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Abstract

The Painlevé II hierarchy : geometry and applications

Sofia Tarricone, Ph.D.

Concordia University in cotutelle with Université d’Angers, 2021

The Painlevé II hierarchy is a sequence of nonlinear ODEs, with the Painlevé II equation as first
member. Each member of the hierarchy admits a Lax pair in terms of isomonodromic deformations of
a rank 2 system of linear ODEs, with polynomial coefficient for the homogeneous case. It was recently
proved that the Tracy-Widom formula for the Hastings-McLeod solution of the homogeneous PII equation
can be extended to analogue solutions of the homogeneous PII hierarchy using Fredholm determinants
of operators acting through higher order Airy kernels. These integral operators are used in the theory of
determinantal point processes with applications in statistical mechanics and random matrix theory. From
this starting point, this PhD thesis explored the following directions. We found a formula of Tracy-Widom
type connecting the Fredholm determinants of operators acting through matrix-valued analogues of the
higher order Airy kernels with particular solution of a matrix-valued PII hierarchy. The result is achieved
by using a matrix-valued Riemann-Hilbert problem to study these Fredholm determinants and by deriving
a block-matrix Lax pair for the relevant hierarchy. We also found another generalization of the Tracy-
Widom formula, this time relating the Fredholm determinants of finite-temperature versions of higher
order Airy kernels operators to particular solutions of an integro-differential Painlevé II hierarchy. In
this setting, a suitable operator-valued Riemann-Hilbert problem is used to study the relevant Fredholm
determinant. The study of its solution produces in the end an operator-valued Lax pair that naturally
encodes an integro-differential Painlevé II hierarchy. From a more geometrical point of view, we analyzed
the Poisson-symplectic structure of the monodromy manifolds associated to a system of linear ODEs
with polynomial coefficient, also known as Stokes manifolds. For the rank 2 case, we found explicit log-
canonical coordinates for the symplectic 2-form, forming a cluster algebra of specific type. Moreover, the
log-canonical coordinates constructed in this way provide a linearization of the Poisson structure on the

Stokes manifolds, first introduced by Flaschka and Newell in their pioneering work of 1981.
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RESUME

Introduction

Au début du XX siecle, les équations de Painlevé ont permis de répondre a un probléme de classifi-
cation en théorie des EDO, posé en premier par Picard ([Pic89]). Son objectif était de décrire toutes les
équations différentielles ordinaires d’une forme spécifique et telles que leurs solutions n’aient pas de sin-
gularités (autres que des poles simples) mouvables. Cette propriété, aussi appelée propriété de Painlevé,
permet en effet de définir des nouvelles fonctions comme solutions générales a ces équations. Les travaux
de Painlevé, Fuchs et Gambier ([Pai00, Fuc05, Gam10]) ont finalement permis d’obtenir une liste de six
équations avec les caractéristiques requises et pour lesquelles les solutions générales ne peuvent pas étre
écrites en termes de fonctions spéciales connues. Toutes les autres équations satisfaisant les conditions
données par Picard ont soit des solutions écrites en termes de fonctions spéciales connues soit peuvent
étre transformées en une de ces six équations. Les équations différentielles ordinaires non-linéaires de cette
liste sont naturellement appelées équations de Painlevé, (voir équations (1.1.1)—(1.1.6)). Leurs solutions,
les transcendantes de Painlevé, sont classifiées comme nouvelles fonctions non-linéaires transcendantes
et font maintenant partie de la liste de fonctions spéciales classiques (avec les fonctions de Bessel, Airy,
hyper-géométrique, elliptiques, etc). L’étude de leurs propriétés a progressivement été approfondie avec
leurs apparitions dans différents domaines impliquant des phénomeénes non-linéaires. Dans les cinquante
dernieres années, les équations de Painlevé sont apparues dans de multiples sujets en mathématiques et
en physique et leur étude a été stimulée par plusieurs perspectives différentes. Dans la littérature phy-
sique, on retrouve les équations de Painlevé dans divers modeles de physique statistique et de théorie
quantique des champs (voici quelques exemples classiques [BMTW73, JMMS80, BK90] et quelques un
plus récents [LDMS18, Kra20] reliés a cette these). En mathématiques, les récentes connections avec le
domaine de polynémes orthogonaux (voir [VA17] pour une référence classique), la théorie de matrices
aléatoires ([TW94b, TW94c] comme exemples des premiers résultats) et les modeles de croissance aléa-
toires ([For03, ACQ11]) sont découvertes encore dés ces jours.

Un des aspects qui avait été initialement étudié dans la théorie des équations de Painlevé était la dé-
pendance de leurs solutions aux parametres présents dans les coefficients des équations elles-mémes. On
remarque que ces six équations, sauf la premiere, ont dans leurs coefficients des parametres complexes
(de un jusqu’a quatre indépendants). Pour des valeurs particuliéres de ces paramétres, il est en fait pos-
sible de formuler des solutions explicites aux équations de Painlevé en terme de fonctions spéciales ou
élémentaires connues. Le cas le plus simple, quand il n’y a qu'un seul parametre, correspond a notre cas

d’étude, I’équation de Painlevé 1T :

dPw

ﬁ:2w3+wz+a, for w=w(z), aeC. (1)
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Airault [Air79] fut la premiére & montrer que lorsque le parameétre o prend des valeurs entiéres (resp.
semi-entieres) non-nulles, I’équation de Painlevé IT admet de solutions explicitement écrites en termes de
fonctions rationnelles (resp. en termes de la fonction d’Airy et de ses dérivées) (les énoncés de ces résultats
se trouvent dans les théorémes 1.1.1, 1.1.2). Pourtant, le cas a = 0 n’est traité dans aucune de ces deux
classes de solutions. Ce cas particulier a été analysé par Hastings et McLeod ([HMS80]) avec des conditions
au bord spécifiques. La solution de leur probléme au bord, qui porte maintenant leurs noms (le résultat
détaillé de [HMS80] est écrit dans le théoréme 1.1.5), est apparu quelques années plus tard en lien avec la
théorie des matrices aléatoires (dans le papier cité précédemment [TW94b]). Ce résultat (théoréme 1.1.7),
connu comme la formule de Tracy-Widom, n’est qu'un parmi plusieurs exemples décrivant des relations
entre les transcendentes de Painlevé et la théorie de processus déterminantaux (ayant une application
dans la théorie des matrices aléatoires pour ce cas spécifique). La démonstration de leur formule se base
sur ’étude des propriétés du noyau d’Airy. En particulier, ils ont prouvé que le déterminant de Fredholm
de Vopérateur intégral agissant a travers le noyau d’Airy peut étre écrit en termes de la solution de
Hastings-McLeod de 1’équation de Painlevé II. D’un autre coté, ce déterminant de Fredholm exprime
la limite au bord de la distribution de probabilité de la plus grande valeur propre dans I’ensemble de
matrices aléatoires hermitiennes & entrées gaussiennes (cfr. [For93]), fournissant ainsi le pont entre la
théorie des matrices aléatoires et les transcendents de Painlevé.

Parmi les nombreux aspects intéressants de I’équation de Painlevé 11, nous nous intéresserons particu-
lierement & deux d’entre eux : sa relation avec une EDP intégrable et sa représentation isomonodromique.
D’une certaine maniere, le premier définit I’'objet a la base de notre étude, a savoir la hiérarchie de Pain-
levé II, et le second nous donne ’outil principal pour la manipuler. Le lien entre la hiérarchie de Painlevé
IT et la théorie des déformations isomonodromiques a été étudié en profondeur dans les deux articles de
Flaschka et Newell [FN80, FN82] dans les années quatre-vingts, et leur travail fournit en quelque sorte
la base de notre travail, d'un point de vue analytique et géométrique.

De maniere générale, les équations de Painlevé peuvent étre déduites comme réductions de certaines
équations aux dérivées partielles intégrables [AC91], comme par exemple ’équation de Korteg De Vries,
I’équation nonlinéaire de Schroedinger ou encore I’équation de sine-Gordon pour ne citer que celles-ci. En
particulier, I’équation de Painlevé II est obtenue comme réduction auto-similaire de I’équation de KdV

modifiée. Cela signifie qu’en cherchant des solutions a I’équation de KdV modifiée

Vg + Vg — 6070, = 0, (2)
de la forme
v(t,x) = w(z2 with z:= il -, (3)
(30) (30)

on obtient que la fonction w(z) résout 1’équation de Painlevé II, ot « est une constante déterminée
comme constante d’intégration. Ce fait est particulierement important puisqu’il nous permet de définir
les équations de Painlevé IT d’ordre supérieur. En effet, dans I’étude d’EDP intégrables (dont I’équation de
KdV est 'exemple le plus populaire) on peut souvent construire de fagon naturelle des équations d’ordre
supérieur qui commutent entre elles (confére [Miu68] pour le cas de KdV). La suite d’équations obtenue
de cette fagon est nommeée hiérarchie associée & 'EDP en question. En ce qui concerne notre cas d’étude,
a partir de la hiérarchie de KdV modifiée (1.2.12), dont la construction est liée a la hiérarchie KdV

VI



(1.2.8) & travers une transformation de Miura, on peut appliquer la réduction auto-similaire (expliqué
ci-dessus), non seulement a 1'’équation mKdV, mais aussi a tous les autres membres de sa hiérarchie.
Cette procédure nous donne une nouvelle suite d’équations différentielles non-linéaires ordinaires, qui
commence par équation de Painlevé II (1.1.2). Cette collection est ainsi nommée hiérarchie de Painlevé
IT (écrite de fagon compacte ici : (1.2.22)).

La relation entre les équations de Painlevé et les déformations isomonodromiques a été étudiée pour la
premiére fois en grande généralité par 1’école japonaise dans une série de papiers [JMUS81, JM81a, JM81b]
et, presque simultanément, par Flaschka et Newell pour le cas spécifique de Pailevé II ([FN80, FN82]).
Essentiellement, les déformations isomonodromique (pour rang N quelconque) décrivent tous les systemes

linéaires d’EDO possibles
av

o

ot A()) est une matrice rationnelle avec un certain nombre de pdles de multiplicités fixées, qui partagent

AN (4)

la méme collection de données de monodromie essentielles. Cette collection de donnée est composée,
grosso modo, de matrices qui décrivent partiellement le comportement des solutions locales ¥ au voisi-
nage des singularités de la matrice A()). Cette description peut étre effectuée en supposant que la matrice
A()) ne dépende pas uniquement du parameétre spectrale A mais aussi d’autre parametres A(), s) et en
étudiant les variations par rapport a ces nouveaux parametres, qui préservent la collection de données
de monodromie essentielles. Un des résultats les plus importants obtenu par 1’école Japonaise [JMU81]
montre que les déformations préservant la monodromie sont équivalentes a certaines équations différen-
tielles non-linéaires que les entrées de la matrice A(X\) doivent satisfaire par rapport aux parametres de
déformation. Pour certains cas spécifiques, ces équations coincident avec les équations de Painlevé. En
langage moderne, on dit que les équations de Painlevé admettent des paires de Lax en termes de défor-
mations isomonodromiques. Cela signifie plus précisément que pour chacune des six équations, il existe

un paire de matrices A(\, s), L(A, s) telle que, I’équation de compatibilité du systéme

d¥v d¥v
a = A(Av 5)\113 E = L(Aa 5)\1]5 (5)
i.e. ’équation obtenue par dérivation croisée
dA  dL
— ——+[A L] =
- ALl =, (6)

soit équivalente a ’équation de Pailevé concernée. Parmi les autres avantages que cette représentation
des équations de Pailevé leur donne, 'existence d’un paire de Lax permet, d'un certain point de vue,
d’insérer les équations de Painlevé dans le contexte des systemes intégrables.

En ce qui concerne spécifiquement 1’équation de Painlevé II (1.1.2), ils existent au moins deux paires
de Lax de rang 2 indépendantes qui décrivent respectivement les déformations isomonodromiques d’un
systéme ayant une singularité irréguliere a l'infini et une autre réguliére en zéro (la paire de Lax de
Flaschka et Newell [FN80]) et d’un systéme ayant seulement une singularité irréguliére a Uinfini (la paire
de Lax de Jimbo Miwa et Ueno [JM81a]). Quelques années auparavant, le travail de Clarkson, Joshi et
Mazzocco [CIMO6] a montré que toutes les équations de la hiérarchie de Pailevé II ont une paire de

Lax isomonodromique, qui généralise celle de Flaschka et Newell. Leur construction est en effet une de
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nos premieres références afin de trouver des paires de Lax analogues pour les hiérarchies de Painlevé 11

non-commutatives qui seront considerées dans les chapitres 5 et 6.

Avec ce panorama en téte, la these a exploré les directions suivantes. D’une part, nous avons trouvé
des généralisations de la formule de Tracy-Widom pour certaines solutions de nouvelles équations de
Painlevé I, en particulier des analogues d’ordre supérieur a valeur matricielle et intégro-différentielle, en
correspondance avec les déterminants de Fredholm de généralisations d’ordre supérieur, a valeur matri-
cielle et a température finie, du noyau d’Airy. Les motivations incluent, mais ne sont pas limitées au fait
que ces généralisations du noyau d’Airy peuvent étre utilisées dans la théorie des processus ponctuels dé-
terminantaux (cfr [BBW21]) ainsi que dans la mécanique statistique et la théorie des matrices aléatoires
(par exemple [LDMS18, ACQ11, Joh07]). Les résultats détaillés sont énoncés dans le Corollaire 5.0.2 du
chapitre 5 pour le cas a valeur matricielle et dans le Théoreme 6.0.7 du chapitre 6 pour le cas a tempéra-
ture finie. Pour obtenir ces deux résultats, 1’existence d’une paire de Lax pour la hiérarchie de Painlevé II
a valeurs matricielles et les hiérarchie de Painlevé II intégro-différentielle, étudiées respectivement dans
les chapitres 5 et 6, est fondamentale. Leurs représentations de Lax sont en effet les clés pour passer
de I’étude des généralisations du noyau d’Airy, via une approche de Riemann-Hilbert, & la définition de
quelques solutions particulieres de la hiérarchie de Painlevé II concernée. La méthodologie utilisée dans
les deux cas est tres similaire, méme si celle du chapitre 6 est plus technique que celle du chapitre 5, et elle
s’appuie sur la théorie bien connue des opérateurs intégrables ITKS [ITIKS90]. Cette théorie peut en effet
étre utilisée ou généralisée pour I’étude des déterminants de Fredholm des analogues d’ordre supérieur,
a valeur matricielles et & température finie, du noyau d’Airy qui nous intéressent. L’idée fondamentale
est d’associer un probléme paramétrique de Riemann-Hilbert a 'opérateur prescrit et d’étudier son dé-
terminant de Fredholm & travers celui-ci. En méme temps, la solution du probleme de Riemann-Hilbert
peut également étre utilisée pour fournir les paires de Lax, dans notre cas spécifique isomonodromiques,
qui seront associées aux hiérarchies de Painlevé II qui nous intéressent. La différence la plus importante
entre les chapitres 5 et 6 concerne le type de probleme de Riemann-Hilbert qui sera associé a 'opérateur
concerné : dans le premier cas, il s’agit d’un probléme de Riemann-Hilbert standard a valeur matricielle,

alors que dans le second cas, il s’agit d’un probléme & valeur d’opérateur.

Cependant, nous remarquons que la formule originale de Tracy-Widom a été obtenue par les auteurs de
[TW94b] par une procédure totalement différente. D’autres auteurs ont par la suite re-dérivé leur formule
en utilisant ’approche & la Riemann-Hilbert (par exemple [KH99]) et cette approche a été utilisée pour
dériver des formules analogues de Tracy-Widom pour certains transcendantes (scalaires) de Painlevé IT
d’ordre supérieur, dans le récent travail [CCG19]. Pour cette raison, nous avons adopté la méme méthode

pour nos cas traités dans les chapitres 5 et 6.

D’autre part, nous avons étudié la structure symplectique et de Poisson de la variété de monodromie
associé & un systéme d’ODEs linéaires & coefficient polynomial (ayant donc seulement une singularité
irréguliere au point & l'infinie), introduite & l'origine par Flaschka et Newell dans [FN82]. Ce cas est
en effet & la base de la hiérarchie de Painlevé II (du moins la hiérarchie homogene). Ce cas particulier
de variété de monodromie, appelée variété de Stokes, est I’exemple le plus simple de ce qu’on appelle
aujourd’hui une variété de caracteéres sauvage. Dans le cas de singularités régulieres, la géométrie des
variétés monodromies est codée par les variétés de caractéres des spheres de Riemann (convenablement)

épointée. Les variétés de caracteéres des surfaces de Riemann en général sont connues pour étre des
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variétés de Poisson, griace aux travaux de Goldmann [Gol84]. Par contre, les variétés de monodromie
associées aux systémes ayant des singularités irréguliéres sont plus compliquées, a cause de la présence du
phénomene de Stokes autour de chaque singularité irréguliere. Au cours des derniéres décennies, elles ont
été étudiées dans leur grande généralité et avec un accent particulier sur leur structure de Poisson par
Boalch [Boa0Ola, Boa0Olb, BT07]. Dans le chapitre 7, nous prouvons que ce cas particulier de variété de
monodromie a effectivement une structure symplectique, voir le théoréme 7.1.5. De plus, dans le lemme
7.2.1, nous fournissons des coordonnées log-canoniques explicites pour la structure de Poisson induite. On
montre aussi que ces coordonnées linéarisent la structure de Poisson originale de Flaschka-Newell, grace
au théoréme 7.4.3. Les variables log-canoniques utilisées dans ce contexte sont liées & une algébre amassée
d’un certain type. Les relations entre les algebres amassées et les variétés de caractéres sont connues et
ont été largement étudiées par Fock et Goncharov [FGO6] mais sans référence spécifique aux variétés
de monodromie. Récemment, leur formalisme a également été utilisé pour trouver des coordonnées log-
canoniques pour la structure de Poissons de Goldmann des variétés de caractéres de surfaces de Riemann
épointées arbitraires [BK19]. En outre, certaines algébres amassées avaient déja été liées au phénomene
de Stokes, mais celui qui apparait dans ’analyse WKB [KT14] (et non le phénomeéne classique que nous
allons traiter ici). Pour toutes ces raisons, on s’attendait d’une certaine maniére a ce que les algébres
amassées apparaissent également dans le contexte des variétés de caracteéres sauvages, telles que nos

variétés de Stokes.

Contenu du manuscrit

La these est essentiellement divisée en deux parties. La premiére est composée des chapitre de 1 a 4,
qui visent les objectifs suivants : introduire les objets a la base de cette étude et la motiver, collectionner
les résultats principaux qui relient ces objets entre eux et rappeler les méthodes classiques utilisées en
littérature pour démontrer ces résultats. La deuxiéme partie contient les contributions originales prouvées

dans les articles [Tar21, BCT21, Ber21], qui se trouvent respectivement du chapitre 5 au 7.

Partie I : révision de la littérature

La premiére partie de la theése est organisée de la fagon suivante. Le chapitre 1 a pour objectif de
définir ’'objet principal de notre étude : la hiérarchie de Painlevé II, alors que le chapitre 2 vise plutot a
donner la motivation principale pour laquelle on veut étudier certaines solutions de cette hiérarchie par
rapport aux possibles applications dans la théorie des processus déterminantaux. Plus loin, les chapitres
3, 4 donnent une breve révision des méthodes classiques utilisées pour prouver les résultats énoncés pré-
cédemment et qui justement donnent le lien entre certaines solutions de la hiérarchie et la théorie des

processus déterminantaux.

(1) Le chapitre 1 est uniquement concentré sur la construction et les propriétés de la hiérarchie de
Painlevé II. Premierement, on revoit quelques propriétés des solutions de ’équation de Painlevé
II, pour certaines valeurs du parametre «. En particulier, pour le cas a = 0, le résultat de Tracy

et Widom est expliqué. Ensuite, on introduit la hiérarchie de KdV et de KdV modifiée puis on
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explique comme, & partir de celles la, la hiérarchie de Painlevé II est obtenue par réduction auto-
similaire. Pour conclure, on énonce le résultat obtenu dans [CCG19] qui généralise la formule de
Tracy-Widom en prenant en compte d’'un coté des noyaux d’Airy d’ordre supérieur et de l'autre,

des solutions a la Hastings-McLeod des membres successifs de la hiérarchie de Painlevé II.

(2) Le chapitre 2 contient une introduction synthétique a la théorie des processus déterminantaux.
Cependant, le but ultime n’est pas de donner une révision exhaustive du sujet, mais plutét de
fournir une motivation solide pour étudier les résultats comme le dernier cité dans le chapitre 1 et
ses possibles généralisations. En particulier, comme exemple d’application de la théorie de processus
déterminantaux on étudie le cas le plus simple, d’ensemble de matrices aléatoires : GUE. De cette
fagon, on pourra finalement voir la formule de Tracy-Widom comme exemple de connexion entre

théorie des matrices aléatoires et la théorie de Painlevé.

(3) Dans le chapitre 3 on présente l'outil de travail principal de cette these : les probléemes de Riemann-
Hilbert. Ces problémes sont en effet utilisés dans chacun des travaux contenus dans les chapitres 5,
6, 7 (méme si les situations sont différentes). En particulier, aprés une courte révision des propriétés
de base des solutions des problemes de Riemann-Hilbert générales a valeurs matricielles, on étudie
le probléme de Riemann-Hilbert associé & un opérateur intégrable du type IIKS [IIKS90] et leurs
généralisations [BC12]. Les résultats énoncés ici seront directement utilisés dans le chapitre 5 et
généralisés pour le cas des problémes de Riemann-Hilbert a valeurs opératorielles dans le chapitre
6.

(4) Enfin, le chapitre 4 est dédié a la théorie des déformations isomonodromiques, en portant une atten-
tion particuliere aux connexions entre ’équation de Painlevé II et sa hiérarchie. Les objectifs de ce
chapitre sont deux : premierement on veut donner les paires de Lax classiques en termes de déforma-
tions isomonodromiques associées a ’équation de Painlevé II et sa hiérarchie. Ces représentations
nous seront ensuite utiles dans les chapitres 5, 6, ol on utilisera justement des généralisations de
ces paires de Lax afin de reconnaitre les hiérarchies non-commutatives analogues. Deuxiemement,
la révision du concept de données de monodromie facilitera le dernier chapitre pour la définition et

la compréhension des variétés de Stokes, qui seront notre objet d’étude.

Partie II : contributions originales

Comme nous 'avons déja souligné, les trois derniers chapitres de cette these sont dévoués a démontrer
les principaux résultats obtenus dans les articles [Tar21, BCT21, BT21], qu’on va énonce par la suite. Les
premiers deux travaux et les résultats qui s’y trouvent dedans sont de quelque fagon liés : en effet, dans
les deux cas, on prouve une formule & la Tracy-Widom (analogues de celle donnée dans les Théorémes
1.1.7 et 1.2.12) qui permet d’exprimer les determinants de Fredholm de certaines généralisations des
noyaux d’Airy d’ordre supérieur en termes de certains solutions (a la Hastings-McLeod) de hiérarchies
non-commutatives de Painlevé II. En particulier, dans le premier cas un analogue a valeurs matricielles des
noyaux d’Airy sera lié a une hiérarchie matricielle de Painlevé II. Dans le deuxiéme cas le lien sera établi
entre des versions & température finie des noyaux d’Airy et certaines solutions (toujours & la Hastings-
McLeod) d’un hiérarchie integro-différentielle. La méthode utilisée sera aussi similaire : on analysera les

déterminant de Fredholm en utilisant leur invariance par conjugaison par transformé de Fourier d’abord
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et ensuite en y associant un probleme de Riemann-Hilbert. La différence principale entre les deux travaux
se pose a ce moment-la : dans le premier cas, le probleme de Riemann-Hilbert est a valeur matricielles
alors que dans le deuxiéme cas il est & valeurs opératoriels. Par conséquence, pour traiter le premier
type de probléme on pourra utiliser les résultats classiques [ITKS90, BC12], alors que pour la tractation
du deuxiéme type, il nous faudra prouver des résultats d’existence et unicité de la solution et établir
ses propriétés. Dans les deux cas, une fois que la solution du probléeme de Riemann-Hilbert est établie,
on l'utilise pour déduire une paire de Lax, qui sera en effet 'analogue représentation isomonodromique
des hiérarchie de Painlevé II matricielle ou intégro-differentielle. Le troisieme travail concerne plutot la
géométrie symplectique d’un type trés simple parmi les variétés de caracteres sauvages, les variétés de

Stokes, et leurs connexions avec les algebres amassées.

Résultats du chapitre 5 Le chapitre 5 contient les résultats obtenus dans mon premier travail [Tar21].
Ici on étudie les déterminants de Fredholm d’un analogue a valeurs matricielles du noyaux d’Airy, définit
de la fagon suivante. Tout d’abord, on considére une version matricielle de I'n-ieme fonction d’Airy définie
comme

Ai2n+1(x7 gj = (Cj,kAiZnJrl(x + Sj + sk));7k:17 Cjk € (Ca Z,S85,8k € Ra (7)

ol Aigy41(x+5;+5sk) est la fonction d’Airy d’ordre n. Ensuite, on considére les opérateurs d’Airy agissant
sur l’espace L? (R+, (Cr), de fagon standard

(Ai2n+1f) (.1,') = e Ai2n+1<$ + Y, g)f(y) dy7 (8)

pour tout £ = (fi,..., f.)T e L? (R+, (Cr). Finalement, on définit le déterminant de Fredholm
F(")(sl,...,sr) := det (IdRJr —Aignﬂ), (9)

comme ’analogue du déterminant de Fredholm de I'n-iéme noyau d’Airy scalaire et sur ce déterminant
notre étude se concentre. En particulier, on veut estimer sa dépendance des parametres réels s; a travers
I’opérateur .

d 0

o = kzzzl Fr (10)
L’étude est basé sur la construction d’un probleme de Riemann-Hilbert matriciel associé aux opérateurs
Ai3, 41 et sur les propriétés de sa solution. Cela est possible grace au fait que ce déterminant de Fredholm
coincide avec le déterminant de Fredholm d’un autre opérateur qui agit sur un autre espace, mais qui
est cette fois du type intégrable. Dans ce cadre, les résultats classique sur la solutions des problemes de
Riemann-Hilbert associé a certains type d’opérateurs [IIKS90], [BC12] (revus dans le chapitre 4) peuvent

étre appliqués. Cela, avec la construction d’une pair de Lax isomonodromique de matrices a bloques pour

la hiérarchie matricielle de Painlevé II, nous amene finalement au résultat suivant.

Théoréme 1. I existe une solution W de la n-iéme équation de la hiérarchie de Painlevé II matricielle
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(5.0.6), qui est connectée au déterminant de Fredholm F™ a travers la formule

d2

152 In (F(") ($1,-..,8)) = —Tr (W3(3)).

2 . 1 T . e L . s . .
En définissant s := Zj=1 sj, et 0j = s; —s cette solution W dans le régime s — +0 avec |6;| < m pour

tout j, a un comportement asymptotique du type (VV)ZJZ1 ~ =2(crAl2nt1(sk + 81))f =1 -

La hiérarchie matricielle qui apparait en (5.0.6) a une définition analogue & celle de la hiérarchie
scalaire écrite en (1.2.22) en utilisant les polyndmes différentiels de Lenard. En particulier, pour la version
matricielle on utilisera des analogues matricielles de ces polynémes de Lenard, engendrés par une récursion
(5.2.1) qui reste tres similaire & la récursion dans le cas classique (1.2.6). Le type de solutions trouvé pour
cette hiérarchie et utilisé dans la formule ci-dessus est en effet défini par une condition au bord a la
Hastings-McLeod, et donc la formule obtenue peut étre considérée comme analogue de la formule de
Tracy-Widom. Pour ce qui concerne l'interprétation du déterminant de Fredholm en jeux dans ce cas-ci :
il décrit en effet la distribution de probabilité de la plus grande particule dans le processus déterminantaux
défini par opérateur Ai3, +1- Malheureusement, et a connaissance de ’auteur, on n’a pas encore trouvé
des applications en théorie des matrices aléatoires, ou physique statistique (ou autres domaines) utilisant

ce déterminant de Fredholm.

Résultats du chapitre 6 Dans le chapitre 6 on démontre un des résultats principaux contenus dans
le travail [BCT21] en collaboration avec Thomas Bothner et Mattia Cafasso. Dans ce cas on est plu-
t0t intéressé a I'étude d’une version a température finie des noyaux d’Airy d’ordre supérieur. Pour la
construire, on considére d’abord une fonction poids w : R — R, étant une quelconque fonction diffé-

rentiable, positive, et strictement croissante, qui pour quelque w,zy > 0 respect les conditions suivantes

liIJIrlocw(x) =1, hIElan(J?) =0 and 0<w'(x) <e“ll Vx| > . (11)

Ayant fixé une fonction poids de ce type, on considere 'opérateur intégral K;, : L*(Ry) — L*(Ry)
qui agit & travers la version & température finie des noyaux d’Airy d’ordre supérieur, définie de la facon
suivante

Kin(z,y) = /RAignH(x +z+t)Algpi1(z +y + H)w(z)dz, teR. (12)

En particulier, ici notre étude est concentré sur les propriétés du déterminant de Fredholm
D, (t,A) = det(1 — My ) (13)

qui est bien défini pour tout (¢,A,n) € R x C x N. Plus précisément, on veut décrire sa dépendance
du parametre réel t. Pour se faire, on commence par montrer que ce déterminant de Fredholm coincide
avec le déterminant de Fredholm d’un autre opérateur, agissant sur un autre espace et a travers un
noyau qui peut étre vu comme une version de dimension infinie d’un opérateur de type intégrable a
la ITIKS. Pour étudier cet opérateur, on associe un probleme de Riemann-Hilbert qui est, cette fois-ci,
a valeurs opératorielles et non plus matricielles. Ce genre de probléme n’a pas été beaucoup traité en

littérature, et on a donc du développer dans les détails des résultats d’existence et unicité de la solution
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du probléme de Riemann-Hilbert ci construit. Toutefois, les résultats obtenus ressemblent beaucoup aux
résultats classiques connus pour le cas matriciel. Une fois que l'existence de la solution du probléme
de Riemann-Hilbert est établie, on 1'utilise pour exprimer la dérivée logarithmique de D, (¢, A) et pour
construire une paire de Lax (& valeurs opératorielles) pour une hiérarchie de Painlevé II, cette fois en

version intégro-différentielle. Le résultat final de ce procédé est énoncé ci-dessous.

Théoréme 2. Pour tout (t,\,n) € R xD1(0) x N, avec le disque fermé de rayon unitaire D1(0) :={\ €

C: [N <1}, .
@ln D, (t,\) = —/Ru2(t\x) (w'(x)dz), (14)

ot u(t|z) = u(tlz;n, \) est 'unique solution du probléme au bord
—(t + 2)u(tlr) = ((LLLY) u) (t]z), u(t|z) ~ /\%Aign+1(t +x), t— 4o, (15)

sont définis dans la Définition 6.0.3.
De plus, Uapplication t — u(t|x;n, \) est lisse pour tout (z,A\,n) € R xD1(0) x N, et ’expansion asympto-

et les opérators de récursion LY, LY

tique en (6.0.9) est satisfaite ponctuellement en x € R et la détermination pour A2 est fixé arbitrariement.

La hiérarchie intégro-différentielle écrite dans 1’équation ci-dessus n’utilise plus des analogues des
polynémes différentiels de Lenard, notamment utilisé par la définition dans le cas scalaire de la hiérarchie
(1.2.6). Cette écriture est en effet plus proche au formalisme que Airault avait utilisé pour décrire les
équations de Painlevé II d’ordre supérieur dans son papier [Air79] et que nous rappelons a I’équation
(1.2.27). Cependant, les solutions construites ici sont toujours définies par des conditions & la Hastings-
McLeod et la formule prouvée peut étre considérée comme un autre analogue de la formule de Tracy et
Widom. Par ailleurs, le déterminant de Fredholm D,, considéré dans ce cas est encore une fois interprété
comme distribution de probabilité de la plus grande particule du processus déterminanteau définit par
Vopérateur AK,,,. De plus, D,, (avec w le factor de Fermi) est déja apparu en relation a différents
domaines de mathématique et de physique. Récemment, il a été utilisé en [LDMS18] pour exprimer une
certaine limite de la distribution de probabilité de la plus grande impulsion d’un systéme de fermions
libres dans un potentiel non-harmonique. Précédemment, juste pour le cas n = 1 (et toujours avec w
le factor de Fermi), il a été utilisé en [ACQ11] pour la description de la distribution de probabilité de
solutions de I’équation de KPZ avec valeur initial narrow wedge et il a été trouvé en relation avec
certaines quantités liés & Pensemble de Mosher-Neurberg-Shapiro par Johansson en [Joh07]. Toutes ces
applications ont énormément stimulé notre intérét pour ce déterminant de Fredholm et sont en effet la
principal motivation qui nous a conduit a ce travail. De plus, la tecnique a la Riemann-Hilbert développée
ici, et qui a ces racines dans larticle [Bot21], peut étre appliquée & d’autres opérateurs intégrals ayant un
noyau de la méme forme (6.1.32). L’extension au cas général des nos résultats sera traité dans l’article &
venir [Boton]. On prévoit donc pouvoir appliquer cette técnique pour étudier les déterminants de Fredholm
d’autres opérateurs en version température finie, et découvrir des nouvelles relations avec les systémes

intégrables.

Résultats du chapitre 7 Le chapitre 7 illustre les résultats contenus dans le travail [BT21] en col-

laboration avec Marco Bertola. Dans ce travail on s’intéresse aux structures symplectique et de Poisson
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de certaines variétés de monodromie, apellées variétés de Stokes. Elles sont les varietés de monodromie
associées a un systeme de EDO linéaire avec matrice de coefficient de rang N polynomiale, de degré
quelconque (dont la représentation isomonodromique de la hiérarchie de Painlevé IT homogene fait partie
pour N = 2 et pour degrés paires des polynomes coefficient). Cela est donc le type de variété de caractére
sauvage la plus simple, qui compte juste une singularité irréguliére (dans ce cas le point a l'infinie). Pour
le cas de rang 2, et dégré du polynome K, la variété de Stokes est définie comme la variété algébriques

de dimension complexe 2K, de la forme suivante

1 1 1 1
Gy = o O (L e VA =1 withsiec, xecx b, (10)
0 1 so 1 0 1 sak+2 1

Etant donnée la structure de Lie-Poisson [BBTO03] sur I'espace des matrices de coefficients des EDO en
considération, la question d’étudier comme ’application de monodromie “transforme” cette structure sur
la variété de monodromie correspondante Gk se pose naturellement. Une deuxiéme question est donc de
trouver des coordonnés qui décrivent cette structure de la fagon la plus simple possible : dans notre cas
ces seront des coordonnés log-canoniques et leur construction nous donnera le lien avec un certain type

d’algebres amassées. Plus précisément, nos résultats peuvent étre résumés dans 1’énoncé suivant.

Théoréme 3. La variété de caractére sauvage d’une connexion a valeurs dans les matrices polynomiales
de sly de degré K sur la sphére de Riemann est une variété de cluster du type Asgk avec une variable
congelée. La structure de Poisson-symplectique log-canonique sur cette variété coincide avec le push-

forward par Uapplication de monodromie de la structure de Lie-Poisson.

Ce résultat est en effet prouvé en plusieurs étapes, qu’on va résumer par la suite. Pour commencer,

on considere sur la variété de Stokes Gk la 2-forme suivante
1 2K
Wic = 5 Z (HL] YdH, A S, dsg> Hy:=S1---8), Sopqs:=e* L, (17)

ou Sy, pour £ = 1,...,2K + 2 sont les matrices triangulaires supérieures et inférieures avec diagonale

unitaire qui apparaissaient dans la définition de & et ™%

= A3 pour le cas de rang 2. Premiérement on
montre, de deux fagons différentes, que cette 2-forme est symplectique. D’une part, on prouve que (méme
dans le cas de rang N quelconque) cette 2-forme est obtenue & travers le push-forward de 'application
de monodromie de la structure symplectique “universelle” définie sur les feuilles symplectiques de la

structure de Lie-Poisson, ce qui implique que Wg est symplectique aussi. D’autre part, on construit des

variables y;,7 = 1,...,2K qui parameétrent la variété de Stokes de la fagon suivante (Lemme 7.2.5)
_ —1)i2 —1)72
s1= =y’ sokp1 = —(1+ yapes) H yj( "2 k=1, K -1, sagi1=-— H yj( 2,
1<j<2k+1 1<j<2K
1)7+12
S2k = 1+y2k H ( ) k:L...,K, 52K+2:y?(1+y§( (1+y2K Hy2ga
1<j<2k

- K 1—[923
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La construction de ces variables y; est fondée sur le choix d’une certaine triangulation d’un polygone
régulier de dimension 2K + 2, et elle est treés similaire a celle utilisée pour les Grassmaniennes de 2-plans
([GSV10], Chapter II). En utilisant la théorie des formes de degré deux standard associées aux graphes
avec connexions développée récemment dans [BK19], on trouve que Wy est écrite avec ces variables y; en
forme log-canonique, en particulier de rang maximale. Par conséquence, la parenthése de Poisson induite

par Wy est écrite dans ces variables en forme

{vi,y;} = (Pk)ijviy; (pas de somme), (18)

avec P une matrice constante inversible de taille 2K (raison pour laquelle on dénote les variables y;
comme log-canoniques). De plus, la matrice 4P corresponde & la matrice d’adjacence pour un carquois
de type Ak ; ce-la implique que les variables y? forment un germe de I'algébre amassée du type Aag.
Pour conclure, on prouve que en échangent le choix de triangulation du polygone de 2K + 2 cotés, le
parametrisations des données de Stokes sont obtenues a partir du germe initial et en appliquant des muta-
tions (i.e. des applications birationnelles d’une carte a l’autre). Comme déja souligné dans 'Introduction,
Flaschka et Newell s’étaient intéressés en premiers a ce cas spécial de variété de caractere sauvage en
relation avec la hiérarchie de Painlevé II. Ils avaient trouvé, a travers I’application de monodromie, que

cette variété était équipée avec la parenthese de Poisson

051012k +2 i— .
{sj,sl} =01 — 2= )\’2 2 (—1) s, j<l
FN

{sj,A}FN = (~1)7s;A. (19)

Celles-1a sont exactement les formules qu’on retrouve quand on calcule les parenthése de Poisson (18)

pour s;,7 =1,...,2K + 2 et A en utilisant les parametrisations au-dessus. Le résultat est résumé ici.

Théoréme 4. La description des paramétres de Stokes sj,5 =1,...,2K +2 et de la monodromie formale
A en termes des variables y; donnée ci-dessus, transforme la parenthése de Poisson (19) en la parenthése
(18).
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Abbasso il nove

Uno scolaro faceva le divisioni :

- II tre nel tredici sta quattro volte con ’avanzo di uno. Scrivo quattro al quoto. Tre
per quattro dodici, al tredici uno. Abbasso il nove...

- Ah no, - grido a questo punto il nove.

- Come ? - domando lo scolaro.

- Tu ce ’hai con me : perché hai gridato «abbasso il nove» ? Che cosa ti ho fatto di
male ? Sono forse un nemico pubblico ?

- Ma io...

- Ah, lo immagino bene, avrai la scusa pronta. Ma a me non mi va giu lo stesso.
Grida «abbasso il brodo di dadi», «abbasso lo sceriffo», e magari anche «abbasso
I’aria fritta», ma perché proprio «abbasso il nove» 7

- Scusi, ma veramente...

- Non interrompere, ¢ cattiva educazione. Sono una semplice cifra, e qualsiasi numero
di due cifre mi pud mangiare il risotto in testa, ma anch’io ho la mia dignita e voglio
essere rispettato. Prima di tutto dai bambini che hanno ancora il moccio al naso.
Insomma, abbassa il tuo naso, abbassa gli avvolgibili, ma lasciami stare.

Confuso e intimidito, lo scolaro non abbasso il nove, sbaglio la divisione e si prese

un brutto voto. Eh, qualche volta non e proprio il caso di essere troppo delicati.

(Gianni Rodari, Favole al telefono.)
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INTRODUCTION

AINLEVE EQUATIONS arose more than one century ago as the solution of a classification problem
P in ODE theory first posed by Picard ([Pic89]). His aim was to describe all second order ordinary
differential equations of a certain prescribed form, for which the solutions have no movable critical points.
This property, also known as the Painlevé property, allows indeed to define new functions as the general
solutions of these differential equations. The subsequent studies of Painlevé, Fuchs and Gambier ([Pai00,
Fuc05, Gam10]) finally produced a compact list with only six equations satisfying the required properties
and for which the general solutions cannot be written in terms of known special functions. All the other
equations fulfilling Picard’s requirements were shown to be either solvable in terms of known special
functions or reduced to one among the six in the list. Nowadays, we call this list of second order nonlinear
ordinary differential equations the Painlevé equations, see equations (1.1.1)-(1.1.6). Their solutions, called
Painlevé transcendents, are classified as new nonlinear transcendental functions and added to the list of
the classical special functions (together with the Bessel, Airy, hypergeometric, elliptic functions etc.). The
study of their properties increased together with their appearance in different domains involving nonlinear
phenomena. During the last fifty years Painlevé equations have been found in connection with many
different areas of mathematics and physics thus stimulating their study from many different points of view.
Among the physical literature, Painlevé equations appeared in different models of statistical mechanics
and quantum field theory ([BMTW73, JMMS80, BK90] some classical examples and [LDMS18, Kra20]
more recent ones particularly related to this thesis). In mathematics, new connections with orthogonal
polynomials ([VA17] a classical reference), random matrices ([TW94a, TW94c| and subsequent literature)
and random growth models (e.g. [For03, ACQ11]) are discovered still these days.

Going back in time, one of the first aspects of Painlevé equations to be studied was the dependence of
their solutions on the parameters appearing in the coefficients of the equations. It is worth to notice that
each of the six equations, apart from the first one, actually depend on some complex parameters (and up
to 4 independent ones). For particular choices of the values of these parameters, it is actually possible to
construct explicit solutions of the Painlevé equations in terms of known special or elementary functions.
Take the simplest scenario, when there is only one extra parameter. This is indeed realized by our case

of interest, the Painlevé II equation

2w

@:2w3+wz+a, for w=w(z), aeC. (1)

It was first shown by Airault in [Air79] that for nonzero integer values and semi-integer values of «, the
Painlevé IT equation admits respectively rational solutions and solutions in terms of the classical Airy
function (her results are written in Theorem 1.1.1, 1.1.2). Intriguingly enough, the case @ = 0 does not
fit in either of these classes of solutions. This special case was first handled by Hastings and McLeod

in [HM80] together with specific boundary conditions. The solution of their boundary value problem,
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known as the Hastings-McLeod solution (details are written in Theorem 1.1.5), appeared some years
later in relation with random matrix theory (in the same paper [TW94a] cited above). This result (stated
in Theorem 1.1.7), that goes under the name of the Tracy-Widom formula, is just one example among
many others describing connections between Painlevé transcendents and the theory of determinantal
point processes (that in this specific case applies to random matrix theory). The proof of their formula
followed from a study of the properties of the well known Airy kernel. In particular, they proved that the
Fredholm determinant of the integral operator acting through the Airy kernel is expressed in terms of the
Hastings-McLeod solution of the Painlevé IT equation. This Fredholm determinant was already known to
express the edge scaling limit of the probability distribution of the largest eigenvalue for the Gaussian
Unitary Ensamble (e.g. [For93]), thus providing the bridge between random matrix theory and Painlevé
transcendents.

Among the many interesting aspects of the Painlevé II equation, in this work we will be particularly
interested in these two : its relation with the modified Korteg-De Vries equation and its isomonodromic
representation. In a certain way, the first one defines the object at the basis of our study, namely the
Painlevé II hierarchy, and the second one gives us the main tool to handle it. The link between the
Painlevé II hierarchy and isomonodromic deformations theory was deeply studied in the two subsequent
papers of Flaschka and Newell [FN80, FN82] in the eighties, and their work provides in some sense the
basis of our work, from both an analytical and a geometrical point of view.

Painlevé equations in general are known to be reduction of integrable (and non) PDEs [AC91] such as the
Korteg De Vries equation, the nonlinear Schroedinger equation and the sine-Gordon equation just to cite
some of them. As for the Painlevé II equation, it is obtained as self-similarity reduction of the modified

Korteg De Vries equation. This means that while seeking for solutions of the modified KdV equation

V¢ + VUgza — 61}2’Ux = Oa (2)
of the type
v(t,x) = w(z? with 2= — - (3)
(3t)% (30)F

one obtains exactly that w(z) solves the Painlevé II equation (1) with a determined as constant of inte-
gration (for more details see [AC91]). This connection is particularly relevant since it allows to define the
so called higher order analogues of the Painlevé II equation. Indeed, in the study of integrable PDEs, for
which the most prominent example is indeed the Korteg De Vries equation, one can often construct in
natural way higher order equations that commute among themselves (see [Miu68] for the KdV case). The
sequence of equations obtained in this way is the hierarchy associated to the relevant PDE. In our case of
interest, starting from the modified KAV hierarchy (1.2.12), which construction is induced by the one of
the KdV hierarchy (1.2.8) via a Miura transformation, one can apply a self-similarity reduction (similar
to the one defining the reduction of the modified KdV equation to the Painlevé II equation) to all the
other members of the modified KdV hierarchy. This procedure results in a sequence of nonlinear ordinary
differential equations of increasing order, the first being the Painlevé II equation (1). Their collection is
called the Painlevé II hierarchy (and it is compactly written in equation (1.2.22)).

The relation between Painlevé equations and isomonodromic deformations was first investigated in great
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generality by the Japanese school in a series of papers [JMU81, JM8la, JM81b] and, almost simulta-
neously, but with specific focus on the Painlevé II case by Flaschka and Newell in [FN80, FN82]. Es-

sentially, isomonodromic deformations describes (for generic rank N) all possible linear system of ODEs

av
dx

with A(\) a rational matrix with fixed number of poles each one with fixed multiplicity, sharing the same

AN)w (4)

set of essential monodromy data. This set of data is composed by some matrices that partially describes
the local behaviors of the solution ¥ near the singularities of the matrix coefficient A(X). It turned out
that this description can be made by looking at the coefficient matrix A(A) as depending on certain extra
parameters A(),s) !, and studying the variations w.r.t. these parameters that preserve the required set
of data. One of the main results proved in [JMUS81] was that these monodromy preserving deformations
are equivalent to some nonlinear equations that the entries of the matrix coefficient A(\) should solve,
w.r.t. the deformation parameters. For certain specific cases (choosing number and type of poles), these
nonlinear equations coincide with the Painlevé equations. In the modern language, this result is usually
stated as the fact that Painlevé equations admit Lax pair representations in terms of isomonodromic
deformations. This means that for each of them there exist a pair of matrices A(A,s), L(\, s) such that

the compatibility condition of the system

d¥v Y
dr = A(A, 8)Y, ds = L(\, 8)¥, (5)

i.e. the equation obtained by cross-differentiation

%—%4—[1&1,[,]:0, (6)
is equivalent to the relevant Painlevé equation. The existence of Lax pairs for the Painlevé equations
allows from a certain perspective to put them into the wide framework of Integrable Systems.

For what concerns the Painlevé II equation (1), there are actually two independent? rank two Lax pairs :
one with only one irregular singularity at oo and a regular one at 0 (the Flaschka-Newell Lax pair [FN80])
and one with only one irregular singularity at oo (the Jimbo-Miwa-Ueno Lax pair [JMUS81]). Some years
ago, the work [CIJMO6] proved that every higher order analogue of the Painlevé II equation admits an
isomonodromic Lax pair, that generalizes the Flaschka-Newell one. This is indeed very useful in our stu-
dies.

With this panorama in mind, the thesis explored the following directions. On the one hand, we found
generalizations of the Tracy-Widom formula for some solutions of new Painlevé II equations, in particu-
lar matrix-valued and integro-differential higher order analogues, in correspondence with the Fredholm
determinants of higher order, matrix-valued and finite-temperature, generalizations of the Airy kernel.
Motivations include, but they are not limited to, the fact that these generalizations of the Airy kernel can
be used in the theory of determinantal point processes (e.g. [BBW21]), and also in statistical mechanics
and random matrix theory (e.g. [LDMSI18, ACQ11, Joh07]). The detailed results are stated in Corollary

1. In general s could be either a scalar or a finite dimensional vector of independent parameters.
2. Here independent means that the sets of essential monodromy data of the two systems are not isomorphic, thus there
exist no gauge transformation that send one system into the other.
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5.0.2 in Chapter 5 for the matrix-valued case and in Theorem 6.0.7 in Chapter 6 for the finite-temperature
case. In order to obtain both of these results, the existence of a Lax pair for the matrix-valued and the
integro-differential Painlevé II hierarchies, studied in Chapter 5 and 6 respectively, is fundamental. Their
Lax representations are indeed the keys to pass from the study of the relevant generalizations of the Airy
kernel, via a Riemann-Hilbert approach, to the definition of some particular solutions of the Painlevé II
hierarchy involved. The methodology used in both cases is very similar, even though the one in Chapter
6 is more technical than the one in Chapter 5, and it relies on the well known theory of IIKS integrable
operators [ITKS90]. This theory can be indeed used or generalized for the study of the Fredholm de-
terminants of the higher order, matrix-valued and finite temperature, analogues of the Airy kernel we
are interested in. The fundamental idea is to associate a parametric Riemann-Hilbert problem to the
prescribed operator and to study its Fredholm determinant through it. At the same time, the solution of
the relevant Riemann-Hilbert problem can also be used to provide the Lax pairs, in our specific case iso-
monodromic ones, that will be indeed behind the Painelvé II hierarchies of interest. The most prominent
difference between Chapter 5 and Chapter 6 is then on the type of Riemann-Hilbert problem that will be
associated to the relevant operator : in the first case a standard matrix-valued Riemann-Hilbert problem
while in the second case an operator-valued one.

