
HAL Id: tel-03589271
https://theses.hal.science/tel-03589271

Submitted on 25 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conception, maintenance et évolution non-cassante des
API REST
Antoine Cheron

To cite this version:
Antoine Cheron. Conception, maintenance et évolution non-cassante des API REST. Web. Université
Rennes 1, 2021. English. �NNT : 2021REN1S076�. �tel-03589271�

https://theses.hal.science/tel-03589271
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1

Par

Antoine CHERON

Design, maintenance and break-free evolution of REST APIs

Thèse présentée et soutenue à Rennes, le 17 Décembre 2021
Unité de recherche : IRISA - Équipe DiverSE

Rapporteurs avant soutenance :

Naouel Moha Professeure à l’École de Technologie Supérieure de Montréal
Philippe Merle Chercheur à l’Institut National de Recherche en Informatique et en Automatique

Composition du Jury :
Président : Yerom David Bromberg Professeur à l’Université de Rennes 1
Examinateurs : Philippe Collet Professeur à l’Université Côte d’Azur
Dir. de thèse : Olivier Barais Professeur à l’Université de Rennes 1
Co-dir. de thèse : Johann Bourcier Maître de conférences à l’Université de Rennes 1

Invité(s) :
Djamel Eddine Khelladi Chercheur au CNRS
Antoine Michel Tech Advisor et encadrant industriel de cette thèse à Fabernovel

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

ACKNOWLEDGEMENT

First of all, I would like to thank the members of the jury. A very big thank to Naouel Moha
and Philippe Merle for having accepted to report this work. Thank you David Bromberg, this
is an honor to have you as an examiner. Thank you Philippe Collet for accepting to review this
thesis.

Thank you so much Johann (Bourcier) and Olivier (Barais) for your unconditional support,
your kindness and your humanity. For making each meeting a pleasant and enriching moment,
for your trust, for not giving up when I asked to spend most of my time in Paris (then Marseille,
then Lyon), and for always following me in the direction I wanted to give to this thesis. Thank
you for making this thesis a great experience! And of course, many thanks to you, Johann, for
having initiated all this journey by attracting me to the lab.

I would also like to thank Djamel for his calm, his patience and the quality of his proofreading.
Thank you for being so open-minded and professional. You very much helped me significantly
increase the quality of my research.

Naturally, I would like to thank the whole DiverSE team for their benevolence, their open-
mindedness and their love for good research. I am honored to have been part of such a human,
passionate and enriching team. It is thanks to you that I discovered the values of science, learned
a lot and also understood to what extent the choice of a team is determining.

Thanks to you too, Antoine (Michel), for giving me this wonderful opportunity! You have
inspired me so much, pushed me to go beyond my limits, to dig deeper and to take on subjects
that seemed out of reach. It is always a great pleasure to have these very technical discussions
with you.

From Fabernovel, I also thank Remi Dewitte who pushed me hard to go beyond my limits,
with who I’ve always had very interesting discussions and learned so much. Many thanks to you
Bruce Mwizerwa for being so inspiring, for challenging me to make things crystal clear and for
your unconditional support.

I would like to dedicate this thesis to my two parents, Florence and Jean-François. Thank
you for having transmitted to me the value of always doing what I like and for having always
trusted me. You taught me to test, to try things, and always supported my choices. Without
that I would never have dared to follow this path that has given me so much, thank you!

(En Français: C’est à mes deux parents, Florence et Jean-François, que j’aimerais dédier
cette thèse. Merci de m’avoir transmis comme valeur de toujours faire ce qui me plaît et de
m’avoir toujours fait confiance. Vous m’avez appris à tester, à tenter les choses, et avez toujours

3

soutenu mes choix. Sans ça je n’aurais jamais osé suivre ce chemin qui m’a tant apporté, merci
!)

The last person to whom I would like to say a big thank you is the one who is very close to
me at the moment of writing these lines. Thank you so much, Marie, for listening to me think
out loud so many times, for calming the roller-coster of feelings experienced when submitting
an article and receiving the result. Thank you for making everything simpler, lighter and more
fun.

4

RÉSUMÉ EN FRANÇAIS

Motivations

Autrefois fermé, le système d’information d’une organisation était fortement typé et con-
trôlé. Aujourd’hui, il a migré vers le World Wide Web, un environnement ouvert, non typé et
hétérogène. Alors que cette transition a permit d’interconnecter les SI et de faciliter l’évolution
des applications, elle a aussi apporté de nouveaux challenges.

Le Web est principalement composé de deux types de composants applicatifs : les applications
et les services. Les applications, qu’elles soit des applications mobiles ou Web, c’est à dire ayant
vocation à être utilisées depuis un navigateur, ont en commun qu’elles sont une sorte de texte
à trous, elles ne peuvent pas stocker de données. Elles communiquent donc avec des services
pour récupérer de la donnée et ainsi personnaliser l’application pour chaque utilisateur. Ce sont
donc les services qui possèdent et gèrent la donnée. Pour rendre possible cette communication
entre les applications et les services, ces derniers mettent à disposition des applications des APIs
dont la majorité suit l’architecture REST. Les APIs sont une liste de fonctions qui peuvent être
appelées, certaines retournant des données, d’autres la modifiant.

Cependant, un premier problème est qu’il faut identifier la ou les API REST qui peuvent
fournir le service attendu. Une fois identifiées, il est nécessaire de les choisir. Et si jamais l’une
d’entre elles arrête de fonctionner, il faut lui trouver une remplaçante. Toutes ces étapes sont
faites manuellement et sont donc chronophages.

Un second problème est que la communication entre une application et une API REST doit
être codée par un humain. En effet, les techniques qui automatisent cette étape ne s’appliquent
pas API REST. En conséquence, cette seconde étape est elle aussi chronophage, et source
d’erreur.

De plus, on observe que lorsque l’API évolue, il faut que ses évolutions soient répercutées
dans le code de ses clients, souvent manuellement. En effet, le code de l’application doit respecter
le contrat d’une version précise de l’API, à la lettre, créant ainsi un fort couplage entre les deux
composants. De ce fait, la modification d’un élément de ce contrat oblige à modifier le code (ex:
fullname est changé en fullName). Cette troisième phase est elle aussi chronophage et source
d’erreur car il faut détecter le changement, appliquer les modifications, vérifier que des régressions
n’ont pas été introduites puis déployer une nouvelle version de l’application.

Le dernier challenge encore ouvert est la mise en place de tests pour garantir que l’API se
comporte comme attendu. De nombreuses techniques existent pour tester un logiciel, et d’autres

5

sont créées régulièrement. Par exemple, ces dernières années de nouvelles approches reposant sur
l’intelligence artificielle voient le jour. Cependant, ces techniques n’ont pas toutes été appliqués
aux API REST. Des recherches sont menées en ce sens.

Objectifs

Dans ce contexte, nous nous sommes intéressés aux problématiques du choix des technologies
permettant la création d’une API REST, ainsi qu’à la maintenance et à l’évolution de ces APIs.
Nous nous sommes ainsi fixés les objectifs suivants :

— faciliter la découverte et la sélection des technologies les plus pertinentes pour la mise en
place d’une API REST qui respectent un ensemble de propriété défini

— réduire la maintenance nécessaire sur l’application lorsque les APIs REST qu’elle utilise
évoluent

Contributions

Premièrement, il existe de nombreuses technologies pour créer et documenter une API.
Choisir les technologies les plus pertinentes pour un projet est une tâche difficile. Comme pre-
mière contribution de cette thèse, nous établissons des critères permettant de comparer ces
technologies. Pour cela, nous avons dans un premier temps recensé 36 technologies qui permet-
tent de concevoir, implémenter et documenter une API REST. La sélection ne s’est pas limitée
aux technologies conçues spécfiquement pour les API REST, elle a été étnedue aux technolo-
gies qui peuvent être appliqués aux API REST. Nous avons lu la documentation complète de
chaque technologie afin d’en extraire des critères qui permettent de les comparer. Ces critères
s’inscrivent dans les catégories définies par Siqueira et. al. dans leur modèle de maturité des
API Semantic REST[?]. Ensuite, nous utilisons ces critères pour comparer les technologies ex-
istantes et proposons ainsi trois matrices de comparaison. Enfin, pour simplifier cette selection,
nous avons développé un assistant open-source disponible sur le Web, qui guide le développeur
dans son choix.

La seconde contribution de cette thèse est liée à la maintenance et l’évolution des APIs REST.
La littérature existante ne permet pas de faire évoluer une API REST librement, sans risquer de
rendre inopérantes les applications qui s’en servent (leurs clients). Ainsi, dans ce second travail,
nous proposons une nouvelle approche à la co-évolution des APIs REST et de leurs clients.
Nous affirmons que les clients des API REST ne devraient pas être maintenus manuellement
mais devraient être capables de s’adapter aux évolutions typiques des API REST, au moment
de l’exécution, sans rupture et sans modification de leur code. Pour ce faire, les clients des
API REST ont besoin d’une documentation riche. Nous avons donc étudié quelles informations

6

structurelles et contextuelles devraient être documentées dans les API pour que les interfaces
utilisateur Web soient evolvable-by-design. Nous avons identifié qu’en suivant 7 règles régissant la
documentation de l’API et les données qu’elles renvoient en répondant à ses clients, il est possible
de créer de telles interfaces utilisateur Web. Pour mettre au point cette contribution, nous
avons tout d’abord questionné des développeurs sur les types d’évolution d’API REST qu’ils ont
rencontré. Nous avons découvert sept nouveaux types. Ensuite, nous avons adopté une approche
à la fois analytique et expérimentale pour identifier ces 7 règles. L’évaluation de cette nouvelle
approche repose sur 2 études : une qualitative et une quantitative. L’approche quantitative teste
la capacité de l’approche à supporter un maximum de cas d’évolution. A défaut de trouver un
projet open source en fournissant de nombreux, nous avons créé une API réaliste, qui présente
110 évolutions. Nous avons ainsi créé deux variantes d’une application Web qui utilise cette API
: une version à l’implémentation traditionnelle et une autre, qui utilise l’approche proposée. A
chaque évolution de l’API, nous avons testé les deux variantes de l’application pour voir ce qui
ne fonctionnait plus et avons procédé à la modification de leur code quand c’était nécessaire.
Nous avons ainsi mesuré le nombre d’évolutions qui cassait le client et le nombre de lignes de
code ayant été modifiées pour les réparer. Nous avons constaté que l’approche était applicable
sur ce cas. Ensuite, l’étude qualitative vérifie si l’approche peut être implementée dans des
projets open-source existants. Nous en avons trouvé 5 sur GitHub. Au total, ils implémentaient
10 types d’évolution. Les résultats de cette seconde évaluation ont validé les résultats de la
première : 27 des 29 types d’évolution d’API REST peuvent être supportés. Ceux non supportés
représentaient moins de 1% des évolutions réelles selon une précédente étude. Tout le code de
ces expérimentations est disponible sur GitHub 1, ce qui inclus une librairie JavaScript qui a été
créée pour simplifier la création d’interfaces Web evolvavle-by-design.

Perspectives

Les travaux menés dans cette thèse ont permi d’identifier d’autres challenges concernant la
co-évolution de systèmes utilisant des APIs REST. Ils ont aussi ouvert de nouvelles pistes.

Afin tester l’attractivité de l’approche proposée en seconde contribution, et l’effort nécessaire
à sa mise en pratique, nous proposons, dans une première perspective, de mener une étude croisée.
C’est à dire, de faire tester l’approche à des développeurs expérimentés. En fonction des résultats,
si l’approche est complexe à comprendre ou pas assez attractive, des efforts de communication
et d’enseignement seront nécessaires, mais ils sortent du cadre de la recherche scientifique. De
notre point de vue, la dernière chose à aborder est la facilité de mise en œuvre. D’une part,
il faut des études avancées sur l’expérience utilisateur pour concevoir l’API de la bibliothèque
côté client, qui sont liées à l’industrialisation et à l’ingénierie. D’autre part, nous identifions des

1. https://github.com/evovlable-by-design

7

https://github.com/evovlable-by-design

sujets de recherche intéressants. Nous pensons que l’un des principaux défis est la sélection et la
manipulation des ontologies. Ainsi, comme seconde perspective, nous proposons d’explorer des
solutions pour proposer une recommandation d’ontologie directement dans l’éditeur de code, en
s’appuyant sur des techniques d’apprentissage automatique pour maximiser la normalisation et
obtenir une bonne précision, ainsi qu’en exploitant le code source et la documentation de l’API.

Maintenant, si nous imaginons que les développeurs utilisent notre approche, les API REST
seraient décrites sémantiquement et les applications Web seraient évolutives par conception.
Dans un tel contexte, nous voyons des sujets intéressants à explorer. Un premier sujet est
l’utilisation de GraphQL pour interroger un ensemble d’API REST sémantiques sans connais-
sance préalable de celles-ci. Un deuxième sujet est la description et l’automatisation partielle de
tests fonctionnels.

Contenu du manuscrit

Ce manuscrit est organisé de la manière suivante :

— Le chapitre Chapter 1 présente le contexte de ce travail en détail. Il explique notamment
comment le Web a évolué, puis passe en revue les travaux connexes. Sur cette base, il
souligne les principaux défis abordés dans cette thèse.

— Le chapitre Chapter 2 présente un aperçu des deux contributions de cette thèse.

— Le chapitre Chapter 3 présente la première contribution de ce travail. Il détaille la com-
paraison des similitudes et des différences entre 36 technologies, propose trois matrices de
comparaison qui aident les architectes et les développeurs d’API REST à choisir les tech-
nologies les plus adaptés à leurs besoins. Il démontre comment les matrices peuvent être
utilisées sur un exemple réel et présente l’assistant en ligne open-source que nous avons
développé pour faciliter ce processus.

— Le chapitre Chapter 4 présente la deuxième contribution de ce travail. Il présente une
nouvelle approche de la coévolution sans rupture des API REST et de leurs clients, en
particulier pour les interfaces utilisateur Web. Il identifie quelles métadonnées doivent
être partagées par l’API REST à ses clients et à quel moment pour permettre la con-
ception de clients evolvable-by-design. Il s’agit de clients Web capables de s’adapter, lors
de l’exécution, aux évolutions typiques d’une API REST sans casser ni nécessiter la mise
à jour de leur code. L’approche proposée est évaluée à travers une étude quantitative et
qualitative. Enfin, les limites de l’approche proposée sont discutées.

— Pour finir, le chapitre Chapter 5 conclut la thèse et présente quelques perspectives de
recherche.

8

TABLE OF CONTENTS

List of acronyms 13

List of figures 15

List of tables 16

Introduction 17

1 Background and state of the art 25
1.1 How the architecture of the Web evolved? . 25

1.1.1 The first phase: 1989 to 2004 . 26
Evolution of the Web browser . 26
Architecture of popular Web systems . 29
Web development practices . 30

1.1.2 The second phase: 2004 to 2010 (the collaborative Web 2.0) 32
Evolution of the Web browser . 33
Popular websites representative of the phase 34
Architecture of popular Web systems . 35
Web development practices . 37

1.1.3 The third phase: 2010 to today (mobile applications and the JAMstack) . 39
Evolution of the Web browser . 39
Popular websites representative of the period 40
Architecture of popular Web systems . 41
Web development practices . 44

1.2 Basic concepts of the REST architecture . 46
1.3 Separation of concerns in modern Web architectures 50
1.4 API contracts: the backbone of the modern web 52

1.4.1 Contracts in software engineering . 52
1.4.2 Contracts in service-oriented architectures 53
1.4.3 Contracts in SOA, applied to the World Wide Web 54

Description languages for REST API contracts 55
REST API contract management: alternatives to specification languages . 56
REST API Contracts: State of the practice 59

9

TABLE OF CONTENTS

1.5 A Web "interpretable" by machines . 60
1.5.1 Presentation of the Semantic Web . 60
1.5.2 Semantic Web Services . 65

Semantic Service Description . 65
Automated Service Discovery . 66
Automated Integration and Composition of SWS 68

1.5.3 Bridging the gap between Semantic Web Services and the modern Web . 69
1.5.4 Synthesis . 70

1.6 Co-evolution . 71
1.6.1 Four different approaches . 71
1.6.2 Automatic Program Repair techniques . 71
1.6.3 Adapter-based techniques . 72
1.6.4 Evolution policies . 73
1.6.5 Automated client generation . 74
1.6.6 Other approaches applied to the Web . 74
1.6.7 Synthesis and open challenges in the modern web 75

1.7 Design and Evolution of REST APIs . 75
1.7.1 Designing the interface of a REST API 76
1.7.2 Hypermedia As The Engine Of Application State in practice 78
1.7.3 How REST APIs evolve? . 80

The 22 kinds of REST API evolution . 80
Why do practitioners evolve their REST APIs? 80

1.8 Synthesis . 83

2 Thesis overview 87

3 Comparison Matrices of REST APIs Technologies 91
3.1 Introduction . 91
3.2 How to select and evaluate an API functionality level? 92

3.2.1 Semantic RESTful services . 93
3.2.2 Selecting an API functionality level . 93
3.2.3 Discussion on the WS3 maturity level . 94

3.3 Comparison Matrices . 95
3.3.1 Insights from developers and architects 95
3.3.2 Comparison Matrices Design Method . 96
3.3.3 Interface Description Languages . 97
3.3.4 Data-interchange formats . 98
3.3.5 Implementation Frameworks . 101

10

TABLE OF CONTENTS

3.4 Matrices usage example . 102
3.4.1 Domain description . 103
3.4.2 Technological constraints . 103
3.4.3 Selection of the technologies . 104

Interface Description Languages . 104
Interchange Formats . 105
Implementation frameworks . 105

3.4.4 Easing the selection of the technologies 106
3.5 Discussion . 107
3.6 Findings Summary . 108

4 Evolvable-by-design: Robust web UI clients to evolving REST APIs 111
4.1 Introduction . 111
4.2 Motivating Example . 113
4.3 Seven new kinds of REST API evolutions . 115
4.4 Approach . 115

4.4.1 Approach Overview . 115
Principle . 115
Architecture . 119

4.4.2 Structural Documentation . 119
Describe the Resources in Detail (R1) 120
Describe the Semantics (R2) . 121
Explicit Objects and Links Affiliation (R3) 122

4.4.3 Contextual and Behavioral Documentation 123
Provide a WYSIWYG Documentation (R4) 123
List the operations available on the returned resource with hy-

permedia controls (R5) . 123
Give the default value of the operation’s input parameters within

the hypermedia controls (R6) 123
Reference the operation’s input model to use when multiple op-

tions are listed in the structural documentation (R7) . . 124
4.4.4 HTTP Client enriched with a Semantic API Documentation Interpreter . 124
4.4.5 Synthesis and Discussion . 125

Reuse and limitations of the state-of-the-art 125
Limitations of the approach . 125

4.5 Evaluation . 127
4.5.1 Benchmark . 127

Data set . 128

11

TABLE OF CONTENTS

Experimental Protocol . 129
Observed results . 130

4.5.2 Use cases . 132
Data set . 133
Use case 1 – “Dialog Flow" . 134
Use case 2 – “Pagespeed api apps script" 136
Use case 3 – “Spaghetti makes me moody" 136

Evolution 1: addition of a historyData parameter 137
Evolution 2: addition of the username and password parameters . . 137
Evolution 3: request method change, from POST to PUT 137

Use case 4 – “Utify" . 138
Evolution 1: addition of a userId parameter 138
Evolution 2: addition of a tag parameter 139

Use case 5 – “Simba" . 139
Summary of the results . 140

4.5.3 Discussion . 142
4.5.4 Threats to validity . 144

Internal Validity . 144
External Validity . 144
Conclusion Validity . 145

4.6 Conclusion . 145

5 Conclusions and perspectives 147
Perspectives . 148

First perspective: crossover study . 149
Second perspective: ontology recommendation within the code editor 149
Third perspective: easing the design of GraphQL API mashups 150
Fourth perspective: a Domain-Specific Language for scenario-based functional

testing of Semantic REST APIs . 151

Bibliography 151

List of publications 164

12

LIST OF ACRONYMS

AJAX Asynchronous JavaScript And XML
API Application Programming Interface
BPEL Business Process Execution Language
BPMN Business Process Model and Notation
CDN Content Delivery Network
CQRS Command Query Responsibility Segregation
CRUD Create Read Update Delete
CSS Cascading Style Sheet
DIF Data Interchange Format
DOM Document Object Model
DSL Domain-Specific Language
HATEOAS Hypermedia As The Engine Of Application State
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IDL Interface Description Language
JAMstack Javascript API Markup stack
JVM Java Virtual Machine
MDE Model-Driven Engineering
MVC Model View Controller
OWL Web Ontology Language
RDF Resource Description Framework
REST REpresentational State Transfer
SDK Software Development Kit
SOAP Simple Object Access Protocol
SPA Single-Page Application
SWS Semantic Web Services
UI User Interface
URI Uniform Resource Identifier
URL Uniform Resource Locator
W3C World Wide Web Consortium
WWW World Wide Web
WYSIWYG What You See Is What You Get
XML Extensible Markup Language

13

LIST OF FIGURES

1.1 Original WWW architecture diagram from 1990. The pink arrow shows the com-
mon standards: URL, and HTTP, with format negotiation of the data type.
Source: w3.org . 30

1.2 Architecture diagram of the WWW before 2004 31
1.3 Architecture diagram of the WWW between 2004 and 2010 37
1.4 Diagram opposing the client server interactions within the Web before 2004 and

between 2004-2010 . 38
1.5 Example of the real-time collaboration of multiple users on a single document

with the Miro Web application . 41
1.6 Architecture diagram of the WWW after 2010 42
1.7 Diagram opposing the client server interactions within the Web and between

2004-2010 and after 2010 . 44
1.8 The RDF data model, from [1] . 61
1.9 Example of an HTML5 + RDFa document. Source: https://en.wikipedia.org/

wiki/RDFa#HTML+RDFa . 62
1.10 Semantic Web technological stack. Source: Wikipedia 63
1.11 Linked Open Data Cloud representation - Source: https://lod-cloud.net/ . . 64
1.12 Overview of the problems, research and limitations presented in Chapter 1 83

2.1 Overview of the contributions of this thesis, put in perspective with the life cycle
of a REST API . 87

3.1 WS3 Maturity Model (from [2]) . 94
3.2 Interface Description Languages Comparison Matrix 99
3.3 Data-interchange Formats Comparison Matrix . 100
3.4 Implementation Frameworks Comparison Matrix 102
3.5 Results for interface description languages . 104
3.6 Results for data interchange formats . 105
3.7 Results for implementation frameworks . 105
3.8 Home screen of Morice, our web recommender system 106
3.9 Scoring of the criteria on Morice, our web recommender system 107
3.10 Results presented by Morice, our web recommender system 108

14

https://www.w3.org/People/Berners-Lee/1996/ppf.html
https://en.wikipedia.org/wiki/RDFa#HTML+RDFa
https://en.wikipedia.org/wiki/RDFa#HTML+RDFa
https://en.wikipedia.org/wiki/Semantic_Web_Stack
https://lod-cloud.net/

LIST OF FIGURES

4.1 Motivating Example . 113
4.2 Web UI code example of the evolvable-by-design component of the right panel of

the sections B and D of Figure 4.1. (Javascript and React v16) 117
4.3 Approach Overview . 118
4.4 OpenApi documentation example mentioning a search function 121
4.5 OpenApi documentation example with semantic descriptors 121
4.6 Semantic vocabulary example of a Project . 122
4.7 An example of an API response that details a project’s data and contextual

information . 124
4.8 Screenshot of the application developed to evaluate the approach 129

15

LIST OF TABLES

1.1 List of evolutions of RESTful APIs . 81

4.1 List of evolutions of RESTful APIs . 116
4.2 Requirements of the approach on the API documentation 126
4.3 Overall evaluation results . 130
4.4 Detailed results of the case study [N/C: non-concerned] 131
4.5 Artifacts selected for the empirical evaluation . 135
4.6 Detailed results of the experimental evaluation on five real world use cases 141

16

INTRODUCTION

Context

The World Wide Web is probably the technology that has known the fastest adoption rate
ever. Its major strength has been its ability to use the Internet to enable the users using a
computer of any brand to access documents (later named websites) shared by other users of
the World Wide Web. To accommodate the evolving needs of its users, it evolved a lot since its
creation in 1989. It has therefore been the subject of a lot of research, both before and after this
year.

Convinced of the usefulness of the technology, universities and research labs rapidly joined
the World Wide Web [3]. Later, companies joined the movement and started selling goods and
services online. However, they needed to create more appealing websites. So, new technologies
emerged to animate and style websites, namely Flash, Java Applets, CSS, and others. Yet, before
the 2000s, Internet connections were so slow that most users could only consume content on the
Web but could not create content.

Thanks to ADSL (Asymmetric Digital Subscriber Line), the speed of Internet connections
increased significantly. It enabled people to not only download Web pages faster but also upload
information in a reasonable amount of time, which transformed how people used the Web. Indeed,
people started to use the Web as a collaborative platform where social media became the most
used category of Web sites [4]. This switch corresponds to the so-called Web 2.0 that started
around 2004. Before 2004, Web sites were independent. But with the advent of the collaborative
Web, users began to seek to use the Facebook "like" button outside of Facebook. Websites thus
started to embed other website features. It increased the number of communications between
the websites.

Another event significantly increased the number of communications between websites. A
few years later, Apple announced the App Store on the iPhone. Smartphones will not use
Web applications but dedicated mobile applications. Since then, people used more than one
device to access the World Wide Web and wanted to access the same content from all their
devices. To enable this, Web applications have been more and more divided up. As a result,
the application layer of the Web became a global service-oriented architecture [5]. Indeed, when
mobile applications did not exist, a whole website was a single application with a single code base.
However, when mobile applications had to be added into the system, the layer managing the data
has been separated from the website itself, which role is to display the data. Data management

17

Introduction

has been placed within servers, and Web and mobile applications became standalone software
that consume and display the data held and managed by the servers. The Web and mobile
applications could therefore use the same data by contacting the same server. Within this new
paradigm, Web and mobile applications of one provider can also use the data of other providers.
Cross-organization exchanges thus increased a lot. These servers are then not solely named
servers but services because they are designed to provide fine-grained services to other Web
systems. For example, a service can be responsible for the ordering of goods, another service
for the payment, and in a different context, a service can be dedicated to providing weather
forecasts.

As a result, the Web is now composed of a lot of services that are either employed by
other services or by user interfaces. So, today we describe the Web as a global service-oriented
architecture.

The technologies powering the Web have matured significantly over the past 30 years, and we
see every day how fluid Web applications have become, to the point where the differences between
native and Web applications have become very subtle. Complex websites and Web applications
load fast and progressively, video streaming is incredibly smooth, we can collaborate in real-time
on the edition of a document with people who are anywhere on earth and all the services that
we use can synchronize in real-time. Something that we do not like, however, is when these
technologies are used to serve us personalized ads, but at least it demonstrates how effective
cross-site data exchange can be.

When we take a step back at what the Web is composed of, we can see Web applications
running in Web browsers, mobile applications running on smartphones, and servers all communi-
cating with each other. While the technologies embedded in the Web browsers and smartphones
can be improved to ease or shorten developments, to enable new usages such as 3D rendering
and Augmented Reality, or to make downloads even faster, in this thesis we will focus on the
interface contracts driving the interactions between the systems of the Web.

Web APIs are used to enable the systems of the Web to communicate with each other.
Basically, an API is a catalog of functions that a software can invoke on another software. In
the Web, a client (a service or user interface) sends a request for data or action to a server (a
service). The request takes the form of an HTTP request. The server processes the request and
sends a response with the data or result represented in a given format, most often XML or JSON
but many others have been proposed. Web APIs present many challenges.

Challenges related to Web APIs

Web APIs present many challenges. While numerous research answered challenging questions,
there are still open challenges to explore. In this section, we present the main challenges that

18

Introduction

we are aware of.

First challenge: automated API selection and composition

Each Web API exposes its own set of functions to its present and future consumers. And on
the other hand, each consumer has its own functional requirements that a single Web API does
not always cover completely. There are therefore many consumers of Web APIs that need to use
multiple Web APIs.

In this context, an open challenge is the following: as a Web application, what are the Web
APIs that I should use? This is a challenge for many reasons. First, we need the ability to
discover the available Web APIs. Second, we need to perform a selection between them, which
requires the consideration of multiple properties such as the available features, the pricing, the
service-level agreements, and so on. In addition, one goal is to make the use of multiple Web
APIs as seamless as possible, which requires verifying the compatibility between the Web APIs.

Although this challenge is not new and was a hot topic in the early 2000s within the commu-
nities of Web Services and the Semantic Web, this is still an open challenge as recent publications
are still exploring new solutions [6].

Second challenge: Web API testing

A second challenge regarding Web APIs is to test that they behave as expected by their
designers. While a significant amount of research has already been conducted on this topic,
there are still many open questions. For example, in recent years, research has been conducted
to explore the use of machine learning techniques for the testing of Web APIs [7]. Besides,
researchers apply techniques that have proven to be effective in other kinds of software to
assess their applicability and measure their performance regarding Web APIs [8]. Model-driven
techniques are also explored [9] and sometimes used to generate test cases [10].

Building on the publications of recent years, additional research is necessary to apply the
machine learning techniques to more cases and domains, other techniques may be tested on Web
APIs and model-driven techniques should be applied to more domains.

Third challenge: selecting the right set of technologies to achieve a target
functionality level

To create a Web API, one must start by specifying its requirements. For this purpose, many
design methodologies are available and maturity models help the designer select a target func-
tionality level. Then, the creator must select a set of technologies for the design, documentation,
implementation, and testing of the API.

19

Introduction

This step is time-consuming and error-prone for Web API designers. Indeed, since the cre-
ation of the Web, many research and industry initiatives proposed design methods, frameworks,
interface descriptions languages, and data-interchange formats for Web APIs. There is there-
fore a wide variety of technologies available. In addition, they are all documented in plain text
documents. As a result, to select the set of technologies that is best suited to achieve a target
functionality level, a software architect should read the documentation of each technology and
then make a manual comparison and selection, which is time-consuming and error-prone.

It is thus an open challenge to assist developers and architects in the selection of the proper
set of technologies to use to achieve a target functionality level for a given Web API.

Fourth challenge: evolution

The major challenge regarding Web APIs is their evolution. Indeed, to make the commu-
nication between two web systems effective, the client must send a very precise request to the
Web API. Any mistake would make the communication ineffective. And on top of that, if the
developers of the service offering the Web API change something, the code of the client will
have to be updated manually by developers to take the changes into account. This task is time-
consuming and error-prone. The evolution of APIs, and not specifically Web APIs, has therefore
been a major research topic in the software engineering community.

The common recommendation for service providers is to create different versions of their Web
API. They can modify an existing version only by adding elements, but any modification of
a Web API is discouraged [11]. To modify things, it is recommended to create a new
version. There are so many rules constraining the evolution and design of REST APIs that it
can become very confusing, if not overwhelming. For example, Zalando has 110 of them 2. In
addition, the developers of the client systems are usually reluctant to move to the next version,
so to avoid losing clients, service providers tend to avoid changes. We can indeed easily observe
this with very popular REST APIs. For example, the Twitter REST API introduced in 2006 is
still in its first version. The second version has been announced in July 2020 and in July 2021,
it is still in Early Access mode.

The problem with this approach is that the evolution of the Web APIs is highly
constrained. Yet, the systems in the Web must be able to evolve with as much
freedom as possible. Indeed, on the one hand, the needs of the users of the Web
evolve constantly so the systems must be evolved and on the other hand, it is
desirable to be able to improve the architectural properties of the Web APIs without
fearing a breakage or losing users. We therefore argue that break-free evolution is
an important property to bring to the Web.

2. Source: https://opensource.zalando.com/restful-api-guidelines/

20

https://opensource.zalando.com/restful-api-guidelines/

Introduction

There are actually many approaches to break-free evolution in the Web. The historical ap-
proach for the co-evolution of software is the use of Automated Program Repair techniques [12,
13, 14, 15, 16, 17]. They repair the code of the client of a third-party component. These tech-
niques work well for the evolution of libraries but not in the Web, due to the heterogeneity
of its components and because the source code of REST APIs is usually closed. In addition,
they require to deploy a new version of the code, which can take up to six months in big
corporations [18]. In another category, some approaches propose to place an adapter between
the client and the server [19, 20, 21, 22]. The adapter, sometimes a proxy, is responsible for
adapting the client’s request to the evolving API. These approaches finally hide the evolutions
from the client’s point of view and are thus not able to manage all types of evolutions. In a
third category, industrial and academic efforts studied the types of evolutions that can break
clients [23, 24, 25]. They proposed guidelines on how to evolve REST APIs to avoid breakage.
This is actually the most used approach currently, but instead of enabling break-free evolution,
they considerably reduce the ability to evolve REST APIs. In a fourth category, the Semantic
Web and Linked Data, extensive research leveraged the Resource Description Framework (RDF)
aiming at semantically describing information on the Web. This research proposed solutions for
the automatic discovery, integration, and composition of Semantic Web Services [26, 27]. Unfor-
tunately, while promising, automatic approaches are not sufficiently precise to be trusted in a
fully-autonomous environment. In addition, they are based on SOAP and XML, that Web de-
velopers have abandoned in favor of REST and JSON so they have not reached wide adoption.
Besides, REST itself proposes a solution by recommending to include hypermedia controls in
the responses to guide the user through the API similarly to whats hyperlinks do in websites.
This is an effective solution when the Web API is used by a human who creates requests on
the go but this is not sufficient for software. In addition, REST does not detail how to design,
document, and use these hypermedia controls [28].

Contribution

In this thesis, we focus on REST APIs, the current de-facto standard for building Web APIs.
We argue that REST APIs present the same challenges as other forms of Web APIs. The lessons
learned from the studies on REST APIs can therefore be generalized to Web APIs. In addition,
limiting the scope to REST APIs is a manner to design solutions that are more actionable for
web engineers. However, we acknowledge that an additional effort can be necessary to adapt the
technical solutions to the broader scope of any sort of Web API.

REST is an architectural style for the design of Web APIs. It lists a set of properties that
are desirable to create scalable applications at internet scale leveraging on the rich semantics of
the HTTP protocol. The goal of REST is to improve performance, scalability, simplicity, modi-

21

Introduction

fiability, visibility, and reliability. This is however not a framework such as SOAP or CORBA.
Practitioners are therefore free to achieve the properties emphasized by the REST architectural
style with the technologies of their choice.

This thesis addresses the third and fourth challenges mentioned in the previous section. First,
selecting the proper set of technologies to design and implement a Web API offering a given set
of properties. Second, enabling the break-free co-evolution of Web APIs and their clients.

As a first contribution of this work, we propose three comparison matrices that
help REST API providers choose the proper set of technologies to create a REST
API with the desired properties and we propose a novel approach to the break-free
co-evolution of REST APIs that enable web user interfaces to adapt to most types
of API evolution at runtime, without breaking neither updating their code.

As the first step of this thesis, we reviewed the many existing technologies to design, doc-
ument, and implement Web APIs. We identified 36 Interface Description Languages, Data-
Interchange Format, and Implementation Frameworks.

Then, as a first contribution of this thesis [29], we proposed three comparison matrices based
on the analysis of the differences and commonalities between these technologies. We showcase
how they can be used on a realistic example. Then, to facilitate the selection of the best set of
technologies suited for a Web API project, we have developed an assistant available online.

In the second contribution of this thesis, we argue that a novel approach to the break-free
evolution of REST APIs is necessary. We propose to stop precisely coding how to invoke
the services in the client but to make it smarter instead. The client should be able to
automatically adapt to evolving Web APIs at run-time without changing its code.
We name these clients evolvable-by-design. We therefore study how to make clients
of REST APIs evolvable-by-design. In particular, we study Web User Interfaces. They are
easier to make evolvable-by-design than autonomous systems because any input that the system
can not obtain by itself can be asked to the user. It is thus a better candidate for the design of
a novel approach.

To achieve this, Semantic REST APIs are needed. They are Web APIs aimed at promoting
the adherence to REST principles and the adoption of Semantic Web technology to improve the
design, reuse, and documentation of Web APIs. However, it is not clear which metadata should
be in the static documentation of the REST API or into hypermedia controls and ultimately
how to leverage this metadata on the client-side to achieve break-free evolution. We thus study
these questions and clarify exactly that.

We validate our approach with a quantitative analysis in the form of a case study that mimics
Jira and implements 110 API evolutions and through a qualitative analysis where we implement
our approach on 5 open-source web applications that implement 20 evolutions of 10 types.

Therefore, using our approach that relies on a mix of API documentation enriched with

22

Introduction

semantic descriptors and on hypermedia controls, we were able to design a Web user interface
that adapts to 27 of the 29 types of API evolutions, at runtime, without updating its code.
We were also able to make five real open-source web applications evolvable-by-design for the 20
evolutions they implemented.

Context of the thesis

This thesis has been conducted in collaboration with Zengularity, a company acquired by
Fabernovel during the collaboration. The collaboration took the form of a CIFRE thesis 3, a
program set up by the French government. During the thesis, I spent an important part of my
time at Fabernovel with the role of a Web developer.

Zengularity is a company of 80 persons including 60 web developers. Their specialty is
the design and implementation of web platforms and web applications. They mainly create
web-oriented architectures with data referential systems, event-based architectures, big data
architectures, and REST APIs, including hypermedia REST APIs. The expertise did not change
while joining Fabernovel.

Thesis outline

The remainder of this document presents this thesis in detail. It is organized as follows:

— Chapter 1 presents the background of this work. It explains how the Web evolved and then
reviews related work. Building on this, we highlight the main challenges addressed in this
thesis.

— Chapter 2 presents an overview of the two contributions of this thesis.

— Chapter 3 presents the first contribution of this work. Based on the comparison of the simi-
larities and differences between 36 REST API design, documentation, and implementation
technologies, it proposes three comparison matrices that help REST API architects and
developers choose the proper set of technologies for their needs. It demonstrates how the
matrices can be used on a real-world example and present the open-source online assistant
that we developed to further ease this process.

— Chapter 4 presents the second contribution of this work. It presents a novel approach to the
break-free co-evolution of REST APIs and their clients, especially the Web user interfaces.
In particular, it identifies what metadata should be shared by the REST API to its clients
and at what moment in time to enable the design of evolvable-by-design clients. They are
web clients able to adapt at runtime to typical REST API evolutions without breaking

3. Cifre program description: https://www.enseignementsup-recherche.gouv.fr/cid22130/les-cifre.
html

23

https://www.enseignementsup-recherche.gouv.fr/cid22130/les-cifre.html
https://www.enseignementsup-recherche.gouv.fr/cid22130/les-cifre.html

Introduction

neither requiring the update of their code. The proposed approach is evaluated through
both a quantitative and qualitative study. Finally, the limitations of the proposed approach
are discussed.

— Chapter 5 concludes the thesis and presents some research perspectives.

