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CHAPTER 1
Introduction

1.1 Context of this work

1.1.1 Zero-sum stochastic games and Markov Decision Processes

Zero-sum stochastic games are classical models, introduced by Shapley [Sha53, NS03]. They allow to
study sequential dynamic interaction between two agents evolving in an uncertain environment. The
agents involved are called players. Their interests are opposed in the sense that one player pays the
outcome of the game to the other. So that, one player, the minimizer (MIN), wants to minimize the
outcome of the game, and the other player, the maximizer (MAX), wants to maximize it. The game is
played in steps, and it evolves in a set of states S. At each step k > 1, a reward rk is generated. It
depends on the current state of the game sk and the pair of actions (ak, bk) chosen by the two players.
The actions of the two players determine also the transition probability to the next state. In a discounted
stochastic game, the total payment generated is given by

∑
k>1 γ

krk, were γ ∈ [0, 1) is a discount factor.
Solving a stochastic game consists in finding the value of the game vi, when the game starts from any
given state i ∈ S. The scalar vi is the value that each player can guarantee regardless of the actions of
the other player. In the case where the two players are “patient”, in the sense that they don’t differentiate
current and future payments (γ = 1), the game is said to be undiscounted. It corresponds to the limit of
a discounted stochastic game when γ tends to 1. In this case, the total payment that player MIN wants to
minimize and player MAX wants to maximize is the lim sup or lim inf of a mean 1

k

∑k
l=1 rl as k →∞.

In this case, the problem is called a mean payoff zero-sum stochastic game [LL69a, MN81a], and, the
main quantity of interest is the mean payoff per time unit χi that each player can guarantee, when the
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game starts from the state i ∈ S.
In the above general framework, when the players play simultaneously at each step, we say that the

game is in imperfect information. In computer science, the case of games in perfect information was
particularly studied [RF91, Con92, FV12, HMZ13]. In this case, the players play one after the other.
The term turn-based is sometimes used as a synonym of perfect information. This case can be seen as
a special case of imperfect information, and it is fundamentally easier. Indeed, we have the property
that when the set of states and sets of actions are finite, and the input data of the game is rational, the
value of the turn-based game is also rational. However, in the imperfect information case, this value is
an algebraic number [BK76].

In the special case where there is only one player, or equivalently the other player has no influence
on the game, the perfect information zero-sum game becomes a Markov decision process (MDP) [Bel57,
How60, Put14, Ber17]. In this framework also, the agent aims to make a trade-off between the current
payment that he receives and the evolution of the state of the system that is influenced by his actions,
and that will impact his future payments. Similarly to games, we also distinguish discounted and undis-
counted Markov decision processes. Stochastic games and Markov decision processes intervene in vari-
ous fields ranging from reinforcement learning [VOW12, Lit94], finance [BR11], economy [Ami03], to
health care [BH13] and ecology [Wil09].

Dynamic programming and Shapley operator

Dynamic programming is one of the main approaches used to solve Markov decision processes and
stochastic games. It allows one to transform a game to a fixed point problem involving an operator
T called Shapley operator in the case of games or Bellman operator in the case of Markov decision
processes.

In the special case of a finite set of states S = {1, · · · , n}, the Shapley operator T : Rn → Rn is a
map whose ith coordinate is given by

Ti(v) = min
a∈Ai

max
b∈Bi

{
rabi + γ

∑
j∈S

P abij vj
}
, i ∈ S, v ∈ Rn .

For each i ∈ S, Ai is a set representing the possible actions of player MIN in state i, and Bi is a set
representing the possible actions of player MAX in state i.We denote by E := {(i, a, b) | i ∈ S, a ∈
Ai, b ∈ Bi} the set of all admissible triples state-actions. For all (i, a, b) ∈ E, P abi is an element of
∆(S) the set of probability measures on S; we shall identify P abi = (P abij )j∈S to a row vector in Rn,
where P abij is the transition probability to the next state j, given the current state i and the actions taken
a ∈ Ai, b ∈ Bi. For all (i, a, b) ∈ E, rabi is a reward (real number) that MIN pays to MAX, and γ is a
discount factor. We mention that the imperfect information case can be reduced to this case, when the
sets of actions Ai and Bi are simplices.

In the discounted case γ < 1, it is known that the value vector v = (vi)i∈S does exist. It is
characterized as the unique solution of the fixed point problem

v = T (v) .

In the undiscounted case, where γ is identically 1, the main quantity of interest is the mean payoff
vector [BK76]:

χ(T ) := lim
k→∞

T k(0)/k .

The entry χi(T ) represents the mean payoff per time unit, if the initial state is i. Here, the mean payoff
is defined by considering a family of games in finite horizon k as k tends to infinity. There are alternative
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approaches, in which the mean payoff is defined as the value of an infinite horizon game [LL69a]. The
property of the uniform value established in [MN81a] entails that the different natural approaches lead
to the same notion of mean payoff.

The analysis of the mean payoff problem is simplified when the following non-linear eigenproblem
has a solution:

ηe+ v = T (v), η ∈ R, v ∈ Rn , (1.1)

where e := (1 · · · 1)> ∈ Rn is the unit vector. The scalar η is called the ergodic constant, whereas
the vector v, which is not unique, is called bias or potential. When this equation is solvable, we have
χ(T ) = ηe, i.e., the mean payoff is independent of the initial state, and it is equal to the ergodic constant.
See e.g. [AGH18] for background.

Value iteration and policy iteration [How60, Put14] are two fundamental dynamic programming
methods. They are used to solve turn-based stochastic games, both in the discounted and the undis-
counted case. In the undiscounted case, one needs to modify the value iteration algorithm to include a
normalization term, needed to get a bounded sequence, this is called relative value iteration [Whi63].
For discounted problems with a fixed discount factor, value iteration allows one to find an optimal pol-
icy in a time which is polynomial [Tse90] but not strongly polynomial [FH14]. Ye showed that policy
iteration runs in strongly polynomial time for Markov decision processes with a fixed discount fac-
tor [Ye11a]. This result was subsequently extended to two-player zero-sum games by Hansen, Miltersen
and Zwick [HMZ13]. However, for two player mean payoff games, Friedmann [Fri09b, Fri11] showed
that policy iteration can take an exponential time, and Fearnley [Fea10] showed that the same is true
for Markov decision processes. Hence, mean payoff problems are in the hardest class. However, some
special mean payoff problems have been reduced to problems with a fixed discount factor, leading to
parametrized complexity results, see [FABG13, FH13, AG13, Sch16]. We mention that deterministic
mean payoff games and stochastic turn-based mean payoff games are among the problems in the com-
plexity class NP ∩ co-NP [Con92, ZP96] for which no polynomial time algorithm is known.

Even for problems with a fixed discount, value iteration and policy iteration appear to be too slow, or
unadapted, for huge scale instances. Algorithms based on Monte-Carlo simulations can lead to improved
scalability. In a recent progress, Sidford et al. [SWWY18] combined value iteration algorithm with
sampling and variance reduction techniques. They obtained an algorithm for discounted infinite-horizon
MDPs that, remarkably, is sublinear in a certain relevant regime of the parameters. This result use in an
essential way the discounted nature of the problem.

1.1.2 Nesterov’s acceleration: from gradient descent to fixed point problems

Another idea recently used to deal with large scale instances of Markov decision processes consists on
applying Nesterov’s acceleration to value iteration. Nesterov’s acceleration technique comes from the
framework of gradient descent, where the goal is to minimize a function. Applying it to fixed point
problems is tempting, but it is a challenging problem.

Nesterov proposed in [Nes83, Nes04] to accelerate the gradient descent scheme for the minimization
of a µ-strongly convex function f : Rn → R whose gradient is of Lipschitz constant L, by adding an
inertial step:

xk+1 = yk − h∇f(yk) , (1.2a)

yk+1 = xk+1 + α(xk+1 − xk) , (1.2b)

where h > 0, and α ∈ [0, 1] are parameters. Let x∗ be the minimizer of f . When α = 0, the
scheme (1.2) reduces to gradient descent. With the step h = 1/L, the gradient descent converges
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linearly with a rate 1 − 2µ/(L + µ). Indeed, we have ‖xk − x∗‖2 6
(
1 − 2µ/(L + µ)

)k‖x0 − x∗‖2,

and f(xk)− f(x∗) 6 L
2
(
1− 2µ/(L+ µ)

)k‖x0 − x∗‖2, for all k > 1, see Theorem 2.1.14 in [Nes04].
Moreover, Theorem 2.2.3, ibid., implies that if we choose

α = 1−
√
µ/L

1 +
√
µ/L

, (1.3)

still with h = 1/L, the scheme (1.2) converges linearly with a rate 1 −
√
µ/L. Indeed, with α given

by (1.3), we have f(xk) − f(x∗) 6 2(1 −
√
µ/L)k(f(x0) − f(x∗)) for all k > 1. Note that when

the condition number L/µ is large, i.e. L/µ � 1, the rate 1 −
√
µ/L improves over 1 − 2µ/(L + µ),

whence the scheme (1.3) is commonly known as accelerated gradient descent.
The idea of applying this Nesterov’s type of scheme to the case of fixed point problems was recently

studied in [IH19, GGC19]. Given the Bellman operator T : Rn → Rn of an MDP, the value iteration
algorithm consists in starting from a vector v0 = (0, · · · , 0) ∈ Rn, and iterating vk+1 = T (vk) for
k > 0. A Nesterov scheme applied to this value iteration is of the following form

xk+1 = T (yk) , (1.4a)

yk+1 = xk+1 + α(xk+1 − xk) . (1.4b)

The 0-player case, with a finite number n of states, is already of interest. In this case, the Bellman
operator is an affine map T : Rn → Rn of the form T (x) = g + Px, where g = (gi) ∈ Rn represents
the payments and P = (Pij) ∈ Rn×n is a substochastic matrix, i.e. a matrix with nonnegative entries
such that the sum of each row is less than or equal to 1. In this 0-player case, value iteration has an
asymptotic (geometric) convergence rate given by the spectral radius of P . In many applications, this
spectral radius is of the form γ = 1− ε where ε is small. When the matrix P is symmetric , an algorithm
with an improved rate 1 − Ω(ε1/2) can be obtained by specializing the accelerated gradient algorithm
of Nesterov [Nes83]. The latter algorithm applies to the minimization of a smooth strictly convex func-
tion f , which, in the quadratic case, reduces to an affine fixed point problem with a symmetric matrix
P , see [FB15]. In contrast, developing accelerated algorithms for problems of non-symmetric type is
a challenging question, which has been studied recently in [IH19, GGC19]. In these works, the theo-
retical convergence results apply to matrices with a real spectrum, showing that the original choice of
parameters for Nesterov’s method in the symmetric case still yields an acceleration in this setting.

Apart from being applied to Markov decision processes, fixed point iteration also includes as a spe-
cial case the proximal point method [Roc76b], when the mapping T corresponds to the resolvent of
a maximal monotone operator. The proximal point method covers a list of pivotal algorithms in opti-
mization such as the proximal gradient descent, the augmented Lagrangian method (ALM) [Roc76a]
and the alternating directional method of multipliers (ADMM) [EB92]. The development of acceler-
ated proximal point method has thus attracted a lot of attention [CMY15, AP19, Att21] and a recent
paper [Kim19] constructed a new algorithm achieving ‖xk − T (xk)‖ 6 O(1/k) through the perfor-
mance estimation problem (PEP) approach [DT14]. In a more general setting when T is a nonexpansive
mapping in a Euclidean norm, a version of Halpern’s iteration was recently shown to yield a residual
‖xk−T (xk)‖ 6 O(1/k) [Lie21], also via the PEP approach. These results improve over the worst case
bound ‖xk−T (xk)‖ 6 O(1/

√
k) of the Krasnoselski-Mann’s iteration for a nonexpansive mapping (in

arbitrary norm) [BB96].
There is also a large body of literature on (quasi-)Newton type methods for solving nonlinear equa-

tions [rFS09, IS14, WN11], which can be naturally employed for solving fixed point problems and
yield fast asymptotic convergence rate. It is well-known that such methods converge only when close
enough to the solution. Some papers proposed various safe-guard conditions to globalize the conver-
gence [TP19, ZOB20] and do not provide a rate of convergence.
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1.1.3 Best approximation problems in tropical geometry

The max-plus semiring (Rmax,⊕,�) is the set of real numbers, completed by −∞ and equipped with
the addition (a, b) 7→ a ⊕ b := max(a, b) and the multiplication (a, b) 7→ a � b := a + b. Nowadays,
the term tropical semiring is used to refer to the max-plus semiring, and also to the min-plus semiring,
where the classical addition is replaced by the minimum. For some introductions to tropical geometry
see [RGST05, IMS09, MS15b]. Tropical semirings were studied in relation with various problems,
including discrete event systems [BCOQ92, CGQ99, HOVDW14], graph algorithms [GM84, But03b],
Hamilton-Jacobi-Bellman partial differential equations [McE07, GMQ11, Qu14], and more recently
machine learning methods [CM18, ZNL18, MCT21]. We recall that a subset C of (Rmax)n is a tropical
(convex) cone or equivalently a tropical submodule of (Rmax)n, if it satisfies x, y ∈ C and λ ∈ Rmax
implies λ + x ∈ C and x ∨ y ∈ C, where λ + x ∈ (Rmax)n denotes the vector with entries λ + xi, for
i ∈ [n], and x ∨ y = sup(x, y) denotes the vector with entries max(xi, yi), for i ∈ [n].

Tropical linear approximation

Several “best approximation” problems have been studied in tropical geometry. The simplest one con-
sists in finding the nearest point in a (closed) tropical module, in the sense of Hilbert’s metric. The
solution is given by the tropical projection [CGQ04], see also [AGNS11]. The best approximation in
the space of ultrametrics, which can be formulated in terms of approximation by a tropical module in
view of its application to phylogenetics, has been thoroughly studied [CF00, LSTY17, Ber20]. Another
important special case is the best approximation of a point by a tropical linear space [Ard04, JSY07].
These problems concern the approximation of a single point.

An interesting problem is to approximate a set of points by a tropical linear space. The tropical
Grassmannian Grtrop

k,n can be defined as the image by a non-archimedean valuation of the Grassman-
nian Grk,n(K) over an (algebraically closed) non-archimedean field K, under the Plücker embedding,
see [SS04, FR15]. In this way, an element of Grtrop

k,n is represented by its tropical Plücker coordinates

p = (pI) ∈ (R ∪ {−∞})(
n
k). This vector yields a tropical linear space L(p), defined by

L(p) =
⋂
I

{x ∈ (Rmax)n | max
i∈I

(pI\{i} + xi) is achieved at least twice} ,

where the intersection is taken over all subsets of [n] of cardinality k + 1.
When k = n− 1, L(p) is a called a tropical hyperplane. So a tropical hyperplane is a set of vectors

of the form

Ha = {x ∈ (R ∪ {−∞})n, max
16i6n

(ai + xi) is achieved at least twice} . (1.5)

Such a hyperplane is parametrized by the vector a = (a1, . . . , an) ∈ (R ∪ {−∞})n, which is required
to be non-identically −∞. Tropical hyperplanes are the simplest examples of tropical linear spaces and
tropical hypersurfaces [EKL06]. Tropical hyperplanes arise in tropical convexity [CGQ04, DS04], since
closed tropical convex sets can be described as intersections of tropical half-spaces. A further motivation
for considering tropical hyperplanes, arises from the study of pricing problems: tropical hypersurfaces
have been used in [BK19] to represent the influence of prices on the decision of agents buying bundles
of elementary products. The “unit demand” case (bundles of cardinality one) is modeled by tropical
hyperplanes.

We call tropical linear regression, the best approximation of a given set of points by a tropical
hyperplane. The tropical linear regression problem is not only of theoretical interest. We shall see in
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Chapter 4 that it allows one to quantify the “distance to equilibrium” of a market model, and to infer
hidden preferences of a decision maker.

Also, it is a general principle that regression (best approximation) is somehow dual to separation
(best classification). Support vector machines (SVMs) are classical learning algorithms used to ana-
lyze data for classification. A tropical analogue of SVMs was introduced in [GJ08], and further studied
in [TWY20]. Like classical SVMs, a tropical SVM is a discriminative classifier that allows to separate
data points into sectors (half-spaces). These half-spaces are defined by the tropical hyperplane maxi-
mizing the minimal Hilbert’s distance from the data points to itself. In [MCT21], Maragos et al. present
applications of tropical geometry to machine learning, including neural networks, graphical models,
and nonlinear regression. In particular, they study neural networks with piecewise linear activations
from the point of view of tropical geometry. Note that piecewise linear functions correspond to tropical
polynomials. They study also the approximation (regression) of data by piecewise linear functions.

Tropical low-rank approximation

Classical low-rank approximation, allows to reduce dimensionality and extract a concise linear structure
from a given possibly high dimensional data set. It is commonly used in algorithms in data science.
A basic tool for dimension reduction and low-rank approximation is Principal Component Analysis
(PCA) [Pea01, Hot33], based on the properties of singular value decomposition (also known as Eckart-
Young decomposition) [EY36]. In particular, it provides a best approximation of a given rank, with
respect to the Frobenius norm, or statistically speaking in the least squares sense. These approaches
are useful when the data in question has a predominantly linear structure. However, in the case of
intrinsically non-linear systems, the approximation becomes more challenging. Hence, developing a
tropical (max-plus) analogue of low-rank approximation, which provides, with its max-plus structure,
non-linear approximation of matrices and more generally of tensors, will be of great interest. Like in the
classical case, such tropical approximation is most effective when the data have a compatible structure
– i.e., a predominantly tropically linear structure.

An important case in which such a tropical linear structure arises is the numerical solution of op-
timal control problems. These problems can be solved using Bellman’s dynamic programming princi-
ple [Bel52]. The latter shows that the value function is the solution of the so called dynamic program-
ming equation. In the continuous space and time case, this equation takes the form of a partial differential
equation called the Hamilon-Jacobi-Bellman (HJB) equation [FR12]. To avoid the curse of dimension-
ality from which suffer the grid based methods in solving HJB equation, max-plus basis methods have
been developed (see [FM00, McE07, GMQ11, MKH11, Qu14]). In these works, the value function is
approximated as a supremum of finitely many basis functions and the supremum is propagated forward
in time. Max-plus decomposition methods have allowed to attenuate the curse of dimensionality, for
classes of HJB equations [McE07, SMGJ14]. A key issue, in the efficient implementation of max-plus
methods, is to select a “basis” of functions with a prescribed cardinality that best approximates a given
collection of functions. A version of this is known as the pruning problem [GMQ11, Qu14]. It is equiv-
alent to a problem of low-rank approximation in an infinite dimensional space (of functions). A discrete
analogue of the pruning problem has been discussed in [TM19, TTM20].

Other more recent methods allowing to solve the HJB equation are based on tensor decomposition.
Dolgov, Kalise and Kunish [DKK21] propose a method based on a classical tensor train approxima-
tion for the value function together with a Newton-like iterative method to solve the resulting nonlinear
system. Oster, Sallandt and Schneider [OSS19] propose to use low-rank hierarchical tensor product
approximation/tree-based tensor formats, together with high-dimensional quadrature, e.g. Monte-Carlo,
to solve HJB equation, overcoming computational infeasibility. Recently, deep learning methods were
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also used to solve HJB equation by trying to find a feedback control law in the form of a neural net-
work [KGNZ19] in the case of deterministic problems. Although, generating data for training the neural
network and validating its accuracy remains challenging.

These recent developments motivate the study of the tropical analogue of low-rank approximation
for matrices and tensors. We will show that approximating a matrix by a tropical product of two matrices
(having a low-rank) is equivalent to approximately embedding a set of points (the columns of the matrix)
by a column space of a matrix, i.e. a tropical cone with a given number of vertices.

Hook proposes in [Hoo17] heuristic algorithms using a local descent method to find low-rank ap-
proximation of matrices. In [YZZ19], Yoshida et al. study tropical principal component analysis (PCA)
by looking for a tropical polytope with a fixed number of vertices that minimizes the sum of tropical
distances (associated to Hilbert’s semi-norm) between each data point and its tropical projection into
that tropical polytope. They develop a randomized heuristic method to solve this problem with a focus
on the special case of tropical polytopes with three vertices. In [PYZ20], Page et al. study also tropical
PCA, but with a focus on applying it to dimension reduction over the space of phylogenetic trees. They
developed a stochastic optimization method using a Markov Chain Monte Carlo approach to estimate
tropical principal components over the space of phylogenetic trees.

Tropical low-rank factorization is closely related to classical nonnegative factorization (since trop-
ical numbers behave as nonnegative numbers). Moreover, it includes as a special case the problem of
factorization for Boolean matrices. Deciding whether a Boolean matrix admits a factorization of a given
rank is an NP-hard problem, see e.g. [MN20, Sect. 4.1]. Since the Boolean semiring can be embedded
in the tropical semiring, tropical low-rank factorization is also NP-hard. Given the difficulty, it is of in-
terest to identity tractable subclasses, and to develop efficient heuristic algorithms for tropical low-rank
approximation.

1.2 Contributions

In this thesis, we develop accelerated algorithms for Markov decision processes and more generally for
zero-sum stochastic games. We also address best approximation problems arising in tropical geometry.
These two fields are closely related. As we will show in the thesis, we can compute classes of tropical
best approximation problems by reducing them to solving zero-sum games.

Accelerated value iteration

In Chapter 2, we study the extension of Nesterov’s acceleration from gradient descent aiming to min-
imize a given function to a class of fixed point problems – which cannot be interpreted in terms of
convex programming. We study here the affine fixed point problem x = g + Px where the matrix P is
non symmetric, possibly not substochastic, with a complex spectrum and a spectral radius of the form
γ = 1 − ε, where ε is small. Theorem 2.7, one of our main results, states that a modification of Nes-
terov’s scheme [Nes83] applied to fixed point iteration does converge with an asymptotic rate 1− ε1/2 if
the spectrum of P is contained in an explicit region of the complex plane. This region is obtained as the
image of the disk of radius 1− ε by a rational function of degree 2. We also show that the incorporation
of a Krasnosel’skin̆-Mann type damping [Man53, Kra55] (see Equation (2.4a)) enlarges the admissible
spectrum region of P for acceleration, see Theorem 2.13. Moreover, we introduce a new scheme (2.8),
of order d > 2, and show in Theorem 2.19 that it leads to a multiply accelerated asymptotic rate of
1− ε1/d, but under a more demanding condition on the spectrum of P , see Theorem 2.19. This theorem
also shows that this condition is tight. However, slightly more flexible conditions suffice to guarantee a
rate of 1−Ω(ε1/d), as shown by Theorem 2.27.
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We subsequently apply the proposed schemes and theoretical results, concerning the affine “0-player
case” , to solve non-linear fixed point problems arising from Markov decision processes. We use pol-
icy iteration, which allows a reduction to a sequence of affine fixed point problems, still benefiting
of acceleration for the solution of each affine problem. This leads to an accelerated policy itera-
tion algorithm (see Algorithm 1), which produces an approximate solution with a precision of order
((1 + γ)δ + δ′)/(1− γ)2 where γ is the maximal discount factor, δ is the accuracy of each inner affine
problem and δ′ is the accuracy of the policy improvement, see Proposition 2.29.

In Section 2.5, we show the performance of the simple and multiple acceleration schemes, on classes
of instances in which the spectral conditions for acceleration are met. In Section 2.5.1, we consider a
framework of random matrices that shows distributions of eigenvalues [BCC08] that are compatible with
the spectral conditions required for the convergence of the simple and multiple acceleration schemes
proposed here. In Section 2.5.2, we show the performance of the accelerated schemes in solving a
Hamilton-Jacobi-Bellman equation in the case of small drifts. This example illustrates the usefulness
of Theorem 2.9 that allows to have a more tolerant accelerable region on the complex plane while still
benefiting from an accelerated asymptotic rate of 1−Ω(ε1/2).

Deflated value iteration

In Chapter 3, our aim is to develop accelerated value iteration algorithms for well structured huge scale
instances of mean payoff problems. To do so, we develop further a general method, first introduced in our
previous work [AG13], allowing one to reduce a class of mean payoff problems to discounted problems.
Our first main results are Theorem 3.5 and Corollary 3.6, which characterize the best contraction rate of
the Shapley operator of a zero-sum game, with respect to all possible weighted sup-norms, as the Collatz-
Wielandt number of a certain convex order-preserving positively homogeneous map which we call the
“Clarke recession function”. This is a key ingredient to obtain our subsequent complexity estimates.
This is also of independent interest.

Then, we provide in Theorem 3.25 the reduction from mean payoff problems to discounted prob-
lems. This applies to the subclass of two-player games in which there is a distinguished state c to
which all other states have access, for all policies of the two players. This reduction combines a scal-
ing argument (a combinatorial version of Doob’s h-transform arising in the boundary theory of Markov
processes [Dyn69]) and a deflation technique: to a mean payoff problem, we associate a discounted
problem, with a state-dependent discount rate (Theorem 3.25). To compute this reduction, we need first
to solve the dynamic programming equation of a stochastic shortest path (one-player) problem, in which
a player wants to maximize the expected hitting time to the distinguished state c. We obtain an explicit
contraction rate for the reduced problem in terms of the maximal expected hitting times, which appears
in our complexity bounds.

This approach leads to a new algorithm to solve the mean payoff problem, that we call deflated value
iteration (Algorithm 2). This algorithm is based on two steps, the first step is to compute the value of
the stochastic shortest path problem above, and the second one is to solve the reduced problem. Both
are solved by using value iteration. We also give a complexity bound in Theorem 3.28, and we compare
numerically deflated value iteration with the classical relative value iteration in Section 3.6.

This reduction technique, allows us also to propose a sublinear algorithm solving mean payoff
stochastic games, obtained as follows. We solve the mean payoff problem by calling twice a variant
of the algorithm of Sidford’s et al. [SWWY18]: we call first this variant to compute the parameters of
the reduction, and we call it a second time to solve the discounted game obtained after the reduction. We
also note that the present variant includes an extension of the algorithm of [SWWY18] for one player
to the two-player case. However, this extension is an easier matter–the main novelty here is rather the
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reduction from the mean payoff problem to the discounted case and the resulting complexity bounds.

Tropical linear regression

In Chapter 4, we show that tropical linear regression is tractable, theoretically, and to some extent,
computationally. Our main result is a strong duality theorem, Theorem 4.23, showing that the infimum
of the distance of a set of points V to a tropical hyperplane coincides with the supremum of the radii
of Hilbert’s balls included in the tropical convex cone generated by the elements of V . This provides
optimality certificates which can be interpreted geometrically as collections of n “witness” points among
the elements of V . Our approach also entails that tropical linear regression is polynomial-time equivalent
to solving mean payoff games.

We subsequently study variants of the tropical linear regression problem, involving in particular the
signed notion of tropical hyperplane, obtained by requiring the maximum in (1.5) to be achieved by
two indices i, j belonging to prescribed disjoint subsets I, J of {1, · · · , n}. We also establish a strong
duality theorem in this setting, and provide reductions to mean payoff games for these variants.

We finally illustrate tropical linear regression by an application to an auction model. We consider
a market governed by an invitation to tender procedure. We suppose that a decision maker selects
repeatedly bids made by firms, based on the bid prices, which are ultimately made public (after the
decision is taken), and also on other criteria (assessments of the technical quality of each firm or of
environmental impact) or influence factors (like bribes). This is a variant of the classical “first-price
sealed-bid auction” [Kri02], with a bias induced by the secret preference. Here, we define the market to
be at equilibria if for each invitation, there are at least two best offers. Hence, in the simplest model (unit
demand), the set of equilibria prices can be represented by a tropical hyperplane. We distinguish two
versions of this problem, one in which only the prices are public, and the other, in which the identities of
the winners of the successive invitations are also known. In both cases, we show that solving a tropical
linear regression problem allows an observer to quantify the distance of such a market to equilibrium,
and also to infer secret preference factors. This solves, in the special case of unit-demand, an inverse
problem, consisting in identifying the agent preferences and utilities in auction models, like the one
of [BK19]. This might be of interest to a regulation authority wishing to quantify anomalies, or to
a bidder, who, seeing the history of the market, would wish to determine how much he should have
bidded to win a given invitation or to get the best price for an invitation that he won, thus avoiding the
“winner’s curse”.

Tropical low-rank approximation

In Chapter 5, we establish general properties of tropical low-rank approximation, and identify classes of
low-rank approximation problems that are efficiently (in particular, polynomial-time) solvable. We first
give a geometric interpretation to the low-rank matrix approximation problem, in terms of approximation
of a collection of points by a tropical submodule with few generators. Then, we study the tropical low-
rank approximation in the case of rank one and rank two. We introduce a notion of outer radius of a
column space of a matrix, and we characterize, in Theorem 5.13, the outer radius of a given column
space as the eigenvalue of some specific matrix. We show also, in Theorem 5.16, that the tropical best
rank-one approximation of a given matrix is equal to half the outer radius of its column space. We
provide also a strongly polynomial algorithm that gives a rank-one approximation of 3-way tensors. We
provide an algebraic interpretation of the outer radius as a skew singular value. This yields a tropical
analogue of a classical result in matrix theory, showing the error in spectral norm of the best rank-one
approximation is given by the second singular value. We extend the best tropical rank-one approximation
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to the case of kernels. In dimension three, we give a linear-time algorithm that allows to compute the
best rank-two approximation, based on signed tropical linear regression.

1.3 Organization of the manuscript

The manuscript is divided in two parts. Part I (Chapters 2 and 3) contains the results on accelerated
algorithms for Markov decision processes and zero-sum stochastic games. Part II (Chapters 4 and 5)
contains the results on tropical best approximation. Each chapter of this thesis was written as an inde-
pendent chapter. The reader may read each of them essentially independently of the others.

• In Chapter 2, we propose an accelerated version of value iteration (AVI) allowing to solve affine
fixed point problems with non self-adjoint matrices, alongside with an accelerated version of
policy iteration (API) for MDP, building on AVI. This acceleration extends Nesterov’s accelerated
gradient algorithm to a class of fixed point problems – which cannot be interpreted in terms of
convex programming.

• In Chapter 3, we develop a deflated version of value iteration to solve the mean payoff version of
stochastic games. This method allows one to transform a mean payoff problem to a discounted one
under the hypothesis of existence of a distinguished state that is accessible from all other states
and under all policies. Combining this deflation method with variance reduction techniques, we
derive a sublinear algorithm solving mean payoff stochastic games.

• In Chapter 4, we solve a tropical linear regression problem consisting in finding the best approx-
imation of a set of points by a tropical hyperplane. We show that the value of this regression
problem coincides with the maximal radius of a Hilbert’s ball included in a tropical polyhedron,
and that this problem is polynomial-time equivalent to mean payoff games. We apply these results
to an inverse problem from auction theory.

• In Chapter 5, we study a tropical analogue of low-rank approximation for matrices. We establish
general properties of tropical low-rank approximation, and identify classes of low-rank approxi-
mation problems that are polynomial-time solvable.

Chapter 2 is based on the preprint [AGQS20], accepted pending minor revision for SIAM Matrix
Analysis journal (SIMAX). Chapter 3 is an extended version of a CDC conference article [AGQS19].
Chapter 4 is based on the preprint [AGQS21].
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Accelerated algorithms





CHAPTER 2

Multiply Accelerated Value Iteration
for Non-Symmetric Affine Fixed Point

Problems and application to Markov
Decision Processes

Abstract

In this chapter, we analyze a modified version of Nesterov accelerated gradient algorithm, which applies
to affine fixed point problems with non self-adjoint matrices, such as the ones appearing in the theory
of Markov decision processes with discounted or mean payoff criteria. We characterize the spectra of
matrices for which this algorithm does converge with an accelerated asymptotic rate. We also intro-
duce a dth-order algorithm, and show that it yields a multiply accelerated rate under more demanding
conditions on the spectrum. We subsequently apply these methods to develop accelerated schemes for
non-linear fixed point problems arising from Markov decision processes. This is illustrated by numeri-
cal experiments. This chapter is based on the preprint [AGQS20], accepted pending minor revision for
SIAM Matrix Analysis journal (SIMAX).
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2.1 Introduction

The dynamic programming method reduces optimal control and repeated zero-sum game problems to
fixed point problems involving non-linear operators that are order preserving and sup-norm nonexpan-
sive, see [Bel57, Put14] for background. The 0-player case, with a finite number n of states, is already
of interest. In this case, the involved operator is T : Rn → Rn of the form T (x) = g + Px, where
g = (gi) ∈ Rn and P = (Pij) ∈ Rn×n is a substochastic matrix, i.e. a matrix with nonnegative entries
such that the sum of each row is less than or equal to 1. The scalar gi is an instantaneous payment
received in state i, whereas Pij is the transition probability from i to j. The difference 1 −

∑
j Pij is

the probability that the process terminates, when in state i. If v is a fixed point of T , the entry vi yields
the expected cost-to-go from the initial state i. More generally, in the one player case (Markov decision
processes), one needs to solve a non-linear fixed point problem, described in Section 2.5, in which the
operator T is now a supremum of affine operators x 7→ g + Px.

The standard method to obtain the fixed point of T is to compute the sequence xk = T (xk−1), this
is known as value iteration [Bel57]. In the 0-player case, value iteration has an asymptotic (geometric)
convergence rate given by the spectral radius of P . In many applications, this spectral radius is of the
form 1 − ε where ε is small. E.g., ε may represent a discount rate. We look for accelerated fixed point
algorithms, with a convergence rate 1− Ω(ε1/d) for some d > 2, i.e. a convergence rate that is smaller
than 1− cε1/d for some constant c > 0.

In the special case of 0-player problems with a symmetric matrix P , an algorithm with a rate
1 − Ω(ε1/2) can be obtained by specializing the accelerated gradient algorithm of Nesterov [Nes83].
The latter algorithm applies to the minimization of a smooth strictly convex function f , which, in the
quadratic case, reduces to an affine fixed point problem with a symmetric matrix P , see [FB15]. In con-
trast, developing accelerated algorithms for problems of non-symmetric type is a challenging question,
which has been studied recently in [IH19, GGC19].

We study here the affine fixed point problem x = g + Px where the matrix P is non symmetric,
and possibly not substochastic. Theorem 2.7, one of our main results, states that a modification of
Nesterov’s scheme [Nes83] does converge with an asymptotic rate 1 − ε1/2 if the spectrum of P is
contained in an explicit region of the complex plane, obtained as the image of the disk of radius 1 − ε
by a rational function of degree 2. We also show that the incorporation of a Krasnosel’skin̆-Mann
type damping [Man53, Kra55] (see Equation (2.4a)) enlarges the admissible spectrum region of P for
acceleration, see Theorem 2.13. Moreover, we introduce a new scheme (2.8), of order d > 2, and
show in Theorem 2.19 that it leads to a multiply accelerated asymptotic rate of 1 − ε1/d, but under a
more demanding condition on the spectrum of P , see Theorem 2.19. This theorem also shows that this
condition is tight. However, slightly more flexible conditions suffice to guarantee a rate of 1−Ω(ε1/d),
as shown by Theorem 2.27.

We subsequently apply the proposed schemes and theoretical results, concerning the affine “0-player
case” , to solve non-linear fixed point problems arising from Markov decision processes. We use pol-
icy iteration, which allows a reduction to a sequence of affine fixed point problems, still benefiting
of acceleration for the solution of each affine problem. This leads to an accelerated policy itera-
tion algorithm (see Algorithm 1), which produces an approximate solution with a precision of order
((1 + γ)δ + δ′)/(1− γ)2 where γ is the maximal discount factor, δ is the accuracy of each inner affine
problem and δ′ is the accuracy of the policy improvement, see Proposition 2.29.

In Section 2.5, we show the performance of the simple and multiple acceleration schemes, on classes
of instances in which the spectral conditions for acceleration are met. In Section 2.5.1, we consider a
framework of random matrices that shows distributions of eigenvalues [BCC08] that are compatible with
the spectral conditions required for the convergence of the simple and multiple acceleration schemes
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proposed here. In Section 2.5.2, we show the performance of the accelerated schemes in solving a
Hamilton-Jacobi-Bellman equation in the case of small drifts. This example illustrates the usefulness
of Theorem 2.9 that allows to have a more tolerant accelerable region on the complex plane while still
benefiting from an accelerated asymptotic rate of 1−Ω(ε1/2).

The recent works [IH19, GGC19] also deal with generalizations of Nesterov’s accelerated algorithm
to solve fixed point problems. Their theoretical convergence results apply to matrices with a real spec-
trum, showing that the original choice of parameters for Nesterov’s method in the symmetric case still
yields an acceleration in this setting. In contrast, we allow a complex spectrum and characterize the
region of the complex plane containing spectra of matrices for which the acceleration is valid (see The-
orem 2.7 and Theorem 2.13). Also, a main novelty of the present work is the analysis of multiple ac-
celerations (2.8). The idea of applying Nesterov’s acceleration to Markov decision processes appeared
in [GGC19], in which a considerable experimental speedup is reported on random instances. The algo-
rithm there coincides with one of the algorithms studied here – 2-accelerated value iteration for Markov
decision processes. It is an open problem to establish the convergence of this method for large enough
classes of Markov decision processes. The characterization of the set of “accelerable” 0-player problems
that we provide here explains why this problem is inherently difficult: in the 0-player problem, the con-
vergence conditions are governed by fine spectral properties which have no known non-linear analogue
in the one-player case.

Apart from being applied to Markov decision processes, fixed point iteration also includes as a spe-
cial case the proximal point method [Roc76b], when the mapping T corresponds to the resolvent of
a maximal monotone operator. The proximal point method covers a list of pivotal algorithms in opti-
mization such as the proximal gradient descent, the augmented Lagrangian method (ALM) [Roc76a]
and the alternating directional method of multipliers (ADMM) [EB92]. The development of acceler-
ated proximal point method has thus attracted a lot of attention [CMY15, AP19, Att21] and a recent
paper [Kim19] constructed a new algorithm achieving ‖xk − T (xk)‖ 6 O(1/k) through the perfor-
mance estimation problem (PEP) approach [DT14]. In a more general setting when T is a nonexpansive
mapping in a Euclidean norm, a version of Halpern’s iteration was recently shown to yield a residual
‖xk−T (xk)‖ 6 O(1/k) [Lie21], also via the PEP approach. These results improve over the worst case
bound ‖xk−T (xk)‖ 6 O(1/

√
k) of the Krasnoselski-Mann’s iteration for a nonexpansive mapping (in

arbitrary norm) [BB96]. The acceleration results in the above cited works do not overlap with ours as
they only apply to nonexpansive mappings in a Euclidean norm. Moreover, in this chapter we consider
strictly contractive mapping and thus focus on linear instead of sublinear convergence guarantees.

There is also a large body of literature on (quasi-)Newton type methods for solving nonlinear equa-
tions [rFS09, IS14, WN11], which can be naturally employed for solving fixed point problems and
yield fast asymptotic convergence rate. It is well-known that such methods converge only when close
enough to the solution. Some papers proposed various safe-guard conditions to globalize the conver-
gence [TP19, ZOB20] and do not provide a rate of convergence. We formally characterize the spectrum
condition and the faster convergence rate of accelerated value iteration for affine fixed point problem.

This chapter is organized as follows. In Section 2.2 we introduce the accelerated value iteration
(AVI) of any degree d > 2. In Section 2.3 we provide a formal analysis of AVI of degree 2. In Section 2.4
we analyze AVI of arbitrary degree d > 2 and also present the application to Markov decision processes.
In Section 2.5 we provide numerical experimental results.
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2.2 Accelerated Value Iteration

Nesterov proposed in [Nes83, Nes04] to accelerate the gradient descent scheme for the minimization
of a µ-strongly convex function f : Rn → R whose gradient is of Lipschitz constant L, by adding an
inertial step:

xk+1 = yk − h∇f(yk) , (2.1a)

yk+1 = xk+1 + α(xk+1 − xk) , (2.1b)

where 0 < h, and α ∈ [0, 1] are parameters. Let x∗ be the minimizer of f . When α = 0, (2.1)
reduces to gradient descent. With the step h = 1/L, the gradient descent converges linearly with a rate
1− 2µ/(L+ µ). Indeed, we have ‖xk − x∗‖2 6

(
1− 2µ/(L+ µ)

)k‖x0 − x∗‖2, and f(xk)− f(x∗) 6
L
2
(
1 − 2µ/(L + µ)

)k‖x0 − x∗‖2, for all k > 1, see Theorem 2.1.14 in [Nes04]. Moreover, Theorem
2.2.3, ibid., implies that if we choose

α = 1−
√
µ/L

1 +
√
µ/L

, (2.2)

still with h = 1/L, the scheme (2.1) converges linearly with a rate 1 −
√
µ/L. Indeed, with α given

by (2.2), we have f(xk) − f(x∗) 6 2(1 −
√
µ/L)k(f(x0) − f(x∗)) for all k > 1. Note that when

the condition number L/µ is large, i.e. L/µ � 1, the rate 1 −
√
µ/L improves over 1 − 2µ/(L + µ),

whence the scheme (2.2) is commonly known as accelerated gradient descent.
We consider the fixed point problem for the operator

T (x) = g + Px . (2.3)

Here, we allow the vector x and the matrix P to have complex entries, requiring only the spectral radius
of the matrix P to be strictly less than 1. In the application to MDPs, the vector x will be real and
the matrix P will be nonnegative. By abuse of notation, we denote by x∗ the unique fixed point of T .
We study the Accelerated Value Iteration algorithm (AVI) for computing a fixed point of the operator
T . It makes a Krasnosel’skin̆-Mann (KM) type damping of parameter 0 < β 6 1, replacing T by
(1− β)I + βT , followed by a Nesterov acceleration step:

xk+1 = (1− β)yk + βT (yk) , (2.4a)

yk+1 = xk+1 + α(xk+1 − xk) . (2.4b)

When α = 0 and β = 1, the scheme (2.4) reduces to the standard fixed point iteration algorithm:

xk+1 = g + Pxk . (2.5)

When the spectral radius of P is smaller than 1− ε for some ε ∈ (0, 1), the standard fixed point scheme
converges with an asymptotic rate no greater than 1 − ε to the unique fixed point, meaning that for any
norm ‖ · ‖

lim sup
k→∞

‖xk − x∗‖1/k 6 1− ε.

By analogy with accelerated gradient descent, we aim at accelerating the standard fixed point scheme
by finding appropriate parameters α and β so that

lim sup
k→∞

‖xk − x∗‖1/k 6 1−
√
ε, (2.6)

for matrices P with spectral radius bounded by 1− ε.
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Remark 2.1. If P is symmetric, the iteration (2.4) can be recovered by applying the accelerated gradient
descent scheme (2.1) to the quadratic function f(x) ≡ 1

2x
>(I − P )x − g>x. The damping parameter

β corresponds to the step h. However, Nesterov’s results only apply to the case when f is a strongly
convex function. This requires in particular I −P to be symmetric positive definite. In particular all the
eigenvalues of P must be real and smaller than 1.

The scheme (2.4) for fixed point iteration has been considered recently by [IH19, GGC19]. More-
over, inspired by the momentum method [Pol64, GFJ15] for improving gradient descent, [GGC19] also
proposed a momentum fixed point method described as follows:

xk+1 = (1− β)xk + βT (xk) + α(xk − xk−1). (2.7)

Asymptotic rate analysis for (2.4) (2.7) follows from [GGC19] when the spectrum of P is real.
As discussed in the introduction, our main results apply to complex spectra, and also to higher degree

of acceleration.
In the scheme (2.4), yk+1 is generated from a linear combination of the last two iterates. We now

consider the following Accelerated Value Iteration of degree d (dA-VI), in which yk+1 is a linear combi-
nation of the last d iterates for any d > 2,

xk+1 = (1− β)yk + βT (yk) , (2.8a)

yk+1 = (1 + αd−2 + · · ·+ α0)xk+1 − αd−2xk − · · · − α0xk−d+2 . (2.8b)

We will show how to select the parameters α = (α0, · · · , αd−2) to obtain an acceleration of order d, in
the sense that

lim sup
k→∞

‖xk − x∗‖1/k 6 1− ε1/d. (2.9)

Remark 2.2. The idea of accelerating the vanilla KM fixed point method by extrapolating a finite num-
ber of previous steps goes back to the work of Anderson in 1965 [And65]. The algorithm known as
Anderson Acceleration (AA) chooses dynamically the extrapolation coefficients, while the coefficients
α = (α0, · · · , αd−2) in dA-VI (2.8) remain constant for all the iterations. The theoretical analysis of
AA and of its variants is still under development. In particular, the theoretical convergence rate of AA
seems to be missing in the literature, except in the special case when T corresponds to the gradient
descent mapping of a strongly convex and smooth function [SBD17]. When T takes the form of (2.3),
this requires P to be symmetric, see Remark 2.1. In [ZOB20], a modified AA, interleaving KM updates
by using safe-guarding steps, is shown to be globally converging, but the convergence rate is not ana-
lyzed. As shown later, the d-AVI (2.8) does not need any safe-guard checking and will converge with
accelerated asymptotic rate as in (2.9) under some conditions on the spectrum of P .

Remark 2.3. The computational cost of one iteration of the classical Value Iteration algorithm (2.5) is
O(n2). In comparison, the computational cost of one iteration of the dA-VI algorithm (2.8) is O(n(n+
d)). Regarding the space complexity, the classical Value Iteration needs to store two vectors (xk+1, xk)
each of size n, so it needs a 2n space of memory. In comparison, the dA-VI algorithm needs to store
d + 1 vectors (yk+1, xk+1, · · · , xk−d+2) each of size n, so it needs (d + 1)n space of memory. We
notice that in practice the degree d that we will use is small (6 4), therefore the computational cost of
one iteration of dA-VI and its space complexity are similar to the ones of the classical Value Iteration
algorithm. Moreover, the asymptotic convergence rate 1− ε1/d allows the dA-VI algorithm to converge
in a number of iterations smaller than the Value Iteration algorithm (see the numerical experiments
in Section 2.5).
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2.3 Analysis of Accelerated Value Iteration of degree 2
In this section, we analyse the AVI scheme (2.4). We will show that with an appropriate choice of the
acceleration parameter α, and under an assumption on the shape of the complex spectrum of P , the
asymptotic rate can indeed be improved up to 1 −

√
ε. We also show that the damping parameter β

will allow us to enlarge the convergence region, while keeping the acceleration properties. We deal
separately with the special d = 2 case, since it is more elementary, easier to compare with existing
acceleration schemes, and since it gives insight on the generalization to the higher degree case which
will be done in Section 2.4.

2.3.1 The spectrum of the AVI iteration

We define Pβ := (1 − β)I + βP . Then, the AVI algorithm (2.4) can be written as the second order
iteration

yk+1 = βg + (1 + α)Pβyk − αPβyk−1. (2.10)

Considering zk = yk − x∗, the iteration becomes zk+1 = (1 + α)Pβzk − αPβzk−1. This is equivalent
to: (

zk+1
zk

)
=
(

(1 + α)Pβ −αPβ
I 0

)(
zk
zk−1

)
(2.11)

Without loss of generality we first deal with the case with no damping, i.e., β = 1. The discussion
for general β ∈ (0, 1] can be found in Section 2.3.2 . Then, the matrix appearing in (2.11) becomes

Qα :=
(

(1 + α)P −αP
I 0

)
. (2.12)

The asymptotic rate of convergence of the sequence (zk) in the system (2.11), when it is converging,
and thus of the sequence (yk) in the AVI scheme (2.4) is determined by the spectral radius ofQα. Recall
that we want to improve this asymptotic rate, thus it suffices to find appropriate values of α such that the
spectral radius of Qα is as small as possible.

We first relate the eigenvalues of Qα with those of P . We introduce the following rational function
of degree 2, defined on C \ {α/(1 + α)} by

φα(z) := z2

(1 + α)z − α .

The following is a standard property of block-companion matrices, we provide the proof for complete-
ness.

Lemma 2.4. If α 6= 0 then λ is an eigenvalue of Qα if and only if there exists an eigenvalue δ of P such
that δ = φα(λ). In other words,

specQα = φ−1
α (specP ).

Proof. Let λ be an eigenvalue of Qα. There exists a non-zero vector ( z1
z0 ) ∈ R2n such that Qα ( z1

z0 ) =
λ ( z1

z0 ). This is equivalent to (1 + α)Pz1 − αPz0 = λz1 and z1 = λz0, or equivalently (λ(1 + α) −
α)Pz0 = λ2z0 and z1 = λz0. We have z0 6= 0, because otherwise z1 = λz0 = 0. We notice that
λ(1 + α) − α 6= 0, because otherwise λ = α

1+α 6= 0 and λ2z0 = 0, then z0 = 0, which is not true.
Therefore Pz0 = φα(λ)z0 which allows to conclude.
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2.3.1.a The case of real eigenvalues We now explain how to select α optimally. We first sup-
pose that the spectrum of P is real and nonnegative, i.e., specP ⊂ [0, 1 − ε] for some ε ∈ (0, 1). We
denote by B(z, r) the closed disk of the complex plane with center z and radius r. We consider the
minimax problem

min
α>0

max
P : specP⊂[0,1−ε]

ρ(Qα) (2.13)

where ρ denotes the spectral radius, and the matrix Qα, depending on P , is defined by (2.12).

Lemma 2.5. The solution α∗ of the minimax problem (2.13) is given by

α∗ = 1−
√
ε

1 +
√
ε
. (2.14)

It guarantees that specQα∗ ⊂ B(0, 1−
√
ε), for all matrices P such that specP ⊂ [0, 1− ε].

Proof. By Lemma 2.4, λ ∈ specQα if and only if there exists δ ∈ specP ⊂ [0, 1 − ε], such that
δ = λ2

(1+α)λ−α . This can be written as a second degree equation in λ:

λ2 − (1 + α)δλ+ αδ = 0. (2.15)

The discriminant of this equation is ∆ = δ2(1 + α)2 − 4αδ = δ(1 + α)2(δ − α′), where α′ := 4α
(1+α)2 .

We note that the function α 7→ 4α
(1+α)2 is a strictly increasing bijection from [0, 1] to itself, with inverse

function α 7→ 1−
√

1−α
1+
√

1−α . Hence α′ > 1− ε if and only if α > α∗.

Claim 1. For fixed α, the maximal modulus of the solutions of (2.15) is increasing with δ.

Proof of Claim 1. If ∆ 6 0, i.e. δ 6 α′, then the solutions of (2.15) are complex conjugate λ± =
1
2(δ(1 + α) ± i

√
δ(1 + α)2(α′ − δ)), and we have λ+λ− = αδ. Then |λ+| = |λ−| =

√
αδ, which is

increasing in δ.
If ∆ > 0, i.e. δ > α′, the solutions of (2.15) are real:

λ± = 1
2(δ(1 + α)±

√
δ(1 + α)2(δ − α′)).

Then max (|λ+|, |λ−|) = 1
2(δ(1 + α) +

√
δ(1 + α)2(δ − α′)) is strictly increasing in δ.

Claim 1 shows that

max
P : specP⊂[0,1−ε]

ρ(Qα) = max
{
|λ| : λ2 − (1 + α)(1− ε)λ+ α(1− ε) = 0.

}
(2.16)

The discriminant of the second order equation in (2.16) is

∆ = (1− ε)2(1 + α)2 − 4α(1− ε) = (1− ε)(1 + α)2(1− ε− α′).

