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Abstract

The Painlevé II hierarchy : geometry and applications

Sofia Tarricone, Ph.D.
Concordia University in cotutelle with Université d’Angers, 2021

The Painlevé II hierarchy is a sequence of nonlinear ODEs, with the Painlevé II equation as first
member. Each member of the hierarchy admits a Lax pair in terms of isomonodromic deformations of
a rank 2 system of linear ODEs, with polynomial coefficient for the homogeneous case. It was recently
proved that the Tracy-Widom formula for the Hastings-McLeod solution of the homogeneous PII equation
can be extended to analogue solutions of the homogeneous PII hierarchy using Fredholm determinants
of operators acting through higher order Airy kernels. These integral operators are used in the theory of
determinantal point processes with applications in statistical mechanics and random matrix theory. From
this starting point, this PhD thesis explored the following directions. We found a formula of Tracy-Widom
type connecting the Fredholm determinants of operators acting through matrix-valued analogues of the
higher order Airy kernels with particular solution of a matrix-valued PII hierarchy. The result is achieved
by using a matrix-valued Riemann-Hilbert problem to study these Fredholm determinants and by deriving
a block-matrix Lax pair for the relevant hierarchy. We also found another generalization of the Tracy-
Widom formula, this time relating the Fredholm determinants of finite-temperature versions of higher
order Airy kernels operators to particular solutions of an integro-differential Painlevé II hierarchy. In
this setting, a suitable operator-valued Riemann-Hilbert problem is used to study the relevant Fredholm
determinant. The study of its solution produces in the end an operator-valued Lax pair that naturally
encodes an integro-differential Painlevé II hierarchy. From a more geometrical point of view, we analyzed
the Poisson-symplectic structure of the monodromy manifolds associated to a system of linear ODEs
with polynomial coefficient, also known as Stokes manifolds. For the rank 2 case, we found explicit log-
canonical coordinates for the symplectic 2-form, forming a cluster algebra of specific type. Moreover, the
log-canonical coordinates constructed in this way provide a linearization of the Poisson structure on the
Stokes manifolds, first introduced by Flaschka and Newell in their pioneering work of 1981.
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RÉSUMÉ

Introduction

Au début du XX siècle, les équations de Painlevé ont permis de répondre à un problème de classifi-
cation en théorie des EDO, posé en premier par Picard ([Pic89]). Son objectif était de décrire toutes les
équations différentielles ordinaires d’une forme spécifique et telles que leurs solutions n’aient pas de sin-
gularités (autres que des pôles simples) mouvables. Cette propriété, aussi appelée propriété de Painlevé,
permet en effet de définir des nouvelles fonctions comme solutions générales à ces équations. Les travaux
de Painlevé, Fuchs et Gambier ([Pai00, Fuc05, Gam10]) ont finalement permis d’obtenir une liste de six
équations avec les caractéristiques requises et pour lesquelles les solutions générales ne peuvent pas être
écrites en termes de fonctions spéciales connues. Toutes les autres équations satisfaisant les conditions
données par Picard ont soit des solutions écrites en termes de fonctions spéciales connues soit peuvent
être transformées en une de ces six équations. Les équations différentielles ordinaires non-linéaires de cette
liste sont naturellement appelées équations de Painlevé, (voir équations (1.1.1)–(1.1.6)). Leurs solutions,
les transcendantes de Painlevé, sont classifiées comme nouvelles fonctions non-linéaires transcendantes
et font maintenant partie de la liste de fonctions spéciales classiques (avec les fonctions de Bessel, Airy,
hyper-géométrique, elliptiques, etc). L’étude de leurs propriétés a progressivement été approfondie avec
leurs apparitions dans différents domaines impliquant des phénomènes non-linéaires. Dans les cinquante
dernières années, les équations de Painlevé sont apparues dans de multiples sujets en mathématiques et
en physique et leur étude a été stimulée par plusieurs perspectives différentes. Dans la littérature phy-
sique, on retrouve les équations de Painlevé dans divers modèles de physique statistique et de théorie
quantique des champs (voici quelques exemples classiques [BMTW73, JMMS80, BK90] et quelques un
plus récents [LDMS18, Kra20] reliés à cette thèse). En mathématiques, les récentes connections avec le
domaine de polynômes orthogonaux (voir [VA17] pour une référence classique), la théorie de matrices
aléatoires ([TW94b, TW94c] comme exemples des premiers résultats) et les modèles de croissance aléa-
toires ([For03, ACQ11]) sont découvertes encore dès ces jours.
Un des aspects qui avait été initialement étudié dans la théorie des équations de Painlevé était la dé-
pendance de leurs solutions aux paramètres présents dans les coefficients des équations elles-mêmes. On
remarque que ces six équations, sauf la première, ont dans leurs coefficients des paramètres complexes
(de un jusqu’à quatre indépendants). Pour des valeurs particulières de ces paramètres, il est en fait pos-
sible de formuler des solutions explicites aux équations de Painlevé en terme de fonctions spéciales ou
élémentaires connues. Le cas le plus simple, quand il n’y a qu’un seul paramètre, correspond à notre cas
d’étude, l’équation de Painlevé II :

d2w

dz2 “ 2w3 ` wz ` α, for w “ wpzq, α P C. (1)
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Airault [Air79] fut la première à montrer que lorsque le paramètre α prend des valeurs entières (resp.
semi-entières) non-nulles, l’équation de Painlevé II admet de solutions explicitement écrites en termes de
fonctions rationnelles (resp. en termes de la fonction d’Airy et de ses dérivées) (les énoncés de ces résultats
se trouvent dans les théorèmes 1.1.1, 1.1.2). Pourtant, le cas α “ 0 n’est traité dans aucune de ces deux
classes de solutions. Ce cas particulier a été analysé par Hastings et McLeod ([HM80]) avec des conditions
au bord spécifiques. La solution de leur problème au bord, qui porte maintenant leurs noms (le résultat
détaillé de [HM80] est écrit dans le théorème 1.1.5), est apparu quelques années plus tard en lien avec la
théorie des matrices aléatoires (dans le papier cité précédemment [TW94b]). Ce résultat (théorème 1.1.7),
connu comme la formule de Tracy-Widom, n’est qu’un parmi plusieurs exemples décrivant des relations
entre les transcendentes de Painlevé et la théorie de processus déterminantaux (ayant une application
dans la théorie des matrices aléatoires pour ce cas spécifique). La démonstration de leur formule se base
sur l’étude des propriétés du noyau d’Airy. En particulier, ils ont prouvé que le déterminant de Fredholm
de l’opérateur intégral agissant à travers le noyau d’Airy peut être écrit en termes de la solution de
Hastings-McLeod de l’équation de Painlevé II. D’un autre coté, ce déterminant de Fredholm exprime
la limite au bord de la distribution de probabilité de la plus grande valeur propre dans l’ensemble de
matrices aléatoires hermitiennes à entrées gaussiennes (cfr. [For93]), fournissant ainsi le pont entre la
théorie des matrices aléatoires et les transcendents de Painlevé.

Parmi les nombreux aspects intéressants de l’équation de Painlevé II, nous nous intéresserons particu-
lièrement à deux d’entre eux : sa relation avec une EDP intégrable et sa représentation isomonodromique.
D’une certaine manière, le premier définit l’objet à la base de notre étude, à savoir la hiérarchie de Pain-
levé II, et le second nous donne l’outil principal pour la manipuler. Le lien entre la hiérarchie de Painlevé
II et la théorie des déformations isomonodromiques a été étudié en profondeur dans les deux articles de
Flaschka et Newell [FN80, FN82] dans les années quatre-vingts, et leur travail fournit en quelque sorte
la base de notre travail, d’un point de vue analytique et géométrique.

De manière générale, les équations de Painlevé peuvent être déduites comme réductions de certaines
équations aux dérivées partielles intégrables [AC91], comme par exemple l’équation de Korteg De Vries,
l’équation nonlinéaire de Schroedinger ou encore l’équation de sine-Gordon pour ne citer que celles-ci. En
particulier, l’équation de Painlevé II est obtenue comme réduction auto-similaire de l’équation de KdV
modifiée. Cela signifie qu’en cherchant des solutions à l’équation de KdV modifiée

vt ` vxxx ´ 6v2vx “ 0, (2)

de la forme
vpt, xq :“ wpzq

p3tq 1
3

with z :“ x

p3tq 1
3
, (3)

on obtient que la fonction wpzq résout l’équation de Painlevé II, où α est une constante déterminée
comme constante d’intégration. Ce fait est particulièrement important puisqu’il nous permet de définir
les équations de Painlevé II d’ordre supérieur. En effet, dans l’étude d’EDP intégrables (dont l’équation de
KdV est l’exemple le plus populaire) on peut souvent construire de façon naturelle des équations d’ordre
supérieur qui commutent entre elles (confère [Miu68] pour le cas de KdV). La suite d’équations obtenue
de cette façon est nommée hiérarchie associée à l’EDP en question. En ce qui concerne notre cas d’étude,
à partir de la hiérarchie de KdV modifiée (1.2.12), dont la construction est liée à la hiérarchie KdV
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(1.2.8) à travers une transformation de Miura, on peut appliquer la réduction auto-similaire (expliqué
ci-dessus), non seulement à l’équation mKdV, mais aussi à tous les autres membres de sa hiérarchie.
Cette procédure nous donne une nouvelle suite d’équations différentielles non-linéaires ordinaires, qui
commence par l’équation de Painlevé II (1.1.2). Cette collection est ainsi nommée hiérarchie de Painlevé
II (écrite de façon compacte ici : (1.2.22)).
La relation entre les équations de Painlevé et les déformations isomonodromiques a été étudiée pour la
première fois en grande généralité par l’école japonaise dans une série de papiers [JMU81, JM81a, JM81b]
et, presque simultanément, par Flaschka et Newell pour le cas spécifique de Pailevé II ([FN80, FN82]).
Essentiellement, les déformations isomonodromique (pour rang N quelconque) décrivent tous les systèmes
linéaires d’EDO possibles

dΨ
dλ

“ ApλqΨ (4)

où Apλq est une matrice rationnelle avec un certain nombre de pôles de multiplicités fixées, qui partagent
la même collection de données de monodromie essentielles. Cette collection de donnée est composée,
grosso modo, de matrices qui décrivent partiellement le comportement des solutions locales Ψ au voisi-
nage des singularités de la matrice Apλq. Cette description peut être effectuée en supposant que la matrice
Apλq ne dépende pas uniquement du paramètre spectrale λ mais aussi d’autre paramètres Apλ, sq et en
étudiant les variations par rapport à ces nouveaux paramètres, qui préservent la collection de données
de monodromie essentielles. Un des résultats les plus importants obtenu par l’école Japonaise [JMU81]
montre que les déformations préservant la monodromie sont équivalentes à certaines équations différen-
tielles non-linéaires que les entrées de la matrice Apλq doivent satisfaire par rapport aux paramètres de
déformation. Pour certains cas spécifiques, ces équations coïncident avec les équations de Painlevé. En
langage moderne, on dit que les équations de Painlevé admettent des paires de Lax en termes de défor-
mations isomonodromiques. Cela signifie plus précisément que pour chacune des six équations, il existe
un paire de matrices Apλ, sq, Lpλ, sq telle que, l’équation de compatibilité du système

dΨ
dλ

“ Apλ, sqΨ, dΨ
ds
“ Lpλ, sqΨ, (5)

i.e. l’équation obtenue par dérivation croisée

dA

ds
´
dL

dλ
` rA,Ls “ 0, (6)

soit équivalente à l’équation de Pailevé concernée. Parmi les autres avantages que cette représentation
des équations de Pailevé leur donne, l’existence d’un paire de Lax permet, d’un certain point de vue,
d’insérer les équations de Painlevé dans le contexte des systèmes intégrables.
En ce qui concerne spécifiquement l’équation de Painlevé II (1.1.2), ils existent au moins deux paires
de Lax de rang 2 indépendantes qui décrivent respectivement les déformations isomonodromiques d’un
système ayant une singularité irrégulière à l’infini et une autre régulière en zéro (la paire de Lax de
Flaschka et Newell [FN80]) et d’un système ayant seulement une singularité irrégulière à l’infini (la paire
de Lax de Jimbo Miwa et Ueno [JM81a]). Quelques années auparavant, le travail de Clarkson, Joshi et
Mazzocco [CJM06] a montré que toutes les équations de la hiérarchie de Pailevé II ont une paire de
Lax isomonodromique, qui généralise celle de Flaschka et Newell. Leur construction est en effet une de
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nos premières références afin de trouver des paires de Lax analogues pour les hiérarchies de Painlevé II
non-commutatives qui seront considerées dans les chapitres 5 et 6.

Avec ce panorama en tête, la thèse a exploré les directions suivantes. D’une part, nous avons trouvé
des généralisations de la formule de Tracy-Widom pour certaines solutions de nouvelles équations de
Painlevé II, en particulier des analogues d’ordre supérieur à valeur matricielle et intégro-différentielle, en
correspondance avec les déterminants de Fredholm de généralisations d’ordre supérieur, à valeur matri-
cielle et à température finie, du noyau d’Airy. Les motivations incluent, mais ne sont pas limitées au fait
que ces généralisations du noyau d’Airy peuvent être utilisées dans la théorie des processus ponctuels dé-
terminantaux (cfr [BBW21]) ainsi que dans la mécanique statistique et la théorie des matrices aléatoires
(par exemple [LDMS18, ACQ11, Joh07]). Les résultats détaillés sont énoncés dans le Corollaire 5.0.2 du
chapitre 5 pour le cas à valeur matricielle et dans le Théorème 6.0.7 du chapitre 6 pour le cas à tempéra-
ture finie. Pour obtenir ces deux résultats, l’existence d’une paire de Lax pour la hiérarchie de Painlevé II
à valeurs matricielles et les hiérarchie de Painlevé II intégro-différentielle, étudiées respectivement dans
les chapitres 5 et 6, est fondamentale. Leurs représentations de Lax sont en effet les clés pour passer
de l’étude des généralisations du noyau d’Airy, via une approche de Riemann-Hilbert, à la définition de
quelques solutions particulières de la hiérarchie de Painlevé II concernée. La méthodologie utilisée dans
les deux cas est très similaire, même si celle du chapitre 6 est plus technique que celle du chapitre 5, et elle
s’appuie sur la théorie bien connue des opérateurs intégrables IIKS [IIKS90]. Cette théorie peut en effet
être utilisée ou généralisée pour l’étude des déterminants de Fredholm des analogues d’ordre supérieur,
à valeur matricielles et à température finie, du noyau d’Airy qui nous intéressent. L’idée fondamentale
est d’associer un problème paramétrique de Riemann-Hilbert à l’opérateur prescrit et d’étudier son dé-
terminant de Fredholm à travers celui-ci. En même temps, la solution du problème de Riemann-Hilbert
peut également être utilisée pour fournir les paires de Lax, dans notre cas spécifique isomonodromiques,
qui seront associées aux hiérarchies de Painlevé II qui nous intéressent. La différence la plus importante
entre les chapitres 5 et 6 concerne le type de problème de Riemann-Hilbert qui sera associé à l’opérateur
concerné : dans le premier cas, il s’agit d’un problème de Riemann-Hilbert standard à valeur matricielle,
alors que dans le second cas, il s’agit d’un problème à valeur d’opérateur.

Cependant, nous remarquons que la formule originale de Tracy-Widom a été obtenue par les auteurs de
[TW94b] par une procédure totalement différente. D’autres auteurs ont par la suite re-dérivé leur formule
en utilisant l’approche à la Riemann-Hilbert (par exemple [KH99]) et cette approche a été utilisée pour
dériver des formules analogues de Tracy-Widom pour certains transcendantes (scalaires) de Painlevé II
d’ordre supérieur, dans le récent travail [CCG19]. Pour cette raison, nous avons adopté la même méthode
pour nos cas traités dans les chapitres 5 et 6.

D’autre part, nous avons étudié la structure symplectique et de Poisson de la variété de monodromie
associé à un système d’ODEs linéaires à coefficient polynomial (ayant donc seulement une singularité
irrégulière au point à l’infinie), introduite à l’origine par Flaschka et Newell dans [FN82]. Ce cas est
en effet à la base de la hiérarchie de Painlevé II (du moins la hiérarchie homogène). Ce cas particulier
de variété de monodromie, appelée variété de Stokes, est l’exemple le plus simple de ce qu’on appelle
aujourd’hui une variété de caractères sauvage. Dans le cas de singularités régulières, la géométrie des
variétés monodromies est codée par les variétés de caractères des sphères de Riemann (convenablement)
épointée. Les variétés de caractères des surfaces de Riemann en général sont connues pour être des
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variétés de Poisson, grâce aux travaux de Goldmann [Gol84]. Par contre, les variétés de monodromie
associées aux systèmes ayant des singularités irrégulières sont plus compliquées, à cause de la présence du
phénomène de Stokes autour de chaque singularité irrégulière. Au cours des dernières décennies, elles ont
été étudiées dans leur grande généralité et avec un accent particulier sur leur structure de Poisson par
Boalch [Boa01a, Boa01b, B`07]. Dans le chapitre 7, nous prouvons que ce cas particulier de variété de
monodromie a effectivement une structure symplectique, voir le théorème 7.1.5. De plus, dans le lemme
7.2.1, nous fournissons des coordonnées log-canoniques explicites pour la structure de Poisson induite. On
montre aussi que ces coordonnées linéarisent la structure de Poisson originale de Flaschka-Newell, grace
au théorème 7.4.3. Les variables log-canoniques utilisées dans ce contexte sont liées à une algèbre amassée
d’un certain type. Les relations entre les algèbres amassées et les variétés de caractères sont connues et
ont été largement étudiées par Fock et Goncharov [FG06] mais sans référence spécifique aux variétés
de monodromie. Récemment, leur formalisme a également été utilisé pour trouver des coordonnées log-
canoniques pour la structure de Poissons de Goldmann des variétés de caractères de surfaces de Riemann
épointées arbitraires [BK19]. En outre, certaines algèbres amassées avaient déjà été liées au phénomène
de Stokes, mais celui qui apparaît dans l’analyse WKB [KT14] (et non le phénomène classique que nous
allons traiter ici). Pour toutes ces raisons, on s’attendait d’une certaine manière à ce que les algèbres
amassées apparaissent également dans le contexte des variétés de caractères sauvages, telles que nos
variétés de Stokes.

Contenu du manuscrit

La thèse est essentiellement divisée en deux parties. La première est composée des chapitre de 1 à 4,
qui visent les objectifs suivants : introduire les objets à la base de cette étude et la motiver, collectionner
les résultats principaux qui relient ces objets entre eux et rappeler les méthodes classiques utilisées en
littérature pour démontrer ces résultats. La deuxième partie contient les contributions originales prouvées
dans les articles [Tar21, BCT21, Ber21], qui se trouvent respectivement du chapitre 5 au 7.

Partie I : révision de la littérature

La première partie de la thèse est organisée de la façon suivante. Le chapitre 1 a pour objectif de
définir l’objet principal de notre étude : la hiérarchie de Painlevé II, alors que le chapitre 2 vise plutôt à
donner la motivation principale pour laquelle on veut étudier certaines solutions de cette hiérarchie par
rapport aux possibles applications dans la théorie des processus déterminantaux. Plus loin, les chapitres
3, 4 donnent une brève révision des méthodes classiques utilisées pour prouver les résultats énoncés pré-
cédemment et qui justement donnent le lien entre certaines solutions de la hiérarchie et la théorie des
processus déterminantaux.

(1) Le chapitre 1 est uniquement concentré sur la construction et les propriétés de la hiérarchie de
Painlevé II. Premièrement, on revoit quelques propriétés des solutions de l’équation de Painlevé
II, pour certaines valeurs du paramètre α. En particulier, pour le cas α “ 0, le résultat de Tracy
et Widom est expliqué. Ensuite, on introduit la hiérarchie de KdV et de KdV modifiée puis on
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explique comme, à partir de celles là, la hiérarchie de Painlevé II est obtenue par réduction auto-
similaire. Pour conclure, on énonce le résultat obtenu dans [CCG19] qui généralise la formule de
Tracy-Widom en prenant en compte d’un coté des noyaux d’Airy d’ordre supérieur et de l’autre,
des solutions à la Hastings-McLeod des membres successifs de la hiérarchie de Painlevé II.

(2) Le chapitre 2 contient une introduction synthétique à la théorie des processus déterminantaux.
Cependant, le but ultime n’est pas de donner une révision exhaustive du sujet, mais plutôt de
fournir une motivation solide pour étudier les résultats comme le dernier cité dans le chapitre 1 et
ses possibles généralisations. En particulier, comme exemple d’application de la théorie de processus
déterminantaux on étudie le cas le plus simple, d’ensemble de matrices aléatoires : GUE. De cette
façon, on pourra finalement voir la formule de Tracy-Widom comme exemple de connexion entre
théorie des matrices aléatoires et la théorie de Painlevé.

(3) Dans le chapitre 3 on présente l’outil de travail principal de cette thèse : les problèmes de Riemann-
Hilbert. Ces problèmes sont en effet utilisés dans chacun des travaux contenus dans les chapitres 5,
6, 7 (même si les situations sont différentes). En particulier, après une courte révision des propriétés
de base des solutions des problèmes de Riemann-Hilbert générales à valeurs matricielles, on étudie
le problème de Riemann-Hilbert associé à un opérateur intégrable du type IIKS [IIKS90] et leurs
généralisations [BC12]. Les résultats énoncés ici seront directement utilisés dans le chapitre 5 et
généralisés pour le cas des problèmes de Riemann-Hilbert à valeurs opératorielles dans le chapitre
6.

(4) Enfin, le chapitre 4 est dédié à la théorie des déformations isomonodromiques, en portant une atten-
tion particulière aux connexions entre l’équation de Painlevé II et sa hiérarchie. Les objectifs de ce
chapitre sont deux : premièrement on veut donner les paires de Lax classiques en termes de déforma-
tions isomonodromiques associées à l’équation de Painlevé II et sa hiérarchie. Ces représentations
nous seront ensuite utiles dans les chapitres 5, 6, où on utilisera justement des généralisations de
ces paires de Lax afin de reconnaître les hiérarchies non-commutatives analogues. Deuxièmement,
la révision du concept de données de monodromie facilitera le dernier chapitre pour la définition et
la compréhension des variétés de Stokes, qui seront notre objet d’étude.

Partie II : contributions originales

Comme nous l’avons déjà souligné, les trois derniers chapitres de cette thèse sont dévoués à démontrer
les principaux résultats obtenus dans les articles [Tar21, BCT21, BT21], qu’on va énonce par la suite. Les
premiers deux travaux et les résultats qui s’y trouvent dedans sont de quelque façon liés : en effet, dans
les deux cas, on prouve une formule à la Tracy-Widom (analogues de celle donnée dans les Théorèmes
1.1.7 et 1.2.12) qui permet d’exprimer les determinants de Fredholm de certaines généralisations des
noyaux d’Airy d’ordre supérieur en termes de certains solutions (à la Hastings-McLeod) de hiérarchies
non-commutatives de Painlevé II. En particulier, dans le premier cas un analogue à valeurs matricielles des
noyaux d’Airy sera lié à une hiérarchie matricielle de Painlevé II. Dans le deuxième cas le lien sera établi
entre des versions à température finie des noyaux d’Airy et certaines solutions (toujours à la Hastings-
McLeod) d’un hiérarchie integro-différentielle. La méthode utilisée sera aussi similaire : on analysera les
déterminant de Fredholm en utilisant leur invariance par conjugaison par transformé de Fourier d’abord
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et ensuite en y associant un problème de Riemann-Hilbert. La différence principale entre les deux travaux
se pose à ce moment-là : dans le premier cas, le problème de Riemann-Hilbert est à valeur matricielles
alors que dans le deuxième cas il est à valeurs opératoriels. Par conséquence, pour traiter le premier
type de problème on pourra utiliser les résultats classiques [IIKS90, BC12], alors que pour la tractation
du deuxième type, il nous faudra prouver des résultats d’existence et unicité de la solution et établir
ses propriétés. Dans les deux cas, une fois que la solution du problème de Riemann-Hilbert est établie,
on l’utilise pour déduire une paire de Lax, qui sera en effet l’analogue représentation isomonodromique
des hiérarchie de Painlevé II matricielle ou intégro-differentielle. Le troisième travail concerne plutôt la
géométrie symplectique d’un type très simple parmi les variétés de caractères sauvages, les variétés de
Stokes, et leurs connexions avec les algèbres amassées.

Résultats du chapitre 5 Le chapitre 5 contient les résultats obtenus dans mon premier travail [Tar21].
Ici on étudie les déterminants de Fredholm d’un analogue à valeurs matricielles du noyaux d’Airy, définit
de la façon suivante. Tout d’abord, on considère une version matricielle de l’n-ième fonction d’Airy définie
comme

Ai2n`1px,~sq :“
`

cj,kAi2n`1px` sj ` skq
˘r

j,k“1, cj,k P C, x, sj , sk P R, (7)

où Ai2n`1px`sj`skq est la fonction d’Airy d’ordre n. Ensuite, on considère les opérateurs d’Airy agissant
sur l’espace L2`R`,Cr

˘

, de façon standard

pAi2n`1fq pxq :“
ˆ
R`

Ai2n`1px` y,~sqfpyqdy, (8)

pour tout f “ pf1, . . . , frq
T P L2`R`,Cr

˘

. Finalement, on définit le déterminant de Fredholm

F pnqps1, . . . , srq :“ det
`

IdR` ´Ai22n`1
˘

, (9)

comme l’analogue du déterminant de Fredholm de l’n-ième noyau d’Airy scalaire et sur ce déterminant
notre étude se concentre. En particulier, on veut estimer sa dépendance dès paramètres réels sj à travers
l’opérateur

d
dS :“

r
ÿ

k“1

B

Bsk
. (10)

L’étude est basé sur la construction d’un problème de Riemann-Hilbert matriciel associé aux opérateurs
Ai22n`1 et sur les propriétés de sa solution. Cela est possible grace au fait que ce déterminant de Fredholm
coïncide avec le déterminant de Fredholm d’un autre opérateur qui agit sur un autre espace, mais qui
est cette fois du type intégrable. Dans ce cadre, les résultats classique sur la solutions des problèmes de
Riemann-Hilbert associé à certains type d’opérateurs [IIKS90], [BC12] (revus dans le chapitre 4) peuvent
être appliqués. Cela, avec la construction d’une pair de Lax isomonodromique de matrices à bloques pour
la hiérarchie matricielle de Painlevé II, nous amène finalement au résultat suivant.

Théorème 1. Il existe une solution W de la n-ième équation de la hiérarchie de Painlevé II matricielle
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(5.0.6), qui est connectée au déterminant de Fredholm F pnq à travers la formule

d2

dS2 ln
`

F pnqps1, . . . , srq
˘

“ ´Tr
`

W 2p~sq
˘

.

En définissant s :“ 1
r

řr
j“1 sj, et δj :“ sj ´ s cette solution W dans le régime s Ñ `8 avec |δj | ď m pour

tout j, a un comportement asymptotique du type pW qrk,l“1 „ ´2pcklAi2n`1psk ` slqq
r
k,l“1.

La hiérarchie matricielle qui apparaît en (5.0.6) a une définition analogue à celle de la hiérarchie
scalaire écrite en (1.2.22) en utilisant les polynômes différentiels de Lenard. En particulier, pour la version
matricielle on utilisera des analogues matricielles de ces polynômes de Lenard, engendrés par une récursion
(5.2.1) qui reste très similaire à la récursion dans le cas classique (1.2.6). Le type de solutions trouvé pour
cette hiérarchie et utilisé dans la formule ci-dessus est en effet défini par une condition au bord à la
Hastings-McLeod, et donc la formule obtenue peut être considérée comme analogue de la formule de
Tracy-Widom. Pour ce qui concerne l’interprétation du déterminant de Fredholm en jeux dans ce cas-ci :
il décrit en effet la distribution de probabilité de la plus grande particule dans le processus déterminantaux
défini par l’opérateur Ai22n`1. Malheureusement, et à connaissance de l’auteur, on n’a pas encore trouvé
des applications en théorie des matrices aléatoires, ou physique statistique (ou autres domaines) utilisant
ce déterminant de Fredholm.

Résultats du chapitre 6 Dans le chapitre 6 on démontre un des résultats principaux contenus dans
le travail [BCT21] en collaboration avec Thomas Bothner et Mattia Cafasso. Dans ce cas on est plu-
tôt intéressé à l’étude d’une version à température finie des noyaux d’Airy d’ordre supérieur. Pour la
construire, on considère d’abord une fonction poids w : R Ñ R` étant une quelconque fonction diffé-
rentiable, positive, et strictement croissante, qui pour quelque ω, x0 ą 0 respect les conditions suivantes

lim
xÑ`8

wpxq “ 1, lim
xÑ´8

wpxq “ 0 and 0 ă w1pxq ď e´ω|x| @ |x| ě x0. (11)

Ayant fixé une fonction poids de ce type, on considère l’opérateur intégral Kt,n : L2pR`q Ñ L2pR`q
qui agit à travers la version à température finie des noyaux d’Airy d’ordre supérieur, définie de la façon
suivante

Kt,npx, yq :“
ˆ
R
Ai2n`1px` z ` tqAi2n`1pz ` y ` tqwpzqdz, t P R. (12)

En particulier, ici notre étude est concentré sur les propriétés du déterminant de Fredholm

Dnpt, λq :“ detp1´ λKt,nq (13)

qui est bien défini pour tout pt, λ, nq P R ˆ C ˆ N. Plus précisément, on veut décrire sa dépendance
du paramètre réel t. Pour se faire, on commence par montrer que ce déterminant de Fredholm coïncide
avec le déterminant de Fredholm d’un autre opérateur, agissant sur un autre espace et à travers un
noyau qui peut être vu comme une version de dimension infinie d’un opérateur de type intégrable à
la IIKS. Pour étudier cet opérateur, on associe un problème de Riemann-Hilbert qui est, cette fois-ci,
à valeurs opératorielles et non plus matricielles. Ce genre de problème n’a pas été beaucoup traité en
littérature, et on a donc du développer dans les détails des résultats d’existence et unicité de la solution
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du problème de Riemann-Hilbert ci construit. Toutefois, les résultats obtenus ressemblent beaucoup aux
résultats classiques connus pour le cas matriciel. Une fois que l’existence de la solution du problème
de Riemann-Hilbert est établie, on l’utilise pour exprimer la dérivée logarithmique de Dnpt, λq et pour
construire une paire de Lax (à valeurs opératorielles) pour une hiérarchie de Painlevé II, cette fois en
version intégro-différentielle. Le résultat final de ce procédé est énoncé ci-dessous.

Théorème 2. Pour tout pt, λ, nq P RˆD1p0qˆN, avec le disque fermé de rayon unitaire D1p0q :“ tλ P
C : |λ| ď 1u,

B2

Bt2
lnDnpt, λq “ ´

ˆ
R
u2pt|xq pw1pxqdxq, (14)

où upt|xq ” upt|x;n, λq est l’unique solution du problème au bord

´pt` xqupt|xq “
`

pLu`Lu´qnu
˘

pt|xq, upt|xq „ λ
1
2Ai2n`1pt` xq, tÑ `8, (15)

et les opérators de récursion Lu`,Lu´ sont définis dans la Définition 6.0.3.
De plus, l’application t ÞÑ upt|x;n, λq est lisse pour tout px, λ, nq P RˆD1p0qˆN, et l’expansion asympto-
tique en (6.0.9) est satisfaite ponctuellement en x P R et la détermination pour λ 1

2 est fixé arbitrariement.

La hiérarchie intégro-différentielle écrite dans l’équation ci-dessus n’utilise plus des analogues des
polynômes différentiels de Lenard, notamment utilisé par la définition dans le cas scalaire de la hiérarchie
(1.2.6). Cette écriture est en effet plus proche au formalisme que Airault avait utilisé pour décrire les
équations de Painlevé II d’ordre supérieur dans son papier [Air79] et que nous rappelons à l’équation
(1.2.27). Cependant, les solutions construites ici sont toujours définies par des conditions à la Hastings-
McLeod et la formule prouvée peut être considérée comme un autre analogue de la formule de Tracy et
Widom. Par ailleurs, le déterminant de Fredholm Dn considéré dans ce cas est encore une fois interprété
comme distribution de probabilité de la plus grande particule du processus déterminanteau définit par
l’opérateur λKt,n. De plus, Dn (avec w le factor de Fermi) est déjà apparu en relation à différents
domaines de mathématique et de physique. Récemment, il a été utilisé en [LDMS18] pour exprimer une
certaine limite de la distribution de probabilité de la plus grande impulsion d’un système de fermions
libres dans un potentiel non-harmonique. Précédemment, juste pour le cas n “ 1 (et toujours avec w
le factor de Fermi), il a été utilisé en [ACQ11] pour la description de la distribution de probabilité de
solutions de l’équation de KPZ avec valeur initial narrow wedge et il a été trouvé en relation avec
certaines quantités liés à l’ensemble de Mosher-Neurberg-Shapiro par Johansson en [Joh07]. Toutes ces
applications ont énormément stimulé notre intérêt pour ce déterminant de Fredholm et sont en effet la
principal motivation qui nous a conduit a ce travail. De plus, la tecnique à la Riemann-Hilbert développée
ici, et qui a ces racines dans l’article [Bot21], peut être appliquée à d’autres opérateurs intégrals ayant un
noyau de la même forme (6.1.32). L’extension au cas général des nos résultats sera traité dans l’article à
venir [Boton]. On prévoit donc pouvoir appliquer cette técnique pour étudier les déterminants de Fredholm
d’autres opérateurs en version température finie, et découvrir des nouvelles relations avec les systèmes
intégrables.

Résultats du chapitre 7 Le chapitre 7 illustre les résultats contenus dans le travail [BT21] en col-
laboration avec Marco Bertola. Dans ce travail on s’intéresse aux structures symplectique et de Poisson
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de certaines variétés de monodromie, apellées variétés de Stokes. Elles sont les varietés de monodromie
associées à un système de EDO linéaire avec matrice de coefficient de rang N polynomiale, de degré
quelconque (dont la représentation isomonodromique de la hiérarchie de Painlevé II homogène fait partie
pour N “ 2 et pour degrés paires des polynômes coefficient). Cela est donc le type de variété de caractère
sauvage la plus simple, qui compte juste une singularité irrégulière (dans ce cas le point à l’infinie). Pour
le cas de rang 2, et dégré du polynome K, la variété de Stokes est définie comme la variété algébriques
de dimension complexe 2K, de la forme suivante

SK “

#˜

1 s1

0 1

¸˜

1 0
s2 1

¸

. . .

˜

1 s2K`1

0 1

¸˜

1 0
s2K`2 1

¸

λσ3 “ 1 with si P C, λ P Cˆ
+

. (16)

Étant donnée la structure de Lie-Poisson [BBT03] sur l’espace des matrices de coefficients des EDO en
considération, la question d’étudier comme l’application de monodromie “transforme” cette structure sur
la variété de monodromie correspondante SK se pose naturellement. Une deuxième question est donc de
trouver des coordonnés qui décrivent cette structure de la façon la plus simple possible : dans notre cas
ces seront des coordonnés log-canoniques et leur construction nous donnera le lien avec un certain type
d’algèbres amassées. Plus précisément, nos résultats peuvent être résumés dans l’énoncé suivant.

Théorème 3. La variété de caractère sauvage d’une connexion à valeurs dans les matrices polynomiales
de sl2 de degré K sur la sphère de Riemann est une variété de cluster du type A2K avec une variable
congelée. La structure de Poisson-symplectique log-canonique sur cette variété coïncide avec le push-
forward par l’application de monodromie de la structure de Lie-Poisson.

Ce résultat est en effet prouvé en plusieurs étapes, qu’on va résumer par la suite. Pour commencer,
on considère sur la variété de Stokes SK la 2-forme suivante

WK :“ 1
2

2K`3
ÿ

`“1
Tr

ˆ

H´1
` dH` ^ S

´1
` dS`

˙

, H` :“ S1 ¨ ¨ ¨S`, S2K`3 :“ e2iπL, (17)

où S`, pour ` “ 1, . . . , 2K ` 2 sont les matrices triangulaires supérieures et inférieures avec diagonale
unitaire qui apparaissaient dans la définition deSK et e2iπL “ λσ3 , pour le cas de rang 2. Premièrement on
montre, de deux façons différentes, que cette 2-forme est symplectique. D’une part, on prouve que (même
dans le cas de rang N quelconque) cette 2-forme est obtenue à travers le push-forward de l’application
de monodromie de la structure symplectique “universelle” définie sur les feuilles symplectiques de la
structure de Lie-Poisson, ce qui implique que WK est symplectique aussi. D’autre part, on construit des
variables yi, i “ 1, . . . , 2K qui paramètrent la variété de Stokes de la façon suivante (Lemme 7.2.5)

s1 “ ´y
´2
1 , s2k`1 “ ´p1` y2

2k`1q
ź

1ďjď2k`1
y
p´1qj2
j , k “ 1, . . . ,K ´ 1, s2K`1 “ ´

ź

1ďjď2K
y
p´1qj2
j ,

s2k “ p1` y2
2kq

ź

1ďjď2k
y
p´1qj`12
j , k “ 1, . . . ,K, s2K`2 “ y2

1
`

1` y2
2
`

. . .
`

1` y2
2K

˘

. . .
˘˘

K
ź

j“1
y´4

2j ,

λ “ p´1qK
K
ź

j“1
y2

2j .
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La construction de ces variables yi est fondée sur le choix d’une certaine triangulation d’un polygone
régulier de dimension 2K ` 2, et elle est très similaire à celle utilisée pour les Grassmaniennes de 2-plans
([GSV10], Chapter II). En utilisant la théorie des formes de degré deux standard associées aux graphes
avec connexions développée récemment dans [BK19], on trouve que WK est écrite avec ces variables yi en
forme log-canonique, en particulier de rang maximale. Par conséquence, la parenthèse de Poisson induite
par WK est écrite dans ces variables en forme

tyi, yju “ pPKqijyiyj (pas de somme), (18)

avec PK une matrice constante inversible de taille 2K (raison pour laquelle on dénote les variables yi
comme log-canoniques). De plus, la matrice 4PK corresponde à la matrice d’adjacence pour un carquois
de type A2K ; ce-là implique que les variables y2

i forment un germe de l’algèbre amassée du type A2K .
Pour conclure, on prouve que en échangent le choix de triangulation du polygone de 2K ` 2 cotés, le
parametrisations des données de Stokes sont obtenues à partir du germe initial et en appliquant des muta-
tions (i.e. des applications birationnelles d’une carte à l’autre). Comme déjà souligné dans l’Introduction,
Flaschka et Newell s’étaient intéressés en premiers à ce cas spécial de variété de caractère sauvage en
relation avec la hiérarchie de Painlevé II. Ils avaient trouvé, à travers l’application de monodromie, que
cette variété était équipée avec la parenthèse de Poisson

!

sj , sl

)

FN

“ δj,l´1 ´
δj,1δl,2K`2

λ2 ` p´1qj´l`1sjsl, j ă l.
!

sj , λ
)

FN

“ p´1qjsjλ. (19)

Celles-là sont exactement les formules qu’on retrouve quand on calcule les parenthèse de Poisson (18)
pour sj , j “ 1, . . . , 2K ` 2 et λ en utilisant les paramètrisations au-dessus. Le résultat est résumé ici.

Théorème 4. La description des paramètres de Stokes sj , j “ 1, . . . , 2K`2 et de la monodromie formale
λ en termes des variables yi donnée ci-dessus, transforme la parenthèse de Poisson (19) en la parenthèse
(18).
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Abbasso il nove

Uno scolaro faceva le divisioni :
- Il tre nel tredici sta quattro volte con l’avanzo di uno. Scrivo quattro al quoto. Tre
per quattro dodici, al tredici uno. Abbasso il nove...
- Ah no, - gridò a questo punto il nove.
- Come ? - domandò lo scolaro.
- Tu ce l’hai con me : perché hai gridato «abbasso il nove» ? Che cosa ti ho fatto di
male ? Sono forse un nemico pubblico ?
- Ma io...
- Ah, lo immagino bene, avrai la scusa pronta. Ma a me non mi va giù lo stesso.
Grida «abbasso il brodo di dadi», «abbasso lo sceriffo», e magari anche «abbasso
l’aria fritta», ma perché proprio «abbasso il nove» ?
- Scusi, ma veramente...
- Non interrompere, è cattiva educazione. Sono una semplice cifra, e qualsiasi numero
di due cifre mi può mangiare il risotto in testa, ma anch’io ho la mia dignità e voglio
essere rispettato. Prima di tutto dai bambini che hanno ancora il moccio al naso.
Insomma, abbassa il tuo naso, abbassa gli avvolgibili, ma lasciami stare.
Confuso e intimidito, lo scolaro non abbassò il nove, sbagliò la divisione e si prese
un brutto voto. Eh, qualche volta non è proprio il caso di essere troppo delicati.

(Gianni Rodari, Favole al telefono.)
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INTRODUCTION

Painlevé equations arose more than one century ago as the solution of a classification problem
in ODE theory first posed by Picard ([Pic89]). His aim was to describe all second order ordinary

differential equations of a certain prescribed form, for which the solutions have no movable critical points.
This property, also known as the Painlevé property, allows indeed to define new functions as the general
solutions of these differential equations. The subsequent studies of Painlevé, Fuchs and Gambier ([Pai00,
Fuc05, Gam10]) finally produced a compact list with only six equations satisfying the required properties
and for which the general solutions cannot be written in terms of known special functions. All the other
equations fulfilling Picard’s requirements were shown to be either solvable in terms of known special
functions or reduced to one among the six in the list. Nowadays, we call this list of second order nonlinear
ordinary differential equations the Painlevé equations, see equations (1.1.1)-(1.1.6). Their solutions, called
Painlevé transcendents, are classified as new nonlinear transcendental functions and added to the list of
the classical special functions (together with the Bessel, Airy, hypergeometric, elliptic functions etc.). The
study of their properties increased together with their appearance in different domains involving nonlinear
phenomena. During the last fifty years Painlevé equations have been found in connection with many
different areas of mathematics and physics thus stimulating their study from many different points of view.
Among the physical literature, Painlevé equations appeared in different models of statistical mechanics
and quantum field theory ([BMTW73, JMMS80, BK90] some classical examples and [LDMS18, Kra20]
more recent ones particularly related to this thesis). In mathematics, new connections with orthogonal
polynomials ([VA17] a classical reference), random matrices ([TW94a, TW94c] and subsequent literature)
and random growth models (e.g. [For03, ACQ11]) are discovered still these days.
Going back in time, one of the first aspects of Painlevé equations to be studied was the dependence of
their solutions on the parameters appearing in the coefficients of the equations. It is worth to notice that
each of the six equations, apart from the first one, actually depend on some complex parameters (and up
to 4 independent ones). For particular choices of the values of these parameters, it is actually possible to
construct explicit solutions of the Painlevé equations in terms of known special or elementary functions.
Take the simplest scenario, when there is only one extra parameter. This is indeed realized by our case
of interest, the Painlevé II equation

d2w

dz2 “ 2w3 ` wz ` α, for w “ wpzq, α P C. (1)

It was first shown by Airault in [Air79] that for nonzero integer values and semi-integer values of α, the
Painlevé II equation admits respectively rational solutions and solutions in terms of the classical Airy
function (her results are written in Theorem 1.1.1, 1.1.2). Intriguingly enough, the case α “ 0 does not
fit in either of these classes of solutions. This special case was first handled by Hastings and McLeod
in [HM80] together with specific boundary conditions. The solution of their boundary value problem,
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known as the Hastings-McLeod solution (details are written in Theorem 1.1.5), appeared some years
later in relation with random matrix theory (in the same paper [TW94a] cited above). This result (stated
in Theorem 1.1.7), that goes under the name of the Tracy-Widom formula, is just one example among
many others describing connections between Painlevé transcendents and the theory of determinantal
point processes (that in this specific case applies to random matrix theory). The proof of their formula
followed from a study of the properties of the well known Airy kernel. In particular, they proved that the
Fredholm determinant of the integral operator acting through the Airy kernel is expressed in terms of the
Hastings-McLeod solution of the Painlevé II equation. This Fredholm determinant was already known to
express the edge scaling limit of the probability distribution of the largest eigenvalue for the Gaussian
Unitary Ensamble (e.g. [For93]), thus providing the bridge between random matrix theory and Painlevé
transcendents.
Among the many interesting aspects of the Painlevé II equation, in this work we will be particularly
interested in these two : its relation with the modified Korteg-De Vries equation and its isomonodromic
representation. In a certain way, the first one defines the object at the basis of our study, namely the
Painlevé II hierarchy, and the second one gives us the main tool to handle it. The link between the
Painlevé II hierarchy and isomonodromic deformations theory was deeply studied in the two subsequent
papers of Flaschka and Newell [FN80, FN82] in the eighties, and their work provides in some sense the
basis of our work, from both an analytical and a geometrical point of view.
Painlevé equations in general are known to be reduction of integrable (and non) PDEs [AC91] such as the
Korteg De Vries equation, the nonlinear Schroedinger equation and the sine-Gordon equation just to cite
some of them. As for the Painlevé II equation, it is obtained as self-similarity reduction of the modified
Korteg De Vries equation. This means that while seeking for solutions of the modified KdV equation

vt ` vxxx ´ 6v2vx “ 0, (2)

of the type
vpt, xq :“ wpzq

p3tq 1
3

with z :“ x

p3tq 1
3
, (3)

one obtains exactly that wpzq solves the Painlevé II equation (1) with α determined as constant of inte-
gration (for more details see [AC91]). This connection is particularly relevant since it allows to define the
so called higher order analogues of the Painlevé II equation. Indeed, in the study of integrable PDEs, for
which the most prominent example is indeed the Korteg De Vries equation, one can often construct in
natural way higher order equations that commute among themselves (see [Miu68] for the KdV case). The
sequence of equations obtained in this way is the hierarchy associated to the relevant PDE. In our case of
interest, starting from the modified KdV hierarchy (1.2.12), which construction is induced by the one of
the KdV hierarchy (1.2.8) via a Miura transformation, one can apply a self-similarity reduction (similar
to the one defining the reduction of the modified KdV equation to the Painlevé II equation) to all the
other members of the modified KdV hierarchy. This procedure results in a sequence of nonlinear ordinary
differential equations of increasing order, the first being the Painlevé II equation (1). Their collection is
called the Painlevé II hierarchy (and it is compactly written in equation (1.2.22)).
The relation between Painlevé equations and isomonodromic deformations was first investigated in great
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generality by the Japanese school in a series of papers [JMU81, JM81a, JM81b] and, almost simulta-
neously, but with specific focus on the Painlevé II case by Flaschka and Newell in [FN80, FN82]. Es-
sentially, isomonodromic deformations describes (for generic rank N) all possible linear system of ODEs

dΨ
dλ

“ ApλqΨ (4)

with Apλq a rational matrix with fixed number of poles each one with fixed multiplicity, sharing the same
set of essential monodromy data. This set of data is composed by some matrices that partially describes
the local behaviors of the solution Ψ near the singularities of the matrix coefficient Apλq. It turned out
that this description can be made by looking at the coefficient matrix Apλq as depending on certain extra
parameters Apλ, sq 1, and studying the variations w.r.t. these parameters that preserve the required set
of data. One of the main results proved in [JMU81] was that these monodromy preserving deformations
are equivalent to some nonlinear equations that the entries of the matrix coefficient Apλq should solve,
w.r.t. the deformation parameters. For certain specific cases (choosing number and type of poles), these
nonlinear equations coincide with the Painlevé equations. In the modern language, this result is usually
stated as the fact that Painlevé equations admit Lax pair representations in terms of isomonodromic
deformations. This means that for each of them there exist a pair of matrices Apλ, sq, Lpλ, sq such that
the compatibility condition of the system

dΨ
dλ

“ Apλ, sqΨ, dΨ
ds
“ Lpλ, sqΨ, (5)

i.e. the equation obtained by cross-differentiation

dA

ds
´
dL

dλ
` rA,Ls “ 0, (6)

is equivalent to the relevant Painlevé equation. The existence of Lax pairs for the Painlevé equations
allows from a certain perspective to put them into the wide framework of Integrable Systems.
For what concerns the Painlevé II equation (1), there are actually two independent 2 rank two Lax pairs :
one with only one irregular singularity at 8 and a regular one at 0 (the Flaschka-Newell Lax pair [FN80])
and one with only one irregular singularity at 8 (the Jimbo-Miwa-Ueno Lax pair [JMU81]). Some years
ago, the work [CJM06] proved that every higher order analogue of the Painlevé II equation admits an
isomonodromic Lax pair, that generalizes the Flaschka-Newell one. This is indeed very useful in our stu-
dies.
With this panorama in mind, the thesis explored the following directions. On the one hand, we found
generalizations of the Tracy-Widom formula for some solutions of new Painlevé II equations, in particu-
lar matrix-valued and integro-differential higher order analogues, in correspondence with the Fredholm
determinants of higher order, matrix-valued and finite-temperature, generalizations of the Airy kernel.
Motivations include, but they are not limited to, the fact that these generalizations of the Airy kernel can
be used in the theory of determinantal point processes (e.g. [BBW21]), and also in statistical mechanics
and random matrix theory (e.g. [LDMS18, ACQ11, Joh07]). The detailed results are stated in Corollary

1. In general s could be either a scalar or a finite dimensional vector of independent parameters.
2. Here independent means that the sets of essential monodromy data of the two systems are not isomorphic, thus there

exist no gauge transformation that send one system into the other.
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5.0.2 in Chapter 5 for the matrix-valued case and in Theorem 6.0.7 in Chapter 6 for the finite-temperature
case. In order to obtain both of these results, the existence of a Lax pair for the matrix-valued and the
integro-differential Painlevé II hierarchies, studied in Chapter 5 and 6 respectively, is fundamental. Their
Lax representations are indeed the keys to pass from the study of the relevant generalizations of the Airy
kernel, via a Riemann-Hilbert approach, to the definition of some particular solutions of the Painlevé II
hierarchy involved. The methodology used in both cases is very similar, even though the one in Chapter
6 is more technical than the one in Chapter 5, and it relies on the well known theory of IIKS integrable
operators [IIKS90]. This theory can be indeed used or generalized for the study of the Fredholm de-
terminants of the higher order, matrix-valued and finite temperature, analogues of the Airy kernel we
are interested in. The fundamental idea is to associate a parametric Riemann-Hilbert problem to the
prescribed operator and to study its Fredholm determinant through it. At the same time, the solution of
the relevant Riemann-Hilbert problem can also be used to provide the Lax pairs, in our specific case iso-
monodromic ones, that will be indeed behind the Painelvé II hierarchies of interest. The most prominent
difference between Chapter 5 and Chapter 6 is then on the type of Riemann-Hilbert problem that will be
associated to the relevant operator : in the first case a standard matrix-valued Riemann-Hilbert problem
while in the second case an operator-valued one.
However, we notice that the original Tracy-Widom formula was obtained by the authors [TW94b] through
a totally different procedure. Other authors later re-derived their formula by using the Riemann-Hilbert
approach (e.g. [KH99]) and this approach has been used in order to derive analogue Tracy-Widom formula
for some (scalar) higher order Painlevé II transcendents, in the recent work [CCG19]. For this reason we
adopted the same method for our purposes in Chapter 5 and 6.
On the other hand, we studied the Poisson-symplectic structure of the monodromy manifold associated
to a system of linear ODEs with polynomial matrix coefficient (thus having only an irregular singula-
rity at 8), originally introduced by Flaschka and Newell in [FN82]. This case is indeed underlying the
Painlevé II hierarchy (at least the homogeneous one). This particular case of monodromy manifold, cal-
led Stokes manifold, is the simplest example of what is known now as a wild character variety. For the
case of regular singularities, the geometry of monodromy manifolds is encoded by character varieties of
(appropriately) punctured Riemann spheres. The character varieties of Riemann surfaces in general are
known to be Poisson manifolds, thanks to Goldmann work [Gol84]. Instead, the monodromy manifolds
associated to systems carrying on irregular singularities are more complicated, because of the presence of
the Stokes phenomenon around each irregular singularity. During the last decades, they were studied in
great generality and with particular focus on their Poisson structure by Boalch [Boa01a, Boa01b, B`07].
In Chapter 7 we prove that this particular case of monodromy manifold, the Stokes manifold, is indeed
a symplectic manifold, see Theorem 7.1.5. Moreover, in Lemma 7.2.1 we provide explicit log-canonical
coordinates for the symplectic-Poisson structure, that are shown to linearize the original Flaschka-Newell
Poisson structure, as follows from Theorem 7.4.3. The log-canonical variables used in this context are
related to a cluster algebra of a certain type. Relations between cluster algebras and character varieties,
are known and have been largely studied by Fock and Goncharov [FG06] but without specific reference to
monodromy manifolds. Recently, their formalism was also used to find log-canonical coordinates for the
Goldmann Poisson structure of character varieties of arbitrary punctured Riemann surfaces [BK19]. Also,
cluster algebras were already known to be connected with the Stokes phenomenon, but the one arising
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in WKB analysis [KT14] (not the classical one that we are going to treat here). For all these reasons,
cluster algebras were in some way expected to appear also in the context of wild character varieties, such
as our Stokes manifolds.

Outline

The thesis is essentially divided in two parts. The first part is composed by the first four chapters which
are devoted to introduce the basic objects of the study and to motivate it, to review the fundamental
results that relate these objects and to recall the classical methods used to achieve these classical results.
The second part contains instead the original contributions obtained in the works [Tar21, BCT21, BT21],
that are distributed in the last three chapters. In particular the thesis is organised as follows :

(1) In Chapter 1 we explain how the scalar Painlevé II hierarchy is constructed and we review the Tracy-
Widom formula and its generalization for the higher order members of the hierarchy, concerning
some Hastings-McLeod type solutions of the hierarchy. In Chapter 2 we summarise some basic facts
about the theory of determinantal point processes, with particular focus on its application in random
matrix theory. This will be done in order to finally explain how the Tracy-Widom formula relates
some Painlevé II transcendent to random matrix theory. These two chapters together essentially
introduce the objects we want to study and the main motivations.

