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Abstract

Lyrics provide a lot of information about music since they encapsulate a lot of the seman-
tics of songs. Such information could help users navigate easily through a large collection
of songs and to recommend new music to them. However, this information is often unavail-
able in its textual form. To get around this problem, singing voice recognition systems
could be used to obtain transcripts directly from the audio.

These approaches are generally adapted from the speech recognition ones. Speech tran-
scription is a decades-old domain that has lately seen significant advancements due to
developments in machine learning techniques. When applied to the singing voice, how-
ever, these algorithms provide poor results. For a number of reasons, the process of lyrics
transcription remains difficult.

To begin, music (i.e. accompaniment) might be thought of as significant background noise
for the signal of interest (i.e. singing voice). It is usually mixed at a level comparable
to the vocals and is significantly correlated with it. Secondly, a song is an object of art
with variable form and intelligibility of lyrics with potential large phoneme pronunciation
differences from one song to another. Nonetheless, lyrics information collected from the
singing voice recognition systems might be utilized to execute a variety of lyrics-related
tasks.

In this thesis, we investigate several scientifically and industrially difficult ’Music Infor-
mation Retrieval’ problems by utilizing lyrics information generated straight from audio.
The emphasis is on making approaches as relevant in real-world settings as possible. This
entails testing them on vast and diverse datasets and investigating their scalability. To do
so, a huge publicly available annotated lyrics dataset is used, and several state-of-the-art
lyrics recognition algorithms are successfully adapted.

We notably present, for the first time, a system that detects explicit content directly from
audio, yielding promising results on an industrial size explicit content dataset. The first
research on the creation of a multilingual lyrics-to-audio system are as well described. The
use of phonemes as intermediate representation and the design of a multilingual training
data are both shown to be salient factors to improve multilingual generalization of the
considered architecture for the task.

The lyrics-to-audio alignment task is further studied in two experiments quantifying the
perception of audio and lyrics synchronization. The obtained results allow notably for a
discussion of current lyrics-to-audio metrics. A novel phonotactic method for language
identification is also presented, outperforming the state-of-the-art performance for the
task. Finally, we provide the first cover song detection algorithm that makes explicit
use of lyrics information extracted from audio. Extensive studies on the biggest publicly
accessible cover detection dataset indicate the utility of employing lyrics information for
this task.

Keywords - Singing voice recognition, Explicit content detection, Lyrics-to-audio align-
ment, Language identification, Cover song detection
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Résumé

Les paroles de chansons fournissent un grand nombre d’informations sur la musique car
elles contiennent une grande partie de la sémantique des chansons. Ces informations pour-
raient aider les utilisateurs à naviguer facilement dans une large collection de chansons et
permettre de leur offrir des recommandations personnalisées. Cependant, ces informations
ne sont souvent pas disponibles sous leur forme textuelle. Les systèmes de reconnaissance
de la voix chantée pourraient être utilisés pour obtenir des transcriptions directement à
partir de la source audio.

Ces approches sont usuellement adaptées de celles de la reconnaissance vocale. La trans-
cription de la parole est un domaine vieux de plusieurs décennies qui a récemment connu
des avancées significatives en raison des derniers développements des techniques d’ap-
prentissage automatique. Cependant, appliqués au chant, ces algorithmes donnent des
résultats peu satisfaisants et le processus de transcription des paroles reste difficile avec
des complications particulières.

Tout d’abord, la musique (i.e. accompagnement) peut être considérée comme un bruit de
fond important pour le signal d’intérêt (i.e. voix chantée). Elle est généralement mixée
à un niveau comparable à celui de la voix et présente une corrélation significative avec
celle-ci. De plus, une chanson est un création artistique dont la forme et l’intelligibilité
des paroles sont variables, avec de grandes différences potentielles de prononciation des
phonèmes d’une chanson à l’autre. Cependant, les informations sur les paroles collectées
par les systèmes de reconnaissance de la voix chantée peuvent être employés pour effectuer
une variété de tâches liées aux paroles.

Dans cette thèse, nous étudions plusieurs problèmes de ’Music Information Retrieval’
scientifiquement et industriellement complexes en utilisant des informations sur les paroles
générées directement à partir de l’audio. L’accent est mis sur la nécessité de rendre les
approches aussi pertinentes que possible dans le monde réel. Cela implique par exemple de
les tester sur des ensembles de données vastes et diversifiés et d’étudier leur extensibilité. À
cette fin, nous utilisons un large ensemble de données publiques possédant des annotations
vocales et adaptons avec succès plusieurs des algorithmes de reconnaissance de paroles les
plus performants.

Nous présentons notamment, pour la première fois, un système qui détecte le contenu
explicite directement à partir de l’audio. Cette approche obtient des résultats promet-
teurs sur un ensemble de données de taille industrielle de contenu explicite. Les premières
recherches sur la création d’un système d’alignement paroles-audio multilingue sont égale-
ment décrites. L’utilisation de phonèmes comme représentation intermédiaire et la concep-
tion d’une base de données d’entraînement multilingue sont démontrés être des facteurs
importants pour améliorer la généralisation multilingue de l’architecture considérée pour
la tâche.

L’étude de la tâche alignement paroles-audio est complétée de deux expériences quanti-
fiant la perception de la synchronisation de l’audio et des paroles. Les résultats obtenus
permettent notamment d’ouvrir une réflexion sur les métriques actuelles de l’alignement

5



RÉSUMÉ

paroles-audio. Une nouvelle approche phonotactique pour l’identification de la langue est
également présentée, améliorant les performances de l’état de l’art pour cette tâche. Enfin,
nous proposons le premier algorithme de détection de versions employant explicitement
les informations sur les paroles extraites de l’audio. Des études approfondies sur le plus
grand ensemble de données de détection de version accessible publiquement démontrent
l’utilité de l’utilisation des informations sur les paroles pour cette tâche.

Mots clés - Reconnaissance de la voix chantée, Détection de contenu explicite, Aligne-
ment des paroles et de l’audio, Identification du langage, Détection de reprise
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French summary

Deezer est un service de streaming musical en ligne disposant d’un large catalogue, en
constante évolution, de données multimodales hétérogènes. Il se compose de plus de 73
millions de titres et s’enrichit de dizaines de milliers de nouveaux titres chaque jour.
Une collection aussi vaste doit être organisée et qualifiée automatiquement pour aider les
utilisateurs à la parcourir et pour effectuer des recommandations personnalisées et intel-
ligentes. Il est alors nécessaire d’utiliser des descripteurs musicaux de haut niveau comme
le genre ou la langue des morceaux de musique. De tels descripteurs peuvent être dispo-
nibles dans les métadonnées, mais ce type de métadonnées est souvent bruité et disponible
seulement pour une petite partie du catalogue. Une alternative consisterait à extraire ces
descripteurs à partir de l’audio en utilisant des approches de ’Music Information Retrie-
val’. Ce domaine s’intéresse notamment à la création de systèmes capables d’extraire des
descripteurs musicaux à partir de l’analyse de son signal audio.

Récemment, un intérêt croissant pour l’utilisation des paroles de chansons pour l’extrac-
tion des caractéristiques musicales de haut niveau est apparu. Les paroles constituent une
source essentielle d’informations musicales car elles encodent une part importante de la
sémantique des chansons. Elles peuvent être utilisées pour une multitude de tâches (dé-
tection de contenu explicite, détection de langue...) et d’applications spécifiques comme le
karaoké. Les paroles sont disponibles pour environ 1, 5 millions de titres dans le catalogue
Deezer. Pour environ 20 % de ces titres, les marqueurs temporels de début et de fin de
chaque phrase des paroles sont disponibles. Ces informations sont généralement fournies
en externe par des annotateurs manuels, rendant l’acquisition lente, coûteuse, de qualité
variable et ne couvrant qu’une fraction du catalogue.

Une façon d’extraire les paroles à partir de l’audio est l’utilisation d’algorithmes de re-
connaissance de la voix chantée. La plupart du temps, ces algorithmes sont inspirés de la
reconnaissance vocale. La transcription de la parole est un domaine relativement mature
et des résultats impressionnants ont été obtenus récemment grâce aux derniers développe-
ments des réseaux de neurones profonds. Cependant, ces algorithmes donnent des résultats
insatisfaisants lorsqu’ils sont appliqués à la voix chantée.

L’objectif spécifique de la transcription de paroles reste un défi complexe avec des pro-
blématique particulières qui n’apparaissent pas dans la transcription de la parole. Tout
d’abord, l’accompagnement musicale peut être considéré comme un bruit de fond à ni-
veau sonore élevé fortement corrélé avec le signal d’intérêt puisque le chanteur chante
généralement en harmonie et en rythme avec l’accompagnement. Ensuite, une chanson
est un création artistique dont la forme et l’intelligibilité des paroles sont variables, avec
de grandes différences potentielles de prononciation des phonèmes d’une chanson à l’autre.
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FRENCH SUMMARY

Pourtant, les informations sur les paroles extraites à l’aide d’un système de reconnaissance
peuvent être utiles pour accomplir diverses tâches liées aux paroles.

Dans cette thèse, nous étudierons plusieurs tâches de ’Music Information Retrieval’ scien-
tifiquement et industriellement complexes liées à la transcription de paroles. Pour ce faire,
les systèmes de reconnaissance des paroles les plus modernes sont adaptés avec succès aux
tâches considérées. De plus, nous utilisons une large base de données publique annotée de
voix chantée publiée récemment. Quatre sujets sont étudiés dans le cadre de cette thèse,
chacun ayant des applications industrielles potentielles importantes pour Deezer :

Détection de contenu explicite : La détection de contenu explicite consiste à classer
un enregistrement audio comme étant explicite ou non explicite. Il s’agit d’une tâche
particulièrement délicate pour les services de streaming notamment dans le cadre du
contrôle parental. Cette thèse présente le premier système de détection de contenu explicite
directement à partir d’un signal audio. L’approche modulaire proposée utilise un modèle
acoustique dont les sorties représentent les caractères de l’alphabet latin, un modèle de
détection de mots-clés associé à un dictionnaire de mots-clés soigneusement choisis et un
modèle de forêt d’arbres décisionnels pour la décision finale.

Alignement paroles-audio : L’alignement paroles-audio vise à synchroniser le texte
des paroles, au niveau du paragraphe, de la ligne ou du mot, avec la position temporelle
de l’apparition de chaque unité dans le signal audio. Les outils dédiés à cette tâche ont de
nombreuses applications pratiques : ils peuvent être appliqués pour générer de nouvelles
données annotées afin d’entraîner des reconnaisseurs de voix chanté plus robustes ou être
utilisés pour des applications spécifiques telles que le karaoké ou la suppression des paroles
explicites.

Dans cette thèse, nous initions la réalisation d’un création d’un système d’alignement
paroles-audio indépendant de la langue. Pour ce faire, nous nous concentrons d’abord
sur une architecture de l’état de l’art qui semble adaptée à la généralisation. Ensuite,
nous étudions la pertinence de différentes représentations intermédiaires, que ce soit des
caractères ou des phonèmes, ainsi que plusieurs stratégies pour concevoir un ensemble
d’entraînement.

L’évaluation est menée sur de multiples jeux de données, provenant de diverses sources,
langues et écritures, avec une quantité de données disponibles pour l’entraînement variant
de conséquente à nulle. Nous considérons notamment le cas des chansons multilingues.
Des expériences supplémentaires visant à prendre en compte la similarité des phonèmes
lors de l’alignement sont également présentées. Enfin, nous étudions la perception de la
synchronisation de l’audio et des paroles à travers deux expériences réalistes inspirées du
karaoké, et examinons les implications pour les métriques d’évaluation de l’alignement
paroles-audio.

Identification de la langue : L’identification de la langue est la tâche consistant à
détecter la langue chantée pour une chanson donnée. Les applications sont nombreuses :
informer la transcription des paroles, améliorer la classification de genre ou aider à quan-
tifier la distribution des langues des chansons diffusées dans les médias (nécessaire par
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FRENCH SUMMARY

exemple pour la loi Toubon). Dans cette thèse, nous proposons un nouveau système pho-
notactique utilisant des modèles récurrents pour la reconnaissance des phonèmes et la
classification de la langue.

La reconnaissance des phonèmes est réalisée à l’aide d’un modèle acoustique basé sur l’al-
gorithme ’Connectionist Temporal Classification’ entraîné avec des données multilingues,
avant classification de la langue à l’aide d’un modèle récurrent basé sur l’estimation des
phonèmes. Les premiers résultats de l’identification de la langue du chant avec des langues
non définies dans l’ensemble d’entraînement sont également présentés.

Détection de version : La détection de version vise à déterminer si deux enregistre-
ments proviennent de la même œuvre musicale. Une application pratique est la détection
de plagiat. Dans ce travail, nous proposons le premier système de détection de version qui
exploite explicitement les informations sur les paroles des chansons à partir de l’audio.
Notre approche repose sur la fusion d’un outil de reconnaissance de la voix chantée et
d’une approche plus classique de détection de version basée sur des descripteurs harmo-
niques. De plus, nous exploitons une méthode efficace de recherche floue pour quantifier
la similarité de chaînes de caractères et un algorithme approché de recherche des plus
proches voisins permettant la création d’un système extensible capable de maintenir des
performances correctes sur de très grandes bases de données.
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Notations

General notations

x A scalar x ∈ R.

X A vector X ∈ R
A.

X A matrix X ∈ R
A∗B.

X A 3D-tensor X ∈ R
A∗B∗C .

Singing voice recognition pipeline

H An acoustic model H . Generally, H takes as input an acoustic feature matrix
X ∈ R

F∗T and outputs a posteriorgram R ∈ [0, 1]|C|∗T . F, T, C are respectively the
number of features, the number of frames and the set of units outputted by the
model (e.g. phonemes).

L A language model L . It is based on a vocabulary, the set of words that can be
recognized by the model, and defines a probability distribution across all sequences
of words possible. A probability P (s) can then be obtained for any sequence of
words s. It can also be defined at subword levels such as phonemes or characters.

Others

P (Y ) A probability distribution of a random variable Y .

s A string s with si representing the ith character of the string.
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Chapter 1

Introduction

1.1 General context

In 2020, the recording industry is a major economic sector weighing more than 21.6 billions
of dollars. Since the advent of the internet, the way music is consumed, discovered and
distributed has drastically changed. After their peak in 2000, CD album sales in the
United States have fallen by 97 % reducing the amount of millions of units sold from 938
to just 31.6 [oA20].

Streaming services such as Deezer, Spotify, and Apple Music are currently the most
popular way to listen to music. According to the ‘International Federation of the Phono-
graphic Industry‘, streaming generates 62.1 % of the recording industry revenue worldwide
[otPI20]. The importance of streaming continues to expand with paid streaming income
increasing by 18.5 % over 2019. Nowadays, the paid subscription account users are about
443 millions. Streaming has enabled a vast pool of music to be easily accessible, with tens
of millions of songs available on each streaming provider.

Deezer is an online music streaming service with a vast and ever evolving catalog of
heterogeneous multimodal data. An example of the type of data aggregated by Deezer
is displayed in Figure 1.1. The Deezer catalog consists of more than 73 million tracks,
from over 17 millions of artists, and is enriched with tens of thousands of new titles every
day. Such a large collection needs to be organized and qualified automatically to help
users browse it and to perform smart and personalized content based recommendation,
allowing a more enjoyable global user experience.

To do so, it is crucial to extract meaningful and high-level musical features from tracks
such as the genre or the language of music. One of the objectives of streaming platforms
is to develop systems capable of computing such features, or descriptors, using available
data. These descriptors may be available in metadata, but this type of metadata is often
noisy and available only for a small part of the catalog. Audio signals, on the other
hand, are always available and more reliable. To extract these descriptors, the streaming
services rely mostly on Music Information Retrieval (MIR) approaches.

The MIR domain is an interdisciplinary field at the frontier between music theory, com-
puter science, signal processing and perception. This topic is concerned with the analysis,
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processing, and generation of music. It is notably interested in creating systems capable
of computing accurate musical descriptors from the analysis of an audio signal.

One example of a standard MIR task is the detection of the genre of a given music.
A classic pipeline to resolve this task is displayed in Figure 1.2. This pipeline is quite
general and is applicable to a variety of other MIR tasks. A signal transformation, usually
in the time-frequency domain, so as to highlight harmonic and rhythmic patterns, is first
computed. From this representation, music features are extracted. These features are used
as input of a classification architecture, typically based on machine learning algorithms,
to obtain a solution for the problem of genre detection.

A large proportion of recorded music has lyrics, especially in popular music. In the Deezer
catalog, songs with lyrics represent around 90 % of the five million most listened tracks.
Nevertheless, the lyrics have been clearly under-exploited in MIR tasks. Recently, there
has been a growing interest in the use of lyrics for the extraction of meaningful musical
features. Lyrics constitute a key source of music information as they encode a significant
part of the song’s semantics [MMC+05].

Streaming services’ interest in accessing song lyrics is multifold. On the one hand, they
allow specific applications such as Deezer’s karaoke function. On the other hand, they also
represent an important source of information for the qualification of their catalog (e.g.
through genre and mood classification, language detection or topic modeling). Lyrics
are available for about 3.7 millions of tracks in the Deezer catalog. For 20% of these
tracks, songs are annotated with start and end times of each lyrical line. This type of
information is generally provided externally by manual annotators, making the acquisition
slow, costly, covering only a fraction of the catalog and of variable quality. One solution to
this problem could be to extract lyrics directly from audio using Singing Voice Recognition
(SVR) algorithms.

Beyond the transcription task, various subtasks fall under the scope of the SVR field.
They can be seen as preliminary tasks that when solved will pave the way to a successful
transcription system. Each subtask has, in itself, potential industrial applications for
Deezer. The most studied of them is the lyrics-to-audio alignment one [SDE19, GYL20].
This task consists in aligning the text of lyrics of a song to the audio using various
granularity for the time precision (at the level of the line, the word, the phoneme ...).

The detection of keywords or entities from audio is also a well studied topic [Kru14a,
Kru16a, Kru16b]. It consists in detecting entities (e.g. concept, personality name) or
keywords (e.g. offensive or sexual words). Applications are numerous: discovering songs
on particular topics, genre classification, playlist generation, etc. Finally, the character-
ization of the music from lyrics information extracted from the audio also represents an
interesting task. This task can take several forms such as, the genre or mood detection
or the detection of the language of lyrics from the audio [KAD14].

1.2 Challenges

Two types of challenges are encountered in this thesis. First, considering industrial size
music catalogs implies taking into account the scalability of developed systems and the
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Figure 1.1 – Deezer collects heterogeneous, multi-modal data.

Time-frequency 
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Figure 1.2 – A classic MIR pipeline for the genre detection of music.
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Property Speech Singing

vowel content 60 % 90 %
vowel duration speaking rate note length, composition

pitch in a phrase fairly constant varies with notes, composition
pitch range semitones octaves

Table 1.1 – Principal distinctions between speech and singing adapted from [Mes13].
Copyright © 2013, IEEE. Permission granted for adaptation.

diversity of cases that can be encountered. For instance, such a catalog contains music
from several genres and various languages, some of them being even multilingual. Second,
the specific goal of lyrics transcription remains complex, the best Word Error rate (WER)
obtained being as high as 50% (i.e. one word out of two false), with particular limitations
that do not occur in speech transcription. We describe these limitations broadly in the
following paragraphs.

Properties of singing voice: Properties of the singing voice greatly differ from those
of the spoken voice. In speech, pitch, intensity and rhythm express emotions. Moreover,
prosody (related to pitch) and punctuation (connected to rhythm) both have an essential
semantic function which can change the meaning of a phrase. In the singing voice case,
all these characteristics are constrained by the melodic composition. Due to its musical
dimension, phonetic variability is greater in singing than in speech. For example, the
duration of phonemes can vary vastly with syllables which can last for several seconds at
the end of a chorus [Kru18].

Pitch range can also be extremely large. It represents another significant factor of vari-
ability and can make phonetic identification difficult (e.g. for high notes where formants
do not appear clearly). Another factor of variability is the fact that voice style is largely
dependent on music genre. Also, singers use special techniques, like vibrato, making
singing signals even more complex. Finally, post-production effects applied on the voice,
like reverberation and auto-tune, can also be considered as sources of variation. Main
differences between speech and singing are described more precisely in Table 1.1.

Music is polyphonic: Music (i.e. accompaniment) can be considered as an important
background noise for the signal of interest (i.e. singing voice). It is usually present with
a large volume and is highly correlated with the signal of interest: singers usually sing in
harmony (frequency correlations) and in rhythm (time correlations) with the music. The
assumption of noise independence made in most Automatic Speech Recognition (ASR)
systems is violated here.

Historically, the first SVR algorithms were trained and tested on a cappella [HSIM05].
However, their performance was shown to drop consequently when applied on polyphonic
signals [MV10a]. In this case, a preprocessing step of Singing Voice Separation (SVS) al-
gorithms during inference helps to partially recover the performance [SGLW19, MV10a].
Recent improvements of SVS algorithms [JHM+17] have been shown to further improve
results [SGLW19]. Moreover, in [MVK07], the authors demonstrate that singer identifi-
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Singing voice
separation algorithm

Figure 1.3 – General principle of SVS.

(a) Top words DALI [MBCHP20]. (b) Top words Librispeech-100 [PCPK15].

Figure 1.4 – Most frequent words after discarding stop words in a lyrics dataset (left)
and in a prose dataset (right). Size of the representation is proportional to the word

frequency.

cation is robust up to −5 dB signal-to-noise ratio using a preprocessing step of SVS. The
general principle of a SVS algorithm is described in Figure 1.3.

This algorithm takes as input a recording and decomposes it into two tracks: the first
one being composed of the estimated singing voice and the latter of the extracted accom-
paniment. In this thesis, we only focus on polyphonic data for training and evaluation.
We consider this to be a reasonable decision as most of the commercially available songs
are polyphonic. For our systems, we will then consider a preprocessing step of SVS for
both training and inference. The impact of this preprocessing, in this case, is yet to
be discussed. A complete overview of the influence of SVS in this context is given in
Section 2.3.

Language model properties: Statistical properties of language models constructed
from lyrics text are highly different from those constructed from speech transcripts. Ac-
tually, the vocabulary employed in singing is quite specific and often much more restricted
than in speech [Mes12]. Moreover, these properties also vary according to the musical style
[MNR08] (e.g. slang in rap). To compare both types of datasets, the most frequent words
of one lyrics database and one prose database are displayed in Figure 1.4. It can be seen
that the lexical fields of the lyrics text database are mostly focused around love ("love",
"eyes", "heart" ...), which does not seem to tbe the case on the speech transcript database.
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1.3 Research objectives and contributions

1.3.1 Main research objective

Even if the performance of SVR architectures remains far from perfect from a pure
transcription metrics perspective, questions remain about the lyrical information that
is nonetheless captured using these techniques and how useful it can prove for adjacent,
lyrics-related applications. Thus, the primary research goal of this thesis is to investigate
whether lyrical information taken directly from audio can be employed to execute a range
of MIR tasks. To do so, we use various state-of-the-art lyrics recognition implementations.

We focus on a large publicly available annotated dataset for training to ensure repro-
ducibility, each system being also evaluated on public datasets whenever possible. More-
over, to test the limit of our approaches, we also evaluate them on bigger, more diversified
and more complex internal datasets. Indeed, we keep in mind the context of the thesis:
categorizing industrial size catalog with large variety of data of various complexities. To
that end, we will make systems, to the largest extent possible, scalable and usable in real
life situations.

1.3.2 Research questions

Four topics are researched for this thesis, each having potential important industrial
applications for Deezer: explicit content detection, lyrics-to-audio alignment, language
identification and cover detection. Multiple research questions can be defined from these
subjects:

Explicit content detection: Detecting a music recording as being explicit or not has
always been performed using preexisting lyrics. The question of whether such information
can be extracted directly from audio to complete the task remains unresolved. To take
it a step further, one might wonder if such a system could be deployed automatically
without human input.

Lyrics-to-audio alignment: The task of aligning lyrics to audio has been defined in
Section 1.1. Recent systems have attained great performance on English datasets. This
raises the question of their suitability for usage on a large-scale music catalog. More
specifically, if these systems are still efficient on non English music and if they handle
multilingual lyrics. If not, the salient elements that might improve multilingual gener-
alization of such systems should be investigated. Finally, the perceptual validity of the
metrics used to quantify the performance of these systems is unclear, which necessitates
additional experiments and discussion.

Language identification: Singing language identification algorithms have traditionally
been tested on languages present in the training dataset. It may be explained as the
majority of these systems’ goal is to be able to detect the most frequent languages. When
applied to a large catalog, however, such algorithms must frequently infer labels for musics
where the matching language is not present during training. In this scenario, the system
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should be able to identify these instances as ’out-of-set.’ This begs the question of how
language recognition algorithms could handle these cases.

Cover detection: Cover detection, also known as version identification, attempts to
determine whether two recordings are of the same musical composition. This task is
generally performed using tonal features computed from audio. The question of whether
lyrics information extracted from audio could be used to accomplish the task remains
unanswered. Furthermore, the complementarity of both information, lyrics and tonal
ones, should be studied. One could ask if using both information sources would be prefer-
able over utilizing only one.

1.3.3 Contributions

Following the main research objective, and the various questions that we wish to address,
multiple contributions are presented in our work:

Explicit content detection: This thesis presents the first system for explicit content
detection directly from audio. Our modular approach uses an audio-to-character recog-
nition model, a keyword spotting model associated with a dictionary of carefully chosen
keywords and a Random Forest classification model for the final decision. The results
obtained are encouraging with a F1-score of 67% on an industrial scale explicit content
dataset.

Lyrics-to-audio alignment: In this thesis, we present the first attempt to create a
language-independent lyrics-to-audio alignment system. To do so, we first focus on one
state-of-the-art architecture that seems fit for generalization. Then, we study the relevance
of different intermediate representations, either character or phoneme, along with several
strategies to design a training set. The evaluation is conducted on multiple datasets,
from diverse sources, languages and scripts, with a varying amount of data available,
from plenty to zero. Notably, we consider the case of multilingual songs.

The results show that the use of diverse data for training and of an universal phoneme set
as an intermediate representation yield the best multilingual generalization performance.
Additional experiments to take into account phoneme similarity during alignment are also
presented. Finally, we investigate the perception of audio and lyrics synchrony through
two realistic experimental settings inspired from karaoke, and discuss implications for the
lyrics-to-audio alignment evaluation metrics. The most striking features of these results
are demonstrated to be the asymmetrical perceptual thresholds of synchrony perception
between lyrics and audio, as well as the influence of rhythmic factors on them.

Language identification: In this thesis, we propose a new modernized phonotactic
system using recurrent models for both phoneme recognition and language classification.
Phoneme recognition is performed with a Connectionist Temporal Classification (CTC)
based acoustic model trained with multilingual data, before language classification with a
recurrent model based on the phoneme estimation. The full pipeline shows unprecedented
performance. First results of singing language identification with out-of-set languages are
also presented.
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Cover detection: In this thesis, we propose the first cover song detection system ex-
plicitly leveraging lyrics information from audio. Our approach relies on the fusion of a
SVR framework and a more classic tonal-based cover detection method. Furthermore, we
exploit efficient string matching and an approximated nearest neighbor search algorithm
which leads to a scalable implementation which is able to operate on very large databases.
Extensive experiments on the largest publicly available cover detection dataset demon-
strate the validity of using lyrics information for this task.

1.4 Thesis structure

To enhance readability, the first four chapters are collected in the first part ‘Extracting
lyrics information from audio‘. This part basically describes the whole context sur-
rounding our thesis, being theoretical or practical. The first chapter is the current chapter
where the general context, the challenges and the objectives of the thesis are described.
Following this first introduction chapter, the existing literature for the SVR domain and
the datasets available for the task are given in Chapter 2. Then, all the technical back-
ground necessary to create SVR systems is detailed in Chapter 3. Given both previous
chapters, a first vanilla lyrics transcription system is implemented in Chapter 4. It serves
as the reference for most SVR pipelines used in the following chapters.

The last remaining chapters are collected in the second part ‘Applications to MIR‘
which encompasses all our contributions and the conclusion. Explicit content detection,
lyrics-to-audio alignment, singing language identification and cover detection subjects are
respectively studied in Chapter 5, Chapter 6 and 7, Chapter 8 and Chapter 9. The lyrics-
to-audio alignment topic is researched in two consecutive chapters. The first one focuses on
investigating the multilingual generalization of lyrics-to-audio alignment systems whereas
the second one focuses on the perception of lyrics-to-audio synchrony. Finally, in Chapter
10, we provide an overall summary of the work and contributions discussed in this thesis.
The main limitations and possible future directions of research are presented.

1.5 Publications and seminars

In this section, we present publications and seminars which occurred during the PhD
thesis. For all publications where the PhD student is the first author, all code and
redaction have been made by the PhD student. Participation of the PhD student to other
papers is described in the publications list given below. All publications are available in
Annexe B.

1.5.1 Publications

Laure Prétet, Romain Hennequin, Jimena Royo-Letelier, Andrea Vaglio. Singing voice
separation: A study on training data. In Proc. of the IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), 2019. In this paper, the PhD student mainly
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helps reviewing the paper written by the first author and doing statistical analysis of the
results.

Andrea Vaglio, Romain Hennequin, Manuel Moussallam, Gaël Richard and Florence
d’Alché-Buc. Audio-Based Detection of Explicit Content in Music. In Proc. of the
IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2020.

Andrea Vaglio, Romain Hennequin, Manuel Moussallam, Gaël Richard and Florence
d’Alché-Buc. Multilingual Lyrics-to-Audio Alignment. In Proc. of the Int. Soc. for
Music Information Retrieval Conf. (ISMIR), 2020.
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Chapter 2

Lyrics transcription methods and

datasets

Singing Voice Recognition (SVR) systems are usually inspired by approaches from the
Automatic Speech Recognition (ASR) field. This domain is a relatively mature research
area where impressive results have been recently achieved thanks to the latest develop-
ments in deep neural networks [AAA+16]. However, speech recognition algorithms lead to
unsatisfactory results when adapted to singing voice with the state-of-the-art Word Error
rate (WER) being around 50% [DAD21].

In this chapter, we will present a broad overview of the ASR domain in Section 2.1. Then,
an extensive literature of automatic lyrics transcription will be presented Section 2.2. We
will focus on the problems encountered in the field, how the systems are transferred from
ASR ones, and notably how they are adapted to the specificities of the singing voice. Next,
we will discuss the impact of a Singing Voice Separation (SVS) preprocessing step on SVR
systems Section 2.3. After presenting the annotated singing voice datasets Section 2.4,
we will finally conclude Section 2.5.

2.1 A brief history of ASR systems

ASR systems are traditionally composed of multiple modules applied sequentially on the
audio signal like the feature extraction one, the acoustic model, the pronunciation lexicon
and the language model. When decoding a given input audio signal, all modules are
used to obtain an estimated transcript. An extensive description of each block is given
in the next chapter. A brief explanation will then be provided here for each module.
The feature extraction module aims at computing mid-to-high level representations, or
descriptors, from the input signal.

An acoustic model describes the association between an audio signal and considered lin-
guistic elements (e.g. phonemes or words) composing the speech signal. The pronuncia-
tion lexicon is a set of words as well as their corresponding pronunciations as defined by
a particular pronunciation alphabet. A language model defines a probability distribution
over sequences of words or any other linguistics units (e.g. characters or words).
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The acoustic model is generally the bottleneck of these systems, i.e. poor performance
in this module drastically limits the overall pipeline performance. A large part of the
literature thus focuses on it. Historically, acoustic models for speech use a combination
of Gaussian Mixture Model (GMM) and Hidden Markov Models (HMM) [Rab89]. For a
long time, deep neural networks were only used to obtain input features for this type of
architecture (e.g. using tandem architecture [HES00] and bottleneck features [YHX13]).

In 2012, a paradigm shift was observed with the introduction of hybrid acoustic models
[HDY+12]. Taking advantage of advances in the field of deep neural network training
since the eighties (e.g. in initialisation and optimisation) and from the large increase in
availability of computer resources and vast amount of data, the authors designed and
trained large Deep Neural Network (DNN)-HMM.

These methods outperformed traditional GMM-HMM approaches, offering a new set of
possibilities for deep neural networks in speech. Using this new paradigm, impressive
results were quickly obtained by training systems on massive amounts of data, taking
use of both model and data parallelism. Improvements have been steadily observed since
then, achieving human parity [XDH+16] for some evaluation datasets and reaching results
as low as 5% of WER on others [XWA+18], i.e. about five wrong words each 100 spoken
words. Similarly, language models transited from simple n-gram models to neural network
based language models [MKB+10].

The multiple modules of a classic ASR pipeline make the development of such systems
complicated and the decoding algorithm complex. These modules are generally trained
separately and hard to optimize jointly. After the deep neural network paradigm shift,
new approaches trying to reduce this complexity employing End-To-End (E2E) acoustic
models became trendy.

Such acoustic models are only based on a single DNN, taking as input low level fea-
tures (e.g. audio or time-frequency representations) and directly outputting sequences
of characters. This type of approach alleviates the need of a pronunciation lexicon or of
feature engineering. When compared to ASR systems employing hybrid acoustic models
outputting sequences of phonemes, these approaches have been shown to be more data
greedy but yet capable of getting equivalent results, with a simpler framework, when a
large volume of data is used to train both systems [GJ14].

One of the first popular E2E acoustic models is based on the Connectionist Temporal
Classification (CTC) implementation described in [GJ14]. It has since been surpassed by
the attention model that allows also, in contrast to the CTC model, to learn a language
model over data. In [BCC+17], it is notably demonstrated to outperform a system using
a CTC based acoustic model combined with a language model. The most recent trend
in E2E approaches is transformer based acoustic models, which have been demonstrated
to obtain great results in [KCH+19]. These architectures are based on multiple layers of
encoder-decoder attention and self-attention.
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2. LYRICS TRANSCRIPTION METHODS AND DATASETS

2.2 An overview of automatic lyrics transcription

literature

As described in the previous chapter the challenges encountered are two-fold. Foremost,
considering an industrial context, the diversity of data that SVR systems are expected to
handle is consequent with a large pool of genre, production style and language. Robust
systems being able to generalize to a variety of different contexts must then be developed.
Furthermore, the lyrics transcription task is challenging with specificities over speech
transcription that need to be accounted for.