However, we notice that the original Tracy-Widom formula was obtained by the authors [TW94b] through
a totally different procedure. Other authors later re-derived their formula by using the Riemann-Hilbert
approach (e.g. [KH99]) and this approach has been used in order to derive analogue Tracy-Widom formula
for some (scalar) higher order Painlevé IT transcendents, in the recent work [CCG19]. For this reason we
adopted the same method for our purposes in Chapter 5 and 6.

On the other hand, we studied the Poisson-symplectic structure of the monodromy manifold associated
to a system of linear ODEs with polynomial matrix coefficient (thus having only an irregular singula-
rity at o0), originally introduced by Flaschka and Newell in [FN82]. This case is indeed underlying the
Painlevé IT hierarchy (at least the homogeneous one). This particular case of monodromy manifold, cal-
led Stokes manifold, is the simplest example of what is known now as a wild character variety. For the
case of regular singularities, the geometry of monodromy manifolds is encoded by character varieties of
(appropriately) punctured Riemann spheres. The character varieties of Riemann surfaces in general are
known to be Poisson manifolds, thanks to Goldmann work [Gol84]. Instead, the monodromy manifolds
associated to systems carrying on irregular singularities are more complicated, because of the presence of
the Stokes phenomenon around each irregular singularity. During the last decades, they were studied in
great generality and with particular focus on their Poisson structure by Boalch [Boa0la, BoaOlb, BT07].
In Chapter 7 we prove that this particular case of monodromy manifold, the Stokes manifold, is indeed
a symplectic manifold, see Theorem 7.1.5. Moreover, in Lemma 7.2.1 we provide explicit log-canonical
coordinates for the symplectic-Poisson structure, that are shown to linearize the original Flaschka-Newell
Poisson structure, as follows from Theorem 7.4.3. The log-canonical variables used in this context are
related to a cluster algebra of a certain type. Relations between cluster algebras and character varieties,
are known and have been largely studied by Fock and Goncharov [FG06] but without specific reference to
monodromy manifolds. Recently, their formalism was also used to find log-canonical coordinates for the
Goldmann Poisson structure of character varieties of arbitrary punctured Riemann surfaces [BK19]. Also,

cluster algebras were already known to be connected with the Stokes phenomenon, but the one arising
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in WKB analysis [KT14] (not the classical one that we are going to treat here). For all these reasons,

cluster algebras were in some way expected to appear also in the context of wild character varieties, such

as our Stokes manifolds.

Outline

The thesis is essentially divided in two parts. The first part is composed by the first four chapters which

are devoted to introduce the basic objects of the study and to motivate it, to review the fundamental

results that relate these objects and to recall the classical methods used to achieve these classical results.

The second part contains instead the original contributions obtained in the works [Tar21, BCT21, BT21],

that are distributed in the last three chapters. In particular the thesis is organised as follows :

(1)

In Chapter 1 we explain how the scalar Painlevé IT hierarchy is constructed and we review the Tracy-
Widom formula and its generalization for the higher order members of the hierarchy, concerning
some Hastings-McLeod type solutions of the hierarchy. In Chapter 2 we summarise some basic facts
about the theory of determinantal point processes, with particular focus on its application in random
matrix theory. This will be done in order to finally explain how the Tracy-Widom formula relates
some Painlevé II transcendent to random matrix theory. These two chapters together essentially

introduce the objects we want to study and the main motivations.

Chapters 3,4 are focused on the classical techniques that we are going to use or generalize in the
chapters thereafter in order to achieve our results. Specifically, Chapter 3 introduces Riemann-
Hilbert problems with particular focus on the ones appearing in relation with integrable operators
of ITKS type. Chapter 4 is instead a compact review of some results in the theory of isomonodromic
deformations. The aim of the chapter is twofold : one is to explain how the Painlevé II hierarchy
can be deduced as isomonodromic deformation of certain types of systems, the other is to review

the concepts of monodromy data that will be used in Chapter 7 to construct the Stokes manifolds.

In Chapter 5 we give the proof of the result contained in [Tar21] : a generalization of the Tracy-
Widom formula relating the Fredholm determinants of matrix-valued higher order Airy kernels

analogues to some particular solutions of a matrix-valued Painlevé II hierarchy.

In Chapter 6 we go through the proof of the main result of [BCT21] : this time we obtain a
generalization of the Tracy-Widom formula for a finite temperature version of the higher order Airy
kernels together with a particular solutions of an integro-differential Painlevé II hierarchy. Even
though the results of this chapter and the previous one are comparable, the proof of the second one
requires more complicated techniques. Indeed in this case, matrix-valued Riemann-Hilbert problems
are replaced by operator-valued ones. Part of the work is then devoted to establish the existence,

uniqueness and other properties of their solutions (well-known for the matrix-valued case).

Finally in Chapter 7 we explain most of the content of [BT21]. We prove that the Stokes manifold
associated to a polynomial system of ODEs of generic degree K and rank 2 is indeed a symplectic
manifold. In particular we find log-canonical coordinates for the induced Poisson structure, that pro-
vide a linearization of the Flaschka-Newell Poisson structure originally discovered on this manifold.

The relation with a cluster algebra of Ask type is also discussed.






CHAPTER 1

THE PAINLEVE |l HIERARCHY

HE STARTING POINT of our study is the scalar Painlevé IT hierarchy, that in this chapter we are going
T to introduce. Indeed, the construction of the scalar Painlevé II hierarchy will inspire in Chapters
5 and 6 the one of some new Painlevé II hierarchies, analogue of the classical one described in this
chapter, but in a matrix context and in an integro-differential context respectively. To start with, we first
briefly recall who are the so called Painlevé equations. Then we are going to focus on the second Painlevé
equation and after a brief study of its properties, we are going to see how, thanks to its relation with the
modified KdV equation, the Painlevé II hierarchy is defined.

1.1 The Painlevé II equation

1.1.1 Introduction to the Painlevé equations

With Painlevé equations we refer to the following list of six nonlinear ordinary differential equations

(following [FTKNO6]) for a certain function w = w(z)

PI " = 6w? + 2, (1.1.1)
PII w” = 2w’ + 2w + a, (1.1.2)
N2 / 2 B}
prp w = (W W et s O (1.1.3)
w z z w
N2
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prv w — ) + sw? + dew? +2(22 — a)w + ﬁ, (1.1.4)
2w 2 w
1 1 —1)2 ) 1
PV ' =—+—- (w’)2—£+M aw—i—ﬁ +H+M, (1.1.5)
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where we used the notation ' = — and «, 8,7, § are constant parameters. These equations result as the
z

solution of a classification problem in ODE theory, that was first posed more than one century ago in

[Pic89]. The problem was to find all the second order ordinary differential equations of the form

w” = F(w,w', 2) (1.1.7)
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with the function F(w,w’, z) being rational in w,w’ and analytic in z and with solutions satisfying the
so called Painlevé property. A function w, solution of a certain ordinary differential equation, is said to
have the Painlevé property, if it does not have movable critical points. This means essentially that the
critical points of the solution, if any, only depend on the equation itself and not on the initial or boundary
conditions. From another point of view, the Painlevé property allows to construct new special functions
as solution of specific second order nonlinear ODEs, as it is done for many special functions coming from
linear ODEs, as the Bessel and the hypergeometric functions.

Painlevé first and then Fuchs and Gambier ([Pai00, Fuc05, Gam10]) studied this problem and conclu-
ded that, up to Mobius transformations, there were just fifty equations corresponding to such requests.
Furthermore, they proved that these fifty equations can be either integrated in terms of known special
functions or reduced to one of the six equations in the list above. The six new nonlinear ordinary dif-
ferential equations arising out in this way are then called the Painlevé equations. Their solutions, the
Painlevé transcendents, are considered as new transcendental functions (for more details we refer to the
monograph [Inc27]).

Even though the Painlevé equations arose in the context of a very analytical problem, they appeared
then in many other fields of applied mathematics such as statistical mechanics, quantum field theory
and nonlinear waves. In particular some of the Painlevé equations were found in connection with partial
derivative equations solvable through inverse scattering method ([AC91] for a classical reference). In the
specific case of the Painlevé II equation (1.1.2), that will be our case of study, the relevant PDE is the
modified KdV equation. As we will see in the next section, the relation between the modified KdV equa-
tion and the Painlevé II equation is indeed the key to construct the Painlevé IT hierarchy. But this is far
from being an isolated case, and the study of links between Painlevé equations and PDEs is still very
popular. Indeed, there is still an open conjecture among Painlevé type equations and integrable PDEs
saying that (quoting from [AC91] pg. 362)

“FEvery ODE which arises as similarity reduction of a completely integrable PDE is of Painlevé type, up
to transformation of variables”.

One of the first properties of Painlevé transcendentes to be discovered, was that even though the general
solutions of the Painlevé equations are transcendental, some particular solutions can be written explicitly.
Notice that in every equation (1.1.2)-(1.1.6) there is at least one parameter. Choosing particular values
for these parameters it is possible to find rational solutions, or other solutions in terms of known special
functions for all the Painlevé equations from II to VI. The presence of these parameters in the Painlevé
equations is actually even more relevant. Given a solution of a Painlevé equation for fixed values of the
parameters, one can generate other solutions of the same equation with different values of the parame-
ters, or even solutions of a different Painlevé equation, starting from the given one. This phenomenon is
usually referred as the Bécklund transformations of the Painlevé equations, and it is a very useful tool to
generate sequences of solutions. These transformations were already discovered by Painlevé and Gambier
in the first works on Painlevé equations ([Inc27, Gam10]) and then studied in the following years. We
refer to [FIKNO6] (Part I, Chapter 6) for a compact review on the subject using the formalism of Lax

pairs of Painlevé equations and Schlesinger transformations.
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1.1.2 Known solutions of the Painlevé II equation

We are now going to focus on the Painlevé II equation and we start by listing its known solutions.
The Painlevé II equation admits two types of Backlund tranformations for integer or semi-integers values
of the parameter «. These transformations generate respectively sequences of rational solutions and Airy
type solutions (that are obtained as ratio of the Airy function and its derivatives). The main results, that
were first proven by Airault in [Air79], are resumed in the following theorems.

For the rational solutions corresponding to integer values of the parameter « the statement is as follows.

Theorem 1.1.1 (Theorem 2 [Air79]). The Painlevé II equation (1.1.2) has rational solution if and only
if a is an integer, in particular for o = 0 this solution is trivial. Then for n = 1, equation (1.1.2) admits

a solution w,, with o = n that is written as

/ !/

Wy, = ——" 4 =L (1.1.8)
Un, Unp—1

where the functions u,, are obtained through the following recursion

2

d
Upt1Un—1 = C(_2@ log u,, + 2)u?, (1.1.9)

with initial conditions ug = 1 and uy(2) = z. Finally, when o = —n then w_,, = —w,,.

For the Airy type solutions corresponding instead to semi-integers values of «, we have the following

statement. Notice that here the Airy function is defined as a particular solution v(z) of the equation
"

V=357

Theorem 1.1.2 (Theorem 3 [Air79]). In the case where o is a semi integer, there is a solution of equation

(1.1.2) that is a rational function of the Airy function v and its derivatives. In particular

o fora= —% then wy = %logy;

o fora=—1%+n thenw T R
2 n Un—1 Up ?

e fora= % —n then w_(p,_1) = —wp,.

Here the functions wu, are obtained from the same recursive equation (1.1.9) but with initial conditions

Uy = exp (%) and w1 = yug.

These results were proved again some years later through a totally different method by Flaschka
and Newell in [FN80]. Their new procedure is called isomonodromy method and it is perhaps the most
powerful tool that has been developed in order to study Painlevé transcendents, as the monograph
[FIKNO6] largely shows. This method is based on the fact that the Painlevé II equation has Lax pairs
in terms of isomonodromic deformations of certain rank 2 systems of linear ODEs in the complex plane.
The precise meaning of that will be discussed in Chapter 4. Using this method, Flaschka and Newell were
able to recover the rational and the Airy type solutions found by Airault and they expressed them as
finite-size determinants. Their result, first proved in Sec. 3F (4i7) of [FN80] for the rational solutions of

the Painlevé IT equation (1.1.2), can be rewritten as follows.
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Theorem 1.1.3 (Theorem 2.4 [Cla03]). Let pr(z) be the polynomial defined by
- 4
2 pr(2)AF = exp (z/\ — 3)\3> , with pr(z) =0 for k<0
k=0

and let 1, be the n x n determinant

Pn(2) Pns1(2) Pan—1(2)

Pn2(2)  pu-1(2) Pon—3(2)
Tn(2) =

Poni2(2) ponys(2) ... pi(2)

Then for a = n, n = 1 the rational solutions of (1.1.2) are written as in the form

wy(2) = d% log TT;;ES)

(1.1.10)

This result was also proved later in [KO96], exploiting the relation between the Painlevé IT and the
KdV equation.
Instead, for the Airy type solutions of equation (1.1.2) the result proved by [FN80] (Sec. 3F (iv)) can be

formulated as follows.
Theorem 1.1.4 (Theorem 2.5 [Cla03]). Let 7, be the n x n determinant

dj+k n—1
Tn(2) = det [W’y(z)] L n>=1 and 19(z) = 1.
k=

Then for a =n — % and n = 1 the Airy type solutions of the Painlevé II equation (1.1.2) are written in

the form
d Tn-1(2)

T BTG

wy(2) (1.1.11)

The original works done in this thesis and contained in Chapter 5 and 6, are based indeed on the iso-
monodromy method. However, these original results generalize (to a matrix-valued and integro-differential
case) the existence of a third type of solution of the Painlevé II equation, different from the two family

of solutions introduced until now. Consider the homogeneous Painlevé IT equation (1.1.2)
w” = 2w + 2w (1.1.12)

i.e. the special case @ = 0 in equation (1.1.2). It was first discovered in [HMS80] that this equation
together with a boundary condition admits a particular solution, nowadays known as the Hastings-

McLeod solution. Their main result is resumed in the following theorem.

Theorem 1.1.5 (Theorem 1 [HM80]). Consider the homogeneous Painlevé II equation (1.1.12) together
with the boundary condition
w(z) > 0 for z — +oo. (1.1.13)

10
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Then

1. any solution of the boundary problem (1.1.12), (1.1.13) is asymptotic to kAi(z) at z — +o0o, for
some k € R.

2. Conversely, for any k there is a unique solution of (1.1.12) which is asymptotic to kAi(z).

Furthermore, for |k| < 1 the solution which has asymptotic kAi(z) exists for every z and as z — —o0 it
behaves as
1. (2 3 3,
w(z) ~ d|z| 71 sin §|z|2 — Zd log|z| — ¢ (1.1.14)

for some constants c,d depending on k.

Remark 1.1.6. In the statement of Theorem 1.1.5 and below we denote by Ai(z) the Airy function but
with a slightly different convention w.r.t. the function v(z) defined previously. Here Ai(z) is intended as

a particular solution of ¢” = z¢.

These solutions were not known to admit a (Fredholm) determinantal representation until the work
of Tracy and Widom [TW94b]. They proved indeed that also these solutions can be written in terms of
certain determinants, but in a very different sense than the determinants for the rational and the Airy
type solutions. They proved in [TW94b] that the Hastings-McLeod solution of the Painlevé II equation
(1.1.12) with asymptotic w(z) ~ Ai(z) is related to the Fredholm determinant of the Airy kernel. Their

result is resumed in the following theorem.

Theorem 1.1.7 ([TW94b]). The Hastings-McLeod solution of the homogeneous Painlevé II equation
(1.1.12), d.e. its distinguished solution with asymptotic behavior w(z) ~ kAi(z), is written through the

formula
2

d
2 log det(1 — k*K airy|(z,00)) = —w?(2). (1.1.15)
where K airy|(2,0) is considered as the integral operator acting on L?((z, +90)) with kernel

+0
Kairy(z,y) = Ai(x + t)Ai(y + t)dt. (1.1.16)
0
We will discuss again about this result at the end of Chapter 2 and there we will explain the reason
why this result is so interesting from the point of view of applications.
Nevertheless, formula (1.1.15) is exactly the one we have generalized in Chapters 5 and 6 for certain
solutions of a matrix and an integro-differential Painlevé II hierarchy, with prescribed asymptotic behavior

in terms of generalized Airy functions.

Remark 1.1.8. We stress, again, that the procedure used by Tracy and Widom in [TW94b] does not
make use of the Lax pair representation of the Painlevé II equation at all. Nevertheless, the extension of
their result to certain solutions of the Painlevé II hierarchy, that was studied in [CCG19] and that we
will discuss thereafter, deeply rely on the isomonodromic representation of the hierarchy and the theory
of integrable operators of IIKS type. And so also our generalizations discussed in Chapters 5 and 6 do.

However, a proof of the Tracy-Widom result based on this technique was already given in some previous
papers [KH99, HTW93].

11



Chapter 1 — The Painlevé II hierarchy

1.2 Construction of the Painlevé II hierarchy

In this section we are going to define the classical scalar Painlevé II hierarchy. In order to do that, we
first need to establish the relation between the Painlevé I equation and the modified KdV equation. We
will see that the definition of the Painlevé II hierarchy then follows in a very natural way, once that the
definition of the modified KdV hierarchy is established.

1.2.1 Self-similarity reduction of mKdV equation

We start by introducing the KdV equation. Given a function of two variables u = u(t,x), the KAV

equation is the following nonlinear partial differential equation
U + 6utly + Upgpe = 0, (1.2.1)

where subscripts denote partial differentiation. This equation was derived from the physical description of
the evolution of long, one dimensional, surface waves propagating in shallow waters with small amplitude
by Korteweg and De Vries in [KDV95]. One of the scope of their work was to find wave equations admit-
ting solitary wave solutions, i.e. waves preserving their own form and propagating with uniform velocity,
first observed and then studied by Russel [Rus38]. The KdV equation has been largely studied in the
years after its discovery and a lot of interesting mathematical properties were proved, here we cite only
few of them. The KdV equation is the prototype of PDE solvable through the Inverse Scattering Method,
it admits solitonic solutions (solitary waves solutions that do not change their shape and velocity after
interaction with other solitary waves), it has infinitely many commuting symmetries and it is perhaps
the main example of infinite dimensional integrable Hamiltonian system.

While studying some remarkable transformation of the KdV equation in the paper [Miu68], Miura dis-
covered the modified KdV equation. This equation is defined for a function of two variables v = v(¢, x)

as the following partial derivative equation
Vg + Vg — 6070, = 0. (1.2.2)

We say that the modified KdV equation and the KdV equation are related through a Miura transforma-
tion. More precisely, this relation means that for any solution v of the modified KdV equation one can
define the Miura transform v = v, — v?, and verify that the function « now solves the KdV equation
(1.2.1).

Remark 1.2.1. By direct computation, replacing u = v, — v? in the KdV equation (1.2.1) then we get

the following equation

0
(ﬁx - 21)) (vt — 6020, + vmm) = 0. (1.2.3)

And this is of course an identity since v solves the modified KdV equation (1.2.2). This means that from
a solution of the modified KdV equation we can always construct a solution of the KdV equation, but
the converse is not true (see also [AC91] pg. 23). In particular, not all the solutions of the KdV equation
are obtained from solutions of the modified KdV equation (for more details, have a look at [AKST79]).

12



1.2. Construction of the Painlevé II hierarchy

Now we are going to show that the Painlevé II equation can be obtained by self-similarity reduction
of the modified KdV equation. Indeed, consider a solution v of the modified KdV equation, having the
following form

v(t,x) = w(zz with 2= — -
(3t)3 (3t)3

Then the modified KdV equation solved by this v(¢, z) is reduced to an ordinary differential equation for

(1.2.4)

w w.r.t. the new variable z. In particular it coincides with
2 —
Wyyy — 2W, — W — 6w w, =0 (1.2.5)

that is exactly the derivative of the Painlevé II equation. Thus we conclude that the function w defined

in (1.2.4) solves the Painlevé IT equation (1.1.2) with « being an arbitrary integration constant.

Remark 1.2.2. There is another similarity reduction that relates directly the KdV equation to an
equation solvable in terms of solutions of the Painlevé II equation (see [ACI1], pg. 99, for more details),
but for the definition of the Painlevé II hierarchy is easier to proceed with the relation between the

Painlevé II equation and the modified KdV equation.

1.2.2 The KdV and modified KdV hierarchy

The KdV hierarchy is an infinite set of PDEs for a function depending on infinitely-many parameters
u = u(r = —t1,t = ta,t3,1t4,...). With this notation, the first member of the hierarchy is an identity
and the second one coincides with the KdV equation itself. These PDEs have the fundamental property
to commute one with another, giving a system of compatible equations. We remark that this is also
equivalent to say that the KdV equation admits infinitely many commuting symmetries. Even though
the classical definition of the KdV hierarchy requires the introduction of the algebra of pseudo-differential
operators (following the classical reference here [MJD00]), we are going to take a shortcut and give an

equivalent definition that involves the Lenard recursion, as introduced in [Lax76], [Miu68].

Definition 1.2.3. The sequence of Lenard recursion operators acting on a function w is obtained through

the following recursion

iﬁ [u] = a—3+4i+2 L, [u] >0
ox 1 L] = ox3 ua:c Ya ) Fn LU 102

£0 [u] =

(1.2.6)

M| —

The quantities £, [u] generated from this recursion relation are all differential polynomials in u and
its z-derivatives until order 2n — 2. The proof of this fact is based on the use of the conserved quantities
for the KdV equation (see Theorem 3.1 in [Lax76] for more details).

Example 1.2.4. Here is a list of the differential polynomials £,, [u] for the first few values of n, setting

13



Chapter 1 — The Painlevé II hierarchy

all the constants of integration to zero.

n=1: Ly [u] = u,
n=2: Lo [u] = Uy + 3u?, (1.2.7)
n=3: L3 [u] = Uzgre + 10Uz, + 5ui + 10u3,

Using Definition 1.2.3 we can finally construct the KdV hierarchy as follows

0
Wty ia + %£n+1 [U] = Oa nz= Oa (128)

where the subscript ¢,.1 indicates the partial derivation w.r.t. £, 11.

Example 1.2.5. Here is a list of the first members of the KdV hierarchy. For n = 0 we have a trivial

identity, with ¢; = —z, and for n = 1 we recover the KdV equation, with ¢ = ¢.
n=0: Uty + Uy =0, (1.2.9)
n=1: Uty + 6UUL + Ugge = 0, (1.2.10)
n=2: Uty + Uzzzze + 20Uplzs + 10Uy + 30uu, = 0. (1.2.11)

The modified KdV hierarchy is then constructed from the KdV hierarchy through the same Miura
transformation introduced before, i.e. by taking u = v, — v2, and looking at the equation for v. Indeed,
the modified KdV hierarchy is defined as follows

o (0
Vtss T 5 (ax + 2v> Ly [ve —v*] =0, n>1, (1.2.12)

where for n = 1 the modified KdV equation (1.2.2) is recovered.

Remark 1.2.6. Consider the Miura transformation v = v, — v? and replace it into the definition of the

differential operator of order 3 appearing in the Lenard recursion (1.2.6), namely

Hee &l o (1.2.13)
=3 u&x U« 2.

By direct computation, one can check that under the Miura transformation, H is factorized in the

0 0 (0
#=(5-2) 5 (5 +2): (12:14)

Thus, when we replace the Miura transformation in the definition of the KdV hierarchy (1.2.8) we

following way

obtain, generalizing what was observed in Remark 1.2.1, that the n-th member of the KdV hierarchy is

0 o (0 )
<a:c - 2v> (vth + (ax + 2v> Ly, [vs —v ]> =0, (1.2.15)

where we only used the property (1.2.14). As a byproduct we conclude that, given a solution v of the n-th
member of the modified KdV hierarchy then u = v, — v? solves the n-th member of the KdV hierarchy,

transformed into

14



1.2. Construction of the Painlevé II hierarchy

but the converse, again, is in general not true.

Example 1.2.7. The first members of the modified KdV hierarchy are as follows

n=1: Uty + Vpze — 6070, = 0, (1.2.16)
n=2: Vty + Vpzgzs — 10020300 — 400, V40 — 101}2 + 30vtv, = 0, (1.2.17)
n = 3 : Ut4 + Vraazzzze — 14U2Uxmz:cm - 84vvmvmxrz - 140vvmxvmzr

— 12602055 — 182007, + T00 000 + 56003 V,04, + 4200702 — 140050, =0 (1.2.18)

1.2.3 The Painlevé II hierarchy

We are now ready to define the Painlevé II hierarchy. We will first follow the construction done in
[Kud97] and in the end we will briefly see another construction already given by [Air79]. In order to
do that we will consider an appropriate self-similarity reduction for each member of the modified KdV
hierarchy (1.2.12), analogue to the one we considered for the case n =1 in (1.2.4).

For every n = 1, we define v a solution of the n-th member of the modified KdV hierarchy, of the following
form

—— with 2= —————. (1.2.19)
((2n + Dtnia)

V(T tnt1) = ((2n + 1)tpy1)

Nl
N

We also define for every n > 0 the quantities L, [w], as the differential polynomials in w obtained by the
same recursion relation (1.2.6) but replacing the variable x with the variable z.
One can prove by induction over n (see Proposition 2.2 in [Kud97]) the following equality

1 .

L, [vz —? = —L, [wz — w2] for every n > 1. (1.2.20)

By replacing in the n-th member of the modified KdV equation (1.2.12) the form (1.2.19) of v and by
using the relation (1.2.20), this equation is transformed into an ordinary differential equation for the

function w(z) that is

d (d R
—zw, —w + = <dz + 2w> Ly [w, —w?] =0, (1.2.21)

that corresponds indeed to the derivative of

(j + 2w> L [wz — w2] = 2w + Quy, (1.2.22)
z

where «, is an arbitrary constant of integration.

Definition 1.2.8. The Painlevé II hierarchy is the infinite set of ODEs given by equation (1.2.22) for
any n > 1, obtained after integration of the self-similarity reduction of the modified KAV hierarchy.

We underline that the n-th member of the Painlevé II hierarchy (1.2.22) is a 2n order nonlinear ODE
for the function w(z). The first member of the hierarchy, as it is shown in the example that follows,

coincides with the Painlevé II equation (1.1.2).
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Chapter 1 — The Painlevé II hierarchy

Example 1.2.9. The first members of the Painlevé II hierarchy (1.2.22) are given by

n=1: w,, — 2w® = 2w + a, (1.2.23)
n=2: Wyppy — 10ww§ — 10w*w,, + 6w® = 2w + s, (1.2.24)
n=3: Wassres — 1AW W50, — BOWW W45y — 70w§w22 — 42ww§z + 70w4wzz

+ 140w w? — 200" = wz + az. (1.2.25)

The definition of the Painlevé IT hierarchy through equation (1.2.22) completely relies on the definitions
of the KdV and modified KdV hierarchies as given in (1.2.12), (1.2.12). But the formalism given by the
Lenard recursion operators is not the only one that is used to describe the KdV and consequently the

modified KAV hierarchies. In the following paragraph, we are going to introduce an alternative formalism.

An alternative definition of the PII hierarchy Here we are going to define the Painlevé IT hierarchy
through the formalism used by Airault in [Air79]. In this other formalism, introduced by [Olv77], [AMT7S],

one defines the following pseudo-differential operator of order 2

—1
Sw = 4w + 4w 4 w — d—Q (1.2.26)
v “\dz dz?

d\"" d\""d
where (dz) stands for the formal z-antiderivative, such that ( ) (f) = f for every function

dz dz
I
The Painlevé IT hierarchy is then defined in [Air79] by the following sequence of equations
d\ !
(dz) St w ] +2w+6,-1=0, n>=2 (1.2.27)

where Jj, are arbitrary constants of integration.

Remark 1.2.10. One can check that the first members of the Painlevé II hierarchy obtained through
the definition (1.2.22) and computed in the Example 1.2.9 coincide with the ones obtained through the
definition of the hierarchy (1.2.27).

The procedure followed to obtain this alternative definition of the Painlevé II hierarchy is similar to
the previous one, but it starts from a different definition of the KdV hierarchy. Given a function u, define

the following pseudo-differential operator

o (o) &
— (9 L - 1.2.2
Ru < <u+8xu(0az> ) 6m2> ( 8)
One can then define the KdV hierarchy, as Airault did in [Air79], through the following equations
2m — Vg, = R ug], m=2. (1.2.29)
1
2m—1

q(z) where z := xty, similarly
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1.2. Construction of the Painlevé II hierarchy

to (1.2.19), one can reduce the above equation to an ODE for ¢. In particular, it follows that ¢ solves
Ry gl +2¢+ ¢z =0,

where now R, is intended as the same operator given in (1.2.28) but replacing = by z and u by ¢. Finally,
using the Miura transformation at this level and writing ¢ := w, + w?, the function w is then shown to
satisfy equation (1.2.27).

Remark 1.2.11. Using the operator R,, one can define the following sequence
X [u] = RyuXm—1[u], m=2 with X;[u]=u,. (1.2.30)

Up to changing the sign of the term of order 3 in the differential operator H used in the Lenard recursion
(1.2.6), we actually have that the recursion for the operators X,, in (1.2.30) is a sort of integrated version
of (1.2.6). This follows from the bi-Hamiltonian structure of the KdV hierarchy for which the equality
above can be continued into

X [u] = RuXm—1[u] = % (6Hp,) (1.2.31)
and where 0H,, are the Hamiltonian functionals of the KdV hierarchy and they are (up to the sign) the
Lenard differential polynomials. The equivalence between the two definitions of the Painlevé II hierarchy

(1.2.22) and (1.2.27) is then explained.

Even though the two different definitions of the Painlevé II hierarchy give rise to the same infinite
set of ODEs, they are quite different in their usage. We wanted to introduce both of these formalism,
since they both will inspire our constructions in the next chapters. In Chapter 5 we consider a matrix
Painlevé II hierarchy, that is obtained as a matrix generalization of equation (1.2.22). We introduce a
noncommutative version of the Lenard recursion (1.2.6) and we use it to define the new hierarchy. In
Chapter 6 instead we define an integro-differential Painlevé II hierarchy that is a generalization of equation
(1.2.27). In particular, in this last definition the recursion operator is written as the composition of two
pseudo-differential operators of order 1 that reduces to the operator S, in (1.2.26) in the case where all

the variables commute.

Solutions of the Painlevé II hierarchy The study of solutions of higher order Painlevé II trans-
cendents is in general much more complicated since it requires to solve 2n-order ODEs. One can ask
for instance, whether the known solutions of the Painlevé II equation, the rational, the Airy type and
the Hastings-McLeod ones extend in some way to solutions of the entire Painlevé II hierarchy (1.2.22).
One answer was recently given in the papers [LDMS18, CCG19] concerning the Hastings-McLeod type
solutions. In particular, in the last paper the authors explicitely construct solutions for each member of
the homogeneous Painlevé II hierarchy (1.2.22) in relation to the Fredholm determinants of the gene-
ralized Airy kernels. The explicit formula describing these solutions recovers the Tracy-Widom formula
(1.1.15) for the first member of the hierarchy. Furthermore, the authors of [CCG19] were able to compute

the asymptotic behavior of these solutions at +oo, in terms of the generalized Airy function Ais,y1(2),
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Chapter 1 — The Painlevé II hierarchy

defined as the real solution with rapid decaying at +oo of the 2n-order ODE

d2n
dZQn

= (—=1)""z2¢. (1.2.32)

Their result can be thus interpreted as an extension of the Tracy-Widom result cited before in Theorem

1.1.7 to all members of the Painlevé hierarchy and it is resumed in the following statement.

Theorem 1.2.12 (Theorem 1.1 [CCG19]). For everyn =1 and 0 < p < 1, there is a real solution w of
the n-th member of the homogeneous Painlevé II hierarchy (1.2.22) which satisfies

2

d
—w?(z;p) = ) log det (1 — pK Az l(2,0)) 5 (1.2.33)

where Kaiy, | (2,00) s considered as the integral operator acting on L*((z, +0)) with kernel

400
KAi2n+1 (l‘, y) = / Ai2n+1($ + t)AiZn-&-l(y + t)dt' (1'2'34)
0

Furthermore, its asymptotic behavior for z — +00 is given by w(z; p) ~ \/pAizn11(2).

As already underlined for p = 1,n = 1 this result recovers the one of Tracy and Widom resumed
in Theorem 1.1.7. Nevertheless, the authors of [CCG19] used a completely different procedure, that
essentially relies on the isomonodromic reprensentation of the Painlevé II hierarchy (1.2.22), that was
first described in [CJMOG]. This procedure, also known as the Riemann-Hilbert approach, is in principle
the same procedure we will use in Chapter 5 and 6. For this reason, we resume the fundamental concepts
of their proof in the following paragraph. The starting point is that the Fredholm determinants of the
Airy kernels Kaj,, ., are equal to the ones of some integral operators in Fourier spaces that are integrable,
in the sense of the IIKS operators [DIZ97], [IIKS90]. Essentially, this implies that the existence of their
resolvent operators is equivalent to the solvability of a certain Riemann-Hilbert problem. As a byproduct,
their Fredholm determinants can be expressed in terms of a quantity related to the solution of the relevant
Riemann-Hilbert problem. These classical facts will be reviewed with more details in Chapter 3.
Finally, the last element of the proof is provided by the fact that the solution of the Riemann-Hilbert
problem, after some manipulation and rescaling operations, solves two differential equations w.r.t. the
parameters involved in the Riemann-Hilbert problem itself. This system actually coincides with the
isomonodromic Lax pair for the PII hierarchy (1.2.22) (the one found in [CJMO06]).

Remark 1.2.13. Notice that, prior to [CCG19], the work [LDMS18] gave a similar formula for the
Fredholm determinants of the higher order Airy kernels. In that case, the functions w in the left hand
side of equation (1.2.33) are shown to solve a system of hamiltonian equations that coincide for the first
values of n with the first members of the Painlevé II hierarchy. However, the precise equivalence between
their system and the Painlevé II hierarchy (1.2.22) still has to be proved.

Remark 1.2.14. Theorem 1.2.12 is just a part of the results contained in [CCG19]. There the authors
studied in detail also the asymptotic behavior of these solutions at —oo. As a byproduct they were able
to describe the asymptotic behavior at —oo of the corresponding Fredholm determinants of the higher

order Airy kernels. This estimate is also known as large gap asymptotics, and it is in general much more
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1.2. Construction of the Painlevé II hierarchy

complicated to obtain than the one at 400, since it involves a strong use of nonlinear steepest descent
method.

In order to obtain the generalizations of Theorem 1.2.12 for the case of a matrix and then an
integro-differential Painlevé II hierarchy, in Chapters 5 and 6, we will implement the analogue proce-
dure of [CCG19], resumed in the paragraph above. Respectively, we will deal with a block-matrix and
an operator-valued Riemann-Hilbert problem instead of a classical 2 x 2 matrix-valued Riemann-Hilbert
problem. Finally, in these noncommutative contexts we did not try to study the asymptotic behavior

at —oo of the relevant solutions of these hierarchies, so this computation is left as an open problem.
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CHAPTER 2

DETERMINANTAL POINT PROCESSES

N THIS CHAPTER we recall the notion of determinantal point processes (that we denote with the ab-
breviation DPP from now on). DPP appear in many different fields of mathematics and mathematical
physics, such as orthogonal polynomials, number theory, random permutations, random growth models,
random matrix theory and statistical mechanics. The main motivation to study DPP is given indeed
by their appearance in all these fields of study. In a nutshell, DPP can be intended as spatial random
processes (there is no notion of time) which can be entirely described through their correlation functions,
which have the peculiarity to be written as finite dimensional determinants involving the kernel of some
integral operators. The integral operators are not generic and have to satisfy certain requirements. The
integral operator defined through the Airy kernel, that we already introduced in Theorem 1.2.12 at the
end of the previous chapter, is an example of such operators. As a byproduct the Fredholm determi-
nants of these operators have an interpretation in terms of relevant probabilistic quantities describing the
DPP. This is perhaps the main reason why results such as Theorem 1.1.7 and Theorem 1.2.12 are highly
considered : in both cases the integral operators involved actually define DPP. Furthermore, the relevant
DPP appear in random matrix theory and statistical mechanics respectively. This kind of results allows
to build a bridge between the probabilistic world of DPP and the integrable systems world of Painlevé
equations, and this is a powerful motivation to go deeper in this study. While the Fredholm determinant
in Theorem 1.1.7 was known to be connected to random matrix theory [TW94b] since the early ’90,
the one in Theorem 1.2.12 has appeared recently in a model for non-interacting fermions in anharmonic
potential first studied in [LDMS18]. Also, all the other integral operators studied in chapters 5, 6 of the
thesis define DPP. Moreover, the finite temperature higher order Airy kernel studied in Chapter 6 has
been found in relation to the finite temperature version of the same fermionic model described above and
also appeared in [LDMS18].
The Chapter is organized in two section : in the first one we start with an intuitive example of DPP
and then we go through the basic definitions and the main results of DPP theory. In the second section
we introduce random matrices, focusing in particular on the Gaussian Unitary Ensemble. We will show
how to compute the main relevant quantities such as correlation functions, distributions functions and
gap probabilities for the eigenvalues of this ensemble emphasising the determinantal character of some
of these quantities. In the end, we will finally introduce the Tracy-Widom distribution and we briefly
re-discuss Theorem 1.1.7, that is our “model” of result, under this new point of view. The main references
for the DPP theory are the classical review articles [Sos00, Bor09, Joh05], and this very nice introductory
paper [HM19]. For the random matrix theory we refer essentially to the monograph [Meh04], and to the
books [Har11, BDS16]. Finally for the Tracy-Widom result we recall that even though the original proof
was first given from the authors in [TW94b], we found other useful explanations in [TW99].

21



Chapter 2 — Determinantal point processes

1| S; X;
0| 2

11 4 0
219 0
3|7 1
41 6 1
519 0
6| 1 e 1
715 0

FIGURE 2.1 — An example of configuration of the descent point process for n = 7 given by {3, 4, 6}.

2.1 Basic knowledge on DPP

2.1.1 An introductory example

Inspired by [HM19], we start our discussion on DPP by treating a very nice example of determinantal
point process that is called the descent point process (for more details, we refer to Sec.1 of [HM19]). Even
though it is mathematically simple, it is very useful to explain the basic ideas and concepts behind DPP.
The descent point process is defined as follows : consider a column of digits Sy, ...,.S, independent and

identically distributed on [[0,9]]. For each line ¢ = 1,...,n then consider the random variables

1 if S;< Si—l,
Xi = X{si<8i 1} = (2.1.1)
0 otherwise.

The descent point process is given by all the possible random sequences of natural numbers i for which

X; = 1 in the integer segment ¢ € [[1,n]], namely
D,={ie|[[1,n]] | X; =1} (2.1.2)

To visualize that, we can put on the right of the column of values S; a black dot for each line i € [[1,n]]
for which the condition X; = 1 is satisfied. In this way the descent point process is described by all the

possible configurations of the black dots in the segment [[1,n]]. See Figure 2.1 for an example.

In order to know the process in exhaustive way, one should be able to compute the probability of each

possible configuration of black points or sequences of numbers in [[1, n]], i.e.
P(¢ c D,), forany £c[[1,n]]. (2.1.3)

In general, higher is the cardinality of the subset ¢ and more complicated is to compute the correspondent
probability. If k is the cardinality of £ then ¢ = {s1,...,s;} and we denote the probability of ¢ being
in D,, as pi(¢); in this case, it will be also the k-correlation function of the process. The distinguished
character of determinantal point process is that all the correlation functions of each order are actually

written in terms of a single function of two variables, that is called the kernel of the process. If we start
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computing the correlation function for £ = 1 in the descent process, we have

9
pr(fs}) = B({s} © D) = B(X, = 1) = B(S, < S41) = 15 (Z k) - (12°> -
k=1

Then for k = 2, the computation is a little more delicate. Indeed, if we consider £ = {s, s + 1}, then

1 (3 1 {10 3 9\?
P({s,s + 1} € D,,) = P(Ss41 < Ss < Ss_1) = —= (Z k> —( ) -~ < () :
103 \ & 103 \ 3 25 20

Instead, if we take the generic subset ¢ = {s,t} with ¢ % s + 1, then

9\2

P({s,t} € Dyp) = P(Ss41 < Ss)P(St41 < St) = (20> .

Thus in the case of cardinality k = 2 the correlation function is defined by cases
=~ if |t—s|=1,

p2({8’t}) =%

(%) 2 otherwise.

In general, we can prove that for any subset ¢ given by k > 3 consecutive numbers in [[1,n]], then

1 10

Otherwise, the computation is done by following this idea : first one can split the subset { = ¢; U {5 in
such a way that ¢; and ¢5 have distance more than 1. Then one uses that pg(¢) = pg, (¢1)pk,(¢2) where
k; are the cardinalities of ¢; respectively for i = 1,2.

A compact way to write down py () for any number k € [[1, n]] and any sequence £ = {s1,..., s} < [[1,n]]
(with s; # s; for any ¢ # j) was found in [BDF10] and it is realized as follows. Consider the two variables
function K (i, §) : [[1,n]]* — R such that

K(i,j) = K(j —i), with > k(m)z" = ﬁl—dlo

Then the k-correlation function of the descent process is then given by

pr({s1,...,sK}) = det(K (s, sj))ﬁj=1.

For this reason the descent process is a determinantal point process on Z (actually on the segment [[1,n]]
of Z).
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2.1.2 Generalities of DPP theory

With this example in mind, we can now give the general definition of point processes and then we
restrict to the study of determinantal ones (for this section we mainly follow the classical references
[Sos00, Joh05]). We consider E = R (or a finite product of disjoint copies of R) and X = Conf(E)
the space of all possible finite configurations of particles on E. Notice that one can replace R by Z (as
we actually did in the previous section) or by another discrete space and the theory of DPP on that
space similarly follows, see also [Bor09]. We restrict our discussion on the case £ = R just because the
applications we are interested in, actually fit in this case.

A formal definition of point process is given as follows. On X one can construct a o-algebra of measurable

sets, in the following way. First construct the cylinder sets, for any Borel subset B © E and any n € N
CB .= (X eX st. #5(X):=|X n B| =n}, (2.1.4)
and then consider B the o-algebra generated by these CZ on X.

Definition 2.1.1. A point process on E is given by a probability measure P on (X, B).

The way to construct a probability measure on the space of configurations (X, B) was studied in
particular by Lenard in a series of papers [Len73, Len75a, Len75b]. The main idea is that the construction
can be reduced to the determination of the joint probability distributions of the random variables #p
for D some simple subsets of E. This procedure allowed the author to go further and prove the relation
between the existence of a probability measure on (X, B) and the existence of the k-point correlation
functions for the random variables #pg, for any B Borel subset of E. It turned out that a point process
is uniquely identified by its correlation functions if and only if the probability distribution of the random
variables # 4 is determined by its moments. For more details about the construction of a point process
from its correlation functions, see Theorem 1 in [Sos00].

In this general (continuous) context, the k-correlation functions are defined as follows.

Definition 2.1.2. For any k € N, we define the k-point correlation function of the point process (X, B, P)
as the locally integrable function p;, : E¥ — R, such that for any collection of different and disjoint
Borel subset A; < E,i =1,...,k then

E(H #A,-) :/ pr(x1, .. xg)dey ... dag, (2.1.5)
j=1 Apx.  xAg

where E denotes the mathematical expectation.

As we saw in the introductory example, the k-point correlation function has a meaningful probabilistic
interpretation : for the descent process pg(x1,...,2x) was exactly the probability of having particles at
the points x; in N. But this was because the process was defined on (a subset of) E = Z. In the continuous
case (e.g. E = R) we can think to pg(x1,...,2x)dx; ... dxg as the probability to find a particle in each
infinitesimal box [z;, z; + dx;] for ¢ = 1,..., k. In this way, formula (2.1.5) actually gives the expectation

value of finding a configuration X = {x1,...,25} € X with z; € A; for every i = 1,... k.
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Remark 2.1.3. For k = 1 we have that p;(x) is the density of particles, indeed

E(#a) = [ m(o)iz,
A
for any bounded borel subset A c E.

Definition 2.1.4. A point process (on E = R or R?) is called determinantal if its k-point correlation

functions, for every k > 1, is written as
pi(@, .. wx) = det (K (i, 27)); (2.1.6)

with K a trace-class integral operator on L?(R) with kernel K (z,y) in case E = R and matrix-valued
kernel (K,s(z, y))fFl if £ ~ R4,

By using the Lenard result about the existence of point process through their correlation functions,
one can find necessary and sufficient conditions for a kernel K (x,y), (x,y) € E?, to uniquely define a DPP.

The result is as follows.

Theorem 2.1.5 (Theorem 3 [Sos00]). Every hermitian, locally trace-class operator K on L?(E) uniquely
defines a determinantal point process if and only if 0 < K < 1.

We will apply this result in Chapter 5 and 6 in order to prove that the matrix-valued Airy kernels
and the finite temperature Airy kernels respectively define DPP on R” and R.

There exists also a weak convergence criteria for DPP.

Theorem 2.1.6 (Theorem 5 in [Sos00]). Consider P, P, probability measures on (X,B) for some deter-

minantal point processes with kernels respectively K, K,,. Suppose that
e K, — K in the weak operator topology for n — o0 ;
o Tr(xgK,xB) = Tr(xgKxB) for n — oo and for any Borel subset B c E;

then the probability measure P, converges to P weakly on the cylinder sets.

This result will be useful in the next section, where we are going to compute some scaling limits of
certain relevant quantities in DPP arising in some random matrix model.
Knowing the k-point correlation functions of a DPP is fundamental in order to compute other relevant
quantities for the process. We are in particular interested in the computation of the so called gap proba-
bilities, i.e. the probabilities that no particles lie in a certain subset of E. The computation required is

based on the following result.

Proposition 2.1.7 (Proposition 2.2 of [Joh05]). Consider a point process with existing k-point correlation
functions and let ¢ be a mesurable, bounded, complex-valued function with bounded support on E. Also,

supposing that supp(¢) < B for B a Borel subset of E, assume that

i 19115
P

/k pr(x1, ..., xk)dzidey, < 0. (2.1.7)
B‘,
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Chapter 2 — Determinantal point processes

Then we have
#B e 1
E(jl_[l(l—i—(bx] ) g n—/ nquk pr(x1, ..., xg)day ... dag. (2.1.8)

Consider now B a bounded Borel subset of ' and xp its characteristic function. Replacing ¢ = —xp

in the above formula we get

0 n
P (no particles in B) =E <n(1 —xB(z;) > Z / pr(x1, .. 2y )dey .. dey, (2.1.9)

j n!

the gap probability distribution. In particular, looking at a point process on R we can consider B = (t, o0).
Supposing that there exist a ¢ for which #(i,00) < %, then we can say that for every ¢ the property holds
(since for every finite subset it is always true). We order then the particles in the interval (¢,00) as
Ty < o < Tpp o = Tmax and we want to study the probability distribution of the largest particle,

namely P(zmax < t).

Proposition 2.1.8 (Proposition 2.4 of [Joh05]). Consider a point process on R for which all k-point

correlation functions exist and respect the condition

/ pn(1,. . xp)day ... dr, < o© (2.1.10)
n= 0 tOO)"

for any t € R. Then the process has a last particle and

n

o0
P(Tmax <) = Y ( / P (@1, x)day . day,. (2.1.11)
n=0 (t,00)™

When the point process is determinantal with kernel K (x,y) defining a trace-class integral operator
on L?(R), the proposition above becomes even more explicit. In fact the right hand side of equation

(2.1.11) is written as Fredholm determinant of the operator K.

Corollary 2.1.9 (Proposition 2.9 of [Joh05]). Consider a determinantal point process on R with hermi-
tian kernel K (z,y) such that : it defines a trace-class integral operator K on L?((t,0)) for anyt € R and
so that ”
/ K(z,z)dr < 0. (2.1.12)
¢

Then the process almost surely has a largest particle and
P(l’max < i) = det (1 - K|(t,oo)) . (2113)

This last corollary gives a first connection between the first and the second chapter of the thesis.
Indeed certain Painlevé trascendents such as the ones found in Theorem 1.1.7 and Theorem 1.2.12 for
the Painlevé IT equation and hierarchy, are expressed as Fredholm determinants of the Airy kernels given
in equation (3.2.4). For each n, these operators actually satisfy the hypothesis of Theorem 2.1.5 and

thus uniquely define some DPP. As a byproduct the relevant Painlevé trascendents can be related to the
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2.2. Random matrices and DPP

largest particle distribution of the correspondent DPP. Moreover, in the case n = 1 the DPP associated
to the Airy kernel corresponds to a certain limit of the DPP describing the eigenvalue distribution of a
distinguished random matrix model : the Gaussian Unitary Ensemble, that we are going to treat in the

next section.

Remark 2.1.10. In analogue way, the new Painlevé trascendents that we are going to study in Chapters
5, 6 will also be related to the largest particle probability distribution of some DPP defined through
a matrix-valued analogue of the Airy kernels and to a finite temperature versions of the Airy kenrels

respectively.

2.2 Random matrices and DPP

This section aims to introduce some random matrix models and to see how DPP arise out in this
context. In particular, we are going to focus on the Gaussian Unitary Ensemble with the ultimate goal
to study the probability distribution of the eigenvalues of matrices in this ensemble in some specific large
N limit, N being the size of the matrices in the model. Indeed it is in this case that the relation to the
Painlevé trascendents introduced in Theorem 1.1.7 emerged first.