(2) Chapters 3, 4 are focused on the classical techniques that we are going to use or generalize in the
chapters thereafter in order to achieve our results. Specifically, Chapter 3 introduces Riemann-
Hilbert problems with particular focus on the ones appearing in relation with integrable operators
of IIKS type. Chapter 4 is instead a compact review of some results in the theory of isomonodromic
deformations. The aim of the chapter is twofold : one is to explain how the Painlevé II hierarchy
can be deduced as isomonodromic deformation of certain types of systems, the other is to review
the concepts of monodromy data that will be used in Chapter 7 to construct the Stokes manifolds.

(3) In Chapter 5 we give the proof of the result contained in [Tar21] : a generalization of the Tracy-
Widom formula relating the Fredholm determinants of matrix-valued higher order Airy kernels
analogues to some particular solutions of a matrix-valued Painlevé II hierarchy.

(4) In Chapter 6 we go through the proof of the main result of [BCT21] : this time we obtain a
generalization of the Tracy-Widom formula for a finite temperature version of the higher order Airy
kernels together with a particular solutions of an integro-differential Painlevé II hierarchy. Even
though the results of this chapter and the previous one are comparable, the proof of the second one
requires more complicated techniques. Indeed in this case, matrix-valued Riemann-Hilbert problems
are replaced by operator-valued ones. Part of the work is then devoted to establish the existence,
uniqueness and other properties of their solutions (well-known for the matrix-valued case).

(5) Finally in Chapter 7 we explain most of the content of [BT21]. We prove that the Stokes manifold
associated to a polynomial system of ODEs of generic degree K and rank 2 is indeed a symplectic
manifold. In particular we find log-canonical coordinates for the induced Poisson structure, that pro-
vide a linearization of the Flaschka-Newell Poisson structure originally discovered on this manifold.
The relation with a cluster algebra of A2K type is also discussed.
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Chapter 1

THE PAINLEVÉ II HIERARCHY

The starting point of our study is the scalar Painlevé II hierarchy, that in this chapter we are going
to introduce. Indeed, the construction of the scalar Painlevé II hierarchy will inspire in Chapters

5 and 6 the one of some new Painlevé II hierarchies, analogue of the classical one described in this
chapter, but in a matrix context and in an integro-differential context respectively. To start with, we first
briefly recall who are the so called Painlevé equations. Then we are going to focus on the second Painlevé
equation and after a brief study of its properties, we are going to see how, thanks to its relation with the
modified KdV equation, the Painlevé II hierarchy is defined.

1.1 The Painlevé II equation

1.1.1 Introduction to the Painlevé equations

With Painlevé equations we refer to the following list of six nonlinear ordinary differential equations
(following [FIKN06]) for a certain function w “ wpzq

PI w2 “ 6w2 ` z, (1.1.1)

PII w2 “ 2w3 ` zw ` α, (1.1.2)

PIII w2 “
pw1q2

w
´
w1

z
`
αw2 ` β

z
` γw3 `

δ

w
, (1.1.3)

PIV w2 “
pw1q2

2w `
3
2w

3 ` 4zw2 ` 2pz2 ´ αqw `
β

w
, (1.1.4)

PV w2 “

ˆ

1
2w `

1
w ´ 1

˙

pw1q2 ´
w1

z
`
pw ´ 1q2

z2

ˆ

αw `
β

w

˙

`
γw

z
`
δwpw ` 1q
w ´ 1 , (1.1.5)

PVI w2 “
1
2

ˆ

1
w
`

1
w ´ 1 `

1
w ´ z

˙

pw1q2 ´

ˆ

1
z
`

1
z ´ 1 `

1
w ´ z

˙

w1

`
wpw ´ 1qpw ´ zq

z2pz ´ 1q2

ˆ

α`
βz

w2 `
γpz ´ 1q
pw ´ 1q2 `

δzpz ´ 1q
pw ´ zq2

˙

, (1.1.6)

where we used the notation 1 “
d

dz
and α, β, γ, δ are constant parameters. These equations result as the

solution of a classification problem in ODE theory, that was first posed more than one century ago in
[Pic89]. The problem was to find all the second order ordinary differential equations of the form

w2 “ F pw,w1, zq (1.1.7)
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Chapter 1 – The Painlevé II hierarchy

with the function F pw,w1, zq being rational in w,w1 and analytic in z and with solutions satisfying the
so called Painlevé property. A function w, solution of a certain ordinary differential equation, is said to
have the Painlevé property, if it does not have movable critical points. This means essentially that the
critical points of the solution, if any, only depend on the equation itself and not on the initial or boundary
conditions. From another point of view, the Painlevé property allows to construct new special functions
as solution of specific second order nonlinear ODEs, as it is done for many special functions coming from
linear ODEs, as the Bessel and the hypergeometric functions.
Painlevé first and then Fuchs and Gambier ([Pai00, Fuc05, Gam10]) studied this problem and conclu-
ded that, up to Möbius transformations, there were just fifty equations corresponding to such requests.
Furthermore, they proved that these fifty equations can be either integrated in terms of known special
functions or reduced to one of the six equations in the list above. The six new nonlinear ordinary dif-
ferential equations arising out in this way are then called the Painlevé equations. Their solutions, the
Painlevé transcendents, are considered as new transcendental functions (for more details we refer to the
monograph [Inc27]).
Even though the Painlevé equations arose in the context of a very analytical problem, they appeared
then in many other fields of applied mathematics such as statistical mechanics, quantum field theory
and nonlinear waves. In particular some of the Painlevé equations were found in connection with partial
derivative equations solvable through inverse scattering method ([AC91] for a classical reference). In the
specific case of the Painlevé II equation (1.1.2), that will be our case of study, the relevant PDE is the
modified KdV equation. As we will see in the next section, the relation between the modified KdV equa-
tion and the Painlevé II equation is indeed the key to construct the Painlevé II hierarchy. But this is far
from being an isolated case, and the study of links between Painlevé equations and PDEs is still very
popular. Indeed, there is still an open conjecture among Painlevé type equations and integrable PDEs
saying that (quoting from [AC91] pg. 362)
“Every ODE which arises as similarity reduction of a completely integrable PDE is of Painlevé type, up
to transformation of variables”.
One of the first properties of Painlevé transcendentes to be discovered, was that even though the general
solutions of the Painlevé equations are transcendental, some particular solutions can be written explicitly.
Notice that in every equation (1.1.2)-(1.1.6) there is at least one parameter. Choosing particular values
for these parameters it is possible to find rational solutions, or other solutions in terms of known special
functions for all the Painlevé equations from II to VI. The presence of these parameters in the Painlevé
equations is actually even more relevant. Given a solution of a Painlevé equation for fixed values of the
parameters, one can generate other solutions of the same equation with different values of the parame-
ters, or even solutions of a different Painlevé equation, starting from the given one. This phenomenon is
usually referred as the Bäcklund transformations of the Painlevé equations, and it is a very useful tool to
generate sequences of solutions. These transformations were already discovered by Painlevé and Gambier
in the first works on Painlevé equations ([Inc27, Gam10]) and then studied in the following years. We
refer to [FIKN06] (Part I, Chapter 6) for a compact review on the subject using the formalism of Lax
pairs of Painlevé equations and Schlesinger transformations.
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1.1. The Painlevé II equation

1.1.2 Known solutions of the Painlevé II equation

We are now going to focus on the Painlevé II equation and we start by listing its known solutions.
The Painlevé II equation admits two types of Bäcklund tranformations for integer or semi-integers values
of the parameter α. These transformations generate respectively sequences of rational solutions and Airy
type solutions (that are obtained as ratio of the Airy function and its derivatives). The main results, that
were first proven by Airault in [Air79], are resumed in the following theorems.
For the rational solutions corresponding to integer values of the parameter α the statement is as follows.

Theorem 1.1.1 (Theorem 2 [Air79]). The Painlevé II equation (1.1.2) has rational solution if and only
if α is an integer, in particular for α “ 0 this solution is trivial. Then for n ě 1, equation (1.1.2) admits
a solution wn with α “ n that is written as

wn “ ´
u1n
un
`
u1n´1
un´1

, (1.1.8)

where the functions un are obtained through the following recursion

un`1un´1 “ Cp´2 d
2

dz2 log un ` zqu2
n, (1.1.9)

with initial conditions u0 “ 1 and u1pzq “ z. Finally, when α “ ´n then w´n “ ´wn.

For the Airy type solutions corresponding instead to semi-integers values of α, we have the following
statement. Notice that here the Airy function is defined as a particular solution γpzq of the equation
γ2 “ ´ z

2γ.

Theorem 1.1.2 (Theorem 3 [Air79]). In the case where α is a semi integer, there is a solution of equation
(1.1.2) that is a rational function of the Airy function γ and its derivatives. In particular

‚ for α “ ´ 1
2 then w0 “

d
dz log γ ;

‚ for α “ ´ 1
2 ` n then wn “

u1n´1
un´1

´
u1n
un

;

‚ for α “ 1
2 ´ n then w´pn´1q “ ´wn.

Here the functions un are obtained from the same recursive equation (1.1.9) but with initial conditions
u0 “ exp

´

z3

24

¯

and u1 “ γu0.

These results were proved again some years later through a totally different method by Flaschka
and Newell in [FN80]. Their new procedure is called isomonodromy method and it is perhaps the most
powerful tool that has been developed in order to study Painlevé transcendents, as the monograph
[FIKN06] largely shows. This method is based on the fact that the Painlevé II equation has Lax pairs
in terms of isomonodromic deformations of certain rank 2 systems of linear ODEs in the complex plane.
The precise meaning of that will be discussed in Chapter 4. Using this method, Flaschka and Newell were
able to recover the rational and the Airy type solutions found by Airault and they expressed them as
finite-size determinants. Their result, first proved in Sec. 3F piiiq of [FN80] for the rational solutions of
the Painlevé II equation (1.1.2), can be rewritten as follows.

9



Chapter 1 – The Painlevé II hierarchy

Theorem 1.1.3 (Theorem 2.4 [Cla03]). Let pkpzq be the polynomial defined by

8
ÿ

k“0
pkpzqλ

k “ exp
ˆ

zλ´
4
3λ

3
˙

, with pkpzq “ 0 for k ă 0

and let τn be the nˆ n determinant

τnpzq :“

∣∣∣∣∣∣∣∣∣∣
pnpzq pn`1pzq . . . p2n´1pzq

pn´2pzq pn´1pzq . . . p2n´3pzq
...

...
p´n`2pzq p´n`3pzq . . . p1pzq

∣∣∣∣∣∣∣∣∣∣
.

Then for α “ n, n ě 1 the rational solutions of (1.1.2) are written as in the form

wnpzq “
d

dz
log τn´1pzq

τnpzq
. (1.1.10)

This result was also proved later in [KO96], exploiting the relation between the Painlevé II and the
KdV equation.
Instead, for the Airy type solutions of equation (1.1.2) the result proved by [FN80] (Sec. 3F pivq) can be
formulated as follows.

Theorem 1.1.4 (Theorem 2.5 [Cla03]). Let τn be the nˆ n determinant

τnpzq :“ det
„

dj`k

dzj`k
γpzq

n´1

j,k“0
, n ě 1 and τ0pzq “ 1.

Then for α “ n´ 1
2 and n ě 1 the Airy type solutions of the Painlevé II equation (1.1.2) are written in

the form
wnpzq “

d

dz
log τn´1pzq

τnpzq
. (1.1.11)

The original works done in this thesis and contained in Chapter 5 and 6, are based indeed on the iso-
monodromy method. However, these original results generalize (to a matrix-valued and integro-differential
case) the existence of a third type of solution of the Painlevé II equation, different from the two family
of solutions introduced until now. Consider the homogeneous Painlevé II equation (1.1.2)

w2 “ 2w3 ` zw (1.1.12)

i.e. the special case α “ 0 in equation (1.1.2). It was first discovered in [HM80] that this equation
together with a boundary condition admits a particular solution, nowadays known as the Hastings-
McLeod solution. Their main result is resumed in the following theorem.

Theorem 1.1.5 (Theorem 1 [HM80]). Consider the homogeneous Painlevé II equation (1.1.12) together
with the boundary condition

wpzq Ñ 0 for z Ñ `8. (1.1.13)

10



1.1. The Painlevé II equation

Then

1. any solution of the boundary problem (1.1.12), (1.1.13) is asymptotic to kAipzq at z Ñ `8, for
some k P R.

2. Conversely, for any k there is a unique solution of (1.1.12) which is asymptotic to kAipzq.

Furthermore, for |k| ă 1 the solution which has asymptotic kAipzq exists for every z and as z Ñ ´8 it
behaves as

wpzq „ d|z|´
1
4 sin

ˆ

2
3 |z|

3
2 ´

3
4d

2 log |z| ´ c
˙

(1.1.14)

for some constants c, d depending on k.

Remark 1.1.6. In the statement of Theorem 1.1.5 and below we denote by Aipzq the Airy function but
with a slightly different convention w.r.t. the function γpzq defined previously. Here Aipzq is intended as
a particular solution of φ2 “ zφ.

These solutions were not known to admit a (Fredholm) determinantal representation until the work
of Tracy and Widom [TW94b]. They proved indeed that also these solutions can be written in terms of
certain determinants, but in a very different sense than the determinants for the rational and the Airy
type solutions. They proved in [TW94b] that the Hastings-McLeod solution of the Painlevé II equation
(1.1.12) with asymptotic wpzq „ Aipzq is related to the Fredholm determinant of the Airy kernel. Their
result is resumed in the following theorem.

Theorem 1.1.7 ([TW94b]). The Hastings-McLeod solution of the homogeneous Painlevé II equation
(1.1.12), i.e. its distinguished solution with asymptotic behavior wpzq „ kAipzq, is written through the
formula

d2

dz2 log detp1´ k2KAiry|pz,8qq “ ´w
2pzq. (1.1.15)

where KAiry|pz,8q is considered as the integral operator acting on L2ppz,`8qq with kernel

KAirypx, yq :“
ˆ `8

0
Aipx` tqAipy ` tqdt. (1.1.16)

We will discuss again about this result at the end of Chapter 2 and there we will explain the reason
why this result is so interesting from the point of view of applications.
Nevertheless, formula (1.1.15) is exactly the one we have generalized in Chapters 5 and 6 for certain
solutions of a matrix and an integro-differential Painlevé II hierarchy, with prescribed asymptotic behavior
in terms of generalized Airy functions.

Remark 1.1.8. We stress, again, that the procedure used by Tracy and Widom in [TW94b] does not
make use of the Lax pair representation of the Painlevé II equation at all. Nevertheless, the extension of
their result to certain solutions of the Painlevé II hierarchy, that was studied in [CCG19] and that we
will discuss thereafter, deeply rely on the isomonodromic representation of the hierarchy and the theory
of integrable operators of IIKS type. And so also our generalizations discussed in Chapters 5 and 6 do.
However, a proof of the Tracy-Widom result based on this technique was already given in some previous
papers [KH99, HTW93].

11



Chapter 1 – The Painlevé II hierarchy

1.2 Construction of the Painlevé II hierarchy

In this section we are going to define the classical scalar Painlevé II hierarchy. In order to do that, we
first need to establish the relation between the Painlevé II equation and the modified KdV equation. We
will see that the definition of the Painlevé II hierarchy then follows in a very natural way, once that the
definition of the modified KdV hierarchy is established.

1.2.1 Self-similarity reduction of mKdV equation

We start by introducing the KdV equation. Given a function of two variables u “ upt, xq, the KdV
equation is the following nonlinear partial differential equation

ut ` 6uux ` uxxx “ 0, (1.2.1)

where subscripts denote partial differentiation. This equation was derived from the physical description of
the evolution of long, one dimensional, surface waves propagating in shallow waters with small amplitude
by Korteweg and De Vries in [KDV95]. One of the scope of their work was to find wave equations admit-
ting solitary wave solutions, i.e. waves preserving their own form and propagating with uniform velocity,
first observed and then studied by Russel [Rus38]. The KdV equation has been largely studied in the
years after its discovery and a lot of interesting mathematical properties were proved, here we cite only
few of them. The KdV equation is the prototype of PDE solvable through the Inverse Scattering Method,
it admits solitonic solutions (solitary waves solutions that do not change their shape and velocity after
interaction with other solitary waves), it has infinitely many commuting symmetries and it is perhaps
the main example of infinite dimensional integrable Hamiltonian system.
While studying some remarkable transformation of the KdV equation in the paper [Miu68], Miura dis-
covered the modified KdV equation. This equation is defined for a function of two variables v “ vpt, xq

as the following partial derivative equation

vt ` vxxx ´ 6v2vx “ 0. (1.2.2)

We say that the modified KdV equation and the KdV equation are related through a Miura transforma-
tion. More precisely, this relation means that for any solution v of the modified KdV equation one can
define the Miura transform u :“ vx ´ v2, and verify that the function u now solves the KdV equation
(1.2.1).

Remark 1.2.1. By direct computation, replacing u “ vx ´ v
2 in the KdV equation (1.2.1) then we get

the following equation
ˆ

B

Bx
´ 2v

˙

`

vt ´ 6v2vx ` vxxx
˘

“ 0. (1.2.3)

And this is of course an identity since v solves the modified KdV equation (1.2.2). This means that from
a solution of the modified KdV equation we can always construct a solution of the KdV equation, but
the converse is not true (see also [AC91] pg. 23). In particular, not all the solutions of the KdV equation
are obtained from solutions of the modified KdV equation (for more details, have a look at [AKS79]).
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1.2. Construction of the Painlevé II hierarchy

Now we are going to show that the Painlevé II equation can be obtained by self-similarity reduction
of the modified KdV equation. Indeed, consider a solution v of the modified KdV equation, having the
following form

vpt, xq :“ wpzq

p3tq 1
3

with z :“ x

p3tq 1
3
. (1.2.4)

Then the modified KdV equation solved by this vpt, xq is reduced to an ordinary differential equation for
w w.r.t. the new variable z. In particular it coincides with

wzzz ´ zwz ´ w ´ 6w2wz “ 0 (1.2.5)

that is exactly the derivative of the Painlevé II equation. Thus we conclude that the function w defined
in (1.2.4) solves the Painlevé II equation (1.1.2) with α being an arbitrary integration constant.

Remark 1.2.2. There is another similarity reduction that relates directly the KdV equation to an
equation solvable in terms of solutions of the Painlevé II equation (see [AC91], pg. 99, for more details),
but for the definition of the Painlevé II hierarchy is easier to proceed with the relation between the
Painlevé II equation and the modified KdV equation.

1.2.2 The KdV and modified KdV hierarchy

The KdV hierarchy is an infinite set of PDEs for a function depending on infinitely-many parameters
u “ upx “ ´t1, t “ t2, t3, t4, . . . q. With this notation, the first member of the hierarchy is an identity
and the second one coincides with the KdV equation itself. These PDEs have the fundamental property
to commute one with another, giving a system of compatible equations. We remark that this is also
equivalent to say that the KdV equation admits infinitely many commuting symmetries. Even though
the classical definition of the KdV hierarchy requires the introduction of the algebra of pseudo-differential
operators (following the classical reference here [MJD00]), we are going to take a shortcut and give an
equivalent definition that involves the Lenard recursion, as introduced in [Lax76], [Miu68].

Definition 1.2.3. The sequence of Lenard recursion operators acting on a function u is obtained through
the following recursion

$

’

&

’

%

B

Bx
Ln`1 rus “

ˆ

B3

Bx3 ` 4u B
Bx
` 2ux

˙

Ln rus , n ě 0

L0 rus “
1
2 .

(1.2.6)

The quantities Ln rus generated from this recursion relation are all differential polynomials in u and
its x-derivatives until order 2n´ 2. The proof of this fact is based on the use of the conserved quantities
for the KdV equation (see Theorem 3.1 in [Lax76] for more details).

Example 1.2.4. Here is a list of the differential polynomials Ln rus for the first few values of n, setting

13



Chapter 1 – The Painlevé II hierarchy

all the constants of integration to zero.

n “ 1 : L1 rus “ u,

n “ 2 : L2 rus “ uxx ` 3u2,

n “ 3 : L3 rus “ uxxxx ` 10uuxx ` 5u2
x ` 10u3,

(1.2.7)

Using Definition 1.2.3 we can finally construct the KdV hierarchy as follows

utn`1 `
B

Bx
Ln`1 rus “ 0, n ě 0, (1.2.8)

where the subscript tn`1 indicates the partial derivation w.r.t. tn`1.

Example 1.2.5. Here is a list of the first members of the KdV hierarchy. For n “ 0 we have a trivial
identity, with t1 “ ´x, and for n “ 1 we recover the KdV equation, with t2 “ t.

n “ 0 : ut1 ` ux “ 0, (1.2.9)

n “ 1 : ut2 ` 6uux ` uxxx “ 0, (1.2.10)

n “ 2 : ut3 ` uxxxxx ` 20uxuxx ` 10uuxxx ` 30u2ux “ 0. (1.2.11)

The modified KdV hierarchy is then constructed from the KdV hierarchy through the same Miura
transformation introduced before, i.e. by taking u “ vx ´ v2, and looking at the equation for v. Indeed,
the modified KdV hierarchy is defined as follows

vtn`1 `
B

Bx

ˆ

B

Bx
` 2v

˙

Ln
“

vx ´ v
2‰ “ 0, n ě 1, (1.2.12)

where for n “ 1 the modified KdV equation (1.2.2) is recovered.

Remark 1.2.6. Consider the Miura transformation u “ vx ´ v
2 and replace it into the definition of the

differential operator of order 3 appearing in the Lenard recursion (1.2.6), namely

H :“ B3

Bx3 ` 4u B
Bx
` 2ux. (1.2.13)

By direct computation, one can check that under the Miura transformation, H is factorized in the
following way

H “

ˆ

B

Bx
´ 2v

˙

B

Bx

ˆ

B

Bx
` 2v

˙

. (1.2.14)

Thus, when we replace the Miura transformation in the definition of the KdV hierarchy (1.2.8) we
obtain, generalizing what was observed in Remark 1.2.1, that the n-th member of the KdV hierarchy is
transformed into

ˆ

B

Bx
´ 2v

˙ˆ

vtn`1 `
B

Bx

ˆ

B

Bx
` 2v

˙

Ln
“

vx ´ v
2‰
˙

“ 0, (1.2.15)

where we only used the property (1.2.14). As a byproduct we conclude that, given a solution v of the n-th
member of the modified KdV hierarchy then u “ vx ´ v

2 solves the n-th member of the KdV hierarchy,
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1.2. Construction of the Painlevé II hierarchy

but the converse, again, is in general not true.

Example 1.2.7. The first members of the modified KdV hierarchy are as follows

n “ 1 : vt2 ` vxxx ´ 6v2vx “ 0, (1.2.16)

n “ 2 : vt3 ` vxxxxx ´ 10v2vxxx ´ 40vxvxx ´ 10v3
x ` 30v4vx “ 0, (1.2.17)

n “ 3 : vt4 ` vxxxxxxx ´ 14v2vxxxxx ´ 84vvxvxxxx ´ 140vvxxvxxx
´ 126v2

xvxxx ´ 182vxv2
xx ` 70v4vxxx ` 560v3vxvxx ` 420v2v3

x ´ 140v6vx “ 0 (1.2.18)

1.2.3 The Painlevé II hierarchy

We are now ready to define the Painlevé II hierarchy. We will first follow the construction done in
[Kud97] and in the end we will briefly see another construction already given by [Air79]. In order to
do that we will consider an appropriate self-similarity reduction for each member of the modified KdV
hierarchy (1.2.12), analogue to the one we considered for the case n “ 1 in (1.2.4).
For every n ě 1, we define v a solution of the n-th member of the modified KdV hierarchy, of the following
form

vpx, tn`1q :“ wpzq

pp2n` 1qtn`1q
1
2

with z :“ x

pp2n` 1qtn`1q
1
2
. (1.2.19)

We also define for every n ě 0 the quantities L̂n rws, as the differential polynomials in w obtained by the
same recursion relation (1.2.6) but replacing the variable x with the variable z.
One can prove by induction over n (see Proposition 2.2 in [Kud97]) the following equality

Ln
“

vx ´ v
2‰ “

1
pp2n` 1qtn`1q

2n
2n`1

L̂n
“

wz ´ w
2‰ for every n ě 1. (1.2.20)

By replacing in the n-th member of the modified KdV equation (1.2.12) the form (1.2.19) of v and by
using the relation (1.2.20), this equation is transformed into an ordinary differential equation for the
function wpzq that is

´zwz ´ w `
d

dz

ˆ

d

dz
` 2w

˙

L̂n
“

wz ´ w
2‰ “ 0, (1.2.21)

that corresponds indeed to the derivative of
ˆ

d

dz
` 2w

˙

L̂n
“

wz ´ w
2‰ “ zw ` αn, (1.2.22)

where αn is an arbitrary constant of integration.

Definition 1.2.8. The Painlevé II hierarchy is the infinite set of ODEs given by equation (1.2.22) for
any n ě 1, obtained after integration of the self-similarity reduction of the modified KdV hierarchy.

We underline that the n-th member of the Painlevé II hierarchy (1.2.22) is a 2n order nonlinear ODE
for the function wpzq. The first member of the hierarchy, as it is shown in the example that follows,
coincides with the Painlevé II equation (1.1.2).
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Example 1.2.9. The first members of the Painlevé II hierarchy (1.2.22) are given by

n “ 1 : wzz ´ 2w3 “ zw ` α1, (1.2.23)

n “ 2 : wzzzz ´ 10ww2
z ´ 10w2wzz ` 6w5 “ zw ` α2, (1.2.24)

n “ 3 : wzzzzzz ´ 14w2wzzzz ´ 56wwzwzzz ´ 70w2
zwzz ´ 42ww2

zz ` 70w4wzz

` 140w3w2
z ´ 20w7 “ wz ` α3. (1.2.25)

The definition of the Painlevé II hierarchy through equation (1.2.22) completely relies on the definitions
of the KdV and modified KdV hierarchies as given in (1.2.12), (1.2.12). But the formalism given by the
Lenard recursion operators is not the only one that is used to describe the KdV and consequently the
modified KdV hierarchies. In the following paragraph, we are going to introduce an alternative formalism.

An alternative definition of the PII hierarchy Here we are going to define the Painlevé II hierarchy
through the formalism used by Airault in [Air79]. In this other formalism, introduced by [Olv77], [AM78],
one defines the following pseudo-differential operator of order 2

Sw :“ 4w2 ` 4wz
ˆ

d

dz

˙´1
w ´

d2

dz2 (1.2.26)

where
ˆ

d

dz

˙´1
stands for the formal z-antiderivative, such that

ˆ

d

dz

˙´1
d

dz
pfq “ f for every function

f .
The Painlevé II hierarchy is then defined in [Air79] by the following sequence of equations

ˆ

d

dz

˙´1
Sn´1
w rwzs ` zw ` δn´1 “ 0, n ě 2 (1.2.27)

where δk are arbitrary constants of integration.

Remark 1.2.10. One can check that the first members of the Painlevé II hierarchy obtained through
the definition (1.2.22) and computed in the Example 1.2.9 coincide with the ones obtained through the
definition of the hierarchy (1.2.27).

The procedure followed to obtain this alternative definition of the Painlevé II hierarchy is similar to
the previous one, but it starts from a different definition of the KdV hierarchy. Given a function u, define
the following pseudo-differential operator

Ru :“
˜

2
˜

u`
B

Bx
u

ˆ

B

Bx

˙´1
¸

´
B2

Bx2

¸

(1.2.28)

One can then define the KdV hierarchy, as Airault did in [Air79], through the following equations

p2m´ 1qutm “ Rm´1
u ruxs , m ě 2. (1.2.29)

By looking for self-similarity solutions of the form uptm, xq :“ t
´ 2

2m´1
m qpzq where z :“ xt

´ 1
2m´1

m similarly
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1.2. Construction of the Painlevé II hierarchy

to (1.2.19), one can reduce the above equation to an ODE for q. In particular, it follows that q solves

Rm´1
q rqzs ` 2q ` q1z “ 0,

where now Rq is intended as the same operator given in (1.2.28) but replacing x by z and u by q. Finally,
using the Miura transformation at this level and writing q :“ wz ` w2, the function w is then shown to
satisfy equation (1.2.27).

Remark 1.2.11. Using the operator Ru one can define the following sequence

Xm rus “ RuXm´1 rus , m ě 2 with X1 rus “ ux. (1.2.30)

Up to changing the sign of the term of order 3 in the differential operator H used in the Lenard recursion
(1.2.6), we actually have that the recursion for the operators Xm in (1.2.30) is a sort of integrated version
of (1.2.6). This follows from the bi-Hamiltonian structure of the KdV hierarchy for which the equality
above can be continued into

Xm rus “ RuXm´1 rus “
B

Bx
pδHmq (1.2.31)

and where δHm are the Hamiltonian functionals of the KdV hierarchy and they are (up to the sign) the
Lenard differential polynomials. The equivalence between the two definitions of the Painlevé II hierarchy
(1.2.22) and (1.2.27) is then explained.

Even though the two different definitions of the Painlevé II hierarchy give rise to the same infinite
set of ODEs, they are quite different in their usage. We wanted to introduce both of these formalism,
since they both will inspire our constructions in the next chapters. In Chapter 5 we consider a matrix
Painlevé II hierarchy, that is obtained as a matrix generalization of equation (1.2.22). We introduce a
noncommutative version of the Lenard recursion (1.2.6) and we use it to define the new hierarchy. In
Chapter 6 instead we define an integro-differential Painlevé II hierarchy that is a generalization of equation
(1.2.27). In particular, in this last definition the recursion operator is written as the composition of two
pseudo-differential operators of order 1 that reduces to the operator Sw in (1.2.26) in the case where all
the variables commute.

Solutions of the Painlevé II hierarchy The study of solutions of higher order Painlevé II trans-
cendents is in general much more complicated since it requires to solve 2n-order ODEs. One can ask
for instance, whether the known solutions of the Painlevé II equation, the rational, the Airy type and
the Hastings-McLeod ones extend in some way to solutions of the entire Painlevé II hierarchy (1.2.22).
One answer was recently given in the papers [LDMS18, CCG19] concerning the Hastings-McLeod type
solutions. In particular, in the last paper the authors explicitely construct solutions for each member of
the homogeneous Painlevé II hierarchy (1.2.22) in relation to the Fredholm determinants of the gene-
ralized Airy kernels. The explicit formula describing these solutions recovers the Tracy-Widom formula
(1.1.15) for the first member of the hierarchy. Furthermore, the authors of [CCG19] were able to compute
the asymptotic behavior of these solutions at ˘8, in terms of the generalized Airy function Ai2n`1pzq,
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Chapter 1 – The Painlevé II hierarchy

defined as the real solution with rapid decaying at `8 of the 2n-order ODE

d2n

dz2nφ “ p´1qn`1zφ. (1.2.32)

Their result can be thus interpreted as an extension of the Tracy-Widom result cited before in Theorem
1.1.7 to all members of the Painlevé hierarchy and it is resumed in the following statement.

Theorem 1.2.12 (Theorem 1.1 [CCG19]). For every n ě 1 and 0 ă ρ ď 1, there is a real solution w of
the n-th member of the homogeneous Painlevé II hierarchy (1.2.22) which satisfies

´w2pz; ρq “ d2

dz2 log det
`

1´ ρKAi2n`1 |pz,8q
˘

, (1.2.33)

where KAi2n`1 |pz,8q is considered as the integral operator acting on L2ppz,`8qq with kernel

KAi2n`1px, yq :“
ˆ `8

0
Ai2n`1px` tqAi2n`1py ` tqdt. (1.2.34)

Furthermore, its asymptotic behavior for z Ñ `8 is given by wpz; ρq „ ?ρAi2n`1pzq.

As already underlined for ρ “ 1, n “ 1 this result recovers the one of Tracy and Widom resumed
in Theorem 1.1.7. Nevertheless, the authors of [CCG19] used a completely different procedure, that
essentially relies on the isomonodromic reprensentation of the Painlevé II hierarchy (1.2.22), that was
first described in [CJM06]. This procedure, also known as the Riemann-Hilbert approach, is in principle
the same procedure we will use in Chapter 5 and 6. For this reason, we resume the fundamental concepts
of their proof in the following paragraph. The starting point is that the Fredholm determinants of the
Airy kernels KAi2n`1 are equal to the ones of some integral operators in Fourier spaces that are integrable,
in the sense of the IIKS operators [DIZ97], [IIKS90]. Essentially, this implies that the existence of their
resolvent operators is equivalent to the solvability of a certain Riemann-Hilbert problem. As a byproduct,
their Fredholm determinants can be expressed in terms of a quantity related to the solution of the relevant
Riemann-Hilbert problem. These classical facts will be reviewed with more details in Chapter 3.
Finally, the last element of the proof is provided by the fact that the solution of the Riemann-Hilbert
problem, after some manipulation and rescaling operations, solves two differential equations w.r.t. the
parameters involved in the Riemann-Hilbert problem itself. This system actually coincides with the
isomonodromic Lax pair for the PII hierarchy (1.2.22) (the one found in [CJM06]).

Remark 1.2.13. Notice that, prior to [CCG19], the work [LDMS18] gave a similar formula for the
Fredholm determinants of the higher order Airy kernels. In that case, the functions w in the left hand
side of equation (1.2.33) are shown to solve a system of hamiltonian equations that coincide for the first
values of n with the first members of the Painlevé II hierarchy. However, the precise equivalence between
their system and the Painlevé II hierarchy (1.2.22) still has to be proved.

Remark 1.2.14. Theorem 1.2.12 is just a part of the results contained in [CCG19]. There the authors
studied in detail also the asymptotic behavior of these solutions at ´8. As a byproduct they were able
to describe the asymptotic behavior at ´8 of the corresponding Fredholm determinants of the higher
order Airy kernels. This estimate is also known as large gap asymptotics, and it is in general much more
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1.2. Construction of the Painlevé II hierarchy

complicated to obtain than the one at `8, since it involves a strong use of nonlinear steepest descent
method.

In order to obtain the generalizations of Theorem 1.2.12 for the case of a matrix and then an
integro-differential Painlevé II hierarchy, in Chapters 5 and 6, we will implement the analogue proce-
dure of [CCG19], resumed in the paragraph above. Respectively, we will deal with a block-matrix and
an operator-valued Riemann-Hilbert problem instead of a classical 2ˆ 2 matrix-valued Riemann-Hilbert
problem. Finally, in these noncommutative contexts we did not try to study the asymptotic behavior
at ´8 of the relevant solutions of these hierarchies, so this computation is left as an open problem.
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Chapter 2

DETERMINANTAL POINT PROCESSES

In this chapter we recall the notion of determinantal point processes (that we denote with the ab-
breviation DPP from now on). DPP appear in many different fields of mathematics and mathematical

physics, such as orthogonal polynomials, number theory, random permutations, random growth models,
random matrix theory and statistical mechanics. The main motivation to study DPP is given indeed
by their appearance in all these fields of study. In a nutshell, DPP can be intended as spatial random
processes (there is no notion of time) which can be entirely described through their correlation functions,
which have the peculiarity to be written as finite dimensional determinants involving the kernel of some
integral operators. The integral operators are not generic and have to satisfy certain requirements. The
integral operator defined through the Airy kernel, that we already introduced in Theorem 1.2.12 at the
end of the previous chapter, is an example of such operators. As a byproduct the Fredholm determi-
nants of these operators have an interpretation in terms of relevant probabilistic quantities describing the
DPP. This is perhaps the main reason why results such as Theorem 1.1.7 and Theorem 1.2.12 are highly
considered : in both cases the integral operators involved actually define DPP. Furthermore, the relevant
DPP appear in random matrix theory and statistical mechanics respectively. This kind of results allows
to build a bridge between the probabilistic world of DPP and the integrable systems world of Painlevé
equations, and this is a powerful motivation to go deeper in this study. While the Fredholm determinant
in Theorem 1.1.7 was known to be connected to random matrix theory [TW94b] since the early ’90,
the one in Theorem 1.2.12 has appeared recently in a model for non-interacting fermions in anharmonic
potential first studied in [LDMS18]. Also, all the other integral operators studied in chapters 5, 6 of the
thesis define DPP. Moreover, the finite temperature higher order Airy kernel studied in Chapter 6 has
been found in relation to the finite temperature version of the same fermionic model described above and
also appeared in [LDMS18].
The Chapter is organized in two section : in the first one we start with an intuitive example of DPP
and then we go through the basic definitions and the main results of DPP theory. In the second section
we introduce random matrices, focusing in particular on the Gaussian Unitary Ensemble. We will show
how to compute the main relevant quantities such as correlation functions, distributions functions and
gap probabilities for the eigenvalues of this ensemble emphasising the determinantal character of some
of these quantities. In the end, we will finally introduce the Tracy-Widom distribution and we briefly
re-discuss Theorem 1.1.7, that is our “model” of result, under this new point of view. The main references
for the DPP theory are the classical review articles [Sos00, Bor09, Joh05], and this very nice introductory
paper [HM19]. For the random matrix theory we refer essentially to the monograph [Meh04], and to the
books [Har11, BDS16]. Finally for the Tracy-Widom result we recall that even though the original proof
was first given from the authors in [TW94b], we found other useful explanations in [TW99].
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i Si Xi

0 2
1 4 0
2 9 0
3 7 ‚ 1
4 6 ‚ 1
5 9 0
6 1 ‚ 1
7 5 0

Figure 2.1 – An example of configuration of the descent point process for n “ 7 given by t3, 4, 6u.

2.1 Basic knowledge on DPP

2.1.1 An introductory example

Inspired by [HM19], we start our discussion on DPP by treating a very nice example of determinantal
point process that is called the descent point process (for more details, we refer to Sec.1 of [HM19]). Even
though it is mathematically simple, it is very useful to explain the basic ideas and concepts behind DPP.
The descent point process is defined as follows : consider a column of digits S0, . . . , Sn independent and
identically distributed on rr0, 9ss. For each line i “ 1, . . . , n then consider the random variables

Xi :“ χtSiăSi´1u “

$

&

%

1 if Si ă Si´1,

0 otherwise.
(2.1.1)

The descent point process is given by all the possible random sequences of natural numbers i for which
Xi “ 1 in the integer segment i P rr1, nss, namely

Dn :“ ti P rr1, nss | Xi “ 1u (2.1.2)

To visualize that, we can put on the right of the column of values Si a black dot for each line i P rr1, nss
for which the condition Xi “ 1 is satisfied. In this way the descent point process is described by all the
possible configurations of the black dots in the segment rr1, nss . See Figure 2.1 for an example.

In order to know the process in exhaustive way, one should be able to compute the probability of each
possible configuration of black points or sequences of numbers in rr1, nss, i.e.

Pp` Ă Dnq, for any ` Ă rr1, nss . (2.1.3)

In general, higher is the cardinality of the subset ` and more complicated is to compute the correspondent
probability. If k is the cardinality of ` then ` “ ts1, . . . , sku and we denote the probability of ` being
in Dn as ρkp`q ; in this case, it will be also the k-correlation function of the process. The distinguished
character of determinantal point process is that all the correlation functions of each order are actually
written in terms of a single function of two variables, that is called the kernel of the process. If we start

22



2.1. Basic knowledge on DPP

computing the correlation function for k “ 1 in the descent process, we have

ρ1ptsuq “ Pptsu Ă Dnq “ PpXs “ 1q “ PpSs ă Ss´1q “
1

102

˜

9
ÿ

k“1
k

¸

“
1

102

˜

10
2

¸

“
9
20 .

Then for k “ 2, the computation is a little more delicate. Indeed, if we consider ` “ ts, s` 1u, then

Ppts, s` 1u Ă Dnq “ PpSs`1 ă Ss ă Ss´1q “
1

103

˜

8
ÿ

k“1
k

¸

“
1

103

˜

10
3

¸

“
3
25 ă

ˆ

9
20

˙2
.

Instead, if we take the generic subset ` “ ts, tu with t ‰ s` 1, then

Ppts, tu Ă Dnq “ PpSs`1 ă SsqPpSt`1 ă Stq “

ˆ

9
20

˙2
.

Thus in the case of cardinality k “ 2 the correlation function is defined by cases

ρ2pts, tuq “

$

&

%

3
25 if |t´ s| “ 1,
` 9

20
˘2 otherwise.

In general, we can prove that for any subset ` given by k ě 3 consecutive numbers in rr1, nss , then

Pp` Ă Dnq “
1

10k`1

˜

10
k ` 1

¸

.

Otherwise, the computation is done by following this idea : first one can split the subset ` “ `1 Y `2 in
such a way that `1 and `2 have distance more than 1. Then one uses that ρkp`q “ ρk1p`1qρk2p`2q where
ki are the cardinalities of `i respectively for i “ 1, 2.
A compact way to write down ρkp`q for any number k P rr1, nss and any sequence ` “ ts1, . . . , sku Ă rr1, nss
(with si ‰ sj for any i ‰ j) was found in [BDF10] and it is realized as follows. Consider the two variables
function Kpi, jq : rr1, nss2 Ñ R such that

Kpi, jq :“ κpj ´ iq, with
ÿ

mPZ
κpmqzm “

1
1´ p1´ zq10 .

Then the k-correlation function of the descent process is then given by

ρkpts1, . . . , skuq “ detpKpsi, sjqqki,j“1.

For this reason the descent process is a determinantal point process on Z (actually on the segment rr1, nss
of Z).
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Chapter 2 – Determinantal point processes

2.1.2 Generalities of DPP theory

With this example in mind, we can now give the general definition of point processes and then we
restrict to the study of determinantal ones (for this section we mainly follow the classical references
[Sos00, Joh05]). We consider E “ R (or a finite product of disjoint copies of R) and X “ ConfpEq
the space of all possible finite configurations of particles on E. Notice that one can replace R by Z (as
we actually did in the previous section) or by another discrete space and the theory of DPP on that
space similarly follows, see also [Bor09]. We restrict our discussion on the case E “ R just because the
applications we are interested in, actually fit in this case.
A formal definition of point process is given as follows. On X one can construct a σ-algebra of measurable
sets, in the following way. First construct the cylinder sets, for any Borel subset B Ă E and any n P N

CBn :“ tX P X s.t. #BpXq :“ |X XB| “ nu, (2.1.4)

and then consider B the σ-algebra generated by these CBn on X .

Definition 2.1.1. A point process on E is given by a probability measure P on pX ,Bq.

The way to construct a probability measure on the space of configurations pX ,Bq was studied in
particular by Lenard in a series of papers [Len73, Len75a, Len75b]. The main idea is that the construction
can be reduced to the determination of the joint probability distributions of the random variables #D

for D some simple subsets of E. This procedure allowed the author to go further and prove the relation
between the existence of a probability measure on pX ,Bq and the existence of the k-point correlation
functions for the random variables #B , for any B Borel subset of E. It turned out that a point process
is uniquely identified by its correlation functions if and only if the probability distribution of the random
variables #A is determined by its moments. For more details about the construction of a point process
from its correlation functions, see Theorem 1 in [Sos00].
In this general (continuous) context, the k-correlation functions are defined as follows.

Definition 2.1.2. For any k P N, we define the k-point correlation function of the point process pX ,B, P q
as the locally integrable function ρk : Ek Ñ R`, such that for any collection of different and disjoint
Borel subset Ai Ă E, i “ 1, . . . , k then

E

˜

m
ź

j“1
#Aj

¸

“

ˆ
A1ˆ...ˆAk

ρkpx1, . . . , xkqdx1 . . . dxk, (2.1.5)

where E denotes the mathematical expectation.

As we saw in the introductory example, the k-point correlation function has a meaningful probabilistic
interpretation : for the descent process ρkpx1, . . . , xkq was exactly the probability of having particles at
the points xi in N. But this was because the process was defined on (a subset of) E “ Z. In the continuous
case (e.g. E “ R) we can think to ρkpx1, . . . , xkqdx1 . . . dxk as the probability to find a particle in each
infinitesimal box rxi, xi ` dxis for i “ 1, . . . , k. In this way, formula (2.1.5) actually gives the expectation
value of finding a configuration X “ tx1, . . . , xku P X with xi P Ai for every i “ 1, . . . , k.
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Remark 2.1.3. For k “ 1 we have that ρ1pxq is the density of particles, indeed

Ep#Aq “

ˆ
A

ρ1pxqdx,

for any bounded borel subset A Ă E.

Definition 2.1.4. A point process (on E “ R or Rd) is called determinantal if its k-point correlation
functions, for every k ě 1, is written as

ρkpx1, . . . , xkq “ det pKpxi, xjqqki,j“1 , (2.1.6)

with K a trace-class integral operator on L2pRq with kernel Kpx, yq in case E “ R and matrix-valued
kernel pKrspx, yqq

d
r,s“1 if E – Rd.

By using the Lenard result about the existence of point process through their correlation functions,
one can find necessary and sufficient conditions for a kernel Kpx, yq, px, yq P E2, to uniquely define a DPP.
The result is as follows.

Theorem 2.1.5 (Theorem 3 [Sos00]). Every hermitian, locally trace-class operator K on L2pEq uniquely
defines a determinantal point process if and only if 0 ď K ď 1.

We will apply this result in Chapter 5 and 6 in order to prove that the matrix-valued Airy kernels
and the finite temperature Airy kernels respectively define DPP on Rr and R.
There exists also a weak convergence criteria for DPP.

Theorem 2.1.6 (Theorem 5 in [Sos00]). Consider P, Pn probability measures on pX ,Bq for some deter-
minantal point processes with kernels respectively K,Kn. Suppose that

‚ Kn á K in the weak operator topology for nÑ8 ;

‚ TrpχBKnχBq Ñ TrpχBKχBq for nÑ8 and for any Borel subset B Ă E;

then the probability measure Pn converges to P weakly on the cylinder sets.

This result will be useful in the next section, where we are going to compute some scaling limits of
certain relevant quantities in DPP arising in some random matrix model.
Knowing the k-point correlation functions of a DPP is fundamental in order to compute other relevant
quantities for the process. We are in particular interested in the computation of the so called gap proba-
bilities, i.e. the probabilities that no particles lie in a certain subset of E. The computation required is
based on the following result.

Proposition 2.1.7 (Proposition 2.2 of [Joh05]). Consider a point process with existing k-point correlation
functions and let φ be a mesurable, bounded, complex-valued function with bounded support on E. Also,
supposing that supppφq Ă B for B a Borel subset of E, assume that

8
ÿ

k“0

||φ||k8
k!

ˆ
Bk
ρkpx1, . . . , xkqdx1dxk ă 8. (2.1.7)
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Then we have

E

˜#B
ź

j“1
p1` φpxjqq

¸

“

8
ÿ

n“0

1
n!

ˆ
Ek

n
ź

k“1
φpxkqρkpx1, . . . , xkqdx1 . . . dxk. (2.1.8)

Consider now B a bounded Borel subset of E and χB its characteristic function. Replacing φ “ ´χB
in the above formula we get

P pno particles in Bq “ E

˜

ź

j

p1´ χBpxjqq
¸

“

8
ÿ

n“0

p´1qn

n!

ˆ
Bn

ρkpx1, . . . , xnqdx1 . . . dxn, (2.1.9)

the gap probability distribution. In particular, looking at a point process on R we can consider B “ pt,8q.
Supposing that there exist a t̃ for which #pt̃,8q ă 8, then we can say that for every t the property holds
(since for every finite subset it is always true). We order then the particles in the interval pt,8q as
x1 ă ¨ ¨ ¨ ă x#pt̃,8q “ xmax and we want to study the probability distribution of the largest particle,
namely Ppxmax ď tq.

Proposition 2.1.8 (Proposition 2.4 of [Joh05]). Consider a point process on R for which all k-point
correlation functions exist and respect the condition

8
ÿ

n“0

1
n!

ˆ
pt,8qn

ρnpx1, . . . , xnqdx1 . . . dxn ă 8 (2.1.10)

for any t P R. Then the process has a last particle and

Ppxmax ď tq “
8
ÿ

n“0

p´1qn

n!

ˆ
pt,8qn

ρnpx1, . . . , xnqdx1 . . . dxn. (2.1.11)

When the point process is determinantal with kernel Kpx, yq defining a trace-class integral operator
on L2pRq, the proposition above becomes even more explicit. In fact the right hand side of equation
(2.1.11) is written as Fredholm determinant of the operator K.

Corollary 2.1.9 (Proposition 2.9 of [Joh05]). Consider a determinantal point process on R with hermi-
tian kernel Kpx, yq such that : it defines a trace-class integral operator K on L2ppt,8qq for any t P R and
so that ˆ 8

t

Kpx, xqdx ă 8. (2.1.12)

Then the process almost surely has a largest particle and

Ppxmax ď tq “ det
`

1´K|pt,8q
˘

. (2.1.13)

This last corollary gives a first connection between the first and the second chapter of the thesis.
Indeed certain Painlevé trascendents such as the ones found in Theorem 1.1.7 and Theorem 1.2.12 for
the Painlevé II equation and hierarchy, are expressed as Fredholm determinants of the Airy kernels given
in equation (3.2.4). For each n, these operators actually satisfy the hypothesis of Theorem 2.1.5 and
thus uniquely define some DPP. As a byproduct the relevant Painlevé trascendents can be related to the
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largest particle distribution of the correspondent DPP. Moreover, in the case n “ 1 the DPP associated
to the Airy kernel corresponds to a certain limit of the DPP describing the eigenvalue distribution of a
distinguished random matrix model : the Gaussian Unitary Ensemble, that we are going to treat in the
next section.

Remark 2.1.10. In analogue way, the new Painlevé trascendents that we are going to study in Chapters
5, 6 will also be related to the largest particle probability distribution of some DPP defined through
a matrix-valued analogue of the Airy kernels and to a finite temperature versions of the Airy kenrels
respectively.

2.2 Random matrices and DPP

This section aims to introduce some random matrix models and to see how DPP arise out in this
context. In particular, we are going to focus on the Gaussian Unitary Ensemble with the ultimate goal
to study the probability distribution of the eigenvalues of matrices in this ensemble in some specific large
N limit, N being the size of the matrices in the model. Indeed it is in this case that the relation to the
Painlevé trascendents introduced in Theorem 1.1.7 emerged first.
We start by defining the Gaussian Unitary Ensemble, GUE from now on. Recall that the vector space
(over R) of hermitian matrices, namely

HN :“ tH P MatpN ˆN,Cq | H “ H:u

has real dimension N2. In particular we can take as coordinates the N diagonal entries Hii (that are real)
and the real and imaginary part respectively of the upper triangular entries RHjk, IHjk (that are exactly
N2´N). Now, an element of GUE is essentially an hermitian matrix H whose entries Hii for i “ 1, . . . , N
and RHjk, IHjk for j, k “ 2, . . . , N are random variables, specifically independent identically distributed
(i.i.d.) normal random variables. More precisely GUE is built as follows.

Definition 2.2.1 (Definition 2.5.1 [Meh04]). The Gaussian Unitary ensemble is defined taking the space
of hermitian matrices equipped with a probability measure P pHqdH such that

1. the probability P pHqdH of being in the volume element

dH :“
N
ź

i“1
dHii

ź

jăk

dRHjkdIHjk (2.2.1)

is invariant under conjugation by unitary elements, i.e.

P pHq “ P pU´1HUq (2.2.2)

for every unitary matrix U ;

2. all the linearly independent entries of an element H are also statistically independent, i.e. the
function P pHq is a product of independent functions, each of them depending on one of the linearly
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Chapter 2 – Determinantal point processes

independent coordinates

P pHq “
N
ź

i“1
fipHiiq

ź

jăk

fjkpRHjkqf̃jkpIHjkq. (2.2.3)

These two requirements together fix in some sense the function P pHq. In particular, we have the
following result.

Theorem 2.2.2 (Theorem 2.6.3 [Meh04]). The only possibility for the form of the function P pHq is
restricted to

P pHq “ exp
`

´aTrH2 ` bTrH ` c
˘

(2.2.4)

where a P R` and b, c P R.

In particular the standard choice for GUE is to consider P pHq “ exp
`

´TrH2˘ , since up to rescaling
operations and origin translation every choice of a, b, c can be reduced to this one. Now, for any given
random matrix ensemble, one fundamental point to develop is to study the probabilistic behavior of the
spectra of the elements of the given ensemble. For GUE the classical result is as follows.

Theorem 2.2.3 (Theorem 3.3.1 [Meh04]). The joint probability density function of the eigenvalues for
GUE is given by

P px1, . . . , xN q “ CN,2 exp
˜

´

N
ÿ

i“1
x2
i

¸

ź

jăk

pxj ´ xkq
2 (2.2.5)

where the constant CN,2 is taken in such a way that
ˆ
R
. . .

ˆ
R
P px1, . . . , xN qdx1 . . . dxN “ 1.

Remark 2.2.4. For the other classical ensembles : the Gaussian Orthogonal one and the Gaussian
Symplectic one Theorem 2.2.2 also holds exactly with the same statement, while Theorem 2.2.3 holds
with some little changements. The form of the joint probability distribution function in those cases has
the same form of (2.2.5) but the constant in front of the argument of the exponential function and the
power of the second factor change as well as the constant CN,2.

We are now going to see that the probabilistic behavior of the eigenvalues of GUE is indeed a DPP
on R. To do this, we need the definition of the n-point correlation functions for the eigenvalues of GUE.

Definition 2.2.5 ([Dys62, Meh04]). The n-point correlation function for the eigenvalues of GUE is
defined as

ρnpx1, . . . , xnq “
N !

pN ´ nq!

ˆ
R
. . .

ˆ
R
P px1, . . . , xN qdxn`1 . . . dxN , (2.2.6)

where P px1, . . . , xN q is given in (2.2.5).
The function ρnpx1, . . . , xnq indicates the probability denisity of finding n eigenvalues around x1, . . . , xn

with the position of the remaining N ´ n left unknown.

The probability density function P px1, . . . , xN q is a symmetric function, thus it can be associated to
a point process over R. The n-point correlation functions of the relevant process can be taken exactly as
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(2.2.6) with P px1, . . . , xN q given in (2.2.5) (see also Example 2.6 of [Joh05]). The process is then shown
to be determinantal.