As for ASR systems, the acoustic model is the main bottleneck of SVR approaches.
Most works thus focus on training robust acoustic models and adapting them to the
characteristics of the SVR domain. In the rest of the document, we will refer as a classic
system of SVR a system using all the standard modules described in the previous section
(e.g. feature extraction, lexicon, acoustic model ...) by opposition to SVR systems based
on an E2E acoustic model.

2.2.1 Creating a robust singing voice acoustic model

Adapting ASR trained systems: In early studies, the development of SVR ap-
proaches was hindered by the lack of publicly available annotated datasets at phoneme,
word or even line level. A line is defined as a segment of lyrics bounded by a line feed. In
speech recognition, acoustic models are traditionally trained on large annotated datasets
of several hundred to several thousands of hours of data, segmented at the utterance level,
to obtain the performing results [AAA+16]. Given the more complex nature of singing
voice over speech voice, we can assume SVR approaches are at least as data demanding.

First studies attempt at adapting ASR trained systems to singing to overcome this prob-
lem. More specifically, some architectures were trained on speech data and adapted to
singing using speaker adaptation techniques. A small singing dataset manually annotated
was generally used to perform adaptation.

For instance, in [MV10b], a monophone HMM is trained on speech data and adapted to
singing using a small corpus of manually annotated a cappella songs, at paragraph level, by
using a Maximum Likelihood Linear Regression (MLLR) algorithm. The transcription is
then performed on polyphonic songs after extracting the singing voice using a pitch-based
inference combined with a background model subtraction. This singing voice separation
algorithm is extensively described in [VMR08]. A performance of 94% WER is reported
for this system on a small dataset of English pop songs. More generally, SVR systems
adapted from ASR ones displayed disappointing results.

Leveraging a cappella dataset: A first attempt to automatically generate an anno-
tated singing voice dataset from a cappella is described in [Kru18]. In this paper, Kruspe
et al. trained an acoustic model on ’low quality’ automatic annotations generated with
forced alignment using a pretrained ASR system. More precisely, a speech recognizer is
used to generate a huge amount of singing annotation by aligning a large corpus of a
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cappella singing to their corresponding lyrics, at the word and phoneme levels. Obtained
annotations are afterwards used to train a new acoustic model, showing a significant
improvement over the speech recognizer when evaluated on a large a cappella dataset.

Following this work, multiple methods to generate this type of large scale solo-singing
dataset, at line level, but with higher quality of annotation, were proposed recently
[GTLW18, DB19]. These datasets are not publicly available but can be easily rebuilt
from data available online using methods described in these papers. Several systems,
trained on these datasets, were subsequently proposed for the latest lyrics transcription
Music Information Retrieval Evaluation eXchange (MIREX) challenge.

The system described in [DAD21], noted Demirel21 in this thesis, is for example trained
on the dataset DSING30. The architecture is based on a dilated convolutional Time
Delay Neural Network (TDNN) with self-attention layers. A preprocessing step of SVS
is performed using Spleeter [HKVM20]. A segmentation step is also applied before lyrics
transcription. To do so, an algorithm spots multiple anchor words position in the audio.
Lyrics transcription is carried out directly on these segmented recordings, employing a
4-gram language model trained on lyrics. Transcription hypotheses are finally rescored
using a Recurrent Neural Network (RNN) language model to output the desired estimated
transcription. This system shows great results, attaining a WER of 49.92% on the Mauch
polyphonic dataset.

Training on polyphonic dataset: Recently, multiple systems have been trained on
large polyphonic singing voice datasets, either private or public, annotated at word or
phrase levels, leading to significant progress on lyrics transcription. Notably, the recent
release of the DALI polyphonic dataset has paved the way to a massive breakthrough,
allowing free access to an annotated singing voice dataset of significant size for all re-
searchers.

These systems include the approach presented by Stoller et al. [SDE19]. This architecture
will be noted as Stoller19 for the rest of the document. It is based on an E2E audio-to-
character architecture, more precisely a wave-U-net. This acoustic model is displayed
in Figure 2.1. A preprocessing step of SVS is performed, during training and inference,
using a U-net convolutional network. The acoustic model is trained on a private English
dataset of 40000 songs using a CTC algorithm. Employing a trigram word-level language
model trained on lyrics, it obtains a WER of 77.8% on the Jamendo polyphonic dataset.

Another architecture demonstrating great performance is the one described in [GYL20]
by Gupta et al. This approach will be referred to as Gupta20 in the rest of this thesis. It
utilizes an acoustic model composed of several layers of TDNN trained using the English
tracks of the DALI dataset. It uses an extended pronunciation lexicon to cope with long
vowel duration in singing and genre labelling information (phoneme units are annotated
with music genres) but does not rely on a preprocessing step of SVS. Finally, a trigram
word language model is trained on the English portion of DALI lyrics. A version of
this system obtained the best results in the MIREX 2020 lyrics transcription challenge 1

reaching a WER of 60.98% on the Jamendo dataset.

1. https://www.music-ir.org/mirex/wiki/2020:MIREX2020_Results
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Figure 2.1 – Stoller19 acoustic model reproduced from [SDE19]. Copyright © 2019,
IEEE. Permission granted for reuse.

2.2.2 Adapting acoustic model to SVR’s specificities

Some studies try to adapt modules of a classic ASR pipeline to overcome the vowel
duration differences between singing and speech. For example, a duration-explicit HMM is
used in [Dzh17], extending a classic Markov-based acoustic model to handle long duration
states. This type of adapted Markov model is notably informed by vocal sheet music in
[DS15] or by metric principles of a considered music tradition in [DYRS16]. Also, the
authors in [SGLW19] employ a duration-based modified pronunciation lexicon.

As described in Section 1.2, the performance of acoustic models trained using a cappella
are known to drop when applied to polyphonic music. Attempts have been made to
improve this performance regarding background music using various preprocessing steps
such as a SVS algorithm [Mes13, DS15] or a voice activity detection module [FGO+06].
Other methods to improve the acoustic model performance with regard to background
music have included the use of aligned chords with lyrics from crowdsourcing websites
[MFG12].

2.2.3 Comparing state-of-the-art systems

Performances on multiple polyphonic evaluation datasets of state-of-the-art systems for
lyrics recognition are summarized in Table 2.1. Gupta20 significantly outperforms Emir21
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System Dataset Mauch Jamendo

Stoller19 Internal 70.9 (x) 77.8 (x)
Gupta20 DALI 47.25 (3.67) 60.98 (3.04)
Demirel21 DALI 49.92 (x) 44.52 (x)

Table 2.1 – State-of-the-art lyrics recognition systems performance on various evaluation
datasets with their training dataset. The column named “Dataset” refers to the dataset
used to train the considered system. The columns “Mauch” and “Jamendo” refer to the
dataset employed to study the proposed systems performance. The WER metrics are

given in percentage and the standard errors are displayed in parentheses when available.
Gupta20 results are taken from the 2020 lyrics transcription challenge of MIREX. The

best results for an evaluation dataset are displayed in bold.

on the Mauch dataset, attaining a WER of 47.25%, but falls behind it on the Jamendo
dataset, shifting the WER from 44.52% to 60.98%. If the better performance of Demirel21
over Gupta20 is hard to conclude, both are clearly outperforming Stoller19 on all evalu-
ation datasets.

One possible explanation is that the latter is based on an E2E acoustic model. As shown
in Section 2.1, recognition architectures based on E2E acoustic model are more data
demanding than classic pipelines such as Gupta20 and the Emir21. Thus the size of
current available singing voice annotated datasets could be too low for systems based
on an E2E acoustic model to obtain similar results to classic SVR systems. Moreover,
Stoller19 is trained by directly taking as input the waveform of the training dataset.
Systems trained using this sort of data are also known to be data-demanding to work
properly [PNP+17].

The superiority of Gupta20 over Stoller19, the two models trained on polyphonic data,
could be further explained by the difference of training annotation quality. In fact, whereas
the quality of annotations of the DALI dataset used to train Gupta20 is high, Stoller19 is
trained on a proprietary dataset with inferior line-level granularity, of unknown features
and unknown quality.

2.3 Impact of singing voice separation

As described in Section 1.2, in this thesis, we focus on considering only polyphonic data
for both the training and evaluation of our models. The influence of a SVS preprocessing
during both training and evaluation in this case is yet to be studied.

In [GYL20], Gupta et al. show that the performance of a standard SVR pipeline is
improved on lyrics transcription when taking polyphonic music as input directly over
using a preprocessing step of SVS. Significant improvements are observed on all evaluation
datasets. On the Jamendo dataset, for example, the WER is reduced from 71.83% to
66.58%. It could be explained since, even with the most recent SVS algorithms, artifacts
and distortions are created in the extracted singing voice which may affect the performance
of trained acoustic models.
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Name Type Quality Language # Tracks Granularity

DALI [MBCHP20] Poly Pro Multiple 5358 Word
Deezer Poly Pro Multiple 845k Line

DSING30 [DB19] Acap Amat English 4324 Line
Hansen [Han12] Poly Pro English 9 Word
Mauch [MFG12] Poly Pro English 20 Word
Jamendo [SDE19] Poly Pro English 20 Word

Table 2.2 – Various state-of-the-art datasets for the lyrics transcription task are
described. The term "type" relates to the nature of the recordings in the dataset under

consideration, which might be either polyphonic or a cappella. The term "Quality"
indicates the quality of the recordings in the associated dataset: professional or

amateur. The term "granularity" refers to the lowest level of annotation accessible for
the corresponding dataset.

In comparison, Basak et al. exhibit an improvement in lyrics transcription performance for
their system by applying a preprocessing step of SVS in [BAGT21]. This is understandable
given that the system is built on an E2E acoustic model, more precisely a transformer.
This sort of system being data-demanding, it is likely that they have difficulty modeling
both the voice and the accompaniment characteristics when trained with insufficient data.
A SVS preprocessing step thus helps ease constraints on the acoustic model by removing
part of the complexity of the input signal to model. On a subset of the DALI dataset,
the WER is decreasing from 60.4% to 57.4%. The system being trained with a dataset of
thousands of tracks, we assume the presence of the background music could help increase
the performance of this sort of acoustic model when trained using a much larger dataset.

Using both the extracted voice track and the entire mix for training and inference of SVR
algorithms is not explored in this thesis and might be an interesting direction for future
work. Indeed, both signals presenting different difficulties, their combined usage could
improve the efficiency of trained systems by providing them complementary information.

2.4 Datasets

In this section, the state-of-the-art datasets for the lyrics transcription task are extensively
described. An overview of all datasets presented in this section are displayed Table 2.2.

2.4.1 DALI dataset

The DALI dataset is the first large publicly annotated singing voice dataset available. It
contains 5358 audio tracks with time-aligned lyrics at paragraph, line and word levels. It
is composed of varied western genres (e.g. rock, rap and electronic) in several languages.
It is extensively described in [MBCHP20]. This dataset is generated automatically using
a teacher-student paradigm from manual annotations found on the internet. In this
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section, how this dataset is generated is described in detail and the quality of the obtained
annotations are discussed.

To create this dataset, the authors use a set of lyrics manually aligned by non-expert
users of karaoke games from various sources. This set of annotations being however
deprived of audio recording, a set of candidate recordings are retrieved from the internet.
A singing voice detection system, based on a deep neural network architecture, is then
applied to each candidate. The result is finally compared with the annotations to find
the best candidate for each annotation file and update the annotations according to it. A
correlation threshold is used to discard badly matching cases.

A student-teacher paradigm is employed to improve the results. More precisely, a first
singing voice detection architecture is trained, on a small manually annotated ground truth
dataset, and utilized to generate a new set of updated annotations from the ones found
on the web. These new annotations are afterwards used to train a singing voice detection
system student that again performs the above comparison and updates annotations. This
process can be repeated iteratively. The authors demonstrate that the teacher-student
paradigm improves the accuracy of the trained singing voice identification system at each
iteration. Two parameters are estimated to update annotations: the offset and the warping
parameters. The first defines the start of the annotations, while the second adjusts the
time grid size by compressing or extending all annotations at once.

On 105 tracks, the authors manually found the two parameters producing the best global
alignment for each pair of audio-lyrics. On this dataset, estimation of parameters is
demonstrated to be closer to the ground truth values, each time a teacher-student itera-
tion is performed. It therefore demonstrates the increase of the quality of audio-annotation
pairs after each new iteration. However, it cannot quantify the absolute quality of anno-
tations. It would necessitate manually reviewing each annotation, which is exactly what
this method attempts to avoid. Looking over the annotations of a hundred songs manu-
ally, the resulting annotations appear to be of high quality overall, as similar to what we
would manually annotate, which might explain the high performance attained by systems
trained on this dataset.

Given overall quality of annotations, this dataset could be used to correctly estimate
efficiency of trained systems for SVR tasks. Manually annotated evaluation datasets
presented Section 2.4.3 are certainly of better quality annotation, however they are only
constituted of a maximum of 20 songs. Metrics evaluated on this type of dataset are
thus less representative of the diversity of cases encountered in an industrial dataset in
comparison to the one computed on a DALI dataset. Furthermore, they may be extremely
noisy, displaying large variations in values between different systems or even between two
training of the same system. Finally, these datasets are only composed of songs in English
and do not make sense for evaluation in multilingual SVR studies.

2.4.2 Deezer dataset

The Deezer catalog has line-level synced lyrics for around 845 thousand tracks. Around
half of them are in English and one-third are in Chinese. The next three most popular
languages are Spanish, French and Portuguese. As described in Section 1.1, these anno-
tations are supplied by external providers and are of variable quality. Moreover, for a
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given track the audio used by the provider to make the annotations is unknown. They
only furnish to Deezer pairing metadata for each annotated file and matching is done
internally to recover the corresponding audio.

Annotated lyrics can then be matched to the wrong audio. Two cases happen. 1) The
lyrics and the audio matched are totally unrelated. These cases give particularly bad
results during evaluation and are therefore discarded after being manually checked. 2)
The lyrics and the matched audio are partially related. It happens when two different
versions of the same song are matched, e.g. a radio edit and an extended version, or a
studio and a live version. A possible consequence is that the audio contains lyrics that
do not appear in the lyrics transcript or the other way around.

Moreover, annotations appear to have been offsetted for some tracks to optimize visual
presentation over exact synchronization (e.g. lyrics displayed a bit earlier are easier to
follow in a karaoke setting). Sometimes, this offset increases with time, indicating the
track used for annotation and the Deezer audio have two different speeds. All this makes
the dataset particularly noisy. Extra care will be taken when evaluating systems on this
data by, for example, correcting the offset. Collecting data from the Deezer catalog,
various evaluation datasets will be defined in the next chapters.

2.4.3 Additional datasets

A cappella datasets: As described Section 2.2.1 some large a cappella datasets were
recently introduced [GTLW18, DB19]. All these datasets are constructed from the freely
accessible DAMP Sing! dataset comprising lyrics prompts, prompt timings, and accom-
panying audio. Because there may be variations between the lyrics prompts and prompt
timings and what is actually sung in the recordings, an additional procedure is usually
described to retrieve the ground truth alignment timings and transcripts of the audio.

The authors in [DB19] notably describe how to construct the DSING30 dataset. The
obtained dataset consists of 150 hours of singing voice in English at line level. A partition
between train, validation and test subset is also given to create the first reproducible
benchmark of lyrics transcription for a cappella data. As described in the previous chapter,
we assume in this thesis that only polyphonic data are available. The a cappella datasets
are thus only presented for reference.

Moreover, the DAMP database, from which these datasets are generated, are composed
of audio of people recording themselves singing popular songs on their phone. The quality
and diversity of the obtained database is thus far from those of an industrial size catalog
composed of professionally quality recordings. Even when compared to professional a
cappella recordings, this sort of amateur recording will not contain multiple vocalists at
the same time, nor will include any processing on the voice.

The state-of-the-art system for a cappella recognition obtained a WER of 15.65% on the
test part of the DSING30 dataset. Given the difference of performance when compared to
systems evaluated on polyphonic datasets, this could suggest vocal separation (or at least
the modeling of the accompaniment) is an important element of a SVR system. Indeed,
DSING30 recordings could be considered as polyphonic tracks where the singing voice has
been perfectly extracted. Still, it would need to assume that performance between this
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dataset and the polyphonic datasets used for evaluation are comparable. In practice, the
recordings of DSING30 could be examples less difficult for the lyrics transcription task
than the ones of the polyphonic datasets.

Standard polyphonic datasets evaluation: Some polyphonic datasets are consid-
ered as classic evaluation datasets for the SVR. Firstly, the Hansen dataset [Han12] is a
small dataset of nine pop music songs in English. Secondly, we also consider the Mauch
dataset [MFG12] which consists of 20 pop music songs in English. Finally, the Jamendo
dataset [SDE19] is composed of 20 music songs in English of ten different western music
genres. All datasets are annotated with start-of-word timestamps.

These datasets are used in the MIREX challenge for evaluation of both lyrics-to-audio
alignment and lyrics transcription tasks. At the end of the thesis, it has been discovered
that Mauch and Hansen datasets both present an overlap with the DALI dataset. All
systems trained on the DALI dataset thus certainly present optimistic metrics on these
datasets. This overlap is not noted in any of the literature paper presenting systems
trained on the DALI dataset and evaluated on these datasets. Thus these might also
present optimistic values on them.

2.5 Conclusion

In this part, we attempt to provide suggestions of what is currently the ideal approach to
train a lyrics transcription system based on published research as of this thesis’s writing
date. Beforehand, it is important to note that the literature is continuously and rapidly
developing, and that the state-of-art altered significantly throughout the thesis itself.
Furthermore, we continue to presume that only polyphonic data is accessible for training
and testing.

To begin with, it appears that, given the publicly available annotated singing voice data,
traditional systems of SVR outperform systems based on E2E acoustic models. Addi-
tionally, given [GYL20], it seems that providing musical information, such as the genre,
improves results for this sort of classic system. Next, a SVS preprocessing step appears
to decrease the performance for traditional approaches. This type of system seems to
be able to enhance transcription by leveraging the relationship between the background
accompaniment and the singing voice. Inversely, when applied to systems based on E2E
acoustic models, this preprocessing step appears to improve the performance. Because
this type of system is data-intensive, it is likely that it may struggle to model both the
voice and the background accompaniment when trained with insufficient data.

Finally, the literature suggests that training systems with moderately sized datasets of
high-quality annotations are favored over bigger datasets of low-quality annotations. To
summarize, the best approach to do lyrics transcription at the moment seems to be:
using a conventional pipeline of SVR, without any preprocessing step of SVS, trained on
a high-quality annotation dataset and informed by musical information if available.
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Chapter 3

Creating a singing voice recognition

pipeline

As explained in the previous chapter, the acoustic model is the bottleneck of this system.
It predicts the probability of text units, e.g. characters or phonemes, through time. Clas-
sically, the chosen text units for the acoustic model are phonemes and a pronunciation
lexicon is used to map words to phonemes before training. A pronunciation lexicon can
be described as a list of words with their possible pronunciations given a considered pro-
nunciation alphabet (e.g. the IPA). A classic Singing Voice Recognition (SVR) approach
is displayed in Figure 3.1.

The input is an acoustic feature matrix X extracted from the audio and the outputs are
the probability of each phoneme in audio through time, known as posteriorgram. More
generally, a posteriogram is defined as a matrix describing the likelihood of the considered
text units over time. The language model L provides a probability distribution over the
possible combinations of text units. Usually, language models are defined at the word
level. Acoustic and language models are habitually treated independently and trained
separately.

The decoder provides an estimated transcript ŷ for an acoustic feature matrix given an
acoustic model, a language model, and if needed a pronunciation lexicon. More formally,
the goal of the decoder is to compute the most likely transcript ŷ given the input matrix
X, such as:

ŷ = argmax
y

P (y|X) (3.1)

3.1 Singing voice separation

The goal of a Singing Voice Separation (SVS) algorithm is to separate a music recording
into two tracks: the singing voice and the instrumental accompaniment. State-of-the-art
methods are based on supervised deep learning [HKVM20] and are widely used in SVR
systems [BAGT21] as a preprocessing step before feature extraction. An example of a SVS
algorithm is given in Figure 3.2. Consider the signal X ∈ R

N , of N samples, composed of
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Figure 3.1 – A classic SVR pipeline.

two sources: the singing voice Svoc and the accompaniment Sinstr. Assuming the linearity
of the mixture, it can be simply represented as the sum of both sources such as:

X(t) = Svoc(t) + Sinstr(t)

A Short Time Fourier Transform (STFT) is then commonly used to map the mixture
from the time-domain to the time-frequency domain. A matrix X ∈ C

K×T with K and
T denoting the number of frequency bins and frames, respectively. Knowing the linear
property of the STFT, the preceding equation become in the time-frequency domain:

X(k, t) = Svoc(k, t) + Sinstr(k, t) (3.2)

where Svoc and Sinstr are the STFTs of the singing voice and the instrumental signals. In
a SVS system, a mask Mi(k, t) ∈ [0, 1]K×T is typically computed for each source Si(t),
where i ∈ {voc, instr}, and applied to the mixture to isolate them:

Ŝi(k, t) = Mi(k, t)× X(k, t) (3.3)

where × is the element-wise multiplication. A SVS system does not generally output the
desired masks directly but an estimation of the STFT of each source. Because the phase of
the STFT is difficult to predict, the estimation is usually limited to the amplitude of this
matrix, the so-called spectrogram. Such SVS systems thus take as input the spectrogram
of the mixture and produce two estimated spectrograms, one for each source, ˆ|S|instr
and ˆ|S|voc. The desired masks are finally computed, for each source using both obtained
spectrograms such as:

Mi(k, t) =
ˆ|S|i(k, t)

ˆ|S|voc(k, t) +
ˆ|S|instr(k, t)

(3.4)

An estimate of each isolated source’s Fourier transform is then obtained by applying each
corresponding mask to the mixture, recovering the phase from it, as in Equation (3.3).
Finally, by doing an inverse STFT, an estimate of each isolated source Ŝi is obtained from
the corresponding Fourier transform.
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Figure 3.2 – An example of SVS in the time-frequency domain.

3.2 Feature extraction

Mel-spectrogram features are used broadly in the Automatic Speech Recognition (ASR)
domain [PCZ+19]. They have traditionally been favoured over spectrograms, being more
compact, perceptually driven, but still retaining a substantial amount of information.
These features are notably more information-preserving than traditional Mel-Frequency
Cepstral Coefficients (MFCC), another feature commonly utilized [DM80, GYL20].

More formally, consider a raw digital audio signal X ∈ R
N of N samples. To obtain a more

sparse representation, a STFT is applied to it. A matrix X ∈ C
K×T with K and T being

respectively the number of frequency bins, and the number of frames is thus obtained.
Only the modulus (the so-called spectrogram) is kept. The spectrogram frequencies are
then mapped from linear scale to mel-scale, known to better approximate human auditory
perception [SVN37]. To do so, the mel-scale filter bank H(m, k) is used. As displayed in
Figure 3.3, these filters are triangular band pass filters uniformly distributed on the mel
scale. Mel coefficients are afterwards obtained after a logarithmic scaling, such as:

∀m, t ∈ J1,MK × J1, T K, mel(m, t) = log(
K
∑

k=1

H(m, k) · |X(k, t)|) (3.5)

The obtained representation is the desired mel spectrogram where M is representing the
number of filters employed, generally 40.

3.3 Acoustic model

Usually, an acoustic model H is defined as a model taking as input an acoustic feature
matrix X extracted from the considered audio and outputting a posteriorgram R, i.e. a
matrix describing the probability of each considered text unit through time (e.g. phoneme
or character). The acoustic model processes the feature vector input sequence frame by
frame, generating the appropriate text unit probability vector for each time frame. Classic
Deep Neural Network (DNN)s can be used as an acoustic model [HDY+12].

However, recurrent networks are typically preferred since these models take prior time
frames into consideration by utilizing a persistent hidden state value [GMH13]. It is
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Figure 3.3 – Example of a mel filter bank.

particularly relevant for modeling properties of a sequence with temporal dependency like
feature matrix. Still, vanilla Recurrent Neural Network (RNN)s suffer from ’vanishing
gradient’ issues, making long-term dependency modeling problematic. The Long Short-
Term Memory (LSTM) network is a notable recurrent model architecture that can cope
with this problem. It is made up of an input gate, a forget gate, and an output gate
regulating the transmission of information passing through the input vector, the cell’s
hidden state and the output vector. These gates aid the network in coping with lengthy
sequences and resolving vanishing problems. Exhaustive description of the network is
given in [HS97].

A phrase can be thought of as a non-causal sequence where an uttered word is emitted
in function to previous and subsequent words in the sentence. At a lower level, one
considered text unit also depends on text units of past and future time frames. Because
recurrent layers only analyze one frame given the previous ones, they do not consider data
in subsequent frames. Wrapping two LSTM layers into a layer with shared inputs and
concatenated outputs is an effective technique of employing LSTM layers on non-causal
sequences. One LSTM layer analyzes sequences ahead, while the other analyzes sequences
backward, resulting in the use of future and past information to compute the final output
vector. This layer is known as Bidirectional Long Short-Term Memory (BiLSTM) and is
extensively presented in [SP97].

3.4 Intermediate representation

3.4.1 Discussing character or phoneme

Multiple text units can be considered as outputs of the acoustic model. The most classic
are characters [SDE19], e.g. of the Latin alphabet, and phonemes [GYL20]. The first
representation alleviates the need of a pronunciation lexicon. As described in Section 2.1,
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this representation is used in End-To-End (E2E) acoustic models. Such models take as
input low-level features and directly output characters. Recognition systems based on
this type of acoustic model, are however known to be more data-demanding for training
in comparison to a more classic phoneme-based architecture [GJ14].

Moreover, the character representation is badly fitted for multilingual systems. Indeed,
character-based SVR systems cannot be employed to transcribe songs in languages that
employ a different writing system than the one used by the system. Phoneme-based
methods, by comparison, may transcribe any language as long as a pronunciation lexicon
is provided for it. This subject is extensively studied in Section 6.1.1.

The second representation, the phonemes, can be defined as the smallest distinguishable
unit that can be isolated in a speech sequence. One of the most popular phoneme sets
is the International Phonetic Alphabet (IPA) which is a standardized representation of
speech sounds in written form of all spoken languages. It is described extensively in the
next section.

3.4.2 IPA Phonemes

General presentation:

The IPA is a phonetic alphabet composed of more than 160 symbols to transcribe speech
or singing. 107 of these symbols are phonemes. These phonemes are characterized by
distinctive features like: ’Voicing’, ’Tenseness’ and ’Frontness’. Features of a phoneme
describe articulatory and acoustic properties of the realization of this phoneme. Such fea-
tures are used to group phonemes into natural classes. Acoustic realizations of phonemes
of the same classes are more likely to have comparable behaviors as they have common
features. The two largest natural classes are consonants and vowels.

They are principally distinguished by a feature called ’Sonority’, linked to the amount of
acoustic energy of the realization of the phoneme. Vowel sounds possess a lot of acoustic
energy: they are said to be sonorous. It can be explained by the fact that vowels are
produced with an open vocal tract and always vibrating vocal folds. Furthermore, vowels
are often maintained for a lengthy period of time. This is especially true for the singing
voice, where the duration of vowels generally corresponds to the duration of notes [Mes13].
In opposition, consonant sounds are shorter and with a partially or fully closed vocal tract.
The sounds of consonants are then less sonorous. Vocal chords can vibrate or not during
the acoustic realization of a consonant.

IPA vowels:

All vowels can be described simply using few features. These vowels are commonly repre-
sented in the IPA vowel chart displayed in Figure 3.4. Similarity between vowels can be
easily computed using the distance between vowels in this trapezium. Vertical and Hor-
izontal positions are respectively linked to the ’Height’ and the ’Backness’ of the vowel.
Such features are theoretically describing the location of the tongue during the phonation:
from high to low for ’Height’ and from front to back for ’Backness’ where high is at the top
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Figure 3.4 – IPA vowel chart reproduced from [vow]. Nasal vowels are not included in
the figure. CC BY-SA 4.0, via Wikimedia Commons. Permission granted for reuse.

of the diagram and front at its left. In practice, each position is linked to one of the two
first formants. Two more features are generally used to describe vowels: ’Tenseness’ and
’Rounding’. In the diagram, vowels are grouped in pairs of unrounded and rounded vowel
sounds where lips are respectively unrounded and rounded during phonation. ’Tenseness’
is linked to the amount of muscular effort needed for the phonation of one particular
phoneme.

IPA consonants:

Consonants can be discriminated with the following features: ’Voicing’, ’Manner of artic-
ulation’ and ’Place of articulation’. This type of feature can be used to further decompose
consonants into various natural classes like plosive or fricative. A phoneme is called voiced
if the vocal cords are vibrating during its acoustic realization and voiceless in the opposite
case. The ’Place of articulation’ characterizes where the vocal tract is the most obstructed
during the acoustic realization of the consonant. The ’Manner of articulation’ describes
the way it is obstructed. Most consonants are described in the IPA pulmonic consonant
table displayed in Figure 3.5.

Rows design the ’Manner of articulation’ and columns the ’Place of articulation’. ’Place
of articulation’ begins on the left with the lips and progresses gradually to the glottis on
the right. ’Manner of articulation’ begins at the top with the greatest obstruction of the
vocal tract (i.e. plosives) and progresses gradually to the bottom with the least degree
of obstruction (i.e. approximants). Consonants can be alone in the table or arranged in
pairs of voiced and voiceless phonemes. A more complete overview of characteristics of
IPA phonemes is given in [And18].
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Figure 3.5 – Table of IPA pulmonic consonants [con]. CC BY-SA 3.0, via Wikimedia
Commons. Permission granted for reuse.

3.5 Connectionist temporal classification

Acoustic models are usually trained using alignment annotations, at the frame level,
between audio and text. However, the availability of such annotations is very limited for
polyphonic music where they are traditionally generated by employing an intermediate
model [Kru18], leading to suboptimal performance [SDE19].

One way to go around this problem is to use the Connectionist Temporal Classification
(CTC) algorithm [GFGS06] that will be presented succinctly in the next paragraphs. As
explained in Section 2.1, this technique is particularly used to train E2E acoustic models
[SDE19], removing the requirement for character annotations at the frame level, which
neither exist nor make sense in practice. A CTC system can then be trained directly using
a dataset {(Xi,ui)

Ndata
i=1 } where Xi is a matrix of acoustic features, ui the corresponding

sequence of characters and Ndata the number of examples in the dataset.

General presentation:

The CTC algorithm enables to train a model without any predefined alignment, by intro-
ducing a blank token ǫ in the set C of units supported by the model. Any unit, including
ǫ, can be emitted at each frame by the model. Generally, this model is a RNN, but any
model capable of giving a distribution over outputs for a fixed context of the input X
could be used. The probability of the output unit sequence is maximized using the algo-
rithm by marginalizing, over all possible alignments, for a given input X. The objective
function being differentiable, the network is trained using back-propagation through time,
by providing the phonetic transcription y of the segment of lyrics. For a considered input
X, an output distribution through all possible y is finally obtained.

A comparison between outputs of a model trained with frame-level annotations and a CTC
trained model are displayed in Figure 3.6. It shows that the CTC model, by contrast to
the framewise one, did not learn boundaries and timings. It can be explained as the
CTC algorithm considers two label sequences equivalent if they only differ in alignment.
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Figure 3.6 – Framewise and CTC models predicting a speech signal reproduced from
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The CTC model prediction can be described as a sequence of predicted spike units (e.g.
character or phoneme) separated by ’blank’ units. Still, CTC models are shown to infer
reliable alignments when outputs of each frame depend on the entire input sequence using
e.g. BiLSTM [VHM+20]. In contrast, the uni-directional CTC acoustic model suffers from
alignment delay [SdCQS+15].

CTC alignments:

When mapping X = (X1,X2,X3,X4,X5,X6), to y = [a, b, c], multiple alignments are
possible: aaabbc, aabbcc ... However, these sorts of alignments raise two concerns: it is
not always desirable to map every input frame to an output symbol, and it is necessary
to be able to have two identical symbols adjacent to one another. These problems are
resolved using an additional symbol: the blank symbol ǫ. The ǫ symbol is considered
as a ’non-emission’ symbol and is simply discarded when an alignment is mapped to its
corresponding transcript. Alignments allowed by the algorithm for a given transcript
y must fulfill two requirements. Firstly, they must have the same length as the input.
Secondly, they must map to the given transcript after merging the repeated symbols and
discarding the ǫ.

The CTC alignments have multiple properties. They are monotonic and many-to-one
(many inputs can map to the same output however reciprocity is not true). In the case of
lyrics transcription, both assumptions can be assumed to be valid. Indeed, the relationship
between frames of singing and text units is always monotonic in time. Furthermore, the
duration of a frame is typically significantly less than that of a text unit (e.g. phoneme or
character), this last usually running through numerous frames. Inversely, it seems unlikely
that a given frame is overlapping multiple text units. The second assumption also implies
that the length of y cannot be longer than the length of X. Such a constraint is realistic
in the case of SVR, the size of the input being generally much longer than the output one.
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Loss function:

A RNN is classically used to produce per time step probabilities for the CTC algorithm.
Its output is constituted of all text units considered (e.g. characters or phonemes) and
the additional ǫ label. Considering X, an input sequence of length T , the obtained output
vectors Yt are normalized by a softmax function as:

P (s, t|X) =
eys,t

∑

s′ e
ys′,t

(3.6)

for 1 ≤ s ≤ |C|, 1 ≤ t ≤ T . C and T are respectively the set of units outputted by the
model, including blank, and the number of temporal frames. Here, ys,t is the sth element
of the vector Yt. The per-time step probability of each unit of the vocabulary C given the
input X is then obtained. The probability of an alignment a, given input X, can then be
easily computed as the the product of the emission probabilities at every time step such
as:

P (a | X) =
T
∏

t=1

P (at, t | X) (3.7)

The probability of a given transcription y can finally be obtained by marginalizing all
other possible alignments mapping to it with:

P (y | X) =
∑

a∈β−1(y)

P (a | X) (3.8)

here, β is the function that, for a given alignment, merges all repeated characters and
discards the ǫ units. A distribution of all possible y for a given input X is finally obtained.
The CTC cost function, or CTC loss function, is usually defined as the negative log like-
lihood of this probability. The network is therefore optimized to minimize this cost. This
loss function being composed of sums and products of the per time step probabilities, it is
differentiable with respect to them. Knowing this, the gradient of this loss function can be
easily computed with respect to these probabilities and used to perform backpropagation.

