
HAL Id: tel-03626516
https://theses.hal.science/tel-03626516

Submitted on 31 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symbolic methods for studying linear systems of
differential and difference equation

Ali El Hajj

To cite this version:
Ali El Hajj. Symbolic methods for studying linear systems of differential and difference equation.
Symbolic Computation [cs.SC]. Université de Limoges, 2021. English. �NNT : 2021LIMO0113�. �tel-
03626516�

https://theses.hal.science/tel-03626516
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE LIMOGES
ÉCOLE DOCTORALE Sciences et Ingénierie pour l’Information

FACULTÉ DES SCIENCES ET TECHNIQUES

Année : 2021 THÈSE N°X

THÈSE
pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE LIMOGES

Discipline : Mathématiques et ses applications

présentée et soutenue publiquement par

Ali EL HAJJ

le 17 décembre 2021 à 14h

Algorithmes Symboliques pour l’Étude et
la Résolution de Systèmes d’Équations

Fonctionnelles Linéaires

Thèse dirigée par Moulay A. BARKATOU et Thomas CLUZEAU

JURY :

George LABAHN Professeur, Université de Waterloo Rapporteur
Sergei ABRAMOV Professeur, Université de Moscou Rapporteur
Guillaume CHÈZE MCF HDR, Université Toulouse III Examinateur
Alin BOSTAN DR, INRIA Saclay Île-de-France Examinateur
Simoné NALDI MCF, Université de Limoges Examinateur
Vladimir SALNIKOV CR, Université La Rochelle Examinateur
Moulay A. BARKATOU Professeur, Université de Limoges Directeur
Thomas CLUZEAU MCF, Université de Limoges Directeur

Remerciements

Tout d’abord, je tiens à exprimer ma plus profonde gratitude à Moulay Barkatou
et Thomas Cluzeau pour leurs généreux conseils en temps et en connaissances, leur
assistance, leur disponibilité, leur patience, et leur soutien continu tout au long de ma
thése. J’ai eu beaucoup de chance de les avoir comme directeurs. Travailler avec eux a été
extrêmement enrichissant sur les niveaux scientifique et personnel. Leur perfectionnisme
m’a poussée à donner le meilleur de moi-même.

Aussi, j’exprime ma gratitude à George Labahn et Sergei Abramov, de me faire
l’honneur de rapporter ma thèse. Je remercie �galement Alin Bostan, Guillaume Chèze,
Simoné Naldi, et Vladimir Salnikov d’avoir accepté d’être examinateurs pour cette
thèse.

J’exprime tous mes remerciements à mes collègues de l’équipe de Calcul Formel, ainsi
qu’aux personnels du Département Mathématiques Informatique de l’Université de Limo-
ges pour m’avoir donné la chance de faire mon Master qui était le premier pas vers ma
situation actuelle. À mes professeurs: Paul Armand, Samir Adly, Moulay Barkatou,
Noureddine Igbida, Olivier Ruatta, Loïc Bourdin, Jaques-Arthur Weil et Olivier
Prot, merci à chacun de vous. Un grand merci également à vous Annie, Débora et
Sophie pour votre gentillesse et aide continue. Je remercie mes amis et collègues de Xlim
pour les bons moments que nous avons partagés.

Le plus grand merci va à toute ma famille. Leur soutien inconditionnel et leur amour
m’ont aidé réaliser mon rêve de devenir docteur. Enfin, à ma femme Carine, cette thèse
repose sur ton soutien et tes encouragements de le début et jusqu’au dernier moment.
Difficile en quelques mots de t’exprimer toute ma reconnaissance et tout mon amour.

i

Notations

N The set of nonnegative integers
N∗ The set of positive integers
Z The ring of integers
Q The field of rational numbers
C The field of complex numbers

C The algebraic closure of a field C

C[x] The ring of polynomials in x over a field C

C[[x]] The ring of formal power series in x over a field C

C(x) The field of rational functions in x over a field C

C((x)) The field of formal Laurent series in x over a field C

Mm×n(K) The K-vector space of m× n matrices with entries in a
field K

Mn(K) The K-algebra of n× n matrices with entries in a field K

GLn(K) The group of n× n invertible matrices with entries in a
field K

Kn = M1×n(K)

idK The identity map over a field K

0n The n-dimensional zero vector
In The identity matrix of size n

diag(x1, x2, . . . , xn) The diagonal matrix


x1 0 · · · 0

0 x2
. . .

...
...

. . .
. . . 0

0 · · · 0 xn


A−1 The inverse of an invertible square matrix A
AT The transpose of a matrix or vector A
A(i, j) The (i, j)th entry of a matrix A
A(i, .) The ith row of a matrix A

ii

rank(A) The rank of a matrix A
det(A) The determinant of a square matrix A
den(A) The denominator of a matrix A ∈Mm×n(C(x)):

the least common multiple (lcm) of the denominators
of all entries of A

f ′(x) The first derivative of a function f(x) w.r.t. x
deg(p) The degree of a univariate polynomial p
p | q A polynomial p divides a polynomial q
p ∤ q A polynomial p does not divide a polynomial q

ν(f) with f ∈ C((t)) The t-adic valuation of f :
ν(f) = m if f = tm(f0 + f1 t+ . . .), f0 ̸= 0 and ν(0) =∞

ν(M) with M ∈Mm×n(C((t))) The t-adic valuation of M :
ν(M) = min {ν (M(i, j)) ; 1 ≤ i ≤ m, 1 ≤ j ≤ n}

Contents

General Introduction 1

1 Basics on Pseudo-linear Systems 9
1.1 Pseudo-derivations and ϕδ-fields . 10
1.2 Pseudo-linear systems . 11
1.3 Local ϕδ-fields . 14
1.4 Local pseudo-linear systems . 17

2 On Simple Forms of Pseudo-Linear Systems and their Applications 20
2.1 Introduction and motivation . 21
2.2 A direct algorithm to compute simple forms 23

2.2.1 The distinct steps . 24
2.2.2 An example . 29
2.2.3 The complete algorithm . 35

2.3 Simple forms and local analysis . 36
2.3.1 Moser- and super-irreducible forms 37
2.3.2 Regular solutions and regular singularities 40
2.3.3 k-simple forms . 42
2.3.4 Super-reduction using simple forms 45

3 On Rational Solutions of First Order Pseudo-Linear Systems 49
3.1 Introduction . 50
3.2 A unified algorithm to compute polynomial solutions 51

3.2.1 Computing a degree bound . 51
3.2.2 Examples . 53
3.2.3 Comparison with existing implementations 55

3.3 Universal denominator . 56
3.3.1 Existing methods for pure difference and q-difference systems . . . 58
3.3.2 A unified and efficient approach for pseudo-linear systems 61
3.3.3 Computing the ϕ-fixed part . 63
3.3.4 Computing the dispersion set and the non ϕ-fixed part 65

3.4 The complete algorithm . 68

iv

3.5 Some comparison tests . 69

4 On Rational and Hypergeometric Solutions of Partial Pseudo-Linear
Systems 73
4.1 Introduction . 74
4.2 Rational solutions . 76

4.2.1 The case of one difference and one differential system 77
4.2.1.1 Description of the approach 77
4.2.1.2 Algorithm and example 79

4.2.2 The general case: partial pseudo-linear systems 81
4.2.2.1 A recursive approach . 81
4.2.2.2 Algorithm and examples 83
4.2.2.3 Necessary conditions for denominators 88
4.2.2.4 Implementation and comparison of different strategies . . 91
4.2.2.5 Applications: eigenring and decomposition of systems . . 93

4.3 Hypergeometric solutions . 96
4.3.1 The differential and difference cases 98

4.3.1.1 Pflügel’s algorithm for differential systems 98
4.3.1.2 Barkatou and Van Hoeij algorithm for difference systems 101

4.3.2 Description of the recursive approach 104
4.3.3 Algorithm and example . 107
4.3.4 Remarks on the implementation . 110

5 PseudoLinearSystems: A Maple Package for Studying Systems of
Pseudo-linear Equations 113
5.1 Introduction . 114
5.2 Simple and super-irreducible forms . 114

5.2.1 The SimpleForm procedure . 114
5.2.2 The SuperReduced procedure . 116

5.3 Closed-form solutions of first order pseudo-linear systems 117
5.3.1 The RatSols_1PLS procedure . 118
5.3.2 The ExponentialSolutions procedure for differential systems 120
5.3.3 The HypergeoemtericSolutions_Difference procedure for difference

systems . 121
5.4 Closed-form solutions of partial pseudo-linear systems 123

5.4.1 The RationalSolutions_PPLS procedure 124
5.4.2 The HypergeometricSolutions procedure 125

References 126

v

General Introduction

1

General Introduction

Nowadays, the theory of linear functional equations plays a central role in mathematics
and widely contributes to the treatment of scientific problems in various fields such as
chemistry, physics, mechanics, and control theory. Two well known particular systems of
linear functional equations are first oder differential systems having the form

y′(x) = A(x)y(x) + b(x),

and first order difference systems having the form

y(x+ 1) = A(x)y(x) + b(x),

where in both equations, the unknown column vector y, the matrix A and the col-
umn vector b, have entries which are functions of the variable x. These two familiar
systems have been extensively studied over the past years from both a theoretical
and algorithmic perspective, and significant progress has been achieved in these topics
[8, 16, 25, 42, 59, 61, 64, 88, 90]. In spite of this progress, it has been shown, see e.g.
[2, 49, 83], that linear differential and difference systems are strongly connected and
share interesting properties. Moreover, some algorithms designed for one type of system
can be adapted for the other. For instance, the Moser- and super-reduction algorithms
[67, 78] originally developed for differential systems, have been adapted to treat difference
systems, see [15, 16]. Also, existing algorithms for computing rational solutions follow
the same general strategy for both systems, see for instance [7, 20]. So the theoretical
and algorithmic similarities that both differential and difference systems share, suggest
the existence of a common mathematical framework behind them. This mathematical
framework is given by pseudo-linear algebra.

Pseudo-linear algebra is a wide area of mathematics with origins in the 1930’s from
works by Ore [79] and Jacobson [69]. Around 60 years later, Bronstein and Petkovšek
introduced in [48] the basic objects (pseudo-linear systems, pseudo-derivations, skew
polynomials) of pseudo-linear algebra in the context of computer algebra. In its most
general form, a pseudo-linear system of size n is a system

δ (y) =M ϕ (y) , (1)

where y is a column-vector of n unknowns, M ∈ Mn(K) where K is a field, ϕ is an
automorphism over K and δ is a pseudo-derivation with respect to ϕ, which means
δ(a+ b) = δ(a) + δ(b) and δ(a b) = ϕ(a)δ(b) + δ(a)b for all a, b ∈ K.

Pseudo-linear systems form a large class of linear functional systems including the
usual differential, difference and also q-difference systems: y(q x) = A(x)y(x). When

2

General Introduction

specialised to these particular types of systems, efficient methods have been designed for
treating local problems (i.e. around a singularity) such as:

• Construction of formal solutions [25, 37, 42, 45, 91, 93].

• Formal reduction of systems [3, 15, 16, 41, 43, 67, 78].

There are also several algorithms treating global problems such as:

• Computation of closed-form solutions: rational solutions [5, 7, 20], hypergeometric
solutions [11, 54, 84], liouvillian solutions [60, 88]

• Decomposition and factorization of systems [17, 21, 37].

Nevertheless, algorithms handling directly general pseudo-linear systems have been less
elaborated. In particular, Barkatou treated in [22] the problem of (global) factorization
of a pseudo-linear system of the form (1). Later on, Barkatou, Broughton and Pflügel
studied in [23] System (1) and introduced a reduction which generalizes the notions of
Moser- and super-irreducible forms known for differential and difference systems. The
same authors then derived in [24] the structure of regular solutions for general pseudo-
linear systems, and developed an algorithm to compute them.

In this thesis, the research carried out concerns the development of symbolic algorithms
for studying and solving pseudo-linear systems. Our work excludes the reduction of sys-
tems into scalar equations via a cyclic-vector method [51] or any related method [17, 57].

The thesis is split into three essential parts. In the first part, which consists of Chapter 2,
we are interested in the local analysis of systems of the form (1). Moser’s reduction
[18, 41, 78] and super-reduction algorithms [15, 16, 41, 67] have been proved to be
relevant for the local study of differential and difference systems. These algorithms
provide useful information on the local invariants at a singular point such as the nature
of the singularity [78], and the integer slopes of the corresponding Newton polygon
[16, 19, 26, 73, 86]. They are also used to compute formal solutions [19, 25, 37] as well
as closed-form solutions such as rational solutions [7, 20], exponential solutions [84] and
hypergeometric solutions [44]. However, solving some of these problems requires a weaker
form than super-irreducible forms. This weaker form is called simple form and it has
been first introduced by Barkatou in [20]. Simple forms are easier to compute than super-
irreducible ones and they are often sufficient to get the most important local data. The
notions of super-irreducible forms and simple forms have been generalised in [23, 24, 49] in
the pseudo-linear setting and a generic algorithm for computing super-irreducible forms
has been given. The method proposed in [24, 49] to construct a simple form requires
to compute first a super-irreducible form. The first direct (that is, without recourse to

3

General Introduction

super-reduction) algorithm for computing simple forms has been developed in [27, 59]
for differential systems and then in [28] for difference systems. However, no results seem
to be published on q-difference systems and the unifying view for the pseudo-linear case
had not been considered. In this spirit, the first main contribution of the present thesis
is to prove that the algorithms developed in [27, 28] for computing simple forms can be
extended to handle more general pseudo-linear systems. In particular, this shall provide
the first method available for q-difference systems.

In the second part of this thesis, which consists of Chapters 3 and 4, we are con-
cerned with the problem of computing closed-form solutions of pseudo-linear systems.
In particular, we shall present two new recursive algorithms for computing respectively
rational and hypergeometric solutions of a partial pseudo-linear system of the form:

L1(y) := δ1(y)−M1 ϕ1(y) = 0,
...

Lm(y) := δm(y)−Mm ϕm(y) = 0,

(2)

where for all i = 1, . . . ,m, Mi is a square matrix with rational function entries in m

variables x1, . . . , xm, ϕi is an automorphism acting on xi and δi is a pseudo-derivation
with respect to ϕi such that for all j ̸= i, xj is a constant with respect to ϕi and δi, i.e.,
ϕi(xj) = xj and δi(xj) = 0. Here Li := In δi −Mi ϕi denotes the matrix pseudo-linear
operator associated to the ith system of (2). One underlying motivation for developing
such algorithms is that many special (transcendental) functions satisfy such partial
pseudo-linear systems. We can think for instance of Hermite, Legendre, Bessel or Tcheby-
chev polynomials which satisfy both a system of differential equations and a system of
difference equations. Partial pseudo-linear systems have already been considered and
studied in the literature. In particular, an algorithm for computing rational solutions
of integrable connections (i.e., the case of System (2) with m differential systems) is
developed in [29] and an algorithm for computing hyperexponential solutions of systems
over Laurent-Ore algebras is proposed in [74]. Also, in [46, 60, 75, 95], the authors study
different issues concerning partial pseudo-linear systems.
Our two recursive algorithms require, in particular, an algorithm for computing solutions
of one sole pseudo-linear system of the form (1). Therefore, before considering the case
of a partial pseudo-linear system with an arbitrary order m, we first concentrate on the
case of a single pseudo-linear system, i.e., m = 1 in System (2). For the case m = 1,
the computation of rational and hypergeometric solutions, and other kind of closed form
solutions (such as polynomial, Liouvillian, etc…) of linear functional systems has been
widely studied in the particular cases of differential and (q-)difference systems: see, for
instance, [5, 7, 12, 13, 20, 54, 84, 88]. However, a unified approach handling pseudo-linear

4

General Introduction

systems has not been introduced. In this spirit, we shall also present an efficient al-
gorithm for computing rational solutions of a general pseudo-linear system of the form (1).

Besides the theoretical results elaborated in this thesis, a further important contri-
bution arises in the implementation in Maple of all the algorithms presented in the
different chapters. All the implementations are gathered and incarnated as internal
procedures in our new Maple package PseudoLinearSystems [32]. Whilst some
existing packages such as Isolde [39], LinearFunctionalSystems1, LREtools2

and QDifferenceEquations3 are dedicated to the study of individual differential,
difference and q-difference systems, the PseudoLinearSystems package is dedicated
to the study of more general pseudo-linear systems. The third and last part of this thesis,
which consists in Chapter 5, hence concerns the demonstration of the use of the main
procedures contained in our package. Moreover, we shall also present throughout this
thesis results of some experiments comparing our implementations to those performing
same tasks in the Isolde and LinearFunctionalSystems packages. All experiments
were carried out using Maple 2017 on a Mac PC with a 2.3 GHz Intel Core i5 processor
and a 16 Go 2133 MHz LPDDR3 memory.

The main contributions of this thesis can be summarised as follows:

1. A “direct” and generic algorithm for computing simple forms of general pseudo-
linear systems with power series coefficients.

2. A unified and efficient algorithm to compute rational solutions of general pseudo-
linear systems with rational functions coefficients.

3. Two new efficient algorithms for computing respectively rational and hypergeometric
solutions of partial pseudo-linear systems with rational functions coefficients and
arbitrary number of variables.

4. The implementation of these algorithms in the computer algebra software Maple.

The content of the thesis is organised as follows. In Chapter 1 we set our mathematical
framework by presenting some basic definitions and results from pseudo-linear algebra
[23, 24, 48, 49] that will be used in the following chapters. The remaining four chapters
contain our contributions. In the sequel, we briefly describe the material of each of them.

1https://www.maplesoft.com/support/help/Maple/view.aspx?path=
LinearFunctionalSystems&cid=301

2https://www.maplesoft.com/support/help/Maple/view.aspx?path=LREtools&cid=284
3https://www.maplesoft.com/support/help/Maple/view.aspx?path=QDifferenceEquations&

cid=282

5

https://www.maplesoft.com/support/help/Maple/view.aspx?path=LinearFunctionalSystems&cid=301
https://www.maplesoft.com/support/help/Maple/view.aspx?path=LinearFunctionalSystems&cid=301
https://www.maplesoft.com/support/help/Maple/view.aspx?path=LREtools&cid=284
https://www.maplesoft.com/support/help/Maple/view.aspx?path=QDifferenceEquations&cid=282
https://www.maplesoft.com/support/help/Maple/view.aspx?path=QDifferenceEquations&cid=282

General Introduction

Chapter 2: On Simple Forms of Pseudo-Linear Sys-
tems and Their Computations

This chapter constitutes the subject of the first half of the published paper [30] in
collaboration with M. A. Barkatou and T. Cluzeau.

Let C be a field of characteristic zero and K = C((t)) equipped with the t-adic
valuation ν. We consider a pseudo-linear system of the form

Aδ(y) +B ϕ(y) = 0, (3)

where A, B ∈Mn(C[[t]]) such that det(A) ̸= 0, ϕ is a C-automorphism over K such that
it preserves the valuation, i.e., ν(ϕ(f)) = ν(f) for all f ∈ K, and δ is a non-zero pseudo-
derivation with respect to ϕ. The matrices A and B admit unique t-adic expansions

A(t) =
∑
i≥0

Ait
i, B(t) =

∑
i≥0

Bit
i.

The leading matrix pencil of a pseudo-linear system (3) is defined as the matrix polyno-
mial Lλ = A0 λ + B0, where A0 and B0 are the constant terms in the t-adic expansions
of A and B. System (3) is said to be simple if det(Lλ) ̸= 0 (as a polynomial in λ).
Otherwise, it is said to be non-simple.

In this chapter, we present a direct algorithm to compute a simple form (in other
words, an equivalent simple system) of any pseudo-linear system of the form (3). By
direct we mean without computing a super-irreducible form as it is done in [24, 49]. The
algorithm is recursive and it follows the ideas of the algorithms developed in [27, 28] for
purely differential and difference systems. When System (3) is not simple, then we have
ν(det(A)) > 0 (otherwise, A0 would be invertible and hence det(A0 λ + B) ̸= 0). The
principle of the algorithm then consists in computing iteratively equivalent pseudo-linear
systems A(i) δ(y) + B(i) ϕ(y) = 0, i ≥ 1 satisfying ν(det(A(i+1))) < ν(det(A(i))) with
A(0) = A. Doing so, we are guaranteed to find a simple system at some stage of the
recusrsion.

Moreover, we show how we can use simple forms as an essential tool for computing
important local data: indicial equation, regular solutions and k-simple forms. Finally, we
derive a new method for computing a super-irreducible form of a pseudo-linear system
based on successive computations of simple forms.

6

General Introduction

Chapter 3: On Rational Solutions of First Order
Pseudo-Linear Systems

This chapter constitutes the subject of the first half of the published paper [33] in
collaboration with M. A. Barkatou and T. Cluzeau.

Let C be a field of characteristic zero and F = C(x). We are interested in the
problem of computing rational solutions of a pseudo-linear system of the form

δ(y) =M ϕ(y), (4)

where M ∈ Mn(F), ϕ is a C-automorphism over F and δ is a pseudo-derivation with
respect to ϕ. We follow the same strategy proposed in [5, 20, 21] for the differential
and (q-)difference cases. We first compute a so called universal denominator [2], namely,
a polynomial that is a multiple of the denominator of any rational solution. Then,
by performing a suitable change of dependent variables in (4), we will be reduced to
computing polynomial solutions of a system of the same type.

In the sequel, we present a unified algorithm for computing a universal denominator
for all rational solutions of a pseudo-linear system. We will see that in the case ϕ is not
the identity map, a universal denominator is composed of two parts: what we call the
ϕ-fixed part and the non ϕ-fixed part. On one hand, the ϕ-fixed part can be computed
using simple forms. On the other hand, following the ideas of [77] (see also [9, 72]), we
propose an efficient algorithm for computing the non ϕ-fixed part. Polynomial solutions
are computed by adapting the ideas in [20, 21, 24]. We provide details on how this can
be efficiently done for pseudo-linear systems.

Chapter 4: On Rational and Hypergeometric Solu-
tions of Partial Pseudo-Linear Systems

This chapter constitutes the subjects of the second halves of the published papers [30, 33]
in collaboration with M. A. Barkatou and T. Cluzeau.

Let C be a field of characteristic zero and K = C(x1, . . . , xm). The object of study
in this chapter is a partial pseudo-linear system (2) with Mi ∈Mn(F) for all i = 1, . . . ,m.
We assume that (2) is integrable, i.e., it satisfies the integrability conditions

[Li, Lj] := Li ◦ Lj − Lj ◦ Li = 0, ∀i, j = 1, . . . ,m.

The main contribution of this chapter consists in two new efficient algorithms for re-

7

spectively computing rational and hypergeometric solutions of an integrable system (2).
In both algorithms, the strategy proceeds by recursion by considering one by one each
system Li(y) = 0 appearing in (2) as a system in one variable xi with the other variables
viewed as transcendental constants. In particular, we shall prove that in both strategies,
we can reduce the number m of variables and maybe the size n of the matrices before
applying recursion and considering the second system.

We also provide some remarks concerning the implementation of both algorithms.

Chapter 5: PseudoLinearSystems: A Maple Package
for Studying Systems of Pseudo-linear Equations

In this final chapter, we demonstrate the use of several important procedures con-
tained in our Maple package PseudoLinearSystems [32]. This includes, in particular,
a procedure to compute a simple form of a pseudo-linear system (3), as well as procedures
to compute rational and hypergeometric solutions of a partial pseudo-linear system (2).
The package is free available online and a manual for downloading and installing the
package, as well as Maple examples covering several types of pseudo-linear systems, are
provided on the webpage:

http://www.unilim.fr/pages_perso/ali.el-hajj/PseudoLinearSystems.html

http://www.unilim.fr/pages_perso/ali.el-hajj/PseudoLinearSystems.html

Chapter 1

Basics on Pseudo-linear Systems

1.1 Pseudo-derivations and ϕδ-fields . 10
1.2 Pseudo-linear systems . 11
1.3 Local ϕδ-fields . 14
1.4 Local pseudo-linear systems . 17

In this chapter, we prepare the mathematical framework in which the work of the
thesis is based on. This mathematical framework is pseudo-linear algebra which concerns
the study of pseudo-linear systems: a large class of linear functional systems including
the usual differential, difference and q-difference systems. In the same line as the authors
in [23, 24, 48], we define the basic objects that form our framework.

Throughout this chapter, we let K be a commutative field of characteristic zero and
ϕ an automorphism of K.

9

Chapter 1 Basics on Pseudo-linear Systems

1.1 Pseudo-derivations and ϕδ-fields
Definition 1.1. Given a commutative field K and an automorphism ϕ over K. A pseudo-
derivation with respect to ϕ, or a ϕ-derivation, is any map δ : K → K satisfying Leibniz
rule: for all a, b ∈ K,

δ(a+ b) = δ(a) + δ(b),

and
δ(a b) = ϕ(a)δ(b) + δ(a)b. (1.1)

Example 1.1. If ϕ = idK, then δ is a standard derivation. Otherwise if ϕ ̸= idK, then
for any γ ∈ K, the map δ = γ(idK−ϕ) given by δ(a) = γ(a−ϕ(a)) is a pseudo-derivation
with respect to ϕ. Indeed, we have for all a, b ∈ K:

δ(a+ b) = γ (a+ b− ϕ(a+ b)) = γ (a− ϕ(a)) + γ (b− ϕ(b)) = δ(a) + δ(b),

and

δ(a b) = γ(a b− ϕ(a b)) = ϕ(a)γ(b− ϕ(b)) + γ(a− ϕ(a))b = ϕ(a)δ(b) + δ(a)b.

The above example covers all the possible pseudo-derivations over a commutative field.
Indeed, we have the following result:

Lemma 1.1. ([48, Lemma 1]). Let K be a commutative field, ϕ an automorphism over
K and δ a pseudo-derivation w.r.t. ϕ. If ϕ ̸= idK then δ has to be of the form

δ = γ (idK − ϕ),

for some γ ∈ K.

Proof. Since K is commutative, then we have δ(a b) = δ(b a) for all a, b ∈ K. Using
Equation (1.1) on both sides yields, after rearranging :

(a− ϕ(a)) δ(b) = (b− ϕ(b)) δ(a). (1.2)

Now if ϕ ̸= idK , then there exists a ∈ K such that ϕ(a) ̸= a. Let γ = δ(a)/(a − ϕ(a)),
then it follows from (1.2) that δ(b) = γ (b− ϕ(b)) for all b ∈ K.

Remark 1.1. With the notations of Lemma 1.1, if δ ̸= 0 then δ = γ (idK − ϕ) for some
γ ∈ K∗.

Definition 1.2. Let K be a commutative field, ϕ an automorphism over K and δ a
pseudo-derivation w.r.t. ϕ. We refer to the triplet (K,ϕ, δ) as a ϕδ-field.

10

Chapter 1 Basics on Pseudo-linear Systems

Example 1.2. The familiar differential, difference and q-difference fields can be expressed
as ϕδ-fields in the following way:

- Differential case: K = C(x), ϕ = idK, and δ = d
dx

.

- Difference case: K = C(x), ϕ the C−automorphism over K defined by ϕ : x 7→ x+1,
and δ = idK − ϕ.

- q-Difference case: K = C(x), ϕ the C−automorphism defined by ϕ : x 7→ q x,
q ∈ C∗, and δ = idK − ϕ.

Definition 1.3. Given a ϕδ-field (K,ϕ, δ), the subfield CK ⊂ K containing all elements
c in K that satisfy ϕ(c) = c and δ(c) = 0 is called the field of constants of (K,ϕ, δ).

Remark 1.2. When ϕ ̸= idK, then ϕ(c) = c ⇐⇒ δ(c) = 0 for any c ∈ K.

We note that the operations on matrices (vectors) commute with ϕ and for two matrices
M and N , one has

δ(M +N) = δ(M) + δ(N),

and
δ(MN) = δ(M)ϕ(N) +Mδ(N) = ϕ(M)δ(N) + δ(M)N.

1.2 Pseudo-linear systems
We present in this section the notion of pseudo-linear systems as a unified class for express-
ing common types of linear functional systems such as linear differential and (q-)difference
systems.

Definition 1.4. A pseudo-linear system of size n over a ϕδ-field (K,ϕ, δ) is a system of
the form

δ(y) =M ϕ(y), (1.3)

where y is a column-vector of n unknowns and M ∈Mn(K).

Definition 1.5. A solution of pseudo-linear system (1.3) over K is a vector y ∈ Kn such
that δ(y) =M ϕ(y).

Remark 1.3. The set of solutions of System (1.3) over K is a vector space over CK of
dimension at most n (see [22]).

For ϕ ̸= idK , previous authors considered pseudo-linear systems of the form

ϕ(y) =M y. (1.4)

11

Chapter 1 Basics on Pseudo-linear Systems

In particular, Harris [62] studied difference systems where ϕ : x 7→ x+1, while Adams [14]
and Trjitzinsky [91] explored the q-difference case ϕ : x 7→ q x. A system of the form (1.4)
is what we call a ϕ-system in this thesis, and such a system will be considered later in
Chapter 3. Moreover, the authors in [25, 26, 28] found it convenient to consider linear
difference systems of the form

δ(y) =M y. (1.5)

In this thesis, we see System (1.3) the most general form to consider as introduced by
Jacobson [69], and the most adaptable for (most of) the algorithms developed later.
Anyhow, the conversion between systems (1.4), (1.5) and (1.3) could be easily carried
out. Indeed (recall that δ = γ(idK − ϕ) for some γ ∈ K∗):

1. System (1.4) can be rewritten as

y = ϕ−1(M)ϕ−1(y). (1.6)

Let ϕ̃ = ϕ−1 and δ̃ be a new pseudo-derivation w.r.t. ϕ̃ defined as δ̃ = idK − ϕ̃.
One thus has y = δ̃(y) + ϕ̃(y). Substituting this for y in the left hand side of (1.6)
yields, after rearranging, the system

δ̃(y) = N ϕ̃(y),

where N = ϕ̃(M)− In.

2. System (1.5) can be rewritten as

γ(y− ϕ(y)) =M y.

Applying ϕ−1 on both sides yields the system δ̃(y) = N ϕ̃(y), where ϕ̃ = ϕ−1,
δ̃ = ϕ̃(γ)(ϕ̃− idK) and N = ϕ̃(M).

3. Given a system of the form δ(y) = M ϕ(y). Applying ϕ−1 on both sides yields the
system

δ̃(y) = N y,

where δ̃ = ϕ̃(γ)(ϕ̃− idK), ϕ̃ = ϕ−1 and N = ϕ̃(M).

4. Given a system of the form δ(y) =M ϕ(y). Applying ϕ−1 on both sides yields, after
rearranging, the system

ϕ̃(y) = N y,

where ϕ̃ = ϕ−1 and N = ϕ̃(γ−1M + In). Note that a system of the form (1.3) can
be also written as

ϕ(y) = N y,

12

Chapter 1 Basics on Pseudo-linear Systems

with N = (γ−1M + In)
−1 provided that this matrix exists.

Consequently, after looking at the last sentence of Item 4, when we consider a pseudo-
linear system (1.3) with ϕ ̸= idK and δ = γ (idK − ϕ) for some γ ∈ K∗, we will always
assume that the matrix M + γ In is invertible. In this case, System (1.3) is called fully
integrable. Note that for a ϕ-system (1.4), being fully integrable means that the matrix
of the system is invertible.

Remark 1.4. Considering solutions over a suitable field extension F of K, every fully
integrable system admits a solution space of dimension n over CF = CK. We refer to
[75] where a notion of Picard-Vessiot extension is introduced in the pseudo-linear setting.
Moreover, from [26, Proposition 2], every ϕ-system ϕ(y) = B y can be effectively reduced
to a ϕ-system of smaller size with either B invertible (i.e., we have an equivalent fully
integrable system) or B = 0. For instance, the system

δ(y) =


−1 1 · · · 1

0
. . .

. . .
...

...
. . .

. . . 1

0 · · · 0 −1

 ϕ(y), ϕ ̸= idK , δ = idK − ϕ,

is not fully integrable. It can be reduced to the scalar pseudo-linear equation δ(y) = −ϕ(y)
which is equivalent to y = 0.

Given a pseudo-linear system of the form (1.3). For a matrix T ∈ GLn(K), performing
the change of variable y = T z yields a new pseudo-linear system δ(z) = N ϕ(z) where
N ∈Mn(K) is given by

N = T−1(M ϕ(T)− δ(T)).

Consequently, the notion of equivalence of two pseudo-linear systems of the form (1.3) is
given by the following definition:

Definition 1.6. Two pseudo-linear systems δ(y) = M ϕ(y) and δ(y) = N ϕ(y) over a
ϕδ-field (K,ϕ, δ), are said to be equivalent if there exists an invertible matrix T ∈ GLn(K)

such that
N = T−1 (M ϕ(T)− δ(T)) . (1.7)

We now define the notion of partial pseudo-linear systems. Such systems are the object
of study in Chapter 4. For i = 1, . . . ,m, let ϕi be an automorphism over K and δi be a
pseudo-derivation with respect to ϕi. We shall also refer to (K, {ϕi, δi}1≤i≤m) as a ϕδ-field.
The field of constants of (K, {ϕi, δi}1≤i≤m) is the subfield CK of K containing all elements
c in K that satisfy ϕi(c) = c and δi(c) = 0 for all i ∈ {1, . . . ,m}. In general, one has

CK =
m∩
i=1

CiK ,

13

Chapter 1 Basics on Pseudo-linear Systems

where CiK denotes the field of constants of the (particular) ϕδ-field (K,ϕi, δi).

Definition 1.7. Given a ϕδ-field (K, {ϕi, δi}1≤i≤m) such that CiK ̸= C
j
K for all i ̸= j. A

partial pseudo-linear system over (K, {ϕi, δi}1≤i≤m) of size n in m variables, is a system
of the form 

δ1(y)−M1 ϕ1(y) = 0,
...

δm(y)−Mm ϕm(y) = 0,

where y is a vector of n unknowns and Mi ∈Mn(K) for all i ∈ {1, . . . ,m}.

1.3 Local ϕδ-fields
In many situations, when looking for solutions (rational, series, ...) of a pseudo-linear
system, we may need some information at a “singularity”. In this thesis, the notion of
a singularity of pseudo-linear systems differs from that in the differential and difference
cases. Recall that for a first order differential system y′(x) = A(x)y(x), it is well known
(see e.g. [20, 84]) that the finite singularities are exactly the singularities of the matrix A,
i.e., the zeros of den(A). On the other hand, for a difference system ϕ(y(x)) = A(x)y(x)
where A is an invertible matrix and ϕ : x 7→ x + 1, the finite singularities are among
the shifts of the zeros of den(A) and den(A∗), where A∗ = ϕ−1(A−1) (see [36] for more
details).

Definition 1.8. Given a ϕδ-field (K,ϕ, δ) where ϕ is an automorphism over K acting on
a variable x, and δ is a ϕ-derivation. Denote by CK the field of constants of (K,ϕ, δ). A
point x0 in CK is said to be ϕ-fixed, or fixed by ϕ, if x − x0 and ϕj(x − x0) divide each
other for some j ∈ Z∗.

Definition 1.9. The singularities of a pseudo-linear system (1.3) defined over a ϕδ-field
(K,ϕ, δ) are all ϕ-fixed points, and the point at infinity.

Example 1.3. Given a a pseudo-linear system (1.3) over a ϕδ-field (K,ϕ, δ). Denote by
CK the field of constants of (K,ϕ, δ).

1. In the differential case where ϕ = idK, all the points in CK are ϕ-fixed.

2. In the difference case where ϕ : x 7→ x+ r with r ∈ C∗K, there are no ϕ-fixed points.
The only singularity here is ∞.

3. In the q-difference case ϕ : x 7→ q x where q ∈ C∗K is not a root of unity, the point 0
is the only ϕ-fixed point. The only singularities here are 0 and ∞.

