance. They use the concept
of linear opinion pool [212] to reach a consensus over the conflictual information and
yield a grid using the Dempster-Shafer theory.

Coming back to the main branch of Figure 3.9, Nègre et al. [188] based their work
on the papers from Brechtel et al. [187] and Danescu et al. [191] and introduced the
Hybrid Sampling Bayesian Occupancy Filter (HS-BOF). They presented a novel grid
representationwhere the velocities of the dynamic obstacles are represented as parti-
cles, contrastingwith thepriorworks [184], [185]where the velocitieswerediscretized
in a grid. Compared to the SMC-BOF[191], the method does not use particles for the
static obstacles and therefore leads to a more efficient framework. In [188], the en-
vironment is represented using a mix of static and dynamic occupancy, as shown in
Figure 3.16. The static environment is represented using a classical occupancy grid,
whereas the dynamic obstacles are modeled with moving particles in a particle filter
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manner. As stated in their article, theymanage to reduce the average number of parti-
cles per cell from a typical 900 to less than 2, compared to the prior works of Danescu
et al. [191].

Figure 3.16: Illustration of the representation of the environment in HS-BOF, from
[188]. Compared to the prior works, the velocity distribution is not discretized but
approximated using particles.

Figure 3.17: Example of dynamic
occupancy map resulting from
the CMCDOT framework, from
[189].

Thereafter, Rummelhard et al. [189] based
their work on the HS-BOF and created the
Conditional Monte Carlo Dense Occupancy
Tracker (CMCDOT), stating that the prior work
of Nègre et al. [188] still allocates a lot of par-
ticles to irrelevant areas. They introduced a
formalism to infer the true state of a cell, that
is either ‘occupied by a static object’, ‘occupied
by a dynamic object’, ‘empty’ or ‘unknown’.
Experimental results showed that the insertion
of an ‘unknown’ state in the model leads to a
better distribution of the dynamic samples on
the observed areas and then allows to bemore re-
active and accurate on the velocity distributions.
Furthermore, they proposed a simple clustering
algorithm on the occupancy grid that allows to
retrieve the different obstacles in the scene, as
higher-level framework of path-planning often
requires such information. Figure 3.17 depicts
an example of dynamic occupancy grid created
with the CMCDOT in an automotive scenario.
The different obstacles in the scene, namely a car,
a cyclist and two pedestrian, have their velocities
accurately estimated. More specifically, they introduced a Bayesian network whose
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purpose is to infer in the same time the state of the cell as well as the velocity
distribution in case of the cell contains a dynamic object. Figure 3.18 shows the
Bayesian network: 𝐶 and 𝐶−1 corresponds respectively to the index of the cell and
its antecedent, 𝑆 and 𝑆−1 to the state of the cell and the state of its antecedent, 𝑉 and
𝑉−1 the velocities of the current and antecedent cells, 𝑍 the current measurement
and 𝑂 the occupancy of the current cell. Using this network, the expression of the
problem breaks down to finding the probability ℙ⒧𝑆𝑉 |𝑍𝐶⒭, where the probability of
occupancy ℙ⒧𝑂 |𝑍𝐶⒭ can be trivially retrieved from this probability.

Figure 3.18: Bayesian Network used to estimate the dynamic occupancy grid in the
CMCDOT approach, from [189].

Inparallel, Nuss et al. [194] proposedanother theory to createdynamicoccupancy
grids basedonfinite sets. It allows tomodel the environment as a stochastic, dynamic
system with multiple obstacles, observed by a stochastic measurement system. They
refined their previous work [192] with a better theory and fusing measurements from
a lidar and a radar. In order for the framework to reach real-time capabilities, they in-
troduced an approximation of their filter using Dempster-Shafer theory. Also, Rexin
et al. [195] proposed Bayesian and Dempster-Shafer approaches of the work of Nuss
et al. [194] to model occluded areas. They concluded that in overall, the Bayesian
approach offers a better modeling of the free space as well as of the occluded or un-
knownareas, due to thepresence of the particles, which are open to further potentials
for the dynamic grid map. Nevertheless, the Bayesian solution requires significantly
more particles than the implementation with Dempster-Shafer theory.

TheGaussian Process Framework

Up to this section, we only looked at methods that chose to discretize the occupancy
field into cells. Nevertheless, it is not the only option available, and some authors
ventured beyond such representations. The first successful attempt was provided by
O’callaghan et al. [199] that represented the environment as a Gaussian Process (GP).
In this section, we briefly cover the main theory of the GP, before exploring more in
depth the evolution of the framework over the years.

AGaussian Process (GP) is defined by two components: amean function𝝁(𝐱) and
a covariance function𝚺(𝐱,𝐱′). Themain idea is that for eachposition 𝐱, theGPdefines
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a Gaussian distribution at this position. Therefore, a GP can be seen as a distribution
over the functionsand inferencedirectly takesplace in the spaceof functions. Inother
words, we have

𝑓(𝐱) ∼ 𝒢𝒫 ⒧𝝁(𝐱),𝚺(𝐱,𝐱′)⒭ , (3.10)

to indicate that a continuous field is a Gaussian Process (GP). If we want to consider
a variable at a specific position 𝐱∗, we can write

𝑓(𝐱∗) ∼𝒩 ⒧𝝁(𝐱),𝚺(𝐱,𝐱′)⒭ , (3.11)

The GP is used to fit a likelihood function to the training data 𝐱𝑖,𝑦𝑖𝑖=1∶𝑛 where 𝐱𝑖
are the positions, 𝑦𝑖 the values (in our case, the occupancy value) and 𝑛 the number
of training points. Without proof, it is possible to learn and query the GP that has
been fitted on the training data, hence deducing a posterior mean 𝝁̂(𝐱) and covari-
ance 𝚺(𝐱,𝐱′). The reader can refer to Barfoot [213] for further theory about the GP.
Figure 3.19 shows a simple example of GP in a 1D world: A robot measures the proba-
bility of occupancy of an environment composed of a free space then awall. For each
noise level on its measurements, the GP is able to infer a distribution at each position
with an associated confidence interval. The higher the noise, the less confident the
GP becomes and the worse the estimation is.
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Figure 3.19: Example of Gaussian process in a 1D world for different noise level. The
robot observes a wall, therefore making observation of the function 𝑓(𝑥) that corre-
sponds to the probability of occupancy. The Gaussian Process is able to infer the
mean and variance of the occupancy 𝑓(𝑥∗) for any point of interest 𝑥∗ (i.e., a posi-
tion).

Using this theory, O’callaghan et al. [199] proposed tomodel the occupancy of the
environment in a continuous manner. Compared to the classical mapping method,
this framework possesses several qualities:

1. It does not require the assumption of independencies between data points;
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2. It enables accurate maps to be generated with relatively sparse sensor informa-
tion;

3. It eliminates the restriction of constructing a map on a single scale; and
4. It produces an associated variance plot which could be used to highlight unex-

plored regions and optimize a robot’s search plan.

However, the framework also suffers from the inherent issues of theGP, that ismainly
the extensive computational times due to a matrix inversion, leading to a complexity
of 𝒪(𝑛3) where 𝑛 is the number of data points [199]. Figure 3.20 shows an example
of what a GP can accomplish. Compared to the classical occupancy grid that tessel-
lates the environment into regular cells, theGP leads tomore fuzzy borders but better
capture the dependency between the cells.

Figure 3.20: Example of large environment, from [201]. Left: mapped with a classical
occupancy grid where each cell is 5×5m2. Right: mapped using GP.

Figure 3.21: Map resulting from
the initial formulation (Top)of the
Gaussian Process maps [199], and
the formulation from [200] (Bot-
tom).

Following the initial work [199], O’Callaghan
et al. [200] extended the framework to incorpo-
rate the effects of uncertainty in sensor read-
ings and platform localisation. O’Callaghan et al.
[201] presented amore in-depth theory that sum-
marizes their work up to this point. Figure 3.21
shows an example of the benefits of taking into
account the measurement uncertainties. As eas-
ily seen, the bottom map is less noisy and bet-
ter represents the structured environment. Fi-
nally, O’Callaghan et al. [202] proposed to ex-
tend their framework to handle dynamic obsta-
cles. Using techniques inspired from optical flow
techniques, they developed a continuous occu-
pancy map capable of learning static and dy-
namic regions and integrating observations from
multiple points in time into a single continuous
probabilistic spatio-temporal model of the envi-
ronment. However, the problem of computation
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time is still present and the authors suggested the use the parallelisable properties of
the framework to accelerate it. Yuan et al. [203] analyzed the time cost of each step of
the algorithm for the static case [201]. They found that even if the training step, that
has the higher complexity 𝒪(𝑛3), is considered to be the bottleneck by the commu-
nity, the prediction step which is 𝒪(𝑛2) actually takes more time and is therefore the
one to be optimized. They proposed to optimize the prediction step that speeds up
the construction of GP maps with a factor of at least ten times.

Finally, Agha-mohammadi et al. [183] extended the traditional occupancy grid
from Elfes [8] with a new theory that allows to partially maintain the probabilistic
dependence among cells and provides confidence intervals over the occupancy in-
formation. Although retaining a tessellation of the environment, their results show
that they outperform in simulation the GP framework.

Hilbert Maps

Building on the works of O’Callaghan et al. [201], Ramos et al. [204] proposed a
novel method to answer the drawbacks of the GP approach. They proposed a sim-
pler and faster approach to continuous occupancy mapping. They represented the
occupancy property of the world with a linear discriminative model operating on a
high-dimensional feature vector that projects observations into a reproducing ker-
nel Hilbert space. In contrast to the Gaussian Process counterpart, the Hilbert Maps
possesses an inference in𝒪(𝑛) and a learning cost of𝒪(𝑛). In Hilbert maps, the prob-
ability of occupancy for a position 𝐱 is given by

ℙ⒧occ |𝐱,𝐰⒭ = 1− 1
1+exp ⒧𝐰𝑇𝐱⒭, (3.12)

where 𝐰 is the parameter to learn. However, instead of learning directly in a very
low-dimension space where 𝐱 is defined, therefore a space where learning a com-
plex environment will not be possible, they propose to project 𝐱 into a much higher-
dimensional space. As such, they apply the discriminative model not directly to the
inputs 𝐱 but to a large number of features computed from 𝐱, denoted asΦ(𝐱). Hence,
the probability of occupancy is

ℙ⒧occ |𝐱,𝐰⒭ = 1− 1
1+exp ⒧𝐰𝑇Φ(𝐱)⒭ . (3.13)

Thekey is then tounderstand that suchmappingdefines aHilbert spaceof innerprod-
uct < Φ(𝐱),Φ(𝐱′) >. The aim is to choose Φ(⋅) such that the inner product approxi-
mates well known kernels 𝑘(𝐱,𝐱′) used in machine learning. In [204], they proposed
several choices for the function Φ(⋅), each of them approximating a different kernel.
One can find some similarities with Support Vector Machine (SVM) techniques: the
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main difference is that SVMs use a different loss function in the training that leads
them to be overconfident in unknown areas, as seen in Figure 3.22.

Figure 3.22: Comparison between maps produced with logistic regression and SVMs,
from [204]. Left: Data points (blue is free and orange is occupied) in a structured
environment. Middle: Map produced with SVMs. Right: Map produced with logistic
regression from [204]. The SVM map is over confident about the occupancy status in
areas with no data points, assumed unoccupied.

Senanayake et al. [205], [206] extended the Hilbert maps to take into account the
dynamic environment. They also improved the method, removing parameters that
were hard to tune. Finally, Guizilini et al. [207] proposed a method to capture the
uncertainty of moving objects and incorporate it into the Hilbert maps. This allows
the framework not only to learn the occupancy incrementally but also to predict the
evolution of the dynamic environment, taking into account the uncertainties.

Learning Frameworks

In this last section, we look at a few examples of learning algorithms that work along
classical dynamic occupancy grids.

Figure 3.23: Illustration of the learning ap-
proach of Schreiber et al. [208], from [208].

Schreiber et al. [208] proposed to es-
timate a dynamic occupancy grid with a
neural network that feeds on static occu-
pancy grids. As shown in Figure 3.23, the
network predicts occupancy and veloc-
ity, i.e., a dynamic occupancy grid map.
The network is a combination of feedfor-
ward (red) and recurrent (blue) network
layers. The Encoder-LSTM, outlined in
3.23.c), uses information of a sequence
ofmeasurement gridmaps toupdate the

internal states and estimates occupancy and velocity. The recurrent skip architecture
3.23.d) ensures dense predictions at the output. As learning approaches better cap-
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ture the context in the scene, their approach provides more consistent velocity esti-
mates for dynamic objects and less erroneous velocity estimates in static area.

In the same context of intelligent vehicles, Hoermann et al. [209] proposed a learn-
ing approach to better predict the long-term movements of dynamic obstacles. As
previously said, learning approaches have the inherent characteristic of using context
information, enabling the implicit modeling of road user interaction. They showed
that their network is able to effectively predict movements of complex scenarios up
to 3 s. The network is able to consider different maneuver classes (e.g., turn right or
go straight) and interactions between road users reduce the prediction uncertainty.

Comparison of the frameworks

To conclude this section, we provide in Table 3.1 a comparison of the overall benefits
and disadvantages of each type of method from Figure 3.9. Computationally speak-
ing, the BOF framework is the fastest, with its 3D counterpart that is naturally slower
due to the gain of a dimension. Nevertheless, Octomap [182] remains fast due to the
usage of octrees. GP and Hilbert Maps (HM) compensate for their slower computa-
tional time by offering a continuous map. As the HM is a direct enhancement of the
GP, the former is preferred when one needs continuous mapping. Their main draw-
back is the need of user-defined parameters that are mandatory for the learning pro-
cess. Finally, learning frameworks propose an interesting approach that better take
into account the context of the scene. However, as it is the case for every learning
framework, an unbiased, massive dataset is needed, whereas almost no certification
of performance can be provided for now.

Method Comp.
Time

Continuous Dimension Tuning pa-
rameters

BayesianOccupancy Fil-
ter (BOF) [184]

++ No 2D No

Octomap [182] + No 3D No
Gaussian Process (GP)
[199]

−− Yes 2D/3D Yes

HilbertMaps (HM) [204] − Yes 2D/3D Yes
Learning Frameworks
[208], [209]

− No 2D Yes

Table 3.1: Comparisonof themetricmappingmethods in termof computational time,
whether theproducedmap is continuousor tessellated, thedimensionof the environ-
ment, and whether the framework needs user-defined tuning parameters to perform
well.
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3.4 Conclusion

In this chapter, we investigated the different methods of mapping. On the one
hand, the semantic approach yields sparse, compressed maps that are very com-
pelling for risk assessment as every obstacle is labelled as a distinct entity. However,
such a map is not easily obtainable in complex scenarios. On the other hand, metric
maps propose a more low-level approach to mapping, where the information of oc-
cupancy is stored for each position in the environment. As this field is not storable,
the more popular solution is to tessellate the environment into cells of regular size,
then estimate the occupancy for each of these cells. We presented an extensive list
of research works that aimed at estimating the Bayesian occupancy grid and building
on the work of Elfes [8]. While most of the works aimed to build the field for dynamic
environments, some authors proposed in parallel other architectures that avoid the
regular tessellation of the environment.

Nevertheless, the mapping of the environment is only the first link in the chain of
a robotics system. In the next chapter, we look at the path-planning techniques that
directly work with the aforementioned mapping algorithms.
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4.1 Introduction

In this chapter, we investigate themainmethodsof pathplanning, allowing robots
tomove in their environment. More specifically, we split the discussion into twoparts
that are global and local path planning.

Global path planning is the task of seeking a path from the robot to the objective
that can be rather far from the robot. Such paths can be quite coarse and do not
necessary take into account the robot’s dynamics or mechanical constraints. For in-
stance, in the context of intelligent vehicle, a global path planning algorithm can take
an OpenStreetMap (OSM) map as input and return a path that corresponds to which
roads to take to reach the target in another town.

91
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On the contrary, local path planning algorithms compute a local trajectory that
follows the path produced by the global planner. This trajectory has to take into ac-
count the dynamic and mechanical aspects of the robot, as the computed trajectory
has to be acceptable by the robot (i.e., the robot is physically able to follow it). Follow-
ing our example of intelligent vehicle, even if a global planner provides which road to
take, a local planner is needed to compute a local trajectory at each instant. That way,
the local planner is responsible for monitoring the risk of its actions.

Figure 4.1 provides a graphical example of global and local planner. Once the
global planner find an acceptable path to the objective, the local planner takes over
and tries to follow the path as good as possible while controlling the risk level of its
actions.

Figure 4.1: Example of global planner (Left) and local planner (Right) from respec-
tively [214] and [215]. The task of the global planner is to provide a path to follow to
the local planner, that will try to follow it as good as possible while monitoring poten-
tial dangers such as obstacles and dynamic constraints.
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4.2 Global Path Planning

Global path planning algorithms have the task to find a path in complex environ-
ments. Such environments often possess local minima, meaning that convex opti-
mization algorithm will almost always fail in this kind of setup. Per se, more compli-
cated methods have arisen to provide more effective solutions. In this section, we
investigate three main classes of global planners that are the graph search, random
sampling and intelligent bionic algorithms.

4.2.1 Graph search algorithms

Graph search algorithms search the best path between the current pose of the robot
and the targetbyconverting theenvironment intoagraph. Mostof the time, thegraph
is simply an occupancy grid as shown in Figure 3.1. Each node corresponds to a cell
and is connected to its four neighbors. Other environment representations are used,
such as the underlying graph of OSM maps, or in a lesser size Voronoï diagrams [216]
and probabilistic roadmaps [9]. The following figures of subsection 4.2.1 were made
using the PythonRobotics library from Sakai et al. [217]. Although these algorithms
are essentially used with binary maps, it is possible to use risk maps as defined in
Chapter 2.

Dijkstra algorithm

Figure 4.2: Example of Dijk-
stra algorithm. The explored
nodes are in gray, the start
andgoal in greenand red, and
the selected path is in red.

Dijkstra [218] introduced the well-known graph
search algorithm named Dijkstra algorithm. The al-
gorithm finds the shortest path between a start node
and a goal node of a graph. Figure 4.2 shows an exam-
ple of path planning using this algorithm. In order to
reach the goal, the planner expands the graph search
in all directions. The cost of each edge between the
node is simply the distance between them. Arnay et
al. [219] used this algorithm to compute a path for
a self-driving car. Bacha et al. [220] employed Dijk-
stra algorithm to navigate a car in and out a parking
spot. In the same context, Kala et al. [221] proposed
a multi-layer planning framework that uses Dijkstra
algorithm to plan which routes and path to take. Al-
though widely used, one can see that the algorithm expands many nodes rather far
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from the goal. Using some kind of artificial intuition, a robot could choose to priori-
tize the nodes that are near the goal, leading to the development of the A∗ algorithm.

A∗ algorithm

Figure 4.3: Example of A∗ al-
gorithm. The explored nodes
are in gray, the start and goal
in green and red, and the se-
lected path is in red.

The A∗ algorithm proposed by Hart et al. [222] is an
extension of the Dijkstra algorithm, which speeds up
the graph exploration using a heuristic function that
helps search towards the goal. Theheuristic has to an-
swer certain criteria for the algorithm to provide the
optimal path. Namely, the heuristic has to be admis-
sible, meaning that for a given node, it will always un-
derestimate the cost of reaching the goal. Although
many techniques exist to produce heuristics such as
problemrelaxationormachine learning, the very sim-
ple heuristic of the distance as the crow flies tends to
workwell inpractice for pathplanning algorithms. In-
deed, for a given node, the distance for reaching the
goal will always have a lower bound that is this dis-
tance, therefore the heuristic is admissible. Figure 4.3 shows an example of A∗ algo-
rithm in the same environment: compared to the Dijkstra algorithm, nodes towards
the objectives are prioritized and therefore the shortest path is found faster. Ziegler
et al. [223] proposed a path planning algorithm based on A∗ using two heuristic func-
tions that are 1) the rotation-translation-rotation (RTR) metric, used to model the
kinematic constraints of the robot; and 2) a Voronoï based cost used to model the
distance left to travel while taking into account the obstacles. Dolgov et al. [224] pro-
posed the hybrid-state A∗ to compute a path for the robotic car Junior (Stanford Uni-
versity’s car that finished in second place in the 2007 DARPA Urban Challenge).

D∗ algorithm

Figure 4.4: Example of D∗ al-
gorithm. The start and goal
in green and red, and the se-
lected path is in red.

Stentz [225] proposed a variation of the A∗ algorithm
for unknown, partially known and changing environ-
ments, called D∗. The name of the algorithm, D∗,
was chosen because it resembles A∗, except that it
is dynamic in the sense that arc cost parameters can
change during the problem- solving process. D∗ is
most efficient when these changes are detected near
the current starting point in the search space, which
is the case with a robot equipped with an on-board
sensor. Figure 4.4 shows an example of D∗ algorithm.
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Urmson et al. [149] implemented the anytime D∗ al-
gorithm to compute a path for the self-driving car Boss (Carnegie Mellon University’s
car that claimed first place in the 2007 DARPA Urban Challenge).

Fast Marching algorithm

As one can easily infer, the main drawback of the aforementioned methods is the
necessity to represent the environment as a graph. Indeed, it leads to approxima-
tions that oftentimes overestimate the cost of a path, as a path outside the graph may
be both more efficient and acceptable by the robot. In that sense, the Fast March-
ing method does not suffer from such issue. Coming from quantum mechanics, the
eikonal equation canbe used to find the shortest path in a field. Namely, the equation
to solve is

|∇𝑢(𝑥)| = 1
𝑓(𝑥) , 𝑥 ∈ Ω (4.1)

subject to𝑢|𝜕Ω = 0, whereΩ is an open set inℝ𝑛, 𝑓 ∶ ℝ𝑛→ℝ≥0 is a positive real-valued
function, ∇ denotes the standard gradient and | ⋅ | the Euclidiean norm. In the con-
text of path planning, 𝑓(𝑥) is the acceptable speed of the robot1 at 𝑥 and the solution
𝑢(𝑥) is the shortest time possible to reach 𝜕Ω from 𝑥. As this differential equation is
non-linear, numerical approximations have been developed and the Fast Marching
method is the most popular. It discretizes the environment into a grid and solves the
equation for each cell.

Compared to the Dijkstra algorithm, the Fast Marching does not assume a graph
even though the solution is discretized into a grid. Thus, the calculated distance from
the goal is the geodesic distance insteadof a graphdistance. Valero-Gomez et al. [226]
provides an introduction to path planning using the Fast Marching algorithm.

4.2.2 Random sampling algorithms

Samplingbasedplanningdifferentiates fromgraphbasedapproaches as theplanning
occurs in the configurable space, that is the space 𝐶 ⊆ ℝ𝑛 where the robot can evolve
freely. As such, a prior processing of the map to distinguish between the configurable
space 𝐶 and its complement that corresponds to the set of unsafe pose. Sampling
based planning attempts to capture the connectivity of the C-space by sampling it.
This randomized approach has its advantages in terms of providing fast solutions for
difficult problems. The downside is that the solutions are widely regarded as subopti-
mal.