We start by defining the Gaussian Unitary Ensemble, GUE from now on. Recall that the vector space

(over R) of hermitian matrices, namely
Hy = {H e Mat(N x N,C) | H=H'}

has real dimension N2. In particular we can take as coordinates the N diagonal entries H;; (that are real)
and the real and imaginary part respectively of the upper triangular entries RH 5, JH i, (that are exactly
N2 —N). Now, an element of GUE is essentially an hermitian matrix H whose entries H;; fori = 1,..., N
and RHj, JH;;, for j,k = 2,..., N are random variables, specifically independent identically distributed

(i.i.d.) normal random variables. More precisely GUE is built as follows.

Definition 2.2.1 (Definition 2.5.1 [Meh04]). The Gaussian Unitary ensemble is defined taking the space
of hermitian matrices equipped with a probability measure P(H)dH such that

1. the probability P(H)dH of being in the volume element

N
dH := [ [ dH;; | | dRH;xdIH ;. (2.2.1)

i=1 j<k

is invariant under conjugation by unitary elements, i.e.
P(H)=P(U'HU) (2.2.2)

for every unitary matrix U ;

2. all the linearly independent entries of an element H are also statistically independent, i.e. the

function P(H) is a product of independent functions, each of them depending on one of the linearly
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Chapter 2 — Determinantal point processes

independent coordinates

N

P(H) = [ [ fi(Hi) | | fie(RH;x) fin(THz). (2.2.3)

i=1 i<k

These two requirements together fix in some sense the function P(H). In particular, we have the

following result.

Theorem 2.2.2 (Theorem 2.6.3 [Meh04]). The only possibility for the form of the function P(H) is
restricted to
P(H) =exp(—aTrH* + bTr H + ¢) (2.2.4)

where a € R, and b,c e R.

In particular the standard choice for GUE is to consider P(H) = exp (— TrH 2) , since up to rescaling
operations and origin translation every choice of a, b, ¢ can be reduced to this one. Now, for any given
random matrix ensemble, one fundamental point to develop is to study the probabilistic behavior of the

spectra of the elements of the given ensemble. For GUE the classical result is as follows.

Theorem 2.2.3 (Theorem 3.3.1 [Meh04]). The joint probability density function of the eigenvalues for
GUE is given by
N
P(z1,...,zn) = Cy2exp <—fo) H(x] —ap)? (2.2.5)
i=1 j<k

where the constant Cn o is taken in such a way that

/.../P(ml,...,mN)dajl...de=1.
R R

Remark 2.2.4. For the other classical ensembles : the Gaussian Orthogonal one and the Gaussian
Symplectic one Theorem 2.2.2 also holds exactly with the same statement, while Theorem 2.2.3 holds
with some little changements. The form of the joint probability distribution function in those cases has
the same form of (2.2.5) but the constant in front of the argument of the exponential function and the

power of the second factor change as well as the constant Cy ».

We are now going to see that the probabilistic behavior of the eigenvalues of GUE is indeed a DPP

on R. To do this, we need the definition of the n-point correlation functions for the eigenvalues of GUE.

Definition 2.2.5 ([Dys62, Meh04]). The n-point correlation function for the eigenvalues of GUE is
defined as

N!
vy y)=——— | ... | P(x1,..., d ...dxy, 2.2.6
on(T1, ..., xy) N —n)! /R /]R (21 TN )dTni TN ( )
where P(z1,...,zy) is given in (2.2.5).
The function p,(z1,...,z,) indicates the probability denisity of finding n eigenvalues around z1,...,z,

with the position of the remaining N — n left unknown.

The probability density function P(x1,...,2y) is a symmetric function, thus it can be associated to

a point process over R. The n-point correlation functions of the relevant process can be taken exactly as
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2.2. Random matrices and DPP

(2.2.6) with P(z1,...,zy) given in (2.2.5) (see also Example 2.6 of [Joh05]). The process is then shown

to be determinantal.

Theorem 2.2.6 ([Meh04]). For everyn =1,...,N —1 the correlation functions (2.2.6) are given by

pu(@1, .. xn) = det (Kn(25,25))7 4 (2.2.7)
where N
2
N(zi, ;) k(Ti)dr(x;), with ¢r(x) = éexp . Hy(x) (2.2.8)
’ — i) 2Rk /T 2

and Hy(x) being the k-th Hermite polynomial.

We recall that Hermite polynomials { Hi(z)}kren are a family of orthogonal polynomials over R with

respect to the weight function exp (—z?). They can be written as

2 d* 2 & ; (22)F
Hj(z) = exp (7) <_dxk) exp (—a?) = k! ;}(—1)Jm, ke N. (2.2.9)

A proof of Theorem 2.2.6 can be found in Section 6.2 of [Meh04]. To summarise, it essentially follows
by observing that the joint probability distribution function P(z1,...,zy) given in (2.2.5) contains a

Vandermonde determinant squared and then by performing row or column operations one gets

P(Jcl,...,xN)z%det(gﬁj_l(zi)f ﬁdet(KN(zz, )iz (2.2.10)

with Ky (z;,x;) given as in (2.2.8). Then one can integrate over the N — n required variables and apply

Theorem 5.1.4 of [Meh04] to conclude. For an alternative proof see e.g. Section 3.2 of [Har11].

Remark 2.2.7. We underline that in the definition of the kernel Ky in equation (2.2.8) there is an

explicit dependence on N the size of the random matrices we are analyzing.

Gap probabilities Doing similar computations, one can compute other interesting quantities of the
process like the gap probabilities. For a given interval J ¢ R we denote by E(n,J) the probability that
J contains exactly n eigenvalues, so that F(0,.J) is the probability that there are no eigenvalues in J. As
we saw in the previous section for general DPP and for J = (s, 0), the quantity E(0, J) is expressed in

terms of a certain Fredholm determinant

where x; denotes the characteristic function of the interval J and Ky is the kernel written above in
(2.2.8). Otherwise, one can directly compute this quantity as done in e.g. Section 3.2 of [Harll] for a
generic interval J. In the following, we summarise the principal ideas contained there. Indeed, one can

see

N
E(0,J)=E (H(l + f(A ) = CNQ/ / H i — ) Hexp (1+ f(x)dxy ... dey

i=1 j<k
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with f(A) = —xs(\). But the last integral can be explicitly computed by using the Andreief identity,

namely
/.../det(fi(a:j))det(gi(a:j))du(xl)...dy(a:N) _ Nldet (/ fi(:c)gj(z)du(x)>. (2.2.12)
R R R

Again, in our case, by recognizing a squared Vandermonde determinant in the last integral above and

by defining f;(x) = 2° = g;(z) and dv(x;) = exp(—a?)dx;, we have that

N
E (H(l + f()\l))> = C'NQ det (/ (1 + f(a:))exp(—xQ)dx> = C~’N’2 det (51-]- + / qﬁi(x)géj(m)f(x)dx)
i=1 R R
(2.2.13)
where the last identity is obtained by performing row and columns operations, in order to replace the
monomials z¥ with the orthogonal family ¢ (z) w.r.t. exp(—22). Finally, one can manipulate the last

determinant in (2.2.13) in the following way. Construct the two integral operators

A:L*(R) - RN, st. (Af); = /]RA(Z',x)f(x)dx = /Rqﬁi(x)f(m)dx, for fe L*(R) (2.2.14)

and

N N
B:RY - L*(R) st. (Bv)(x):= Y. B(x,j)v; = Y. ¢;j(z)v; for ve RN, (2.2.15)

In this way the last determinant in equation (2.2.13) is det(1 + AB). By applying the Sylvester identity
(see for instance equation (5.9) of Chapter VI in [Goh00]) i.e. det(1 + AB) = det(1 + BA), we conclude

i=1

N
E (H(l + f(&-)) = det(1 + Kn f),

and so for f = —y s the wanted result follows.
Of course, there are many other interesting quantities to study but since our focus will be on the gap
probabilities and their relation with the Painlevé II trascendents, we do not go any further in this

discussion.

Limiting behaviors As underlined before, the determinantal form of the n-points correlation functions
pr. as well as the one of the gap probabilities E(0, J) is written in terms of a kernel operator depending
on the parameter N, which is the size of the matrices in the ensemble. A natural question is then to study
the limiting behavior of these quantities for N — oo0. Thanks to their determinantal form, this essentially
reduces to the study of the limiting behavior of the kernel Ky (z,y) themselves, in some appropriate
scaling. In particular, the so called edge scaling limit (the limit at the edge of the spectra) for the kernel
Ky(z,y) is computed as (see e.g. [For93])

1
lim ———+

A/ z Y
I SN BN ( 2N + Siparee V2N ) — K iry(2,9) (2.2.16)

21/2 \1/6° + 21/2 \N'1/6
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the convergence being in trace norm on every bounded (from below) subsets of R. We highlight that the
proof of this result relies on the use of the Christoffel-Darboux formula, that allows to rewrite the kernel

KN(«T, y) as

N) V2 on(@)pn-1(y) — dn(y)dn_1(2) (2.2.17)

KN(%@/)=<2 pr—y

and then the large-INV asymptotics for the Hermite polynomials which enters in the wave functions ¢y as
defined in (2.2.8). Notice that in this context the Airy kernel K 44y, is considered as

Ai(x)Ai (y) — Ai' (z)Ai(y)
T —y

Kairy(z,y) = (2.2.18)
which is, by the way, equivalent to the definition given in (1.1.16). As a byproduct one can write the edge
scaling limit of the probability distribution of the largest eigenvalue in GUE as

. [a T S
]\}IE)HOOHD (Amam < 2N + W) = det(l - KAiTyX(s,oo)) = FTW(S) (2219)

that is also known as the Tracy-widom distribution.

Remark 2.2.8. Notice that Theorem 2.1.6 applied to this case says that the probability measures Py
of the DPP describing the positions of the eigenvalues of GUE with size N through correlation functions
(2.2.6), converges for N — o to the probability measure of the DPP on R with kernel the Airy kernel.

The Tracy-Widom distribution and the Painlevé II transcendent Theorem 1.1.7 assumes now
new significance, since the Fredholm determinant of the Airy kernel is interpreted as the edge scaling limit
of the probability distribution of the largest eigenvalue in GUE, as shown above in equation (2.2.19). In
particular, one can express the Tracy-Widom distribution in terms of the Hastings-McLeod Painlevé 11

transcendents u(t) as .
Frw(s) = exp (/ (t — s)uQ(t)dt> , (2.2.20)

which is just the integrated version of the formula given in Theorem 1.1.7.

As previously announced in the Introduction and also in Chapter 1, it is on this type of result that we will
be interested in : results that relate the integrable systems world, in this specific case Painlevé equations,
with the determinantal point processes, that in this case appear in random matrix theory.

The next two chapters aim thus to introduce the two main tools that can be used to achieve this kind
of results, and that will be used in Chapters 5, 6. First the Riemann-Hilbert problems for the class of
integrable operators (in which the Airy kernel fit in) and second the isomonodromic representation of the

Painlevé equations.
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CHAPTER 3

INTEGRABLE OPERATORS AND
RIEMANN-HILBERT PROBLEMS

IEMANN-HILBERT PROBLEMS are the protagonists of this chapter, in particular the ones connected
R with a class of integral operators. This class of operators is known in literature as integrable operators
of ITKS type, since they were first studied using a Riemann-Hilbert approach in [ITKS90]. These operators
have kernels of a particular form and their resolvents, whether they exist, have kernels of the same form. In
particular, the expression for their resolvent is directly related to the solution of a certain Riemann-Hilbert
problem. As a byproduct the Fredholm determinants of these integrable operators can be expressed in
terms of quantities related to the solution of the Riemann-Hilbert problem. Many integral operators
appearing in random matrix theory or statistical mechanics fit in this class of operators, or are in some
way related to them, and can be thus treated with this approach. This allows to find more information
about their Fredholm determinants that have in these contexts interesting probabilistic interpretation, as
underlined in the previous chapter. For us, the interesting case of study will always be given by the Airy
kernel and its higher order generalizations, in scalar, matrix-valued and finite temperature versions. As we
already underlined in Chapter 2 and we will underline thereafter, the Fredholm determinants of these Airy
kernels describe interesting quantities in random matrix models ([TW94b, GdlI08, Joh07]) in the study of
the KPZ universality class ([ACQ11, Cor12]) and in models for non interacting fermions ([LDMS18, LW20,
DLDMSI16]). Nevertheless there are other popular integrable operators involved in these applications,
like the sine kernel and the Bessel kernels, studied for example in [For93, TW94c, Girl4]. In conclusion,
Riemann-Hilbert problems give a powerful tool to study certain integral operators defining determinantal
point processes with applications in many different fields. Moreover, the Riemann-Hilbert problems build
the bridge between integral operators and integrable systems. Starting from the solution of a given
Riemann-Hilbert problem, one can construct Lax pairs for ordinary or partial differential equations,
difference equations and hierarchies in a standard way. In our case of study, we will always be interested
in recovering the isomonodromic Lax pair for the Painlevé II hierarchy, described at the end of Chapter
4, and its generalizations.

The Chapter is organized as follows : after a brief introduction on generic Riemann-Hilbert problems,
we are going to review the standard results of the IIKS theory for integrable operators. Then, we are
going to review as this theory can be extended to the case of matrix-valued integral operators, resuming
the work [BC12]. The results contained in this section will be largely used in Chapter 5 in order to
achieve the original results about the matrix Painlevé II hierarchy. In Chapter 6 instead, in order to

study the finite-temperature version of the Airy kernels, we will need to introduce the theory of operator-
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valued Riemann-Hilbert problems, as we did in the paper [BCT21]. In the last decades, examples of this
kind of problems can be found in only a few papers, e.g. [IK16, IS99]. Very recently the paper [Bot21]
re-introduced operator-valued Riemann-Hilbert problem, with the aim to develop a rigorous and quite
general theory to treat them. Following this method, we will see in section 6.2 how the operator-valued
Riemann-Hilbert problem can be formulated and solved in our specific case. From that, we will recover
an operator-valued isomonodromic Lax pair for the integro-differential Painlevé II hierarchy. Of course,
results and methods in Chapter 6, are strongly inspired by the classical theory that we are going to review

in this chapter.

3.1 Introduction to Riemann-Hilbert problems

In this section we are going to introduce the Riemann-Hilbert formalism and the main results about
the existence of a solution for a given Riemann-Hilbert problem. This first section is mainly inspired from
Chapter 5 of the monograph [Harl1] and we refer to that for further details and proofs.

A very nice introduction to this topic and its relation to integrable systems is also given in [Its03]. The
main idea of a Riemann-Hilbert problem is to reconstruct a matrix-valued function defined on the complex
plane and having prescribed discontinuities. These discontinuities are given in form of jump equations
along certain curves, that the boundary values of the function have to satisfy. Thus, from a practical
point of view, a Riemann-Hilbert problem is essentially defined through a pair of data : a contour and a

matrix-valued function defined on it. Here are the requirements that this pair has to satisfy.

e Let X be any oriented contour in the complex A-plane. One can allow ¥ to have a finite number
of self-intersection points, even though in our cases of study in Chapter 5 and 6 there are no such
points. Also, ¥ can count a finite number of connected components and this is indeed the case in

both our works in Chapter 5 and 6.

e Let G : ¥ — GL(p,C) be a map defined all along the contour ¥ and taking values in the set of
p x p invertible matrices, p = 1. We call G the jump matriz.

Within the orientation of the contour ¥, we denote by + and — respectively the part of the plane that
stands on the left and respectively on the right hand side of the contour. Finally, given a pair (X, G), the

correspondent Riemann-Hilbert problem is settled as follows.

Riemann-Hilbert Problem 3.1.1. Find a p x p matriz-valued function Y with the following properties.
(1) Y is analytic on C\X ;

(2) For any A € X, the function' Y has continuous boundary values Yy, denoting respectively the boun-
dary value of Y for X\ € ¥ while approaching ¥ respectively from the left (+) or from the right (—)

nontangentially. Moreover Y1 satisfy the following jump condition
Y (A =Y_(NM)G(A) NeZ; (3.1.1)
(3) The funtion'Y satisfies the asymptotic condition
Y(A) ~ 1, for |A — oo, (3.1.2)
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where I, denotes the identity matriz of dimension p.

Remark 3.1.1. One can add more requirements to the pair (X, G), for example asking for G to have
constant determinant equal 1 and to decay along all the infinite branches of 3 exponentially fast. Further
requirements can be added on the jump matrices along the connected components of ¥ when there are

self intersection points, around each one of them.

The solvability of Riemann-Hilbert problem 3.1.1 essentially relies on the Plemelj-Sokhotskii formula.
This formula actually gives the solution for a scalar Riemann-Hilbert problem with jump function being
Holder continuous, in terms of a contour integral of Cauchy type. Then, for matrix Riemann-Hilbert
problems there are some particular case in which the Plemelj-Sokhotskii formula still describes at least
some of the entries of the matrix solution. This happens in the so called abelian cases, when the jump
matrix G(A) commutes with itself when computed at different values of A. In the general case, the
solution of a matrix Riemann-Hilbert problem can be still written as a contour integral but in terms
of the boundary values of the function itself. We resume all these results in the following pages, for the

proofs and more details we refer to [Ple64, Gak14].

Theorem 3.1.2 (Theorem 5.1.3 [Harll]). Let ¥ be an oriented smooth and closed contour and let g(\)
be a Holder continuous function defined on X. Define the function y(\) defined as the contour integral of

Cauchy type

v = 5 [ 2~ (eg) (v (3.13)

where we denoted by C the Cauchy transform.
The function y(\) has the following properties.

1. It is analytic in C\X and its boundary values y+(\) are continuous up to the boundary X.
2. limy— 400 y(A) = 0.

3. The boundary values y4 () satisfy the following formulae (Plemelj-Sokhotskii)

v = 390 + g [ 2

by 1.4
il s )\dC, for Xe (3.1.4)

where P stand for the principal value of the integral that follows, i.e.

= lim d 3.1.5
P = [ e (319
where the contour X, is taken as X = X\{X N |¢ — A| < €}, for any A € X.

From equation (3.1.4) directly follows that the boundary values of y satisfy for every A € ¥ the

following relation
y+(A) =y-(A) + g(A) (3.1.6)

that can be thought as an additive jump relation. Thus one concludes that the Cauchy transform of g(z)

actually gives a solution solution for an additive Riemann-Hilbert problem, as follows.
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Corollary 3.1.3 (Corollary 5.1.5 [Harll]). Let ¥ and g being as in Theorem 3.1.2. Then the Cauchy
transform of g, namely y(A) = (Cg) (\) defined in (3.1.3), solves the additive Riemann-Hilbert problem
for a function defined through the three conditions

1. y(N\) is analytic for A€ C\X;
2. the boundary values of y satisfies y+(A) = y—(A) + g(A\) for any Ae X ;

3. y(A) = 0 for A > o0.

It directly follows that the classical Riemann-Hilbert problem defined in 3.1.1 in the scalar case (for

p = 1) and for (3, G) satisfying the hypothesis of Theorem 3.1.2, admits the explicit solution
Y(A) =exp (ClnG) (N), (3.1.7)

just by applying the logarithm to the jump condition (3.1.1) and then applying the corollary above. The
existence of this solution is guaranteed provided that G(\) # 0.

Remark 3.1.4. Theorem 3.1.2 can be extended to cases where the contour 3 and the function g are more
general than in the hypothesis above. In particular one can consider ¥ as a piece-wise smooth contours

having endpoints and g as a generic function in some LP-space.

For p > 1, the same formula (3.1.7) holds for the solution of a matrix Riemann-Hilbert problem (3.1.1)

with a jump matrix G such that
[G(A1),G(A2)] =0, forany A,Aye€X,

while seeking for a solution Y'(\) in the same multiplicative subgroup. This particular case is also known

as the Abelian case. Here is an explicit example.

Example 3.1.5. Consider the case of the Riemann-Hilbert problem 3.1.1 with p = 2 and the jump

GO\ = (é 9(1A)> _

Tts solution can be still written as the contour integral (3.1.7) and can be further simplified to the following

Y(\) = <(1) Cgf”) .

Notice that the Riemann-Hilbert problems that we are going to study in Chapters 5 and 6 will have jump

matrix G takes the form

form

matrices that have this form on every connected component of the contour X.

For the general case, where the jump matrix G does not satisfy the Abelian condition (3.1), the
integral representation of the solution of the Riemann-Hilbert problem (3.1.1) is more complicated. The

result is resumed in the following theorem.
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Theorem 3.1.6 (Corollary 5.1.2 [Har11]). The Riemann-Hilbert problem 3.1.1 admits solution represen-

ted through the following contour integral

i s X d¢, for AeC\X, (3.1.8)

where p(\) == Y_(\) satisfies the integral equation
) =T, + (€ (G~ T,)) (), Aes (3.1.9)

and Cy denote the boundary values of the Cauchy transform while approaching A\ € ¥ from its left and

right hand side, namely

(C+f)(A) = lim 1 &dg (3.1.10)

n—A+ 21 » C—’I’]

where the limit is taken nontangential.

The idea of the proof is to rewrite equation (3.1.8) modifying its right hand side in this equivalent
way
1 Y. -Y_
Y(A) =1, + 7/ wd<7 AeC\X (3.1.11)
. _

271

and then use the Cauchy theorem and the asymptotic condition (3.1.2) to show that this last identity
actually holds for every A € C\X. Furthermore, the proof can be done for any contour X, once that ¥ has
been transformed (through orientation changes, addition of extra contours carrying the identity as jump
matrix ) into a contour such that ¥ = 0Q, = —dQ_ with Q4 disjoint open subsets covering C\X. The
proof of the theorem is explained in Chapter 5 of [Harll] (pages 364 — 368) and recovered by steps. First
the proof is given for the simple case where X is a closed simple contour, then for the case where ¥ is an

unbounded piece-wise smooth contour and finally for the general case described above.

Remark 3.1.7. Formula (3.1.8) will be used in Chapter 5 to study the asymptotic behavior of the
solutions of the homogeneous matrix Painlevé II hierarchy, in a similar way of what was done in the work

[CCG19] and in many others for the same kind of question.

We are going to conclude this section by stating the so called small norm theorem for Riemann-Hilbert
problems. This result is fundamental in the study of asymptotic properties, and we will use it indeed in
the end of Chapter 5 to find the asymptotic behavior of the solutions of the matrix Painlevé II hierarchy
studied there. The idea of this result can be resumed as follows : first, assume that the jump matrix G
for the Riemann-Hilbert problem 3.1.1 depends on some extra parameter G = G(A,s). This is indeed
the case in every problem that we will treat in Chapter 5, 6 and 7 and generally speaking in most of the
applications. The point is that, if the jump matrix G approximate the identity matrix in a certain matrix
norm and for s — <o, then also the norm of the quantity ¥ — I,, can be estimated in the same regime for

S.

Theorem 3.1.8 (Theorem 5.1.5 [Harll]). Suppose that we have the following estimate on the jump
matriz G

C
|G — Ip”L?(E)nLl(E) < el for s = sg, €>0. (3.1.12)
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Chapter 3 — Integrable operators and Riemann-Hilbert problems

for C some positive constant. Then, for s sufficiently large there is a unique solution Y =Y (\,s) of the

Riemann-Hilbert problem 3.1.1 with the above jump matriz G, and it is such that

C

m, fO’f' )\EK,S}SO (3113)

YN, s) — Ip||L2(E)mL1(E) <

where K is a closed subset of C\X satisying diit_ﬁ‘)i‘z) > ¢(K) for every A € K.

Notice that the last estimate can be improved if the estimate on the jump matrix G is improved (for
example if G decays exponentially in s we expect Y to decay at the same way). The proof of this result
strongly rely on the formula given in Theorem 5.1.11 for the solution of the Riemann-Hilbert problem
3.1.1 and on the fact that the Cauchy transform, appearing in that formula, is L?-bounded. This and
some other useful properties of the Cauchy transform are stated in Thoerem 5.1.4 of [Harll] (proofs can
be found in [CG13, L113]).

Remark 3.1.9. We largely discussed the question of finding a solution for the Riemann-Hilbert problem
3.1.1 and which form and properties this solution has. Although, the question of uniqueness of the solution
was left open. One can prove that by fixing the determinant of the jump matrix det G = 1 one fixes also the
solution of the Riemann-Hilbert problem. Essentially, one first proves that the function d()\) := det(Y (X))
is actually constant and equal to 1 and then show by contradiction that there is only one solution to
the Riemann-Hilbert problem with such a jump matrix. If the determinant of the jump matrix is not

constant, then the uniqueness of the solution should be discussed case by case.

3.2 Riemann-Hilbert problems and IIKS integrable operators

In the previous section we introduced the Riemann-Hilbert problems in the most general setting,
and we studied the basic properties of their solutions. In this section we are going to study a specific
Riemann-Hilbert problem that is related to the integrable operators, first introduced in [IIKS90]. Here
the solution of this Riemann-Hilbert problem plays a central role in the construction of the resolvents of
these operators. This is particularly useful when the kernel of the relevant operator and thus the associa-
ted Riemann-Hilbert problem depend on some further parameters. Then one can express the logarithmic
derivative (w.r.t. these parameters) of the Fredholm determinants of such integrable operators, in terms
of the asymptotic coefficients of the solution of the Riemann-Hilbert problem. In the following we review
the main results of [ITKS90, DIZ97, HI02] and we refer to these paper for their proofs.

3.2.1 Integrable operators : definitions and examples

To start with, we introduce the two r x p matrices f and g with entries that are smooth functions
defined on the connected components of the contour ¥ (considered as in the previous section). We also

assume that these matrices f, g satisfy the diagonal condition
£7(Vg()) = 0.
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3.2. Riemann-Hilbert problems and IIKS integrable operators

Definition 3.2.1. An integral operator K acting on CP-valued functions h()\) as

/K)\,u w)dy,

is called integrable if its kernel has the form
(3.2.1)

Remark 3.2.2. Thanks to the diagonal condition, the kernel K (A, ) is nonsingular along the diagonal
and there it should be considered as K(\, A) = (f)T(A\)g(\) = —fT(\)g'(N).

Example 3.2.3. There are many scalar integral kernels (the case p = 1,7 = 2) that appear in random
matrix theory and statistical mechanics taking this integrable form. Here is a list of the most popular

ones.

e The sinus kernel acts on L?(X) with ¥ a disjoint union of a finite number of intervals on R, through
the kernel

Ksinus(A, p) = % (3.2.2)

>n~

is indeed an integrable operator, with f(\) = ( ) and g(\) = %m (e’”‘, fe”‘). This kernel

appears in the bulk scaling limit for GUE [Meh04], and was btudled by many different authors, e.g.
[Wid95, DIZ97].

e The Bessel kernels act on L?(R) through the kernel

Jo (VAT (Vi) = VATL(VA) o /5)

KBessel(Av ‘u) = 2()\ — M)

(3.2.3)

where J, is the Bessel function of order o. Taking for example f(\) = 1 (Joé(\ﬂ)7 —\f)\Jé(\/X))
and g(\) = (\f M (VA), J, (\f)\)) one recognizes the integrable structure of this kernel, but this

is not the only way to see that. This appears in some scaling limit for the LUE or JUE and was
first studied in e.g. [TW94c, For93].

e The Airy kernel acts on L?(R ) through the kernel

Ai(VAT (1) — A"V Ai(p)
A—p

Kairy(A, 1) = (3.2.4)
where Ai is the Airy function, that we already met in Chapter 1 and 2. Writing the kernel in
this way, one can take f()\) := (Ai(\), —Ai'()\)) and g(\) := (Ai’(\), Ai()\)) to see the integrability
structure. Althought, this is not the only way to see that. Indeed, using the alternative description
given in (1.1.16) for the kernel, one can found another integrable structure for the Airy kernel by
passing in Fourier coordinates (as done in [CCG19]). In Chapter 5 and 6 we will follow this second
procedure for the study of both the matrix and the finite temperature generalizations of the higher
order Airy kernels. Anyway, as already said in the previous chapters, the Airy kernel appears in the
edge scaling limit for GUE [TW94b, Meh04].
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Chapter 3 — Integrable operators and Riemann-Hilbert problems

All these kernels can be also found in relation to many different models in statistical mechanics that were
studied for instance in [LDMS18, DLDMS19, LACTLDMS18].

The first interesting property of the integrable operators is that their resolvents, whenever they exist,
they are integrable too. This was first observed and proved in [ITKS90] and the result is resumed in the

following lemma.

Definition 3.2.4. For an integral operator I as in Definition 3.2.1, the correspondent resolvent operator
is defined as R := (1 — K)71K, when 1 — K is invertible.

Lemma 3.2.5 ([HI02]). Consider K an integrable operator with kernel (3.2.1) and suppose that (1—K)~*

exist. Then the resolvent R is an integrable operator with kernel given by

F'(N)G(p)
=" 2.
ROp) = (3.2.5)
where the matriz-valued functions F, G are recovered through
Ff)=01-K)"4", g\ =01-K"""g. (3.2.6)

In particular the diagonal condition holds also for the resolvent, i.e. FT(N\)G()\) = 0.

3.2.2 The Riemann-Hilbert problem associated to integrable operators

Given an integrable operator K as in Definition 3.2.1, the associated Riemann-Hilbert problem of the
form 3.1.1 is defined through the pair (X, G) where ¥ is the contour where the integral in the definition

of Lf(A) is computed and the jump matrix G is defined as the r x r matrix
G(\) == I, — 2mif (N)gT (\). (3.2.7)

The solution Y of the Riemann-Hilbert problem constructed in this way is then used to recover the kernel

of the resolvent of K. The result is resumed in the following theorem.

Theorem 3.2.6 ([HI02]). Given the integrable operator K, the operator (1 — K)™1 exists if and only if
the Riemann-Hilbert problem 3.1.1 defined through the pair (3, G) related to K (described just above) is
solvable. In particular, the functions ¥, G defining the kernel of the resolvent R are obtained in terms of

the solution Y of the Riemann-Hilbert problem as
F(A) =Y(M)f(X), GO ="(N) g (3.2.8)

and the solution' Y of the Riemann-Hilbert probelm 3.1.1 for the pair (X, G) has integral reprensentation
given by
YN =1 — / Y_(C)Mdg (3.2.9)
> C—A
In general, the integrable operators we are interested in will have kernels dependending on some

auxiliary parameters. Thus, their Fredholm determinats (whether well defined) are functions of these
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3.8. Riemann-Hilbert problems and Hankel integral operators

parameters and their dependence on them should then be studied. Moreover, for the operators satisfying
Theorem 2.1.5, the Fredholm determinants are interpreted as relevant probabilistic quantities in relation
to the DPP defined through the operator, as stated in Proposition 2.1.9. Finding the explicit dependence
on the parameters for these Fredholm determinants becomes even more crucial. The Riemann-Hilbert
approach is indeed useful in this sense : it allows to derive a formula for the logarithmic derivative
of these Fredholm determinants in terms of certain quantities related to the solution of the relevant

Riemann-Hilbert problem. This essentially follows from the application of the Jacobi formula, namely
Slogdet(1 — K) = —Tr((1 — K) " 6K), (3.2.10)

where § denotes the variation with respect to the parameters on which K depends on, together with
Theorem 3.2.6. Having explicit expression for the Fredholm determinant can be then used for example

to study the asymptotic behavior of them.

3.3 Riemann-Hilbert problems and Hankel integral operators

There are cases in which we are interested in Fredholm determinants of operators that are not of
integrable form but that can be proved to be equal, after some manipulations, to Fredholm determinants
of operators of integrable type. For example, consider the Hankel matrix-valued operators C acting on
L*(R4,C") as

(Co) (x) = s C(z+y)o(y)dy, ¢ L*Ry,C) (3.3.1)

with C a matrix-valued function having form
C(z) = —i/ e (p)dp (3.3.2)
v+

where r(u) is an integrable function and ~y; is some curve in the upper complex plane. In [BC12] the
authors proved that this kind of operators can be treated through a Riemann-Hilbert approach too. In
this section we will go through the fundamental results obtained in that paper, and we will use them in
Chapter 5 in order to relate the Fredholm determinants of a matrix-valued analogue of higher order Airy
kernels to certain solutions of a matrix Painlevé II hierarchy.

The first step, is to prove that the Fredholm determinant of these Hankel operators coincides indeed
with the Fredholm determinant of some operator on the space L?(y,,C"), as explained in the following

statement.

Theorem 3.3.1 (Corollary 2.1 [BC12]). The Hankel operators C of type (3.3.1), (3.3.2), with the function
r(p) = Ey(p)EL (1) and E; € L2 A L®(v4, Mat(r x r)) are trace class on L*(R,C") and their Fredholm

determinants are such that
det(1 + C|L2(R+’C7‘)) = det(1 + IC|L2(,Y+’C7‘))7 (3.3.3)
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where K : L?(y4,C") — L2(~,C") are integral operators with kernel

_EHWEW

(3.3.4)
Remark 3.3.2. Integral operators with kernels of type (3.3.4) for some specific choice of the functions
E;()\) acting on L?((0,0)) were previously studied by Tracy and Widom in [TW96], in relation with

some integrable hierarchies.

The proof is based on the use of the Fourier-Plancherel transform. The conjugation of C by this
transform gives indeed an integral operator that shares its Fredholm determianant with C and that can
be proven to be trace class on the correspondent Hardy space. This last result comes from the fact that
the relevant operator can be seen as composition of Hilbert-Schmidt operators defined on appropriate
functional spaces. By exchanging the order of the composition, one obtain exactly the operator X on
L?(y4,C") in the statement above, that still shares its Fredholm determinant with the operator C thanks
to the Sylvester identity (cfr. [Sim05, Goh00]).

Remark 3.3.3. The operator K with kernel given in (3.3.4) is not exactly of the integrable form (3.2.1),
because of its denominator. Nevertheless, it was proven in [BC12] that also these operators K and K2
can be studied through a Riemann-Hilbert problem, extending in some way the theory of standard ITKS
operators of [ITKS90]. Since in Chapter 5 we will be interested just into the square of some particular

operator IC, in the following we will focus on the results that only concerns the squared operator.

The relevant Riemann-Hilbert problem (3, G) of the form 3.1.1 for a function Y (\) with values in

GL(2r) is built by taking as contour ¥ the union of the two disjoint contours
Y=qruns (3.3.5)
where v_ := —v,, and as jump matrix

I. —2mir(A A

G(A) = ‘ mir (M ) | (3.3.6)
—2mir(—A)x~_ () I.

Based on the ITKS theorem, the authors of [BC12] proved the following result about relating the solution

of the Riemann-Hilbert problem for Y (\) and the operator 1 — k2.

Theorem 3.3.4 (Theorem 3.1 [BC12]). The resolvent operator R = K?(1 — K*)~! on L%*(v4,C") has
kernel R(\, ) expressed in terms of the solution Y of the Riemann-Hilbert problem (3,G) defined in
(3.3.5), (3.3.6), as follows

YENY T (p)
A—p

O

RO =[BT O) 0] B

. (3.3.7)

The solution' Y of the Riemann-Hilbert problem (X, G) exists if and only if 1 — K2 is invertible.

Now, suppose that the operators C and thus K depend on some auxiliary parameters. As a bypro-

duct the jump matrix G and the solution Y of the Riemann-Hilbert problem (X, G) associated to these
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operators also depends on these auxiliary parameters. Denoting by ¢ the variation with respect to these
parameters, the authors of [BC12] expressed the variation of the Fredholm determinant of K2 in the

following way.

Theorem 3.3.5 (Theorem 4.1 [BC12]). We have that
1
§logdet(1 — K?) = ﬂ/ Tr (Y'Y GG dA, (3.3.8)
™ Je

where the ' denotes the derivative w.r.t. the parameter \.

The main ingredient for the proof of this result is the application of the formula (3.2.10) to the relevant
IIKS operator acting on L?(X) ~ L?(v; ) @ L?(y_) that is related to the Riemann-Hilbert problem (%, G)
defined through (3.3.5), (3.3.6). This operator has Fredholm determinant that coincides with the one of
K? by the very construction, and thus the proof follows.

This is exactly the result that we need in Chapter 5 in order to find the formula that express the Fredholm
determinant of the matrix analogue of the higher order Airy kernels, in terms of some distinguished

solutions of the matrix Painlevé II hierarchy.

Remark 3.3.6. Relation (3.3.8) allows to explicitely compute the logarithmic derivative of the relevant
Fredholm determinants. Indeed, the dependence of the jump matrix G on the auxiliary parameters is
explicit thus the quantity inside the integral on the right hand side GG ~! is explicit too and so does the
entire integral. A very important example of dependence (this is indeed the case we have to deal with in

Chapter 5) is when the jump matrix can be factorized as
G()\,f) = eT(A’f)GO(A)e_T(A’f),

where T'(A, f) = 27;0 Tj)\j is a matrix depending on the diagonal matrices T; that are considered here

as the deformation parameters.

Remark 3.3.7. For every parametric family of Riemann-Hilbert problems 3.1.1 depending in a suffi-
ciently smooth way on the auxiliary parameters and having ¥ with no self-intersections, one can always
define the integral in the right hand side of equation (3.3.8). Over the space of deformations of these

Riemann-Hilbert problems this quantity is interpreted as a 2-form

L / Tr (Y=Y 6GG) d),
b))

@X](é) = i

and whether it is closed, one can defined up to a constant, its correspondent tau function in such a way
that 6y = ©Y,(8). For more details on this topic we refer to [BC12, Ber10] and to the previous series
of works of the Japanese school [JMUS81, JM81la, JM81b]. We will use this 2-form (for another specific
Riemann-Hilbert problem) in Chapter 7.

43






CHAPTER 4

ISOMONODROMIC DEFORMATIONS AS
LAX PAIRS

HE AIM OF THIS CHAPTER is to introduce the theory of isomonodromic deformations focusing in
T particular on its relation with the Painlevé II equation (1.1.2). All the six equations (1.1.1) —
(1.1.6), indeed, admit (at least) a Lax pair representation given by the isomonodromic deformations
of a specific 2 x 2 linear ODEs system with rational coefficients. This general result was first proven
in the works [JMU81, JM81a, JM81b]. For the Painlevé IT equation specifically the works of Flaschka
and Newell [FN80, FN82| investigated alternative connections between the Painlevé II equation and the
theory of isomonodromic deformations. The Flaschka-Newell Lax pair for the Painlevé II equation, given
by equations (3.2a,b), (3.3a,b) in [FN80], was then generalized to a Lax pair for the all members of the
Painlevé II hierarchy (1.2.22) in [CIJMO06]. The construction of analogue Lax pairs for the matrix and
then integro-differential Painlevé II hierarchy, that we are going to study respectively in Chapters 5, 6,
will be a fundamental element in the proof of our results generalizing the Tracy-Widom formula.
Generally speaking, the existence of isomonodromic Lax pairs for the Painlevé equations has been very
useful to study remarkable properties, asymptotics in particular, of certain Painlevé trascendents. Many
results have been collected and proved in details in the monograph [FIKNO6], that will be indeed the
main reference for this chapter.

From another point of view, the isomonodromic representation of Painlevé equations opened the way to a
new, more geometrical, field of study : the Painlevé monodromy manifolds (see e.g. [CMR17] and references
therein). Given a linear system of ODEs with rational coeflicients, its monodromy manifold is the space
of its monodromy data considered together with eventual algebraic relations between them. For the case
of regular singularities (as for the isomonodromic Lax pair for the PVI equation (1.1.6)) the monodromy
manifold is related to some character variety of the Riemann sphere with prescribed punctures (for PVI,
the SLy(C) character variety of the Riemann sphere with 4 punctures). For systems carrying irregular
singularities (as all the isomonodromic Lax pairs for the remaining Painlevé equations, including PII),
as we will see, the set of monodromy data is more complicated mainly because of the presence of Stokes
phenomena. Thus the geometrical description of the corresponding monodromy manifolds cannot simply
be done in terms of character varieties. Their corresponding generalizations are now known under the
name of wild character varieties, terminology born in [MR91] and consolidated by Boalch. One of the
major aspects in the study of monodromy manifolds is their Poisson (symplectic) structure, in relation
with the Poisson-Lie structure on the rational matrices (coefficients of the relevant ODEs) through the

monodromy map. The first papers that studied this problem are [FN82, Uga99] where the authors focused
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on monodromy manifolds for some specific systems of ODEs. Some years later, the series of papers
[BoaOla, BoaOlb, B*07] by Boalch investigated the problem in greater generality. In Chapter 7 we are
going to study the symplectic structure of the monodromy manifolds of a rank 2 polynomial equation,
i.e. with only one irregular singularity of arbitrary Poincaré rank at oo (which underlies for odd Poincaré
ranks the case of the Lax pair for the homogeneous Painlevé II hierarchy [CJMO06]), the case studied by
Flaschka and Newell [FN82].

The Chapter is organized as follows : in the first section we are going to review the fundamental results on
the theory of linear system of ODEs in the complex plane and we are going to define the main concepts
of monodromy data and monodromy map. In the second section we are going to give the definition of
isomonodromic deformation and finally in the third section we will see the isomonodromic Lax pairs for

the Painlevé II equation and hierarchy.

4.1 System of ODEs with rational coefficients

In the following two sections we are going to resume the main concepts and results of the theory of
linear ODEs in the complex plane, contained in Chapters 1 — 4 of [FIKN06]. For more details and for the
proofs of the statements, we refer thus to them (and references therein).

Let us consider M (A) a N x N matrix-valued rational function, with N > 1 and A € C. We are interested
in finding a N x N matrix-valued solution ¥(A) of the linear ODE

A
o =M. (4.1.1)

4.1.1 Description of local solutions

For a given \g € CP', the behavior of a local solution ¥ in a neighborhood of )y is essentially
determined by the behavior of the coefficient matrix M (\) at the given point Ag. Given that M(X) is
rational in A we only have three possibilities : Ag is a regular point for the differential M (\)dA, or it is a
simple pole or it is a pole of greater order (we say that it has Poincaré rank r > 0 at \p, meaning that
the Laurent series of M (A)dA at \g has nonzero coefficient up to the power —r —1 in the local coordinate
near \g). In each of these possible configurations we have different local behaviors of ¥, as described by

the following results.

Theorem 4.1.1 ([FIKN06]). Consider \g € CP' and a given N x N invertible matriz Vy. If the matriz
coefficient M(X\) ! is holomorphic in a disk By, centered in \g, then there is a unique solution of the ODE
(4.1.1) holomorphic in the same disk and satisfying the initial condition ¥(Ag) = Py.

Thus, as far as we look for solutions of the equation (4.1.1) near points that are regular for the matrix
coefficient M (), we get local solutions that are smooth too.
Consider now the case where M(\)d\ has an isolated simple pole at the given point Ag € CP'. For ¢

being the local parameter near Ao (( = A — A\g in case A is finite, { = % in case Ag is 00), we can then

1. or equivalently the differential M (\)d\ is holomorphic in the same disk.
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write in a punctured disk centered at Ao, Bx,\{ Mo}, the following representation
o0
M)A = > My¢Fd¢, My # 0. (4.1.2)
k=—1

The behavior of ¥ near A is then uniquely determined, up to the spectral properties of the matrix My,

as follows.

Theorem 4.1.2 ([FIKN06]). Given the previous hypothesis on M(X)d\, suppose that the coefficient
My is diagonalizable, namely My = PToP~! with Ty a diagonal matriz (called the formal monodromy
exponent). Also, suppose that My has nonresonant eigenvalues® (i.e. the difference of each couple of
distinct eigenvalues is not an integer). Then the ODE (4.1.1) has a fundamental solution ¥ near g of
the form

T(A) = TP, (4.1.3)

with \i/()\) holomorphic and invertible in By, and uniquely determined by the value of \i!()\o) =P

Notice that it is equivalent to say that in the disk B), the solution ¥ is in the form

¥(A) =P (i %C’“) ¢, Wo = Iy (4.1.4)
k=0

where the power series is convergent. This is indeed the main difference between the behavior of a local
solution near a simple pole and near a higher order pole of M(\)dA, as we are going to explain. Consider
now the case where \g € CP" is a pole of Poincaré rank r > 0 for the differential M (\)d\, namely we can

write in the punctured disk By,\{A\o}, using the local coordinate  near \g, the following representation

oe]
MN)dX= > Mga¢hd¢, M_, #0. (4.1.5)
k=—r—1

Assume again that the leading coefficient M _,. is diagonalizable, namely
M_,=PT_, P! (4.1.6)

with T_,. a diagonal matrix, that has all distinct nonzero eigenvalues oy, =1,..., N.

Theorem 4.1.3 ([FIKNO6]). In the above hypothesis for the differential M(X)dX, there is a unique formal
fundamental solution of the ODE (4.1.1) in the punctured disk Byx,\{\o} and it is written in the form

-Tr

U\ =P (Z \pkgk> exp <T—T§—r bt %g—l + Ty 1ng> , Uy = Iy (4.1.7)
k=0

with Ty, all diagonal matrices for k = —r,...,0. Both the coefficients ¥;, 7 > 0, and the exponents T,

k= —r,...,0 are determined recursively as polynomials of the coefficients My, in (4.1.5).

2. In the cases where My is not diagonalizible or it is so but it does have resonant eigenvalues the statement is adapted
with a slightly different behavior of W.
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Chapter 4 — Isomonodromic deformations as Laz pairs

The solution W is called formal since typically the series in (4.1.7) does not converge. It turns out that ¥
as in (4.1.7) is actually only the asymptotics (for A approaching the irregular singularity A\g) of a genuine
fundamental solution of (4.1.1) uniquely defined in a certain sector of the punctured disk Bj,\{Ao}.
These sectors are also known as Stokes sectors, and they are defined as the sectors of the disk B,
containing exactly one of the lines defined as £ := {C| K| <p, arg¢=larg(a;—a;)+Z (m+ 1)},
m=0,...,2r—landi,j=1,...,N with i < 5.2 More precisely the result reads as follows.

Theorem 4.1.4 ([FIKNO06]). In the hypothesis above, inside any Stokes sector contained in the disk By,
there exists a unique fundamental solution ¥(\) of the ODE (4.1.1) such that

T(A) ~Ts(A) for X — A, (4.1.8)

where W¢(N) is given as in (4.1.7) and the branch of the logarithm in that formula is chosen.

Notice that the Stokes sectors can be defined in a canonical way, so that By,\{\o} is always covered

by 2r of them. For ¢ > 0 sufficiently small, consider the sector
S:={CeC| 0<[¢|<p, 91<argg<91+§+5}. (4.1.9)

Then S is a Stokes sector. With that in mind, one constructs
Sy, =€ 7S =12 (4.1.10)

All S, defined in this way are Stokes sectors ; moreover, they cover the punctured disk and they are such
that S; = S = Sa,41. It follows from Theorem 4.1.4 that we can define 2r canonical solutions ¥,,(A) near
Ao a higher order pole of M (\)dA, each one of them uniquely defined by the asymptotic condition (4.1.7)
in the correspondent Stokes sector S,,.

From this construction follows the definition of the Stokes matrices

S = U (N1 (N), A8y A Snir, n=1,...,2n. (4.1.11)

n

These matrices can be shown to be constant upper or lower triangular matrices, with unit diagonals.
Together with the exponents Ty, k = —r,...,0 the Stokes matrices uniquely determine, up to gauge
transformations, the system (4.1.1) having at Ay an irregular singular point (for more details on this

topic, also known as the Stokes phenomena, see Theorem 5.1 of [FIKNOG]).

From local to global With these four results in mind, one can construct a local solution of the ODE
(4.1.1) starting at any point of the punctured Riemann sphere. But what about global solutions? The

answer to this question is given by the following Monodromy Theorem.

Theorem 4.1.5 ([FIKNOG6]). Let m; € CP',i = 1,...,n be the isolated poles of the coefficient matriz
M()\) of the ODE (4.1.1) and let ~ : [0,1] — CP"\{m;}}, a curve. Consider the germ of a solution of

3. This condition follows while looking for the uniqueness of a fundamental solution of (4.1.1) near a higher order pole,
with asymptotics given by (4.1.7).
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(4.1.1) at the (regular) point v(0), namely

[e¢]
T(A) = Z .ck, ¢ the local coordinate near ~(0). (4.1.12)
k=0

Then ¥(X) admits analytic continuation all along the path ~y to the point y(1). Furthermore, its analytic

continuation only depends on the homotopy class of ~y.

This result gives the recipe to construct global solutions of the ODE (4.1.1) starting from any point of
the punctured Riemann sphere : just consider any local solution and then perform analytic continuation. In
a certain way, the construction of global solutions essentially relies on the representation of local solutions.
The behavior of local solutions was given by formulae (4.1.4), (4.1.7), in which the main ingredients are the
formal monodromy exponent Ty and the exponents Ty, k = —r,...,0, together with the Stokes matrices
(4.1.11) respectively. This set of data, should be then completed with the description of the passage from
one local representation to the other : all together they form a set of global monodromy data that allows
us to completely determine the ODE (4.1.1).

4.1.2 Monodromy data of ODEs

We are now going to describe two sets of data : the global monodromy data and the essential mono-
dromy data. Suppose that among the poles m, of M(A)d\ we have simple poles for v = 1,...,p < m
and then for v = p + 1,...,m we have higher order poles, of Poincaré rank r,,v = p+1,...,m. From

the previous discussion, we first collect the following data

)

o Iy forv=1,...,p;

. T,EU) with k = —r,,...,0 for v = p+ 1,...,m, together with Sl(u) for | =1,...,2r, and v in the

same range.

