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Abstract

Designing e�cient hull coatings for acoustic stealth of submerged vehicles remains a
challenge that evolves along with improvements in sonar performance. Low frequency
performance is particularly important for military applications, due to the long range
propagation properties of low frequency signals in the sea. Acoustic metamaterials are
now widely recognised as promising candidates for such underwater coatings. The aim
of this research is to study metamaterials for underwater applications, from theoretical
analysis to experimental characterisation.

This thesis presents analytical or semi-analytical models based on a transfer matrix
formalism to homogenise periodic structures. These methods are then used in a com-
putationally e�cient optimisation approach to obtain metamaterial designs that meet a
goal in terms of their anechoism coe�cient, hull decoupling coe�cient, or both. The
entirety of this approach is �rst carried out for multilayered structures then extended to
metamaterials with macro-inclusions to which a degree of complexity is added. Finally,
measurement methods in a water tank facility are implemented and validated. They
are then used for the experimental characterisation of panels manufactured within the
framework of the thesis.
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Chapter 1

Introduction and Literature Review

In this introduction, the concepts of underwater acoustic discretion and stealth are
introduced and some of the current challenges are highlighted. In this context, acoustic
metamaterials occur to be promising candidates to improve the discretion and stealth
performances of underwater vehicles. A literature review is then conducted, focusing on
the concept of metamaterials and some of their speci�c uses in an underwater
environment. Following the literature review, the de�nition for concepts employed in
this thesis are given. Finally, the thesis overview states the main goals of the current
research and presents the thesis plan.
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1.1 Context : Underwater Discretion and Stealth

For navies and naval industries, underwater sound has always been a crucial matter. In the
deep seas or oceans, sound is the main navigation and communication mean for submerged
vehicles. Acoustic waves are also used for mine warfare, sea �oor characterisation and
submarine detection with the help of SONAR (SOund NAvigation and Ranging) systems.
Such SONAR systems may be used for passive detection or active etection operations,
both concepts being illustrated in Figure 1.1.

Passive

SONAR

Passive

SONAR

Vibrating hull

Hull decoupling coating for 

reduction of the radiated pressure

Active

SONAR

Active

SONAR

Incident wave

Echo

Radiated sound

Anechoic coating for 

reduction of acoustic echo

Figure 1.1 � Concepts of passive and active detection. To avoid detection by passive
sonar, a hull decoupling coating can be used. To avoid detection by active sonar, anechoic
coating to reduce the back-scattered energy can be used.

Underwater passive detection consists in analysing ambient sound in order to recognise
characteristic sounds from a submarine or marine vessel. Those sounds mainly originate
from vibrations of items of machinery, engines and propellers, which overall result in
radiated noise that can be detected by an adverse passive SONAR system. Against such
a threat, the discretion of a submarine or underwater vehicle is crucial. A solution,
amongst others, is to place hull decoupling coatings on the submarine, which signi�cantly
reduce noise radiated from the hull.
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Active detection is the other main acoustic threat, consisting in an acoustic wave sent in
the underwater environment and in the detection of the potential re�ected waves from
an obstacle, thus informing on its presence and location. The vehicle stealth is thus also
essential. Target strength, de�ned as the ratio between the back-scattered acoustic energy
and the incident acoustic energy, can be reduced by adapting the external shape, by using
acoustic de�ectors or by applying anechoic coatings made of absorbing materials on the
submarine outer hull in order to minimise back-scattered echoes.

Anechoic and hull decoupling coatings have been developed and used since World War
II, starting with the Alberich-type design which consists of lattices of resonant cavities in
an elastomer or rubber matrix, as represented in Figure 1.2. The cavities' diameters are
tuned to maximise absorption for several speci�c frequencies. Nevertheless, there are also
some non-acoustic requirements for the design of coatings, such as the weight and the total
thickness. In particular, the static compressibility and stability of acoustic performances
as a function of depth in the ocean must be taken into account in the design process of a
coating. Hence, some coatings such as Alberich coatings can lead to interesting acoustic
performances. However, their performance is often limited to speci�c frequencies, and in
addition they may not comply to non-acoustic requirements.

Figure 1.2 � (a) Section view, (b) top view and (c) sample picture [1] of a typical design
of an acoustic coating comprising soft rubber embedded with voided inclusions.

Obtaining strong absorption coe�cients over a broadband low frequency range (i.e. with
deep sub-wavelength coatings) remains challenging. Very low frequency performance is
especially important for military applications, since active detection systems usually use
low frequency signals due to their long-range propagation properties in the sea. Acoustic
metamaterials appear to be a potential solution to such a challenge, opening up new
opportunities for the design of submarine coatings, mainly due to their strong acoustical
e�ects at frequencies much lower than the ones corresponding to the typical coating
thickness or inclusion sizes. In the following literature review, the concept of acoustic
metamaterials is presented.
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1.2 Thesis Overview

1.2.1 Goals

The aim of this research is to study, develop, implement and apply methods and tools that
are useful to analyse and design metamaterials. More speci�cally, these tools and methods
are to be used to examine structures for underwater applications, such as anechoic and
hull decoupling coatings.

In this work, tools and methods are implemented for a full research and development pro-
cess, from the theoretical analysis to the experimental characterisation of a structure. As
such, analytical models or semi-analytical models need used or developed to theoretically
study a design. Such analytical models or semi-analytical models are then to be used
in a computationally e�cient optimisation approach aiming to obtain ideal metamaterial
designs for the anechoism, the hull decoupling, or both coe�cients. Experimental vali-
dation are then carried out, for which measurement methods are developed and validated.

1.2.2 Plan

The manuscript is divided in two main parts. In Part I, multilayered designs are studied.
They are simple but still interesting designs, for which the homogenisation, optimisation
and experimental approaches are introduced. Designs of greater complexity with macro-
inclusions are then considered in Part II. A summary of each Chapter is presented in what
follows.

Chapter 2 introduces the notions of the transfer matrix and homogenisation models. In
particular, it presents an e�ective medium theory based on a transfer matrix approach.
This homogenisation process aims to e�ectively represent any multilayered arrangement
as a �uid or a Willis-type �uid (depending on the symmetry of the medium). E�ective
properties, such as the e�ective wavenumber, impedance, density, bulk modulus, can be
derived and used to characterise an e�ective medium of a given length. Such e�ective
media can predict the scattering response of multilayered media of any length.

In Chapter 3, the e�ective medium method for multilayered media presented in Chapter
2 is used in an optimisation approach. The objective is to improve the anechoism perfor-
mance or the hull decoupling performance by optimising the layer arrangement. Layers
may be either steel or polyurethane with micro-balloons. The algorithm is �rst validated
on a test case. Optimisation results are then analysed and a feature of performance is
found for each coe�cient. An asymmetric design is selected for its anechoic performance.

Chapter 4 aims at presenting the measurements for the selected con�guration of Chapter
3. Beforehand, the principle of underwater measurements is exposed. An original method,
referred to as the 3-point method, is also presented. The method's validity and robustness
are assessed through measurements on an aluminium panel, for which edge-di�raction
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e�ects are signi�cant. The method is then applied to the polyurethane used in Chapter
3 in order to experimentally retrieve the e�ective speed of sound in the medium. Finally,
the layer arrangement selected is measured and the anechoism coe�cient is compared to
the predictions.

Two retrieval methods, referred to as the direct inversion method and the di�erential
method, are presented in Chapter 5. Both methods lead to the e�ective properties of a
symmetric unit cell containing a macro-inclusion. These e�ective properties can then be
used to characterise e�ective media, from which predictions of the scattering coe�cients
are made for designs comprising di�erent numbers of unit cells. The retrieval methods
are validated on a multilayered structure, for which the retrieved e�ective properties are
found to be the same as those obtained using the transfer matrix model in Chapter 2.
Two-dimensional designs comprising periodic cylindrical rigid or voided inclusions in a
soft elastic matrix are then studied. Results led to the creation of an hybrid prediction
method, which uses both the direct inversion method and the di�erential method, to
predict the scattering response of a two-dimensional design of any length.

In Chapter 6, the two retrieval methods are extended for asymmetric structures with
macro-inclusions. These extended methods are applied to an asymmetric variant of the
locally resonant medium comprising steel inclusions, studied in Chapter 5. E�ects of the
asymmetry are investigated. A second case study considers an Alberich-type medium
for which Willis coupling is introduced by combining two asymmetric layers to compare
the results of the extended method to another approach that breaks the structure down
in symmetric layers. It is shown that with such approach, unexpected results can be
obtained.

Chapter 7, the two retrieval methods are used to create a database of e�ective properties
associated to di�erent unit cell designs. This database is used as an input into an
optimisation algorithm that aims to optimise the unit arrangement of structures for
anechoism performance. As such, each unit is seen as an e�ective layer, so the algorithm
approach introduced in Chapter 3 is used. Complex structures with macro-inclusions can
be therefore be optimised with short computation times. Moreover, similar performance
features as in Chapter 3 are found using the e�ective impedance along the medium
thickness.

In Chapter 8, the Alberich medium studied in Chapter 6 is experimentally analysed.
For this purpose, the new challenges originated from the periodicity of the grating are
highlighted. The 3-point method is tested on this non-homogeneous medium and extended
for greater accuracy. Experimental results are then compared to predictions.

A general summary of the manuscript is �nally proposed, in which of the main novelty
and relevant results are summarised. Ideas for further work are also given.
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1.3 Literature Review

1.3.1 Concept of Acoustic Metamaterial

Etymologically, metamaterial quali�es a material that goes beyond materials. The reason
for such a term is found in the capacity of these arti�cial materials to exhibit properties
that cannot be found for conventional materials. In the context of sinusoidal steady-
state analysis for acoustic metamaterials, the dynamic material properties can reach
negative values or strongly vary with frequency, contrarily to conventional materials.
Hence, the most common accepted de�nition of an acoustic metamaterial is : "Arti�cial
material with the capacity to exhibit unusual properties, that is to say with values or
strong variations with frequency of the constitutive acoustic parameters not found for
conventional materials. These unusual aspects arise from the collective manifestation of
the internal constituent units in the structure, such as resonant inclusions arranged in a
host matrix" [2]. Nevertheless, a clari�cation has to be added regarding these unusual
acoustics properties. Due to the complex structure of acoustic metamaterials, the most
common study scheme involves the use of an equivalent medium that reproduces the
overall behaviour of the metamaterial. The equivalent medium is referred to as an
e�ective medium, as shown in Figure 1.3. E�ective properties of a metamaterial are
thus the material properties of its e�ective medium. Such a homogenisation approach
is usually valid if the scale of the constituent unit is much smaller than the wavelength.
Nonetheless, e�orts have been made to extend conventional e�ective medium theories to
higher frequency regimes [3�5].

Effective medium

Figure 1.3 � Homogenisation approach, in which a composite material is represented by
an e�ective medium.

Most acoustic metamaterial concepts' features rely on the behaviour of inclusions within
a matrix, which may be arranged periodically or randomly distributed. It is then worth
mentioning the distinction of a phononic crystal, which is a medium comprising of periodic
arrangements of inclusions which produce wave phenomena resulting from the periodicity
of the scatterers. If the inclusions are resonant, the medium may also be referred to as
a locally resonant phononic crystal, and thus become a periodic metamaterial since the
behaviour of the inclusion is involved [6].

Most research on metamaterials include the development or application of an homogenisa-
tion method to obtain one or several e�ective material properties, which are commonly the
mass density, the bulk modulus or the refractive index. The wavenumber and impedance
are also widely used. Acoustic metamaterials have been of great interest to the scienti�c
community as unusual values and strong variations of these dynamic e�ective properties
are a translation of physical phenomena occurring in the composite structure. For ex-
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ample, a negative e�ective bulk modulus corresponds to a resonance that results in an
expansion of the structure while loaded under a compressive force, as illustrated in Figure
1.4(a).

Figure 1.4 � Schematic illustrations of the dynamic behaviors of locally resonant
materials with negative-valued e�ective parameters submitted to harmonic excitation.
(a) A material possessing a negative e�ective bulk modulus (κ < 0) supports a volume
expansion (∆V > 0) upon an isotropic compression (∆P > 0) (b) The acceleration a of
a material possessing a negative e�ective mass density (ρ < 0) is opposite to the driving
force F . [7].

A negative bulk modulus can be achieved by using a Helmholtz resonator, which creates
the phenomenon of air resonance in a cavity [8], as shown in Figure 1.5(a). It can also be
obtained using constituent units comprising side holes with both ends opened [9], as in
Figure 1.5(b), or with periodic distributions of cylindrical boreholes in a waveguide [10],
with balloon-like soft resonators [11], or even with some speci�c unit shapes resulting
from an optimisation algorithm [12]. Broadly, the negative bulk modulus results from a
monopolar resonance of the component units [13].

Membrane Side hole

Figure 1.5 � (a) Schematic cross-sectional view of a Helmholtz resonator. The sample is
made of aluminium, consisting of a rectangular cavity and a cylindrical neck. The cavity
and neck are �lled with water, and are connected at the same side to a square water duct.
The inset illustrates the analogy between a Helmholtz resonator and an inductor�capacitor
circuit, showing the �uidic inductance due to the neck, and the acoustic capacitance due
to the cavity [8]. (b) Composite structure consisting of interspaced membranes and side
holes [9].
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Another typical metamaterial feature is an e�ective density that becomes negative. This
is the result of a dipolar resonance of the building units [13]. The dipolar resonance cor-
responds to a resonance that leads to a motion of the centre of mass of the particle which
is out of phase with an incident directional pressure �eld, as illustrated in Figure 1.4(b).
With the appropriate polarisation, dipolar resonance can lead to signi�cant transmission
attenuation. The blocking e�ect capacity due to negative e�ective density can be easily
demonstrated using a mass-spring structure [14], as shown in Figure 1.6(a). Nonetheless,
the unusual low-frequency bandgaps observed in such negative density metamaterials are
generally only present in a narrow bandwidth around resonant frequencies. Practically,
dipolar resonances that lead to negative values of the e�ective density can appear using
constituent units consisting of a heavy mass core surrounded by a soft polymer, both being
arranged in a relatively rigid matrix [15] (Figure 1.6(b)). A similar e�ect can be achieved
using, amongst others, membrane-type metamaterials [16], mass-spring systems [17] or
anisotropic cylindrical scatterers penetrating in one of the rigid walls de�ning a 2D
acoustic waveguide [18], as shown in Figure 1.6(c).

Figure 1.6 � (a) Mass-spring structure with negative e�ective mass [14]. (b) Cross section
of a coated lead sphere that forms the basic structure unit [15]. (c) Schematic view of an
array of anisotropic scatterers embedded in a 2D waveguide [18].

Therefore, local resonance of a constituent unit cell can lead to negative values and/or
strong variations of either the bulk modulus or the e�ective density, which then add
an imaginary part to the speed of sound. This in turn means that the acoustic wave
amplitude dissipates with increasing distance. A considerable amount of research on
acoustic metamaterials also aims at combining constitutive units leading to a monopolar
resonance (negative bulk modulus) with resonant inclusions creating a dipolar resonance
(negative mass density). As such, the phase speed is again a real-valued number, implying
wave propagation, although with a twist: the energy and phase velocities are in opposite
directions. This response provides metamaterials with the capability to produce unnatural
e�ects like negative refraction. Some examples are metamaterials composed of membranes
and side holes [9] or of Helmholtz and rod-spring resonators [19]. Another way to achieve
the double negativity is to design hybrid resonators, producing a hybridisation between
monopolar and dipolar resonances. Such resonators could be chiral microstructures
(Figure 1.7(a) [20]) or a composite of soft rubber spheres suspended in water [13]. Other
resonators can also create anti-resonances [21], quadrupolar resonances (Figure 1.7(b)
[22]), or multiple resonances, for example the multi-mass resonating unit cell of Lai
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et al. [23] shown in Figure 1.7(c) that leads to monopolar, dipolar and quadrupolar
resonances, and results in novel elastic properties.

Figure 1.7 � (a) Unit cell of the 2D metamaterial made from solid media. The unit cell
is composed of three-component continuum media by a chirally soft-coated heavy cylinder
core embedded in a matrix [20]. (b) Inclusion composed of a soft rubber cylinder embedded
with a hard rubber cylinder, surrounded by four rectangular steel rods in the shape of an
X [22]. (c) Elastic metamaterial unit showing multiple resonances [23].

1.3.2 Determination of E�ective Properties

E�ective properties are therefore important for an in-depth analysis of a metamaterial
design and its speci�c features. In the following section, a non-exhaustive overview of
techniques to obtain e�ective properties is given.

Analytical Models

A range of analytical techniques have been employed to derive the e�ective properties of
composite structures. For example, e�ective properties of multilayered structures are often
derived using fully analytical models for one-dimensional wave propagation [24�26]. If
the multilayered medium is periodic and symmetric, the derivation of the overall e�ective
parameters can be reduced to the calculation of the e�ective properties for the constitutive
unit [27]. For such cases, as presented in Figure 1.8(a), the transfer matrix method is
found to be a suitable tool to characterise a multilayered structure [28]. However, most
studies based on the the transfer matrix method are limited to the analysis of symmetric
unit cells [29]. Multilayered media with non-symmetric units can still be using such an
approach, but the investigation is limited to the dispersion curves [30, 31] or using an
average density [24]. In recent works, several methods have been extended to take into
account the asymmetry of a structure which may result in Willis coupling, as presented
in the next subsection.
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Figure 1.8 � (a) Schematic diagram of a multi-phase metamaterial. The dashed rectangle
refers to a unit cell [28]. (b) Layer homogenisation applied to a PDMS medium with single
layer of periodic voids [32].

Analytical models are also used to homogenise two-dimensional designs with macro-
inclusions, such as periodically voided soft elastic media [32�34], as shown in Figure 1.8(b).
Whilst analytical methods provide insight into physical mechanisms for wave propagation
and are generally computationally e�cient, they are limited to simple geometric designs.

Methods for the Study of Willis Structures

In recent literature, there has been a considerable e�ort to extend methods to determine
the e�ective parameters to non-symmetric structures. The scope of possibilities for the
design of metamaterials has thus been opened up with the consideration of the Willis-
coupling, also referred to as acoustic bianisotropy [35]. In acoustics, a Willis material
shows a pressure-velocity coupling [36], which arises from inherent asymmetry in the
microstructure. More precisely, the asymmetry appears when the element center's of
mass is misaligned with the centroid [37], as illustrated in Figure 1.9.

Figure 1.9 � Schematic description of the reaction of standard and Willis materials
to compression and to a uniform force in one direction. The standard material under
compression becomes smaller with the center unshifted, and under a uniform force
translates without changing size. A Willis material, by contrast, both translates and
changes size under both compression and a uniform force [38].
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The acoustic bianisotropy can be optimised in order to be maximal at a subwavelength
scale, which can lead to interesting properties resulting from the fact that both the dipole
and monopole resonances can be excited by pressure and velocity �elds [35]. However,
neglecting bianisotropy in the e�ective material properties may result in parameters that
may violate the principles of causality and passivity for an asymmetric unit cell [39�41].
To study such Willis metamaterials, extra parameters have to be determined compared to
conventional symmetric materials. Muhlestein [40] and Amirkhizi [39] published methods
to derive the e�ective properties for uniaxial Willis materials, which can be used to design
unidirectional perfect absorbers [42] or bi-layer plate-type acoustic metamaterials [43].

Retrieval Methods

Retrieval methods are an alternative approach to derive e�ective properties that utilise
scattering coe�cients obtained on the incidence and transmission sides of the medium, as
illustrated in Figure 1.10 [44,45]. For such methods, the scattering coe�cients have been
obtained analytically for a periodic multilayered medium [46], numerically for periodic
metamaterials [47, 48] or experimentally for acoustic metamaterials composed of split
hollow spheres [49] or periodically arranged hollow tubes [50]. A retrieval method has
also been extended for an asymmetric design [51]. Park et al. [52] also proposed a method
to homogenise anisotropic metamaterial slabs by determining e�ective properties of the
constitutive unit cell. Within the slab, the e�ective properties di�er whether the unit cell
is an edge cell or an inner cell. An advantage of retrieval methods is that they are not
constrained to simple geometries.

Figure 1.10 � Technique used for obtaining the e�ective properties of a metamaterial,
with the structure as well as with incident, re�ected, and transmitted plane waves. The
e�ective material is also shown, along with the technique used for obtaining e�ective
properties of a metamaterial [45].
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1.3.3 Materials for Underwater Applications

Metamaterials have been developed for various underwater applications, such as carpet
cloak [22,53] or a screen converting underwater cylindrical waves to plane waves [54]. This
section reviews metamaterials used as coatings for underwater vehicles.

A simple way to improve wave attenuation is to use a large amount of absorbent material
of a total thickness corresponding to several wavelengths. However, this is not suitable for
the design of underwater coatings, which in practice can not exceed a certain thickness due
to limitations related to naval architecture requirements for the vessel. In this context,
metamaterials bring a new and promising perspective for thin coatings with good acoustic
performance [55]. Some concepts applicable to underwater applications are reviewed here.

Elastomers as Matrix

For underwater applications, elastomers are widely used, providing good vibration energy
dissipation due to their viscoelastic properties. In particular, they are very dispersive
and dissipative for shear waves but not signi�cantly for longitudinal waves. Elastomers
are therefore widely used as a matrix material, in which elements are included to take
advantage of these material properties. For example, a resonating inclusion may convert
the longitudinal waves to shear waves, thus strongly dissipating the acoustic energy due
to the shear material properties of the elastomer [56]. However, if the di�erence between
the speed of sound in a resonating element and the surrounding elastomer is too high, the
energy conversion may not occur [57].

In addition, the longitudinal sound velocity and density of an elastomer are generally close
to the properties of water, resulting in impedance matching. An adequate impedance
matching between the material interface and the surrounding water enhances coupling
of the incident acoustic energy with the absorbers [58]. Hence, without good impedance
matching at the interface, only a small proportion of the acoustic wave energy would
be dissipated in the material. More generally, structures with gradient properties are a
promising way to manipulate acoustic waves [59]. For example, Naify et al. [60] developed
an underwater acoustic omnidirectional absorber based on a gradient index medium.
However, that concept leads to thicknesses comparable to the wavelength, which may
not comply with non-acoustic design criteria.

Micro-inclusion Materials

Micro-inclusion materials are elastomers comprising micro-cavities or soft-wall micro-
balloons. There is usually a few percent volume fraction of these micro-inclusions, some-
times among other micro-inclusions such as carbon black or minerals in order to adjust
the overall density. These inclusions of air bubbles or voids lower the e�ective speed
of sound and provide better absorption. For high frequencies, micro-inclusion media
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can be regarded as metamaterials [61, 62]. However, for low frequencies, the size of
the micro-inclusions, generally of a few tens of microns, remains very small compared
to the wavelength in water. Thus, a micro-inclusion medium can be considered as a
homogeneous material. Further, the air cavities can deform under pressure, which could
a�ect the performance of the coating [63].

Alberich Coatings

Alberich coatings, introduced in Figure 1.2, were developed by Erwin Meyer and his team,
who were working on new absorbers of underwater sound in Berlin since 1945. At least
one submarine of the German Navy, the U-480, was coated with this new technology as
shown in Figure 1.11, making it the �rst stealth submarine [64]. Moreover, such a coating
has the advantage of being signi�cantly lighter than its counterpart with hard inclusions.

Figure 1.11 � Alberich acoustic absorption coating used on the German submarine U-
480 [64].

In early work based on the �nite element method (FEM), Hladky-Hennion and Decarpigny
[33] developed a code to compute the sound transmission in a rubber medium submerged
in water and embedded with periodic cylindrical cavities of �nite height. A unit cell of
the coating comprising a single cavity in rubber was simulated and periodicity of the
geometry was implemented by applying classical Bloch conditions on the boundaries of
the unit cell. Using the same �nite element code, Langlet et al. [65] calculated the e�ective
wavenumber of a periodically voided elastic medium under plane wave excitation.

Alberich coatings have latter been the subject of many studies to better understand their
physical phenomena [66, 67]. Analytical [68, 69] and semi-analytical [32, 70] models have
been developed to examine the acoustic performance of a periodically voided soft elastic
medium. This type of coating can be derived in many ways, by modifying the shape of
the cavities in other classical forms [71, 72] or in unusual new forms [73�77]. The use
of pyramidal inclusions, as shown in Figure 1.12, helps with the impedance adaptation.
It can also be achieved by cavities with gradient changes of radii and distances between
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cavities in a soft elastic medium [77]. However, the resonance frequency of a cavity
depends mainly on the volume of the cavity. It is therefore di�cult to improve the
absorption at low frequencies because the thickness of the anechoic layer is limited and
the coating must also withstand hydrostatic pressure.

Figure 1.12 � Schematic diagrams of the coating with optimised cavities, from (a) [74]
and (b) [75].

The steel support corresponding to the hull of the submarine also a�ects the performance
of the coating as constructive interference can occur [70]. In addition, the mass of the steel
support in�uences the low frequency absorption. An increase in the mass can decrease
the frequency of the absorption peak [78].

Hard Inclusions

A metamaterial comprising hard inclusions embedded in a viscoelastic matrix is an ideal
candidate as an external coating on the hull of an underwater vehicle, due to impedance
matching of the viscoelastic medium with water and robustness of the hard scatterers
under hydrostatic pressure [56,79�81]. Scattering of sound waves by inclusions results in
the conversion of longitudinal waves into shear waves, the latter being easily dissipated
in a viscoelastic medium [56, 82]. An adaptation of the core-shell concept by Liu et
al. [15] is shown in Figure 1.6(b) and consists of hard inclusions coated by a viscous
rubber layer. This design has been shown to improve the acoustic performance of an
underwater anechoic coating [57, 83, 84]. It has also been shown that an o�-centred core
leads to higher absorption [85, 86], as shown in Figure 1.13. Multiple layers of scatterers
of di�erent resonant frequency can also lead to broadband performance [87], which can
also be achieved by the simultaneous use of voided and hard inclusions [88, 89].
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Figure 1.13 � (a) Cross section of one locally resonant core-shell unit, and (b) optimal
core position [85].

Strong absorption can be obtained with the integration of resonant elements into a lossy
viscoelastic material. The foremost simultaneous for energy dissipation is the presence of
viscoelastic damping in at least one of the constituents [90]. It is nonetheless noted that
the use of hard inclusions is sometimes limited by restrictions on the coating weight.

Multilayered Media

Despite their simple geometry, multilayered media may also lead to interesting acoustic
performance. For example, sub-wavelength sound wave isolation has been achieved by
utilising strong Gibbs-type oscillation in a �nite periodic multilayered medium [26]. In
addition, multilayered designs are easier to study and to homogenise than two- or three-
dimensional structures. Multilayered media may also lead to negative parameters, such
as e�ective density or e�ective bulk modulus, for a symmetric unit cell [91,92]. However,
examples of these structures for underwater applications are rare in the literature.

Other Designs

As mentioned previously, rubbers and polyurethane are the most commonly used matrix
materials for underwater applications because of their ability to absorb incident sound
wave energy. However, the elastic modulus of these materials increases with pressure. To
cope with this constraint, Jiang and Wand [93] created the phononic glass for underwater
applications, which includes a metal skeleton and polyurethane �llings with an inter-
penetrating network structure, as shown in Figure 1.14(a). The physical connection
between the locally resonant structure units is useful for exciting more modes, leading to a
high sound absorption coe�cient. In addition, the metal skeleton �lled with polyurethane
o�ers high mechanical strength and therefore has good resistance to hydrostatic pressure.
However, with a metal skeleton, the total weight poses a di�culty for a coating application.
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Figure 1.14 � (a) A schematic diagram of a synthesis and structure of phononic glass. [93]
(b) Schematic diagram of the sandwich anechoic coating embedded with a micro-perforated
panel in high-viscosity condition for underwater sound absorption [94].

Li and al. [94] recently designed a novel sandwich anechoic coating embedded with a
castor-oil saturated micro-perforated panel as shown in Figure 1.14(b). It combines the
low-frequency performance of a micro-perforated panel with the high-frequency perfor-
mance of rubber, thus widening the absorption bandwidth .

1.3.4 Experimental Studies

The acoustic properties and acoustic performance of an elastomeric matrix or a the com-
posite coating are often required to be obtained or veri�ed experimentally. In what follows,
experimental techniques for underwater panel characterisation are reviewed. Examples of
underwater experimental studies are also given.

Experimental Techniques

Experimental characterisation of a panel requires the insoni�cation of the sample by a
known acoustic �eld. The re�ection loss of a sample is obtained from the acoustic �eld
re�ected by the sample, while the transmission loss is calculated with the acoustic �eld
passing through the sample [95]. The re�ection and transmission coe�cients can be
measured in an impedance tube, a pressurised water tank or an open water tank [96].
The present review focuses on normal incidence characterisation techniques for panels in
open water tanks.

One of the main di�culties of experimental measurements is the reproduction of the set
of assumptions used for the theoretical or numerical calculations, which are di�cult to
implement in practice. For example, theoretical models or �nite element calculations on
periodic structures often consider in�nite lateral dimensions, which is obviously impossible
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to achieve in practice. The in�nite panel assumption becomes particularly problematic for
low frequency measurements. One of the main parasitic e�ects resulting from the �nite
lateral dimensions of the panel is the di�raction of acoustic waves by its edges. There
exist techniques [97] and models [98, 99] to obtain direct evidence of the edge-di�raction
phenomenon. It has even been shown that the importance of the edge di�raction perturba-
tions is largely in�uenced by the material properties of the sample [100]. Edge di�raction
may complicate measurements of the transmission loss for panels made of acoustically soft
materials, since the amplitude of the transmitted waves can be very small compared to
that of the di�racted waves. Moreover, if the speed of sound in the sample is rather low,
the di�racted waves can overlap the re�ected and transmitted signals in the time domain,
which makes their di�erentiation di�cult [101, 102]. Edge di�raction also signi�cantly
contaminates measurements on acoustically hard panels, for which the di�racted pattern
shows strong variations in space within measurements planes [98].

Several methods have been developed to estimate the amplitude of di�racted waves. One
method requires an air box to be placed in front of the panel (Figure 1.15(a)), for which
the transmission loss is more than 60 dB. Thus, the signal received on the transmitted
side is assumed to result from the sole contribution of the edge-di�racted waves [103]. An
alternative technique has recently been presented which involves surrounding the panel in
a re�ective ba�e so that its edges are less excited, thus reducing the contamination [104]
(Figure 1.15(c)).

Figure 1.15 � (a) Measurement rig, sample and airbox [103]. (b) Surface hydrophone [99].
(c) Panel mounted in ba�e [104].

Another experimental means of reducing the parasitic e�ects of edge di�raction is the
use of a parametric array as the insoni�cation is maximised at the centre of the panel
and reduced at the edges [105]. The directivity of a parametric array for low-frequency
waves is obtained by the interaction of high-frequency waves, which implies a non-linear
mixing of the sound [106]. Nevertheless, it must be ensured that non-linear e�ects do
not complicate or invalidate the measurement process [107], so a low-pass acoustic �lter
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is required in the measurement zone to attenuate the higher frequency primary waves.
A surface receiver may also be used to reduce the scattered �eld perturbations on the
transmission coe�cient measurements (Figure 1.15(b)). This approach helps to reduce
the e�ects of the edge-di�racted pressure assuming that the optimal size and position of
the receiver have been found [99]. Perturbations caused by edge-di�racted waves can also
be minimised as part of the post-processing by considering the transient-state re�ected
and transmitted signals, which are less contaminated. The transient-state signals are
then extrapolated to obtain the steady-states used to derive the scattering coe�cients.
This process, known as the ONION method, has given good results for thick multilayered
panels made of materials whose properties are known [102, 108, 109]. These techniques
that have been implemented to reduce the edge di�raction e�ects. However, often these
techniques have their own limitations, as they often require the manufacture or the use of
some speci�c equipment or they may impose constraints on the panel design (thickness,
material, etc. ). Even with these techniques, a good compromise must still be found
for the position of the hydrophones with respect to the panel. The hydrophones must
be positioned close enough to reduce the detection of di�racted waves and far enough to
avoid the overlap of the incident and re�ected signals.

Experimental Study of Metamaterials

Experimental evidence of metamaterial features is not common in the literature, especially
in an underwater environment. Bi et al. [53] designed and experimentally performed an
underwater acoustic carpet cloak, comprising multiple layers of brass plates separated by
layers of water. A soft 3D acoustic metamaterial with negative index has been developed
by Brunet et al. [110]. Hladky et al. [111] experimentally demonstrated the negative
refraction in water for medical imaging. These underwater achievements are interesting
but such designs cannot be practically used as a coating as they do not consider all the
related constraints such as thickness, hydrodynamics and weight.

There are only a handful of papers reporting the achievement of metamaterials with
negative e�ective mass density in the water medium. Fok and Zhang [19] developed a
negative acoustic index metamaterial in water that combines Helmholtz and rod-spring
resonators to control e�ective bulk modulus and mass density, respectively. E�ective
properties from numerical simulations of their metamaterial design showed that negative
real components of bulk modulus and density occur simultaneously, resulting in a negative
real component of the acoustic index. Experimental measurements on a sample of their
metamaterial design con�rmed that the real components of the acoustic index and bulk
modulus reach negative values, but the density does not become negative, attributed
to the material loss. Popa et al. [112] also retrieved a positive e�ective mass density
of an anisotropic acoustic meta�uid, shown in Figure 1.16(a). This was achieved using
an inverse method by measuring the re�ected and transmitted �elds on planes situated
in front and behind the samples, and calculating the sample re�ection and transmission
coe�cients based on the �elds averaged along these planes. The coe�cients were then
inverted using a standard method proven to be very e�ective in acoustics. Chen et al. [50]
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designed a 2D metamaterial with a simple design consisting of tubes on two pieces of epoxy.
The tube was open and contained the water of the surrounding medium as shown in Figure
1.16(b). E�ective properties extracted from experimental transmission and re�ection
coe�cients showed that the e�ective density exhibits negative values for a narrowband
frequency range.

Figure 1.16 � (a) Fluid-like structure made of perforated steel plates suspended in water.
Plates are connected through solid spacers (purple) [112]. (b) Acoustic metamaterial with
negative e�ective mass density in water, designed by periodically arranging hollow tube
"meta-atoms" [50].
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1.4 Notes on Concepts and Notations

1.4.1 Time Convention

In this manuscript, an incident wave refers to a harmonic plane wave excitation in a �uid
domain that arrives under normal incidence on a medium. Using the notations of Figure
1.17, the sound propagates along the x-axis.

Figure 1.17 � Incident plane wave on a medium of thickness h.

The phase convention ei(ωt−kx) is used, where i =
√
−1, ω is the angular frequency, k is

the wavenumber, t is time and x de�nes the position on the x-axis.

1.4.2 Longitudinal and Shear Waves

In liquids or gases, only pressure waves can propagate. The propagation of a longitudinal
wave is characterised by oscillations occurring in the direction of wave propagation. It
thus corresponds to compression and expansion movements. In solids, longitudinal waves
and shear waves can propagate. In the case of shear wave propagation, particles oscillate
transversely to the direction of propagation.

For the study of a solid homogeneous medium at normal incidence, only the longitudinal
waves are excited in the medium, provided that it is uniform in the lateral dimensions.
Since there are only compression / expansion movements, as in a �uid, a �uid formalism
is employed to study acoustic propagation in solids under these conditions. It is then
applied for both a single layer of material and a multilayered structure.

1.4.3 Material Damping Representation

In acoustics, an isotropic material is commonly characterised by three parameters: mass
density ρ, Young modulus E and Poisson ratio ν; or equivalently, mass density and longitu-
dinal and shear speeds of sound denoted by cl and cs, respectively. Those parameters may
depend on frequency or on environmental conditions, such as pressure and temperature.
For elastomeric materials that have the ability to dissipate acoustic energy, an imaginary
part can be added to given material properties. In such complex notations for damped
material properties, the imaginary part represents the damping. It has to be noted that
damping is physically represented by the imaginary part of the wavenumber. Nevertheless,
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in this manuscript a complex speed of sound notation is used as cl = c
′

l(1 + iη), with c
′

l

corresponding to the real part of the longitudinal speed of sound and η the loss tangent.

1.4.4 Homogenisation

In this manuscript, the homogenisation process consists of applying a theoretical model
to an e�ective medium so that its e�ective properties can be used to describe the far-
�eld scattering response for normal incidence of a composite structure. Two models are
considered. The �rst one, which happens to be the most commonly used in the literature,
describes the e�ective medium as a �uid. The second model aims to describe asymmetric
structures for which Willis-coupling e�ects may appear. The e�ective medium is then
assumed to be a Willis �uid-like medium for which properties depend on the direction of
wave propagation.

1.4.5 Passivity Constraint

Extreme e�ective properties can be obtained for a metamaterial. However, e�ective
properties must comply with fundamental physical laws. For example, standard elastic
materials and structures made of elastic materials are assumed to be passive. Implications
of these restrictions were fully explored by Muhlestein [37], where a passive material is
de�ned as a material that can not create mechanical energy.

In the present manuscript using the time convention eiωt, passivity constraints set the sign
of the wavenumber imaginary part to be negative, as shown in Section B.1 of Appendix
B. Passivity also constrains the real part of the impedance to be positive, as described
in [113].

1.4.6 Acoustic Performance

The acoustic performance of a structure is generally evaluated using the re�ection and
transmission coe�cients for the structure placed between two semi-in�nite �uid media.
The re�ection coe�cient describes the amount of acoustic wave re�ected by an impedance
discontinuity created by the introduction of the structure in-between the surrounding
media. It is equal to the ratio of the amplitude of the re�ected wave to the incident wave.
The transmission coe�cient is a measure of the amount of acoustic energy passing through
a structure. It is calculated from the ratio of the amplitude of the transmitted wave to
the amplitude of the incident wave. For experimental determination of the re�ection and
transmission coe�cients, free-�eld measurements on a test panel are used.

For underwater applications, the e�ciency of an coating in reducing acoustic radiation
from a structure is assessed using the hull decoupling coe�cient CD, while the stealth
performance is evaluated with the anechoism coe�cient CA. For determination of the
anechoism coe�cient, the sample may be �xed on a steel plate. However, this approach is
not practical at low frequencies as the steel backing plate might not be thick enough. The
hull decoupling coe�cient may be obtained by placing the sample on a vibrating support
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and comparing results with and without the sample. This approach gives a qualitative
comparison, but post-processing is complex [114].

In order to simplify the determination of the anechoism and hull decoupling coe�cients,
the common approach consists in conducting free-�eld measurements of the panel and then
deriving these coe�cients numerically using the re�ection and transmission coe�cients of
the structure, as demonstrated in Appendix C.
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Chapter 2

Homogenisation

In this chapter, an analytical model based on a transfer matrix formalism is presented to
characterise an e�ective medium that can e�ectively replace a multilayered medium and
from which the re�ection and transmission coe�cients can be calculated. Two variants
of the homogenisation method are proposed. The �rst method is speci�c to symmetric
multilayered media whereas the second method can be applied to both asymmetric and
symmetric designs. A quasi-static approach is also introduced to verify the homogenisa-
tion method at low frequencies. Numerical results are then presented for a case study
consisting of a multilayered structure comprising alternating layers of acoustically rigid
and soft materials.
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2.1 Transfer Matrix

2.1.1 De�nition

In the context of one-dimensional propagation of waves in a �uid-like structure, the
transfer matrix M relates the acoustic pressure p and the normal particle velocity v
of the medium on the two sides of the layer. Based on the notations in Figure 2.1, the
transfer matrix M is de�ned by: (

pleft

vleft

)
= M

(
pright

vright

)
. (2.1)

Figure 2.1 � Pressures and normal particle velocities at the inlet/outlet of a medium
of thickness h, where the subscript left refers to the face on the left hand-side and the
subscript right to the face on the right hand-side of the medium.