Theorem 2.2.6 ([Meh04]). For every n “ 1, . . . , N ´ 1 the correlation functions (2.2.6) are given by

ρnpx1, . . . , xnq “ det pKN pxi, xjqq
n
i,j“1 (2.2.7)

where

KN pxi, xjq “
N´1
ÿ

k“1
φkpxiqφkpxjq, with φkpxq “

1
a

2kk!
?
π

exp
ˆ

´
x2

2

˙

Hkpxq (2.2.8)

and Hkpxq being the k-th Hermite polynomial.

We recall that Hermite polynomials tHkpxqukPN are a family of orthogonal polynomials over R with
respect to the weight function exp

`

´x2˘. They can be written as

Hkpxq “ exp
`

x2˘
ˆ

´
dk

dxk

˙

exp
`

´x2˘ “ k!
rk{2s
ÿ

j“0
p´1qj p2xq

k´2j

j!pk ´ 2jq! , k P N. (2.2.9)

A proof of Theorem 2.2.6 can be found in Section 6.2 of [Meh04]. To summarise, it essentially follows
by observing that the joint probability distribution function P px1, . . . , xN q given in (2.2.5) contains a
Vandermonde determinant squared and then by performing row or column operations one gets

P px1, . . . , xN q “
1
N ! detpφj´1pxiqq

2 “
1
N ! detpKN pxi, xjqq

N
i,j“1 (2.2.10)

with KN pxi, xjq given as in (2.2.8). Then one can integrate over the N ´ n required variables and apply
Theorem 5.1.4 of [Meh04] to conclude. For an alternative proof see e.g. Section 3.2 of [Har11].

Remark 2.2.7. We underline that in the definition of the kernel KN in equation (2.2.8) there is an
explicit dependence on N the size of the random matrices we are analyzing.

Gap probabilities Doing similar computations, one can compute other interesting quantities of the
process like the gap probabilities. For a given interval J Ă R we denote by Epn, Jq the probability that
J contains exactly n eigenvalues, so that Ep0, Jq is the probability that there are no eigenvalues in J . As
we saw in the previous section for general DPP and for J “ ps,8q, the quantity Ep0, Jq is expressed in
terms of a certain Fredholm determinant

Ep0, Jq “ detp1´KNχJq (2.2.11)

where χJ denotes the characteristic function of the interval J and KN is the kernel written above in
(2.2.8). Otherwise, one can directly compute this quantity as done in e.g. Section 3.2 of [Har11] for a
generic interval J . In the following, we summarise the principal ideas contained there. Indeed, one can
see

Ep0, Jq “ E

˜

N
ź

i“1
p1` fpλiqq

¸

“ cN,2

ˆ
R
. . .

ˆ
R

ź

jăk

pxj ´ xkq
2
ź

i

exp
`

´x2
i

˘

p1` fpxiqqdx1 . . . dxN
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with fpλq “ ´χJpλq. But the last integral can be explicitly computed by using the Andreief identity,
namely

ˆ
R
. . .

ˆ
R

detpfipxjqqdetpgipxjqqdνpx1q . . . dνpxN q “ N ! det
ˆˆ

R
fipxqgjpxqdνpxq

˙

. (2.2.12)

Again, in our case, by recognizing a squared Vandermonde determinant in the last integral above and
by defining fipxq “ xi “ gipxq and dνpxiq “ expp´x2

i qdxi, we have that

E

˜

N
ź

i“1
p1` fpλiqq

¸

“ C̃N,2 det
ˆˆ

R
xi`jp1` fpxqq expp´x2qdx

˙

“ C̃N,2 det
ˆ

δij `

ˆ
R
φipxqφjpxqfpxqdx

˙

(2.2.13)
where the last identity is obtained by performing row and columns operations, in order to replace the
monomials xk with the orthogonal family φkpxq w.r.t. expp´x2q. Finally, one can manipulate the last
determinant in (2.2.13) in the following way. Construct the two integral operators

A : L2pRq Ñ RN , s.t. pAfqi :“
ˆ
R
Api, xqfpxqdx “

ˆ
R
φipxqfpxqdx, for f P L2pRq (2.2.14)

and

B : RN Ñ L2pRq s.t. pBvqpxq :“
N
ÿ

j“1
Bpx, jqvj “

N
ÿ

j“1
φjpxqvj for v P RN . (2.2.15)

In this way the last determinant in equation (2.2.13) is detp1`ABq. By applying the Sylvester identity
(see for instance equation p5.9q of Chapter VI in [Goh00]) i.e. detp1`ABq “ detp1`BAq, we conclude

E

˜

N
ź

i“1
p1` fpλiq

¸

“ detp1`KNfq,

and so for f “ ´χJ the wanted result follows.
Of course, there are many other interesting quantities to study but since our focus will be on the gap
probabilities and their relation with the Painlevé II trascendents, we do not go any further in this
discussion.

Limiting behaviors As underlined before, the determinantal form of the n-points correlation functions
ρn as well as the one of the gap probabilities Ep0, Jq is written in terms of a kernel operator depending
on the parameter N , which is the size of the matrices in the ensemble. A natural question is then to study
the limiting behavior of these quantities for N Ñ8. Thanks to their determinantal form, this essentially
reduces to the study of the limiting behavior of the kernel KN px, yq themselves, in some appropriate
scaling. In particular, the so called edge scaling limit (the limit at the edge of the spectra) for the kernel
KN px, yq is computed as (see e.g. [For93])

lim
NÑ8

1
21{2N1{6KN

´?
2N ` x

21{2N1{6 ,
?

2N ` y

21{2N1{6

¯

Ñ KAirypx, yq (2.2.16)
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the convergence being in trace norm on every bounded (from below) subsets of R. We highlight that the
proof of this result relies on the use of the Christoffel-Darboux formula, that allows to rewrite the kernel
KN px, yq as

KN px, yq “

ˆ

N

2

˙1{2
φN pxqφN´1pyq ´ φN pyqφN´1pxq

x´ y
(2.2.17)

and then the large-N asymptotics for the Hermite polynomials which enters in the wave functions φN as
defined in (2.2.8). Notice that in this context the Airy kernel KAiry is considered as

KAirypx, yq :“ AipxqAi1pyq ´Ai1pxqAipyq
x´ y

(2.2.18)

which is, by the way, equivalent to the definition given in (1.1.16). As a byproduct one can write the edge
scaling limit of the probability distribution of the largest eigenvalue in GUE as

lim
NÑ8

P
´

λmax ď
?

2N ` s

21{2N1{6

¯

“ detp1´KAiryχps,8qq :“ FTW psq (2.2.19)

that is also known as the Tracy-widom distribution.

Remark 2.2.8. Notice that Theorem 2.1.6 applied to this case says that the probability measures PN
of the DPP describing the positions of the eigenvalues of GUE with size N through correlation functions
(2.2.6), converges for N Ñ8 to the probability measure of the DPP on R with kernel the Airy kernel.

The Tracy-Widom distribution and the Painlevé II transcendent Theorem 1.1.7 assumes now
new significance, since the Fredholm determinant of the Airy kernel is interpreted as the edge scaling limit
of the probability distribution of the largest eigenvalue in GUE, as shown above in equation (2.2.19). In
particular, one can express the Tracy-Widom distribution in terms of the Hastings-McLeod Painlevé II
transcendents uptq as

FTW psq “ exp
ˆˆ 8

s

pt´ squ2ptqdt

˙

, (2.2.20)

which is just the integrated version of the formula given in Theorem 1.1.7.
As previously announced in the Introduction and also in Chapter 1, it is on this type of result that we will
be interested in : results that relate the integrable systems world, in this specific case Painlevé equations,
with the determinantal point processes, that in this case appear in random matrix theory.
The next two chapters aim thus to introduce the two main tools that can be used to achieve this kind
of results, and that will be used in Chapters 5, 6. First the Riemann-Hilbert problems for the class of
integrable operators (in which the Airy kernel fit in) and second the isomonodromic representation of the
Painlevé equations.
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Chapter 3

INTEGRABLE OPERATORS AND

RIEMANN-HILBERT PROBLEMS

Riemann-Hilbert problems are the protagonists of this chapter, in particular the ones connected
with a class of integral operators. This class of operators is known in literature as integrable operators

of IIKS type, since they were first studied using a Riemann-Hilbert approach in [IIKS90]. These operators
have kernels of a particular form and their resolvents, whether they exist, have kernels of the same form. In
particular, the expression for their resolvent is directly related to the solution of a certain Riemann-Hilbert
problem. As a byproduct the Fredholm determinants of these integrable operators can be expressed in
terms of quantities related to the solution of the Riemann-Hilbert problem. Many integral operators
appearing in random matrix theory or statistical mechanics fit in this class of operators, or are in some
way related to them, and can be thus treated with this approach. This allows to find more information
about their Fredholm determinants that have in these contexts interesting probabilistic interpretation, as
underlined in the previous chapter. For us, the interesting case of study will always be given by the Airy
kernel and its higher order generalizations, in scalar, matrix-valued and finite temperature versions. As we
already underlined in Chapter 2 and we will underline thereafter, the Fredholm determinants of these Airy
kernels describe interesting quantities in random matrix models ([TW94b, GdlI08, Joh07]) in the study of
the KPZ universality class ([ACQ11, Cor12]) and in models for non interacting fermions ([LDMS18, LW20,
DLDMS16]). Nevertheless there are other popular integrable operators involved in these applications,
like the sine kernel and the Bessel kernels, studied for example in [For93, TW94c, Gir14]. In conclusion,
Riemann-Hilbert problems give a powerful tool to study certain integral operators defining determinantal
point processes with applications in many different fields. Moreover, the Riemann-Hilbert problems build
the bridge between integral operators and integrable systems. Starting from the solution of a given
Riemann-Hilbert problem, one can construct Lax pairs for ordinary or partial differential equations,
difference equations and hierarchies in a standard way. In our case of study, we will always be interested
in recovering the isomonodromic Lax pair for the Painlevé II hierarchy, described at the end of Chapter
4, and its generalizations.
The Chapter is organized as follows : after a brief introduction on generic Riemann-Hilbert problems,
we are going to review the standard results of the IIKS theory for integrable operators. Then, we are
going to review as this theory can be extended to the case of matrix-valued integral operators, resuming
the work [BC12]. The results contained in this section will be largely used in Chapter 5 in order to
achieve the original results about the matrix Painlevé II hierarchy. In Chapter 6 instead, in order to
study the finite-temperature version of the Airy kernels, we will need to introduce the theory of operator-
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valued Riemann-Hilbert problems, as we did in the paper [BCT21]. In the last decades, examples of this
kind of problems can be found in only a few papers, e.g. [IK16, IS99]. Very recently the paper [Bot21]
re-introduced operator-valued Riemann-Hilbert problem, with the aim to develop a rigorous and quite
general theory to treat them. Following this method, we will see in section 6.2 how the operator-valued
Riemann-Hilbert problem can be formulated and solved in our specific case. From that, we will recover
an operator-valued isomonodromic Lax pair for the integro-differential Painlevé II hierarchy. Of course,
results and methods in Chapter 6, are strongly inspired by the classical theory that we are going to review
in this chapter.

3.1 Introduction to Riemann-Hilbert problems

In this section we are going to introduce the Riemann-Hilbert formalism and the main results about
the existence of a solution for a given Riemann-Hilbert problem. This first section is mainly inspired from
Chapter 5 of the monograph [Har11] and we refer to that for further details and proofs.
A very nice introduction to this topic and its relation to integrable systems is also given in [Its03]. The
main idea of a Riemann-Hilbert problem is to reconstruct a matrix-valued function defined on the complex
plane and having prescribed discontinuities. These discontinuities are given in form of jump equations
along certain curves, that the boundary values of the function have to satisfy. Thus, from a practical
point of view, a Riemann-Hilbert problem is essentially defined through a pair of data : a contour and a
matrix-valued function defined on it. Here are the requirements that this pair has to satisfy.

‚ Let Σ be any oriented contour in the complex λ-plane. One can allow Σ to have a finite number
of self-intersection points, even though in our cases of study in Chapter 5 and 6 there are no such
points. Also, Σ can count a finite number of connected components and this is indeed the case in
both our works in Chapter 5 and 6.

‚ Let G : Σ Ñ GLpp,Cq be a map defined all along the contour Σ and taking values in the set of
pˆ p invertible matrices, p ě 1. We call G the jump matrix.

Within the orientation of the contour Σ, we denote by ` and ´ respectively the part of the plane that
stands on the left and respectively on the right hand side of the contour. Finally, given a pair pΣ, Gq, the
correspondent Riemann-Hilbert problem is settled as follows.

Riemann-Hilbert Problem 3.1.1. Find a pˆp matrix-valued function Y with the following properties.

(1) Y is analytic on CzΣ ;

(2) For any λ P Σ, the function Y has continuous boundary values Y˘, denoting respectively the boun-
dary value of Y for λ P Σ while approaching Σ respectively from the left p`q or from the right p´q
nontangentially. Moreover Y˘ satisfy the following jump condition

Y`pλq “ Y´pλqGpλq λ P Σ; (3.1.1)

(3) The funtion Y satisfies the asymptotic condition

Y pλq „ Ip for |λ| Ñ 8, (3.1.2)
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where Ip denotes the identity matrix of dimension p.

Remark 3.1.1. One can add more requirements to the pair pΣ, Gq, for example asking for G to have
constant determinant equal 1 and to decay along all the infinite branches of Σ exponentially fast. Further
requirements can be added on the jump matrices along the connected components of Σ when there are
self intersection points, around each one of them.

The solvability of Riemann-Hilbert problem 3.1.1 essentially relies on the Plemelj-Sokhotskii formula.
This formula actually gives the solution for a scalar Riemann-Hilbert problem with jump function being
Hölder continuous, in terms of a contour integral of Cauchy type. Then, for matrix Riemann-Hilbert
problems there are some particular case in which the Plemelj-Sokhotskii formula still describes at least
some of the entries of the matrix solution. This happens in the so called abelian cases, when the jump
matrix Gpλq commutes with itself when computed at different values of λ. In the general case, the
solution of a matrix Riemann-Hilbert problem can be still written as a contour integral but in terms
of the boundary values of the function itself. We resume all these results in the following pages, for the
proofs and more details we refer to [Ple64, Gak14].

Theorem 3.1.2 (Theorem 5.1.3 [Har11]). Let Σ be an oriented smooth and closed contour and let gpλq
be a Hölder continuous function defined on Σ. Define the function ypλq defined as the contour integral of
Cauchy type

ypλq :“ 1
2πi

ˆ
Σ

gpζq

ζ ´ λ
dζ “ pCgq pλq, (3.1.3)

where we denoted by C the Cauchy transform.
The function ypλq has the following properties.

1. It is analytic in CzΣ and its boundary values y˘pλq are continuous up to the boundary Σ.

2. limλÑ`8 ypλq “ 0.

3. The boundary values y˘pλq satisfy the following formulae (Plemelj-Sokhotskii)

y˘pλq “ ˘
1
2gpλq `

1
2πiP

ˆ
Σ

gpζq

ζ ´ λ
dζ, for λ P Σ (3.1.4)

where P stand for the principal value of the integral that follows, i.e.

P
ˆ

Σ

gpζq

ζ ´ λ
dζ :“ lim

εÑ0

ˆ
Σε

gpζq

ζ ´ λ
dζ (3.1.5)

where the contour Σε is taken as Σε “ ΣztΣX |ζ ´ λ| ă εu, for any λ P Σ.

From equation (3.1.4) directly follows that the boundary values of y satisfy for every λ P Σ the
following relation

y`pλq “ y´pλq ` gpλq (3.1.6)

that can be thought as an additive jump relation. Thus one concludes that the Cauchy transform of gpzq
actually gives a solution solution for an additive Riemann-Hilbert problem, as follows.
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Corollary 3.1.3 (Corollary 5.1.5 [Har11]). Let Σ and g being as in Theorem 3.1.2. Then the Cauchy
transform of g, namely ypλq “ pCgq pλq defined in (3.1.3), solves the additive Riemann-Hilbert problem
for a function defined through the three conditions

1. ypλq is analytic for λ P CzΣ ;

2. the boundary values of y satisfies y`pλq “ y´pλq ` gpλq for any λ P Σ ;

3. ypλq Ñ 0 for λÑ8.

It directly follows that the classical Riemann-Hilbert problem defined in 3.1.1 in the scalar case (for
p “ 1) and for pΣ, Gq satisfying the hypothesis of Theorem 3.1.2, admits the explicit solution

Y pλq “ exp pC lnGq pλq, (3.1.7)

just by applying the logarithm to the jump condition (3.1.1) and then applying the corollary above. The
existence of this solution is guaranteed provided that Gpλq ‰ 0.

Remark 3.1.4. Theorem 3.1.2 can be extended to cases where the contour Σ and the function g are more
general than in the hypothesis above. In particular one can consider Σ as a piece-wise smooth contours
having endpoints and g as a generic function in some Lp-space.

For p ą 1, the same formula (3.1.7) holds for the solution of a matrix Riemann-Hilbert problem (3.1.1)
with a jump matrix G such that

rGpλ1q, Gpλ2qs “ 0, for any λ1, λ2 P Σ,

while seeking for a solution Y pλq in the same multiplicative subgroup. This particular case is also known
as the Abelian case. Here is an explicit example.

Example 3.1.5. Consider the case of the Riemann-Hilbert problem 3.1.1 with p “ 2 and the jump
matrix G takes the form

Gpλq “

˜

1 gpλq

0 1

¸

.

Its solution can be still written as the contour integral (3.1.7) and can be further simplified to the following
form

Y pλq “

˜

1 Cgpλq
0 1

¸

.

Notice that the Riemann-Hilbert problems that we are going to study in Chapters 5 and 6 will have jump
matrices that have this form on every connected component of the contour Σ.

For the general case, where the jump matrix G does not satisfy the Abelian condition (3.1), the
integral representation of the solution of the Riemann-Hilbert problem (3.1.1) is more complicated. The
result is resumed in the following theorem.
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Theorem 3.1.6 (Corollary 5.1.2 [Har11]). The Riemann-Hilbert problem 3.1.1 admits solution represen-
ted through the following contour integral

Y pλq “ Ip `
1

2πi

ˆ
Σ

ρpζqpGpζq ´ Ipq

ζ ´ λ
dζ, for λ P CzΣ, (3.1.8)

where ρpλq :“ Y´pλq satisfies the integral equation

ρpλq “ Ip ` pC´ pρpG´ Ipqq pλq, λ P Σ (3.1.9)

and C˘ denote the boundary values of the Cauchy transform while approaching λ P Σ from its left and
right hand side, namely

pC˘fq pλq “ lim
ηÑλ˘

1
2πi

ˆ
Σ

fpζq

ζ ´ η
dζ (3.1.10)

where the limit is taken nontangential.

The idea of the proof is to rewrite equation (3.1.8) modifying its right hand side in this equivalent
way

Y pλq “ Ip `
1

2πi

ˆ
Σ

Y`pζq ´ Y´pζq

ζ ´ λ
dζ, λ P CzΣ (3.1.11)

and then use the Cauchy theorem and the asymptotic condition (3.1.2) to show that this last identity
actually holds for every λ P CzΣ. Furthermore, the proof can be done for any contour Σ, once that Σ has
been transformed (through orientation changes, addition of extra contours carrying the identity as jump
matrix ) into a contour such that Σ “ BΩ` “ ´BΩ´ with Ω˘ disjoint open subsets covering CzΣ. The
proof of the theorem is explained in Chapter 5 of [Har11] (pages 364 – 368) and recovered by steps. First
the proof is given for the simple case where Σ is a closed simple contour, then for the case where Σ is an
unbounded piece-wise smooth contour and finally for the general case described above.

Remark 3.1.7. Formula (3.1.8) will be used in Chapter 5 to study the asymptotic behavior of the
solutions of the homogeneous matrix Painlevé II hierarchy, in a similar way of what was done in the work
[CCG19] and in many others for the same kind of question.

We are going to conclude this section by stating the so called small norm theorem for Riemann-Hilbert
problems. This result is fundamental in the study of asymptotic properties, and we will use it indeed in
the end of Chapter 5 to find the asymptotic behavior of the solutions of the matrix Painlevé II hierarchy
studied there. The idea of this result can be resumed as follows : first, assume that the jump matrix G
for the Riemann-Hilbert problem 3.1.1 depends on some extra parameter G “ Gpλ, sq. This is indeed
the case in every problem that we will treat in Chapter 5, 6 and 7 and generally speaking in most of the
applications. The point is that, if the jump matrix G approximate the identity matrix in a certain matrix
norm and for sÑ8, then also the norm of the quantity Y ´ Ip can be estimated in the same regime for
s.

Theorem 3.1.8 (Theorem 5.1.5 [Har11]). Suppose that we have the following estimate on the jump
matrix G

||G´ Ip||L2pΣqXL1pΣq ă
C

sε
, for s ě s0, ε ą 0. (3.1.12)
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for C some positive constant. Then, for s sufficiently large there is a unique solution Y “ Y pλ, sq of the
Riemann-Hilbert problem 3.1.1 with the above jump matrix G, and it is such that

||Y pλ, sq ´ Ip||L2pΣqXL1pΣq ď
C

p1` |λ| 12 qsε
, for λ P K, s ě s0 (3.1.13)

where K is a closed subset of CzΣ satisying distpλ,Σq
1`|λ| ě cpKq for every λ P K.

Notice that the last estimate can be improved if the estimate on the jump matrix G is improved (for
example if G decays exponentially in s we expect Y to decay at the same way). The proof of this result
strongly rely on the formula given in Theorem 5.1.11 for the solution of the Riemann-Hilbert problem
3.1.1 and on the fact that the Cauchy transform, appearing in that formula, is L2-bounded. This and
some other useful properties of the Cauchy transform are stated in Thoerem 5.1.4 of [Har11] (proofs can
be found in [CG13, L`13]).

Remark 3.1.9. We largely discussed the question of finding a solution for the Riemann-Hilbert problem
3.1.1 and which form and properties this solution has. Although, the question of uniqueness of the solution
was left open. One can prove that by fixing the determinant of the jump matrix detG “ 1 one fixes also the
solution of the Riemann-Hilbert problem. Essentially, one first proves that the function dpλq :“ detpY pλqq
is actually constant and equal to 1 and then show by contradiction that there is only one solution to
the Riemann-Hilbert problem with such a jump matrix. If the determinant of the jump matrix is not
constant, then the uniqueness of the solution should be discussed case by case.

3.2 Riemann-Hilbert problems and IIKS integrable operators

In the previous section we introduced the Riemann-Hilbert problems in the most general setting,
and we studied the basic properties of their solutions. In this section we are going to study a specific
Riemann-Hilbert problem that is related to the integrable operators, first introduced in [IIKS90]. Here
the solution of this Riemann-Hilbert problem plays a central role in the construction of the resolvents of
these operators. This is particularly useful when the kernel of the relevant operator and thus the associa-
ted Riemann-Hilbert problem depend on some further parameters. Then one can express the logarithmic
derivative (w.r.t. these parameters) of the Fredholm determinants of such integrable operators, in terms
of the asymptotic coefficients of the solution of the Riemann-Hilbert problem. In the following we review
the main results of [IIKS90, DIZ97, HI02] and we refer to these paper for their proofs.

3.2.1 Integrable operators : definitions and examples

To start with, we introduce the two r ˆ p matrices f and g with entries that are smooth functions
defined on the connected components of the contour Σ (considered as in the previous section). We also
assume that these matrices f ,g satisfy the diagonal condition

fT pλqgpλq “ 0.

38



3.2. Riemann-Hilbert problems and IIKS integrable operators

Definition 3.2.1. An integral operator K acting on Cp-valued functions hpλq as

Kfpλq “
ˆ

Σ
Kpλ, µqhpµqdµ,

is called integrable if its kernel has the form

Kpλ, µq “
fT pλqgpµq
λ´ µ

. (3.2.1)

Remark 3.2.2. Thanks to the diagonal condition, the kernel Kpλ, µq is nonsingular along the diagonal
and there it should be considered as Kpλ, λq “ pf 1qT pλqgpλq “ ´fT pλqg1pλq.

Example 3.2.3. There are many scalar integral kernels (the case p “ 1, r “ 2) that appear in random
matrix theory and statistical mechanics taking this integrable form. Here is a list of the most popular
ones.

‚ The sinus kernel acts on L2pΣq with Σ a disjoint union of a finite number of intervals on R, through
the kernel

Ksinuspλ, µq :“ 1
π

sinpλ´ µq
λ´ µ

(3.2.2)

is indeed an integrable operator, with fpλq “
`

eiλ, e´iλ
˘

and gpλq “ 1
2πi

`

e´iλ,´eiλ
˘

. This kernel
appears in the bulk scaling limit for GUE [Meh04], and was studied by many different authors, e.g.
[Wid95, DIZ97].

‚ The Bessel kernels act on L2pRq through the kernel

KBesselpλ, µq :“
Jαp
?
λq
?
µJ 1αp

?
µq ´

?
λJ 1αp

?
λqJαp

?
µq

2pλ´ µq (3.2.3)

where Jα is the Bessel function of order α. Taking for example fpλq “ 1
2

´

Jαp
?
λq,´

?
λJ 1αp

?
λq
¯

and gpλq “ 1
2

´?
λJ 1αp

?
λq, Jαp

?
λq
¯

one recognizes the integrable structure of this kernel, but this
is not the only way to see that. This appears in some scaling limit for the LUE or JUE and was
first studied in e.g. [TW94c, For93].

‚ The Airy kernel acts on L2pR`q through the kernel

KAirypλ, µq :“ AipλqAi1pµq ´Ai1pλqAipµq
λ´ µ

(3.2.4)

where Ai is the Airy function, that we already met in Chapter 1 and 2. Writing the kernel in
this way, one can take fpλq :“ pAipλq,´Ai1pλqq and gpλq :“ pAi1pλq,Aipλqq to see the integrability
structure. Althought, this is not the only way to see that. Indeed, using the alternative description
given in (1.1.16) for the kernel, one can found another integrable structure for the Airy kernel by
passing in Fourier coordinates (as done in [CCG19]). In Chapter 5 and 6 we will follow this second
procedure for the study of both the matrix and the finite temperature generalizations of the higher
order Airy kernels. Anyway, as already said in the previous chapters, the Airy kernel appears in the
edge scaling limit for GUE [TW94b, Meh04].
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All these kernels can be also found in relation to many different models in statistical mechanics that were
studied for instance in [LDMS18, DLDMS19, LACTLDMS18].

The first interesting property of the integrable operators is that their resolvents, whenever they exist,
they are integrable too. This was first observed and proved in [IIKS90] and the result is resumed in the
following lemma.

Definition 3.2.4. For an integral operator K as in Definition 3.2.1, the correspondent resolvent operator
is defined as R :“ p1´Kq´1K, when 1´K is invertible.

Lemma 3.2.5 ([HI02]). Consider K an integrable operator with kernel (3.2.1) and suppose that p1´Kq´1

exist. Then the resolvent R is an integrable operator with kernel given by

Rpλ, µq “
FT pλqGpµq
λ´ µ

(3.2.5)

where the matrix-valued functions F,G are recovered through

FT pλq “ p1´Kq´1fT , Gpλq “ p1´KT q´1g. (3.2.6)

In particular the diagonal condition holds also for the resolvent, i.e. FT pλqGpλq “ 0.

3.2.2 The Riemann-Hilbert problem associated to integrable operators

Given an integrable operator K as in Definition 3.2.1, the associated Riemann-Hilbert problem of the
form 3.1.1 is defined through the pair pΣ, Gq where Σ is the contour where the integral in the definition
of Kfpλq is computed and the jump matrix G is defined as the r ˆ r matrix

Gpλq :“ Ir ´ 2πifpλqgT pλq. (3.2.7)

The solution Y of the Riemann-Hilbert problem constructed in this way is then used to recover the kernel
of the resolvent of K. The result is resumed in the following theorem.

Theorem 3.2.6 ([HI02]). Given the integrable operator K, the operator p1 ´ Kq´1 exists if and only if
the Riemann-Hilbert problem 3.1.1 defined through the pair pΣ, Gq related to K (described just above) is
solvable. In particular, the functions F,G defining the kernel of the resolvent R are obtained in terms of
the solution Y of the Riemann-Hilbert problem as

Fpλq “ Y pλqfpλq, Gpλq “ pY T pλqq´1gpλq (3.2.8)

and the solution Y of the Riemann-Hilbert probelm 3.1.1 for the pair pΣ, Gq has integral reprensentation
given by

Y pλq “ Ir ´

ˆ
Σ
Y´pζq

fpζqgT pζq
ζ ´ λ

dζ. (3.2.9)

In general, the integrable operators we are interested in will have kernels dependending on some
auxiliary parameters. Thus, their Fredholm determinats (whether well defined) are functions of these
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parameters and their dependence on them should then be studied. Moreover, for the operators satisfying
Theorem 2.1.5, the Fredholm determinants are interpreted as relevant probabilistic quantities in relation
to the DPP defined through the operator, as stated in Proposition 2.1.9. Finding the explicit dependence
on the parameters for these Fredholm determinants becomes even more crucial. The Riemann-Hilbert
approach is indeed useful in this sense : it allows to derive a formula for the logarithmic derivative
of these Fredholm determinants in terms of certain quantities related to the solution of the relevant
Riemann-Hilbert problem. This essentially follows from the application of the Jacobi formula, namely

δ log detp1´Kq “ ´Trpp1´Kq´1
δKq, (3.2.10)

where δ denotes the variation with respect to the parameters on which K depends on, together with
Theorem 3.2.6. Having explicit expression for the Fredholm determinant can be then used for example
to study the asymptotic behavior of them.

3.3 Riemann-Hilbert problems and Hankel integral operators

There are cases in which we are interested in Fredholm determinants of operators that are not of
integrable form but that can be proved to be equal, after some manipulations, to Fredholm determinants
of operators of integrable type. For example, consider the Hankel matrix-valued operators C acting on
L2pR`,Crq as

pCφq pxq “
ˆ
R`

Cpx` yqφpyqdy, φ P L2pR`,Crq (3.3.1)

with C a matrix-valued function having form

Cpzq :“ ´i
ˆ
γ`

eizµrpµqdµ (3.3.2)

where rpµq is an integrable function and γ` is some curve in the upper complex plane. In [BC12] the
authors proved that this kind of operators can be treated through a Riemann-Hilbert approach too. In
this section we will go through the fundamental results obtained in that paper, and we will use them in
Chapter 5 in order to relate the Fredholm determinants of a matrix-valued analogue of higher order Airy
kernels to certain solutions of a matrix Painlevé II hierarchy.
The first step, is to prove that the Fredholm determinant of these Hankel operators coincides indeed
with the Fredholm determinant of some operator on the space L2pγ`,Crq, as explained in the following
statement.

Theorem 3.3.1 (Corollary 2.1 [BC12]). The Hankel operators C of type (3.3.1), (3.3.2), with the function
rpµq :“ E1pµqE

T
2 pµq and Ej P L2XL8pγ`,Matprˆrqq are trace class on L2pR`,Crq and their Fredholm

determinants are such that

detp1` C|L2pR`,Crqq “ detp1`K|L2pγ`,Crqq, (3.3.3)
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where K : L2pγ`,Crq Ñ L2pγ`,Crq are integral operators with kernel

Kpλ, µq “
ET1 pλqE2pµq

λ` µ
. (3.3.4)

Remark 3.3.2. Integral operators with kernels of type (3.3.4) for some specific choice of the functions
Eipλq acting on L2pp0,8qq were previously studied by Tracy and Widom in [TW96], in relation with
some integrable hierarchies.

The proof is based on the use of the Fourier-Plancherel transform. The conjugation of C by this
transform gives indeed an integral operator that shares its Fredholm determianant with C and that can
be proven to be trace class on the correspondent Hardy space. This last result comes from the fact that
the relevant operator can be seen as composition of Hilbert-Schmidt operators defined on appropriate
functional spaces. By exchanging the order of the composition, one obtain exactly the operator K on
L2pγ`,Crq in the statement above, that still shares its Fredholm determinant with the operator C thanks
to the Sylvester identity (cfr. [Sim05, Goh00]).

Remark 3.3.3. The operator K with kernel given in (3.3.4) is not exactly of the integrable form (3.2.1),
because of its denominator. Nevertheless, it was proven in [BC12] that also these operators K and K2

can be studied through a Riemann-Hilbert problem, extending in some way the theory of standard IIKS
operators of [IIKS90]. Since in Chapter 5 we will be interested just into the square of some particular
operator K, in the following we will focus on the results that only concerns the squared operator.

The relevant Riemann-Hilbert problem pΣ, Gq of the form 3.1.1 for a function Y pλq with values in
GLp2rq is built by taking as contour Σ the union of the two disjoint contours

Σ :“ γ` Y γ´ (3.3.5)

where γ´ :“ ´γ`, and as jump matrix

Gpλq :“
«

Ir ´2πirpλqχγ`pλq
´2πirp´λqχγ´pλq Ir

ff

. (3.3.6)

Based on the IIKS theorem, the authors of [BC12] proved the following result about relating the solution
of the Riemann-Hilbert problem for Y pλq and the operator 1´K2.

Theorem 3.3.4 (Theorem 3.1 [BC12]). The resolvent operator R :“ K2p1 ´ K2q´1 on L2pγ`,Crq has
kernel Rpλ, µq expressed in terms of the solution Y of the Riemann-Hilbert problem pΣ, Gq defined in
(3.3.5), (3.3.6), as follows

Rpλ, µq “
”

ET1 pλq 0r
ı Y T pλqY ´T pµq

λ´ µ

«

0r
E2pµq

ff

. (3.3.7)

The solution Y of the Riemann-Hilbert problem pΣ, Gq exists if and only if 1´K2 is invertible.

Now, suppose that the operators C and thus K depend on some auxiliary parameters. As a bypro-
duct the jump matrix G and the solution Y of the Riemann-Hilbert problem pΣ, Gq associated to these
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operators also depends on these auxiliary parameters. Denoting by δ the variation with respect to these
parameters, the authors of [BC12] expressed the variation of the Fredholm determinant of K2 in the
following way.

Theorem 3.3.5 (Theorem 4.1 [BC12]). We have that

δ log detp1´K2q “
1

2πi

ˆ
Σ

Tr
`

Y ´1
´ Y 1´δGG

´1˘ dλ, (3.3.8)

where the 1 denotes the derivative w.r.t. the parameter λ.

The main ingredient for the proof of this result is the application of the formula (3.2.10) to the relevant
IIKS operator acting on L2pΣq » L2pγ`q

À

L2pγ´q that is related to the Riemann-Hilbert problem pΣ, Gq
defined through (3.3.5), (3.3.6). This operator has Fredholm determinant that coincides with the one of
K2 by the very construction, and thus the proof follows.
This is exactly the result that we need in Chapter 5 in order to find the formula that express the Fredholm
determinant of the matrix analogue of the higher order Airy kernels, in terms of some distinguished
solutions of the matrix Painlevé II hierarchy.

Remark 3.3.6. Relation (3.3.8) allows to explicitely compute the logarithmic derivative of the relevant
Fredholm determinants. Indeed, the dependence of the jump matrix G on the auxiliary parameters is
explicit thus the quantity inside the integral on the right hand side δGG´1 is explicit too and so does the
entire integral. A very important example of dependence (this is indeed the case we have to deal with in
Chapter 5) is when the jump matrix can be factorized as

Gpλ, ~T q “ eT pλ,
~T qG0pλqe

´T pλ,~T q,

where T pλ, ~T q “
řm
j“0 Tjλ

j is a matrix depending on the diagonal matrices Tj that are considered here
as the deformation parameters.

Remark 3.3.7. For every parametric family of Riemann-Hilbert problems 3.1.1 depending in a suffi-
ciently smooth way on the auxiliary parameters and having Σ with no self-intersections, one can always
define the integral in the right hand side of equation (3.3.8). Over the space of deformations of these
Riemann-Hilbert problems this quantity is interpreted as a 2-form

ΘY
M pδq :“ 1

2πi

ˆ
Σ

Tr
`

Y ´1
´ Y 1´δGG

´1˘ dλ,

and whether it is closed, one can defined up to a constant, its correspondent tau function in such a way
that δτY “ ΘY

M pδq. For more details on this topic we refer to [BC12, Ber10] and to the previous series
of works of the Japanese school [JMU81, JM81a, JM81b]. We will use this 2-form (for another specific
Riemann-Hilbert problem) in Chapter 7.
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Chapter 4

ISOMONODROMIC DEFORMATIONS AS

LAX PAIRS

The aim of this chapter is to introduce the theory of isomonodromic deformations focusing in
particular on its relation with the Painlevé II equation (1.1.2). All the six equations (1.1.1) –

(1.1.6), indeed, admit (at least) a Lax pair representation given by the isomonodromic deformations
of a specific 2 ˆ 2 linear ODEs system with rational coefficients. This general result was first proven
in the works [JMU81, JM81a, JM81b]. For the Painlevé II equation specifically the works of Flaschka
and Newell [FN80, FN82] investigated alternative connections between the Painlevé II equation and the
theory of isomonodromic deformations. The Flaschka-Newell Lax pair for the Painlevé II equation, given
by equations p3.2a,bq, p3.3a,bq in [FN80], was then generalized to a Lax pair for the all members of the
Painlevé II hierarchy (1.2.22) in [CJM06]. The construction of analogue Lax pairs for the matrix and
then integro-differential Painlevé II hierarchy, that we are going to study respectively in Chapters 5, 6,
will be a fundamental element in the proof of our results generalizing the Tracy-Widom formula.
Generally speaking, the existence of isomonodromic Lax pairs for the Painlevé equations has been very
useful to study remarkable properties, asymptotics in particular, of certain Painlevé trascendents. Many
results have been collected and proved in details in the monograph [FIKN06], that will be indeed the
main reference for this chapter.
From another point of view, the isomonodromic representation of Painlevé equations opened the way to a
new, more geometrical, field of study : the Painlevémonodromy manifolds (see e.g. [CMR17] and references
therein). Given a linear system of ODEs with rational coefficients, its monodromy manifold is the space
of its monodromy data considered together with eventual algebraic relations between them. For the case
of regular singularities (as for the isomonodromic Lax pair for the PVI equation (1.1.6)) the monodromy
manifold is related to some character variety of the Riemann sphere with prescribed punctures (for PVI,
the SL2pCq character variety of the Riemann sphere with 4 punctures). For systems carrying irregular
singularities (as all the isomonodromic Lax pairs for the remaining Painlevé equations, including PII),
as we will see, the set of monodromy data is more complicated mainly because of the presence of Stokes
phenomena. Thus the geometrical description of the corresponding monodromy manifolds cannot simply
be done in terms of character varieties. Their corresponding generalizations are now known under the
name of wild character varieties, terminology born in [MR91] and consolidated by Boalch. One of the
major aspects in the study of monodromy manifolds is their Poisson (symplectic) structure, in relation
with the Poisson-Lie structure on the rational matrices (coefficients of the relevant ODEs) through the
monodromy map. The first papers that studied this problem are [FN82, Uga99] where the authors focused
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on monodromy manifolds for some specific systems of ODEs. Some years later, the series of papers
[Boa01a, Boa01b, B`07] by Boalch investigated the problem in greater generality. In Chapter 7 we are
going to study the symplectic structure of the monodromy manifolds of a rank 2 polynomial equation,
i.e. with only one irregular singularity of arbitrary Poincaré rank at 8 (which underlies for odd Poincaré
ranks the case of the Lax pair for the homogeneous Painlevé II hierarchy [CJM06]), the case studied by
Flaschka and Newell [FN82].
The Chapter is organized as follows : in the first section we are going to review the fundamental results on
the theory of linear system of ODEs in the complex plane and we are going to define the main concepts
of monodromy data and monodromy map. In the second section we are going to give the definition of
isomonodromic deformation and finally in the third section we will see the isomonodromic Lax pairs for
the Painlevé II equation and hierarchy.

4.1 System of ODEs with rational coefficients

In the following two sections we are going to resume the main concepts and results of the theory of
linear ODEs in the complex plane, contained in Chapters 1 – 4 of [FIKN06]. For more details and for the
proofs of the statements, we refer thus to them (and references therein).
Let us consider Mpλq a N ˆN matrix-valued rational function, with N ą 1 and λ P C. We are interested
in finding a N ˆN matrix-valued solution Ψpλq of the linear ODE

dΨ
dλ

“MpλqΨ. (4.1.1)

4.1.1 Description of local solutions

For a given λ0 P CP1, the behavior of a local solution Ψ in a neighborhood of λ0 is essentially
determined by the behavior of the coefficient matrix Mpλq at the given point λ0. Given that Mpλq is
rational in λ we only have three possibilities : λ0 is a regular point for the differential Mpλqdλ, or it is a
simple pole or it is a pole of greater order (we say that it has Poincaré rank r ą 0 at λ0, meaning that
the Laurent series of Mpλqdλ at λ0 has nonzero coefficient up to the power ´r´1 in the local coordinate
near λ0). In each of these possible configurations we have different local behaviors of Ψ, as described by
the following results.

Theorem 4.1.1 ([FIKN06]). Consider λ0 P CP1 and a given N ˆN invertible matrix Ψ0. If the matrix
coefficient Mpλq 1 is holomorphic in a disk Bλ0 centered in λ0, then there is a unique solution of the ODE
(4.1.1) holomorphic in the same disk and satisfying the initial condition Ψpλ0q “ Ψ0.

Thus, as far as we look for solutions of the equation (4.1.1) near points that are regular for the matrix
coefficient Mpλq, we get local solutions that are smooth too.
Consider now the case where Mpλqdλ has an isolated simple pole at the given point λ0 P CP1. For ζ
being the local parameter near λ0 (ζ “ λ ´ λ0 in case λ0 is finite, ζ “ 1

λ in case λ0 is 8), we can then

1. or equivalently the differential Mpλqdλ is holomorphic in the same disk.
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write in a punctured disk centered at λ0, Bλ0ztλ0u, the following representation

Mpλqdλ “
8
ÿ

k“´1
Mk`1ζ

kdζ, M0 ‰ 0. (4.1.2)

The behavior of Ψ near λ0 is then uniquely determined, up to the spectral properties of the matrix M0,
as follows.

Theorem 4.1.2 ([FIKN06]). Given the previous hypothesis on Mpλqdλ, suppose that the coefficient
M0 is diagonalizable, namely M0 “ PT0P

´1 with T0 a diagonal matrix (called the formal monodromy
exponent). Also, suppose that M0 has nonresonant eigenvalues 2 (i.e. the difference of each couple of
distinct eigenvalues is not an integer). Then the ODE (4.1.1) has a fundamental solution Ψ near λ0 of
the form

Ψpλq “ Ψ̂pλqζT0 , (4.1.3)

with Ψ̂pλq holomorphic and invertible in Bλ0 and uniquely determined by the value of Ψ̂pλ0q “ P.

Notice that it is equivalent to say that in the disk Bλ0 the solution Ψ is in the form

Ψpλq “ P

˜

8
ÿ

k“0
Ψkζ

k

¸

ζT0 , Ψ0 “ IN (4.1.4)

where the power series is convergent. This is indeed the main difference between the behavior of a local
solution near a simple pole and near a higher order pole of Mpλqdλ, as we are going to explain. Consider
now the case where λ0 P CP1 is a pole of Poincaré rank r ą 0 for the differential Mpλqdλ, namely we can
write in the punctured disk Bλ0ztλ0u, using the local coordinate ζ near λ0, the following representation

Mpλqdλ “
8
ÿ

k“´r´1
Mk`1ζ

kdζ, M´r ‰ 0. (4.1.5)

Assume again that the leading coefficient M´r is diagonalizable, namely

M´r “ PT´rP
´1 (4.1.6)

with T´r a diagonal matrix, that has all distinct nonzero eigenvalues αi, i “ 1, . . . , N .

Theorem 4.1.3 ([FIKN06]). In the above hypothesis for the differentialMpλqdλ, there is a unique formal
fundamental solution of the ODE (4.1.1) in the punctured disk Bλ0ztλ0u and it is written in the form

Ψf pλq “ P

˜

8
ÿ

k“0
Ψkζ

k

¸

exp
ˆ

T´r
´r

ζ´r ` ¨ ¨ ¨ `
T´1

´1 ζ
´1 ` T0 ln ζ

˙

, Ψ0 “ IN (4.1.7)

with Tk all diagonal matrices for k “ ´r, . . . , 0. Both the coefficients Ψj, j ě 0, and the exponents Tk,
k “ ´r, . . . , 0 are determined recursively as polynomials of the coefficients Mk in (4.1.5).

2. In the cases where M0 is not diagonalizible or it is so but it does have resonant eigenvalues the statement is adapted
with a slightly different behavior of Ψ.
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The solution Ψ is called formal since typically the series in (4.1.7) does not converge. It turns out that Ψ
as in (4.1.7) is actually only the asymptotics (for λ approaching the irregular singularity λ0) of a genuine
fundamental solution of (4.1.1) uniquely defined in a certain sector of the punctured disk Bλ0ztλ0u.

These sectors are also known as Stokes sectors, and they are defined as the sectors of the disk Bλ0

containing exactly one of the lines defined as `pi,jqm :“ tζ| |ζ| ă ρ, arg ζ “ 1
r argpαi ´ αjq ` π

r

`

m` 1
2
˘

u,
m “ 0, . . . , 2r ´ 1 and i, j “ 1, . . . , N with i ă j. 3 More precisely the result reads as follows.

Theorem 4.1.4 ([FIKN06]). In the hypothesis above, inside any Stokes sector contained in the disk Bλ0

there exists a unique fundamental solution Ψpλq of the ODE (4.1.1) such that

Ψpλq „ Ψf pλq for λÑ λ0, (4.1.8)

where Ψf pλq is given as in (4.1.7) and the branch of the logarithm in that formula is chosen.

Notice that the Stokes sectors can be defined in a canonical way, so that Bλ0ztλ0u is always covered
by 2r of them. For δ ą 0 sufficiently small, consider the sector

S :“ tζ P C| 0 ă |ζ| ă ρ, θ1 ă arg ζ ă θ1 `
π

r
` δu. (4.1.9)

Then S is a Stokes sector. With that in mind, one constructs

Sn :“ ei
π
r pn´1qS, n “ 1, . . . , 2r. (4.1.10)

All Sn defined in this way are Stokes sectors ; moreover, they cover the punctured disk and they are such
that S1 “ S “ S2r`1. It follows from Theorem 4.1.4 that we can define 2r canonical solutions Ψnpλq near
λ0 a higher order pole of Mpλqdλ, each one of them uniquely defined by the asymptotic condition (4.1.7)
in the correspondent Stokes sector Sn.
From this construction follows the definition of the Stokes matrices

Sn :“ Ψ´1
n pλqΨn`1pλq, λ P Sn X Sn`1, n “ 1, . . . , 2r. (4.1.11)

These matrices can be shown to be constant upper or lower triangular matrices, with unit diagonals.
Together with the exponents Tk, k “ ´r, . . . , 0 the Stokes matrices uniquely determine, up to gauge
transformations, the system (4.1.1) having at λ0 an irregular singular point (for more details on this
topic, also known as the Stokes phenomena, see Theorem 5.1 of [FIKN06]).

From local to global With these four results in mind, one can construct a local solution of the ODE
(4.1.1) starting at any point of the punctured Riemann sphere. But what about global solutions ? The
answer to this question is given by the following Monodromy Theorem.

Theorem 4.1.5 ([FIKN06]). Let mi P CP1, i “ 1, . . . , n be the isolated poles of the coefficient matrix
Mpλq of the ODE (4.1.1) and let γ : r0, 1s Ñ CP1

ztmiu
n
i“1 a curve. Consider the germ of a solution of

3. This condition follows while looking for the uniqueness of a fundamental solution of (4.1.1) near a higher order pole,
with asymptotics given by (4.1.7).
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(4.1.1) at the (regular) point γp0q, namely

Ψpλq “
8
ÿ

k“0
Ψkζ

k, ζ the local coordinate near γp0q. (4.1.12)

Then Ψpλq admits analytic continuation all along the path γ to the point γp1q. Furthermore, its analytic
continuation only depends on the homotopy class of γ.

This result gives the recipe to construct global solutions of the ODE (4.1.1) starting from any point of
the punctured Riemann sphere : just consider any local solution and then perform analytic continuation. In
a certain way, the construction of global solutions essentially relies on the representation of local solutions.
The behavior of local solutions was given by formulae (4.1.4), (4.1.7), in which the main ingredients are the
formal monodromy exponent T0 and the exponents Tk, k “ ´r, . . . , 0, together with the Stokes matrices
(4.1.11) respectively. This set of data, should be then completed with the description of the passage from
one local representation to the other : all together they form a set of global monodromy data that allows
us to completely determine the ODE (4.1.1).

4.1.2 Monodromy data of ODEs

We are now going to describe two sets of data : the global monodromy data and the essential mono-
dromy data. Suppose that among the poles mν of Mpλqdλ we have simple poles for ν “ 1, . . . , p ď m

and then for ν “ p ` 1, . . . ,m we have higher order poles, of Poincaré rank rν , ν “ p ` 1, . . . ,m. From
the previous discussion, we first collect the following data

‚ T
pνq
0 for ν “ 1, . . . , p ;

‚ T
pνq
k with k “ ´rν , . . . , 0 for ν “ p ` 1, . . . ,m, together with Spνql for l “ 1, . . . , 2rν and ν in the

same range.

These data describe the local behavior of solutions Ψpνq near all the simple poles tmνu
p
ν“1 ofMpλqdλ, and

solutions tΨpνql u
2rν
l“1 in the canonical Stokes sectors near its higher order poles tmνu

n
ν“p`1. Consider now

a generic fundamental solution of (4.1.1) at a point m0 P CP1
ztmiu

n
i“1, determined by initial condition

Ψpm0q “ Ψ0, for Ψ0 any invertible matrix. Each local solution Ψ,Ψpνq,Ψpνql , thanks to Theorem 4.1.5,
can be analytically continued along every path contained in the punctured Riemann sphere, giving back
global solution of the same ODE (4.1.1). Thus, every two of these solutions can only differ by right
multiplication by a constant matrix, called the connection matrix. In particular, one defines

Ψpλq “ ΨpνqpλqEν , and Ψpλq “ Ψpνq1 pλqEν , (4.1.13)

for ν “ 1, . . . , p and ν “ p` 1, . . . ,m respectively. The matrices Eν exactly describe the passage from a
local solution to the other, and thus conclude the global picture we needed for the complete description
of the solutions of the ODEs (4.1.1).
The global monodromy data set is then defined as the following collection

M :“ tm1, . . . ,mn, T
p1q
0 , . . . , T

ppq
0 , pT

pνq
k , S

pνq
l q

ν“p`1,...,m
k“´rν ,...,0, l“1,...,2rν , E1, . . . , Emu. (4.1.14)
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As shown in Proposition 2.2 of [FIKN06], this collection of data uniquely defines the ODE (4.1.1) with
Mpλqdλ having exactly m poles with fixed Poincaré rank rν , ν “ 1, . . . ,m (meaning rν “ 0 for ν “
1 . . . , p). This is no longer true when we restrict the set of global monodromy data to the essential
monodromy data, i.e. we eliminate from M the positions of the poles and the coefficients T pνqk for k “
´rν , . . . , 1 and ν “ p` 1, . . . ,m. This restricted subset, defined as the set of essential monodromy data,
it is explicitly given by the collection

m :“ tT pνq0 , S
pµq
l , Eνu

ν“1,...,m
l“1,...,2rν ,µ“p`1,...,m. (4.1.15)

In particular, we have that the monodromy map

tMpλqdλ with m poles of fixed multiplicities rνu Ñ tm, sets of essential monodromy datau

is no longer one-to-one. The problem of describing the subset of rational matrices Mpλq, coefficient of
(4.1.1), sharing the same set of essential monodromy data m is exactly what isomonodromy deformations
are about.

Remark 4.1.6. The monodromy manifold for a given linear system of ODEs can be defined as the space
of its Stokes / connection matrices together with eventual constraints among them. The constraints will
change from case to case. In Chapter 7 we will study a specific example of monodromy manifold, called
Stokes manifold, that is associated to a polynomial linear ODE. As we will see, in this case the monodromy
manifold is simply given by the collection of some Stokes matrices. Although they are not independent,
they should satisfy an algebraic equation (corresponding to the canonical relation in the fundamental
group of CP1

ztpolesu).

4.2 Isomonodromic deformations

The study of isomonodromic deformations can be formalised as follows : suppose that the coefficient
matrix of the ODE (4.1.1) now depends holomorphically on some extra complex parameters t1, . . . , tK ,
namely

Mpλq “Mpλ, t1, . . . , tKq “Mpλ, tq. (4.2.1)

Definition 4.2.1. An isomonodromy deformation is given by a holomorphic family of rational matrices
as in (4.2.1) which is an admissible deformation and preserves the set of essential monodromy data of
Mpλ, t “ 0q. More specifically the family (4.2.1) has to satisfy the following requirements :

1. the number n of poles does not depend on ti, i “ 1, . . . ,K. Moreover there exist some disks Bν ,
ν “ 1, . . . , n such that each pole mν P Bν for all values of the parameters ti and Bν X Bµ is the
empty set for all ν ‰ µ;

2. the spectral properties of the leading coefficients of the Laurent series of Mpλqdλ at each singular
point do not depend on ti;

3. for all the poles mνptq with Poincaré rank rν ą 0 the Stokes sectors in the punctured disk centered
at the corresponding pole mνptq are t-independent under translation λÑ λ´mνptq ;
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4. canonical solutions of the ODE (4.1.1) are holomorphic w.r.t. t and for local solutions near irregular
points, their asymptotic behavior (4.1.7) holds uniformly in t ;

5. (isomonodromic condition) all the formal monodromy exponents T pνq0 , the Stokes matrices Spµql and
the connection matrices Eν , ν “ 1, . . . , n, µ “ p` 1, . . . ,m, l “ 1, . . . , rν are t-independent.