These data describe the local behavior of solutions ¥*) near all the simple poles {m, }2_, of M()\)d\, and
solutions {\I/l(y)}f:’l in the canonical Stokes sectors near its higher order poles {m,};_, ;. Consider now
a generic fundamental solution of (4.1.1) at a point mg € CP'\{m; © 1, determined by initial condition
U(mg) = Wy, for ¥y any invertible matrix. Each local solution W, &), \I/l(y), thanks to Theorem 4.1.5,
can be analytically continued along every path contained in the punctured Riemann sphere, giving back
global solution of the same ODE (4.1.1). Thus, every two of these solutions can only differ by right

multiplication by a constant matrix, called the connection matrix. In particular, one defines
T(\) = VP (NE,, and ¥()\) = VI NE,, (4.1.13)

forv=1,...,pand v = p+1,...,m respectively. The matrices F, exactly describe the passage from a
local solution to the other, and thus conclude the global picture we needed for the complete description
of the solutions of the ODEs (4.1.1).

The global monodromy data set is then defined as the following collection
M = {ma,...,ma, Ty, T80 (T St s Buoes, Bl (4.1.14)
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Chapter 4 — Isomonodromic deformations as Laz pairs

As shown in Proposition 2.2 of [FIKNO06], this collection of data uniquely defines the ODE (4.1.1) with
M (X)dA having exactly m poles with fixed Poincaré rank r,,v = 1,...,m (meaning r, = 0 for v =
1...,p). This is no longer true when we restrict the set of global monodromy data to the essential
monodromy data, i.e. we eliminate from M the positions of the poles and the coefficients 7, ,5”) for k =
—Ty,...,1and v = p+ 1,...,m. This restricted subset, defined as the set of essential monodromy data,
it is explicitly given by the collection

m = {1\, s E,/=bm (4.1.15)

e 2ry,u=p+1,....m"

In particular, we have that the monodromy map
{M(XN)d\ with m poles of fixed multiplicities ,} — {m, sets of essential monodromy data}

is no longer one-to-one. The problem of describing the subset of rational matrices M()), coefficient of
(4.1.1), sharing the same set of essential monodromy data m is exactly what isomonodromy deformations

are about.

Remark 4.1.6. The monodromy manifold for a given linear system of ODEs can be defined as the space
of its Stokes / connection matrices together with eventual constraints among them. The constraints will
change from case to case. In Chapter 7 we will study a specific example of monodromy manifold, called
Stokes manifold, that is associated to a polynomial linear ODE. As we will see, in this case the monodromy
manifold is simply given by the collection of some Stokes matrices. Although they are not independent,
they should satisfy an algebraic equation (corresponding to the canonical relation in the fundamental
group of CP*\{poles}).

4.2 Isomonodromic deformations

The study of isomonodromic deformations can be formalised as follows : suppose that the coefficient
matrix of the ODE (4.1.1) now depends holomorphically on some extra complex parameters t1,...,tx,

namely
M) = M\ t1,...,tx) = M(\ ). (4.2.1)

Definition 4.2.1. An isomonodromy deformation is given by a holomorphic family of rational matrices
as in (4.2.1) which is an admissible deformation and preserves the set of essential monodromy data of

M (A, t = 0). More specifically the family (4.2.1) has to satisfy the following requirements :

1. the number n of poles does not depend on t;,7 = 1,..., K. Moreover there exist some disks B,,
v =1,...,n such that each pole m, € B, for all values of the parameters ¢; and B, n B, is the

empty set for all v # p;
2. the spectral properties of the leading coefficients of the Laurent series of M(\)d\ at each singular

point do not depend on t;;

3. for all the poles m, (t) with Poincaré rank r, > 0 the Stokes sectors in the punctured disk centered

at the corresponding pole m, (t) are t-independent under translation A — A —m,(¢);
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4.2. Isomonodromic deformations

4. canonical solutions of the ODE (4.1.1) are holomorphic w.r.t. ¢ and for local solutions near irregular

points, their asymptotic behavior (4.1.7) holds uniformly in ¢;

5. (isomonodromic condition) all the formal monodromy exponents Té"), the Stokes matrices Sl(“ ) and

the connection matrices E,, v=1,...,n, u=p+1,...,m, [ =1,...,r, are t-independent.

The list of requirements in the definition above can actually be translated into the fact that the entries
of the matrix coefficient M () should solve some further system of nonlinear differential equations (w.r.t.
the deformation parameters ¢;). This result is obtained by looking at the following differential
& 0w

E\E) =d00t = Y ——dt ;U (4.2.2)
ot

that, thanks to the last requirement in the above definition, is actually a single-valued analytic function
in CP'\{m,}"_,. Studying its behavior near the poles m,,, using the formulae (4.1.4), (4.1.7) for the
local solutions of the ODE (4.1.1) near these points and the fact that the essential monodromy data are
t-independent, more can be said about Z(\, t). This study was first done in [JMU81] and in the following
we cite one of their main results.

Main assumption Assume that the pole m,(t) = oo for all ¢ and that the leading coefficient of the
Laurent series of M(A)dA at oo is already diagonal. Also, assume that the essential monodromy data
of (4.1.1) are defined by taking as basic fundamental solution ¥ the local solution near m,, = o (the
canonical solution (™) if m, = o is a simple pole, the canonical solution in the first Stokes sector \Ilgn)

if m,, = oo is of higher order).

Theorem 4.2.2 ([JMUS81]). The differential Z(\,t) is a rational matriz-valued function in X with poles
coinciding with myq, ... ,mp_1,m, = 00 and with the same Poincaré rank r,,v = 1,...,n of M(\). In
particular, Z(X) can be explicitly and uniquely determined in terms of the coefficients of the Laurent series

of M(X) near each one of its singular points. Namely
2(0) = 2 MY {mu), (4.2.3)

with M,E”) defined from the principal part decomposition of M(X)

n—1

M) = M@+ Y MO,
v=1
r,+1 .
M(V)()\) = Z ()\ - mV)_jMS;)+17 v = 17 ceey— 17 (424)
j=1
Too—1 )
M) == YT NMD | if e >0, MF)(X) =0, otherwise.
j=0

This result allows us to rewrite equation (4.2.2) as a differential equation that the function ¥ should
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Chapter 4 — Isomonodromic deformations as Laz pairs

satisfy w.r.t. the parameters t;,7 = 1, ..., K. Namely it reads as
oV s
dV =Z\N)VT ie. T Z;(AN)¥, with Z(\) = Z Z;(N)dtj, and j=1,..., K. (4.2.5)
J j=1

In conclusion, assuming that M(X) = M(A,t) is an isomonodromic deformation (respecting the main

assumption written above) one obtains the coupled overdetermined system

X — M(N)T,
oA ) (4.2.6)
dU = d2(\)U.

Its cross-differentiation gives rise to the following differential equation for the matrix coefficient M (\),
namely the compatibility condition, _

dM = Z—; +[M,Z], (4.2.7)
that holds identically in A. This equation becomes then a system of nonlinear differential equations for
the coeflicients M,gy) illustrated above. We say that the system (4.2.6) is a Lax pair for the equation
(4.2.7). Choosing appropriately the type of isomonodromic deformations for N = 2 to look at, namely
the number of poles of M () and their Poincaré ranks, one obtains that equation (4.2.7) gives respectively
one of the six Painlevé equations (1.1.1)—(1.1.6) and thus the corresponding system (4.2.6) is the Lax

representation of the relevant Painlevé equation.

Remark 4.2.3. Notice that there is also a converse of the previous result, meaning that equation (4.2.7) is
also a sufficient condition to describe an isomonodromic deformation of a rational matrix-valued function
M (A, t) with fixed number of poles and Poincaré ranks, described as in (4.2.4). For more details we refer
to Theorem 4.1 in [FIKNO06] (see also [JMUS81]).

4.3 Isomonodromic representations of the Painlevé Il equation

and hierarchy

In this last section we are only going to collect well known results about the isomonodromic Lax pair
representation of the Painlevé II equation and hierarchy. These representations were indeed fundamental
in the papers [KH99] and [CCG19] in order to re-prove and extend to the all Painlevé IT hierarchy the
Tracy-Widom result (given in Theorems 1.1.7, 1.2.12 respectively) about the Hastings-McLeod solutions
of the Painlevé II equation. For the same reason, it will be fundamental in Chapter 5, 6 to construct
an analogue Lax pair for the matrix and integro-differential Painlevé II hierarchies. In the following
0i,1 = 1,2,3 denotes the standard Pauli’s matrices, while o4 are 2 x 2 matrices having as unique nonzero

entry 1 at (1,2) and (2, 1) respectively.
Theorem 4.3.1 (Appendix I, [FN80]). The Painlevé II equation (1.1.2) for the function u(t) follows
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from the compatibility condition of the 2 x 2 system

U
g—)\ =MV, with M(\t) = —i(4)\2 +t+ 2u?)os + (4)\u + %) o1 — 2us09
% (4.3.1)
i LY, with L(\t)= —i)\os + uoy,

describing isomonodromic deformations of a rank 2 ODE with one irregular singularity of Poincaré rank

3 at oo and a simple pole at 0.

The above system is known as the Flaschka-Newell Lax pair for the Painlevé II equation. This Lax
pair is the one used in [KH99|, in order to recover the Tracy-Widom result (Theorem 1.1.7) for the
Hastings-McLeod solution of the Painlevé II equation through the Riemann-Hilbert approach. Another

Lax pair was discovered by Jimbo and Miwa and it is reported in the following.

Theorem 4.3.2 (Appendix C, [JM81al]). The Painlevé II equation (1.1.2) for the function y(t) follows
from the compatibility condition of the 2 x 2 system?

v t 2 1
a—=U\I', with UMt) = [N+ = +2) o3+ (w\—y)oy — =Nz +yz—a+ =)o

oA 2 U 2 (4.3.2)
ov . A U z e
E = V\II, with V()\,t) = 50’3 + §O'+ — EO'_,

describing isomonodromic deformations of a rank 2 ODE with a degree 2 polynomial matriz coefficient.

Notice that the Jimbo-Miwa Lax pair was already known by Garnier [Garl2] in an equivalent form.
Also, the Lax pairs written above in equations (4.3.1) and (4.3.2) are really independent since their
respective set of essential monodromy data are not isomorphic. Therefore, there is no gauge transformation
that allows to pass from one to the other. Notice that there exists a third rank 2 Lax pair for the Painlevé
IT equation, known as the Harnad-Tracy-Widom Lax pair, but it is shown to be gauge equivalent to the
Flaschka-Newell Lax pair (for more details see Proposition 5.2 of [FIKN06]). Actually, there exists also
another Lax pair for the Painlevé II equation, of rank 3, and we refer to the article [JKT09] for more
details about that. In the same work the authors also describe the relation between the Jimbo-Miwa Lax
pair and the Harnad-Tracy-Widom one in terms of the generalized Laplace transform.

In the paper [CIMO06] the authors extended the Flaschka-Newell isomonodromic Lax pair for the entire
Painlevé IT hierarchy as defined in equation (1.2.22). In particular, the n-th member of the hierarchy has
a Lax pair representation given by the isomonodromic deformations of a rank 2 linear ODE having a pole

at o0 of Poincaré rank 2n + 1 and a simple pole at 0.

Theorem 4.3.3. [Section 3, [CIMO06]] The n-th member of the Painlevé II hierarchy (1.1.2) for the

4. The compatibility condition actually gives a system of three differential equations of first order, for u, z, y that are all
functions of t. Differentiating again the equation for u and eliminating the variables y, z and their derivatives one obtains
equation (1.1.2), with actually a minus sign in front of the constant term a.
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function u(t) follows from the compatibility condition of the 2 x 2 system

o 2n ) 2n—1 ] 2n—1 ] .
> M, with M™ = (Z A;(iN)T — z't) o3 + ( DB | os+ | D Ci(N | oo+ %ol
j=0 7=0

=0

(Z—\f =LV, with L = —idos + uoy

(4.3.3)
where the coefficients Aj, B;, C; for every j are differential polynomials in u, described by closed formulae
involving the Lenard recursion operators (1.2.6). For their precise form see equations (17a)-(17g) in

[CIMO6].

This Lax pair is the one used in the paper [CCG19] in order to achieve the proof of Theorem 1.2.12. In
Chapter 5 we are going to construct a Lax pair for a r x 7 matrix Painlevé IT hierarchy, that can be thought

as a block-matrix generalization of the above Lax pair.
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CHAPTER 5

THE MATRIX PAINLEVE Il HIERARCHY

HE RESULTS contained in the article [Tar21] will be discussed in this chapter. The aim of this paper is
T to relate a family of solutions of a noncommutative version of the Painlevé II hierarchy to Fredholm
determinants of a matrix version of the n-th higher order Airy kernels. The scalar versions of these
operators have been recently studied in [LDMS18], in relation with non-interacting fermionic models (as
already discussed in the previous chapters).

In order to construct our matrix analogue, we first define a matrix-valued version of the n-th Airy

function, in the following way
Ai2n+1(x7 §) = (cj’k;A.izn+1((E + Sj + Sk));kzl’ Cjk € (C, T e R, (501)

where Aiap,41(2+5;+5k) is a shift of the n-th scalar Airy function, for some real parameters s;, [ = 1,...,r.
We recall that the n-th scalar Airy function, Ais, (), is defined as a particular solution of the n-th
generalized Airy equation, written in (1.2.32) in Chapter 1, for every n > 1. In this paper we will consider

these functions Alis,1(z) as contour integrals

1 iILL2n+1
Algyy1(2) = / — exp < + ixu) du, z €R,
¥ 27 2n+1

for v% an appropriate curve, which we will specify later on.
With the matrix-valued Airy functions Ais,11(z, ) defined in (5.0.1), the matrix Airy Hankel ope-

rators Ais, 1 are defined in the standard way

(Aigp+1f) () := g Aigy 1 (z + y, $f(y) dy, (5.0.2)

for any f = (f1,...,fr) T € L? (R+, (CT). It is actually on the square of this sequence of operators that we

focused our study, and in particular on the Fredholm determinants defined as
F™(sy,...,s,.) = det (Idg, — Ai%, 1), (5.0.3)

that are well defined since the operators Ais, 41 are trace-class on L? (R+, (CT) (as follows from Proposition
3.3.1, i.e. Corollary 2.1 in [BC12)).

The core of this work is devoted to establish a relation between the Fredholm determinants (5.0.3) and
some solution of a noncommutative Painlevé II hierarchy. In particular, the results resumed in Section

3.3 and originally obtained in [BC12], where the authors extend the theory of integrable operators of
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Tts—Izergin—Korepin—Slavnov [IIKS90], can be directly applied to the matrix operators Ais, 1 defined
in (5.0.2). As byproduct, an equality between the Fredholm determinants F(™(s;,...,s,) and those of
certain integrable operators can be established. Following the Riemann-Hilbert approach introduced in
Section 3.3 we will study these integrable operators through Riemann-Hilbert Problem 5.1.5, from which
we will deduce the isomonodromic Lax pair of the noncommutative Painlevé II hierarchy, that we are
going to define as follows.

We start defining a matrix-valued analogue of the standard Lenard recursion, through the relations
written below. In the following, U, W are functions depending on all the parameters s;, [ = 1,...,r
with values in Mat(r x r,R). The symbols [, ] and [, ]+ indicate respectively the standard commutator
and anti-commutator between two matrices, since differential polynomials in U are noncommutative
quantities.

Then each differential polynomial £,[U] is defined by the following recursive relation

1
LO[U] == 5[7»,

3 —1
L] - (fs HU g+ g0 1+ 015 U -J) Loa[U), n=1 (504)

where the differential operator % is defined as
d 0
— = — 5.0.5
ds ];1 &sk ’ ( )

and %71 in intended as the corresponding formal antiderivative. The recursive relation for the non-
commutative version of the Lenard operators L£,, n > 1, is related to the recursion operator for the
noncommutative KdV equation, introduced in [OS98]. There the authors already conjectured about the
locality of these operators computed in U, but the formal proof of that was done some years later

in [OWO00] (Theorem 6.2 in this last paper).

Finally we define our noncommutative Painlevé II hierarchy as follows

P <d‘g + W, .]+> La[U] = (=1)""14"[S, W], (5.0.6)
where U := %W — W? is the Miura transform of W and the variable S is the diagonal matrix S :=
diag(s, ..., ) so that the anti-commutator in the right hand side is needed (also notice that %S =1,).
For this reason we refer to our hierarchy as a fully noncommutative one, since in its definition (5.0.6)
also the independent variable S is noncommutative. A matrix Painlevé II hierarchy, constructed by using
a noncommutative version of Lenard operators as in (5.0.4), was recently studied in [GPZ16] but in this
paper the independent variable is a scalar.

In this work, first of all, we found out that the hierarchy (5.0.6) admits an isomonodromic Lax pair
with Lax matrices that are block-matrices of dimension 2r. Furthermore, they are explicitly written
in terms of the matrix-valued Lenard operators defined in (5.0.4). The result proved in Section 5.3 is

summarized in the following proposition.
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Proposition 5.0.1. For each fized n there exist two polynomial matrices in X, namely L™, M),

respectively of degree 1 and 2n, such that the following system

%\I;(n)()\’g’) = L(n)()\7§*)q;(n)()\7§*)7
LU0, = MO, 5) (5.0.7)

is an isomonodromic Lax pair for the n-th equation of the matriz Painlevé II hierarchy (5.0.6).

In particular the matrices L™, M) have the following forms

L3 - (wr W(§’)>7

W(3) —iM,
and
M\, ) — (AQ’S'? +iS iG(),9) | ) . (E(A,E’) F(A,@) |
—iG(\,5)  —A(N8) —iS F(\58) E(\3)
where

A(/\,§‘) = Z %)\2”72kA2n—2k(§)7 with A2n = Ira
k=0

G()\,g‘) = Z %A2n_2kG2n—2k(§)7
k=1

& i
E(\,5) = Z 5)\2n_2k+1E2n—2k+1(§)a
k=1

iigp
N2, k1 ().

F(\5) =)
k=1

DO |

All the coefficients Asp—ok, Gon—ok, Eon—ok+1, Fon—ok11 are expressed in terms of the Lenard operators
through the formulae (5.3.4).

This result can be thought as the noncommutative analogue of the well known isomonodromic Lax
pair for the scalar Painlevé II hierarchy studied in [CJMO06], and resulting from a self-similarity reduction
of the Lax pair for the modified KdV hierarchy.

A solution U™ for the Lax pair (5.0.7) is constructed, by using the solution of the Riemann-Hilbert
Problem 5.1.5 involved in the study of the integrable operators associated to the matrix operators squared
AR,

As a byproduct, we obtain the following relation between some solutions of the hierarchy (5.0.6) and
the Fredholm determinants (5.0.3). This is indeed the final result of this work and it is proved at the end
of Section 5.3.

Corollary 5.0.2. There exists a solution W of the n-th member of the matriz PII hierarchy (5.0.6), that
s connected to the Fredholm determinant of the n-th Airy matrix Hankel operator through the following

formula

—Tr (W?(9)) = dd—Sz In (F(")(sl, 50)).
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Defining s = %Z;=1 sj, and 0j = sj—s, this solution W in the regime s — 400 with |§;| < m for every j,

has asymptotic behavior (VV)ZJZ1 ~ —2(cpAlgp41(sk + Sl))z,lzl-

We remark that in [BC12] the above result was actually proved for the first equation of the hierarchy,
i.e., for the case n = 1. The result above is a generalization of Theorem 1.1.7 (for n = 1) and Theorem
1.2.12 (for the generic n case) to the matrix-valued case. We recall that the scalar Airy kernels involved
in the Theorem 1.1.7 and 1.2.12 define DPP on R with applications in random matrix theory (n = 1)
and statistichal mechanics (generic n). In this work, we see that the matrix Airy Hankel operators
squared Ai3, 41 can actually be interpreted as kernels for determinantal point processes on the space of
configuration {1,...,7} x R (under certain assumptions on the matrix C' = (¢; 1)} ,—,), and it would be
interesting to study whether they describe phenomena in random matrix theory or statistical mechanics.

Here is a more precise list of what it is done in this work.

e In Section 5.1 the general theory developed in [BC12], and recalled in Section 3.3, is applied to the
operators Ai3, , 1, in order to associate the Fredholm determinants (5.0.3) to the ones of certain
integrable operators. The most important consequence of this study is indeed Theorem 5.1.9, that
establishes a relation between Fredholm determinant (5.0.3) and the solution of Riemann-Hilbert
Problem 5.1.5. Furthermore, in this section it is provided in which hypothesis the solution exists
(Theorem (5.1.11)), and so the relation for the Fredholm determinants found in Theorem 5.1.9
holds.

e In Section 5.2 the fully noncommutative Painlevé II hierarchy is introduced and the first equations
are explicitly written.

e In the first part of Section 5.3, the proof of Proposition 5.0.1 is given and the construction of the
solution ¥(™ of the isomonodromic Lax pair (5.0.7) for the hierarchy (5.0.6) is implemented. Finally
in the end of Section 5.3, Corollary 5.0.2 is proved, by using Theorem 5.1.9 and the properties of
the solution (™ of the isomonodromic Lax pair (5.0.7).

5.1 Riemann Hilbert problems associated

to the matrix Airy operators

To start with, we recall some basic fact about the scalar generalized Airy functions Ais, 1. As already

anticipated in the introduction, for each n € N, we consider these functions Ais, 11 as the contour integrals

1 ‘u2n+1
Ai x) = —e +ixp | du, reR, 5.1.1
2n+1(2) /7227r xp<2n+1 u) I (5.1.1)
where 7% are curves in the upper (lower) complex plane with asymptotic rays at +oo that are ¢} :=
5 & 5nt, and such that 4 = —%. An example of these curves for n = 1 is given in Fig. 5.1 (but there

are also other possible choices for the curve, as we will see in Chapter 6).

Definition 5.1.1. Recall that as we saw in the introduction, the n-th matrix-valued Airy function is
defined as

Ai2n+1($, g) = (Cj,kAign+1<$ + 85+ Sk));,k:p x e R.
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5.1. Riemann Hilbert problems associated to the matriz Airy operators

Here C' = (¢j,k)} =1 € Mat(r x r,C) and the parameters s; e R, [ = 1,...,7.
With these functions we construct the matrix-valued operators we are going to study in the following.

Definition 5.1.2. We consider {Ais;+1}neny the sequence of matrix Hankel operators acting on any
f=(fi,....fr)" € L*(Ry,C") sit.

(Aigp 1) () := A Aiypi1(x + y, 9f(y) dy. (5.1.2)

Component wise the n-th Hankel operator Ais, 11, reads as

r

(Ai2p41f); (2) = Z Cjk Aigppi(z+y + 55 + si) fu(y) dy, j=1,...,r (5.1.3)
k=1 Ry

Remark 5.1.3. One can equivalently define the matrix-valued generalized Airy functions as contours

integrals, in the following way. For each n € N

e we take s1,...,s, real parameters and S := diag(sy,...,s,) and we define the matrix-valued com-
plex function
0 ( @'—ﬂl—i—is (5.1.4)
2n+1 M? T 2(2n+ 1) T /’L 9 R

where I, is the identity matrix of dimension r.

e Then, we take the matrix C' = (c;x)} ,_; € Mat(r x r,C) we define the matrix-valued function

1
PO, 8) = 5 exp(0ans1(A 9))C exp(ans (1, ) (5.1.5)

e Finally, we can define the generalized matrix Airy function as
Alppi1(2,5) = / ir™ (, 11, 8) exp(izp) dp,
g

where the integral is computed entry by entry.

We are now going to define a sequence of Riemann-Hilbert problems related to the matrix-valued
analogue of the higher order Airy kernels, obtained as A3, . From the solution of these Riemann-
Hilbert problems we will deduce the relation between Fredholm determinants of operators Ai3, ,; and

our noncommutative Painlevé II hierarchy.

Remark 5.1.4. From now on, in order to simplify the notation, the dependence on § in the quantities
(5.1.4), (5.1.5) will be omitted and we will use the abbreviation r(™ (X, X, 5) = r(")(\).

Riemann-Hilbert Problem 5.1.5. Find a (\)-analytic matriz-valued function
EM(\): C\(v} uq™) — GL(2r,C),

admitting continuous extension to the contour v} U Y™ from either side and such that it satisfies the

following two conditions :
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Chapter 5 — The matrix Painlevé II hierarchy

Y

ol

FIGURE 5.1 — These are the contours 73 for the integral representation (5.1.1) of the Airy function Ais

(case n = 1). Their asymptotics at +o0 are ¢3 := %, 3.
o the jump condition for each X € vy} u~”
I —27ir (™ (X) x4n (A
=) =20 " mr Mxr (M) (5.1.6)
—27ir (™ (=) xym (N) L.
l :=J () (N,5) !
where we denote by Eg,_n) the boundary values of 2™ for \ e y(ﬁ) v ’y(,"), approaching the boundary
from the left (+) and the right (=) nontangentially.
o the asymptotic condition for |A\| — oo
ztm
EMON) ~ Iy + )] AJ]. (5.1.7)

j=1

Remark 5.1.6. In the following we are going to use the Pauli’s tensorized matrices, that have the same

property as the ones in the usual Clifford algebra. In particular we denote the tensorized matrices by

01 =01 Q Iy, b9 = 02 @ Iy, 03 = 03Q Iy,

0 1 0 i 1 0
o1 = , 09 = , o03= .
L ) SR ) 7 \lo -1

Then the standard relations hold also in this case :

where

[61,62] = —2i63, [61,63] = 2i6s, [62,53] = —2i61, 62 = Iy, Vi

The following symmetry property will be useful in the next computations.
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5.1. Riemann Hilbert problems associated to the matriz Airy operators

Corollary 5.1.7. The asymptotic coefficients appearing in equation (5.1.7) have the following form

20 = ol @I+ B @ o,
=0 =al) @05+ B, ®@0s, j2 1 (5.1.8)

Here al(") (n)

, B, for every 1 = 1 correspond to the r x r matrices in the entries (1,1) and (1,2) of the block
matriz El(").
An analogue statement is true for the asymptotic coefficients of the inverse of the solution of the

Riemann-Hilbert Problem 5.1.5, namely O™ := (E("))il.

Proof. We first prove the symmetry condition for the asymptotic coefficients of Z("). We start observing

that the jump matrix J™ for \ e 7% U~ has the following symmetry
61 (N, )5, = J™M (=), ),

just using the definition of vy = —+%. This directly implies that also the solution of the Riemann-Hilbert
Problem 5.1.5 has the same symmetry property. Thus for any A\ we have that

(1

MW(=X) = 6,2 (V)6

z

Computing the asymptotic expansion at oo of both sides of this equation, we have that (—1)’“Ek, =

6151(:)61. This directly implies the two equations (5.1.8) for k = 2j or k = 25 — 1.
Concerning the statement for the asymptotic coefficients of the inverse of (™ namely ©(")| the proof
follows by the fact that ©() solves another Riemann-Hilbert problem, with same symmetry for the jump

matrix. Indeed, consider the following problem for a function ©( :

e O is a (\-)analytic matrix-valued function on C\ (7 u~™) admitting continuous extension from
either side to v U ;

e it has a jump condition for each A € v} u "

() yy I, 2mir™ (M) A\ Lo

L ]
:=H (") (\,3)

e it has the asymptotic condition for |A| — o0

(n)
ej
N

OM(\) ~ Iy + )

j=1

The function O™ with these properties is the inverse of the solution of Problem 5.1.5. Indeed : the
functions ©M=(™) (M), and =™ have no jumps along v} U~ and they both behave like the identity
matrix at 00. Thus by the generalized Liouville theorem, they both have to coincide with the identity

matrix.
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Chapter 5 — The matrix Painlevé II hierarchy

We then observe that the jump matrix H( here has the same symmetry property of J()| i.e.,
G1HM™ (N, 5)61 = H™ (=), 5), for each A € 47 U ™. Thus, exactly as before, even the function ©(™ has
the same property :

510 (X, 55, = O (=), 7).

We conclude then that the asymptotic coefficients of @) have the same form of the Zy, i.e.,

6(2?) = dé?) ®I2r + Bé?) ®01a
o) =al) ®os+ A ®os, =1, (5.1.9)
(

where, as before, &ln) and Bl(n) for every [ > 1 correspond to the r x 7 matrices in the entries (1,1) and
(1,2) of the block matrix @l(n). O

We are now ready to state the fundamental result that connects the matrix Airy Hankel operators to
these Riemann-Hilbert problems.
Supposing that the solutions of the Riemann-Hilbert Problem 5.1.5 and its inverse exist, we have the

following result.

Remark 5.1.8. Existence conditions for 2™ (and thus ©(™)) are given at the end of the section (see
Theorem 5.1.11).

Theorem 5.1.9. For each n € N, consider 2 the solution of the Riemann-Hilbert Problem 5.1.5 and
its inverse O = (E(”))_l. Then the following identities hold

a
2mi

d d _

il (n) - (n) (=(n)y/ (n) ( 7(n)\—1

15 In (F™ (s1,...,5,)) /ﬂwn Tr (@_ =) o (7)) )
— —2iTr (a{"), (5.1.10)

where in the integral in the middle we indicate with ' the derivation w.r.t. the complex parameter A\ and
the differential operator % is defined as in (5.0.5).

Proof. The proof follows as an application to this very specific case of some general results obtained
in [BC12] (and written in Section 3.3). We split the proof in two parts, one for each equality in (5.1.10).

In order to obtain the first equality we need essentially two results. The first one establishes the relation
between Fredholm determinant of the Airy matrix operator and Fredholm determinant of certain integral
kernel operator, thanks to Theorem 3.3.1. In particular, we first get that the Fredholm determinants of

{Aig,11}nen are equal to the ones of the integral operators acting on L2 (wi"), (C’“) with kernels

r™ )

K, ) = pp

; (5.1.11)

with 7™ (X, u) defined as in (5.1.5).
As by product we then have that

F™(sy,...,s,) = det (Idﬁn) - (IC("))Q)-
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5.1. Riemann Hilbert problems associated to the matriz Airy operators

The second result needed comes from the study of matrix integral kernels of type (5.1.11), through
Riemann-Hilbert problems. Indeed, it allows to compute the Fredholm determinants of these integrable
operators in terms of the solution of Riemann-Hilbert Problem 5.1.5. In particular, by applying Thorem
3.3.5, we have that

) (zmy 4 ey g1} dA _ d (M2
/ww"ﬂ(@ CRSTIFE) >27Tidslndet(lv(+n> (K™Y,

Thus the first identity in the statement holds.

For what concerns the second identity of the statement, we proceed by direct computation of the

integral
a

. 5.1.12
2mi ( )

Tr (@™ (2™ S y(n) (7)1
[, e E) G )
Tt
First of all, we observe that the jump matrix J(™ (), 5) that appears in the jump condition (5.1.6), admits

the factorization
T, 8) = exp (0 (N, 8) @ 03) I exp (—0 (A, 5) @ 03),

I, C
JM = .
c I

Thus we can easily compute the second factor appearing under the trace in the integral (5.1.12) :

with Jén) the constant matrix given by

d - _

(dS,ﬂ")) (TN T = ings — T (iAgs) (J) (5.1.13)
We are now going to show that the integral in (5.1.12) is actually just the formal residue at oo of a certain
function. Furthermore in this particular case, due to the form of the matrix J(, the residue can be
explicitly computed using equation (5.1.13).

To start with, we consider the following function

Tr <@<"> (5<">)’%(9<"> @ag)) = Tr (0™ (2™)'irgs). (5.1.14)

Its formal residue at o can be computed as

~Resa—o Tr (0 () iAds) = lim n Tr (0 (2M) iAds) 5~

Now, this counterclockwise circle for R — o0, can be deformed like 'ysr”) v ’y(,"). As a byproduct, the formal
residue of (5.1.14) can be rewritten, taking into account the boundary values of ©(™ and (E(”))/ along

the curves y(i”% as follows

n —(n n —(n . A dA
/ Tr (-0 (217)' + 00 (21 )igs) g
o m
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Now, from the jump condition (5.1.6), by deriving w.r.t. A\, we deduce that all along the curves v(in) we

have the relation
EP) = (E0) S0+ &) (7).

Thus replacing it in the first integral above we get

n T n (N . A d)\
[ ml(et @) + 6 ) ) 2
ruyn

2mi

[ T ()T (B 4 5 (0)) - ) (=) irg)) 24
N U™ 27i
_ - / Te (((J) 10 EM) g0 4 () Ly — 0 (21) )ings) L
Ay 2mi

_ T (6 (2 (7™ g (7™M — D)) 32

= — r(@_ (__ ) (J 1/\03(J ) —1)\03))—,

yr Uy 2mi

_ ) (=Y 4 ) gy -1 A
/ﬁuwTr (@_ (20 L0 (1) )M,

where in the last passages we used the invariance of the trace by conjugation and the fact that the
quantity (J(”))fl((](”)) i\G3 is trace free.

Finally, using the asymptotic expansion at oo given in (5.1.7), we get that
Resy—oe Tr (07 (2(M)1A63) = —2i Tr (o),
and this concludes the proof. O

Remark 5.1.10. In the study of isomonodromy deformations, the quantity

d -1\ dA
T iy (CONE (D) i

is associated to the isomonodromic tau function 7=) related to the Riemann-Hilbert Problem 5.1.5

depending on the parameters {s;}},_;, through the formula

d d -1\ dX
—InTe = / Tr <@_E’_ —=J® (™) > —.
dS ’Yiuvf dS 2mi

This notion was first introduced in [JMUB81], and then generalized for example in [Ber10]. With Theo-
rem 5.1.9 we recover for any Airy matrix Hankel operator (5.1.2) the relation between the Fredholm
determinant F("(sy,...,s,) and the isomonodromic tau function associated to the Riemann-Hilbert
Problem 5.1.5, that was proved in Theorem 4.1 of [BC12] for Fredholm determinants of generic matrix

Hankel operators.

Finally, in order to use the formula (5.1.10) for the logarithmic derivative of F(™ (s;,...,s,), we need
to find out whether the solution Z(") of the Riemann-Hilbert Problem 5.1.5 exists or not. In particular,

we are going to see that under certain assumptions on the constant matrix C, the existence of Z(") is

64



5.1. Riemann Hilbert problems associated to the matriz Airy operators

assured. The following result is indeed a generalization of Theorem 5.1 in [BC12], for the generalized Airy

matrix operators defined in (5.1.2), i.e. the case n > 1.

Theorem 5.1.11. Let the matriz C' be Hermitian, then the solution =™ of the Riemann-Hilbert Pro-
blem 5.1.5 exists if and only if the eigenvalues of C lay in the interval [—1,1].

Before starting the proof of Theorem 5.1.11, we state the following lemma. For n = 1 the result is
known from [BW99, HMS&0]. In the following we adapted the proof to the case of generic n. For finite
z € R, we introduce the operator

+00

((I)zAign+1 f) (LU) = Ai2n+1(x + y)f(y) dyv f € Lz(R)

z

Lemma 5.1.12. For any n € N we consider the Airy transform ® s, ., acting on f € L*(R) n L'(R) as

+o0
@aiec o) = i, (@5, @) = i ([ Nmialo+ ) (5.1.15)
Then lirzloo ||(I)7\izn+1f|| = ||f|| for the L3(R)-norm, and thus for any finite z the inequality H|‘I>212"H|H <

1 holds for the L*((z,+)) operator norm.

Proof. We consider ®4;,, ., the Airy transform acting as defined in (5.1.15), where inside the integral we
have the scalar Airy function Ais,4q defined in (5.1.1), without any shift and for real values of x. We
introduce the Fourier transform § and its inverse § ! defined on L?(R) n L*(R) (and extended to L?(R)

by continuity and density argument), in the standard way as

1 . O
(Fh)(z) = E/}Rh()\) exp(—iz) d\, § =% =175%,

ix2n+1

T} ), denoted by M,,. Then we

observe that the Airy transform ®,;,,,, can be rewritten as the composition of these operators, in such

where (Jh)(z) = h(—z), and the multiplication operator by exp (

a way that
Prigey = § M = FIMLIF = M, ' = 04!

Algp41”

This implies that

1
2
Jim [[5,,,..,f]| = 1im ( / |‘I)/Z-\izn+1f(y)|2dy)
R

z——00
2 3
—(/ /A@Hmy+mfwmu(w> = 1If1l (5..16)
R IJR
the norms being in L?(R).
Now we prove by contradiction the last inequality H‘@iimﬂ ’H < 1 for the L?((z, +00)) operator norm.

Suppose that there exist a scalar y and an eigenfunction g* € L*((z, +o0)) such that ®%;,  ¢° = ug*
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Chapter 5 — The matrix Painlevé II hierarchy

and |p| > 1. Then we can define g € L?(R) as

Z

and we obtain for Z < z that ®%;, . g(y) = 3%, , 9°(y) = pg*(y) = pg(y) for y > z. Finally, since

|| > 1, we have

H(I)f\i2n+1g”L2(R) = H(I)zAiszrlgHLz((z,-i—oo)) = ‘Mmg”L?((z,-&-oo)) > ||9HL2(R)
and this is in contradiction with equation (5.1.16). O
We can finally provide a complete proof of Theorem 5.1.11.

Proof. By applying Theorem 3.3.4 (i.e. Theorem 3.1 of [BC12], which generalizes the fundamental result
obtained first in [ITKS90]) to the sequence of operators (IC("))Q, n = 1, we have that the solution Z(™) of
the Riemann-Hilbert Problem 5.1.5 exists if and only if the operator Id — (IC(”))2 is invertible. This is
guaranteed by the non vanishing condition of the quantity det (Id — (IC("))Q) = det (Id — Ai3,,) (the
equality follows as before from Theorem 3.3.1 i.e. Corollary 2.1 of [BC12]) that is verified if the operators
Aigp+1 are such that ||| Aizn41]|| < 1. Here and in the following, ||| - ||| stands for the operator norm
induced from the L2-norms on the domain and codomain of the relevant operator.

Supposing that the eigenvalues of C' are in the interval [—1, 1], we are going to show that the inequality
for the operator norm of Ais, 41 holds. Since the operators Aia,+1 defined in (5.1.2), are constructed by

shifting by some component of s the Airy function, we first observe that :
H‘Ai2n+1||| = H’PsAignJAPsH‘a

where Aign 41 is the operator without any shift, namely

A, () = [ Al (2 + 3, 0)f(y) dy.
Ry

considered from and to the space @) _; L?([sx, +0),C) and P, is the orthogonal projection

.
P,: L*(R,C") — @ L*([s, +),C)
k=1
acting diagonally as P, := diag(x[s,,+00))k—1- From equation (5.1.3), we can see the matrix operators
Aisy, 11 written in terms of the scalar operators @Zihﬂ through tensor product. In particular, when there
is no shift we simply have
Aign-‘rl = C® 9

Alopg1”

Finally, using the property of the scalar operator @Zmﬂ proved in Lemma 5.1.12, we conclude that

142, ][ = HO][[ 2%, I < NI

Algpp1
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where the matrix norm of C' above is induced by the 2-norm on C”, i.e., it corresponds to the spectral

radius of C. Then we have
[ Aizn 1 l[] < [[Ps[I]]| AL, 1 |[[[1PsI] < [CII < 1,

and this concludes the proof of one of the implications in the statement.
In order to prove the other implication, we suppose that there exists Ay eigenvalue of C' such that
[Ao| > 1, with corresponding eigenvector vy € C". In this case, we will be able to construct a nonzero

function f,(z) such that there exist a value s¢ for which
Ai%n-}—lfso (JL‘) = £ (1‘),

so we have that the operator Id — Ai3, ., ; is not invertible and thus the solution of the Riemann-Hilbert
Problem 5.1.5 does not exist.

Indeed, consider f(z) := v f(z), for any scalar function f € L(R). Then applying the operator Ai3,,
with a shift §= (s,...,s) for a certain s € R we have

Ai, 1 f(2) = Ajvo R (z+ 5,y +5)f(y)dy,
+
where Kaj,, ., is the n-th generalized scalar Airy kernel (cfr. equation (1.2.34)). The corresponding kernel
operator is self-adjoint, trace-class and in particular compact, acting on L?([s, o)) (see e.g. [CCG19]).
We consider its maximum eigenvalue u(s) and the corresponding eigenfunction fs(z). Finally by taking
fo(z) = vofs(z) we get
A, 16, (2) = ()L, (o).

Since A3 > 1 and p(s) is a continuous function such that p(s) — 1 for s — —oo and u(s) — 0 for s — +o0,

there exist a value sy € R for which the above equation reads as
Aign+1f50 (xv 5_6) = fSo ($)
And this completes the proof. O

Remark 5.1.13. As a byproduct of the theorem above, we have that the operator Ai, 41 is bounded
from above by the identity. We can actually show that Ai3, +1 is also limited from below : indeed they
are all totally positive on C := {1,...,r} x R (for n = 1 [BC12] already proved it, and here we extend
the proof for all n). The main idea to show this is to interpret Ai3, ., as a scalar function on C x C, in

this way : for any couple (£1,&2) = ((j1, 1), (Jo,z2)) € C x C we have

T
AignJrl(gl,gg) = 2 Cjy1,kChk,js / Algpy1(xy + 2+ S5, + sg)Aigp1(x2 + 2 + Sj, + si) dz.
k=1 Ry

In this way the claim is proved if we prove that for any natural L, the quantity

det (AlgnJrl (faa gb))a,bSL
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is positive.

In order to do this, we first rewrite Ai, , ; (¢1,&2) using the product measure du(¢) on C given by the

product of the counting measure on {1,...,r} and the Lebesgue measure on R. Thus

A3, 4 (6ar ) = | B (€ O Fona (6,6) dn(©), (5.1.17)

where we defined the function Fy,11(&q,¢) = ¢j, kAlan+1(x1 + 2+ sj, + sk). In this way we can determine

the sign of the determinant, indeed

det (Aign+1(§a7 gb))a,bgL det < . F2n+1 (gaa C)F2n+1 (Ca Eb) dﬂ(f))

a,b<L

L
_ % [ det(Fona (G, €0)) et (P (6, &) | | dpt6e)

T c=1

1 L
= ﬁ Ci |det(F2n+1(€a7£c))|2 (E d,u(ﬁc) > 0,

where in the first passage we used a general property in measure theory, the Andreief identity (see here
[BDS16] for details), and in the last one we used the fact that C' is hermitian.

In conclusion, by taking C' an hermitian matrix with eigenvalues laying in the interval [—1,1], any
Ai3, ., is hermitian and thanks to Theorem 5.1.11 and the previous remark, we can say that any Ai3, .,
defines a determinantal point processes on that space of configuration C (directly by applying Theorem
2.1.5). In particular this implies that the Fredholm determinants F (n) (81,...,5-) are the joint probability
of the last points for some multi-process on R (by Corollary 2.1.9), namely

F(")(sl,...,sr) = P(xmax < 8, 1= 1,...,r).

i

5.2 Matrix Painlevé II hierarchy

In this section, we are finally going to define our noncommutative Painlevé II hierarchy. In the fol-
lowing, we will consider U(3), W(5) as functions depending on the parameters sy, ..., s, with values in
Mat(r x r,C).

In this context we will use the standard notation for the commutator and anticommutator between
two matrices :
[A,]=A-—-A and [A4,-]4 =A-+- A

In order to define a fully noncommutative version of the PII hierarchy, as already anticipated in the

introduction, we first define a sequence of differential polynomials £,,[U] through a matrix version of the
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5.2. Matriz Painlevé II hierarchy

Lenard operators. Following [GPZ16] :

1
LO[U] - 5[1»,

d d? d d d !

EE”[U] = <ds3 + [T, -]+£ + @[U 1+ + [T, ~]$ (U, -]) L,-1[U], n > 1. (5.2.1)

Here I, denotes the identity matrix, % denotes the differential operator defined in (5.0.5) and %_1
denotes the corresponding formal antiderivative. The locality of these operators computed in U follows
from Theorem 6.2 in [OW00].

Example 5.2.1. The first of the differential polynomials in U given by the recursive formula (5.2.1) read

as follows :

‘Cl [U] = Ua
Lo[U] = Ups + 3U?,
L3[U] = Uss + 5[U, Uas]+ + 5U2 + 10U3.

From n > 3 the “noncommutative” character of these operators appears in form of anticommutators.

Remark 5.2.2. In the example above and in the following we use the shorter notation (%)nU = Uns

for any n € N.
Definition 5.2.3. We define a matrix PII hierarchy as follows

PIIG o] ((fs +[W, -]+) Lo[U] = (1)1 [S, W], + anl,, (5.2.2)

where U is as in the scalar case, the Miura transform of the function W, i.e., U := %W — W2, and a,
are scalar constants.
In particular we will study the homogeneous hierarchy, setting a,, = 0 for each n.

Remark 5.2.4. It is also possible to define a more general hierarchy, in the following way

n—1

S ((ﬁg W, -]+> L[U]

=1

P[] : (Cﬁg W, -]+) L.[U] +

= (=14 [S, W], + anl,,

for some scalars tq,...,t,—1. We recover the hierarchy (5.2.2) setting up these scalars to 0. Another

matrix hierarchy was introduced in [GPZ16], but there the time variable is a scalar.

Example 5.2.5. Here are the first three equations of the homogeneous hierarchy (5.2.2).

e For n = 1 we obtain the noncommutative analogue of the homogeneous PII equation :
PlInc: Was = 2W3 +4[S, W], (5.2.3)
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This coincides with the homogeneus version of the fully noncommutative PII equation studied in

[RR10], in a more general context of any noncommutative algebra with derivation.

e For n = 2 we have the 4-th order equation :

PIGY: Was = 6W5 + 4[W2 Was], + 2WWasW +2[W3, W],
+ 6WsWWs — 4%[S, W],

e For n = 3 we have the 6-th order equation :

PIIGY: Wes = 20W7 — 15[Was, W] — 20W2WasW? — 10[WWasW, W2]
—10[W5,W?], — 15[WWZW, W], — 20WsW°Ws
— 25[WsWWs, W?], = 5[WsW?Ws, W], —10WWsWWsW
+ 6[Was, W?| + 2WWysW + 4(WsWssW + +WW3sWs)
+I(WWsWss + WssWsW) + 15(WsWWss + WasWWs)
+25[Was, W3], +20WsWasWs
+11[Wis, W], + 20WasWWas + 4°[S, W],

A fundamental property of matrix Lenard operators (that we are going to use in the next section in
order to find the Lax pair for the hierarchy (5.2.2)) is given by the following formula (see [GPZ16]).

Proposition 5.2.6. For each n € N the matriz-valued Lenard operator acting on the Miura transform

factorizes like

)= (- ) (- ) () sl G2a)

This formula is achieved by the direct computation of the recursive formula for the noncommutative
Lenard operators computed in the Miura transform U = Wg — W?2. It is exactly the analogue of the

factorization formula (1.2.14) that we described in the scalar case treated in Chapter 1.

5.3 The isomonodromic Lax pair

In this section we are finally going to find out a Lax pair for the noncommutative hierarchy (5.2.2),
making use of the Riemann-Hilbert Problem 5.1.5 introduced in Section 5.1.

To start with, we consider a new sequence of functions, defined using the solution of the Riemann-
Hilbert Problem 5.1.5.

Definition 5.3.1. For each n € N, we construct
TN, 5) = ZMW (N exp (0 ()) @ 03).
It is easy to check that these functions {\P(")}neN actually solve a new sequence of Riemann-Hilbert
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5.8. The isomonodromic Lax pair

problems, with constant jump conditions. Namely, the following problems.
Riemann-Hilbert Problem 5.3.2. Find a (A-)analytic matriz-valued function
TN C\(v? uq™) — GL(2r,C)

admitting continuous extension to the contour v} U Y™ from either side and such that it satisfies the

following two conditions :

e the jump condition for each A € v} Uy~

\v&”(A):w&")(A)( " CW”)

e the asymptotic condition for |\| — o

g ) (IQT + Z

j=1

)exp 9(")( )®03).

As it is standard in the theory of isomonodromic deformations, we deduce the Lax pair for the
noncommutative PII hierarchy (5.2.2) from the Riemann-Hilbert problems with piecewise constant jumps
solved by W(™) | The main idea is the following : using the fact that each ¥(") has constant jump condition

(i.e., the jump matrix K (") does not explicitly depend on the spectral parameter A or the deformations

parameters s;, ¢ = 1,...,7), we can thus conclude that the quantities
i\w”)(\p(”))’l L™ and gt (W™ = (5.3.1)
ds 132

are matrix-valued polynomials in .
Remark 5.3.3. Here the inverse of ¥(™ is simply given by
(T)THA) = exp (=0 (\) @ 03) 0™ ().

Furthermore, by using the symmetries of the Riemann-Hilbert Problem 5.1.5, we can compute the

exact form of the coefficients of these polynomials L"), M ().

The final result is summarized in the proposition below.

Proposition 5.3.4. There exist two polynomial matrices in X, which we denote with L™ and M,

respectively of degree 1 and 2n, such that the following system of differential equations is satisfied :

%\I;(n)()\7§‘) — L(n)(A’g)qJ(n)()vg*)?
AT (N, 5) = MM (X, 3T (N, 3). (5.3.2)
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Chapter 5 — The matrix Painlevé II hierarchy

Moreover, L") and M) have the following forms

LY (A, 8) (W(g,) —iAIr>’ th W(8) =26, (5),
and
—iG(\,5) —A(M5) —iS F(\35) E(\3)
where

ANE) = Y SN Ay i (8), with Ag = I,
k=0

L
G\3) =) §A2”*2’“G2n_2k(§)7

k=1
n .
o
E(\ 5) = Z §>\2n P B ok 41(3),
k=1
& i
F(\ 38 = Z 5/\2n72k+1F2n—2k+1(§’)-
k=1

Proof. We start computing the logarithmic derivative of ¥(® w.r.t. S, namely the quantity that we
defined in (5.3.1) as
d

A g (g .= o)
U (w) = L,

The matrix-valued function L™ is entire in A, since it has no jumps along v} u 2. Furthermore, its
asymptotic behavior at infinity is given by a matrix polynomial of degree 1 in A. Thus, by the generalized
Liouville theorem, we conclude that L(™ is exactly a matrix polynomial of degree 1 in \.