2.1.2 Expression

Expressions of the transfer matrix elements depend on the nature of the medium. Two
cases are considered in what follows: classical �uid or Willis �uid. Details on how the
expressions are derived are given in Appendix A.

Case 1: Fluid Medium

The simplest case considers a medium that can be assimilated to a �uid. With k the
wavenumber and Z the acoustic impedance, the expression of the transfer matrix is given
by:

M =

[
cos(kh) iZsin(kh)

iZ−1sin(kh) cos(kh)

]
, (2.2)

where h is the thickness of the medium in the direction of the sound propagation. Since
only harmonic plane waves at normal incidence on multilayered structures are considered
in Part I, any homogeneous material can be approximated as a �uid medium and can
thus be described by Equation (2.2).
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Case 2: Willis Fluid Medium

The second case considers a �uid-like medium that is asymmetric, also referred to as a
Willis �uid. Material properties thus depend on the wave propagation direction. For the
one-dimensional wave propagation considered here, two directions are possible: waves are
referred to as forward or backward propagating waves. The distinction is re�ected on
the e�ective impedance, since the wavenumber is the same for both directions [39]. The
acoustic �eld can therefore be decomposed along these two directions, which leads to the
transfer matrix form given by:

M =
1

Z+ − Z−

[
Z+eikh − Z−e−ikh Z+Z−(e−ikh − eikh)

eikh − e−ikh Z+e−ikh − Z−eikh

]
, (2.3)

where k is the wavenumber and Z+ and Z− are the impedances for forward and backward
propagating waves, respectively. It can be noted that for a symmetric medium, for which
Z+ = −Z− = Z, the simpli�cation of Equation (2.3) gives the transfer matrix given by
Equation (2.2).

2.1.3 Calculation

When a plane wave arrives at normal incidence on a multilayered medium of in�nite
lateral dimensions, the acoustic �elds at the interfaces are uniform. They may thus be
described by only a scalar for the pressure and a scalar for the normal particle velocity, as
shown in Figure 2.1. The use of transfer matrices is particularly suitable for the analysis of
multilayered media as they can easily be connected to each other like a chain to represent
a succession of layers. The technique that uses transfer matrices to study chained acoustic
structures is also known as the transmission line method. As such, given the continuity
of acoustic pressure and velocity at the interfaces between two layers, the total transfer
matrix Mn of a multilayered medium comprising n layers is obtained by:

Mn = m1m2...mn, (2.4)

where mi denotes the transfer matrix of layer i. The transfer matrix mi can be calculated
using the transfer matrix given by Equation (2.2), assuming that each layer is a �uid-like
medium with known material properties.
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2.2 Homogenisation

The homogenisation approach described herein aims to replace a �nite periodic multilayered
structure by a �uid-like homogeneous medium that would have the same scattering re-
sponse. For this purpose, the characteristic unit cell of the multilayered medium is de�ned
as the smallest recurring unit. This unit cell is used to derive e�ective properties, such
as the e�ective wavenumber and e�ective impedance, which are the material properties
of an equivalent homogeneous unit cell, as illustrated in Figure 2.2.

Unit cell

Figure 2.2 � Finite periodic multilayered medium characterised by a symmetric unit cell,
for which a �uid e�ective medium is de�ned by an e�ective wavenumber and an e�ective
impedance obtained using the transfer matrix MLu of the periodic unit.

In this manuscript, the notion of e�ective medium is therefore referring to a medium
de�ned by an homogenisation model and which is intended to replace a given non-
homogeneous medium. The simplest case is treated �rst, considering that the e�ective
unit is a �uid that can replace a symmetric unit cell. Then, the case of non-symmetric unit
cells is detailed, where e�ective properties are obtained using a Willis �uid homogenisation
model.

2.2.1 Fluid Homogenisation Model

The transfer matrix of a unit cell of length Lu, denoted as MLu , can be numerically com-
puted since the properties for longitudinal wave propagation of the materials composing
each layer of a multilayered unit are known. For this purpose, the transfer matrix for each
layer is �rst calculated using Equation (2.2), and they are then multiplied according to
Equation (2.4). For example, in the case presented in Figure 2.2, the transfer matrix of
the unitMLu ism1m2m3, wheremi (i = 1, 2, 3), are the transfer matrices for layers 1 to 3.

Another method of expressing the transfer matrix of the e�ective medium is as follows:

Me =

[
cos(keLu) iZesin(keLu)

iZ−1
e sin(keLu) cos(keLu)

]
, (2.5)



39

where Lu is the length of the medium, ke is the e�ective wavenumber and Ze is the e�ective
impedance. As the e�ective medium aims to represent the multilayered structure, both
transfer matrices MLu and Me are the same, that is:

MLu = Me. (2.6)

E�ective parameters can then be extracted from the elements of the transfer matrix Me.
The e�ective wavenumber expression, derived in Appendix B.1, is given by:

ke =
ln(λ)

iLu
+

2πm

Lu
, (2.7)

wherem is an integer whose value is determined in such way that the e�ective wavenumber
as a function of frequency is continuous, and λ is the eigenvalue of the transfer matrix
MLu , chosen so that the imaginary part of ke is negative to comply with material passivity
requirements (as mentioned in section 1.4.5 and in Appendix B).

The e�ective impedance Ze can be directly extracted from the o�-diagonal elements of
the transfer matrix, using:

Ze = ±

√
Me(1, 2)

Me(2, 1)
. (2.8)

Material passivity requirements constrain the real part of the e�ective impedance Ze to
be positive.

With the e�ective wavenumber ke and the e�ective impedance Ze, the e�ective �uid-
medium representing a given symmetric multilayered unit cell is fully characterised, given
that the length of the e�ective medium in the direction of sound propagation is the same
as the length of the unit cell, in this case, Lu. The e�ective medium approach described
here is valid independently of the number of layers comprised in the unit cell, as long as
it remains symmetric.

2.2.2 Willis Fluid Homogenisation Model

For a non-symmetric multilayered medium, the behaviour is di�erent for a wave travelling
towards x = +∞ with respect to a wave travelling towards x = −∞. In order to e�ectively
represent non-symmetric media, the e�ective medium is now assumed to be an asymmetric
�uid-like medium, also referred to as a Willis �uid. The e�ective medium approach follows
the same scheme as before but it uses the more general form of the transfer matrix given
by Equation (2.3).

One way to calculate the total transfer matrix for the unit cell of length Lu, de�ned as
MLu , is to take the product of the transfer matrices for each layer as per Equation (2.4).
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The second method is to use the transfer matrix of the e�ective Willis �uid given as:

Me =
1

Z+
e − Z−e

[
Z+
e e

ikeLu − Z−e e−ikeLu Z+
e Z
−
e (e−ikeLu − eikeLu)

eikeLu − e−ikeLu Z+
e e
−ikeLu − Z−e eikeLu

]
, (2.9)

where ke is e�ective wavenumber and Z±e are the e�ective impedances for forward and
backward propagating waves. The e�ective wavenumber is also given by Equation (2.7).

E�ective impedances can be obtained by the direct identi�cation (MLu = Me), which
yields:

Z±e =
−(Me2,2 −Me1,1)±

√
(Me2,2 −Me1,1)2 + 4Me1,2Me2,1

2Me2,1

, (2.10)

whereMei,j are the elements of the total transfer matrixMe. Due to the passivity material
constraint, solutions are chosen in a way that the impedance for forward propagating waves
Z+
e has a positive real part. The e�ective impedance Z−e then corresponds to the other

branch.

The e�ective medium for a non-symmetric unit cell is now fully characterised with the
e�ective wavenumber ke and the e�ective impedances Z±e . It is worth noting that the e�ec-
tive medium approach for non-symmetric structures is also valid for symmetric structures,
as the symmetry only implies some simpli�cations, such as the equality Me2,2 = Me1,1,
from Equation (2.2), which results in the simpli�cation of Equation (2.10) into Equation
(2.8).

Willis Parameters

As introduced by Mulhestein et al. [40], a Willis �uid may also be characterised using
Willis parameters instead of impedances for forward and backward propagating waves.
These parameters correspond to the asymmetry coe�cient W and the characteristic
impedance ZW . The e�ective impedances Z±e are linked to W and ZW as per:

Z±e = ZW (±1 + iW ). (2.11)

When the asymmetry coe�cient W is equal to 0, the e�ective impedance Ze is the same
as the Willis characteristic impedance ZW .

The asymmetry coe�cient W and the characteristic impedance ZW can be obtained from
the transfer matrix form given by:

Me =

[
cos(keLu)−W sin(keLu) iZW sin(keLu)(1 +W 2)

i sin(keLu)/ZW cos(keLu) +W sin(keLu)

]
. (2.12)
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This expression is derived in Appendix A.4. Willis parameters are therefore given by:

W =
−Me1,1 + cos(keLu)

sin(keLu)
, (2.13)

ZW =

√
Me1,2

Me2,1(1 +W 2)
. (2.14)

E�ective material properties for a Willis �uid are then derived using the expressions:

κ =
ωZW
ke

, (2.15)

ρ =
keZW
ω

. (2.16)
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2.3 Scattering Coe�cients

The scattering response of a multilayered medium here refers to the re�ection and trans-
mission coe�cients de�ned as in a two-port network, where the ports correspond to the
interfaces of the medium with the surrounding �uid (see Appendix A for the notion of
two-port network and the de�nition of S-parameters). For a given multilayered structure,
scattering coe�cients can be calculated using (1) the total transfer matrix of the entire
multilayered medium, or (2) the transfer matrix of an equivalent homogeneous medium.
Both approaches are presented in what follows, based on Figure 2.3.

Effective medium

Figure 2.3 � Finite periodic multilayered medium of length L and e�ective medium of
same length whose e�ective properties have been derived from the constituent unit cell.

2.3.1 Multilayered Medium

The transfer matrix ML is analytically calculated by taking the product of the transfer
matrix of each layer comprised in the multilayered medium, as per Equation (2.4). It
is worth noting that this approach is still valid for non-periodic multilayered media.
Elements MLi,j

of the total transfer matrix are used to obtain the S-parameters as per:

S11 =
ML1,2 + Zf(ML1,1 −ML2,2)− Z2

f ML2,1

∆
, (2.17)

S21 =
2Zf

∆
, (2.18)

S22 =
ML1,2 − Zf(ML1,1 −ML2,2)− Z2

f ML2,1

∆
, (2.19)

S12 =
2ZfDet(ML)

∆
, (2.20)

where Zf is the impedance of the surronding �uid and ∆ is:

∆ = ML1,2 + Zf(ML1,1 + ML2,2) + Z2
f ML2,1 . (2.21)

Those expressions are derived in Appendix C.
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2.3.2 E�ective Medium

When a homogeneous e�ective medium is used to replace a multilayered medium, scat-
tering coe�cients can be obtained from its transfer matrix MeL . This is achieved using
Equations (2.17) to (2.20) by replacing the matrix elements MLi,j

with the elements
MeLi,j

.

For an e�ective medium replacing a symmetric multilayered design of length L, S-parameters
are obtained using the e�ective properties ke and Ze that have been derived for the
symmetric unit cell, by calculating the transfer matrix MeL given by:

MeL =

[
cos(keL) iZesin(keL)

iZ−1
e sin(keL) cos(keL)

]
. (2.22)

For a non-symmetric con�guration, the transfer matrix of the e�ective medium of length
L is:

MeL =
1

Z+
e − Z−e

[
Z+
e e

ikeL − Z−e e−ikeL Z+
e Z
−
e (e−ikeL − eikeL)

eikeL − e−ikeL Z+
e e
−ikeL − Z−e eikeL

]
. (2.23)
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2.4 Quasi-static Approach

At very low frequencies, values of the longitudinal wavenumber are very small. A quasi-
static approach can be used to approximate e�ective parameters of a periodic unit cell.
The quasi-static e�ective density is given by the average density for the various layers in
the equivalent homogeneous medium as follows:

ρQS =

N∑
i=1

(hiρi)

hu
, (2.24)

where hi and ρi respectively are the thickness and density of the layer i and hu =
N∑
i=1

hi is

the total thickness of the unit.

The e�ective wavenumber can be obtained using the dispersion relation given for a two
layer unit [65], as follows:

cos(k(h1 + h2)) = cos(k1h1) cos(k2h2)− 1

2
(γ +

1

γ
) sin(k1h1) sin(k2h2), (2.25)

where h1, k1, Z1 and h2, k2, Z2 are the thickness, wavenumber and impedance respectively,
of material 1 and material 2 in the periodic unit, and γ = Z1/Z2. For low values of the
wavenumber, a polynomial approximation of Equation (2.25) leads to:

k2
QS(h1 + h2)2 ' (k1h1)2 + (k2h2)2 + (γ +

1

γ
)k1h1k2h2. (2.26)

The quasi-static e�ective sound speed cQS and the quasi-static e�ective impedance ZQS

are then given by:

cQS '
h1 + h2√

(h1

c1
)2 + (h2

c2
)2 + (γ + 1

γ
)h1h2

c1c2

, (2.27)

ZQS = ρQScQS. (2.28)
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2.5 Numerical Results

2.5.1 Designs

Numerical results for periodic multilayered structures will now be presented. Media are
formed by alternating layers of silicone rubber and aluminium. Material properties are
given in Table 2.1.

ρ cl η
(kg.m−3) (m.s−1) (%)

Silicone rubber 1250 1000 2
Aluminium 2700 6200

Table 2.1 � Density ρ and longitudinal speed of sound cl for the silicone and aluminium.
Damping is expressed using the loss factor η as a percentage of the speed of sound.

Four di�erent versions of the unit cell are considered, represented in Figure 2.4 and for
which layer thicknesses are given in Table 2.2. Two of these designs are symmetric and
the two other are non-symmetric. The total thickness of silicone is always 30mm and the
total thickness of aluminium is 10mm.

(a) (b) (c) (d)

Figure 2.4 � Schematic diagram of the two symmetric unit cells (a) and (b) and the two
asymmetric unit cells (c) and (d). Silicone rubber is represented by the orange layers and
aluminium is represented by the grey layers.

Layer 1 Layer 2 Layer 3

Version (a) Silicone Aluminium Silicone
(mm) 15 10 15
Version (b) Aluminium Silicone Aluminium
(mm) 5 30 5
Version (c) Silicone Aluminium
(mm) 30 10
Version (d) Aluminium Silicone
(mm) 10 30

Table 2.2 � Layer arrangements and thicknesses for the four versions of the unit cell, for
which the total thickness is Lu
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2.5.2 E�ective Parameters

E�ective Wavenumber

Since the e�ective wavenumber is independent of the unit cell version considered within
those presented in Figure 2.4, thanks to the Bloch-Floquet relation, all four versions have
the same dispersion curve, which is presented in Figure 2.5 in terms of the dimensionless
wavenumber denoted keLu. The concept of dispersion curve is brie�y introduced in
Appendix B.2. In order to visualise the e�ects of damping, the wavenumber ke,η% is
plotted for three di�erent values of the loss factor η corresponding to 0%, 2% and 8%.
Without losses (η = 0%), the imaginary part of the e�ective wavenumber clearly gives
the pass band and band gaps, as band gaps occur when the imaginary part is non-null
and when the wrapped real part of the e�ective wavenumber is a multiple of π. Such
Bragg band gaps are attributed to the fact that every aluminum-silicone interface in the
structure generates partial wave re�ections which can destructively interfere. For the
frequency range considered, two complete band gaps appear, represented by the shaded
areas. Within these band gaps and even in the presence of damping (η non null), the
imaginary part of the wavenumber, which represents wave attenuation per unit distance,
reaches a local maximum. This shows that there is a greater attenuation of acoustic waves
in the band gaps than in the pass bands. Moreover, it can be seen that this maximum
increases with higher loss factor η. For the real part of the reduced wavenumber, an
increase of the damping η results in a more pronounced "smoothing" of the curve, which
no longer meets the edges of the band gaps.
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Figure 2.5 � Dispersion curve for the multilayered units comprising layers of silicone
and aluminium, considering 0%, 2% and 8% loss factor in the silicone layer. For the
case η = 2%, the e�ective wavenumber is also unwrapped (kun

e,2%), as well as compared
to the quasi-static value kQS. The shaded areas represent band gaps de�ned using the
wavenumber ke,0%
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The real part of the wavenumber for η = 2% is unwrapped, represented by kun
e,2%, in order

to illustrate the unwrapping process using the integer m introduced in Equation (2.7).
This manipulation is only required if the e�ective wavenumber is then used to derive
other e�ective parameters, such as the density and the bulk modulus, in order to get a
continuous evolution with frequency.

Finally, the quasi-static wavenumber kQS, obtained with Equation (2.26) and represented
by the red crosses, is consistent with the e�ective wavenumber ke,2% at low frequencies,
thus validating the latter.

E�ective Impedance

In contrast to the e�ective wavenumber, the e�ective impedance depends on the design
of the unit cell. Considering η = 2% for the silicone, Figure 2.6 presents the real and
imaginary parts of the e�ective impedances for units (a) to (d). Band gaps for zero
damping are also shown by the shaded areas.
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Figure 2.6 � E�ective impedances for forward propagating waves (dashed blue lines) and
backward propagating waves (dashed-dotted blue lines) as well as characteristic impedance
ZW (black lines) obtained for the unit designs shown in Figure 2.4(a) (�rst column), Figure
2.4(b) (second column), Figure 2.4(c) (third column) and Figure 2.4(d) (fourth column).
The �rst line of graphics represents the real part of the e�ective impedances, while the
second line corresponds to the imaginary part. The shaded areas represent the band gaps
obtained using zero damping for silicone. The red crosses show the quasi-static e�ective
impedance.

For the symmetric versions (a) and (b), the e�ective impedance is derived using Equation
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(2.8) whereas for the two asymmetric units (c) and (d), Equation (2.10) is used, leading
to the e�ective impedances for forward and backward propagating waves, respectively
represented by the dashed and dashed-dotted blue lines. The black lines represent the
characteristic impedance ZW obtained using Equation (6.6). These plots �rst con�rm that
Ze = ZW for the symmetric units (a) and (b). The quasi-static impedance, represented by
the red crosses, is also consistent with the e�ective impedance obtained at low frequencies.

Di�erences in the e�ective impedances amongst the di�erent unit cells are more visible
for the imaginary part. For the two asymmetric versions (c) and (d), the real parts of
the e�ective impedances are quite similar but the imaginary parts di�er signi�cantly. It
is also important to note that the e�ective impedance for forward propagating waves Z+

e

for one unit is the opposite of the e�ective impedance for backward propagating waves
Z−e for the other (reverse) unit. In other words, Z+

e,(c) = -Z−e,(d) and Z
+
e,(d) = -Z−e,(c). This

observation can also be mathematically proven by inverting the transfer matrix. For these
two asymmetric units, the characteristic impedance ZW , given by Equation (2.11), di�ers
from the e�ective impedance Z±e as the asymmetry coe�cient W is non-null.

The variations of the e�ective impedance for unit (a) greatly di�ers from the three others
and even reaches negative values. In order to further study this di�erence, the e�ective
density and bulk modulus are calculated in what follows.

E�ective Density and Bulk Modulus

For the 4 unit cells, the e�ective density is plotted in Figure 2.7 using Equation (2.16).
The e�ective bulk modulus is calculated using Equation (2.15) and is shown in Figure 2.8.

The real part of the e�ective density of version (a) reaches negative values in the �rst
band gap. This speci�c metamaterial feature is usually the translation of a mass-spring
resonance in most metamaterial studies. This observation can be made only for unit (a),
where the heaviest layer (aluminium - mass) is placed in-between two soft and damped
layers (silicone - spring). For all the other band gaps, the bulk modulus becomes negative,
which is the translation of a compression-extensional motion. Hence, either a negative
mass density or a negative bulk modulus is obtained for each band gap produced by the
four unit versions. The version where the heavy layer is surrounded by the damped layer
is the only one that can lead to a negative mass density.
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Figure 2.7 � E�ective density obtained for the unit designs represented by Figure 2.4(a)
(�rst column), Figure 2.4(b) (second column), Figure 2.4(c) (third column) and Figure
2.4(d) (fourth column). The top row shows the real part while the bottom row corresponds
to the imaginary part. The shaded areas represent the band gaps obtained using zero
damping for silicone.
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Figure 2.8 � Bulk modulus obtained for the unit designs represented by Figure 2.4(a)
(�rst column), Figure 2.4(b) (second column), Figure 2.4(c) (third column) and Figure
2.4(d) (fourth column). The top row shows the real part while the bottom row corresponds
to the imaginary part. The shaded areas represent the band gaps obtained using zero
damping for silicone.
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2.5.3 Scattering Coe�cients

As presented in Section 2.3, two approaches are used to calculate the acoustic performance
in terms of S-parameters for a medium of length L = n × Lu. The �rst method to �nd
the total transfer matrix ML of the n-unit medium is calculated using the transfer matrix
of each layer. Equations (2.17) to (2.20) are then used to derive the scattering coe�cients.

For the second method, an e�ective homogeneous medium is also de�ned with the e�ective
wavenumbers and impedances previously calculated. As illustrated in Figure 2.3, this
e�ective medium has the same length L as the multilayered medium. Re�ection and
transmission coe�cients are obtained from the transfer matrix MeL of the one-layer
e�ective medium. Scattering coe�cients are calculated for a length of 5 × Lu, for each
of the unit versions (a) to (d), considering η = 2% for the silicone. Results are shown in
Figure 2.9.

Figure 2.9 � Coe�cients R = S11 and T = S12 = S21 of the four unit designs in Figure
2.4, obtained from the total transfer matrix for 5 unit cells (red lines) and from the e�ective
media (black lines). The shaded areas represent the band gaps obtained with zero damping
for silicone.

For all versions, the scattering coe�cients of the e�ective medium (black lines) lead
to the exact same re�ection and transmission coe�cients of the multilayered medium
(red lines). The same observation has been made for larger structures, although results
are not presented here to avoid repetition. As such, for these multilayered designs, the
homogenisation approach introduced here is exact and multilayered media can therefore
be accurately replaced by an e�ective medium to obtain the scattering coe�cients using
either a �uid or Willis �uid homogenisation model. In Figure 2.9, it can also be seen that
the re�ection and transmission coe�cients di�er depending on the unit cell, since the �rst
layer is di�erent. For better comparison, the coe�cients are superimposed in Figure 2.10.
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The transmission coe�cient obtained for unit (c) is the same as that of unit (d), which
is consistent with the equality S12 = S21 as unit (c) is the reverse design of unit (d), and
vice-versa. It is also observed that the re�ection coe�cient for the medium made of unit
(b) is very low within the pass bands, even though this medium starts with a thin layer
of aluminium.
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Figure 2.10 � Re�ection and transmission coe�cients of the forward scattering
coe�cients R = S11 and T = S12 = S21 obtained for the four unit designs of Figure
2.4.

These four versions of the multilayered medium are also compared for an increasing
number of units in Figure 2.11 for the re�ection coe�cient and in Figure 2.12 for the
transmission coe�cient.

Figure 2.11 � Re�ection coe�cients R = S11 for media comprising 5, 8, 15 or 30 units.
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Figure 2.12 � Transmission coe�cients T for media comprising 5, 8, 15 or 30 units.

There are very little changes in the re�ection coe�cient depending on the number of unit
cells, and they are mostly found in the pass bands, where oscillations correspond to slack
resonances. It shows that the re�ection coe�cient is mainly determined by the �rst unit.
On the contrary, the transmission coe�cient is signi�cantly di�erent depending on the
number of unit cells, especially within the pass bands. The band gaps, associated to low
transmission, are visible from 5 unit cells and are clearly de�ned for 8 unit cells and above.
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2.6 Summary

In this chapter, a method has been presented to replace a given periodic multilayered
medium by an equivalent homogeneous medium. The e�ective parameters that charac-
terise the e�ective medium are obtained from the transfer matrix of the periodic unit.
Two cases have been distinguished depending on the symmetry of the unit. If the unit
is symmetric, the e�ective medium is assumed to be a �uid. For an asymmetric unit
cell, the e�ective medium is a Willis �uid medium, characterised by impedances speci�c
to forward and backward propagating waves, or by a characteristic impedance and an
asymmetry coe�cient.

The homogenisation approach has been applied to four variant designs of an unit cell. The
e�ective medium approach leads to the e�ective wavenumber, identical for all variants,
which gives the frequency ranges where wave propagation is strongly attenuated. The
e�ective impedance highlights the necessity to adopt an homogenisation model that can
describe an asymmetric structure. E�ective density and e�ective bulk modulus have
also been obtained and exhibit some of the speci�c features of metamaterials, that is,
negative values of their real parts in some frequency bands. E�ective parameters have
been validated at low frequencies using a quasi-static approach.

It was also shown that the e�ective medium accurately predicts the re�ection and trans-
mission coe�cients of a multilayered medium of any length multiple of the unit cell
thickness. It is found that the scattering coe�cients are noticeably di�erent depending on
the variant design chosen for the unit cell. Acoustic performance for increasing number
of units has also been shown. As expected, it was observed that the re�ection coe�cient
is mostly de�ned by the �rst unit.
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Chapter 3

Optimisation

In this chapter, layer arrangements of one-dimensional multilayered structures are opti-
mised to improve their broadband acoustic performance. The calculation of the acoustic
performance is based on the transfer matrix approach introduced in Chapter 2. The
controlled elitist genetic algorithm that has been implemented is �rst presented. It is then
applied in order to improve (1) anechoic performance, (2) hull decoupling performance
and (3) both coe�cients. Selected designs are further investigated in order to draw out
speci�c performance patterns.
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3.1 Presentation of the Optimisation Approach

3.1.1 Introduction

The acoustic performance of any multilayered medium can be rapidly obtained using
transfer matrices as presented in Chapter 2. As such, it is worth using this approach
to optimise the layer arrangement of multilayered media. The �gures of merit are the
anechoism coe�cient (Section 3.2), the hull decoupling coe�cient (Section 3.3) and both
coe�cients combined (Section 3.4). The main objective of the optimisation study is to
broaden the frequency range of e�ective acoustic performance through the layer arrange-
ment. It may be found that non-periodic media, multi-periodic media or gradual media
help reduce these coe�cients better than an usual periodic medium.

For the layer optimisation in this Chapter, only two materials are considered : stain-
less steel or polyurethane with micro-balloons. The mass density for stainless steel is
7700 kg.m−3 and the longitudinal speed of sound is 5800 m.s−1. Micro-balloons are
introduced into a polyurethane matrix in order to tune the longitudinal speed of sound
as needed. In particular, it is possible to obtain a lower speed of sound and a greater
damping loss factor in matrices where the damping loss factor of longitudinal waves is
usually very small. For the polyurethane with micro-balloons considered here, with 6%
of micro-balloons, the estimated mass density is ρ = 984 kg.m−3. The estimated speed
of sound is given by c = cL × (1 + iη), with the real part cL and the damping η both
plotted in Figure 3.1. These values have been experimentally derived as described in the
following Chapter 4, for a temperature of 15oC.
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Figure 3.1 � Estimated complex speed of sound in the selected polyurethane matrix
comprising 6% of micro-balloons.
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Simple optimisation algorithms, such as a greedy algorithm, could thus be used for
this layer optimisation. Nevertheless, the optimisation approach implemented here for
multilayered media will also be applied to metamaterials with macro-inclusions using
their e�ective properties in Chapter 7. The number of "material" possibilities will then
be considerably higher than two. A controlled elitist genetic algorithm is thus selected.
In what follows, the methodology to implement the optimisation problem is detailed.

3.1.2 Methodology

A genetic algorithm works on a population of individuals that are candidate solutions
to an optimisation problem. These individuals are vectors made of several genes chosen
amongst a set of given genes. For the present optimisation problem, the layer arrangement
of multilayered media is optimised for a bi-objective function over a given frequency range.
For this purpose, an individual is de�ned as a multilayered medium of nl layers of thickness
l, for a total length called L. For example, the multilayered con�guration shown in Figure
3.2 comprises nl = 15 layers, each being l = 4 mm-thick, for a total length of L = 60 mm.
The algorithm selects a material from the available materials (genes) for each layer. In
what follows, the various steps of the selected optimisation algorithm are presented.

0 0.01 0.02 0.03 0.04 0.05 0.06

Thickness (m)

1

Figure 3.2 � Multilayered medium before the a�ectation of materials by the optimisation
algorithm. Thicknesses are displayed in meters. The acoustic wave is incident on the face
x = 0 whereas x = 0.06 corresponds to the transmission side. For the calculation of both
the anechoism and hull decoupling coe�cients, the hull is considered at on the right-hand
side.

3.1.3 Algorithm

A controlled elitist genetic algorithm, variant of NSGA-II [115], is used through the
MATLAB Global Optimization Toolbox. The search method operates on a population
of potential solutions applying the principle of survival of the �ttest to produce better
individuals. At each generation, a new population is created by the process of selecting
individuals according to their �gures of merit and they are bred together using operators
borrowed from natural genetics, such as selection, recombination and mutation. The bi-
objective optimisation problem usually has no unique solution but a set of non-dominated
solutions known as the Pareto-optimal set. The later is the result of a non-dominated
ranking approach as illustrated in Figure 3.3, in which an individual i dominates an
individual j if i is strictly better than j for at least one objective function and i is no
worse than j for both objective functions. It is also possible to say that j is dominated by
i or that i has a lower rank than j. As such, two individuals have the same rank if neither
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dominates the other. The Pareto-front is de�ned as the group of best �t solutions, with
the lowest rank.

Rank 1

Rank 2

Rank 3

Pareto front

Dominating

Dominated
Not 

comparable

Not 

comparable

Figure 3.3 � (a) Schematic diagram showing how a solution divides the objective space
into four quadrants for the non-dominated ranking approach. (b) Illustration of the Pareto
front according to the non-dominated ranking system.

An elitist genetic algorithm always favors individuals with better �tness value (rank),
whereas a controlled elitist genetic algorithm also favors individuals that can help increase
the diversity of the population even if they have a lower �tness value. It is very important
to maintain the diversity of the population in order to converge to an optimal Pareto
front. Hence, to compute the next generation of the population, the non-dominated
ranking system is used in the current generation. Individuals with equal rank are then
compared using a crowding distance measure of individuals, that calculates the distance
between the neighboring solution in order to help maintain diversity on a front by favoring
individuals that are relatively far away from each other. As such, solutions are sorted
according to the de�nition [115] : Solution i is better than solution j if (irank < jrank) or
((irank = jrank) and (idistance > jdistance)).

The optimisation process is detailed in what follows and illustrated on Figure 3.4 and
described in what follows.

� 1 The algorithm randomly generates individuals to create the initial population,
whose size N is �xed.

� 2 The optimisation process starts with the parents selection for the next genera-
tion. The set of parents is then transformed by means of two genetic transformations:
crossover or mutation. A percentage of C% of children is created by crossover and
(100 − C%) is the result of mutation. Hence, in order to create the same amount
of children than the number of individuals in the current population, the set of
parents must contain N × (100 + C%) individuals. For the parents' selection, a
binary tournament is used, which chooses each parent by choosing two individuals
at random and then choosing the best individual out of that set to be a parent.
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� 3 Crossover operates on a pair of parents to produce new children by exchanging
segments from the parents' vectors. In this work, the two-point crossover approach
is used. The latter approach randomly generates two integers that will de�ne
segments within the pair of parents. The algorithm then concatenates these genes
to form a single individual. In the case of mutation, a process comprised of two
steps is applied. First, the algorithm selects a fraction of the vector entries of an
individual for mutation, where each entry has a probability m of being mutated.
In the second step, the algorithm replaces each selected entry by a random number
selected uniformly from the range for that entry.

� 4 Those children created by crossover and mutation are then combined with the
set of parents, resulting in a recombination of Np individuals.

� 5 Each individual is then evaluated for both objective functions in order to estab-
lish the non-dominating ranking.

� 6 The choice of the individuals transferred into the next generation follows a
controlled selection. The latter consists in restricting the number of individuals in
the current best non-dominated rank and in maintaining a prede�ned distribution
of individual numbers in each front. From the �rst rank, a ratio r1 of the population
Np is kept and transferred into the next generation. For higher fronts, the maximum
number of individuals ni that can be retained from the front i is:

ni = Np
1− r

1− rK
ri−1, (3.1)

with K being the number of non-dominated fronts in the combined population of Np

individuals (K = 4 in the �ow chart in Figure 3.4) and r is the geometric progression
ratio, whose value is kept constant and equal 0.8. Therefore, the number of solutions
kept in each front is exponentially reduced, so that solutions from all non-dominated
fronts are forced to co-exist in the population.

� 7 The new generation is �nally evaluated and repeats the entire optimisation
process until the stopping criterion is met. Herein, the optimisation process stops
when the maximum number of generations Gmax is reached.
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Figure 3.4 � Flow Chart for the Controlled Elitist Genetic Algorithm.
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3.2 Results for Anechoism

3.2.1 Objective Functions

The optimisation process is �rst applied to minimise the anechoism coe�cient CA, given
by:

CA = S11 −
S21S12

S22 − 1
. (3.2)

This expression is derived in Appendix C. The S-parameters of the entire multilayered
medium are calculated using the transfer matrix method considering a water environment.

A bi-objective function is implemented in order to minimise the anechoism coe�cient CA
over a �nite number of frequencies nF, each frequency f of the frequency range being
indexed by iF. The �rst component of the objective function aims to minimise the Root
Mean Square (RMS) of the anechoism coe�cient, referred to as |CA| and given by:

|CA| =

√√√√ 1

nF

nF∑
iF=1

|CA(f(iF))|2. (3.3)

This �rst objective function aims to reduce the values of the anechoism coe�cient. The
anechoism coe�cient must also remain low over the entire frequency range of study and
not only for narrow frequency ranges. The anechoism coe�cient may indeed be very low
for some speci�c frequencies, which would give a satisfactory |CA|, but that does not
prevent the anechoism coe�cient to be relatively high elsewhere, as illustrated in Figure
3.5.

Figure 3.5 � Anechoism coe�cient as function of frequency f , for which the root mean
square, being the �rst objective function, is given by |CA|. The second objective function,
σCA

, aims at lowering the values of the coe�cient that are higher than |CA|, as shown by
the downwards arrows. Values lower than |CA|, highlighted by the red crosses, are thus
not considered.

Therefore, in order to avoid high peaks of the anechoism coe�cient, a standard deviation
is implemented for the second objective function. The standard deviation is customised
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slightly, as values below |CA| are replaced by |CA| in order to cancel their e�ects in the
standard deviation calculation. The reason for this manipulation is that it is acceptable
to obtain values lower than |CA| as it corresponds to better performance. The standard
deviation is then normalised to reduce the e�ects of the values themselves, so that each
deviation has the same weight in the minimisation process. Therefore, an intermediate
function tCA

is considered for each frequency f(iF), de�ned as:

tCA
(f(iF)) =

{
|CA| if |CA(f(iF))| < |CA|
|CA(f(iF))| if |CA(f(iF))| > |CA|

. (3.4)

Using the intermediate function tCA
, the normalised standard deviation (NSD), referred

to as σCA
, is then given by:

σCA
=

RMS(tCA
− |CA|)

|CA|
. (3.5)

3.2.2 Validation

The algorithm is �rst validated for a case where all possible solutions can be calculated in
order to check if the optimisation algorithm converges towards the best set of solutions.
The parameters for the algorithm and for the multilayered medium to be optimised are
given in Table 3.1. Six sets of parameters have been de�ned, where Set 1 is used for
reference. In Sets 2 to 6, one parameter di�ers compared to Set 1 in order to assess
its in�uence on the results. As such, using the notations in Figure 3.4, Set 2 is used to
assess the in�uence of parameter N , Set 3 for C%, Set 4 for m, Set 5 for r1, Set 6 for Gmax.

Optimisation Parameter Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Total thickness L (m) 0.06
Layer thickness l (m) 0.004
Number of layers nl 15
Frequency range (kHz) [3− 20]
Population size N 150 300 150 150 150 150
Children created by Crossover C% (%) 80 80 60 80 80 80
Children created by Mutation 100− C% (%) 20 20 40 20 20 20
Mutation probability m 0.02 0.02 0.02 0.005 0.02 0.02
First rank ratio r1 0.3 0.3 0.3 0.3 0.5 0.3
Maximum number of Generations Gmax 300 300 300 300 300 150

Table 3.1 � Optimisation Parameters for the algorithm validation.

For this 15-layer con�guration, there are 32768 possibilities. Scores for each one of these
individuals are plotted in Figure 3.6, creating the cloud of grey dots. Scores of the Pareto
front solutions are also given and are highlighted by the colored dots for sets 1 to 6.
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Figure 3.6 � Scores for all the possible layer arrangements for the con�guration de�ned
in Table 3.1. The colored dots represent the Pareto front for Sets 1 to 6. The orange
square shows the score of a medium comprising only polyurethane layers, while the black
square corresponds to the score of a stainless steel medium.

All Pareto fronts converge reasonably well towards the best solutions. Some solutions
from Set 3 and Set 5 fail having the best solutions located around |CA| = 0.6. Results
for Set 3 show that it is important to maintain a su�cient proportion of children created
by crossover, since the rest of the children are created by mutation with a probability of
0.02. Results for Set 5 show that, when the algorithm is too elitist with r1 = 0.5, then
best solutions may be missing.

Around |CA| = 0.8, Set 4 and Set 6 do not lead to the absolute set of best solutions. For
Set 4, mutation probability is too low, which hinders the creation of su�ciently diverse
individuals. For Set 6, the maximum number of generations is relatively low, which does
not guarantee the best set of solutions but still gives good results. Finally, only Set 1 and
Set 2 lead to the exact set of best solutions, which shows that the parameters for Set 1
are adapted to the problem and there is no need to increase the population size.

In addition, the scores for a medium made entirely of polyurethane and for a medium
entirely made of stainless steel are also visible, respectively shown by the orange and black
squares. It shows that better acoustic performances are obtained by using both materials
in a multilayered con�guration.
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3.2.3 Results

The optimisation process is now applied using parameters presented in Table 3.2. The
objective here is to obtain layer arrangements that would be suitable for manufacturing
and testing in a water tank. The maximum length of the medium is set to 4 cm, consisting
of 40 layers.

Optimisation Parameter Value
Total thickness L = 0.04 m
Layer thickness l = 0.001 m
Number of layers nl = 40
Frequency range [3 kHz− 25 kHz]
Population size N = nl × 4 = 160
Proportion of children created by Crossover C% = 80%
Proportion of children created by Mutation 100− C% = 20%
Mutation probability m = 0.02
First rank ratio r1 = 0.4
Maximum number of Generations Gmax = 300

Table 3.2 � Parameters to optimise the layer arrangement of a medium to lower the
anechoism coe�cient.