The list of requirements in the definition above can actually be translated into the fact that the entries
of the matrix coefficient Mpλq should solve some further system of nonlinear differential equations (w.r.t.
the deformation parameters ti). This result is obtained by looking at the following differential

Ξpλ, tq :“ dΨΨ´1 “
K
ÿ

j“1

BΨ
Btj

dtjΨ´1, (4.2.2)

that, thanks to the last requirement in the above definition, is actually a single-valued analytic function
in CP1

ztmνu
n
ν“1. Studying its behavior near the poles mν , using the formulae (4.1.4), (4.1.7) for the

local solutions of the ODE (4.1.1) near these points and the fact that the essential monodromy data are
t-independent, more can be said about Ξpλ, tq. This study was first done in [JMU81] and in the following
we cite one of their main results.
Main assumption Assume that the pole mnptq “ 8 for all t and that the leading coefficient of the
Laurent series of Mpλqdλ at 8 is already diagonal. Also, assume that the essential monodromy data
of (4.1.1) are defined by taking as basic fundamental solution Ψ the local solution near mn “ 8 (the
canonical solution Ψpnq if mn “ 8 is a simple pole, the canonical solution in the first Stokes sector Ψpnq1

if mn “ 8 is of higher order).

Theorem 4.2.2 ([JMU81]). The differential Ξpλ, tq is a rational matrix-valued function in λ with poles
coinciding with m1, . . . ,mn´1,mν “ 8 and with the same Poincaré rank rν , ν “ 1, . . . , n of Mpλq. In
particular, Ξpλq can be explicitly and uniquely determined in terms of the coefficients of the Laurent series
of Mpλq near each one of its singular points. Namely

Ξpλq “ Ξpλ, tM pνq
k u, tmνuq, (4.2.3)

with M pνq
k defined from the principal part decomposition of Mpλq

Mpλq “M p8qpλq `
n´1
ÿ

ν“1
M pνqpλq,

M pνqpλq “
rν`1
ÿ

j“1
pλ´mνq

´jM
pνq
´j`1, ν “ 1, . . . , n´ 1,

M p8qpλq “ ´
r8´1
ÿ

j“0
λjM

p8q

´j´1, if r8 ą 0, M p8qpλq “ 0, otherwise.

(4.2.4)

This result allows us to rewrite equation (4.2.2) as a differential equation that the function Ψ should
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satisfy w.r.t. the parameters ti, i “ 1, . . . ,K. Namely it reads as

dΨ “ ΞpλqΨ i.e. BΨ
Btj

“ ΞjpλqΨ, with Ξpλq “
K
ÿ

j“1
Ξjpλqdtj , and j “ 1, . . . ,K. (4.2.5)

In conclusion, assuming that Mpλq “ Mpλ, tq is an isomonodromic deformation (respecting the main
assumption written above) one obtains the coupled overdetermined system

$

&

%

BΨ
Bλ “MpλqΨ,

dΨ “ dΞpλqΨ.
(4.2.6)

Its cross-differentiation gives rise to the following differential equation for the matrix coefficient Mpλq,
namely the compatibility condition,

dM “
BΞ
Bλ
` rM,Ξs , (4.2.7)

that holds identically in λ. This equation becomes then a system of nonlinear differential equations for
the coefficients M pνq

k illustrated above. We say that the system (4.2.6) is a Lax pair for the equation
(4.2.7). Choosing appropriately the type of isomonodromic deformations for N “ 2 to look at, namely
the number of poles ofMpλq and their Poincaré ranks, one obtains that equation (4.2.7) gives respectively
one of the six Painlevé equations (1.1.1)–(1.1.6) and thus the corresponding system (4.2.6) is the Lax
representation of the relevant Painlevé equation.

Remark 4.2.3. Notice that there is also a converse of the previous result, meaning that equation (4.2.7) is
also a sufficient condition to describe an isomonodromic deformation of a rational matrix-valued function
Mpλ, tq with fixed number of poles and Poincaré ranks, described as in (4.2.4). For more details we refer
to Theorem 4.1 in [FIKN06] (see also [JMU81]).

4.3 Isomonodromic representations of the Painlevé II equation
and hierarchy

In this last section we are only going to collect well known results about the isomonodromic Lax pair
representation of the Painlevé II equation and hierarchy. These representations were indeed fundamental
in the papers [KH99] and [CCG19] in order to re-prove and extend to the all Painlevé II hierarchy the
Tracy-Widom result (given in Theorems 1.1.7, 1.2.12 respectively) about the Hastings-McLeod solutions
of the Painlevé II equation. For the same reason, it will be fundamental in Chapter 5, 6 to construct
an analogue Lax pair for the matrix and integro-differential Painlevé II hierarchies. In the following
σi, i “ 1, 2, 3 denotes the standard Pauli’s matrices, while σ˘ are 2ˆ2 matrices having as unique nonzero
entry 1 at p1, 2q and p2, 1q respectively.

Theorem 4.3.1 (Appendix I, [FN80]). The Painlevé II equation (1.1.2) for the function uptq follows
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4.3. Isomonodromic representations of the Painlevé II equation and hierarchy

from the compatibility condition of the 2ˆ 2 system

BΨ
Bλ

“MΨ, with Mpλ, tq “ ´ip4λ2 ` t` 2u2qσ3 `
´

4λu` α

λ

¯

σ1 ´ 2utσ2

BΨ
Bt
“ LΨ, with Lpλ, tq “ ´iλσ3 ` uσ1,

(4.3.1)

describing isomonodromic deformations of a rank 2 ODE with one irregular singularity of Poincaré rank
3 at 8 and a simple pole at 0.

The above system is known as the Flaschka-Newell Lax pair for the Painlevé II equation. This Lax
pair is the one used in [KH99], in order to recover the Tracy-Widom result (Theorem 1.1.7) for the
Hastings-McLeod solution of the Painlevé II equation through the Riemann-Hilbert approach. Another
Lax pair was discovered by Jimbo and Miwa and it is reported in the following.

Theorem 4.3.2 (Appendix C, [JM81a]). The Painlevé II equation (1.1.2) for the function yptq follows
from the compatibility condition of the 2ˆ 2 system 4

BΨ
Bλ

“ UΨ, with Upλ, tq “

ˆ

λ2 `
t

2 ` z
˙

σ3 ` pupλ´ yqqσ` ´
2
u
pλz ` yz ´ α`

1
2 qσ´

BΨ
Bt
“ VΨ, with V pλ, tq “

λ

2σ3 `
u

2σ` ´
z

u
σ´,

(4.3.2)

describing isomonodromic deformations of a rank 2 ODE with a degree 2 polynomial matrix coefficient.

Notice that the Jimbo-Miwa Lax pair was already known by Garnier [Gar12] in an equivalent form.
Also, the Lax pairs written above in equations (4.3.1) and (4.3.2) are really independent since their
respective set of essential monodromy data are not isomorphic. Therefore, there is no gauge transformation
that allows to pass from one to the other. Notice that there exists a third rank 2 Lax pair for the Painlevé
II equation, known as the Harnad-Tracy-Widom Lax pair, but it is shown to be gauge equivalent to the
Flaschka-Newell Lax pair (for more details see Proposition 5.2 of [FIKN06]). Actually, there exists also
another Lax pair for the Painlevé II equation, of rank 3, and we refer to the article [JKT09] for more
details about that. In the same work the authors also describe the relation between the Jimbo-Miwa Lax
pair and the Harnad-Tracy-Widom one in terms of the generalized Laplace transform.
In the paper [CJM06] the authors extended the Flaschka-Newell isomonodromic Lax pair for the entire
Painlevé II hierarchy as defined in equation (1.2.22). In particular, the n-th member of the hierarchy has
a Lax pair representation given by the isomonodromic deformations of a rank 2 linear ODE having a pole
at 8 of Poincaré rank 2n` 1 and a simple pole at 0.

Theorem 4.3.3. [Section 3, [CJM06]] The n-th member of the Painlevé II hierarchy (1.1.2) for the

4. The compatibility condition actually gives a system of three differential equations of first order, for u, z, y that are all
functions of t. Differentiating again the equation for u and eliminating the variables y, z and their derivatives one obtains
equation (1.1.2), with actually a minus sign in front of the constant term α.
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Chapter 4 – Isomonodromic deformations as Lax pairs

function uptq follows from the compatibility condition of the 2ˆ 2 system

BΨ
Bλ

“M pnqΨ, with M pnq “

˜

2n
ÿ

j“0
Ajpiλq

j ´ it

¸

σ3 `

˜

2n´1
ÿ

j“0
Bjpiλq

j

¸

σ` `

˜

2n´1
ÿ

j“0
Cjpiλq

j

¸

σ´ `
αn
λ
σ1

BΨ
Bt
“ LΨ, with L “ ´iλσ3 ` uσ1

(4.3.3)
where the coefficients Aj , Bj , Cj for every j are differential polynomials in u, described by closed formulae
involving the Lenard recursion operators (1.2.6). For their precise form see equations (17a)–(17g) in
[CJM06].

This Lax pair is the one used in the paper [CCG19] in order to achieve the proof of Theorem 1.2.12. In
Chapter 5 we are going to construct a Lax pair for a rˆr matrix Painlevé II hierarchy, that can be thought
as a block-matrix generalization of the above Lax pair.
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Chapter 5

THE MATRIX PAINLEVÉ II HIERARCHY

The results contained in the article [Tar21] will be discussed in this chapter. The aim of this paper is
to relate a family of solutions of a noncommutative version of the Painlevé II hierarchy to Fredholm

determinants of a matrix version of the n-th higher order Airy kernels. The scalar versions of these
operators have been recently studied in [LDMS18], in relation with non-interacting fermionic models (as
already discussed in the previous chapters).

In order to construct our matrix analogue, we first define a matrix-valued version of the n-th Airy
function, in the following way

Ai2n`1px,~sq :“
`

cj,kAi2n`1px` sj ` skq
˘r

j,k“1, cj,k P C, x P R, (5.0.1)

where Ai2n`1px`sj`skq is a shift of the n-th scalar Airy function, for some real parameters sl, l “ 1, . . . , r.
We recall that the n-th scalar Airy function, Ai2n`1pxq, is defined as a particular solution of the n-th
generalized Airy equation, written in (1.2.32) in Chapter 1, for every n ě 1. In this paper we will consider
these functions Ai2n`1pxq as contour integrals

Ai2n`1pxq :“
ˆ
γn
`

1
2π exp

ˆ

iµ2n`1

2n` 1 ` ixµ
˙

dµ, x P R,

for γn` an appropriate curve, which we will specify later on.
With the matrix-valued Airy functions Ai2n`1px,~sq defined in (5.0.1), the matrix Airy Hankel ope-

rators Ai2n`1 are defined in the standard way

pAi2n`1fq pxq :“
ˆ
R`

Ai2n`1px` y,~sqfpyqdy, (5.0.2)

for any f “ pf1, . . . , frq
T P L2`R`,Cr

˘

. It is actually on the square of this sequence of operators that we
focused our study, and in particular on the Fredholm determinants defined as

F pnqps1, . . . , srq :“ det
`

IdR` ´Ai22n`1
˘

, (5.0.3)

that are well defined since the operators Ai2n`1 are trace-class on L2`R`,Cr
˘

(as follows from Proposition
3.3.1, i.e. Corollary 2.1 in [BC12]).

The core of this work is devoted to establish a relation between the Fredholm determinants (5.0.3) and
some solution of a noncommutative Painlevé II hierarchy. In particular, the results resumed in Section
3.3 and originally obtained in [BC12], where the authors extend the theory of integrable operators of
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Chapter 5 – The matrix Painlevé II hierarchy

Its–Izergin–Korepin–Slavnov [IIKS90], can be directly applied to the matrix operators Ai2n`1 defined
in (5.0.2). As byproduct, an equality between the Fredholm determinants F pnqps1, . . . , srq and those of
certain integrable operators can be established. Following the Riemann-Hilbert approach introduced in
Section 3.3 we will study these integrable operators through Riemann-Hilbert Problem 5.1.5, from which
we will deduce the isomonodromic Lax pair of the noncommutative Painlevé II hierarchy, that we are
going to define as follows.

We start defining a matrix-valued analogue of the standard Lenard recursion, through the relations
written below. In the following, U , W are functions depending on all the parameters sl, l “ 1, . . . , r
with values in Matpr ˆ r,Rq. The symbols r , s and r , s` indicate respectively the standard commutator
and anti-commutator between two matrices, since differential polynomials in U are noncommutative
quantities.

Then each differential polynomial LnrU s is defined by the following recursive relation

L0rU s “
1
2Ir,

d
dSLnrU s “

ˆ

d3

dS3 ` rU, ¨s`
d

dS `
d

dS rU, ¨s` ` rU, ¨s
d

dS

´1
rU, ¨s

˙

Ln´1rU s, n ě 1, (5.0.4)

where the differential operator d
dS is defined as

d
dS :“

r
ÿ

k“1

B

Bsk
, (5.0.5)

and d
dS
´1 in intended as the corresponding formal antiderivative. The recursive relation for the non-

commutative version of the Lenard operators Ln, n ě 1, is related to the recursion operator for the
noncommutative KdV equation, introduced in [OS98]. There the authors already conjectured about the
locality of these operators computed in U , but the formal proof of that was done some years later
in [OW00] (Theorem 6.2 in this last paper).

Finally we define our noncommutative Painlevé II hierarchy as follows

PIIpnqNC :
ˆ

d
dS ` rW, ¨s`

˙

LnrU s “ p´1qn`14nrS,W s`, (5.0.6)

where U :“ d
dSW ´W 2 is the Miura transform of W and the variable S is the diagonal matrix S :“

diagps1, . . . , srq so that the anti-commutator in the right hand side is needed (also notice that d
dSS “ Ir).

For this reason we refer to our hierarchy as a fully noncommutative one, since in its definition (5.0.6)
also the independent variable S is noncommutative. A matrix Painlevé II hierarchy, constructed by using
a noncommutative version of Lenard operators as in (5.0.4), was recently studied in [GPZ16] but in this
paper the independent variable is a scalar.

In this work, first of all, we found out that the hierarchy (5.0.6) admits an isomonodromic Lax pair
with Lax matrices that are block-matrices of dimension 2r. Furthermore, they are explicitly written
in terms of the matrix-valued Lenard operators defined in (5.0.4). The result proved in Section 5.3 is
summarized in the following proposition.
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Proposition 5.0.1. For each fixed n there exist two polynomial matrices in λ, namely Lpnq, M pnq,
respectively of degree 1 and 2n, such that the following system

d
dSΨpnqpλ,~sq “ Lpnqpλ,~sqΨpnqpλ,~sq,

B

Bλ
Ψpnqpλ,~sq “M pnqpλ,~sqΨpnqpλ,~sq (5.0.7)

is an isomonodromic Lax pair for the n-th equation of the matrix Painlevé II hierarchy (5.0.6).
In particular the matrices Lpnq, M pnq have the following forms

Lpnqpλ,~sq “

˜

iλIr W p~sq

W p~sq ´iλIr

¸

,

and

M pnqpλ,~sq “

˜

Apλ,~sq ` iS iGpλ,~sq
´iGpλ,~sq ´Apλ,~sq ´ iS

¸

`

˜

Epλ,~sq F pλ,~sq

F pλ,~sq Epλ,~sq

¸

,

where

Apλ,~sq “
n
ÿ

k“0

i
2λ

2n´2kA2n´2kp~sq, with A2n “ Ir,

Gpλ,~sq “
n
ÿ

k“1

i
2λ

2n´2kG2n´2kp~sq,

Epλ,~sq “
n
ÿ

k“1

i
2λ

2n´2k`1E2n´2k`1p~sq,

F pλ,~sq “
n
ÿ

k“1

i
2λ

2n´2k`1F2n´2k`1p~sq.

All the coefficients A2n´2k, G2n´2k, E2n´2k`1, F2n´2k`1 are expressed in terms of the Lenard operators
through the formulae (5.3.4).

This result can be thought as the noncommutative analogue of the well known isomonodromic Lax
pair for the scalar Painlevé II hierarchy studied in [CJM06], and resulting from a self-similarity reduction
of the Lax pair for the modified KdV hierarchy.

A solution Ψpnq for the Lax pair (5.0.7) is constructed, by using the solution of the Riemann-Hilbert
Problem 5.1.5 involved in the study of the integrable operators associated to the matrix operators squared
Ai22n`1.

As a byproduct, we obtain the following relation between some solutions of the hierarchy (5.0.6) and
the Fredholm determinants (5.0.3). This is indeed the final result of this work and it is proved at the end
of Section 5.3.

Corollary 5.0.2. There exists a solution W of the n-th member of the matrix PII hierarchy (5.0.6), that
is connected to the Fredholm determinant of the n-th Airy matrix Hankel operator through the following
formula

´Tr
`

W 2p~sq
˘

“
d2

dS2 ln
`

F pnqps1, . . . , srq
˘

.
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Chapter 5 – The matrix Painlevé II hierarchy

Defining s :“ 1
r

řr
j“1 sj, and δj :“ sj´s, this solution W in the regime s Ñ `8 with |δj | ď m for every j,

has asymptotic behavior pW qrk,l“1 „ ´2pcklAi2n`1psk ` slqq
r
k,l“1.

We remark that in [BC12] the above result was actually proved for the first equation of the hierarchy,
i.e., for the case n “ 1. The result above is a generalization of Theorem 1.1.7 (for n “ 1) and Theorem
1.2.12 (for the generic n case) to the matrix-valued case. We recall that the scalar Airy kernels involved
in the Theorem 1.1.7 and 1.2.12 define DPP on R with applications in random matrix theory (n “ 1)
and statistichal mechanics (generic n). In this work, we see that the matrix Airy Hankel operators
squared Ai22n`1 can actually be interpreted as kernels for determinantal point processes on the space of
configuration t1, . . . , ru ˆ R (under certain assumptions on the matrix C “ pcj,kqrj,k“1), and it would be
interesting to study whether they describe phenomena in random matrix theory or statistical mechanics.

Here is a more precise list of what it is done in this work.

‚ In Section 5.1 the general theory developed in [BC12], and recalled in Section 3.3, is applied to the
operators Ai22n`1, in order to associate the Fredholm determinants (5.0.3) to the ones of certain
integrable operators. The most important consequence of this study is indeed Theorem 5.1.9, that
establishes a relation between Fredholm determinant (5.0.3) and the solution of Riemann-Hilbert
Problem 5.1.5. Furthermore, in this section it is provided in which hypothesis the solution exists
(Theorem (5.1.11)), and so the relation for the Fredholm determinants found in Theorem 5.1.9
holds.

‚ In Section 5.2 the fully noncommutative Painlevé II hierarchy is introduced and the first equations
are explicitly written.

‚ In the first part of Section 5.3, the proof of Proposition 5.0.1 is given and the construction of the
solution Ψpnq of the isomonodromic Lax pair (5.0.7) for the hierarchy (5.0.6) is implemented. Finally
in the end of Section 5.3, Corollary 5.0.2 is proved, by using Theorem 5.1.9 and the properties of
the solution Ψpnq of the isomonodromic Lax pair (5.0.7).

5.1 Riemann Hilbert problems associated
to the matrix Airy operators

To start with, we recall some basic fact about the scalar generalized Airy functions Ai2n`1. As already
anticipated in the introduction, for each n P N, we consider these functions Ai2n`1 as the contour integrals

Ai2n`1pxq :“
ˆ
γn
`

1
2π exp

ˆ

iµ2n`1

2n` 1 ` ixµ
˙

dµ, x P R, (5.1.1)

where γn˘ are curves in the upper (lower) complex plane with asymptotic rays at ˘8 that are φn˘ :“
π
2 ˘

πn
2n`1 , and such that γn´ “ ´γn`. An example of these curves for n “ 1 is given in Fig. 5.1 (but there

are also other possible choices for the curve, as we will see in Chapter 6).

Definition 5.1.1. Recall that as we saw in the introduction, the n-th matrix-valued Airy function is
defined as

Ai2n`1px,~sq :“
`

cj,kAi2n`1px` sj ` skq
˘r

j,k“1, x P R.
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5.1. Riemann Hilbert problems associated to the matrix Airy operators

Here C “ pcj,kqrj,k“1 P Matpr ˆ r,Cq and the parameters sl P R, l “ 1, . . . , r.

With these functions we construct the matrix-valued operators we are going to study in the following.

Definition 5.1.2. We consider tAi2n`1unPN the sequence of matrix Hankel operators acting on any
f “ pf1, . . . , frq

T P L2`R`,Cr
˘

s.t.

pAi2n`1fqpxq :“
ˆ
R`

Ai2n`1px` y,~sqfpyqdy. (5.1.2)

Component wise the n-th Hankel operator Ai2n`1, reads as

pAi2n`1fqj pxq “
r
ÿ

k“1
cj,k

ˆ
R`

Ai2n`1px` y ` sj ` skqfkpyqdy, j “ 1, . . . , r. (5.1.3)

Remark 5.1.3. One can equivalently define the matrix-valued generalized Airy functions as contours
integrals, in the following way. For each n P N

‚ we take s1, . . . , sr real parameters and S :“ diagps1, . . . , srq and we define the matrix-valued com-
plex function

θ2n`1pµ,~sq :“ iµ2n`1

2p2n` 1qIr ` iµS, (5.1.4)

where Ir is the identity matrix of dimension r.
‚ Then, we take the matrix C “ pcj,kqrj,k“1 P Matpr ˆ r,Cq we define the matrix-valued function

rpnqpλ, µ,~sq :“ 1
2πi exppθ2n`1pλ,~sqqC exppθ2n`1pµ,~sqq. (5.1.5)

‚ Finally, we can define the generalized matrix Airy function as

Ai2n`1px,~sq “

ˆ
γn
`

irpnqpµ, µ,~sq exppixµqdµ,

where the integral is computed entry by entry.

We are now going to define a sequence of Riemann-Hilbert problems related to the matrix-valued
analogue of the higher order Airy kernels, obtained as Ai22n`1. From the solution of these Riemann-
Hilbert problems we will deduce the relation between Fredholm determinants of operators Ai22n`1 and
our noncommutative Painlevé II hierarchy.

Remark 5.1.4. From now on, in order to simplify the notation, the dependence on ~s in the quantities
(5.1.4), (5.1.5) will be omitted and we will use the abbreviation rpnqpλ, λ,~sq “ rpnqpλq.

Riemann-Hilbert Problem 5.1.5. Find a pλq-analytic matrix-valued function

Ξpnqpλq : Cz
`

γn` Y γ
n
´

˘

Ñ GLp2r,Cq,

admitting continuous extension to the contour γn` Y γn´ from either side and such that it satisfies the
following two conditions :
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Chapter 5 – The matrix Painlevé II hierarchy

γ3
`

γ3
´

φ3
`

Figure 5.1 – These are the contours γ3
˘ for the integral representation (5.1.1) of the Airy function Ai3

(case n “ 1). Their asymptotics at ˘8 are φ3
˘ :“ π

6 ,
5π
6 .

‚ the jump condition for each λ P γn` Y γn´

Ξpnq` pλq “ Ξpnq´ pλq

˜

Ir ´2πirpnqpλqχγn
`
pλq

´2πirpnqp´λqχγn
´
pλq Ir

¸

:“Jpnqpλ,~sq

, (5.1.6)

where we denote by Ξpnq˘ the boundary values of Ξpnq for λ P γpnq` Y γ
pnq
´ , approaching the boundary

from the left p`q and the right p´q nontangentially.

‚ the asymptotic condition for |λ| Ñ 8

Ξpnqpλq „ I2r `
ÿ

jě1

Ξpnqj
λj

. (5.1.7)

Remark 5.1.6. In the following we are going to use the Pauli’s tensorized matrices, that have the same
property as the ones in the usual Clifford algebra. In particular we denote the tensorized matrices by

σ̂1 “ σ1 b I2r, σ̂2 “ σ2 b I2r, σ̂3 “ σ3 b I2r,

where

σ1 “

˜

0 1
1 0

¸

, σ2 “

˜

0 i
´i 0

¸

, σ3 “

˜

1 0
0 ´1

¸

.

Then the standard relations hold also in this case :

rσ̂1, σ̂2s “ ´2iσ̂3, rσ̂1, σ̂3s “ 2iσ̂2, rσ̂2, σ̂3s “ ´2iσ̂1, σ̂2
i “ I2r, @ i.

The following symmetry property will be useful in the next computations.
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5.1. Riemann Hilbert problems associated to the matrix Airy operators

Corollary 5.1.7. The asymptotic coefficients appearing in equation (5.1.7) have the following form

Ξpnq2j “ α
pnq
2j b I2 ` β

pnq
2j b σ1,

Ξpnq2j´1 “ α
pnq
2j´1 b σ3 ` β

pnq
2j´1 b σ2, j ě 1. (5.1.8)

Here αpnql , βpnql for every l ě 1 correspond to the rˆ r matrices in the entries p1, 1q and p1, 2q of the block
matrix Ξpnql .

An analogue statement is true for the asymptotic coefficients of the inverse of the solution of the
Riemann-Hilbert Problem 5.1.5, namely Θpnq :“

`

Ξpnq
˘´1.

Proof. We first prove the symmetry condition for the asymptotic coefficients of Ξpnq. We start observing
that the jump matrix J pnq for λ P γn` Y γn´ has the following symmetry

σ̂1J
pnqpλ,~sqσ̂1 “ J pnqp´λ,~sq,

just using the definition of γn´ “ ´γn`. This directly implies that also the solution of the Riemann-Hilbert
Problem 5.1.5 has the same symmetry property. Thus for any λ we have that

Ξpnqp´λq “ σ̂1Ξpnqpλqσ̂1.

Computing the asymptotic expansion at 8 of both sides of this equation, we have that p´1qkΞpnqk “

σ̂1Ξpnqk σ̂1. This directly implies the two equations (5.1.8) for k “ 2j or k “ 2j ´ 1.
Concerning the statement for the asymptotic coefficients of the inverse of Ξpnq, namely Θpnq, the proof

follows by the fact that Θpnq solves another Riemann-Hilbert problem, with same symmetry for the jump
matrix. Indeed, consider the following problem for a function Θpnq :

‚ Θpnq is a (λ-)analytic matrix-valued function on Cz
`

γn`Y γ
n
´

˘

admitting continuous extension from
either side to γn` Y γn´ ;

‚ it has a jump condition for each λ P γn` Y γn´

Θpnq` pλq “

˜

Ir 2πirpnqpλqχγn
`
pλq

2πirpnqp´λqχγn
´
pλq Ir

¸

:“Hpnqpλ,~sq

Θpnq´ pλq;

‚ it has the asymptotic condition for |λ| Ñ 8

Θpnqpλq „ I2r `
ÿ

jě1

Θpnqj
λj

.

The function Θpnq with these properties is the inverse of the solution of Problem 5.1.5. Indeed : the
functions ΘpnqΞpnqpλq, and ΞpnqΘpnq have no jumps along γn`Yγn´ and they both behave like the identity
matrix at 8. Thus by the generalized Liouville theorem, they both have to coincide with the identity
matrix.
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We then observe that the jump matrix Hpnq here has the same symmetry property of J pnq, i.e.,
σ̂1H

pnqpλ,~sqσ̂1 “ Hpnqp´λ,~sq, for each λ P γn` Y γn´. Thus, exactly as before, even the function Θpnq has
the same property :

σ̂1Θpnqpλ,~sqσ̂1 “ Θpnqp´λ,~sq.

We conclude then that the asymptotic coefficients of Θpnq have the same form of the Ξk, i.e.,

Θpnq2j “ α̃
pnq
2j b I2r ` β̃

pnq
2j b σ1,

Θpnq2j´1 “ α̃
pnq
2j´1 b σ3 ` β̃

pnq
2j´1 b σ2, j ě 1, (5.1.9)

where, as before, α̃pnql and β̃pnql for every l ě 1 correspond to the r ˆ r matrices in the entries p1, 1q and
p1, 2q of the block matrix Θpnql .

We are now ready to state the fundamental result that connects the matrix Airy Hankel operators to
these Riemann-Hilbert problems.

Supposing that the solutions of the Riemann-Hilbert Problem 5.1.5 and its inverse exist, we have the
following result.

Remark 5.1.8. Existence conditions for Ξpnq (and thus Θpnq) are given at the end of the section (see
Theorem 5.1.11).

Theorem 5.1.9. For each n P N, consider Ξpnq the solution of the Riemann-Hilbert Problem 5.1.5 and
its inverse Θpnq :“

`

Ξpnq
˘´1. Then the following identities hold

d
dS ln

`

F pnqps1, . . . , srq
˘

“

ˆ
γn
`
Yγn

´

Tr
ˆ

Θpnq´
`

Ξpnq´
˘1 d

dS J
pnq

`

J pnq
˘´1

˙

dλ
2πi

“ ´2i Tr
`

α
pnq
1

˘

, (5.1.10)

where in the integral in the middle we indicate with 1 the derivation w.r.t. the complex parameter λ and
the differential operator d

dS is defined as in (5.0.5).

Proof. The proof follows as an application to this very specific case of some general results obtained
in [BC12] (and written in Section 3.3). We split the proof in two parts, one for each equality in (5.1.10).

In order to obtain the first equality we need essentially two results. The first one establishes the relation
between Fredholm determinant of the Airy matrix operator and Fredholm determinant of certain integral
kernel operator, thanks to Theorem 3.3.1. In particular, we first get that the Fredholm determinants of
tAi2n`1unPN are equal to the ones of the integral operators acting on L2`γ

pnq
` ,Cr

˘

with kernels

Kpnqpλ, µq “ rpnqpλ, µq

λ` µ
, (5.1.11)

with rpnqpλ, µq defined as in (5.1.5).
As by product we then have that

F pnqps1, . . . , srq “ det
`

Id
γ
pnq
`

´
`

Kpnq
˘2˘

.
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The second result needed comes from the study of matrix integral kernels of type (5.1.11), through
Riemann-Hilbert problems. Indeed, it allows to compute the Fredholm determinants of these integrable
operators in terms of the solution of Riemann-Hilbert Problem 5.1.5. In particular, by applying Thorem
3.3.5, we have that

ˆ
γn
`
Yγn

´

Tr
ˆ

Θpnq´
`

Ξpnq´
˘1 d

dS J
pnq

`

J pnq
˘´1

˙

dλ
2πi “

d
dS ln det

`

I
γ
pnq
`

´
`

Kpnq
˘2˘

.

Thus the first identity in the statement holds.

For what concerns the second identity of the statement, we proceed by direct computation of the
integral ˆ

γn
`
Yγn

´

Tr
`

Θpnq´
`

Ξpnq´
˘1 d

dS J
pnq

`

J pnq
˘´1˘ dλ

2πi . (5.1.12)

First of all, we observe that the jump matrix J pnqpλ,~sq that appears in the jump condition (5.1.6), admits
the factorization

J pnqpλ,~sq “ exp
`

θpnqpλ,~sq b σ3
˘

J
pnq
0 exp

`

´θpnqpλ,~sq b σ3
˘

,

with J pnq0 the constant matrix given by

J
pnq
0 “

˜

Ir C

C Ir

¸

.

Thus we can easily compute the second factor appearing under the trace in the integral (5.1.12) :
ˆ

d
dS J

pnq

˙

`

J pnq
˘´1

“ iλσ̂3 ´ J
pnq

`

iλσ̂3
˘`

J pnq
˘´1

. (5.1.13)

We are now going to show that the integral in (5.1.12) is actually just the formal residue at 8 of a certain
function. Furthermore in this particular case, due to the form of the matrix J pnq, the residue can be
explicitly computed using equation (5.1.13).

To start with, we consider the following function

Tr
ˆ

Θpnq
`

Ξpnq
˘1 d

dS
`

θpnq b σ3
˘

˙

“ Tr
`

Θpnq
`

Ξpnq
˘1iλσ̂3

˘

. (5.1.14)

Its formal residue at 8 can be computed as

´Resλ“8Tr
`

Θpnq
`

Ξpnq
˘1iλσ̂3

˘

“ lim
RÑ8

ˆ
|λ|“R

Tr
`

Θpnq
`

Ξpnq
˘1iλσ̂3

˘ dλ
2πi .

Now, this counterclockwise circle for RÑ8, can be deformed like γpnq` Yγ
pnq
´ . As a byproduct, the formal

residue of (5.1.14) can be rewritten, taking into account the boundary values of Θpnq and
`

Ξpnq
˘1 along

the curves γpnq˘ , as follows
ˆ
γn
`
Yγn

´

Tr
``

´Θpnq`
`

Ξpnq`
˘1
`Θpnq´

`

Ξpnq´
˘1˘iλσ̂3

˘ dλ
2πi .
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Now, from the jump condition (5.1.6), by deriving w.r.t. λ, we deduce that all along the curves γpnq˘ we
have the relation

`

Ξpnq`
˘1
“
`

Ξpnq´
˘1
J pnq `

`

Ξpnq´
˘`

J pnq
˘1
.

Thus replacing it in the first integral above we get
ˆ
γn
`
Yγn

´

Tr
``

´Θpnq`
`

Ξpnq`
˘1
`Θpnq´

`

Ξpnq´
˘1˘iλσ̂3

˘ dλ
2πi

“ ´

ˆ
γn
`
Yγn

´

Tr
```

J pnq
˘´1Θpnq´

``

Ξpnq´
˘1
J pnq ` Ξpnq´

`

J pnq
˘

1
˘

´Θpnq´
`

Ξpnq´
˘1iλσ̂3

˘˘ dλ
2πi

“ ´

ˆ
γn
`
Yγn

´

Tr
```

J pnq
˘´1Θpnq´

`

Ξpnq´
˘1
J pnq `

`

J pnq
˘´1

J 1 ´Θpnq´
`

Ξpnq´
˘1˘iλσ̂3

˘ dλ
2πi

“ ´

ˆ
γn
`
Yγn

´

Tr
`

Θpnq´
`

Ξpnq´
˘1`

J pnqiλσ̂3
`

J pnq
˘´1

´ iλσ̂3
˘˘ dλ

2πi

“

ˆ
γn
`
Yγn

´

Tr
ˆ

Θpnq´
`

Ξpnq´
˘1 d

dS J
pnq

`

J pnq
˘´1

˙

dλ
2πi ,

where in the last passages we used the invariance of the trace by conjugation and the fact that the
quantity

`

J pnq
˘´1`

J pnq
˘

1

iλσ̂3 is trace free.
Finally, using the asymptotic expansion at 8 given in (5.1.7), we get that

Resλ“8 Tr
`

Θpnq
`

Ξpnq
˘1iλσ̂3

˘

“ ´2i Tr
`

α
pnq
1

˘

,

and this concludes the proof.

Remark 5.1.10. In the study of isomonodromy deformations, the quantity
ˆ
γn
`
Yγn

´

Tr
ˆ

Θ´Ξ1´
d

dS J
pnq

`

J pnq
˘´1

˙

dλ
2πi

is associated to the isomonodromic tau function τΞpnq related to the Riemann-Hilbert Problem 5.1.5
depending on the parameters tskurk“1, through the formula

d
dS ln τΞpnq “

ˆ
γn
`
Yγn

´

Tr
ˆ

Θ´Ξ1´
d

dS J
pnq

`

J pnq
˘´1

˙

dλ
2πi .

This notion was first introduced in [JMU81], and then generalized for example in [Ber10]. With Theo-
rem 5.1.9 we recover for any Airy matrix Hankel operator (5.1.2) the relation between the Fredholm
determinant F pnqps1, . . . , srq and the isomonodromic tau function associated to the Riemann-Hilbert
Problem 5.1.5, that was proved in Theorem 4.1 of [BC12] for Fredholm determinants of generic matrix
Hankel operators.

Finally, in order to use the formula (5.1.10) for the logarithmic derivative of F pnqps1, . . . , srq, we need
to find out whether the solution Ξpnq of the Riemann-Hilbert Problem 5.1.5 exists or not. In particular,
we are going to see that under certain assumptions on the constant matrix C, the existence of Ξpnq is
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5.1. Riemann Hilbert problems associated to the matrix Airy operators

assured. The following result is indeed a generalization of Theorem 5.1 in [BC12], for the generalized Airy
matrix operators defined in (5.1.2), i.e. the case n ą 1.

Theorem 5.1.11. Let the matrix C be Hermitian, then the solution Ξpnq of the Riemann-Hilbert Pro-
blem 5.1.5 exists if and only if the eigenvalues of C lay in the interval r´1, 1s.

Before starting the proof of Theorem 5.1.11, we state the following lemma. For n “ 1 the result is
known from [BW99, HM80]. In the following we adapted the proof to the case of generic n. For finite
z P R, we introduce the operator

`

ΦzAi2n`1
f
˘

pxq “

ˆ `8
z

Ai2n`1px` yqfpyqdy, f P L2pRq.

Lemma 5.1.12. For any n P N we consider the Airy transform ΦAi2n`1 acting on f P L2pRqXL1pRq as

pΦAi2n`1fqpxq “ lim
zÑ´8

`

ΦzAi2n`1
f
˘

pxq “ lim
zÑ´8

ˆˆ `8
z

Ai2n`1px` yqfpyqdy
˙

. (5.1.15)

Then lim
zÑ´8

ˇ

ˇ

ˇ

ˇΦzAi2n`1
f
ˇ

ˇ

ˇ

ˇ “ ||f || for the L2pRq-norm, and thus for any finite z the inequality
ˇ

ˇ

ˇ

ˇ

ˇ

ˇΦzAi2n`1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ ď

1 holds for the L2ppz,`8qq operator norm.

Proof. We consider ΦAi2n`1 the Airy transform acting as defined in (5.1.15), where inside the integral we
have the scalar Airy function Ai2n`1 defined in (5.1.1), without any shift and for real values of x. We
introduce the Fourier transform F and its inverse F´1 defined on L2pRq XL1pRq (and extended to L2pRq
by continuity and density argument), in the standard way as

pFhqpxq :“ 1
?

2π

ˆ
R
hpλq expp´ixλqdλ, F´1 :“ FI “ IF,

where pIhqpxq “ hp´xq, and the multiplication operator by exp
` ix2n`1

2n`1
˘

, denoted by Mn. Then we
observe that the Airy transform ΦAi2n`1 can be rewritten as the composition of these operators, in such
a way that

ΦAi2n`1 “ F´1MnF
´1 “ FIMnIF “ FM´1

n F “ Φ´1
Ai2n`1

.

This implies that

lim
zÑ´8

ˇ

ˇ

ˇ

ˇΦzAi2n`1
f
ˇ

ˇ

ˇ

ˇ “ lim
zÑ´8

ˆˆ
R

ˇ

ˇΦzAi2n`1
fpyq

ˇ

ˇ

2dy
˙

1
2

“

˜ˆ
R

ˇ

ˇ

ˇ

ˇ

ˆ
R

Ai2n`1py ` uqfpuqdu
ˇ

ˇ

ˇ

ˇ

2
dy

¸
1
2

“ ||f ||, (5.1.16)

the norms being in L2pRq.

Now we prove by contradiction the last inequality
ˇ

ˇ

ˇ

ˇ

ˇ

ˇΦzAi2n`1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ ď 1 for the L2ppz,`8qq operator norm.
Suppose that there exist a scalar µ and an eigenfunction gz P L2ppz,`8qq such that ΦzAi2n`1

gz “ µgz
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and |µ| ą 1. Then we can define g P L2pRq as

gpyq “

$

&

%

gzpyq, for y ě z,

0, for y ă z,

and we obtain for z̃ ď z that Φz̃Ai2n`1
gpyq “ ΦzAi2n`1

gzpyq “ µgzpyq “ µgpyq for y ě z. Finally, since
|µ| ą 1, we have

ˇ

ˇ

ˇ

ˇΦz̃Ai2n`1
g
ˇ

ˇ

ˇ

ˇ

L2pRq ě
ˇ

ˇ

ˇ

ˇΦz̃Ai2n`1
g
ˇ

ˇ

ˇ

ˇ

L2ppz,`8qq
“ |µ|||g||L2ppz,`8qq ą ||g||L2pRq

and this is in contradiction with equation (5.1.16).

We can finally provide a complete proof of Theorem 5.1.11.

Proof. By applying Theorem 3.3.4 (i.e. Theorem 3.1 of [BC12], which generalizes the fundamental result
obtained first in [IIKS90]) to the sequence of operators

`

Kpnq
˘2
, n ě 1, we have that the solution Ξpnq of

the Riemann-Hilbert Problem 5.1.5 exists if and only if the operator Id ´
`

Kpnq
˘2 is invertible. This is

guaranteed by the non vanishing condition of the quantity det
`

Id ´
`

Kpnq
˘2˘

“ det
`

Id ´ Ai22n`1
˘

(the
equality follows as before from Theorem 3.3.1 i.e. Corollary 2.1 of [BC12]) that is verified if the operators
Ai2n`1 are such that |||Ai2n`1||| ă 1. Here and in the following, ||| ¨ ||| stands for the operator norm
induced from the L2-norms on the domain and codomain of the relevant operator.

Supposing that the eigenvalues of C are in the interval r´1, 1s, we are going to show that the inequality
for the operator norm of Ai2n`1 holds. Since the operators Ai2n`1 defined in (5.1.2), are constructed by
shifting by some component of ~s the Airy function, we first observe that :

|||Ai2n`1||| “
ˇ

ˇ

ˇ

ˇ

ˇ

ˇPsAi~02n`1Ps
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ,

where Ai~02n`1 is the operator without any shift, namely

Ai~02n`1fpxq :“
ˆ
R`

Ai2n`1px` y,~0qfpyqdy.

considered from and to the space
Àr

k“1 L
2prsk,`8q,Cq and Ps is the orthogonal projection

Ps : L2`R,Cr
˘

ÝÑ

r
à

k“1
L2prsk,`8q,Cq

acting diagonally as Ps :“ diagpχrsk,`8qqrk“1. From equation (5.1.3), we can see the matrix operators
Ai2n`1 written in terms of the scalar operators ΦzAi2n`1

through tensor product. In particular, when there
is no shift we simply have

Ai~02n`1 “ C b Φ0
Ai2n`1

.

Finally, using the property of the scalar operator ΦzAi2n`1
proved in Lemma 5.1.12, we conclude that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇAi~02n`1
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ “ |||C|||
ˇ

ˇ

ˇ

ˇ

ˇ

ˇΦ0
Ai2n`1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ ď |||C|||,
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where the matrix norm of C above is induced by the 2-norm on Cr, i.e., it corresponds to the spectral
radius of C. Then we have

|||Ai2n`1||| ď |||Ps|||
ˇ

ˇ

ˇ

ˇ

ˇ

ˇAi~02n`1
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ|||Ps||| ă |||C||| ď 1,

and this concludes the proof of one of the implications in the statement.
In order to prove the other implication, we suppose that there exists λ0 eigenvalue of C such that

|λ0| ą 1, with corresponding eigenvector v0 P Cr. In this case, we will be able to construct a nonzero
function fspxq such that there exist a value s0 for which

Ai22n`1fs0pxq “ fs0pxq,

so we have that the operator Id´Ai22n`1 is not invertible and thus the solution of the Riemann-Hilbert
Problem 5.1.5 does not exist.

Indeed, consider fpxq :“ v0fpxq, for any scalar function f P L2pRq. Then applying the operator Ai22n`1

with a shift ~s “ ps, . . . , sq for a certain s P R we have

Ai22n`1fpxq “ λ2
0v0

ˆ
R`
KAi2n`1px` s, y ` sqfpyqdy,

where KAi2n`1 is the n-th generalized scalar Airy kernel (cfr. equation (1.2.34)). The corresponding kernel
operator is self-adjoint, trace-class and in particular compact, acting on L2prs,8qq (see e.g. [CCG19]).
We consider its maximum eigenvalue µpsq and the corresponding eigenfunction fspxq. Finally by taking
fspxq “ v0fspxq we get

Ai22n`1fspxq “ λ2
0µpsqfspxq.

Since λ2
0 ą 1 and µpsq is a continuous function such that µpsq Ñ 1 for sÑ ´8 and µpsq Ñ 0 for sÑ `8,

there exist a value s0 P R for which the above equation reads as

Ai22n`1fs0px, ~s0q “ fs0pxq.

And this completes the proof.

Remark 5.1.13. As a byproduct of the theorem above, we have that the operator Ai22n`1 is bounded
from above by the identity. We can actually show that Ai22n`1 is also limited from below : indeed they
are all totally positive on C :“ t1, . . . , ru ˆ R (for n “ 1 [BC12] already proved it, and here we extend
the proof for all n). The main idea to show this is to interpret Ai22n`1 as a scalar function on C ˆ C, in
this way : for any couple pξ1, ξ2q “ ppj1, x1q, pj2, x2qq P C ˆ C we have

Ai22n`1pξ1, ξ2q “
r
ÿ

k“1
cj1,kck,j2

ˆ
R`

Ai2n`1px1 ` z ` sj1 ` skqAi2n`1px2 ` z ` sj2 ` skqdz.

In this way the claim is proved if we prove that for any natural L, the quantity

det
`

Ai22n`1pξa, ξbq
˘

a,bďL
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is positive.

In order to do this, we first rewrite Ai22n`1pξ1, ξ2q using the product measure dµpξq on C given by the
product of the counting measure on t1, . . . , ru and the Lebesgue measure on R. Thus

Ai22n`1pξa, ξbq “

ˆ
C`
F2n`1pξa, ζqF2n`1pζ, ξbqdµpξq, (5.1.17)

where we defined the function F2n`1pξa, ζq “ cja,kAi2n`1px1`z`sja`skq. In this way we can determine
the sign of the determinant, indeed

det
`

Ai22n`1pξa, ξbq
˘

a,bďL
“ det

˜ˆ
C`
F2n`1pξa, ζqF2n`1pζ, ξbqdµpξq

¸

a,bďL

“
1
L!

ˆ
CL
`

detpF2n`1pξa, ξcqqdetpF2n`1pξc, ξaqq
L
ź

c“1
dµpξcq

“
1
L!

ˆ
CL
`

|detpF2n`1pξa, ξcqq|
2
L
ź

c“1
dµpξcq ą 0,

where in the first passage we used a general property in measure theory, the Andreief identity (see here
[BDS16] for details), and in the last one we used the fact that C is hermitian.

In conclusion, by taking C an hermitian matrix with eigenvalues laying in the interval r´1, 1s, any
Ai22n`1 is hermitian and thanks to Theorem 5.1.11 and the previous remark, we can say that any Ai22n`1

defines a determinantal point processes on that space of configuration C (directly by applying Theorem
2.1.5). In particular this implies that the Fredholm determinants F pnqps1, . . . , srq are the joint probability
of the last points for some multi-process on R (by Corollary 2.1.9), namely

F pnqps1, . . . , srq “ P
`

xmax
i ă si, i “ 1, . . . , r

˘

.

5.2 Matrix Painlevé II hierarchy

In this section, we are finally going to define our noncommutative Painlevé II hierarchy. In the fol-
lowing, we will consider Up~sq, W p~sq as functions depending on the parameters s1, . . . , sr with values in
Matpr ˆ r,Cq.

In this context we will use the standard notation for the commutator and anticommutator between
two matrices :

rA, ¨s “ A ¨ ´ ¨A and rA, ¨s` “ A ¨ ` ¨A.

In order to define a fully noncommutative version of the PII hierarchy, as already anticipated in the
introduction, we first define a sequence of differential polynomials LnrU s through a matrix version of the
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Lenard operators. Following [GPZ16] :

L0rU s “
1
2Ir,

d
dSLnrU s “

ˆ

d3

dS3 ` rU, ¨s`
d

dS `
d

dS rU, ¨s` ` rU, ¨s
d

dS

´1
rU, ¨s

˙

Ln´1rU s, n ě 1. (5.2.1)

Here Ir denotes the identity matrix, d
dS denotes the differential operator defined in (5.0.5) and d

dS
´1

denotes the corresponding formal antiderivative. The locality of these operators computed in U follows
from Theorem 6.2 in [OW00].

Example 5.2.1. The first of the differential polynomials in U given by the recursive formula (5.2.1) read
as follows :

L1rU s “ U,

L2rU s “ U2S ` 3U2,

L3rU s “ U4S ` 5rU,U2Ss` ` 5U2
S ` 10U3.

From n ě 3 the “noncommutative” character of these operators appears in form of anticommutators.

Remark 5.2.2. In the example above and in the following we use the shorter notation
` d

dS
˘n
U “ UnS

for any n P N.

Definition 5.2.3. We define a matrix PII hierarchy as follows

PIIpnqNC rαns :
ˆ

d
dS ` rW, ¨s`

˙

LnrU s “ p´1qn`14nrS,W s` ` anIr, (5.2.2)

where U is as in the scalar case, the Miura transform of the function W , i.e., U :“ d
dSW ´W 2, and an

are scalar constants.

In particular we will study the homogeneous hierarchy, setting an “ 0 for each n.

Remark 5.2.4. It is also possible to define a more general hierarchy, in the following way

PIIpnqNCrαns :
ˆ

d
dS ` rW, ¨s`

˙

LnrU s `
n´1
ÿ

l“1
tl

ˆ

d
dS ` rW, ¨s`

˙

LlrU s

“ p´1qn`14nrS,W s` ` anIr,

for some scalars t1, . . . , tn´1. We recover the hierarchy (5.2.2) setting up these scalars to 0. Another
matrix hierarchy was introduced in [GPZ16], but there the time variable is a scalar.

Example 5.2.5. Here are the first three equations of the homogeneous hierarchy (5.2.2).

‚ For n “ 1 we obtain the noncommutative analogue of the homogeneous PII equation :

PIINC : W2S “ 2W 3 ` 4rS,W s`. (5.2.3)
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This coincides with the homogeneus version of the fully noncommutative PII equation studied in
[RR10], in a more general context of any noncommutative algebra with derivation.

‚ For n “ 2 we have the 4-th order equation :

PIIp2qNC : W4S “ 6W 5 ` 4
“

W 2,W2S
‰

`
` 2WW2SW ` 2

“

W 2
S ,W

‰

`

` 6WSWWS ´ 42rS,W s`.

‚ For n “ 3 we have the 6-th order equation :

PIIp3qNC : W6S “ 20W 7 ´ 15
“

W2S ,W
4‰´ 20W 2W2SW

2 ´ 10
“

WW2SW,W
2‰

`

´ 10
“

W 2
S ,W

3‰

`
´ 15

“

WW 2
SW,W

‰

`
´ 20WSW

3WS

´ 25
“

WSWWS ,W
2‰

`
´ 5

“

WSW
2WS ,W

‰

`
´ 10WWSWWSW

` 6
“

W4S ,W
2‰` 2WW4SW ` 4pWSW3SW ``WW3SWSq

` 9pWWSW3S `W3SWSW q ` 15pWSWW3S `W3SWWSq

` 25
“

W2S ,W
2
S

‰

`
` 20WSW2SWS

` 11
“

W 2
2S ,W

‰

`
` 20W2SWW2S ` 43rS,W s`.

A fundamental property of matrix Lenard operators (that we are going to use in the next section in
order to find the Lax pair for the hierarchy (5.2.2)) is given by the following formula (see [GPZ16]).

Proposition 5.2.6. For each n P N the matrix-valued Lenard operator acting on the Miura transform
factorizes like

d
dSLn`1rU s “

ˆ

d
dS ´ rW, ¨s`

˙ˆ

d
dS ´ rW, ¨s

d
dS

´1
rW, ¨s

˙ˆ

d
dS ` rW, ¨s`

˙

LnrU s. (5.2.4)

This formula is achieved by the direct computation of the recursive formula for the noncommutative
Lenard operators computed in the Miura transform U “ WS ´W 2. It is exactly the analogue of the
factorization formula (1.2.14) that we described in the scalar case treated in Chapter 1.

5.3 The isomonodromic Lax pair

In this section we are finally going to find out a Lax pair for the noncommutative hierarchy (5.2.2),
making use of the Riemann-Hilbert Problem 5.1.5 introduced in Section 5.1.

To start with, we consider a new sequence of functions, defined using the solution of the Riemann-
Hilbert Problem 5.1.5.

Definition 5.3.1. For each n P N, we construct

Ψpnqpλ,~sq :“ Ξpnqpλq exp
`

θpnqpλq b σ3
˘

.

It is easy to check that these functions
 

Ψpnq
(

nPN actually solve a new sequence of Riemann-Hilbert
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problems, with constant jump conditions. Namely, the following problems.

Riemann-Hilbert Problem 5.3.2. Find a (λ-)analytic matrix-valued function

Ψpnqpλq : Cz
`

γn` Y γ
n
´

˘

Ñ GLp2r,Cq

admitting continuous extension to the contour γn` Y γn´ from either side and such that it satisfies the
following two conditions :

‚ the jump condition for each λ P γn` Y γn´

Ψpnq` pλq “ Ψpnq´ pλq

˜

Ir Cχγn
`
pλq

Cχγn
´
pλq Ir

¸

:“Kpnq

;

‚ the asymptotic condition for |λ| Ñ 8

Ψpnqpλq „
˜

I2r `
ÿ

jě1

Ξpnqj
λj

¸

exp
`

θpnqpλq b σ3
˘

.

As it is standard in the theory of isomonodromic deformations, we deduce the Lax pair for the
noncommutative PII hierarchy (5.2.2) from the Riemann-Hilbert problems with piecewise constant jumps
solved by Ψpnq. The main idea is the following : using the fact that each Ψpnq has constant jump condition
(i.e., the jump matrix Kpnq does not explicitly depend on the spectral parameter λ or the deformations
parameters si, i “ 1, . . . , r), we can thus conclude that the quantities

d
dSΨpnq

`

Ψpnq
˘´1

“: Lpnq and B

Bλ
Ψpnq

`

Ψpnq
˘´1

“: M pnq (5.3.1)

are matrix-valued polynomials in λ.

Remark 5.3.3. Here the inverse of Ψpnq is simply given by

`

Ψpnq
˘´1
pλq “ exp

`

´θpnqpλq b σ3
˘

Θpnqpλq.

Furthermore, by using the symmetries of the Riemann-Hilbert Problem 5.1.5, we can compute the
exact form of the coefficients of these polynomials Lpnq, M pnq.

The final result is summarized in the proposition below.