1This can also represent the inverse of a costmap, whereChapter 2 providesmany examples of such
fields.
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Barraquand et al. [227] introduced works that revealed to be the cornerstone
of many path planning algorithms that employ randomization. Among the ran-
dom samping algorithms, the most popular and used are the Probabilistic Roadmap
Method (PRM)andRapidly-exploringRandomTrees (RRT)planners thatwewillmore
thoroughly explain in the next sections. For amore exhaustive survey of random sam-
pling algorithms, the reader is invited to read the survey of Elbanhawi et al. [228].

Probabilistic RoadmapMethod (PRM)

The method of PRM is divided into two main steps, that are the learning and query
stages. At first, the space is sampled for a given amount of time. The samples that rep-
resent acceptable configurations are kept whereas the one in obstacles are discarded.
Then, the query phase consists of searching a path between the start and goal con-
figurations as a graph search in the roadmap. Roadmaps are sometimes referred to
as forests, as an analogy to trees in RRT. As a result of maintaining the roadmap and
specifying start and goal configurations in a subsequent stage, PRM is able to solve
different instances of theproblem in the sameenvironment. It is referred to as amulti-
query planner. The PRM was initially conceived for articulated robots [9], [229], [230].
Svestka et al. [231] extended the work for non-holonomic car-like robots. PRM are
said to be probabilistically complete, meaning that if the planner was given enough
time and a path exists, the framework will be able to find it.

Rapidly-exploring Random Trees (RRT)

RRT planner represents another category of sampling based planners. The aim is to
grow a tree starting from the start configuration, incrementally adding new nodes
until the goal is reached. At each iteration, a new node is randomly drawn from the
space. If it lies in the free space, the algorithm tries to connect it to the nearest node in
the tree. Just like PRM, RRT is shown to be probabilistically complete. Furthermore,
RRT is faster for a single query than PRM, as there is no need of a learning phase.
Nowadays, RRT algorithm has been extended in many ways such as RRT∗ [232]. In
contrast to the standart RRT, RRT∗ is proven to be asymptotic optimal, meaning that
it will always converge toward the optimal solution.

Fulgenzi et al. [110] proposed to extend the RRT to take into account probabilistic
uncertainty about the environment. They defined new rules of node expansions that
take into account the probability of being safe and chose the path that is the best and
safe enough, i.e., for which the probability of collision is below the defined threshold.
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Other Planner

For completeness, we briefly expose the other, less popular methods based on ram-
dom sampling. Expansive Space Trees (EST) were developed based on the reflection
that not all nodes evenly contribute to the expansion of the search tree. Unlike RRT
where the sampling is uniform, EST employs a function that sets the probability of
node selection based on neighboring nodes. Similar to RRT and EST, Ariadne’s clew
is a planner that builds a search tree to explore the search space. The difference is
that it attempts to connect a node that is the furthest from the existing ones. As such,
the expansion rate of the algorithm is improved compared to a standard RRT. Finally,
Randomized Potential Planner (RPP) planner is used to escape localminima frompo-
tential field planner, using random walks. Table 4.1 provides a summary of the main
sample based planner.

Planner Structure Remark
Randomized Potential
Planner (RPP) [227]

Combined
with Potential
Field [233]

Randomly escapes localmin-
ima

Probabilistic Roadmap
Method (PRM) [9],
[229]–[231]

Roadmap Sample 𝐶 space, build
roadmap and processes
multi-query

Rapidly-exploring Random
Trees (RRT) [214], [234]

Tree Randomly samples 𝐶 space
and incrementally grows tree

Adiadne’s Clew [235] Tree Connectsnode that is the fur-
thest away from the other
nodes

Expansive Space
Trees (EST) [236]

Tree Connects node that has
more probability of expand-
ing the search

Table 4.1: Main sample based planning algorithms, from [228].

4.2.3 Interpolating Curve Planners

In another fashion, interpolation curve planners aim at defining trajectories over a
known set of points (e.g., waypoints of a route fromaGPS).There existsmany types of
curves, in which we can cite the clothoid, the polynomial, the Bézier, and the splines
[237].

Clothoid curves are defined in terms of Fresnel integrals [238]. This allows smooth
transitions between straight segments to curved ones and vice-versa.
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Polynomial curves [239]–[241] are commonly implemented tomeet the constraints
needed in the points they interpolate, i.e., they are useful in terms of fitting posi-
tion, angle and curvature constraints, among others. The desired values or con-
straints in the beginning and ending segment will determine the coefficients of
the curve.

Bézier curves are parametric curves that rely on control points. Their advantage is
their low computational cost. Walton et al. [242] demonstrated the efficiency of
Bézier curves for path planning or highway design.

Spline curves are piece-wise polynomials parametric curves divided in sub-
intervals that can be defined as polynomial curves. This kind of curves has low
computational cost, because its behavior is defined by the control points. Chu
et al. [243] and Hu et al. [244] used cubic spline curves for path planning. Both
of them construct a center line from a route extracted from a road network. In
[244], the best path is selected considering the static safety, comfortability, and
dynamic safety.

4.2.4 Intelligent bionic algorithms

Another large branch of the global path planning methods is the intelligent bionic-
based method, which is a type of intelligent algorithms that simulates the evolution-
ary behaviors of insects. It generally includes Genetic algorithm [245], Ant Colony
algorithm [246], [247], Artificial Bee Colony algorithm [248], and Particle Swarm Opti-
mization algorithm [249]. As an example, Figure 4.5 depicts the AntColony algorithm:
ants, represented as squares and circles, randomly walk toward the food while leav-
ing a pheromone that dissipates over timebehind them. Ants taking the shortest path
therefore reach faster the goal and the pheromones of the path are stronger as they
had less time to dissipate. As such, ants are more prone to take the shortest path
to bring back the food to the nest as they are attracted by the pheromones. To fur-
ther improve the calculation efficiency and avoid local optima problems, a lot of ad-
vanced algorithms have been proposed. Wang et al. [250] proposed the Optimization
of the Genetic algorithm-Particle Swarm Optimization algorithm to solve the short-
est collision-free path planning problemof a welding robot. Liu et al. [251] combined
the artificial potential field and geometric local optimizationmethodwithAntColony
algorithm to search for the globally optimal path. Mac et al. [252] put forward a con-
strained multi-objective particle swarm optimization algorithm with an acceleration
methodology to generate an optimal global trajectory.
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Figure 4.5: Graphical example of the ant colony algorithm, from [247]. Leaving
pheromones behind them, ants taking the shortest path therefore leave a stronger
trail to follow on the way back.

4.3 Local Path Planning

Once a global, coarse trajectory has been found, the robot needs to find a tra-
jectory that locally follows the path. Depending on the global path planning algo-
rithm used, the path can be represented as a set of points (e.g., nodes of a graph) or
as a parametric curve (e.g., splines). The main goal of the local planner, sometimes
called as motion planner, is to bring the robot from its current state to the current
goal smoothly and safely [253]. As such, local planners need to take into account the
kinematic constraints of the robot, hence provide acceptable trajectories. In this sec-
tion, we present the main trends in local path planning, that are the methods based
on graphs, sampling, curves and numerical optimization.

4.3.1 Graph search algorithms

Graph based algorithms for local planning are a direct extension of the global algo-
rithms of subsection 4.2.1. In these extensions, the three most popular are the state
lattice, elastic band and A∗ algorithms.
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State Lattice

The state lattices were introduced by Pivtoraiko et al. [10].

Figure 4.6: Example of state lat-
tice with Reeds-Shepp trajecto-
ries, from [10]. Reverse motions
were omitted for clarity.

A state lattice is a search graph where, op-
posing the global graph planner, kinematic con-
straints of the vehicle are taken into account.
Nodes denote states of the robot whereas edge
links to states that can be reached while satisfy-
ing the kinematic constraints of the robot. A fea-
sible trajectory to the goal is therefore reduced to
the shortest path problem in a graph. State lat-
tices are able to handle dimensions such as posi-
tion, velocity and acceleration. Figure 4.6 depicts
an example of state lattice forReeds-Shepppaths,
meaning that the robot can either go straight,
turn left at the maximum steering angle or turn
right at the maximum steering angle, either for-
ward or in reverse. The main drawback of lattice
planner is the computational cost as the planner

evaluates every possible solution in the graph [237].

McNaughton et al. [254] adapted the framework, initially developed for planetary
rovers, for intelligent vehicles in highway situations. They defined a search space rep-
resentation that allows the search algorithm to systematically and efficiently explore
both spatial and temporal dimensions in real time. They assign to each node a state
vector that contains a pose, acceleration profile, and ranges of times and velocities.
The acceleration profile increases trajectory diversity at a less cost than would the
finer discretization of time and velocity intervals. The ranges of times and velocities
reduce computational cost by allowing the assignment of times and velocities to the
graph search phase, instead of graph construction phase. Xu et al. [255] proposed to
optimize the resulting trajectory from [254], reducing the planning time and improv-
ing the quality of the trajectory. Li et al. [256] built a state lattice by generating can-
didate paths along a route using a cubic polynomial curve. A velocity profile is also
computed to be assigned to poses of the generated paths. The resulting trajectories
are evaluated by a cost function and the optimal one is selected.

Elastic band

Elastic bands are proposed as the basis for a framework to close the gap between
global path planning and real-time sensor-based robot control. Basically, an elastic
band is a deformable collision-free path, where its initial shape is the free path gen-
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erated by a planner. Subjected to artificial forces, the elastic band deforms in real
time to a short and smooth pathwhilemaintaining clearance from the obstacles. The
elastic continues to deform as changes in the environment are detected by sensors,
enabling the robot to accommodate uncertainties and react to unexpected and mov-
ing obstacles. However, the elastic-band approach has the drawbacks of having a
non-deterministic runtime and requiring a collision-free initial path.

Gu et al. [257] proposed a decoupled space-time trajectory planningmethod. The
trajectory planning is divided into three phases. In the first phase, a collision-free
feasible path is extracted from an elastic band, considering road and obstacles con-
straints. In the second phase, a velocity profile is suggested under several constraints,
that are the speed limit, the obstacle proximity, the lateral acceleration and the longi-
tudinal acceleration. Finally, given the path and the velocity profile, trajectories are
computed using parametric path spirals. Trajectories are evaluated against all static
and moving obstacles by simulating their future movements.

A∗ algorithm

Fassbender et al. [258] proposed to extend the classical A∗ algorithm for trajectory
planning. Theydesigned twonovel node expansion techniques that allownodes to be
connected with feasible trajectories. Figure 4.7 shows an example of node expansion
that takes into account the robot’s kinematic constraints. The first one looks directly
at reaching the goal from the current node, in order to help the algorithm when the
standard expansion does not make good progress (e.g., in high cost regions). The sec-
ond one uses a pure-pursuit controller to expand nodes along the global reference
path. Following the same idea, Joachim et al. [259] used risk maps to plan the safest
trajectory. The framework is based on the A∗ algorithm in combination with a kine-
matic model to follow non-holonomic constraints.

Figure 4.7: Example of node expansion from [258]. The expansion takes into account
the vehicle’s kinematic constraints. Expanded nodes are depicted in red.
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4.3.2 Sampling algorithms

In the context of sampling based algorithms for local planning, the most used frame-
work is Rapidly-exploring RandomTrees (RRT). RRTmethods for local planning [234]
incrementally build a search tree from the robot’s pose to thenext (local) goal. Thekey
difference is that local RRT applies an acceptable command from the nearest node to
reach as close as possible the random node. As such, each directed edge represents a
command applied to the robot to reach the pointed node from the source node. Fig-
ure 4.8 shows an example of RRTalgorithm in the context of intelligent vehicles: a ran-
dom state𝑋rand is drawn and the nearest node from the tree𝑋near is found. From this
node, the algorithm creates an acceptable command that leads from 𝑋near to 𝑋new,
the new state that is as close as possible to𝑋rand.

Figure 4.8: Example of local RRT, from [253]. A random state 𝑋rand is drawn and the
nearest node from the tree 𝑋near is found. From this node, the algorithm creates an
acceptable command that leads to 𝑋new, the new state that is as close as possible to
𝑋rand.

As easily noticeable onFigure 4.8, themain issuewith local RRTplanner is that the
result is not curvature continuous and jerky [237]. Radaelli et al. [260] proposed an
extension of the RRT for a self driving car. Among the modifications of the base algo-
rithm, they biased the tree to expand toward the goal. Also, they proposed to choose
the nearest node from the random state not only using a distance metric but also
considering other criteria associated with environmental and traffic-law constraints,
namely distance from obstacles, proximity to the lane center, maintenance of veloc-
ity limits, and execution of authorized maneuvers. As mentioned by Du et al. [261],
RRT is often unreliable in a number of practical applications such as autonomous ve-
hicles used for on-road driving because of the unnatural trajectory, useless sampling,
and slow exploration. Following this remark, they proposed a RRT algorithm that in-
troduces an effective guided sampling strategy based on the drivers’ visual search be-
havior on road and a continuous-curvature smooth method based on B-spline. In
the context of occupancy maps, Yang et al. [262] used RRT taking into account the
differential constraints of the vehicle. Using this algorithm, they produced safe paths
in continuous occupancy maps.



103

4.3.3 Interpolating curve algorithms

Figure 4.9: Example of clothoid
tentacles for different curvatures,
from [215].

Interpolating curve algorithms use a set of points
and try to compute a continuous, acceptable tra-
jectory for the robot. Also, they can take into
account the comfort or dynamic constraints of
the vehicle. Among the techniques, the clothoid
curves, also called tentacles, are the most used.
Figure 4.9 depicts some examples of such curves.
Alia et al. [263] used clothoid tentacles for trajec-
tory planning. Tentacles are computed for differ-
ent steering angles, starting from the car’s center
of gravity and taking the form of clothoids. Ten-
tacles are classified as navigable or not navigable
dependingon thedynamicof the vehicle and run-
ning a collision-check on anoccupancy gridmap. Among the navigable tentacles, the
best one is chosen based on several criteria, that are the clearance from the obstacles,
the change of curvature and the distance from the global trajectory. Following the
same idea, Mouhagir et al. [215], [264] selected the best tentacle using a Markov deci-
sion process, where the reward was defined as a mixture of not colliding an obstacle
and staying close of the reference trajectory. Also, they used an additional reward to
skew the decision toward a left turn as overtaking on the right side is not permitted.

Himmelsbach et al. [265] proposed to fuse the information froma lidar and a cam-
era to better choose the best tentacle. Indeed, inferring the traversability of a tentacle
with only a lidar that produces an occupancy grid is not enough in unstructured en-
vironments such as a forest. Using visual features, the drivability of each tentacle is
evaluated and the best one is chosen, leading to safer paths in off-road navigation.

4.3.4 Numerical optimization algorithms

In this last section, we present the local planner based on numerical optimization.
We split the content into two parts that are the function optimization and model pre-
dictive methods.

Function optimization

Function optimization methods seek to minimize a cost function over the trajectory
of the robot, considering various factors such as the collision probability or the accel-
eration for instance. As thesemethods are based on cost optimization, they can easily
take into account the dynamic constraints of the robot. However, their drawback is
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their inherent computational cost that comes from the optimization process. Ziegler
et al. [266] proposed a variational approach, that is finding the trajectory (i.e., func-
tion) that minimizes a cost function along the path. The cost function takes into ac-
count the distance from the driving corridor (e.g., a driving lane) andpenalizes strong
acceleration, jerk (i.e., acceleration changes) and high rotational velocities. Heiden
et al. [267] used parametric trajectories defined as polynomials to navigate in occu-
pancy grids. They define a reachability metric from the occupancy grid, then use a
cost function that is a mixture of the mean and variance of the occupancy of the map.
Using this cost function, they optimized the best trajectory to reach the goal.

We can also cite methods based on potential fields: obstacles are defined as re-
pulsive forces while the goal ‘attracts’ the robot toward it. Vaščák [268] provides an
example of path planning based of potential fields.

Model predictive methods

MPCmethods try to estimate the future states of the robot and optimize along a finite
time horizon. Howard et al. [269] proposed a method for wheeled robots that gener-
ates trajectories that takes into account numerous factors such as terrain roughness,
vehicle dynamics and wheel-terrain interaction. Their framework predicts the future
states of the robot and finds the best path between the initial state and the goal. They
demonstrated the effectiveness of their approach for planetary rovers. Ferguson et al.
[270] used a model predictive method for trajectory planning of self-driving vehicles.
Thebest trajectory is selectedaccording to their proximity toobstacles, distance to the
path, smoothness, end point error, and velocity error. Li et al. [271] proposed a state
sampling-based trajectory planning scheme that samples goal states along a route. A
model predictive path planning method is applied to produce paths that connect the
car’s current state to the sampled goal states. A cost function that considers safety and
comfort is employed to select the best trajectory. Finally, Cardoso et al. [272] defined
the planning problem for intelligent vehicles as finding a trajectory that minimizes a
cost function that takes into account the distance to the objective, the distance from
the obstacles and the proximity to a given lane. Furthermore, they show that their
algorithm is close to human performance, meaning that the path produced by the
framework is close to what a human would do.
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4.4 Conclusion

In this chapter, we presented the main trends in path planning with a focus on
intelligent vehicles. Global path planning algorithm aims at finding a coarse trajec-
tory from the current state to a far goal, whereas local planning tries to find a tra-
jectory that locally follows the path while controlling the safety and admissibility of
the decisions. Table 4.2 provides a summary of the main planning techniques used
in path planning. Graph based algorithms are very popular in both global and lo-
cal planning. Indeed, thanks to the discretization of the space, graph algorithms can
be efficiently used at a reduced computational cost. However, most of them do not
provide continuous paths and the required computational time greatly increases for
those which provide it. Sampling based algorithms provide attractive results without
the need of discretizing the environment. Due to their probabilistic natures, the con-
vergence might be slow and the solution is optimal only for an infinite time. Never-
theless, they provide fast solutions that are close to the optimal one most of the time.
Their biggest drawback is because of the inherent stochastic process, the trajectories
are often jerky, which can be a problem for the occupants of the intelligent vehicle as
well as the mechanic of the robot. Among these algorithms, Rapidly-exploring Ran-
dom Trees (RRT) methods are by far the most used and many variations are available
depending on the application. In local planning, tentacles are also very popular due
to the easy computation and the frameworks reducing to checking which tentacle is
the best according to specific criteria. Interpolating curves offer continuous trajec-
tories at a reduced computational cost, but do not scale well in higher dimensions.
In another fashion, the intelligent bionic algorithms propose interesting methods in-
spired from the nature. In the same way as the random sampling algorithms, they
scale well in higher dimensions but suffer from high computational cost. Finally, nu-
merical optimizationmethods compensate their high computational cost by allowing
easy addition of constraints such as kinematic and dynamics constrains of the robot.
The trajectories are also continuous, but the computational time increases greatly for
each new dimension.
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Method Global/Local Comp. Time Continuous Dimension
Graph search

Dijkstra •/− − − −
A∗/D∗ •/− + − −
Fast Marching •/− + − −
State Lattice −/• − + +
Elastic Band −/• − + −

Random
Sampling

PRM •/− − − +
RRT •/• + ∼ +

Interpolating
Curves

Clothoid •/• − + −
Polynomial •/− + + −
Bézier •/− + + −
Spline •/− + + −

Intelligent
Bionic

Ant Colony •/− − − +
Numerical
Optimization

Funct. Optim. −/• − + −
MPC −/• − + −

Table 4.2: Comparison of the main planning techniques in terms of whether the
method can be used for global and local planning, its computational time, whether
the paths are continuous and the scalability of the method in higher dimensions. ’+’
means better whereas ’−’ means worse.



CONCLUSION

This section concludes the state of the art. In this part, we investigated the three
main components of this thesis. Of course, the first and the most important is how
a robot should assess a risk. Following the numerous examples and discussion of
Chapter 2, we conclude that defining a framework that can unify the notion of safety
is not an easy task. Even if no risk metric can surpass the other, some authors pre-
sented some tracks on what a good risk metric should represent and do. Once a risk
metric is defined, the robot needs to link it to a representation of the environment.
For instance, a probability of collision metric has to know every obstacle it might col-
lide with. Therefore, we presented the two approaches in mapping that are semantic
and metric maps. We concentrated on the metric fashion and more precisely on the
Bayesian Occupancy Filter (BOF) for its popularity in complex, potentially dynamic
environments. Finally, once a robot is capable of computing risk on thismap, away of
planning and evolving in this environment is the last key component. We presented
the main trends in path planning with examples of researches that incorporated risk
into their planning.

In the next part, we present our attempt to generalize collision-based risk assess-
ment inmetricmaps. We build upon theworks that try to define a generic risk metric
while proposing a novel map analogous to the BOF. Using our framework, the robot
is able to assess meaningful, generic risks in metric maps without the downsides of
the BOF that will be highlighted in the following.
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MOTIVATIONS

As seen in the previous section, risk assessment for mobile robots is not an easy task.
Focusing on collision-based risks, we present in this part our work that aims at the-
orizing risk assessment in occupancy grids. Let us consider the following example:
a robot wants to cross a frozen lake with multiple grass turfs. Clearly, the robot is
taking risks traversing such an environment. In the case of the frozen lake, there is a
traversability-based risk that is the robot simply slips and falls, which is a very com-
mon issue in Quebec. In the case of crossing the grass turfs, the collision-based risk
is that the turf hides hazardous obstacles such as boulders.

Following, the robot needs to assess the risk of each path to decide which one is
the safest. As humans, we evidently prefer a path that cross the least frozen lake and
the least grass turfs. Analogously, in a Bayesian occupancy grid, a robot would prefer
to only cross a small portion rather than a large one of a high occupancy environment.
Using this intuition, we see in thenext chapter that theBayesianoccupancy grid is not
able to yield consistent results because of its inherent mathematical formulation. We
propose a novel framework that, in contrary of the classical Bayesian occupancy grid,
does not store a probability of collision but the rate of the event. Using this formula-
tion, complex risks can be computed and can directly be used by path planners. First,
we present the framework in the static case, with an emphasize of the motivation of
why such a framework is needed. The theory is validated with real-world experimen-
tations in unstructured environments where the robot had to cross tall grass. Then,
we extend the theory to the dynamic realm, where we adapt our framework to work
in urban scenarios in a context of intelligent vehicles.
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5.1 Context of the work

In this chapter, we present our framework for risk assessment in unstructured,
static environments. First, we present the overall context of this work, i.e., the prob-
lem this framework answers and how the state of the art stands to this matter. Then,
we provide a theoretical section that is needed to fully apprehend the following the-
ory. The framework is presented, followed by experiments demonstrating its utility.
Finally, we conclude this chapter with a discussion of the current state of the frame-
work.

