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Abstract

This thesis is concerned with the study and analysis of two quantum cryptographic
protocols: quantum key distribution (QKD) and unforgeable quantum money in the
continuous-variable (CV) framework. The main advantage of continuous-variable proto-
cols is that their implementation only requires standard telecommunication components.

QKD allows two distant parties, Alice and Bob, to establish a secure key, even in
the presence of an eavesdropper, Eve. The remarkable property of QKD is that its
security can be established in the information-theoretic setting, without appealing to any
computational assumptions. Proving the security of CV-QKD protocols is challenging
since the protocols are described in an infinite-dimensional Fock space.

One of the pressing questions in CV-QKD was establishing security for two-way
QKD protocols against general attacks. We exploit the invariance of Unitary group U(n)
of the protocol to establish the composable security against general attacks. We also
show that active symmetrization is not required to prove security. We answer another
open question in the field of CV-QKD with a discrete modulation by establishing the
asymptotic security of such protocols against collective attacks. We provide a general
technique to derive a lower bound on the secret key rate by formulating the problem as
a semidefinite program.

Quantum money exploits the no-cloning property of quantum mechanics to generate
unforgeable tokens, banknotes, and credit cards. We propose a continuous-variable
private-key quantum money scheme with classical verification. The motivation behind
this protocol is to facilitate the process of practical implementation. Previous classical
verification money schemes use single-photon detectors for verification, while our protocols
require coherent detection.
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INTRODUCTION

The advent of Quantum Mechanics

By the end of the 19th century, classical physics, characterized by Newtonian mechanics,
Boltzmann’s theory on statistical mechanics, and Maxwell’s theory of electromagnetism,
could efficiently interpret most of the relevant physical phenomena. However, two physical
phenomena were still left unexplained by classical physics: the frequency dependence of
the energy emitted by a black body and the notion of Earth moving through the ether.

The beginning of the 20th century heralded an unprecedented era of turnover and
re-evaluation of the classical theory that governed Physics since pre-Newtonian times.
Two theories revolutionized the concept of physics: Einstein’s Theory of Relativity,
which shattered the notion of classical Newtonian concepts of space and time as two
independent entities in the description of the physical world, and Planck’s hypothesis
that the radiating energy must be in discretized units, which he termed "quanta."

Planck’s quantization theory was widely accepted when Einstein explained the
photoelectric effect using the same theory of discrete packets of energy (quanta). Over
the next three decades, thanks to the works of Bohr, de Broglie, Schrodinger, Heisenberg,
Pauli, Dirac, and others, a major development took place into formulating Quantum
Mechanics from the initial quantum theory.

Information is Physical

The ’40s, more specifically the Second World War triggered an increase in the research
and development of new theories. Although most of the developments were in the field
of engineering (nuclear weapon, rocket and jet propulsion), two new theories in applied
mathematics were born at that time: Information Theory and Computer Science. Claude
Shannon’s seminal work, "A Mathematical Theory of Communication" published in 1948
established the groundwork for the world of information we live in today. During the
early years of development, information was viewed as an abstract concept. The view
quickly shifted to a more physical description of information, where one can see the
storage of media (e.g. hard drives) as a collection of information units.

The physical support of information was assumed to be classical, although Quantum
Mechanics was well established by that time. In the early ’70s, Stephen Wiesner brought
a new perspective by linking Information Theory and Quantum Mechanics. He proposed

5



6 CONTENTS

the notion of making money unforgeable using the properties of Quantum Mechanics. At
the time, the idea was not widely accepted. A few years later, the idea was extended by
Charles Bennett and Gilles Brassard to propose quantum protocols for two cryptographic
primitives: key distribution and bit commitment. This paper became the trigger that
pioneered the novel field of Quantum Cryptography.

This prompted physicists to study the effects of encoding information on quantum
states, giving birth to Quantum Information Theory. This field of research deals with
many topics: fundamental limits of information storage, rate of communication through
channels, limits on computational capabilities to name a few. Another major contribution
of this field is the insight it provides on the foundations of Quantum Mechanics, which
can be experimentally tested thanks to new technological developments. The field is
rapidly growing and also influencing other fields of Physics.

Security in Quantum Cryptography

Quantum Cryptography is one of the first practical applications of Quantum Informa-
tion Theory. The reason that the field gathers immense attention is that quantum
cryptographic protocols hold the promise of much stronger security than their classical
counterparts, for instance, secure keys generated from quantum key distribution protocol
can encrypt data for a longer period compared to classical key distribution protocols.
Cryptographic protocols meant for secure encryption are one of the primary applications
of Quantum Cryptography. Depending on the level of security, one can determine
whether an adversary is able to break a cryptosystem1 purposed for encryption. There
are two levels of security for such cryptosystems:

• Information-theoretic security: If the adversary cannot break the cryptosystem
even if (s)he has access to unlimited computational power, the system is said
to be information-theoretic secure. An example is the one-time pad symmetric
scheme, which requires a secret key of the same length as the message which can
only be used once. Such a system is not vulnerable to future developments in
computational power.

• Computational security: The system is secure against a computationally bounded
adversary. The adversary can only break the system if they have unlimited
computational power. The security relies on the hardness of a computational
problem that cannot be solved in polynomial time with limited resources. Some
of these protocols will no longer be secure with the advent of new quantum
technologies, e.g., the RSA cryptosystem can be broken using Shor’s quantum
algorithm.

Continuous Variables

Similar to classical information, quantum information can also be divided into two
families: discrete variables and continuous variables. From an implementation point of

1a suite of cryptographic protocols for implementing a particular security service
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view, continuous-variable quantum information has many advantages over its discrete
counterpart. Encoding information on the quadratures of the electromagnetic field,
processing with linear optical tools, and coherent detection are enough to implement
many continuous-variable quantum cryptographic protocols. Coherent detection is the
current industry standard in classical optical telecommunications and offers a higher
optical data rate than single-photon counters.

The large majority of quantum states that are accessible in an experimental quantum
optics laboratory are Gaussian states. Gaussian operators that preserve the Gaussian
property of the states comprise a major part of optical tools are easily implementable
with current technology. The study of Gaussian states and Gaussian operators is crucial
for the field of continuous-variable quantum information.

Outline of the thesis

The thesis focuses on the security analysis of two continuous-variable quantum crypto-
graphic protocols, quantum key distribution (QKD) and unforgeable quantum money.
Although the thesis is theoretical, the protocols focus on the ease of implementation, thus,
use coherent states and linear optical tools, which are easy to realize in an experimental
setting.

Chapter 1 presents the main tools of Quantum Mechanics that will be useful for the
study of the cryptographic protocols in later chapters. We start with a basic description
of the postulates of Quantum Mechanics followed by its inherent properties that make it
such a remarkable theory.

Chapter 2 starts with the main tools of Information Theory, in both classical and
quantum regimes, with a focus on the properties of relevant quantities. We then provide
the necessary background on Continuous-Variable systems along with the phase space
representation. We detail Gaussian states and Gaussian operators, which are crucial
for the implementation of both protocols considered here. Finally, we introduce the
basic concepts of semidefinite programming, which allows us to derive numerical bounds
needed for the security analysis. The tools presented in this chapter have been used
rather extensively throughout the thesis.

Chapter 3 introduces the two cryptographic protocols: QKD and unforgeable quantum
money. First, we describe the steps of a QKD protocol, followed by its security and how
is it achieved. Then we provide a detailed description of a continuous-variable QKD
protocol, its security, the method to prove the security for different attacks, and the
techniques or symmetries we exploit to derive the security proof. The second section
introduces the unforgeable quantum money. We start with the characterization of money
schemes based on the choice of verification and key, followed by the correctness and
security parameters. Finally, we give a detailed description of the private-key money
schemes with both quantum and classical verification.

Chapters 4, 5, and 6 present the original results of the thesis. Chapter 4 presents a
general framework encompassing a number of continuous-variable quantum key distribu-
tion protocols, including standard one-way protocols, measurement-device-independent
protocols as well as some two-way protocols, or any other continuous-variable protocol
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involving only a Gaussian modulation of coherent states and heterodyne detection. The
main interest of this framework is that the corresponding protocols are all covariant
with respect to the action of the unitary group U(n), implying that their security can be
established thanks to the Gaussian de Finetti reduction theorem. In particular, we give
a composable security proof of two-way continuous-variable quantum key distribution
against general attacks. We also prove that no active symmetrization procedure is
required for these protocols, which would otherwise make them prohibitively costly to
implement.

Chapter 5 establishes a lower bound on the asymptotic secret key rate of continuous-
variable quantum key distribution with a discrete modulation of coherent states. The
bound is valid against collective attacks and is obtained by formulating the problem as a
semidefinite program. We illustrate our general approach with the quadrature phase-shift
keying (QPSK) modulation scheme and show that distances over 100 km are achievable
for realistic values of noise. We also discuss the application to more complex quadrature
amplitude modulation (QAM) schemes. This result opens the way to establishing the
full security of continuous-variable protocols with a discrete modulation, and thereby to
the large-scale deployment of these protocols for quantum key distribution.

Chapter 6 introduces a continuous-variable private-key quantum money scheme with
classical verification. We start our analysis with a 4-state ensemble money scheme, which
is insecure but allows us to present the main ideas of the scheme. Following that, we
consider a money scheme with a slightly larger ensemble of 8 states and analyze the
security of the scheme in a perfect memory setting as well as in a pure-loss memory
setting. The scheme tolerates losses up to 2%. Finally, we generalize the money scheme
for a 4N -state ensemble and find the loss tolerance for the money scheme with various
ensemble sizes. We find money schemes with a loss tolerance of 13%. We note that
increasing ensemble sizes increases the loss tolerance of the money scheme.



CHAPTER 1

QUANTUM MECHANICS

This chapter aims to present the main tools of Quantum Mechanics that will be useful
for the study of the cryptographic protocols. Note that most of this chapter’s content
can be found in Nielsen and Chuang’s textbook [1].

1.1. The postulates of Quantum Mechanics

This section provides a basic description of the postulates of quantum mechanics, which
is enough to appreciate the quantum information theory and its application to quantum
cryptographic protocols. The postulates of quantum mechanics define a mathematical
framework for the development of physical theories. However, by itself, quantum me-
chanics is unable to provide a complete description of nature; it requires many additional
effective physical theories (such as Quantum Electrodynamics, Quantum Field Theory)
to understand any physical phenomenon completely.

The first postulate of quantum mechanics introduces the framework for describing a
physical system.

Postulate 1. Associated to any isolated physical system is a Hilbert space1 known as
the state space of the system. The system is completely described by its state vector, a
unit vector in the system state’s space.

The state vectors are symbolized by Dirac bra-ket notation: ket |ψ〉 refers to the state
vector and its Hermitian conjugate is denoted by bra 〈ψ|. The inner product between
the states |ψ〉 and |φ〉 is denoted by 〈ψ|φ〉 and the state vectors fulfill the normalization
condition 〈ψ|ψ〉 = 1. A general state vector can be written as a superposition of the
orthonormal basis vectors {|ψk〉} of the N -dimensional Hilbert space H

|ψ〉 =
N∑
k=1

Ck |ψk〉 (1.1)

1a complex vector space with an inner product structure

9



10 CHAPTER 1. QUANTUM MECHANICS

where Ck ∈ C and satisfy ∑N
k=1 |Ck|2 = 1. One can only write the states in this form if

all the information about the system is known. These states are known as pure states.

The second postulate aims at describing a composite system framework consisting of
many quantum subsystems with variable degrees of freedom.

Postulate 2. The state space of a composite physical system is the tensor product
of the state spaces of the component physical systems. Moreover, if we have systems
numbered 1 through n, and system number i is prepared in the state |ψi〉, then the joint
state of the total system is |ψ1〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψn〉 .

Let us consider a bipartite case, where the individual systems be described by the
Hilbert spaces H1 and H2, then the Hilbert space of the composite system H12 is the
tensor product of H1 and H2:

H12 = H1 ⊗H2. (1.2)

The dimension of the composite Hilbert space H12 is the product of dimensions of the
individual Hilbert spaces, d12 = d1d2, where di is the dimension of Hi.

Let us now consider the scenario where the state vectors |ψ〉1 ∈H1 and |φ〉2 ∈H2
can always describe the subsystems; then, the global system can also be always described
by the elements of the set S12 = {|ψ〉1⊗|φ〉2 : |ψ〉1 ∈H1, |φ〉2 ∈H2}, whose dimension is
only d1 + d2 ≤ d12 (for d1, d2 ≥ 2). Therefore, there exist states in the composite system,
whose subsystems can not be considered separately. These are termed as entangled
states. S12 corresponds to the set of product states.

For any given bipartite state |ψ〉12 ∈H12, the description of a subsystem is given by
the partial trace of |ψ〉12 over the Hilbert space of the other subsystem, i.e.,

ρ1 = tr2(|ψ 〈ψ|〉12) and ρ2 = tr1(|ψ 〈ψ|〉12). (1.3)

The subsystem is represented by the density operator ρ, a positive semi-definite2,
hermitian operator with tr(ρ)=1, also known as trace-one nonnegative operator.

The pure state |ψ〉12 can be written as |ψ12〉 = ∑
i,j cij |ui〉1 ⊗ |vj〉2, then the partial

state ρ1 reads

ρ1 = tr2(|ψ12〉 〈ψ12|) (1.4)
= tr2

∑
i,j,i′,j′

cijc
∗
i′j′ |ui〉 〈ui′ |1 ⊗ |vj〉 〈vj′ |2 (1.5)

=
∑

i,j,i′,j′

cijc
∗
i′j′ |ui〉 〈ui′ |1 ⊗ 〈vj′ |vj〉2 (1.6)

=
∑
i,j,i′

cijc
∗
i′j |ui〉 〈ui′ |1 . (1.7)

Such an operator ρ is referred to as a mixed state as opposed to the rank-one pure
state |ψ12〉 〈ψ12|. We note P(H ) the set of trace-one nonnegative operators on the

2non-negative eigenvalues
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Hilbert space H . The density operator is very convenient for describing a system whose
state is not completely known. The density operator for such a system is written as a
convex combination of possible pure states the system might be in,

ρ =
N∑
k=1

pk |ψk〉 〈ψk| (1.8)

where pk is the probability that the system lies in the pure state ψk. Given a density
operator ρ, one can comment on its purity by calculating tr(ρ2); if the value is 1, the
state is pure and for values less than 1, the state is mixed.

From Eqs. (1.4-1.7), note that for a given mixed state ρA ∈P(HA), one can define
an auxiliary system E, such that there exists a pure state |ψAE〉 ∈HA⊗HE

3 satisfying
ρA = trE |ψ〉 〈ψ|AE . The state |ψAE〉 is known as the purification of ρA.

The third postulate deals with the evolution of the quantum system with respect to
time.

Postulate 3. The evolution of a closed quantum system is described by a unitary
transformation, that is, the state |ψ〉 of the system at time t1 is related to the state |ψ′〉
of the system at time t2 by a unitary operator U which depends only on the times t1
and t2,

|ψ′〉 = U |ψ〉 . (1.9)

An equivalent evolution dynamics is given by the Schrodinger’s equation

i~
d |ψ〉
dt

= H |ψ〉 , (1.10)

where H is the Hamiltonian of the system. And the relation between U and H reads

U = e−iH(t2−t1), (1.11)

if the Hamiltonian is invariant with respect to time.

Any observation of a system is associated with a measurement on the system. The
fourth postulate describes the measurement process in quantum mechanics.

Postulate 4. Quantum measurements are defined by a collection {Mm} of measurement
operators. These are operators acting on the state space of the system being measured.
The index m refers to the measurement outcomes that may occur in the experiment.
The measurement operators satisfy the completeness equation∑

m

M †mMm = I. (1.12)

3HE is isomorphic to HA
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If the state of the quantum system is |ψ〉 immediately before the measurement, then the
probability p(m) that the result m occurs is given by

p(m) = 〈ψ|M †mMm|ψ〉, (1.13)

and the state of the system after the measurement is

Mm |ψ〉√
p(m)

. (1.14)

Contrary to the deterministic and reversible evolution process, quantum measure-
ments are probabilistic and irreversible. The probabilistic property is intrinsic to quantum
mechanics, as it only predicts probabilities with which an outcome will be observed, not
the actual outcome. After a measurement, the state collapses to one of the pure states
corresponding to the measurement outcome. For instance, let us consider the general
state vector from Eq. (1.1), upon measuring in the said basis; the state collapses to one
of the basis vectors. That is why measurements are irreversible since the knowledge of
what the state was before the measurement is lost.

Quantum observables are Hermitian measurement operators, where the eigenvalues
are the possible outcomes and the corresponding eignevectors are collapsed state vectors.
Here we have considered the general form of measurements, also known as Positive
Operator Valued Measure (POVM). However, there exists a special class of measurement
operators known as projective measurements, with a couple extra properties,

MmMn = δm,nMm (1.15)

and the number of projective operators in the measurement collection equates to the
dimension of the Hilbert space since the number of projective operators must equate
to the cardinality of the bases. Another major difference between the two sets of
measurements is that the results of projective measurements are repeatable, while for
POVM’s they are not. This is a direct consequence of the first property of projective
measurements.

Quantum channels are linear maps that take an initial state ρ ∈P(H ) to a final
state ρ′ ∈ P(H ′). Therefore, the maps must preserve the intrinsic properties of the
density matrix and hence the map obeys two properties:

• Complete Positivity: meaning the positive-semidefinite nature of the density matrix
must be preserved even if the map is only acts on a subsystem of the density
matrix.

• Trace preservation: since it’s a map with density matrices as outputs, the trace of
the density matrix must remain 1.

Therefore, any physical quantum channel can be defined by a Completely Postive
Trace Preserving (CPTP) map4, whose characterization is given by Kraus decomposition

4the general quantum operation is defined by a Completely Postive Trace Non-increasing map
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[2], which states that for a CPTP map Λ, there exist k ≤ (dim H )2 Kraus operators
{Ki ∈H } satisfying ∑k

i=1K
†
iKi = I such that

Λ(ρ) =
k∑
i=1

KiρK
†
i , (1.16)

where ρ ∈P(H ).
A unitary evolution is a special case which preserves the inner product of the Hilbert

space, meaning there exists only one Kraus operator U which satisfies UU † = U †U = I.
There exists an interesting way of looking at the complete-positivity of a CPTP map,

which is similar to the density-matrix form. Let us consider, a composite system of two
d-dimensional Hilbert spaces H1 ⊗H2. One can then write the maximally entangled
state as

|Φ+〉 〈Φ+| = 1
d

∑
1≤i,j,≤d

|i〉 〈j| ⊗ |i〉 〈j| . (1.17)

One can now define the Choi-Jamiołkowski operator, J(Λ) : H1⊗H2 →H3⊗H2 as an
operator which applies the CPTP map Λ : H1 →H3 on the first half of the entangled
state:

J(Λ) = 1
d

∑
1≤i,j,≤d

Λ(|i〉 〈j|)⊗ |i〉 〈j| . (1.18)

Choi’s theorem [4] then states that the map Λ is considered to be completely positive
iff J(Λ) is positive semidefinite, since Λ acts on the subsystem, and the output system is
a density matrix, and Λ is trace-preserving iff or tr1[J(Λ)] = I/d, a maximally mixed
state, as expected when tracing out a subsystem from a maximally entangled system.

There also exists another alternative definition to the CPTP map, given by Stine-
spring’s dilation theorem that states, any quantum operator can be described as a
unitary evolution in a larger Hilbert space: by tensoring a second system5, followed
by the unitary evolution on the joint system and finally tracing out the second system
provides us with the action of the CPTP map on a density operator. Thus, for a given
CPTP map on a finite-dimensional Hilbert space Λ : H →H ′, there exists a Hilbert
space H̃ and a unitary operator U on H ⊗ H̃ such that:

Λ(ρ) = trH̃ [U(ρ⊗ |0〉 〈0|)U †], ∀ ρ ∈P(H ). (1.19)

The ancilla space can have a maximum dimension of (dim H )2. This representation is
unique up to unitary equivalence.

1.2. Properties of quantum mechanics
We first define a simple quantum state of utmost importance, the two-dimensional unit
vector, known as the qubit. The Hilbert space C2 is completely spanned by the basis set
{|0〉 , |1〉}. Thus, a general qubit state can be written as

|ψ〉 = α |0〉+ β |1〉 , (1.20)
5traditionally known as the ancilla
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where α, β ∈ C and satisfy |α|2 + |β|2 = 1. Then the density matrix reads,

ρ =
(
|α|2 α∗β
αβ∗ |β|2

)
. (1.21)

The diagonal terms |α|2 and |β|2 are the probability of measuring |ψ〉 in |0〉 〈0| and
|1〉 〈1| respectively whereas the off-diagonals terms describe the quantum coherence of
the state. A pure state exhibit coherence, whereas a mixed state which represents a
statistical mixture does not display coherence. When the off-diagonal terms are zero,
the state behaves classically. The density matrix in such a case reads,

ρ =
(
|α|2 0

0 |β|2

)
. (1.22)

Such a density matrix is the result of preparing states |0〉 and |1〉 from a source with
probability |α|2 and |β|2 respectively.

Quantum coherence is an inherent property of quantum mechanics and plays a crucial
role as a resource in quantum computing and cryptography. However, when the system
interacts with the environment, over time, the system loses coherence. This phenomenon
is known as quantum decoherence. For a completely isolated system, however, the
coherence is maintained indefinitely6. Nevertheless, observations on such systems are
impossible to examine.

Another essential feature of quantum mechanics is its inability to copy an unknown
quantum state successfully. Contrary to classical physics, quantum physics does not
allow for duplication; this is the no-cloning theorem. The theorem states that, given an
arbitrary state, it is impossible to copy the state with a unit probability. The proof can
be shown by contradiction.

Let us consider a composite system with the Hilbert space HA ⊗HB, where the
state to be copied exists in system A and state is copied to system B. Let us assume,
that the state we want to copy is some pure state |ψ〉 and the state in which we want
to copy is also a pure state |p〉. The only possible operations are CPTP maps, which
according to Stinespring’s dilation theorem is a unitary evolution in a larger Hilbert
space. Therefore, we perform a unitary operation such that

U |ψ〉 ⊗ |p〉 = |ψ〉 ⊗ |ψ〉 . (1.23)

Now, the question is does the unitary operation capable of copying all pure states in
HA. Let us assume the unitary works on another state |φ〉 as well,

U |φ〉 ⊗ |p〉 = |φ〉 ⊗ |φ〉 . (1.24)

Taking the inner product of two equations, we get

〈φ|ψ〉 = (〈φ|ψ〉)2, (1.25)
6Coherence if defined with respect to a basis, can change even if your system is isolated.
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which implies
either 〈φ|ψ〉 = 0 or 〈φ|ψ〉 = 1. (1.26)

Therefore, a cloning operation can only clone states which are orthogonal to each other,
and thus an universal quantum cloner for a general state is impossible.

One of the corollaries of the no-cloning theorem is that non-orthogonal quantum
states cannot be reliably distinguished. The distinguishability of quantum states is a
significant field of study, mainly because for any operational task such as key distribution
we are always interested in comparing the performance of the actual task to an ideal
version of the same task. Therefore, there is a need to quantify how ‘close’ are two
quantum states and how effectively they can be distinguished. Here, we provide two
quantities to calculate ‘closeness’: trace distance and fidelity.

The trace distance between two quantum states ρ and σ is given by

D(ρ, σ) := 1
2 ‖ ρ− σ ‖1= 1

2tr|ρ− σ|, (1.27)

where |A| =
√
A†A. It is genuine distance measure, since it follows the triangle inequality:

D(ρ, σ) +D(σ, τ) ≥ D(ρ, τ), (1.28)

for any ρ, σ and τ . If the states are orthogonal, then D(ρ, σ) = 1.
For pure states, the trace distance reads,

D(ρ, σ) =
√

1− |〈ψ|φ〉|2, (1.29)

where ρ = |ψ〉 〈ψ| and σ = |φ〉 〈φ|. The trace distance D(ρ, σ) is invariant under unitary
operations, since it only depends on the spectrum of |ρ− σ|,

D(UρU †, UσU †) = D(ρ, σ). (1.30)

The fidelity between two quantum states ρ and σ is defined as

F (ρ, σ) = tr
√
ρ1/2σρ1/2. (1.31)

When one of the state is pure, then the fidelity between |ψ〉 and σ reads,

F (|ψ〉 , σ) =
√
〈ψ|σ |ψ〉, (1.32)

and if both the states are pure, then the fidelity is simply the inner product of the two
states. Similar to trace distance, fidelity is also invariant under unitary operations.

The fidelity of any two mixed states can be written in terms of the fidelity of their
purifications, as the maximal overlap between the two purifications. For any states ρ
and σ, and a purification |ψ〉 of ρ, there exists a purification |φ〉 of σ such that

F (ρ, σ) = |〈ψ|φ〉| = F (|ψ〉 , |φ〉). (1.33)
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This is known as the Uhlmann’s theorem. Thus, the fidelity is a practical measure of
closeness for two quantum states since the fidelity between any two states can always be
equated to the inner product of two pure states.

Now that we have defined measures of closeness, we consider the probability of
distinguishing two arbitrary states. Let us consider two quantum states ρ0 and ρ1, the
maximum probability of correctly distinguishing the state is

p = 1
2 [1 + ‖ρ0 − ρ1‖1] , (1.34)

where ‖A‖1 = tr|A|. This bound is known as the Helström bound, achievable for POVMs
{M0, I−M0} where M0 is the projector on the positive eigenspace of ρ0 − ρ1.

Trace distance gives the minimal error probability when distinguishing two quantum
states prepared with the same probability, given the best possible measurement. This is
why the trace distance is often chosen as an operational measure of the distance between
quantum states. For any operational task (such as key distribution), we compare the
performance of the actual task producing an output ρ against an ideal actualization of
the task ρideal7. Whenever, D(ρ, ρideal) ≤ ε for some small value of ε, then the output
states ρ and ρideal are indistinguishable except with a small probability ε.

Similarly to the case of distinguishing two quantum states, one might also need to
distinguish between two maps, e.g., between a map representing an ideal version of the
operational task and a real map of the actual implementation of the task. Thus, we
need to define a distance measure. Generally, we use the diamond norm ‖.‖� for such
transformations. Then, the diamond distance [3] between two maps is defined as

D�(E ,F) = ‖E − F‖�, (1.35)

where ‖T‖� is defined as,
‖T ‖� = sup

k∈N
‖T ⊗ Ik‖1 (1.36)

where
‖S‖1 = sup

‖σ‖1≤1
‖S(σ)‖1, (1.37)

and Ik is the identity map on a k-dimensional Hilbert space. The suprema are reached
when k equates to the dimension of the input of T and σ is positive.

For any two physical processes described by the CPTP maps E and F , the maximal
probability of correctly distinguishing given the observer is allowed one run with a state
of his choice for both maps is

p = 1
2(1 +D�(E ,F)). (1.38)

Another important property of quantum mechanics which has no classical analogue is
the uncertainty principle. It states that for two conjugate physical observables A and B,

7for instance, in the case of quantum key distribution task where ideal protocol outputs the state
ρideal = ρK ⊗ ρE , where ρK is the mixed uniform state corresponding to the secret keys and ρE is the
state of the eavesdropper, completely uncorrelated to the key state
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decreasing the uncertainty of one observable increases the uncertainty of the other one.
This is observed when the variables are non-commuting, i.e., [A,B] := AB −BA 6= 0. A
measurement to learn information about one variable completely destroys information
about the other variable. Mathematically,

∆A∆B ≥ 〈[A,B]〉
2 , (1.39)

where ∆A =
√
〈A2〉 − 〈A〉2. This law is true for any two non-commuting observables

such as position and momentum, σx and σz etc.





CHAPTER 2

PRELIMINARIES

In this chapter, we present the main tools of "Information theory" and "Continuous-
variable systems" that we will be using in this thesis for the study of quantum crypto-
graphic protocols. The chapter also includes a section on semidefinite programming,
which we have used rather extensively in this thesis.