Proposition 5.3.4. There exist two polynomial matrices in λ, which we denote with Lpnq and M pnq,
respectively of degree 1 and 2n, such that the following system of differential equations is satisfied :

d
dSΨpnqpλ,~sq “ Lpnqpλ,~sqΨpnqpλ,~sq,

BλΨpnqpλ,~sq “M pnqpλ,~sqΨpnqpλ,~sq. (5.3.2)
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Moreover, Lpnq and M pnq have the following forms

Lpnqpλ,~sq “

˜

iλIr W p~sq

W p~sq ´iλIr

¸

, with W p~sq “ 2βpnq1 p~sq,

and

M pnqpλ,~sq “

˜

Apλ,~sq ` iS iGpλ,~sq
´iGpλ,~sq ´Apλ,~sq ´ iS

¸

`

˜

Epλ,~sq F pλ,~sq

F pλ,~sq Epλ,~sq

¸

,

where

Apλ,~sq “
n
ÿ

k“0

i
2λ

2n´2kA2n´2kp~sq, with A2n “ Ir,

Gpλ,~sq “
n
ÿ

k“1

i
2λ

2n´2kG2n´2kp~sq,

Epλ,~sq “
n
ÿ

k“1

i
2λ

2n´2k`1E2n´2k`1p~sq,

F pλ,~sq “
n
ÿ

k“1

i
2λ

2n´2k`1F2n´2k`1p~sq.

Proof. We start computing the logarithmic derivative of Ψpnq w.r.t. S, namely the quantity that we
defined in (5.3.1) as

d
dSΨpnq

`

Ψpnq
˘´1 :“ Lpnq.

The matrix-valued function Lpnq is entire in λ, since it has no jumps along γn` Y γn´. Furthermore, its
asymptotic behavior at infinity is given by a matrix polynomial of degree 1 in λ. Thus, by the generalized
Liouville theorem, we conclude that Lpnq is exactly a matrix polynomial of degree 1 in λ.

In particular from the asymptotic expansion at 8, we find an explicit form of its matrix coefficients.
Here and in the following series expansions in powers of λ we will use the notation r sě0 to indicate that
we are taking only the powers λr with r ě 0.

Lpnqpλq “
d

dSΨpnq
`

Ψpnq
˘´1

“

«˜

I2r `
ÿ

jě1

Ξpnqj
λj

¸

iλσ̂3

˜

I2r `
ÿ

jě1

Θpnqj
λj

¸ff

ě0

“ iλσ̂3 ` i
`

Ξpnq1 σ̂3 ` σ̂3Θpnq1
˘

“ iλσ̂3 ` i
“

Ξpnq1 , σ̂3
‰

“ iλσ̂3 ` 2βpnq1 b σ1,

where in the last two passages we used the fact that Θpnq1 “ ´Ξpnq1 and then the symmetry (5.1.8).
We can then consider the second quantity defined in (5.3.1), namely

B

Bλ
Ψpnq

`

Ψpnq
˘´1

“: M pnq.

We use the same argument as for Lpnq. Indeed, also M pnq is entire in λ, since it has no jumps along
γn` Y γn´. Its asymptotic behavior at infinity is given by a matrix polynomial of degree 2n in λ. We
thus conclude, by the generalized Liouville theorem, that M pnq is exactly a matrix polynomial in λ of
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degree 2n. In particular from the asymptotic expansion at 8 we can find an explicit form of this matrix :

M pnqpλq “ BλΨpnq
`

Ψpnq
˘´1

“

«˜

I2r `
ÿ

jě1

Ξpnqj
λj

¸

ˆˆ

iλ2nIr
2 ` iS

˙

b σ3

˙

˜

I2r `
ÿ

jě1

Θpnqj
λj

¸ff

ě0

“
iλ2n

2 σ̂3 ` iS b σ3 `
2n
ÿ

l“1

iλ2n´l

2

˜

Ξpnql σ̂3 ` σ̂3Θpnql `
ÿ

j : j`k“l
Ξpnqj σ̂3

˜

l´1
ÿ

k“1
Θpnqk

¸¸

“M
pnq

2n´l

.

In order to obtain the remaining part of the statement, we use the following lemma.

Lemma 5.3.5. The coefficient of the term λ2n´l in the matrix M pnq is such that :

‚ if l “ 2m, then
M
pnq
2n´2m “ A2n´2mp~sqσ̂3 `G2n´2mp~sqσ̂2;

‚ if instead l “ 2m´ 1, then

M
pnq
2n´2m`1 “ E2n´2m`1p~sq b I2r ` F2n´2m`1p~sqσ̂1.

Proof. The proof is a direct consequence of the symmetry property that the asymptotics coefficients of
Ξpnq, Θpnq have. We start with the even case l “ 2m. The coefficient of the term λ2n´2m in the matrix
M pnq is given by the following sum :

M
pnq
2n´2m “

˜

Ξpnq2mσ̂3 ` σ̂3Θpnq2m `
ÿ

j : j`k“2m
Ξpnqj σ̂3

˜

2m´1
ÿ

k“1
Θpnqk

¸¸

,

where in the last sum all the terms are of type

Ξpnq2s σ̂3Θpnq2pm´sq or Ξpnq2s´1σ̂3Θpnq2pm´sq`1.

Using the symmetries (5.1.8) and (5.1.9), a direct computation shows that these terms are always linear
combinations of the Pauli’s matrices σ̂2, σ̂3.

So we can conclude that

M
pnq
2n´2m “ A2n´2mp~sqσ̂3 `G2n´2mp~sqσ̂2.

where the functions A2n´2mp~sq, G2n´2mp~sq depend on the asymptotic coefficients of Ξpnq, Θpnq.
We work in the same way for the odd case, l “ 2m ´ 1. The coefficient of λ2n´2m`1 is given by the

same formula

M
pnq
2n´2m`1 “

˜

Ξpnq2m´1σ̂3 ` σ̂3Θpnq2m´1 `
ÿ

j : j`k“2m´1
Ξpnqj σ̂3

˜

2m´2
ÿ

k“1
Θpnqk

¸¸

,
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where in the last sum there are just terms of the two following types

Ξpnq2s σ̂3Θpnq2pm´sq´1 or Ξpnq2s´1σ̂3Θpnq2pm´sq.

In both of the cases, always replacing the symmetries (5.1.8) and (5.1.9), they result to be linear combi-
nations of I2r, σ̂1. Thus we can finally conclude that

M
pnq
2n´2m`1 “ E2n´2m`1p~sq b I2r ` F2n´2m`1p~sqσ̂1.

Thanks to this lemma, the form of the matrix M pnq is exactly the one of the statement and the
proposition is completely proved.

Remark 5.3.6. The system (5.3.2) for Ψpnq describes the isomonodromic deformations w.r.t. the defor-
mation parameters si, i “ 1, . . . , r, of the linear differential equation

B

Bλ
Ψpnqpλ,~sq “M pnqpλ,~sqΨpnqpλ,~sq,

that has only one irregular singular point at 8 of Poincaré rank r “ 2n ` 1, and in the special case of
symmetry

´σ̂1M
pnqpλ,~sqσ̂1 “M pnqp´λ,~sq.

We can finally state that the system (5.3.2) is an isomonodromic Lax pair for the matrix PII hierar-
chy (5.2.2).

Proposition 5.3.7. For each fixed n, the compatibility condition of the system (5.3.2), i.e., the equation

B

Bλ
Lpnqpλ,~sq ´

d
dSM

pnqpλ,~sq `
“

Lpnqpλ,~sq,M pnqpλ,~sq
‰

“ 0 (5.3.3)

is equivalent to the following equation
ˆ

d
dS ` rW, ¨s`

˙

LnrU s “ p´1qn`14nrS,W s`,

Furthermore, the coefficients of the matrix M pnq are written in terms of the matrix Lenard operators in
the following way

A2n´2kp~sq “ ´
1
2

ˆ

´
1
4

˙k´1ˆ

LkrU s ´
ˆ

d
dS ´ rW, ¨s

d
dS

´1
rW, ¨s

˙ˆ

d
dS ` rW, ¨s`

˙

Lk´1rU s

˙

,

G2n´2kp~sq “
i
2

ˆ

´
1
4

˙k´1 ˆˆ d
dS ´ rW, ¨s

d
dS

´1
rW, ¨s

˙ˆ

d
dS ` rW, ¨s`

˙

Lk´1rU s

˙

,

E2n´2k`1 p~sq “ ´i
ˆ

´
1
4

˙k´1 d
dS

´1 ˆ

rW, ¨s

ˆ

rW, ¨s` `
d

dS

˙

Lk´1rU s

˙

,

F2n´2k`1 p~sq “ ´i
ˆ

´
1
4

˙k´1 ˆˆ

rW, ¨s` `
d

dS

˙

Lk´1rU s

˙

, for k “ 1, . . . , n. (5.3.4)

In other words the system (5.3.2) is a Lax pair for the matrix Painlevé II hierarchy (5.2.2).
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Proof. We first rewrite the compatibility condition (5.3.3) as the following system of differential equations
for the coefficients A, F , G, E :

d
dSEpλ,~sq “ rW,F pλ,~sqs,

d
dSApλ,~sq “ ´irW,Gpλ,~sqs`,

d
dSF pλ,~sq “ ´2λGpλ,~sq ` rW,Epλ,~sqs,

d
dSGpλ,~sq “ 2λF pλ,~sq ` irW,Apλ,~sqs` ´ rS,W s`.

These equations must be satisfied identically in λ. Thus, by the polinomiality of the coefficients A, F , G,
E, this system is equivalent to the following one

d
dSE2n´2k`1p~sq “ rW,F2n´2k`1p~sqs,

d
dSA2n “ 0,

d
dSA2n´2kp~sq “ ´irW,G2n´2kp~sqs`,

G2n´2kp~sq “
1
2

ˆ

´
d

dSF2n´2k`1p~sq ` rW,E2n´2k`1p~sqs

˙

,

F2n´1p~sq “ ´
i
2 rW,A2ns` ,

F2n´2k´1p~sq “
1
2

ˆ

d
dSG2n´2kp~sq ´ irW,A2n´2kp~sqs`

˙

,

i
2

d
dSG0p~sq “ ´rS,W s` ´

1
2 rW,A0p~sqs` for k “ 1, . . . , n. (5.3.5)

In order to prove the statement, we are going to prove by induction over l “ 2n´ j that each coefficient
A2n´2k, E2n´2k`1, G2n´2k, F2n´2k`1 is given by the formulae (5.3.4) and that this implies that the last
equation in the system (5.3.5) is exactly the n-th member of the PII hierarchy (5.2.2).

We first check that for l “ 2n ´ 1, 2n ´ 2 the formulae (5.3.4) are solutions of the equations (5.3.5),
i.e., the coefficients F2n´1, E2n´1, G2n´2, A2n´2, are given by these formulae.

Since A2n “ Ir, the equation
d

dSA2n “ 0

is satisfied. Then, the equation for F2n´1 will be satisfied for

F2n´1 “ ´iW,

that is exactly the result of the formula in (5.3.4) for k “ 1, since

´i
ˆ

´
1
4

˙0 ˆˆ

rW, ¨s` `
d

dS

˙

L0rU s

˙

“ ´iW.
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As a consequence, the equation for the coefficient E2n´1 in the system (5.3.5) becomes

d
dSE2n´1p~sq “ 0,

thus E2n´1 is constant w.r.t. the variable S and it is in particular E2n´1 “ 0, because of the asymptotics
of Ψpnq. This is also what is given by the formula for k “ 1 :

´i
ˆ

´
1
4

˙0 d
dS

´1 ˆ

rW, ¨s

ˆ

rW, ¨s` `
d

dS

˙

L0rU s

˙

“ 0.

We can then compute the term G2n´2 for which the equation in (5.3.5) is now

G2n´2 “ ´
1
2

d
dS p´iW q “ i

2WS ,

that coincides with the formula

i
2

ˆ

´
1
4

˙0 ˆˆ d
dS ´ rW, ¨s

d
dS

´1
rW, ¨s

˙ˆ

d
dS ` rW, ¨s`

˙

L0rU s

˙

“
i
2

d
dSW.

Finally, we can compute the term A2n´2. It is supposed to satisfy, from the system (5.3.5), the equation

d
dSA2n´2 “ ´irW,G2n´2s` “

1
2 rW,WSs`.

Integrating and taking the constant of integration another time equal 0 (for the same reason used above)
we get

A2n´2 “
1
2W

2.

The same that is given by the formula

´
1
2

ˆ

´
1
4

˙0 ˆ

L1rU s ´

ˆ

d
dS ´ rW, ¨s

d
dS

´1
rW, ¨s

˙ˆ

d
dS ` rW, ¨s`

˙

L0rU s

˙

“ ´
1
2
`

WS ´W
2 ´WS

˘

.

Thus for k “ 1 the formulas in (5.3.4) gives solutions of the system (5.3.5).

Now we proceed by induction : supposing that for l “ 2n´2k`1 the coefficients E2n´2k`1, F2n´2k`1

are given by the formulas (5.3.4), we will find that then also the coefficients for l “ 2n ´ 2k and l “

2n´ 2k ´ 1 have the form given by the formulas (5.3.4). Indeed, from the equations in (5.3.5), we have

G2n´2kp~sq “
1
2

ˆ

´
d

dSF2n´2k`1p~sq ` rW,E2n´2k`1p~sqs

˙

“ ´
1
2

˜

´i
ˆ

´
1
4

˙k´1 d
dS

ˆˆ

rW, ¨s` `
d

dS

˙

Lk´1rU s

˙

¸

`
1
2

˜

rW, ¨s

˜

´i
ˆ

´
1
4

˙k´1 d
dS

´1 ˆ

rW, ¨s

ˆ

rW, ¨s` `
d

dS

˙

Lk´1rU s

˙

¸¸

“
i
2

ˆ

´
1
4

˙k´1 ˆˆ d
dS ´ rW, ¨s

d
dS

´1
rW, ¨s

˙ˆ

d
dS ` rW, ¨s`

˙

Lk´1rU s

˙
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that is exactly the formula in (5.3.4) for this coefficient. Then we can compute

A2n´2kp~sq “ ´i d
dS

´1
rW,G2n´2kp~sqs` “

1
2

ˆ

´
1
4

˙k´1 d
dS

´1
rW, ¨s`

ˆ

ˆˆ

d
dS ´ rW, ¨s

d
dS

´1
rW, ¨s

˙ˆ

d
dS ` rW, ¨s`

˙

Lk´1rU s

˙

“ ´
1
2

ˆ

´
1
4

˙k´1ˆ

LkrU s ´
ˆ

d
dS ´ rW, ¨s

d
dS

´1
rW, ¨s

˙ˆ

d
dS ` rW, ¨s`

˙

Lk´1rU s

˙

,

where in the last passage we have integrated (taking the integration’s constant 0) after having applied
formula (5.2.4). Then the equation for F2n´2k´1p~sq reads as

F2n´2k´1 “
1
2

ˆ

d
dSG2n´2kp~sq ´ i rW,A2n´2kp~sqs`

˙

“
1
2

˜

d
dS

i
2

ˆ

´
1
4

˙k´1 ˆˆ d
dS ´ rW, ¨s

d
dS

´1
rW, ¨s

˙ˆ

d
dS ` rW, ¨s`

˙

Lk´1rU s

˙

¸

´
i
2

˜

rW, ¨s`
1
2

ˆ

´
1
4

˙k´1
˜

LkrU s ´
ˆ

d
dS ´ rW, ¨s

d
dS

´1
rW, ¨s

˙

ˆ

ˆ

d
dS ` rW, ¨s`

˙

Lk´1rU s

¸¸

“ ´i
ˆ

´
1
4

˙k ˆ d
dS ` rW, ¨s`

˙

LkrU s,

where in the last line we used another time property (5.2.4) of the matrix Lenard operators. Finally, the
formula for E2n´2k´1 directly follows from the equation above and taking the integration contant equal 0,
while integrating the equation (5.3.5).

In the end, when we replace the formulas for G0, A0 in the last equation of the system (5.3.5), namely

i
2

d
dSG0p~sq “ ´rS,W s` ´

1
2 rW,A0p~sqs`,

using another time the property (5.2.4) we get the n-th member of the Painlevé II hierarchy :
ˆ

rW, ¨s` `
d

dS

˙

LnrU s “ p´1qn`14nrS,W s`.

Remark 5.3.8. The matrices Lpnq, M pnq obtained here, are the analogue of the Lax pair for the scalar
homogeneous Painlevé II hierarchy obtained in [CJM06], written in Theorem 4.3.3, with W p~sq given by

2βpnq1 p~sq “ ´2i lim
|λ|Ñ8

`

λΞpnqp~sq
˘

1,2 :“W p~sq.

Also, the proof by induction previously done, it is inspired by the technique used in [CJM06].

We can then state and prove the final result of this study, that links solutions of the homogeneus
matrix Painlevé II hierarchy (5.2.2) to Fredholm determinants of the matrix Airy operators.

Corollary 5.3.9. There exists a solution W of the n-th member of the PII hierarchy (5.2.2) connected
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to Fredholm determinant of the n-th Airy matrix operator (5.0.3) through the following formula

´Tr
`

W 2p~sq
˘

“
d2

dS2 ln
`

F pnqps1, . . . , srq
˘

. (5.3.6)

This solution W has boundary behavior pW qrk,l“1 „ ´2pcklAi2n`1psk ` slqq
r
k,l“1 in the regime s Ñ `8

with |δj | ď m for every j, where s :“ 1
r

řr
j“1 sj is the baricenter of the variables sj, and δj :“ sj ´ s.

Proof. We first prove the formula (5.3.6). The statement is achieved by Theorem 5.1.9 and the relation
between αpnq1 , βpnq1 given by

d
dSα

pnq
1 “ ´2i

`

β
pnq
1

˘2
. (5.3.7)

This relation holds for each n and it is obtained by looking at the coefficient of the term λ´1 in the
asymptotic expansion at 8 of

d
dSΨpnq

`

Ψpnq
˘´1

,

and recalling that it must be 0. Indeed, from the asymptotic expansion of Ψpnq we have that the power
λ´1 coming from the formal asymptotic expansion of d

dSΨpnq
`

Ψpnq
˘´1 is 1

„

d
dSΨpnq

`

Ψpnq
˘´1



´1
“

«˜

I2r `
ÿ

jě1

Ξpnqj
λj

¸

iλσ̂3

˜

I2r `
ÿ

jě1

Θpnqj
λj

¸ff

´1

“
i
λ

ˆ

Ξpnq2 σ̂3 ` σ̂3Θpnq2 ` Ξpnq1 σ3Θpnq1 `
d

dSΞ1

˙

.

And replacing in the coefficient of λ´1 the relations between the asymptotic coefficients of Θpnq and the
ones of Ξpnq, namely

Θpnq1 “ ´Ξpnq1 , Θpnq2 “
`

Ξpnq1
˘2
´ Ξpnq2

the result is exactly the relation (5.3.7).

Now we are going to prove the second part of the statement. We define the scalar variables s :“
1
r

řr
j“1 sj and δj :“ sj ´ s for any j “ 1, . . . , r.

We are now going to study the behavior of the solution W for

s Ñ `8 and |δj | ď m @ j. (5.3.8)

First, we rewrite the jump matrix J pnqpλ,~sq of Riemann-Hilbert Problem 5.1.5 in terms of the rescaled
complex parameter zs 1

2n “ λ.

In particular we obtain that the jump matrices along γn` and along γn´, are factorized in a product of

1. Here the notation r s´1 indicates that we only take the term λ´1 in the relevant formal series.
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commuting matrices, written in terms of the rescaled parameter z and the variables s, δj . Namely,

I2r ´ 2πirpnq
`

˘zs 1
2n
˘

b σ˘χγn
˘

`

zs 1
2n
˘

“

r
ź

k,l“1

ˆ

I2r ` ckle
˘is

2n`1
2n

´

z2n`1
2n`1 `z

´

2` δk`δls

¯¯

Ek,l b σ˘χγ̃n
˘
pzq

˙

, (5.3.9)

where Ek,l are the elementary matrices and σ` “ p 0 1
0 0 q, σ´ “ p 0 0

1 0 q and γ̃n˘ are the transformed contours
under the scaling λ “ zs 1

2n .

Now, we are going to show that each matrix in the factorization (5.3.9), that we denote by F˘kl , is close
to the identity matrix I2r in the regime fixed in (5.3.8). Remark that every F˘kl has 2n critical points,
corresponding to

zh0 “ d
1

2n
kl ei π2n p2h`1q, h “ 0, . . . , 2n´ 1,

where dkl “ 2` δk`δl
s is real, positive and bounded, while looking at the regime (5.3.8).

We can then split the curves γ̃n˘ respectively in the curves γ̃n˘,kl one for each factor F˘kl appearing in
the factorization (5.3.9). The curves γ̃n˘,kl pass respectively through the points zh0 with h “ 0, . . . , n´ 1
(in the upper plane) and h “ n, . . . , 2n´ 1 (in the lower plane).

In this way, we can then evaluate the 8-norm of each term F˘kl ´ I2r and we have

ˇ

ˇ

ˇ

ˇF˘kl ´ I2r
ˇ

ˇ

ˇ

ˇ

8
“ |ckl| sup

zPγ̃n
˘,kl

e¯s
2n`1

2n =
´

z2n`1
2n`1 `zdkl

¯

“ |ckl|e¯
2n

2n`1 psdklq
2n`1

2n sinp˘ π
2n q Ñ 0

for s Ñ `8 and |δj | ď m @ j.

We can conclude that the rescaled jump matrix itself J pnq
`

s 1
2n z

˘

is close to the identity matrix in the
regime (5.3.8), since each factor F˘kl in its factorization shares this property.

Consider now the rescaled function Xpnqpzq :“ Ξpnq
`

zs 1
2n
˘

. By using Riemann-Hilbert Problem 5.1.5
solved by Ξpnq, we have that

‚ Xpnq is analytic on Czγ̃n`Y γ̃n´ and it admits continuous extension to these curves from either side ;

‚ its boundary values X˘pzq while approaching γ̃n` Y γ̃n´ from the left and respectively from the
right, are related through the jump condition (5.1.6) but with the rescaled jump matrix computed
in (5.3.9) ;

‚ for |z| Ñ `8 we have Xpnq „ I2r `
ř

jě1
X
pnq
j

zj .

Remark that we have Xpnq1 “ s´ 1
2nΞpnq1 .

By applying the small norm theorem (one version was stated in Theorem 3.1.8, i.e. Theorem 1.5.1 in
[Its11]), we conclude that the function Xpnqpzq behaves as

Xpnqpzq “ I2r `O
`

z´1e´Cs
2n`1

2n ˘

, s Ñ `8, |δj | ď m @ j, (5.3.10)

for a certain value C ą 0.

Now, using the integral formula [IIKS90] for the rescaled solution of the Riemann-Hilbert Pro-
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blem 5.1.5, namely Xpnqpzq, we have that

Xpnqpzq “ I2r ´

ˆ
γ̃n
`

X
pnq
´ pwqrpnq

`

ws 1
2n
˘

b σ`

w ´ z
dw ´

ˆ
γ̃n
´

X
pnq
´ pwqrpnq

`

´ws 1
2n
˘

b σ´

w ´ z
dw,

and thus we recover the following expression for the first asymptotic coefficient

`

X
pnq
1

˘

1,2 “

ˆ
γ̃n
`

X
pnq
´ pwqrpnq

`

ws 1
2n
˘

dw.

Finally, by recalling the definition of W and using (5.3.10) we conclude that

W “ ´2i
`

Ξpnq1
˘

1,2 “ ´2is 1
2n

ˆ
γ̃n
`

X
pnq
´ pwqrpnq

`

ws 1
2n
˘

dw „ ´2pcklAi2n`1psk ` slqq
r
k,l“1,

in the regime (5.3.8).

Remark 5.3.10. Relation (5.3.6) can be thought as the noncommutative analogue of the results proved
in [TW94b] for the Painlevé II equation and in [CCG19, LDMS18] for the scalar Painlevé II hierarchy,
connecting the theory of Painlevé trascendents to the determinantal point processes theory. For the
noncommutative Painlevé II equation (5.2.3), i.e n “ 1, this link was already established in [BC12] and
here we actually extended that result to the noncommutative hierarchy (5.2.2).

80



Chapter 6

THE INTEGRO-DIFFERENTIAL PAINLEVÉ

II HIERARCHY

The aim of this chapter is to prove the main result contained in the joint work with Thomas
Bothner and Mattia Cafasso [BCT21]. This paper is devoted to study the Fredholm determinants

of a finite temperature version of the Airy kernels previously introduced in Chapter 1, through equation
(1.2.34). Specifically, their finite temperature version is defined for any n P N and for a given weight
function w satisfying the requirements written below.

Definition 6.0.1. We consider a weight function w : R Ñ R` as any positive, strictly increasing and
differentiable function, such that for some ω, x0 ą 0,

lim
xÑ`8

wpxq “ 1, lim
xÑ´8

wpxq “ 0 and 0 ă w1pxq ď e´ω|x| @ |x| ě x0. (6.0.1)

For any fixed weight function with the above properties, we construct the following operators.

Definition 6.0.2. The finite temperature higher order Airy kernels are integral operators Kt,n : L2pR`q Ñ
L2pR`q acting through the kernel

Kt,npx, yq :“
ˆ
R
Ai2n`1px` z ` tqAi2n`1pz ` y ` tqwpzqdz, t P R. (6.0.2)

These operators Kt,n are proved to be trace class on L2pR`q so that their Fredholm determinants

Dnpt, λq :“ detp1´ λKt,nq (6.0.3)

are well defined for any pt, λ, nq P RˆCˆN. As it happens in the scalar case for the Airy kernels (1.2.34),
and in the matrix-valued generalization for the square of the Hankel Airy operators defined in (5.1.2), also
in this finite temperature case the operators λKt,n define uniquely a determinantal point process for every
pt, λ, nq P Rˆr0, 1sˆN, so that the Fredholm determinants Dnpt, λq are the distribution functions of the
last particle in this process. In this specific case, the interest in the study of the Fredholm determinants
Dnpt, λq is moreover given by the applications that they have in statistical mechanics. Indeed, they were
used in the paper [LDMS18] to describe some statistical quantities related to a model of free fermions
in anharmonic traps at finite temperature. More specifically, in this paper the authors explained how
Dnpt, 1q, when the weight function w is chosen to be the Fermi factor, is equal to the edge scaling
limit of the probability distribution of the largest momenta in this specific fermionic model. This was
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Chapter 6 – The integro-differential Painlevé II hierarchy

indeed the main motivation for us to study the Fredholm determinants Dnpt, λq. For other occurences of
these Fredholm determinants see for instance [ACQ11, Joh07]. In particular, our first aim was to find a
Tracy-Widom type formula relating the Fredholm determinants Dnpt, λq to some distinguished Painlevé
II trascendents of some kind, generalizing the classical result of Tracy and Widom [TW94a]. The process
that allowed us to achieve this result has two new remarkable features : the usage of operator-valued
Riemann-Hilbert problems to study the Fredholm determinants Dnpt, λq and the definition of an integro-
differential Painlevé II hierarchy. The definition of this new hierarchy though, does not use any more the
Lenard recursion as in the scalar classical case and in the matrix-valued generalization treated in the
previous chapter. It uses instead some recursion operators Lu˘ that remind of the Airault’s construction
[Air79] of the Painlevé II hierarchy that we saw in equation (1.2.27).

Definition 6.0.3. Given a function R2 Q pt, xq ÞÑ fpt|xq, we denote by Dt the ordinary t-derivative and
by D´1

t the t-antiderivative, so that pD´1
t Dtfqpt|xq “ fpt|xq. Now define, for given u “ upt|xq,

pLu`fqpt|xq :“ ipDtfqpt|xq ´ i
@

pD´1
t tu, fuqpt|x, ¨q, u

D

´ 2i
`

D´1
t xu, fy

˘

upt|xq,

pLu´fqpt|xq :“ ipDtfqpt|xq ` i
@

pD´1
t ru, f sqpt|x, ¨q, u

D

,

where the rank two integral operators rα, βs :“ αb β ´ β b α and tα, βu :“ αb β ` β b α have kernels

rα, βspt|x, yq “ αpt|xqβpt|yq ´ βpt|xqαpt|yq, tα, βupt|x, yq “ αpt|xqβpt|yq ` βpt|xqαpt|yq,

and x¨, ¨y denotes the weighted bilinear form

xf, gy :“
ˆ
R
fpt|xqgpt|xqw1pxqdx, w1pxq “

dw
dx pxq.

The relevant integro-differential Painlevé II hierarchy is then defined as a sequence of integro-differential
equations through the recursion operators Lu˘ in the following way.

Definition 6.0.4. For each n P N, the n-th member of the integro-differential Painlevé II hierarchy is
defined, for a function u “ upt|xq, as

´pt` xqupt|xq “
`

pLu`Lu´qnu
˘

pt|xq (6.0.4)

In particular, using the shorthand

u “ upt|xq, u1 “ pDtuqpt|xq, u2 “ pD2
t uqpt|xq, u3 “ pD3

t uqpt|xq, . . .
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the first three members read as

n “ 1 : pt` xqu “ u2 ´ 2uxu, uy, (6.0.5)

n “ 2 : ´pt` xqu “ u4 ´ 4u2xu, uy ´ 8u1xu1, uy ´ 6uxu, u2y ´ 2uxu1, u1y ` 6uxu, uy2, (6.0.6)

n “ 3 : pt` xqu “ u42 ´ 6u4xu, uy ´ 8uxu4, uy ´ 24u3xu1, uy ´ 19u1xu, u3y ´ 13uxu3, u1y

´ 31u2xu2, uy ´ 11uxu2, u2y ´ 25u2xu1, u1y ´ 45u1xu2, u1y ` 15u2xu, uy2

` 55uxu, uyxu2, uy ` 60u1xu1, uyxu, uy ` 25uxu1, u1yxu, uy ` 55uxu1, uy2 ´ 20uxu, uy3.
(6.0.7)

We observe that for the choice of the weight function w1pxq “ δ0pxq (the delta function at x “ 0) the
classical equations (1.2.23), (1.2.24) and (1.2.25) are recovered from the above ones, at least formally.

Remark 6.0.5. Even though the operators Lu˘ involves t-antiderivatives, the members of the hierarchy
(6.0.4) are always local. Indeed all the terms involving D´1

t , are shown to be local.

Remark 6.0.6. The choice of the weight function w enters in the definition of the recursion operators
Lu˘ and thus of the hierarchy (6.0.4) and its solution upt|xq. But the dependence on w of upt|xq is not
underlined in our notation.

Even though the definition of this integro-differential Painlevé II hierarchy is new, equations (6.0.5)
and (6.0.6) already appeared in different papers. With w being the Fermi factor, equation (6.0.5) appeared
in [ACQ11], while both equations (6.0.5), (6.0.6) appeared in this recent work [Kra20] where the author
was studying the Fredholm determinants Dnpt, 1q in relation to some Painlevé II trascendents but without
the underlying Lax pairs. The main statement of this chapter, Theorem 1.2 of [BCT21], is as follows.

Theorem 6.0.7. For every pt, λ, nq P RˆD1p0qˆN, with the closed unit disk D1p0q :“ tλ P C : |λ| ď 1u,

Dnpt, λq “ exp
„

´

ˆ 8
t

ps´ tq

ˆˆ
R
u2ps|xqw1pxqdx

˙

ds


, (6.0.8)

where upt|xq ” upt|x;n, λq is the unique solution of the boundary value problem

´pt` xqupt|xq “
`

pLu`Lu´qnu
˘

pt|xq, upt|xq „ λ
1
2Ai2n`1pt` xq, tÑ `8. (6.0.9)

The mapping t ÞÑ upt|x;n, λq is smooth for any px, λ, nq P R ˆ D1p0q ˆ N, the asymptotic expansion in
(6.0.9) holds pointwise in x P R and we choose an arbitrary fixed branch for λ 1

2 .

Remark 6.0.8. Our Theorem 6.0.7 recovers for n “ 1, λ “ 1 Proposition 1.2 of [ACQ11]. Although the
method used in that paper is completely different from the method we are going to use here. The same
result for that particular choice of the parameters was proved again in [Bot21] using operator-valued
Riemann-Hilbert technique, and this is indeed the paper that mostly inspired our methodology here.
However, we notice that the Riemann-Hilbert problem used in [Bot21], for the case n “ 1, λ “ 1, is
different from the one used here.

The rest of the Chapter is devoted to the proof of Theorem 6.0.7. This requires essentially four steps,
each one treated in the following sections.
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‚ In Section 6.1 we prove the main properties of the finite temperature higher order Airy kernels on
L2pR`q. After that, by using a Fourier technique we prove that the Fredholm determinants Dnpt, λq

are equals to the ones of some new integral operators acting on a bigger space L2pΣq, with Σ the
contour introduced in (6.1.27). In particular these new operators can be considered as an infinite
dimensional versions of the standard integrable operators. This kind of operators can be studied
through operator-valued Riemann-Hilbert problems, and this is done in Section 6.2.

‚ In Section 6.3 we deduce an operator-valued system of differential equations, w.r.t. the complex
parameter ζ and the deformation parameter t, starting from the solution Xpζq of the Riemann-
Hilbert problem 6.2.1. The main ingredient in this computation is the relation proved in Corollary
6.2.13. Moreover, we prove that this system is an operator-valued Lax pair for a coupled system of
Painlevé II type equations, involving the operators U, V defined in (6.2.40) in Section 6.2.

‚ Finally in Section 6.4 we prove that the Lax pair deduced in the previous section, yields the integro-
differential Painlevé II hierarchy (6.0.4). This is obtained from the reduction of the coupled systems
of differential equations for the operators U, V , by looking at their kernels.

Remark 6.0.9. In the work [BCT21] we also derived an expression for the Fredholm determinants
Dnpt, λq similar to equation (6.0.8) but involving instead of upt|xq another function vpt1, t2n`1|xq that
turns out to be a distinguished solution of an integro-differential modified KdV hierarchy. The result is
obtained exactly in the same way as Theorem 6.0.7, but in the case where the weight function w actually
depends on a positive real parameter α. Defining the new variables depending on α, n, t as

t1 :“ αt P R, t2n`1 :“ α2n`1

2n` 1 P R`, (6.0.10)

this new integro-differential modified KdV hierarchy is then defined as

Bv

Bt2n`1
pt1, t2n`1|xq “

ˆ

pLv´Lv`qn
Bv

Bt1

˙

pt1, t2n`1|xq, pt1, t2n`1, xq P Rˆ R` ˆ R. (6.0.11)

The first equation of the hierarchy is written as

Bv

Bt3
“ ´

B3v

Bt31
` 3 Bv

Bt1
xv, vy ` 3v

B

Bv

Bt1
, v

F

, (6.0.12)

where x¨, ¨y denotes the weighted bilinear form as defined previously in Definition 6.0.3. For the exact
statement and its proof we refer to Section 7 of [BCT21].

6.1 Manipulating the finite temperature Airy kernels

First of all, we verify that the Fredholm determinant of the higher order finite temperature Airy
kernels defined in (6.0.8) are well defined on L2pR`q. This is obtained through a classical argument :
we prove that the operator Kt, is obtained as a composition of Hilbert-Schmidt operators on L2pR`q for
every pt, nq P Rˆ N.

Lemma 6.1.1. The operator Kt,n is trace-class on L2pR`q for every pt, nq P Rˆ N.
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Proof. Recall the definition of the kernel of the operator Kt,n given in (6.0.3). We can directly see that
the composition of the two operators Mt,n : L2pRq Ñ L2pR`q and Nt,n : L2pR`q Ñ L2pRq acting as

pMt,nfq pxq “

ˆ
R`

a

wpxqAi2n`1px`y` tqfpyqdy and pNt,ngq pxq “

ˆ
R

Ai2n`1px`y` tqgpyq
a

wpyqdy

(6.1.1)
gives exactly the operator Kt,n “ Nt,nMt,n. It remains then to prove that the operators Nt,n,Mt,n are
both Hilbert-Schmidt. In both cases, we need the following condition to hold

ˆ
R

ˆ
R`
|Ai2n`1px` y ` tq|

2wpxqdydx ă 8. (6.1.2)

The estimate above is essentially obtained by splitting the external integral along R and by using the
asymptotic properties of the n-th Airy function (see for instance equation p30q in [BCT21]). Also, recall
the properties of the weight function wpxq given in Definition 6.0.1. In particular, we use here the fact
that wpxq ď 1 for every x P R and the exponential decay wpxq ď ĉeωx for all p´xq ě x0 ą 0, with ĉ ą 0.
We have
ˆ
R

ˆˆ
R`

ˇ

ˇAi2n`1px` y ` tq
ˇ

ˇ

2 dy
˙

wpxqdx

“

ˆ
R`

˜ˆ
R`

ˇ

ˇAi2n`1px` y ` tq
ˇ

ˇ

2 dy
¸

wpxqdx`
ˆ
R`

˜ˆ
R`

ˇ

ˇAi2n`1p´x` y ` tq
ˇ

ˇ

2 dy
¸

wp´xqdx

ď c

ˆ
R`

ˆ
R`

e´
4n

2n`1 px`y`tq dy dx`
ˆ
R`

ˆ

c`

ˆ x

0

ˇ

ˇAi2n`1p´x` y ` tq
ˇ

ˇ

2dy
˙

wp´xqdx

ď c

«

1`
ˆ
R`

´

1` x 1
2n

¯

wp´xqdx
ff

.

(6.1.3)
Remark that the constant c appearing in the passages above changes from line to line and also it depends
on the parameters t, n.

6.1.1 Some properties of Kt,n

We are now going to prove a couple of properties of the operator Kt,n that will be useful in the
following. Notice that these properties were proved also in the previous chapter for the matrix-valued
analogue of higher order Airy kernels. In particular we have that

1. the operator Kt,n is self-adjoint and such that 0 ă Kt,n ď 1 ;

2. 1´ λKt,n is invertible on L2pR`q for every λ P D1p0q.

The first property yields a probabilistic interpretation for the Fredholm determinantsDnpt, λq. Indeed,
it directly implies (always by applying Theorem 2.1.5 and then Corollary 2.1.9) that for every λ P r0, 1s the
operators λKt,n uniquely defines a determinantal point process and the Fredholm determinant Dnpt, λq

describes the probability distribution of the last particle in this determinantal point process. The second
property is instead fundamental from a technical point view. Indeed, it assures the solvability of the
Riemann-Hilbert problem 6.2.1, as we discuss in Section 6.2.
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Lemma 6.1.2. For every pt, nq P R ˆ N the operator Kt,n is self-adjoint and it satisfies 0 ă Kt,n ď 1.
Moreover, 1´ λKt,n is invertible on L2pR`q for all λ P D1p0q.

Proof. The self-adjointness directly follows from the definition of the kernel of Kt,n in (6.0.3). We have
then to prove the chain of inequality satisfied by Kt,n. To do that, we start by rewriting the kernel of
Kt,n, using the following trick.
From the properties of the weight function wpzq in Definition 6.0.1 and the asymptotic properties of the
n-th Airy function again, we get

dKt,n

dt
px, yq “ ´

ˆ
R

Ai2n`1px` z ` tqAi2n`1py ` z ` tqdσpzq, (6.1.4)

where we just integrated by parts and used the properties recalled above. Here dσpzq “ w1pzqdz and it
is a probability measure. With this in mind, by applying first dominated convergence theorem and then
Fubini’s theorem we can finally express Kt,npx, yq in this new fashion

Kt,npx, yq “ ´

ˆ 8
t

dKs,n

ds
px, yqds “

ˆ
R

ˆ
R`

Ai2n`1py ` z ` t` sqAi2n`1px` z ` t` sqdsdσpzq. (6.1.5)

Using this formulation we see that for every f P L2pR`q, by denoting f`pxq “ fpxqχR`pxq then

xf,Kt,nfyL2pR`q “

ˆ
R

«ˆ 8
z`t

ˇ

ˇ

ˇ

ˇ

ˆ
R
Ai2n`1px` sqf`pxqdx

ˇ

ˇ

ˇ

ˇ

2
ds
ff

dσpzq ě 0, (6.1.6)

thus the first inequality for Kt,n holds. For the other one, we start by replacing in the computation above
the integral representation of the n-th Airy function with R as domain of integration. Then by denoting
with f̌`pyq :“ 1?

2π

´
R e
´ixyf`pxqdx and by gpyq “ ei

y2n`1
2n`1 f̌`p´yq we get

ˆ
R
Ai2n`1px` sqf`pxqdx “

1
?

2π

ˆ
R

exp
ˆ

i

ˆ

y2n`1

2n` 1 ` sy
˙˙

f̌p´yqdy “ ǧp´sq. (6.1.7)

Thus we can replace this computation inside the integral in (6.1.6) and then

xf,Kt,nfyL2pR`q “

ˆ
R

„ˆ 8
z`t

|ǧp´sq|
2 ds



dσpzq ď
ˆ
R

„ˆ
R
|ǧp´sq|

2 ds


dσpzq “ ||ǧ||2L2pRq “ ||g||
2
L2pRq

“ ||f̌`||
2
L2pRq “ ||f`||

2
L2pRq “ xf, fyL2pRq,

(6.1.8)
where we used multiple times the Plancharel’s theorem and that dσ is a probability measure. Therefore,
also the second inequality for Kt,n holds. Furthermore, this implies that in the L2pR`q operator norm we
also have that ||Kt,n|| ď 1. This last condition also assures the invertibility on L2pR`q of 1 ´ λKt,n for
any λ having |λ| ă 1.
For the case in which |λ| “ 1, we proceed by contradiction. Suppose that there exists a nonzero function
f P L2pR`q such that λKt,nf “ f for λ “ eiθ and some θ P r0, 2πq . In turn we have

e´iθxf,Kt,nfyL2pR`q “ xf, e
iθKt,nfyL2pR`q “ ||f ||L2pR`q ą 0 (6.1.9)
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thus θ is forced to be zero. Furthermore, the equations above imply that all the sequence in (6.1.8) is
actually composed by identities. In particular

ˆ
R

„ˆ 8
z`t

|ǧp´sq|
2 ds



dσpzq “ ||ǧ||L2pRq “

ˆ
R
|ǧp´sq|2ds, (6.1.10)

that yields

@ t P R :
ˆ
R

„ˆ z`t

´8

|ǧnp´sq|
2 ds



dσpzq “ 0. (6.1.11)

Since dσ is an absolutely continuous positive Borel measure, this implies automatically that
ˆ y

´8

|ǧnp´sq|
2 ds “ 0 a.e.. (6.1.12)

Thus ǧp´yq “ 0 a.e. and by recalling the definition of the function ǧpyq we obtain

ǧp´yq “

ˆ
R

Ai2n`1px` yqfpxqdx “ 0 a.e.. (6.1.13)

Since the integral in the left hand side of the above equation is a continuous function in y and as a
byprouduct an entire function. Hence we conclude that ǧpzq “ 0 for every z P C and this implies that
f ” 0 in L2pRq. This contradicts the initial assumption, and thus we have that 1 ´ λKt,n is injective
for λ with unitary norm. By Fredholm alternative then 1 ´ λKt,n is invertible in the same range of the
parameter λ.

Corollary 6.1.3. For every pt, λ, nq P Rˆr0, 1sˆN there exists a unique determinantal point process with
correlation kernel λKt,n and the distribution function of the last particle in this process equals Dnpt, λq.

As underlined before, this follows directly from Lemma 6.1.2, together with the classical results recalled
in Chapter 2, namely Theorem 2.1.5 and Corollary 2.1.9.

6.1.2 From L2pR`q to L2pΣq

This last subsection is perhaps the core of the entire section, since we are going to explain how to
associate an operator-valued Riemann-Hilbert problem to the higher order finite temperature Airy kernels
Kt,n. The main idea is to manipulate the kernel of Kt,n through the conjugation of bounded invertible
operators, in order to obtain a new integral operator on an enlarged space L2pΣq that has the same
Fredholm determinant Dnpt, λq of Kt,n.

Here are resumed the fundamental steps of this procedure

1. First, we consider the operator λKt,nχR` on L2pRq, which has Fredholm determinant Dnpt, λq.

Moreover, this operator is shown to be equal, up to conjugation by the Fourier transform and a
multiplication operator, to another trace-class operator called λJt,n on L2pRq. Thus we also have
that the Fredholm determinant of this new operator Jt,n is expressed by Dnpt, λq.

2. The operator Jt,n is explicitly factorized in two Hilbert-Schmidt operators At,n,Bn on L2pRq.
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<z

=z π
2n`1

2nπ
2n`1Γα

Γβ

Figure 6.1 – An admissible (and very simple) choice for the integration paths Γα and Γβ in (6.1.15),
ensuring throughout 0 ă =pα´ βq ă ω

2 and =β ă 0 for pα, βq P Γα ˆ Γβ .

3. We can then consider Jt,n as an operator J ˝
t,n on L2pΓαq for Γα some line in the complex plane

parallel to the real line and sufficiently closed to it. The factorization of Jt,n is in some way preserved
for J ˝

t,n on L2pΓαq, through operators A˝t,n,B˝n properly redefining domain and codomain of the
operators At,n,Bn. Again, λJ ˝

t,n is trace-class and its Fredholm determinant coincides withDnpt, λq.

4. Finally all these operators J ˝
t,n,A˝t,n,B˝n can be extended on a bigger space L2pΣq for Σ a prescribed

contour on the complex plane containing the line Γα, as J ext
t,n ,Aext

t,n ,Bext
n . On L2pΣq the operator

J ext
t,n is still trace-class and factorized through the Hilber-Schmidt operators Aext

t,n ,Bext
n . But now

these last two operator are trace-class too on L2pΣq with zero operator trace and they are also
nilpotent.

5. With these properties of Aext
t,n ,Bext

n , we can directly conclude the aimed relation

Dnpt, λq “ detp1´ λ 1
2Ct,nq, (6.1.14)

for Ct,n “ Aext
t,n ` Bext

n . The operator Ct,n obtained in this way has kernel explicitly written in
equation (6.1.32), in an infinite dimensional integrable form.

The starting point of all these manipulations is, again, the integral representation of the n-th Airy
function, that we already used during some proofs in the previous chapter. In this case we are going to
use both its integral representations

Ai2n`1pxq “
1

2π

ˆ
Γα
eiψnpxq “

1
2π

ˆ
Γβ
e´iψnpxq, with ψnpxq “

λ2n`1

2n` 1 ` λx (6.1.15)

where Γα, resp. Γβ , denotes any smooth contour oriented from 8eia to 8eib, resp. 8eic to 8eid, with

a P

ˆ

2nπ
2n` 1 , π



and b P

„

0, π

2n` 1

˙

, resp. c P

ˆ

π,
p2n` 2qπ

2n` 1

˙

and d P

ˆ

p4n` 1qπ
2n` 1 , 2π

˙

,

such that 0 ă =pα ´ βq ă ω
2 and =β ă 0 is satisfied for α P Γα and β P Γβ with ω ą 0 as in (6.0.1),

see Figure 6.1 below for a possible choice. These constraints for the contours implies in turn from (6.0.1)
that

@ pα, βq P Γα ˆ Γβ : lim
zÑ`8
zPR

eizpα´βqwpzq “ 0, lim
zÑ´8
zPR

eizpα´βqwpzq “ 0.

We now replace the integral representation of the n-th Airy function inside the definition (6.0.3) of the
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kernel of Kt,n.

Kt,npx, yq “
1

p2πq2

ˆ
Γα

ˆ
Γβ

eipψnpα,x`tq´ψnpβ,y`tqq
„ˆ

R
eizpα´βqwpzqdz



dβdα

“
i

p2πq2

ˆ
R

«ˆ
Γα

ˆ
Γβ

eiψnpα,x`z`tqe´iψnpβ,z`y`tq dβ dα
α´ β

ff

dσpzq

where in the last passage we integrated by parts and we used the asymptotic behaviors of the n-th Airy
function. Now, as previously explained we are going to consider the operator Kt,nχR` on L2pRq, keeping
in mind that

Dnpt, λq “ detp1´ λKt,nχR` |L2pRqq. (6.1.16)

Using the following integral identity (see also Lemma 2.2 in [BB20] for a similar one)

´
1

2πi

ˆ
R

e´iypγ´βq dγ
γ ´ β

“ χR`pyq, for β P Γβ , y P Rzt0u (6.1.17)

inside the computation for Kt,npx, yq, choosing Γα “ R, we obtain

Kt,npx, yqχR`pyq “

ˆ
R

ˆ
R

eixα
?

2π

«

1
p2πq2

ˆ
R

ˆ
Γβ

eiψnpα,z`tqe´iψnpβ,z`tq

pα´ βqpβ ´ γq
dβ dσpzq

ff

“:Lt,npα,γq

e´iyγ
?

2π
dα dγ, (6.1.18)

just by using Fubini’s theorem. Thus we conclude that FKt,nχR`F´1 “ Lt,n where Lt,n is the integral
operator on L2pRq with kernel Lt,n denoted above and F is the standard Fourier transform extended
unitarly to L2pRq.

Remark 6.1.4. The operator Lt,n is trace-class on L2pRq through general trace ideal properties.

Definition 6.1.5. We consider the multiplication operator Pn : L2pRq Ñ L2pRq that acts by multiplying
by the function e´ i

2ψnpα,0q.

This multiplication operator is used in order to construct another integral operator from Lt,n as
follows.

Definition 6.1.6. We consider the integral operator Jt,n : L2pRq Ñ L2pRq defined by conjugation for
Pn of Lt,n, namely

Jt,n :“ PnLt,nP´1
n (6.1.19)

By abstract trace ideal reasoning, since the operator Pn is bounded in L2pRq we can conclude that
the operator Jt,n is trace-class on L2pRq. We can then state and prove the following proposition about
the Fredholm determinant Dnpt, λq.

Proposition 6.1.7. For every pt, λ, nq P Rˆ Cˆ N, on L2pRq,

1´ λKt,nχR` “ F´1P´1
n p1´ λJt,nqPnF ,
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with the bounded linear operators F ,Pn and Jt,n on L2pRq defined as above. In particular we record the
determinant identity

Dnpt, λq “ detp1´ λJt,n|L2pRqq. (6.1.20)

Proof. The operator identity as been proved with the reasoning above. The determinant identity (6.1.20)
is obtained by using the operator identity and by applying the Sylvester’s identity (see for instance
equation (5.9) of Chapter IV in [Goh00]).

Before to go ahead, we need some other property of the integral operator Jt,n. In particular, we see
that this operator is explicitly factored in two Hilbert-Schmidt operators.

Proposition 6.1.8. The integral operator Jt,n is factored as Jt,n “ At,nBn where At,n : L2pΓβq Ñ
L2pRq, and Bn : L2pRq Ñ L2pΓβq have kernels

At,npα, βq :“ 1
2π

e i
2ψnpα,2tq´

i
2ψnpβ,2tq

α´ β

„ˆ
R

eizpα´βq dσpzq


, Bnpβ, γq :“ 1
2π

e´ i
2ψnpβ,0q`

i
2ψnpγ,0q

β ´ γ
.

(6.1.21)

Proof. Recall that Jt,n “ PnLt,nP´1
n and that Lt,n has kernel

Lt,npα, γq “
1

p2πq2

ˆ
R

ˆ
Γβ

eiψnpα,z`tqe´iψnpβ,z`tq

pα´ βqpβ ´ γq
dβ dσpzq. (6.1.22)

Thus we can write down the kernel of Jt,n as

Jt,npα, γq “
1

p2πq2

ˆ
Γβ

e i
2ψnpα,2tq´

i
2ψnpβ,2tq

α´ β

„ˆ
R

eizpα´βq dσpzq


e´ i
2ψnpβ,0q`

i
2ψnpγ,0q

β ´ γ
dβ, (6.1.23)

so that Jt,n “ At,nBn with At,n,Bn having kernels as in (6.1.21).

We are now ready to construct the extension of the operator Jt,n on some bigger space L2pΣq. To
start with, we first look at the operator J ˝

t,n as an operator on L2pΓαq, for Γα some line in the upper
complex plane parallel to the real line. This leaves untouched the Fredholm determinant.

Proposition 6.1.9. Let Γα denote the reflection of Γβ across the real axis fixing Γβ :“ R ´ i∆ with
0 ă ∆ ă ω

2 . Now define J ˝
t,n : L2pΓαq Ñ L2pΓαq as

pJ ˝
t,nfqpξq :“

ˆ
Γα

Jt,npξ, ηqfpηqdη, f P L2pΓαq,

with kernel Jt,npξ, ηq given in (6.1.23). Then J ˝
t,n is trace class on L2pΓαq and we have the equality

Dnpt, λq “ detpI ´ λJ ˝
t,n|L2pΓαqq, pt, λ, nq P Rˆ Cˆ N. (6.1.24)

Proof. First notice that the operator J ˝
t,n is well defined on L2pΓαq since ΓαXΓβ “ H. Moreover, we can

re-define operators A˝t,n : L2pΓβq Ñ L2pΓαq and B˝n : L2pΓαq Ñ L2pΓβq having the same kernels (6.1.21)
and they are still Hilbert-Schmidt operators. We also have J ˝

t,n “ A˝t,nB˝n so that J ˝
t,n is still trace-class
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<z

=z

Γα
Γβ

2ω

Figure 6.2 – Our choice for Γα,β with 0 ă ∆ “ distpΓα,Rq “ distpΓβ ,Rq ă ω
2 .

on L2pΓαq.
Finally in order to obtain the identity for the Fredholm determinant Dnpt, λq, we observe that for every
m P N

Tr
L2pRq

Jm
t,n “ Tr

L2pΓαq
Jm
t,n. (6.1.25)

Since Jt,npα, γq is analytic in a neighborhood of pα, γq P Γα ˆ Γα, and

Tr
L2pRq

Jm
t,n “

ˆ
R
¨ ¨ ¨

ˆ
R
Jt,npζ1, ζ2q ¨ . . . ¨ Jt,npζm´1, ζmqJtpζm, ζ1qdζ1 ¨ ¨ ¨ dζm (6.1.26)

we can recursively replace Γα instead of R in each one of the integrals above and conclude (6.1.25). By
using the Plemelj-Smithies formula (see for instance Theorem 3.1 in Chapter II of [Goh00]) the identity
(6.1.24) then holds.