If α > α∗, then α′ > 1 − ε and ∆ 6 0. In this case |λ+| = |λ−| =
√
α(1− ε) is increasing in

α ∈
[

1−
√
ε

1+
√
ε
, 1
]
. If α 6 α∗, then α′ 6 1− ε and ∆ > 0. In this case

max (|λ+|, |λ−|) = 1
2

(
(1− ε)(1 + α) +

√
(1− ε)2(1 + α)2 − 4α(1− ε)

)
.
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Claim 2. The function z : α→ (1− ε)(1+α)+
√

(1− ε)2(1 + α)2 − 4α(1− ε) is strictly decreasing
on
[
0, 1−

√
ε

1+
√
ε

]
.

Proof of Claim 2. We have

z′(α) = 1− ε+ 2(1− ε)2(1 + α)− 4(1− ε)
2
√

(1− ε)2(1 + α)2 − 4α(1− ε)
= (1− ε)h(α)√

(1− ε)2(1 + α)2 − 4α(1− ε)
,

where h(α) =
√

(1− ε)2(1 + α)2 − 4α(1− ε) + (1 − ε)(1 + α) − 2. It is easy to check that h(α) =√
(2− (1− ε)(1 + α))2 − 4ε−(2−(1−ε)(1+α)) < 0 for allα ∈ [0, 1−

√
ε

1+
√
ε
]. Since 2−(1−ε)(1+α) > 0

for all α ∈
[
0, 1−

√
ε

1+
√
ε

]
, we deduce that h(α) < 0 and hence z′(α) < 0 for all α ∈

[
0, 1−

√
ε

1+
√
ε

]
.

We conclude that the best choice of α which minimizes the maximum of the spectral radius of
Qα corresponding to all P with spectrum in [0, 1 − ε] is α∗ given in (2.14), and it allows to have
specQα∗ ⊂ B(0, 1−

√
ε) for all such matrix P .

Remark 2.6. If P is symmetric, then the quadratic function f in Remark 2.1 is a strongly convex func-
tion with L = 1 and µ = ε. In this special case the α∗ in Lemma 2.5 coincides with the inertial
parameter (2.2) in Nesterov’s constant-step method. The same choice of step has been proposed, for
nonsymmetric matrices with real spectrum, in [IH19].

2.3.1.b The case of complex eigenvalues Now we do not assume anymore that P has a real
spectrum. We will show that the best acceleration rate achievable in the case of a real spectrum, obtained
by choosing α = α∗ as in Lemma 2.5, is still achievable in the case of a complex spectrum satisfying a
geometric condition.

Consider the following simple closed curve Γε defined by the parametric equation:

θ 7→ (1− ε)e2iθ

2eiθ − 1 , θ ∈ (0, 2π] .

Denote by Σε the compact set delimited by the curve Γε. We show in Figure 2.1 the curve Γ0 and the
enclosed region Σ0. It is easy to see that Γε (resp. Σε) is a scaling of Γ0 (resp. Σ0) by 1− ε. Moreover,
we have ∣∣∣∣∣ e2iθ

2eiθ − 1

∣∣∣∣∣ = 1
|2eiθ − 1| 6

1
|2eiθ| − 1 = 1, (2.17)

and thus the curve Γε is included in the disk B(0, 1− ε). It follows that

Σε ⊂ B(0, 1− ε). (2.18)

Theorem 2.7. Let ε ∈ (0, 1), P be a n × n complex matrix and Qα be defined as in (2.12) with
α = (1−

√
ε)/(1 +

√
ε) . If specP ⊂ Σε, then specQα ⊂ B(0, 1−

√
ε).

Proof. To show that specP ⊂ Σε ⇒ specQα ⊂ B (0, 1−
√
ε), we will prove the contrapositive

specQα ∩ C \ B
(
0, 1−

√
ε
)
6= ∅ ⇒ specP ∩ C \Σε 6= ∅. (2.19)
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Figure (2.1) Illustration of the curve Γ0 (Figure 2.1(a)) and its enclosed region Σ0 (Figure 2.1(b)).

We consider an eigenvalue λ ∈ specQα ∩ C \ B (0, 1−
√
ε) so that λ = r (1−

√
ε) eiθ̄ for some

θ̄ ∈ (0, 2π] and r > 1. The associated eigenvalue of P is

δr(θ̄) := λ2

(1 + α)λ− α = (1−
√
ε)2

r2e2iθ̄

2
1+
√
ε
r (1−

√
ε) eiθ̄ − 1−

√
ε

1+
√
ε

= (1− ε)r2e2iθ̄

2reiθ̄ − 1
.

It is easy to check from r > 1 that

|δr(0)| = (1− ε)r2

2r − 1 > 1− ε,

which together with (2.18) implies that
δr(0) /∈ Σε.

Suppose that δr(θ̄) ∈ Σε. Since the curve Γε is the boundary of the compact set Σε, there must be a
θ ∈ (0, 2π) such that

δr(θ) ∈ Γε.

In other words, there is u, v ∈ C such that |u| = |v| = 1 and (1 − ε) u2

2u−1 = (1 − ε) r2v2

2rv−1 . Then
r2(2u − 1)v2 − 2ru2v + u2 = 0. We consider v as the unknown variable in this equation. The
discriminant is ∆ = 4r2u2(u− 1)2 and then

v ∈
{

2ru2 ± 2ru(u− 1)
2r2(2u− 1)

}
=
{
u

r
,

u

r(2u− 1)

}
.

Since |u| = |v|, it is impossible that v = u
r . If v = u

r(2u−1) , then by taking the module we have
|2u − 1| = 1

r , which is absurd because |2u − 1| > |2u| − 1 = 1 > 1
r . We thus conclude that

δr(θ̄) ∈ C \Σε and (2.19) is proved.

Remark 2.8. In Theorem 2.19, we will give an analysis for acceleration of arbitrary degree d > 2, which
recovers Theorem 2.7 for the case d = 2 and in addition shows that if specQα ⊂ B(0, 1 −

√
ε), then

specP ⊂ Σε.
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For any r > 1, denote by Γε(r) the simple closed curve defined by the parametric equation θ 7→
δr(θ), θ ∈ (0, 2π], and denote by Σε(r) the region enclosed by Γε(r). We have the following stronger
result.

Theorem 2.9. Let ε ∈ (0, 1), P be a n × n complex matrix, Qα be defined as in (2.12) with α =
(1−

√
ε)/(1 +

√
ε) and r > 1. If specP ⊂ Σε(r), then specQα ⊂ B(0, r(1−

√
ε)).

An ingredient of the proof of Theorem 2.7 was to show that for any r > 1, the curve Γε(r) does not
intersect with the curve Γε. In a similar way, we can prove the above Theorem 2.9, by showing that the
curve Γε(r) does not intersect with the curve Γε(r′) for any distinct r > 1 and r′ > 1.

Remark 2.10. Let 0 < γ 6 1. An equivalent statement of Theorem 2.9 is as follows: if specP ⊂
Σε
(

1−γ
√
ε

1−
√
ε

)
, then specQα ⊂ B(0, 1 − γ

√
ε). This implies that the asymptotic rate can be of order

1 − Ω(
√
ε) if the spectrum of P is sufficiently close to Σε. We illustrate this result in Figure 2.2 with

the example of ε = 0.01 and γ = 0.5.
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Figure (2.2) Illustration of the curve Γε (the curve in red) and its enclosed region Σε (the region in
orange), and the curve Γε(r) (the curve in blue) and its enclosed region Σε(r) (the dashed region).
Figure 2.2(a) is a zoom of Figure 2.2(b).

2.3.2 Enlargement of the accelerable region by damping

In this subsection we consider the effect of the Krasnosel’skin̆-Mann damping parameter β ∈ (0, 1] The
following corollary, which is immediate from Theorem 2.7, determines the accelerable region for the
spectrum of the initial matrix P .

Corollary 2.11. If there is β ∈ (0, 1] such that specPβ ⊂ Σε, then AVI algorithm (2.4) with the
parameters β and α = 1−

√
ε

1+
√
ε

converges with an asymptotic rate no greater than 1 −
√
ε, i.e., (2.6)

holds.

Based on Corollary 2.11, we now look for a radius r > 0 such that if specP ⊂ B(0, r) ∪ [−1 +
ε, 1− ε], then there is a scaling parameter β ∈ (0, 1] such that specPβ ⊂ Σε′ , for some ε′ > 0, with the
goal of achieving an accelerated asymptotic rate 1−Ω(

√
ε).
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We start by giving a disk and a part of the real line which are contained in Σ0.

Lemma 2.12. We have

B
(1

3 ,
1
3

)
∪
[
−1

3 , 1
]
⊂ Σ0.

Proof. The boundary of Σ0 intersects with the real axis at (1, 0) and (−1/3, 0). Thus
[
−1

3 , 1
]
⊂ Σ0.

For any θ ∈ (0, 2π], we have∣∣∣∣∣ e2iθ

2eiθ − 1 −
1
3

∣∣∣∣∣
2

− 1
9 =

∣∣∣∣∣3e2iθ − 2eiθ + 1
3(2eiθ − 1)

∣∣∣∣∣
2

− 1
9

= |3e
2iθ − 2eiθ + 1|2 − |2eiθ − 1|2

9|2eiθ − 1|2

= 14− 16 cos(θ) + 6 cos(2θ)− 5 + 4 cos(θ)
9|2eiθ − 1|2

= 4 cos2(θ)− 4 cos(θ) + 1
9|2eiθ − 1|2 = (2 cos(θ)− 1)2

9|2eiθ − 1|2 > 0.

Thus the boundary of Σ0 does not intersect the interior of the disk B(1
3 ,

1
3). Since 0 ∈ Σ0 ∩B(1

3 ,
1
3), the

disk B(1
3 ,

1
3) is entirely contained in Σ0.

The following result shows that if the spectrum of the initial matrix P belongs to a “flying saucer”
shaped region of the complex plane (see Figure 2.3(a) for illustration), the AVI algorithm does converge
with an asymptotic rate 1−Ω(

√
ε).

Theorem 2.13. If specP ⊂ B(0, 1−ε
2 ) ∪ [−1 + ε, 1− ε], then by setting β = 2

3−ε and

α = 1−
√

2ε/(3− ε)
1 +

√
2ε/(3− ε)

, (2.20)

the iterates of algorithm AVI (2.4) satisfy

lim sup
k→∞

‖xk − x∗‖1/k 6 1−
√

2ε
3 .

Proof. For any β ∈ (0, 1], the spectrum of Pβ is the image of the spectrum of P by the homothety
Hβ := z 7→ 1− β + βz of center 1 and ratio β. Note that β = 2

3−ε satisfies

1− β = β(1− ε)
2 = 1− βε

3 .

Hence the image of B(0, 1−ε
2 ) ∪ [−1 + ε, 1− ε] by the homothety Hβ is

B
(1− βε

3 ,
1− βε

3

)
∪
[
−1− βε

3 , 1− βε
]
.

See Figure 2.3(b) for an illustration. In view of Lemma 2.12, this region is contained in Σβε. It follows
that specPβ ⊂ Σβε and the statement follows by applying Corollary 2.11.
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Figure (2.3) (a): the region B
(
0, 1−ε

2

)
∪ [−1 + ε, 1− ε] (the flying saucer shaped region in grey). (b):

the curve Σβε (the curve in red) and the image of B
(
0, 1−ε

2

)
∪ [−1 + ε, 1− ε] by the homothety Hβ .

Remark 2.14. For 0 < ε < 1
3 , the flying saucer shaped region B

(
0, 1−ε

2

)
∪ [−1 + ε, 1 − ε] can not be

included in Σ0 and Corollary 2.11 is not applicable. However, the homothety Hβ with β = 2
3−ε sends

this region inside Σβε, whence an accelerated asymptotic rate.

Remark 2.15. In the special case when specP ⊂ [−1 + ε, 1 − ε], a similar result was established
in [GGC19]. Translated with our notations, Theorem 5.1 in [GGC19] proved an asymptotic rate 1 −√
ε/(2− ε) by setting α = 1/(2− ε) and β = 1−

√
ε/(2−ε)

1+
√
ε/(2−ε)

in (2.4).

We complement Theorem 2.13 by showing the optimality of the radius 1−ε
2 in the sense described

by the following lemma.

Lemma 2.16. The largest radius r > 0, for which there exists β ∈ (0, 1] such that Hβ(B(0, r)) ⊂ Σ0,
is r = 1

2 and it corresponds to the choice β = 2
3 .

Proof. Applying the homothety Hβ to B(0, r) leads to the ball B(1 − β, βr). We thus look for the
largest r such that B(1−β, βr) ⊂ Σ0 for some β ∈ (0, 1). We notice that r > 1 is not possible, because
for any r > 1 we have 1 + β(r − 1) > 1, which is outside Σ0.

Now, we suppose that 0 6 r 6 1 and there is β ∈ (0, 1) such that B(1− β, βr) ⊂ Σ0. We consider
the line (Dr) of the complex plane passing through the point of coordinates (1, 0) and tangent to the
upper half of the circle B(0, r). This line is given by the equation

y = r√
1− r2

(1− x).

Note that (Dr) is invariant by the homothety Hβ and thus is also tangent to B(1 − β, βr). Thus (Dr)
must intersect with Σ0 at a point other than (1, 0), see Figure 2.4 for an illustration. The curve Γ0 is
given by

θ 7→ e2iθ

2eiθ − 1 = 2 cos(θ)− cos(2θ)
5− 4 cos(θ) + i

2 sin(θ)− sin(2θ)
5− 4 cos(θ) , θ ∈ (0, 2π].
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Let θ ∈ (0, 2π) such that (x0, y0) :=
(

2 cos(θ)−cos(2θ)
5−4 cos(θ) , 2 sin(θ)−sin(2θ)

5−4 cos(θ)

)
lies in (Dr) ∩Σ0. Then

r√
1− r2

= y0
1− x0

= 2 sin(θ)(1− cos(θ))
5− 6 cos(θ) + 2 cos2(θ)− 1 = sin(θ)

2− cos(θ) .

We can easily prove that:

max
θ∈(0,2π)

sin(θ)
2− cos(θ) =

√
3

3 .

Hence,
r√

1− r2
6

√
3

3 ,

which implies that r 6 1/2.
When r = 1/2, we let β = 2/3. Then the image of B(0, r) by the homothety Hβ is B(1/3, 1/3),

which by Lemma 2.12 is contained in Σ0.
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(x0, y0)

(1, 0)

B(1− β, βr) Γ0 (Dr)

(b)

Figure (2.4) (a): the line (Dr) is tangent to the boundary of B (0, r). (b): the line (Dr) is tangent to the
boundary of B (1− β, βr), which is contained in Σ0. The line (Dr) intersects Σ0 at (1, 0) and (x0, y0).

2.4 Analysis of Accelerated Value Iteration of degree d

In this section we consider the acceleration scheme dA-VI (2.8) of any order d > 2. Hereinafter,
α = (α0, · · · , αd−2) ∈ Rd−1 denotes the vector of parameters required in (2.8b). We shall extend the
previous results for d = 2 to arbitrary d > 2. That is, with an appropriate choice of α, and under an
assumption on the shape of the complex spectrum of P , the asymptotic rate of (2.8) can be 1 − ε1/d.
We refer to Remark 2.2 for a discussion on the connection between the dA-VI (2.8) and Anderson
acceleration.
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2.4.1 Parameters

We show how to select the parameters α = (α0, · · · , αd−2) in (2.8b) to obtain an acceleration of any
order d > 2. For the sake of simplicity we let β = 1. Then zk = yk − x∗ satisfies the following system
of linear equations: 

zk+1
zk
...

zk−d+2

 = Qα,d


zk
zk−1

...
zk−d+1


where

Qα,d :=


(1 + αd−2 + · · ·+ α0)P −αd−2P · · · −α0P

I 0 · · · 0
...

. . .
...

0 · · · I 0

 ,
We introduce the following rational function of degree d defined by

φα,d(λ) = λd

U(λ) , (2.21)

where U(·) : C→ C is the polynomial of degree d− 1 given by:

U(λ) = (1 + αd−2 + · · ·+ α0)λd−1 − αd−2λ
d−2 − · · · − α0 .

The polynomial U satisfies U(1) = 1. The following standard result, which is proved as Lemma 2.4
above, relates the eigenvalues of Qα,d with those of P .

Lemma 2.17. λ is an eigenvalue of Qα if and only if there exists an eigenvalue δ of P such that δ =
φα,d(λ). In other words,

specQα,d = φ−1
α,d(specP ).

We want to choose the vector of parameters α that leads to the smallest possible spectral radius for
Qα,d, in order to obtain the smallest asymptotic rate for (2.8), like in the case of AVI (i.e. d = 2).

Lemma 2.18. The best choice of the parameters α0, · · · , αd−2 that minimizes the maximum of the
moduli of the preimages of 1− ε by φα,d is:

αi =
(
d

i

)
(ε1/d − 1)d−i

(1− ε) , ∀ i = 0, · · · , d− 2 , (2.22)

and it corresponds to the following rational function

φ∗d(λ) = (1− ε)λd

λd − (λ− (1− ε1/d))d
. (2.23)

Proof. It is easy to verify that with the choice of α0, . . . , αd−2 in (2.22),

U(λ) = 1
1− ε

(
λd −

(
λ− (1− ε1/d)

)d)
,

and thus it leads to the rational function (2.23). In addition, φ∗d(λ) = 1 − ε iff
(
λ− (1− ε1/d)

)d
= 0,

from which we deduce that the maximal moduli of the preimages of 1− ε by φ∗d is 1− ε1/d.
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Let λ1, λ2, · · · , λd be the solutions of φα,d(λ) = 1 − ε satisfying maxi |λi| 6 1 − ε1/d. Then
λd − (1 − ε)U(λ) =

∏
i(λ − λi) for all λ ∈ C. By taking λ = 1 we obtain that

∏
i(1 − λi) = ε. We

have

ε 6 (1−max
i
|λi|)d 6

∏
i

(1− |λi|) 6
∏
i

|1− λi| = ε .

Therefore for all i, λi = 1− ε1/d and φα,d is exactly φ∗d.

In the following, we consider the scheme (2.8) implemented with the special choice of the parameters
{αi : i = 0, · · · , d − 2} given in (2.22). We want to generalize the characterization of the accelerable
region Σε for the AVI algorithm to get the largest accelerable region for the dA-VI algorithm. For this
purpose, for any ε > 0 and d > 2, let Γε,d be the simple closed curve defined by the parametric equation:

θ 7→ (1− ε)eidθ

eidθ − (eiθ − 1)d , θ ∈
(
π − 2π

d
, π + 2π

d

]
. (2.24)

See an illustration in Figure 2.5 for ε = 0 and d = 4. Denote by Σε,d the compact set delimited by
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Figure (2.5) Ilustration of the curve Γε,d (the curve in red in Figure 2.5(a)) and its enclosed regionΣε,d
(Figure 2.5(b)). The dashed curve in Figure 2.5(a) corresponds to

{
(1−ε)eidθ

eidθ−(eiθ−1)d : θ ∈ (0, 2π])
}

.

the simple closed curve Γε,d. The following theorem identifies conditions on the spectrum of the initial
matrix P which guarantee that the dA-VI algorithm converges asymptotically with a rate 1− ε1/d.

Theorem 2.19. Choosing the parameters (α0, . . . , αd−1) as in (2.22), we get that

specQα,d ⊂ B(0, 1− ε1/d),

if and only if specP ⊂ Σε,d ∪ {1− ε}.

The proof is given in the next subsection.
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2.4.2 Proof of Theorem 2.19

Lemma 2.20. specQα,d ⊂ B(0, 1− ε1/d) if and only if

specP ⊂ {(1− ε)z : ψ−1
d (z) ⊂ B(0, 1)} , (2.25)

where ψd is the rational function defined by

ψd(λ) = λd

λd − (λ− 1)d .

Proof. We note from Lemma 2.17 that specQα,d ⊂ B(0, 1− ε1/d) if and only if

specP ⊂ {z : (φ∗d)−1(z) ⊂ B(0, 1− ε1/d)} . (2.26)

We note the following property:

φ∗d((1− ε1/d)λ) = (1− ε)λd

λd − (λ− 1)d = (1− ε)ψd(λ) , (2.27)

Hence (2.26) is equivalent to (2.25).

We next give a description of the following set.

S :=
{
z ∈ C : ψ−1

d (z) ⊂ B(0, 1)
}
. (2.28)

We shall need to define

Q :=
d−1⋂
k=0

e
2kπi
d H,

where
H := {w ∈ C : Re(w) 6 1/2},

is the half-plane containing all the complex numbers with real part smaller than 1/2, and eαiH denotes
the halfspace obtained by rotating H of angle α.

Lemma 2.21.

S =
{

1
1− 1

zd

: z ∈ Q
}
∪ {1}. (2.29)

Proof. We define two self-maps of the extended complex plane C̄:

f1(λ) := λ

λ− 1 , (2.30)

f2(λ) := λd . (2.31)

Note that
f1(λ) = 1 + 1

λ− 1 ,

which entails that f1 is an inversion of center 1. In particular, f1 ◦ f1(λ) = λ for any λ ∈ C̄. It is easy
to see that

ψd(λ) = f1 ◦ f2 ◦ f1(λ), ∀λ ∈ C̄. (2.32)



2.4. Analysis of Accelerated Value Iteration of degree d 37

Hence we know that
S =

{
z ∈ C : ψ−1

d (z) ⊂ B(0, 1)
}

=
{
z ∈ C : f−1

1

(
f−1

2

(
f−1

1 (z)
))
⊂ B(0, 1)

}
=
{
z ∈ C : f−1

2

(
f−1

1 (z)
)
⊂ f1(B(0, 1))

}
=
{
f1(w) ∈ C : f−1

2 (w) ⊂ f1(B(0, 1))
}
,

(2.33)

where the second equality used (2.32), the third equality relies on the bijection property of f1 and the
last equality applies the change of variable w = f−1

1 (z).
Now we characterize the set f1(B(0, 1)). Note that z = f1(w) if and only if 1

z + 1
w = 1. Thus there

is w ∈ B(0, 1) such that z = f1(w) if and only if |1− 1
z | > 1. We then deduce that

f1(B(0, 1)) =
{
w ∈ C̄ : |w − 1| > |w|

}
. (2.34)

Note that
{w ∈ C : |w − 1| > |w|} = {w ∈ C : Re(w) 6 1/2} = H.

Indeed, it is known that a circle passing through the center of an inversion is sent to a line by this
inversion, and the disk delimited by the circle is send to a half-plane. We conclude that

f1(B(0, 1)) = H ∪ {∞}. (2.35)

Plugging (2.35) into (2.33) we obtain

S =
{
f1(w) ∈ C : f−1

2 (w) ⊂ H ∪ {∞}
}
. (2.36)

It remains to characterize the set{
w ∈ C̄ : f−1

2 (w) ⊂ H ∪ {∞}
}

=
{
w ∈ C : f−1

2 (w) ⊂ H
}
∪ {∞}.

Define:

Q̄ :=
{
z ∈ C : f−1

2 (f2(z)) ⊂ H
}
. (2.37)

It is easy to see that: {
w ∈ C : f−1

2 (w) ⊂ H
}

=
{
f2(z) : z ∈ Q̄

}
It follows that {

w ∈ C̄ : f−1
2 (w) ⊂ H ∪ {∞}

}
=
{
f2(z) : z ∈ Q̄

}
∪ {∞}. (2.38)

Finally plugging (2.38) into (2.36) we obtain that

S =
{
f1(f2(z)) ∈ C : z ∈ Q̄

}
∪ {1} =

{
1

1− 1
zd

: z ∈ Q̄
}
∪ {1}. (2.39)

Since for any z ∈ C,

f−1
2 (f2(z)) =

{
z, e−

2πi
d z, . . . , e−

2(d−1)πi
d z

}
,

we obtain

Q̄ =
{
z ∈ C :

{
z, e−

2πi
d z, . . . , e−

2(d−1)πi
d z

}
⊂ H

}
. (2.40)
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Therefore, Q̄ is actually the intersection of d halfspaces obtained by rotating H of angles 2kπ
d for k =

0, . . . , d− 1. Namely,
Q̄ = Q.

Remark 2.22. For d = 2, Q is the set of complex numbers with real part in [−1/2, 1/2]. For d >
3, Q is a regular polygon with d vertices which circumscribes the disk B(0, 1/2), see Figure 2.6 for
illustration from d = 2 to d = 5. In particular we have B(0, 1/2) ⊂ Q ⊂ B(0, 1/(2 cos(π/d))) and Q
asymptotically approximates B(0, 1/2) when d→ +∞. It follows that{

1
1− 1

zd

: z ∈ B(0, 1/2)
}
∪ {1} ⊂ S ⊂

{
1

1− 1
zd

: z ∈ B(0, 1/(2 cos(π/d)))
}
∪ {1} .

Note that for any a > 1,{
1

1− 1
zd

: z ∈ B(0, a)
}

=
{

1
1− 1

w

: w ∈ B(0, ad)
}

=
{1
z

: |z − 1| > ad
}
.

and thus,

B(0, 1/(ad + 1)) ⊂
{

1
1− 1

zd

: z ∈ B(0, a)
}
⊂ B(0, 1/(ad − 1)).

This allows to deduce the following estimation of the region S.

B
(

0, 1
2d + 1

)
∪ {1} ⊂ S ⊂ B

(
0, 1

(2 cos(π/d))d − 1

)
∪ {1}. (2.41)

Next we characterize the boundary of the accelerable region S. We denote by BdS the boundary of
a set S.

Proposition 2.23. We have
S = Σ0,d ∪ {1} (2.42)

where Σ0,d is the compact set of the complex plane delimited by the simple closed curve Γ0,d as defined
in (2.24).

Proof. Since f2 is holomorphic and thus open, it sends the interior of Q into the interior of f2(Q). It
follows that Bd f2(Q) ⊂ f2(BdQ). By the continuity of f2, for any z ∈ BdQ and any ε > 0, there is
δ > 0 such that

f2(B(z, δ)) ⊂ B(f2(z), ε).

Since z ∈ BdQ, B(z, δ)∩Qc 6= ∅ and thus f2(B(z, δ))∩f2(Qc) 6= ∅.we note from the definition (2.40)
that

f2(Q) ∩ f2(Qc) = ∅.

Thereby f2(B(z, δ)) ∩ (f2(Q))c 6= ∅ and B(f2(z), ε) ∩ (f2(Q))c 6= ∅. This shows that f2(z) ∈
Bd(f2(Q)) and thus f2(BdQ) ⊂ Bd f2(Q). We thus proved that

Bd f2(Q) = f2(BdQ). (2.43)

Since f1 : C̄→ C̄ is a homeomorphism, we know that

Bd f1(f2(Q)) = f1(Bd f2(Q)) (2.43)= f1(f2(BdQ)). (2.44)
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Figure (2.6) Ilustration of Q (the region in blue) and the circumscribed disk B(0, 1/2) (the dashed
region).
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As mentioned in Remark 2.22, for d = 2, Q is the set of complex numbers with real part in [−1/2, 1/2]
and the boundary of Q can be described as follows:

BdQ =
{±(1 + i tan θ)

2 : θ ∈
(
−π2 ,

π

2

)}
.

For d > 3, Q is the regular convex polygon with boundary given by the simple closed curve:

BdQ =
{
e

2kπi
d (1 + i tan θ)

2 : θ ∈
(
−π
d
,
π

d

]
, k ∈ {0, . . . , d− 1}

}
.

Since

1
1− e−iθ = 1

1− cos θ + i sin θ = 1− cos θ − i sin θ
2− 2 cos θ

= 1
2 −

i sin θ
2(1− cos θ) = 1

2 + i sin(θ + π)
2(1 + cos(θ + π))

=
(1 + i tan θ+π

2 )
2 ,

we obtain another representation of BdQ:

BdQ =


{
±1

1−e−iθ : θ ∈ (0, 2π)
}

if d = 2{
e

2kπi
d

1−e−iθ : θ ∈
(
π − 2π

d , π + 2π
d

]
, k ∈ {0, . . . , d− 1}

}
, if d > 3

(2.45)

Plugging (2.45) into (2.44) we obtain that

Bd f1(f2(Q)) =


{

1
1−(1−e−iθ)2 : θ ∈ (0, 2π)

}
if d = 2{

1
1−(1−e−iθ)d : θ ∈

(
π − 2π

d , π + 2π
d

]}
if d > 3

(2.46)

Therefore, define the set

Σ0,d :=
{
f1(f2(Q)) ∪ {1} if d = 2
f1(f2(Q)) if d > 3 (2.47)

Then we have (2.42) and

BdΣ0,d =


{

1
1−(1−e−iθ)2 : θ ∈ (0, 2π]

}
if d = 2{

1
1−(1−e−iθ)d : θ ∈

(
π − 2π

d , π + 2π
d

]}
if d > 3

(2.48)

which can be written as

BdΣ0,d =
{

eidθ

eidθ − (eiθ − 1)d , θ ∈
(
π − 2π

d
, π + 2π

d

]}
.

for any d > 2. Finally the compactness of Σ0,d follows from the compactness of S, which can be easily
seen from the fact that S ⊂ ψd (B(0, 1)) by the definition (2.28).

Proof of Theorem 2.19. This follows directly from (2.25), (2.28) and (2.42).

Remark 2.24. In Theorem 2.19, the region Σε,d assured to be accelerable does not contain some part of
the real interval [0, 1 − ε] for any d > 3. This is consistent with Theorem 2.2.12 of [Nes04] implying
that for a linear recurrent scheme with finite memory calling the oracle T , the geometric convergence
rate cannot be smaller than 1−O(κ−1/2) where κ is a condition number, corresponding to ε−1 here.
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2.4.3 Robustness of the acceleration

Note that the parameters (α0, . . . , αd−1) defined in (2.22) requires the knowledge of ε thus of the exact
value of the spectral radius of P , which may be a restrictive assumption for practitioners. For example,
in the stochastic shortest path problem analyzed in [BT91a], we do not know the spectral radii of the sub-
stochastic matrices arising in the restricted contracting operator described in Proposition 1 of [BT91a].
In this section we evaluate how the small perturbation of ε will affect the order of convergence of the
acceleration scheme. This in particular allows the use of an approximate value of ε to compute the
parameters (α0, . . . , αd−1) while still achieving an asymptotic convergence rate of order 1−Ω(ε1/d).

For h > 0, we are looking for the smallest radius gε(h) > 0 such that (φ∗d)
−1 (B(1 − ε, h)) ⊂

B(1 − ε1/d, gε(h)), and we enforce gε(h) 6 ε1/d to preserve the acceleration. First we make this
analysis for ψd (i.e. ε = 0).

Lemma 2.25. For h > 0, the smallest nonnegative real number g0(h) such that

ψ−1
d (B(1, h)) ⊂ B(1, g0(h))

is

g0(h) = h1/d

(1 + h)1/d − h1/d , ∀h > 0 .

Proof. For h = 0, it follows from ψ−1
d (1) = {1}.

Now let h > 0, we want to have ψd(B(1, g0(h))c) ⊂ B(1, h)c, i.e.:

|λ| > g0(h)⇒ |ψd(1 + λ)− 1| > h, ∀λ ∈ C. (2.49)

We have ψd(1 + λ) = (1+λ)d
(1+λ)d−λd = 1 + λd

(1+λ)d−λd = 1 + 1
(1+ 1

λ
)d−1 , then

|ψ(1 + λ)− 1| > h⇔
∣∣∣∣∣
(

1 + 1
λ

)d
− 1

∣∣∣∣∣ < 1
h
, ∀λ ∈ C.

For any λ ∈ C we know that∣∣∣∣∣
(

1 + 1
λ

)d
− 1

∣∣∣∣∣ =
∣∣∣∣∣
d∑

k=1

(
d

k

)
1
λk

∣∣∣∣∣ 6
d∑

k=1

(
d

k

)
1
|λ|k

=
(

1 + 1
|λ|

)d
− 1. (2.50)

Thus

|λ| > h1/d

(1 + h)1/d − h1/d ⇔
(

1 + 1
|λ|

)d
− 1 < 1

h
⇒ |ψ(1 + λ)− 1| > h, ∀λ ∈ C.

This allows to conclude because we have equality in (2.50) when λ ∈ R+.

Lemma 2.26. For any a ∈ [0, 1] we have

(φ∗d)
−1 (B(1− ε, aε)) ⊂ B(1− ε1/d, a1/dε1/d) .

Proof. By the property (2.27) and Lemma 2.25 we deduce that for h > 0, the smallest radius gε(h) such
that (φ∗d)

−1 (B(1− ε, h)) ⊂ B(1− ε1/d, gε(h)) is given by

gε(h) = (1− ε1/d)h1/d

(1 + h− ε)1/d − h1/d , ∀h > 0.
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Note that
(1 + h− ε)1/d − h1/d > 1− ε1/d, ∀h 6 ε.

Hence
gε(h) 6 h1/d, ∀h 6 ε.

We achieve the proof by taking h = aε.

The following theorem describes a d-accelerable region.

Theorem 2.27. Let a ∈ [0, 1[, if specP ⊂ B
(
0, 1−ε

2d+1

)
∪B (1− ε, aε) then with the choice of α specified

in (2.22) we have,
specQα,d ⊂ B(0, 1− ε1/d) ∪ B(1− ε1/d, a1/dε1/d) ,

so that the iterates of the dA-VI algorithm (2.8) with β = 0 satisfy

lim sup
k→∞

‖xk − x∗‖1/k 6 1− (1− a1/d)ε1/d.

Proof. By combining Theorem 2.19, Equation (2.41) and Lemma 2.26.

2.4.4 Application to Markov Decision Processes: Accelerated Policy Iteration

As an application, we consider the standard discounted Markov decision process (MDP) with state
space [n] := {1, . . . , n}, see [Whi83, BT96] for background. For each state i, denote by A(i) the set of
actions, P ai,j the transition probability from state i to state j under action a ∈ A(i), and gai the reward
of choosing action a ∈ A(i) in state i. Let 1 > γi > 0, for i ∈ [n], be state-dependent discount factors.
The associated dynamic programming operator T : Rn → Rn is given by:

Ti(x) := max
a∈A(i)

γi
∑
j∈[n]

P ai,jxj + gai , ∀i ∈ [n] . (2.51)

We set γ := maxi∈[n] γi.
The value of the discounted problem for this MDP starting from an initial state i is given by:

vi := max
a0,a1,···

E
[
ga0
X0

+ γX0g
a1
X1

+ γX0γX1g
a2
X2

+ · · · | X0 = i
]
,

where the maximum is taken over admissible sequences of random actions, and X0, X1, · · · denotes the
random sequence of states generated by the actions.

We are interested in finding the value vector v ∈ Rn of this MDP which is a solution of the fixed
point problem v = T (v). The fixed point exists and is unique since T is a contraction of constant γ in
the sup-norm.

A classical approach to solve this problem is to use value iteration, i.e., to compute the sequence
vk = T (vk−1), which converges to the unique fixed point. It is tempting to apply directly accelerated
value iteration to the non-linear problem v = T (v). This approach was proposed in [GGC19], and it
is experimentally effective on some instances. However, the convergence proof of accelerated value
iteration uses inherently the affine character of the operator T , and it is not clear whether general enough
convergence conditions can be given for Markov decision processes. An alternative approach, which we
develop here, is to rely on policy iteration instead of value iteration, which will allow us to apply the
idea of dth acceleration to solve MDP, but in an indirect manner, leading to convergence guarantees.
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A policy is a map σ : [n] → ∪i∈[n]A(i) such that σ(i) ∈ A(i), it represents a state dependent
decision rule. It determines a 0-player game, with an affine operator T σ : Rn → Rn,

T σi (x) := γi
∑
j∈[n]

P
σ(i)
i,j xj + g

σ(i)
i , ∀i ∈ [n] . (2.52)

For a vector x ∈ Rn, we define top(x) = maxi∈[n] xi. We have ‖x‖∞ = max(top(x), top(−x)). For
x, y ∈ Rn, we write x 6 y to mean that xi 6 yi for all i ∈ [n]. We denote by x∗ the unique fixed point of
the operator T and by xσ the unique fixed point of the operator T σ. We denote by a+ = max(a, 0) the
positive part of a real number. The following lemma presents some classical properties of the operators
T and T σ that are useful for our analysis.

Lemma 2.28. Let x, y ∈ Rn, σ a policy, e = (1, · · · , 1) ∈ Rn the unit vector and a ∈ R+ a nonnegative
real number, we have:

(top(T (x)− T (y)))+ 6 γ(top(x− y))+, (2.53)

‖x− xσ‖∞ 6
1

1− γ ‖x− T
σ(x)‖∞, (2.54)

‖x− x∗‖∞ 6
1

1− γ ‖x− T (x)‖∞, (2.55)

T σ(x+ ae) 6 T σ(x) + γae, (2.56)

x 6 T σ(x) + ae⇒ x 6 xσ + a

1− γ e, (2.57)

x 6 T (x) + ae⇒ x 6 x∗ + a

1− γ e, (2.58)

x 6 y ⇒ T σ(x) 6 T σ(y). (2.59)

Property (2.59) follows from P aij > 0, whereas (2.56) follows from
∑
j P

a
ij = 1. Property (2.53)

means that T is a contraction of rate γ in the nonsymmetric norm (x, y) 7→ (top(x− y))+. To see it we
compute for i ∈ [n], Ti(x)− Ti(y) = maxa{γi

∑
j∈[n] P

a
i,jxj + gai } −maxa{γi

∑
j∈[n] P

a
i,jyj + gai } 6

(γi
∑
j∈[n] P

ax
i,j xj + gaxi )− (γi

∑
j∈[n] P

ax
i,j yj + gaxi ) = γi

∑
j∈[n] P

ax
i,j (xj − yj), where ax is the action

that maximizes the expression of Ti(x). Property (2.54) (and similarly (2.55)) comes street forward
from xσ being a fixed point of T σ and the latter being a γ-contraction in the sup norm.

To obtain property (2.57) (and similarly (2.58)), we apply k times the operator T σ to both sides of the
initial inequality and we use the properties (2.59) and (2.56) to obtain that x 6 (T σ)k+1(x)+a

∑k
i=0 γ

ie
and finely since T σ is a strict contraction, we know that when k goes to infinity, (T σ)k+1(x) converges
to the fixed point xσ.

Policy iteration computes a succession of policies σ1, σ2, . . . . At each stage, it solves a 0-player
fixed point problem, finding a vector vk such that vk = T σ

k(vk). Then, the vector vk is used to
determine the new policy, by considering the maximizing actions in the expression of T (vk). When
policy iteration is implemented in exact arithmetics, for a fixed γ < 1, the number of iterations is
strongly polynomial [Ye11b]. Moreover, on ordinary instances, the number of iterations is often of a
few units. Hence, the bottleneck, preventing to apply policy iteration to large scale Markov decision
problems, is generally the solution of the affine problem vk = T σ

k(vk): algebraic methods, based on
LU-factorization, are not adapted to large scale sparse instances, whereas standard iterative methods
can be slow, since the contraction rate γ is typically close to 1. To address this difficulty, we present a
version of policy iteration in which at each stage, vk is computed by the dth accelerated scheme.

We consider the Accelerated Policy Iteration of degree d (dA-PI) presented in Algorithm 1. Using
classical estimates on approximate value iteration, see [BT96, Ber11, SGG+15], we get the following
convergence result.
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Algorithm 1 Accelerated Policy Iteration of degree d (dA-PI).
1: Fix a target accuracy δ for value determination and δ′ for policy improvement.
2: Initialization: select a starting policy σ0, and set the initial values x−1,0 = x−1,1 = · · · = x−1,d−2 =
y−1,d−2 = 0

3: for k = 0, 1, · · · do the following:
4: (Accelerated value determination): Run the dA-VI (2.8) on the operator T σ

k
until having a resid-

ual smaller that δ: so first we initialize xk,0, xk,1, · · · , xk,d−2 by the last d−1 values of the sequence
(xk−1,l)l and yk,d−2 by the last value of the sequence (yk−1,l)l, and for l = d − 2, · · · , we do the
iterations of (2.8):

xk,l+1 = (1− β)yk,l + βT (yk,l) , (2.60a)

yk,l+1 = (1 + αd−2 + · · ·+ α0)xk,l+1 − αd−2xk,l − · · · − α0xk,l−d+2 , (2.60b)

until ‖yk,l − T σ
k(yk,l)‖∞ 6 δ. We denote the final yk,l by yk.

5: (Policy improvement). We determine a policy σk+1 such that ‖T (yk)− T σ
k+1(yk)‖∞ 6 δ′, and

for each i ∈ [n], we choose σk+1(i) = σk(i) whenever possible.
6: done

Proposition 2.29. Suppose that for any policy σ, specP σ ⊂ Σε,d ∪ {1 − ε}, and that we choose
α = (α0, · · · , αd−2) as in (2.22). Each iteration k of the dA-PI algorithm terminates, and we have :

lim sup
k→∞

‖yk − x∗‖∞ 6
(1 + γ)δ + δ′

(1− γ)2 . (2.61)

Moreover, if σk+1 = σk for some k, then ‖yk − x∗‖∞ 6 δ+δ′
1−γ .

Proof. The termination of each iteration k comes from Theorem 2.19. For each k, we have from the
algorithm ‖yk − T σ

k(yk)‖∞ 6 δ, then yk 6 T σ
k(yk) + δe 6 T (yk) + δe. Then by (2.58) we deduce

that yk 6 x∗ + δ
1−γ e. Therefore top(yk − x∗) 6 δ

1−γ 6 (1+γ)δ+δ′
(1−γ)2 .

We have yk 6 T (yk) + δe 6 T σ
k+1(yk) + (δ + δ′)e, then by (2.57) we get yk 6 xσ

k+1 + δ+δ′
1−γ e.

By (2.54) and the algorithm, we have ‖yk+1−xσ
k+1‖∞ 6 ‖yk+1−T σ

k+1(yk+1)‖∞/(1−γ) 6 δ/(1−γ),
then xσ

k+1
6 yk+1 + δ

1−γ e. We deduce that yk 6 yk+1 + 2δ+δ′
1−γ e. We apply T σ

k+1
to both sides of this

inequality and use (2.59) and (2.56) to get that T (yk) 6 T σ
k+1(yk)+δ′e 6 T σ

k+1(yk+1+2δ+δ′
1−γ e)+δ

′e 6

T σ
k+1(yk+1)+ (2δ+δ′)γ

1−γ e+δ′e 6 yk+1+δe+ (2δ+δ′)γ
1−γ e+δ′e = yk+1+ (1+γ)δ+δ′

1−γ e. Therefore, x∗−yk+1 6

x∗ − T (yk) + (1+γ)δ+δ′
1−γ e = T (x∗) − T (yk) + (1+γ)δ+δ′

1−γ e. Then (top(x∗ − yk+1))+ 6 (top(T (x∗) −
T (yk)))+ + (1+γ)δ+δ′

1−γ , and by using (2.53) we deduce that (top(x∗ − yk+1))+ 6 γ(top(x∗ − yk))+ +
(1+γ)δ+δ′

1−γ . By iterating this inequality, we deduce that for iteration k, (top(x∗ − yk))+ 6 γk(top(x∗ −
y0))+ + (1+γ)δ+δ′

1−γ
∑k−1
i=0 γ

i. Therefore, lim supk→∞(top(x∗ − yk))+ 6 (1+γ)δ+δ′
(1−γ)2 , and by using ‖x∗ −

yk‖∞ = max(top(yk − x∗), (top(x∗ − yk))+) we end the proof of (2.61).
Now, if σk+1 = σk for some k, then ‖T (yk) − T σ

k(yk)‖∞ 6 δ′ and we know that ‖yk −
T σ

k(yk)‖∞ 6 δ, then ‖yk − T (yk)‖∞ 6 δ + δ′. Therefore by (2.55), we get ‖yk − x∗‖∞ 6 δ+δ′
1−γ .

Remark 2.30. Proposition 2.29 should be compared with [BT96, Prop. 6.2] and Remark 5 and Eqn 22
of [SGG+15], which bound the same limsup by an expression of the form (δ′ + 2γε)/(1 − γ)2, where
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ε is a upper bound of ‖yk − xσ
k‖∞. Here, ε is replaced by δ, which is an upper bound of the residual

‖yk − T σ
k(yk)‖∞.

Remark 2.31. Proposition 2.29 is only an asymptotic result. In contrast, when policy iteration is imple-
mented exactly, the value vector vk associated to the kth policy that is selected satisfies ‖vk − x∗‖∞ 6
γk‖v0 − x∗‖∞, see Lemma 6.5 of [HMZ13].

Remark 2.32. Since accelerated value iteration, and so, accelerated policy iteration, are implemented
with a fixed precision arithmetics, one may wonder whether acceleration leads to numerical instabilities.
In the numerical experiments which follows, no such instabilities were observed for the relevant values
d = 2, 4 considered here. We verified the validity of the approximate solutions that we obtained using
the inequality (2.55). Indeed, the residual ‖yk − T (yk)‖∞, where yk is the approximate solution gotten
at the final iteration of the algorithm, can be evaluated in an accurate way (with a precision close to the
machine precision) using only the last value yk. So, if this residual is small, by the inequality (2.55),
we can certify that ‖yk − x∗‖∞ is also small, so that we have a valid approximate solution. In all the
experiments of Section 2.5, the algorithms are stopped with a residual of < 10−10, and 1− γ is > 10−4,
so, it is guaranteed that the true solution is approximated with a precision < 10−6.

2.5 Numerical results

In this section, we show the numerical performance of the proposed dA-VI and dA-PI with d = 2 and
d = 4. The acceleration parameters in all the examples follow (2.22); the parameter α = 1−

√
ε

1+
√
ε

for

accelerations of degree 2, and the parameters α0 = (1−ε1/4)4

1−ε , α1 = −4(1−ε1/4)3

1−ε and α2 = 6(1−ε1/4)2

1−ε for
accelerations of degree 4.

In all the examples below, we do the policy improvement at each iteration k of the dA-PI algorithm
in an exact way by taking, for each i ∈ [n], σk+1(i) ∈ [m] to be a value achieving the maximum when
evaluating (2.51) at x = yk, i.e. δ′ = 0, and we let the accuracy of the value determination to be
δ = 10−10.

2.5.1 Markov decision processes with random matrices

We consider the discounted MDP model of (2.51). We take a damping parameter β = 1 in what follows.
The instances used in Figures 2.7 to 2.12 are generated in the following way. We fix two integers

n and m. For each i ∈ [n], we take A(i) = [m] and randomly generate a probability vector pai =
(P ai,1, . . . , P ai,n) as follows: P ai,j = Xa

i,j

Xa
i,1+···+Xa

i,n
, where the Xa

i,j are independent Bernoulli random

variables of mean p ∈ (0, 1). The discount factors γi are randomly chosen in the interval [1− 2ε, 1− ε],
independently for each i ∈ [n].

Let λ1, . . . λn be the eigenvalues of
√
nP . It is shown in [BCC08] that the counting probability

measure δλ1+···+δλn
n , converges weakly as n → ∞ to the uniform law on the disk {z ∈ C : |z| 6√

(1− p)/p}. Moreover, Theorem 1.2, ibid. shows that the second modulus of an eigenvalue of P is
of order 1/

√
n. This explains the shape of the spectrum shown on the figures Figures 2.7 to 2.9, and

explains also, along with (2.41), why the accelerated schemes of order 4 work in the large scale example
of Figure 2.12 where we take p = 0.0025 with n = 105.

In Figure 2.7, we consider an instance where the matrices are randomly generated as above with
n = 30, m = 10 and p = 0.2. In subfigure 2.7(b), we display the spectrum of one matrix P σγ :=
(γiP σij)ij . One can notice that this spectrum presents eigenvalues that are outside the simply and multiply
accelerable regions delimited respectively by Γε and Γε,4 (see Theorem 2.19). Therefore, the accelerated
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policy iteration algorithms (dA-PI) cannot be applied for this instance. In accordance with that, the
subfigure 2.7(a) shows that the accelerated value iteration algorithms 2A-VI and 4A-VI do not converge.

In Figure 2.8, we consider an instance with n = 100, m = 10 and p = 0.2. The subfigure 2.8(b)
shows that the spectrum of the random matrices in this case is located in the simply accelerable region
delimited by Γε, but it is not included in the 4-accelerable region Γε,4. Therefore, we can apply the 2A-PI
algorithm but not the 4A-PI in this case. The subfigure 2.8(a) shows that the simply accelerated schemes
2A-PI and 2A-VI have significantly better performances than value iteration algorithm. It shows also as
expected that the acceleration of order 4 does not converge.

In Figure 2.9, we consider an instance with n = 1500, m = 10 and p = 0.2. The subfigure 2.9(b)
shows that the spectrum of the random matrices in this case is located inside the accelerable regions of
order 2 and 4 delimited respectively by Γε and Γε,4. Therefore, we can apply both 2A-PI and 4A-PI in
this case. The subfigure 2.9(a) shows that all the accelerated schemes converge in this case and that the
multi-accelerated schemes have better performances than the simply accelerated ones.

In Figure 2.10, we consider an instance with n = 4000, m = 10, p = 0.1. In this example we take
ε = 10−2 to allow the Value Iteration algorithm to have a visible improvement.

In Figure 2.11, we consider an instance with n = 4× 104, m = 10 and the matrices used are sparse
with a parameter p = 0.005.

We observe that the classical Policy Iteration (PI) algorithm [How60, Put14], using LU decompo-
sition to solve the linear 0-player problem at each iteration, is way faster than our iterative algorithms
(dA-PI and dA-VI) in the case of small matrices like in Figures 2.7 and 2.8, but as the size of the matri-
ces gets bigger our iterative algorithms become more competitive like in Figures 2.9 and 2.10, and even
way faster than Policy Iteration like in Figure 2.11.

The Figure 2.12 represents a large scale analogue to the previous examples where the number of
states is n = 105, and the matrices used are sparse with a parameter p = 0.0025. For this example, the
classical Policy Iteration algorithm cannot be used because of memory saturation. However, the dA-PI
algorithms 1 that we propose, with d = 2 and d = 4 here, work in this case and show significantly better
performances than the classical Value Iteration algorithm. The dA-VI algorithms also show competitive
performances in comparison with dA-PI algorithms. However, we expect in general that dA-PI becomes
more competitive than dA-VI when the number of actions m is large, because the number of policies
visited grow slowly with the number of actions (in the discounted case, a worst case almost linear bound
for this number is given in [Sch13], based on [Ye11b], the convergence being generally faster on typical
instances).

In particular, for all the examples in Figures 2.8 to 2.12, we notice that both 2A-PI and 4A-PI stop
only after k 6 5 iterations over policies because each one of them finds a policy σk+1 equal to σk. The
same phenomenon occurs in the second application shown in the next section (see Figures 2.14 and 2.16
below).

2.5.2 Hamilton-Jacobi-Bellman PDE

We now apply the accelerated schemes to solve a Hamilton-Jacobi-Bellman (HJB) equation arising from
a controlled diffusion problem with a small drift.

2.5.2.a Description of the problem We consider an HJB equation in dimension p > 1, where v
is a real-valued function defined on the torus Rp/Zp, identified to [0, 1]p, assuming a cyclic boundary
condition:

max
a∈[m]

(1
2

p∑
i=1

σ2
i

∂2v

∂x2
i

(x) +
p∑
i=1

gi(a, x) ∂v
∂xi

(x)− λv(x) + r(a, x)
)

= 0, x ∈ [0, 1]p , (2.62)
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(a) PI, VI, 2A-VI and 4A-VI (b) The spectrum of one matrix Pσγ where ε =
10−4.

Figure (2.7) Markov Decision Process with random Markov matrices of size n = 30 and with m = 10
actions at each state.