Figure 3.7 presents the population's scores over the generations, represented by the colored
dots. The Pareto front obtained with the last generation is highlighted by the grey squares.
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Figure 3.7 � Figures of merit for all individuals in the population, as a function of
the generation number. Grey squares represent the Pareto front obtained at the last
generation. White squares highlight the scores of 4 selected con�gurations.
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The layer arrangement for each solution of the Pareto front is shown in Figure 3.8, where
the orange color corresponds to polyurethane and the dark grey color to stainless steel.
They are sorted from top to bottom in ascending |CA| order. In all cases x = 0 corresponds
to the water/metamaterial interface, and x = 0.04 to the metamaterial/rigid hull interface.
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Figure 3.8 � Layer arrangement for all the solutions of the Pareto front, sorted according
to decreasing σCA

, so increasing |CA|. The orange color represents polyurethane while the
dark grey color corresponds to stainless steel.

In Figure 3.8, it is observed that some patterns are recurrent. For example, for the lowest
values of |CA| (i.e. arrangements at the top of the graph), there are about 11 layers,
beginning and ending with a polyurethane layer. Moreover, for these arrangements, the
�rst layer thickness is always the same, whereas the thicknesses of the other layers between
x = 0.015 m and x = 0.035 m are more subject to variations. Overall, it seems that
layers tend to get thicker as a function of their depth inside the arrangement, creating
an impedance gradient. By going down along the Pareto front, it is then observed that
the middle layers tend to disappear to form thicker layers. It can also be seen that non-
periodic solutions are suitable here to minimise the anechoism coe�cient on the wide
frequency range, as none of these solutions is perfectly periodic.
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Four of these arrangements are now selected for further investigation. After analysis of
the solutions of the Pareto front, low values of |CA| were preferred since these solutions
do not show signi�cant peaks. Their scores are shown by the white squares in Figure 3.7.
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Figure 3.9 � Anechoism coe�cient (left) and layer arrangement (right) for four selected
solutions of the Pareto front.

For the four selected con�gurations, the anechoism coe�cient as well as the layer ar-
rangement are presented in Figure 3.9. Selection 4 corresponds to the con�guration with
the highest |CA| from the selection and Selection 1 has the lowest |CA|, so the selection
follows the Pareto front downward. Selection 1 gives a low anechoism coe�cient from
12 kHz, but also have the highest values of |CA| for the lower frequencies. Selection 2 thus
appears as a good compromise for low |CA| for most frequencies and it is thus selected for
measurements in a water tank. Moreover, this selection also has the advantage of being
made of "thick layers", that is to say it does not include a polyurethane layer which is
less than 2 millimetre thick which would be di�cult to manufacture.

Selection 2 is now further analysed in order to determine features that make a medium
satisfy both objective functions. As previously mentioned, most arrangements of the
Pareto front are made of layers with gradually increasing average density as a function of
depth inside the arrangement, just as a medium with gradient impedance. This feature can
be observed with the moving average µmov of the individual layers' impedances, calculated
along the medium's thickness. The average is realised on a maximum of 10 successive
layers of minimal thickness l. It is represented as a function of the thickness in Figure
3.10, for the frequency 22.5 kHz since it corresponds to the frequency of lowest |CA|.
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Figure 3.10 � Layer arrangement selected moving average µmov of the individual layers'
impedances, calculated along the medium's thickness. The impedance of water is shown
by the blue dotted line.

To summarise this optimisation for the anechoism coe�cient, the optimisation algorithm
was �rst validated, then applied to a case with more variables. The goal was to lower the
mean of the anechoism coe�cient (using |CA|) and keep its values low (using σCA

) over
the frequency range of study. A design has been selected (Selection 2) for manufacturing
and it will be measured in the next Chapter. A performance feature has also been found,
which links the low anechoism coe�cient to a speci�c impedance pattern.
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3.3 Results for Hull Decoupling

The hull decoupling performance is optimised for a multilayered medium considering the
exact same objective functions as for the anechoic performance, de�ned in Section 3.2.1.
Equations (3.3) and (3.5) are thus used replacing CA by CD. The root mean square of
the hull decoupling coe�cient and the normalised standard deviation to this value are
calculated. The hull decoupling coe�cient is given by :

|CD| =
S12

−S22 + 1
. (3.6)

This expression is derived in Appendix C. The optimisation process is applied taking into
account the same parameters as previously, displayed in Table 3.2, aiming to de�ne a
layer arrangement that would give a low hull decoupling coe�cient over the frequency
range from 3 kHz to 25 kHz.

Figure 3.11 presents the population's scores over the generations, represented by the
colored dots. The Pareto front obtained with this last generation is highlighted by the
grey squares. The layer arrangement for each solution of the Pareto front is shown in
Figure 3.12, where the orange color corresponds to polyurethane and the dark grey color
to stainless steel. The solutions are sorted from top to bottom in ascending |CD| order.
In all cases x = 0 corresponds to the water/metamaterial interface, and x = 0.04 to the
metamaterial/rigid hull interface.
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Figure 3.11 � Figures of merit for all individuals in the population, as a function of
the generation number. Grey squares represent the Pareto front obtained at the last
generation. White squares are the scores for a selection of four con�gurations.
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Figure 3.12 � Layer arrangement for all the solutions of the Pareto front, arranged
according to decreasing σCD

, so increasing |CD|. The orange color represents the
polyurethane while the dark grey color corresponds to the stainless steel.

In Figure 3.12, it can be seen that the �rst solutions are mostly made of two layers :
one layer of stainless steel �rst, followed by one layer of polyurethane. Overall, most of
the layer arrangements present a thick polyurethane layer to be placed on the vibrating
hull. Four of these arrangements are now selected for further investigations. The scores
of this selection are highlighted by the white squares in Figure 3.11. For the four
selected con�gurations, the hull decoupling coe�cient as well as the layer arrangement
are presented in Figure 3.13.
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Figure 3.13 � Hull decoupling coe�cient (left) and layer arrangement (right) for four
selected solutions of the Pareto front.

Selection 1 corresponds to the con�guration with the lowest |CD| amongst the selected
con�gurations, while Selection 4 has the highest |CD|. The hull decoupling coe�cient is
relatively similar for these four con�gurations. It is observed that the thickness of the
two layers actually de�nes peaks of the coe�cient. The �rst selection thus is preferable
as this local maximum is at the edge of the frequency range of study.
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It is interesting to note that the lowest |CD| values are obtained with some of the simplest
arrangements, i.e. bi-layers. The �rst selection is further analysed to determine the origin
of its superior performance. As for the anechoism coe�cient, the e�ective impedance as
a function of thickness is determined and is given in Figure 3.14.
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Figure 3.14 � Layer arrangement selected and moving mean µmov of the impedance.
The impedance of water is shown by the blue dotted line

The moving mean µmov of the impedance simply shows an impedance break almost centred
within the medium. Consequently, an e�cient hull decoupling medium can be made of
a thick layer of absorbing material followed by a thick layer of re�ecting material. This
design ensures that the waves remain trapped within the �rst layer, which dissipates the
energy.

The optimisation study for the hull decoupling coe�cient assisted in �nding the impedance
pattern leading to interesting performance. It is then observed that the ideal e�ective
impedance for the hull decoupling coe�cient is very di�erent from that for the anechoism
coe�cient. In the next subsection, layer arrangements are optimised for both coe�cients
in order to analyse the evolution of the impedance patterns.
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3.4 Results for Anechoism and Hull Decoupling

3.4.1 Objective Functions

The goal is herein to minimise both the anechoism and the hull decoupling coe�cients so
that they comply with the given required performance. For this purpose, the standard
deviation functions are modi�ed and performance levels are introduced. It is expected
that the coe�cients are less than 0.1, corresponding to −20dB. It should be noted that
this level is arbitrary and is only given to develop and illustrate the optimisation approach.
With this level requirement, the goal is now to minimise the deviation of the anechoism
and hull decoupling coe�cients according to the level, but only for higher values since
lower values imply a better performance. As such, the �rst objective function is based on
the normal standard deviation de�ned in Equation (3.5) and in Figure 3.5, but using the
given level L instead of the root mean square of the coe�cient. Therefore, an intermediary
function lCA

is considered for each frequency f(iF) in the frequency range of optimisation,
de�ned as:

lCA
(f(iF)) =

{
L if |CA(f(iF))| < L

|CA(f(iF))| if |CA(f(iF))| > L
. (3.7)

The level value is L = 0.1. The normalised standard deviation (NSD) according to the
level requirements, referred to as σLCA

, is then obtained with:

σLCA
=

RMS(lCA
− L)

L
. (3.8)

Hence, with this objective function, the compliance for a given acoustic performance is
optimised. A similar function is considered for the hull decoupling coe�cient CD and the
second objective function is therefore expressed as:

σLCD
=

RMS(lCD
− L)

L
. (3.9)

3.4.2 Results

Figure 3.15 presents the scores of the population over generations, represented by the
colored dots. The Pareto front of the last generation is highlighted by the grey squares. It
is observed that some of the solutions are close to level requirements for the hull decoupling
coe�cients since σLCD

reaches low values compared to σLCA
. This observation is consistent

with the two previous sections, that showed that the input parameters (materials and
total length) are more suitable to the design of a hull decoupling coating than an anechoic
coating.
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Figure 3.15 � Population's scores along generations. The grey squares represent the
Pareto front obtained at the last generation, whereas the white squares are the scores of
selected con�gurations.

All the layer arrangements of the Pareto front are given in Figure 3.16, noting that x = 0
corresponds to the water/coating interface, whereas x = 0.04 m would be the coating/hull
interface. The main observations made in the two last sections are con�rmed here: good
anechoism performance is obtained with gradually increasing average density as a function
of depth inside the arrangement, while the hull decoupling performance is better for a
bi-layer design, whereby the layer at the coating/hull interface is polyurethane. As such,
the layer at the interface x = 0.04 m tends to be thicker as the hull decoupling coe�cient
diminishes, so that the media comprising multiple layers converge to a 2-layer medium.
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Figure 3.16 � Layer arrangements for all the solutions of the Pareto front, arranged
according to decreasing σLCD

, and thus increasing σLCA
. The orange color represents the

polyurethane while the dark grey color corresponds to the stainless steel.
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Among these solutions, four con�gurations, presented in Figure 3.17, are selected, high-
lighted by the white squares in Figure 3.15. Anechoism and hull decoupling coe�cients
are presented in Figure 3.18.
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Figure 3.17 � Layer arrangement for four selected solutions of the Pareto front.
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Figure 3.18 � Anechoism coe�cient and hull decoupling coe�cient for four selected
solutions of the Pareto front.

It is observed that the anechoism coe�cient at low frequency is higher than it was
for its optimisation on its own, whereas the hull decoupling is higher for the entire
frequency range, but remains relatively low. As such, improving the overall hull decoupling
coe�cient by increasing the last layer of polyurethane comes at the price of a poor
anechoism performance at low frequency. The reverse observation is also veri�ed here.
Nonetheless, it is observed that both impedance patterns, associated with the anechoism
coe�cient and the hull decoupling coe�cient are compatible.
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3.5 Summary

In this chapter, an optimisation approach has been presented aiming to optimise the layer
arrangement of multilayered media for the anechoic and hull decoupling performance. The
optimisation algorithm has been validated on a test case.

Results were presented for the anechoic performance, which led mainly to media made
of layers with gradually increasing average density as a function of depth inside the
arrangement. A performance pattern has been drawn based on the e�ective impedance of
the multilayered selection. In terms of a moving mean, a gradually increasing impedance
along the medium thickness is obtained, which then drops close to the end of the medium
(theoretically corresponding to the rigid end in an anechoic set up).

Results for the hull decoupling performance are simpler. It was shown that a simple
bi-layer medium made of two thick layers with the soft layer placed on the hull performs
best. The performance pattern for such a design shows a sudden and signi�cant impedance
change that creates strong re�ection. Waves entering the coating from the soft layer are
therefore trapped within this layer.

Finally, the optimisation algorithm was applied to simultaneously improve anechoism and
hull decoupling �gures of merit. The implemented optimisation approach thus appears as
an e�cient tool to optimise the layer arrangement of multilayered media for a variety of
objective functions, materials and con�gurations.



Chapter 4

Experiments

The multilayered medium selected in Chapter 3 has been manufactured to be measured. In
this chapter, a measurement method, referred to as the 3-point method, is presented and
analysed. The 3-point method is �rst used to characterise the polyurethane comprised in
the selected multilayered medium. Its e�ective speed of sound is experimentally retrieved
from the underwater measurements. Finally, the multilayered medium is measured and
experimental results are compared to the theoretical ones.
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4.1 3-Point Method

4.1.1 Conventional Set-up

Panels are fully immersed in water and are characterised for a quasi-plane incident wave-
front at normal incidence. In order to measure the acoustic pressure at a given frequency
(in harmonic regime), a wave packet at the frequency of interest is used. The phase
convention is ei(ωt−kx). One hydrophone is placed in front of the panel at position A to
measure the sum of the re�ected pressure pr and the incident pressure pi, whereas another
hydrophone is located at position B behind the panel to obtain the transmitted pressure
pt, as shown in Figure 4.1.
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Figure 4.1 � Conventional set-up for panel measurements in an open water tank.

These pressures are used to calculate the re�ection and transmission coe�cients of a panel
at positions A and B, as per:

R(A) =
pr(A)

pi(A)
, (4.1)

T (B) =
pt(B)

pi(A)
. (4.2)

A phase shift is then applied to these equations so that R corresponds to the re�ection
coe�cient at the front face of the panel and T corresponds to the transmission coe�cient
between the front and the back faces, as per the two-port network con�guration.

At position A, in front of the panel, it is often di�cult to temporally distinguish the
re�ected pressure pr from the incident pressure pi, especially for low frequencies. The
incident pressure can be obtained by measurement without the panel, or by calculation
using several measurements as in the 3-point method described in this Chapter.
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4.1.2 Methodology

In this section, a method is presented for acoustic panel measurements in water tanks.
This method is based on a conventional measurement con�guration consisting of the
panel, an acoustic source and two hydrophones, one on either side of the panel. In the
experimental set-up, only three di�erent positions for the hydrophones are considered.
This method, called the 3-point method, provides an estimation of the amplitude of the
edge-di�racted waves as well as the amplitudes of the transmitted, re�ected and incident
waves. The method is detailed below, using Figure 4.2 to illustrate the experimental setup
speci�c to the method.

Figure 4.2 � Experimental set-up speci�c to the application of the 3-point method.
Points A1, A2 and A3 correspond to the three positions taken by the hydrophone on the
re�ection side, while points B1, B2 and B3 are the positions of the hydrophone on the
transmission side. Pressure contributions and geometric parameters are also presented.

On both sides of the panel, the total acoustic pressure is measured at three points. The
3-point method then treats the re�ection and transmission sides in slightly di�erent ways.
For the determination of the re�ection coe�cient, the three points A1, A2 and A3 are
considered. The central position A2 is taken as a reference, with the distances dA12 = A1A2

and dA23 = A2A3. At each point, the total pressure p can be expressed as a function of
the contributions of the incident pressure pi and the re�ected pressure pr at the central
position as well as the di�racted pressure on the re�ection side pdiffR

:
p(A1) = pi(A2)e−ikdA12 + pr(A2)eikdA12 + pdiffR

(A1)

p(A2) = pi(A2) + pr(A2) + pdiffR
(A2)

p(A3) = pi(A2)eikdA23 + pr(A2)e−ikdA23 + pdiffR
(A3)

. (4.3)

It is then assumed that the total contribution of the edge-di�racted pressure is equal at
these three positions when the three points are placed close to each other on the x-axis.
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To legitimise this hypothesis, the analytical model presented in Appendix D is used by
comparing the edge-di�racted pressure in di�erent positions. This hypothesis then leads
to:

pdiffR
(A1) = pdiffR

(A2) = pdiffR
(A3) = pdiffR

. (4.4)

The system of equations given by Equation (4.3) can be simpli�ed and written in a matrix
form as follows: p(A1)

p(A2)
p(A3)

 =

e−ikdA12 eikdA12 1
1 1 1

eikdA23 e−ikdA23 1

pi(A2)
pr(A2)
pdiffR

 . (4.5)

By inverting Equation (4.5), the pressures pi(A2), pr(A2) and pdiffR
are obtained:pi(A2)

pr(A2)
pdiffR

 =

e−ikdA12 eikdA12 1
1 1 1

eikdA23 e−ikdA23 1

−1p(A1)
p(A2)
p(A3)

 . (4.6)

Once the total pressures at points A1, A2 and A3 are measured, the contribution of the
incident, re�ected and edge-di�racted pressures can be deduced using the previous system.
The re�ection coe�cient at point A2 is then obtained using Equation (4.1).

On the transmission side, the same approach is adopted, considering the three points
B1, B2 and B3 and the distances dB12 = B1B2 and dB23 = B2B3, where position B2 is
taken as the reference. In this case, the pressure �eld is decomposed into contributions
of transmitted pressure pt, di�racted pressure pdiffT

as well as pressure p∞ called in�nite
pressure. The latter describes a wave coming from in�nity in the direction of decreasing
x. On the re�ection side, this pressure would correspond to the contribution of re�ected
waves, but on the transmission side, only waves re�ected on the water tank wall could be
travelling in this direction. However, such waves are not recorded within the acquisition
time window considered for the measurements. Thus, the in�nite pressure is assumed to
be zero. On the transmission side, the same hypothesis on the edge-di�racted pressure is
used, so pdiffT

is also assumed to be equal for each of the three points. Total pressures at
points B1, B2 and B3 are therefore expressed by:

p(B1) = pt(B2)eikdB12 + p∞(B2)e−ikdB12 + pdiffT

p(B2) = pt(B2) + p∞(B2) + pdiffT

p(B3) = pt(B2)e−ikdB23 + p∞(B2)eikdB23 + pdiffT

. (4.7)

The contributions of the transmitted, in�nite and di�racted pressures are then calculated
using:  pt(B2)

p∞(B2)
pdiffT

 =

 eikdB12 e−ikdB12 1
1 1 1

e−ikdB23 eikdB23 1

−1p(B1)
p(B2)
p(B3)

 . (4.8)
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With the measurements of the total pressure at points B1, B2 and B3, the contributions
of the transmitted, in�nite and edge-di�racted pressures can be deduced using the pre-
vious system. The transmission coe�cient between A2 and B2 is then obtained using
Equation(4.2).

4.1.3 Experimental Facilities

Measurements are conducted in a large open water tank, shown in Figure 4.3, which is
8 meters long, 6 meters wide and 7 meters deep. This facility is located in the academic
laboratory ISEN, in Lille (France). An omnidirectional source is placed at a distance of
approximately 3 m from the panel perpendicular to the panel surface and in its median
plane. Two hydrophones are placed on either side of the panel, in symmetrical positions
with respect to the central plane of the panel (parallel to its large surface). These
hydrophones are �xed at the end of aluminium sections, which other end is �xed to a
motor on the surface. The position of the receivers on the x-axis and y-axis can be easily
modi�ed using Rexroth motors able to move the sections, on which hydrophones are �xed
with an accuracy of the order of one tenth of a millimetre. It is worth emphasising
that such precision is valid on the surface. However, given that the hydrophones are
placed about 3 meters deep, there is certainly a loss of accuracy in the position of the
hydrophones in the water. Displacement along the z-axis must be done manually by
changing the immersion of the panel.

Figure 4.3 � Open Water Tank Facility of ISEN, Lille (France).
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The experimental bench is fully controlled via a LabView interface, which has been
coded in such a way that the user simply needs to indicate the frequency range as well
as the di�erent positions of the hydrophones along the x-axis. It is also possible to
automatically change the hydrophone positions for each frequency, in order to de�ne the
distance between two positions in terms of wavelength λ instead of absolute distance.

The water temperature of 15.5◦C remains stable for all measurements. Under such
conditions, the speed of sound in water is estimated at 1489 m.s−1.

The source emits a packet of sine waves at the frequency of interest for a duration of
2.2 ms. The signal received by each hydrophone is synchronised with this emitted signal.
The signal received on each hydrophone is initially observed globally over a large time
window using a conventional oscilloscope. This makes it possible to de�ne the acquisition
window to consider only the desired signals simultaneously (which will include the di�erent
pressures of interest) on each hydrophone using a picoscope. The choice of this window
is made on several criteria: (1) it must be located before the reception of the own echo
signals linked to the walls of the water tank, (2) it must start a little after the reception
of the signal by each hydrophone once the signal is well established (without start-up
bounce), and (3) it must be relatively homogeneous over the duration of the acquisition.
A start of the window at 2.7 ms over a period of 1 ms is often a satisfactory setting for
measurements carried out in the water tank given the classic positioning of the di�erent
elements and the size of the tank. As a result, measurements for frequencies below 3
kHz can be di�cult because there is not enough level on the source side and not enough
number of waves observed on the time side, before the arrival of the echoes.

Once this acquisition window is de�ned, the automatic acquisition program is launched
and the picoscope records in this acquisition window for each hydrophone, the frequency,
the modulus and the phase of the received signal. The quality of the measurement can
be evaluated using the di�erence between the frequency measured on the hydrophones
and that of the reference (imposed on the transmitter). A pre-processing step is thus
always performed to check the quality of the recorded signals: pairs of positions X and
frequencies f of unsteady-state signal are detected using the frequencies extracted from
signals recorded in the acquisition window. When a retrieved frequency is signi�cantly
di�erent from the reference frequency imposed on the transmitter, the pair (X, f) is not
taken into account in the post-processing step.
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4.2 Method Validation

4.2.1 Application on a Test Panel

The 3-point-method is applied on a reference panel made of 5083 aluminum alloy of
dimensions 1 m × 1 m and of thickness 4 cm, as shown in Figure 4.4. In the water
tank, the hydrophones and the projector are completely immersed to a depth of 2.73 m,
corresponding to the position of the panel's center. The spherical projector is placed
2.87 m away from the panel. It is assumed that the incident wavefront is plane when it
reaches the panel.

Figure 4.4 � Aluminium reference panel.

Hydrophone positions are always kept symmetrical about the panel, so notation X is used
independently of the side for position X = A or X = B. Positions of the hydrophones are
given in Table 4.1. A distance of λ/15 is considered between the hydrophone positions,
thus changing for each frequency within the frequency range [3 kHz − 13 kHz]. With
this distance of λ/15 between the hydrophone positions, the edge-di�racted pressure level
di�ers by less than 0.6% from one position to another, according to the analytical model
in Appendix D. The con�guration de�ned in Table 4.1 thus complies with the hypothesis
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that the edge-di�racted pressure is equal in the three measurement positions, as per
Equation (4.4). Moreover, with this distance, the total pressures at the three positions
are su�ciently di�erent (cf. Test 3 in 4.2.2).

dX2 (cm) dX1,2 (λ) dX2,3 (λ) θ (◦)
8 λ/15 λ/15 9.1

Table 4.1 � Geometric parameters for validation of the 3-point method.

The total pressures recorded at the three positions on each side of the panel are plotted in
Figure 4.5. As previously mentioned, the total pressure on the re�ection side may reach
local minima resulting from destructive interference. Pairs of positions / frequencies (X,
f) that have been removed using the pre-processing step are highlighted with circles.
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Figure 4.5 � Pressure amplitudes measured at the 3 positions A1, A2 and A3 for the
re�ection side and at the 3 positions B1, B2 and B3 for the transmission side. The circles
represent (X, f) pairs of destructive interference.

On the re�ection side, the total pressures are used to derive the incident pressure pi,
the re�ected pressure pr and the di�racted pressure on the re�ection side pdiffR

. On the
transmission side, the 3-point method leads to the transmitted pressure pt as well as the
di�racted pressure pdiffT

. Pressure p∞ coming from in�nity and travelling towards the
negative x is also obtained for the transmission side. The fact that the in�nite pressure
must be zero can help to detect an invalid application of the method. All these deduced
pressures are shown in Figure 4.6.
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Figure 4.6 � (a) Incident pressure pi, re�ected pressure pr and di�racted pressure pdiffR

at the central position A2 on the re�ection side. The incident pressure measured without
panel (pWP

i ) is also plotted. (b) Transmitted pressure pt, in�nite pressure p∞ and di�racted
pressure pdiffT

at the central position B2 on the transmission side.

The incident pressure is compared to that obtained by measurements without panel,
referred to as pWP

i . It can be observed that both measurements of the incident pressure
with and without the panel are consistent over the whole frequency range, validating the
estimation of the incident pressure provided by the 3-point method. In addition, the
in�nite pressure p∞ is almost zero over the entire frequency range, which is expected
when the 3-point method is valid and correctly implemented. It can also be noted that
the di�racted pressure on both sides oscillates approximately between 2% and 70% of the
total pressure, highlighting that the edge-di�raction e�ects cannot be neglected.

For comparison, the re�ection and transmission coe�cients can be obtained analytically
for a medium of in�nite lateral dimensions [116]. The material properties for aluminium
are 2700 kg.m−3 for the mass density and 6183 m.s−1 for the longitudinal speed of
sound. Since the 3-point method eliminates edge-di�raction contributions, the experi-
mental coe�cients can be directly compared to those of an in�nite panel, as in Figure 4.7.
Experimental coe�cients have also been �tted to a quadratic curve. This �t weakens the
few slight discrepancies which are mainly explained by the structural resonant modes of
the �nite panel, such as the plate bending modes [99]. Therefore, the 3-point method leads



84

to re�ection and transmission coe�cients that �t well with the ones calculated analytically
for an in�nite panel. Data recorded at the central position X2 are also used to calculate
the scattering coe�cients, as per the direct conventional method using a single point.
Results are di�erent from the theoretical calculation, which highlights the bene�t of using
the 3-point method instead of direct measurements to remove the contribution of the
edge-di�raction, since its e�ects are also strongly dependent on the hydrophone position,
as shown latter in Section 4.2.3.
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Figure 4.7 � Modulus of the re�ection coe�cient and the transmission coe�cient obtained
analytically for a panel of in�nite lateral dimensions and measured with the direct single
point method and with the 3-point method. Positions for the 3-point method are de�ned
in Table 4.1 and the central position X2 is used for the direct single point method. Results
from the 3-point method are �tted to a quadratic curve.

The re�ection and transmission coe�cients given by the 3-point method are complex
values, so their phase can be calculated. In Figure 4.8, phases of the coe�cients derived
from the 3-point method (dotted lines) are compared to the phases calculated theoreti-
cally. Phases obtained with the 3-point method were modi�ed considering the distances
hydrophone/panel dX2 +2.2cm for the re�ection side and dX2 +2.5cm for the transmission
side.. It can be seen that their variations are similar but they di�er from one to another.
This di�erence can be explain mainly by the uncertainty on the absolute position of the
hydrophone relative to the panel. Indeed, as a hydrophone is �xed to a 3-meter-long
section, it is unlikely that the position on the surface and in the water will be exactly
the same. For instance, with a 3-meter-long section �xed at a right angle on a support,
an o�set of 1◦ of the support at the right angle would create a 5 cm displacement of the
hydrophone in water. When the phase has to be shifted to the panel interface (for the
calculation of the anechoism coe�cient for instance) there is then a strong uncertainty
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due to the lack of precision on the hydrophone/panel distance. However, it should be
understood that this does not prevent the 3-point method from providing precise results
(in modulus), as it only requires a relative position from one hydrophone to another and
this displacement is precisely controlled by the motors.
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Figure 4.8 � Phase of the re�ection coe�cient and the transmission coe�cient obtained
analytically for a panel of in�nite lateral dimensions and measured with the 3-point
method. A distance correction is applied on the latter to retrieve the variation of the
theoretical phase: Phases obtained with the 3-point method were modi�ed considering the
distances hydrophone/panel dX2 + 2.2cm for the re�ection side and dX2 + 2.5cm for the
transmission side.

4.2.2 Validity Limits

It has been shown with the previous example that when the hypothesis on the di�racted
pressure is satis�ed, the 3-point method leads to re�ection and transmission coe�cients
that �t well with those of an in�nite panel. The current section studies the limits of
validity of the method based on three tests de�ned in Table 4.2. Measurements for
these tests have been conducted between 1 kHz and 15 kHz. The �rst test considers three
points close to each other (separated by 1 cm so that the hypothesis on the edge-di�racted
pressure being equal in the 3 points is assumed to be satis�ed) but far away from the panel,
where the central position forms an angle θ = 25.6◦ with the panel face. In the second
test, a signi�cantly greater distance between hydrophone positions is considered using
dX1,2 = dX2,3 = 10 cm, thus challenging the hypothesis on the edge-di�racted pressure
equal in the three points. Finally, Test 3 considers three positions so that the angle θ
is now equal to 5.7◦, where hydrophone positions are separated from each other by only
0.5 cm. Test 3 then satis�es the hypothesis on the edge-di�racted waves.
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dX2 (cm) dX1,2 (cm) dX2,3 (cm) θ (◦)
Test 1 24 1 1 25.6
Test 2 15 10 10 16.7
Test 3 5 0.5 0.5 5.7

Table 4.2 � Con�guration parameters tested to assess limitations of the 3-point method.

For these three tests, the re�ection and transmission coe�cients given by the 3-point
method are plotted in Figure 4.9. It is �rst observed that these experimental scattering
coe�cients are very di�erent from those of an in�nite panel obtained theoretically (lines
without markers). Moreover, all of them reach values higher than one, which makes no
sense physically for a passive material. Results for each test are further analysed.
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Figure 4.9 � Amplitude of (a) the re�ection coe�cient and (b) the transmission coe�cient
obtained with the 3-point method for the tests 1 to 3 de�ned in Table 4.2. Re�ection and
transmission coe�cients obtained theoretically for a panel of in�nite lateral dimensions
are also presented (same as in Figure 4.7).

In Test 1, the relative di�erence between the edge-di�racted pressure levels in each point
remains less than 1% according to the model in Appendix D. Even though the hypothesis
on the edge-di�racted pressure can be considered as valid here, the experimental coe�-
cients are very di�erent from the theoretical ones because when the hydrophones are this
far away from the panel, the signal may be polluted by waves other than those di�racted
by the panel. The angle θ shall therefore remain less than 15◦.

Test 2 considers a greater distance between hydrophone positions. This con�guration gives
acceptable results at very low frequencies, but leads to poor results at higher frequencies
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as the distances dX become too important in terms of wavelength. The relative di�erence
between the edge-di�racted pressure levels is oscillating between 5% and 10% according
to the analytical model in Appendix D. Poor quality results are thus obtained when the
hydrophone set-up does not comply with the hypothesis on the hydrophone positions
being close enough to each other so that the di�racted pressure is assumed identical for
the three positions. Ideally, the distance between hydrophone positions should be lower
than λ/5.

Finally, for Test 3, the distance dX = 0.5 cm between hydrophone positions is equivalent
to λ/300 at 1kHz and λ/20 at 15kHz. For this con�guration, the hypothesis is satis�ed
and the relative di�erence is less than 0.1% according to the analytical model. Moreover,
these three points are very close to the panel. However, the points are so close to each
other that the total pressures measured are almost identical at the three points, which
leads to results strongly dependent on measurement and numerical errors. Therefore, a
compromise must be found to de�ne three positions su�ciently close to each other and
close to the panel, while being su�ciently spaced in terms of wavelength. It is thus
preferable to maintain a minimum distance of λ/20 between two hydrophone positions.

The aforementioned criteria apply for the current aluminium panel and therefore will also
generally apply to all panels of input impedance higher than the impedance of water.
Nevertheless, it is worth noting that the behavior may be di�erent in terms of the edge-
di�racted signal, for a panel having an input impedance lower than the impedance of
water [98]. For such a case, one has to make sure that measurements are made within
an area where a di�racted signal exists at the 3 chosen positions so that it is accurately
extracted from the total signal with the 3-point method.

4.2.3 Pressure Mapping

Acoustically hard panels are known for having a pronounced di�raction pattern. In order
to evaluate and visualise the variations of the edge-di�racted pressure in a plane parallel
to the panel, a pressure mapping is proposed. Both the analytical model in Appendix D
and the 3-point method are applied for a pressure mapping along the y-axis.

Hydrophone positions along the x-axis de�ned in Table 4.1 are considered hereafter. Along
the y-axis, 31 positions are considered, from y = −15 cm to y = 15 cm, with y = 0 cm
corresponding to the panel's center. The distance between each y-position is then 1 cm.
For frequencies 3.5 kHz, 5.5 kHz and 7.5 kHz, the calculated pressures on each side of the
panel are plotted in Figure 4.10. For frequencies 14 kHz, 14.5 kHz and 15 kHz, the pressure
mapping is given in Figure 4.11. Finally, variations of the edge-di�racted pressure given
by the model in Appendix D are plotted in Figure 4.12. It should be noted that Figure
4.12 does not provide the amplitude of the edge-di�racted pressure, but only its variations.
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Figure 4.10 � Pressure mapping along the y-axis for 3.5 kHz, 5.5 kHz and 7.5 kHz.
Experimental coe�cients are also given and compared to the theoretical coe�cients for a
panel of in�nite lateral dimensions.
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Figure 4.11 � Pressure mapping along the y-axis for 14 kHz, 14.5 kHz and 15 kHz.
Experimental coe�cients are also given and compared to the theoretical coe�cients for a
panel of in�nite lateral dimensions.
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Figure 4.12 � Variations of the di�racted pressure along the y-axis obtained with the
analytical model in Appendix D.

On these pressure maps, the in�nite pressure p∞ is almost zero everywhere, which shows
that the 3-point method is valid and correctly implemented. Re�ected, transmitted and
incident pressures are almost identical along the y-axis, which reinforces the assumption
of a plane wave condition. However, on both sides of the panel, the di�racted pressure
strongly varies along the y-axis. This last observation is consistent with the results
given by the analytical model in Figure 4.12. The pattern of the di�racted pressure
�eld then depends on frequency, since for low frequencies the edge-di�racted pressure
slowly varies along the y-axis, but as frequency increases, variations become steeper
and closer. In addition, the center of the panel (y = 0) is always a maximum for
the edge-di�racted pressure. This pressure mapping highlights the strong variations
of the di�racted pressure along the y-axis and shows that a means of either reducing
the edge-di�raction or calculating and removing its contribution is crucial for accurate
measurements.
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4.3 Experimental Speed of Sound Determination

4.3.1 Measurements

In this section, the longitudinal speed of sound in the polyurethane medium comprising
6% of micro-balloons is experimentally determined. This experimental determination
ensures that the material properties used in the optimisation study of Chapter 3 are really
those of the material that can be manufactured and not purely theoretical properties. The
polyurethane panel comprising of 6% of micro-balloons is of dimensions 900 mm×900 mm
and of thickness 40.9 mm (on average), as shown in Figure 4.13. The theoretical mass
density is 969 kg.m−3. In practice, the measured mass density is 984 kg.m−3.

Figure 4.13 � Polyurethane panel comprising 6% of micro-balloons. The panel is hold
by a Plexiglas frame.

The re�ection and transmission coe�cients obtained from measurements in the water
tank are �rst needed. The speed of sound in the panel is then retrieved using these
coe�cients based on two approaches : (1) the retrieval method of Fokin et al. [45], and
(2) a minimisation criterion introduced by Audoly [117]. The 3-point method is used to
determine the re�ection and transmission coe�cients. Three di�erent distances between
hydrophone positions along the x-axis are considered corresponding to λ/5, λ/10 and
λ/15. The hydrophone spacing of λ/5 is then applied at several positions along the y-axis
to verify the consistency of the measurements. Results for the modulus and unwrapped
phase of the re�ection and transmission coe�cients are shown in Figure 4.14. For all three
hydrophone positions, results were consistent.
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The case of a panel that has an input impedance lower than that of water is di�erent
from the case of an aluminium panel. The di�raction pattern for such panel is indeed not
as signi�cant as for a panel with higher impedance [98]. In addition, the amplitude of the
di�racted waves is so low that their e�ects on the re�ection and transmission coe�cients
may be negligible. The 3-point method, with θ = 13◦ and dX = λ/5 , has yielded excellent
results and has highlighted the existence of a di�racted signal with low amplitude and
very little variation. The coe�cients shown in Figure 4.14 are then averaged and used to
retrieve the e�ective speed of sound in the panel.
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Figure 4.14 � Modulus and unwrapped phase of the re�ection and transmission
coe�cients obtained with the 3-point method at three di�erent positions along the y-
axis.

4.3.2 Retrieval Approach 1

Re�ection and transmission coe�cients of the panel at normal incidence are used to
retrieve the complex speed of sound in the panel with the retrieval method of Fokin et
al. [45]. This method is based on the transfer matrix method, which can be fully calculated
for the medium using the scattering coe�cients (Appendix A). From the theoretical
expression for the transfer matrix, the e�ective speed of sound can then be retrieved
assuming that the mass density is known. The retrieved e�ective parameters are given in
Figure 4.15. The real part of the speed of sound rises slightly from about 900 m.s−1 up
to 950 m.s−1 at 25 kHz. The loss factor for the e�ective speed of sound slightly decreases
from roughly 10% to 5%.
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Figure 4.15 � Complex speed of sound cL(1 + iη) obtained with the retrieval method of
Fokin et al. [45].

4.3.3 Retrieval Approach 2

The unknown values of cL and η are obtained by numerically minimising over these two
parameters the error between the measured values of the coe�cients R and T and their
calculation using given values of cL and η. Based on the estimation given by the retrieval
approach 1, the two parameters to retrieve are bounded. The range of possible values for
the real part of the speed of sound is [800 m.s−1 − 1100 m.s−1] and the loss factor taking
its values within the range [2% − 12%]. The minimisation criterion C is given by:

C(cL, η) = |Rcalc(cL, η)−Rmeas|+ |Tcalc(cL, η)− Tmeas|. (4.9)

This criterion should provide a robust solution as it is over-determined [117]. For each
frequency, the criterion is calculated in the 2D-space (cL, η). For example, for the
frequency 15 kHz, the criterion map is given in Figure 4.16.

Figure 4.16 � Values of the criterion C for the frequency 15 kHz.
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The values of cL and ηcL that lead to the global minimum of the criterion are represented
by grey dots in Figure 4.17. Moreover, values that are close to this minimum, leading to
C < ε with ε to be �xed, are also shown by the error bars in Figure 4.17. By considering
ε = 0.13, these solutions correspond to the darker blue areas and (∆η, ∆cL) in Figure 4.16
for 15 kHz. As such, for each frequency, the set of values that minimise the criterion are
visible.

It is observed that for the region between 15 kHz and 17 kHz, there is no solution that
satis�es the criterion C < 0.13. It is also noted that for frequencies less than 10 kHz, there
is greater uncertainty, as shown by the blue bars. Overall, the real part of the speed of
sound is growing slightly from 900± 10 m.s−1 between 5 kHz to 10 kHz to 950± 10 m.s−1

, whereas the loss factor η is about 5 ± 0.5%. These values are consistent with those
obtained using the retrieval method in Figure 4.15. These curves have been �tted to be
used in Chapter 3, as shown in Figure 4.18.
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Figure 4.17 � Speed of sound obtained using the minimisation criterion C given in
Equation (4.9) for C < ε, with ε = 0.13. The grey dots are the values of the complex
speed of sound that give the global minimum of C whereas the error bars are the sets of
solutions that satisfy C < ε.
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Figure 4.18 � Estimated complex speed of sound in the selected polyurethane matrix
comprising 6% of micro-balloons.