In particular from the asymptotic expansion at oo, we find an explicit form of its matrix coefficients.
Here and in the following series expansions in powers of A we will use the notation [ ]s¢ to indicate that

we are taking only the powers \" with r > 0.

=(n) (n)
d _ = ) o'
L) = g™ ()7 = KI“Z S ) ho (IWZ ¥ )1
=0

j=1 j=1

=i\G3 + 1(55”)63 + &3@571)) =i\G3 + i[Egn), 5'3] =1iA\d3 + QﬁYL) ® o1,

where in the last two passages we used the fact that @gn) = —Egn) and then the symmetry (5.1.8).

We can then consider the second quantity defined in (5.3.1), namely

0 —1

Z gy (g =M™

v ()

We use the same argument as for L(™). Indeed, also M (™) is entire in A, since it has no jumps along
74 ", Its asymptotic behavior at infinity is given by a matrix polynomial of degree 2n in A. We

thus conclude, by the generalized Liouville theorem, that M (™) is exactly a matrix polynomial in A of
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5.8. The isomonodromic Lax pair

M(")()\) =0, 0™ (q;(n)) -1

=M\ (i,
= [2T+Z )J\j << 3 +1S)®03> I2T+Z
j=1 j=1

degree 2n. In particular from the asymptotic expansion at o0 we can find an explicit form of this matrix :
i)\2n 2n )\271 l —.(n) . (n)
= B O’3+IS®03+Z +O’3@ + 2

=1 j:g+k=l

(n)
_]\/[2n l

[I]
/_\
i ML

FA
v
N~

In order to obtain the remaining part of the statement, we use the following lemma.

Lemma 5.3.5. The coefficient of the term N*"~' in the matriz M) is such that :

o ifl =2m, then
M 5 = Ao ()65 + Gan—om (962

o if instead | = 2m — 1, then
MQ(Z)_Qm+1 = E2n—2m+1(§) ® IQT + FQn—Qm-&-l(g)a'l-

Proof. The proof is a direct consequence of the symmetry property that the asymptotics coefficients of
= 0" have. We start with the even case | = 2m. The coefficient of the term A2”~2" in the matrix

M) is given by the following sum :
2m—1
M <:<,,3 T ( S >))
J: jt+k=2m
where in the last sum all the terms are of type

—=(n) A (n) —=(n) (n)
Eas 03951 ) or  Z23,2103050, g1

Using the symmetries (5.1.8) and (5.1.9), a direct computation shows that these terms are always linear
combinations of the Pauli’s matrices &4, 3.

So we can conclude that

MM, = Asp—2m(5)03 + Gon—2m(5)52.

2n—2m

where the functions A, _2,,,(5), Gan_2m(5) depend on the asymptotic coefficients of =) @),
We work in the same way for the odd case, | = 2m — 1. The coefficient of A2*~2m+1 is given by the

same formula

2m—2
MszzzmH:(a;:,z_lerm@gzz_ﬁ I (2 ol ))

jij+k=2m-—1
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Chapter 5 — The matrix Painlevé II hierarchy

where in the last sum there are just terms of the two following types

=(n) A @(n)

(n)
=5, 0 or st 10 3@

s)—1

In both of the cases, always replacing the symmetries (5.1.8) and (5.1.9), they result to be linear combi-
nations of Is,., 1. Thus we can finally conclude that

MQ(Z)—2m+1 = Fopn—2m+1(5) ® oy + Fon—2m+1(5)61. O

Thanks to this lemma, the form of the matrix M is exactly the one of the statement and the

proposition is completely proved. O

Remark 5.3.6. The system (5.3.2) for ¥(®) describes the isomonodromic deformations w.r.t. the defor-

mation parameters s;, i = 1,...,r, of the linear differential equation

8%\11(”)()\’(;) = M(n)(/\g)q;(")()\, g),

that has only one irregular singular point at oo of Poincaré rank » = 2n + 1, and in the special case of

symmetry
—51 MM (X, 5)6, = MM (=), 7).

We can finally state that the system (5.3.2) is an isomonodromic Lax pair for the matrix PII hierar-
chy (5.2.2).

Proposition 5.3.7. For each fized n, the compatibility condition of the system (5.3.2), i.e., the equation

L) — S MO, 8) + [LY (5, MO, 9] = 0 (5.3

1s equivalent to the following equation
d n+1l,n

Furthermore, the coefficients of the matriz M™) are written in terms of the matriz Lenard operators in

the following way

o =3 (1) (ck[U] - (;S gy ) (5 00 ) 2o
G =3 (1) (& - o) (- ) ),
P @=i(1) ( W (71 + g ) £,

Fon_or1 () = —i (-i)k 1 (([W 1 ddS) Loa[U ]), for k=1,....n. (5.3.4)

In other words the system (5.3.2) is a Laz pair for the matriz Painlevé II hierarchy (5.2.2).

74



5.8. The isomonodromic Lax pair

Proof. We first rewrite the compatibility condition (5.3.3) as the following system of differential equations
for the coefficients A, F, G, E :

d
EEO‘V;) = [VV, F()\, 5')]7

15 AN 8 = —W.GO )],

L P8 = —20G (08 + W, B\, 3],

EF
LGOS = AP 3) + W, AR, ]~ [5, W],

These equations must be satisfied identically in A. Thus, by the polinomiality of the coefficients A, F', G,

E, this system is equivalent to the following one

d
@Ezn—%ﬂ (5) = [W, Fan—ar4+1(5)],

4
ds

d .
@A2n72k(§) = —i[W, Gan—2k(5)]+,

1 d
Gan—2k(5) = 5 <—dSF2n—2k+1(§') + [, E2n—2k+1(§7]> ;

A2n = O,

Fona(8) = =5 W, Aaa],
Fop_op—1(8) = % ((ﬁqun—2k(§7 —i[W, A2n—2k(§)]+) ,
1 @) = I8, W], — %[W, Ao(®]s  for k=1,....n. (5.3.5)

In order to prove the statement, we are going to prove by induction over [ = 2n — j that each coefficient
Asn—oky Eon—2r+1, Goan—ak, Fon—ok+1 is given by the formulae (5.3.4) and that this implies that the last
equation in the system (5.3.5) is exactly the n-th member of the PII hierarchy (5.2.2).

We first check that for [ = 2n — 1,2n — 2 the formulae (5.3.4) are solutions of the equations (5.3.5),

i.e., the coeflicients Fy,_1, Eop_1, Gapn_o, Aon_o, are given by these formulae.

Since As,, = I, the equation

— A2, =0

is satisfied. Then, the equation for F5, 1 will be satisfied for
oy = —iW,

that is exactly the result of the formula in (5.3.4) for k& = 1, since

= (_DO <([W, Je + ;5) L‘O[U]) — W
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As a consequence, the equation for the coefficient Fs, 1 in the system (5.3.5) becomes

d
@Eanl(g) = 07

thus Es,_1 is constant w.r.t. the variable S and it is in particular Es,_1 = 0, because of the asymptotics

of W™, This is also what is given by the formula for k =1 :

i (—fl) a4 (11 (021 + 5 ) 2oltn) =

We can then compute the term Ga,_o for which the equation in (5.3.5) is now

1d, .
Gon—2 = —§£<—1W) = - Ws,

that coincides with the formula

S0 (- mes ) (e me ) eon) = 2w

Finally, we can compute the term A, _o. It is supposed to satisfy, from the system (5.3.5), the equation

d . 1
EAzn—z = *I[VV, G2n—2]+ = 5[1/‘/, WS]+~

Integrating and taking the constant of integration another time equal 0 (for the same reason used above)
we get
1
Agn_Q = §W2

The same that is given by the formula
1/ 1\’ d a-! d
3 (—4> </31[U]— (dS_[VVa ']E (W, ']) <dS+[W’ ']+) EO[U])
_ Love_wer_
=3 (Ws — W? — Wg).

Thus for k = 1 the formulas in (5.3.4) gives solutions of the system (5.3.5).

Now we proceed by induction : supposing that for [ = 2n — 2k + 1 the coefficients Esj,—ok+1, Fon—2k+1
are given by the formulas (5.3.4), we will find that then also the coefficients for | = 2n — 2k and | =
2n — 2k — 1 have the form given by the formulas (5.3.4). Indeed, from the equations in (5.3.5), we have

Gan-ar(d) = 5 (=g Fon-21 (9 + V. Bun i (9]) = 3 (—i (1) (i d) cmm))

(o () (e (w5 )

) (B ) ()
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that is exactly the formula in (5.3.4) for this coefficient. Then we can compute

ds 2\ 4 das
«((35 - 2w 1) (45 + 91 £aao)

L (_DH (1 - (5 - ) (& + v ceaien).

where in the last passage we have integrated (taking the integration’s constant 0) after having applied

—1 k—1 —1
Agp—oi(5) = *ii (W, Gon—2x(5)]+ = E (1) d (W, -]+

formula (5.2.4). Then the equation for Fs,_o;_1(S) reads as

1/d
oy op 1= 3 (dSGQn—Qk(g) —i[W, A2n—2k(§)]+>

-1 ((ﬁ% (1) (& -wal o) (& v o) mm))
- ;<[W, RGN (ck[U] (5 -y )

« (5070, ckl[U])) _— (—i) (5 + 71+ &alo,

where in the last line we used another time property (5.2.4) of the matrix Lenard operators. Finally, the
formula for Fs,_or_1 directly follows from the equation above and taking the integration contant equal 0,
while integrating the equation (5.3.5).

In the end, when we replace the formulas for G, Ay in the last equation of the system (5.3.5), namely

14 @ = —[s.W].

2dS [W7AO(§')]+)

1
2
using another time the property (5.2.4) we get the n-th member of the Painlevé II hierarchy :

(171 + 55) £al0] = (1[0 -

Remark 5.3.8. The matrices L™, M) obtained here, are the analogue of the Lax pair for the scalar
homogeneous Painlevé IT hierarchy obtained in [CJMO6], written in Theorem 4.3.3, with W (3) given by

26" (5) = =2 lim (A2)(3)), , = W(3).

|A|—00
Also, the proof by induction previously done, it is inspired by the technique used in [CIMO6].

We can then state and prove the final result of this study, that links solutions of the homogeneus

matrix Painlevé II hierarchy (5.2.2) to Fredholm determinants of the matrix Airy operators.

Corollary 5.3.9. There exists a solution W of the n-th member of the PII hierarchy (5.2.2) connected
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to Fredholm determinant of the n-th Airy matriz operator (5.0.3) through the following formula

d2
—Tr (W3(3)) = Toz In (F™ (s1,...,5,.)). (5.3.6)
This solution W has boundary behavior (W)Z,l=1 ~ —2(cpAlgni1(sk + 51))2,1:1 in the regime s — +o0

with |6;| < m for every j, where s := % Z; 1 8 15 the baricenter of the variables s;, and 0; := s; —s.

Proof. We first prove the formula (5.3.6). The statement is achieved by Theorem 5.1.9 and the relation

between agn), YL) given by

d n . n)\ 2
5 al = —2i(p™)?. (5.3.7)

This relation holds for each n and it is obtained by looking at the coefficient of the term A™! in the

asymptotic expansion at oo of
d

(n) ()~
)

i

and recalling that it must be 0. Indeed, from the asymptotic expansion of ¥(") we have that the power

A~! coming from the formal asymptotic expansion of ££¥(™ (\IJ(”))f1 is!

~(n @<n>
[(IQT + Z ) iAG3 (IQT + 2 )1
j=1 j=1 1

i n d
=>\<_é )03+03® )—l—_l a@ )—&-ds_l)

d -1
— g (gn)
as v ]_1

And replacing in the coefficient of A~! the relations between the asymptotic coefficients of ©) and the

ones of Z(™) | namely

the result is exactly the relation (5.3.7).

Now we are going to prove the second part of the statement. We define the scalar variables s =

%Z;=1Sj and §; :=s; —sforany j =1,...,r

We are now going to study the behavior of the solution W for
s — +0 and 0] <m Vj. (5.3.8)

First, we rewrite the Jump matrix J(™ (), 5) of Riemann-Hilbert Problem 5.1.5 in terms of the rescaled

complex parameter zs o=\

In particular we obtain that the jump matrices along v} and along 7", are factorized in a product of

1. Here the notation [ ]—1 indicates that we only take the term A~! in the relevant formal series.
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5.8. The isomonodromic Lax pair

commuting matrices, written in terms of the rescaled parameter z and the variables s, J;. Namely,

Iy, — 27ir(™ (izsﬁ) ® 04 X1 (zsﬁ)

r L 2ntL oot Sp+3y
_ H <127' + Ckleils 2 ( 2n+1*+2(2+ s >)Ek,l ® O+ X7n (Z)) , (539)
k=1 B
where E},; are the elementary matrices and oy = (§§), o— = (1) and 5% are the transformed contours

under the scaling A = Z8%0 .

Now, we are going to show that each matrix in the factorization (5.3.9), that we denote by F, ,:—E, is close
to the identity matrix I, in the regime fixed in (5.3.8). Remark that every F; ,5 has 2n critical points,
corresponding to

zg:dﬁei%(%*l), h=0,...,2n—1,

where dy; = 2 + @ is real, positive and bounded, while looking at the regime (5.3.8).

We can then split the curves 7} respectively in the curves 7% ,, one for each factor F,:—E appearing in
the factorization (5.3.9). The curves 4} ;; pass respectively through the points z with h=0,...,n—1
(in the upper plane) and h = n,...,2n — 1 (in the lower plane).

In this way, we can then evaluate the co-norm of each term Fkil — Iy, and we have

2n+1 2n+1
Fs 2n %(7227#1 +zdgi

+ ) Fo2n(sdi) B sin(+5%)
| = Tar||, = lewi| sup e = |opife T zET M =) >0

Ze’@,kz
for s — +00 and [6,;| < m V.
We can conclude that the rescaled jump matrix itself J (") (sﬁ z) is close to the identity matrix in the
regime (5.3.8), since each factor F, k;? in its factorization shares this property.

Consider now the rescaled function X () (z) := =(*) (zsﬁ) By using Riemann-Hilbert Problem 5.1.5
solved by =™ we have that

e X is analytic on C\¥% uA™ and it admits continuous extension to these curves from either side;

e its boundary values Xy (z) while approaching 47 U A" from the left and respectively from the
right, are related through the jump condition (5.1.6) but with the rescaled jump matrix computed
in (5.3.9);

x(m

o for |z| — 400 we have X ~ I, + 2js1

zJ

Remark that we have X{n) = S_ﬁzgn)-

By applying the small norm theorem (one version was stated in Theorem 3.1.8, i.e. Theorem 1.5.1 in
[TIts11]), we conclude that the function X ™ () behaves as

2n+1

XM (2) = Iy + O(z71e™ @), s — 4w, 4| <m Vi, (5.3.10)

for a certain value C' > 0.

Now, using the integral formula [ITKS90] for the rescaled solution of the Riemann-Hilbert Pro-
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blem 5.1.5, namely X (z), we have that

X" (2) = I, — / X2 us) @ o dw — / X2 os) @0 dw,
bl

;Yi w—z n w—z

and thus we recover the following expression for the first asymptotic coefficient
(XM, - / X (w0)r™ (w5 ) du.
Am
Finally, by recalling the definition of W and using (5.3.10) we conclude that
W = —21(5&"))172 — —2is7" ] x™ (w)r™ (wsﬁ)du) ~ —=2(cpAignt1(sk + 51))ki=15
e

in the regime (5.3.8).

Remark 5.3.10. Relation (5.3.6) can be thought as the noncommutative analogue of the results proved
in [TW94b] for the Painlevé II equation and in [CCG19, LDMS18] for the scalar Painlevé II hierarchy,

connecting the theory of Painlevé trascendents to the determinantal point processes theory. For the

noncommutative Painlevé II equation (5.2.3), i.e n = 1, this link was already established in [BC12] and

here we actually extended that result to the noncommutative hierarchy (5.2.2).
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CHAPTER 6

THE INTEGRO-DIFFERENTIAL PAINLEVE
Il HIERARCHY

HE AIM OF THIS CHAPTER is to prove the main result contained in the joint work with Thomas
Bothner and Mattia Cafasso [BCT21]. This paper is devoted to study the Fredholm determinants

of a finite temperature version of the Airy kernels previously introduced in Chapter 1, through equation
(1.2.34). Specifically, their finite temperature version is defined for any n € N and for a given weight

function w satisfying the requirements written below.

Definition 6.0.1. We consider a weight function w : R — R, as any positive, strictly increasing and
differentiable function, such that for some w, xg > 0,

lirfoow(x) =1, lirzlocw(az) =0 and 0<w'(z) <e vkl Vx| > . (6.0.1)

For any fixed weight function with the above properties, we construct the following operators.

Definition 6.0.2. The finite temperature higher order Airy kernels are integral operators Ky ,, : L*(R;) —
L?(R,) acting through the kernel

Kin(z,y) = / Algpi1(z + 2z + ) Algp1(z +y + H)w(z)dz, teR. (6.0.2)
R

These operators Ky, are proved to be trace class on L?(R.) so that their Fredholm determinants
D, (t,A) = det(1 — Ay ) (6.0.3)

are well defined for any (¢, A,n) € R x C x N. As it happens in the scalar case for the Airy kernels (1.2.34),
and in the matrix-valued generalization for the square of the Hankel Airy operators defined in (5.1.2), also
in this finite temperature case the operators AK; ;, define uniquely a determinantal point process for every
(t,\,n) € R x [0,1] x N, so that the Fredholm determinants D, (¢, \) are the distribution functions of the
last particle in this process. In this specific case, the interest in the study of the Fredholm determinants
D, (t,A) is moreover given by the applications that they have in statistical mechanics. Indeed, they were
used in the paper [LDMS18] to describe some statistical quantities related to a model of free fermions
in anharmonic traps at finite temperature. More specifically, in this paper the authors explained how
D, (t,1), when the weight function w is chosen to be the Fermi factor, is equal to the edge scaling

limit of the probability distribution of the largest momenta in this specific fermionic model. This was

81



Chapter 6 — The integro-differential Painlevé II hierarchy

indeed the main motivation for us to study the Fredholm determinants D,, (¢, A). For other occurences of
these Fredholm determinants see for instance [ACQ11, Joh07]. In particular, our first aim was to find a
Tracy-Widom type formula relating the Fredholm determinants D,, (¢, A) to some distinguished Painlevé
IT trascendents of some kind, generalizing the classical result of Tracy and Widom [TW94a]. The process
that allowed us to achieve this result has two new remarkable features : the usage of operator-valued
Riemann-Hilbert problems to study the Fredholm determinants D,, (¢, ) and the definition of an integro-
differential Painlevé II hierarchy. The definition of this new hierarchy though, does not use any more the
Lenard recursion as in the scalar classical case and in the matrix-valued generalization treated in the
previous chapter. It uses instead some recursion operators £% that remind of the Airault’s construction
[Air79] of the Painlevé IT hierarchy that we saw in equation (1.2.27).

Definition 6.0.3. Given a function R? 3 (t,2) — f(t|x), we denote by D; the ordinary t-derivative and
by D; ' the t-antiderivative, so that (D; *D.f)(t|z) = f(t|z). Now define, for given u = u(t|x),

i(Def)(ta) —i((Dr Hu, £})(tlz, ), wy — 21(Dy u, £)u(t]z),
i(Def) () +i{(Dy [u, f)(t, ), ),

(LLI)(E) :
(LLf)(tlw) -

where the rank two integral operators [a, 5] := a® f — f® « and {a, 8} := a ® 8 + 8 ® a have kernels
[a, B](t]z,y) = a(tlz)B(tly) — Btlx)altly), {o, B} (tlz,y) = alt|z)B(tly) + B(tz)a(tly),

and (-, -) denotes the weighted bilinear form

Gooi= [ Hlldgtle) @) e, w'(@) = o)

The relevant integro-differential Painlevé IT hierarchy is then defined as a sequence of integro-differential

equations through the recursion operators £ in the following way.

Definition 6.0.4. For each n € N, the n-th member of the integro-differential Painlevé II hierarchy is

defined, for a function u = u(t|z), as

—(t + 2)u(tlr) = ((£2L%)™u)(t]z) (6.0.4)

In particular, using the shorthand
u=u(tle), o =(Du)(tle), u"=(Diu)(tlx), u" = (Dju)t|z),
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the first three members read as

n=1: (t+ 2)u = u" — 2ulu,u), (6.0.5)
n=2: —(t+z)u= u" —4a"(u,u)— 8/ uy — 6udu, u”y — 2ulu’, u'y + 6ulu, u)?, (6.0.6)
n=3: (t+z)u=u""—6u""{(u,uy— 8ulu",u) —24u" (v, uy — 190’ (u, "y — 13ulu” , u"y
— 31" uy — 1ludu” u”"y — 250" u'y — 450’ Cu”  u'y + 150" Cu, u)?
+ 55udu, up(u”, wy + 60u' (' wyu, wy + 25udu’, u' Y u, u)y + 55udu’, uy? — 20udu, uyd.
(6.0.7)

We observe that for the choice of the weight function w’(z) = do(x) (the delta function at x = 0) the

classical equations (1.2.23), (1.2.24) and (1.2.25) are recovered from the above ones, at least formally.

Remark 6.0.5. Even though the operators LY involves t-antiderivatives, the members of the hierarchy

(6.0.4) are always local. Indeed all the terms involving D; ', are shown to be local.

Remark 6.0.6. The choice of the weight function w enters in the definition of the recursion operators
% and thus of the hierarchy (6.0.4) and its solution u(t|x). But the dependence on w of u(t|x) is not

underlined in our notation.

Even though the definition of this integro-differential Painlevé II hierarchy is new, equations (6.0.5)
and (6.0.6) already appeared in different papers. With w being the Fermi factor, equation (6.0.5) appeared
in [ACQ11], while both equations (6.0.5), (6.0.6) appeared in this recent work [Kra20] where the author
was studying the Fredholm determinants D,, (¢, 1) in relation to some Painlevé IT trascendents but without

the underlying Lax pairs. The main statement of this chapter, Theorem 1.2 of [BCT21], is as follows.

Theorem 6.0.7. For every (t,\,n) € R xD1(0) x N, with the closed unit disk D1(0) := {Ae C: |\ <1},

Du(t, A) — exp [— /t “5-1) ( /]R W2(sl2)w () dx) ds], (6.0.8)

where u(t|z) = u(t|z;n, X) is the unique solution of the boundary value problem

—(t+ z)u(tlz) = ((LLLY) ) (t|2), u(t|x) ~ A7 Al (t + x), t— +oo. (6.0.9)
The mapping t — u(t|z;n, A) is smooth for any (z,A,n) € R x D1(0) x N, the asymptotic expansion in
(6.0.9) holds pointwise in x € R and we choose an arbitrary fized branch for A2,

Remark 6.0.8. Our Theorem 6.0.7 recovers for n = 1, A = 1 Proposition 1.2 of [ACQ11]. Although the
method used in that paper is completely different from the method we are going to use here. The same
result for that particular choice of the parameters was proved again in [Bot21] using operator-valued
Riemann-Hilbert technique, and this is indeed the paper that mostly inspired our methodology here.
However, we notice that the Riemann-Hilbert problem used in [Bot21], for the case n = 1,A = 1, is

different from the one used here.

The rest of the Chapter is devoted to the proof of Theorem 6.0.7. This requires essentially four steps,

each one treated in the following sections.
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Chapter 6 — The integro-differential Painlevé II hierarchy

e In Section 6.1 we prove the main properties of the finite temperature higher order Airy kernels on
L?(R ). After that, by using a Fourier technique we prove that the Fredholm determinants D, (¢, \)
are equals to the ones of some new integral operators acting on a bigger space L?(X), with ¥ the
contour introduced in (6.1.27). In particular these new operators can be considered as an infinite
dimensional versions of the standard integrable operators. This kind of operators can be studied

through operator-valued Riemann-Hilbert problems, and this is done in Section 6.2.

e In Section 6.3 we deduce an operator-valued system of differential equations, w.r.t. the complex
parameter ¢ and the deformation parameter ¢, starting from the solution X(¢) of the Riemann-
Hilbert problem 6.2.1. The main ingredient in this computation is the relation proved in Corollary
6.2.13. Moreover, we prove that this system is an operator-valued Lax pair for a coupled system of

Painlevé II type equations, involving the operators U, V defined in (6.2.40) in Section 6.2.

e Finally in Section 6.4 we prove that the Lax pair deduced in the previous section, yields the integro-
differential Painlevé IT hierarchy (6.0.4). This is obtained from the reduction of the coupled systems
of differential equations for the operators U, V, by looking at their kernels.

Remark 6.0.9. In the work [BCT21] we also derived an expression for the Fredholm determinants
D, (t,\) similar to equation (6.0.8) but involving instead of u(¢|x) another function v(t1,te,+1|z) that
turns out to be a distinguished solution of an integro-differential modified KdV hierarchy. The result is
obtained exactly in the same way as Theorem 6.0.7, but in the case where the weight function w actually

depends on a positive real parameter «. Defining the new variables depending on a;, n,t as

0627L+1

= R =—€eR .0.1
tq at e s t2n+1 1 € R4, (60 0)
this new integro-differential modified KdV hierarchy is then defined as
ov v v am OV
7(t1,t2n+1|$) = (,C_,C+) - (tl,t2n+1|l'), (tl,t2n+1,.’£) eR x R+ x R. (6011)
Oton+1 oty
The first equation of the hierarchy is written as
v v ov ov
— =—== +3— 3v{ — 6.0.12
o, ~ o ot ”<at1 ’U>’ (6.0.12)

where (-, -) denotes the weighted bilinear form as defined previously in Definition 6.0.3. For the exact

statement and its proof we refer to Section 7 of [BCT21].

6.1 Manipulating the finite temperature Airy kernels

First of all, we verify that the Fredholm determinant of the higher order finite temperature Airy
kernels defined in (6.0.8) are well defined on L?(R,). This is obtained through a classical argument :
we prove that the operator Ky, is obtained as a composition of Hilbert-Schmidt operators on L?*(R;.) for

every (t,n) € R x N.

Lemma 6.1.1. The operator K, is trace-class on L*(Ry) for every (t,n) € R x N.
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6.1. Manipulating the finite temperature Airy kernels

Proof. Recall the definition of the kernel of the operator Ky, given in (6.0.3). We can directly see that
the composition of the two operators M, ,, : L?(R) — L*(R,) and N, , : L>(R,) — L?(R) acting as

Menf) (x) = A Vw(@)Algp i1 (z+y+1) f(y)dy and  (Nyng) (z) = /RAiQnH(HyH)g(y)\/@dy

’ (6.1.1)
gives exactly the operator K;,, = N, M, ,. It remains then to prove that the operators N; ,,, My, are
both Hilbert-Schmidt. In both cases, we need the following condition to hold

/ / |Aigy1(x + y + t)*w(x)dydz < 0. (6.1.2)
RJR,

The estimate above is essentially obtained by splitting the external integral along R and by using the
asymptotic properties of the n-th Airy function (see for instance equation (30) in [BCT21]). Also, recall
the properties of the weight function w(z) given in Definition 6.0.1. In particular, we use here the fact
that w(z) < 1 for every x € R and the exponential decay w(z) < ée** for all (—z) = xo > 0, with ¢ > 0.
We have

/ (/ |Aigni1(z +y + t)‘2 dy)w(:c) dz
R \ /R,
- / (/ |Ai2n+1(w+y+t)|2dy> w(z)da + / (/ |Ai2n+1(—x+y+t)|2 dy) w(—z) dz
R Ry Ry \JR,
< c/ / o~ Tt (@ty+t) dydz + / (c + / |A12n+1(—l‘ +y+ t)’Qdy) w(—z)dz
Ry JR, R 0

<0l1+/R+ (1+1:21")w(z)d11 .
(6.1.3)

Remark that the constant ¢ appearing in the passages above changes from line to line and also it depends

on the parameters ¢, n. O

6.1.1 Some properties of K,

We are now going to prove a couple of properties of the operator K;, that will be useful in the
following. Notice that these properties were proved also in the previous chapter for the matrix-valued
analogue of higher order Airy kernels. In particular we have that

1. the operator Ky, is self-adjoint and such that 0 < K, < 1;

2. 1 — MK, is invertible on L?(R) for every A € D;(0).

The first property yields a probabilistic interpretation for the Fredholm determinants D,, (¢, A). Indeed,
it directly implies (always by applying Theorem 2.1.5 and then Corollary 2.1.9) that for every A € [0, 1] the
operators AK; ,, uniquely defines a determinantal point process and the Fredholm determinant D, (¢, \)
describes the probability distribution of the last particle in this determinantal point process. The second
property is instead fundamental from a technical point view. Indeed, it assures the solvability of the

Riemann-Hilbert problem 6.2.1, as we discuss in Section 6.2.
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Chapter 6 — The integro-differential Painlevé II hierarchy

Lemma 6.1.2. For every (t,n) € R x N the operator Ky, is self-adjoint and it satisfies 0 < Ky, < 1.

Moreover, 1 — AK; ,, is invertible on L*(Ry) for all X € D1(0).

Proof. The self-adjointness directly follows from the definition of the kernel of Ky, in (6.0.3). We have
then to prove the chain of inequality satisfied by K;,. To do that, we start by rewriting the kernel of
K+t n, using the following trick.

From the properties of the weight function w(z) in Definition 6.0.1 and the asymptotic properties of the

n-th Airy function again, we get

th,n

p (x,y) = — / Algpi1(z + 2 + t)Alopy1(y + 2 + t)do(2), (6.1.4)
R

where we just integrated by parts and used the properties recalled above. Here do(z) = w’(2)dz and it
is a probability measure. With this in mind, by applying first dominated convergence theorem and then

Fubini’s theorem we can finally express K, ,(z,y) in this new fashion

*dKs . :
Kin(z,y) =— / ds7 (x,y)ds = /R/]R Algpi1(y+ 2+t + 8)Aigpr1(x + 2+t + s)dsdo(z). (6.1.5)
t +

Using this formulation we see that for every f e L*(Ry), by denoting f(z) = f(z)xr, (z) then

Gt~ [ ][

thus the first inequality for K ,, holds. For the other one, we start by replacing in the computation above

/R g1 (2 + 8)f () da

2 ds} do(z) = 0, (6.1.6)

the integral representation of the n-th Airy function with R as domain of integration. Then by denoting

“ . 2ntl
with fi(y) = \/% Jz e ™ f(x)dx and by g(y) = €' 77T f, (—y) we get

2n+1
Y

[ Aivnia(e + 97 (oo = = [ exp ( (2n S y)> F(—y)dy = §(—s). (6.1.7)

Thus we can replace this computation inside the integral in (6.1.6) and then

Skenban = [ | - -9 as|dote) < [ | [ 1at-0)7as| a00) = iy = lolece

+t
= HJE-&-H%?(]R) = ||f+||2L2(1R) =</, f>L2(R)7
(6.1.8)
where we used multiple times the Plancharel’s theorem and that do is a probability measure. Therefore,
also the second inequality for K ,, holds. Furthermore, this implies that in the L?(R,) operator norm we
also have that ||K; || < 1. This last condition also assures the invertibility on L?(R) of 1 — MKy, for
any A having |A\| < 1.
For the case in which || = 1, we proceed by contradiction. Suppose that there exists a nonzero function
f e L?(R,) such that Ay, f = f for A = € and some 6 € [0, 27) . In turn we have

e Kenforzw,y = fr € Kenfraw,y = Iflln2@,) >0 (6.1.9)
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6.1. Manipulating the finite temperature Airy kernels

thus 6 is forced to be zero. Furthermore, the equations above imply that all the sequence in (6.1.8) is

actually composed by identities. In particular

L[ aoras] as) = e = [ lit-s)7as (61.10)

that yields
z+t
VteR: / [/ gn(—s)zds] do(z2) = 0. (6.1.11)
R —0

Since do is an absolutely continuous positive Borel measure, this implies automatically that

Yy
/ |Gn(—s)Pds =0 a.c.. (6.1.12)

—o0

Thus g(—y) = 0 a.e. and by recalling the definition of the function §(y) we obtain

J(—y) = /RAi2n+1(35 +y)f(x)de =0 a.e.. (6.1.13)

Since the integral in the left hand side of the above equation is a continuous function in y and as a
byprouduct an entire function. Hence we conclude that §(z) = 0 for every z € C and this implies that
f =0 in L*(R). This contradicts the initial assumption, and thus we have that 1 — A, , is injective
for A with unitary norm. By Fredholm alternative then 1 — AK; ,, is invertible in the same range of the

parameter A. O

Corollary 6.1.3. For every (t,\,n) € Rx[0,1] xN there exists a unique determinantal point process with

correlation kernel AKy n, and the distribution function of the last particle in this process equals Dy (t, N).

As underlined before, this follows directly from Lemma 6.1.2, together with the classical results recalled

in Chapter 2, namely Theorem 2.1.5 and Corollary 2.1.9.

6.1.2 From L*(R,) to L*(X)

This last subsection is perhaps the core of the entire section, since we are going to explain how to
associate an operator-valued Riemann-Hilbert problem to the higher order finite temperature Airy kernels
K+t . The main idea is to manipulate the kernel of K; , through the conjugation of bounded invertible
operators, in order to obtain a new integral operator on an enlarged space L?(¥) that has the same
Fredholm determinant D,, (¢, A) of Ky .

Here are resumed the fundamental steps of this procedure

1. First, we consider the operator A\C;,xr, on L?(R), which has Fredholm determinant D, (, \).
Moreover, this operator is shown to be equal, up to conjugation by the Fourier transform and a
multiplication operator, to another trace-class operator called \J;,, on L?(R). Thus we also have

that the Fredholm determinant of this new operator J; ,, is expressed by D, (t, A).

2. The operator J; ,, is explicitly factorized in two Hilbert-Schmidt operators Ay ,,, B,, on L?(R).
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2nm
2n+1 o N 2n+1
{

Ly

FIGURE 6.1 — An admissible (and very simple) choice for the integration paths I', and I'g in (6.1.15),
ensuring throughout 0 < S(a — 3) < § and 3B < 0 for (o, 8) € 'y x I'g.

3. We can then consider J; ., as an operator J;, on L*(T'y) for I'y some line in the complex plane
parallel to the real line and sufficiently closed to it. The factorization of J; ,, is in some way preserved
for J,, on L?(T',), through operators Aj ., By, properly redefining domain and codomain of the

operators Ay n, Bn. Again, \Jy, is trace-class and its Fredholm determinant coincides with D, (, A).

4. Finally all these operators J;,, A¢ ,,, B, can be extended on a bigger space L?(X) for ¥ a prescribed
contour on the complex plane containing the line T, as J5', AZ%, BeX. On L*(X) the operator
Tt is still trace-class and factorized through the Hilber-Schmidt operators A%, Be*. But now
these last two operator are trace-class too on L?(¥) with zero operator trace and they are also

nilpotent.

5. With these properties of A?f‘,f, B we can directly conclude the aimed relation

Dy(t,\) = det(1 — A2Cy ), (6.1.14)

for Cy,, = Af5y + Byt The operator Cy,, obtained in this way has kernel explicitly written in

equation (6.1.32), in an infinite dimensional integrable form.

The starting point of all these manipulations is, again, the integral representation of the n-th Airy
function, that we already used during some proofs in the previous chapter. In this case we are going to

use both its integral representations

1

) i . 1 )\2n+1
Aigpi(z) = %/F en (@) — _

—/ e Wn@  with b, (z) =
]

+ Az (6.1.15)

s 2n+1

where Iy, resp. I'z, denotes any smooth contour oriented from c0e'® to ooe'®, resp. ooel® to ooe?, with

2 2 2 4 1
€ i,?‘( and be O,L , resp. ce€ W,M and de M,QTF ,
2n+1 2n+1 2n +1 2n+1
such that 0 < $(a — 3) < 4 and I3 < 0 is satisfied for a € T'y, and § € I'y with w > 0 as in (6.0.1),

see Figure 6.1 below for a possible choice. These constraints for the contours implies in turn from (6.0.1)
that

V(a,B)ely x g : liIJIrl (=B () = 0, lim (@ By(z) = 0.
Z?EROO Z?E]ROO

We now replace the integral representation of the n-th Airy function inside the definition (6.0.3) of the
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6.1. Manipulating the finite temperature Airy kernels

kernel of Iy ,.

1 : )
— i(Yn(a,x+t)—1n (B,y+t iz(a—p
Hanle,3) = (27T)2/ra /F/se( A [/]Re ( )w(z)dz] doda

/ / / olton (@a+2+t) o —ithn (B,2+y+1) dﬁda do(2)
Ts a—8

where in the last passage we integrated by parts and we used the asymptotic behaviors of the n-th Airy

function. Now, as previously explained we are going to consider the operator K¢ ,xr, on L?(R), keeping
in mind that
l)n(t7 )\) = det(l — AK:t,nXR+ |L2(]R))~ (6.1.16)

Using the following integral identity (see also Lemma 2.2 in [BB20] for a similar one)

1 vy dY
“om )¢ vl 5)m=XR+(y), for feTly, yeR\{0} (6.1.17)

inside the computation for K, ,,(x,y), choosing I', = R, we obtain

X 11/)n(oz z+t)e—11/;n(/3 z+t) 45d e—iy'y dod
n S . (6.1.18
(T, Y)xR, (Y // \/ﬂ e //F,; 5B =) Bdo(z) Ton ady, ( )

=:Ltn (0‘77)

just by using Fubini’s theorem. Thus we conclude that F/KC; ,xr, F -1 = L:, where L;,, is the integral
operator on L?*(R) with kernel L;,, denoted above and F is the standard Fourier transform extended
unitarly to L?(R).

Remark 6.1.4. The operator L; , is trace-class on L?(R) through general trace ideal properties.

Definition 6.1.5. We consider the multiplication operator P,, : L?(R) — L?(R) that acts by multiplying

by the function e~ 3%n(:0),

This multiplication operator is used in order to construct another integral operator from L, as

follows.

Definition 6.1.6. We consider the integral operator J;, : L?*(R) — L?(R) defined by conjugation for
Py, of Lt , namely
Tin = PnLlinP;t (6.1.19)

By abstract trace ideal reasoning, since the operator P, is bounded in L?(R) we can conclude that
the operator J; ,, is trace-class on L?(R). We can then state and prove the following proposition about
the Fredholm determinant D, (¢, \).

Proposition 6.1.7. For every (t,A\,n) e R x C x N, on L?(R),
1= MCpnxr, = F Pyt (1= ATyn)PnF
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Chapter 6 — The integro-differential Painlevé II hierarchy

with the bounded linear operators F, Py and J;,, on L*(R) defined as above. In particular we record the
determinant identity
Dn(t, )\) = det(l - >\x7t,n|L2(]R))~ (6120)

Proof. The operator identity as been proved with the reasoning above. The determinant identity (6.1.20)
is obtained by using the operator identity and by applying the Sylvester’s identity (see for instance
equation (5.9) of Chapter IV in [Goh00]). O

Before to go ahead, we need some other property of the integral operator J; .. In particular, we see

that this operator is explicitly factored in two Hilbert-Schmidt operators.

Proposition 6.1.8. The integral operator Jin is factored as Jypn = ApnBn where Ay, - LQ(Fg) —
L3(R), and B,, : L*(R) — L*(T'3) have kernels

N 1 ed¥n(@2)—fvn(8.20) iz(a=) 4 1 e 29n(B0)+5¢n(7,0)
t,n(aa6> = g a—f [/Re U<Z)] ’ (6 ’Y) 27T B -7 ( . )
6.1.21

Proof. Recall that J;, = P,Lt, P, ! and that £;,, has kernel

I ( / / 1wn(a z+t —ity, (B,2+t) ﬂd ( ) (6 ) 22)
nla o(z). 1.
t, 'Y 27I' T, ﬂ . )

Thus we can write down the kernel of J; ,, as

J 1 e%wn(o‘azt)_’wn(ﬂ Qt) ( d e_%"pﬂr(ﬁvo)+%w7z(77o) d
W) = iz(a— , 6.1.23
o) = o | e [[eenantn| T s s

so that J;, = A nBn with Ay, B, having kernels as in (6.1.21). O

We are now ready to construct the extension of the operator J;, on some bigger space L*(X). To
start with, we first look at the operator J, as an operator on L?(T,), for T, some line in the upper

complex plane parallel to the real line. This leaves untouched the Fredholm determinant.

Proposition 6.1.9. Let I', denote the reflection of I'g across the real azis fixing I'y := R — 1A with
0 <A <%. Now define J7, : L*(T'a) — L*(T's) as

(Tinf) / Jen(&mf(n)dn,  feL*(Ta),
with kernel J;.,(€,n) given in (6.1.23). Then J¢, is trace class on L*(To) and we have the equality
Dy (t,\) = det(I — AT le2ra)), (t,\,n)e R x C x N. (6.1.24)
Proof. First notice that the operator 7, is well defined on L*(T,) since I'y, nT'g = . Moreover, we can
re-define operators A7, : L*(T'3) — L*(I'y) and By, : L*(I'y) — L?*(I'g) having the same kernels (6.1.21)

and they are still Hilbert-Schmidt operators. We also have J;’,, = A{ B}, so that J, is still trace-class
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6.1. Manipulating the finite temperature Airy kernels

FIGURE 6.2 — Our choice for 'y g with 0 < A = dist(I'y, R) = dist(I's, R) < §.

on L?(Ty,).
Finally in order to obtain the identity for the Fredholm determinant D, (¢, \), we observe that for every
meN
™ J» = Tr J7. (6.1.25)
L2(R) 7 L2(Ta) 7

Since J; (e, ) is analytic in a neighborhood of (a,v) € Ty x 'y, and

e :/R---/RJt,n(ql,@-...-Jt,n(cm,hcm)Jt(cm,cl)dg---dcm (6.1.26)

we can recursively replace I, instead of R in each one of the integrals above and conclude (6.1.25). By
using the Plemelj-Smithies formula (see for instance Theorem 3.1 in Chapter II of [Goh00]) the identity
(6.1.24) then holds. O

We now fix the contour ¥ in the complex plane as the disjoint union of the horizontal lines, namely
Y:=Rulgul, (6.1.27)

where I'g := R —iA, with 0 < A < &, and I', is the reflection of I's upon the real line, as in Figure 6.2.
Since ¥ contains in particular the line I',, we can extend the operator J;’, to the bigger space L?(%).
We define

Tin  LP(B) — LA(X), (TS N(E) =/EJ§’§f(fvn)f(77) dn,  Jow(&n) = Jea(€m)xr. (E)xr. (),

(6.1.28)
Remark that, again, the extension leaves D, (¢, \) invariant, so that we have
D, (t,A\) = det(1 — Aﬁfﬁt\LZ(E)). (6.1.29)

Also remark that J<¢ can be factored in a similar way as before Jxt

— ext Rext
s ol = AR B, where now

o LP(2) > LA(R), (AR = /EAf,’;t('Sm)f(n) dn, A& n) = A (& n)xr. (E)xr, (1),

Byt LA(X) — L*(2),  (BY'g)(n) = /EBZ’“(%C)Q(C) d¢,  By'(n.¢) := Bu(n,Q)xry (m)xr. ().
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Moreover, thanks to their construction the operators Af"nt,l’)’e"t on L?(¥) gain many properties, listed

below, with respect to their previous versions.

Lemma 6.1.10. The operators A%, Bt : [2(X) — L2(X) have the following properties

t,n>
1. they are trace class on L*(X) for every (t,n) € R x N;
2. they have zero operator trace;
3. they are nilpotent.
Proof. We prove the first property first. To see that Af’jf, Bt are both trace-class on L?(X) we find for

both a factorization in terms of Hilbert-Schmidt operators. For what concerns B,,, we use the following

trick. By residue theorem, for every (v, 8) € 'y x I'g, we have

1 dd 1
‘%/Rw—é)(é—ﬂ):w—ﬁ'

Replacing it in the kernel of B,, using (6.1.21) we get

i / eféwn(ﬁvo)“"%wn(vfo)
@) Je  (y=0)(0-5)

and this can seen as the composition Bg** = BeX{ B where B : L?(X) — L?*(X) have Hilbert-Schmidt

kernels

By (B,7) = - dd xr, (B)xr, (7)- (6.1.30)

i e~ 2’(/)7,([30) 1 egwn('}’o)

Bi(8.0) 1= 5T, (), BRE.7) =

DT = X (9)XxT, (7)-

For what concerns A‘gf‘t instead, just integrating by parts (6.1.21) we get

n

i i [eY -1 iz(a—
AP (o, B) = ~5- Rez"’”( 27398200 Dy (2) dz xr, (@)xr, (B)

and thus AP = AP A ) where AP 5 : L?(3) — L?*(X) have Hilbert-Schmidt kernels

t,n,) °

A(te,);f,l(a’ Z) = an o2t) Hiza vV w XF XR v A(ta,)ert,Q(Zv /8) =e n(8,2t)—izf VvV w X]R XFB

Com

Finally the last two properties directly comes from the fact that I'y " I'g = . Indeed, the operator

traces are computed as

cxt /Ag);i; O, Tr cht /cht =0.
L2 (%)

And we have that for every (£,{) e ¥ x X
(AP (£,¢) = Ay (& m)xr ()X, () Arn(n, Oxrn (Mxr,(Q) =0 thus  (A%)* =0 on L*(),

and the same is true for B, O
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6.1. Manipulating the finite temperature Airy kernels

Lemma 6.1.11. For every (t,\,n) € R x C x N, we have on L?(X),
(1 + ATAPL) (I = A3 (AP + BEY)) (1 + AEBY) = T — NAPIBS = T — AT,
with an arbitrary, but throughout fized, branch for A2,

Proof. By direct computation, using the nilpotency of the operators AL, BEXt, O

t,n»

With this operator identity in mind, we can finally prove the final result of this section. We are going
to express D, (t,\) as the Fredholm determinant of a suitable operator on L?(¥), that is the operator
C n with kernel written in equations (6.1.32), (6.1.33).

Proposition 6.1.12. For every (t,\,n) e R x C x N,
Dy (t, ) = det(I — A2Cyn|12(s))s (6.1.31)

where Cy,, == AP + B . [2(X) — L%(X) is trace class and has kernel of the form

t,n

(€= Cin(&n) = | (n€laymnlz) + ka(elz)ma(ol2) )do(2) (6.1.32)

where k;,m; fori = 1,2 are the functions parametrically depending on ¢ € 3, defined as

1 1 s i -
= 5o OG0y Ra(Cly) 1= e T O, (O, ma () = e E O N (Q),

ma(Clz) = e COyp (Q),

k1(Cly)

(6.1.33)
_ 2n+1

and with ¥, (C, z) = %77 + 2, as before.

Proof. First of all, notice that Cy ,, is trace-class on L?(X) since it is the sum of two trace-class operators
on the same space. Then, by using properties 1,2 of Lemma 6.1.10 and the Plemelj-Smithies formula we

compute the following determinant

[ee]
)\k
det(1 + AASY 12()) = exp (— D (-1 L%Mﬁfﬁf)’“) =1 (6.1.34)
k=1

With the same reasoning, we obtain also det(1 + ABy|.2(x)) = 1. Finally, by using the factorization
identity ((3.10) in [Sim05]) and recalling (6.1.29), identity (6.1.31) is obtained. O

We finally proved the relation between the Fredholm determinant of the finite temperature n-th order
Airy kernel D, (t,\) and the Fredholm determinant of the operator C,,, that can be thought as an
infinite dimensional version of an integrable operator. Indeed, compare the equation describing the kernel
of Cy,, (6.1.32) with the classical one for IIKS integrable operators (3.2.1) : the structure is the same but

an integral now replaces the symbol of summation in the right hand side.
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Chapter 6 — The integro-differential Painlevé II hierarchy

6.2 Finite temperature operators and operator-valued Riemann-

Hilbert problems

In this section we introduce the main tool to handle the Fredholm determinant of operators as Cy,, :
the operator-valued Riemann-Hilbert problems. In the present literature there are just a few examples of
studies involving operator-valued Riemann-Hilbert problems. They can be found in the two papers [IK16,
1S99] and then they were used very recently in the review [Bot21], where the author recovered, through a
Riemann-Hilbert approach, the Tracy-Widom formula for the finite temperature Airy kernel with n = 1,
previously discovered in [ACQ11]. Following this approach, we define and study some operator-valued

Riemann-Hilbert problems that are now related to the operators Cf .

6.2.1 First definitions and statement of the relevant operator-valued Riemann-
Hilbert problem

Essentially, an operator-valued Riemann-Hilbert problem is determined as before by a pair (X, G)
where now the jump matrix G(¢) is a matrix whose entries take values in a particular operator space for
any value ¢ € X. To start with, we are going to define the operator space that is relevant in this case,
thus we first have to introduce the following functional space. Recall that we fixed a weight function w
as in Definition 6.0.1, so that do(z) = w’(z)dz, is a probability measure on the real line.

In the following definition we adopt the same notation of [Bot21].
Definition 6.2.1. Let p > 1. We use the below abbreviations for the relevant functional and operator

spaces.

1. The Hilbert space
p
Hy =P L*R,do) = {f = (f1,..., f,) € CP*!: f; € L*(R,do)}
j=1

equipped with its standard inner product and associated norm.

2. The space L?(R, do; CP*P) of p x p matrix-valued functions with entries in L?(R, do), equipped with

the induced Frobenius integral norm.

3. The space Z(H,) of Hilbert-Schmidt integral operators on #,, of the form

(Kf)(x) = / K (r,y)E(y) do(y),

with kernel K(z,y) € L?(R?, do ® do; CP*P).