We now fix the contour Σ in the complex plane as the disjoint union of the horizontal lines, namely

Σ :“ R\ Γβ \ Γα (6.1.27)

where Γβ :“ R´ i∆, with 0 ă ∆ ă ω
2 , and Γα is the reflection of Γβ upon the real line, as in Figure 6.2.

Since Σ contains in particular the line Γα, we can extend the operator J ˝
t,n to the bigger space L2pΣq.

We define

J ext
t,n : L2pΣq Ñ L2pΣq, pJ ext

t,n fqpξq “

ˆ
Σ
Jext
t,n pξ, ηqfpηqdη, Jext

t,n pξ, ηq :“ Jt,npξ, ηqχΓαpξqχΓαpηq,

(6.1.28)
Remark that, again, the extension leaves Dnpt, λq invariant, so that we have

Dnpt, λq “ detp1´ λJ ext
t,n |L2pΣqq. (6.1.29)

Also remark that J ext
t,n can be factored in a similar way as before J ext

t,n “ Aext
t,nBext

n , where now

Aext
t,n : L2pΣq Ñ L2pΣq, pAext

t,nfqpξq “

ˆ
Σ
Aext
t,npξ, ηqfpηqdη, Aext

t,npξ, ηq :“ At,npξ, ηqχΓαpξqχΓβ pηq,

Bext
n : L2pΣq Ñ L2pΣq, pBext

n gqpηq “

ˆ
Σ
Bext
n pη, ζqgpζqdζ, Bext

n pη, ζq :“ Bnpη, ζqχΓβ pηqχΓαpζq.
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Moreover, thanks to their construction the operators Aext
t,n ,Bext

n on L2pΣq gain many properties, listed
below, with respect to their previous versions.

Lemma 6.1.10. The operators Aext
t,n , B

ext
n : L2pΣq Ñ L2pΣq have the following properties

1. they are trace class on L2pΣq for every pt, nq P Rˆ N ;

2. they have zero operator trace ;

3. they are nilpotent.

Proof. We prove the first property first. To see that Aext
t,n ,Bext

n are both trace-class on L2pΣq we find for
both a factorization in terms of Hilbert-Schmidt operators. For what concerns Bn, we use the following
trick. By residue theorem, for every pγ, βq P Γα ˆ Γβ , we have

´
1

2πi

ˆ
R

dδ
pγ ´ δqpδ ´ βq

“
1

γ ´ β
.

Replacing it in the kernel of Bn using (6.1.21) we get

Bext
n pβ, γq “ ´

i
p2πq2

ˆ
R

e´ i
2ψnpβ,0q`

i
2ψnpγ,0q

pγ ´ δqpδ ´ βq
dδ χΓβ pβqχΓαpγq. (6.1.30)

and this can seen as the composition Bext
n “ Bext

n,1Bext
n,2 where Bext

n,j : L2pΣq Ñ L2pΣq have Hilbert-Schmidt
kernels

Bext
n,1pβ, δq :“ ´ i

2π
e´ i

2ψnpβ,0q

β ´ δ
χΓβ pβqχRpδq, Bext

n,2pδ, γq :“ 1
2π

e i
2ψnpγ,0q

δ ´ γ
χRpδqχΓαpγq.

For what concerns Aext
t,n instead, just integrating by parts (6.1.21) we get

Aext
t,npα, βq “ ´

i
2π

ˆ
R

e i
2ψnpα,2tq´

i
2ψnpβ,2tqeizpα´βqwpzqdz χΓαpαqχΓβ pβq

and thus Aext
t,n “ Aext

t,n,1Aext
t,n,2 where Aext

t,n,j : L2pΣq Ñ L2pΣq have Hilbert-Schmidt kernels

Aext
t,n,1pα, zq :“ ´ i

2π e i
2ψnpα,2tq`izα

a

wpzqχΓαpαqχRpzq, Aext
t,n,2pz, βq :“ e´ i

2ψnpβ,2tq´izβ
a

wpzqχRpzqχΓβ pβq.

Finally the last two properties directly comes from the fact that Γα X Γβ “ H. Indeed, the operator
traces are computed as

Tr
L2pΣq

Aext
t,n “

ˆ
Σ
Aext
t,npz, zqdz “ 0, Tr

L2pΣq
Bext
n “

ˆ
Σ
Bext
n pz, zqdz “ 0.

And we have that for every pξ, ζq P Σˆ Σ

`

Aext
t,n

˘2
pξ, ζq “ At,npξ, ηqχΓαpξqχΓβ pηqAt,npη, ζqχΓαpηqχΓβ pζq “ 0 thus

`

Aext
t,n

˘2
“ 0 on L2pΣq,

and the same is true for Bext
n .
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Lemma 6.1.11. For every pt, λ, nq P Rˆ Cˆ N, we have on L2pΣq,

`

I ` λ
1
2 Aext

t,n

˘`

I ´ λ
1
2 pAext

t,n ` Bext
n q

˘`

I ` λ
1
2 Bext

n

˘

“ I ´ λAext
t,nBext

n “ I ´ λJ ext
t,n ,

with an arbitrary, but throughout fixed, branch for λ 1
2 .

Proof. By direct computation, using the nilpotency of the operators Aext
t,n ,Bext

n .

With this operator identity in mind, we can finally prove the final result of this section. We are going
to express Dnpt, λq as the Fredholm determinant of a suitable operator on L2pΣq, that is the operator
Ct,n with kernel written in equations (6.1.32), (6.1.33).

Proposition 6.1.12. For every pt, λ, nq P Rˆ Cˆ N,

Dnpt, λq “ detpI ´ λ 1
2Ct,n|L2pΣqq, (6.1.31)

where Ct,n :“ Aext
t,n ` Bext

n : L2pΣq Ñ L2pΣq is trace class and has kernel of the form

pξ ´ ηqCt,npξ, ηq “

ˆ
R

´

k1pξ|zqm1pη|zq ` k2pξ|zqm2pη|zq
¯

dσpzq, (6.1.32)

where ki,mi for i “ 1, 2 are the functions parametrically depending on ζ P Σ, defined as

k1pζ|yq :“ 1
2π e i

2ψnpζ,2t`2yqχΓαpζq, k2pζ|yq :“ 1
2π e´ i

2ψnpζ,0qχΓβ pζq, m1pζ|xq :“ e´ i
2ψnpζ,2t`2xqχΓβ pζq,

m2pζ|xq :“ e i
2ψnpζ,0qχΓαpζq,

(6.1.33)
and with ψnpζ, zq :“ ζ2n`1

2n`1 ` zζ, as before.

Proof. First of all, notice that Ct,n is trace-class on L2pΣq since it is the sum of two trace-class operators
on the same space. Then, by using properties 1, 2 of Lemma 6.1.10 and the Plemelj-Smithies formula we
compute the following determinant

detp1` λAext
t,n |L2pΣqq “ exp

˜

´

8
ÿ

k“1
p´1qk λ

k

k
Tr

L2pΣq
pAext

t,nq
k

¸

“ 1. (6.1.34)

With the same reasoning, we obtain also detp1 ` λBn|L2pΣqq “ 1. Finally, by using the factorization
identity (p3.10q in [Sim05]) and recalling (6.1.29), identity (6.1.31) is obtained.

We finally proved the relation between the Fredholm determinant of the finite temperature n-th order
Airy kernel Dnpt, λq and the Fredholm determinant of the operator Ct,n, that can be thought as an
infinite dimensional version of an integrable operator. Indeed, compare the equation describing the kernel
of Ct,n (6.1.32) with the classical one for IIKS integrable operators (3.2.1) : the structure is the same but
an integral now replaces the symbol of summation in the right hand side.
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6.2 Finite temperature operators and operator-valued Riemann-
Hilbert problems

In this section we introduce the main tool to handle the Fredholm determinant of operators as Ct,n :
the operator-valued Riemann-Hilbert problems. In the present literature there are just a few examples of
studies involving operator-valued Riemann-Hilbert problems. They can be found in the two papers [IK16,
IS99] and then they were used very recently in the review [Bot21], where the author recovered, through a
Riemann-Hilbert approach, the Tracy-Widom formula for the finite temperature Airy kernel with n “ 1,
previously discovered in [ACQ11]. Following this approach, we define and study some operator-valued
Riemann-Hilbert problems that are now related to the operators Ct,n.

6.2.1 First definitions and statement of the relevant operator-valued Riemann-
Hilbert problem

Essentially, an operator-valued Riemann-Hilbert problem is determined as before by a pair pΣ, Gq
where now the jump matrix Gpζq is a matrix whose entries take values in a particular operator space for
any value ζ P Σ. To start with, we are going to define the operator space that is relevant in this case,
thus we first have to introduce the following functional space. Recall that we fixed a weight function w
as in Definition 6.0.1, so that dσpxq “ w1pxqdx, is a probability measure on the real line.
In the following definition we adopt the same notation of [Bot21].

Definition 6.2.1. Let p ě 1. We use the below abbreviations for the relevant functional and operator
spaces.

1. The Hilbert space

Hp :“
p
à

j“1
L2pR,dσq “

 

f “ pf1, . . . , fpq
J P Cpˆ1 : fj P L2pR,dσq

(

equipped with its standard inner product and associated norm.

2. The space L2pR,dσ;Cpˆpq of pˆp matrix-valued functions with entries in L2pR,dσq, equipped with
the induced Frobenius integral norm.

3. The space IpHpq of Hilbert-Schmidt integral operators on Hp of the form

pKfqpxq “
ˆ
R

Kpx, yqfpyqdσpyq,

with kernel Kpx, yq P L2pR2,dσ b dσ;Cpˆpq.

The operator space of interest for our Riemann-Hilbert problem is the space of integral operators
IpH2q. This means that we can also see both the jump matrix and the solution of this Riemann-Hilbert
problem as 2 ˆ 2 matrices with entries that are integral operators acting on H1 with kernels in the
functional space L2pR2,dσ b dσq.
We are now going to state the operator-valued Riemann-Hilbert problem that is related to our infinite
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dimensional integrable operator, i.e. the operator Ct,n acting on L2pΣq with kernel of the form (6.1.32),
(6.1.33).

Remark 6.2.2. The structure of the Riemann-Hilbert problem stated below, i.e. its jump condition
and its asymptotic condition could be used also in order to study other integral operators having kernel
of the same form of Ct,n but with different functions ki,mi and different contour Σ. Moreover, in the
forthcoming work [Boton], the author intends to show that there is an entire class of suitable weighted
Hankel composition operators (in which Kt,n fits) that can be studied through Riemann-Hilbert problems
of the same type of the following. This “canonical” association to Riemann-Hilbert problems will no
longer depend on the “integrable” shape that the kernel of the operator should have (even after proper
manipulation as conjugation by bounded invertible operators, as we did for Kt,n in the previous section).

We first construct the operator-valued jump matrix that will be used in the Riemann-Hilbert problem,
building it up entry by entry.

Definition 6.2.3. For i, j “ 1, 2 let Mipζq bKjpζq P IpH1q, denote the Σ Q ζ-parametric family of rank
one integral operators with kernels

`

Mipζq bKjpζq
˘

px, yq :“ mipζ|xqkjpζ|yq, x, y P R,

defined in terms of the Σ Q ζ-parametric family of functions ki,mi defined in (6.1.33).

Remark 6.2.4. We underline the following three facts, that will be used later on.

‚ All the operators Mipζq b Kjpζq also depend on the parameters pt, nq P R ˆ N, but we do not
highlight this in our notation.

‚ These integral operators acts on some function f P H1 as follows : by multiplying by the corres-
pondent functions mipη|xq and by integrating fpyq against the kernel kjpζ|yq.

‚ Since the contours Γα and Γβ are disjoint, it follows by (6.1.33) that the kernels

M1pζq bK1pζqpx, yq “ 0 “M2pζq bK2pζqpx, yq, (6.2.1)

thus the correspondent operators are zero too.

The analogue of the jump matrixG involved in the standard Riemann-Hilbert problem 3.1.1 is replaced
here by the following operator G.

Definition 6.2.5. The integral operator Gpζq acting on H2 is defined for every ζ P Σ as

Gpζq “ I2 ` 2πiλ 1
2

«

M1pζq bK1pζq M1pζq bK2pζq

M2pζq bK1pζq M2pζq bK2pζq

ff

“ I2 `G0pζq, (6.2.2)

where I2 denotes the identity operator on H2, and the branch of λ 1
2 is fixed.

Finally we consider the below IpH2q-valued Riemann-Hilbert problem, the central operator-valued
Riemann-Hilbert problem of this work.
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Riemann-Hilbert Problem 6.2.1. Given pt, λ, nq P R ˆ D1p0q ˆ N, determine an integral operator
Xpζq “ Xpζ; t, λ, nq such that

(1) Xpζq “ I2 `X0pζq and X0pζq P IpH2q with kernel X0pζ|x, yq analytic in CzΣ.

(2) X0pζq admits continuous boundary values X0˘pζq P IpH2q on Σ, oriented as shown in Figure 6.2,
such that X˘pζq “ I2 `X0˘pζq satisfy

X`pζq “ X´pζqGpζq. (6.2.3)

(3) There exists c “ cpn, tq ą 0 such that for ζ P CzΣ,

}X0pζ|x, yq} ď
c
a

|λ|

1` |ζ| ∆´ 1
4n e´

p´1qn∆
2p2n`1q∆

2n
e∆p|x|`|y|`|t|q, ∆ :“ distpΓα,Rq “ distpΓβ ,Rq ą 0,

(6.2.4)
uniformly in px, yq P R2 and λ P D1p0q.

We notice that the structure of the Riemann-Hilbert problems 3.1.1 and 6.2.1 are exactly the same,
with the only difference that in the last one we specified the asymptotic condition Xpζq „ I2 for |ζ| Ñ 8

by requiring a particular condition on the operator norm of the operator X0.

While for the standard matrix-valued Riemann-Hilbert problems 3.1.1 the request of finding a matrix-
valued function analytic outside the prescribed contour and with continuous boundary values along the
contour itself does not need further explanation, for the operator-valued Riemann-Hilbert problem 6.2.1
the same requests are demanded now for an operator-valued function Xpζq P IpH2q and we need to revise
their precise meaning. In the following definitions we adopt the same notation of [Bot21].

Definition 6.2.6. We say that an operator Kpζq P IpH2q with kernel Kpζ|x, yq is analytic in ζ P Ω a
subset of C, if

1. for any px, yq P R2, the map ζ ÞÑ Kpζ|x, yq is analytic in Ω.

2. for any ζ P Ω, the map px, yq ÞÑ Kpζ|x, yq is in L2pR2,dσ b dσ;C2ˆ2q.

Furthermore, if Σ Ă Ω Ă C is an oriented contour consisting of a finite union of smooth oriented
curves in CP1 with finitely many self-intersections (as it is indeed the case for us), then the continuity of
the boundary values of Kpζq along Σ is defined as follows.

Definition 6.2.7. We say that an analytic in ζ P ΩzΣ operator Kpζq P IpHpq admits continuous
boundary values K˘pζq P IpHpq on Σ with kernels K˘pζ|x, yq if

(1) for any px, yq P R2, the map ζ ÞÑ K˘pζ|x, yq is continuous on Σ.

(2) for any px, yq P R2, the non-tangential limits

lim
λÑζ

Kpλ|x, yq “ K˘pζ|x, yq, λ P ˘ side of Σ at ζ

exist.

With these two last definitions in mind, the statement of the Riemann-Hilbert problem 6.2.1 is now
clarified and the next step is to find out whether a solutions exists and whether it is unique.
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6.2.2 Existence and uniqueness of the solution of the Riemann-Hilbert pro-
blem

In the following we are going to prove that the solution of the Riemann-Hilbert problem 6.2.1 exists
and is unique. Furthermore, we are going to prove that it has an integral representation very similar
to the one that is known for the generic matrix-valued Riemann-Hilbert problem 3.1.1 from Theorem
3.2.6. We start with the proof of uniqueness of the solution of the Riemann-Hilbert problem 6.2.1. We
anticipate that the technique used reminds of the one used in the standard matrix case. Also, notice that
the third point in Remark 6.2.4 will be fundamental in the proof.

Theorem 6.2.8. Whether the solution of the Riemann-Hilbert problem 6.2.1 exists, it is unique.

Proof. Suppose that a solution Xpζq “ I2 `X0pζq P I2 ` IpH2q of the Riemann-Hilbert problem 6.2.1
exists. We start by proving that the solution is invertible. To do that, consider on the space H2 the
following Fredholm determinant

dpζq :“ detpI2 `X0pζqq, ζ P CzΣ. (6.2.5)

For ζ in this domain the Fredholm determinant is well-defined (thanks to the asymptotic condition (6.2.4))
and also analytic in ζ, since we required X0pζq to be analytic away from Σ. For ζ P Σ we can use the
continuous boundary values of the solution Xpζq in order to define the non-tangential boundary values
of the function dpζq

d˘pζq “ detpX˘pζqq, ζ P Σ. (6.2.6)

We can do the same construction for the operator-valued jump matrix Gpζq “ I2 `G0pζq, defined for
ζ P Σ. Indeed, G0pζq P IpH2q is trace class and its operator norm can be estimated as follows

}G0pζ|x, yq} ď c
a

|λ| e´
p´1qn∆
2n`1 ∆2n

e∆p|x|`|y|`|t|q, c “ cpnq ą 0. (6.2.7)

Thus by the Hadamard’s inequality, the Fredholm determinant gpζq :“ detpI2 `G0pζqq exists for ζ P Σ.
Moreover, by using Remark 6.2.4 we conclude that

Tr
H2

G0pζq “ 0 and pG0pζqq
2 “ 0. (6.2.8)

Thus, expressing gpζq through the Plemelj-Smithies formula (see for instance Theorem 3.1 in Chapter II
of [Goh00]) we conclude that gpζq “ 1 for all ζ P Σ. Finally, the multiplicativity of Fredholm determinants
applied on the jump condition (6.2.3) yields

d`pζq “ d´pζq, ζ P Σ. (6.2.9)

that assures that the function dpζq is actually entire. Moreover, since dpζq Ñ 1 for ζ Ñ 8 from the
asymptotic condition (6.2.4), we conclude by the generalized Liouville theorem that dpζq ” 1. In particular
Xpζq is invertible for ζ P CzΣ and so are their boundary values X˘pζq for ζ P Σ.
Suppose now that there are two solutions X1pζq,X2pζq of the Riemann-Hilbert problem 6.2.1. We can

97



Chapter 6 – The integro-differential Painlevé II hierarchy

then consider the following integral operator on H2

Ypζq :“ X1pζqpX2pζqq
´1, ζ P CzΣ. (6.2.10)

For ζ in this domain the operator is analytic and for ζ P Σ it admits continuous boundary values Y˘pζq.

Moreover for ζ P Σ we actually have that Y`pζq “ Y´pζq, meaning that the kernel of this operator Ypζq
is actually an entire function in ζ. Finally, by using that Ypζq Ñ I2 for ζ Ñ 8, again thanks to the
Liouville theorem we conclude that Ypζq ” I2, i.e. X1pζq “ X2pζq identically in ζ.

We are now going to prove that a solution for the Riemann-Hilbert problem 6.2.1 exists and it admits
a convenient contour integral representation. As it arose out in Theorem 3.2.6 for the matrix-valued case,
also in this operator-valued case the existence of the solutions Xpζq completely relies on the invertibility
of the operator 1 ´ λ

1
2Ct,n on L2pΣq. This last condition indeed holds for any pt, λ, nq P R ˆ D1p0q ˆ N

and the proof follows from Lemma 6.1.2 together with Proposition 6.1.12 both proved in the previous
section.

Theorem 6.2.9. For every pt, λ, nq P Rˆ D1p0q ˆ N consider the integral operator on H2

Xpζq “ I2 ` λ
1
2

ˆ
Σ

«

N1pηq bK1pηq N1pηq bK2pηq

N2pηq bK1pηq N2pηq bK2pηq

ff

dη
η ´ ζ

, ζ P CzΣ, (6.2.11)

where Nipηq are the operators on H1 which multiply by the functions nipη|xq determined via the integral
equation on L2pΣq

`

I ´ λ
1
2C˚t,n

˘

nip¨|xq “ mip¨|xq, i “ 1, 2, (6.2.12)

with x P R and the real adjoint C˚t,n of Ct,n.
Then (6.2.11) solves the Riemann-Hilbert problem 6.2.1.

Proof. As noticed before, the right hand side of (6.2.11) exists if and only if the solution of the integral
equation (6.2.12) exists. This is indeed the case as it follows from Lemma 6.1.2 together with Proposition
6.1.12. With this in mind, we prove that the right hand side of (6.2.11) actually satisfies the three requests
in the Riemann-Hilbert problem 6.2.1.
For the first request : we start by observing that each entry of the operator X0pζq in the right hand side
of (6.2.11) is an integral operator with nontrivial kernel

Xij
0 pζ|x, yq “ λ

1
2

ˆ
Σ
nipη|xqkjpη|yq

dη

η ´ ζ
, px, yq P R2, ζ R Σ. (6.2.13)

In order to prove the first condition of the Riemann-Hilbert problem 6.2.1, we have to prove that these
kernels are analytic for ζ R Σ and that px, yq Ñ Xij

0 pζ|x, yq is in L2pR2,dσ b dσq (following Definition
6.2.6).
For the second part, remark that

}nip¨|xq}L2pΣq ď c}mip¨|xq}L2pΣq, c “ cpn, tq ą 0, i “ 1, 2, (6.2.14)
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thanks to the fact that the resolvent operator is bounded. Thus, by using the definition of the functions
mi, kj in (6.1.33), the definition of the contour Σ and the Cauchy-Schwartz inequality we estimate

ˇ

ˇXij
0 pζ|x, yq

ˇ

ˇ ď
c
a

|λ|

distpζ,Σq∆
´ 1

4n e´
p´1qn∆
2p2n`1q∆

2n
e∆p|x|`|y|`|t|q, c “ cpn, tq ą 0, i, j “ 1, 2. (6.2.15)

Therefore px, yq Ñ Xij
0 pζ|x, yq is indeed in the space L2pR2,dσ b dσq for every ζ R Σ. For what concerns

the analyticity property : we first observe that for every px, yq the function η Ñ nipη|xqkjpη|yq is Holder
continuous and thus its Cauchy transform, by the Plemelji-Sokhotoski theorem, is analytic for ζ R Σ and
so it is Xij

0 pζq for each i, j “ 1, 2. Thus the first condition of Riemann-Hilbert problem 6.2.1 is satisfied
by the right hand side of formula (6.2.11). Thanks to estimate (6.2.15) also the asymptotic condition
(6.2.4) is satisfied by the right hand side of formula (6.2.11).
We only have to prove that the jump condition (6.2.3) is satisfied by the right hand side of formula
(6.2.11). First of all, remark that the boundary values X˘pζq exist and are Holder-continuous for ζ P Σ,
thanks to the properties of the Cauchy transforms, and they are both in the space I2`IpH2q. In order to
check that X˘pζq satisfies the jump condition (6.2.3), we start by applying the property of the Cauchy
transform ( C` ´ C´ “ Id ) to (6.2.11) and we deduce

X`pζq ´X´pζq “ 2πiλ 1
2

«

N1pζq bK1pζq N1pζq bK2pζq

N2pζq bK1pζq N2pζq bK2pζq

ff

, ζ P Σ. (6.2.16)

We then compute the composition of operators X´pζqGpζq by using their definitions (6.2.11), (6.2.2)

X´pζqGpζq “ X´pζq

˜

I2 ` 2πiλ 1
2

«

M1pζq bK1pζq M1pζq bK2pζq

M2pζq bK1pζq M2pζq bK2pζq

ff¸

“ X´pζq ` 2πiλ 1
2

˜

I2 ` λ
1
2

ˆ
Σ

«

N1pηq bK1pηq N1pηq bK2pηq

N2pηq bK1pηq N2pηq bK2pηq

ff

dη
η ´ ζ´

¸

˝

«

M1pζq bK1pζq M1pζq bK2pζq

M2pζq bK1pζq M2pζq bK2pζq

ff

.

(6.2.17)

Now, looking at the definition of the kernel of the operator Ct,n in equation (6.1.32) and using general
theory of rank 1 integral operators we have that

«

N1pηq bK1pηq N1pηq bK2pηq

N2pηq bK1pηq N2pηq bK2pηq

ff«

M1pζq bK1pζq M1pζq bK2pζq

M2pζq bK1pζq M2pζq bK2pζq

ff

“ pη ´ ζqCt,npη, ζq

«

N1pηq bK1pζq N1pηq bK2pζq

N2pηq bK1pζq N2pηq bK2pζq

ff

, pη, ζq P Σˆ Σ,

(6.2.18)
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thus we can rewrite the quantity above describing X´pζqGpζq as follows

X´pζqG´pζq “ X´pζq ` 2πiλ 1
2

«

M1pζq bK1pζq M1pζq bK2pζq

M2pζq bK1pζq M2pζq bK2pζq

ff

` 2πiλ
ˆ

Σ
Ct,npζ, ηq

«

N1pηq bK1pηq N1pηq bK2pηq

N2pηq bK1pηq N2pηq bK2pηq

ff

dη.

(6.2.19)

Now notice that the integral equation (6.2.12) for the operators Nipζq,Mipζq reads as

Nipζq ´ λ
1
2

ˆ
Σ
Ct,npη, ζqNipηqdη “Mipζq, ζ P Σ, (6.2.20)

and thus by replacing it above and by using equation (6.2.16) we finally obtain that

X´pζqGpζq “ X´pζq ` 2πiλ 1
2

«

N1pζq bK1pζq N1pζq bK2pζq

N2pζq bK1pζq N2pζq bK2pζq

ff

“ X`pζq. (6.2.21)

This means that also the jump condition (6.2.3) is satisfied by the right hand side of formula (6.2.11)
and thus the proof is completed.

So far, we proved that the solution of the Riemann-Hilbert problem 6.2.1 exists and it is unique.
Moreover, we explicitly constructed an integral contour representation for the solution Xpζq for any
ζ R Σ and we know that the solution Xpζq is invertible on H2 from Theorem 6.2.8. As a byproduct, it
follows that the operator Xpζq´1 has an analogue integral representation.

Corollary 6.2.10. For every pt, λ, nq P R ˆ D1p0q ˆ N the inverse on H2 of the solution Xpζq of the
Riemann-Hilbert problem 6.2.1 has the following integral representation

pXpζqq´1 “ I2 ´ λ
1
2

ˆ
Σ

«

M1pζq b L1pζq M1pζq b L2pζq

M2pζq b L1pζq M2pζq b L2pζq

ff

dη

η ´ ζ
, ζ P CzΣ, (6.2.22)

where Lipηq are integral operators on H1 with kernel `ipt|yq determined from the L2pΣq integral equation

pI ´ λ
1
2Ct,nq`ip¨|yq “ kip¨|yq, i “ 1, 2. (6.2.23)

Remark 6.2.11. Notice again that the right hand side of equation (6.2.22) exists because the integral
equation (6.2.23) admits solution, for the same reason explained before.

Proof. It is enough to prove that the right hand side of equation (6.2.22), that we will denote by Ypζq in
the following, it is the actual right inverse of Xpζq. We start by computing

XpζqYpζq “ I2 ` λ
1
2

ˆ
Σ

`

Xpηq ´Ypηq
˘ dη
η ´ ζ

´ λ

ˆ
Σ

ˆ
Σ

Xpη1qYpη2q
dη1

η1 ´ ζ

dη2

η2 ´ ζ
, ζ R Σ, (6.2.24)

where we denoted by Xpζq,Ypζq the finite rank integrand appearing in the right hand side of (6.2.11)
and (6.2.22) respectively. The aim is now to prove that the sum of the last two terms in the equation
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above is zero (the zero operator on H2).
To start with, notice that by the definition of the kernel of the operator Ct,n we have that

Xpη1qYpη2q “ pη1 ´ η2qCt,npη1, η2q

«

N1pη1q b L1pη2q N1pη1q b L2pη2q

N2pη1q b L1pη2q N2pη1q b L2pη2q

ff

. (6.2.25)

Replacing this equation in the double integral term appearing above, we can compute it as

ˆ
Σ

ˆ
Σ

Xpη1qYpη2q
dη1

η1 ´ ζ

dη2

η2 ´ ζ
“

ˆ
Σ

ˆ
Σ
Ct,npη1, η2q

«

N1pη1q b L1pη2q N1pη1q b L2pη2q

N2pη1q b L1pη2q N2pη1q b L2pη2q

ff

dη1
dη2

η2 ´ ζ

´

ˆ
Σ

ˆ
Σ
Ct,npη1, η2q

«

N1pη1q b L1pη2q N1pη1q b L2pη2q

N2pη1q b L1pη2q N2pη1q b L2pη2q

ff

dη2
dη1

η1 ´ ζ

“ ´

ˆ
Σ

Ypη2q
dη2

η2 ´ ζ
`

ˆ
Σ

Xpη1q
dη1

η1 ´ ζ
(6.2.26)

where in the last passage we used both the integral equations (6.2.12), (6.2.23). This concludes the
proof.

Remark 6.2.12. The main ideas in the construction of the Riemann-Hilbert problem 6.2.1 and the
proofs of the theorems for its solution have been already developed in [Bot21], and they are indeed due
to the work of Thomas Bothner.

From the construction of the integral representation of Xpζq and its inverse given in Theorem 6.2.9 and
Corollary 6.2.10 one can deduce a relation among the multiplication operators on H1 called Nipζq,Mipζq

for i “ 1, 2, the integral operators Lipζq,Kipζq for i “ 1, 2 and the solution Xpζq of the Riemann-Hilbert
problem 6.2.1. The derivation of a Lax pair from the solution Xpζq, that will be treated in the following
section, completely relies on this relation. In order to express it in a compact form, we define the following
vector-valued operators on H2

Npζq :“
“

N1pζq, N2pζq
‰J
, Mpζq :“

“

M1pζq,M2pζq
‰J
, Lpζq :“

“

L1pζq, L2pζq
‰

,

Kpζq :“
“

K1pζq,K2pζq
‰

.
(6.2.27)

Corollary 6.2.13. For every ζ P Σ, independently on the choice of the boundary values of Xpζq we have
that

Npζq “ XpζqMpζq, Lpζq “ KpζqpXpζqq´1. (6.2.28)

Proof. Here we are going to prove only the first equation, since it is the only one that is actually needed
in the derivation of the Lax pair. The second one is obtained in a similar way and we refer to the proof
of Corollary 4.11 in [BCT21] for the details.
Recall that we proved in the last passages of proof of Theorem 6.2.9 the following identity

X´pζqGpζq “ X´pζq ` 2πiλ 1
2

«

N1pζq bK1pζq N1pζq bK2pζq

N2pζq bK1pζq N2pζq bK2pζq

ff

. (6.2.29)
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On the other hand, since Gpζq is invertible on H2 with inverse

`

Gpζq
˘´1

“ I2 ´ 2πiλ 1
2

«

M1pζq bK1pζq M1pζq bK2pζq

M2pζq bK1pζq M2pζq bK2pζq

ff

, ζ P Σ, (6.2.30)

we can then compute in a similar way the quantity X`pζq
`

Gpζq
˘´1 and it follows that

X`pζq
`

Gpζq
˘´1

“ X`pζq ´ 2πiλ 1
2

«

N1pζq bK1pζq N1pζq bK2pζq

N2pζq bK1pζq N2pζq bK2pζq

ff

. (6.2.31)

Finally, combining (6.2.29), (6.2.31), the definitions of Gpζq and its inverse yields

X˘pζq

«

M1pζq bK1pζq M1pζq bK2pζq

M2pζq bK1pζq M2pζq bK2pζq

ff

“

«

N1pζq bK1pζq N1pζq bK2pζq

N2pζq bK1pζq N2pζq bK2pζq

ff

, ζ P Σ, (6.2.32)

from which Npζq “ XpζqMpζq directly follows.

On the asymptotic expansion of the solution Xpζq In this paragraph we are going to discuss
some technicalities about the asymptotic representation of Xpζq and pXpζqq´1. In particular we prove
two symmetry properties and an estimate on the operator norm of the asymptotic coefficients. These
results are technical, but they are crucial in order to explicitly recover the Lax pair from relation (6.2.28).
Nevertheless, while the statement of the Riemann-Hilbert problem 6.2.1 and the results about its solution
Xpζq contained in the previous section can be extended to an arbitrary operator of the same kind of Ct,n,
the statements in this paragraph strictly depend on the exact definition of Ct,n.
To start with, we recall for every k ě 1 the following formula

1
η ´ ζ

“ ´
1
ζ

k´1
ÿ

j“0

ˆ

η

ζ

˙j

`
ηk

ζkpη ´ ζq
for ζ ‰ η. (6.2.33)

By replacing this formula in the integral representation of the solution Xpζq and its inverse, for |ζ| Ñ 8,
we obtain their asymptotic representation. In particular we have respectively

Xpζq “ I2 ´
k´1
ÿ

j“1

Xj

ζj
`Opζkq, and pXpζqq´1 “ I2 `

k´1
ÿ

j“1

Yj

ζj
`Opζkq, for ζ P CzΣ (6.2.34)

with Xj “ tX
ml
j um,l“1,2,Yj “ tY

ml
j um,l“1,2 that are integral operators on H2 not depending any more

on the complex parameter ζ, given by

Xml
j “

ˆ
Σ
Nmpηq bKlpηqη

j´1dη, Y mlj “

ˆ
Σ
Mmpηq b Llpηqη

j´1dη j ě 1, m, l P t1, 2u. (6.2.35)

Corollary 6.2.14. For every i, j P t1, 2u we have on H1 the following identities
ˆ

Σ
Mipηq b Ljpηqdη “

ˆ
Σ
Nipηq bKjpηqdη, (6.2.36)
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and also
ˆ

Σ
Mipηq b Ljpηqηdη “

ˆ
Σ
Nipηq bKjpηqηdη ` λ 1

2

ˆˆ
Σ
Nipηq bKjpηqdη

˙2
. (6.2.37)

Proof. During the proof of Corollary 6.2.10 we proved the following identity

λ
1
2

ˆ
Σ

`

Xpηq ´Ypηq
˘ dη
η ´ ζ

´ λ

ˆ
Σ

ˆ
Σ

Xpη1qYpη2q
dη1

η1 ´ ζ

dη2

η2 ´ ζ
“ 0, ζ R Σ. (6.2.38)

Replacing in both terms formula (6.2.33) for k “ 2, and collecting the powers 1, 2 of ζ´1 as |ζ| Ñ 8 gives
exactly the two identity stated.

Equivalently the asymptotic coefficients of Xpζq and pXpζqq´1 are related in the following way

Y ml1 “ Xml
1 , Y ml2 “ Xml

2 `
`

Xml
1

˘2
, m, l P t1, 2u. (6.2.39)

Remark 6.2.15. One could in principle replace formula (6.2.33) for k ą 2 and obtain more complicated
relations for the higher order asymptotic coefficients Xml

i , Y mlj . But for our future scopes the two relations
above are sufficient.

We are now going to prove another important symmetry relation, this time at the level of the kernels
of some operators on H1. In particular, we are going to consider the operators filling the off-diagonal
entries of the first asymptotic coefficient of Xpζq, and we denote them as follows

U :“ λ
1
2

ˆ
Σ
N1pηq bK2pηqdη “ X12

1 , V :“ λ
1
2

ˆ
Σ
N2pηq bK1pηqdη “ X21

1 . (6.2.40)

Proposition 6.2.16. For every pt, λ, nq P Rˆ D1p0q ˆ N and for every px, yq P R2, we have that

Upx, yq “ V py, xq. (6.2.41)

In order to prove this statement, we need to review some of the properties of the operator Ct,n, defined
in (6.1.32), (6.1.33). Recall that the operator Ct,n on L2pΣq is defined as the sum of two operators on the
same space acting with the following kernels

pζ ´ ηqAext
t,npζ, ηq “

ˆ
R
k1pζ|zqm1pη|zqdσpzq, pξ ´ ηqBext

n pξ, ηq “

ˆ
R
k2pξ|zqm2pη|zqdσpzq. (6.2.42)

These operators are both nilpotent on L2pΣq, thanks to equation (6.1.33), as proved in Lemma 6.1.10.
Also, thanks to the symmetry Γβ “ Γα and to the fact that λ Ñ ψnpλ, ¨q is odd, we have that
Bext
n p´ξ,´ηq “ Bext

n pη, ξq for every pξ, ηq P Γα ˆ Γβ and Aext
t,np´η,´ζq “ Aext

t,npζ, ηq for every pη, ζq P
Γβ ˆ Γα. Using the nilpotency of the operators Aext

t,n ,Bext
n the powers of the operator Ct,n are computed

as

Ckt,n “

$

&

%

pAext
t,nBext

n qmAext
t,n ` pBextAext

t,nq
mBext, k “ 2m` 1

pAext
t,nBextqm ` pBextAext

t,nq
m, k “ 2m

. (6.2.43)
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Finally, using the properties of the kernels of At,n,Bn we conclude that

C2m`1
t,n p´ξ,´ηq “ 0, C2m

t,n p´ξ,´ηq “ C2m
t,n pη, ξq, for any pξ, ηq P Γα ˆ Γα, (6.2.44)

thus for any k P N we have that Ckt,np´ξ,´ηq “ Ckt,npη, ξq, for every pξ, ηq P ΓαˆΓα. Having this property
of the operator Ct,n in mind, we can finally give the proof of the above proposition.

Proof. In order to prove the proposition, we start by computing the left hand side of equation (6.2.41).

Upx, yq “ λ
1
2

ˆ
Σ

`

N1pηq bK2pηq
˘

px, yqdη “
ˆ

Σ
n1pη|xqk2pη|yqdη

“
1

2π

ˆ
Γβ

«ˆ
Γβ
pI ´ λ

1
2Ct,nq

´1pξ, ηq e´ i
2ψnpξ,2t`2xq dξ

ff

e´ i
2ψnpη,0q dη

“
1

2π

ˆ
Γα

„ˆ
Γα
pI ´ λ

1
2Ct,nq

´1p´ξ,´ηq e i
2ψnpξ,2t`2xq dξ



e i
2ψnpη,0q dη,

where we used equations (6.1.33), (6.2.12) and the conjugation symmetry Γβ “ Γα. Now, by rewriting the
operator pI´λ 1

2Ct,nq
´1 with its Neumann series expansion, and by using that for all k P N Ckt,np´ξ,´ηq “

Ckt,npη, ξq for every pξ, ηq P Γα ˆ Γα we can conclude that

Upx, yq “
1

2π

ˆ
Γα

„ˆ
Γα
pI ´ λ

1
2Ct,n|L2pΣqq

´1pη, ξq e i
2ψnpξ,2t`2xq dξ



e i
2ψnpη,0q dη

“

ˆ
Σ
`1pη|xqm2pη|yqdη “

ˆ
Σ

`

M2pηq b L1pηq
˘

py, xq “

ˆ
Σ

`

N2pηq bK1pηq
˘

py, xqdη,
(6.2.45)

where in the last passages we used the integral equation (6.2.23) and the symmetry condition (6.2.36).

The last technical property of the asymptotic coefficients of the solution Xpζq is given in the following
statement.

Corollary 6.2.17. Let i, j P t1, 2u and m P Zě0. Then
ˆ

Σ
Nipηq bKjpηq η

m dη Ñ 0 and
ˆ

Σ
Mipηq b Ljpηq η

m dη Ñ 0 (6.2.46)

exponentially fast as tÑ `8 in operator norm on H1.

For the proof, we refer to the proof of Corollary 4.14 in [BCT21].
The machinery of operator-valued Riemann-Hilbert problem 6.2.1 associated to the operator Ct,n

can then be used to study properties of Dnpt, λq, and this is what we are going to do. Let summarise
what we have proved until now : the unique solution of the Riemann-Hilbert problem 6.2.1 is denoted
by Xpζq, ζ P C and it is an integral operator acting on the space H2 with kernel being in the functional
space L2pR2,dσb dσ;C2ˆ2q. Moreover, Xpζq admits the integral representation (6.2.11) for every ζ R Σ,
with continuos boundary values from both sides of Σ. Finally, from Corollary 6.2.13, this solution Xpζq
satisfies for every ζ P Σ and independently on the choice of its boundary value, the following identity

Npζq “ XpζqMpζq, (6.2.47)

104



6.3. The Lax pair for an operator-valued Painlevé II hierarchy

with Npζq,Mpζq some vector-valued multiplication operators on H2, defined in (6.2.27). This equation
above, together with all the other properties of the solution Xpζq of Riemann-Hilbert problem 6.2.1 will
be largely used in the following section, in order to deduce a Lax pair.

6.3 The Lax pair for an operator-valued Painlevé II hierarchy

The main ingredient, in order to deduce the Lax pair, is the relation between Npζq,Mpζq,Xpζq in
(6.2.47). We recall the definition of the vector-valued operators Mpζq,Npζq

Npζq :“
“

N1pζq, N2pζq
‰J
, Mpζq :“

“

M1pζq,M2pζq
‰J
,

whereMipζq, Nipζq are multiplication operators on H1, that multiply respectively by the functionsmipζ|xq

defined in (6.1.33) and nipζ|xq defined through the integral equation (6.2.12). Given that, we can also
interpret these operators Mi, Ni as integral operators on H1 with distributional kernels given by

mipζ|xq ÞÑ mipζ|x, yq :“mipζ|xqδpx´ yqpw
1pyqq´1,

nipζ|xq ÞÑ nipζ|x, yq :“nipζ|xqδpx´ yqpw1pyqq´1,
(6.3.1)

for any px, yq P R2.

Remark 6.3.1. We recall that by definition,
ˆ 8
´8

δpx´ yqpw1pyqq´1fpyqdσpyq :“ fpxq, f P H1,

so that pMifqpxq “ mipζ|xqfpxq and pNifqpxq “ nipζ|xqfpxq for any f P H1.

The aim is to prove that the vector-valued operator Npζq satisfies a couple of operator-valued differen-
tial equations w.r.t. the complex parameter ζ and the real parameter t, by using relation (6.2.47). Thus
we are going to need the computation of the derivative w.r.t ζ and t of Mpζq, written below. Recalling
the definition of the functions mipζ|xq given in (6.1.33), we find the kernel identity

B

Bζ
Mpζ|x, yq “

«

´ip 1
2ζ

2n ` t` xq 0

0 i
2ζ

2n

ff

Mpζ|x, yq, pζ, x, yq P Σˆ R2,

or equivalently the operator identity

B

Bζ
Mpζq “

`

ζ2nA0 ` pA2n
˘

Mpζq, ζ P Σ, (6.3.2)

where the operators A0, pA2n : H2 Ñ H2 are ζ-independent and have kernels

A0px, yq :“ δpx´ yq
1
2

«

´i 0

0 i

ff

`

w1pyq
˘´1

, pA2npx, yq :“ δpx´ yq

«

´ipt` xq 0

0 0

ff

`

w1pyq
˘´1

. (6.3.3)
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Similarly,
B

Bt
Mpζq “

`

ζB0
˘

Mpζq, ζ P Σ, (6.3.4)

where B0 : H2 Ñ H2 has kernel

B0px, yq :“ δpx´ yq

«

´i 0

0 0

ff

`

w1pyq
˘´1

. (6.3.5)

With this in mind, we now proceed through the following steps

1. we first prove that Npζq solves linear differential equations w.r.t. both ζ and t with operator-valued
coefficients Apζq, Bpζq that are analytic operator-valued functions in ζ ;

2. we prove then that Apζq, Bpζq are actually polynomials in ζ of degree 2n and 1 with operator-valued
coefficients ;

3. by exploiting the compatibility condition of the system for Npζq, we prove that all the coefficients of
the operator-valued polynomials Apζq, Bpζq are determined in terms of U, V the integral operators
on H1 defined in (6.2.40) and their t-derivatives ;

4. we finally conclude that the system of differential equations for Npζq is a Lax pair for a coupled
operator-valued PII hierarchy involving the operators U and V.

Proposition 6.3.2. There exist pt, λ, nq-dependent, analytic in ζ P C integral operators Apζq,Bpζq on
H2 such that for every ζ P Σ and pt, λ, nq P Rˆ D1p0q ˆ N,

BN
Bζ
pζq “ ApζqNpζq, BN

Bt
pζq “ BpζqNpζq. (6.3.6)

Proof. We ζ-differentiate the first identity in (6.2.47)

BN
Bζ
pζq “

ˆ

BX
Bζ
pζq

`

Xpζq
˘´1

`Xpζq
`

ζ2nA0 ` pA2n
˘`

Xpζq
˘´1

˙

“:Apζq

Npζq. (6.3.7)

Here, Apζq is an integral operator acting on H2 by Theorem 6.2.9, Corollary 6.2.10, and Apζq is analytic
for ζ P CzΣ with continuous boundary values A˘pζq on Σ by the same reasoning. Recalling (6.2.3) we
then compute on Σ,

A`pζq “

„

BX´

Bζ
pζqGpζq`X´pζq

BG
Bζ
pζq



`

Gpζq
˘´1`X´pζq

˘´1

`X´pζqGpζq
`

ζ2nA0 ` pA2n
˘`

Gpζq
˘´1`X´pζq

˘´1
, (6.3.8)

and with (6.2.2),(6.3.3) we derive for ζ P Σ,

BG
Bζ
pζ|x, yq “

ˆ 8
´8

!

`

ζ2nA0px, zq ` pA2npx, zq
˘

G0pζ|z, yq ´G0pζ|x, zq
`

ζ2nA0pz, yq ` pA2npz, yq
˘

)

dσpzq.

Here we abbreviate, as in the definition of Gpζq given in (6.2.2), Gpζq “ I2`G0pζq. Notice that the last
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kernel identity is equivalent to the operator commutator identity

BG
Bζ
pζq “

“

ζ2nA0 ` pA2n,Gpζq
‰

P IpH2q, ζ P Σ. (6.3.9)

Inserting (6.3.9) into (6.3.8) we find at once

A`pζq “
BX´

Bζ
pζq

`

X´pζq
˘´1

`X´pζq
`

ζ2nA0 ` pA2n
˘`

X´pζq
˘´1

“ A´pζq, ζ P Σ,

i.e. Apζq extends analytically across Σ. In turn, Apζq is analytic for every ζ P C given that px, yq ÞÑ
Apζ|x, yq is in L2pR2,dσ b dσ;C2ˆ2q for every ζ P C by construction. This proves our first identity and
the reasoning for the second one is analogous : first differentiate (6.2.28) using (6.3.4),

BN
Bt
pζq “

ˆ

BX
Bt
pζq

`

Xpζq
˘´1

`Xpζq
`

ζB0
˘`

Xpζq
˘´1

˙

“:Bpζq

Npζq. (6.3.10)

Since Bpζq is an integral operator on H2 and Bpζq is analytic for ζ P CzΣ with continuous boundary
values B˘pζq on Σ, again from Theorem 6.2.9 and Corollary 6.2.10, we simply compute for ζ P Σ

B`pζq “
„

BX´

Bt
Gpζq `X´pζq

BG
Bt
pζq



`

Gpζq
˘´1`X´pζq

˘´1
`X´pζqGpζq

`

ζB0
˘`

Gpζq
˘´1`X´pζq

˘´1
.

(6.3.11)
But from (6.2.3), (6.3.5),

BG
Bt
pζ|x, yq “

ˆ 8
´8

!

`

ζB0px, zq
˘

G0pζ|z, yq ´G0pζ|x, zq
`

ζB0pz, yq
˘

)

dσpzq,

leading to the following operator commutator identity

BG
Bt
pζq “

“

ζB0,Gpζq
‰

P IpH2q, ζ P Σ.

Once substituted back into (6.3.11) we find at once B`pζq “ B´pζq for ζ P Σ, i.e. Bpζq is analytic for
ζ P C. This concludes our proof.

The next step is to prove that the coefficient operators Apζq,Bpζq introduced in Proposition 6.3.2 are
actually polynomials in ζ and to express their coefficients in terms of quantities related to the solution
of Riemann-Hilbert problem 6.2.1.

Proposition 6.3.3. We have

Bpζq “ ζB0 `B1, Apζq “ ζ2nA0 `
2n
ÿ

k“1
Akζ

2n´k ` pA2n, (6.3.12)

where Bj : H2 Ñ H2 are the ζ-independent integral operators with kernels written in (6.3.5) and (6.3.13)
below. Likewise, Aj : H2 Ñ H2 are ζ-independent, the kernels of A0 and pA2n are written in (6.3.3) and
the entries of Ak are polynomials in the asymptotic coefficients of Xpζq introduced in (6.2.35), namely
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´

ΣNipηq bKjpηqη
mdη and

´
ΣMipηq b Ljpηqη

mdη with m P Zě0, i, j P t1, 2u.

Proof. Recall the definition of the operator-valued function Apζq,Bpζq given during the previous proof.
The main idea is to replace in them the asymptotic representations of Xpζq and Xpζq´1 that we gave in
equations (6.2.34), (6.2.35) for k “ 2n. In particular we have

Xpζq “ I2 ´ λ
1
2

2n
ÿ

k“1

1
ζk

ˆ
Σ

«

N1pηq bK1pηq N1pηq bK2pηq

N2pηq bK1pηq N2pηq bK2pηq

ff

ηk´1 dη `Opζ´2n´1q ζ R Σ

and

`

Xpζq
˘´1

“ I2 ` λ
1
2

2n
ÿ

k“1

1
ζk

ˆ
Σ

«

M1pηq b L1pηq M1pηq b L2pηq

M2pηq b L1pηq M2pηq b L2pηq

ff

ηk´1 dη `Opζ´2n´1q, ζ R Σ.

Replacing these formulae in the definition of Bpζq given in (6.3.10) and applying the generalized Liouville
theorem, we conclude that

Bpζq “ ζB0 `B1, ζ P C,

with B0 the integral operator on H2 with distributional kernel (6.3.5) and B1 the integral operator on
H2 with kernel B1px, yq “

”

Bij1 px, yq
ı2

i,j“1
and

B11
1 px, yq “ B22

1 px, yq “ 0, B12
1 px, yq “ ´iUpx, yq, B21

1 px, yq “ iV px, yq, (6.3.13)

where we Upx, yq and V px, yq are the kernels of U “ λ
1
2
´

ΣN1pηq b K2pηqdη and V “ λ
1
2
´

ΣN2pηq b

K1pηqdη, as defined in (6.2.40). In the same way, we replace the asymptotic representations of Xpζq, pXpζqq´1

in the definition of Apζq given in (6.3.7) and we apply the generalized Liouville theorem, concluding that

Apζq “ ζ2nA0 `
2n
ÿ

k“1
Akζ

2n´k ` pA2n, ζ P C

with A0, Â2n operators on H2 with kernels as in (6.3.3).

This last result does not determine explicitly the coefficients Ak for k “ 1, . . . , 2n. Nevertheless, by
looking at the compatibility condition of the system (6.3.6), namely the operator identity

ApζqBpζq ´BpζqApζq “ BB
Bζ
pζq ´

BA
Bt
pζq, ζ P C, (6.3.14)

we can see that the entries of Ak for any k are recursively determined in terms of the operators U, V and
their t-derivatives. This first result is resumed in the following lemma.

Lemma 6.3.4. Recall U, V : H1 Ñ H1 in (6.2.40) and introduce the integral operatorMt : H1 Ñ H1 with
distributional kernelMtpx, yq :“ pt`xqδpx´yqpw1pyqq´1. Then (6.3.14) is equivalent to the operator-valued
system (6.3.15), (6.3.16) and (6.3.17) written out below where Aijk are the entries of Ak in (6.3.12).

Proof. The polynomial equation (6.3.14) yields at once (given that B0 and A0 as well as B0 and pA2n
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commute)

2n
ÿ

k“1

BAk

Bt
ζ2n´k “

“

B1,A2n ` pA2n
‰

`

2n´1
ÿ

k“0

´

“

B0,Ak`1
‰

`
“

B1,Ak

‰

¯

ζ2n´k, ζ P C,

and therefore, after matching powers in ζ, first to order Opζ2nq,

A12
1 “ ´iU, A21

1 “ iV, (6.3.15)

followed by all orders Opζ2n´kq for k “ 1, . . . , 2n´ 1,
$

’

’

’

&

’

’

’

%

BA11
k

Bt
“ ´ipUA21

k `A
12
k V q,

BA12
k

Bt
“ ´ipA12

k`1 ` UA
22
k ´A

11
k Uq

BA22
k

Bt
“ ipV A12

k `A
21
k Uq,

BA21
k

Bt
“ ipA21

k`1 ` V A
11
k ´A

22
k V q

, (6.3.16)

and finally the order Opζ0q,
$

’

’

’

&

’

’

’

%

BA11
2n
Bt

“ ´ipUA21
2n `A

12
2nV q,

BA12
2n
Bt

“ ´ipUA22
2n ´A

11
2nU ` iMtUq

BA22
2n
Bt

“ ipV A12
2n `A

21
2nUq,

BA21
2n
Bt

“ ipV A11
2n ´A

22
2nV ´ iVMtq

. (6.3.17)

This completes our proof of the Lemma.

Notice that equations (6.3.16) together with the initial condition (6.3.15), allows to compute recursi-
vely the entries Aijk for k “ 1, . . . , 2n (or 2n ´ 1 for the diagonal entries). For each k, first t-integrating
the equations for the diagonal entries Aiik from the equations on the left and then using them to compute
the off-diagonal entries Aijk`1 with i ‰ j from the equations on the right of (6.3.16). The first system in
(6.3.17) is used to determine the last diagonal entries Aii2n. Instead, the second system in (6.3.17) gives a
further condition that Aij2n, U, V should satisfy.

Remark 6.3.5. As explained above, the diagonal entries Aiik are obtained by t-integrating some equa-
tions. The constant of integration in this procedure is fixed to zero thanks to Lemma 6.3.4 and Corollary
6.2.17. The fact that the integration gives always local terms is shown through the following lemma, for
which the proof relies on a technique used in [WE07].