4.3.4 Veri�cation

The retrieved complex speed of sound has been �tted, as presented in Figure 4.18. Re�ec-
tion and transmission coe�cients calculated with theses values are given in Figure 4.19 and
compared with coe�cients obtained experimentally. Close agreement between calculated
and experimental values for both the modulus and unwrapped phase can be observed.
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Figure 4.19 � Modulus and unwrapped phase of the re�ection and transmission
coe�cients obtained with the 3-point method (black lines) and calculated with the �t
of the retrieved speed of sound in the panel (red lines).
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4.4 Multilayered Medium Measurements

4.4.1 Panel and Experimental Set-up

In this section, the selected multilayered medium selected in Chapter 3 (Figure 3.10) is
experimentally characterised. Its design is reminded in Figure 4.20 and photographs of
the panel are presented in Figure 4.21.
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Figure 4.20 � Theoretical layer arrangement and thicknesses (in millimetres) of the
manufactured panel. In the anechoic con�guration, Face 2 would be on the hull and the
incident plane wave arrives on Face 1.

Figure 4.21 � Photo of (a) the panel before being mounted in the water tank, (b) the
layer arrangement as per Figure 4.20, and (c) panel holding points that contain all steel
layers.

The thickness of each layer has been measured and is consistent with the required design.
The main di�culty with this panel was to ensure that the center of mass, which is di�erent
from the geometric center since the panel is strongly asymmetric, was correctly aligned
with the mounting post. Misalignment can in fact lead to the creation of an unknown
angle for the panel which is then not characterised for normal incidence. The theoretical
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center of mass was thus calculated in order to align it with the mounting center using
specially designed spacers to be placed on either side of the panel holding points (Figure
4.21(c)). However, it is important to note that, despite all the attention paid to the correct
placement of the panel, there is still uncertainty since the center of mass calculation was
performed on theoretical mass densities and thicknesses of the layers, which cannot be
checked independently for this assembled panel.

4.4.2 Measurements

The 3-point method was used to measure the panel. The central position was placed
11 cm away from the face of the panel. A spacing of λ/10 was de�ned between the 3
positions of the hydrophone. Both sides of the panel are measured since the multilayered
medium is not symmetrical. To do so, the panel was rotated but the acoustic source
position remained unchanged.

Pressure magnitudes calculated by the 3-point method are presented in Figure 4.22.
This shows that the retrieved incident pressure matches with the pressure obtained by
measurements without the panel. In addition, pressure p∞ is almost zero over the entire
frequency range, which is consistent with the theory. These two observations show that
the 3-point method is applied under valid conditions. Moreover, it can be seen that from
20 kHz, the transmitted pressure is very low and reaches the same values as the edge-
di�racted pressure.
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Figure 4.22 � Pressure levels calculated with the 3-point method on the re�ection and
transmission side, for an incident plane wave on Face 1 (left) and on Face 2 (right). The
incident pressure measured without the panel is also given (pWP

i (A2)).
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From these calculated pressures, re�ection and transmission coe�cients are derived for
each side of the panel. They are compared to analytical predictions, as shown in Figure
4.23 and 4.24 for the incoming wave incident on Face 1 and Face 2, respectively.
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Figure 4.23 � Re�ection and transmission coe�cients of the multilayered medium
obtained by insoni�cation of Face 1.
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Figure 4.24 � Re�ection and transmission coe�cients of the multilayered medium
obtained by insoni�cation of Face 2.
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There is good overall consistency between the experimental and analytical results for the
modulus. The transmission coe�cients measured on both sides is almost identical and
also in agreement with the predictions for the modulus. However, it can be seen for both
sides the panel is less re�ective at low frequency than what has been predicted. On the
contrary, from 10 kHz it becomes slightly more re�ective, especially for Face 1. The phases
of the two re�ection coe�cients are notably di�erent from the prediction. This can be
explained by signi�cant uncertainty on the exact distance between the hydrophone and
the panel. In fact, this distance is considered twice in the calculation of the phase of the
re�ection coe�cient: once to phase-shift the pressure re�ected on the face of the panel
and once to phase-shift the pressure incident on this same face.

Phase corrections are applied by modifying the hydrophone/panel distances. The 3
corrections are as follows :

� Correction 1 corresponds to the distance corrections determined on the aluminium
panel (Figure 4.8). The hydrophone on the re�ection side is thus assumed to be
placed at dX2 + 2.2cm from the panel and the transmission hydrophone is estimated
to be at dX2 + 2.5cm away from the panel.

� Correction 2 corresponds to the distance corrections determined by attempting to
�t the theoretical curves for the insoni�cation of Face 1. The hydrophone on the
re�ection side is thus assumed to be placed at dX2 + 1.5cm from the panel and the
transmission hydrophone is estimated to be at dX2 + 3.3cm away from the panel.

� Correction 3 corresponds to the distance corrections determined by attempting to
�t the theoretical curves for the insoni�cation of Face 2. The hydrophone on the
re�ection side is thus assumed to be placed at dX2 + 2.4cm from the panel and the
transmission hydrophone is estimated to be at dX2 + 2.3cm away from the panel.

These corrected phases are plotted in Figure 4.25 for the insoni�cation of Face 1 and in
Figure 4.26 for the insoni�cation of Face 2. As such, it can be seen that Correction 1,
determined on the aluminium panel, is a correction that also applies well for this panel,
except for the re�ection coe�cient obtained by insoni�cation of Face 2.
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Figure 4.25 � Corrected phases of the re�ection and transmission coe�cients of the
multilayered medium obtained by insoni�cation of Face 1.
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Figure 4.26 � Corrected phases of the re�ection and transmission coe�cients of the
multilayered medium obtained by insoni�cation of Face 2.

4.4.3 Calculation of the Anechoism Coe�cient

The anechoism coe�cient, de�ned in Appendix C, can now be derived using the ex-
perimental re�ection and transmission coe�cients. In addition to the calculation using
coe�cients derived directly from the 3-point method, the anechoism coe�cient is also
calculated using the coe�cients with corrected phases. For the �rst calculation with
phase correction, Correction 1 is applied to all coe�cients, as per :

CA,Correction1 = RFace1,Correction1 −
TFace1,Correction1TFace2,Correction1

RFace2,Correction1 − 1
. (4.10)

For the second calculation, Correction 2 is applied on the coe�cients obtained for insoni-
�cation of Face 1 and Correction 3 for that of Face 2, as given by:

CA,Mixed Correction = RFace1,Correction2 −
TFace1,Correction2TFace2,Correction3

RFace2,Correction3 − 1
(4.11)

The resulting �tted anechoism coe�cients are given in Figure 4.27 and compared with the
theoretical prediction. This shows that the anechoism coe�cient obtained experimentally
di�ers from the prediction in a non-negligible way. Since phase corrections are obtained
from position corrections, this highlights that it is crucial to know the panel-hydrophone
distance exactly if the re�ection and transmission coe�cients are to be used to calculate
the anechoism coe�cient, especially at low frequencies. However, the mixed correction
seems to provide an anechoism coe�cient close to the theoretical value. The slight di�er-
ences visible for this anechoism coe�cient appear to be due to the modulus variations. As
mentioned previously, the panel is less re�ective than expected for low frequencies and for
both sides of the panel, which yields a low anechoism coe�cient for this frequency range.
On the contrary, the panel becomes more re�ective at higher frequencies, thus leading to
an higher value of the anechoism coe�cient.
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Figure 4.27 � Anechoism coe�cient for the multilayered medium obtained theoretically
in Chapter 3 and using the measured re�ection and transmission coe�cients (blue).
Coe�cients are also calculated considering the phase correction 1 obtained for the
aluminium panel and considering mixed phase correction by the use of correction 2 and 3.

To summarise, the multilayered panel optimised in Chapter 3 has been measured in the
water tank for both sides, in order to calculate the anechoism coe�cient. Modulus of both
coe�cients, for both sides, are in good agreement with theoretical calculations. Slight
di�erences between the predictions and the experimental modulus can be explained by
the use of �tted material properties (obtained from the measurements) in the analytical
calculation and by the possible local di�erences between the theoretical and actual thick-
nesses and material properties of each layer. However, as for the aluminium panel, phases
of the two coe�cients are di�erent from the theoretical results since the panel/hydrophone
distance is not well known. It is recalled that phase shifts are applied to these experimental
coe�cients. However, this phase shift requires precise knowledge of the distance between
the hydrophone and the panel. As such, the calculation of the anechoism coe�cient
requires phase corrections to overcome this uncertainty. When the phase of the coe�cients
are corrected independently for each side and then used together in the calculation of the
anechoism coe�cient, the agreement between experimental and theoretical anechoism
coe�cients is better.
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4.5 Summary

In this Chapter, the conventional set-up for measurements in open water tank have
been described. An experimental method, namely the 3-point method, has also been
presented. Using measurements at three di�erent positions, the 3-point method yields
estimations of the incident, re�ected and transmitted pressures, from which the re�ection
and transmission coe�cients can be derived. The method also provides an estimation
of the total contribution of the edge-di�racted waves. The method has been applied
to the challenging case of a homogeneous panel made of aluminum, for which edge-
di�racted e�ects usually strongly corrupt the measurements. Experimental re�ection and
transmission were close to the theoretical calculation. The validity limits of the method
have then been studied. It has been shown that it is important to choose the right positions
for the hydrophones, so that the assumption on the identical edge-di�racted pressure at
the three points is satis�ed. A mapping of the di�erent pressures along the y-axis was
presented, where the strong variations of the edge-di�racted pressure are clearly visible.
The 3-point method has the great advantage of being easy to implement and it does not
require any additional device other than the conventional experimental bench for open
water tank measurements. This work has been published in [118].

The 3-point method has then been applied to an acoustically soft panel to retrieve its
e�ective speed of sound. This panel is made of polyurethane with the inclusion of 6%
of micro-balloons, which is the material used in the multilayered medium. From the
scattering coe�cients given by the 3-point method, the e�ective speed of sound has been
retrieved using two di�erent approaches, for which results are in agreement.

Finally, the multilayered design selected in Chapter 3 was measured using the 3-point
method. Moduli of the re�ection and transmission coe�cients are consistent with ana-
lytical predictions. For Face 1, which is intended to be at the interface with water in an
anechoic con�guration, the re�ection coe�cient is rather low over the entire frequency
range, while the transmission coe�cient is decreasing which is a characteristic of good
anechoic media. Di�erences were however noted on the anechoism coe�cient, which
proves to be extremely sensitive to the distance between the panel and the hydrophones.
Nonetheless, the use of phase corrections seems to overcome this lack of accuracy and
yields an anechoism coe�cient close to the theoretical prediction.
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Part I introduced a homogenisation method for symmetric or asymmetric multilayered
media (Chapter 2), which then was used for optimising layer arrangements. This study
has shown patterns of performance for the anechoism and hull decoupling coe�cients
(Chapter 3). The acoustic performance of an optimised multilayered medium was then
veri�ed experimentally using the 3-point method. The experimental method was initially
validated using an reference aluminum panel and then applied to the polyurethane panel
used in the multilayered medium for retrieving its e�ective speed of sound (Chapter 4).
In Part II, the emphasis is on designs with macro-inclusions, for which homogenisation
methods, optimisation approaches and experimental performances are presented and are
more complex than for their 1D multilayered counterparts.
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Chapter 5

Homogenisation for Symmetric Designs

In structures with macro-inclusions, additional physical phenomena may occur compared
to one-dimensional periodic �nite structures, such as local resonances and boundary
e�ects. It therefore becomes more di�cult to apply a simple homogenisation model. In
this chapter, the e�ective properties of acoustic metamaterials are obtained by applying
two retrieval methods, referred to as the direct inversion method and the di�erential
method. They employ the scattering coe�cients on the re�ection and transmission sides
of structures immersed in a �uid (in this work, water). As with Chapter 2, a �uid
homogenisation model is considered and a transfer matrix approach is used to describe
the propagation in the constituent unit cell. A validation case study on a multilayered
periodic design is �rst presented. Two case studies consisting of designs with periodic
cylindrical steel or void macro-inclusions in a soft elastic matrix are then examined.
Homogenisation issues related to di�erent underlying assumptions in the two retrieval
methods are discussed. A hybrid method is also introduced to provide an accurate e�ective
representation of a structure with macro-inclusions.
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5.1 Methodology

5.1.1 Fluid Homogenisation Model

This chapter is limited to the study of symmetric and periodic structures with macro-
inclusions, characterised by a unit cell. Similar to the homogenisation theory for multi-
layered structures presented in Chapter 2, the objective is to de�ne the e�ective medium
that would replace the unit cell. A �uid model is selected and is thus characterised by an
e�ective wavenumber k and an e�ective impedance Z.

The �uid homogenisation model is evidently simplistic when applied to complex periodic
media with macro-inclusions. Several homogenisation di�culties will be underlined in
this Chapter and are �rst mentioned here. First of all, only longitudinal waves can
propagate in a �uid whereas shear wave propagation occurs in solid media. As struc-
tures are studied under normal incidence, this assumption was valid for one-dimensional
multilayered structures where only longitudinal modes were excited. However, for struc-
tures made of a elastic matrix with macro-inclusions, local resonances may appear and
convert longitudinal waves into shear waves, which cannot be described by the present
homogenisation model. Shear wave propagation is therefore not accurately modelled but
is implicitly taken into account. The �uid model also cannot consider the e�ects of the
near-�elds that may be created by media with macro-inclusions, as in practice, �uid media
of in�nite lateral extent do not produce near-�eld e�ects. Aware of the approximations
involved by the choice of a �uid model, it is worth emphasising that the retrieval methods
are implemented to give approximate predictions of a medium's acoustic performance so
that it can be used in an optimisation process. As such, it is not an exact homogenisation
model that is sought, but a simple method to get a reasonably accurate representation of
the behavior of metamaterials with macro-inclusions.

It is worth remembering that propagation in a �uid medium may be represented by a
transfer matrix under the form given by Equation (2.2), recalled below :

M =

[
cos(kh) iZsin(kh)

iZ−1sin(kh) cos(kh)

]
. (5.1)

E�ective properties k and Z are derived using two retrieval methods, that are techniques
based on the scattering response of a structure, such as the re�ection and transmission
coe�cients. These methods are presented in what follows and are referred to as the direct
inversion (dir) method and the di�erential (di�) method.

5.1.2 Direct Inversion Method

The direct inversion method uses the re�ection and transmission coe�cients of a structure
to retrieve its e�ective parameters, similar to the method proposed by Fokin et al. [45].
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The medium is modelled as a segmented structure comprising of periodic repetitions of
a constituent unit cell, as shown in Figure 5.1. The segmented medium comprises n unit
cells of length Lu. Coe�cients R and T , respectively, correspond to the coe�cients of the
re�ected and transmitted pressures calculated at the interfaces between the segmented
medium and the surrounding �uid medium. In this method, all unit cells are identical.

Figure 5.1 � Schematic diagram of a segmented medium comprising n identical unit
cells. Re�ection and transmission coe�cients on the incidence and transmission sides of
the medium are also shown.

The direct inversion method follows the same approach as the homogenisation method
presented in Chapter 2 for multilayered structures, using the fact that transfer matrices
can be expressed and calculated in several ways. One way to obtain the global transfer
matrix Mn of the periodic medium comprising n unit cells is to use its re�ection and
transmission coe�cients in the surrounding �uid of impedance Zf as follows:

Mn =
1

2T

[
1−R2 + T 2 ((1 +R)2 − T 2)Zf

((1−R)2 − T 2)Z−1
f 1−R2 + T 2

]
. (5.2)

This expression is derived in Appendix A. Since all unit cells are identical and the
homogenisation model is applied to each cell, the global transfer matrix of the segmented
medium may also be written as the product of the transfer matrix of each cell. This
leads to Mn = (Mu)

n, where Mu is the transfer matrix of a constituent unit cell and
Lu is its thickness. It is assumed that the transfer matrix Mu has the same form as the
transfer matrix given in Equation (5.1). It is then easy to show that for any transfer
matrix under the form given by Equation (5.1), the calculation of (Mu)

n for any n integer
is equivalent to only replacing the thickness Lu by nLu without changing the wavenumber
or the impedance associated with the matrix Mu. Therefore, if the e�ective parameters
may be found for a single unit cell, the same parameters apply for a segmented medium
comprising n unit cells. The global transfer matrix expression is thus given by :

(Mu)
n =

[
cos(nkdirLu) iZdirsin(nkdirLu)

iZ−1
dir sin(nkdirLu) cos(nkdirLu)

]
, (5.3)

where Zdir is the e�ective impedance and kdir is the e�ective wavenumber obtained for
the direct inversion method. The global transfer matrix expression given by Equation
(5.3) is equal to the global transfer matrix calculated using the scattering response of the
medium given by Equation (5.2). The e�ective parameters are derived from this equality.
We herein introduce the notation Mni,j

to express the elements of the global transfer
matrix Mn, with 1 ≤ i, j ≤ 2. The e�ective impedance is given by:



109

Zdir = ±

√
Mn1,2

Mn2,1

. (5.4)

Material passivity condition requires the real part of the e�ective impedance to be positive
(See section 1.4.5). The e�ective wavenumber is obtained using either Mn1,1 or Mn2,2 , as
per:

kdir = ±
cos−1(Mn1,1)

nLu
+

2πm

nLu
. (5.5)

The passive material condition is satis�ed when the imaginary part of kdir is negative.
Integer m is chosen to ensure continuity of the real part of kdir as a function of frequency
(see Section 1.4.5).

5.1.3 Di�erential Method

The second retrieval method, referred to as the di�erential method, is an extension of the
Bianco and Parodi method [44] and is detailed below. Two versions of the di�erential
method are introduced. In the �rst version, the transfer matrix of the unit cell is assumed
to be of the form given by Equation (5.1), whereas in the second version of the di�erential
method, e�ective parameters are obtained independently of this transfer matrix form.

Bianco and Parodi Method

The Bianco and Parodi method (BP) is a retrieval method which was originally developed
for electromagnetism, in order to derive the propagation constant in a medium of in�nite
length by examining wave propagation within a section of a �nite medium [44]. Figure
5.2 presents the con�guration required to apply the Bianco and Parodi method. Two
media are considered, di�ering only by their length, where the second medium is greater
in length by ∆L compared to the �rst medium. The propagation constant is calculated
for this extra length. Ri and Ti (i = 1, 2) respectively correspond to the coe�cients of the
re�ected and transmitted pressures calculated at the interfaces between the two media
and the surrounding water.

Figure 5.2 � Schematic diagram illustrating the Bianco and Parodi method in which
two �nite media di�er only by length ∆L in the propagation direction. Re�ection and
transmission coe�cients of the two media are de�ned.



110

The Bianco and Parodi method does not require the application of a descriptive model to
the entire media. The homogenisation model is only applied to the extra portion ∆L in
the second medium, assuming that the medium is long enough to create a region where
wave propagation is monomode, thus described by the wavenumber kBP in the medium
core. Firstly, the �rst medium (m1) is virtually segmented in two sections, referred to as
section 1 (s1) and section 2 (s2), for which the transfer matrices are respectively Ms1 and
Ms2 . The global transfer matrix for the shorter medium is then given by:

Mm1 = Ms1Ms2. (5.6)

The global transfer matrix for the second medium (m2) only di�ers by the introduction
of the section ∆L in-between the sections 1 and 2, which yields:

Mm2 = Ms1M∆L
Ms2. (5.7)

Equation (5.7) is multiplied by the inverse of the global transfer matrix of the �rst medium
given by Equation (5.6), which leads to:

Mm2(Mm1)−1 = Ms1M∆L
Ms2(M−1

s2 M
−1
s1 ) = Ms1M∆L

M−1
s1 . (5.8)

By de�nition, the matrixMs1M∆L
M−1

s1 andM∆L
are similar. As such, these two matrices

have the same trace, which is also the same as the product Mm2(Mm1)−1 according to
Equation (5.8). Moreover, the transfer matrix M∆L

, describing the core of the second
medium, is assumed to be under the form of Equation (2.22). Consequently, the e�ective
wavenumber kBP is obtained using:

Tr
(
Mm2(Mm1)−1

)
= Tr (M∆L

) = 2cos(kBP∆L). (5.9)

The e�ective wavenumber kBP is thus derived using the trace of the transfer matrix of
the unit cell, which is Tr (Mn+1(Mn)−1) = Tr (Mu) = Mu1,1 + Mu2,2 . The e�ective
wavenumber expression is then:

kBP = ±
cos−1(Tr(Mu)

2
)

Lu
+

2πm

Lu
. (5.10)

The Bianco and Parodi method gives the e�ective wavenumber in the medium of theo-
retical in�nite length. The method is valid even when the wave coupling process at the
inlet/outlet cannot be modelled by a transfer matrix under the form of Equation (5.1),
as it is unnecessary to apply a homogenisation model for these sections. The Bianco and
Parodi method thus accurately removes physical phenomena that may arise from the �nite
length of the medium and from the coupling at the interfaces with the surrounding �uid
on the incidence and transmission sides of the medium [47]. However, it is worth noting
that the Bianco and Parodi method, as well as the following di�erential method, requires
the calculation of the scattering coe�cients for two media, unlike the direct inversion
method which only needs one medium.
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Di�erential Method

The Bianco and Parodi method is extended here to calculate more e�ective properties than
only the e�ective wavenumber. This extended method is referred to as the Di�erential
Method. The two media are modelled as segmented structures comprising periodic repe-
titions of a constituent unit cell, as shown in Figure 5.3. The extra portion added to the
second segmented medium is one unit cell of length Lu. The shorter segmented medium
comprises n unit cells and the longer medium comprises n + 1 unit cells. Coe�cients Ri

and Ti (i = 1, 2) respectively correspond to the coe�cients of the re�ected and transmitted
pressures calculated at the interfaces between the segmented media and the surrounding
�uid medium. In this extended method, all unit cells are identical.

Figure 5.3 � Schematic diagram illustrating the di�erential method in which two �nite
segmented media comprising identical unit cells di�er only by a single unit cell. Re�ection
and transmission coe�cients of the two segmented media are de�ned.

Transfer matrices of the two media are expressed and calculated using their scattering
coe�cients. The global transfer matrix Mn of the shorter periodic medium comprising
n unit cells can be calculated using its refection R1 and transmission T1 coe�cients as
follows:

Mn =
1

2T1

[
1−R2

1 + T 2
1 ((1 +R1)2 − T 2

1 )Zf
((1−R1)2 − T 2

1 )Z−1
f 1−R2

1 + T 2
1

]
. (5.11)

Similarly, the global transfer matrix Mn+1 of the longer segmented medium can be
calculated using its scattering coe�cients R2 and T2 as given by (Appendix A):

Mn+1 =
1

2T2

[
1−R2

2 + T 2
2 ((1 +R2)2 − T 2

2 )Zf
((1−R2)2 − T 2

2 )Z−1
f 1−R2

2 + T 2
2

]
. (5.12)

Two versions are from now on distinguished.

- Version 1

Since all unit cells are identical, the global transfer matrix of a segmented medium may
also be written as the product of the transfer matrix of each unit cell. This leads to
Mn = (Mu)

n for the shorter segmented medium and Mn+1 = (Mu)
n+1 for the longer
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medium, where Mu is the transfer matrix of a constituent unit cell. The transfer matrix
Mu of a unit cell can be now deduced from the product of the global transfer matrix of
the longer segmented medium with the inverse of that of the shorter medium, that is:

Mn+1(Mn)−1 = (Mu)
n+1−n = Mu. (5.13)

The left hand side of Equation (5.13) corresponding to the product Mn+1(Mn)−1 can
be calculated in terms of the scattering responses of the two segmented media, using
Equations (5.11) and (5.12).

The transfer matrix Mu on the right hand side of Equation (5.13) is assumed to be of the
form of Equation (5.1), similar to the direct inversion method. Therefore all unit cells,
including the extra unit in the second segmented medium, can be modelled by a transfer
matrix in the form of Equation (5.1). This hypothesis was not present in the original
Bianco and Parodi retrieval method, where a descriptive model was only applied to the
core of the second medium. In this version of the di�erential method, it is assumed that
all the segments (units) can be described by the transfer matrix Mu. As later shown
through case studies, this assumption may a�ect the retrieved parameters particularly if
the transfer matrix in the form of Equation (5.1) fails to describe the wave coupling at the
medium interfaces. The right hand side of Equation (5.13) is thus expressed as follows:

Mu =

[
cos(kdiff1Lu) iZdiff1sin(kdiff1Lu)

iZ−1
diff1

sin(kdiff1Lu) cos(kdiff1Lu)

]
, (5.14)

where kdiff1 is the longitudinal e�ective wavenumber and Zdiff1 is the e�ective impedance
of the e�ective unit cell of length Lu. Using Equations (5.11) to (5.14), the e�ective
parameters Zdiff1 and kdiff1 of the unit cell can be extracted as follows. Elements of the
unit cell Mu are referred to as Mui,j , 1 ≤ i, j ≤ 2. The e�ective impedance is given by:

Zdiff1 = ±

√
Mu1,2

Mu2,1

. (5.15)

As for the direct inversion method, the real part of the e�ective impedance is required to
be positive according to the material passivity constraint. The e�ective wavenumber is
obtained using either Mu1,1 or Mu2,2 as given by:

kdiff1 = ±
cos−1(Mu1,1)

Lu
+

2πm

Lu
, (5.16)

where m is an integer chosen for continuity of the e�ective wavenumber as a function of
frequency. The imaginary part of the wavenumber must be negative with respect to the
material passivity constraint.

Since Mu2,2 = Mu1,1 according to the transfer matrix form of the unit cell given by
Equation (5.14), the e�ective wavenumber from the original Bianco and Parodi method
(Equation (5.10)) is supposed to be the same as the wavenumber derived with this version
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of the di�erential method (Equation (5.16)). However, it will be shown later with case
studies that Mu2,2 may di�er from Mu1,1 when the transfer matrix in the form of Equation
(5.1) fails to describe the unit cell. A second version of the di�erential method is therefore
implemented to overcome this di�culty which disregards the form of the transfer matrix
for the constituent unit cell.

- Version 2

For the second version of the di�erential method, the e�ective wavenumber is obtained in
a similar way to the Bianco and Parodi original method. Assuming that wave propagation
within the second medium extra portion Lu is monomode and described by the e�ective
wavenumber kdiff2 , the �uid homogenisation model is only applied to this core portion Lu
which is then described by a transfer matrix in the form given by Equation (5.1), yielding
Tr (Mu) = 2cos(kdiff2Lu). The expression for the e�ective wavenumber can be obtained
as:

kdiff2 = ±
cos−1(

Tr(Mn+1(Mn)−1)
2

)

Lu
+

2πm

Lu
, (5.17)

where m is an integer whose value is determined such that the e�ective wavenumber as a
function of frequency is continuous.

For the determination of the e�ective impedance, Equation (5.13) is considered for which
the left hand side is calculated using Equations (5.11) and (5.12). Contrarily to the
�rst version however, the e�ective impedance is obtained independently of the theoretical
expressions for the elements of the transfer matrix Mu. For this purpose, the de�nition
of the transfer matrix of a medium is written as:{

pleft = Mu1,1pright + Mu1,2vright

vleft = Mu2,1pright + Mu2,2vright

. (5.18)

The impedance Zright is de�ned as the ratio of pright and vright and the impedance Zleft is
de�ned as the ratio of pleft and vleft. Equation (5.18) then becomes:

Zleft =
pleft

vleft

=
Mu1,1Zright + Mu1,2

Mu2,1Zright + Mu2,2

. (5.19)

Impedances Zleft and Zright are de�ned locally. Assuming that this de�nition is valid and
using the de�nition of a �uid, the e�ective impedance at the inlet is equal to that of the
outlet. The impedance Z of the medium is thus de�ned as Z = Zright = Zleft and it can
be obtained by solving the following quadratic equation:

Z2Mu2,1 + Z(Mu2,2 −Mu1,1)−Mu1,2 = 0. (5.20)
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There are then two solutions for Z = Zdiff2 , given by:

Zdiff2 =
−(Mu2,2 −Mu1,1)±

√
(Mu2,2 −Mu1,1)2 + 4Mu1,2Mu2,1

2Mu2,1

. (5.21)

It is reminded that elements Mui,j are calculated using Equation (5.13). However, it is
not assumed that their form comply with the element forms given by Equation (5.1) as it
was the case in Version 1. Nevertheless, it can be noted that if Mu2,2 = Mu1,1 , then the
expression for the e�ective impedance can be simpli�ed into the expression for the e�ective
impedance in Version 1. Such an equality would also mean that the transfer matrix in
the form given by Equation (5.1) for the �uid model accurately represents the unit cell.
Consequently, this equality between the transfer matrix elements Mu1,1 and Mu2,2 can be
used as an indicator to identify if the transfer matrix of the �uid homogenisation model
fails to describe the unit cell. The di�erence ∆Mu is introduced and de�ned by:

∆Mu = Mu2,2 −Mu1,1 . (5.22)

When this di�erence is equal to zero, it does not necessarily imply that the transfer matrix
of the homogenisation model accurately describes the unit cell. However the reciprocal
implication is valid: if this di�erence is not equal to zero, then the �uid homogenisation
model is not suitable for the unit cell, otherwise it would have been possible to describe
the unit cell with a transfer matrix in the form of Equation (5.1). In such cases, Version
2 of the di�erential method would be more suitable as it disregards the constraints of
the transfer matrix form, even thought it still considers some hypotheses of the �uid
homogenisation model.

In the following case studies, the di�erence ∆Mu is evaluated as a function of frequency
in the form of a relative di�erence ∆r

Mu
, given by:

∆r
Mu

=

∣∣∣∣2(Mu2,2 −Mu1,1)

(Mu2,2 + Mu1,1)

∣∣∣∣ . (5.23)
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5.2 Implementation

The two retrieval methods require the re�ection and transmission coe�cients of a periodic
structure to retrieve the e�ective properties of a constituent unit cell. Those scattering
coe�cients may be obtained from an analytical model for simple geometries such as
multilayered media, from experimental measurements or from �nite element models.

The scattering coe�cients are here numerically calculated using the FEM code ATILA
[119]. Water is modelled on the incidence and transmission sides of the media, with the
�uid speed of sound set as cf = 1500 m/s and �uid density ρf = 1000 kg/m3. Each
periodic medium is subject to harmonic plane wave excitation at normal incidence from
the �uid domain. A periodic boundary condition is applied on the lateral boundaries of
the medium to simulate an in�nite array of unit cells in the direction transverse to the
direction of sound propagation. Re�ection and transmission coe�cients are calculated
from the pressure at the interface between water and the incidence and transmission sides
of the media, respectively.
It has to be noted that in practice, for media with macro-inclusions, the scattering
coe�cients are not directly calculated at the interfaces but are taken further away and
then phase-shifted to be brought back at the interfaces. The reason is that the near �eld
of a locally resonant medium is not uniform, unlike one-dimensional multilayered media,
as shown in Figure 5.4. This procedure e�ectively ensures that, in the presence of a non-
uniform near-�eld, the scattering coe�cients describe the behaviour of the �nite structure
in the far �eld. It should be pointed out that by de�nition, the �uid homogenisation model
used here cannot describe any complex near �eld at the medium inlet/outlet.

Figure 5.4 � Fluid pressure at the interface with (a) the locally resonant medium and
(b) with the multilayered medium.
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5.3 Validation

The objective of the current section is to assess the validity of the retrieval methods
by comparing the retrieved e�ective parameters to those obtained with the transfer
matrix method of Chapter 2. The multilayered medium examined here corresponds to
arrangement version (a) of the periodic cell in Chapter 2. This design is recalled in
Figure 5.5. The thickness of silicone and aluminium are selected as ds = 15 mm and
da = 10 mm, hence the length of a unit cell becomes Lu = 40 mm. The direct inversion
method is applied to the multilayered medium comprising n = 4 unit cells, as shown in
Figure 5.5(b). The di�erential method is applied for (n, n+ 1) = (4, 5).
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Figure 5.5 � (a) Representation of the symmetric multilayered unit cell comprising layers
of silicone and aluminium. (b) Multilayered media comprising 4 and 5 unit cells are also
shown for application of the di�erential method. The direct inversion method is applied
to the 4 unit cell medium.

Dispersion curves in terms of the dimensionless (reduced) wavenumber are shown in Figure
5.6, for a frequency range up to 40 kHz. Variations of the e�ective impedance are presented
in Figure 5.7. It can be seen that the direct inversion method, the Bianco and Parodi
method and versions 1 and 2 of the di�erential method give the same wavenumber and
the same e�ective impedance, which is also identical to those calculated with the transfer
matrix model presented in Chapter 2. Therefore, both retrieval methods are valid for the
description of the propagation in the multilayered medium.

The multilayered structure is not analysed in detail here, as it has already been studied in
Chapter 2. As in Chapter 2, the e�ective properties obtained with the retrieval methods
can be used to characterise an e�ective medium that can accurately predict the re�ection
and transmission coe�cients of a symmetric periodic multilayered medium of arbitrary
length. The �uid homogenisation model is thus suitable for the analysis of such structures.
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Figure 5.6 � Dispersion curves for the reduced wavenumber obtained with the direct
inversion method (kdir), with the Bianco and Parodi method (kBP), with the di�erential
method Version 1 (kdiff1), with the di�erential method Version 2 (kdiff2) and with the
analytical model for multilayered media presented in Chapter 2 (kcell).
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Figure 5.7 � E�ective impedance obtained with the direct inversion method (Zdir), with
the di�erential method Version 1 (Zdiff1), with the di�erential method Version 2 (Zdiff2)
and with the analytical model for multilayered media presented in Chapter 2 (Zcell).
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5.4 Case Study: Hard Inclusions

5.4.1 Design

In structures with macro-inclusions, additional physical phenomena such as local res-
onances and boundary e�ects occur compared to multilayered periodic structures. It
therefore becomes more di�cult to apply a simple homogenisation model, especially
for metamaterials with complex geometry. Several homogenisation di�culties will be
identi�ed for the case study of a locally resonant unit cell comprising a cylindrical steel
inclusion of diameter d = 4 mm in a square polyurethane matrix with a side length of
Lu = 10 mm, as shown in Figure 5.8(a). Properties of steel and polyurethane are given
in Table 5.1.

ρ E ν
(kg.m−3) (Pa)

Steel 7800 2.15× 1011 0.31
Polyurethane 1100 9.9045× 107 0.49333
(loss factors) 12 % 0.17 %

Table 5.1 � Density ρ, Young modulus E and Poisson ratio ν for steel and polyurethane.
Loss factors for the polyurethane are expressed as a percentage of the Young modulus and
Poisson ratio.

Figure 5.8 � (a) Representation of the locally resonant unit cell. (b) Two segmented
media comprising n = 4 and n+ 1 = 5 unit cells. Each cell has length Lu.

5.4.2 E�ective Parameters

Dispersion curves in terms of dimensionless wavenumber are plotted in Figure 5.9 up to
30 kHz. Firstly, it can be seen that only the wavenumber from the Bianco and Parodi
method (kBP) and the wavenumber from Version 2 of the di�erential method (kdiff2)
are identical, thus validating the fact that the di�erential method accurately describes
propagation in the core of the medium, as does the Bianco and Parodi method. However,
the e�ective wavenumber kdiff1 di�ers signi�cantly, in particular at some frequencies, even
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though it should also be the same. To explain this di�erence, the relative di�erence
between the diagonal elements of the transfer matrix Mu calculated with the di�erential
method, as per Equation (5.23), is plotted in Figure 5.10.
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Figure 5.9 � Dispersion curves for the reduced wavenumber obtained with the direct
inversion method (kdir), with the Bianco and Parodi method (kBP), with the di�erential
method Version 1 (kdiff1) and with the di�erential method Version 2 (kdiff2).

This di�erence reaches a maximum around 13.5 kHz, which exactly corresponds to the
frequency where the wavenumber kdiff1 di�ers the most from the others. This signi�cant
di�erence implies that the transfer matrix Mu of the unit cell does not exist or cannot
be in the form of Equation (5.1), as diagonal terms are too di�erent. This explains why
Version 1 of the di�erential method, which is based on the assumption that the transfer
matrix Mu has the form of Equation (5.1) with equal diagonal terms, fails.
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Figure 5.10 � Relative di�erence between the diagonal elements of the unit transfer
matrix calculated with the di�erential method as per Equation (5.23). The dashed lines
highlight the three selected frequencies A, B and C de�ned in what follows.
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Version 1 of the di�erential method is from now on put aside, since by construction it does
not provide a good approximation of the unit cell. Version 2 of the di�erential method is
now referred to as the di�erential method only. As a reminder, Version 2 gives e�ective
parameters without relying on a transfer matrix form, which is why it still gives good
results even though the unit cannot be exactly modelled as a �uid. For the sake of clarity,
dispersion curves have also been plotted in Figure 5.11 with only the wavenumber from
the direct inversion method and from the di�erential method (Version 2).
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Figure 5.11 � Dispersion curves for the real part (a) and imaginary part (b) of the
reduced e�ective wavenumber for a locally resonant unit cell obtained with the direct
inversion method (kdir) and with the di�erential method (kdiff). The dashed lines highlight
the three selected frequencies A, B and C.

It can be observed that both retrieval methods lead to the same e�ective wavenumber up
to approximately 10 kHz. Di�erences appear for frequencies around points A, B and C.
These frequencies correspond to resonant modes for which the displacement �elds are given
in Figure 5.12. Figure 5.12A presents the displacement �eld in the four-unit medium for
frequency A (13.6 kHz). The displacement �eld exhibits a mass-spring (dipole) resonance
where the inclusion represents the rigid mass, translating without undergoing any shape
changes, while the host matrix represents the spring that retains the oscillations of the
masses. For point C (25.7 kHz), Figure 5.12C shows that the rubber matrix is moving,
whereas the steel inclusions are mostly stationary. The waves scattered by the rigid
cylinders are trapped in-between the cylinders, leading to resonance of the host rubber.
This mode is therefore only existing for the matrix portions which are not at the interfaces
in contact with the surrounding water. In Figure 5.11, as the imaginary part of the
wavenumber represents the attenuation per distance, the wavenumber derived with the
di�erential method for resonances A and C leads to slightly greater attenuation than the
one from the direct inversion method, but the variations remain similar.
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Figure 5.12 � Displacement �elds for the four unit medium at given frequencies A, B and
C. The arrows indicate the direction of displacement and their length is proportional to the
displacement modulus. The shades of grey also re�ect the amplitude of the displacement.

Another speci�c displacement �eld of the rubber can be observed in Figure 5.12B for
frequency B (19.8 kHz), but very localised at the input �uid/medium interface. Point B
thus also corresponds to a resonant mode in the matrix which only exists between the
interface and the �rst layer of rigid inclusions. As such, unlike the two other resonances,
the boundary interference e�ects of point B do not vary with the number of unit cells
placed after the �rst unit cell at the interface. In Figure 5.11, the interface mode at
point B is associated with an attenuation peak for the direct inversion method. Such
attenuation is not apparent using the di�erential method, which aims to describe the
interior of the medium away from the boundary interfaces with the �uid. In contrast, the
direct inversion method describes the �nite medium including boundary interface e�ects.