14

Chapter 1 Basics on Pseudo-linear Systems

4. Let ϕ be the automorphism defined as ϕ : x 7→ q x + r where q ∈ C∗K is not a root
of unity and r ∈ CK. The only ϕ-fixed point is x0 = r

1−q
(see Proposition 3.3 in

Chapter 3). The only singularities here are x0 and ∞.

Definition 1.10. A local ϕδ-field (K,ϕ, δ) is a ϕδ-field equipped with a discrete valuation
ν : K → Z ∪ {∞}.

Recall that for a local ϕδ-field (K,ϕ, δ) equipped with a valuation ν, the following prop-
erties hold: for a, b ∈ K one has:

1. ν(a) = +∞ ⇐⇒ a = 0.

2. ν(a b) = ν(a) + ν(b).

3. ν(a+ b) ≥ min(ν(a), ν(b)), and equality holds if ν(a) ̸= ν(b).

We introduce now some terminology from [23] that could help to understand the concept
of local ϕδ-fields. The valuation ring of a local ϕδ-field (K,ϕ, δ) is defined as

O = { a ∈ K ; ν(a) ≥ 0 }.

The set M = { a ∈ K ; ν(a) > 0 } coincides with the set of non-invertible elements of O,
and it is the unique maximal ideal of O. The field R = O \M is called the residue field
of (K,ϕ, δ). We denote by π the canonical homomorphism from O into R.

Example 1.4.
1. Let K = C((x)), ϕ = idK and δ = d

dx
. The field (K,ϕ, δ) is a local ϕδ-field

equipped with the x-adic valuation ν defined by ν(f) = m if f = xm(f0+ f1 x+ . . .),
f0 ̸= 0 and ν(0) := ∞. The valuation ring is O = C[[x]]. The residue field can be
identified with C and π(a) = a(0) for a ∈ O.

2. Let K = C((x−1)), ϕ be the automorphism defined as ϕ : x 7→ x+r where r ∈ C∗,
and δ = idK − ϕ. Let t = x−1. The field (K,ϕ, δ) is a local ϕδ-field equipped with
the t-adic valuation defined by ν(f) = m if f = tm(f0 + f1 t + . . .), f0 ̸= 0 and
ν(0) := ∞. The valuation ring is O = C[[x−1]]. The residue field can be identified
with C and π(a) = a(∞) for a ∈ O.

Definition 1.11. Let (K,ϕ, δ) be a local ϕδ-field equipped with a valuation ν. Denote by
O its valuation ring. An element t ∈ O is said to be a local parameter of K if ν(t) = 1.

Let (K,ϕ, δ) be a local ϕδ-field equipped with a discrete valuation ν, and denote by R
its residue field. We fix a local parameter t of K. Every element f ∈ K can be uniquely
expanded as

f(t) = tν(f)
+∞∑
i=0

fi t
i,

15

Chapter 1 Basics on Pseudo-linear Systems

where the fi’s are in R and f0 ̸= 0. The definition of the valuation can be extended to a
matrix A ∈ Mm×n(K) by ν(A) = min {ν (A(i, j)) ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} where A(i, j)
denotes the (i, j)th entry of A. Any non zero matrix A ∈ Mm×n(K) can be uniquely
expanded as

A(t) = tν(A)

+∞∑
i=0

Ai t
i,

where the Ai’s are matrices with entries in R and A0 ̸= 0.

Definition 1.12. Given a local ϕδ-field (K,ϕ, δ). We define the degree of δ as

ω(δ) = inf
a∈K,a ̸=0

ν(a−1δ(a)).

Note that δ is continuous if and only if ω(δ) > −∞.

Lemma 1.2. ([23, Lemma 3.2]). Given a local ϕδ-field (K,ϕ, δ) and t a local parameter
of K. If δ ̸= 0 and ω(δ) > −∞. Then

ω(δ) = ν(t−1δ(t)).

Throughout this thesis, when talking about local ϕδ-fields, we assume that δ ̸= 0 and
ω(δ) > −∞, and that the automorphism ϕ is an isometry with respect to the valuation,
which means that ϕ preserves the valuation:

ν(ϕ(a)) = ν(a), ∀a ∈ K.

Using the latter assumption on ϕ, we can define the following:

Definition 1.13. Let (K,ϕ, δ) be a local ϕδ-field and R be its residue field. Let t be a
local parameter of K. We denote by c and d the two elements in R∗ satisfying

ϕ(t) = c t+O(t2), t−ωδ(t) = d t+O(t2),

where ω is the degree of δ, and inductively for h ∈ N+:

ϕ(th) = ch th +O(th+1), t−ω δ(th) = d [h]c t
h +O(th+1),

where [h]c is defined by:

[h]c =


1− ch

1− c
; c ̸= 1,

h ; c = 1.

Example 1.5.
1. Let K = C((x)), ϕ = idK, δ = d

dx
. The field (K,ϕ, δ) is a local ϕδ-field equipped

16

Chapter 1 Basics on Pseudo-linear Systems

with the t-adic valuation, where t = x is a local parameter of K. We have ω(δ) = −1
and c = d = 1.

2. Let K = C((x−1)), ϕ be the C-automorphism over K defined by ϕ : x 7→ x − 1,
and δ = idK − ϕ be a pseudo-derivation w.r.t. ϕ. The field (K,ϕ, δ) is a local ϕδ-field
equipped with the t-adic valuation, where t = x−1 is a local parameter of K. We have

ω(δ) = ν(t−1δ(t)) = ν(−(x− 1)−1) = 1.

Moreover, we have c = 1 and d = −1.

3. Let ϕ be the C-automorphism defined by ϕ : x 7→ q x+ r such that q ∈ C\{0, 1} and
r ∈ C. Let K = C((x − x0)) where x0 = r

1−q
and δ = idK − ϕ be a pseudo-derivation

w.r.t. ϕ. The field (K,ϕ, δ) is a local ϕδ-field equipped with the t-adic valuation, where
t = x− x0 is a local parameter of K. We have

ω = ω(δ) = ν(t−1δ(t)) = ν
(
(x− x0)−1(x− x0 − ϕ(x− x0))

)
= ν(1− q) = 0.

Moreover, we have c = q and d = 1− q.

1.4 Local pseudo-linear systems
In the rest of this chapter, we let (K,ϕ, δ) be a local ϕδ-field. We denote by O, respec-
tively R, its valuations ring, respectively residue field, and we fix a local parameter t of K.

Given a pseudo-linear system
δ(y) =M ϕ(y), (1.8)

defined ove (K,ϕ, δ). The matrix M ∈Mn(K) can be written as M = tω−p(M0+M1 t+. . .)

where the Mi’s are matrices with entries in R with M0 ̸= 0, p ∈ N is called the Poincaré
rank of (1.8) and ω ∈ Z is the degree of the ϕ-derivation δ. Multiplying (1.8) by tp−ω on
both sides yields the system

tp−ωδ(y) = N ϕ(y), (1.9)

where N ∈Mn(O).

Definition 1.14. A local pseudo-linear system of size n over a local ϕδ-field (K,ϕ, δ) is
a system of the form (1.9).

A local pseudo-linear system of the form (1.9) is obtained when we want to study a
pseudo-linear system of the form (1.3) in the neighbourhood of a given singularity x0. For
instance, System (1.3) defined over C(x) can be written as local pseudo-linear system by

17

Chapter 1 Basics on Pseudo-linear Systems

means of the map x → t + x0 if x0 ̸= ∞ or x → t−1 otherwise, and by embedding C(x)
into C((t)).

Example 1.6.
1. Let ϕ be the identity map over C(x) and δ = d

dx
. Consider the following differential

system defined over (C(x), ϕ, δ):

δ(y) =


x2 − 1

x (x2 + 1)
0

1

x2 + 1
−1

x

y.

We want to study the system near the ϕ-fixed (singular) point x0 = 0. We introduce the
local parameter t = x. The idea is to work with K = C((t)) equipped with the t-adic
valuation. The degree of δ is thus ω = −1 and the system can be written in the local
form (1.9) over (K,ϕ, δ) as

t δ(y) =


t2 − 1

t2 + 1
0

t

t2 + 1
−1

y,

with Poincaré rank p = 0.

2. Let ϕ be an automorphism over C(x) defined as ϕ : x 7→ x− 1, and δ = idK − ϕ be
a ϕ-derivation. Consider the following system defined over (C(x), ϕ, δ):

δ(y) =

 x+ 1
1

x

x2 1

ϕ(y),
We want to study the system near the only singularity ∞. We introduce the local
parameter t = x−1 and we work now with K = C((t)) equipped with the t-adic valuation.
The degree of δ is thus ω = 1 and the system can be written in the local form (1.9)
over (K,ϕ, δ) as

t2δ(y) =

 t+ t2 t3

1 t2

ϕ(y),
with Poincaré rank p = 3.

A local pseudo-linear system (1.9) can be written in the form

A δ̃(y) +B ϕ(y) = 0, (1.10)

18

where δ̃ = t−ωδ,

A = diag(tα1 , . . . , tαn), αi = −min{0, ν(N(i, .))− p},

and
B = −t−pAN ∈Mn(O).

Here N(i, .) denotes the ith row of N . A system of the form (1.10) will be the ob-
ject of study in Chapter 2 and we shall also call it a local pseudo-linear system. In the
sequel, we define the notion of equivalence of two pseudo-linear systems of the form (1.10).

Without any loss of generality, we suppose that ω = 0 and thus have δ̃ = δ. To
any pseudo-linear system (1.10), we associate the pseudo-linear operator

L = Aδ +B ϕ,

acting on Kn. The system is then written as L(y) = 0. Note that, in terms of operators,
we have

ϕ.T = ϕ(T)ϕ, δ.T = T δ + δ(T)ϕ,

for all T ∈Mn(K).

Definition 1.15. Two pseudo-linear operators L = Aδ+B ϕ and L′ = A′ δ+B′ ϕ are said
to be equivalent if there exist two invertible matrices S, T ∈ GLn(K) such that L′ = S LT ,
that is:

A′ = S AT, B′ = S A δ(T) + S B ϕ(T). (1.11)

Two pseudo-linear systems L(y) = 0 and L′(y) = 0 are equivalent if the operators L and
L′ are equivalent.

For further reading concerning pseudo-linear algebra, we refer to the introductory work
by Jacobson [69], the modern exposition in the context of computer algebra by Bronstein
and Petkovšek [48], and other notable works [23, 24, 47, 49, 79].

Chapter 2

On Simple Forms of Pseudo-Linear
Systems and their Applications

2.1 Introduction and motivation . 21
2.2 A direct algorithm to compute simple forms 23

2.2.1 The distinct steps . 24
2.2.2 An example . 29
2.2.3 The complete algorithm . 35

2.3 Simple forms and local analysis . 36
2.3.1 Moser- and super-irreducible forms 37
2.3.2 Regular solutions and regular singularities 40
2.3.3 k-simple forms . 42
2.3.4 Super-reduction using simple forms 45

This chapter constitutes the subject of the first half of the published paper [30] in
collaboration with M. A. Barkatou and T. Cluzeau.

20

Chapter 2 Simple Forms of Pseudo-Linear Systems

2.1 Introduction and motivation
In this chapter, we consider pseudo-linear systems over a local ϕδ-field (K,ϕ, δ). To fix
ideas, we let C be a field of characteristic zero and K = C((t)) be the field of Laurent series
in a variable t with coefficients in C, equipped with the t-adic valuation ν : K → Z∪{∞}
defined by ν(f) = m if f = xm(f0 + f1 x+ . . .), f0 ̸= 0 and ν(0) =∞. In our algorithms
and implementations, we assume that C is a computable field of characteristic zero. In
this chapter, we are merely interested in a (local) pseudo-linear system of the form

L(y) = Aδ(y) +B ϕ(y) = 0, (2.1)

where A, B ∈ Mn(C[[t]]) with det(A) ̸= 0. We assume that the C-automorphism ϕ over
K is an isometry with respect to ν, i.e., it preserves the valuation: ν(ϕ(a)) = ν(a), for all
a ∈ K, and δ is a non-trivial pseudo-derivation w.r.t. ϕ. The matrices A and B admit
unique t-adic expansions

A(t) =
∑
i≥0

Ait
i, B(t) =

∑
i≥0

Bit
i.

Definition 2.1. The leading matrix pencil of a pseudo-linear system (2.1) is defined as
the matrix polynomial Lλ = A0 λ + B0, where A0 and B0 are the constant terms in the
t-adic expansions of A and B.

We define the notion of simple form for a pseudo-linear system (2.1) as follows:

Definition 2.2. We say that System (2.1) is simple if det(Lλ) ̸= 0 (or equivalently, Lλ

is non-singular). Otherwise, we say that (2.1) is non-simple. This definition also applies
to pseudo-linear operators and to non-homogeneous systems Aδ(y) + B ϕ(y) = b, where
b ∈ C[[t]]n.

Example 2.1. The pseudo-linear system 1 0

0 t

 δ(y) +
 −1 + 2 t+O (t2) 0

−3
2
+ 3 t+O (t2) 0

ϕ(y) = 0, (2.2)

is non-simple since its associated leading matrix pencil

Lλ =

 λ− 1 0

−3
2

0


is singular.

The need of simple forms is essential in studying pseudo-linear systems. To see why,
let us consider, for instance, the problem of computing polynomial solutions of a linear

21

Chapter 2 Simple Forms of Pseudo-Linear Systems

q-difference system
y(q x) = N(x)y(x), (2.3)

where q ∈ C∗ is not a root of unity and N(x) is an n× n matrix with rational functions
entries in x and coefficients in C. A polynomial solution of degree s ∈ N can be viewed
as a local formal solution (at x =∞) of the form

y(x) =
∑
i≥0

yi x
−i+s

where yi ∈ Cn, y0 ̸= 0 and yi = 0 for i > s. The idea now is to work with K = C((t))

where t = x−1, and we rewrite System (2.3) as a local pseudo-linear system of the form
(2.1) (see Sections 1.2 and 1.4) with ϕ(t) = q t and δ = idK − ϕ. We now look for formal
solutions of the form y(t) =

∑
i≥0 yit

i+s where s ∈ N and yi ∈ Cn with y0 ̸= 0. Replacing
ϕ(y), δ(y), A and B by their respective t-adic expansions in System (2.1) and comparing
coefficients of the same power of t yields, amongst others, the equation

(A0(q
−s − 1) +B0)y0 = 0.

This implies that, if a q-difference system (2.3) has a non-zero polynomial solution of
degree s, then (q−s − 1) must be a root of det(A0 λ + B0) = det(Lλ). Consequently, the
degree of any polynomial solution of (2.3) can be bounded by the largest non-negative
integer s such that (q−s−1) is a root of det(Lλ). But, it may happen that det(Lλ) vanishes
identically in λ, which means that (2.1) is non-simple. In this case, no useful information
can be obtained, unless we are able to compute an equivalent system (see Definition 1.15)
which is simple, or in other words, a simple form of (2.1). In this spirit, we present in this
chapter an efficient algorithm that allows to compute a simple form of any pseudo-linear
system of the form (2.1).

Example 2.2. The equivalence transformations defined by the two matrices

S(t) =


1

t
− 2

3 t

0
1

t

 , T (t) =

 t
2

3 t

0 1


reduce (2.2) to the equivalent simple system

δ(y) +

 −1 −2
3

−3 + 6 t+O (t2) −2 + 4 t+O (t2)

 ϕ(y) = 0, (2.4)

22

Chapter 2 Simple Forms of Pseudo-Linear Systems

with a non-singular leading matrix pencil

L′
λ =

 λ− 1 −2
3

−3 λ− 2

 .
Prior to our work, the existing methods [24, 49] for computing a simple form of a
pseudo-linear system require to compute first a super-irreducible form [23]. Motivated by
the fact that a simple system is not necessarily super-irreducible, the authors in [27, 59]
developed the first direct (that is, without recourse to super-reduction) algorithm for
computing simple forms for differential systems and later on in [28] for difference systems.
The main contribution of this chapter is to provide a unified and direct algorithm for
computing simple forms of general pseudo-linear systems. Consequently, this shall give
the first method available for q-difference systems.

The rest of the chapter is organized as follows. Section 2.2 contains our main contribution
of this chapter, i.e., an algorithm for computing simple forms for general pseudo-linear
systems of the form (2.1). We show that for a given pseudo-linear operator L, we can
always compute two invertible matrices S and T in Mn(K) such that the equivalent
operator S LT is simple. We illustrate our approach with a detailed example and we
provide a complexity estimate of the algorithm. Section 2.3 is devoted to the applications
of simple forms for the local study of pseudo-linear systems. We show how we can use
simple forms as an essential tool for computing regular solutions. Moreover, we introduce
the notion of k-simple forms in the pseudo-linear setting, and we derive a new method
for computing a super-irreducible form of a pseudo-linear system based on successive
computations of simple forms.

The algorithms and methods developed in this chapter manipulate matrices with power
series entries. However, in practice only a finite number of coefficients is necessary and we
work with truncated power series. Moreover, the different algorithms developed in this
chapter are fully implemented in Maple in our PseudoLinearsystems package [32]. A
Maple demonstration for the implementations is given in Chapter 5.

2.2 A direct algorithm to compute simple forms
The goal of this section is to provide a unified direct algorithm for computing simple
forms of a general pseudo-linear system of the form (2.1). We shall prove that the method
developed in [27, 28, 34, 59] for the purely differential (or difference) case can be adapted
to the general pseudo-linear setting. The key points are the use of the general notion of
equivalence (see Definition 1.15) and the fact that the C-automorphism ϕ preserves the

23

Chapter 2 Simple Forms of Pseudo-Linear Systems

valuation. When System (2.1) is not simple, then we have ν(det(A)) > 0 (otherwise, A0

would be invertible and hence det(A0 λ + B) ̸= 0). The principle of the algorithm then
consists in computing iteratively equivalent pseudo-linear systems A(i) δ(y)+B(i) ϕ(y) = 0,
i ≥ 1 satisfying ν(det(A(i+1))) < ν(det(A(i))) with A(0) = A. Doing so, either we find a
simple system or we finally obtain an equivalent system satisfying ν(det(A(i))) = 0 and
such a system is necessarily simple. In order to decrease ν(det(A)), we shall first apply
equivalence transformations in order to put the leading matrix pencil under a particular
form from which we can reduce ν(det(A)).

2.2.1 The distinct steps

Let us consider a non-simple pseudo-linear system of the form (2.1). The constant term
A0 of A is then necessarily singular, so we have r = rank(A0) < n. Applying, if necessary,
two constant equivalence transformations S and T as in Definition 1.15, we can always
suppose that A0 has the form:

A0 =

(
Ir 0

0 0

)
. (2.5)

All non-simple systems considered in the method described below are transformed so that
A0 complies to the form (2.5). If we partition B0 and Lλ in four blocks as in (2.5), we
get:

B0 =

B11
0 B12

0

B21
0 B22

0

 , Lλ =

Irλ+B11
0 B12

0

B21
0 B22

0

 . (2.6)

Following the terminology of [28], we refer to the last (n−r) rows of Lλ as the λ-free rows.
We are now ready to state the main results on which our algorithm for computing simple
forms relies: Proposition 2.1 shows that it is always possible to transform a pseudo-linear
operator into an equivalent one with a leading matrix pencil having its λ-free rows linearly
dependent. Proposition 2.2 shows that if the λ-free rows of the leading matrix pencil are
linearly dependent, then we can reduce ν(det(A)).

Proposition 2.1. Consider a non-simple pseudo-linear system of the form (2.1) such
that A0 has the form (2.5) and the λ-free rows of Lλ are linearly independent. Then one
can compute two matrices S ∈ GLn(C[[t

−1]]) and T ∈ GLn(C[[t]]) such that the equivalent
operator L̂ = S LT has an associated leading matrix pencil of the form

L̂λ =

Ipλ+R11 R12 R13

0 Ir−pλ+R22 R23

0 R32 R33

 ,

{
0 ≤ p ≤ r,

rank(R32 R33) < n− r.
(2.7)

Moreover if we note L̂ = Â δ + B̂ ϕ, then ν(det(Â)) = ν(det(A)).

24

Chapter 2 Simple Forms of Pseudo-Linear Systems

Proof. The proof is an adaptation of those of [28, Lemma 1 and Proposition 8] to the
general pseudo-linear setting. The first step consists in applying recursively constant
equivalence transformations in order to obtain an operator L′ = S LT having a leading
matrix pencil of the particular form:

L′
λ =

Ipλ+R11 0 0

R21 Ir−pλ+R22 R23

R31 R32 R33

 , (2.8)

where 0 ≤ p ≤ r and
rank (R32 R33) < n− r. (2.9)

To do so, we initialize an integer q to 0, and let

S(q) =

Iq 0 0

0 1 v

0 0 In−q−1

 , T (q) =

1 −u 0

0 Ir−q−1 0

0 0 In−r+q

 ,

be two n×n constant matrices where (1 v) is an (n−q)-dimensional row vector in the left
null space of Lλ/λ=0, and u is the subvector of v of index 1 to r− q− 1. Multiplying L on
the left by S(q) and on the right by T (q) yields the (non-simple) operator L̃ = S(q)LT (q),

such that its associated leading matrix pencil L̃λ is of the form (2.8) with p = q + 1.
Now, if Condition (2.9) is satisfied, then we move to the second step. Otherwise, by
incrementing the value of q by 1, we shall repeat this process for the (singular) submatrix
of L̃λ composed of rows and columns of indices q+1 to n. Thus, after at most r iterations,
we reach an equivalent operator L′ = S LT = A′ δ+B′ ϕ whose leading matrix pencil L′

λ

satisfies Condition (2.9), with

S = S(q) · · · S(0), T = T (0) · · · T (q).

It is important to note here that since the above transformations are constants, the
valuation of the determinant of matrix A does not change (more importantly, it does not
increase). Now we partition A′ and B′ into blocks of the same sizes as those of the matrix
given in (2.8), that is

A′ =

A
11 A12 A13

A21 A22 A23

A31 A32 A33

 , B′ =

B
11 B12 B13

B21 B22 B23

B31 B32 B33

 ,

with A11 = Ip, A22 = Ir−p, and the blocks Aij, B12 and B13 are of positive valuations.
The second step consists in multiplying the operator L� on the left by the diagonal matrix
S = diag(t−1 Ip, Ir−p, In−r), and on the right by T = S−1. This yields an equivalent

25

Chapter 2 Simple Forms of Pseudo-Linear Systems

operator L̂ = S L′ T = Â δ + B̂ ϕ, where Â and B̂ are given by

Â = S A′ T =

 A11 t−1A12 t−1A13

t A21 A22 A23

t A31 A32 A33

 ,

and

B̂ = S A′ δ(T) + S B ϕ(T) =

t
−1 δ(t)A11 + t−1 ϕ(t)B11 t−1B12 t−1B13

δ(t)A21 + ϕ(t)B21 B22 B23

δ(t)A31 + ϕ(t)B31 B32 B33

 .

Finally, since ϕ preserves the valuation, the leading matrix pencil L̂λ of L̂ has the form
(2.7) with ν(det(Â)) = ν(det(A′)) = ν(det(A)). This ends the proof.

Example 2.3. Let us illustrate the result of Proposition 2.1 on a q-difference system.
Let t = x and q ∈ C be a nonzero element which is not a root of unity. We consider the
q-difference system ϕ(y) = N y with ϕ defined by ϕ : x 7→ q x and

N =


q2 + 1

q
−(β + x) q

x
x

q x+ β
0

 .
Here β denotes a nonzero parameter. Note that for β = 100, we find again the q-difference
system considered in [5, Section 4]. Introducing the ϕ-derivation δ = ϕ− idK, this system
can be rewritten as the pseudo-linear system δ(y) =M ϕ(y) where

M = I2 −N−1 =

 1 −q x+ β

x

x

(β + x) q
−(q3 − q2 + q)x+ β

(β + x) q2

 .
In order to get the form (2.1), it is enough to multiply the latter system on the left by
the diagonal matrix diag(x, x + β). This yields the (local) pseudo-linear system L(y) =
Aδ(y) +B ϕ(y) = 0, where

A =

 x 0

0 x+ β

 , B =

 −x q x+ β

−x
q

(q3 − q2 + q)x+ β

q2

 . (2.10)

We are now ready to illustrate the result of Proposition 2.1. The leading matrix of A and

26

Chapter 2 Simple Forms of Pseudo-Linear Systems

the associated leading matrix pencil are

A0 =

 0 0

0 β

 , Lλ =

 0 β

0 β λ+ β q−2

 .
The operator L is clearly not simple as det(Lλ) = 0 and we have ν(det(A)) = 1. First of
all, we apply on L the constant transformations

S(1) =

 0 β−1

1 0

 , T (1) =

 0 1

1 0

 ,
in order to put A0 in the form (2.5) with r = 1. We then get a new operator L(1) =

S(1) LT (1) whose leading matrix pencil is

L
(1)
λ =


λ+ q−2 0

β 0

.

We now multiply L(1) on the left by the constant matrix

S(2) =

 1 − 1

β q2

0 1

 ,
whose first row is a “convenient” element of the left null-space of L(1)

0 . This yields an
equivalent operator L(2) = S(2) L(1) whose leading matrix pencil is

L
(2)
λ =

 λ 0

β 0

 ,
which complies with the form (2.8) and where Condition (2.9) is satisfied. We then proceed
by applying on L(2) the two diagonal transformations defined by S(3) = diag(x−1, 1) and
T (3) = diag(x, 1) to get a new operator L(3) = S(3) L(2) T (3) whose leading matrix pencil

L
(3)
λ =

 λ+ q − 1
−λ− q + 1

β q2

0 0

 ,
is of the form (2.7). Finally, we multiply L(3) on the right by the constant matrix

27

Chapter 2 Simple Forms of Pseudo-Linear Systems

T (4) =

 1
1

β q2

0 1


to put A0 in the required form (2.5), and get an equivalent operator L(4) = A(4) δ +B(4) ϕ

with

A(4) =

 β + x

β

x

β2 q2

0 x

 , B(4) =


(q − 1) (β + x (q + 1))

β

x (q2 − 1)

β2 q2

(q x+ β) q x
((−q + 1) β + q x)x

q β

 ,

L
(4)
λ =


λ+ q − 1 0

0 0

.

Note that we have ν(det(A(4))) = ν(det(A)) = 1.

Proposition 2.2. Consider a non-simple pseudo-linear system of the form (2.1) such that
its associated leading matrix pencil Lλ has the form (2.6) with rank(B21

0 B22
0) < n − r.

Then one can compute an invertible matrix S ∈ GLn (C[[t
−1]]) such that the equivalent

operator L̂ = S L = Â δ + B̂ ϕ satisfies ν(det(Â)) < ν(det(A)).

Proof. The proof is an adaptation of those of [28, Proposition 9] and [59, Proposition
4.3.1]. First of all, we can compute a non zero row vector of the form u = (0 . . . 0 1 w) in
the left null space of the submatrix (B21

0 B22
0). Here w ∈ Kn−i where i stands for the

position of 1 in u. Multiplying L on the left by the constant matrix

S1 =

Ii−1 0 0

0 1 w

0 0 In−i

 ,

yields an equivalent operator L = S1 L = Aδ + B ϕ such that the matrices A0 and
B0 have their (r + i)th row equal to zero. We then apply the diagonal transformation
S2 := diag(1, . . . , 1, t−µ, 1, . . . , 1) where µ = min{ν(A(r + i, .)), ν(B(r + i, .))} > 0 to get
an equivalent operator L̂ = S2 S1 L = Â δ + B̂ ϕ. We thus have the equalities

ν(det(Â)) = ν(det(S2)) + ν(det(S1)) + ν(det(A)) = −µ+ ν(det(A)).

This implies ν(det(Â)) < ν(det(A)) which ends the proof.

Example 2.4. In Example 2.3, without modifying the valuation of the determinant of the
matrix A, we have obtained an equivalent operator L(4) whose leading pencil is of the form
(2.7). We shall then proceed by reducing the value of the valuation of the determinant of
the matrix A(4). We note that here r = 1 and the second row of the leading pencil L(4)

λ

28

Chapter 2 Simple Forms of Pseudo-Linear Systems

is already zero. The second rows of both A(4) and B(4) are of valuation 1, so we apply
the transformation defined by S(5) = diag(1, x−1) to obtain the new equivalent operator
L(5) = S(5) L(4) = A(5) δ +B(5) ϕ with

A(5) =


x

β
+ 1

x

β2 q2

0 1

 , B(5) =


(q − 1) (β + x (q + 1))

β

x
(
q2 − 1

)
β2 q2

(qx+ β) q
β + (x− β) q

β q

 . (2.11)

As expected, we have ν(det(A(5))) = 0 < 1. The leading matrix pencil of L(5) is given by

L
(5)
λ =


λ+ q − 1 0

β q
1 + (λ− 1) q

q


,

and L(5) is a simple q-difference operator. Finally the matrices that transform the non-
simple operator L into the simple operator L(5) are given by

S = S(5) S(3) S(2) S(1) =

 −
1

β x q2
1

β x

1

x
0

 , T = T (1) T (3) T (4) =

 0 1

x
x

β q2

 .

2.2.2 An example

Let ϕ : x 7→ 2x − 1 be a C-automorphism over K and δ = idK − ϕ be a ϕ-derivation.
Consider the pseudo-linear operator L = Aδ +B ϕ, where A and B are given by:

A =



1 0 0 0 0

0 x 0 0 0

0 0 x− 1 0 0

0 0 0 x− 1 0

0 0 0 0 x− 1


, B =



1 x 0 0 x− 1

0 0 0 0 1

0 1 0 (x− 1)2 0

1 0 x− 1 0 0

0 1 0 0 x3 − 2x2 + x


.

Let us compute a simple form at the ϕ-fixed point x0 = 1 (see Definition 1.8). For this
we set t = x− 1 and we note that ν(det(A)) = 3. The associated leading matrix pencil is

Lλ = A0 λ+B0 =



λ+ 1 1 0 0 0

0 λ 0 0 1

0 1 0 0 0

1 0 0 0 0

0 1 0 0 0


,

29

Chapter 2 Simple Forms of Pseudo-Linear Systems

and its determinant vanishes identically in λ, therefore the operator L is non-simple. The
λ-free rows of Lλ are linearly dependent and A0 is already of the form (2.5) with r =

rank(A0) = 2. So we shall first apply Proposition 2.2. The vector (1 w1 w2) = (1 0 − 1)

is in the left null space of the matrix constituting the λ-free rows of Lλ. Multiplying L
on the left by the constant matrix

S(1) =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 −1

0 0 0 1 0

0 0 0 0 1


,

yields an equivalent operator L(1) = S(1) L = A(1) δ +B(1) ϕ, where

A(1) =



1 0 0 0 0

0 x 0 0 0

0 0 x− 1 0 −x+ 1

0 0 0 x− 1 0

0 0 0 0 x− 1


, B(1) =



1 x 0 0 x− 1

0 0 0 0 1

0 0 0 (x− 1)2 −x (x− 1)2

1 0 x− 1 0 0

0 1 0 0 x (x− 1)2


.

The third rows of A(1) and B(1) have valuations equal to 1 and 2 respectively. Let
µ = min{1, 2} = 1 and multiply L(1) on the left by the diagonal matrix

S(2) = diag(1, 1, (x− 1)−µ, 1, 1).

This yields an equivalent operator L(2) = S(2) L(1) = A(2) δ +B(2) ϕ, with

A(2) =



1 0 0 0 0

0 x 0 0 0

0 0 1 0 −1

0 0 0 x− 1 0

0 0 0 0 x− 1


, B(2) =



1 x 0 0 x− 1

0 0 0 0 1

0 0 0 x− 1 − (x− 1)x

1 0 x− 1 0 0

0 1 0 0 x (x− 1)2


,

30

Chapter 2 Simple Forms of Pseudo-Linear Systems

L
(2)
λ = A

(2)
0 λ+B

(2)
0 =



λ+ 1 1 0 0 0

0 λ 0 0 1

0 0 λ 0 −λ

1 0 0 0 0

0 1 0 0 0


.

The operator L(2) is still non-simple but we have decreased the valuation of the determi-
nant of the A-matrix as ν

(
det(A(2))

)
= 2 < ν (det(A)) = 3. We restart the process on

L(2). Multiply first L(2) on the right by the constant matrix

T (3) =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 1

0 0 0 1 0

0 0 0 0 1


,

in order to put A
(2)
0 in the required form (2.5). This yields the equivalent operator

L(3) = L(2) T (3) = A(3) δ +B(3) ϕ, with

A(3) =



1 0 0 0 0

0 x 0 0 0

0 0 1 0 0

0 0 0 x− 1 0

0 0 0 0 x− 1


, B(3) =



1 x 0 0 x− 1

0 0 0 0 1

0 0 0 x− 1 − (x− 1)x

1 0 x− 1 0 x− 1

0 1 0 0 x3 − 2x2 + x


,

L
(3)
λ = A

(3)
0 λ+B

(3)
0 =



λ+ 1 1 0 0 0

0 λ 0 0 1

0 0 λ 0 0

1 0 0 0 0

0 1 0 0 0


.

The λ-free rows of L
(3)
λ are linearly independent and A

(3)
0 is of the form (2.5)

with r = rank(A(3)
0) = 3. So we shall now apply Proposition 2.1. The vector

(1 v1 v2 v3 v4) = (1 0 0 − 1 − 1) is in the left null space of L(3)
λ/λ=0. Multiplying

L(3) on the left by the constant matrix

31

Chapter 2 Simple Forms of Pseudo-Linear Systems

S(4) =



1 0 0 −1 −1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


,

and on the right by T (4) = I5, yields an equivalent operator L(4) = S(4) L(3) T (4) =

A(4) δ +B(4) ϕ, with

A(4) =



1 0 0 −x+ 1 −x+ 1

0 x 0 0 0

0 0 1 0 0

0 0 0 x− 1 0

0 0 0 0 x− 1


, B(4) =



0 x− 1 −x+ 1 0 −x3 + 2x2 − x

0 0 0 0 1

0 0 0 x− 1 − (x− 1)x

1 0 x− 1 0 x− 1

0 1 0 0 x3 − 2x2 + x


,

L
(4)
λ = A

(4)
0 λ+B

(4)
0 =



λ 0 0 0 0

0 λ 0 0 1

0 0 λ 0 0

1 0 0 0 0

0 1 0 0 0


.

L
(4)
λ complies with the form (2.8) with p = 1 and Condition (2.9) is satisfied. We then

proceed by applying on L(4) the diagonal transformations defined by

S(5) = diag((x− 1)−1, 1, 1, 1, 1), T (5) = diag(x− 1, 1, 1, 1, 1),

to get a new operator L(5) = S(5) L(4) T (5) = A(5) δ +B(5) ϕ, with

A(5) =



1 0 0 −1 −1

0 x 0 0 0

0 0 1 0 0

0 0 0 x− 1 0

0 0 0 0 x− 1


, B(5) =



−1 1 −1 0 − (x− 1)x

0 0 0 0 1

0 0 0 x− 1 − (x− 1)x

2x− 2 0 x− 1 0 x− 1

0 1 0 0 x (x− 1)2


,

32

Chapter 2 Simple Forms of Pseudo-Linear Systems

L
(5)
λ = A

(5)
0 λ+B

(5)
0 =



λ− 1 1 −1 −λ −λ

0 λ 0 0 1

0 0 λ 0 0

0 0 0 0 0

0 1 0 0 0


.