The operator space of interest for our Riemann-Hilbert problem is the space of integral operators
Z(Hz2). This means that we can also see both the jump matrix and the solution of this Riemann-Hilbert
problem as 2 x 2 matrices with entries that are integral operators acting on H; with kernels in the
functional space L?(R?,do ® do).

We are now going to state the operator-valued Riemann-Hilbert problem that is related to our infinite
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6.2. Finite temperature operators and operator-valued Riemann-Hilbert problems

dimensional integrable operator, i.e. the operator Cy ,, acting on L?(X) with kernel of the form (6.1.32),
(6.1.33).

Remark 6.2.2. The structure of the Riemann-Hilbert problem stated below, i.e. its jump condition
and its asymptotic condition could be used also in order to study other integral operators having kernel
of the same form of C,,, but with different functions k;, m; and different contour X. Moreover, in the
forthcoming work [Boton], the author intends to show that there is an entire class of suitable weighted
Hankel composition operators (in which /C; ,, fits) that can be studied through Riemann-Hilbert problems
of the same type of the following. This “canonical” association to Riemann-Hilbert problems will no
longer depend on the “integrable” shape that the kernel of the operator should have (even after proper

manipulation as conjugation by bounded invertible operators, as we did for K; ,, in the previous section).

We first construct the operator-valued jump matrix that will be used in the Riemann-Hilbert problem,

building it up entry by entry.
Definition 6.2.3. For 4,j = 1,2 let M;(¢) ® K,;(¢) € Z(H1), denote the ¥ 5 {-parametric family of rank

one integral operators with kernels

<M1(<>®KJ(C>)($7:U) = mz(dx)kJ(Cly)’ x,yeR,

defined in terms of the ¥ 5 (-parametric family of functions k;, m; defined in (6.1.33).

Remark 6.2.4. We underline the following three facts, that will be used later on.

o All the operators M,(¢) ® K;(¢) also depend on the parameters (¢,n) € R x N, but we do not
highlight this in our notation.

e These integral operators acts on some function f € H; as follows : by multiplying by the corres-

pondent functions m;(n|z) and by integrating f(y) against the kernel k;(¢|y).
e Since the contours I', and I'g are disjoint, it follows by (6.1.33) that the kernels

My () ® K1(Q)(,y) = 0 = Ma(C) ® K2(¢) (2, ), (6.2.1)

thus the correspondent operators are zero too.

The analogue of the jump matrix G involved in the standard Riemann-Hilbert problem 3.1.1 is replaced

here by the following operator G.

Definition 6.2.5. The integral operator G(¢) acting on Hs is defined for every ¢ € ¥ as

G(¢) = I, + 2miA? M@ Ki) M) ®KC)| Io + Go(C), (6.2.2)

M(¢) @ K1(¢)  M2(¢) ® K2(C)

)
~

where Iy denotes the identity operator on Hs, and the branch of A2 is fixed.

Finally we consider the below Z(H2)-valued Riemann-Hilbert problem, the central operator-valued

Riemann-Hilbert problem of this work.
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Chapter 6 — The integro-differential Painlevé II hierarchy

Riemann-Hilbert Problem 6.2.1. Given (t,A\,n) € R x D1(0) x N, determine an integral operator
X(¢) = X(¢;t, A\, n) such that

(1) X(¢) =12 + Xo(¢) and Xo(¢) € Z(Hz) with kernel Xo(C|z,y) analytic in C\X.

(2) Xo(¢) admits continuous boundary values Xo4 () € Z(Hz2) on X, oriented as shown in Figure 6.2,
such that X4 (¢) = I + X4 (¢) satisfy

X1 (Q) = X(OG(Q)- (6.2.3)

(8) There exists ¢ = c(n,t) > 0 such that for ( € C\X,

1Xo (¢, )| < f\:@ A~ S AT AU+l A = dist(T, R) = dist(Ts, R) > 0,
(6.2.4)
uniformly in (z,y) € R? and X € D1(0).

We notice that the structure of the Riemann-Hilbert problems 3.1.1 and 6.2.1 are exactly the same,
with the only difference that in the last one we specified the asymptotic condition X(¢) ~ I for |{| — oo
by requiring a particular condition on the operator norm of the operator Xj.

While for the standard matrix-valued Riemann-Hilbert problems 3.1.1 the request of finding a matrix-
valued function analytic outside the prescribed contour and with continuous boundary values along the
contour itself does not need further explanation, for the operator-valued Riemann-Hilbert problem 6.2.1
the same requests are demanded now for an operator-valued function X (¢) € Z(Hz) and we need to revise

their precise meaning. In the following definitions we adopt the same notation of [Bot21].

Definition 6.2.6. We say that an operator K(¢) € Z(H2) with kernel K({|z,y) is analytic in { € Q a
subset of C, if

1. for any (x,y) € R?, the map ¢ — K(C|z,y) is analytic in €.
2. for any ¢ € €, the map (x,y) — K(¢|z,y) is in L?(R?,do ® do; C**2).

Furthermore, if ¥ < 2 < C is an oriented contour consisting of a finite union of smooth oriented
curves in CP' with finitely many self-intersections (as it is indeed the case for us), then the continuity of

the boundary values of K({) along ¥ is defined as follows.

Definition 6.2.7. We say that an analytic in { € Q\X operator K(¢) € Z(H,) admits continuous
boundary values K4 (¢) € Z(#,) on ¥ with kernels K. ((|z,y) if

(1) for any (z,y) € R?, the map ¢ — K4 ({|z,y) is continuous on X.
(2) for any (x,y) € R2, the non-tangential limits

iimc KAz, y) =Ki(Clz,y), e *sideof ¥ at¢

exist.

With these two last definitions in mind, the statement of the Riemann-Hilbert problem 6.2.1 is now

clarified and the next step is to find out whether a solutions exists and whether it is unique.
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6.2. Finite temperature operators and operator-valued Riemann-Hilbert problems

6.2.2 Existence and uniqueness of the solution of the Riemann-Hilbert pro-

blem

In the following we are going to prove that the solution of the Riemann-Hilbert problem 6.2.1 exists
and is unique. Furthermore, we are going to prove that it has an integral representation very similar
to the one that is known for the generic matrix-valued Riemann-Hilbert problem 3.1.1 from Theorem
3.2.6. We start with the proof of uniqueness of the solution of the Riemann-Hilbert problem 6.2.1. We
anticipate that the technique used reminds of the one used in the standard matrix case. Also, notice that
the third point in Remark 6.2.4 will be fundamental in the proof.

Theorem 6.2.8. Whether the solution of the Riemann-Hilbert problem 6.2.1 exists, it is unique.

Proof. Suppose that a solution X(¢) = I + Xo(¢) € Ix + Z(H2) of the Riemann-Hilbert problem 6.2.1
exists. We start by proving that the solution is invertible. To do that, consider on the space Hs the

following Fredholm determinant
d(¢) == det(Iy + Xp(¢)), ¢eC\X. (6.2.5)

For ¢ in this domain the Fredholm determinant is well-defined (thanks to the asymptotic condition (6.2.4))
and also analytic in ¢, since we required Xo(¢) to be analytic away from X. For ¢ € ¥ we can use the
continuous boundary values of the solution X(¢) in order to define the non-tangential boundary values
of the function d(¢)

d+ () = det(X1(()), (€. (6.2.6)

We can do the same construction for the operator-valued jump matrix G(¢) = Iz + Go(¢), defined for
¢ € . Indeed, Go(¢) € Z(Hz2) is trace class and its operator norm can be estimated as follows
—1)"A

1Go(Clz, )] < |)\|e_<2717,>+f1 AQneA(|$‘+‘y‘+‘t‘)7 ¢ =c(n) > 0. (6.2.7)

Thus by the Hadamard’s inequality, the Fredholm determinant ¢g(¢) = det(Iy + Go(()) exists for ¢ € X.

Moreover, by using Remark 6.2.4 we conclude that
T Go(¢) =0 and (Gg(¢)*=0. (6.2.8)
2

Thus, expressing g(¢) through the Plemelj-Smithies formula (see for instance Theorem 3.1 in Chapter II
of [Goh00]) we conclude that g(¢) = 1 for all ¢ € X. Finally, the multiplicativity of Fredholm determinants
applied on the jump condition (6.2.3) yields

d+(¢) =d-(¢), (e (6.2.9)

that assures that the function d(¢) is actually entire. Moreover, since d(¢) — 1 for ( — o from the
asymptotic condition (6.2.4), we conclude by the generalized Liouville theorem that d(¢) = 1. In particular
X(¢) is invertible for ¢ € C\X and so are their boundary values X4 (¢) for ¢ € 3.

Suppose now that there are two solutions X;(¢), X2(¢) of the Riemann-Hilbert problem 6.2.1. We can
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then consider the following integral operator on Hs

Y(¢) = X1(()(X2(¢))", ¢eC\Z. (6.2.10)

For ¢ in this domain the operator is analytic and for ¢ € ¥ it admits continuous boundary values Y4 ().
Moreover for ¢ € ¥ we actually have that Y () = Y_(¢), meaning that the kernel of this operator Y(¢)
is actually an entire function in ¢. Finally, by using that Y({) — I, for { — o0, again thanks to the
Liouville theorem we conclude that Y (¢) = Lo, i.e. X1(¢) = X2(¢) identically in (. O

We are now going to prove that a solution for the Riemann-Hilbert problem 6.2.1 exists and it admits
a convenient contour integral representation. As it arose out in Theorem 3.2.6 for the matrix-valued case,
also in this operator-valued case the existence of the solutions X({) completely relies on the invertibility
of the operator 1 — )\%Ct,n on L?(X). This last condition indeed holds for any (¢, A\,n) € R x D;(0) x N
and the proof follows from Lemma 6.1.2 together with Proposition 6.1.12 both proved in the previous

section.

Theorem 6.2.9. For every (t,\,n) € R x D1(0) x N consider the integral operator on Ha

X(¢) =Ty + A? / e\, (6.2.11)

lNl(n) ®Ki(n) Ni(n)@Ka(n)| dy
>

No(m) @ K1 (1) Na(n) ® Ka(n)| 1= ¢

where N;(n) are the operators on Hy which multiply by the functions n;(n|x) determined via the integral
equation on L*(X)
(I - 22CF)ni-lz) = my(-lz), i=1,2, (6.2.12)

with x € R and the real adjoint Cf,, of Cy .
Then (6.2.11) solves the Riemann-Hilbert problem 6.2.1.

Proof. As noticed before, the right hand side of (6.2.11) exists if and only if the solution of the integral
equation (6.2.12) exists. This is indeed the case as it follows from Lemma 6.1.2 together with Proposition
6.1.12. With this in mind, we prove that the right hand side of (6.2.11) actually satisfies the three requests
in the Riemann-Hilbert problem 6.2.1.

For the first request : we start by observing that each entry of the operator Xo(¢) in the right hand side

of (6.2.11) is an integral operator with nontrivial kernel

ij 1 dn
Xy @) = A [ ol ()T, (e €2 (. (6:213)
In order to prove the first condition of the Riemann-Hilbert problem 6.2.1, we have to prove that these
kernels are analytic for ¢ ¢ ¥ and that (z,y) — Xg (¢|z,y) is in L*(R%,do ® do) (following Definition
6.2.6).

For the second part, remark that
Ini(-2)|z2m) < clmi(|2)|r2m), c=cln,t) >0, i=12, (6.2.14)
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thanks to the fact that the resolvent operator is bounded. Thus, by using the definition of the functions
mi, k; in (6.1.33), the definition of the contour ¥ and the Cauchy-Schwartz inequality we estimate

A (~1)"A A2n
| X5 (¢l )}\%A e g A AT ¢~ e(nt) >0, i,5=1,2.  (6.2.15)

Therefore (x,y) — X (¢|x,y) is indeed in the space L*(R?, do ® do) for every ¢ ¢ 3. For what concerns
the analyticity property : we first observe that for every (z,y) the function n — n,;(n|x)k;(n]y) is Holder
continuous and thus its Cauchy transform, by the Plemelji-Sokhotoski theorem, is analytic for ¢ ¢ ¥ and
so it is Xéj (¢) for each i,j = 1,2. Thus the first condition of Riemann-Hilbert problem 6.2.1 is satisfied
by the right hand side of formula (6.2.11). Thanks to estimate (6.2.15) also the asymptotic condition
(6.2.4) is satisfied by the right hand side of formula (6.2.11).

We only have to prove that the jump condition (6.2.3) is satisfied by the right hand side of formula
(6.2.11). First of all, remark that the boundary values X4 (¢) exist and are Holder-continuous for ¢ € 3,
thanks to the properties of the Cauchy transforms, and they are both in the space Iy + Z(Hs). In order to
check that X (¢) satisfies the jump condition (6.2.3), we start by applying the property of the Cauchy
transform ( Cy —C_ = Id ) to (6.2.11) and we deduce

Ni(Q)®K1(¢) Ni(¢) ® K2(C)

X ~X_(¢) = 27iN®
+(€) ©) L\@(O@Kl(g) N2(¢) ® Ka(C)

1 . (ex. (6.2.16)

We then compute the composition of operators X_(¢)G(¢) by using their definitions (6.2.11), (6.2.2)

LMK M) ® Ka(C)
OGO =X <H2 e lMxo ®KI(Q) M(Q)® m(C)D
_ b 1M @Ki(n) Ni(n) @ K2(n) | dy
~ e (HQH /[ (n) ® K1 (n) Nz(n)®K2(n)]”_C> (0:2:47)

] lMl(o ®K1(¢() M()® Kg(o]
Mo(Q)®K1(C) Ma(Q)®@Ka2(C)|

Now, looking at the definition of the kernel of the operator C;,, in equation (6.1.32) and using general

theory of rank 1 integral operators we have that

lNl(Tl)@Kl(ﬁ) (77)®K2(77)]l 1(¢) ® K1(¢) M1(§)®K2(§)]
Nao(n) @ K1(n) Na(n) @ Ka(n) | | M2(¢) @ K1(¢) M2(¢) ® K2(C) (6.2.18)
Nl 1 1
=(77—<)Ct,n(77,4‘)l ) ® () N(n)®K2(C)1, (m,¢) e L x X,
Na(n) ® K1(¢)  Na(n) ® Ka(C)
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thus we can rewrite the quantity above describing X_({)G(() as follows

X_()G_(¢) = X_(¢) +2mirt lMﬂO ®Ki(0) Mi(Q) ®K2(<>]

M(¢) ® K1(¢) M2(¢) ® K2(¢)

(6.2.19)
N- K N- K
N 27”.)\/ Con(Con) l 1) ®@Ki(n) Ni(n) ® 2(77)1 .
= Na(n) @ K1(n)  Na(n) ® Ka(n)
Now notice that the integral equation (6.2.12) for the operators N;((), M;(() reads as
Ni(¢) — A} /E Con(n, ONi(m)dy = Mi(C), (e, (6.2.20)

and thus by replacing it above and by using equation (6.2.16) we finally obtain that

1 Nl Kl N1 K
X_(O)G(C) =X_(§)+27ri)\2l Q@) M) ®KAO) — X, (C). (6.2.21)
N2(Q) @ K1(¢)  N2(¢) ® K2(C)

This means that also the jump condition (6.2.3) is satisfied by the right hand side of formula (6.2.11)
and thus the proof is completed. O

So far, we proved that the solution of the Riemann-Hilbert problem 6.2.1 exists and it is unique.
Moreover, we explicitly constructed an integral contour representation for the solution X(¢) for any
¢ ¢ 3 and we know that the solution X(¢) is invertible on Hy from Theorem 6.2.8. As a byproduct, it

follows that the operator X(¢)~! has an analogue integral representation.

Corollary 6.2.10. For every (t,A,n) € R x D1(0) x N the inverse on Ha of the solution X({) of the

Riemann-Hilbert problem 6.2.1 has the following integral representation

1/ lMl(C)@)Ll(C) Mi(Q)® L2(Q) | dn CeC\3, (6.2.22)
>

(X(C) =L —Az :

Mz(Q)® L1(¢) Ma(Q)® L2(Q)] 7€

where L;(n) are integral operators on Hy with kernel £;(t|y) determined from the L*(X) integral equation
(I =AZCon)lilCly) = KiCly), i=12. (6.2.23)

Remark 6.2.11. Notice again that the right hand side of equation (6.2.22) exists because the integral

equation (6.2.23) admits solution, for the same reason explained before.

Proof. Tt is enough to prove that the right hand side of equation (6.2.22), that we will denote by Y (¢) in
the following, it is the actual right inverse of X(¢). We start by computing

X(O)Y(C) = I + A} /

5 (X(U) - ?(0))% — A/E/Zf(m)?(ng) dm__dny C¢x, (6.2.24)

m—Cne—¢’

where we denoted by X(¢), Y (¢) the finite rank integrand appearing in the right hand side of (6.2.11)

and (6.2.22) respectively. The aim is now to prove that the sum of the last two terms in the equation
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above is zero (the zero operator on Ha).
To start with, notice that by the definition of the kernel of the operator C; ,, we have that

B Ni(m) ® Li(nz2)  Ni(m) ®L2(772)] ' (6.2.25)

X(m)Y (12) = (m = 02)Cin (1, 12) L\, (m) ® Li(n2) Na(n1) ® La(n2)

Replacing this equation in the double integral term appearing above, we can compute it as
- - d d Ni(m) ® L1(n2) N1(771)®L2(772) d
/ / X (m)Y(n2) n - / / Cit.n(m1,m2) [ e
DED> m=Cnz=¢ Na(m) ® Li(nz2) N2(771)®L2(772) e =<
1(m) @ Li(nz)  Ni(m)® L ’72) d
- ct,n<m,n2)[ m
DS Na(m) ® L1(772) ) ) —¢

( (
Na(m1) ® La(2
_/2?(772772*C /X771
(6.2.26)

where in the last passage we used both the integral equations (6.2.12), (6.2.23). This concludes the

proof. [

Remark 6.2.12. The main ideas in the construction of the Riemann-Hilbert problem 6.2.1 and the
proofs of the theorems for its solution have been already developed in [Bot21], and they are indeed due
to the work of Thomas Bothner.

From the construction of the integral representation of X (¢) and its inverse given in Theorem 6.2.9 and
Corollary 6.2.10 one can deduce a relation among the multiplication operators on H; called N;(¢), M;(¢)
for i = 1,2, the integral operators L;({), K;({) for i = 1,2 and the solution X(¢) of the Riemann-Hilbert
problem 6.2.1. The derivation of a Lax pair from the solution X(¢), that will be treated in the following
section, completely relies on this relation. In order to express it in a compact form, we define the following

vector-valued operators on Ho

N(Q) i= [N1(0), N2()] T, M(Q) = [My(C), Ma()]T, L) := [L1(Q), L2(C)],

(6.2.27)
K(¢) == [K1(¢), K2(Q)]-

Corollary 6.2.13. For every ¢ € &, independently on the choice of the boundary values of X({) we have
that
N(¢) = X(OM(¢),  L(¢) = K(O)(X(¢) ™ (6.2.28)

Proof. Here we are going to prove only the first equation, since it is the only one that is actually needed
in the derivation of the Lax pair. The second one is obtained in a similar way and we refer to the proof
of Corollary 4.11 in [BCT21] for the details.

Recall that we proved in the last passages of proof of Theorem 6.2.9 the following identity

X_(O)G(C) = X_(¢) + 2mirt Ni(Q®K1(¢) Ni(¢) ® K2(C) . (6.2.29)

N2(Q) @ K1(¢)  N2(€) ® K2(C)
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On the other hand, since G(() is invertible on Hy with inverse

M) ® K1(¢) Mi(¢) ® K2(C)
M(¢) ® K1(¢) M2(¢) ® K2(¢)

I

(G(¢)) " =Ty — 2mirz l ] , (ey, (6.2.30)

we can then compute in a similar way the quantity X (¢) (G(C))f1 and it follows that

(6.2.31)

1 Nl Kl Nl K2
X (0)(G(0)) _;x+@)_gﬂu2l O®KI(Q) NM(O)® <o].

N2(Q) ® K1(¢) N2(¢) ® K2(¢)

Finally, combining (6.2.29), (6.2.31), the definitions of G(¢) and its inverse yields

Mi(¢) ® K1(¢) Mi(¢) ® K2(C) Ni(Q)® K1(¢) Ni(€) ® K2(C)
X+(C) =

], Cex,  (6.2.32)
M(¢) @ K1(¢) M2(¢) ® K2(¢) N2(Q) @ K1(¢)  N2(¢) ® K2(C)

from which N(¢) = X(¢)M((¢) directly follows. O

On the asymptotic expansion of the solution X(¢) In this paragraph we are going to discuss
some technicalities about the asymptotic representation of X(¢) and (X(¢))~!. In particular we prove
two symmetry properties and an estimate on the operator norm of the asymptotic coefficients. These
results are technical, but they are crucial in order to explicitly recover the Lax pair from relation (6.2.28).
Nevertheless, while the statement of the Riemann-Hilbert problem 6.2.1 and the results about its solution
X(() contained in the previous section can be extended to an arbitrary operator of the same kind of Cy ,,,
the statements in this paragraph strictly depend on the exact definition of C% .

To start with, we recall for every k > 1 the following formula

k

1__1121(")j+”f0r<¢ (6.2.33)
n=¢ " A\ T Em-0 " -

By replacing this formula in the integral representation of the solution X(¢) and its inverse, for |¢| — o0,

we obtain their asymptotic representation. In particular we have respectively
k=l
X(Q)=T— >, =+ 0", and (X)) =T+ ), C—j +0O(¢h), for (e C\X (6.2.34)
j=1

with X = {X7"}, 1212, Y, = {Y/"} 21,2 that are integral operators on Hz not depending any more

on the complex parameter (, given by

X71=/2Nm(n)®Kz(n)nj’ldm ijl=/2Mm(n)®Lz(n)nj’1dn j=1, mile{l,2}. (6.2.35)

Corollary 6.2.14. For every i,j € {1,2} we have on H; the following identities
J M) @ Ly = [ N @ K, (), (6.236)
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and also

[ @ Lywndn = [ Nt @ Ktrnan + 3} ( / M(n)@&-(n)dn) . (6.2.37)

Proof. During the proof of Corollary 6.2.10 we proved the following identity

[N

A

5 v dn X\ dpp  dnz
[ & =) -3 [ [ Ko ¥t o, ¢ (6235)

Replacing in both terms formula (6.2.33) for k = 2, and collecting the powers 1,2 of (71 as |[¢| — oo gives
exactly the two identity stated. O

Equivalently the asymptotic coefficients of X(¢) and (X(¢))~! are related in the following way
v = Xyt = Xt (XD myle (1,2, (6.2.39)

Remark 6.2.15. One could in principle replace formula (6.2.33) for k > 2 and obtain more complicated
relations for the higher order asymptotic coefficients X, ijl. But for our future scopes the two relations

above are sufficient.

We are now going to prove another important symmetry relation, this time at the level of the kernels
of some operators on Hi. In particular, we are going to consider the operators filling the off-diagonal

entries of the first asymptotic coefficient of X(¢), and we denote them as follows

|-

U=\ / Ni(n) ® Ka(n)dny = X[, V= A2 / No(n) ® K1 (n)dn = X2 (6.2.40)
P >

Proposition 6.2.16. For cvery (t,\,n) € R x D1(0) x N and for every (x,y) € R?, we have that
Ulz,y) = V(y, x). (6.2.41)

In order to prove this statement, we need to review some of the properties of the operator C; ,,, defined
in (6.1.32), (6.1.33). Recall that the operator Cy ,, on L?*() is defined as the sum of two operators on the

same space acting with the following kernels

(¢ = AL (G, ) = / k(Cl)ma(l2)do(z), (€ — B (E,n) = / ka(€l2)ma(nl2)do(z).  (6.2.42)

These operators are both nilpotent on L?(¥), thanks to equation (6.1.33), as proved in Lemma 6.1.10.

Also, thanks to the symmetry I's = T'y and to the fact that A — ,(\,-) is odd, we have that

Byxt(=€,—n) = By*t(n,§) for every (£,1) € Tq x T'g and AP (—n, —C) = AF(C,n) for every (n,() €
I's x T'. Using the nilpotency of the operators A, B* the powers of the operator Cy, are computed

t,n>
as
(Acxthxt)m ext + (cht.Acxt)?nlgext7 k = 2m +1

t,n~n t,n t,n

Cfn = (6.2.43)

(Ag)x;lgext)m + (BeXt.A??;f)m, k=2m
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Finally, using the properties of the kernels of A, ,,, B,, we conclude that
Ctz,:;“rl(_gv _77) = 07 Czrr?(_gv _77) = 0752,777:(77’5)7 for any (5777) € Foz X Faa (6244)

thus for any k € N we have that C’t’fn(—f, —n) = C’f’n(n, §), for every (¢,n) € T, xT',.. Having this property
of the operator C;, in mind, we can finally give the proof of the above proposition.

Proof. In order to prove the proposition, we start by computing the left hand side of equation (6.2.41).

U(z,y) :A%/Z(Nl(n)®K2(n))(x,y)dn:/an(nlw)kz(nly) dn

- / (I = A2Cy )7 (& m) e 3P (E20420) g | e300 (00) gy
27T Fﬁ Fﬁ

-~ [ / (I = A2Cyp)7H(=€, —n) extn(€2052) df] )
2T Ta Ta

where we used equations (6.1.33), (6.2.12) and the conjugation symmetry I's = I',. Now, by rewriting the
operator (I—\z Ct,n) ! with its Neumann series expansion, and by using that for all k € N Cf, (=€, —n) =
CF,(n,€) for every (£,1) € Ty x 'y we can conclude that

1 1 _ i - i
Uley) =5 |, [ /F (1= A3 Cunlraqmy) ™ (1, €) €3V (62052 >d§]e2%<’%o>dn
o LT, (6.2.45)

- / 2 (nlzyma(nly) dn = / (Ma(n) ® Ly (1)) (y.2) = / (Na(n) ® Ky () (. ) dy,
> )

P

where in the last passages we used the integral equation (6.2.23) and the symmetry condition (6.2.36). O

The last technical property of the asymptotic coefficients of the solution X (¢) is given in the following

statement.

Corollary 6.2.17. Let i,j € {1,2} and m € Z=q. Then

/ZNZ-(??) ®Kj(m)n™dnp—0 and /ZMi(n) ® Li(n)n™dn — 0 (6.2.46)

exponentially fast as t — +00 in operator norm on H;.

For the proof, we refer to the proof of Corollary 4.14 in [BCT21].

The machinery of operator-valued Riemann-Hilbert problem 6.2.1 associated to the operator Ci,
can then be used to study properties of D, (t,A), and this is what we are going to do. Let summarise
what we have proved until now : the unique solution of the Riemann-Hilbert problem 6.2.1 is denoted
by X(¢),¢ € C and it is an integral operator acting on the space Ho with kernel being in the functional
space L?(R? do ® do; C?*?). Moreover, X (¢) admits the integral representation (6.2.11) for every ¢ ¢ 3,
with continuos boundary values from both sides of X. Finally, from Corollary 6.2.13, this solution X(¢)

satisfies for every ¢ € ¥ and independently on the choice of its boundary value, the following identity

N(¢) = X(O)M(¢), (6.2.47)
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with N(¢), M(¢) some vector-valued multiplication operators on Hz, defined in (6.2.27). This equation
above, together with all the other properties of the solution X(¢) of Riemann-Hilbert problem 6.2.1 will

be largely used in the following section, in order to deduce a Lax pair.

6.3 The Lax pair for an operator-valued Painlevé II hierarchy

The main ingredient, in order to deduce the Lax pair, is the relation between N(¢), M(¢), X (¢) in
(6.2.47). We recall the definition of the vector-valued operators M(¢), N(¢)

T T

N(Q) = [N1(0). N2(Q)] ', M(C) = [Mi(Q), Ma(C)]

where M;(¢), N;(¢) are multiplication operators on H1, that multiply respectively by the functions m;({|x)
defined in (6.1.33) and n;(¢|z) defined through the integral equation (6.2.12). Given that, we can also
interpret these operators M;, N; as integral operators on H; with distributional kernels given by

mi(Clar) = mi(Cle, y) == mi(Cl2)d (@ — y)(w'(y) 7,

(6.3.1)
ni(¢lz) = ni(Clz, y) == ni(Clx)d(x — y)(w'(y) ™,

for any (z,y) € R2.

Remark 6.3.1. We recall that by definition,
0
| - @) @) o) = @), f et
-0

so that (M;f)(z) = m;(Clz) f(z) and (N;f)(z) = ni((|z) f(z) for any f e H;.

The aim is to prove that the vector-valued operator N(() satisfies a couple of operator-valued differen-
tial equations w.r.t. the complex parameter ¢ and the real parameter ¢, by using relation (6.2.47). Thus
we are going to need the computation of the derivative w.r.t ¢ and t of M((), written below. Recalling
the definition of the functions m;({|z) given in (6.1.33), we find the kernel identity

0 (3¢ +t+ 0
== M((|z, y) = s g o | MCzy), (G zy) €D xR,
(3C 0 §C2n

or equivalently the operator identity

%M@=wuw®mmm7@a (6.3.2)

where the operators Ag, Agn : Ho — Ho are (-independent and have kernels
-1 0
0 i

—i(t+z) 0

] (W)™, Awl(e,y) = —y) l
0 0

1 (w'(y)) ' (6.3.3)
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Similarly, ]
5 M) = ((Bo)M(Q), (e, (6.3.4)

where By : Ho — H2 has kernel

-i 0

Bo(z,y) :==0(z —y) l
0 0

] (w'(y)) " (6.3.5)

With this in mind, we now proceed through the following steps

1. we first prove that N(¢) solves linear differential equations w.r.t. both ¢ and ¢ with operator-valued
coefficients A(¢), B({) that are analytic operator-valued functions in (;

2. we prove then that A(¢), B(¢) are actually polynomials in ¢ of degree 2n and 1 with operator-valued

coefficients ;

3. by exploiting the compatibility condition of the system for N(¢), we prove that all the coefficients of
the operator-valued polynomials A((), B({) are determined in terms of U, V' the integral operators
on H; defined in (6.2.40) and their ¢-derivatives;

4. we finally conclude that the system of differential equations for N({) is a Lax pair for a coupled

operator-valued PII hierarchy involving the operators U and V.

Proposition 6.3.2. There exist (t, A\, n)-dependent, analytic in ¢ € C integral operators A(¢),B(() on

Ho such that for every € ¥ and (t,A\,n) € R x Dy(0) x N,

ON ON
TC(C) = A(ON(Q), Q) = BION(C): (6.3.6)

Proof. We (-differentiate the first identity in (6.2.47)

%—?(c) - (‘f;;(o (X(Q)) ™"+ X(C) (" A + Agy) (X(C))1> N(Q). (6.3.7)

=:A(Q)

Here, A(() is an integral operator acting on Ho by Theorem 6.2.9, Corollary 6.2.10, and A(() is analytic
for ¢ € C\X with continuous boundary values A4 (¢) on ¥ by the same reasoning. Recalling (6.2.3) we
then compute on 3,

AL(Q) = [ﬁ(g)mm X(oaa?(c)] (G(O) (X))
+X_(OG(Q)(C2 Ag + Asy) (G(O) H(X_(0) (6.3.8)

and with (6.2.2),(6.3.3) we derive for ¢ € X,

e = [ (@A (@,2) + Ran(2)Go(Cle) — GolCle,2) (€ Ao(,y) + Aan(z,y) o 2)

Here we abbreviate, as in the definition of G(¢) given in (6.2.2), G(¢) = Iz + Go(¢). Notice that the last
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kernel identity is equivalent to the operator commutator identity

aa—(;(g) = [¢*"Ag + Asn, G(Q)] € Z(Ha), (€3 (6.3.9)

Inserting (6.3.9) into (6.3.8) we find at once

—1

e OX(0O)) 4 X (O A + Aon) (X_(O) " = A_(Q), (e,

AL(Q) = S

i.e. A(¢) extends analytically across ¥. In turn, A({) is analytic for every ¢ € C given that (z,y) —
A(¢|z,y) is in L2(R?, do ® do; C2*2) for every ¢ € C by construction. This proves our first identity and

the reasoning for the second one is analogous : first differentiate (6.2.28) using (6.3.4),

0 = (G Ox©) ™+ X(O(cB0) (X(0) ) NO) (63.10)

=:B(()

Since B(() is an integral operator on Ho and B(() is analytic for ( € C\X with continuous boundary
values B4 (¢) on ¥, again from Theorem 6.2.9 and Corollary 6.2.10, we simply compute for { € &

0X_ 0G

B.(¢) = [&G(C) + Xf(OE

-1

<<>] (G(O) ™ (X=(€) ™" + X_(OG(Q)(¢Bo) (G(Q)) ™ (X-(0))
(6.3.11)
But from (6.2.3), (6.3.5),

Sl = [ {(6Bo(e2)Go(¢lzn) - Gulcle.2)(Boleun) o),

leading to the following operator commutator identity

oG
EK) = [¢(Bo,G(¢)] € Z(H2), CeX.
Once substituted back into (6.3.11) we find at once B, ({) = B_(¢) for ( € £, i.e. B(() is analytic for

¢ € C. This concludes our proof. O

The next step is to prove that the coefficient operators A(¢), B(¢) introduced in Proposition 6.3.2 are
actually polynomials in ¢ and to express their coefficients in terms of quantities related to the solution
of Riemann-Hilbert problem 6.2.1.

Proposition 6.3.3. We have

2n
B(()=(Bo+Bi,  A(() =C"Ao+ ), Ak + Ay, (6.3.12)
k=1

where B : Ho — Ha are the (-independent integral operators with kernels written in (6.3.5) and (6.3.13)
below. Likewise, Aj : Ho — Ho are (-independent, the kernels of Ay and Agn are written in (6.3.3) and
the entries of Ay are polynomials in the asymptotic coefficients of X(¢) introduced in (6.2.35), namely
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Js Ni(n) ® K;(n)n™dn and [, M;(n) ® L;(n)n™dn with m € Zxo,i,j € {1,2}.

Proof. Recall the definition of the operator-valued function A(¢), B(¢) given during the previous proof.
The main idea is to replace in them the asymptotic representations of X(¢) and X(¢)~! that we gave in
equations (6.2.34), (6.2.35) for k = 2n. In particular we have

1) @ Ki(n) Ni(n) @ Ka(n)| , Com1
—H2—>\2 d O b
ZC’“/[ () ® Kr(n) Nz(??)@&(??)]n o o

and

X —1 :I[Q )\% 2n 77 ®L1<n) Ml(n)®L2(77)1 kild O —_on—1 ’ E
(X©) ! ;C/l meLm MmmeLm| ¢TI of

Replacing these formulae in the definition of B({) given in (6.3.10) and applying the generalized Liouville
theorem, we conclude that
B(¢) =(By+ By, (eC,

with By the integral operator on Hy with distributional kernel (6.3.5) and By the integral operator on
g 2
Ho with kernel By (z,y) = [Bij (amy)] - and
ij=
Bi'(z,y) = BY*(z,y) = 0, B*(z,y) = —iU(z,y), Bi'(z,y) =iV(z,y), (6.3.13)

where we U(z,y) and V(z,y) are the kernels of U = A2 Js N1i(n) ® Kz(n)dn and V' = Az Js Na(n) ®

K1(n)dn, as defined in (6.2.40). In the same way, we replace the asymptotic representations of X(¢), (X(¢))™*

in the definition of A(¢) given in (6.3.7) and we apply the generalized Liouville theorem, concluding that
2n .
AQ) = C"Ag+ Y Ak F + Ry, CEC
k=1
with Ao, As,, operators on Ho with kernels as in (6.3.3). O

This last result does not determine explicitly the coefficients Ay for k = 1,...,2n. Nevertheless, by
looking at the compatibility condition of the system (6.3.6), namely the operator identity

=), cCecC, (6.3.14)

we can see that the entries of Ay, for any k are recursively determined in terms of the operators U,V and

their ¢-derivatives. This first result is resumed in the following lemma.

Lemma 6.3.4. Recall U,V : H1 — H1 in (6.2.40) and introduce the integral operator My : Hi — Hi with
distributional kernel My(x,y) := (t+z)8(x—y)(w'(y)) . Then (6.3.14) is equivalent to the operator-valued
system (6.3.15), (6.3.16) and (6.3.17) written out below where Ag are the entries of Ay in (6.3.12).

Proof. The polynomial equation (6.3.14) yields at once (given that By and Aj as well as By and A,,
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C()Illlllul e)
R 9 < 1y 2n 27L 05 + 1 1, k ) 9

and therefore, after matching powers in ¢, first to order O(¢?"),
AP = —iU, AP =iV, (6.3.15)

followed by all orders O(¢?"%) for k=1,...,2n — 1,

aA}l ) aA}Z
A e ay), YA o att, s uaR - i)
, 6.3.16
0AP? 12 21 0AY 11 22 ( )
and finally the order O(¢°),
11 12
agt?” = —i(UA3} + A2V, a?f" = —i(UA32 — AJLU +iM,U)
6.3.17
5A22 aA21 ( )
B _ivaz ey, DB o yvag - azv -
This completes our proof of the Lemma. O

Notice that equations (6.3.16) together with the initial condition (6.3.15), allows to compute recursi-
vely the entries Azj for k =1,...,2n (or 2n — 1 for the diagonal entries). For each k, first ¢-integrating
the equations for the diagonal entries A}: from the equations on the left and then using them to compute
the off-diagonal entries Ak . with 4 # j from the equations on the right of (6.3.16). The first system in
(6.3.17) is used to determine the last diagonal entries A% . Instead, the second system in (6.3.17) gives a

further condition that AY U,V should satisfy.

Remark 6.3.5. As explained above, the diagonal entries A? are obtained by t-integrating some equa-
tions. The constant of integration in this procedure is fixed to zero thanks to Lemma 6.3.4 and Corollary
6.2.17. The fact that the integration gives always local terms is shown through the following lemma, for
which the proof relies on a technique used in [WE07].

Lemma 6.3.6. We have on Hq fork=1,2,...,2n

7

k=1 k-1
A =i (AP AL+ APAT ) and AR =) (ATARR + ATIAR ),
j=1 j=1

and thus in particular A}t = A2? =0
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Proof. We start by computing the composition operator C(¢) = A(¢)A(¢) on Hs from (6.3.12),

4n k 2n 4n
C(C) = Z ( Z AjAk—j)<4nk + Z (AkA2n + A2nAk)C2nik + AznAg, = Z Ckc4nika (6318)

k=0 \j=0 k=0 k=0

and then use the compatibility constraint (6.3.14),

oC
where the curly brackets indicate the anticommutator. Matching powers O(¢*"~%) for k = 0,...,2n — 1

in (6.3.19) while using (6.3.18) and (6.3.12) yields at once

(9011 6012
= = UG + C?V), — = = =G, + UCE = GU)
, k=0,....,2n—1, (6.3.20)
0C?? oCcH!
5 —i(VCE+ G, 5 —i(CEL+ VO =GPV
and
acll ‘3022
2 = (B + UGS, + CRV), = (VOR + CRU), (6.3.21)
for some of the coefficient operator entries of Cy with k = 0,1,...,2n. In turn, system (6.3.20) shows

that the operators Cy are trivial for k =1,...,2n — 1 and
ol = c3i = g =

Indeed, using (6.3.15),(6.3.16) and Corollary 6.2.17 we find that A}! = A22 = 0 on H; and so by direct
computation from (6.3.20),
1
Cl = Z AjAlfj =0 on 7‘[2,
j=0
where we just replaced equations (6.3.3) and (6.3.17). Hence, proceeding inductively and assuming C; = 0
for all j = 1,...,k with arbitrary k € {1,...,2n — 2} we first use the off-diagonal equations in (6.3.20) to

conclude that

12 ocy? 22 11 21 ocH 11 22
_i — _ 0 _
Cii =1 N —UC;"+C;U=0, Cj=-i o VG + 057V =0,

by induction hypothesis. Hence, again by (6.3.20), this time through the diagonal equations,

oCH1 0C??
Jj+1 . 21 12 _ Jj+1 . 12 21 _
Fra —i(UC;" + C;7V) =0, Fra (Ve +C5U) =0,
yielding C’;}rl = C’?il = 0 on H; by Corollary 6.2.17 and Proposition 6.3.3 since Cy = > ?20 Aj;A)_; for

k=1,...,2n — 1 by (6.3.18) vanishes uniformly as ¢ — +00. Moving ahead the proclaimed vanishing of

C32, 03} and C32 follows now from the off-diagonal equations in (6.3.20) as well as the second equation
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in (6.3.21). We are now prepared to prove the stated formulaefor A}' and A?2. First, from (6.3.18),

2n—1

Cop = Z AjAs,_j+ Ag(Azn + Agp) + (Ao, + Agy) Ay,
j=1
k—1

C) = 2 AjA i+ AoAL +ArAy, k=2,....2n—1,
j=1

so reading off (22)-entries, with the aforementioned fact that C72 =0 for k = 1,...,2n and with (6.3.3),
k-1
0=CP =) (APARZ, + AT A2 ) +iA7?, k=2,...,.2n. (6.3.22)

Jj=1

Combined with the (22)-equation in (6.3.16), identity (6.3.15) and again Corollary 6.2.17, (6.3.22) yields

the desired equation for A%k = 1,...,2n. By similar logic
11 - 11 411 12 421 11 0AT
0=Clt = Y (AJ' AL, + APARL ) —iAl!, k=220 -1 - =0
j=1
which confirms the stated equation for A}! provided k& = 1,...,2n — 1 after another application of

Corollary 6.2.17. The ALl formula has to be treated slightly different since by (6.3.21), after our above

workings,

aC’2l7ll — _iBll
ot 0
and in addition
2n—1
11 11 411 12 421 Sq11 Rl
Con = D, (AJ'A3_; + AJPA3) ) — 1A} —iA}).
j=1
However %A\%}L = By!, so the last two identities yield
0 2n—1
11 411 12 421 - 411
0=~ (A AL+ APPAGL ) —iA)
j=1

and hence after t-integration and an application of Corollary 6.2.17 indeed the stated identity for ALL.

This concludes our proof of the Lemma. O

We can finally resume all the results found until now in the following corollary, that gives a recursive
recipe to find all the coefficients Ay for k = 1,...,2n in terms of U, V and their t-derivatives and to write

in a compact fashion the last two differential equations of the compatibility condition at the level ¢°.

Corollary 6.3.7. On Hs,

0 —iU AL g12
A= . Ay = ’2“1“ ’2“2“ L k=1,....2n—1, (6.3.23)
v 0 A1 Ak
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where
k
0A}? = —i Y (A AL, + APPARL )
Allca—l =i = *UA22+A11V k+1 ] k+1—j5 k+1—j
j=
2421 , . . (6.3.24)
21 _ .94k 11 22
A = 1 ot VAZ + 47V AP = Z (APAZL L+ AT AL
j=1
Moreover,
0AL? 0A2L
at?" = —(UAZ2 — ALLU +iM,U), (%2” =i(VALL — A22V —iV M), (6.3.25)

and (6.3.23),(6.3.24),(6.3.25) combined together yield the following (2n)-th order coupled, operator-valued

system for U and V,

—iU
iv

iMU
—iV M,

D A 1% —iUD; ' (VA+ BU) —iD; "(UB + AV)U
B| |2 +iVD;{(UB + AV) +iD; (VA + BU)V
where D acts entrywise on operators A and B on Hi and D;l denotes the formal t-antiderivative.

Proof. The only thing that is actually left to prove is that equations (6.3.25) can be rewritten by using

equations (6.3.24) and the operator D as (6.3.26). To see this, we first rewrite the recursion for the
off-diagonal entries of Ay by using the operator D. By (6.3.16) and (6.3.24),

o[ ] -
A3

since D; '(VAL2 + A2U) = —iA22 and D; "(UA?' + A}?V) = iA}!. Likewise, by (6.3.25) and (6.3.15),

12
AkJrl

L k=1,....2n—1 (6.3.27)
At

12
A2n

21
A2n

iMU
—iV M,

D

(6.3.28)

where we use D; ' (VAL +A3LU) = —iA32 and D; (U A3L+AL2V) = iALL. Hence, iterating (6.3.27),(6.3.28)
with the initial data (6.3.23) we arrive at the desired system (6.3.26) which does not contain any antide-

rivative terms because of the iterative formulee for A;! and A%? written in (6.3.24). O

In this section we proved that the system solved by N(¢) given in (6.3.6) can be seen as the Lax pair
for a coupled system of differential equations of order 2n for the operators U, V. These equations can be
seen as a noncommutative (operator-valued) coupled analogue of the Painlevé IT hierarchy. We write the

equations for the first values of n in the example below.

Example 6.3.8. For n = 1 the coupled system of differential equations for the operators U,V on H;
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6.4. The derivation of the integro-differential Painlevé II hierarchy

given in (6.3.26) reads as

U — UV + MU,

otz

While for n = 2 it reads as

U ’U ’U 0’V oU 3V oV oU U 17 oU
S = —6UVUVU + 4 T VU + 4UVW + 2U"at2 U+ QWWU + ZU%W + 6%‘/0&7 + MU,

OV — GVUVUV +4SYUV +4VU LY + 2V 2UY 4 20V Uy | oy UV | 6OV oV oy,

2
ot ot ot? ot ot ot ot

In order to see that the system (6.3.6) is actually the Lax pair for the integro-differential Painlevé I1

hierarchy, we still have some work to do.

6.4 The derivation of the integro-differential Painlevé II hierar-
chy
In this last section we are first going to show that the Lax pair (6.3.6) naturally encodes the integro-
differential Painlevé II hierarchy introduced at the beginning of the chapter in (6.0.4). After that, we
finally complete the proof of Theorem 6.0.7.
In order to recognize the integro-differential Painlevé II hierarchy behind the compatibility condition
(6.3.14), the idea is simply to look at the compatibility condition (6.3.14) at the level of the kernels of the

operators involved U, V, Azj , instead of the operators themselves. In doing so, we can prove a fundamental

symmetry property of the kernels of the off-diagonal operators A}.

Lemma 6.4.1. Let ke {1,...,2n}, then Ai*(z,y) and A2'(y,z) are y-independent and we have
AP (z,y) = (1D AR (y,2),  (z,y) € R®. (6.4.1)

Proof. We have A}?(z,y) = —iU(z,y) and A?!(y,z) = iV (y,z) by (6.3.23). Using Proposition 6.2.16, we
thus obtain (6.4.1) for k£ = 1 and since

Ur,y) = A} / na () (nly) i,

the y-independence of A12(x,y) directly follows from the definitions of the functions ny, ko, see (6.1.33).
But U(x,y) = V(y,x), so the y-independence of A%!(y,z) follows similarly. Proceeding inductively, we
assume that the claims have been proven for k € {1,...,m} and some 1 < m < 2n — 1. Since by (6.3.27),

A12

A}Cil(m,y) :iaa—tk(x,y) —i/RU(ac,z)/ /R (V(z7w)A,1€2(w7y) —|—Ail(z,w)U(my))da(w)dtda(z)

_j/ /R/]R (U(x,Z)Ail(z,w) +A11€2(m,z)V(z,w))U(w,y) do(z)do(w)dt
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Chapter 6 — The integro-differential Painlevé II hierarchy

we see that A,ﬁl(m,y) is y-independent by the induction hypothesis and base case. Moreover, using

explicitly the induction hypothesis in the form A}2(z,y) = (—1)*A%!(y, z), we obtain

21 t
AR () = (0 i a4 [ ) [ (VAR ) + AR U w) »

(6.4.2)
x do(w)dtdo(z) + i/ /R/R (U(z, 2) A (w, 2) + AP (2, 2)V(2,w))U(w,y) da(z)do(w)dt].

On the other hand, (6.3.27) also says

oA

Azﬁrl(x,y) = —i (%k (Jc,y)—&-i/RV(x,z)/ /R(U(z,w)Ail(my)+A,lf(z,w)V(w,y))da(w)dth(z)

+i/ /R/]R(V(I,Z)AIICQ(Z,U))+Ail(ﬂfaZ)U(Z,’UJ))V(U),y)da‘(w)do—(z)dt,

and thus A%Ll(x, y) is z-independent by the induction hypothesis and base case. Finally, relabelling the
integration variables z < w in the last equality and using the induction base case six times in the form
U(z,y) = V(y,x) we see at once that with (6.4.2),

Azi—l(%y) = (_1)k+1A/£:3—1(y7$)a (x,y) € RQ'

This Lemma is the key to simplify the equations given from the compatibility condition and resumed

in Corollary 6.3.7. Indeed, by defining the following functions

u(tle) == Uz, z) = Ulz,y) = V(y,z) = V(z,2),

(6.4.3)
ak(tlx) = AllcQ('Tvx) = (_1)kAi1($7x)7
for all (¢,z) € R?, the recursion for the operators A}? given in (6.3.16) becomes
(LYag)(t|lz), E=0 mod 2
ap+1(t|z) = k=1,2...,2n—1; aq (t|x) := —iu(t|x) (6.4.4)

(L%ag)(tlx), k=1 mod 2

where the recursion operators £ are given in Definition 6.0.3. Furthermore, the coupled system of
differential equations for U, V', that was given in (6.3.26), actually coincides with a unique equation that
is now rewritten as

—(t + z)ai(t|z) = (LLagm)(t]x). (6.4.5)

Thus iterating backward the right hand side through (6.4.4) we get
—(t+ z)ai(t|x) = ((Eiﬁli)"al)(ﬂx)
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6.4. The derivation of the integro-differential Painlevé II hierarchy

and replacing the initial condition for a; (t|z), the last equation of the compatibility condition is exactly
(t + z)u(t|z) = —((Eiﬁi‘)”u) (t|z)

that is the n-th member of the integro-differential Painlevé II hierarchy.
We are now ready to prove the formula that expresses the Fredholm determinant D, (¢,\) in terms of
distinguished solution of the integro-differential Painlevé IT hierarchy (6.0.4). We are going to prove it in

two steps : first we have this lemma.