24

Chapter 1

BACKGROUND AND STATE OF THE ART

Organized in eight sections, this chapter presents the background and
state-of-the-art of the thesis. The first section presents how the World
Wide Web evolved from its creation to today. By summarizing the main
evolutions of its technologies, usage, and architecture, it highlights the
peculiarities of the current architecture of the Web where REST APIs
became the backbone of communications. The following two sections
summarize the basic concepts of the REST architecture and the sepa-
ration of concerns in the current Web. The following sections are ded-
icated to the state-of-the-art related to the creation, maintenance, and
evolution of systems based on Web APIs. The domains of the software
contracts, the Semantic Web, the co-evolution of systems, and the design
and evolution of REST APIs are studied. The last chapter synthesizes
the state-of-the-art and points out the two challenges that are addressed
in this thesis.

Foreword

1.1 How the architecture of the Web evolved?

The World Wide Web was introduced in 1990 [30] as a set of three standards that aimed to
use the Internet as a global information system. With 5 billion users in December 2020 1 (64%
of the world population), it indeed became a global information space.

In the Web, a core execution platform is the Web browser. Similarly, as the device and
operating system on a smartphone, the Web browser defines what can be achieved with websites
and Web applications. Therefore, the architecture of the Web has significantly been influenced
by the possibilities offered by Web browsers. The other major influence on the architecture of
the Web has been how people use it, which has been driven by the number of people using the
Internet and the speed of their connection.

1. Source: https://www.internetworldstats.com/

25

https://www.internetworldstats.com/

Part, Chapter 1 – Background and state of the art

In the last thirty years, Web browsers evolved a lot. The weight of the Web browsers illus-
trates that well. Mozaic, the first popular Web browser weighed 9.6 megabytes in 1993 while
Chrome and Firefox weighed between 350 and 500 megabytes in 2021. Web engineers have there-
fore continuously adapted their systems to leverage the new features regularly brought to the
Web execution platform. As a result, we can distinguish three major technological phases in the
history of the Web.

The rest of this section goes through each major phase of the Web. For each phase, the
evolution of the Web browser is detailed, then it is explained how it shaped the architecture of
popular Web systems and finally how Web development practices were impacted.

1.1.1 The first phase: 1989 to 2004

The first phase of the Web architecture can be drawn between 1989 and 2004. At that moment
in time, the Web was mostly a place where website providers proposed their own content. It
could be websites presenting research laboratories, the news, entertainment, or online shops.
Internet connections were slow back then. ADSL connections started to be deployed in 1999.
Before 2004, most users were thus connected through the telephone line, a technology named
dial-up connection 2 that averages 56 kb/s.

Evolution of the Web browser

In 1989, Tim Berners-Lee proposed to leverage a distributed hypertext system to manage
the general information about accelerators and experiments at CERN [31]. A few months later,
he and Robert Cailliau started to generalize this idea to use the Internet as a global information
management system [30]. Between October and Christmas 1990, they specified the three main
technologies of the World Wide Web (URL, HTTP, and HTML), implemented the first Web
server and the first-ever Web browser.

Then, in 1993, they decided to release the WWW’s technologies into the public domain. At
that moment in time, the Web was solely a collection of interlinked text documents and the Web
browsers could only display text or images in separate windows. In addition, they were available
to only 20% of the computer users.

As a consequence, the first efforts were focused on improving the appeal of the Web, with
media, animations, and style. These innovations were mostly driven by the Web browsers and
the Web browsers war started rapidly. Mozaic has been the first popular Web browser. It was
first released in 1993. Being easy to use, available on most operating systems, and able to embed
graphics in text documents it popularized the Web. In 1994, Netscape was released followed by
Opera and Internet Explorer in 1995.

2. https://en.wikipedia.org/wiki/Dial-up_Internet_access

26

https://en.wikipedia.org/wiki/Dial-up_Internet_access

1.1. How the architecture of the Web evolved?

Between 1993 and the beginning of 1994, lots of browsers had added their own bits to
HTML; the language was becoming ill-defined 3. HTML 2 was thus specified to accommodate
everyone and try to conciliate practices. The World Wide Web Consortium (W3C) has therefore
been created in late 1994 with the objective to bring open standards to the Web. The first
proposition of an open standard for HTML has not been successful until representatives of the
browser companies met and worked together on the standard in November 1995. Since 1996, Web
browsers started to align their implementations of HTML. Later, HTML 3 was proposed but it
was so different from HTML 2 that it is HTML 3.2, close to HTML 2, that has been adopted
in January 1997. It added tables, applets, text flow around images, superscripts, and subscripts.
HTML 4 superseded it in December 1999 with support for more multimedia options, scripting
languages, style sheets, better printing facilities, and documents that are more accessible to users
with disabilities 4.

Also during 1993 and early 1994, each Web browser styled documents differently. Some
let the user configure the style, some not. For example, Mozaic did not. However, developers
were not satisfied with this and wanted to be able to customize their pages 5. The Cascading
Style Sheets (CSS) enabled this since 1994 and became a W3C Recommendation in December
1996 [32]. Yet it had not been adopted by the Web browsers immediately. Indeed, the first
commercial browser to support CSS was Microsoft’s Internet Explorer 3, which was released in
August 1996. The next browser to announce support for CSS was Netscape Navigator, version
4.0 released in June 1997 and the third was Opera in November 1998. The other browsers
followed progressively. However, all browsers had a different implementation of the CSS support.
A website looked therefore different on each Web browse. As a result, Todd Fahrner created the
acid test in October 1998 to help Web browser providers test their implementation in order to
improve their CSS support. Other tests suites followed. Since its first draft in 1998, CSS 2 added
attribute selectors, improved positioning, media-types, and more features. These features have
progressively been implemented in the Web browsers but with differences once again. While
CSS1 and CSS2 allowed Web designers to customize the appearance of their site, they could not
animate pages before March 2009 6.

Therefore to create dynamic and animated pages, several technologies have been proposed
and coexisted for several years.

The first have been LiveScript, created by Netscape and shipped into a beta version of
Navigator in September 1995. It was renamed JavaScript four months later, in December 1995,
for the final release of Netscape Navigator 2. Its name was chosen to take advantage of the trend
following the Java programming language at that time. Then, Microsoft decided to implement

3. https://www.w3.org/People/Raggett/book4/ch02.html
4. https://www.w3.org/TR/html40/
5. https://www.w3.org/Style/CSS20/history.html
6. https://www.w3.org/standards/history/css-animations-1

27

https://www.w3.org/People/Raggett/book4/ch02.html
https://www.w3.org/TR/html40/
https://www.w3.org/Style/CSS20/history.html
https://www.w3.org/standards/history/css-animations-1

Part, Chapter 1 – Background and state of the art

a competitor to JavaScript, namely JScript, in Internet Explorer since 1996. Then in 1998,
Netscape submitted JavaScript to ECMA International to propose it as a cross-browser standard.
However, JScript stayed the de-facto standard for browser-side scripting until 2004. During this
period, client-side scripting was stagnant. But it started to change in 2004 with the introduction
of Mozilla Firefox, which is discussed later in the document. Therefore, before 2004, client-side
scripting was mainly used to make websites more appealing. For the record, it was at the time
considered as a language for non-engineers.

Another initiative to animate Web pages has been the Java applets, shipped with the first
version of Java and also introduced in Netscape Navigator 2. They had to be executed on the
Java Virtual Machine. They could therefore only be executed aside from the HTML document.
As a result, Java applets were used to create stand-alone applications or games that could be
executed inside Web browsers (and on mobile phones later) but outside the Web page. Applets
were however not well suited to manipulate the DOM and had security issues [33]. In addition,
mobile operating systems such as Android and iOS did not embed JVMs. So, the technology
was discontinued in 2013.

Besides, the third technology proposed to animate Web pages was Macromedia Flash, later
acquired by Adobe. It has been created as a vector drawing application in 1993 and evolved into
an animation tool in 1995 before moving to the Web browser in November 1996. At that moment
in time, it was mainly used to make websites more fun (which was the ultimate goal back then).
Between 1996 and 1999, Macromedia added MovieClips, Actions (the precursor to ActionScript),
Alpha transparency, and other features. After that, Flash improved to enable the design of Web
applications. In 2004, ActionScript 4 added support for object-oriented programming, more
advanced UI components, and more. Adobe acquired Flash in December 2005. Flash has therefore
been an alternative to Java applets that were much more popular thanks to its lighter execution
platform.

To sum up, during the first phase of the Web architecture, Web browsers were fighting
for the first place. The challenge was to make the Web as appealing as possible. To this end,
each browser had a different interpretation of the standards, which was lightweight at the time.
Moreover, they extended them with their own features. And above that, many alternatives were
proposed to style and animate the Web pages, from Web browser propositions such as user-
defined configuration to new technologies such as JavaScript, JScript, Flash, and so on. Because
the Web was mainly driven by vendor-specific implementations, websites were optimized for only
one Web browser and complex to make good looking. Community efforts thus started to bring
open standards to the Web, to bridge the gap between Web browsers. At the time, the features
added to the Web browsers were mainly focusing on making it a more fun place to navigate with
more customization options such as tables, site-specific style, animations, advanced media, and
games.

28

1.1. How the architecture of the Web evolved?

Architecture of popular Web systems

Between 1993 and 2004, the number of people connected to the Internet increased rapidly,
with an average of 2 percent more of the world’s population each year (so 20% in 10 years).
Most users were connected using the telephone line, resulting in Internet speed of on average 56
kb/s 7. Loading Web pages or sending e-mails was therefore slow and music or video streaming
was not viable.

Keeping the focus before 2004, we observe that the Web was mainly used to consume content
and buy items online. While usages are more diverse now, this statement is still true, and many
websites created in the 1990s remain popular nowadays.

Indeed, by taking a look at how the usage of the Web evolved, we observe that between 1991
and 1992 it had been used to present research organizations, who were the first users of the Inter-
net. In 1993, many new kinds of websites appeared: search engines (Aliweb), news (Bloomberg),
commercial (global network navigator), and religious movement (chabad.org) websites along
with map services. In 1994, Yahoo was created along with the first government and association
websites (e.g. Amnesty International). More commercial websites appeared (Pizza Hut, airline
sites, etc.) and Web Crawler, the first full-text search engine was created. Then, 1995 saw the
creation of Amazon, eBay, and Alta Vista (a famous search engine). Hotmail followed in 1996
and Google in 1998. The same year, the first website for designers was created, K10k.

From an architectural point of view, the World Wide Web has originally been designed to be
a global information system consumed by humans, where authors publish documents that will
then be consumed by other persons. Fig 1.1 is the original WWW architecture diagram from
1990 that demonstrates this. Hence, at that moment in time, users could solely access documents
and databases over the Web [30].

Yet, as shown before, usages evolved rapidly and since 1995, commercial websites such as
Amazon or eBay needed to personalize their website for each user, for example, to manage their
shopping cart. To achieve this, the website placed a cookie on the user’s browser and when he
requested a page, the Web server used the content of the cookie to generate a personalized page.
Therefore, the WWW rapidly moved from static HTML documents to dynamic pages generated
on the fly.

In addition to this, some companies wanted to create services that could be used by multiple
websites. So, Salesforce launched the first Web API in February 2000 8, a sales force automation
as a "Internet as a service", XML API. Nine months later, eBay launched its Developers Program
and offered a Web API to enable partners to "create applications based on eBay technology".
Then in 2002, Amazon launched Amazon.com Web Services allowing developers to incorporate
Amazon.com content and features into their own websites.

7. Source: https://www.plus.net/home-broadband/content/history-of-the-Internet/
8. Source: https://apievangelist.com/2012/12/20/history-of-apis/

29

https://www.plus.net/home-broadband/content/history-of-the-Internet/
https://apievangelist.com/2012/12/20/history-of-apis/

Part, Chapter 1 – Background and state of the art

Figure 1.1 – Original WWW architecture diagram from 1990. The pink arrow shows the common
standards: URL, and HTTP, with format negotiation of the data type. Source: w3.org

As a result, between 1991 and 2004, websites were either static HTML documents or dy-
namically server-side generated and personalized HTML documents. In addition, some Web
developers leveraged available Web APIs to build their own websites. Figure 1.2 represents the
architecture of the most common Web applications of the World Wide Web before 2004. Indeed,
it represents the type of applications that have been present since the beginning of the Web.
In addition, it depicts the changes in the architecture of server-side generated Web applications
that sometimes use external Web APIs during the generation of the HTML page. It therefore
represents that websites communicate with each other.

Web development practices

The World Wide Web rapidly gained the attention of many developers, and we thus observe
that it has been used by a lot of developers before its foundations could be solidified. As the
standards were still to create, Web browser developers implemented and shipped new features
that they then tried to standardize. It has thus been long to have similar implementations of

30

https://www.w3.org/People/Berners-Lee/1996/ppf.html

1.1. How the architecture of the Web evolved?

Figure 1.2 – Architecture diagram of the WWW before 2004

HTML, CSS, and JavaScript in the browsers, and the release of the acid test in 1998 demonstrates
this.

Web developers could therefore not rely on solid foundations to build the front-end of their
website. As an illustration, they preferred to use HTML tables instead of CSS to manage the

31

Part, Chapter 1 – Background and state of the art

layout of their webpages because it was more consistent across browsers 9. Most websites were
therefore accompanied by banners indicating for which browser they were optimized.

And while the Web browsers were not stable at that moment in time, developers could find a
few technologies that they could rely on. They rapidly aligned their practices to design websites.
Thanks to this, they could easily share and find best practices to overcome the limitations of
the technologies or Web browsers.

Consequently, the most common way to build websites before 2004 was the following. Web-
sites were mostly managed by small teams or even only one developer [34]. They had to be
made small enough to be transferred in a reasonable amount of time over dial-up connections.
From a technological point of view, HTML was used to structure and design the layout of Web
pages. CSS was used with parsimony to color elements, use background images, manage the
font and round elements. Flash rapidly became more popular than Java applets and was used
to animate websites with interactive features or videos. In order to personalize the website for
the user, server-side technologies appeared quickly. Indeed, since June 1995, PHP enabled the
server-side generation of personalized Web pages. Since then, PHP has been one of the most
popular languages to build server-side rendered websites. Later, in December 1996, Microsoft
introduced ASP (Active Server Pages) offering similar possibilities. These technologies therefore
eased the creation of commercial websites such as eBay. About practices, most website projects
were relatively small at the time. Small teams of developers often used only one PHP file per
page of the website. They could therefore easily locate changes to do and deploy updates of the
website. On the other hand, bigger teams continued to use the best engineering practices of the
time. Yet, most IT projects were not Web systems and not moving to the Web either [34]. In the
end, websites started to be split into repositories with many files when the development teams
started to grow. This period coincides with the advent of the Web 2.0.

1.1.2 The second phase: 2004 to 2010 (the collaborative Web 2.0)

The second phase of the Web started around 2004. The Web became collaborative and has
been named the Web 2.0. Some websites are particularly representative of this period such as
MySpace, Facebook, YouTube, or Reddit.

This shift to a collaborative Web has mainly been triggered by two technologies: ADSL
and Ajax. On the one hand, Internet connections have been made significantly faster thanks to
ADSL. And in addition to this, Ajax made collaborative websites a lot faster by introducing
asynchronous processing in the Web browser.

A third phase of the Web can be observed and started in 2010. Therefore this section de-
tails the evolution of the Web browser, the architecture of popular Web systems, and Web

9. A testimony of how a developer built websites in the early years of the web: https://nickjanetakis.com/
blog/was-web-development-better-back-in-the-early-2000s

32

https://nickjanetakis.com/blog/was-web-development-better-back-in-the-early-2000s
https://nickjanetakis.com/blog/was-web-development-better-back-in-the-early-2000s

1.1. How the architecture of the Web evolved?

development practices between 2004 and 2010.

Evolution of the Web browser

The technologies that shaped the Web 2.0 were released before 2004. They then took time to
be implemented in the major Web browsers and to be adopted by the developers. This subsection
details the technologies that were added to the Web browsers and that shaped the Web 2.0.

First of all, the technology that has had the most impact on the evolution of the Web
2.0 is AJAX (Asynchronous JavaScript And XML) [35]. As its name stands for, it enables
Web browsers to send and receive data from a server asynchronously, i.e. without blocking
the Web page. This quite simple idea transformed the web. Indeed, instead of building Web
pages where most user interactions force to reload the entire page, Web developers could then
create Web applications that change content dynamically without the need to reload the entire
page. Websites therefore need to transfer a lot fewer data over the network and hence become
significantly faster. Indeed, the quantity of data to transfer had a significant impact on the
overall load time with the slow Internet connections of the time. In addition to this, the website
becomes more responsive as users can continue to use it while the data loads in the background.

AJAX is actually a set of Web development techniques that leverages many technologies.
There is one browser-side API that has been created to make AJAX possible: the XMLHttpRe-
quest (XHR) object. This API enables the Web browser to make asynchronous requests to Web
services. It has been created by Microsoft and first shipped in Internet Explorer 5 in 1999 as
an ActiveX control 10. In December 2000, Mozilla shipped an implementation in their Gecko
layout engine 11 but it has not been completely functional before June 2002. In the following
years, XMLHttpRequest became a de-facto standard in most major Web browsers. It had been
implemented in Netscape 7.1 in 2003, Firefox 1 and Safari 1.2 in 2004, and then in Opera 8 in
2005. Surprisingly, standardization has been longer since the W3C released a first working draft
in 2006 12.

In parallel, HTML has not changed much between HTML 4 released in 1999 and HTML 5
released in 2008. It has thus not had a significant impact on the Web 2.0. During this period,
most efforts focused on XHTML which was supposed to replace HTML. Yet, Web browser
developers were not satisfied with how the W3C worked on the standard. They also judged it
too complex to implement. As a result, they created the Web Hypertext Application Technology
Working Group (WHATWG) and started to work on what became HTML 5.

CSS is the second standard that has not changed much during this period. While CSS 2 was
a single recommendation published in 1998, CSS 3 is a living standard that has been split into

10. https://web.archive.org/web/20090130092236/http://www.alexhopmann.com/xmlhttp.htm
11. https://www-archive.mozilla.org/releases/
12. https://www.w3.org/TR/XMLHttpRequest/

33

https://web.archive.org/web/20090130092236/http://www.alexhopmann.com/xmlhttp.htm
https://www-archive.mozilla.org/releases/
https://www.w3.org/TR/XMLHttpRequest/

Part, Chapter 1 – Background and state of the art

multiple modules with dedicated working groups. The first major changes in CSS appear in 2008
and they did not have a significant influence on the Web 2.0 either.

Besides, Web browsers improved their support of the standards and scripting languages to
make Web browsers faster 13 14 15. At the time, Web browser providers focused on improving the
performance of their software, its user experience and tried to pass the Acid test. Yet, JavaScript
engines were too slow to enable the design of complex Web applications.

In the end, it is noticeable that the Web 2.0 has not seen many technological changes in
the Web browser, the only significant being AJAX. Indeed, the Web 2.0 is at first a change
in how the Web is used, which has been driven by the growing number of users of the web,
the constantly increasing speed of JavaScript engines, the deployment of the ADSL, and the
availability of AJAX. It is therefore interesting to dive deeper into how popular Web systems
have been designed to offer new collaborative features. This is what the next subsection details.

Popular websites representative of the phase

The Web 2.0 is foremost a change in the usage of the web, driven by the rapid and significant
increase in Internet speed and a trend towards building collaborative websites. Therefore, some
websites are particularly representative of the Web 2.0.

Among them are the wikis and we observe that Wikipedia has been introduced early, in
January 2001. Similarly, forums are collaborative websites, the most famous today being Reddit
that has been launched in June 2005.

Yet, the categories of websites that most people would cite as being representative of the
Web 2.0 are social media. The first social media is Born which was created in 1997 16. Friendster
followed in 2002 but was not able to handle an important number of users. Finally, the first
social media to be used by millions of people, and that is often cited as the first social media
is MySpace. It has been founded in August 2003 and it rapidly attracted many famous people,
which is one of the main reasons explaining its popularity. For the record, in France, this is
Skyblog that has been the most popular in this category in the early 2000s. It has even been
released before MySpace, in December 2002. Not long after, in February 2004, Facebook has
been launched to very few users. It has first been open to a few universities in the United States
and it is finally on September 26, 2006, that it has been opened to everyone over 13 years old.
In March of the same year, Twitter was also founded.

Another category of website that represents the Web 2.0 and that is still very popular in
2021 is media sharing. These websites are most of the time dedicated to a single type of media.
For example, Flickr is dedicated to photo sharing and is a typical representative of the Web

13. https://en.wikipedia.org/wiki/History_of_the_Opera_web_browser#Version_6
14. https://en.wikipedia.org/wiki/Safari_(web_browser)
15. https://en.wikipedia.org/wiki/Internet_Explorer
16. https://blog.hootsuite.com/history-social-media/

34

https://en.wikipedia.org/wiki/History_of_the_Opera_web_browser#Version_6
https://en.wikipedia.org/wiki/Safari_(web_browser)
https://en.wikipedia.org/wiki/Internet_Explorer
https://blog.hootsuite.com/history-social-media/

1.1. How the architecture of the Web evolved?

2.0, which means that the content of the website is created and shared primarily by the users
themselves. It was created on February 10th, 2004. On February 14th 2005, this is YouTube that
has been launched by three former employees of PayPal.

In the end, we notice that many collaborative websites were created between 2004 and 2006.
This is also notable that most of the websites that are popular in 2021 were created between
1995 and 2005.

With the advent of personal blogs and the increased presence of news websites, people also
started to consume information from many sources. They therefore needed a central place where
they could get the latest articles from a selection of websites. For this purpose, news aggregators
leveraging the RSS technologies have been created. According to Wikipedia, RSS “is a Web feed
that allows users and applications to access updates to websites in a standardized, computer-
readable format". RSS has rapidly been implemented in many news websites and blog platforms
since its creation in 1999. It is therefore a technology that had a significant impact on the
websites of the Web 2.0.

To make a link with the evolving technologies, there is one website, or Web application in
this case, that is worth mentioning: Gmail. It has been the first popular Web application that
really showed off what was possible with client-side JavaScript since 2004 17. It was therefore a
great example showcasing what is possible to achieve with AJAX.

To finish, it is interesting to note that Salesforce launched the first Web API in 2000. More
and more companies followed the trend. An example that is often cited is Amazon, who launched
its first Web API in July 2002. Amazon then heavily relied on Web APIs to boost the adoption
of Amazon Web Services, which has been effective. As another example, Flickr launched its
REST API only six months after the website in 2004. In 2006, Facebook and Twitter launched
their Web API 18. Google Maps also launched its Web API in 2006 after discovering that devel-
opers hacked the JavaScript interface and developed applications such as housingmaps.com and
chicagocime.org 19.

Architecture of popular Web systems

We have previously seen that with the Web 2.0, websites became more collaborative and were
accessed by more people at a time. This was due to the increasing number of users of the Web
and the faster Internet connections. As a result, web designers have had to create websites that
can be served to a larger number of users simultaneously, and as new websites have emerged, it
has become increasingly important to design websites that load quickly to retain users. These are
the major constraints that developers faced to design the architecture of their websites between

17. https://dri.es/a-history-of-javascript-across-the-stack
18. https://apievangelist.com/2012/12/20/history-of-apis/
19. https://web.archive.org/web/20130411055812/http://apievangelist.com/history/google-maps.php

35

https://dri.es/a-history-of-javascript-across-the-stack
https://apievangelist.com/2012/12/20/history-of-apis/
https://web.archive.org/web/20130411055812/http://apievangelist.com/history/google-maps.php

Part, Chapter 1 – Background and state of the art

2004 and 2010.

As Internet connections became faster, computers and by extension servers too. Therefore,
the increase in users could easily be handled by new, more powerful Web servers. On the other
hand, the advent of AJAX slightly changed the architecture of Web applications. Indeed, on
the server-side, the application server had to handle the AJAX requests in addition to the page
requests. At Internet scale, the biggest change is finally about the flows but not architecture:
requests to Web services increased during this period. Thanks to AJAX, they could be done
from the browser and not only the server.

Similarly, as more and more websites were created, the percentage of HTTP servers on the
Internet increased and the percentage of FTP servers decreased.

As a result, Figure 1.2 stays relatively relevant to represent the architecture of systems in
the Web 2.0. Yet, Figure 1.3 is an update of Figure 1.2 and represents the slight changes. In
addition, Figure 1.4 shows the difference in the interactions between the Web user interface
and the application servers. Indeed, before the Web 2.0, application servers served HTML, CSS,
JS, and media files only while in the Web 2.0 they also include a Web API serving responses
formatted as XML or JSON documents.

About Web APIs, there is one architectural change that had a major impact on the practices
and that is interesting to discuss. In the early 2000s, Web APIs were mostly implemented as
SOAP services, but their popularity decreased and REST APIs started to become the de-facto
standard for building Web APIs around 2006 when major players such as Google and Yahoo
deprecated their SOAP services in favor of REST APIs. There were many reasons that lead
to the demise of SOAP-based services. The most important may be that the architecture is
based on Remote Procedure Call (RPC) that has been known to be flawed [36]. Moreover, the
protocol uses HTTP as a transport protocol instead of an application protocol. SOAP services
send POST requests to get data from a server. They therefore break intermediaries that serve as
proxies or caches which typically operate based on the standard semantics associated with the
HTTP verbs. Other factors lead to interoperability problems, such as the abstract data types
used by WSDL. Overall, the XML Schema language has a number of type system constructs
that complicate implementation and interoperability.

Last, one research initiative of this period is interesting to discuss as it has been an important
inspiration for this work. A few years after standardizing the foundations of the web, Berners-Lee
continued to work on the WWW. He wrote that “A new form of Web content that is meaningful
to computers will unleash a revolution of new possibilities" [37]. Then, since 2000, he and many
other researchers defined a set of standards to enable this, a Semantic Web. They thus envisioned
a different architecture for the Web that is discussed in section 1.5. This vision has not reached
a wide adoption, so semantic Web services [38] are not represented in the figures of this section.

36

1.1. How the architecture of the Web evolved?

Figure 1.3 – Architecture diagram of the WWW between 2004 and 2010

Web development practices

Previously, we saw that the major browser-side improvements of this period have been the
increasing speed of the scripting engines and the support of the XMLHttpRequest API to enable
AJAX.

On the client side, developers have started to build Web applications that fetch data asyn-

37

Part, Chapter 1 – Background and state of the art

Figure 1.4 – Diagram opposing the client server interactions within the Web before 2004 and
between 2004-2010

chronously and update the DOM of the page in the background. Yet, the DOM APIs are verbose
and implementations vary between Web browsers. The jQuery 20 JavaScript library has been cre-
ated in 2006 to ease the development of Web applications. As it states on its home page, “it
makes things like HTML document traversal and manipulation, event handling, animation, and
Ajax much simpler with an easy-to-use API that works across a multitude of browsers". jQuery
has been a massive success and is still the most popular JavaScript library. In 2017 it was used
on 69.2% of the top 1 million websites (according to Libscore) 21.

On the server-side, developers have started to add Web APIs to their application servers to
make their Web applications faster. In addition, because AJAX enabled developers to build Web
applications without developing complex application servers but instead by composing existing
Web APIs directly from the client-side, more and more standalone Web APIs appeared. For
example, headless Content Management Systems (CMS) enable developers to build complex
blogs without implementing a server.

As more and more developers built collaborative websites and Web APIs, the technologies

20. https://jquery.com/
21. https://web.archive.org/web/20170219042532if_/https://libscore.com/#jquery

38

https://jquery.com/
https://web.archive.org/web/20170219042532if_/https://libscore.com/#jquery

1.1. How the architecture of the Web evolved?

and practices evolved fast. So, many frameworks appeared since 2004 to ease the development
of such software. Among the most famous, Spring 1.0 has been released in March 2004, Ruby on
Rails in February 2005, Django in July 2005, Symfony in October 2005 and Play! Framework in
May 2008. For the record, Play is a framework that we developed at Zengularity, now owned by
Fabernovel. These frameworks all emphasized the Model View Controller (MVC) pattern and
can therefore be called MVC frameworks.

With the help of these MVC frameworks, developers could build Web applications much
faster. They also tended to join communities of developers that use the same framework. As a
result, communities of developers using a given framework shared the same practices, but not
all communities share the exact same practices.

1.1.3 The third phase: 2010 to today (mobile applications and the JAMstack)

In its third and current phase, the Web is much more distributed and loosely coupled than
before. Nowadays, many websites became Web applications and are very similar to mobile appli-
cations for the web: they are standalone applications that use Web APIs to access the content.
Thanks to this architecture, websites load faster, the Web is loosely coupled and it is possible
to collaborate in real-time with several people on the edition of the same page.

This third manner of building Web systems has been driven by the arrival of smartphones. To
propose an application to a wide range of users, developers had to offer web, Android, and iOS
applications. Then to interconnect these applications they have to implement a single server and
three user interfaces. As a result, new technologies have been released to ease the development
of applications following this architecture. In addition, new technologies appeared in the Web
browser and to build and deploy Web APIs for the cloud. The rest of this section details them.

Evolution of the Web browser

In 2008, Google introduced the V8 JavaScript engine in Chrome, which was ten times faster
than Internet Explorer thanks to Just-In-Time (JIT) compilation 22. Two years later, they dou-
bled the speed of the engine with a new optimizing JIT compiler. This evolution has enabled
the development of complex Web applications able to be as smooth as native applications.

The Web standards also evolved a lot and had an important influence on this third phase.
In addition, they have rapidly been supported by the most popular Web browsers.

Among them, HTML5 has been well received when it was released in January 2008. Many
new features were added such as native support multimedia such as the video, support for
MathML, new tags with more semantic and more APIs such as drag and drop, local storage,
and Web messaging. HTML5 became a living standard and is improved regularly.

22. https://dri.es/a-history-of-javascript-across-the-stack

39

https://dri.es/a-history-of-javascript-across-the-stack

Part, Chapter 1 – Background and state of the art

The CSS standard has also been improved with many new features between 2008 and 2011.
The working groups of CSS3 added responsive design, 2D and 3D transformations, native ani-
mations, filters, flexbox, and more. The latter is a Web layout model that is so more powerful
than previous models that it became the current de-facto standard. It allows responsive elements
within a container to be automatically arranged depending upon screen size.

On the other hand, many new standards have been created since 2010. They have made
the Web browser suitable for many more applications. Among them are Web Workers. Since
2010, they offer a sort of multi-threading for Web applications to run heavy computations in the
background 23. In 2011, WebSockets have enabled real-time two-way communication between the
browser and server. Another worth mentioning is the concept of Progressive Web Applications,
which appeared in 2015, enabling Web applications to use a simulated and secured file system
and to be cached into the Web browser to load immediately. Also, Web Assembly, a 2019 W3C
recommendation, enables Web browsers to run C/C++/C# and Rust code with near-native
performance. It can for example be used to run complex image analysis from the Web browser 24.

During this period, some technologies of the Web browser declined. The most famous being
Flash that loose interest after the release of HTML5 and CSS3 offering similar features. Thoughts
on Flash, the open letter written by Steve Jobs 25 to Adobe criticizing the closed nature of the
Flash platform and the inherent security problems explained why Flash was not supported on
iOS. This had a decisive impact on Flash. Then, in 2011, Adobe ended support for Flash on
Android. In July 2017, Adobe deprecated Flash and announced its end of life at the end of 2020.

Popular websites representative of the period

The Web applications that represent this period the better are the real-time collaboration
tools and applications that are available on the Web and mobile with seamless synchronization.

Google Docs 26 is the first Web application that offered a very smooth real-time collaboration
between multiple users on a single document, and even on a single sentence, with almost no
merging errors 27. Released in 2010, the application was revolutionary at the time.

Leveraging the canvas API, some companies have been able to offer collaborative sketching,
drawing, and prototyping tools. For example, Figma 28 enable designers to collaborate on user
interfaces. Miro 29, another example, offers a collaborative tool illustrated on Figure 1.5.

On the other hand, Trello, Airbnb, and Facebook are good examples of applications that
offer Web and mobile interfaces with real-time synchronization.

23. https://www.html5rocks.com/en/tutorials/workers/basics/
24. https://www.youtube.com/watch?v=drRaRRZ5AJk
25. https://newslang.ch/wordpress/wp-content/uploads/2020/06/Thoughts-on-Flash.pdf
26. https://docs.google.com
27. https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs_21.html
28. https://www.figma.com
29. https://miro.com/

40

https://www.html5rocks.com/en/tutorials/workers/basics/
https://www.youtube.com/watch?v=drRaRRZ5AJk
https://newslang.ch/wordpress/wp-content/uploads/2020/06/Thoughts-on-Flash.pdf
https://docs.google.com
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs_21.html
https://www.figma.com
https://miro.com/

1.1. How the architecture of the Web evolved?

Figure 1.5 – Example of the real-time collaboration of multiple users on a single document with
the Miro Web application

Architecture of popular Web systems

The architecture of popular Web systems evolved under the influence of three factors: the
arrival of mobile applications, the increased performance of JavaScript engines, and the evolving
cloud computing services.

With the advent of mobile applications since 2008, developers wanted to make their services
also available on mobile. In the beginning, they started by adding mobile consumers to Figure 1.3.
With mobile applications, they could not leverage the dynamic HTML pages generator of their
application server. Instead, the mobile application contains the user interface and logic of the
application but not the data. It must therefore access the Web API used by the website. As a
result, application providers had to open their API to mobile consumers. In the process, they
often had to create new API endpoints to expose the data that was previously consumed by the
dynamic HTML pages generator.

Unfortunately, this architecture blurs the separation of concerns as one application server is
now responsible for the Web user interface and for mobile-specific API endpoints. At the same
time, it became possible to build more powerful Web applications similar to mobile applications,

41

Part, Chapter 1 – Background and state of the art

namely Single-Page-Applications [39]. These Web applications are standalone and packaged as
a set of static files. Dynamic HTML pages generators are not necessary anymore to serve Web
applications. Instead, to offer multi-platform applications, developers started to build the Web
API, the Web application, and the mobile applications as separate artifacts. Mobile applications
are hosted on OS-specific application stores, Web applications on Content Delivery Networks
(CDN), and the Web APIs as HTTP servers.

Figure 1.6 – Architecture diagram of the WWW after 2010

This new architecture is named the JAMstack 30 and is represented on Figure 1.6. It stands
for JavaScript, API, Markup stack. Markup corresponds to the entire frontend being prebuilt into

30. JAMstack officiel website: https://jamstack.org/

42

https://jamstack.org/

1.1. How the architecture of the Web evolved?

highly optimized static pages and assets during a build process. This process of pre-rendering re-
sults in sites that can be served directly from a CDN, allowing very fast scaling. Here, JavaScript
makes the markup dynamic and personalized, by handling user inputs and communicating with
Web APIs. Last, API refers to the Web APIs used to get and manipulate data and authentica-
tion. These APIs can either be from the organization of the application provider, or outside of
it, on the Internet.

To illustrate how the architecture has changed from the Web 2.0, Figure 1.7 opposes the
client-server interactions of these two periods. For example, nowadays, when a user goes to a
blog, the already rendered HTML pages with up-to-date content will be downloaded from a
CDN that physically places the content near to the user. This is very similar to the original
architecture of the web. Yet, the pre-rendered website will not contain, for example, comments
or the number of likes on Facebook. For this purpose, the JavaScript code will fetch a comment
management REST API and the Facebook API, and then add the data to the page. As a result,
the most important part of the blog, the post, will load very fast, and the additional content
will load progressively. Noticeably, this kind of website makes heavy use of pre-rendered HTML
pages and a lightweight use of Web APIs to make the website participatory. To update the
website, authors will use another application that will trigger a new build of the website when
they will validate the updates. This site generator will then push the updated website to the
CDN. Thanks to DevOps automation, some website managers are able to achieve this hundreds
of times a day.

As another example, highly collaborative websites such as Google Docs 31, Trello 32 or Miro 33

will first load a very light markup, basically a content-less Web application with the logic and
style only. Indeed, the content of this kind of website depends on the connected user. Then
during the collaboration, as illustrated in Figure 1.5, users will see what the other connected
users are doing. As a result, these applications manipulate fast-changing data and should be
able to download and process them in real-time. To achieve this, they highly rely on JavaScript
code and Web APIs to constantly get up-to-date data, update the page shown to the user and
share the user’s modifications in real-time.

As a result of this new architecture, websites are built only once instead of being built each
time a user requests a Web page. They are also much more optimized: they load faster, consume
fewer network resources, and offer new possibilities such as real-time collaboration. In addition to
this, Progressive Web Applications enabled Web applications to be cached on desktop and mobile
Web browsers to be used offline [40]. Web applications can thus load immediately, similarly to
mobile applications.

The many technological and architectural changes of this period therefore influenced the

31. https://docs.google.com/
32. https://trello.com/
33. https://www.miro.com

43

https://docs.google.com/
https://trello.com/
https://www.miro.com

Part, Chapter 1 – Background and state of the art

Figure 1.7 – Diagram opposing the client server interactions within the Web and between 2004-
2010 and after 2010

practices a lot. Since then, more and more developers were involved in the development of Web
systems. The next subsection details how the practices evolved.

Web development practices

With more and more people on the web, the amount of websites and Web applications has
increased, consequently increasing the competition between them. In addition, mobile applica-
tions became a new kind of system on the web. Web systems therefore had to be improved on
the following aspects:

— applications had to become highly available, i.e. available 24/7 to any number of users as
any downtime could cost millions to some companies

— application data had to be open to mobile applications to offer the same experience on all
devices

— Web user interfaces had to load faster, be smoother, offer advanced history management,
be available in many languages, accessible to people with disabilities, and compatible with
many browser versions as the Web was used by almost 2 billion users in 2010 (27% of the
world population) and more than 5 billion in 2021 (65% of the world population) 34.

34. Source: https://www.internetworldstats.com/emarketing.htm

44

https://www.internetworldstats.com/emarketing.htm

1.1. How the architecture of the Web evolved?

The developers’ practices therefore evolved to address these new constraints.
First, to create Web user interfaces meeting the above constraints, developers leverage the

high increase in performance of the JavaScript engines. As a result, they started to build single-
page applications. Once packaged, they are composed of a single HTML document that loads JS
scripts that contain all the markup and continuously update the DOM (the content of the page)
upon user and Web API interaction. To do so, they rely on JavaScript and CSS frameworks.
The first JS framework to reach a wide adoption is AngularJS which eases the development of
single-page applications relying on the component-based approach. It was released in October
2010. AngularJS launched the front-end frameworks movement. The two most popular nowadays
are React and VueJS, which have respectively been created in May 2013 and February 2014 [41].
About CSS, the first CSS framework to become very popular is Bootstrap. It proposed already
implemented, responsive, and customizable UI components that could be reused to implement
high-quality user interfaces very quickly. Bootstrap has first been released in August 2011 by
Twitter. As with AngularJS, many alternatives were proposed quickly. These frameworks com-
pletely changed practices for building front-end applications. Instead of HTML pages enriched
with scripts, developers are building scripts generating HTML content. They also offer different
paradigms and thus the practices are diverging over time. For example, in recent years, there
have even been communities emphasizing that the CSS should be written within the JavaScript
code 35.