The matrix A
(5)
0 is not in the form (2.5) so we can multiply L(5) on the right by the

constant matrix

T (6) =



1 0 0 1 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


,

and get an equivalent operator L(6) = L(5) T (6) = A(6) δ +B(6) ϕ, where

A(6) =



1 0 0 0 0

0 x 0 0 0

0 0 1 0 0

0 0 0 x− 1 0

0 0 0 0 x− 1


, B(6) =



−1 1 −1 −1 −x2 + x− 1

0 0 0 0 1

0 0 0 x− 1 − (x− 1)x

2x− 2 0 x− 1 2 x− 2 3x− 3

0 1 0 0 x (x− 1)2


,

and with an associated leading matrix pencil

L
(6)
λ = A

(6)
0 λ+B

(6)
0 =



λ− 1 1 −1 −1 −1

0 λ 0 0 1

0 0 λ 0 0

0 0 0 0 0

0 1 0 0 0


,

having the form (2.7). Note that we have ν
(
det(A(6))

)
= ν

(
det(A(3))

)
= 2 (in fact

we have A(6) = A(3) by coincidence). We are now ready to apply Proposition 2.2 in
order to reduce ν

(
det(A(6))

)
. The fourth row of L(6)

λ is already zero and the fourth
rows of both matrices A(6) and B(6) are of valuations 1, so we multiply L(6) on the left
by the matrix S(7) = diag(1, 1, 1, (x − 1)−1, 1) to obtain the new equivalent operator
L(7) = S(7) L(6) = A(7) δ +B(7) ϕ, where

33

Chapter 2 Simple Forms of Pseudo-Linear Systems

A(7) =



1 0 0 0 0

0 x 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 x− 1


, B(7) =



−1 1 −1 −1 −x2 + x− 1

0 0 0 0 1

0 0 0 x− 1 − (x− 1)x

2 0 1 2 3

0 1 0 0 x3 − 2x2 + x


.

As expected, we have ν
(
det(A(7))

)
= 1 < ν

(
det(A(6))

)
= 2. Moreover, L(7) is an equiva-

lent simple pseudo-linear operator with a non-singular leading matrix pencil given by

L
(7)
λ = A

(7)
0 λ+B

(7)
0 =



λ− 1 1 −1 −1 −1

0 λ 0 0 1

0 0 λ 0 0

2 0 1 λ+ 2 3

0 1 0 0 0


.

Finally the matrices that transform the non-simple operator L into the equivalent simple
operator L(7) are given by

S = S(7) S(5) S(4) S(2) S(1) =



1

x− 1
0 0 − 1

x− 1
− 1

x− 1

0 1 0 0 0

0 0
1

x− 1
0 − 1

x− 1

0 0 0
1

x− 1
0

0 0 0 0 1


,

T = T (3) T (4) T (5) T (6) =



x− 1 0 0 x− 1 x− 1

0 1 0 0 0

0 0 1 0 1

0 0 0 1 0

0 0 0 0 1


.

34

Chapter 2 Simple Forms of Pseudo-Linear Systems

2.2.3 The complete algorithm

Applying recursively Propositions 2.1 and 2.2 provides an algorithm, called SimpleForm
below, to compute a simple form of a pseudo-linear system of the form (2.1). The algo-
rithm takes as an input the two matrices A and B in Mn(C[[t]]), the C-automorphism
ϕ, the ϕ-derivation δ (those of the pseudo-linear operator L = Aδ + B ϕ) and the local
parameter t. It returns four matrices Â, B̂, S and T such that the equivalent operator
L̂ = S LT = Â δ + B̂ ϕ is simple, and the polynomial det(L̂λ) which is thus non-zero.

Algorithm SimpleForm

Input: Two matrices A and B, the automorphism ϕ, the ϕ-derivation δ (those of
L = Aδ +B ϕ) and a local parameter t.

Output: Four matrices Â, B̂, Ŝ and T̂ such that the operator L̂ = Ŝ L T̂ = Â δ + B̂ ϕ

is simple, and the polynomial det(L̂λ).

Initialization: Ŝ ← In, T̂ ← In, Â← A, B̂ ← B and L̂λ ← A0 λ+B0;
While det(L̂λ)=0 do

1. Compute two matrices S and T as in Proposition 2.1;
2. Update Â← S Â T , B̂ ← S Â δ(T) + S B̂ ϕ(T), Ŝ ← S Ŝ and T̂ ← T̂ T ;
3. Compute a matrix S as in Proposition 2.2;
4. Update Â← S Â, B̂ ← S Â+ S B̂ and Ŝ ← S Ŝ;
5. Set L̂λ = Â0 λ+ B̂0;

end do
Return Â, B̂, Ŝ, T̂ and det(L̂λ);

Remark 2.1. Before Steps 1 and 3 of the above algorithm, one needs to apply, if necessary,
constant transformations in order to put Â0 in the form (2.5).

Remark 2.2. As it is explained in the beginning of Section 2.2, in each passage through
the While loop in Algorithm SimpleForm, the value of ν(det(Â)) decreases at least by
1. This happens in Step 4 of the algorithm (see Proposition 2.2). Thus, after at most
ν(det(A)) iterations where A is the matrix given in input, we find an equivalent simple
system.

The arithmetic complexity of this algorithm is studied in [59] in the case of differential
systems. However, the algorithm merely performs linear algebra calculations on the first
coefficients in the t-adic expansions of the matrices A and B defining System (2.1). Indeed,
apart from constant transformations, Formulas (1.11) are only used with diagonal matrices
S and T of a very particular form, e.g., only powers of t can appear in the diagonal, so that
the automorphism ϕ and the ϕ-derivation δ will not influence the number of arithmetic
operations. We thus state the following complexity estimate of Algorithm SimpleForm.

35

Chapter 2 Simple Forms of Pseudo-Linear Systems

Proposition 2.3. Let us consider a pseudo-linear system (2.1). Let h = ν(det(A)) and
suppose that the t-adic expansions of A and B are known up to an order m ≥ h. Then
Algorithm SimpleForm computes a simple form of (2.1) using at most O(nω+1 h+mn3 h)

arithmetic operations in the field C, where ω denotes the linear algebra exponent (see [94]).

Proof. This follows from the previous explanations and [59, Lemmas 4.3.1, 4.3.2, 4.3.3].

2.3 Simple forms and local analysis
Simple forms are very useful for the local analysis of pseudo-linear systems over the field
C(x) of rational functions near a ϕ-fixed singular point x0 - see Definition 1.8. Recall that
(see Section 1.4) in order to locally study a pseudo-linear system, we fix a local parameter
t (for instance, t = x − x0 or t = x−1 depending on x0 being finite or not), we imbed
C(x) in the local ϕδ-field (K,ϕ, δ) where K = C((t)), and we write the system as a local
pseudo-linear system (1.9). We remind the reader that this latter system is a system of
the form

tp−ωδ(y) =Mϕ(y), (2.12)

where M =
∑

i≥0Mi t
i ∈ Mn(O) with O = C[[t]], p ∈ N is the Poincaré rank of (2.12)

and ω ∈ Z is the degree of the ϕ-derivation δ. Recall that System (2.12) can be written
as

A δ̃(y) +B ϕ(y) = 0, (2.13)

where δ̃ = t−ω δ, A = diag(tα1 , . . . , tαn) ∈Mn(O) with αi = −min{0, ν(M(i, .))−p}, and
B = −t−pAM ∈ Mn(O). Here M(i, .) denotes the ith row of M . Then, System (2.12) is
said to be simple if System (2.13) is simple.

Definition 2.3. ([23, 24]). With the above notations, a local pseudo-linear system of the
form (2.12) or (2.13) is said to be of the first kind if it is equivalent to a system with
Poincaré rank equal to 0. In this case, the singularity x0 is said to be regular. Otherwise,
x0 is said to be an irregular singularity.

Note that an equivalent system of (2.12) has to be of the form

tp−ωδ(y) = T−1
(
M ϕ(T)− tp−ω δ(T)

)
ϕ(y),

for some T ∈ GLn(K) (see Definition 1.6). We define the indicial polynomial of a simple
pseudo-linear system as follows:

Definition 2.4. With the above notations, let us consider a simple system of the

36

Chapter 2 Simple Forms of Pseudo-Linear Systems

form (2.13) or (2.12). We define its indicial polynomial as

φ(λ) = det(d [λ]cA0 + cλB0), (2.14)

where d, c and [λ]c are defined in Definition 1.13.

Remark 2.3. When System (2.13) or (2.12) is simple, we have det(Lλ) = det(A0 λ +

B0) ̸= 0 so that φ(λ) ̸= 0. For the differential case (ϕ = idK) and the difference case
(ϕ : t 7→ t + 1), we have c = d = 1 which yields φ(λ) = det(Lλ) a polynomial in λ. In
general, if c = 1 then φ(λ) is a polynomial in λ. Otherwise, if c ∈ C∗ is not a root of
unity and d is not an eigenvalue of the matrix A0 λ+(c−1)B0, then φ(λ) is a polynomial
in cλ. By abuse of language, we shall also call it polynomial and its “roots” are the values
of λ such that cλ annihilates φ(λ). They can be computed using [24, Lemma 3.1].

In this section, we first recall the notions of Moser- and super-irreducible forms of pseudo-
linear systems in the same context as introduced in [23], and we establish the connection
between the notions of super-irreducibility and simplicity. Then we show how Algorithm
SimpleForm can be used to determine the nature of a singularity in the regular / irregular
classification, to compute a basis of regular solutions, and to compute so called k-simple
forms which are closely related to super-irreducible forms. Finally we propose a new
method to compute a super-irreducible form of a pseudo-linear system based on successive
computations of k-simple forms.

2.3.1 Moser- and super-irreducible forms

The notion of Moser-irreducible forms introduced by Moser [78] and its generalisation,
the super-irreducible forms introduced by Hilali and Wazner [67], have been proven to
be essential concepts for the symbolic resolution of differential and difference systems,
see for instance [25, 86]. The notions of Moser- and super-irreducible forms have been
extended for more general pseudo-linear systems in [23]. In the following, we briefly recall
these notions. Denote by π the canonical homomorphism from O = C[[t]] into C.

We associate to the local pseudo-linear system (2.12) with Poincaré rank p the fol-
lowing rational numbers:

mϕ,δ(M) =

p+
rank(M0)

n
if p > 0,

0 if p = 0,

and
µϕ,δ(M) = min

{
mϕ,δ

(
T−1

(
M ϕ(T)− tp−ω δ(T)

))
; T ∈ GLn(K)

}
.

37

Chapter 2 Simple Forms of Pseudo-Linear Systems

Definition 2.5. System (2.12) is said to be Moser-irreducible if mϕ,δ(M) = µϕ,δ(M).
Otherwise it is said to be Moser-reducible.

Remark 2.4. The singularity is regular in the sense of Definition 2.3 if and only if
µϕ,δ(M) = 0.

The following result gives a criterion for Moser-irreducibility:

Theorem 2.1. ([23, Theorem 3.1]). Suppose that p > 0 and let n0 = rank(M0). Then
System (2.12) is Moser-irreducible if and only if the polynomial

θ1(λ) = π
(
tn0 det

(
In λ− t−1M

))
∈ O[λ],

does not vanish identically in λ.

Remark 2.5. One can easily verify that the polynomial θ1(λ) depends only on M0 and
M1:

θ1(λ) = π
(
tn0 det

(
In λ− t−1M0 −M1

))
.

Now suppose that the Poincaré rank p of System (2.12) satisfies p > 0. Denote by ni the
number of rows of M with valuation i. Define, for 1 ≤ k ≤ p, the rational numbers

m
(k)
ϕ,δ(M) = p+

n0

n
+
n1

n2
+ · · ·+ nk−1

nk
,

and
µ
(k)
ϕ,δ(M) = min

{
m

(k)
ϕ,δ

(
T−1

(
M ϕ(T)− tp−ω δ(T)

))
; T ∈ GLn(K)

}
.

Definition 2.6. System (2.12) is said to be k-irreducible if m(k)
ϕ,δ(M) = µ

(k)
ϕ,δ(M). Oth-

erwise it is said to be k-reducible. System (2.12) is said to be super-irreducible if it is
k-irreducible for every k, or equivalently if m(p)

ϕ,δ(M) = µ
(p)
ϕ,δ(M).

A criterion for k-reducibility is obtained in the following way (as in the differential
case [67]). Define the non-negative integer sk as

sk = k n0 + (k − 1)n1 + · · ·+ nk−1, (2.15)

and the polynomial

θk(λ) = π
(
tsk det(In λ− t−kM)

)
∈ O[λ]. (2.16)

Theorem 2.2. ([23, Theorem 3.2]). System (2.12) is k-irreducible if and only if, for
j = 1, . . . , k, the polynomials θj(λ) do not vanish identically in λ.

Remark 2.6. The notion of 1-irreducible system coincides with that of Moser-irreducible
systems.

38

Chapter 2 Simple Forms of Pseudo-Linear Systems

We establish now the connection between the notions of super-irreducibility and simplicity.

Proposition 2.4. If System (2.12) is super-irreducible then it is simple.

Proof. We have to prove that System (2.13) is simple. Denote by Lλ = A0 λ + B0 its
leading matrix pencil. If p = 0 then the matrix A is just the identity matrix and this
easily results into a simple system. Suppose now that p > 0. It is easy to verify that
det(A) = tsp , and one has

det(Lλ) = π (det(Aλ+B)) = π
(
det(Aλ− t−pAM)

)
= π

(
tsp det(In λ− t−pM)

)
= θp(λ).

Now if System (2.12) is super-irreducible, then it follows from Theorem 2.2 that the
polynomial θp(λ) is not zero and (2.13) is simple.

Note that if a system is simple, then it is not necessarily super-irreducible. It is not
even k-irreducible for some positive integer k. Indeed, super-irreducibility requires that
θk(λ) ̸= 0 for all 1 ≤ k ≤ p, while simplicity requires that only θp(λ) ̸= 0.

Example 2.5. Let ϕ be the C-automorphism over K defined by ϕ : t 7→ q t such that
q ∈ C∗ is not a root of unity, and δ be a ϕ-derivation defined as δ = idK−ϕ having degree
ω = 0. The pseudo-linear operator

L = Aδ +B ϕ =


1 0 0

0 1 t

0 0 t2

 δ +


−t2 + 2 t2 − 3 0

2 −3 −t2

0 0 −t3 − 1

 ϕ,

is simple since det(Lλ) = det(A0 λ + B0) = −λ2 + λ ̸= 0. Write the system L(y) = 0 in
the form δ(y) = N ϕ(y) with

N = −A−1B =


t2 − 2 −t2 + 3 0

−2 3 t2 +
−t3 − 1

t

0 0
t3 + 1

t2

 .

The latter system has a Poincaré rank p = 2 and it can be written in the local form (2.12)
as

t2 δ(y) =


t2 (t2 − 2) −t2 (t2 − 3) 0

−2 t2 3 t2 −t

0 0 t3 + 1

 ϕ(y).

The polynomial θ2(λ) defined in (2.16) is equal to

θ2(λ) = π
(
t
(
λ t2 − t3 − 1

) (
−λ t2 + λ2 + t2 − λ

))
= 0,

39

Chapter 2 Simple Forms of Pseudo-Linear Systems

and it follows form Theorem 2.2 that the system is not super-irreducible.

2.3.2 Regular solutions and regular singularities

We are interested here in the task of computing so called regular solutions (see Defini-
tion 2.7 below) of pseudo-linear systems. Appropriate methods have been designed in the
past for computing such solutions for the individual types of systems: see for instance
[27, 38] for differential, [8, 28] for difference, and [4, 14] for q-difference systems. More
recently, a generic algorithm has been developed in [24] for general pseudo-linear systems.

Consider again System (2.12) and recall that it can be written as System (2.13).
We denote by eλ and u the two scalar functions of the variable t in some extension of K
satisfying:

ϕ(eλ(t))

eλ(t)
= cλ +O(t), t−ω δ(eλ(t))

eλ(t)
= d [λ]c +O(t), t−ωδ(u(t)) = 1 +O(t),

where c and d are defined in Definition 1.13. It has been shown in [24, Appendix A] that,
when looking for regular solutions for specific classes of linear functional systems, eλ and
u can be expressed using the exponential and logarithm function. For instance, in the
the pure differential and difference cases, one has eλ(t) = tλ and u(t) = ln(t), while in
the q-difference case (ϕ : x 7→ q x, q ̸= 0, 1), one has eλ(t) = tλ and u(t) = logq(t).

According to [24, Theorem 4.3], a simple pseudo-linear system (2.13) admits deg(φ(λ))
linearly independent local solutions yi’s of the form:

yi(t) = eλi
(t)

mi−1∑
j=0

zi,j(t)
u(t)mi−j

(mi − j)!
, i = 1, . . . , deg(φ(λ)), (2.17)

where λi ∈ C is a root of multiplicity mi of the indicial polynomial φ(λ) and
zi,j(t) ∈ C[[t]]n.

Definition 2.7. Local solutions of the form (2.17) are called regular solutions of Systems
(2.12) and (2.13).

In order to compute a basis of regular solutions of a given pseudo-linear system, one then
needs to effectively compute the polynomial φ(λ). This polynomial can be read off from
System (2.13) only if the system is in simple form. Recall that (see Proposition 2.4) if
the system is super-irreducible then it is simple with det(Lλ) = θp(λ) ̸= 0, where θp(λ) is
defined in (2.16). In [24, 49] and in previous works restricted to the differential or differ-
ence case, it is proposed to compute a super-irreducible form of the system to effectively
compute θp(λ), which allows to obtain det(Lλ) and φ(λ). The algorithm SimpleForm

40

Chapter 2 Simple Forms of Pseudo-Linear Systems

developed in the present dissertation can then be used to compute det(Lλ) and φ(λ) for
any pseudo-linear system directly without recourse to reduction algorithms. Note that
such an approach has already been proposed for the differential [27, 59] and difference
[28] cases.

Once φ(λ) is computed, we proceed as follows: let λi be root of multiplicity mi of
φ(λ). The change of variable y = eλi

z reduces the problem to computing mi series
solutions zi,j(t) ∈ C[[t]]n with j = 0, . . . ,mi− 1. Computing these series solutions can be
done using the monomial-by-monomial method described in [24, Section 5]. Doing so, we
obtain one regular solution of the form (2.17). Repeating the same process for each root
of φ(λ), we finally obtain deg(φ(λ)) regular solutions of (2.13). We refer to [24, 49] for
more details on regular solutions of pseudo-linear systems.

Example 2.6. Let us go back to the q-difference system considered in Examples 2.3
and 2.4. For a local q-difference system at x = 0, we take as local parameter t = x and
consider the local pseudo-linear system Aδ(y) + Bϕ(y) = 0, where A and B are given
by (2.10). Then we have ω = 0, c = q so that c ̸= 1, d = q − 1, eλ(x) = xλ, and
u(x) = logq(x). The output of Algorithm SimpleForm provides an equivalent simple
system A(5)δ(y) +B(5)ϕ(y), where A(5) and B(5) are given by (2.11) and with

det(Lλ) = (λ q − q + 1) (λ+ q − 1) q−1,

which yields
φ(λ) = q2λ − qλ−1 − qλ+1 + 1.

The roots of φ(λ) are thus λ = ±1 (see Remark 2.3) and from (2.17), it follows that
the system admits two linearly independent regular solutions at x = 0 given by y1(x) =

x z1,0(x), y2(x) = x−1 z2,0(x) with

z1,0 =

 β−1

β−2q−2x+O (x2)

 , z2,0 =

 1

β−1x+O (x2)

 .
Algorithm SimpleForm can also be used to determine the nature of a singularity in the
regular / irregular classification. Indeed, the singularity of System (2.13) is regular if and
only if the system admits a basis of n regular solutions of the form (2.17). We then get
the following lemma:

Lemma 2.1. ([24, Theorem 3.2]). The singularity of a simple pseudo-linear system (2.13)
is regular if and only if deg(φ(λ)) = n, where φ(λ) is the indicial polynomial of (2.13).

Note that deg(φ(λ)) = n is equivalent to det(A0) ̸= 0. Algorithm SimpleForm then

41

Chapter 2 Simple Forms of Pseudo-Linear Systems

provides an alternative to Moser’s reduction [16, 18, 78] for recognising the nature of a
singularity.

2.3.3 k-simple forms

The notion of k-simple forms has been first introduced by Pflügel [86] for differential
systems as a generalisation of the notion of simple form [20]. These forms turned out to
be very useful for computing important local data of a differential system such as formal
solutions and the integer slopes of the Newton polygon [19, 90]. The method proposed
in [86] to compute k-simple forms consists in applying super-reduction algorithms [67]
first. Later on, a direct, i.e. without applying super-reduction, algorithm was developed
in [34, 59] for computing k-simple forms of differential systems. We introduce here the
notion of k-simple forms in the general pseudo-linear setting.

Consider again a local pseudo-linear system of the form (2.12). For any nonnegative
integer k, we define

A(k) = diag(tα1 , . . . , tαn), αi = max (0, p− k − ν(M(i, .)) , (2.18)

and
B(k) = −tk−pA(k)M. (2.19)

Note that B(k) ∈Mn(C[[t]]) since we have ν(A(k)M) ≥ k − p.

Definition 2.8. Let k be a nonnegative integer and δk = tk−ω δ. Then System (2.12) is
said to be k-simple if the pseudo-linear system

A(k) δk(y) +B(k) ϕ(y) = 0 (2.20)

is simple, i.e., det(A(k)
0 λ+B

(k)
0) ̸= 0. When this is the case, we call

Ψk(λ) = det(A(k)
0 λ+B

(k)
0),

the characteristic polynomial of (2.12) associated to k.

Remark 2.7. The notion of 0-simple systems coincides with the notion of simple systems.

If System (2.12) is not k-simple, then applying Algorithm SimpleForm to the non-simple
system (2.20), produces a new simple system

Ã(k) δk(y) + B̃(k) ϕ(y) = 0.

The system tp−ω δ(y) = M̃ ϕ(y) where M̃ = −tp−k Ã(k)
−1

B̃(k) is then an equivalent

42

Chapter 2 Simple Forms of Pseudo-Linear Systems

k-simple system of (2.12) (or a k-simple form of (2.12)). Note that System (2.12) is nec-
essarily k-simple for k ≥ p since in this case the αi’s in (2.18) are all equal to zero so that
A(k) = In.

Example 2.7. Let ϕ : x 7→ x− 1 be a C-automorphism over K and δ = (x− 1)(idK − ϕ)
be a ϕ-derivation. As ∞ is the only singularity in this case, then we introduce the local
parameter t = x−1. The degree of δ is thus ω = 0. Let us compute a 2-simple form of the
pseudo-linear system

x−3δ(y) =



0
1

x4
− 1

x5
0

1

x3

1

x4
0

4

x6
0

1

x2
1

x3
0

1

x
+

1

x3

0
4

x3
+

2

x2
+ 1 0

1

x3
− 1

x


ϕ(y) (2.21)

having Poincaré rank p = 3. Using the above notations, System (2.21) can be transformed
into the pseudo linear system A(2) δ2(y) +B(2) ϕ(y) = 0 where δ2 = x−2 δ and

A(2) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 x−1

 , B(2) =



0 −x− 1

x4
0 − 1

x2

− 1

x3
0 − 4

x5
0

−1

x
− 1

x2
0 −x

2 + 1

x2

0 −x
3 + 2x+ 4

x3
0

x2 − 1

x3


.

The latter system is not simple and, using Algorithm SimpleForm, we compute an
equivalent simple system Ã(2) δ2(y) + B̃(2) ϕ(y) = 0 where Ã(2) = I4 and

B̃(2) =



− 1

x2
− 1

x3
0 −1

x

− 1

(x− 1)x2
− 1

x2
− 4

x4
0

− 1

x (x− 1)
− 1

(x− 1)x2
0 −x

2 + 1

x2

0 −x
3 + 2x+ 4

(x− 1)x2
0

x2 − 1

x2


.

Finally, the latter system can be written as

x−3 δ(y) = M̃ ϕ(y), (2.22)

43

Chapter 2 Simple Forms of Pseudo-Linear Systems

where M̃ = −x−1 Ã(2)
−1

B̃(2), and we say that System (2.22) is a 2-simple form of System
(2.21).

As it has already been pointed out, super-reduction algorithms can be used to compute
simple forms of pseudo-linear systems. More generally, we have the following result:

Lemma 2.2. Any super-irreducible system of the form (2.12) is k-simple for
k = 0, . . . , p− 1.

Proof. Consider a system of the form (2.12) and let A(k) and B(k) be defined as in (2.18)
and (2.19). One can easily verify that the matrix A(k) satisfies det(A(k)) = sp−k where
sp−k is defined in (2.15). Moreover one has for k = 0, . . . , p− 1,

det
(
A

(k)
0 λ+B

(k)
0

)
= π

(
det
(
A(k) λ+B(k)

))
= π

(
det
(
Aλ− tk−pA(k)M

))
= π

(
tsp−k det

(
In λ− tk−pM

))
= θp−k(λ),

where θp−k(λ) is defined in (2.16). If System (2.12) is super-irreducible, then it is in
particular p-irreducible. It follows from Theorem 2.2 that θp−k(λ) ̸= 0 for k = 0, . . . , p−1,

and hence (2.12) is k-simple.

Computing super-irreducible forms can then be a way to compute k-simple forms. How-
ever, a pseudo-linear system which is k-simple for a fixed k is not necessarily super-
irreducible, see for instace Example 2.5. So if one is interested in computing a k-simple
form for just one value of k then direct (i.e. avoiding super-reduction) methods have
to be preferred. Our Algorithm SimpleForm provides such a direct method. It is just
sufficient to apply SimpleForm with the adequate derivation δk (see Section 2.2.3).

Remark 2.8. Consider a pseudo-linear system (2.12) with Poincaré rank p > 0 and
suppose that the t-adic expansion of the matrix M is known up to an order m ≥ n p.
Rewriting the system as (2.20) and setting h = ν(det(Ak)), we find that h ≤ n p. Com-
puting a k-simple form of System (2.12) via Algorithm SimpleForm can then be done
in O(mpn4) operations in C, while using the super-reduction algorithm [23], it can be
done in O(mpn4 min(n − 1, p)) operations in C (see [41, Proposition 4.3]). Therefore,
using Algorithm SimpleForm, we gain the factor min(n−1, p) w.r.t. the super-reduction
algorithm. This can be explained by the fact that the super-reduction algorithm provides
k-simple forms for all k = 0, . . . , p−1, while Algorithm SimpleForm provides a k-simple
form for a single integer k between 0 and p− 1.

44

Chapter 2 Simple Forms of Pseudo-Linear Systems

2.3.4 Super-reduction using simple forms

The following two lemmas give rise to a new method, based on successive computations
of k-simple forms, to compute a super-irreducible form of a pseudo-linear system of the
form (2.12).

Lemma 2.3. For any k ∈ {1, . . . , p}, if tp−ω δ(y) = M̃ ϕ(y) is a k-simple form of
tp−ω δ(y) = M ϕ(y), and tp−ω δ(y) = M̂ ϕ(y) is a (k − 1)-simple form of tp−ω δ(y) =

M̃ ϕ(y), then tp−ω δ(y) = M̂ ϕ(y) is k-simple and (k − 1)-simple.

Proof. The proof is based on the results on the preservation of the simplicity developed
in [34, Section 3] and [59, Section 4.5] for differential systems, which can be translated to
pseudo-linear systems.

Lemma 2.4. If System (2.12) is k-simple for all values of k ∈ {0, . . . , p − 1}, then it is
super-irreducible.

Proof. Let A(k) and B(k) be defined as in (2.18) and (2.19). One has

det(A(k)
0 λ+B

(k)
0) = θp−k(λ),

where θp−k(λ) is defined in (2.16). System (2.12) being k-simple for all values of k ∈
{0, . . . , p − 1}, means that det(A(k)

0 λ + B
(k)
0) ̸= 0, and then it follows from Theorem 2.2

that System (2.12) is super-irreducible.

Lemma 2.4 suggests the following algorithm for computing a super-irreducible form of a
pseudo-linear system (2.12): compute first a (p − 1)-simple form tp−ω δ(y) = M̃ ϕ(y) of
(2.12). Then compute a (p − 2)-simple form tp−ω δ(y) = M̂ ϕ(y) of tp−ω δ(y) = M̃ ϕ(y).
Iterate this process until we get a 0-simple form. According to Lemma 2.3, the last
system obtained is guaranteed to be k-simple for all values of k ∈ {0, . . . , p−1}, and thus
super-irreducible.

Example 2.8. Let us compute a super-irreducible form near the singularity 0 of a
q-difference system y(q x) = W (x)y(x) where q ∈ C∗ is not a root of unity, and

W =


0

1

x3
q x3

x2 +
1

x

q

x
−q x2 − 1

1

q x2
− 1 0 x

 .

Define the local parameter t = x. The system can be written in the local form (2.12) as

x3 δ(y) =M ϕ(y) (2.23)

45

Chapter 2 Simple Forms of Pseudo-Linear Systems

where ϕ : x 7→ x/q, δ = idK − ϕ with degree ω = 0 and

M = x3 (ϕ(W)− I3) =



−x3 q3
x6

q2

x2 (q3 + x3)

q2
x2 (q2 − x) −x

3 (x2 + q)

q

x (−x2 + q) 0 −x
3 (−x+ q)

q


.

Here the Poincaré rank is p = 3. First we compute a 2-simple form. For this, we write
(2.23) under the form A(2) δ2(y) +B(2) ϕ(y) = 0 where

δ2 = x2 δ, A(2) = diag(x, 1, 1), B(2) = −x−1A(2)M.

Using Algorithm SimpleForm, we compute an equivalent simple system

Ã(2) δ2(y) + B̃(2) ϕ(y) = 0, (2.24)

where

Ã(2) = I3, B̃(2) =



−x (−x+ q)
x (x2 + q)

q

−q3 − x3

q2

0
x2 (−x+ q)

q
x2 − q

−q2 −x
5

q2
x2


.

The system
x3δ(y) = M̃ϕ(y), (2.25)

where M̃ = −xÃ(2)
−1

B̃(2), is thus a 2-simple form of (2.23). Now we compute a 1-simple
form of (2.25). For this, we write (2.25) under the form

D(1) δ1(y) +N (1) ϕ(y) = 0, (2.26)

where δ1 = x δ, D(1) = diag(x, x, x) and N (1) = −x−2D(1) M̃. Note that (2.26) can be
directly obtained from (2.24) by setting D(1) = x Ã(2) and N (1) = B̃(2). Applying Algorithm
SimpleForm to (2.26) produces an equivalent simple system

D̃(1) δ1(y) + Ñ (1) ϕ̃(y) = 0, (2.27)

where

46

Chapter 2 Simple Forms of Pseudo-Linear Systems

D̃(1) = diag(1, x, x), Ñ (1) =



x− q −q
2 + 2x2 + q

q
−x (q

2 + x)

q2

0
x2 (−x+ q)

q
x2 − q

−q2 −x5 − q4

q2
x2


.

The system
x3 δ(y) = M̂ ϕ(y), (2.28)

where

M̂ = −x2 D̃(1)
−1

Ñ (1) =



x2 (−x+ q)
x2 (q2 − 2x2 − q)

q

x3 (q2 + x)

q2

0 −x
3 (−x+ q)

q
x (−x2 + q)

q2x
x (x5 + q4)

q2
−x3


,

is thus a 1-simple form of (2.25). Note that System (2.28) is also 2-simple. Then, one
can easily check that (2.28) is already 0-simple. Therefore, System (2.28) is an equivalent
k-simple system of (2.23) for all k = 0, . . . , p− 1, and hence it is a super-irreducible form
of (2.23). Finally, we can say that the system y(q x) = Ŵ (x)y(x) where

Ŵ (x) = I3 + q−3x−3M̂(qx) =



1

x

−2 q x2 + q − 1

x q

q + x

q

0 x
−q x2 + 1

q x2

1

x2
q x5 + 1

x2
0


,

is a super-irreducible form of y(qx) = W (x)y(x) near the singularity 0.

Our new method developed in the present section requires “p times” the computation of
a k-simple form. Hence, computing a super-irreducible form of System (2.12) using our
method can be done in at most O(mp2 n4) operations in C where m denotes the order
of the t-adic expansion of the matrix M in (2.12) (see Remark 2.8). From a complexity
perspective, the method developed in [23], which is implemented in the current version of
the Isolde [39] package, seems to be better as it requires at most O(mpn4 min(n−1, p))

operations in C (see [41, Proposition 4.3]). However, after performing some practical
experiments, we have noticed an advantage of our method compared to the one in [23].
But we do believe that if (some of) the internal procedures of the Isolde package are
updated, then the method in [23] will claim the practical advantage. We end this chapter
by presenting, without commenting, the timings obtained from one of our experiments

47

held for series of differential systems of sizes n and Poincaré ranks p. The first, respectively
second, entry of each cell denotes the time (in seconds) obtained using our method,
respectively the method from [23].

n
p 5 10 30 50

3 0.16 | 0.09 0.26 | 0.25 0.65 | 0.62 1.16 | 1.91
5 0.26 | 0.21 0.54 | 0.47 1.29 | 2.15 1.98 | 4.76
10 1.31 | 1.21 2.32 | 2.93 5.60 | 11.81 9.19 | 28.43
15 2.70 | 2.33 8.71 | 10.85 20.58 | 36.62 34.87 | 87.53

Table 2.1: Computing a super-irreducible form of a differential system.

Chapter 3

On Rational Solutions of First Order
Pseudo-Linear Systems

3.1 Introduction . 50
3.2 A unified algorithm to compute polynomial solutions 51

3.2.1 Computing a degree bound . 51
3.2.2 Examples . 53
3.2.3 Comparison with existing implementations 55

3.3 Universal denominator . 56
3.3.1 Existing methods for pure difference and q-difference systems . . . 58
3.3.2 A unified and efficient approach for pseudo-linear systems 61
3.3.3 Computing the ϕ-fixed part . 63
3.3.4 Computing the dispersion set and the non ϕ-fixed part 65

3.4 The complete algorithm . 68
3.5 Some comparison tests . 69

This chapter constitutes the subject of the first half of the published paper [33] in
collaboration with M. A. Barkatou and T. Cluzeau.

49

Chapter 3 Rational Solutions of Pseudo-Linear Systems

3.1 Introduction
Let F = C(x) be the field of rational functions in a variable x with coefficients in a field
C of characteristic zero, ϕ be a C-automorphism over F and δ be a pseudo-derivation
with respect to ϕ. The main objective of this chapter is to develop a unified algorithm
to compute all rational solutions of a first order pseudo-linear system defined over the
ϕδ-field (F, ϕ, δ), having the form

δ(y) =M ϕ(y), (3.1)

where M ∈ Mn(F). The problem of computing rational solutions has been studied for
the particular types of differential, difference, and q-difference systems respectively in [20],
[21], and [5] (see also [2, 7, 95]). Our approach for computing rational solutions follows
the same strategy as the one used in the latter works. This strategy mainly consists in
two steps:

1. We first compute a so called universal denominator u ∈ C[x] which satisfies that
every rational solution y ∈ F n of (3.1) can be written as

y = z/u, z ∈ C[x]n.

2. We perform the change of variable y = z/u and we compute polynomial solutions
z ∈ C[x]n of the new pseudo-linear system

δ(z) = ϕ
(
u−1
)
(uM + δ(u)) ϕ(z), (3.2)

which is of the same type as System (3.1).

To begin, in the next section we present a unified method for computing polynomial
solutions of a general pseudo-linear system of the form (3.1). We show that the degree
of a polynomial solution can be obtained by “inspecting” the integer roots of the indicial
polynomial at infinity. However, this indicial polynomial is not immediately apparent,
and so we propose to use simple forms to effectively compute it. The other parts (mono-
mials) of the polynomial solution can afterwards be computed using existing methods in
the literature. In Section 3.3, we develop a unified algorithm for computing a universal
denominator for all rational solutions of System (3.1). We will see that in the case where
ϕ is not the identity map, a universal denominator is composed of two parts: what we
call the ϕ-fixed part and the non ϕ-fixed part. On one hand, the ϕ-fixed part can be
computed using simple forms. On the other hand, following the ideas of [77] (see also
[9, 72]), we propose an efficient algorithm for computing the non ϕ-fixed part. Examples
of computations are also given to clarify our approaches.