2.1. Information theory

In the late 40’s, Shannon introduced the information theory to study compression
and transmission of data through communication channels. Here we only give a short
overview of information theory. This section aims to discuss and understand the main
concepts in classical information theory before delving into the analogous quantum
information-theoretic ideas. For a more detailed study, refer to the textbooks “Elements
of information theory” by Cover and Thomas [5] and “Information theory, inference and
learning algorithms” by MacKay [6].

2.1.1 Classical information theory

We start by defining a classical source. It is described by a sequence of random variables
X1, X2, ..., Xn whose values represent the source’s outputs and the values are taken from
the source alphabet (or support) X .

An independent and identically distributed (i.i.d.) source is a source where the
random variables are independent, p(x1, x2, . . . , xn) = p(x1)p(x2)...p(xn) and identically
distributed Xi = X ∀ i.

Given a discrete random variable X, the Shannon entropy of X measures the amount
of uncertainty about X before the value of X is known. It is defined as

H(X) := −
∑
x∈X

pX(x) log2 pX(x) (2.1)

where X is the support of X and pX is the probability distribution of X. Note that, the
minimum possible value for Shannon entropy is zero, when the event X is certain and

19
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the maximum possible value equates to log2 |X |, when X is a uniform distribution on
the support X , provided X is finite.

The joint entropy for a generalized n-uples of discrete random variables X1, X2...Xn

is given by

H(X1, X2...Xn) := −
∑
x1∈X1

...
∑

x2∈Xn
p(x1, ..., xn) log2 p(x1, ..., xn), (2.2)

where p(x1, ..., xn) is the joint probability distribution. The function H is sub-additive,
i.e.,

H(X1, X2...Xn) ≤ H(X1) +H(X2) + ...+H(Xn), (2.3)

with equality if and only if the random variables Xi are independent.
Shannon entropy only captures the uncertainty of X on average, therefore it is

not always a desirable measure of entropy. Rényi entropy allows us to make stronger
statements. The Rényi entropy of order α is defined as

Hα(X) := 1
1− α log2

∑
x∈X

pX(x)α. (2.4)

In the limit α→ 1, we recover the Shannon entropy, i.e., H1(X) := H(X). Among the
other values of α, the ones with particular interests are:

• α→ 0, H0(X) = log2 |X |, the max-entropy of X,

• α = 2, H2(X) = − log2
∑
x∈X pX(x)2, the collision entropy which plays a role in

privacy amplification protocol,

• α→∞, H∞(X) = − log2(supx∈X pX(x)), the min-entropy of X, which is related
to the maximal probability of guessing the value of X.

Following which, we have

H0(X) ≥ H(X) ≥ H2(X) ≥ H∞(X), (2.5)

meaning for a given random variable X, the Rényi entropy Hα(X) is a decreasing
function of α. All the Rényi entropies are additive, i.e., Hα(X,Y ) = Hα(X) +Hα(Y )
for independent random variables X and Y .

Next, let us consider the case where we have some privileged information about X,
through an another discrete random variable Y . The marginal probability distributions
can be written as

pX(x) =
∑
y

pXY (x, y) and pY (y) =
∑
x

pXY (x, y) (2.6)

where pXY (x, y) is the joint probability distribution.
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The conditional entropy is defined as

H(X|Y ) :=
∑
y

pY (y)H(X|Y = y) (2.7)

= −
∑
y

∑
x

pXY (x, y) log2 p(x|y), (2.8)

which leads us to the following chain rule

H(X,Y ) = H(X) +H(Y |X). (2.9)

One can find this relation by using the definition of conditional probability,

log p(x, y) = log p(y|x) + log p(x) (2.10)

and calculating the expectation value on the both sides of the equation.
Conditioning always decreases the entropy, H(X|Y ) ≤ H(X), with equality iff X

and Y are independent random variables, pXY (xy) = pX(x)pY (y). This relation also
holds for conditional entropies

H(X|Y,Z) ≤ H(X|Y ), (2.11)

and is known as the strong subadditivity property.
The mutual information between two discrete random variables X and Y with the

joint probability distribution pXY (x, y) can be defined as

I(X : Y ) := −
∑

x,y∈X⊗Y
pXY (x, y) log2

pXY (x, y)
pX(x)pY (y) . (2.12)

This is interpreted as the amount of correlation present between the two random variables.
The mutual information can also be written in terms of joint entropy, conditional entropy,
and individual Shannon entropies

I(X : Y ) = H(X) +H(Y )−H(X,Y ) (2.13)
= H(X)−H(X|Y ) = H(Y )−H(Y |X). (2.14)

The previous definitions of Shannon entropy are valid for discrete variables. To define
the Shannon entropy for continuous variables, we introduce the notion of differential
entropy h(X), which reads

h(X) := −
∫
x∈X

p(x) log2 p(x)dx, (2.15)

where X is the support alphabet and p(x) is the probability density function of the
continuous random variable X.

The differential entropy shares most of the properties of Shannon entropy for discrete
variables, and subsequently we can define the joint, conditional and mutual differential
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entropies, which follow the same relations as defined before for discrete distributions.
The differential entropy can be negative, unlike the entropy.

We now introduce the case of the normal distribution which we will use quite
extensively in later chapters:

fN (x) = 1√
2πσ2

e−
(x−µ)2

2σ2 , (2.16)

where µ is the mean and σ2 is the variance of the distribution. The differential entropy
for a continuous random variable X following the normal distribution, N (0, σ2) reads

h(X) = −
∫
x∈X

fN (x) log2 fN (x)dx = −
∫ ∞
−∞

fN (x)
(
− x2

2σ2 −
ln 2πσ2

2

)
dx (2.17)

= 1
2 + log2 2πσ2

2 = 1
2 log 2eπσ2 = 1

2 log2 σ
2. (2.18)

For a bipartite (X and Y ) normal distribution with zero mean and covariance matrix

KXY =
(
〈x2〉 〈xy〉
〈xy〉 〈y2〉

)
, (2.19)

the differential Shannon entropy reads,

h(X,Y ) = 1
2 log2(detKXY ). (2.20)

Subsequently, the conditional entropy can be written as

h(X|Y ) =
∫
h(X|Y = y)dy = 1

2 log2 VX|Y , (2.21)

where we have used the fact f(x|y) = f(x, y)/f(y) and VX|Y is the variance of X when
Y is known,

VX|Y = detKXY

VX
. (2.22)

The mutual information then reads,

I(X : Y ) = h(X) + h(Y )− h(X,Y ) = 1
2 log

(
VXVY

detKXY

)
. (2.23)

The main motivation behind quantifying information, is to analyze a communication
system. An universal communication system (Fig. 2.1) consists of five major parts:

• Source: produces a message to be communicated,

• Encoder: encodes the message in a suitable form for transmission and transmits it,

• Channel: the medium through which the encoded message is being transmitted,



2.1. INFORMATION THEORY 23

• Decoder: receives and decodes the encoded message to obtain the original,

• Destination: to whom the message is intended.

Figure 2.1: Communication system.

Information theory attempts to provide a mathematical framework for all of the
components mentioned above. Here, we briefly discuss the channel components, followed
by the limits of transfer of information for the said channel. A channel can be modeled
as a system with an input X taking values from the alphabet X , an output Y with
values from alphabet Y and a probability matrix p(y|x), probability of observing output
x given input y. The alphabets can be discrete or continuous. Channel capacity is
the maximum amount of information rate that can be reliably transmitted through a
communication channel. The channel capacity is defined as

C := max
p(x)

I(X : Y ), (2.24)

where the maximum is taken over all possible input distributions p(x).
One of the basic continuous noise channel models of immense importance is the

Additive White Gaussian Noise (AWGN) channel. The output Y , the input X and
the Gaussian noise Z are related through Y = X + Z, where Z ∼ N (0, σ2) and is
independent of the input X. The transition probability reads,

p(y|x) = 1√
2πσ2

e−
(y−x)2

2σ2 . (2.25)

Theoretically, the channel capacity of an AWGN channel is infinite. However, for
practical reasons, an energy constraint (or power constraint) is imposed, i.e., the variance
of the input is upper bounded by VX . Then one can write the mutual information,

h(X : Y ) = h(Y )− h(Y |X) = h(Y )− h(X + Z|X) = h(Y )− h(Z|X) (2.26)

and since X and Z are independent, therefore, h(X : Y ) = h(Y )− h(Z). The variance
of Y , given by

〈Y 2〉 = 〈(X + Z)2〉 = 〈X2 + Z2 + 2XZ〉 (2.27)
= 〈X2〉+ 〈Z2〉+ 2〈X〉〈Z〉 ≤ VX + σ2. (2.28)
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Therefore, the mutual information reads,

I(X : Y ) = h(Y )− h(Z) (2.29)

≤ 1
2 log(VX + σ2)− 1

2 log σ2 = 1
2 log

(
1 + VX

σ2

)
. (2.30)

The inequality saturates when the input follows a normal distribution, X ∼ N (0, VX).
Therefore, the capacity of an AWGN channel is given by

CAWGN = 1
2 log

(
1 + VX

σ2

)
= 1

2 log (1 + SNR) , (2.31)

where SNR = VX
σ2 is the signal to noise ratio.

2.1.2 Quantum regime

As discussed in section 1.2, in quantum mechanics, it is impossible to distinguish with
certainty any given set of non-orthogonal states nor can one duplicate the states. Thus,
cryptographic protocols using quantum states as carriers of information, provides an
inherent advantage. Therefore, the question arises, equipped with such strong properties
how efficiently can one transmit information via quantum states through a quantum
channel.

The basic unit of information processing in quantum regime is the qubit (short for
quantum bit). Recall that the density operator for a general qubit state is

ρ =
(
|α|2 α∗β
αβ∗ |β|2

)
. (2.32)

Measuring the state in the basis {|0〉 , |1〉}, collapses it to either {|0〉 or |1〉} with
probability |α|2 and |β|2 respectively. Therefore, one can use the density operator as a
substitute for the probability distribution in Shannon entropy. Thus, the generalization
of Shannon entropy for a quantum state ρ, the von Neumman entropy reads

S(ρ) := −tr[ρ log2 ρ]. (2.33)

In the orthogonal basis {|i〉} which diagonalizes ρ

ρ =
∑
i

λi |i〉 〈i| , (2.34)

the von Neumann entropy reduces to the Shannon entropy,

S(ρ) =
∑
i

λi log2 λi = H(λ), (2.35)

λ denotes the distribution {λi}.
The interpretation remains the same as that of Shannon entropy. The von Neumann

entropy of a pure state is zero, while it is maximal for a maximally mixed state ρ = I/d,
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S(ρ) = log2 d, where d is the dimension of the Hilbert space. Therefore, for a maximally
mixed qubit state, ρ = I/2, the von Neumann entropy is 1. In diagonalized form,
S(ρ) = H(λ), which in this case is 1.

The von Neumann entropy is invariant under unitary operations: for any unitary U ,
S(Uρ U †) = S(ρ).

For a block-diagonal density matrix of the form

ρ =
∑
k

pkρk, (2.36)

where ρk have support on orthogonal subspaces, the von Neumann entropy reads,

S(ρ) = H(p) +
∑
k

pkS(ρk). (2.37)

The entropy of a quantum system A is the entropy of the representing state ρA of
the system, denoted by S(A) or S(ρA). For a composite system AB represented by ρAB ,
the joint entropy of the system is given by,

S(A,B) = S(ρAB) := −tr[ρAB log2 ρAB]. (2.38)

If the composite state is pure S(A,B) = 0, then S(A) = S(B). Sub-additivity is also
followed by von Neumann entropy

S(A,B) ≤ S(A) + S(B), (2.39)

with equality iff ρAB = ρA ⊗ ρB.1
The conditional entropy is given by

S(A|B) := S(A,B)− S(B). (2.40)

Unlike conditional Shannon entropy, conditional von Neummann entropy can be negative,
happens generally in the presence of an entanglement. Conditioning reduces entropy,
i.e., S(A|B,C) ≤ S(A|B) ≤ S(A).

The mutual information is given by

S(A : B) := S(A) + S(B)− S(A,B) (2.41)
= S(A)− S(A|B) = S(B)− S(B|A), (2.42)

introduced to study the amount of correlation between two systems. For a product
state, ρAB = ρA ⊗ ρB, S(A : B) = 0, while for a maximally entangled state, |ψAB〉 =∑d
i=1

1√
d
|i〉A ⊗ |i〉B, S(A : B) = 2 log2 d.

One can never increase the mutual information by discarding a system,

S(A : B) ≤ S(A : B,C), (2.43)

nor by applying a local quantum operation to individual systems separately, system AB
mapped to system A′B′,

S(A′ : B′) ≤ S(A : B), (2.44)
with equality iff the operation is unitary.

1quantum analogue for independence of classical random variables
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Classical communication over quantum channel

Let us define a quantum source. A quantum source generates random quantum states,
belonging to the Hilbert space H . After n uses of quantum source, we represent the
final quantum state by ρn. An i.i.d. quantum source generates a quantum state ρ for
each run. Therefore, the state after n runs is ρ⊗n = ρ⊗ ρ...⊗ ρ.

An i.i.d. classical-quantum source generates independent pairs of classical-quantum
states, where the entire joint state of the classical register a and the quantum signal B
has the density matrix ρaB ⊗ ρaB...⊗ ρaB . For a source generating pure states, we have,

ρaB =
∑
a

p(a) |a〉 〈a| ⊗ |φa〉 〈φa| , (2.45)

where {|a〉}a is a family of mutually orthogonal vectors representing the classical values
of a and |φa〉 represents the quantum signal.

This type of states has many applications; they are mainly observed when one of the
party has some classical information, about which another party holds some quantum
information, e.g., when a party wishes to generate quantum states according to given
classical information (a probability distribution).

Let us now study a task, where Alice has a classical source producing symbols
x = {0, 1, ..., n}, denoted by random variable X according to a probability distribution
p(x). The aim for Bob is to determine the value of X. Hence, Alice prepares ρx chosen
from a fixed set {ρ0, ρ1, ..., ρn} according to the symbol and sends it to Bob. Then Bob
performs a POVM measurement {Ey} on the state and obtains an output Y . Depending
on the value of Y , Bob makes his best guess about X.

Holevo bound. The amount of information Bob has gained about X from output Y
is given by the mutual information between I(X : Y ). Bob can guess X with certainty
if and only if I(X : Y ) = H(X), however, generally I(X : Y ) ≤ H(X). Thus, Bob must
choose his measurement in such a way that I(X : Y ) becomes really close to H(X). The
mutual information is upper bounded by the quantity, Holevo bound,

I(X : Y ) ≤ χρ(X;Y ) = S(ρ)−
∑
x

pxS(ρx), (2.46)

where ρ = ∑
x pxρx.

Note that the Holevo bound does not depend on Bob’s measurements. Generally,
the mutual information does not attain this bound. To attain the bound, the individual
density matrices {ρx}x∈X must have orthogonal support, which is not the usual case.
However, if we consider collective measurements instead of individual (product) measure-
ments over infinite number of symbols (states), the maximum of mutual information over
all possible measurement schemes achieves the Holevo bound. This is why the Holevo
bound is used to quantify the potentially accessible information to an eavesdropper
performing a collective attack against a QKD protocol [41].
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Operational entropic quantities

The Shannon entropy and its quantum generalization, the von Neumann entropy are
relevant in the asymptotic limit where a process is repeated many times independently.
However, when neither of these assumptions hold, one needs to consider more general
entropic quantities.

One such quantity is the conditional min-entropy. For a bipartite quantum state
ρAB, the conditional min-entropy is defined as

Hmin(A|B)ρAB := − inf
σB
D∞(ρAB ‖ IA ⊗ σB). (2.47)

where infimum is taken over all normalized density operators σB on subsystem B and

D∞(ρ ‖ σ) := inf{λ ∈ R : ρ ≤ 2λσ}, (2.48)

is the generalization of the relative entropy2 of two states ρ and σ.

Operational interpretation of min-entropy. Let us consider the same task as before
where Alice prepares quantum state ρx according to the symbol x ∈ {0, 1, ..., n} produced
from a classical source following a probability distribution p(x). The symbols are denoted
by random variable X. She sends the quantum states to Bob. The classical-quantum
state ρ for the task has the same form as Eq. (2.45).

ρXB =
∑
x

pX(x) |x〉 〈x| ⊗ ρx. (2.49)

The aim for Bob is to determine the value of X. Bob chooses to perform a POVM
measurement {Ex} on the states and the corresponding success probability is given by

pguess(X|B){Ex} =
∑
x

p(x)tr[Exρx]. (2.50)

The guessing probability is defined as the probability obtained for optimal measurement:

pguess(X|B) := max
Ex

pguess(X|B){Ex}. (2.51)

In [17], the authors proved that the min-entropy of X conditioned on B is linked to the
guessing probability through the following relation,

pguess(X|B) = 2−Hmin(X|B)ρXB . (2.52)

Therefore, when a classical system is conditioned on a quantum system, the condi-
tional min-entropy of equates to the guessing probability.

2The relative entropy between the states ρ and σ is given by

D(ρ ‖ σ) := tr[ρ(log2 ρ− log2 σ)]
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Smooth min-entropy. Here, we consider a slightly generalized version of the min-
entropy called the smooth min-entropy. For a bipartite quantum state ρ, the smooth
min-entropy of A conditioned on B is defined as

Hε
min(A|B)ρ := sup

ρ′
Hmin(A|B)ρ′ , (2.53)

where ε is the smoothness parameter and the supremum ranges over all the density
operators ρ′ which are ε-close of ρ for the trace-distance, i.e., ‖ ρ− ρ′ ‖1≤ ε.

The smooth min-entropy is a generalization of Von Neumann entropy, in [17] the
authors show that one recovers von Neumann entropy in the limit of infinite many copies
of the state

S(A|B)ρ = lim
ε→0

lim
n→∞

1
n
Hε

min(An|Bn)ρ⊗n . (2.54)

It also shares some properties with the von Neumann entropy, particularly, it is also
strongly subadditive:

Hε
min(A|B) ≥ Hε

min(A|BC). (2.55)

The smooth min-entropy is used to quantify operational tasks such as privacy
amplification (also known as randomness extraction). It is the art of transforming a
partially secure X into a fully secure key S, where X is a classical random variable on
which an adversary has some partial information B. The fully secure key S appears
completely random from the point of view of an adversary having access to the system
B. Let us denote lεextr(X|B) as the length of the fully secure key S which is ε-close to a
string perfectly uniform and independent of B. One has [25]:

lεextr(X|B) = Hε′
min(X|B) +O(log 1/ε) (2.56)

for some ε′ ∈ [1
2ε, 2ε]. This result is relevant in the study of quantum key distribution

protocols as it gives the secure key rate of the protocol. Unfortunately, the value of
Hε′

min(X|B) is often difficult to compute.

2.2. Continuous-Variable Systems

The aim of this section is to present the formalism specific to the study of quantum
information with the continuous variables of a bosonic system. Most of the content of
this chapter can be found in the textbooks “Introductory Quantum Optics" by Gerry
and Knight [7] and “Essential Quantum Optics" by Leonhardt [8].

A continuous-variable (CV) system of N canonical bosonic modes is described by a
Hilbert space

H =
N⊗
k=1

Hk (2.57)

resulting from the tensor product structure of infinite-dimensional Hilbert spaces Hk’s,
described by observables with continuous eigenspectra. One can think for instance to the
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quantized electromagnetic field, whose Hamiltonian describes a system of N harmonic
oscillators,

H =
N∑
k=1

~ωk
(
â†kâk + 1

2
)
, (2.58)

where ~ is the reduced Planck’s constant.
Here, â†k and âk are creation and annihilation operators of a photon in mode k (with

frequency ωk), which satisfy the commutation relation

[âk, â†k′ ] = δk,k′ , [â,kâk′ ] = [â†k, â
†
k′ ] = 0. (2.59)

The corresponding quadrature operators (position and momentum) for each mode
are defined as

x̂k = 1√
2

(â†k + âk), p̂k = i√
2

(â†k − âk). (2.60)

We can group together the canonical operators in the vector

R̂ = (x̂1, p̂1, ...x̂N , p̂N )>, (2.61)

which enables us to write a compact form of the bosonic commutation relations between
the quadrature operators,

[R̂k, R̂l] = iΩkl (2.62)

where Ω is the symplectic form

Ω :=
N⊕
k=1

ω, ω :=
(

0 1
−1 0

)
. (2.63)

The space Hk is spanned by the Fock basis {|0〉k , |1〉k , ..., |n〉k , ...}, where the Fock
state |n〉k describes the state of n (indistinguishable) photons present in mode k. The
Fock states are the eigenstates of the number operator n̂k = â†kâk, representing the
Hamiltonian of the non-interacting mode, (Eq. (2.58)),

n̂k |n〉k = n |n〉k . (2.64)

From Eqs. (2.59) and (2.64), one can derive the following relations

âk |n〉k =
√
n |n− 1〉k , â†k |n〉k =

√
n+ 1 |n+ 1〉k . (2.65)

The Fock states form a complete basis of orthonormal states,

〈n|m〉 = δn,m,
∞∑
n

|n〉 〈n| = I. (2.66)
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The state containing no photons (|0〉) is called the vacuum state, for which âk |0〉k = 0.
The Fock basis of the global Hilbert space H is the tensor product of the Fock bases
of the individual Fock spaces and its generic element is given by |n1, n2, ..., nN 〉 , where
nk ∈ N for mode k. Using Eq. (2.65), one can define the multi-mode Fock state in the
following way:

|n1, n2, ..., nN 〉 = 1√
n1!n2!...nN !

â†n1
1 â†n2

2 ...â†nNN |0〉 (2.67)

where |0〉 ≡ |0, 0, ...0〉 is the global vacuum state.
From the commutation relation Eq. (2.62), one can rewrite the commutation relation

between the quadrature operators as

[x̂i, x̂j ] = [p̂i, p̂j ] = 0, [x̂i, p̂j ] = iδi,j , (2.68)

which gives us the well-known Heisenberg uncertainty principle

∆x̂∆p̂ ≥ 1
2 |〈[x̂, p̂]〉| =

1
2 , (2.69)

where ∆A =
√
〈A2〉 − 〈A〉2.

For the upcoming parts, we shall be only dealing with single-mode systems, thus the
index k denoting a particular mode is omitted.

The eigenstates of the quadratures are

x̂ |x〉 = x |x〉 , (2.70)
p̂ |p〉 = p |p〉 , (2.71)

where |x〉 is a position eigenstate whereas |p〉 is a momentum eigenstate3 and x, p ∈ R.
They give rise to two orthonormal bases

〈x|x′〉 = δ(x− x′), (2.72)
〈p|p′〉 = δ(p− p′), (2.73)

and provide two resolutions of the identity∫
R
|x〉 〈x| dx = I =

∫
R
|p〉 〈p| dp. (2.74)

The bases are related via a Fourier transformation

|p〉 = 1√
2π

∫ ∞
−∞

dpeixp |x〉 , (2.75)

|x〉 = 1√
2π

∫ ∞
−∞

dxe−ixp |p〉 . (2.76)

3Strictly speaking, |x〉 and |p〉 are not proper eigenstates since they are non-normalizable, thus lies
outside the Hilbert space.
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The quadrature eigenstates are a useful tool in quantum mechanics because the wave
function ψ(x) of a quantum state |ψ〉 and its Fourier transform are ψ(p) related to them

ψ(x) = 〈x|ψ〉 (2.77)
ψ(p) = 〈p|ψ〉. (2.78)

The quadrature eigenstates play a major role in CV systems. Another important
set of states are the eigenstates of the annihilation operator â, which constitute the
important set of coherent states. The states result from applying the single-mode Weyl
displacement operator D(α) to the vacuum |0〉, |α〉 := D(α) |0〉 where

D(α) := eαâ
†−α∗â, (2.79)

and satisfy
â |α〉 = α |α〉 , (2.80)

where α ∈ C.
Since, the displacement operator is unitary4, one obtain

D†(α) = D−1(α) = D(−α). (2.81)

Using the Baker-Campbell-Hausdorff formula, one can rewrite the displacement operator
as

D(α) = e−
|α|2

2 eαâ
†
e−α

∗â = e
|α|2

2 e−αâ
†
eα
∗â (2.82)

and for any given two operators A and B, such that [A,[A,B]] = 0, one can write the
following

eABe−A = B + [A,B]. (2.83)

Hence, the action of the displacement operator on the annihilation and creation operators
reads

D†(α)âD(α) = â+ α, (2.84)
D†(α)â†D(α) = â† + α∗. (2.85)

Therefore,
âD(α) |0〉 = D(α)(â+ α) |0〉 = αD(α) |0〉 . (2.86)

The displacement operator acts on the quadrature operators, in the following way

D†(α)x̂D(α) = x̂+
√

2Re(α), (2.87)
D†(α)p̂D(α) = p̂+

√
2Im(α), (2.88)

where Re(α) and Im(α) are the real and imaginary part of α respectively. We notice
that, a coherent state is obtained by displacing a vacuum state by the amount (dx, dp) =

4the quantity i(αâ† − α∗â) is Hermitian
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(
√

2Re(α),
√

2Im(α) along (x̂, p̂) quadratures. Using Eq. (2.82), we can write the coherent
state in terms of the Fock basis,

|α〉 = e−
1
2 |α|

2
∞∑
n=1

αn

n! |n〉 . (2.89)

Note that, coherent states have an undefined number of photons, but the average photon
number of the field is

n̄ := 〈α| n̂ |α〉 = |α|2, (2.90)

while the probability of detecting n photons in a coherent state is given by

Pn = |〈n|α〉|2 = e−|α|
2 |α|2n

n! , (2.91)

a Poisson distribution with mean and variance of |α|2.
Another interesting property of coherent states is that they are non-orthogonal,

which means perfectly distinguishing two coherent states is impossible

〈β|α〉 = e−
1
2 (|α|2+|β|2−2β∗α) 6= 0. (2.92)

However, they follow a closure relation,

1
π

∫
C
|α〉 〈α|d2α = I, (2.93)

implying that any state can be decomposed on the set of coherent states, hence forming
an overcomplete basis.

2.2.1 Phase space representation

In classical Hamiltonian mechanics, the state of a particle is specified by its canonical
variables: position x and momentum p. For N particles, the state is described by the
(x1, . . . , xN ) and (p1, . . . , pN ), where the canonical variables satisfy the Poisson bracket
relations :

{xi, xj} = {pi, pj} = 0, {xi, pj} = δi,j . (2.94)

The only allowed transformations in Hamiltonian mechanics are the ones that leave
these Poisson bracket invariant.

One can generalize these framework into quantum mechanics by the process of
canonical quantization. The canonical variables are replaced by the quadrature operators
x̂i and p̂i. The Poisson bracket is replaced by the commutator and the relation between
the quadratures is given by Eq. (2.68). Similar to the classical Hamiltonian mechanics,
the only transformations allowed are the ones which keeps the symplectic form invariant.

Phase space is an abstract space used for representing states of a system in terms
ordered pairs of positions and momenta. Due to the equivalence between quadrature
operators, and position and momentum operators, it is convenient to employ phase space
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representation for studying the behaviours of continuous-variable systems. Classically, a
state can be represented as a point in phase space because both position and momentum
of the state are allowed to have a precise value. However, this is not permitted in
quantum mechanics because of the uncertainty principle. Phase space regions (whose
area depends on the product of the uncertainties of the canonical operators) are thus
typically adopted to represent pictorially a particular state.

The states of a CV system are the set of positive trace-class operators {ρ} on the
Hilbert space H . However, the complete description of any quantum state ρ of such
an infinite-dimensional system can be provided by one of its s-ordered characteristic
functions

χs(ξ) := Tr[ρD̂ξ]es‖ξ‖
2/2, (2.95)

where D̂ξ is the Weyl operator, the generalized displacement operator for N modes and
defined as

D̂ξ := e−iξ
>ΩR̂ (2.96)

with ξ ∈ R2N and ‖.‖ is the norm. The real 2N -dimensional space equipped with
the symplectic form Ω: Ξ = (R2N ,Ω), is called quantum phase space, in analogy with
the Liouville phase space of classical Hamiltonian mechanics. One can see from the
definition of the characteristic functions that in the phase space picture, the tensor
product structure is replaced by a direct sum structure, so that the N -mode phase space
is Ξ = ⊕kΞk where Ξk = (R2, ω) is the local phase space associated with mode k.