CTC forward-backward algorithm:

The CTC loss being computationally expensive, a forward backward algorithm is generally
used to compute it. This algorithm is a dynamic programming algorithm allowing a much
faster computation of the loss. It avoids the need of computing the probability of each
possible alignment at each time step, which would quickly become untractable. This
algorithm is similar to the one used to compute the probability of a given sequence in
the context of a Hidden Markov Models (HMM) with some specificity due to the CTC
algorithm properties. The basic idea is to merge two alignments that arrive at the same
output at the same step.

An example of the computation performed by the dynamic programming algorithm is
displayed in Figure 3.7. Here, consider z, which is the transcript y extended by an ǫ at
the beginning, the end, and in between every unit. A decoding diagram of size |z| × T
is then created. Each node αs,t in the diagram represents the value of the CTC score of
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Figure 3.7 – Computing the CTC score P (y|X) using dynamic programming, node (s, t)
in the diagram represents αs,t. The score is computed by summing the probabilities of
the two final nodes. Here, an example is given for X = (X1, ...,X6) and y = [a, b]. This
figure is adapted from [Han17]. It is licensed under Creative Commons Attribution 4.0

Int. Permission is granted for adaptation

the sub-sequence z1:s after t frames. Every valid alignment has a path in this graph. The
αs,t scores are afterwards computed efficiently by merging together alignments reaching
this node. αs,t is subsequently computed recursively from α’s of the previous frame. Only
transitions between blank and non-blank characters, and between pairs of distinct non-
blank characters are allowed. Since ǫ at the beginning and the end of the sequence is
optional, there are two valid starting nodes and two final nodes. The coefficients α’s are
initialized as follows:

αs,1 = P (zs, 1 | X) for s ∈ {1, 2} and αs,1 = 0, ∀s > 2 (3.9)

Recursion is given by:

αs,t = (
τ=1
∑

τ=0

αs−τ,t−1)P (zs, t | X), if zs ∈ {ǫ, zs−2}

αs,t = (
τ=2
∑

τ=0

αs−τ,t−1)P (zs, t | X), otherwise

(3.10)

Finally, the CTC score is given at the last step T by summing the two final nodes and
applying negative log with:

P (y|X) = − log(α|z|,T + α|z|−1,T ) (3.11)

Numerical stability:

As the naive CTC scoring is numerically unstable, multiple solutions are used to avoid
underflow. The α’s coefficients can be normalized at each time step such as:

ct =
∑

s

αs,t, α̂s,t =
αs,t

ct
(3.12)
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with ct the normalization coefficient of the tth time step. However, underflow can still
happen for long input. Preferably, computations are done in log-space using the log-
sum-exp trick [Han17]. Inference is equally performed in log-space using the log-sum-exp
trick.

CTC limitations:

An important property of the CTC algorithm is the conditional independence assumption.
The algorithm considers that given the inputs, each output is independent of each other.
The CTC algorithm thus cannot learn a language model over the outputs. An additional
language model is then generally included to improve the transcription performance. This
property, however, makes acoustic models trained using the CTC algorithm straightfor-
ward to transfer from one domain to another (e.g. new genres or new languages), with
only the language model needing to be changed.

3.6 Language modeling

A language model L is traditionally described by a vocabulary, defining a collection of
text units the model can identify, and a probability distribution over all potential unit
sequences. In this section, we consider the text units to represent words, a popular choice
for SVR systems [GYL20]. Still, language models can also be specified at the level of
subword (e.g. phoneme or character). For any sequence of words w, a language model
computes the corresponding probability P (w). Considering a sequence of N words, the
probability can be written:

P (w1, ...,wN) = P (w1)P (w2|w1)...P (wN |w1, ...,wN−1) (3.13)

where wi is the ith word of the sequence. Each conditional term could be estimated from
a training dataset, using relative frequency counts with:

P (wN |w1, ...,wN−1) =
C(w1, ...,wN)

C(w1, ...,wN−1)
(3.14)

where C is the function counting the frequency of each sentence in the considered dataset.
However, this type of method becomes infeasible when considering large strings, with most
of the sentences having a count of zero in the training dataset. To simplify this problem,
for a given word, the n-gram model only considers its n− 1 preceding words are sufficient
to specify the probability of a new word. It then makes the following assumption

P (wN |w1, ...,wN−1) ≈ P (wN |wN−n+1, ...,wN−1) (3.15)

thus, the probability of a sequence w is computed by:

P (w1, ...,wN) = P (w1)P (w2|w1)...P (wN |wN−n+1, ...,wN−1) (3.16)

with each conditional term being given by:

P (wN |wN−n+1, ...,wN−1) =
C(wN−n+1, ...,wN)

C(wN−n+1, ...,wN−1)
(3.17)
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A n-gram model is therefore a statistical model predicting the probability of a word
given its n − 1 previous words. More precisely, it is capable of computing, for each
possible sequence of n words of the vocabulary, the probability of the last word given the
previous ones. The probability of a sequence of words is finally directly given by Equation
(3.16). A n-gram is simply defined as a sequence of n words. The language models are
trained on text datasets by considering all n-grams present. However, even for large text
databases, some n-grams are usually missing and assigned zero probability while having
non-zero probability in real-world circumstances. Other n-gram occurrences are too low
to provide a reliable estimate of their probability. Several probabilities of n-gram are then
underestimated which can degrade the model performance.

To mitigate this problem, several methods are classically employed like smoothing. This
method includes updating the likelihood of a n-gram by using probabilities of lower order
n-grams (whose chance of occurrence in a text corpus is higher). By changing the way
the probability mass is allocated, models generalizing better are obtained. One way to
adjust probability is the so-called discount. The main idea is to reduce the probability of
the seen sequences of a given amount, that are then dispersed among the probabilities of
unobserved n-grams. When no instance of a n-gram is found, the algorithm thus resorts
to the probabilities of n-grams of lower order.

A n-gram of size one is referred to as unigram, size two as bigram and size three as
trigram, for higher order they are referred as n-gram. Bigram or trigram models are
the most commonly used. In any case, the probability of n-grams of inferior rank are
also computed to be able to compute Equation (3.16). Considering n-grams of higher
rank provides better statistical models but are more resource demanding. Moreover, the
number of n-grams to compute grows exponentially with n, most of them being assigned
a probability of zero.

3.7 Decoding

This section is mainly taken from the work of Hannun [Han17]. We consider the specific
case where the acoustic model is trained with the CTC algorithm. As a reminder, the
decoder’s objective is to compute the most likely transcript ŷ given the input matrix X,
such as:

ŷ = argmax
y

P (y|X) (3.18)

3.7.1 Greasy decoding

An easy way to perform decoding, for a SVR approach, is the greasy decoding [GJ14].
It is at first a correct approximation to obtain a probable output for a considered input.
It solely consists in taking, at each time step, the output of the CTC trained acoustic
model with the highest probability and returning the corresponding sequence of symbols
â. More formally:

â = argmax
a

∏

t

P (at|X) (3.19)
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Figure 3.8 – A vanilla beam search algorithm with an alphabet of {ǫ, a, b} and a beam
size of three. At each time step t, the set of possible alignments is extended with all
possible units of the alphabet and the top three alignments are kept. This figure is

reproduced from [Han17]. It is licensed under Creative Commons Attribution 4.0 Int.
Permission is granted for reuse.

An estimation of the transcription ŷ is then simply obtained after merging repeated
symbols and discarding CTC labels. This method has two drawbacks. Firstly, it does
not consider the use of an additional language model. Secondly, it does not take into
account that, in the CTC paradigm, multiple alignments can map to the same output.
So, such a basic decoding can perform well when a single alignment possesses most of the
probability mass, but can miss the correct output otherwise. As an example, consider two
alignments that map to the same valid output, each with a lower probability than a third
alignment mapping to an incorrect outcome but obtaining a greater value when summing
both probabilities. Using the greasy decoding, the third output is returned, obtaining an
incorrect transcription.

3.7.2 Prefix beam search

One decoding taking into account the many-to-one property of the CTC algorithm is the
CTC prefix beam search. This approach is an extension of the vanilla beam search. A
vanilla beam search is displayed in Figure 3.8. Starting from an empty string, a set of
probable alignments is proposed, at each time step, by extending preceding hypotheses
with all possible units of the considered alphabet. Following that, only the most likely
alignments are preserved, depending on a tunable parameter N delimiting the size of the
hypothesis pool, the so-called beam size. Thus, the algorithm outputs, at the last time
frame, the N top alignments.

In the case of the CTC prefix beam search, to handle the many-to-one property of CTC
alignments, instead of outputting the best N alignments, the N best prefixes are returned.
Starting with an empty string, a set of possible prefixes is outputted, for each time frame,
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Figure 3.9 – A prefix CTC beam search algorithm with an alphabet of {ǫ, a, b} and a
beam size of three. In this case, the top three prefixes are kept at each time step t. The
probability of one prefix is obtained by summing probabilities of all alignments mapping

to it. This figure is reproduced from [Han17]. It is licensed under Creative Commons
Attribution 4.0 Int. Permission is granted for reuse.

by extending previous prefixes with all potential units of the considered alphabet. The
score of each prefix is then computed by summing scores of each alignment mapping to it,
i.e. after merging and discarding characters. Again, only the top N prefixes are preserved.

The top one prefix is usually chosen as the estimated transcription ŷ, but the pool of
answers can be also re-scored using another function before making the final decision.
The prefix algorithm is displayed in Figure 3.9. It has been successfully applied to SVR
systems [SDE19]. When using few computational resources, i.e. a small beam size, the
method may not always discover the most likely transcription. However, when given
greater processing resources (i.e. by increasing the beam size), this approach is known to
converge asymptotically to it.

Looking in Figure 3.9, at the third temporal frame, there is a case where a proposed
extension can generate two hypothetical prefixes. Such cases happen when the new pro-
posed unit for a prefix is a repetition of the last unit of the prefix. The last unit of the
first hypothetical prefix is unrepeated and its score is obtained from the probabilities of
all alignments mapping the previous prefix not ending with an ǫ. Inversely, the last unit
of the second hypothetical prefix is repeated and is obtained from the probabilities of all
alignments mapping to the previous prefix ending with an ǫ, as it is required between
repeated characters.

To compute the probability of both new prefixes, with or without a repeated last unit,
knowing which alignments of the previous prefix concerned end with an ǫ or not is needed.
The probability is then preserved, for each prefix in the beam, of all alignments ending with
an ǫ, and the probability of all other alignments. It permits, if a split occurs during a pro-
posed extension, to preserve the required portion of the prior considered prefix’s score for
both new prefixes. Their combined score is used to rank the hypothetical prefixes at each
step before trimming the beam. The way this case is handled is displayed in Figure 3.10.
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Figure 3.10 – Two probabilities are kept for each hypothetical prefix: the sum of
probabilities of all alignments mapping to it ending with an ǫ and the sum of

probabilities of others mapping alignments. It allows to compute the probability of new
prefixes when a proposed extension splits into two hypotheses: with or without a

repeated character, an ǫ being required between the latter. This figure is reproduced
from [Han17]. It is licensed under Creative Commons Attribution 4.0 Int. Permission is

granted for reuse.

The complete CTC prefix beam algorithm is extensively described in [AAA+16]. Still,
the presented algorithm does not yet incorporate any language modeling.

3.7.3 Incorporating language modeling

A language model can be directly incorporated during the inference, obtaining as a new
decoding equation:

ŷ = argmax
y

P (y|X)P (y) (3.20)

The probability of the transcription given the input acoustic feature matrix P (y|X) is
given by the acoustic model and the probability of the transcription P (y) is given by the
language model. In the case of the prefix algorithm, the latter is only taken into account
when a prefix is extended by the type of text unit considered by the language model, i.e.
a character or a word. As a consequence, the algorithm tends to favor shorter prefixes.
To mitigate this effect, and balance between both terms, two tunable parameters are also
inserted, such as:

ŷ = argmax
y

P (y|X)P (y)aL(y)b (3.21)

where a is the grammar scale factor, b the insertion penalty parameter. L(y) is a function
outputting the length of the string, given the considered text unit of the language model.
It is acting as an insertion bonus factor to avoid the decoder to always favor shorter
transcripts. The grammar scale parameter simply allows to adjust acoustic and linguistic
information balance during decoding. Both parameters are usually chosen on a validation
dataset as in [SDE19].
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3.8 Evaluation

Results are classically analysed using the Character Error rate (CER) and Word Error
rate (WER) metrics. They are both based on the Levenshtein distance. This distance is
used to quantify the similarity between two strings of characters. It is equal to the minimal
number of character operations (i.e. insertion, deletion and substitution) needed to map
one string to the other. The CER is simply the Levenshtein distance between a generated
and an expected character sequence, where all character operations are weighted equally,
normalized by the length of the expected sequence. Here, the Levenshtein distance is the
smallest number of operations required to transfer the produced string to the reference
one. The WER is derived from this definition, working at the word level instead of the
character level. It can be computed as:

WER =
(S +D + I)

N
=

(S +D + I)

(S +D + C)
(3.22)

where S is the number of word substitutions, D is the number of word deletions, I is
the number of word insertions, C is the number of correct words and N is the number of
words in the reference. The same equation can be directly deduced for the CER. Both
metrics are better when smaller. Standard errors are given whenever possible using the
bootstrapped toolkit 1.

1. Available at https://github.com/facebookarchive/bootstrapped
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Chapter 4

A vanilla lyrics transcription system

In this chapter, we present the first lyrics transcription implementation that we developed.
This approach is heavily inspired by Stoller19 [SDE19] which was the state-of-the-art
system in Singing Voice Recognition (SVR) at the time. The majority of the SVR systems
developed in the subsequent chapters are derived from this iteration. It will therefore
serve as a reference system to describe these implementations. We will emphasize their
differences with this reference system, each design choice being grounded on the task’s
specificity. An overview of the approach is given in Figure 4.1.

It is composed of a series of modules sequentially applied, the most significant of which
are the acoustic model H and the language model L . The system takes as audio input
a monophonic audio signal X ∈ R

N , where N is the number of samples and outputs the
estimated transcript ŷ. An isolated singing voice Xvoc ∈ R

N is first extracted from the
audio input. An acoustic feature matrix X ∈ R

F×T is subsequently computed from it,
where F is the feature size and T is the number of frames. The acoustic model H is an
audio-to-character module taking as input the acoustic feature matrix and outputting a
posteriorgram R. More formally, given X, the matrix of acoustic features, each coefficient
rs,t provides an estimation of the posterior probability of cs, the sth character being uttered
at the tth frame, such as:

rs,t = Hs,t(X) = P (cs, t | X), (4.1)

for 1 ≤ s ≤ |C|, 1 ≤ t ≤ T ′, where C is the set of units outputted by the model and T ′ is
the number of frames obtained after the model’s downsampling. It consists of 26 lowercase
letters of the Latin alphabet, and the word-boundary ’space’ token, the instrumental token
’I’, described in Section 4.2, the apostrophe and the Connectionist Temporal Classification
(CTC) blank token ǫ introduced in Section 3.5. The decoder finally takes as input the
character posteriorgram R and the language model L to output the estimated transcript
ŷ.

The chapter is divided into four sections. First of all, the developed lyrics transcription
implementation is presented in Section 4.1. After that, the dataset processing is described
in Section 4.2. Then, the system’s parameters are detailed in Section 4.3. Finally, the
evaluation of the designed system is performed in Section 4.4. Its performances are com-
pared to those of state-of-the-art architectures for the lyrics transcription task.
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Figure 4.1 – General overview of our first lyrics transcription system.

4.1 General presentation

The acoustic model H is an End-To-End (E2E) acoustic model. It takes as input low
level features and directly outputs the character probability through time. Such a model
alleviates the need of a pronunciation lexicon as described in Section 3.4.1. As discussed
in Section 2.3, a preprocessing of Singing Voice Separation (SVS) is likely to improve the
performance of this type of acoustic model. Such preprocessing is then performed to the
input audio before calculating features from the extracted singing voice.

As input features, we choose to use mel-spectrograms over spectrograms for the reasons
described in Section 3.2. The use of the direct waveforms could be an alternative, however,
systems trained on waveforms are known to need way more data than those trained on mel-
spectrograms to obtain similar results [PNP+17]. Moreover, in [DS14], the authors show
that the first convolutional layer of their trained network on this data learns something
very similar to sinusoids thus having its output comparable to a Fourier transform.

This audio-to-character module is implemented using a Convolutional Recurrent Neural
Network (CRNN) trained with a CTC algorithm, alleviating the need of frame level syn-
chronized annotations. As described in Section 2.1 and Section 2.2, the CTC algorithm
has been applied successfully to both the Automatic Speech Recognition (ASR) and SVR
domains. To reduce the feature dimensionality and accelerate training, we use additional
convolutional layers. We use bidirectional Long Short-Term Memory (LSTM)s as Recur-
rent Neural Network (RNN) layers, so outputs at each frame depend on the entire input
sequence as in [GJ14]. For the language model L , we use a simple word n-gram model
as is often done in state-of-the-art approaches seen in Chapter 2. H and L are trained
independently.
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4.2 Dataset Processing

The audio-to-character model H is trained with the English part of the DALI dataset.
Tracks are downsampled to 16 kHz and converted to mono. Vocals from each song are
then extracted using Spleeter [HKVM20]. For each song, training samples are generated
by segmenting the track using a window of five seconds with a hop size of 2.5 seconds.
The character sequence associated with a segment is created by concatenating all words
whose start position are within the segment. In case no words start within a segment,
we generate a token ’I’ (for ’Instrumental’). Character sequences are transformed to fit
the set of characters C outputted by the model: each character sequence is converted to
lower-case and non-valid characters are discarded. We split the dataset into a training
set consisting of 85% of the data, a validation set containing 1% of the data, and a test
set containing 14% of the data. This split is done in an artist-aware fashion [Fle07]. We
obtain datasets of 384, 5 and 63 hours of music.

The lyrics text corpus used to train the language model is simply obtained using the
lyrics’ text of the training set previously computed. Various basic text preprocessing
steps are then applied, like tokenization, unicode normalization and removing non-ASCII
characters, to obtain the final lyrics text corpus. It is composed of 22000 words with
only 6000 words with more than five occurrences. These characteristics are comparable
to those of Mesaros’s lyrics corpus described in [Mes12].

4.3 Model parameters

The model H is composed of two convolutional layers, followed by three Bidirectional
Long Short-Term Memory (BiLSTM) layers and a dense layer. An overview of the model
is displayed Figure 4.2. 40 mel-scale log filter-bank coefficients, energy plus deltas and
double-deltas are computed from the extracted vocals. To do so, a Hann window of 32
ms with a step size of 16 ms is used. The input feature sequences are downsampled by
two sub-modules each composed of a 2D-convolutional layer (32 filters with kernel size
3 × 3), a ReLU activation function and a 2 × 3 max-pooling layer. The sequence length
T is thus divided by four.

The recurrent part of the acoustic model is composed of 3 bidirectional LSTM layers with
256-dimensional hidden states and recurrent dropout of 0.1. An additional dropout of
0.1 is applied between each recurrent layer. Finally a time-distributed dense layer and
a softmax activation function are applied to obtain the per-frame character probability
vectors. The model is trained using the CTC loss implementation of [SRP18]. The loss
is minimized using the ADAM algorithm with a learning rate of 10−4, a batch size of
32 during 4000 training epochs with 250 steps per epoch. We use validation-based early
stopping. For transcription, a prefix beam search decoding is employed, using a beam
width of 100.

The language model H is a basic trigram word language model where the vocabulary is
restricted to the 6000 most frequent words, thus reducing overfitting, generating around
370k trigrams. An approximated modified Kneser-Ney algorithm is used for smoothing
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Acoustic Features 

Character Posteriorgram 

TD
 Flatten

Recurrent
part

TD
 

Normalisation
part

Downsampling
part

Figure 4.2 – Overview of the acoustic model H . It is composed of three parts: the
downsampling, the recurrent and the normalization. The downsampling section is made
up of two convolutional layers, which are followed by a time-distributed flatten layer.

The recurrent part is composed of three BiLSTM. The normalization part is constituted
of a time-distributed layer and a softmax one outputting the desired characters’

probability.
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Hansen Mauch Jamendo

Stoller19 [SDE19] (2019) - (-) 70.9 (-) 77.8 (-)
Ours \w sep (2019) 73.93 (3.14) 65.78 (3.20) 82.29 (2.37)
Ours \wo sep (2019) 76.88 (2.22) 71.36 (2.52) 83.35 (2.05)

Gupta20 [GYL20] (2020) 47.86 (6.30) 47.25 (3.67) 60.98 (3.04)
Demirel21 [DAD21] (2021) - (-) 49.92 (-) 44.52 (-)

Table 4.1 – Comparing our lyrics recognition reference system, with and without a
prestep of SVS algorithm, to the state-of-the-art systems on various evaluation datasets.

The WER metrics are given in percentage and the standard errors are displayed in
parentheses when available. Gupta20 results are taken from the 2020 lyrics transcription

challenge of Music Information Retrieval Evaluation eXchange (MIREX). The best
results for an evaluation dataset are displayed in bold.

[NEK94]. It is trained using the kenLM toolkit 1. This toolkit is specifically designed to
efficiently create n-gram models. The models’ parameters are chosen using the valida-
tion set. Pruning n-gram and various n values were tested without improvement. This
language model is incorporated during decoding, after tuning language model weight and
insertion penalty value on the validation set using the ctcdecode toolkit 2. This toolkit is
an implementation of the CTC beam search decoding algorithm.

4.4 Results

In order to evaluate our approach, we use a Character Error rate (CER) metric computed
using the python Levenshtein toolkit 3 and a Word Error rate (WER) metric computed
using the JiWER toolkit 4. An example of the type of posteriorgram and resulting decod-
ing obtained from our trained model is given in Figure 4.3. As expected, a sequence of
spikes is observed, associated with detected characters, and separated by the ǫ token. The
relatively low values of the WER and the CER seem to validate our implementation. To
confirm our intuition of the SVS improving the E2E acoustic models lyrics transcription
performance, we also train another model without any step of SVS.

Our systems’ results are given in Table 4.1 with comparison to state-of-the-art architec-
tures. Firstly, we can see our model trained with a preprocessing step of SVS consistently
beats the one trained without it, though only providing slight improvements. This re-
sult still validates the use of this module and is another argument for the use of a SVS
algorithm in the context of E2E acoustic models. Secondly, our system obtains compa-
rable results with Stoller19 while being trained on a much smaller dataset. It is worth
noting Gupta20 and our approach are both trained using the English part of DALI, while
Stoller19 is trained using a private dataset of unknown quality.

1. https://kheafield.com/code/kenlm/

2. https://github.com/parlance/ctcdecode

3. https://github.com/ztane/python-Levenshtein

4. https://github.com/jitsi/jiwer
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Figure 4.3 – An example of a posteriorgram inferred by our system. Ground truth: "to
see we’re over and I hate when". Obtained transcription with a prefix CTC beam search
combined with a lyrics language model: "e see where over and I had we". Here, CER =

0.24 and WER = 0.5. Probability values are given in level of colors.
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We can postulate that the quality of the DALI dataset annotations is higher, which could
explain the on par performance reached by our implementation. Moreover, the dataset
used to train Stoller19 is annotated at line level whereas the DALI dataset is annotated
at word level. As described in Section 2.2, most recent implementations, i.e. Gupta20
and Demirel21 [DAD21] both significantly outperform the CTC-based architectures such
as Stoller19 and ours.

Both approaches were published after the work on explicit content detection and were not
considered for this study. Our SVR implementation displayed similar results to Gupta20
on the lyrics-to-audio alignment task and was then kept for the multilingual lyrics-to-
audio alignment study. The trained multilingual architecture was subsequently used for
the language identification task. Finally, for the cover detection task, we chose to adapt
Gupta20 for our system since the approach is based on complete transcripts. Demirel21
was published at the end of the thesis and is solely displayed in the table for reference
purposes.
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Chapter 5

Explicit content detection

Explicit content detection is the task of classifying an audio recording as either explicit or
non-explicit. It is particularly sensitive for streaming services for parental advisory. For
over three decades [Rad19], a parental advisory label has been found on musical recordings
when they include explicit content (e.g. lyrics potentially unsuitable for children). Such
recordings included harsh language, description of acts of violence, substance consumption
or sex.

As of today, this labeling is mainly done manually following a set of guidelines [Ind19].
This process is slow and hard to scale to industry-size catalogs. Existing automatic
approaches are scarce and rely on the availability of the lyrics in text format. Lyrics
transcriptions could be obtained from audio using Singing Voice Recognition (SVR) al-
gorithms, but with relatively limited performance as we have seen in Section 1.2. The
question of whether lyrics information extracted from audio can be leveraged to perform
the explicit content detection remains open.

When lyrics are available, explicit content detection can be approximately achieved
through assessing the presence of words from a fairly small specialized dictionary. In
fact, as proven in [FCCG19], state-of-the-art deep neural network algorithms perform
just slightly better than dictionary-based methods with suitable keywords. This sug-
gests detecting a set of carefully chosen keywords directly from the audio signal is a valid
strategy to perform the explicit detection task in the general case.

Keyword Spotting in audio is an actively studied task, with state-of-the-art systems
achieving high performance on speech signals [TL18]. A few attempts to transfer them to
singing voice have been proposed [FGO08, Kru18]. Kruspe et al. rely on a keyword-filler
Hidden Markov Models (HMM) algorithm [Kru18]. This method requires synchronized
annotations, at the frame level, between audio and text. Since no readily accessible
dataset exists for polyphonic music at this granularity, such annotations are generated
with an acoustic model trained on speech, by aligning textual lyrics to music, seriously
hindering model performance.

Our proposed work is the first audio-based explicit content detection system in music. Our
approach is based on an acoustic-to-character acoustic model, described in the previous
chapter, and a keyword spotting model associated with a dictionary of carefully chosen
keywords related to the explicit detection task. The decoding is directly performed on the
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Figure 5.1 – General overview of the proposed modular explicit content detection system.
To obtain the input acoustic feature tensor, multiple preprocessing modules are applied

on the input audio, for both training and inference. These modules are, in order of
application: Singing Voice Separation (SVS), audio segmentation and feature extraction.

output of the audio-to-character model and, contrary to an End-To-End (E2E) keyword
spotting approach like in [CPH14], new keywords can be added easily to the dictionary
without retraining the model.

In [HLS15], the authors have demonstrated the better performance of this architecture
over the keyword filler to do keyword spotting in speech. As described in the previous
chapter, this method does not require to create neither a pronunciation lexicon nor frame
level synchronized annotations. The explicit label is finally inferred by a binary classifier
using the output of the keyword spotting system.

The chapter is divided into four sections. First of all, the proposed approach is presented
in Section 5.1. Following that, the experimental parameters are provided in Section 5.2.
Finally, results and discussion are followed in Section 5.3 and a conclusion is given in
Section 5.4. A large part of this chapter is directly adapted from the paper: "Andrea
Vaglio, Romain Hennequin, Manuel Moussallam, Gaël Richard and Florence d’Alché-
Buc. Audio-Based Detection of Explicit Content in Music. In Proc. of IEEE Int. Conf.
on Acoustics, Speech and Signal Processing (ICASSP), 2020".

5.1 Proposed approach

A general overview of our approach is given in Figure 5.1. A song X is sliced into L
segments of equal size using a segmentation procedure. It is worth noting that L may be
different for each song since it depends on the song duration. The system takes as input
an acoustic feature tensor X ∈ R

F×T×L built from X, where T is the number of temporal
frames per segment and F is the features dimension. Given a dictionary D, the predictive
model L D is the composition of three modules

L
D(X) = F ◦ G

D ◦ H (X) (5.1)

5.1.1 General presentation

For a given input tensor X, the audio-to-character module H outputs a 3D-tensor R. It
is simply based on the acoustic model described in the previous chapter, applied on each
matrix of the tensor X. It takes as input Xl, the lth matrix of the tensor X, and outputs
Rl, the lth matrix of the tensor R. The preprocessing modules, and theirs parameters,
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preceding the acoustic model, i.e. SVS, audio segmentation, feature extraction, are iden-
tical to those described in Chapter 4. For a given input tensor R = H (X), a vector
V is outputted by the keyword spotting module G D, whose each coefficient vn gives an
estimate of the (log) posterior probability of kn, the nth keyword of the dictionary D, by
averaging on all segments

vn = mean
ℓ=1,...,L

log P̂ (kn | Rℓ), (5.2)

where Rℓ is the ℓth matrix in tensor R. Other ways of aggregating probability through
segments, e.g. using a max function, have been tested on a validation dataset and showed
no improvement.

For a given input vector V = G D ◦ H (X), an explicit label L D(X) is outputted by the
binary classifier F discriminating the content of the song X as explicit or not-explicit.
Among these three modules, only the modules H and F require training. Training the
module H boils down to training the acoustic model of Chapter 4. Training the module
F requires to apply the preprocessing G D ◦ H to the training dataset {(Xi, yi)

nsongs

i=1 }
containing songs annotated by explicit/non explicit labels.

5.1.2 Keyword detection

Following the work of [HLS15], we implement the keyword spotting module G D as a Con-
nectionist Temporal Classification (CTC)-based decoding function. For a given searched
keyword k, we consider k′ which is the keyword k with an ǫ at the beginning, end, and
between every character to allow the use of ǫ during decoding. A decoding network is then
created the same way as described in 3.5. The goal of the decoding function is to find the
path in the network maximizing the CTC scoring for the keyword k′. The coefficients
αs,t are afterwards computed using the same dynamic programming algorithm. Finally,
the keyword probability is given at each step t by:

P (k, t) = α|k′|,t + α|k′|−1,t (5.3)

We consider the detection score s of the keyword k to be the maximum of the keyword
probability over all time steps with:

s(k) = max
t=1,...,T ′

P (k, t) (5.4)

With these computation rules, we empirically found that we can only find keywords at
the beginning of segments. In practice, keyword probabilities after the first sung word in
the recording are artificially low. To prevent this and allow the keyword detector to be
fired at any time, we choose to reinitialize the first node at each time step

α1,t = P (k′
1, t | Xℓ) (5.5)

As the naive CTC scoring is numerically unstable, computations are done in log-space
using the log-sum-exp trick [Han17].
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5.2 Experiments

5.2.1 Explicit Dataset

To train the binary classifier F , we use an internal dataset built from the metadata
available at Deezer. In this chapter, we restrict ourselves to recordings with English
lyrics. Songs are either labeled explicit or non-explicit. These labels are obtained from
external providers and are known to be noisy, yet we manually verified this noise level
remains low. We discard tracks also present in the DALI dataset to avoid overfitting.
We notice the music genre distribution of explicit tracks and non-explicit tracks is very
different: rap is strongly over-represented in explicit tracks (40% of all tracks), but not in
the non-explicit ones (few percent).

To avoid creating an explicit content detection relying mostly on the genre information,
we sample both explicit and non-explicit tracks to obtain the same genre distribution for
the two types of songs. The complete dataset then consists of 2600 non-explicit tracks
and 2530 explicit ones. Finally, we make an artist aware split [Fle07] between training,
validation, test of respectively 70%, 15%, 15%. We create another dataset the same
way for dictionary creation. The dataset consists of 24250 non-explicit tracks and 24250
explicit ones. No songs are common between the two datasets.

5.2.2 Dictionary creation

Following the work of [KM19] we select the keywords of the dictionary D based on the
explicit and not-explicit lyrics word distributions. To generate the dictionary D, we use
the importance I defined in [FCCG19]. For a chosen keyword, I is computed as the ratio
between the frequency of the word in explicit and non-explicit lyrics. As in [FCCG19],
we manually discard stop words, too common words, too rare words, onomatopoeia and
abbreviations. The dictionary is constructed with 128 words with the highest importance.

5.2.3 Baseline

Our model is compared to two baseline systems. The first one is a classic Convolutional
Recurrent Neural Network (CRNN) audio classifier. This architecture was successfully
used in a variety of music classification tasks, like genre recognition [CFSC17] or music
emotion recognition [MAD+17]. Unlike our approach, this classifier tries to directly infer
explicit labels from audio in an E2E manner. The model is composed of four convolutional
layers, followed by one gated recurrent unit layer and a dense layer. For each input sample,
values of mel-scale log filter-bank coefficients are extracted using a Hann window of 48 ms
with a step size of 48 ms. The model is trained using a binary cross-entropy loss which is
optimized using an Adadelta optimizer and a batch size of one. The model is trained for
3000 epochs with 450 steps per epoch. We use validation-based early stopping.

The second baseline is a dictionary lookup based on lyrics as in [FCCG19]. Given the
dictionary D, this method classifies a song as explicit if its lyrics contain at least one of the
keywords in D and as non-explicit otherwise. Unlike our system, this baseline is informed
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by lyrics at test time. As such, this baseline can be considered as an oracle (e.g. providing
an upper bound for performance) for our task of detecting explicit content from audio
only. It is a safe assumption because as described in the beginning of this chapter, when
lyrics are available, a simple lookup dictionary gives results as good as more sophisticated
models.