Besides, to create more advanced user interfaces and open the data to the mobile applications,
with the architectural patterns of the Web 2.0, development teams and systems grew. Maintain-
ing and evolving the software became increasingly complex and time-consuming. One architec-
tural pattern therefore gained traction and became the de-facto standard: micro-services [42],
inspired by the service-oriented architecture [43, 44].

With micro-services, developers split their systems into smaller software components that
can generally be developed by teams of less than ten developers. Each microservice is responsible
for one dedicated business purpose such as authentication or inventory management. They are
easier to maintain than monolithic applications because the code is smaller and concerns are
better separated.

Using the micro-services architectural pattern has changed architecture practices. Developers
now design architecture as depicted on the right part of Figure 1.7. Separating the user interface
from the data access and management enabled to open the data to mobile applications and
to interact with the data in the exact same manner from the mobile application or Web user
interface.

In addition, since the introduction of Docker in March 2013, developers started to package
their micro-services into lightweight containers. These containers are black-boxes from the in-

35. https://medium.com/dailyjs/what-is-actually-css-in-js-f2f529a2757

45

https://medium.com/dailyjs/what-is-actually-css-in-js-f2f529a2757

Part, Chapter 1 – Background and state of the art

frastructure standpoint that can be deployed with a single command. Before, developers had to
manage complex deployment scripts on virtual machines. Docker containers therefore eased the
deployment of Web APIs and changed practices.

With the growing interest in containers, cloud providers such as Amazon Web Services,
Google Cloud, and Microsoft Azure started to support Docker containers. In addition to offering
easy deployments to robust worldwide infrastructures, the providers developed advanced proxy
servers that automatically deploy or shut down new instances of a container to adapt to the
varying demand in order to offer 24/7 availability, namely load-balancers and API gateways.

To maximize automation and enable the setup of efficient DevOps practices [45], cloud
providers propose Web APIs for most of their services. Developers can therefore leverage them
to automate deployments, database backups, notifications, and so on.

This is representative of a more general trend where application providers build very specific
services that interact with other services using Web APIs to collect data, automate tasks, extend
business processes, and even manage the entire operational and service aspects of a business 36.
For example, Datadog 37 builds a software dedicated to cloud monitoring that is technology-
agnostic. It therefore leverages REST APIs to collect the user’s data from cloud providers. As
a result, REST APIs became the backbone of data and service exchange within the
web, i.e. between back-end services, Web user interfaces, mobile applications, and
even voice-user interfaces.

A new term has even been coined to refer to the set of business models and practices designed
around the use of APIs in today’s digital economy: the API economy 38. That demonstrates
that Web APIs have gone beyond the boundaries of computer science to reach marketing. For
example, Stripe bases its marketing on proposing a Web API for payment.

1.2 Basic concepts of the REST architecture

This section aims at giving the reader the concepts of the REST architecture. They are
necessary to get a good understanding of the following sections and of the challenges that this
thesis tackles.

The REpresentational State Transfer (REST) architecture has been introduced in 2000 by
Roy Thomas Fielding [28], who actively participated in the design of the HTTP 1.0 and 1.1
standards at the same time. The frontier between HTTP and REST is therefore subtle. While it
is often stated that REST very well integrates with HTTP, to me, it is more likely that HTTP
has been designed with the REST architectural style in mind. Nevertheless, the important point
is that HTTP offers constructs to design distributed, collaborative, and hypermedia information

36. https://blog.api.rakuten.net/evolution-of-apis/
37. https://www.datadoghq.com/
38. https://searchapparchitecture.techtarget.com/definition/API-economy

46

https://blog.api.rakuten.net/evolution-of-apis/
https://www.datadoghq.com/
https://searchapparchitecture.techtarget.com/definition/API-economy

1.2. Basic concepts of the REST architecture

systems. However, it does not enforce any property so it can also be used as a transport protocol,
which is for example how SOAP Web services use HTTP. In addition to not enforcing any
property, HTTP does not even provide guidelines on how to use it in order to design distributed
and loosely coupled Web applications. The REST architectural style has therefore been created
to fill this gap. As its author state, it has been designed "to form a new architectural style
that better reflects the desired properties of a modern Web architecture". So, it defines a set of
constraints to guide application designers in creating Web applications with good performance,
scalability, simplicity, modifiability, visibility, portability, and reliability. If they do follow these
constraints, they can claim to offer a RESTful application.

Concretely, the six guiding constraints of the REST architectural style are the following:

1. use a client-server architecture to separate concerns

2. communication must be stateless in nature

3. a response to a request [should] be implicitly or explicitly labeled as cacheable or non-
cacheable

4. use a uniform interface between components

5. follow layered system constraints

6. (optional) leverage on the code-on-demand style to simplify clients by reducing the
number of features required to be pre-implemented

Client-server architecture. In his doctoral dissertation, Fielding states that "Separation
of concerns is the principle behind the client-server constraints. By separating the user interface
concerns from the data storage concerns, we improve the portability of the user interface across
multiple platforms and improve scalability by simplifying the server components. Perhaps most
significant to the Web, however, is that the separation allows the components to evolve indepen-
dently, thus supporting the Internet-scale requirement of multiple organizational domains.". This
statement is particularly interesting. Considering how the architecture of the Web has evolved,
it is clear that this property has started to be achieved in the third phase of the web. Indeed,
before 2010, the user interface and data were managed by the same, MVC, server. This is the
advent of mobile applications that finally triggered the shift to the effective separation of the
data processing and the interfaces, which is actually the separation of concerns initially envi-
sioned by Fielding. A word about independent evolution: we observed that the user interfaces
can indeed evolve independently, but that the components managing the "data storage concerns"
(the REST APIs) can not.

Stateless. "Each request from client to server must contain all of the information necessary
to understand the request, and cannot take advantage of any stored context on the server.
Session state is therefore kept entirely on the client. This constraint induces the properties of
visibility, reliability, and scalability." [28]. This constraint has been achieved for a long time, the

47

Part, Chapter 1 – Background and state of the art

cookies helping a lot. In addition, in practice, the implementation of stateless applications is
easier than stateful applications. It also enables horizontal scalability (the deployment of several
instances of an application’s server to support more users), which is essential to support a high
number of concurrent users.

Cache. To improve network efficiency, which was particularly important back in 2000 with
the 56kb/s dial-up connections, "cache constraints require that the data within a response to a
request be implicitly or explicitly labeled as cacheable or non-cacheable.". In most cases, HTTP
server implementations manage this aspect automatically, requiring minimal to no effort from
developers. It works particularly well for media files, that rarely change. It is however a lot more
challenging to manage the cache for the data manipulated with REST APIs due to their amount
and varying change frequency, but we talk about fine-grained optimization here, which is rarely
necessary.

Layered System. "The layered system style allows an architecture to be composed of hierar-
chical layers by constraining component behavior such that each component cannot "see" beyond
the immediate layer with which they are interacting. By restricting knowledge of the system to a
single layer, we place a bound on the overall system complexity and promote substrate indepen-
dence. Layers can be used to encapsulate legacy services and to protect new services from legacy
clients, simplifying components by moving infrequently used functionality to a shared intermedi-
ary. Intermediaries can also be used to improve system scalability by enabling load balancing of
services across multiple networks and processors.". This constraint has indeed been extensively
leveraged. Load balancing and proxies are indeed an essential component to ensure scalability
and security in cloud infrastructures. Also, API gateways became a popular component of the
cloud. They merge monitoring, security, authentication, load balancing, administration, A/B
testing, and more. Researchers also use proxies to maintain up-to-date documentation with us-
age examples for an evolving REST API [46]. The constraint is therefore achieved and proved
to be very useful.

Code-on-demand. (optional) "REST allows client functionality to be extended by down-
loading and executing code in the form of applets or scripts. This simplifies clients by reducing
the number of features required to be pre-implemented. [...] ". For more discussion on the op-
tional character of this property, the reader may refer to section 5.1.7 of [28]. In practice in the
modern web, this constraint is rarely leveraged. The most common usages are loading scripts into
websites to track activity (e.g. Google Analytics) or to embed other websites’ features such as
Twitter feeds of Facebook likes buttons with minimal development effort (usually copy-pasting
the HTML tag importing the script).

Uniform Interface. "The central feature that distinguishes the REST architectural style
from other network-based styles is its emphasis on a uniform interface between components. By
applying the software engineering principle of generality to the component interface, the overall

48

1.2. Basic concepts of the REST architecture

system architecture is simplified and the visibility of interactions is improved. Implementations
are decoupled from the services they provide, which encourages independent evolvability.". Con-
cretely, he encourages us to use the HTTP verbs as follows and to stick to it. The REST APIs
following this uniform interface are usually named CRUD REST APIs.

1. GET to retrieve a resource representation

2. POST to create a resource

3. PUT to replace the current resource representation with the provided payload

4. PATCH to apply partial modifications to a resource

5. DELETE to remove a resource

6. OPTIONS to get the resource’s representation schema

However, this uniform interface comes with a trade-off that Fielding identified: "The trade-
off, though, is that a uniform interface degrades efficiency, since information is transferred in
a standardized form rather than one which is specific to an application’s needs. The REST
interface is designed to be efficient for large-grain hypermedia data transfer, optimizing for the
common case of the Web, but resulting in an interface that is not optimal for other forms of
architectural interaction.".

Nevertheless, the Uniform Interface is defined by the following four constraints:

1. Identification of resources. Within REST, the resource is the key abstraction of infor-
mation. A resource is anything that can be named, such as today’s weather in Paris. In
practice, a resource is identified by a Unique Resource Identifier (URI) that the user can
dereference to get its representation (e.g. https://weather.com/today/Paris). This is typi-
cally what happens when one writes a URI into a Web browser, the representation of the
website is downloaded and rendered.

2. Manipulation of resources through representations. Representations are used to capture
the current state of a resource. "Other commonly used but less precise names for a repre-
sentation include: document, file, and HTTP message entity, instance, or variant." A single
resource may therefore be serialized into an XML representation, or JSON, or within any
other format. The selection of a representation is achieved through content negotiation
leveraging the Accept and Content-Type HTTP headers.

3. Self-descriptive messages. Each message includes enough information to describe how to
process the message. For example, which parser to invoke can be specified by a media type
(e.g. application/json).

4. Hypermedia as the engine of application state. While the term is not defined in Fielding’s
dissertation, it is commonly accepted that a REST API should include hypermedia controls
in its responses so that the user can navigate the REST API without any prior knowledge

49

Part, Chapter 1 – Background and state of the art

of it, similarly to how people navigate websites. Fielding confirmed this interpretation in
an interview back in Dec 2014 39.

The previous constraints make clear that the REST architectural style has been grounded
on the World Wide Web foundations. On top of that, the architecture has been designed with
the goal to design highly evolvable, reliable, and scalable Web applications. With time, it proved
to be effective. Indeed, most Web applications follow the REST architecture and to the best of
our knowledge, no alternative to these principles has been proposed in the past 10 years.

It is however not clear for developers how to leverage this constraint and more broadly how
to design REST API interfaces.

1.3 Separation of concerns in modern Web architectures

Figure 1.7 illustrates the differences between the architecture of Web applications between
the second and third phase of the Web systems architecture. In addition, we observed that the
Web has indeed become the global distributed system envisioned in its early days, where systems
highly interact with each other. And reviewing how the architecture of the Web evolved with
time in Section 1.1, we notice that every major evolution of the Web made it an even more open
and distributed platform.

The more the Web becomes distributed the more the concerns are separated between the
components. When we limit our scope to observing the components used to provide Web appli-
cations and websites to the end-users, we observe the following: (i) mobile applications, (ii) Web
application frontends served by content-delivery networks or rendering servers (the markup and
javascript of the JAMstack) and (iii) Web APIs.

This architecture is finally a very classic service-oriented architecture [43]. Web APIs provide
services and consume other Web APIs’ services and both the mobile applications and Web
application frontends are service consumers. This separation is due to the fact that Web APIs
are hosted on secured and controlled cloud environments that are highly available for the end-
user and that are secured enough to store the sensitive data of all the users of an application.
On the other hand, the mobile applications and Web application frontends run on the end-user
device, an unsecured and uncontrolled environment. Mobile applications and Web application
frontends are often referred to as mashup services performing client-side mashup [47].

Consequently, because it is trustful, the Web API is both a data owner and service orches-
trator. Its role is to secure access to the data that it owns and to ensure that it will evolve
consistently. It can also have the responsibility to propagate changes to other Web APIs and
ensure that they have successfully been propagated. A Web API, also named a service in the

39. Complete transcript of the interview of Roy Fielding on REST versioning and hypermedia: https://www.
infoq.com/articles/roy-fielding-on-versioning/

50

https://www.infoq.com/articles/roy-fielding-on-versioning/
https://www.infoq.com/articles/roy-fielding-on-versioning/

1.3. Separation of concerns in modern Web architectures

web, is valuable if it holds valuable data and is able to offer an API that is easy to work with. It
should give easy to read data representations to its users and meaningful operations to modify
the data. It is fundamental to understand that Web APIs are all about data man-
agement. They are therefore not responsible for how the data will be displayed to
the end-user and they should not be.

Moreover, while in the Web 2.0, it was common to have big teams working on a single MVC
application that managed both the application frontend and backend, in the modern web, differ-
ent teams, and even different companies, build the frontend and the backend of an application.
For example, one company can build an open service, such as Stripe did to manage payments 40

and another company can build the frontend, for example, a money exchange application such
a Tipeee 41. As a result, the design teams are different. This separation is also visible inside
corporations, where software departments are structured in product teams. Each product team
is responsible for its own product, usually a single artifact such as a Web API. The goal is to
maximize reuse and cost-efficiency.

Therefore, with the separation of the teams’ responsibilities, a team designing an API gen-
erally listens to the needs of other developers while a team designing a user interface listens
to the needs of the end-user. It is indeed relevant to have a design team dedicated to a user
interface. As billions of people from all over the world use the web, there are many kinds of
users, with very different abilities, cultures, and needs. It is therefore essential for a product
to target a precisely identified type of users. Designers then study their needs and how they
will interact with the product to improve the ergonomic. They identify the important data and
features that the product should offer. Next, user interface designers will visually improve the
user interface to make it more appealing. The following step in the software design is to identify
what Web APIs to reuse and what Web APIs to create. As the last step, the Web application
will be implemented.

As a consequence, this is the user interface that mainly drives the design of the Web APIs,
because this is the UI that defines what data and features it needs, not the opposite. While
compromises are obviously done, the Web API very rarely drives the user interface design. It is
therefore not relevant to automatically generate user interfaces on top of Web APIs. There is
still one exception to this rule: the creation of administration user interfaces. These particular
interfaces must present the data in a raw format. They are therefore a good candidate for user
interface generation.

To understand the research presented in this document, this is fundamental to
memorize this point: user interfaces are designed for an accurate user target that
shaped the data and features to offer. Therefore, the user interface determines which

40. Stripe - https://stripe.com/fr
41. Tipeee - https://en.tipeee.com/

51

https://stripe.com/fr
https://en.tipeee.com/

Part, Chapter 1 – Background and state of the art

Web APIs to use or not and can shape the evolutions or creation of Web APIs.

1.4 API contracts: the backbone of the modern web

We saw previously that the modern Web is highly open and distributed. Concretely, it is
made out of standalone software services that communicate with each other, each service offering
a given set of features. So it became what is named a global service-oriented architecture.

In this service-oriented architecture, the users expect websites and Web applications to be
available anywhere at any time and to be fast. Then because websites and applications rely on
other services available on the web, the application developers need a guaranty that the services
that they use will behave reliably.

The need for services that behave reliably and can therefore be trusted is not new neither
limited to service-oriented architectures. Indeed, service-oriented architectures are one form of
component-based architectures themselves a form of object-oriented architectures where the
same need has been observed a long time ago. The most popular methodology used to achieve
trust has thus been presented with object-oriented architectures in mind, this is the Design by
Contract methodology introduced by Meyer in 1992 [48]. Further work applied this methodology
to many domains including service-oriented architectures and the web.

The rest of this section introduces the Design by Contract approach and explains how it has
been applied to the engineering of Web systems in order to enable the modern Web to be highly
available and reliable.

1.4.1 Contracts in software engineering

Design by Contract [48] is a software engineering methodology. Based on the idea that as-
sertions can be interesting to specify software, it proposes to consider that software entities
(objects, components, services, etc.) have responsibilities towards the other entities with which
they interact. These responsibilities are thus based on rules that can be specified. Specifications
(or contracts) can thus be created for each entity of the system. As a result, the interaction
between the entities of a system can be limited to these contracts.

In an effort to clarify what can be specified with contracts, A.Beugnard et al.. extended
Meyer’s work and proposed a taxonomy that identifies four types of contracts [49]. Syntactic
contracts enable the system to work by specifying data structures and types, behavioral con-
tracts specify each operation, typically with a precondition and post-condition, synchronization
contracts specify the coordination of operations, and quality of service contracts quantify a few
features associated with operations such as availability or performance.

This classification clearly helps to structure the specification and to understand the cover-
age of requirements a component has. So it helps design tools that verify the behavior of the

52

1.4. API contracts: the backbone of the modern web

components to bring trust.
This work has been well received by the software engineering community. It has been cited

approximately 900 times. Ten years after the publication of this work, authors surveyed domains
such as service-oriented architecture where the notion of contract aware components has been
influential [50]. We explore the benefits of the Design by Contract methodology and of this
classification in service-oriented architectures in the next subsection.

1.4.2 Contracts in service-oriented architectures

Service-oriented architectures decompose software systems into independent remote services
that communicate with each other [43]. Within this concept, each service provides a set of
reusable functions to its consumers. Basically, a consumer will send a message to a service and
will receive a response message that contains the operation’s execution result. To make this
communication possible, a contract between the service provider and consumer is necessary. In
addition, its formalization has many benefits to develop error-free software [51]. A service is
self-contained, can be updated independently, and is a black box for its consumer, meaning that
the consumer can not have information about the internals of a service that it consumes. As
a result, in a single system, the services can all be implemented with different programming
languages. Service-oriented architectures therefore homogenize how software entities cooperate
and give freedom for their implementation.

On the one hand, they claim to ease the maintenance and evolution of the system’s con-
stituents thanks to the loose coupling that they provide. On the other hand, contracts are not
set in stone at design time similar to object-oriented architecture. Instead, they are much more
volatile as the services can evolve independently. The conditions enabling the cooperation be-
tween two services can thus change at any time and hence break the deal. The evolution of
a service can thus break its consumers. As a result, while the evolution of a single system is
simplified, co-evolution is challenging. While such property may sound like a bug, this is an
essential feature of service-oriented architecture.

Such highly dynamic contracts have a significant impact on the way to create, configure and
supervise contracts.

According to Beugnard and colleagues, syntactic and behavioral contracts can be automat-
ically created and configured using service discovery mechanisms. This is also possible to do
this manually. In this latter scenario, the service providers will publish the contracts that they
respect. The service consumers will search for services proposing the features that they are look-
ing for and then write an implementation that follows the contracts. Synchronization contracts
are created and configured manually by both the providers and consumers. Finally, quality of
service contracts are realized with service level agreements mechanisms.

The supervision of the contracts is specific to Service-Oriented Architecture. Indeed, while

53

Part, Chapter 1 – Background and state of the art

libraries are embedded at compile time so they can not be changed randomly at run time,
in a service-oriented architecture, the services can be changed randomly at run time, because
the client does not control the execution environment. As a change of the service is likely to
imply a change in the contracts, supervision can be used to monitor contracts. The monitoring
system may be generated and configured by the contract management system, if any. Otherwise,
external monitoring can be set up to obtain a neutral point of view of the compliance of the
interested parties to the contract.

Supervision can also be one technique to effectively help co-evolve services in a service-
oriented architecture. The maintenance and co-evolution of such systems pose several challenges
that have been explored in many research. In this thesis, we extend this work by proposing a
new approach to the co-evolution of REST APIs and their clients.

In practice, many technologies have been proposed to homogenize communications in service-
oriented architectures. The most popular of them are Web Services based on WSDL and SOAP,
messaging relying on RabbitMQ, ActiveMQ, and so on, RESTful HTTP, Apache Thrift, or
gRPC. These technological stacks all propose their own tooling to create, configure and supervise
contracts. The co-evolution of such systems is therefore dependant on the technologies involved.
Since the Web relies on a relatively small set of technologies, the next subsection details how
SOA contracts have been applied in the World Wide Web.

1.4.3 Contracts in SOA, applied to the World Wide Web

In the Web, services collaborate by exchanging messages on the Internet following a given
protocol. Media types such as JSON are used to define the primitive data types and processing
models as well as the serialization formats. Protocols describe interaction models that extend
the capabilities of media types. An example illustrating how media types can be enriched with
protocols is the Atom Publishing Protocol [52] that defines operations to modify Atom feeds
generally formatted with the Atom Syndication Format. Depending on the expressiveness of the
media types and protocols, additional technologies may be necessary to specify contracts.

As we saw earlier, the most popular protocol of the early Web was the Simple Object Access
Protocol (SOAP) which used XML as a media type. Yet, SOAP does not provide contracts
description. So, since 2001 the Web Services Description Language [53] (WSDL) enabled the
description of the interfaces of the services and became the de-facto standard for syntactic
description.

In addition, some approaches to the description of Web Services covered the other kinds of
contracts but none became a widely adopted standard. For example, SoaML proposes to specify
the syntactic and behavior contracts with an extension to the UML language [54]. This Oasis
standard has driven many research efforts. Similarly, WS-Coordination andWS-BusinessActivity
have been designed to be used together in order to coordinate business activities using Web

54

1.4. API contracts: the backbone of the modern web

services and therefore serve as documentation of the synchronization contracts [55]. In [56],
Ran proposes a model for Web services discovery where the functional and quality of service
requirements are taken into account.

Regarding RESTful Web APIs, JSON rapidly became the preferred data-interchange format.
The approaches designed to describe contracts for SOAP-based services could not be reused as-is
for REST-based services. New solutions have thus been proposed.

Description languages for REST API contracts

The easiness to build and consume REST APIs has probably been an important factor
in its popularity. Yet, because the developers could easily implement a client of a REST API
manually, they did not need machine-readable documentation of the service to consume anymore.
Indeed, it was not necessary to generate stubs from documentation anymore. A simple textual
description of the service was sufficient for the developer to quickly write a code that would
consume the API. For a long time, the developers did not feel a need for languages to specify
contracts. For this reason, until approximately 2014, most REST APIs were documented in
plain HTML documents [57]. We indeed observe that it took a long time to see industrial efforts
towards standardization of REST API description formats. Academic research did not focus on
the description of REST APIs either.

Syntactic contracts. Referring to Beugnard’s classification, Interface Description Lan-
guages focus on the description of syntactic contracts.

The need for Interface Description Languages for REST API has been controversial 42 for a
long time. This is why most REST APIs were documented in plain HTML documents before
2014 [57].

The first proposition of an IDL for REST API has been WADL [58], an equivalent of WSDL
for REST APIs published by Sun Microsystems in 2006 and then submitted to the W3C in
August 2009. WADL has yet never been standardized or massively adopted. Similar to WSDL,
WADL uses the XML format to describe the API and this is the main reason why it did
not gain much interest. In 2011, Tony Tam proposed Swagger that later became the OpenApi
Specification. Along with an IDL, Swagger proposed a Web user interface offering an ergonomic
way to browse the specification and the possibility to test an API right from the Web page, which
is one of the main factors of its success. Swagger also proposed a code generator. Shortly after
swagger, alternative structures for describing RESTful APIs were introduced, the most popular
being API Blueprint 43 in April 2013, RAML 44 in September 2013 and RADL 45 in June 2014.
In the end, Swagger drove more interest than the others since mid-2014.

42. https://bitworking.org/news/2007/06/do-we-need-wadl/
43. https://apiblueprint.org/
44. https://raml.org/
45. https://github.com/restful-api-description-language/RADL-2.0

55

https://bitworking.org/news/2007/06/do-we-need-wadl/
https://apiblueprint.org/
https://raml.org/
https://github.com/restful-api-description-language/RADL-2.0

Part, Chapter 1 – Background and state of the art

Behavior contracts. We could find no proposal to specify behavior contracts. Moreover,
in the Web, API providers are not always willing to communicate them. Three reasons seem
to prevent REST API providers from publicly disclosing such information, especially postcon-
ditions. First, it could reveal business-critical strategies to competitors. Second, developers can
rely on advanced testing strategies to verify their systems. And third, such behavior contracts
can be highly dependent on the user, for example in the context of bank account management.
Unfortunately with such practices, consumers can not be aware of the contracts in advance.
Thankfully, the HTTP protocol offers detailed error statuses that practitioners are accustomed
to exploiting to give detailed feedback to their users. Preconditions and postconditions can there-
fore be discovered by the end-user at runtime. Moreover, IDLs give advanced schema description
possibilities to enable the description of some of the preconditions, for example, "the amount
of money to transfer between bank accounts must be superior to 0". In autonomous systems,
the elements that can be communicated are unfortunately regularly documented in plain text.
Considering the high volatility of the contracts in the web, this is an important risk
that we try to address in this thesis.

Synchronisation contracts. The description of synchronization contracts has driven the
interest of the business process modeling community. In [59, 60], C.Pautasso proposed an exten-
sion to the BPMN standard to describe synchronization contracts. BPMN engines can therefore
be used to manage the synchronization. The same author proposed Jopera, a visual composition
language [61]. BPEL for REST is another approach that extends BPEL to enable contract-
based RESTful service composition [62]. The JavaScript-based S language, on the other hand,
is a domain-specific language designed for server-side use. It promotes a programming model
based on explicit (control-flow) and implicit (process-level) parallelism control [63].

Quality of service contracts. Quality of service contracts are also mainly described in
plain text documents. While interesting works address the subject, they are not closely related
to the work presented in this thesis and will therefore not be detailed.

REST API contract management: alternatives to specification languages

Instead of giving complete freedom to the developer to implement a system and then offer
contracts description languages, some proposed different approaches. Among them are applica-
tion protocols designed on top of REST that enforce the contracts, or frameworks. Some API
providers also propose libraries to interact with their REST API. They therefore rely on modern
programming languages constructs to provide design-time contract checking. Another approach
is to rely on models. Model-Driven approaches propose to generate code from models of the
application where the contracts are formalized. There is also a trend towards automated service
composition and contract checking leveraging on the Semantic Web.

Frameworks as contracts. In order to standardize the practices around well-defined con-

56

1.4. API contracts: the backbone of the modern web

tracts, some proposed to use frameworks [64, 65, 66, 67]. While these are mainly specified within
plain text documents, the standardization effort enables all the interesting properties claimed
by the design-by-contract approach such as documentation, verification, code generation, and
tooling.

One such approach has been proposed by Microsoft. OData [64] is a framework that pro-
poses a unified way for tracking changes, defining functions/actions for reusable procedures, and
sending asynchronous/batch requests. With OData Common Schema Definition Language, the
developers describe the schema of the data and can then use the standardized methods of the
protocol to interact with the data. That approach did not gain much traction because it is made
of many very long specification texts and it is a rigid framework.

OpenSocial is an initiative to standardize APIs for building social Web applications that
started in 2013 and moved to the W3C Social Web Working Group in 2015. The group published
the Social Web Protocols note. It contains a collection of standards that enable various aspects
of decentralized social interaction on the Web [65].

These approaches have proven to bring benefits for domains where standardization is rele-
vant. Yet, for many domains and providers, the ability to provide custom implementations and
protocols is seen as a business-critical feature that enables the provider to propose a differentiat-
ing experience or differentiating features. We therefore observe that in practice, these approaches
are limited to certain domains such as social media and that most Web systems do not rely on
them.

Software Development Kit as contracts. Contracts can also be provided by the REST
API provider within a library. Such kinds of libraries are usually named Software Development
Kits.

In [51], authors leverage the annotations of the .NET language to provide advanced contracts
support. They have been able to augment the official Facebook API with static behavior con-
tracts checking and proved that it can reduce the number of errors in third-party applications.
Such a method can therefore reduce cumbersome manual testing.

We also observe that companies providing REST API intended to be consumed by hundreds
to millions of systems regularly propose SDK in many programming languages. When they do
so, these companies favor the SDK in place of the REST API. Famous examples are Twitter
that has an SDK available for 29 languages as of June 2021 46, Facebook, Google and Stripe 47

that is often referred to as an API that offers a great developer experience.
Finally, Software Development Kits have proven to ease the consumer’s development but

one library must be created and maintained for every programming language to support. They
therefore require an additional effort from the API provider or the community. One of the

46. https://developer.twitter.com/en/docs/twitter-api/tools-and-libraries
47. https://stripe.com/docs/api

57

https://developer.twitter.com/en/docs/twitter-api/tools-and-libraries
https://stripe.com/docs/api

Part, Chapter 1 – Background and state of the art

limitations of this approach is that all the SDKs must be evolved when the REST API evolves.
In addition, the REST API must remain available and should still be well documented. In
the end, SDKs are relevant for REST APIs that will be consumed by hundreds to millions
of consumers, because the potential financial benefits are more important than the cost. On
the other hand, this is a too expensive solution for the majority of the REST APIs, that are
consumed by few to tens of clients. Moreover, an important technical limitation remains. Indeed,
the client software can only be evolved at design time because the contracts are sealed in the
code.

Model-Driven Engineering techniques. Model-Driven Engineering (MDE) techniques
focus on creating and exploiting domain models. The goal is to ease the collaboration between
the domain experts and the developers by removing the technical details from the design process.
The people involved in the development of the service can therefore focus on the design of the
contracts. When the team is happy with the produced contracts, generators produce code and
documentation from the models. These generators can generally be configured by technical
experts to adapt the generated artifacts to external constraints such as architectural or security
requirements.

Numerous research studies have been conducted to apply MDE techniques to REST APIs.
As a result, many approaches use different technologies for a similar goal: generating REST
API server or client implementations from syntactical contracts [68, 69, 70, 71, 72, 73]. Some
of the approaches generating the server code also generate the REST API documentation in
various formats such as WADL. To extend this work, some also consider behavior contracts and
sometimes leverage the HATEAOS constraint of the REST architecture to propose a solution
to synchronization contracts [74, 75, 76].

MDE techniques are beneficial to the initial design, implementation, and integration of a
REST API. They can also help manage contracts specification, especially syntactic contracts.
However, maintaining the link between the models and the code is challenging. Indeed, it is a
complex task to update the generated code upon modification of the models. It is also challenging
for the developer to update the code accordingly. Moreover, developers are not confident enough
with code generators to make heavy use of them, in particular with interpreted programming
languages such as JavaScript, the language to design Web user interfaces. Code generators
are consequently more often used for the back-end of REST services and within non-complex
modules, usually the interface layer but not the domain logic or the behavior. MDE has thus
not yet proven to be an effective solution to maintain contracts between API providers and
consumers. They are instead mainly used for the maintenance of a single artifact.

58

1.4. API contracts: the backbone of the modern web

REST API Contracts: State of the practice

We saw in the current section that the notion of contracts in software architecture and in
web-oriented architecture has received a lot of interest. Many languages, methodologies, and
techniques have been proposed with very different approaches. One might therefore wonder how
the majority of the systems in the Web are designed? How do they specify and make use of
contracts?

The methods to implement a REST API server or a client of a REST API have not changed
much with time. Developers still like the lightness of the approach and the ability that it gives
to implement a server or client in a few lines of code. The JSON format stays the preferred
data-interchange format.

To specify contracts, OpenApi (previously Swagger) has become the de-facto standard to
document syntactic contracts and schema models (thus a small part of the behavior contracts).
API providers can also leverage the language to specify hypermedia controls in order to document
the synchronization contracts but these constructs have been introduced in July 2017 and are
still rarely used. Most of the time, behavior, synchronization, and quality of service contracts
are specified within plain-text, either in the description field of the OpenApi specification or on
API reference websites. Developers therefore read these contracts and translate them into code
to implement a working client. Such a practice therefore introduces a tight coupling between the
API client and server.

There are good reasons that motivate the documentation of contracts in plain text. Nowa-
days, REST APIs are often designed to be used by many consumers. Countless scenarios can
therefore be created from the composition of API calls. It is thus very challenging to document
them all and would probably make the documentation difficult to navigate. API providers there-
fore prefer to write plain text that presents basic usage scenarios and let the consumers decide
on the suite of API calls to make to implement their own business processes. In addition, these
processes may require the use of several REST APIs from different providers. Requiring multiple
providers to document cross-provider synchronization contracts would not be realistic.

Such practices leave many challenges open. One of them is the integration of the REST API
contracts into a new client. Indeed, developers still write the code themselves. While this is not
very error-prone for very basic REST APIs such as CRUD REST APIs, it can lead to many errors
for REST APIs with a complex business logic such as REST APIs using the CQRS pattern [77].
Another challenge is the co-evolution of Web systems relying on REST APIs. Indeed, a tight
coupling is introduced when the developer translates the plain-text contracts into client code.
Then, when the REST API evolves, the evolutions must be identified and the client code must
be adapted. One contribution of this thesis is a new approach to this challenge.

59

Part, Chapter 1 – Background and state of the art

1.5 A Web "interpretable" by machines

The previous sections of this document presented the evolution of the architecture of the
World Wide Web along with how contracts have been specified and used to enable the Web
to become a highly available and quite reliable global service-oriented architecture. In previous
sections, a complete research domain was omitted: the Semantic Web. The main reason is that
the works of this domain are based on foundations that have not been implemented in the
modern web. We therefore find it relevant to discuss this domain in a dedicated section.

While the Semantic Web did not become the main architecture of the Web, it got the interest
of many researchers and is still an active research topic. Since 2000, it proposed to make the Web
"interpretable", and not only processable, by machines. In this domain, researchers studied and
proposed solutions to many of the problems that are still active in the modern web. This work can
then be reused to design solutions adapted to the current state of the art and practice. Interesting
topics are: service description, automated service discovery, automated service integration, and
composition. They are discussed in the rest of this section.

1.5.1 Presentation of the Semantic Web

At the first World Wide Web Conference in 1994, Tim Berners-Lee claimed that the Web has
become an "exciting world" for users but that it contains very little machine-readable informa-
tion. “The meaning of the documents is clear to those with a grasp of (normally) English, and
the significance of the links is only evident from the context around the anchor. To a computer,
then, the Web is a flat, boring world devoid of meaning.” He identified two things that would
enable the Web to be "interpretable" by machines.

According to Tim Berners-Lee, two things can make the Web inter-
pretable by machines:

1. the possibility to add machine-readable semantics into documents

2. making the semantics of the links explicit

Enablers of an "interpretable" Web

Unsurprisingly, the World Wide Web Consortium (W3C), which Berners-Lee founded later
that year to coordinate the standardization of the Web, put a focus on standardizing Seman-
tic Web technologies [1]. As a result, the Resource Description Framework (RDF) has been
standardized in 1999.

Concretely, the difference between a Web that is interpretable or processable by machines
is the following: within an interpretable Web, algorithms can intelligently navigate and collect

60

1.5. A Web "interpretable" by machines

data by following meaningful links and semantically-rich data whereas, within a processable
Web, algorithms can not make a difference between the different links or pieces of information.
For example, HTML makes the Web processable. Automated software agents can find all the
links on a page and follow them. However, these agents are not able to differentiate the links
based on their meaning. All links are equal in a processable Web while in an interpretable Web
the software agents can differentiate links and intelligently follow them, for example, to find a
given information. This is precisely the semantic descriptors on data and links that enable them
to do this.

The idea behind RDF is quite simple: information can be represented as individual state-
ments. RDF represents data as a triple in the form subject-predicate-object. The subject is the
(web) resource to describe, the predicate is the aspect to describe and therefore expresses the
relationship between the subject and object. To represent that strawberries have the color red
in RDF, the subject would be "strawberries", the predicate would denote the relationship "has
the color" and the object would be the "red" color. In fact, RDF has been designed for the web.
The subjects and predicates must therefore be Web resources, accessible with a URL. One URL
would therefore be necessary to represent the concept of strawberries, another for the link "has
the color" and a third one for the red color.

Figure 1.8 – The RDF data model, from [1]

The Resource Description Framework is an abstract model, meaning that it can take many
forms. The original serialization format is RDF/XML but others exist such as RDFa [78], Tur-
tle [79], JSON-LD [80] and more. RDFa is for example designed to embed machine-interpretable
metadata into HTML documents. Figure 1.9 gives an example of an HTML document with
RDFa annotations. The document can be parsed to extract many triples that will form one
to many knowledge graphs resulting in a dataset, as presented in the Figure 1.8. For example,
with the base and meta tags of the document’s header, the triple "http://example.org/john-d/

61

Part, Chapter 1 – Background and state of the art

dc:creator Jonathan Doe" can be extracted. The presented information is that the creator of the
page http://example.org/john-d/ is Jonathan Doe.

Figure 1.9 – Example of an HTML5 + RDFa document. Source: https://en.wikipedia.org/
wiki/RDFa#HTML+RDFa

As stated previously, objects and predicates must be valid Web resources, i.e. accessible with
a URL. RDF thus leverages on the property that one URL should never refer to two different
concepts at the same time, even ones that may seem equivalent. This property is very powerful.
Indeed, in the natural language, there are words that have multiple meanings but on the web,
especially with RDF, this statement is false. In fact, if a word has two meanings, two different
URLs will be used to refer to the word. Thanks to this property, the machines that interpret the
Web are not subject to the ambiguities to which we humans are subject. Leveraging this very
powerful property, the Semantic Web community has been able to design algorithms, tools, and
standards with interesting properties. They are detailed in the rest of this section.

When the Semantic Web started, there was obviously no Web resource available to describe
things such as the strawberries used in a previous example or the friend relationship. It has
therefore been necessary to create vocabularies that can be used with RDF. They are formally
named ontologies. RDF Schema and the Web Ontology Language (OWL) [81] have been created

62

https://en.wikipedia.org/wiki/RDFa#HTML+RDFa
https://en.wikipedia.org/wiki/RDFa#HTML+RDFa

1.5. A Web "interpretable" by machines

for this purpose.
RDF Schema (RDFS) offers constructs to describe classes, class hierarchy, data types, and

other schema properties similar to object-oriented programming languages. It also enables the
description of data containers such as sets and lists. OWL can be seen as an extension of RDFS
adding many concepts, which makes it a far more expressive modeling language. With OWL, it
is for example possible to express that in an ontology describing families, a "hasMother" property
is only present between two individuals when "hasParent" is also present, and that individuals of
class "HasTypeOBlood" are never related via "hasParent" to members of the "HasTypeABBlood"
class (the example is from Wikipedia).

In addition to the presented work, the W3C standardized other technologies to propose a
complete technological stack for the Semantic Web. The Figure 1.10 that is an adaptation of
Berners-Lee original figure 48 and represents this stack.

Figure 1.10 – Semantic Web technological stack. Source: Wikipedia

Before 2006, the technologies of the Semantic Web stack did not require the identifiers to
be dereferenceable. Concretely, IRIs (Internationalized Resource Identifier) were used in place
of URIs (Uniform Resource Identifier). This means that the identifiers used to reference terms,
such as the strawberry concept, did not have to be valid Web resources. Copy-pasting them in
a Web browser could lead to nothing. They were therefore opaque identifiers. So, the Semantic
Web could not be browsed. In an effort to change that, Berners-Lee published the following
Linked Data principles in 2006 [82]:

48. https://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html

63

https://en.wikipedia.org/wiki/Semantic_Web_Stack
https://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html

Part, Chapter 1 – Background and state of the art

— Use URIs as names for things

— Use HTTP URIs so that people can look up those names.