The family of characteristic functions is in turn related, via complex Fourier transform,
to the quasi-probability distributions W s, which constitute another set of complete
descriptions of the quantum states. Here, s = 0 corresponds to the so-called ‘Wigner
function’, while s = 1 gives us Glauber-Sudarshan ‘P-representation’. These distributions
are referred as ‘quasi’-probability because they sum up to unity, yet do not behave
entirely as one would expect from probability distributions, for instance, there are
(infinitely many) quantum states for which the Wigner function assumes negative values.

The Wigner function for a given state ρ is defined as

Wρ(ξ) := 1
(2π)N

∫
d2Nζeiξ

TΩζχ0(ζ). (2.97)

For an N -mode bosonic quantum system, the Wigner function can be written as
follows in terms of the position eigenvectors |x〉 of the quadrature operators {x̂j}

Wρ(x1, p1, ..., xN , pN ) = 1
πN

∫
RN
〈x− x′| ρ |x+ x′〉 e2ix′p dNx′, (2.98)

= 1
πN

∫
RN

ψ∗(x+ x′)ψ(x− x′)e2ix′p dNx′. (2.99)

For a comprehensive discussion about the Wigner function and its properties, refer to
[9].

Note that, the Wigner function depends on a finite number of variables, thus easier
to manage compared to the density matrix, which due to the infinite-dimensionality of
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the Hilbert space has infinite variables. Since the Wigner function provides the same
information as ρ, one can simply use the Wigner functions as an alternative for ρ.

As witnessed, there exist two different space representations for CV systems: phase
space and Fock space. Therefore, there are two main types of measurements one can
perform on CV states. One can measure the photon number of the state, or one can
measure a quadrature of the state in phase space, known as homodyne measurement.

In a homodyne measurement, the measurement operators are projectors over the
quadrature basis |x〉 〈x| (or |p〉 〈p|). The outcome probability of the results is obtained
by integrating the Wigner function over the quadratures that have not been measured.
For a single mode state, one finds:∫ ∞

−∞
dp Wρ(x, p) = tr[ρ |x〉 〈x|], (2.100)∫ ∞

−∞
dx Wρ(x, p) = tr[ρ |p〉 〈p|], (2.101)

which in the case of a pure state, is |ψ(x)|2 and |ψ(p)|2 respectively.
One can generalize the above result, for a partial homodyne measurement on a

multimode N bosonic system,

P (x1, pN ) =
∫
W (x1, ..., xN , p1, ..., pN )dx2dx3...dxNdp1dp2...dpN−1. (2.102)

We will discuss in detail about these measurements at the end of the section.
To recover the trace of the state, one has to integrate the Wigner function over the

whole phase space ∫
dξ Wρ(ξ) = tr[ρ] = 1. (2.103)

For a mixed state, ρ = ∑
i piρi, the Wigner function reads

Wρ(ξ) =
∑
i

pi Wρi(ξ). (2.104)

2.2.2 Gaussian states

Gaussian states are particularly relevant to the study of continuous-variable quantum
systems, both, experimentally and theoretically. These states are called as Gaussian
because the characteristic function (and subsequently, the Wigner function) is a Gaussian
function in phase-space.

The state can therefore be completely characterized by the first two moments: mean
and variance (uncertainties). Given a density operator ρ, we define the displacement
vector (the mean value), d ∈ R2N

d := 〈R̂〉 = tr[ρR̂] (2.105)
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and the 2N × 2N covariance matrix γ:

γαβ := 〈{∆R̂α,∆R̂β}〉, (2.106)

where ∆R̂α := R̂α − 〈R̂α〉 and 〈R̂α〉 = tr(R̂αρ). The diagonal element provides the
variance of the quadrature operators. Then, the Gaussian states are described by the
following Gaussian characteristic function

χρ(ξ) = e(− 1
4 ξ
>Γξ+iDT ξ), (2.107)

where Γ = −ΩγΩ> and D = Γd and the Wigner form of Gaussian state reads

W (R) = 1
π2N det(γ)e

−(R−d)>γ−1(R−d). (2.108)

As we can see from the definitions, despite the infinite dimensionality of the Hilbert
space, a complete description of a Gaussian state of N modes, requires only a finite
number of parameters, which is quadratic in N .

Note that, although the covariance matrix is 2N×2N positive-semidefinite symmetric
matrix, all such matrices do not fulfill the criteria to be a covariance matrix. A physical
system must obey the uncertainty principle, therefore a covariance matrix must also
obey the uncertainty relation, which in case of continuous-variable system reads as [10]

γ + iσ ≥ 0. (2.109)

This can be easily shown by expanding the form of γ, using the non-negativity of ρ and
assuming, without loss of generality that the first-order moment value (d) as zeros. This
is a necessary and sufficient condition which has to be satisfied by the covariance matrix
of a physical Gaussian state; in fact, this is also a necessary condition for non-Gaussian
states.

Using Williamson’s theorem [11] we can diagonalize the covariance matrix. It states
that, for every positive and symmetric matrix, there exists a symplectic operator S such
that

SγS> = v =
N⊕
k=1

(
vk 0
0 vk

)
(2.110)

where vk are the symplectic eigenvalues and form the symplectic spectrum of γ.
An operator is called symplectic if the symplectic form (Eq. (2.63)) remains invariant

under its action
SΩS> = Ω. (2.111)

Given a symplectic matrix S, the matrices S−1, S> and −S are also symplectic. Using
Eq. (2.111) and Ω>Ω = I, we get, S−1 = −ΩS>Ω. The set of symplectic operators
forms a group denoted Sp(2N,R).

The symplectic eigenvalues are the eigenvalues of the operator |iΩγ|, where |A| =√
A†A. Thus, one can rewrite the uncertainty principle in terms of symplectic eigenvalues

as
vk ≥ 1, for k = 1, ..., N. (2.112)
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Another way of finding the symplectic eigenvalues is to use the symplectic invariants,
quantities which remain invariant under the action of Sp(2N,R). One such quantity is
the determinant of the covariance matrix,

det(γ) = det(v) =
N∏
k

v2
k (2.113)

since, det(S) = 1.5.

One-mode Gaussian states

Here, we review the single-mode states with their corresponding displacement vector d
and covariance matrix γ. The vacuum state is charaterized by d=(0,0) and γ = I, the
position and momentum variances equate to 1. This is the minimum value that the
quadratures can reach symmetrically known as the quantum shot noise.

Coherent states being displaced vacuum states has the same covariance matrix as
that vacuum states γ = I with non-zero displacement vectors in phase-space, d = (dx, dp).
A generalization of the coherent states is given by the squeezed coherent states which
have a covariance matrix of the form

γ =
(
e−2s 0

0 e2s

)
, (2.114)

where s is the squeezing parameter. Depending on the parameter s, we call the coherent
state x̂-squeezed (s >0) or p̂−squeezed (s < 0) and for s = 0, we recover the coherent
state. The squeezed vacuum states also have the same covariance matrix but with
d=(0,0).

Another useful one-mode Gaussian states are thermal states characterized by null
displacement vector and covariance matrix

γ =
(
V 0
0 V

)
(2.115)

with V = 2n̄+ 1, n̄ is the mean photon number of the state. For n̄ = 0, we recover the
vacuum state.

The symplectic eigenvalue for a single-mode state is given by

v1 =
√

det(γ). (2.116)

Two-mode Gaussian states

A general two-mode Gaussian state can be characterized by the displacement vector
d = (dx1 , dp1 , dx2 , dp2) and the covariance matrix γ12

γ =
(
γ1 C
C> γ2

)
(2.117)

5all matrices in Sp(2N,R) have determinant 1
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where γ1,2 is the variance of the corresponding mode and C is a 2× 2 real matrix that
gives the correlation between the two modes. The case C = 0 corresponds to a tensor
product of two one-mode Gaussian states

ρ12 = ρ1 ⊗ ρ2. (2.118)

To find the symplectic eigenvalues of two-mode Gaussian states, we define another
symplectic invariant [12]

∆ = v2
1 + v2

2 = det(γ1) + det(γ2) + 2 det(C) (2.119)

and we already have

det(γ12) = v2
1v

2
2. (2.120)

It is easy to see that the square of the symplectic eigenvalues are the roots of the following
quadratic equation

y2 −∆y + det(γ12) = 0, (2.121)

which gives us
v2

1,2 = 1
2

[
∆±

√
∆2 − 4 det(γ12)

]
. (2.122)

Two-mode squeezed states play a vital role for practical implementation of many CV
protocols. The state is characterized by a null displacement vector and the covariance
state

γTMSS =
(

cosh 2s I2 sinh 2s σz
sinh 2s σz cosh 2s I2

)
, where σz =

(
1 0
0 −1

)
. (2.123)

Multi-mode Gaussian states

One can generalize the previous definitions to a system of N modes [13]. The symplectic
invariants ∆N

i (i = 1...N) for a multi-mode Gaussian state can be obtained by calculating
the principal minor of order 2k for the matrix Ωγ,

∆N
i = M2k(Ωγ). (2.124)

Therefore, the relation between symplectic eigenvalues and the symplectic invariants
reads

∆N
i (v1, ..., vN ) =

∑
SN
i

∏
j∈SN

i

v2
j . (2.125)

The sum is taken over all possible i-subsets S N
i of the first N natural integers (over all

possible combination of i integers). Then we can solve a polynomial equation of degree
N whose roots are the symplectic eigenvalues.

Though there is a possibility of N modes being distributed over N different parties,
most often, we encounter cases where the N modes are distributed over two parties,
such as in the case of key distribution protocols.
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For a bipartite multi-mode (NA +NB) Gaussian state, the covariance matrix reads

γ =
(
γA C
C> γB,

)
(2.126)

with γA(B) are the local covariance matrices of NA,(B) modes and C is the correlation
matrix between the two parties A and B.

2.2.3 Gaussian operations

Quantum operations that map any Gaussian state to a Gaussian state are called Gaussian
operations. Since Gaussian states are easy to characterize, it turns out that a large
class of transformations acting on these states are easy to characterize too. These
include operations that can be performed by linear optical tools such as phase shifts,
beamsplitters, squeezers along with homodyne measurements. The study of these
operators is particularly relevant because these can be implemented experimentally with
present technology.

Symplectic Operations

An operation is Gaussian if it transforms Gaussian states to Gaussian states. These are
generated from Hamiltonians H which are second order polynomials in field operators,
via U = exp(−iH/2). As a consequence of the Stone-von Neumann theorem, any such
unitary transformation corresponds to a displacement operation D̂ξ in phase space and
a symplectic operation (matrix) S ∈ Sp(2N,R) which acts on the quadrature operator
as follows:

R̂→ SR̂+ ξ. (2.127)

In terms of moments, under a Gaussian operation, a Gaussian state with mean value d
and covariance matrix γ transforms into a Gaussian state with displacement vector d′
and covariance matrix γ′

d′ = Sd+ ξ, (2.128)
γ′ = SγS>. (2.129)

An important subset of symplectic transformations which are also orthogonal forms
a special group of transformations, K(N) := Sp(2N,R) ∩O(2N), which preserves the
total photon number of a state. Such transformations include phase rotations and
beamsplitter interactions.

Phase Rotation is a single-mode operation equivalent to rotation of the phase-space,
characterized by the parameter θ. The symplectic transformation SPR(θ) ∈ Sp(2,R)
reads

SPR(θ) :=
[

cos θ sin θ
− sin θ cos θ

]
(2.130)
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and the corresponding unitary transformation is UPR(θ) := exp(−iθâ†â).
A beamsplitter transformation of transmittance T makes a coherent combination

of two modes and is described by the symplectic operator SBS(T ) ∈ Sp(4,R)

SBS(T ) =
[ √

T I2
√

1− T I2
−
√

1− T I2
√
T I2

]
(2.131)

the corresponding unitary transformation is UBS(θ) = exp[θ(â†b̂− âb̂†)], where â and b̂
are the annihilation operators of the two modes and T = cos2 θ ∈ [0, 1].

There exists another subset of symplectic operators which does not preserve the
photon number of the state rather inject photons in the system, e.g., squeezing operations.
A single-mode squeezing Gaussian unitary reads

Usq(s) := exp[s(â2 − â†2)] (2.132)

and the corresponding symplectic operator is

Ssq(s) :=
[
e−s 0
0 es

]
, (2.133)

where s is the squeezing parameter. The one-mode squeezed vacuum state is obtained
by applying the squeezing operator to a vacuum state, which in the Fock basis reads

Usq(s) |0〉 := 1√
cosh s

∞∑
n=0

√
(2n)!

2nn! tanhn s |2n〉 . (2.134)

The mean photon number is n̄ = sinh2 s, positive for non-zero s.
The Gaussian unitary for the two-mode squeezing operator is given by

Usq2(s) := exp[s(âb̂− â†b̂†)] (2.135)

and the corresponding symplectic operator is given by

Ssq2(s) :=
[

cosh sI2 sinh sσz
sinh sσz cosh sI2

]
. (2.136)

By applying Ssq2(s) to a couple of vacuum states, one obtains a two-mode squeezed
vacuum state (TMSS), also known as the EPR state

|TMSS〉 = Usq2(s) |0, 0〉 =
√

1− λ2
∞∑
n=0

(−λ)n |n, n〉 , (2.137)

where λ = tanh s. TMSS play a central role in many CV protocols. It has the same
significance as the Bell state |Φ+〉 = (|00〉+ |11〉)/

√
2.

On tracing out one of the two modes of a two-mode squeezed state, we obtain the
following mixed state

ρ = 1
cosh s

∞∑
n=0

tanh2n s |n〉 〈n| . (2.138)
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The average photon number turns out to be n̄ = cosh s − 1, the one can rewrite the
mixed state as

ρ =
∞∑
n=0

n̄n

(n̄+ 1)n+1 |n〉 〈n| , (2.139)

which is exactly the equation of a thermal state with a Bose-Einstein distribution.
Any N-mode symplectic operation can be decomposed as

S = P1

(
N⊕
i=1

[
e−si 0

0 esi

])
P2 (2.140)

where P1, P2 ∈ K(N) and si ∈ RN ∀ i. It means any Gaussian unitary can be applied
by a passive linear interferometer, followed by a parallel set of single-mode squeezers
over N modes and a second passive transformation.

Completely Positive Maps

The set of unitary operations does not contain all the transformations that can be
applied to a quantum state. The most general transformation (even measurement) is
defined by a map E : ρ→ E(ρ), which is completely positive (CP) and trace-decreasing
map. A quantum operation is then called a channel when it preserves the trace of the
state, i.e., tr[E(ρ)] =1. The maps which are reversible form the set of unitary operations.

The Gaussian CP maps are characterized by two 2N × 2N matrices X and Y, which
transforms a Gaussian state (d, γ) to a Gaussian state (d′, γ′) as

d′ = Xd (2.141)

and
γ′ = XγX> + Y. (2.142)

Y is a symmetric matrix and the positivity of the map is satisfied if the following relation
holds

Y + iΩ− iXΩX> ≥ 0. (2.143)

A Gaussian channel also preserves the Gaussian characteristics of the states. Now,
we describe some of the important Gaussian channels:

• A pure loss channel of transmittance T is characterized by X =
√
T I and Y =

(1− T )I. It is modeled by combining the signal with a vacuum on a beamsplitter
of transmittance T and the tracing out the second output mode.

• An amplification channel with amplification factor η ≥ 1 is characterized by
X = √ηI and Y = (1− η)I. It can be modeled by injecting the input signal into a
two-mode squeezed with a squeezing factor such that η = cosh2 s for which the
idler mode is traced out.
Quantum amplification channels are at the core of several physical processes. They
not only model the optical process of spontaneous parametric down-conversion in
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non-linear systems, but the transformation corresponding to an amplifier channel
also describes the physics of the dynamical Casimir effect in superconducting
circuits, the Unruh effect, and Hawking radiation.

• A realistic model for Gaussian quantum channels that typically occur in experiments
is given by a thermal noise channel of transmittance T and excess noise ξ is
characterized by X =

√
T I and Y = TχI, where χ is the added noise referred to

the input
χ = 1− T

T
+ ξ. (2.144)

It can be modeled by combining a thermal state of variance N = Tχ/(1− T ) with
the input state via a beamsplitter of transmittance T .

Measuring Gaussian states

The most general quantum measurement is described as a POVM. In CV systems,
quantum measurements are mostly described by continuous outcomes i ∈ R, making the
probability outcomes pi a probability density. A measurement is said to be Gaussian,
if the outcome obtained after measuring Gaussian states follows Gaussian distribution.
These are the measurements that are typically performed in the lab.

A Homodyne Measurement measures a quadrature (x̂ or p̂) of the state in phase-
space. Its measurement operators are projectors over the quadrature basis |x〉 〈x| (or
|p〉 〈p|). The corresponding outcome probability is given by the marginal integral of
Wigner distribution over the conjugate quadrature:

P (x) =
∫
dp W (x, p), P (p) =

∫
dp Wρ(x, p), (2.145)

where the probability density P (x) and P (p) follow Gaussian distribution.
Experimentally, a homodyne measurement is implemented by combining the target

signal mode (x̂S , p̂S) with a local oscillator with quadratures (EL cos θ,EL sin θ) into a
balanced beamsplitter (T = 1/2) to obtain the outgoing modes

x̂+ = (x̂S + EL cos θ)/
√

2
p̂+ = (p̂S + EL sin θ)/

√
2

x̂− = (x̂S − EL cos θ)/
√

2
p̂− = (p̂S − EL sin θ)/

√
2

and measuring the intensity of the outgoing modes using two photodetectors

I± = n̂± = 1
2(x̂2

± + p̂2
± − 1). (2.146)

where we take proportionality constant equal to 1 for simplicity. The difference between
the two intensities gives us the value of the homodyne detection

∆I = I+ − I− = x̂SELO cos θ + p̂SELO sin θ. (2.147)
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Figure 2.2: Homodyne detection setup (from Ref [14]).

The phase θ can be adjusted using a piezoelectric transducer, and depending on the
choice of θ = 0 or π/2, one can either measure x̂S or the p̂S . In principle, any rotated
quadrature x̂θ = x̂s cos θ + p̂s sin θ can be measured via a homodyne measurement using
suitable phase between the signal and the local oscillator.

Let us assume a bipartite (NA +NB)-mode Gaussian state, with NA, NB ≥ 1, which
is characterized by the displacement vector d = (dA, dB) and the covariance matrix,
given by Eq. (2.126)

γ =
(
γA C
C> γB

)
. (2.148)

Suppose, one measures the B-part (all NB modes) of the state using homodyne mea-
surement measuring x̂-quadrature, one obtains the result mB = (x1, 0, x2, 0, ..., xNB , 0).
Then the A-part of the state transforms into ρ′A which is characterized by the displace-
ment vector

d′ = dA + C(XγBX)MP (mB − dB) (2.149)

and the covariance matrix

γ′A = γA − C(XγBX)MPC> (2.150)

where X = diag(1,0,1,0,...1,0), keeps tracks of which quadratures were measured and
MP denotes the inverse on range. Note that, the covariance matrix of the new state
ρ′A does not depend on the measurement result m, which is one of the properties of
Gaussian states.

Heterodyne measurement[15] is a generalized POVM that projects onto coherent
states

E(α) = 1
π
|α〉 〈α| , (2.151)

with
I = 1

π

∫
C
|α〉 〈α| dα. (2.152)
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It can be understood as two different homodyne measurements (x̂ and p̂) where the
states measured are a coherent combination of the signal mode and a vacuum ancillary
mode via a balanced beamsplitter.

If one performs heterodyne measurements on B-part of the above-mentioned Gaussian
state to obtain the result m = (x1, p1, x2, p2, ..., xn, pn). Then the state ρA → ρ′A is
charaterized by the displacement vector

d′ = dA +
√

2C(γB + I2NB )−1(m− dB) (2.153)

and the covariance matrix

γ′A = γA − C(γB + I2NB )−1C>. (2.154)

The covariance matrix does not depend on the measurement outcome, similarly to the
homodyne case.

Therefore, given a (NA +NB)-mode Gaussian state, with NA, NB ≥ 1, if a Gaussian
measurement is performed on NA modes, then the classical outcome is a Gaussian
distribution and the unmeasured NB modes are still left in Gaussian state.

Counting and Detecting Photons. One can count the number of photons using
the POVM corresponding to the Fock basis {|0〉 〈0| , |1〉 〈1| , ..., |n〉 〈n| , ...}. However,
such measurements are extremely challenging to implement. Therefore, the detection of
photons, given by the POVM {|0〉 〈0| , I− |0〉 〈0|} seems easier to implement, which just
distinguishes between the presence or the absence of photons. The quality of a detector
depends on two factors: the detection efficiency and dark counts, spontaneous clicks in
the absence of a photon. The current state of the art superconducting nanowires single
photon-detectors (SNSPD) has high detection efficiency of 93% and low dark count rate
of less than 1 click per second at near-infrared wavelengths [16].

2.2.4 Entropy of Gaussian states

Unlike Shannon entropy, we don’t need to introduce a new function to calculate entropy
for continuous-variable system, since the Fock space though infinite is countable. We
restrict ourselves to Gaussian states.

A Gaussian state is characterized by its two moments. However, the entropy of a
Gaussian state depends only on the covariance matrix. The entropy of a Gaussian state
remains invariant under the action of the displacement operator, which is an unitary
operator6,

S(ρ) = S(D(α)†ρD(α)), (2.155)

meaning the mean value does not account in entropy calculation. Thus, for simplification,
we consider Gaussian states with zero mean value, ρG(0, γ).

A Gaussian state with null mean value can be described as a product of thermal
state with covariance matrix v, which is the diagonalized form of the covariance matrix

6trace operation is invariant under unitary transformation
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γ, given by Eq. (2.110)

SγS> = v =
N⊕
k=1

(
vk 0
0 vk

)
. (2.156)

Therefore, finding the entropy of any Gaussian state equates to finding the entropy
of the product of the thermal states. Recall from Eq. (2.139) that the density operator
of a thermal state is

ρth =
∞∑
n=0

n̄n

(n̄+ 1)n+1 |n〉 〈n| , (2.157)

where the mean number and the symplectic eigenvalue is related by v = 2n̄ +1. The
entropy thus reads

S(ρth) = −
∞∑
n=0

n̄n

(n̄+ 1)n+1 log2
n̄n

(n̄+ 1)n+1

= (n̄+ 1) log2(n̄+ 1)− n̄ log2 n̄. (2.158)

Therefore, von Neumann entropy of a Gaussian state is,

S(ρG) =
N∑
k=1

S(ρth(n̄k)) = G(n̄k = (vk − 1)/2), (2.159)

where G(x) is

G(x) = (x+ 1) log2(x+ 1)− x log2 x. (2.160)

2.3. Semidefinite Programs
In this section, we briefly acquaint ourselves with the field of semidefinite programming
from an information-theoretic prospect and how this helps us to solve quantum infor-
mation problems, more specifically, to obtain the numerical bounds. The methodology
applies to both cryptographic tasks: QKD and quantum money. For a detailed study,
refer to the lecture notes by Watrous [18] for a simple introduction to the field, while
the book by Vandenberghe and Boyd [19] provides a deeper understanding of general
convex optimization.

In quantum cryptography, security analysis involves dealing with optimization over
density operators, POVM’s, CPTP maps, all of which are positive semidefinite matrices.
Semidefinite programming provides a methodology to construct such optimization
problems over positive semidefinite variables, constrained to some linear conditions.

The set of positive semidefinite matrices form a convex cone C , defined as a subset
of a vector space that is closed under linear combinations with positive coefficients.
Specifically, it means that, given any operators X,Y ∈ C , the operator αX + βY also
belongs in C , for positive scalars α and β.

Let us now define an affine slice A , which is a subset of a general vector space,
satisfying

Z ∈ A ⇒ Λ(Z) = C, (2.161)
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where operator C ∈ V and Λ is linear map. Thus, an affine slice satisfies a particular
linear constraint.

Semidefinite programming is a convex optimization problem, where one optimizes a
linear convex objective function over all operators which lie in the intersection of the
convex cone of positive semidefinite matrices with an affine slice.

2.3.1 Primal and Dual SDP

Let us suppose we want to minimize C(X) over all possible values of X given that
X ∈ V and follows some linear constraints, where C is a linear operator belonging to
the vector space V . One can think of X as a matrix, or equivalently, as an array of n2

components of the form (x11, ..., xnn). Both visualizations of X are useful. Then, one
can rewrite C(X) as

C(X) =
∑
i,j

CijXij = tr(C†X), (2.162)

which serves as our objective function, while X fulfills the role of the variable.
One of the constraints of X is that it is positive semidefinite, meaning it is Hermitian.

Then, without loss of generality, we can also assume that C is a symmetric matrix.
And let us consider the set of linear constraints is given by the symmetric matrices
A1, A2, ..., Am and reals b1, b2, ..., bm. Then the SDP (primal form) concerning the
minimization of objective function reads,

min tr(C†X)
s.t. AiX = bi, i = 1, ...,m (2.163)

X ≥ 0.

Any operator X satisfying the above constraints is said to be primal feasible, and the
set containing such operators is termed as primal feasible set Sp. The primal optimal
value sp is defined as the infimum of over all possible values of objective function for all
X ∈ Sp.

Interestingly, similar to linear programming, semidefinite programs have an elegant
dual structure, which associates a dual optimization problem to each primal optimization
problem.

The dual problem is obtained by forming the Lagrangian of a minimization problem
by using non-negative Lagrange multipliers, to add the constraints to the objective
function. Then, the new problem is to maximize the new objective function with respect
to the dual variables (Lagrange multipliers) under the derived constraints on the dual
variables (including at least the non-negativity constraints). Therefore, for the primal
problem mentioned in Eq. (2.163), the corresponding dual problem reads,

max
m∑
i=1

biyi = b>y

s.t. C −
∑

Aiyi ≥ 0. (2.164)
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The dual variables are real numbers for this problem. However, there might be scenarios
when bi’s are matrices, in these types of cases, the dual variables are Hermitian matrices.

Similar to primal terminology, dual variables satisfying the constraints are known
as dual feasible and belongs to the dual feasible set Sd. The dual optimal value sd
is defined as the supremum of over all possible values of objective function for all
{y1, ..., ym}, where yi ∈ R.

Weak duality vs strong duality: The Lagrange multiplier method helps us to
find the local extremum for a constrained function. Therefore, the optimal value of the
primal problem lower bounds the optimal value of the dual problem, while the optimal
value of the dual upper bounds that of the primal. This can be simply expressed as,

sp ≥ sd. (2.165)

This is termed as weak duality.
Under some conditions on the sdp, one can even have strong duality implying that

both values coincide,
sp = sd. (2.166)



CHAPTER 3

QUANTUM CRYPTOGRAPHY

Primarily, cryptography meant studying techniques for encryption of secret texts (com-
munication), from something meaningful to completely meaningless to anyone other
than the recipients. However, over time, it encompassed everything needed for secure
communication, even in the presence of third parties called adversaries or eavesdroppers,
such as authentication, secret-sharing, key distribution, counterfeiting, confidentiality,
to name a few. With the ever-increasing success of technologies, cryptography plays
an indispensable role in this Information age. Every day billions of people are perform-
ing sensitive tasks - online banking, secret messaging, data storing, digital signatures.
Therefore, a considerable amount of human resources and capital are being invested
in creating and analyzing cryptographic protocols. The idea of security is paramount
to any of these tasks. Therefore, for any protocol, a rigorous definition of security is
fundamental.