Figure 5.1: Example of unstructured environment where semantic maps would have
trouble mapping all the potential obstacles. The snow banks, trees and vegetations
lead to a very unstructured environments with no clear features that a semantic map-
per could use.

Nowadays, autonomous robots start to gain tremendous popularity thanks to
their ongoing usefulness. They start to prove themselves useful in a very broad spec-
trum of applications, from autonomous driving to supporting humans in dangerous
jobs like mining or search & rescue missions. One common aspect of every robot’s
tasks is the notion of safety: before taking any action, the robots have to assess the
associated risk of the action. As presented in Chapter 2, many different risks have
to be considered. Whereas rovers have to watch for slippery ground, intelligent ve-
hicles monitors constantly the possibilities of collisions. In the following, we focus
on the risk of collision and leave the generalization of the framework for other types
of risk in future works, as discussed in Section 5.5. In order to assess risks, the robot
needs a way to represent and store the surrounding environment. In structured and
controlled environments like warehouses, the easiest solution is to provide the robot
with a map of the environment as well as the position of every obstacle, robot and op-
erator. Storing such objects leads to the construction of semantic maps as described
in Section 3.2, where each obstacle is stored as an object (e.g., wall, operator or robot).
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Under this representation, the robot has to keep track of every moving obstacle while
avoiding collisions with the environment. However, such a representation of the en-
vironment is not always available nor easy to build from rawdata in all situations. For
example, it is impossible to perfectly describe the underlying environment of a snowy
forest. As an example, Figure 5.1 depicts a snowy forest where no clear obstacle can
be extracted from raw data. Indeed, trees are covered in snow and the low vegetation,
often hidden by the snow, makes any detection very noisy and possibly wrong. Clus-
tering raw data from lidarmeasurements, as done by Fulgenzi et al. [273] for example,
might not be possible for the above scenario.

Subsequently, metrics maps are used as they do not need to retrieve high level
features in the environment. Instead of storing features, the metric map tessellates
the environment into cells, where each one stores the information of occupancy. This
kind of map has been heavily studied and used since the beginning of robotics. They
were introduced by Elfes [8] who proposed the concept of occupancy grids. Sec-
tion 3.3 provides an extensive review of metric mapping techniques. Among them,
the Bayesian occupancy grid is the most popular and have seen numerous ameliora-
tions over the years.

P(occ) = 0.1

P(occ) = 0.6

P(occ) = 0.3

P(occ) = 0.9

Figure 5.2: Example of occupancy grid the
robot needs to cross and reach the goal in
red, with twopossible paths in blue and or-
ange.

Falling back on the risk assessment
problem, let us reduce for now the risk
to the probability of collision. Figure 5.2
shows a Bayesian occupancy grid that
the robot wants to cross and reach the
goal, depicted in red. Using one of
the many techniques presented in Sec-
tion 4.2, the robot needs to evaluate the
cost, or risk, of the paths leading to the
objective. Among these paths, one is de-
picted in light blue. The probability of
collision is therefore the probability of
colliding at least one cell in thepath, that
is the complementary of the joint proba-
bility that all cells are free:

ℙ⒧coll1⒭ = 1−0.960.470.750.92
≈ 0.99. (5.1)

As this equation seems at first glance rea-
sonable, there is multiple ways to show
that the above calculation is ill-formed.
At first, one can imagine if the map is
now stored in an octree such that the large, high occupancy bloc on the right is stored
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as a single cell. Under this consideration, the probability of collision of the orange
path is then the probability to collide with the low occupancy cells and a single high
occupancy cell, that is

ℙ⒧coll2⒭ = 1−0.950.110.96
≈ 0.97. (5.2)

As such, given this representation of the environment, which is a totally viable one,
the robot would choose the orange path that crosses a large high occupancy bloc in-
stead of the blue one that seems intuitively better. We somewhat feel that the size of
the cells have to be taken into account. To better grasp the concept, let us assume
the example of Figure 5.3. The robots on the left want to cross the same environment,
for instance a sparse grass field, with a constant occupancy probability of 0.1. For the
first robot that tessellated the environment into four cells, the probability of collision
is equal to

ℙ⒧coll1⒭ = 1−0.94
≈ 0.34. (5.3)

In the second case, the robot did not have as much memory as the first robot and
hence had to tessellate the environment in a coarser way, namely into two cells. The
probability of colliding the environment for the second robot is

ℙ⒧coll1⒭ = 1−0.94
= 0.19. (5.4)

Using these few examples, we see that the intuitive way of computing collision prob-
ability on a Bayesian occupancy grid yield counter-intuitive results.

P(coll) = 0.34

0.1 0.1 0.1 0.1

P(coll) = 0.19

0.1 0.1

Figure 5.3: Example of collision assessment in an occupancy grid. The robots (boxes
with their front represented as a filled triangle) want to cross an environment by fol-
lowing the dashed red line. The collision probability is uniform for thewhole environ-
ment (0.1). The discretization size greatly influences the probability of collision, with
the bottom scenario yielding a safer path even though the underlying environment is
the same.

Several authors proposedmore advancedmethods to solve this issue. As shown in
the last example, the problem intrinsically comes from the fact that the intuitive risk
assessment method does not take into account the area of the cells. A first solution
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would be to “normalize” the probability of collision, as done by Lachapelle et al. [274].
For a given time 𝑘, assuming deterministic evolution, they model the risk as

𝑅𝑘 =
𝑐
ℙ(𝑐 = occ) ⋅ 𝐿(𝐱ego,𝑐), (5.5)

for the cells c the robot crosses at the time𝑘. The function𝐿(⋅) takes into account both
the state of the robot (e.g., velocity, orientation) and the state of the cell. In their work,
they define the risk as the total loss of kinetic energy of the system. However, setting
𝐿(⋅) = 1 falls back to the probability of collision, and the risk becomes

𝑅𝑘 =
𝑐
ℙ(𝑐 = occ) . (5.6)

We see that the risk 𝑅𝑘 is not a probability collision as it lies in [0,+∞). The risk 𝑅𝑘
is not an estimator of a risk quantity over a probability field. Furthermore, as stated
above, the risk 𝑅𝑘 is dependant on the tessellation size: the smaller the size of the
cells, the more cells the robot lies on, the more cells the sum contains and therefore
the larger 𝑅𝑘 is. Hence, they propose to multiply the risk by the area Δ𝑎 of the cells:

𝑅𝑘 =Δ𝑎
𝑐
ℙ(𝑐 = occ) . (5.7)

However, this patch leads to some problems. First, one can note that the quantity
𝑅𝑘 does not correspond to any estimator of 𝐿(⋅), as in the case of 𝐿(⋅) = 1 the proba-
bility simply goes beyond 1. Second, by multiplying by the area, we lose all physical
meaning of 𝑅𝑘. For instance, as done in their paper, they model 𝐿(⋅) as the loss of
kinetic energy coming from the collision. However, due to the patch, the quantity is
multiplied by the area of the cells, leading to 𝑅𝑘 to be expressed in Jm2.

Because of the non-interpretability of the risk function, it simply becomes a loss-
function that the robot needs to minimize. Using this function, a path is only safer or
riskier compared to another path. It is however impossible to tell whether a path is
safe. For instance, we can consider a car on the edge of a cliff: in this configuration,
all the paths in front of the vehicle are very hazardous. Using a loss function that is
only capable of comparing paths, the robot will simply choose the path that has the
minimum risk. However, in this case, even the minimum risk path is deadly. As such,
the patch for this is to introduce a user-defined threshold that say whether a path is
safe or not. However, the question arises how to tune such threshold as its unit is
counter-intuitive.

Fan et al. [275] proposed to fuse risk maps for unstructured environments. They
compute a risk metric as a compound of risks discretized in time and not space. The
smaller the discretization, the higher is the risk. For a set of states 𝑥0∶𝑁 and a policy 𝜋,
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their risk metric is defined as

𝐽(𝑥0,𝜋;𝑚) = 𝑅0+𝜌0 ⒧𝑅1+𝜌1 ⒧𝑅2+...+𝜌𝑁−1 ⒧𝑅𝑁⒭⒭⒭ , (5.8)

with

𝜌(𝑅) = CVaR𝛼(𝑅) = inf
𝑧∈ℝ

𝑧+ 𝑅−𝑧
1−𝛼 with 𝛼 ∈ (0;1), (5.9)

where 𝑅𝑖 depicts the risk for the time 𝑡𝑖. An easy intuition is to set 𝛼 → 0 that leads
the risk function 𝐽(⋅) to simplifies to

lim
𝛼→0

𝐽(𝑥0,𝜋;𝑚) = 𝑅0+𝔼𝑅1+𝔼𝑅2+...+𝔼𝑅𝑁

= 𝑅0+
𝑁

𝑖=1

𝔼𝑅𝑖 .
(5.10)

Thus, we easily see that the risk tends to infinity when the number of time samples𝑁
grows to infinity. As such, even if dimensional analysis tells us that 𝐽(⋅) keeps its phys-
ical unit, the computed quantity does not yield a meaningful metric. For instance, if
𝑅𝑖 depict simply the probability of occupancy, the risk 𝐽(⋅) should lie in [0;1] and not
[0;∞). This issuehas repercussions: it is then impossible tohaveanon-homogeneous
discretization (e.g., we could want to discretize less in constant, low frequency ar-
eas and more in unstructured, high frequency regions) as higher discretizations yield
greater risk. Furthermore, as stated before, the cost function 𝐽(⋅) can only be used to
relatively compare path and find the less risky one, even though the minimum still
leads the robot into a hole.

Heiden et al. [267] proposed a more elegant solution to infer the probability of
collision in occupancy grids. Instead of summing the probabilities, they introduce a
theory based on the concept of product integrals. Product integrals can be defined as
the ‘product’ counterpart of the classical integration. The classical Riemann integral
of a function 𝑓 ∶ [𝑎,𝑏]→ ℝ can be defined by the relation


𝑏

𝑎
𝑓(𝑥)d𝑥 = lim

Δ𝑥→0𝑓(𝑥𝑖)Δ𝑥 (5.11)

where the limit is taken over all partitions of the interval [𝑎,𝑏]whose norms approach
zero. Analogously, one can define the product integral, called Volterra type II integral,
as

𝑏

𝑎
𝑓(𝑥)d𝑥 = lim

Δ𝑥→0𝑓(𝑥𝑖)Δ𝑥 (5.12)
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It can be shown that this product integral can be computed as1

𝑏

𝑎
𝑓(𝑥)d𝑥 = exp⒧

𝑏

𝑎
ln𝑓(𝑥)d𝑥⒭ (5.13)

Using this theory,Heiden et al. [267] proposed todefine theprobability of collision
over a path𝒫 ∶ [0,𝐷]→ℝ2 where𝐷 is the total distance of the path, as

ℙ(coll) =
𝐿

0
1−𝑝𝑜 ⒧𝒫 (𝑠)⒭d𝑠 , (5.14)

where 𝑝𝑜 ∶ ℝ2→ [0,1] gives the probability of occupancy of the position 𝑥 ∈ ℝ2. As we
integrate over the tessellated field, the probability of collision is not dependant on the
tessellation size.

However, this theory alsohas several drawbacks. As itwas the case for theprevious
work, there is no particular reason to introduce product integrals. It is here merely a
tool to make the probabilities converge without being dependant on the tessellation
size. Furthermore, they consider a robot reduced to a point, meaning that the robot
has a wheelbase of zero.

Thus, we can see that the Bayesian occupancy grid is not made for calculating
probabilities over a path and therefore is not able to assess meaningful risks, i.e., a
risk that keeps its physical unit. Mathematically speaking, the issue comes from the
fact that the Bayesian occupancy grid stores a probability of collision: one cannot in-
tegrate or look at a subspace andwonderingwhat is the probability of occupancy. The
Bayesianoccupancygrid answers thequestionwhether apositionof the environment
is occupied and not whether a subset of the environment will lead to a collision. In
the following section, we provide a theoretical background about Poisson point pro-
cesses, that will be shown to naturally come from the Bayesian occupancy grid when
dealing with infinitesimal cell sizes. This leads to representing the environment as a
stochastic process instead of a probability field that yield numerous tools for risk as-
sessment. Then, we present our framework based on this process. The framework is
able to infer probabilities of collision but also risks that do not depend on the tessella-
tion size and also keep their physical units. Furthermore, we improve the framework
of Heiden et al. [267] to relax the assumption of point robot and demonstrate that un-
der this improvement, our framework is a generalization of their attempt to compute
collision probabilities in Bayesian occupancy grids.

1Using Riemannian sums, see [276] for a proof.
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5.2 Theoretical background

The key concept of our framework, called Lambda-Field, is its ability to assess the
probability of collision inside a subset of the environment (e.g., the path of the robot),
leading to the computation of a generic risk that can be adjusted depending on the
scenario. To better understand the reasons for the following framework, we will first
briefly demonstrate its construction. We assume that the probability of encountering
a collision for a path of area Δ𝑎 is 𝜆𝑖Δ𝑎, where 𝜆𝑖 ∈ ℝ≥0 is the ‘rate’ of the event colli-
sion and Δ𝑎→ 0 such that 𝜆𝑖Δ𝑎 ≤ 1. The larger the intensity 𝜆𝑖 is, the more likely a
collisionwill happen. In amacroscopic approach, the intensity𝜆𝑖 corresponds to the
expected number of collision in a cell of area 1m2 and can therefore vary from 0 (i.e.,
the cell will never create a collision) to+∞ (i.e., the cell will create an infinite amount
of collisions during the traversal).

The probability of crossing𝑁 surfaces of areas Δ𝑎with a rate 𝜆𝑖 without collision
is

𝑁−1

𝑖=0

(1−𝜆𝑖Δ𝑎). (5.15)

Taking the limit of the path areaΔ𝑎→ 0 leads to the computation of the Volterra type
I product integral. For a path crossing a total area of 𝐴 where each subregion of area
Δ𝑎 has a rate 𝜆(𝑎), 𝑎 being the total area crossed from the beginning, we have

lim
Δ𝑎→0

𝐴/Δ𝑎

𝑖=0

(1−𝜆(𝑖Δ𝑎)Δ𝑎)

=exp⒧−
𝐴

0
𝜆(𝑎)d𝑎⒭.

(5.16)

A proof of Equation 5.16 can be found in [276]. The probability of encountering no
collision over a path is then the probability that no event ‘collision’ happens in a het-
erogeneous Poisson point distribution of rate 𝜆(𝑎). Taking the limit of a binomial
distribution indeed leads to a Poisson point process distribution. Hence, the natural
way of dealing with collisions in a continuous manner is to use Poisson point process
distribution.

This process counts the number of events which have happened given a certain
area, depending on the mathematical space. In our case, we want to count the num-
ber of the event ‘collision’ which could occur given a path (i.e., a subset of ℝ2). We
point out that the theory is here presented for 2D paths, but the extension in ℝ3 is
trivial, as the only change is the tessellation of the map being in 3D instead of 2D.
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5.3 Proposed approach

In this section, we present the theory behind the Lambda-Fields. First, we show
how to compute the field with a 2D lidar sensor. Then, we extend the framework to
assess the risk of the robot’s path and take into account the masses of the obstacles.
Finally, a comparison with the work of Heiden et al. [267] is given, augmenting their
theory to take into account the size of the robot and proving that under this amelio-
ration, the Lambda-Field is a generalization of their framework.

For a positive scalar field 𝜆(𝐱), with 𝐱 ∈ ℝ2, the probability to encounter at least
one collision in a path𝒫 ⊂ ℝ2 is

ℙ⒧coll|𝒫 ⒭ = 1−exp⒧−
𝒫
𝜆(𝐱)dx⒭ . (5.17)

Nonetheless, it is impossible to both compute and store the field 𝜆(𝐱) as it has an
infinite number of degrees of freedom. Hence, we discretize our field into cells in a
fashion similar to Bayesian occupancy grids. Tessellating the field, the probability of
collision is approximated by

ℙ⒧coll|𝒫 ⒭ ≈ 1−exp ⒧−Λ(𝒞)⒭
with Λ(𝒞) = Δ𝑎 

𝑐𝑖∈𝒞
𝜆𝑖, (5.18)

for a path 𝒫 crossing the cells 𝒞 = {𝑐0,…,𝑐𝑁}, where each cell 𝑐𝑖 has an area of Δ𝑎
and an associated lambda 𝜆𝑖, which is the intensity of the cell. The lambda can be
seen as a measure of the density of the cell: the higher the lambda is, the most likely
a collision will happen in this cell.

Using this representation, we hereby see that the probability of collision is not
dependent on the size of the cells. It is indeed the same to compute the probability of
collision for crossing two cells of areaΔ𝑎/2 or one cell of areaΔ𝑎 for a constant 𝜆. As
a concrete example, Figure 5.4 gives a path that the robot might follow, as well as the
underlying cells (of area 0.04m2) it crosses. The robot crosses 58 cells with 𝜆𝑖 = 0.1
and one cell with 𝜆𝑖 = 2. Using Equation 5.18, the probability of collision is evaluated
at0.27. Onecannote that thisprobability of collision is independentof the tesselation
size while naturally arising from the theory.

5.3.1 Computation of the field

As we established a new approach to represent the occupancy of an environment,
we need to develop a way to dynamically compute the lambdas. We assume that the
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λi = 0.1

λi = 2

λi = 30

Figure 5.4: The robot wants to go to the position in red. In blue, the actual path the
robot follows. Each cell has an area of Δ𝑎 = 0.04m2. Using Equation 5.18, the proba-
bility of collision in this path is 0.27.

robot is equippedwith a lidar sensor, which gives a list of cells crossed by beamswith-
out collision, and another list of cells where the beams collided. Using this sensor
model, we construct the Lambda-Field in the following manner. We want to find the
combination of 𝜆 = {𝜆𝑖}𝑖∈J0,𝐶−1K, for a map tessellated into 𝐶 cells, that maximizes
the expectation of the 𝐾 beams the lidar has shot since the beginning. Also, each
lidar beamhas an associated error region ℰ𝑘 of area 𝑒𝑘 centered on themeasurement,
meaning that the actual obstacle is in ℰ𝑘. Figure 5.5 shows an example of such lidar
beam error region.

beam bk

Ek

Figure 5.5: The robot measures the distance to an obstacle using a lidar sensor. The
obstacle (in red) is in the area ℰ𝑘 (in gray) centered on the measurement (black dot).

Therefore, each lidar collision gives a region where an obstacle is. This kind of
sensor simplification is common and is used for example by [277]. At this stage, we
assumed that every lidar measurement possesses the same error region area 𝑒. The
case where each beam has a different error region is dealt with in Appendix A, which
can be useful for radarmeasurements or lidarswith substantial beamdivergence. For
each lidar beam 𝑏𝑘, the beam crossed without collision the cells 𝑐𝑚 ∈ℳ𝑘 and hit an
obstacle contained in the cells 𝑐ℎ ∈ ℰ𝑘. The log-likelihood of the beam 𝑏𝑘 is

ℒ(𝑏𝑖|𝜆) = ln
⎡

⎣
exp

⎛

⎝
−Δ𝑎 

𝑚∈𝒞𝑀
𝜆𝑚

⎞

⎠
⋅
⎛

⎝
1−exp

⎛

⎝
−Δ𝑎 

ℎ∈ℰ𝑖
𝜆ℎ
⎞

⎠

⎞

⎠

⎤

⎦
= lnexp ⒧−Λ(ℳ𝑘)⒭ ⒧1−exp ⒧−Λ(ℰ𝑘)⒭⒭ .

(5.19)
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The log-likelihood of𝐾 lidar beams is then

ℒ({𝑏𝑘}0∶𝐾−1|𝜆) =
𝐾−1

𝑘=0

ℒ(𝑏𝑘|𝜆)

=
𝐾−1

𝑘=0

−Λ(ℳ𝑘)+ ln ⒧1−exp ⒧−Λ(ℰ𝑘)⒭⒭ .
(5.20)

We want to maximize this quantity, hence nullify its derivative as the function is con-
cave. In order to find a closed-form, we approximate the derivative with the assump-
tion that the variation of lambda inside the error region of the lidar is small enough
to be negligible. Thus, for each 𝜆𝑖 ∈ ℰ𝑘 we have

Δ𝑎 
𝑐ℎ∈ℰ𝑘

𝜆ℎ ≈ 𝑒𝜆𝑖. (5.21)

Using this approximation, the derivative is

𝜕ℒ ({𝑏𝑘}0∶𝐾−1|𝜆)
𝜕𝜆𝑖

≈−𝑚𝑖 ⋅Δ𝑎+ℎ𝑖
Δ𝑎

exp⒧𝑒𝜆𝑖⒭−1
, (5.22)

where𝑚𝑖 is thenumberof times the cell𝑐𝑖 hasbeencountedas ‘miss’ (i.e., wasoutside
the error region) andℎ𝑖 is thenumber of times the cell 𝑐𝑖 has been counted as ‘hit’ (i.e.,
was in the error region of the sensor). Wefinally find the zero of the derivative, leading
to

𝜆𝑖 =
1
𝑒 ln⒧1+ ℎ𝑖

𝑚𝑖
⒭ . (5.23)

This closed-form allows a low computation complexity of the Lambda-Field. We also
see that the formula is independentof the sizeof the cells, which is themain limitation
of current representation we were aiming at resolving.

We are then able to construct the Lambda-Field using Equation 5.23.

5.3.2 Confidence intervals

In the same way as [183], we define the notion of confidence over the values in the
Lambda-Field. Indeed, the more the cells are measured, the greater the confidence
in the robot’s movements should be. For each cell 𝑐𝑖, we seek the bounds 𝜆𝐿 and 𝜆𝑈
such that

ℙ(𝜆𝐿 ≤ 𝜆𝑖 ≤ 𝜆𝑈) ≥ 95%

⇔ℙ(𝜆𝐿 ≤
1
𝑒 ln⒧1+ ℎ𝑖

𝑚𝑖
⒭ ≤ 𝜆𝑈) ≥ 95%.

(5.24)
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To compute those bounds, we introduce the notion of false positives and false neg-
atives: every cell measurement 𝑗 has a probability 𝑝ℎ𝑗 to rightfully read ‘hit’ and a
probability 𝑝𝑚𝑗 to rightfully read ‘miss’. The probabilities 𝑝ℎ𝑗 and 𝑝𝑚𝑗 have to be ex-
perimentally computed and can vary according to a great number of parameters: for
example, the probability 𝑝ℎ𝑗 is lower in the event of heavy rain or snow.

Using the relation ℎ𝑖 =𝑀−𝑚𝑖 where𝑀 is the number of times the cell has been
measured, we can rewrite the above equation as

ℙ(𝐾𝐿 ≤ℎ𝑖 ≤𝐾𝑈) ≥ 95%, (5.25)

such that

𝜆𝐿 =
1
𝑒 ln⒧ 𝐾𝐿

𝑀−𝐾𝐿
+1⒭,

𝜆𝑈 =
1
𝑒 ln⒧ 𝐾𝑈

𝑀−𝐾𝑈
+1⒭.