50

Chapter 3 Rational Solutions of Pseudo-Linear Systems

The different algorithms proposed in this chapter are fully implemented in Maple in
our PseudoLinearsystems package [32]. We shall also present throughout this chap-
ter some experimental results obtained while comparing our implementations with the
existing ones from the Isolde [39] and LinearFunctionalSystems1 packages. A
demonstration for our implementations is provided in Chapter 5.

3.2 A unified algorithm to compute polynomial solu-
tions

We consider in this section the problem of computing all polynomial solutions of a first
order pseudo-linear system of the form (3.1). In order to compute a polynomial solution
y ∈ C[x]n, we carry out the following two tasks:

1. Compute a degree bound of the polynomial.

2. Once a degree bound is obtained, compute the different monomials αi x
µi (αi ∈ Cn,

µi ∈ N) of the polynomial.

The second task is completely accomplished using the monomial-by-monomial method
developed in [24], and we shall not explain more on this. We only focus on the task of
computing a degree bound of a possible polynomial solution.

3.2.1 Computing a degree bound

Given a pseudo-linear system (3.1) defined over the ϕδ-field (F, ϕ, δ). The idea is to
imbed (F, ϕ, δ) in the local ϕδ-field (K,ϕ, δ) where K = C((x−1)), equipped with the
t-adic valuation ν (here t = x−1). Denote by ω the degree of δ (see Definition 1.12). Our
system (3.1) can then be written as a local pseudo-linear system of the form

L(y) = A δ̃(y) +B ϕ(y) = 0, (3.3)

where δ̃ = t−ω δ,

A = diag(tα1 , . . . , tαn) ∈Mn(C[[t]]), αi = −min{0, ν (M(i, .))− ω},

and
B = −t−ω AM ∈Mn(C[[t]]).

1https://www.maplesoft.com/support/help/Maple/view.aspx?path=
LinearFunctionalSystems&cid=301

51

https://www.maplesoft.com/support/help/Maple/view.aspx?path=LinearFunctionalSystems&cid=301
https://www.maplesoft.com/support/help/Maple/view.aspx?path=LinearFunctionalSystems&cid=301

Chapter 3 Rational Solutions of Pseudo-Linear Systems

Here M(i, .) denotes the ith row of M . A polynomial solution of degree s ∈ N can be
viewed as a local formal solution (at x =∞) of the form

y(t) =
∑
i≥0

ti−s yi, (3.4)

where yi ∈ Cn with y0 ̸= 0. Recall that (see Definition 1.13) there exist c, d ∈ C∗ such
that

ϕ(t) = c t+O(t2), t−ωδ(t) = d t+O(t2),

and for h ∈ Z:

ϕ(th) = ch th +O(th+1), t−ω δ(th) = d [h]c t
h +O(th+1),

where [h]c is defined by:

[h]c =


1− ch

1− c
; c ̸= 1,

h ; c = 1.

Replacing ϕ(y), δ̃(y), A and B by their respective t-adic expansions in System (3.3) and
comparing coefficients of the same power of t (after simplifying the factor t−s) yields,
amongst others, the equation

(
d [−s]cA0 + c−sB0

)
y0 = 0,

where A0 and B0 are the constant terms in the t-adic expansions of A and B. Thus, in
order that System (3.3) admits a formal solution (3.4), −s must be a root (see Remark 2.3)
of the indicial polynomial

φ(λ) = det(d [λ]cA0 + cλB0).

If System (3.3) is simple, which means det(A0 λ+B0) ̸= 0, then φ(λ) ̸= 0 and the degree
of any polynomial solution can be bounded by the largest nonnegative integer s such that
−s is a root of φ(λ). Otherwise if (3.3) is non-simple, then φ(λ) vanishes identically in
λ, and in this case one needs to compute a simple form of (3.3) in order to effectively
compute φ(λ). This can be done by applying Algorithm SimpleForm developed in
Chapter 2 to System (3.3). Note that in previous works related to differential [20] and
difference [7] systems, the method proposed to compute φ(λ) consists in applying super-
reduction algorithms [15, 41], while in the q-difference case [5], due to the absence of
a super-reduction algorithm for q-difference systems in that period, Abramov proposed
to use the technique of EG-eliminations [3] in order to compute φ(λ). We present in
Section 3.2.3 some experimental results obtained when comparing the three approaches.

52

Chapter 3 Rational Solutions of Pseudo-Linear Systems

Remark 3.1. It is important to note here that computing a simple form of System (3.3)
does not affect the degree bound of any polynomial solution of System (3.1). Indeed, ap-
plying Algorithm SimpleForm to (3.3) yields an equivalent simple operator L′ = S LT

where in particular T is an invertible matrix which is polynomial in t = x−1. More-
over, due to the special forms of the entries of T (see the proof of Proposition 2.1),
the matrix T−1 is polynomial in x. So if y is a polynomial solution of System (3.1)
then z = T−1 y is a polynomial solution of the equivalent system δ(z) = M̃ ϕ(z) where
M̃ = T−1 (M ϕ(T)− δ(T)) .

3.2.2 Examples

We clarify our approach for computing polynomial solutions of pseudo-linear systems with
the following two examples:

Example 3.1. Let ϕ : x 7→ q x be a C-automorphism over F such that q ∈ C∗ is not
a root of unity, and let us compute the polynomial solutions of the q-difference system
ϕ(z) = N z where

N(x) =


(q x+ β) (q2 + 1)

β + x
−(q x+ β) q2

x
q x

β + x
0

 .
Here β is a non-zero parameter. Note that for β = 100, we find again the system
considered in the second part of [5, Section 4]. The given system can be written as a first
order pseudo-linear system δ(z) =M ϕ(z) where δ = idF − ϕ and

M(x) = N(x)−1 − I2 =

 −1 β + x

q x

− x

q2 (q x+ β)

−q3 + q2 + 1

q3

 .
As explained above, we now work with K = C((x−1)): the completion of F w.r.t. the t-adic
valuation ν (here t = x−1). The degree of δ is thus ω = 0 and one has c = q−1, d = 1−q−1

(see Definition 1.13). The system can be written in a local form Aδ(z)+B ϕ(z) = 0 where
A = In and B = −M . The leading matrix pencil of the latter system

Lλ =

 λ+ 1 −q−1

q−3 λ− −q
3 + q2 + 1

q3


satisfies det(Lλ) ̸= 0. Hence the system is already simple and its associated indicial

53

Chapter 3 Rational Solutions of Pseudo-Linear Systems

polynomial is given by

φ(λ) = 1− q−λ−1 − q−λ−3 + q−2λ−4.

The integer roots of φ(λ) are −1 and −3 (see Remark 2.3) so that we get the degree bound
s = 3. We then proceed by using the method in [24] to compute the monomials of the
solutions, and we finally obtain a basis of polynomial solutions given by

z1(x) =

[
β + x

x

]
, z2(x) =

 x2 +
x3

β
x3

q2β

 . (3.5)

The results are coherent with those obtained in [5, Section 4] for the case β = 100.
Note that in [5, Section 4], the author needs to apply EG-eliminations to get the indicial
polynomial at infinity whereas for this particular example, we can get it directly since the
system is already simple at infinity.

Example 3.2. Let ϕ : x 7→ 3x + 2 be a C-automorphism over F and δ = idF − ϕ be a
ϕ-derivation. Consider the pseudo-linear system

δ(y) =


−242x3 + 410x2 + 208x+ 40

9 (3 x+ 2)2 (3x+ 1)
0

− 2 (x+ 1)3 (x− 2) 9 (13x+ 2)

(3x+ 2)2 (3x+ 1)x
−26x+ 2

27x

ϕ(y). (3.6)

We now work with K = C((t)) equipped with the t-adic valuation ν where t = x−1. One
thus has ω = 0 with c = 1

3
and d = 2

3
. System (3.6) can be written as a local pseudo-linear

system Aδ(y) +B ϕ(y) = 0 where A(x) = diag(1, x−1) and

B(x) =


242x3 + 410x2 + 208x+ 40

9 (3 x+ 2)2 (3x+ 1)
0

2 (x+ 1)3 (x− 2) (13 x+ 2)

9x2 (3x+ 2)2 (3x+ 1)

26x+ 2

27x2

 .
The latter system is non-simple since its leading matrix pencil

Lλ =

 λ+
242

243
0

26

243
0

 ,
is singular. Using Algorithm SimpleForm, we compute an equivalent simple system
Inδ(y) + B̃ϕ(y) = 0 where

54

Chapter 3 Rational Solutions of Pseudo-Linear Systems

B̃ =

 6318 x5+18548 x4+27804 x3+24254 x2+9648 x+968
117 x(3 x+2)3(3 x+1)

−1019304 x5−1251624 x4+2872782 x3+5840670 x2+2986280 x+326216
4563 x(3 x+2)3(3 x+1)

2(x+1)3(x−2)(13 x+2)

9x(3 x+2)3(3 x+1)
36816 x5+76878 x4+32808 x3−27054 x2−21872 x−2696

351 x(3 x+2)3(3 x+1)

 ,

and with an associated indicial polynomial

φ(λ) = 1− 28

729
3−λ +

3−2λ

19683
.

The integer roots of φ(λ) are −6 and −3 (see Remark 2.3) so that we get the degree bound
s = 6. Now using the monomial-by-monomial method [24] we can finally get the basis of
polynomial solutions

y1(x) =

 x5 − 5x4 + 8x3 − 4x2

x6 − 3x5 − x4 + 17x+ 14

 , y2(x) =

 0

x3 − 3x− 2

 . (3.7)

3.2.3 Comparison with existing implementations

The above explanations give rise to an algorithm, called PolySols_1PLS, which takes
as an input a pseudo-linear system of the form (3.1) and return a matrix whose columns
form a basis of all polynomial solutions, or 0n (the zero vector of dimension n) if there are
no non-trivial polynomial solutions. The algorithm is implemented in our Maple package
PseudoLinearSystems [32].

Besides being generic enough to cover all types of pseudo-linear systems, Algorithm
PolySols_1PLS appears to be, most of the times, faster than existing algorithms for
computing polynomial solutions of familiar linear functional systems. To illustrate this
fact, we present some timings of two of our experiments. All the input systems consid-
ered were constructed in such a way they had a full fundamental matrix of polynomial
solutions whose all entries are generated using the Maple command:
randpoly(x, coeffs = rand(-20 .. 20), degree = 10, terms = 10);

The first experiment was carried out on several differential systems y′(x) = A(x)y(x): we
compare our implementation with the procedures Mpolsolde from the Isolde [39] pack-
age and PolynomialSolution from the LinearFunctionalSystems package. The
second experiment was carried out on several difference systems y(x+1) = A(x)y(x): we
compare our implementation with the procedures deltaPS from the Isolde package and
also PolynomialSolution from the LinearFunctionalSystems package. The two
tables below show the respective CPU times (in seconds) needed by each implementation
to compute all polynomial solutions of differential and difference systems with sizes
n = 5, 10, 15, 20.

55

Chapter 3 Rational Solutions of Pseudo-Linear Systems

n PolySols_1PLS Mpolsolde PolynomialSolution
5 0.459 0.953 0.451
10 3.950 9.832 4.722
15 23.846 59.158 24.139
20 78.481 227.034 86.412

Table 3.1: Results of the first experiment (differential systems).

n PolySols_1PLS deltaPS PolynomialSolution
5 0.379 0.334 2.612
10 5.650 4.295 55.188
15 23.239 30.095 1385.85
20 90.323 99.686 ∗

Table 3.2: Results of the second experiment (difference systems).

Looking at the results of the experiment held for differential systems, we can spot a clear
advantage of PolySols_1PLS compared to Mpolsolde. The only difference between
the two implementations is that we use simple forms to compute a degree bound of
polynomial solutions while Mpolsolde uses super-reduction [41]. We noticed that this
is where most of the time is spent after going deeper into the analysis of each step of
both implementations. On the other hand, PolySols_1PLS and PolynomialSolution
appear to have a somehow similar performance (we couldn’t analyse each step of the
procedure PolynomialSolution since it is embedded in the Maple system).

The results of the second experiment show that PolySols_1PLS and deltaPS behave
likewise (with a slight advantage of PolySols_1PLS), while PolynomialSolution
behaves badly for difference systems (the symbol ∗ indicates that a computation did not
terminate after 4 hours).

3.3 Universal denominator
In the general setting of pseudo-linear algebra with F = C(x), two cases can be distin-
guished:

1. The case ϕ = idF corresponds to differential systems.

2. The case ϕ ̸= idF corresponds to all systems of the form

ϕ(y) = N y, (3.8)

where N ∈ GLn(F) and ϕ : x 7→ q x + r. Here r ∈ C and q ∈ C∗ is not a root of
unity, but if r ̸= 0 then q is allowed to be equal to 1. We will refer to a system of

56

Chapter 3 Rational Solutions of Pseudo-Linear Systems

the form (3.8) as a ϕ-system. Recall that such a system can be written (in various
ways) as a pseudo-linear system δ(y) = M ϕ(y) (see Section 1.2). Systems of the
form (3.8) include pure difference (q = 1 and r ̸= 0) and pure q-difference (r = 0)
systems.

In the differential case ϕ = idF , assuming that δ = d
dx

is the usual derivation of F , we
have a linear differential system of the form y′ = Ay, with ′ := d

dx
and A ∈ Mn(F). We

briefly review the method used in [20] for computing a universal denominator. Here, the
poles of any rational solution are among the poles of the matrix A. Consequently, the
denominator of any rational solution has the form

s∏
i=1

pαi
i ,

where p1, . . . , ps are the irreducible factors of the denominator den(A) of the matrix A

and, for i = 1, . . . , s, αi is a local exponent at pi. A universal denominator can thus be
deduced from the knowledge of the local exponents at each pi. In order to compute a
local exponent αi, one needs to compute the integer roots of the indicial polynomial φ(λ)
at pi and take −αi as the smallest integer root of φ(λ). However, φ(λ) can not be read
off unless the system is in simple form. In [20], the method proposed to compute a simple
form is to apply first super-reduction [67]. The SimpleForm algorithm developed in
Chapter 2 thus provides an alternative as it allows to compute directly a simple form
without recourse to super-reduction algorithms. For further reading on the computation
of a universal denominator and rational solutions of differential systems, we recommend
the reader to consult [20] and the references therein.

Concerning the case ϕ ̸= idF , algorithms for computing a universal denominator have
been developed only for the pure difference [7, 21] and q-difference [5] cases. In Sec-
tion 3.3.2, we shall develop a unified and efficient method for computing a universal
denominator of a ϕ-system (3.8) in the case where the automorphism ϕ of F = C(x) is
given by ϕ : x 7→ q x+ r, with r ∈ C and q ∈ C∗ is not a root of unity, but if r ̸= 0 then
q is allowed to be equal to 1. Note that this restriction on the automorphism ϕ of F is
natural as, for the purposes of the present chapter, one needs ϕ to send polynomials to
polynomials. Following the same lines as [21], we define the following two polynomials in
the variable x from the denominators of the matrix N ∈ GLn(F) of System (3.8) and its
inverse:

a := ϕ−1(den(N)), b := den(N−1). (3.9)

The dispersion set Eϕ(a, b) of the polynomials a and b is defined as:

Eϕ(a, b) := {s ∈ N ; deg (gcd(a, ϕs(b))) > 0} , (3.10)

57

Chapter 3 Rational Solutions of Pseudo-Linear Systems

and plays an important role in the following. Note that the notion of dispersion set was
firstly introduced by Abramov in [1]. Except in the pure difference case (r ̸= 0 and q = 1)
which is considered in Section 3.3.1 below, a universal denominator for rational solutions
of a ϕ-system (3.8) is decomposed into two distinct parts, i.e., two polynomial factors.
One part is called the ϕ-fixed part as it corresponds to the ϕ-fixed singularity xϕ := r

1−q

(see Proposition 3.3 below) and the other part is called the non ϕ-fixed part. On one
hand, the computation of the ϕ-fixed part can be tackled by computing a simple form
at xϕ to get the local exponents at xϕ (it is similar to the computation of the part of
a universal denominator corresponding to a given pi in the differential case considered
above). On the other hand, the non ϕ-fixed part can be computed from the dispersion
set Eϕ(a, b). Before developing our unified and efficient approach (see Section 3.3.2) to
compute a universal denominator, we briefly recall how one proceeds in the known cases
of pure difference and q-difference systems.

3.3.1 Existing methods for pure difference and q-difference sys-
tems

Let us consider a pure difference system of the form

ϕ(y) = N y, ϕ : x 7→ x+ 1, (3.11)

where N ∈ GLn(F). This means that we have q = r = 1. It has been shown in [21]
that the irreducible factors of a universal denominator for System (3.11) are among the
irreducible factors of a and b defined in (3.9) or their shifts2. Indeed, we have the following:

Proposition 3.1 ([21], Proposition 1). Let y ∈ F n be a rational solution of (3.11) and p
be an irreducible polynomial in C[x] such that ps divides den(y) for some s ∈ N∗. Let a
and b be defined as in (3.9). Then:

1. If ϕ(p) does not divide den(y), then ps divides a.

2. If ϕ−1(p) does not divide den(y), then ps divides b.

3. If both ϕ(p) and ϕ−1(p) do not divide den(y), then ps divides gcd(a, b).

Consequently, it is natural to think that the different parts of a universal denominator
for System (3.11) can be computed from the polynomials a and b. In fact we have the
following result:

Proposition 3.2 ([21], Theorem 1). Given a System (3.11). If its associated dispersion
set Eϕ(a, b) is empty, then G(x) = 1 is a universal denominator, i.e., all rational solutions

2f(x) is a shift of g(x) if f(x) = g(x+ r) for some r ∈ Z∗

58

Chapter 3 Rational Solutions of Pseudo-Linear Systems

are polynomials. Otherwise, a universal denominator for (3.11) is given by:

G(x) = gcd
(

h∏
i=0

ϕ−i(a(x)),
h∏

j=0

ϕj(b(x))

)
, h := max(Eϕ(a, b)). (3.12)

Remark 3.2. The method proposed in [7, 21] to compute Eϕ(a, b) consists in computing
first the resultant Resx(a, ϕm(b)) which is a polynomial in m. Then the elements of Eϕ(a, b)

are exactly the roots of Resx(a, ϕm(b)).

From a computational point of view, the algorithm developed in [21, Proposition 3] (see
also [7, Section 3.1]) allows to compute a universal denominator without expanding the
products in Formula (3.12). For the sake of completeness, we shall present it here (we
call it Algorithm UD as in [7]):

Algorithm UD

Input: A system of the form (3.11).
Output: A universal denominator for all rational solutions of (3.11).
1. Compute the polynomials a and b as in (3.9), and the dispersion set Eϕ(a, b).
2. Initialize v = a, w = b, G(x) = 1 and E = Eϕ(a, b).
While E is not empty do

•Set i = max(E).
•Compute d = gcd(v, ϕi(w)), v = v/d and w = w/ϕ−i(d).
•Put G(x) = G(x)

∏i
j=0 ϕ

−j(d).
•Update E = E \ {i}.

End While
Return G(x).

Let us now consider a pure q-difference system of the form

ϕ(y) = N y, ϕ : x 7→ q x, (3.13)

where q ∈ C∗ is not a root of unity, and N ∈ GLn(F). The computation of rational
solutions of q-difference systems is studied in [5]. One might think at first sight, due
to the similar forms of (3.13) and (3.11), that a universal denominator of a q-difference
system can be computed in the same way as the pure difference case. However, this is not
true. The polynomial p = x is the only monic irreducible polynomial that is fixed by ϕ in
the sense that p and ϕ(p) divide each other. More generally, p and ϕj(p) divide each other
for all j ∈ Z. Consequently, if y ∈ F n is a rational solution of (3.13) and ps = xs divides
den(y) for some s ∈ N∗, then for sure both ϕ(p) and ϕ−1(p) divide den(y). Therefore,
the hypotheses of Proposition 3.1 are not valid for the polynomial p = x. This is why a

59

Chapter 3 Rational Solutions of Pseudo-Linear Systems

universal denominator for a q-difference system 3.13 is written under the form

xαG(x),

where α ∈ N and G(x) ∈ C[x] is not divisible by x. The factor xα is thus what we
call the ϕ-fixed part of a universal denominator for a q-difference system. A bound for
α can be obtained from the local exponents at the ϕ-fixed singularity xϕ = 0. In [5],
the technique proposed to compute a bound for α is EG-eliminations [3]. In this thesis,
we propose to use simple forms. This can be done first by imbedding F into the local
field K = C((t)) where t = x and rewriting (3.13) as a local pseudo-linear system of the
form (2.1). Applying next Algorithm SimpleForm to this system yields an equivalent
simple system with an associated indicial polynomial φ(λ) which is non-zero. Finally, α
is the largest non-negative integer such that −α is a root of φ(λ) (see Remark 2.3).

The other factor G(x) is what we call the non ϕ-fixed part. It can be computed as
in the pure difference case using the formula (3.12) in Proposition 3.2 above (with
the appropriate ϕ). Equivalently, G(x) can be seen as the output of Algorithm UD
applied to (3.13). Moreover, following the ideas of [77] (see also [9, 72]), we propose in
Section 3.3.4 an alternative efficient algorithm for computing the non ϕ-fixed part. The
reader can consult [3, 5] for additional details concerning universal denominators and
rational solutions of q-difference systems.

Example 3.3. Let us go back to the q-difference system considered in Examples 2.3
and 2.4. We remind the reader that this is the system

ϕ(y) =


q2 + 1

q
−(β + x) q

x
x

q x+ β
0

y, ϕ : x 7→ q x,

where q ∈ C∗ is not a root of unity and β is a non-zero parameter. As mentioned above,
a universal denominator for all rational solutions can be written as u(x) = xαG(x),
where α ∈ N and G(x) ∈ C[x] is not divisible by x. Let us first compute α. Instead
of using EG-eliminations as it is done in [5, Section 4], we will use the SimpleForm
algorithm. Let K = C((t)) where t = x is the local parameter, and we introduce the
ϕ-derivation δ = ϕ − idK. We then have ω = 0 (the degree of δ), c = q so that c ̸= 1

and d = q − 1 (see Definition 1.13). The system can be written as the local pseudo-linear
system Aδ(y)+B ϕ(y) = 0 defined over the local ϕδ-field (K,ϕ, δ), where A and B happen
to be given by (2.10). From Examples 2.3 and 2.4, the output of Algorithm SimpleForm
provided an equivalent simple system A(5)δ(y) + B(5)ϕ(y) where A(5) and B(5) are given

60

Chapter 3 Rational Solutions of Pseudo-Linear Systems

by (2.11) and with
det(Lλ) = (λ q − q + 1) (λ+ q − 1) q−1,

which yields the indicial polynomial

φ(λ) = q2λ − qλ−1 − qλ+1 + 1.

The roots of φ(λ) are thus λ = ±1 (see Remark 2.3), which implies that α = 1. On the
other hand, applying Algorithm UD on the given system, we get that G(x) = x + β. It
follows that a universal denominator is given by

u(x) = x (x+ β).

One then can proceed to compute a basis of rational solutions. The change of variable
y = z/u yields the q-difference system considered in Example 3.1. We have seen that
this system admits a basis of polynomial solutions given by (3.5). Finally, we obtain the
rational solutions of the original system:

y1(x) =


1

x

1

β + x

 , y2(x) =


x

β

x2

(β + x) β q2

 .

The results are coherent with those obtained in [5, Section 4] for the case β = 100.

3.3.2 A unified and efficient approach for pseudo-linear systems

We consider a ϕ-system (3.8), where the automorphism ϕ of F = C(x) is given by
ϕ : x 7→ q x + r, with r ∈ C and q ∈ C∗ is not a root of unity, but if r ̸= 0 then q is
allowed to be equal to 1. Let us first remark that in the case r ̸= 0 and q ̸= 1 is not a
root of unity, performing the change of independent variable x = z− r

1−q
, we are reduced

to a pure q-difference system. In other words, after performing (if necessary) a change
of independent variables, the computation of a universal denominator for the class of
ϕ-systems considered here can always be done using one of the algorithms recalled in
Section 3.3.1 for the pure difference and q-difference cases. However, in the following, we
prefer to develop a unified approach treating directly all ϕ-systems.

As for pure q-difference systems, we shall decompose a universal denominator as a
product of two factors: the ϕ-fixed part and the non ϕ-fixed part. To achieve this, we
first need to determine the polynomials that are fixed by ϕ. We say that two polynomials
p1 and p2 in C[x] are associated, and we write p1 ∼ p2, if they divide each other. We

61

Chapter 3 Rational Solutions of Pseudo-Linear Systems

introduce the set

Fϕ := {p ∈ C[x] \ {0} ; deg(p) ≥ 1, ∃s ∈ N∗, p ∼ ϕs(p)} ,

where ϕs(p(x)) = p(ϕs(x)). We remark that

∀s ∈ N, ϕs(x) = qs x+ r [s]q, [s]q :=


qs − 1

q − 1
; q ̸= 1,

s ; q = 1.

(3.14)

Proposition 3.3. With the previous notation, we have the following:

1. If q = 1, then Fϕ = ∅.

2. Otherwise, Fϕ =

{
c

(
x− r

1− q

)s

; c ∈ C∗, s ∈ N∗
}

.

Proof. If q = 1, then p ∼ ϕj(p) for some j ̸= 0 if and only if p is a constant and we are
done. Now let q ̸= 1. From (3.14), we have that, for all j ∈ N∗,

ϕj(x) = qj x+ r
qj − 1

q − 1
= q̃ x+ r̃

has the same form as ϕ(x) = q x+r so that it suffices to look for non constant polynomials
p such that p ∼ ϕ(p). Let us write p(x) =

∑s
i=0 pi x

s−i with p0 = 1 and s ≥ 1. Then
p ∼ ϕ(p) means that there exists α ∈ C∗ such that ϕ(p) = α p which yields

(q x+ r)s + p1 (q x+ r)s−1 + · · ·+ ps = α (xs + p1 x
s−1 + · · ·+ ps).

By expanding the lefthand side of the latter equality and equating the coefficients of each
xi, i = 0, . . . , s, we get

qs = α, ∀i = 1, . . . , s, (qi − 1) pi =
i−1∑
j=0

(
s− j
s− i

)
ri−j pj.

Solving the latter linear system successively for p1, p2, . . . , ps, we obtain

∀i = 1, . . . , s, pi =

(
s

i

)(r

q − 1

)i
,

which yields

p(x) =

(
x− r

1− q

)s

. (3.15)

Finally, Fϕ contains only polynomials of the form (3.15) up to a multiplicative constant
c ∈ C∗.

62

Chapter 3 Rational Solutions of Pseudo-Linear Systems

From Proposition 3.3, for q = 1 and r ̸= 0, the set Fϕ is empty which justifies why
in the pure difference case, one does not have to consider a ϕ-fixed part in a universal
denominator. Moreover, for the pure q-difference case q ̸= 1 and r = 0, Proposition 3.3
implies that the only monic irreducible element in Fϕ is p = x meaning that the only
ϕ-fixed singularity is xϕ = 0. In the general case with q ̸= 1, the only monic irreducible
element in Fϕ is x− r

1−q
and we thus write a universal denominator as a product(

x− r

1− q

)α

G(x), (3.16)

where α ∈ N and the polynomial G(x) is not divisible by x − r
1−q

. Here,
(
x− r

1−q

)α
is the ϕ-fixed part and G(x) is the non ϕ-fixed part. In order to construct a universal
denominator, one needs to compute both α and G(x) in (3.16). On one hand, α can be
obtained from a simple form at the ϕ-fixed singularity xϕ = r

1−q
. This will be the subject

of the next section.

On the other hand, the non ϕ-fixed part G(x) can be obtained using Proposition 3.2
(with the appropriate ϕ). Equivalently, applying Algorithm UD from Section 3.3.1 to
System (3.8) allows to compute G(x). To achieve this, one first needs to compute the
dispersion set Eϕ(a, b) defined by (3.10), which is usually done by a resultant computa-
tion (see Remark 3.2 and [5]), and then, for each element in Eϕ(a, b), several gcd’s are
computed in order to get G(x). However, in [77] (see also [9, 72]), the authors remark
that if we first compute a factorisation of the polynomials a and b, then Eϕ(a, b) can
be computed without computing resultants, which is often more efficient in practice.
This fact is assured in [9, 77] by complexity analysis and experimental evidences. In
Section 3.3.4, we give a unified version of the latter efficient approach for all ϕ-systems.

3.3.3 Computing the ϕ-fixed part

As we have seen above, a universal denominator of a ϕ-system (3.8) can be written
as (3.16): a product of ϕ-fixed part and non ϕ-fixed part. We focus here on the computa-
tion of the ϕ-fixed part, mainly the computation of the non-negative ineteger α in (3.16).
As in the q-difference case, we use Algorithm Simpleform. We introduce the ϕ-derivation
δ = idF −ϕ. System (3.8) can thus be written as the pseudo-linear system δ(y) =M ϕ(y)
where M = N−1 − In ∈Mn(F).

Remark 3.3. In our implementations, we prefer to write System (3.8) as the pseudo-
linear system δ(y) = M ϕ̃(y) where ϕ̃ = ϕ−1, δ = idF − ϕ̃ and M = ϕ̃(N) − In. From
a computational point of view, this is better since we avoid matrix inversion when we
compute M .

63

Chapter 3 Rational Solutions of Pseudo-Linear Systems

Let K = C((t)) with t = x− xϕ, be the completion of F w.r.t. to the t-adic valuation ν.
The degree of δ is thus ω = 0 and the system δ(y) = M ϕ(y) can be written as the local
pseudo-linear system

Aδ(y) +B ϕ(y) = 0, (3.17)

where

A = diag(tα1 , . . . , tαn), αi = −min{0, ν(M(i, .))}, B = −AM ∈Mn(C[[t]]).

Applying Algorithm SimpleForm developed in Chapter 2 to System (3.17) yields an
equivalent simple system with an associated indicial polynomial φ(λ). Finally, α is the
largest non-negative integer root such that −α is a root of φ(λ) (see Remark 2.3). The
algorithm to compute the ϕ-fixed part of a universal denominator for System (3.8) can
be summarised in the following scheme. The input is either a ϕ-system (3.8) or a pseudo-
linear system (3.1) where ϕ : x 7→ q x + r and δ = γ(idF − ϕ) with γ ∈ F ∗. Here r ∈ C
and q ∈ C∗ is not a root of unity, but if r ̸= 0 then q is allowed to be 1.

Algorithm FixedPart

Input: A ϕ-system (3.8) or System (3.1) with the above conditions.
Output: The ϕ-fixed part of a universal denominator.
1. Localisation: Rewrite the input system as the local pseudo-linear system (3.17).
2. Apply Algorithm SimpleForm to (3.17) to obtain the indicial polynomial φ(λ).
3. Compute α = max{λ ∈ N ; φ(−λ) = 0 }.

Return
(
x− r

1− q

)α

.

Example 3.4. Consider the ϕ-system (3.8) with q = 3, r = 2 and

N =


3x+ 2

9x
0

2 (x+ 1)3 (13x+ 2)

3 (3 x+ 2) (3 x+ 1)x

(x− 1) (x− 2)

3 (3 x+ 2) (3 x+ 1)

 .
The only ϕ-fixed singularity is xϕ = −1 and thus we write a universal denominator under
the form

u(x) = (x+ 1)αG(x),

where G(x) is not divisible by x + 1. Let us compute α. The idea is to work with
K = C((t)) with t = x + 1, equipped with the t-adic valuation ν. We introduce the ϕ-
derivation δ = idK − ϕ, and then we have ω = 0 (the degree of δ), c = q and d = 1 − q
(see Definition 1.13). The system can be rewritten as the local pseudo-linear system

64

Chapter 3 Rational Solutions of Pseudo-Linear Systems

Aδ(y) +B ϕ(y) = 0 where A = I2 and

B =


−6x− 2

3x+ 2
0

18 (x+ 1)3 (13x+ 2)

3x3 − 7x2 + 4
−26x2 + 30x+ 4

(x− 1) (x− 2)

 .
The latter system is already simple, and the indicial polynomial is

φ(λ) =
(
−1 + 9 3λ

) (
−1 + 3λ

)
.

The only non-negative integer root of φ(λ) is -2 which implies that α = 2.

3.3.4 Computing the dispersion set and the non ϕ-fixed part

Let us consider a ϕ-system (3.8). The dispersion set Eϕ(a, b) defined by (3.10) is usually
computed as follows. One first compute the resultant Resx(a, ϕm(b)). This resultant is
a polynomial in [m]q defined in (3.14) and the elements of Eϕ(a, b) are computed from
the roots in C of this polynomial. Note that if d1 = deg(a) and d2 = deg(b), then the
resultant Resx(a, ϕm(b)) is of degree d1 d2 (see for instance [77, Proposition 1]). Moreover,
its coefficients are expected to be significantly larger than those of a and b. Consequently,
this resultant-based algorithm to compute the dispersion set appears to be inefficient in
practice.

In this section, we extend the ideas of [77] to compute the dispersion set Eϕ(a, b)

for any automorphism ϕ of F defined by ϕ : x 7→ q x + r with r ∈ C and q ∈ C∗ is not
a root of unity, but if r ̸= 0 then q is allowed to be equal to 1. The approach relies on a
factorization into irreducible factors of the polynomials a and b given in (3.9). Moreover,
we will see that this approach allows to compute directly all the factors of the non ϕ-fixed
part of a universal denominator (this means while computing Eϕ(a, b)), unlike the existing
resultant-based algorithms who require the computation of several gcd’s afterwards (see
Algorithm UD above).

First note that there exists s ∈ N such that deg (gcd(a, ϕs(b))) > 0, this means
s ∈ Eϕ(a, b), if and only if there exist an irreducible factor f of a and an irreducible factor
g of b such that f ∼ ϕs(g). Then, we have the following result:

Proposition 3.4. Let us consider two monic irreducible polynomials f and g of the same
degree d and write f(x) =

∑d
i=0 fi x

d−i, f0 = 1, g(x) =
∑d

i=0 gi x
d−i, g0 = 1. If f ∼ ϕs(g),

then we have the following explicit formulas for s:

65

Chapter 3 Rational Solutions of Pseudo-Linear Systems

1. If q = 1, then s =
f1 − g1
d r

(see [77]).

2. Otherwise, if f and g are both different from x− r
1−q

, then if k denotes the smallest
positive integer such that (q − 1)k fk −

(
d
k

)
rk ̸= 0, we have

s =
log(Ak)

k log(q) , Ak := 1 +
(q − 1)k (gk − fk)
(q − 1)k fk −

(
d
k

)
rk
. (3.18)

Proof. If f ∼ ϕs(g), then necessarily ϕs(g) = qd s f . Now, a direct calculation shows that

ϕs(g) =
d∑

k=0

d∑
i=d−k

qs (d−k)

(
i

d− k

)
gd−i r

i−d+k [s]i−d+k
q xd−k.

Therefore, equating the coefficients of xd−k in the equality ϕs(g) = qd s f , for k ∈
{1, . . . , d}, yields an equation of degree k in [s]q which can be written as:

fk − gk +
k∑

i=1

(
fk

(
k

i

)
(q − 1)i −

(
d− k + i

i

)
ri gk−i

)
[s]iq = 0. (3.19)

For k = 1, Equation (3.19) implies(
(q − 1)f1 − d r

)
[s]q + f1 − g1 = 0. (3.20)

If q = 1, then (3.20) yields [s]q = s =
f1 − g1
d r

which was also the result obtained in [77].
Otherwise, when q ̸= 1, it may happen (namely, when f1 (q − 1) − d r = 0) that the
coefficient of [s]q in (3.20) vanishes which implies g1 = f1 and in this case Equation (3.19)
for k = 1 will not provide any formula for [s]q.
Let k be the smallest positive integer such that

fk (q − 1)k −
(
d

k

)
rk ̸= 0.