5.2.4 Explicit module

For the binary classifier F , we use a random forest classifier [Ho95]. The hyperparameters
of the classifier are tuned using a first step of random search and a second step of grid
search. The number of keywords of the dictionary, for our model and for the lyrics baseline,
is tuned on the validation dataset. We report precision, recall and F1-score for the explicit
class. Since the explicit content might be sensitive to certain audiences, emphasis is put,
at highest F1-score, on the system maximizing the recall. We use this rule to optimize
parameters on the validation dataset. The optimized number of keywords is 128 for the
lyrics baseline and 32 for our model. The baselines and our approach with their optimized
parameters are evaluated on the test dataset.

5.3 Results and discussion

5.3.1 Preliminary results

The performance of decoding with the dictionary D is assessed on the DALI test set.
Results show 75% of D keywords, with at least one occurrence in the test dataset, have
a ROC-AUC greater than 0.81. This metric is favored over the PR-AUC one as being
independent of the class distribution of the considered keyword in the test set. Thus
ROC-AUC values obtained for different keywords with various frequencies in the evaluated
dataset can be compared which is not the case for the PR-AUC metric. Properties of both
metrics are extensively described in [Faw04].

Being the first time such a metric is computed for keyword spotting in the singing case,
we cannot compare it to other results. However, since these values are significantly higher
than the random, the feature vector V carries some information on the presence of key-
words of the dictionary D in a considered input music. An example of decoding is displayed
in Figure 5.2. The example is ’positive’, as the searched keyword is indeed present in the
ground truth character sequence. A decoding line is visible in the figure, the position
of ’space’ characters delimiting the decoding line (3.94s to 4.28s) are quite close to the
ground truth position of the word (3.9s to 4.29s). This figure suggests that the acoustic
model H has learnt how to use the ’space’ appropriately and to determine word positions.
This is consistent with results found for lyrics-to-audio alignment [SDE19].

5.3.2 Explicit content detection results

Results are reported in Table 5.1. Scores reached by the lyrics baseline are similar to
those found in [FCCG19]. The performance of a naive audio baseline on this challenging
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Figure 5.2 – A positive sample for keyword "hate". Top: posteriorgram Rℓ inferred by
acoustic model H . Probability values are given in level of colors. Bottom: Decoding

matrix composed of coefficients α, described in Section 5.1.2. Values of α coefficients are
given in level of colors. The decoding line and ground truth position of keyword are

displayed in the figure.

Metrics Audio baseline Our system Lyrics baseline

Precision .61 (.02) .63 (.02) .65 (.02)
Recall .59 (.02) .73 (.02) .84 (.02)

F1-score .60 (.02) .67 (.02) .73 (.02)

Table 5.1 – Results for explicit detection task on the test set; the standard errors are
given in parentheses. The best performance of each metric is displayed in bold.
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task is significantly outperformed by our modular approach. While still not equivalent
to a lyrics-informed scenario, these results are encouraging and show the validity of the
proposed method. Still, the performance of these systems are insufficient to be deployed
without human oversight. In [FCCG19], the authors argue that the explicit detection task
is an inherently hard task. They state explicit content detection is a highly subjective
task depending on both social, cultural and temporal context. They thus propose using
these systems as tools to help annotators doing the final labelling.

5.4 Conclusion

We address the novel task of explicit musical content detection from audio only. De-
spite the task being challenging, our proposed modular approach yields promising results.
Moreover, the system’s decisions can be explained in terms of specific keyword presence
probability which is a desirable property given the sensitivity of the task. Future work
could investigate keyword decoding augmentation with a character level language model
as in [HPR+17].
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Chapter 6

Multilingual lyrics-to-audio alignment

Lyrics-to-audio alignment aims at synchronizing lyrics text units like paragraphs, lines or
words to the timed position of their appearance in the audio signal. Tools dedicated to
this task have many practical applications: they can be applied to generate new annotated
data to train more robust singing voice recognizers [Kru18]; or be used as building blocks
in specific applications like karaoke [Mes12], navigation within songs [FGOO11] or explicit
lyrics removal [Kru16a].

Recent studies have proposed efficient alignment methods for singing voice [SDE19,
GYL20], opening the door to practical applications. Results on the lyrics-to-audio align-
ment task of the Music Information Retrieval Evaluation eXchange (MIREX) challenge
have notably greatly improved through the years, as displayed in Figure 6.1. However,
previous studies mostly focus on the English language, for which annotated data is abun-
dant. The question of their ability to generalize to other languages, especially in low (or
even zero) training resource scenarios, has not been properly addressed.

Arguably a monolingual evaluation is unrepresentative of the variety of music recordings
available in large scale collections. Commercial streaming services commonly serve con-
tent in hundreds of languages and a non-negligible number of popular songs even have
multilingual lyrics [DB08]. However, annotated data on this type of content is scarce.
A source of inspiration comes from the related field of multilingual speech recognition
[WHH17] where transfer learning methods [CBL+19] have been shown to improve the
performance on languages with few to zero training data. However, this improvement on
low-resource languages can sometimes be detrimental to the efficiency on languages with
more resources [WHH17].

The goal of this chapter is to evaluate and extend state-of-the-art lyrics-to-audio alignment
methods to a language-independent setup. It is the first attempt to create a language-
independent lyrics-to-audio alignment system. To do so, we review the fitness of these
approaches to the multilingual framework. Then, we focus on one architecture and study
two key features likely to allow generalization to several languages: 1) the intermediate
representation space (character versus phoneme) and 2) the design of the training dataset.
Evaluation is performed on multiple datasets, from diverse sources, languages and scripts,
with various amounts of data available, from plenty to zero.

We notably consider the specific case of songs with multilingual lyrics generally referred to
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Figure 6.1 – Performance of the system obtaining the best results during the MIREX
challenge on the Mauch dataset through the years. Performance is quantified using the

AAE metric described in Section 6.1.1. AAE metric is better if smaller. Metric is
averaged on all tracks on the Mauch dataset.

as code-switching in the Automatic Speech Recognition (ASR) literature. Code-switching
denotes the case when two or more languages are used in the same song. Two cases of
code-switching exist: intra-sentential and inter-sentential. In the first case, the change
of language happens inside one line of lyrics. The second case is when the switch occurs
between two lines of lyrics. This problem has been well researched for speech [LLY+19]
but has never been addressed for singing. First results for this type of data are thus
presented. Finally, we try leveraging phoneme similarity information during alignment
and discuss obtained results. Unfortunately, no method used is shown to significantly
improve performance.

The chapter is organized in six sections. First and foremost, some background is provided
in Section 6.1. We next describe the proposed method in Section 6.2. The experimental
setup and results are described respectively in Section 6.3 and Section 6.4. Afterwards, in-
corporating phoneme similarity information during alignment is attempted in Section 6.5.
Finally, conclusions are drawn in Section 6.6 and future work is discussed. A large part
of this chapter is directly adapted from the paper: "Andrea Vaglio, Romain Hennequin,
Manuel Moussallam, Gaël Richard and Florence d’Alché-Buc. Multilingual Lyrics-to-
Audio Alignment. In Proc. of Int. Soc. for Music Information Retrieval Conf. (ISMIR),
2020".
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Figure 6.2 – One example of lyrics-to-audio alignment. Here, lyrics to align are "Night is
draggin’ her feet". The characters from lyrics are mapped to audio across time. Values

of coefficients α, defined in Section 6.2.3, are described in level of colors.

6.1 Required background

6.1.1 Lyrics-to-audio alignment

General presentation:

Singing voice alignment methods are typically inspired from text-to-speech alignment sys-
tems. Classically, an acoustic model is trained and used to force text to audio alignment
using a Viterbi algorithm [WT97]. The acoustic model’s output is also utilized to conduct
the alignment in the most recent lyrics-to-audio systems [SDE19, GYL20]. The efficiency
of these systems is then largely dependent on the quality of the trained acoustic model.
An example of such an alignment is displayed in Figure 6.2. State-of-the-art approaches
for lyrics alignment were compared in the MIREX 2019 challenge 1. Two submitted ar-
chitectures showed particularly strong performances. The first one is Stoller19 [SDE19].
The second one is Gupta20 [GYL20], which obtained the best results on the challenge.
Both systems are extensively described in Section 2.2.

1. https://www.music-ir.org/mirex/wiki/2019:Automatic_Lyrics-to-Audio_Alignment
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Extending systems to multilingual framework:

Although it achieved the best performance in the MIREX challenge, Gupta20’s frame-
work can not be straightforwardly used in a multilingual setup: it is composed of multiple
parts, some of them, such as the pronunciation lexicon, being specific to English. To be
able to use it in a new language, it would require modifying or retraining these parts. In
comparison, Stoller19 is based on an End-To-End (E2E) acoustic model, trained with the
Connectionist Temporal Classification (CTC) algorithm, that directly outputs characters.
It is more suitable to perform multilingual lyrics-to-audio alignment as it can be theoret-
ically applied to any language based on the same script (writing system) as the training
language. We thus choose to base our multilingual generalization study on the acoustic
model trained in Chapter 4, being inspired by Stoller19.

Employing characters may not be optimal for multilingual lyrics-to-audio alignment: au-
thors in [SDE19] suggest using phonemes as an intermediate representation could be
more relevant for aligning songs in other languages. They argue that, for phoneme based
systems, only the pronunciation lexicon has to be replaced for a new language, while a
character based approach is limited by the set of characters the acoustic model outputs.
For instance, the acoustic model described in Chapter 4 can only be used to align songs
in Latin script languages. It could be extended with characters from scripts of new lan-
guages, as in [TSW+18], but it would require a complete retraining each time a new script
is added in the language pool.

Using phonemes as an intermediate representation, any language can be theoretically
aligned for any trained model as long as a pronunciation lexicon is available. Character-
based and phoneme-based intermediate representations are then considered for our mul-
tilingual system. This system is evaluated using classic metrics of the lyrics-to-audio
alignment task described in the next section.

Metrics:

To evaluate our approach, we use the Average Absolute Error (AAE) [MV08] metric,
denoted as σ. For its calculation, the absolute difference between the actual start of
the word timestamp ti and its estimation t̂i for each word wi of the considered track
is calculated, where wi is the ith word of this track. The final error score for a song is
obtained by averaging over all word-level errors by:

σ =
1

N

N
∑

i=1

|t̂i − ti| (6.1)

where N is the number of words in the considered song. A known issue of this metric is its
perceptive dependence on tempo: one absolute error will not be perceived the same if the
tempo is fast or slow [Dzh17]. The Percentage of Correct Onsets (PCO) [MFG12] metric,
denoted by ρτ , was proposed to mitigate this effect. It is computed as the percentage of
starts of the word timestamps whose estimation t̂i are below a certain distance τ from
the ground truth ti. This metric reflects that errors below this threshold fall within
human listeners’ perceptual tolerance. More precisely, it assumes humans still perceive
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as synchronous lyrics and audio whose onsets are separated by this threshold. Formally,
it is defined as:

ρτ =
1

N

N
∑

i=1

1|t̂i−ti|<τ × 100 (6.2)

Both metrics are classic metrics of the MIREX lyrics-to-audio alignment challenge. The
PCO threshold is fixed to 0.3 seconds as in this challenge. We will discuss the percep-
tual validity of this threshold in the next chapter. They are computed using the same
evaluation script as the one used for the challenge [Dzh17] 2.

As described in Section 2.4.2, in some evaluation datasets, for several songs, annotations
appear to have been offsetted with a constant offset in order to enhance visual display
above precise synchronization. This shifting of annotations causes issues to correctly
estimate the PCO metric for these tracks. In these cases, making the assumption a
system is aligning lyrics perfectly to the audio, if the offset is superior to the value of
the threshold of the PCO (here 0.3 seconds), a metric of zero is obtained. Correcting
the existing annotation offset is therefore primordial, for these tracks, to obtain a PCO
metric correctly estimating the performance of the system.

For each track of the considered dataset, the offset is corrected automatically as the
value maximizing the PCO of the given track after alignment. This type of correction
undoubtedly delivers optimistic value to the PCO metric, but allows for the generation of a
value for the metric representing more properly the system performance by automatically
correcting offsetted annotations. Moreover, in the case where the system is performing
badly for alignment, the metric should remain low even after the offset correction. This
offset correction is only applied during evaluation to datasets where offsetted songs exist.
In this chapter, this was the case for all datasets created from the Deezer catalog.

6.1.2 Computing phoneme similarity

The International Phonetic Alphabet (IPA) phoneme similarity could be used to increase
the alignment performance by allowing for greater information transfer across phonemes.
Indeed, for a phoneme present in the audio rarely seen in the training dataset, an acoustic
model might have a tendency to (incorrectly) detect a more common similar phoneme,
making alignment harder. In this case, the acoustic model could nevertheless give the un-
common phoneme a significant score based on phoneme similarity. In [RÁA14], authors
notably show that taking this information into account improves long audio alignment
for automatic subtitling. Methods for computing phoneme similarity are typically ex-
pert knowledge based or data-driven. Perceptually based techniques are another type of
approach that will be briefly discussed at the conclusion of this section.

Knowledge based methods:

Generally, expert knowledge based methods are focused on phonological features. They
define, for a given feature theory, a phoneme-similarity function taking as input a pair of
phonemes. Classically, a Hamming distance is used between respective feature vectors of

2. https://github.com/georgid/AlignmentEvaluation
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phonemes like in [DK16]. Each dimension of a feature vector indicates if a corresponding
feature is present, not present, or not applicable for its corresponding phoneme. The
Hamming distance then computes the number of features for which two phonemes differ.
Recently, more complex ways of computing similarity using features were used as detailed
in [LCC+18].

Data-driven methods:

Data-driven methods to compute phoneme similarity are numerous. First of all, similarity
can be computed by directly comparing the acoustic realizations of two phonemes using
algorithms such as Dynamic Time Warping (DTW) [HMN16]. Another classic method
is to compute the distance between the Hidden Markov Models (HMM)s modeling mono-
phones. For example, in [SB01], this type of distance is used to map phonemes from a
target language to a source language. In this study, an acoustic model is produced for
a target language, where few training data is available, by employing an acoustic model
that has previously been trained on a significant amount of data from a source language.

To do so, one HMM is trained for each language given the available training data. After
computing the distance between all source and target monophones, each target phoneme
is then mapped to the nearest phoneme of the source language. Evaluation is finally
performed using the source language acoustic model, with its mapped outputs, on the
target test datasets. Results are on par with an expert-based phoneme mapping.

Phoneme similarity can also be computed using the confusion matrix of an acoustic model.
This matrix is generally computed using ground truth annotations. The confusion matrix
is computed by forced alignment of the ground truth phoneme annotations to the recog-
nized sequence of phonemes using a dynamic programming algorithm (e.g. the Viterbi
algorithm). This matrix is afterwards transformed to a similarity matrix using the Hout-
gast algorithm as in [LP12].

In this method, we consider the model is more prone to confuse phonemes if they are
similar. However, one drawback of this method is that the quality of the obtained matrix
is largely dependent on the quality of the acoustic model used to generate it. In [LP12], the
authors generate such a matrix from the output of a hybrid system combining a HMM
and a MultiLayer Perceptron (MLP) network. This matrix is then clustered to obtain
clusters of phones. Taking into account this information during phoneme recognition is
shown to improve the performance over a baseline. The authors also expose that human
made natural classes are similar to the computed ones.

The phoneme similarity can also be computed by using phoneme embeddings. In [SMH18],
the authors use various models, like word2vec [MCCD18], to generate such embeddings.
The models were trained using around 10000 lines from each of the three considered
languages: Finnish, Spanish and Turkish. The pairwise similarity of two phonemes are
then simply computed using the cosine similarity between their respective embeddings.
The authors demonstrate a significant correlation between this embedding space and a
phonological distinctive feature space. They also show that this space can capture some
proportional analogies (e.g. [p] is to [b] as [t] is to [d]).

In [PDvG17], the authors demonstrate that the phoneme embeddings, learned by their
multilingual neural grapheme-to-phoneme model, also contain many regularities. Their
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model is a Bidirectional Long Short-Term Memory (BiLSTM) encoder-decoder network,
trained with an attention algorithm, using 600k words from 311 languages of 42 scripts
and outputting more than 450 IPA symbols.

Perceptually based methods:

Perceptual-based techniques are another sort of method for calculating phoneme simi-
larity. In this case, the similarity is quantified directly in a perceptual experiment. In
general, a group of participants is asked to listen to audio samples of phonemes that have
been distorted by noise and subsequently identify the supplied phonemes. The perceptual
judgments are next collected in a confusability matrix as in [EA18]. Nonetheless, such
experiments are complex to set up and present a number of sources of variability that
must be considered, as detailed in [LCC+18]. The results of previously conducted studies
might be gathered; however, due to the protocol’s intricacy, this sort of experiment is
typically limited to a restricted selection of phonemes (around ten).

6.2 Proposed approach

A general overview of the proposed system is described in Figure 6.3. It is composed of
two parts: an acoustic model H and a lyrics-to-audio alignment procedure. It takes as
input an acoustic feature matrix X, its corresponding lyrics y and outputs the synchro-
nized lyrics ŷ. The preprocessing modules, and theirs parameters, preceding the acoustic
model, i.e. Singing Voice Separation (SVS) and feature extraction, are identical to those
described in Chapter 4. The acoustic model is also akin to the one trained in Chapter
4, i.e. a Recurrent Neural Network (RNN) trained with the CTC algorithm. The set of
outputs of the acoustic model is either the characters of the Latin alphabet or phonemes of
an universal phoneme set. The latter is usually defined, in the literature, as the resulting
set of the concatenation and the merging of phoneme sets of multiple languages. Lyrics-
to-audio alignment is performed on the outputs of the acoustic model by a CTC-based
alignment decoding function.

6.2.1 Acoustic model

The acoustic model H is the same as the one described in Chapter 4, with the exception
that we do not include the convolutional layers to maintain the maximum temporal pre-
cision possible for alignment. CTC-based acoustic models were successfully used for mul-
tilingual speech recognition [TSW+18, MSW17]. Moreover, as described in Section 3.5,
the BiLSTM layers allowed this type of model to provide reliable alignments.

On the specific problem of code-switching in speech recognition, CTC based architectures
have been preferred over models capable of learning a language model over data [LLY+19]
(e.g. attention ones). The dependence of one output on the preceding outputs makes
switching from one language to another challenging in these models. On the contrary,
the CTC based systems are trained under the conditional independence assumption, as
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Figure 6.3 – Overview of the lyrics-to-audio alignment system. Our study focuses on the
training of the acoustic model in Section 6.2.1 and the design of the intermediate

posteriorgram representation space in Section 6.2.2. The alignment block is described in
Section 6.2.3. To obtain the input acoustic feature matrix, multiple preprocessing

modules are applied on the input audio, for both training and inference. These modules
are, in order of application: SVS and feature extraction. They are not displayed here for

the sake of readability.

described in Section 3.5, which makes them more suitable for the code-switching case, all
outputs being considered independently.

6.2.2 Intermediate representation

We consider two different intermediate representations for our system. The first one is a
character set, here the Latin alphabet. As described in Section 3.4.1, this representation
does not need any kind of expert linguistic knowledge as the acoustic model directly
outputs character probabilities. However, such a representation is not suitable to perform
alignments of songs in a language with a different script. To process those, the acoustic
model would need to be retrained with new data on the given script. Moreover, even
for languages sharing the same script, a character-based representation is sub-optimal for
transferring knowledge between languages, as character pronunciations can significantly
differ from one language to another.

Our approach relies on the following remarks: all languages share some common phonemes
and phonemes are considered to be language independent [SW01], i.e. to be pronounced
the same way across languages. Therefore, using an universal phoneme set as an in-
termediate representation could take advantage of the similarity between sounds across
languages by utilizing consistent phonemes throughout training languages. Furthermore,
using a large language training pool, most phonemes from unknown languages are ex-
pected to occur in training languages.

It can be achieved using the IPA symbols presented in Section 3.4.2. IPA pronunciations
of words from all languages can be obtained using Grapheme-To-Phoneme (GTP) tools.
Such tools are available for most common languages. The universal phoneme set is created
by merging the phoneme sets of all considered languages in this chapter based on their
IPA symbols.
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6.2.3 Alignment

In order to align a song to its corresponding lyrics y, the audio is sliced into segments
of five seconds with a step size of 2.5 seconds. A posteriorgram is generated by the
trained acoustic model for each segment. To obtain the final posteriorgram, all segment
posteriorgrams are concatenated, after cropping them to half of their duration centered
in their middle. A posteriorgram R ∈ [0, 1]|C|×T is obtained, where C is the set of symbols
supported by our acoustic model, either characters or phonemes, and T is the number
of temporal frames of the song. Alignment annotations are finally predicted, using the
generated posteriorgram R and lyrics y, with a CTC-based alignment function.

This function is inspired from the CTC scoring algorithm presented in Section 3.5 and
is akin to a Viterbi forced alignment [For73]. The Viterbi forced alignment is a simpler
version of the Viterbi decoding algorithm where the possible paths in the decoding graph
are limited to the lyrics symbols sequence. To allow the use of ǫ during decoding, y is
extended to z by adding ǫ at the beginning, end, and between every unit. A decoding
network of size |z|×T is afterwards constructed from z. The goal of the decoding function
is to find the path in the network giving the most probable alignment ŷ of y given the
posteriorgram R. More precisely:

ŷ = argmax
B(ŷ)=y

T
∏

t=1

P (ŷt, t) (6.3)

where B is an operator removing blanks and repetitions from a sequence ŷ. To do so, the
network’s node αs,t is defined as the probability of the best alignment of the sub-sequence
z1:s after t frames. αs,t scores can be efficiently calculated using a forward-backward
algorithm, by merging together paths reaching the same node. αs,t is then computed
recursively from the values of α in the previous frames. Only transitions between blank
and non-blank units, and between pairs of distinct non-blank units are allowed. The
ǫ symbol at the beginning and end of the sequence being optional, there are two valid
starting nodes and two final nodes. The coefficients α are initialized as:

αs,1 = P (zs, 1) for s ∈ {1, 2} and αs,1 = 0, ∀s > 2 (6.4)

Recursion is given by:

αs,t = max
τ∈{0,1}

(αs−τ,t−1)P (zs, t), if zs ∈ {ǫ, zs−2}

ζs,t = argmax
τ∈{0,1}

(αs−τ,t−1)

αs,t = max
τ∈{0,1,2}

(αs−τ,t−1)P (zs, t), otherwise

ζs,t = argmax
τ∈{0,1,2}

(αs−τ,t−1)

(6.5)

Then, the probability of the best alignment is given by:

P (ŷ) = max
τ∈{0,1}

(α|z|−τ,T ) (6.6)
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Alignment ŷ can finally be computed with an inverse recursion. The initial unit is initial-
ized such as:

ŷT = |z| − argmax
τ∈{0,1}

(α|z|−τ,T ) (6.7)

Inverse recursion is given by:
ŷt−1 = ŷt − ζŷt,t (6.8)

Calculations are performed in log-space using the log-sum-exp trick [Han17] to avoid
numerical instabilities. As some phonemes from the target languages can be unseen in
the training languages, the acoustic model will be unable to predict them, resulting in all
alignments having a probability of zero. To get rid of this problem, a small amount of
uniformly distributed noise is added to all the entries of the posteriorgram, as suggested
in [SDE19].

6.3 Experiments

6.3.1 Datasets

DALI dataset:

In this chapter, we consider several language subsets of the DALI dataset. They are
described in Table 6.1. Experiments are conducted using five source languages for the
initial multilingual system development. These source languages are: English, German,
French, Spanish and Italian. English is considered as a high-resource language. The four
other languages are considered low-resource languages. The split between train, validation
and test datasets for the first five languages is an artist aware split [Fle07]. We also
consider four additional target zero-resource languages: Portuguese, Polish, Finnish and
Dutch. Data from these languages is only used for evaluation. The splits of the different
language data, i.e. DALI ids belonging to each dataset, are made publicly available 3.

One dataset, that we name 5lang, is created for multilingual training. The training and
validation sets of this dataset are generated by simply concatenating the training and
validation sets of the five source languages. This dataset is largely unbalanced, English
data dominating the corpus. Balancing the dataset with oversampling is tried without
modification on the performance of the multilingual trained model when evaluated on low-
resource and zero-resource language datasets. Similar results are also found for speech
in [ATS16]. Besides, when tested on the English language dataset, it drastically worsens
results. These results are expected as the quantity of English data being far superior in
comparison to other languages in the 5lang dataset, diminishing their importance could
only degrade results for the multilingual trained model when evaluated on the English
dataset. Results of multilingual models trained with a balanced dataset are displayed in
Appendix A.

The procedure to generate training samples and corresponding labels for the acoustic
model is the same as the one described in Chapter 4. For phoneme models, the phoneme

3. https://github.com/deezer/MultilingualLyricsToAudioAlignment
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Language # Phonemes Train (h) Test (h)

English (en) 44 (5) 210.8 34.2
German (de) 44 (1) 20.12 2.6
French (fr) 42 (0) 10.3 1.0
Spanish (es) 35 (3) 9.0 1.2
Italian (it) 33 (0) 9.2 1.3

Portuguese (pt) 37 (0) - 1.8
Polish (pl) 31 (2) - 4.3
Finnish (fi) 25 (0) - 3.2
Dutch (nl) 41 (2) - 3.2

Table 6.1 – Description of DALI language subset datasets used in this chapter and
corresponding phoneme dictionary sizes. In parentheses are displayed the number of

phonemes only occurring in the given language and its ISO 639.1 code.

sequence associated with a segment is generated from its corresponding character sequence
using Phonemizer 4. Phonemizer includes GTP tools for most common languages. It de-
composes each word into a sequence of IPA symbols. To create the phoneme dictionary of
one given language, we collect all the IPA phonemes present in the corresponding dataset.
For simplicity, we did not consider IPA symbols other than vowels and consonants.

Sizes of dictionaries of phonemes of each language are given in Table 6.1. After con-
catenating and merging the nine dictionaries, we obtain an universal phoneme set of 62
phonemes. The language sharing factor [SW01] for the nine languages we use is 5.35. It
means, on average, one unit of the universal phoneme set is shared by five to six languages
of the language pool. This supports the fact that the IPA phonemes collected are rather
consistent across languages considered in this chapter.

Deezer dataset:

We also evaluate our lyrics-to-audio alignment systems on a variety of large datasets built
from the Deezer dataset. These datasets are used to see whether the type of results
observed on DALI language datasets are consistent when bigger, more realistic and more
diversified datasets are evaluated. Notably, an Indonesian dataset is created to evaluate
our systems on a non-European language. However, the Indonesian language uses Latin
script.

A Japanese dataset is then also created to evaluate our systems on a non-Latin script
language. In this scenario, for character architectures, the lyrics are transliterated to Latin
script using Pykaksi 5. Phonemes are directly computed from hiragana script lyrics. Large
English and Italian datasets are also constructed. Datasets are respectively composed of
1481, 450, 936 and 1084 tracks. They are mainly composed of classic western genres as
the one present in the DALI dataset. No artist in this dataset is present in the DALI
dataset to avoid artist bias.

4. https://github.com/bootphon/phonemizer

5. https://pypi.org/project/pykakasi/
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Code-switching dataset:

To evaluate our systems on code-switching cases, we gather a dataset of 281 songs from
the Deezer dataset, where both French and English languages occur. It is principally
composed of cases of inter-sentential code-switching. No artist in this dataset is present
in the DALI dataset.

6.3.2 Parameters of acoustic models

We use the same architecture for all acoustic models. Several sets of regularization and
architecture size parameters were tested without a clear impact on the performance. Ex-
cept for convolutional layers, the parameters of architecture and training are the same as
those used in Chapter 4. The only other change that may be made is the intermediate rep-
resentation. The acoustic model produces either character probabilities or IPA phonemes.
In the first case, the set of outputs is the same as the one described in Chapter 4. More
precisely, it is the concatenation of the Latin alphabet, the apostrophe, the instrumental
token, the space token and the CTC blank symbol ǫ. A set of size 30 is obtained. In the
second case, it consists of the universal phoneme set, plus the instrumental token, the
space token and the CTC blank symbol ǫ. A set of size 65 is obtained.

6.4 Results and discussion

6.4.1 Preliminary studies

To validate our implementation, we first compare our approach with two state-of-the-art
methods. Results are collected from the 2019 MIREX lyrics-to-audio alignment challenge.
The systems presented at the 2020 challenge are not considered as they do not show any
significant improvement. For this comparison, we choose character as an intermediate rep-
resentation and the English dataset for training. We use the standard evaluation datasets
for the lyrics-to-audio task described in Section 2.4. All three datasets are annotated with
start-of-word timestamps.

The results are summarized in Table 6.2. Our system’s results are close to those of
the Gupta20, with no significant differences for the PCO metric on the three evaluation
datasets. Although we use an architecture somewhat similar to Stoller19, we report a
significantly better performance. It certainly could be explained as the quality of data
used to train Stoller19 being of lower quality, as assumed in Section 4.4. Moreover, the
annotations of this dataset are at line level whereas the DALI dataset is annotated at
word level.

6.4.2 General results

Results of multilingual generalization experiments on the DALI subset datasets are dis-
played in Figure 6.4. Precise numerical values are reported in Appendix A. Several con-
clusions can be drawn:
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Dataset System Mean AAE (s) Mean PCO (%)

Hansen Stoller19 [SDE19] 0.39 (0.12) 88 (3)
Gupta20 [GYL20] 0.10 (0.03) 97 (1)

Our system 0.18 (0.05) 95 (2)

Mauch Stoller19 [SDE19] 0.26 (0.04) 87 (2)
Gupta20 [GYL20] 0.19 (0.03) 91 (2)

Our system 0.22 (0.03) 91 (2)

Jamendo Stoller19 [SDE19] 0.38 (0.11) 87 (3)
Gupta20 [GYL20] 0.22 (0.06) 94 (2)

Our system 0.37 (0.12) 92 (2)

Table 6.2 – Comparison between our character based architecture trained with the
English part of DALI and state-of-the-art systems on standard lyrics-to-audio alignment

evaluation datasets. AAE is better if smaller, PCO is better if larger. The standard
errors over tested songs are given in parentheses. The best metrics for an evaluation

dataset are displayed in bold.

• Using a multilingual training set helps. For both character and phoneme based
architectures, the model exhibiting the best multilingual generalization is trained with
the multilingual dataset. In fact, this model significantly outperforms the ones trained on
English on low-resource and zero-resource languages without degrading the performance
on English. With phoneme as intermediate representation, it even improves results on
English. On low-resource languages, the multilingual trained model obtains results on
par with models trained uniquely on the target language (e.g. French trained model
on the French dataset). It is worth noticing the multilingual training dataset is only
marginally larger than the English one. The performance difference is to be attributed to
the additional information the model was able to extract from the diversity of languages
seen during training.

• Use phoneme over character as an intermediate representation has better
performance. Performances of the phoneme based architectures are almost always
better than those of their character based counterparts in all our experimental setups.
The gap is bigger for models trained on the multilingual dataset than for those trained
on monolingual ones. The only models that are not improved are the ones trained and
tested on the same languages. These results show the use of phonemes as an intermedi-
ate representation enables knowledge transfer between languages better than a character
representation.

• Training on multilingual data and using a phoneme intermediate representa-
tion yields the best results in all considered cases. Training the acoustic model on
multilingual data and the use of an universal phoneme set are relevant ways for improving
the generalization capacity of the considered lyrics-to-audio alignment architecture even
in zero-resource scenarios.

Evaluations on the Deezer and code-switching datasets are respectively displayed in
Figure 6.5 and Figure 6.6. The drop of performance, in comparison to the one obtained
previously, can be explained as these evaluation datasets being much more noisy than
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Figure 6.4 – Lyrics-to-audio evaluation on the DALI language subset datasets for phoneme and character based architectures.
Several training set design strategies are considered. Languages are given by their ISO 639.1 code. Here ’source’ refers to the
language dataset used to train the given model and ’target’ refers to the language dataset used to evaluate the trained model.

When source is equal to target, architectures are trained and tested on the same language. AAE is better if smaller, PCO is better
if larger. Mean values are displayed using red squares.
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Figure 6.5 – Lyrics-to-audio evaluation on various Deezer datasets for phoneme and
character based architectures. Several training set design strategies are considered.

Languages are given by their ISO 639.1 code. AAE is better if smaller, PCO is better if
larger. When source is equal to target, architectures are trained and tested on the same

language. Mean values are displayed using red squares.

the DALI language subset datasets, as described in Section 2.4.2. This thus reflects the
poorer data quality of these datasets in comparison to the ones available in the DALI
dataset. The same conclusions can be drawn on these bigger, more realistic and noisier
datasets, confirming our statements. Notably, in the code-switching case, the increase of
performance for the systems trained on the multilingual dataset over those trained on a
monolingual dataset, for both phoneme and character based architectures, is particularly
important with around 10% of relative increase on the PCO metric. Interestingly, effi-
ciency of the character architectures on the Japanese language does not drop completely
over the phoneme architecture one, indicating the romanization of Japanese lyrics being
representative of what is actually pronounced. In future work, it could be interesting to
extend evaluation of our systems to other non-Latin scripts (e.g. the Cyrillic script or
Arabic script).
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Figure 6.6 – Lyrics-to-audio evaluation on the code-switching dataset for phoneme and
character based architectures. Several training set design strategies are considered.

Languages are given by their ISO 639.1 code. AAE is better if smaller, PCO is better if
larger. Mean values are displayed using red squares.

6.5 Taking phoneme similarities into account

In this section, various experiments are presented where the phoneme similarity is lever-
aged during alignment. Using this information could allow better knowledge transfer be-
tween phonemes and improve the lyrics-to-audio alignment systems performance. More-
over, this information could help dealing with phonemes that cannot be predicted by
acoustic models during evaluation. These phonemes are generally phonemes with few to
zero occurrences in the training dataset.

To address this issue, a tiny amount of uniformly distributed noise was introduced, in
earlier sections, to the posteriorgrams produced by the acoustic model before alignment.
Using the phoneme similarity to address this problem could be a better approach than
this method. In this scenario, if a phoneme unseen at training is present in the audio,
the acoustic model may nonetheless gives it a significant score, providing it identifies
comparable phonemes. This section compares different techniques for phoneme similarity
computation and assesses how they impact the lyrics-to-audio alignment performance.
Evaluation is still performed on the DALI language subset datasets. The architecture
used to perform alignment is the one presenting the best multilingual generalization per-
formance in the previous sections, i.e., the one trained on a multilingual dataset and
outputting sequences of IPA phonemes.