The e�ective impedance obtained with the direct inversion method and the di�erential
method are plotted in Figure 5.13. It can be seen that the two impedances are fairly
similar, except at frequencies around the interface resonance, highlighted by the orange
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vertical line. For this resonance, there is a local maximum compared to water impedance,
which means the medium is a good re�ector for these frequencies. This is consistent with
the analysis of the displacement �elds in Figure 5.12B corresponding to a coupling between
the incident wave and a surface mode only. Nevertheless, it can be noted that the e�ective
impedance from the di�erential method Zdiff is lower than the e�ective impedance from
the direct inversion method Zdir.
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Figure 5.13 � E�ective impedance obtained with the direct inversion method (Zdir) and
with the di�erential method (Zdiff). The impedance of water is also represented.

The e�ective properties for the locally resonant medium di�er depending on the retrieval
method used, which was not the case for the multilayered medium. This is due to the
fact that the �uid homogenisation model does not take into consideration complex near
�eld e�ects and shear wave propagation, as the e�ective medium is assumed to be a
�uid medium in which only longitudinal waves can propagate. This assumption is valid
for multilayered structures under normal incidence where only longitudinal modes were
excited. However, for structures made of a solid matrix comprising of inclusions, the
conversion of longitudinal waves into shear waves due to local resonances cannot be
fully described by the present homogenisation model. However, both retrieval methods
capture the behaviour of the locally resonant metamaterial with reasonable accuracy. The
in�uence of the number of unit cells used to apply the retrieval methods is examined in
the following subsection.
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5.4.3 In�uence of the Number of Unit Cells

In order to assess the robustness of the two retrieval methods, they are both applied on
media of di�erent length. The direct inversion method is applied to four media comprising
of designs with n = 2, n = 4, n = 8 and n = 18 unit cells. The di�erential method
is applied to the four designs, corresponding to (2, 3), (4, 5), (8, 9) and (18, 19), where
the shorter medium is the design used for the direct inversion method, comprising n
unit cells. As previously, the wavenumber and e�ective impedance are calculated for
all con�gurations to visualise the e�ects of the number of unit cells on the e�ective
parameters.

Figure 5.14 shows the e�ective wavenumbers obtained by the four applications of the direct
inversion method. It can be seen that the e�ective wavenumbers from the direct inversion
method vary depending on the number of units n in the medium. In particular, the
attenuation peaks associated to resonances (blue lines) tend to be stronger with increasing
n, as indicated by the blue arrows. In contrast, the attenuation peak due to the interface
resonance tends to be lower for higher values of n, as indicated by the orange arrow.
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Figure 5.14 � E�ective wavenumbers as a function of angular frequency obtained with
the direct inversion method for media comprising 2, 4, 8 and 18 unit cells.

For the di�erential method, in Figure 5.15, there is nearly no di�erence between the
wavenumbers corresponding to the four combinations. As such, the e�ective wavenumber
from the di�erential method seems independent of the number of unit cells contained in
the two segmented media.
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Figure 5.15 � E�ective wavenumbers as a function of angular frequency obtained with
the di�erential method for the unit combinations (2,3), (4,5), (8,9) and (18,19).

Similar observations to the e�ective wavenumber can be made for the variations of the
e�ective impedance. It can therefore be concluded that the e�ective wavenumber from
the direct inversion method is dependent on the number of unit cells n. Further, with
increasing number of unit cells, the e�ective wavenumber converges towards the result
obtained using the di�erential method, corresponding to the e�ective wavenumber in the
medium interior away from boundary interface e�ects. More speci�cally, at the interface
resonance around 20 kHz, the direct inversion method is strongly in�uenced by the number
of unit cells n whereas the di�erential method removes the interface e�ects.

5.4.4 Scattering Predictions

E�ective properties from both methods are now used to characterise e�ective media in
order to predict the re�ection and transmission coe�cients of a segmented metamaterial
comprising N unit cells. The length of e�ective media is thus L = N × Lu. The
e�ective parameters used were obtained for n = 4 and are given in Figures 5.11 and
5.13. The scattering coe�cients of the e�ective medium are also compared to coe�cients
derived from a FE model of the metamaterial comprising N unit cells, as shown in Figure
5.16(a). Figures 5.16(b) and 5.16(c) respectively show the corresponding e�ective medium
characterised by the e�ective wavenumber and e�ective impedance obtained using the
two retrieval methods. A hybrid e�ective medium is also introduced in order to take
advantages of both methods, by using the e�ective properties of the direct inversion
method at the interfaces and the e�ective properties from the di�erential method for the
interior of the e�ective medium. The hybrid medium is therefore made of three domains
as shown in Figure 5.16(d).
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Figure 5.16 � (a) Finite periodic medium of length comprising N unit cells, for which
the re�ection and transmission coe�cients are predicted using an e�ective medium char-
acterised by the e�ective wavenumber and impedance obtained using (b) the di�erential
method (diff), (c) the direct inversion method (dir), (d) a hybrid e�ective medium
comprising the direct inversion method at the boundary interfaces and the di�erential
method for the medium away from the interfaces.

Results are presented in Figure 5.17 for N = 5, 9, 19 unit cells. All three e�ective
media represented in Figures 5.16(b) to 5.16(d) accurately predict the re�ection and
transmission coe�cients up to 15 kHz. Above this frequency, the e�ective parameters
from the direct inversion method are strongly dependent on the parameter n, particularly
for the interface mode according to Section 5.4.3. As such, using the direct inversion
method, the scattering coe�cients for a high number N tend to present overestimated
interface e�ects since the e�ective properties have been obtained for a smaller number
n. For the re�ection coe�cient, the impedance of the �rst layer plays a major part
in the results, as it has been mentioned in Chapter 2 for variant designs of a unit
cell. This is because the re�ection coe�cient is roughly R ≈ (Zin − Zf )/(Zleft + Zf ),
with Zin the e�ective impedance of the input layer and Zf the impedance of the �uid.
Since Zin = Zdir for both e�ective media represented in Figures 5.16(c) and 5.16(d),
the resulting re�ection coe�cient will be close to that for the medium used to derive
Zdir, which here is the n = 4-unit medium. Both the direct inversion method and the
hybrid method are therefore less suitable for the prediction of the re�ection coe�cient for
various N -layer media than the di�erential method. For the transmission coe�cient, each
property characterising the medium is relevant. Accurate predictions are obtained using
the di�erential method, except for the transmission dip around 20 kHz arising from the
interface mode. Therefore, the transmission coe�cient is better predicted using the hybrid
e�ective medium, as it physically restricts the e�ective properties of the direct inversion
method to the interfaces and the e�ective properties from the di�erential method to the
core of the e�ective medium.
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Figure 5.17 � Re�ection and transmission coe�cients calculated for the e�ective media
characterised by e�ective parameters of the di�erential method (dashed lines) or the direct
inversion method (dotted lines) that represent a periodic media comprising N = 5, N = 9
or N = 19 unit cells. Scattering coe�cients from the hybrid e�ective medium (circle
markers) and from FEM (full lines) are also presented. The dotted orange line highlights
the interface resonance frequency.



127

5.5 Case Study: Voided Inclusions

5.5.1 E�ective Parameters

The retrieval methods are herein applied to a di�erent design of a locally resonant unit
cell comprising a voided medium, so-called Alberich medium. The design is the same as
the previous test case in which rigid steel cylinders are now replaced by voided cylinders of
the same diameter. The e�ective impedances, shown in Figure 5.18, are almost identical
and very low for both methods.
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Figure 5.18 � Real and imaginary parts of the e�ective impedances for the unit cell
obtained with the direct inversion method (kdir) and with the di�erential method (kdiff).

The dispersion curves are given in Figure 5.19. We observe that e�ective wavenumbers
di�er around 13.8 kHz, which corresponds to a resonant mode in the matrix at the
interface similar to the resonant modes observed with the presence of a hard inclusion. The
e�ective wavenumbers using the two retrieval methods signi�cantly di�er above 23 kHz.
The displacement �elds corresponding to point A (23.75 kHz) and B (28.5 kHz) exhibit
�exural motion of the matrix layer at the interface, similar to a drum-like up and down
motion [33, 120]. This results in signi�cant re�ection of the acoustic energy by the �rst
unit cell. As there is very little propagation within the medium beyond the �rst unit
cell, the di�erential method cannot accurately de�ne the wavenumber in the interior of
the medium. The accuracy of the predictions using the e�ective parameters is studied in
what follows.
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Figure 5.19 � Dispersion curves for the real part (a) and imaginary part (b) of the
reduced e�ective wavenumber for the unit cell obtained with the direct inversion method
(kdir) and with the di�erential method (kdiff). Two frequencies, referred to as A and B,
are selected and highlighted by the orange dotted lines.

Figure 5.20 � Displacement �elds for the four unit cell medium at frequencies correspond-
ing to points A and B in Figure 5.19. The arrows indicate the direction of displacement
and their size is proportional to the displacement modulus. The shades of grey also re�ect
the amplitude of the displacement.
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5.5.2 Scattering Predictions

The re�ection and transmission coe�cients are presented to check the validity of the
homogenisation approach for the voided medium design. Results are presented in Figure
5.21 for N = 5, 9, 19 unit cells using the various e�ective designs shown in Figure
5.16. The re�ection coe�cients for all e�ective designs are in close agreement with each
other. Since the re�ection coe�cient is mostly dependent on the medium impedance at
the interface on the incident side and since Zdir ≈ Zdiff , all e�ective media give similar
results. The accuracy of the predictions then validates the e�ective impedance given by
both retrieval methods.
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Figure 5.21 � Re�ection and transmission coe�cients calculated for the e�ective media
characterised by e�ective parameters of the di�erential method (dashed lines), the direct
inversion method (dotted lines) that represent an Alberich medium comprising N = 5,
N = 9 or N = 19 unit cells. Scattering coe�cients from the hybrid e�ective medium
(circle markers) and from FEM (full lines) are also presented.

We observe that the interface mode around 13.8 kHz does not lead to a signi�cant dip in
the transmission coe�cient. The hybrid method nonetheless predicts the local minimum
related to the interface resonance with greater accuracy than the di�erential method,
which removes interface e�ects, and the direct inversion method which accentuates the
e�ects of the interface resonance. At higher frequencies, the transmission coe�cient
becomes extremely low, which is accurately predicted by the homogenised media. There
are however a few discrepancies above 23 kHz for the prediction using the di�erential
method only, for N = 5, which do not occur using the hybrid method or the direct
inversion method. It thus con�rms that when most of the acoustic energy does not
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propagate further than the �rst unit cell, the di�erential method cannot properly de�ne
the e�ective wavenumber in the interior medium. However, the direct inversion method
accurately captures the strong re�ection by the �rst unit cell. As such, the hybrid method
provides an accurate prediction as it physically restricts the e�ective properties of the
direct inversion method at the e�ective medium input.
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5.6 Summary

Two retrieval methods have been introduced, corresponding to the direct inversion method
and the di�erential method. The direct inversion method uses the re�ection and trans-
mission coe�cients of a medium comprising a number of identical unit cells, immersed
in a �uid, while the di�erential method requires two segmented media comprising n
and n + 1 unit cells. Both retrieval methods lead to an e�ective wavenumber and an
e�ective impedance of a homogeneous �uid medium. The e�ective wavenumber from the
di�erential method was able to describe the interior of the medium whereas the direct
inversion method captures the e�ects related to the medium's �nite size and interfaces with
the surrounding �uid media on the incidence and transmission sides. As such, to predict
the scattering coe�cients, a hybrid e�ective medium was developed, whereby the �rst and
last layers are de�ned with the e�ective properties from the direct inversion method and
the core layer is de�ned by the di�erential method. Re�ection and transmission coe�cients
have been predicted using e�ective media characterised by the direct inversion method, by
the di�erential method and by the hybrid medium. The re�ection coe�cient is accurately
predicted by the di�erential method. The hybrid medium provides accurate predictions of
the transmission coe�cient as it physically restricts the e�ective properties of the direct
inversion method to the interface and uses the di�erential method to describe the core of
the medium. This work has been published in [121].

Three case studies have been analysed corresponding to a multilayered medium and locally
resonant designs with hard or voided cylindrical inclusions. For the multilayered medium,
both retrieval methods lead to the same e�ective parameters, also identical to those
obtained with the transfer matrix-based model presented in Chapter 2. However, the two
retrieval methods di�er for a locally resonant media with either steel or voided cylinders
in a viscoelatic matrix. For the design with hard scatterers, variations of the e�ective
parameters have been analysed for each physical phenomena observed, namely, dipole
resonance, a trapped mode and an interface mode. The di�erential method accurately
removes the interface e�ects and gives the e�ective properties describing the interior of the
medium, independent of the number of unit cells initially considered. In contrast, using
the direct inversion method, variations in the e�ective properties at frequencies associated
with an interface resonant mode can be observed. Similar observations have been made for
the design with voided scatterers. For this design, the di�erential method cannot provide
the e�ective wavenumber due to very little wave propagation in the medium interior.

The retrieval methods described here may be bene�cial to get a better understanding of
wave propagation in a metamaterial coating. Moreover, the hybrid method is an e�cient
tool to predict and optimise the acoustic performance of coating designs that may contain
less classical inclusions. In Chapter 7, the retrieval methods will be applied to several
metamaterial designs in order to create a database of e�ective properties associated with
various inclusion shapes, sizes and materials. E�ective properties will then be used in an
optimisation process in order to obtain structures with a good acoustic performance over
a wide frequency range. The work in the present chapter is therefore useful to quickly and
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easily make a topological optimisation of acoustic coatings for underwater applications
using �uid properties.

In general, the goal of these methods is to build homogeneous equivalent media which are a
precise approximation of their micro-structured counterparts. E�ective media can be used
to study metamaterials with complex or arbitrary geometries for which analytical models
do not apply. The proposed homogenisation approach may be especially useful in the
study of large metamaterial-based systems including structural gradients, such as the ones
considered in transformation acoustic designs. Similarly, the proposed homogenisation
approach could prove useful in the study of multi-scale metamaterials to alleviate the
simulation issues related to the presence of complex geometries at di�erent scales, by
allowing the replacement of the smaller structures by equivalent media.



Chapter 6

Homogenisation for Non-symmetric

Designs

In this chapter, the direct inversion method and the di�erential method are extended in
order to obtain the e�ective parameters of �nite periodic and asymmetric structures with
macro-inclusions. It is assumed that such a structure can be described by an e�ective
Willis �uid similar to the asymmetric multilayered unit cells in Chapter 2. A �rst case
study is presented, consisting of an asymmetric version of the locally resonant medium
with hard inclusions studied in Chapter 5. This case study is completed by a parametric
study that shows the in�uence of o�-centering the resonant inclusion on the variations of
the e�ective parameters and acoustic performances. A second case study focuses on an
asymmetric voided medium in which Willis coupling is not introduced by o�-centering the
inclusion as in the �rst case study, but by combining two symmetric layers. The e�ects
on the e�ective properties and acoustic performance are examined.
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6.1 Methodology

6.1.1 Willis Fluid Homogenisation Model

Similar to the homogenisation theory for one-dimensional multilayered structures pre-
sented in Chapter 2, the objective here is to de�ne the e�ective medium that would replace
an asymmetric unit cell. A Willis �uid model is selected to describe the e�ective medium,
thus characterised by an e�ective wavenumber k, a Wills characteristic impedance ZW
and an asymmetry coe�cient W , as previously presented in Chapter 2. Propagation in a
Willis �uid can be represented by a transfer matrix of the form:

M =

[
cos(kh)−W sin(kh) iZW sin(kh)(1 +W 2)

i sin(kh)
ZW

cos(kh) +W sin(kh)

]
. (6.1)

Three e�ective parameters are thus required (k, ZW ,W ), whereas there were only two
e�ective parameters for the symmetric case (k, Z). The extensions presented in this Chap-
ter can also be applied to symmetric con�gurations, since it implies that the asymmetry
coe�cientW is equal to 0, which reduces the number of undetermined parameters to two.

6.1.2 Direct Inversion Method

As in Chapter 5, the medium is modelled as a segmented structure comprising n repeti-
tions of an identical unit cell of length Lu. Coe�cients S are calculated at the interfaces
between the segmented medium and the surrounding �uid medium of impedance Zf .
It is worth remembering that S11 is di�erent from S22 for asymmetric structures. Two
calculations are thus required, considering �rst an incident wave-front towards the x
positive and then towards x negative, as shown in Figure 6.1.

Figure 6.1 � Schematic diagram illustrating the direct inversion method, applied to a
segmented medium comprising n identical asymmetric unit cells. Coe�cients S of the
medium are also shown.
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The global transfer matrix Mn of the periodic medium containing n unit cells can be
calculated using its S-parameters:

Mn =

[
S11−S22−S11S22+S12S21+1

2S21
Zf

S11+S22+S11S22−S12S21+1
2S21

1
Zf

−S11−S22+S11S22−S12S21+1
2S21

−S11+S22−S11S22+S12S21+1
2S21

]
. (6.2)

This expression is given in Appendix A. The homogenisation model is applied to each
unit cell, so the global transfer matrix of the segmented medium may also be written as
the product of the transfer matrix of each unit cell. This leads to Mn = (Mu)

n, where
Mu is the transfer matrix of a constituent unit cell of the form given by Equation (6.1).
The calculation of (Mu)

n for any n integer is equivalent to replacing only the thickness Lu
by nLu without changing the wavenumber or the impedance associated with the matrix
Mu. The global transfer matrix expression is thus given by :

Mn
u =

[
cos(nkdirLu)−Wdir sin(nkdirLu) iZdir sin(nkdirLu)(1 +W 2

dir)
i sin(nkdirLu)

Zdir
cos(nkdirLu) +Wdir sin(nkdirLu)

]
. (6.3)

The global transfer matrix expression given by Equation (6.3) is equal to the global
transfer matrix calculated using the scattering response of the medium given by Equation
(6.2). The e�ective parameters are derived from this equality as detailed in what follows.
We herein introduce the notation Mni,j

to express the elements of the global transfer
matrix Mn, with 1 ≤ i, j ≤ 2. The e�ective wavenumber kdir is �rst obtained with:

kdir =
ln(Λ1,2)

inLu
+

2πm

nLu
, (6.4)

wherem is an integer whose value is determined in such a way that the e�ective wavenum-
ber as a function of frequency is continuous, and where Λ1 or Λ2 are the eigenvalues of the
transfer matrix Mn. The material passivity condition imposes the choice of the eigenvalue
so that the imaginary part of kdir is negative. The asymmetry coe�cient Wdir and the
Willis characteristic impedance Zdir are then given by:

Wdir =
−Mn1,1 + cos(kdirnLu)

sin(kdirnLu)
, (6.5)

Zdir =

√
Mn1,2

Mn2,1(1 +W 2
dir)

. (6.6)
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6.1.3 Di�erential Method

Two media are modelled as segmented structures comprising n and n + 1 periodic rep-
etitions of an identical constituent unit cell, as shown in Figure 6.2. The extra portion
added to the second segmented medium is one unit cell of length Lu.

Figure 6.2 � Schematic diagram illustrating the di�erential method, applied to segmented
media comprising n and n + 1 identical asymmetric unit cells. Coe�cients Sn and Sn+1

of these media are also de�ned.

The transfer matrices of the two media are expressed and calculated using their S coe�-
cients. The global transfer matrix Mn of the shorter periodic medium with n unit cells
can be calculated as follows:

Mn =

[
S11n−S22n−S11nS22n+S12nS21n+1

2S21n
Zf

S11n+S22n+S11nS22n−S12nS21n+1
2S21n

1
Zf

−S11n−S22n+S11nS22n−S12nS21n+1
2S21n

−S11n+S22n−S11nS22n+S12nS21n+1
2S21n

]
. (6.7)

The global transfer matrix Mn+1 of the longer segmented medium can be calculated using
this same equation but replacing n by n+ 1.

As all unit cells are identical, the global transfer matrix of a segmented medium may
also be written as the product of the transfer matrix of each unit cell. This leads to
Mn = (Mu)

n for the shorter segmented medium and Mn+1 = (Mu)
n+1 for the longer

medium, where Mu is the transfer matrix of a constituent unit cell. The transfer matrix
Mu of a unit cell can now be deduced from the product of the global transfer matrix of
the longer segmented medium with the inverse of that of the shorter medium, that is:

Mn+1(Mn)−1 = (Mu)
n+1−n = Mu. (6.8)
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The left hand side of Equation (6.8) corresponding to the product Mn+1(Mn)−1 can
be calculated in terms of the scattering responses of the two segmented media, using
Equation (6.7). The transfer matrix Mu is then used to derived the e�ective wavenumber
kdiff as per:

kdiff =
ln(Λ1,2)

iLu
+

2πm

Lu
, (6.9)

where m and Λ are chosen as in the direct inversion method. As for the symmetric case,
this expression is independent of the expression of the transfer matrix elements.

The determination of the Willis characteristic impedance and the asymmetry coe�cient
is less straightforward than the determination of the e�ective wavenumber. The di�culty
here comes from the fact that, unlike the direct inversion method, the e�ective parameters
for the di�erential method must be obtained without considering the transfer matrix form
given by Equation (6.1). This was relatively easy when the unit cell was symmetric since
Zleft = Zright = Zeff = Z+ = −Z− = ZW . Nevertheless, the asymmetry of the unit breaks
all these equalities. Therefore, e�ective impedances for forward propagating waves and for
backward propagating waves are �rst obtained, in dissociated ways, as developed below.

The transfer matrix Mu calculated as per Equation (6.8) is used to obtain the transfer
matrix from which the e�ective impedance for forward propagating waves is derived, as
per Figure 6.3(a). The transfer matrix Mu derived using Equation (6.8) is thus now
referred as M+

u . A distinction is indeed necessary as it is found that the transfer matrix
of the unit changes depending on the orientation of the unit cell. As such, the transfer
matrix of the reversed-orientation unit shown in Figure 6.3(b) is also required and is
referred to as M−

u . It is calculated by replacing S11 by S22 and S22 by S11 in Equation
(6.7), which are then used in Equation (6.8).

Figure 6.3 � Asymmetric unit cell (a) oriented to derive the e�ective impedance for
forward propagating waves Z+ and (b) in the reverse orientation to derive Z−.

The matrix M+
u is then used to calculate the e�ective impedance for forward propagating

waves Z+, while the transfer matrixM−
u leads to the e�ective impedance Z− for backward

propagating waves.
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Using M+
ui,j

where 1 ≤ i, j ≤ 2, the elements of this transfer matrix, the e�ective
impedance for forward propagating waves Z+

diff is given by:

Z+
diff =

−(M+
u2,2
−M+

u1,1
)±
√

(M+
u2,2
−M+

u1,1
)2 + 4M+

u1,2
M+

u2,1

2M+
u2,1

. (6.10)

Similarly, the e�ective impedance for backward propagating waves Z−diff is given by:

Z−diff =
−(Mu−2,2

−M−
u1,1

)±
√

(M−
u2,2
−M−

u1,1
)2 + 4M−

u1,2
M−

u2,1

2M−
u2,1

. (6.11)

The real part of the e�ective impedances must be positive to satisfy the material passivity
constraint. It is now possible to calculate the Willis characteristic impedance Zdiff and
the asymmetry coe�cient Wdiff as follows:

Zdiff =
Z+

diff + Z−diff

2
, (6.12)

Wdiff =
i(Z+

diff − Z
−
diff)

−Z−diff − Z
+
diff

. (6.13)
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6.2 Case study: Hard Inclusions

6.2.1 Design

Both retrieval methods have been validated by considering the asymmetric multilayered
design presented in Chapter 2, for which the retrieved properties are found to be identical
to those obtained using the transfer matrix method for the unit cell. A locally resonant
unit is now examined, formed by an o�-centered cylindrical steel inclusion of 4 mm
diameter in a square polyurethane matrix with a side length of 1 cm. Properties of
steel and polyurethane are given in Table 5.1 and the design is shown in Figure 6.4.

Figure 6.4 � Representation of the asymmetric locally resonant unit cell. Dimensions are
in millimetres. The di�erential method is applied to the segmented media comprising of 4
and 5 unit cells for application of the di�erential method. The direct inversion method is
applied to the �rst medium, containing 4 unit cells.
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6.2.2 Homogenisation

The e�ective wavenumber for the asymmetric unit cell is shown in Figure 6.5. It is �rst
observed that the di�erential method leads to the same wavenumber as for the symmetric
unit cell considered in Chapter 5. In an in�nite periodic medium, the e�ective wavenumber
is indeed independent from the choice of the unit cell, as shown in Chapter 2 with the 4
versions of a multilayered unit cell. Since the di�erential method provides the wavenumber
within the interior of the medium by removing the interface e�ects, the same wavenumber
is obtained for the symmetric unit as for any non-symmetric version of this unit when
this method is used.
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Figure 6.5 � E�ective wavenumbers obtained using the direct inversion method and the
di�erential method for the asymmetric unit with macro-inclusions.

On the contrary, the e�ective wavenumber for the asymmetric unit cell derived using the
direct inversion method is di�erent from the one obtained for the symmetric unit. By
comparing Figure 5.11 and Figure 6.5, it can be seen that frequencies for resonances A
and C remain unchanged, but di�erences are especially visible for the interface resonance,
which is no longer present at about 20 kHz. An interface e�ect now creates a small
attenuation peak at frequency B for the e�ective wavenumber kdir. This modi�cation of
the interface resonance is further studied in the next subsection.

The characteristic Willis impedance is shown in Figure 6.6. Both retrieval methods lead to
similar characteristic impedances, also similar to the e�ective impedance of the symmetric
unit.



141

0 10 20 30
0

0.5

1

1.5

2

2.5

3

3.5

4
10

6

0 10 20 30
-2

-1.5

-1

-0.5

0

0.5

1
10

6

Figure 6.6 � E�ective characteristic impedances obtained using the direct inversion
method and the di�erential method for the asymmetric unit with macro-inclusion.

Slight di�erences between the two retrieval methods are observed amongst the variations
of the asymmetry coe�cient W , given in Figure 6.7. It is �rst noted that for the mass-
spring resonance corresponding to the �rst blue dotted line, both methods give almost
the same asymmetry coe�cient, which is very close to 0, corresponding to the value that
W takes for a symmetric medium. This implies that for this resonance, the asymmetry of
the unit has very little in�uence and the behaviour of the asymmetric medium is similar
to that of the symmetric medium.
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Figure 6.7 � Non-dimensional asymmetry coe�cient obtained using the direct inversion
method and the di�erential method for the asymmetric unit with macro-inclusions.
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This is also con�rmed by the comparison between the scattering coe�cients of the asym-
metric medium and those of the symmetric medium, respectively shown by the red and
green colored dotted lines in Figure 6.8. They are indeed di�erent over the entire frequency
range except just after the �rst resonant frequency, where the asymmetry coe�cient of
the asymmetric unit is almost null.

In addition, Figure 6.8 leads to the same conclusion as for the symmetric case regarding
the accuracy of the predictions, which is that S11 is better predicted by the di�erential
method and T = S12 = S21 by the direct inversion method since the medium is made of
only 5 unit cells. Ultimately, the hybrid method best predicts both.
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Figure 6.8 � Scattering coe�cients for a 5-unit medium, obtained by �nite element
method (FEM) and e�ective medium approach with the e�ective properties from the
direct inversion, di�erential and hybrid method.

Consequently, the extended retrieval methods both lead to the e�ective properties of the
asymmetric unit cell. The e�ective properties are then used to predict the scattering
coe�cients as per Chapter 5 and identical conclusions are drawn regarding the accuracy
of these predictions using the hybrid method. In comparison with the symmetric version,
the major change is related to the interface resonance. The evolution of this resonance
depending on the position of the resonant element is investigated in the following subsec-
tion.
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6.2.3 Parametric Study

A parametric study is conducted in order to assess the in�uence of the asymmetry on both
the acoustic performances and the e�ective properties. The quantity dint, introduced in
Figure 6.4, de�nes the distance between the resonant inclusion and the input face of the
unit cell. It is given di�erent values, which are : 0.5 mm, 1 mm, 1.5 mm, 2 mm, 2.5 mm,
3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm and 5.5 mm, as respectively shown in Figures 6.9(a)
to 6.9(k).

Figure 6.9 � Schematic diagram of the asymmetric inclusions studied, in which the
distance interface-inclusion varies.

For these di�erent positions of the inclusions, re�ection and transmission coe�cients of
a 3-unit medium are given in Figure 6.10. With the transmission coe�cients, only half
of the lines are visible, since the transmission coe�cients for an unit cell and its reverse
design are identical. For example, the transmission is the same for units (a) and (k), for
units (b) and (j), and so on.
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Figure 6.10 � Scattering coe�cients S11 and T = S12 = S21 for various distances dint

(in millimetres).
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It is then observed that the transmission loss from the interface resonance is the greatest
for the symmetric unit than for any other con�guration. For this same frequency, a local
maximum occurs for the absorption coe�cient in Figure 6.11. The interface resonance
therefore appears to be more bene�cial in terms of acoustic performance if the inclusion is
centered within the unit. However, for the anechoism coe�cient, given in Figure 6.12, the
symmetric con�guration is not better than any other asymmetric version at the frequency
of interface resonance (around 20 kHz).
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Figure 6.11 � Absorption coe�cient A = 1− |S11|2 − |T |2 for various distances dint (in
millimetres).
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Figure 6.12 � Anechoism coe�cient for various distances dint (in millimetres).
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For other frequencies, the absorption coe�cient is greater for higher values of dint, es-
pecially under 15 kHz. For these frequencies, the transmission coe�cient is mostly
unchanged for the various distances dint, meaning that this gain in performance is related
to the re�ection coe�cient, as shown in Figure 6.10. Moving the hard inclusion away from
the interface with water helps to reduce the re�ection coe�cient. As such, the anechoism
coe�cient is also better for higher values of dint.

It appears to be bene�cial to place the inclusion as far as possible from the medium/water
interface, except if the objective is to broaden the frequency range of high absorption. In
that case, placing the inclusion at the center of the unit (dint = 3 mm) helps to maximise
the interface resonance, which here is well located in-between the dipole resonance A and
the matrix resonance C.

The in�uence of dint on the e�ective properties, and in particular on the e�ective density
and the e�ective bulk modulus, is now further investigated. These two parameters are
indeed commonly studied given the fact that they may reach negative values that can
be linked to resonance phenomena, as mentioned in Chapter 1. E�ective density and
e�ective bulk modulus are thus given in Figure 6.13. It should be noted that only half of
the lines (units (f) to (k)) are visible, since a unit design and its reverse counterpart have
the same e�ective properties k, ZW and W , and as such yield identical ρ and κ.
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Figure 6.13 � E�ective density and bulk modulus of asymmetric unit cells derived with
the di�erential method for various distances dint (in millimetres).
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The asymmetry of the unit cell appears to have a very small impact on the e�ective density,
for both its real and imaginary parts, especially under 15 kHz. Upon closer inspection, it
can be seen that the di�erences above 15 kHz are not negligible, but they seem small due
to the scale. Nevertheless, there are no signi�cant changes in the overall variations, and
the real part of the e�ective density becomes negative only for the mass-spring (dipole)
resonance A. Similarly, the asymmetry does not signi�cantly change the bulk modulus
under 15 kHz. However, above 15 kHz, the bulk modulus strongly varies. The values
of its real part also remain positive over the entire frequency range independently of the
asymmetry of the unit cell.

To summarise this case study, the position of the resonant element is found to impact
the acoustic performance. It is preferable to move the hard inclusion away from the
interface. It is also found that for this design, the interface resonance has a maximum
impact when the inclusion is centred within the unit. It is also observed that when the
asymmetry coe�cientW is close to 0, the asymmetric medium behaves like its symmetric
counterpart. As such, for the dipole resonance around 13.5 kHz, all unit cells are found
to have the same e�ective bulk modulus and e�ective density, the latter being negative
which is characteristic of the dipole resonance in such media.
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6.3 Case study: Voided Inclusions

In this section, an asymmetric Alberich-type medium is homogenised. As such media
usually perform well as hull decoupling coatings, the acoustic performance is evaluated
in terms of transmission coe�cient, which is a good indicator of the hull decoupling
performance. In Chapter 5, it was observed that the acoustic performance shows very
little variation for increasing numbers of unit cells. Alberich coatings are in practice not
made of a large number of inclusions in the direction of sound propagation. Here, a
single-layer voided medium and a bi-layer voided medium are considered.

6.3.1 Homogenisation

In this subsection, asymmetry is introduced as previously by o�-centering the resonant
element. The design is presented in Figure 6.14. The host matrix is made out of
polyurethane, for which the mass density is 1150 kg.m−3. The longitudinal speed of sound
is around 1500 m.s−1, whereas the shear speed of sound strongly varies with frequency
between 50 m.s−1 and 200 m.s−1 with a loss factor of roughly 30%. Medium thickness is
h = 35 mm and periodicity is de�ned by 2d = 80 mm. The medium is studied below the
cuto� frequency of the periodical array de�ned by fc = 1489/(2d). Inclusions are voided
cylinders of radius r = 10 mm. Three versions of the units are considered : (a) and (c)
are asymmetric, with the inclusion placed at a distance dint = 2 mm from the input and
output interfaces, respectively. Unit (a) is the reverse design of unit (c).

Figure 6.14 � Design and dimensions of the voided medium unit.

Scattering coe�cients for these three variant designs are given in Figure 6.15 for one layer
immersed in water. The position of the void within the unit slightly changes the re�ection
coe�cient S11. The re�ection coe�cient is lower when the inclusion is further away from
the input interface, as in con�guration (c). The transmission coe�cient T = S12 = S21 is
mostly unchanged depending on the void position. Therefore, similar to what has been
observed for the hard inclusion, the absorption coe�cient A = 1−|S11|2−|T |2 is improved
for lower frequencies by moving the inclusion away from the input interface.
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Figure 6.15 � Re�ection and transmission coe�cients for the units (a), (b) and (c) shown
in Figure 6.14.

The e�ects of the asymmetry on the e�ective parameters ρ and κ are shown in Figure
6.16. Contrary to what has been observed for the hard inclusion case and the scattering
coe�cients, the position of the voided inclusion appears to have a strong in�uence on the
e�ective density ρ. The e�ective density of units (a) and (c) indeed strongly varies around
12.5 kHz, but remains almost constant for the symmetric version (b).
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Figure 6.16 � E�ective density and bulk modulus for the asymmetric layers presented
in Figure 6.14.
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All three units lead to similar variation in the e�ective bulk modulus, which also shows
strong variations around 12.5 kHz. It is also observed that the real part of the bulk
modulus is negative below this frequency, which is the translation of a monopole resonance
of the void. Such voided media for underwater applications are in fact well known for their
ability to block acoustic waves by using monopole resonances of the voided inclusions [32].

As for the case study with hard inclusions, it is observed that the Willis asymmetry
introduced by moving the resonant inclusion out of the geometric center of a unit does
not signi�cantly change the speci�c metamaterial feature, which here is the negative bulk
modulus associated to the monopole resonance. An alternative approach to introducing
Willis coupling is presented in the next subsection.

6.3.2 Variant Approach

Another approach to introduce Willis coupling is to create an asymmetric combination
of symmetric components having di�erent behaviours. With such an approach, novel
properties may be obtained resulting from the interaction between each component. This
may result in better broadband performance. A bi-layer unit illustrated in Figure 6.17
is considered. The following dimensions are selected : h1 = 22 mm, h2 = 35 mm,
d1 = 20 mm, d2 = 40 mm, r1 = 5 mm and r2 = 10 mm.

Figure 6.17 � Schematic diagram of the bi-layer Alberich.



150

Acoustic performance is �rst studied. The transmission coe�cients for the �rst layer, the
second layer and for the bi-layer are shown in Figure 6.18. The onset of the �rst di�raction
orders for the periodical array, de�ned by fc = 1489/(2d2) is highlighted by the orange
dotted line. From this frequency, the acoustic response of the panel is no longer specular,
so the approach used to calculate the re�ection and transmission coe�cients needs to be
adapted. This aspect will be further studied in Chapter 8.
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Figure 6.18 � Transmission coe�cients for the bi-layer Alberich and for each layer
separately.

It is observed that the transmission coe�cient of the bi-layer medium remains very low for
the entire frequency range of study, attributed to the combination of the two layers, since
each layer resonates at a speci�c frequency. The second layer creates a low transmission
peak just above 5 kHz, whereas the �rst layer of voids leads to a transmission dip just
below 15 kHz, creating broadband low transmission.

The e�ective properties of the medium are now derived. The direct inversion method
introduced in previously in the current chapter is applied. Since the unit is a combination
of two symmetric layers, another homogenisation approach can be introduced here : each
symmetric part is individually homogenised. The transfer matrix method is then used to
manipulate the homogenised layers. This option is labeled by Option 2 in Figure 6.19.
The �rst option is the direct homogenisation of the asymmetric medium considering Willis
coupling, using the given extended retrieval methods.
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Option 1

Option 2

Figure 6.19 � Transmission coe�cients for the bi-layer Alberich and for each layer
separately.

Both options are applied to investigate whether or not they are equivalent in terms of the
�nal e�ective medium. The direct inversion is applied to n = 1 unit cell, since for such
Alberich this method was shown to yield an accurate e�ective medium (see Chapter 5).
For the �rst option, the bi-layer unit is therefore considered and all four S-parameters
are required. For the second option, each layer is modelled individually and only the
coe�cients R and T are required. A bi-layer unit is then homogenised using the transfer
matrix approach of Chapter 3.
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The dispersion curves are �rst obtained and are shown in Figure 6.20. It is observed
that both options lead to very similar e�ective wavenumbers. Moreover, the imaginary
parts of the wavenumber of layers 1 and 2 show the attenuation peaks associated with
low transmission.
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Figure 6.20 � Dispersion curve for the e�ective bi-layer voided unit derived using the
homogenisation Options 1 and 2. The e�ective wavenumber for each individual unit is
also shown.

The Willis impedance and Willis asymmetry parameters are also derived and given in
Figure 6.21. There is again very little di�erence between the two options used to derive
the e�ective properties of the unit cell. It can also be noted that the asymmetry coe�cient
W becomes very large just after 15 kHz, which will be further discussed in what follows.
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Figure 6.21 � Modulus of the Willis asymmetry coe�cient and Willis impedance of the
bi-layer voided unit.
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There are therefore small di�erences between the two homogenisation approaches pre-
sented herein. It is di�cult to assess which one is more suitable or representative of the
medium, since di�erences are negligible here. They may however di�er more for other
structures where the nature of the 2 layers is di�erent and for which the interface e�ects
captured by the method are signi�cant. In terms of computation time, both approaches
are equivalent since they both require two �nite element simulations.

E�ective density and bulk modulus are now derived for the bi-layer voided medium and
are given in Figure 6.22. Independently, both layers lead to negative values for the real
part of the e�ective bulk modulus when their voids create a monopole resonance. The bi-
layer unit also provides a bulk modulus that has negative values. The unexpected result
to highlight here is the e�ective density of the bi-layer medium that becomes negative,
whereas the e�ective density of both layers individually remains positive.
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Figure 6.22 � E�ective bulk Modulus and mass density for the bi-layer Alberich design.