(a) PI, 2A-PI, VI, 2A-VI and 4A-VI (b) The spectrum of one matrix Pσγ where ε =
10−4.

Figure (2.8) Markov Decision Process with random Markov matrices of size n = 100 and withm = 10
actions at each state.

(a) PI, 2A-PI, 4A-PI, VI, 2A-VI and 4A-VI (b) The spectrum of one matrix Pσγ where ε =
10−4.

Figure (2.9) Markov Decision Process with random Markov matrices of size n = 1500 and with
m = 10 actions at each state.
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(a) PI, 2A-PI, 4A-PI, VI, 2A-VI and 4A-VI (b) The spectrum of one matrix Pσγ where ε =
10−2.

Figure (2.10) Markov Decision Process with random Markov matrices of size n = 4000 and with
m = 10 actions at each state.

(a) PI, 2A-PI, 4A-PI, VI, 2A-VI and 4A-VI (b) Zoom on Figure 2.11(a).

Figure (2.11) Markov Decision Process with random Markov matrices of size n = 4 × 104 and with
m = 10 actions at each state.

Figure (2.12) Markov Decision Process with random Markov matrices of size n = 105 and with
m = 10 actions at each state.
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where [m] = {1, . . . ,m} is the set of actions, the scalar σi > 0 represents the volatility in direction i,
gi : [m] × [0, 1]p 7→ R represents the drift in direction i that depends on the action a and the state x,
λ > 0 is a dissipation parameter and r : [m]× [0, 1]p 7→ R is the function of rewards.

The function v is given by

v(x) = sup
a(·)

E
[ ∫ ∞

0
exp(−λt)r(a(t), Xt)dt | X0 = x

]
,

with dXt = g(a(t), Xt)dt+ tdiag(σ)dWt, where Wt is the standard Brownian motion on Rp, tdiag(σ)
is the diagonal matrix with entries (σi)i∈[p] and the supremum is taken over progressively measurable
processes a(t) with respect to the filtration of the Brownian motion Wt, see [FS06] for background.

For x = (x1, · · · , xp) and i ∈ [p], we denote by x 6=i the p− 1 entries of x that are different from i.
For a scalar g ∈ R, we denote g+ = max(g, 0) and g− = max(−g, 0).

We use a uniform grid Ω = {h, 2h, . . . , Nh}p to discretize the space [0, 1]p, where N is a positive
integer and h = 1/N . An upwind finite difference discretization of the HJB equation (2.62) leads to

max
a∈[m]

(1
2

p∑
i=1

σ2
i

v(x 6=i, xi + h) + v(x 6=i, xi − h)− 2v(x)
h2

+
p∑
i=1

gi(a, x)+ v(x 6=i, xi + h)− v(x)
h

+
p∑
i=1

gi(a, x)− v(x 6=i, xi − h)− v(x)
h

− λv(x) + r(a, x)
)

= 0, x ∈ Ω . (2.63)

This equation reduces to a finite dimensional dynamic programming equation of the form V = T (V ),
with T as in (2.51), see [KKDD01] for background. We next recall this transformation, in order to apply
our method.

We consider a discrete vector V = (Vk)k∈[N ]p ∈ RNp
such that for each index k = (k1, · · · , kp) ∈

[N ]p, the kth entry of V is Vk = v(hk).
The equation (2.63) can be rewritten in the following matrix form:

max
τ∈[m]Np

(AτhV + rτ ) = 0 (2.64)

such that for a given policy τ : [N ]p → [m], the matrix Aτh ∈ RNp×Np
has the kth row (Ah)τ(k)

k· ,
k ∈ [N ]p, that represents the equation (2.63) for x = hk ∈ Ω and a = τ(k) ∈ [m], and where the
vector rτ has the kth entry rτ(k)

k = r(τ(k), hk) .
We can easily see from (2.63) that the diagonal entries of each matrix Aτh are negative, while all the

other entries are nonnegative, and this is due to the distinction of the positive and negative parts of the
functions gi that we did. We transform the problem (2.64) by introducing for each policy τ the matrix
P τh = I + ch2Aτh, where c is a positive scalar that allows all the matrices P τh to have nonnegative entries.
The following lemma shows how such a scalar can be chosen.

Lemma 2.33. If c 6 c0 := 1/(
∑p
i=1 σ

2
i + hmaxa∈[m],k∈[N ]p

∑p
i=1 |gi(a, hk)| + h2λ), then for each

policy τ , all the entries of the matrix P τh are nonnegative.
Moreover, we have P τh e = (1 − ch2λ)e, where e = (1, · · · , 1) ∈ RNp

, and then specP τh ⊂
B(0, 1− ε) with ε = ch2λ.
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Proof. By construction of P τh , all its non-diagonal entries are nonnegative.
For k ∈ [N ]p, we can see from equation (2.63) that

(Aτh)kk = −
p∑
i=1

σ2
i /h

2 −
p∑
i=1

(gi(τ(k), hk)+ + gi(τ(k), hk)−)/h− λ.

Therefore (P τh )kk = 1− ch2λ− c
∑p
i=1 σ

2
i − ch

∑p
i=1 |gi(τ(k), hk)| . Then if c 6 c0, all the diagonal

entries of P τh are also nonnegative.
The property P τh e = (1 − ch2λ)e can be easily seen when we take v equal to the constant vector e

in the equation (2.63), and since all the entries of P τh are nonnegative, we deduce that its spectral radius
is 1− ch2λ which ends the proof of the lemma.

Remark 2.34. We notice that the parameter c used in the definition of P τh plays the role of a Kras-
nosel’skin̆-Mann damping (see (2.4a)). So if we divide c by 2, i.e. we take c 6 c0/2, this ensures that
all the eigenvalues of the matrix P τh has a real part in the interval [0, 1− ε].

Now, we can write the equation (2.63), as a fixed point problem that represents a 1-player game:

T (V ) = V (2.65)

where
T (V ) = max

τ∈[m]n
(P τhV + rτh) .

with rτh = ch2rτ .

2.5.2.b Study of the eigenvalues for uncontrolled PDE with uniform drifts We will restrict
the study of the eigenvalues of the matrices defining the problem (2.63), to the uncontrolled case where
m = 1. We have only one matrix Ah, and Ph = I + ch2Ah. We suppose also that the drift coefficients
gi ∈ R do not depend on the state x. Under this framework, we have the following lemma that gives an
explicit expression of the eigenvalues of Ph.

Lemma 2.35. The Np eigenvalues of the matrix Ph are given as follows for each k ∈ [N ]p:

η(k) = 1− c
p∑
j=1

σ2
j (1− cos(2πkjh))− cλh2 + 2ich

p∑
j=1

sin(πkjh)(g+
j e

iπkjh − g−j e
−iπkjh) .

Proof. For a given k ∈ [N ]p, we define the vector V ∈ R[N ]p which l ∈ [N ]p entry is given by

Vl = e
2iπh

∑p

j=1 kj lj . From (2.63), we can verify that

(AhV )l = Vl

(1
2

p∑
j=1

σ2
j

e2iπhkj − 2 + e−2iπhkj

h2

+
p∑
j=1

(
g+
j

e2iπhkj − 1
h

− g−j
1− e−2iπhkj

h

)
− λ

)
. (2.66)

Then this shows that

µ(k) :=
p∑
j=1

σ2
j (cos(2πkjh)− 1)/h2 − λ+ 2i

p∑
j=1

sin(πkjh)
h

(g+
j e

iπkjh + g−j e
−iπkjh)

is an eigenvalue of the matrix Ah, and this allows to find all the Np eigenvalues of Ah and therefore
those of Ph also.
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Lemma 2.36. The eigenvalues of the matrix Ph satisfy the following inequality:

| Im(η(k))| 6
( p∑
j=1

2g2
j

λσ2
j

) 1
2√

ε
(
1− ε− Re(η(k))

)
, k ∈ [N ]p .

Proof. From Lemma 2.35 and using that g+
j − g

−
j = gj , g+

j + g−j = |gj | and ε = cλh2, we deduce that
the real and imaginary parts of the eigenvalue η(k) are:

Im(η(k)) = 2ch
p∑
j=1

gj sin(πkjh) cos(πkjh) ,

Re(η(k)) = 1− ε− 2c
p∑
j=1

(σ2
j + h|gj |)(sin(πkjh))2 .

By using Cauchy-Schwartz inequality, we have:
p∑
j=1
|gj sin(πkjh)| 6

( p∑
j=1

g2
j

σ2
j

) 1
2
( p∑
j=1

σ2
j (sin(πkjh))2) 1

2 .

and this implies the desired inequality.

Recall that if the spectrum of a matrix is in the region Σε(r) with the choice of r shown in Fig-
ure 2.2(b), the 2A-VI algorithm, applied to this matrix, converges with an asymptotic rate 1 −

√
ε/2

(see Remark 2.10). If follows from Lemma 2.36 that for a fixed value of ε, if the drift coefficients gi
are sufficiently small, the spectrum of the matrix Ph lies in a small neighborhood of the real segment
[0, 1 − ε], and so it satisfies the condition for acceleration with the latter asymptotic rate. Moreover,
when ε is small, one can show using the same lemma that the acceleration conditions are met even for
drift coefficients of order 1 (this involves a long and routine verification that we skip here). We illustrate
these properties in the next section.

2.5.2.c Numerical results In Figures 2.13 and 2.14 we consider the HJB equation (2.62) in one
dimension p = 1. We take the size of the discretization grid N = 500 with m = 10 actions at each
state. We take the volatility σ1 = 1 and the dissipation parameter λ = 1. We generate the drift values
g1(a, x) at each state x and for each action a randomly uniformly in the interval [0, 1] and we generate
the rewards r(a, x) randomly uniformly in [0, 100]. In subfigure 2.13(a) we display the spectrum of
one matrix P τh . The subfigure 2.13(b) shows a zoom on this spectrum around the point 1, where all the
difficulty occurs. It shows that the eigenvalues of P τh are not included in the peaked curve Γε but are
instead included in the more tolerant curve Γε(r) with r = (1−

√
ε/2)/(1−

√
ε).

In Figure 2.14, we display the performance of value iteration, accelerated policy iteration and accel-
erated value iteration of degree 2.

Figures 2.15 and 2.16 display the analogue plots as Figures 2.13 and 2.14 with an HJB equation in
dimension p = 2, with N = 30, σ1 = σ2 =

√
2, λ = 2, drifts g1(a, x) in the first direction generated

uniformly randomly in [0, 1], drifts g2(a, x) in the second direction generated uniformly randomly in
[−1, 0] and rewards r(a, x) generated randomly uniformly in [0, 100].

We see that for these examples the accelerated algorithms 2A-VI and 2A-PI converge and are faster
than the classical Value Iteration algorithm.

We mention though that on these two examples the classical Policy Iteration algorithm is way faster
than 2A-PI and 2A-VI, which is expected since the size of the matrices is small, as seen in Figures 2.7
to 2.12. However, when the size of the matrices gets bigger our iterative algorithms become faster than
Policy Iteration like in the large scale example of Figure 2.11.
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(a) Spectrum of P τh and the accelerable regions. (b) Zoom on Figure 2.13(a) around 1.

Figure (2.13) Spectrum of the matrix P τh and acceleration region, for the HJB PDE in dimension one

Figure (2.14) Solving HJB equation in one dimension with N = 500, λ = 1, σ1 = 1, g1 ∼ U([0, 1]),
c = c0/2 ≈ 0.5, ε = ch2λ ≈ 2× 10−6 and r ∼ U([0, 100]) .

(a) Spectrum of P τh and the accelerable regions. (b) Zoom on Figure 2.15(a) around 1.

Figure (2.15) Spectrum of the matrix P τh and acceleration region, for the HJB PDE in dimension two
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Figure (2.16) Solving HJB equation in two dimensions with N = 30, λ = 2, σ1 = σ2 =
√

2,
g1 ∼ U([0, 1]), g2 ∼ U([−1, 0]), c = c0/2 ≈ 0.12, ε = ch2λ ≈ 2.7× 10−4 and r ∼ U([0, 100]) .
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CHAPTER 3
Solving Mean Payoff Markov Decision

Processes and Perfect Information
Zero-sum Stochastic Games by

Variance Reduced Deflated Value
Iteration

Abstract

In this chapter, we introduce a deflated version of value iteration, which allows one to solve mean payoff
problems, including both Markov decision processes and perfect information zero-sum stochastic games.
This method requires the existence of a distinguished state which is accessible from all initial states
and under all policies; it differs from the classical relative value iteration algorithm for mean payoff
problems in that it does not need any primitivity or geometric ergodicity condition. Our method is based
on a reduction from the mean payoff problem to a discounted problem by a Doob h-transform, combined
with a deflation technique and non-linear spectral theory results (Collatz-Wielandt characterization of
the eigenvalue). In this way, we provide a new method Deflated Value Iteration that allows to extend
complexity results from the discounted to the mean payoff case. In particular, Sidford, Wang, Wu and Ye
(2018) developed an algorithm combining value iteration with variance reduction techniques to sowelve
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discounted Markov decision processes in sublinear time when the discount factor is fixed. We combine
deflated value iteration with variance reduction techniques to obtain a sublinear algorithm for mean
payoff stochastic games in which the first hitting times of a distinguished state are bounded a priori.
This chapter is an extended version of the CDC conference article [AGQS19].

3.1 Introduction

Context. Markov decision processes, and more generally zero-sum two player stochastic games, are
classical models to study sequential problems under uncertainty [Put14, NS03]. They appear in vari-
ous applications ranging from engineering sciences, finance, economy, to health care or ecology. The
dynamic programming method allows one to reduce the infinite horizon problem, in which players
optimize a discounted payoff, to a fixed point problem, involving an order preserving and contract-
ing map, called Bellman or Shapley operator. Value iteration and policy iteration [Put14] are two
fundamental dynamic programming methods. For discounted problems with a fixed discount factor,
value iteration allows one to find an optimal policy in a time which is polynomial [Tse90] but not
strongly polynomial [FH14]. Ye showed that policy iteration runs in strongly polynomial time for a
fixed discount factor [Ye11a]. This result was subsequently extended to two-player zero-sum games
by Hansen, Miltersen and Zwick [HMZ13]. However, Friedmann [Fri09b, Fri11] showed that policy
iteration can take an exponential time for two player games with mean payoff, and Fearnley [Fea10]
showed that the same is true for Markov Decision Processes. Hence, problems with a vanishing dis-
count and mean payoff problems are in the hardest class. However, some special mean payoff problems
have been reduced to problems with a fixed discount factor, leading to parametrized complexity results,
see [FABG13, FH13, AG13, Sch16].

Even for problems with a fixed discount, value iteration and policy iteration appear to be too slow, or
unadapted, for huge scale instances. Algorithms based on Monte-Carlo simulations can lead to improved
scalability. In a recent progress, Sidford et al. [SWWY18] combined value iteration algorithm with
sampling and variance reduction techniques. They obtained an algorithm for discounted infinite-horizon
MDPs that, remarkably, is sublinear in a certain relevant regime of the parameters. This result use in an
essential way the discounted nature of the problem.

Here, our aim is to develop accelerated value iteration algorithms for well structured huge scale
instances of mean payoff problems. To do so, we develop further a general method, first introduced
in our previous work [AG13], allowing one to reduce a class of mean payoff problems to discounted
problems.

Contributions. Our first main results are Theorem 3.5 and Corollary 3.6, which characterize the best
contraction rate of the Shapley operator of a zero-sum game, with respect to all possible weighted sup-
norms, as the Collatz-Wielandt number of a certain convex order-preserving positively homogeneous
map which we call the “Clarke recession function”. This is a key ingredient to obtain our subsequent
complexity estimates. This is also of independent interest.

Then, we provide in Theorem 3.25 the reduction from mean payoff problems to discounted prob-
lems. This applies to the subclass of two-player games in which there is a distinguished state c to
which all other states have access, for all policies of the two players. This reduction combines a scal-
ing argument (a combinatorial version of Doob’s h-transform arising in the boundary theory of Markov
processes [Dyn69]) and a deflation technique: to a mean payoff problem, we associate a discounted
problem, with a state-dependent discount rate (Theorem 3.25). To compute this reduction, we need first
to solve the dynamic programming equation of a stochastic shortest path (one-player) problem, in which
a player wants to maximize the expected hitting time to the distinguished state c. We obtain an explicit



3.1. Introduction 57

contraction rate for the reduced problem in terms of the maximal expected hitting times, which appears
in our complexity bounds.

This approach leads to a new algorithm to solve the mean payoff problem, that we call deflated value
iteration (Algorithm 2). This algorithm is based on two steps, the first step is to compute the value of
the stochastic shortest path problem above, and the second one is to solve the reduced problem. Both
are solved by using value iteration. We also give a complexity bound in Theorem 3.28, and we compare
numerically deflated value iteration with the classical relative value iteration in Section 3.6.

This reduction technique, allows us also to propose a sublinear algorithm solving mean payoff
stochastic games, obtained as follows. We solve the mean payoff problem by calling twice a variant
of the algorithm of Sidford’s et al. [SWWY18]: we call first this variant to compute the parameters of
the reduction, and we call it a second time to solve the discounted game obtained after the reduction. We
also note that the present variant includes an extension of the algorithm of [SWWY18] for one player
to the two-player case. However, this extension is an easier matter–the main novelty here is rather the
reduction from the mean payoff problem to the discounted case and the resulting complexity bounds.

Comparison with other approaches. Our contraction results Theorem 3.5 and Corollary 3.6 im-
ply that a contraction estimate previously computed in [AG13] is indeed optimal, if all the actions are
“useful” in a natural sense.

We note also that in the case of mean payoff problems, the discount factor tends to 1 and the
bounds of execution time for value iteration blow up which excludes to pass to the limit in the algo-
rithm of [SWWY18]. Hence, we need the transformation of the mean payoff problem to a discounted
one before applying value iteration.

Weighted sup-norms were already used by Bertsekas and Tsitsiklis to obtain contraction results for
value iteration in the case of stochastic shortest path problems [BT91b].

Gupta, Jain and Glynn have recently developed a Monte-Carlo version of relative value iteration to
solve mean payoff problems [GJG15]. The convergence analysis requires the Bellman operator to be a
strict contraction in the “span seminorm”. This is a demanding condition. For instance, in the 0-player
case, this requires the transition matrix to be primitive, where our reduction holds in more general
circumstances (the uniqueness of the final class suffices). Wang developed in [Wan17] an algorithm
for mean payoff MDPs (one player), that has a sublinear bound. This algorithm depends on a mixing
time and on a parameter τ measuring the distance between the invariant measures attached to different
policies (the mixing times of [Wan17] should not be confused with the hitting times used here, the
finiteness of the former implies the finiteness of the latter, but not vice versa). There are instances in
which the distance τ is exponential in the input size, whereas the hitting time is linear.

Organization. This chapter is organized as follows. In Section 3.2, we recall basic notions about
zero-sum games. In Section 3.3, we analyze the contraction rate of order-preserving maps with respect
to weighted sup-norms. In Section 3.4, we present the main techniques allowing the reduction from the
mean payoff case to the discounted case. Based on this reduction technique, we propose, in Section 3.5,
a deterministic algorithm that we call Deflated Value Iteration (DVI) to solve mean payoff problems
that satisfy our hypothesis. In Section 3.6, we give numerical results comparing DVI to the classical
relative value iteration. In Section 3.7, we present an adaptation of the variance reduction algorithm
of [SWWY18], allowing us to handle the operators obtained after the deflation and h-transform reduc-
tion. In Section 3.8, we derive sublinear bounds for classes of mean payoff problems. Examples are
presented in Section 3.9.
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3.2 Dynamic programming equations of zero-sum two-player games

3.2.1 Perfect information zero-sum stochastic games with general discount fac-
tor

We refer the reader to [NS03] for background on stochastic games. We next briefly recall the main
notions and properties.

A perfect information two-player zero-sum stochastic game with general discount (SG) is described
by the following data. We consider a finite state space S := {1, . . . , n}. For all i ∈ S, Ai is a
finite set representing the possible actions of player MIN in state i, and Bi,a is a finite set representing
the possible actions of player MAX in state i, when player MIN just played action a. We denote by
E := {(i, a, b) | i ∈ S, a ∈ Ai, b ∈ Bi,a} the set of all admissible triples state-actions. For all
(i, a, b) ∈ E, P abi is an element of ∆(S) the set of probability measures on S; we shall identify P abi to
a row vector in Rn, writing P abi = (P abij )j∈S where P abij is the transition probability to the next state j,
given the current state i and the actions taken a ∈ Ai, b ∈ Bi,a. For all (i, a, b) ∈ E, rabi is a reward (real
number) that MIN pays to MAX, and γabi (real nonnegative number) is a discount factor. We define

R := max
(i,a,b)∈E

|rabi | ∈ R>0, Γ := max
(i,a,b)∈E

γabi ∈ (0,∞) ,

where R>0 := {x ∈ R | x > 0}. We allow γabi to take values larger than 1. The term turn-based
is sometimes used as a synonym of “perfect information”. This is in contrast with the more general
model of Shapley’s imperfect information stochastic games in which two players play simultaneously
with randomized actions, see e.g. [MN81a].

Recall that a strategy of a player is a decision rule which associates to a history of the game an
admissible action of this player. A strategy σ of player Min, a strategy τ of player Max, and an initial
state i, alltogether determine a random process (i`, a`, b`)`>0 with values in E: i` represents the state at
step `, and a`, b` represent the actions of the two players at the same state. We require that i0 = i. We
denote by Ei,σ,τ the expectation with respect to the probability measure governing this process. Given a
finite horizon k, we consider the zero-sum game in which the payoff of player Max is given by

Jki (σ, τ) = Ei,σ,τ

(
k−1∑
`=0

( `−1∏
m=0

γambmim
)ra`b`il

)
. (3.1)

The value vki of the k-stage game starting from i (see Proposition III.4.2. and Theorem IV.3.2 in [MSZ15b])
is defined as,

vki := inf
σ

sup
τ
Jki (σ, τ) = sup

τ
inf
σ
Jki (σ, τ) , (3.2)

where the infima and suprema are taken over the set of strategies of both players. By definition, the
existence of the value requires the infimum and the supremum to commute. A pair of strategies σ∗, τ∗

is said to be optimal if σ∗ achieves the first infimum in (3.2) and if τ∗ achieves the second supremum
in (3.2).

For all (i, a, b) ∈ E, we set Mab
ij := γabi P

ab
ij and Mab

i := (Mab
ij )j∈S ∈ Rn.

Definition 3.1. For a given SG, the Shapley operator T is the map Rn → Rn whose ith coordinate is
given by

Ti(v) = min
a∈Ai

max
b∈Bi,a

{
rabi +

∑
j∈S

Mab
ij vj

}
, i ∈ S, v ∈ Rn .
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The following result is classical.

Theorem 3.2. The value vector vk = (vki )i∈S does exist and satisfies

vk = T (vk−1) , v0 = 0 . (3.3)

This follows from the proof of Theorem IV.3.2 of [MSZ15b], which deals with the undiscounted
finite horizon problem. The extension to the present situation (with a state-dependent discounted factor)
is straightforward. Note that the assumption that the discount factor be smaller than 1 is not needed for
the well posedness of the finite horizon problem and for the validity of (3.3).

Similarly, one can consider the infinite horizon discounted zero-sum game, in which the payoff of
player Max is now

Ji(σ, τ) = Ei,σ,τ

( ∞∑
`=0

( `−1∏
m=0

γambmim
)ra`b`i`

)
.

This payment is well defined, in particular, when, Γ < 1 since then the above series become absolutely
convergent. Then, the value of the infinite horizon game and the notion of optimal strategies are de-
fined in a similar manner to the finite horizon case. The value vector v = (vi)i∈S does exist and it is
characterized as the unique solution of the fixed point problem

v = T (v) ,

see again [MSZ15b] for background. We shall see later on that the assumption Γ < 1 can be relaxed:
what matters is that the discount factor be smaller than one in an “average” sense.

In what follows, it will be convenient to consider a special class of strategies, determined by policies
(feedback, stationary rules). A policy of player MIN is a map:

σ : S → ∪i∈SAi , i 7→ σ(i) ∈ Ai .

We denote by S the set of all policies of player MIN. Similarly, a policy of MAX is a map:

τ : ∪i∈S(i, Ai)→ ∪i∈S, a∈AiBi,a , (i, a) 7→ τ(i, a) ∈ Bi,a .

Note that since the game is in perfect information, MAX observes the action a of MIN, and so the
policy of player MAX takes care of this action. We denote by T the set of all policies of player
MAX. It is known that in the discounted game, there exist optimal strategies associated to policies (the
action is selected at each step by applying a policy of one player, the policy being the same for all time
steps). These policies are obtained by selecting actions achieving the minimum and the maximum in the
expression of T (v) in Definition 3.1. See [NS03].

Any choice of policies (σ, τ) ∈ S × T defines the Markovian matrix P στ ∈ Rn×n which de-
termines the state trajectory if the two players select their actions according to these policies. i.e.,
(P στ )ij = P

σ(i)τ(i,σ(i))
ij . Similarly, we define the nonnegative matrix Mστ with entries (Mστ )ij =

M
σ(i)τ(i,σ(i))
ij . We denote the cardinality of a finite set S by |S|. We recall that the size of the input is of

order |S‖E|.

3.2.2 Mean payoff problem

We are now interested in the undiscounted case, in which the discount factor γ is identically 1. Then
we are considering a two-player perfect information zero-sum Mean-Payoff Stochastic Game (MPSG),
where the main quantity of interest is the mean payoff vector:

χ(T ) := lim
k→∞

T k(0)/k .
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The entry χi(T ) represents the mean payoff per time unit, if the initial state is i. Here, the mean payoff
is defined by considering a family of games in finite horizon k as k tends to infinity. There are alternative
approaches, in which the mean payoff is defined as the value of an infinite horizon game [LL69a]. The
property of the uniform value established in [MN81a] entails that the different natural approaches lead
to the same notion of mean payoff.

The analysis of the mean payoff problem is simplified when the following non-linear eigenproblem
has a solution:

ηe+ v = T (v), η ∈ R, v ∈ Rn , (3.4)

where e := (1 · · · 1)> ∈ Rn is the unit vector. The scalar η is called the ergodic constant, whereas
the vector v, which is not unique, is called bias or potential. When this equation is solvable, we have
χ(T ) = ηe, i.e., the mean payoff is independent of the initial state, and it is equal to the ergodic constant.
See e.g. [AGH18] for background.

3.3 Contraction rate of order-preserving maps with respect to weighted
sup-norms

Let u ∈ Rn, we write u � 0 and we say that u is a positive vector if for all i ∈ [n] := {1, · · · , n},
ui > 0. Given u� 0, we define the weighted sup norm ‖ · ‖u by :

‖x‖u = max
16i6n

xi
ui

= ‖u−1x‖∞ , ∀x ∈ Rn ,

where the notation u−1x := (u−1
i xi)i∈[n] refers to the Hadamard quotient. For x, y ∈ Rn we write

x 6 y if xi 6 yi for all i ∈ [n]. A function f : Rn → Rn is said to be order-preserving if for all x, y
∈ Rn, if x 6 y then f(x) 6 f(y).

We next introduce a notion of recession function associated to a non-linear map. Our definition is
inspired by the notion of Clarke generalized directional derivative [CLSW98, Ch. 2, S1] of a function f
at point z in the direction y

f ′z(y) := lim sup
x→z, s→0+

f(x+ sy)− f(x)
s

. (3.5)

We next adapt this idea by considering “variations at infinity” instead of local variations.

Definition 3.3. Given a function f : Rn → Rn, we define f̂ : Rn → (R∪{+∞})n the Clarke recession
function of f as:

f̂(y) = sup
s>0, x∈Rn

f(x+ sy)− f(x)
s

, y ∈ Rn . (3.6)

We chose the name “Clarke recession function” in view of the similarity between (3.6) and (3.5).
The following result is immediate:

Proposition 3.4. The Clarke recession function is positively homogeneous and convex.

Theorem 3.5. Let f : Rn → Rn be an order-preserving function, u � 0 be a positive vector, and
λ ∈ R>0. We have f̂(u) 6 λu if and only if the function f is λ-contracting in the weighted sup-norm
‖ · ‖u :

∀x, y ∈ Rn, ‖f(x)− f(y)‖u 6 λ‖x− y‖u .
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Proof. Suppose that f̂(u) = supx∈Rn, s>0
f(x+su)−f(x)

s 6 λu. Then, for all x ∈ Rn and s > 0 we have
f(x+ su) 6 f(x) + sλu, and by considering x− su instead of x we have also that f(x− su+ su) 6
f(x− su) + sλu, so f(x)− sλu 6 f(x− su) for all x ∈ Rn and s > 0.

Let x, y ∈ Rn such that x 6= y, we consider s = ‖x− y‖u > 0, we have y − su 6 x 6 y + su and
from the monotonicity of f and the previous inequalities, we deduce that f(y)−sλu 6 f(y−su) 6 f(x)
and dually f(x) 6 f(y + su) 6 f(y) + sλu. Then −sλ 6 u−1(f(x) − f(y)) 6 sλ, and therefore
‖f(x)− f(y)‖u 6 λs = λ‖x− y‖u.

Now we suppose that f is λ-contracting in the norm ‖ · ‖u. Let x ∈ Rn and s > 0 then ‖u−1(f(x+
su) − f(x))‖∞ 6 λ‖u−1(x + su − x)‖∞ = λs, so u−1(f(x + su) − f(x)) 6 λs. Therefore
f(x+su)−f(x)

s 6 λu, and then f̂(u) 6 λu.

Following [MPN02, AG13], we define the Collatz-Wielandt number of f̂ as

cw(f̂) := inf{λ > 0 | ∃u� 0; f̂(u) 6 λu} .

As an immediate consequence of Theorem 3.5, we get:

Corollary 3.6. If f : Rn → Rn is order-preserving, then:

cw(f̂) = inf{λ ∈ R>0 | ∃u� 0; f is λ-contracting in ‖ · ‖u}.

We consider the Shapley operator T : Rn → Rn of Definition 3.1. The following “max-max”
operator Tmax : Rn → Rn was considered in [AG13]

Tmax
i (y) = max

a∈Ai,b∈Bi,a
{Mab

i y} , ∀i ∈ S, y ∈ Rn . (3.7)

In contrast to the Clarke recession function T̂ , Tmax generally depends on the choice of the representa-
tion of T as a minimax expression. We next show, however, that Tmax = T̂ if all the terms arising in the
minimax expression are “useful” in the following sense.

Definition 3.7. For a given couple of actions (a, b) of the two players, we define the set Cabi = {x ∈
Rn | Ti(x) = rabi + Mab

i x}. We say that the couple of actions (a, b) is useful if int(Cabi ) 6= ∅ for all
i ∈ [n].

In the one player case, checking whether one action is useful reduces to checking whether a polyhe-
dron has a non-empty interior, and this can be done in polynomial time.

Lemma 3.8. The Clarke recession function of the Shapley operator T satisfies the following inequality:

T̂ (y) 6 Tmax(y) , ∀y ∈ Rn . (3.8)

Moreover, the equality holds if all the actions (a, b) are useful.

Proof. Let i ∈ S, x, y ∈ Rn and s > 0, we have

Ti(x+ sy) = min
a∈Ai

max
b∈Bi,a

{rabi +Mab
i (x+ sy)} 6 min

a∈Ai
max
b∈Bi,a

{rabi +Mab
i x+ s max

a∈Ai,b∈Bi,a
{Mab

i y}}

6 min
a∈Ai

max
b∈Bi,a

{rabi +Mab
i x}+ s max

a∈Ai,b∈Bi,a
{Mab

i y}

= Ti(x) + s max
a∈Ai,b∈Bi,a

{Mab
i y} .
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Therefore Ti(x+sy)−Ti(x)
s 6 maxa∈Ai,b∈Bi,a{Mab

i y} which proves the desired inequality. Now we sup-
pose that all the actions (a, b) are useful and we show the opposite inequality. Let y ∈ Rn, i ∈ S, a ∈
Ai, b ∈ Bi,a. Since (a, b) is useful, we can consider x ∈ int(Cabi ). So there exists s > 0 such that
x + sy ∈ Cabi . Then by definition of Cabi , we have Ti(x + sy) = Mab

i (x + sy) and Ti(x) = Mab
i x,

then Ti(x+sy)−Ti(x)
s = Mab

i y, therefore T̂i(y) > Mab
i y and this is for all i ∈ S, a ∈ Ai, b ∈ Bi,a which

allows to conclude.

Let f be a continuous positively homogeneous map from C = Rn>0 to itself (f(λv) = λf(v) for all
λ > 0 and v ∈ C). The following definitions are taken from [AG13] and [MPN02].

We define the cone eigenvalue spectral radius of f which is the supremum of its eigenvalues in the
closed convex cone C = Rn>0 by r̂C(f) := sup{λ > 0 | ∃v ∈ C \ {0}; f(v) = λv}.

Theorem 3.9 (Th. 3.1 in [Nus86b]). If f is a continuous, positively homogeneous and order preserving
selfmap of C = Rn>0 then

cwC(f) = r̂C(f) .

There is an explicit formula for the Collatz-Wielandt number of Tmax. Recall that the notation Mστ

refers to the nonnegative matrix associated to a pair of policies (end of Section 3.2.1). We denote by ρ(·)
the spectral radius of a matrix.

Theorem 3.10. We have
cw(Tmax) = max

σ∈S ,τ∈T
ρ(Mστ ) .

Proof. We verify easily that the Tmax is a selfmap of C = Rn>0, continuous, positively homogeneous
(Tmax(λv) = λTmax(v) for all λ > 0 and v ∈ C), and order preserving (Tmax(u) 6 Tmax(v) for all
u, v ∈ C such that u 6 v). Therefore, by Theorem 3.9 we have the equality cwC(Tmax) = r̂C(Tmax).
We have Tmax(v) = maxσ∈S ,τ∈T Mστv, ∀v ∈ C, then r̂C(Tmax) = maxσ∈S ,τ∈T ρ(Mστ ), this is
established in Proposition 19 in [AG13] and also in an infinite dimensional context in [AGN11], which
yields the result.

Remark 3.11. Owing to Theorem 3.5 and Lemma 3.8, it suffices to look for a vector ϕ � 0 such
that Tmax(ϕ) 6 λϕ for some λ ∈ [0, 1), to have that the Shapley operator T is λ−contracting in the
weighted norm ‖ · ‖ϕ.

The following special construction allows us to obtain such a ϕ by solving a non-linear eigenprob-
lem.

Theorem 3.12 (Th. 7 and proof of Th. 13 in [AG13]). The following assertions are equivalent:

1. maxσ∈S ,τ∈T ρ(Mστ ) < 1;

2. there exists a unique vector ϕ ∈ Rn>0 such that ϕ = e+ Tmax(ϕ).

When these assumptions are satisfied, T is λ-contracting in the weighted norm ‖ · ‖ϕ, with λ := 1 −
1/‖ϕ‖∞.

Proof. If maxσ∈S ,τ∈T ρ(Mστ ) < 1 then by Theorem 3.10, we have cwC(Tmax) < 1 then by definition
of cwC(Tmax) we deduce the existence of u ∈ int(C) = Rn>0 and µ ∈ [0, 1) such that Tmax(u) 6 µu.
By Lemma 3.8, we have T̂max(u) 6 (Tmax)max(u) = Tmax(u) 6 µu, therefore by Theorem 3.5 we
deduce that Tmax is µ−contracting under the norm ‖ · ‖u. Then also the self map v 7→ e + Tmax(v)
of C = Rn>0 is also µ−contracting and therefore there exists a unique vector ϕ ∈ Rn>0 such that
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ϕ = e + Tmax(ϕ). Then we deduce that ϕ > e and Tmax(ϕ) = ϕ − e 6 ϕ − 1
‖ϕ‖∞ϕ = λϕ with

λ = 1 − 1/‖ϕ‖∞. Therefore by Lemma 3.8, we have T̂ (ϕ) 6 Tmax(ϕ) 6 λϕ. Then by Theorem 3.5,
T is λ−contracting under the norm ‖ · ‖ϕ.

Conversely, the existence of such a vector ϕ ∈ Rn>0 implies that cwC(Tmax) 6 λ < 1, and by The-
orem 3.10, we get maxσ∈S ,τ∈T ρ(Mστ ) = cwC(Tmax) < 1.

3.4 Reduction from a mean payoff problem to a discounted one

We consider here the non-linear eigenproblem (3.4), where T is the Shapley operator in the undiscounted
case, and describe a technique introduced in [AG13] to reduce this equation to a fixed point equation of
a contracting operator. Recall that (3.4) allows one to solve the mean payoff problem. As noted above,
the vector v solution of (3.4) is not unique. In particular, if v is a solution then v + αe also yields a
solution for all α ∈ R. Hence, we shall distinguish a special state c ∈ S and require vc = 0.

Definition 3.13. For a Markov matrix P and states i, j, we denote:

Hij(P ) := EP [inf{k > 1 | Xk = j} | X0 = i]

the expected first hitting time of state j, for a Markov chain Xk with transition matrix P and initial state
i.

For given states i, j, we say that j is accessible from i, under the transition matrix P , if Hij(P ) <
+∞, which is equivalent to the existence of a sequence of states i1, · · · , ik such that Pii1Pi1i2 · · ·Pikj >
0.

The following proposition is straightforward.

Proposition 3.14. Given a state c ∈ S, we have Hic(P ) < +∞ for all i ∈ S if and only if P has a
unique final (recurrent) class and c belongs to this class.

A state c with the latter property is called a renewal state.

Definition 3.15. For any matrix P ∈ Rn×n, we denote by P(c) ∈ Rn×n the matrix obtained from P by
replacing the column c of P with zeros. We denote by Pi the ith row of P , so that Pi = (Pij)j∈[n], and
we use a similar notation for matrices constructed from P , e.g., P(c)i = ((P(c))ij)j∈[n]. We define the
operator T(c) : Rn 7→ Rn such that

T(c)(v) := e+ max
σ∈S ,τ∈T

[P στ(c)v], ∀v ∈ Rn. (3.9)

Lemma 3.16. For a Markov matrix P , the vector (Hic(P ))i∈[n] is a fixed point of the operator v 7→
e+ P(c)v.

Proof. For i ∈ [n], we use Markov property to show that Hic(P ) = 1 + EP [inf{k > 0 | Xk+1 =
c} | X0 = i] = 1 +

∑
j∈[n],j 6=c EP [inf{k > 1 | Xk+1 = c} | X1 = j]P(X1 = j | X0 = i) =

1 +
∑
j∈[n],j 6=c PijEP [inf{k > 1 | Xk = c} | X0 = j] = 1 + P(c)v.

Lemma 3.17. Let c ∈ S be a given state. The following assertions are equivalent:

1. ∀i ∈ S, Hic := maxσ∈S ,τ∈T Hic(P στ ) < +∞;

2. For all couple of policies (σ, τ) ∈ S ×T , P στ has a unique final class, and the state c is common
to each of these final classes;
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3. maxσ∈S ,τ∈T ρ(P στ(c) ) < 1;

4. There exists a unique vector ϕ∗ solution to the following dynamical equation:

ϕ∗ = T(c)(ϕ∗) , (3.10)

Under these assumptions, we have ϕ∗i = Hic, for all i ∈ S.

Proof. The equivalence between the first two assertions follows from Proposition 3.14. The equivalence
between the assertions 3 and 4 follows from Theorem 3.12. If we denote by vστ the fixed point of the
operator v 7→ e+P στ(c)v, then the fixed point of the operator T(c) isϕ∗ := maxστ vστ , and by Lemma 3.16
we have that vστi = Hic(P στ ) for all i ∈ S. Therefore ϕ∗i = Hic for all i ∈ S, which proofs the
equivalence between the assertions 4 and 1.

Lemma 3.18. The map T(c) is order preserving and contracting in the norm ‖ · ‖ϕ∗ with the rate 1 −
1/‖ϕ∗‖∞. It follows that if w ∈ Rn>0, verifies w > T(c)(w) then w > ϕ∗. Similarly, if w 6 T(c)(w) then
w 6 ϕ∗.

Proof. The map T(c) is clearly order preserving, and considering its max-max operator we get

Tmax
(c) (ϕ∗) = T(c)(ϕ∗)− e = ϕ∗ − e 6 (1− 1/‖ϕ∗‖∞)ϕ∗.

Then by Remark 3.11, we deduce that T(c) is contracting in the norm ‖ · ‖ϕ∗ with the rate 1− 1/‖ϕ∗‖∞.
Now, if a vector w ∈ Rn>0 satisfies w > T(c)(w), then by applying k times the order preserving operator
T(c), we obtain w > (T(c))k(w), and since T(c) is contracting (T(c))k(w) converges to the unique fixed
point ϕ∗ when k goes to infinity, then w > ϕ∗. We deal similarly with the case when w 6 T(c)(w).

In the rest of this section, we make the following assumption.

Assumption A. There exists a state c ∈ S satisfying the conditions of Lemma 3.17, i.e. the state c is
accessible in finite expected time from all states in S and under all policies.

We call such a state c a deflation state. We can find such a state if it exists, or certify that there is none,
in sub-quadratic time by using directed hypergraphs techniques, details are given in the Section 3.11.

Let ϕ ∈ Rn>0, ϕ� 0, and Rnc := {x ∈ Rn | xc = 0}.

Definition 3.19. For a nonnegative matrix P ∈ Rn×n, if ϕi > 1 + P(c)iϕ,∀i ∈ S, then we denote by
P(c,ϕ) the nonnegative matrix obtained from P by replacing the column c by the vector ϕ−1

c (ϕ − 1 −
P(c)ϕ).

The following two lemmas are immediate:

Lemma 3.20. Let η ∈ R, v ∈ Rn with vc = 0 and P ∈ Rn×n. We have η(ϕ−1)+Pv = P(c,ϕ)(ηϕ+v).
In particular P(c,ϕ)ϕ = ϕ− e.

Lemma 3.21. The map Lϕ : (η, v) 7→ w = η + ϕ−1v from R × Rnc to Rn, is an isomorphism, with
inverse given by w 7→ (η, v) with η = wc and v = ϕ(w − wc).

Definition 3.22. For any self-map f of Rn, we denote by Lϕ(f) the self-map of Rn, such that for all
w, v ∈ Rn and η ∈ R with vc = 0 and w = η + ϕ−1v, we have

Lϕ(f)(w) = ϕ−1(η(ϕ− 1) + f(v)) .
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Remark 3.23. For a matrix P we have, by Lemma 3.20, Lϕ(P )(w) = Pϕw where Pϕ ∈ Rn×n is the
nonnegative matrix given by Pϕ,ij := ϕ−1

i P(c,ϕ)ijϕj , (i, j) ∈ S2, so that

Pϕ,ij =
{
ϕ−1
i Pijϕj , if j 6= c, i ∈ S

1− ϕ−1
i −

∑
k 6=c ϕ

−1
i Pikϕk, if j = c, i ∈ S .

The construction of the matrix Pϕ is inspired by Doob’s h-transform, see for example [Dyn69].

We consider the Shapley operator in the undiscounted case

Ti(v) = min
a∈Ai

max
b∈Bi,a

{
rabi + P abi v

}
, ∀i ∈ S, ∀v ∈ Rn. (3.11)

By Lemma 3.17, we know that there exists a vector ϕ ∈ Rn>0, such that

ϕ > T(c)(ϕ) . (3.12)

So we can define as above an order-preserving operator Tϕ := Lϕ(T ), and we verify easily that

Tϕi (w) = min
a∈Ai

max
b∈Bi,a

{
ϕ−1
i rabi + P abϕ,iw

}
, ∀i ∈ S,∀w ∈ Rn . (3.13)

Lemma 3.24. If a vector ϕ ∈ Rn>0 satisfies Equation (3.12), then Tϕ is λϕ−contracting in the sup-norm
‖ · ‖∞, with λϕ := 1 − 1/‖ϕ‖∞. Tϕ can be interpreted as a Shapley operator of a discounted game
with discount factors 6 λϕ.

Proof. The max-max operator associated to the operator Tϕ is given by

(Tϕ)max
i (w) = max

a∈Ai,b∈Bi,a

{
P abϕ,iw

}
, ∀i ∈ S.

We have P abϕ,ie =
∑
j∈S P

ab
ϕ,ij = 1 − ϕ−1

i 6 λϕ. We deduce that (Tϕ)maxe 6 λϕe. Therefore by
Theorem 3.5 and Lemma 3.8 we deduce that Tϕ is λϕ−contracting in the weighted norm ‖ · ‖e which is
the sup-norm ‖ · ‖∞.

Theorem 3.25. Let ϕ ∈ Rn>0 be a vector satisfying Equation (3.12). The non-linear eigenproblem

ηe+ v = T (v) , (3.14)

where η ∈ R and v ∈ Rn with vc = 0, can be reduced to the fixed point problem:

Tϕ(w) = w , (3.15)

where w ∈ Rn such that w = η + ϕ−1v. Equation (3.15) has a unique solution w∗.

Proof. By replacing v = ϕ(w − ηe) in Equation (3.14), we get

ηe+ ϕ(w − ηe) = min
σ∈S

max
τ∈T
{rστ + P στϕw − ηP στϕ}.

Therefore

w = min
σ∈S

max
τ∈T
{ϕ−1rστ + wc(e− ϕ−1 − ϕ−1P στϕ) + ϕ−1P στϕw = Tϕ(w)}.

Finally, Lemma 3.24 ensures the uniqueness of the solution w∗ of Equation (3.15).
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We verify easily that for w ∈ Rn, and i ∈ S we have

Tϕi (w) = min
a∈Ai

max
b∈Bi,a

{
ϕ−1
i rabi + wc(1− ϕ−1

i ) + ϕ−1
i P abi ϕ(w − wce)

}
, ∀i ∈ S. (3.16)

Lemma 3.26. The solution w∗ of equation (3.15) satisfies ‖w∗‖∞ 6 R.

Proof. We have w∗ = Tϕ(w∗) = minσ∈S maxτ∈T [ϕ−1rστ + P στϕ w∗], then

w∗ 6 ϕ−1R+ max
σ∈S ,τ∈T

[P στϕ w∗].

Therefore ϕw∗

R 6 e+ maxσ∈S ,τ∈T [ϕP στϕ w∗

R ] and by Remark 3.23 we deduce that

ϕw∗

R
6 e+ max

σ∈S ,τ∈T
[P στ(c,ϕ)

ϕw∗

R
] = Tmax,ϕ(ϕw

∗

R
),

where the operator Tmax,ϕ is defined by Tmax,ϕ(v) = e+ maxσ∈S ,τ∈T [P στ(c,ϕ)v]. By Lemma 3.20, we
notice that Tmax,ϕ(ϕ) = ϕ. Using Remark 3.11, we can easily see that Tmax,ϕ is contracting because its
max-max operator satisfies (Tmax,ϕ)max(ϕ) = ϕ− e 6 (1− 1/‖ϕ‖∞)ϕ. So by the property appearing
in Lemma 3.18 we deduce that ϕw

∗

R 6 ϕ, and then w∗ 6 R.
We have −w∗ = maxσ∈S minτ∈T [−ϕ−1rστ − P στϕ w∗] 6 maxσ∈S ,τ∈T [−ϕ−1rστ − P στϕ w∗] 6

ϕ−1R+ maxσ∈S ,τ∈T [P στϕ (−w∗)], therefore as above −ϕw
∗

R 6 Tmax,ϕ(−ϕw
∗

R ) and then −ϕw
∗

R 6 ϕ, so
−w∗ 6 R. We conclude that ‖w∗‖∞ 6 R.

Example 3.27. We give an elementary illustration of the present deflation+h-transform technique. Let
P = ( 0 1

1 0 ), r ∈ R2, and consider T (x) = r + Px. Let us choose c = 1. The first hitting time vector ϕ∗

is such that ϕ∗2 = 1 and ϕ∗1 = 1 +ϕ∗2 = 2, so ‖ϕ∗‖∞ = 2. The operator Tϕ
∗

given by (3.16) specializes
to Tϕ(w1, w2) = ( r1

2 + w2
2 , r2). In accordance with Lemma 3.24, this operator is 1/2−contracting. The

unique fixed point of Tϕ is w = ((r1 + r2)/2, r2) = ηe + ϕ−1v, from which, by Theorem 3.25, we
recover the mean payoff η = (r1 + r2)/2, and v = (0, (r2 − r1)/2).

3.5 Deflated Value Iteration

In this section, we will use the deflation technique introduced above to design an algorithm that solves
the mean payoff problem when Assumption A is satisfied. To solve the non-linear eigenproblem (3.14),
we will find a vector ϕ satisfying (3.12) by solving (3.10) in an approximate way, and then use ϕ to
define the new operator (3.16) and solve the discounted problem (3.15). This algorithm is presented
below in Algorithm 2 and we propose to call it Deflated Value Iteration (DVI).

To solve the mean payoff problem of Section 3.2.2, we consider the equation:

ηe+ v = T (v) and vc = 0, η ∈ R, v ∈ Rn (3.17)

where T is as in Definition 3.1: Ti(v) = mina∈Ai maxb∈Bi,a
{
rabi +

∑
j∈S P

ab
ij vj

}
,∀i ∈ S. Throughout

the section, we make Assumption A. We denote by (η∗, v∗) the unique solution of this problem. We
know by Lemma 3.17 that there exists a vector ϕ ∈ Rn>0 satisfying (3.12). Theorem 3.25 shows that
(3.30) is equivalent to the equation:

Tϕ(w) = w, w ∈ Rn , (3.18)
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with η = wc, v = ϕ(w − wc), and Tϕ is given by (3.16). Therefore, the idea of the DVI algorithm is to
compute first a vector ϕ that satisfies the dynamic inequality (3.12). For that we consider the problem of
finding the vector of maximal expected first hitting times of state c, denoted ϕ∗ solution of the dynamic
equation (3.10), and we suppose that we know a bound H on it:

H > ‖ϕ∗‖∞ = max
i∈S
Hic . (3.19)

We define the scalar λ ∈ [0, 1) by

λ := 1− 1/H > 1− 1/‖ϕ∗‖∞ . (3.20)

When a vector ϕ satisfying (3.12) is found, we construct the operator Tϕ as in (3.16). Then we solve
the discounted fixed point problem (3.15) by value iteration.

Algorithm 2 Deflated Value Iteration
1: Input: vector u ∈ Rn and M > 0 such that we have ‖u‖∞ 6M
2: ϕ0 = 0,
3: while ‖ϕk − ϕk−1‖∞ > 1/2 do
4: ϕk+1 = T(c)(ϕk),
5: done
6: ϕ = 2ϕk,
7: w0 = 0,
8: for k = 0, 1, · · · do
9: wk+1 = Tϕ(wk),

10: done
11: η = wkc and v = ϕ(wk − wkc e),
12: return (η, v).

The following theorem shows the time complexity required by the DVI algorithm to solve the mean
payoff problem.

Theorem 3.28. The Deflated Value Iteration algorithm (2) finds a solution (η, v) of the mean payoff
problem (3.4) such that |η − η∗| 6 ε, and ‖v − v∗‖∞ 6 4ε

1−λ in time complexity:

O

( |S‖E|
1− λ log

(
R

(1− λ)ε

))
.