For some zero resource language subset datasets, a few phonemes are unseen in the training
languages. The languages where these phonemes exist are Polish, Dutch and Portuguese.
The number of unseen phonemes is respectively three (one vowel, two consonants), two
(one vowel, one consonant) and one (one vowel). All of these phonemes are frequent
in these languages and then could be a source of misalignment. Unfortunately, the first
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experiments presented in this section did not show any improvement on the lyrics-to-audio
alignment task. No more study was conducted due to a lack of time. Thus, preliminary
results are presented here. Still, we believe this field of research shows potential and that
our approach may be improved.

6.5.1 Phoneme similarity computation

General presentation: Various methods to compute phoneme similarity are compared
in these experiments. For each approach, a similarity matrix A ∈ [0, 1]|C|×|C|, is obtained
where C is the set of symbols supported by our acoustic model, here phonemes and special
labels. Each coefficient ai,j of this matrix provides the value of the similarity between the
ith symbol of C and the jth symbol of C. We consider the special symbols (i.e. whitespace,
instrumental and blank) are only similar to themselves. In other words, the similarity of
one special symbol to another symbol is always equal to zero, except with itself, where it
is equal to one.

As described in Section 6.2, the CTC-based alignment function takes as input a posteri-
ogram R and its corresponding lyrics y. The posteriogram is generated by the acoustic
model of the system that takes as input the considered song. Before alignment, the pos-
teriorgram is simply multiplied by the matrix similarity to account for the computed
phoneme similarity. Some approaches given in the next section do not consider similar-
ity for all phonemes (e.g. just considering vowels), resulting in a similarity matrix with
some coefficients equal to zero. As a result, the matrix generated after multiplying the
posteriorgram by the similarity matrix might still contain phonemes present in lyrics y

with a constant null probability. To avoid such situations, a tiny amount of uniformly
distributed noise is still added to all the elements of the resulting matrix.

Method description: The first method studied to compute phoneme similarity is based
on phonological features as described in Section 6.1.2 and Section 3.4.2. With singing
voices made up primarily of vowels [Mes13], it may be assumed that they are primarily
utilized to produce alignment. Coming from this assumption, this approach solely consid-
ers vowel similarity. As described in Section 3.4.2, all IPA vowels can be simply described
by a few features. These definitions are gathered from IPA phoneme chart features 6. The
features collected include ’High’, ’Low’, ’Front’, ’Back’, ’Round’ and ’Tense’. For each
vowel, a feature vector F of size six is constructed, with fi = 1 when the feature is present
and fi = 0 otherwise. The similarity si,j between two vowels vi and vj is then computed
such as:

si,j = 1, if vi = vj

si,j = 0.5, if h(F1,F2) = 1

si,j = 0, otherwise
(6.9)

where, F1 and F2 are respectively the feature vectors of vowels vi and vj and the function
h is the Hamming distance. Consonants, for this method, are only similar to themselves.

6. Available at http://www.artoflanguageinvention.com/papers/features.pdf
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The second method to compute phoneme similarity is based on the use of IPA phoneme
embeddings. In this case, the similarity of two phonemes is simply calculated from the
cosine similarity of their respective embeddings. The embeddings from [PDvG17] are used
as they are generated using a large multilingual dataset which could be an advantage for
our multilingual system. Coefficients of the similarity matrix are then given by:

ai,j = cos(E1,E2), if cos(E1,E2) > 0

ai,j = 0, otherwise
(6.10)

where E1 and E2 are respectively the embeddings of the phonemes p1 and p2.

Taking into account the phoneme similarity of all phonemes, in the similarity matrix
A, could add too much noise into the posteriorgram and decrease the alignment perfor-
mance. Only the most comparable phonemes from the matrix generated using the prior
embedding-based approach are thus preserved. The only similarity coefficients kept for a
particular phoneme are the one computed with itself and the one with the greatest value
corresponding to the most similar phoneme. The latter is only conserved if its value is
greater than 0.5. If this coefficient is not rejected, it is allocated 0.5. According to the
resulting matrix, the vast majority of phonemes and all unseen phonemes in the training
languages have one nearest phoneme assigned.

Multiple systems are examined to see how the presented methods for computing phoneme
similarity affect the outcomes of lyrics-to-audio alignment. All approaches use the same
acoustic model and account for phoneme similarity during alignment in the same way.
As a result, the sole difference between them is how the phoneme similarity is calculated.
The phoneme system computation method used for each system is:

• B: No phoneme similarity information is taken into account, it is the baseline
system

• M1: A fixed value of 0.5 is assigned to the closest vowels determined by their
feature vectors as displayed in Equation (6.9)

• M2a: Phoneme similarity is computed using phoneme embeddings on all phonemes
as displayed in Equation (6.10)

• M2b: A fixed value of 0.5 is assigned to the closest vowels determined by their
embeddings

Results are given in Figure 6.7. No approach seems to improve performances over the
baseline. The performance of the system M2a, in particular, deteriorated on nearly all
evaluation datasets, suggesting that taking the similarity of all phonemes into considera-
tion during alignment adds too much noise to the posteriorgram. In comparison, the M1
and M2b systems just consider a fixed value for the similarity of the most comparable
phonemes and get superior performances. Nonetheless, the performance of M1 is slightly
worse than the baseline for the majority of languages.

However, the results of the M2b approach appear to be on par with those of the B
approach on all evaluation datasets. This might imply that using phoneme embeddings is
more effective to find closest phonemes to inform lyrics-to-audio alignment than feature
vectors. It can be also assumed that, contrary to the assumption made in the first method,
consonants are also important to perform alignment. Yet, with the exception of the
Dutch language evaluation dataset, the M2b approach does not significantly improve the
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Figure 6.7 – Lyrics-to-audio alignment evaluation on various DALI language subset datasets. All systems are based on the same
acoustic model and take phoneme similarity into account during alignment the same way. For each system, a specific method to

compute phoneme similarity is used. Languages are given by their ISO 639.1 code. AAE is better if smaller, PCO is better if larger.
Mean values are displayed using red squares.
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Language Phoneme B M1 M2a M2b

Dutch [V] 93.5 (0.70) 92.6 (0.73) 90.9 (0.81) 93.6 (0.70)
[8] 94.9 (1.29) 95.3 (1.25) 94.2 (1.32) 95.9 (1.14)

Polish
[C] 92.0 (0.98) 92.2 (0.96) 91.7 (0.97) 93.4 (0.88)
[1] 91.8 (0.62) 92.0 (0.61) 88.6 (0.72) 92.0 (0.60)
[ý] 91.1 (1.43) 89.6 (1.52) 88.3 (1.60) 90.1 (1.50)

Portuguese [1] 89.4 (0.80) 89.4 (0.80) 87.8 (0.87) 89.6 (0.80)

Table 6.3 – PCO metrics (%) of unseen phonemes in training data for various DALI
language subset evaluation datasets. All systems are based on the same acoustic model

and take phoneme similarity into account during alignment the same way. For each
system, a specific method to compute phoneme similarity is used. The standard errors

are given in parentheses. The best results for each unseen phoneme are displayed in bold.

scores over the baseline, making it difficult to infer that taking phoneme similarity into
consideration during alignment has a beneficial influence in this situation.

6.5.2 Studying unseen phonemes

As stated at the outset of this section, utilizing phoneme similarity might enhance the
way alignment systems handle phonemes that the acoustic model cannot predict during
evaluation. This set notably includes phonemes that are unseen in the training datasets.
To quantify this effect, we introduce an adaptation of the PCO metric for phonemes.
For a given song and a particular phoneme, this measure restricts the computation of
the sum in the PCO, defined in Equation (6.2), to timestamps of words that contain the
phoneme. This measure is calculated for all phonemes in the language phoneme set of
each DALI language subset dataset evaluated. The performance of unseen phonemes and
other phonemes may then be notably compared for a particular dataset.

Looking at the results for the case where no phoneme similarity is considered, the accuracy
of unseen phonemes is already fairly good and comparable to that of other phonemes.
For the Polish dataset, for example, [1] achieved a value of 91.8. The performance of
unseen phonemes are depicted in Table 6.3. Comparing the system M2b and the baseline
approach B, the performance is equivalent for five out of six missing phonemes. The
system M2b is only significantly better than the B approach for one phoneme. For other
systems, the metrics of unseen phonemes are almost always on par or degraded with
respect to those of the baseline system.

It is thus difficult to establish that taking phoneme similarity into consideration during
alignment has any effect on these systems. These findings suggest that knowledge of other
phonemes is sufficient in zero resource languages to manage the unseen phonemes during
the alignment. Nonetheless, the number of unseen phonemes is very modest for the test
zero resource languages, with only a maximum of three unseen phonemes per language.
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6.6 Conclusion

In this chapter, we investigated extending state-of-the-art lyrics-to-audio alignment meth-
ods to the multilingual context. We selected an appropriate architecture for generalization
and we demonstrated design choices regarding the training dataset and the acoustic rep-
resentation space are salient factors. We have shown that using many languages to train
the acoustic model and an universal phoneme set improves the multilingual generaliza-
tion of such architectures. Finally, we tried taking into account phoneme similarity during
alignment. Various methods were implemented to compute this phoneme similarity with-
out significantly improving the results. The system giving the best results was further
deployed in production at Deezer under the form of an API allowing to obtain automatic
alignments for any desired track of the catalog.

Future works that we could investigate are numerous. In this study, we have built a
training dataset using the language distribution found in DALI, which resulted in a largely
unbalanced dataset. For comparison, we also conducted experiments with a balanced
dataset, in which all five languages were equally present. The results were similar, except
for English, where performance was significantly degraded. This raises the issue of how
to design training sets in a setting where several high-resource languages are available.
Although there are no publicly available datasets exhibiting such characteristics, this
case should be investigated in future research. Existing works on multilingual speech
processing [WHH17] point towards increasing model complexity to circumvent this.

No attempt to take into account phoneme similarity during alignment were shown to
improve the performance. An extensive evaluation of the implemented systems, for zero
resource languages where a large part of phonemes are unseen phonemes, is yet to be
done. Other methods to compute phoneme similarity could also be employed, including
using a more complex feature system like in [LCC+18]. Finally, alternative approaches for
accounting for phoneme similarity information during alignment might be investigated as
in [RÁA14].

The systematic evaluation of language similarity was out of the scope of this chapter and
must be further researched. This work could be performed by quantifying the phoneme-
overlap between source and target languages and its influence on the results. This could
not be done using the DALI subset datasets, as the evaluation set of each language is
different. For this aim, a dataset containing the same recordings in multiple languages
might be produced (e.g. using songs from cartoons in different languages).
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Chapter 7

User-centered evaluation of

lyrics-to-audio alignment

As described in the previous chapter, great results of state-of-the-art lyrics-to-audio align-
ment systems have opened the door to practical applications. It could be notably used as
a building block in a karaoke framework, providing automatically aligned lyrics for any
song. Karaoke is an important application for lyrics-to-audio alignment at the frontier
of music perception and human machine interaction. However, the ecological validity of
metrics used to quantify the performance of these systems is yet to be studied. The eco-
logical validation here refers to the judgment of whether these metrics are relevant in a
’real-world’ context [Bor80]. The amount of correlation between these metrics and human
perception hence remains an open question.

Among the metrics developed for the Music Information Retrieval Evaluation eXchange
(MIREX) challenge to evaluate lyrics-to-audio alignment, the most commonly used is the
Percentage of Correct Onsets (PCO) described in Section 6.1.1. A tolerance window for
errors was fixed at 0.3s for the MIREX competition, albeit no psychology experiment was
conducted to confer validity to this threshold. Additionally, while spectacular progress
has been made in the past years, the gap between state-of-the-art systems, as measured
in the MIREX challenge, tends to narrow, with many systems achieving close to perfect
PCO scores on the test sets.

Therefore, it might now be important to make room for qualitative rather than quantita-
tive metrics. In this chapter, following an interdisciplinary approach, fueled by psychol-
ogy and musicology insights, we consider the lyrics-to-audio alignment evaluation from a
karaoke user-centered perspective. More precisely, we challenge the PCO metric, focusing
on how humans perceive lyrics-to-audio asynchrony to derive stricter metrics for the task.

To this aim, after describing the relative literature in Section 7.1, we expose the design
of two perceptual experiments in Section 7.2 and their respective results in Section 7.3.
Results are further discussed in Section 7.4 and the conclusion is exposed in Section 7.5. A
large part of this chapter is directly adapted from the paper: "Ninon Lize Masclef, Andrea
Vaglio, Manuel Moussallam. User-Centered Evaluation of Lyrics-to-Audio Alignment. In
Proc. of Int. Soc. for Music Information Retrieval Conf. (ISMIR), 2021".
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7.1 Required background

7.1.1 Introducing human-grounded MIR

Nowadays, the machine learning community is raising the question of how to design
explainable [AB18] and human-grounded algorithms [PRWZ02]. In the field of Music In-
formation Retrieval (MIR), especially, user studies and evaluation metrics play a pivotal
role in this shift towards Human-centered MIR. Subjective listening tests [YJMTTS07,
PCKSH13, PCKSH13, HW16] and ethnomusicological studies [HB19] previously demon-
strated the feasibility to include tasks in the real setting context of user experience. Re-
garding metrics, we are witnessing the transition from exclusively system-centered eval-
uation to user-aware evaluation. In the reference toolkit mir_eval [RMH+14b], the lack
of human-centered metrics was justified by the complexity and cost required to develop
robust subjective evaluation methods [RMH+14a].

Yet there are a few limitations of system-based evaluation, such as their inability to cap-
ture the inherently subjective experience of MIR and the absence of necessary correlation
between system-centered evaluation and users’ perceptions [HK12]. One could, and indeed
should, ask oneself what is the meaning of the effectiveness of an algorithm without the
presence of an embodied experience of human perception? In epistemic terms, how is the
distance to the ground truth translated into an error measurement without the mediation
of an individual? Since the advent in 2005 of the system-centered evaluation approach
in the MIREX challenge, there were several attempts in creating perceptually grounded
metrics, notably among the fields of music transcription [DED08, YLBP20a, YLBP20b],
source separation [Vin12] and audio similarity [HK12].

7.1.2 Perception of lyrics and audio synchrony

Singing karaoke engages coordination of articulatory movements, music and language
processing systems, as well as crossmodal integration of audio and visual stimuli. It
is thus a rich context of perception involving complex stimuli. As a consequence, we
briefly consider the research on all the domains outlined above to illustrate paradigms
and hypotheses relevant to lyrics-to-audio alignment perception.

When presented with a pair of audiovisual stimuli, individuals reported an asymmetric
perception of asynchrony, with audio lagging preferred over visual lagging [vEKJvdP08,
VFMA18]. This asymmetry has been correlated with faster transmission of the visual
signal over the audio signal [vEKJvdP08] or with the auditory dominance in temporal
processing [RP02]. The latter hypothesis asserts that, when emitting a judgment of syn-
chrony, audio would provide individuals a more accurate sensory information in the case
of dynamic events like music, and also a more stable internal representation of periodicity,
contrary to the visual modality [RP02].

The listening experience is a continuous production of rhythmic expectancies [JB89]. In
the case of sensorimotor synchronization experiments, one effect induced by rhythmic ex-
pectancies is the anticipation of the stimuli in a sequence, also called the Negative Mean
Asynchrony (NMA). First reported by Dunlap [Dun10], it states the reaction to an audio
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stimulus tends to precede rather than follow the stimulus. Repp [Rep06] found out in-
dividuals anticipate audio events up to 100ms ahead of time. Klemmer [Kle57] revealed
that the anticipation effect varies with the tempo of the rhythmic stimuli, usually mea-
sured in terms of the InterOnset Interval (IOI) duration. He found the reaction time of
individuals when attempting to stay in phase with an isochronous stimulus, is a function
of the IOI between stimuli. The reaction time was greater for shorter IOI, suggesting in-
dividuals have less sensibility in slow tempos. These observations were further formalized
as a function of local and global rhythmic context by McAuley [MS07].

Besides global rhythmic factors, the listening experience is punctuated by local variations.
Metric events are periodic peaks of attention organized into nested hierarchies coordinat-
ing attention to events on various time-scales, allowing for grouping and accentuation
of notes [LJ96]. Musical stresses are the cues to infer a general rhythmic pattern [LJ96].
Among the significant factors of stress were reported the duration of syllables [LJ96], loud-
ness [SvHP97], alignment with beats [JB89] and sequence boundaries [JB89, KNH+05].

7.2 Method

Given previous studies, our theoretical hypothesis, about the perception of lyrics-to-audio
alignment, is formulated in two points. Firstly, we expect individuals to tolerate more
audio lagging than lyrics lagging. Secondly, we expect the perception of lyrics-to-audio
synchrony to rely both on global and local rhythmic context. To investigate these hy-
potheses, we designed two psychological experiments inspired from the main application
of this task, karaoke. We chose karaoke as it is a popular practice where the participants’
rhythmical precision is important, which requires that they remain attentive to displayed
lyrics as much as to the audio. The first experiment is designed to test the influence
of global parameters on human perception of audio/displayed lyrics synchrony and to
investigate its symmetrical properties. The second one intends to explore local factors’
influence.

To run both experiments we developed a karaoke application prototype, whose displayed
textual lyrics were intentionally misaligned with the background audio according to var-
ious, controlled conditions, thereby creating an audiovisual offset. The stimuli were pre-
sented to individuals who then annotated their perceived quality of alignment in different
error scenarios. Participants were also asked to sing along the stimuli. The welcome page
of the interface is displayed in Figure 7.1 and one example of a karaoke excerpt is given
in Figure 7.2. Both experiments were run online, through a web interface called Dalida
that was designed to be correctly displayed on both computer and phone screens, for a
total duration of two weeks each, between January and April 2021. The first experiment
was only opened to Deezer employees whereas the second one was publicly available and
therefore permitted to collect data from a larger and more diverse pool of people.

Before engaging in karaoke, participants are asked to fill out a questionnaire allowing us to
determine their level of musical expertise and familiarity with the practice of karaoke. We
collect, with their consent, a range of information about their age, declared gender and
native language. We do not have control on their external environment when performing
karaoke (external noise) and any other factor that could disturb the readability of the

93



7. USER-CENTERED EVALUATION OF LYRICS-TO-AUDIO ALIGNMENT

Figure 7.1 – Welcome page of our Dalida application.

Figure 7.2 – One karaoke excerpt to sing with displayed aligned lyrics, with or without
alignment errors.

karaoke (low light, uncorrected vision problem). Nevertheless, the instructions of the
experiment encourage them to put on headphones and favor a quiet environment.

In both experiments the dependent variable measured is the perceived synchrony and the
amount of offset between lyrics and audio is a within subjects factor. In order to prevent
an order effect, the values of audiovisual offset are presented in random order. These two
experiments are akin to the Simultaneity Judgment task (SJ) widely used in the literature
for studying the synchrony perception of audiovisual stimuli [vEKJvdP08, VFMA18].

7.2.1 Dataset

Since the measured effects should be valid irrespective of the song, we allow participants to
choose their song for karaoke within a set of 80 songs from various genres (pop, rock, rap
and metal) and language (English, French, German). A snippet of the page for selecting a
song is displayed in Figure 7.3. We selected popular songs in the DALI dataset[MBCHP20]
with alignment done at word level. The first criterion for the choice of songs was their
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Figure 7.3 – Choice of one song for a trial.

popularity, so that we can expect a large proportion of participants to be knowledgeable
of their lyrics and melody. Other important points guiding our choice was the correct
lyrics-to-audio alignment and the absence of syntactical problems.

We manually controlled the alignment quality of this subset by visualizing their lyrics in
the karaoke prototype and got rid of poorly aligned songs from our selection. To avoid a
learning effect of the song, each song can be selected once for a trial and the number of
listening during a trial is limited to two times. Moreover, the order of the songs in the
selection menu for karaoke is randomized for each trial.

7.2.2 Influence of global factors

Experiment design:

In this experiment, each participant is asked to choose 14 songs from the dataset from
which karaoke excerpts are presented. Each audio extract lasts 35 seconds and consists of
a sequence of words within lyrical lines, highlighting each word subsequently according to
their aligned onset times. A lyrics-to-audio alignment error is generated for each user-song
pair randomly from a set of positive and negative offsets between the audio and the lyrics
displayed on screen. The offset is fixed for the whole sequence, which means all words
in the stimulus are shifted by the same amount. At the end of each trial, participants
are asked to report whether they perceive an asynchrony between lyrics and audio with
a ternary response (’lyrics ahead’, ’lyrics lagging’, ’synchronous’). The corresponding
questionnaire is displayed in Figure 7.4.

This experiment has a repeated measure design, with lyrics-to-audio synchrony perception
as a dependent variable, and the lyrics-to-audio error offset as the independent variable
having 14 modalities. It aims to measure an overall threshold of lyrics-to-audio synchrony
perception and to study the influence of global rhythmic factors on this threshold, such
as the tempo and the word rate. If our theoretical hypothesis is confirmed, we expect
to observe a greater proportion of ’synchronous’ responses for lyrics ahead than lyrics
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Figure 7.4 – Questionnaire used to evaluate lyrics-to-audio alignment first experiment.
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lagging, as well as a modulation of the perceptual threshold with the global rhythmic
context (tempo, word rate).

Choice of offsets:

In order to precisely define a threshold, we use a wide range of 14 offsets from −1s to 1s
with negative offsets corresponding to lyrics ahead and reversely positive offsets meaning
lyrics lagging behind audio. The list of offsets is: [−1,−0.5,−0.4,−0.3,−0.2,−0.1] for the
negative values and [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1] for the positive ones. We intentionally
keep this number as small as possible, since this value is equal to the number of annotated
songs required for each participant. Meanwhile, we wish to highlight effects around the
commonly used threshold of 0.3s and −0.3s. Thus, we use smaller steps around these
values.

We also included larger offsets (1s, 0.7s, −1s) as control values, to test that individuals
systematically report those as asynchronous. The value −0.75s is not included to reduce
the amount of offsets. In the same spirit, we expect the offset value 0 to trigger ’syn-
chronous’ answers. The full experimental protocol was carefully tested beforehand with
user testing sessions on a half-dozen people. Based on these, we evaluated completing the
annotation required approximately 12 minutes per participant. Overall, the experiment
gathered 53 participants who finished the task.

7.2.3 Influence of local factors

In this second experiment, we made some changes in the karaoke interface. This time,
we require each participant to choose one song from the dataset from which ten audio
excerpts are presented with different audiovisual offsets. Each sample is composed of
three lyrical lines from the given song. The experience can be done multiple times with
other songs if wanted. Each song takes around three to five minutes to annotate. Whilst
in the first experiment the alignment errors were located on all the words of the sentence,
in the second experiment, the position of the error may be located on the first, the last
word of the sentence, or close to a beat. These choices are motivated by some of the
significant factors of stress described in Section 7.1.2 being alignment with beats [JB89]
and sequence boundaries [JB89, KNH+05].

We decided to leave apart for this study the influence of long syllables [LJ96] and the
loudness [SvHP97]. In fact, long syllables and loud words are found to be overlapping
respectively with the last word of the sentence and words close to beats. The perceived
synchrony is reported as a binary response (’yes’, ’no’) with confidence on a 5-point
Likert scale. The corresponding questionnaire is displayed in Figure 7.5. This experiment
intends to quantify the interaction of the error location in the sentence and the offset on
the perceived alignment. It has a factorial design with the lyrics-to-audio offset and the
position of the error as within subject factors. If our theoretical hypothesis is confirmed,
we expect to observe a modulation of the perceptual threshold with the location of the
error in the sequence.

Proximity of a word to a beat is defined as at a distance less than a sixteenth note
from the beat, computed as ˇ “) = 15/BPM . The tempo estimation, here given in Beats
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Figure 7.5 – Questionnaire used to evaluate lyrics-to-audio alignment second experiment.

Per Minute (BPM), relies on Anssi Klapuri’s algorithm, which showed 80% accuracy with
constant tempo during the International Society for Music Information Retrieval (ISMIR)
2004 tempo induction challenge [GKD+06]. The position of beats is also given by this
algorithm. Starting from the baseline threshold of synchrony perception established in the
previous experiment, the second experiment focuses only on lyrics lagging with 3 offsets
(0.25, 0.5, 0.75) and a control sample with no offset.

We chose only positive offsets because of practical constraints. Indeed, applying a negative
offset at the word level can (and does frequently) result in overlapping with previous words,
at least for beat-aligned and end words. Filtering out cases of overlapping words resulted
in an important selection bias toward very slow songs. To avoid it, we could apply linearly
decreasing offsets to preceding words until no overlap remains, as a naive way to ’catch-up’
with the true annotations.

Such a behavior is consistent with what is observed in errors made by lyrics-to-audio
alignment systems, multiple errors on consecutive words being recurrent. The problem is
that we would not control which first offsetted word the participant will be confronted to.
Overall, we decided to not consider negative offsets altogether in this experiment.

Still, the problem of overlapping words remains for positive offsets. However, after ap-
plying linearly decreasing offsets to consecutive words until no overlap occurs, the first
offsetted word to which each participant is confronted remains the word of interest. Fi-
nally, we collected 2458 annotations from 193 participants.

7.3 Results

As we intend to compute an overall threshold of synchrony perception, we perform the
analysis at the level of the aggregated results, considering all annotations from all users.
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We remove beforehand all the trials from participants who did not answer correctly to our
control levels i.e. ’non synchronous’ at 1s and ’synchronous’ at 0s. Precisely, it represents
11% of answers for the first experiment. We do a similar cleaning phase for users of the
second experiment using the control offset of 0 and remove 8% of answers.

7.3.1 Asymmetry of Lyrics-to-Audio Alignment Perception

Using the data collected in the first experiment, we compute an aggregated proportion of
respondents who indicate lyrics and audio are ’synchronous’, and display it as a function
of the lyrics offset in Figure 7.6. We see synchrony perception is typically asymmetric,
positive offsets being more easily detected than negative ones. This was expected as it
resonates with previous findings [vEKJvdP08, VFMA18].

Beyond aggregated data, we also looked at individuals and found the thresholds were
indeed asymmetric for 72% of individuals. The observed synchrony boundaries support
the hypothesis that individuals tolerate more lyrics ahead than lyrics lagging. Whether
it is due to the faster traveling of light, an anticipation effect or a more reliable rhythmic
information provided by the audio while singing karaoke is beyond the scope of this chapter
and could be studied in future work.

To give perspective, we plot the window function corresponding to the PCO metric scoring
as used in the MIREX challenge, with an absolute threshold value of 0.3s. We also fit a
function akin to a scaled skew normal distribution function to the data points. Among
several attempts with asymmetrical continuous functions, this is the best fit we obtain,
although it does not respect the maximality at 0. Parameters of the fitted function are a
skewness factor of 1.12, a location of −0.22 and a scale of 0.29; a multiplicative factor is
also applied in order to have a value of 1 at the maximum.

Using this function we can derive new perceptive thresholds for synchrony using a simple
rule of 50% of respondents being able to detect the offset. For lyrics ahead and lyrics
lagging we respectively identify the offsets −0.33s and 0.22s. Given the amount of noise
in the data, we can reduce these to −0.3s and 0.2s , allowing us to make statistical tests
on these points, and examine if the differences of perception are significant for these
values. Indeed, pairwise tests revealed a significant difference of proportions of response
’synchronous’ on the levels −0.3 and 0.3s (χ2(1) = 4.26, p = .038), while proportions on
the levels −0.3s and 0.2 are not statistically different (χ2(1) = 0.04, p = .08).

7.3.2 Sensitivity to global rhythmic context

In order to assess whether there is an influence of the global rhythmic context on lyrics-
to-audio alignment perception, we compare the distribution of ’synchronous’ responses
at each offset for two rhythmic factors: the tempo and the Words Per Second (WPS).
We split our dataset of songs into two classes of tempo, defined as the upper and lower
quartiles of the distribution of tempo, respectively fast (≥138BPM) and slow (≤93BPM).
Although it is correlated with tempo, we also consider the average WPS rate of songs
as a meaningful global factor. Again, we look at the first and last quartiles as Low
(≤1.16WPS) and respectively High WPS (≥1.2WPS) classes. Figure 7.7 and Figure 7.8
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Figure 7.6 – Aggregated results of synchronous judgment as a function of the
lyrics/audio offset.

show the aggregated reported synchrony profiles for the negative offsets for the derived
tempo and WPS classes. On both metrics, we observe no threshold discrepancy between
the two classes for positive offsets.

To highlight the differences between classes, we fit a relatively simple sigmoid function to
the data points. Among several candidates, a Gauss error function seemed most appro-
priate. Fitted functions are also displayed in Figure 7.7 and in Figure 7.8 and emphasize
the different synchrony slopes. As we did earlier, we particularly consider the offset value
intersecting with an average of 50% of ’synchronous’ responses as an indicator of par-
ticipants’ sensitivity to temporal asynchronies. Interestingly, the 50% threshold for the
perception of synchrony is located at a larger offset (−0.36) for slow tempo than in fast
tempo (−0.31). These results show that individuals report more frequently lyrics ahead
as synchronous with slow tempo than with fast tempo. The lower sensitivity to lyrics-to-
audio alignment errors in slow tempo is consistent with the results of [Kle57]. Significance
of these results are tested. The proportions of ’synchronous’ responses at the offset −0.3s
display a significant difference between songs with high and low tempo (χ2(1) = 5.44, and
p < .02).

Analogously, we find out subjects are more tolerant to lyrics ahead (audio lagging) in high
word rate than in low word rate. The 50% threshold for the perception of synchrony is,
indeed, located at a larger offset for high word rate (−0.39) than in low word rate (−0.28)
(Figure 7.8). These results show that the subjects are more tolerant to lyrics ahead (audio
lagging) in high word rate than in low word rate. We again test the significance of these
results. The proportions of ’synchronous’ responses at the offset −0.3s are significantly
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Figure 7.7 – Proportion of response ’synchronous’ by tempo class.

different between songs with high and low WPS (χ2(1) = 16.86, and p < .00004).

7.3.3 Interaction between offset and word position

We design the second experiment to distinguish perception of the asynchrony as a function
of the word’s position in the sentence. As explained in Section 7.2.3, we are only able
to test for positive offsets. As insights from the previous experiment, we can assume
that user sensibility is less affected by global factors for positive offsets. As a result, we
expected it to be challenging for local factors too. For this reason, we aimed at collecting
a much larger set of annotations, with a reduced set of tested offsets.

Figure 7.9 presents an overview of the results. There is a fairly large amount of noise in
the collected data points, and few clear differences between synchrony perceptions for the
three classes of word positions. The noise is particularly clear from the displayed level
of confidence of participants who were unable to detect the asynchrony even for large
values of the offset, but still were quite confident about their choice (average around 3.8).
Regarding the location of the alignment error within the sentence, Cochran’s Q test did
not indicate a notable difference among the proportions of synchrony responses reported
for the three error positions, χ2(2) = 5.77, p = .056.

The only visible effect seems to be for words aligned on beats, for which the confidence
in the ’asynchronous’ answer at the 0.25 level is markedly higher than for the end class.
More precisely, a Wilcoxon signed-rank test reveal that comparing errors located on the
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Figure 7.8 – Proportion of response ’synchronous’ by WPS class.

beat with those on the last word did elicit a statistically significant change in the reported
confidence of perception of error in individuals at the 0.25 level (Z = 2.756, p < 0.006).
Indeed, the mean confidence rating is 4.1 for the errors on the beat and 3.5 for the errors
on the last word of the sentence. Such a phenomenon is not observed for the synchronous
case.

7.4 Discussion

7.4.1 General discussion

Building on psychological theory and previous studies, we had hypothesized that a percep-
tual evaluation of lyrics/audio alignment quality would be asymmetrical and dependent
on both global and local factors. Using a first experiment we did find strong evidence
for asymmetry and, to some extent, for global factor influence. Despite a much larger
experimental setup which involved hundreds of participants, we were not able to exhibit
a clear influence of the local factors we tested. This negative result could mean that the
local factor considered, i.e. the word position in the lyrical line, is not the relevant ones.

It is possible words’ grammatical or semantic functions are more subject to human at-
tention in a karaoke context. Indeed, the only significant phenomenon we observed was
on words located on beats, for which the asynchrony perception was more acute. We can
assume safely that words with important grammatical or semantic functions are mainly
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Figure 7.9 – Plot of the reported answer (synchronous is ’yes’, asynchronous is ’no’) and
confidence score (5 level Likert scale) in the perception of synchrony, by location of the

alignment error within the sentence.
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located on beats. Future work should then investigate the relationship between rhythmic
position and lyrical function of words and test new hypotheses of perceptual differences.

Finally, although we did our best to build a realistic yet controlled experimental setup,
we acknowledge that as a psychological experiment mostly conducted online, we can not
completely rule out the possibility the measurement noise was too high to allow us to
detect signals on local factors. There are arguably other factors that could influence this
perception, notably at the human level. Indeed, familiarity with the song (e.g. previous
knowledge of the lyrics and/or the music), but also level of musical expertise and even
karaoke practice could be important variables to consider. In the conducted experiment,
we collected such information from participants. Preliminary studies did not show any
interesting results on this data. For a question of time, no further research was pursued.
Additional experiments on this data are left for future work.