Such negative values of the e�ective density may seem surprising for a voided medium,
since it is known that the e�ective density is linked to the translational vibration of
an inclusion, whereas the bulk modulus relates the compressibility (bulk oscillations)
behaviour of an inclusion. Negative bulk modulus is therefore expected for voided media,
but the e�ective negative density is not expected since there is no mass inclusion. It has
been theoretically demonstrated that negative mass density can be obtained for spherical
voided inclusions when the motion of the center of mass of the particle is out of phase
with an incident directional pressure �eld [13, 122, 123]. The phase di�erence between
the displacement of the mass center, located at 32.83 mm from the input interface, and
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the incident �eld is plotted in Figure 6.23. In this �gure, frequencies where the e�ective
density is negative are highlighted by the blue shaded area (Option 1) and by the orange
shaded area (Option 2). It is noted that these areas exactly correspond to a phase
opposition between the phase of the incident signal and the phase of the center of mass
displacement. They also exactly correspond to the maximum of the asymmetry coe�cient
W . This study case may be one of the �rst evidence of a design with 2D macro-inclusions
that exhibits negative density appears when the displacement of the center of mass is in
phase opposition with the incident �eld.
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Figure 6.23 � Phase di�erence (in degree) between the displacement of the center of
mass and the incident �eld.

To summarise this case study, Willis coupling has been introduced by combining two
symmetric layers. It has been shown that this method of introducing asymmetry con-
siderably helps to improve the broadband performance compared to o�-centering the
resonant element. Moreover, negative values for both the e�ective density and e�ective
bulk modulus have been obtained. The origin of the negative mass density, which is
uncommon for such voided media, is explained. The bi-layer Alberich design analysed
in this section is selected for fabrication, and its characterisation will be presented in
Chapter 8.
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6.4 Summary

In this Chapter, the direct inversion method and the di�erential method were extended to
consider asymmetric media. These methods were then employed for two case studies, in
which the introduction of Willis coupling through the asymmetry is investigated, including
the impact on the acoustic performance and on the e�ective properties.

The �rst case study is used as an example of application of the retrieval methods, in which
a locally resonant medium containing an o�-centred hard inclusion is homogeneised. It
was found that the acoustic performance is slightly improved by moving the hard inclusion
away from the input interface. However, the position of the inclusion does not particularly
a�ect the e�ective parameters, including the e�ective density at the frequency of dipole
resonance where it reaches negative values. It was found that this absence of di�erence
between the unit versions at this dipole frequency is also linked to low values of the
asymmetry coe�cient W .

For the second case study, an asymmetric voided medium is considered. The asymmetry
was introduced so that the acoustic performance was improved over a broadband frequency
range. The asymmetry coe�cient for this asymmetric unit was also found to be maximised
when the e�ective density of the unit was negative, attributed to a phase opposition
between the center of mass displacement and the incident �eld. Consequently, these two
case studies are examples of the application of the extended retrieval methods. Further,
these case studies show how the introduction of Willis coupling may a�ect both the
acoustic performance and the e�ective properties.
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Chapter 7

Optimisation

In this chapter, a topological-like optimisation of metamaterials with macro-inclusions is
conducted. Media to be optimised are made of several units with inclusions of di�erent
shape and size. In order for the optimisation process to be computationally e�cient,
each unit is represented by its e�ective unit counterpart that has been obtained with
the retrieval methods presented in Chapter 5. For this purpose, a database of e�ective
properties associated with unit cell designs is created. The in�uence of the inclusion
shape and inclusion size on the e�ective properties are also investigated. The database is
then used as input for an optimisation process, based on the layer optimisation approach
presented in Chapter 3 for multilayered media, with the goal of minimising the anechoism
coe�cient at low frequencies. The work in the current chapter is therefore useful to make
a topological-like optimisation of acoustic coatings for underwater applications using �uid
properties.
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7.1 Optimisation Approach

The optimisation approach for two dimensional designs is detailed in what follows and is
illustrated by Figure 7.1. Both the direct inversion method and the di�erential method
are applied to di�erent periodic designs in order to get the e�ective properties of the
constituent unit cells. The direct inversion method is applied to n = 3 unit cells. Since
it has been shown in Chapter 5 that the di�erential method is almost independent to the
parameter n, the method is applied to (n, n+1) = (2, 3) unit cells. As a result, a database
is created with short computation times.

This database comprises a range of e�ective wavenumbers and e�ective impedances asso-
ciated with an inclusion design. For the sake of simplicity, only symmetric unit cells are
considered. This database of e�ective properties is used to optimise the layer arrangement
of a segmented medium. With this optimisation approach, the optimisation tools for
multilayered media optimisation are used for structures with two-dimensional macro-
inclusions through the use of e�ective media. That is, for a given number of unit cells
(characterising the minimal layer thickness and the total medium thickness), each layer is
a�ected with a set of e�ective properties (wavenumber and impedance) from the database.
As for the optimisation for multilayered media, the objective functions are then calculated
and the layer arrangement is optimised until the genetic algorithm gives a set of best
solutions.

Database of 

effective 

properties

Optimisation of the

layer arrangement

Figure 7.1 � Diagram of the optimisation approach, which uses a database of e�ective
properties derived with the retrieval methods for various inclusion shapes.
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For the optimisation of the anechoism coe�cient, the same objective functions used in
Chapter 3 are used : the �rst objective function is the root mean square of the anechoism
coe�cient, which aims at reducing its overall value, while the second objective function
is the normalised standard deviation to this value of the root mean square, which aims at
avoiding high peaks.

In order to calculate the anechoism coe�cient, the scattering coe�cients of the multi-
layered medium of e�ective layers are calculated. Nevertheless, the segmented media
obtained are more likely to be asymmetric. It is thus crucial to calculate the anechoism
coe�cient using all S-parameters, as per (Appendix C):

CA = S11 −
S2

21

S22 − 1
(7.1)



160

7.2 Database

7.2.1 Presentation

The database of unit cells is presented in Figure 7.2 and contains 14 possibilities for the
unit cell. Two of them are homogeneous, made of either polyurethane or steel, whereas the
others comprise a polyurethane matrix containing a steel inclusion. Material properties
are given in Chapter 5.

Figure 7.2 � Schematic diagram of the unit cells composing the database. Inclusions are
not drawn to scale.

Figure 7.3 introduces the dimensions of (a) the circle inclusion, (b) the square inclusion,
(c) the diamond inclusion, (d) the rotated rectangular inclusion and (e) the unit cell.
These dimensions are then given in Table 7.1 considering three di�erent surface areas for
each one of the inclusion shapes. These surface areas are A = 4 mm2, A = 16 mm2

and A = 25 mm2. The inclusions are centered within a 1 cm2 polyurethane unit, with
Lu = 10 mm. Using this database, the in�uence of the inclusion shape for a same surface
area as well as the in�uence of the inclusion size for a given shape can be studied.

Figure 7.3 � Dimensions for the four inclusions, consisting of (a) a circle, (b) a square,
(c) a diamond and (d) a rotated rectangle. The dimensions of the unit cell are also shown
(e).

Surface area R (mm) a (mm) L (mm)
A = 4 mm2 1.284 2 3
A = 16 mm2 2.257 4 6
A = 25 mm2 2.821 5 7.5

Table 7.1 � Dimensions de�ning the size of the inclusion depending on their surface area
A.
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7.2.2 In�uence of the Inclusion Shape

The in�uence of the inclusion shape on the variations of the e�ective properties is inves-
tigated. For this purpose, the four inclusions of surface area A = 16 mm2 are considered.

The e�ective wavenumber for each of these units is obtained using both the direct inversion
method and the di�erential method, respectively given in Figure 7.4 and Figure 7.5. It is
observed that even if these di�erent inclusions have the same surface area, their e�ective
wavenumber di�ers depending on the shape, for both inversion methods.

Figure 7.4 � Dispersion curves obtained using the direct inversion method for the four
di�erent units of surface area A = 16 mm2.

Figure 7.5 � Dispersion curves obtained using the di�erential method for the four di�erent
units of surface area A = 16 mm2.
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In Figure 7.5, it appears that the e�ective wavenumbers for the square and the circle
inclusions are very similar up to 20 kHz, which includes the mass-spring resonance. The
same observation is made for the e�ective wavenumber for the diamond and rotated
rectangular inclusions. Moreover, the mass-spring resonance for these last two inclusion
shapes appears at higher frequencies than for the square and circle inclusions.

The variations for the second resonance, corresponding to the matrix resonance around
25 kHz, are studied using the e�ective wavenumber obtained using the di�erential method
such that there is no confusion with the interface resonance since the di�erential method
erases the interface e�ects. It is observed that the rotated rectangular inclusions corre-
spond to a matrix resonance that appears at lower frequencies than the other shape, but
also corresponds to a low wave attenuation as shown by the small amplitude peak just
under 25 kHz. The wavenumber for the diamond inclusions and the circle inclusions are
similar and lead to a matrix resonance at roughly 26 kHz. The matrix resonance for the
square inclusion appears at higher frequencies, almost at the end of the frequency range
of study.

As such, the e�ective wavenumber for two inclusions may have similar variations for one
type of resonance, but quite di�erent variations for another type of resonance. Each
inclusion shape thus leads to its own variations for the wavenumber although the surface
area is the same.

The frequency of the interface resonance, around 20 kHz, also di�ers depending on
the inclusion shape, as visible in Figure 7.4. The diamond, the circle, the rotated
rectangular and the square inclusions respectively correspond to an interface resonance
at the frequencies 20.2 kHz, 20.3 kHz, 21.3 kHz and 21.6 kHz.

Therefore, the change of inclusion shape does not modify the general behaviour of the
medium since it is still possible to observe the mass-spring resonance, the interface
resonance as well as the matrix resonance. However, these phenomena are shifted in
frequency depending on the shape. Moreover, it appears that the attenuation per dis-
tance, represented by the amplitude of the imaginary part of the wavenumber, may also
be slightly modi�ed depending on the inclusion shape. The same observations as for
the e�ective wavenumber can be made for the e�ective impedance obtained with the
di�erential method, shown in Figure 7.6.
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Figure 7.6 � E�ective impedance obtained using the di�erential method for the four
di�erent units of surface area A = 16 mm2.

The scattering response of these units, obtained from FEM, is now compared in Figure 7.7
for media comprising n = 3 unit cells. The re�ection and transmission coe�cients di�er
accordingly to what has been observed with the e�ective wavenumbers. Additionally, the
absorption coe�cient, de�ned as A = 1−|R|2−|T |2, shows that with all these inclusions,
high absorption peaks are nicely spread between 11 kHz and 30 kHz. As such, using
multiple inclusion shapes is of interest to spread the dissipating physical phenomena,
resulting in a better broadband performance.

Figure 7.7 � Re�ection (R), transmission (T ) and absorption coe�cients (A = 1−|R|2−
|T |2) for four 3-unit media, each one made of repetitions of one of the four di�erent units
of surface area A = 16 mm2.
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7.2.3 In�uence of the Inclusion Size

The in�uence of the inclusion's surface area is further investigated in this section. The
diamond inclusion in Figure 7.3(c) is selected for the three surface areas of 4 mm2, 16 mm2

and 25 mm2. The dispersion curves are given in Figure 7.8 for the di�erential method,
and in Figure 7.9 for the direct inversion method. In these two �gures, the di�erences are
signi�cant amongst the curves for the 3 surface areas in both amplitude and frequency
of resonances. It is therefore observed that a small inclusion leads to small amplitude
variations at resonance frequencies, and that these resonances occur at low frequencies.
A large inclusion leads to signi�cant amplitude variation of the e�ective wavenumber and
resonance phenomena that are shifted to higher frequencies.
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Figure 7.8 � Dispersion curves obtained using the di�erential method for the diamond
inclusion of surface area A = 4 mm2 (small markers), A = 16 mm2 (medium markers)
and A = 25 mm2 (large markers).
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Figure 7.9 � Dispersion curves obtained using the direct inversion method for the
diamond inclusion of surface areas A = 4 mm2 (small markers), A = 16 mm2 (medium
markers) and A = 25 mm2 (large markers).
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For the e�ective wavenumber in Figure 7.9 obtained using the direct inversion method it
is also observed that the interface resonance shifts to higher frequencies with increasing
surface area.

The e�ective impedance is also strongly a�ected by the inclusion surface area, especially
for such heavy inclusions made of steel, as shown in Figure 7.10. Contrary to the wavenum-
ber, di�erences between inclusions are herein especially signi�cant at low frequencies. Such
signi�cant di�erences in the impedances are of interest as it has been shown in Chapter
3 that strong variation in impedance may be bene�cial to improve anechoism performance.
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Figure 7.10 � E�ective impedance obtained using the di�erential method for the diamond
inclusion of surface areas A = 4 mm2 (small markers), A = 16 mm2 (medium markers)
and A = 25 mm2 (large markers).
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The in�uence of the size of the inclusion on the scattering coe�cients is shown in Figure
7.11. It is observed that the re�ection coe�cient may signi�cantly di�er from one inclu-
sion size to another, especially at low frequencies as per the e�ective impedance. The
absorption coe�cient A = 1−|R|2−|T |2 reaches maximal values for the largest inclusion
at resonant frequencies. The medium size inclusion seems nevertheless to provide the
most interesting absorption coe�cient since it remains relatively high from 13 kHz.
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Figure 7.11 � Re�ection, transmission and absorption coe�cients for three 3-unit media,
each one made of repetitions of units comprising diamond inclusions of surface area A =
4 mm2 (small markers), A = 16 mm2 (medium markers) and A = 16 mm2 (large markers).
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7.3 Results for Anechoism

7.3.1 Approach Validation

The optimisation is now conducted for a broadband frequency range [200 Hz−30000 Hz].
The aim of this �rst optimisation is simply to check the validity and accuracy of the
approach that uses e�ective properties obtained using the hybrid prediction method in
such an optimisation scheme. The layer arrangement is optimised for a 10-unit medium,
considering the database of Figure 7.2 without the homogeneous steel unit.

The Pareto front is plotted for all generations in Figure 7.12. For the last generation, the
10 leftmost arrangements, having the lowest |CA|, as well as the 10 rightmost arrange-
ments, with the minimum σCA

, are also represented.

Figure 7.12 � Scores of the Pareto front for all generations (left) and layer arrangements
for the 10 �rst and last solutions of the Pareto front (right), from the lowest |CA| to the
highest, considering the left hand-side as the incidence side and the right hand-side as the
hull side.

The �rst arrangement of the Pareto front for which |CA| is minimum, as well as the last
arrangement with the minimum σCA

, are selected to assess the validity of the optimisation
approach. Their scattering coe�cients obtained using the e�ective medium approach (full
lines) are compared to those obtained using a �nite element model (dashed lines) in Figures
7.13 and 7.14.
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Figure 7.13 � Scattering coe�cients, S11, S22 and T = S12 = S21, as well as the
anechoism coe�cient CA for the �rst arrangement of the Pareto front, obtained using the
e�ective medium approach (full lines) and �nite element simulation (dashed-dotted lines).
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Figure 7.14 � Scattering coe�cients, S11, S22 and T = S12 = S21, as well as the anechoism
coe�cient CA for the last arrangement of the Pareto front, obtained using the e�ective
medium approach (full lines) and �nite element simulation (dashed-dotted lines).

For these two cases, the predictions are very accurate up to 10 kHz. They then start
di�ering from the �nite element model between 10 and 20 kHz. Above 20 kHz, the
di�erence between predictions and the FEM may become signi�cant, especially for the
S11 and S22 parameters. Predictions of anechoism coe�cients are nevertheless relatively
accurate as these di�erences seem to compensate amongst S11, S22 and T = S12 = S21.
The optimisation approach is therefore judged satisfactory and suitable to predict the
anechoism coe�cient of such complex media with macro-inclusions.
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7.3.2 Low Frequencies

The optimisation process is now conducted aiming to lower the anechoism coe�cient for
the subwavelength domain, for a frequency range up to 10 kHz. Optimisation parameters
are given in Table 7.2.

Optimisation Parameter Value
Total thickness L = 0.1 m
Unit thickness l = 0.01 m
Number of layers nl = 10
Population size N = 400
Proportion of children created by Crossover C% = 80%
Proportion of children created by Mutation 100− C% = 20%
Mutation probability m = 0.02
First rank ratio r1 = 0.35
Maximum number of Generations Gmax = 1000

Table 7.2 � Parameters to optimise the layer arrangement of a medium to lower the
anechoism coe�cient up to 10 kHz.

Figure 7.15 presents the evolution of the Pareto front for all generations as well as the 30
leftmost layer arrangements of the last generation. It is observed that all the arrangements
have their last unit cell free of inclusion, and all comprise a small inclusion in their �rst
unit cell. Heavy steel layers close to the back end of the medium also seems to be a
pattern that stands out for low anechoism in the selected frequency range.

Figure 7.15 � Scores of the Pareto front along generations (left) and 30 �rst layer
arrangements of the Pareto front (right), from the lowest |CA| to the highest, considering
the left hand-side as the incidence side and the right hand-side as the hull side. White
squares highlight the scores of four selected arrangements.
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Four arrangements are selected for comparison. Their scores are highlighted by the white
squares in Figure 7.15. The anechoism coe�cient for these selections is shown in Figure
7.16.

Figure 7.16 � Layer arrangements and anechoism coe�cients of four selected con�gura-
tions chosen for their low anechoism coe�cient under 10 kHz.

For these four selections, it is observed that the anechoism coe�cient remains low only
in the frequency range of optimisation, and then increases above 10 kHz, especially for
Selections 1 and 2.

The �rst arrangement is further studied for a frequency range up to 10 kHz. The scattering
coe�cients obtained using the e�ective medium approach are given in Figure 7.17 and
compared to those obtained using FEM. Predictions and FEM results are very close
to each other. It is also observed that the optimised arrangement improves the anechoic
performance from 2 kHz compared to the matrix alone, as shown by the di�erence between
the blue and orange lines in Figure 7.17 (right). Nevertheless, since the performance is
optimised below 10 kHz, the origin for this improved performance is not a resonance e�ect.
According to the results in sections 7.2.2 and 7.2.3, the only main di�erence between the
units of the database is the e�ective impedance within this frequency range.
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Figure 7.17 � (Right) Scattering coe�cients, S11, S22 and T , as well as the anechoism
coe�cient CA for the �rst arrangement of the Pareto front, obtained using the e�ective
medium approach (full lines) and �nite element simulation (dashed lines). (Left)
Anechoism coe�cient, in decibels, of the optimised medium and of the matrix free of
inclusions.

The e�ective impedance along the medium is thus calculated and is given in Figure 7.18
at 9.8 kHz, which is the frequency where the anechoism coe�cient is a minimum. It is
obtained by using the e�ective impedance of each unit. Similar variations to what has
been observed in Chapter 3 are again found: e�ective impedance tends to remain constant
around the impedance of water so that a wave entering the medium does not encounter
major re�ection. It shows a high peak close to the back end of the medium (on the right-
hand side), followed by a drop at the end of the medium.
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Figure 7.18 � E�ective impedance for each unit at a frequency of 9.8 kHz.
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This result therefore reinforces that such an impedance pattern leads to low anechoism,
as it has been concluded for multilayered media, even though the gradual feature is less
visible here. Resonances phenomena associated with the presence of inclusions are then
not necessary to improve anechoic performance on the subwavelength domain. As such,
it is interesting to verify if better performance could be obtained without inclusions,
considering a multilayered medium only. The same optimisation algorithm has been run
for multilayered media, considering the same material properties and total length as for
the media-counterparts with macro-inclusions (which are di�erent than those used in
Chapter 3). The Pareto front is given in Figure 7.19.
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Figure 7.19 � Scores for all generations for the optimisation of the multilayer (1D)
arrangement (colored dots). The Pareto front for the last generation is represented by
the grey squares. Layer arrangements are also presented on the right hand-side. The
white circles show the Pareto front obtained previously when optimising the arrangement
of units with macro-inclusions, shown in Figure 7.15.

It can be seen that the di�erence between the Pareto front for multilayered media (grey
squares) and the Pareto front for media with macro-inclusions (white dots) is not sig-
ni�cant. The former provides slightly better solutions for |CA|, whereas the latter gives
solutions of lower σCA

. It is also observed that the arrangements are similar : thick
layers of steel are found where homogeneous steel units are located in the arrangements
with macro-inclusions, and thinner layers of steel are found at similar locations as small
inclusions. One of the multilayered media has a score very close to that of the selected
medium with macro-inclusions. They are both compared in Figure 7.20.
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Figure 7.20 � Comparison of the design and anechoism coe�cient of two solutions having
the same scores.

It is observed that the multilayered solution leads to the same - even slightly better -
anechoism coe�cient as the solution with macro-inclusions under 10 kHz. However, the
di�erence is signi�cant at higher frequencies, where the solution with 2D-macro-inclusions
provides a much lower anechoism coe�cient, even though this solution was the one with
the worse performance at higher frequencies according to Figure 7.16.

Therefore, inclusions and their resonances are not essential to optimise the anechoism
coe�cient at low frequencies, or within a relatively narrow frequency range. However, they
may help generate strong and sudden variations of the e�ective impedance at the resonance
frequencies, as shown in Figure 7.10, which may help lower the anechoism coe�cient for
these resonance frequencies. They are also crucial to broaden the frequency range of
performance using their various resonances that can be tuned to be nicely spread in the
frequency range of study. Consequently, an e�cient approach for an anechoic coating of
broadband performance may be to combine uniform layers and macro-inclusions, whereas
steel layers lower the anechoism coe�cient at low frequencies and inclusions help to
dissipate the energy at higher frequencies through their resonances. This optimisation
approach could also be improved by adding multilayered unit cells to the database, with
various steel thicknesses.
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7.4 Performance Levels

The layer arrangement is now optimised for both the anechoism and the hull decoupling
coe�cient, using the objective functions de�ned in Chapter 3, Section 3.4.

The Pareto front along generations is given in Figure 7.21, which also shows a selection
of 35 solutions. It appears that with the parameters given in the optimisation (materials,
frequency range, medium thickness), a better anechoic performance than hull decoupling
performance is obtained, since σLCA

is mostly lower than σLCD
. It is observed that the

portion of polyurethane on the hull side is increased compared to the optimisation for the
anechoism coe�cient alone. Inclusions are then moved to the water/medium interface
as the hull decoupling performance improves. As such, results here are similar to those
obtained with the optimisation for multilayered media, that is, better hull decoupling
performance is obtained with media close to a simple bi-layer, with the softer absorbing
material being in contact with the hull. It is also worth highlighting that the "steps" in
the Pareto front are linked to the position of the unit cell made of steel.

Figure 7.21 � Scores of the Pareto front along generations (left) and selection of 35 layer
arrangements of the Pareto front (right), from the lowest σLCA

to the highest, considering
the left hand-side as the incidence side and the right hand-side as the hull side.
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7.5 Summary

In this section, a new approach for optimising structures with macro-inclusions has been
introduced. It uses the e�ective properties of di�erent polyurethane units comprising
inclusions of di�erent sizes and shapes. The in�uence of the shape and size of the inclusion
on the variations of the e�ective properties was investigated. The database was then used
to optimise a 10 cm-thick media for subwavelength anechoic performance. Similar to
what was found for multilayered media, an impedance pattern leading to a low coe�cient
of anechoism arose. This pattern transcribes the fact that, in the optimised medium,
acoustic waves propagate in the medium and are trapped in the damped layer at the end
of the medium, resulting in a strong dissipation of energy. This study has also shown
that the design of an anechoic coating need not be limited to multilayered media or media
with macro-inclusions, as the combination of the two (ie. media with macro-inclusions
and uniform layers) can greatly help improve the broadband acoustic performance.

Such an optimisation approach has also proved to be very satisfactory in terms of predic-
tion accuracy and calculation time. In a short time, a complex optimisation problem of
1.3786× 1011 potential solutions was treated analytically. In addition, this new optimisa-
tion concept can be used, adapted and applied to thousands of other problems, for example
by considering other criteria of acoustic performance (re�ection, transmission, absorption,
e�ective properties, etc.), other materials, other shapes, other total unit lengths and
thicknesses, other frequency ranges, and so on. As such, this optimisation tool is easily
adaptable.
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Chapter 8

Experiments

In this Chapter, the bi-layer Alberich panel designed in Chapter 6 is measured in the
acoustic water tank presented in Chapter 4. Since the panel contains periodically em-
bedded void inclusions, the experimental characterisation becomes more complex. The
grating di�raction phenomenon is �rst presented to highlight these di�culties. The 3-
point method, presented in Chapter 4, as well as an extension of the method are then
applied to measure the acoustic response of the panel. The scattering coe�cients of the
voided medium are also compared to those obtained using a FE model.
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8.1 Experimental Characterisation of Di�raction Grat-

ings

For the homogenisation and optimisation of periodic metamaterials with macro-inclusions,
the di�raction grating phenomenon was ignored since its in�uence can easily be neglected
for the frequency range of study and the numerical method used. However, the mea-
surement of the Alberich panel poses new challenges due to its periodic arrangement of
macroscopic inclusions. In order to apply the 3-point method under valid conditions,
the phenomenon of di�raction induced by gratings, which are periodically structured
media, is �rst described. The implications, in terms of the additional challenges for the
experimental characterisation, are then discussed.

8.1.1 Grating Di�raction Phenomenon

For an acoustic panel containing a di�raction grating, the scattered �eld consists of a
superposition of an in�nite number of di�racted waves. This phenomenon is also well
known in optics, using optical di�raction gratings. Each di�racted wave is associated
with a di�racted mode number n, where n is an integer. In the case of plane wave
excitation of a panel at normal incidence, the 0th-order corresponds to the specular
re�ection (transmission). As such, it has the same propagation direction as the incident
plane wave while the other modes |n| > 0 propagate in other directions, as illustrated in
Figure 8.1.

Figure 8.1 � Schematic diagram illustrating the scattered �eld from a grating. Only the
0th, 1st and 2nd orders on both the re�ection and transmission sides are shown.
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In what follows, the re�ected and transmitted pressures of a panel containing a periodic
array are expressed based on [1,116] but using the coordinate system presented in Chapter
4 for the water tank. The incident plane wave is therefore travelling in the direction x,
while the panel is in an (y, z)-plane. For the theoretical approach, the inclusions are
considered to be in�nite along the z-axis and the grating is periodic in the y-direction
from −∞ to +∞. Figure 8.2 introduces the projections of the n mode propagation vector
in this coordinate system.

Figure 8.2 � Projections of the n mode propagation vector in the (x,y)-plane.

The re�ected and transmitted pressures, denoted respectively by pr(x, y) and pt(x, y), are
written as an in�nite series of waves di�racted by the grating of periodicity 2d, which
yields:

pr(x, y) =
+∞∑

n=−∞

cr,ne
−iqnyeikx,nx (8.1)

pt(x, y) =
+∞∑

n=−∞

ct,ne
−iqnye−ikx,nx (8.2)

where qn and kx,n are given as follows:

qn =
nπ

d
, (8.3)

k2
x,n = k2 − q2

n, (8.4)

where k is the wavenumber in water and n is the mode number (or mode order) of
the di�racted wave whose contribution coe�cient is cr,n or ct,n. When k2

x,n < 0, the
corresponding di�racted wave propagates parallel to the y-axis and decays exponentially
along the x-axis. In this case, it only contributes to the near-�eld and it is referred to as
an evanescent wave.
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On the contrary, if k2
x,n > 0, the di�racted wave propagates away from the panel in the

x-direction. The cut-o� frequency fc for di�racted wave n is therefore given by:

fc(n) =
cwn

2d
, (8.5)

where cw is the speed of sound in water.

Consequently, there is a cut-o� frequency for each di�racted mode n for which a di�racted
wave converts from a evanescent wave to a propagating wave. The di�racted waves
that do not propagate along the x-axis decay exponentially with distance to the plane
which contains the centers of the inclusions. For example, for a frequency f such that
f < cw/(2d), only the 0th mode exists in the far-�eld since all the other di�racted waves
are evanescent. As the frequency increases, a greater number of di�racted waves convert
to propagating waves.

8.1.2 Challenges

In the past, the grating di�raction phenomenon appearing in Alberich-type panels has
been studied analytically [1, 116, 124, 125]. Additionally, Ivansson [126] highlighted some
of the array di�raction features through experiments. For an Alberich-type coating
comprising spherical cavities of 2 mm diameter periodically spaced every 10 mm, ul-
trasonic pulse measurements showed that above the �rst cut-o� frequency (of 148kHz),
the specular re�ected wave is closely followed by di�racted waves of higher modes. The
author also presented a pulse computation for an Alberich coating below the �rst cut-
o� frequency, showing that evanescent waves that exponentially decay in the normal
direction are no longer discernible 1 meter away from the panel but are non negligible at
the interface [127]. This phenomenon has also been mentioned in the study of materials
other than Alberich-type designs, but results above the �rst cut-o� frequency are usually
not investigated [128,129].

Therefore, the experimental characterisation of a metamaterial with a periodic arrange-
ment of macroscopic inclusions such as the Alberich coating is not common in the litera-
ture since lattice-di�racted non-specular waves make the experimental study of such media
even more complex than for a homogeneous panel. Di�culties in panel measurements
highlighted in Chapter 4, such as panel edge-di�raction, are still present and these
challenges are increased by the presence of di�racted waves traveling in directions other
than the incident plane wave and further, may or may not be evanescent depending on
the frequency. Therefore, in what follows, the applicability and robustness of the 3-point
method for measurements of the Alberich panel is studied. The physical phenomena that
occurs below and above the �rst cut-o� frequency are studied separately.
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8.2 Measurements of the Alberich

8.2.1 Presentation of the panel

The panel is shown in Figure 8.3. Its lateral dimensions are 980 × 980 mm and is
maintained by a Plexiglas frame. Due to the important concentration of air in the panel,
a weight has been placed at the bottom to prevent it from �oating.

Figure 8.3 � Photography of the Alberich panel before immersion (left) and during the
experiments (right).

8.2.2 Below the Cut-o� Frequency

Applicability

The panel design presented in Figure 8.4 is used. The 3-point method set-up is also
shown. For this panel, the �rst cut-o� frequency for the grating is fc = cw

2d
= 18.75 kHz.

Below the �rst cut-o� frequency, only the 0th-order mode propagates. The main challenge
here is to ensure that the evanescent �eld does not pollute measurements near the panel,
where the hydrophones are placed. For the 3-point method, the hydrophones must be
placed su�ciently close to the panel so that the edge-di�racted pressure can be assumed
to be the same at the 3 positions.
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Figure 8.4 � Alberich panel measured with the 3-point method below the �rst cut-o�
frequency.

In order to verify if the experimental method can be correctly applied to measure the
Alberich grating, the near-�eld evanescence is analysed. Using Equation (8.4), the term
eikx,nx is evaluated, since it weights the contribution coe�cients cn of the di�racted mode
n. For the panel studied here, only the n = ±1 modes are considered since there are no
other cut-o� frequencies included in the measurement frequency range up to 25 kHz for
the water tank used. In Figure 8.5, the position x at which eikx,±1x becomes equal to 0.01,
0.05 and 0.1 are plotted for each frequency. Theses curves show that at the corresponding
position x, the amplitude of the evanescent di�racted wave ±1 has decreased by 99%,
95% or 90%. In addition, the 3 positions of the hydrophone on the re�ection side are
plotted for each frequency, considering a central position X2 at 11cm from the interface
and a spacing of λ/10 between the 3 positions.
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Figure 8.5 � Distances at which the amplitude of the evanescent di�racted waves n = ±1
from the large inclusion array is less than 1%, 5% and 10% of its initial amplitude. The
positions of the hydrophones for the 3-point method set-up are also shown.
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Below 15 kHz, the di�racted modes ±1 should not disturb the 3-point method measure-
ments since their amplitude should be reduced by at least 99% of their initial amplitude. It
can nevertheless be observed that the evanescent feature of the di�racted waves decreases
as the cut-o� frequency approaches. Between 15 kHz and the �rst cut-o� frequency, some
discrepancies may consequently appear due to a potential contribution of the di�racted
modes ±1.

Results

Hydrophone positions along the x-axis de�ned previously (X2 = 11cm, X1 = X2 − λ/10
and X3 = X2 + λ/10) are considered hereafter. Along the y-axis, 16 positions regularly
spaced by 5 mm are considered, so fully covering one unit cell of period 2d = 8 cm. The
total pressures recorded at the three positions on each side of the panel are shown in
Figures 8.6 and 8.7 respectively for the incident side and transmission side.
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Figure 8.6 � Pressure amplitudes measured at the 3 positions A1, A2 and A3 for the
re�ection side. The graduation of grey represents the y-positions along the unit cell.
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Figure 8.7 � Pressure amplitudes measured at the 3 positions B1, B2 and B3 for the
transmission side. The graduation of grey represents the y-positions along the unit cell.
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In both �gures, it can be observed that the measured pressures are slightly di�erent
depending on the position along the y-axis, due to the contribution of the edge-di�racted
pressure. For higher frequencies, the evanescent �eld may also contribute slightly to the
measured pressures as shown in Figure 8.5.

It is crucial here to draw attention to the fact that the acoustic source resonates around
16 kHz which sometimes leads to an overload of the received signal, thus invalidating
the measurement. Usually, the power of the source is reduced to avoid such an overload.
However, a strong acoustic emission was required here in order to be able to detect a signal
on the transmission side that stood out from the noise, since the transmission through
the panel is extremely low (as expected for such panels). Therefore, results from 15 kHz
should be taken with caution.

On the re�ection side, the total pressures measured are used to derive the incident pressure
pi, the re�ected pressure pr and the edge-di�racted pressure on the re�ection side pdiffR

.
These calculated pressures are shown in Figure 8.8. The incident pressure is compared
to that obtained by measurements without the panel, referred to as pWP

i . This incident
pressure pWP

i is maximum at the resonance frequency of the acoustic source. It can be
seen that the calculated incident pressure pi is consistent with pWP

i up to 15 kHz, thus
validating the estimation of the incident pressure using the 3-point method. However,
there is a signi�cant di�erence around 16 kHz, which invalidates the results from 15 kHz for
the re�ection side. It is nonetheless di�cult to identify whether this divergence originates
from the overload of the received signal due to the source resonance or from the higher
contribution of the evanescent di�racted waves close to the cut-o� frequency.
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Figure 8.8 � Incident pressure pi, re�ected pressure pr and edge-di�racted pressure pdiffR

at the central position A2 on the re�ection side. The incident pressure measured without
the panel (pWP

i ) is also plotted. The graduation of grey represents the y-positions along
the unit cell.
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On the transmission side, the 3-point method leads to the transmitted pressure pt and the
edge-di�racted pressure pdiffT

. Pressure p∞ coming from in�nity and travelling towards the
negative x is also obtained for the transmission side. These pressures are plotted in Figure
8.9, where it can be seen that the in�nite pressure is almost null, thus validating that
the 3-point method is correctly applied. The transmitted pressure pt is also signi�cantly
low. It can �nally be noticed that the edge-di�racted pressure varies signi�cantly as a
function of the y-position and most often appears as the main component of the pressure
�eld behind the panel.

4 6 8 10 12 14 16
0

1

2

3

4

Figure 8.9 � Transmitted pressure pt, in�nite pressure p∞ and edge-di�racted pressure
pdiffT

at the central position B2 on the transmission side. The graduation of grey represents
the y-position along the unit cell.

Finally, since the 3-point method eliminates edge-di�raction contributions, the experi-
mental coe�cients could, in practice, be directly compared to those of an in�nite panel.
Re�ection and transmission coe�cients are thus calculated using the pressures from the
3-point method given in Figures 8.8 and 8.9. They are derived for each y-position
independently. Coe�cients are also averaged along the unit cell by considering all y-
positions. The numerically obtained re�ection and transmission coe�cients for a medium
of in�nite lateral dimensions (shown in Chapter 6) are also shown for comparison in
Figure 8.10. Additionally, a raw calculation of the coe�cient is performed, using the total
pressure measured at the central position X2 and the incident pressure measured without
a panel pWP

i , according to :

R =
p(A2)− pWP

i

pWP
i

, (8.6)

T =
p(B2)

pWP
i

. (8.7)
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Figure 8.10 � Magnitude of the re�ection and transmission coe�cients obtained with
the 3-point method and without as per Equations (8.6) and (8.7). The color graduation of
grey represents the y-position along the unit cell. Numerical results for a panel of in�nite
lateral dimensions are also shown.

It is �rst noted that the coe�cients of the calculation without the 3-point method are
signi�cantly di�erent from the numerical results. Even by averaging these coe�cients
over the unit cell, the acoustic response obtained would be very di�erent from the nu-
merical prediction. On the contrary, the coe�cients derived from the 3-point method
are consistent with the predictions. There are some slight discrepancies which may be
attributed to the fact that the panel is not in�nite. Consequently, the 3-point method
leads to re�ection and transmission coe�cients which correspond well to those calculated
numerically for an in�nite panel up to 15 kHz. This again underlines the importance of
removing the contribution of the edge-di�racted pressure.

To summarise, the 3-point method provides accurate and robust measurements of the
Alberich medium without being in�uenced by the evanescent �eld created by the grating.
Nevertheless, it must be ensured that the distance between the grating and the hydrophone
is large enough but also not too large so that the assumption on the edge-di�racted
pressure can be applied. This can be achieved by using criteria established in Chapter 4
for homogeneous panels. However, between 15 kHz and the �rst cut-o� frequency, there
are signi�cant discrepancies, which may be due to the resonance of the acoustic source or
to the evanescent �eld of higher amplitude close to the cut-o� frequency.



187

8.2.3 Above the Cut-o� Frequency

Direct Calculation

Above the �rst cut-o� frequency, the acoustic response is no longer specular and di�racted
waves convert from evanescent to propagating. Since the re�ected and transmitted
pressures are written as an in�nite sum of waves di�racted by the grating (Equations (8.1)
and (8.2)), the approach used to calculated the re�ection and transmission coe�cients is
di�erent. Formulas given in [1, 116] are used and rewritten in what follows using the
notations of the manuscript. The contribution coe�cient cr,n (or ct,n) of each di�racted
mode is obtained by using the re�ected (or transmitted) pressure measured or calculated
along a linear mesh covering a complete constituent unit. Formulas are the same for
both the re�ected and transmitted sides, so the notation cn is used in what follows. As
presented in Figure 8.11, the linear mesh corresponds to the de�nition of M regularly
spaced points, labeled ym. Re�ected or transmitted pressure pm is measured/calculated
on each of these points.

Figure 8.11 � Segmented line where the pressure is measured/calculated along a full
period of the array.