— When someone looks up a URI, provide useful information, using the standards (RDF*,
SPARQL).

— Include links to other URIs so that they can discover more things.

These four principles marked a turning point in the history of the Semantic Web. People
started to envision it as an enabler for the publication and consumption of vast amounts of
structured and open data. One result is the Linked Open Data cloud, represented in Figure 1.11.

Figure 1.11 – Linked Open Data Cloud representation - Source: https://lod-cloud.net/

The Semantic Web and Linked Data rapidly gained traction into the Web Services community
and created new research topics such as Semantic Web Services and Semantic Service Oriented
Architecture. Research on Semantic Web Services (SWS) has been devoted to reducing the
extensive manual effort required for manipulating Web services by enhancing them with semantic
information. Such challenges remain existing in the current architecture of the Web because SWS
have not been widely adopted. Furthermore, the work presented in this thesis leverages Semantic
Web Services research to ease the co-evolution of RESTful APIs and their clients. The rest of
this section presents an overview of the research on Semantic Web Services. The goal is to give
the reader a general idea of the possibilities offered by Semantic Web technologies.

64

https://lod-cloud.net/

1.5. A Web "interpretable" by machines

1.5.2 Semantic Web Services

Research on Semantic Web Services has been devoted to reducing the extensive manual
effort required for manipulating Web services by enhancing them with semantic information.
Concretely, Semantic Web services can be defined as Web services whose descriptions are anno-
tated by machine-interpretable ontologies so that other software agents (e.g. Web user interfaces
or mobile applications) can use them without having any prior ‘built-in’ knowledge about how
to invoke them.

In practice, to enable a software agent to use a service without having any prior knowledge
of how to invoke it, it must be enabled to automatically discover, select, compose and execute
Semantic Web Services.

Semantic Service Description

Similar to humans, machines would not be able to discover, select, compose and execute Web
services without a documentation of the services. Here, documentations must contain machine-
interpretable descriptors. A first challenge has therefore been to make this possible resulting in
new standards, automation techniques, languages, and ontologies.

The first technology to enable service providers to enrich their documentation with machine-
interpretable semantics has been SAWSDL [83] (Semantic Annotations for WSDL). Later, an
adaption for RESTful services was proposed [84]. Researchers however observed that most Web
APIs were documented in plain HTML documents and that developers were generally not will-
ing to write a new documentation from the ground up. So they proposed to create machine-
interpretable descriptions on top of existing HTML descriptions by using microformats [85].
hRESTS [86] and RDFa [78] propose that. MicroWSMO 49 adapts SAWSDL to extend hRESTS.
In addition, WSMO-Lite annotations can be used to make WSDL and hRESTS-based services
interoperable. Similarly, SA-REST [87] applies SAWSDL to RDFa instead of hRESTS. These
approaches are all correlated to a set of technologies. An ontology to describe RESTful services
within any RDF compliant format has therefore been designed, namely Hydra [88]. Similarly,
the Minimal Service Model MDM) enables an operation-based description of Web APIs [86].
It also aims to enable the reuse of existing Semantic Web Services and to provide means for
integrating heterogeneous services.

These technologies are concerned with describing the syntactical contracts (input and output
of the operations) but omit the functional aspects. To overcome this, OWL-S [89] adds support
for pre and post-condition description and hence allows to describe functional relations using a
variety of expression languages (SWRL, DRS, KIF, and more). An alternative is WSMO [90].
RESTDesc [91, 92] proposes to approach things differently: instead of relying on the input and

49. http://www.wsmo.org/TR/d38/v0.1/20080219/

65

http://www.wsmo.org/TR/d38/v0.1/20080219/

Part, Chapter 1 – Background and state of the art

outputs to describe the service functionalities, it proposes to describe the functionalities directly.
On the other hand, Rauf and Porres demonstrate that OWL2 can be used to behaviorally enrich
semantic RESTful interfaces [93]. Besides, in an effort to propose a solution with a low entry
barrier, authors of [94] designed a solution similar to Microformats that leverages existing HTML
tags and a language to partially describe syntactical, functional, and behavioral contracts.

So far we mentioned research grounded on the Semantic Web and especially on XML. How-
ever, many Web developers are reluctant to integrate such technologies into their applications,
which may explain why they are not widely used. Lanthaler and Gütl proposed new technologies
based on JSON to be as close as possible to what developers are used to. SEREDASj [95] is a
semantic description language for JSON-based RESTful services. It focuses on the description
of JSON representations and Linked Data. However, they found that in practice developers
struggle with the separation of data into representations and descriptions [1]. They therefore
proposed JSON-LD [96] (JSON for Linked Data), a new RDF serialization format that has a
100% JSON-conformant syntax. Developers can use them without changing their tool-set nor
practices and hence focus on the description of the domain. JSON-LD is a community effort
that has been well received. It is a W3C recommendation since 2014 and its adoption increases
year after year. According to w3techs, in June 2021, it is used by 37.4% of all the websites 50.

For a more detailed survey on the semantic description of REST APIs, the reader may refer
to [97].

Apart from technological enablers and service description ontologies, researchers also ex-
plored ways to ease or automate the semantic description of Web services. In [98], authors
present MWSAF, a framework for semi-automatically marking up Web service descriptions (in
WSDL files) with ontologies. Alternatively, Siqueira et al. present a framework for the semantic
description of restful APIs implemented with JAX-RS [99]. They leverage on JSON-LD and
Hydra. Similarly, SWEET [100] helps RESTful API providers annotate the HTML documenta-
tion of their APIs. SWEET takes as input an HTML Web page and offers functionalities that
enable users to annotate the service properties and to associate semantic information to them.
It leverages on hRESTS and MicroWSMO.

The semantic description of services on the Web has therefore been an active research topic.
Researchers that explored this topic identified numerous opportunities. Among them is the possi-
bility to automatically discover relevant services and the automatic integration and composition
of such services. The next two subsections present the research on these topics.

Automated Service Discovery

A key idea of the Semantic Web is that with semantic descriptors, information search can be
much more precise. So, the semantic description of Web APIs enabled to automate the search

50. https://w3techs.com/technologies/details/da-jsonld

66

https://w3techs.com/technologies/details/da-jsonld

1.5. A Web "interpretable" by machines

and discovery of the Web APIs offering a given set of functionalities. The research in this area
are affiliated with the topic of Semantic Web Services Matchmakers.

In a survey conducted by Klusch in 2008 [101], six dimensions are identified for the com-
parison of SWS matchmakers: (1) the markup languages used for describing the semantics of
Web services, (2) the SWS discovery mechanisms, (3) the SWS discovery architecture, (4) the
approaches used for SWS matching and the extent of matching for service selection, (5) the
semantic parts of SWS for service matching and selection, and (6) the platforms or collections
for testing the performance of SWS matchmakers. The first has already been discussed in the
previous subsection and performance (6) will not be discussed here because it is too far from the
work presented in this thesis. We therefore study 2, 3, 4, and 5 here and reduce this classification
to two broader categories: (1) finding the services and (2) matching the service offer with the
developer’s need. For a detailed survey on SWS matchmakers, the reader may refer to [102, 103].

Mechanisms to search for services have mainly been explored in two paradigms: service
registries and peer-to-peer [104, 103] (P2P). The first is the dominant approach and the most
known registry is Universal Description, Discovery, and Integration (UDDI), though limited to
XML files. However, some claimed that it is difficult to realize the catalog-based approach in
the open and massively distributed environment of the Web. P2P overlay networks provide a
solution to this problem. There are also other types of mechanisms such as index-based (e.g.
Google) and agent-based [105] but they represent a very small proportion of the research.

The semantic matching approaches can be classified into four categories based on the in-
volvement of logic reasoning and machine learning: logic-based, non-logic-based, hybrid, and
adaptive. Non-logic-based matchmakers are limited to syntactic matchmaking [106]. Logic-based
matchmakers can process complex rules and address the four kinds of contracts seen previ-
ously [107, 108]. Hybrid approaches augment logic-based methods with content-matching tech-
niques to improve recall and precision [109, 110]. Adaptive matchmakers use machine-learning
techniques. While these categories are easy to read, matchmakers are more often compared based
on the supported technology (WSMO, OWL-S, SAWSDL). With so many available matchmak-
ers, they should be analyzed in detail as their properties mainly depend on their design. In the
end, the selection of a matchmaker depends on the expected properties. To help practitioners
compare matchmakers, performance testing platforms such as Semantic Service Selection (S3)
Contest and SWS Challenge have been created.

The matchmaking techniques cited so far are all concerned with fully automating match-
making and composition. They require a highly accurate and trustful description of services and
queries, as well as an unambiguous matching process. Toch et al. propose to design matchmakers
that help humans select the service to use instead [111]. In such a scenario, the developers control
the service selection and therefore are not expecting a fully reliable matchmaker. Authors could
therefore use approximate matching.

67

Part, Chapter 1 – Background and state of the art

Finally, it is noticeable that matchmakers presented many challenges for which very different
solutions have been explored. Evaluated with S3 Contest, the precision of matchmakers ranges
from 50% to 92% [112]. While these results seem good, they are not sufficient to give full
autonomy to these systems. This is why the approach of Toch et al. is interesting. The presented
research remains very interesting and deserved some attention. Leveraging matchmakers, some
have been able to propose automatic service integration and composition of Web APIs.

Automated Integration and Composition of SWS

Sometimes, one Web API is not sufficient to achieve one’s goal. In such cases, Web APIs
must be composed to achieve a goal. For example, if to go to one place, it is necessary to book
a train and rent a car, a trip planning service would likely need to use two Web APIs. One for
the train booking and another one for the car rental. The automatic service discovery covers the
search for a service providing a given service, such as booking a train. However, this is in the
domain of automated service composition that such complex scenarios have been studied.

There are two steps to automatically compose services. First, a structure of the composition
must be created, and then the atomic services to invoke should be selected. Most methods fall
in the realm of workflow composition or AI planning.

Research in the former category is usually concerned with only one part of the process. For
example, they automate only the selection of certain atomic Web services that implement a
manually defined composition scheme [113, 98]. This is finally a small addition to the service
discovery methods presented before. Other approaches create the structure of the composition.
Basically, the developer that needs a service specifies his need in terms of inputs, outputs,
goals, preconditions, and effects. Then, from a list of known services, matching algorithms try
to identify a composition answering this need. For example, SPICE [114] and DynamiCoS [115]
use a graph-based formal model, namely the Causal Link matrices, to find the best composition.
SeGSeC [116] also leverages a graph-based approach to propose a middleware enabling dynamic
service composition. In [117], authors compare two different graph-based methods: sequential
and non-sequential composition.

Automated approaches, on the other hand, usually rely on artificial intelligence planning
techniques that leverage semantic descriptors to ease problem representation and solving. Each
service of a Web API is modeled as an action with preconditions and effects. A logical theorem
prover or AI planner then tries to identify the suite of actions producing the desired goal, while
sometimes also considering external factors (API availability, cost, etc.). The solver will have to
match the input and output of the operations, taking into account the new resources that will
be created along the way. Indeed, it may be required to reuse a resource created by an action
to execute another action. Many approaches have been proposed in this field [118, 119, 120,
121, 122, 123, 124, 125, 126, 127]. For a framework assisting the classification of AI planning

68

1.5. A Web "interpretable" by machines

approaches, the reader may refer to [128].

1.5.3 Bridging the gap between Semantic Web Services and the modern Web

In the previous subsection, we introduced the Semantic Web Service research aiming at
automating tasks that developers do manually, namely the discovery and composition of Web
APIs. We also presented the technologies enabling Web services descriptions to be enriched with
semantic descriptors. However, the presented work does not propose a practical solution to de-
sign or even implement loosely coupled architecture leveraging machine-interpretable semantics.
Consequently, this section presents the research that proposes such kinds of architectures that
have interesting characteristics compared to the current architecture of the World Wide Web.

As a first example, in [129], the authors introduce an architecture and prototype based on
Linked Data principles and service-orientation to resolve the integration issues for sharing edu-
cational resources. Aside from the initial goal of replacing the widespread use of unstructured
text for describing resources with controlled vocabularies and open data sets, they have also
been able to implement a query layer on their service that makes distributed queries across dis-
tributed and heterogeneous educational repositories (via their services/APIs) on the fly. They are
therefore able to adapt in real-time to the addition and deletion of services on the Web without
prior knowledge of the service’s interface. This work is a good example of architecture leverag-
ing semantic Web services research. Indeed, they adhere to the linked data principles, leverage
domain-specific ontologies for the data and the Minimal Service Model for interoperability and
automated service discovery.

In [130], the authors propose a lightweight declarative rule language with state transition
systems as a formal grounding that enables the development of data-driven applications built
upon the RESTful manipulation of Linked Data resources. Concretely, the resources can be ma-
nipulated with the standard CRUD operations mapped to the HTTP verbs, and an OPTIONS
request on a resource returns the service description including the resource schema. Leveraging
their rule-based language, programmers can define an interaction pattern for their client appli-
cations. With their framework, the authors propose a loosely coupled architecture for CRUD
manipulation of Linked Data and hence enable good interoperability. However, they limit data
manipulation to CRUD operations that are not appropriate when meaningful modifications are
necessary, which the CQRS pattern emphasizes.

Khalili et al. propose to create flexible and reusable Web user interface components driven
by Linked Data, that abstract the complexity of the underlying Semantic Web technologies to
enable Web developers who are not experts in Semantic Web to develop interfaces that view,
edit and browse Linked Data [131]. As a result, they ease the development of Web interfaces
leveraging Linked Data technologies which provide loose coupling. While this approach is not
suitable for enterprise applications due to the complex business rules they manage, it seems to

69

Part, Chapter 1 – Background and state of the art

be a promising approach for open data applications.

In [132], assuming that developers will express the data needs of their applications in
SPARQL queries, Serrano and colleagues propose a middleware that automatically identifies the
set of Semantic REST APIs to invoke in order to respond. Expressing data needs with SPARQL
is not realistic nowadays, but we observe that GraphQL has gained traction from developers in
recent years. We therefore think that it could be interesting to place a component translating
semantically annotated GraphQL queries into SPARQL queries in front of this middleware. For
example, HyperGraphQL [133] or GraphQL-LD [6]. Such an approach could therefore seduce
front-end developers that tend to favor GraphQL to REST in recent years, while also seducing
service providers who would gain more flexibility towards the evolution of their services.

1.5.4 Synthesis

This section presented the basis of the Semantic Web and showed that many researchers
studied how machine-interpretable semantics could be used to automate service discovery, service
integration, and composition. It also covered the semantic description of the services. Finally,
we reviewed some initiatives aiming at implementing loosely coupled architecture that maximize
reuse within the context of the modern web, i.e. highly distributed, where most services expose
a RESTful API.

Most of the research on this topic has been published before 2010 so it is now obvious that
those technologies did not reach massive adoption, even though they seemed promising. One of
the reasons for this is the perceived complexity of Semantic Web technologies by Web developers,
and their grounding on XML which Web developers do not like. In addition, the tooling to
design and reuse ontologies is not sufficient. Developers will not be willing to build semantic
Web services without easy manipulation of the ontologies. Also, most approaches were designed
for full automation but are not precise enough to be used in such a way. Last, while we saw that
interesting examples and architectures have been presented to leverage these technologies in the
modern web, we think that there is a lack of a use case that brings real value to the developers.
Also, more work is necessary to make these technologies easy to use by Web developers, and
more communication is necessary too.

We think that such a use case can be about the co-evolution of systems in the Web, as the
evolution of Web APIs is the major challenge faced by Web API providers nowadays. So the next
section introduces why and presents the major approaches towards the co-evolution of software
components.

70

1.6. Co-evolution

1.6 Co-evolution

In the first sections of this chapter, we reviewed how the architecture of the Web evolved and
how contracts form the backbone of the modern web. Then, we explored the semantic Web tech-
nologies that propose to automate many tasks by relying on unambiguous semantic descriptors
of data and contracts. Overall, we observed that the Web is a service-oriented architecture. It
therefore promotes loose coupling between the components, meaning components can be added,
scaled, and removed at any time. This statement is however not true. In practice, developers
carefully select the REST APIs that they will use to implement mashups and expect them to be
highly available. Moreover, the contracts are hard-coded into clients. As a result, new services
and features can be added easily, but modifications or deletions can break other systems. So as
soon as a REST API has clients, it must consider them to make decisions about its evolution.
We therefore speak of co-evolution.

In this thesis is presented a new approach to the co-evolution in the Web that partially
relies on Semantic Web technologies. We therefore review the approaches for the co-evolution of
systems in this section.

1.6.1 Four different approaches

The issue of co-evolving an API and its client has been widely studied by the software
maintenance community. The many proposed techniques can be classified into four categories.
Historically, the first approaches proposed to identify API refactoring with static analysis tech-
niques and then leverage code transformation techniques to propose automatic program repair
techniques. Another approach is to automatically synthesize an adapter in order to obtain a spe-
cific connector between a customer interested in exchanging with a previous version of the API
and the current version of the API. Later, researchers started to search for solutions specifically
tailored for highly distributed and open architectures. A new category of techniques emerged
which consisted of defining evolution policies that service providers would follow to avoid break-
ing consumers. The last category of techniques proposes to fully synthesize the client based on
the description of the API.

The rest of this section presents the research on these topics and then concludes on their
applicability to solving modern Web problems.

1.6.2 Automatic Program Repair techniques

Many approaches identified the different API refactoring combined with the use of static
analysis and code transformation techniques in order to automatically identify errors resulting
from an API evolution and propose automatic repair mechanisms [12, 13, 14, 15, 16]. As a

71

Part, Chapter 1 – Background and state of the art

representative solution, [17] proposed an Eclipse plugin to automatically update the client code
when the API changes.

These approaches are particularly well suited for integration with statically typed and com-
piled programming languages. Consequently, they have several limitations with respect to the
evolution of a Web API. Firstly, the Web world is highly heterogeneous in terms of program-
ming languages; the ability to statically analyze the implementation of APIs and all the clients’
code is unrealistic. Secondly, transforming the client code requires, in an industrial context, to
go through all the validation phases again before deployment. This could be highly expensive
within a project. Still, such techniques can be relevant to deal with the evolution of REST API
wrappers that take the form of SDKs.

Behavioral repair techniques, that consist of changing the behavior of the program under
repair, i.e. changing its code [16], may also be explored. These techniques use specifications of
the expected output as a basis to perform the repair. Having such a specification is however
unrealistic with regards to REST APIs. First, no existing description language enables the
comprehensive description of a REST API contract. Second, some REST API providers do not
necessarily want to disclose all information related to the contract. Moreover, no repair operator
is aiming at fixing the UI, especially a Web user interface [16]. Yet, to fix the client of a REST
API, usually a Web UI, it is necessary to evolve the UI accordingly.

State repair techniques, which consist in changing the state of the program under repair [16]
are another category of techniques that may also be explored, especially the input modification
and input rectification techniques. While interesting to address some types of REST API evo-
lution, they are not sufficient to address them all. In addition, we argue that applying such a
technique would make it unclear for the developer of the client when he should fix the code or
not.

Besides, we observe that automatic program repair techniques are mainly used to fix low-level
code or bugs such as data structures, infinite loops, serialization bugs, or condition statements.
They do not seem to be widely used for domain-specific problems. In particular, we could not
find existing work aiming at repairing clients of evolving REST APIs [16].

In the end, exploring automatic program repair techniques to address the problems of the
co-evolution of Web APIs would require composing many existing techniques and relying on an
artifact that we are not sure API providers would release (the comprehensive API contract).
Other techniques must therefore be explored.

1.6.3 Adapter-based techniques

Several approaches have been proposed to automatically synthesize an adapter [19, 20] in
order to obtain a specific connector between a customer interested in exchanging with a previous
version of the API and the current version of the API. Such an approach can maintain the

72

1.6. Co-evolution

compatibility of the client with the API.
Fokaefs et al. [21] proposed to adapt request parameters to the new interface and map the

new response model to the one that the client is expecting. However, if a required parameter is
added to the API, the client will still break as no value can be provided with such an approach.
Another approach from Leitner et al.. uses a proxy to route API calls to the requested version.
VRESCo [22] uses plain string version names such as latest. In [134], Durieux et al. propose an
HTTP proxy that uses five self-healing strategies to rewrite the buggy HTML and JavaScript
code. BikiniProxy covers errors that occur when evolving API but it focuses on errors that exist
within the UI of the Web application.

The main advantage of these techniques is that API consumers do not have to perform manual
tasks to maintain the compatibility of the client with the API. However, the approaches are only
able to deal with syntactical contracts, both behavioral and synchronization contract changes
can not be supported, nor the addition of required parameters or deletion of information. Such
approaches are thus limited in the types of evolutions that they can support. So they propose a
partial solution to the problem and should be combined with other approaches.

1.6.4 Evolution policies

The use of evolution policies is the most pragmatic and used approach to the co-evolution
issues faced in the current Web. These policies fall under two categories.

A first approach aims at keeping several versions of its Web API online [25]. This approach
proposes to use mechanisms to declare the future deprecation as part of the API. For example,
the “Chain of Adapters" introduced in [135] proposes to overlay one layer of adapters per version
of the Web API. This technique allows for multiple versions to be deployed concurrently since
older versions are left unchanged.

A second approach aims at defining the list of authorized evolution by ensuring either that
this evolution has no impact on the client code or that an automatic transformation exists on
the client code in order to support this evolution. We could cite several API definition guidelines
that can be found online [23, 24].

On the one hand, these techniques have proven to be effective in reducing client breaking.
However, they considerably reduce the possibilities towards evolving REST APIs.
Indeed, all evolutions must be batched into versions, and because they require service consumers
to perform manual code updates, service providers are expected to make evolutions bringing
added value. Refactoring, and actually most modifications, are therefore discouraged.

This widely used technique is however not following the REST principles. In a talk for the
Adobe Evolve conference, to the question "What is the best practice for versioning a REST API?"
Roy Fielding answered "DON’T. Versioning is just a polite way to kill deployed applications" 51.

51. https://www.slideshare.net/evolve_conference/201308-fielding-evolve/31

73

https://www.slideshare.net/evolve_conference/201308-fielding-evolve/31

Part, Chapter 1 – Background and state of the art

Later in December 2014, he explained that versioning an API "either, (a) the version is eventually
changed and all of the components written to the prior version need to be restarted, redeployed,
or abandoned because they cannot adapt to the benefits of that newer system, or (b) the version
is never changed and is just a permanent lead weight making every API call less efficient." 52.
He added that "this is precisely the problem that REST is trying to solve: how to evolve a
system gracefully without the need to break or replace already deployed components.". Today
we observe that this goal has not been reached with the REST architectural style. We propose
a new solution to this challenge in chapter 4.

1.6.5 Automated client generation

Fully synthesizing the UI based on API description seems to be a relevant approach to cope
with Web API evolution challenges. However, code generators proved to be complex to customize
and evolve to integrate specific ergonomics projects [136]. Recent examples tend to confirm that.

The Swagger editor 53 is an example of such an approach. It is a generic user interface that
builds nice-looking single-page API documentation based on an OpenApi description. The user
interface can however not be personalized without modifying the generator.

As another example, Koren et al. propose a graphical tool to build a UI with already im-
plemented Web components from an OpenAPI documentation [137]. Thus, designers can design
and reuse high-quality components to build the website but the interface must be generated each
time the API evolves. As a result, while custom Web components can be created to offer a good
user interface, they are as tied to the input data model as the components designed without the
generative approach. As a result, while high customization is possible, the maintenance effort in
the event of API evolutions is not reduced. In addition, the use of custom code outside the Web
components is very challenging. Thus, implementing and maintaining a custom logic to improve
the performance of the Website or to manage complex business processes on the user interface
is very challenging. It is probably more complex than on a website that is not generated due to
the complexity added by the generator.

Generated websites are indeed complex to customize and evolve to integrate specific er-
gonomics projects.

1.6.6 Other approaches applied to the Web

No matter whether one chooses a generative or interpreter-based approach, an important
question remains what information the Web API must provide to allow the client to adapt its
API. Hervas et al.. [138] propose to use Semantic Web technologies to gain semantic information

52. Roy Fielding on Versioning, Hypermedia, and REST: https://www.infoq.com/articles/
roy-fielding-on-versioning/
53. Swagger Editor - https://editor.swagger.io

74

https://www.infoq.com/articles/roy-fielding-on-versioning/
https://www.infoq.com/articles/roy-fielding-on-versioning/
https://editor.swagger.io

1.7. Design and Evolution of REST APIs

about the user context, to adapt the UI. However, API evolutions are not considered in this
work.

Another approach is LD-Reactor [131]. It builds a component-based UI from a configuration
indicating which Linked Data-sets to retrieve. Thus, the UI is aware of data requirements.
However, the use of SPARQL endpoints through RESTful API prevents clients to adapt to API
evolution because graph, database-like, queries are sent to one single endpoint per API.

1.6.7 Synthesis and open challenges in the modern web

The co-evolution of systems has been an important research topic within the software mainte-
nance community. However, applications to the Web are less numerous. The automatic program
repair techniques that are effective with statically typed and compiled languages are not suitable
to the Web. Indeed, the web exhibits a strong technological heterogeneity between the UI and the
server and the common use of dynamically typed programming language to develop the UI parts.
These properties make static analysis work more complex. Adapter-based techniques are trans-
parent from the client perspective but are able to address too few kinds of API evolutions. The
automatic generation of the client based on the API documentation gives great loose-coupling
properties but is hard to configure. It is therefore too complex to build applications of good
quality with such approaches. In addition, a UI can be costly to redeploy within an industrial
project. Indeed, it was reported that redeployment takes from one week up to six months in
66% of the corporations [18]. This creates a barrier to automatic co-evolution, generation, and
automatic program repair techniques that need to modify the UI’s code when the API evolves,
which requires application redeployment. In the end, the most effective approach is the use of
evolution policies. They however considerably reduce the ability of the API to evolve, which is
not a desired property in the web.

In this work, we argue that a fifth kind of approach is required to enable APIs to evolve
in autonomy without breaking clients. Web API clients, especially user interfaces, should be
implemented differently. They should be enabled to interpret the API contracts at runtime to
continuously adapt their interactions with the APIs along with the user interface in order to
maintain compatibility with the evolving API without requiring code changes. We name this
property evolvable-by-design, a term that we define later in this work.

1.7 Design and Evolution of REST APIs

The two contributions of this thesis address the challenges of the break-free co-evolution of
REST APIs and their clients and the selection of the right set of technologies to create a REST
API of a given level of functionality.

To understand how REST API technologies can be selected, it is necessary to understand

75

Part, Chapter 1 – Background and state of the art

the two main approaches to designing a REST API interface. We therefore review them in this
section and discuss hypermedia controls, which are often discussed in the REST API design and
documentation communities.

This section also presents the taxonomy of existing REST API evolutions. We base our work
on the co-evolution of REST APIs on this taxonomy. Therefore, it is a necessary background
for understanding the contribution. Furthermore, since the taxonomy is significantly influenced
by how REST APIs are designed, we also present this topic in this section.

1.7.1 Designing the interface of a REST API

The Uniform Interface constraint of REST is probably the one that has been confusing
practitioners the most for the past 20 years. It is "the central feature that distinguishes the
REST architectural style from other network-based styles" but in his dissertation, Fielding does
not provide an implementation example nor clear guidelines on how to achieve the Uniform
Interface constraint.

While developers could easily identify how to achieve identification of resources, manipulation
through representations, and self-descriptive messages, there are several practices for the design
of the API interface itself and the use of Hypermedia As The Engine Of Application State
(HATEOAS). Indeed, by studying 78GB of HTTP traffic collected by Italy’s biggest Mobile
Internet provider over one full day in October 2015, Rodriguez and colleagues observed that
95% of the REST API do not implement the Hypermedia as the engine of application state
constraint [139].

The design of the interface that a REST API exposes generally falls under two categories:
CRUD or CQRS. This separation actually reflects the trade-off that Fielding foresaw. The state-
ment "uniform interface degrades efficiency, since information is transferred in a standardized
form rather than one which is specific to an application’s needs" ended up to be true. In ad-
dition to the degradation of efficiency, a uniform interface prevents the design of an expressive
interface reflecting the application domain. To observe this, the reader should first understand
the CRUD paradigm, which is the paradigm that corresponds the most to Fielding’s description
of a uniform interface. Leveraging the description of CRUD, we will then review how interfaces
can offer more business meaning thanks to the CQRS pattern.

CRUD REST APIs. The first manner to design the interface of a REST API is to follow
the CRUD paradigm. CRUD stands for Create Read Update Delete. They are the only four
operations that can be available on a resource of a CRUD REST API. To read a resource,
a user would use the GET method of the HTTP protocol. The creation is achieved with a
POST, complete update with PUT, partial update with a PATCH, and the DELETE method
is used for removal. One consequence of this design is that the update of a resource should not
result in the update of another resource. This brings predictability to the system. In addition to

76

1.7. Design and Evolution of REST APIs

these operations, the OPTIONS method can be used to retrieve the available operations on the
resource, the supported representations, and eventually the resource data schema.

The CRUD approach is the simplest and most standardized. It is also quick to implement.
For these reasons, it is often the methodology that students learn in the first place. Another
advantage is that the users can change the business process without the need to change the
application. This is because the client holds the logic of the process. In the end, this methodology
is particularly suited for the use cases where direct and complete remote access to raw data is
necessary. Such kinds of applications are usually named data-centric. It is however difficult for
the API server to discover the user’s intent. Consequently, the management of complex business
processes and access rights is challenging. Moreover, the REST API server (and code) is missing
any knowledge about the application’s domain, reducing its ability to implement advanced data
consistency mechanisms. The CQRS pattern addresses this issue.

Co-evolution wise, the high standardization reduces the potentially changing elements to the
data representations, the URL patterns, and the available methods only. Still, managing the
co-evolution of these elements is challenging.

CQRS REST APIs. This pattern emphasizes Command and Query Responsibility Seg-
regation (CQRS). It aims at enabling the design of process-centric applications, as opposed to
data-centric applications.Queries return data but should not change data. Commands encapsu-
late business processes, they are used to modify data and should not return data; this is left to
the query side. In practice, when within a CRUD approach a user would execute a CreateUser
action, followed by ActivateUser and finally SendUserCreatedEmail, within the CQRS approach,
the user would execute a RegisterUser command which would execute the previously mentioned
three actions 54.

To apply the CQRS pattern to a REST API, the commands and queries must be consid-
ered addressable resources and should be executable with the relevant HTTP request meth-
ods according to their semantics. The RegisterUser command can for example be at POST
http://my-example-api.com/users/register. The POST method denotes that it is not an idem-
potent operation and the URI naming tries to explicit the operation’s purpose. Queries are easier
to design, there are no differences with the CRUD pattern: resources are addressable and the
GET method should be used to retrieve their representation.

With a business-centric API, the client should not need to implement the business processes
logic anymore. However, not all business processes can be reduced to a single operation. For
example, ordering a product from an online shop requires sending several commands. This ap-
proach thus significantly reduces the amount of business processes logic that the client embeds
but can not remove it all.

Considering the interface, the REST APIs that follow this pattern offer more expressive,

54. The example is from: https://herbertograca.com/2017/10/19/from-cqs-to-cqrs/

77

https://herbertograca.com/2017/10/19/from-cqs-to-cqrs/

Part, Chapter 1 – Background and state of the art

easier to understand, interfaces thanks to the added domain semantics. It also clarifies the
user’s intentions. For these reasons, it is an architectural pattern that has been widely adopted
in the enterprise.

The documentation and co-evolution of CQRS REST APIs present different challenges com-
pared to CRUD REST APIs. Being less standardized and emphasizing the creation of more
operations, all these operations must be documented and more kinds of elements must be co-
evolved.

However the kind of REST API interface design, Fielding claims that applications must
leverage the Hypermedia As The Engine Of Application State constraint to reduce coupling
between REST API clients and servers in order to enable complete freedom towards the evolu-
tivity of the applications, which include the servers. It is however not clear how to leverage this
constraint, which we discuss in the following paragraphs.

1.7.2 Hypermedia As The Engine Of Application State in practice

We previously saw that one of the constraints of the REST architecture is that a REST
API should include hypermedia controls (e.g. hyperlinks) in its responses so that the user can
navigate the REST API without any prior knowledge of it, similarly to how people navigate
websites.

It is often stated that users should be able to be communicated the base URL of the REST
API, get the representation of the corresponding resource, and then use the returned hypermedia
controls to navigate the API step by step (here, the user is the Web application, not the end-
user). However, end-users do not always navigate on a Web application from its root, they
usually bookmark the page they are interested in and open these pages directly. These pages
therefore need to load one to many resources from the API to be able to render. Sticking to the
aforementioned principle, the Web application should therefore intelligently browse the REST
API to discover the path to the data. It would then retrieve the data and display the page.

As a reminder, the goal behind this mechanism is to provide loose coupling between the
components in order to enable the independent evolution of both the clients and servers on the
Web. Indeed, in an interview in December 2014, Roy Fielding said "Hypermedia is a constraint.
As in, you either do it or you aren’t doing REST. You can’t have evolvability if clients have their
controls baked into their design at deployment. Controls have to be learned on the fly. That’s
what hypermedia enables" 55. This property is however not yet reached in the Web.

In practice, this mechanism raises many questions and remarks. As an example, we will
discuss some of them but we will not review the comprehensive list of them. First, this is not
efficient. Could not we directly access the resources instead of starting from the REST API’s

55. Roy Fielding on Versioning, Hypermedia, and REST: https://www.infoq.com/articles/
roy-fielding-on-versioning/

78

https://www.infoq.com/articles/roy-fielding-on-versioning/
https://www.infoq.com/articles/roy-fielding-on-versioning/

1.7. Design and Evolution of REST APIs

root, which imposes making several network calls? Second, how should the hypermedia controls
be represented and how should the client select them?

Let’s start with the selection problem. In practice, we design data structures with keywords.
A Company is likely to have employees. So, a REST API managing the list of the employees of
a company is likely to place an hypermedia control to the list of employees on its "home page".
To access this list, the Web application would load the home page and follow the employees
keyword to get the list of employees. As a result, the employees keyword must be known by
the Web application. Maintenance-wise, this prevents the Web application from breaking if the
URI to the employees is changed. Now, what if the REST API designer prefers to use talents
instead of employees, to use a more rewarding word? (which many companies are doing to talk
about their employees these days). In this case, the Web application would be broken because it
uses the outdated keyword. One can argue that coupling is reduced, but there are still elements
introducing a tight coupling: the keywords in place of the URIs. As a consequence, we may be
looking for other techniques to select hypermedia controls, which practitioners have been doing.

Now, let’s discuss the representation. If the REST API strictly follows the CRUD approach,
it could use OPTIONS requests to discover how to build correct requests to the REST API and
the other HTTP request methods to interact with the data. Coupling seems minimal. However,
the use of the OPTIONS method is not a formal constraint and most developers do not even
know the method. Moreover, considering an API that implements paging, filtering, and order-
ing mechanisms, how can the Web application discover the available parameters dynamically?
Should it leverage the OPTIONS method or accompany the hypermedia controls with pieces of
documentation? The questions become more complex when we start to address CQRS REST
APIs. In this case, more operations are usually available. And each operation has its own input
parameters. Complex query operations are also more frequent. Consequently, practitioners face
more questions regarding the use of hypermedia controls and the documentation of the REST
API.

As the last example, we consider that developers figured out how to represent and select
hypermedia controls. The next question that they face is: how to leverage them to have minimal
coupling with the REST API? what kind of information do they give us to prevent maintenance
when the REST API is evolved? It is still unclear how these controls should be used to com-
municate access rights or represent business rules. On the one hand, one could argue that all
hypermedia controls related to a resource should be communicated with the resource, however
the context. On the other hand, hypermedia controls may be communicated only if the user
is allowed to invoke them, and if the target operation is available in the current state of the
resource. Doing so however prevents the user from knowing all possible state transitions. In ad-
dition to this, it is also unclear whether the hypermedia controls should only communicate the
state transitions of the represented resource or if they should also be used to suggest navigation

79

Part, Chapter 1 – Background and state of the art

paths.
Open Challenges. In the previous discussion, we saw that the representation and selection

of hypermedia controls can be done in many different ways. The diversity of the open-source and
academic propositions for the description of hypermedia controls confirms this. Such diversity
tends to confuse practitioners who must understand the differences between them to choose the
right technology for their needs. A solution to this problem is proposed in this thesis (see 3). In
addition, it is unsure if hypermedia controls are sufficient to reduce the client-server coupling
to the point where the REST API server can evolve independently without breaking clients. As
one example, using keywords to select hypermedia controls proved to introduce coupling. We
therefore argue that HATEOAS is not sufficient to address all kinds of REST API evolutions
and that more mechanisms are necessary. We explore this question in the second contribution
of this work (see 4).

1.7.3 How REST APIs evolve?

We saw several times that REST APIs can be evolved at run-time, sometimes breaking their
clients. In the following chapters of this thesis, a new approach to the co-evolution of REST APIs
and their clients is presented. To understand this work, it is necessary to know how REST APIs
can actually be evolved. So, in this section, we first review the kinds of REST API evolution,
from a technical perspective. Second, we will discuss for what reasons practitioners decide to
evolve their REST APIs.

The 22 kinds of REST API evolution

As observed by Sohan et al., who studied public, widely-used, REST APIs, they tend to
evolve frequently [140], particularly the young APIs that companies keep internally. Yet, little
research studied how REST APIs evolve. A first work [141] identified 16 evolutions in 2013 and
was extended in 2015 [140] with 6 other patterns. Another work was done by Wang et al. in
2014 [142]. Table 1.1 lists these 22 evolutions where the breaking (7) and non-breaking (3)
evolutions are differentiated. Non-breaking evolutions relate to behavioral elements. While they
don’t break at compile-time, they may create inconsistent behaviors. For example, 14 (“Change
default value of parameter (non-breaking)") can lead the ordering process of an e-commerce
website to become impossible to complete in certain cases when the user inputs unaccepted
values.

Why do practitioners evolve their REST APIs?

The reasons that motivate developers to evolve their REST APIs are very similar to the
reasons motivating developers to evolve any kind of system, especially the systems that have

80

1.7. Design and Evolution of REST APIs

Table 1.1 – List of evolutions of RESTful APIs

From existing studies

1 Add or Remove Parameter (7 breaking)

2 Change Type of Parameter (7 breaking)

3 Change Type of Return Value (7 breaking)

4 Delete Method (7 breaking)

5 Rename Method (7 breaking)

6 Rename Parameter (7 breaking)

7 Change Format of Parameter (7 breaking)

8 Change Format of Return Value (7 breaking)

9 Change XML Tag (7 breaking)

10 Combine Methods (7 breaking)

11 Split Method (7 breaking)

12 Expose Data (7 breaking)

13 Unsupport Request Method (7 breaking)

14 Change Default Value of Parameter (3 non-breaking)

15 Change Upper Bound of Parameter (3 non-breaking)

16 Restrict Access to API (3 non-breaking)

17 Move API elements (7 breaking)

18 Rename API elements (7 breaking)

19 Behavior change (3 non-breaking)

20 Post condition change (3 non-breaking)

21 HTTP header change (7 breaking)

22 Error condition change (3 non-breaking)

81

Part, Chapter 1 – Background and state of the art

clients.