7.5 Conclusion

In this chapter, we challenged the objective evaluation of the lyrics-to-audio alignment
task using hypotheses from psychological theory. We postulated three effects: asymme-
try, influence of song features and influence of words’ local positions. We were able to
demonstrate the first two effects using a large scale online experiment, disguising the syn-
chrony annotation task as a Karaoke experience. This framework proved less efficient for
the third effect, despite our efforts to collect up to several thousand annotation points.
Future work could investigate more diverse sets of factors, globally or locally, both on
musical attributes and user features. Furthermore, the studies described in this chapter
could open the way for the development of perceptually grounded versions of lyrics-to-
audio metrics.
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Chapter 8

Singing language identification

Language identification is the task of detecting the language sung in a given song. Ap-
plications are numerous: informing lyrics transcription, supporting regional and genre
classification or helping monitoring the language of songs broadcasted in the media (e.g.
Toubon Law). One may want to estimate the song language from metadata frequently
accessible such as song title or artist name. Yet, this method is limited as the metadata
language can differ from the song language, and metadata may not contain enough in-
formation for retrieving the language [TW04]. The speech community has long tackled
language recognition from audio data, notably with the Language Recognition Evalua-
tion (LRE) series [MGH+14]. However, the task was scarcely transposed into the music
domain and most of the techniques used for spoken Language IDentification (LID) have
yet to be adapted for Singing Language IDentification (SLID). The latter task is more
complex, with the Singing Voice Recognition (SVR) domain raising challenging issues as
detailed in Section 1.2.

Previous works on the SLID task include acoustic-phonetic systems which character-
ize language-specific acoustic events and their distribution with carefully chosen acous-
tic features, such as Mel-Frequency Cepstral Coefficients (MFCC) [SBWH06], Stabilized
Auditory Images (SAI) [CSR11] and Temporal Patterns (TRAP) [KAD14]. Statistical
modeling and supervised classification are then applied to identify the language. In par-
ticular, Kruspe’s system using the i-vector extraction technique obtains the current best
performance on SLID [Kru14b], reaching 78% accuracy on an a cappella dataset in three
languages.

Another popular category of systems are the phonotactic approaches that try to iden-
tify phonemes from the audio and examine their combinations and sequences, which are
distinctive from one language to another [LML13]. These approaches are more resource-
demanding as acoustic models, used as phoneme recognizers, have to be trained. Mehra-
bani et al. [MH11] use multiple language-specific acoustic models trained on speech data,
to then compute language likelihoods with n-gram language models for each target lan-
guage. While the performance is on par with Kruspe’s i-vector-based approach [Kru14b],
it is more complex to train and it is hardly scalable to a large set of languages.

In [Kru16c], the author simplifies the approach by using a unique Deep Neural Network
(DNN) based English acoustic model and identifies the language from phoneme statistics.
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While singing data is included in the acoustic model training, the frame-wise phoneme
annotations are obtained by a forced-alignment step, which leads to poorly annotated
data. Also, this statistics-based language modeling overlooks the information contained
in the phoneme transitions.

In this chapter, we propose a new modernized phonotactic SLID system using most recent
DNN techniques: in particular, we use an acoustic model inspired from the one described
in Chapter 4. This model is a Recurrent Neural Network (RNN) trained on multilingual
data with the Connectionist Temporal Classification (CTC) algorithm, alleviating the
need for frame-level aligned lyrics, and outputting sequences of International Phonetic
Alphabet (IPA) phonemes. This acoustic model was shown to display great results for the
lyrics-to-audio alignment task in a multilingual framework. We thus assume this model
could provide information for the language identification task. Moreover, outputting
sequences of IPA phonemes makes this acoustic model trainable using data from any
language as long as a pronunciation lexicon is available for it.

For language classification, we use a recurrent architecture that can capture temporal
information in phoneme estimation sequences. We evaluate our system in a standard
closed-set scenario and in a harder setup with out-of-set languages where we can acknowl-
edge the limits of our model. This is the first time out-of-set languages are considered for
the SLID task. The question of whether singing language recognition algorithms could
handle these cases remains to be answered.

The chapter is organized in various sections. Firstly, we introduce some background
for the task in Section 8.1. Then, in Section 8.2, we describe the key aspects of our
deep phonotactic SLID approach. The dataset, baselines and implementation details are
given in Section 8.3. Results are presented in Section 8.4, providing a first reproducible
benchmark on the DALI dataset. The dataset split used is made publicly available 1. A
large part of this chapter is directly adapted from the paper: "Lenny Renault, Andrea
Vaglio, Romain Hennequin. Singing Language Identification Using a Deep Phonotactic
Approach. In Proc. of Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP),
2021".

8.1 Required background

8.1.1 Speech Language Identification

Humans use multiple cues to efficiently identify languages they are familiar with. They
have been described extensively in various perceptual studies [MJC94, LML13] and can
be divided into four levels of abstraction:

• Acoustic-phonetic: native speakers can generate acoustic events (or phones) pecu-
liar to their language through speaking. The number of phones available and their
distribution vary by language (for example, the [th] sound exists in English but
not in Mandarin).

1. https://github.com/deezer/SingingLanguageIdentification

106



8. SINGING LANGUAGE IDENTIFICATION

• Phonotactic: each phone may be tokenized as a phoneme (a linguistic unit) and
each language has lexico-phonological norms ruling their possible combinations
and patterns. As a result, phoneme sequence distributions sequences vary between
languages.

• Prosodic: often known as the ’speech melody’, the prosodic descriptors define how
phones are uttered, e.g. their length, rhythm, intonation, and stress.

• Vocabulary and grammatical: specific words can be enough to guess a language
following the phonological and syntactic norms of this language.

To identify a familiar language, humans employ these cues simultaneously. Still, the most
salient are the acoustic-phonetic and phonotactic [LML13]. The majority of LID systems
are thus based on one of these two cues. As defined in the introduction of this chapter,
they are called acoustic-phonetic and phonotactic approaches.

8.1.2 I-vector extraction

The i-vector extraction technique is an unsupervised machine-learning method created
for speaker verification in [DKD+11] and subsequently successfully applied to the SLID
task [Kru14b]. It is generally used as a feature post-processing step. The goal is two-fold.
Firstly, it helps discard the most ordinary irrelevant information embedded in the training
examples. Secondly, by compressing the relevant data into a fixed-size vector, it helps
diminish the dimensionality of the training features.

To do so, it notably uses a Universal Background Model (UBM) to summarize training
data. The most frequent choice for this model is a Gaussian Mixture Model (GMM) of
C Gaussian components. An utterance U = [U0, ...,UT−1] is mapped, in the GMM-UBM
paradigm, to its GMM-supervector S(U) of size CF . Here, T is the number of frames, F
the number of features and Ut the tth frame-level feature vector of dimension F .

The GMM-supervector S(U) is computed using the trained UBM. This supervector can
be decomposed like:

S(U) = M + VW (8.1)

here, M is a language-session-independent supervector, also computed from the trained
UBM, and V a CF ×R low-rank total variability matrix. This matrix models the signif-
icant variability in the supervector space. Finally, W is the desired i-vector, a vector of
dimension R, from a normal distribution. The size of the vector is a tunable parameter of
the algorithm. Before being able to do i-vector extraction, both GMM-UBM and i-vector
extractor V are trained one after the other using an expectation maximization algorithm
on the complete training set. Then, for a desired utterance U, the i-vector W can be fi-
nally computed using the extractor V. Exhaustive description of the complete algorithm
is given in [GBM+11].

8.1.3 Metrics

Classic binary classification metrics can be generalized to multi-class labeling. In this
chapter, we consider two of these metrics. Firstly, the multi-class balanced accuracy is
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Figure 8.1 – Overview of the proposed SLID system. During training, the phonetic
transcription of the lyrics y and the corresponding language label l of the excerpt X are
provided. To obtain the input acoustic feature matrix, multiple preprocessing modules
are applied on the input audio, for both training and inference. These modules are, in
order of application: SVS and feature extraction. They are not displayed here for the

sake of readability.

obtained by computing the average of the recall of each class. More formally, it is defined
as:

bAccuracy =
1

W

∑

l∈L

TP (l)

Nl

(8.2)

where 1
W

is a normalizing factor, Nl is the number of samples of the lth class, L is the set of
languages considered and TP(l) is the number of true positives of the lth class. Secondly,
the multi-class F1-score is computed using the macro-averaged strategy, considering equal
weights for each class. Beforehand, the per-class F1-score is computed, for each class, by
defining the considered class as the positive class and aggregating all other classes as
the negative class. The desired metric is then obtained from the arithmetic mean of the
per-class F1-scores like:

F1macro =
1

L

∑

l∈L

F1(l) (8.3)

where L is the number of considered languages.

8.2 Proposed approach

As in previous SLID works, we frame the problem as a multiclass classification task. The
system takes as input an acoustic feature matrix X ∈ R

F×T , extracted from a musical
excerpt. Here, F denotes the feature dimensionality and T is the number of time frames.
The architecture then estimates the language l used in the musical excerpt, among a set of
L languages {l1, l2, ..., lL}. The preprocessing modules, and theirs parameters, preceding
the acoustic model, i.e. the Singing Voice Separation (SVS) and the feature extraction
ones, are identical to those described in Chapter 4.
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8.2.1 General presentation

Our deep phonotactic system, as illustrated by Figure 8.1, is composed of two main mod-
els: an acoustic model H for phoneme estimation, followed by a language classifier G .
The acoustic model H is the same as the one described in Chapter 4, except that it is
here outputting sequences of IPA phonemes. More precisely, the set of units supported
by the model C encompasses the IPA symbols appearing in the training excerpts, a word-
boundary ’space’ token, an instrumental ’I’ token and the blank token ǫ introduced by
the CTC algorithm in Section 3.5. The rest of the architecture and training parameters
are unchanged.

A posteriorgram is generated from the acoustic model H given the input acoustic features
X. The language classifier G then produces a language probability vector score G (R) ∈
[0, 1]L from it. The language decision is finally taken from this vector score with:

l̂ = argmax
l∈{l1,l2,...,lL}

[G (H (X))]l. (8.4)

Previous phonotactic approaches on the SLID task made distinct training of the two
models, with different training sets [MH11, Kru16c]. The acoustic model H needs the
phonetic transcription y of each training excerpt X, whereas the language classifier G

needs the posteriorgram representation R and the language label l of its training excerpts.
We use the same dataset of musical excerpts for training both models. Following the work
on joint Automatic Speech Recognition (ASR) and LID [WHH17], we train both models
simultaneously. The joint loss function can be expressed as:

LJoint(R, l̂,y, l) = LCTC(R,y) + λLLID(l̂, l), (8.5)

where λ is the weight given to the cross-entropy LID loss with regard to the CTC loss. The
balance between the two losses is decisive for the system performance: various strategies
are considered and described in Section 8.3.4.

8.2.2 Language Classifier

The language classifier G is built upon a RNN. The usage of recurrent architectures
has been successful for End-To-End (E2E) spoken LID [NTHAL16, CDHL19]. Here,
the phoneme posteriorgram representation is given as input, instead of the raw acoustic
features extracted from the audio excerpt. Bidirectional Long Short-Term Memory (BiL-
STM) layers are chosen with the last layer only outputting a single probability vector for
the whole input segment.

This architecture takes the combination of phonemes into account, as in n-gram mod-
eling [MH11], but with confidence scores on the phoneme predictions by using the full
probability vectors, as in statistical modeling [Kru16c]. To avoid vanishing gradients on a
very long input sequence [HBF+01], we choose to perform the SLID task on fixed-length
segments for a given song. Song language is then inferred from the mean of language
scores output by the system on all segments.
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Subset # Phon Train (h) Val (h) Test (h)

Closed-set 66 259.4 9.4 40.1
Open-set 71 269.2 10.6 46.0

Table 8.1 – Description of DALI language subset datasets used in this chapter and
corresponding phoneme dictionary sizes.

8.3 Experiments

8.3.1 Datasets

We design two language sets from the DALI dataset: a closed-set scenario and an open-set
scenario. The closed-set retains languages with more than ten hours of data each: English,
French, German, Italian and Spanish. The open-set also adds a sixth label ’Others’
regrouping low-resource languages as defined in Chapter 6 (Dutch, Finnish, Portuguese,
Polish). Train, validation and test sets are obtained with an 84%-3%-13% language-wise
and artist-aware split [Fle07].

Songs in neither target nor low-resource languages are also labeled as ’Others’ and added
to the open-set test set only. These out-of-domain samples help monitor the generaliza-
tion of out-of-set modeling learned from the subset of in-domain ’Others’ languages. As
English is over-represented in the dataset, all systems and baselines are trained with a
class-weighted LID objective function. The description of these splits are more precisely
displayed in Table 8.1.

Our system performs SLID at segment-level. Each song is split into 20s segments with a
0.5 overlap factor between consecutive segments. Segment lyrics are retrieved using the
word-level annotations from DALI and decomposed into IPA symbols using Phonemizer
as in Chapter 6. Collecting all phonemes occurring in the training segments and adding
the space, instrumental and blank tokens, the total number of units obtained is |C| = 66
in the closed-set scenario and |C| = 71 in the open-set scenario.

For the segment language label, the FastText language identifier [JGB+16] is used on the
segment lyrics. A segment is labeled instrumental when it has less than three words, or
ambiguous when the lyrics’ repetitiveness or the FastText non-confidence score is above
an empirically found threshold. During inference, ambiguous and instrumental scores are
not taken into account when estimating the song language from segment language scores.

8.3.2 Baseline systems

Two baseline systems are implemented for comparison with our approach. The Metadata
baseline is a text-based language identifier using the artist name and song title metadata
provided with the DALI dataset. The language is extracted using the FastText language
identifier [JGB+16]. The i-vector baseline is an acoustic-phonetic i-vector-based system,
as in [Kru14b]. Implemented with the Kaldi LRE recipe [PGB+11], this system computes
a 600-dimensional i-vector per vocal-isolated song. Sequences of 20-MFCC feature vectors
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are extracted then modeled by a GMM-based UBM. Supervised language classification is
performed from the i-vector representation of the song using a Support Vector Machine
(SVM) algorithm with a cosine kernel, as in [Kru14b, DTCRD11].

8.3.3 Language classifier

Inputted posteriorgrams are pre-processed by a deterministic cleaning module: frames
with ǫ-emission probability P (ǫ) > 95% are removed, to account only for frames with
actual phoneme predictions. The language classifier model is composed of two BiLSTM
layers with 64-dimensional hidden states each and a 0.1 recurrent dropout factor. An
additional 0.2 dropout is applied between each layer. The second layer outputs a single
vector per segment, which is processed by a dense layer with a softmax activation function
to produce one language probability vector. A class-weighted categorical cross-entropy
loss function is used for training the model given the one-hot encoded language label.

8.3.4 Training strategies for our approach

We test two strategies for training our system, implemented in Tensorflow. Each training
variant relies on the ADAM optimization algorithm [KB15] with a learning rate of 10−3,
a batch size of 32 and validation-based early stopping. In the 2-step variant, the acoustic
model H is first trained alone. The language classifier G is therefore trained for the
SLID task from the posteriorgrams of the training segments computed by H . The Joint
variant trains both models at the same time from scratch. With hyper-parameter tuning,
we found that training the system with a loss balance λ = 0.1, then fine-tuning it with
λ = 100 yields the best performance on the validation set.

8.3.5 Ablation study

We evaluate the relevance of our approach parts by designing two simplified systems
for comparison. The E2E system is an E2E approach to the SLID task with the same
architecture as the Joint variant, except for the CTC component which is removed from
the loss function. The phoneme recognition task is ignored and the model is solely trained
to identify the language in song segments.

The Statistics system is a modified 2-step variant. Instead of the recurrent layers, the
language classifier is a pooling step of the mean and variance statistics of each phoneme
class over the full song length. Song language is directly predicted from these statistical
vectors using a SVM. This system is analogous to a modernized version of [Kru16c], with
a CTC-based acoustic model instead of the DNN-based one.
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System bAccuracy (%) F1-score (%)

Metadata 76.48 (3.98) 76.71 (3.45)
i-vector 77.26 (3.88) 67.78 (3.57)

E2E 59.90 (4.33) 65.43 (4.47)
Statistics 88.46 (3.04) 89.00 (2.95)

2-step 88.62 (3.03) 90.75 (2.62)
Joint 91.74 (2.70) 92.39 (2.31)

Table 8.2 – System evaluation in the closed-set scenario. It is measured by balanced
accuracy (bAccuracy) and macro-averaged F1-score. The standard errors are given in

parentheses. The best value for each metric is displayed in bold.

8.4 Results and discussion

8.4.1 Performance in the closed-set scenario

The results of the evaluation of our systems on the test songs in a closed-set scenario are re-
ported in Table 8.2. All phonotactic approaches (Statistics, 2-step and Joint) outperform
the Metadata baseline, unlike the E2E approach. The phonetic information contained in
the audio data is thus better suited for estimating the language than common metadata.
Reliable estimations from the raw audio can not be achieved with a naive E2E approach
and seems to require more refined techniques. Our deep phonotactic system also signifi-
cantly outperforms the re-implemented state-of-the-art i-vector approach. In particular,
joint training of the acoustic model and language classifier further improves the system
performance, as the Joint variant yields the best overall scores, with 91.7% of balanced
accuracy.

Regarding the efficiency of each system’s part, the Statistics approach has better per-
formance that the i-vector baseline, which was not the case between the two analog
approaches from Kruspe [Kru14b, Kru16c]. Hence, our CTC-based acoustic model seems
to offer better modeling capability than the DNN-based model from [Kru16c]. The 2-step
variant does not significantly outperform the Statistics system, which implies that the
language classifier can be improved. Finally, even though the side phoneme recognition
task requires more detailed information for training, it proves to be profitable for the
SLID task since the 2-step and Joint systems outperform the E2E baseline.

8.4.2 Performance in the open-set scenario

The results of the evaluation of our systems on the test songs in the open-set scenario
are reported in Table 8.3. All phonotactic systems still outperform the Metadata, E2E
and i-vector approaches. However, both variants of our deep phonotactic approach are
less robust to the introduction of the ’Others’ class than the simpler Statistics system.
Indeed, they seem to overfit on the ’Others’ training data. It can be explained as this
class has a greater linguistic variability than other classes but has the same amount of
data as a low-resource target language. This effect is further demonstrated in Table 8.4
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System bAccuracy (%) F1-score (%) Target (%) ’Others’ (%)

Metadata 70.16 (3.46) 70.52 (3.08) 73.30 (3.45) 56.60 (4.73)
i-vector 70.87 (3.16) 54.79 (2.90) 58.74 (3.18) 35.06 (4.92)

E2E 39.57 (3.17) 35.78 (2.57) 42.93 (3.07) 0.00 (0.00)
Statistics 83.30 (2.83) 80.28 (2.79) 81.70 (3.03) 73.14 (3.79)

2-step 78.49 (2.77) 74.35 (2.92) 79.89 (3.14) 46.62 (5.40)
Joint 72.89 (2.86) 64.46 (3.14) 72.02 (3.51) 26.67 (5.35)

Table 8.3 – System evaluation in the open-set scenario. It is measured by balanced
accuracy (bAccuracy) and macro-averaged F1-score. Macro-averaged F1-score on the

target languages and the F1-score on the ’Others’ class are also presented. The standard
errors are given in parentheses. The best value for each column is displayed in bold.

as only the Statistics approach can generalize the out-of-set modeling to out-of-domain
languages unseen during training.

System In-domain ’Others’ (%) Out-of-domain ’Others’ (%)

i-vector 50.00 (10.66) 20.00 (4.46)
E2E 0.00 (0.00) 0.00 (0.00)

Statistics 86.36 (7.29) 56.25 (5.58)
2-step 63.64 (10.28) 21.25 (4.61)
Joint 31.82 (9.87) 11.25 (3.56)

Table 8.4 – Performances comparison on ’Others’ labelled test songs in in-domain and
out-of-domain languages cases. It is measured by accuracy. The standard errors are

given in parentheses. The best value for each class is displayed in bold.

8.5 Conclusion

In this chapter, we investigated modernized phonotactic systems for the SLID task on
polyphonic music, using recurrent models for both phoneme recognition and language
classification. Trained on a publicly available multilingual dataset, the proposed approach
outperforms metadata-based and the previous state-of-the-art SLID approaches. The
CTC-based acoustic model greatly contributes to the performance increase, both in closed-
set and open-set scenarios. However, the proposed language classifier hardly exceeds
statistical modeling in a closed-set scenario, and deteriorates with out-of-set languages.

Future work could focus on exploring hierarchical language modeling techniques for SLID
with out-of-set languages, taking inspiration from the speech literature [ISAL18]. Our
SLID approach could also be used in a multilingual lyrics transcription system, condi-
tioning the latter by the language detected using e.g. Feature-wise Linear Modulation
(FiLM) layers. This technique has been particularly successful in conditioning the music
source separation algorithm on the desired instrument to be extracted [MBP19].
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Chapter 9

Cover song detection

Cover detection, also known as version identification, aims at detecting whether two
recordings are of the same underlying musical work. A cover can be played by the same
artist as the original song, or by another artist, and can be quite similar or vastly dif-
ferent. Practical applications include music browsing, recommendation and plagiarism
detection. Generally, it is assumed, as in [SGH10], that tonal progression features (chord,
melody, and harmony) are mostly preserved between covers of the same work. Inversely,
musical attributes such as key, timbre, tempo, and structure significantly vary across
covers [SGH10]. Variations of these features between covers were extensively studied in
[YTC+19]. Cover detection systems are then built to be insensitive to these variations
and exploit tonal progression features.

This task has been frequently studied as a query and answer [SGH10] one, i.e. given an
input query, the system outputs a ranked list of possible covers from a music collection.
True covers are to be ranked as highly as possible while other songs should be ranked low.
This list is usually obtained by computing pairwise similarities between the query and
each song of a predefined dataset [SGH10]. Obtained similarities can be further used to
train a classifier to detect cover/non-cover pairs [RE10]. If earlier cover detection systems
were shown to be efficient on small datasets (1000 songs or less) [SSA09], the performance
quickly dropped on larger ones [CHA18, YTC+19]. Recent works have made significant
advances in scalability and accuracy, for larger datasets, taking inspiration from metric
learning [YSG20a] and knowledge distillation [YSG20b].

Almost none of the existing approaches explicitly consider the textual information pro-
vided by the lyrics. It is only used in [CHA18], in which lyrics are assumed to be available
for a significant part of the dataset. In this study, the authors use metadata and lyrics
alongside audio to perform cover detection. The textual similarity of lyrics and song ti-
tles is computed using a plain bag-of-word Term Frequency–Inverse Document Frequency
(TFIDF).

The authors show results obtained with lyrics are on par with those given by audio-
based features on a large-scale dataset. Moreover, the best results are obtained when
combining all of the features. However, each feature is only used in a separate part of
a multi-layer database pruning method; the information carried by each modality is not
optimally combined. One limitation of this work is that it assumes the lyrics of most songs
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are available. The question of whether lyrics information extracted from audio might be
employed to complete the cover detection task remains unresolved.

Considering the task of query by singing, which may be regarded as a related task to
the cover detection one, authors in [WJ15] employed lyrics and melody recognition to
recognize a singing query and match it against a collection of songs. They employed a
basic bigram Hidden Markov Models (HMM) model that is trained on speech and adapted
to singing voice. However, this approach also presupposes that the lyrics of songs are
available. Lyrics from the considered dataset are, in fact, utilized to inform singing voice
recognition.

In this chapter, we propose a novel cover detection approach leveraging lyrics information
extracted from audio. It is based on the fusion of a Singing Voice Recognition (SVR)
framework and a more classic tonal-based cover detection system. This is the first time
an estimation of lyrics transcripts from audio is explicitly leveraged to perform cover
detection. Our assumption, based on the results of [CHA18], is that lyrics are often
preserved between covers in western popular music.

For the first modality of our fused system, we therefore propose using transcription meth-
ods to obtain estimates of these lyrics for all songs. The cover song here is framed as a
noisy text-matching task. We expect a lyrics-recognition-based system to be particularly
relevant for pairs of covers displaying hugely different tonal features while using the same
lyrics. An example of such cases is the cover of Summertime by Janis Joplin where the
harmony and melody are considerably different from the original score, but the lyrics
remain quite similar.

Nevertheless, it is clear a pure lyrics-based approach is inadequate for instrumental music
(e.g. without a singing voice). Therefore, we use a tonal-based system as the second
modality of our fused architecture. An instrumental detector is applied on the output of
the lyrics recognition framework to inform the fusion strategy. Extra attention is placed on
the scalability of our proposed approach using an Approximated Nearest Neighbor (ANN)
method.

The chapter is divided into five sections. First of all, some background for cover detection
is presented in Section 9.1. Following that, our approach is described in Section 9.2. Then,
the parameters of experiments are given in Section 9.3. Next, the results and discussions
are presented in Section 9.4. At last, the conclusion is given in Section 9.5. A large part
of this chapter is directly adapted from the paper: "Andrea Vaglio, Romain Hennequin,
Manuel Moussallam, Gaël Richard. The Words Remain the Same: Cover Detection with
Lyrics Transcription. In Proc. of Int. Soc. for Music Information Retrieval Conf.
(ISMIR), 2021".
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9.1 Required background

9.1.1 Cover detection

Related work:

Classically, cover song detection systems use tonal features, which are thought to be the
least altered between a song and its covers. Chroma [EP07] and derived features like
Harmonic Pitch Class Profile (HPCP) [SSA09] and CremaPCP [YSG20a] are among the
most effective examples. Other features used include: melody [DP19], chord progression
and profiles [KO13], and Mel-Frequency Cepstral Coefficients (MFCC) self-similarity ma-
trices [Tra17]. Before computing the similarity between two songs, multiple preprocessing
steps can be applied to obtain features that are invariant to the key, the tempo, or the
structure of the song. Examples include multi-channel attention for structure invariance
[YSG20a], optimal transposition index for key invariance [SGH08], and beat-synchronous
Chroma for tempo invariance [BME11].

After extracting the features to be compared for both songs, a cross similarity matrix
[LCCL18], or a cross recurrent plot [SGH08], is generally computed. A similarity score is
then computed using dynamic programming algorithms such as Dynamic Time Warping
(DTW) [SGHS08] or the recurrence quantification analysis one [SSA09]. For a given
query, this score is calculated for all tracks in a pre-defined dataset and accordingly yields
the desired sorted list. These methods achieve satisfactory results for small datasets of
up to a thousand songs [SSA09], but are computationally costly for larger datasets.

To address this issue, some authors have attempted to reduce the size of the input repre-
sentation to obtain a low-dimensional fixed size representation for each track. The simi-
larity comparison thus boils down to a basic distance metric such as Euclidean distance or
cosine similarity [YSG20a] that are much faster than dynamic programming algorithms
of quadratic complexity. Early approaches of this type include using fingerprinting in
the form of Chroma landmarks [BME11] and 2D Fourier transform of Chroma vectors
[ET12], both obtaining low performance.

More recent approaches using metric learning, triplet loss, and distillation methods show
great improvements [YSG20b, YSG20a] in terms of computation speed and retrieval
performance. Database pruning was also used to decrease the overall complexity in
[SHG17, CHA18]. A first fast global candidate selection using text and metadata was
performed, followed by a more complex similarity function to re-rank the subset.

Most of these approaches, which are based on low-dimensional embeddings and sim-
ple distance functions, are then simply exploited into existing scalable nearest-neighbor
methods. For example, the authors in [BME11, TPM16] use index-based matching on
extracted audio fingerprints. A Locality Sensitive Hashing (LSH) method is also used on
chord profiles [KO13], melodic fragments [Mar08], and audio shingles [GM12]. Scalable
nearest-neighbor methods are broadly discussed in Section 9.2.6.
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Metrics:

The empirical evaluation of the cover detection task performance is given using the Mean
Average Precision (MAP) metric. It is computed with the Metrics toolkit 1. For a query,
the Average Precision (AP) metric quantifies the number of actual covers that are highly
ranked in the returned sorted list. The AP score increases when actual covers are detected
in the top ranks. It is formulated as:

AP =
1

G

N
∑

r=1

p(r)i(r) (9.1)

where N is the size of the scrolled music collection and G is the number of actual covers
in it. The function i(r) is a binary indicator function returning one when the rth song of
the ranked list is a cover song and zero if not. The function p(r) is the precision at rank
r defined at:

p(r) =
r

∑

j=1

i(j)

r
(9.2)

The MAP metric is then simply obtained by averaging on the AP of all queries. As the
MAP is not properly defined for systems not scoring every track, like those using ANN
methods, we report MAP@100 metric for these cases considering only the top 100 ranked
items of each query. This choice can be explain by the fact all the systems in this chapter
score at least 100 tracks. In any case, the MAP score does not significantly evolve after the
top-100 pruning as explained in [CHA18]. In this case, the AP@100 metric is computed
as:

AP@100 =
1

min(100, G)

100
∑

r=1

p(r)i(r) (9.3)

In practice, in this chapter, the number of relevant covers for a given query in the music
corpus is always far below 100, hence obtaining:

AP@100 =
1

G

100
∑

r=1

p(r)i(r) (9.4)

9.1.2 String matching

In this chapter, we assume lyrics of covers being mostly invariant. For two covers, the
transcripts obtained from a SVR pipeline can then be considered as two noisy versions
of the same text. Several metrics are therefore discussed in this section to compute
the similarity of two noisy transcriptions coming from the same text. Looking at a few
situations when the lyrics of covers diverge, two particular instances occur where lyrics
are still similar. The first one, the most frequent one, is the case where both lyrics are
only displaying minor differences (e.g. words added or deleted). Most string matching
algorithms are robust to such modifications. The second one, is the case of the lyrics of
one cover are a subsequence of lyrics of another one.

1. https://github.com/benhamner/Metrics
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The similarity function used should then be invariant to such differences of length. The
most natural choice to compute this similarity is an edit distance such as the Levenshtein
distance. One of its interesting properties for the noisy text-matching task is it takes
the order of characters into account. As described in Section 3.8, it is computed as the
lowest number of needed character operations to transform one string to the other. In this
chapter, possible operations are insertion and deletion, hence the substitution operation
is not considered. A normalized similarity s can thus be defined from the Levenshtein
distance l for two strings a and b by:

s(a, b) =
|a|+ |b| − l(a, b)

|a|+ |b|
(9.5)

This similarity takes its values between zero (when the two compared strings have no
common characters) and one (when the two strings are equal). The complexity of this
algorithm is O(|a||b|). Unfortunately, the difference in size of the compared strings has
a large influence on this measure, preventing it from possessing the necessary invariance
characteristic.

In contrast, the cosine similarity between TFIDF vectors is another widely used metric
which is unaffected by the difference of length of strings compared. These vectors are
created using bag-of-words features. A bag-of-words simply counts, for a string a, the
number of occurrences of each word in a vocabulary V of size N , discarding unknown
words. As a result, a vector of size N is obtained. The TFIDF is then used to generate a
frequency representation of the bag-of-words, taking into consideration that certain words
are common and so provide little information. More formally, it is defined as:

TFIDF (w,a,D) = TF (w,a) ∗ IDF (w,D) (9.6)

where TF (w,a) represents a function counting how many times the word w appears in
the string a and IDF (w,D) is a function computing how much information the word w

is providing. The latter penalizes words too frequent in the corpus D and inversely favors
very rare words in this corpus. It is usually defined as:

IDF (w,D) = log
|D|

|{d ∈ D : w ∈ d}|
(9.7)

where d can be any document of the corpus D. The similarity between two strings a and b

is finally obtained by computing cosine similarity of their respective TFIDF vectors of size
N . For a given string a, this vector is defined by TFIDF (w,a,D)w∈V . The vocabulary V
is commonly created from the collection of words found in the corpus D. Contrary to the
Levenshtein metric, this similarity does not consider the order of appearance of each word.
The complexity of this algorithm is O(|a|+ |b|), thus outperforming the Levenshtein one
in terms of complexity. One drawback of this measure is that it can provide a high score
between two quite different lyrics when the same uncommon terms are employed in both.
Though it diminishes the importance of common words in the similarity computation, it
also increases the importance of rare words. This typically happens when both transcripts
include the same rare onomatopoeia.

This metric can also be defined at character level and be generalized for sequences of the
considered text units using n-grams. In this case, the vocabulary considered is composed
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Figure 9.1 – Audio from a pair of tracks is processed in parallel by two branches
computing lyrics and tonal-based similarities respectively. The fusion mechanism is

informed by an instrumental detection on the transcripts.

of n-grams of characters or words. It allows to obtain vectors capturing some sequential
information as opposed to the vanilla TFIDF. In practice, only n-grams of characters are
employed since the size of TFIDF vectors generated with word n-grams quickly becomes
very large for increasing values of n, even for bigram and trigram models. In this case,
despite having a huge corpus of lyrics, a substantial proportion of word n-grams are only
observed once in the corpus, severely weakening the statistical characteristics of the IDF
function.

9.2 Proposed approach

A general overview of our cover detection approach is described in Figure 9.1. It is
composed of a lyrics-recognition-based cover detection system and a classic tonal-based
approach. The first branch is constituted of a lyrics recognition framework and a string
matching function. It takes two songs X1 and X2 as input and outputs the respective
estimated lyrics b̂1 and b̂2. A similarity estimation slyrics is obtained afterwards using
these transcriptions. The second branch of our approach, the classic tonal-based system,
also takes these two songs as input and outputs a similarity estimation stonal.

They are next fused using a fusion function to obtain a new similarity estimation sfus. An
extra input is added to the fusion function α to weight the participation of both modalities
during the fusion. The value of this input depends on the instrumental detector taking
as input both transcripts and outputting the probability that at least one of the tracks
is purely instrumental. This avoids using the lyrics-based recognition approach during
the fusion in the absence of lyrics. To obtain the desired sorted list, for a given query,
a similarity is then computed for the considered system between the query and each
track of the dataset. Finally, a fast approximate index search technique is used on our
implementation to make it scalable. For that, we rely on the ANN approach where the
similarity is only computed between the query and the nearest neighbors returned by the
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method.

9.2.1 Lyrics recognition

We choose as a lyrics recognition framework Gupta20 [GYL20] obtaining the best results in
the Music Information Retrieval Evaluation eXchange (MIREX) 2020 lyrics transcription
challenge 2. The model is described extensively in Section 2.2. The complete framework
extracts MFCC feature vectors of dimension 40 from the audio input and outputs the
transcribed English words. As this model cannot output non-English words, extra care
on the results of non-English tracks will be considered later in this chapter.