Lemma 6.3.6. We have on H1 for k “ 1, 2, . . . , 2n,

A11
k “ ´i

k´1
ÿ

j“1

`

A11
j A

11
k´j `A

12
j A

21
k´j

˘

and A22
k “ i

k´1
ÿ

j“1

`

A22
j A

22
k´j `A

21
j A

12
k´j

˘

,

and thus in particular A11
1 “ A22

1 “ 0.
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Proof. We start by computing the composition operator Cpζq “ ApζqApζq on H2 from (6.3.12),

Cpζq “
4n
ÿ

k“0

ˆ k
ÿ

j“0
AjAk´j

˙

ζ4n´k `
2n
ÿ

k“0

`

Ak
pA2n ` pA2nAk

˘

ζ2n´k ` pA2n pA2n ”
4n
ÿ

k“0
Ckζ

4n´k, (6.3.18)

and then use the compatibility constraint (6.3.14),

BC
Bt
pζq “

 

Apζq,B0
(

`
“

Bpζq,Cpζq
‰

, (6.3.19)

where the curly brackets indicate the anticommutator. Matching powers Opζ4n´kq for k “ 0, . . . , 2n´ 1
in (6.3.19) while using (6.3.18) and (6.3.12) yields at once

$

’

’

’

&

’

’

’

%

BC11
k

Bt
“ ´ipUC21

k ` C12
k V q,

BC12
k

Bt
“ ´ipC12

k`1 ` UC
22
k ´ C11

k Uq

BC22
k

Bt
“ ipV C12

k ` C21
k Uq,

BC21
k

Bt
“ ipC21

k`1 ` V C
11
k ´ C22

k V q

, k “ 0, . . . , 2n´ 1, (6.3.20)

and
BC11

2n
Bt

“ ´ipB11
0 ` UC21

2n ` C
12
2nV q,

BC22
2n
Bt

“ ipV C12
2n ` C

21
2nUq, (6.3.21)

for some of the coefficient operator entries of Ck with k “ 0, 1, . . . , 2n. In turn, system (6.3.20) shows
that the operators Ck are trivial for k “ 1, . . . , 2n´ 1 and

C12
2n “ C21

2n “ C22
2n “ 0.

Indeed, using (6.3.15),(6.3.16) and Corollary 6.2.17 we find that A11
1 “ A22

1 “ 0 on H1 and so by direct
computation from (6.3.20),

C1 “
1
ÿ

j“0
AjA1´j “ 0 on H2,

where we just replaced equations (6.3.3) and (6.3.17). Hence, proceeding inductively and assuming Cj “ 0
for all j “ 1, . . . , k with arbitrary k P t1, . . . , 2n´ 2u we first use the off-diagonal equations in (6.3.20) to
conclude that

C12
j`1 “ i

BC12
j

Bt
´ UC22

j ` C11
j U “ 0, C21

j`1 “ ´i
BC21

j

Bt
´ V C11

j ` C22
j V “ 0,

by induction hypothesis. Hence, again by (6.3.20), this time through the diagonal equations,

BC11
j`1

Bt
“ ´ipUC21

j ` C12
j V q “ 0,

BC22
j`1

Bt
“ ipV C12

j ` C21
j Uq “ 0,

yielding C11
j`1 “ C22

j`1 “ 0 on H1 by Corollary 6.2.17 and Proposition 6.3.3 since Ck “
řk
j“0 AjAk´j for

k “ 1, . . . , 2n´ 1 by (6.3.18) vanishes uniformly as tÑ `8. Moving ahead the proclaimed vanishing of
C12

2n, C
21
2n and C22

2n follows now from the off-diagonal equations in (6.3.20) as well as the second equation
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in (6.3.21). We are now prepared to prove the stated formulæ for A11
k and A22

k . First, from (6.3.18),

C2n “
2n´1
ÿ

j“1
AjA2n´j `A0pA2n ` pA2nq ` pA2n ` pA2nqA0,

Ck “

k´1
ÿ

j“1
AjAk´j `A0Ak `AkA0, k “ 2, . . . , 2n´ 1,

so reading off p22q-entries, with the aforementioned fact that C22
k “ 0 for k “ 1, . . . , 2n and with (6.3.3),

0 “ C22
k “

k´1
ÿ

j“1

`

A22
j A

22
k´j `A

21
j A

12
k´j

˘

` iA22
k , k “ 2, . . . , 2n. (6.3.22)

Combined with the p22q-equation in (6.3.16), identity (6.3.15) and again Corollary 6.2.17, (6.3.22) yields
the desired equation for A22

k , k “ 1, . . . , 2n. By similar logic

0 “ C11
k “

k´1
ÿ

j“1

`

A11
j A

11
k´j `A

12
j A

21
k´j

˘

´ iA11
k , k “ 2, . . . , 2n´ 1; BA11

1
Bt

“ 0

which confirms the stated equation for A11
k provided k “ 1, . . . , 2n ´ 1 after another application of

Corollary 6.2.17. The A11
2n formula has to be treated slightly different since by (6.3.21), after our above

workings,
BC11

2n
Bt

“ ´iB11
0 ,

and in addition

C11
2n “

2n´1
ÿ

j“1

`

A11
j A

11
2n´j `A

12
j A

21
2n´j

˘

´ iA11
2n ´ i pA11

2n.

However B
Bt

pA11
2n “ B11

0 , so the last two identities yield

0 “ B

Bt

«

2n´1
ÿ

j“1

`

A11
j A

11
2n´j `A

12
j A

21
2n´j

˘

´ iA11
2n

ff

and hence after t-integration and an application of Corollary 6.2.17 indeed the stated identity for A11
2n.

This concludes our proof of the Lemma.

We can finally resume all the results found until now in the following corollary, that gives a recursive
recipe to find all the coefficients Ak for k “ 1, . . . , 2n in terms of U, V and their t-derivatives and to write
in a compact fashion the last two differential equations of the compatibility condition at the level ζ0.

Corollary 6.3.7. On H2,

A1 “

«

0 ´iU

iV 0

ff

, Ak`1 “

«

A11
k`1 A12

k`1

A21
k`1 A22

k`1

ff

, k “ 1, . . . , 2n´ 1, (6.3.23)
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Chapter 6 – The integro-differential Painlevé II hierarchy

where

$

’

&

’

%

A12
k`1 “ iBA

12
k

Bt
´ UA22

k `A
11
k V

A21
k`1 “ ´iBA

21
k

Bt
´ V A11

k `A
22
k V

,

$

’

’

’

’

’

&

’

’

’

’

’

%

A11
k`1 “ ´i

k
ÿ

j“1
pA11

j A
11
k`1´j `A

12
j A

21
k`1´jq

A22
k`1 “ i

k
ÿ

j“1
pA22

j A
22
k`1´j `A

21
j A

12
k`1´jq

. (6.3.24)

Moreover,

BA12
2n
Bt

“ ´ipUA22
2n ´A

11
2nU ` iMtUq,

BA21
2n
Bt

“ ipV A11
2n ´A

22
2nV ´ iVMtq, (6.3.25)

and (6.3.23),(6.3.24),(6.3.25) combined together yield the following p2nq-th order coupled, operator-valued
system for U and V ,

D2n

«

´iU
iV

ff

“

«

iMtU

´iVMt

ff

, D

«

A

B

ff

:“
«

i BA
Bt ´ iUD´1

t pV A`BUq ´ iD´1
t pUB `AV qU

´i BB
Bt ` iV D´1

t pUB `AV q ` iD´1
t pV A`BUqV

ff

(6.3.26)

where D acts entrywise on operators A and B on H1 and D´1
t denotes the formal t-antiderivative.

Proof. The only thing that is actually left to prove is that equations (6.3.25) can be rewritten by using
equations (6.3.24) and the operator D as (6.3.26). To see this, we first rewrite the recursion for the
off-diagonal entries of Ak by using the operator D. By (6.3.16) and (6.3.24),

D

«

A12
k

A21
k

ff

“

«

A12
k`1

A21
k`1

ff

, k “ 1, . . . , 2n´ 1 (6.3.27)

since D´1
t pV A

12
k `A

21
k Uq “ ´iA22

k and D´1
t pUA

21
k `A

12
k V q “ iA11

k . Likewise, by (6.3.25) and (6.3.15),

D

«

A12
2n

A21
2n

ff

“

«

iMtU

´iVMt

ff

, (6.3.28)

where we useD´1
t pV A

12
2n`A

21
2nUq “ ´iA22

2n andD´1
t pUA

21
2n`A

12
2nV q “ iA11

2n. Hence, iterating (6.3.27),(6.3.28)
with the initial data (6.3.23) we arrive at the desired system (6.3.26) which does not contain any antide-
rivative terms because of the iterative formulæ for A11

k and A22
k written in (6.3.24).

In this section we proved that the system solved by Npζq given in (6.3.6) can be seen as the Lax pair
for a coupled system of differential equations of order 2n for the operators U, V . These equations can be
seen as a noncommutative (operator-valued) coupled analogue of the Painlevé II hierarchy. We write the
equations for the first values of n in the example below.

Example 6.3.8. For n “ 1 the coupled system of differential equations for the operators U, V on H1
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6.4. The derivation of the integro-differential Painlevé II hierarchy

given in (6.3.26) reads as
$

’

’

’

&

’

’

’

%

B
2U
Bt2 “ p2UV `MtqU,

B
2V
Bt2 “ V p2UV `Mtq.

While for n “ 2 it reads as
$

’

’

’

&

’

’

’

%

B
4U
Bt4 “ ´6UV UV U ` 4 B

2U
Bt2 V U ` 4UV B

2U
Bt2 ` 2U B

2V
Bt2 U ` 2 BU

Bt
BV
Bt U ` 2U BV

Bt
BU
Bt ` 6 BU

Bt V
BU
Bt `MtU,

B
4V
Bt4 “ ´6V UV UV ` 4 B

2V
Bt2 UV ` 4V U B

2V
Bt2 ` 2V B

2U
Bt2 V ` 2 BV

Bt
BU
Bt V ` 2V BU

Bt
BV
Bt ` 6 BV

Bt U
BV
Bt ` VMt.

In order to see that the system (6.3.6) is actually the Lax pair for the integro-differential Painlevé II
hierarchy, we still have some work to do.

6.4 The derivation of the integro-differential Painlevé II hierar-
chy

In this last section we are first going to show that the Lax pair (6.3.6) naturally encodes the integro-
differential Painlevé II hierarchy introduced at the beginning of the chapter in (6.0.4). After that, we
finally complete the proof of Theorem 6.0.7.
In order to recognize the integro-differential Painlevé II hierarchy behind the compatibility condition
(6.3.14), the idea is simply to look at the compatibility condition (6.3.14) at the level of the kernels of the
operators involved U, V,Aijk , instead of the operators themselves. In doing so, we can prove a fundamental
symmetry property of the kernels of the off-diagonal operators Aijk .

Lemma 6.4.1. Let k P t1, . . . , 2nu, then A12
k px, yq and A21

k py, xq are y-independent and we have

A12
k px, yq “ p´1qkA21

k py, xq, px, yq P R2. (6.4.1)

Proof. We have A12
1 px, yq “ ´iUpx, yq and A21

1 py, xq “ iV py, xq by (6.3.23). Using Proposition 6.2.16, we
thus obtain (6.4.1) for k “ 1 and since

Upx, yq “ λ
1
2

ˆ
Σ
n1pη|xqk2pη|yqdη,

the y-independence of A12
1 px, yq directly follows from the definitions of the functions n1, k2, see (6.1.33).

But Upx, yq “ V py, xq, so the y-independence of A21
1 py, xq follows similarly. Proceeding inductively, we

assume that the claims have been proven for k P t1, . . . ,mu and some 1 ď m ď 2n´ 1. Since by (6.3.27),

A12
k`1px, yq “ iBA

12
k

Bt
px, yq ´ i

ˆ
R
Upx, zq

ˆ tˆ
R

`

V pz, wqA12
k pw, yq `A

21
k pz, wqUpw, yq

˘

dσpwqdtdσpzq

´ i
ˆ tˆ

R

ˆ
R

`

Upx, zqA21
k pz, wq `A

12
k px, zqV pz, wq

˘

Upw, yqdσpzqdσpwqdt
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we see that A12
k`1px, yq is y-independent by the induction hypothesis and base case. Moreover, using

explicitly the induction hypothesis in the form A12
k px, yq “ p´1qkA21

k py, xq, we obtain

A12
k`1px, yq “ p´1qk`1

„

´ iBA
21
k

Bt
py, xq ` i

ˆ
R
Upx, zq

ˆ tˆ
R

`

V pz, wqA21
k py, wq `A

12
k pw, zqUpw, yq

˘

ˆ

(6.4.2)

ˆ dσpwqdtdσpzq ` i
ˆ tˆ

R

ˆ
R

`

Upx, zqA12
k pw, zq `A

21
k pz, xqV pz, wq

˘

Upw, yqdσpzqdσpwqdt


.

On the other hand, (6.3.27) also says

A21
k`1px, yq “ ´ iBA

21
k

Bt
px, yq ` i

ˆ
R
V px, zq

ˆ tˆ
R

`

Upz, wqA21
k pw, yq `A

12
k pz, wqV pw, yq

˘

dσpwqdtdσpzq

` i
ˆ t ˆ

R

ˆ
R

`

V px, zqA12
k pz, wq `A

21
k px, zqUpz, wq

˘

V pw, yqdσpwqdσpzqdt,

and thus A21
k`1px, yq is x-independent by the induction hypothesis and base case. Finally, relabelling the

integration variables z Ø w in the last equality and using the induction base case six times in the form
Upx, yq “ V py, xq we see at once that with (6.4.2),

A21
k`1px, yq “ p´1qk`1A12

k`1py, xq, px, yq P R2.

This Lemma is the key to simplify the equations given from the compatibility condition and resumed
in Corollary 6.3.7. Indeed, by defining the following functions

upt|xq :“ Upx, xq “ Upx, yq “ V py, xq “ V px, xq,

akpt|xq :“ A12
k px, xq “ p´1qkA21

k px, xq,
(6.4.3)

for all pt, xq P R2, the recursion for the operators A12
k given in (6.3.16) becomes

ak`1pt|xq “

$

&

%

pLu`akqpt|xq, k ” 0 mod 2

pLu´akqpt|xq, k ” 1 mod 2
, k “ 1, 2 . . . , 2n´ 1; a1pt|xq :“ ´iupt|xq (6.4.4)

where the recursion operators L˘u are given in Definition 6.0.3. Furthermore, the coupled system of
differential equations for U, V , that was given in (6.3.26), actually coincides with a unique equation that
is now rewritten as

´pt` xqa1pt|xq “ pLu`a2nqpt|xq. (6.4.5)

Thus iterating backward the right hand side through (6.4.4) we get

´pt` xqa1pt|xq “
`

pLu`Lu´qna1
˘

pt|xq
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and replacing the initial condition for a1pt|xq, the last equation of the compatibility condition is exactly

pt` xqupt|xq “ ´
`

pLu`Lu´qnu
˘

pt|xq

that is the n-th member of the integro-differential Painlevé II hierarchy.
We are now ready to prove the formula that expresses the Fredholm determinant Dnpt, λq in terms of
distinguished solution of the integro-differential Painlevé II hierarchy (6.0.4). We are going to prove it in
two steps : first we have this lemma.

Lemma 6.4.2. For every pt, λ, nq P Rˆ D1p0q ˆ N,

B

Bt
lnDnpt, λq “ ´iλ 1

2 Tr
H1

ˆ
Σ
N1pξq bK1pξqdξ,

followed by
B2

Bt2
lnDnpt, λq “ ´Tr

H1
pUV q

Proof. We start by computing the first t-derivative of the logarithm of Dnpt, λq. To do that, we recall
equation (6.1.31) and we apply the Jacobi formula

B

Bt
lnDnpt, λq “

B

Bt
ln detpI ´ λ 1

2Ct,n|L2pΣqq “ ´λ
1
2 Tr
L2pΣq

„

pI ´ λ
1
2Ct,n|L2pΣqq

´1 B

Bt
Ct,n



. (6.4.6)

Then by using the definition of the operator Ct,n given in (6.1.32) we get the kernel derivative

B

Bt
Ct,npξ, ηq “

i
2π

ˆ
R

e i
2 pψnpξ,2t`2zq´ψnpη,2t`2zqqχΓαpξqχΓβ pηqdσpzq “ i

ˆ
R
k1pξ|zqm1pη|zqdσpzq,

where in the last passage we just replaced (6.1.33). Hence back in (6.4.6),

B

Bt
lnDnpt, λq “ ´λ

1
2

ˆ
Σ

ˆ
Σ
pI ´ λ

1
2Ct,nq

´1pη, ξq
B

Bt
Ct,npξ, ηqdξ dη

“ ´iλ 1
2

ˆ
R

„ˆ
Σ

`

N1pξq bK1pξq
˘

pz, zqdξ


dσpzq “ ´iλ 1
2 Tr

H1

ˆ
Σ
N1pξq bK1pξqdξ,

where in the second passage we just used the integral equation (6.2.23). Thus the first identity in the
statement holds. We notice that in its right hand side we actually have a multiple of the H1-trace of the
p1, 1q-entry of the first asymptotic coefficient of the solution of the Riemann-Hilbert problem 6.2.1 Xpζq.
For the second identity in the statement we need then the t-derivative of this quantity. This is obtained in
a classical way, revisiting our proof of Proposition 6.3.3 and explicitly computing the Opζ´1q correction
when inserting the asymptotic representations of Xpζq and pXpζqq´1 into the defining equation of Bpζq
in (6.3.10). The same Opζ´1q correction has to vanish identically by generalized Liouville’s theorem and
this yields the operator commutator identity

pX1qt “ rB0,X2s ´X1rB0,X1s,

where B0 is written in (6.3.5). Taking the entry p1, 1q of the above identity and using the symmetries
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proved in Corollary 6.2.14 yields in particular

B

Bt

ˆ

λ
1
2

ˆ
Σ
N1pξq bK1pξqdξ

˙

“ ´iλ
ˆ

Σ

ˆ
Σ

`

N1pηq bK2pηq
˘`

N2pξq bK1pξq
˘

dη dξ “ ´iUV

where in the last passage we just split the double integral and recognize the definition of U, V as in (6.2.40).
Therefore the second identity holds once derived the first one and replaced the above relation.

The last step essentially just require to actually compute the operator trace appearing in the second
equation of the above lemma and to compute the asymptotic behavior of the solution upt|xq of the n-th
member of the integro-differential Painlevé II hierarchy (6.0.4).

Lemma 6.4.3. For every pt, λ, nq P Rˆ D1p0q ˆ N,

Dnpt, λq “ exp
„

´

ˆ 8
t

ps´ tq

ˆˆ
R
u2ps|xqdσpxq

˙

ds


. (6.4.7)

where upt|xq ” upt|x;n, λq solves the dynamical system (6.0.4) and it is such that upt|xq „ λ
1
2Ai2n`1pt`xq

as tÑ `8, pointwise in x P R.

Proof. By Lemma 6.4.2,

B2

Bt2
lnDnpt, λq “ ´ Tr

H1
pUV q “ ´

ˆ
R

ˆ
R
Upx, yqV py, xqdσpyqdσpxq “ ´

ˆ
R

ˆ
R
U2px, yqdσpxqdσpyq

“ ´

ˆ
R

ˆ
R
U2px, xqdσpxqdσpyq “ ´

ˆ
R
u2pt|xqdσpxq, (6.4.8)

where we used the symmetry condition given in Proposition 6.2.16, the definition of upt|xq and its y-
independence and the fact that dσ is a probability measure. However,

upt|xq “ λ
1
2

ˆ
Σ
n1pη|xqk2pη|xqdη “ λ

1
2

2π

ˆ
Γβ

e´iψnpη,t`xq dη ` λ
ˆ

Σ

`

C˚t,nm1p¨|xq
˘

pηqk2pη|xqdη

` λ
1
2

ˆ
Σ

”

n1pη|xq ´m1pη|xq ´ λ
1
2
`

C˚t,nm1p¨|xq
˘

pηq
ı

k2pη|xqdη,

so by using the integral representation of the n-th Airy function, indeed upt|xq „ λ
1
2Ai2n`1pt ` xq as

tÑ `8 once we estimate the two remaining integrals involvingm1p¨|xq as in our proof of Corollary 6.2.17
(cfr. [BCT21]). All together, (6.4.7) follows from (6.4.8) after integration since upt|xq „ λ

1
2Ai2n`1pt` xq

yields
´
R u

2pt|xqdσpxq Ñ 0 exponentially fast as t Ñ `8 because of the asymptotic properties of the
n-th Airy function and of the weight function w. This completes our proof of the Lemma.

Theorem 6.0.7 is finally proved.

116



Chapter 7

STOKES MANIFOLDS AND CLUSTER

ALGEBRAS

In this last chapter we discuss some of the original results contained in the joint work with Marco
Bertola [BT21]. The aim of this work is to study the symplectic-Poisson structure of certain Stokes

manifolds defined as the monodromy manifolds of a linear system of ODEs with polynomial (slN -valued)
coefficient of generic degree. In particular, for the case N “ 2 we found explicit log-canonical coordinates
for the symplectic two from, and we studied their relation with the emergent field of cluster algebras. The
induced Poisson structure in these coordinates turns out to be the linearization of the Flaschka-Newell
Poisson structure, defined almost 40 years ago in their paper [FN82], where the first concrete example of
wild character variety was introduced.
The adjective wild here is used to underline the difference with the classical character varieties, involved
in the study of the monodromy map for ODEs having only simple poles. Indeed, the monodromy map
connects the space of rational matrices, giving the coefficient of a linear system of ODEs, to some re-
presentations of the fundamental group of the punctured Riemann sphere. Looking at ODEs with only
simple poles, this connection is explained in terms of character varieties of the punctured Riemann sphere.
Instead, if the ODEs matrix coefficient has higher order poles, the Stokes phenomena makes the set of
monodromy data more complicated, thus complicating the studying of the monodromy map. The new
geometrical object arising in this study goes under the name of wild character variety. The interest in its
Poisson structure comes naturally from the following fact. On the side of the ODEs, there is a well known
Lie-Poisson structure defined on the space of coefficient matrices. It seems natural to ask whether and
how the monodromy map “transfers” this structure on the relevant monodromy manifold. The pioneering
works addressing this question were first the already cited [FN82] and then the one of Ugaglia [Uga99],
who studied the case of rank N ODEs with a simple pole at 0 and a pole at 8 with Poincaré rank
2. Concerning the general Fuchsian case, it was shown in [KS97] that the Lie-Poisson structure on the
space of coefficient matrices induces the Goldmann Poisson structure (the classical Poisson structure on
character varieties [Gol84]) on the space of monodromy matrices. For what concerns the irregular case
instead, it was the series of papers of Boalch [Boa01a, Boa01b, B`07] that provided in very a general
setting, the description of the Poisson-symplectic structure on the space of extended monodromy data
(and re-derived the cases studied by Flaschka-Newell and Ugaglia).
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For us, the Stokes manifold of interest SK , is the following algebraic variety

SK “

#˜

1 s1

0 1

¸˜

1 0
s2 1

¸

. . .

˜

1 s2K`1

0 1

¸˜

1 0
s2K`2 1

¸

λσ3 “ 1 with si P C, λ P Cˆ
+

(7.0.1)

of complex dimension 2K, for every K ě 1. We proved in two different ways that SK is indeed a
symplectic manifold, with symplectic 2-form given by

WK :“ 1
2

2K`3
ÿ

`“1
Tr

ˆ

H´1
` dH` ^ S

´1
` dS`

˙

, H` :“ S1 ¨ ¨ ¨S`, S2K`3 :“ e2iπL, (7.0.2)

where S`, for ` “ 1, . . . , 2K ` 2 denote the upper and lower triangular matrices with unit diagonal,
appearing in equation (7.0.1), and e2iπL “ λσ3 , for the rank 2 case. In one way, we proved that the 2-form
(7.0.2) has pull-back (via the monodromy map) that coincides with the “universal symplectic structure”
of Krichever and Phong [KP00], [Kri02], (induced by the Poisson-Lie structure on the space of coefficient
matrices over its symplectic leafs) thus providing that WK is symplectic. In the other one way we built,
for the case of rank N “ 2, explicit coordinates yi, i “ 1, . . . , 2K that parametrize the Stokes manifolds
SK as (see Lemma 7.2.5)

s1 “ ´y
´2
1 , s2k`1 “ ´p1` y2

2k`1q
ź

1ďjď2k`1
y
p´1qj2
j , k “ 1, . . . ,K ´ 1, s2K`1 “ ´

ź

1ďjď2K
y
p´1qj2
j ,

s2k “ p1` y2
2kq

ź

1ďjď2k
y
p´1qj`12
j , k “ 1, . . . ,K, s2K`2 “ y2

1
`

1` y2
2
`

. . .
`

1` y2
2K

˘

. . .
˘˘

K
ź

j“1
y´4

2j ,

λ “ p´1qK
K
ź

j“1
y2

2j .

As a byproduct the form WK is expressed in log-canonical form within these variables and it is in
particular non-degenerate. Moreover, its associated Poisson bracket (Lemma 7.2.1) is described by this
constant coefficient matrix (for the logarithms of the coordinates yi)

PK “
1
4

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 0 0 . . . 0
´1 0 1 0 0 . . . 0
0 ´1 0 1 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
0 0 . . . ´1 0 1
0 0 . . . 0 ´1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (7.0.3)

The construction of the log-canonical variables yi is based on the choice of a certain triangulation of a
2pK ` 1q regular polygon, in a way similar to the one used for the Grasmannian of 2-planes (in [GSV10],
Chapter II). The explicit computation of the 2-form WK follows instead the techniques developed in the
recent work [BK19], relying on the theory of standard 2-forms associated to oriented graph with connec-
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tion. The connection with cluster algebras comes from the simple observation that the matrix PK is (up
to a constant factor) the matrix representing the simple quiver of type A2K (with prescribed orientation) ;
this means that the variables y2

j form a seed for the cluster algebra of type A2K . To complete the picture
we need to show that different choices of triangulations of the regular p2K`2q–gon yield parametrizations
of the Stokes’ data that are obtained from the initial seed by applying a suitable sequence of mutations,
i.e. simple birational maps from one chart to another (see the subsection 7.3.1). The appearance of cluster
algebras in this kind of context is not surprising : in the last decades the works of Fock and Goncha-
rov [FG06] already shown the deep connection between cluster algebras and the geometry of character
varieties. Thus similar connections should be expected to appear also in the context of wild character
varieties.
Finally, the Flaschka-Newell Poisson bracket defined for the original monodromy parameters describing
SK , namely

!

sj , sl

)

FN

“ δj,l´1 ´
δj,1δl,2K`2

λ2 ` p´1qj´l`1sjsl, j ă l.
!

sj , λ
)

FN

“ p´1qjsjλ. (7.0.4)

is showed to coincide with the Poisson bracket described above in Theorem 7.4.3, under the parametri-
zation given in (7.0.3). All these results can be resumed in the following compact statement

Theorem 7.0.1. The wild character variety of an sl2 polynomial connection of degree K on the Riemann
sphere is a cluster manifold of type A2K with one frozen variable. The log–canonical Poisson (symplectic)
structure on this cluster variety coincides with the push–forward by the monodromy map of the Lie-Poisson
structure.

The Chapter is organized as follows : in the first section we describe the symplectic structure on the
space of rational polynomial matrices, and we prove its relation with the symplectic structure on the
Stokes manifolds. In the second section we analyze the rank 2 case and we construct the log canonical
coordinates for the symplectic 2-form on the Stokes manifolds. In the third section we study the connection
between these log-canonical coordinates and cluster algebras. Finally the last section is devoted to recover
the original Flaschka-Newell Poisson structure from the linearized one in the coordinates yi for the Stokes
manifold.

7.1 Symplectic structure on the Stokes matrices

Consider a polynomial ODE of the form

dΨ
dλ

“ ApλqΨ, Apλq :“
K
ÿ

j“1
Ajλ

j . (7.1.1)

For the sake of this discussion we can consider the case of NˆN matrices (without real loss of generality,
we consider the slN case with TrpApλqq ” 0). Keeping in mind that all the results can be extended
to an arbitrary semisimple Lie algebra. We assume that AK has simple eigenvalues (i.e. it is regular
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semisimple). Under this hypothesis, using Theorem 4.1.3, one can find a solution in the class of formal
series of the form

Ψformpλq “ pY pλqλ´LeT pλq, pY pλq :“ G0

ˆ

1`
ÿ

jě1

Yj
λj

˙

P SLN rrλ
´1ss, (7.1.2)

where G0 is a chosen diagonalizing matrix for AK and L, T pλq are diagonal traceless matrices. In this
case, the entries of L are the formal monodromy exponents and the matrix T is a polynomial of the form

T pλq “ TK`1
λK`1

K ` 1 ` ¨ ¨ ¨ ` T1λ, Tj P h, (7.1.3)

where h denotes the Cartan subalgebra of slN , namely diagonal traceless matrices. The coefficients of
T pλq are the (higher formal) Birkhoff invariants. The matrix TK`1 is the diagonal form of the leading
coefficient AK , so that

AK “ G0TK`1G
´1
0 . (7.1.4)

Poisson structure on the space of matrices Apλq. The Lie-Poisson structure on the set of rational
matrices can be expressed as (for a review see [BBT03])

tApλqb, Apµqu “

„

Π
λ´ µ

,
1
Apλq `

2
Apµq



(7.1.5)

where A1pλq :“ Apλqb1, A2pµq :“ 1bApµq and Π : CnbCn Ñ CnbCn is the tensor effecting the flip :

Πpv b fq “ f b v, v, f P Cn. (7.1.6)

It can be explicitly written as Π “
řn
k,j“1 Ek,jbEj,k, with Eij the elementary matrices. In our case Apλq

is a polynomial ; the matrix AK is easily seen to consist entirely of Casimir functions for this Poisson
structure. The symplectic leaves are thus described ; let Gpλq be the matrix of eigenvectors for Apλq of
the form

Gpλq “ G0

ˆ

1`
ÿ

jě1

Bj
λj

˙

. (7.1.7)

(The Laurent series has a finite radius of convergence). Then

Apλq “ GpλqDpλqGpλq´1, Dpλq “ TK`1λ
K ` ¨ ¨ ¨ ` T1 ´

L

λ
` . . . (7.1.8)

where the matrices Tj are all diagonal traceless matrices ; as the choice of letters suggests, they coincide
(a simple exercise) with the Birkhoff invariants and the exponents of formal monodromy, while the rest of
the Laurent tail plays no role in our present considerations. Then the Casimir functions are T1, . . . , TK`1

and AK “ G0TK`1G
´1
0 (see also [BBT03], Ch. III).

On the symplectic leaves, the Poisson structure (7.1.5) has the form of the “universal symplectic
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7.1. Symplectic structure on the Stokes matrices

structure” of Krichever and Phong [KP00], [Kri02] :

ω
KK

“ ´ res
λ“8

Tr
ˆ

DpλqGpλq´1δGpλq ^Gpλq´1δGpλq

˙

dλ

“ ´ res
λ“8

Tr
ˆ

ApλqδGpλqGpλq´1 ^ δGpλqGpλq´1
˙

dλ (7.1.9)

The two-form is invariant under gauge action of right multiplication of G by diagonal matrices of the
form

F pλq “ 1`
ÿ

jě1

Fj
λj

P hrrλ´1ss. (7.1.10)

To see this we introduce the symplectic potential

θ :“ res
λ“8

Tr
ˆ

DpλqGpλq´1δGpλq

˙

(7.1.11)

which has the property that δθ “ ω
KK

. Now observe that under the gauge transformation Gpλq ÞÑ

GpλqF pλq we have

θ ÞÑ θ ` res
λ“8

Tr
ˆ

DpλqF´1pλqδF pλq

˙

dλ. (7.1.12)

In the latter term, since F pλq “ 1 ` Opλ´1q only the non-negative powers of Dpλq contribute (since
F´1pλqδF pλq “ Opλ´1q). Given that the parameters T1, . . . , TK`1 in (7.1.8) are constants, we can express
the last term in (7.1.12) as the total derivative of the function

res
λ“8

Tr
ˆ

DpλqF´1pλqδF pλq

˙

dλ “ δ res
λ“8

Tr
ˆ

Dpλq lnF pλq
˙

dλ, (7.1.13)

which implies that ω
KK

“ δθ is indeed invariant. It is also invariant under left multiplication Gpλq ÞÑ

HGpλq with H a constant (in λ) : indeed, the left multiplication by a constant matrix H leaves θ
completely invariant :

θ ÞÑ θ ` res
λ“8

Tr
ˆ

GpλqDpλqG´1pλqH´1δH

˙

dλ “ θ (7.1.14)

where we have used that GpλqDpλqG´1pλq “ Apλq is a polynomial.

The core of the idea of the “extended coadjoint orbit” of [B`07] is the following : while AK “

G0TK`1G
´1
0 is a Casimir for the KKS symplectic structure, G0 itself is not because right multiplications

by a constant diagonal matrix do not leave the symplectic form invariant.

Thus we allow G0 to be kinematical variables : fix the Birkhoff invariants T pλq “
řK`1
j“1 Tjλ

j{j (i.e.
the diagonal traceless matrices T1, . . . , TK`1) and consider the set

pOT :“
"

pG0, Apλqq P SLN ˆAK : G´1
0 AKG0 “ TK`1, pGpλq´1ApλqGpλqq` “ T 1pλq

*

, (7.1.15)
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where pq` denotes the Taylor part of a Laurent series (here is a polynomial part).
The dimension of pOT is

dimC

´

pOT

¯

“ pK ` 1qpN2 ´ 1q ` pN ´ 1q ´ pK ` 1qpN ´ 1q “ KNpN ´ 1q `N2 ´ 1 (7.1.16)

The extended orbit pOT carries the following SLN–action :

pG0, Apλqq ÞÑ pHG0, HApλqH
´1q, H P SLN . (7.1.17)

Then the quotient xOT {SLN is a symplectic manifold of dimension KNpN ´ 1q “ dimC SK .

In order to connect the Lie–Poisson structure with the Flaschka–Newell structure on the Stokes’
matrices we need first a lemma and to justify the definition of Stokes manifolds given in (7.0.1).

Lemma 7.1.1. The first K ` 1 coefficient matrices Y1, . . . , YK`1 in the expansion of the formal solution
Ψform (7.1.2) coincide with the expansion of the eigenvector matrix, to wit

pY pλq :“ G0

˜

1`
ÿ

jě1

Yj
λj

¸

“ Gpλq `Opλ´K´2q. (7.1.18)

Proof. The formal series pY satisfies the ODE

pY 1pλq ` pY pλq

ˆ

T 1pλq ´
L

λ

˙

“ ApλqpY pλq, (7.1.19)

where we abbreviated with 1 the derivation w.r.t. λ. Since pY 1pλq “ Opλ´2q, the matrices T pλq, L are
diagonal and since the degree of A isK we deduce that pY matches the Laurent expansion of the eigenvector
matrix Gpλq up to the indicated order.

Description of the Stokes manifolds. Recall the results stated in Section 4.1 about the behavior
of local solutions of linear ODEs near singular points, in particular Theorem 4.1.4. In our case of study,
namely equation (7.1.1), there is only one pole at 8 of Poincaré rank K ` 1 for each K ě 1. Thus
the complex plane can be partitioned into 2K ` 2 canonical Stokes sectors of equal angular width Sµ,
arranged in counterclockwise order. Within each such sector, Theorem 4.1.4 assures that there exists a
unique analytic solution Ψµpλq to the ODE (7.1.1) such that

Ψµpλq » Ψformpλq, |λ| Ñ 8, arg λ P Sµ, (7.1.20)

with Ψform given in (7.1.2). In these asymptotics, the determination of the matrix of formal exponents
λL is the same, –say– the principal one. In this setting, we have then 2K ` 2 Stokes’ matrices Sµ as
defined in (4.1.11) ; if the entries t1, . . . , tn of TK`1 are arranged in increasing order of <ptjeθ0q (for a
generic θ0 so that this order is unique), then the Stokes’ matrices are all triangular matrices with unit
diagonal, namely they belong to N˘ Ă SLn. Specifically, they alternate the triangularity as we move
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7.1. Symplectic structure on the Stokes matrices

counterclockwise.

The entries of these matrices are not independent ; they must satisfy the monodromy relation

S1S2 ¨ ¨ ¨S2K`2e2iπL “ 1 (7.1.21)

which is a consequence of the fact that the ODE has no singularities in the finite part of the plane and
therefore each of the solutions Ψµ extends uniquely to an entire matrix–valued function. We thus define
the Stokes’ manifold as the set of these data :

Definition 7.1.2. The Stokes’ manifold is the following set

SK :“
"

pS1, . . . , S2K`2, Lq P pN` ˆN´q
K`1 ˆ h : S1 ¨ ¨ ¨S2K`2e2iπL “ 1.

*

(7.1.22)

where N˘ denote the solvable subgroups of upper/lower triangular matrices with ones on the diagonal
and h denotes the subalgebra of diagonal traceless matrices. The dimension of this manifold is

dimCpSKq “ KNpN ´ 1q. (7.1.23)

It is apparent that the dimension is even ; in fact Boalch [B`07] shows that these type of manifolds
are symplectic. We are going to give a self–contained description, adapted to this case, of this structure.
In particular, in the next paragraph we are going to prove that for the general N case, the 2-form WK

defined in (7.0.2) has (up to a constant factor) pull-back that coincides with the symplectic form ωKK

written in (7.1.9). Thus implying that SK equipped with WK is a symplectic manifold. Then in the next
sections, we will treat the case N “ 2 finding explicit log-canonical coordinates in which WK is in non-
degenerate form and proving that the induced Poisson bracket indeed coincide with the Flaschka-Newell
one, written in equation (7.0.4).

The Malgrange form associated to an analytic family of Riemann Hilbert problems. We
describe here the gist of [Ber10, Ber21]. Suppose that Σ Ă C is a collection of oriented smooth arcs
(intersecting transversally) and J : Σ Ñ SLN a smooth matrix–valued function (the “jump matrix”)
depending analytically on parameters that we denote collectively by s. As discussed in Section 3.1, this
pair of data defines a family of Riemann-Hilbert problems (s depending). In case the contours Σ has
some self-intersections, the matrix Jpz; sq must satisfy suitable assumptions (see [Ber21] for details). The
most important one for the description here is the “local monodromy free” condition : let v be a “vertex”
of the graph, namely, a point of intersection of the smooth arcs of Σ. Let e1, . . . en be the sub-arcs of Σ
entering a small disk Dv centered at v and enumerated counterclockwise from an arbitrarily chosen one.
We denote by

J`pv; sq “ lim
λÑv
λPe`

J˘1pλ; sq, (7.1.24)
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where the power is `1 if the edge e` is oriented away from v and ´1 viceversa. Then the matrices must
satisfy

J1pv; sq ¨ ¨ ¨ Jnpv; sq “ 1 (7.1.25)

for all the vertices v of Σ, identically with respect to the deformation parameters s. Suppose now that
there exists (generically with respect to s) the solution of the Riemann–Hilbert problem 1

Γ`pλ; sq “ Γ´pλ; sqJpz; sq, z P Σ, Γp8; sq ” C0. (7.1.26)

The normalization condition at λ “ 8 is usually taken to be the identity, but it will be convenient to
consider a more general one. Then we recall the definition anticipated at the end of Chapter 3.

Definition 7.1.3. The Malgrange form is defined by the formula

ΘM :“
ˆ

Σ
Tr

ˆ

Γ´1
´ pλ; sqΓ1´pz; sqΞpλ; sq

˙

dλ
2iπ (7.1.27)

where Ξpλ; sq :“ δJpλ; sqJ´1pλ; sq is the Maurer–Cartan form, the prime denotes the differentiation w.r.t.
λ and δ is the total differential in the deformation parameters s.

We observe that the Malgrange form ΘM is independent of the normalization at λ “ 8, which
corresponds to a left multiplication of Γ by a λ–independent matrix. Then one has

Theorem 7.1.4 (Thm. 2.1 in [Ber21]). The exterior derivative of the Malgrange form ΘM is

δΘM “ ´
1
2

ˆ
Σ

dλ
2iπ Tr

`

Ξ1pλq ^ Ξpλq
˘

´
1

4iπ
ÿ

vPVpΣq

nv
ÿ

`“1
Tr

ˆ

H´1
` pvqδH`pvq ^ J

´1
` pvqδJ`pvq

˙

(7.1.28)

where H`pvq “ J1pvq ¨ ¨ ¨ J`pvq and the matrices J`pvq are defined prior to (7.1.25). 2

We now come to the main statement of the section.

Theorem 7.1.5. The following two-form is a (complex) symplectic structure on SK :

WK :“ 1
2

2K`3
ÿ

`“1
Tr

ˆ

H´1
` dH` ^ S

´1
` dS`

˙

, H` :“ S1 ¨ ¨ ¨S`, S2K`3 :“ e2iπL. (7.1.29)

Its pull-back by the (extended) monodromy map coincides with the Lie–Poisson structure (7.1.9) times
´2iπ.

Before discussing the proof, we point out that this form is written in a different way from [B`07]
(Thm 5, formula (7)) and rather reflects the general theory of “canonical form associated to a graph”
developed in [BK19]. The two expressions (a posteriori) can be verified to give the same two-form when

1. To simplify the mental picture, the reader may assume here that Σ is compact : if some rays extend to infinity, the
assumption is that Jpλq tends to the identity matrix faster than any power of λ´1 as λÑ 8, λ P Σ, so that the RHP can
be posed consistently. Details are in [Ber21].

2. In loc. cit. the form is presented in a different, but equivalent, way.
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Dβ
0

z´L

e2iπL

β

$1

$2
$

3

$
2
K
`

2

z “ 1 S1

S2

S2K`2

Figure 7.1 – An example of Stokes’ graph Σ used in Theorem 7.1.5.
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restricted to the constraint (7.1.21). In principle, in our explicit computation in Section 7.2 for the SL2

case, this theorem is verified ex post facto.

Proof. We show that the symplectic form (7.1.9) coincides with the pull-back by the monodromy map of
the form WK in (7.0.2) and hence showing that the latter is also symplectic (or, to put it more plainly, we
write (7.1.9) in the coordinates provided by the Stokes’ matrices). The proof here is completely different
from [B`07] ; rather than computing the two-form WK in the coordinates of the Stokes’ matrices, we
directly compute the symplectic potential (7.1.11).

Let Σ be graph indicated in Fig. 7.1 : the vertex of the star is at λ “ 1 and the small circle is centered
at the origin λ “ 0. The Stokes’ rays are the lines $1, . . . $2K`2 issuing from λ “ 1 and extending to
infinity along the Stokes’ directions. In the Fig. 7.1 we have drawn them for the case K “ 3 under the
assumption that the real parts <pitjq are ordered increasingly, so that the Stokes’ rays$` have asymptotic
directions arg λ “ iπ

2pK`1q `
iπ
K`1 p`´ 1q and the Stokes’ matrix S1 is then upper triangular.

We now define a piecewise analytic function Γ in each of the connected components of CzΣ ; in the
sector S1, Γ is given by

Γpλq “ Γ1pλq :“ Ψ1pλqe´T pλq`T p1qλL, (7.1.30)

where the determination of λL is the principal one. In the other unbounded components (including the
one that contains the disk Dr) the matrix Γ is defined by multiplying Γ1pλq by the jump matrices

J`pλq :“ eT pλq´T p1qλ´LS`λLe´T pλq`T p1q, λ P $`. (7.1.31)

The triangularity of S` is such that J`pλq “ 1 ` Opλ´8q as |λ| Ñ 8, λ P $`. Within the disk Dr we
define

Γpλq “ Γ0pλq :“ Γj0pλqλ´L “ Ψj0pλqeT p1q´T pλq, (7.1.32)

where j0 is the index of the sector containing Dβ . Note that Γ0 is locally analytic near λ “ 0.
In the sector containing the disk Dβ the matrix Γ does not have a jump on the ray p´8,´βs because

of the monodromy relation (7.1.21) and combined with the monodromy of the factor λL. There is, however
the jump Λ “ e2iπL on the segment rβ, 1s. A straightforward exercise shows that the piecewise analytic
matrix function Γ satisfies a RHP on the graph Σ shown in Fig. 7.1 :

Γ`pλq “ Γ´pλqJpλq, λ P Σ, Γpλq » eT p1q pY pλq, |λ| Ñ 8, (7.1.33)

where » denotes the asymptotic equivalence in the Poincaré sense, pY pλq is the formal series as in Lemma
7.1.1 and the jump matrix Jpλq is given by

Jpλq “

#

J`pλq λ P $` (see (7.1.31))
λ´L λ P BDβ .

(7.1.34)

The jump matrix on BDβ is the function λ´L and the determination is (recall that β P R`) with arg λ P
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r0, 2πq, which is not the same used earlier but we do not want to overload the notation by using a different
symbol for the power. Using Lemma 7.1.1 we can write the symplectic potential (7.1.11) as the formal
residue

θ “ res
λ“8

Tr
ˆ

ApλqδGpλqG´1pλq

˙

dλ “ “ res
λ“8

2 Tr
ˆ

ApλqδpY pλqpY ´1pλq

˙

dλ “

“ res
λ“8

Tr
ˆ

ApλqδΓpλqΓ´1pλq ´ Γ´1pλqApλqΓpλqδT p1q
˙

dλ. (7.1.35)

Since the expansion at 8 of Γ coincides with that of the eigenvectors up to order λ´K´1 (included), the
second term in the residue yields (recall that resλ“8 extracts the coefficient of λ´1 with a minus sign)

´ res
λ“8

Tr
ˆˆ

T 1 ´
L

λ

˙

δT p1q
˙

dλ “ ´TrpLδT p1qq. (7.1.36)

The first term in (7.1.35) is a formal residue and can be realized as the following limit of an actual integral

lim
rÑ8

˛
|λ|“r

dλ
2iπ Tr

ˆ

ApλqδΓΓ´1
˙

(7.1.37)

where the contour runs counterclockwise. Note that the integrand is actually an analytic function defined
piecewisely for each sector. Applying Cauchy’s theorem, we can reduce the integration along the support
of the jumps of Γ and we obtain

θ “

ˆ
Σ

dλ
2iπ Tr

ˆ

Apλq∆ΣpδΓΓ´1q

˙

´ Tr
`

LδT p1q
˘

(7.1.38)

where ∆Σ is the jump operator ∆ΣF pλq “ F`pλq ´ F´pλq, λ P Σ. Now observe that

Γ` “ Γ´J ñ δΓ` “ δΓ´J ` Γ´δJ ñ δΓ`Γ´1
` “ δΓ´Γ´1

´ ` Γ´δJJ´1Γ´1
´ . (7.1.39)

and hence we have

∆ΣpδΓΓ´1q “ Γ´δJJ´1Γ´1
´ . (7.1.40)

Plugging (7.1.40) into (7.1.38) gives

θ “

ˆ
Σ

dλ
2iπ Tr

ˆ

Γ´1
´ AΓ´δJJ´1

˙

´ Tr
`

LδT p1q
˘

. (7.1.41)

The above expression suggest a relationship with the Malgrange form ΘM in Def. 7.1.3 which we now
investigate. Using the definition Γpλq “ ΨpλqeT p1q´T pλqλL (piecewise sectorially), we find that

ApλqΓpλq “ Ψ1pλqeT p1q´T pλqλL “ Γ1pλq ` Γ
ˆ

T 1pλq ´
L

λ

˙

. (7.1.42)
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Thus the expression (7.1.41) is recast into :

θ “

ˆ
Σ

dλ
2iπ Tr

ˆ

Γ´1
´ Γ1´δJJ´1

˙

`

ˆ
Σ

dλ
2iπ Tr

ˆˆ

T 1pλq ´
L

λ

˙

δJJ´1
˙

´ Tr
`

LδT p1q
˘

(7.1.43)

The integrand in the second integral is zero on each of the Stokes’ rays $` because the matrices δJ`J´1
`

are strictly triangular (upper or lower), with zeros on the diagonal and L, T 1 are diagonal, so that the
product is diagonal-free. Thus the second integral reduces to

ˆ
Σ

dλ
2iπ Tr

ˆˆ

T 1pλq ´
L

λ

˙

δJJ´1
˙

“

“

ˆ βe2iπ

β

dλ
2iπ Tr

ˆˆ

T 1pλq ´
L

λ

˙

´

´ δT p1q ´ δL lnλ
¯

˙

`

ˆ β

1

ˆˆ

T 1pλq ´
L

λ

˙

δL

˙

dλ “

“´

K`1
ÿ

j“1

TrpTjδLq
2iπ

ˆ

lnλ
j
´

1
j2

˙

λj
ˇ

ˇ

ˇ

ˇ

βe2iπ

β

`
δTrpL2q

4iπ
pln zq2

2

ˇ

ˇ

ˇ

ˇ

βe2iπ

β

` Tr
´

LδT p1q
¯

` Tr
ˆ

`

T pβq ´ T p1q
˘

δL´ δ

ˆ

L2

2

˙

ln β
˙

“

“´ Tr
`

T p1qδL
˘

´
iπ

2 δTr
`

L2˘. (7.1.44)

Thus we have shown that

θ “ ΘM ´ Tr
`

T p1qδL
˘

´ 2iπδTr
`

L2˘´ Tr
`

LδT p1q
˘

“ ΘM ´ δTr
ˆ

T p1qL` iπ

2 L
2
˙

. (7.1.45)

This means that the Kirillov-Kostant form θ coincides with the Malgrange form up to an exact differential.
We now compute the exterior derivative of θ using Theorem 7.1.4. It is clear that the last term in (7.1.45)
does not contribute to the exterior differentiation because it is an exact form. The integral in (7.1.28)
has no contribution because

- on the rays $` the integrand is traceless (given the triangularity of the jump matrices (7.1.31)) ;

- on the segment issuing from λ “ 1 and directed to the disk, the matrix Ξ is constant in λ ;

- on the boundary of the disk Ξ1pλq ^ Ξpλq “ lnλ
λ δL^ δL “ 0 since L is diagonal.

Thus we are left only with the contributions from the two vertices of the graph in Fig. 7.1, which are
v0 “ β and v “ 1. At v0 we have three incident edges and the matrices J1, J2, J3 are J1 “ e2πL, J2 “ βL,
J3 “ β´Le´2iπL. Since they commute, it is easy to see that there is no contribution (each term contains
δL^ δL, which vanishes identically since L is diagonal).

Thus the only contribution comes from v “ 1 ; here the jumps are :

J`pvq “ S`, ` “ 1, . . . , 2K ` 2 (7.1.46)

and J2K`3 “ e´2iπL. Then the Theorem 7.1.4 gives precisely (7.0.2) divided by ´2iπ. Thus we conclude
that WK in (7.0.2) is a symplectic form.

Remark 7.1.6. To be explicit, the coordinates on the quotient of the extended orbit (7.1.15) are as
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7.2. Stokes manifolds for n “ 2

follows ; one writes

G “ G0 exp
ˆ

H1

z
`
H2

z2 ` ¨ ¨ ¨ `
HK

zK
`Opz´K´1q

˙

(7.1.47)

where H1, . . . ,HK can be chosen diagonal free (i.e. with zeros on the diagonal), using the gauge freedom
(7.1.12). Then the KNpN ´ 1q entries of H1, . . . ,HK are the coordinates.

7.2 Stokes manifolds for n “ 2
Our goal now is twofold :

1. provide explicit parametrization in terms of patches of free coordinates for the complex manifold
SK (7.1.22) ;

2. show that the coordinates introduced above are log–canonical for the two-form (7.0.2).

We recall here the terminology ; a coordinate system px1, . . . , x2nq on a symplectic manifold pM, ωq is
called log-canonical if the symplectic form is expressed as follows in the coordinate system

ωpxq “
ÿ

iăj

ωij
dxi
xi
^

dxj
xj

(7.2.1)

with ωij constants. If Pij denotes the inverse transposed of the matrix ωij then the Poisson brackets read

txi, xju “ Pijxixj (no summation), (7.2.2)

namely the logarithms of the coordinates have constant Poisson brackets amongst themselves (whence
the terminology). At this point the problem of finding Darboux coordinates reduces to a simple problem
of linear transformation in the logarithmic coordinates to find the canonical symplectic matrix for the
Poisson brackets.

We are going to carry out the two steps above in the case of SL2, which corresponds to the historically
first case ever studied in [FN82]. The higher case can be handled in a similar way but we defer the
computation to a later work since it would unnecessarily obfuscate the computation behind a plethora of
indices.

As anticipated in the introduction, the Stokes’ manifold (7.1.22) specializes for any K ě 1 and N “ 2
to the following

SK “

#˜

1 s1

0 1

¸˜

1 0
s2 1

¸

. . .

˜

1 s2K`1

0 1

¸˜

1 0
s2K`2 1

¸

λσ3 “ I2 with si P C, λ P Cˆ
+

. (7.2.3)

We will denote by S2l´1 the upper triangular matrices and by S2l the lower triangular matrices appearing
in the equation above for l “ 1, . . . ,K ` 1.

Remark 7.2.1. The matrix equation in (7.2.3) is equivalent to three algebraically independent scalar
equations for the Stokes parameters sj and the formal monodromy exponent α so that dim pSKq “

2pK ` 1q ` 1´ 3 “ 2K, as it follows from (7.1.23) for N “ 2.
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7.2.1 Construction of the log-canonical coordinates

We consider on SK the 2-form (7.0.2). Following [BK19] we introduce some basic definitions and
properties of the 2-form associated to a graph embedded in a surface, and we will see that the Stokes
2-form can be conveniently interpreted within that formalism. This is indeed the key in order to compute
it explicitly and find the log-canonical coordinates.

Graph theory We briefly recall the definition of the standard 2-form associated to an oriented graph
on a surface (we refer to Section 2 of [BK19] for more details). Let Σ be an oriented graph on a surface,
we denote with VpΣq the set of its vertices, EpΣq the set of its edges and FpΣq the set of its faces. A
“jump matrix” J is a map from EpΣq to SLn with the properties that :

1. for any edge e P EpΣq we have
Jp´eq “ Jpeq´1 (7.2.4)

with ´e denoting the same edge e with opposite orientation ;

2. for any vertex v P VpΣq of valence nv we have that the ordered counterclockwise product of the
matrices associated to each edge oriented away from v is the identity. Namely :

Jpe1q . . . Jpenv q “ In, (7.2.5)

where we ordered the edges e1, . . . , env incident at v then counting them counterclockwise.