Proof. We know from Lemma 3.18, that the operator T(c) is contracting under the weighted norm ‖ ·‖ϕ∗
with the rate λϕ∗ = 1 − 1/‖ϕ∗‖∞ 6 λ, then by recurrence ‖ϕk − ϕk−1‖ϕ∗ 6 λk−1‖ϕ1 − ϕ0‖ϕ∗ =
λk−1‖e‖∗ϕ 6 λk−1, because e 6 ϕ∗. Therefore ‖ϕk − ϕk−1‖∞ 6 λk−1‖ϕ∗‖∞ 6 λk−1/(1 − λ). So

we deduce that to have ‖ϕk − ϕk−1‖∞ 6 1/2, it suffices that k − 1 > log(2/(1−λ))
1−λ . Then the first

step of the algorithm needs a time complexity of O
( |S‖E|

1−λ log
( 1

1−λ
))

. Now we have ϕk 6 e/2 + ϕk−1,
then e + maxσ∈S ,τ∈T P στ(c)ϕ

k = T(c)(ϕk) 6 T(c)(e/2 + ϕk−1) 6 e/2 + T(c)(ϕk−1) = e/2 + ϕk.
Therefore taking ϕ = 2ϕk ensures that T(c)(ϕ) 6 ϕ, and then we can use ϕ for the deflation as
presented in Theorem 3.25.

By a similar reasoning using the λϕ-contraction of Tϕ under the sup-norm ‖ ·‖∞ and that ‖w∗‖∞ 6
R from Lemmas 3.24 and 3.26, we prove that ‖wk − w∗‖∞ 6 λkϕ‖w0 − w∗‖∞ 6 Rλkϕ. Therefore

to ensure that ‖wk − w∗‖∞ 6 ε, it suffices that the number of iterations k > log(R/ε)
1−λϕ . We have 0 =

ϕ0 6 ϕ∗, then by applying k times the order-preserving operator T(c), we get ϕk 6 ϕ∗, then ϕ 6 2ϕ∗.
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Then 1/(1− λϕ) = ‖ϕ‖∞ 6 2‖ϕk‖∞ 6 2
1−λ . Therefore to obtain wk such that ‖wk − w∗‖∞ 6 ε, the

second step of the algorithm needs a time complexity O
( |S‖E|

1−λ log
(
R
ε

))
. Therefore the complexity of

the algorithm is O
( |S‖E|

1−λ log
(

R
(1−λ)ε

))
.

Finally, we get |ηk− η∗| = |wkc −w∗c | 6 ε, and ‖vk− v∗‖∞ = ‖ϕ(wk−wkc e)−ϕ(w∗−w∗ce)‖∞ 6
2‖ϕ‖∞‖wk − w∗‖∞ 6 4ε/(1− λ).

3.6 Numerical results

We recall that we want to solve the equation presented in (3.30):

ηe+ v = T (v) and vc = 0, η ∈ R, v ∈ Rn

In this section, we will compare the DVI algorithm with the classical relative value iteration (RVI)
algorithm. Starting from a vector v0 = (0, · · · , 0)>, RVI computes the following sequence, for k =
0, · · · :

vk+1 = T (vk)− T (vk)ce, (3.21)

ηk+1 = T (vk+1)c. (3.22)

We note that vkc = 0. The RVI algorithm converges to the optimal value v∗ under the assumption that
the Dobrushin ergodicity coefficient

α = 1− min
i,j∈[n],a∈Ai,a′∈Aj

∑
k∈[n]

min(P aik, P a
′

jk) (3.23)

which bounds the contraction rate of the operator T in the span seminorm ‖x‖H := maxi∈[n] xi −
minj∈[n] xj , is smaller than 1. For more details one can refer to Section 6.6 of [Put14].

We will compare DVI also with another algorithm, Krasnoselkii-Mann relative value iteration [GS20]
(RVI+KM). This algorithm combines a step of relative value iteration (3.24) with a step of Krasnoselkii-
Mann damping (3.25). Starting from a vector v0 = (0, · · · , 0)>, it computes the following sequence,
for k = 0, · · · :

ṽk+1 = T (vk)− T (vk)ce, (3.24)

vk+1 = (1− β)vk + βṽk+1, (3.25)

ηk+1 = T (vk+1)c. (3.26)

where e = (1, · · · , 1)> ∈ Rn, and β ∈ (0, 1) is fixed, 1− β being interpreted as a damping parameter.
We note that vkc = 0. It follows from [GS20, Coro. 13], that vk does converge to the additive eigenvector
v∗ of T . Moreover, ‖T (vk)− vk‖H 6 2‖v∗‖H/

√
πβ(1− β)k.

In Figure 3.1, we consider a one dimension grid with a transition matrix that represents a cyclic drift.
The set of states is S := {1, · · · , n}, the reward vector is r = (0, · · · , 0, 1)> ∈ Rn and the nonzero
entries of the Markov matrix representing this 0-player game are given by:

∀i ∈ {1, · · · , n− 1}, Pi,i+1 = p,

∀i ∈ {2, · · · , n}, Pi,i−1 = q,

Pn,1 = p, P1,n = q ,
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where p, q > 0 satisfy p + q = 1. We take p = 0.9 and c = n as a deflation state for DVI. Figure 3.1
shows that classical relative value iteration does not converge. We note that her α = 1. It shows also
that deflated value iteration has a better performance than Krasnoselkii-Mann relative value iteration in
this case of one dimensional grid with a cyclic drift.

(a) Convergence of the error on the mean payoff
η.

(b) Convergence of the error on the bias vector v.

Figure (3.1) One dimension grid with drift and n = 50 states.

In Figure 3.2, we consider a two dimension grid with a transition matrix that represents a cyclic drift
in each dimension. The set of states is S := {1, · · · , l}× {1, · · · , k}, where k and l are integers and the
number of states is n = kl. The reward vector is given by ri,j = 0 for all i 6= l, j 6= k and rl,k = 1. The
nonzero entries of the Markov matrix representing this 0-player game are given by:

∀i ∈ {1, · · · , l − 1}, ∀j, P(i,j),(i+1,j) = p/2, P(l,j),(1,j) = p/2,
∀i ∈ {2, · · · , l}, ∀j, P(i,j),(i−1,j) = q/2, P(1,j),(l,j) = q/2,

∀j ∈ {1, · · · , k − 1}, ∀i, P(i,j),(i,j+1) = p/2, P(i,k),(i,1) = p/2,
∀j ∈ {2, · · · , k},∀i, P(i,j),(i,j−1) = q/2, P(i,1),(i,k) = q/2,

where p, q > 0 satisfy p + q = 1. In this example, we have two cyclic drifts, one horizontal and one
vertical. We take p = 0.9 and c = (l, k) as a deflation state for DVI. Figure 3.2 shows that relative value
iteration does not converge, but Krasnoselkii-Mann relative value iteration converges and has a better
performance than deflated value iteration in this case of two dimensional grid with a cyclic drift in each
dimension.

In Figure 3.3, we consider a two dimension grid with a transition matrix that represents a cyclic
helicoidal drift in addition to a small diffusion. The set of states is S := {1, · · · , l}×{1, · · · , k}, where
k and l are integers and the number of states is n = kl. The reward vector is given by ri,j = 0 for all
i 6= l, j 6= k and rl,k = 1. The nonzero entries of the Markov matrix representing this 0-player game are
given by:

∀j ∈ {1, · · · , k − 1}, ∀i, P(i,j),(i,j+1) = (1 + ε)/a,
∀i ∈ {1, · · · , l − 1}, P(i,k),(i+1,1) = (1 + ε)/a, P(l,k),(1,1) = (1 + ε)/a,
∀i ∈ {1, · · · , l − 1}, ∀j, P(i,j),(i+1,j) = (η + ε)/a, P(l,j),(1,j) = (η + ε)/a,

∀i ∈ {2, · · · , l},∀j, P(i,j),(i−1,j) = ε/a, P(1,j),(l,j) = ε/a,

∀j ∈ {2, · · · , k}, ∀i, P(i,j),(i,j−1) = ε/a, P(i,1),(i,k) = ε/a,
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(a) Convergence of the error on the mean payoff η. (b) Convergence of the error on the bias vector v.

Figure (3.2) Two dimension grid with drifts in two directions and n = 50× 50 states.

where η, ε > 0 are such that 0 < ε < η < 1 and a = 1 + η + 4ε. In this example, there is a
one dimension drift 1/a following the cycle (1, 1), · · · , (1, k), (2, 1), · · · , (l, k), (1, 1), combined with
a smaller cyclic drift η/a and a even smaller diffusion to neighbors ε/a. So, the transitions follow an
“helicoidal” movement with small perturbation. In Figure 3.3, we take η = 0.05, ε = 0.0025 and
c = (l, k) as a deflation state for DVI. Figure 3.3 shows that all three algorithms converge and that
deflated value iteration has the best performance in this case of two dimensional grid with a helicoidal
drift.

(a) Convergence of the error on the mean payoff
η.

(b) Convergence of the error on the bias vector v.

Figure (3.3) Two dimension grid with a helicoidal drift and n = 50× 50 states.

3.7 Extending Sidford et al.’s Variance reduced value iteration method
to structured stochastic games

In this section, we will use the deflation technique to split the non-linear eigenproblem (3.14) into two
discounted fixed-point problems as in Section 3.5. However to solve these two problems we will use the
variance reduction method introduced by Sidford et al. [SWWY18]. We next present a variant of this
method that deals with a structured input with two players and a generalized discount, which will allow
us to handle both problems (3.10) and (3.15).

We consider a perfect information two-player zero-sum stochastic game with general discount (SG)
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as described in Section 3.2, except that we suppose that P στ is a sub-Markovian matrix for each couple
of policies (σ, τ) ∈ S ×T . We suppose the associated Shapley operator can be written as

Ti(w) = min
a∈Ai

max
b∈Bi,a

{
γabi P

ab
i Lw +Gabi (w)

}
,∀i ∈ S. (3.27)

Here L ∈ Rn×n is a sparse operator such that for all w ∈ Rn, Lw can be computed in O(|S|). For
all i ∈ S, a ∈ Ai, b ∈ Bi,a, Gabi is a sparse affine operator such that Gabi (w) can be computed in
O(1) for all w ∈ Rn. For example, by taking L = Id and Gabi (w) = rabi ,∀w ∈ Rn we obtain the
Shapley operator of the stochastic game with general discount. The operator L will allow us to handle
the deflation (pre-subtraction of wce) in Equation (3.16).

The problem that we want to solve is:

T (w) = w . (3.28)

In this section, we make the following assumption:

Assumption B. We suppose that

1. T is λ−contracting under the weighted norm ‖ · ‖ψ, where ψ ∈ Rn is a positive vector.

2. The solution w∗ of the equation (3.28) verifies ‖w∗‖ψ 6W , where W > 0 is a scalar.

We can easily show the following inequalities:

‖ψ−1‖−1
∞ ‖w‖ψ 6 ‖w‖∞ 6 ‖ψ‖∞‖w‖ψ, ∀w ∈ Rn . (3.29)

Remark 3.29. In the following, the values ‖ψ−1‖∞ and ‖ψ‖∞ can be replaced by any positive scalars
d1, d2 > 0 such that ‖ψ−1‖∞ 6 d1 and ‖ψ‖∞ 6 d2.

Remark 3.30. The values ‖ψ−1‖∞ and ‖ψ‖∞ will be used in the following algorithms and in their time
complexities. We note that these values can be replaced by any positive scalars d1, d2 > 0 such that
‖ψ−1‖∞ 6 d1 and ‖ψ‖∞ 6 d2.

We denote also by ‖ · ‖∞ the operator norm associated to the sup-norm, so that we have:

‖Mw‖∞ 6 ‖M‖∞‖w‖∞, ∀w ∈ Rn, ∀M ∈ Rn×n.

To a given vector p = (pj)j∈S with pj > 0,∀j ∈ S and
∑
j∈S pj 6 1, we associate the probability

vector p̄ = (p̄j)j∈S∪{0} with p̄j = pj ,∀j ∈ S and p̄0 = 1−
∑
j∈S pj , where 0 is a cemetery state.

For each i ∈ S, a ∈ Ai, b ∈ Bi,a, we suppose that we can sample under the probability P̄ abi
associated to the vector P abi in time O(1).

We next adapt the algorithms 1 − 6 presented by Sidford et al. in [SWWY18] to our case with
two players. We follow the presentation of [SWWY18], including the decomposition of the algorithm
in elementary subroutines. The necessary changes arise from the use of the weighted sup-norm ‖ · ‖ψ
instead of ‖ · ‖∞, from the sub-Markovian character of the matrices, and from dealing with two players
instead of one player. We give the analysis of these modified subroutines in the appendix Section 3.10.

In the following, Algorithm 3 computes an approximation of P abi u by sampling under the probability
vector P̄ abi . Algorithm 4 computes an approximation of T (w) for w ∈ Rn, given an initial vector
w0 ∈ Rn. This algorithm assumes that an approximation of the terms xabi = P abi Lw0, called offsets
in [SWWY18], is already known. Then, Algorithm 5 implements a randomized value iteration, using
Algorithm 4 at each iteration. To initialize Algorithm 5, the offsets xabi = P abi Lw0 are computed exactly.
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Algorithm 3 Approximate transition with cemetery: ApxTransC(u,M, i, a, b, ε, δ)
1: Input: vector u ∈ Rn and M > 0 such that we have ‖u‖∞ 6M
2: Input: State i ∈ S and actions a ∈ Ai, b ∈ Bi,a
3: Input: Target accuracy ε > 0, failure probability δ ∈ (0, 1)
4: u0 = 0
5: m = d 2M2

ε2 ln( 2
δ )e

6: for k ∈ [m] do choose ik ∈ S ∪ {0} with probabilities P(ik = j) = P̄ abij for j ∈ S ∪ {0}.
7: done
8: return Y = 1

m

∑
k∈[m] uik

Algorithm 4 Structured approximate value operator: SApxVal(w,w0, x, ε, δ)
1: Input: Current vector w ∈ Rn and initial vector w0 ∈ Rn.
2: Input: Precomputed offsets: x ∈ RE with |xabi − P abi Lw0| 6 ε for all i ∈ S, a ∈ Ai, b ∈ Bi,a.
3: Input: Target accuracy ε > 0, failure probability δ ∈ (0, 1)
4: M = ‖L‖∞‖w − w0‖∞
5: u = L(w − w0)
6: for i ∈ S do
7: for a ∈ Ai do
8: for b ∈ Bi,a do
9: S̃abi = xabi + ApxTransC(u,M, i, a, b, ε, δ

|E| )
10: Q̃abi = γabi S̃

ab
i +Gabi (w)

11: done
12: w̃ai = maxb∈Bi,a Q̃

ab
i , τ(i, a) ∈ arg max b ∈ Bi,a Q̃abi

13: done
14: w̃i = mina∈Ai

w̃ai , σ(i) ∈ arg min a ∈ Ai w̃ai
15: done
16: return (w̃, σ, τ)

Algorithm 6 iterates Algorithm 5, using the technique of variance reduction by dividing the error by 2
at every iteration. Algorithm 7 and Algorithm 8 are similar to Algorithm 5 and Algorithm 6, with the
difference that the offsets are sampled, instead of being computed exactly.

These subroutines lead to two algorithms, one obtained by calling Algorithm 6 and it runs in quasi-
linear time complexity as shown in Theorem 3.31. The second algorithm is obtained by calling Algo-
rithm 8 and it runs in sub-linear time complexity which is presented by Theorem 3.32.

Theorem 3.31 (adaptation of Lem. 4.8 and Lem. 4.9 in [SWWY18]). Algorithm 6 gives with probability
1 − δ that ‖wk − w∗‖ψ 6 εk for all k ∈ [0,K], in particular ‖wK − w∗‖ψ 6 ε

‖ψ‖∞ and then ‖wK −
w∗‖∞ 6 ε, and runs in time1:

Õ

((
|S‖E|+ |E|Γ 2

(1− λ)3 ‖ψ‖
2
∞‖ψ−1‖2∞‖L‖2∞

)
log(W

ε
) log(1

δ
)
)
.

Proof. By recurrence we have ‖w0 − w∗‖ψ = ‖w∗‖ψ 6 W = ε0 for k = 0. Now we suppose that
‖wk−1 − w∗‖ψ 6 εk−1 for some k ∈ [K]. By Lemma 3.40, we want to have

J >
⌈ 1
1− λ log( ‖w0 − w∗‖ψ(1− λ)

2‖ψ−1‖∞Γ
[ 1−λ

4‖ψ−1‖∞Γ εk
])⌉ = d 1

1− λ log(2‖wk−1 − w∗‖ψ
εk

)e,

1As in [SWWY18] we use Õ to hide polylogarithmic factors in the input parameters, i.e. Õ(f(x)) =
O(f(x) log(f(x))O(1)).
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Algorithm 5 Structured randomized value iteration: SRandVI(w0, J, ε, δ)
1: Input: initial vector w0 ∈ Rn, number of iterations J > 0
2: Input: Target accuracy ε > 0, failure probability δ ∈ (0, 1)
3: Compute x ∈ RE such that xabi = P abi Lw0 for all i ∈ S and a ∈ Ai, b ∈ Bi,a.
4: for j ∈ [J ] do (wj , σj , τj) = SApxVal(wj−1, w0, x, ε,

δ
J )

5: done
6: return (wJ , σJ , τJ)

Algorithm 6 Structured high precision randomized value iteration:
SHighPrecisionRandVI(ε, δ, λ,W, Γ, ‖ψ−1‖∞, ‖ψ‖∞)

1: Input: Target accuracy ε > 0, failure probability δ ∈ (0, 1)
2: Let K = dlog2(‖ψ‖∞Wε )e and J = d 1

1−λ log(4)e
3: w0 = 0 and ε0 = W
4: for k ∈ [K] do
5: εk = εk−1

2 = W
2k

6: (wk, σk, τk) = SRandVI(wk−1, J,
1−λ

4‖ψ−1‖∞Γ εk, δ/K)
7: done
8: return (wK , σK , τK)

which is true since ‖wk−1 − w∗‖ψ 6 εk−1 = 2εk and J = d 1
1−λ log(4)e. So this ensures that ‖wk −

w∗‖ψ 6
4‖ψ−1‖∞Γ [ 1−λ

4‖ψ−1‖∞Γ
εk]

1−λ = εk. In particular we have ‖wK − w∗‖ψ 6 εK = W
2K 6 ε

‖ψ‖∞ since

K = dlog2(‖ψ‖∞Wε )e. Therefore by the inequality (3.29), we deduce that ‖wK − w∗‖∞ 6 ε. By
Lemma 3.41 the kth call of SRandVI in Algorithm 6 takes the time

O

(
|S‖E|+ J |E|

[‖ψ‖2∞‖wk−1 − w∗‖2ψ
[ 1−λ
4‖ψ−1‖∞Γ εk]

2 + Γ 2‖ψ‖2∞‖ψ−1‖2∞
(1− λ)2

]
‖L‖2∞ log( |E|J

δ/K
)
)
.

And knowing that ‖wk−1 − w∗‖ψ 6 εk−1 = 2εk and with K = dlog2(‖ψ‖∞Wε )e iterations, we deduce
the result.

Theorem 3.32 (adaptation of Lem. 4.10 and Lem. 4.12 in [SWWY18]). Algorithm 8 gives with prob-
ability 1 − δ that ‖wk − w∗‖ψ 6 εk for all k ∈ [0,K], in particular ‖wK − w∗‖ψ 6 ε

‖ψ‖∞ and then
‖wK − w∗‖∞ 6 ε, and runs in time

Õ

(
|E|Γ 2‖ψ‖2∞‖ψ−1‖2∞

[ ‖ψ‖2∞W 2

(1− λ)2ε2
+ 1

(1− λ)3

]
‖L‖2∞ log(1

δ
)
)
.

Proof. The proof of the first part is similar to Theorem 3.31.
By Lemma 3.42 the kth iteration in Algorithm 8 takes

O

(
|E|
( ‖ψ‖2∞W 2

[ 1−λ
4‖ψ−1‖∞Γ εk]

2 + J

[‖ψ‖2∞‖wk−1 − w∗‖2ψ
[ 1−λ
4‖ψ−1‖∞Γ εk]

2 + Γ 2‖ψ‖2∞‖ψ−1‖2∞
(1− λ)2

])
‖L‖2∞ log( |E|J

δ
)
)

We have ‖wk−1 − w∗‖ψ 6 εk−1 = 2εk, then the kth iteration takes

Õ

(
|E|Γ 2‖ψ‖2∞‖ψ−1‖2∞

[
W 2

(1− λ)2ε2k
+ 1

(1− λ)3

]
‖L‖2∞ log(1

δ
)
)
.

We have K = dlog2(‖ψ‖∞Wε )e iterations, and ε
2‖ψ‖∞ 6 εK = W

2K 6 ε
‖ψ‖∞ , then we deduce the

result.
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Algorithm 7 Structured sampled randomized value iteration: SSampledRandVI(w0, J, ε, δ)
1: Input: initial vector w0 ∈ Rn, number of iterations J > 0
2: Input: Target accuracy ε > 0, failure probability δ ∈ (0, 1)
3: Sample to obtain approximate offsets: x̃ ∈ RE such that with probability 1− δ

2 , |x̃abi − P abi Lw0| 6 ε for all
i ∈ S and a ∈ Ai, b ∈ Bi,a:

x̃abi = ApxTransC(w0, ‖L‖∞‖w0‖∞, i, a, b, ε, δ
2|E| )

4: for j ∈ [J ] do (wj , σj , τj) = SApxVal(wj−1, w0, x̃, ε,
δ

2J )
5: done
6: return (wJ , σJ , τJ)

Algorithm 8 Structured sublinear randomized value iteration:
SSublinearRandVI(ε, δ, λ,W, Γ, ‖ψ−1‖∞, ‖ψ‖∞)

1: Input: Target accuracy ε > 0, failure probability δ ∈ (0, 1)
2: Let K = dlog2(‖ψ‖∞Wε )e and J = d 1

1−λ log(4)e
3: w0 = 0 and ε0 = W
4: for k ∈ [K] do
5: εk = εk−1

2 = W
2k

6: (wk, σk, τk)=SSampledRandVI(wk−1, J,
(1−λ)εk

4‖ψ−1‖∞Γ ,
δ
K )

7: done
8: return (wK , σK , τK)

3.8 Variance reduced deflated value iteration for mean payoff prob-
lems

In this section we consider the same framework introduced in Section 3.5. So our aim is to solve the
mean payoff problem of Section 3.2.2, by considering the equation:

ηe+ v = T (v) and vc = 0, η ∈ R, v ∈ Rn , (3.30)

and reducing it, by Theorem 3.25, to the equation:

Tϕ(w) = w, w ∈ Rn , (3.31)

with η = wc, v = ϕ(w − wc), and Tϕ is given by (3.16), where ϕ ∈ Rn>0 is a vector satisfying (3.12).

3.8.1 Computing an h-transform of the mean payoff problem

Here we want to find a vector ϕ ∈ Rn>0 satisfying (3.12). First, we consider the problem of finding the
vector of maximal expected first hitting times of state c, denoted ϕ∗ as in (3.10),

We remark that the component ϕ∗c can be computed in time O(|E|) from the other components
since ϕ∗c = 1 + maxa∈Ai,b∈Bi,a [

∑
j∈S,j 6=c P

ab
ij ϕ

∗
j ]. By considering w∗ = (ϕ∗i )i∈S\{c} ∈ Rn−1 and the

matrices P̃ στ ∈ R(n−1)×(n−1) defined from P στ by removing the c row and the c column, the problem
becomes

w∗ = Tm(w∗) , (3.32)

where the operator Tm is such that

Tmi (w) = 1 + max
a,b

[P̃ abi w], ∀i ∈ S \ {c}, ∀w ∈ Rn−1
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The operator Tm is a particular case of the operator T in (3.28): for (σ, τ) ∈ S × T , P στ = P̃ στ

are sub-Markovian. For (i, a, b) ∈ E, γabi = 1 and then Γ = 1, Gabi (w) = 1 for all w ∈ Rn−1 and L is
the identity then ‖L‖∞ = 1.

From Theorem 3.12 and Equation (3.20), we know that the operator Tm is µ−contracting in the
sup-norm ‖ · ‖w∗ , with µ := 1 − 1/‖w∗‖∞ 6 1 − 1/‖ϕ∗‖∞ 6 λ, so here we take ψ = w∗, and λ as
contraction rate. We have ‖w∗−1‖∞ 6 1 and ‖w∗‖∞ 6 ‖ϕ∗‖∞ 6 1

1−λ , then according to Remark 3.29
we can take in Algorithm 6 and Algorithm 8 the scalars 1 and 1

1−λ instead of ‖w∗−1‖∞ and ‖w∗‖∞
respectively. We have ‖w∗‖w∗ = 1, then we take W = 1.

We use Algorithm 6 and Algorithm 8 to find an ε−approximation of w∗ in near linear and sublinear
time respectively. Then we can deduce ϕ′ an ε−approximation of ϕ∗. By taking ε = 1

4 and considering
ϕ = 2ϕ′, we deduce the following Theorem 3.33 and Theorem 3.34. In both theorems λϕ := 1 −
1/‖ϕ‖∞ satisfies 1

1−λϕ 6 2
1−λ + 1

2 .

Theorem 3.33. By calling Algorithm 6, we can, with probability 1 − δ, find ϕ ∈ Rn>0 such that ϕ >
T(c)(ϕ), in time

Õ

((
|S‖E|+ |E|

(1− λ)5

)
log(1

δ
)
)
.

Proof. By applying Theorem 3.31, and setting w = wK , we get the run time and the inequality ‖w −
w∗‖∞ 6 ε with probability 1 − δ. We consider ϕ′ ∈ Rn such that ϕ′i = wi,∀i ∈ S \ {c} and
ϕ′c = 1 + maxa,b[

∑
j∈S,j 6=c P

ab
ij ϕ

′
j ], we deduce easily that ‖ϕ′ − ϕ∗‖∞ 6 ε. We have ‖T(c)(ϕ′) −

ϕ′‖∞ 6 ‖T(c)(ϕ′) − ϕ∗‖∞ + ‖ϕ∗ − ϕ′‖∞ 6 (λ + 1)‖ϕ′ − ϕ∗‖∞ 6 2ε. Since ε = 1/4, we get that
e + maxσ∈S ,τ∈T P στ(c)ϕ

′ = T(c)(ϕ′) 6 e/2 + ϕ′, therefore ϕ = 2ϕ′ satisfies T(c)(ϕ) 6 ϕ. We have
‖ϕ′‖∞ 6 ‖ϕ∗‖∞ + ε, then we get that 1

1−λϕ = ‖ϕ‖∞ 6 2‖ϕ∗‖∞ + 1
2 6 2

1−λ + 1
2 = O( 1

1−λ).

Theorem 3.34. By calling Algorithm 8, we can, with probability 1 − δ, find ϕ ∈ Rn>0 such that ϕ >
T(c)(ϕ), in time

Õ

( |E|
(1− λ)6 log(1

δ
)
)
.

Proof. As for Theorem 3.33 but by applying Theorem 3.32.

3.8.2 Solving the mean payoff problem

We suppose that we have identified a vector ϕ satisfying (3.12). Now we consider the equation (3.31).
As in Section 3.7, we can write Tϕ in the general form given by Equation (3.27), where γabi = ϕ−1

i

for all i ∈ S, a ∈ Ai, b ∈ Bi,a and then Γ = max(i,a,b)∈E γ
ab
i 6 1, L : w 7→ ϕ(w − wce) is a sparse

linear operator and we have ‖L‖∞ 6 2‖ϕ‖∞ = 2
1−λϕ and Gabi : w 7→ ϕ−1

i rabi + wc(1− ϕ−1
i ) is also a

sparse affine operator for all i ∈ S, a ∈ Ai, b ∈ Bi,a.
By Lemma 3.24, Tϕ is a λϕ−contraction in the sup-norm ‖ · ‖∞, where λϕ = 1 − 1/‖ϕ‖∞. We

take here ψ = e, which means ‖ · ‖ψ = ‖ · ‖∞ and ‖ψ−1‖∞ = ‖ψ‖∞ = 1.
By Lemma 3.26, we have ‖w∗‖∞ 6 R, where w∗ is the solution of Equation (3.31). So we take

W = R.
The following theorems give an approximation for w∗ and then also for v∗ and η∗ in nearly linear

time with Theorem 3.35 (based on Theorem 3.33 and Theorem 3.31), and in sublinear time with The-
orem 3.36 (based on Theorem 3.34 and Theorem 3.32). The time complexities considered include the
times needed to find ϕ.
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Theorem 3.35. With probability 1 − δ, we find ϕ satisfying (3.12) and the call of Algorithm 6, with
the parameters (ε, δ2 , λϕ, R, 1, 1, 1), returns w ∈ Rn such that ‖w − w∗‖∞ 6 ε. Therefore we obtain
η = wc and v = ϕ(w − wce) such that |η − η∗| 6 ε and ‖v − v∗‖∞ 6 5ε

1−λ . The run time needed is

Õ

((
|S‖E|+ |E|

(1− λ)5

)
log(R

ε
) log(1

δ
)
)
.

Proof. By Theorem 3.33 we can find ϕ ∈ Rn>0 such that with probability 1 − δ
2 , ϕ > T(c)(ϕ), in time

Õ
((
|S‖E| + |E|

(1−λ)5
)

log(1
δ )
)
. By applying Theorem 3.31, the call of Algorithm 6, with the parameters

(ε, δ2 , λϕ, R, 1, 1, 1), returns w such that with probability 1− δ
2 , we have ‖w−w∗‖∞ 6 ε, and it runs in

time Õ
((
|S‖E| + |E|

(1−λ)5
)

log(Rε ) log(1
δ )
)

which leads the desired complexity. Finally, we get η = wc

and v = ϕ(w − wce) that satisfy |η − η∗| 6 ε and ‖v − v∗‖∞ 6 5ε
1−λ because ‖ϕ‖∞ 6 2

1−λ + 1
2 .

Theorem 3.36. With probability 1− δ, we find ϕ satisfying (3.12) and the call of Algorithm 8, with the
parameters (ε, δ2 , λϕ, R, 1, 1, 1) returns w ∈ Rn such that ‖w−w∗‖∞ 6 ε. Therefore we obtain η = wc
and v = ϕ(w − wce) such that |η − η∗| 6 ε and ‖v − v∗‖∞ 6 5ε

1−λ . The run time needed is

Õ

(
|E|
[

R2

(1− λ)4ε2
+ 1

(1− λ)6

]
log(1

δ
)
)
.

Proof. As for Theorem 3.35 but by applying Theorem 3.34 and Theorem 3.32.

3.9 Comparison with alternative approaches

3.9.1 A cyclic example: no contraction or mixing

The convergence proof of the sampled relative value iteration in [GJG15] requires the Dobrushin er-
godicity coefficient α, presented in (3.23), to be smaller than 1. Consider the 0-player instance with a
cyclic matrix P , presented in Example 3.27. Here, α = 1, and actually, relative value iteration does
not converge. Moreover, the mixing time used in the bound of [Wan17] is infinite. However, as shown
in Example 3.27, the deflation+h-transform methods reduces to a fixed point problem with a contraction
rate of 1/2.

3.9.2 An example with small hitting times

Let us first consider a 0−player problem with state space [n], T (v) = r +Qv,∀v ∈ Rn, where r ∈ Rn
fixed and the probability transition matrix Q ∈ Rn×n, such that

Qi,1 = Qi,i+1 = 1/2, i ∈ [n− 1], Qn,1 = 1 .

We can easily prove that the expected first return time to state n is Tcc = Ω(2n). If we denote by ν
the stationary distribution of Q, it follows that νn = O(2−n). In [Wan17], one supposes the stationary
distribution of Q satisfies 1√

τn
e 6 ν 6

√
τ
n e, so, τ = Ω(22n/n2). The complexity bound of [Wan17] is

exponential in this example, since it includes a τ2 factor.
By using our technique, we will first choose c = 1 and we verify easily that the first hitting time

vector ϕ∗ satisfies ‖ϕ∗‖∞ 6 2 (more precisely ϕ∗i = 2− 1
2n−i , ∀i ∈ [n]). Then the new operator Tϕ

∗
is

1/2−contracting which leads to fast convergence. In particular, Theorem 3.35 gives a time complexity
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Õ(n2 log(Rε ) log(1
δ )), and Theorem 3.36 gives a time complexity Õ(nR2

ε2 log(1
δ )), where R is an upper

bound on the payments, ε is the target accuracy and δ is the failure probability.
In this 0-player example, α = 1/2, so we could use relative value iteration. This is no longer the

case if we consider the following 1-player variant. By identifying n + 1 and 1, consider the stochastic
matrix

Q′i+1,2 = Q′i+1,i+2 = 1
2 , i ∈ [n− 1], Q′1,2 = 1 .

let r′ ∈ Rn be a vector of payments, and consider the Bellman operator T (x) = max(r+Qx, r′+Q′x),
so that there are two actions in every state. Now, α = 1 and the convergence of the relative value
iteration [GJG15] is not guaranteed. However, we observe that for all policies, the probability to reach
the set of states {1, 2} in one step is at least 1/2. Moreover, for all actions, the probability of the
transition 1 → 2 is at least 1/2. It follows that by choosing c = 2, the vector of maximal hitting times
ϕ∗ satisfies ‖ϕ∗‖∞ 6 4 (more precisely ϕ∗1 = 2 and ϕ∗i = 4 − 1

2n−i , ∀i ∈ {2, · · · , n}). Hence, the
deflation+h-transform method still has a sublinear behavior on this example.

3.10 Analysis of Algorithms 3 to 8

Algorithm 3 using sub-Markovian matrices is equivalent to algorithm 1 in [SWWY18], so we have the
same next lemma based on Hoeffding’s inequality.

Lemma 3.37 (Lem. 4.2 in [SWWY18]). Algorithm 3 runs in time O(M2ε−2 log(1
δ )), and it outputs Y

such that |Y − P abi u| 6 ε with probability 1− δ.

Lemma 3.38 (adaptation of Lem. 4.3 in [SWWY18]). With probability 1 − δ, Algorithm 4 returns w̃
such that ‖w̃ − T (w)‖∞ 6 2Γε, and then

‖w̃ − T (w)‖ψ 6 2‖ψ−1‖∞Γε , (3.33)

and it runs in time:

O

(
|E|
⌈
‖w − w0‖2∞‖L‖2∞ε−2 log

( |E|
δ

)⌉)
.

Proof. The proof of Lemma 4.3 in [SWWY18] is still true in our case with two players and state-actions
dependent discount factor γabi and leads to ‖w̃ − T (w)‖∞ 6 2Γε with probability 1 − δ. By Equa-
tion (3.29), we get the inequality ‖w̃ − T (w)‖ψ 6 2‖ψ−1‖∞Γε, and we obtain the desired complexity
by noticing that in Algorithm 4, we have ‖u‖∞ 6 ‖w − w0‖2∞‖L‖∞.

Lemma 3.39. If w,w′ ∈ Rn satisfy ‖w′ − T (w)‖ψ 6 α then ‖w′ − w∗‖ψ 6 α+ λ‖w − w∗‖ψ.

Proof. ‖w′−w∗‖ψ = ‖w′−T (w∗)‖ψ 6 ‖w′−T (w)‖ψ +‖T (w)−T (w∗)‖ψ 6 α+λ‖w−w∗‖ψ.

The following lemma gives an estimation of the error of the randomized value iteration proposed
in Algorithm 5 and in Algorithm 5.

Lemma 3.40 (adaptation of Lem. 4.5 in [SWWY18]). The sequence (wj)j∈[J ] generated by Algorithm 5
(the same by Algorithm 5) satisfies with probability 1− δ, that for all j ∈ [J ]:

‖wj − w∗‖ψ 6
2‖ψ−1‖∞Γε

1− λ + exp(−j(1− λ))‖w0 − w∗‖ψ (3.34)

and if J > d 1
1−λ log(‖w0−w∗‖ψ(1−λ)

2‖ψ−1‖∞Γε )e then ‖wJ − w∗‖ψ 6 4‖ψ−1‖∞Γε
1−λ .
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Proof. The proof follows the lines of the proof of Lem. 4.5 in [SWWY18], but by using Equation (3.33)
and the λ-contraction of T under the weighted sup norm ‖ · ‖ψ.

The following Lemmas 3.41 and 3.42 show the time complexities of Algorithms 5 and 7 respectively.

Lemma 3.41 (adaptation of Lem. 4.6 in [SWWY18]). Algorithm 5 runs in time

O

(
|S‖E|+ J |E|

[‖ψ‖2∞‖w0 − w∗‖2ψ
ε2

+ Γ 2‖ψ‖2∞‖ψ−1‖2∞
(1− λ)2

]
‖L‖2∞ log

( |E|J
δ

))
.

Proof. The proof follows the lines of the proof of Lem. 4.6 in [SWWY18], but by using Equation (3.34).

Lemma 3.42 (adaptation of Lem. 4.11 in [SWWY18]). Algorithm 7 runs in time

O

(
|E|
(‖ψ‖2∞W 2

ε2
+ J

[‖ψ‖2∞‖w0 − w∗‖2ψ
ε2

+ Γ 2‖ψ‖2∞‖ψ−1‖2∞
(1− λ)2

])
‖L‖2∞ log( |E|J

δ
)
)
.

Proof. The sampling of x̃ takes the time O(|E|‖w0‖2∞‖L‖2∞ε−2 log(E|Lδ )). We have ‖w0‖2ψ 6 (‖w0 −
w∗‖ψ + ‖w∗‖ψ)2 6 2‖w0 − w∗‖2ψ + 2‖w∗‖2ψ 6 2‖w0 − w∗‖2ψ + 2W 2, then ‖w0‖2∞ 6 2‖ψ‖2∞‖w0 −
w∗‖2ψ + 2‖ψ‖2∞W 2. The time taken by the J calls of SApxVal was already computed in Lemma 3.41,
then we deduce the result.

3.11 Certificate of existence of a deflation state using directed
hypergraphs

In this section, we will show that certifying if a deflation state c exists and finding one in the case
of existence can be done in a sub-quadratic time complexity. The analysis will be based on directed
hypergraphs (see for reference [GLPN93, AGH15b]).

A directed hypergraph is a pair (V,A), where V is a set of vertices, and A is a set of hyperarcs.
A hyperarc a is a pair (T,H) of non-empty subsets of V . T is called the tail of a and H is called
the head of a. A hyperpath from x to y in the directed hypergraph is a sequence of k > 1 hyperarcs
(T1, H1), · · · , (Tk, Hk) ∈ A satisfying Ti ⊂ ∪i−1

j=0Hj for all i = 1, · · · , k + 1, with the conventions
H0 = {x} and Tk+1 = {y}. The vertex y is said to be reachable from x if x = y or there exists a
hyperpath from x to y. We denote by Reach(x) the set of all vertices reachable from the vertex x.

To the game described in Section 3.2.1, we associate a directed hypergraph H = (V,A) defined as
follows. The set of vertices is V = S ∪ E, and the set of hyperarcs is A = {(j, (i, a, b)) | i, j ∈ S, a ∈
Ai, b ∈ Bi,a such that P abij > 0} ∪ {(Ei, i) | i ∈ S}, where Ei = {(i, a, b) | a ∈ Ai, b ∈ Bi,a} for
i ∈ S.

Proposition 3.43. Let c ∈ S. The state c is accessible from all the other states in S under all policies,
i.e. c is a deflation state, if and only if Reach(c) ⊃ S in the directed hypergraphH.

Proof. To prove this proposition we need only to prove that for each i ∈ S, i ∈ Reach(c) if and only
if c is accessible from i under all policies. Let i ∈ S and σ, τ two policies of players MIN and MAX
respectively, we suppose that i ∈ Reach(c), let (T1, H1), · · · , (Tk, Hk) be the shortest hyperpath from
c to i in the hypergraph H. By definition of a hyperpath, we have T1 = {c} and since this hyperpath
is the shortest, we have i ∈ Hk. By definition of the hypergraph H, we have necessarily Hk = {i}
and Tk = Ei. We know that (i, σ(i), τ(i, σ(i))) ∈ Ei, then by definition of a hyperpath there is



3.11. Certificate of existence of a deflation state using directed hypergraphs 79

1 6 l < k such that (i, σ(i), τ(i, σ(i))) ∈ Hl. Then, by definition of the hypergraph H, we have
Hl = {(i, σ(i), τ(i, σ(i)))} and Tl = {j} for some j ∈ S that satisfies P σ(i),τ(i,σ(i))

ij . Therefore, j is
accessible from i under the policies σ, τ and j is reachable from c in the hypergraph H with a smaller
hyperpath (T1, H1), · · · , (Tl, Hl). Then, by recurrence we deduce that c is accessible from i under all
policies of the two players.

Conversely let i ∈ S \ {c}, we suppose that the state c is accessible from i under all policies
and we want to prove that i ∈ Reach(c). We define the sets S0 = {c}, S1 = {s 6∈ S0 | ∀a ∈
As, b ∈ Bs,a, P

ab
sc > 0} which is the set of states accessible from c under all policies in one step,

S2 = {i 6∈ S0 ∪ S1 | ∀a ∈ As, b ∈ Bs,a,∃j ∈ S1, P
ab
sj > 0} which is the set of states accessible from

c under all policies in two steps, · · · , Sk = {s 6∈
⋃k−1
l=0 Sl | ∀a ∈ As, b ∈ Bs,a,∃j ∈ Sk−1, P

ab
sj > 0}

which is the set of states accessible from c under all policies in k steps, where k 6 n is the biggest integer
such that Sk is not empty. We notice that the set of states accessible from c under all policies is exactly
the union

⋃k
l=0 Sl. Then, knowing that i is accessible from c under all policies, there exists 1 6 l 6 k

such that i ∈ Sl. Then, ∀e ∈ Ei, ∃je ∈
⋃l−1
p=0 Sp, such that (je, e) is an hyperarc in H. Therefore, by

recurrence over 0 6 p 6 l, we deduce that there is a hyperpath from c to i, i.e. i ∈ Reach(c).

Proposition 3.44. Finding a deflation state can be done in the sub-quadratic time complexityO(|S|2|E|).

Proof. For each state i ∈ S, we can compute the set Reach(i) of the vertices reachable from i. This is
known to be solvable in linear time O(|A|) (see for instance [GLPN93]). We have |A| 6 |S|(|E| + 1)
by definition of the hypergraph H, then computing Reach(i) can be done in O(|S||E|). Now, we just
need to check if Reach(i) ⊃ S for each i ∈ S. Therefore, checking the existence of a deflation state
and finding all the deflation states can be done in the sub-quadratic time complexity O(|S|2|E|).
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Part II

Tropical best approximation





CHAPTER 4

Tropical linear regression and mean
payoff games: or, how to measure the

distance to equilibria

Abstract

In this chapter, we study a tropical linear regression problem consisting in finding the best approxima-
tion of a set of points by a tropical hyperplane. We establish a strong duality theorem, showing that
the value of this problem coincides with the maximal radius of a Hilbert’s ball included in a tropical
polyhedron. We also show that this regression problem is polynomial-time equivalent to mean payoff
games. We illustrate our results by solving an inverse problem from auction theory. In this setting, a
tropical hyperplane represents the set of equilibrium prices. Tropical linear regression allows us to quan-
tify the distance of a market to the set of equilibria, and infer secret preferences of a decision maker.
This chapter is based on the preprint [AGQS21].
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4.1 Introduction

4.1.1 The tropical linear regression problem

A tropical hyperplane in the n-dimensional tropical vector space (R∪{−∞})n is a set of vectors of the
form

Ha = {x ∈ (R ∪ {−∞})n, max
16i6n

ai + xi is achieved at least twice} . (4.1)

Such a hyperplane is parametrized by the vector a = (a1, . . . , an) ∈ (R ∪ {−∞})n, which is required
to be non-identically −∞.

Tropical hyperplanes are among the most basic objects in tropical geometry. They are images by the
valuation of hyperplanes over non-archimedean fields, and so, they are the simplest examples of tropical
linear spaces [SS04, FR15] and tropical hypersurfaces [EKL06]. Tropical hyperplanes arise in tropical
convexity [CGQ04, DS04], since closed tropical convex sets can be described as intersections of tropical
half-spaces. A further motivation arises from the study of pricing problems: tropical hypersurfaces
have been used in [BK19] to represent the influence of prices on the decision of agents buying bundles
of elementary products. The “unit demand” case (bundles of cardinality one) is modeled by tropical
hyperplanes.

In this chapter, we address the following tropical analogue of the linear regression problem. Given a
finite set of points V ⊂ (R ∪ {−∞})n, we look for the best approximation of these points by a tropical
hyperplane. Of course, the notion of “best approximation” depends on the metric. A canonical choice in
tropical geometry is the (additive version of) Hilbert’s projective metric. Its restriction to Rn is induced
by the so called Hilbert’s seminorm or Hopf oscillation

‖x‖H := max
i∈[n]

xi −min
i∈[n]

xi .

It is a projective metric, in the sense that the distance between two points is zero if and only if these two
points differ by an additive constant. Hence, we formulate the tropical linear regression problem as the
following optimization problem:

Min
a

max
v∈V

min
x∈Ha∩Rn

‖v − x‖H (4.2)

where the minimum is taken over the space of parameters of tropical hyperplanes. For simplicity, we
assume for the moment that the vectors v ∈ V have finite entries, this assumption will be relaxed in the
body of the article.

Equation (4.2) is a non-convex optimization problem, which is of a disjunctive nature since a tropical
hyperplane is a union of convex cones.

The tropical linear regression problem (4.2) is not only of theoretical interest. We shall see that it
allows one to quantify the “distance to equilibrium” of a market model, and to infer hidden preferences
of a decision maker.

4.1.2 Results

We show that tropical linear regression is tractable, theoretically, and to some extent, computationally.
Our main result is a strong duality theorem, Theorem 4.23, showing that the infimum of the distance of
the set of points V to a tropical hyperplane coincides with the supremum of the radii of Hilbert’s balls
included in the tropical convex cone generated by the elements of V . This provides optimality certificates
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which can be interpreted geometrically as collections of n “witness” points among the elements of V .
Our approach also entails that tropical linear regression is polynomial-time equivalent to solving mean
payoff games. The latter games, originally studied in [EM79, GKK88], are among the problems in the
complexity class NP ∩ co-NP [ZP96] for which no polynomial time algorithm is known. However,
several effective methods are available [GKK88, ZP96, BV07, DG06]. In particular, policy iteration
allows to solve large scale instances [Cha09], even if it is generally super-polynomial [Fri09a]. Thus,
the present results lead to a practical solution of the tropical linear regression problem.

We subsequently study variants of the tropical linear regression problem, involving in particular the
signed notion of tropical hyperplane, obtained by requiring the maximum in (4.1) to be achieved by
two indices i, j belonging to prescribed disjoint subsets I, J of [n]. We also establish a strong duality
theorem in this setting, and provide reductions to mean payoff games for these variants.

We finally illustrate tropical linear regression by an application to an auction model. We consider
a market governed by an invitation to tender procedure. We suppose that a decision maker selects
repeatedly bids made by firms, based on the bid prices, which are ultimately made public (after the
decision is taken), and also on other criteria (assessments of the technical quality of each firm or of
environmental impact) or influence factors (like bribes). This is a variant of the classical “first-price
sealed-bid auction” [Kri02], with a bias induced by the secret preference. Here, we define the market to
be at equilibria if for each invitation, there are at least two best offers. Hence, in the simplest model (unit
demand), the set of equilibria prices can be represented by a tropical hyperplane. We distinguish two
versions of this problem, one in which only the prices are public, and the other, in which the identities of
the winners of the successive invitations are also known. In both cases, we show that solving a tropical
linear regression problem allows an observer to quantify the distance of such a market to equilibrium,
and also to infer secret preference factors. This solves, in the special case of unit-demand, an inverse
problem, consisting in identifying the agent preferences and utilities in auction models, like the one
of [BK19]. This might be of interest to a regulation authority wishing to quantify anomalies, or to
a bidder, who, seeing the history of the market, would wish to determine how much he should have
bidded to win a given invitation or to get the best price for an invitation that he won, thus avoiding the
“winner’s curse”.

4.1.3 Related work, and discussion

Several “best approximation” problems have been studied in tropical geometry. The simplest one con-
sists in finding the nearest point in a (closed) tropical module, in the sense of Hilbert’s metric. The
solution is given by the tropical projection [CGQ04], see also [AGNS11]. The best approximation in
the space of ultrametrics, which is a fundamental example of tropical module in view of its application
to phylogenetics, has been thoroughly studied [CF00, LSTY17, Ber20]. Another important special case
is the best approximation of a point by a tropical linear space [Ard04, JSY07]. In contrast with the
regression problem studied here, these problems concern the approximation of a single point.

It is a general principle that regression (best approximation) is somehow dual to separation. Hence,
tropical linear regression should be compared with the tropical support vector machines (SVM) intro-
duced in [GJ08], and further studied in [TWY20]. Whereas the input of the tropical SVM problem (a
configuration of points in dimension n − 1 partitioned in n color classes) is the same as the one of the
version “with types” of the tropical linear regression problem, we explain in Remark 4.45 why both
problems differ in essential ways.

A different problem of tropical regression consists in finding a vector x minimizing the sup-norm
‖y−Ax‖∞ where y is a vector of observations, andA is a known matrix acting tropically on x. This can
be solved in (strongly) polynomial time, again by a tropical projection [But10]. See also [CF00] for a
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general version of this result. Tropical linear regression problems of this nature have been studied in the
context of learning [MCT21]. The sparse version is of practical interest; it arose in the approximation
of solutions of Hamilton-Jacobi PDE, where it was shown to be equivalent to a non-metric infinite
dimensional facility location problem [GMQ11]. The finite dimension version which is NP-hard is
studied in [TM19].

A different tropical regression problem, with a L1-type error term (instead of sup-norm here), has
been solved in [YZZ19, Theorem 4], in the special case of a configuration of n points in dimension
n− 1. The value is given by a tropical volume [DGJ17], instead of an inner radius.

Tropical geometry has been applied to economics in [BK19], see also [TY19], and [DKM01] for
early results in this direction. Our modeling of agent’s responses to prices is inspired by [BK19]. Auction
models taking into account bribery have been studied in particular in [CLMV05, BP07, Rac13].

We build on the results of [AGG12], showing the equivalence between tropical linear programming
and mean payoff games. Further reductions and equivalences, concerning in particular the problem of
the emptiness of tropical linear prevarieties, were given in [GP13]. The relation between the mean payoff
of a game and the inner radius of a Shapley operator was first observed in [Sko18, AGKS18], where it
was applied to define a condition number and derive complexity results for games. The inner radius of
tropical polyhedra defined by n generators in dimension n− 1 was initially characterized in [Ser07], as
a tropical eigenvalue.

Open problems related to the present work are discussed in the concluding section.

4.1.4 Organization

In Section 4.2, we recall the needed results concerning tropical algebra, mean payoff games, and non-
linear Perron-Frobenius theory. In Section 4.3, we show that computing the inner radius of a tropical
polyhedron given by generators is equivalent to solving a mean payoff game. Section 4.4 contains our
main results, including Theorem 4.23, the strong duality theorem for tropical linear regression. Several
variants of the tropical linear regression problem are dealt with in Section 4.5. In Section 4.6, we ex-
plain how to solve tropical linear regression problems in practice, using mean payoff games algorithms.
In Section 4.7, we give an application to an auction problem. The appendix provides sufficient condi-
tions for the existence of finite eigenvectors of a class of Shapley operators. These conditions are helpful
when dealing with regression problems for configurations of points with −∞ coordinates.