The expression of the contribution coe�cient for the 0th mode is �rst given by :

c0 =
M∑
m=1

c0,m

2d
, (8.8)

where cm0 is an elementary contribution calculated on each segment [ym,ym+1] using the
pressures pm and pm+1 measured/calculated at these points as per:

c0,m =
ym+1 − ym

2
(pm+1 + pm). (8.9)

The contribution coe�cient of the nth mode for n 6= 0 is:

cn =
M∑
m=1

cn,m
2d

, (8.10)
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where cmn is the elementary contribution obtained using the pressures pm and pm+1 mea-
sured/calculated at the points ym and ym+1 as per:

cn,m = α(n,m)pm + α(n,m+1)pm+1. (8.11)

The expression for the coe�cients α(n,m) and α(n,m+1) are:

{
α(n,m) = e−iqnym( 1

iqn
− 1

(iqn)2
e−iqn(ym+1−ym)−1
−ym+1+ym

)

α(n,m+1) = e−iqnym+1( 1
−iqn
− 1

(iqn)2
1−eiqn(ym+1−ym)

ym+1−ym )
(8.12)

Thus, the use of measurements/calculations on a meshed line covering a complete unit cell
should, in theory, lead to the re�ected and transmitted pressures of the grating di�racted
modes 0, +1 and −1 for the Alberich panel. This approach is used in a FEM calculation
to obtain the re�ection and transmission coe�cients for orders 0 and ±1. It is also used
to perform a raw calculation of the coe�cients using the pressures measured along an
elementary cell. Such a calculation therefore does not take into account an eventual
contribution of the panel's edge-di�raction and it can thus be seen as an equivalent to the
results �without the 3-point method� presented in the preceding section below the cut-o�
frequency. These coe�cients will be compared later in this Chapter. An extension of the
3-point method is �rst proposed to calculate both the grating di�racted modes and the
edge-di�racted pressure.

The 5-point method

Above the �rst cut-o� frequency, di�racted modes ±1 are no longer evanescent and
begin to propagate. Di�racted modes ±2 are still present but remain evanescent up to
37.5 kHz. For measurements, this means that the associated pressures, p−1 and p+1, must
be calculated in addition to the other unknowns of the 3-point method. It is therefore
necessary to add two unknowns, resulting in two additional inputs which are measurement
points. Since the 3-point method is applied in several positions ym along the y-axis to cover
a complete unit cell, a fourth and a �fth point, X4 and X5, are chosen and correspond
to the central point at the previous and next y positions where the 3-point method is
applied, so X4 = X2(ym−1) and X5 = X2(ym+1). This adaptation is illustrated in Figure
8.12. It should be noted that the elementary cell is not represented as centered since, in
practice, it may not be possible to know where the hydrophones are located in relation
to the position of inclusion. However, if the inclusions were centered with respect to
the measurement line, the 5-point method could be reduced to the 4-point method since
p−1 = p+1.
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Figure 8.12 � Experimental set-up speci�c to the application of the 5-point method
along one unit cell. Pressure contributions and geometric parameters are also presented.

The 5-point method is �rst introduced for the re�ection side. Five points A1, A2, A3,
A4 and A5 are considered. The central position A2 is a reference, and the distances
dA12 = A1A2, dA23 = A2A3, dA24 = A2A4 and dA25 = A2A5 are de�ned. At each point, the
total pressure p can be expressed as a function of the contributions of the incident pressure
pi and the re�ected pressure of the 0th mode p0

r at the central position, the edge-di�racted
pressure on the re�ection side pdiffR

as well as the pressure of the di�racted modes ±1,
p−1
r and p+1

r .

The system of equations to implement a �ve-point method can now be written by adding
two unknowns to the 3-point method system as follows:



p(A1) = pi(A2)e−ikdA12 + p0
r(A2)eikdA12 + pdiffR

(A1) + p+1
r (A2)eikdA12cos(θ) + p−1

r (A2)eikdA12cos(θ)

p(A2) = pi(A2) + p0
r(A2) + pdiffR

(A2) + p+1
r (A2) + p−1

r (A2)

p(A3) = pi(A2)eikdA23 + p0
r(A2)e−ikdA23 + pdiffR

(A3) + p+1
r (A2)e−ikdA23cos(θ) + p−1

r (A2)e−ikdA23cos(θ)

p(A4) = pi(A4) + p0
r(A4) + pdiffR

(A4) + p+1
r (A2)e−ikdA24sin(θ) + p−1

r (A2)eikdA24sin(θ)

p(A5) = pi(A5) + p0
r(A5) + pdiffR

(A5) + p+1
r (A2)eikdA25sin(θ) + p−1

r (A2)e−ikdA25sin(θ)

.

(8.13)

Since the incident wave travels along the x-axis and it is a plane wave, pi(A2) = pi(A4) =
pi(A5). The same observation applies for the specular re�ection p0

r. It is also assumed that
the 5 positions are close enough so that pdiffR

(A1) = pdiffR
(A2) = pdiffR

(A3) = pdiffR
(A4) =

pdiffR
(A5). Equation (8.13) can thus be simpli�ed and written in a matrix form as follows:
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
p(A1)
p(A2)
p(A3)
p(A4)
p(A5)

 =


e−ikdA12 eikdA12 1 eikdA12cos(θ) eikdA12cos(θ)

1 1 1 1 1
eikdA23 e−ikdA23 1 eikdA23cos(θ) eikdA23cos(θ)

1 1 1 e−ikdA24sin(θ) eikdA24sin(θ)

1 1 1 eikdA25sin(θ) e−ikdA25sin(θ)




pi(A2)
p0
r(A2)

pdiffR
(A2)

p+1
r (A2)
p−1
r (A2)

 . (8.14)

By inverting Equation (8.14), the pressures pi(A2), p0
r(A2), p+1

r (A2), p−1
r (A2) and pdiffR

(A2)
are obtained.

On the transmission side, the same approach is adopted, considering the �ve points B1,
B2, B3, B4 and B5 and the distances dB12 = B1B2, dB23 = B2B3, dB24 = B2B4 and
dB25 = B2B5, where position B2 is taken as the reference. Assuming that the edge-
di�racted pressure is the same at the �ve positions, the total pressures at these points are
expressed by:

p(B1) = p0
t (B2)eikdB12 + p∞(B2)e−ikdB12 + pdiffT

(B2) + p+1
t (B2)eikdB12cos(θ) + p−1

t (B2)eikdB12cos(θ)

p(B2) = p0
t (B2) + p∞(B2) + pdiffT

(B2) + p+1
t (B2) + p−1

t (B2)

p(B3) = p0
t (B2)e−ikdB23 + p∞(B2)eikdB23 + pdiffT

(B2) + p+1
t (B2)e−ikdB23cos(θ) + p−1

t (B2)e−ikdB23cos(θ)

p(B4) = p0
t (B4) + p∞(B4) + pdiffT

(B2) + p+1
t (B2)e−ikdB24sin(θ) + p−1

t (B2)e−ikdB24sin(θ)

p(B5) = p0
t (B5) + p∞(B5) + pdiffT

(B2) + p−1
t (B2)e−ikdB25sin(θ) + p−1

t (B2)eikdB25sin(θ)

.

(8.15)
Since the in�nite pressure is theoretically a non-existing wave travelling along the x-axis
and is a plane wave, p∞(B2) = p∞(B4) = p∞(B5). The same observation applies for
the specular transmission p0

t . The contributions of the transmitted, in�nite and edge-
di�racted pressures are then be calculated by solving the following system of equations:


p(B1)
p(B2)
p(B3)
p(B4)
p(B5)

 =


eikdB12 e−ikdB12 1 eikdB12cos(θ) eikdB12cos(θ)

1 1 1 1 1
e−ikdB23 eikdB23 1 e−ikdB23cos(θ) e−ikdB23cos(θ)

1 1 1 e−ikdB24sin(θ) eikdB24sin(θ)

1 1 1 eikdB25sin(θ) e−ikdB25sin(θ)




p0
t (B2)

p∞(B2)
pdiffT

(B2)
p+1
t (B2)
p−1
t (B2)

 . (8.16)

Numerical Results

In order to verify the equations implemented in the 5-point method, a �nite element
model is carried out in which the pressures are recorded at the same positions as for
the measurements, as illustrated in Figure 8.13. The FEM model includes only one unit
cell of the bi-layer Alberich. Periodic Bloch-Floquet conditions are applied on the lateral
sides. In the �nite element model, the total pressures are calculated at 16 lateral positions
covering one spatial period of the medium, 11 cm away from its interface with water. For
such a numerical model with theoretically in�nite lateral dimensions, there is no edge-
di�racted pressure.
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Figure 8.13 � Set of measurements points on the re�ection side.

The calculated pressures obtained by the numerical implementation of the 5-point method
are shown in Figure 8.14. It is worth noting that the method is applied to each ym position,
but in the �gure the curves for each of these positions are superimposed. This shows that
the 5-point method seems to be adequate to characterise the panel independently of the
position along the periodic panel. It can be seen that the retrieved incident pressure is
equal to unity, which corresponds to the amplitude of the incident plane wave used in the
�nite element model. Also, the pressure p∞(B2) is zero as one would expect.
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Figure 8.14 � Retrieved pressures by applying the 5-point method with a �nite element
model of the unit cell.
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To verify the amplitudes of the re�ected and transmitted pressures given by the 5-point
method, a direct calculation using Equations (8.8) to (8.12) is also applied to the �nite
element model. From the total pressure obtained from the FEM calculation, Equations
(8.8) to (8.12) are used to calculate the contribution of the 0th mode and the ±1st modes.
By also calculating the incident pressure in the numerical model, it is possible to derive
the re�ection and transmission coe�cients from the 0th mode using p0/pi and from the
±1st modes with p±1/pi. Re�ection and transmission coe�cients for the 0th and ±1st

modes are given in Figure 8.15. This shows that the direct calculation and the 5-point
method lead to the same scattering coe�cients, thus validating the approach implemented
in the 5-point method.
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20 21 22 23 24 25
0

0.5

1

Figure 8.15 � Re�ection and transmission coe�cients for the specular response and the
±1st order obtained using a direct calculation as per section 8.2.3 and the 5-point method
as per section 8.2.3, both using the total pressures calculated with a �nite element model
of a the constituent unit cell.

Experimental Results

The 5-point method is now applied on measured pressures. Contrary to the previous
results based on the �nite element model, the measured pressures are now in�uenced by
the edge-di�racted pressure. The total pressures recorded at the three positions on each
side of the panel are plotted in Figures 8.16 and 8.17 for the incident side and transmission
side, respectively. It can be seen that the pressure levels are very low on the transmission
side in comparison with the re�ection side.
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Figure 8.16 � Pressure amplitudes measured at the 3 positions A1, A2 and A3 on the
re�ection side. The graduation of grey represents the y-positions along the unit cell.
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Figure 8.17 � Pressure amplitudes measured at the 3 positions B1, B2 and B3 on the
transmission side. The graduation of grey represents the y-positions along the unit cell.

The calculated pressures on the incident and transmission sides are shown in Figures
8.18 and 8.19, respectively. It is �rst observed that the incident pressure obtained
with the 5-point method is consistent with the one measured without a panel. It is
also seen that the 0th mode is predominant on the re�ection side over the ±1st modes.
Moreover, discrepancies are visible along the y-axis for all these calculated pressures
where theoretically only the edge-di�racted pressure should vary from one y-position to
another. It can also be noted that at such "high frequencies" (in the context of coatings
for underwater acoustics), the results may be more sensitive to the material properties
and geometry irregularities. These discrepancies may therefore be representative of the
panel and its local irregularities. On the transmission side, the in�nite pressure is almost
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null for the whole frequency range, as it is expected when the simplifying assumptions of
the method are acceptable. Therefore, the results seems overall consistent and might, as
for the re�ection side, be in�uenced by local irregularities having more impact since the
wavelength is getting smaller.
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Figure 8.18 � Incident pressure (pi), re�ected pressure of the 0th mode (p0
r) and of the

di�racted modes ±1 (p±1
r ) and edge-di�racted pressure (pdiffR

) at the central position A2

on the re�ection side. The incident pressure measured without the panel (pWP
i ) is also

plotted. The graduation of grey represents the y-positions along the unit cell.
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Figure 8.19 � Transmitted pressure for the 0th mode (p0
t ) and for the di�racted modes

±1 (p±1
r ), the in�nite pressure (p∞) and the edge-di�racted pressure (pdiffT

) at the central
position B2 on the transmission side. The graduation of grey represents the y-positions
along the unit cell.

The re�ection and transmission coe�cients are now derived from these calculated pres-
sures and compared to numerical results presented in Figure 8.15. In addition to the
coe�cients obtained by the 5-point method and those calculated with the FEM model, a
direct calculation from measurements using Equations (8.8) to (8.12) is made. The latter
therefore ignores the existence of the edge-di�racted pressures and only requires, as for
the FE model, the total pressure over a linear mesh covering the unit cell and the incident
pressure obtained separately. Using the measurements made, this direct calculation can
be applied 3 times : on the lines of A1, A2 and A3 for the re�ection side and on the
lines of B1, B1 and B3 for the transmission side. All results are compared in Figure 8.20.
Coe�cients R+1 and R−1 are averaged under the label R±1 in the �gure (the same is done
for the transmission coe�cients).
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Figure 8.20 � Magnitudes of the re�ection coe�cient (top) and the transmission
coe�cient (bottom) obtained numerically for a panel of in�nite lateral dimensions and
measured with the 5-point method. For each side, three direct calculations are also
performed as per Equations (8.8) to (8.12) using the total pressures measured on each
y-line, thus not taking into account the edge-di�racted pressure.

For the re�ection coe�cient, it is �rst observed that the result of the 5-point method for
the 0th mode is lower to the one calculated numerically, whereas they are identical for the
±1 modes. The level di�erence for R0 is non negligible and is attributed to the fact that
the panel is not in�nitely periodic. Further, the panel material properties and geometries
may slightly di�er from those in the FE model. The same observations apply for the
transmission coe�cients.

The coe�cients R0 from the direct calculations over the 3 y-lines are signi�cantly di�erent
from both other results. This can be explained by the fact that the edge-di�racted pressure
is not taken into account in these calculation and, even if its amplitude is quite low (Figure
8.18), it contributes to the pressure �eld. The direct calculation is based on the exact
knowledge of the re�ected and transmitted �elds. It is therefore not applicable in the
presence of non-modeled acoustic sources, such as the edge-di�raction phenomenon. This
shows that the 5-point method is more suitable for measurements of an Alberich-type
coating since it takes into account the main contributions, which are edge-di�raction and
the �rst modes di�racted by the di�raction grating .
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8.3 Summary

The Alberich panel containing a grating of voided cylinders has been characterised experi-
mentally. The post-processing of the experimental data has been divided into two di�erent
approaches: below the �rst cut-o� frequency and above the �rst cut-o� frequency. Below
the �rst cut-o� frequency, the 3-point method is applied as for a homogeneous panel.
A preliminary analysis was carried out to ensure that the hydrophones were located far
enough from the panel so that the evanescent waves were no longer discernible. Results
were consistent with predictions, except around the �rst cut-o� frequency, where the
source resonance and the ±1 modes invalidated the results. Above the cut-o� frequency,
the ±1 modes are no longer evanescent and must be calculated to fully characterise the
panel. For this purpose, the 5-point method was implemented and led to consistent results.
Nevertheless, the frequency range above the cut-o� frequency is such that geometric
irregularities and local uncertainties in material properties further in�uence the results,
thus leading to di�erences with the �nite element model of exact geometric and material
properties. In addition, the panel is not in�nitely periodic as in the FE model. Finally, it
was shown by the signi�cant divergence of the direct calculations from the FE predictions
that it is crucial to take into account the edge-di�racted pressure as in the 3- and 5-point
methods. Therefore, both the 3- and 5-point methods appear as a robust and unique way
to characterise panels embedded with periodic inclusions above the �rst cut-o� frequency.
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9.1 Thesis Summary

This thesis studied the concept of metamaterials for underwater applications, from the-
oretical analysis to experimental characterisation. For this purpose, methods were de-
veloped to homogenise a range of metamaterial designs. Further, this thesis presented
ways to optimise complex structures with low computation cost. This thesis also studied
experimental methods to obtain the acoustic performance of metamaterials.

In the �rst chapter of the manuscript, the concept of hull coatings used for the discretion
or stealth of submerged vehicles was introduced. Metamaterials are seen as good can-
didates for subwavelength coatings with good acoustic performances at low frequencies.
A literature review has been conducted to present the concept of metamaterials and
some methods to study them. A non exhaustive state of the art of metamaterial designs
optimised for underwater applications was presented, followed by a review of measurement
techniques.

In Part I of this thesis, tools for the study and design of multilayered media were
introduced. Chapter 2 describes a homogenisation method based on transfer matrices.
Either a �uid homogenisation model or a Willis �uid homogenisation model was adopted
depending on the symmetry of the layer arrangement. The e�ective medium was found
to be an exact representation of a multilayered medium studied under normal incidence.

The homogenisation theory was then used to optimise multilayered media in Chapter
3. The optimisation approach is computationally e�cient and it was validated on a case
study. Objective functions aiming to reduce the anechoism coe�cient for a wide frequency
range have then been de�ned. It was found that the best performing multilayered
media show an impedance adaptation pattern. For the hull decoupling coe�cient, it
was found that simple bi-layer media give the best results. The optimisation approach
was then applied for performance levels of both the anechoism and hull decoupling
coe�cients, which con�rmed the observations made for the separate optimisations of each
coe�cient. Following the optimisation studies, a multilayered arrangement was selected
for fabrication.

In Chapter 4, a measurement method in an open water tank, namely the 3-point method,
has been introduced. The main advantage of this method is that it determines the
contribution of the edge-di�racted waves. The method has been validated on an alu-
minium panel and the validity limits of the method have been studied. The method was
then applied to a polyurethane panel containing micro-balloons in order to retrieve the
e�ective speed of sound in the medium. Two approaches were used, for which results are
comparable. Finally, the multilayered medium presented in Chapter 3 has been measured
and it was found that moduli of the re�ection and transmission coe�cients are consistent
with analytical predictions. Signi�cant di�erences were however noted on the anechoism
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coe�cient, which proves to be extremely sensitive to the distance between the panel and
the hydrophones. By applying phase shifts, it was found that the anechoism coe�cient
converged to the predicted value.

In Part II, metamaterials with macro-inclusions were homogenised, optimised and mea-
sured. The homogenisation of such designs was achieved using two retrieval methods,
the direct inversion method and the di�erential method. These two retrieval methods
were presented in Chapter 5. Both retrieval methods lead to an e�ective wavenumber
and an e�ective impedance of a homogeneous �uid medium. The e�ective wavenumber
from the di�erential method was able to describe the interior of the medium whereas
the direct inversion method captured the e�ects related to the medium's �nite size and
interfaces with the surrounding �uid media on the incidence and transmission sides. Three
case studies were examined corresponding to a 1D multilayered medium and 2D locally
resonant designs with hard or voided cylindrical inclusions. Through these case studies,
applicability and limitations of the methods have been discussed. It was found that the
proposed hybrid medium provides accurate predictions of the transmission coe�cient as it
physically restricts the e�ective properties of the direct inversion method to the interface
and uses the di�erential method to describe the core of the medium.

Chapter 6 presented extensions of both retrieval methods in order to obtain the e�ective
properties of asymmetric unit cells with inclusions. These methods were then employed
for two case studies, in which the introduction of Willis coupling through asymmetry
was investigated. The impact of asymmetry on the acoustic performance and on the
e�ective properties was examined. In the �rst case study, o�-centred hard inclusions were
considered and the in�uence of the inclusion position was investigated. For the second
case study, an asymmetric voided medium was analysed. The asymmetry coe�cient was
found to be at its maximum when the e�ective density of the unit cell was negative. This
physical mechanism was attributed to an anti-phase di�erence between the center of mass
displacement and the incident �eld.

In Chapter 7, the retrieval methods for symmetric media were applied to several meta-
material designs in order to create a database of e�ective properties associated with
various inclusion shapes, sizes and materials. E�ective properties were then used in an
optimisation process in order to obtain structures with a low anechoism coe�cient over a
wide frequency range. This work is therefore useful to make a topological-like optimisation
of acoustic coatings for underwater applications using �uid properties. For the example
illustrating this new approach for optimising structures with macro-inclusions, the same
impedance pattern leading to a low coe�cient of anechoism as in Chapter 3 was found.
This study also showed that it is worth not limiting the design of an anechoic coating
to multilayered solutions or designs with inclusions, as the combination of the two, by
alternating homogeneous layers with layers comprising macro-inclusions, can greatly help
improve the broadband acoustic performance.

In Chapter 8, the bi-layer Alberich panel designed in Chapter 6 was measured in the
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acoustic water tank presented in Chapter 4. Since the panel contains periodically embed-
ded void inclusions, the experimental characterisation becomes more complex because of
the grating di�raction phenomenon. The experimental characterisation of the panel was
divided into two di�erent approaches: below the �rst cut-o� frequency and above the �rst
cut-o� frequency. Below the �rst cut-o� frequency, the 3-point method was found to be
robust up to 15 kHz, after which the source resonance and the ±1 modes invalidated the
results. Above the cut-o� frequency, the ±1 modes were no longer evanescent and needed
to be calculated to fully characterise the panel. For this purpose, an extension of the 3-
point method was implemented and results were consistent with numerical predictions. In
particular, it was highlighted that it is crucial to take into account edge di�raction, which
makes the 5-point method suitable for measurements of such Alberich coating designs.
Therefore, the 3-point method and its extension to the 5-point method were shown to be
robust and unique approaches to characterise panels embedded with periodic inclusions.
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9.2 Perspectives for Future Work

As the experiments of this thesis have shown, it is sometimes di�cult to accurately
know the dynamic properties of polyurethane. Moreover, the manufacturing processes
can introduce uncertainties to both the material and geometric properties of acoustic
coatings. Studying the in�uence of these uncertainties on the acoustic performance could
help explain some experimental results.

It would also be interesting to look at di�erent solutions to accurately measure the
distance between the hydrophone and the panel in the water tank, since it was shown
that the anechoism coe�cient is very sensitive to this distance. A laser solution could
be implemented. Ultrasound patches may be placed on the panel to determine the
panel/hydrophone distance.

The optimisation approach for metamaterials with resonant inclusions could be used with
a larger database, in which e�ective media could be obtained quickly with analytical
models for simple geometries (using models by Sharma et al. for instance [32], [70]) or
with the retrieval methods for complex geometries. The retrieval methods implemented in
this thesis as well as the optimisation approach can also be applied to coatings containing
three-dimensional inclusions of di�erent shapes, such as spheres, elliptical and conical
shapes. Further, the analytical and semi-analytical models presented in this thesis could
also be extended to consider oblique incidence.

The homogenisation methods for metamaterials with inclusions could be modi�ed to
predict the vibro-acoustic behavior of a submerged hull in order to assess the noise radiated
by a cylindrical hull coated with a metamaterial. Indeed, since the homogenisation models
provide e�ective properties of a �uid, the coating could be integrated using a �uid-loaded
shell.

Usually the radiated noise of a submerged vehicle is assessed using large-scale models of
uncoated hulls. The di�erence between the desired performances and these predictions
then leads to the de�nition of anechoic or hull decoupling performances that a coating
must satisfy. Assuming that coatings can be modeled easily by �uid e�ective media
in large scale models, a future study could be to derive a metamaterial design from a
given set of e�ective �uid properties. For this purpose, it is interesting to investigate
the link between e�ective �uid properties and acoustic performance. This last point was
the subject of a preliminary study which includes performance mapping in the e�ective
property space, the �rst elements of which are presented in Appendix E.
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Appendix A

Transfer Matrix

A.1 De�nition

Transfer matrix M for one-dimensional acoustic wave propagation through a layer relates
acoustic pressure p and normal particle velocity v of the �uid on either side of the medium,
as follows: (

pleft

vleft

)
= M

(
pright

vright

)
. (A.1)

Figure A.1 � Pressures and particles velocities on the left and right sides of a medium
in which the acoustic �eld is decomposed into forward and backward propagating waves.

In the �eld of Acoustics, physical quantities (p,v) are commonly used, rather than (p,u),
u being the displacement. Nevertheless, the transition from the quantity u to v is possible
with a derivative, equivalent to multiplying by iω for harmonic problems.

A.2 Expression with S-parameters

Elements of the transfer matrix can be expressed using S-parameters. S-parameters and
two-port network notions are widely used in electrical and microwave engineering. These
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notions can also be suitable for acoustic analyses using an analogy between the physical
quantities involved. The scattering parameters (or S-parameters) of a two-port network
are herein introduced and linked to the elements of the transfer matrix (also called the
ABCD-matrix), based on notations shown in Figure A.2. For the sake of simplicity,
S-parameters are herein always de�ned with the surrounding �uid impedance Zf as the
reference impedance for all ports.

(a) (b)

Figure A.2 � Two-port network with (a) pressure/�ow notations and (b) power waves
notations.

The transfer matrix elements A, B, C and D are de�ned as [130]:(
p1

u1

)
=

[
A B
C D

](
p2

u2

)
. (A.2)

The relationship between the re�ected, incident power waves and the S-parameter matrix
is given by: (

b1

b2

)
=

[
S11 S12

S21 S22

](
a1

b2

)
, (A.3)

where S11 is the re�ection coe�cient on the left-hand side and S21 the transmission
coe�cient and where S12 is the transmission coe�cient for an excitation on the right-
hand side for which the re�ection coe�cient is S22, as per the expressions:

S11 =

(
b1

a1

)
a2=0

, (A.4)

S12 =

(
b1

a2

)
a1=0

, (A.5)

S21 =

(
b2

a1

)
a2=0

, (A.6)

S22 =

(
b2

a2

)
a1=0

. (A.7)

Note : As one may not be familiar with S-parameters, equivalents in terms of the usual
re�ection coe�cient and transmission coe�cient notations are given. R and T are the
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coe�cients for an incident wave arriving on one face of the medium. When the medium
is reversed, Rb and Tb are the coe�cients for the same incident wave arriving on the other
(backward) face. As such, S-parameters are : S11 = R, S12 = Tb, S21 = T and S22 = Rb.

Figure A.3 � S-parameters depending on the incident side, represented by the red arrow.

The transfer matrix and S-parameters are linked together by:(
1 + S11

1−S11

Zf

)
=

[
A B
C D

](
S21
S21

Zf

)
, (A.8)

(
S12
−S12

Zf

)
=

[
A B
C D

](
1 + S22
−1+S22

Zf

)
. (A.9)

By combining the two previous equations, elements of the ABCD-matrix are expressed
with the S-parameters as given by:

A =
S11 − S22 − S11S22 + S12S21 + 1

2S21

, (A.10)

B = Zf
S11 + S22 + S11S22 − S12S21 + 1

2S21

, (A.11)

C =
1

Zf

−S11 − S22 + S11S22 − S12S21 + 1

2S21

, (A.12)

D =
−S11 + S22 − S11S22 + S12S21 + 1

2S21

. (A.13)

For a symmetric medium, scattering coe�cients are identical whether the acoustic wave is
incident on a face or on the other, which means that S11 = S22 = R. Reciprocity implies
that S21 = S12 = T . Elements of the transfer matrix can thus be simpli�ed as follows:

A =
−R2 + T 2 + 1

2T
, (A.14)
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B = Zf
(R + 1)2 − T 2

2T
, (A.15)

C =
1

Zf

(R− 1)2 − T 2

2T
, (A.16)

D =
−R2 + T 2 + 1

2T
. (A.17)

A.3 Expression with Material Properties

Considering the time convention eiωt, expressions of the transfer matrix elements are found
by decomposing the acoustic �eld into forward and backward-propagating waves, as shown
in Figure A.1. Pressures and particle velocities on both sides of the medium of length h
are written at x = 0 and x = h as:

pleft = A+ + A−

vleft = A+

Z+ + A−

Z−

pright = A+e−ik+h + A−e−ik−h

vright = A+e−ik+h

Z+ + A−e−ik−h

Z−

, (A.18)

where k+ and k− are the wavenumbers for forward and backward-propagating waves re-
spectively and where Z+ and Z− are the impedances for forward and backward-propagating
waves respectively.

Wave amplitudes A+ and A− are extracted from system (A.18) using the �rst two lines,
which leads to: {

A+ = 1
Z+−Z− (pleftZ

+ − vleftZ
+Z−)

A− = 1
Z+−Z− (−pleftZ

− + vleftZ
+Z−)

. (A.19)

Those expressions for wave amplitudes A+ and A− are next injected in the last two lines
of system (A.18) so that pright and vright are expressed as a function of pleft and vleft. These
two lines can be rewritten in a matrix form as follows:

(
pright

vright

)
=

1

Z+ − Z−

[
Z+e−ik+h − Z−e−ik−h Z+Z−(e−ik−h − e−ik+h)

e−ik+h − e−ik−h Z+e−ik−h − Z−e−ik+h

](
pleft

vleft

)
.

(A.20)
This system can be reversed to obtain the transfer matrix expression according to Equa-
tion (A.1), which �nally leads to:

M =
1

Z+ − Z−

[
Z+eik+h − Z−eik−h Z+Z−(eik−h − eik+h)

eik+h − eik−h Z+eik−h − Z−eik+h

]
. (A.21)
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For a �uid medium, the material properties are meant to be the same whether the acoustic
wave is forward or backward propagating. However, the distinction is voluntarily kept to
in order to apply to an asymmetric �uid-like medium, which is one of the homogenisation
models considered in the manuscript. However, even if the medium is asymmetric, it will
always be reciprocal (ie S12 = S21) and consequently k+ = −k− = k. This equality can
be proved using the ABCD transfer matrix expressed with Equations (A.10) to (A.13),
for which the determinant is equal to 1 when S12 = S21 as well as using the fact that the
determinant of the transfer matrix form given by Equation (A.21) is also equal to 1 if and
only if k+ = −k−. Hence, there is no need to keep the distinction between k+ and k−.
The transfer matrix for an asymmetric �uid-like medium is then given by:

M =
1

Z+ − Z−

[
Z+eikh − Z−e−ikh Z+Z−(e−ikh − eikh)

eikh − e−ikh Z+e−ikh − Z−eikh

]
. (A.22)

Moreover, if the medium is symmetric, then Z− = −Z+ = −Z. The transfer matrix
expression of Equation (A.21) can then be simpli�ed as follows:

M =

[
cos(kh) iZsin(kh)

iZ−1sin(kh) cos(kh)

]
. (A.23)

A.4 Expression for Determination of Willis-parameters

For Willis-type systems, the e�ective properties may depend on the direction of wave
propagation. For example, the e�ective impedance Z+, mentioned in the previous section,
is the e�ective impedance of a medium for forward-propagating waves. In the publication
of Muhlestein et al. [40], the e�ective impedances Z+ and Z− are referred to as speci�c
impedances for a Willis-type system. Considering the time convention eiωt, the speci�c
acoustic impedances in the ± directions may be written as:

Z± = ZW (±1 + iW ), (A.24)

where W = ωψ/ZW the complex asymmetry coe�cient, where ψ is the Willis-coupling
coe�cient and where ZW is the complex characteristic impedance. Therefore, the transfer
matrix expression given by Equation (A.22) can be changed considering the parameters
ZW andW instead of the speci�c impedances Z±. For this purpose, pressures and particle
velocities on both sides of the medium of length h are written at x = 0 and x = h as:

pleft = A+ + A−

vleft = A+

ZW (1+iW )
+ A−

ZW (−1+iW )

pright = A+e−ikh + A−eikh

vright = A+e−ikh

ZW (1+iW )
+ A−eikh

ZW (−1+iW )

. (A.25)
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Wave amplitudes A+ and A− are extracted from system (A.25) using the �rst two lines,
which leads to: {

A+ = 1
2

[pleft(1 + iW ) + vleftZW (1 +W 2)]

A− = 1
2

[pleft(1− iW )− vleftZW (1 +W 2)]
. (A.26)

The last two equations are then injected into the last two lines of the system (A.25) to
obtain expressions of pright and vright according to pleft and vleft, as given by:(

pright

vright

)
=

[
cos(kh) +W sin(kh) −iZW sin(kh)(1 +W 2)

−i sin(kh)
ZW

cos(kh)−W sin(kh)

](
pleft

vleft

)
. (A.27)

The latter system can be reversed to obtain the transfer matrix expression according to
Equation (A.1), which �nally leads to:

M =

[
cos(kh)−W sin(kh) iZW sin(kh)(1 +W 2)

i sin(kh)
ZW

cos(kh) +W sin(kh)

]
. (A.28)



Appendix B

E�ective Wavenumber

B.1 Expression

Wave propagation in an in�nite periodic structure can be studied by using the constitutive
unit cell and periodic boundary conditions. The unit cell is de�ned as the smallest pattern
that leads to the in�nite structure when it is endlessly repeated. Its transfer matrix for
longitudinal modes Mu is de�ned by:(

pleft

vleft

)
= Mu

(
pright

vright

)
. (B.1)

The longitudinal e�ective wavenumber k is derived by applying the Bloch-Floquet relation
on the unit cell of length Lu. Such condition can be written as:(

pleft

vleft

)
= e−ikLu

(
pright

vright

)
. (B.2)

Equation B.2 is subtracted to Equation B.1, which yields:

[Mu − e−ikLuI]

(
pright

vright

)
= 0. (B.3)

Solving Equation (B.3) comes down to the calculation of the eigenvalues λ± of the transfer
matrix Mu. The e�ective wavenumber is thus given by:

k =
ln(λ±)

iLu
+

2πm

Lu
. (B.4)

wherem is an integer whose value is determined in such way that the e�ective wavenumber
as a function of frequency is continuous. Moreover, for a forward propagating wave,
eigenvalue λ is chosen so that the imaginary part of k is negative in order to comply with
the material passivity requirement considering the phasor convention ei(ωt−kx). In fact,
the decomposition into real and imaginary parts of the wavenumber, respectively k′ and
k′′ for a forward propagating wave leads to:
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e−ikLu = e−i(k
′
+ik
′′

)Lu = ek
′′
Lue−ik

′
Lu . (B.5)

The modi�cation of the wave amplitude, under the e�ect of losses, is represented in the
term ek

′′
Lu . This term is required to be inferior to unity if the material is passive. Thus,

the imaginary part of wavenumber has to be negative.

Other Expression

Eigenvalues of the transfer matrix Mu are given by:

λ± =
1

2
(Tr(Mu)±

√
Tr(Mu)2 − 4Det(Mu)). (B.6)

Thus, λ+ +λ− = Tr(Mu). However, λ+ +λ− can also be expressed with the wavenumber
k using Bloch-Floquet conditions, yielding:

λ+ + λ− = eikLu + e−ikLu = 2 cos kLu. (B.7)

Consequently, cos kLu = Tr(Mu)/2.
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B.2 Representation

At normal incidence, the wavenumber k derived for a unit cell of thickness h can be
represented as a function of frequency f , which is commonly referred to as the dispersion
curve. An example of such graphical representation is given in Figure B.1 for the reduced
wavenumber kh. Band gaps are frequency ranges where the acoustic waves do not
propagate in the given direction, assuming the periodic medium to be in�nite. Band
gaps are obtained when there is no mode with k and ω real.

Figure B.1 � Example of dispersion curve on the irreducible Brillouin zone for a normal
incidence angle.

Systems studied in this manuscript are not in fact strictly periodic, as periodicity suggests
an in�nite repetition of a unit cell, whereas a �nite number of repetitions of a pattern are
herein considered. Misuses of language are thus voluntarily used for three notions taken
from the terminology of periodic systems: (1) systems are quali�ed as periodic to refer
to �nite repetitions of a pattern, (2) the repeated pattern is referred to as the unit cell
or the constituent unit, and (3) the representation of the wavenumber k as a function of
frequency f is referred to as a dispersion curve.
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Appendix C

Acoustic Performance

C.1 S-parameters

Scattering coe�cients de�ned for a plane wave normally incident in the �uid of impedance
Zf on a panel of �nite thickness and in�nite lateral extent can be calculated using its
total transfer matrix. According to the two-port network presented in Figure A.2, the S-
parameters in the �uid of impedance Zf are linked to the ABCD-matrix as per Equations
A.8 and A.9.
Consequently, expressions for the S-parameters are now given by:

S11 =
B + Zf(A−D)− Z2

f C

∆
, (C.1)

S21 = S12 =
2Zf

∆
, (C.2)

S22 =
B − Zf(A−D)− Z2

f C

∆
, (C.3)

where ∆ is:
∆ = B + Zf(A+D) + Z2

f C. (C.4)
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C.2 Anechoism Coe�cient

The anechoism coe�cient aims to evaluate the energy re�ected by a medium of �nite
thickness and in�nite lateral extent when it is �xed to a rigid surface, as shown in Figure
C.1.

Rigid support

Figure C.1 � Con�guration used to calculate the anechoism coe�cient of a medium �xed
on a rigid surface.

To express the anechoism coe�cient CA, the following boundary conditions are thus
introduced : 

pleft = CA + 1

vleft = 1−CA

Zf

vright = 0

. (C.5)

Considering these boundary conditions, the transfer matrix de�nition is given by:(
1 + CA

1−CA

Zf

)
=

(
A B
C D

)(
pright

0

)
, (C.6)

where A, B, C and D are the elements of the transfer matrix. The anechoism coe�cient
CA can then be obtained by expressing the ABCD-elements in terms of S-parameters as
per Appendix A, which yields:

CA = S11 −
S21S12

S22 − 1
. (C.7)

If the medium is symmetric, then S11 = S22 = R and S12 = S21 = T , which simpli�es the
anechoism coe�cient expression into:

CA = R− T 2

R− 1
. (C.8)
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C.3 Hull Decoupling Coe�cient

The determination of the hull decoupling coe�cient CD requires the consideration of a
vibrating support of prescribed particle velocity v0, as shown in Figure C.2.

Vibrating support

Figure C.2 � Con�guration used to calculate the hull decoupling coe�cient, showing the
radiation from the vibrating support with and without the decoupling material.

It is assumed that without the material, this support radiates into the �uid a plane wave
of complex amplitudeH0 in the plane of the vibrating surface. When the support is coated
with the material of thickness h, then the plane wave complex amplitude calculated in the
same reference plane becomes H. The hull decoupling coe�cient in the reference plane is
then de�ned by CD = He−ikfh/H0.

To express the hull decoupling coe�cient CD, the following boundary conditions are thus
introduced : 

pleft = H

vleft = −H
Zf

vright = v0 = −H0

Zf

. (C.9)

Considering these boundary conditions, the transfer matrix de�nition is given by:(
H
−H
Zf

)
=

(
A B
C D

)(
pright
−H0

Zf

)
. (C.10)

where A, B, C and D are the elements of the transfer matrix. The hull decoupling
coe�cient CD can then be obtained by expressing the ABCD-elements in terms of S-
parameters as per Appendix A, which yields:

CD =
He−ikfh

H0

=
S12

−S22 + 1
e−ikfh. (C.11)

The hull decoupling coe�cient can thus be obtained without the use of a vibrating support
and by only measuring the re�ection and transmission coe�cients R and T :

CD =
T

−R + 1
e−ikfh. (C.12)
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Appendix D

Panel Edge-di�raction

A simple analytical model is presented here to express the di�racted pressure at one point.
A square �at panel of side 2a is considered and represented in Figure D.1, where the point
of coordinates (0,0,0) corresponds to the center 0 of the panel .

Figure D.1 � Schematic diagram of a square panel of side 2a.