(5.26)

The quantity ℎ𝑖 can be seen as a sum of𝑀 Bernoulli distributions, such that

ℎ𝑖 =
ℎ𝑖−1

𝑗=0

ℎ̄𝑗+
𝑚𝑖−1

𝑗=0

⒧1−𝑚̄𝑗⒭ , (5.27)

where ℎ̄𝑗 and 𝑚̄𝑗 are Bernoulli variables equal to 1 if the reading was right and 0 oth-
erwise. The quantity∑𝑗 ⒧1−𝑚̄𝑗⒭ is hence the number of times the sensor wrongfully
reads ‘hit’ instead of ‘miss’.

The distribution of ℎ𝑖 is not binomial, but a Poisson binomial distribution with
poor behaviors in terms of computation. Since the Poisson binomial distribution sat-
isfies the Lyapunov central limit theorem, we can approximate its distribution with a
Gaussian distribution of same mean and variance:

𝜇 =
ℎ𝑖−1

𝑗=0

𝑝ℎ𝑗 +
𝑚𝑖−1

𝑗=0

1−𝑝𝑚𝑗 and

𝜎2 =
ℎ𝑖−1

𝑗=0

𝑝ℎ𝑗 (1−𝑝ℎ𝑗 )+
𝑚𝑖−1

𝑗=0

𝑝𝑚𝑗 (1−𝑝𝑚𝑗 ).
(5.28)

We can then have the bounds at 95 % for example, with

𝐾𝐿 ≈max(𝜇 −1.96𝜎,0),
𝐾𝑈 ≈min(𝜇 +1.96𝜎,𝑀). (5.29)
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The bounds 𝜆𝐿 and 𝜆𝑈 are then retrieved from𝐾𝐿 and𝐾𝑈 using Equation 5.26.

As an example of this bound computation, Figure 5.6 shows the behavior of the
confidence interval for different confidences, where the probability of a wrong mea-
surement is the same for every measurement. The lidar measures an empty cell 𝑐𝑖.
The confidence interval quickly decreases as the number of ‘miss’ readings increases.
At the 40th measurement, the lidar misreads and returns a ‘hit’ for the cell. The confi-
dence interval grows around the expected lambda computed with Equation 5.23 be-
fore re-converging.
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Figure 5.6: Convergence of the confidence intervals for a free cell 𝑐𝑖. At the fortieth
measurement, the sensormisreads the cell and returns a ‘hit’. The confidence interval
grows around the expected 𝜆𝑖 before re-converging.

5.3.3 Generic framework for risk assessment

Asmentionedbefore, themotivationof theLambda-Fields is its capability to compute
path integrals, hence a risk along a path. This risk can be defined depending on the
application and is independent of the following framework, meaning that it can be
interchanged without any modification of the theory. For a path𝒫 ⊂ℝ2 crossing the
cells 𝒞 = {𝑐𝑖}0∶𝑁 in order, the probability density function (p.d.f) over the Lambda-
Field is

𝑓(𝑎) = exp
⎛
⎝
𝑛Δ𝑎𝜆𝑛−Δ𝑎

𝑛−1

𝑖=0

𝜆𝑖
⎞
⎠
⋅𝜆𝑛 exp ⒧−𝑎𝜆𝑛⒭ , (5.30)

where 𝑛 = ⌊𝑎/Δ𝑎⌋ and ⌊⋅⌋ is the standard floor function. The variable 𝑎 denotes the
area the robot has crossed. Figure 5.7 shows an example of the probability density for
a given path on a Lambda-Field: when the robot goes through high-lambda cells, the
cumulative distribution probability quickly increases to one. One can note that it is
quite easy to convert 𝑎 into the curvilinear abscissa, which is far more convenient to



126 STATIC LAMBDA-FIELDS

link to the speed. For a robot of width𝑊 which has crossed an area 𝑎, its curvilinear
abscissa 𝑠 equals to

𝑠 = 𝑎
𝑊. (5.31)

Furthermore, Equation 5.30 can be easily proved as integrating𝑓(𝑎) over a certain
path𝒫 crossing the cells 𝒞 = {𝑐𝑖}0∶𝑁−1 gives the probability of encountering at least
one collision:

ℙ⒧coll|𝒫 ⒭ =
𝑁Δ𝑎

0
𝑓(𝑎)d𝑎= 1−exp ⒧−Λ(𝒞)⒭ . (5.32)

We can then define the expectation of a risk function 𝑟(⋅) over the path, defined as

𝔼[𝑟(𝐴)] =
𝑁Δ𝑎

0
𝑓(𝑎)𝑟(𝑎)d𝑎. (5.33)

The random variable 𝐴 denotes the crossed area at which the first event ‘collision’
occurs. If the cells are small, we can assume that the function 𝑟(⋅) is constant inside
each cell. Using this assumption, we simplify the above equation to

𝔼[𝑟(𝐴)] =
𝑁−1

𝑖=0

𝐾𝑖𝑟(Δ𝑎𝑖),

with𝐾𝑖 = exp ⒧−Λ({𝑐𝑗}0∶𝑖−1)⒭1−exp ⒧−Λ({𝑐𝑖})⒭ ,
(5.34)

for a path 𝒫 going through the cells {𝑐𝑖}0∶𝑁−1. Note that {𝑐𝑖} is a singleton whereas
{𝑐𝑗}0∶𝑖−1 contains 𝑖 elements.
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Figure 5.7: Example of lambda-Field the robot crosses (in green), with the associated
probability density 𝑓(𝑎) (in blue) and cumulative distribution 𝐹(𝑎) (in orange).

The risk function 𝑟(⋅) is generic and can take into account the state of the robot
as well as the state of the world. One can notice that the special case 𝑟(⋅) = 1 leads
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to the probability of collision given by Equation 5.18. Furthermore, the probability
density 𝑓(𝑎) only looks at the risk generated by the first collision occurring on the
path. Therefore, it is assumed that the robot stops after any collision and does not
continue its course. This assumption can be lifted if necessary, as shown in the next
section.

For our applications, we chose to model the risk as the force of collision (i.e., loss
of momentum) if the collision occurred at the area 𝑎. It is indeed a good quantifica-
tion of the damage induced by the collision and is a better metric of the risk than the
probability of collision, as shown by Eggert [109]. First, we present as an example a
way to assess this risk assuming that every obstacle has an infinite mass. Indeed, this
assumption holds for most scenarios where the robot’s mass is negligible compared
to the obstaclesmasses (e.g., a tree or awall). We then remove this assumption in sub-
section 5.3.4 where each obstacle now has a probabilistic mass, allowing the robot to
evolve in unstructured environments. One can note that other quantifications of the
risk are also worth exploring, such as the loss of kinetic energy. Such a metric will be
detailed in Chapter 6.

Assuming the obstacle that the robot collides with has an infinite mass, the force
of collision is computed as

𝑟(𝑎) =𝑚𝑅 ⋅ 𝑣𝑛𝑅 (𝑎), (5.35)

where 𝑚𝑅 is the mass of the robot, and 𝑣𝑛𝑅 (𝑎) is its velocity towards the obstacle at
the area 𝑎. As shown in Figure 5.8, the velocity towards the obstacle of normalized
normal 𝐧 is

𝑣𝑛𝑅 = |𝐧⊤𝐯𝐑|
= |𝑣𝑅 ⋅cos⒧𝜃⒭| for ||𝐧|| = 1 (5.36)

where ⋅⊤ stands for the usual vector transpose, 𝑣𝑅 = ||𝐯𝐑|| the robot velocity and 𝜃
the angle between the robot heading and the obstacle’s normal. The angle of colli-
sion is interesting to take into account for numerous scenarios, as for example an
autonomous vehicle driving over a cliff. Because of skidding, the vehicle may find it-
self in a configurationwhere it has no choice but to collide with the safety railing. The
best choice will naturally be to minimize the collision, hence collide with the railing
with a high incidence angle.

This risk metric assumes that every obstacle the robot might encounter has an in-
finite mass. We also assume perfect inelastic collision, as most deployed vehicles are
designed to absorb collisions as much as possible. It means that if the robot collides
with an obstacle, the resulting collision would lead the robot to stop (i.e., losing a mo-
mentum of𝑚𝑅 ⋅ 𝑣𝑛𝑅 ). Depending on the application, other metrics can be developed.
We present in the next section the development of a more complicated metric allow-
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Figure 5.8: The robot of speed 𝑣𝑅 = ||𝐯𝐑|| collideswith an obstacle of normal𝐧with an
angle 𝜃. The speed of the robot can be decomposed into the tangential component
𝐯𝐭𝐑 and the normal component 𝐯𝐧𝐑. Only the latter influences the collision with the
obstacle.

ing the robot to navigate through unstructured obstacles like tall grass by lifting the
approximation that all obstacles have infinite masses.

5.3.4 Taking into account themass of the obstacles

In the context of autonomous navigation, the robot might have to go through objects
that look like obstacles from the point of view of the lidar, but are in fact harmless for
the robot. An ideal example of this scenario is where the robot have to go through tall
grass to reach its goal. Figure 5.9 shows the sensors measurements of a robot trying
to go through tall grass. Since the lidar returns very close measurements around the
robot, the robot would be unable to move. However, with the images provided by the
camera, an algorithm could clearly detect that the obstacles are only tall grass, hence
the robot should proceed and reach its goal.

As the risk metric developed in the previous section assumes that every obstacle
has an infinite mass, it is unable to deal with such scenarios. This assumption is then
removed and each obstacle now has a probabilistic mass. We thereby need to esti-
mate the mass of the obstacles. It can be done with a camera and deep learning seg-
mentation like [278] or radar classification as done by [38]. We also take into account
that the mass of an obstacle is probabilistic. In addition to the Lambda-Field, we also
store a map of the probability distribution function of the mass distribution for each
cell, which is provided by one of the above cited methods. Furthermore, as collisions
with low-mass obstacles do not pose a threat to the robot, the risk metric is defined
as the force of collision with obstacles that will stop the robot, therefore discarding
threat-less collisions.
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(a) (b)

Figure 5.9: The robot crosses an area with tall grass. (a) Camera view of the robot.
(b) Lambda-Field created from lidar measurements in red, with the robot in purple.
The darker the cell, the higher the lambda is. Without mass estimation, the robot
would not move as it is certain that a collision will happen.

Figure 5.10 shows examples of probability distribution function for several obsta-
cles. The main use of a probabilistic formulation for the masses is to deal with the
uncertainty of the labels. Indeed, the grass can easily hide a high-density obstacle
like rocks. Moreover, the mass of the vegetation is very variable and the robot can
expect a harmless collision as much as a harmful collision, while going through these
kinds of obstacles. In the case where no label is available for a cell, the worst case is
taken into account, meaning that the mass of the cell is set to infinity.

We chose to discretize the probability density function into a sum of Dirac impul-
sions 𝛿(⋅). The mass p.d.f 𝑓𝑚𝑖 (⋅) of the cell 𝑐𝑖 is then

𝑓𝑚𝑖 (𝑚) =
∞

𝑘=0

𝛼𝑖𝑘 ⋅ 𝛿(𝑚−𝑘Δ𝑚), (5.37)

withΔ𝑚 thediscretization stepand𝛼𝑖𝑘 theprobability that𝑚∈ [𝑘Δ𝑚, (𝑘+1)Δ𝑚]. Also,
only a finite number of 𝛼𝑖𝑘 are not null in order to store the p.d.f.

A problem quickly arises from Equation 5.34 if we want to take into account the
mass of the obstacles. The equation only looks at the first collision as it assumes that
any collisionwould lead the robot to stop its course. For very light obstacles like grass,
this assumption falls apart. Hence, we need to add a term to the equation to allow
the robot to continue its course after a collision. To do so, we need to understand the
meaning of the lambdas. For an area Δ𝑎 where the Lambda-Field is constant with a
value𝜆, the expectednumber of event ‘collision’ isΔ𝑎𝜆. Using the probability𝑝𝑠𝑖, the
probability of the robot being stopped because of the collision at the cell 𝑐𝑖, we want
that each collision has the probability 𝑝𝑠𝑖 of being harmful for the robot. Hence, we
use our probability of traversal𝑝𝑠𝑖 as a newmeasure over the field. Given the harmful
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Figure 5.10: Examples of probability density function of several labels. The arrow rep-
resents the Dirac delta function. The mass of the grass is very likely to be close to zero
but there is a chance that a high-mass obstacle is hiding in it (e.g., a rock). The mass
of a bush is very uncertain as it may be more or less dense. In contrast, the mass of a
tree is always very high.

probability 𝑝𝑠𝑖 for the cell 𝑐𝑖, the intensity functionΛ(𝒞) becomes

Λ𝑚(𝒞) = Δ𝑎 
𝑐𝑖∈𝒞

𝜆𝑖𝑝𝑠𝑖. (5.38)

Using this newly defined intensity measure, only hazardous collisions are investi-
gated, treating collisions that do not stop the robot as harmless.

Assuming that the robot can go through obstacles if their mass is below a certain
threshold𝑚max, the probability 𝑝𝑠𝑖 is then

𝑝𝑠𝑖 =ℙ⒧𝑚𝑖 >𝑚max⒭

= 1−
𝑚max

0
𝑓𝑚𝑖 (𝑚)d𝑚,

(5.39)

where𝑓𝑚𝑖 (⋅) is thep.d.f of themassof the cell𝑐𝑖. Also, sincewedonot assumeanymore
that the obstacles have infinite masses, the risk 𝑟(⋅) (i.e., the loss of momentum at the
impact) becomes

𝑟𝑚(Δ𝑎𝑖,𝑚) =𝑚𝑅 ⒧𝑣𝑛𝑅 (Δ𝑎𝑖)−
𝑚𝑅𝑣𝑛𝑅 (Δ𝑎𝑖)
𝑚𝑅 +𝑚

⒭

=𝑚𝑅
𝑚⋅𝑣𝑛𝑅 (Δ𝑎𝑖)
𝑚𝑅 +𝑚

,
(5.40)

where𝑚 is themass of the 𝑖th cell. Since themass of each obstacle is probabilistic, we
need to sum over all the possible masses to find the expected force of collision over a
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path, leading to (the proof is detailed in Appendix B):

𝔼[𝑟𝑚(𝐴,𝑀)] =
𝑁−1

𝑖=0

𝐾𝑖
∞

0
𝑓𝑚𝑖 (𝑚)𝑟𝑚(Δ𝑎𝑖,𝑚)d𝑚

=
𝑁−1

𝑖=0

𝐾𝑖
∞

𝑘=0

𝛼𝑖𝑘𝑟𝑚(Δ𝑎𝑖,𝑘Δ𝑚).
(5.41)

where 𝑀 is the random variable corresponding to the mass of the cell the collision
happened, and 𝐾𝑖 is computed the same way as in Equation 5.34 but using Λ𝑚(⋅).
One can note that we can re-write the above equation under the form

𝔼[𝑟𝑚(𝐴,𝑀)] =
𝑁−1

𝑖=0

𝐾𝑖 𝑟′(Δ𝑎𝑖)

with 𝑟′(Δ𝑎𝑖) =
∞

𝑘=0

𝛼𝑖𝑘𝑟𝑚(Δ𝑎𝑖,𝑘Δ𝑚),
(5.42)

hence going back to the known expectation formula of Equation 5.34. We omitted
the parameters 𝛼𝑖𝑘 in the parameters of 𝑟′(⋅) as they are directly retrievable from the
crossed area Δ𝑎𝑖. Also, one can note that setting ℙ(𝑚𝑖 =∞) = 1 for all the cells leads
as expected to the same risk as using Equation 5.35.

Using this metric, a robot can choose to take a path that leads to collisions but is
harmless for it. However, it will be the same for the robot to take a path without any
collision or a path with harmless collisions that do not stop the robot. For manned
vehicles, a pathwith collisionswill always bemoreuncomfortable for theuser. Hence,
we define a metric called the mean risk over a path. This quantity is fitted to choose
between safe paths, as the mean risk cannot assure the safety of a path. Indeed, for
a path with a lot of harmless collisions and a harmful collision, the mean risk will be
very close to the harmless collisions because of the quantity disparity. The mean risk
is defined as the mean collision the robot will undergo, computed as

̄𝑟 =
𝑁−1

𝑖=0

Δ𝑎𝜆𝑖𝑟(Δ𝑎𝑖)
∑𝑁
𝑗=0Δ𝑎𝜆𝑗

. (5.43)

As the lambdas can be very large, a more convenient form can be found:

𝑟 =
𝑁−1

𝑖=0

𝑟(Δ𝑎𝑖)
∑𝑁
𝑗=0𝜆𝑗𝜆−1𝑖

(5.44)

where lim(𝜆𝑖,𝜆𝑗)→(∞,∞)𝜆𝑗𝜆−1𝑖 = 1.
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5.3.5 Comparison and improvement of the reachability metric

In this section, we analyze and adapt the concept of reachability defined in [267].
Their work is indeed the first to address the problem of risk assessment in occu-
pancy grids. We first investigate the different metrics proposed in the article and
then show that under our improvement to take into account the size of the robot,
our framework can be seen as a generalization of theirmethod. They propose to use
the concept of product integrals, which is the product counterpart of the standard
integration. A summary of the product integration can be found in [276]. They in-
troduce the probability of occupancy 𝑝𝑜(⋅) (defined in their article as 𝑚(⋅)) as the
density of the cell. At first, they define the reachability 𝑅𝑡 for a path from the time
𝑡 = 0 to 𝑇 as a product integral, computed as

𝑅𝑡 =
𝑇

0
(1−𝑝𝑜(𝑥(𝑡)))d𝑡, (5.45)

where 𝑥(𝑡) is the robot position at the time 𝑡 and 𝑝𝑜(𝑥(𝑡)) the probability that the
position 𝑥(𝑡) is occupied. The higher the reachability, the safer is the corresponding
path. However, they say that it would be better to consider the distance traveled
through a cell instead of the time. It is indeed better as the first metric leads to a
counter-intuitive reachability: for a robot crossing at a speed 𝑣 a straight path of
length 𝑙, where all cells have the probability 𝑝𝑜 of being occupied, the reachability
is

𝑅𝑡 =
𝑙/𝑣

0
(1−𝑝𝑜)d𝑡

= lim
Δ𝑡→0

𝑙/𝑣/Δ𝑡

𝑖=0

(1−𝑝𝑜)Δ𝑡.
(5.46)

Using the fact that (1−𝑝𝑜)Δ𝑡 = exp ⒧ln⒧1−𝑝𝑜⒭Δ𝑡⒭ and the Riemann definition of the
integral, the expression can be simplified to

𝑅𝑡 = exp⒧
𝑙/𝑣

0
ln⒧1−𝑝𝑜⒭d𝑡⒭

= (1−𝑝𝑜)𝑙/𝑣.
(5.47)

The reachability from thefirstmetric is thenhigherwhen the speed is high,meaning
that it is safer to travel the path at higher speed.
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Their second reachability metric 𝑅𝐿 does not possess such a behavior as they
parametrized the integral over the traveled distance 𝐿(𝑡, 𝑡+d𝑡) between two instants,
leading to

𝑅𝐿 =
𝑇

0
(1−𝑝𝑜(𝑥(𝑡)))𝐿(𝑡,𝑡+d𝑡)

=
𝑇

0
(1−𝑝𝑜(𝑥(𝑡)))|𝑥̇(𝑡)|d𝑡.

(5.48)

Since the traveled distance 𝑑(𝑡) equals to ∫𝑡0 |𝑥̇(𝑡)|d𝑡, we have d𝑑(𝑡) = |𝑥̇(𝑡)|d𝑡 and
Equation 5.48 can be simplified to

𝑅𝐿 =
𝐷

0
(1−𝑝𝑜(𝑥𝑑(𝑑))))d𝑑

= (1−𝑝𝑜)𝐷 in case of homogeneous field,
(5.49)

where𝐷 =∫𝑇0 |𝑥̇(𝑡)|d𝑡 is the total distance crossed by the robot and 𝑥𝑑(⋅) the position
of the robot as a function of the traveled distance. Using Equation 5.49, the probabil-
ity of collision does not depend on the tessellation size nor the speed of the vehicle.
The main drawback is that there is no natural reason to use the concept of product in-
tegrals, as it is here merely a tool to make the probability constant. Furthermore, the
robot is considered to be reduced to a point. The well-known solution to this prob-
lem is to inflate the obstacles, at the cost of assuming that the robot is round. As the
Lambda-Field takes into account the size of the robot, we propose to improve their
theory to take into account the robot’s width𝑊. Instead of only integrating over the
robot line path, we also integrate over the entire width of the robot for each position
𝑥𝑑(𝑑) . Under this consideration, the reachability equation becomes

𝑅𝐿 =
𝐷

0

𝑊/2


−𝑊/2
⒧1−𝑝𝑜(𝑥(𝑑,𝑤))⒭d𝑤d𝑑 , (5.50)

where 𝑥(𝑑,𝑤) is a point of the robot parametrized as the distance the robot has trav-
eled 𝑑 and the distance from the robot header center in its width direction𝑤.

We can see that for the special case 𝑊 = 1 and 𝑝𝑜(𝑥(𝑑,𝑤)) constant for 𝑤 ∈
[−𝑊/2,𝑊/2]we fall back on Equation 5.49. Assuming that the robot fully crosses the
cells it encounters, we can develop a more convenient formulation for calculations.
If the robot crosses the𝑁 cells 𝒞 = {𝑐𝑖} of size S×Sm2 and probability of occupancy
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𝑝𝑜𝑖, Equation 5.50 can be re-arranged to give

𝑅𝐿 =
𝑁−1

𝑖=0

𝑆

𝑥=0

𝑆

𝑦=0

(1−𝑝𝑜𝑖)d𝑥d𝑦

=
𝑁−1

𝑖=0

(1−𝑝𝑜𝑖)Δ𝑎,
(5.51)

where Δ𝑎= 𝑆2 is the area of each cell.

From there, this equation can be linked to the theory of Lambda-Field. Indeed,
for a path crossing the cells 𝒞 = {𝑐𝑖}, in the Lambda-Field we have the probability of
not colliding during the traversal computed as

1−ℙ(coll) = exp
⎛

⎝
−Δ𝑎 

𝑐𝑖∈𝒞
𝜆𝑖
⎞

⎠
= 

𝑐𝑖∈𝒞
exp ⒧−𝜆𝑖⒭Δ𝑎 (5.52)

= 
𝑐𝑖∈𝒞

(1−𝑝𝑜𝑖)Δ𝑎 with 𝑝𝑜𝑖 = 1−exp ⒧−𝜆𝑖⒭ .