4.2 Preliminaries

4.2.1 Tropical cones

The max-plus semifield Rmax is the set of real numbers, completed by −∞ and equipped with the
addition (a, b) 7→ max(a, b) and the multiplication (a, b) 7→ a � b := a + b. The name “tropical” will
be used in the sequel as a synonym of “max-plus”. We shall occasionally use variants of this semifield.
These include the min-plus semifield Rmin, which is the set R ∪ {+∞}, equipped with the addition
(a, b) 7→ min(a, b) and the multiplication (a, b) 7→ a � b := a + b. This semifield is isomorphic to
Rmax. These also include the subsemifield Zmax ⊂ Rmax, with ground set Z ∪ {−∞}. We refer the
reader to [BCOQ92, But10, MS15a] for background on tropical algebra.

For any integer n, we set [n] := {1, . . . , n}. For all x, y ∈ (Rmax)n, A ∈ (Rmax)n×m, and
λ ∈ Rmax, λ + x ∈ (Rmax)n denotes the vector with entries λ + xi, for i ∈ [n], λ + A ∈ (Rmax)n×m
denotes the matrix with entries λ+Aij , for i ∈ [n], j ∈ [m], x ∨ y = sup(x, y) denotes the vector with
entries max(xi, yi), for i ∈ [n], and x ∧ y = inf(x, y) denotes the vector with entries min(xi, yi), for
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i ∈ [n]. The set (Rmax)n equipped with the addition (x, y) 7→ x ∨ y and the action (λ, x) 7→ λ + x of
Rmax is a tropical module, i.e. a module over the semifield Rmax.

A subset C of (Rmax)n is a tropical (convex) cone or equivalently a tropical submodule of (Rmax)n
if it satisfies x, y ∈ C and λ ∈ Rmax implies λ + x ∈ C and x ∨ y ∈ C. We endow (Rmax)n with
the topology defined by the metric δ(x, y) = maxi∈[n] |exi − eyi |. It induces the usual topology in Rn.
For any given subset V of (Rmax)n, we denote by Sp(V) the tropical submodule of (Rmax)n generated
by V , that is the minimal tropical submodule of (Rmax)n containing V . A tropical polyhedral cone C
is a tropical cone which is finitely generated, that is such that there exists a finite subset V such that
C = Sp(V). For any given matrix V , we also denote by Col(V ) the column space of V , that is the
tropical polyhedral cone generated by the columns of V , and we denote by Row(V ) the row space of
V , that is the tropical polyhedral cone generated by the rows of V .

A tropical polyhedral cone can also be defined externally by a system of tropical linear inequalities
of the form

max
j∈[n]

(Aij + xj) 6 max
j∈[n]

(Bij + xj), i ∈ [m] , (4.3)

where Aij , Bij belong to Rmax, see [GK11]. Then, A and B will be thought of as m× n matrices with
entries in Rmax.

Let A ∈ (Rmax)m×n and x ∈ (Rmax)n. We denote by Ax the vector in (Rmax)m with entries
(Ax)i = maxj∈[n](Aij + xj), for i ∈ [m]. To a matrix A ∈ (Rmax)m×n, we associate the operator
A] : (Rmin)m → (Rmin)n, given by:

∀y ∈ (Rmin)m, ∀j ∈ [n], (A]y)j = min
i∈[m]

(−Aij + yi) ,

with the convention −∞ +∞ = +∞. The operator A] is called the adjoint of A and we can easily
check that it satisfies the following property:

∀x ∈ (Rmax)n, ∀y ∈ (Rmin)m, Ax 6 y ⇔ x 6 A]y .

We define the identity matrix I ∈ (Rmax)n×n by ∀i ∈ [n], Iii = 0, and ∀i, j ∈ [n], i 6= j, Iij = −∞.
A scalar µ is a tropical eigenvalue of a matrixM ∈ (Rmax)n×n if there exists a vector u ∈ (Rmax)n,

not identically −∞, such that Mu = µ+ u in the tropical sense. The eigenvalue is known to be unique
when the digraph ofM is strongly connected, then it coincides with the maximum weight-to-length ratio
of the circuits of the digraph ofM . We denote it by λ(M). See [BCOQ92, But10] for more information.

4.2.2 Mean payoff games

We consider zero-sum deterministic games, with perfect information, defined as follows. There are two
players, “Max” and “Min” (the maximizer and the minimizer), who will move a token on a weighted
digraph. We assume this digraph is finite and bipartite: the node set is the disjoint union of two non-
empty sets Smax and Smin, and the arc setA is included in (Smax×Smin)∪ (Smin×Smax). The set of
states of the game is the set of nodes of the digraph. We associate a real weight wrs to each arc (r, s).

The two players alternate their actions. When the token is in node i ∈ Smin, Player Min must choose
an arc (i, j) in the digraph, meaning he moves the token to node j, and pays wij to player Max. When
Player Min has no possible action, that is, when there are no arcs of the form (i, j) in the digraph, the
game terminates, and Player Max receives +∞. Similarly, when the token is in node j ∈ Smax, Player
Max must choose an arc (j, i) in the digraph. Then he moves the token from node j to node i, and
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receives wji from Player Min. When Player Max has no possible action, that is there are no arcs of the
form (j, i) in the digraph, the game terminates, and Player Max receives −∞.

We measure the time in turns, i.e., a time step consists of two half-turns (a move made by Player
Min followed by a move made by Player Max). We consider the following game in horizon k: starting
from an initial state ı̄ ∈ Smin. the two players make k moves each, unless the game terminates before.
So, if the game does not terminate before time k, the history of the game is described by a sequence of
nodes ı̄ = i0, j1, i1, . . . , jk, ik, belonging alternatively to Smin and Smax, and the total payment received
by Player Max is given by

Rkı̄ = wi0j1 + wj1i1 + wi1j2 + · · ·+ wjkik .

If the game terminates before time k, we set Rkı̄ = ±∞ depending on the player who had no available
action. The following assumption requires Player Min to have at least one available action in every state:

Assumption C. For all i ∈ Smin, there exists j ∈ Smax such that (i, j) is an arc of the digraph of the
zero-sum deterministic game.

In this way, we always have Rkı̄ ∈ R ∪ {−∞}. We shall also consider the dual assumption.

Assumption D. For all j ∈ Smax, there exists i ∈ Smin such that (j, i) is an arc of the digraph of the
zero-sum deterministic game.

In most works on mean payoff games, both assumptions are required to hold, which entails in partic-
ular thatRkı̄ is finite. Here, we shall occasionally relax Assumption D, but always require Assumption C,
so that Rkı̄ ∈ R ∪ {−∞}. This leads to an unpleasant symmetry breaking. However, we shall see that
this generality will be sometimes needed to handle the application to tropical linear regression. Indeed,
from a tropical perspective, −∞ is the zero element, hence a meaningful value.

A strategy of a player is a map which associates to the history of the game an action of this player.
Assuming that Player Min plays according to strategy σ, and that Player Max plays according to strategy
τ , we shall writeRkı̄ = Rkı̄ (σ, τ) to indicate the dependence on these strategies. It follows from standard
dynamic programming arguments that the game in horizon k starting from node ı̄ has a value vkı̄ and that
Players Min and Max have optimal strategies σ∗ and τ∗, respectively, see e.g. [MSZ15a, Th. IV.3.2].
This means that the payment function has the following saddle point property:

Rkı̄ (σ, τ∗) 6 vkı̄ = Rkı̄ (σ∗, τ∗) 6 Rkı̄ (σ∗, τ)

for all strategies σ, τ . Moreover, the value vector vk := (vki )i∈Smin is determined by the following
dynamic programming equation

vk = T (vk−1), v0 = 0

where T : (R ∪ {−∞})n → (R ∪ {−∞})n is the Shapley operator, defined, for i ∈ Smin, by

Ti(x) = min
j, (i,j)∈A

(wij + max
l, (j,l)∈A

(wjl + xl)) . (4.4)

Owing to Assumption C, the above minimum is never taken over an empty set, whereas the above
maximum is never taken over an empty set when Assumption D is made. By convention, the maximum
of an empty set is −∞. When both assumptions hold, T sends Rn to Rn.

We are interested in the limit

χ(T ) := lim
k→∞

T k(0)/k = lim
k→∞

vk/k .
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Thus, χi(T ) yields the limit of the mean payoff per time unit, for the game starting from the initial
state i, when the horizon tends to infinity. It follows from [Koh80] that the limit does exist, and that
χ(T ) ∈ Rn, when Assumption C and Assumption D hold (and more generally, when T is a piecewise
affine self-map of Rn that is non-expansive in some norm, see [AGG12] and Section 4.2.3 below for
details). Alternatively, under the same assumptions, χi(T ) can be characterized as the value of an
infinite mean-payoff game, in which player Max wishes to maximize the liminf of the average payment
received per time unit, whereas player Min wishes to minimize the liminf of the same quantity — this is
the approach originally described by Ehrenfeucht and Mycielski [EM79]. It follows from a general result
of Mertens and Neyman, on the existence of the so called uniform value [MN81b], that this approach
leads to the same notion of mean payoff. Hence, we shall refer to χi(T ) as the (asymptotic) mean payoff
starting from node i.

More generally, the limit χ(T ) ∈ (R ∪ {−∞})n does exist as soon as Assumption C is satisfied.
To see this, observe that we can always construct in polynomial time an equivalent game satisfying also
Assumption D. Indeed, let us delete any node i of Smin in which Player Min has at least one action
(i, j) ∈ A such that Player Max has no available action in state j. After at most |Smin| of such deletions,
we arrive at a new game, played on a bipartite subdigraph of the original graph, induced by a subset
of nodes belonging to Player Min S

′max ⊂ Smin. Note that S
′max may be empty. It is immediate

that this subdigraph satisfies both Assumption C and D. So, for i ∈ Smin, the existence of limk v
k
i /k

follows from the result already established, whereas for i ∈ Smin \ S′max, we have vki = −∞ for k
large enough, implying limk v

k
i /k = −∞.

A (stationary) policy of Player Min is a map σ : Smin → Smax such that (i, σ(i)) ∈ A for all
i ∈ Smin. Such a policy determines a one-player game, in which Player Min always selects moves
i→ σ(i). This one-player game corresponds to the Shapley operator T σ, defined by

T σi (x) = wiσ(i) + max
l, (σ(i),l)∈A

(wσ(i)l + xl) .

Similarly, a policy of Player Max is a map τ : Smax → Smin such that (j, τ(j)) ∈ A for all j ∈ Smax.
It determines a one-player game, with Shapley operator τT defined by

τTi(x) = min
j, (i,j)∈A

(wij + wjτ(j) + xτ(j)) .

A result of Liggett and Lippman [LL69b] entails that each player has optimal strategies in a mean payoff
game, which are obtained by applying a stationary policy. This entails in particular that

χ(T ) = min
σ
χ(T σ) = max

τ
χ(τT ) ,

under Assumptions C and D. The mean payoff χi(T ) is known to coincide with the weight-to-length
ratio of a circuit of the bipartite digraph of the game, the “length” being measured as the number of full
turns, i.e., as the number of Min nodes of the circuit (one half of the ordinary length). In particular,
if the payments wrs are integers, the mean payoff is a rational number p/q, where p, q are integers,
and q is a positive integer bounded by the maximal length of a circuit of the bipartite digraph of the
game (measuring the length as the number of nodes of Min that are visited) and |p/q| is bounded by
2|maxrswrs|.

Now we formalize the following problem.

Problem 1 (Mean payoff games). Input: A finite bipartite directed graph with integer weights, satisfying
Assumptions C and D, together with an initial node ı. Question: Is the mean payoff χı(T ) starting from
node ı nonnegative?
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As discussed in the introduction, Problem 1 is a fundamental problem in algorithmic game the-
ory [GKK88]. It belongs to the class NP ∩ coNP [ZP96], no polynomial time algorithm is known.

It will be useful to keep in mind several equivalent versions of this problem.
As a first variant, one may ask whether χı(T ) is positive, instead of non-negative. This variant is

equivalent to the negated version of Problem 1: considering T̃ (x) = −T (−x), i.e., the Shapley operator
of the game in which all payments are negated, we have that χ(T̃ ) = −χ(T ), and so, χı(T ) > 0 iff
χı(T̃ ) 6 0.

As observed above, the variant of mean payoff games in which Assumption D is relaxed reduces
to the variant in which this assumption holds by a preprocessing, so there is no restriction on requiring
Assumption D in Problem 1.

Another variant consists in computing χı(T ), instead of deciding whether χı(T ) is nonnegative. This
problem of computation polytime Turing-reduces to Problem 1 by binary search. Indeed, given a rational
number α = p/q, we can consider the modified game with integer weights wαrs = 2q(wrs − α/2),
which corresponds to replacing the Shapley operator T by Tα := 2q(−α + T ). Thus χı(Tα) > 0 iff
χı(T ) > α. Then, since the mean payoff χı(T ) is a rational number whose absolute value is bounded
by 2 maxrs |wrs| and whose denominator is bounded by |Smin|, we can compute χı(T ) by a dichotomy
argument, calling at each step an oracle solving Problem 1 for a modified game with weights wαrs.

4.2.3 Perron-Frobenius tools

We now recall some tools from Perron-Frobenius theory, in relation with mean payoff games. We refer
the reader to [AGG12] for more information.

We denote by⊥ the vector of (Rmax)n identically equal to−∞. We consider the Hilbert’s projective
metric, defined for vectors x, y ∈ (Rmax)n where at least one of them is not equal to ⊥, by

d(x, y) = inf{λ− µ | λ, µ ∈ R, µ+ yi 6 xi 6 λ+ yi ∀i ∈ [n]} ∈ R>0 ∪ {+∞} .

In addition, we set d(⊥,⊥) := 0.
The support of a vector x ∈ (Rmax)n is defined by suppx := {i ∈ [n] | xi 6= −∞}. Each subset

I ⊂ [n] yields a part PI of (Rmax)n, consisting of vectors with support I .
Observe that d(x, y) is finite if and only if x and y belong to the same part PI . Moreover, if I 6= ∅,

d(x, y) = max
i∈I

(xi − yi)−min
i∈I

(xi − yi) .

We denote by P(Rmax)n the tropical projective space, i.e., the quotient of the set of non-identically
−∞ vectors of (Rmax)n by the equivalence relation ∼ which identifies tropically proportional vectors.
We shall abuse notation and denote by the same symbol a vector and its equivalence class. Similarly, we
shall think of a part PI with I 6= ∅ as a subset of the tropical projective space.

Observe that d(x, y) vanishes if and only x and y represent the same point of the tropical projective
space, so that d yields a well defined metric on each part of the tropical projective space. We denote by
B(a, r) the closed ball centered at a ∈ Rn with radius r under Hilbert’s projective metric.

It will be convenient to consider an abstract version of the concrete Shapley operators used so far. We
call (abstract) Shapley operator a map T : (Rmax)n → (Rmax)n that is order preserving, continuous, and
such that T (α+x) = α+T (x) for all α ∈ Rmax and x ∈ (Rmax)n. Observe that the operator T defined
by (4.4), with Smin = [n], is a special case of abstract Shapley operator, as soon as Assumption C holds.
We shall often consider situations in which an abstract Shapley operator restricts to a map Rn → Rn,
we will still use the term Shapley operator for the restricted map.
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We are interested in the non-linear spectral problem for T , consisting in finding a vector u ∈
(Rmax)n, non-identically −∞, and a scalar λ ∈ Rmax such that T (u) = λ + u. The spectral radius of
T is defined as

ρ(T ) = sup{λ ∈ R ∪ {−∞} | ∃u ∈ (R ∪ {−∞})n, u 6= ⊥, T (u) = λ+ u} . (4.5)

Variants of this spectral radius are given by the Collatz-Wielandt number cw,

cw(T ) = inf{λ ∈ R | ∃u ∈ Rn, T (u) 6 λ+ u} . (4.6)

and by the dual Collatz-Wielandt number

cw′(T ) = sup{λ ∈ R ∪ {−∞} | ∃u ∈ (R ∪ {−∞})n, u 6= ⊥, T (u) > λ+ u} . (4.7)

For all x ∈ (Rmax)n, we define topx := maxi∈[n] xi. We shall also consider

χ(T ) := lim
k

top(T k(0))/k = inf
k>1

top(T k(0))/k .

The existence of the limit and the fact it coincides with the infimum follow from the subadditivity
property top(T k+l(0)) 6 top(T k(0)) + top(T l(0)). Of course, when the limit χ(T ) = limk T

k(0)/k
exists, we have χ(T ) = topχ(T ) = maxi∈[n] χi(T ). Then, χ(T ) may be interpreted as the value of
a modified mean payoff game, in which Player Max chooses first the initial state i ∈ [n], and then, the
games starts from this state as described in Section 4.2.2. Thus, in the sequel, we shall refer to χ(T ) as
the upper mean payoff associated to the operator T .

The following result, which follows from [AGG12], provides several spectral characterizations of
this upper mean payoff. We say that a map F from Rn to (R ∪ {−∞})n is piecewise affine if we can
cover Rn by finitely many polyhedra in such a way that each coordinate map Fi is either affine, or
identically −∞, on each of these polyhedra.

Theorem 4.1. Let T : (Rmax)n → (Rmax)n be a Shapley operator. Then,

cw′(T ) = ρ(T ) = χ(T ) = cw(T ) , (4.8)

and the suprema in (4.5) and (4.7) are always achieved.
Moreover, if the restriction of T to Rn is piecewise affine, and if ρ(T ) 6= −∞, then the infimum

in (4.6) is also achieved.

Before giving the details of the derivation of Theorem 4.1 from [AGG12], we need to recall a result
of Kohlberg. An invariant half-line of a Shapley operator T : Rn → Rn is a pair (u, η) ∈ Rn×Rn such
that

T (u+ sη) = u+ (s+ 1)η, ∀s > 0 .

Recall that a self-map of Rn is non-expansive for a fixed norm ‖ · ‖ if ‖T (x) − T (y)‖ 6 ‖x − y‖.
Observe that a Shapley operator that preserves Rn is automatically non-expansive in the sup-norm (see
e.g. [GG04]).

Theorem 4.2 ([Koh80]). A piecewise affine map T : Rn → Rn that is nonexpansive in some norm
admits an invariant half-line.

If a Shapley operator T : Rn → Rn has an invariant half-line (u, η), it is immediate, using the
fact that T is nonexpansive in the sup-norm, that χ(T ) = limk T

k(0)/k = limk T
k(u)/k = limk(u +

kη)/k = η. Thus, the invariant half-line determines the mean payoff vector.
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Proof of Theorem 4.1. The equalities in (4.8) are established in [AGG12, Lemma 2.8], where they are
derived from a theorem of Nussbaum concerning continuous, order preserving and positively homo-
geneous self-maps of the orthant, see [Nus86a, Theorem 3.1] and also [GG04, Prop. 1]. If T (u) =
ρ(T ) + u with u 6= ⊥, we also have T (v) = ρ(T ) + v, where v := u − topu is such that top v = 0.
Using the compactness of {v ∈ (Rmax)n | top v = 0} and the continuity of T on this set, we deduce
that the supremum in (4.5) is always achieved. A similar argument shows that the supremum in (4.7) is
also achieved.

Consider now F (x) = T (x) ∨ (cw(T ) + x), which sends Rn to Rn, and which is piecewise affine
because the action spaces are finite. It is immediate that cw(F ) = cw(T ). Let us take an invariant
half-line (u, η) of F . Then, it follows from F k(u) = u + kη, and from the nonexpansiveness of F
in the sup-norm that χ̄(T ) = limk→∞ topF k(0)/k = limk→∞ topF k(u)/k = top η. Moreover,
F (u) = u+ η 6 u+ cw(F ), and so, T (u) 6 u+ cw(T ).

Proposition 4.3. A piecewise affine Shapley operator T : Rn → Rn admits a finite eigenvector if and
only if the mean payoff χi(T ) is independent of the choice of the initial state i ∈ [n].

Proof. By Theorem 4.2, T has an invariant half-line (u, η) and χ(T ) = η. So, if χi(T ) = λ for all
i, we have T (u) = λ + u, showing that u is a finite eigenvector of T . Conversely, if T (u) = λ + u
for some u ∈ Rn, then, using the nonexpansiveness of T , χ(T ) = limk T

k(0)/k = limk T
k(u)/k =

limk(u+ kλ)/k = (λ, . . . , λ).

4.3 Inner radius of a tropical polyhedron defined by generators

For any subsetW of (Rmax)n, we define the inner radius ofW , denoted in-rad(W), as the supremum
of the radii of Hilbert’s balls centered at a point in Rn and included in Sp(W). More generally, for all
non-empty subsets I ⊂ [n], we define the relative inner radius of W , denoted by in-radI(W), as the
supremum of the radii of Hilbert’s balls centered at a point in the part PI of (Rmax)n and included in
Sp(W). Thus, in particular, in-rad[n](W) = in-rad(W). Observe that the relative inner radius depends
only on the image ofW ∩ PI in the tropical projective space P(Rmax)n.

In [AGKS18], it is shown that computing the inner radius of a tropical polyhedral cone given by
an external description P = {x ∈ (Rmax)n | Ax 6 Bx} reduces to computing the Collatz-Wielandt
number cw(T ) of a Shapley operator.

In this chapter, we consider the somehow dual situation in which the tropical polyhedral cone is
given by an internal description,

Col(V ) = {V x | x ∈ (Rmax)p} ,

where V is a n× p matrix with entries in the tropical semifield Rmax, rather by an external description.
Recall that the size of an external description of a tropical polyhedral cone can be exponential in the size
of an internal description, and vice versa [AGK11]. This leads us to consider the following problem.

Problem 2. Input: a matrix V ∈ Zn×pmax. Goal: Compute the inner radius of Col(V ).

We shall make the following assumption.

Assumption E. The matrix V has no identically −∞ row and no identically −∞ column.
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This is not restrictive. Indeed, let I ⊂ [n] (resp. J ⊂ [p]) denote the set of indices of non-identically
−∞ rows (resp. columns) of V and V ′ denote the I × J submatrix of V . For K ⊂ [n], if K is not
included in I , we have in-radK(V ) = −∞, whereas if K = I , then in-radK(V ) = in-rad(V ′). More
generally, the relative inner radii of V for K ⊂ I coincide with the ones of V ′ (up to permutations of
rows of V ).

In [AGG12], the tropical linear independence of the columns of the matrix V was studied by means
of a specific Shapley operator, which will also play a key role in our approach. We set E = {(i, k) ∈
[n]× [p] | Vik 6= −∞}. Consider the operator T : (Rmax)n → (Rmax)n, defined by

Ti(x) = inf
k∈[p],(i,k)∈E

[
− Vik + max

j∈[n],j 6=i
(Vjk + xj)

]
. (4.9)

Owing to Assumption E, the latter infimum is never taken over an empty family, so the operator does
send (Rmax)n to (Rmax)n. We shall sometimes write TV instead of T to emphasize the dependence
on V . Observe that T is exactly the Shapley operator of a mean payoff game defined in Section 4.2.2:
the set of nodes belonging to Player Min is Smin := [n], the set of nodes belonging to Player Max is
Smax := E, with the set of allowed moves

A = {(i, (i, k)) | i ∈ [n], k ∈ [p], (i, k) ∈ E} ∪ {((i, k), j) | (i, k) ∈ E, (j, k) ∈ E, i 6= j} . (4.10)

The payment associated with the arc (i, (i, k)) is wi,(i,k) = −Vik, whereas the payment associated with
((i, k), j) is w(i,k),j = Vjk.

Remark 4.4. In this game, the mean payoff χı(T ) starting from any state ı is always nonpositive. Indeed,
Player Min can always play a “tit for tat” policy, moving to state (j, k) from state j, and thus, paying
−Vjk to Max, if the last move of Max was (i, k)→ j, so that Min paid Vjk. In this way, Min can cancel
the last payment he made, which guarantees a nonpositive mean payoff.

Given a vector a ∈ (Rmax)n, a 6= ⊥, we define the tropical hyperplane:

Ha := {x ∈ (Rmax)n | max
i∈[n]

(ai + xi) achieved at least twice} .

Observe that Ha depends only on the point in the tropical projective space represented by a. Moreover,
Ha is stable under the additive action of scalars, so that Ha can be identified with the subset of the
tropical projective space consisting of the equivalence classes of non-identically −∞ vectors ofHa.

For a finite vector a ∈ Rn, the tropical hyperplane Ha divides (Rmax)n into n sectors (Si(a))i∈[n],
defined by

Si(a) := {x ∈ (Rmax)n | ∀j ∈ [n], xi + ai > xj + aj} . (4.11)

The vector −a, which is unique up to an additive constant, is called the apex of Ha. Indeed, the set
Ha ∩Rn modulo the scalar additions is the support of a polyhedral complex and −a ∈ Rn is the unique
vertex (cell of dimension 0) of this complex. Then, we shall say thatHa has a finite apex. See Figure 4.1
for an illustration.

The following result shows that verifying whether there is a tropical hyperplane containing a given
collection of vectors reduces to solving a mean payoff game.

Proposition 4.5. [AGG12, Corollary 4.8] For a ∈ (Rmax)n such that a 6= ⊥, suppose that V ∈
(Rmax)n×p satisfies Assumption E, and let T be defined as above. Then, the following assertions are
equivalent:

1. a 6 T (a);
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−a
Ha

x1 x2

x3

0

Figure (4.1) The hyperplane Ha with finite apex a = (0, 0, 1)> and the sectors that Ha defines in the
projective space P(Rmax)3.

2. The column space Col(V ) is included inHa.

Corollary 4.6. The columns of V are contained in a tropical hyperplane iff ρ(T ) is nonnegative.

Proof. This follows from the equality ρ(T ) = cw′(T ) in Theorem 4.1 and the fact the supremum is
achieved in (4.7).

Theorem 4.7. Let T = TV be the Shapley operator associated to the matrix V ∈ (Rmax)n×p defined
in (4.9). Then, ρ(T ) 6 0. Moreover,

−ρ(T ) = in-rad(Col(V )).

If ρ(T ) is finite, a maximal Hilbert’s ball included in Col(V ) ∩ Rn is given by B(−a,−ρ(T )) where a
is any vector in Rn such that T (a) 6 ρ(T ) + a.

We will deduce Theorem 4.7 from the following lemma:

Lemma 4.8. For all λ ∈ [−∞, 0] and a ∈ Rn,

B(−a,−λ) ⊂ Col(V ) ⇐⇒ T (a) 6 λ+ a

Proof. Suppose first that λ is finite. Then, considering (4.9), we see that T (a) 6 λ+ a is equivalent to

∀i ∈ [n], ∃k ∈ [p], ∀j ∈ [n], j 6= i, −λ− ai + aj 6 Vik − Vjk . (4.12)

Let x ∈ Rn, we have x ∈ B(−a,−λ) if and only if

∀i ∈ [n], ∀j ∈ [n], xi − xj 6 −λ− ai + aj . (4.13)

Moreover, the basic properties of residuation entail that V V ] 6 I, where V ]x is the maximal element y
such that V y 6 x. It follows that x ∈ Col(V ) if and only if x = V V ]x, or equivalently, x 6 V V ]x.
The latter property can be rewritten as xi 6 maxk∈[p]{Vik + minj∈[n](−Vjk + xj)}, for all i ∈ [n],
which is equivalent to

∀i ∈ [n], ∃k ∈ [p], ∀j ∈ [n], xi − xj 6 Vik − Vjk . (4.14)

We can see that if (4.12) and (4.13) are true then (4.14) follows, which shows the “⇐” direction of
the lemma.
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Now, we suppose that B(−a,−λ) ⊂ Col(V ). For a given i ∈ [n], we consider the vector x(i) ∈ Rn

given by x(i)
i = −λ − ai and x(i)

j = −aj for all j 6= i. Since λ 6 0, we have x(i) ∈ B(−a,−λ), then

x(i) ∈ Col(V ). Therefore by (4.14), there exists k ∈ [p] such that ∀j ∈ [n], x(i)
i − x

(i)
j 6 Vik − Vjk.

Moreover, we have ∀j ∈ [n], j 6= i, x(i)
i − x

(i)
j = −λ− ai + aj . Finally this yields (4.12), which proves

that T (a) 6 λ+ a.
We finally show that the conclusion of the lemma is still true when λ = −∞. This follows from

B(−a,+∞) = ∪µ∈(−∞,0)B(−a,−µ) and −∞+ a = infµ∈(−∞,0) µ+ a.

Proof of Theorem 4.7. If B(−a,−λ) ⊂ Col(V ) for some finite a, with λ 6 0, by Lemma 4.8, we see
that T (a) 6 λ + a, and we deduce from the Collatz-Wielandt property (Theorem 4.1) that ρ(T ) 6 λ,
and so, the radius of the ball, −λ, is bounded above by −ρ(T ).

Moreover, it follows from Assumption E that Col(V ) has a finite vector a; indeed, we can take for
a the supremum of the columns of V . Then, B(−a, 0) ⊂ Col(V ), and by the previous observation,
0 6 −ρ(T ).

If ρ(T ) = −∞, then using the expression of the Collatz-Wielandt number of T , we get that for all
finite λ 6 0, there exists a finite vector a ∈ Rn such that T (a) 6 λ + a. By Lemma 4.8, this implies
that B(−a,−λ) ⊂ Col(V ), and so in-rad(Col(V )) > −λ. Since this holds for all λ 6 0, we deduce
that in-rad(Col(V )) = +∞ = −ρ(T ) is the supremum of the radius of a Hilbert’s ball included in
Col(V ) ∩ Rn.

Finally, if ρ(T ) is finite, since the infimum is attained in the expression of the Collatz-Wielandt
number of T (see Theorem 4.1), there exists a finite vector a ∈ Rn such that T (a) 6 ρ(T ) + a.
By Lemma 4.8, this entails that B(−a,−ρ(T )) ⊂ Col(V ).

This shows that −ρ(T ) is the maximum radius of a Hilbert’s ball included in Col(V ) ∩ Rn.

Remark 4.9. One can give an alternative, less direct proof, of Theorem 4.7 by deriving it from Theo-
rem 16 of [AGKS18]. The latter result shows that if T is a Shapley operator which satisfies the technical
condition (T must be “diagonal free”), then, the supremum of the radii of Hilbert’s balls included in
S(T ) := {x ∈ Rn | x 6 T (x)} coincides with sup{µ ∈ R | ∃v ∈ Rn, µ+ v 6 T (v)}. The initial part
of the proof of Lemma 4.8, up to (4.14), entails that Col(V ) is precisely the set of vectors x such that
x 6 −T (−x).

The following is an immediate corollary of Theorem 4.7

Corollary 4.10. The set Col(V ) ∩ Rn is of empty interior if and only ρ(T ) = 0.

By combining Corollary 4.10 and Corollary 4.6, we recover the following known result, established
in [DSS05] (when the entries of the matrix V are finite).

Corollary 4.11 (Compare with Th. 4.2 of [DSS05]). The set Col(V ) ∩ Rn is of empty interior if and
only if Col(V ) is included in a tropical hyperplane.

The following additional corollary implies that we can check in polynomial time whether the inner
radius of Col(V ) is finite.

Corollary 4.12. The following assertions are equivalent:

1. The inner radius of Col(V ) is infinite;

2. There is no part of (Rmax)n that is left invariant by the operator T ;

3. Tn(0) is the vector identically equal to −∞;
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4. ρ(T ) = −∞.

Proof. (3)⇒(1): Suppose that Tn(0) is equal to⊥, the identically−∞ vector. Let us take u ∈ (Rmax)n,
not identically −∞, such that T (u) = ρ(T ) + u. Then, there is a constant α ∈ R such that ui 6 α,
for all i ∈ [n], and so nρ(T ) + u = Tn(u) 6 Tn(0) + α is the identically −∞ vector. It follows that
ρ(T ) = −∞. Then, by Theorem 4.7, the inner radius of Col(V ) is infinite.

(1)⇒(2): Let I be a non-empty subset of [n], and suppose that the part PI consisting of vectors
of (Rmax)n of support I is left invariant by T . Let u be the vector in this part such that ui = 0
for all i ∈ I . Since T (u) ∈ PI , there exists a real number α such that T (u) > α + u. Hence,
ρ(T ) = cw′(T ) > α > −∞, and, by Theorem 4.7, in-rad(Col(V )) = −ρ(T ) < +∞.

(2)⇒(3): Consider the map π : (Rmax)n → P([n]), which sends a vector u to its support, π(u) =
{i ∈ [n] | ui 6= −∞}, and consider the equivalence relation kerπ on (Rmax)n, such that (x, y) ∈
kerπ iff π(x) = π(y). The quotient set (Rmax)n/ kerπ can be identified to P([n]), and the order
on (Rmax)n induces an order on (Rmax)n/ kerπ, corresponding to the inclusion order on P([n]). The
elements if (Rmax)n/ kerπ are precisely the parts of (Rmax)n, together with the singleton consisting of
the identically −∞ vector. Let ⊥ = π−1(∅) denote this singleton, and let > = π−1([n]). Observe that
> is the maximal element of (Rmax)n/ kerπ, and that ⊥ is its minimal element.

Since the operator T is order preserving and commutes with the addition of a constant, it induces a
map Tπ from (Rmax)n/ kerπ to itself, which is still order preserving. Moreover, the fixed points of Tπ
distinct from ⊥ are precisely the parts of (Rmax)n that are invariant by T . We have, Tπ(>) 6 >, from
which we deduce that ((Tπ)k(>))k>0 is a nonincreasing sequence. If (Tπ)k(>) = (Tπ)k+1(>) 6= ⊥,
for some k, then (Tπ)k(>) would be an invariant part of T , contradicting the assumption. It follows that
the sequence (T kπ (>))k>0 strictly decreases until it reaches ⊥. Since the maximal cardinality of a chain
in the lattice P(n) is n+ 1, it follows that (Tπ)n(>) = ⊥. Hence, Tn(0) is the identically −∞ vector.

Finally, the equivalence between (1) and (4) follows from Theorem 4.7.

Recall that a vector u in a tropical cone V ⊂ (Rmax)n is extreme [GK07, BSS07] if u = v ∨ w with
v, w ∈ V implies that u = v or u = w. An extreme direction of V is of the form Rmax + u, for some
extreme vector of V , i.e., it consists of the tropical scalar multiples of u. We say that a tropical cone in
(Rmax)n is simplicial if it has precisely n extreme directions.

Proposition 4.13. If a Hilbert’s ball of positive radius is included in Col(V ), then it is also included in
a simplicial tropical cone generated by some n columns of V .

Proof. For all maps σ : [n] → [p], such that (i, σ(i)) ∈ E, we consider the Shapley operator of the
one-player game obtained when player MIN selects the action k = σ(i) in state i, that is,

T σ : (Rmax)n → (Rmax)n, T σi (x) = −Viσ(i) + max
j∈[n],j 6=i

(Vjσ(i) + xj) .

If B(−a,−λ) ⊂ Col(V ), then, by Lemma 4.8, T (a) 6 λ+ a. So, by choosing k = σ(i) that achieves
the minimum in the expression of T (a) in (4.9), we get T σ(a) 6 λ + a. Let J := σ([n]), so that
|J | 6 n. Since (i, σ(i)) ∈ E holds for all i ∈ [n], the submatrix V [J ] of V , obtained by keeping
the columns in J , cannot have a −∞ row. Hence Lemma 4.8 can be applied to V [J ]. We deduce that
B(−a,−λ) ⊂ Col(V [J ]). Up to eliminating elements of J , we may assume that the set J is minimal to
generate Col(V [J ]).

Let uj denote the jth column of V . Then, every uj must be extreme in Col(V [J ]). Indeed, suppose
that uj = v ∨ w with v, w ∈ V with uj 6= v and uj 6= w. Then, we can write v = ∨k∈J(λk + uk)
and w = ∨k∈J(µk + uk), for some λk, µk ∈ Rmax. Moreover, we must have λj < 0, otherwise,
v > uj , and since v 6 v ∨ w = uj , v = uj , a contradiction. A similar result holds for w. Since
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uj = v ∨w = ∨k∈J((λk ∨µk) +uk), and λj ∨µj < 0, we deduce that uj = ∨k∈J\{j}((λk ∨µk) +uk)
is generated by the columns {uk | k ∈ J \ {j}}, contradicting the minimality of J . It follows that every
column of V [J ] is extreme in Col(V [J ]).

To show that Col(V [J ]) is simplicial, it remains to check that |J | > n. It is known that a collection
of at most n − 1 vectors in (Rmax)n is included in a tropical hyperplane – this follows for instance
from a tropical analogue of the Radon theorem, see e.g. [But03a] or [AGG09, Coro. 6.13]; or this can
be deduced from the characterization of the tropical rank [DSS05, IR09, AGG12]. So if |J | < n, then
Col(V [J ]) is of empty interior, contradicting B(−a,−λ) ⊂ Col(V [J ]).

We get as a corollary the following result.

Corollary 4.14. We have

in-rad(Col(V )) = max
J

in-rad(Col(V [J ])) (4.15)

where the maximum is taken over all subsets J ⊂ [p] of cardinality n. Moreover, if the inner radius is
positive, the maximum is achieved by J such that Col(V [J ]) is simplicial.

By convention, if p < n, the maximum in (4.15) is zero.

Proof. The inequality > in (4.15) is trivial. If in-rad(Col(V )) = 0, the equality trivially holds in (4.15).
If in-rad(Col(V )) > 0, then for all 0 6 λ < in-rad(Col(V )), there exists a Hilbert’s ball of radius
λ included in Col(V ). By Proposition 4.13, this ball is also included in a simplicial tropical cone
generated by columns of V , which means that there exists J ⊂ [p] of cardinality n such that λ 6
in-rad(Col(V [J ])) 6 maxJ in-rad(Col(V [J ])). Since this holds for all 0 6 λ < in-rad(Col(V )), we
deduce the inequality in-rad(Col(V )) 6 maxJ in-rad(Col(V [J ])) and so the equality.

Corollary 4.15. Computing the inner-radius of a tropical polyhedron (Problem 2) is polynomial-time
Turing equivalent to mean payoff games (Problem 1).

Proof. We observed immediately after stating Problem 1 that the problem of computing χi(T ), where
T is the Shapley operator of a deterministic mean payoff game, satisfying Assumption C, polynomially
Turing-reduces to mean payoff games. By Theorem 4.7, the opposite of the inner-radius is equal to
ρ(T ). Since, ρ(T ) = maxi∈[n] χi(T ), computing the inner-radius polynomially Turing-reduces to mean
payoff games.

Conversely, Corollary 3.11 of [GP13] shows in particular that mean payoff games (Problem 1) poly-
nomially Turing-reduces to checking whether a collection of vectors v1, . . . , vp of (Zmax)n are included
in a tropical hyperplane. By Corollary 4.11 and Corollary 4.10, the latter problem is equivalent to
checking whether the inner-radius of a tropical polyhedral cone Col(V ) vanishes.

Corollary 4.16. Computing the center of a Hilbert’s ball of maximal radius included in Col(V ), where
V ∈ Zn×pmax, polynomially Turing-reduces to mean payoff games.

Proof. We first compute the maximal radius,−ρ(T ), which has been noted above, polynomially Turing-
reduces to mean payoff games. We can also obtain by the same type of reduction an optimal policy σ
of Player Min, which satisfies ρ(T ) = ρ(T σ). Indeed, for each move of player Min i → j, we can
consider a modified Shapley operator T (i,j) corresponding to the game in which player Min makes the
move i → j when in node i (i.e., this player has no choice in node i), and all the other allowed moves
are unchanged. By checking whether ρ(T (i,j)) = ρ(T ), we can verify if the move i → j belongs to an
optimal policy of Player Min. By repeatedly restricting the freedom of moves of Player Min, we arrive,
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after a polynomial number of evaluation of ρ(·), at such an optimal policy σ. We showed that the center
of an optimal Hilbert’s ball is of the form −u where u ∈ Rn and T (u) 6 ρ(T ) + u. Since T 6 T σ,
and ρ(T ) = ρ(T σ), it suffices to construct a vector in Rn such that T σ(u) 6 ρ(T σ) + u. Considering
the tropically linear map B := −ρ(T σ) + T σ, we see this is equivalent to Bu 6 u. A standard result of
tropical spectral theory shows that one can compute such a vector u by solving a shortest path problem.
Actually, a tropical generating family of the set of such vectors u is the set of columns of the so called
“metric closure” or “Kleene star” B∗ of the matrix B, defined as the tropical sum of the tropical powers
ofB, see e.g. [BCOQ92, Th. 3.101] and [But10, Sect. 4.4]. Moreover, the tropical sum u of the columns
of B∗ is a finite vector. In this way, we constructed u such that Bu 6 u, and so T (u) 6 ρ(T ) + u.

Remark 4.17. A subset J ⊂ [p] satisfying in-rad(Col(V )) = maxJ in-rad(Col(V [J ])) can be com-
puted by using any mean payoff game algorithm that returns, together with the mean payoff χ(T ), a
vector u ∈ Rn such that T (u) 6 χ(T ) + u. Indeed, we saw in the proof of Proposition 4.13 that, taking
any policy σ such that T (u) = T σ(u), and setting J := σ([n]), we have B(−u,−χ(T )) ⊂ Col(V [J ]).

V·1V·2

V·3

V·4

V·5 V·6

V·7

V·8 V·9

x1 x2

x3

0

Figure (4.2) Example of an inner ball of the column space Col(V ) in the projective space P(Rmax)3,

where V =

 −3 0 0 1 1 −1 0 0 −1
0 −3 0 0 −1 1 1 −1 0
−1 −1 −4 −2 −1 −1 −2 0 0

.

We can verify easily that λ = −1 and a = (0, 0, 1)> satisfy T (a) = λ+a. Moreover, a policy σ such
that T σ(a) = T (a) is given by σ(1) = 4, σ(2) = 6 and σ(3) = 8. Therefore, by Theorem 4.7 the maxi-
mal radius of a Hilbert’s ball included in Col(V ) is−λ = 1. Moreover, a maximal Hilbert’s ball is given
by B(a, 1), and B(a, 1) is included in the simplicial cone Col(V [J ]) where J = {4, 6, 8} = σ([3]).
This Hilbert’s ball, together with the simplicial cone Col(V [J ]), are shown in Figure 4.2. Observe that
the set J such that in-rad(Col(V [J ])) = in-rad(Col(V )) is not unique, indeed, every J ′ = {i, j, k}
with i ∈ {4, 5}, j ∈ {6, 7} and k ∈ {8, 9} is a candidate.

4.4 The strong duality theorem for tropical linear regression

In this section we will study the best approximation of a set of points in the tropical projective space by
a tropical hyperplane. We will show that the best error of approximation is equal to the inner radius of
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the tropical module generated by this set of points.
Let V = {v(1), · · · , v(p)} ⊂ P(Rmax)n be a finite subset of the tropical projective space. Since we

mainly focus on Sp(V), by abusing notions, we denote by V ∈ (Rmax)n×p the matrix whose columns
are given by some representatives of v(1), · · · , v(p). Note that Sp(V) = Col(V ), which does not depend
on the choice of the representatives of v(1), · · · , v(p). In the following, we use the notation rin

V =
in-rad(Sp(V)).

We introduce a one-sided Hausdorff distance from a set A ⊂ P(Rmax)n to a set B ⊂ P(Rmax)n
with respect to the Hilbert’s projective metric, which we shall call the Hilbert’s distance from A to B:

distH(A,B) := sup
a∈A

distH(a,B) , with distH(a,B) := inf
b∈B

d(a, b) . (4.16)

Note that distH(A,B) = 0 if and only if for each part PI of the tropical projective space, A ∩ PI is
included in the closure of B ∩ PI with respect to the relative topology of PI .

We are interested in the following tropical linear regression problem, consisting of finding a best
hyperplane approximation of the set V in Hilbert’s distance:

inf
a∈P(Rmax)n

distH(V,Ha) . (4.17)

Observe that if there is an index i ∈ [n] such that v(1)
i = · · · = v

(p)
i = −∞, then the tropical linear

regression problem is trivially solved by setting ai = 0 and aj = −∞ for j 6= i. Hence, in the sequel, we
shall assume that the matrix V satisfies Assumption E. In particular, considering the operator T defined
in Equation (4.9), we know from Theorem 4.7 that the inner radius of Sp(V) is −ρ(T ).

The following lemma gives a simple formula for the Hilbert’s distance from a point to a hyperplane.

Lemma 4.18. For x, a ∈ P(Rmax)n, let i∗ ∈ arg maxi∈[n](xi + ai). Then the Hilbert’s distance from
the point x to the hyperplaneHa is

distH(x,Ha) = xi∗ + ai∗ − max
i∈[n],i 6=i∗

(xi + ai) , (4.18)

where we use the convention (−∞)− (−∞) = 0.

Proof. If maxi∈[n](xi + ai) = −∞, then x ∈ Ha and Equation (4.18) holds with the convention
(−∞)− (−∞) = 0. If maxi∈[n](xi + ai) 6= −∞ and the maximum in the expression is attained twice,
then x ∈ Ha and Equation (4.18) holds.

Now we focus on the case maxj∈[n],j 6=i∗(xj + aj) < xi∗ + ai∗ ∈ R, which implies xi∗ ∈ R and
ai∗ ∈ R. We split the argument into the following two cases.

Case 1: maxj∈[n],j 6=i∗(xj + aj) ∈ R. Then δ := xi∗ + ai∗ −maxj∈[n],j 6=i∗(xi + ai) > 0. Consider
the point x̃ given by {

x̃i∗ = xi∗ − δ ,
x̃j = xj , for j ∈ [n], j 6= i∗

Then x̃ ∈ Ha and d(x, x̃) = δ, implying distH(x,Ha) 6 δ. Now, let x′ ∈ Ha, then the maximum in
maxj∈[n](x′j+aj) is achieved at least twice. So there exists i 6= i∗, such that maxj∈[n](x′j+aj) = x′i+ai.
Since i 6= i∗, we have δ 6 xi∗ + ai∗ − (xi + ai), then x′i − xi > x′i + ai − (xi∗ + ai∗) + δ. Since
x′i∗ + ai∗ 6 maxk∈[n](x′k + ak) = x′i + ai, then x′i∗ − xi∗ 6 x′i + ai − (xi∗ + ai∗). Therefore
d(x, x′) > (x′i − xi)− (x′i∗ − xi∗) > δ, which proves distH(x,Ha) > δ.

Case 2: maxj∈[n],j 6=i∗(xj + aj) = −∞. For x′ ∈ Ha, there exists i 6= i∗, such that maxj∈[n](x′j +
aj) = x′i + ai. If x′i + ai = −∞, then x′i∗ − ai∗ = −∞. Since ai∗ ∈ R, then x′i∗ = −∞. Thus
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the fact that xi∗ ∈ R forces d(x, x′) = +∞, i.e., distH(x,Ha) = +∞ and Equation (4.18) holds.
Now if x′i + ai ∈ R, then x′i ∈ R and ai ∈ R. Since the assumption maxj∈[n],j 6=i∗(xj + aj) = −∞
and i 6= i∗ gives us xi + ai = −∞, we have xi = −∞, which leads to d(x, x′) = +∞. Therefore
distH(x,Ha) = +∞ and Equation (4.18) holds.

The next lemma shows that the distance from a Hilbert’s ball to any tropical hyperplane is bounded
below by the radius of this ball.

Lemma 4.19. For a, b ∈ P(Rmax)n, suppose that the supports of a and b are not disjoint. Then, for all
r > 0, we have

distH(B(a, r),Hb) > r . (4.19)

Proof. Let i∗ ∈ arg maxi∈[n](ai + bi). Since the supports of a, b are not disjoint, we have ai∗ + bi∗ >
−∞. Define x ∈ (Rmax)n by xi∗ = r + ai∗ and xi = ai for all i 6= i∗. Then x ∈ B(a, r), and for all
i 6= i∗, xi∗ + bi∗ = r + ai∗ + bi∗ > r + ai + bi = r + xi + bi. So by Lemma 4.18 we deduce that
distH(x,Hb) > r, which implies that distH(B(a, r),Hb) > r.

Lemma 4.20. Suppose thatW is a tropical cone in (Rmax)n. Then,

distH(Sp(V),W) = distH(V,W) . (4.20)

Proof. Consider an element x ∈ Sp(V), so that there exists a finite subset of points (v(j))j∈J of V
and (αj)j∈J ∈ RJ , satisfying x = ∨j∈J(αj + v(j)). Take λ > distH(V,W). Then, for any j ∈ J ,
there exists w(j) ∈ W such that d(v(j), w(j)) 6 λ, and so, there are real numbers γj , βj such that
γj + w(j) 6 v(j) 6 βj + w(j), and βj − γj 6 λ. After replacing w(j) by γj + w(j) ∈ W , we may
assume that γj = 0. Then, ∨j∈Jαj +w(j) 6 x 6 λ+∨j∈Jαj +w(j), which entails that distH(x,W) 6
λ. Since this holds for all λ > distH(V,W), we deduce that distH(x,W) 6 distH(V,W), and so,
distH(Sp(V),W) 6 distH(V,W).

The other inequality follows from V ⊂ Sp(V).

The next lemma shows that the distance from the set V to any tropical hyperplane is always greater
than or equal to the radius of any Hilbert’s ball included in the module Sp(V).

Lemma 4.21 (Weak duality). We have the following inequality

rin
V = sup{r > 0 | ∃a ∈ Rn, B(a, r) ⊂ Sp(V)} 6 inf

b∈P(Rmax)n
distH(V,Hb) . (4.21)

Proof. Let a ∈ Rn and r > 0 such that B(a, r) ⊂ Sp(V), and let b ∈ P(Rmax)n. Since the supports
of a and b are not disjoint, by Lemma 4.19, we have r 6 distH(B(a, r),Hb). Since B(a, r) ⊂ Sp(V),
then distH(B(a, r),Hb) 6 distH(Sp(V),Hb). Therefore, by using Lemma 4.20, we conclude that
r 6 distH(V,Hb).

Lemma 4.22. For all λ ∈ [−∞, 0] and b ∈ P(Rmax)n, we have

T (b) > λ+ b⇔ distH(V,Hb) 6 −λ . (4.22)

Proof. The equivalence is trivial if λ = −∞, so, we suppose that λ ∈ (−∞, 0]. Suppose in addition
that T (b) > λ+ b, i.e., for any i ∈ [n],

min
k∈[p],(i,k)∈E

[−Vik + max
j∈[n],j 6=i

(Vjk + bj)] > λ+ bi.
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Then for any i ∈ [n] and any k ∈ [p],

Vik + bi 6 max
j∈[n],j 6=i

(Vjk + bj)− λ.

For each k ∈ [p], by taking i ∈ arg maxj∈[n](Vjk + bj) and using Lemma 4.18, we deduce that the
distance from the column V·k = v(k) to the hyperplaneHb is 6 −λ, which implies distH(V,Hb) 6 −λ.

Now we suppose that distH(V,Hb) 6 −λ. For k ∈ [p] and i ∈ [n], if i 6∈ arg maxj∈[n](Vjk + bj),
then

Vik + bi 6 max
j∈[n],j 6=i

(Vjk + bj) 6 max
j∈[n],j 6=i

(Vjk + bj)− λ.

Otherwise, if i ∈ arg maxj∈[n](Vjk+bj), then knowing that distH(v(k),Hb) 6 −λ and using Lemma 4.18,
we get Vik + bi 6 maxj∈[n],j 6=i(Vjk + bj)− λ. Therefore, we deduce that for all i ∈ [n] and k ∈ [p],

Vik + bi 6 max
j∈[n],j 6=i

(Vjk + bj)− λ.

Thus for all i ∈ [n],
min

k∈[p],(i,k)∈E
[−Vik + max

j∈[n],j 6=i
(Vjk + bj)] > λ+ bi,

namely T (b) > λ+ b.