The first reason that naturally comes to mind is the addition of new features. Within a
REST API, it can result in the addition of properties to resources to provide more information,
of methods, or even of new resources.

Second, developers evolve REST APIs to reflect changes in the exposed domain processes. We
saw that CQRS REST APIs are used to offer process-driven services. As with any process, they
are influenced by regulations, users’ needs, organizational constraints, and so on. For example,
a regulation enforcing website providers to collect the users’ id card numbers when subscribing
would force many REST APIs to add this field to their subscription operation. Similarly, enforc-
ing the use of passwords that are at least 8 characters long would also force providers to update
the API. These kinds of changes are somehow technical as they do not change the feature nor
add value to the API. We therefore argue that they should be automatically supported by the
clients and that evolving the client manually does not add value.

Developers may also refactor the interface. Refactoring can modify any kind of element of
the REST API. They can thus impact the features offered by the API, or not. There can be
many reasons motivating a refactoring.

Let’s first consider refactoring that should not impact features. As a first example, developers
may have created the API with limited knowledge of the domain. Over time they gain a better
understanding of it and finally judge that the interface can be improved to better match the
domain. In this case, keywords, resource, and operation names are likely to be changed along with
the data structures. However, the features are less likely to be changed. This kind of refactoring
could ease future developments by aligning the words used in the interface with those that the
developers use to work, and also ease consumption by clients who are familiar with the domain.
Another reason motivating a refactoring can be the willingness to follow new trends. With time,
clients’ expectations may change. Indeed, in recent years we observe that (buzz) words can be
powerful to drive adoption. Changing the data interchange format or data structure may also be
effective. Also, developers are likely to introduce naming inconsistencies in their API over time.
For example, sometimes they write fullName and sometimes fullname, one day they decide to
standardize. They can also make design mistakes such as using the wrong HTTP methods, or
decide to follow new design recommendations. And finally, who never left work after a long day of
development and realized a few hours later that it is absolutely necessary to refactor everything
the next morning? And who never had to maintain another team’s code, and "observed" that it
MUST be refactored? (for obviously objective reasons). The point is that there are also subjective
reasons motivating developers to refactor code. In the end, because such kinds of refactoring do
not change the features, we argue that they should be automatically supported by the clients.

Other refactorings may however modify the features offered by the REST API. For example,
the transition from a CRUD to CQRS REST API would transform the interface in-depth and

82

1.8. Synthesis

therefore require to rethink the usage of the API on the client-side. As another example, an
operation can be split into several operations to offer a different path to go through a process.
In such cases, the semantics of the interface is significantly changed. We argue that designers
should study how to evolve the client when such changes are done. There may however be some
ways to keep compatibility with the evolving API during this study, which we study in the
second contribution of this thesis (see chapter 4).

1.8 Synthesis

Figure 1.12 – Overview of the problems, research and limitations presented in Chapter 1

A visual synthesis of the state-of-the-art and open challenges for the simplified creation
and break-free evolution of Web APIs is given in Figure 1.12. The figure highlights the main
peculiarities of the research topic presented in this section along with the open challenges that
we identified.

In this section we saw how the World Wide Web evolved, pushed by the increasing speed
of Internet connections and the increasing number of users. From a place where webmasters
pushed content, the Web rapidly became a highly collaborative place where all users publish
and consume content from numerous services. Then, smartphones arrived and people started
to demand access to the same content on all their devices. Developers thus started to split
applications into three parts: a REST API, a Web user interface, and a mobile application. In
addition, users wanted the sharing of content between services to be easy. This resulted in a

83

Part, Chapter 1 – Background and state of the art

modern Web that is highly distributed, where systems from all vendors communicate with each
other via REST APIs. Then to ensure the high availability of the services on the Web, developers
adhere to rigid interface contracts and follow strong evolution policies. Otherwise, applications
can break.

As a result, while the Web has succeeded in becoming the envisioned global information
system, that is highly available and very reliable, the promise of a loosely-coupled architecture
is not met. Contracts are not interpreted by the API clients but are mainly hard-coded. Most
of their evolutions can therefore break clients, which is unacceptable in the modern web.

Solutions to these problems have not yet been proposed. On the one hand, we saw that
software contracts are well categorized and that many research address their description or au-
tomatic generation. However, with millions to billions of systems in the Web, developers’ needs
can vary significantly, preventing the design of a one-size-fits-all solution. Moreover, as repre-
sented in the green box of Figure 1.12, research is being carried out with varying objectives,
resulting in many available interface description languages, serialization format, and implemen-
tation frameworks. So, for a Web API creator, the selection of the relevant set of technologies
to use is a difficult and error-prone task. Erroneous decisions regarding these technologies can
significantly reduce the productivity of the API developers and lead to a decreased design qual-
ity. We thus identify an open challenge towards making the process of selecting the best set of
technologies to design, document, and implement a Web API that meets the target functionality
level and design quality.

On the other hand, consequent energy has been put into the exploration of techniques to
automate otherwise extensive manual tasks, leveraging the technologies of the semantic web.
Such techniques could have turned the Web into a loosely-coupled place. However, as represented
in the red box of Figure 1.12, semantic description, automatic service discovery, integration,
and composition techniques have not reached wide adoption due to their perceived complexity
and insufficient performance to be used as fully autonomous systems. Recent efforts such as
JSON-LD proposed a JSON format that can embed semantic descriptors in order to bridge the
gap between Semantic Web and REST API technologies. Now, an example that demonstrates
how semantic Web technologies can be used to simplify developers’ life is missing. If adoption
increases, previous research is more likely to be explored in more detail and then adapted for
use with the modern web. Because one of the major pain points in the Web is the co-evolution
of the REST APIs and their clients, we argue that such an example can come from exploring
this topic.

We therefore explored the co-evolution domain. A summary of these approaches is given in
the blue box of Figure 1.12. We saw that early approaches proposed to automatically detect
evolutions and adapt the code following automatic program repair techniques, but applying
these approaches in the highly heterogeneous Web is not realistic. Adapter techniques hide

84

1.8. Synthesis

the evolution from the client perspective which results in the support of a few sorts of API
evolutions. Additional approaches are therefore necessary. The automatic generation of User
Interface components is appealing but configuration generators end up being too complex to
provide convincing results. Finally, the most effective and popular approach for co-evolution in
the modern Web is to keep several versions of an API online and to limit the possibilities to
evolve an API by defining evolution policies. However, this approach does not improve coupling
but avoids facing defects and therefore considerably reduces the freedom of the developers to
evolve their services. This is however not a desired property in the Web. We therefore identify a
second major challenge regarding Web APIs. API providers should be able to evolve their APIs
freely.

85

Chapter 2

THESIS OVERVIEW

Overall, in this thesis, we tend to address the major scientific challenges faced by REST API
providers throughout the entire life cycle of their REST APIs. Figure 2.1 puts the contributions
of this thesis in perspective with the life cycle of REST APIs.

Figure 2.1 – Overview of the contributions of this thesis, put in perspective with the life cycle
of a REST API

As the figure depicts, the first task is to define and specify the requirements of a REST
API. This is a task that does not present major challenges and can usually be achieved in a few
hours. The most challenging part of this task is to find an agreement between all stakeholders,
which is out of the scope of computer science research. Next, the technologies must be chosen.
In chapter 1, we saw that many technologies are available to design, document, and implement
REST APIs. In addition, practitioners seem to be satisfied with these technologies as no major
new technology appeared in the past four years. The following step is the implementation,
testing, and documentation of the API. To achieve this, many helpful technologies are well

87

Part, Chapter 2 – Thesis overview

identified and many learning resources are available. Thus, practitioners do not face significant
challenges. Thanks to modern cloud technologies, the deployment of a REST API is an easy
task. The maintenance and evolution of a REST API are however challenging. Indeed, we saw
in chapter 1 that existing techniques are not able to enable the break-free co-evolution of REST
APIs and their clients. Indeed, the current practice is to limit evolution.

We therefore identified two major challenges preventing the easy creation and break-free
evolution of REST APIs. First, we saw that due to the wide variety of technologies available to
design, document, and implement REST APIs, the selection of the proper set of technologies to
use for a given project is a difficult task for the REST API architects and developers. Second,
when the API is up and running, evolving it is challenging because of the important risk to
break clients.

As a first contribution of this thesis, we analyze the differences and similarities between the
36 technologies that we identified to design, document, and implement REST APIs. Based on
this analysis, we proposed three comparison matrices that help practitioners select the set of
technologies to use for their needs. We then demonstrate how the matrices can be leveraged on a
realistic example. To facilitate the selection, we have developed a Web assistant, named Morice.

As a second contribution of this thesis, we tackle the evolution issues by proposing a novel
approach to the co-evolution of REST APIs and their clients. As a first step, we challenge
the existing taxonomy of REST API evolutions by surveying professional Web developers. We
thus complete the taxonomy with 7 new kinds of evolutions. Then, to design our approach,
we leverage semantically enriched contracts descriptions and dynamic contract resolution. The
general idea is that instead of hiding the evolutions from the client perspective, or instead of
modifying the code, which implies a new deployment, REST API clients should be designed
evolvable-by-design, a term that we introduce. Concretely, REST API clients should become
able to discover and interpret the contracts of the REST API at runtime. By doing so, a client
can produce correct REST API interactions at any moment in time, even when the API is
evolved. Such an adaptation occurs at runtime and therefore does not require the modification
of the client code. Moreover, as the client user interfaces are designed to deliver a precise set
of features to the end-user, with a carefully designed user experience, the interface should not
be generated but slightly adaptive, where the designer permits this. We validate the feasibility
of our approach through a quantitative analysis in the form of a case study that mimics Jira
and implements 110 API evolutions and through a qualitative analysis where we implement our
approach on 5 open-source web applications that implement 20 evolutions of 10 types. As a
result, the approach proved to enable the design of Web UIs that automatically adapt to 27 out
of the 29 known types of REST API evolution.

These two contributions tend to address the major scientific challenges faced by REST API
providers throughout the entire life cycle of their REST APIs. They are presented in the following

88

two chapters. At the end of this document, we present opportunities for future research aiming
at further evaluating the approach presented as a second contribution and at leveraging the
opportunity of having break-free clients in the Web to automate more things in the Web.

89

Chapter 3

COMPARISON MATRICES OF REST APIS
TECHNOLOGIES

This chapter presents the first contribution of this thesis. It tackles the
first challenge presented earlier: the difficult selection of the proper set
of technologies to design, document, and implement a REST API of
a target maturity level. In this chapter, a set of criteria is proposed
to compare these technologies. Next, the criteria are leveraged for the
design of three comparison matrices: one for each category of technology.
Then, an example demonstrates how the matrices can be used for the
selection of the technologies. Finally, to further ease the selection, an
online and open-source assistant is proposed and its usage is presented.

Foreword

This chapter presents the first contribution of this thesis [29]. It has been published at the
International Conference on Web Engineering in 2019.

3.1 Introduction

In chapter 1 we saw that RESTful APIs [28] have become the de-facto standard to design
services on the Web. However, 95% of them are not RESTful [139] as they claim. We can explain
this in two different manners. On the one hand, developers do not know the REST architecture
well enough to be aware that they are not RESTful. We can also argue that not all projects need
full compliance with the REST architecture. Partial compliance may actually be sufficient for
some systems, as each one has its own constraints. On the other hand, the partial compliance
can be explained by the fact that it is not clear how to leverage the Hypermedia As The Engine
Of Application State constraint in practice.

In addition, a new trend has recently emerged to create RESTful APIs that carry their own
semantics, they are called Semantic RESTful APIs [2]. It is a vision that proposes to make

91

Part, Chapter 3 – Comparison Matrices of REST APIs Technologies

REST APIs compatible with the Semantic Web [37] and Linked Data [82]. As discussed in 1.5,
such compatibility can offer great benefits, such as loose-coupling, automated API discovery,
integration, composition [143] and very powerful querying.

There are thus many recommendations within the REST and Semantic REST architectures
on how to design Web APIs. However, not all systems need all the properties of these architec-
tures. Architects therefore have to select the recommendations that are relevant or not for the
system that they design.

Moreover, we saw in chapter 1 that many technologies have been proposed to describe web
API contracts, either with or without semantics. We counted 36 technologies of this kind. Conse-
quently, architects and developers are facing the challenge of selecting the right technologies for
the design and implementation of their services. Typically, they have to select the right interface
description language (IDL), interchange format, and framework to ease the development of such
services. However, the specific criteria and properties to be taken into account are not explicit
when choosing an IDL, an interchange format, and a framework. This considerably increases the
complexity for the architect to choose the appropriate technology.

The industrial needs are growing for proper tools to support trade-off decisions of the archi-
tect; a tool that would help him/her to understand the consequences of a design decision, i.e.
the characteristics and limitations of each approach.

In this work, we propose to fill this gap by providing three decision matrices that help
architects to choose the technologies that will best fit their needs. The main contributions of
this work are:

— three comparison matrices of interchange formats, interface description languages and
frameworks that help to choose the appropriate set of technologies to build Semantic
RESTful APIs;

— key features that are missing from state-of-the-art technologies to assist and make the
creation of Semantic RESTful APIs more beneficial.

In this chapter, section 3.2 provides the required background on Semantic REST APIs and
the reference maturity model to choose the functionality level of an API along, with its limitation.
The two following sections describe our comparison matrices and an illustration that highlights
the benefits of our proposition. Finally, section 3.5 discusses the role of the existing frameworks
to build Semantic REST APIs.

3.2 How to select and evaluate an API functionality level?

This section describes the main concepts related to the design and implementation of Se-
mantic RESTful APIs and the process of selecting an API functionality level. It also discusses
the

92

3.2. How to select and evaluate an API functionality level?

3.2.1 Semantic RESTful services

Combining REST with Semantic Web and Linked Data is a promising path since it could en-
able the description of APIs that can change without breaking client applications (see chapter 4).
These APIs advertise their available state transitions, therefore enabling automatic composition
to create high-level services [144]. Smart software agents can then automatically discover the
suite of operations to realize complex workflows and even make APIs compatible with voice
assistants. This is achieved by semantically enriching the data and operations of REST systems
with Semantic Web ontology technologies and by linking resources to other resources.

3.2.2 Selecting an API functionality level

Today, Web systems offer a wide range of functionalities. For example, they may offer multiple
media types or a single one, comply with the HTTP protocol or use it as a transfer protocol,
or even semantically describe their resources. This diversity can make the process of comparing
and selecting the minimum set of features to be implemented very time-consuming. Maturity
models have been proposed as a solution to this problem [145, 2].

In companies, architects and developers use them to decide features that must be supported
by their APIs. In general, a maturity model is a scale that represents the compliance of a
technology with a given architecture. To reach a level, a technology must meet each constraint of
the targeted level and the previous levels. Currently, the de-facto standard in the industry is the
Richardson Maturity Model [146], which targets building REST APIs. However, we recommend
using the WS3 maturity model [2] as it combines the models proposed by Richardson, SoHA
[147], and extends them with semantic and documentation constraints.

The WS3 maturity model In [2], authors describe the WS3 maturity model for classifying
Semantic REST Web APIs. It classifies APIs along three independent dimensions: design, profile
and semantic, as shown in Fig. 3.1.

The design dimension represents the different modeling strategies adopted for designing
the technical access to a Web API through four levels: (i) RPC, (ii) resources have dedicated
URI and the API is stateless, (iii) operations on a resource are mapped to HTTP methods in
compliance with the protocol, and (iv) the smallest data unit that can be handled by operations
is the resource.

The profile dimension reflects the quality of documentation that can be interpreted by
software agents through two levels. The first level: interaction profile, requires the description
of the syntactical contracts, i.e. all available HTTP operations and how to trigger them. The
second level: the domain profile, requires the description of domain-specific details such as the
order of operation execution, pre-conditions and post-conditions, business constraints, etc. This
last level corresponds to the behavioral and synchronization contracts.

93

Part, Chapter 3 – Comparison Matrices of REST APIs Technologies

Figure 3.1 – WS3 Maturity Model (from [2])

The semantic dimension represents the use of semantic technologies through two levels.
To reach the Semantic Description level, an API must semantically describe properties and
operations of resources. The next level: Linked Data, is reached when the API semantically
describes relationships between resources.

Usage In their paper [2], Salvadori et al. propose to rate systems along each dimension inde-
pendently, with a score going from 0 to the number of levels in the dimension. For example, a
non-documented API with no semantic support that reaches level 3 of the Richardson Maturity
Model will be rated D3-S0-P0 1. As another example, a system that supports HATEOAS and
provides swagger-like documentation along with the data is rated D3-S0-P2 2.

3.2.3 Discussion on the WS3 maturity level

At Fabernovel, we experienced two limitations to the applicability of the maturity model to a
wider audience. These limitations are related to the Atomic Resources level and the granularity
of the WS3 levels.

According to WS3, the Atomic Resources constraint requires that the resource is the small-
est data unit handled by operations. It corresponds to the design of CRUD REST APIs. As
discussed in 1.7, respecting this constraint may introduce negative properties in the API. Let

1. D3-S0-P0: Atomic Resources Design, no Semantic Description, no Profile description
2. D3-S0-P2: Atomic Resources Design, no Semantic Description, Domain Profile

94

3.3. Comparison Matrices

us consider an API handling insurance contracts that offers read and update operations on the
postal address, email address, and insurance manager. Two solutions can be considered to re-
spect the Atomic Resources constraint. The first solution is to create one resource, where every
property can be modified at once, which increases the risk of concurrent modification. With this
solution, the API would have two operations. The second solution is to create one resource for
each concept: contract, email address, postal address, and the manager. The API would have
eight operations. This solution increases dramatically the number of operations which complex-
ifies the documentation and maintainability. Another solution would be to create one resource
with four operations: (i) read, (ii) update email, (iii) update postal address, and (iv) update
manager. This solution lowers the concurrency risk while maintaining a reasonable complexity
and offering meaningful operation names. Unfortunately, this solution breaks the Atomic Re-
sources constraint. We therefore argue that respecting this last constraint may not always lead
to better API quality.

The second limitation relates to the granularity of the maturity levels. Indeed, each level
implies more than one feature. This granularity allows for a coarse-grained categorization of
systems. However, to precisely differentiate systems based on the features they implement, a
deeper study is needed. Given two systems that reach P1, which means they describe all available
HTTP operations and how to trigger them, one might also describe its authentication process
and errors while not the other one. And yet they reach the same maturity level. We therefore
argue for a finer grain categorization of APIs.

3.3 Comparison Matrices

We propose three detailed matrices which address the limits of WS3 identified in the previous
section. The proposed matrices enable the comparison of technologies along a set of precise
criteria to highlight their differences. These matrices extend the WS3 levels by adding new
criteria which are used in practice (see section 3.3.1) and are not linked to any WS3 levels.

3.3.1 Insights from developers and architects

We interviewed 14 developers and architects from FABERNOVEL and clients on their ex-
perience with Semantic REST technologies. Raw results and the analysis are available online 3.
Our key findings are:

— Selecting the technology: 10 respondents have already built Semantic REST APIs: 30%
spent more than two weeks selecting the technologies; 80% reported that the most difficult
task was to understand the feature provided by each technology.

3. https://github.com/AntoineCheron/comparison-matrices-semantic-rest-api-techno

95

https://github.com/AntoineCheron/comparison-matrices-semantic-rest-api-techno

Part, Chapter 3 – Comparison Matrices of REST APIs Technologies

— Interchange Formats: 6 out of 7 did not find a technology providing all required features
(most often the missing features were the description of HTTP operations with their data
model (3/8) and the Linked Data (2/8)).

— Interface description languages: All respondents said that none of them provide all required
features (60% said they lack the ability to describe links to other resources and business
constraints; and 20% of them would like to model the resources as finite state machines
(FSM)).

— Frameworks: 6 out of 7 reported that no framework offered the required feature. The miss-
ing features are related to the auto-documentation of the API, the automatic generation
of links, and a mechanism to model resources as FSM.

— Technology score: The median value of the score is 2/5.

These results emphasize the difficulties in selecting technologies associated with Semantic
REST APIs. They also highlight that these technologies are not yet mature and give a rough
idea of the missing features.

3.3.2 Comparison Matrices Design Method

The design of our comparison matrices follows a 5-step sequential process: (i) search for
candidate technologies, (ii) select candidate technologies, (iii) read carefully each candidate
technology, (iv) elaborate fine grain criteria to characterize and differentiate technologies, (v)
verify that the elaborated criteria highlighted the differences between technologies. We looped
on step (iv) and (v) to avoid duplicating criteria or hiding important details.

The research of candidate technologies (step i) was done by:

1. Searching Google and Google Scholar for Semantic REST Technologies using combina-
tions of keywords from the set: [“web”, “semantic”, “restful”, “rest”, “service”, “API”, “in-
terface”, “description”, “documentation”, “language”, “modeling”, “hypermedia”, “docu-
ment”, “format”, “RDF”, “data-interchange”, “linked data”, “hateoas”, “rest api”, “frame-
work”];

2. Searching Google Scholar for tools automating tasks from services description, using key-
words: “matchmakers”, “service composition”, “service discovery”, “rest service analysis”,
“automated mashups”, we then selected papers and technologies from their references and
the papers that cite those we selected;

3. Searching the proceedings of ICWE and WS-REST.

We selected 81 papers, standards, articles, and web pages (step ii) based on abstract or
introduction. We selected documents that were specifications of interface description languages
or models, frameworks supporting HATEOAS features, interchange formats that support RDF

96

3.3. Comparison Matrices

or HATEOAS features, comparisons between these technologies or tools leveraging them. We
considered frameworks available as programming libraries that help implement HTTP APIs in
any programming language. We opened our research to technologies from the 1990s to today
and retained those that are still available today.

Then, we read the specification of each chosen technology (step iii) and elaborated classi-
fication criteria (step iv). We included those of the H Factor 4 which is a measurement of the
level of hypermedia support and sophistication of a media-type. Others were carefully designed
to highlight differences between technologies, based on the core design of the technologies, the
features they provide, and the details of the WS3 maturity model. All the material is available
online 5.

As a final step (step v), we read the specifications again to verify results and validate that
the selected criteria highlighted differences and commonalities well.

Popularity criteria We defined a popularity criteria to provide a rough idea of the community
support and the likelihood of the technology to last in time. It respects the following rules: 0
- Not enough to reach 1; 1 - More than 100 questions on Stack Overflow AND (2500+ NPM
weekly downloads OR 100+ maven usages); 2 - More than 400 questions on Stack Overflow
AND (500.000+ total downloads OR 15.000+ NPM weekly downloads OR 500+ maven usages).

3.3.3 Interface Description Languages

Interface Description Languages (IDLs) provide a vocabulary to document domain, func-
tional and non-functional aspects of an API. We identified 16 candidates that are classified
according to 31 criteria in Fig 3.2. Among them, 4 are meta-models from conference papers
[69, 148, 149, 150]. The 11 others are open-source projects or W3C recommendations.

In [148] authors present a tool to sketch CRUD or Hypermedia APIs. On the latter mode,
users sketch the application using state machines and then obtain a description in the HAL
or Collection+JSON format. [149] models each resource type as a finite-state-machine with
deterministic transitions and conditions to inform about the availability of transitions. However,
they are not modeled in more detail, which make them not machine-interpretable. In [150],
authors propose to model systems as non-deterministic state machines. This method thus makes
software agents unable to discover the set of messages to exchange in order to make an operation
available. Haupt et al. [69] propose a multi-layered model that separates the domain model from
the URI model. However, resources have a fixed model, which prevents them from having one
data model per state.

It is important to note that when IDLs and interchange formats are both compatible

4. http://amundsen.com/hypermedia/hfactor/
5. https://github.com/AntoineCheron/comparison-matrices-semantic-rest-api-techno

97

http://amundsen.com/hypermedia/hfactor/
https://github.com/AntoineCheron/comparison-matrices-semantic-rest-api-techno

Part, Chapter 3 – Comparison Matrices of REST APIs Technologies

with RDF, they can be combined to form a file format usable as data-interchange format and
IDL. This has great benefits to lower the overall complexity and increase the evolvability of the
system.

Synthesis

First, the matrix highlights the fact that most technologies help with building mature systems
on the design dimension and interaction profile level of the profile dimension, D3-P1 following the
WS3 categories. On the other hand on the semantic dimension, we notice that 5/16 technologies
support the use of RDF vocabulary, which allows building Linked Data APIs. As a reminder,
this is required to reach full Semantic REST compliance. Moreover, by supporting the use of
RDF vocabulary, IDLs can be enriched to reach a higher level of maturity.

Among the technologies, four can be distinguished by the number of criteria they meet:
Hydra (18), RADL (18), OpenAPI (17), and RESTdesc (17). OpenAPI is the only one that has
no support for RDF. Thus, it helps in building systems up to D3-P2-S0 on the WS3 scale. On
the other hand, Hydra, RADL, and RESTdesc support the use of RDF vocabulary, which makes
these technologies better suited to build systems that are mature on the semantic dimension.

Towards HATEOAS APIs From the matrix, we notice that most technologies target the
documentation of the API in a single, non-splittable file. Hence, they are not suited to provide
hypermedia controls at runtime.

On the other hand, only one approach, [149], supports the description of the conditions that
determine the availability of a link, and none makes this meta-data machine-interpretable. This
makes software agents unable to find a way to make an operation available when it is not.

Towards better-documented APIs Only four technologies support the description of busi-
ness constraints which lowers coupling and improves user experience, e.g., with the automatic
generation of forms with client-side validation.

Finally, we note that most scientific publications recommend the modeling of RESTful sys-
tems with state-machines whereas open-sourced or W3C IDL authors don’t consider this design
method. And yet, the use of deterministic state-machines eases the determination of the available
operations of a resource.

3.3.4 Data-interchange formats

These formats provide a data structure, a vocabulary, and a layout to represent a resource
and its meta-data at runtime. When the API does not need to send meta-data, JSON and XML
are the two widely used formats in the industry.

On the other side, when the system to be built has to support a hypermedia interchange
format, none is considered as a standard today. We selected 11 candidate technologies, which
are classified in Fig. 3.3 according to 24 criteria. JSON is included for comparison purposes.

98

3.3. Comparison Matrices

Figure 3.2 – Interface Description Languages Comparison Matrix

99

Part, Chapter 3 – Comparison Matrices of REST APIs Technologies

Figure 3.3 – Data-interchange Formats Comparison Matrix

Synthesis

First, from this matrix, we notice that formats can be differentiated based on their com-
patibility with RDF. Indeed, RDF formats (Turtle, RDF XML, and JSON-LD) propose very
few features by default because they can be enriched with RDF vocabularies. To depict what
is achievable by combining vocabularies with an RDF format, we selected two vocabularies:

100

3.3. Comparison Matrices

Hydra and SHACL, an RDF schema validation vocabulary, that we combined with JSON-LD
and evaluated them. As a result, they match 12 more criteria than JSON-LD alone. From this,
we infer that combining RDF formats with vocabularies allows building mature Semantic REST
systems. However, this requires additional effort to find relevant vocabularies. On the other
hand, non-RDF formats help build systems that can be mature on the profile dimension but not
on the semantic dimension.

Furthermore, the matrix shows that no format supports the description of constraints despite
the fact that it can be leveraged to reduce coupling and improve the user experience.

Finally, it highlights that no format advertises the state of the resource even though most
scientific approaches we found describe REST APIs as state-machines.

3.3.5 Implementation Frameworks

Implementation frameworks are software libraries that guide developers through the imple-
mentation of Web APIs. We limit the comparison to frameworks that claim to support HA-
TEOAS. We identified six frameworks that do so. Frameworks to build Semantic Web Services
are excluded because their triple-centric approach differs too much from REST.

Among the selected papers, in [99] authors propose Hypermedia Web API Support, a Java
framework based on JAX-RS 2.0 that offers annotations to semantically describe REST APIs.
The end result is the description of the whole API in a JSON-LD document enriched with the
Hydra vocabulary. Unfortunately, the framework is not available in Maven Central. In [151]
Parastatidis et al. present Restfulie, a framework that uses resources, state transitions and
content-negotiation as its core building blocks. We found 4 other frameworks that support HA-
TEOAS features. They are all classified in Fig. 3.4 according to 23 criteria.

Synthesis

Despite the fact that only one framework enforces the Atomic Resources constraint, all frame-
works allow reaching the highest level of maturity on the design dimension easily. This is because
supporting the Atomic Resources constraint only requires developers to use the data model of
the resource as the input of write operations and as the output of read operations.
We notice that only API Platform and Restfulie offer a mechanism to model relations between
resources from which links are generated, instead of adding them programmatically in the re-
sponse, thus increasing maintainability.
Otherwise, most frameworks do not ease the semantic and domain description of APIs. To us,
this is the biggest challenge framework designers should tackle.
Last, as for IDLs, most frameworks creators do not provide mechanisms to describe resources
as state machines, thus not taking advantage of its benefits.

101

Part, Chapter 3 – Comparison Matrices of REST APIs Technologies

Figure 3.4 – Implementation Frameworks Comparison Matrix

3.4 Matrices usage example

In this section, we present the service of an insurance company that manages insurance con-
tracts to illustrate how the presented comparison matrices can be used in a real-world scenario.
This example is a light version of projects we have carried out at Fabernovel for large French
insurance companies.

102

3.4. Matrices usage example

3.4.1 Domain description

To manage insurance contracts, the service holds five kinds of resources: (i) third-parties,
(ii) contracts, (iii) warranties, (iv) cases, and (v) services. Third-parties, for example, customers
or contractors, enter into contracts with the company. These contracts include warranties from
the closed list that the company offers. For example, a Person A has the following warranties:
(i) damage coverage with a deductible of $500 and a maximum repair amount of $30.000 and
(ii) premium vehicle loan in the event of immobilization of the damaged vehicle. A contract can
have several cases. When a customer of the insurance has a claim the company creates a case
that holds its details and the services provided to the insured. For example, Person A has a
car accident, he opens the insurance’s web application and reports a claim, which leads to the
company opening a case. His car has been destroyed and he is expected to attend a diner. Thus,
on the app, he asks for the loan of a car that he will immediately recover.

3.4.2 Technological constraints

The service has to communicate with both internal and external components. Internal com-
ponents are front-end applications, such as mobile or web applications, and other kernel services,
such as payments. External components are contractors’ APIs, for example, taxi or mechanics
companies.

In the insurance domain, there is a huge amount of business rules that determine (i) the
warranties an insured can include in a contract and (ii) the available services for a case, based
on the specificity of the given case and the warranties of the contract. Writing and maintaining
these rules both on the server and its clients is very costly and error-prone. Thus, we decided to
keep these business rules on the server-side only. This constraint leads to the use of HATEOAS.

The project constitutes the core of the company’s business, it should then be built with
state-of-the-art technologies such as Linked Data. This enables the automatic creation of mash-
ups and the use of a HyperGraphQL 6 middleware to easily query the whole IS [152]. Moreover,
considering that the contractors providing services are very diverse and numerous, the interac-
tions with their APIs should leverage the automatic discovery and composition offered by the
use of RDF semantics.

There is also a high probability that new client systems will be built in the future, the
API must document its resources, resource attributes, operations, URI templates, HTTP verbs,
hypermedia controls, and errors in a machine-interpretable way. Moreover, because the service
applies the CQRS pattern 7 we needed the IDL to enable associating an operation to its own
input and output data model.

6. https://www.hypergraphql.org/
7. https://martinfowler.com/bliki/CQRS.html

103

https://www.hypergraphql.org/
https://martinfowler.com/bliki/CQRS.html

Part, Chapter 3 – Comparison Matrices of REST APIs Technologies

Last, to minimize the disruption for software developers, we have chosen to keep the in-
terchange formats as close as possible to what developers already know. It has therefore to
be entity-centric, based on JSON and its structure had to be as close as possible to a JSON
document without meta-data.

3.4.3 Selection of the technologies

From these constraints, we selected the set of criteria and features that the technologies
should provide. These criteria are checked in the last column of Figure 3.2, 3.3, and 3.4. We
then count the number of criteria that were provided by each existing technology. Results are
presented in Figure 3.5, 3.6 and 3.7. For each matrix, the three technologies matching the highest
amount of selected criteria are highlighted in green. It is important to note that the technologies
do not have to match every criterion to be selected. Most of the time, missing features can be
implemented afterward or proposed to the maintainers of the technologies.

Figure 3.5 – Results for interface description languages

Interface Description Languages Hydra, OpenAPI, and RADL are the technologies match-
ing the highest number of selected criteria. However, none matches all criteria. Hydra lacks the
ability to describe non-functional properties and media-types, which can be done with other
RDF vocabularies. RADL lacks the ability to semantically describe resources models, opera-
tions, errors, and non-functional properties, which can also be done with other vocabularies. On
the other hand, OpenAPI does not support the usage of RDF vocabulary. In this project, we
have chosen to set up both Hydra and OpenAPI. OpenAPI because it has the most features and
it is a must-have today because of its tooling and popularity. Hydra because it can be easily
completed with other vocabularies and used with JSON-LD.

104

3.4. Matrices usage example

Figure 3.6 – Results for data interchange formats

Figure 3.7 – Results for implementation frameworks

Interchange Formats Mason, JSON-LD + Hydra are the two technologies matching the
highest number of selected criteria. JSON-LD + Hydra + SHACL is ignored as it does not
match more selected criteria than without SHACL. While JSON-LD + Hydra lacks the ability
to describe non-functional properties, Mason does not allow to use of RDF vocabularies. Being
incompatible with RDF requires a lot more effort to compensate than finding another vocabulary.
This explains why JSON-LD + Hydra was preferred over Mason in this context.

Implementation frameworks API Platform, Spring HATEOAS, and Hypermedia Web API
Support [99] are the three technologies matching the highest number of criteria. The latter is
immediately removed from the candidates because no public library is available. In this example,
API Platform should be preferred over Spring HATEOAS because it matches five more criteria
than Spring. However, developers of the companies we worked with know Java and not PHP.
Moreover, the Spring framework is very popular with them, which compensates for the need to
develop some features by hand. This is why we decided to go with Spring.

105

Part, Chapter 3 – Comparison Matrices of REST APIs Technologies

3.4.4 Easing the selection of the technologies

We have developed an open-source web recommender system named Morice 8 in which the
user selects the type of technology he is looking for, the required criteria, and finally scores
each criterion to indicate its importance. In return, the web application presents the list of
technologies that meet the required criteria ordered by their respective score. By offering a
two-step wizard, we reduce the process of identifying relevant technologies to a few minutes.

Usage example We showcase how Morice can be used in the same example as previously.
When one opens Morice, the home screen visible on Figure 3.8 is shown. Here, we are

interested in all types of technologies so we select the three, that will be highlighted in blue
when selected, and click the next button.

Figure 3.8 – Home screen of Morice, our web recommender system

The next page is dedicated to the scoring of the importance of each criterion and the selection
of the required criteria. We therefore select the same criteria as on the figures 3.2, 3.3, and 3.4
by giving them a random score. Figure 3.9 shows Morice after the scoring of a few criteria. The
score is set arbitrarily to demonstrate how the assistant behaves.

8. https://antoinecheron.github.io/morice/

106

https://antoinecheron.github.io/morice/

3.5. Discussion

Figure 3.9 – Scoring of the criteria on Morice, our web recommender system

At the end of the scoring, the user should click the next button at the bottom of the page.
He is shown the results, as demonstrated in Figure 3.10. The figure shows only the results of the
interface description languages only. The user should scroll down to see the results of the other
categories.

As we can see, the results are similar to Figure 3.5 but are slightly higher because for some
criteria we used a score superior to 1. We think that this feature can help practitioners in their
selection.

3.5 Discussion

This section provides our perspective on why no standard solution exists to meet all the
defined criteria and highlights the possibility of new research initiatives.

First, none of the existing interchange formats support all the criteria described above,
making it likely that new formats will emerge. For this reason, frameworks supporting Semantic
REST APIs have to rely on formats that are likely to evolve, which will require additional effort
and costs. This reduces the likelihood of framework editors investing time in developing such
features.

107

Part, Chapter 3 – Comparison Matrices of REST APIs Technologies

Figure 3.10 – Results presented by Morice, our web recommender system

To us, the second and also the most important reason is that the well-known and widely
used tools do not rely on Semantic REST APIs to provide additional and useful features. Among
the possible functionalities, we envision various tools to automate API testing, REST client
generation, API gateways, middleware, and smarter REST clients. In particular, we study how
to design smarter clients that self-adapt to evolving REST APIs at run-time in the next chapter.
We believe that this limits the adoption of Semantic REST APIs because the cost of building
these APIs is not perceived as offering a sufficient short-term return on investment.

In addition to the absence of tools leveraging the additional metadata of Semantic REST
APIs, it is not clear for the developers how to build them. A maturity model is available but
no concrete guidelines for their design. This is another reason why we study how to leverage
contracts documentation, hypermedia controls, and semantics to ease the co-evolution of REST
APIs and their clients in chapter 4.

3.6 Findings Summary

In this work, we have presented three comparison matrices that assist architects in choosing
Semantic REST APIs enabling technologies that meet their needs. Through a real example, we

108

3.6. Findings Summary

have illustrated how the use of these matrices simplifies the choice of these technologies. As
stated in the work, technologies should be chosen not only according to the number of criteria
they meet, but also according to the specific needs of the project. To facilitate this selection, we
have developed an assistant available online.

We also pointed out some interesting features missing in current technologies. The description
of constraints and preconditions indicating the availability of state transitions is ignored by IDLs,
vocabularies, interchange formats, and frameworks. On the other hand, resource modeling as
FSM is not available in most frameworks. More importantly, well-known tools do not take
advantage of the power of Semantic REST APIs to provide additional and useful features.

Based on these findings, we identify areas for improvement in the tools around Semantic
REST APIs that we believe can increase its adoption. By leveraging the semantic description
and advertising of state transitions and non-functional properties, automated testing tools can
become smarter, middleware can automatically create responses from the composition of several
APIs and REST client libraries can lower the coupling with the server as we study in the next
chapter.

109

Chapter 4

EVOLVABLE-BY-DESIGN: ROBUST WEB

UI CLIENTS TO EVOLVING REST APIS

This chapter presents the second contribution of this thesis. It tack-
les the second challenge presented earlier: the break-free co-evolution of
REST APIs and their clients. First, it challenges the existing list of API
evolutions by interviewing experienced developers. As a result, seven
new kinds of evolutions are added to the existing taxonomy. Second,
the chapter presents a novel approach to this challenge. The approach
presents 7 requirements that enable the creation of REST APIs exposing
the proper information enabling the design of Web User Interfaces able
to automatically adapt to any evolution of the REST API at runtime,
without modifying their code. Two evaluations are conducted. A quanti-
tative study assesses the ability of a Web UI to evolve to 110 evolutions
of the 29 types presented in chapter 2. The evaluation shows that the
Web UI could automatically evolve to 27 out of the 29 types of evolution.
In the qualitative evaluation, the approach is implemented in 5 open-
source projects available on GitHub. The approach could successfully
be implemented on the 10 types of evolutions available in these projects
and proved to be effective.