The acoustic model and the pronunciation lexicon are collected from the code imple-
mentation of the authors 3. The language model used is the same as the one trained in
Chapter 4. All three modules are compiled as a decoding graph using the Kaldi framework
[PGB+11]. The graph obtained thus gives the desired estimated transcript for each audio
input. Obtained transcription results are on par with those in the MIREX competition
with a Word Error rate (WER) of 62% on the Jamendo dataset.

9.2.2 String matching

To allow for a swift computation of the similarity between pairs of estimated transcripts,
each string is transformed to a vector using a TFIDF based on a trigram at character
level with Inverse Document Frequency (IDF) values computed from the DALI dataset.
Using a word level TFIDF was not shown to improve the performance on a cover song
tuning set described in Section 9.3.1. We also considered the Levenshtein metric for the
string matching, but it did not yield significant gains in performance while inducing a
higher quadratic complexity. Similarily, taking into account both metrics for fusion did
not significantly improve the performance.

9.2.3 Detecting instrumentals

Looking at various transcripts given by our SVR framework, we notice that, for most
instrumental tracks, the transcript obtained is composed of either a few number of words,
or highly repeated ones such as onomatopoeia. Therefore, we consider a track as instru-
mental if the respective transcription is composed of less than l different words with l
tuned on the cover song tuning set. The module outputs δx1,x2 = 1 if both tracks are
not detected as instrumentals, and zero otherwise. For some rare cases where the SVR
framework is performing poorly, it is also only outputting few words. The instrumental
detector then helps by filtering out some marginal cases where the lyrics transcription
fails completely. We chose to keep this module very simple as it performed sufficiently
well for our purposes and allowed for improvements in future work.

2. https://www.music-ir.org/mirex/wiki/2020:MIREX2020_Results

3. https://github.com/chitralekha18/AutoLyrixAlign
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9.2.4 Tonal-based cover detection

The tonal-based cover detection method selected is described in [YSG20b]. This system,
called Re-MOVE, is an updated version of MOVE [YSG20a] and obtains the second
most accurate benchmark on the Da-Tacos dataset [YTC+19]. Compared to the best one
reported [DYZ+21], it has the advantage of being publicly available 4 and, thus, perfectly
reproducible.

The system is trained using the training part of Da-Tacos, as described in Section 9.3.1,
and early stopping is performed using its validation component. For a given track, the
system takes CremaPCP extracted from the audio as input and outputs a corresponding
compact embedding. The CremaPCP feature is an intermediate representation of a chord
estimation model. It is considered an efficient way to capture the tonal information of
music and is shown to outperform the more classic HPCP features for cover detection
[YTC+19]. The similarity between the query and each track of the dataset is then the
cosine similarity of their respective embeddings.

The Re-MOVE architecture uses a latent space reconfiguration technique on top of MOVE
in order to reduce the embedding dimension (and then reduce memory requirements and
retrieval time) while maintaining a high detection performance. This technique reconfig-
ures a pre-trained learned distance metric into a compact embedding space with the same
learned semantic relations.

9.2.5 Fusion

It has been demonstrated in multiple domains that the fusion of different modalities can
yield better performance than those obtained with each single modality [KHDM98]. For
cover detection, fusing modalities, features or similarity matrices has already shown to
improve results [CLX18, Tra17], notably using rank aggregation methods [OEFD15]. The
fusion function chosen here is a weighted sum. It is precisely described by:

sfus =

{

αslyrics + (1− α)stonal if δx1,x2 = 1

stonal otherwise
(9.8)

α is a simple scalar defined as a hyperparameter to tune. As the distributions of both
similarities are very different, calibration before fusion was also tested. However, no
improvement was shown on the cover song tuning set. Other fusion functions, such as
linear regression or max function, did not lead to improvements in our simulations.

9.2.6 Scalability

Pairwise comparisons between a given query and all tracks in a dataset have a linear
complexity in the size of the dataset without optimization, which cannot be considered
scalable. In fact, a linear complexity for the queries involves a quadratic complexity
for retrieving all musical works in the dataset, as similarity of all pairs of tracks must

4. https://github.com/furkanyesiler/re-move
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be calculated, which can quickly become prohibitive for large collections. To achieve
better scalability properties, most cover detection studies use ANN methods like LSH
[KO13, GM12].

The idea behind ANN is that for a given query x and a database D the method outputs
an approximation of the k nearest neighbors of the query in the database with the com-
plexity being sublinear in the size of the database. For a given query, in contrast with
a classic K-Nearest Neighbors (KNN), the ANN methods are only browsing a subset of
the complete search graph. All these methods are based on an index table allowing fast
queries by outputting a ’good’ guess of the k nearest neighbors of a given query, making
it possible to recover most of the highly classified covers in the ranked list obtained with
all candidate points. The recall is used to quantify the quality of an ANN method by
averaging percentages obtained, on all queries, of true k-nearest-neighbors from k points
returned by the method.

In our case, we use the Hierarchical Navigable Small World Graph (HNSW) algorithm
which is the current state-of-the-art ANN method. An extensive description of it is given
in [MY18]. This algorithm has a logarithmic complexity in the size of the dataset. This
method is directly applied on Re-MOVE and TFIDF embeddings, outputting for a given
query k nearest neighbors for each of them. Both sets of points are then concatenated and
merged, obtaining a maximum of 2k points to consider for the fusion. Pairwise similarities
between the query and these points are finally generated using the Re-MOVE system and
our lyrics-recognition system.

9.3 Experiments

9.3.1 Datasets

Da-Tacos [YTC+19, YSG20b] is the largest publicly available dataset for cover detection;
the training set is composed of 83904 songs in 14999 cliques and the validation set of 14000
songs in 3500 cliques. A clique is defined as a cover group gathering multiple recordings
of the same underlying ’piece’. The Da-Tacos benchmark test subset is a 15000 track
dataset composed of 1000 cliques with 13 songs each and 2000 noise songs (i.e. that are
in a single-song clique) which are not queried. To avoid overfitting, no clique overlaps with
any set of Da-Tacos. Instrumentals represent around 20% of the dataset which motivates
our choice of using an instrumental detection process.

Currently, only a set of precomputed audio features is publicly available for the bench-
marking subset test dataset. The dataset is mainly composed of English tracks and
popular western music with a few non-English cliques. All hyperparameter tuning made
during this chapter is carried out on a subpart of the Da-Tacos validation that we choose
to refer to as a Da-Tacos tuning set. We verified no clique of this subset overlapped with
any clique present in the dataset used to train the tonal-based cover detection system,
i.e. the Da-Tacos training set. Also, a clique is discarded if it possesses one track present
in the dataset used to train the SVR framework, i.e. the DALI dataset.

Detection of overlapping tracks and cliques is made using metadata, i.e. titles and artist
names. Da-Tacos tuning is notably used to choose the string matching algorithm and
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the fusion function. We recover audio of 12862 tracks from the test dataset. 1849 are
in single-song cliques and thus are not queried and only used as noise songs. We make
sure no clique of this dataset overlaps with cliques in the Da-Tacos train and validation
and that cliques possessing tracks existing in the DALI dataset are discarded. It will be
simply referred to as Da-Tacos test in the rest of the document.

9.3.2 Fusion parameters

A track is classified as instrumental if the number of different words of its transcript is less
than l = 8. This number is adjusted using Da-Tacos tuning as the value maximizing the
recall for the highest F1 score. Emphasis is put on the recall in order to avoid taking into
account the lyrics-recognition-based similarity for an instrumental track that has been
misclassified as non-instrumental. An α value of 0.6 for fusing both systems is tuned on
Da-Tacos tuning.

9.3.3 Parameters of ANN

We use the HNSW implementation of the NMSLIB similarity search library [BN13]. For
each query, we return the K = 100 nearest neighbors. This choice is derived from [CHA18],
which shows the performance does not evolve significantly after the top-100 pruning. We
use an approximated cosine similarity function to retrieve 100 candidates for each branch
which results in, at most, 200 items for the fused model after concatenating and merging
both sets.

9.4 Results and discussion

9.4.1 Lyrics-recognition-based system results

Instrumental detection results:

Among the 12862 tracks in the test set, 3269 are detected as instrumentals. We compare
this with the ’Instrumental’ tag available in Da-tacos for all tracks. We obtain a precision
of 82.86% for the instrumental detection, a recall of 96.68% and a F1 score of 89.24%. A
deeper examination of misclassified tracks reveals the existence of annotation noise in the
Da-Tacos annotations, which could artificially reduce the prior metrics. As simple as it is,
the instrumental detection performance seems suitable for our application. After filtering
detected instrumentals, we obtain a subset of 9593 tracks that we label Da-Tacos-voice.
1582 tracks are in single-song cliques. 8011 tracks are finally queried.

Lyrics-based cover detection results:

We first evaluate our lyrics-recognition-based system on the Da-Tacos-voice. Our results,
displayed in Table 9.1, show it is generally performing better than the tonal-based one in
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Query System MAP (%)

Da-Tacos-voice Lyrics 66.4 (0.4)
Tonal 54.0 (0.4)

Da-Tacos-instr Lyrics 0.45 (0.06)
Tonal 47.8 (0.7)

Table 9.1 – Results of lyrics-recognition-based and tonal-based cover detection systems
on Da-Tacos-voice. Da–acos-instr is the subset of the Da-Tacos test restricted to

instrumental tracks. The standard errors are given in parentheses. The best
performance on each evaluation dataset is displayed in bold.

terms of MAP. They validate the assumption that lyrics can be considered as a strong
invariant between covers. It also proves the most recent state-of-the-art SVR framework
produces transcriptions of sufficiently good quality to perform the cover song task as a
noisy text matching task. Looking empirically at results coming from both systems, most
improvements of the lyrics-recognition approach over the tonal-based system come, as
expected, from covers with significantly different tonal-content and lyrics being roughly
the same.

We also query the tracks detected as instrumental and not from single-song cliques.
Results are also displayed in Table 9.1. As expected, the performance of the lyrics-
recognition-based system is close to zero. For the tonal-based approach, results seem
to degrade when compared to non-instrumental tracks. This suggests the system has
either learned characteristics of the melody carried by the singing voice or implicitly esti-
mated some of the lyrics information to perform cover detection. Covers of instrumental
music (which may include less pop and more jazz) could also be more difficult to match
than non-instrumental ones.

The case of non-English tracks:

As stated in Section 9.2.1, our lyrics recognition framework cannot output non-English
words, therefore non-English tracks may produce unexpected results. In order to assess
the impact of this issue, we predict a language label for every track of the Da-Tacos-voice
using a language classifier [JGBM16] taking track metadata as input. Results show the
dataset is largely composed of English with more than 92.4% of the tracks being detected
as English. Looking at tracks outside single-song cliques detected as non-English, half of
them are false positives.

We query non-English tracks of the resulting 44 cliques on the Da-Tacos-voice, represent-
ing 299 tracks. It is interesting to report almost all cliques are homogeneous in terms of
language. We obtain a MAP of 28% (2). Results demonstrate that even if the performance
deteriorates for these cases, our system is often able to correctly classify these tracks. It
can be explained as the chosen singing voice framework is transcribing something similar
from one cover to another even for non-English lyrics. Considering the small quantity of
non-English tracks and results on these tracks, we consider this issue to have a limited

124



9. COVER SONG DETECTION

Dataset System MAP (%)

Da-Tacos test
Fused 62.7 (0.3)

Fused-wo-inst 50.2 (0.3)
Tonal 50.6 (0.3)

Da-Tacos-voice Fused 80.4 (0.3)

Table 9.2 – Results of fused, with and without instrumental detection, tonal and
lyrics-recognition-based cover detection systems on various datasets. The standard
errors are given in parentheses. The best performance on each evaluation dataset is

displayed in bold.

impact on the performance in our evaluation setup.

9.4.2 Fused system results

Results for the fused system on the full Da-Tacos test and its Da-Tacos-voice subset
are given in Table 9.2. The fused system significantly outperforms the results of the
tonal-based or the lyrics-based ones on Da-Tacos-voice, displayed in Table 9.1, showing
the validity of our assumption of both approaches being strongly complementary. The
use of the instrumental detection module to inform the fusion strategy is empirically
validated, with a major drop of the performance on Da-Tacos test occurring when it is
not considered.

The fused system outperforms the tonal-based system by 12 absolute points for the MAP
metric on the Da-Tacos test dataset. This improvement in performance is due to a
rise in accuracy on the Da-Tacos-voice subset, where information from both branches is
accessible, with the MAP measure reaching approximately 80%. To highlight this comple-
mentarity, similarities for sampled pairs of tracks from the Da-Tacos-voice are displayed
in Figure 9.2. While the majority of same-clique pair lyrics and tonal similarities are
significantly higher than non-matching pairs, there are multiple cases where one modality
seems more indicative than the other. Level curves of sfus are also displayed illustrating
most pairs being linearly separable in the combined modality plane.

9.4.3 ANN results

We first evaluate the impact of pruning results to the first 100 candidates by computing
the MAP@100 of the fused system on the Da-Tacos test dataset. When compared to the
value displayed in Table 9.2, a small decrease is observed with a MAP@100 of 62.4% (0.3).
After applying an ANN method to our fused approach, results remain the same with a
MAP@100 of 62.4% (0.3) . This result can be explained as the recall of the HNSW method
for both the tonal-based and lyrics-recognition systems being more than 99.5%. Thus,
the scalability of our implementation is assured while maintaining the cover detection
performance.
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Figure 9.2 – Similarities of sampled pairs of tracks from the Da-Tacos-voice. Here, each
point is a pair of tracks. Each color indicates a same-clique belonging status. Some level

curves of sfus are also displayed.
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System SVR MAP (%)

Lyrics
CTC 40.3 (0.7)
Ours 79.0 (0.6)

Lyrics-informed 89.7 (0.4)

Fused
CTC 71.1 (0.6)
Ours 88.5 (0.4)

Lyrics-informed 93.6 (0.4)

Table 9.3 – Performance of lyrics-recognition and fused based cover detection systems on
Da-Tacos-lyrics with various SVR frameworks. The lyrics-informed framework is

informed by lyrics at test time. "Ours" SVR is the one used in the rest of the chapter.
The standard errors are given in parentheses. The best performance of each system is

displayed in bold.

9.4.4 Impact of the SVR framework

A detailed analysis of failing samples of the lyrics-recognition-based system shows the
main cause for failure of the system is the low quality of the transcriptions. To further
investigate this impact, we introduce two baselines by changing the SVR framework part
of our approach.

In the first, an alternative Connectionist Temporal Classification (CTC) based SVR frame-
work is used. The acoustic model used in this framework is the same as that giving the
best multilingual generalization results for the lyrics-to-audio alignment task in Chapter 6.
As a recall, this model is a Recurrent Neural Network (RNN) trained on multilingual data
with a CTC algorithm and outputting International Phonetic Alphabet (IPA) phonemes.
The language model used is the same as the one described in Section 9.2.1. Decoding is
performed, after tuning the language model weight and the insertion penalty value using
a validation dataset, with a CTC beam search decoding toolkit 5 as in Chapter 4. The
transcription of the results obtained on the Jamendo dataset [SDE19] are significantly
lower than our current SVR framework with a WER of 84.4%. We therefore expect this
CTC-baseline to obtain results far below our system for the cover detection task.

In the second baseline, we simulate an ’ideal’ SVR framework outputting an exact tran-
scription. It can be considered as an oracle system, yielding an upper bound for the
performance of lyrics-recognition-based approaches. To compare these three systems, we
retrieve the lyrics information for part of the Da-Tacos test. To do so, audio from the
dataset is matched to the Deezer catalog using fingerprinting. After keeping the mappings
with a high confidence, we then retrieve lyrics from the corresponding tracks if existing.
For the simplicity of this section, we discard all tracks detected as instrumental and do
not consider the instrumental detector. The subset obtained is labeled Da-Tacos-lyrics
and is composed of 3467 tracks. Again, tracks from single-song cliques are not queried
and are used as noise songs.

The results obtained on Da-Tacos-lyrics are given in Table 9.3. These results confirm the

5. https://github.com/parlance/ctcdecode
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intuition that the lyrics-recognition system’s strength for covering detection tasks directly
depends on the quality of the lyrics transcription. The ranking of the performances on
Da-Tacos-lyrics for these approaches is conserved after fusing them with the tonal-based
branch. In comparison to the oracle system, our fused approach shows excellent results
even if there is still room for improvement.

With the transcription performance of our SVR framework being as low as 62% WER,
it certainly indicates a perfect transcription is not needed for the cover detection task.
Interestingly, even an oracle system informed by the true lyrics benefits from being fused
with a tonal-based one. This, once again, demonstrates both branches are acutely com-
plementary to address the cover song detection problem. Future work could extend our
implementation to take into account cases where lyrics are available for a part of the
dataset.

9.5 Conclusion

Using only audio, we have proposed a framework for cover detection explicitly leveraging
two types of similarities, tonal and lyrics based, and reach high accuracy levels while
remaining simple and scalable. The results presented support the use of lyrics information
in cover identification as well as the complementarity of tonal and lyrics-based modalities.
With that said, work on more diverse data still remains to be done, notably on non-English
tracks where the performance seems to be limited.

Future work could include replacing the current monolingual lyrics recognition with a
multilingual framework. A multilingual similarity, capable of detecting the similarity
of two texts based on their semantic content, independently of their language, could
also be defined and evaluated. More generally, the Da-Tacos dataset is quite biased
towards popular western music. Additional experimentation on a wider range of genres,
notably non-western music, and cover types (e.g. karaoke, renditions, etc.) remains to
be conducted. Also, more elaborate fusion schemes could be explored, such as mid-level
fusion, and possibly lead to improved performance.
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Chapter 10

Conclusion

10.1 Summary

In this thesis, we explore various scientifically and industrially challenging Music Informa-
tion Retrieval (MIR) tasks related to lyrics transcription. To do so, recent state-of-the-art
Singing Voice Recognition (SVR) frameworks are successfully adapted for the considered
tasks. Moreover, we take advantage of the recent release of the DALI dataset, a large
public annotated singing voice database of great quality. Notably, a vanilla lyrics tran-
scription pipeline is trained in Chapter 4 and serves as the basis of our SVR modules in
most created systems. Four subjects are addressed: explicit content detection, lyrics-to-
audio alignment, language identification and cover detection.

As claimed in the introduction, we aim at studying methods in realistic situations, as close
to industrial cases as possible. For the language identification task, for example, we con-
sider, notably, the first evaluation on out-of-set languages. In the case of cover detection,
an Approximated Nearest Neighbor (ANN) algorithm is used to make the system scalable.
Finally, for the lyrics-to-audio alignment task, efforts are made to generalize our approach
to all types of languages, even when no resources are available. The created model, using
phonemes as an intermediate representation, is able to work with any language as long as
a pronunciation lexicon is available which is the case for a significant part of all spoken
languages.

We also try evaluating our approaches on datasets as diversified and large as possible.
Each system is noticeably evaluated on datasets of several thousands of tracks. For explicit
content, the approaches are evaluated, for instance, on a English dataset of more than
five thousand tracks. In the case of lyrics-to-audio alignment, the systems are rated on
a variety of large datasets of various scripts and languages, one being notably composed
of tracks with multilingual lyrics. The main research contributions of this thesis are
described in the following paragraphs:

A first approach for explicit content detection from audio: A completely new
method for explicit content detection based on lyrics information extracted from audio
is developed. As described in Chapter 5, this method is based on various parts: an
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audio-to-character acoustic model, a keyword spotting module linked with a dictionary of
keywords smartly constructed and a simple binary classifier to do the explicit detection.
This method displays promising performances obtaining a F1-score of 67% on an industrial
scale explicit content dataset.

It has multiple advantages. Firstly, novel keywords may be straightforwardly added into
the dictionary without requiring to retrain the system. Secondly, its modular form makes
it simple to deduce the reason for its decisions by looking at the keyword presence prob-
abilities. This approach could therefore be ideal to be used as a tool to assist annotators
in doing labeling. Results of these experiments, given the lyrics baseline and the highly
subjective nature of the task, point towards the inadequacy of deploying explicit content
detection systems without human oversight in a ’real-world’ application.

A novel system to do multilingual lyrics-to-audio alignment: A first attempt
to design a multilingual lyrics-to-audio system is presented in Chapter 6. The imple-
mentation is based on an acoustic model outputting sequences of International Phonetic
Alphabet (IPA) phonemes trained with multilingual data. It shows great performance on
a variety of languages of various scripts, with plenty to zero training resources available.
Notably the first evaluation of a code-switching dataset is presented for the singing recog-
nition field. In this example, gains on architectures trained with multilingual data over
those trained with monolingual data are especially notable, with a relative increase of
about ten percent for the Percentage of Correct Onsets (PCO) measure.

During alignment, additional information regarding phone similarity is also supplied, al-
though without demonstrating any improvement. This model is then further developed
in the form of an API which allows for automated lyrics-to-audio alignments for any
requested track of the Deezer catalog. The results of these experiments show that it
is advantageous to use phonemes as an intermediate representation when developing a
lyrics-to-audio alignment system, even when trained and evaluated on one language. In-
deed, this choice permits to easily improve multilingual generalization of the implemented
system without degrading the performance on the target language.

First perception studies on lyrics and audio synchrony: Two online experiments
inspired from karaoke were designed as described in Chapter 7. The asymmetrical per-
ceptual thresholds of synchrony perception between lyrics and audio, as well as the effect
of rhythmic variables on them, are the most important outcomes of these investigations.
Unfortunately, despite collecting a vast pool of thousands of annotations, we were unable
to demonstrate the effect of word local positions on the perception of lyrics-to-audio syn-
chrony. These studies highlight the limits of current lyrics-to-audio metrics’ perceptual
validity as well as paving the way to the creation of more perceptually grounded ones.

A new method for lyrics language identification: As described in Chapter 8,
a new approach for language identification is designed. This system is a modernized
phonotactic approach composed of an acoustic model for phoneme recognition, and a
language classifier module for language labeling. Both parts are made using recurrent
networks. State-of-the-art results are achieved. Moreover, first results are described for
the task on out-of-set languages.
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The proposed acoustic model is demonstrated to greatly improve results on both closed-
set and open-set scenarios. Notably, a F1-score of 92.39% is obtained for the proposed
approach when evaluated on the closed-set dataset, a large evaluation database consisting
of data from nine languages. However, the recurrent language classifier is shown to be
limited, barely outperforming statistical modeling in the closed-set situation and strongly
deteriorating over it in the out-of-set one. The findings of these studies suggest that the
primary area of research that should be explored for the language identification task is
the generalization of systems to out-of-set languages.

A novel cover detection approach using lyrics information from audio: As
described in Chapter 9, we present the first cover detection system that explicitly leverages
lyrics information from audio. It is based on the fusion of a SVR pipeline and a state-of-
the-art tonal-based cover detection approach. The presented approach is simple, obtains
high performances and is made scalable using an approximate nearest neighbor search
algorithm.

The experimental results both validate the use of lyrics as a strong invariant to perform
the cover detection task and the complementarity of both modalities used for fusion. On
the Da-Tacos dataset, the fused system notably outperforms the tonal-based system by
12 absolute points on the Mean Average Precision (MAP) metric. Based on the results
of these experiments, we affirm that using lyrics information to perform cover detection
is an important direction of research for the task, with a lot of room for improvement,
and should be more considered in the future.

Two reproducible benchmarks on the DALI dataset: The splits of the DALI
dataset used to train and evaluate systems developed for both lyrics-to-audio alignment
and language identification tasks are made available. The presented approaches are thus
reproducible and future systems can then use these new large evaluation datasets to
compare their performances.

10.2 Future work

In this thesis, we present a variety of systems, based on a lyrics recognition pipeline,
performing lyrics-related tasks. One can reasonably assume that extracting transcripts, or
posteriorgrams, of better quality will improve the performance of these approaches. When
perfect transcription is given, it is notably shown to significantly improve the results for
both explicit detection and cover detection tasks. All approaches presented in this thesis
are modular and it is therefore straightforward to change the SVR implementation.

Such pipelines could be improved by enhancing the Singing Voice Separation (SVS) mod-
ule, the acoustic model or the language model. However, two pipelines with identical
performances can obtain vastly different results for a given lyrics-related task. An ex-
haustive study of what is significant to improve for the SVR implementation for each
task is yet to be done. As tried in this thesis, the evaluation will need to keep on being
as diverse as possible by incorporating more scripts, more languages and more genres of
music in the test dataset.
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From the limitations of the singing recognition implementation utilized in this thesis, we
propose in the following paragraphs a number of future work and problems that could be
investigated in order to enhance results on the lyrics transcription task. More broadly,
we also suggest new research directions in the broader SVR field.

General limitations: In this thesis, two simplifying assumptions are implicitly made
that we will discuss in this paragraph. Firstly, it is assumed that, in a given song, there is
no superimposition of words (i.e. different lyrics at the same time). However, in practice,
several people singing different lyrics at the same time frequently occurs. One can think
of pop music where one rapper speaking during a chorus while another vocalist sings
something else happens regularly. Although the approaches implemented in the thesis are
capable of handling the scenario of several voices singing the same lyrics, they were not
conceived to manage the situation where they are singing different lyrics.

If separation algorithms tend to extract all the voices together, the designed transcription
systems do not provide for this case. This problem is known as monaural multi-speaker
recognition and is a challenging issue still largely studied in the Automatic Speech Recog-
nition (ASR) domain that is yet to be solved. One could take inspiration from the most
recently developed systems in speech for this task to adapt them to the singing voice
[CQYW19, CQY18].

Secondly, it is assumed that each word maps to a unique sequence of phonemes, i.e.
pronunciation of each word is unique. Notably, the Grapheme-To-Phoneme (GTP) used
to obtain phonetic transcription in Chapter 6 only outputs one pronunciation for each
word. However, in practice, the pronunciation of a word is variable and the mapping
transforming one word to a sequence of phonemes is thus not unique. Such a variability
could seriously hinder system performance.

One can imagine lyrics to align being mapped to a different sequence of phonemes than
what is actually pronounced in the audio, making the lyrics-to-audio alignment difficult
to perform. This non-uniqueness can come from regional accents (e.g. "privacy" is pro-
nounced /"pôaIv@si/ in US English and /"pôIv@si/ in UK English), or from the context of
words (e.g. "read" is pronounced /ôid/ or /ôEd/ whether it is the present or the past).
Taking into account this non-uniqueness in singing voice recognition systems could be
done during training, alignment and decoding to improve robustness of implemented sys-
tems.

Singing voice separation: Cases where systems fail often include source separation
artifacts. Other than improving the SVS module, one potential avenue to solve these
problems would be to jointly train source separation and acoustic model architectures.
Still, the required training dataset is yet to be created. More generally, as described
in Chapter 2, an exhaustive evaluation for polyphonic music of benefits of using a SVS
module in a SVR pipeline, for both training and testing, still has to be done.

Acoustic model: Training efficient and robust acoustic models could be done by lever-
aging larger and more diverse datasets than DALI. Notably, as described in Section 2.1, it
should particularly help the SVR systems employing End-To-End (E2E) acoustic models,
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requiring more data to train than traditional phoneme-based architectures. Moreover,
systems trained on the DALI dataset obtain poor performance on certain genres of music
such as rap. It may be explained as the dataset is largely rock oriented. Leveraging a more
diverse dataset could help improve generalization of the trained systems on music genres.
However, this sort of singing dataset is generally either incomplete or unannotated.

Taking as an example the Deezer dataset described in Section 2.4, the corresponding
annotations are frequently of bad quality or incomplete, with some parts of lyrics missing
for instance. In the case of an incomplete dataset, training could be achieved by taking
inspiration from lightly supervised training [BKFI17] which has been successfully used for
automatic broadcast subtitles.

The main concept behind this method is to detect which portions of the annotations are
valid and only utilize these for training. More precisely, a first random subset of the
training dataset is used to train a baseline recognition model. The transcripts obtained
from all training data using this model are compared with their respective ground truths.
Depending on the distance between the pairs of strings obtained, the segments are either
corrected or removed. The new labeled data is used to train a novel baseline model. The
steps are repeated iteratively until convergence of the performance of the trained system
is achieved.

Unannotated datasets, on the other part, could be leveraged with active learning
[YVDA10]. In this method, a first baseline system is trained on a small amount of
manually labeled data from the corpus. This system is next used to automatically deter-
mine which missing annotations in the rest of the corpus would be the most beneficial for
training. These annotations are then manually annotated, and a new system is trained
using the newly available pool of labeled data. The process is repeated iteratively until
the performance of the trained system converges.

Annotations can also be generated with the latest alignment algorithms as proposed in
[DAD21]. Kruspe [Kru18] notably employs this method, but solely considers a cappella
extracts. Another way to generate additional data could be data augmentation. It is,
for example, considered in [SG15] for singing voice detection, employing classic augmen-
tation methods such as pitch shifting, or in [BAGT21] using a more recent singing voice
style transfer algorithm. In the latter, the authors leverage a large dataset of speech
that they transform to a ’singing-like’ dataset with a vocoder based speech synthesizer
converting natural speech to singing voice. Finally, the architecture could be also im-
proved using more recent approaches such as the Connectionist Temporal Classification
(CTC)-attention joint one [KHW17] or the transformer [BAGT21] architectures.

Language modelling: The language models used in this thesis were trained using the
DALI lyrics corpus. Training more effective language models could be achieved by lever-
aging larger corpora of lyrics such as in [DB20]. Another way to improve the quality of
language modelling could be to perform transfer learning from models trained on text,
using for example a linear interpolation as described in [GGL20]. Furthermore, while the
architecture employed in this thesis is a simple n-gram model, utilizing more recent lan-
guage models such as Bidirectional Encoder Representations from Transformers (BERT)
might assist to increase performance [DCLT18].
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Character level language models could also be considered. They possess many advantages
over word-level ones. The main one being they do not suffer from Out Of Vocabulary
(OOV) words. OOV phenomenons are especially studied in [LSC19]. The authors show
the superiority of lexicon-free decoding character-based language models on utterances
with OOV words over lexicon-based decoding with either character or word-based lan-
guage models, where decoding is limited to words of a vocabulary, without losing perfor-
mance on general transcription. Training the acoustic model and the character language
model jointly, as explored in the ASR domain [SWW+19], could be done additionally to
further improve performance on the lyrics recognition task.

Addressing new tasks: Taking inspiration from cover detection systems, multiple
tasks could be performed leveraging lyrics information extracted explicitly from audio
and fusing it with a model trained on melodic features. Here we present a few examples
of such tasks, each having already been performed in the literature using both audio and
pre-existing lyrics. A SVR pipeline could then be introduced to get rid of the need for
such lyrics.

Firstly, SVS systems could be improved by employing lyrics information. Indeed, the
authors in [JCL20] show extending a classic separation system with a highway network
based lyrics encoder, taking as input preexisting aligned lyrics, significantly improves
the performance. They further demonstrate improvements are not only due to the vocal
activity information, but also to the phonetic contents of the inputted aligned lyrics.

For this task, SVR systems not utilizing a preprocessing of SVS algorithm, as Gupta20,
should be employed. Indeed, SVS approaches are known to perform badly on some spe-
cific cases (e.g. when autotune is used). As a result, a SVR system using this sort of
preprocessing also fails in these instances and will be unable to enhance SVS systems in
these cases. For these situations, a system like Gupta20 could be more useful by providing
complementary information to those captured by the SVS system.

Secondly, studying the music auto-tagging subject could also be an interesting direction
for future work. In [PFOT19], the authors present a system using both lyrics and au-
dio modality for detection of music emotion, which can be considered as a particular
case of music auto-tagging. They investigate various ways of fusing both modalities and
demonstrate its superiority over an unimodal system.

Finally, the structure extraction task could represent another interesting subject to ex-
plore. It is extensively studied in [Fel20], where the authors introduce an approach using
both audio and textual features, the latter being extracted from preexisting lyrics, signif-
icantly improving state-of-the-art results over text only-based systems.
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Target Source Mean AAE (s) Mean PCO (%)

English English 0.61 (0.13) 89 (1)
5lang 0.58 (0.12) 89 (1)
5langb 0.79 (0.16) 85 (1)

German English 0.89 (0.23) 83 (3)
German 0.67 (0.22) 88 (3)
5lang 0.59 (0.15) 89 (3)
5langb 0.63 (0.20) 89 (3)

French English 0.76 (0.34) 79 (4)
French 0.78 (0.34) 83 (3)
5lang 0.64 (0.32) 85 (3)
5langb 0.45 (0.16) 86 (3)

Spanish English 0.26 (0.06) 91 (3)
Spanish 0.16 (0.02) 95 (1)
5lang 0.13 (0.03) 96 (1)
5langb 0.12 (0.03) 96 (1)

Italian English 1.01 (0.50) 78 (5)
Italian 0.32 (0.07) 85 (5)
5lang 0.36 (0.07) 85 (4)
5langb 0.30 (0.04) 85 (4)

Portuguese English 0.75 (0.27) 84 (4)
5lang 0.68 (0.36) 87 (4)
5langb 0.47 (0.21) 88 (3)

Polish English 0.66 (0.10) 81 (2)
5lang 0.58 (0.12) 88 (2)
5langb 0.51 (0.09) 86 (2)

Finnish English 0.23 (0.03) 94 (1)
5lang 0.18 (0.02) 96 (1)
5langb 0.15 (0.02) 96 (1)

Dutch English 0.48 (0.15) 87 (2)
5lang 0.28 (0.07) 91 (2)
5langb 0.38 (0.13) 90 (2)

Table A.1 – Lyrics-to-audio evaluation on DALI language subset datasets for character
based architectures. Several training set design strategies are considered. Here ’source’

refers to data language used to train the given model and ’target’ refers to data
language used to evaluate the trained model. The dataset 5langb is obtained by

balancing the dataset 5lang with oversampling. AAE is better if smaller, PCO is better
if larger. Standard errors over tested songs are given in parentheses.
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Target Source Mean AAE (s) Mean PCO (%)

English English 0.58 (0.13) 86 (1)
5lang 0.52 (0.13) 91 (1)
5langb 0.65 (0.13) 88 (1)

German English 0.62 (0.16) 85 (3)
German 0.64 (0.21) 88 (3)
5lang 0.50 (0.16) 90 (3)
5langb 0.55 (0.20) 90 (3)

French English 0.68 (0.31) 80 (3)
French 0.46 (0.14) 86 (3)
5lang 0.38 (0.16) 88 (3)
5langb 0.57 (0.29) 87 (3)

Spanish English 0.20 (0.02) 93 (1)
Spanish 0.16 (0.02) 95 (1)
5lang 0.10 (0.03) 97 (1)
5langb 0.11 (0.03) 97 (1)

Italian English 0.54 (0.09) 81 (4)
Italian 0.41 (0.10) 84 (4)
5lang 0.28 (0.05) 86 (5)
5langb 0.23 (0.04) 86 (4)

Portuguese English 0.53 (0.20) 85 (3)
5lang 0.54 (0.29) 88 (3)
5langb 0.54 (0.29) 87 (3)

Polish English 0.40 (0.05) 86 (1)
5lang 0.23 (0.03) 92 (1)
5langb 0.35 (0.06) 91 (1)

Finnish English 0.23 (0.05) 94 (1)
5lang 0.10 (0.01) 97 (1)
5langb 0.11 (0.01) 97 (1)

Dutch English 0.54 (0.28) 87 (2)
5lang 0.24 (0.08) 93 (2)
5langb 0.34 (0.14) 91 (2)

Table A.2 – Lyrics-to-audio evaluation on DALI language subset datasets for phoneme
based architectures. Several training set design strategies are considered. Here ’source’

refers to data language used to train the given model and ’target’ refers to data
language used to evaluate the trained model. The dataset 5langb is obtained by

balancing the dataset 5lang with oversampling. AAE is better if smaller, PCO is better
if larger. Standard errors over tested songs are given in parentheses.
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ABSTRACT

In the recent years, singing voice separation systems showed in-
creased performance due to the use of supervised training. The de-
sign of training datasets is known as a crucial factor in the perfor-
mance of such systems. We investigate on how the characteristics of
the training dataset impacts the separation performances of state-of-
the-art singing voice separation algorithms. We show that the sep-
aration quality and diversity are two important and complementary
assets of a good training dataset. We also provide insights on possi-
ble transforms to perform data augmentation for this task.