It is considered that each edge portion of the square behaves as a point source for edge-
di�racted waves. It is assumed that each of these portions produces the same response to
a plane wave excitation, so that the elementary pressure of edge-di�racted waves, called
Pediff

, is identical along edges of the square. With these simplifying considerations, the
total contribution of the edge-di�racted pressure at point 0, referred to as Pdiff(0), can
be expressed using the elementary edge-di�racted pressure Pediff

and a source term that
is summed over the square edges:

Pdiff(0) = Pediff

∫
Γ

e−ikr

r
dl, (D.1)

where r is the distance between point 0 and a point on the edge. Distance r is expressed
as r =

√
a2 + y2 for horizontal edges or r =

√
a2 + z2 for vertical edges. As the panel is

square, Equation D.1 is simpli�ed into:

Pdiff(0) = 4Pediff

∫ a

−a

e−ik
√
a2+l2

√
a2 + l2

dl. (D.2)
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Edge di�racted pressure Pdiff(M) at a point M away from the panel face, of coordinates
(xM ,yM ,zM), can then be expressed using the same approach, with projections of the
distance r in the 3D space.



Appendix E

Performance Maps and Frequency

Paths

For the scienti�c community interested in metamaterials, a topic of interest is the search
for designs presenting single or double negative values for the e�ective properties. E�ective
properties can also be used to simplify an optimisation process by using homogenised
media instead of �nite element models of a complex structure, as in Chapter 7. However,
there are very few studies on the link between e�ective properties and acoustic perfor-
mance. It is of course known, and it has also been exhibited in the preceding chapters,
that a dipole resonance can result in a negative e�ective density and that a negative bulk
modulus appears during a monopolar resonance. But what is the link between the values
of these e�ective properties and how much the structure will absorb, dissipate or transmit
the acoustic energy? For example, is it better to use metamaterials with e�ective density
or negative bulk modulus to improve anechoism?

This appendix presents a general study on the relation between the e�ective properties
and the anechoic performances of a structure. The aim of this appendix is not to cover the
full extent of such a study, but simply to open up the subject for possible future studies
or discussions. In the �rst section, a visual concept is introduced to investigate this link
for the coe�cient of anechoism. A multilayered structure is then de�ned in the second
section, for which the e�ective properties are used to follow a frequency path.
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E.1 Mapping Approach

E.1.1 Presentation

The link between absorption and e�ective properties has already been investigated by
the scienti�c community. For example, the concept of double-negative [131], or double-
zero [132] e�ective parameters has been exploited for the absorption of sound waves. Duan
et al. [133] have theoretically studied perfect absorption of elastic waves with either (1)
imaginary large mass density and a free space boundary, or (2) imaginary small bulk
modulus and hard wall boundary. Total absorption could also be realised by an acoustic
coherent perfect absorber (CPA) in which the scattered waves at the resonant frequency
can be cancelled through interference with another coherent incident acoustic wave with
a suitable phase and amplitude [134, 135]. These links between e�ective properties and
absorption performance are very speci�c to a given design, set-up and are rather frequency-
localised.

In this section, a general approach is proposed to visually study the link between the
anechoism coe�cient and the e�ective properties of a structure. These e�ective properties
are the properties of a �uid. Such a �uid equivalent model may be accurate for the
description of a multilayered medium under normal incidence, as in Chapter 2. These
e�ective properties could also be used for the approximate representation of a metamate-
rials with macro-inclusions above the homogenisation limit, as in Chapter 5. It is worth
noting that the performance mapping approach introduced here can also be applied to
other performance coe�cients, such as the hull decoupling coe�cient or the absorption
coe�cient. For the anechoism coe�cient, a visual approach is particularly useful as it
is mathematically di�cult to guess how the e�ective properties should vary to improve
anechoic performance. For a symmetric medium, the anechoism coe�cient is given by:

CA = R− T 2

R− 1
, (E.1)

where R and T are respectively the re�ection and transmission coe�cients. These co-
e�cients are themselves expressed using the elements A, B, C and D from the transfer
matrix, as per Appendix C. Finally, the elements of the transfer matrix of the medium are
expressed using its e�ective properties, as in Appendix A. The expression of the anechoism
coe�cient as a function of the e�ective properties is therefore quite convoluted, especially
since the e�ective properties are complex numbers. A performance mapping approach
is thus introduced in order to visually exhibit the link between e�ective properties and
anechoism performance.

Building the anechoism map is however not simple, since the anechoism coe�cient CA is
a complex-valued function F of 6 real variables :

CA = F(<(ρ),<(κ),=(ρ),=(κ), f, L), (E.2)

where <(ρ) and =(ρ) are respectively the real and imaginary parts of the e�ective density,
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<(κ) and =(κ) are respectively the real and imaginary parts of the e�ective bulk modulus,
f is the frequency and L is the length of the medium. At �rst, frequency f and medium
length L are �xed. These two parameters can also be expressed in terms of a reduced
wavenumber in water, kwL = ωL/1500, where 1500 m.s−1 is the usual value for the speed
of sound in water, commonly used in underwater acoustics.

For these given parameters, the mapping approach to be developed needs to show the
anechoism coe�cient according to the four other variables, which means that a 4D-space
has to be represented in 2D using projections. Additionally, it is worth noting that the
anechoism coe�cient CA can also be expressed as a complex-valued function with only
4 real variables (<(z),=(z),<(kL),=(kL)), where z is the reduced impedance and kL is
the reduced wavenumber.

Two types of representation are introduced. The �rst representation is presented in Figure
E.1. The main performance map (on the left) is a representation in the space of the real
parts, where the x-axis corresponds to the real part of the bulk modulus <(κ) and the
y-axis corresponds to the real part of the density <(ρ). For a given value of <(κ) and
<(ρ), the anechoism coe�cient is calculated for all values of the imaginary parts =(κ) and
=(ρ). This leads to a performance map of |CA| in the =-coordinate system (=(κ),=(ρ)),
shown on the right hand side in Figure E.1, where the color of each pixel corresponds
to the value of |CA|. Within this |CA|-map in the =-coordinate system, the minimum
value of the anechoism coe�cient is spotted and reported in the main |CA|-map in the
<-coordinate system (<(κ),<(ρ)). Therefore, the main map shows the minimal values of
the anechoism coe�cient calculated for all =(κ) and =(ρ).

Figure E.1 � Representation 1 of the performance map for a given frequency and medium
length.
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A second type of representation is introduced, as illustrated in Figure E.2. The main
map is identical to that of Representation 1: in the <-coordinate system (<(κ),<(ρ)), the
minimal values of |CA| for all =(κ) and =(ρ) are shown. The same coordinate system is
then kept in two other secondary maps, where values of =(κ) and =(ρ) are given by the
colorbar. Each pixel gives the values of =(κ) and =(ρ) that lead to the minima of |CA|
in the main map.

Figure E.2 � Representation 2 of the performance map for a given frequency and medium
length.

In each map, four quadrants are identi�ed and referred to as Quadrants 1 to 4 as per
Figure E.3.

Figure E.3 � De�nition of Quadrants 1 to 4.

A condition is added in order to satisfy the passivity constraint, based on Section 1.4.5:
if the imaginary part of the wavenumber is positive or if the real part of the impedance
is negative, then passivity constraint is not satis�ed.
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E.1.2 Analysis

Pre-Analysis

The mapping approach is applied for the frequency f = 5 kHz and a medium length
L = 6 cm surrounded by water. This corresponds to kwL = 1.25. The main map is
�rst pre-analysed to de�ne areas that are then further investigated. The de�nition of
the bounds of the map was based on the values of the e�ective density ρe and e�ective
bulk modulus κe obtained in Chapters 2 and 5. The ranges for the real part of the
e�ective density and bulk modulus are [−10000 10000] kg.m−3 and [−10 10] × 109 Pa,
respectively. Ranges for the imaginary parts =(ρ) and =(κ) are the same as for their real
part counterparts. These bounds may seem extreme, but such values can be reached by
the e�ective properties at dipole resonance frequencies for example (see Chapter 5). Duan
et al. [133] have also reported that perfect absorption can be obtained for large values of
=(ρ).

The performance map as per Representation 2 (Figure E.2) is given in Figure E.4. A few
observations are made: (1) There seems to be a central symmetry around the coordinate
system origin, (2) in the main map (on the left hand side) branches with low |CA| stand
out in Quadrants 1 and 3 and are associated to strong discontinuities of the imaginary
parts, and (3) low |CA| values are obtained in Quadrants 2 and 4 for very low values of
<(κ) and/or <(ρ). These three observations are further investigated in what follows.
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Figure E.4 � Anechoism performance mapping based on Representation Type 2, showing
|CA|-maps in the (<(ρ), <(κ)) coordinate system and values of =(ρ) and =(κ) that led to
these |CA|, for the frequency f = 5 kHz and the medium length L = 6 cm.

Central Symmetry

In all 3 maps of Figure E.4, it is observed that Quadrant 3, corresponding to (<(κ) < 0,
<(ρ) < 0), is the central symmetric about the coordinate system origin of Quadrant 1
(<(κ) > 0, <(ρ) > 0). The same observation is made for Quadrants 2 and 4. Further
investigation remains to be done to demonstrate if (ρ,κ) leads to the same anechoism
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coe�cient as (−ρ,−κ). A way to do so could be to write the anechoism coe�cient in
terms of the e�ective wavenumber k2

e = ω2ρ/κ and the e�ective impedance Ze =
√
ρκ.

Figure E.5 is used to obtain an expression of the anechoism coe�cient based on the partial
re�ection at an interface and on the transmission coe�cient through one layer of medium
of thickness L, respectively r and t, which themselves are expressed using ke and Ze, as
per:

r =
z − 1

z + 1
, (E.3)

t = e−ikeL, (E.4)

with z = Ze/Zw the normalised impedance.

Figure E.5 � Multiple re�ections and transmission through a layer in an anechoic
con�guration.

In an anechoic con�guration, that is to say for a medium applied on a rigid backing,
the anechoism coe�cient corresponds to the total re�ection coe�cient R, resulting from
the multiple re�ections within the medium. The expression of the total re�ected wave is
obtained using Figure E.5 and is given by:

CA = R = r + (1− r)t(1)t(1 + r) + (1− r)t(1)t(−r)t(1)t(1 + r) + ... (E.5)

This last equation can be also written as:

CA = r + (1− r)(1 + r)t2
∞∑
n=0

(−rt2)n, (E.6)

in which there is a geometric series for | − rt2| < 1 converging toward 1/(1 + rt2). The
�nal expression of the anechoism coe�cient is thus given by:

CA =
r + t2

1 + rt2
. (E.7)
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This last Equation as well as Equations (E.3) and (E.4) can be used to show that the
anechoism coe�cient is the same for (ρ,κ) as for (−ρ,−κ), which leads to the central
symmetry.

Quadrant 1

In Quadrant 1 (<(κ) > 0, <(ρ) > 0), several blue branches stand out, corresponding to
very low values of |CA|. One branch is very close to the diagonal of the map, while the
other blue branches are condensed close to the <(κ) = 0 axis.

Maps have been drawn in Figure E.6 for other values of kwL, around 2 and 3.5, to observe
how these branches evolve. They di�er greatly as a function of this parameter, therefore
as a function of the frequency and of the thickness. Their variations for di�erent kwL can
be explained by the fact that these low |CA| are related to the resonances of the slab and
therefore depend on the thickness and the frequency.
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Figure E.6 � |CA|-map for kwL = 2.09 (left) and kwL = 3.44 (right).

The origins and conditions of these low |CA|-branches are discussed in more details
here. Since they seem to be related to speci�c values of the wavenumber, the anechoism
coe�cient expression in terms of the e�ective wavenumber ke and the e�ective impedance
Ze given in Equation (E.7) is used in order to determine the conditions on these parameters
which make it possible to obtain exactly |CA| = 0.

The only non-trivial solution that can exactly cancel the anechoism coe�cient is r = −t2.
In terms of e�ective wavenumber and e�ective impedance, this equality becomes:

z − 1

z + 1
= −e−2ikeL. (E.8)
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The reduced wavenumber is thus given by:

keL = − 1

2i
log(|1− z

1 + z
|)− 1

2
arg(

1− z
1 + z

)−mπ, (E.9)

where m is an integer, since the complex logarithm is multi-branched function.

Type 2 Representation is now used for the wavenumber and e�ective impedance to
visually evaluate Equation (E.9). In Figure E.7, minima of |CA| have been plotted
in the (<(kL/pi),<(z))-plan. The horizontal grey line shows the impedance of water,
corresponding to a real normalised impedance <(z) = 1. In the |CA| map, the branches
of low anechoism can be seen. There is a clear distinction between the areas with higher
and lower impedances than that of water.
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Figure E.7 � Type 2 Representation for the |CA|-map in the (<(kL/pi), <(z)) coordinate
system where the grey dashed lines show the impedance of water.

For <(Ze) > Zw, so for <(z) > 1, the only areas where min(|CA|) seems null are when
<(kL/π) is a multiple of 0.5. In the middle and right hand-side maps, it can be seen
that these lines are obtained for =(z) = 0 and =(kL/π) ≈ 0. For <(z) < 1, the zeros of
the anechoism coe�cient seem centred around areas where <(kL/π) is an integer. It is
moreover observed that they are also associated to =(z) = 0 and =(kL/π) ≈ 0. Using
the fact that =(z) = 0 and =(kL/π) = 0, Equation (E.9) which gives the zeros of the
anechoism coe�cient is re-written as:

keL =

{
− (2m+1)

2
π, if z > 1

−mπ, if z < 1
, (E.10)

with z a real value. This equation is consistent with the location of the blue branches
of low |CA|. Perfect anechoism can therefore be obtained for the e�ective wavenumber
satisfying Equation (E.10), obtained for =(z) = 0 and =(kL/π) = 0. This Equation
actually corresponds to the fundamental and harmonic modes for wave propagation in a
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open/closed tube. These low |CA|-branches are thus obtained thanks to coherent modes
resulting from the slab resonances.

The coherent perfect anechoism is in practice feasible but it cannot achieve a broadband
performance. It seems however that very low values of the anechoism coe�cient can be
obtained close to these branches. According to Figure E.7, it appears that for both z > 1
and z < 1, the conditions that exactly cancel the anechoism coe�cient on the branches,
which are =(z) ≈ 0 and =(kL/π) ≈ 0, are also the conditions that minimise it around
the branches.

Equation (E.10) can now be used to derive the expression of the zeros for the anechoism
coe�cient in terms of e�ective properties κ and ρ. Using ρ = k2

e/(ω
2L2)κ, the zeros of

|CA| are obtained for:

ρ =

{
(1+2m)2

16f2L2 κ, if z > 1
m2

4f2L2κ, if z < 1
. (E.11)

This equation is veri�ed on the main map in Figure E.8. The distinction between areas
for z < 1 and z > 1 is also highlighted by the grey dotted line. The red lines are plotted
according to Equation (E.11) for m = 0, m = 1 and m = 2. They perfectly match with
the low |CA| branches, which con�rms that the perfect anechoism of these branches results
from slab resonances. The areas z < 1 and z > 1 are now treated separately to study
the imaginary parts of the e�ective properties. By introducing damping parameters as
ηρ = =(ρ)/<(ρ) and ηκ = =(κ)/<(κ) and by using Equation (E.11), it is expected that
ηκ = ηρ. Therefore, at the slab resonance, z is purely real but this does not mean that
the damping is zero, since it results in fact from an equilibrium between the losses.
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Figure E.8 � |CA|-map in the (<(ρ), <(κ)) coordinate system highlighting four couples
(<(κ), <(ρ)) by white circles. The grey line shows the delimitation between areas z < 1
and z > 1. The red lines are plotted according to Equation (E.11) for m = 0, m = 1 and
m = 2.
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<(z) > 1

In Figure E.8, four points are selected in the area z > 1. Point (a) is located exactly on
the branch m = 0 whereas point (b) is slightly o� the branch. Points (c) and (d) are then
chosen on branches m = 1 and m = 2, respectively. For this selection, the |CA|-maps in
the (=(ρ), =(κ)) coordinate system are given in Figure E.9. It can be seen that these
four maps show some similarity: the minimum of |CA| is located on a straight "isoline"
for the low values of |CA|. These "isolines" have the same slope as their counterpart in
the <-coordinate system of Figure E.8, which is given by Equation (E.11). According to
Equation (E.11), it is expected that the isoline cuts the system origin for points (a), (c)
and (d), which are exactly on the dotted lines in Figure E.8. Nevertheless, for point (a), a
shift of the isoline is observed. This may be explained by the fact that perfect anechoism
is not exactly obtained for <(kL/π) = 0 as seen in Figure E.7.
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Figure E.9 � Representation Type 1, showing |CA|-maps in the (=(ρ), =(κ)) coordinate
system for the four couples (<(κ), <(ρ)) represented in Figure E.8 by the white circles
and highlighted here as well. The white areas break the passivity constraint.

Additionally, it is observed that maps for (a) and (b) are extremely similar. This shows
that it is not necessary to be exactly on a branch to obtain low anechoism. It seems
however better to be around the branch corresponding to m = 0 than the others as their
are fewer options for low |CA| in the maps for (c) and (d). It can also be noticed that the
position on these isolines seems quite random. Type 2 representation is used in Figure
E.10 to visualise the values of =(ρ) and =(κ), which con�rms that on the branches, and
only precisely on the branches, numerical errors are present due to the discontinuity so
that there is no consistency for the values of the imaginary parts.
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Figure E.10 � Type 2 representation for the Quadrant 1, showing |CA|-maps in the
(<(ρ), <(κ)) coordinate system and the values of =(ρ) and =(κ) that led to these |CA|.

Maps in Figure E.10 also show that, around the discontinuity lines associated with the
branches, the optimal anechoism performance is obtained for extremely high or nearly
null values of both =(ρ) and =(κ), as for point (b) in Figure E.9.

<(z) < 1

The area z < 1 is now further studied. For the sake of clarity, Figure E.11 is introduced
as a zoom in Figure E.8 of the area z < 1. In this map, points (a) and (c) are localised
exactly on the branches m = 1 and m = 2, respectively, whereas points (b) and (d) are
randomly placed o� the branches. The |CA|-maps in the imaginary coordinate system for
these four points are given in Figure E.12.
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Figure E.11 � |CA|-map in the (<(ρ), <(κ)) coordinate system highlighting four couples
(<(κ), <(ρ)) by white circles. The grey line shows the delimitation between areas z < 1
and z > 1. The red lines are plotted according to Equation (E.11) for m = 1 and m = 2.

It is observed that maps (a) and (b) are very similar. The same observation is made for
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maps (c) and (d). It therefore appears that being exactly on the branch in Figure E.11 is
not necessary to obtain very low anechoism. It is also observed that low anechoism areas
are obtained for low values of =(κ), which are in fact of the same order of magnitude as
<(κ).
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Figure E.12 � Type 1 representation, showing |CA|-maps in the (=(ρ), =(κ)) coordinate
system for the four couples (<(κ), <(ρ)) represented in Figure E.11 by the white circles
and highlighted here as well. The white areas break the passivity constraint.

To summarise, perfect anechoism can be obtained in Quadrant 1 as the result of a coherent
mode at a slab resonance. The mapping approach helped the derivation of Equation
(E.11), that gives the link between ρ and κ when |CA| = 0. Around the branches de�ned
by Equation (E.11), it is possible to obtain really low values of the anechoism coe�cient.
The imaginary parts of the e�ective properties then seems to play an important role. It
also appears that the areas of low |CA|, around the branches, are larger if z < 1. If e�ective
properties are such that z > 1, having a low anechoism may be more di�cult since Figure
E.6 showed that these branches are strongly dependent on both the frequency and the
medium thickness. To obtain broadband performance in this quadrant, the dispersion on
the properties of waves in a medium would need to be tuned to follow the branches. The
notion of dispersion here refers to the dispersion that occurs when pure plane waves of
di�erent wavelengths have di�erent propagation velocities. However, by increasing the
thickness or the frequency or both, it is visually clear that areas of low |CA| are more
likely to be reached. Quadrant 4 (<(ρ) < 0, <(κ) > 0) is now further studied as it appears
that low real parts of ρ, κ or both is a condition that can yield low anechoism coe�cient
independently of the frequency, as visible in Figure E.6. It may therefore be advantageous
to restrict the dispersion on the waves' properties to this zone of Quadrant 4 to create a
low broadband anechoism.
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Quadrant 4

In the quadrant (<(κ)>0, <(ρ) < 0), low values of |CA| can be obtained, as shown in
Figure E.13. Low values are concentrated close to the <(κ) = 0 axis, so for very low
values of <(κ). The anechoism coe�cient seems to be also low for extremely low values
of |<(ρ)|, as well as for values of <(κ) and <(ρ) close to 0.
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Figure E.13 � Type 2 representation of the Quadrant 4, showing |CA|-maps in the (<(ρ),
<(κ)) coordinate system and the values of =(ρ) and =(κ) that led to these |CA|.

In terms of values of the imaginary parts, a peculiar observation can be made using middle
and right-hand side maps in Figure E.13: the values of =(κ) and =(ρ) follow the evolution
of the real part counterparts. In fact, in the middle map showing =(ρ), there is a vertical
color gradient from the top at <(ρ) = 0 to the bottom at <(ρ) = −10000. This color
gradient represents the values of =(ρ), also going from 0 to −10000. As such, the value
of the imaginary part matches the value of the real part. The same observation is made
on the right hand-side map for κ, but with a horizontal gradient color. As such, in the
Quadrant 4, the lowest values of the anechoism coe�cient are obtained for <(κ) ≈ =(κ)
and <(ρ) ≈ =(ρ).

In order to understand why minimal values of the anechoism coe�cient seem to be
obtained when the imaginary and real parts of ρ and κ are equal, the e�ective properties
are written as: {

ρ = ρ<(1 + i)

κ = κ<(1 + i)
, (E.12)

with ρ< = <(ρ) = =(ρ) and κ< = <(κ) = =(κ). These expressions are used to express
the wavenumber k = ω

√
ρ/κ, which yields:

k = ω

√
ρ<
κ<
. (E.13)



234

Since ρ< < 0 and κ< > 0, the wavenumber is shown to be purely imaginary, which means
that waves do not propagate and are purely evanescent.

Consequently, minima of the anechoism coe�cient are obtained for <(ρ) = =(ρ) and
<(κ) = =(κ), as seen in Figure E.13. This condition results in the existence of evanescent
waves only and the absence of propagating waves. Having imaginary parts almost as high
as the real parts means that there is signi�cant damping. Such values may be obtained
only for e�ective properties of complex structures, at frequencies of dipole or matrix
resonance for instance, as shown in Chapter 6. However, the values where the anechoism
coe�cient is actually really low correspond to the lowest values of both ρ and κ. A design
strategy may be to combine coherent absorption branches in Quadrant 1 with low <-
values and high damping in Quadrant 4. The latter can be obtained with resonances :
dipole resonance for <(ρ) < 0 and monopole resonance for <(κ) < 0. Spreading these
e�ects over the frequency range of interest using the dispersion would help in having a
broadband low anechoism coe�cient.

Summary

Some of the main observations are summarised here. In Quadrant 1 and for |z| > 1, it has
been shown that |CA| = 0 can only be obtained at slab resonances, satisfying Equation
(E.9). For |z| < 1, very low values of the anechoism coe�cient can be obtain even away
from the branches. Around these branches, it is possible to obtain a low anechoism
coe�cient for either extreme values or near-zero values of the imaginary parts =(κ) and
=(ρ). Using e�ective parameters, such values may be reached through local resonance of
inclusions.

Quadrant 4 has then be studied. This Quadrant seems promising since there is a small
area of low |CA| which seems to remain at this location independently of the frequency
and medium thickness. This area is mainly concentrated near the <(κ) = 0 axis.

Consequently, to obtain a broadband performance, it would be interesting to tune the
dispersion in order to be either next to a branch or below |z| < 1 in Quadrant 1 or
close to the <(κ) = 0 axis in Quadrant 4. In both cases, it has been observed that
the values of the imaginary parts have a signi�cant impact. In the following section,
two multilayered media are homogenised and their e�ective properties are derived. They
are then used to create a "frequency path", so that one can follow the evolution of the
anechoic performance based on the maps.
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E.2 Frequency Path

E.2.1 Introduction

In this section, performance maps are generated for several frequencies in order to follow
the "frequency path" of a multilayered structure. The notion of frequency path is ex-
plained/illustrated later in this section. Two case studies are conducted, described below
:

1. A layer arrangement is de�ned aiming to maximise the number of frequencies for
which the e�ective properties remain in Quadrant 4 (<(κ) > 0, <(ρ) < 0) since it
has been observed that this area can always provide low values of the anechoism
coe�cient independently of the reduced frequency. The objective of this approach
is thus to determine if, by containing the dispersion on the waves' properties in the
medium to this area, it is possible to obtain broadband low anechoism.

2. The second layer arrangement is de�ned so that the anechoism coe�cient is min-
imised over the entire frequency range, as per Chapter 3. As such, it would be
possible to observe the behaviour of performance-driven dispersion within the maps.

In both case studies, it is the layer arrangement of a unit cell of thickness Lu that
is de�ned. The transfer matrix of the unit cell is �rst calculated, from which e�ective
properties and scattering coe�cients are derived as per Chapter 2. The same materials as
in Chapter 3 are considered, that is to say a polyurethane containing 6% of micro-balloons
as well as stainless steel. The thickness of the unit is Lu = 16 mm and the minimal layer
thickness is l = 2 mm. There are thus 28 = 256 possible designs for the unit cell. Even
though the performance mapping can be applied to asymmetric media by adding extra
parameters, a symmetric unit is herein selected for the sake of simplicity. This reduces
the number of possible designs to 24 = 16.
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E.2.2 Quadrant Driven Design

In this section, a multilayered medium is selected based on its e�ective properties so that
they remain in the quadrant (<(κ)>0, <(ρ) < 0) for a large number of frequencies within
the frequency range of interest which is [3 kHz - 20 kHz]. As a reminder, the objective
here is to contain the dispersion in this area, which seems unchanged with frequency, in
order to obtain broadband low anechoism.

The layer arrangement shown in Figure E.14 is selected. Amongst all possible symmetric
units, it corresponds to the largest range of frequencies with negative values of <(ρ).
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Figure E.14 � Layer arrangement for the selected unit cell.

For the selected unit cell, the e�ective bulk modulus and e�ective density are given in
Figure E.15. It is observed that the e�ective density becomes negative around 16.5 kHz.

0 5 10 15 20 25

Frequency (kHz)

-1

-0.5

0

0.5

1
10

4
-2

-1

0

1

2

3
10

9

Figure E.15 � E�ective bulk modulus and e�ective mass density for the selected unit
cell. Seven frequencies are selected and highlighted by the red dotted lines.
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Several frequencies, referred to as frequencies (a) to (g), have been selected and are shown
by the red vertical lines. They are used to follow the frequency path for a multilayered
medium comprising 3 of unit cells. The length of the e�ective medium is therefore
L = 3× Lu = 4.8 cm. Scattering coe�cients for this medium are given in Figure E.16.
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Figure E.16 � Anechoism, re�ection and transmission coe�cients for a 3-unit medium.

For each of the frequencies previously selected, the (<(κ), <(ρ))-map is plotted. The
e�ective properties obtained for the unit cell are then spotted on the <-map. For this
given set of values for (<(κ) and <(ρ)), the =-map is generated, in which the values
of (=(κ) and =(ρ)) obtained for the unit cell are highlighted, along with the value of
the anechoism coe�cient. With this approach, applied for successive frequencies, the
frequency path of a design is created and is given in Figure E.17 for (a) 6 kHz, (b)
9.7 kHz, (c) 12.3 kHz, (d) 13.7 kHz, (e) 14.7 kHz, (f) 16.5 kHz and (g) 20 kHz.
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Figure E.17 � Frequency paths for a medium of length L = 3 × Lu = 4.8 cm at the
frequencies (a) 6 kHz, (b) 9.7 kHz, (c) 12.3 kHz, (d) 13.7 kHz, (e) 14.7 kHz, (f) 16.5 kHz
and (g) 20 kHz. On the <-maps (left hand side), the white circle shows the values of <(κ)
and <(ρ) obtained for the unit cell in Figure E.14. The red line represents the complete
path. In the =-map obtained for these values (right hand side), the white circle shows
the values of =(κ) and =(ρ) obtained for the unit cell and the value of the anechoism
coe�cient.
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The frequency path is analysed along with the variations of the anechoism coe�cient for
a 3-unit multilayered medium of length L = 3 × Lu = 4.8 cm, given in Figure E.16.
Comparisons are made according to the overall variations of the anechoism coe�cient,
that is to say that the results are not compared to the performance of another anechoic
medium.

At frequency (a) 6 kHz, values of the e�ective properties in Figure E.15 are still close to the
quasi-static values obtained for very low frequencies. In Figure E.17, those values of the
e�ective properties are located in Quadrant 1 (<(κ)>0, <(ρ) > 0) where the anechoism
coe�cient can reach very low values around branches. At this frequency, the real parts of
ρ and κ are located relatively close to one of the branches. As such, with high values of
the imaginary parts, it could be possible to obtain relatively low values of the anechoism
coe�cient (around 0.4). However, the anechoism coe�cient here is quite high, equal to
0.76, since the imaginary parts are both nearly null. This result is con�rmed by the
scattering response of the 3-unit multilayered medium in Figure E.16.

At frequency (b) 9.7 kHz, e�ective parameters start di�ering slightly from the quasi-static
values at low frequencies. This frequency has been selected because it corresponds to the
minimum of the anechoism coe�cient of the 3-unit medium in Figure E.16. For this low
value of CA, the performance maps for (b) show that the real parts ρ and κ are located
on a branch of slab resonance. In the corresponding =-map, it is observed that the isoline
of perfect anechoism is almost reached, thus leading to CA = 0.37.

In Figure E.15, =(κ) changes sign at the frequency (c) 12.3 kHz and the real parts are
still located in Quadrant 1, but relatively far from branches. The situation is slightly
similar to the frequency (a), where a high coe�cient is obtained because imaginary parts
are close to 0. It can nonetheless be observed that, in the =-maps, the coe�cient possible
values are higher for (c) than for (a) due to the fact that (c) is further away to a branch
in Quadrant 1.

At frequency (d) 13.7 kHz, both <(ρ) and <(κ) reach their maximal value in Figure E.15.
In the performance maps of Figure E.17, these values are located close to a branch in
Quadrant 1. Additionally, the values of =(ρ) and =(κ) are well located within in the
=-map. As such, at this frequency, a relatively low value of the anechoism coe�cient is
obtained, as also shown in Figure E.16. Consequently, by comparing frequencies (b) and
(d), it appears that, in terms of anechoic performance, being out of a branch with suitable
imaginary parts may be as bene�cial as being on a slab resonance branch with unsuitable
imaginary parts.

In Figure E.15, both the =(ρ) and =(κ) reach their minimal value at the frequency (e)
14.7 kHz. In the <-map of Figure E.17, the real parts are still located in Quadrant 1 in
between two branches. Low |CA| could therefore be obtained as for frequency (d), but
the values of the imaginary parts lead in the area where the anechoism coe�cient is high.
It would have been preferable to have =(κ) > 0.
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At frequency (f) 16.5 kHz in Figure E.15, <(ρ) becomes negative. In the real map in
Figure E.17(f), the frequency path now goes into Quadrant 4 (<(κ)>0, <(ρ) < 0). In the
<-map, it is observed that very low values of the anechoism coe�cient can be reached and
the objective was initially to remain in this area for a large frequency range. However, the
values for =(κ) and =(ρ) for the unit cell at this frequency are located in the area where
|CA| is relatively high, which is con�rmed by Figure E.16. For lowering the anechoism
coe�cient, =(κ) > 0 or lower values of =(κ) would have been necessary as for frequency
(e).

For frequency (g) 20 kHz, a interesting location is reached in Quadrant 4 of the <-map,
but, as previously, the imaginary parts are such that the anechoism coe�cient remains
very high. It can nonetheless be noted that for frequencies (f) and (g), the =-maps tend
to be split into two spaces: very low anechoism for =(κ) > 0 and very high anechoism for
=(κ) < 0.

Consequently, it was observed that the imaginary parts of the e�ective properties play
a signi�cant role in the acoustic performance. Even though a speci�c metamaterial
feature (being a negative e�ective density) is obtained, it is not associated here to a
good anechoism coe�cient. A better anechoism performance may therefore be obtained
with a better control of the dispersion and more particularly of the imaginary parts of
the e�ective properties. In what follows, a design is chosen for its broadband anechoism
performance in order to observe the "natural" evolution of the dispersion for a performance
driven design.
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E.2.3 Performance Driven Design

In this section, a multilayered medium is selected based on its broadband anechoism
performance on the frequency range [3 kHz - 20 kHz]. The same criteria as in Chapter 3
are used to chose amongst the 16 possible symmetric units. Scores are given in Figure E.18.
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Figure E.18 � Scores of the 16 possible designs and layer arrangements of con�gurations
in the Pareto front.

Con�guration 15 is the one studied previously. Very low values of the anechoism coe�cient
are indeed reached, but the standard deviation is high. Con�gurations 12 and 16 are
excluded as the anechoism coe�cient remains too high. It can be seen that the unit of
Con�guration 10 actually consists of 2 identical symmetric units of length Lu/2. The
e�ective properties thus remain almost constant since all periodic e�ects are shifted to
higher frequencies. Con�guration 14 is therefore selected. The layer arrangement is shown
in Figure E.19.

0 0.5 1 1.5

Thickness (cm)

Figure E.19 � Layer arrangement for the selected unit cell.

For the selected unit cell, the anechoism coe�cient for a 3-unit medium is given in Figure
E.20 and the e�ective bulk modulus and e�ective density are given in Figure E.21.
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Figure E.20 � Anechoism, re�ection and transmission coe�cients for a 3-unit medium.
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Figure E.21 � E�ective bulk modulus and e�ective mass density for the selected unit
cell. Seven frequencies are selected and highlighted by the red dotted lines.

It is observed the real parts of both e�ective properties remain positive. It is also seen that
the anechoism coe�cient remains under 0.7 from 6 kHz. New frequencies are selected,
referred to as frequency (a) to (g), corresponding to peculiar point in the anechoism
coe�cient variations. They are used to follow the frequency path for a multilayered
medium comprising of 3 unit cells, presented in Figure E.22.
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Figure E.22 � Frequency path for a medium of length L = 3 × Lu = 4.8 cm at the
frequencies (a) 4 kHz, (b) 10 kHz, (c) 13 kHz, (d) 15.7 kHz, (e) 18 kHz, (f) 20 kHz and
(g) 24 kHz. On the <-maps (left hand side), the white circle shows the values of <(κ) and
<(ρ) obtained for the unit cell in Figure E.19. The red line represents the complete path.
In the =-map obtained for these values (right hand side), the white circle shows the values
of =(κ) and =(ρ) obtained for the unit cell and the value of the anechoism coe�cient.
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For frequencies (a) to (d), the real parts of the e�ective properties are in Quadrant 1 in
the area where z > 1. Amongst these frequencies, (a), (b) and (d) are located on a slab
resonance branch. For frequencies (b) and (d), the imaginary parts at these frequencies
are also well located, close to the isoline of null |CA|. As a result, a very low anechoism
coe�cient is obtained for these two frequencies, especially for the frequency (d) with
|CA| = 0.15. For the frequency (c), the real part is slightly o� the branches and very low
values for the imaginary parts are obtained. The anechoism coe�cient is relatively good,
but could be improved with higher values of the imaginary parts =(κ).

At frequency (e) to (g), the area z < 1 is reached, where extremely low values of the
anechoism coe�cient could be obtained. For both (e) and (f), it can be seen however that
|CA| is quite high here since the imaginary parts are not suitable. Similarly to the design
previously studied, it would be bene�cial here to have =(κ) > 0. In fact, it is observed
that very low values of |CA| are obtained at 24 kHz (frequency (g)) in the the area z < 1
thanks to values of =(κ) going towards positive values.

To summarise, low values of the anechoism coe�cients have been obtained as a result of
slab resonances associated with the branches. Once on the branch, it does not seem to be
di�cult to obtain the imaginary parts that lead to a good anechoism coe�cient. Slightly
o� the branches, it was observed that it is bene�cial to aim for positive values of =(κ) or
alternatively for near-zero values of =(κ).

This con�rms what has been observed for the 2D optimisation (Chapter 7), that is that
multilayered media can lead to low anechoism in a given frequency range, but fail to
provide a broadband performance since they do not provide local resonances that could
help tuning the imaginary parts. Multilayered media are therefore found to provide low
anechoism coe�cient due to slab resonances, thus depending on the length of the medium.
The fact that <(ρ) < 0 is therefore not an indicator that the anechoism coe�cient is low,
but simply signi�es that the center of mass displacement is in phase opposition to the
incident �elds (Chapter 6), which for multilayered media seems to only happen when a
heavy layer is located in-between two damped layers.

Although the presented results are not always intuitive, this concept of performance maps
and frequency path helped understanding the feature that lead to low anechoism and it
gave keys on how to tune the dispersion on waves' properties to achieve the desired goal.
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Abstract

Designing e�cient hull coatings for acoustic stealth of submerged vehicles remains a
challenge that evolves along with improvements in sonar performance. Low frequency
performance is particularly important for military applications, due to the long range
propagation properties of low frequency signals in the sea. Acoustic metamaterials are
now widely recognised as promising candidates for such underwater coatings. The aim
of this research is to study metamaterials for underwater applications, from theoretical
analysis to experimental characterisation.

This thesis presents analytical or semi-analytical models based on a transfer matrix
formalism to homogenise periodic structures. These methods are then used in a com-
putationally e�cient optimisation approach to obtain metamaterial designs that meet a
goal in terms of their anechoism coe�cient, hull decoupling coe�cient, or both. The
entirety of this approach is �rst carried out for multilayered structures then extended to
metamaterials with macro-inclusions to which a degree of complexity is added. Finally,
measurement methods in a water tank facility are implemented and validated. They
are then used for the experimental characterisation of panels manufactured within the
framework of the thesis.

Résumé

Concevoir des revêtements de coque pour la furtivité acoustique des véhicules submergés
deumeure un dé� évoluant constament avec l'amélioration des performances sonar. Les
performances à basses fréquences sont particulièrement importantes pour les applications
militaires, en raison des propriétés de propagation à longue distance dans l'eau des signaux
à basses fréquences. Les métamatériaux acoustiques sont désormais largement reconnus
comme des candidats prometteurs pour de tels revêtements. L'objectif de cette recherche
est d'étudier les métamatériaux pour des applications sous-marines, de l'analyse théorique
à la caractérisation expérimentale.

Cette thèse présente des modèles analytiques et semi-analytiques basés sur un formalisme
de matrices de transfer pour homogénéiser des structures périodiques. Ces méthodes
sont ensuite utilisées dans une approche d'optimisation peu couteuse en temps de calculs
pour obtenir des designs de métamatériaux qui répondent à des objectifs en termes de
coe�cient d'anéchoïsme, de masquage, ou les deux. L'ensemble de cette approche est
d'abord réalisée pour des structures multicouches puis étendue aux métamatériaux à
macro-inclusions auxquels s'ajoute un degré de complexité. En�n, des méthodes de mesure
pour bassin acoustique sont mises en ÷uvre et validées. Elles sont ensuite utilisées pour
la caractérisation expérimentale de panneaux fabriqués dans le cadre de la thèse.
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