Foreword

4.1 Introduction

We saw in chapter 1 that the evolution of an API frequently introduces breaking changes
that must be fixed by the developers of the client [21]. This problem has been widely addressed
by the software engineering community. However, existing works are not well suited to Web
REST APIs [153] and their user interfaces. Indeed, automatic program repair techniques are
not effective with dynamically typed languages, adapters address few kinds of evolutions and

111

Part, Chapter 4 – Evolvable-by-design: Robust web UI clients to evolving REST APIs

hide the problem instead of fixing it, code generation techniques are too complex to configure
to obtain good results and evolution policies significantly constrain the evolution instead of
searching for solutions to enable REST APIs to evolve without breaking clients.

In this chapter, we tackle the well-known problem of REST API evolution from a novel
perspective by making the Web UI evolvable-by-design. The goal is to make it possible for
Web UIs to evolve by themselves to typical API evolutions without requiring the developers’
intervention.

We define evolvable-by-design as the ability of a UI client to adapt to the following REST
API evolution types, at run time, without breaking and without changing their code:

1. Additions and deletions to the parameters, URLs, and fields of the operations and data
structure in-use;

2. Modifications to the parameters, URLs, and fields of the operations and data structure
in-use, that does not change their semantics;

3. Modifications of control-flow and the precondition of the operations;
4. Movement of API elements.

Therefore, as the main contribution of this work, we investigate how to make Web
user-interface clients evolvable-by-design.

Currently, web user interfaces break when Web APIs evolve because the API contract is
hard-coded. Meaning, the URLs, parameters’ name, preconditions, and others are fixed in the
UI code. Consequently, any modifications of these elements require updating the code. Instead,
we argue that a new paradigm is necessary. The UI code should mimic the developer’s
behavior: to interpret the API documentation in order to always build correct API
interactions. Therefore, functional descriptors will be coded instead of the very specific contract
of the API that works with a single version of the API.

To make this possible, we saw that with the REST architectural style, Fielding recommends
the use of hypermedia controls. However, our experiments proved to us that this is not sufficient.
We therefore argue that the UI must access sufficiently detailed API documentation that can
be interpreted based on functional descriptors. By API documentation, we mean both static
documentation, such as an OpenApi or WSDL document, and dynamic (or contextual) docu-
mentation, for example in the form of hypermedia controls. We propose to follow the Semantic
REST approach and rely on semantically rich API descriptors (static and dynamic). However,
how should these two types of documentation be used in combination? Therefore, to answer
the main research question we investigate the required structural and contextual infor-
mation about the API that should be available to the UI to enable the creation of
evolvable-by-design web user interfaces.

To answer this, we first revisit the existing taxonomy of evolutions that can be found in
the world of Web APIs, which we detailed in 1.7.3. After interviewing ten professional web

112

4.2. Motivating Example

developers, we identified seven new kinds of API evolutions that complement other studies [141,
140, 21]. For each type of evolution, we then identify and highlight the API documentation
elements the client has to interpret for an automatic and rewriting-free evolution. Therefore,
based on this study, we propose a new approach to enrich existing Web API description standards
in order to allow the construction of a client called evolvable-by-design.

The remainder of this chapter is as follows. Section 4.2 discusses the motivation of this work.
Section 4.3 challenges and completes the existing taxonomy of REST API evolutions. The details
of our approach are given in section 4.4. Section 4.5 evaluates this approach, followed by the
Section 4.6 which concludes the work.

4.2 Motivating Example

Figure 4.1 – Motivating Example

To motivate our work, this section introduces an example that illustrates the challenges that
are faced with the maintenance of UIs client of REST APIs. We consider a Web Application
like Trello 1, a collaboration tool that organizes projects into boards. It helps teams in managing
their tasks on the Web by manipulating lists and cards similarly to moving sticky notes between
columns on a blackboard. Here, the UI is designed to offer its users the following functionalities:
(1) create task cards in lists, (2) modify a card’s content, (3) move them between lists, (4) see
the detailed information of a card and (5) delete cards. To access and modify the data, it uses
an API. Then, when the API evolves, the UI will always have to use it properly to offer the
aforementioned functionalities.

1. https://trello.com

113

https://trello.com

Part, Chapter 4 – Evolvable-by-design: Robust web UI clients to evolving REST APIs

Figure 4.1 presents the operations exposed by the API and the model of a Card on the top
part (A and C), along with the resulting user interface on the bottom part (B and D). The
operations to modify the cards were omitted.

As section A of Figure 4.1 shows, a card has a name and a description within the first version
of the API. To create a card, the UI must send a POST request to /cards?idList=idList and
it cannot provide a name or description at this step. Then, to delete a card, the UI sends a
DELETE request to /cards/{cardId}. Accordingly, the UI displays lists as columns and the
cards inside them (section B). A button to create a card is visible at the bottom of each list.
Also, the button to delete a card is visible after the user clicks the card in order to see its details.

Then, the second version of the API comes with 4 breaking evolutions (section C). (1) name
of Card is renamed into title, (2) the request to create a card must be sent to /card, (3)
idList must be provided into the request body, along with (4) a title and a description.
Also, only users that are administrators are now allowed to delete cards.

As a result, if the user interface is not updated, it would send requests to the wrong URL,
omit required parameters, etc. The consequence is a broken UI. Thus, on a state-of-the-practice
UI, a developer would have to update the code to support these evolutions. The modifications
to do are the following: (1) all accesses to the title of the card would have to be updated, (2) the
URL to create a card must be updated, (3) the idList parameter must be moved to the request
body, (4) when the button to create a task is clicked, a form should require the user to input a
title and a description, and (5) the button to remove a card must be displayed to administrators
only. Next, the new code must pass the tests, be reviewed by other developers, and finally be
redeployed in production, which is time-consuming and costly, as we mentioned before.

Instead, the code should mimic the developer’s behavior when writing their UIs: referring to
the API documentation. So, the code would not contain the URLs, the name or title keywords
in the code neither manually build the API requests. It would also not have to implement the
access-right management that the API already implements. Instead, it could rely on machine-
interpretable semantics to find the proper information and URLs in the API documentation and
on hypermedia controls, generated upon request, to get dynamic information such as the access
rights and available operations.

We argue that UIs able to adapt to these kinds of evolutions without updating their code
would make web applications significantly more robust. We refer to these kinds of UIs as
evolvable-by-design, a concept that we introduced in this thesis. Thus, in the rest of the chapter,
we present in detail our approach to enabling this property.

114

4.3. Seven new kinds of REST API evolutions

4.3 Seven new kinds of REST API evolutions

In section 1.7.3 we saw that [140, 141, 142] identified 22 kinds of REST API evolution that
are listed in Table 1.1. However, these works did not study API evolutions developed and used
inside companies, such as what Fabernovel does. Yet, these companies manage more complex
access rights and more advanced business processes than public APIs. As a result, they often
design CQRS REST APIs.

Thus, to challenge these results, we surveyed with a questionnaire nine professional Web
developers who work in software firms and research laboratories.

We selected developers who work on Web applications from five different organizations and
have at least one year of experience working with REST APIs. Six out of the nine respondents
have five or more years of experience working with REST APIs. We asked nine questions. The
first three to get information about the respondents. Then, one question asked them what
evolutions they encountered. The response format is a free-text field to ensure that no bias is
introduced. Finally, we asked five questions to challenge our intuitions. Each question asks them
how likely are some kinds of evolutions to occur. The questionnaire and responses are available
online 2.

After analyzing the results, we found that they reported that seven kinds of evolutions were
not listed in [141, 140, 142]. Indeed, (23) the request method of an operation may change to
denote a behavioral change; (24) the pre-condition may change to evolve the state machine of
a resource or change access-rights; to achieve a business process (e.g. ordering a product), (25)
the set or (26) the order of operations to execute sequentially may change, (27) any constraint
of the input parameters are likely to change, not only the default value or upper bound (14 &
15), (28) parameters may be moved between the different parts of the HTTP request and (29)
some values may be removed from the returned response. These additions to the state of the
art are listed in Table 4.1. In this work, we replayed those newly identified API evolutions and
observed that they are indeed breaking.

4.4 Approach

4.4.1 Approach Overview

Principle

This section details our approach to enable the design of evolvable-by-design user interfaces.
To do so, rather than letting developers hard-code the contract with the API in the UI (i.e., to
invoke the API by explicitly coding the URLs, keywords, formats, forms, etc.), we propose to
shift the paradigm and code functional requirements towards the API. These requirements will

2. https://docs.google.com/spreadsheets/d/11dvV9vkvWeMd1pyGrA1PfW5TUan28GmPIa5yXoQgyzs/edit?usp=sharing

115

Part, Chapter 4 – Evolvable-by-design: Robust web UI clients to evolving REST APIs

Table 4.1 – List of evolutions of RESTful APIs

From existing studies

1 Add or Remove Parameter (7 breaking)

2 Change Type of Parameter (7 breaking)

3 Change Type of Return Value (7 breaking)

4 Delete Method (7 breaking)

5 Rename Method (7 breaking)

6 Rename Parameter (7 breaking)

7 Change Format of Parameter (7 breaking)

8 Change Format of Return Value (7 breaking)

9 Change XML Tag (7 breaking)

10 Combine Methods (7 breaking)

11 Split Method (7 breaking)

12 Expose Data (7 breaking)

13 Unsupport Request Method (7 breaking)

14 Change Default Value of Parameter (3 non-breaking)

15 Change Upper Bound of Parameter (3 non-breaking)

16 Restrict Access to API (3 non-breaking)

17 Move API elements (7 breaking)

18 Rename API elements (7 breaking)

19 Behavior change (3 non-breaking)

20 Post condition change (3 non-breaking)

21 HTTP header change (7 breaking)

22 Error condition change (3 non-breaking)

Additions of this work

23 Request Method change (e.g. POST, PUT, etc.) (7 breaking)

24 Precondition change (3 non-breaking)

25 The order in which a set of operations must be played to achieve a business process
changed (3 non-breaking)

26 The set of operations to execute to achieve a business process changed (3 non-breaking)

27 Change input parameter constraints (3 non-breaking)

28 Move parameters (7 breaking)

29 Remove returned value (7 breaking)

116

4.4. Approach

be interpreted at run-time by the UI to create correct and up-to-date interactions with the API
leveraging rich API documentation.

Figure 4.2 gives an example of such Web UI code. It displays the detail of a card and
enables its deletion within the application illustrated in the motivation example in Fig. 4.1. This
example is used to illustrate the requirements on the API side to enable an evolvable-by-design
user interface. Therefore, this work does not focus on its implementation, but rather on the
process followed by the UI designer and the API features that are therefore required.

Figure 4.2 – Web UI code example of the evolvable-by-design component
of the right panel of the sections B and D of Figure 4.1. (Javascript and
React v16)

This code is written by the UI developer to implement the custom UI visual components and
navigation. To describe the aforementioned functional requirements, the developer uses machine-
interpretable semantic descriptors designed with OWL (see lines 2, 5, 7, 9, 17 of Fig. 4.2).
Then, a library leverages this semantics to browse the API documentation in order to figure
out how to invoke it correctly. We provide an implementation of such a library 3. It mimics
what the developer normally does when he reads the API documentation to implement the
code interacting with the API in the user interface. Yet, by doing this interpretation itself, at
run-time, the UI becomes able to evolve without updating its code.

3. https://github.com/evolvable-by-design/pivo/tree/master/packages/pivo

117

https://github.com/evolvable-by-design/pivo/tree/master/packages/pivo

Part, Chapter 4 – Evolvable-by-design: Robust web UI clients to evolving REST APIs

Thus, when the UI needs to access a field on data that was already retrieved from the API,
the library browses the API documentation to find the path of the field with the expected
semantics. Then, it returns the value at this path. This is what happens in line 5 of Fig. 4.2.
Hence, the developer is not required to update the code when the format of data changes.

To invoke an operation on the API, the developer should start by assessing its availability
(line 9). Next, he can access the operation’s parameters schema. Hence, he can pass them as an
input of the visual component handling the operation, to let it generate a form for the parameters
(line 11). This form is the only element that is generated on the UI. Then, when the user clicks
the button to trigger the operation, the library builds the API request that complies with the
documentation fetched earlier (lines 18, 19, and 20).

Figure 4.3 – Approach Overview

Therefore, to set up our evolvable-by-design approach, a web user interface must have a
minimum set of information:

1. the detailed description of all the resources and operations exposed by the REST API, to
be able to build syntactically correct requests (see R1)

2. semantic descriptors for all the resource properties, operations, and so on, to enable the
UI to interpret the documentation based on the functional semantic descriptors (see R2)

3. explicit relationships between the properties and the object that they describe, and between
the operations and the resource that they will apply on (see R3)

4. an API documentation that only contains the operations and resources that the connected
user may be able to invoke, if available, to reflect the access rights and be able to hide the
proper sections of the web applications such as an administration panel (see R4)

5. upon request, the list of the operations that are currently available on the returned re-
source, based on the current state of the resource. The goal is to remove the preconditions
from the UI (see R5)

118

4.4. Approach

6. the default value of the operation’s input parameters to make sure that the parameters
that can not be known by the user will never be asked to the user (see R6)

7. given an operation that has multiple sets of input in the static documentation, when it is
listed as available by the API, the set of input to use should be given in the same API
response (see R7)

We will detail all the above necessary information and requirements in section 4.4.2 and
4.4.3.

Architecture

We now introduce an overview of the architecture of the approach in Figure 4.3. It illustrates
the steps to display the end UI to a user. They are numbered in parenthesis in the following
paragraph and on the figure accordingly.

First, the developer codes the Custom UI Components and Navigation similarly as Fig. 4.2.
During this step, (2) he describes the functional requirements (lines 5, 7, 9, 11 and 19) to a
HTTP Client enriched with a Semantic API Documentation Interpreter that is illustrated with
the lib variable of type EvolvableByDesignLib. Then, at run-time, the documentation will be
fetched when the UI loads in the browser (3.1). Next, the UI will interact with the API to get
data and contextual information (3.2), such as the availability of an operation on a Card. Last,
the HTTP client will return the expected data and API documentation values to the components
in order to display the proper UI (4.1, 4.2).

Accordingly, in this section, we study what minimal set of documentation can be specified
to counter the impact of the evolutions of APIs on Web UIs. Thus, how to ensure that UIs are
evolvable-by-design and keep their interface and user experience consistent with how designers
created them?

In the rest of this section, we detail the major components of this approach. Semantic reg-
istries are not detailed. Indeed, they are a core component of the Semantic Web [154] that is
not specific to the approach.

4.4.2 Structural Documentation

A structural documentation describes the basic structure of an API, such as its functions
and parameters. We identified that the structural documentation of the API must comply with
the three following requirements to enable evolvable-by-design user interfaces.

In the following, we follow the original definition of a resource in the REST architecture [28].
Thus, a resource has a URI schema (e.g., /card/{id}) and a list of operations.

119

Part, Chapter 4 – Evolvable-by-design: Robust web UI clients to evolving REST APIs

Describe the Resources in Detail (R1)

All resources, their URL schema, their operations, and their execution details along with the
authentication mechanism must be documented in a machine-processable format.

This information is minimal to enable a machine to build syntactically correct requests and
log a user into the system. Many technologies enable this, such as WSDL 4 and OpenApi 5.
Hence, in this subsection we focus on the peculiarities of this approach.

Operations description All operations must be described in detail: their URL schema,
HTTP method, header, query, and body parameters along with the responses.

The documentation of the responses must describe the status codes, associated body, and
headers schema. The potentially linked operations must also be documented. These include the
operations that may be invoked on the resource itself, its relations with other resources (e.g. a
friend), and control-flow information. The pre-conditions and post-conditions of the operations
should not be described for two reasons: (i) the result of their resolution can be communicated
directly, with less information than those necessary to describe them, as discussed in 4.4.3, and
(ii) some organizations are reluctant to disclose such business-critical information.

Also, the parameters of an operation may vary depending on the type or state of the re-
source. In such a case, all alternatives must be documented and the alternative to use should be
transmitted by the API at run-time with hypermedia controls. We discuss this point in 4.4.3.

Parameters description It must cover three cases.

— The user can input the value himself/herself: for this purpose, a precise description of
the input type, including the data constraints, is sufficient. Existing machine-interpretable
data constraint languages should be used, such as JSON Schema 6 or SHACL 7.

— The user cannot input the value himself/herself and there are several relevant values in the
context: the input should be linked to a search function hiding the technical complexity
from the user perspective. An example is given on Figure. 4.4.

— The user cannot input the value himself/herself and there is only one relevant value in
the context: the server must provide the value to the UI at run-time through hypermedia
controls as detailed in the subsection 4.4.3.

4. https://www.w3.org/TR/wsdl.html
5. https://github.com/OAI/OpenAPI-Specification/
6. JSON Schema Homepage - https://json-schema.org/
7. SHACL Specification - https://www.w3.org/TR/shacl/

120

https://www.w3.org/TR/wsdl.html
https://github.com/OAI/OpenAPI-Specification/
https://json-schema.org/
https://www.w3.org/TR/shacl/

4.4. Approach

Figure 4.4 – OpenApi documentation example mentioning a search function

Figure 4.5 – OpenApi documentation example with semantic descriptors

Describe the Semantics (R2)

Each operation, property, and relation between operations must be described with machine-
interpretable semantics using the W3C standard OWL 8. These descriptors enable the UI to
interpret the functional requirements and read the documentation as exemplified in Fig. 4.2.

Four types of semantic descriptors must be differentiated: (i) the meaning, (ii) the type, (iii)
the format, and (iv) the relation. Indeed, two versions of an API may share the meaning of the
startTime property with the same semantic descriptor, https://vocab.ex#startTime. However,
one may format it as a timestamp and the other one as an ISO-8601 string. Consequently, the
UI needs to be aware of this variation to evolve its behavior.

Lines 2, 6, 7 and 10 of Figure 4.5 give an example of such documentation.
OWL enables the machine-interpretable expression of complex relations between terms,

such as the sameAs property stating that two URI share the same semantics. Consequently
https://my-vocab.com/Project can be used in place of https://schema.org/Project. Thus, this
sameAs property limits potential breaking evolutions. To illustrate this, Figure 4.6 gives an

8. https://www.w3.org/TR/owl2-overview/

121

https://www.w3.org/TR/owl2-overview/

Part, Chapter 4 – Evolvable-by-design: Robust web UI clients to evolving REST APIs

Figure 4.6 – Semantic vocabulary example of a Project

example of a Project ontology.

Moreover, many vocabularies are available in semantic registries online, such as Schema.org 9

and Linked Open Vocabularies 10. Also, numerous Semantic Web and Linked Data works leverage
machine-interpretable semantics, as detailed in 1.5.

Explicit Objects and Links Affiliation (R3)

Is required to determine if the data of an object or linked resource can be directly affiliated
to the parent object or it is completely different data. Hence, each object of a document, no
matter its depth, and each link must explicitly state the affiliation of its data. This is necessary
to address the evolutions “change format of return value" (2) and “move API elements" (17).

An example of such object is given with details at the lines 3 to 5 of Fig. 4.7. The represented
API response gives us the id and title of a Project along with contextual information that
we discuss in the next subsection. Here, the details object is used to ease human readability.
Yet, all the properties that it contains (only title here) belong to the project, not the details
object itself.

With links, the case is very similar. Consider a Card resource with one analytic: its creationDate.
Then, this field is moved to an Analytic resource. Hence, a link from Card to Analytic is added.
Yet, it is required to distinguish this link to data describing the card from links to completely
different resources such as the list of all cards.

As a result, we distinguish objects and links in which data are affiliated to the parent object
from those affiliated to themselves.

9. https://schema.org/
10. https://lov.linkeddata.es/dataset/lov

122

https://schema.org/
https://lov.linkeddata.es/dataset/lov

4.4. Approach

4.4.3 Contextual and Behavioral Documentation

Among the contextual and behavioral documentation, we distinguish two categories. First,
the structural documentation that is adapted to the user’s access rights (R4). Second, informa-
tion that should be provided by the server along with the resource representation (the data) in
the response to each request (R5, R6, and R7).

Provide a WYSIWYG Documentation (R4)

All operations, resources, and properties that the user is not authorized to invoke or see
should not be included. Thus, the documentation must be customized for each user that requests
it.

This is required to adapt the UI to the user’s access rights without adding descriptors to the
documentation.

List the operations available on the returned resource with hypermedia controls
(R5)

— The available resource’s state transitions. For example, the operation to archive a project
if it’s not yet archived.

— The operations to access related resources. For example, given a user, his/her list of pending
tasks.

— Business processes control-flow. For example, the next operation to invoke to continue the
product ordering process.

Consequently, all the operations that are not available in the current application context
should not be listed.

Give the default value of the operation’s input parameters within the hypermedia
controls (R6)

Amongst the default values to provide as contextual information are the parameters that
can take only one relevant value in the context and that the user cannot know. For example,
in the response of an API detailing a project, if the operation to create a new task into it is
available, the parent project id of the future task should be provided by the server.

An example API response providing few data describing a Project (lines 2 to 5) along with
contextual information (lines 6 to 14) is given in Figure 4.7.

123

Part, Chapter 4 – Evolvable-by-design: Robust web UI clients to evolving REST APIs

Figure 4.7 – An example of an API response that details a project’s data and
contextual information

Reference the operation’s input model to use when multiple options are listed in
the structural documentation (R7)

It should be done using a similar mechanism used to comply with R6. An example is given
at the line 10 of Fig. 4.7.

4.4.4 HTTP Client enriched with a Semantic API Documentation Inter-
preter

We explained how the developer can leverage machine-interpretable semantics to describe
functional requirements and design an evolvable-by-design client in 4.4.1. Hence, the UI devel-
oper can code every API call with a generic mechanism. This mechanism will interpret the API
documentation and leverage the semantic descriptors to create the interaction with the API at
run-time. This logic can be abstracted to enrich an HTTP client with a semantic API documen-
tation interpreter. Doing so moves the complexity of the approach inside a library so that the
UI developer can focus on the business logic.

We provide an open-source reference implementation of such semantic HTTP client, named
Pivo, to ease the development of evolvable-by-design UIs. It is developed in TypeScript and is

124

4.4. Approach

framework-agnostic. It is available on GitHub 11 and NPM, and is open for contributions. In
addition, we provide a documentation with more details on the approach, tutorials, and two UIs
with a traditional and evolvable-by-design implementation.

Using this client instead of a traditional HTTP client imposes to implement the web UI
differently, as exemplified in Fig. 4.2. Indeed, it should not implement direct calls to the API
but functional requirements instead. Yet, most visual components and all the navigation logic
can be kept unchanged.

This trade-off is necessary to design evolvable-by-design UIs. However, we argue that devel-
opers will be able to adapt to this new paradigm relatively quickly since it is not a radical change
or a new language for writing UIs. Moreover, the long-term benefits surpass the entry cost by
an important factor. We will further evaluate the cost of adopting our approach in section 4.5.

4.4.5 Synthesis and Discussion

Table 4.2 synthesizes all the elements that must be documented into the API to enable the
design of evolvable-by-design user interfaces.

Reuse and limitations of the state-of-the-art

Our approach is designed to maximize the reuse of state-of-the-art technologies. Indeed,
most of the detailed resource description (R1) can be described with OpenApi or WSDL and
the semantic description (R2) with OWL. Also, (R5), (R6), and (R7) are common hypermedia-
controls [29]. However, even if possible, not all developers specify this information in their APIs,
and none combine them all. This work also identifies new requirements that OpenApi and WSDL
must meet, namely: affiliation information (R3) and a WYSIWYG documentation (R4), which
are necessary. In addition, we pinpointed the three types of parameters and accurately pointed
out how to manage them in 4.4.2. Thus, this combination of existing technologies and the new
requirements we add in this approach enable the powerful design of evolvable-by-design user
interfaces.

Limitations of the approach

Our approach uses the semantics of the functionality and data exposed by the API as the
central element to enable the UI to interpret the API documentation. Thus, the evolutions of
the API that change the semantics of the functionalities or data cannot be handled. Hence,
two of the changes listed in Table 1.1 cannot be handled by our approach: “combine methods"
(10) and “split method" (11). Indeed, by combining or splitting methods, the API will then
expose different functionalities than before, which changes the initial semantics. Nonetheless,

11. https://github.com/evolvable-by-design/pivo

125

https://github.com/evolvable-by-design/pivo

Part, Chapter 4 – Evolvable-by-design: Robust web UI clients to evolving REST APIs

Table 4.2 – Requirements of the approach on the API documentation

Structural Documentation

R1 Describe the Resources in Detail: all resources, their operations and their execution
details along with the authentication mechanism must be documented in a machine-
processable format. Parameters that expect a value that the user can not know must
be provided a default value or point to a research-function.

R2 Describe the Semantics: each operation, property and relation between operations
should be described with machine-interpretable semantics

R3 Explicit Objects and Links Affiliation: each object and link of a document must
explicit the affiliation of its data

Contextual Information

R4 Provide a WYSIWYG Documentation: all operations, resources and properties
that the user is not authorized to invoke or see should not be included

R5 List the operations available on the returned resource with hypermedia con-
trols

R6 Give the default value of the operation’s input parameters within the hy-
permedia controls

R7 Reference the operation’s input model to use when multiple options are listed in
the structural documentation

these 2 kinds of evolutions are seldom. They represented only 3 out of the 303 evolutions (less
than 1%) observed by Li et al. in [141]. In addition, according to Roy Fielding, the author
of the REST architecture, it is normal to manually modify the clients when the semantics of
the interface change. Indeed, in an interview in December 2014, to the question "Does that
mean as long as I use the REST style I am free and clear of versioning issues?", he answered
"No. It is always possible for some unexpected reason to come along that requires a completely
different API, especially when the semantics of the interface change or security issues require
the abandonment of previously deployed software." 12.

Another limitation of our approach relates to the deletions of data and operations on the
API. To minimize the documentation effort to enable evolvable-by-design UI, we do not encourage
documentation of deleted items. Thus, a UI unable to find an operation or data will be unable to
determine if it is due to (i) a deletion or (ii) the user not being allowed to access it. Accordingly,
it is impossible for the UI to display a detailed message in such a case. Yet, if necessary, it is

12. Roy Fielding on Versioning, Hypermedia, and REST: https://www.infoq.com/articles/
roy-fielding-on-versioning/

126

https://www.infoq.com/articles/roy-fielding-on-versioning/
https://www.infoq.com/articles/roy-fielding-on-versioning/

4.5. Evaluation

easy to document such information later on.
The approach presented in this work aims at allowing web UIs to evolve by themselves to

typical API evolutions. However, not all web UIs should be made fully flexible to adapt to
all the API side evolutions. Indeed, web UIs designers may want to control how their UIs can
evolve. It would be relevant to investigate this question in future work as many situations can
be encountered. Therefore, we recommended that web UI designers supervise them by adding
a test suite to the UI client. They can for example expose an API endpoint that informs the
UI of the API version to use. When a new API version is available, they can run the system
test suite and leverage it to select the API evolutions to support and delay others until the next
evolution of the code. To make this selection, the API endpoint returning the version to use
may recommend different versions depending on the features. To us, this is possible because, in
today’s practices, API providers usually leave several REST API versions online for a moment
in order to give their clients some time to adapt their code. In addition, web UI designers can
leverage the machine-interpretable semantics exposed by the API. The richer it gets, the more
accurate the UI can be made to select the kind of evolutions to support.

Moreover, while we recommend accompanying a UI client with a test suite, the evolution
of the test suite must be handled as well. For example, an evolution of a regulation or new
parameters added to an operation may require evolving the test suite accordingly. In those
cases, automatic evolution of the UI is feasible with our approach but it will break the test
suite. However, test maintenance is out of the scope of this work.

4.5 Evaluation

This section presents the evaluations we performed, regarding completeness, feasibility, and
applicability in a real-world context.

The section is divided into four parts. First, Section 4.5.1 benchmarks our approach to
all types of API evolution through a case study rigorously created for this purpose. It covers
quantitative analysis. Section 4.5.2 evaluates the approach on five use-cases found on GitHub.
It covers qualitative analysis. Then, Section 4.5.3 discusses the results, and finally Section 4.5.4
presents the threats to validity of our evaluation.

4.5.1 Benchmark

The first part of our evaluation performs a quantitative analysis. To do so, we use a bench-
mark that covers exhaustively all API evolutions. This benchmark is built to answer the following
two research questions:

127

Part, Chapter 4 – Evolvable-by-design: Robust web UI clients to evolving REST APIs

Can a user interface autonomously adapt to all evo-
lutions of a REST API that complies with the ap-
proach, without changing its code, at run-time?
This aims to investigate the applicability and feasibility of our
approach. It also evaluates its robustness w.r.t. REST API evolutions,
in particular breaking evolutions.

RQ1

Does the implementation of an evolvable-by-design Web UI
require additional development effort in terms of LOC?
This aims to investigate the trade-off of our approach regarding the
development effort of user interfaces.

RQ2

Data set

To evaluate the approach, we needed a web application composed of a Web UI and a REST
API that implemented all sorts of evolutions from Table 1.1, at least once. Unfortunately, we
could not find such kind of open-source project and our industrial partner could not provide one
for privacy reasons.

We developed a realistic web application imitating the project management software Jira 13.
With this application, multiple users collaborate on projects. A user can create public or private
projects, invite other users to collaborate on the project, archive, delete or add tasks to it. The
tasks have several operations and well-defined state transitions: they must be archived to be
removable and only the tasks in a certain state can be completed, which can be customized by
the users.

Figure 4.8 is a screenshot of the application displaying the details of a task.
To implement this application, we developed three software components: (1) a REST

API that exposes up to 28 operations and implements 110 evolutions split into 16
versions, (2) an evolvable-by-design UI, and (3) a state-of-the-practice UI where the
contract with the API is hardcoded. We developed both UIs to be identical from
the user perspective. To demonstrate that the approach is feasible with modern technolo-
gies, the UIs are implemented in JavaScript with the React framework. The API server uses
NodeJS and the documentation follows the OpenAPI Specification 3.0.0 that we extended to

13. Atlassian Jira - Home page - https://www.atlassian.com/software/jira

128

https://www.atlassian.com/software/jira

4.5. Evaluation

Figure 4.8 – Screenshot of the application developed to evaluate the approach

support OWL semantic annotations. Contextual documentation elements are transferred with
hypermedia controls in the response body, using a custom format.

In order to ensure the reproducibility and transparency of this research, the three artifacts
along with the documentation of all evolutions are publicly available online on GitHub 14. Thus,
the development history of each artifact and evolution can be observed in detail.

Also, the code of the evolvable-by-design UI includes a library folder that contains all the code
interpreting the documentation of the API at run-time, which aims to meet the evolvable-by-
design property. We later extracted this code in an open-source library that we named Pivo and
uploaded to NPM 15. Therefore, developers or scientists can handily reproduce the experiment
or create their own.

Experimental Protocol

Here, we describe the experimental protocol used to evaluate the approach w.r.t. the research
questions.

To test at least one variant of all kinds of evolutions listed in the taxonomy presented in
Table 1.1, I created a REST API with 16 versions that implement 110 evolutions, including 59
breaking evolutions. For example, evolutions 5 and 7 of Table 1.1 were respectively applied 9

14. Evolutions: https://bit.ly/2JlNg7E - Clients: https://bit.ly/2JlNT10 - Server: https://bit.ly/
2VhKZgf
15. https://www.npmjs.com/package/@evolvable-by-design/pivo

129

https://bit.ly/2JlNg7E
https://bit.ly/2JlNT10
https://bit.ly/2VhKZgf
https://bit.ly/2VhKZgf
https://www.npmjs.com/package/@evolvable-by-design/pivo

Part, Chapter 4 – Evolvable-by-design: Robust web UI clients to evolving REST APIs

Table 4.3 – Overall evaluation results

Client Breaking
Evolutions

Non-Breaking
Evolutions

LoC Updated

Traditional Client 0/59 0/51 420

Evolvable-by-Design Client 57/59 43/51 98

and 3 times. I followed the same methodology as I do when developing web applications for
Fabernovel clients.

As a second step, I implemented the first version of the two user interfaces, the traditional
and evolvable-by-design user interfaces.

Then, for each upgrade of the API, I manually evolved the code of the “traditional UI" to
implement the evolutions. On the evolvable-by-design UI, I refreshed the page and manually
verified that all evolutions were automatically integrated while not introducing bugs. Otherwise,
I updated the code.

Therefore, for each upgrade of the API, we count:

— The evolutions that are automatically supported by the UIs without causing bugs by man-
ually testing each feature of the interface.

— The lines of code that are changed to support breaking evolutions by summing up the
difference between additions and deletions of each commit related to this topic.

— The lines of code that are changed to support non-breaking evolutions by summing up the
difference between additions and deletions of each commit related to this topic.

All the code of the traditional UI is included. On the evolvable-by-design UI, Pivo is the only
component that is excluded because it is a generic library that is reused among projects.

Observed results

Table 4.3 summarizes the observed results of the evaluation, and more details are given in
Table 4.4.

130

4.5. Evaluation

Table 4.4 – Detailed results of the case study [N/C: non-concerned]

API Version 1.0.0 2.0.0 3.0.0 4.0.0 5.0.0 5.1.0 6.0.0 7.0.0 7.1.0 8.0.0 8.0.1 9.0.0 9.1.0 9.2.0 9.3.0 10.0.0 Total

Breaking Evolutions automatically handled by the client

Total breaking evolutions 0 6 0 1 2 0 14 19 1 3 0 2 0 2 0 9 59

Traditional Client 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0/59

Evolvable-by-design Client 0 6 0 1 2 0 14 19 1 3 0 0 0 2 0 9 57/59

Non-Breaking Evolutions automatically handled by the client

Total non-breaking evolutions 0 0 4 14 0 20 3 0 1 1 1 3 2 0 2 0 51

Traditional Client 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0/51

Evolvable-by-design Client 0 0 4 14 0 20 0 0 1 1 1 0 0 0 2 0 43/51

Updated lines of code to support breaking evolutions

Traditional Client N/C 16 N/C 4 2 N/C 70 28 1 28 N/C 44 N/C 23 N/C 14 230

Evolvable-by-design Client N/C 0 N/C 0 0 N/C 0 0 0 0 N/C 7 N/C 0 N/C 0 7

Updated lines of code to support non-breaking evolutions

Traditional Client 1623 N/C 2 71 N/C 13 41 N/C 10 10 1 19 13 N/C 10 N/C 190

Evolvable-by-design Client 1395 N/C 5 12 N/C 0 28 N/C 5 0 0 11 30 N/C 0 N/C 91

RQ1 - Can a UI autonomously adapt to all evolutions of a REST API that complies
with the approach, without changing its code, at run-time?

We observe that the evolvable-by-design UI can evolve itself to 57 out of the 59 breaking
evolutions that are tested, which addresses 27 out of the 29 (93%) evolutions of Table 1.1.
On the other hand, 43 out of the 51 non-breaking evolutions are also addressed while the
traditional UI has been affected by the evolutions. Indeed, all evolutions required to
update its code. As a result, the breaking changes indeed broke it, and some of the non-breaking
changes produced irrelevant behaviors, for example on precondition change.

The two breaking evolutions that the UI is not able to address with the documentation are
the combination and the split of methods. It confirms the limitations set out in 4.4.5.

On the other hand, among the non-breaking evolutions, the only kind of evolutions that the
UI is not able to evolve to is the addition of methods and data. Because this is not related to
the maintenance of an existing collaboration between the UI and the server, this property was
not expected. Yet, for this very specific case, the UI can use the documentation to generate UI
elements necessary to automatically integrate the new features. However, a designer will always
have to refine the design to smoothly integrate them.

From this research question, we learn that this semantic-based approach enables the
automatic evolution of the UI, at run-time, to all evolutions that do not im-
pact the semantics of the API, which include 27 out of the 29 kinds of evolutions.
Unfortunately, the combination and split of methods cannot be managed by this approach.
Nonetheless, it still outperforms the traditional UI that did not evolve to any of the 29 kinds
of evolutions, and hence, required manual adaptation.

131

Part, Chapter 4 – Evolvable-by-design: Robust web UI clients to evolving REST APIs

RQ2 - Does the implementation of an evolvable-by-design Web UI require addi-
tional development efforts in terms of LOC?

First, we observe in Table 4.4 that the first implementation of the evolvable-by-design UI
required less code than the traditional version (1395 vs 1623). Yet, we argue that the development
effort is similar. Indeed, the higher level of abstraction needed to implement the evolvable-by-
design version requires more cognitive effort than a copy of the contract into the code.

Then, every evolution of the API required an update of the traditional UI. On the other
hand, on the evolvable-by-design UI, the code had to be updated only for the two unsupported
breaking evolutions. In the end, 7 lines of code were updated on the evolvable-by-design UI and
230 on the traditional UI.

Regarding the integration of the new features of the API, we observe that they require more
lines of code for the traditional UI than for the evolvable-by-design UI (190 vs 91).

We justify these results for three reasons: (1) the evolvable-by-design UI generates the form for
the operations from small components (e.g. the email input field) and hence maximize abstraction
and reuse while the other UI implements one component per operation. Also, it (2) validates
the input from a generic code leveraging the data constraint language instead of implementing
this logic for each input, and (3) it does not implement the access logic nor the conditions
determining the availability of the operations.

As a result, from this research question, we learn that, the first implementation of an
evolvable-by-design UI is equivalent to a traditional UI. However, for the fewer
code to write, its implementation requires anticipating unforeseen evolutions,
which demands additional cognitive effort and developing new skills. Yet, from
these results we argue that the development of an evolvable-by-design UI reduces the long-
term effort to evolve the UI for the next versions of the API, as it does not require to be
maintained along with every API evolution. Thus, we observe that the overall development
effort is greatly reduced in the long term.

4.5.2 Use cases

This section presents the evaluation we performed on five use cases that covers a qualitative
analysis of our approach. The goal is to compare how our approach can make traditional UIs
that break due to API evolutions robust, i.e., evolvable-by-design. The evaluation is built to
answer the following research question.

132

4.5. Evaluation

Can our approach be implemented on real-
world and already existing web user interfaces?
This aims to investigate the applicability and feasibility of our
approach on already existing web applications, that provide new API
evolution examples. It also evaluates the cost of implementing our
approach in real-world projects.

RQ3

We therefore selected five projects on GitHub that were evolved and adapted by maintainers
to support the updates of the REST APIs they use. We then implemented our approach in each
project, before its adaptation to each REST API evolution. Finally, we replayed the evolutions
to evaluate the effectiveness of the approach.

Data set

For this evaluation, we needed software projects that meet the following requirements.