Hence, the probability of occupancy 𝑚𝑖 of a cell is the probability of colliding in an
area of 1m2 in a Lambda-Field. Therefore, under our improvement given by Equa-
tion 5.51, the theory of [267] is then a special case of our framework, where the risk
function 𝑟(⋅) is set to 1 and the cell size is assumed to be equal to 1. Compared to
[267], we propose a more meaningful approach where the theory naturally gives a
way to assess risk that is not restricted to be the probability of collision.

5.4 Experimentations

In this section, we present the experiments that validate the presented framework.
First, we show the experimental setup that was used in the experiments. Then, we
discuss the differences between the Lambda-Fields and the classical Bayesian occu-
pancy grid. Finally, we provide experiments of mapping and planning showing the
behavior of the robot in structured and unstructured environments.

5.4.1 Setup

We implemented our framework into a robot equipped with a LMS151 lidar and a
camera, as shown in Figure 5.11. Since the robot has four-wheel steering, it was not
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much impacted by slipping and skidding and the odometrywas sufficient to estimate
the robot displacements. For every new lidar scan, the displacement between the
current and previous position is estimated and themap is updated. Furthermore, the
map is centered on the robot.

Figure 5.11: Robot used in the experimentations. It is equipped with a lidar Sick
LMS151 and a camera.

We chose not to rotate the map but to rotate the robot instead to nullify the errors
coming from the rotation. Indeed, a straight wall is quickly distorted after a few rota-
tions because of the tessellation of the map. We also had to keep a global offset of the
map as otherwise small displacements were not taken into account. Indeed, without
this offset the map is not precisely updated as any displacement below half the cell
size is discarded. The mass of the robot is also set to 𝑚𝑅 = 50kg. For safety purpose,
the maximum speed of the robot was set to 0.5ms−1 and the maximum acceleration
to 0.05ms−2. The parameters used for the confidence intervals of the mapping were
𝑝𝑚 = 0.9999 and 𝑝ℎ = 0.99 for all cells measurements, where the cells have a size of
0.1×0.1m. The value of𝑝𝑚 is intentionally very high as it is indeed nearly impossible
for a lidar beam to go through obstacles. The normals of the obstacles were estimated
using the method developed in [279]. At each lidar’s scan, the normal of the points
are estimated and the normals of each underlying cell 𝑐𝑖 is updated as follows:

̄𝜃 =
⎧
⎨
⎩

arctan⒧ ̄𝑆/𝐶̄⒭ if 𝐶̄ ≥ 0
arctan⒧ ̄𝑆/𝐶̄⒭+𝜋 otherwise,

(5.53)

with

𝐶̄ =
𝑁

𝑘=1

cos⒧𝜃𝑘⒭ and ̄𝑆 =
𝑁

𝑘=1

sin⒧𝜃𝑘⒭, (5.54)

where𝑁 is the number of normal measurements 𝜃𝑘 for the cell 𝑐𝑖.
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5.4.2 Comparison with the Bayesian occupancy grid

In order to demonstrate the difference between the Bayesian occupancy grid and
the Lambda-Fields, we theoretically investigate the key differences between the two
frameworks, then show on real-world experiments their consequences on the quality
of the maps.

First, we investigate the convergence of the occupancy of a single cell. In the con-
text of unstructured environment, it is very common to have cells that are only par-
tially occupied. This can come from either very thin objects such as tall grass or crops,
or fromobstacles that donot reflectwell the laser beam, such as a densebush. In both
cases, the cell will be measured both ‘hit’ and ‘miss’ as the beam can cross or hit the
obstacles in the cell. Using the theory presented in [1] to construct the Bayesian oc-
cupancy grid, we use the log odds representation of occupancy. Assuming that a cell
is measured𝑁 times and is filled at a ratio of 𝑟 ∈ [0,1] (1 is completely filled, 0 is com-
pletely empty), the cell will be measured ‘hit’ 𝑟𝑁 times and ‘miss’ (1−𝑟)𝑁 times. The
Bayesian occupancy grid estimates the occupancy probability of the cell as

ℙ⒧occ𝑏⒭ = 1− 1
1+exp ⒧𝑟𝑁𝑙𝑜+(1−𝑟)𝑁𝑙𝑓⒭

, (5.55)

where 𝑙𝑜 is the logodds representationof theprobability that the cell is occupiedgiven
a ‘hit’measurement, whereas 𝑙𝑓 is the logodds representation that the cell is occupied
given a ‘miss’ measurement (i.e., informs that the cell is free). These quantities are
computed as

𝑙𝑜 = ln⒧ ℙ⒧occ|𝑧 = hit⒭
1−ℙ⒧occ|𝑧 = hit⒭⒭ , and

𝑙𝑓 = ln⒧ ℙ⒧occ|𝑧 = miss⒭
1−ℙ⒧occ|𝑧 = miss⒭⒭ ,

(5.56)

with 𝑧 the measurement of the sensor that is either ‘hit’ or ‘miss’. Substituting the
definition of the log odds representation with its expression, we have

ℙ⒧occ𝑏⒭ = 1− 1

1+⒧ ℙ⒧occ|𝑧=hit⒭
1−ℙ⒧occ|𝑧=hit⒭⒭

𝑟
⒧ ℙ⒧occ|𝑧=miss⒭
1−ℙ⒧occ|𝑧=miss⒭⒭

1−𝑟

𝑁

= 1− 1

1+𝑂
𝑟𝑜 ⋅𝑂1−𝑟

𝑓 
𝑁 ,

(5.57)
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where 𝑂𝑜,𝑂𝑓 ∈ ℝ≥0 are defined as the odds of respectively ℙ⒧occ|𝑧 = hit⒭ and
ℙ⒧occ|𝑧 = miss⒭. Taking the limit𝑁→∞, we have

lim
𝑁→∞

ℙ⒧occ𝑏⒭ =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if 𝑂𝑟
𝑜 ⋅𝑂1−𝑟

𝑓 < 1
0.5 if 𝑂𝑟

𝑜 ⋅𝑂1−𝑟
𝑓 = 1

0 if 𝑂𝑟
𝑜 ⋅𝑂1−𝑟

𝑓 > 1.
(5.58)

Therefore, we see that the Bayesian occupancy grid will always converge to an ex-
tremum (apart from the special case where 𝑂𝑟

𝑜 ⋅ 𝑂1−𝑟
𝑓 = 1, meaning that the mea-

surements do not provide information about the occupancy). On the contrary, the
Lambda-Field does not converge to an extremum. Indeed, putting the estimation of
lambda given by Equation 5.23 into the probability of collision of Equation 5.17, we
have

ℙ⒧occ𝜆⒭ = 1−exp ⒧−Δ𝑎𝜆⒭

= 1−exp⒧−Δ𝑎 ⋅ 1𝑒 ln⒧1+ 𝑁𝑟
𝑁(1−𝑟)⒭⒭

= 1−⒧1+ 𝑟
1−𝑟⒭

−Δ𝑎
𝑒 .

(5.59)

In the case where the lidar error region 𝑒 is equal to the area of the cells Δ𝑎, meaning
that we are sure that the collision comes from this cell, the equation simplifies to

ℙ⒧occ𝜆⒭ = 1− 1
1+ 𝑟

1−𝑟
= 𝑟,

(5.60)

meaning that the probability of collision is purely the ratio of occupancy of the cell
and does not depend on the number of measurement𝑁. Figure 5.12 shows the con-
vergence of the Bayesian occupancy grids and the Lambda-Field. In order to ease the
reading, the amount of information a ‘hit’ measurement is the same as for a ‘miss’
measurement of the cell, meaning that ℙ⒧occ|𝑧 = hit⒭ = 1 − ℙ⒧occ|𝑧 = miss⒭ and
thus 𝑙𝑜 =−𝑙𝑓. The behavior still remains the same without this assumption as shown
by Equation 5.58. The Lambda-Field estimation does not move and stays at the true
occupancy value of the cell, whereas the occupancy probability of the Bayesian occu-
pancy grid converges to either 0 or 1 depending on the occupancy. As expected, the
higher the confidence of the sensor’s measurement, the faster the probability con-
verges. This behavior can be hazardous in unstructured environment, as a cell filled
at 49 % will converge to a probability of occupancy of 0 after a few seconds.

We also consider the case where an obstacle is wrongly undetected. This situation
can happen when measuring sparse or unstructured obstacles. For instance, a wire
fence can be either stop or let through the laser beams depending on the position of
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Figure 5.12: Convergence of the collision probability for a given cell occupied at 40
% and 60 %. The Bayesian occupancy grid will quickly converge to a probability of
occupancy of either 0 or 1 whereas our framework stays at the true occupancy value
of the cell.

the robot. Thus, we look at the speed at which the Bayesian occupancy grid and the
Lambda-Field can recover the true state of an obstacle wrongly labeled as free. For a
single cell measured 𝑚 times as ‘miss’, we assume that 𝑚 is large enough such that
the Bayesian occupancy grids converged to the probability of occupancy ℙ(occ) = 0.
Then, assuming that after𝑚measurements, the robot starts to measure the obstacle
as ‘hit’, we can approximate the probability of occupancy around ℎ ≈ 0 using first
order Taylor expansion as

ℙ⒧occb⒭ = 1− 1
1+exp ⒧𝑚𝑙𝑓+ℎ𝑙𝑜⒭

≈
𝑙𝑜 exp ⒧𝑚𝑙𝑓⒭

⒧exp ⒧𝑚𝑙𝑓⒭+1⒭
2 ⋅ ℎ

≈ 𝑙𝑜
2⒧cosh⒧𝑚𝑙𝑓⒭+1⒭

⋅ℎ,

(5.61)

meaning that the recovery rate of theBayesianoccupancy grid vanishes exponentially
as a function of the number of times𝑚 the cell has been wrongfully measured. In the
case of the Lambda-Field, we have

ℙ⒧occ𝜆⒭ = 1−exp⒧−Δ𝑎𝑒 ln⒧1+ ℎ
𝑚⒭⒭

= 1− 1
⒧1+ℎ/𝑚⒭Δ𝑎/𝑒

≈ Δ𝑎/𝑒
𝑚 ⋅ℎ,

(5.62)
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indicating that the recovery rate vanishes linearly as a functionof thenumber of times
𝑚 the cell has been wrongfully measured. Figure 5.13 shows the convergence curves
towards the true state of the cell (i.e., 100 % filled) for different values of confidence
of the sensor measurements.

0 20 40 60 80 100
Number of ‘hit’ measurements

0.0

0.2

0.4

0.6

0.8

1.0

P(
o
c
c
)

0.5

0.6

0.7

0.8

0.9

1.0

P(
o
c
c
|z

=
h
i
t
)

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
er

ro
rr

eg
io

n
∆a
/

e

Figure 5.13: Evolution of the collision probability of a fully occupied cell that has been
wrongly measured empty 50 times before. As theoretically shown, the Lambda-Field
manages to recover quicker from the wrong estimation, whereas the Bayesian occu-
pancy grid converges faster to the true state of the cell after 50 ‘hit’ measurements.

The cell has been measured 50 times as ‘miss’ before (e.g., the robot stayed still
during 2 s for a 25Hz lidar such as the Sick LMS151). Then, the robot changed posi-
tion, allowing the lidar beams to effectively hit the obstacle in the cell, leading to ‘hit’
measurements in the cell. As expected, the higher the confidence on the sensor (i.e.,
smaller error region for the Lambda-Field and higher probability for the Bayesian oc-
cupancy grid), the faster the recovery speed is. However, the Lambda-Field allows to
better recover at the beginning by growing faster, whereas the Bayesian occupancy
grid prefers to quickly converges to the state ‘occupied’ after 50 ‘hit’ measurements.
The Lambda-Field does however take more time to converge toward a full occupancy
of the cell as it still takes into account the previous wrong ‘miss’ measurements. In-
deed, as shown in Figure 5.12, the Bayesian occupancy grid only converges to zero
or one. Therefore, as soon as the ‘hit’ measurements become predominant over the
wrong ‘miss’ measurements, the framework quickly converges to 1. Both frameworks
can have their convergence speed shortened by applying a threshold on the probabil-
ity of occupancy and the lambda (i.e., cannot go above or below certain values). How-
ever, this enhancement does not modify the previous analysis as it only bounds the
vanishing of the recovery rate.

In order to demonstrate in real-world conditions these considerations, we
mapped a small zone consisting of a black wire fence where lidar beams could easily
get through, as shown in Figure 5.14. At first, the position of the robot leads the laser
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beams to cross the fencewithout collision, yielding both theBayesian occupancy grid
and the Lambda-Field to converge to a false state. After a few seconds, the robot turns
in front of the fence, leading more lasers beams to actually collide with the obstacle.
In this configuration, the two aforementioned differences between the Lambda-Field
and Bayesian occupancy grid are involved.

Figure 5.14: Mapping environment, con-
sisting of a spare wire fence with some tall
grass on the left, as well as a small truck.

On the one hand, the laser beams
still have a chance to go through the
fence, leading to cells that are not com-
pletely filled to wrongly converge for
the Bayesian occupancy grid. If the
lasers collide with the cell less than 50
% of the time, the Bayesian occupancy
grid will wrongly converge to 0. On
the other hand, because of the wrong
‘miss’ measurements at the beginning,
the Bayesian occupancy grid will strug-
gle more to recover the true state. Fig-
ure 5.15 provides the resulting Lambda-
Field andBayesianOccupancy at twodif-

ferent times during the mapping process. We investigated the quality of the map-
ping by quantitatively analyzing the ratio of wrongly undetected cells, as shown in
Figure 5.16.

In order to measure the quality of the map, we manually labeled the fence at each
iteration and used patches of 4×4 cells running along the fence. The inspected zone
is shown in Figure 5.15 in dashed green. Using patches instead of directly analyzing
the cells removes the noise due to the manual labeling and the noisy odometry of the
robot. Using these patches, we evaluate the recall of the detection, computed as the
sumof the probabilities of not colliding each patch over the number𝑃 of patches (i.e.,
the proportion of wrongly detected patches) as

Recall𝑏 =
1
𝑃

𝑃−1

𝑘=0


𝑐𝑖∈𝑝𝑘

⒧1−ℙ⒧𝑝𝑖 = occ⒭⒭ ,

Recall𝜆 =
1
𝑃

𝑃−1

𝑘=0

exp
⎛
⎝
−Δ𝑎 

𝑐𝑖∈𝑝𝑘
𝜆𝑖
⎞
⎠
.

(5.63)

In addition to the recall that can be seen as the mean of the probabilities of not col-
liding the patches, we also compute the associated standard deviation of the patches.
Figure 5.16 depicts the recall for the Lambda-Field and Bayesian grid as well as the
distribution at two sigmas (approximately 95%) of the probability of not colliding the
patches.



141

t = 20 s

5 m

t = 26 s

5 m

0.0

0.2

0.4

0.6

0.8

1.0

P(
o
c
c
)

(a)

t = 20 s

5 m

t = 26 s

5 m

10−1

100

101

102

L
am

bd
a

(b)

Figure 5.15: Mapping of a wire fence where, depending on the robot pose, the laser
beams can either collide or go through the fence (outlined in dashed green in the
maps). (a) Bayesian occupancy grid of the wire fence. (b) Lambda-Field of the wire
fence. One can note that the Bayesian occupancy grid did not have the time to con-
verge at 𝑡 = 20s because of the wrong ‘miss’ measurements at the beginning of the
experiment.
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Figure 5.16: Mapping error of the wire fence for the Bayesian occupancy grid and the
Lambda-Field. The error is defined as the ratio of free space over the whole space
that represents the obstacle. As expected, the Lambda-Field converges quicker to a
low error whereas the Bayesian occupancy grid needs more time to assess its occu-
pancy. Although the Bayesian occupancy grid yield to a smaller error after 𝑡 = 24s, its
confidence interval is twice as large as the one of the Lambda-Field,meaning that the
representation of the wire fence is still sparse and contains large errors.
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As theoretically expected, the Lambda-Field recovers quicker from the wrong
‘free’ state of the wire fence. At 𝑡 = 20s, the Lambda-Field converged to the state
where the whole fence is considered as an obstacle, whereas the Bayesian occupancy
grid is still converging and has more than 20 % of the fence that is considered as free.
At 𝑡 ≈ 22.5s, the robot changes position such that parts of the fence are not visible
to the lidar sensor. As such, the Lambda-Field started to converge toward a lower
lambda that is mainly seen on the left vertical wall. Although the recall is lower for
the Bayesian occupancy grid, we can still see holes in the fence at 𝑡 = 26s while the
Lambda-Field has the whole fence mapped. Indeed, the distribution at 95 % of the
probabilities of the patches for the Lambda-Field is almost always contained in the
one of the Bayesian occupancy grid. This means that although the recall is lower, the
bayesian occupancy grid has patches that are poorly represented compared to the
Lambda-Field. One can also note that the car on the right of the map is better repre-
sented in the Lambda-Field than in the Bayesian occupancy grid.

Figure 5.17: Aerial View of the mapped en-
vironment, with the robot path in blue and
the roundabout in dashed black

Then, we show the effectiveness of
our framework to map large environ-
ments. To do so, we implemented a sim-
ple robot follower scenario in an urban-
like environment depicted in Figure 5.17.
The robot had to follow the pedestrian
while keeping the risk of the chosen path
below 5kgms−1. While following the
pedestrian, the robot created a Lambda-
Field as well as a Bayesian occupancy
grid of the environment, as shown in Fig-
ure 5.18. In addition to the expected
lambdas, the Lambda-Field also stores a
confidence interval for each value. Fig-
ure 5.19 shows the difference between

the expected lambdas 𝜆𝑖 and the lower and upper values 𝜆𝐿,𝜆𝑈 of the confidence in-
terval. It can be easily seen that the lower lambdas only underestimate the lambdas
for the obstacles. Indeed, the expected lambda is already at the lowest possible value,
zero, for the cells where no collision has happened. They can however be useful in
the case where a lot of faulty measurements come from the sensor, for example when
lidars try to map an environment under heavy rain or during a snowstorm. On the
contrary, upper lambdas overestimate the lambdas for regions where few measure-
ments are available. It is especially the case in the roundabout or in the boundary of
the map, as well as behind the fence on the left side of the map where only a few lidar
beams passed through.
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Figure 5.18: Left: Bayesian occupancy grid Right: Lambda-Field. The Lambda-Field
is better suited to store the occupancy of unstructured obstacles where the Bayesian
occupancy grid may over-converge, especially for the roundabout in dashed green.

Lower lambda

5 m

Upper lambda

5 m

10−1

100

101

102

103

L
am

bd
a

Figure 5.19: Differenceof lambdasbetween the expected lambdas and the confidence
interval for a structured environment. The lower lambdas tend to underestimate the
obstacles as the expected lambdas in the free space are already at the lowest value.
The upper lambdas overestimate the field everywhere, particularly where few mea-
surements were available, like in the roundabout or behind the fence on the left (cir-
cled in green).

The maps are globally alike except for the unstructured obstacles, which are in
this case the bushes in the roundabout as well as tall grass around the pavement. As
the Bayesian occupancy grid needs to converge to either the state ‘occupied’ or ‘free’,
a lot of information about the occupancy of the roundabout is discarded. Further-
more, the robot was not able to see the entire obstacle at first, leading the frameworks
to wrongly converge. As shown in the previous section, the Lambda-Field recovers
faster in these situations, leading to a more precise map. Most of the information is
preserved in the Lambda-Field and the global shape of the roundabout is more easily
recognizable. The other disparities between the two maps come from unstructured
obstacles which were small trees and tall grass.
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Finally, we also mapped an unstructured environment where the environment is
depicted in Figure 5.20 and the resulting maps are shown in Figure 5.21. The environ-
ment consists of several trees with a lot of tall grass disrupting lidar measurements.
The robot went around the tree in the center of the picture while navigating in the
grass. However, due to the grass and the wind, the lidar returned a lot of measure-
ments corresponding to the grass. Whereas the Bayesian occupancy grid only kept
the hedge and the main trees, the Lambda-Field kept more information, such as the
wooden benches on the top of themap or the tall grass. This behavior is caused by the
necessity of the Bayesian occupancy grid to always converge to an extremum, leading
it to discard a lot of information that can be critical. For instance, in the case of agri-
cultural robotics, keeping the crops on the map is essential for not rolling over it.

Figure 5.20: Unstructured environment used for the mapping experimentation, con-
sisting of tall grass that disrupted lidarmeasurements, treeswith large trunks, a hedge
on the right of the picture and benches next to the hedge.
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Figure 5.21: Mapping of an unstructured zone. (a) Bayesian occupancy grid of the
environment (b) Lambda-Field of the environment. The robot, with its path in light
blue, went around the nearest tree (circled in green), before going back to its initial
position. Because of the tall grass, the Lambda-Field stored a lot of obstacles during
the traversal while the Bayesian occupancy grid discarded the vast majority of them.
Thehedge and the tree trunk (circled in green) are still visible in bothmaps as they are
the only structured obstacles, whereas more unstructured obstacles such as benches
on the topof themap (circled in green) orbusheshavebeendiscardedby theBayesian
occupancy grid.

5.4.3 Basic path planning

Figure 5.22: The robothas to avoid
a tree which was on its path in or-
der to reach the goal.

We demonstrate in this part that our framework
can be used to do classical path planning. As
shown in Figure 5.22, the robot has to go around
a tree to reach the goal which was set behind. To
do so, we implemented the path planning algo-
rithm of [280]. Every 3 seconds, we sample feasi-
ble commands for the robot and choose the best
one. The best command (i.e., path) is the one
that stays below a risk threshold and leads the
robot the closest possible to the target, whichwas
in this case behind the tree. The chosen path
also requires to have an upper risk (i.e., the risk
computed using the upper bound of the lamb-
das) below another risk threshold. For each fea-
sible command, the 𝑁 cells crossing the path in-
duced by the command applied for 8 seconds are
extracted and the risks are computed. Estimating the risk of a longer time than the
one applied by the command avoids the robot choosing paths leading to a dead end.
Indeed, if the risk was computed only for the time of the command, the applied com-
mand might lead the robot to be right in front of a wall, resulting in a configuration
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where it is impossible to escape. In the case where no command meets the criteria,
the robot stops. It can happenwhen the robot is at high-speed: because of the limited
deceleration, all the high-speed commands lead to a risk higher than the maximum
allowed. Then, the robot completely stops before continuing its course as it can now
sample low speed commands. Although the path planning algorithm is somewhat
basic, the aim is to show the applicability of the framework in real world scenarios.
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Figure 5.23: (a) Bayesian occupancy grid with the path the robot has taken in light-
blue. (b) Lambda-Field with the path the robot has taken in light-blue.

We also implemented the Reachability metric of [267] with our improvement to
handle the robot size. As converting the Lambda-Field into an occupancy grid using
Equation 5.52 would lead to computing the risk 𝑟(⋅) = 1, hence using our theory, we
used the Bayesian occupancy grid directly computed from lidar measurements. Us-
ing the same method for path planning, we sample paths and choose the one which
leads the closest to the goal, where a path is considered safe if its reachability 𝑅𝐿 is
above a certain threshold 1 − 𝜖,𝜖 ∈]0,1[. The threshold 𝜖 was set to 0.1 during our
experiments. For each applied command, 300 samples are evaluated.