Lemma 6.4.2. For every (t,A\,n) € R x D1(0) x N,

0

57 Dn(t,A) = —iAz gf/ENl(ﬁ)@)Kl(f)d&

followed by
2
o2
Proof. We start by computing the first ¢-derivative of the logarithm of D, (¢, \). To do that, we recall
equation (6.1.31) and we apply the Jacobi formula

I Dy (8,) = = T (UV)

0 0 1 1 1 10
aln Dn(t, A) = a lndet([ — Azct,n‘[ﬁ(ﬂ)) = —\2 L;[(‘I'E) |:(I — )‘2Ct,n|L2(E)) 1atCt’n:| . (646)

Then by using the definition of the operator Cy , given in (6.1.32) we get the kernel derivative

0 i
7Ct,n(£a 77) = %

- [ bt 02 (€, () doz) =i [ halelema ol do),

where in the last passage we just replaced (6.1.33). Hence back in (6.4.6),

0 ; ; 0
S Da(tA) = —/\f/E/E(I—AfCt,n)‘l(n,f)aCt,n(&n)dédn

=i [ / (N1(5)®K1(5))(2,z)d€] do(z) = = Tr [ M@ @K (©)de.

where in the second passage we just used the integral equation (6.2.23). Thus the first identity in the
statement holds. We notice that in its right hand side we actually have a multiple of the H;-trace of the
(1,1)-entry of the first asymptotic coefficient of the solution of the Riemann-Hilbert problem 6.2.1 X(().
For the second identity in the statement we need then the t-derivative of this quantity. This is obtained in
a classical way, revisiting our proof of Proposition 6.3.3 and explicitly computing the O((™!) correction
when inserting the asymptotic representations of X(¢) and (X(¢))~! into the defining equation of B(()
in (6.3.10). The same O(¢~!) correction has to vanish identically by generalized Liouville’s theorem and

this yields the operator commutator identity
(X1)e = [Bo, X2] — X4[Bo, X4],
where By is written in (6.3.5). Taking the entry (1,1) of the above identity and using the symmetries
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Chapter 6 — The integro-differential Painlevé II hierarchy

proved in Corollary 6.2.14 yields in particular

‘ (Aé JRIGEXG ds) —=ix [ [ (i) @ Kal) (Na(6) @ K (9) s = UV

where in the last passage we just split the double integral and recognize the definition of U, V as in (6.2.40).

Therefore the second identity holds once derived the first one and replaced the above relation. O

The last step essentially just require to actually compute the operator trace appearing in the second
equation of the above lemma and to compute the asymptotic behavior of the solution u(t|z) of the n-th

member of the integro-differential Painlevé II hierarchy (6.0.4).

Lemma 6.4.3. For every (t,\,n) € R x D;(0) x N,

D(t, ) = exp [— /t R ( /R u2(s|x)da(x)) ds]. (6.4.7)

where u(t|z) = u(t|z;n, \) solves the dynamical system (6.0.4) and it is such that u(t|z) ~ A2 Al 41 (t+2)

as t — 400, pointwise in x € R.

Proof. By Lemma 6.4.2,

—TrUV // (z,9)V(y,z) do(y) do(z //UQxyda z)do(y)

- /R /R U (x, z) do(2)do(y) = — /R u?(t|z) do (), (6.4.8)

62
@ ln Dn(t, )\)

where we used the symmetry condition given in Proposition 6.2.16, the definition of u(t|z) and its y-

independence and the fact that do is a probability measure. However,

1

) =3¢ [ mGlodhatale) dn = 57 [ o005y [ (Cum) harle) d
A [ [ma(ale) = maala) = X (G (o) ) s o) i,

so by using the integral representation of the n-th Airy function, indeed wu(t|z) ~ A2 Aig 1 (t + 2) as
t — 400 once we estimate the two remaining integrals involving m; (+|z) as in our proof of Corollary 6.2.17
(cfr. [BCT21]). All together, (6.4.7) follows from (6.4.8) after integration since u(t|z) ~ A2 Aig, 11 (t + )
yields fR (t|x)do(z) — 0 exponentially fast as ¢ — 400 because of the asymptotic properties of the

n-th Airy function and of the weight function w. This completes our proof of the Lemma. O

Theorem 6.0.7 is finally proved.
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CHAPTER 7

STOKES MANIFOLDS AND CLUSTER
ALGEBRAS

N THIS LAST CHAPTER we discuss some of the original results contained in the joint work with Marco
Bertola [BT21]. The aim of this work is to study the symplectic-Poisson structure of certain Stokes
manifolds defined as the monodromy manifolds of a linear system of ODEs with polynomial (si-valued)
coefficient of generic degree. In particular, for the case N = 2 we found explicit log-canonical coordinates
for the symplectic two from, and we studied their relation with the emergent field of cluster algebras. The
induced Poisson structure in these coordinates turns out to be the linearization of the Flaschka-Newell
Poisson structure, defined almost 40 years ago in their paper [FN82], where the first concrete example of
wild character variety was introduced.
The adjective wild here is used to underline the difference with the classical character varieties, involved
in the study of the monodromy map for ODEs having only simple poles. Indeed, the monodromy map
connects the space of rational matrices, giving the coefficient of a linear system of ODEs, to some re-
presentations of the fundamental group of the punctured Riemann sphere. Looking at ODEs with only
simple poles, this connection is explained in terms of character varieties of the punctured Riemann sphere.
Instead, if the ODEs matrix coefficient has higher order poles, the Stokes phenomena makes the set of
monodromy data more complicated, thus complicating the studying of the monodromy map. The new
geometrical object arising in this study goes under the name of wild character variety. The interest in its
Poisson structure comes naturally from the following fact. On the side of the ODEs, there is a well known
Lie-Poisson structure defined on the space of coefficient matrices. It seems natural to ask whether and
how the monodromy map “transfers” this structure on the relevant monodromy manifold. The pioneering
works addressing this question were first the already cited [FN82] and then the one of Ugaglia [Uga99],
who studied the case of rank N ODEs with a simple pole at 0 and a pole at o0 with Poincaré rank
2. Concerning the general Fuchsian case, it was shown in [KS97] that the Lie-Poisson structure on the
space of coefficient matrices induces the Goldmann Poisson structure (the classical Poisson structure on
character varieties [Gol84]) on the space of monodromy matrices. For what concerns the irregular case
instead, it was the series of papers of Boalch [Boa0Ola, BoaOlb, BT07] that provided in very a general
setting, the description of the Poisson-symplectic structure on the space of extended monodromy data

(and re-derived the cases studied by Flaschka-Newell and Ugaglia).
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Chapter 7 — Stokes manifolds and cluster algebras

For us, the Stokes manifold of interest G, is the following algebraic variety

1 10 1 1 0
Sk = o1 I A% =1 withs;eC, AeC* (7.0.1)
0 1 sy 1 0 1 So+2 1

of complex dimension 2K, for every K > 1. We proved in two different ways that Gg is indeed a

symplectic manifold, with symplectic 2-form given by

2K+3
— Z Tr (H[lng/\S[lng>, Hy:= 818y, Sogig:= XL, (7.0.2)

where Sy, for £ = 1,...,2K + 2 denote the upper and lower triangular matrices with unit diagonal,

appearing in equation (7.0.1), and e?" L

= \?3_ for the rank 2 case. In one way, we proved that the 2-form
(7.0.2) has pull-back (via the monodromy map) that coincides with the “universal symplectic structure”
of Krichever and Phong [KP00], [Kri02], (induced by the Poisson-Lie structure on the space of coefficient
matrices over its symplectic leafs) thus providing that Wk is symplectic. In the other one way we built,
for the case of rank N = 2, explicit coordinates y;,7 = 1,...,2K that parametrize the Stokes manifolds

Sk as (see Lemma 7.2.5)

— 2 =_(1 2 (-1)72 k=1 K—1 _ (-1)72

S1 = y] y  S2k+1 = ( +y2k+1) H yj ) = Ly ) S2K+1 = H yj ’
1<j<2k+1 1<j<2K

( 1)J+12

SS9 = ]. + ka H
1<5<2k

K
A= (*1)K n y%j'
j=1

:17"'3K, 82K+2:y%(1+y%( (1+y2K nyQJa

As a byproduct the form Wy is expressed in log-canonical form within these variables and it is in
particular non-degenerate. Moreover, its associated Poisson bracket (Lemma 7.2.1) is described by this

constant coefficient matrix (for the logarithms of the coordinates y;)

0 0 0 0 0

-1 0 1 0 0 0

0 -1 0 0 0

1] . L :
Pie=| PRI | (7.0.3)

0 0 .. -1 0 1

0 0 .. 0 -1 0

The construction of the log-canonical variables y; is based on the choice of a certain triangulation of a
2(K + 1) regular polygon, in a way similar to the one used for the Grasmannian of 2-planes (in [GSV10],
Chapter II). The explicit computation of the 2-form Wy follows instead the techniques developed in the

recent work [BK19)], relying on the theory of standard 2-forms associated to oriented graph with connec-
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tion. The connection with cluster algebras comes from the simple observation that the matrix Py is (up
to a constant factor) the matrix representing the simple quiver of type Ak (with prescribed orientation) ;
this means that the variables y]2 form a seed for the cluster algebra of type Ask. To complete the picture
we need to show that different choices of triangulations of the regular (2K +2)-gon yield parametrizations
of the Stokes’ data that are obtained from the initial seed by applying a suitable sequence of mutations,
i.e. simple birational maps from one chart to another (see the subsection 7.3.1). The appearance of cluster
algebras in this kind of context is not surprising : in the last decades the works of Fock and Goncha-
rov [FGO6] already shown the deep connection between cluster algebras and the geometry of character
varieties. Thus similar connections should be expected to appear also in the context of wild character
varieties.

Finally, the Flaschka-Newell Poisson bracket defined for the original monodromy parameters describing

Gk, namely

05,1012k +2 i .
{sj,sl} =04,1-1— Lo LR TR )\’2 + (—1)J l+18jsl, 7 <l
FN

{sj,A}FN = (=1)7s;. (7.0.4)

is showed to coincide with the Poisson bracket described above in Theorem 7.4.3, under the parametri-

zation given in (7.0.3). All these results can be resumed in the following compact statement

Theorem 7.0.1. The wild character variety of an sly polynomial connection of degree K on the Riemann
sphere is a cluster manifold of type Ask with one frozen variable. The log—canonical Poisson (symplectic)
structure on this cluster variety coincides with the push—forward by the monodromy map of the Lie-Poisson

structure.

The Chapter is organized as follows : in the first section we describe the symplectic structure on the
space of rational polynomial matrices, and we prove its relation with the symplectic structure on the
Stokes manifolds. In the second section we analyze the rank 2 case and we construct the log canonical
coordinates for the symplectic 2-form on the Stokes manifolds. In the third section we study the connection
between these log-canonical coordinates and cluster algebras. Finally the last section is devoted to recover
the original Flaschka-Newell Poisson structure from the linearized one in the coordinates y; for the Stokes

manifold.

7.1 Symplectic structure on the Stokes matrices
Consider a polynomial ODE of the form

AW L

— =ANY, AN = AN 7.1.1
For the sake of this discussion we can consider the case of N x N matrices (without real loss of generality,
we consider the sly case with Tr(A(A)) = 0). Keeping in mind that all the results can be extended

to an arbitrary semisimple Lie algebra. We assume that Ax has simple eigenvalues (i.e. it is regular
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semisimple). Under this hypothesis, using Theorem 4.1.3, one can find a solution in the class of formal

series of the form

Uform(A) = YA LTV Y(N) = Gy (1 +y i) e SLy[[A71]], (7.1.2)

j=1

where Gy is a chosen diagonalizing matrix for Ax and L,T()\) are diagonal traceless matrices. In this

case, the entries of L are the formal monodromy exponents and the matrix 7" is a polynomial of the form

/\K+1

TN = Trs1——
() = Tacsa o

+--+ T\ Tjeb, (7.1.3)

where h denotes the Cartan subalgebra of sly, namely diagonal traceless matrices. The coefficients of
T()\) are the (higher formal) Birkhoff invariants. The matrix Tk 41 is the diagonal form of the leading
coefficient Ay, so that

Ag = GoTg 111Gyt (7.1.4)

Poisson structure on the space of matrices A(\). The Lie-Poisson structure on the set of rational

matrices can be expressed as (for a review see [BBT03])

(AP 4G} = [ Ay + A (7.15)

where A1()\) := AA)®1, A%(p) :==1®A(p) and IT: C*®@C"™ — C*®C" is the tensor effecting the flip :
N f)=f®v, v,feC". (7.1.6)

It can be explicitly written as II = ZZ,j=1 Ey ; ®E, i, with E;; the elementary matrices. In our case A(X)
is a polynomial; the matrix Ag is easily seen to consist entirely of Casimir functions for this Poisson
structure. The symplectic leaves are thus described ; let G(A) be the matrix of eigenvectors for A(A) of

the form

G(\) = Go(l + 3] ljj) (7.1.7)

j=1

(The Laurent series has a finite radius of convergence). Then

A = GOYD)GO)Y, D) = Ty A 4o 4 Ty — % b (7.1.8)

where the matrices T; are all diagonal traceless matrices; as the choice of letters suggests, they coincide
(a simple exercise) with the Birkhoff invariants and the exponents of formal monodromy, while the rest of
the Laurent tail plays no role in our present considerations. Then the Casimir functions are 17, ..., Tk 1
and Ax = GoTk 411Gy " (see also [BBT03], Ch. III).

On the symplectic leaves, the Poisson structure (7.1.5) has the form of the “universal symplectic
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structure” of Krichever and Phong [KP00], [Kri02] :

Wi = = Ies Tr (D()\)G()\)léG(/\) A G()\)léG(x\)) dA
=00
= — res Tr (A(/\)(SG()\)G()\)_l A 6G()\)G()\)_1)d)\ (7.1.9)
=0
The two-form is invariant under gauge action of right multiplication of G by diagonal matrices of the
form
F(A) =1+ ), 5. b[[A"1] (7.1.10)
= 2 Y . 1.
J]=

To see this we introduce the symplectic potential

0:= res Tr (D(A)G(A)‘léG()\)) (7.1.11)
=00

which has the property that 60 = w, .. Now observe that under the gauge transformation G(\) —

G(AN)F(X) we have

00+ res Tr (D()\)Fl()\)cSF(A)>d)\. (7.1.12)
=0

In the latter term, since F(A) = 1 + O(A~!) only the non-negative powers of D()\) contribute (since

F7Y(A)JF(A\) = O(A71)). Given that the parameters 11, . .., Tk 41 in (7.1.8) are constants, we can express

the last term in (7.1.12) as the total derivative of the function

A=00

res Tr (D(A)F—l(A)aF(A)) dA = § res Tr (D()\) lnF()\))d)\, (7.1.13)

which implies that w, , = d0 is indeed invariant. It is also invariant under left multiplication G(\) —
HG(X\) with H a constant (in A) : indeed, the left multiplication by a constant matrix H leaves ¢
completely invariant :
00+ res Tr (G(A)D(A)Gl(A)H15H> d\ =10 (7.1.14)
=00
where we have used that G(A)D(A\)G~()\) = A()) is a polynomial.

The core of the idea of the “extended coadjoint orbit” of [B*07] is the following : while Ax =
GoTr 111Gy !is a Casimir for the KKS symplectic structure, Gy itself is not because right multiplications

by a constant diagonal matrix do not leave the symplectic form invariant.

Thus we allow Gy to be kinematical variables : fix the Birkhoff invariants T'(\) = Z]K;ll TN /5 (ie.

the diagonal traceless matrices T1,...,Tk+1) and consider the set

Op = {(GO,A()\)) e SLy x Ax: Gy'AgGo=Tki1, (G TTANGN), = T’(A)}, (7.1.15)
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where (), denotes the Taylor part of a Laurent series (here is a polynomial part).

The dimension of @T is
dime (@T) —(K+1)(N? 1)+ (N-1)— (K+1)(N—-1)=KN(N—-1)+N2—1  (7.1.16)
The extended orbit Or carries the following SLy—action :
(Go, A(N)) — (HGo, HAN)H™Y), HeSLy. (7.1.17)

Then the quotient (5\T/SLN is a symplectic manifold of dimension K N(N — 1) = dim¢ G.

In order to connect the Lie—Poisson structure with the Flaschka—Newell structure on the Stokes’

matrices we need first a lemma and to justify the definition of Stokes manifolds given in (7.0.1).

Lemma 7.1.1. The first K + 1 coefficient matrices Y1, ..., Yk 1 in the expansion of the formal solution

U form (7.1.2) coincide with the expansion of the eigenvector matriz, to wit

Y(X) := Gy (1 + 3] E) = G(\) + 0Ky, (7.1.18)

j=1

Proof. The formal series YV satisfies the ODE
~, ~ y L S
Y'(A) +Y(N) <T N\ — ) =ANY V), (7.1.19)

where we abbreviated with / the derivation w.r.t. A. Since Y’()\) = O(A~2), the matrices T()\), L are
diagonal and since the degree of A is K we deduce that Y matches the Laurent expansion of the eigenvector
matrix G(A) up to the indicated order. O

Description of the Stokes manifolds. Recall the results stated in Section 4.1 about the behavior
of local solutions of linear ODEs near singular points, in particular Theorem 4.1.4. In our case of study,
namely equation (7.1.1), there is only one pole at oo of Poincaré rank K + 1 for each K > 1. Thus
the complex plane can be partitioned into 2K + 2 canonical Stokes sectors of equal angular width S,,,
arranged in counterclockwise order. Within each such sector, Theorem 4.1.4 assures that there exists a
unique analytic solution ¥, ()) to the ODE (7.1.1) such that

T(\) >~ Tporm(N), [N — o0, arghed,, (7.1.20)

with U o, given in (7.1.2). In these asymptotics, the determination of the matrix of formal exponents
Al is the same, —say— the principal one. In this setting, we have then 2K + 2 Stokes’ matrices S, as
defined in (4.1.11); if the entries t1,...,t, of Tx41 are arranged in increasing order of R(¢;e%) (for a
generic y so that this order is unique), then the Stokes’ matrices are all triangular matrices with unit

diagonal, namely they belong to N. < SL,. Specifically, they alternate the triangularity as we move
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counterclockwise.

The entries of these matrices are not independent ; they must satisfy the monodromy relation
5182+ Sa2” ™ =11 (7.1.21)

which is a consequence of the fact that the ODE has no singularities in the finite part of the plane and
therefore each of the solutions ¥, extends uniquely to an entire matrix—valued function. We thus define
the Stokes’ manifold as the set of these data :

Definition 7.1.2. The Stokes’ manifold is the following set
Sk = {(sl,...752K+2,L) e(Ny x N)EF xS Sypp0e?™ = 1.} (7.1.22)

where N4 denote the solvable subgroups of upper/lower triangular matrices with ones on the diagonal

and h denotes the subalgebra of diagonal traceless matrices. The dimension of this manifold is

dime(6k) = KN(N —1). (7.1.23)

It is apparent that the dimension is even; in fact Boalch [BT07] shows that these type of manifolds
are symplectic. We are going to give a self-contained description, adapted to this case, of this structure.
In particular, in the next paragraph we are going to prove that for the general NV case, the 2-form Wk
defined in (7.0.2) has (up to a constant factor) pull-back that coincides with the symplectic form wg g
written in (7.1.9). Thus implying that &k equipped with Wi is a symplectic manifold. Then in the next
sections, we will treat the case NV = 2 finding explicit log-canonical coordinates in which W is in non-
degenerate form and proving that the induced Poisson bracket indeed coincide with the Flaschka-Newell

one, written in equation (7.0.4).

The Malgrange form associated to an analytic family of Riemann Hilbert problems. We
describe here the gist of [Berl0, Ber21]. Suppose that ¥ < C is a collection of oriented smooth arcs
(intersecting transversally) and J : ¥ — SLy a smooth matrix—valued function (the “jump matrix”)
depending analytically on parameters that we denote collectively by s. As discussed in Section 3.1, this
pair of data defines a family of Riemann-Hilbert problems (s depending). In case the contours ¥ has
some self-intersections, the matrix J(z;s) must satisfy suitable assumptions (see [Ber21] for details). The
most important one for the description here is the “local monodromy free” condition : let v be a “vertex”
of the graph, namely, a point of intersection of the smooth arcs of 3. Let ey, ... e, be the sub-arcs of X
entering a small disk D,, centered at v and enumerated counterclockwise from an arbitrarily chosen one.
We denote by

Jo(v;s) = lim J(\;s), (7.1.24)

—v

AEey
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where the power is +1 if the edge ey is oriented away from v and —1 viceversa. Then the matrices must

satisfy
Ji(v;s) - Ip(v;s) =1 (7.1.25)

for all the vertices v of X, identically with respect to the deformation parameters s. Suppose now that

there exists (generically with respect to s) the solution of the Riemann—Hilbert problem !

Ti(Ns)=T_(N\;8)J(2;8), z€X, T(oo;s)=Ch. (7.1.26)
The normalization condition at A = oo is usually taken to be the identity, but it will be convenient to
consider a more general one. Then we recall the definition anticipated at the end of Chapter 3.
Definition 7.1.3. The Malgrange form is defined by the formula

dA

O ::/ETr (F_l()\;s)F’_(z;s)E()\;s))% (7.1.27)

where Z()\;s) := 0J(\;s)J1(\;8) is the Maurer—Cartan form, the prime denotes the differentiation w.r.t.

A and 9 is the total differential in the deformation parameters s.

We observe that the Malgrange form ©); is independent of the normalization at A = oo, which

corresponds to a left multiplication of I' by a A-independent matrix. Then one has

Theorem 7.1.4 (Thm. 2.1 in [Ber2l1]). The esterior derivative of the Malgrange form Oy is

5@M__f A (2'(A\) AE(N)) — P > ZTr( v)dHy (v )AJel(v)(SJg(v)) (7.1.28)

2 Js 2im VeV (S) i=1

where Hy(v) = J1(v) -+ Jo(v) and the matrices Jy(v) are defined prior to (7.1.25).2
We now come to the main statement of the section.
Theorem 7.1.5. The following two-form is a (complex) symplectic structure on S :
1 2K+3

== 2 Tr( JYdH A Sy 1ng> Hy:= S-Sy, Sogys:= el (7.1.29)

Its pull-back by the (extended) monodromy map coincides with the Lie—Poisson structure (7.1.9) times

—2iT.

Before discussing the proof, we point out that this form is written in a different way from [B*07]
(Thm 5, formula (7)) and rather reflects the general theory of “canonical form associated to a graph”

developed in [BK19]. The two expressions (a posteriori) can be verified to give the same two-form when

1. To simplify the mental picture, the reader may assume here that ¥ is compact : if some rays extend to infinity, the
assumption is that J(\) tends to the identity matrix faster than any power of A= as A — 00, A € ¥, so that the RHP can
be posed consistently. Details are in [Ber21].

2. In loc. cit. the form is presented in a different, but equivalent, way.
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FIGURE 7.1 — An example of Stokes’ graph ¥ used in Theorem 7.1.5.
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restricted to the constraint (7.1.21). In principle, in our explicit computation in Section 7.2 for the SLs

case, this theorem is verified ex post facto.

Proof. We show that the symplectic form (7.1.9) coincides with the pull-back by the monodromy map of
the form Wy in (7.0.2) and hence showing that the latter is also symplectic (or, to put it more plainly, we
write (7.1.9) in the coordinates provided by the Stokes’ matrices). The proof here is completely different
from [BT07]; rather than computing the two-form W in the coordinates of the Stokes’ matrices, we
directly compute the symplectic potential (7.1.11).

Let ¥ be graph indicated in Fig. 7.1 : the vertex of the star is at A = 1 and the small circle is centered
at the origin A = 0. The Stokes’ rays are the lines wy, ... wax 2 issuing from A = 1 and extending to
infinity along the Stokes’ directions. In the Fig. 7.1 we have drawn them for the case K = 3 under the
assumption that the real parts R(it;) are ordered increasingly, so that the Stokes’ rays w, have asymptotic
directions arg A = % + KZ—L(E — 1) and the Stokes’ matrix S; is then upper triangular.

We now define a piecewise analytic function I' in each of the connected components of C\X; in the

sector Sp, I is given by
T(A) =T1(A) := Ty (A)e TIFTMNL (7.1.30)

where the determination of A\’ is the principal one. In the other unbounded components (including the

one that contains the disk D,.) the matrix T is defined by multiplying I’y (A) by the jump matrices
Jo(N) i= T =TWN\=LGNE=TAFTD) - ) e o, (7.1.31)

The triangularity of Sy is such that Jy(A) = 1 + O(A™%) as |A| — o0, A € w,. Within the disk D, we
define

T(A) = To(A) 1= Tj (MAF = W, (A)e" D=1, (7.1.32)

where jg is the index of the sector containing Dg. Note that I'g is locally analytic near A = 0.
In the sector containing the disk Dg the matrix I" does not have a jump on the ray (—o, —3] because
of the monodromy relation (7.1.21) and combined with the monodromy of the factor A¥. There is, however

2im L

the jump A = e on the segment [, 1]. A straightforward exercise shows that the piecewise analytic

matrix function I' satisfies a RHP on the graph ¥ shown in Fig. 7.1 :
L.\ =T_(\)J\), Xe X%, r'(\) ~e"MY (), |\ — o, (7.1.33)

where ~ denotes the asymptotic equivalence in the Poincaré sense, }7()\) is the formal series as in Lemma

7.1.1 and the jump matrix J(\) is given by

J(A)_{ Ji\) New, (see (7.1.31)) (7130

AL e (?]D)/g.

The jump matrix on dDg is the function A=% and the determination is (recall that 8 € R,) with arg\ €
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[0, 27), which is not the same used earlier but we do not want to overload the notation by using a different
symbol for the power. Using Lemma 7.1.1 we can write the symplectic potential (7.1.11) as the formal

residue

0 = res Tr (A(A)(SG(/\)G‘l()\))dA =“res” Tr (A(A)(S}A’()\)f/‘l()\))d)\ =

A= A=00
= res Tr (A(A)(SF()\)F_l (A) — F_l()\)A(A)F(A)éT(l)> dA. (7.1.35)

Since the expansion at oo of I' coincides with that of the eigenvectors up to order A=%~! (included), the

second term in the residue yields (recall that resy—_o extracts the coefficient of A=! with a minus sign)

A=00

L
— res Tr < (T/ - /\) 5T(1)>d)\ = —Tr(LéT(1)). (7.1.36)
The first term in (7.1.35) is a formal residue and can be realized as the following limit of an actual integral

lim Q Tr (A()\)(FFF1> (7.1.37)

r—00 |A|=r T

where the contour runs counterclockwise. Note that the integrand is actually an analytic function defined
piecewisely for each sector. Applying Cauchy’s theorem, we can reduce the integration along the support

of the jumps of I' and we obtain

0 = / Q Tr (A(A)AZ((SFF‘l)) — Tr (L6T(1)) (7.1.38)
5 24T
where Ay is the jump operator AxpF(\) = Fy () — F_(\), A € X. Now observe that
,=r.J = Iy=6_J+T0J = T, T;'=0T_T'+T_6JJ T (7.1.39)

and hence we have

Ag(STD™ Y =T_6JJ 171 (7.1.40)
Plugging (7.1.40) into (7.1.38) gives
A »
6= [ = Tr (TZAT_6JJ7 1) — Tr (L6T(1)). (7.1.41)
» 27T

The above expression suggest a relationship with the Malgrange form ©j; in Def. 7.1.3 which we now
investigate. Using the definition T(\) = U(\)eT(M=TM\L (piecewise sectorially), we find that

ANDN) = W/(A\)eTO-TAINE — /(X) +T (T’(/\) - ’;) . (7.1.42)
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Thus the expression (7.1.41) is recast into :

o— [ Py (F_lr’_aJJ1> / ——Tr ( ( "(A) — i) 5JJ1> — Tr (LT (1)) (7.1.43)

5 2T

The integrand in the second integral is zero on each of the Stokes’ rays o, because the matrices dJ;.J, !
are strictly triangular (upper or lower), with zeros on the diagonal and L,T” are diagonal, so that the

product is diagonal-free. Thus the second integral reduces to

/;Z?T Tr <<T’()\) - i) 5JJ—1) =
_/jcm %Tr ( (T’()\) - i) (-or(1) - oL A)) + /1/3 ( (T’()\) - i) 6L>d/\ =

K+l T L) (a1 P77 aT(L2) (n2)?| "
__ Z (J _ j2> A e Tr (LéT(l))
L2
+ Tr ((T(ﬂ) —T(1))6L -6 <2> 1n[3) =
= —Tr (T(1)6L) — %Té Tr (L?). (7.1.44)
Thus we have shown that
0 = Oy — Tr (T(1)6L) — 2ims Tr (L?) — Tr (L6T(1)) = Opr — 6 Tt <T(1)L + Z;TL2> . (7.1.45)

This means that the Kirillov-Kostant form 6 coincides with the Malgrange form up to an exact differential.
We now compute the exterior derivative of 6 using Theorem 7.1.4. It is clear that the last term in (7.1.45)
does not contribute to the exterior differentiation because it is an exact form. The integral in (7.1.28)
has no contribution because

- on the rays w, the integrand is traceless (given the triangularity of the jump matrices (7.1.31));

- on the segment issuing from A = 1 and directed to the disk, the matrix = is constant in \;

- on the boundary of the disk Z'(X) A E(A) = %(% A 6L = 0 since L is diagonal.
Thus we are left only with the contributions from the two vertices of the graph in Fig. 7.1, which are
vo = B and v = 1. At vy we have three incident edges and the matrices J, Ja, J3 are J; = L, J, = gL,
J3 = f~Le=%7L_ Since they commute, it is easy to see that there is no contribution (each term contains
0L A 6L, which vanishes identically since L is diagonal).

Thus the only contribution comes from v = 1; here the jumps are :
Jo(w) =S, L=1,...,2K+2 (7.1.46)

and Jox 3 = e~ 2"L. Then the Theorem 7.1.4 gives precisely (7.0.2) divided by —2im. Thus we conclude
that Wk in (7.0.2) is a symplectic form. O

Remark 7.1.6. To be explicit, the coordinates on the quotient of the extended orbit (7.1.15) are as
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follows ; one writes

Hl H2 HK —K—-1
G:Goexp<z+22+~~+zK+(9(z ) (7147)
where Hy,..., Hg can be chosen diagonal free (i.e. with zeros on the diagonal), using the gauge freedom

(7.1.12). Then the KN(N — 1) entries of Hy,..., Hg are the coordinates.

7.2 Stokes manifolds for n = 2

Our goal now is twofold :

1. provide explicit parametrization in terms of patches of free coordinates for the complex manifold
Gk (7.1.22);

2. show that the coordinates introduced above are log—canonical for the two-form (7.0.2).

We recall here the terminology ; a coordinate system (x1,...,x2,) on a symplectic manifold (M,w) is

called log-canonical if the symplectic form is expressed as follows in the coordinate system

LA (7.2.1)

with w;; constants. If P;; denotes the inverse transposed of the matrix w;; then the Poisson brackets read
{z;,x;} = Pjjx;xz; (nosummation), (7.2.2)

namely the logarithms of the coordinates have constant Poisson brackets amongst themselves (whence
the terminology). At this point the problem of finding Darboux coordinates reduces to a simple problem
of linear transformation in the logarithmic coordinates to find the canonical symplectic matrix for the
Poisson brackets.

We are going to carry out the two steps above in the case of S Ly, which corresponds to the historically
first case ever studied in [FN82]. The higher case can be handled in a similar way but we defer the
computation to a later work since it would unnecessarily obfuscate the computation behind a plethora of
indices.

As anticipated in the introduction, the Stokes’ manifold (7.1.22) specializes for any K > 1 and N = 2
to the following

1 1 1 1
Sx = 51 o) . 52K+ 0) you — L withs; e C, A eC* . (7.2.3)
0 1 so 1 0 1 Sarc+2 1

We will denote by So;_1 the upper triangular matrices and by S9; the lower triangular matrices appearing

in the equation above for [ =1,..., K + 1.

Remark 7.2.1. The matrix equation in (7.2.3) is equivalent to three algebraically independent scalar
equations for the Stokes parameters s; and the formal monodromy exponent a so that dim (Sx) =
2(K +1)+1—-3=2K, as it follows from (7.1.23) for N = 2.
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7.2.1 Construction of the log-canonical coordinates

We consider on S the 2-form (7.0.2). Following [BK19] we introduce some basic definitions and
properties of the 2-form associated to a graph embedded in a surface, and we will see that the Stokes
2-form can be conveniently interpreted within that formalism. This is indeed the key in order to compute

it explicitly and find the log-canonical coordinates.

Graph theory We briefly recall the definition of the standard 2-form associated to an oriented graph
on a surface (we refer to Section 2 of [BK19] for more details). Let ¥ be an oriented graph on a surface,
we denote with V(X) the set of its vertices, E(X) the set of its edges and F(X) the set of its faces. A
“jump matrix” J is a map from E(X) to SL,, with the properties that :

1. for any edge e € E(X) we have
J(—e) = J(e)™! (7.2.4)
with —e denoting the same edge e with opposite orientation;

2. for any vertex v € V(X) of valence n, we have that the ordered counterclockwise product of the

matrices associated to each edge oriented away from v is the identity. Namely :
J(er) ... J(en,) = In, (7.2.5)

where we ordered the edges ey, ..., e,, incident at v then counting them counterclockwise.

To the pair (3, J), we can then associate the standard 2-form Q(3) defined hereafter.

Definition 7.2.2. The standard 2-form Q(X) associated to the graph ¥ is defined as follows (we omit

explicit reference to the dependence on J from the notation)

Ny—1 _ _
QE) = Y ) Tr((HE{i)a) S, A (70 1dJé”)). (7.2.6)

vev(x) £=1

where in this formula for any vertex v € V(3) we have taken the incident edges ey, ..., e,, oriented away

from v and enumerated in counterclockwise order, starting from any of them. Here H[(lv )] =Ji...Jg

with J; = J(e;) for i = 1,...,n,. Thanks to the property (7.2.5), this 2-form is well defined, namely,

independent of the choice of first edge in the cyclic order at each vertex.

The form Q(X) in Def. 7.2.2 is shown to be invariant under certain transformations (X, J) — (X', J')
(called mowves, see Section 2 of [BK19]); these moves consist in the self-describing titles of

1. edge contractions;

2. merging edges;

3. attaching edges to vertices (and the converse)

The star-graph for the Stokes’ phenomenon. Given the formula (7.0.2) we surmise that the form
Wk can be represented as 2Wg = Q(X*) where ¥* (the “star-graph”) is simply the collection of 2K + 3

rays, each carrying the matrices J; := Si,...,Jag42 = Sori2,Jax4z = A = €™ as jumps. We
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S5

FIGURE 7.2 — The Stokes graph X(2).

can actually merge the last two rays and corresponding jump matrices to obtain a simpler star-graph
»(K) indicated by the way of example in Fig. 7.2 for K = 2. This is not quite one of the generally
allowed moves listed in [BK19] but we now verify directly that it leaves the form invariant. Let thus
Jo=Jo, £=1,...,2K +1 and Jagxso = Joxs2Jox+s = SaxsoA. Recall that Syxio € N_ and A
is diagonal. Note that H, = ﬁg up to £ = 2K + 1, while ﬁ2K+2 = Hog oA = 1. Then the difference

between the two-forms is
Q(EY) — QR = Tr (Hypt odHox o A Sy 2dSoxc42). (7.2.7)

Since Hog 3 = HogioA = 1 we must have that Hygx 1o = A~', namely, it is diagonal. But Sox o is
unipotent triangular and hence S, 424825 2 is strictly lower triangular, so that the matrix in (7.2.7)
is diagonal-free and the trace gives zero. Thus, in conclusion, we only need to analyze the two-form

associated to the graphs of the form (%) depicted in Fig. 7.2, since we proved that
Wi = Q2. (7.2.8)

The idea is to realize the simple graph X(*) as the complete contraction of all the (finite length) edges
of another graph with explicit, simple jump matrices that depend on free parameters (contrary to the
Stokes’ parameter that are subject to algebraic relations).

Consider the graph E((JK), exemplified in Figure 7.3 for K = 2 : then it is apparent that ) is the
total contraction of E(()K). The jump matrices for this graph are described in the following paragraph.
The key fact is that the computation of the symplectic form associated to EéK) is then a straightforward
exercise.

Since the graphs EE)K) and L) are related by the “moves” hinted before and described in [BK19)],
the corresponding associated forms coincide : 2 (E(()K)> =0 (E(K)). Then, by using the definition of
the 2-form associated to a graph, we will compute explicitly the Stokes form, showing directly that it is

indeed symplectic.

The graph EE)K) and its jump matrices. The graph EéK) (see Fig. 7.3 for the example with K = 2)

is the graph consisting of 2(K + 1) infinite rays emanating from the vertices of a regular 2K + 2-
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FIGURE 7.3 — The modified graph E(()z). Here we take the triangulation Tj of the hexagon that connects
any of its vertices to vg.

gon. The polygon is subdivided into triangles with a common vertex vox 2. We denote by Ty this
precise triangulation of the polygon. Inside each triangle we have a vertex z; and three edges from the
three vertices bounding the triangle to the vertex z;. We describe the jump matrices for Ty with the
understanding that, mutatis mutandis, the same matrices are defined for an arbitrary triangulation. To
each oriented edge of EéK) we associate a matrix that is constant or depends on complex parameters
y; € C*,j = 1,...,2K. The orientation is defined as follows : the perimeter of the polygon is oriented
counterclockwise and as for the vertices z;, each edge is oriented towards the vertex z;. The internal
diagonals of the triangulation are oriented in such a way that for every even perimetric vertex the internal
diagonal is exiting from the vertex vo i 2 and for every odd vertex the internal diagonal is instead entering
in the vertex vox 2. The Stokes rays are kept with the same orientation as in the Stokes graph. The

matrices for each edge are defined as follows :

e on the perimetric edges connecting vor, — vop41 for k = 1,... K and veg 12 — v1 ~ vag 43 (the

blue edges in Figure 7.3), we take diagonal matrices of the form

D (wa1) = (”"”2_’3 0 ) (7.2.9)

0 ok

where z; is the following product of y;’s variables

k1 -~
o=y [ []o7Y =2 2K+1, sagea=u1 [] v;" (7.2.10)

2<k<ldj;lvg dj Loy

e on the perimetric edges connecting vor11 — vopt2 (the green edges in Figure 7.3), we take off-
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diagonal matrices of the form

Topt1 0

0 1
V(25 = ( %’“*1) : (7.2.11)

and along the edge v; — v9 we impose the jump matrix V(yfl) ;

e on the three edges incident to z; (each of the dashed lines in Figure 7.3) we associate the constant
0 1

A= , (7.2.12)
-1 -1

Remark 7.2.3. In the SL,, case, the matrix A would be replaced by matrices A; 2 3 that depend

matrix

that has the property A3 = 1.

on (n — 1)(n — 2)/2 additional parameters for each triangle.

e on each internal diagonal edge d; for j = 2,...,2K defining the original triangulation T, we

associate off-diagonal matrices of the form V(y;) given by

(0 -~y
V(y;) = (yj‘l o) (7.2.13)

for j = 2,...,2K (these are the red edges of Figure 7.3). In this way each internal diagonal d; is

uniquely associated to the free variable y;, for j =2,...,2K.

Remark 7.2.4. In this construction one among the boundary edges plays a distinguished role, namely,
the one laying to the left of the first Stokes ray. Indeed, the matrix associated to this edge is of the same
type of the matrices associated to the internal diagonal edges of the triangulation Tj and it depends only
on y1. It would be possible to choose an arbitrary distinguished boundary edge for our variable y;, while
retaining the same triangulation. Then one may verify (but we do not report the details here) that the

new distiguished variable ¢; is a monomial containing y;, while the other variables are unchanged.

7.2.2 Computation of Wy

The Stokes’ matrices S; on the unbounded rays are then uniquely determined in terms of the remaining
ones by the condition (7.2.5) at the corresponding vertex v;. In this way each S; is expressed in terms of
the y; variables. Of course, for each triangulation, we will obtain different parametrization of the Stokes

parameters and the transformation of coordinates will be investigated later.

)

The initial triangulation Consider now the triangulation 7j, underlying the graph Z(()K , where the

last vertex v 4o is connected to each other vertex starting from vo, and with alternated orientation of
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the internal diagonals (as in Figure 7.3 for the case K = 2). Then the Stokes matrices are given by

= (Vi HAD(y) ™)
( 1

Sy = (D(22) AV (y2) " AV (1)) T,
So, = (D(x2k) AV (y2) " AV (23 4)7Y) k=2, K

Sorer = (V(zgh 1) AV (ars1))AD(z2r) ™) 7, k=1, K —1 (7.2.14)
Sorcs1 = V(w35 41)AD(z25)” 1)_1

2K

-1
Sox 2 = <D(y1) H (AV(y ) )AV(xQK-H)l) .

Jj=2

The choice of the triangulation of the polygon also defines the variables x;. According to the general rule
(7.2.10) with the triangulation Ty fixed here, this definition reduces to
_1yit1
I = nyJ( b l :2,...,2K, To2K+1 = 2K, T2K+2 = Y1- (7.2.15)

These considerations are summarized in the following lemma.

Proposition 7.2.5. The Stokes parameters are written in terms of the y; variables, w.r.t. the fized

triangulation Ty described above, as follows

S1 = —y1_2
( 1 itlg
soe=0+u3) [] v ,k=1,... K
1<5<2k
—1)i2
S2k+1 = —(1+y§k+1) H yj(- ) , k=1,..., K -1
1<j<2k+1
(=1)72
SOK+1 = — H yj 5
1<j<2K
sacv2 = Y1 (143 (- (1 +93k) - H?sz

_ (1)K H v, (7.2.16)

Proof. Just computing explicitly the parametrizations given from equations (7.2.14) and using the defi-

nition of the variables xay, Tox+1 given in (7.2.15). O

With this parametrization of the Stokes matrices we can then proceed to the computation of the

Stokes form.
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)

Proposition 7.2.6. The 2-form associated to the graph Z(()K coincide with

K
& (EéK)> = +8 ) dlogyzj—1 A dlogys. (7.2.17)

j=1

l=j

In particular it is symplectic.

Proof. The fact that the form is symplectic follows from Theorem 7.1.5 and the fact that the contraction
of E(()K) coincides with the graph X (see Fig. 7.2) ; however the explicit expression (7.2.17) is manifestly
a nondegenerate form and so it could be used directly as a proof. By using the definition of the 2-form
(7.2.6), we have to compute the contributions coming from each vertex v;,j = 1,...2K + 2 in the graph
EéK). The vertices z;,j = 1,...,2K do not give any contribution since all their incident edges carry
constant matrices.

We start with the vertex v;. Since the valence of v is 4 and A is a constant matrix, there is only one

contribution to take into account from v, and it is

T (Vi HAD() ™) d(Viy)ADG) ) A (D(y)dDw) ™) | =0 (7.2.18)

=51d(S7h) =—dlogyios

that turns out to be also zero, thanks to the form of the Stokes matrices given in (7.2.14). Thus the total
contribution of the vertex v, is actually zero.

Since the vertex vy 41 is in the same configuration of vy, but replacing D(y1) by D(z2k), by the same
reasoning we can conclude that its contribution is also zero.

Now we compute the contributions of the vertices voy for k = 1,..., K. For each of them there is only

one nonzero contribution and it is coming from the term

Tr ((D(gch)AV(yzk)’l)_ld(D(ka)AV(ka)*l))/\I(V(ka)d(V(ka)*l))l =

“dlog(wak—1)+ Ba1 [ (§)d7 =—dlogyakos
= 2dlog xor_1 A dlogysy = (7.2.19)
2k—1 ,
= 2dlog ( H yj('l)]+1> A dlogysy =
j=1
k k—1
= 2dlogy; A dlogysr+2 Z dlogys—1 A dlogyar—2 Z dlogys; A dlogysap.
1=2 =1

Notice that for the case k = 1 we only have the term 2dlogy; A dlogys.

A similar computation shows that the only nonzero contribution for the vertices vog 1 for k =1,..., K—1
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is given by

Tr ((V(CEQkH)AV(yzkH)) 1d(D($2k+1)JAV(y2k+1)))AI(V(yzkﬂ)_ld(V(kaH)))l =

L ]
=—dlog y2r+1

=dlog zoro3+F219(Y)dy

= —2dlogar A dlogyor i1 = (7.2.20)

= —2dlog <H y( 1)”1) A dlogyop 11 =
k k

= —2dlogy1 A dlog yap+1—2 Z dlogyzj—1 A dlogyszki1+2 Z dlogyz; A dlogyak1-

j=2 j=1

It only remains to compute the contribution of the vertex vog 2. The internal diagonals carrying the

variables yor for k = 1,..., K give the contribution

K 2k -1 2k
1y 1y
= 2T | (V) a0V () A <D<y1> [TAW @) 1*) d (D<y1> [TAV @) )
k=1 j=2 j=2
K 2k
Z ( dlog ysros A (—dlogyl — Z dlog yj> 03> =
=1 j=2
K

=-2 Z dlogyy A dlogyor, + 2 Z (dlog yor A dlogya; + dlogyar A dlogya;—1) .

et ]gk

(7.2.21)

The internal diagonals carrying on the variables yo+1 give instead the contribution

2k+1

K—1 2k+1 A p
Cy Tr <D<y1>HA<V<yj>><‘W> d(D(yoHA(V(ym(‘”J)A(V@QkH)d(wyW)1)) -
j=2 j=2

K—1 2k+1
- Z Tr <<dlogy1 — Z dlogyj> o3 A (dlogy2k+103)) =

j=2

1 K-1

dlogyi A dlogyagr1—2 Z (dlog yar+1 A dlogya; + dlog yogt1 A dlogya,—1) .
2

k=1 k=
i<k
(7.2.22)
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Finally the last edge on the right of the Stokes ray of vox 1o also gives a nonzero contribution, that is
(Sorc+28)d(Sarc28) ™ A (Va5 1)A(V (255,1) 7)) =

K
( Z dlogygl> o3 A (—dlogyl + Z (—dlogy2j+1 + lengj)> 0'3> =

=1

Cg = Tr

MN/—\A

dlogyy A dlogyg+4 Z dlogyaj—1 A Z dlogyo—4 Z dlogya; A Z dlogyo; = (7.2.23)

1 Jj=2 =1 j=1 =1
L
=0

l

K K K
= 42 dlogys A dlogys+4 Z dlogya;—1 A 2 dlog yoy
=1 =2 =1

where in the last equality we used the skew-symmetry of the wedge product. Now we can sum up all the

nonzero contributions coming from v;,l = 2,...,2K + 2 and we obtain

K K K
Q (E(()K)) =2 Z dlogyi A dlogyor+2 Z dlogyoi—1 A dlogyor—2 Z dlogys; A dlogyak

k=1 2<I<k 1<i<k—1
k=2 k=2
K-1 K-1 K-1
-2 2 dlogy; A dlogyog41—2 2 dlogyaj_1 A dlogyor1+2 Z dlog ya; A dlogyari1
k=1 2<j<k 1<j<k
= k=1
K K
+2 Z dlogys A dlogyar—2 Z (dlog yar A dlogya; + dlogyar A dlogya;—1) (7.2.24)
= =
K-1 K-1
+2 Z dlogyi A dlogyop+1—2 Z (dlog yar+1 A dlogys; + dlogyori1 A dlogyaj—1) (7.2.25)
k=1 gz
K K
+4 Z dlogyi A dlogyq+4 Z dlogyaj—1 A Z dlog yo (7.2.26)
1=1 j=2 I1=1
K
=-8 2 dlogyor—1 A dlogysa; (7.2.27)
=

By using relation (7.2.8), we can finally conclude that the Stokes 2-form Wy is written in terms of

these y; variables as

K
Wk = %Q (Z(K)) = %Q (EéK)) =4 Z dlogyar—1 A dlogys;, (7.2.28)

k=1
=k

and since it has maximal rank, it is a symplectic 2-form.
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Ay Y1 Yo Y3 Y4
e~ - o -~ o . 9

FIGURE 7.4 — The Dynkin diagram associated to the 4 x 4 matrix Bo. This quiver can also be obtained
following the construction described in the paragraph below with the triangulation of the hexagon fixed
to be Tp.

The Poisson structure induced by the the symplectic structure in the same variables will be then written

as
{vi-ys5} = Pilyiy; (7.2.29)
where Py = Ql_(t and Qg is the matrix of coefficient of the Stokes 2-form w.r.t. the logarithmic variables

log v;.

Lemma 7.2.1. The matriz Pg is the 2K x 2K tridiagonal matriz given by

0 1 0
-1 0 1
0 -1 0 1 0 0
1
Py =- (7.2.30)
4
0o ... -1 0 1
0o ... 0 -1 0

7.3 Comparison between Py and Poisson structure on Y-cluster

manifold

Let focus our attention on the matrix By = 4P .

Definition 7.3.1. Given a quiver @) with labeled vertices ¢;,i = 1,..., #V(Q), we call B its adjacency

matrix the skew-symmetric, integer-valued square matrix, of dimension #V(Q), given by

By = # {edges oriented from gqi to q;} — # { edges oriented from ¢; to ¢z} (7.3.1)

for k,l=1,...,#V(Q).