One of the primitive cryptographic tasks is establishing a secret communication
between two spatially separated parties even in the presence of a possible eavesdropper,
conventionally named Eve. Let us call them Alice and Bob. To accomplish this task,
they establish a secret key, which is done by a key distribution protocol. Using only
classical resources, the security of the key can only be provided for a finite period, as it
relies on the hardness of the encryption function. Such encryption functions are chosen
which are challenging to solve and time-consuming such as the RSA encryption scheme,
based on factorization problem of large numbers. Problems that are hard to solve but not
impossible thus provides security over a limited timescale of interest but not everlasting.
This is known as computational security.

However, with the help of a one-time pad symmetric encryption-decryption scheme
(XOR), one can have unconditional security1, although with some conditions: the key and
the message must be strings of the same length and kept secret, the key should also be
random, and only used once. This type of security is also known as information-theoretic
security which means that the adversary can not learn anything about the message

1This type of security does not depend on adversary’s computational assumptions. Also known as
everlasting security, since the security has not been compromised by over the elapsed time since the
communication.

47
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except with negligible property, a stronger security condition than the computational
security. Note that, there are requirements on the randomness and the security of the
key. One can only achieve these requirements using quantum resources.

Wiesner, in the early ’70s, introduced the novel concept of encoding information on
quantum observables [46]. More specifically, he showed that by encoding information
on two non-commuting observables (conjugate variables), one can exploit the inherent
properties of quantum mechanics to get unconditional security for cryptographic tasks.
Recall that, for any two non-commuting observables A and B, the following relation
holds:

∆A∆B ≥ 〈[A,B]〉
2 , (3.1)

where ∆A and ∆B are the variances of the two observables. Let us consider the
Pauli operators, σx and σz and their eigenvectors, {|0〉 , |1〉} and {|+〉 , |−〉}. Since the
observables are non-commuting, the uncertainty upon measurement (of a random state
chosen from these 4 states) on either basis obeys the uncertainty principle. Thus, if one
encodes the bit 0 in either the |0〉-state or |+〉-state, and the bit 1 in either |1〉-state or
|−〉-state, then the value of the bit is hidden unless the adversary knows the encoding
basis. Thus, a projective measurement over any of the bases destroys the information
contained in the other basis, which provides us with unique security where we harness
the innate property of nature and do not depend on the assumptions of computational
prowess of the adversary. Quantum cryptography thus provides far stronger security than
the classical counterpart; secure even against an adversary with infinite computational
power and speed.

Using conjugate coding, Wiesner presented the very first quantum cryptographic
protocol: unforgeable quantum money [46]. This idea of conjugate coding was also
used in the famous BB84 quantum key distribution protocol [20]. In this thesis, we
are interested in these two cryptographic tasks, but in the continuous-variable scenario,
i.e., information is encoded on the electromagnetic field’s quadratures. In the following
sections, we give a brief overview of quantum key distribution and unforgeable quantum
money, including their security definitions, developments over the years, and the necessary
mathematical tools required for the upcoming chapters.

3.1. Quantum Key Distribution (QKD)

QKD allows two honest distant parties, traditionally named Alice and Bob, with access
to an untrusted quantum channel and an authenticated classical channel, to share a
secret key that remains secret to any adversary, usually referred to as Eve. The quantum
channel is insecure and considered to be controlled by Eve while the classical channel is
authenticated, meaning communication over this channel can be monitored by Eve but
can not be altered, i.e., Eve can not pretend to be either Alice or Bob. Any QKD protocol
can be divided into two steps: quantum communication and classical post-processing.

The quantum communication step consists of two parts:
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• Quantum state distribution: In the Prepare and Measure (PM) version of a QKD
protocol, the sender (Alice) encodes a random classical variable X following a
probability distribution into non-orthogonal quantum states. These states are sent
over the quantum channel (optical fiber, free-space link) to the receiver (Bob).

• Measurement: At the communication channel’s output, Bob measures the incoming
signals and obtains a random classical variable Y . After several uses (say N uses)
of the channel, Alice and Bob share the raw data described by two correlated
variables XN and Y N respectively.

Classical post-processing step transforms the raw data generated at the end of
quantum communication step into a pair of secret keys shared by Alice and Bob. Alice
and Bob use the authenticated classical channel for post-processing 2. The classical
post-processing steps are as follows:

• Parameter Estimation: This step ensures if a secret key can be processed from the
raw data. It checks whether the correlation between the parties is high enough to
amount to a secure key, i.e., Eve only has limited knowledge about the raw data.
If not, the protocol is aborted. In order to do so, they use some classical variables
Xm and Y m (m = N − n) to estimate the parameters of the channel, such as its
transmissivity and noise.

• Error reconciliation3: This step allows the parties to detect and eliminate errors
encountered during transmission and agree on a common bit string Zn = f(Xn)
or z = f(Y n) via a key map f . This is done so that, the raw key Xn or Y n can be
processed into bit-strings.

• Privacy amplification: The parameter estimation step ensures that Eve only has
limited knowledge about the raw key. Privacy amplification insures that Eve has
negligible knowledge about the final keys. Using universal hash functions, Alice
and Bob turn z into two secure keys SA and SB of length l.

QKD was first introduced with single photons acting as information carrier [20,21].
The exchanged quantum states are encoded into the polarization, phase or time bin of
the transmitted qubits, and the secret key is established upon detection of the individual
photons. The measurement apparatus for such protocols is a single-photon detector,
which detects a click when a photon has hit the detector or no click otherwise; thus, the
outcomes are discrete. Hence the name "discrete-variable" (DV) QKD.

With a delay of nearly fifteen years after the first DV-QKD protocol, QKD with
continuous variables was introduced as a promising alternative [22–24]. The idea was to
exploit degrees of freedom in phase space, which resulted in measuring the quadratures
of the electric field of the incident light using a homodyne detector, yielding continuous

2One needs a short secret key to authenticate the classical channel. After the post-processing, QKD
returns a larger secret key. Thus, people also refer to QKD as a key-expansion protocol.

3there are protocols where the reconciliation step is applied before the parameter estimation step,
and this order turns out to be more efficient
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values as a measurement result. Thus the name "continuous-variable" (CV) QKD. The
main advantage of CV-QKD is the simplification of implementation, as one can use
only standard telecom components (such as PIN photodiodes) that are much more
mature from a technological point of view than single-photon detectors whose primary
use is QKD. The advantages and disadvantages of a CV-QKD protocol over a DV-QKD
protocol have been discussed in [28].

There exists another way of distribution of quantum states for a QKD protocol,
where Alice prepares N bipartite entangled states and sends one half to Bob, and keeps
the other half. This type of protocols are known as the Entanglement-based protocols.
The two types of QKD protocols whose distinction lies only in the state distribution, PM
and EB are equivalent, i.e., they provide the same description of the protocol. The next
section contains a detailed description of the two QKD protocols and their equivalence.
For experimental purposes, we mostly use PM protocols while for security analysis we
use the EB model. But, the crucial thing to note that is at the end of state distribution,
we can assume that Alice and Bob share N bipartite quantum systems in (HA ⊗HB)N .

Any QKD protocol, be it based on discrete or continuous variables, follows the
above-mentioned steps. From the steps of the QKD protocol, we can define a QKD
protocol as a CPTP map E that takes quantum states as input and outputs two classical
secret keys4, with the help of some classical communication.

E : HA ⊗HB → SA ⊗SB ⊗ C

ρNAB 7→ ρSASBC , (3.2)

where HA and HB denote the Hilbert spaces for Alice and Bob respectively. The spaces
SA,SB and C correspond to classical registers, where S are that of the final keys
(with subscripts A and B referring to Alice and Bob, respectively) and C is the public
transcript of the protocol, corresponding to the classical information exchanged on the
authenticated classical channel and therefore accessible to Eve. For instance, the register
C contains the size l of the final key.

We must include a register E corresponding to the Hilbert space E of the adversary.
To formalize it, we consider that the actual input space of the protocol is HA⊗HB⊗HE ,
and that the input state ρABE is a pure state5. The protocol then acts as EAB ⊗ IE , i.e.
it acts trivially on the adversary’ s space. The output space is SA ⊗SB ⊗ C ⊗HE .
Then, we are interested about the security of the output state ρSASBE′ , where E′ denotes
the new register of the space accessible to Eve, HE′ = C ⊗HE .

3.1.1 Security of QKD

A QKD protocol is considered secure, if the protocol obeys both properties of correctness
and secrecy. The correctness property ensures that the key is identical for both Alice
and Bob for any strategy of the adversary, i.e., any initial state ρABE while the secrecy
of the key refers to the fact that the adversary Eve has negligible knowledge about it.

4an exception is device-independent QKD where the inputs are also classical but then, the violation
of a Bell inequality ensures that Alice and Bob are indeed measuring an entangled quantum system.

5a purification of the input state
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Therefore, the final keys obtained from a secure protocol has the following properties:

• identical,

• uniformly distributed,

• independent from adversary’s knowledge.

A QKD protocol aims at generating keys with the above-mentioned properties. The
legitimate parties, Alice and Bob tries to distill a secure key and if they are unsuccessful,
they abort the protocol. The trivial protocol that generates no key is secure from this
point of view, but not interesting. The final key obtained may be used as an input for
some other cryptographic task. Therefore, we aim for composable security, which ensures
that the protocols remain secure even if arbitrarily composed with other instances of
the same or other protocols.

We use the same notations as before. We note l the size of a secret key, N the
number of quantum signal exchanged during the protocol, and SA and SB are the final
keys obtained from the protocol. The first property (of correctness) can be rewritten as,
a QKD protocol is εcor-correct if

Pr[SA 6= SB] ≤ εcor. (3.3)

The last two properties can be written in the same equation, which defines the
secrecy property of the key. A key S is called δ-secret if

1
2 ‖ ρSE

′ − τS ⊗ ρE′ ‖1≤ δ, (3.4)

where τS = ∑
s∈S

1
|S| |s〉 〈s| describes completely mixed states of possible key of length l

and tensor product state indicates the independence of Eve’s system from the final key,
which in together is the ideal state. We note that in the event the protocol aborts, the
corresponding key is automatically secret, since the key is empty in that case, and by
definition an empty key is secure. A QKD protocol is εsec-secret if it outputs δ-secret
keys with (1− pabort)δ ≤ εsec, where pabort represents the probability the protocol aborts.
This probability depends on the strategy of the adversary, that is on the input state
ρABE. It can be estimated for typical conditions and usually close to zero. Finally,
we can write that a QKD protocol is ε-secure if it is εcor-correct and εsec-secret with
εcor + εsec ≤ ε, i.e., the following relation holds

1
2 ‖ ρSASBE

′ − τSS ⊗ ρE′ ‖1≤ ε, (3.5)

where τSS = 1
2l
∑
s∈{0,1}l |s, s〉 〈s, s| denotes a uniformly-chosen key of length l, identical

for Alice and Bob. This means, the probability that Alice and Bob do not abort and
the adversary gets information about the key is at most ε. This security definition was
introduced in Renato Renner’s PhD thesis [25].

Moreover, the protocol should also be robust in the sense that it should output
nontrivial keys if there is no active attack on the quantum channel by Eve. It is
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measured by the robustness parameter, εrob, which corresponds to the abort probability
if the adversary is passive and if the characteristics of the quantum channel conform to
what is expected. For instance, in CV-QKD, a quantum channel corresponding to an
optical fiber will be a Gaussian channel with a fixed transmittance T and excess noise ξ.

A generic technique in proving that a QKD protocol is ε-secure is to show that the
real protocol E is indistinguishable from an ideal version of the same protocol F ,

1
2 ‖ E − F ‖�≤ ε. (3.6)

The ideal version is obtained by concatenating E with a (virtual) protocol EV which
replaces the final keys SA and SB by a perfect key S: EV(ρSASBE′) = τSS ⊗ ρE′ .
One defines F = EV ◦ E . The Eqs. (3.5) and (3.6) are therefore equivalent. The
indistinguishability in Eq. (3.6) is between two CPTP maps and is defined by diamond
distance between two maps, Eq. (1.35).

Generally, we assume that Eve has full access to the quantum channel, which she
can control and manipulate however she wishes. For her eavesdropping attack, Eve
is allowed to prepare arbitrary ancillary states to interact with the transmitted signal
states and subsequently performs measurements on. Very importantly, we also assume
that she might be in possession of a quantum memory which allows her to store her
states and perform her measurement at a later time according to what she learned during
the classical post-processing. Also, Eve has no limit in terms of computational power,
but, has no access to Alice or Bob’s devices. Without this assumption a QKD protocol
remains insecure [26]. We distinguish two different types of eavesdropping attacks that
are typically considered in security proofs, classified according to her powers:

• Collective Attack: Eve performs an i.i.d. attack with separable ancilla states, stores
her state in a quantum memory and performs an optimal collective measurement
on all quantum states at any later time (generally, after post-processing).
For a collective attack, the bipartite state ρNAB takes a simple form:

ρNAB =
∫
dσABp(σAB)σ⊗NAB , (3.7)

where p(σAB) is a probability distribution on HA ⊗HB.

• Coherent Attack (or General attack): The most general attack where no (i.i.d.)
assumption is made. In particular, Eve may prepare an optimal global ancilla
state whose (possibly mutually dependent) modes interact with the signal pulses
in the channel and are then stored and collectively measured after the classical
post-processing.

The actual degree of information-theoretic security of a given QKD protocol depends
on the assumed technological capabilities a potential eavesdropper might have. Depending
on Eve’s resources and attacks, we summarize the various notions of security proofs,
from the strongest to the weakest one:
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• Composable security against coherent attacks, bounding the trace distance of
Eq. (3.5) without any restriction on the input state ρNAB, for finite N .

• Composable security against collective attacks, bounding the trace distance of
Eq. (3.5) under the condition that the input state is i.i.d., ρNAB = ρ⊗NAB .

• Security against collective attack in the asymptotic limit, N →∞.

Naturally, the asymptotic limit does not directly apply to any realistic system.
Nonetheless, its analysis is immensely useful since it provides an upper bound on the
corresponding non-asymptotic or finite-size results and because it can typically be derived
more easily.

Prepare and Measure vs Entanglement-based protocol

The first protocols to be introduced in the literature are PM protocols [20]. Alice
prepares N quantum states |ψ1〉 , |ψ2〉 , ..., |ψN 〉, where ψi are i.i.d. complex variables
and sends them to Bob through the quantum channel. Bob proceeds by measuring these
states in a chosen detection setting. One can then consider the state generating source
to be a classical-quantum source, with the density matrix ρ⊗N = ρaB ⊗ ρaB... ⊗ ρaB,
where ρaB are classical-quantum states given by Eq. (2.45)

ρaB =
∑
a

p(a) |a〉 〈a| ⊗ |φa〉 〈φa| . (3.8)

However, in an EB protocol, the situation is a little bit different. An i.i.d entanglement
source of bipartite quantum states is used where Alice retains one half and sends the
other half to Bob. This idea was first formulated by Ekert in [21]. Alice and Bob
proceed with measuring the states they receive with their choice of detection. An i.i.d.
entanglement source generates independent entangled states, where the entire bipartite
message state reads ρ⊗N = |ψ〉AB ⊗ |ψ〉AB ...⊗ |ψ〉AB, where

|ψ〉AB =
∑
i

√
pi |i〉A ⊗ |φi〉B . (3.9)

The two states are equivalent, i.e., by applying the projective measurement ∑i |i〉 〈i|
on the entangled source’s state, with i as Alice’s output, enforces Bob’s state to project
onto |φi〉B , which is a classical-quantum state. Therefore, although the state distribution
steps in PM and EB are different, theoretically they are equivalent as long as Alice’s lab
and preparation are trusted. To the adversary Eve, the two protocols are indistinguishable
from one another. Both the scenarios provide a complete and equivalent protocol;
switching from one viewpoint to the other is simply a question of convenience. An
EB protocol is clearly less practical than a PM protocol since an entangled source is
necessary and bipartite separable states are not sufficient to perform QKD with an EB
protocol while proving security of the protocol is much easier in the EB protocol.
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Secret key rate of a QKD protocol

We use the same notations as before. The secret key rate K is defined as the ratio
between the size of the secret key l and the number of quantum signal exchanged during
the protocol N :

K := l

N
. (3.10)

This holds true for finite N . In the limit N → ∞, the asymptotic secret key rate is
given by

Kasympt = lim
N→∞

K. (3.11)

such that the protocol is ε-secure for any ε > 0. The size of the final key depends on the
smooth min entropy Hε

min(Z|E), where Z can be either Alice’s classical variable X or
Bob’s classical variable Y and E corresponds to Eve’s quantum system.

Let us recall from section 2.1.2, that the size of the secret key obtained on performing
the privacy amplification task is given by the conditional smooth min-entropy (Eq. (2.56)),

l = lεextr(Z|E) = Hε′
min(Z|E) +O(log 1/ε) (3.12)

for some ε′ ∈ [1
2ε, 2ε] and Z is a classical random variable on which an adversary has some

partial information E. However, a QKD protocol also involves an error reconciliation
step, where Alice helps Bob (or vice-versa) correct his errors and guess the value of Xn

(or Y n) which will be used for privacy amplification, and agree on a common bit string.
Without loss of generality we choose Y as the raw key. Then the size of ε-secure secret
key, l is given by [25]

l = Hε′
min(Y n|En)− leakER − 2 log2

1
2(ε− ε′ − εER) , (3.13)

for some ε′ > 0. The quantity leakER refers to the number of bits transmitted by Bob
to Alice during the reconciliation process to correctly guess Y n and εER is the failure
probability of the reconciliation, the probability that Alice makes a wrong guess about
Y n.

Therefore, if one is able to estimate the smooth min-entropy, one can find the key
rate of a QKD protocol. Unfortunately, it is rather difficult to compute. However, if one
restricts the adversary to only perform collective attacks, the computation is simplified.
For such attacks, the input state ρNAB takes a simple form of i.i.d. states, i.e., ρNAB = ρ⊗NAB .

Let us now consider the secret key rate of a QKD protocol against collective attacks
in the asymptotic limit. The smooth min-entropy can be written as a conditional von
Neumann entropy, given by Eq. (2.54), i.e.,

S(Y |E)ρ = lim
ε′→0

lim
n→∞

1
n
Hε′

min(Y n|En)ρ⊗n . (3.14)

The quantity leakER/n per symbol can be made arbitrarily close from the Shannon
limit H(Y |X) as per the channel coding theorem. As a consequence, for this scenario
where we choose Y as the raw key, one recovers the result of Devetak and Winter [41]:

Kasympt
coll = S(Y |E)−H(Y |X), (3.15)
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which can be also written as

Kasympt
coll = I(X : Y )− χ(Y ;E), (3.16)

where I(X : Y ) is the mutual information between Alice and Bob and χ(Y ;E) is the
Holevo information between Bob’s data and Eve’s quantum system.

3.1.2 Continuous-Variable QKD

The idea of CV-QKD is to encode information in phase space. To do so, Alice and Bob
will exchange quantum states whose Wigner functions are peaked near specific values in
phase space. In a PM protocol, Alice will send N quantum states from a family of states
{|φ1〉 , . . . , |φM 〉} with M possibly equal to ∞ such that the Wigner function of |φk〉 is
peaked around a complex variable αk or around a real variable xk or pk. One must be
careful when considering the family of quantum states. The family of states must contain
non-orthogonal states; otherwise, one can always find a measurement that allows one
to distinguish them correctly. If there are non-orthogonal states, however, one cannot
deterministically distinguish them. Another important requirement for a QKD protocol
is to be practical. In particular, the quantum states |φk〉 should be easy to generate.
For this reason, the states usually considered are Gaussian states: coherent states and
squeezed states. There are two types of QKD protocols depending on the encoding
scheme: (a) encoded using a discrete probability distribution, or discrete modulated,
and (b) encoded using continuous probability distribution, usually Gaussian distribution.
Obviously, for practical implementations, any modulation scheme only uses a finite
number of states, due to the limited precision of both the random number generators and
the modulators. However, in the case of Gaussian modulation, the number of possible
inputs is much larger than the one for a discrete-modulation scheme, which usually
requires 4 different states.

CV-QKD protocols were firstly proposed with discrete modulation of squeezed states
[22–24,27], the concept was soon developed further to Gaussian-modulated CV-QKD
with coherent states [29]. It would seem that squeezed states are well suited for protocols
involving a homodyne detection whereas coherent states are more natural for protocols
with a heterodyne detection.

In CV-QKD systems with Gaussian modulation, for EB protocols, we use two-mode
squeezed state as our entangled state. If one of the modes is measured with homodyne
detection, the other mode collapses to a squeezed state, while if the mode is measured
via a heterodyne detection, we get coherent states on the other mode.

This can be easily shown by using the partial measurement results of Homodyne
and heterodyne measurements, Eqs. (2.149) and (2.150), and Eqs. (2.153) and (2.154)
respectively, while choosing γ to be the covariance matrix of TMSS, Eq. (2.123). For
details, see Appendix A.

We now give a detailed description of a CV-QKD protocol. Here, we have considered
the no-switching protocol [30].

————————————————————————————————————
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1. Alice picks 2N random variables according to a centered normal distribution with
variance VA:

q1, p1, . . . qN , pN ∼ N (0, V0). (3.17)
Then she sends N coherent states |α1〉 , |α2〉 , ..., |αN 〉 to Bob via the quantum
channel, where αj = qj + ipj .

2. For each state, Bob performs a heterodyne measurement, where both quadrature
values are measured. He obtains 2N classical variables6.

3. For parameter estimation, Alice and Bob sacrifice somem = N−n subsystems, and
publicly announce the results on the authenticated public channel. They estimate
the value of the transmission T and excess noise ξ, which helps then estimate the
level of correlation between their subsystems. If the correlation amount is high
enough, they proceed with the remaining of the protocol or else they abort the
protocol if the correlation is too low to distill a secret key. This step allows then
obtain an upper bound on the information accessible by Eve.
At this point Alice and Bob share 2n couples of correlated classical variables. Let
us denote Alice’s remaining data set by x = {x1, x2, ..., x2n} and Bob’s set by
y = {y1, y2, ..., y2n}.

4. The two parties communicate on the authenticated classical channel, to agree on
a common bit-string z. One can choose either x or y as the raw key, depending
on this choice, the direction of classical communication varies. There are two
types of reconciliation methods: direct reconciliation, where Alice sends side
information about the raw key x to Bob, so that he can recover x from y and
reverse reconciliation, where Bob sends side information about the raw key y
to Alice. It has been shown that reverse reconciliation performs better than
direct reconciliation[29]. This reconciliation is achieved thanks to error correction
techniques very similar to those that are widely used in the telecom industry.
After reverse reconciliation, they agree on a common bit-string z = f(y) via a key
map f : R2n → {0, 1}2n of choice.

5. Alice and Bob now share a common bit-string z. However, z is not completely
secret and does not constitute a secret key. The extraction of the key is done
through two-universal hashing7: Alice and Bob choose randomly a hashing function
from a so-called two-universal family of hash functions that takes z as input and
outputs a secure key of size l.

————————————————————————————————————
6There is no need for Bob to inform Alice about the choice of his basis as he does in the case of

GG02[29], where he measures the states via homodyne detection.
7Two-universal family of hash functions refers to the family of hashing functions F which takes an

input from X and outputs to Z with PF being a probability distribution on F , such that Prf [f(x) =
f(x′)] ≤ 1

|Z| , for any distinct x, x′ ∈ X and f chosen at random from F according to the distribution
PF . This allows us to upper bound the trace distance between the ideal (uniform and uncorrelated) key
to the correlated key.



3.1. QUANTUM KEY DISTRIBUTION (QKD) 57

3.1.3 Security of CV-QKD

The usual methods of DV protocols - de Finetti theorems [38–40], entropic uncertainty
relations [70,99], entropy accumulation [71] – need not directly work in the CV setting
due to the infinite-dimensionality of the Fock space and therefore, it is quite difficult to
prove security against coherent attacks in the composable setting.

For CV protocols, we need to properly estimate the covariance matrix. Unlike the
case of DV protocols such as BB84-types where the error rate lies between 0 and 1,
meaning the parameters are bounded. In CV protocols, the parameters are unbounded
due to the infinite-dimensionality of the Fock space. Therefore, we need to try computing
a confidence region for the elements of the covariance matrix, which requires the protocol
to show a symmetry or an invariance in phase space or some additional assumptions for
instance, that the state is Gaussian or that some moments of the variables are upper
bounded by some explicit value.

One usually achieves composable security using uncertainty principle relations [27,
31–33], which has been successfully applied to the protocol of Ref.[34], where Alice
prepares squeezed states. At the moment, it is still unclear whether a tighter version of
the entropic uncertainty principle could also work for protocols with coherent states (see
Ref.[35, 37]).

Reduction from general to collective attacks

Another alternative is to appeal to a de Finetti-type theorem to reduce the problem
to the case of collective attacks by exploiting the symmetries of the protocol. Thanks
to the de Finetti theorem, in the asymptotic limit, if the composite states show some
fundamental symmetry (e.g. invariance under permutations of its parts), then the
composite states can be well approximated by identical independent subsystems. The
theorem relates the symmetric states, i.e., states that are invariant under permutations
of their subsystems (ρ such that ρ = πρπ† for any permutation π ∈ Sn), and mixtures
of i.i.d. states of the form σ⊗N for some state σ ∈ H . An i.i.d. state is obviously
symmetric, however, the converse is not true in general. A symmetric state becomes
increasingly close to a mixture of i.i.d. states as one traces out more of its parts. One
can then simply consider collective attacks instead of general attacks. In the asymptotic
limit, one can now properly estimate the covariance matrix using optimality of Gaussian
states, which will be shown in the next subsection.

However, in the finite-size scenario, the situation is complicated. The de Finetti
approach mentioned above is impractical for CV-QKD since the required number
of signals exchanged is too large. The problem can be solved by symmetrizing the
protocol under the action of the unitary group [88]. Upon symmetrization, the CV-QKD
protocol (and respectively the states) now exhibits a new symmetry, invariance under
the action of unitary group U(N) (instead of the symmetric group as in usual de Finetti
theorem). The symmetrization step does not need to be implemented by a physical
unitary transformation. Instead, one can measure all the modes and implement a random
rotation on their data sets in R2N according to V ∈ U(N) ∼= Sp(2N)∩O(2N). Therefore,
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currently, the only protocols for which we are able to properly analyze the parameter
estimation (of a covariance matrix), with proper error bound, are the protocols showing
a symmetry or an invariance in phase space.

Gaussian de Finetti reduction theorem: The symmetrization step ensures the
protocol is invariant under the action of the unitary group. Then we can consider a
stronger form of de Finetti theorem, Gaussian de Finetti theorem, which states it is
sufficient to prove security against collective attacks in order to prove security of the
protocol against general attacks. To prove composable security against collective attacks,
instead of all i.i.d states one can simply consider Gaussian i.i.d attacks. In other words,
it is sufficient to show that the protocol is secure when the overall initial pure state
ρABE is a mixture of such de Finetti states or SU(q, q) coherent states, where q is total
number of modes held by Alice and Bob per round of the protocol. The states exhibit
invariance under the action of the unitary group.

SU(q, q) generalized coherent states are i.i.d. Gaussian states of the form |Λ〉⊗q,
where |Λ〉 is a 2q-mode Gaussian state parametrized by an q × q matrix Λ = [Λi,j ] with
spectral norm ‖ Λ ‖< 1 and is defined as

|Λ〉 = det(I− ΛΛ†)1/2 exp

 q∑
i,j=1

Λi,j â†i b̂
†
j

 |vac〉 . (3.18)

where the creation operators of Alice and Bob’s modes are denoted â†1, . . . , â†q, b̂
†
1, . . . , b̂

†
q.

For example, SU(1, 1) coherent states are simply two-mode squeezed states. In the
case of no-switching protocol, to prove ε-security against collective attacks, we can just
consider ρABE as a mixture of SU(2, 2) coherent states.

In particular, if a protocol is ε-secure against Gaussian collective attacks then the
protocol is ε′-security against general attacks, with ε′/ε = poly(n). Note that, the
reduction theorem is only applicable for CV protocols with Gaussian modulation.