Such a k always exists as, by hypothesis, f(x) ̸= x− r
q−1

/∈ Fϕ. From Equation (3.19), we
then have that, for all i = 1, . . . , k,

gk−i = fk−i =

(
d

k−i

)
rk−i

(q − 1)k−i
.

Moreover, Equation (3.19) has then exactly degree k in [s]q and can be simplified to get:

fk − gk +
(
fk −

(
d
k

)
rk

(q − 1)k

)(
(1 + (q − 1) [s]q)

k − 1
)
= 0.

66

Chapter 3 Rational Solutions of Pseudo-Linear Systems

Finally, using the definition (3.14) of [s]q, we obtain qs k = Ak where Ak is defined in the
statement of the proposition. This ends the proof.

Proposition 3.4 leads to an efficient unified algorithm for computing the dispersion set.
Note also that, for our purpose, an important advantage of this approach, compared
to resultant based algorithms that still need gcd’s calculations, is that it also provides
directly the factors of the non ϕ-fixed part of a universal denominator of the rational
solutions of a ϕ-system. This is summarised in the following scheme. We call the algorithm
NonFixedPart. Note that a (somehow) similar algorithm is developed in [9] for the
pure-difference case.

Algorithm NonFixedPart

Input: A ϕ-system of the form (3.8).
Output: The dispersion set Eϕ(a, b) of a and b defined by (3.9) and the non ϕ-fixed
part of a universal denominator for rational solutions of (3.8).

1. Set Eϕ(a, b) = ∅ and G(x) = 1.

2. Factor a and b defined by (3.9) as products of powers of distinct monic irre-
ducible polynomials called respectively uj’s and vl’s.

3. For each pair (uj, vl) such that deg(vl) = deg(uj) = d

(we write uj(x) =
∑d

i=0 fi x
d−i, vl(x) =

∑d
i=0 gi x

d−i - see Proposition 3.4)

• If q = 1, then s =
f1 − g1
d r

.
Else let k be the smallest positive integer such that

fk (q − 1)k −
(
d

k

)
rk ̸= 0

and s be as in (3.18).
End If

• If s ∈ N and uj ∼ ϕs(vl), then set Eϕ(a, b) = Eϕ(a, b) ∪ {s} and

G(x) = G(x)
s∏

i=0

ϕ−i(uj).

End If

End For

4. Return Eϕ(a, b) and G(x).

67

Chapter 3 Rational Solutions of Pseudo-Linear Systems

Example 3.5. Let us come back to the ϕ-system considered in Example 3.4. We have
already computed the ϕ-fixed part so that a universal denominator is of the form

u(x) = (x+ 1)2G(x),

where G(x) is not divisible by x + 1. Now we shall compute the non ϕ-fixed part G(x).
The factorisations of the polynomials a and b defined in (3.9) are given by:

a(x) = x (x− 1) (x− 2) , b(x) = (x− 1) (x− 2)

(
x+

2

3

)
.

Here, inspecting directly pairs of irreducible factors of a and b, we easily check that:

x ∼ ϕ1(x− 2), x− 1 ∼ ϕ0(x− 1), x− 2 ∼ ϕ0(x− 2),

are the only possible associations. The dispersion set is thus Eϕ(a, b) = {0, 1} and the
multiple of G(x) obtained is ϕ0(x)ϕ−1(x)ϕ0(x− 1)ϕ0(x− 2) = x (x− 1) (x− 2)2 because
ϕ−1(x) = 1

3
(x− 2). A universal denominator is thus given by

u(x) = (x+ 1)2 x (x− 1) (x− 2)2.

One then can compute a basis of rational solutions. We perform the change of variable
y = z/u. This a yields a new ϕ-system of the form

ϕ(y(x)) =


(27x+ 9) (3 x+ 2)2

(x− 1) (x− 2)2
0

(702x+ 108) (x+ 1)3

(x− 1) (x− 2)2
27x

x− 2

y(x),

for which we are reduced to compute its polynomial solutions. The latter system can
be written as the pseudo-linear system (3.6), and we have seen that it admits a basis
of polynomial solutions given by (3.7). Finally, a basis of the rational solutions of the
original ϕ-system is given by:

y1(x) =


x

(x+ 1)2

1

 , y2(x) =

 0

1

x (x− 1) (x− 2)

 .

3.4 The complete algorithm
The results developed in the previous sections of this chapter naturally yield a generic
algorithm to compute all rational solutions of a pseudo-linear system of the form (3.1),

68

Chapter 3 Rational Solutions of Pseudo-Linear Systems

where either ϕ = idF and δ = d
dx

, or ϕ : x 7→ q x + r and δ = γ(idF − ϕ) with γ ∈ F ∗.
Here r ∈ C and q ∈ C∗ is not a root of unity, but if r ̸= 0 then q is allowed to be equal
to 1. We call the algorithm RatSols_1PLS and it proceeds as follows:

Algorithm RatSols_1PLS

Input: A pseudo-linear system (3.1): δ(y) =M ϕ(y).
Output: A matrix whose columns form a basis of all rational solutions, or 0n (the zero
vector of dimension n) if there are no non-trivial rational solutions.
1. Compute a universal denominator:

If ϕ = idF (differential systems) then for each irreducible factor pi of den(M), use
Algorithm SimpleForm to compute the corresponding local exponent αi, and set

u(x) =
∏

pαi
i .

Else

– Rewrite (3.1) as a ϕ-system (3.8).

– Let G(x) be the polynomial output of Algorithm NonFixedPart applied
to (3.8).

– If q = 1 then set u(x) = G(x).
Else

∗ Let
(
x− r

1−q

)α
be the output of Algorithm FixedPart applied to (3.1).

∗ Set u(x) =
(
x− r

1−q

)α
G(x).

End If

End If

2. Compute polynomial solutions: Let Z be the output of applying Algorithm
PolySols_1PLS (see Section 3.2) to System (3.2). Here Z is either a matrix whose
columns form a basis of all polynomial solutions or the vector 0n.

Return u−1 Z.

3.5 Some comparison tests
We present in this section some of the experimental results that we have obtained when
comparing the performance of our implementation to that of existing algorithms. For our

69

Chapter 3 Rational Solutions of Pseudo-Linear Systems

knowledge, the (implemented) existing algorithms only deals with the three particular
systems: differential, difference, and q-difference. For this reason, the experiments were
held on these three kind of systems. More precisely:

• Experiment 1 held for differential systems y′(x) = A(x)y(x).

• Experiment 2 held for difference systems y(x+ 1) = A(x)y(x).

• Experiment 3 held for q-difference systems y(q x) = A(x)y(x).

All input systems in each experiment have been constructed from a full fundamental
matrix Y (x) of rational solutions such that the numerator of each entry of Y (x) is gener-
ated by the Maple command randpoly(x, degree = 5) and such that the denominator
den(Y) is fixed for each experiment. Moreover, all the implementations used in the ex-
periments perform two main computational tasks (universal denominator + polynomial
solutions), so it is also interesting to compare the times needed in each implementation
to accomplish each task. We denote by

• t1: the time needed to compute a universal denominator.

• t2: the time needed to compute the polynomial solutions (after the suitable change
of variable).

• T : the overall time needed to compute all rational solutions (normally T is almost
equal to t1 + t2).

Experiment 1: differential systems
Here we chose den(Y) = x, and we have tested matrix dimensions n = 5, 7, 9, 11, 12.
The matrix A(x) of each input system thus satisfies

den(A) = x pn(x),

where pn(x) is an irreducible (large) polynomial that changes as n changes. For instance,
for n = 7 we have

p7(x) = 21x34 − 50x33 − 97x32 − 141x31 − 50x30 + 479x29 + 340x28 + 61x27 + 359x26

− 62x25 − 788x24 + 2125x23 + 1293x22 − 741x21 − 448x20 + 2602x19

− 629x18 − 6338x17 + 5831x16 + 2298x15 − 8617x14 + 2683x13 + 2333x12

− 4118x11 + 912x10 + 2188x9 − 916x8 − 1001x7 + 363x6 + 375x5 − 60x4

− 73x3 + 18x2 + 14x− 1.

We compare our implementation with the procedures Mratsolde from the Isolde [39]
package and RationalSolution from the LinearfunctionalSystems package. The
table below shows the results of Experiment 1 in terms of the CPU time (in seconds).

70

Chapter 3 Rational Solutions of Pseudo-Linear Systems

RatSols_1PLS Mratsolde RationalSolution
t1 t2 T t1 t2 T t1 t2 T

n = 5 0.27 0.09 0.40 0.21 0.31 0.53 1.14 0.09 1.30
n = 7 1.65 0.20 1.94 1.88 0.50 2.25 7.00 0.09 7.15
n = 9 40.07 0.21 40.49 45.04 1.20 47.11 35.14 0.20 37.18
n = 11 376.55 0.23 376.99 470.79 1.62 472.44 150.23 0.24 152.12
n = 12 1013.9 0.35 1015.5 2015.2 2.92 2019.0 294.10 0.37 298.15

Table 3.3: Results of Experiment 1 (differential systems).

From these results, we can notice an evident advantage of our implementation compared
to Mratsolde, but RationalSolution appears to be significantly the best3 (just for
differential systems, see the next experiments).

Remark 3.4. Going deeper through the analysis of each value of t1, we have noticed that
in all cases, almost all the time is spent while computing a degree bound (which is zero) of
pn(x). This is expected as pn(x) is very “complicated”. Note that to compute this bound,
we use simple forms, Mratsolde uses super-reduction [41] and RationalSolution uses
EG-eliminations [3].

Experiment 2: difference systems
In this experiment we chose den(Y) = x (x + 1) (4x5 + 2 x4 − 5x3 − 9x2 + 1). We
have tested input systems of the form y(x + 1) = A(x)y(x) with matrix dimensions
n = 5, 10, 15, 20. We compare our implementation with the procedures deltaRS from
Isolde and RationalSolution from the LinearfunctionalSystems package. The
table below shows the results, in terms of the time (in seconds), between the three
different implementations.

RatSols_1PLS deltaRS RationalSolution
t1 t2 T t1 t2 T t1 t2 T

n = 5 0.13 0.38 0.68 0.20 0.52 0.73 0.62 3.28 4.46
n = 10 2.06 3.86 6.00 2.71 6.28 9.01 9.99 81.41 92.32
n = 15 20.34 19.35 39.90 31.91 31.97 63.93 59.59 ∗ ∗
n = 20 122.18 74.22 196.88 187.13 113.63 300.84 252.33 ∗ ∗

Table 3.4: Results of Experiment 2 (difference systems).
3Be careful, we have encountered several examples where the procedure

LinearFunctionalSystems[RationalSolution] fails to deliver the correct solution for a differen-
tial system

71

Looking at the results of the above table, we can see that in our implementation, the
values of t1, t2 and T are better than those of deltaRS, and much better than those of
RationalSolution which behaves badly (the symbol ∗ indicates that a computation did
not terminate after 4 hours).

Experiment 3: q-difference systems
Here we chose den(Y) = x f(x) f(q x) where f(x) = 4 x5 +2 x4− 5x3− 9x2 +1. The test
input systems are of the form y(q x) = A(x)y(x) with matrix dimensions n = 3, 5, 7, 10.
The results of the experiment are presented in the next table. The symbol ∗ indicates
that a computation did not terminate after 4 hours.

RatSols_1PLS RationalSolution
t1 t2 T t1 t2 T

n = 3 0.36 0.10 0.50 1.536 0.08 147.55
n = 5 0.90 0.20 1.58 63.20 0.20 346.28
n = 7 3.14 0.53 4.20 928.62 0.58 ∗
n = 10 59.10 2.582 63.16 ∗ ∗ ∗

Table 3.5: Results of Experiment 3 (q-difference systems).

The obtained results explain themselves. RationalSolution behaves surprisingly in a
bad and weird manner. We don’t believe that this is just due to the different methods
used to compute a universal denominator or polynomial solutions. We believe that there
is a defect in the internal procedures of the LinearfunctionalSystems package (for
q-difference systems). This defect is also illustrated by the fact that, for all input systems,
there is a huge difference between t1 + t2 and T .

Chapter 4

On Rational and Hypergeometric
Solutions of Partial Pseudo-Linear

Systems

4.1 Introduction . 74
4.2 Rational solutions . 76

4.2.1 The case of one difference and one differential system 77
4.2.1.1 Description of the approach 77
4.2.1.2 Algorithm and example 79

4.2.2 The general case: partial pseudo-linear systems 81
4.2.2.1 A recursive approach . 81
4.2.2.2 Algorithm and examples 83
4.2.2.3 Necessary conditions for denominators 88
4.2.2.4 Implementation and comparison of different strategies . . 91
4.2.2.5 Applications: eigenring and decomposition of systems . . 93

4.3 Hypergeometric solutions . 96
4.3.1 The differential and difference cases 98

4.3.1.1 Pflügel’s algorithm for differential systems 98
4.3.1.2 Barkatou and Van Hoeij algorithm for difference systems 101

4.3.2 Description of the recursive approach 104
4.3.3 Algorithm and example . 107
4.3.4 Remarks on the implementation . 110

This chapter constitutes the subjects of the second halves of the published papers [30, 33]
in collaboration with M. A. Barkatou and T. Cluzeau.

73

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

4.1 Introduction
Let C be a field of characteristic zero and K = C(x1, . . . , xm) be the field of rational
functions in m independent variables x1, . . . , xm with coefficients in C. For i = 1, . . . ,m,
let ϕi be a C-automorphism of K, and δi be a pseudo-derivation with respect to ϕi such
that for all j ̸= i, xj is a constant with respect to ϕi and δi, i.e., ϕi(xj) = xj and δi(xj) = 0.
In the present chapter, the object of study is a partial pseudo-linear system defined over
the ϕδ-field (K, {ϕi, δi}1≤i≤m) (see Section 1.2), having the form:

L1(y) := δ1(y)−M1 ϕ1(y) = 0,
...

Lm(y) := δm(y)−Mm ϕm(y) = 0,

(4.1)

where y is a vector of n unknown functions of x1, . . . , xm and the matrix Mi ∈Mn(K) for
all i = 1, . . . ,m. One underlying motivation for studying partial pseudo-linear systems
is that many special and transcendental functions are solutions of such systems. For
instance, one can check that the vector y(x, k) = (H(x, k), H(x, k + 1))T , where H(x, k)

are the Hermite polynomials

H(x, k) = k!

[k/2]∑
j=0

(−1)j(2x)k−2j

j!(k − 2 j)!
, (4.2)

satisfies the system

y(k + 1, x) =

(
0 1

−2 k 2x

)
y(k, x), ∂y

∂x
(k, x) =

(
2x −1
2 k 0

)
y(k, x). (4.3)

We assume that System (4.1) is integrable, this means it satisfies the integrability condi-
tions:

[Li, Lj] := Li ◦ Lj − Lj ◦ Li = 0, ∀i, j = 1, . . . ,m, (4.4)

where Li := In δi − Mi ϕi denotes the matrix pseudo-linear operator associated to the
ith system of (4.1). Following the terminology of [46, Definition 2] and [75, 95], we
further suppose that (4.1) is fully integrable, i.e., for all i = 1, . . . ,m with ϕi ̸= idK and
δi = γi (idK −ϕi) where γi ∈ K∗, the matrix Mi+γi In is invertible (see Section 1.2). The
integrability conditions assure that the space of rational solutions of System (4.1) is of
finite dimension over C (at most n). This implies, in particular, that there exists a (not
necessarily unique) polynomial (called universal denominator) U ∈ C[x1, . . . , xm] such
that for any rational solution y of (4.1), Uy is a vector of polynomials. Note that, the ex-
istence of a universal denominator is not always guaranteed if one considers other kinds of
linear partial differential (or difference) systems or equations. For instance, it was shown

74

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

in [80, 81] that there is no algorithm for testing the existence of a universal denominator
for rational solutions of linear partial differential or difference equations with rational
function coefficients (i.e., even an algorithm that only answers YES or NO to the question
of existence, does not exist). One can also consult [70, 71] where it was shown that for
some scalar linear partial difference equations (such as (y(x1+1, x2)−y(x1, x2+1) = 0),
there is no universal denominator for all rational solutions.

In this chapter, we are interested in computing rational solutions, and more gener-
ally hypergeometric solutions, of fully integrable systems of the form (4.1). In both cases,
we shall use a recursive approach that has been already adapted in different contexts.
In particular, this recursive approach is adapted in [29] for computing rational solutions
of integrable connections (i.e., the case of System (4.1) with m differential systems),
and in [74] for computing hypergeometric solutions1 of more general partial systems
over Laurent-Ore algebras. Contrary to [74], this chapter contains a specific algorithm
for computing rational solutions which is useful in itself for computing eigenrings (see
Section 4.2.2.5).

The first main contribution of the present chapter consists in a new efficient algo-
rithm for computing all rational solutions of a partial pseudo-linear system (4.1). The
method proceeds by recursion and, in particular, it requires, for i = 1, . . . ,m, an algo-
rithm for computing all rational solutions of a sole pseudo-linear system of the form
δi(y) − N ϕi(y) = 0, where N ∈ Ms(C(p1, . . . , pr)(xi)), 1 ≤ s ≤ n and p1, . . . , pr are
parameters which are constants with respect to ϕi and δi. This can be done using Algo-
rithm RatSol_1PLS developed in Chapter 3. In order to speed up the computation
of rational solutions of System (4.1), our implementation [32] takes into account two
aspects. First, some necessary conditions for an irreducible polynomial to appear in the
denominator of a rational solution are obtained by inspecting the irreducible factors of
the denominators of all the matrices Mi (see Section 4.2.2.3). Moreover, in the recursive
process, as the m pseudo-linear systems in (4.1) can be considered in an arbitrary order,
we tried to see, through experiments, if there are some orders better than others from
the computational point of view. The timings obtained from most of our experiments
indicate that the best strategy seems to be to consider first the non-differential systems
(i.e., ϕi ̸= idK) and then the differential systems (see Section 4.2.2.4).

The second main contribution of this chapter is a new efficient algorithm for com-
puting hypergeometric solutions of System (4.1). The method also proceeds by recursion
and uses the same strategy as in [29, Sections 5] for integrable connections. Our appr-
oach relies on an algorithm for computing hypergeometric solutions of a general first

1In [29, 74], hypergeometric solutions are called hyperexponential solutions

75

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

order pseudo-linear system δi(y) − N ϕi(y) = 0, where N ∈ Ms(C(p1, . . . , pr)(xi)),
1 ≤ s ≤ n and p1, . . . , pr are parameters which are constants with respect to ϕi and
δi. To our knowledge, such an algorithm exists only for differential [84], difference [44],
and q-difference [13] systems. Note that the algorithm in [13] reduces the search of
solutions of the given system to the search of solutions of several scalar equations, while
the algorithms in [44, 84] are direct, i.e., they do not reduce to the scalar case. Our
current implementation for computing hypergeometric solutions of partial pseudo-linear
systems only deals with a system (4.1) composed of differential and/or difference systems.

The rest of the chapter is organised as follows. In Section 4.2, we present our first
contribution, that is a new recursive algorithm for computing rational solutions of partial
pseudo-linear systems. For the sake of clarity, we first give in Section 4.2.1 the basic ideas
of our algorithm for a System (4.1) composed of one pure differential system and one pure
difference system. In Section 4.2.2, we extend these ideas to handle System (4.1) with
arbitrary order m and develop the general algorithm. We also provide some explanations
concerning our implementation. This includes necessary conditions for an irreducible
polynomial to appear in the denominator of a rational solution and also includes timings
comparing different strategies. Some applications of the algorithm are also given. Sec-
tion 4.3 is devoted to the computation of hypergeometric solutions of partial pseudo-linear
systems. We first review the algorithms developed for pure differential and difference
systems and then develop our algorithm. Examples of computations are also given to
clarify our approaches, and a demonstration of the different implementations is provided
in Chapter 5.

4.2 Rational solutions
In this section, we present a new algorithm for computing rational solutions of a partial
pseudo-linear system (4.1) which is fully integrable and satisfies the integrability condi-
tions (4.4). We extend the ideas developed in [29] for integrable connections (i.e., the case
where all the systems are differential systems) to handle a more general system (4.1). For
i, j = 1, . . . ,m, the variable xj’s (j ̸= i) are constants with respect to ϕi and δi. This
allows to view Li(y) = 0 as a pseudo-linear system with respect to xi and where the other
variables xj’s are considered as constant parameters.

Definition 4.1. Let K = C(x1, . . . , xm). A rational solution of a partial pseudo-linear
system (4.1) is a vector y ∈ Kn that satisfies Li(y) = 0, for all i = 1, . . . ,m.

Example 4.1. Let K = C(x1, x2) and consider the partial pseudo-linear system{
δ1(y) = (x2/x1)ϕ1(y),
δ2(y) = (x1 − 1)ϕ2(y),

76

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

where

ϕ1 = idK , δ1 =
∂

∂x1
, ϕ2 : (x1, x2) 7→ (x1, x2 − 1), δ2 = idK − ϕ2.

One can check that the function y(x1, x2) = xx2
1 is a solution of the system but it is not a

rational solution in the sense of Definition 4.1. Also, the vector

y(x, k) = (H(x, k), H(x, k + 1))T ,

where the H(x, k)’s are the Hermite polynomials (4.2), is not a rational solution of (4.3)
in the sense of Definition 4.1.

The objective of this section is to develop an algorithm for computing all rational solutions
of (4.1). For the sake of clarity, we explain first the details of the algorithm in the case
m = 2 with one difference system and one differential system. We then extend these ideas
for a general system (4.1) with arbitrary order m, composed of any type of pseudo-linear
systems.

4.2.1 The case of one difference and one differential system

Let K = C(k, x) and consider the fully integrable system

{y(k + 1, x) = A(k, x)y(k, x), y′(k, x) = B(k, x)y(k, x)} , (4.5)

where y′ = ∂y/∂x, A ∈ GLn(K), B ∈Mn(K). The integrability condition reads:

A′(k, x) = B(k + 1, x)A(k, x)− A(k, x)B(k, x). (4.6)

4.2.1.1 Description of the approach

Let us describe our method for computing rational solutions of System (4.5). We first
consider the system y(k + 1, x) = A(k, x)y(k, x) as a difference system over C(x)(k)
viewing x as a constant parameter independent from k. We compute a basis w1, . . . ,ws ∈
Kn (0 ≤ s ≤ n) of its rational solutions (see Chapter 3 or [7]). If we do not find any
nonzero rational solution, then we are done as (4.5) does not admit any nonzero rational
solution. Let W ∈Mn×s(K) be a matrix having for columns the wi’s.

Lemma 4.1. With the above notations, the matrix W ′ − BW ∈ Mn×s(K) is a solution
of y(k + 1, x) = A(k, x)y(k, x).

Proof. Let Z = W ′ −BW . Using the fact that W (k + 1, x) = A(k, x)W (k, x), we get

Z(k + 1, x) = A′(k, x)W (k, x) + A(k, x)W ′(k, x)−B(k + 1, x)A(k, x)W (k, x).

77

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

It then follows from integrability condition (4.6) that

Z(k + 1, x) = A(k, x) (W ′(k, x)−B(k, x)W (k, x)) = A(k, x)Z(k, x).

Let us complete w1, . . . ,ws into a basis w1, . . . ,wn of Kn and define

P = (W V) ∈ GLn(K),

where V ∈Mn×(n−s)(K) has ws+1, . . . ,wn as columns. Performing the change of variables
y = P z in System (4.5), the differential system becomes

z′ = P−1 (B P − P ′) z,

and has the following properties:

Lemma 4.2. With the above notations, let us write

N = P−1 (B P − P ′) =

(
N11 N12

N21 N22

)
,

where N11 ∈ Ms(K). Then the matrix N11 ∈ Ms(C(x)) does not depend on k and it is
the unique solution of the matrix linear system W N11 = −(W ′ − BW). Furthermore
N21 = 0.

Proof. The equation P N = B P − P ′ yields

W N11 + V N21 = −(W ′ −BW).

From Lemma 4.1, the matrix W ′ − BW is a solution of y(k + 1, x) = A(k, x)y(k, x) so
that there exists a unique matrix C ∈ Ms(C(x)) (i.e., constant with respect to k) such
that W ′ −BW = W C. We then obtain

W (N11 + C) + V N21 = 0,

which ends the proof as the columns of P = (W V) form a basis of Kn.

The next theorem shows that we are now reduced to computing the rational solutions of
the differential system z′(x) = N11(x) z(x).

Theorem 4.1. Let W ∈Mn×s(K) be a matrix whose columns form a basis of the rational
solutions of y(k + 1, x) = A(k, x)y(k, x). Let N11 ∈ Ms(C(x)) be the unique solution
of the matrix linear system W N11 = −(W ′ − BW). If z1, . . . , zr ∈ C(x)s is a basis of

78

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

rational solutions of z′(x) = N11(x) z(x), then W z1, . . . ,W zr ∈ Kn is a basis of rational
solutions of (4.5). Moreover, every rational solution of (4.5) can be obtained in such a
way.

Proof. Let z ∈ C(x)s be a rational solution of z′(x) = N11(x) z(x) and let us consider
y(k, x) = W (k, x) z(x). We have

y(k + 1, x) = W (k + 1, x) z(x) = A(k, x)W (k, x) z(x) = A(k, x)y(k, x).

Moreover y′ = W ′ z +W z′ = W ′ z +W N11 z = B y, by definition of N11. This ends the
first part of the proof. Now let y be a solution of (4.5). In particular, y is a solution of
y(k + 1, x) = A(k, x)y(k, x) so that there exists z ∈ C(x)s such that

y = W z = (W V) (zT 0T)T .

Thus, y is a solution of y′(k, x) = B(k, x)y(k, x) if and only if (zT 0T)T is a solution
of y′ = N y where N = P−1 (B P − P ′). This is equivalent to z′(x) = N11(x) z(x) and
yields the desired result.

4.2.1.2 Algorithm and example

Theorem 4.1 naturally provides an algorithm for computing a basis of rational solutions
of System (4.5). It proceeds as follows:

Algorithm RationalSolutions_DifferenceDifferential

Input: A system of the form (4.5).
Output: A matrix whose columns form a basis of rational solutions of (4.5).

1. Compute a basis of rational solutions of y(k + 1, x) = A(k, x)y(k, x).

2. Let W ∈ Mn×s(K) be a matrix whose columns form a basis of the rational
solutions of y(k + 1, x) = A(k, x)y(k, x).

3. Compute the unique solution N11 ∈ Ms(C(x)) of the matrix linear system
W N11 = −(W ′ −BW).

4. Compute a basis z1, . . . , zr of the rational solutions of the differential system
z′(x) = N11(x) z(x),

5. Return W z1, . . . ,W zr.

In Steps 1 and 3 if we do not find any nonzero rational solution, then we return 0n (the
zero vector of dimension n) since this implies that (4.5) does not admit nonzero rational
solutions.

79

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

Example 4.2. Consider the system (4.5) with matrices A(x, k) and B(x, k) given by:

A(k, x) =



k

k+1
0

2

(k+1) (x+k)
0

−k2+(−x−1) k−x−1
k+1

x2−1+x (k+1)

k+1

2

(k+1) (x+k)

−k2+x2−2 k−2
k+1

0 0
x+k+1

x+k
0

(x−1) k+x
k+1

−x2+1

k+1

−2
(k+1) (x+k)

x (k+1)−x2+1

k+1


,

B(k, x) =



1

x
0

−2
x (x+k)

0

x2−1+(−k2−k)x
x3−x

x2−2x−1
x2−1

−2
x (x+k)

−k2+x2−k−2x−1
x2−1

0 0 (x+k)−1 0

−1

x
−1 2

x (x+k)
−1


.

Computing rational solutions of y(k + 1, x) = A(k, x)y(k, x) we get s = 2 linearly inde-
pendent solutions given by the columns of

W =



2
1

k

2
1

k

x+ k 0

−2 −1

k


.

Now, solving the linear system W N11 = −(W ′ −BW) we get:

N11 =

 1

x
0

0 0

 ∈M2(C(x)).

The differential system z′(x) = N11(x) z(x) admits r = 2 linearly independent rational
solutions given by the columns of

Z =

 0 1

x 0

 .

80

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

Finally, a basis of rational solutions of the original system is spanned by the columns of

Y = W Z =



x

k
2

x

k
2

0 x+ k

−x
k

−2


.

4.2.2 The general case: partial pseudo-linear systems

Let K = C(x1, . . . , xm). The process explained in Section 4.2.1 can be generalised to
an arbitrary number of pseudo-linear systems of any type, in other words, to a general
system (4.1). Our method proceeds by recursion and relies on an algorithm for computing
rational solutions of a first order pseudo-linear system δ(y) =M ϕ(y). Such an algorithm
has been described in Chapter 3 (in particular Section 3.4) both for differential systems
(ϕ = idC(x)) and for ϕ-systems where ϕ(f(x)) = f(q x+r) for all f ∈ C(x), with r ∈ C and
q ∈ C∗ is not a root of unity, but if r ̸= 0 then q is allowed to be equal to 1. Consequently,
for all i = 1, . . . ,m such that ϕi ̸= idK , we assume that ϕi satisfies the above conditions.

4.2.2.1 A recursive approach

Let us now give the details of our recursive approach. We first consider the pseudo-linear
system L1(y) = 0 (see also Section 4.2.2.4) over C(x2, . . . , xm)(x1). We compute a basis
w1, . . . ,ws ∈ Kn (0 ≤ s ≤ n) of rational solutions of L1(y) = 0 (see Section 3.4). If
we do not find any nonzero rational solution, then we stop as (4.1) does not admit any
nonzero rational solution. Otherwise, denote by W ∈Mn×s(K) the matrix whose columns
are the wi’s. We complete w1, . . . ,ws into a basis w1, . . . ,wn of Kn and we define the
matrix P = (W V) ∈ GLn(K), where V ∈ Mn×(n−s)(K) has ws+1, . . . ,wn as columns.
Performing the change of dependent variables y = P z in System (4.1), we obtain the
equivalent system 

L̃1(z) := δ1(z)−N1 ϕ1(z) = 0,
...

L̃m(z) := δm(z)−Nm ϕm(z) = 0,

(4.7)

where Ni = P−1 [Mi ϕi(P)− δi(P)] for all i = 1, . . . ,m. We have the following result as
an analogue of Lemma 4.2.

Lemma 4.3. With the above notations, let us decompose the matrices Ni’s of System (4.7)
by blocks as

Ni =

 N11
i N12

i

N21
i N22

i

 ,
81

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

where N11
i ∈ Ms(K). Then, for all i = 1, . . . ,m, the matrix N11

i ∈ Ms(C(x2, . . . , xm))

does not depend on x1. Moreover it can be computed as the unique solution of the matrix
linear system W N11

i = −Li(W), and in particular N11
1 = 0. Finally, N21

i = 0 for all
i = 1, . . . ,m.

Proof. The equation P Ni =Mi ϕi(P)− δi(P) yields

W N11
i + V N21

i = −Li(W).

From the integrability conditions (4.4), we get that, for all i = 1, . . . ,m, Li(W) is a
rational solution of the system L1(y) = 0 so that there exists a unique constant matrix
C ∈ Ms(C(x2, . . . , xm)), i.e., not depending on x1, such that Li(W) = W C. We then
obtain, for all i = 1, . . . ,m,

W (N11
i + C) + V N21

i = 0,

which ends the proof as the columns of P = (W V) form a basis of Kn.

From Lemma 4.3, we deduce the following result justifying the correctness of our iterative
algorithm for computing rational solutions of System (4.1).

Theorem 4.2. Given a partial pseudo-linear system (4.1). Let W ∈Mn×s(K) be a matrix
whose columns form a basis of the rational solutions of L1(y) = 0. For i = 2, . . . ,m, let
N11

i ∈ Ms(C(x2, . . . , xm)) be the unique solution of the matrix linear system W N11
i =

−Li(W). Suppose that Z ∈Ms×r(C(x2, . . . , xm)) is a matrix whose columns form a basis
of the rational solutions of the partial pseudo-linear system of size s over C(x2, . . . , xm)

δ2(y)−N11
2 ϕ2(y) = 0,

...

δm(y)−N11
m ϕm(y) = 0,

(4.8)

then the columns of the matrix WZ ∈ Mn×r(K) form a basis of all rational solutions
of (4.1). Moreover, every rational solution of (4.1) can be obtained in such a way.

Proof. Let Z ∈ Ms×r(C(x2, . . . , xm)) be a matrix whose columns form a basis of all
rational solutions of (4.8) and let us consider Y = WZ. We have

L1(Y) = δ1(W)ϕ1(Z) +W δ1(Z)−M1 ϕ1(W)ϕ1(Z) = δ1(W)Z −M1 ϕ1(W)Z = 0,

since W is a solution of L1(y) = 0. Now for i = 2, . . . ,m, by definition of N11
i , we have:

Li(Y) = δi(W)ϕi(Z) +W δi(Z)−Mi ϕi(W)ϕi(Z)

=
[
δi(W) +W N11

i −Mi ϕi(W)
]
ϕi(Z) = 0.

82

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

This ends the first part of the proof. Now let Y be a solution of (4.1). In particular, Y
is a rational solution of L1(y) = 0 so that there exists Z ∈ Ms(C(x2, . . . , xm)) such that
Y = WZ = (W V) (ZT 0T)T . Thus, for i = 2, . . . ,m, Y is a solution of Li(y) = 0 if
and only if (ZT 0T)T is a solution of the system (4.7). This is equivalent to Z being a
solution to system (4.8) and yields the desired result.

4.2.2.2 Algorithm and examples

Theorem 4.2 shows that rational solutions of (4.1) can be computed recursively. Indeed,
we have reduced the problem of computing rational solutions of System (4.1) of size n
in m variables to that of computing rational solutions of System (4.8) of size s ≤ n in
m− 1 variables. This gives rise to the following iterative algorithm for computing a basis
of rational solutions of System (4.1).

Algorithm RationalSolutions_PPLS

Input: An integrable system of the form (4.1).
Output: A matrix whose columns form a basis of rational solutions of (4.1) or 0n (the
zero vector of dimension n) if no non-trivial rational solution exists.

1. Compute a basis of rational solutions of L1(y) = 0 (see Section 3.4).

2. If there are no non-trivial rational solutions of L1(y) = 0, then Return 0n and
Stop.

3. Let W ∈ Mn×s(K) be a matrix whose columns form a basis of the rational
solutions of L1(y) = 0.

4. If m = 1, then Return W and Stop.

5. For i = 2, . . . ,m, compute the unique solution N11
i ∈ Ms(C(x2, . . . , xm)) of the

matrix linear system W N11
i = −Li(W).