Using both algorithms on the same environment allows the comparison of the
behaviors of the robot in a simple case. Figure 5.23 shows the result of the path plan-
ning for the two environment representations. For the Lambda-Field, the maximum
allowed expected risk was set to 0kgms−1 meaning that the robot must remain clear
of any collision. We see that the paths are much alike and the robot effectively avoids
the obstacles in both cases. It can be seen on the Lambda-Field that the robot path
crossed somecellswhere the lambda is not null, whichwould lead to a collision. How-
ever, as the Lambda-Field is computed in real-time, the lidar measured collisions in
this cell after the robot crossed it. The lidar beams can indeed go through the grass or
returns a collision depending on the position of the robot.
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The same experiment was conducted using different parameters for the Lambda-
Field. Figure 5.24 shows the resulting speed of the robot for different configurations
of parameters. While the robot had to expect no risk on its path, it was first allowed to
have an upper risk at 5kgms−1, meaning thatwe are sure at 95% that any unexpected
collision has an expected risk below 5kgms−1. The robot quickly reached itsmaximal
speed with full acceleration while keeping the upper risk below the threshold. Under
the same configuration, the robot had to reach the goal while keeping the upper risk
below 2kgms−1. As the upper risk is smaller, the robot had to reduce its speed. The
robot has the same type of reaction if its confidence in the lidar sensor decreases. In
the third experiment, the probability of right ‘miss’ measurement 𝑝𝑚 was decreased
from 0.9999 to 0.99. The direct implication is the confidence interval broadened, forc-
ing again the robot to decrease its speed. Then, the robot had apoor confidence in the
lidar as well as a small upper risk, leading to a very slow traversal speed. Thereupon,
the Lambda-Field allows classical path planning in the same fashion as [267]. Our
framework also regulates the speed of the robot to cope with the allowed risk level.
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Figure5.24: Speed (dashed line) and risk (solid linewith shadedarea for its confidence
interval) of the chosen paths of the robot going around a tree for different configura-
tions. The robot is able to navigate at a higher speed when it is confident about the
measurements and has a higher upper risk limit.
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5.4.4 Going through tall grass

Figure 5.25: The robothas to reach
a goal behind the tall grass.

After doing simple path planning, we show that
the Lambda-Fields allow the robot to navigate
in unstructured environments. As shown in Fig-
ure 5.25, the robot has to reach the goal which is
behind tall grass. This kind of environment leads
to very noisy maps which can hinder the robot’s
displacements if looking at the probability of col-
lision. We here show that according to the risk
the robot is willing to take, it chooses to either
go through the tall grass or trying to find a path
around it. This kind of behavior is impossible to
havewhen only looking at the probability of colli-
sion. Indeed, the robot is sure to collide with the
grass. The probability of collision is high but the

collision caused by the grass is harmless, leading to a very small risk.

We assume that using a camera, the robot knows that the obstacles in front of it
are tall grass. For any other zone, the obstacle masses are set to the worst case (i.e.,
ℙ(𝑚𝑖 =∞) = 1). We assumed that tall grass has a 95% chance to have a null mass and
a 5 % chance of having an infinite mass. This probability models the possibility that
tall grass can hide very dense obstacles like rocks or tree trunks.

Two cases are analyzed: in the first one, the robot had to take no risk, meaning
that for every path the robot takes, the expectation of the risk has to be zero. Hence,
the robot chose to go around the tall grass. In the second case, the robot was allowed
to take some risk to reach its goal and went through the tall grass. Figure 5.26 shows
the resulting Lambda Fields for these two different robot configurations.

In the first case 5.26 (a), since the tall grass has a non-zero probability to have a
mass which leads to a harmful collision, the robot chooses to go around the tall grass
to reach the goal. Once again, the cells with a lambda higher than zero on the path
of the robot have been updated after the robot went through it. At the time the robot
crossed these cells the lambdas were null. Figure 5.27 shows the speed as well as the
risk taken by the robot. The robot first crosses a zone where the mass is supposed to
be low, leading to a very narrow confidence interval. The confidence interval grows
quickly as the robot goes out of the low mass zone. The robot also stopped several
times during the traversal. Indeed, a lot of grass hindered itsmovements as the detec-
tion of the grass is very randomwhilemoving. Because of themaximumdeceleration
of the robot, no path were below the maximum risk allowed. The robot then had no
choice but to completely stop to be able to plan with low speed commands.
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Figure 5.26: (a) Lambda-Field with the path the robot has taken in blue, where the
robot was instructed to take absolutely no risk. (b) Lambda-Field with the path the
robot has taken in blue, where the robot was allowed to take some risk.
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Figure5.27: Speed (dashed line) and risk (solid linewith shadedarea for its confidence
interval) of the chosen paths of the robot when it chooses to go around the tall grass.
Thenumerous stops of the robot are due to the very randomdetectionof the tall grass.

In the second case 5.26 (b), the robot was allowed to take some risk and chose to
go through the tall grass to reach the goal. The differences of lambdas between the
two maps come from the fact that depending on the robot position, the lidar beams
can go through the grass or return a collision. Furthermore, there was a lot of wind
during the experimentations, leading to an accentuation of the noise of the overall
map. For this case, different configurations of risk were analyzed. Figure 5.28 shows
the speed as well as the risk taken by the robot. In the first configuration, the robot
entered the grass at 𝑡 ≈ 12s. It was allowed to have an expected risk of 0.1kgms−1

and an upper risk of 5kgms−1. The grass had 5 % chance of having an infinite mass.
The robot stopped at 𝑡 ≈ 18s as it was about to enter a denser zone, meaning a zone
with a higher collision probability. All the high speed commands lead to a too high
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risk and the robot had to completely stop. During the traversal of the tall grass, the
speed of the robot ismaintained to a low value as the grassmight hide an obstacle. As
the robot goes out of the grass at 𝑡 ≈ 36s, it increased its speed to itsmaximumsince a
collision ismore unlikely to happen. The same experiment was conductedwhere this
time the grass zone had a probability of 99 % to have a null mass. The robot stopped
in the sameplace as the first time, but increased its speed faster as it was surer that the
collisions were harmless. By doing so, it reached the goal quicker. The third time, the
robot was sure there was no obstacle in the grass. Hence, it crossed the environment
at full speed since any collision was harmless even if the maximum risk allowed was
null.

0.0

0.1

R
is

k
[k

g.
m

/s
]

0.0

0.1

R
is

k
[k

g.
m

/s
]

0.0

0.1

R
is

k
[k

g.
m

/s
]

Expected risk [kg.m/s] Confidence interval [kg.m/s] Speed [m/s]

0.0

0.2

0.4

Sp
ee

d
[m

/s
]

r = 0.1 kg.m/s,rU = 5 kg.m/s ,P(mi = 0) = 0.95

Time [s]

0.0

0.2

0.4

Sp
ee

d
[m

/s
]

r = 0.1 kg.m/s,rU = 5 kg.m/s ,P(mi = 0) = 0.99

0 10 20 30 40 50 60
Time [s]

0.0

0.2

0.4

Sp
ee

d
[m

/s
]

r = 0 kg.m/s,rU = 5 kg.m/s ,P(mi = 0) = 1

Figure5.28: Speed (dashed line) and risk (solid linewith shadedarea for its confidence
interval) of the chosen paths of the robot when it chooses to go through the tall grass,
for different configurations. The more certain the robot is that there are no obstacles
in the grass, the faster it reaches its goal.

A very specific event can appear as sometimes, the expected risk is outside the
confidence interval. It can be seen for 𝑡 = 25s on the first graph of Figure 5.28. Com-
puting the risk with lower lambdas can indeed lead to a higher risk in very specific
conditions. In our case, the robot computed the risk for a path going out of the area
where themass of the obstacleswas classified as low (i.e., the tall grass) by the camera.
By doing so, any collision happening outside this zone will have a higher expected
force of collision. It is then considered less risky to collide inside the area of low mass:
lowering the lambdas leads to a higher chance to collide outside as the robot has a
lower chance to be stopped inside the zone, leading to a higher risk. Appendix D pro-
vides a way to avoid such scenario and yield better confidence intervals.
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5.5 Discussion

As mentioned before, the theory of the lambda-Field can be seen as a general-
ization of the framework of [267]. Under this consideration, it is possible to convert
a Lambda-Field into a Bayesian occupancy grid and vice versa using Equation 5.52.
In addition to generalizing the equations of [267], our framework allows the compu-
tation of expectation of a risk. It is possible as the Lambda-Field possesses a prob-
ability density function. Furthermore, the whole framework (i.e., mapping and path
planning) perform in real-time atmore than 10Hz and aGPU implementationwould
speed up even more the algorithms.

The theory of Poisson Point Process has already been used by [109] for known ob-
stacles. The Lambda-Field can be seen as the transfer of their work for occupancy
grids.

However, oneof themajordrawbacksof theLambda-Field is the assumptiondone
in Equation 5.21, that is every cell in the error region of the range sensor carries the
same information. Using such an approximation indeed leads to inflating the obsta-
cles, meaning that some narrow corridors where the robot could go through become
impracticable. The modeling of the sensor can also be discussed: for practical rea-
sons, the sensor is assumed to have a deterministic error region where the collision
is sure to have happened. Taking too small an error region would lead to augment-
ing the probability of wrong measurements, increasing the confidence interval of the
lambdas hence decreasing the speed of the robot. Inversely, taking too big an error
region leads the map to inflate the obstacles hence decreasing the space the robot
can evolve in. However, in the case of lidar sensors, their precision is such that their
error region often reduces to a low number or even a single cell, meaning that al-
most no inflation occurs. This can be seen on Figure 5.15 or Figure 5.18 for instances,
where the structured obstacles does not appear bigger on the Lambda-Field than in
the Bayesian occupancy grid. In the case where the range sensor has a bigger error
zone, Appendix C gives a way to reduce the inflation by using a standard probabilistic
sensor model.

The computation of the confidence intervals can also yield to deeper discussions.
Indeed, an empty cell close to an obstacle can be considered to have greater chances
to fail the reading and return a ‘hit’ measurement. Although this problem is already
managed by the error zone, taking into account that cells close to the error zone have
a greater chance to be misread can lead to more precise maps. This would lead to
lower the upper bound of the lambdas in large empty zone, thereby increasing the
traversal speed (i.e., efficiency) of the robot. As this work only dealt with constant
false positives and negatives ratios, future works will investigate a deeper use of con-
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fidence intervals in harsher environments such as snowstorms where a lot of faulty
‘hit’ measurements coming from the snow can hinder the robot displacements.

So far, only the lidarmeasurements areused toestimate the lambdasandacamera
for the mass estimation. However, in a more cooperative approach, the robot can
also assess the hazardousness of the environmentwhile navigating in it. For instance,
if the robot went safely through a zone where the probability of causing a harmful
collision 𝑝𝑡𝑖 is not null, the map can be updated accordingly and the probability of
harmful collisions can drop. Note that adding such information needs to be done
carefully, as informing that a zone is safe for a robot does notmeananother robotwith
a differentmass andmechanical configurationwill be also safe to cross. Furthermore,
as the framework creates maps centered on the robot, there is currently no tool for
matching temporally distant observations (such as loop closures). In case where the
construction of large scale maps is necessary, an external Simultaneous Localization
And Mapping (SLAM) algorithm such as the Iterative Closest Point (ICP) can provide
a corrected localization.

Also, some issues can appear while estimating the risk with our framework for
global path planning algorithms. Indeed, it may be harder to understand the metrics.
The longer the path, the higher the risk will be. As this behavior seems intuitive, it
leads to several questions. For two paths with the same risk but a different length, are
we willing to take the two paths with the same confidence? Or should we weight the
risk by the length of the path, meaning that we are willing to take more risk for longer
paths? We chose to understand the risk as the risk of a given command. Indeed, we
believe that as humans, we assess the risk of every step we make without thinking
about the length of the path.

Furthermore, the expectation of the risk is not fitted to model the ‘long-tail’ of the
Gaussian, meaning the low-probability events that can happen. The faulty measure-
ments of the lidar are handled with the confidence intervals of the lambdas but other
metrics may better estimate the ‘long-tail’. The Conditional Value at Risk presented
by [130] explicitly measures the risk of the ‘long-tail’. It can then be a better indicator
of the risk when a low probability, high-risk situation arises, for example when a high
mass obstacle hides in the grass.



153

5.6 Conclusion

In this chapter, wepresent a novel representationof the occupancy informationof
the environment, called Lambda-Field. We first derived a way to construct the map,
as well as confidence intervals over these values. This representation allows the com-
putation of expectation over a path, giving a natural way to assess different types of
risks. The Lambda-Field is very alike the Bayesian occupancy grid for mapping, with
the only notable difference that the Lambda-Field better stores unstructured obsta-
cles like bushes, tall grass or wire fence. In addition, the Lambda-Field provides the
computation of a generic risk that depends on the application.

In the case of unmanned ground vehicles, we chose to represent the risk as the
force of collision. In contrast to risk metrics defined on Bayesian occupancy grids,
our risk possesses a physical meaning. We were able to control the level of risk the
robot could take over its planning, giving behaviors impossible with classical path
planning environment representations. The robot was indeed allowed to cross low
mass occupied areas such as tall grass as long as the risk level was low enough. There-
fore, the Lambda-Field provides a framework that regulates the path as well as the
speed of the robot, ensuring the robot’s safety.

However, this framework assumes a static world: although this assumption is cor-
rect innumerous situations, sucha techniquewouldnotwork inurbanenvironments.
Therefore, we extend the Lambda-Fields to the dynamic world in the next chapter.
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6.1 Context of the work

In the previous chapter, we presented a framework that answers the limitations of
theBayesianOccupancy Filter (BOF) for risk assessment. Indeed, theBayesian frame-
work cannot infer physical risks because of the type of information it stores (i.e., a
probability of collision) that does not allow for integration over a path. We developed
a novel method that instead of storing a probability, stores an intensity that once in-
tegrated yields a risk that can be the probability of collision. However, our framework
is for now only applicable in static world.

155
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Figure 6.1: Example of an urban scenario that the robot can encounter. A pedestrian
is crossing the road, while a vehicle is approaching the robot in the other lane. Using
theDynamic Lambda-Fields, the robot is able to estimate the risk of its actions, taking
into account a generic risk that can be adapted depending on the scenario.

In this chapter, we extend the Lambda-Field to the dynamic realm, henceforth
becoming Dynamic Lambda-Field. First, we present a use-case that justify the need
of such a framework and why the BOF framework is not able to always yield consis-
tent results. Then, the theory is given, extending the mathematics from the static
case to dynamic environments. Experimentations validate the approach with con-
vergence tests, and real worlds experiments demonstrate the usefulness of the frame-
work. Then, we conclude this chapter with numerous avenues for improvement. In-
deed, the framework is heavily generalizable in both the static and dynamic cases as
discussed in the general conclusion of this part.

In the current state of the robotics, one could say thatmost of the application are
solved. Indeed, autonomous vehicles actually roam the highways and start to be able
to copewith complex crossroads. What still needs tobe solved iswhat one can charac-
terize as the long-tail of the events, namely the high-risk, improbable scenarios. Our
framework places itself right into this niche. Indeed, in the case where the robot can
travel safely, the risk is by definition zero. There is no difference between a physical
risk from the Lambda-Fields or for instance the computation of the risk from [274]. A
zero risk is zero no matter the underlying theory. As such, our framework only shines
in hazardous scenarios that are more complex to handle.

Figure 6.1 depicts an example of hazardous scenarios in the context of urban navi-
gation. The robot, on the right of the figure, wishes to cross the crossroad. At the same
time, another vehicle is approaching the robot on the other lane. Then, a pedestrian



157

Figure 6.2: Example of collision probability prediction for a vehicle in light gray, from
[281]. Using the first metric, they compute the probability of colliding with a specific
area for each time step.

emerges and crosses the road. At this time, the robot has too high a speed to stop
before colliding with the pedestrian. Thus, the robot has two options:

• brake as much as possible and collide with the pedestrian; and

• brake and swerve, colliding with the vehicle in the other lane.

As already discussed in Section 2.3, no solution is better than the other. In the one
hand, an utilitarian approach would swerve and collide with the other car, as in over-
all the risk of injury is lower for the occupants of the vehicles. On the other hand, a
‘self-safety’ approach would collide with the pedestrian as the damages to the robot
would be negligible. As such, a risk assessment framework should be able to infer
both risks and leave the choice of which one to use to the philosophers or the insur-
ance companies.

In the context of Bayesian Occupancy Grids, Rummelhard et al. [281] proposed
a method to assess probabilities of collision in dynamic environments. In order to
tackle the problem of the Bayesian tessellation, they proposed two approaches that
are:

Collision probability with a given surface: In the same fashion as Lachapelle et al.
[274] that pondered the probability of collision by the areas of the cells, they
proposed to evaluate the likelihood of colliding with a selected surface size. Ac-
cording to this area, and to the area of a cell, the number of cells𝑛 to be struck is
thus given, the computed risk value being the probability to collide with 𝑛 cells
of the grid. Figure 6.2 provides an example of such metric.
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Maximum of collision probability: They argue that in real experimentations, a sim-
pler approach that is the maximum value of collision over the cells, tends to
work better.

Following, Guardini et al. [105] proposed to convert a Bayesian occupancy grid
into a generic risk map where the risk function can be changed according to the sce-
nario, in the same fashion as our work. For each cell, they define the associated Prob-
ability of Collision with Injury Risk (PCIR) as

PCIR=ℙ(occ) ⋅ 𝑆(𝑐𝑖), (6.1)

where 𝑆(⋅) is a severity function that characterizes the collision at the given cell𝑐𝑖. This
severity function has the same meaning that our risk function, that is quantifying the
risk of the event collision. However, in the case of risk maps deduced from Bayesian
occupancy grids, the issue remains the same as before: there is nonaturalway to infer
from thismap a consistent risk for a given path. One can of course extend thework of
Rummelhard et al. [281] and infer the risk of the path as themaximum risk of the cells
encountered. However, drawbacks emerge quite fast as, for instance, colliding with
a pedestrian with a severity of 95% is judged safer than colliding 𝑁 > 1 pedestrians
with a severity of 94%.

Subsequently, we propose in the next section what can be seen as the natural ex-
tension of the work of Guardini et al. [105]. We present a way to infer generic, con-
sistent risks over a path in dynamic environments. Instead of storing a risk for each
position, we instead store the intensity of the event collision and convert it to a risk1

only at the time of the assessment of a given path. Thus, consistent metrics are re-
turned that keep their physical meaning and yield the robot to make more informed
decisions.

6.2 Proposed approach

We present here how to construct Dynamic Lambda-Fields as well as how to as-
sess risks using this map as done in the static case in Chapter 5. In this chapter, we
define the risk as the maximum change of kinetic energy of the robot and the obsta-
cle (static or dynamic) due to a collision. The framework allows the risk function to
be changed depending on the application. For example, the risk function could also
model the probability of survival for both the vehicle occupants and the collided ob-
stacle if it is human. By keeping the risk in its physical form, the robot is able to make

1This risk can be reduced to a probability of collision, and therefore the framework is also a exten-
sion of Rummelhard et al. [281].
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more informed decisions without the need of tuned user-defined thresholds. First,
we show how to compute the Lambda-Field, namely the intensities 𝜆𝑖 of both static
and dynamic obstacles, using a lidar sensor. Then, we present how to manage the
particles used to represent the obstacles in the environment. Finally, we show how
to use this field to assess physical risks given a generic risk function, leading to the
generation of safe paths for the robot.

As the environment contains both static and dynamic obstacles, the value of the
lambda of a cell 𝑐𝑖 (i.e., its intensity representing the likelihood of a collision occur-
ring in this cell) is stochastic. Indeed, the cell can be occupied by a static obstacle, a
dynamic obstacle or be free of obstacles. Therefore, we define the probability of colli-
sion as the probability of colliding with an obstacle in the expectation of the intensity
field, leading to

ℙ(coll) = 1−exp
⎛

⎝
− 
𝑐𝑖∈𝒞

Δ𝑎𝔼𝜆𝑡𝑖𝑐𝑖
⎞

⎠
, (6.2)

for a path crossing the cells 𝒞 = 𝑐0,…,𝑐𝑁−1 at the times 𝑡0,…,𝑡𝑁−1, of expected

intensities 𝔼𝜆𝑡0𝑐0 ,…,𝔼𝜆𝑡𝑁−1𝑐𝑁−1 and of area Δ𝑎. One can note that the probability
of collision does not dependon the tessellation size as the sum isweightedby the area
of the cells, as shown in [129].

In order to estimate the expectation of the intensity 𝔼𝜆𝑡𝑐 for each cell 𝑐, we use
particles that represent the possible obstacles in the environment. The static grid is
considered as a set of particles that do not move and have the size of a cell, whereas
dynamic obstacles are defined as moving particles of different classes. We define in
thiswork three different classes of particles: the ‘cell’ class, for the static environment,
the ‘pedestrian’ class and the ‘car’ class for the dynamic obstacles. More classes can
be added at the cost of a slower convergence of the obstacle classes. Each particle
has a position, a speed, a velocity profile (i.e., a car can achieve greater speed than a
pedestrian, whereas a pedestrian can change direction quicker). Each particle is also
defined by their size. For instance, a pedestrian particle is represented by a 40 cm di-
ameter circle whereas a vehicle is described by a rectangle of 2×1m. Note that the
particles’ footprints are not dependent on the tessellation size. Naturally, particles of
the ‘cell’ class have null velocity and acceleration. Using these attributes, the frame-
work is able to represent the different obstacles more efficiently, as only one particle
can represent an obstacle even if it spans several cells, contrary to [189] where a parti-
cle does not have a size. Also, using the particle classes representing the obstacle, the
classes of the obstacles are inferred at the same time, allowing the framework to take
into account their classes while assessing the risk of a path. For instance, if the risk
function takes into account the probability of survival of collided obstacles, it allows
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the robot to prefer colliding with a car over a pedestrian. Note that no clustering is
performed and that the class inference is solely done using lidar detections.

As an example, Figure 6.3 gives the Lambda-Field of Figure 6.1 where the robot
wants to cross the environment while a pedestrian abruptly appears on the road,
therefore having only two choices: either braking and colliding with the pedestrian
or swerving and colliding with the car in the other lane, hence saving the pedestrian.
The environment is populated by static particles (one per cell) of different intensi-
ties whereas the possible dynamic obstacles are represented using dynamic particles
(in this example, only two, one of type ‘pedestrian’ and the other of type ‘car’). The
expectation of the cells’ intensity that the robot crosses is derived in the following sec-
tion, taking into account the intensity of the particles that are in the cell at the time of
traversal (a static particle and possibly several dynamic ones). Once the expected in-
tensity of the cells is computed, the probability of collision of the robot’s path is given
by Equation 6.2, integrating the expected intensity of the cells crossed by the robot.
Then, the expectation of a risk function over the path can be computed, giving more
insight on which path is the safest.