The following theorem presents a strong duality result between a best tropical hyperplane approxi-
mation of a set V of points and the largest inner balls that its module Sp(V) contains.

Theorem 4.23 (Strong duality). We have

min
b∈P(Rmax)n

distH(V,Hb) = rin
V = sup{r > 0 | ∃a ∈ Rn, B(a, r) ⊂ Sp(V)}. (4.23)

The minimum is achieved by any vector b ∈ P(Rmax)n such that T (b) > ρ(T ) + b. Moreover, if
rin
V is finite, the supremum is achieved by a ball B(−c, rin

V ) where c ∈ Rn is any vector such that
T (c) 6 ρ(T ) + c.

Proof. Theorem 4.7 entails that rin
V = −ρ(T ) and that the last assertion of the theorem holds. Moreover,

the existence of a vector b ∈ P(Rmax)n such T (b) > ρ(T ) + b follows from Theorem 4.1. Then,
by Lemma 4.22, we have distH(V,Hb) 6 rin

V , which combined with the weak duality property (4.21)
implies that the equality holds in (4.21), and that b such that T (b) > ρ(T ) + b achieves the minimum
in (4.23).

The following lemma allows us to bound from below the value of the tropical linear regression
problem by looking at points in the sectors of a hyperplaneHa.

Lemma 4.24. If a ∈ Rn and r ∈ [0,+∞] are such that

∀i ∈ [n],∃k ∈ [p], v(k) ∈ Si(a) and distH(v(k),Ha) > r ,

then B(−a, r) ⊂ Col(V ) and minb∈P(Rmax)n distH(V,Hb) > r .

Proof. If r = +∞, then for any i ∈ [n], there is some σi ∈ [p] such that v(σi) ∈ Si(a) and
distH(v(σi),Ha) = +∞. Since a is finite, for any i ∈ [n], we have v(σi)

i ∈ R and v(σ(i))
j = −∞

for any j 6= i. We deduce that Sp(v(σ1), · · · , v(σn)) = Rmax. Then Col(V ) = Rmax, and so
B(−a,+∞) = Rmax ⊂ Col(V ).
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Now we consider r ∈ [0,+∞). For i ∈ [n], by the assumption of this lemma, there exists k ∈
[p] such that v(k) ∈ Si(a) and distH(v(k),Ha) > r. Hence, by using (4.11) and Lemma 4.18, we
deduce that the column V·k = v(k) satisfies Vik + ai > r + maxj 6=i(Vjk + aj). Therefore, we have
−Vik + maxj 6=i(Vjk + aj) 6 −r + ai, which implies for any i ∈ [n],

Ti(a) = inf
l∈[p],(i,l)∈E

[
− Vil + max

j∈[n],j 6=i
(Vjl + aj)

]
6 −r + ai,

i.e., T (a) 6 −r + a. Therefore, by Lemma 4.8, we deduce that B(−a, r) ⊂ Col(V ).
Finally by Theorem 4.23, we have

min
b∈P(Rmax)n

distH(V,Hb) = rin
V = sup{s > 0 | ∃x ∈ Rn, B(x, s) ⊆ Sp(V)} > r.

Given a hyperplane Hb, we call witness point of Hb any point p in V such that the distance from p
to the hyperplaneHb equals the distance from the set V to this hyperplane.

Theorem 4.25 (Optimality certificates). Let a ∈ Rn, then the following assertions are equivalent:

1. T (a) = ρ(T ) + a;

2. The hyperplaneHa admits a witness point in each sector, meaning that ∀i ∈ [n],∃k ∈ [p], v(k) ∈
Si(a) and distH(v(k),Ha) = distH(V,Ha).

Moreover, if these assertions hold, then, ρ(T ) = −distH(V,Ha), Ha is an optimal solution of the
tropical linear regression problem, and B(−a,distH(V,Ha)) is a Hilbert’s ball of maximal radius
included in Sp(V).

Proof. If a ∈ Rn satisfies T (a) = ρ(T ) + a = −rin
V + a, then by Theorem 4.23, Ha is optimal

in Equation (4.23), i.e., distH(V,Ha) = rin
V , and for all i ∈ [n] we have

min
k∈[p],(i,k)∈E

[−Vik + max
j∈[n],j 6=i

(Vjk + aj)] = −rin
V + ai.

Then for all i ∈ [n], there exists k ∈ [p] such that

−Vik + max
j∈[n],j 6=i

(Vjk + aj) = −rin
V + ai,

i.e., Vik + ai = rin
V + maxj∈[n],j 6=i(Vjk + aj). This implies that v(k) = V·k ∈ Si(a), and also

by Lemma 4.18, that distH(v(k),Ha) = rin
V = distH(V,Ha).

Now, we suppose that we have assertion (2). By Lemma 4.24, we have

min
b∈P(Rmax)n

distH(V,Hb) > distH(V,Ha),

which means that Ha achieves the minimum in (4.23), so that distH(V,Ha) = rin
V . Hence, ∀k ∈

[p], distH(v(k),Ha) 6 rin
V , so that by Lemma 4.18 we have ∀k ∈ [p], ∀i ∈ [n],

Vik + ai 6 rin
V + max

j∈[n],j 6=i
(Vjk + aj).
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Therefore, we obtain

∀i ∈ [n], ∀k ∈ [p], (i, k) ∈ E;−rin
V + ai 6 −Vik + max

j∈[n],j 6=i
(Vjk + aj) . (4.24)

Assertion (2) also implies ∀i ∈ [n],∃k ∈ [p], Vik+ai > maxj∈[n],j 6=i(Vjk+aj) and distH(v(k),Ha) =
rin
V , with Vik 6= −∞ because a ∈ Rn and V·k 6= ⊥. This means, by Lemma 4.18, that ∀i ∈ [n],∃k ∈

[p], (i, k) ∈ E, Vik + ai = rin
V + maxj∈[n],j 6=i(Vjk + aj). Then

∀i ∈ [n], ∃k ∈ [p], (i, k) ∈ E;−rin
V + ai = −Vik + max

j∈[n],j 6=i
(Vjk + aj) . (4.25)

From (4.24) and (4.25), we conclude that

∀i ∈ [n],−rin
V + ai = min

k∈[p],(i,k)∈E
[−Vik + max

j∈[n],j 6=i
(Vjk + aj)] = Ti(a).

Therefore T (a) = ρ(T ) + a.
The final part of the theorem follows from Theorem 4.23.

Remark 4.26. When T (a) = ρ(T )+a and a ∈ Rn, Theorem 4.25 and Theorem 4.23 entail the following
remarkable property: there is an optimal Hilbert’s ball whose center coincides with the apex of an
optimal regression hyperplane. This property is illustrated in Figure 4.4 below.

Remark 4.27. The situation in which T (a) = ⊥ holds for some finite vector a (or equivalently, for all
finite vectors a) is degenerate. Indeed, we observe from the proof of Theorem 4.25 that T (a) = ⊥ for
some finite vector a if and only if, for all i ∈ [n], there is a vector v(k) such that v(k)

i is finite and all v(k)
j

with j 6= i are−∞. Then, V contains a n×n diagonal submatrix, and so, Col(V ) = Sp(V) = (Rmax)n.

We next exhibit a situation in which the existence of a finite eigenvector, required to apply Theo-
rem 4.25, is guaranteed.

Proposition 4.28. Suppose that all the vectors v ∈ V have finite entries. Then, the operator T has a
finite eigenvector a.

Proof. Theorems 9 and 13 of [GG04] imply that an order preserving and additively homogeneous map
T : Rn → Rn has a finite eigenvector if the recession function T̂ (x) := lims→∞ s

−1T (sx) has only
fixed points on the diagonal. When the matrix V is finite, considering T := TV , we have T̂i(x) =
maxj∈[n],j 6=i xj , for all i ∈ [n], so the latter condition is trivially satisfied. This entails that there exists
a vector a ∈ Rn such that T (a) = ρ(T ) + a.

A more general condition, involving the notion of dominions, is given in Section 4.8.
The following proposition shows that we can determine witness points from a policy σ : [n] 7→ [p],

that satisfies T (a) = T σ(a) where a is a finite eigenvector of the operator T . For an illustration of this
lemma see Figure 4.2.

Proposition 4.29. Let a ∈ Rn such that T (a) = −rin
V + a, and σ : [n] 7→ [p] a map, such that

∀i ∈ [n], (i, σ(i)) ∈ E. We have T (a) = T σ(a) if and only if for all i ∈ [n], V·σ(i) is a witness point of
Ha that belongs to the sector Si(a).

Proof. If T (a) = T σ(a), then T σ(a) = −rin
V + a. Therefore, we have for all i ∈ [n], −Viσ(i) +

maxj 6=i(Vjσ(i) + aj) = −rin
V + ai, i.e. Viσ(i) + ai = rin

V + maxj 6=i(Vjσ(i) + aj), which means that
V·σ(i) ∈ Si(a) and, by Lemma 4.18, that distH(V·σ(i),Ha) = rin

V , i.e for all i ∈ [n], V·σ(i) is a witness
point in the sector Si(a).
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Conversely, if for all i ∈ [n], V·σ(i) is a witness point in the sector Si(a). Let i ∈ [n], we have then
Viσ(i) + ai = rin

V + maxj 6=i(Vjσ(i) + aj), i.e. −Viσ(i) + maxj 6=i(Vjσ(i) + aj) = −rin
V + ai. We know

that for all k ∈ [p], distH(V·k,Ha) 6 rin
V , then by Lemma 4.18, Vik +ai 6 rin

V + maxj 6=i(Vjk +aj), i.e.

−Vik+maxj 6=i(Vjk+aj) > −rin
V +ai. Therefore, Ti(a) = infk∈[p],(i,k)∈E

[
−Vik+maxj∈[n],j 6=i(Vjk+

aj)
]

= −Viσ(i) + maxj 6=i(Vjσ(i) + aj) = T σi (a).

We now formalize the tropical linear regression problem:

Problem 3 (Tropical linear regression). Input: a finite set of vectors V ⊂ Znmax. Goal: compute the infi-
mum of the one-sided Hausdorff distance of V to a tropical hyperplane, i.e., the value of the optimization
problem (4.17).

Corollary 4.30. The tropical linear regression problem (Problem 3) is polynomial time Turing-equivalent
to mean payoff games (Problem 1).

Proof. This follows from the strong duality theorem (Theorem 4.23) and Corollary 4.15.

Corollary 4.31. Computing an optimal regression hyperplaneHa in (4.17), given a finite set of vectors
V ⊂ Znmax, polynomially Turing-reduces to mean payoff games.

Proof. By Theorem 4.23, we need to find a vector a such that T (a) > ρ(T )+a. Arguing as in the proof
of Corollary 4.16, but exchanging the roles of Player Max and Min, we end up with an optimal policy τ
of Player Max. Then, it suffices to find a vector a ∈ (R∪{−∞})n, a 6= ⊥, such that τT (a) > ρ(τT )+a.
Still arguing as in the proof of Corollary 4.16, we are reduced to a problem of tropical (min-plus instead
max-plus) spectral theory, which again reduces to a shortest path problem.

In Figure 4.3, we consider the same matrix V as in Figure 4.2. The Figure 4.3 shows the witness
points in each of the sectors defined by the hyperplane Ha where a = (0, 0, 1)> satisfies T (a) = λ+ a
with λ = −1. In this example, we have two witness points in each sector: V·4 and V·5 are the witness
points in the sector S1(a) (in green), V·6 and V·7 are the witness points in the sector S2(a) (in blue) and
V·8 and V·9 are the witness points in the sector S3(a) (in red).

In Figure 4.4, we consider the following matrix U ∈ R3×4:

U =

 −1 0 1 0
0 −1 0 1
0 0 −2 −2


The operator associated to U is the following map T : (Rmax)n → (Rmax)n :

T

x1
x2
x3

 =

min[1 + max(x2, x3),max(−1 + x2, x3),−1 + max(x2,−2 + x3),max(1 + x2,−2 + x3)]
min[max(−1 + x1, x3), 1 + max(x1, x3),max(1 + x1,−2 + x3),−1 + max(x1,−2 + x3)]
min[max(−1 + x1, x2), 1 + max(x1,−1 + x2), 2 + max(1 + x1, x2), 2 + max(x1, 1 + x2)]

 .

We verify easily that λ = −1 and a = (0, 0, 1)> satisfy T (a) = λ + a, so that the inner radius
of Col(U) is rin

U = 1. In this example, other hyperplanes like Hb and Hc, with b = (0, 0,−1)>
and c = (0, 0,−∞)>, are also optimal solutions of the tropical linear regression problem, but Ha is
the only hyperplane such that a is a finite eigenvector of the operator T and, hence, that satisfies also
B(−a, 1) ⊂ Col(U).
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V·1V·2

V·3

V·4

V·5 V·6

V·7

V·8 V·9

x1 x2

x3

0

−a
Ha

Figure (4.3) The inner ball of a column space Col(V ) and the linear regression of the columns of V .

U·1U·2

U·3 U·4
x1 x2

x3

0

Hc

−a
Ha

−b
Hb

Figure (4.4) A column space Col(U) (light and dark gray regions) with multiple hyperplanes that
are optimal solutions of the tropical linear regression problem, and multiple inner balls of maximal
radius, but a unique optimal hyperplane with witness points in each sector, corresponding to the finite
eigenvector a = (0, 0, 1)> of T and to the inner ball in dark gray.
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4.5 Tropical linear regression with sign or type patterns

Here, we study several variants of the tropical linear regression problem, which can also be solved by
the present technique of reduction to a mean payoff game. The second of these variants (with “types”)
will arise in the economic application of Section 4.7.

4.5.1 Tropical linear regression with signs

Given I, J ⊂ [n] such that I, J 6= ∅, I ∪ J = [n] and I ∩ J = ∅ and a ∈ P(Rmax)n, we define the
signed tropical hyperplane of type (I, J):

HIJa := {x ∈ (Rmax)n | max
i∈I

(ai + xi) = max
j∈J

(aj + xj)} (4.26)

Given a set V ⊂ (Rmax)n, of cardinality |V| = p, the signed tropical linear regression problem of
type (I, J) consists in finding the best approximation of V by a signed hyperplane of type (I, J):

min
a∈P(Rmax)n

distH(V,HIJa ) . (4.27)

Let M be a closed tropical cone of (Rmax)n and x ∈ (Rmax)n. The projection PM (x) of the point
x onto M [CGQ04] is defined by:

PM (x) := max{z ∈M | z 6 x} . (4.28)

The Hilbert’s distance from x to M is achievd by the projection PM (x).

Theorem 4.32 ([CGQ04]). Given a closed tropical semimodule M ⊂ (Rmax)n and x ∈ (Rmax)n, we
have:

distH(x,M) = d(x, PM (x)) .

The following lemma identifies the projection of a point x ∈ P(Rmax)n onto a signed tropical
hyperplaneHIJa .

Lemma 4.33. Let x, a ∈ P(Rmax)n and K = supp a. The projection PHIJa (x) of x onto HIJa is given
by:

[PHIJa (x)]l =


xl , for l ∈ Kc

min{xl,−al + maxj∈J(aj + xj)} , for l ∈ I ∩K
min{xl,−al + maxi∈I(ai + xi)} , for l ∈ J ∩K

(4.29)

where Kc denotes the complementary of K in [n].

Proof. Denote the right hand side vector of (4.29) by x̃. From (4.28), we have PHIJa (x) = max{z ∈
HIJa | z 6 x}. Let z ∈ HIJa such that z 6 x. We will prove that z 6 x̃. Let l ∈ I , if l ∈ I ∩Kc, we
have right away that zl 6 xl = x̃l. Now if l ∈ I ∩K, knowing that z ∈ HIJa and using (4.26), we have
al+zl 6 maxi∈I(ai+zi) = maxj∈J(aj+zj) 6 maxj∈J(aj+xj). Then, zl 6 −al+maxj∈J(aj+xj).
We know also that zl 6 xl, then zl 6 x̃l. Similarly the inequality zl 6 x̃l can also be proved for all l ∈ J .
Therefore, for all z ∈ HIJa , if z 6 x then z 6 x̃. Using (4.28), it suffices now to prove that x̃ ∈ HIJa .
Indeed, maxi∈I(ai + x̃i) = maxi∈I∩K(ai + x̃i) = maxi∈I∩K{min(ai + xi,maxj∈J(aj + xj))} =
min{maxi∈I∩K(ai + xi),maxj∈J(aj + xj)} = min{maxi∈I(ai + xi),maxj∈J(aj + xj)}, and by
symmetry we deduce that maxj∈J(aj + x̃j) is also equal to the same quantity, and so x̃ ∈ HIJa .
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Remark 4.34. The formula of Lemma 4.33 may be compared with formula for the projection of a point
onto a tropical half-space {x ∈ (Rmax)n | maxi∈I(ai + xi) 6 maxj∈J(aj + xj)}, see [AGNS11,
Th. 5.1].

Proposition 4.35. Let x, a ∈ P(Rmax)n. The Hilbert’s distance of the point x to the signed hyperplane
HIJa is:

distH(x,HIJa ) = |max
i∈I

(xi + ai)−max
j∈J

(xj + aj)| , (4.30)

if at least one of these maxima is finite, and distH(x,HIJa ) = 0 otherwise.

Proof. From Theorem 4.32, we have distH(x,HIJa ) = d(x, x̃) with x̃ = PHIJa (x). Let K = supp a
and O = suppx. If I ∩K ∩ O = J ∩K ∩ O = ∅, then K ∩ O = ∅, so x+ a ≡ −∞, and this means
that x ∈ HIJa and so distH(x,HIJa ) = 0.

If I ∩K ∩O = ∅ and J ∩K ∩O 6= ∅, then maxi∈I(xi + ai) = −∞ and maxj∈J(xj + aj) 6= −∞.
Let j ∈ J ∩K ∩ O, we have x̃j = min{xj ,−aj + maxi∈I(ai + xi)} = −∞ and we have xj 6= −∞,
then d(x, x̃) = +∞ = |maxi∈I(xi + ai) − maxj∈J(xj + aj)|. By symmetry we treat the case when
I ∩K ∩O 6= ∅ and J ∩K ∩O = ∅.

Now, we suppose that I ∩ K ∩ O 6= ∅ and J ∩ K ∩ O 6= ∅. Let i ∈ I ∩ K ∩ O, we have
xi − x̃i = xi + max{−xi, ai − maxj∈J(aj + xj)} = max{0, xi + ai − maxj∈J(aj + xj)}. Then,
we have maxi∈I(xi − x̃i) = maxi∈I∩K∩O(xi − x̃i) = max{0,maxi∈I∩K∩O(xi + ai)−maxj∈J(aj +
xj)} = max{0,maxi∈I(xi + ai) − maxj∈J(aj + xj)}, and symmetrically, we have maxj∈J(xj −
x̃j) = max{0,maxj∈J(xj + aj)−maxi∈I(ai + xi)}. Therefore, we deduce that maxl∈[n](xl − x̃l) =
|maxi∈I(xi + ai)−maxj∈J(xj + aj)|.

To finish the proof we need now to show that minl∈[n](xl− x̃l) = 0. This is a general property of the
projection x̃ = PM (x) of a vector on a closed tropical cone: since x̃ 6 x, the minimum is nonnegative,
and if the minimum is positive, adding a small constant ε to every entry of x̃, we get a vector x̃ε which
still belongs to M and satisfies x̃ε 6 x, contradicting PM (x) = max{z ∈M | z 6 x}.

In the sequel, we suppose that the following Assumption F holds.

Assumption F. We suppose that for each l ∈ [n], there exists v ∈ V , such that vl 6= −∞.

We now introduce the operator T IJ : (Rmax)n 7→ (Rmax)n, defined by:

T IJl (x) :=
{

infv∈V,vl 6=−∞{−vl + maxj∈J(vj + xj)}, if l ∈ I ,
infv∈V,vl 6=−∞{−vl + maxi∈I(vi + xi)}, if l ∈ J .

(4.31)

The following result, analogous to Lemma 4.22, gives a metric interpretation of the sub-eigenspace
of the operator T IJ .

Lemma 4.36. Let λ ∈ [−∞, 0] and a ∈ P(Rmax)n, we have

T IJ(a) > λ+ a⇔ distH(V,HIJa ) 6 −λ .

Proof. The equivalence is trivial if λ = −∞, so, we suppose that λ ∈ (−∞, 0]. We have

T IJ(a) > λ+ a⇔
{
∀l ∈ I, ∀v ∈ V, vl 6= −∞;−vl + maxj∈J(vj + aj) > λ+ al
∀l ∈ J,∀v ∈ V, vl 6= −∞;−vl + maxi∈I(vi + ai) > λ+ al

(4.32)

⇔
{
∀v ∈ V,maxl∈I(vl + al) 6 maxj∈J(vj + aj)− λ
∀v ∈ V,maxl∈J(vl + al) 6 maxi∈I(vi + ai)− λ

(4.33)
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Let V ′ denote the set of vectors v ∈ V for which at least one of the latter maxima are finite, and observe
that the vectors of V \ V ′ trivially belong to HI,Ja . Then, using Proposition 4.35, we see that the last
condition in (4.33) is equivalent to

∀v ∈ V ′, d(v,HIJa ) = |max
i∈I

(vi + ai)−max
j∈J

(vj + aj)| 6 −λ

i.e., distH(V,HIJa ) 6 −λ.

Let w ∈ Rn and r > 0, we define the vertical interval of type I, J centered at point w and of radius
r,

BIJ(w, r) = {λ+ w + µeJ | µ ∈ [−r, r], λ ∈ R} ,

where eJ is the vector of Rn such that eJl = 0 for l ∈ I and eJl = 1 for l ∈ J . Using the identity
−µ+ µeJ = −µeI , we see

BIJ(w, r) = {λ+ w + µeI | µ ∈ [−r, r], λ ∈ R} .

Lemma 4.37. Let λ ∈ [−∞, 0] and a ∈ Rn, we have

BIJ(−a,−λ) ⊂ Sp(V)⇒ T IJ(a) 6 λ+ a .

Proof. Suppose first that λ is finite. If BIJ(−a,−λ) ⊂ Sp(V), then

∀µ ∈ [−λ, λ],∃(αv)v∈V ∈ Rp,−a+ µeJ = max
v∈V

(αv + v).

Let µ ∈ [−λ, λ], we have

∀i ∈ I, (∀v ∈ V,−ai > αv + vi and ∃v(i) ∈ V,−ai = αv(i) + v
(i)
i ) , (4.34)

and also

∀j ∈ J, (∀v ∈ V,−aj + µ > αv + vj and ∃v(j) ∈ V,−aj + µ = αv(j) + v
(j)
j ) . (4.35)

From (4.35), we have ∀v ∈ V, supj∈J(vj+aj) 6 −αv+µ, and from (4.34), we have ∀i ∈ I, v(i)
i 6= −∞

because αv(i) + v
(i)
i = −ai ∈ R. Then, for all i ∈ I , we have T IJi (a) = infv∈V,vi 6=−∞{−vi +

supj∈J(vj + aj)} 6 infv∈V,vi 6=−∞{−vi − αv + µ} 6 −v(i)
i − αv(i) + µ = µ+ ai. This being true for

all µ ∈ [−λ, λ], we take here µ = λ and we get that ∀i ∈ I, T IJi (a) 6 λ+ ai.
Similarly, we have ∀j ∈ J, T IJj (a) = infv∈V,vj 6=−∞{−vj+supi∈I(vi+ai)} 6 infv∈V,vj 6=−∞{−vj−

αv} 6 −v(j)
j − αv(j) = −µ + aj . By taking here µ = −λ, we get that ∀j ∈ J, T IJj (a) 6 λ + aj .

Therefore, we get that T IJ(a) 6 λ+ a.
The conclusion of the lemma is still true when λ = −∞. This follows from BIJ(−a,+∞) =

∪µ∈(−∞,0)BIJ(−a,−µ) and −∞+ a = infµ∈(−∞,0) µ+ a.

Lemma 4.38. Let λ ∈ [−∞, 0], we have

∃u ∈ Rn;T IJ(u) 6 λ+ u⇒ ∃w ∈ Rn;BIJ(w,−λ) ⊂ Sp(V) .
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Proof. Suppose first that λ is finite. For simplicity of notation, we shall assume that u = 0. The general
case reduces to this one by replacing every vector v ∈ V by the vector v+u. We denote by V the matrix
whose columns are the elements of V . Since T IJ(u) 6 λ+ u, denoting by σ a map [n]→ [p] such that
for all l ∈ [n], v = V·σ(l) achieves the minimum in (4.31), we get:

∀l ∈ I, ∀j ∈ J, Vjσ(l) 6 Vlσ(l) + λ , (4.36)

∀l ∈ J, ∀i ∈ I, Viσ(l) 6 Vlσ(l) + λ . (4.37)

Consider the vectors

wI := ∨i∈I − Viσ(i) + V·σ(i), wJ := ∨j∈J − Vjσ(j) + V·σ(j),

so that wI , wJ ∈ Sp(V). By considering the values i = l or j = l in the suprema above, we get

wIl > 0,∀l ∈ I, wJl > 0,∀l ∈ J . (4.38)

Moreover, using (4.36), we get

wIj = ∨i∈I − Viσ(i) + Vjσ(i) 6 λ, for all j ∈ J , (4.39)

and similarly, using (4.37),

wJi 6 λ, for all i ∈ I . (4.40)

Define the vector w by

wl =
{
wIl , if l ∈ I ,
wJl , if l ∈ J .

Using (4.38)–(4.40), we deduce that for all µ ∈ [λ,−λ],

w + µeI = (wI + µ) ∨ wJ ∈ Sp(V) ,

and so BIJ(w,−λ) ⊂ Sp(V).
We finally show that the conclusion of the lemma is still true when λ = −∞. This follows from the

fact that the above center w depends only on the vectors of V and does not depend on λ, and also from
the facts that B(w,+∞) = ∪µ∈(−∞,0)B(w,−µ) and −∞+ w = infµ∈(−∞,0) µ+ w.

The next result is immediate from Lemmas 4.37 and 4.38. It is analogous to Lemma 4.8. It shows
that the existence of a super-eigenvector of T I,J is equivalent to the existence of a vertical interval
included in the module Sp(V).

Proposition 4.39. Let λ ∈ [−∞, 0], and a ∈ Rn, we have

∃u ∈ Rn;T IJ(u) 6 λ+ u⇔ ∃w ∈ Rn;BIJ(w,−λ) ⊂ Sp(V) .

We now derive a strong duality theorem for signed tropical regression.

Theorem 4.40. We have

min
a∈P(Rmax)n

distH(V,HIJa ) = −ρ(T IJ) = sup{r > 0 | ∃w ∈ Rn, BIJ(w, r) ⊂ Sp(V)} . (4.41)

The minimum is achieved by any vector b ∈ P(Rmax)n such that T IJ(b) > ρ(T IJ) + b. Moreover, if
ρ(T IJ) is finite, the supremum is achieved by a ball B(c, ρ(T IJ)) where c ∈ Rn can be deduced from
any vector u such that T IJ(u) 6 ρ(T IJ) + u.
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Proof. From Proposition 4.39, Lemma 4.36 and the Collatz-Wielandt property (Theorem 4.1), we de-
duce the strong duality property (4.41). Moreover, the existence of a vector b ∈ P(Rmax)n such
T IJ(b) > ρ(T IJ) + b follows from Theorem 4.1. Then, by Lemma 4.36, we have distH(V,Hb) 6
−ρ(T IJ), which implies that b such that T IJ(b) > ρ(T IJ) + b achieves the minimum in (4.41).

Finally, if ρ(T IJ) is finite, since the infimum is attained in the expression of the Collatz-Wielandt
number of T IJ (see Theorem 4.1), there exists a finite vector u ∈ Rn such that T IJ(u) 6 ρ(T IJ) + u.
By the proof of Lemma 4.38, we can then construct a vector c such thatBIJ(c,−ρ(T IJ)) ⊂ Sp(V).

Remark 4.41. When the set I = {i} is of cardinality one, the regression problem for the signed hyper-
plane (4.26) has the following special form:

Min
a∈Rn

max
v∈V
|vi − (max

j 6=i
aj − ai + vj)| . (4.42)

This can be solved in a direct way [MCT21], avoiding the recourse to mean payoff games.Indeed, (4.42)
reduces to the following “one-sided” tropical linear regression problem. Given sample points (x(k), y(k))
in Rn × Rm, for k ∈ [p], compute

Min
A

max
k∈[p]
‖y(k) −Ax(k)‖∞ , (4.43)

where the minimum is taken over tropical matricesA of sizem×n, and the productAx(k) is understood
tropically. Up to a straightforward duality, this problem was solved in [But10, Theorem 3.5.2], the result
being attributed there to Cuninghame-Green [CG79]. Alternatively, this solution may be recovered by
combining [CF00, Coro. 1] with the explicit formula of the tropical projection [CGQ04, Th. 5]. More
precisely, define the matrix Ā ∈ Rm×n by Āij := mink∈[p] y

(k)
i − x

(k)
j , so that Ā is the maximal matrix

such that Ax(k) 6 y(k) for all k ∈ [p]. Let δ := maxk∈p ‖y(k) − Āx(k)‖∞, and Aopt
ij = Āij + δ/2.

Then, Aopt is the greatest optimal solution. It can be computed in O(mnp) arithmetic operations. By
specializing this formula, one can solve (4.42) in O(np) arithmetic operations. We refer the reader
to [MCT21] for more information, and for the solution of further problems of this category.

Remark 4.42. In contrast, when I, J are part of the input, the signed linear tropical regression problem is
polytime Turing equivalent to mean payoff games. This can be seen as follows. The reduction to mean
payoff games is a consequence of Theorem 4.40. Conversely, observe that finding a signed tropical
hyperplane HI,Ja containing a set V = {v(1), . . . , v(p)} in Rn is equivalent to solving a tropical linear
system of the form Bx = Cy, where x ∈ (Rmax)I , y ∈ (Rmax)J , B ∈ (Rmax)p×I , C ∈ (Rmax)p×J ,
Bki = v

(k)
i for i ∈ I and Ckj = v

(k)
j for j ∈ I . Indeed, the vector a defining HI,Ja is given by ai = xi

for i ∈ I and aj = yj for j ∈ J . We know from [AGG12] that deciding whether a mean payoff game has
an initial winning position is equivalent to the existence of a non-identically −∞ solution z ∈ (Rmax)s
of a system of tropical linear inequalities Fz 6 Gz, where F,G ∈ (Zmax)r×s are given. Such a system
Fz 6 Gz can be rewritten asBx = Cy by introducing lift variables u, v ∈ (Rmax)r, so that v = Fz and
u is a slack variable. Setting y := (u, v), identified to a column vector, B :=

(
−∞ I

I I

)
and C :=

(
F
G

)
,

where−∞ is a zero tropical matrix, and I the identity matrix, we see that Fz 6 Gz has a non-identically
−∞ solution iffBy = Cz has a non-identically−∞ solution. It follows that mean payoff games reduce
to checking whether there is a solution of a signed tropical linear regression problem with zero error.

4.5.2 Tropical linear regression with type information

The following variant will be relevant to the application to economy considered below, to measure the
“distance to equilibria” of a market. We suppose the set of points V is the disjoint union V = ∪i∈[n]Vi,
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where each Vi is non-empty. We shall say that the points of Vi are of type i ∈ [n]. Note that the set
of types is the same as the set of indices of vectors. For each type i ∈ [n], we consider the signed
hyperplane:

Hia := H{i}{i}ca = {x ∈ (Rmax)n | ai + xi = max
j 6=i

(aj + xj)} .

The typed tropical linear regression problem associated to the partition V1, . . . ,Vn of V , is defined
as:

Min
a∈P(Rmax)n

max
i∈[n]

distH(Vi,Hia) . (4.44)

The value of this problem is small if and only if for each i ∈ [n], the points of Vi are close to the
signed tropical hyperplaneHia.

From Proposition 4.35, we know that distH(v,Hia) = |vi + ai −maxj 6=i(vj + aj)|.
We suppose in the sequel that Assumption F holds. For each type i ∈ [n], we consider the Shapley

operator T ty,i : (Rmax)n 7→ (Rmax)n, given by (4.31) where the type considered is (I, J) = ({i}, {i}c)
and to the set of points is Vi:

T ty,i
l (x) :=

{
infv∈Vi,vi 6=−∞{−vi + maxj 6=i(vj + xj)}, if l = i ,
infv∈Vi,vl 6=−∞{−vl + vi}+ xi, if l 6= i .

(4.45)

We consider now the Shapley operator T ty : (Rmax)n 7→ (Rmax)n given by the infimum of the
operators T ty,i, i ∈ [n]. It is given by:

T ty
l (x) := min

i∈[n]
T ty,i
l (x) . (4.46)

The following lemma, analogous to Lemma 4.22, gives a metric interpretation of the sub-eigenspace
of the operator T .

Lemma 4.43. Let λ ∈ [−∞, 0] and a ∈ P(Rmax)n, we have

T ty(a) > λ+ a⇔ max
i∈[n]

distH(Vi,Hia) 6 −λ .

Proof. Let λ ∈ [−∞, 0] and a ∈ P(Rmax)n. From (4.46) and Lemma 4.36, we deduce the equivalence:

T ty(a) > λ+ a⇔ ∀i ∈ [n], T ty,i(x) > λ+ a

⇔ ∀i ∈ [n],distH(Vi,Hia) 6 −λ ,

⇔ max
i∈[n]

distH(Vi,Hia) 6 −λ .

From Lemma 4.43 and Theorem 4.1, we deduce the following result, showing that the tropical linear
regression problem with types, associated to the sets V1, . . . ,Vn, also reduces to a mean payoff game.

Theorem 4.44. We have,

min
a∈P(Rmax)n

max
i∈[n]

distH(Vi,Hia) = −ρ(T ty) .

Moreover, the minimum is achieved by any vector a ∈ P(Rmax)n such that T ty(a) > ρ(T ty) + a.
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Remark 4.45. Typed tropical linear regression should be compared with the tropical SVM problem
introduced in [GJ08]. In the tropical SVM setting, we have a partition of the set of points in n color
classes, Vc1 , . . . ,Vcn , and we are looking for a tropical hyperplane Ha, and for a permutation σ of
{1, . . . , n} such that for all i ∈ [n], all the points of color ci are in the same sector Sσ(i)(a). In other
words, we want the tropical hyperplane to separate the n color classes. This is not possible in general,
so one needs to consider metric versions, modeling the minimization of classification errors [TWY20].
A possible metric formulation, in the spirit of the present approach, would be to consider

min
σ∈Sn

min
a∈Rn

max
i∈[n]

distH(Vi, Sσ(i)(a)) (Metric Tropical SVM) (4.47)

where Sn denotes the symmetric group on n letters. By comparison with (4.44), we see that we have in
addition a minimization over the symmetric group, but the subproblem with a fixed permutation σ arising
in the SVM problem is simpler than the analogous problem of typed tropical linear regression, since the
sector Sσ(i) is convex, whereas the set Hia arising in (4.44) is not a convex one. In the application
described below, it is the setHia that is relevant to measure the “distance to equilibrium”.

In Figure 4.5(a), we consider the following matrix V ∈ R3×11:

V =

 1 1 2 0 0 0 −3 −1 0 0 −2
0 −2 0 1 1 2 1 0 0 −3 0
0 0 −2 −2 −1 −2 0 2 3 1 1

 , (4.48)

and the types are given by the subsets of V = [11] as follows V1 = {1, 2, 3, 4}, V2 = {5, 6, 7, 8}
and V3 = {9, 10, 11}.

The operators T ty,i : (Rmax)n 7→ (Rmax)n given by (4.45) and associated to the above matrix V
and partition (Vi)i∈[3] are given by:

T ty,1

x1
x2
x3

 =

min[−1 + max(−2 + x2, x3),−2 + max(x2,−2 + x3),max(1 + x2,−2 + x3)]
−1 + x1
1 + x1

 ,

T ty,2

x1
x2
x3

 =

 1 + x2
min[−2 + max(x1,−2 + x3),−1 + max(−3 + x1, x3),max(−1 + x1, 2 + x3)]

−2 + x2

 ,

T ty,3

x1
x2
x3

 =

 1 + x3
1 + x3

min[−3 + max(x1, x2),−1 + max(x1,−3 + x2),−1 + max(−2 + x1, x2)]

 .

Then the operator T ty : (Rmax)n 7→ (Rmax)n given by (4.46) is in this example:

T ty

x1
x2
x3

 =

min[−1 + max(−2 + x2, x3),−2 + max(x2,−2 + x3), 1 + x2, 1 + x3, ]
min[−2 + max(x1,−2 + x3),−1 + max(−3 + x1, x3),−1 + x1, 1 + x3]

min[−3 + max(x1, x2),−1 + max(x1,−3 + x2), 1 + x1,−2 + x2]

 .

We verify easily that λ = −2 and a = (0, 0,−1)> satisfy T ty(a) = λ+ a, so that by Theorem 4.44
the apex a is optimal for the typed tropical linear regression problem (4.44).
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We notice that in this case, the tropical hyperplane Ha has at least one witness point in each sector,
which means, by Theorem 4.25, that Ha is also an optimal hyperplane in the sense of the usual tropical
linear regression studied in Section 4.4.

Now, if we consider the same matrix V in (4.48), but we exchange the types of the points V·8 and
V·10, i.e. we consider the partition Ṽ1 = {1, 2, 3, 4}, Ṽ2 = {5, 6, 7, 10} and Ṽ3 = {8, 9, 11}, then the
new typed Shapley operator T̃ ty is given by:

T̃ ty

x1
x2
x3

 =

 min[−3 + x2, 3 + x3]
min[−2 + max(x1,−2 + x3),−1 + max(−3 + x1, x3),−1 + x1, 1 + x3]

min[1 + x1,−4 + x2]

 .

We verify easily that µ = −5/2 and b = (0, 1/2,−1)> satisfy T̃ ty(b) = µ + b. This example is
presented in Figure 4.5(b). Here, we notice that the hyperplane Hb that is optimal in the typed tropical
linear regression sense (Section 4.5.2) does not have witness points in each sector, which means that it
is not optimal in the usual tropical linear regression framework (Section 4.4).

−a
Ha

0V·1

V·2

V·3
V·4

V·5

V·6

V·7

V·8
V·9

V·10

V·11

x1 x2

x3

−b
Hb

0V·1

V·2

V·3
V·4

V·5

V·6

V·7

V·8
V·9

V·10

V·11

x1 x2

x3

(b)

Figure (4.5) Figure 4.5(a): A set of typed points V with three types in P(Rmax)3 with an optimal
tropical hyperplane Ha in the sense of the typed tropical regression, where a = (0, 0,−1)> satisfies
T ty(a) = −2 + a. Figure 4.5(b): The same set of typed points V as Figure 4.5(a) but with the types of
the two points V·8 and V·10 being exchanged, and an optimal tropical hyperplane Hb in the sense of the
typed tropical regression, where b = (0, 1/2,−1)> satisfies T̃ ty(b) = −5/2 + b.

4.6 Algorithmic aspects

In this section, we explain how the tropical linear regression problem can be effectively solved by using
mean-payoff games algorithms. Throughout the section, we assume that the set of points V is given by
as the set of columns the matrix V . By Corollary 4.16, in theory, any algorithm solving mean payoff
games in the weakest sense (deciding the inequality χi(T ) > 0) can be used. However, some game
algorithms lead to more direct approaches, we next discuss some of these.
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Considering the strong duality result, Theorem 4.23, and the result on the existence of witness
points Theorem 4.25, the key algorithmic issues are:

(i) to compute the upper mean payoff, ρ(T ) (which is the opposite of the value of the tropical linear
regression problem);

(ii) to decide whether there is a finite eigenvector u ∈ Rn such that T (u) = ρ(T )+u, and to compute
such an eigenvector (when this is so, −u is the center an an optimal ball included in Sp(V) and
the apex of an optimal regression hyperplane, see Remark 4.26);

(iii) to find a sub-eigenvector b ∈ (Rmax)n \ {⊥}, satisfying T (b) > ρ(T ) + b (then,Hb is an optimal
regression hyperplane);

(iv) to find a super-eigenvector c ∈ Rn satisfying T (c) 6 ρ(T )+c (then,−c is the center of an optimal
ball included in Sp(V).

For simplicity of the discussion, we assume that T sends Rn → Rn. The case in which T sends Rn
to (Rmax)n reduces to this one by considering the action of T on the parts of (Rmax)n and looking for
invariant parts.

Then, problems (i)–(iv) are solved, simultaneously, as soon as we know an invariant half-line of T .
Indeed, we observed after stating Theorem 4.1 that if (u, η) is an invariant half-line, then χ(T ) = η. In
this way, ρ(T ) = maxi∈[n] χi(T ) is determined, and this solves issue (i). Moreover, by Proposition 4.3
T admits a finite eigenvector if and only if η is a constant vector, i.e., η = (λ, . . . , λ) for some λ ∈ R,
and u is an eigenvector. This solves issue (ii). We observed in the proof of Theorem 4.1 that u satisfies
T (u) 6 ρ(T ) + u, and so, this solves issue (iii). Finally, setting I := {i ∈ [n] | χi(T ) = ρ(T )},
and defining the vector ū such that ūi = ui for i ∈ I and ūi = −∞ otherwise, it can be checked that
T (ū) > ū+ ρ(T ), which solves issue (iv).

More generally, the reduction in the second part of the proof of Corollary 4.16 shows that algorithm
which returns an optimal policy σ of Player Min, i.e., a policy such that χ(T ) = χ(T σ), can be used
to produce a finite vector c ∈ Rn such that T (c) 6 χ(T ) + c, by reduction to a tropical eigenvalue
problem. Moreover, any algorithm which returns an optimal policy τ of Player Max, i.e., a policy such
that χ(T ) = χ(τT ), can be used to produce a vector b ∈ (Rmax)n \ {⊥}, satisfying T (b) > ρ(T ) + b,
see the second part of the reduction in Corollary 4.31.

We refer the reader to [Cha09] for a comparative discussion of mean payoff game algorithms. The
main known algorithms include the pumping algorithm of [GKK88], value iteration [ZP96], and differ-
ent algorithms based on the idea of policy iteration [BV07, Sch08, DG06]. In particular, the algorithm
of [DG06] returns an invariant half-line. The policy iterations algorithms [BV07, DG06] were reported
in [Cha09] to have the best experimental behavior, although policy iteration is are generally exponen-
tial [Fri09a].

For the present application to tropical linear regression, we often know in advance that the operator
T has a finite eigenvector; this occurs in particular if the entries of the matrix V are finite, and more
generally, under the dominion condition of Theorem 4.52. Then, one can use another algorithm, projec-
tive Krasnoselkii-Mann value iteration [GS20], which is straightforward to implement and still effective.
Starting from a vector v0 = (0, · · · , 0)>, this algorithm computes the following sequence:

ṽk+1 = T (vk)− (maxi∈[n] T (vk)i)e, (4.49)

vk+1 = (1− γ)vk + γṽk+1. (4.50)

where e = (1, · · · , 1)> ∈ Rn, and γ ∈ (0, 1) is fixed, 1− γ being interpreted as a damping parameter.
In the original Krasnoselskii-Mann algorithm, one writes simply vk+1 = (1−γ)vk+γT (vk). It follows
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from [GS20, Coro. 13], based on a general result of Baillon and Bruck [BB92] on the convergence of
the original Krasnoselskii-Mann algorithm in normed spaces, see also [CSV14], that vk does converge
to an eigenvector of T as soon as such a (finite) eigenvector u exists. Moreover, ‖T (vk) − vk‖H 6
2‖u‖H/

√
πγ(1− γ)k. In practice, we fix a desired precision ε > 0, and stop the computation of the

sequence vk when ‖T (vk)− vk‖H 6 ε.
We now analyze the complexity of the projective Krasnoselskii-Mann algorithm in our special set-

ting. The following observation, shows that, notwithstanding the quadratic size of Smax in the game
associated with T (see the discussion after (4.9)), the operator T can be evaluated in linear time.

Proposition 4.46. The operator T can be evaluated in O(|E|) arithmetic operations.

Proof. We write Ti(x) = mink∈[p],(i,k)∈E(−Vik + yik) where yik = maxj∈[n],j 6=i,(j,k)∈E(Vjk + xk).
First, for each column k of the matrix V , we compute the column maximumMk := maxj∈[n],(j,k)∈E(Vjk+
xk) together with an arbitrary index jk that achieves this maximum, and also the second column max-
imum, mk := maxj∈[n],j 6=jk,(j,k)∈E(Vjk + xk). This preprocessing requires O(|E|) arithmetic opera-
tions. We observe that yik = mk if i = jk and yik = Mk otherwise. Hence, all the yik with (i, k) ∈ E
can be computed inO(|E|) arithmetic operations. Finally, the Ti(x) are obtained from the yik inO(|E|)
arithmetic operations.

We set:
W := max

v∈V
‖v‖H .

Lemma 4.47. Suppose that V is finite, then any finite eigenvector u of T satisfies ‖u‖H 6W .

Proof. By definition of W , we have v ∈ BH(0,W ) for all v ∈ V , and since BH(0,W ) is stable by
tropical linear combinations, we get Sp(V) ⊂ BH(0,W ). Moreover, by Lemma 4.8, BH(u,−ρ(T )) ⊂
Sp(V). Hence u ∈ BH(0,W ), meaning that ‖u‖H 6W .

Remark 4.48. There are situations (Section 4.8) in which although some vectors of V have infinite
entries, it is still the case that T has a finite eigenvector. Then, we may still show that there exists a finite
eigenvector with not too large entries. To see this, we need to replace W by W ′ := maxk∈[p] δ(V·,k),
where δ(V·,k) = maxi∈[n],(i,k)∈E Vik −minj∈[n](j,k)∈E Vjk. We can always choose such an eigenvector
u in such a way that ‖u‖H = O(nW ′), by appealing to a Blackwell optimality argument, using the
proof method of [Sko18, Lemma 8.51] (details are left to the reader). Note that in the special case in
which V has finite entries, the bound on ‖u‖H is improved by a factor n.

Corollary 4.49 (Approximate optimality certificate). Suppose that V ⊂ Rn is of cardinality p. Then,
the projective Krasnoselskii-Mann iteration returns in a number of arithmetic operations O(npW/ε2) a
vector u ∈ Rn such that −u is both the center of a ball of radius −ρ(T )− ε included in Sp(V) and the
apex of a regression hyperplane,Hu, such that distH(Sp(V),Hu) 6 −ρ(T ) + ε.

Proof. By [GS20, Coro. 13] and Lemma 4.47, after k = O(dW/ε2e) iterations, we end up with a vector
u := vk which satisfies ‖T (u) − u‖H 6 ε. Moreover, by Proposition 4.46, each iteration requires
O(np) arithmetic operations. Setting λ := bot(T (u) − u), where bot(x) := mini xi, we deduce
that λ + u 6 T (u) 6 λ(T ) + ε + u, which, by Theorem 4.1, entails that ρ(T ) 6 λ(T ) + ε. Then,
by Theorem 4.23, B(−u,−ρ(T ) − ε) ⊂ Col(V ). The proof that distH(Col(V ),Hu) 6 −ρ(T ) + ε is
dual.

The following result shows that the factor in 1/ε2 can be replaced by 1/ε if we look separately for the
center of a Hilbert’s ball included in Sp(V) and for the apex of an approximate tropical linear regression
hyperplane (in Corollary 4.49, the apex and the center coincide).
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Corollary 4.50. Suppose that V ⊂ Rn is of cardinality p. Then, an ε-approximation of the inner radius
of Col(V ), as well as vectors v, z ∈ Rn satisfying BH(v, in-rad(V) − ε) ⊂ V and distH(V,Hz) 6
in-rad(V) + ε can be obtained in O(npW/ε) arithmetic operations.

Proof of Corollary 4.50. We now rely on the value iteration approach of [AGKS18, Sko18]. The latter
computes the sequence given by v0 = 0, vk := T (vk−1), together with the numbers λ̄k := maxi∈[n] v

k
i ,

λk := mini∈[n] v
k
i . The sequence vk generally does not converge, even up to an additive constant. So,

we rely on the following “regularized” sequence [GG04],

wk := inf(v0, v1 − λ̄k/k, . . . , vk−1 − λ̄k(k − 1)/k) . (4.51)

Lemma 8.18 of [Sko18] entails that ρ(T ) satisfies λk/k 6 ρ(T ) 6 λ̄k/k with λ̄k/k − ρ(T ) 6 ‖u‖H/k
and ρ(T )− λk/k 6 ‖u‖H/k, where u ∈ Rn is an arbitrary finite eigenvector of T . Hence, it suffices to
execute the algorithm up to the iteration k := dW/εe to make sure that λ̄k 6 ρ(T )+ε and λk > ρ(T )−ε.
Moreover, Lemma 2 of [GG04] entails that T (wk) 6 λ̄k+wk. Hence, by Lemma 4.8,−wk is the center
of a Hilbert’s ball of radius −λ̄k included in Sp(V). The construction of the apex of an approximate
optimal regression hyperplane uses a dual argument, replacing inf by sup in (4.51).

Remark 4.51. The conclusions of Corollary 4.49 and Corollary 4.50 can be extended to the situation in
which some vectors of V have infinite entries, provided T has a finite eigenvector. Using Remark 4.48,
we need to replace W by W ′n in the bounds of Corollary 4.49 and Corollary 4.50.

4.7 Illustration: inferring hidden information from equilibria in re-
peated invitations to tenders

We now illustrate our results on an example from auction theory, in which tropical linear regression
allows one to identify secret information from the observation of prices offered in repeated invitations
to tenders (ITT).

4.7.1 Auction model with hidden preference factors

We suppose a public decision maker chooses the best offer made by the firms responding to ITT. In
accordance with market regulations, see e.g. [cod21, Art. R.2152-7], the best offer is not nessarily the
one with the lowest price: other factors, like technical quality, respect of environment, of social impact,
can also be taken into account. In the presence of corruption, decisions may be also influenced by bribes.

We assume that this ITT is done repeatedly for a similar service or product each time and in front
of the same local firms. We label the firms by 1, 2, · · · , n, and we suppose that we have a history of q
ITTs with the prices offered by each firm, that are revealed by the decision maker, after having made her
choice.

More precisely, we denote the price offered by firm i ∈ [n] for the ITT number j ∈ [q] by pij . We
assume that the decision maker has a non public preference factor fi > 0 for each firm i, and that she
selects the firm of index i minimizing the expression:

min
i∈[n]

pijf
−1
i . (4.52)

In this way, the decision maker considers that for a requested price of pij , the final cost to be taken
into account is pijf−1

i , where f−1
i > 1 is a proportional penalty depending on her estimate fi of the

technical, environmental, or social quality of the firm (the larger fi, the better its quality).
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The same model applies to the situation in which f−1
i = 1 − αiβ for some 0 6 αi 6 1 and

0 6 β < 1. Now, αi may be interpreted as a proportional bribe: the firm promises to secretly give back
αipij to the decision maker if its offer is accepted, and the parameter β measures how sensitive is the
decision maker to bribery (β = 0 corresponds to a totally honest decision maker, and β = 1− to a totally
dishonest one). This is a variant of the classical first-price sealed-bid auction [Kri02], incorporating the
secret preference.