6. Return W multiplied by the result of applying the current algorithm to Sys-
tem (4.8).

Let us illustrate our algorithm on the following examples:

Example 4.3. We consider a partial pseudo-linear system composed of one pure difference
system, one pure q-difference system and one pure differential system, defined as follows:

y(x1 + 1, x2, x3) = A1(x1, x2, x3)y(x1, x2, x3),
y(x1, qx2, x3) = A2(x1, x2, x3)y(x1, x2, x3),
∂

∂x3
y(x1, x2, x3) = A3(x1, x2, x3)y(x1, x2, x3),

(4.9)

83

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

where q ∈ Q∗ is not a root of unity. Let K = Q(q)(x1, x2, x3). The matrices A1, A2 ∈
GL2(K) and A3 ∈M2(K) are given by:

A1 =


x1 + 1

x1

−q x3 (x3 + x1)

x22 x1

0
x3 + x1

x3 + x1 + 1

 , A2 =

 1
−x3 (x3 + x1) (q − 1)

x22

0 q

 ,

A3 =

 0
q (x3 + x1)

x22

0
−1

x1 + x3

 .
Rewriting the three systems as pseudo-linear systems (see Section 1.2 for more details),
System (4.9) can be transformed into the form (4.1) with

L1(y) := δ1(y)−M1 ϕ1(y), M1 = ϕ1(A1)− I2,
L2(y) := δ2(y)−M2 ϕ2(y), M2 = ϕ2(A2)− I2,
L3(y) := δ3(y)−M3 ϕ3(y), M3 = A3,

(4.10)

where the ϕi’s are the automorphisms defined by:

ϕ1 : (x1, x2, x3) 7→ (x1 − 1, x2, x3), ϕ2 : (x1, x2, x3) 7→ (x1, x2/q, x3), ϕ3 = idK ,

and the δi’s are the ϕi-derivations defined by:

δ1 = idK − ϕ1, δ2 = idK − ϕ2, δ3 = ∂/∂x3.

Let us describe our iterative process for computing rational solutions of System (4.10).
Computing rational solutions of the system L1(y) = 0, we get two linearly independent
rational solutions given by the columns of

W1 =


x1 − x3
x42

1

x42
−1

q x22 (x3 + x1)

1

q x22 x3 (x3 + x1)

 .
Solving the linear systems W1N

11
2 = −L2(W1) and W1N

11
3 = −L3(W1) we get:

N11
2 =

 −q4 + 1 0

−q3 (q − 1)x3 −q3 + 1

 , N11
3 =

 0 0

0 −1

 ,
with N11

2 and N11
3 both independent from x1. We are then reduced to solving the partial

84

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

pseudo-linear system {
L̃2(y) := δ2(y)−N11

2 ϕ2(y) = 0,

L̃3(y) := δ3(y)−N11
3 ϕ3(y) = 0.

The rational solutions of the system L̃2(y) = 0 are given by the columns of the matrix

W2 =

 x42 0

x42 x3 x32

 .
Now, solving the linear system W2 N̂3

11
= −L̃3(W2), we get

N̂3

11
=

 0 0

0 −1

 ,
which is independent from x1 and x2. We are next reduced to computing rational solutions
of the system δ3(y) − N̂3

11
ϕ3(y) = 0. We find that they are given by the columns of the

matrix

W3 =

 0 1

x3 0

 .
Finally, a basis of rational solutions of (4.9) is spanned by the columns of

W1W2W3 =


x3
x2

x1

x2
(x3 + x1) q

0

 .
Example 4.4. Let K = Q(x1, x2, x3) and consider the following partial pseudo-linear
system 

L1(y) := δ1(y)−M1 ϕ1(y),
L2(y) := δ2(y)−M2 ϕ2(y),
L3(y) := δ3(y)−M3 ϕ3(y),

(4.11)

where the ϕi’s are the automorphisms over K defined by:

ϕ1 : (x1, x2, x3) 7→ (x1 − 5, x2, x3), ϕ2 : (x1, x2, x3) 7→ (x1,−3x2 − 5, x3),

ϕ3 : (x1, x2, x3) 7→ (x1, x2,−3x3),

and the δi’s are the ϕi-derivations defined by:

δ1 = idK − ϕ1, δ2 = idK − ϕ2, δ3 = idK − ϕ3.

85

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

The matrices Mi ∈M2(K) are given by

M1 =


5x3+5 x1−25

x12+(x3−10)x1−6x3+25

−5x3 (x3+x1−5)
(x12+(x3−10)x1−6x3+25) x2

−5x2
(x12+(x3−10)x1−6x3+25) (x3+x1)

5x3
(x12+(x3−10)x1−6x3+25) (x3+x1)

,

M2 =


x3 (4x2 + 5)

((x1 − 1)x3 + x12)x2

x3 (4x2 + 5)x1 (x3 + x1)

x2 (3x2 + 5) (x12 + x1x3 − x3)
4x2 + 5

(x1 − 1)x3 + x12
x3 (4x2 + 5)

(3x2 + 5) (x12 + x1x3 − x3)

 ,

M3 =


− 4x3
x12 − 3x1x3 + 3x3

4x3x1 (−3x3 + x1)

((−3x1 + 3)x3 + x12)x2

− 4x2x3
(x12 − 3x1x3 + 3x3) (x3 + x1)

− 12x3
2

(x12 − 3x1x3 + 3x3) (x3 + x1)

 .
Computing rational solutions of the system L1(y) = 0, we obtain two linearly independent
rational solutions given by the columns of

W1 =

 x1 − x3 1

−x2 (x1 + x3 − 1)

x3 + x1

x2
x3

 .
The unique solutions of the linear systems W1N

11
2 = −L2(W1) and W1N

11
3 = −L3(W1)

are given by:

N11
2 =

 0 0

x3 (4x2 + 5)

x2
−4x2 + 5

x2

 , N11
3 =

 0 0

0 −4

3

 ,
with N11

2 and N11
3 both independent from x1. We are then reduced to solving the partial

pseudo-linear system {
L̃2(y) := δ2(y)−N11

2 ϕ2(y) = 0,

L̃3(y) := δ3(y)−N11
3 ϕ3(y) = 0.

The rational solutions of the system L̃2(y) = 0 are given by the columns of the matrix

W2 =

 1 0

x3
1

x2

 .

86

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

The unique solution of the matrix linear system W2 N̂3

11
= −L̃3(W2) is

N̂3

11
=

 0 0

0 −4

3

 ,
which is independent from the variables x1 and x2. The rational solutions of the system
δ3(y)− N̂3

11
ϕ3(y) = 0 are given by the columns of

W3 =

 0 1

x3 0

 .
Finally, a basis of rational solutions of System (4.11) is spanned by the columns of

W1W2W3 =


x3
x2

x1

1
x2

x3 + x1

 .
Example 4.5. Let K = Q(x1, x2, x3) and consider the partial pseudo-linear system

L1(y) := δ1(y)−M1 ϕ1(y),
L2(y) := δ2(y)−M2 ϕ2(y),
L3(y) := δ3(y)−M3 ϕ3(y),

where the ϕi’s are the automorphisms over K defined by:

ϕ1 : (x1, x2, x3) 7→ (x1 − 1, x2, x3), ϕ2 : (x1, x2, x3) 7→ (x1, x2 + 1, x3), ϕ3 = idK ,

and the δi’s are the ϕi-derivations defined by:

δ1 = idK − ϕ1, δ2 = idK − ϕ2, δ3 = ∂/∂x3.

The matrices M1, M2 and M3 are matrices in M3(K) given by:

M1 =


(x3 − 1)x1 − 1 + (x3 − 1)x2

2x1 + 2x2
0

(x3 − 1)x1 + 1 + (x3 − 1)x2
2x1 + 2x2

0 x3 − 1 0

(x3 − 1)x1 + 1 + (x3 − 1)x2
2x1 + 2x2

0
(x3 − 1)x1 − 1 + (x3 − 1)x2

2x1 + 2x2

 ,

M2 =
(−x3+1)x2

2−(x3−1)(x3+x1+1)x2+(−x1+1)x3
2−x3x1+x1

2 (x1+x2)(x3+x2+1)x3
0

(−x3+1)x2
2−(x3−1)(x3+x1+1)x2+(−x1−1)x3

2+x3x1+x1
2 (x1+x2)(x3+x2+1)x3

0 −x3+1
x3

0

(−x3+1)x2
2−(x3−1)(x3+x1+1)x2+(−x1−1)x3

2+x3x1+x1
2 (x1+x2)(x3+x2+1)x3

0
(−x3+1)x2

2−(x3−1)(x3+x1+1)x2+(−x1+1)x3
2−x3x1+x1

2 (x1+x2)(x3+x2+1)x3

,

87

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

M3 =



x3 (x1 + 1 + x2) + x2 (x1 + x2)

2 (x3 + x2)x3
0

(x1 + x2 − 1)x3 + x2 (x1 + x2)

2 (x3 + x2)x3

0
x1 + x2
x3

0

(x1 + x2 − 1)x3 + x2 (x1 + x2)

2 (x3 + x2)x3
0

x3 (x1 + 1 + x2) + x2 (x1 + x2)

2 (x3 + x2)x3


.

The system L1(y) = 0 admits only one (s = 1) rational solution given by

W1 =


− 1

x1 + x2

0

1

x1 + x2

 ,
so we expect to be reduced to solving a partial system of size s = 1, i.e., a system of partial
scalar equations. Indeed, the unique solutions of the linear systems W1N

11
2 = −L2(W1)

and W1N
11
3 = −L3(W1) are given by:

N11
2 = − 1

x2 + x3 + 1
, N11

3 =
1

x2 + x3
,

and then we consider the partial system
δ2(y) +

1

x2 + x3 + 1
ϕ2(y) = 0,

δ3(y)−
1

x2 + x3
ϕ3(y) = 0.

One can check that the latter partial system has a solution y(x2, x3) = x2 + x3. Finally
the original system admits only one rational solution given by:

W1 y =


−x2 − x3
x1 + x2

0

x3 + x2
x1 + x2

 .

4.2.2.3 Necessary conditions for denominators

A rational solution of the partial pseudo-linear system (4.1) is, in particular, a rational
solution of each pseudo-linear system δi(y) = Mi ϕ(y), i = 1, . . . ,m. This necessarily
imposes some necessary conditions on the irreducible factors of the denominator of a ra-
tional solution of System (4.1) (see [29, Proposition 8] in the integrable connection case).
In some cases, taking into account these necessary conditions can significantly speed up

88

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

the timings of Algorithm RationalSolutions_PPLS as it allows to not consider some
irreducible factors when computing universal denominators.

For a pure differential system (ϕi = idK and δi = ∂/∂xi), an irreducible factor of
the denominator of a rational solution must divide the denominator of the matrix Mi

(see e.g. [20]). For the case of a ϕ-system we have the following consequence of Proposi-
tion 3.2. This result can be found in [21] for the pure difference case and can be adapted
directly for any ϕ-system considered here.

Proposition 4.1 ([21], Proposition 2). Consider a ϕ-system

ϕ(y) = N y, (4.12)

where N ∈ Mn(C(x)) and ϕ : x 7→ q x + r with r ∈ C and q ∈ C∗ is not a root of unity,
but if r ̸= 0 then q is allowed to be equal to 1. With the notations of Section 3.3, assume
that Eϕ(a, b) ̸= ∅ and let h = max(Eϕ(a, b)). Let p ̸= x − r

1−q
∈ C[x] be an irreducible

polynomial. If p divides the denominator of a non-zero rational solution of System (4.12),
then there exist 1 ≤ i ≤ h+ 1 and 0 ≤ j ≤ h such that i+ j ∈ Eϕ(a, b) and p divides both
ϕ−i(den(N)) and ϕj(den(N−1)).

For the sake of clarity, before giving a result in the general case, we first consider the case
of a partial pseudo-linear system with only m = 2 pseudo-linear systems being written
either as a pure differential system or a ϕ-system. We obtain the following result as a
consequence of the discussion above and Proposition 4.1.

Necessary Condition 1. Let K = C(x1, x2) and consider a partial pseudo-linear system

L1(y) = 0, L2(y) = 0. (4.13)

Let A1 denote the matrix of the system L1(y) = 0 and p ∈ C[x1, x2] be an irreducible factor
of den(A1) which involves the variable x2. Then we have the following result depending
on the type of each pseudo-linear system:

1. If for i = 1, 2, Li = In
∂
∂xi
− Ai then if p appears in the denominator of a rational

solution of (4.13), then p | den(A2) (see [29, Proposition 8]).

2. If L1 = In
∂

∂x1
− A1, L2 = In ϕ2 − A2, then if p appears in the denominator of a

rational solution of (4.13), there exists i ∈ N∗ such that p | ϕ−i
2 (den(A2)).

3. If L1 = In ϕ1 − A1, L2 = In
∂

∂x2
− A2 , then if p appears in the denominator of a

rational solution of (4.13), there exists i ∈ N∗ such that p | ϕi
1(den(A2)).

4. If for i = 1, 2, Li = In ϕi − Ai, then if p appears in the denominator of a rational
solution of (4.13), there exists i, j ∈ N∗ such that p | ϕi

1(ϕ
−j
2 (den(A2))).

89

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

Let us illustrate the latter necessary condition on an example.

Example 4.6. Consider a partial pseudo linear system of the form

∂y
∂x

(x, k) = A(x, k)y(x, k), y(x, k + 1) = B(x, k)y(x, k),

where the matrices A and B are given by:

A(x, k) =


−1

(x+ k)

−k (k − x) (x+ 2 k)

(x+ k)x3 (k2 − kx+ x)

0
k

(k − x) (k2 − kx+ x)

 ,

B(x, k) =


x+ k

x+ k + 1

(k − x) (2 k + x+ 1)

(x+ k + 1)x2 (k2 − kx+ x)

0
(k2 − kx+ 2 k + 1) (k − x)
(k + 1− x) (k2 − kx+ x)

 .
The factorizations of the denominators of the matrices A and B are given respectively by:

den(A)(x, k) = (x+ k)x3
(
k2 − k x+ x

)
(k − x) ,

den(B)(x, k) = (x+ k + 1)x2
(
k2 − k x+ x

)
(k + 1− x) .

The irreducible factor p(x, k) = k2−k x+x of den(A) clearly satisfies that, for all i ∈ N∗,
p ∤ den(B)(x, k − i). Therefore, from Case 2 of Necessary Condition 1, p can not appear
in the denominator of any rational solution of the system. However, the latter necessary
condition does not allow to draw any conclusion concerning the factors x + k and k − x
of den(A) (the factor x does not involve the variable k so that it can not be considered
in our result). We can indeed check the previous observations as the rational solutions of
the original system are given by:

y1(x, k) =

 1

(x+ k)

0

 , y2(x, k) =

 k

x2

k +
x

k − x

 .
The gain for our algorithm is that when computing a universal denominator for the
differential system ∂y

∂x
(x, k) = A(x, k)y(x, k), there is no need to compute a simple form

(or a super-irreducible form) at p(x) = k2 − k x+ x (see Section 3.3).

We now give a generalisation of the latter necessary condition in the case of a partial
pseudo-linear system (4.1) composed of m pseudo-linear systems. We distinguish the case
when the first system is a differential system (Necessary Condition 2) from that where it
is a ϕ-system (Necessary Condition 3). Note that for ϕi ̸= idK , the systems are written

90

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

here under the form of a pseudo-linear system δi(y) = Mi ϕi(y) and not of a ϕ-system
ϕi(y) = Ni y. This is the reason why matrices γ−1

i Mi + In appear in the following results
(see Section 1.2).

Necessary Condition 2. Let K = C(x1, . . . , xm). Consider a system of the form (4.1)
and suppose that L1(y) = 0 is a pure differential system, i.e., ϕ1 = idK and δ1 = ∂

∂x1
. Let

p ∈ C[x1, . . . , xm] be an irreducible factor of den(M1) such that p involves the variable
xi for some i ∈ {2, . . . ,m}. Moreover, suppose that one of the following two conditions
holds:

1. (ϕi, δi) =
(

idK,
∂
∂xi

)
and p ∤ den(Mi).

2. ϕi ̸= idK (i.e., δi = γi (idK − ϕi) for some γi ∈ K∗) and

∀j ∈ N∗, ϕj
i (p) ∤ den((γ−1

i Mi + In)
−1).

Then p cannot appear in the denominator of any rational solution of (4.1).

Necessary Condition 3. Let K = C(x1, . . . , xm). Consider a system of the form (4.1)
and suppose that ϕ1 ̸= idK (i.e., δ1 = γ1 (idK − ϕ1) for some γ1 ∈ K∗). Let p ∈
C[x1, . . . , xm] be an irreducible factor of den((γ−1

1 M1 + In)
−1) such that p involves the

variable xi for some i ∈ {2, . . . ,m}. Moreover, suppose that one of the following two
conditions holds:

1. (ϕi, δi) =
(

idK,
∂
∂xi

)
and, for all j ∈ N∗, p ∤ ϕj

i (den(Mi)).

2. ϕi ̸= idK (i.e., δi = γi (idK − ϕi) for some γi ∈ K∗) and

∀j, k ∈ N∗, p ∤ ϕj
1

(
ϕ−k
i

(
den(

(
γ−1
i Mi + In)

−1
)))

.

Then p cannot appear in the denominator of any rational solution of (4.1).

4.2.2.4 Implementation and comparison of different strategies

Algorithm RationalSolutions_PPLS has been implemented in Maple in our package
PseudoLinearSystems [32]. It includes part of the necessary conditions given in
Section 4.2.2.3. Note that we have also implemented a similar version of Algorithm
RationalSolutions_PPLS which takes directly as input a partial pseudo-linear system
composed of pure differential, difference or q-difference systems (such as System (4.9)),
i.e., there is no need to transform every system into a pseudo-linear system as we did in
Example 4.3.

In the recursive process of Algorithm RationalSolutions_PPLS, the pseudo-linear

91

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

systems in (4.1) can be considered in an arbitrary order. We have thus tried to see
(through examples) if there are some orders better than others from the computational
point of view. Let us give some timings of one of our experiments in the case of m = 2

pseudo-linear systems where one system is a pure differential system (with independent
variable x and usual derivation ∂

∂x
) and the other is a pure difference system (with

independent variable k, ϕ : (x, k) 7→ (x, k − 1) and δ = idK − ϕ). In this experiment the
matrices of the systems are generated from a randomly chosen fundamental matrix of
rational solutions but whose denominator denoted by U is fixed as a product of some of
the following three polynomials:

U1(x, k) = (x+ k) (x− k)2
(
−k2 + x

) (
−k3 + x2 + 3

)
,

U2(x, k) =

−77 k8x6 + 51 k2x12 − 31 k5x8 + 10 k4x9 − 68x13 − 91x12 + 81 k10 − 40 k4x6 + 47 k2x5 + 49 kx,

U3(x, k) =

k (6 k10x+ 5 kx9 + 6 k2x7 + 3 k7 + 2 k6x− 4x7 + 4 k4x2 + k4x− 3x4 − 5 k).

We compare two strategies:

1. Strategy 1: we start with the differential system.

2. Strategy 2: we start with the difference system.

The following table gives the timings (in seconds) obtained for computing the fundamental
matrix of rational solutions with each strategy, for different dimensions n of the systems,
and for different fixed denominators U of the rational solutions.

U = U1 U = U1U2 U = U1U2U3

n = 3 n = 6 n = 9 n = 3 n = 6 n = 9 n = 3 n = 6 n = 9
Strategy 1 0.48 2.29 9.01 22.92 187.55 574.83 249.92 912.90 1703.7
Strategy 2 0.39 2.83 16.46 0.35 2.16 12.22 0.94 3.39 15.17

The table seems to indicate that Strategy 2, i.e., starting with the difference system,
gives, in general, better timings. In particular, the difference between the distinct timings
seems to be particularly significant when the denominator includes large irreducible
factors as U2 and U3. In the case U = U1, we do not have large singularities in the
denominator and Strategy 1 behaves well. Going deeper into the analysis of these timings
for each step of the algorithm, we can see that, in Strategy 1, most of the time is spent
in computing simple forms which can be quite involved for singularities as the ones given
by U2 and U3. In Strategy 2, we have no simple form computations to get a universal

92

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

denominator of the first system (as it is a difference system, see Section 3.3.1) and then,
the large factors U2 and U3 disappear as the differential system to be considered next
only involves the variable x. For instance, in Example 4.3, if we start with the differential
system with matrix M3 = A3, we must compute a simple form at the singularity given
by the irreducible factor x1 + x3 of den(A3). But if we treat first the difference and
the q-difference systems as it is done in Example 4.3, we can see that at the end of the
process, the differential system to be considered is δ3(y) − N̂3

11
ϕ3(y) = 0, where N̂3

11

has no finite singularities, and therefore no simple form computations are needed to get
a universal denominator of the differential system.

From these observations (and other comparisons that we have performed), we make
the choice to treat the ϕ-systems (ϕi ̸= idK) first and to consider the differential systems
at the end of the iterative process, where the systems involve fewer independent variables
and may also be of smaller size.

4.2.2.5 Applications: eigenring and decomposition of systems

Computing rational solutions of partial pseudo-linear systems is useful for computing
hypergeometric solutions as we will see in Section 4.3. It can also be useful for computing
the so called eigenring of System (4.1).

Let K = C(x). For a differential system y′(x) = M(x)y(x) over K, the eigenring
is defined as the set of matrices P ∈ Mn(K) such that P ′ = M P − P M (see [43, 89]),
while for a ϕ-system ϕ(y) = M y over K, the eigenring is defined as the set of matrices
P ∈ Mn(K) such that M P = ϕ(P)M (see [21]). These notions can be generalised for
pseudo-linear systems as follows. Let (K,ϕ, δ) be ϕδ-field and denote by CK its field of
constants (see Definition 1.3). Consider a fully integrable first order pseudo-linear system
over (K,ϕ, δ) of the form

δ(y) =M ϕ(y), M ∈Mn(K). (4.14)

Definition 4.2. ([22]). The eigenring of System (4.14) is defined as the set

E(M) = {P ∈Mn(K) ; δ(P) =M ϕ(P)− P M } .

Let P ∈ Mn(K) be an element of E(M). The equation δ(P) = M ϕ(P) − P M can be
viewed as a first order pseudo-linear system of size n2 over (K,ϕ, δ). This can be realised
through the linear map

93

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

Vec : Mn(K) −→ Kn2

A =


A(1, .)
...

A(n, .)

 −→


A(1, .)T

...

A(n, .)T

 ,

where A(i, .) is the ith row of A. Using the fact that Vec(AB C) =
(
A⊗ CT

)
Vec(B)

where ⊗ is the Kronecker product of the matrices, we get that if ϕ = idK then y = Vec(P)
is a solution of

δ(y) =
(
M ⊗ In − In ⊗MT

)
ϕ(y).

Otherwise if ϕ ̸= idK , i.e. δ = γ(idK −ϕ) for some γ ∈ K∗, then y = Vec(P) is a solution
of

δ(y) =
(
(M + γ In)⊗ (γ−1MT + In)

−1 − γ In2

)
ϕ(y).

The eigenring E(M) is thus a CK-vector space of dimension at most n2. Moreover, E(M)

contains the identity matrix In and the product of two elements in E(M) belongs to E(M).
Consequently, E(M) is a CK-algebra.

Remark 4.1. For a ϕ-system ϕ(y) = M y with M ∈ GLn(K), its eigenring can be
viewed as the set of matrices P ∈ Mn(K) such that Vec(P) is a solutions of the system
ϕ(y) =

(
M ⊗ (MT)−1

)
y, see [21].

Definition 4.3. ([22]). A pseudo-linear system (4.14) is said to be decomposable if it is
equivalent to a system δ(y) = N ϕ(y) such that N is a block diagonal matrix of the form

N =


N1,1 0 · · · 0

0 N2,2
. . .

...
...

. . .
. . . 0

0 · · · 0 Nk,k

 , (4.15)

where for all i = 1, . . . , k, N i,i is a square matrix of size ni < n.

The computation of the eigenring is useful for decomposing systems. Indeed, we have the
following result:

Theorem 4.3. ([22, Theorem 3.2]). Let E(M) be the eigenring of System (4.14) such
that E(M) contains an element P having k ≥ 2 distinct eigenvalues λ1, . . . , λk ∈ CK. Let
T ∈ GLn(K) such that the matrix J defined by J = T−1 P T is in Jordan form. Consider
the system δ(y) = N ϕ(y) where N = T−1(M ϕ(T)− δ(T)). Then N has the form (4.15).

The interested reader can consult [21, 22, 37, 43, 55, 87, 89, 95] for more details on
eigenrings of linear functional systems and their applications.

94

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

Example 4.7. Let us go back to the partial pseudo-linear system (4.11) defined over
K = Q(x1, x2, x3). Its eigenring is defined as the set of matrices P ∈M2(K) verifying

∀i = 1, 2, 3, δi(P) =Mi ϕi(P)− P Mi.

Applying Algorithm RationalSolutions_PPLS to the partial system of size 4
δ1(y) =

(
(M1 + I2)⊗ (MT

1 + I2)
−1 − I4

)
ϕ1(y),

δ2(y) =
(
(M2 + I2)⊗ (MT

2 + I2)
−1 − I4

)
ϕ2(y),

δ3(y) =
(
(M3 + I2)⊗ (MT

3 + I2)
−1 − I4

)
ϕ3(y),

yields a basis of rational solutions given by the columns of

− (x3 + x1)x3
x2 (x12 + x1x3 − x3)

− x2x1
x12 + x1x3 − x3

2x3
x12 + x1x3 − x3

1

(x3 + x1)x3
2

x22 (x12 + x1x3 − x3)
(x3 + x1)x1

2

x12 + x1x3 − x3
− (2x3 + 2x1)x3x1
((x1 − 1)x3 + x12)x2

0

−x3 − x1
(x1 − 1)x3 + x12

− x2
2

((x1 − 1)x3 + x12) (x3 + x1)

2x2
(x1 − 1)x3 + x12

0

(x3 + x1)x3
x2 (x12 + x1x3 − x3)

x2x1
x12 + x1x3 − x3

− (2x3 + 2x1)x1
x12 + x1x3 − x3

1


.

Hence, a basis of the eigenring of (4.11) is given by

{
− (x3 + x1)x3
x2 (x12 + x1x3 − x3)

(x3 + x1)x3
2

x22 (x12 + x1x3 − x3)
−x3 − x1

(x1 − 1)x3 + x12
(x3 + x1)x3

x2 (x12 + x1x3 − x3)

 ,

 − x2x1
x12 + x1x3 − x3

(x3 + x1)x1
2

x12 + x1x3 − x3

− x2
2

((x1 − 1)x3 + x12) (x3 + x1)

x2x1
x12 + x1x3 − x3

 ,


2x3
x12 + x1x3 − x3

− 2x3 (x3 + x1)x1
((x1 − 1)x3 + x12)x2

2x2
(x1 − 1)x3 + x12

− 2 (x3 + x1)x1
x12 + x1x3 − x3

 ,
 1 0

0 1

}.

95

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

Let P ∈ M2(K) be the third element of the latter basis. Then P admits two distinct
eigenvalues 0 and −2. Consider the matrix

T =


(x3 + x1)x1

x12 + x1x3 − x3
− x3
x12 + x1x3 − x3

x2
x12 + x1x3 − x3

− x2
x12 + x1x3 − x3

 .
One has J = T−1 P T = diag(0,−2) is in Jordan form. Therefore, System (4.11) can be
decomposed into the equivalent system

δ1(y) = N1 ϕ1(y),
δ2(y) = N2 ϕ2(y),
δ3(y) = N3 ϕ3(y),

where for all i = 1, 2, 3, Ni = T−1(Mi ϕi(T)− δi(T)) is a (block) diagonal matrix:

N1 =


5x1

2 + (10x3 − 25)x1 + 5x3
2 − 20x3

(x3 + x1) (x12 + (x3 − 10)x1 − 6x3 + 25)
0

0
10x1 + 5x3 − 25

x12 + (x3 − 10)x1 − 6x3 + 25

 ,

N2 =

 0 0

0
−4x2 − 5

x2

 ,

N3 =


− 4x1x3

(x3 + x1) ((−3x1 + 3)x3 + x12)
0

0
4 (x1 − 1)x3

(−3x1 + 3)x3 + x12

 .

4.3 Hypergeometric solutions
In this section, we present our second contribution of this chapter: a recursive algorithm
for computing hypergeometric solutions of a partial pseudo-linear system (4.1) which is
fully integrable and satisfies the integrability conditions (4.4). The recursive approach
that we follow is the one used in [29] for integrable connections and in [74] in the more
general context of Laurent-Ore algebras. Here we provide details on how this can be
efficiently done for partial pseudo-linear systems.

Definition 4.4. Let K = C(x) and consider a first order pseudo-linear system

δ(y) =M ϕ(y), (4.16)

defined over the ϕδ-field (K,ϕ, δ). Let H be an extension field of K having the same

96

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

field of constants. A non zero element h ∈ H is said to be a hypergeometric term over
(K,ϕ, δ) if δ(h)/ϕ(h) ∈ K. A hypergeometric solution of System (4.16) is a product hg
of a hypergeometric term h over (K,ϕ, δ) by a vector g ∈ Kn such that δ(hg) =Mϕ(hg).

Remark 4.2. In [29, 84], a hypergeometric solution of a differential system is referred
to as an exponential solution, and a hypergeometric term is referred to as an exponential
part (see also Section 4.3.1.1 below).
For a ϕ-system ϕ(y) = My, the authors in [11, 12] give the following definition for
hypergeometric terms: “A non zero element h ∈ K = C(x) is called a hyper-
geometric term over K if ϕ(h)/h ∈ K.” In this case, ϕ(h)/h ∈ K is equivalent
to δ(h)/ϕ(h) ∈ K since δ(h)/ϕ(h) = γ(h/ϕ(h) − 1) for some γ ∈ K∗. Therefore, Defi-
nition 4.4 for the general pseudo-linear setting covers the previously reported differential
and ϕ-system cases.

Definition 4.5. Let K = C(x1, . . . , xm) and consider a partial pseudo-linear system of
the form (4.1) defined over the ϕδ-field (K, {ϕi, δi}1≤i≤m). Let H be an extension field of K
having the same field of constants. A non zero element h ∈ H is said to be a hypergeometric
term over (K, {ϕi, δi}1≤i≤m) if δi(h)/ϕi(h) ∈ K for all i ∈ {1, . . . ,m}. A hypergeometric
solution of (4.1) is a product hg of a hypergeometric term h over (K, {ϕi, δi}1≤i≤m) by a
vector g ∈ Kn such that δi(hg) =Mi ϕi(hg) for all i ∈ {1, . . . ,m}.

Example 4.8. Let K = C(x1, x2) and let us consider the same system in Example 4.1:{
δ1(y) = (x2/x1)ϕ1(y),
δ2(y) = (x1 − 1)ϕ2(y),

where

ϕ1 = idK , δ1 =
∂

∂x1
, ϕ2 : (x1, x2) 7→ (x1, x2 − 1), δ2 = idK − ϕ2.

The function y(x1, x2) = xx2
1 is a solution of the system. Moreover, h = xx2

1 is a hyper-
geometric term over (K, {ϕi, δi}1≤i≤2) since

δ1(h)/ϕ1(h) = x2 x
−1
1 ∈ K, δ2(h)/ϕ2(h) = x−1

1 − 1 ∈ K.

Therefore, y is a hypergeometric solution in the sense of Definition 4.5. It can be written
as y = hg where g = 1 ∈ K.

Before entering the details of our recursive algorithm for (4.1), let us recall how one
proceeds in the case m = 1 for differential and difference systems.

97

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

4.3.1 The differential and difference cases

Let K = C(x). In this section, we review the principle of the algorithms developed in
[44, 84] for computing hypergeometric solutions of differential and difference systems.

4.3.1.1 Pflügel’s algorithm for differential systems

Consider a first order differential system

y′(x) =M(x)y(x), (4.17)

where M ∈ Mn(K), and let x0 ∈ C be a singularity of the system. Define t = x − x0 if
x0 is finite and t = x−1 otherwise. The matrix M can be written as

M = t−1−p

+∞∑
i=0

Mi t
i,

where p ∈ N is the Poincaré rank of the system, and the matrices Mi ∈ Mn(C) with
M0 ̸= 0.

Definition 4.6. With the above notations, a non-ramified local exponential part of Sys-
tem (4.17) at x0, is a polynomial in t−1 of the form

f =
ωk

tk+1
+
ωk−1

tk
+ · · ·+ ω0

t
, (4.18)

where 0 ≤ k ≤ p and the ωi’s are in C, such that there exists a formal local solution of
the system of the form

ŷ(t) = e
∫
f(t) dt ẑ(t), (4.19)

where ẑ(t) is a vector of formal power series in t.

For a differential system (4.17), we seek a solution of the form

y(x) = e
∫
u(x) dx P (x), (4.20)

where u(x) ∈ K and P (x) ∈ C[x]n. Such a solution is called an exponential solution in [84]
(we shall also call it a hypergeometric solution) and e

∫
u(x)dx is called the exponential part.

Remark 4.3. We can refer to e
∫
u(x) dx as the hypergeometric term over K. Indeed,

System (4.17) can be written as δ(y) = Mϕ(y) where ϕ = idK and δ = d
dx

. If we denote
by h = e

∫
u(x) dx then one has δ(h)/ϕ(h) = u(x) ∈ K.

The algorithm given in [84] to compute an exponential solution of the form (4.20) can be
summarised as follows.

98

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

1. Compute the possible values of u(x): this can be done by computing the non-
ramified local exponential parts at each singularity, including infinity. We shall
explain below how to compute these parts. Each combination composed of one non-
ramified exponential part at each singularity yields a possible candidate for u(x).

2. Perform the change of variable y = e
∫
u(x) dx z in (4.17).

3. Search for a basis of polynomial solutions of the resulting system

z′(x) = (M(x)− u(x)In) z(x).

Each polynomial solution P (x) gives an exponential solution (4.20).

A classical approach to compute the non-ramified local exponential parts at a singular-
ity x0 is the Newton algorithm [16, 42, 90]. This algorithm consists first in reducing the
system, via a cyclic vector method [17, 51, 57], to an nth scalar differential equation, and
then constructing the Newton Polygon [19, 90]. The roots of the Newton polynomials2

give the values of the ωi’s occurring in (4.18). However, one would like to avoid such
approach since computing an equivalent scalar equation can be very costly in general: see
for instance [52, 76]. An alternative method has been proposed by Pflügel in [86] to
compute the non-ramified local exponential parts without reduction to scalar equations.
In particular, Pflügel proved that if System (4.17) is in k-simple form, then its associated
characteristic polynomial Ψk(λ) (see Definition 2.8) plays the same role as the Newton
polynomial.

The algorithm in [84] then proceeds as follows: let k = p. Compute a k-simple form
of (4.17) (note that the system is already is simple at p) and let Ψk(λ) be its associated
characteristic polynomial. The possible values of ωk appearing in (4.18) are then roots
of Ψk(λ). For each root ωk of Ψk(λ), perform the change of variable y = e

∫ ωk
tk+1 dt z. This

leads a new system
y′(x) = N(x)y(x), N =M − ωk

tk+1
In. (4.21)

One then applies recursion by computing a (k − 1)-simple form of System (4.21). At the
end of the recursive process, one finds several combinations of the form (ωk, ωk−1, . . . , ω0).
Each combination yields a non-ramified local exponential part of the form (4.18).

The method proposed in [84] to compute a k-simple form at each stage of the re-
cursion consists in applying first super-reduction [41, 67]. However, a system which is
k-simple for a fixed k is not necessarily super-irreducible (see for instance Example 2.5
or [59, Remark 4.3.2]). So if one is interested in computing a k-simple form for just one

2Newton polynomials are polynomials associated with the slopes of the Newton polygon

99

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

value of k then direct methods have to be preferred. Our Algorithm SimpleForm from
Chapter 2 (and the algorithm in [34, 59] for differential systems) provides such a direct
method. Note that Pflügel’s algorithm [84] is implemented in the current version of the
Isolde package [39]. In our PseudoLinearSystems package [32] we have updated
this implementation in such a way that it uses simple forms instead of super-reduction.