— Versioned with git

— Contains a web user interface written in JavaScript

— Uses a REST API that evolved, forcing maintainers to evolve the code of the web user
interface to support the evolutions

In order to select the use cases for this evaluation, we followed the following steps:

1. We extracted the 395 APIs that have more than one version available in the API Guru
OpenApi directory 16.

2. We removed from the list the APIs that are not implemented in at least one public GitHub
repository written in JavaScript. To do so, we used the Search feature of the GitHub REST
API. Unfortunately, it searches for a textual query into the README of the repositories,
not into the code, and we could not find a REST API offering this feature. We thus
searched for repositories written in JavaScript, with a query containing the name of the
API along with the API keyword itself. For example, for the Google Drive API, we queried
https://api.github.com/search/repositories?
q=Google Drive API + language:js. At this step, we kept 92 APIs.

3. We listed the repositories using these APIs. We observed that each API is used in 1 to 10
057 repositories for a total of 14 394 repositories.

16. https://apis.guru/openapi-directory/

133

https://apis.guru/openapi-directory/

Part, Chapter 4 – Evolvable-by-design: Robust web UI clients to evolving REST APIs

4. We cloned a maximum of 200 repositories per API. In the end, we cloned 2 778 repositories.

5. We analyzed the repositories to keep the ones where we could find usage of the API URL
in the code, using the git log –source –all -S ’API-URL’ command. At this step, we
found 183 repositories.

6. We analyzed the repositories to keep the ones where more than one version of the API
is used and where these several versions are found in different commits. At this step, we
found 60 repositories.

7. As the last step, we manually analyzed the 60 repositories to verify that they meet the
aforementioned requirements. In the end, we selected 4 of them. Most were rejected because
they do not contain a user interface or do not implement evolutions, either because they
already use the last version of the API, or leave their client broken. Indeed, a significant
part of the analyzed projects were projects used to learn to program.

We automated steps 1 to 6 with scripts written in JavaScript. Then, to ensure the trans-
parency of this research, we make them available online 17.

In addition, one coworker of ours, who teaches computer science to Master students could
share with us a project that they developed. We use it as a fifth use-case.

Table 4.5 presents the main characteristics of the five selected projects. They represent small
to medium projects covering few types, yet, real-world API evolutions. This is expected because
they use public APIs that evolve rarely, or have a too-short life cycle to have been evolved many
times. On the opposite, private APIs (i.e. internal to companies) evolve more frequently but
their sources are closed. The next subsections detail each of the five use cases, i.e., projects, and
summarize the work done on each one of them. Then, the last subsection presents the results of
this empirical evaluation.

In order to ensure the reproducibility and transparency of this research, all the material
is available online 18. A central document details what was done on each repository, the links
to the commits implementing our approach along with the instructions explaining how to test
the evolutions. All the repositories were forked and all the work done on them is split into
commits with explicit messages into a single branch named evolvable-by-design. In addition,
the README was completed with all the details of the work done.

Use case 1 – “Dialog Flow"

Dialog Flow is a web application offering a conversational chat bot. It is im-
plemented as a single page application with the React library and comes with a

17. https://github.com/evolvable-by-design/research/tree/master/utils/search-github-apps-with-api-
evolutions
18. Empirical evaluation material: https://github.com/evolvable-by-design/research/tree/master/

experiments/evaluation-on-use-cases

134

https://github.com/evolvable-by-design/research/tree/master/experiments/evaluation-on-use-cases
https://github.com/evolvable-by-design/research/tree/master/experiments/evaluation-on-use-cases

4.5. Evaluation

Table 4.5 – Artifacts selected for the empirical evaluation

GitHub name Size
(in lines)

Number of
evolutions Evolution types

lauchness/dialog-flow 721 1 3

IronistM/pagespeed_api_apps_script 63 2 3 and 5

danielsinclairtill/spaghetti-makes-me-moody 2 827 3 1 and 23

georgejacobt/utify 2 529 2 1

cbdt/Projet-Simba 1 663 14 1, 3, 5, 6, 10, 17,
26, 28 and 29

dedicated web server offering a REST API for the web UI. The application uses the
Google Dialogflow REST API. In the beginning, this API was called from the web UI but
a modification of the app moved this call to the server. Hence, the web UI now calls the server
that calls the Google Dialogflow API on its own.

We found one REST API evolution in this project. Indeed, developers changed the
model of the data returned by one API endpoint. At first, given intentResponseContent the
object returned by the Google Dialogflow API, the API endpoint returned "intentResponse":

intentResponseContent . After the evolution, it returns the intentResponseContent value
directly, hence exposing the data upper in the document hierarchy. This change has been done
when the usage of the Dialogflow API moved from the web UI to the server. We therefore had
to split this into two steps: (1) move the call to the server, (2) make the evolution.

To implement our approach in this project, we had to go through four preliminary steps.
We (1) forked the repositories, (2) moved the Dialogflow API call to the server, (3) created an
OpenApi documentation with semantic descriptors, and (4) modified the web UI to use the API
of the server. Then we could implement the approach in a single commit. It required to add
and update 43 lines of code to the project. We then replayed the API evolution
and could observe that the web UI was indeed able to handle the evolution without
modifying its code.

Amongst the 43 added and updated lines of code, 8 adds the semantic vocabulary used in
the web UI, 17 modify the existing code to use the approach to query the server API and read
the result and 18 are used to fetch the API documentation on startup to display a “Loading"
text during this operation and instantiate the library.

The metrics measured to evaluate the approach on this use case are presented in Table 4.6.

135

Part, Chapter 4 – Evolvable-by-design: Robust web UI clients to evolving REST APIs

Use case 2 – “Pagespeed api apps script"

The project of this use case is a small script designed for Google Apps Script that calls
the Google PageSpeedInsight REST API to get the overall performance score of a
website. Hence, it returns only one figure. It is implemented in JavaScript and does not have
a web user interface. Yet, the approach is applicable here because the types of changes applied
here do not require a user to input data.

We found two REST API evolutions in this project. Indeed, the base URL and
the type of the returned value of the endpoint used on the Google PageSpeedInsight API
changed from version 1 to version 2. In the URL, the change is the version number, from
www.googleapis.com/pagespeedonline/v1 to /v2. On the other hand, the response from the REST
API has been completed. As a result, to retrieve the score from the response the path changed
from response.score to response.ruleGroups.SPEED.score.

To implement our approach in this project, we had to go through four preliminary steps.
We (1) forked the repositories, (2) created a branch before the evolutions, (3) adapted the
application to run locally instead of in Google Apps Script, and (4) created a mock server for
both versions of the PageSpeedInsight API along with the v1 documentation, because it is not
online anymore. Then we could implement the approach in a single commit. It required to add
and update 15 lines of code to the project. We then replayed the API evolutions and
could observe that the script was indeed able to handle the two evolutions without
modifying its code.

Amongst the 15 lines of code added or updated on the project, 5 are used to fetch the API
documentation and instantiate the library, and 10 to update the existing code in order to use
the library to make the call and read its result. The modifications are shorter here because
the semantic vocabulary is not placed in a dedicated file but used as a string in the code, the
architecture is simpler and fewer data are manipulated.

The metrics measured to evaluate the approach on this use case are presented in Table 4.6.

Use case 3 – “Spaghetti makes me moody"

Spaghetti makes me moody is a web application that tracks and stores users’
accounts along with journal entries. It then uses the Google Cloud Platform’s Natural
Language API to infer and display the estimated mood, tags, and themes found within these
journal entries. To achieve this, the application is composed of a web user interface and
a dedicated web server, both implemented in JavaScript. Within this use case, we
study the evolutions of the REST API offered by the dedicated server.

We found three REST API evolutions in this project. The first two are of the same
type, they both add parameters to existing API operations. In the first case, a historyData field
was added to the input of the user creation operation. Its purpose is to save in the database

136

4.5. Evaluation

the journal entries and corresponding Language API analysis that the user did before creating
his account. The second case is the addition of the username and password parameters to the
operation used to analyze the entry, in order to store the result in the history. The developers
took this decision instead of implementing a standard authentication mechanism. The third
REST API evolution is the modification of the HTTP verb used for the create user operation,
from POST to PUT.

We implemented our approach in this project one evolution at a time. We thus explain the
work done in the next three sections.

Evolution 1: addition of a historyData parameter To implement our approach for this
evolution, we had to go through the same preliminary steps as for the previous use-cases and
also had to create a Google Language API key. Then, we could implement our approach
in a single commit, in 57 lines of code. We then replayed the API evolution and
could observe that the user interface behave as expected without changing its code.

Amongst the 57 lines of code, 16 set the library up, 11 add semantic vocabulary to the
project and 30 served to adapt the code to use our approach. This figure is different from the
previous use cases because a custom solution is necessary for each use case in order to follow the
architecture in place. In addition, we had to implement something new in this use case. For the
first time, we had to create an object containing all the context of the component calling the
library and to semantically describe its fields. This context contained the user information along
with the component inputs and state. We thus learned from this use case that the component
calling our library should provide a context to our library in order to let it browse the context
and find potential values for the parameters of the operation. This is particularly relevant when
user information is necessary, such as the username.

Evolution 2: addition of the username and password parameters Because the second
evolution is of the same type as the first one, we applied the same logic to the operation analyzing
the journal input instead of the user creation operation. This time it modified or added
38 lines. Among them, 9 added vocabulary into the application, and 29 modified the code to
leverage our approach.

Evolution 3: request method change, from POST to PUT This last evolution con-
cerned the same operation as the first evolution. We thus did not need to adapt the
user interface code because it already was. Hence, modifying the API documenta-
tion was sufficient.

The metrics measured to evaluate the approach on this use case are presented in Table 4.6.

137

Part, Chapter 4 – Evolvable-by-design: Robust web UI clients to evolving REST APIs

Use case 4 – “Utify"

Utify is a web application offering a music and entertainment channels integrator.
It was developed by a single developer. Functionally, it broadcasts a keyword search to multiple
entertainment data sources including YouTube, Spotify, and Pandora, and combines their results
in a single web page. To achieve this, Utify is composed of a web user interface and a dedicated
web server offering a REST API for the web UI. Thus, this is the server that does the REST
API calls to YouTube, Spotify, and Pandara. About their implementation, both the server and
the user interface are written in JavaScript. Within this use case, we study the evolutions
of the REST API offered by the dedicated server because this is the only REST API
that evolved during the project life cycle.

We found two REST API evolutions in this project. Indeed, the developer added
a new required parameter (evolution of type 1 from Table 1.1) to the server’s REST API two
times. The first addition was the userId to the search request. The server used this data to
retrieve the user’s OAuth2 token in order to call the YouTube API. The second change was the
addition of a tag to the videos’ metadata in order to classify them and create categories on the
web UI.

We implemented our approach in this project one evolution at a time. We thus explain the
work done in two sections.

Evolution 1: addition of a userId parameter This first change can not be managed by
our approach at first. Indeed, the evolution is the addition of a userId parameter to the API
endpoint /api/search. This parameter is used to identify the user making the request, because no
standard authentication mechanism is used. The problem can hence be seen from two different
angles.

First, it can be considered that because the authentication mechanism is not standard, it has
not been possible to implement it in our library. Thus, the authentication can not be performed
automatically and the generated requests will fail. Yet, this interpretation is limited. While it is
true for this very use case, a more general interpretation is possible and is detailed in the next
paragraph.

Second, the added parameter is an example of a parameter that the user can not know. Hence,
it should be provided by the API, either directly into the documentation, or within hypermedia
controls. Yet in this project, this is not possible because, to provide this information in the
documentation or in hypermedia controls, the user context must be known. Here, this is not
possible because the parameter is the element enabling the retrieval of the user context.

To overcome this issue, we implemented a standard authentication mechanism into the
project using the AuthenticationService offered by our library.

Hence, to implement our approach in this project, we also had to go through four preliminary

138

4.5. Evaluation

steps. We (1) forked the project, (2) added our YouTube API key in the configuration, (3) created
an evolvable-by-design branch, (4) standardized the authentication mechanism. Then we could
implement our approach in a single commit. It required to add and update 46 lines of
code. We then replayed the API evolution and could observe that the web UI was
indeed able to handle the evolution without modifying its code.

Amongst the 46 lines of code added or updated on the project, 27 enable to fetch the API
documentation, instantiate the library and display a loader while doing so; 7 add the semantic
vocabulary to the application and 12 to update the existing code in order to use the library to
make the call.

Evolution 2: addition of a tag parameter This change corresponds to the addition of a new
feature to the web UI: sorting content per category. As aforementioned, this kind of evolution is
not supported because it requires designers to think about how to modify the user experience to
add this feature. Otherwise, the approach would fall into the category of automatically generated
web user interfaces. Yet, with our approach, we are able to keep the user interface working with
the evolved API. As a counterpart, the user experience will not be optimal but sufficient to make
the web UI usable.

Before implementing our approach for this evolution, we replayed the 16 commits be-
tween the two evolutions. We could notice that it did not break the feature using
our approach. Then, we added the operation to the API documentation and imple-
mented our approach in 18 lines. We then replayed the API evolution and could
observe that the web UI was indeed able to handle the evolution without modify-
ing its code. At last, we applied the changes of the original commit on the user interface and
verified that the software still worked, which it did.

Amongst the 18 lines to add our approach, 2 added semantic vocabulary entries and 16
updated the existing code in order to use the library to make the call to the API.

The metrics measured to evaluate the approach on this use case are presented in Table 4.6.

Use case 5 – “Simba"

Simba is a web application offering a meeting organization tool where the partici-
pants can vote on their preferred time slot. It is similar to doodle.com. Simba was developed by
three developers. In addition to voting, users can indicate meal preferences and post comments.
To achieve this, Simba is composed of a web user interface communicating with a dedicated
backend through a REST API. Here we study the evolutions of this REST API. The particular-
ity of this project is that it is another developer that developed the second version of the REST
API, without communicating with the first authors.

We found fourteen REST API evolutions in this project, of nine different types. In-

139

Part, Chapter 4 – Evolvable-by-design: Robust web UI clients to evolving REST APIs

deed, the developers added parameters (no.1 of Fig 1.1), changed the types of returned val-
ues (no.3), renamed a method (no.5), renamed parameters (no.6), combined methods (no.10),
moved API elements (no.17), changed the set of operation to execute to achieve a business
process (no.26), moved parameters (no.28) and removed returned value (no.29). For exam-
ple, to comment on a poll, it was required to create a user and then comment by invoking
two operations. A JSON structured as { "content": "the-comment" } had to be sent to
POST /api/polls/slug/comments/{userId}. With the v2 of the API, a single call to POST
/api/poll/comment/slug is necessary, and the username should be included in the JSON of
this operation invocation.

Before implementing our approach in this project, we documented and semantically anno-
tated both APIs. Then we added a toggle on the web UI to easily switch between the two
versions of the API. Next, we added all the semantic vocabulary used on the project into the
web UI. Finally, we added and configured our library into the web UI, which added
33 lines of code.

Implementing our approach was very similar for 10 out of the 14 evolutions. First,
we used our library to find the API operation with semantic descriptors. Next, we semantically
annotated the data available on the web UI, and we used these annotated data to invoke the
operation. Finally, we managed the API response either by keeping the response body as is when
it did not change between versions, or by leveraging our library to retrieve the data from the
response, based on its semantics, when the format of the returned data changed.On average, it
took 15 lines of code per operation to make evolvable-by-design. For the two evolutions
modifying a process, for example, to vote or comment a poll, we had to implement a function
to follow the process leveraging our library. It took an additional 10 lines of code, once.

Handling the deletion of a parameter was different from the rest. Here, the deletion was
linked to the deletion of a feature: the support of meal preferences. Then, the relevant manner
to handle this change was to hide all the user interface elements related to this feature when
it is not available on the REST API. Hence, on the web UI, we implemented a function that
determines if the feature is available or not. If so, the UI elements are displayed, otherwise, they
are not. This was relatively easy to implement, it took a total of 28 lines of code.

Among the changes, we were not able to automatically handle the combine methods change,
as expected and already discussed in 4.4.

The metrics measured to evaluate our approach on these use cases are presented in Table 4.6.

Summary of the results

Table 4.6 summarizes the results of this experiment.
On the one hand, we observe that it took on average 20 lines of code to fetch the API

documentation and set up our library from the web user interface, and it took on average

140

4.5. Evaluation

Table 4.6 – Detailed results of the experimental evaluation on five real world use cases

Name
Lines
of

code

Evolu-
tions

Types of
evolutions

Commits
including
evolutions

Lines to
evolve without

approach

Lines to
implement

the approach

Develo-
pers

Broke
tests?

Evolutions
handled
without

updating the
client code?

Dialog Flow 721 1 Change return
type (3) 1 2 43 1 No tests Yes

Page Speed API
Apps Script 63 2

Change return
type (3)

Change URL (5)
1 2 15 1 No tests Yes

Spaghetti Makes
Me Moody 2 827 3

Add parameter (1)
Request method

change (23)

Evol. 1:
several

Evol. 2: 1
Evol. 3: 1

Evol. 1: 4
Evol. 2: 22
Evol. 3: 1

Evol. 1: 57
Evol. 2: 38
Evol. 3: 0

4 No tests Yes

Utify 2 529 2 Add parameter (1) 1 per
evolution

Evol. 1: 7
Evol. 2: 2

Evol. 1: 46
Evol. 2: 18 1 No tests Partial

Simba 1 663 14
1, 3, 5,
6, 10, 17,

26, 28 and 29

1 per
evolution

Evol. 1&2: 10
Evol. 3: 15
Evol. 4: 2
Evol. 5: 66
Evol. 6: 5
Evol. 7: 9
Evol. 8: 8

Evol. 1&2: 56
Evol. 3: 15
Evol. 4: 15
Evol. 5: 28
Evol. 6: 24
Evol. 7: 15
Evol. 8: 19

3 No tests

Partial:
all

except the
change
of type
combine
methods

16 lines of code to apply our approach per API operation. On the other hand, it took
on average 7.5 lines of code to evolving the web UI without our approach.

RQ3 - Can our approach be implemented on real-world and already existing web
user interfaces?

We observe that:

1. We always could apply our approach on the 9/10 studied types of evolutions that we claim
to support in Section 4.4

2. We always handled the evolutions when the system matched the requirements that we
described in Section 4.4

3. The additional work to do on the web user interface to make it evolvable-by-design does
not induce drastic changes. Indeed, it costs on average 20 lines of code for the setup and
an additional 8.5 lines of code per API operation used.

141

Part, Chapter 4 – Evolvable-by-design: Robust web UI clients to evolving REST APIs

After implementing our approach on five use-cases, we conclude that the approach can
be applied to real-world web applications. Furthermore, the additional lines
of code to produce do not induce drastic changes. Yet, we acknowledge that an
additional design and cognitive effort is necessary to implement the approach. Indeed, it
is less straightforward than making REST API calls following a well-defined REST API
documentation. However, we argue on the long-term benefit that will remove the
burden of manual migration.

4.5.3 Discussion

From our experiments, we observed that this approach comes with its own advantages and
shortcomings.

Among the advantages, it enables the design of web UIs that can evolve at run-time,
automatically, to 27/29 known kinds of API evolution while the traditional UI evolves
to 0/29. Likewise, for non-breaking evolutions, on the benchmark, our approach could adapt to
51/59 evolution while the traditional UI evolved to 0/59.

In addition,we were able to implement the approach in all the use cases we studied.
In addition, we consider that the effort to modify pre-existing use cases has remained low. Indeed,
it took from 15 to 57 lines per change, where on average 15 were necessary to modify an
existing code invoking a REST API operation to make it evolvable-by-design. The
rest of the added code concerned the setup of the library and semantic vocabulary.

It is worth noting the possibility to make only certain areas of a web user interface evolvable-
by-design, as the experiment on the use-cases proved. Hence, a progressive migration can be
achieved and developers can decide to not make critical sections of their application evolvable-
by-design at first.

Finally, to us, the main benefit of the approach is on the long term with future
evolutions. Indeed, as shown with the third evolution of the third use-case, when a type of
change is repeated several times it is not necessary to make the code evolvable-by-design again.
Thus, over time, the more the API evolves, the more time development teams will save. Hence,
web user interface developers can focus on valuable tasks and API providers gain freedom to
evolve their API.

However, our approach also comes with shortcomings.
First, an effort must be done by the API provider to document their API and fol-

low the requirements presented in Section 4.4. While providing rich API documentation
is considered a good practice, making this a requirement is an impediment to the adoption of our
approach. Indeed, for example, we were not able to make the web UI evolvable-by-design for one
change of the fourth use case at first, because the API did not meet the requirements. Indeed, it
used a non-standard authentication mechanism and thus could not provide hypermedia controls

142

4.5. Evaluation

for values that the user can not know. Therefore, it has been necessary to modify the API in
order to use a standard authentication mechanism.

Also, our approach may bring new sources of mistakes. A careful attention must be paid
by developers to the following points, even if they are requirements of the approach.

i) Replacing a semantic descriptor with another one can break the UI while the API
did not change. For example, if schema.org/Project is replaced with other.vocab/Project and
no owl:sameAs attribute links the two.

ii) The interface may ask the user for inputs that he/she cannot input. For example, if
an input is required in a specific format such as a UUID, but no research function is documented.
This would make the UI unusable. Yet, no exception would be raised by the software.

Moreover, producing a very detailed and semantically annotated API documentation is not
trivial. Indeed, during our experiments, we sometimes had to fix the API documentation. Hence,
tools are necessary to accompany API designers producing documentations enabling
our approach.

In addition to the advantages and drawbacks, we consider it interesting to discuss the reasons
why the number of lines of code differs between changes. In fact, three main factors influence this
difference. First, the number of parameters sent to the API plays a role, we usually use one line
to send a parameter with its semantic descriptor. Second, the dependency injection technology
and the internal architecture of the code also play a role. Finally, the web UI sometimes just
needs to execute an action, or to fetch data, or to fetch a data first and then execute actions on
it. Each adaptation requires a different amount of code.

Finally, using our approach on a legacy code could require specific refactoring. Indeed, all
the navigation within the data model is done asynchronously for all paths. Therefore, whether
the data is present in memory or accessible as a result of a set of requests to the server is hidden
from the developer. While this strong assumption may require a larger refactoring when using
our approach on some existing Web applications (i.e. with synchronous calls, for example, as
in use case 5), it is also a common pattern in advanced Web development. For example, JSON
API specification allows nested complex types in attributes of an individual resource, but the
complex type can not be another resource 19. This pattern allows the architect to change the
granularity of the objects sent by the back-end. This refactoring cost is thus induced by our
approach but can also be considered as a cost related to the application of a classical pattern
increasing the code quality on the client-side.

19. Clarification on resources composed of other resources: https://bit.ly/3mJOKqz

143

https://bit.ly/3mJOKqz

Part, Chapter 4 – Evolvable-by-design: Robust web UI clients to evolving REST APIs

4.5.4 Threats to validity

This section discusses threats to validity [155].

Internal Validity

The first internal validity threat is w.r.t. the RQ1. I created the API evolutions and imple-
mented the two user interfaces of the first experiment. This process presents a potential bias.
To mitigate this, I developed both UIs with the same rigor and best practices that I follow
when developing web applications for big corporations at Fabernovel, where more than 100 web
and mobile developers work. Moreover, the second experiment does not present this bias and
confirms that the approach indeed works for a sub-part of the evolutions (9 out of the 29). In
addition, all the material is available online and can be cross-checked. Other researchers can
therefore challenge these results by building new user interfaces on top of the same REST API.

Also, we tested our approach against 10 out of the 29 types of evolution over five real-world
use cases. While all successful, we could not test the other types of evolution on real-world
use cases. Hence, they were tested on a case study including two UIs in RQ1 for exhaustiveness
purposes. Moreover, each kind of API evolution has been tested more than once to test scenarios
that he meets on a daily basis. In particular, the breaking API evolutions but also non-breaking
API evolutions.

External Validity

External validity first relates to the number of participants and the technologies involved.
Indeed, we tested the approach over one case study and five use cases. Also, we implemented
the servers with a single set of technologies. Although we cannot generalize our results, we
are confident that they can be beneficial to any API and Web UI implementation technology.
Indeed, on the server side, we did not use any language construct or feature specific to JavaScript.
Similarly, the code leveraging the documentation on the user interface is written in JavaScript,
which is the only programming language supported by web browsers. Therefore, it can already
be used with other frameworks such as Angular 20 and VueJS 21.

External validity also relates to the lines of code (LoC) being used as the metric regarding
maintenance effort. Therefore, the results can not be generalized as the modified lines of code
are not statistically representative of the provided development effort. We used the LoC metric
to provide an intuition of the development effort.

20. https://angular.io/
21. https://vuejs.org

144

https://angular.io/
https://vuejs.org

4.6. Conclusion

Conclusion Validity

We tested our approach on our own over six web applications. From our experimentation,
the results of the approach seem good and promising. However, a similar experimentation should
be done on other case studies with developers, excluding ourselves, using different technologies
and languages to confirm these encouraging results.

Moreover, we proposed an approach in which adoption strongly depends on the developers’
understanding and engagement. It is therefore necessary to design an experiment where devel-
opers will implement UI clients with the proposed approach to assess their interest. This is left
as future work. In this work, we solely evaluated the feasibility and applicability of the proposed
approach on real-world use cases.

4.6 Conclusion

This work proposed an approach that enables the design of evolvable-by-design user interfaces
that are clients of REST APIs. They are user interfaces that evolve automatically to the changes
of the APIs, at run-time, and without modifying their code. We proposed to decrease the coupling
between the client and its API by relying on the ability to have semantically rich REST API
documentation. In particular, we studied what structural and contextual information should be
documented in the APIs for web user interfaces to be evolvable-by-design.

Our approach was evaluated over both a quantitative and qualitative study. Indeed, we first
evaluated it over a case study with an API that implements 110 evolutions through 16 versions.
We compared the effort required to evolve a traditional client with an evolvable-by-design client.
It showed that the UI could evolve to 27/29 kinds of evolutions at run-time without modifying its
code, which represents 99% of real-world evolutions and outperforms traditional user interfaces
that can not evolve without modifying their code. Moreover, while the design of an evolvable-by-
design user interface required a slightly superior effort at first, it proved to significantly reduce
the maintenance effort in the long term. Then, we implemented our approach in five use-cases
that are real-world open-source web applications found on GitHub. These use-cases implement 20
REST API evolutions of 10 different kinds. As a result of this experiment, we could successfully
implement our approach for the 20 evolutions. It thus proved that our approach can progressively
be implemented in real-world web applications at a reasonable cost. Indeed, it took on average
15 lines of code to make a REST API operation invocation evolvable-by-design.

145

Chapter 5

CONCLUSIONS AND PERSPECTIVES

In this thesis, we first reviewed how the World Wide Web evolved. We saw that the Web is
made of many applications and services that communicate with each other using REST APIs.
We therefore explored the main research surrounding REST APIs such as how contracts are
expressed, how some tasks could be automated with Semantic Web technologies, how they
evolve and how to ease their co-evolution.

We thus identified two pain points that developers face when working with REST APIs.
First, the many available technologies to design, document, and implement REST APIs make
their selection a time-consuming and error-prone task. Second, there is no satisfying solution for
the break-free co-evolution of REST APIs. Indeed, the state of the practice is to limit evolutions
because most of them are breaking clients. Developers create new versions of their APIs to avoid
breakage but are however reluctant to create many of them because otherwise they would lose
clients.

So, as a first contribution of this thesis, we proposed three comparison matrices to assist
developers in the selection of the right technologies for the system to design. After the iden-
tification of candidate technologies, we read their documentation. Then, we designed a set of
criteria to compare them and we finally produced the comparison matrices. We then showcased
how these matrices can be used through an example. To facilitate selection, we have developed
an assistant available online 1. From this work, we learned that whereas there are many tech-
nologies to design Semantic REST APIs, it is not clear how to actually implement them and how
to leverage the additional metadata to solve real-world problems. We advocated for additional
studies that specify what metadata should be exposed to enable new usages such as automated
service testing or break-free co-evolution.

As a second contribution of this thesis, we proposed a novel approach to the co-evolution
of REST APIs and their clients. We argued that clients of REST APIs should not be evolved
manually but should be able to adapt to typical REST API evolutions, at run-time, without
breaking, and without changing their code. To enable this, the clients of REST API need rich
documentation. We therefore studied what structural and contextual information should be
documented in the APIs for Web user interfaces to be evolvable-by-design. We gave an open-

1. https://antoinecheron.github.io/morice/step/1

147

https://antoinecheron.github.io/morice/step/1

source implementation of a library enabling this on the client-side along with an open-source
example of an evolvable-by-designWeb User Interface with its evolving REST API. Our approach
was evaluated over both a quantitative and qualitative study. With the quantitative study,
we demonstrated that our UI could evolve to 27/29 kinds of evolutions at run-time without
modifying its code. The qualitative study implemented the approach on the five real-world
open-source Web applications that we could find on GitHub. These use-cases implement 20
REST API evolutions of 10 different kinds. As a result of this experiment, we could successfully
implement our approach for the 20 evolutions. With the two experiments, we could prove the
feasibility of the approach.

With these two contributions, we tried to address the major scientific challenges faced by
REST API providers throughout the entire life cycle of their REST APIs. We could also identify
areas for future research.

Perspectives

The next question to tackle is how to drive adoption of the proposed co-evolution approach?
To achieve this, the approach must be easy to understand, implementable with reasonable effort,
and attractive.

To test the required effort and attractiveness, as a first perspective we propose to lead a
crossover study (see 5). Depending on the results, if the approach is complex to understand
or not attractive enough, communication and teaching efforts will be necessary but are out of
the scope of scientific research. To us, the last thing to address is the ease of implementation.
On the one hand, it requires advanced user experience studies to design the client-side library’s
API, which are related to industrialization and engineering. On the other hand, we identify
interesting research topics. To us, one of the major challenges is the selection and manipulation
of ontologies. So, as a second perspective (see 5) we propose to explore solutions to propose
ontology recommendation from the code editor, leveraging on machine learning techniques to
drive standardization and obtain good precision and to also leverage both the code and API
documentation.

Now, if we imagine that developers use our approach, REST APIs would be semantically
described and Web applications would be evolvable-by-design. In such a context, we see inter-
esting topics to explore. A first topic is the use of GraphQL 2 to query a set of Semantic REST
APIs with no prior knowledge of them (see 5). A second topic is the description and partial
automation of functional tests (see 5).

The following sections detail the four perspectives.

2. https://graphql.org/

148

https://graphql.org/

First perspective: crossover study

As a first perspective, we propose to extend this work with a crossover developers study. This
work proposed a new approach to the co-evolution of REST APIs and their clients, that enables
clients to evolve to 27 out of the 29 known kinds of REST API evolution at run-time without
changing their code. We therefore studied the effectiveness of the approach and its applicability
to real-world applications.

A natural next step is to test the potential adoption and the extent to which the proposed
approach may prove attractive to web developers. For this purpose, we propose to lead a crossover
developers study, which is a variant of within-subject design in which all participants are exposed
sequentially to all variances of the task. With such a study, we would be able to compare the
effort required to implement and maintain the client of a REST API with and without our
approach.

We believe that additional and extensive user studies should be conducted to minimize bias,
as the library that will be given to developers to test the approach can strongly influence the
results.

We started the design of such an evaluation. The material is available online 3 and may be
re-used.

Second perspective: ontology recommendation within the code editor

As a second perspective, we propose to study how to ease the manipulation of Semantic Web
/ Linked Data ontologies by developers. In order to design evolvable-by-design clients, develop-
ers often manipulate ontologies. The developers of the REST API do so when they document
the REST API and the developers of the clients use ontologies to describe the functional re-
quirements. The easy selection and manipulation of ontologies offering the best coverage for a
particular domain is therefore crucial to drive adoption. Moreover, this subject raises interesting
research opportunities.

To date, the Linked Open Vocabularies platform hosts 757 ontologies 4. Selecting ontologies,
identifying gaps, and enriching them is therefore cumbersome for developers. The idea is thus
to help the developer select the most relevant ontologies, or terms when several ontologies are
required, from his code editor. To achieve this, we propose to design an extension to code editors
and Integrated Development Environments (IDE) that would open with a shortcut and let the
developer search for semantic terms. The goal is to ease ontology selection, improve reuse and
standardization.

Previous research proposed several ontology search engines and recommendation systems [156,

3. https://github.com/evolvable-by-design/research/tree/experiment/crossover-developer-study/
experiments/crossover-developers-study

4. Source: https://lov.linkeddata.es/dataset/lov/vocabs - Accessed: 06/30/2021

149

https://github.com/evolvable-by-design/research/tree/experiment/crossover-developer-study/experiments/crossover-developers-study
https://github.com/evolvable-by-design/research/tree/experiment/crossover-developer-study/experiments/crossover-developers-study
https://lov.linkeddata.es/dataset/lov/vocabs

157, 158, 159, 160]. Extensions to these works explored how to apply them to specific domains
such as Internet of Things [161]. However, it is widely pointed out that classical ontology model
is not sufficient to deal with imprecise and vague knowledge strongly characterizing some real-
world applications. There are thus many proposals for fuzzy extensions to ontologies that intend
to deal with such vague and imprecise information [162]. However, to the best of our knowledge,
no technique proposes to leverage the entire API description or the code of an application to
improve recommendations. We therefore propose to explore this. In addition, we believe that
machine learning techniques can help improve the precision of the recommendations, reuse, and
standardization. Besides, we would like to explore which architecture would be relevant to make
recommendations in real-time from the code editor.

Third perspective: easing the design of GraphQL API mashups

In recent years, a new architectural pattern emerged. Instead of directly calling several REST
APIs from a web client (most often a web or mobile application), some developers started using
a sort of proxy server that is the single API called by the web client. This proxy is in charge of
analyzing the query and then calling the proper REST APIs in order to produce the desired effect
and build the response. The goal is to reduce querying times by factoring several queries into
a single one and reducing complexity for the front-end developer by moving the orchestration
logic to this sort of proxy server. The most popular technology used to achieve this in 2021
is GraphQL 5, a graph query language designed by Facebook engineers. In practice, the client
sends to the server a representation of the data that it expects to receive as a response, within a
format very close to JSON. The server that supports GraphQL should however be implemented
manually. This is partly because the REST API contracts are hardcoded, and also because a
new interface must be designed specifically for very few clients based on existing REST APIs,
with the objective to make the interface as easy to understand and manipulate as possible for
the developers of the clients.

The third perspective of this work is therefore to ease the design of this component. We
observe that the creation of such a component starts by defining the schema of the data to expose.
Then, developers write software components that will fetch multiple REST APIs upon request
and then gather the data into a single response. We argue that developers should not write those
connectors manually. Instead, they should rely on model-driven approaches. In practice, they
should specify which data should be exposed and in which REST APIs this data is. Then, the
connectors that fetch multiple REST APIs and intelligently factor the responses should either
be generated or generic.

So, a first idea is to design a DSL for this purpose. In practice, the API designer would select
the REST APIs to use. Next, the DSL editor would retrieve the documentation of all these

5. https://graphql.org

150

https://graphql.org

APIs. Then, the designer would use the DSL to specify the composition to achieve. We would
like to explore how to design such a DSL leveraging on the semantic description of Semantic
REST APIs to manage orchestration and composition at run-time. We will base our research
on known bridges between GraphQL and RDF [6]. Existing works propose to query stored RDF
graphs with GraphQL, extend GraphQL with JSON-LD, and transform GraphQL queries into
SparQL queries.

A first challenge of this work is to adapt the existing approaches regarding GraphQL to
become compatible with Semantic REST APIs and the approach we proposed as a second
contribution of this thesis. A second challenge is the design of the DSL itself. In addition, we
propose to have the DSL editor fetch the documentation of the REST APIs that the API designer
wants to use. So as a third challenge, we will have to find techniques to make this information
easy to manipulate. Ideally, we would like to make accurate recommendations from the editor
by reusing the ontology recommendation engine described in our second perspective. However,
we do not know if this is valuable for the API designer or not so we may have to find a different
technique.

Fourth perspective: a Domain-Specific Language for scenario-based functional
testing of Semantic REST APIs

As a fourth perspective, we envision a Domain Specific Language (DSL) that developers of
services would use to describe the scenarios to test. The goal is to enable them to describe the
functionalities to test without worrying about the technical details. To select the functionalities
to test, we would reuse the ontology recommendation engine described in our second perspective.
From the description of the scenario to test, the engine would generate the API requests and then
take care of orchestration and consistency. In addition, thanks to the availability of data schema
descriptions in the ontologies or API description, we could automatically leverage property-
based testing techniques. With such a Domain-Specific Language, we envision that domain
experts would be enabled to write functional test scenarios.

In contrast to the popularity of REST, systematic testing of REST APIs has not attracted
much attention so far. The only model-driven approach to the test of REST APIs that we could
find proposes to both generate the REST API code and a test suite [74]. Thus, to the best of
our knowledge, no DSL address the scenario-based functional testing of existing REST APIs
or generates the API requests. Moreover, we believe that the presence of semantic descriptors
into the documentation can be helpful to drive consistency and minimize errors during the
orchestration of multiple API interactions.

151

BIBLIOGRAPHY

[1] M. Lanthaler, “Third generation web apis,” Ph.D. dissertation, Ph. D. dissertation, Insti-
tute of Information Systems and Computer Media . . . , 2014.

[2] I. Salvadori and F. Siqueira, “A maturity model for semantic restful web apis,” in 2015
IEEE International Conference on Web Services. IEEE, 2015, pp. 703–710.

[3] R. Cailliau and D. Connoly, “A little history of the world wide web,” https://www.w3.
org/History.html.

[4] “Most popular websites 1996 - 2019,” https://www.youtube.com/watch?v=2Uj1A9AguFs,
accessed: 2021-09-12.

[5] G. Thies and G. Vossen, “Web-oriented architectures: On the impact of web 2.0 on service-
oriented architectures,” in 2008 IEEE Asia-Pacific Services Computing Conference. IEEE,
2008, pp. 1075–1082.

[6] R. Taelman, M. Vander Sande, and R. Verborgh, “Graphql-ld: linked data querying with
graphql,” in ISWC2018, the 17th International Semantic Web Conference, 2018, pp. 1–4.

[7] A. Martin-Lopez, “Ai-driven web api testing,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: Companion Proceedings, 2020, pp. 202–
205.

[8] S. Segura, J. A. Parejo, J. Troya, and A. Ruiz-Cortés, “Metamorphic testing of restful web
apis,” IEEE Transactions on Software Engineering, vol. 44, no. 11, pp. 1083–1099, 2017.

[9] J. Wang, X. Bai, L. Li, Z. Ji, and H. Ma, “A model-based framework for cloud api testing,”
in 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC),
vol. 2. IEEE, 2017, pp. 60–65.

[10] A. Arcuri, “Restful api automated test case generation with evomaster,” ACM Transac-
tions on Software Engineering and Methodology (TOSEM), vol. 28, no. 1, pp. 1–37, 2019.

[11] T. Espinha, A. Zaidman, and H.-G. Gross, “Web api growing pains: Loosely coupled yet
strongly tied,” Journal of Systems and Software, vol. 100, pp. 27–43, 2015.