Security against collective attacks in the asymptotic limit

In the asymptotic limit, de Finetti’s theorem [38,39] guarantees that collective attacks
are optimal. Proving the security of a protocol with Gaussian modulation against
collective attacks in the asymptotic regime is easier than in the composable setting.
One only needs to compute the corresponding asymptotic secure key-rate, given by the
Devetak-Winter formula (Eq. (3.16)),

Kasympt
coll = I(a : b)− χ(b;E), (3.19)

where I(a : b) is the mutual information between Alice and Bob’s measurement outcomes
and χ(b;E) is the Holevo information between Bob’s data and Eve’s quantum system,
considering reverse reconciliation.

However, in a real scenario, Alice and Bob cannot extract all the information their
data contains, and the quantity I(a : b) is multiplied by a factor β ∈ (0, 1), called
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the reconciliation efficiency. The quantity βI(a : b) can be directly obtained from
an experiment, while the quantity χ(b;E) requires our utmost attention. We need to
calculate its value or at least an upper bound for it.

Before moving on to the how this can be achieved, the why that this can be achieved
is more interesting and very much counter-intuitive. First, χ(b;E) must be obtained
from the state ρAB shared by Alice and Bob in an EB version of the protocol. Indeed,
in such a protocol, without loss of generality we can assume Eve holds a purifying
system of ρAB, i.e., the state ρABE shared by Alice, Bob and Eve is considered to be
pure. That said, thanks to Stinespring’s dilation theorem (Eq. (1.19)), Eve’s quantum
state, ρE = trAB[ρABE ] is defined up to a unitary operation on the system E. However,
the quantity χ(b;E) = S(E)− S(E|b) remains invariant under such unitaries, a direct
consequence of von Neumann entropies being invariant under unitary operations. This
means that there exists a function f such that χ(b;E) = f(ρAB).

Now, to evaluate χ(b;E), the first problem we encounter is that we have no idea
how to compute f for a generic state, since we need to optimize for all states in the
infinite-dimensional Hilbert space. However, for specific families of states we do know
how to compute f . One of them is the entangled family, in which case Eve’s quantum
state can be factorized from Alice and Bob’s state, meaning that χ(b;E) is necessarily
null in this case. Unfortunately, in practice, ρAB is never a pure entangled state. Another
family of states for which f can be computed are Gaussian states, but proving a given
state is Gaussian is impossible in practice as it would in principle require an infinite
number of copies of the state. However the restriction to collective attacks simplifies
the analysis as the state ρAB describing Alice and Bob’s respective N systems can be
written as

ρNAB =
∫
dσABp(σAB)σ⊗NAB . (3.20)

Even under this restriction, it does not seem sensible to assume that Alice and Bob
have complete knowledge about the shared state. Under these conditions, it would be
favourable if we can at least upper bound the quantity χ(b;E).

The optimality of Gaussian states [35,42] comes to the rescue: for any continuous
function g which is strongly sub-additive and invariant under local Gaussification
unitaries g(U⊗NρU †⊗N ) = g(ρ), there exists a Gaussian state ρG with the same finite
first and second moments as ρ which satisfies the condition

g(ρ) ≤ g(ρG). (3.21)

We now check if the function f : ρAB → f(ρAB) = χ(b;E) satisfies the above-
mentioned conditions of the function. Here we follow the steps presented in Raul
García-Patrón’s PhD thesis [36].

Continuity: If for two quantum states ρAB and σAB, ‖ ρAB − σAB ‖1≤ ε holds true,
then there exist respective purifications ρABE and σABE such that ‖ ρABE − σABE ‖1≤
2
√
ε. Partial trace can only decreases the trace norm, we have ‖ ρBE − σBE ‖1≤ 2

√
ε

and ‖ ρE − σE ‖1≤ 2
√
ε. Moreover, a heterodyne measurement being a quantum
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operation can only decreases the trace norm, meaning ‖ ρbE − σbE ‖1≤ 2
√
ε. Finally,

one needs to use a continuity argument for the von Neumann entropy. Unfortunately,
it is known that the von Neumann entropy is discontinuous almost everywhere in an
infinite dimensional Hilbert space. In order to restore the continuity of this function,
one can for instance bound the energy of the system in order to make the set of states
compact (see for example Proposition 6.6 of [45]). Note that requiring the energy of the
system to be bounded appears as a reasonable assumption. On the compact states of
bounded energy, the von Neumann entropy is therefore continuous and so is the quantity
χ(b;E) = S(E)− S(E|b).

Strong subadditivity: Let us consider a case where Alice and Bob share a bipartite
state ρA1B1A2B2 and Eve holds a purifying system E such that ρA1B1A2B2E is pure.

f(ρA1B1A2B2) = χ(b1, b2;E) = S(b1, b2)− S(b1, b2|E)
= S(b1, b2)︸ ︷︷ ︸
≤S(b1)+S(b2)

− S(b1|b2E)︸ ︷︷ ︸
≥S(b1|A2B2E)

− S(b2|b1E)︸ ︷︷ ︸
≥S(b2|A1B1E)

−χ(b1; b2|E)︸ ︷︷ ︸
≥0

≤ S(b1) + S(b2)− S(b1|A2B2E)− S(b2|A1B1E) (3.22)

Finally, noticing that the system E1 ≡ A2B2E (resp. E2 ≡ A1B1E) purifies A1B1 (resp.
A2B2), one obtains

f(ρA1B1A2B2) ≤ χ(b1;E1) + χ(b2;E2) = f(ρA1B1) + f(ρA2B2), (3.23)

which is the strong subadditivity. The additivity of f is a straightforward result of the
additivity of the von Neumann entropy.

Invariance under local Gaussification unitaries: A Gaussification unitary op-
eration acts on the quadratures. But, Gaussification unitary operation does not mix
the different quadratures and neither does the measurement process of the CV QKD
protocol, the two processes can be interchanged. Hence it leaves the quantity χ(b;E)
invariant.

This concludes the proof that the function f indeed satisfies the conditions of
optimality of Gaussian states. This means that, optimality of Gaussian states applies
to the cases of von Neumann entropy, thus calculating the von Neumann entropy for a
Gaussian state with the same moments as that of the actual state ρAB. Now, all that is
left, is to show the method of computing the Holevo bound from a Gaussian covariance
matrix, and the derivation of the covariance matrix of the state ρAB from the data
obtained in the PM version of the protocol.

What we proved above is that it is always safe to assume the state ρAB to be Gaussian.
This statement is equivalent to the notion of optimality of Gaussian attacks [35, 43]
meaning that Gaussian attacks are optimal among the family of collective attacks.
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Estimation of the covariance matrix in the entanglement-based protocol from
data observed in the PM protocol

In the considered protocol, Alice encodes information in the quadratures x̂ and p̂ of
coherent states. The random variables x and p are drawn according to a Gaussian
distribution of variance V0 : x, p ∼ NC(0, V0).

Recall that, in the corresponding EB version of the protocol, Alice starts with the
two mode squeezed state (TMSS), which has the covariance matrix

γ =
(

V I2
√
V 2 − 1σz√

V 2 − 1σz V I2

)
, (3.24)

where V = V0 + 1 and measures one of the modes with heterodyne detection, which
forces the other mode to collapse in the coherent state centered at

√
2(V 2−1)
V+1 (xA,−pA) if

Alice’s measurements were on the first mode (xA, pA), according to Eq. (2.153).
After the quantum exchange, Alice and Bob perform a parameter estimation which

is done by analyzing m pairs of correlated data (ai, bi)1≥i≥m. As we saw, for CV-QKD,
it is sufficient to estimate the covariance matrix of the state shared by Alice and Bob.

For Gaussian modulated CV-QKD protocols, from the symmetry, we see that only
two parameters need to be estimated:

• the variance of Bob’s side

• the correlation between Alice and Bob
Using optimality of Gaussian attacks, we consider the quantum channel to be a

Gaussian thermal noise channel of transmittance T and excess noise ξ, which models
the realistic optical fibers used for experiments, then, the covariance matrix after such a
channel transmission reads

γAB =
(

V I2
√
T (V 2 − 1)σz√

T (V 2 − 1)σz T (V + χ)I2

)
, (3.25)

where χ = 1−T
T + ξ.

We wrote the above covariance matrix because it makes the connection between
the observed transmission value T and excess noise ξ with the quadratures of the two
parties, these observed quantities are linked to 〈x̂2〉, 〈ŷ2〉 and 〈x̂y〉 through

V = 〈x̂2〉+ 1,

T = 〈x̂y〉
〈x̂2〉2

T (V + χ) = 〈ŷ2〉.

(3.26)

Key rate

The upper bound of χ(b;E) can be computed by assuming a Gaussian state with the
same covariance matrix γAB. Therefore,

χ(b;E) = S(E)− S(E|b) = S(AB)− S(A|b), (3.27)



62 CHAPTER 3. QUANTUM CRYPTOGRAPHY

since system E is without loss of generality a purifying system for AB, ρABE is a pure
state, thus S(E) = S(AB). The von Neumann entropy for a Gaussian state is computed
using the Eqs. Eqs. (2.159) and (2.160), which requires the symplectic eigenvalues from
the corresponding covariance matrix, given by Eq. (2.122).

The symplectic eigenvalues for γAB are

v2
1,2 = 1

2
[
∆±

√
∆2 − 4D

]
, (3.28)

where

∆ = V 2 + T 2(V + χ)2 − 2T (V 2 − 1) (3.29)
D = (TV (V + χ)− T (V 2 − 1))2. (3.30)

To calculate S(AB|b), we need the remaining covariance matrix of ρAB (in the EB
version) after Bob has measured his states by a heterodyne measurement, given by
Eq. (2.154),

γA|b = V I2 −
√
T (V 2 − 1)σz(T (V + χ)I2 + I2)−1(

√
T (V 2 − 1)σz)>

= V − T (V 2 − 1)
T (V + χ) + 1I2 = T (V χ+ 1) + V

T (V + χ) + 1 I2. (3.31)

The symplectic eigenvalue is

v3 = T (V χ+ 1) + V

T (V + χ) + 1 . (3.32)

Thus the maximum of χ(b;E) is

χ(b;E) = S(AB)− S(A|b) = G

(
v1 − 1

2

)
+G

(
v2 − 1

2

)
−G

(
v3 − 1

2

)
(3.33)

where G(x) is given by Eq. (2.160),

G(x) = (x+ 1) log2(x+ 1)− x log2 x. (3.34)

This concludes how the supremum of the Holevo information can be computed from
the covariance matrix.

To calculate the key rate, all we need to do is evaluate the mutual information
between Alice and Bob’s data. Note that, both Alice and Bob perform heterodyne
measurement on their respective modes. Therefore the covariance matrix of the outcome
reads,

γab = 1
2(γAB + I4), (3.35)

and thus, the mutual information is given by Eq. (2.23),

I(a : b) = 1
2 log

(
VaVb

det γab

)
, (3.36)
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where Va = (V + 1)/2 and Vb = (T (V + χ) + 1/2).
The secret key rate against collective attacks coincides with the secret key rate valid

against arbitrary attacks in the asymptotic limit [27,44,72].
This concludes our discussion of CV-QKD. In chapters 4 and 5, we use the tools and

techniques mentioned here to analyze the security of a two-way CV-QKD protocol and
a discrete-modulated CV-QKD protocol.

3.2. Quantum Money
Another protocol of practical interest is quantum money. Using the theory of conjugate
coding and no-cloning theorem, Wiesner, in his seminal work conceived the idea of
unforgeable quantum money [46]. A quantum money scheme aims to protect the money
from being counterfeited. This is accomplished by combining the money with a secret
key that has been encoded onto quantum states.

A quantum money scheme involves three parties - a mint, a bank and a client. The
mint generates the money, a n-qubit state. Then the n-qubit state is stored in a quantum
memory, assigned with a unique serial number and finally handed to a client. This
sequence of states is stored by the mint in a classical key and then shared with the bank.

Depending on whether the key is kept secret or made public, the money schemes can
be categorized as:

• Private-key money schemes: The classical key of sequence of quantum states is
stored securely by the mint in a classical key and shared only with the bank (and
its branches). Since the key is known only to the mint and the banks, the banks
are responsible for verifying the validity of the money.
Two types of verification may be used in these money schemes:

– Quantum verification: The client has to send the entire quantum money state
to a bank for verification. Since, the states must physically reach the bank to
be verified as valid, we shall refer to this money scheme as quantum cheques.
Wiesner’s money scheme falls under this category.

– Classical verification: The bank verifies the validity of the money through
classical communication with the measurement data performed locally by the
client. Such schemes will be referred as quantum credit card schemes. This
scheme was first introduced by Gavinsky [49].

• Public-key money schemes: The key according to which quantum states are
generated are made known to the public. Therefore, any party (a client or a
vendor) is able to verify the validity of the money without contacting the bank.
These schemes are quantum analogues of classical banknotes. This concept of
public-key quantum money scheme was introduced in [54] by Aaronson.

3.2.1 Properties

A quantum money protocol satisfies the following properties:
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• Correctness: this property ensures that an honest client should always be able to
successfully verify the original quantum money issued by the mint.

• Security: it refers to that fact that a dishonest client (or an adversary) trying to
counterfeit the money should always fail at the verification process.

There is another property that many money schemes follow but is not necessary to
ensure the proper use of the money: reusability. This ensures that an honest client can
verify the money with different banks at different times.

In the following subsections, we will be discussing in detail private-key money schemes
based on different verification processes.

3.2.2 Private-key with quantum verification money scheme: Wiesner’s
model

In Wiesner’s original scheme, the mint generates two random bit-strings b(s) and k(s).
The string b(s) indicates the encoding bases to be used, 0 for σz and 1 for σx, while
string k(s) denotes the eigenstate of the bases, 0 refers to positive eigenstate and 1 refers
to the negative eigenstate. Thus, the n-qubit quantum money state associated with the
serial number s and the secret bit-strings b(s) and k(s) can be written as:

|Ψ(b,k)〉 = ⊗ni=1 |ψ
(bi,ki)
i 〉 , (3.37)

where |ψ(bi,ki)
i 〉 ∈ {|0〉 , |1〉 , |+〉 , |−〉}.

For verification, the bank asks the client to send the quantum states, which requires
a quantum channel. This is termed as quantum verification. A major problem in the
implementation of a quantum channel, is that the coherence of the states has to be
maintained throughout the duration of the transmission or else the states decohere and
the bank declares the money to be invalid. Also, an adversary with access to the channel
might intentionally change the states by performing some measurements or can pretend
to be the bank to steal the money, thus hindering the verification process for an honest
client. This is one of the major drawbacks of Wiesner’s scheme.

The bank measures each of the n-qubits in |Ψ(b,k)〉 in the correct preparation basis
according to the bit-string b(s) and if the result matches with the bit-string k(s), the
money is said to be valid. In the honest scenario, considering no decoherence, the
verification is always successful, ph = 1.

In the original scheme, if the money sent to the bank for verification is declared to
be invalid, then the bank can simply discard the money or the bank sends back the
invalid money to the client. If it is the latter scenario, a dishonest client can interact
adaptively with the bank, and the money will be counterfeited. To learn one of the bits
of a valid money, the adversary can apply σx on the said qubit, send the money to the
bank for verification; if the bank’s response is valid then it is an eigenvector of σx, then
σx measurement will reveal the state and if the response is invalid, the adversary applies
σx to recover the original qubit and measures in σz basis to learn the actual bit. The
adversary can now follow the same procedure to learn all of the bits and counterfeit
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is successful. This interaction of the adversary with the bank, i.e., depending on the
bank’s answer to adapt the measurements to gain desired results, is called an adaptive
attack. This is the second drawback of Wiesner’s money scheme [48].

Let us consider a dishonest client interested in counterfeiting the money, i.e., pro-
ducing an extra copy of the money that can be sent to two branches of the bank for
verification. Due to the no-cloning theorem and the uncertainty principle, an adversary
cannot copy the states without modifying some of the states, since the encoding bases
(observables) are unknown to the adversary. These modifications will be revealed upon
verification and the money will be declared invalid. Thus producing an extra copy of
money is simply impossible, guaranteeing unconditional security.

For a single state (n = 1), the dishonest client can pass the verification with
probability pd ≤ 3/4. The upper bound is achieved when the dishonest client measures
the state in one of the random encoding bases. Half the time, he guessed the correct
basis for which he identifies the correct state and half the time he has chosen the wrong
basis and thus has a incorrect state. If this state is now sent to the bank for verification,
if the chosen basis was correct the verification is successful with probability 1, but if
the chosen basis is wrong the probability of successfully passing the verification is 1/2.
Therefore, the successful counterfeiting probability is 1

2 .1 + 1
2 .

1
2 = 3

4 .
For a quantum money consisting of n qubits, the honest success probability remains

1, ph(n) = 1. However, the adversary’s counterfeiting probability can be made arbitrarily
close to 0. This is because n individual attacks on n-qubits is indeed the optimal way of
counterfeiting rather than a general attack [47,50,52]. Thus, for an n-qubit state, the
counterfeiting probability reads pd(n) ≤ (3/4)n.

In 2012, Molina et al. [50] presented a detailed analysis on the security bounds of
Wiesner’s money scheme based on semi-definite programming (SDP). As mentioned
earlier, in case of Wiesner’s money scheme counterfeiting equates cloning. The idea is
to pass the verification test at two banks independently. Cloning of the states can be
described by a quantum channel, and the verification at different banks is described
by the particular state projective measurement.This problem can be then re-written
in terms of an SDP problem with the constraints being that the quantum channel is
a completely-positive and trace-preserving (CPTP) map. The authors generalized the
scheme for other state ensembles and higher dimensional systems.

3.2.3 Private-key with classical verification money schemes

To address the two previous drawbacks, Gavinsky [49] in 2011, introduced a quantum
money scheme with classical verification, based on quantum retrieval games, involves
three rounds of classical communication between the client and the bank. The verification
process involves answering randomly selected challenge questions given by the bank.
A counterfeit for this scheme is considered successful, if for a given credit card, the
adversary is able to answer two sets of independent challenge questions from two different
banks simultaneously. The security relies on the fact that a single random challenge
question can be answered with certainty, while any two randomly selected challenge
questions can not be answered with unit probability. The classical communication
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channel can be unencrypted, even the messages can be openly broadcasted.
The scheme also prevents against an adversary pretending to be a bank to steal the

money during the process of verification. Gavinsky also shows that the scheme is secure
against adaptive attacks, thus making the money scheme more realistic and secure than
Wiesner’s money scheme. The drawback of the protocol is that a verification of the
money states implies its destruction, the states can no longer be used after a single
verification process similar to the Wiesner’s scheme. This protocol, is also not realistic
since it uses impractical fingerprint states and only works when no experimental noise is
taken into consideration.

In [50], along with providing a detailed analysis on the security bounds of Wiesner’s
money scheme based on SDP’s. The authors also introduced a variant of Wiesner’s
money scheme with classical communication for verification, where the probability of a
successful counterfeiting is (3/4 +

√
2/8)n, n being the number of states in the credit

card.
Further independent works of quantum money with classical verification based on

quantum retrieval games (QRG) include works by Pastawaski et al [51], Georgiou et al.
[52] and Amiri et al [53]. In [51], the authors extend the Wiesner’s money scheme to
incorporate noise for a practical implementation: the errors associated with encoding,
storage and decoding of individual qubits, and provide a security proof for the new
model with tighter bounds. This money scheme with classical verification uses only
two rounds of communication and tolerates noise up to (1/2− 1/

√
8) ≈ 14.6%. Noise

tolerance is be defined as the maximum probability with which an honest client get an
invalid response upon verification of a valid money. It is a measure of robustness of the
scheme; the higher the noise tolerance, the higher is the robustness of the scheme.

In [52], the authors presented an improvement over Gavinsky’s scheme, reducing the
classical communication required for verification to a single round. Based on 1-out-of-2
QRG, this scheme tolerates noise up to 12.5%. The money scheme proposed by Amiri
et al. [53] is yet another classical verification private-key money scheme with only one
round of communication between the bank and the client. This scheme has a noise
tolerance of 23%. The authors also claim that any hidden-matching QRG based money
schemes can have maximum noise tolerance limit of 25%.

3.2.4 Public-key money schemes

In the classical world, public-key money schemes are based on the inability to copy the
intricate coloring and hologram designs. Similarly, public-key quantum money schemes
(or quantum banknotes) cannot base their security solely on the no-cloning theorem,
since anyone who can verify the state and has a copy can produce additional copies
of the state [55]. Thus, quantum banknotes require some computational assumptions
such as knot problems or quantum obfuscation [56–60]. However, the schemes still
boast a security advantage over classical banknotes, since there exists no notion of
computational security in classical banknotes. The experimental work from [61] shows
how such private-key quantum money can be constructed on-the-fly but unfortunately
still forgeable.
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3.2.5 Other works

Different variants of quantum money have been proposed over the years such as quantum
tokens, coins, cheque, credit cards etc. Though all of these stem from the Wiesner’s
primitive money scheme, there are some subtleties involved with respect to the verification
process. Let us consider the credit card scenario where a client needs to verify the money
classically using a vendor’s measurement terminal. Now, the question arises, does the
client trust the vendor’s terminal? Even if (s)he does not trust the terminal, is the security
and verification process compromised? Is the credit card still unforgeable? Bozzio et al.
in [62], address this problem in both trusted and untrusted terminal scenarios and show
that implementation of such protocols is indeed possible. Another independent work
by Horodecki and Stankiewicz [63] also provides a semi-device-independent quantum
money scheme in a stronger threat scenario with a dishonest mint, but does not consider
a practical implementation.

Kent introduced the idea of S-money [64], quantum money schemes (virtual tokens)
used on a network of space-time points with an enforced causal order, based on summoning
tasks. Advantages of this idea include near-instant verification and unforgeability without
quantum storage. Kent with Pitalua-Garcia [65] extends the idea of S-money to allow
flexible transfer between clients without any client privacy compromisation. In [66],
Radian and Sattath introduces semi-quantum money, where the quantum minting process
is done by the client. The verification process is classical. The security is computational
(rather than information theoretic), based on the hardness of the Learning With Errors
(LWE) problem.

There have been only two proof-of-principle experimental demonstrations of private-
key quantum money to date, by Bozzio et al. [67] which is based on the theoretical
scheme of [52] and by Guan et al. [68] based on the theoretical scheme of [53]. In
[67], the authors encode information in polarized weak coherent states and achieves the
error rate of around 4% which is well under the maximum noise tolerance of 12.5%,
however this implementation does not take into account the losses, while in [68], the
encoding is based on the phase parity of corresponding pairs of weak coherent states.
This scheme has an error rate of 3%, making it secure with the theoretical limit being
16.6%. Unfortunately, none of these experiments implement the storage of quantum
money states.





CHAPTER 4

COMPOSABLE SECURITY OF TWO-WAY
CV-QKD PROTOCOLS

This chapter presents a general framework encompassing a plethora of QKD protocols,
including standard one-way protocols, measurement-device-independent protocols, as
well as some two-way protocols, or any other QKD protocol which involves preparation
of coherent states modulated via Gaussian distribution and heterodyne detection for
measurement. The main interest of this framework is that the corresponding protocols
are all covariant with respect to the action of the unitary group U(n), implying that their
security can be established thanks to a Gaussian de Finetti reduction. Although the
main motivation for this work was to provide a composable security proof for two-way
CV-QKD, since such protocols are more robust to noise than their one-way counterparts
[74], the framework that we have developed is of general interest. We remark that there
have been significant developments in two-way QKD protocols over the years [75–79,93],
however, a composable security proof was left as an open question.

In the QKD section of chapter 3, we have seen that symmetrization of the states
or the data is a crucial part of a QKD protocol with coherent states and heterodyne
detection. The symmetrization steps makes the states invariant to the unitary group
which allows us to bound the covariance matrix in the parameter estimation step. This
stronger unitary symmetry also paves the way for Gaussian de Finetti theorem to act
and provide us with a composable security proof against general attacks. Though the
symmetrization step is costly to implement and breaks the permutation symmetry of
the original protocol, the benefit it provides is unquestionable. However, the benefit is
actually due to the unitary invariance U(n). If we are able to design a protocol that
inherently possesses the unitary invariance, then our protocol might not require any
active symmetrization. In this chapter, we present a composable security proof for
CV-QKD protocols that inherits this symmetry.

Here we will restrict our attention to the “entanglement-based” (EB) protocols
where the parties prepare bipartite pure states, and exchange optical modes through an
untrusted quantum channel and an authenticated classical channel. This is without loss
of generality since any prepare and-measure (PM) protocol admits an EB version with
the same security (as shown in section 3.1.1), and it is therefore sufficient to analyze the

69
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latter version. The framework include all protocols where Alice and Bob prepare two-
mode squeezed states, possibly perform two-mode squeezing operations or beamsplitter
transformations, and finally measure their respective modes with heterodyne detection.

4.1. Symmetry
A standard argument for establishing the security of a protocol is to consider attacks
displaying the same symmetry as the protocol, generally permutation-invariance. Then
the usual de Finetti theorem precisely asserts that permutation-invariant states have
an independent and identically distributed (i.i.d.) structure ρnAB = ρ⊗nAB, where n is the
number of quantum signals exchanges and we can consider collective attacks. However,
for CV protocols, this method does not work on the account of infinite-dimensional
Hilbert (Fock) space. But, the CV protocols considered here, show a specific unitary
phase-space symmetry, which allows one to exploit the Gaussian de Finetti theorem and
consider the class of Gaussian collective attacks, which are easier to manage.

These CV-QKD protocols are invariant to the action of unitary group U(n). For a
given n-mode Fock space with annihilation operators a = (a1, ..., an), the unitary group
acts as follows

a→ Ua, a† → Ūa† (4.1)
where a† is the creation operator and Ū is the complex conjugate of U , an unitary
matrix. The unitary group is the 3-fold intersection of the orthogonal, complex, and
symplectic groups:

U(n) = Sp(2n,R) ∩O(2n) ∩GL(n,C). (4.2)
A beamsplitter with transmittance t and a two-mode squeezing operator of gain g

act on a 2-mode Hilbert space with annihilation operators a and b via the respective
transformations

[a, a†, b, b†]> → B(t)[a, a†, b, b†]>, [a, a†, b, b†]> → S(g)[a, a†, b, b†]> (4.3)

with
B(t) =

[ √
tI2 −

√
1− tI2√

1− tI2
√
tI2

]
, S(g) =

[ √
gI2 −

√
g − 1σx√

g − 1σx
√
gI2

]
where t ∈ [0, 1] and g ≥ 1. This subgroup of the symplectic group Sp(2n,R) is isomorphic
to the unitary group U(n).

Both Alice and Bob perform a heterodyne measurement of their respective n modes.
A heterodyne detection is a generalized measurement where the POVM elements are
the coherent states, and satisfies the resolution of identity in an n-mode Fock space

IH = 1
πn

∫
|α〉 〈α|dα (4.4)

dα being the uniform measure in Cn. The measurement can be rewritten in a quantum-
classical map as follows

M(ρ) = 1
πn

∫
〈α| ρ |α〉 |αcl〉 〈αcl| dα, (4.5)
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where the superscript "cl" indicates the classical encoding of the value α.
The probability distribution of their outcomes is given by the Q-function of the

state ρnAB ∈ (HA ⊗HB)n : Qρ(xA,pA,xB,pB). We can rewrite the unitary matrix in
its real and imaginary parts as U = V − ιW , where V=Re(U) and W = -Im(U). So,
the displacement vector (x,p) transforms as(

x
p

)
→
(
V W
−W V

)(
x
p

)
. (4.6)

Therefore, Q-function associated with the new state ρ′ = (U ⊗ Ū)ρnAB(U ⊗ Ū)† is

Qρ(xA,pA,xB,pB) = Qρ(V xA −WpA,WxA + V pA, V xB +WpB,−WxB + V pB),
(4.7)

where U is the action of symplectic operation on the Fock space.
In other words, these protocols are covariant w.r.t the action of the unitary group

U(n), meaning the beamsplitters, two-mode squeezing and heterodyne detection all
commute with the action of the unitary group as follows:

[S⊗n,U ⊗ Ū ] = 0, [B⊗n,U ⊗ U ] = 0 and [M⊗n,U ] = 0 (4.8)

where S,B,M and U refers to the action of the symplectic operations S,B,M and U
respectively.