Example 4.9. Consider System (4.17) with

M =


x2 − x− 1

x (x− 1)2
x2 − 3x+ 3

x (x− 1)2

−x2 + 2x− 2

(x− 1)2
x3 − 2x+ 2

x (x− 1)2

 .
The system has three singularities, 0, 1 and ∞. Let us compute first the non-ramified
local exponential parts at 0. In this case, the Poincaré rank of the system is p = 0.
So It is enough to compute a 0-simple form of the system, but as expected it is already
0-simple with an associated characteristic (indicial) polynomial Ψ0(λ) = (λ+ 1) (λ− 2).
The roots of Ψ0(λ) are −1 and 2, therefore the non-ramified local exponential parts at 0

are −1
x

and 2
x
. Concerning the singularity 1, the system has a Poincaré rank p = 1. The

system is already 1-simple with an associated characteristic polynomial Ψ1(λ) = λ2. The
only root of Ψ1(λ) is 0. Now we have to consider again the system y′(x) = M(x)y(x)
since M − 0

(x−1)2
I2 = M . Using our Algorithm SimpleForm, we compute an equivalent

0-simple system

y′(x) =


−2x3 + 5x2 − 5x+ 1

(x− 1)x

4x3 − 10x2 + 14x− 6

(x− 1)x

−x2 + 2x− 2

x− 1

2x3 − 4x2 + 6x− 2

(x− 1)x

 y(x),

with an associated characteristic (indicial) polynomial Ψ0(λ) = λ2 − λ having 0 and 1

as roots. The non-ramified local exponential parts at 1 are thus 0 and 1
x−1

. Using the
same concept for the singularity ∞, we find two non-ramified local exponential parts given
by 0 and 1. If the original system has an exponential solution (4.20), then the possible
candidates of u(x) are{
−1

x
, −1

x
+

1

x− 1
, −1

x
+ 1, −1

x
+ 1 +

1

x− 1
,
2

x
,
2

x
+

1

x− 1
,
2

x
+ 1,

2

x
+ 1 +

1

x− 1

}
.

Note that the number of these candidates can be furthermore reduced using the method
in [53]. Computing polynomial solutions of the system z′(x) =

(
M + 1

x
I2
)

z(x) and those
of z′(x) =

(
M −

(
− 1

x
+ 1
)
I2
)

z(x) we get respectively:

100

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

P1(x) =

 x3

x3

 , P2(x) =

 x− 1

x2 − x

 .
A basis of exponential solutions of the original system is hence given by:

y1(x) =

 x2

x2

 , y2(x) =

 ex (x− 1)

x

ex (x− 1)

 .
4.3.1.2 Barkatou and Van Hoeij algorithm for difference systems

Let ϕ : x 7→ x+1 be the forward shift automorphism over K and consider a pure difference
system of the form

ϕ(y) = N y, (4.22)

where N ∈ GLn(K). We are interested in computing hypergeometric solutions of the
form

y(x) = cx Sol
(
ϕ− a(x)

b(x)

)
P (x), (4.23)

where c ∈ C∗, P (x) ∈ C[x]n and a(x), b(x) ∈ C[x]∗. The notation Sol
(
ϕ− a(x)

b(x)

)
stands for

the solution of the scalar recurrence equation ϕ(z(x)) = a(x)
b(x)

z(x). Here the hypergeometric
term over K is h = cx Sol

(
ϕ− a(x)

b(x)

)
. Algorithms for computing hypergeometric solutions

of scalar difference equations have been proposed in [54, 82]. For a difference system (4.22),
an algorithm was developed by Barkatou and Van Hoeij in [44]. It can be summarised as
follows:

1. Compute possible candidates for a(x), b(x) and c: this is explained below.

2. For each combination (a(x), b(x), c), perform the change of dependent variables
y = cx Sol

(
ϕ− a(x)

b(x)

)
z in (4.22).

3. Search for a basis of polynomial solutions of the resulting system

ϕ(z) =
(
b(x)

a(x) c
N

)
z.

Each polynomial solution P (x) gives a hypergeometric solution (4.23).

According to [44], the possible candidates for the polynomial a(x), respectively b(x), are
amongst the factors of the denominator of N−1, respectively N . Let us now explain how
to compute a possible candidate for c. The idea is to localize the system at infinity. Let
K1 = C((x−1)): the completion of the field K with respect to the t-adic valuation ν (here

101

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

t = x−1). Our System (4.22) can be written as the local pseudo-linear system

δ(y) =M ϕ̃(y), (4.24)

where ϕ̃ = ϕ−1, δ = idK1 − ϕ̃ and M = ϕ̃(N) − In ∈ Mn(K1). Here the degree of δ is
ω = 1 (see Definition 1.12). The matrix M is uniquely written as

M = t1−p

+∞∑
i=0

Mi t
i,

where p ∈ N is the Poincaré rank of the system, and the matrices Mi ∈ Mn(C) with
M0 ̸= 0.

Remark 4.4. Multiplying System (4.24) by tp−1 on both sides yields a local pseudo-linear
system in the sense of our Definition 1.14. Hence, without loss of generality, we can also
call System (4.24) a local pseudo-linear system.

A hypergeometric solution (4.23) can be viewed as a non-zero local formal solution (at∞)
of the form

y(x) = Γ(x)k−1 cx xd z(x), (4.25)

where Γ(x) is the Gamma function, k ∈ N, d ∈ C, and z(x) is an n-dimensional vector of
formal power series in x−1 = t. A formal solution (4.25) is called a local hypergeometric
solution. Let k be a non-negative integer such that k ≤ p and let δk = tk−1δ. System (4.24)
can then be written as

L(y) = A(k)δk(y) +B(k) ϕ̃(y) = 0, (4.26)

where
A(k) = diag(tα1 , . . . , tαn), αi = −max{0, 1− k − ν(M(i, .))},

and
B(k) = −tk−1A(k)M ∈Mn(C[[t]]).

The action of the pseudo-linear operator L on a local solution (4.25) yields

L(y) = Γ(x− 1)k−1cx−1xd
((

(c− εk)A(k)
0 +B

(k)
0

)
z0 +O(x−1)

)
,

where εk = 1 if k = 1 and εk = 0 otherwise. It follows that if a local hypergeometric
solution (4.25) exists, then one must have(

(c− εk)A(k)
0 +B

(k)
0

)
z0 = 0,

which means that c− εk must be a root of the polynomial

Ψk(λ) = det
(
A

(k)
0 λ+B

(k)
0

)
.

102

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

But it may happen that Ψk(λ) vanishes identically in λ. The method proposed in [44] to
effectively compute the polynomials Ψk(λ) for k = 0, . . . , p, is to compute (once) a super-
irreducible form (see Section 2.3.1) of (4.24) using the algorithm in [15]. The possible
values of c can then be obtained from the roots of the polynomials Ψ0(λ), . . . ,Ψp(λ).

The algorithm of [44] is implemented in the current version of the Isolde package [39].
This implementation takes advantage of the results developed in [54, 82] to reduce the
number of combinations (a(x), b(x), c) to be checked. In our PseudoLinearSystems
package [32] we have modified this implementation in such a way that it uses the algorithm
developed in Section 2.3.4 instead of the one in [15], for computing a super-irreducible
form of (4.24). We have noticed that in several examples, our implementation is more of-
ten better from a computational point of view. See for instance “HS_DifferenceExample”
on the webpage of [32].

Example 4.10. Consider System (4.22) with

N =



x− 1

x
0 −x− 1

x+ 1
0

1 0
2

x+ 1
−x

−1 1 x− 1 1

−x+ 2

x

x+ 1

x

x2 − x− 1

x (x+ 1)

x2 + x+ 1

x


.

One has den(N) = x (x+ 1) and den(N−1) = x2 (x− 1) (x2 − x− 1). The system can be
written in the local form (4.24) as

δ(y) =



− 1

x− 1
0 −x− 2

x
0

1 −1 2

x
−x+ 1

−1 1 x− 3 1

−x+ 1

x− 1

x

x− 1

x2 − 3x+ 1

x (x− 1)

x2 − 2x+ 2

x− 1


ϕ(y),

with Poincaré rank p = 2. The latter system can be transformed into an equivalent
super-irreducible system

103

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

δ(y) =



−− 1

x− 1
0

−x+ 2

x
0

− 2

x− 1

1

x− 1

x2 − x− 1

x (x− 1)
0

−1 1 x− 3 0

−x− 1

x− 1

x

x− 1

x2 − 3x+ 1

x (x− 1)
x− 2


ϕ(y),

with associated characteristic polynomials

ψ0(λ) = (λ+ 1)2, ψ1(λ) = λ2, ψ2(λ) = λ2(λ− 1)2.

Thus, if the original system admits a hypergeometric solution (4.23), then the possible
values of c are −1, 0 and 1. For c = 1, a(x) = x(x − 1) and b(x) = x + 1, the system
ϕ(z) =

(
b(x)
a(x) c

N
)

z admits only one polynomial solution

P (x) =


0

x2 − x

0

−x2 + x

 .

A hypergeometric solution is thus given by

y(x) = cx Sol
(
ϕ− a(x)

b(x)

)
P (x) =


0

−Γ (x)

0

Γ (x)

 ,

and it is in fact the only hypergeometric solution of the original system.

4.3.2 Description of the recursive approach

Let K = C(x1, . . . , xm). Let us sketch the general iterative process for computing a basis
of hypergeometric solutions of an integrable partial pseudo-linear system of the form (4.1).
We extend the ideas developed in [29] for integrable connections (i.e., the case where all
the systems are differential systems) to handle a more general system (4.1). The recursive
process described below resembles the one proposed in Subsection 4.2.2.1 for computing
rational solutions. For i = 1, . . . ,m, the variable xj’s (j ̸= i) are constants with respect
to ϕi and δi. This allows to view Li(y) = 0 as a pseudo-linear system with respect to xi
and where the other variables xj’s are considered as constant parameters.

104

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

Lemma 4.4. Let h be a hypergeometric term over (K, {ϕi, δi}1≤i≤m) and g ∈ Kn. If hg
is a hypergeometric solution of System (4.1) then g is a rational solution of the system

L̃1(z) := δ1(z)− h−1 ϕ1(h) [M1 − f1 In]ϕ1(z) = 0,
...

L̃m(z) := δm(z)− h−1 ϕm(h) [Mm − fm In]ϕm(z) = 0,

where fi = δi(h)/ϕi(h) for all i = 1, . . . ,m.

Proof. For all i = 1, . . . ,m, we have L̃i(g) = δi(z) − h−1[Mi ϕi(hg) + δ(h)ϕ(g)]. Using
the equality δi(hg) = δi(h)ϕi(g) + h δi(g), we get L̃i(g) = h−1[δi(hg) −Mi ϕi(hg)] = 0,

since hg is a solution of (4.1).

We consider first the pseudo-linear system L1(y) = 0 defined over C(x2, . . . , xm)(x1). We
compute a basis of hypergeometric solutions of L1(y) = 0. If we do not find any nonzero
hypergeometric solution, then we stop as (4.1) does not admit any nonzero hypergeometric
solution. Otherwise, let hg be a hypergeometric solution of L1(y) = 0, where h is a
hypergeometric term over (K, {ϕi, δi}1≤i≤m) and g ∈ Kn. Performing the change of
dependent variables y = h z in System (4.1) yields the system

L̃1(z) := δ1(z)− h−1 ϕ1(h) [M1 − f1 In]ϕ1(z) = 0,
...

L̃m(z) := δm(z)− h−1 ϕm(h) [Mm − fm In]ϕm(z) = 0,

(4.27)

where fi = δi(h)/ϕi(h) for all i = 1, . . . ,m. From the integrability conditions (4.4) and
Lemma 4.4, it follows that System (4.27) is integrable.

We compute now a basis w1, . . . ,ws ∈ Kn (0 ≤ s ≤ n) of rational solutions of L̃1(z) = 0

(see Section 3.4) and denote by W ∈Mn×s(K) the matrix whose columns are the wi’s. We
complete w1, . . . ,ws into a basis w1, . . . ,wn of Kn and define P = (W V) ∈ GLn(K),
where V ∈ Mn×(n−s)(K) has ws+1, . . . ,wn as columns. Performing the change of
dependent variables z = P y in System (4.27) yields the system

δ1(y)−N1 ϕ1(y) = 0,
...

δm(y)−Nm ϕm(y) = 0,

(4.28)

where for all i = 1, . . . ,m,

Ni = P−1
[
h−1 ϕi(h) (Mi − fiIn)ϕi(P)− δi(P)

]
. (4.29)

105

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

We have the following result as an analogue of Lemma 4.3.

Lemma 4.5. With the above notations, let us decompose the matrices Ni’s of Sys-
tem (4.28) by blocks as

Ni =

 N11
i N12

i

N21
i N22

i

 ,
where N11

i ∈ Ms(K). Then, for all i = 1, . . . ,m, the matrix N11
i ∈ Ms(C(x2, . . . , xm))

does not depend on x1. Moreover it can be computed as the unique solution of the matrix
linear system W N11

i = −L̃i(W), and in particular N11
1 = 0. Finally, N21

i = 0 for all
i = 1, . . . ,m.

Proof. Equation (4.29) yields in particular

W N11
i + V N21

i = −L̃i(W).

From the integrability conditions [L̃i, L̃j] := L̃i ◦ L̃j − L̃j ◦ L̃i = 0, for all 1 ≤ i, j ≤ m, we
get that, for all i = 1, . . . ,m, L̃i(W) is a rational solution of the system L̃1(y) = 0 so that
there exists a unique constant matrix C ∈ Ms(C(x2, . . . , xm)), i.e., not depending on x1,
such that L̃i(W) = W C. We then obtain, for all i = 1, . . . ,m,

W (N11
i + C) + V N21

i = 0,

which ends the proof as the columns of P = (W V) form a basis of Kn.

From Lemma 4.5, we deduce the following analog of Theorem 4.2 which proves that all
hypergeometric solutions of (4.1) can be computed recursively.

Theorem 4.4. Given a partial pseudo-linear system (4.1). Let hg, where h is a hyper-
geometric term over (K, {ϕi, δi}1≤i≤m) and g ∈ Kn, be a hypergeometric solution of
L1(y) = 0. For all i = 1, . . . ,m, denote by L̃i the pseudo linear operator of the form

L̃i = δi − h−1 ϕi(h) [Mi − fiIn]ϕi,

where fi = δi(h)/ϕi(h) ∈ K. Let W ∈ Mn×s(K) be a matrix whose columns form a basis
of the rational solutions of L̃1(y) = 0. For i = 2, . . . ,m, let N11

i ∈ Ms(C(x2, . . . , xm))

be the unique solution of the matrix linear system W N11
i = −L̃i(W). Suppose that

Z ∈ Ms×r(C(x2, . . . , xm)) is a matrix whose columns form a basis of all hypergeometric
solutions of the partial pseudo-lineas system of size s over C(x2, . . . , xm)

δ2(y)−N11
2 ϕ2(y) = 0,

...

δm(y)−N11
m ϕm(y) = 0,

(4.30)

106

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

then the columns of the matrix hWZ ∈ Mn×r(K) form a basis of all hypergeometric
solutions of (4.1). Moreover, every hypergeometric solution of (4.1) can be obtained in
such a way.

Proof. Let Z ∈ Ms×r(C(x2, . . . , xm)) be a matrix whose columns form a basis of all
hypergeometric solutions of (4.30) and let us consider Y = hW Z. We have

L1(Y) = δ1(h)ϕ1(W)ϕ1(Z) + h δ1(W)ϕ1(Z) + hW δ1(Z)−M1 ϕ1(h)ϕ1(W)ϕ1(Z)

= ϕ1(h)
[
δ1(W)− h−1 ϕ1(h) (M1 − f1In)ϕ1(W)

]
Z = 0.

Now for i = 2, . . . ,m, we have

Li(Y) = δi(h)ϕi(W)ϕi(Z) + h δi(W)ϕi(Z) + hW δi(Z)−Mi ϕi(h)ϕi(W)ϕi(Z)

= ϕi(h)

[[
(fiIn −Mi)ϕi(W) +

h

ϕi(h)
δi(W)

]
ϕi(Z) +

h

ϕi(h)
W δi(W)

]
= hW

[
−N11

i ϕi(Z) + δi(Z)
]
= 0.

This ends the first part of the proof. Now let Y = hg be a hypergeometric solution
of (4.1), where h is a hypergeometric term over (K, {ϕi, δi}1≤i≤m) and g ∈ Kn. From
Lemma 4.4, g is a rational solution of L̃i(y) = 0 for all i = 1, . . . ,m. In particular g is
a rational solution of L̃1(y) = 0 so that there exists Z ∈ Ms(C(x2, . . . , xm)) such that
g = W Z. This implies that Y = h (W V) (ZT 0T)T . Thus, for i = 2, . . . ,m, Y is a
solution of Li(y) = 0 if and only if (ZT 0T)T is a solution of the system (4.28). This is
equivalent to Z being a solution to system (4.30) and yields the desired result.

4.3.3 Algorithm and example

Theorem 4.4 shows that hypergeometric solutions of (4.1) can be computed recursively.
Again we have reduced the problem of computing hypergeometric solutions of System (4.1)
of size n in m variables to that of computing hypergeometric solutions of System (4.30)
of size s ≤ n in m− 1 variables. The algorithm proceeds as follows:

107

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

Algorithm HypergeometricSolutions

Input: An integrable system of the form (4.1).
Output: A matrix whose columns form a basis of hypergeometric solutions of (4.1) or
0n (the zero vector of dimension n) if no non-trivial hypergeometric solution exists.

1. If there are no non-trivial hypergeometric solutions of L1(y) = 0, then Return
0n and Stop.

2. Compute an n× d matrix H = (h1g1 . . . hdgd) whose columns form a basis of all
hypergeometric solutions of L1(y) = 0, where gi ∈ Kn and hi are hypergeometric
terms over (K, {ϕi, δi}1≤i≤m).

3. If m = 1, then Return H and Stop.

4. Set S =
[]

: an empty matrix.

5. For every h in {h1, . . . , hd} do

• Let L̃i = δi − h−1 ϕi(h) (Mi − fiIn)ϕi, where fi = δi(h)/ϕi(h).

• Compute a matrix W ∈Mn×s(K) whose columns form a basis of the rational
solutions of L̃1(y) = 0.

• For i = 2, . . . ,m, compute the unique solution N11
i ∈ Ms(C(x2, . . . , xm)) of

the matrix linear system W N11
i = −L̃i(W).

• Compute Z: the result of applying the current algorithm to System (4.30).

• If Z = 0n then Return 0n and Stop.

• S := the matrix having the columns of S and those of the matrix hW Z.

End For

6. Return S.

Example 4.11. Let K = C(x, k) and consider the partial pseudo-linear system composed
of one difference and one differential system: y(x, k + 1) = A(x, k)y(x, k)

∂

∂x
y(x, k) = B(x, k)y(x, k)

(4.31)

where A ∈ GLn(K) and B ∈Mn(K) are given by:

108

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

A =



(k + 1) (−x+ k)2

k (−x+ k + 1)2
0 0

−(k + 1) (k2x− 2 kx2 + x3 − k2 + 4 kx− 3x2 + x)

k (−x+ k + 1)2
x (k + 1)

k
0

(k2 − k − 1)x2

k
−(k2 − k − 1)x2

k
kx


,

B =



2 + x− k
−x+ k

0 0

2x2 + (−k + 2)x− k2

x (−x+ k)

x+ k

x
0

−x− 1 x+ 1
k

x

 .

Rewriting the two systems as pseudo-linear systems (see Section 1.2 for more details),
System (4.31) can be transformed into the form (4.1) with{

L1(y) := δ1(y)−M1 ϕ1(y), M1 = ϕ1(A)− I2,
L2(y) := δ2(y)−M2 ϕ2(y), M2 = B,

(4.32)

where
ϕ1 : (x, k) 7→ (x, k − 1), ϕ2 = idK , δ1 = idK − ϕ1, δ2 =

∂

∂x
.

Computing hypergeometric solutions of the difference system L1(y) = 0 using the algorithm
of [44] (see also Section 4.3.1.2), we get a basis composed of three hypergeometric solutions
given by:

Sol
(
σ − a(k)

b(k)

)
k

k

0

 , xk Sol
(
σ − a(k)

b(k)

)
0

(−x+ k)2 k

x

(−x+ k)2 k

 ,

xk Sol
(
σ − k a(k)

b(k)

)
0

0

(−x+ k)2 x

 ,
where σ = ϕ−1

1 : (x, k) 7→ (x, k + 1), a(k) = (−x+ k)2 and b(k) = (−x+ k + 1)2.
The notation Sol

(
σ − a(k)

b(k)

)
stands for the solution of the scalar recurrence equation

σ(z) = a(k)
b(k)

z. The hypergeometric terms of latter basis are the elements of the set

109

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

{h1, h2, h3} =
{
1kSol

(
σ − a(k)

b(k)

)
, xkSol

(
σ − a(k)

b(k)

)
, xkSol

(
σ − k a(k)

b(k)

)}
=

{
1

(−x+ k)2
,

xk

(−x+ k)2
,

xk Γ (k)

(−x+ k)2

}
.

Now take h = h1 and perform the change of variable y = h z in (4.32). This yields the
system over C(x, k):{

L̃1(z) := δ1(z)− h−1 ϕ1(h) [M1 − f1I3]ϕ1(z) = 0,

L̃2(z) := δ2(z)− h−1 ϕ2(h) [M2 − f2I3]ϕ2(z) = 0,

where fi = δi(h)/ϕi(h) for i = 1, 2. The only rational solution of the difference system
L̃1(z) = 0 is

W =


k

k

0

 .
Now, solving the matrix linear system W N11 = −L̃2(W) we get N11 = −1 ∈ C(x).
We are then reduced to computing the hypergeometric (exponential) solution of the scalar
differential equation δ2(y)−N11ϕ2(y) = 0. We find that it is given by Z = e−x ∈ C(x).
Therefore, we get a hypergeometric solution of (4.31) given by

S1 = hW Z =



k e−x

(−x+ k)2

k e−x

(−x+ k)2

0

 .

Finally, repeating the same process for h = h2 and h = h3, we get two other hypergeometric
solutions

S2 =


0

xk k ex

xk+1 k ex

 , S3 =


0

0

xk Γ (k)

 .

4.3.4 Remarks on the implementation

The recursive algorithm HypergeometricSolutions is implemented in our Maple pack-
age PseudoLinearsystems [32]. We repeat that our current implementation only
deals with a partial pseudo-linear system (4.1) composed of differential and/or difference
systems. We use the algorithm form [84], respectively [44], to compute hypergeometric

110

Chapter 4 Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

solutions of a differential, respectively difference, system, but with simple forms instead
of super-reduction as explained in Sections 4.3.1.1 and 4.3.1.2.

During the calculation of hypergeometric solutions of L1(y) = 0, non-hypergeometric
terms (see Definition 4.5) appearing as functions of x2, . . . , xm may be involved. When
this is the case, we discard these terms since they can not lead to hypergeometric solutions
in the sense of Definition 4.5). We explain more on when and where this case might
happen. Denote by F = C(x2, . . . , xm). Suppose that L1(y) = 0, defined over F (x1),
is a differential system

(
ϕ1 = idK , δ1 =

∂
∂x1

)
admitting a hypergeometric (exponential)

solution
y(x1, . . . , xm) = e

∫
u dx1 P,

where u = u(x1, . . . , xm) ∈ F (x1) and P = P (x1, . . . , xm) ∈ F [x1]n (see Section 4.3.1.1).
The hypergeometric term over (K,ϕ1, δ1) is h = e

∫
u dx1 . The base field here is F , so

u might depend on a variable xi for some i = 2, . . . ,m. When this is the case, the
term h might not be hypergeometric over (K,ϕi, δi). Thus, the solution y should not be
considered in further computations as it will not lead to hypergeometric solutions of (4.1)
in the sense of Definition 4.5. To settle this dilemma, we perform a series of verification
tests, for each u obtained during the computation of hypergeometric solutions of the
differential system L1(y) = 0, to check whether h is indeed a hypergeometric term over
(K, {ϕi, δi}2≤i≤m) or not. If not, we discard u.

Example 4.12. Let m = 2 and suppose that we have obtained u = x−1
1 x2. If L2(y) = 0 is

a differential system with ϕ2 = idK and δ2 = ∂
∂x2

, then one has δ2(h)/ϕ2(h) = log(x1) /∈ K.
This means that the term h is not hypergeometric over (K,ϕ2, δ2) and thus we discard u.
Now if L2(y) = 0 is a difference system with ϕ2 : (x1, x2) 7→ (x1, x2+1) and δ2 = idK−ϕ2,
then one has δ2(h)/ϕ2(h) = x−1

1 − 1 ∈ K. This means that the term h is hypergeometric
over (K,ϕ2, δ2) and thus we keep u.

The same concept is applied if L1(y) = 0 is a difference system with

ϕ1 : (x1, x2, . . . , xm) 7→ (x1 + 1, x2, . . . , xm), δ1 = idK − ϕ1.

Suppose that L1(y) = 0, defined over F (x1), admits a hypergeometric solution

y(x1, . . . , xm) = cx1 Sol
(
ϕ1 −

a

b

)
P,

where c ∈ F ∗, P = P (x1, . . . , xm) ∈ F [x1]n and a, b ∈ F [x1] (see Section 4.3.1.2). The
hypergeometric term over (K,ϕ1, δ1) is h = cx1 Sol

(
ϕ1 − a

b

)
. The base field here is F ,

so the values of c, a and b might involve a variable xi for some i = 2, . . . ,m. When
this is the case, the term h might not be hypergeometric over (K,ϕi, δi), so it will not
lead to hypergeometric solutions of (4.1) in the sense of Definition 4.5. Therefore, while

111

computing hypergeometric solutions of the difference system L1(y) = 0 and once we
have obtained a triplet (c, a, b), we perform a verification test to check whether h is a
hypergeometric term over (K, {ϕi, δi}2≤i≤m) or not. If not, we discard (c, a, b).

Chapter 5

PseudoLinearSystems: A Maple
Package for Studying Systems of

Pseudo-linear Equations

5.1 Introduction . 114
5.2 Simple and super-irreducible forms . 114

5.2.1 The SimpleForm procedure . 114
5.2.2 The SuperReduced procedure . 116

5.3 Closed-form solutions of first order pseudo-linear systems 117
5.3.1 The RatSols_1PLS procedure . 118
5.3.2 The ExponentialSolutions procedure for differential systems 120
5.3.3 The HypergeoemtericSolutions_Difference procedure for difference

systems . 121
5.4 Closed-form solutions of partial pseudo-linear systems 123

5.4.1 The RationalSolutions_PPLS procedure 124
5.4.2 The HypergeometricSolutions procedure 125

This chapter constitutes the subject of a part of the published paper [31] in collabo-
ration with M. A. Barkatou and T. Cluzeau.

113

Chapter 5 The PseudoLinearSystems Package

5.1 Introduction
One major contribution of the present thesis arises in the implementation in Maple of all
the algorithms developed in the previous chapters. All implementations are gathered and
incarnated as internal procedures in our package PseudoLinearSystems [32]. Whilst
some existing packages (such as LinearFunctionalSystems and Isolde [39]) are
dedicated to the study of the individual differential, difference and q-difference systems,
the PseudoLinearSystems package is dedicated to the study of pseudo-linear systems:
a very large class of linear functional systems including differential and (q-)difference
systems.

Another novelty of our package is that it uses simple forms as a basic tool to compute
necessary local data. This is not the case in the existing packages where super-reduction
algorithms [15, 41, 67] or EG-eliminations [3] are used. So in particular, the package
PseudoLinearSystems contains a generic procedure for computing a simple form of a
pseudo-linear system, as well as local data useful for the local analysis: k-simple forms,
super-irreducible forms, indicial polynomials, etc. The package also contains generic pro-
cedures devoted to the computation of closed form (polynomial, rational, hypergeometric)
solutions for first order pseudo-linear systems and for partial pseudo-linear systems.

In this final chapter, we shall demonstrate the use of several important procedures
contained in the package. Note that the package is freely available online. A manual
for downloading and installing the package, as well as Maple examples covering several
types of pseudo-linear systems, are provided on the webpage:

http://www.unilim.fr/pages_perso/ali.el-hajj/PseudoLinearSystems.html

5.2 Simple and super-irreducible forms

Let K = C((t)) be the field of Laurent series in a variable t over a constant field C ⊂ Q,
and equipped with the t-adic valuation ν. Moreover, let ϕ be C-automorphism over K
preserving the valuation, i.e. ν(ϕ(a)) = ν(a) for all a ∈ K, and δ be a pseudo-derivation
with respect to ϕ. The triplet (K,ϕ, δ) is thus a local ϕδ-field (see Definition 1.10).

5.2.1 The SimpleForm procedure

In Chapter 2, we have developed a generic algorithm to compute a simple form of any
(local) pseudo-linear system of the form

Aδ(y) +B ϕ(y) = 0,

114

http://www.unilim.fr/pages_perso/ali.el-hajj/PseudoLinearSystems.html

Chapter 5 The PseudoLinearSystems Package

where A and B are square matrices in Mn(C[[t]]), with C[[t]] the ring of formal power series
in t, such that det(A) ̸= 0. Here L denotes the pseudo-linear operator L = Aδ + B ϕ.
The algorithm is called SimpleForm and it proceeds as presented in the scheme of
Section 2.2.3. It is implemented in the PseudoLinearSystems package as a procedure
holding the same name. The inputs of the procedure are:

• The matrices A and B with rational function entries in x admitting power series
expansions.

• The variable x and the local parameter t (for instance t = x−x0 for the singularity
x0, and t = 1/x for the singularity ∞).

• The automorphism ϕ and the derivation δ provided as Maple procedures.

• λ: a name.

The output is a list containing respectively the matrices Â and B̂ of the equivalent simple
system L̂(y) = Â δ(y) + B̂ ϕ(y) = 0, the leading matrix pencil L̂λ = Â0 λ + B̂0, the
determinant of L̂λ which is thus not zero, and finally the two invertible matrices S and
T such that L̂ = S LT . For instance, to treat the pseudo-linear system considered in
Example 2.2.2, the user must first define:
> PhiAction:= proc(M,x) return subs(x=2*x-1,M) end:
> DeltaAction:= proc(M,x) return M-PhiAction(M,x) end:
The user then enters the matrices A and B, specifies the local parameter t = x − 1 and
runs:
> SimpleForm(A,B,x,t,PhiAction,DeltaAction,lambda);

1 0 0 0 0

0 x 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 x− 1


,



−1 1 −1 −1 −x2 + x− 1

0 0 0 0 1

0 0 0 x− 1 − (x− 1)x

2 0 1 2 3

0 1 0 0 x3 − 2x2 + x


,



λ− 1 1 −1 −1 −1

0 λ 0 0 1

0 0 λ 0 0

2 0 1 λ+ 2 3

0 1 0 0 0


,−λ3 − λ2,

115

Chapter 5 The PseudoLinearSystems Package

1

x− 1
0 0 − 1

x− 1

1

x− 1

0 1 0 0 0

0 0
1

x− 1
0 − 1

x− 1

0 0 0
1

x− 1
0

0 0 0 0 1


,



x− 1 0 0 x− 1 x− 1

0 1 0 0 0

0 0 1 0 1

0 0 0 1 0

0 0 0 0 1



5.2.2 The SuperReduced procedure

The PseudoLinearSystems package contains procedures based on the SimpleForm
procedure for computing important local data of pseudo-linear systems. In particular,
it contains the procedure SuperReduced which computes a super-irreducible form (see
Section 2.3.1) of any local pseudo-linear system

t−ω δ(y) =Mϕ(y), (5.1)

where ω ∈ Z is the degree of the ϕ-derivation δ (see Definition 1.12), and M ∈Mn(K) is
uniquely written as M = t−p

∑+∞
i=0 Mi t

i, with M0 ̸= 0 and p ∈ N is the Poincaré rank of
the system.

Computing a super-irreducible form can be done, as explained in Section 2.3.4, by
iteratively computing a k-simple form (see Definition 2.8) for k = p− 1, . . . , 0, using the
SimpleForm procedure just by altering at each iteration the derivation δ in its input.
The SuperReduced procedure takes as input:

• The matrix M with rational function entries in x.

• The variable x and the local parameter t.

• The automorphism ϕ and the derivation δ provided as Maple procedures, as well as
the degree ω of δ.

• λ: a name.

It returns the matrix M̂ of an equivalent super-irreducible system t−ω δ(y) = M̂ ϕ(y),
and the list of pairs [k,Ψk(λ)] for k = m, . . . , 0, where m is the minimal Poincaré rank,
and where the Ψk(λ)’s are the characteristic polynomials of each of the k-simple systems.
The last output is the matrix T ∈ GLn(K) such that M̂ = T−1(Mϕ(T) − δ(T)). Let
us treat for instance System (2.23) written in the form (5.1) where ϕ : x 7→ x/q with

116

Chapter 5 The PseudoLinearSystems Package

q /∈ {0, 1}, δ = idK − ϕ with degree ω = 0 and

M =



−1 q3

x3
x3

q2

q3 + x3

q2 x

q2 − x
x

−x2 − q
q

−x2 + q

x2
0

x− q
q


.

Here the Poincaré rank is p = 3. The user should first enter the matrix M and then run
the following commands:
> t:=x:
> PhiAction:= proc(M,x) return subs(x=x/q,M) end:
> DeltaAction:= proc(M,x) return PhiAction(M,x)-M end:
> omega:=0:
> SuperReduced(M,x,t,PhiAction,DeltaAction,omega,lambda);

−x+ q

x

q2 − 2x2 − q
xq

q2 + x

q2

0
x− q
q

−x2 + q

x2

q2

x2
x5 + q4

x2q2
−1


,
[
[2, λ

(
−q3 + λ2

)
], [1,−q3 (λ− 1)], [0, q3]

]
,


0 0 1

x x 0

0 1 0

 .

The minimal Poincaré rank obtained is m = 2. If one is interested in comput-
ing just m (without additional information), then it is sufficient to use the procedure
MinimalPoincareRank. The package also contains the procedure K_SimpleForm
which computes a k-simple form, for a given k ∈ {0, . . . , p}, of any local pseudo-linear
system (5.1).

5.3 Closed-form solutions of first order pseudo-linear
systems

Let K = C(x) be the field of rational functions in a variable x with coefficients in a
constant field C ⊂ Q. In this section we demonstrate the use of some procedures devoted
for the computation of: rational solutions of a first order pseudo-linear system, exponential
solutions of differential systems, and hypergeometric solutions of difference systems.

117

Chapter 5 The PseudoLinearSystems Package

5.3.1 The RatSols_1PLS procedure

Consider a first order pseudo-linear system of the form

δ(y) =M ϕ(y), (5.2)

where M ∈Mn(K) and, either ϕ = idK and δ = d
dx

, or ϕ : x 7→ q x+ r and δ = γ(idK−ϕ)
with γ ∈ K∗. Here r ∈ C and q ∈ C∗ is not a root of unity, but if r ̸= 0 then q is
allowed to be equal to 1. In Chapter 3 we have developed a unified algorithm to compute
all rational solutions of any system of the form (5.2). It is called RatSols_1PLS
and it is sketched precisely in Section 3.4. We have implemented the algorithm in our
PseudoLinearSystems package as a procedure holding the same name. The algorithm
consists mainly in two steps: the computation of a universal denominator and then the
computation of polynomial solutions.

If ϕ ̸= idK , then we have seen that a universal denominator is composed of a ϕ-fixed part
and a non ϕ-fixed part (if q = 1 then there is no ϕ-fixed part). We use the implementation
of Algorithm NonFixedPart from Section 3.3.4 to compute the non ϕ-fixed part, and
then (if q ̸= 1) we use the implementation of Algorithm FixedPart from Section 3.3.3 to
compute the ϕ-fixed part. Otherwise if ϕ = idK , then (5.2) is simply a pure differential
system and a universal denominator is obtained by calling the procedure SimpleForm
at each finite singularity of the system. For the computation of polynomial solutions, we
use the implementation of Algorithm PolySols_1PLS described in Section 3.2.