λi = 0.1

λi = 30

λi = 30

Figure 6.3: Example ofDynamic Lambda-Fieldwhere apedestrian emerges unexpect-
edly on the road in front of the robot (black box with its front represented as a filled
triangle) while another vehicle is approaching in the opposite lane. The environment
is represented as a set of cells storing the expected intensity, computed using the in-
tensity of the static (resp. dynamic) particles, depicted in gray (resp. red) scale, occu-
pying these cells. Depending on the risk function, the robot can assess which one of
the two paths (in purple) is the safest.

6.2.1 Computation of the expectation of a cell

In order to measure particles and infer the risk of a path, the first step is to compute
the expectation of the intensities of the cells. When measuring the environment at
a given time, we assume that a cell cannot contain more than one obstacle (e.g., a
cell can contain a wall or a car but not both). This consideration allows us to only
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measure the obstacle (i.e., the particle) that is in the cell, as for instance we do not
want to measure the static part of a cell as occupied if a moving car is in the same
cell at this time. Furthermore, we also model the probability that a particle still exists:
it is indeed unlikely that a particle still represents an obstacle after having run into
a wall. If this case occurs, the existence probability of the particle will drop. Under
these considerations, the expected lambda of a cell 𝑐 is given by

𝔼𝜆𝑡𝑐 = 
𝑝𝑖∈𝑐

𝜆𝑖ℙ⒧𝑝𝑖 ∈ 𝑐⒭ℙ⒧𝑒𝑖 |𝑝𝑖 ∈ 𝑐⒭ , (6.3)

where 𝜆𝑖 is the lambda of the particle 𝑝𝑖 being in the cell at the time of traversal 𝑡,
ℙ⒧𝑝𝑖 ∈ 𝑐⒭ depicts the probability that the particle 𝑝𝑖 is the one located in the cell and
ℙ⒧𝑒𝑖 |𝑝𝑖 ∈ 𝑐⒭ is the probability that the particle 𝑝𝑖 exists. In the case where there is no
dynamicobstacle in the cell, theprobabilityℙ⒧𝑝𝑖 ∈ 𝑐⒭will be one for the static particle,
which can have a very low lambda, thereby meaning that the cell is safe to cross, or a
high lambda,meaning that the cell contains a static obstacle. Assuming that every cell
has exactly one obstacle, we can compute the probability of the particle 𝑝𝑖 of being
in the cell 𝑐 as the probability that only the particle 𝑝𝑖 creates a collision given that
there is exactly one obstacle in the cell:

ℙ⒧𝑝𝑖 ∈ 𝑐| (𝑝0 ∈ 𝑐)⊕⋯⊕(𝑝𝑁𝑃−1 ∈ 𝑐)⒭ =
(1−exp ⒧−𝜆𝑖Δ𝑎⒭)∏𝑗≠𝑖 exp ⒧−𝜆𝑗Δ𝑎⒭

∑𝑘(1−exp ⒧−𝜆𝑘Δ𝑎⒭)∏𝑗≠𝑘 exp ⒧−𝜆𝑗Δ𝑎⒭

=
(1−exp ⒧−𝜆𝑖Δ𝑎⒭)exp ⒧𝜆𝑖Δ𝑎⒭∏exp ⒧−𝜆𝑗Δ𝑎⒭

∑𝑘(1−exp ⒧−𝜆𝑘Δ𝑎⒭)exp ⒧𝜆𝑘Δ𝑎⒭∏exp ⒧−𝜆𝑗Δ𝑎⒭

= (1−exp ⒧−𝜆𝑖Δ𝑎⒭)exp ⒧𝜆𝑖Δ𝑎⒭
∑𝑘(1−exp ⒧−𝜆𝑘Δ𝑎⒭)exp ⒧𝜆𝑘Δ𝑎⒭

= (1−exp ⒧−𝜆𝑖Δ𝑎⒭)
exp ⒧−𝜆𝑖Δ𝑎⒭

⋅ 1
∑𝑘(1−exp ⒧−𝜆𝑘Δ𝑎⒭)exp ⒧𝜆𝑘Δ𝑎⒭

∝ 1−exp ⒧−𝜆𝑖Δ𝑎⒭
exp ⒧−𝜆𝑖Δ𝑎⒭

,

(6.4)

for a cell 𝑐 of area Δ𝑎 where𝑁𝑃 particles lie in it, ⊕ being the standard XOR operator.
The probability of existence ℙ⒧𝑒𝑖 |𝑝𝑖 ∈ 𝑐⒭ is defined as the joint probability that the
particle did not collide with the static environment since its creation and that it still
follows an obstacle, computed as

ℙ⒧𝑒𝑖 |𝑝𝑖 ∈ 𝑐⒭ = exp
⎛

⎝
− 
𝑐∈𝒫𝑖

𝜆𝑐,𝑠
⎞

⎠
⋅exp ⒧−𝜏 ⋅ 𝑡𝑖⒭ , (6.5)

where 𝒫𝑖 is the path (set of crossed cells) of the particle 𝑝𝑖, 𝜆𝑐,𝑠 is the lambda of the
static particle at the cell 𝑐 (we allow dynamic particles to cross without collision), 𝑡𝑖
is the time since the last measurement ‘hit’ (i.e., the lidar hits the obstacle) of 𝑝𝑖 and
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𝜏 is the rate of the distribution. Indeed, if the particle has not been measured for a
long time, it is very likely that either the particle lost the obstacle or that the obstacle
left the field of view of the robot. This probability can also take into account other
sensors such as a camera: for instance, the probability of existence of particles of
type ‘pedestrian’ should drop if the camera informs the robot that there is a car at
this position. Finally, the probability of existence can also be updated with methods
such as [282] that performs an ICP algorithm while segmenting lidar points as static
or dynamic. Therefore, if a point is segmented as dynamic, the probability that the
static particle is the one lying in the cell falls to zero, and inversely if the point is read
as static.

6.2.2 Measuring particles

Using the expressions of the probability of collision given by Equation 6.2 and the
expectation of the intensities of the cells given by Equation 6.3, we provide a means
of estimating the lambdas of the static field as well as the dynamic particles using a
lidar sensor. As in [129], we determine the combination of the intensities 𝜆 = 𝜆𝑖 of
the particles that maximizes the expectation of the 𝐾 beams the lidar has shot since
the beginning. The lidar is modelled as a range sensor with an error region of area 𝑒:
for a lidarmeasurement, the truepositionof the obstacle is containedwithin the error
region, itself centered on themeasurement. In the case of a perfect sensor, this region
is reduced to a point at the measurement position. Using the derivation in [129] and
the expectation of the intensity given by Equation 6.3, the intensities of the particles
are given by

𝜆𝑖 =
1
𝑒 ln⒧1+ ℎ𝑖

𝑚𝑖
⒭ , (6.6)

where ℎ𝑖 is the sum of probabilities ℙ⒧𝑝𝑖 ∈ 𝑐ℎ⒭ℙ⒧𝑒𝑖 |𝑝𝑖 ∈ 𝑐ℎ⒭ each time the particle 𝑝𝑖
has been counted as ‘hit’ in the cell 𝑐ℎ (i.e., was in the region of error of the sensor)
and𝑚𝑖 the sumof probabilitiesℙ⒧𝑝𝑖 ∈ 𝑐𝑚⒭ℙ⒧𝑒𝑖 |𝑝𝑖 ∈ 𝑐𝑚⒭ each time the particle𝑝𝑖 has
been counted as ‘miss’ in the cell 𝑐𝑚 (i.e., the lidar beam crossed the cell without
collision). For this equation to be true, one needs the assumption that for a given
measurement, all of the particles measured in the error region of the sensor have the
same intensity. As the lidar error region tends to be small, this assumption holds in ev-
ery situation except for low-intensity static particles. Indeed, high-intensity dynamic
particles can easily come to the cell containing the low-intensity particle, thereby the
assumption that every obstacle has the same intensity no longer holds. This case is
tackled by assuming that the low-intensity static particle has the same intensity as the
high-intensity particles, therefore overestimating its intensity and keeping a conser-
vative approach.
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6.2.3 Particle Management

Using the particles update equation previously derived, the Lambda-Field is updated
as described below. At each iteration, the particles evolve, are updatedwith lidarmea-
surements and are resampled. First, the particles evolve using a simple update equa-
tion:

𝐱𝑡𝑖 = 𝐱𝑡−1𝑖 +𝐯𝑡𝑖Δ𝑡,
𝐯𝑡𝑖 = 𝐯𝑡−1𝑖 +𝐚𝑖Δ𝑡 with 𝐚 ∼𝒩 (0,𝚺𝑖),

(6.7)

for the particle 𝑝𝑖 of position and speed 𝐱𝑡𝑖,𝐯𝑡𝑖 ∈ ℝ2 at the time 𝑡, where 𝐚𝑖 ∈ ℝ2 is a
centered Gaussian random variable of covariance 𝚺𝐢 depicting the acceleration of
the particle. Evidently, static particles have zero speed and acceleration. Then, for
each measured cell 𝑐, we compute the probability that the particle 𝑝𝑖 is indeed the
particle in the cell. Each particle in the ‘hit’ zone (resp. ‘miss’ zone) of the lidar mea-
surements increments its ‘hit’ counter ℎ𝑖 (resp. ‘miss’ counter 𝑚𝑖) of the quantity
ℙ⒧𝑝𝑖 ∈ 𝑐⒭ℙ⒧𝑒𝑖 |𝑝𝑖 ∈ 𝑐⒭ as shown in Equation 6.6. Moreover, particles have a low prob-
ability to switch classes (i.e., ‘pedestrian’ switching to ‘car’ and vice versa). This con-
sideration avoids an incorrect convergence of the particles (e.g., a low velocity car
can be represented as a group of pedestrians, however both hypotheses have to be
maintained).

Once the particles have been updated, they are resampled according to the joint
probability of their existence and selecting one of the cells in which they are located:

𝑤𝑖∝ ℙ⒧𝑝𝑖∈𝑐⒭ℙ⒧𝑒𝑖 |𝑝𝑖 ∈ 𝑐⒭ 𝑝𝑖∈𝑐
1−exp⒧−Δ𝑎𝔼𝜆𝑡𝑐⒭ (6.8)

Moreover, particles can be born during the resampling step. Indeed, obstacles can
appear on the map and the particles might not converge to an obstacle, leaving a
dynamic obstacle unidentified. Even if this situation is less likely the more particles
we have, dealing with such a critical case is necessary. Hence, we allow the birth of
particles inside any cell 𝑐measured ‘hit’ by the lidar with

𝑤birth
𝑐 = 𝛾 ⋅exp

⎛

⎝
−Δ𝑎 

𝑐∈ℰ𝑘
𝔼𝜆𝑡𝑐

⎞

⎠
, (6.9)

for every ‘hit’ measurement of error region ℰ𝑘, where 𝛾 is a coefficient controlling the
proportion of births at each resampling. If the measured cell is already populated by
particles of high lambdas, meaning that the obstacle is already represented, the birth
probability drops to zero. If the particle which is born is picked during the resam-
pling, random class and speed are drawn from a uniform distribution. algorithm 1
summarizes the procedure.



164 DYNAMIC LAMBDA-FIELDS

Algorithm 1: Particles management
repeat

Evolve particles using Equation 6.7
Update particles with measurements using Equation 6.6
forall particles 𝑝𝑖 do

Draw a particle 𝑝𝑘 with weight𝑤𝑘 and birth weight𝑤birth
𝑐

Replace particle 𝑝𝑖 with particle 𝑝𝑘
end

until True;

Once every particle has been updated and resampled, we infer the underlying
distribution for each cell. Indeed, planning while taking into account every particle
wouldnot reach real-time constraints. For each cell, the speed ismodeled as anormal
distribution 𝒩 (𝜇𝑣,𝜎𝑣) whereas the direction is modeled using the Von-Mises distri-
bution (as the direction lies on a circle) of parameters 𝜇𝜃,𝜅𝜃, where these parameters
are estimated as in [279]. We estimate the above parameters as

𝜇𝑣 =
1
𝑁 𝑣𝑖, 𝜎2𝑣 =

1
𝑁−1⒧𝑣𝑖−𝜇𝑣⒭2 ,

𝜇𝜃 = arg ⒧exp⒧𝑗𝜃𝑖⒭⒭ , 𝜅𝜃 =
𝑅̄(2− 𝑅̄2)
1− 𝑅̄2 ,

(6.10)

where 𝑣𝑖,𝜃𝑖 is the speed and direction of the particle 𝑝𝑖 and 𝑅̄ = | 1𝑁 ∑𝑘 exp⒧𝑗𝜃𝑘⒭|, 𝑗 be-
ing the standard imaginary number solving the equation 𝑗2+1 = 0. In the case where
𝜅𝜃 is large enough, theVon-Misesdistributioncanbeapproximatedbyanormaldistri-
bution of the same mean with a standard deviation of 𝜎𝜃 =√1/𝜅𝜃. Using Von-Mises
distribution avoids periodicity problems while dealing with high uncertainty angles.

At the end of the mapping process, a grid is created where each cell contains an
intensity for the static part, as well as an intensity for each type of dynamic particle
(i.e., summing the intensities of the particles of the same class, using Equation 6.3).
We do not sum the intensities of the different classes since the risk can depend on
the type of obstacle. We instead provide each class intensity to the planner. As we
defined three classes in this work (static, pedestrian and car), each cell contains three
intensities, one for each obstacle.

Figure 6.4 provides a graphic example of the overall algorithm. In this scenario,
a car traveling at 1ms−1 south, is measured by the robot. Particles are evolved and
updated as shownabove, as shown in black in the figure. In this example, only car par-
ticles have been created. Then, for each cell the underlying distribution of the class
‘car’ is inferred, where one of them is depicted below the robot. As shown in the next
section, we transform the distribution in a set by taking two sigmas (i.e., approxima-
tively 95%) on the speed and orientation, yielding the set depicted in red in the polar
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plot. Because of the occlusion due to the vehicle, the robot is unable to measure par-
ticles behind the robot. These particles represent the possibility that another car is
hidden behind the other. Depending on the rate 𝜏 of the distribution that dictates
the existence of non-measured particles as shown in Equation 6.5, these hypothesis
can either be kept or removed. In this example, the rate was set to 𝜏 = 0 so that all
hypothesis are kept even if there are not measured since a long time. In real-world
applications, a rate 𝜏 > 0 has to be set to avoid particles living and being re-sampled
in far away regions that hinder the convergence of true obstacles near the robot (since
there is far less particles that birth on these obstacles).
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Figure 6.4: Example of velocity estimation. A car (red box) is navigating at a speed of
1ms−1 in the southdirection. Becauseof theocclusion (in gray) causedby the vehicle,
all the hypothesis of other vehicles behind that said car are kept, while the speed and
direction of the vehicle is estimated. The red line in the polar plot corresponds to set
at 95% on the speed and orientation distribution. 500 particles were used in this toy
example.

6.2.4 Risk assessment and Path Planning

Using the data provided by the dynamic map, we generate safe trajectories for the
robot. As in Gerkey et al. [280], we sample commands of translational and rotational
velocities (𝑣,𝑤) and choose the one leading the closest possible to the objective while
being below the allowed risk. In each cell, the robot has to go through all of the ob-
stacles simultaneously (i.e., static obstacle and all of the dynamic ones arriving in the
cell at the same time as the vehicle). The probability of colliding with the obstacle 𝑜𝑘
in a cell 𝑐 containing𝑁𝑂 obstacles 𝑜0,…,𝑜𝑁𝑂−1 of intensities 𝜆0,…,𝜆𝑁𝑂−1 at the time
𝑡 is the joint probability of not colliding the other obstacles {𝑜𝑖}𝑖≠𝑘 and colliding with
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the obstacle 𝑜𝑘:

ℙ⒧coll𝑐,𝑘⒭ =
Δ𝑎

0
exp

⎛
⎝
−𝑎 

𝑖≠𝑘
𝜆𝑖
⎞
⎠
⋅𝜆𝑘 exp ⒧−𝑎𝜆𝑘⒭d𝑎

= 𝜆𝑘
𝔼𝜆𝑡𝑐 

1−exp⒧−Δ𝑎𝔼𝜆𝑡𝑐⒭ , (6.11)

where 𝔼𝜆𝑡𝑐 = ∑𝑁𝑂−1
𝑖=0 𝜆𝑖 is the expected lambda of the cell 𝑐 at the time of traversal

𝑡, where the intensities 𝜆𝑖 of the incoming obstacles 𝑜𝑖 have been pondered by the
probability of reaching the cell beforehand, using the probability density function of
the Lambda-Field defined in Equation 5.30. One can note that the expectation is the
same as Equation 6.3 where we lifted the assumption that only one obstacle can be in
the cell. Indeed, even if only one obstacle can truly be in a cell, several obstacles can
reach the cell from different directions and create a collision with the robot which
attempts to cross it. Since several obstacles can hit the robot in the same cell, the
assumptionof eachcell havingonlyoneobstacle is lifted, yieldingℙ⒧𝑝𝑖 ∈ 𝑐⒭ = 1 for the
computation of expectation in risk assessment. Using Equation 6.11, we compute the
risk of a path as the expectation of the risk function 𝑟(𝑎,𝑜𝑘), where 𝑎 is the traversed
area at the time of the collision and 𝑜𝑘 is the obstacle the collision occurs with, as

𝔼[𝑟(⋅)] =
𝑁−1

𝑖=0

𝐾𝑖 
𝑜𝑘∈𝑐𝑖

𝜆𝑘
𝔼𝜆𝑡𝑖𝑐𝑖

⋅ 𝑟(𝑖Δ𝑎,𝑜𝑘),

with𝐾𝑖 =exp
⎛

⎝
−
𝑖−1

𝑗=0

Δ𝑎𝔼𝜆
𝑡𝑗
𝑐𝑗
⎞

⎠
⒧1−exp⒧−Δ𝑎𝔼𝜆𝑡𝑖𝑐𝑖⒭⒭ ,

(6.12)

for a path passing through the cells {𝑐0,…,𝑐𝑁−1} at the times {𝑡0,…,𝑡𝑁−1} of expected
lambdas 𝔼𝜆𝑡𝑖𝑐𝑖. The curvilinear abscissa 𝑠 is linked to the traversed area by the re-
lation 𝑠 = 𝑖Δ𝑎/𝐿 where 𝐿 is the width of the robot. In order to determine which ob-
stacles are in the cell at the time of traversal, we convert the velocity distribution of
each dynamic cell into a set as depicted in Figure 6.5. The set corresponds to the
shape of the obstacle’s (i.e., dynamic cell) path using two sigmas on its velocity and
orientation. This shape is then tested to cross the cells of the robot’s path, using the
Gilbert-Johnson-Keerthi distance algorithm known for its fast computation. In the
case of a collision between the robot’s path and the cell’s path (dashed cells in Fig-
ure 6.5), the earliest arrival and latest departure time of the dynamic obstacle and the
robot are compared. If the time intervals intersect, the obstacle is said to be in the cell
of the robot’s path. Using this risk assessment method, the robot is able to effectively
assess the risk of a path. In the following section, the risk is defined as the change of
kinetic energy arising from the collision, thus taking into account the harmfulness of
the collision for both the robot and the obstacle it collides with.



167

λi = 0.1

λi = 2

λi = 30

λi = 30

Figure 6.5: Example of risk assessment. The robot (left vehicle) wishes to cross the
crossroad using the trajectory depicted in blue. A dynamic obstacle arrives from the
bottom of the map, with a probabilistic direction and speed, converted into a set (in
red) that corresponds to the possible positions of the obstacle. Using these distribu-
tions for each dynamic cell (here depicted for the crossed one), the potential collision
positions are marked (dashed cells). If the times of traversal intersect, the obstacles
are added to the crossed cells for risk assessment.

6.3 Experimentations

In order to show the applicability of our theory, we implemented our mapping
framework on a Jetson TX2 GPU. We used the robot depicted in Figure 6.1 (right),
equippedwith a lidar LMS-151 located at its front. As the aim is to plan short distance
trajectories and the map is centered on the robot, we only used the odometry for the
relative displacements of the robot. To estimate the states of the dynamic obstacles,
we used 2×104 particles in the experiments, running at more than 10Hz and more
than 5Hz if the planning component is carried out on the same GPU. The map size
was set to 200× 200 cells of size 15× 15 cm, resulting in a map of 30× 30m. In order
to accelerate the convergence of the particles towards the obstacle, particle velocities
were resampled with a Gaussian noise of 𝜎 = 0.3ms−1.

6.3.1 Evaluation

First, we show that the convergence speed of the framework. Using the same type of
validation as Nuss et al. [194], we simulated an environment where an obstacle was
approaching the robot at a known velocity and orientation. This experiment was re-
peated 50 times in which the obstacle was either a pedestrian or a car. The velocity
of the obstacle was chosen to be 1.5ms−1, as this profile of speed can be matched
by either the ‘pedestrian’ or the ‘car’ class. Using the fact that only one dynamic ob-
stacle is in the environment, we retrieve the mean and a confidence interval at two
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sigmas for the velocity and the orientation. Figure 6.6 shows the results for a pedes-
trian (in green) and a car (in blue). We can see that both the speed and the orientation
converge to a valid value after less than 2 s. Furthermore, as the framework assesses
the risk by allowing two sigmas on the velocity and the orientation, the ground truth
is always contained in the estimation. At first, the speed of the obstacle is overesti-
mated as both cars of high velocities and pedestrian of low velocities coexist. In the
case of the pedestrian, all particles of class ‘car’ are discarded as their size is too large
for the obstacle (i.e., they lie in cells counted as free by the sensor). Once the ‘car’
particles are removed at 𝑡 ≈ 1s, the mean velocity converges to the true value at the
next iteration. In the case of the car, the car particles of high velocities are discarded
as soon as they leave the measurements zone, which is indicated by the fact that the
convergence of the mean is smoother than in the pedestrian experiment.
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Figure 6.6: Convergence of the speed and orientation of a single dynamic obstacle
(Left: pedestrian; Right: car) where the ground truth is depicted in dashed black. The
mean is displayed in solid line whereas the confidence interval at two sigmas is de-
picted in light shade. The experiment has been repeated 50 times for each figure.