We suppose that the same firms answer in a recurrent manner to invitations from the same decision
maker, and that the factors fi secretly attached to each firm are kept constant. Then we expect that the
prices to be offered to constitute an equilibrium, meaning that for each invitation j ∈ [q], the minimum
mini∈[q] pijf

−1
i is achieved twice at least. Indeed, if the firm i that wins the invitation offers a price pij

such that pijf−1
i is strictly smaller than pkjf−1

k for all k ∈ [n] \ {i}, it may offer a higher price and still
win the offer, so, in the long run, if an invitation of the same type is made recurrently, the firm will adapt
its offer.

This can be modeled in terms of membership to a tropical hyperplane. We put Vij = − log(pij) and
ai = log fi, so that the decision maker selects the firm of index achieving the maximum in

max
i∈[n]

(Vij + ai) . (4.53)

Assuming the prices pij are observed, our goal is to infer the secret information fi, i.e. the preference
factor for firm i, or the bribe offered by this firm.

We first suppose that for each invitation, the identity of the firm that wins the contract is not known
to us. We want to infer the hidden information f = (fi)i∈[n]. So, we look for a tropical hyperplane
Hb that is the best regression of the set V formed by the points (V·j)j∈[q] following the analysis of Sec-
tion 4.4, i..e, we solve a problem of the form (4.17). Following Theorem 4.23, we solve this problem by
computing a super-eigenvector b ∈ Rn of T , i.e. such that T (b) > ρ(T ) + b, where the operator T is
given by (4.9).

We note that the decision maker cares only about the relative preference factors between the firms,
in the sense that if all the preference factors fi, i ∈ [n] are multiplied by the same positive constant, the
choices of the decision maker will not change. Therefore, we can suppose without loss of generality that
maxj∈[n] fj = 1, or equivalently, maxj∈[n] aj = 0.

4.7.2 Numerical instance and experiments

In the following toy example, we take n = 3 firms, and a history of q = 6 ITTs. We suppose that the
decision maker attributes to the firms the preference factors f = (1, 0.8, 0.6), and we take ∀i ∈ [3], ai =
log(fi).

We generated the matrix Vij and the prices pij = exp(−Vij) by the following structured probabilistic
model. We consider six types of products with prices of different order of magnitude. In Table 4.1 the
reference prices of these products are P = (1, 3, 9, 25, 70, 130). For each j ∈ [6], we draw entries
Aij , i ∈ [3] randomly in the intervalKij = [0.9×Pjfi, 1.1×Pjfi] following a log-uniform law, i.e. equal
to the exponential of a variable generated uniformly on the logarithm of the interval Kij . We choose the
log-uniform law because it’s in adequacy with Benford’s law that is observed in real-life price instances.
Then, we takeBij = − log(Aij), and we project each columnB·j into the tropical hyperplaneHa, to get
a vector C·j , such that for a given i ∈ arg maxk∈[n](Bkj + ak), we take Cij = maxk 6=i(Bkj + ak)− ai
and we take for all k 6= i, Ckj = Bkj . Now the columns C·j belong to the tropical hyperplane Ha.
To model the inefficiency of the market, we perturb these columns by taking Vij = Cij + δij , with δij
generated randomly uniformly in [−δ, δ], with δ = 0.05. Then the prices are given by pij = exp(−Vij).
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To solve our example, we used the projective Krasnoselskii-Mann iteration described in Section 4.6,
with a damping parameter γ = 1/2. We take b = vN that gives the approximation of the preference
factors by tropical linear regression: f reg

i = exp(bi), i ∈ [n].
We define the error of the approximation e as the ratio between the Hilbert’s distance of the set V

to the hyperplane Hb, which measures the “distance to equilibrium" in this market, and the maximal
absolute value of the logarithm of the Hilbert’s seminorms of the price vectors (p·j)j∈[q]:

e := distH(V,Hb)
maxj∈[q] | log(‖p·j‖H)| .

The following Table 4.1 shows the preference factors fi, the prices pij generated with this model and
for each invitation we underlined the price of the firm wining that invitation in the sense of achieving
the minimum in (4.52). Table 4.1 shows also the prediction f reg of the preference factors that we find by
tropical linear regression.

In this example, we set a target accuracy of ε = 10−8, and we get that the number of iterations N
needed to get ‖T (vN )−vN‖H 6 ε isN = 25. By setting b = vN , we have distH(V,Hb) = 4.21×10−2

and maxj∈[q] | log(‖p·j‖H)| = 3.84, and this leads to an error equal to e = 1.09 × 10−2. Figure 4.6
shows the points (V·j)j∈[6] in the projective space P(Rmax)3, with the tropical hyperplane Hb (in blue
solid lines) and the points of the space that are at distance equal to distH(V,Hb) from Hb (in blue
dashed lines). Figure 4.6 shows in particular the existence of a witness point in each on the three sectors
associated to the tropical hyperplaneHb.

individual houses social housing school road stadium bridge f f reg

Firm 1 1.02 3.21 8.72 26.2 69.8 123 1 1
Firm 2 0.81 2.65 7.49 20.3 53.8 106 0.8 0.81
Firm 3 0.6 1.86 5.5 14.7 41.8 76 0.6 0.605

Table (4.1) Prices proposed by firms in million euros, the vector of preference factors f and its esti-
mation by tropical linear regression f reg based on the observation of the prices.

Figure (4.6) The points (V·j)j∈[6] in the projective space P(Rmax)3, with the tropical hyperplane Hb
(in blue solid lines) and the points of the space that are at distance equal to distH(V,Hb) from Hb (in
blue dashed lines).

Now we consider a similar example still with n = 3 firms, but with q = 100 invitations to ten-
ders. We use the same generation model, the reference prices Pj , j ∈ [100], being generated randomly
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following a log-uniform law on the interval [1, 100]. We set a target accuracy of ε = 10−8, and we
get that the number of iterations N needed to get ‖T (vN ) − vN‖H 6 ε is N = 24. By setting
b = vN , we have distH(V,Hb) = 7.69 × 10−2 and maxj∈[q] | log(‖p·j‖H)| = 3.72, and this leads
to an error equal to e = 2.06 × 10−2, and the approximation of the preference factors that we obtain is
f reg = (1, 0.7994, 0.6018). Figure 4.7 shows the points (V·j)j∈[100] and the approximation hyperplane
Hb obtained in this case with a history of q = 100 invitations. We observe also that we have at least a
witness point in each sector defined by the tropical hyperplaneHb.

Figure (4.7) The points (V·j)j∈[100] in the projective space P(Rmax)3, with the tropical hyperplaneHb
(in blue solid lines) and the points of the space that are at distance equal to distH(V,Hb) from Hb (in
blue dashed lines).

4.7.3 Example of regression with types – in which the identities of the winners
of the invitations are known

We now suppose the decision maker makes public not only the bid prices that were offered to her, but also
the identities of the firms that won the different invitations j ∈ [q]. Then, we can write the set of points
V as a disjoint union V = ∪`∈[n]V`, where V` is the set of invitations won by firm `. This information
can be exploited through the typed tropical linear regression of Section 4.5.2. Indeed, if v = V·j ∈ V`,
and if the market is “at equilibria”, we know not only that the maximum maxi∈[n](Vij + ai) is achieved
twice, but that it must be achieved by the firm that won the invitation, i.e., i = `. Thus, the vector
v ∈ V` should be close to the signed tropical hyperplane H`a, a finer condition than being close to
Ha ⊃ H`a. So, to infer the vector a, we now solve the typed regression problem (4.44), instead of the
untyped problem (4.17). Following Theorem 4.44, we are looking for a super-eigenvector b such that
T ty(b) > ρ(T ty) + b, where the operator T ty is given by (4.46).

We use the same two examples above, and we generate the information of the firm winning each
contract j ∈ [q] by using the information f known by the decision maker. We construct the sets Vi
and the operator T ty, and we find a super-eigenvector of T ty by using the projective Krasnoselkii-Mann
value iteration algorithm described in Section 4.6.

After doing the numerical experiments, we find that, the apex b found by typed tropical linear re-
gression, taking advantage of the knowledge of which firm won each invitation, is the same as the one
found above by tropical linear regression, for both examples with q = 6 and q = 100. Hence, here, the
additional information provided by the identity of the winners did not help to improve the inference of
hidden preferences, by comparison with the basic model in which only the history of the bid prices is
used.
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4.8 Dominions of the two players and existence of a finite eigen-
vector

The strongest form of strong duality (Theorem 4.25), with the existence of witness points, is valid
whenever the Shapley operator T in Equation (4.9) has a finite eigenvector. In this appendix, we provide
a sufficient condition for the existence of this eigenvector, which is less demanding than the condition
of Proposition 4.28 (requiring V to have only finite entries).

We recall that the operator T represents a game Γ with two players Min and Max, such that when
we are at state i, player Min plays first by choosing a column k ∈ [p] such that (i, k) ∈ E, then player
Max chooses a state j ∈ [n] such that j 6= i and (j, k) ∈ E. Moreover, policies can be defined using
(4.10). The game Γ is played repeatedly starting from a given initial position.

We call dominion of one player a nonempty subset of states I ⊂ [n] such that from any initial
position in I , that player can force the state to remain in I at each stage of the repeated game, whatever
actions the other player chooses. This means that there exist a policy of that player such that for any
strategy of the other player, a trajectory of the game starting in I is such that the states visited by Min are
all contained in I . The next result, which follows from a more general result (which applies to arbitrary
Shapley operators) relates the lack of disjoint dominions of the two players with the existence of a finite
eigenvector of a polyhedral Shapley operator.

Theorem 4.52 (Corollary of Thm. 1.2 of [AGH20]). The following assertions are equivalent:

1. The two players do not have disjoint dominions in the game Γ ;

2. For all r ∈ Rn, the operator r + T has a finite eigenvector.

Deciding the existence of disjoint dominions for (deterministic) mean payoff games is equivalent
to deciding the existence of a non-trivial fixed point of a monotone Boolean function, which is a NP-
complete problem, see the discussion in [AGH15a]. However, we next show that for the restricted class
of games associated to the Shapley operator TV , this problem can be solved in polynomial time.

We make the following assumption, which is required for the operator T to send Rn to Rn, and a
fortiori, to have a finite eigenvector.

Assumption G. Each column of the matrix V contains at least two finite entries.

Proposition 4.53. Suppose that Assumption E and Assumption G hold. Then, the following assertions
are equivalent:

1. There are disjoint dominions for the two players in the game Γ ;

2. There exist nonempty subsets I, J of [n], such that I ∪ J = [n], I ∩ J = ∅, some columns of V
have support included in I , and the other columns of V have at least two finite entries in J .

3. There exists a subset K of [p], such that K 6= ∅ and K 6= [p], and such that if we denote by IK
the union of supports of the columns of V in K, then all the columns not in K have at least two
finite entries that are outside IK . In this case, IK together with its complement [n] \ IK constitute
disjoint dominions of players Min and Max, respectively.

Proof. We verify first that the assertion (2) and the first part of assertion (3) are equivalent. Indeed, it
is straightforward that (3) implies (2) by taking I = IK and J = [n] \ IK . Now, if (2) is true, we take
K = {k ∈ [p] | suppV·k ⊂ I}, so IK = ∪k∈K suppV·k ⊂ I , and each column k 6∈ K has at least two
finite entries in J , i.e. outside IK .
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Now we suppose that assertion (1) is satisfied, i.e. there are disjoint dominions I and J respectively
for Player Min and Player Max. Let us show that this implies (2). The set J is a dominion for Player
Max, then there exists a policy τ for Max, such that, for all i ∈ J , for any possible action (i, k) ∈ E
of Player Min, the policy τ sends the state in J , that is τ((i, k)) ∈ J . Since a policy for Max is a map
from E to [n] such that j = τ((i, k)) satisfies j 6= i and (j, k) ∈ E, this implies that, for all (i, k) ∈ E
with i ∈ J , there exists (j, k) ∈ E with j ∈ J such that j 6= i. Therefore, for all k ∈ [p], suppV·k ∩ J
is either empty or it contains at least two elements. We take I ′ = [n] \ J ⊃ I 6= ∅, then the sets I ′, J
satisfy the assertion (2).

Now, we suppose that the first part of assertion (3) is true, and show that IK and J = [n] \ IK are
disjoint dominions of players Min and Max respectively, which will imply (1). Indeed, if i ∈ IK , then
there exists k ∈ K, such that i ∈ suppV·k ⊂ IK . Let us consider a policy σ of Min such that if i ∈ IK
then σ(i) = (i, k) with k ∈ K. Then, if i ∈ IK , and if Min plays the action (i, k) = σ(i), for any
possible action of player Max (which exists by Assumption G), that is a choice of j ∈ suppV·k such
that j 6= i, we have j ∈ IK . This shows that IK is a dominion of Player Min. Now, let i ∈ J , for
any action (i, k) ∈ E of Min (which exists by Assumption E), we have k ∈ K, since i ∈ suppV·k and
i 6∈ IK , so by (3), there exits j ∈ suppV·k \ IK , with j 6= i. So j ∈ J and j is a possible action of Max
when the game is in state (i, k). Considering the policy τ for Max, such that τ(i, k) = j for i, k, j as
before, we get that the set J is a dominion of Player Max.

From the proof of Proposition 4.53, we deduce in a straightforward manner the following observa-
tion, which will be used in Algorithm 9. Note that in the present setting (deterministic mean payoff
games), if I, J are disjoint dominions of the two players, then [n] \ J and J are also dominions of the
two players, hence we shall restrict our search to disjoint dominions that constitute partitions of [n].

Lemma 4.54. If DMin, DMax ⊂ [n] are disjoint dominions of players Min and Max respectively, that
constitute a partition of [n], and K is a subset of columns of V such that the set S = ∪k∈K suppV·k
satisfies S ⊂ DMin, then for each column k 6∈ K that has only one finite entry i outside of S, we have
S ∪ {i} ⊂ DMin.

Theorem 4.55. Algorithm 9, which decides the existence of disjoint dominions in the game Γ associated
to a matrix V ∈ (Rmax)n×p, is correct, and it makes O(n2p2) arithmetic operations.

Proof. The algorithm looks for a set of columns K̄ satisfying the last statement of Proposition 4.53.
Since the set K̄ is required to be nonempty, it suffices for each k ∈ [p], to verify whether there is such a
set K̄ 3 k (for loop of the algorithm).

We next show that the algorithm admits the following invariants.

1. At Line 18, S is the union of supports of the columns of K.

2. If there is a subset K̄ 3 k satisfying the last statement of Proposition 4.53, with associated then at
line 18 of the algorithm, the set K satisfies K ⊂ K̄ and the set S satisfies S ⊂ DMin.

The first invariant is enforced by lines 10, 12 and 16. We prove that the loop invariant at line 18 holds
by induction on the cardinality of S. Let us assume that the condition of the first “if”, i.e., |S`| = 1
is satisfied. Then, by Lemma 4.54, and by the induction assumption, we must have S ∪ {i} ⊂ DMin.
Moreover, the last statement of Proposition 4.53 entails that K ∪ {`} ⊂ K̄, and so, the loop invariant
is valid in this case. Moreover, if the condition of the second “if”, i.e., |S`| = 0 is satisfied, then, the
second invariant is still valid. This shows that the loop invariant is always valid.

At the exit of the outer while loop, at line 21, we have by construction that every column of V with
index outside K has at least two finite entries outside S. Then, by the last statement of Proposition 4.53,
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Algorithm 9 Detecting dominions in the game arising from the tropical linear regression problem, for
an input matrix V ∈ (Rmax)n×p.

1: for k ∈ [p] do
2: K ← {k}
3: S ← the support of column k of V
4: Declare S to be AUGMENTED (Boolean flag)
5: while S is declared as AUGMENTED do
6: Declare S not to be AUGMENTED

7: Declare all the elements of [p] \K to be UNSCANNED (Boolean flags)
8: while ([p] \K) contains an UNSCANNED element do
9: `← smallest UNSCANNED element of [p] \K, declare ` to be SCANNED

10: S` ← {i ∈ [n] \ S | Vi` is finite}
11: if |S`| = 1 then . column ` of V has precisely one finite entry outside S
12: K ← K ∪ {`}, S ← S ∪ S`
13: Declare S to be AUGMENTED

14: end
15: if |S`| = 0 then . column ` of V has no finite entries outside S
16: K ← K ∪ {`}
17: end
18: . S is the union of supports of the columns of K
19: done
20: done
21: if S 6= [n] then return S and [n] \ S which are disjoint dominions of Players Min and Max

respectively
22: end
23: done
24: There are no disjoint dominions
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if S 6= [n], S and [n] \ S provide disjoint dominions of Players Min and Max, whereas if S = [n], there
are no dominions arising from a set K̄ 3 k. This shows the correctness of the algorithm.

Each iteration of the inner “while” loop makes O(n) arithmetic operations, and every outer “while
loop” executes the inner while loop O(p) times. Moreover, the number of outer “while loop” iterations
is at most n − 1. Finally, we have at most p iterations in the “for” loop, which leads to a complexity
bound of O(n2p2) arithmetic operations for the algorithm.

We call Boolean pattern of the matrix V ∈ (Rmax)n×p the matrix with entries in {0,−∞}, obtained
by replacing each finite entry of V by 0. Theorem 4.52 provides a sufficient condition involving the
Boolean pattern on V , which guarantees that for all matrices V with this pattern, the operator T admits
a finite eigenvector. This condition is not necessary. Consider the following Boolean pattern:(

03,2 03,2
(−∞)3,2 03,2

)
, (4.54)

where for α ∈ {0,−∞}, αp,q denotes the p× q matrix with entries identically equal to α.

Proposition 4.56. If V is a matrix with Boolean pattern (4.54), then, the operator T has a finite eigen-
vector, but the associated game admits disjoint dominions.

Proof. First we have that the set K = {1, 2} satisfies the condition (3) of Proposition 4.53, and from the
proof of Proposition 4.53, we have that the sets I = {1, 2, 3} and J = {4, 5, 6} are disjoint dominions
of Player Min and Player Max respectively.

To show that T has a finite eigenvector, by Proposition 4.3, it suffices to check that χ(T ) = 0. The
inequality χ(T ) 6 0 follows from Remark 4.4. We next show that χ(T ) > 0.

If the game starts from a state i ∈ {4, 5, 6}, Player Min must choose the next state to be a pair (i, k)
with k ∈ {3, 4}, and Player Max can respond by choosing the next state j to belong to {4, 5, 6}.
So, Player Max can force Min to play the same game as the one defined by the submatrix X :=
(Vij)i∈{4,5,6},j∈{3,4}. Since the matrix X consists of only 2 columns of (Rmax)3, it follows from Corol-
lary 4.14 that the inner radius of Col(X) is equal to 0. Then by Theorem 4.1, ρ(TX) = 0, and this entails
that Player Max can ensure a payment equal to 0 in the original game, so that ∀i ∈ {4, 5, 6}, χi(T ) = 0.

Suppose now that the initial state i ∈ {1, 2, 3}. Since χ(T ) = minσ χ(T σ) where the minimum
is taken over the stationary policies of Player Min, it suffices to show that for any such policy, and for
i ∈ {1, 2, 3}, χi(T σ) > 0. If this policy of Player Min chooses the column 3 or 4, Player Max can
again enforce Player Min to play the game associated to the submatrix X , and then Player Max can
ensure a payment 0 as before. Now, if the policy of Player Min does not choose the columns 3 and 4,
Player Max is forced to play a subgame correspinding to the the submatrix Y := (Vij)i∈{1,2,3},j∈{1,2},
and by the same reasoning as before, we know that the value of this game is equal to 0. Then ∀i ∈
{1, 2, 3}, χi(T ) = 0.

We leave it as an open question to characterize the Boolean patterns of V which guarantee that the
operator T has a finite eigenvector.
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CHAPTER 5
Best tropical low-rank approximation

of matrices

Abstract

In this chapter, we study the tropical analogue of low-rank approximation of matrices. We establish
general properties of this problem, and we identify some tractable subclasses. In particular, we introduce
a notion of outer radius of a column space of a matrix, and we show that it is equal to twice the tropical
best rank-one approximation error of that matrix. This allows us to provide a strongly polynomial
algorithm that gives a rank-one approximation of 3-way tensors. We provide an algebraic interpretation
of the outer radius as a skew singular value. Finally, we propose a linear algorithm to compute the best
rank-two approximation in dimension three. This chapter is based on a work in progress in collaboration
with Marianne Akian, Stéphane Gaubert and Yang Qi.

5.1 Introduction

5.1.1 Motivation and Context

Classical low-rank approximation, allows one to reduce dimensionality and extract a concise linear
structure from a given possibly high dimensional data set. It is commonly used in algorithms in data
science. A basic tool for dimension reduction and low-rank approximation is Principal Component
Analysis (PCA) [Pea01, Hot33], based on the properties of singular value decomposition (also known
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as Eckart-Young decomposition) [EY36]. In particular, it provides a best approximation of a given rank,
with respect to the Frobenius norm, or statistically speaking in the least squares sense. Another basic
low-rank approximation method is based on a selection of subsets of rows and columns (CUR decom-
position, also known as skeleton decomposition), see e.g. [GTZ97]. These approaches are useful when
the data in question has a predominantly linear structure. However, in the case of intrinsically non-linear
systems, approximation becomes more challenging. In this chapter, we aim to give a tropical (max-plus)
analogue of low-rank approximation, which provides, with its max-plus structure, non-linear approx-
imation of matrices and more generally of tensors. Like in the classical case, tropical approximation
is most effective when the data have a compatible structure — i.e., a predominantly tropically linear
structure.

An important case in which such a tropical linear structure arises is the numerical solution of op-
timal control problems. These problems can be solved using Bellman’s Dynamic Programming Prin-
ciple [Bel52]. The latter shows that the value function is the solution of the so called dynamic pro-
gramming equation, and it provides an optimal control in feedback form. In the continuous space and
time case, the dynamic programming equation takes the form of a partial differential equation called the
Hamilton-Jacobi-Bellman (HJB) equation [FR12].

To avoid the curse of dimensionality from which suffer the grid based methods in solving HJB
equation, max-plus basis methods have been developed (see [FM00, McE07, GMQ11, MKH11, Qu14]).
The idea of these methods is to exploit the max-plus linearity of the Lax-Oleinik semigroup, which is
the evolution semigroup of the HJB equation. In these works, the value function is approximated as
a supremum of finitely many basis functions and the supremum is propagated forward in time. Max-
plus decomposition methods have allowed to attenuate the curse of dimensionality, for classes of HJB
equation [McE07, SMGJ14]. A key issue, in the efficient implementation of max-plus methods, is to
select a “basis” of functions with a prescribed cardinality that best approximates a given collection of
functions. A version of this is known as the pruning problem [GMQ11, Qu14]. It is equivalent to a
problem of low-rank approximation in an infinite dimensional space (of functions). A discrete analogue
of the pruning problem has been discussed in [TM19, TTM20].

Other more recent methods allowing to solve the HJB equation are based on tensor decomposition.
Dolgov, Kalise and Kunish [DKK21] propose a method based on a classical tensor train approxima-
tion for the value function together with a Newton-like iterative method to solve the resulting nonlinear
system. Oster, Sallandt and Schneider [OSS19] propose to use low-rank hierarchical tensor product
approximation/tree-based tensor formats, together with high-dimensional quadrature, e.g. Monte-Carlo,
to solve HJB equation, overcoming computational infeasibility. Recently, deep learning methods were
also used to solve HJB equation by trying to find a feedback control law in the form of a neural net-
work [KGNZ19] in the case of deterministic problems. Although, generating data for training the neural
network and validating its accuracy remains challenging.

These recent developments motivate the study of the tropical analogue of low-rank approximation
for matrices and tensors, and in particular, the discrete analogue of the max-plus basis synthesis problem
or pruning problems studied in [MDG08, GMQ11] in the continuous space setting. In particular, we are
interested in the fundamental problem of finding the best tropical approximation of matrices and tensors.
For example, approximating a tropical matrix A of size n × p by a tropical product of a matrix B of
size n × r by a matrix C of size r × p, is approximating each entry Aij by the maximum of sums
max16k6r(Bik + Ckj). In the continuous case, where A is a function of two variables, we look for
approximating the entry A(x, y) by a maximum of type max16k6r(Bk(x) + Ck(y)), where Bk and Ck
are functions that we want to identify.

Approximating a matrix by a tropical product of two matrices is equivalent to approximately em-
bedding a set of points (the columns of the matrix) by a column space of a matrix, i.e. a tropical
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cone with a given number of vertices (see Proposition 5.10). In tropical geometry, many “best approx-
imation” problems have been studied. The simplest one is the tropical projection [CGQ04, AGNS11],
which allows to find the nearest point in a (closed) tropical module to a given point of the space, in
the sense of Hilbert’s metric. The best approximation in the space of ultrametrics, which is a funda-
mental example of tropical module in view of its application to phylogenetics, has been thoroughly
studied [CF00, LSTY17, Ber20]. Another important special case is the best approximation of a point
by a tropical linear space [Ard04, JSY07]. In contrast with the approximation of a set of points that we
study here, these problems concern the approximation of a single point.

Hook proposes in [Hoo17] heuristic algorithms using a local descent method to find low-rank ap-
proximation of matrices. In [YZZ19], Yoshida et al. study tropical principal component analysis (PCA)
by looking for a tropical polytope with a fixed number of vertices that minimizes the sum of tropical
distances (associated to Hilbert’s semi-norm) between each data point and its tropical projection into
that tropical polytope. They develop a randomized heuristic method to solve this problem with a focus
on the special case of tropical polytopes with three vertices. In [PYZ20], Page et al. study also tropical
PCA, but with a focus on applying it to dimension reduction over the space of phylogenetic trees. They
developed a stochastic optimization method using a Markov Chain Monte Carlo approach to estimate
tropical principal components over the space of phylogenetic trees.

In [DSS05], Develin et al. proved that the factor rank of a matrix is at most 2 if and only if all its
3×3 submatrices have a factor rank at most 2. This entails that deciding whether the factor rank does not
exceed 2 is polynomial time solvable, and even linear time solvable [Shi12]. In [Shi14], Shitov proves
that it is NP-hard to decide whether the factor rank of a matrix is at most 7.

Tropical low-rank factorization is closely related to classical nonnegative factorization (since trop-
ical numbers behave as nonnegative numbers). Moreover, it includes as a special case the problem of
factorization for Boolean matrices. Deciding whether a Boolean matrix admits a factorization of a given
rank is an NP-hard problem, see e.g. [MN20, Sect. 4.1]. Since the Boolean semiring can be embedded
in the tropical semiring, tropical low-rank factorization is also NP-hard. Given the difficulty, it is of in-
terest to identity tractable subclasses, and to develop efficient heuristic algorithms for tropical low-rank
approximation.

5.1.2 Results

In this chapter, we establish general properties of tropical low-rank approximation, and identify classes
of low-rank approximation problems that are polynomial-time solvable. In particular, we study the
tropical low-rank approximation in the case of rank one and rank two. We introduce a notion of outer
radius of a column space of a matrix, and we characterize, in Theorem 5.13, the outer radius of a given
column space as the eigenvalue of some specific matrix. We show also, in Theorem 5.16, that the tropical
best rank-one approximation of a given matrix is equal to half the outer radius of its column space. We
provide also a strongly polynomial algorithm that gives a rank-one approximation of 3-way tensors. We
provide an algebraic interpretation of the outer radius as a skew singular value. This yields a tropical
analogue of a classical result in matrix theory, showing the error in spectral norm of the best rank-one
approximation is given by the second singular value. We extend the best tropical rank-one approximation
to the case of kernels. In dimension three, we give a linear algorithm that allows to compute the best
rank-two approximation, based on signed tropical linear regression studied in Chapter 4.

This chapter is organized as follows. In the preliminaries Section 5.2, we recall the needed results
concerning tropical algebra. In Section 5.3, we establish general properties of tropical low-rank approx-
imation and its geometric interpretation. In Section 5.4, we study the outer radius of a column space
of a matrix, its equivalence to finding the best rank-one approximation of a matrix, and its algebraic
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interpretation. In Section 5.5, we study the best rank-two approximation in dimension three.

5.2 Preliminaries

The tropical (max-plus) semifield Rmax is the set R ∪ {−∞} equipped with the addition (a, b) 7→
max(a, b) and the multiplication (a, b) 7→ a � b := a + b. We shall occasionally use the min-plus
semifield Rmin, which is the set R ∪ {+∞}, equipped with the addition (a, b) 7→ min(a, b) and the
multiplication (a, b) 7→ a+ b.

For any integer n, we denote [n] := {1, · · · , n}. For all x, y ∈ (Rmax)n, A ∈ (Rmax)n×p, B ∈
(Rmax)p×m and λ ∈ Rmax, λ + x denotes the vector with entries λ + xi, for i ∈ [n], λ + A denotes
the matrix with entries λ+ Aij , for i ∈ [n], j ∈ [p], x ∨ y = max(x, y) denotes the vector with entries
max(xi, yi), for i ∈ [n], and A �max B ∈ (Rmax)nm denotes the matrix with entries maxk∈[p](Aik +
Bkj), for i ∈ [n], j ∈ [m]. By abuse of notation, we may denote �max by �, or denote A �max B by
simply AB.

The set (Rmax)n equipped with the addition (x, y) 7→ x ∨ y and the action (λ, x) 7→ λ + x of
Rmax is a tropical module, i.e. a module over the semifield Rmax. We write that x 6 y if and only if
∀i ∈ [n], xi 6 yi. We denote byAi· ∈ (Rmax)p the i-th row ofA and byA·j ∈ (Rmax)p the j-th column
of A. Similarly for x, y ∈ (Rmin)n, A ∈ (Rmin)n×p and B ∈ (Rmin)p×m, x∧ y = inf(x, y) denotes the
vector with entries min(xi, yi), for i ∈ [n], and A�minB ∈ (Rmin)n×m denotes the matrix with entries
mink∈[p](Aik + Bkj), for i ∈ [n], j ∈ [m]. The set (Rmin)n equipped with the addition (x, y) 7→ x ∧ y
and the action (λ, x) 7→ λ+ x of Rmin is a tropical module, i.e. a module over the semifield Rmin.

A subset C of (Rmax)n is a tropical (convex) cone or equivalently a tropical submodule of (Rmax)n
if it satisfies x, y ∈ C and λ ∈ Rmax implies λ + x ∈ C and x ∨ y ∈ C. We use a similar definition
for tropical cones of (Rmin)n using ∧ instead of ∨. For any given matrix V ∈ (Rmax)n×p, we denote
by Colmax(V ) := {V �max x | x ∈ (Rmax)p} the column space of V , that is the tropical cone of
(Rmax)n generated by the columns of V , and we denote by Rowmax(V ) the row space of V , that
is the tropical cone of (Rmax)p generated by the rows of V . By abuse of notation, we may denote
Colmax by Col and denote Rowmax by Row. Similarly for a matrix V ∈ (Rmin)n×p, we denote by
Colmin(V ) := {V �min x | x ∈ (Rmin)p} the column space of V , that is the tropical cone of (Rmin)n
generated by the columns of V .

We denote by⊥ the vector of (Rmax)n identically equal to−∞. We consider the Hilbert’s projective
metric, defined for vectors x, y ∈ (Rmax)n where at least one of them is not equal to ⊥, by

dH(x, y) = inf{λ− µ | λ, µ ∈ R, µ+ yi 6 xi 6 λ+ yi ∀i ∈ [n]} ∈ R>0 ∪ {+∞} .

In addition, we set dH(⊥,⊥) := 0.
The support of a vector x ∈ (Rmax)n is defined as suppx := {i ∈ [n] | xi 6= −∞}. Observe that

dH(x, y) is finite if and only if x and y have the same support. In this case

dH(x, y) = max
i∈I

(xi − yi)−min
i∈I

(xi − yi) .

We denote the Hilbert’s semi-norm of a vector x ∈ Rn by

‖x‖H = max
i∈[n]

xi −min
i∈[n]

xi . (5.1)

Given any semi-norm ‖·‖ on Rn (or even any positively homogenous map Rn → R+, u 7→ ‖u‖), we
may construct the distance d‖·‖(u, v) = ‖u− v‖ for all u, v ∈ Rn, associated to ‖ · ‖, and its extension
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to (Rmax)n× (Rmax)n to get a lower semi-continuous map with values in R+∪{+∞}. More precisely,
the semi-continuous extension is obtained as follows

∀u, v ∈ (Rmax)n, d‖·‖(u, v) = inf
Rn3ūk→u,Rn 3v̄k→v

lim inf
k→∞

‖ūk − v̄k‖φ ,

where the infimum is taken over all sequences of vectors ūk → u and v̄k → v. In this way, the Hilbert’s
projective metric dH is obtained from the Hilbert’s semi-norm ‖ · ‖H . Similarly, starting from the sup-
norm ‖x‖∞ = maxi∈[n] |xi| for vectors x ∈ Rn, we obtain the sup-norm distance between two vectors
x, y ∈ (Rmax)n, which is d∞(x, y) = maxi∈suppx |xi − yi| if x and y have the same support and
d∞(x, y) = +∞ otherwise.

Given any norm again, we define the distance of a vector x ∈ (Rmax)n to a set S ⊂ (Rmax)n
as dist‖·‖(x, S) := infa∈S d‖·‖(x, a) and replace ‖ · ‖ by ∞ and H if the norm is ‖ · ‖∞ and ‖ · ‖H
respectively.

We denote by B(a, r) := {x ∈ (Rmax)n | dH(a, x) 6 r} the closed ball centered at a ∈ Rn with
radius r under Hilbert’s projective metric.

We denote by P(Rmax)n the tropical projective space, i.e., the quotient of the set of non-identically
−∞ vectors of (Rmax)n by the equivalence relation ∼ which identifies tropically proportional vectors.
We shall abuse notation and denote by the same symbol a vector and its equivalence class.

We shall need some notions and results from tropical spectral theory. The digraph Γ (A) of a tropical
matrixA ∈ (Rmax)n×n is defined as the graph with nodes 1, . . . , n and arcs (i, j) wheneverAij > −∞.
The weight of the arc (i, j) is Aij , and the weight of a circuit is the sum of the the weights of its arcs.
For any integer k, (A�k)ij is the weight of the maximally weighted path of length k in the graph Γ (A)
from state i to state j.

When the digraph of A does not have a circuit of positive weight, we define its Kleene star by

A∗ = I ∨A ∨A2 ∨ · · · ,

where I ∈ (Rmax)n×n is the tropical identity matrix with ∀i ∈ [n], Iii = 0 and ∀i, j ∈ [n], such that
i 6= j, Iij = −∞, so that A∗ij is the weight of the maximally weighted path from i to j.

We have also the following known result.

Lemma 5.1. If the digraph of A ∈ (Rmax)n×n does not have a circuit of positive weight, then

{x ∈ (Rmax)n; x > Ax} = Col(A∗) .

Proof. For any x ∈ (Rmax)n satisfying x > Ax, we have x > Akx, which implies x > A∗x. On the
other hand, since by definition A∗ > I , then A∗x > x, forcing x = A∗x. Thus x ∈ Col(A∗).

Conversely, if x ∈ Col(A∗), x = A∗y for some y ∈ (Rmax)n. Since AA∗ 6 A∗ by the definition of
A∗, Ax = AA∗y 6 A∗y = x, namely x > Ax.

A scalar µ is a tropical eigenvalue of a matrix A ∈ (Rmax)n×n if there exists a vector u ∈ (Rmax)n,
not identically −∞, such that Au = µ+ u in the tropical sense. The eigenvalue is known to be unique
when the digraph of A is strongly connected, then it coincides with the maximum weight-to-length ratio
of the circuits of the digraph of A. We denote it by λ(A). See [BCOQ92, But10] for more information.

5.3 Best tropical rank-r approximation and its geometric interpre-
tation

Let φ : Rn>0 7→ R>0 be a function that is continuous, order-preserving (i.e. ∀x, y ∈ Rn>0, x 6 y implies
that φ(x) 6 φ(y)), positively homogeneous of degree 1 (i.e. ∀λ ∈ R>0,∀x ∈ Rn>0, φ(λx) = λφ(x)),
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and such that φ(x) > 0 for x 6= 0. Given a norm ‖ · ‖ on Rp, we define the norm map ‖ · ‖φ on Rn×p as
follows:

∀A ∈ Rn×p, ‖A‖φ = φ(‖A·1‖, · · · , ‖A·p‖) .

This map is a norm if we assume in addition that φ is subadditive, meaning that φ(x+y) 6 φ(x)+φ(y).
In this chapter, we are particularly interested in the sup-norm ‖ · ‖∞ and the Hilbert’s semi-norm

‖ · ‖H . In these two cases we denote ‖ · ‖φ respectively by ‖ · ‖φ,∞ and ‖ · ‖φ,H .
The choice of φ that will be the most interesting for our analysis is φ(x) = maxi∈[n] xi. In this

case, we replace φ by ∞ in the notations ‖ · ‖φ,∞ and ‖ · ‖φ,H . Thus, ∀A ∈ Rn×p, ‖A‖∞,∞ =
maxi∈[n],j∈[p] |Aij |, and ‖A‖∞,H = maxj∈[p] ‖A·j‖H .

We define the distance dφ,‖·‖ on Rn×p by

∀A,B ∈ Rn×p, dφ,‖·‖(A,B) = ‖A−B‖φ ,

and we extend it to (Rmax)n×p to get a lower semi-continuous map (as for distances over Rnmax). We
shall use the notation dφ,∞, dφ,H , d∞,∞, and d∞,H for the specializations of this construction.

For a tropical matrix, several notions of rank can be defined. In [DSS05], three natural notions
of rank are introduced. In this chapter, we are interested in the factor rank, also known as Schein
rank [Kim82] or Barvinok rank [DSS05]. It is defined as follows.

Definition 5.2. The factor rank of a matrix V ∈ (Rmax)n×p is the smallest integer r such that the matrix
V is the product of a matrix A ∈ (Rmax)n×r by a matrix B ∈ (Rmax)r×p, i.e.

∀i ∈ [n], j ∈ [p], Vij = max
16k6r

(Aik +Bkj) . (5.2)

In the following, we may say rank for the factor rank.

Remark 5.3. The factor rank of a matrix is the specialization of the notion of tensor rank, defined for
a tensor t (over an arbitrary semiring) as the smallest integer r such that t can be written as the sum of
at most r tensors of rank one. Here, the factor rank of V is the smallest integer r such that the matrix
can be written as a tropical sum of r rank-one matrices. Indeed, in (5.2), the rank-one matrices are
(Aik +Bkj)i∈[n],j∈[p] ∈ (Rmax)n×p for each 1 6 k 6 r.

Inspired by the factor rank, we define the best ‖ · ‖φ approximation of rank r of a matrix V ∈
(Rmax)n×p as the following minimization problem

min
A∈(Rmax)n×r,B∈(Rmax)r×p

dφ,‖·‖(V,AB) . (5.3)

We will show that this optimization problem does admit an optimal solution. To this end, we need
to recall some properties.

Given a nonempty finite set N , we say that a subset of RN is basic semilinear if it is of the form
{x ∈ RN | `i(x) �i bi, i = 1, . . . ,K} for some K > 1, where for all i ∈ [K], �i ∈ {=, <,6}, bi ∈ R,
and `i is a linear form with integer coefficients. A subset of RN is semilinear if it is a finite union
of basic semilinear sets. Given ∅ 6= I ⊂ N , and S ⊂ (R ∪ {−∞})N , the stratum SI is defined by
SI = {x ∈ S | xi > −∞ ⇐⇒ i ∈ I}, and we identify it to a subset of RI . We say that a subset of
(Rmax)N is semilinear if all its strata are semilinear.

We have the following property.

Lemma 5.4. Let ∅ 6= M ⊂ N be finite sets, and let S be a semilinear subset of RN . Then, the image of
S by the projection mapping from RN → RM is semilinear. Moreover, if S is closed, then its projection
is also closed.
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Proof. The semilinear sets of RN where N is a finite nonempty set are precisely the sets that are de-
finable in the first order theory of the divisible ordered group R and this theory admits quantifier elim-
ination [Mar02, Corollary 3.1.17]. This entails in particular that the projection of a semilinear set S is
semilinear. An inspection of the elimination argument shows, in addition, that if S is closed, then its
projection is also closed. More precisely, it suffices to consider the case of a closed basic semilinear
subset S of RN , which can be written as S = {x ∈ RN | Ax 6 b} for some A ∈ Zp×N and b ∈ RN .
Then, by applying the Fourier-Motzkin elimination algorithm (see e.g. [GM06, Sect. 6.7]) to the system
of weak inequalitiesAx 6 b, we obtain a finite system of weak inequalities characterizing the projection
of S. This shows that the projection of S is a closed (and basic semilinear) set.

Theorem 5.5. For all r 6 min(n, p), the set of matricesR ∈ (Rmax)n×p of rank at most r is semilinear
and all its strata are closed.

Proof. For all ∅ ⊂ IR ⊂ [n]× [p], ∅ ⊂ IA ⊂ [n]× [r], ∅ ⊂ IB ⊂ [r]× [p], let

S(IR, IA, IB) := {(R,A,B) | R = AB,R ∈ (Rmax)n×p, suppR = IR,

A ∈ (Rmax)n×r, suppA = IA, B ∈ (Rmax)r×p suppB = IB} .

We note that S(IR, IA, IB) is nonempty iff for all (i, j) ∈ IR, there exists k ∈ [r] such that (i, k) ∈ IA
and (k, j) ∈ IB . Let Ψ be the set of maps ψ which associate to every (i, j) ∈ IR such an element k. Let

Sψ(IR, IA, IB) := {(R,A,B) ∈ S(IR, IA, IB) | ∀(i, j) ∈ IR, max
16k6r

(Aik+Bkj) = Aiψ(i,j)+Bψ(i,j)j} .

We have S(IR, IA, IB) = ∪ψ∈ΨSψ(IR, IA, IB). Moreover, Sψ(IR, IA, IB) = {(R,A,B) ∈ RIR ×
RIA × RIB | ∀(i, j) ∈ IR,∀k ∈ [r] s.t. (i, k) ∈ IA and (k, j) ∈ IB, Rij > Aik + Bkj , and Rij =
Aiψ(i,j) +Bψ(i,j)j}, which proves that Sψ(IR, IA, IB) is basic semilinear and closed. So, S(IR, IA, IB)
is semilinear and closed. Observe that the set of matrices of rank at most r and with support IR is the
image under the projection mapping (R,A,B) 7→ R of the union of the sets S(IR, IA, IB) over all
admissible values of IA, IB . It follows from Lemma 5.4 that this set is semilinear and closed.

Recall that by singular value decomposition, a best rank-r approximation of a real or complex matrix
with respect to the Frobenius norm can be obtained by a succession of best rank-one approximations. On
the other hand, owing to the lack of the subtraction operation in the tropical world, we cannot perform
such a sequence of best factor rank-one approximations to obtain a best factor rank-r approximation for
a tropical matrix, which forces us to consider separately the best approximation problem for all ranks
r 6 min(n, p).

We obtain the following corollary showing that Problem (5.3) has an optimal solution.

Corollary 5.6. Given V ∈ (Rmax)n×p, and r 6 min(n, p), the problem of computing a best ‖ · ‖φ
approximation of rank r of V has an optimal solution.

Proof. We first observe that φ is coercive, meaning that φ(x)→∞ when ‖x‖ → ∞. Indeed, by taking
α to be the minimum of φ(x) over the set {x ∈ Rn>0 | ‖x‖∞ = 1}, noting that the minimum is achieved
and is positive, and using the homogeneity of φ, we deduce that φ(x) > α‖x‖∞.

We also note that dφ,‖·‖(V,W ) = +∞ if V and W do not have the same support. This follows
from the coercive character of φ and from the definition of dφ,‖·‖ as a lower semi-continuous extension.
Therefore, the best approximation problem (5.3) reduces to minimizing the map dφ,‖·‖(V,R) over the
set S of matrices that lie in the same stratum as V and are of rank at most r. By Theorem 5.5, this set is
closed. Hence, since φ is coercive, the map to be minimized has compact sublevel sets. It follows that
its minimum is achieved.
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Remark 5.7. Theorem 5.5 and Corollary 5.6 carry over (with the same proof method) to the problem of
best approximation of a tropical tensor by a tensor of tensor rank at most r. In contrast, over the field C,
the set of tensors of rank at most r is not closed, and the best approximation problem may not have an
optimal solution.

For two vectors u, v ∈ (Rmax)n, with same support I , we define the center of u and v as ctr(u, v) =
(maxi∈I(ui− vi) + mini∈I(ui− vi))/2. For a vector u ∈ Rn, we simply write ctr(u) for ctr(u, 0). We
denote by e = (1, · · · , 1) ∈ Rn the constant vector equal to 1.

The following lemma relates the Hilbert’s semi-norm of a vector to the sup-norm of this vector
up to an additive constant, and relates also the Hilbert’s distance between two vectors to the sup-norm
distance.

Lemma 5.8. For u ∈ Rn, we have

‖u‖H = 2 inf
λ∈R
‖u− λe‖∞ = 2‖u− ctr(u)e‖∞ . (5.4)

For u, v ∈ (Rmax)n, we have

dH(u, v) = 2 inf
λ∈R

d∞(u, v + λe) =
{

2d∞(u, v + ctr(u, v)e) if u and v have same support,
+∞ otherwise.

(5.5)

Proof. For u ∈ Rn, we have infλ∈R ‖u − λe‖∞ = infλ∈R maxi∈[n] |ui − λ|. We can see easily that
the minimum is achieved for λ∗ = (maxi∈[n] ui + mini∈[n] ui)/2 = ctr(u) and that the minimum is
infλ∈R ‖u−λe‖∞ = maxi∈[n] ui−λ∗ = λ∗−mini∈[n] ui = (maxi∈[n] ui−mini∈[n] ui)/2 = ‖u‖H/2,
which proves (5.4). Similarly, we prove (5.5) for u, v ∈ (Rmax)n; when u and v have the same support,
by taking the index i in the support of u instead of [n], and when u and v have different supports we have
by definition of the Hilbert’s and sup-norm distances that dH(u, v) = +∞ and ∀λ ∈ R, d∞(u, v+λe) =
+∞.

Using the previous lemma we obtain the following proposition showing the link between the sup-
norm distance and the Hilbert’s distance of a vector to a tropical cone.

Proposition 5.9. Let C ⊂ (Rmax)n be a tropical cone and u ∈ (Rmax)n. We have

dist∞(u, C) = 1
2 distH(u, C) .

Moreover, if distH(u, C) = dH(u, vH) < +∞ for some vH ∈ C, then dist∞(u, C) = d∞(u, v∞) for
v∞ = vH + ctr(u, vH)e.

Proof. First we note that distH(u, C) = +∞ iff dist∞(u, C) = +∞. In this case no vector of C
has the same support as u. Now, we suppose that distH(u, C) is finite. Using Lemma 5.8, we have
distH(u, C) = infv∈C dH(u, v) = 2 infv∈C infλ∈R d∞(u, v + λe) = 2 infλ∈R infv∈C d∞(u, v + λe).
Knowing that C is a tropical cone, the map v 7→ v + λe is an isomorphism from C to itself and then
distH(u, C) = 2 infλ∈R infw∈C d∞(u,w) = 2 infw∈C d∞(u,w) = 2 dist∞(u, C).

If distH(u, C) = dH(u, vH) < +∞, then we have, by Lemma 5.8, dist∞(u, C) = 1
2 distH(u, C) =

1
2dH(u, vH) = d∞(u, vH + ctr(u, vH)e) = d∞(u, v∞) for v∞ = vH + ctr(u, vH)e.

The following proposition gives a geometric interpretation to the best rank-r approximation problem
for a matrix V ∈ (Rmax)n×p, in terms of the approximation of the columns of V by the column space
Col(A) of some matrix A ∈ (Rmax)n×r.
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Proposition 5.10. Let V ∈ (Rmax)n×p and r 6 min(n, p). We have,

min
A∈(Rmax)n×r,B∈(Rmax)r×p

dφ,‖·‖(V,AB) = min
A∈(Rmax)n×r

φ(dist‖·‖(V·1,Col(A)), · · · ,dist‖·‖(V·p,Col(A))) .

Moreover, selectingA ∈ (Rmax)n×r minimizing the right hand side, as well as a matrixB ∈ (Rmax)r×p
such that dist‖·‖(V·k,Col(A)) = d‖·‖(V·k, AB·k) for all k ∈ [p], we obtain an optimal solution (A,B)
for the above best rank-r approximation of V .

Proof. We have minA,B dφ,‖·‖(V,AB) = minA minB·1,··· ,B·p φ(d‖·‖(V·1, AB·1), · · · , d‖·‖(V·p, AB·p)).
Since the function φ is order preserving we have, for A fixed,

min
B·1,··· ,B·p

φ(d‖·‖(V·1, AB·1), · · · , d‖·‖(V·p, AB·p)) = φ(min
B·1

d‖·‖(V·1, AB·1), · · · ,min
B·p

d‖·‖(V·p, AB·p)) .

Moreover, ifB·1, · · · , B·p achieve respectively the minimums in the right hand side, then (B·1, · · · , B·p)
achieves the minimum in the left hand side. We have also, for all k ∈ [p], minB·k d‖·‖(V·k, AB·k) =
minw∈Col(A) d‖·‖(V·k, w) = dist‖·‖(V·k,Col(A)), so that

min
B·1,··· ,B·p

φ(d‖·‖(V·1, AB·1), · · · , d‖·‖(V·p, AB·p)) = φ(dist‖·‖(V·1,Col(A)), · · · ,dist‖·‖(V·p,Col(A))).

Finally, by taking the minimum over A ∈ (Rmax)n×r, we deduce the desired result.

By specifying Proposition 5.10 to the case of the Hilbert’s semi-norm and the sup-norm, we obtain
the following corollary.

Corollary 5.11. Let V ∈ (Rmax)n×p and r 6 min(n, p). We have,

min
A∈(Rmax)n×r,B∈(Rmax)r×p

dφ,H(V,AB) = min
A∈(Rmax)n×r

φ(distH(V·1,Col(A)), · · · , distH(V·p,Col(A)))

= 2 min
A∈(Rmax)n×r

φ(dist∞(V·1,Col(A)), · · · ,dist∞(V·p,Col(A)))

= 2 min
A∈(Rmax)n×r,B∈(Rmax)r×p

dφ,∞(V,AB) .

Proof. We have by Proposition 5.9 that ∀k ∈ [p], distH(V·k,Col(A)) = 2 dist∞(V·k,Col(A)). Com-
bining that with the fact that φ is positively homogeneous of degree 1, we obtain the second equality of
this proposition. The first and third equalities are special cases of Proposition 5.10.

The following corollary allows to deduce an optimal solution of the best ‖ · ‖φ,∞ approximation of
rank r from a known optimal solution of the best ‖ · ‖φ,H approximation of rank r.

Corollary 5.12. Let V ∈ (Rmax)n×p and r 6 min(n, p). Let (AH , BH) be an optimal solution for
minA∈(Rmax)n×r,B∈(Rmax)r×p dφ,H(V,AB) constructed as in Proposition 5.10 for the Hilbert seminorm
‖ · ‖H . Then, an optimal solution (A∞, B∞) of the problem minA∈(Rmax)n×r,B∈(Rmax)r×p dφ,∞(V,AB)
is given by the matrices A∞ = AH and B∞ such that ∀k ∈ [p], B∞·k = BH

·k + ctr(V·k, AHBH
·k )e. This

solution is also satisfying the conditions of Proposition 5.10 for the sup-norm.