The RatSols_1PLS procedure takes as input:

• The matrix M with rational function entries in x.

• The variable x.

• The list [q, r, γ] indicating that ϕ : x 7→ q x+ r and δ = γ(idK−ϕ) for some γ ∈ K∗,
or the list [1, 0] indicating that ϕ = idK and δ = d

dx
.

The output is a matrix whose columns form a basis of all rational solutions of (5.2), or
0n (the zero vector of dimension n) if there are no non-trivial rational solutions. For
instance, in order to compute the rational solutions of System (5.2) with ϕ : x 7→ 3x+ 2,
δ = x (idK − ϕ) and

M =


6x2 − 2x

3x+ 2
0

−(234x+ 36) (x+ 1)3 x

3x3 − 7x2 + 4

26x3 + 30x2 + 4x

(x− 1) (x− 2)

 ,

118

Chapter 5 The PseudoLinearSystems Package

the user should run the command
> RatSols_1PLS(M,x,[3,2,x]);

x

(x+ 1)2
0

x3 − 3x2 + 2x− 7

x (x− 1) (x− 2)

1

x (x− 1) (x− 2)


The PseudoLinearSystems package contains another version of the RatSols_1PLS
procedure, called the RationalSolutions_1System procedure, which is devoted to com-
puting all rational solutions of first order differential, difference, or q-difference systems:

y′(x) = A(x)y(x), y(x+ 1) = A(x) y(x), y(q x) = A(x) y(x),

where A(x) ∈ Mn(K). This procedure takes as an input the matrix A(x) defining the
system, the variable x, and the type of the system: 'differential', 'difference', or
'qdifference'. For instance let A(x) be the matrix given by:

A =


x2 − 3x− 3

x (x− 3) (x− 1)

x2 − 5x+ 9

3x (x− 3) (x− 1)

−3x2 + 12x− 18

(x− 3) (x− 1)

x3 − 2x2 − 2x+ 6

x (x− 3) (x− 1)

 . (5.3)

> RationalSolutions_1System(A,x,'differential'); x2

3x2


> RationalSolutions_1System(A,x,'difference'); # No rational solutions 0

0


Below are some additional useful procedures:

• UnivDenom_PLS: computes a universal denominator of a pseudo-linear system
of the form (5.2). It takes the same inputs as procedure RatSols_1PLS.

• PolySols_1PLS: computes all polynomial solutions of a pseudo-linear system of
the form (5.2). It also takes the same inputs as procedure RatSols_1PLS.

• UnivDenom_PhiSystem: computes a universal denominator of a ϕ-system
ϕ(y) = M y where ϕ : x 7→ q x + r. It takes as input the matrix defining the

119

Chapter 5 The PseudoLinearSystems Package

system, the variable, and the two rational numbers q and r such that q ∈ C∗ is not
a root of unity but if r ̸= 0 then q is allowed to be equal to 1.

• RatSols_PhiSystem, resp. PolySols_PhiSystem: computes all rational, resp.
polynomial, solutions of a ϕ-system ϕ(y) =M y where ϕ : x 7→ q x+ r. It takes the
same inputs as procedure UnivDenom_PhiSystem.

• Disp_PLS: Given two polynomials a(x) and b(x) in C[x]. This procedure computes
the set of the nonnegative integers s such that deg(gcd(a, ϕs(b))) > 0 where ϕ is the
automorphism defined by ϕ : x 7→ q x + r. In particular, this procedure uses the
idea of the full factorisation explained in Section 3.3.4. It takes as input a(x), b(x),
the variable x and the two rational numbers q and r.

5.3.2 The ExponentialSolutions procedure for differential sys-
tems

The package also contains the procedure ExponentialSolutions which computes all
exponential solutions of a differential system y′(x) = A(x)y(x) where A(x) ∈ Mn(K)

(see Section 4.3.1.1). This procedure implements the algorithm from [84] but it uses
the SimpleForm procedure to compute non-ramified local exponential parts (see Defini-
tion 4.6). This is the main difference compared to the current procedure in the Isolde
package. ExponentialSolutions takes as input the matrix A(x) and the variable x. It
returns a matrix whose columns form a basis of all exponential solutions. Our package
also includes the following procedures:

• LocalExpParts: computes a list of admissible non-ramified local exponential parts
of the system at a given singularity. Again, this procedure uses the SimpleForm
procedure to compute the different ω’s in (4.18).

• Exp_Sols: another version of ExponentialSolutions. It returns a sequence

[u1, P1], . . . , [um, Pm],

where ui ∈ K and Pi ∈ C[x]n. Each list [ui, Pi] represents an exponential solution

y(x) = e
∫
ui(x)dx Pi(x).

For instance let A(x) be the matrix defined in (5.3). The poles of A(x) are x, x− 1 and
x− 3.

> LocalExpParts(A,x,x);

120

Chapter 5 The PseudoLinearSystems Package

[
−1

x
,
2

x

]
> LocalExpParts(A,x,x-1); [

0,
1

x− 1

]
> LocalExpParts(A,x,x-3); [

0,
1

x− 3

]
> LocalExpParts(A,x,infinity);

[0, 1]

> Exp_Sols(A,x); x− 1

x
,

 −x+ 3

−3x2 + 9x

 ,
−1

x
,

 x3

3x3


> ExponentialSolutions(A,x); −ex (x− 3)

x
x2

−3 ex (x− 3) 3x2



5.3.3 The HypergeoemtericSolutions_Difference procedure for
difference systems

PseudoLinearSystems also contains the HypergeoemtericSolutions_Difference
procedure. This procedure computes all hypergeometric solutions of a first order difference
system ϕ(y(x)) = A(x)y(x) where ϕ : x 7→ x+1 and A(x) ∈ GLn(K), see Section 4.3.1.2.
It implements the algorithm from [44] but it uses the SimpleForm procedure to compute
the values of c in a hypergeometric solution (4.23). This is the main difference compared
to the current procedure in Isolde. HypergeoemtericSolutions_Difference takes
as input the matrix A(x) and the variable x. It returns a matrix whose columns form a
basis of all hypergeometric solutions. The HS_Difference procedure is another version
of HypergeoemtericSolutions_Difference. It returns a sequence

[a1, b1, c1, P1], . . . , [am, bm, cm, Pm],

121

Chapter 5 The PseudoLinearSystems Package

where ai, bi ∈ C[x], ci ∈ C∗ and Pi ∈ C[x]n. Each list [ai, bi, ci, Pi] represents a hyper-
geometric solution

y(x) = cxi Sol
(
ϕ− ai(x)

bi(x)

)
Pi(x).

For instance let

A(x) =



x3 + 4x2 + 4x− 2

(x+ 4) (x+ 2) (x+ 1)

x2 + 3x+ 1

(x+ 2) (x+ 1)

x+ 1

x+ 4

2x+ 4

x+ 4

− x3 + 4x2 + 4x− 2

(x+ 4) (x+ 2) (x+ 1)

1

(x+ 2) (x+ 1)
−x+ 1

x+ 4
− x

x+ 4

− x (2x2 + 8x+ 9)

(x+ 4) (x+ 2) (x+ 1)
− x2 + 3x+ 1

(x+ 2) (x+ 1)
−2x+ 2

x+ 4
− 2x

x+ 4

x+ 1

x+ 4
0

x+ 1

x+ 4

x

x+ 4


.

> HS_Difference(A,x);x+ 1, x+ 4,−1,


x2 + 7

2
x+ 5

2

−x2 − 7
2
x− 5

2

−3x2 − 23
2
x− 19

2

x2 + 7
2
x+ 5

2



 ,
x+ 1, x+ 4, 1,


x+ 1

−x− 1

−x+ 1

x+ 1



 ,
x+ 1, (x+ 4) (x+ 2) ,−1,


− (x+ 3) (x+ 2)2 (x+ 1)

x3 + 6x2 + 11x+ 6

(x+ 3) (x+ 2)2 (x+ 1)

0



 ,
x+ 1, (x+ 4) (x+ 2) , 1,


−x4 − 6x3 − 11x2 − 6x

−x3 − 6x2 − 11x− 6

x4 + 6x3 + 11x2 + 6x

0





122

Chapter 5 The PseudoLinearSystems Package

> HypergeometricSolutions_Difference(A,x);

(60x+ 150) (−1)x

(x+ 3) (x+ 2)

60

(x+ 3) (x+ 2)

360 (−1)x+1 (x+ 2)

Γ (x+ 2)

−360x
Γ (x+ 2)

(−60x− 150) (−1)x

(x+ 3) (x+ 2)

−60
(x+ 3) (x+ 2)

360 (−1)x

Γ (x+ 2)

−360
Γ(x+ 2)

(−180x2 − 690x− 570) (−1)x

(x+ 1) (x+ 3) (x+ 2)

−60x+ 60

(x+ 1) (x+ 3) (x+ 2)

360 (x+ 2) (−1)x

Γ (x+ 2)

360x

Γ (x+ 2)

(60x+ 150) (−1)x

(x+ 3) (x+ 2)

60

(x+ 3) (x+ 2)
0 0



5.4 Closed-form solutions of partial pseudo-linear
systems

Let K = C(x1, . . . , xm) be the field of rational functions in the variables x1, . . . , xm with
coefficients in a constant field C ⊂ Q. For i = 1, . . . ,m, let ϕi be a C-automorphism over
K, and δi be a ϕi-derivation such that for all j ̸= i, xj is a constant with respect to ϕi

and δi, i.e., ϕi(xj) = xj and δi(xj) = 0. We consider a partial pseudo-linear system of the
form 

L1(y) := δ1(y)−M1 ϕ1(y) = 0,
...

Lm(y) := δm(y)−Mm ϕm(y) = 0,

(5.4)

where Mi ∈ Mn(K) for all i = 1, . . . ,m. Each automorphism ϕi with its corresponding
ϕi-derivation δi should be as in one of the following two cases:

Case 1:

ϕi : (x1, . . . , xi, . . . , xm) 7→ (x1, . . . , qi xi+ri, . . . , xm) and δi = γi(idK−ϕi) with γi ∈ K∗.

Here ri ∈ C and qi ∈ C∗ is not a root of unity, but if ri ̸= 0 then qi is allowed to be 1.

Case 2:
ϕi = idK and δi =

∂

∂xi
.

We assume that System (4.1) is integrable, i.e., it satisfies the integrability conditions:

[Li, Lj] := Li ◦ Lj − Lj ◦ Li = 0, ∀i, j = 1, . . . ,m, (5.5)

where Li := In δi −Mi ϕi denotes the matrix pseudo-linear operator associated to the ith
system of (5.4).

123

Chapter 5 The PseudoLinearSystems Package

5.4.1 The RationalSolutions_PPLS procedure

In Chapter 4, we have first developed a recursive algorithm which computes all rational
solutions of a system of the form (5.4). It is called RationalSolutions_PPLS and it is
sketched in details in Section 4.2.2.2. We have implemented this algorithm as a procedure
holding the same name. This procedure calls the RatSols_1PLS procedure to compute,
at each iteration, rational solutions of a first order order pseudo-linear system. It takes
as input:

• A list [M1, . . . ,Mm] of the matrices defining System (5.4).

• A list of the respective variables [x1, . . . , xm].

• A list [E1, . . . , Em] where each Ei is either a list [qi, ri, γi] indicating Case 1, or a
list [0, 1] indicating Case 2.

If the integrability conditions (5.5) are satisfied, RationalSolutions_PPLS then returns
a matrix whose columns form a basis of all rational solutions of (5.4). For example, to
compute rational solutions of System 4.10, the user should run the following commands:
> Mat:= [M[1], M[2], M[3]]:
> X:= [x[1], x[2], x[3]]:
> E1:= [1, -1, 1]:
> E2:= [1/q, 0, 1]:
> E3:= [0, 1]:
> RationalSolutions_PPLS(Mat, X, [E1, E2, E3]);

x3
x2

x1

x2
(x3 + x1) q

0


While for System (4.11), the user should run:
> Mat:= [M[1], M[2], M[3]]:
> X:= [x[1], x[2], x[3]]:
> E1:= [1, -5, 1]:
> E2:= [-3, -5, 1]:
> E3:= [-3, 0, 1]:
> RationalSolutions_PPLS(Mat, X, [E1, E2, E3]);

x3
x2

x1

1
x2

x3 + x1


In the sequel we give the following useful procedures:

124

Chapter 5 The PseudoLinearSystems Package

• PolynomialSolutions_PPLS: computes all polynomial solutions of a par-
tial pseudo-linear system (5.4). It takes the same inputs as the procedure
RationalSolutions_PPLS.

• RationalSolutions, resp. PolynomialSolutions: another version of
RationalSolutions_PPLS, resp. PolynomialSolutions_PPLS. It computes
all rational, resp. polynomial solutions of a partial pseudo-linear system composed
of first order differential, difference and q-difference systems (such as System 4.9).
The two procedures take as input a list of the matrices defining the system, a
list of the respective variables, and a list of respective types: 'differential',
'difference', or 'qdifference'.

• EigenRing: computes the eigenring of a partial pseudo-linear system (5.4) (see
Section 4.2.2.5). It takes the same inputs as the RationalSolutions_PPLS pro-
cedure.

5.4.2 The HypergeometricSolutions procedure

In the second part of Chapter 4, we have developed the recursive algorithm
HypergeometricSolutions which computes all hypergeometric solutions of a par-
tial pseudo-linear system (5.4). The steps of the algorithm are provided in Sec-
tion 4.3.3. Our current implementation only deals with a partial pseudo-linear
system composed of first order differential and /or difference systems. The pro-
cedure HypergeometricSolutions uses procedure ExponentialSolutions, resp.
HypergeometricSolutions_Difference, to compute hypergeometric solutions of a
first order differential, resp. difference, system. It takes as input a list of the matrices
defining the system, a list of the respective variables, and a list of respective types:
'differential' or 'difference'. For instance, to treat System (4.31), the user should
run:
> HypergeometricSolutions([A,B],[k,x],['difference','differential']);

k e−x

(−x+ k)2
0 0

k e−x

(−x+ k)2
xk k ex 0

0 xk+1 k ex xk Γ (k)



125

While to treat the system

∂

∂x1
y(x1, x2, x3) = A1(x1, x2, x3)y(x1, x2, x3)

∂

∂x2
y(x1, x2, x3) = A2(x1, x2, x3)y(x1, x2, x3)

∂

∂x3
y(x1, x2, x3) = A3(x1, x2, x3)y(x1, x2, x3)

with

A1 =


4x3 + x1
4x1x3 + x1

2x1x3 − 2x3
4x1x3 + x1

2x1 − 2

4x1x3 + x1

4x1x3 + 1

4x1x3 + x1

 , A2 =


4x3

4x3x22 + x22
− 2x3

4x3x22 + x22

− 2

4x3 x22 + x22

1

(4x3x22 + x22)

 ,

A3 =

 0 1

3 + 4 x3
4x32 + x3

16x3
2 − 3

8x32 + 2x3

 ,
the user should run:
> Mat:= [A[1], A[2], A[3]]:
> X:= [x[1], x[2], x[3]]:
> type:= ['differential', 'differential', 'differential']:
> HypergeometricSolutions(Mat, X, type);

−2x1 e−
1
x2

√
x3

ex1+2x3

2

x1 e−
1
x2

x
3/2
3

ex1+2x3



Bibliography

[1] S. Abramov. On the summation of rational functions. USSR Computational Mathematics
and Mathematical Physics, 11(4), 324-330, 1971.

[2] S. Abramov. Rational solutions of linear differential and difference equations with polynomial
coefficients. USSR Computational Mathematics and Mathematical Physic, 29(6), 7-12, 1991.

[3] S. Abramov. EG-eliminations. Journal of Difference Equations and Applications, 5(4-5),
393-433, 1999.

[4] S. Abramov. Rational solutions of first order linear q-difference systems. In Proceedings of
FPSAC’99, Barcelona, Spain, 1-9, 1999.

[5] S. Abramov. A direct algorithm to compute rational solutions of first order linear q-difference
systems. Discrete Mathematics, 246(1-3), 3-12, 2002.

[6] S. Abramov. EG-eliminations as a tool for computing rational solutions of linear q-difference
systems of arbitrary order with polynomial coefficients. Computer Algebra International
Conference, 2017.

[7] S. Abramov, M. A. Barkatou. Rational solutions of first order linear difference systems.
In Proceedings of the International Symposium on Symbolic and Algebraic Computation,
124-131, 1998.

[8] S. Abramov, M. Bronstein. On solutions of linear functional systems. In Proceedings of the
International Symposium on Symbolic and Algebraic Computation, 1-6, 2001.

[9] S. Abramov, A. Gheffar, D. Khmelnov. Factorization of polynomials and gcd computations
for finding universal denominators. In Proceedings of the 12th International Conference on
Computer Algebra in Scientific Computing, 4-18, 2010.

[10] S. Abramov, A. Gheffar, D. Khmelnov. Rational solutions of linear difference equations:
universal denominators and denominator bounds. Programming and Computer Software,
37(2), 78-86, 2011.

[11] S. Abramov, P. Paule, M. Petkovšek. q-Hypergeometric solutions of q-difference equations.
Discrete Mathematics, 180, 3-22, 1998.

[12] S. Abramov, M.Petkovšek, A. A. Ryabenko. Hypergeometric solutions of first-order linear
difference systems with rational-function coefficients. International Workshop on Computer
Algebra in Scientific Computing, 1-14, 2015.

127

References

[13] S. Abramov, A. A. Ryabenko, D. Khmelnov. Laurent, rational, and hypergeometric
solutions of linear q-difference systems of arbitrary order with polynomial coefficients. Pro-
gramming and Computer Software, 44(2), 120-130, 2017.

[14] C. Admas. On the linear ordinary q-difference equation. Annals of Mathematics, 30(2),
195-205, 1929.

[15] M. A. Barkatou. On the reduction of linear systems of difference equations. In Proceedings
of the International Symposium on Symbolic and Algebraic Computation, 1-6, 1989.

[16] M. A. Barkatou. Contribution à l’étude des équations différentielles et aux différences dans
le champ complexe. PhD Thesis, Institut National Polytechnique de Grenoble, 1989.

[17] M. A. Barkatou. An algorithm for computing a companion block diagonal form for a sys-
tem of linear differential equations. Applicable Algebra in Engineering, Communication and
Computing, 4(3), 185-195, 1993.

[18] M. A. Barkatou. A rational version of Moser’s algorithm. In Proceedings of the International
Symposium on Symbolic and Algebraic Computation, 297-302, 1995.

[19] M. A. Barkatou. An algorithm to compute the exponential part of a formal fundamental
matrix solution of a linear differential system. Applicable Algebra in Engineering, Commu-
nication and Computing, 8(1), 1-23, 1997.

[20] M. A. Barkatou. On rational solutions of systems of linear differential equations. Journal of
Symbolic Computation, 28, 547-567, 1999.

[21] M. A. Barkatou. Rational solutions of matrix difference equations: the problem of equivalence
and factorization. In Proceedings of the International Symposium on Symbolic and Algebraic
Computation, 277-282, 1999.

[22] M. A. Barkatou. Factoring Systems of Linear Functional Systems Using Eigenrings. Com-
puter Algebra 2006, Latest Advances in Symbolic Algorithms, World Scientific, 22-42, 2007.

[23] M. A. Barkatou, G. Broughton, E. Pflügel. Regular systems of linear functional equations
and applications. In Proceedings of the International Symposium on Symbolic and Algebraic
Computation, 15-22, 2008.

[24] M. A. Barkatou, G. Broughton, E. Pflügel. A monomial-by-monomial method for computing
regular solutions of systems of pseudo-linear equations. Mathematics in Computer Science,
4(2-3), 267-288, 2010.

[25] M. A. Barkatou, G. Chen. Computing the exponential part of a formal fundamental matrix
solution of a linear difference system. Journal of Difference Equations and Applications, 5,
117-142, 2007.

[26] M. A. Barkatou, G. Chen. Some formal invariants of linear difference systems and their
Computations. Crelle’s Journal, 2001, 1-23, 2001.

[27] M. A. Barkatou, T. Cluzeau, C. El Bacha. Simple forms of higher-order linear differential
systems and their applications in computing regular solutions. Journal of Symbolic Compu-
tation, 46(6), 633-658, 2011.

References

[28] M. A. Barkatou, T. Cluzeau, C. El Bacha. On the computation of simple forms and regular
solutions of linear difference systems. Advances in Computer Algebra, WWCA 2016, Springer
Proc. in Mathematics & Statistics, 226, 19-49, 2018.

[29] M. A. Barkatou, T. Cluzeau, C. El Bacha, J. A. Weil. Computing closed form solutions
of integrable connections. In Proceedings of the International Symposium on Symbolic and
Algebraic Computation, 43-50, 2012.

[30] M. A. Barkatou, T. Cluzeau, A. El Hajj. Simple forms and rational solutions of pseudo-
linear systems. In Proceedings of the International Symposium on Symbolic and Algebraic
Computation, 26-33, 2019.

[31] M. A. Barkatou, T. Cluzeau, A. El Hajj. PseudoLinearSystems – a maple package for
studying systems of pseudo-linear equations. Maple in Mathematics Education and Research,
327-329, 2019.

[32] M. A. Barkatou, T. Cluzeau, A. El Hajj. The Pseudo-linearSystems package. http://www.
unilim.fr/pages_perso/ali.el-hajj/PseudoLinearSystems.html

[33] M. A. Barkatou, T. Cluzeau, A. El Hajj. On rational solutions of pseudo-linear systems.
Computer Algebra in Scientific Computing, 42-61, 2021.

[34] M. A. Barkatou, C. El Bacha. On k-simple forms of first-order linear differential systems
and their computation. Journal of Symbolic Computation, 54, 36-58, 2013.

[35] M. A. Barkatou, C. El Bacha, G. Labahn, E. Pflügel. On simultaneous row and column
reduction of higher-order linear differential systems. Journal of Symbolic Computation, 49,
45-64, 2013.

[36] M. A. Barkatou, M. Jaroschek. Removing apparent singularities of linear difference systems.
Journal of Symbolic Computation, 102, 86-107, 2021.

[37] M. A. Barkatou, E. Pflügel. On the Equivalence Problem of Linear Differential Systems
and its Application for Factoring Completely Reducible Systems. In Proceedings of the
International Symposium on Symbolic and Algebraic Computation, 268-275, 1998.

[38] M. A. Barkatou, E. Pflügel. An algorithm computing the regular formal solutions of a system
of linear differential equations. Journal of Symbolic Computation, 28(4-5), 569-587, 1999.

[39] M. A. Barkatou, E. Pflügel. The ISOLDE package. A SourceForge Open Source project.
http://isolde.sourceforge.net/, 2006.

[40] M. A. Barkatou, E. Pflügel. Computing super-irreducible forms of systems of linear differ-
ential equations via Moser-reduction: a new approach. In Proceedings of the International
Symposium on Symbolic and Algebraic Computation, 1-8, 2007.

[41] M. A. Barkatou, E. Pflügel. On the Moser- and super-reduction algorithms of systems of
linear differential equations and their complexity. Journal of Symbolic Computation, 44(8),
1017-1036, 2009.

[42] M. A. Barkatou, F. Richard-Jung. Formal solutions of linear differential and difference
equations. Programming and Computer Software, 23(1), 17-30, 1997.

http://www.unilim.fr/pages_perso/ali.el-hajj/PseudoLinearSystems.html
http://www.unilim.fr/pages_perso/ali.el-hajj/PseudoLinearSystems.html
http://isolde.sourceforge.net/

References

[43] M. A. Barkatou, J. Saadé, J.-A. Weil. Formal reduction of singular linear differential systems
using eigenrings: A refined approach. Journal of Symbolic Computation, 102, 231-258, 2019.

[44] M. A. Barkatou, M. Van Hoeij. Hypergeometric solutions of systems of linear difference
equations. Computer Algebra and Functional Equations CAFE, July 2006.

[45] M. Birkhof. The generalized Riemann problem. Riemann Solvers and Numerical Methods
for Fluid Dynamics, 625-653, 1913.

[46] M. Bronstein, Z. Li, M. Wu. Picard-Vessiot extensions for linear functional systems. In
Proceedings of the International Symposium on Symbolic and Algebraic Computation, 68-75,
2005.

[47] M. Bronstein, M. Petkovšek. On ore rings, linear operators and factorisation. Program-
mirovanie, 20, 27-45, 1994.

[48] M. Bronstein, M. Petkovšek. An introduction to pseudo-linear algebra. Theoretical Computer
Science, 157, 3-33, 1996.

[49] G. Broughton. Symbolic algorithms for the local analysis of systems of pseudo-linear equa-
tions. PhD Thesis, Kingston University, 2013.

[50] G. Chen. Solutions formelles de systèmes d’équations différentielles linéaires ordinaires ho-
mogènes. PhD thesis, Université Joseph Fourrier - Grenoble I, 1990.

[51] R. C. Churchull, J. J. Kovacic. Cyclic vectors. In Differential Algebra and Related Top-
ics, Proceedings of the International Workshop, pages 191-218, Rutgers University, Newark,
November 2002. River Edge, NJ, World Scientific Publishing Company.

[52] T. Cluzeau. Algorithmique modulaire des équations différentielles linéaires. PhD Thesis,
Université de Limoges, 2004.

[53] T. Cluzeau, M. van Hoeij. A modular algorithm for computing the exponential solutions of
a linear differential operator. Journal of Symbolic Computation, 38(3), 1043-1076, 2004.

[54] T. Cluzeau, M. van Hoeij. Computing hypergeometric solutions of linear difference equations.
Applicable Algebra in Engineering, Communication and Computing, Springer Verlag, 17, 83-
115, 2006.

[55] T. Cluzeau, A. Quadrat. Factoring and decomposing a class of linear functional systems.
Linear Algebra and its Applications, 428(1), 324-381, 2008.

[56] E. Coddington, N. Levinson. Theory of Ordinary Differential Equations. McGraw-Hill Book
Company, Inc., New York, 1955.

[57] F. Cope. Formal solutions of irregular linear differential equations, Part II. American Journal
of Mathematics, 58, 130-140, 1936.

[58] V. Dietrich. Zur Reduktion von linearen Differentialgleichungssystemen. Mathematische
Annalen, 237, 79-95, 1978.

[59] C. El Bacha. Méthodes algébriques pour la résolution d’équations différentielles matricielles
d’ordre arbitraire. PhD Thesis, Université de Limoges, 2011.

References

[60] R. Feng, M. F. Singer, M. Wu. An algorithm to compute Liouvillian solutions of prime order
linear difference-differential equations. Journal of Symbolic Computation, 45(3), 306-323,
2010.

[61] C. Hardouin, M. Singer. Differential Galois theory of linear difference equations. Mathema-
tische Annalen, 350(1), 243-244, 2011.

[62] W. Harris. Linear systems of difference equations. Contributions to Differential Equations
1, 489-518, 1963.

[63] A. Hilali, A. Wazner. Un algorithme de calcul de l’invariant de Katz d’un système différentiel
linéaire. Annales de l’institut Fourier, 36(3), 67-81, 1986.

[64] A. Hilali. Solutions formelles de systèmes différentiels linéaires au voisinage d’un point sin-
gulier. PhD thesis, L’université scientifique, technologique et médicale de Grenoble, 1987.

[65] A. Hilali. Contribution à l’étude des points singuliers des systèmes différentiels linéaires. PhD
thesis, L’université scientifique, technologique et médicale de Grenoble, 1987.

[66] A. Hilali. Calcul des invariants de Malgrange et de Gérard-Levelt d’un système différentiel
linéaire en un point singulier irrégulier. Journal of Differential Equations, 69, 404-421, 1987.

[67] A. Hilali, A. Wazner. Formes super-irréductibles des systèmes différentiels linéaires. Nu-
merische Mathematik, 50, 429-449, 1987.

[68] E. L. Ince. Ordinary Differential Equations. Dover Publications, Inc., 1926.

[69] N. Jacobson. Pseudo-linear transformations. Annals of Mathematics, 38(2), 484-507, 1937.

[70] M. Kauers, C. Schneider. Partial denominator bounds for partial linear difference equations.
In Proceedings of the International Symposium on Symbolic and Algebraic Computation,
211-218, 2010.

[71] M. Kauers, C. Schneider. A refined denominator bounding algorithm for multivariate lin-
ear difference equations. In Proceedings of the International Symposium on Symbolic and
Algebraic Computation, 201-208, 2011.

[72] D. E. Khmelnov. Improved algorithms for solving difference and q-difference equations. Pro-
gramming and Computer Software, 26(2), 107-115, 2000. Vol. 26, No. 2: 107-115 (translated
from Programmirovanie No. 2), 2000.

[73] A. Levelt. Stabilizing differential operators: a method for computing invariants at irregular
singularities. In M. Singer, editor, Differential Equations and Computer Algebra, 181-228,
1991.

[74] Z. Li, M. F. Singer, M. Wu, D. Zheng. A recursive method for determining the one-
dimensional submodules of Laurent-Ore modules. In Proceedings of the International Sym-
posium on Symbolic and Algebraic Computation, 200-208, 2006.

[75] Z. Li, M. Wu. On solutions of linear systems and factorization of Laurent-Ore modules.
Computer Algebra 2006, World Scientific, 109-136, 2007.

References

[76] Y. O. Macuatn. Formal Solutions of Scalar Singularly-Perturbed Linear Differential Equa-
tions. In Proceedings of the International Symposium on Symbolic and Algebraic Computation,
113-120, 1999.

[77] Y. K. Man, F. J. Write. Fast polynomial dispersion computation and its application to in-
defnite summation. In Proceedings of the International Symposium on Symbolic and Algebraic
Computation, 175-180, 1994.

[78] J. Moser. The order of a singularity in Fuchs theory. Mathematische Zeitschrift, 72, 379-398,
1960.

[79] O. Ore. Formale theorie der linearen differentialgleichungen. Journal für die reine und
angewandte Mathematik, 167, 221-234, 1932.

[80] S. V. Paramonov. On rational solutions of linear partial differential or difference equations.
Programming and Computer Software, 39(2), 57-60, 2013.

[81] S. V. Paramonov. Checking existence of solutions of partial differential equations in the fields
of Laurent series. Programming and Computer Software, 40, 58-62, 2014.

[82] M. Petkovšek. Hypergeometric solutions of linear recurrences with polynomial coefficients.
Journal of Symbolic Computation, 14(2-3), 243-264, 1992.

[83] M. Petkovšek, B. Salvy. Finding all hypergeometric solutions of linear differential equations.
In Proceedings of the International Symposium on Symbolic and Algebraic Computation,
27-33, 1993.

[84] E. Pflügel. An algorithm for computing exponential solutions of first order linear differ-
ential systems. In Proceedings of the International Symposium on Symbolic and Algebraic
Computation, 146-171, 1997.

[85] E. Pflügel. Résolution symbolique des sysètmes différentiels linéaires. PhD thesis, Université
Joseph Fourrier, 1998.

[86] E. Pflügel. Effective formal reduction of linear differential systems. Applicable Algebra in
Engineering, Communication and Computing, 10(2), 153-187, 2000.

[87] J. Saadé. Méthodes symboliques pour les systèmes différentiels linéaires à singularité ir-
régulière. PhD Thesis, Université de Limoges, 2019.

[88] M. F. Singer. Liouvillian Solutions of Linear Differential Equations with Liouvillian Coeffi-
cients. Computers and Mathematics. Springer, New York, 182-191, 1989.

[89] M. F. Singer. Testing reducibility of linear differential operators : a group theoretic per-
spective. Applicable Algebra in Engineering, Communication and Computing, 7(2), 77-104,
1996.

[90] E. Tournier. Solutions formelles d’équations Différentielles, le logiciel de calcul formel:
DÉSIR, étude théorique et réalisation. PhD thesis, L’université scientifique, technologique et
médicale de Grenoble, 1987.

[91] W. Trjitzinsky. Analytic theory of linear q-difference equations. ACTA Mathematica, 61,1-38,
1933.

[92] H. Turritin. The formal theory of systems of irregular homogeneous linear difference equa-
tions. Boltin de la Soc. Mexicana, 5, 255-264, 1960.

[93] M. Van Hoeij. Formal solutions and factorization of differential operators with power series
coefficients. Journal of Symbolic Computation, 24, 1-30, 1997.

[94] J. Von zur Gathen, J. Gerhard. Modern computer algebra. Cambridge University Press,
New York, 2003.

[95] M. Wu. On solutions of linear functional systems and factorization of modules over Laurent-
Ore algebras. PhD Thesis, University of Nice-Sophia Antipolis, 2005.

Abstract: This thesis is concerned with the development of symbolic algorithms in Computer
algebra. We study systems of pseudo-linear equations: a large class of linear functional systems
including differential, difference and q-difference systems.

The thesis consists of three major parts. In the first part, we are interested in the local
analysis of pseudo-linear system near a singularity. We first develop a direct algorithm for
computing simple forms of pseudo-linear systems. Whilst direct algorithms for computing
simple forms have been already proposed for differential and difference systems, no unifying
one for pseudo-linear systems was known prior to our work. Then we show how the reduction
to a simple form can be used to compute efficiently local data for pseudo-linear systems.

The second part deals with the computation of closed-form solutions. Firstly, we present
a generic and efficient algorithm for computing rational solutions of first order pseudo-linear
systems. Then we develop two new recursive algorithms for computing rational and hyper-
geometric solutions of partial pseudo-linear systems with arbitrary number of variables.

An important contribution of this thesis arises in the implementation of all the algorithms
in Maple as part of our freely available package PseudoLinearSystems. In the last part of
the thesis, we provide a demonstration of several procedures contained in the package.

Keywords: Computer algebra, Functional equations, Pseudo-linear systems, Simple forms,
Rational solutions, Implementation.

Resumé: Cette thèse porte sur le développement d’algorithmes symboliques en calcul formel.
Nous étudions des systèmes d’équations pseudo-linéaires: une grande classe de systèmes
fonctionnels linéaires comprenant les systèmes différentiels, différences et q-différences.

La thèse se compose de trois grandes parties. Dans la première partie, nous nous intéressons
à l’analyse locale d’un système pseudo-linéaire au voisinage d’une singularité. Nous développons
d’abord un algorithme direct pour le calcul de formes simples de systèmes pseudo-linéaires.
Alors que des algorithmes directs pour le calcul de formes simples ont déj� été proposés pour les
systèmes différentiels et différences, aucun unificateur pour les systèmes pseudo-linéaires n’était
connu avant nos travaux. Ensuite, nous montrons comment la réduction à une forme simple peut
être utilisée pour calculer efficacement des données locales pour des systèmes pseudo-linéaires.

La deuxième partie traite du calcul des solutions de forme fermée. Tout d’abord, nous
présentons un algorithme générique et efficace pour le calcul de solutions rationnelles de sys-
tèmes pseudo-linéaires du premier ordre. Ensuite, nous développons deux nouveaux algorithmes
récursifs pour le calcul de solutions rationnelles et hypergéométriques de systèmes pseudo-
linéaires avec un nombre arbitraire de variables..

Une contribution importante de cette thèse se pose dans l’implémentation de tous les
algorithmes dans Maple dans le cadre de notre package PseudoLinearSystems disponible
gratuitement. Dans la dernière partie de la thèse, nous proposons une démonstration de
plusieurs procédures contenues dans le package.

Mots-clés: Calcul formel, Équations fonctionnelles, Systèmes pseudo-linéaires, Formes
simples, Solutions rationnelles, Implémentation.

	General Introduction
	Basics on Pseudo-linear Systems
	On Simple Forms of Pseudo-Linear Systems and their Applications
	On Rational Solutions of First Order Pseudo-Linear Systems
	On Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems
	PseudoLinearSystems: A Maple Package for Studying Systems of Pseudo-linear Equations
	References