The convergence of the obstacle class is also studied. We compute the probabil-
ity of the obstacle to be of a certain class as the probability to collide with dynamic
cells of the class. Figure 6.7 shows the resulting convergence for a pedestrian and a
car. In the case of the pedestrian, the framework quickly converges to the real class
of the obstacle after 1 s. However, in the case of the car, the framework cannot decide
whether the obstacle is a car or a group of pedestrians. Indeed, with only a lidar, the
obstacle can match both classes equivalently. Other sensors such as a camera could
remove the ambiguity. Also, the class would be determined to be a car if the veloc-
ity profile only matched the ‘car’ class (i.e., the obstacle moves at greater velocity).
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Therefore, the framework is able to effectively infer the velocity, orientation and class
(when possible) of the different obstacles.
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Figure 6.7: Convergence of the class probability for a pedestrian (left) and a car (right)
with the quantiles at 25% and 75% in light shade. Whereas the pedestrian has its class
quickly inferred, the framework cannot decide between a car and a group of pedestri-
ans in the case where the car has a speed matching both classes.

6.3.2 Validation of the approach

In the following experiment, the risk is defined as themaximumgain of kinetic energy
between the robot and the obstacle it collided with, assuming inelastic collisions, as

𝑟(𝑠,𝑜𝑘) =max⒧12𝑚𝑅 ⒧𝑣𝑅(𝑠)−𝑣𝑓⒭
2 , 12𝑚𝑘 ⒧𝑣𝑘−𝑣𝑓⒭

2⒭

with 𝑣𝑓 =
𝑚𝑅𝑣𝑅(𝑠)+𝑚𝑘𝑣𝑘

𝑚𝑅 +𝑚𝑘
(6.13)

where 𝑚𝑅,𝑣𝑅(𝑠) is the mass and velocity of the robot at the curvilinear abscissa 𝑠,
𝑚𝑘,𝑣𝑘 the mass and velocity of the obstacle 𝑜𝑘, and 𝑣𝑓 the final velocity of the ob-
stacles after collision. The mass of the robot was set to 150 kg while the masses of the
‘pedestrian’ and ‘car’ classes were set to 80 kg and 500 kg respectively. This risk en-
ables the consideration of both the possible damages suffered by the robot but also
by the obstacle it collided with. The decision to collide with a pedestrian takes into
account that although the robot will suffer little damage, the pedestrian is at a much
greater risk. Note that the risk function can be adapted depending on the context and
can take into account other elements if available such as slippage, car deformation
and so on. The static environment is assumed to have infinite mass, meaning that
collisions with the static environment will always lead the vehicle to stop. As shown
in Figure 6.1, the robot had to move through an urban-like environment consisting
of a crossroad, where other agents such as pedestrians and cars were also evolving. A
car was approaching in the other lane and a pedestrian entered the field of view of
the robot from behind, afterwards crossing the road in front of it. For obvious secu-
rity reasons, in this experiment, the velocity of the robotwas bounded such that it will
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always be able to instantly stop in the case of hazardous situations where every path
is too risky, contrary to the scenario depicted in Figure 6.3.

Figure 6.8 shows the resulting Lambda-Field for two different timestamps. The
static environment is depicted with a gray scale, whereas the dynamic environment
is shown with a red scale. Using our framework, the velocity distribution of each cell
is extracted as well as a lambda of the static environment and each type of particle
(i.e., in our case a lambda for the ‘car’ class and a lambda for the ‘pedestrian’ class).
At 𝑡 = 19s, the large dynamic high-lambda zone (in red) of the map corresponds to
the car, where the probability of being a car is approximatively 50% for the underlying
cells. The probability did not converge to 100% because without additional sensors,
the framework cannot decide whether the obstacle is a car or a group of pedestri-
ans, as the velocity of 1.2ms−1 is possible for both classes. At 𝑡 = 28s, a pedestrian
emerges from behind the robot, then crosses the road right in front of it a few sec-
onds later. When the robot detects the new obstacle, an inconsistency between the
map and themeasurements is found, leading the framework to createmany particles
on this location. Note the light gray trace which is left behind the pedestrian, as the
framework hadnot yet decidedwhether the obstaclewas static or dynamic. As shown
in the right polar distribution (i.e., angle for the orientation, radius for the velocity),
the hypothesis of the pedestrian pursuing its northward trajectory (top of the figure)
is maintained. This hypothesis models the fact that without other sensors, the obsta-
cle can in fact represent two pedestrians walking together, with the probability that
they can change directions. The wrong hypothesis (i.e., pedestrian moving north) is
discarded over the next iterations.

Finally, we used this dynamic map to plan safe paths for the robot. The goal of
the robot was set at the top of the map, 15m away from its position. To do so, we
set the maximum risk to be 𝑟max = 1J where any path below this risk is considered
safe. Figure 6.9 shows the risks the robot underwent during the traversal. First, no
obstacles were in sight, leading the robot to accelerate to its maximum speed, here
at 0.5ms−1. At 𝑡 = 10s, a car entered the field of view of the robot. As the obstacle
was far away enough during the convergence of the speed and orientation, the robot
did not stop its course. At 𝑡 = 22s, the car passed on the left side of the robot. As the
velocities were precise enough not to encounter the path of the robot, it continued its
course at full speed. At 𝑡 = 31s, the pedestrian took a hard left turn, deviating from its
expected trajectories thereby leading the framework to birth particles on its position.
Consequently, the robot detected a danger on every path it could take, leading it to
stop as this decision is the one minimizing the risk. The associated risk is then the
risk of the pedestrian running into the robot, thus harming himself. In contrast, the
Bayesian occupancy gridwould only yield a probability of collision (in this case equal
to one) and the robot could not distinguish between the collision at full speed and
the collision at rest since both paths lead to a collision with the pedestrian. If the
velocity of the robot didnot allow it to stop, the robotwould thenprefer to collidewith
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Figure 6.8: Example of field resulting from our method, where the robot is located at
the bottom center of the map. The static (resp. dynamic) environment is represented
using a gray (resp. red) scale. A car is approaching the robot at 𝑡 = 19s, whereas
a pedestrian is crossing the road at 𝑡 = 28s right in front of the robot. Some speed
distributions of the cells are displayed in polar plots (angle for the orientation, radius
for the velocity), where inner circles correspond to a step of 1ms−1.

a parked car of same weight, as the resulting risk is lower. After a few iterations, the
velocity of the pedestrian re-converged, and the robot continued on its way as soon
as the pedestrian left. The robot accelerated to its maximum velocity and reached its
goal safely.

6.4 Discussion

This extension to the dynamic world is still young and many enhancements can
be done. As discussed in the introduction, the advantages of the Lambda-Fields only
shine in situation of non-zero risk, meaning that the experimentations should reflect
this as much as possible. Thus, experiments should be performed in situations of
high-risk, which is not quite applicable as we would like to do more than one exper-
iment which each robot. Coupling the framework with simulation programs such as
CARLA [283] could provide the level of risk desired without actually breaking things.
Other sensors, such as radars or cameras, could also be used to better inform the
speed and classes of the obstacles.



172 DYNAMIC LAMBDA-FIELDS

0 10 20 30 40 50
time [s]

0.00

0.25

0.50

0.75

1.00

V
el

oc
ity

[m
/s

]

0

5

10

15

R
is

k
[J

]

Car on the
other lane

Pedestrian
crossing

Goal reachedStart

Figure 6.9: Riskundergoneby the robotduring its traversalwith the associated speeds.
First, a car passed the robot in the other lane, where its speed was precise enough
not to cause the robot to brake or change direction. After that, a pedestrian emerges
frombehind the robot and crosses the road in front of it, leading the robot to stop and
wait for the pedestrian to free the way. The robot then rejoins its goal without further
obstacles.

Furthermore, the framework does not take into account the occlusions due to the
environment. For instance, the framework does not handle the possibility that unde-
tected cars can hide in the shadow zones of the crossroad. However, this can easily
be added by adding random particles in the close unmeasured zones, but more an
elegant solution can surely be developed. In the same context, a top-down approach
could also be theorized to take into account the sensors of the infrastructure and of
the other vehicles. Indeed, due to the possible high number of sensors available, it
could be not possible to take them all into account in real-time. A framework that
would be able to tell which sensor provides the information we seek for a safe travel
(e.g., a camera looking at a blind spot of a crossroad) would be extremely valuable.
Also, note that the top-down approach does not necessary discard information but
instead provide an order of inquiries of the sensors (e.g., looking at the camera of the
blind spot for two seconds may be more useful than spending time looking at the
camera of the car next to us that sees the same information than us). Finally, more
complex risk metrics can be included into the framework. An interesting idea is to
have another framework feeding the Lambda-Field a risk metric that can change in
real-time. Indeed, the robot might gain from changing the risk metric when transi-
tioning from ultra-urban environments to rural ones.
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6.5 Conclusion

In this chapter, we presented an extension of the Lambda-Field to the dynamic
realm that is able to assess generic risks in occupancy grids. Using particles, we mod-
eled both static and dynamic environments, deriving at the same time the nature of
the obstacles.

We first showed how to compute theDynamic Lambda-Field using lidarmeasure-
ments. Then, the resulting dynamic map is used to assess the risk for a given path,
here defined as the change of kinetic energy due to a collision with an obstacle. Us-
ing this formulation of the risk, the robotwas able to plan real-time safe trajectories in
a dynamic environment. More informed decisionswere taken, where the robot could
genuinely decidewhich decision is the best, either in an utilitarian or ‘self-safety’ way.
The developed risk metric was here defined in a utilitarian way as the maximum of ki-
netic energy was taken and not only the kinetic energy change of the robot. As such,
more hazardous paths for the robot can be taken in casewhere such a decisionwould
save a pedestrian from a high-velocity impact.

As this work focused on the theoretical framework and providing a use case for
its application, future work will involve extensive experiments with the framework
in both real and simulated benchmarks, allowing for more complex and hazardous
scenarios.
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DISCUSSION AND PERSPECTIVES

In this part, we proposed a novel framework for risk assessment in occupancy grids.
First, the framework was developed for static scenarios, allowing robot to cross un-
structured environments such as tall grass. Then, we extended the framework to
tackle dynamic obstacles in the context of urban navigation where the robot has to
watch not only for its own safety but also the safety of the other agents. In contrast
to the standard Bayesian occupancy grid, the Lambda-Fields provide a way to infer
risks for given paths. One can understand the difference as the Bayesian occupancy
grid is able to store and infer risks for a given position in the environment whereas
Lambda-Fields infer risks for a given subset of the environment. As such, Lambda-
Fields are better suited to quantify the risk of a path. The results of this thesis led to
the publication of two conference articles [80], [129] and a journal article [284].

In a broader way, the Lambda-Field stores the intensity of a given event, that we
defined throughout the whole thesis as the event ‘collision’. Using this definition, we
were able to derive a closed-form formula to build the Lambda-Field in real timewith
a lidar sensor. Then, the risk function has for generic purpose to quantify the risk of
the event at a given configuration. First, we developed the core theory of the Lambda-
Field in [129]. The framework was further extended in [284] to take into account un-
structured obstacles and allow smooth navigation in tall grass. Finally, we enhanced
the framework to take into account dynamic obstacles in [80], using a particle filter
method. Hence, the framework is able to compute a map that allows generic risk as-
sessment in both unstructured environments and dynamic, urban environments.

The risk function aimed in this thesis at quantifying the risk originating from the
collision. However, the framework is generalizable for other types of events and other
types of risks. For instance, we candefine the event stored by the Lambda-Field as the
event ‘slippage’, ‘flat tire’ or ‘get stuck in loose soil’. Of course, the way the Lambda-
Field is built has to be adapted, as for instance a lidar provides little information
whether the robot will slip at this position. The risk function would also be adapted
without difficulties, aiming at quantifying, for instance, the probability of loosing con-
trol of the vehicle. Current works are currently aiming at generalizing the framework
in this direction, as done in [285] which defines the event as the deformation of the
tires of the robot, leading to a more nuanced approach to collision assessment that
allows for instance to safely climb road curbs.

Another direction is to actively manage the incompleteness of information. Sen-
sors from other vehicles, as well as the ones mounted on the environment, could bet-
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ter inform the robot about incoming dangers. One typical example is the crossroads
scenario, where the robot cannot see obstacles coming in the perpendicular roads.
Cameras mounted on the environment, as well as an active communication between
the vehicles, would effectively lift theuncertainty. As such,managing this incomplete-
ness of the information would drastically improve the Lambda-Fields. Moreover, in
the context of unstructured environments, sensing the obstacles with other sensors
such as a radar would provide useful information. Indeed, not only a radar can sense
obstacle, but also infer their properties to a certain extent. Thus, a radar could also
infer the mass of the obstacles, conjointly with a camera. Another idea would be to
equip the robot with an air blower. As low-mass obstacles, such as tall grass, would
move under such forces, high-mass obstacles would not be impacted. These small,
moving obstacleswould thenbe easily detectedusing a lidar, thereby detectingwhich
obstacles has a mass small enough to cross them.

Furthermore, one can note that the whole theory of the Lambda-Fields can be
transposed to 3D. The sole issue is the computational requirements that indubitably
increase as we add dimensions to the framework. As such, in the case where 3D
Lambda-Fields are used in large environments, an octree representation of the en-
vironment would better fit the computational requirements than the simple tes-
sellation we adopted throughout this thesis. However, in the case of manipula-
tive robotics, the workspace is oftentimes relatively small and a constant tessella-
tion size would suffice to map its entire environment. As such, the Lambda-Fields
could be used without any modification to manipulative robotics. Indeed, as briefly
mentioned in subsection 2.2.2, robotics arms share the same risk concepts than in
mobile robotics, that is not to injure anyone during their displacements. As such,
the Lambda-Fields provide a solution to the problem of risk analysis during path-
planning, where the risk function can model the force of collision or the severity of
the injury.

Another direction to take is a better path planning algorithm working directly on
the Lambda-Fields. For now, the framework has been testedwith clothoid curves (i.e.,
tentacles) but the robot is prone to fall into local minima and the trajectory is rather
jerky. As discussed briefly in Section 5.5, there is still a lot of uncharted territory along
this way. First, a consistent global path planning algorithm is needed inmost applica-
tions and a more complex local planner could solve the aforementioned issues. The
main problem to resolve is first how to assess the risk in a global planner. Indeed, the
longer the path, the higher the risk. However, as humans, we do not angst more for a
longer travel even though the overall risk is indubitably higher. In a local manner, we
choose to define the risk as the risk of each decision, i.e., each command applied to
the robot. As such, the higher the frequency of the commands, the ‘higher’ the over-
all risk of the travel is. This conclusion is natural in the way that the shorter you keep
your eyes closed, the quicker you are to respond to danger and therefore themore risk
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you can withstand. Current works also tend to venture in this direction, which solve
the eikonal equation (subsection 4.3.1) directly in the Lambda-Field.

In conclusion, we believe that following the aforementioned directions will lead
to a robust, mathematically consistent framework that allows robots to safely roam
the world.
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APPENDIX A

HETEROGENEOUS ERROR REGIONS

In the case that the error regions ℰ𝑘 have a different size for each lidar beam 𝑏𝑘, we
need to further approximate the derivative of the log-likelihood. Under the same as-
sumption that the ℎ𝑖 error regions ℰ𝑘 containing the cell 𝑐𝑖 are small, we have

𝜕ℒ (𝑋|𝜆)
𝜕𝜆𝑖

=−𝑚𝑐 ⋅Δ𝑎+
ℎ𝑖−1

𝑘=0

Δ𝑎
exp⒧𝑒𝑘𝜆𝑖⒭−1

≈ −𝑚𝑐 ⋅Δ𝑎+
ℎ𝑖−1

𝑘=0

Δ𝑎
𝑒𝑘𝜆𝑖

,
(A.1)

leading to

𝜆𝑖 =
1
𝑚𝑖

ℎ𝑖−1

𝑘=0

1
𝑒𝑘
. (A.2)

This approximation over-estimates the lambdas compared to Equation 5.23. In-
deed, in the special casewhere all theℰ𝑘 have the samearea 𝑒, the computed lambdas
from Equation A.2 are

𝜆𝑖 =
1
𝑒
ℎ𝑖
𝑚𝑖

. (A.3)

As ∀𝑥 ∈ ℝ≥0, 𝑥 ≥ ln(1+𝑥), we will always over-estimate the lambdas using Equa-
tion A.2. This is the desired behavior as under-estimating the lambdas would lead
to under-estimate the risk.
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APPENDIX B

PROOF OF EQUATION 5.41

We here prove Equation 5.41. We have two random variables: the area at which the
robot collides𝐴 and themass𝑀 of the cell where the collision happened, ofmarginal
probability density functions 𝑓(⋅) and 𝑓𝑚(⋅). Note that we do not have directly access
to𝑓𝑚(⋅)but only𝑓𝑚𝑖 (⋅) = 𝑓𝑚(⋅|Δ𝑎𝑖), the probability density functionof themass given
where the collision happened. Under the assumption that the risk 𝑟(⋅) is constant
inside each cell, the expectation of the function 𝑟(𝐴,𝑀) is

𝔼𝑟(𝐴,𝑀) =
𝑁Δ𝑎

0

∞

0
𝑟𝑚(𝑎,𝑚)𝑓(𝑎)𝑓𝑚(𝑚|𝑎)d𝑚d𝑎

=
𝑁−1

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
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
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𝑖Δ𝑎
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(B.1)

for a path𝒫 going through the cells {𝑐𝑖}0∶𝑁−1, and with

𝐾𝑖 = exp ⒧−Λ𝑚({𝑐𝑗}0∶𝑖−1)⒭1−exp ⒧−Λ𝑚({𝑐𝑖})⒭ . (B.2)
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APPENDIX C

PROBABILISTIC ERROR REGION

If the range sensor has a large error zone, the inflation of the obstacles may be-
come problematic. Therefore, we give here a way to estimate the Lambda-Field us-
ing a probabilistic error region. Let the error region ℰ ∶ ℝ → 𝒫(ℝ2) an application
that takes a parameter and returns a subspace of ℝ2. One example is the applica-
tion that gives from the radius 𝑟 the ball centered on the lidar measurement 𝐱𝐥 ∈ ℝ2:
{𝐱 ∈ ℝ2, |𝐱 − 𝐱𝐥| ≤ 𝑟}. Furthermore, let 𝜎 be a random variable of probability density
function 𝑓𝜎(⋅) and a Lambda-Field 𝜆 ∶ ℝ2 →ℝ≥0. Under these considerations, the ex-
pectation of the intensity of the error zone ℰ (𝜎) is

𝔼
ℰ (𝜎)

𝜆(𝐱)d𝐱 =
ℝ
𝑓𝜎(𝑠)ℰ (𝑠)𝜆(𝐱)d𝐱d𝑠

=
ℝ
𝑓𝜎(𝑠)ℝ2 𝜆(𝐱) ⋅ 𝟏ℰ (𝑠)(𝐱)d𝐱d𝑠.

(C.1)

Under the assumption that the expectation of the intensity of the error zone is finite,
we can switch the integration order using Fubini’s theorem and find a more conve-
nient form:

𝔼
ℰ (𝜎)

𝜆(𝐱)d𝐱 =
ℝ2
𝜆(𝐱)

ℝ
𝑓𝜎(𝑠) ⋅ 𝟏ℰ (𝑠)(𝐱)d𝑠d𝐱

=
ℝ2
𝜆(𝐱)ℙ(𝐱 ∈ ℰ (𝜎))d𝐱,

(C.2)

where 𝟏𝑋 is the identity operator, i.e., 𝟏𝑋(𝐱) = 1 if 𝐱 ∈ 𝑋 and 0 otherwise. Using this
expectation as the new intensity functionΛ(𝒞) andputting it back into Equation 5.20,
the lambdas are nowestimatedusing the same countersℎ𝑖 and𝑚𝑖 that now represent
respectively the sum of the probabilities of being in the error zone and the sum of the
probabilities of not being in the error zone of each lidar measurement. One can note
that in the case where the error region is known, meaning that ℙ(𝑥 ∈ ℰ (𝜎)) is either
equal to zero or one, we fall back on the previously derived equations as ℎ𝑖 and 𝑚𝑖
regain their function of counting the number of times the cell has been or not in the
error region.
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APPENDIX D

COMPUTATION OF THE CONFIDENCE
INTERVAL OF THE RISK

In this thesis, the upper risk is computed using the upper bound of the confidence
interval of each lambda. However, taking these values may not lead to the maximum
risk. Indeed, if a robot goes through a homogeneous field (constant lambda for all
the field) while accelerating, taking the upper bound leads to a lesser risk. If a colli-
sion happens fast (high lambda), the risk will be low as the robot has not the time to
accelerate.

Hence, for a path crossing the cells {𝑐𝑖}, we need to find the set of lambdas
{𝜆𝑖 ∈ [𝜆𝐿𝑖,𝜆𝑈𝑖]} that maximize the expectation of collision (or minimize for the lower
bound).

We have

𝜕
𝜕𝜆𝑖

𝔼[𝑟(𝐴)] = 𝑟(Δ𝑎𝑖)𝑎𝑖Δ𝑎exp ⒧−Δ𝑎𝜆𝑖⒭− 
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(D.1)

with

𝑎𝑖 = exp
⎛

⎝
−Δ𝑎

𝑗<𝑖
𝜆𝑗
⎞

⎠
and

𝑐𝑖 = 1−exp ⒧−Δ𝑎𝜆𝑖⒭ .

As we can see, the derivative is either 0∀𝜆𝑖 ∈ ℝ≥0 or does not nullify as the second
term does not depend on 𝜆𝑖. Hence, the maximum of the function is at the border,
i.e., 𝜆𝐿𝑖 or 𝜆𝑈𝑖 (in the special case where the derivate is null for all lambda, the two
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values lead to the same risk). The maximum of the expectation is at

𝜆𝑖 = 𝜆𝑈𝑖 if
⎛
⎝
1− 

𝑘>𝑖

𝑟(Δ𝑎𝑘)
𝑟(Δ𝑎𝑖)

𝑎𝑘
𝑎𝑖+1

𝑐𝑘
⎞
⎠
≥ 0

𝜆𝑖 = 𝜆𝐿𝑖 otherwise

and the minimum is at the opposite condition.

First, we see that in the casewhere 𝑟(⋅) is constant, the derivative is always positive,
hence leading to 𝜆𝑈𝑖 all the time, which is intuitively correct.

However, the computation of the condition is not easy as it depends of the other
lambdas that we need to find. To compute these values, we need to point out the fact
that the condition for 𝜆𝑖 only depends on {𝜆𝑘}𝑘>𝑖. More specifically, for a path going
through the cells {𝑐𝑖}0≤𝑖<𝑁, the derivative for 𝜆𝑁−1 is

Δ𝑎exp ⒧−Δ𝑎𝜆𝑁−1⒭ > 0, (D.2)

meaning that the last lambdawill always be𝜆𝑈(𝑁−1). Using the fact that the condition
on 𝜆𝑁−2 only depends on 𝜆𝑁−1 which is known, we are able to compute its value
leading to the maximum of risk (or minimum). Using this recurrence, we are able
to compute one by one the lambdas from 𝜆𝑁−1 to 𝜆0.
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