Proof. By Proposition 5.10, AH is optimal in

min
A∈(Rmax)n×r

φ(distH(V·1,Col(A)), · · · ,distH(V·p,Col(A))).
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By using Proposition 5.9 and the positive homogeneity of φ, we deduce that AH = A∞ is also optimal
in minA∈(Rmax)n×r φ(dist∞(V·1,Col(A)), · · · ,dist∞(V·p,Col(A))). Since (AH , BH) is constructed as
in Proposition 5.10, we have ∀k ∈ [p], BH

·k achieves the minimum in minB·k dH(V·k, AHB·k), i.e. that
distH(V·k,Col(AH)) = dH(V·k, AHBH

·k ). Then, by Proposition 5.9, we have

AHBH
·k + ctr(V·k, AHBH

·k )e = AH(BH
·k + ctr(V·k, AHBH

·k )e) = A∞B∞·k ,

so that dist∞(V·k,Col(A∞)) = d∞(V·k, A∞B∞·k ). Therefore, by Proposition 5.10, we deduce that A∞

and B∞ are optimal in the problem minA∈(Rmax)n×r,B∈(Rmax)r×p dφ,∞(V,AB).

5.4 Outer radius of a tropical polytope and best tropical rank-one
approximation

5.4.1 Outer radius of a tropical polyhedron

In this section, we study the outer radius of a tropical polyhedron for the Hilbert’s semi-norm. We
consider a matrix V ∈ (Rmax)n×p and its column space Col(V ) which is a tropical Rmax-submodule of
(Rmax)n. We are now looking for a Hilbert’s ball that contains the columns of V and that has the smallest
possible radius. This problem is non trivial only when all the entries of V have the same support. So
it suffices to consider the case in which V has finite entries, and in the rest of this section, we assume
that V ∈ Rn×p. Since a Hilbert’s ball is stable by the supremum operation, and by translation by
constants, this problem is equivalent to finding a Hilbert’s ball of minimal radius containing Col∗(V ) :=
Col(V ) ∩ Rn, the set of finite vectors of the tropical polyhedral cone Col(V ) (observe that when V has
finite entries, Col(V ) = Col∗(V ) ∪ {⊥} where ⊥ is the vector with entries −∞). We will show in the
following that the outer radius of Col∗(V ) coincides with the outer radius of Row∗(V ) := Row(V )∩Rn,
that is the set of finite vectors of the row space Row(V ). We call outer ball of the tropical polyhedron
Col∗(V ) any Hilbert’s ball containing Col∗(V ) and having the smallest possible radius, we call this
radius the outer radius of Col∗(V ), and we denote it by outerradius(Col∗ V ).

Finding the outer radius of Col∗(V ) can be expressed as a minimization problem:

inf{r ∈ R>0 | ∃u ∈ Rn, ∀j ∈ [p], dH(V·j , u) 6 r} . (5.6)

We consider the square matrix H = V �max (−V >) ∈ Rn×n, where

Hik = max
j∈[p]

(Vij − Vkj), i, k ∈ [n] . (5.7)

The following theorem characterizes the outer radius of the polyhedron Col∗(V ).

Theorem 5.13. The outer radius of Col∗(V ) is the eigenvalue λ of the matrix H = V �max (−V >),
and the set of centers of all Hilbert outer balls of Col∗(V ) is the column space Col∗((−λ+H)∗).

Proof of Theorem 5.13. The condition ∀j ∈ [p], dH(V·j , u) 6 r is equivalent to ∀j ∈ [p],∀i ∈
[n],∀k ∈ [n], (Vij − ui)− (Vkj − uk) 6 r, and also to ∀i ∈ [n], ∀k ∈ [n],maxj∈[p](Vij − Vkj) + uk 6
r+ui, i.e. ∀i ∈ [n],∀k ∈ [n], Hik +uk 6 r+ui. This is equivalent to ∀i ∈ [n],maxk∈[n](Hik +uk) 6
r+ui, and also toHu 6 r+u. Therefore the outer radius of Col∗(V ) is min{r | ∃u ∈ Rn, Hu 6 r+u},
which, by the Collatz-Wielandt property (Theorem 4.1),is exactly the tropical eigenvalue λ of the matrix
H .

Let u ∈ Rn, λ ∈ R>0, the Hilbert’s ballB(u, λ) is an outer ball of Col∗(V ) if and onlyHu 6 λ+u,
i.e. (−λ+H)u 6 u. Therefore, by Lemma 5.1, the set of possible centers is Col∗((−λ+H)∗).
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Given a tropical submodule V of (Rmax)n, let Lat(V) denote the sublattice of (Rmax)n generated by
V , which coincides with the set of infima of finite families of elements of V . We observe that a Hilbert’s
ball is a sublattice of (Rmax)n. It follows that if a Hilbert’s ball contains Colmax

∗ (V ), it contains also
Lat(Colmax

∗ V ). Hence, the following result, which shows in particular that the columns of the matrix
H are generators of Lat(Colmax

∗ V ), explains the role of the matrix H in Theorem 5.13.

Proposition 5.14. Let V ∈ Rn×p. We have

Colmax
∗ (V �min (−V >)) = Lat(Colmax

∗ V ) = Lat(Colmin
∗ V ) = Colmin

∗ (V �max (−V >)) .

Proof. We first observe that the matrix X := V �min (−V >) satisfies the following properties

X �max V = V, X �max X = X, X > Imax ,

where Imax is the tropical identity matrix (with 0 on the diagonal and −∞ elsewhere). These properties
originate from residuation theory, see [CGQ04, Sect. 2]. They can also be checked in a straightforward
manner from the definition of �max and �min.

It follows from X �max V = V that Colmax
∗ (V ) ⊂ Colmax

∗ (X). We have, for all u, v ∈ Rn,

(X �max u) ∧ (X �max v) = (X �max X �max u) ∧ (X �max X �max v)
> X �max ((X �max u) ∧ (X �max v))

(because w 7→ X �max w is order preserving),

> (X �max u) ∧ (X �max v) (because X > Imax).

This implies that (X�maxu)∧(X�maxv) = X�max((X�maxu)∧(X�maxv)) ∈ Colmax
∗ (X). Hence,

Colmax
∗ (X) is a sublattice of (Rmax)n containing Colmax

∗ (V ), and so, Colmax
∗ (X) ⊃ Lat(Colmax

∗ (V )).
We also observe that

Xij = inf
k

(Vik − Vjk)

and so, the column X·j is the infimum of the vectors V·k − Vjk, which belong to Colmax
∗ (V ), showing

that Colmax
∗ (X) ⊂ Lat(Colmax

∗ (V )).
The proof that Lat(Colmin V ) = Colmin(V �max (−V >)) follows by a dual argument, notting that

the matrix H := V �max (−V >) satisfies H �min V = V , H �min H = H , and that H 6 Imin, where
Imin denotes the dual tropical identity matrix (with 0 on the diagonal and +∞ elsewhere). Finally,
Lat(Colmax

∗ V ) = Lat(Colmin
∗ V ) follows from the distributivity property for infima and suprema.

5.4.2 Best tropical rank-one approximation of matrices and tensors

In this section, we show that computing the outer radius of the tropical cone Col∗(V ) for the Hilbert’s
semi-norm is equivalent to finding the best tropical rank-one approximation of the matrix V for the
semi-norm ‖ · ‖∞,H or the norm ‖ · ‖∞,∞. We will use this analysis to give a 2-approximation rank-one
decomposition for 3-way tensors of the form T ∈ Rn×m×p.

The following proposition links the rank-one approximation error of the matrix V to the radii of
Hilbert’s balls containing the column and row spaces of V .

Proposition 5.15. For a matrix V ∈ Rn×p and r > 0, the following properties are equivalent:

1. There exists u ∈ Rn such that Col∗(V ) ⊂ B(u, r).

2. There exists v ∈ Rp such that Row∗(V ) ⊂ B(v, r).
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3. There exists u ∈ Rn, v ∈ Rp such that ‖V − u� v‖∞,H 6 r.

4. There exists u ∈ Rn, v ∈ Rp such that ‖V − u� v‖∞,∞ 6 r/2.

Proof. If we have assertion 1, then ∀j ∈ [p], dH(V·j , u) 6 r. Then, taking the vector v identically equal
to 0, we get ‖V − u� v‖∞,H 6 r, which shows Assertion 3.

Conversely, if we have Assertion 3, then for all j ∈ [p], dH(V·j , u) 6 r, that is V·j ∈ B(u, r), and
since the Hilbert’s ball B(u, r) is stable by max plus combinations, we get that Col∗(V ) ⊂ B(u, r).

Applying Corollary 5.11 and Corollary 5.12 to r = 1, and remarking that when V has finite entries,
any vectors u ∈ Rnmax and v ∈ Rpmax minimizing d∞,∞(V, u� v) or d∞,H(V, u� v) have finite entries,
we get the equivalence between Assertions 3 and 4.

Finally, using the symmetry of the ‖ · ‖∞,∞ norm for rows and columns, we deduce the equivalence
between the assertions 2 and 4.

From Proposition 5.15, we deduce readily the following theorem showing that the best rank-one
approximation error for a tropical matrix V is given by half the outer radii of its column and row spaces.

Theorem 5.16. For any matrix V ∈ Rn×p, we have

min
A∈Rn×p,rankA=1

‖V −A‖∞,∞ = 1
2 min
A∈Rn×p,rankA=1

‖V −A‖∞,H

= 1
2 outerradius(Col∗ V ) = 1

2 outerradius(Row∗ V ) .

From Proposition 5.15 and Theorem 5.13, we deduce the following practical corollary.

Corollary 5.17. Let V ∈ Rn×p. If u ∈ Rn is an eigenvector of V � (−V >) and v ∈ Rp is such that
∀j ∈ [p], vj = ctr(V·j , u) = 1

2(maxk∈[n](Vkj − uk) + mink∈[n](Vkj − uk)), then

‖V − u� v‖∞,∞ = 1
2λ(V �max (−V >)) = min

A∈Rn×p,rankA=1
‖V −A‖∞,∞. (5.8)

Proof. By Theorem 5.13, if u ∈ Rn is an eigenvector of V � (−V >), and λ is its eigenvalue, then
Col∗(V ) ⊂ B(u, r) with r = λ, and r is minimal. By Proposition 5.15, we get that there exists w ∈ Rp
such that ‖V −u�w‖∞,H 6 r, and since r is minimal, we get the equality. The value of ‖V −u�w‖∞,H
is independent of the (finite) vector w. Applying Corollary 5.12 to AH = u and BH = w identically
equal to 0, we obtain that the couple (u, v) with v = B∞ is minimizing ‖V − u� w‖∞,∞ and that the
minimum is r/2. Using the expression of B∞ for AH = u and BH = w identically 0, we get that the
entries of v are equal to vj = ctr(V·j , u).

Corollary 5.18. An exact solution of the best tropical rank-one approximation problem for the matrix
V ∈ Rn×p can be obtained in O(n2(n+ p)) arithmetic operations.

Proof. Corollary 5.17 shows that computing a best tropical rank-one approximation reduces to comput-
ing an eigenvector of the matrix H given by (5.7). First, the computation of the matrix H takes O(n2p)
arithmetic operations. Then, computing an eigenvector of this matrix can be done in O(n3) arithmetic
operations; indeed, the eigenvalue can be obtained in O(n3) time using Karp’s algorithm [Kar78],
and then, an eigenvector can be derived, still in O(n3) time, by solving a shortest path problem, see
e.g. [BCOQ92, Th. 3.101].
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We consider a 3-way tropical tensor T ∈ Rn×m×p. We can look to it as a collection of vectors
T·jk ∈ Rn with j ∈ [m], k ∈ [p], as a collection of vectors Ti·k ∈ Rm, i ∈ [n], k ∈ [p] or also as a
collection of vectors Tij· ∈ Rp, i ∈ [n], j ∈ [m]. For a tensor T , we shall denote by ‖T‖∞ the sup-norm
maxi∈[n],j∈[m],k∈[p] |Tijk|.

As in (5.7), we define the following matrices associated to the tensor T :

H
(1)
il = max

j∈[m],k∈[p]
(Tijk − Tljk), i, l ∈ [n],

H
(2)
jq = max

i∈[n],k∈[p]
(Tijk − Tiqk), j, q ∈ [m],

H
(3)
ks = max

i∈[n],j∈[m]
(Tijk − Tijs), k, s ∈ [p] .

The following corollary shows an equivalence between Hilbert’s balls containing the column space
Colmax
∗ ((T·jk)jk), generated by the vectors (T·jk)j∈[m],k∈[p], and the approximation of the tropical tensor

T by a tropical product of type u � A, with u ∈ Rn and A ∈ Rm×p. This corollary follows from The-
orem 5.13 and Proposition 5.15. The proof of the equivalence is similar to the one of Proposition 5.15,
by taking here

Ajk = 1
2(max

i∈[n]
(Tijk − ui) + min

i∈[n]
(Tijk − ui)) . (5.9)

Corollary 5.19. For a tensor T ∈ Rn×m×p and r > 0, the following properties are equivalent:

1. There exists u ∈ Rn such that Colmax
∗ ((T·jk)jk) ⊂ B(u, r).

2. There exists u ∈ Rn, A ∈ Rm×p such that ‖T − u � A‖∞ = maxi∈[n],j∈[m],k∈[p] |Tijk − (ui +
Ajk)| 6 r/2.

Moreover, we have minu∈Rn,A∈Rm×p ‖T −u�A‖∞ = 1
2 outerradius(Colmax

∗ ((T·jk)jk)) = 1
2λ(H(1)).

Remark 5.20. We obtain a similar result to Corollary 5.19 when we consider the tensor T as the collec-
tion of vectors (Ti·k)i∈[n],k∈[p] or (Tij·)i∈[n],j∈[m]. Moreover we deduce that

1
2λ(H(1)) = min

u∈Rn,A∈Rm×p
‖T − u�A‖∞ 6 min

u∈Rn,v∈Rm,w∈Rp
‖T − u� v � w‖∞ =: e∗,

where e∗ is the best rank-one approximation of the tensor T . By applying the same reasoning to H(2)

and H(3), we deduce that 1
2 max(λ(H(1)), λ(H(2)), λ(H(3))) 6 e∗.

The following proposition gives a method to find a rank-one approximation of the tensor T that has
an error smaller than twice the best rank-one error e∗.

Proposition 5.21. Let u ∈ Rn be an eigenvector of H(1), and take A ∈ Rm×p as in (5.9). Let v ∈ Rm
be an eigenvector of the matrix HA = A � (−A>), and take w ∈ Rp, defined by ∀k ∈ [p], wk :=
1
2(maxj∈[m](Ajk − vj) + minj∈[m](Ajk − vj)). We have

‖T − u� v � w‖∞ 6
1
2(λ(H(1)) + λ(HA)) 6 2e∗ . (5.10)

Proof. From Corollary 5.19, we have ‖T − u � A‖∞ 6 1
2λ(H(1)), and from Corollary 5.17, we have

‖A − v � w‖∞ 6 1
2λ(HA). Therefore, ‖T − u � v � w‖∞ 6 ‖T − u � A‖∞ + ‖A − v � w‖∞ 6

1
2(λ(H(1)) + λ(HA)).
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Now, we will prove thatHA 6 H(2). Indeed, by definition, we have ∀j, q ∈ [m], HA
jq = maxk∈[p](Ajk−

Aqk), and Ajk − Aqk = 1
2 [maxi∈[n](Tijk − ui) − maxi∈[n](Tiqk − ui) + mini∈[n](Tijk − ui) −

mini∈[n](Tiqk−ui)]. Using that for any ∀x, y ∈ Rn,maxi∈[n] xi−maxi∈[n] yi 6 maxi∈[n](xi−yi) and
mini∈[n] xi −mini∈[n] yi 6 maxi∈[n](xi − yi), we get easily that Ajk −Aqk 6 maxi∈[n](Tijk − Tiqk).

Therefore, ∀j, q ∈ [m], HA
jq = maxk∈[p](Ajk −Aqk) 6 maxi∈[n],k∈[p](Tijk − Tiqk) = H

(2)
jq .

Then, we deduce that λ(HA) 6 λ(H(2)), and so by Remark 5.20, we obtain that ‖T−u�v�w‖∞ 6
1
2(λ(H(1)) + λ(H(2))) 6 2e∗.

Remark 5.22. The problem of finding the best sup-norm approximation of a tensor T ∈ Rn×m×p by
a rank-one tensor u � v � w can be formulated as a linear program, namely, to minimizing a real
parameter s under the constraints −s 6 Tijk − ui − vj − wk 6 s, for i ∈ [n], j ∈ [m], k ∈ [p]. This
program involves 2nmp inequalities and n+m+p+1 variables. Standard interior point methods make
O(L(nmp)3/2(n+m+ p)2) arithmetic operations, where L is the total bit size of T (see [Vai90]).

By comparison, the bound of (5.10) can be computed in a number of arithmetic operations O(n3 +
m3 +m2p+ n2mp).

5.4.3 Algebraic interpretation of the outer radius as a skew singular value

Owing to Theorem 5.16, we are able to give an algebraic interpretation of the outer radius. Given a
tropical matrix V ∈ Rn×p, if there are vectors u ∈ (Rmax)n \ {⊥}, v ∈ (Rmax)p \ {⊥} and a real scalar
λ such that V v = λu and u>(−V ) = λv> in the tropical sense, namely

max
j∈[p]

(Vij + vj) = λ+ ui

max
j∈[n]

(−Vjk + uj) = λ+ vk
(5.11)

for all i ∈ [n] and k ∈ [p], then λ is called a tropical skew singular value of V , u is called a tropical left
skew singular vectors of V associated with λ, and v is called a tropical right skew singular vectors of
V associated with λ. Besides, we will call (λ, u, v) a tropical skew singular tuple of V . In fact, such a
skew singular tuple (λ, u, v) satisfies(

⊥ V
−V > ⊥

)(
u
v

)
= λ

(
u
v

)

in the tropical sense. Recall that the tropical spectral theorem shows that a matrix with a strongly
connected digraph has a unique eigenvalue, and that all associated eigenvectors are finite. Since V has
finite entries, the digraph of

(
⊥ V
−V > ⊥

)
is strongly connected, then it follows the tropical skew singular

value is unique, and also that the skew singular vectors are finite. This should be compared with the
classical characterization of the singular values of a complex matrix W as the nonnegative eigenvalues
of the matrix

( 0 W
W ∗ 0

)
, where W ∗ denotes the Hermitian conjugate of W . A different notion of tropical

singular value has been studied in [DSDM02].
Note that ‖V − u� v‖∞,∞ 6 λ if and only if

−λ 6 Vij − ui − vj 6 λ

for all i and j, i.e., the following inequalities{
Vij − vj − ui 6 λ

Vkl − vl − uk > −λ
(5.12)
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hold for all i, j, k and l. On the other hand, (5.12) is equivalent to
max
j

(Vij − vj) 6 λ+ ui

max
j

(−Vjk + uj) 6 λ− vk
(5.13)

for all i and k. Thus by (5.13) we have the following proposition.

Proposition 5.23. If (λ, u, v) is a skew singular tuple of V , then

‖V − u� (−v)‖∞,∞ 6 λ. (5.14)

Conversely, if (5.14) holds, we have(
⊥ V
−V > ⊥

)(
u
v

)
6 λ

(
u
v

)
, (5.15)

by the tropical analogue of the Collatz-Wielandt theorem (see e.g. [ABG13]), the infimum λ∗ of λ such
that (5.15) holds is achieved by an eigenvector

(
u∗
v∗
)
, i.e.,(

⊥ V
−V > ⊥

)(
u∗

v∗

)
= λ∗

(
u∗

v∗

)
,

which, together with Proposition 5.23, gives us the following theorem.

Theorem 5.24. Let V ∈ Rn×p. Then, the infimum

λ = inf
A∈Rn×pmax ,rankA=1

‖V −A‖∞,∞

is achieved by some A = u� (−v), where (λ, u, v) is a tropical skew singular tuples of V .

Thus by Theorem 5.13 and Theorem 5.16 we have

Theorem 5.25. A matrix V ∈ Rn×p has a unique skew singular value λ, which equals both one half of
outerradius(Col(V )) and one half of the eigenvalue of V � (−V >).

Remark 5.26. Theorem 5.24 shows that the error in the sup-norm of the best tropical rank-one approx-
imation of a matrix V ∈ Rn×p is given by its skew singular value. This is a tropical analogue of the
classical result in matrix theory, showing that the error in the spectral norm of the best rank-one approx-
imation of a matrix M ∈ Rn×p is given by the second singular value of M . Also, under the Frobenius
norm, the best rank-one approximation error is (σ2

2 + · · · + σ2
m)1/2, where σ1 > σ2 · · · > σm are the

singular values of M with m = min(n, p). Thus, the tropical skew singular value plays the role of the
second singular value.

5.4.4 Rank one approximation of kernels

We now establish an infinite dimensional analogue of the previous results on rank-one approximation.
Let X be a compact metric space and let Y be a non-empty set, we denote by C(X) the set of

continuous functions defined from X to R, and by B(Y ) the set of bounded functions defined from Y to
R.
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Theorem 5.27 (Best tropical rank-one approximation). Suppose that V : X × Y → R is bounded, and
that the family of functions {V (·, y)}y∈Y is equicontinuous. Then, the best tropical rank-one approxi-
mation problem

inf
f∈C(X), g∈B(Y )

sup
x∈X,y∈Y

|V (x, y)− f(x)− g(y)| (5.16)

admits an optimal solution, obtained as follows. We set

H(x, z) = sup
y∈Y

(V (x, y)− V (z, y)) . (5.17)

The value of the infimum is equal to one half of the tropical eigenvalue of H; it is achieved by any
tropical eigenvector f of H and by the function g defined by:

g(y) = 1
2
(

max
z∈X

(V (z, y)− f(z)) + min
z∈X

(V (z, y)− f(z))
)
. (5.18)

Moreover, if Y is a compact metric space, and if the family of functions {V (x, ·)}x∈X is equicontinuous,
the same conclusion holds with in addition g ∈ C(Y ).

We shall need the following result from tropical spectral theory.

Theorem 5.28 (Corollary of Th.2.4 and Th. 2.7 of [KM97]). Suppose X is a compact metric space,
that H : X ×X is bounded, and that the family of functions {H(·, y)}y∈Y is equicontinuous in C(X).
Then, the operator f 7→ Hf admits a tropical eigenvector in C(X). Moreover, the tropical eigenvalue
is unique.

Note that Th. 2.4 and Th. 2.7 of [KM97] allow H to take the −∞ value, and relax the compactness
assumptions on X , modulo technical assumptions on H which are automatically satisfied when X is
compact and H is bounded.

Proof of Theorem 5.27. Let H be defined as in (5.17). The assumption that the family of functions
{V (·, y)}y∈Y is equicontinuous entails that the family of functions {H(·, z)}z∈Z is also equicontinuous.
Moreover, if V is bounded, H is also bounded. Then, it follows from Theorem 5.28 that H admits
a tropical eigenvector f ∈ C(X), associated to the unique tropical eigenvalue λ . Then, defining g
by (5.18), we conclude, arguing as in the proof of Theorem 5.16, that (f, g) is an optimal solution of
the optimization problem (5.16) and that λ/2 is the value of this optimization problem. Finally, if Y is
a compact metric space, and if the family of functions {V (x, ·)}x∈X is equicontinuous, the function g
defined by (5.18) is readily seen to belong to C(X).

Proposition 5.21 carries over the infinite dimensional setting in a similar manner.

5.5 Rank-two approximation in dimension three

In this section we consider a matrix V ∈ (Rmax)3×p. We will show how we can do rank-two approxi-
mation of such matrices in linear time.

Given i ∈ [n] and a ∈ P(Rmax)n, we defineHia the signed tropical hyperplane of type i as following:

Hia := {x ∈ (Rmax)n | xi + ai = max
j 6=i

(xj + aj)} .
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In Proposition 4.35 of Chapter 4, it is shown that the distance of a vector v ∈ (Rmax)n to the signed
tropical hyperplaneHia is given by:

distH(v,Hia) = |vi + ai −max
j 6=i

(vj + aj)| . (5.19)

Now, we consider the case of matrices V ∈ R3×p, so that the columns V·k are in R3. We want to
find a best rank-two approximation of V , i.e. solving the problem (5.3):

min
A∈(Rmax)3×2,B∈(Rmax)2×p

d∞,H(V,AB) ,

from which we will deduce also the case of the d∞,∞.
Owing to Corollary 5.11, we will look for a matrix A ∈ (Rmax)3×2 that minimizes the distance of

the columns of V to the column space Col(A):

min
A∈(Rmax)3×2

max
k∈[p]

distH(V·k,Col(A)) . (5.20)

The following lemma shows that we can restrict the minimization in (5.20) to matrices A such that
the column space Col(A) is a signed tropical hyperplane of some type i ∈ [3].

Lemma 5.29. LetA ∈ (Rmax)3×2. We take i1 ∈ arg mini∈[3](Ai2−Ai1), i2 ∈ arg maxi∈[3]\{i1}(Ai2−
Ai1) and i3 ∈ [3] \ {i1, i2}, we consider the matrix Ã ∈ (Rmax)3×2 given by:

Ãij =
{
Aij if {i, j} 6∈ {(i1, 2), (i2, 1)}
−∞ otherwise

,

and the vector a ∈ (Rmax)3 such that ai1 = Ai31 −Ai11, ai2 = Ai32 −Ai22 and ai3 = 0. We have,

Col(A) ⊂ Col(Ã) = Hi3a .

Proof. First we prove that Col(A) ⊂ Col(Ã) by showing that A·1, A·2 ∈ Col(Ã). We consider α1 =
arg mini∈[3](Ai2 − Ai1) = Ai12 − Ai11 and α2 = arg maxi∈[3](Ai2 − Ai1) = Ai22 − Ai21. We have
A·1 = max(Ã·1,−α2 + Ã·2) ∈ Col(Ã). Indeed, we have Ai11 = Ãi11 = max(Ãi11,−α2 + Ãi12),
Ai21 = −α2+Ai22 = −α2+Ãi22 = max(Ãi21,−α2+Ãi22) and alsoAi31 = max(Ai31,−α2+Ai32) =
max(Ãi31,−α2 + Ãi32). Similarly we can prove that A·2 = max(α1 + Ã·1, Ã·2) ∈ Col(Ã). Therefore,
we deduce that Col(A) ⊂ Col(Ã).

Now, we will prove that Col(Ã) = Hi3a . We check first that Ã·1, Ã·2 ∈ Hi3a . Indeed, using the
definition of a and that Ãi21 = −∞, we have Ãi31 +ai3 = Ai31 = Ai11 +ai1 = max(Ãi11 +ai1 , Ãi21 +
ai2), then Ã·1 ∈ Hi3a . Similarly, we have also Ãi32 +ai3 = Ai32 = Ai22 +ai2 = max(Ãi22 +ai2 , Ãi12 +
ai1), then Ã·2 ∈ Hi3a . Therefore, since Hi3a is a tropical cone, we get that Col(Ã) ⊂ Hi3a . Conversely,
let v ∈ Hi3a . We have vi3 = vi3 + ai3 = max(vi1 + ai1 , vi2 + ai2) = max(vi1 + Ai31 − Ai11, vi2 +
Ai32−Ai22) = max(β1 + Ãi31, β2 + Ãi32), where β1 = vi1 −Ai11 and β2 = vi2 −Ai22. We have also
vi1 = max(β1 + Ãi11, β2 + Ãi12) and vi2 = max(β1 + Ãi21, β2 + Ãi22). Therefore v ∈ Col(Ã), and
so we proved that Col(Ã) = Hi3a .

Example 5.30. We illustrate Lemma 5.29 with the following matrix A, and the corresponding matrix Ã:

A =

 0 0
−1 0
0 −1

 , Ã =

 0 0
−∞ 0

0 −∞

 .
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x1 x2

x3

H1
a

0

A·1A·1

A·2

Ã·1

Ã·2

Figure (5.1) Illustration of Example 5.30.

Here, we have i1 = 3, i2 = 2, i3 = 1 and a = (0, 0, 0)>. We have also Col(A) ⊂ Col(Ã) = H1
a as

shown in Figure 5.1.

Remark 5.31. From Lemma 5.29, we deduce that given i ∈ [3] and a ∈ P(Rmax)3, we denote [3] \
{i} = {i1, i2}, then the matrix A ∈ (Rmax)3×2 given by Ai11 = ai − ai1 , Ai21 = −∞, Ai1 = 0 and
Ai12 = −∞, Ai22 = ai − ai2 , Ai2 = 0 satisfiesHia = Col(A).

So now the problem that we want to solve is:

min
i∈[3]

min
a∈P(Rmax)3

max
k∈[p]

distH(V·k,Hia) . (5.21)

Using the expression of the distance of a vector to a signed hyperplane given by (5.19), the problem
to solve becomes:

min
i∈[3]

min
a∈P(Rmax)3

max
k∈[p]
|Vik + ai −max

j 6=i
(Vjk + aj)| .

For i ∈ [3] fixed, this is a special case of the “one-sided” tropical linear regression problem that we
already discussed in Remark 4.41. We put this discussion again here (Proposition 5.32) for complete-
ness. Given sample points (x(k), y(k)) in Rn × Rm, for k ∈ [p], compute

min
F

max
k∈[p]
‖y(k) − Fx(k)‖∞ , (5.22)

where the minimum is taken over tropical matrices F of sizem×n, and the product Fx(k) is understood
tropically. Up to a straightforward duality, this problem was solved in [But10, Theorem 3.5.2], the result
being attributed there to Cuninghame-Green [CG79]. Alternatively, this solution may be recovered by
combining [CF00, Coro. 1] with the explicit formula of the tropical projection [CGQ04, Th. 5]. The
following proposition gives the explicit solution.

Proposition 5.32 (Theorem 3.5.2 of [But10]). We consider the matrix F̄ ∈ Rm×n defined by F̄ij :=
mink∈[p](y

(k)
i − x

(k)
j ). Let δ := maxk∈[p] ‖y(k) − F̄ x(k)‖∞, and F opt

ij = F̄ij + δ/2. Then, F opt is the
greatest optimal solution of (5.22), and it can be computed in O(mnp) arithmetic operations.

for a fixed i ∈ [3] in our problem (5.21), we can take ai = 0 because a is defined up to an additive
constant, and we identify F as (aj)j 6=i, x(k) as (Vjk)j 6=i and y(k) as Vik. Then, by applying Proposi-
tion 5.32, we get the following result:
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Corollary 5.33. Let V ∈ R3×p. For i ∈ [3] fixed, we consider ∀j ∈ [3] \ {i}, āj = mink∈[p](Vik − Vjk)
and δ = maxk∈[p] |Vik −maxj 6=i(āj + Vjk)|. We take ∀j ∈ [3] \ {i}, aopt

j = āj + δ/2 and aopt
i = 0. We

have aopt is the greatest optimal solution of the problem mina∈P(Rmax)3 maxk∈[p] distH(V·k,Hia), and it
can be computed in O(p) arithmetic operations. Moreover, maxk∈[p] distH(V·k,Hiaopt) = δ/2.

Algorithm 10 Rank two decomposition in dimension three
1: Input: matrix V ∈ R3×p.
2: for i ∈ [3] do:
3: ∀j ∈ [3] \ {i}, āij = mink∈[p](Vik − Vjk) and δi = maxk∈[p] |Vik −maxj 6=i(āij + Vjk)|,
4: ∀j ∈ [3] \ {i}, aij = āij + δi/2 and aii = 0,
5: ei = δi/2,
6: done
7: take i∗ ∈ arg mini∈[3] e

i, and a∗ = ai
∗
,

8: take {i1, i2} = [3] \ {i∗} and A∗i11 = −a∗i1 , A
∗
i21 = −∞, A∗i∗1 = 0 and A∗i12 = −∞, A∗i22 =

−a∗i2 , A
∗
i∗2 = 0,

9: ∀k ∈ [p], BH
1k = min(Vi1k −A∗i11, Vi∗k) and BH

2k = min(Vi2k −A∗i22, Vi∗k),
10: ∀k ∈ [p], B∞·k = BH

·k + ctr(V·k, A∗BH
·k )e,

11: return i∗, a∗, A∗, BH and B∞.

Theorem 5.34. Let V ∈ R3×p, Algorithm 10 returns the best rank-two approximation of the matrix V ,
such that

d∞,H(V,A∗BH) = min
A∈(Rmax)3×2,B∈(Rmax)2×p

d∞,H(V,AB)

= min
A∈(Rmax)3×2

max
k∈[p]

distH(V·k,Col(A)) = max
k∈[p]

distH(V·k,Hi
∗
a∗)

= 2d∞,∞(V,A∗B∞) = 2 min
A∈(Rmax)3×2,B∈(Rmax)2×p

d∞,∞(V,AB) ,

and needs O(p) arithmetic operations.

Proof. From Lemma 5.29, we know that we can restrict the minimization in (5.20) to the column
spaces Col(A) that are signed hyperplanes of the form Hia with a ∈ P(Rmax)3 and i ∈ [3], i.e. we
need to solve (5.21). For i ∈ [3] fixed, by Corollary 5.33, lines 3 and 4 give an ai that is optimal in
mina∈P(Rmax)3 maxk∈[p] distH(V·k,Hia), and, line 7, ensures that (i∗, a∗) is the solution to (5.21).

Now, by Remark 5.31, line 8 gives a matrix A∗ such that Hi∗a∗ = Col(A∗), so that A∗ is optimal in
minA∈(Rmax)3×2 maxk∈[p] distH(V·k,Col(A)).

Let k ∈ [p], we have by definition of Col(A∗),

distH(V·k,Hi
∗
a∗) = distH(V·k,Col(A∗)) = min

B·k∈(Rmax)2
dH(V·k,max

j∈[2]
(A∗·j +Bjk)) . (5.23)

We have distH(V·k,Hi
∗
a∗) = dH(V·k, PHi∗

a∗
(V·k)), where the vector p = PHi∗

a∗
(V·k) is the projec-

tion of V·k into the hyperplane Hi∗a∗ . Therefore, a vector B·k that achieves the minimum in (5.23)
is such that maxj∈[2](A∗·j + Bjk) = p. From Lemma 4.33 of Chapter 4, we get the expression of
the projection into a hyperplane; we have pi∗ = min(Vi∗k,−a∗i∗ + max(a∗i1 + Vi1k, a

∗
i2 + Vi2k)) =

min(Vi∗k,max(Vi1k−A∗i11, Vi2k−A∗i22)), pi1 = min(Vi1k,−a∗i1 +a∗i∗+Vi∗k) = min(Vi1k, A∗i11+Vi∗k)
and pi2 = min(Vi2k,−a∗i2 + a∗i∗ + Vi∗k) = min(Vi2k, A∗i22 + Vi∗k).
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We have pi1 = maxj∈[2](A∗i1j+Bjk) = A∗i11 +B1k becauseA∗i12 = −∞. Then,B1k = min(Vi1k−
A∗i11, Vi∗k). Similarly using pi2 we get thatB2k = min(Vi2k−A∗i22, Vi∗k). Finally, by using the property
max(min(a, c),min(a, c)) = min(max(a, b), c), we have maxj∈[2](A∗i∗j +Bjk) = max(B1k, B2k) =
max(min(Vi1k−A∗i11, Vi∗k),min(Vi2k−A∗i22, Vi∗k)) = min(max(Vi1k−A∗i11, Vi2k−A∗i22), Vi∗k) = pi∗ .
Therefore, this optimal matrix B, for (5.23), that we are looking for is exactly the one defined as BH in
line 9, and it satisfies maxk∈[p] distH(V·k,Col(A∗)) = minB∈(Rmax)2×p maxk∈[p] dH(V·k,maxj∈[2](A∗·j+
Bjk)) = minB∈(Rmax)2×p d∞,H(V,A∗B) = d∞,H(V,A∗BH).

Finally, using Corollary 5.12, we deduce that i∗, a∗, A∗, BH and B∞ satisfy the desired property.
We check easily that each of the lines 3, 9 and 10 needs O(p) arithmetic operations, and that the

other lines need O(1) arithmetic operations. Therefore Algorithm 10 has a complexity of O(p).

We observe that max(A∗·1, A∗·2) = −a∗ is the apex of the optimal signed hyperplaneHi∗a∗ .
Example 5.35. We illustrate Algorithm 10 with the following matrix :

V =

 1 0 0 1
0 1 −1 −1
−1 −1 1 0

 .

Using Algorithm 10, we obtain the best ‖ · ‖∞,H and ‖ · ‖∞,∞ approximations of rank 2 of the matrix
V , given by the following:

A∗ =

 0 0
0 −∞
−∞ 0

 , BH =
(

0 0 −1 −1
−1 −1 0 0

)
and B∞ =

(
0.5 0.5 −0.5 −0.5
−0.5 −0.5 0.5 0.5

)
,

with the following approximation errors:

min
A∈(Rmax)3×2,B∈(Rmax)2×4

d∞,H(V,AB) = d∞,H(V,A∗BH) = 1 ,

min
A∈(Rmax)3×2,B∈(Rmax)2×4

d∞,∞(V,AB) = d∞,∞(V,A∗B∞) = 0.5 .

We get also that Col(A∗) = Hi∗a∗ , where Hi∗a∗ is a signed hyperplane with a sign i∗ = 1 and and apex
a∗ = (0, 0, 0)>. Figure 5.2 shows the signed hyperplane H1

a∗ that best approximates the set of point
(V·k)k∈[4] and also A∗.

x1 x2

x3

H1
a∗

0

V·1 V·2

V·3

V·4

A∗
·1

A∗
·2

Figure (5.2) Illustration of Example 5.35.



CHAPTER 6
Conclusion and perspectives

In Chapter 2, we showed that a Nesterov accelerated scheme allows to accelerate the convergence of
value iteration for non-symmetric affine fixed point problems (0-player), when the involved matrix has
its spectrum in a specific region of the complex plane. We applied this result to obtain an accelerated
policy iteration algorithm for Markov decision processes (1-player). An interesting open problem is to
identify the conditions under which this Nesterov’s type of scheme still yields an acceleration in the
case of non-linear fixed point problems. The case of piecewise linear operators like the Bellman op-
erator, is particularly interesting, since it will correspond to accelerating the value iteration algorithm
for Markov decision processes. While the numerical experiments that we did in the case of accelerated
value iteration for MDPs are promising, the theoretical analysis of the convergence of this accelerated
scheme remains inherently difficult. Indeed, the characterization of the set of “accelerable” 0-player
problems that we provided explains why this problem is difficult: in the 0-player problem, the conver-
gence conditions are governed by fine spectral properties which have no known non-linear analogue in
the one-player case.

In Chapter 3, we developed a deflation technique allowing to reduce a mean payoff problem to a
discounted one under the hypothesis of existence of a distinguished state that is accessible from all other
states and under all policies. This reduction allows to transfer results from the discounted case to the
mean payoff case which is generally more difficult. In particular, we show that, as in the discounted
case [SWWY18], we can develop a sublinear algorithm solving mean payoff stochastic games based
on variance reduction techniques. An interesting question is related to the variance reduction value
iteration algorithm proposed in [SWWY18]. This algorithm has a number of iterations that is fixed
a priori which do not allow to profit from the natural speedup in convergence for generic instances.



146 Chapter 6. Conclusion and perspectives

So, it would be interesting to develop a variance reduction value iteration algorithm with an adaptive
number of iterations first in the case of discounted games. Then, one could combine it with the deflation
technique that we developed, to obtain a variance reduction deflated value iteration algorithm with an
adaptive number of iterations in the case of mean payoff problems.

In Chapter 4, we solved the tropical linear regression problem, when the metric is of sup-norm type,
and for tropical linear spaces of codimension 1 (tropical hyperplanes), but for a configuration of points
of arbitrary cardinality. Several open problems related to the present work arise when changing either
the class of metrics or of tropical spaces.

For instance, we may replace Hilbert’s metric by the Lp-projective metric, i.e., the metric obtained
by modding out the Lp normed space Rn by the action of additive constants, or by replacing the Haus-
dorff distance in (4.16) by a Lp type distance, for p ∈ [1,∞). Approaches based on mixed linear
programming, or on local descent, have been proposed in [YZZ19, PYZ20, Hoo17] in some specific
cases.

Another generalization consists in replacing hyperplanes by tropical linear spaces of a codimension
not necessarily 1. We recall that a general tropical linear space, can be defined as

L(p) =
⋂
I

{x ∈ (Rmax)n | max
i∈I

(pI\{i} + xi) is achieved at least twice} ,

where p = (pI) ∈ (R ∪ {−∞})(
n
k) represents the tropical Plücker coordinates of an element of the

tropical Grassmannian Grtrop
k,n , see [SS04, FR15], and where the intersection is taken over all subsets I

of [n] of cardinality k + 1. When k = n− 1, L(p) is a tropical hyperplane. Hence, given a set of points
V , a general version of tropical linear regression problem can be written as

min
p∈Grtrop

k,n

max
v∈V

min
x∈L(p)

‖v − x‖H . (6.1)

We solved this problem when k = n−1 in Chapter 4. When k = 1, L(p) is reduced to a single point, and
problem (6.1) is exactly the rank-one approximation of the matrix V whose columns are the elements
of the set V . We proved in Chapter 5 that this problem can be solved in strongly polynomial time. An
interesting open question is to solve the problem (6.1) when 1 < k < n − 1. The same problem may
be considered when p is a valuated matroid, or when it is inside the image of the Stiefel map [FR15],
meaning that p is given by the maximal tropical minors of a matrix. A version of the latter problem (with
a L1-type error) is considered in [YZZ19].

In Chapter 5, we studied a tropical analogue of low-rank approximation for matrices. We estab-
lished general properties of tropical low-rank approximation, and identified some very special classes,
corresponding to rank-one and rank-two approximations, that are polynomial-time solvable. It will be
interesting to identify wider classes of tractable low-rank approximation problems. Here, the linear
space L(p) in (6.1) is replaced by the column space Col(A) of a tropical matrix A with r columns

min
A∈(Rmax)n×r

max
v∈V

distH(v,Col(A)) , (6.2)

which is equivalent to the tropical rank-r approximation of the matrix V ∈ (Rmax)n×m (see Proposi-
tion 5.10)

min
A∈(Rmax)n×r,B∈(Rmax)r×m

d∞,H(V,AB) . (6.3)

Here also, another generalization consists is replacing Hilbert’s metric or sup-norm metric by the Lp-
projective metric, for p ∈ [1,∞).



APPENDIX A
Résumé en français

Dans cette thèse, nous développons des algorithmes accélérés pour les processus de décision Markoviens
(MDP) et plus généralement pour les jeux stochastiques à somme nulle (SG). Nous abordons également
les problèmes de meilleure approximation qui se posent en géométrie tropicale. Ces deux domaines
sont étroitement liés. Comme nous le montrerons dans la thèse, nous pouvons calculer des classes de
problèmes de meilleure approximation tropicale en les réduisant à la résolution de jeux à somme nulle.

La programmation dynamique est l’une des principales approches utilisées pour résoudre les prob-
lèmes MDP et SG. Elle permet de transformer un jeu en un problème de point fixe faisant intervenir un
opérateur appelé opérateur de Shapley (ou opérateur de Bellman dans le cas de MDP). L’itération sur les
valeurs (VI) et l’itération sur les politiques (PI) sont les deux principaux algorithmes permettant de ré-
soudre ces problèmes de point fixe. Cependant, dans le cas d’instances à grande échelle, ou lorsque l’on
veut résoudre un problème à paiement moyen (où il n’y a pas de facteur d’escompte pour les paiements
reçus dans le futur), les méthodes classiques deviennent lentes.

Dans la première partie de cette thèse, nous développons deux raffinements des algorithmes clas-
siques d’itération sur les valeurs ou sur les politiques. Nous proposons d’abord une version accélérée
de l’itération sur les valeurs (AVI) permettant de résoudre des problèmes de point fixe affines avec des
matrices non auto-adjointes, ainsi qu’une version accélérée de l’itération sur les politiques (API) pour
MDP, basée sur AVI. Cette accélération étend l’algorithme de gradient accéléré de Nesterov à une classe
de problèmes de point fixe qui ne peuvent pas être interprétés en termes de programmation convexe.
Nous caractérisons les spectres des matrices pour lesquelles cet algorithme converge avec un taux de
convergence traduisant une accélération. Nous introduisons également un algorithme accéléré de degré
d, et montrons qu’il donne un taux de convergence multi-accéléré sous des conditions plus exigeantes
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sur le spectre des matrices. Nous montrons les performances de ces schémas d’accélération simples et
multiples, sur des classes d’instances dans lesquelles les conditions spectrales d’accélération sont rem-
plies. Ces classes comprennent un cadre de matrices aléatoires ainsi que l’équation de Hamilton Jacobi-
Bellman dans le cas de petites dérives. Une autre contribution est une version déflatée de l’itération
sur les valeurs (DVI) pour résoudre la version à paiement moyen des jeux stochastiques. Cette méth-
ode permet de transformer un problème à paiement moyen en un problème escompté sous l’hypothèse
d’existence d’un état distingué accessible depuis tous les autres états et sous toutes les politiques. Cette
réduction combine un argument d’échelle (une version combinatoire de la h-transformation de Doob is-
sue de la théorie des frontières des processus de Markov) et une technique de déflation: à un problème à
paiement moyen, on associe un problème escompté, avec un taux d’escompte qui dépend de l’état. Nous
obtenons un taux de contraction explicite pour le problème escompté qui dépend du temps de frappe
maximal de l’état distingué, et qui apparaît dans nos bornes de complexité. En combinant cette méthode
de déflation avec des techniques de réduction de la variance, nous obtenons également un algorithme
sous-linéaire permettant de résoudre les jeux stochastiques à paiement moyen sous la même hypothèse
d’accessibilité d’un état distingué.

Dans la deuxième partie de cette thèse, nous étudions différents problèmes de meilleure approx-
imation tropicale. Nous résolvons d’abord un problème de régression linéaire tropicale consistant à
trouver la meilleure approximation d’un ensemble de points par un hyperplan tropical. Notre résultat
principal est un théorème de dualité forte montrant que la valeur de ce problème de régression coïncide
avec le rayon maximal d’une boule de Hilbert incluse dans un polyèdre tropical. Cela nous permet
de fournir un certificat d’optimalité qui peut être interprété géométriquement comme une collection
de n points “témoins” parmi l’ensemble des points considéré où n est la dimension. Notre approche
implique également que la régression linéaire tropicale est équivalente en temps polynomial à la réso-
lution de jeux à paiement moyen. Nous appliquons ces résultats à un problème inverse de la théorie
des enchères. Nous étudions également un analogue tropical de l’approximation de petit rang pour les
matrices. Ceci est motivé par les méthodes approchées en programmation dynamique, dans lesquelles
la fonction valeur est approximée par un supremum de fonctions élémentaires. Nous établissons des
propriétés générales de l’approximation tropicale de petit rang et identifions des classes particulières
de problèmes d’approximation de petit rang qui peuvent être résolus en temps polynomial. Nous don-
nons une interprétation géométrique au problème d’approximation matricielle de petit rang, en termes
d’approximation d’une collection de points par un sous-module tropical avec peu de générateurs. Nous
montrons en particulier que la meilleure approximation matricielle tropicale de rang un équivaut à trou-
ver le rayon minimal d’une boule de Hilbert contenant un polyèdre tropical.
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Titre : Jeux répétés à somme nulle: algorithmes accélérés et meilleure approximation tropicale

Mots clés : Jeux stochastiques, processus de décision Markoviens, accélération de Nesterov, itération sur les
valeurs déflatée, régression linéaire tropicale, approximation tropicale de petit rang

Résumé : Dans cette thèse, nous développons des
algorithmes accélérés pour les processus de décision
Markoviens (MDP) et plus généralement pour les jeux
stochastiques à somme nulle (SG). Nous abordons
également les problèmes de meilleure approximation
qui se posent en géométrie tropicale.
Dans la première partie de cette thèse, nous
développons deux raffinements des algorithmes clas-
siques d’itération sur les valeurs ou sur les politiques.
Nous proposons d’abord une version accélérée de
l’itération sur les valeurs (AVI) permettant de résoudre
des problèmes de point fixe affines avec des matrices
non auto-adjointes, ainsi qu’une version accélérée de
l’itération sur les politiques (API) pour MDP, basée
sur AVI. Nous introduisons également un algorithme
accéléré de degré d, et montrons qu’il donne un taux
de convergence multi-accéléré. Une autre contribu-
tion est une version déflatée de l’itération sur les
valeurs (DVI) pour résoudre la version à paiement
moyen des jeux stochastiques. Cette méthode permet
de transformer un problème à paiement moyen en
un problème escompté. En combinant cette méthode
de déflation avec des techniques de réduction de la

variance, nous obtenons un algorithme sous-linéaire
résolvant les jeux stochastiques à paiement moyen.
Dans la deuxième partie de cette thèse, nous
étudions différents problèmes de meilleure approxi-
mation tropicale. Nous résolvons d’abord un problème
de régression linéaire tropicale consistant à trouver
la meilleure approximation d’un ensemble de points
par un hyperplan tropical. Nous montrons que la va-
leur de ce problème de régression coı̈ncide avec le
rayon maximal d’une boule de Hilbert incluse dans un
polyèdre tropical, et que ce problème est équivalent
en temps polynomial aux jeux à paiement moyen.
Nous appliquons ces résultats à un problème inverse
de la théorie des enchères. Nous étudions également
un analogue tropical de l’approximation de petit rang
pour les matrices. Ceci est motivé par les méthodes
approchées en programmation dynamique, dans les-
quelles la fonction valeur est approximée par un su-
premum de fonctions élémentaires. Nous établissons
des propriétés générales de l’approximation tropicale
de petit rang et identifions des classes particulières de
problèmes d’approximation de petit rang qui peuvent
être résolus en temps polynomial.

Title : Zero-sum repeated games: accelerated algorithms and tropical best approximation

Keywords : Stochastic games, Markov decision processes, Nesterov acceleration, deflated value iteration,
tropical linear regression, tropical low-rank approximation

Abstract :
In this thesis, we develop accelerated algorithms for
Markov decision processes (MDP) and more gene-
rally for zero-sum stochastic games (SG). We also ad-
dress best approximation problems arising in tropical
geometry.
In the first part of this thesis, we develop two refine-
ments of the classical value or policy iteration algo-
rithms. We first propose an accelerated version of va-
lue iteration (AVI) allowing to solve affine fixed point
problems with non self-adjoint matrices, alongside
with an accelerated version of policy iteration (API)
for MDP, building on AVI. We also introduce an acce-
lerated algorithm of degree d, and show that it yields
a multiply accelerated rate of convergence. Another
contribution is a deflated version of value iteration
(DVI) to solve the mean payoff version of stochastic
games. This method allows one to transform a mean
payoff problem to a discounted one. Combining this
deflation method with variance reduction techniques,

we derive a sublinear algorithm solving mean payoff
stochastic games.
In the second part of this thesis, we study tropical
best approximation problems. We first solve a tropi-
cal linear regression problem consisting in finding the
best approximation of a set of points by a tropical hy-
perplane. We show that the value of this regression
problem coincides with the maximal radius of a Hil-
bert’s ball included in a tropical polyhedron, and that
this problem is polynomial-time equivalent to mean
payoff games. We apply these results to an inverse
problem from auction theory. We study also a tropi-
cal analogue of low-rank approximation for matrices.
This is motivated by approximate methods in dynamic
programming, in which the value function is approxi-
mated by a supremum of elementary functions. We
establish general properties of tropical low-rank ap-
proximation, and identify classes of low-rank approxi-
mation problems that are polynomial-time solvable.

Institut Polytechnique de Paris
91120 Palaiseau, France
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