To the pair pΣ, Jq, we can then associate the standard 2-form ΩpΣq defined hereafter.

Definition 7.2.2. The standard 2-form ΩpΣq associated to the graph Σ is defined as follows (we omit
explicit reference to the dependence on J from the notation)

ΩpΣq :“
ÿ

vPVpΣq

nv´1
ÿ

`“1
Tr

ˆ

´

H
pvq
r1:`s

¯´1
dHpvq

r1:`s ^
´

J
pvq
`

¯´1
dJ pvq`

˙

. (7.2.6)

where in this formula for any vertex v P VpΣq we have taken the incident edges e1, . . . , env oriented away
from v and enumerated in counterclockwise order, starting from any of them. Here Hpvq

r1:`s “ J1 . . . J`

with Ji “ Jpeiq for i “ 1, . . . , nv. Thanks to the property (7.2.5), this 2-form is well defined, namely,
independent of the choice of first edge in the cyclic order at each vertex.

The form ΩpΣq in Def. 7.2.2 is shown to be invariant under certain transformations pΣ, Jq ÞÑ pΣ1, J 1q
(called moves, see Section 2 of [BK19]) ; these moves consist in the self–describing titles of

1. edge contractions ;

2. merging edges ;

3. attaching edges to vertices (and the converse)

The star-graph for the Stokes’ phenomenon. Given the formula (7.0.2) we surmise that the form
WK can be represented as 2WK “ ΩpΣ‹q where Σ‹ (the “star-graph”) is simply the collection of 2K ` 3
rays, each carrying the matrices J1 :“ S1, . . . , J2K`2 :“ S2K`2, J2K`3 :“ Λ “ e2iπL as jumps. We
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S2

S5

S1

S6ΛS4

S3

Ψ1

Ψ2Ψ3

Ψ4

Ψ5 Ψ6

v

Σ(2)

Figure 7.2 – The Stokes graph Σp2q.

can actually merge the last two rays and corresponding jump matrices to obtain a simpler star-graph
ΣpKq indicated by the way of example in Fig. 7.2 for K “ 2. This is not quite one of the generally
allowed moves listed in [BK19] but we now verify directly that it leaves the form invariant. Let thus
rJ` “ J`, ` “ 1, . . . , 2K ` 1 and rJ2K`2 :“ J2K`2J2K`3 “ S2K`2Λ. Recall that S2K`2 P N´ and Λ
is diagonal. Note that H` “ rH` up to ` “ 2K ` 1, while rH2K`2 “ H2K`2Λ “ 1. Then the difference
between the two-forms is

ΩpΣ‹q ´ ΩpΣpKqq “ Tr
`

H´1
2K`2dH2K`2 ^ S

´1
2K`2dS2K`2

˘

. (7.2.7)

Since H2K`3 “ H2K`2Λ “ 1 we must have that H2K`2 “ Λ´1, namely, it is diagonal. But S2K`2 is
unipotent triangular and hence S´1

2K`2dS2K`2 is strictly lower triangular, so that the matrix in (7.2.7)
is diagonal–free and the trace gives zero. Thus, in conclusion, we only need to analyze the two-form
associated to the graphs of the form ΣpKq depicted in Fig. 7.2, since we proved that

2WK “ ΩpΣpKqq. (7.2.8)

The idea is to realize the simple graph ΣpKq as the complete contraction of all the (finite length) edges
of another graph with explicit, simple jump matrices that depend on free parameters (contrary to the
Stokes’ parameter that are subject to algebraic relations).

Consider the graph ΣpKq0 , exemplified in Figure 7.3 for K “ 2 : then it is apparent that ΣpKq is the
total contraction of ΣpKq0 . The jump matrices for this graph are described in the following paragraph.
The key fact is that the computation of the symplectic form associated to ΣpKq0 is then a straightforward
exercise.

Since the graphs ΣpKq0 and ΣpKq are related by the “moves” hinted before and described in [BK19],
the corresponding associated forms coincide : Ω

´

ΣpKq0

¯

“ Ω
`

ΣpKq
˘

. Then, by using the definition of
the 2-form associated to a graph, we will compute explicitly the Stokes form, showing directly that it is
indeed symplectic.

The graph ΣpKq0 and its jump matrices. The graph ΣpKq0 (see Fig. 7.3 for the example with K “ 2)
is the graph consisting of 2pK ` 1q infinite rays emanating from the vertices of a regular 2K ` 2–
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S2

S5

S1

S6ΛS4

S3

z4

z1z2

z3

v2

v5

v1

v4 v6

v3

Figure 7.3 – The modified graph Σp2q0 . Here we take the triangulation T0 of the hexagon that connects
any of its vertices to v6.

gon. The polygon is subdivided into triangles with a common vertex v2K`2. We denote by T0 this
precise triangulation of the polygon. Inside each triangle we have a vertex zj and three edges from the
three vertices bounding the triangle to the vertex zj . We describe the jump matrices for T0 with the
understanding that, mutatis mutandis, the same matrices are defined for an arbitrary triangulation. To
each oriented edge of ΣpKq0 we associate a matrix that is constant or depends on complex parameters
yj P C˚, j “ 1, . . . , 2K. The orientation is defined as follows : the perimeter of the polygon is oriented
counterclockwise and as for the vertices zj , each edge is oriented towards the vertex zj . The internal
diagonals of the triangulation are oriented in such a way that for every even perimetric vertex the internal
diagonal is exiting from the vertex v2K`2 and for every odd vertex the internal diagonal is instead entering
in the vertex v2K`2. The Stokes rays are kept with the same orientation as in the Stokes graph. The
matrices for each edge are defined as follows :

‚ on the perimetric edges connecting v2k Ñ v2k`1 for k “ 1, . . .K and v2K`2 Ñ v1 „ v2K`3 (the
blue edges in Figure 7.3), we take diagonal matrices of the form

D px2kq :“
˜

x´1
2k 0
0 x2k

¸

, (7.2.9)

where xl is the following product of yj ’s variables

xl :“ y1
ź

2ďkďl

ź

djKvk

y
p´1qk`1

j , l “ 2, . . . , 2K ` 1, x2K`2 :“ y1
ź

djKv1

y´1
j (7.2.10)

‚ on the perimetric edges connecting v2k`1 Ñ v2k`2 (the green edges in Figure 7.3), we take off-

132



7.2. Stokes manifolds for n “ 2

diagonal matrices of the form

V
`

x´1
2k`1

˘

:“
˜

0 ´x´1
2k`1

x2k`1 0

¸

, (7.2.11)

and along the edge v1 Ñ v2 we impose the jump matrix V py´1
1 q ;

‚ on the three edges incident to zj (each of the dashed lines in Figure 7.3) we associate the constant
matrix

A :“
˜

0 1
´1 ´1

¸

, (7.2.12)

that has the property A3 “ 1.

Remark 7.2.3. In the SLn case, the matrix A would be replaced by matrices A1,2,3 that depend
on pn´ 1qpn´ 2q{2 additional parameters for each triangle.

‚ on each internal diagonal edge dj for j “ 2, . . . , 2K defining the original triangulation T0, we
associate off-diagonal matrices of the form V pyjq given by

V pyjq :“
˜

0 ´yj

y´1
j 0

¸

(7.2.13)

for j “ 2, . . . , 2K (these are the red edges of Figure 7.3). In this way each internal diagonal dj is
uniquely associated to the free variable yj , for j “ 2, . . . , 2K.

Remark 7.2.4. In this construction one among the boundary edges plays a distinguished role, namely,
the one laying to the left of the first Stokes ray. Indeed, the matrix associated to this edge is of the same
type of the matrices associated to the internal diagonal edges of the triangulation T0 and it depends only
on y1. It would be possible to choose an arbitrary distinguished boundary edge for our variable y1, while
retaining the same triangulation. Then one may verify (but we do not report the details here) that the
new distiguished variable ry1 is a monomial containing y1, while the other variables are unchanged.

7.2.2 Computation of WK

The Stokes’ matrices Sj on the unbounded rays are then uniquely determined in terms of the remaining
ones by the condition (7.2.5) at the corresponding vertex vj . In this way each Sj is expressed in terms of
the yj variables. Of course, for each triangulation, we will obtain different parametrization of the Stokes
parameters and the transformation of coordinates will be investigated later.

The initial triangulation Consider now the triangulation T0, underlying the graph ΣpKq0 , where the
last vertex v2K`2 is connected to each other vertex starting from v2, and with alternated orientation of
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the internal diagonals (as in Figure 7.3 for the case K “ 2). Then the Stokes matrices are given by

S1 “
`

V py´1
1 qADpy1q

´1˘´1

S2 “
`

Dpx2qAV py2q
´1AV py´1

1 q´1˘´1
,

S2k “
`

Dpx2kqAV py2kq
´1AV px´1

2k´1q
´1˘´1

, k “ 2, . . . ,K

S2k`1 “
`

V px´1
2k`1qAV py2k`1qqADpx2kq

´1˘´1
, k “ 1, . . . ,K ´ 1

S2K`1 “
`

V px´1
2K`1qADpx2Kq

´1˘´1

S2K`2Λ “
˜

Dpy1q
2K
ź

j“2

´

AV pyjq
p´1qj

¯

AV px´1
2K`1q

´1

¸´1

.

(7.2.14)

The choice of the triangulation of the polygon also defines the variables xl. According to the general rule
(7.2.10) with the triangulation T0 fixed here, this definition reduces to

xl :“
l
ź

j“1
y
p´1qj`1

j l “ 2, . . . , 2K, x2K`1 “ x2K , x2K`2 :“ y1. (7.2.15)

These considerations are summarized in the following lemma.

Proposition 7.2.5. The Stokes parameters are written in terms of the yj variables, w.r.t. the fixed
triangulation T0 described above, as follows

s1 “ ´y
´2
1

s2k “ p1` y2
2kq

ź

1ďjď2k
y
p´1qj`12
j , k “ 1, . . . ,K

s2k`1 “ ´p1` y2
2k`1q

ź

1ďjď2k`1
y
p´1qj2
j , k “ 1, . . . ,K ´ 1

s2K`1 “ ´
ź

1ďjď2K
y
p´1qj2
j ,

s2K`2 “ y2
1
`

1` y2
2
`

. . .
`

1` y2
2K

˘

. . .
˘˘

K
ź

j“1
y´4

2j ,

λ “ p´1qK
K
ź

j“1
y2

2j . (7.2.16)

Proof. Just computing explicitly the parametrizations given from equations (7.2.14) and using the defi-
nition of the variables x2k, x2k`1 given in (7.2.15).

With this parametrization of the Stokes matrices we can then proceed to the computation of the
Stokes form.
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7.2. Stokes manifolds for n “ 2

Proposition 7.2.6. The 2-form associated to the graph ΣpKq0 coincide with

Ω
´

ΣpKq0

¯

“ `8
K
ÿ

j“1
lěj

d log y2j´1 ^ d log y2l. (7.2.17)

In particular it is symplectic.

Proof. The fact that the form is symplectic follows from Theorem 7.1.5 and the fact that the contraction
of ΣpKq0 coincides with the graph ΣK (see Fig. 7.2) ; however the explicit expression (7.2.17) is manifestly
a nondegenerate form and so it could be used directly as a proof. By using the definition of the 2-form
(7.2.6), we have to compute the contributions coming from each vertex vj , j “ 1, . . . 2K ` 2 in the graph
ΣpKq0 . The vertices zj , j “ 1, . . . , 2K do not give any contribution since all their incident edges carry
constant matrices.
We start with the vertex v1. Since the valence of v1 is 4 and A is a constant matrix, there is only one
contribution to take into account from v1, and it is

Tr

¨

˚

˝

`

V py´1
1 qADpy1q

´1˘´1
d
`

V py´1
1 qADpy1q

´1˘

“S1dpS
´1
1 q

^
`

Dpy1qdDpy1q
´1˘

“´d log y1σ3

˛

‹

‚

“ 0 (7.2.18)

that turns out to be also zero, thanks to the form of the Stokes matrices given in (7.2.14). Thus the total
contribution of the vertex v1 is actually zero.
Since the vertex v2K`1 is in the same configuration of v1, but replacing Dpy1q by Dpx2Kq, by the same
reasoning we can conclude that its contribution is also zero.
Now we compute the contributions of the vertices v2k for k “ 1, . . . ,K. For each of them there is only
one nonzero contribution and it is coming from the term

Tr

¨

˚

˚

˝

´

`

Dpx2kqAV py2kq
´1˘´1

d
`

Dpx2kqAV py2kq
´1˘

¯

´d logpx2k´1q`E21fp~yqd~y

^
`

V py2kqdpV py2kq
´1q

˘

“´d log y2kσ3

˛

‹

‹

‚

“

“ 2d log x2k´1 ^ d log y2k “

“ 2d log
˜

2k´1
ź

j“1
y
p´1qj`1

j

¸

^ d log y2k “

“ 2d log y1 ^ d log y2k`2
k
ÿ

l“2
d log y2l´1 ^ d log y2k´2

k´1
ÿ

l“1
d log y2l ^ d log y2k.

(7.2.19)

Notice that for the case k “ 1 we only have the term 2d log y1 ^ d log y2.
A similar computation shows that the only nonzero contribution for the vertices v2k`1 for k “ 1, . . . ,K´1
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is given by

Tr

¨

˚

˚

˝

´

`

V px´1
2k`1qAV py2k`1q

˘´1
d pDpx2k`1qJAV py2k`1qq

¯

“d log x2kσ3`E21gp~yqd~y

^
`

V py2k`1q
´1dpV py2k`1qq

˘

“´d log y2k`1

˛

‹

‹

‚

“

“ ´2d log x2k ^ d log y2k`1 “

“ ´2d log
˜

2k
ź

j“1
y
p´1qj`1

j

¸

^ d log y2k`1 “

“ ´2d log y1 ^ d log y2k`1´2
k
ÿ

j“2
d log y2j´1 ^ d log y2k`1`2

k
ÿ

j“1
d log y2j ^ d log y2k`1.

(7.2.20)

It only remains to compute the contribution of the vertex v2K`2. The internal diagonals carrying the
variables y2k for k “ 1, . . . ,K give the contribution

C1 :“
K
ÿ

k“1
Tr

¨

˝

`

V py2kq
´1dpV py2kqq

˘

^

˜

Dpy1q
2k
ź

j“2
A pV pyjqq

p´1qj
¸´1

d

˜

Dpy1q
2k
ź

j“2
A pV pyjqq

p´1qj
¸

˛

‚“

“

K
ÿ

k“1
Tr

˜

´d log y2kσ3 ^

˜

´d log y1 ´
2k
ÿ

j“2
d log yj

¸

σ3

¸

“

“ ´2
K
ÿ

k“1
d log y1 ^ d log y2k ` 2

K
ÿ

k“1
jďk

pd log y2k ^ d log y2j ` d log y2k ^ d log y2j´1q .

(7.2.21)
The internal diagonals carrying on the variables y2k`1 give instead the contribution

C2 :“
K´1
ÿ

k“1
Tr

¨

˝

˜

Dpy1q
2k`1
ź

j“2
A pV pyjqq

p´1qj
¸´1

d
˜

Dpy1q
2k`1
ź

j“2
A pV pyjqq

p´1qj
¸

^
`

V py2k`1qdpV py2k`1q
´1q

˘

˛

‚“

“

K´1
ÿ

k“1
Tr

˜˜

´d log y1 ´
2k`1
ÿ

j“2
d log yj

¸

σ3 ^ p´d log y2k`1σ3q

¸

“

“ 2
K´1
ÿ

k“1
d log y1 ^ d log y2k`1´2

K´1
ÿ

k“2
jďk

pd log y2k`1 ^ d log y2j ` d log y2k`1 ^ d log y2j´1q .

(7.2.22)
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Finally the last edge on the right of the Stokes ray of v2K`2 also gives a nonzero contribution, that is

C3 :“ Tr
`

pS2K`2ΛqdpS2K`2Λq´1 ^
`

V px´1
2K`1qdpV px

´1
2K`1q

´1q
˘˘

“

“ Tr
˜˜

2
K
ÿ

l“1
d log y2l

¸

σ3 ^

˜

´d log y1 `
K
ÿ

j“1
p´d log y2j`1 ` d log y2jq

¸

σ3

¸

“

“ 4
K
ÿ

l“1
d log y1 ^ d log y2l`4

K
ÿ

j“2
d log y2j´1 ^

K
ÿ

l“1
d log y2l´4

K
ÿ

j“1
d log y2j ^

K
ÿ

l“1
d log y2l

“0

“

“ 4
K
ÿ

l“1
d log y1 ^ d log y2l`4

K
ÿ

j“2
d log y2j´1 ^

K
ÿ

l“1
d log y2l

(7.2.23)

where in the last equality we used the skew-symmetry of the wedge product. Now we can sum up all the
nonzero contributions coming from vl, l “ 2, . . . , 2K ` 2 and we obtain

Ω
´

ΣpKq0

¯

“ 2
K
ÿ

k“1
d log y1 ^ d log y2k`2

K
ÿ

2ďlďk
k“2

d log y2l´1 ^ d log y2k´2
K
ÿ

1ďlďk´1
k“2

d log y2l ^ d log y2k

´2
K´1
ÿ

k“1
d log y1 ^ d log y2k`1´2

K´1
ÿ

2ďjďk
k“2

d log y2j´1 ^ d log y2k`1`2
K´1
ÿ

1ďjďk
k“1

d log y2j ^ d log y2k`1

`2
K
ÿ

k“1
d log y1 ^ d log y2k´2

K
ÿ

k“1
jďk

pd log y2k ^ d log y2j ` d log y2k ^ d log y2j´1q (7.2.24)

`2
K´1
ÿ

k“1
d log y1 ^ d log y2k`1´2

K´1
ÿ

k“2
jďk

pd log y2k`1 ^ d log y2j ` d log y2k`1 ^ d log y2j´1q (7.2.25)

`4
K
ÿ

l“1
d log y1 ^ d log y2l`4

K
ÿ

j“2
d log y2j´1 ^

K
ÿ

l“1
d log y2l (7.2.26)

“ ´8
K
ÿ

k“1
jěk

d log y2k´1 ^ d log y2j (7.2.27)

By using relation (7.2.8), we can finally conclude that the Stokes 2-form WK is written in terms of
these yj variables as

WK “
1
2Ω

´

ΣpKq
¯

“
1
2Ω

´

ΣpKq0

¯

“ 4
K
ÿ

k“1
jěk

d log y2k´1 ^ d log y2j , (7.2.28)

and since it has maximal rank, it is a symplectic 2-form.
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y1 y2 y3 y4A4

Figure 7.4 – The Dynkin diagram associated to the 4ˆ 4 matrix B2. This quiver can also be obtained
following the construction described in the paragraph below with the triangulation of the hexagon fixed
to be T0.

The Poisson structure induced by the the symplectic structure in the same variables will be then written
as

tyi, yju “ Pij
Kyiyj (7.2.29)

where PK “ Ω´tK and ΩK is the matrix of coefficient of the Stokes 2-form w.r.t. the logarithmic variables
log yl.

Lemma 7.2.1. The matrix PK is the 2K ˆ 2K tridiagonal matrix given by

PK “
1
4

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 0 0 . . . 0
´1 0 1 0 0 . . . 0
0 ´1 0 1 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
0 0 . . . ´1 0 1
0 0 . . . 0 ´1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(7.2.30)

7.3 Comparison between PK and Poisson structure on Y -cluster
manifold

Let focus our attention on the matrix BK :“ 4PK .

Definition 7.3.1. Given a quiver Q with labeled vertices qi, i “ 1, . . . ,#VpQq, we call B its adjacency
matrix the skew-symmetric, integer-valued square matrix, of dimension #VpQq, given by

Bkl :“ # tedges oriented from qk to qlu ´# t edges oriented from ql to qku (7.3.1)

for k, l “ 1, . . . ,#VpQq.

Then the matrix BK can be identified as the directed adjacency matrix of a Dynkin graph of type
A2K with specified orientation. An example for K “ 2 is given in Figure 7.4. There is a classical way
to associate a directed graph to a triangulation of a given polygon (see for instance paragraph 2.1 of
[GSV10]). We slightly modify this construction, taking into account the fact that there is an edge along
the perimeter of the polygon (the edge at the left of the first Stokes ray) that has a distinguished role in
our case. We end up with the following graph QpT q for a given triangulation T of the polygon :

‚ the vertices of QpT q are defined one for each of the following edges of T : the edge along the
perimeter at the left of the first Stokes ray and every internal diagonal edge of the triangulation T ;
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S2

S5

S1

S6ΛS4

S3

y1

y2
y3

y4

A4

Figure 7.5 – Here the triangulation T0 of the hexagon and the variables yj assigned to the relevant edges
induce the Dynkin diagram with variables y1, y2, y3, y4 in blue.

‚ the edges of QpT q are are build between each pair of vertices that lies on edges of the triangulation
T that share one of the endpoints and are immediately adjacent ;

‚ the orientation of the edges of QpT q is defined as follows : an edge connecting the vertices qi and
qj on the adjacent edges of T di and dj is oriented qi Ñ qj if the edge di immediately precedes dj
counting counterclockwise the edges incident to their common endpoint. Otherwise it is oriented in
the opposite way. For the vertex y1 along the edge on the right of the first Stokes ray (since on this
edge we actually used the variable y´1

1 ) we reverse the orientation of all the edges of QpT q that
have y1 as endpoint.

With this construction, we obtain that for the initial triangulation T0 underlying Σp0qK the quiver
QpT0q is a Dynkin graph of type A2K with the orientation induced from T0 (but each orientation of the
same type of Dynkin graph is mutation equivalent, see Theorem 3.29 of [GSV10]).
The matrix BK gives a compatible Poisson structure on the Y -cluster manifold which is defined by the
ring of functions that are polynomials in all of the seeds obtained by subsequent mutations (of Y -type),
defined below.

Definition 7.3.2. A mutation µkpQq w.r.t. a vertex qk P VpQq of the quiver Q is a new quiver defined
by

‚ the same set of vertices, namely VpQq “ VpµkpQqq ;

‚ the set of edges constructed as follows

1. for any sequence qi Ñ qk Ñ ql add an edge qi Ñ ql,

2. reverse any edge having source or end in the vertex qk,

3. remove every 2-cycle if any.

Equivalently we can define the mutation µkpQq of Q through its adjacency matrix µkpBq that is given
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by the following equations

µkpBqst “

$

&

%

´Bst,

Bst ` signpBskq rBsk, Bkts` ,

for s “ k or s “ t,

otherwise.
(7.3.2)

In our case of study, a set of variables yi P C˚ one of each vertex qi is associated to the quiver, for
i “ 1, . . . , 2K. To each mutation µkpQq of the quiver is then associated a new set of variables µkp~yq
following the equations in the definitions that we recall below (see also (1.30) in e.g. [GSV10]).

Definition 7.3.3. A Y -mutation for the variables yi of the couple pQ, ~yq is a new set of variables
pµkp~yqq

2K
i“1 , for i “ 1, . . . 2K defined as rational functions of the yi in the following way

y1i :“ pµkp~yqqi “

$

’

&

’

%

y´1
k ,

yi
y
rBiks`
k

p1`ykqBik
,

for i “ k,

otherwise.
(7.3.3)

Every new pair µkp~y,Qq “ p~y1, Q1q obtained by an allowed mutation is called a seed. In our case, we
have that the initial quiver QpT q is the Dynkin graph of A2K-type (for every n ě 1) that is related to
the triangulation T of the polygon in ΣpKq0 . The allowed mutations in this case are with respect to all
the vertices with variables y2, . . . , y2K (the ones associated to the internal diagonals of the triangulation
T of the polygon).

Definition 7.3.4. Given a pair p~y,Qq where Q is a quiver with labeled vertices qi, i “ 1, . . . ,#VpQq and
the variables yi P C˚ are associated to each qi, we call the Y -cluster algebra AY pQq the sub-ring of all
polynomials in yi and all their possible seeds µkp~y,Qq where µk is a mutation w.r.t. the vertex qk with
assigned variable yk.

Definition 7.3.5. Given a Y -cluster algebra, its correspondent Y -cluster manifold is defined as the
smooth part of SpecpAY pQqq.

Denoting by AY,i‰1pA2Kq the Y -cluster algebra described above for our case, then on its correspondent
Y -cluster manifold M :“ SpecpAY,i‰1pA2Kqq there is a compatible Poisson structure having the form

tyi, yju “ BKyiyj . (7.3.4)

Therefore we reach the conclusion that the Poisson structure (induced by the symplectic 2-form WK)
on the Stokes manifold pSK ,PKq coincides with the Poisson structure of pM,BKq, up to a constant
multiplicative factor.

7.3.1 Flipping the edges

In the previous section we have established how to define the matrices and the variables yj , xl asso-
ciated to each edge of a given triangulation, in order to get a parametrization of the Stokes matrices.
We also computed the Stokes matrices and the Stokes 2-form for a fixed triangulation, seeing that its
matrix coefficient is related to the matrix coefficient of the Poisson structure of the Y -cluster manifold
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of A2K-type.
We are now going to show that the y-variables associated to two triangulations T and T̃ that are related
by a single flip of one of their internal diagonal edges dj , are related by the rules of the mutation of
seed variables (Def. 7.3.3). Subsequent flips give different systems of equations for the variables, so we
are going to study separately all the possible cases of flip. The equations between the old and the new
y variables are obtained by requiring that the Stokes matrices remain the same, independently of the
triangulation.

Consider a generic triangulation of the 2pK ` 1q-gon, and consider any quadrilateral inside the triangu-
lation consisting of two triangles sharing an edge. For the case K ě 2 we have the following possibilities
for the sides of the quadrilateral :

1. three sides lie along the perimeter of the polygon, one side is an internal diagonal ;

2. two sides lie along the perimeter of the polygon and two sides are internal diagonals ;

3. one side is along the perimeter and the three others are internal diagonals ;

4. all the four sides are internal diagonals.

With the two last cases only occurring for K ą 2. Moreover, the number of yj variables directly and
nontrivially involved in the flip is equal to the number of sides of the quadrilateral that are internal
diagonals. We are going to analyze the flip for each case. After the flip, we define some new variables
associated to each edge of the new triangulation and we find the corresponding parametrizations of the
Stokes matrices in these new variables denoted ỹj . Finally, by imposing the equality between these Stokes
matrices, the ones parametrized w.r.t. the first triangulation and the other ones, we obtain an over-
determined but compatible system of equations for the old variables and the new ones, yj and ỹj . Indeed,
notice that the yj variables are always 2K and we have an equation for each Stokes matrix, thus we have
a system of 2K`2 equations in 2K variables. We will see that this system is equivalent to the y-mutation
correspondent to the vertex on the flipped edge, in the quiver QpT q associated with the triangulation T .

Case 1. This is the case where three edges of the quadrilateral are along the perimeter. This means
that we have only two variables y that are directly and nontrivially involved in the flip. We can suppose
that the first vertex, denoted by v2i (in even position, the odd case is analogous) have valence only 6 and
that the last one have valence 9, see Figure 7.6. Every other case can be reduced to this one after an
appropriate simplification in the equations we are going to obtain. We denote by Sj the Stokes matrices
obtained through the triangulation T and by S̃j the ones obtained by the flip of T .
First, we observe that for every j ď 2i the Stokes matrices are parametrized exactly in the same way
w.r.t. the yj variables and the ỹj . Thus the equations Sjpykq “ S̃jpỹkq tell us that yk “ ỹk for every k
that is not incident to v2i, v2i`1, v2i`2. As a byproduct also the variables xl “ x̃l for every l ď 2i they
remain invariant.
We focus on the equations Sjpykq “ S̃jpỹkq for k “ 2i, 2i` 1, 2i` 2, 2i` 3. We obtain an over-determined
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S2i

S2i+1

S2i+2 S2i+3

•yj

•yj+1

•yj−1

•yj−2

•yj−3

T

S̃2i

S̃2i+1

S̃2i+2 S̃2i+3

•
ỹj

•ỹj+1

• ỹj−1

• ỹj−2

• ỹj−3

T̃

Figure 7.6 – A flip of a quadrilateral inside the triangulation T with 3 sides along the perimeter of the
polygon and the new triangulation T̃ obtained in this way.

system of four equations from the following four matrix equations

Dpx2iqAV pyjq
´1AV px´1

2i´1q
´1 “ Dpx̃2iqAV pỹj`1q

´1AV pỹj`1q
´1AV px´1

2i´1q
´1

V px´1
2i`1qAV pyj`1qADpx2iq

´1 “ V px̃´1
2i`1qADpx̃2iq

´1

Dpx2i`2qAV px
´1
2i`1q

´1 “ Dpx̃´1
2i`1qAV pỹj`1q

´1AV px̃2i`2q
´1

V px´1
2i`3qAV pyj´1q

´1AV pyjqAV pyj`1q
´1ADpx2i`2q

´1 “ V px̃´1
2i`3qAV pỹj´1qAV pỹjqADpx̃2i`2q

´1

(7.3.5)

It follows then the following relations between the old and the new variables must hold

ỹ2
j “ p1` y2

j`1qy
2
j , ỹ2

j`1 “
1

y2
j`1

(7.3.6)

where yj is the variable on the diagonal v2i ´ v2i`3 and yj`1 is the one on the diagonal v2i`1 ´ v2i`3 as
show in Figure 7.6. One obtains these results from the second and third equation directly, then the other
equations are automatically satisfied replacing these relations.

Case 2. Now we consider the case where there are two edges of the quadrilateral on the perimeter of
the polygon, and the other two edges are internal diagonals. We can suppose as before that the first
vertex is even v2i. Also, we can assume that v2i, v2i`4 both have valence 8 and v2i`3 has valence 4. Then
all the other cases (when the valences of these vertices are higher) can be reduced to this one, after
appropriate simplification. In this case three variables y are directly involved in the flip. Indeed, by the
fact that Sjpykq “ S̃jpỹkq for every j, we obtain that yl “ ỹl for any index l that is not incident to
v2i, v2i`1, v2i`2, v2i`3 and also for all the variables that stay on the right of the yj diagonal, see Figure
7.7. Furthermore, by looking at j “ 2i, 2i`1, 2i`2, 2i`3 we obtain the following over-determined system
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S2i

S2i+1

S2i+2 S2i+3

S2i+4

T
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yj•yj+1

•
yj+2

•yj−1

•
yj−2

S̃2i

S̃2i+1

S̃2i+2 S̃2i+3

S̃2i+4

T̃

• ỹj

•ỹj+1

•
ỹj+2

• ỹj−1

•
ỹj−2

Figure 7.7 – A flip of a quadrilateral inside the triangulation T with 2 sides along the perimeter of the
polygon and the new triangulation T̃ obtained in this way.

of four equations, from the four matrix equations

Dpx2iqAV pyj`1qAV pyjq
´1AV px´1

2i´1q
´1 “ Dpx̃2iqAV pỹjqAV px̃

´1
2i´1q

´1

V px´1
2i`1qAV pyj`2qADpx2iq

´1 “ V px̃´1
2i`1qAV pỹj`2qAV pỹj`1qADpx̃2iq

´1

Dpx2i`2qAV px2i`1q
´1 “ Dpx̃2i`2qAV px̃2i`1q

´1

V px´1
2i`3qAV pyj`1q

´1AV pyj`2q
´1ADpx2i`2q

´1 “ V px̃´1
2i`3qAV pỹj`2qADpx̃2i`2q

´1.

(7.3.7)

In particular, from the first three equations we obtain the following relations between the old and the
new variables

ỹ2
j “ y2

j

y2
j`1

1` y2
j`1

, ỹ2
j`1 “

1
y2
j`1

, ỹ2
j`2 “ y2

j`2p1` y2
j`1q, (7.3.8)

and all the other equations are then satisfied by replacing these quantities (included the equation for
j “ 2i` 4).

Case 3. Here we consider the case where three edges of the quadrilateral are internal diagonals of the
polygon and only one edge is on its perimeter. Notice that this means that there are four variables y that
are nontrivially involved in the flip. We suppose as before that the first edge considered is even v2i and
that all the vertices involved in the quadrilateral and their adjacent vertices have minimal valence, as in
Figure 7.8. As in the previous cases, the equations Slpykq “ S̃lpỹkq for the indices l ‰ 2i, . . . , 2i` 4 give
that the variables yk “ ỹk for the k that are not incident to the vertices v2i, . . . , v2i`4. Then looking at
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•yj+3
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ỹj+2

• ỹj+3
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Figure 7.8 – A flip of a quadrilateral inside the triangulation T with only 1 side along the perimeter of
the polygon and the new triangulation T̃ obtained in this way.

the matrix equations for l “ 2i, . . . 2i` 3 we have the four matrix equations

Dpx̃2iqAV pỹjqAV px̃
´1
2i´1q “ Dpx2iqAV pyj`1qAV pyjq

´1AV px´1
2i´1q

V px̃2i`1qAV pỹj`2qAV pỹj`1qADpx̃2iq
´1 “ V px´1

2i`1qAV pyj`2qADpx2iq
´1

Dpx̃2i`2qAV px̃
´1
2i`1q

´1 “ Dpx2i`2qAV px
´1
2i`1q

´1

V px̃´1
2i`3qAV pỹj`3q

´1AV pỹj`2q
´1ADpx̃2i`2q

´1 “ V px´1
2i`3qAV pyj`3q

´1AV pyj`1q
´1AV pyj`2q

´1ADpx2i`2q
´1.

(7.3.9)
From these equations we obtain that the old variables and the new variables are related through the
following relations

ỹ2
j “ y2

j`1
y2
j

1` y2
j`1

, ỹ2
j`1 “

1
y2
j`1

, ỹ2
j`2 “ y2

j`2
y2
j`1

1` y2
j`1

, ỹ2
j`3 “ y2

j`3p1` y2
j`1q (7.3.10)

and all the other equations (included for the vertices v2i`4, v2i`5) are identically satisfied once we replace
the relations above.

Case 4. Here we consider the case where all the sides of the quadrilateral are internal diagonals. We
suppose, as always, to have the first vertex that is even v2i and that each vertex has minimal valence,
as in Figure 7.9. Every other case, with higher order valence for the vertices involved, can be reduced
to this one after appropriate simplification. In this case, we have five variables y directly involved in the
flip, thus we will have one more equation than in the other cases.
By looking at the equations Slpykq “ S̃lpỹkq for l ‰ 2i, . . . , 2i ` 5, we get that yk “ ỹk for every index
k that is not adjacent to the flipped edge with coordinate yj`4. Then by looking at the equations for
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ỹj−1

Figure 7.9 – A flip of a quadrilateral inside the triangulation T with no sides along the perimeter of the
polygon and the new triangulation T̃ obtained in this way.

l “ 2i, . . . , 2i` 4 we have the following matrix-valued system

Dpx2iqAV pyjqAV pyj`1q
´1AV pyj`3qAV px2i´1q

´1 “ Dpx̃2iqAV pỹjqAV pỹj`3qAV px̃2i´1q
´1

V px2i`1qADpx2iq
´1 “ V px̃2i`1qADpx̃2iq

´1

Dpx2i`2qAV pyj`1qAV pyjq
´1AV px2i`1q

´1 “ Dpx̃2i`2qAV pỹj`1qAV pỹj`4qAV pỹjq
´1AV px̃2i´1q

´1

V px2i`3qADpx2i`2q
´1 “ V px̃2i`3qADpx̃2i`2q

´1

Dpx2i`4qAV pyj`2q
´1AV pyj`4qAV pyj`1q

´1AV px2i`3q
´1 “ Dpx̃2i`2qAV pỹj`2qAV pỹj`1q

´1AV px̃2i`3q
´1.

(7.3.11)
This system is solved through the following relations between the old and the new variables

ỹ2
j “ y2

j p1`y2
j`4q, ỹ2

j`1 “ y2
j`1

y2
j`4

1` y2
j`4

, ỹ2
j`2 “ y2

j`2p1`y2
j`4q, ỹ2

j`3 “ y2
j`3

y2
j`4

1` y2
j`4

, ỹ2
j`4 “

1
y2
j`4

(7.3.12)
and they also satisfy the equations for l “ 2i` 5, 2i` 6.

Notice that in each case we obtained that the system of equations for the old and new y variables
obtained from the matrix equations Slpykq “ S̃lpỹkq is solved by some y-mutation relations of the Dynkin
diagram of A2K-type, as in equation (7.3.3). In particular, every set of equations (7.3.6), (7.3.8), (7.3.10),
(7.3.12) coincide with the y-mutation w.r.t. the vertex yl associated to the flipped edge of the triangulation
T of the polygon, of the Dynkin diagram of A2K-type associated to the triangulation T for the square of
its variables.

Remark 7.3.6. For what concerns the flip of the internal diagonal of the triangulation T0 associated to
the variable y2, analogue considerations hold. In particular, by looking at the equations Slpykq “ S̃lpỹkq

for l “ 1, 2, 3, one obtains that the squares of the variables yk and ỹk for k “ 1, 2, 3 3 are related by the

3. The correct Y -mutation formula is actually obtained for y´1
1 , y2, y3 and ỹ´1

1 , ỹ2, ỹ3, but this is just a matter of
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Figure 7.10 – The 4 triangulations considered are T1 and then all the others obtained from T1 by a flip
of one of the diagonals dj for j “ 2, 3, 4.

Y -mutation relations for the mutation of the quiver QpT0q of type A2K with respect to the vertex y2.
The other equations Slpykq “ S̃lpỹkq, l ą 3 directly implies that all the other variables yk, k ‰ 1, 2, 3 do
not change under this flip.

7.3.2 Example : the case K “ 2

We work out on the case K “ 2, i.e. the case of the hexagon. In particular, we are going to take the
fixed triangulation T0 of the hexagon (e.g. the one in Figure 7.5), and we consider the variables and the
matrices associated to each edge of the graph in the common way explained before. We compute then
the Stokes matrices and the Stokes 2-form W2 in these variables.
Then, we consider all the possible flip of this triangulation, w.r.t. the edges with variables y2, y3, y4 as in
Figure 7.10, and we perform the same computations above with the new variables associated to each new
triangulation obtained in that way. We will see that in each case, the inverse of the matrix coefficient
of the Stokes 2-form is, up to the same factor 1

4 the adjacency matrix of a certain mutation of the A4

Dynkin diagram, the one given in Figure 7.4.

‚ For the triangulation T1 the variables xl are

x2 “ y1y
´1
2 , x3 “ y1y

´1
2 y3, x4 “ y1y

´1
2 y3y

´1
4 , x5 “ x4, x6 “ y1. (7.3.13)

notation, due to the fact that we associated the matrix V py´1
1 q to the edge v1 Ñ v2 in the graph ΣpKq0 .
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The 2-form W2
T1 is log-canonical in the variables yi and such that its matrix coefficient has inverse

PT1
2 “

1
4

¨

˚

˚

˚

˚

˝

0 1 0 0
´1 0 1 0
0 ´1 0 1
0 0 ´1 0

˛

‹

‹

‹

‹

‚

“
1
4AdjA4 . (7.3.14)

‚ For the triangulation T2 the variables xl are

x2 “ u1, x3 “ u1u2u3, x4 “ u1u2u3u
´1
4 , x5 “ u1u2u3u

´1
4 , x6 “ u1u

´1
2 . (7.3.15)

The 2-form W2
T2 is log-canonical in the variables yi and such that the inverse of its coefficient

matrix, namely PT2
2 gives

PT2
2 “

1
4

¨

˚

˚

˚

˚

˝

0 ´1 0 0
1 0 ´1 0
0 1 0 1
0 0 ´1 0

˛

‹

‹

‹

‹

‚

“
1
4Adjµ2pA4q.

‚ For the triangulation T3 the variables xl are

x2 “ w1w
´1
2 w´1

3 , x3 “ x2, x4 “ w1w
´1
2 w´2

3 w´1
4 , x5 “ x4, x6 “ w1. (7.3.16)

The 2-form W2
T3 is such that the inverse of its coefficient matrix, namely PT3

2 gives

PT3
2 “

1
4

¨

˚

˚

˚

˚

˝

0 1 0 0
´1 0 ´1 1
0 1 0 ´1
0 ´1 1 0

˛

‹

‹

‹

‹

‚

“
1
4Adjµ3pA4q.

‚ For the triangulation T4 the variables xl are

x2 “ t1t
´1
2 , x3 “ t1t

´1
2 t3t4, x3 “ t4, x5 “ t1t

´1
2 t3t

2
4. (7.3.17)

The 2-form W2
T4 is such that the inverse of its coefficient matrix, namely PT4

2 gives

PT4
2 “

1
4

¨

˚

˚

˚

˚

˝

0 1 0 0
´1 0 1 0
0 ´1 0 ´1
0 0 1 0

˛

‹

‹

‹

‹

‚

“
1
4Adjµ4pA4q.

Furthermore the equations Sip~yq “ S̃ip~uq that impose the Stokes equations parametrized in the 2 trian-
gulations T1 and Tj to be equal, give exactly that u2

i , w
2
i or t2i respectively for j “ 2, 3, 4 are y-mutation

of y2
i related to A4 w.r.t. the vertices y2, y3, y4.
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7.4 Computation of the Poisson brackets for the original mono-
dromy parameters

In the previous sections we have parametrized the Stokes manifold SK of dimension 2K, by using
the variables yj for j “ 1, . . . , 2K of the A2K cluster algebra type. Using this parametrization, explicitly
computed in Lemma 7.2.5, we also proved that the two-form WK defined on SK is symplectic and
that the variables yj are log-canonical for this two-form. We also computed the Poisson brackets PK

induced by the symplectic structure WK on SK . Now, we want to compute these Poisson brackets PK

on the parametrization of the original monodromy parameters sj , for j “ 1, . . . , 2K ` 2 and λ describing
SK . In particular, we are going to show that the Poisson brackets PK for the yj defined in (7.2.29)
are a log-canonical formulation of the following bracket, called Flaschka-Newell Poisson bracket in the
introduction.

Definition 7.4.1. Consider the nonlinear Poisson bracket on C2K`2ˆC˚ with coordinates ps1, . . . , s2K`2, λq

given by
!

sj , sl

)

FN

“ δj,l´1 ´
δj,1δl,2K`2

λ2 ` p´1qj´l`1sjsl, j ă l.

!

sj , λ
)

FN

“ p´1qjsjλ.

(7.4.1)

These Poisson structure first appeared in [FN82] (see section 3, 5).

Proposition 7.4.2. Let

F “ FK “

˜

1 s1

0 1

¸˜

1 0
s2 1

¸

. . .

˜

1 s2K`1

0 1

¸˜

1 0
s2K`2 1

¸

λσ3 . (7.4.2)

Let σ3, σ`, s´ be the matrices

σ3 “

˜

1 0
0 ´1

¸

, σ` “

˜

0 1
0 0

¸

, σ´ “

˜

0 0
1 0

¸

(7.4.3)

(1) The matrix F satisfies

ts1, F uFN “
s1

2 rσ3, F s ` rσ´, F s

ts2K`2, F uFN “
s2K`2

2 rF, σ3s `
1
λ2 rσ`, F s

ts`, F uFN “ p´1q`rF, σ3s, 2 ď ` ď 2k ` 1

tλ, F u
FN
“

1
2 rσ3, F s. (7.4.4)

(2) The unique Casimir function for the bracket (7.0.4) is C “ TrpF q ;
(3) The sub-varieties SK “ tFK “ 1u are Poisson sub-varieties.

We defer the proof to the Appendix of the paper [BT21].
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7.4. Computation of the Poisson brackets for the original monodromy parameters

Theorem 7.4.3. The parametrization given in Lemma 7.2.5 for the Stokes parameters sj , j “ 1, . . . , 2K`
2 and the formal monodromy exponent λ transforms the Poisson bracket (7.4.1) in the bracket (7.2.29).

Proof. We start by observing that the bracket (7.2.29) is such that all even-indexed variables commute
amongst themselves, and so do the odd ones. We now verify that the bracket (7.2.29) yields the bracket
(7.4.1) under the map (7.2.16). We will verify some of the brackets explicitly and leave the rest of the
verification to the reader. Let us start with the case ts2k`1, λu for k ă K : since λ is a function of only
the even variables it commutes with the even ones and we can write

ts2k`1, λu “ ´
k
ź

j“1
y2

2j

#

k´1
ź

j“0
y´2

2j`1 `
k
ź

j“0
y´2

2j`1, p´1qK
K
ź

j“1
y2

2j

+

. (7.4.5)

This computation is easily done by passing to the logarithms of the variables yj ’s, in which the Poisson
bracket (7.2.29) is constant : thus both terms inside the bracket are log–canonical. Then one observes
that the bracket above involves a telescopic sum and only the term y1 yields a contribution and we obtain

ts2k`1, λu “ ´s2k`1λ. (7.4.6)

The case ts2K`1, λu is handled similarly. Consider now an even variable s2k for k ă K ; since λ is a
function of only the even variables we can write

ts2k, λu “
p1` y2

2kq
śk
j“1 y

2
2j

#

k´1
ź

j“0
y2

2j`1, p´1qK
K
ź

j“1
y2

2j

+

“ s2kλ, (7.4.7)

where we have used the same telescopic-sum argument. Again, the case ts2K`2, λu is handled similarly
observing that s2K`2 “ y2

1 times a function of only even variables.

Let us now consider the bracket tsa, sbu ; suppose both a “ 2k, b “ 2l are even.
#

p1` y2
2kq

śk
j“1 y

2
2j

k
ź

j“1
y2

2j´1,
p1` y2

2lq
śl
j“1 y

2
2j

l
ź

j“1
y2

2j´1

+

“
p1` y2

2kq
śk
j“1 y

2
2j

#

k
ź

j“1
y2

2j´1,
p1` y2

2lq
śl
j“1 y

2
2j

+

l
ź

j“1
y2

2j´1

`

k
ź

j“1
y2

2j´1

#

p1` y2
2kq

śk
j“1 y

2
2j
,
l
ź

j“1
y2

2j´1

+

p1` y2
2lq

śl
j“1 y

2
2j
.

(7.4.8)

The computation relies on the following simple observation, which can be used for both terms by inter-
changing the roles of k and l :

#

k
ź

j“1
y2

2j´1,
1

śl
j“1 y

2
2j

+

“

$

’

’

’

’

’

&

’

’

’

’

’

%

´

śk
j“1 y

2
2j´1

śl
j“1 y

2
2j

k ď l

0 k ą l.

(7.4.9)

Now let k ď l ´ 1 : then the second bracket in (7.4.8) is zero and the first yields back s2ks2l which is
consistent with (7.4.1). The odd-odd case is similarly handled.
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We still have to check the case even-odd. For that, consider the case ts2k, s2l`1u for k ď l :
#

p1` y2
2kq

śk
j“1 y

2
2j

k
ź

j“1
y2

2j´1,´
p1` y2

2l`1q
śl
j“0 y

2
2j`1

l
ź

j“1
y2

2j

+

“

“ ´
p1` y2

2kq
śk
j“1 y

2
2j

#

k
ź

j“1
y2

2j´1,
l
ź

j“1
y2

2j

+

p1` y2
2l`1q

śl
j“1 y

2
2j`1

´

k
ź

j“1
y2

2j´1

#

p1` y2
2kq

śk
j“1 y

2
2j
,
p1` y2

2l`1q
śl
j“0 y

2
2j`1

+

l
ź

j“1
y2

2j .

(7.4.10)

The first bracket in (7.4.10) gives
śk
j“1 y

2
2j´1

śl
j“1 y

2
2j and hence

ts2k, s2l`1u “ s2ks2l`1 ´
k
ź

j“1
y2

2j´1

#

p1` y2
2kq

śk
j“1 y

2
2j
,
p1` y2

2l`1q
śl
j“0 y

2
2j`1

+

l
ź

j“1
y2

2j . (7.4.11)

The several contributions in (7.4.11) can all be accounted for by the formula (7.4.9) : if l ě k ` 1 then
one sees immediately that all terms in the bracket in (7.4.11) vanish. The only case when the bracket
gives a nonzero contribution is for k “ l :

#

p1` y2
2kq

śk
j“1 y

2
2j
,
p1` y2

2k`1q
śk
j“0 y

2
2j`1

+

“

#

1
śk
j“1 y

2
2j
,

1
śk´1
j“0 y

2
2j`1

+

“ ´
1

śk
j“1 y

2
2j

1
śk´1
j“0 y

2
2j`1

. (7.4.12)

Combining this with (7.4.11) gives finally

ts2k, s2l`1u “ 1`s2ks2l`1 (7.4.13)

To complete the verification remains only to check the case

ts1, s2K`2u “

#

´y´2
1 ,

K
ÿ

l“1

y2
1

śK
j“1 y

2
2j
śK
j“l y

2
2j

+

“ ´

K
ÿ

l“1
y2

1

#

y´2
1 ,

1
śK
j“1 y

2
2j
śK
j“l y

2
2j

+

“

“ ´

K
ÿ

l“1
y2

1

#

y´2
1 ,

1
śK
j“1 y

2
2j

+

1
śK
j“l y

2
2j
´

K
ÿ

l“1
y2

1

#

y´2
1 ,

1
śK
j“l y

2
2j

+

1
śK
j“1 y

2
2j
.

(7.4.14)

In the second sum only the term l “ 1 contributes and the result of this is 1
λ2 ; the first sum instead

contributes ´s1s2K`2 and in total we find

ts1, s2K`2u “ ´
1
λ2`s1s2K`2. (7.4.15)

The verification is thus complete.
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Titre : La hiérarchie de Painlevé II : géométrie et applications.
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Résumé : La hiérarchie de Painlevé II est une séquence
d’équations différentielles ordinaires non linéaires, dont
la première correspond à l’équation de Painlevé II.
Chaque membre de la hiérarchie admet une paire de
Lax en terme des déformations isomonodromiques d’un
système linéaire d’EDO de rang 2, avec coefficient po-
lynomial dans le cas homogène. Récemment, il a été
prouvé que la formule de Tracy-Widom pour la solu-
tion Hastings-McLeod de l’équation de PII homogène
peut être généralisé pour des solutions analogues de la
hiérarchie de Painlevé II homogène, en utilisant le dé-
terminant de Fredholm des noyaux d’Airy d’ordre supé-
rieur. Leurs opérateurs intégrales sont utilisés en théo-
rie des processus déterminantaux et ils ont des appli-
cations en physique statistique et en théorie des ma-
trices aléatoires. En partant de ces considérations, cette
thèse a exploré les directions suivantes. On a trouvé
une formule à la Tracy-Widom qui relit des analogues
à valeurs matricielles des noyaux d’Airy d’ordre supé-
rieur à certaines solutions d’une hiérarchie de Painlevé
II matricielle. Pour ce-là on a utilisé un problème de

Riemann-Hilbert à valeurs matriciels et en utilisant sa
solution on a dérivé une paire de Lax pour la hiérar-
chie. On a aussi trouvé une autre généralisation de la
formule de Tracy-Widom, où cette fois ci le détermi-
nant de Fredholm d’une version à température finie des
noyaux d’Airy d’ordre supérieur est liée à certaines solu-
tions d’une hiérarchie de PII intégro-différentielle. Dans
ce cas, on a plutôt utilisé un problème de Riemann-
Hilbert à valeurs opératoriels. Sa solution permet de
construire une paire de Lax pour cette nouvelle hiérar-
chie. D’un point de vue plus géométrique, on a étudié la
structure de Poisson-symplectique des variétés de Stokes
associées à un système de équations différentielles ordi-
naires linéaires avec coefficient polinomial. Dans le cas
de rang 2, on a trouvé des coordonnés log-canoniques
explicites pour la 2-form symplectique, formant une al-
gèbre ammassées d’un type précis. Cette construction
permet de linéariser la structure de Poisson introduite
par Flaschka et Newell dans leur travail fondateur en
1981.

Title: The Painlevé II hierarchy: geometry and applications.

Keywords: Painlevé equations, Riemann-Hilbert problems, integrable operators, Stokes manifolds, cluster alge-
bras, Fredholm determinants.

Abstract: The Painlevé II hierarchy is a sequence of
nonlinear ODEs, with the Painlevé II equation as first
member. Each member of the hierarchy admits a Lax
pair in terms of isomonodromic deformations of a rank
2 system of linear ODEs, with polynomial coefficient for
the homogeneous case. It was recently proved that the
Tracy-Widom formula for the Hastings-McLeod solu-
tion of the homogeneous PII equation can be extended
to analogue solutions of the homogeneous PII hierar-
chy using Fredholm determinants of operators acting
through higher order Airy kernels. These integral op-
erators are used in the theory of determinantal point
processes with applications in statistical mechanics and
random matrix theory. From this starting point, this
PhD thesis explored the following directions. We found
a formula of Tracy-Widom type connecting the Fred-
holm determinants of operators acting through matrix-
valued analogues of the higher order Airy kernels with
particular solution of a matrix-valued PII hierarchy. The
result is achieved by using a matrix-valued Riemann-
Hilbert problem to study these Fredholm determinants

and by deriving a block-matrix Lax pair for the relevant
hierarchy. We also found another generalization of the
Tracy-Widom formula, this time relating the Fredholm
determinants of finite-temperature versions of higher or-
der Airy kernels operators to particular solutions of an
integro-differential PII hierarchy. In this setting, a suit-
able operator-valued Riemann-Hilbert problem is used
to study the relevant Fredholm determinant. The study
of its solution produces in the end an operator-valued
Lax pair that naturally encodes an integro-differential
Painlevé II hierarchy. From a more geometrical point of
view, we analyzed the Poisson-symplectic structure of
the monodromy manifolds associated to a system of lin-
ear ODEs with polynomial coefficient, also known as
Stokes manifolds. For the rank 2 case, we found ex-
plicit log-canonical coordinates for the symplectic 2-
form, forming a cluster algebra of specific type. More-
over, the log-canonical coordinates constructed in this
way provide a linearization of the Poisson structure on
the Stokes manifolds, first introduced by Flaschka and
Newell in their pioneering work of 1981.
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