For this reason, protocols that start with vacuum states and where the honest parties
apply two-mode squeezing (to prepare TMSSs), beamsplitters and perform heterodyne
measurements will be covariant with respect to U(n) acting as a product of the form
U⊗p ⊗ Ū⊗q, where p+ q is the total number of modes held by Alice and Bob, for each
round of the protocol. For instance, in case of one-way no-switching protocol of [30], the
optical scheme is covariant to UA ⊗ ŪB.

4.2. Security proof using Gaussian de Finetti reduction
A full security proof consists of two steps: proving security against the restricted collective
attacks and then applying the Gaussian de Finetti reduction to show security against
general attacks. As mentioned earlier, for protocols which are invariant under the action
of unitary group U(n), it is sufficient to consider Gaussian collective attacks. For the
implementation of the reduction theorem, we still need to truncate the Fock space so
that it can be replaced by a finite-dimensional vector space such that we can consider
states which are invariant under the action of unitary group but occupy a very small
subspace of Fock states. More specifically, the restriction on the dimension of subspace
containing K (finite number) photons grows polynomially in K, rather than exponentially
as in the total Fock space.

From Eq. (3.6), we know that a protocol E is ε-secure if it is indistinguishable from
an ideal protocol F . Mathematically,

||E − F||� := supρABE ||(E − F)⊗ IK (ρABE)||1 < ε, (4.9)
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where the supremum is taken over all density operators on (HA ⊗HB)⊗n ⊗K for an
arbitrary system K .

It has been shown that for protocols displaying such symmetry, it is enough to
consider a single-state; a purification of a special mixture of Gaussian i.i.d. states,
SU(p, q) coherent states [73], instead of optimising over the whole space.

Recall that, a QKD protocol consists of three main steps-(a) state preparation,
(b) measurement and parameter estimation and (c) classical post-processing: error
reconciliation and privacy amplification. Depending on the preparation we have either
PM based protocols or EB protocols. Here, Alice and Bob prepare two-mode squeezed
states, perform some symplectic transformations and send a mode of their choosing to
the other party while keeping one for themselves. They perform heterodyne detection
on their modes (all) to obtain the classical strings, X for Alice and Y for Bob, and one
of them is chosen to be the raw key Z = f(X) or f(Y ), via a key map f of choice. The
size of the strings depends on the number of modes held by the parties. In one-way
protocols we have one mode for each of the parties, for two-way we have two modes for
Alice and Bob, X = (X1, X2) and Y = (Y1, Y2).

The goal of the parameter estimation procedure is to obtain a min-entropy resource
[84]. It is a test T that checks whether the correlations between X and Y are sufficient
to imply a lower bound on Hε

min(Z|E)ρZE , where ε is the smoothing parameter, Z is the
raw key, and E is the Eve’s quantum register. If the test passes, the protocol continues,
otherwise it aborts.

The test consists of a check which ensures that the energy measured on a small
number of k << n modes is below some threshold due to the truncation of Fock space
and the covariance between Alice and Bob is large enough. The truncation of the Fock
space can be defined by a CP map P which projects onto the finite dimensional subspace
(corresponding to states containing at most K photons in 2n modes), dA and dB being
the dimension of the finite dimensional subspace of Alice and Bob respectively. This is
strictly a technical tool for security analysis, that does not need to be implemented in
practice. It is to ensure the input states live in a finite-dimensional subspace.

The parameter estimation test takes the element of the Gram matrix, Gram(X,Y ) 1

of the vectors X1, ..., XdA , Y1, ..., YdB or their conjugate X̄i or Ȳj [depending on whether
the corresponding mode is transformed according to U or Ū through the U(n) symmetry]
as input to estimate the three quantities

Σa : = 1
2n

n∑
i=1

[〈qA2
i
〉+ 〈pA2

i
〉]

Σb : = 1
2n

n∑
i=1

[〈qB2
i
〉+ 〈pB2

i
〉]

Σc : = 1
2n

n∑
i=1

[〈qAi , qBi〉+ 〈pAi , pBi〉] (4.10)

The test is considered to be a success if the estimated quantities follow the following
1m x m matrix with m = dA + dB
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relations:
[Σest
a < Σmax

a ] ∧ [Σest
b < Σmax

b ] ∧ [Σest
c > Σmax

c ], (4.11)
the superscript est refers to the estimated value of the respective quantities. The test
can be viewed as a classical function with Gram(X,Y ) as input and passes if it belongs
to some predefined set of acceptable covariance matrices, and fails otherwise, in which
case the protocol aborts. The protocol (and in particular, the acceptance region) is in
general designed in order to perform well when the adversary is passive; it means that
the quantum channel is expected to be a covariant bosonic thermal channel which is a
good model for fiber-based quantum communication

If the test passes, then it is possible to have a lower bound on the min-entropy
resource. The next logical question that arises is that after this step if the protocol is
still invariant w.r.t the action of unitary group. The map T still preserves the symmetry
of the protocol. This is due to the choice of the set of acceptable Gram matrices, which
is a direct consequence of the invariance of the optical structure of the protocol. And
we have already shown that the heterodyne measurement also preserves the symmetry.
Therefore the map T ◦M is also invariant w.r.t the action of unitary group.

From [84], we learn that a key distribution protocol can be divided in two parts,
construction of a min-entropy resource followed by the distillation of the resource into a
secret key. Resource construction is composable in nature, therefore proving security of
the protocol reduces to proving that the protocol constructs a min-entropy resource. The
author also proves security for a generic key distillation protocol for any min-entropy
resource. So, it suffices to determine the existence of a min-entropy resource, to establish
security proof of the protocol. Therefore, if T ◦M is invariant w.r.t the action of unitary
group, then the protocol is invariant w.r.t the action of the unitary group and we can
establish security against collective attacks by using de Finetti states, which in our case
are SU(m,m) coherent states, where m is total number of modes of both parties per
round.

In [72], with the de Finetti reduction theorem, it is shown that ε-security against
Gaussian collective attacks then implies ε′-security against general attacks, with ε′/ε =
O(nm2). In other words, it is sufficient to show that the protocol is secure when the
overall initial pure state ρABE is a mixture of such SU(m,m) coherent states.

Please note that, in this security proof, there has been no mention of active sym-
metrization since we have restricted our analysis to T ◦M instead of the whole QKD
protocol. The latter steps of a QKD protocol do not commute with the unitary group
(because of error reconciliation for instance). But, the work by Portmann [84] ensures
that we only need to realize a min-entropy resource, and till that step, if we are still
unitary invariant the protocol is secure.

4.3. An example: two-way CV-QKD with heterodyne de-
tection

In this section, we apply the above-mentioned security proof to the case of two-way CV-
QKD protocols. In a two-way protocol, the exchange of quantum states is bi-directional.
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Both Alice and Bob send quantum states to one another. In the PM version, Alice
sends coherent states with a Gaussian modulation to Bob, who performs a Gaussian
displacement (via a beamsplitter) to the mode he receives and sends it back through
the quantum channel. Alice measures the output mode with heterodyne detection,
and computes a weighted sum of this result and the value of her initial coherent state.
This serves as the raw key. The weights in the sum as well as the variances of the
Gaussian distribution should be optimized to yield the maximum key rate. Note that
this protocol differs a little bit from the one of Ref. [74] in that here Bob always performs
a displacement, that the weights of the sum are optimized and that Bob also exploits the
second output of his beamsplitter to guess the raw key. The setup of the corresponding
EB version is depicted in Fig.4.1.

Figure 4.1: Optical scheme of the EB version of the two-way protocol: ‘Sq’ is a two-mode
squeezer; ‘BS’ is a beamsplitter required to implement the random displacement by Bob.

In the EB version of the protocol, both Alice and Bob have a two-mode squeezed
state. Alice keeps one of the modes and sends the other one to Bob. After receiving the
mode, Bob combines one of his mode with the received mode via a beamsplitter: this
effectively implements a Gaussian displacement on the received mode. The displaced
mode is then sent back to Alice. Alice combines her two modes through a a two-mode
squeezer. One of the output modes is then measured with heterodyne detection and the
measurement result, serves as the raw key. None of the three two-mode squeezers are
needed in the PM version as they can always be simulated classically.

If the quantum channel is covariant with respect to U(n)2, as expected in the case of
a passive adversary and a bosonic phase-insensitive channel, the quantum state held in
registers A1, A2, B1, B2 by Alice and Bob is invariant under the unitary transformation
UA1 ⊗ ŪA2 ⊗ UB1 ⊗ ŪB2 (see 4.2). For this protocol, the set of acceptable covariance
matrices will therefore satisfy the same symmetry. For this reason, it is natural to choose
an accepting region for the parameter estimation test that also satisfies this symmetry.

2We do not need to assume covariance with respect to U(n) for the security proof to hold. However,
if the channel isn’t covariant, then the covariance matrix Alice and Bob evaluate will not be good enough
to extract a key.
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Figure 4.2: Propagation of the unitaries through the circuit of the two-way protocol.
‘Sq’ and ‘BS’ stand respectively for two-mode squeezer and beamsplitter. One starts by
applying unitaries U or Ū to the input of the protocol and propagates these operators
through the setup. The input of the setup is the vacuum and therefore invariant
under the action of U or Ū . (a) Unitaries applied to vacuum, (b) Covariance with the
initial squeezers, (c) Covariance with the forward channel, (d) Covariance with Bob’s
beamsplitter, (e) Covariance with the backward channel and (f) Commutation with
Alice’s second squeezer.

This means that the first part of the protocol, that realizes the min-entropy resource,
is indeed covariant with respect to the action of the unitary group U(n), and that one can
apply the de Finetti reduction in order to prove the composable security of the protocol
against general attacks. In particular, this means that Gaussian attacks, described by
SU(4, 4) generalized coherent states, are asymptotically optimal and that the asymptotic
key rate can be computed with the techniques described in chapter 3.

For the sake of completion, we find the covariance matrix of the state in some realistic
scenarios. We consider the quantum channel to be the bosonic thermal noise channel of
transmittance τ and excess noise ξ, as mentioned earlier. For the sake of convenience,
we define a few registers, which are labelled in the following figure.
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Figure 4.3: Description of the EB version of the two-way protocol along with some extra
notations to help understand the steps and the modes propagation in the protocol.

Both Alice and Bob start with a TMSS with variances VA and VB respectively. The
covariance matrix reads,

γA′′1A′1B′1B1 = I8 +


v z
z v

v′ z′

z′ v′

 , (4.12)

where
v = VA + 1, z =

√
v2 + 2v, v′ = VB + 1, z′ =

√
v′2 + 2v′

and all the matrices are block-matrices. We use boldface to indicate a 2×2 matrix that
is proportional to σz. Otherwise, the block is simply proportional to I2.

Alice sends the mode A′1 to Bob via the quantum channel, yielding:

γA′′1C1B′1B1 = I8 +


v

√
τz√

τz τ(v + ξ)
v′ z′

z′ v′

 .

The beamsplitter interaction is given by:

γA′′1C2B2B1 = (I2 ⊕B(T )⊕) γA′′1C1B′1B1

(
I2 ⊕B(T )> ⊕ I2

)

= I8 +


v

√
Tτz −

√
(1− T )Tz

∗ Tτ(v + ξ) + (1− T )v′
√

(1− T )Tτ(τ(v + ξ)− v′)
√

(1− T )Tz′
∗ ∗ Tv′ + (1− T )τ(v + ξ)

√
Tz′

∗ ∗ ∗ v′

 .

Since the matrix is symmeteric, we simply write ∗ in the bottom left matrix to improve
the readability.

Bob sends back the mode C2 via the quantum channel to Bob, the covariance matrix
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γA′′1C′2B2B1 reads

I8 +


v

√
Tτz −

√
(1− T )Tz

∗ Tτ2(v + ξ) + (1− T )τv′ + τξ
√

(1− T )Tτ(τ(v + ξ)− v′)
√

(1− T )Tz′
∗ ∗ Tv′ + (1− T )τ(v + ξ)

√
Tz′

∗ ∗ ∗ v′



=


VA z1 z2
∗ V1 z12 z′1
∗ ∗ V2 z′2
∗ ∗ ∗ VB

 ,with


V1 = Tτ2(v + ξ) + (1− T )τv′ + τξ + 1,
V2 = Tv′ + (1− T )τ(v + ξ) + 1,
z12 =

√
(1− T )Tτ(τ(v + ξ)− v′),

z1 =
√
Tτz, z2 = −

√
(1− T )Tz,

z′1 =
√

(1− T )Tz′, z′2 =
√
Tz′

Alice upon receiving the states, process her two modes using a two-mode squeezing
operator, in order to form the raw key. This is performed to get a weighted combination
of the two modes. The squeezing parameter g > 1 is optimized so as to maximize the
key rate:

γA1A2B2B1 = (S(g)⊕ I4)γA′′1C′2B2B1(S(g)⊕ I4)> =
[
γA γC
γ>C γB

]

where

γA =
[
gVA + (g − 1)V1 + 2

√
g(g − 1)z1 (2g− 1)z1−

√
g(g − 1)(V + V1)

∗ (g − 1)V + gV1 − 2
√
g(g − 1)z1

]
,

γB =
[
V2 z′2
∗ VB

]
and γC =

[√
gz2−

√
g − 1z12 −

√
g − 1z′1√

gz12 −
√
g − 1z2

√
gz′1

]
.

The raw key is the measurement outcome X2 obtained by performing heterodyne
detection on mode A2. Now, one can easily obtain the key rate following the key rate
calculation steps presented in section 3.1. Finally, the key rate is calculated by optimizing
over the choices of the variances VA, VB, transmittance T and squeezing gain g. Note
that, we have used the quantum channel twice in this protocol, thus to calculate the key
rate per channel use, we have to introduce a factor of 1/2 in the key rate formula given
by Eq. 3.16,

K = 1
2(βI(X2 : (Y1, Y2))− χ(X2;E)), (4.13)

where β is the so-called reconciliation efficiency.
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Figure 4.4: Secret key rate of the two-way CV QKD protocol (full line) and of the
one-way no-switching protocol (dashed line), assuming ξ = 0 and β = 1.

Figure 4.5: Secret key rate of the two-way CV QKD protocol (full line) and of the
one-way no-switching protocol (dashed line), assuming ξ = 0.1 and β = 0.95.

We plot on Fig. 4.4 and Fig. 4.5, the asymptotic key rate of the two-way protocol
and of the (one-way) no-switching protocol. In case of Fig. 4.4, we consider a noiseless
channel (ξ = 0) and we also assume the reconciliation efficiency to be perfect (β = 1).
One can recover the key rate of the one-way protocol similarly by imposing VA = 1, i.e.,
Alice sends the vacuum to Bob, fixing τ = 0 so that mode B2 contains the vacuum, and
getting rid of the final squeezer in Alice’s lab (by choosing g = 1). We note that the
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two-way protocol slightly outperforms the one-way protocol in the regime of ultra low
loss (T close to 1). In Fig. 4.5, we choose a noisy channel with ξ = 0.1 and realistic
reconciliation efficiency β = 0.95. The advantage of the two-way protocol is clear in this
case.

In Fig. 4.6, we plot the tolerable excess noise of the two-way and one-way no-switching
protocol against the channel transmittance τ , that is the value of ξ for which the key
rate becomes 0. As, we can see the two-way protocol is more robust to noise than the
no-switching protocol.

Figure 4.6: Maximum tolerable excess noise ξ for the two-way CV QKD protocol (full
line) and the one-way no-switching protocol (dashed line), assuming perfect reconciliation
efficiency.

4.4. Measurement-Device Independent (MDI)-QKD
At first sight, MDI-CV-QKD does not quite fit our framework since it involves a third
node, controlled by Charlie, performing a Bell measurement consisting of homodyning
two modes. To be precise, the idea is that both Alice and Bob prepare a TMSS, keep
one mode each and send the other one to Charlie who performs entanglement swapping,
publicly announces the results of his Bell measurement, allowing Alice and Bob to
conditionally displace their remaining mode in order to create some correlations [82].
In this scenario, one could a priori consider that there are four optical modes: one for
Alice, one for Bob and two measured by Charlie, hinting that one should appeal to a
proof technique similar to that of two-way CV-QKD. This is for instance an approach
followed in [89] where it was realized that this scheme has the advantage of not requiring
much public communication for parameter estimation. However, this description doesn’t
seem compatible with the Gaussian de Finetti reduction since the homodyne detection
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performed by Charlie breaks the invariance of the protocol under the unitary group
U(n).

An alternative approach is to look at this scheme as a special case of one-way CV-
QKD by treating Charlie’s communication as part of the state distribution: once Alice
and Bob’s displacements have been performed, the two honest parties are left with a
bipartite two-mode quantum state. This is the same situation as after state distribution
in the EB version of the no-switching protocol [30]. In this sense, while MDI-CV-QKD
is implemented similarly as a two-way CV-QKD protocol, its security can be established
by considering it as a one-way CV-QKD, with a Gaussian deFinetti reduction involving
SU(2, 2) coherent states. Particularly, the reduction from Ref. [72] together with the
security proof of Ref.[88] establish the security of MDI-CV-QKD against general attacks
(see also [77,91]).

4.5. Conclusions
In this work, we considered a particular framework of CV-QKD protocols which are
invariant with respect to the unitary group U(n) and showed that it is sufficient to
establish their security against Gaussian collective attacks. This extends the results of
Ref. [72] to two-way protocols which are known to display improved tolerance to noise
compared to the no-switching protocol, and provides the first composable security proof
for two-way CV-QKD protocols against general attacks. Furthermore, by exploiting the
modularity of the QKD protocols as introduced by Portmann, we showed that active
symmetrization of the data is not needed for the de Finetti reduction to act and to
obtain security.



CHAPTER 5

ASYMPTOTIC SECURITY OF CV-QKD WITH
A DISCRETE MODULATION

There exist CV-QKD protocols which enjoy composable security [31,32,72,88], but all of
these protocols have one element in common: the protocols are modulated according to
a Gaussian distribution. However, Gaussian modulation can never be perfectly achieved
in practice, and in real protocols, one merely approximates such a Gaussian by some
finite constellation of finite energy [100,101]. Furthermore, a discrete modulation does
not only simplify the state preparation procedure [22,24,102,103]; the crucial step of
error correction is dramatically simplified with a small constellation of states [104].

In a discrete modulation setup, one simply needs to generate random bits and not
Gaussian random variables that would further require to be discretized with sufficient
precision. Imagine a protocol where the coherent states are modulated by a discrete
distribution and the states are measured by coherent detection techniques; we get the best
of both worlds, simpler state preparation, and cheaper and effective measurement setup,
both of which are the current industry standard in optical telecommunication. This will
also be helpful deploying QKD at large scale. Therefore, establishing the security of
this protocol has been a pressing open problem for a long time. The current security
proofs pertaining to discrete modulation restrict Eve’s possible attacks to emulate a
linear quantum channel between Alice and Bob [104–106].

In this chapter, we establish a lower bound on the secure key rate valid against
collective attacks in the asymptotic limit of infinitely long keys. We introduce a new proof
technique and apply it to the case of quadrature phase-shift keying protocol (QPSK), then
we discuss its generalization to larger constellations of quadrature amplitude modulations
(QAM). In the asymptotic limit, the secret key rate against collective attacks equates to
the secret key rate valid against arbitrary attacks. For a full composable security proof
and finite-size key rate, one would require to fully address the parameter estimation
procedure, which is not addressed in this thesis, since it needs further considerations
and is left for future work. Nonetheless, we will discuss of possibilities how this can be
achieved as well as other developments in this field.

81
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5.1. The QPSK protocol

The constellation we study consists of four coherent states {|αk〉}k=0...,3 with

{|αk〉} := |ikα〉 = e−
1
2 |α|

2
∞∑
n=1

eikn
π
2
αn

n! |n〉 , (5.1)

where α > 0, which will be optimized later. The protocol goes as follows. Alice
chooses a random bit-string of length 2L x = {x0, x1, ..., x2L−1}. The successive bit
pairs (x2l, x2l+1) are encoded into coherent states |αkL〉 with kl = 2x2l + x2l+1. Then
she sends the L coherent states to Bob, who performs heterodyne detection on each
mode to output another 2L-string z = {z0, z1, ..., z2L−1}. The string is then converted
to a raw key of 2L bits y = {y0, y1, ..., y2L−1} given by

(y2l, y2l+1) =


(0, 0) if z2l+1 < z2l, z2l+1 ≥ −z2l,

(0, 1) if z2l+1 ≥ z2l, z2l+1 > −z2l,

(1, 0) if z2l+1 > z2l, z2l+1 ≤ −z2l,

(1, 1) if z2l+1 ≤ z2l, z2l+1 < −z2l.

(5.2)

The following diagram makes it clear about the relation between the two bit-strings.

z2l

z2l+1

(0, 0)

(0, 1)

(1, 0)

(1, 1)

|α0〉

|α1〉

|α2〉

|α3〉

Figure 5.1: QPSk protocol
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Bob discloses the values of |z2l ± z2l+1| on the public channel1. To distill a secret key
from the raw key, the remaining steps of a QKD protocol are performed. In parameter
estimation step, the two parties check if the correlation between the two data sets is large
enough so that Eve has very little information about the raw key. As we have learnt in
Chapter 3, in CV-QKD, we are interested in estimating the covariance matrix, which
consists of variances of two parties and the covariance between them. More precisely,
we are interested in Bob’s variance v2 and the covariance c. As already mentioned in
Chapter 3, the state distribution for a PM protocol can be written as a classical-quantum
state (Eq. (3.8)),

ρAB = 1
4

3∑
k=0

Πk ⊗ E(|αk〉 〈αk|), (5.3)

with {Πk}k=0...3 being four orthogonal projectors and E being the quantum channel from
Alice to Bob. We also define the quadrature operators Bob’s phase-space as

q̂B = 1√
2

(b̂† + b̂), and p̂B = i√
2

(b̂† − b̂), (5.4)

which satisfies [q̂B, p̂B] = i. Using these definitions, we can write Bob’s variance v and
the covariance c as:

c = tr[((Π0 −Π2)⊗ q̂B + (Π1 −Π3)⊗ p̂B)ρAB],
v = tr[(I4 ⊗ (q̂2

B + p̂2
B))ρAB]. (5.5)

These two quantities can be obtained directly from the experiment. For instance,
if the quantum channel between Alice and Bob is a bosonic phase-invariant Gaussian
channel of transmittance T and excess noise ξ, under its action a coherent state |α〉
is mapped to a thermal state centered at

√
Tα with variance 1 + Tξ. In this case, we

obtain c = 2
√
Tα and v = 1 + 2Tα2 + Tξ. Thus, under the assumption that the channel

is known (Gaussian), one can recover the values of T and ξ from the parameters c and v
observed in the protocol.

Finally, one can perform the rest of classical post-processing to finally obtain the
secure key; information reconciliation, where Bob sends additional information on the
classical channel to help Alice guess the string y and privacy amplification, so that Eve
has no information about the final key.

In reconciliation step, the advantage a discrete modulation scheme has over a Gaussian
modulated protocol is significant. It is well known that the reconciliation of Gaussian
variables (Refs.[29, 30]) is quite costly and requires decoding of classical error-correcting
codes of length 2L [44, 115, 116]. In contrast, the binary nature of the raw key in the
QPSK protocol allows Alice and Bob to aggregate the symbols in large blocks of size, say
m and thus, to only decode classical codes of length 2L/m, reducing the post processing
complexity by a factor m (which usually scales like 1/T ).

1This information is used to turn the reconciliation problem into a channel coding problem for the
binary-input additive white Gaussian noise channel (AWGN)

2Alice’s variance is known to us
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But, QPSK protocol has limitations as well. In particular, for our security proof to
provide a meaningful bound on the secret key rate, the mixture of four coherent states
should approximate a thermal state, which limits the possible value of α to low numbers.
In the following section, we discuss the challenges one face due to discrete modulation
while estimating parameters.

5.2. Challenges due to discrete modulation

The general strategy to prove security of a protocol against coherent attacks, is to use a
de Finetti-type theorem to reduce the problem to the case of collective attacks. The
security against collective attacks is analyzed thanks to a version of the asymptotic
equipartition property [117], which states that the asymptotic secret key rate is given by
the so-called Devetak-Winter rate, given by Eq. (3.16),

Kasympt
coll = I(x : y)− supχ(y;E), (5.6)

where the supremum is taken over all quantum channels E compatible with the corre-
lations c and v observed during parameter estimation. Also, recall that bounding the
quantity χ(y;E) is not so straightforward, since the optimization is for all states in the
whole Fock space. More precisely, there are two issues that need to be addressed: (i)
how to obtain a robust estimate of c and v and (ii) how to compute the supremum of
χ(y;E) over all states compatible with c and v.

As explained previously in section 3.1, currently, the only protocols for which we
are able to analyze parameter estimation (of a covariance matrix), within the proper
error bounds, are those with the invariance in phase space [88]. In this case, the prime
problem is that the parameters to be estimated are neither bounded (unlike BB84-type
protocols where the error rate is between 0 and 1), nor the protocol is invariant under
unitary transformations in phase space or some additional assumptions (for instance,
that the state is Gaussian or that some moments of the variables are upper bounded by
some explicit value) such that a confidence region can be computed. In this thesis, we
do not address this question, and we leave it for future work.

To get an answer for the second question, the Holevo information is computed for
the tripartite pure state ρABE or rather a quantum-classical-quantum state ρAY E , where
Bob has measured his systems with heterodyne detection. Let us give the equivalent EB
version of the QPSK protocol. Alice prepares L copies of bipartite pure state

|Φ〉 = (I⊗√ρPM ) |EPR〉 (5.7)

where ρPM = 1
4
∑3
k=0 |αk〉 〈αk| is the mixture of the four coherent states prepared in the

PM protocol and |EPR〉 is the non-normalized maximally entangled state, |EPR〉 =∑∞
n=0 |n, n〉. More precisely, we have

|Φ〉 = 1
2

3∑
k=0
|ψk〉A |αk〉A′ , (5.8)
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where |ψk〉 = 1
2
∑3
m=0 e

−ikmπ
2 |φm〉 and

|φm〉 = 1
√
νm

∞∑
n=0

(−1)n α4n+m√
(4n+m)!

|4n+m〉 (5.9)

where ν0,2 = 1
2(cosh(α2) ± cos(α2)) and ν1,3 = 1

2(sinh(α2) ± sin(α2)). The state is a
purification of ρPM and this specific choice is made so as to optimize the correlations
between Alice and Bob. She keeps the register A and sends register A′ through the
quantum channel to Bob. We can describe the quantum channel by a CPTP map E
from register A′ → B, or equivalently by an isometry UA′→BE , courtesy of Stinespring’s
dilation theorem. Then the tripartite state reads,

ρABE = (idA ⊗ UA′→BE)(|Φ〉 〈Φ|). (5.10)

Bob measures his states by heterodyne detection and stores the measurement results in
the register Y . Alternatively, we can write the classical-quantum state (Eq. (5.3)) as

ρcq = trE
[
UA′→BE

(
1
4

3∑
k=0

Πk ⊗ (|αk〉 〈αk|)
)]

. (5.11)

The supremum of the Holevo information between Y and E computed for ρAY E , is
optimized over all isometries UA′→BE yielding parameters c and v when applied to ρAB.
This optimization is indeed troublesome since this is an arbitrary isometry between
infinite-dimensional Fock spaces. However, recall from the optimality of Gaussian states,
it is possible to compute the supremum of χ(y;E) over all possible ρAY E with a fixed
covariance matrix for ρAB appearing in the EB protocol. Note that, for bounding the
Holevo information, using the Gaussian modulated covariance matrix, one does not need
the states to be Gaussian, only the covariance of the states matter.