Then the matrix B can be identified as the directed adjacency matrix of a Dynkin graph of type
Ask with specified orientation. An example for K = 2 is given in Figure 7.4. There is a classical way
to associate a directed graph to a triangulation of a given polygon (see for instance paragraph 2.1 of
[GSV10]). We slightly modify this construction, taking into account the fact that there is an edge along
the perimeter of the polygon (the edge at the left of the first Stokes ray) that has a distinguished role in
our case. We end up with the following graph Q(T') for a given triangulation 7" of the polygon :

o the vertices of Q(T) are defined one for each of the following edges of T : the edge along the

perimeter at the left of the first Stokes ray and every internal diagonal edge of the triangulation T;
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Sa

S

Ss

FIGURE 7.5 — Here the triangulation Tj of the hexagon and the variables y; assigned to the relevant edges
induce the Dynkin diagram with variables y1, y2, y3, y4 in blue.

e the edges of Q(T) are are build between each pair of vertices that lies on edges of the triangulation

T that share one of the endpoints and are immediately adjacent ;

e the orientation of the edges of Q(7T') is defined as follows : an edge connecting the vertices ¢; and
g; on the adjacent edges of T d; and d; is oriented ¢; — g; if the edge d; immediately precedes d;
counting counterclockwise the edges incident to their common endpoint. Otherwise it is oriented in
the opposite way. For the vertex y; along the edge on the right of the first Stokes ray (since on this
edge we actually used the variable y; ! ) we reverse the orientation of all the edges of Q(T') that
have y; as endpoint.

With this construction, we obtain that for the initial triangulation T underlying Zgg) the quiver
Q(Tp) is a Dynkin graph of type Asx with the orientation induced from Ty (but each orientation of the
same type of Dynkin graph is mutation equivalent, see Theorem 3.29 of [GSV10]).

The matrix Bg gives a compatible Poisson structure on the Y-cluster manifold which is defined by the
ring of functions that are polynomials in all of the seeds obtained by subsequent mutations (of Y-type),
defined below.

Definition 7.3.2. A mutation p(Q) w.r.t. a vertex g € V(Q) of the quiver @ is a new quiver defined
by
e the same set of vertices, namely V(Q) = V(ur(Q));
e the set of edges constructed as follows
1. for any sequence ¢; — qr — ¢; add an edge ¢; — ¢,
2. reverse any edge having source or end in the vertex g,

3. remove every 2-cycle if any.

Equivalently we can define the mutation u(Q) of @ through its adjacency matrix ux(B) that is given
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by the following equations

— By, for s=kors=t,
pi(B) st = . (7.3.2)
By + sign(Bsr) [Bsk, Brt] ;. » otherwise.

In our case of study, a set of variables y; € C* one of each vertex g; is associated to the quiver, for
i =1,...,2K. To each mutation ug(Q) of the quiver is then associated a new set of variables p (%)
following the equations in the definitions that we recall below (see also (1.30) in e.g. [GSV10]).

Definition 7.3.3. A Y-mutation for the variables y; of the couple (Q,%) is a new set of variables

(,uk(g’))?fl ,for i = 1,...2K defined as rational functions of the y; in the following way

) } Ui for i =k,
y; = (un(9)); = Pl (7.3.3)

[T — otherwise.
(I4yx) ik
Every new pair ux(¢,Q) = (¢, Q') obtained by an allowed mutation is called a seed. In our case, we
have that the initial quiver Q(T') is the Dynkin graph of Ask-type (for every n = 1) that is related to
the triangulation T of the polygon in ESK). The allowed mutations in this case are with respect to all
the vertices with variables yo, ..., y2x (the ones associated to the internal diagonals of the triangulation

T of the polygon).

Definition 7.3.4. Given a pair (¥, Q) where Q is a quiver with labeled vertices ¢;,7 = 1,..., #V(Q) and
the variables y; € C* are associated to each g;, we call the Y-cluster algebra Ay (@) the sub-ring of all
polynomials in y; and all their possible seeds ug (7, Q) where py is a mutation w.r.t. the vertex g, with

assigned variable yy.

Definition 7.3.5. Given a Y-cluster algebra, its correspondent Y-cluster manifold is defined as the
smooth part of Spec(Ay (Q)).

Denoting by Ay ;.1 (Azk ) the Y-cluster algebra described above for our case, then on its correspondent

Y -cluster manifold M := Spec(Ay ;.1(Azk)) there is a compatible Poisson structure having the form

{vi,y;} = Bryiy;. (7.3.4)

Therefore we reach the conclusion that the Poisson structure (induced by the symplectic 2-form Wy )
on the Stokes manifold (Sx,Pk) coincides with the Poisson structure of (M,Bg), up to a constant

multiplicative factor.

7.3.1 Flipping the edges

In the previous section we have established how to define the matrices and the variables y;, z; asso-
ciated to each edge of a given triangulation, in order to get a parametrization of the Stokes matrices.
We also computed the Stokes matrices and the Stokes 2-form for a fixed triangulation, seeing that its

matrix coefficient is related to the matrix coefficient of the Poisson structure of the Y-cluster manifold
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of Asg-type.

We are now going to show that the y-variables associated to two triangulations T and T that are related
by a single flip of one of their internal diagonal edges d;, are related by the rules of the mutation of
seed variables (Def. 7.3.3). Subsequent flips give different systems of equations for the variables, so we
are going to study separately all the possible cases of flip. The equations between the old and the new
y variables are obtained by requiring that the Stokes matrices remain the same, independently of the

triangulation.

Consider a generic triangulation of the 2(K + 1)-gon, and consider any quadrilateral inside the triangu-
lation consisting of two triangles sharing an edge. For the case K > 2 we have the following possibilities

for the sides of the quadrilateral :

1. three sides lie along the perimeter of the polygon, one side is an internal diagonal ;
2. two sides lie along the perimeter of the polygon and two sides are internal diagonals;
3. one side is along the perimeter and the three others are internal diagonals;

4. all the four sides are internal diagonals.

With the two last cases only occurring for K > 2. Moreover, the number of y; variables directly and
nontrivially involved in the flip is equal to the number of sides of the quadrilateral that are internal
diagonals. We are going to analyze the flip for each case. After the flip, we define some new variables
associated to each edge of the new triangulation and we find the corresponding parametrizations of the
Stokes matrices in these new variables denoted §;. Finally, by imposing the equality between these Stokes
matrices, the ones parametrized w.r.t. the first triangulation and the other ones, we obtain an over-
determined but compatible system of equations for the old variables and the new ones, y; and §;. Indeed,
notice that the y; variables are always 2K and we have an equation for each Stokes matrix, thus we have
a system of 2K + 2 equations in 2K variables. We will see that this system is equivalent to the y-mutation

correspondent to the vertex on the flipped edge, in the quiver Q(T') associated with the triangulation T

Case 1. This is the case where three edges of the quadrilateral are along the perimeter. This means
that we have only two variables y that are directly and nontrivially involved in the flip. We can suppose
that the first vertex, denoted by vo; (in even position, the odd case is analogous) have valence only 6 and
that the last one have valence 9, see Figure 7.6. Every other case can be reduced to this one after an
appropriate simplification in the equations we are going to obtain. We denote by S; the Stokes matrices
obtained through the triangulation 7" and by Sj the ones obtained by the flip of T

First, we observe that for every j < 2¢ the Stokes matrices are parametrized exactly in the same way
w.r.t. the y; variables and the §;. Thus the equations S;(yx) = S;(4x) tell us that y, = g, for every k
that is not incident to vo;,v2;41,v2i12. As a byproduct also the variables z; = Z; for every [ < 2i they
remain invariant.

We focus on the equations S;(yx) = S;(gr) for k = 2i,2i + 1,23 + 2, 2i + 3. We obtain an over-determined
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Soito S9i43

FIGURE 7.6 — A flip of a quadrilateral inside the triangulation 7" with 3 sides along the perimeter of the
polygon and the new triangulation 7" obtained in this way.

system of four equations from the following four matrix equations

D(x9:) AV (y;) T AV (23,5 ) 7 = D(Z2:) AV (§41) AV (§51) AV (25,1 ,) 7!
V(254 1) AV (yj41)AD (w2:) ™" = V(Z3,4 1) AD(E2:) "
D(121+2)AV(I2_;#1)71 = D(f2_iI+1)Av@jH)AAV(szz)fl

V(@54 3) AV (yj-1) T AV (y5) AV (1) T AD(22042) 71 = V(35,4 5) AV (§5-1) AV (§;) AD (F2412) ™

(7.3.5)
It follows then the following relations between the old and the new variables must hold
~2 2 2 2 1
7 =0+y)Y, U= 5 (7.3.6)
Yi+1

where y; is the variable on the diagonal ve; — v2;43 and y;41 is the one on the diagonal vg; 11 — v2;13 as
show in Figure 7.6. One obtains these results from the second and third equation directly, then the other

equations are automatically satisfied replacing these relations.

Case 2. Now we consider the case where there are two edges of the quadrilateral on the perimeter of
the polygon, and the other two edges are internal diagonals. We can suppose as before that the first
vertex is even vg;. Also, we can assume that vo;, v2;44 both have valence 8 and vo; 3 has valence 4. Then
all the other cases (when the valences of these vertices are higher) can be reduced to this one, after
appropriate simplification. In this case three variables y are directly involved in the flip. Indeed, by the
fact that S;(yr) = S;(Jx) for every j, we obtain that y; = g for any index [ that is not incident to
V24, V2i4+1, U2i+2, U2i+3 and also for all the variables that stay on the right of the y; diagonal, see Figure

7.7. Furthermore, by looking at j = 2¢,2i+ 1, 2i + 2, 2 + 3 we obtain the following over-determined system
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Soit2 Soi13

FIGURE 7.7 — A flip of a quadrilateral inside the triangulation 7" with 2 sides along the perimeter of the
polygon and the new triangulation 7" obtained in this way.

of four equations, from the four matrix equations
D(:CQZ‘)AV(yj+1)AV(yj)ilAV(l’z_il_l)il = D(in)AV(gJ)AV<£'2_Zl_1)71
V(@55 1) AV (yj40) AD(22:) ™" = V(3,4 1) AV (G42) AV (§41) AD (Z2:) "

(7.3.7)
D(29i42) AV (22i11) " = D(Z9i42) AV (F2i11)

V(23 5) AV (1) T AV (yj42) T AD(2i42) ! = V(35,4 5) AV (§j42) AD(F2i42) ™"

In particular, from the first three equations we obtain the following relations between the old and the

new variables

2
- Yisa - 1 -
7 = lejiz i = 7 Uiaz = Ui+ 4740), (7.3.8)
T Y Yir

and all the other equations are then satisfied by replacing these quantities (included the equation for
J=2i+4).

Case 3. Here we consider the case where three edges of the quadrilateral are internal diagonals of the
polygon and only one edge is on its perimeter. Notice that this means that there are four variables y that
are nontrivially involved in the flip. We suppose as before that the first edge considered is even vy; and
that all the vertices involved in the quadrilateral and their adjacent vertices have minimal valence, as in
Figure 7.8. As in the previous cases, the equations S;(yx) = S;(gk) for the indices | # 2i,...,2i + 4 give

that the variables y, = i for the k that are not incident to the vertices vs;, ..., v2;14. Then looking at

143



Chapter 7 — Stokes manifolds and cluster algebras

T

Soiv1

S2'i+2 SQ'H».‘S S2i+2 S2i+3

FI1GURE 7.8 — A flip of a quadrilateral inside the triangulation 7" with only 1 side along the perimeter of
the polygon and the new triangulation T obtained in this way.

the matrix equations for [ = 2i,...2i + 3 we have the four matrix equations

D(i2:) AV () AV (3,1 1) = D(w2i) AV (y;41) AV (y;) " AV (23,1 )
V(&2i11) AV (§j42) AV (§j41)AD(Z2;) " = V(25,4 1) AV (yj12) AD(22;) "
D(&2i42) AV (i3 1) 7" = D(w2i42) AV (25; )"

V(%5 5) AV (Fj43) " AV (§j42) T AD(Z2i42) T = V(@574 5) AV (y53) T AV (y101) T AV (y42) T AD (242)
(7.3.9)
From these equations we obtain that the old variables and the new variables are related through the

following relations

2
Yi+1 ~2

2
Yy _ 1
, j s Uivs = Yias(L+y7h) (7.3.10)

~2 2 j ~2 2

Y5 =Y+17 .3 > Yiv1 = 3 Y2 T Yjro7 T 3
PO Ly, Y Ty

and all the other equations (included for the vertices va;14,v2;45) are identically satisfied once we replace

the relations above.

Case 4. Here we consider the case where all the sides of the quadrilateral are internal diagonals. We
suppose, as always, to have the first vertex that is even wvo; and that each vertex has minimal valence,
as in Figure 7.9. Every other case, with higher order valence for the vertices involved, can be reduced
to this one after appropriate simplification. In this case, we have five variables y directly involved in the
flip, thus we will have one more equation than in the other cases.

By looking at the equations S;(yx) = Si(Jx) for I # 2i,...,2 + 5, we get that yx = 9 for every index
k that is not adjacent to the flipped edge with coordinate y;44. Then by looking at the equations for
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FIGURE 7.9 — A flip of a quadrilateral inside the triangulation 7" with no sides along the perimeter of the
polygon and the new triangulation 7" obtained in this way.

l = 2i,...,2i + 4 we have the following matrix-valued system

D(2:) AV (y;) AV (yj41) " AV (y43) AV (225-1) " = D(F2:) AV () AV (§j13) AV (F2i-1)
V(@2i41)AD(w2;) " = V(Z2i41)AD(Z2;) "

D(22i42) AV (yj 1) AV (y;) AV (22i41) " = D(Z2i42) AV (§j51) AV (§44) AV () AV (F2i-1)
V(@2i43)AD(22i42) " = V(&2i13) AD(Fi12) "

D(22i14)AV (yj42) P AV (y;44) AV (yj41) P AV (2i43) 7" = D(T0i42) AV (§j42) AV (§41) AV (F2543) '

(7.3.11)
This system is solved through the following relations between the old and the new variables
y2+4 y2‘+4 1
~2 2 2 ~2 2 J ~2 2 2 ~2 2 J )
i = 1 1+ ] 9 ] = i T 9 1 = i 1+ i ) i+3 = i+357 . o9 i = Y5
yg yg ( yj+4) y]+1 y]Jrl 14+ yJ2‘+4 yg+2 y]JrZ( y]+4) y]+3 yj+3 1+ y?-+4 yj+4 yj2+4
(7.3.12)

and they also satisfy the equations for [ = 2¢ + 5,2¢ + 6.

Notice that in each case we obtained that the system of equations for the old and new y variables
obtained from the matrix equations S;(yx) = S;(g) is solved by some y-mutation relations of the Dynkin
diagram of Ask-type, as in equation (7.3.3). In particular, every set of equations (7.3.6), (7.3.8), (7.3.10),
(7.3.12) coincide with the y-mutation w.r.t. the vertex y; associated to the flipped edge of the triangulation
T of the polygon, of the Dynkin diagram of Asx-type associated to the triangulation T for the square of
its variables.

Remark 7.3.6. For what concerns the flip of the internal diagonal of the triangulation Ty associated to
the variable y,, analogue considerations hold. In particular, by looking at the equations Sj(yx) = Si (%)
for I = 1,2, 3, one obtains that the squares of the variables y; and i for k = 1,2,33 are related by the

3. The correct Y-mutation formula is actually obtained for yl_l,yg,yg, and gl‘l,gz,gg, but this is just a matter of
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So Sa
Ty
S3 uy H2(As) S1
uR
Sy SeA
S5
S
Ty
Ss S1
64 Sh‘A
S5

FI1GURE 7.10 — The 4 triangulations considered are 77 and then all the others obtained from T; by a flip
of one of the diagonals d; for j = 2,3, 4.

Y-mutation relations for the mutation of the quiver Q(Tp) of type Askx with respect to the vertex ys.
The other equations S;(yx) = Si(4x),] > 3 directly implies that all the other variables y, k # 1,2,3 do
not change under this flip.

7.3.2 Example : the case K = 2

We work out on the case K = 2, i.e. the case of the hexagon. In particular, we are going to take the
fixed triangulation Tp of the hexagon (e.g. the one in Figure 7.5), and we consider the variables and the
matrices associated to each edge of the graph in the common way explained before. We compute then
the Stokes matrices and the Stokes 2-form W, in these variables.

Then, we consider all the possible flip of this triangulation, w.r.t. the edges with variables ys, y3,y4 as in
Figure 7.10, and we perform the same computations above with the new variables associated to each new
triangulation obtained in that way. We will see that in each case, the inverse of the matrix coefficient
of the Stokes 2-form is, up to the same factor % the adjacency matrix of a certain mutation of the Ay

Dynkin diagram, the one given in Figure 7.4.

e For the triangulation 77 the variables x; are

To =15, T3 =Y1Ys Y3, Ta =1V YsYi's Ts =T, Te =Y. (7.3.13)

notation, due to the fact that we associated the matrix V(yl_l) to the edge v1 — v2 in the graph EéK).
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The 2-form W, is log-canonical in the variables y; and such that its matrix coefficient has inverse

0 0 0
1]1-1 0 1 0 1
Pl == = —Adja,. 7.3.14
2 0 -1 0 1| 4°%a (7.3.14)
0 0 -1 0
e For the triangulation 75 the variables x; are
To = U, T3 = ULUU3, T4 = ulugu;gugl, Ts5 = U1UQU3’LL4_1, Tg = uluz_l. (7.3.15)

The 2-form Wy'2 is log-canonical in the variables y; and such that the inverse of its coefficient

matrix, namely P? gives

0 -1 0 0
111 0 -1 0 1

pl:— = = ZAdj )
2700 1 0 1| ateew

0 0 -1 0

e For the triangulation T3 the variables x; are
_ -1, —1 _ _ —1, -2 1 _ _
To = wWiW, W3, T3 =Tg, Tq=WiWs W3 Wy , Ts==T4, Te = W1. (7.3.16)

The 2-form W,"* is such that the inverse of its coefficient matrix, namely Pg3 gives
1 1 1
T .
Py = 4 1 = ZAdJMs(AAL)'

e For the triangulation T, the variables x; are
Ty = tltgl, T3 = t1t51t3t4, Ir3 = t4, Iy5 = tltgltgti. (7317)

The 2-form W5™* is such that the inverse of its coefficient matrix, namely Pg4 gives

0 1 0 O
11-1 0 1 1
T .
PZ4 = Z 10 -1 = ZAdJM4(A4)‘
0 0 1 0

Furthermore the equations S;(y) = S’i(ﬂ') that impose the Stokes equations parametrized in the 2 trian-
gulations 77 and T} to be equal, give exactly that u?,w? or t? respectively for j = 2, 3,4 are y-mutation

of y? related to Ay w.r.t. the vertices ya, y3, ya.
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7.4 Computation of the Poisson brackets for the original mono-

dromy parameters

In the previous sections we have parametrized the Stokes manifold Gk of dimension 2K, by using

the variables y; for j = 1,...,2K of the Ayk cluster algebra type. Using this parametrization, explicitly

computed in Lemma 7.2.5, we also proved that the two-form Wy defined on &g is symplectic and

that the variables y; are log-canonical for this two-form. We also computed the Poisson brackets P g

induced by the symplectic structure Wg on G . Now, we want to compute these Poisson brackets P g

on the parametrization of the original monodromy parameters s;, for j = 1,...,2K + 2 and A describing

Gk . In particular, we are going to show that the Poisson brackets P for the y; defined in (7.2.29)

are a log-canonical formulation of the following bracket, called Flaschka-Newell Poisson bracket in the

introduction.

Definition 7.4.1. Consider the nonlinear Poisson bracket on C25+2xC* with coordinates (s, . .

given by

0,101,2K +2 i )
{SJ"”} =0 — g+ () T s, <l
FN

{Sj,A} = (71)ijA.
FN
These Poisson structure first appeared in [FN82] (see section 3,5).

Proposition 7.4.2. Let

F:FK: 1 S1 1 0 1 SoOK +1 1 0 AT
0 1 So 1 0 1 SoOK +2 1

1 0 0 1 0 0
o3 = , Oy = , O_ =
7 lo =177 Mo o 10

(1) The matriz F satisfies

{51, F},, = %[ag,F] +[o_, F]

{soxv2, F}pn = SQKTH[F,U:),] + 33 [o4, F]
{86, F}ony = (1) [F03], 2<(<2k+1
(MFY, — %[ag,p].

(2) The unique Casimir function for the bracket (7.0.4) is € = Tv(F) ;

(3) The sub-varieties S = {Fx = 1} are Poisson sub-varieties.

We defer the proof to the Appendix of the paper [BT21].
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7.4. Computation of the Poisson brackets for the original monodromy parameters

Theorem 7.4.3. The parametrization given in Lemma 7.2.5 for the Stokes parameters s;,j = 1,..., 2K+
2 and the formal monodromy exponent \ transforms the Poisson bracket (7.4.1) in the bracket (7.2.29).

Proof. We start by observing that the bracket (7.2.29) is such that all even-indexed variables commute
amongst themselves, and so do the odd ones. We now verify that the bracket (7.2.29) yields the bracket
(7.4.1) under the map (7.2.16). We will verify some of the brackets explicitly and leave the rest of the
verification to the reader. Let us start with the case {sog+1, A} for k < K : since X is a function of only

the even variables it commutes with the even ones and we can write

k k—1 k K
{sae1, A} == [ 3 {]_[ var + [ [walin CDE T y%} : (7.4.5)
=1 Uiso j=0 i1

This computation is easily done by passing to the logarithms of the variables y;’s, in which the Poisson
bracket (7.2.29) is constant : thus both terms inside the bracket are log-canonical. Then one observes

that the bracket above involves a telescopic sum and only the term y; yields a contribution and we obtain

{s26+1, A} = —sap1A (7.4.6)

The case {s2x+1,A} is handled similarly. Consider now an even variable so for k < K ; since A is a

function of only the even variables we can write

1+ = "
{Sgk, )\} = y2k {H j+1, (—1)K H y%j} = Sgk)\7 (747)
Jj=1

H] 1935 (=0

where we have used the same telescopic-sum argument. Again, the case {sax 12, A} is handled similarly

observing that s 4o = y? times a function of only even variables.

Let us now consider the bracket {s,, sy} ; suppose both a = 2k, b = 2[ are even.

{1—[+y2k H V2, 171_1"’921 H v, 1}_H+yzk {n W31, 1+y21 }H v

1 1 y 1 H Z/
Y25 5= j=1Y2; 5= j=1925 \J j=192j (7.4.8)
(1+ w3, (1+w3)
+ny2g 1{;: 2k H Y2j-1( 51 o 2
j=1 Hg 192] j=1 HJ 1y2]

The computation relies on the following simple observation, which can be used for both terms by inter-
changing the roles of k and [ :

k 2
H]‘:l Yaj—1
-0 k<l
Hj:l y2]‘

(it -

j=1Y2;

0 k>l

Now let £ < 1 — 1 : then the second bracket in (7.4.8) is zero and the first yields back saxso; which is
consistent with (7.4.1). The odd-odd case is similarly handled.
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We still have to check the case even-odd. For that, consider the case {sox, s9;4+1} for k <1 :

k 2 l
(1 +y3) 2 (1+y3541) 2
{k 5 nyzj—u*il 5 nij =

Hj—l Y25 j=1 Hj—o Y2j415=1

- +y2k {ny2j 1’1—[ }(1+921+1 1—[ u2, 1{ 1+y2k)’ (1+y3,1) }ﬁ

HJ 1927 j=1 =1 H; 192J+1 j=1 H; 192J H] 0y2]+1

(7.4.10)

The first bracket in (7.4.10) gives Hle ygj_ll_[iﬁl y3; and hence

+ 1+
{Sok, S2141} = SopS2r41 — Hyzj 1 { ym;), 241 } H Yo (7.4.11)
H] 1925 1_[] oy2j+1

The several contributions in (7.4.11) can all be accounted for by the formula (7.4.9) : if [ > k + 1 then
one sees immediately that all terms in the bracket in (7.4.11) vanish. The only case when the bracket

gives a nonzero contribution is for k =1 :

(I+y3) A+yaee1) | 1 1 B 1 1 - 119
k 2 17k 2 - k k—1 Tk 5 TTk—1 : (7.4.12)
Hj:l Y2 Hj:() Y2541 Hj:l yzj H] 0 y2g+1 Hj:l Y25 Hg =0 y2]+1
Combining this with (7.4.11) gives finally

{s2k, s2041} = 1452152141 (7.4.13)

To complete the verification remains only to check the case

K 2
_ Y1 2 —2 1
{81a52K+2}: {_yl ) K } :_Eyl {yl [l— 7o K } =
=1 H =1 923 Hj:l y%j =1 Hj:l y%j Hj:l y%j

K { 1 1 X 1 1
2), -2 2), —2
Z_Zyl Yo r } K _291{91 VTR } 7 .
=1 Hj:l y%j Hj:l y%j =1 Hj:l y%j Hj:l y%j

In the second sum only the term [ = 1 contributes and the result of this is %; the first sum instead

(7.4.14)

contributes —sjssoi 12 and in total we find

1
{s1, 82K 42} = _F+8182K+2' (7.4.15)

The verification is thus complete. O

150



BIBLIOGRAPHY

[ACY1]

[ACQ11]

[Air79]

[AKST9)

[AM7S]

[B+07]

[BB20]

[BBTO03]

[BBW21]

[BC12]

[BCT21]

[BDF10]

M. J. Ablowitz and P. A. Clarkson. Solitons, nonlinear evolution equations and inverse

scattering, volume 149. Cambridge university press, 1991.

G. Amir, I. Corwin, and J. Quastel. Probability distribution of the free energy of the
continuum directed random polymer in 1+ 1 dimensions. Communications on pure and
applied mathematics, 64(4) :466-537, 2011.

H. Airault. Rational solutions of painlevé equations. Studies in applied mathematics,
61(1) :31-53, 1979.

M. J. Ablowitz, M. Kruskal, and H. Segur. A note on Miura’s transformation. Journal
of Mathematical Physics, 20(6) :999-1003, 1979.

M. Adler and J. Moser. On a class of polynomials connected with the Korteweg-de
Vries equation. Communications in Mathematical Physics, 61(1) :1-30, 1978.

P. Boalch et al. Quasi-hamiltonian geometry of meromorphic connections. Duke Ma-
thematical Journal, 139(2) :369-405, 2007.

J. Baik and T. Bothner. The largest real eigenvalue in the real Ginibre ensemble and its
relation to the Zakharov—Shabat system. The Annals of Applied Probability, 30(1) :460
- 501, 2020.

O. Babelon, D. Bernard, and M. Talon. Introduction to classical integrable systems.
Cambridge University Press, 2003.

D. Betea, J. Bouttier, and H. Walsh. Multicritical random partitions, 2021.

M. Bertola and M. Cafasso. Fredholm determinants and pole-free solutions to the
noncommutative Painlevé II equation. Communications in Mathematical Physics,
309(3) :793-833, 2012.

T. Bothner, M. Cafasso, and S. Tarricone. Momenta spacing distributions
in anharmonic oscillators and the higher order finite temperature Airy ker-
nel. https  ://imstat.org/journals-and-publications/annales-de-linstitut-henri-

poincare/annales-de-linstitut-henri-poincare-accepted-papers/, 2021.

A. Borodin, P. Diaconis, and J. Fulman. On adding a list of numbers (and other one-
dependent determinantal processes). Bulletin of the American Mathematical Society,
47(4) :639-670, 2010.

151



[BDS16]

[Ber10]

[Ber21]

[BK90]

[BK19]

[BMTW73]

[Boalla)

[Boa01b]

[Bor09]

[Bot21]

[Boton)]

[BT21]

[BWOY]

[CCG19]

(CG13]

[CIMO6)]

J. Baik, P. Deift, and T. Suidan. Combinatorics and random matriz theory, volume
172. American Mathematical Soc., 2016.

M. Bertola. The dependence on the monodromy data of the isomonodromic tau func-
tion. Communications in Mathematical Physics, 294(2) :539-579, 2010.

M. Bertola. Correction to : The dependence on the monodromy data of the isomo-
nodromic tau function. Commaunications in Mathematical Physics, 381(3) :1445-1461,
2021.

E. Brezin and V. A. Kazakov. Exactly solvable field theories of closed strings. volume
236, pages 144-150. 1990.

M. Bertola and D. Korotkin. Extended Goldman symplectic structure in Fock-
Goncharov coordinates. arXiv preprint, arXiv :1910.06744, 2019.

E. Barouch, B. M. McCoy, C.A. Tracy, and T. T. Wu. Zero-field susceptibility of the
two-dimensional Ising model near T.. Physical Review Letters, 31(23) :1409, 1973.

P. Boalch. Stokes matrices, Poisson Lie groups and Frobenius manifolds. Inventiones
Mathematicae, 146(3) :479-506, Dec 2001.

P. Boalch. Symplectic Manifolds and Isomonodromic Deformations. Advances in Ma-
thematics, 163(2) :137-205, Nov 2001.

A. Borodin. Determinantal point processes. arXiv preprint arXiv :0911.1153, 2009.

T. Bothner. On the origins of Riemann-Hilbert problems in mathematics. Nonlinearity,
34(4) :R1-R73, Feb 2021.

T. Bothner. A Riemann-Hilbert approach to Fredholm determinants of integral Hankel

composition operators : scalar kernels. (in preparation).
M. Bertola and S. Tarricone. Stokes manifolds and cluster algebras, 2021.

E. L. Basor and H. Widom. Determinants of Airy operators and applications to random
matrices. Journal of statistical physics, 96(1-2) :1-20, 1999.

M. Cafasso, T. Claeys, and Manuela Girotti. Fredholm determinant solutions of the
Painlevé II hierarchy and gap probabilities of determinantal point processes. Interna-
tional Mathematics Research Notices, 2019.

K. F. Clancey and 1. Gohberg. Factorization of matriz functions and singular integral

operators, volume 3. Birkh&user, 2013.

P. A. Clarkson, N. Joshi, and M. Mazzocco. The Lax pair for the mKdV hierarchy.
Théories asymptotiques et équations de Painlevé, 14 :53-64, 2006.

152



[Cla03]

[CMR17]

[Cor12)

[DIZ97]

[DLDMS16]

[DLDMS19]

[Dys62]

[FGO6]

[FTKNOG6]

[FN80]

[FN82]

[For93]

[For03]

[Fuc05]

[Gak14]

P. A. Clarkson. Painlevé equations - nonlinear special functions. Journal of Computa-
tional and Applied Mathematics, 153(1) :127-140, 2003.

L. O. Chekhov, M. Mazzocco, and V. Rubtsov. Painlevé monodromy manifolds, de-
corated character varieties, and cluster algebras. International Mathematics Research
Notices, 2017(24) :7639-7691, 2017.

I. Corwin. The Kardar—Parisi-Zhang equation and universality class. Random ma-
trices : Theory and applications, 1(01) :1130001, 2012.

P. A. Deift, A. R. Its, and X. Zhou. A Riemann-Hilbert approach to asymptotic pro-
blems arising in the theory of random matrix models, and also in the theory of integrable
statistical mechanics. Annals of mathematics, 146(1) :149-235, 1997.

D. S. Dean, P. Le Doussal, S. N. Majumdar, and G. Schehr. Noninteracting fermions
at finite temperature in a d-dimensional trap : Universal correlations. Physical Review
A, 94(6) :063622, 2016.

D. S. Dean, P. Le Doussal, S. N. Majumdar, and G. Schehr. Noninteracting fermions in
a trap and random matrix theory. Journal of Physics A : Mathematical and Theoretical,
52(14) :144006, Mar 2019.

F. J. Dyson. Statistical theory of the energy levels of complex systems. i. Journal of
Mathematical Physics, 3(1) :140-156, 1962.

V. Fock and A. Goncharov. Moduli spaces of local systems and higher Teichmiiller
theory. Publications Mathématiques de 'THES, 103 :1-211, 2006.

A.S. Fokas, A. R. Its, A. A. Kapaev, and V. Yu. Novokshenov. Painlevé transcendents :
the Riemann-Hilbert approach. Number 128. American Mathematical Soc., 2006.

H. Flaschka and A. C. Newell. Monodromy and spectrum-preserving deformations I.
Communications in Mathematical Physics, 76(1) :65-116, 1980.

H. Flaschka and A. C. Newell. The inverse monodromy transform is a canonical trans-
formation. In North-Holland Mathematics Studies, volume 61, pages 65-89. Elsevier,
1982.

P. J. Forrester. The spectrum edge of random matrix ensembles. Nuclear Physics B,
402(3) :709-728, 1993.

P. J. Forrester. Growth models, random matrices and Painlevé transcendents. Nonli-
nearity, 16(6) :R27, 2003.

R. Fuchs. Sur quelques équations différentielles linéaires du second ordre. Gauthier-
Villars, 1905.

F. D. Gakhov. Boundary value problems. Elsevier, 2014.

153



[Gam10)]

[Garl2]

[GAIT0S]

[Gir14]

[Goh00]

[Gol&4]

[GPZ16]

[GSV10]

[Harll]

[HI02]

[HMSO0]

[HM19]

[HTW93]

[ITKS90]

B. Gambier. Sur les équations différentielles du second ordre et du premier degré dont

l'intégrale générale est a points critiques fixes. Acta Mathematica, 33(1) :1-55, 1910.

René Garnier. Sur des équations différentielles du troisieme ordre dont 'intégrale gé-
nérale est uniforme et sur une classe d’équations nouvelles d’ordre supérieur dont I'in-
tégrale générale a ses points critiques fixes. In Annales scientifiques de [’Ecole normale

supérieure, volume 29, pages 1-126, 1912.

F. A. Griinbaum and M. D. de la Iglesia. Matrix valued orthogonal polynomials arising
from group representation theory and a family of quasi-birth-and-death processes. STAM
Journal on Matriz Analysis and Applications, 30(2) :741-761, 2008.

Manuela Girotti. Gap probabilities for the Generalized Bessel process : a Riemann-
Hilbert approach. Mathematical Physics, Analysis and Geometry, 17(1-2) :183-211,
2014.

I. Gohberg. Traces and determinants of linear operators, volume 116 of Operator

Theory : Advances and Applications. Birkhduser Verlag, Basel, 2000.

W. M. Goldman. The symplectic nature of fundamental groups of surfaces. Advances
in Mathematics, 54(2) :200-225, 1984.

P. R. Gordoa, A. Pickering, and Z.N. Zhu. On matrix Painlevé hierarchies. Journal of
Differential Equations, 261(2) :1128-1175, 2016.

Michael Gekhtman, Michael Shapiro, and Alek Vainshtein. Cluster algebras and Poisson
geometry. Number 167. American Mathematical Soc., 2010.

J. Harnad. Random matrices, random processes and integrable systems. Springer Science
& Business Media, 2011.

J. Harnad and A. R. Its. Integrable Fredholm operators and dual isomonodromic
deformations. Communications in Mathematical Physics, 226(3) :497-530, 2002.

S. P. Hastings and J. B. Mcleod. A boundary value problem associated with the se-
cond Painlevé transcendent and the Korteweg-de Vries equation. Archive for Rational
Mechanics and Analysis, 73(1) :31-51, 1980.

A. Hardy and M. Maida. Determinantal point processes. Journal of the European
Mathematical Society, page 7, 2019.

J. Harnad, C. A. Tracy, and H. Widom. Hamiltonian structure of equations appearing
in random matrices. In Low-Dimensional Topology and Quantum Field Theory, pages
231-245. Springer, 1993.

A. R. Its, A.G. Izergin, V.E. Korepin, and N.A. Slavnov. Differential equations for
quantum correlation functions. International Journal of Modern Physics B, 4(05) :1003—
1037, 1990.

154



1K 16]

[Inc27]

[1S99]

[1ts03]

[Tts11]

[JKT09)]

[JM81a]

[JMS81b]

[TMMS80]

[IMUS1]

[Joh05]

[Joh07]

[KDV95)

[KH99]

A. R. Tts and K. Kozlowski. Large-x analysis of an operator-valued Riemann—Hilbert
problem. International Mathematics Research Notices, 2016(6) :1776-1806, 2016.

E.L. Ince. Ordinary Differential Equations. Dover books on intermediate and advanced

mathematics. Longmans, Green and Company Limited, 1927.

A. R. Its and N.A. Slavnov. On the Riemann-Hilbert approach to asymptotic analysis
of the correlation functions of the quantum nonlinear Schrodinger equation : Interacting
fermion case. Theoretical and mathematical physics, 119(2) :541-593, 1999.

A. R. Its. The Riemann-Hilbert problem and integrable systems. Notices of the AMS,
50(11) :1389-1400, 2003.

A. R. Its. Large n asymptotics in random matrices. In Random matrices, random

processes and integrable systems, pages 351-413. Springer, 2011.

N. Joshi, A. V. Kitaev, and P. A. Treharne. On the linearization of the first and second
Painlevé equations. Journal of Physics A : Mathematical and Theoretical, 42(5) :055208,
jan 2009.

M. Jimbo and T. Miwa. Monodromy perserving deformation of linear ordinary dif-
ferential equations with rational coefficients. II. Physica D : Nonlinear Phenomena,
2(3) :407-448, 1981.

M. Jimbo and T. Miwa. Monodromy preserving deformation of linear ordinary dif-
ferential equations with rational coefficients. III. Physica D : Nonlinear Phenomena,
4(1) :26-46, 1981.

M. Jimbo, T. Miwa, Yasuko Mori, and Mikio Sato. Density matrix of an impene-
trable bose gas and the fifth Painlevé transcendent. Physica D : Nonlinear Phenomena,
1(1) :80-158, 1980.

M. Jimbo, T. Miwa, and K. Ueno. Monodromy preserving deformation of linear ordi-
nary differential equations with rational coefficients : I. General theory and 7-function.
Physica D : Nonlinear Phenomena, 2(2) :306-352, 1981.

K. Johansson. Random matrices and determinantal processes. arXiv preprint math-
ph/0510038, 2005.

K. Johansson. From Gumbel to Tracy-Widom. Probability theory and related fields,
138(1-2) :75-112, 2007.

D. J. Korteweg and G. De Vries. On the change of form of long waves advancing in a
rectangular canal, and on a new type of long stationary waves. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 39(240) :422-443, 1895.

A.A. Kapaev and E. Hubert. A note on the Lax pairs for Painlevé equations. Journal
of Physics A : Mathematical and General, 32(46) :8145, 1999.

155



[KO6)]

[KP0O]

[Kra20]

[Kri02]

[KS97]

[KT14]

[Kud97]

[L*+13]

[LACTLDMS18]

[Lax76]

[LDMS18]

[Len73]

[Len75a)

[Len75b]

[LW20]

K. Kajiwara and Y. Ohta. Determinant structure of the rational solutions for the
Painlevé II equation. Journal of Mathematical Physics, 37(9) :4693—-4704, 1996.

I. Krichever and D.H. Phong. Spin chain models with spectral curves from M theory.
Commaunications in Mathematical Physics, 213(3) :539-574, 2000.

A. Krajenbrink. From Painlevé to Zakharov—Shabat and beyond : Fredholm determi-
nants and integro-differential hierarchies. Journal of Physics A : Mathematical and
Theoretical, 54(3) :035001, Dec 2020.

I. Krichever. Vector bundles and Lax equations on algebraic curves. Communications
in Mathematical Physics, 229(2) :229-269, 2002.

D. Korotkin and H. Samtleben. Quantization of coset space o-models coupled to two-

dimensional gravity. Communications in mathematical physics, 190(2) :411-457, 1997.

I. Kohei and Nakanishi T. Exact WKB analysis and cluster algebras. Journal of Physics
A : Mathematical and Theoretical, 47(47), 2014.

N. A. Kudryashov. The first and second Painlevé equations of higher order and some
relations between them. Physics Letters A, 224(6) :353-360, 1997.

Georgil Semenovich Litvinchuk et al. Factorization of measurable matriz functions,
volume 25. Birkhduser, 2013.

B. Lacroix-A-Chez-Toine, P. Le Doussal, S. N. Majumdar, and G. Schehr. Non-
interacting fermions in hard-edge potentials. Journal of Statistical Mechanics : Theory
and Ezperiment, 2018(12) :123103, Dec 2018.

P. D. Lax. Almost periodic solutions of the KAV equation. SIAM review, 18(3) :351-375,
1976.

P. Le Doussal, S. N. Majumdar, and G. Schehr. Multicritical edge statistics for the
momenta of fermions in nonharmonic traps. Physical review letters, 121(3) :030603,
2018.

A. Lenard. Correlation functions and the uniqueness of the state in classical statistical
mechanics. Communications in Mathematical Physics, 30(1) :35-44, 1973.

A. Lenard. States of classical statistical mechanical systems of infinitely many particles.
I. Archive for Rational Mechanics and Analysis, 59(3) :219-239, 1975.

A. Lenard. States of classical statistical mechanical systems of infinitely many par-
ticles. II. characterization of correlation measures. Archive for Rational Mechanics and
Analysis, 59(3) :241-256, 1975.

K. Liechty and D. Wang. Asymptotics of free fermions in a quadratic well at finite
temperature and the Moshe-Neuberger—Shapiro random matrix model. Ann. Inst. H.
Poincaré Probab. Statist., 56(2) :1072-1098, 05 2020.

156



[Meh04]

[Miu68]

[MJDO00]

[MRO1]

[Olv77]

[0S98]

[OW00]

[Pai00]

[Pic89]

[Ple64]

[RR10]

[Rus38|

[Sim05]

[Sos00]

[Tar21]

[TW94a]

M. L. Mehta. Random matrices, volume 142. Elsevier, 2004.

R. M. Miura. Korteweg-de Vries equation and generalizations. I. A remarkable explicit
nonlinear transformation. Journal of Mathematical Physics, 9(8) :1202-1204, 1968.

T. Miwa, M. Jimbo, and E Date. Solitons : Differential equations, symmetries and

infinite dimensional algebras, volume 135. Cambridge University Press, 2000.

J. Martinet and J.-P. Ramis. Elementary acceleration and multisummability. I. Annales
de 'L H.P. Physique théorique, 54(4) :331-401, 1991.

P. J. Olver. Evolution equations possessing infinitely many symmetries. Journal of
Mathematical Physics, 18(6) :1212-1215, 1977.

P. J. Olver and V. V. Sokolov. Integrable evolution equations on associative algebras.
Commaunications in Mathematical Physics, 193(2) :245-268, 1998.

P. J. Olver and Jing P. Wang. Classification of integrable one-component systems on
associative algebras. Proceedings of the London Mathematical Society, 81(3) :566-586,
2000.

P. Painlevé. Mémoire sur les équations différentielles dont 'intégrale générale est uni-
forme. Bulletin de la Société Mathématique de France, 28 :201-261, 1900.

E. Picard. Mémoire sur la théorie des fonctions algébriques de deux variables indépen-
dantes. Gauthier-Villars, 1889.

J. Plemelj. Problems in the sense of Riemann and Klein. Number 16. Interscience
Publishers, 1964.

V. Retakh and V. Rubtsov. Noncommutative Toda chains, Hankel quasideterminants
and Painlevé II equation. Journal of Physics A : Mathematical and Theoretical, 43, 07
2010.

J. S. Russell. Report of the committee on waves. In Report of the 7th Meeting of the
British Association for the Advancement of Science, Liverpool, volume 417496. John
Murray London, 1838.

B. Simon. Trace ideals and their applications. Number 120. American Mathematical
Soc., 2005.

A. Soshnikov. Determinantal random point fields. Russian Mathematical Surveys,
55(5) :923, 2000.

S. Tarricone. A fully noncommutative Painlevé II hierarchy : Lax pair and solutions
related to Fredholm determinants. SIGMA, 17(002), 2021.

C. A. Tracy and H. Widom. Fredholm determinants, differential equations and matrix
models. Communications in Mathematical Physics, 163(1) :33-72, 1994.

157



[TW94b)

[TW94c]

[TW96]

[TW99)

[Uga99]

[VA17]

[WEO07]

[Wid95]

C. A. Tracy and H. Widom. Level-spacing distributions and the Airy kernel. Commu-
nications in Mathematical Physics, 159(1) :151-174, 1994.

C. A. Tracy and H. Widom. Level spacing distributions and the Bessel kernel. Com-
munications in Mathematical Physics, 161(2) :289-309, 1994.

C. A. Tracy and H. Widom. Fredholm determinants and the mKdV /sinh-Gordon hie-
rarchies. Communications in Mathematical Physics, 179(1) :1-9, 1996.

C. A. Tracy and H. Widom. Airy kernel and Painlevé II. arXiv preprint solv-
int/9901004, 1999.

M. Ugaglia. On a Poisson structure on the space of Stokes matrices. International
Mathematics Research Notices, 1999(9) :473-493, 01 1999.

W. Van Assche. Orthogonal polynomials and Painlevé equations, volume 27. Cambridge
University Press, 2017.

O. H. Warren and J. N. Elgin. The vector nonlinear Schrodinger hierarchy. Physica
D : Nonlinear Phenomena, 228(2) :166-171, 2007.

H. Widom. Asymptotics for the Fredholm determinant of the sine kernel on a union of
intervals. Communications in Mathematical Physics, 171(1) :159-180, 1995.

158






UNIVERSITE

uuuuuuuuuu

—_—
~1

\/Concordia

Titre : La hiérarchie de Painlevé Il : géométrie et applications.

Mot clés : Equations de Painlevé, Problémes de Riemann-Hilbert, operateurs integrables, variétés de Stokes,

algebres ammasées, déterminants de Fredholm.

Résumé : La hiérarchie de Painlevé II est une séquence
d’équations différentielles ordinaires non linéaires, dont
la premiére correspond a l’équation de Painlevé II.
Chaque membre de la hiérarchie admet une paire de
Lax en terme des déformations isomonodromiques d’un
systeme linéaire d’EDO de rang 2, avec coeflicient po-
lynomial dans le cas homogeéne. Récemment, il a été
prouvé que la formule de Tracy-Widom pour la solu-
tion Hastings-McLeod de I’équation de PII homogene
peut étre généralisé pour des solutions analogues de la
hiérarchie de Painlevé II homogene, en utilisant le dé-
terminant de Fredholm des noyaux d’Airy d’ordre supé-
rieur. Leurs opérateurs intégrales sont utilisés en théo-
rie des processus déterminantaux et ils ont des appli-
cations en physique statistique et en théorie des ma-
trices aléatoires. En partant de ces considérations, cette
these a exploré les directions suivantes. On a trouvé
une formule & la Tracy-Widom qui relit des analogues
a valeurs matricielles des noyaux d’Airy d’ordre supé-
rieur & certaines solutions d’une hiérarchie de Painlevé
II matricielle. Pour ce-la on a utilisé un probleme de

Riemann-Hilbert & valeurs matriciels et en utilisant sa
solution on a dérivé une paire de Lax pour la hiérar-
chie. On a aussi trouvé une autre généralisation de la
formule de Tracy-Widom, ou cette fois ci le détermi-
nant de Fredholm d’une version a température finie des
noyaux d’Airy d’ordre supérieur est liée a certaines solu-
tions d’une hiérarchie de PII intégro-différentielle. Dans
ce cas, on a plutét utilisé un probléme de Riemann-
Hilbert & valeurs opératoriels. Sa solution permet de
construire une paire de Lax pour cette nouvelle hiérar-
chie. D’un point de vue plus géométrique, on a étudié la
structure de Poisson-symplectique des variétés de Stokes
associées a un systéme de équations différentielles ordi-
naires linéaires avec coefficient polinomial. Dans le cas
de rang 2, on a trouvé des coordonnés log-canoniques
explicites pour la 2-form symplectique, formant une al-
gebre ammassées d’un type précis. Cette construction
permet de linéariser la structure de Poisson introduite
par Flaschka et Newell dans leur travail fondateur en
1981.
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Abstract: The Painlevé II hierarchy is a sequence of
nonlinear ODEs, with the Painlevé II equation as first
member. Each member of the hierarchy admits a Lax
pair in terms of isomonodromic deformations of a rank
2 system of linear ODEs, with polynomial coefficient for
the homogeneous case. It was recently proved that the
Tracy-Widom formula for the Hastings-McLeod solu-
tion of the homogeneous PII equation can be extended
to analogue solutions of the homogeneous PII hierar-
chy using Fredholm determinants of operators acting
through higher order Airy kernels. These integral op-
erators are used in the theory of determinantal point
processes with applications in statistical mechanics and
random matrix theory. From this starting point, this
PhD thesis explored the following directions. We found
a formula of Tracy-Widom type connecting the Fred-
holm determinants of operators acting through matrix-
valued analogues of the higher order Airy kernels with
particular solution of a matrix-valued PII hierarchy. The
result is achieved by using a matrix-valued Riemann-
Hilbert problem to study these Fredholm determinants

and by deriving a block-matrix Lax pair for the relevant
hierarchy. We also found another generalization of the
Tracy-Widom formula, this time relating the Fredholm
determinants of finite-temperature versions of higher or-
der Airy kernels operators to particular solutions of an
integro-differential PII hierarchy. In this setting, a suit-
able operator-valued Riemann-Hilbert problem is used
to study the relevant Fredholm determinant. The study
of its solution produces in the end an operator-valued
Lax pair that naturally encodes an integro-differential
Painlevé II hierarchy. From a more geometrical point of
view, we analyzed the Poisson-symplectic structure of
the monodromy manifolds associated to a system of lin-
ear ODEs with polynomial coefficient, also known as
Stokes manifolds. For the rank 2 case, we found ex-
plicit log-canonical coordinates for the symplectic 2-
form, forming a cluster algebra of specific type. More-
over, the log-canonical coordinates constructed in this
way provide a linearization of the Poisson structure on
the Stokes manifolds, first introduced by Flaschka and
Newell in their pioneering work of 1981.
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