[12] D. Dig and R. Johnson, “How do apis evolve? a story of refactoring,” Journal of software
maintenance and evolution: Research and Practice, vol. 18, no. 2, pp. 83–107, 2006.

152

https://www.w3.org/History.html
https://www.w3.org/History.html
https://www.youtube.com/watch?v=2Uj1A9AguFs

[13] J. Li, Y. Xiong, X. Liu, and L. Zhang, “How does web service api evolution affect clients?”
in 2013 IEEE 20th International Conference on Web Services, 2013, pp. 300–307.

[14] J. Henkel and A. Diwan, “Catchup! capturing and replaying refactorings to support api
evolution,” in Proceedings of the 27th international conference on Software engineering,
2005, pp. 274–283.

[15] T. McDonnell, B. Ray, and M. Kim, “An empirical study of api stability and adoption in
the android ecosystem,” in 2013 IEEE International Conference on Software Maintenance.
IEEE, 2013, pp. 70–79.

[16] M. Monperrus, “Automatic software repair: a bibliography,” ACM Computing Surveys
(CSUR), vol. 51, no. 1, pp. 1–24, 2018.

[17] B. Dagenais and M. P. Robillard, “Semdiff: Analysis and recommendation support for api
evolution,” in Proceedings of the 31st International Conference on Software Engineering.
IEEE Computer Society, 2009, pp. 599–602.

[18] N. Forsgren and D. Smith, “Accelerate State of DevOps 2019,” 2019. [Online]. Available:
https://cloud.google.com/devops/state-of-devops/

[19] E. Gamma, R. Helm, R. Johnson, and J. M. Vlis-
sides, Design Patterns: Elements of Reusable Object-Oriented Soft-
ware, 1st ed. Addison-Wesley Professional, 1994. [Online]. Avail-
able: http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/
dp/0201633612/ref=ntt_at_ep_dpi_1

[20] A. Bennaceur and P. Inverardi, “Automated synthesis of connectors to support
software evolution,” Jan. 2012, http://ercim-news.ercim.eu/en88/. [Online]. Available:
https://hal.inria.fr/hal-00662058

[21] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and A. Lau, “An empirical study on
web service evolution,” in 2011 IEEE International Conference on Web Services. IEEE,
2011, pp. 49–56.

[22] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, “End-to-end versioning support
for web services,” in 2008 IEEE International Conference on Services Computing, vol. 1.
IEEE, 2008, pp. 59–66.

[23] Adidas. (2018) Adidas - rules for extending. [Online]. Available: https://adidas.gitbook.
io/api-guidelines/general-guidelines/rules-for-extending

153

https://cloud.google.com/devops/state-of-devops/
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
https://hal.inria.fr/hal-00662058
https://adidas.gitbook.io/api-guidelines/general-guidelines/rules-for-extending
https://adidas.gitbook.io/api-guidelines/general-guidelines/rules-for-extending

[24] Zalando. (2020) Zalando restful api and event scheme guidelines. [Online]. Available:
https://opensource.zalando.com/restful-api-guidelines/

[25] T. Espinha, A. Zaidman, and H.-G. Gross, “Web api growing pains: Stories from client
developers and their code,” in 2014 Software Evolution Week-IEEE Conference on Software
Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE). IEEE, 2014, pp.
84–93.

[26] Y. Syu, S.-P. Ma, J.-Y. Kuo, and Y.-Y. FanJiang, “A survey on automated service com-
position methods and related techniques,” in 2012 IEEE Ninth International Conference
on Services Computing. IEEE, 2012, pp. 290–297.

[27] R. Kanagasabai et al., “Semantic web service discovery: state-of-the-art and research chal-
lenges,” Personal and ubiquitous computing, vol. 17, no. 8, pp. 1741–1752, 2013.

[28] R. T. Fielding, Architectural styles and the design of network-based software architectures.
University of California, Irvine Irvine, 2000, vol. 7.

[29] A. Cheron, J. Bourcier, O. Barais, and A. Michel, “Comparison matrices of semantic restful
apis technologies,” in International Conference on Web Engineering. Springer, 2019, pp.
425–440.

[30] T. J. Berners-Lee, “The world-wide web,” Computer networks and ISDN systems, vol. 25,
no. 4-5, pp. 454–459, 1992.

[31] ——, “Information management: A proposal,” Tech. Rep., 1989.

[32] H. W. Lie and B. Bos, “Cascading style sheets, level 1,” 1996.

[33] “What actually is a java applets vulnerability?” https://security.stackexchange.com/
questions/195619/what-actually-is-a-java-applets-vulnerabilitys, accessed: 2021-09-15.

[34] M. J. Taylor, J. McWilliam, H. Forsyth, and S. Wade, “Methodologies and website de-
velopment: a survey of practice,” Information and software technology, vol. 44, no. 6, pp.
381–391, 2002.

[35] J. J. Garrett et al., “Ajax: A new approach to web applications,” 2005.

[36] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall, “A note on distributed computing,” in
International Workshop on Mobile Object Systems. Springer, 1996, pp. 49–64.

[37] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scientific american, vol.
284, no. 5, pp. 34–43, 2001.

154

https://opensource.zalando.com/restful-api-guidelines/
https://security.stackexchange.com/questions/195619/what-actually-is-a-java-applets-vulnerabilitys
https://security.stackexchange.com/questions/195619/what-actually-is-a-java-applets-vulnerabilitys

[38] S. A. McIlraith, T. C. Son, and H. Zeng, “Semantic web services,” IEEE intelligent systems,
vol. 16, no. 2, pp. 46–53, 2001.

[39] M. A. Jadhav, B. R. Sawant, and A. Deshmukh, “Single page application using angularjs,”
International Journal of Computer Science and Information Technologies, vol. 6, no. 3,
pp. 2876–2879, 2015.

[40] A. Biørn-Hansen, T. A. Majchrzak, and T.-M. Grønli, “Progressive web apps: The possible
web-native unifier for mobile development,” in International Conference on Web Informa-
tion Systems and Technologies, vol. 2. SCITEPRESS, 2017, pp. 344–351.

[41] “History of front-end frameworks,” https://blog.logrocket.com/
history-of-frontend-frameworks/, accessed: 2021-04-30.

[42] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, and
L. Safina, “Microservices: yesterday, today, and tomorrow,” Present and ulterior software
engineering, pp. 195–216, 2017.

[43] R. Perrey and M. Lycett, “Service-oriented architecture,” in 2003 Symposium on Applica-
tions and the Internet Workshops, 2003. Proceedings. IEEE, 2003, pp. 116–119.

[44] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA: service-oriented architecture best
practices. Prentice Hall Professional, 2005.

[45] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Devops,” Ieee Software, vol. 33,
no. 3, pp. 94–100, 2016.

[46] S. Sohan, C. Anslow, and F. Maurer, “Automated example oriented rest api documentation
at cisco,” in 2017 IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP). IEEE, 2017, pp. 213–222.

[47] J. Yu, B. Benatallah, F. Casati, and F. Daniel, “Understanding mashup development,”
IEEE Internet computing, vol. 12, no. 5, pp. 44–52, 2008.

[48] B. Meyer, “Applying’design by contract’,” Computer, vol. 25, no. 10, pp. 40–51, 1992.

[49] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins, “Making components contract
aware,” Computer, vol. 32, no. 7, pp. 38–45, 1999.

[50] A. Beugnard, J.-M. Jézéquel, and N. Plouzeau, “Contract aware components, 10 years
after,” arXiv preprint arXiv:1010.2822, 2010.

[51] B. Rubinger and T. Bultan, “Contracting the facebook api,” arXiv preprint
arXiv:1009.3715, 2010.

155

https://blog.logrocket.com/history-of-frontend-frameworks/
https://blog.logrocket.com/history-of-frontend-frameworks/

[52] J. Gregorio, “The atom publishing protocol,” 2005.

[53] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana et al., “Web services description
language (wsdl) 1.1,” 2001.

[54] B. Elvesæter, A.-J. Berre, and A. Sadovykh, “Specifying services using the service oriented
architecture modeling language (soaml)-a baseline for specification of cloud-based services.”
in CLOSER. Citeseer, 2011, pp. 276–285.

[55] F. H. Vogt, S. Zambrovski, B. Gruschko, P. Furniss, and A. Green, “Implementing web
service protocols in soa: Ws-coordination and ws-businessactivity,” in Seventh IEEE In-
ternational Conference on E-Commerce Technology Workshops. IEEE, 2005, pp. 21–26.

[56] S. Ran, “A model for web services discovery with qos,” ACM Sigecom exchanges, vol. 4,
no. 1, pp. 1–10, 2003.

[57] H. Cao, J.-R. Falleri, and X. Blanc, “Automated generation of rest api specification from
plain html documentation,” in International Conference on Service-Oriented Computing.
Springer, 2017, pp. 453–461.

[58] M. J. Hadley, “Web application description language (wadl),” 2006.

[59] C. Pautasso, “Bpmn for rest,” in International Workshop on Business Process Modeling
Notation. Springer, 2011, pp. 74–87.

[60] C. Pautasso, A. Ivanchikj, and S. Schreier, “Modeling restful conversations with ex-
tended bpmn choreography diagrams,” in European Conference on Software Architecture.
Springer, 2015, pp. 87–94.

[61] C. Pautasso, “Composing restful services with jopera,” in International conference on
software composition. Springer, 2009, pp. 142–159.

[62] ——, “Restful web service composition with bpel for rest,” Data & Knowledge Engineering,
vol. 68, no. 9, pp. 851–866, 2009.

[63] D. Bonetta, A. Peternier, C. Pautasso, and W. Binder, “S: a scripting language for high-
performance restful web services,” ACM Sigplan Notices, vol. 47, no. 8, pp. 97–106, 2012.

[64] D. Chappell, “Introducing odata,” Data Access for the Web, The Cloud, Mobile Devices,
and More, pp. 1–24, 2011.

[65] “Social web protocols working group note,” https://www.w3.org/TR/
social-web-protocols/, accessed: 2021-06-09.

156

https://www.w3.org/TR/social-web-protocols/
https://www.w3.org/TR/social-web-protocols/

[66] T. J. Mowbray and R. C. Malveau, CORBA design patterns. John Wiley & Sons, Inc.,
1997.

[67] J. Snell, D. Tidwell, and P. Kulchenko, Programming web services with SOAP: building
distributed applications. " O’Reilly Media, Inc.", 2001.

[68] H. Ed-Douibi, J. L. C. Izquierdo, A. Gómez, M. Tisi, and J. Cabot, “Emf-rest: generation
of restful apis from models,” in Proceedings of the 31st Annual ACM Symposium on Applied
Computing, 2016, pp. 1446–1453.

[69] F. Haupt, D. Karastoyanova, F. Leymann, and B. Schroth, “A model-driven approach for
rest compliant services,” in 2014 IEEE International Conference on Web Services. IEEE,
2014, pp. 129–136.

[70] M. Polák and I. Holubová, “Rest api management and evolution using mda,” in Proceedings
of the Eighth International C* Conference on Computer Science & Software Engineering,
2015, pp. 102–109.

[71] B. Terzic, V. Dimitrieski, S. Kordic, G. Milosavljevic, and I. Lukovic, “Microbuilder: A
model-driven tool for the specification of rest microservice architectures,” in International
Conference on Information Society and Technology, 2017, pp. 179–184.

[72] S. Pérez, F. Durao, S. Meliá, P. Dolog, and O. Díaz, “Restful, resource-oriented architec-
tures: a model-driven approach,” in International Conference on Web Information Systems
Engineering. Springer, 2010, pp. 282–294.

[73] F. Valverde and O. Pastor, “Dealing with rest services in model-driven web engineering
methods,” V Jornadas Científico-Técnicas en Servicios Web y SOA, JSWEB, pp. 243–250,
2009.

[74] V. Schreibmann and P. Braun, “Model-driven development of restful apis.” in WEBIST,
2015, pp. 5–14.

[75] R. C. da Cruz Gonçalves and I. Azevedo, “Restful web services development with a model-
driven engineering approach,” in Code Generation, Analysis Tools, and Testing for Quality.
IGI Global, 2019, pp. 191–228.

[76] C. Zolotas, T. Diamantopoulos, K. C. Chatzidimitriou, and A. L. Symeonidis, “From
requirements to source code: a model-driven engineering approach for restful web services,”
Automated Software Engineering, vol. 24, no. 4, pp. 791–838, 2017.

[77] M. N. Michuki, “Exposing rich update operations via rest apis.”

157

[78] B. Adida, M. Birbeck, S. McCarron, and S. Pemberton, “Rdfa in xhtml: Syntax and
processing,” Recommendation, W3C, vol. 7, p. 41, 2008.

[79] D. Beckett, T. Berners-Lee, E. Prud’hommeaux, and G. Carothers, “Rdf 1.1 turtle,” World
Wide Web Consortium, pp. 18–31, 2014.

[80] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, and N. Lindström, “Json-ld 1.0,” W3C
recommendation, vol. 16, p. 41, 2014.

[81] S. Bechhofer, F. Van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider, L. A. Stein et al., “Owl web ontology language reference,” W3C recommenda-
tion, vol. 10, no. 02, 2004.

[82] T. Berners-Lee, “Linked data,” https://www.w3.org/DesignIssues/LinkedData.html, ac-
cessed: 2021-06-16.

[83] J. Kopeckỳ, T. Vitvar, C. Bournez, and J. Farrell, “Sawsdl: Semantic annotations for wsdl
and xml schema,” IEEE Internet Computing, vol. 11, no. 6, pp. 60–67, 2007.

[84] M. Maleshkova, J. Kopeckỳ, and C. Pedrinaci, “Adapting sawsdl for semantic annotations
of restful services,” in OTM Confederated International Conferences" On the Move to
Meaningful Internet Systems". Springer, 2009, pp. 917–926.

[85] R. Khare and T. Çelik, “Microformats: a pragmatic path to the semantic web,” in Pro-
ceedings of the 15th international conference on World Wide Web, 2006, pp. 865–866.

[86] J. Kopeckỳ, K. Gomadam, and T. Vitvar, “hrests: An html microformat for describing rest-
ful web services,” in 2008 IEEE/WIC/ACM International Conference on Web Intelligence
and Intelligent Agent Technology, vol. 1. IEEE, 2008, pp. 619–625.

[87] A. P. Sheth, K. Gomadam, and J. Lathem, “Sa-rest: Semantically interoperable and easier-
to-use services and mashups,” IEEE Internet Computing, vol. 11, no. 6, pp. 91–94, 2007.

[88] M. Lanthaler and C. Gütl, “Hydra: A vocabulary for hypermedia-driven web apis,” in
LDOW, 2013.

[89] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuinness, B. Par-
sia, T. Payne, M. Sabou, M. Solanki et al., “Bringing semantics to web services: The owl-s
approach,” in International Workshop on Semantic Web Services and Web Process Com-
position. Springer, 2004, pp. 26–42.

[90] J. De Bruijn, C. Bussler, J. Domingue, D. Fensel, M. Hepp, M. Kifer, B. König-Ries,
J. Kopecky, R. Lara, E. Oren et al., “Web service modeling ontology (wsmo),” Interface,
vol. 5, no. 1, p. 50, 2005.

158

https://www.w3.org/DesignIssues/LinkedData.html

[91] R. Verborgh, T. Steiner, D. Van Deursen, J. De Roo, R. Van de Walle, and J. G. Vallés,
“Capturing the functionality of web services with functional descriptions,” Multimedia
tools and applications, vol. 64, no. 2, pp. 365–387, 2013.

[92] R. Verborgh, T. Steiner, D. Van Deursen, S. Coppens, J. G. Vallés, and R. Van de Walle,
“Functional descriptions as the bridge between hypermedia apis and the semantic web,”
in Proceedings of the third international workshop on restful design, 2012, pp. 33–40.

[93] I. Rauf and I. Porres, “Towards behaviorally enriched semantic restful interfaces using
owl2,” in International Conference on Web Engineering. Springer, 2011, pp. 407–410.

[94] D. John and M. Rajasree, “Restdoc: Describe, discover and compose restful semantic
web services using annotated documentations,” International journal of Web & Semantic
Technology, vol. 4, no. 1, p. 37, 2013.

[95] M. Lanthaler and C. Gütl, “A semantic description language for restful data services
to combat semaphobia,” in 5th IEEE International conference on digital ecosystems and
technologies (IEEE DEST 2011). IEEE, 2011, pp. 47–53.

[96] ——, “On using json-ld to create evolvable restful services,” in Proceedings of the Third
International Workshop on RESTful Design, 2012, pp. 25–32.

[97] R. Verborgh, A. Harth, M. Maleshkova, S. Stadtmüller, T. Steiner, M. Taheriyan, and
R. Van de Walle, “Survey of semantic description of rest apis,” in REST: Advanced Re-
search Topics and Practical Applications. Springer, 2014, pp. 69–89.

[98] A. A. Patil, S. A. Oundhakar, A. P. Sheth, and K. Verma, “Meteor-s web service annotation
framework,” in Proceedings of the 13th international conference on World Wide Web, 2004,
pp. 553–562.

[99] I. L. Salvadori and F. Siqueira, “A framework for semantic description of restful web apis,”
in 2014 IEEE International Conference on Web Services. IEEE, 2014, pp. 630–637.

[100] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Supporting the creation of semantic
restful service descriptions,” 2009.

[101] M. Klusch, “Semantic web service coordination,” in CASCOM: Intelligent Service Coor-
dination in the Semantic Web. Springer, 2008, pp. 59–104.

[102] H. Dong, F. K. Hussain, and E. Chang, “Semantic web service matchmakers: state of
the art and challenges,” Concurrency and Computation: Practice and Experience, vol. 25,
no. 7, pp. 961–988, 2013.

159

[103] M. Klusch, P. Kapahnke, S. Schulte, F. Lecue, and A. Bernstein, “Semantic web service
search: a brief survey,” KI-Künstliche Intelligenz, vol. 30, no. 2, pp. 139–147, 2016.

[104] J. Garofalakis, Y. Panagis, E. Sakkopoulos, and A. Tsakalidis, “Contemporary web service
discovery mechanisms,” J. Web Eng., vol. 5, no. 3, pp. 265–290, 2006.

[105] K. Sycara, M. Paolucci, J. Soudry, and N. Srinivasan, “Dynamic discovery and coordination
of agent-based semantic web services,” IEEE Internet computing, vol. 8, no. 3, pp. 66–73,
2004.

[106] G. C. Hobold and F. Siqueira, “Discovery of semantic web services compositions based
on sawsdl annotations,” in 2012 IEEE 19th International Conference on Web Services.
IEEE, 2012, pp. 280–287.

[107] A. Günay and P. Yolum, “Semantic matchmaking of web services using model checking,” in
Proceedings of the 7th international joint conference on Autonomous agents and multiagent
systems-Volume 1. Citeseer, 2008, pp. 273–280.

[108] K. Li, H. Li, and J. Chen, “Semantic web service discovery algorithm based on constraint
extraction and structure analysis,” International Journal of u- and e- Service, Science and
Technology, vol. 9, pp. 21–30, 2016.

[109] M. Klusch, B. Fries, and K. Sycara, “Automated semantic web service discovery with owls-
mx,” in Proceedings of the fifth international joint conference on Autonomous agents and
multiagent systems, 2006, pp. 915–922.

[110] A. Bernstein and C. Kiefer, “Imprecise rdql: towards generic retrieval in ontologies using
similarity joins,” in Proceedings of the 2006 ACM symposium on Applied computing, 2006,
pp. 1684–1689.

[111] E. Toch, A. Gal, I. Reinhartz-Berger, and D. Dori, “A semantic approach to approximate
service retrieval,” ACM Transactions on Internet Technology (TOIT), vol. 8, no. 1, pp.
2–es, 2007.

[112] M. Klusch, “Overview of the s3 contest: Performance evaluation of semantic service match-
makers,” in Semantic web services. Springer, 2012, pp. 17–34.

[113] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M.-C. Shan, “Adaptive and dynamic
service composition in eflow,” in International Conference on Advanced Information Sys-
tems Engineering. Springer, 2000, pp. 13–31.

[114] F. Lécué, E. Silva, and L. F. Pires, “A framework for dynamic web services composition,”
in Emerging Web Services Technology, Volume II. Springer, 2008, pp. 59–75.

160

[115] E. G. da Silva, L. F. Pires, and M. van Sinderen, “A-dynamicos: a flexible framework for
user-centric service composition,” in 2012 IEEE 16th International Enterprise Distributed
Object Computing Conference. IEEE, 2012, pp. 81–92.

[116] K. Fujii and T. Suda, “Semantics-based dynamic web service composition,” International
Journal of Cooperative Information Systems, vol. 15, no. 03, pp. 293–324, 2006.

[117] S. Kona, A. Bansal, M. B. Blake, and G. Gupta, “Generalized semantics-based service
composition,” in 2008 IEEE International Conference on Web Services. IEEE, 2008, pp.
219–227.

[118] B. Srivastava and J. Koehler, “Web service composition-current solutions and open prob-
lems,” in ICAPS 2003 workshop on Planning for Web Services, vol. 35, 2003, pp. 28–35.

[119] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau, “Htn planning for web service com-
position using shop2,” Journal of Web Semantics, vol. 1, no. 4, pp. 377–396, 2004.

[120] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso, “Automated composition of web
services by planning at the knowledge level,” in IJCAI, vol. 19, 2005, pp. 1252–1259.

[121] S. McIlraith and T. C. Son, “Adapting golog for composition of semantic web services,”
Kr, vol. 2, no. 200, p. 2, 2002.

[122] S. R. Ponnekanti and A. Fox, “Sword: A developer toolkit for web service composition,”
in Proc. of the Eleventh International World Wide Web Conference, Honolulu, HI, vol. 45,
2002.

[123] M. Klusch, A. Gerber, and M. Schmidt, “Semantic web service composition planning
with owls-xplan, agents and the semantic web,” in 2005 AAAI Fall Symposium Series,
Arlington, Virginia, USA, 4th-6th November, 2005.

[124] O. Hatzi, D. Vrakas, M. Nikolaidou, N. Bassiliades, D. Anagnostopoulos, and I. Vlahavas,
“An integrated approach to automated semantic web service composition through plan-
ning,” IEEE Transactions on Services Computing, vol. 5, no. 3, pp. 319–332, 2011.

[125] J. Fernández-Olivares, T. Garzón, L. Castillo, Ó. García-Pérez, and F. Palao, “A middle-
ware for the automated composition and invocation of semantic web services based on
temporal htn planning techniques,” in Conference of the Spanish Association for Artificial
Intelligence. Springer, 2007, pp. 70–79.

[126] F. Lécué and A. Léger, “A formal model for semantic web service composition,” in Inter-
national semantic web conference. Springer, 2006, pp. 385–398.

161

[127] D. V. McDermott, “Estimated-regression planning for interactions with web services.” in
AIPS, vol. 2, 2002, pp. 204–211.

[128] J. Rao and X. Su, “A survey of automated web service composition methods,” in Inter-
national Workshop on Semantic Web Services and Web Process Composition. Springer,
2004, pp. 43–54.

[129] H. Q. Yu, S. Dietze, N. Li, C. Pedrinaci, D. Taibi, N. Dovrolls, T. Stefanut, E. Kaldoudi,
and J. Domingue, “A linked data-driven & service-oriented architecture for sharing edu-
cational resources,” 2011.

[130] S. Stadtmüller and A. Harth, “Towards data-driven programming for restful linked data,”
in Workshop on programming the semantic web (iswc’12), 2012.

[131] A. Khalili, A. Loizou, and F. van Harmelen, “Adaptive linked data-driven web compo-
nents: Building flexible and reusable semantic web interfaces,” in European semantic web
conference. Springer, 2016, pp. 677–692.

[132] D. Serrano, E. Stroulia, D. Lau, and T. Ng, “Linked rest apis: a middleware for semantic
rest api integration,” in 2017 IEEE International Conference on Web Services (ICWS).
IEEE, 2017, pp. 138–145.

[133] R. Taelman, M. Vander Sande, and R. Verborgh, “Bridges between graphql and rdf,” in
W3C Workshop on Web Standardization for Graph Data. W3C, 2019.

[134] T. Durieux, Y. Hamadi, and M. Monperrus, “Fully automated html and javascript rewrit-
ing for constructing a self-healing web proxy,” in 2018 IEEE 29th International Symposium
on Software Reliability Engineering (ISSRE), 2018, pp. 1–12.

[135] P. Kaminski, M. Litoiu, and H. Müller, “A design technique for evolving web services,”
in Proceedings of the 2006 conference of the Center for Advanced Studies on Collaborative
research. IBM Corp., 2006, p. 23.

[136] R. D. Banker, G. B. Davis, and S. A. Slaughter, “Software development practices, software
complexity, and software maintenance performance: A field study,” Management science,
vol. 44, no. 4, pp. 433–450, 1998.

[137] I. Koren and R. Klamma, “The exploitation of openapi documentation for the generation of
web frontends,” in Companion Proceedings of the The Web Conference 2018. International
World Wide Web Conferences Steering Committee, 2018, pp. 781–787.

[138] R. Hervás and J. Bravo, “Towards the ubiquitous visualization: Adaptive user-interfaces
based on the semantic web,” Interacting with Computers, vol. 23, no. 1, pp. 40–56, 2011.

162

[139] C. Rodríguez, M. Baez, F. Daniel, F. Casati, J. C. Trabucco, L. Canali, and G. Percannella,
“Rest apis: a large-scale analysis of compliance with principles and best practices,” in
International conference on web engineering. Springer, 2016, pp. 21–39.

[140] S. Sohan, C. Anslow, and F. Maurer, “A case study of web api evolution,” in 2015 IEEE
World Congress on Services. IEEE, 2015, pp. 245–252.

[141] J. Li, Y. Xiong, X. Liu, and L. Zhang, “How does web service api evolution affect clients?”
in 2013 IEEE 20th International Conference on Web Services. IEEE, 2013, pp. 300–307.

[142] S. Wang, I. Keivanloo, and Y. Zou, “How do developers react to restful api evolution?” in
International Conference on Service-Oriented Computing. Springer, 2014, pp. 245–259.

[143] D. Benslimane, S. Dustdar, and A. Sheth, “Services mashups: The new generation of web
applications,” IEEE Internet Computing, vol. 12, no. 5, 2008.

[144] R. e. a. Alarcon, “Rest web service description for graph-based service discovery,” in In-
ternational Conference on Web Engineering. Springer, 2015, pp. 461–478.

[145] M. C. e. a. Paulk, “Capability maturity model, version 1.1,” IEEE software, vol. 10, no. 4,
pp. 18–27, 1993.

[146] M. Fowler, “Richardson maturity model,” [Online]. [Accessed: 22-Jun-2021]. https://
martinfowler.com/articles/richardsonMaturityModel.html.

[147] “Soha,” 02 2010, [Online]. https://tinyurl.com/ya43vefk. [Accessed: 16- Jan- 2019].

[148] R. Mitra, “Rapido: a sketching tool for web api designers,” in Proceedings of the 24th
International Conference on World Wide Web, 2015, pp. 1509–1514.

[149] S. Schreier, “Modeling restful applications,” in Proceedings of the second international
workshop on restful design, 2011, pp. 15–21.

[150] I. Zuzak, I. Budiselic, and G. Delac, “Formal modeling of restful systems using finite-state
machines,” in International Conference on Web Engineering. Springer, 2011, pp. 346–360.

[151] S. Parastatidis, J. Webber, G. Silveira, and I. S. Robinson, “The role of hypermedia in
distributed system development,” in Proceedings of the First International Workshop on
RESTful Design. ACM, 2010, pp. 16–22.

[152] R. Tuchinda, C. A. Knoblock, and P. Szekely, “Building mashups by demonstration,” ACM
Transactions on the Web (TWEB), vol. 5, no. 3, pp. 1–45, 2011.

[153] M. Masse, REST API Design Rulebook: Designing Consistent RESTful Web Service In-
terfaces. " O’Reilly Media, Inc.", 2011.

163

https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://tinyurl.com/ya43vefk

[154] J. Seidenberg and A. Rector, “Web ontology segmentation: analysis, classification and
use,” in Proceedings of the 15th international conference on World Wide Web, 2006, pp.
13–22.

[155] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experimen-
tation in software engineering. Springer Science & Business Media, 2012.

[156] M. M. Romero, J. M. Vázquez-Naya, C. R. Munteanu, J. Pereira, and A. Pazos, “An ap-
proach for the automatic recommendation of ontologies using collaborative knowledge,” in
International Conference on Knowledge-Based and Intelligent Information and Engineer-
ing Systems. Springer, 2010, pp. 74–81.

[157] M. d’Aquin, C. Baldassarre, L. Gridinoc, M. Sabou, S. Angeletou, and E. Motta, “Watson:
Supporting next generation semantic web applications,” 2007.

[158] C. Anutariya, R. Ungrangsi, and V. Wuwongse, “Sqore: A framework for semantic query
based ontology retrieval,” in International Conference on Database Systems for Advanced
Applications. Springer, 2007, pp. 924–929.

[159] J. Z. Pan, E. Thomas, and D. Sleeman, “Ontosearch2: Searching and querying web on-
tologies,” Proc. of WWW/Internet, vol. 2006, pp. 211–218, 2006.

[160] E. Ashley-Dejo, S. Ngwira, and T. Zuva, “A survey of context-aware recommender sys-
tem and services,” in 2015 International Conference on Computing, Communication and
Security (ICCCS). IEEE, 2015, pp. 1–6.

[161] N. Kolbe, S. Kubler, J. Robert, Y. Le Traon, and A. Zaslavsky, “Linked vocabulary rec-
ommendation tools for internet of things: a survey,” ACM Computing Surveys (CSUR),
vol. 51, no. 6, pp. 1–31, 2019.

[162] F. Zhang, J. Cheng, and Z. Ma, “A survey on fuzzy ontologies for the semantic web,” The
Knowledge Engineering Review, vol. 31, no. 3, pp. 278–321, 2016.

164

LIST OF PUBLICATIONS

[1] A. Cheron, J. Bourcier, O. Barais, and A. Michel, “Comparison matrices of semantic restful
apis technologies,” in International Conference on Web Engineering. Springer, 2019, pp.
425–440.

[2] A. Cheron, J. Bourcier, O. Barais, D. E. Khelladi, and A. Michel, “[rejected] evolvable-by-
design: Robust web ui clients to evolving rest apis,” Journal of Systems and Software, vol.
none, no. none, 2021.

165

Titre : Conception, maintenance et évolution non-cassante des API REST

Mot clés : Web, API, REST, co-évolution logicielle, comparaison, Web sémantique

Résumé : Le World Wide Web est principale-
ment composé de deux types de composants ap-
plicatifs : les applications et les services. Les ap-
plications, qu’elles soit des applications mobiles
ou Web, c-a-d ayant vocation à être utilisées de-
puis un navigateur, ont en commun qu’elles sont
une sorte de texte à trous et communiquent avec
les services pour personnaliser l’application pour
chaque utilisateur. C’est donc le service qui pos-
sède et gère les données. Pour rendre possible
cette communication, les services rendent dispo-
nible des APIs suivant l’architecture REST.

La gestion du cycle de vie d’une API REST
est alors un élément central du développement de
systèmes dans le Web. La première étape de ce
cycle de vie est la définition des exigences d’une
API (fonctionnalité et propriétés logicielles). En-
suite, les technologies qui permettront de la conce-
voir, l’implémenter et la documenter sont choisies.
Elle est ensuite implémentée et documentée puis
mise en ligne. Dès lors, des applications peuvent
l’utiliser. S’ensuit alors une phase de maintenance
et d’évolution de l’API, dans laquelle les bogues
sont corrigés et les fonctionnalités évolues pour
s’adapter aux changements des attentes de ses
utilisateurs.

Dans cette thèse, nous passons en revue les
méthodes et technologies qui accompagnent le dé-
veloppeur au cours de ce cycle de vie. Nous iden-

tifions deux challenges restant sans réponse.
Premièrement, il existe de nombreuses tech-

nologies pour créer et documenter une API. Choi-
sir les technologies les plus pertinentes pour un
projet est une tâche difficile. Comme première
contribution de cette thèse, nous établissons des
critères permettant de comparer ces technologies.
Ensuite, nous utilisons ces critères pour compa-
rer les technologies existantes et proposons ainsi
trois matrices de comparaison. Enfin, pour sim-
plifier cette selection, nous avons développé un
assistant open-source disponible sur le Web, qui
guide le développeur dans son choix.

Le second challenge que nous avons identifié
est lié à la maintenance et l’évolution des APIs
REST. La littérature existante ne permet pas de
faire évoluer une API REST librement, sans ris-
quer de rendre inopérantes les applications qui
s’en servent (leurs clients). La seconde contribu-
tion de ce travail est une nouvelle approche à la
co-évolution des APIs REST et de leurs clients.
Nous avons identifié qu’en suivant 7 règles ré-
gissant la documentation de l’API et les données
qu’elles renvoient en répondant à ses clients, il est
possible de créer des interfaces utilisateur Web ca-
pable de s’adapter à la majorité des évolutions des
APIs REST sans produire de bogues, ni les casser
et sans même nécessiter la modification de leur
code source.

Title: Design, maintenance and break-free evolution of REST APIs

Keywords: Web, API, REST, software co-evolution, comparison, Semantic Web

Abstract: The World Wide Web is mainly com-
posed of two types of application components: ap-
plications and services. Applications, whether they
are mobile or Web applications, i.e. intended to be
used from a browser, have in common that they
are a kind of text to holes and communicate with
the services to customize the application for each
user. It is therefore the service that owns and man-
ages the data. To make this communication pos-

sible, the services offer APIs following the REST
architecture.

The management of the life cycle of a REST
API is then a central element of the development
of systems on the Web. The first step in this life cy-
cle is the definition of the requirements of an API
(functionality and software properties). Then, the
technologies that will allow it to be designed, imple-
mented, and documented are chosen. It is then im-

plemented and documented and put online. From
then on, applications can use it. Then follows a
phase of maintenance and evolution of the API, in
which bugs are fixed and functionalities evolve to
adapt to the changes of its users’ expectations.

In this thesis, we review the methods and tech-
nologies that accompany the developer during this
life cycle. We identify two open challenges.

First, there are many technologies for creating
and documenting an API. Choosing the most rel-
evant technologies for a project is a difficult task.
As a first contribution of this thesis, we establish
criteria to compare these technologies. Then, we
use these criteria to compare existing technologies
and propose three comparison matrices. Finally, to
simplify this selection, we have developed an open-

source wizard available on the Web, which guides
the developer in his choice.

The second challenge we have identified is re-
lated to the maintenance and evolution of REST
APIs. The existing literature does not allow a REST
API to evolve freely, without the risk of breaking
the applications that use it (their clients). The sec-
ond contribution of this work is a new approach to
the co-evolution of REST APIs and their clients. We
have identified that by following 7 rules governing
the documentation of the API and the data they re-
turn in response to its clients, it is possible to create
Web user interfaces capable of adapting to the ma-
jority of evolutions of REST APIs without producing
bugs, nor breaking them and without even requir-
ing the modification of their source code.

	List of acronyms
	List of figures
	List of tables
	Introduction
	Background and state of the art
	How the architecture of the Web evolved?
	The first phase: 1989 to 2004
	Evolution of the Web browser
	Architecture of popular Web systems
	Web development practices

	The second phase: 2004 to 2010 (the collaborative Web 2.0)
	Evolution of the Web browser
	Popular websites representative of the phase
	Architecture of popular Web systems
	Web development practices

	The third phase: 2010 to today (mobile applications and the JAMstack)
	Evolution of the Web browser
	Popular websites representative of the period
	Architecture of popular Web systems
	Web development practices

	Basic concepts of the REST architecture
	Separation of concerns in modern Web architectures
	API contracts: the backbone of the modern web
	Contracts in software engineering
	Contracts in service-oriented architectures
	Contracts in SOA, applied to the World Wide Web
	Description languages for REST API contracts
	REST API contract management: alternatives to specification languages
	REST API Contracts: State of the practice

	A Web "interpretable" by machines
	Presentation of the Semantic Web
	Semantic Web Services
	Semantic Service Description
	Automated Service Discovery
	Automated Integration and Composition of SWS

	Bridging the gap between Semantic Web Services and the modern Web
	Synthesis

	Co-evolution
	Four different approaches
	Automatic Program Repair techniques
	Adapter-based techniques
	Evolution policies
	Automated client generation
	Other approaches applied to the Web
	Synthesis and open challenges in the modern web

	Design and Evolution of REST APIs
	Designing the interface of a REST API
	Hypermedia As The Engine Of Application State in practice
	How REST APIs evolve?
	The 22 kinds of REST API evolution
	Why do practitioners evolve their REST APIs?

	Synthesis

	Thesis overview
	Comparison Matrices of REST APIs Technologies
	Introduction
	How to select and evaluate an API functionality level?
	Semantic RESTful services
	Selecting an API functionality level
	Discussion on the WS3 maturity level

	Comparison Matrices
	Insights from developers and architects
	Comparison Matrices Design Method
	Interface Description Languages
	Data-interchange formats
	Implementation Frameworks

	Matrices usage example
	Domain description
	Technological constraints
	Selection of the technologies
	Interface Description Languages
	Interchange Formats
	Implementation frameworks

	Easing the selection of the technologies

	Discussion
	Findings Summary

	Evolvable-by-design: Robust web UI clients to evolving REST APIs
	Introduction
	Motivating Example
	Seven new kinds of REST API evolutions
	Approach
	Approach Overview
	Principle
	Architecture

	Structural Documentation
	Describe the Resources in Detail (R1)
	Describe the Semantics (R2)
	Explicit Objects and Links Affiliation (R3)

	Contextual and Behavioral Documentation
	Provide a WYSIWYG Documentation (R4)
	List the operations available on the returned resource with hypermedia controls (R5)
	Give the default value of the operation's input parameters within the hypermedia controls (R6)
	Reference the operation's input model to use when multiple options are listed in the structural documentation (R7)

	HTTP Client enriched with a Semantic API Documentation Interpreter
	Synthesis and Discussion
	Reuse and limitations of the state-of-the-art
	Limitations of the approach

	Evaluation
	Benchmark
	Data set
	Experimental Protocol
	Observed results

	Use cases
	Data set
	Use case 1 – ``Dialog Flow"
	Use case 2 – ``Pagespeed api apps script"
	Use case 3 – ``Spaghetti makes me moody"
	Evolution 1: addition of a historyData parameter
	Evolution 2: addition of the username and password parameters
	Evolution 3: request method change, from POST to PUT

	Use case 4 – ``Utify"
	Evolution 1: addition of a userId parameter
	Evolution 2: addition of a tag parameter

	Use case 5 – ``Simba"
	Summary of the results

	Discussion
	Threats to validity
	Internal Validity
	External Validity
	Conclusion Validity

	Conclusion

	Conclusions and perspectives
	Perspectives
	First perspective: crossover study
	Second perspective: ontology recommendation within the code editor
	Third perspective: easing the design of GraphQL API mashups
	Fourth perspective: a Domain-Specific Language for scenario-based functional testing of Semantic REST APIs

	Bibliography
	List of publications