The problem, however, is that there is no direct way of computing the covariance
matrix from c and v obtained from the experiment for discrete modulation protocols,
as mentioned earlier. Therefore, we need to perform an optimization over the possible
covariance matrices compatible with c and v. Prior researched solutions restrict the
possible quantum channels to linear bosonic channels, as done in Ref.[104], or to add
decoy states as in Ref.[118]. Neither solution is satisfactory since the former does not
generate a general security proof, and the latter renders all the advantages of the discrete
modulation moot (since Alice must still implement a Gaussian modulation, making
the error-correction procedure quite heavy). We also note that Ref.[104] analyzed the
security of a two-state protocol and Ref.[108] the security of a three-state protocol;
however, the corresponding bounds are very pessimistic in term of resistance to loss,
and the proof techniques in these papers are unlikely to easily generalize to more useful
modulation schemes. We now present a much better solution to this problem.

5.3. A lower bound in the asymptotic limit
As remarked earlier, we do not consider composability issues in this chapter and restrict
ourselves to the asymptotic scenario. As explained in the previous section, we will be
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performing an optimization over covariance matrix for all possible channels with fixed c
and v. Before that, we discuss the special case of pure-loss channel and then move on to
the general case of arbitrary channels.

5.3.1 Pure-loss channel

For a pure-loss channel, c = 2
√
Tα and v = 1 + 2Tα2. From this it is easy to infer that,

the coherent state |α〉 is mapped to another coherent state |
√
Tα〉. Then, without the

loss of generality, the isometry U is of the form: U |αk〉A′ = |
√
Tαk〉B |ek〉E for some

states {|ek〉}k=0..3. The output states are indeed product states, else, the output in
register B would not be pure and the channel would input noise. From the isometry, we
can write 〈αk|αl〉 = 〈

√
Tαk|

√
Tαl〉〈ek|el〉. And after a beamsplitter transformation on

coherent states one can write, 〈αk|αl〉 = 〈
√
Tαk|

√
Tαl〉〈

√
1− Tαk|

√
1− Tαl〉. Equating

both, we can see that, the Gram matrices of {|
√

1− Tαk〉} and {|ek〉} are equal. Under
polar decomposition, if two Gram matrices of theform M1M

†
1 and M2M

†
2 coincide, then

there exists some isometry V such that M1 = M2V , which essentially means, that there
exists a local isometry between |

√
1− Tαk〉 and |ek〉. This proves the channel can also

be modeled as
U ′ |αk〉A′ = |

√
Tαk〉B |

√
1− Tαk〉E , (5.12)

behaving like a pure-loss channel restricted to our set of states. In particular, since we
know the value of c and therefore of T , it is easy to compute the covariance matrix of
ρAB in the EB version of the protocol.

5.3.2 A general lower bound via SDP

In this section, we will deal with the noisy channel. We have already introduced the EB
version of the QPSK protocol. In this version, the quantum state shared by Alice and
Bob is

ρAB = (idA ⊗ EA′) |Φ〉 〈Φ| =
1
4

3∑
k,l=0

|ψk〉 〈ψl| ⊗ σkl, (5.13)

where σkl = ∑
iKi |αk〉 〈αl|K†i with {Ki} being the Kraus operators characterizing the

channel E , given by Eq. (1.16).
The goal is to bound the covariance matrix for every possible quantum channel

yielding some fixed values for c and v. Note that, for bounding the Holevo information,
using the Gaussian modulated covariance matrix, one does not need the states to be
Gaussian, only the covariance of the states matter. By symmetry, we are actually
interested in 3 parameters, the variances of the parties, and the covariance. Therefore,
without loss of generality, we can consider the covariance matrix to have the form:(
VAI2 Zσz
Zσz VBI2

)
with VA = 1 + 2α2 and VB = v. The only unknown is Z, which we need

to bound. Since, Holevo bound is a decreasing function of Z when the other parameters
are fixed, it is enough to get a lower bound on Z as a function of c and v. Z can be
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defined as the expectation of (q̂Aq̂B − p̂Ap̂B) of ρAB, which basically is

Z = tr[(ab+ a†b†)ρAB], (5.14)

with â and â† being the annihilation and creation operator for register A. For a linear
channel [26], the value of Z turns out to be

Zlinear = 2α2
3∑

k=0

ν
3/2
k−1

ν
1/2
k

. (5.15)

Let us define two new parameters Π = ∑3
k=0 |ψk〉 〈ψk|, the orthogonal projector on

the subspace spanned by four coherent states and C = ΠaΠ ⊗ b + Πa†Π ⊗ b†. Thus
we have, Z = tr(CX), X is the unknown state ρAB, along with some constraints as
tr(B0X) = v and tr(B1X) = c for

B0 = Π⊗ (I + 2b†b)
B1 = (|ψ0〉 〈ψ0| − |ψ2〉 〈ψ2|)⊗ q̂ + (|ψ1〉 〈ψ1| − |ψ3〉 〈ψ3|)⊗ p̂. (5.16)

The final constraint being trBX = trB |Φ〉 〈Φ| = 1
4
∑
〈αl|αk〉 |ψk〉 〈ψl|. So the problem

now can be written as a SDP problem:

min tr(CX) (5.17)

such that


tr(B0X) = v

tr(B1X) = c

tr(Bk,lX) = 1
4〈αl|αk〉

X ≥ 0,

(5.18)

where Bk,l = |ψl〉 〈ψk| and the last constraint implies that X is positive semidefinite. This
can be solved numerically. Once, we have obtained the Z∗, optimum value of the program,
we can compute an explicit lower bound on supχ(y;E) by taking the value of Holevo

information for a Gaussian state ρ∗AB with the covariance matrix
(

1 + 2α2I2 Z∗σz
Z∗σz vI2

)
.

Following the steps described in section 3.1, one can obtain the explicit value of χ(y;E).
Indeed, it satisfies χ(y;E)ρ∗AB ≥ supA′→BE χ(y;E) for all isometries compatible with c
and v.

Note that, there are no constraints on the channel except for one, which is the
trace-preserving property of the map trBX = trB |Φ〉 〈Φ|, which means that all the
solutions of the SDP correspond to valid quantum states for some quantum channel E .
Alternatively, one can say that, since the initial state is pure, and all purifications of ρA
are equivalent up to an isometry on the purifying system BE, there always exists an
isometry from A′ to BE mapping to any valid solution X of the SDP.
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5.3.3 Numerical Results

The mutual information between x and y and the parameters c and v are obtained
directly from the protocol. Thus, we need no more assumptions on the channel. For the
numerical results without sampled data, we consider a realistic model for a quantum
channel, the noisy thermal channel with transmittance T and excess noise ξ. In this
section, we calculate the key-rate for a thermal bosonic noisy channel, and all the
parameters will be expressed in terms of T and ξ: c = 2

√
Tα and v = 1 + 2Tα2 + Tξ.

The values computed from the SDP give a lower bound on Z, which in turn provides
us a lower bound the secret key rate, which we can compare with a Gaussian channel
or a linear channel. For realistic implementations, we use the modified version of
Devetak-Winter key rate,

K = βI(x : y)− supχ(y;E), (5.19)

where β is the reconciliation efficiency. The mutual information is computed for a binary
AWGN channel, which approximates to the capacity of an AWGN channel under an
energy constraint given by Eq. (2.31),

I(x : y) ≈ log2(1 + SNR) = log2

(
1 + 2Tα2

2 + Tξ

)
. (5.20)

This is the mutual information of the classical data. Due to the heterdoyne measurement,
the variance of y changes to (v + 1)/2.

For each channel, we compute the parameters c(T, ξ) and v(T, ξ) that Alice and Bob
would obtain during parameter estimation (in the asymptotic limit), and we solve the
SDP of Eq. (5.17) to compute the upper bound on supχ(Y ;E). Unfortunately, the SDP
involves infinite-dimensional matrices and it is therefore necessary to truncate this space
in order to get numerical results. It is natural to truncate the Fock space of Bob by
the space spanned by the first N Fock states: |0〉, |1〉, . . . , |N − 1〉, thus obtaining a full
Hilbert space of dimension 4N (since Alice’s local space is 4-dimensional).

In practice, we observe that the results do not depend on the specific value of N
provided that it is larger than 10. Note the fact that we need to truncate the Fock space is
not necessarily an important issue for security proofs, solely because composable security
proofs of CV-QKD usually require one to project the state onto a low-dimensional
subspace of the Fock space anyway, via some energy constraints[117]. We use the solver
SCS [119,120] and set the precision below 10−5.

We plot our lower bound of the key-rate for three different values of excess noise: ξ =
0.002 in Fig. 5.2, ξ = 0.005 in Fig. 5.3a and ξ = 0.01 in Fig. 5.3b. We note in particular
that distances much larger than 100 km are possible provided that the excess noise is
sufficiently small. Such values have already been obtained in experimental demonstrations
[121, 122]. Note that in realistic implementations, the detectors are inevitably noisy
and display limited efficiency. In such a scenario where these imperfections are possibly
controlled by the eavesdropper, the secret key rate would be much lower than the ones
displayed in Fig. 5.2 and 5.3. However, considering a more optimistic scenario where
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Figure 5.2: Secure key rate vs distance, for a Gaussian channel with transmittance
T = 10−0.02d and excess noise ξ = 0.002. Here d is the distance between Alice and Bob
in km. The value of α is 0.35. The reconciliation efficiency β is set to 0.95. The red
curve corresponds to the performance of the protocol [39] with a Gaussian modulation,
the lower blue curve is the performance of the QPSK protocol, assuming a linear channel
[26] and the crosses correspond to the lower bound given by our sdp.

(a) For excess noise ξ = 0.005. (b) For excess noise ξ = 0.01

Figure 5.3: Secure key rate vs distance, for a Gaussian channel of transmittance
T = 10−0.02d and different excess noise values. Other parameters are the same as in
Fig. 5.2
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Figure 5.4: ecret key rate vs α, for a distance of 50 km and excess noise of ξ = 0.002.
Other parameters are the same as in Fig. 5.2

the imperfections of the detectors are not assumed to be controlled by the eavesdropper
[124], the secret key rate can be computed following the method of Ref.[123]. Because
the effect of imperfections in the trusted-detector-noise scenario is typically quite mild
[126], we choose to ignore it here and assume ideal detectors for Bob.

As mentioned earlier, the main limitation of the QPSK protocol probably concerns
the small value of α. As described, our approach indeed relies on the closeness between
a thermal state (corresponding to the Gaussian modulation, and for which we know
the exact secret key rate) and a mixture of four coherent states. These two mixtures
are only approximately indistinguishable in the regime where α << 1, and surely the
performance of the QPSK protocol degrades rapidly for α ≥ 0.5, corresponding to about
0.25 photon per pulse. Empirically, we observe that values of α below 0.3 or above 0.5
lead to worse performances in terms of maximum range of the protocol. This behavior
is illustrated in Fig. 5.4.

To overcome this limitation, it is possible to exploit more complicated QAMs that will
better approximate thermal states with a large variance, as discussed below. This case
is notably explored in Refs.[100,101] in the context of QKD and in Refs.[125,127,128]
for communication over bosonic Gaussian channels.

5.4. Extension to larger constellations

We have shown our approach using the QPSK modulation. However, our technique can
be generalized, in a very straightforward way, to more complex modulation schemes. We
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start out with a target Gaussian modulation, described by some thermal state

ρ(β) = (1− β2)
∞∑
m=0

β2m |m〉 〈m| (5.21)

of parameter β > 0 and the aim is to find a modulation scheme that approximates this
state by a mixture of finite number of coherent states.

Consider, a modulation scheme, where n coherent states {|αk〉}k=1...n have been
prepared according to probabilities {pk}k=1...n. A possibility is to consider the n states
on a circle (phase-shift keying) of the form |αeik2π/m〉, as considered, for instance, in
Refs.[106, 129], or more general QAM as in Ref.[130]. The average state prepared by
Alice in the PM protocol is ρn = ∑n

k=1 pk |αk〉 〈αk|. Similar to the QPSK protocol, for
The EB protocol, the purified state can be written as

|Φn〉 = (I⊗√ρn)
∞∑
i=0
|i, i〉 . (5.22)

This specific choice is made so that the value of the parameter Z is maximized and thus
maximizing the resulting lower bound on the secret key rate. The objective function of
our SDP is tr[(ab+ a†b†)ρAB] where ρAB = (I⊗ E) |Φn〉 〈Φn|.

Next, follows the constraints of the SDP. The first constraint is that the partial trace
of the final state over system B, trB[ρAB], should coincide with the partial trace of the
initial state trB[|Φn〉 〈Φn|] = ρn. The second constraint corresponds to the variance of
Bob’s reduced state, given tr[I ⊗ (I + 2b†b)ρAB] = v. The third constraint requires a
bit more work. One needs to provide a relation between the covariance c from the PM
protocol and a measurement applied on ρAB

For a general QAM, the best way to define c is to define in a similar way the
protocols with a Gaussian modulation does. It should be the average of the dot product
between the L-dimensional complex vector (αk1 , ..., αkL) states sent by Alice and the
L-dimensional complex vector (β1, ..., βL) of measurement results of Bob, where, βl
the outcome of the heterodyne detection of E(|αkl〉 〈αkl |), the state received by Bob
for the lth use of the channel. This dot product can be alternatively written as the
expectation of ᾱkβk, where the conjugation is a consequence of working with complex
variables. We define M1

∞ as the observable corresponding to heterodyne detection (the
usual definition):

M1
∞ = 1

π

∫
C
α |α〉 〈α| dα.

Therefore, c can be defined as

c :=
n∑
k=1

pkᾱktr[M1
∞E(|αk〉 〈αk|)]. (5.23)

However, as mentioned earlier we need c to be the expectation of an observable on the
state ρAB. By construction, we can see that there exists an n−outcome measurement
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on system A, such that outcome k prepares the state |αk〉 on the second mode. To
understand this, let us define another purification of the ρn,

|Φ′n〉CB =
n∑
k=1

√
pk |φk〉 ⊗ |αk〉 , (5.24)

for an arbitrary orthonormal basis {|φk〉}k=1...n. Since, both the states are purification
of ρn, there exists an isometry V : C → A such that (V ⊗ I) |Φ′n〉CB = |Φn〉AB. Then,
we can choose Fk = V |φk〉 〈φk| V†. Fk satisfies, ∑n

k=1 Fk = I and 〈Φn|Fk ⊗ I|Φn〉 = pk.
we define another complex-valued observable: Mn = ∑

k αkFk, which correctly yields αk
when Alice sends |αk〉 through the quantum channel. We can finally use the fact that
tr[M †nρAB] = ∑n

k=1 pkᾱkE(|αk〉 〈αk|) to express c as

c = tr[(M †n ⊗M1
∞)ρAB]. (5.25)

Finally, we write the SDP problem as follows:

min tr[(ab+ a†b†)ρAB] (5.26)

such that


trB[ρAB] = ρn

tr[(I⊗ (I + 2b†b))ρAB] = v

tr[(M †n ⊗M1
∞)ρAB] = c

ρAB ≥ 0.

(5.27)

The solution Z∗ returns a covariance matrix
(
VAI2 Z∗σz
Z∗σz vI2

)
with VA being the variance

of ρn. Similar to the steps in section 5.3.2, we compute the the upper bound of the
Holevo information.

Such a SDP can be solved efficiently, although its size appears to grow quite rapidly
with the number n of states in the constellation. This is because the state ρAB is
represented by an nNxnN matrix, with n being the dimension of Alice’s space (spanned
by n coherent states) and an N -dimensional truncation of Bob’s Fock space. For large
constellations, a better idea might be to truncate Alice’s Hilbert space to the first N
Fock states, which would yield a matrix of size N2 ×N2.

Now, comes the question, what happens in the limit n → ∞? The constellation
becomes exactly Gaussian, i.e., ρn → ρ(β) and the purification of the thermal state ρbeta
turns out to be the two-mode squeezed vacuum state (TMSS).

(I⊗
√
ρ(β))

∞∑
i=0
|i, i〉 = (1− β2)

∞∑
k=0

βk |k〉 |k〉 (5.28)

Because of this purification, the observableMn tends to the (rescaled and conjugated)
heterodyne detection

(Mβ
∞)† = 1

π

∫
C
βᾱ |α〉 〈α| dα,
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since a heterodyne detection on the first mode (corresponding toM1
∞) prepares a coherent

state |βᾱ〉 for the second mode upon the measurement result α. Therefore, the third
constraint becomes tr[((Mβ

∞)† ⊗M1
∞)X] = c, where X is the unknown state ρAB. Note

that, Mβ
∞ = βM1

∞. Using the fact that a heterodyne detection is nothing but two noisy
homodyne detections, we get

tr[((Mβ
∞)† ⊗M1

∞)X] = βtr[((M1
∞)† ⊗M1

∞)X]
= βtr[(q̂A ⊗ q̂B − p̂A ⊗ p̂B)X]
= βtr[((ab+ a†b†))X]. (5.29)

Put differently, the objective function of the SDP (when n→∞) is a scalar multiple
of the third constraint. Thus, the solution turns out to be β−1c, which is indeed the
covariance for a CV-QKD protocol with Gaussian modulation.

Since the limit of the SDP for large constellations (n → ∞) recovers the value of
the secret key rate for protocols with a Gaussian modulation, it is tempting to exploit
continuity arguments to show that the secret key rate of CV-QKD protocols with large
constellations is close to that of Gaussian protocols. To make this case quantitative,
one must study the stability of the SDP of Eq. (5.26)against small perturbations in the
constraints, namely, when ρn approximates ρ(β) and Mn approximates Mβ

∞ in the first
and third constraints, respectively. Such questions have been studied in the literature
on complex optimization [131].

5.5. Discussions and Perspectives

We have provided a general technique to derive a lower bound on the secret key rate of
CV-QKD with a discrete modulation and applied it to the case of the QPSK modulation.
The bound is rather loose since it relies on Gaussian optimality, meaning that χ(y;E) is
computed for the Gaussian state with the same covariance matrix as the one returned
by the SDP. However, the state is a mixture of four coherent states, thus non-Gaussian.
Thus, the quantity χ(y;E) is overestimated. The issue is that the SDP is not looking
for a state that would yield the maximized χ(y;E) but instead for a state with a very
specific covariance matrix. This isn’t the right optimization for an attacker. Ideally, one
would like to optimize for χ(Y ;E) instead of Z = tr

[
(ab+ a†b†)ρAB

]
, but it is unlikely

that such an optimization can be performed efficiently. At the same time, this restriction
disappears when the size of the constellation increases since the SDP bound converges
to the optimal secret key rate in the limit of a Gaussian modulation. While our bounds
are likely not tight, they already show that secret key rates can be distributed over more
than 100 km for realistic values of the excess noise.

A promising approach to improve our results would be to better understand the
structure of the SDP and maybe to find analytical bounds by exploiting the dual problem



94CHAPTER 5. ASYMPTOTIC SECURITY OF CV-QKD WITH A DISCRETE MODULATION

of Eq. (5.17) which reads:

max
y

y0v + y1c+
3∑

k,`=0
yk,`〈α`| αk〉

such that :

C − y0B0 − y1B1 −
3∑

`,k=0
yk,`Bk,` ≥ 0.

With an analytical bound, it might become possible to understand which quantum channel
yields the state with optimal covariance matrix and decide whether it corresponds to
a good attack or not. Another advantage of obtaining an analytical bound is that it
wouldn’t depend on the dimension of the truncated Fock space anymore.

The question of composable security is left unanswered in this chapter, and would
require proper analysis of parameter estimation step. While parameter estimation is
rather straightforward for BB84-like protocols, the situation is more complicated for
continuous variables because we need to obtain a confidence region for parameters,
such as the variance of Bob’s state, which are unbounded. Because of that, standard
statistical tools to get tail bounds on distributions of random variables such as the
Chernoff bound or variants do not apply anymore. An alternative approach to simplify
the error-correction procedure is to rely on postselection [103, 109, 110], but security
proofs for such protocols are currently restricted to Gaussian attacks, which are not
believed to be optimal [90,105,111]. Gaussian postselection has also been investigated
in the literature mainly because security proofs are easier to obtain [112,113], but the
performance of these variants is still not well understood.

A solution is to exploit some specific symmetry of the protocol in phase space as
in Ref. [88]; however, discrete modulations break this symmetry, and a new approach
is therefore needed. At the same time, the fact that Bob’s detection is rotationally
invariant gives us hope that a rigorous analysis of the parameter estimation procedure
should be possible. Combining such an analysis with our results would then yield a
composable security proof that is valid against collective attacks, and the exponential de
Finetti theorem of Renner and Cirac would then imply a composable security proof that
is valid against general attacks [117], albeit with pessimistic bounds in the finite-size
regime. This result points to two important directions for future work: analyzing the
parameter estimation procedure of protocols with a discrete modulation and improving
on the exponential de Finetti theorem of Ref.[117].



CHAPTER 6

CONTINUOUS-VARIABLE QUANTUM MONEY
WITH CLASSICAL VERIFICATION

Wiesner, in the early ’70s, proposed the idea of unforgeable quantum money [46].
Wiesner’s private-key quantum money scheme involves three parties - a mint, a bank,
and a client. The mint is responsible for generating a random n-qubit state, each state
chosen randomly from {|0〉 , |1〉 , |+〉 , |−〉}. Then the n-qubit state is stored in a quantum
memory, assigned with a unique serial number, and finally handed to a client. This
sequence of n chosen states is stored securely by the mint in a classical key and then
shared with the bank. Whenever a client wishes to verify the validity of the money,
the client can send the money to the bank for validity verification, and following the
secret sequence, the bank can perform the correct projective measurement. The bank
maintains a secret database of the encoded random states corresponding to each serial
number.

A quantum money scheme with classical verification was introduced by Gavinsky to
address the drawback of Wiesner’s money scheme [49]: the verification process involves
answering randomly selected challenge questions given by the bank instead of sending
the money to the bank for verification as in Wiesner’s scheme. Over the years, there
have been significant developments in this cryptographic protocol (and its variants)
both theoretically and experimentally, see section 3.2 for details. In [51], the authors
incorporated noise in the protocol for practical implementation. The protocol had a
noise tolerance of 14.6%. The work was further improved in [52] by reducing the classical
communication exchanges to a single round. In [53], the authors present another classical
verification scheme, with an increased noise tolerance of 23%. A common element of
all these protocols is the use of qubits to encodes information which necessitates the
use of single-photon detectors for verification. Instead of using this costly and specific
equipment for verification, we can use coherent detection, which is the current industry
standard in optical telecommunication. In this chapter, we present a CV model of a
private-key quantum money scheme with classical verification.

A quantum money scheme is correct if the original quantum money issued by the
mint is verified as valid by the bank with unit probability. A quantum money scheme
is information-theoretically secure if no adversarial client with unlimited power can

95
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pass verification with two different branches of the bank at the same time with high
probability. This prevents any dishonest client from trying to spend double the amount
than intended for the same serial number.

For a private-key quantum money scheme with classical verification, counterfeiting is
considered successful, if, for a given credit card, the adversary can answer two sets of
independent challenge questions from two different banks simultaneously. The security
relies on the fact that a single random challenge question can be answered with certainty,
while any two randomly selected challenge questions can not be answered with unit
probability.

Let us denote phon as the probability of successfully verifying the quantum money
by an honest client and pcounter as the probability of successful counterfeiting by an
adversary. The bank can now pre-determine a quantity pbank such that:

phon > pbank > pcounter, (6.1)

where pbank is the fraction of states that has to successfully pass the bank’s verification
process for the bank to declare the money as valid. Therefore, as long as the probabilities
follow the above relation, an honest client is always successful in verifying his original
quantum money state and a counterfeiter always fails. Thus, the above Eq. (6.1) is
sufficient to show both properties of a quantum money scheme.

In this chapter, we present a one-time use private-key money scheme with classical
verification, which will be referred to as quantum tickets. We start with a small
ensemble of 4 states. Care must be taken when choosing the ensemble of states, we
need non-orthogonal states such that there does not exist a single-shot measurement
that distinguishes the states. Our set of 4 coherent states are on a circle (phase-shift
keying) similar to the constellation considered in chapter 5. We analyze the security of
the protocol by computing the honest and the counterfeiter scenario. Then, we propose
a money scheme with a larger ensemble of 8 states. We compute the probabilities in the
honest and the counterfeiting scenario as well as compute the loss tolerance of the money
scheme. We then generalize the money scheme to a higher ensemble of 4N coherent
states.

6.1. 4-state money scheme

We first consider a very simple scheme with a small ensemble of 4 states which is not
secure but allows us to present the main ideas of the scheme and the security analysis.
In the following sections, we consider schemes with more states.

Our classical verification quantum ticket exploit a set of 4 coherent states: {|αk〉}k=0...,3
with

{|αk〉} := |ikα〉 = e−
1
2 |α|

2
∞∑
n=1

eikn
π
2
αn

n! |n〉 , (6.2)

for some α > 0, which will be optimized later. A given quantum ticket consists of
n quantum registers, each one of them containing a state from {|αk〉}k=0,...,3, chosen
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at random. For each quantum ticket, the mint shares the string k4 = (k1, . . . , kn) ∈
{0, 1, 2, 3}n with the banks, which will be required later for verification.

After the preparation of the quantum ticket, it is handed over to the client. The
client may choose to spend it wherever. The transaction process involves another party,
the vendor. During the transaction, the ticket needs to be verified and the verification
result (valid/invalid) should be known to the holder as well as the the vendor, which
would then require a (classical) communication between the vendor and the bank.

To verify the validity of the quantum ticket, the client answers a challenge consisting
of n random questions asked by the bank. The questions will ask for the sign of a
quadrature (x̂ or p̂) for each quantum register. Therefore, for instance if the state is |α0〉,
the correct response for the x-quadrature is +, while any answer in {+,−} is considered
to be correct for the p-quadrature.

The correct answers for all the states are tabulated below:
State Sign of x-quadrature Sign of p-quadrature
|α0〉 + +/-
|α1〉 +/- +
|α2〉 - +/-
|α3〉 +/- -

Note in particular that by replying random answers to each question, one obtains a
fraction of correct answers of 3/4 on average. This is because both answers are correct
for one of the two quadratures, and because there is a probability 1/2 of being correct
for the second question.

After the client sends the answers of the challenge questions, the bank checks the
answers with the string k4 and calculates the number of correct answers. If the fraction
of correct answers exceeds some fixed value, say η̄, the bank declares the ticket to be
valid. The quantity η̄ is fixed for a particular protocol. Note that, a client who does not
have an access to the money physically is unable to perform the required measurements
and thus guesses the correct answer. Therefore, the client can never pass the verification
test.

In a transaction verification, the client sends the serial number to the bank and asks
for challenge questions. On receiving the questions, the client sends back the answers of
the challenge questions. Now, the vendor sends the serial number to ask for the validity
of the ticket and the bank responds with either valid or invalid. If the ticket is valid, the
transaction is completed with the exchange of the goods and the payment. The client
can let the bank know the vendor’s bank account number for instant credit similar to
point-of-sale (POS) transactions or online shopping.

In this protocol an honest client will simply try to answer say a x-question by
measuring the x-quadrature of the state with homodyne detection. One could also
imagine performing the optimal Helström measurement, but a more practical protocol
that only requires honest parties to perform coherent detection is preferable. By contrast,
a dishonest party trying to prove the validity of a ticket to two distinct entities will
sometimes need to correctly determine both quadratures of the state, a task that cannot
be won with the same probability as determining a single quadrature. Therefore, the
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money scheme is considered to be secure if the honest probability is greater than the
counterfeiting probability. The bank can then set the value η̄ between the honest
probability and the counterfeiting probability. This implies that an honest client will
always succeed, while a dishonest client trying to validate the same ticket twice will fail
at this task with overwhelming probability.

Let us investigate the expected fraction of correct answers obtained by an honest
party using homodyne measurement. By symmetry of the protocol, one only needs to
analyse the case where the state is |α0〉. First, with probability 1/2, the question asks
for the sign of the x-quadrature, to obtain the correct answer we need to distinguish
between the coherent states |α〉 and |−α〉. The probability of correctly distinguishing the
states using a homodyne measurement is 1

2(1 + erf(
√

2α))[132]. Second, if the question
concerns the p-quadrature, any answer is considered as correct. This gives a probability
phon of correct answers for a honest client with homodyne detection equal to:

phon = 3
4 + 1

4erf(
√

2α). (6.3)

The question that we must answer now is whether this strategy outperforms the
optimal strategy of a counterfeiter (dishonest client), considering the vendor is honest
and the payment terminal functions perfectly.

To find out the counterfeiting probability, we consider a dishonest client that wants
to validate the ticket with two external banks B0 and B1. He receives two challenges,
one for verification at each bank. There are only two scenarios to consider:

• when both questions coincide, then the client can simply perform the appropriate
Helström measurement, distinguishing between |α0〉 and |α2〉 in the case of a
question about the sign of x-quadrature (or between |α1〉 and |α3〉 for a p-question).
Note that we do not want to restrict the dishonest client to coherent detection.
The success probability for the Helström measurement is given by Eq. (1.34), which
in this case equates to 1

2(1 +
√

1− e−4α2).
In the situation, where the state is either |α1〉 or |α3〉 and the sign of x-quadrature
is asked, performing the appropriate Helström measurement outputs either |α0〉 or
|α2〉. However, both the answers are correct as stated earlier.
This yields an expected fraction pHel of correct answers equal to:

pHel = 3
4 + 1

4

√
1− e−4α2 . (6.4)

• when the questions differ, the only possible strategy is to apply a general measure-
ment Π, with a 4-outcome measurement Π01,Π12,Π23,Π30, where for outcome Πij ,
the dishonest client answers the sign of the corresponding quadratures considering
|αi〉 and |αj〉 as the actual state. For instance, if the outcome is Π01, then the
dishonest party’s answer to x-question is + (considers |α0〉 as the actual state)
and answer to p-question is + (considers |α1〉 as the actual state).
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Let us introduce some notations. We define σk = |αk〉 〈αk|. Without loss of
generality, we assume that the bank B0 asks question x and the bank B1 asks
question p.

For bank B0, possible answers are + and − (for |α0〉 and |α2〉 respectively). The
answer + is given by both outcomes Π01 and Π30. The probability that the answer
+ is correct is given by ½tr[σ0(Π01 + Π30)]. Therefore, the average fraction of
correct answers for B0 is

pB0 = 1
2tr[σ0(Π01 + Π30) + σ2(Π12 + Π23)]. (6.5)

Similarly, the average fraction of correct answers, for B1 is given by

pB1 = 1
2tr[σ1(Π01 + Π12) + σ3(Π23 + Π30)]. (6.6)

Therefore the fraction of correct answers when two different questions are asked is
1
2(pB0 + pB1). We optimize this quantity over the set of POVM’s to obtain the
optimal cheating probability for the different question scenario:

max 1
2(pB0 + pB1) (6.7)

such that
{

Π01,Π12,Π23,Π30 ≥ 0
Π01 + Π12 + Π23 + Π30 = I

. (6.8)

Let us denote pΠ as the optimized solution to the above sdp problem.

Therefore the average counterfeiting probability is given by pcounter = 1
2(pHel + pΠ+1

2 ).
A money scheme is correct and secure if

phon > pcounter. (6.9)

However for the considered 4-state ensemble money scheme, this is not the case even
if the honest party has a perfect homodyne measurement equipment.



100 CHAPTER 6. CV QUANTUM MONEY WITH CLASSICAL VERIFICATION

Figure 6.1: Plot of counterfeiting probability and honest probability against the amplitude
of the coherent states, α. The blue and the black curves correspond to the honest
probability when the client answers the challenge questions using homodyne measurement
and Helström measurement respectively. The counterfeiting probability is represented
by the red curve.

In Fig. 6.1, we see that when the honest client performs homodyne measurement to
answer the challenge questions there does not exist any region of α for which the security
condition Eq. (6.9) holds. Therefore, the 4-state money is not secure. However, if the
honest client performs the Helström measurement to get the answers of the challenge
questions, then the protocol is secure for small values of α ∈ [0.01, 0.85]. Nonetheless,
including the Helström measurement in the verification procedure is rather impractical,
since our focus is on the ease of implementation.

Next, we consider a larger ensemble of states and compute the respective honest and
counterfeiting probability to check if increasing the ensemble size results in a secure
money scheme. In the following section, we try to analyze the security of the money
scheme with an ensemble of 8 states.

6.2. 8-state money scheme

Here, we analyze a quantum money protocol with 8 coherent states {|αk〉}k=0...7 with
αk = αeikπ/4, for some α > 0, to be determined later. Similar to the 4-state money
scheme, the n states are chosen at random from the ensemble and the mint holds a copy
of the classical values k8 = (k1, . . . , kn) ∈ {0, . . . , 7}n.

For each state, the bank asks a random question among {Q0, Q1, Q2, Q3} where ques-
tion Qj means that the honest party performs a homodyne detection of the quadrature
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x̂ cos(jπ/4) + p̂ sin(jπ/4) and returns the sign of the outcome.

Q0

Q2

Q1
Q3

|α0〉

|α1〉

|α2〉
|α3〉

|α4〉

|α5〉

|α6〉
|α7〉

Figure 6.2: A constellation of eight coherent states and the question bases in phase
space.

If the quantum state lies perpendicular to the question basis, then any answer in
{+,-} to the question is considered to be correct. Therefore, the bank is interested in
only two quantities:

• η1: the fraction of correct answers when the "correct" question was asked, i.e. if
question Qj was asked for a coherent state |αj〉 or |αj+4〉,

• η2: the fraction of correct answers when the question asked was biased, i.e. if
question Qj was asked for a coherent state |αk〉, k ∈ {j ± 1, j ± 3}.

Finally, the bank computes a final parameter η = f(η1, η2) and validates the ticket if
η ≥ η̄, for some threshold η̄.

The choice of f is crucial, only those f should be chosen which does not allow the
counterfeiter to achieve η̄. One such choice is the linear combination of η1 and η2:

η = qη1 + (1− q)η2, (6.10)

for some value of q ∈ [0, 1] to be optimized later. Note that the set of all straight
lines corresponding to maximum values of qη1 + (1− q)η2 gives the convex envelope of
achievable values (η1, η2) (see Fig.6.3).
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Figure 6.3: Region of achievable values for (η1, η2). Note that by construction (η1, η2) =
(1/2, 1/2) is achieved by answering the challenges randomly. The red point corresponds
to the honest probabilities (Eq. (6.11)). If the honest probabilities lies outside the
Rachievable for a counterfeiter, the money scheme is secure.

If the quantum state and the question basis differs by an angle of θ, the probability
of answering correctly the challenge question with a homodyne measurement is 1

2(1 +
erf(
√

2α cos θ)).
The honest probabilities (ηhon

1 , ηhon
2 ) read

(ηhon
1 , ηhon

2 ) =
(1

2(1 + erf(
√

2α)), 1
2(1 + erf(α))

)
. (6.11)

Similar to the 4-state money scheme, to find out the counterfeiting probability, we
consider a dishonest client trying to validate the ticket with two external banks B0 and
B1.

By symmetry, we only have three scenarios to consider:

1. Both banks ask the same question, which occurs with probability 1/4. Without
any loss of generality, let us assume the questions asked to be C,Q0). We introduce
a 2-outcome measurement {Π0,Π4} with Π0 + Π4 = I, where the outcome Πi

corresponds to the coherent state |αi〉 as the actual state for that quantum register.
The values of η1 and η2 for this case is given by

η1 = 1
2tr[σ0Π0 + σ4Π4], (6.12)

η2 = 1
2tr

[(σ1 + σ7)
2 Π0 + (σ3 + σ5)

2 Π4

]
, (6.13)

where σk = |αk〉 〈αk|.
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To obtain the counterfeiting probability, we optimize η over POVM’s:

max qη1 + (1− q)η2 (6.14)

such that
{

Π0 ≥ 0
I−Π0 ≥ 0.

(6.15)

For a fixed value of q, denote by (η1
1, η

1
2) the values corresponding to the optimum

in the SDP. Here, the superscript 1 refers to the first scenario.
The set of all the couples (η1

1(q), η1
2(q)) describes an achievable region in the plane

(η1, η2).

2. The banks ask adjacent questions, which occurs with a probability of 1/2. Without
any loss of generality, we can assume the questions asked to be (Q0, Q1). We
consider a 4-outcome measurement Π01,Π14,Π45,Π50, where for outcome Πij , the
dishonest client the sign of the corresponding quadratures considering |αi〉 and
|αj〉 as the actual state. For instance, if the outcome is Π01, then the dishonest
party’s answer to Q0 is + (considers |α0〉 as the actual state) and answer to Q1 is
+ (considers |α1〉 as the actual state).
The bank B0 asks question Q0, then we have

η1,B0 = 1
2tr [σ0(Π01 + Π50) + σ4(Π14 + Π45)] , (6.16)

η2,B0 = 1
2tr

[(σ1 + σ7)
2 (Π01 + Π50) + (σ3 + σ5)

2 (Π14 + Π45)
]
. (6.17)

The bank B1 asks question Q1, then we have

η1,B1 = 1
2tr [σ1(Π01 + Π14) + σ5(Π45 + Π50)] , (6.18)

η2,B1 = 1
2tr

[(σ0 + σ2)
2 (Π01 + Π14) + (σ4 + σ6)

2 (Π45 + Π50)
]
. (6.19)

Overall, this yields a value of (η1, η2), given by

η1 = 1
2(η1,B0 + η1,B1), η2 = 1

2(η2,B0 + η2,B1) (6.20)

This yields the following SDP:

max qη1 + (1− q)η2 (6.21)

such that
{

Π01,Π14,Π45,Π50 ≥ 0
Π01 + Π14 + Π45 + Π50 = I.

(6.22)

For a fixed value of q, denote by (η2
1, η

2
2) the values corresponding to the optimum

in this SDP. Here, the superscript 2 refers to the second scenario.
The set of all the couples (η2

1(q), η2
2(q)) describes an achievable region in the plane

(η1, η2).
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3. The banks ask orthogonal questions, questions differing by π/2. This event occurs
with a probability 1/4. Without loss of generality, we can assume the questions
asked to be (Q0, Q2). We consider a 4-outcome measurement Π02,Π24,Π46,Π60.
The bank B0 asks question Q0, then

η1,B0 = 1
2tr [σ0(Π02 + Π60) + σ4(Π24 + Π46)] , (6.23)

η2,B0 = 1
2tr

[(σ1 + σ7)
2 (Π02 + Π60) + (σ3 + σ5)

2 (Π24 + Π46)
]
. (6.24)

The bank B1 asks question Q2, then

η1,B1 = 1
2tr [σ2(Π02 + Π24) + σ6(Π46 + Π60)] , (6.25)

η2,B1 = 1
2tr

[(σ1 + σ3)
2 (Π02 + Π24) + (σ4 + σ5)

2 (Π46 + Π60)
]
. (6.26)

Combining, yields a value of (η1, η2), given by

η1 = 1
2(η1,B0 + η1,B1), η2 = 1

2(η2,B0 + η2,B1) (6.27)

This yields the following SDP:

max qη1 + (1− q)η2 (6.28)

such that
{

Π02,Π24,Π46,Π60 ≥ 0
Π02 + Π24 + Π46 + Π60 = I.

(6.29)

For a fixed value of q, denote by (η3
1, η

3
2) the values corresponding to the optimum

in the SDP. Here, the superscript 3 refers to the third scenario.
The set of all the couples (η3

1(q), η3
2(q)) describes an achievable region in the plane

(η1, η2).

Combining the results, we obtain that the value for any achievable couple (ηcounter
1 , ηcounter

2 )
must have the form:

(ηcounter
1 , ηcounter

2 ) = 1
4(η1

1(q1), η1
2(q1)) + 1

2(η2
1(q2), η2

2(q2)) + 1
4(η3

1(q3), η3
2(q3)), (6.30)

where q1, q2, q3 ∈ [0, 1] and the superscript "counter" denotes the counterfeiting proba-
bility. The counterfeiter considers different qi’s for different question scenarios, so as
to optimize different linear quantities of η1 and η2. However, note that, there is only a
particular value of q, which is set by the bank. Fig. 6.4a shows that considering different
qi’s for different question scenarios is indeed not useful, q1 = q2 = q3 marks the boundary
of the achievable region i.e., provides the maximal counterfeiting probability.
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(a) (b) α = 0.9

Figure 6.4: (a)Achievable region: The blue dots represents all possible combination of
q1, q2 and q3 and red circle represents same q for all (ηk1 , ηk2 ). (b) Plot of counterfeiting
probability and honest probability in the plane (η1, η2) for α = 0.9

Comparing the counterfeiting probability with the honest probability we find out
that the protocol is secure only for a limited range of α ∈ [0.85, 1.14], see Table 6.1.

Memory model. The previous analysis is restricted to a perfect implementation.
Now, we look at a more realistic scenario. The quantum states chosen from the ensemble
are stored in a quantum memory. We consider the memory to be similar to a pure loss
Gaussian channel of transmittance T . When a coherent state is sent through such a
Gaussian channel, the new received state is a coherent state centered at

√
Tα.

|αk〉
Channel−−−−−→ |

√
Tαk〉 (6.31)

Under the action of such a Gaussian channel, the probability of measuring the correct
quadrature with homodyne measurement is:

p = 1
2
(
1 + erf

(√
2Tα

))
. (6.32)

Our memory also acts in a similar way when coherent states are stored in it. We
compute the honest probabilities under such imperfections:

(ηhon, l
1 , ηhon, l

2 ) =
(1

2(1 + erf(
√

2Tα)), 1
2(1 + erf(

√
Tα))

)
, (6.33)

the superscript l is introduced to denote the pure loss probability. Here, we define the
losses as the transmission loss similar to a QKD protocol.

We are now able to find the minimum value of transmission coefficient, T , for which
Eq. (6.9) holds. The following table shows the minimum value of T for different values
of α for which the scheme is secure:
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α Tmin
0.85 1
0.9 0.987
1.0 0.98
1.1 0.987
1.14 1

Table 6.1: Minimum T for different values of α for which the scheme is secure

The minimum value of T is obtained for α = 1.0, and the this minimum is obtained
for q = 0.57. For this value of q, we plot the minimal value of T versus α to obtain the
following curve:

Figure 6.5: Loss tolerance for different values of α for a fixed q = 0.57.

We conclude from the plot that for the 8-state money scheme considered here can
tolerate losses up to 2%. α ∈ [0.98, 1.02] is the optimal region of operation i.e., the
region of α where the protocol tolerates the maximum loss.

The bank can set the parameter q at 0.57, which in turn determines the threshold η̄
as

η̄ = 0.57ηcounter
1 (0.57) + (1− 0.57)ηcounter

2 (0.57) + δ. (6.34)

for some small δ > 0. This choice of q is made such that, a counterfeiter trying to verify
the ticket at two different branches of the bank can never achieve η̄. The ticket is valid
if η ≥ η̄.
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Figure 6.6: Pictorial representation of the probabilities of a correct and secure money
scheme. Rachievable describes the achievable region of (η1, η2) for a counterfeiter, the
green point corresponds to the threshold η̄ and the red point corresponds to the honest
probabilities.

6.3. Generalization to higher ensembles

In this section, we generalize our CV model for the quantum money scheme to higher
ensembles and compute the secure region of operation, optimal α for implementation
and optimal probabilities for η̄, which is required for verification.

We can consider an ensemble of 4N coherent states {|αk〉}k=0...,4N with αk =
αeikπ/(2N), for some α > 0. The states are chosen from this ensemble randomly i.e., with
equal probability.

For verification, the bank asks a random question among 2N questions, {Q0, . . . , Q2N−1},
where on asking question Qj , honest party performs a homodyne detection of the quadra-
ture x̂ cos(jπ/(2N)) + p̂ sin(jπ/(2N)) and return the sign of the outcome.

The bank is now interested in evaluating a total of N quantities, (η0, . . . , ηN−1),
where ηm is the fraction of correct answers when the basis of the question and the state
differs by an angle of mπ/(2N). Finally, the bank computes the quantity

η =
N−2∑
m=0

qmηm +
(

1−
N−2∑
m=0

qm

)
ηN−1. (6.35)

The set of probabilities is denoted by q = {q0,. . . , qN−1}.
Then, the honest probability is given by

ηhon
m = 1

2

[
1 + erf

(√
2α cos

(
mπ

2N

))]
, (6.36)
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where m ∈ {0, 1, . . . N − 1}.
To find the counterfeiting probability, by the virtue of symmetry we only need to

look at 2N + 1 scenarios. The corresponding cheating probabilities can be obtained by
using the same SDP forms as derived in the 8-state money scheme and we can compute
the counterfeiting probabilities and the loss tolerance for each money scheme.

• Scenario: When the banks ask the same question

Without loss of generality, let us assume that the banks ask the question Q0. We
introduce a two-outcome measurement {Π0,Π2N} with Π0 + Π2N = I.

The values of ηm’s is given by

η0 = 1
2[σ0Π0 + σ2NΠ2N ] (6.37)

ηj = 1
2[(σj + σ4N−j)

2 Π0 + (σ2N−j + σ2N+j)
2 Π2N ], (6.38)

where j ∈ {1, . . . , N − 1}.

We optimize the following SDP to obtain the maximum cheating probability:

max q0η0 +
N−2∑
j=1

qjηj +

1−
N−2∑
j=0

qj

 ηN−1 (6.39)

such that
{

Π0,Π2N ≥ 0
Π0 + Π2N = I.

(6.40)

• Generalized scenario: When the banks ask questions differing bymπ/(2N),
m ∈ {1, . . . , N − 1}

Without loss of generality, we assume that the banks ask the questions (Q0, Qm).
We consider a 4-outcome measurement Π0,m,Πm,2N ,Π2N,2N+m and Π2N+m,0.

The values of ηj ’s is given by

η0 = 1
4[σ0(Π0,m + Π2N+m,0) + σm(Π0,m + Πm,2N )

+ σ2N (Πm,2N + Π2N,2N+m) + σ2N+m(Π2N,2N+m + Π2N+m,0)], (6.41)

ηj = 1
4[(σj + σ4N−j)

2 (Π0,m + Π2N+m,0) + (σ2N−j + σ2N+j)
2 (Πm,2N + Π2N,2N+m)

+ (σm+j + σm−j)
2 (Π0,m + Πm,2N ) + (σ2N+m−j + σ2N+m+j)

2 (Π2N,2N+m + Π2N+m,0)],
(6.42)
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where j ∈ {1, . . . , N − 1}. This yields the following SDP:

max q0η0 +
N−2∑
j=1

qjηj +

1−
N−2∑
j=0

qj

 ηN−1 (6.43)

such that
{

Π0,m,Πm,2N ,Π2N,2N+m,Π2N+m,0 ≥ 0
Π0,m + Πm,2N + Π2N,2N+m + Π2N+m,0 = I.

(6.44)

Numerically, we have analyzed the cases for 8, 12, 16, 20 and 24 state ensembles (for
N = 2, 3, 4, 5 and 6). The following table includes ranges of α for which the money
schemes are correct and secure along with the maximum loss tolerance and the optimal
combination of the correct answer probabilities for each scheme.

4N Range of alpha Tmin Optimal α q
8 0.85-1.14 0.980 1.0(0.98-1.02) 0.57, 0.43
12 0.85-1.6 0.923 1.35(1.31-1.39) 0.49, 0.44, 0.07
16 0.85-1.9 0.892 1.59(1.58-1.61) 0.44, 0.47 , 0.08, 0.01
20 0.85-2.1 0.877 1.85(1.83-1.9) 0.41, 0.48, 0.1, 0.01, 0
24 0.85-2.2 0.869 2.05(2.0-2.1) 0.35, 0.45, 0.14, 0.02, 0, 0.04

Table 6.2: Numerical results for CV money schemes of varying ensemble size.

From the table, it is clear that, on increasing ensemble size (4N) the scheme’s
tolerance to loss improves and seems to tend towards a limit. We infer the limit to be
0.86. The next figure shows the relation between loss tolerance and the ensemble size.

Figure 6.7: Minimal T vs ensemble size
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The region of operation (range of α) for the money scheme also improves as we
increase the ensemble size, i.e., the schemes are secure for a larger region of α. We also
note that, on increasing the ensemble size, the optimal region of operation increases with
respect to α. We plot the relation between the ensemble size and the optimal region of
operation in Fig.(6.8).

Figure 6.8: Optimal region of operation vs ensemble size

From the figures and the table, it is clear that to get money schemes with better loss
tolerance; we need to consider schemes with larger ensemble sizes. However, a money
scheme with an ensemble size of 20, looks like an excellent choice for a protocol. The
region of operation, α ∈ [0.85, 2.1] is almost the same as in the money scheme with the
ensemble size of 24. As we increase the ensemble size, the set of probabilities q contains
smaller qi’s (close or equal to zero). As observed from the table, the money scheme
with an ensemble size of 20 states, has two such smaller qi’s while for 24, has three such
quantities. These smaller qi’s contribute little to the calculation of η, therefore, it is best
if we choose protocols with fewer small values in the set q.

6.4. Conclusion
In this chapter, we have introduced a continuous-variable money scheme framework with
classical verification. We compute the honest and counterfeiting probabilities and prove
that the money schemes are correct and secure except for the 4-state ensemble. We
also notice that as we increase the ensemble size (4N) the loss tolerance of the scheme
improves as well as the optimal α region of operation. We also show that we have money
schemes with 13% of loss tolerance. Note that, in this chapter, the probabilities have
been evaluated in the asymptotic limit.



CHAPTER 7

CONCLUSIONS

In this thesis, we study two continuous-variable quantum cryptographic protocols,
quantum key distribution and unforgeable quantum money. Although we examine these
protocols from a theoretical point of view, we design them in a way that facilitates their
implementation. The easiness of the generation and manipulation of Gaussian states
coupled with the availability and performance of coherent detection makes the protocols
considered here relatively easy to implement with current technology.

Chapter 4 provides answers to two open questions in the field of CV-QKD. First,
we prove the composable security of two-way CV-QKD against general attacks. In
particular, we establish composable security for a class of CV-QKD protocols that
involve a Gaussian modulation of coherent states and heterodyne detection. This
class of protocols includes standard one-way protocols, measurement-device-independent
protocols, and some two-way protocols. We exploit the invariance of Unitary group
U(n) to reduce the security proof against general attacks to collective attacks. Second,
we prove that active symmetrization of the data is not needed to apply the de Finetti
reduction theorem by exploiting the modularity of QKD protocols.

Chapter 5 answers another pressing open question in the field of CV-QKD with a
discrete modulation by establishing a lower bound on the asymptotic secret key rate
against collective attacks. The bound is obtained by formulating the problem as a
semidefinite program. This bound is rather loose since we base it on the optimality of
Gaussian states, but the state in the QPSK modulation scheme is a mixture of four
coherent states, thus non-Gaussian. As a result, we overestimate the Holevo bound.
Nonetheless, our analysis shows that we can distribute secret keys over 100 km for
realistic values of the excess noise. We also discuss the generalization of the scheme to
higher constellation sizes and show that the same technique could be used to analyze
the security of more complicated QAM.

Another issue with our analysis is that we optimize the covariance matrix rather
than the Holevo bound, which is not optimal for an attacker. However, this restriction
disappears when the size of the constellation increases since the SDP bound converges
to the optimal secret key rate in the limit of a Gaussian modulation. In this thesis, we
do not analyze the parameter estimation procedure for the composable security proof.

111
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Unlike the Gaussian-modulated protocols, a discrete modulation breaks the phase-space
symmetry and thus requires a new approach to obtain the confidence region. Bob’s
detection is rotationally invariant, which gives us hope that a rigorous analysis of the
parameter estimation procedure should be possible, and combining this with our result
would then imply a full composable security proof. This question is left for future work.

Chapter 6 presents a CV private-key money scheme with classical verification. The
motivation behind this protocol is to facilitate the process of practical implementation.
Previous classical verification money schemes use single-photon detectors for verification,
while our protocols require coherent detection. Our money scheme exploits a set of
coherent states, where we encode information on its quadratures. To verify the quantum
ticket, the bank asks for the sign of a quadrature (either x̂ or p̂) for all registers. An
honest client simply measures the corresponding quadrature (as asked by the bank)
with a homodyne detection and answers the sign of the value obtained. We analyze the
correctness and security parameters of the money scheme for a varying ensemble size of
4N . We note that the loss tolerance of the scheme improves with higher ensemble size.
Our analysis shows CV money schemes with 13% loss tolerance is feasible. This opens
up a new door to more practically feasible quantum money schemes.



CHAPTER A

RELATION BETWEEN TMSS, SQUEEZED
STATES AND COHERENT STATES

The two-mode squeezed state (TMSS) plays a very important role in EB version of
CV-QKD protocols. As mentioned earlier, if one of the mode is measured with homodyne
detection, the other mode collapses to a squeezed state, while if the mode is measured
via a heterodyne detection, we get coherent states on the other mode. In this section,
we prove the same.

TMSS is characterized by a null displacement vector and a covariance matrix given
by Eq. (2.123),

γ =
(
γA C
C> γB

)
=
(

cosh 2s I2 sinh 2s σz
sinh 2s σz cosh 2s I2

)
, (A.1)

for s > 0.
Let us first consider the case where one measures the B-part of the state with a

homodyne measurement obtaining the result m1 = (x, 0). Therefore, the A-part of the
state transforms into a state which is characterized by the displacement vector given by
Eq. (2.149):

d′ = dA + C(XγBX)MP (m1 − dB)

=
(

sinh 2s 0
0 − sinh 2s

)((
1 0
0 0

)(
cosh 2s 0

0 cosh 2s

)(
1 0
0 0

))MP (
x
0

)

=
(

sinh 2s 0
0 − sinh 2s

)(
sech 2s 0

0 0

)(
x
0

)
=
(
x tanh 2s

0

)
, (A.2)

and the covariance matrix, given by Eq. (2.150):

γ′ = γA − C(XγBX)MPC>

=
(

cosh 2s 0
0 cosh 2s

)
−
(

sinh 2s 0
0 − sinh 2s

)(
sech 2s 0

0 0

)(
sinh 2s 0

0 − sinh 2s

)

=
(

cosh 2s 0
0 cosh 2s

)
−
(

sinh 2s tanh 2s 0
0 0

)
=
(

sech 2s 0
0 cosh 2s

)
, (A.3)
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where X = diag(1,0). The covariance matrix of the new state (Eq. (A.3)) matches to that
of a covarince matrix of a x̂-squeezed state given by Eq. (2.114). The displacement vector
is also non-zero for the x̂-quadrature, confirming that the state is indeed a squeezed
state.

Let us now consider the scenario where the B-part of the state with a heterodyne
measurement obtaining the result m2 = (x, p). Thus, the A-part of the state transforms
into a state, whose displacement vector is given by Eq. (2.153), which reads,

d′′ = dA +
√

2C(γB + I2)−1(m2 − dB)

=
√

2
(

sinh 2s 0
0 − sinh 2s

)(
1 + cosh 2s 0

0 1 + cosh 2s

)−1(
x
p

)

=
√

2
(

tanh s 0
0 − tanh s

)(
x
p

)
=
√

2
(
x tanh s
−p tanh s

)
, (A.4)

and the covariance matrix is given by Eq. (2.154),

γ′′ = γA − C(γB + I2NB )−1C>

=
(

cosh 2s 0
0 cosh 2s

)
−
(

sinh 2s 0
0 − sinh 2s

)(
1 + cosh 2s 0

0 1 + cosh 2s

)−1(sinh 2s 0
0 − sinh 2s

)
= (cosh 2s− sinh 2s tanh s)I2 = I2. (A.5)

Since non-zero displacement vectors and a identity covariance matrix characterizes a
coherent state, the new state is a coherent state.
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