Index Terms— source separation, supervised learning, training
data, data augmentation

1. INTRODUCTION

Singing voice separation is the decomposition of a music recording
into two tracks, the singing voice on one side, and the instrumental
accompaniment on the other side. Typical applications are automatic
karaoke creation, remixing, pitch tracking [1], singer identification
[2], and lyrics transcription [3].

This is a highly popular topic in the Music Information Re-
trieval (MIR) literature and yearly competitions such as the SiSec
MUS challenge gather an increasing number of teams (24 systems
evaluated in 2016, 30 in 2018). The 2018 edition of the SiSec cam-
paign [4] shows that the best current systems rely on supervised,
deep-learning based models. In particular, Convolutional Neural
Networks (CNN) seem to be especially adapted for this task. Re-
cently, a U-Net [5] and several DenseNet-based systems [6] showed
impressive performance: for the first time, state-of-the-art models
performed similarly to oracle systems for the instrumental part [4].

However, despite these achievements, it is often difficult to iden-
tify what is the main success factor of these systems. Results are
generally presented for a full procedure, including dataset building,
data pre-processing and/or augmentation, architecture design, post-
processing and sometimes a long engineering work to tune the hy-
perparameters of the models [7, 8, 5, 9].

In this work, we focus on the influence of the training dataset
on the performances of a state-of-the-art deep-learning based sepa-
ration systems. We investigate the impact of four different aspects of
these (size, separation quality, use of data augmentation techniques
and use of separated sources from several instruments to estimate
voice separation) by training a same baseline model while varying
the training dataset. In the previous literature [10, 11, 12, 13, 9] dif-
ferent architectures are usually compared using the same train/test
datasets, but to the best of our knowledge, there are no previous
works that study particularly the influence of these datasets. As
opposed to the previous works, we use one single state-of-the-art
architecture and train it on different datasets in order to reveal the ef-
fect of diverse characteristics of the training data on separation per-

formances. We notably inspect the following aspect: data diversity
and separation quality, data augmentation, and number of separated
sources.

Diversity and Separation Quality. In the literature, data scarcity
is often cited as one of the main limits for building efficient and
scalable supervised singing voice separation algorithms [14, 15, 16].
Indeed, public training datasets have been regularly released (MIR-
1K [17], MedleyDB [18], DSD100 [19] MUSDB [20]) and used to
compare different methods, but they are rather small, and often lack
diversity. We propose here to use several datasets of different sizes
and separation qualities to evaluate the benefits of training systems
with larger amounts of data. These include a relatively small pub-
lic database (MUSDB), a large private dataset, and a large dataset
with estimated separated tracks build from Deezer’s music catalog
following the technique presented in [21].

Data Augmentation. A common method used to artificially in-
crease the size of a dataset for MIR tasks is data augmentation. For
instance, in singing voice detection, some data augmentation like
pitch shifting or the application of random frequency filters have
proven to increase performance [22]. Also, in [8] the authors studied
the use of other data augmentations (channels swapping, amplitude
scaling or random chunking) with no improved results. We propose
to study the influence of using several data augmentation techniques
over a small sized dataset.

Several Sources. Finally, we study the influence of using several
sources (the bass, drums and other parts available in MUSDB) for
estimating the instrumental part. Indeed, when only estimating the
vocal and instrumental parts, source separation systems tend to in-
clude in the vocals estimation residual parts from other instruments
(in particular from drums). Hence, using the additional information
included in multiple sources could lead to a better modeling of the
instrumental part, and thus to a better separation.

The rest of the paper is organized as follows. In Section 2, we
introduce the three datasets that we used for our experiments. In
Section 3, we detail the methodology that we put in place to compare
the performances on the different datasets. In Section 4, we expose
our results and discuss possible interpretations. Finally, we draw
conclusions in Section 5.

2. DATASETS

In this section, we present the three training datasets that we used in
our experiments, along with their main characteristics. In addition
to the total duration of audio, we define a quality criterion and a di-

versity criterion. The quality of the dataset reflects the quality of the
source separation in the dataset’s tracks: in two datasets (MUSBD
and Bean), the separated tracks come from different recordings,
while in the last one (Catalog), the vocal part was not available as
separate track and had to be estimated. In the last case, the separated
tracks being only estimates, residuals from other sources can be
present in the ground truth tracks. This criterion does not account



for the production quality, nor the audio quality. The diversity crite-
rion reflects the variability of songs from which the dataset was built.
It can be quantified by the number of different songs that are repre-
sented by one or more segments in the dataset. This information is
summarized in Table 1.

2.1. MUSDB

MUSDB is the largest and most up-to-date public dataset for source
separation. MUSDB is mainly composed of songs taken from
DSD100 and MedleyDB datasets and was used as a reference for
training and test data during the last singing voice separation cam-
paign [4]. This dataset is composed of 150 professionally produced
songs. 0nly western music genres are present, with a vast majority
of pop/rock songs, along with some hip-hop, rap and metal songs.
100 songs belong to the training set and 50 to the test set.

For each song, five audio files are available: the mix, and
four separated tracks (drums, bass, vocal and other). The origi-
nal mix can be synthesized by directly summing the tracks of the
four sources. To create the instrumental source, we add up the
tracks corresponding to drums, bass and others. In our experiments,
we consider both the instrumental/vocals dataset and the 4-stems
dataset.

MUSDB Catalog Bean
Diversity 150 songs 28,810 songs 24,097 songs
Quality Separated recordings Estimates Separated recordings
Duration 10 hours 95 hours 79 hours
Train/val/test (%) 53/13/33 97/3/0 85/8/7

Table 1: Main characteristics of the three datasets.

2.2. Bean

In addition to MUSDB, we use a private multi-track dataset called
Bean. The Bean dataset contains a majority of pop/rock songs and
includes both vocal and instrumental tracks as separated recordings.
Among the 24,097 available songs in this dataset, 21,597 were used
for training, 2,000 for validation and the 500 remaining for test.

In total, the Bean dataset represents 5,679 different artists. We
made the train/validation/test split in such a way that an artist cannot
appear simultaneously in two parts of the split, as in MUSDB. This
is an important precaution to ensure that the separation system will
not overfit on the artists, an issue often raised in MIR [23]. We
performed genre statistics on Bean, as presented in Figure 1 (green
histogram). The genre distribution in Bean is mainly dominated by
Pop and Rock songs, which is quite similar to MUSDB.

2.3. Catalog

To build this dataset, we took inspiration from [21], where a method
is presented to build a dataset based on a music streaming catalog.
We adapted this method to build a dataset from Deezer’s catalog, by
exploiting the instrumental versions that are released by some artists
along with the original songs.

The first step is to find all possible instrumental/mix track pairs
within the catalog. This matching is done using metadata and audio
fingerprinting. Then, a few filtering and homogenization operations
are performed: A pair is removed if both tracks have a duration dif-
ference greater than 2 seconds. Songs longer than 5 minutes are fil-
tered out. Then, tracks within a pair are temporally re-aligned using
autocorrelation. Finally, the loudness of both tracks is equalized.

To produce a triplet (mix, instrumental, vocals) from the pair
(mix, instrumental), we perform a half-wave rectified difference of
both spectrograms. Eventually, 28,810 triplets were created. We
split them into a training and a validation dataset, making sure that

a given artist cannot appear simultaneously in both parts of the split.
We refer this dataset as Catalog A.

Using metadata, we noticed an important genre bias towards
kids music and hip-hop in this dataset compared to the genre dis-
tribution in Bean (and consequently in MUSDB), as represented in
Figure 1. To overcome this issue, we built a second dataset by re-
balancing the representation of each genre in a way that the final
distribution matches the one of Bean. We refer to this dataset as
Catalog B.

Fig. 1: Genre distribution for Bean, Catalog and MUSDB datasets.

Even though Catalog benefits from a very large volume com-
pared to MUSDB, we must keep in mind that it was not profession-
ally produced for separation purposes and is necessarily of a lower
quality. The two main issues that we found in the dataset are:

• The half-wave rectified difference between the mix and the instru-
mental does not correspond exactly to the vocal part. This is be-
cause this operation is performed on magnitude spectrograms, for
which source additivity is not ensured. Besides, the smallest mis-
alignment between both tracks can produce instrumental residu-
als in the vocals. An informal listening test on a small subset (40
tracks) reveals that this happens in almost 50% of the tracks.

• If the metadata matching is not perfect, there may be songs with
no singing voice in the mix. In this case, the vocals part is only
a residual noise. Reversely, some instrumental tracks contain
choirs. These cases are difficult to detect by automatic systems.

Accordingly, we may say that the Catalog database forms a large
amount of weakly labeled training data. The instrumental part is
professionally-produced, while the vocals are only estimates.

3. METHODOLOGY

3.1. Network architecture

In this paper, we focus on deep neural networks to perform the sep-
aration. The baseline model that we chose is the U-Net, as pro-
posed in [5]. After some pilot experiments with other architectures
(the DenseNet and MMDenseNet from [6]), we selected the U-Net,
which could train in a reasonable amount of time even on large
datasets. This architecture showed state-of-the-art results on the
DSD100 dataset [5] and in the last SiSeC campaign [4]. It is also
a simple, general architecture that can be applied in a variety of do-
mains [24].

The U-Net shares the same architecture as a convolutional auto-
encoder with extra skip-connections that bring back detailed infor-
mation lost during the encoding stage to the decoding stage. It has
5 strided 2D convolution layers in the encoder and 5 strided 2D de-
convolution layers in the decoder.

The main modification compared to [5] was to integrate stereo
processing: we used 3D tensors (channels, time steps, frequency
bins) as input and output of the network. The other layers were not
modified.



3.2. Data preparation

In the original datasets, all songs are stereo and sampled at 44100Hz.
To reduce computational cost, we resample them to 22050Hz . We
split all songs into segments of 11.88 seconds. For Catalog and
Bean, we randomly select one segment from each song in the train-
ing and validation sets, avoiding the intro (first 20s) and the outro
(last 20s), where vocals are often missing. We also constructed a
second test dataset using 500 tracks from Bean, from which we were
able to extract 1,900 segments. We made sure to balance its genre
distribution over the 10 most represented genres of Figure 1. The
final split proportions can be seen in Table 1.

Similarly to [5], we used Short Time Fourier Transform (STFT)
as input and output features for our network. The window size is
2048 and the step size is 512. We chose these settings such that after
removing the highest frequency band, the dimensions of the spec-
trograms are a power of 2: (channels, time steps, frequency bins) =
(2, 512, 1024). This is necessary, because the network architecture
that we use reduces the dimensions of the spectrograms by a factor
which is a power of two.

3.3. Training

For each source (vocals and instrumental), we trained a U-Net to
ouptut the corresponding magnitude spectrogram from the magni-
tude spectrogram of the mixture. We trained each network for 500
epochs using Keras with Tensorflow backend. We define one epoch
as 800 gradient descent steps. To limit overfitting, we use the val-
idation split of each dataset for early stopping. The training loss is
the L1 norm of the difference between the target spectrogram and
the masked output spectrogram, as described in [5]. The optimizer
is ADAM and the learning rate is 0.0001. The batch size is set to 1
after a short grid search.

3.4. Reconstruction

Once the training is finished, we perform an inference pass on the
test dataset, equally cut into 11.88 second segments. The complex
spectrograms of each source are reconstructed by computing a ra-
tio mask from both estimates and applying it to the original mixture
spectrogram. This way, the output phase is that of the mixture. The
ratio mask of a source is obtained by dividing the spectrogram es-
timate of a source (output of the corresponding U-Net) by the sum
of both the estimates. For the particular case of 4-stems separation,
the instrumental spectrogram estimates is obtained by summing the
spectrogram estimates of the 3 non-vocals stems. The STFT are in-
verted and full songs are reconstructed by simply concatenating the
different segments. The audio is finally upsampled back to 44100Hz.

3.5. Evaluation

We use the Museval [20] toolbox to compute the standard source
separation measures: Signal to Distortion Ratio (SDR), Signal to
Interference Ratio (SIR) and Signal to Artifact Ratio (SAR). We
aggregate these metrics using a median over all 1-second frames to
keep one single metric per song and per source, as in [4]. We run the
evaluation process on both the MUSDB and Bean test datasets.

To compare the performance of the different methods, we also
conducted a paired Student t-test on the per songs metrics. This
step was motivated by the observation that the variance was high
in the metric distributions, making it sometimes difficult to assess
whether a method performed significantly better than another one
or not. Even though two methods may produce very similar distri-
butions of the metrics, these metrics may vary in a dependent way
(e.g. with a small but constant difference). The paired t-test helps
revealing this phenomenon.

(a) Voice (b) Instruments

Fig. 2: Data augmentation experiment: Results of the Student’s
paired t-test for the SDR on the MUSDB Test dataset.

4. EXPERIMENTS AND RESULTS

4.1. Data augmentation

When training on a small dataset like MUSDB, data augmentation is
regularly cited as a way to improve separation performances [8]. In
this experiment, we try to figure out to what extent data augmenta-
tion can improve separation performances. For selecting data trans-
formation to be performed, we took inspiration from [22], in which
the author uses a set of transformations on the spectrograms and tests
the effect on a singing voice detection task. We set up a similar set of
experiments to evaluate the impact of various forms of data augmen-
tation on separation results. We adapted the transforms proposed by
Schülter (pitch shifting, time stretching, loudness modification and
filtering) for source separation and added channel swapping (follow-
ing [8]) and source remixing. The specificity of data augmentation
in the context of source separation is that both the target and the in-
puts must be processed with the exact same transformation. Here is
the detail of the various transformations we used:

Channel swapping [Swap]: The left and right channels are
swapped with a probability of 0.5.

Time stretching [Stretch]: We linearly scale the time axis of
the spectrograms by a factor βstretch and keep the central part.
βstretch is drawn randomly from a uniform distribution between 0.7
and 1.3 (± 30%) for each sample. Note that this is an approximation
compared to an actual modification of the speed of the audio.

Pitch shifting [Shift]: We linearly scale the frequency axis of
the spectrograms by a factor βshift and keep the bottom part, such
that the lowest frequency band stays aligned with 0 Hz. βshift is
drawn randomly from a uniform distribution between 0.7 and 1.3 (±
30%) for each sample. Note that this is an approximation compared
to an actual pitch shifting of the audio.

Remixing [Remix]: We remix the instrumental and vocals part
with random loudness coefficients, drawn uniformly on a logarith-
mic scale between −9dB and +9dB.

Inverse Gaussian filtering [Filter]: We apply to each sample a

filter with a frequency response of f(s) = 1− e−(s−µ)2/2σ2

with µ

randomly chosen on a linear scale from 0 to 4410Hz and σ randomly
chosen on a linear scale from 500Hz to 1000Hz.

Loudness scaling [Scale]: we multiply all the coefficients of
the spectrograms by a factor βscale. βscale is drawn uniformly on a
logarithmic scale between −10dB and +10dB.

Combined: We perform simultaneously the channel swapping,
pitch shifting, time stretching and remixing data augmentations.

Median source separation metrics (SDR, SAR, SIR) are reported
in Table 2. To get an idea of the significance of the metric differ-
ences, we performed a paired Student t-test between data augmented
training and the not data augmented baseline: we report p-values for
this test applied to SDR on the MUSDB test set in Figure 2.



Table 2 shows that data augmentation may have a positive im-
pact on separation metrics in some case: notably on the Bean dataset,
channel swapping, pitch shifting and time-stretching seems to quite
consistently improve most of the metrics. However it must be noted
that even when the improvement is statistically significant for the test
we performed, the improvement is very limited and hardly exceeds
0.2dB in SDR, which is very low and might not even be audible.
Thus, the various data augmentation types we tested seem to have
quite a low impact on separation results while being commonly used
in the literature.

Voice Instruments
Test Transform SDR SIR SAR SDR SIR SAR

MUSDB

Baseline 4.32 12.62 4.1 10.65 13.46 11.51
[Filter] 3.9 13.35 3.33 10.27 12.57 11.66
[Remix] 3.75 12.89 3.6 10.45 11.81 12.05
[Swap] 4.37 13.01 4.08 10.69 13.08 11.74
[Shift] 4.0 15.3 3.5 10.58 12.46 12.11
[Scale] 4.05 12.6 3.64 10.68 12.38 11.85
[Stretch] 4.19 13.44 3.57 10.96 12.76 12.09
Combined 3.76 13.86 3.3 10.48 12.35 11.72

Bean

Baseline 5.91 9.23 5.73 9.33 12.43 10.9
[Filter] 5.58 10.8 5.2 9.18 11.53 10.75
[Remix] 5.7 10.18 5.44 9.43 11.1 11.4
[Swap] 5.98 9.94 5.83 9.5 12.25 11.24
[Shift] 6.06 11.53 5.82 9.57 11.67 11.63
[Scale] 5.87 9.55 5.66 9.42 11.71 11.32
[Stretch] 6.12 10.68 5.94 9.64 12.18 11.35
Combined 5.98 11.45 5.99 9.4 11.1 11.07

Table 2: Data augmentation experiment: Results of the U-Net
trained on MUSDB with data augmentation. In bold are the results
that significantly improve over the baseline (p < 0.001).

4.2. Impact of the training dataset

In this experiment, we evaluate the impact of the training dataset on
the performances of the selected separation system. The system is
trained with the 5 datasets presented in Section 2: Catalog A, Cata-

log B, Bean, MUSDB with two stems (accompaniment and vocals)
and MUSDB with four stems (vocals, drums, bass and other). After
training the system on each dataset, we evaluate its performances on
the two test datasets: MUSDB and Bean. Medians over all tracks
of source separation metrics are reported in Table 3 and p-values for
the paired Student t-test between SDR obtained on the MUSDB test
dataset are reported in Figure 3.

As expected, training on the Bean dataset yields the highest
scores for most metrics on both the vocals and the accompaniment
parts and on both test datasets. It is worth noting that the SDR values
on the vocals part for the system trained on Bean are higher than the
ones for all other systems by more than 1dB on the MUSDB test set
and 1.5dB on the Bean test set, which is quite important (and is per-
ceptually very noticeable). This confirms that having large datasets
with clean separated tracks is a good way of improving performances
of source separation systems. More surprisingly, all other training
datasets provide quite similar performances from one to another. In
particular, training on 4 stems instead of 2 did not improve signifi-
cantly the metrics on MUSDB: then on this particular setup, adding
extra information to help modelling the accompaniment spectrogram
actually did not result in improved performance.

We also notice that training the system with both Catalog

datasets has a very limited impact on the separation performances.
Compared to MUSDB alone, it yields in higher SAR, but lower
SIR, resulting in a similar SDR. The effect is particularly visible
on the vocals. This makes sense with the way the Catalog training
dataset was built: the recordings are professionally produced, so the
mixture quality is good, but significant leaks remain in the vocal
target. Moreover, training with Catalog A or Catalog B seems to

(a) Voice (b) Instruments

Fig. 3: Training dataset comparison experiment: Results of the Stu-
dent’s paired t-test for the SDR on the MUSDB Test dataset. SDR
increases from top left to bottom right.

provide very similar results, which means that the difference of
genre distribution between Catalog A and Bean is not responsible
for the high differences of performance and the actual reason for
lower performance is probably the lower quality of the separated
tracks of the dataset.

Hence, training a system on a large and diverse dataset with low
quality semi-automatically obtained sources seems to have a very
limited impact on the performance metrics compared to using a large
clean dataset such as Bean. This comes in contradiction to what was
suggested in [5], where the impact of the size of the dataset was
assumed to be important (even though this aspect was not tested with
all other factor being fixed).

Voice Instruments
Test Train SDR SIR SAR SDR SIR SAR

MUSDB

MUSDB (2 stems) 4.32 12.62 4.1 10.65 13.46 11.51
MUSDB (4 stems) 4.44 12.26 4.2 10.61 13.7 11.48
Catalog A 4.2 7.6 7.44 10.47 12.84 12.03
Catalog B 4.34 8.04 7.05 10.6 12.8 12.12
Bean 5.71 14.82 5.19 11.99 16.04 12.21

Bean

MUSDB (2 stems) 5.91 9.23 5.73 9.33 12.43 10.9
MUSDB (4 stems) 5.88 8.56 5.71 9.3 12.87 10.92
Catalog A 5.85 7.26 7.16 9.56 11.68 12.3
Catalog B 6.05 7.62 6.79 9.74 11.85 12.42
Bean 7.67 12.33 7.51 11.09 15.35 12.17

Table 3: Training dataset comparison experiment: Results of the U-
Net system trained on the 5 different datasets. The best results on
each test dataset are displayed in bold.

5. CONCLUSION

In this study, we consider what aspects of training datasets have an
impact on separation performances for a particular state-of-the-art
source separation system (U-Net). In this setup, we showed that data
augmentation, while quite frequently used in the literature, has a very
limited impact on the separation results when performed on a small
training dataset. We also showed that the extra information brought
by having access to more sources than needed for performing the
separation task (4 stems instead of vocals and accompaniment only)
does not improve the system performances. Besides, we showed
that, as opposed to what was assumed in the literature, a large dataset
with semi-automatically obtained vocal sources does not help much
the studied system compared to a smaller dataset with separately
recorded sources. At last, we confirmed a common belief that having
a large dataset with clean separated sources improves significantly
separation results over a small one.

In future works, we may try to generalize these results to other
state-of-the-art sources separation systems. Moreover, we focused
on objective source separation metrics that are known to poorly ac-



count for perceptual differences between system. Then, assessing
the impact of data with a stronger focus on the perceptual impact
would be a relevant continuation of this work.
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ABSTRACT

We present a novel automatic system for performing explicit
content detection directly on the audio signal. Our modu-
lar approach uses an audio-to-character recognition model, a
keyword spotting model associated with a dictionary of care-
fully chosen keywords, and a Random Forest classification
model for the final decision. To the best of our knowledge,
this is the first explicit content detection system based on
audio only. We demonstrate the individual relevance of our
modules on a set of sub-tasks and compare our approach to a
lyrics-informed oracle and an end-to-end naive architecture.
The results obtained are encouraging with a F1-score of 67%
on a industrial scale explicit content dataset.

Index Terms— Explicit content detection, keyword spot-
ting, lyrics transcription, CTC training, music information re-
trieval

1. INTRODUCTION

For over three decades [1], a parental advisory label has been
found on musical recordings when they include explicit con-
tent (e.g. lyrics potentially unsuitable for children). As of
today, this labelling is mainly done manually following guide-
lines [2]. This process is slow and hard to scale to industrial-
size catalogs. Existing automatic approaches are scarce and
rely on the availability of the lyrics in text format.

Lyrics transcriptions could be obtained from audio us-
ing singing voice recognition algorithms. However, although
Automatic Speech Recognition (ASR) methods have recently
shown impressive progress [3], singing voice transcription
still raises challenging issues [4]. First, in comparison to
speech, singing voice characteristics are often more varied.
The pitch, the pronunciation and the vowels duration can fluc-
tuate greatly. Second, the accompaniment can be considered
as a highly correlated noise with a level comparable to the
signal of interest. A pre-processing step of voice separation
is generally used to improve results [5], although still not on
par with those obtained on a capella singing [6]. Third, until
recently [7], no open dataset was available to train statistical
models at scale.

When lyrics are available, explicit content detection can
be approximately achieved through assessing the presence of
words from a fairly small specialized dictionary. In fact, as
proven in [8], state-of-the-art deep neural network algorithms
perform just slightly better than dictionary-based methods
with suitable keywords. This suggests that detecting a set
of carefully chosen keywords directly on the audio signal
is a good proxy to perform the explicit detection task in
the general case. Keyword Spotting in audio is an actively
studied task, achieving high performances on speech signals
[9]. A few attempts to transfer them to singing voice have
been proposed [10, 11]. One existing approach relies on
a keyword-filler Hidden Markov Model (HMM) algorithm
[11]. This method presents several limitations. First, ex-
pert knowledge is required for the tedious task of creating
a pronunciation dictionary. Second, model training requires
synchronized annotations, at the phoneme level, between au-
dio and text. Since no readily accessible dataset exists for
polyphonic music, such annotations are generated with an
acoustic model trained on speech, by aligning textual lyrics
to music, leading to sub-optimal model performance.

In this paper, we address the task of explicit musical con-
tent detection from audio only. Namely, given a piece of mu-
sic, we aim at classifying an audio recording as either ex-

plicit or non-explicit. Our proposed work is, to the best of
our knowledge, the first audio-based detection system of ex-
plicit content in music. Our approach is based on an Audio-

To-Character (A2C) recognition model recently proposed for
singing voice transcription [12] and a keyword spotting model
associated with a dictionary of carefully chosen keywords in
relation to the explicit detection task. In [13], authors have
demonstrated the better performance of this architecture over
the keyword filler. To the best of our knowledge, it is the
first time that such an architecture is used for Keyword Spot-

ting (KWS) on singing voice. The key advantages of this
method are that it requires no expert knowledge and is usable
with unsynchronized annotations. The decoding is directly
performed on the output of the A2C and, contrary to end-to-
end KWS approach like in [14], new keywords can be added
easily to the dictionary without retraining the model. Finally,



Fig. 1. General overview of the proposed modular explicit content detection system

the explicit label is inferred by a binary classifier using the
output of the keyword spotting system. In this study, we re-
strict ourselves to recordings with English lyrics.

2. PROPOSED METHOD

A general overview of our system is given in Figure 1. A
monophonic song S is sliced into L segments of equal size.
It is worth noting that L may be different for each song since
it depends on the song duration. The system takes as input an
acoustic feature tensor X ∈ R

N×T×L built from S, with T
the number of temporal frames per segment and N the fea-
tures dimension. Given a dictionary D, the predictive model
L D is the composition of three modules:

L
D(X) = F ◦ G

D ◦ H (X) (1)

For a given input tensor X, the audio-to-character module H

outputs a 3D-tensor R. Given Xℓ, the matrix of acoustic fea-
tures extracted from the ℓth segment, each coefficient ri,j,ℓ
provides an estimation of the posterior probability of ci, the
ith character being uttered at tj , the jth frame. :

ri,j,ℓ = hi,j(Xℓ) = P̂ (ci, tj | Xℓ), (2)

for 1 ≤ i ≤ |C|, 1 ≤ j ≤ T , 1 ≤ ℓ ≤ L, C being the set of
characters outputted by the model. It consists of 26 lowercase
letters of the Latin alphabet, plus the word-boundary ”space”
token, the instrumental token ”I”, the apostrophe and the CTC
blank token ǫ introduced in section 2.2. Note that H relies
on the design of h : RN×T → [0, 1]|C|×T , that takes a seg-
ment represented by an acoustic feature matrix and predicts a
posteriogram on characters.

For a given input tensor R = H (X), a vector V is out-
putted by the keyword spotting module G D, whose each co-
efficient vn gives an estimate of the (log) posterior probability
of kn, the nth keyword of the dictionary D, by averaging on
all segments:

vn = mean
ℓ=1,...,L

log P̂ (kn | Rℓ), (3)

where Rℓ is the ℓth matrix in tensor R.
For a given input vector V = G D ◦H (X), an explicit la-

bel L D(X) is outputted by the binary classifier F discrim-
inating the content of the song S as explicit or not-explicit.

Among these three modules, only modules H and F require
to be learned. Learning H boils down to learning model
h which can be done using a dataset of annotated segments
{(Xi, ui)

nseg

i=1 } where Xi is a matrix of acoustic features de-
scribing a segment and ui is the corresponding sequence of
characters. Learning F requires to apply the pre-processing
G D ◦ H to the training dataset {(Xi, yi)

nsongs

i=1 } containing
songs annotated by explicit/non explicit labels.

2.1. Audio-to-character recognition

The model h on which A2C module H relies is implemented
with a Convolutional Recurrent Neural Network (CRNN)
trained with a Connectionist Temporal Classification (CTC)
algorithm. The Recurrent Neural Network (RNN) CTC has
been successfully applied to ASR [3]. To reduce the dimen-
sion of features and accelerate training, we use additional
convolutional layers. For RNN layers, we choose bidirec-
tional Long Short-Term Memory (LSTM), so that outputs at
each frame depend of the entire input sequence [15].

The CTC algorithm [16] allows to train RNN models
without aligned annotations. To do that, a ”blank” symbol
(noted ǫ) is introduced to represent a non-emission token.
Any character, including ǫ, can be emitted at each frame by
the model. The total probability of the output character se-
quence is maximized using the CTC algorithm by marginal-
izing over all possible alignments for a given input. The
objective function being differentiable, the network is trained
with back-propagation through time. More details for CTC
algorithm are given in [16].

2.2. Keyword spotting

Following the work of [13], we implement G D as a CTC-
based decoding function. For a given searched keyword k,
we consider k′ which is the keyword k with an ǫ at the begin-
ning, end, and between every character to allow the use of ǫ
during decoding. A decoding network of size |k′| × T is con-
structed from k′. The goal of the decoding function is to find
the path in the network that maximize the CTC scoring for the
keyword k′. To do that, we define network’s node αs,j as the
CTC score of the sub-sequence k′1:s after j frame. A forward-
backward algorithm can be used to compute efficiently αs,j

scores, by merging together paths that reach the same node.
αs,j is then computed recursively from α’s of the previous



frame. Only transitions between blank and non-blank char-
acters, and between pair of distinct non-blank characters are
allowed. As ǫ at the beginning and end of the sequence is op-
tional, there are two valid starting nodes and two final nodes.
The coefficients α’s are initialized as follows:

αs,0 = P (k′s, t0 | Xℓ) for s ∈ {0, 1} and αs,0 = 0, ∀s > 1

Recursion is given by:

αs,j = (
τ=1
∑

τ=0

αs−τ,j−1)P (k
′
s, tj | Xℓ), if k

′
s ∈ {ǫ, k′s−2}

αs,j = (

τ=2
∑

τ=0

αs−τ,j−1)P (k
′
s, tj | Xℓ), otherwise

(4)

Finally, keyword probability is given at each step j by:

P (k, tj) = α|k′|−1,j + α|k′|−2,j (5)

We consider the detection score s of the keyword k to be the
maximum of the keyword probability over all time step:

s(k) = max
j=1,...,T

P (k, tj) (6)

We found empirically that with these computation rules, we
can only find keywords at the beginning of segments. In prac-
tice, keyword probabilities after the first sung word in the
recording are artificially low. To prevent this and allow the
keyword detector to be fired at any time, we choose to reini-
tialize the first node at each time step:

α0,j = P (k′0, tj | Xℓ) (7)

As naive CTC scoring is numerically unstable, computations
are done in log-space using the log-sum-exp trick [17].

3. EXPERIMENTS

3.1. Recognition model

The main component h of the A2C model H is trained with
the DALI dataset introduced in [7]. DALI contains 5358 au-
dio tracks with time-aligned lyrics at paragraph, line and word
levels. It is composed of varied western genres (e.g. rock, rap
and electronic). Tracks are downsampled to 16 kHz and con-
verted to mono. Vocals from each song are then extracted
using Spleeter [18]. For each song, training samples are gen-
erated by segmenting the track using a window of 5 seconds
with a hop size of 2.5 seconds. The character sequence asso-
ciated with a segment is created by concatenating all words
whose start position are within the segment. In case no words
start within a segment, we generate a token ”I” (for ”Instru-
mental”). Character sequences are transformed to fit the set
of characters C outputted by the model: each character se-
quence is converted to lower-case and non-valid characters

are discarded. Finally, we make an artist aware split [19] be-
tween train, validation and test dataset of 70%-1%-14%. We
respectively obtain datasets of 384, 5 and 63 hours of music.

The model h is composed of 2 convolutional layers, fol-
lowed by 3 layers of bidirectional LSTM and a dense layer.
For each input sample, values of mel-scale log filterbanks
coefficient and energy plus deltas and double-deltas are ex-
tracted. A Hann window of 32 ms with a step size of 16 ms is
used. For the convolutional part, the size of filters and max-
pooling are respectively 3 × 3 and 2 × 3. The number of
features map of each layer is 32. Each recurrent layer has a
dimension equal to 256. A dropout of 0.1 is applied between
recurrent layers. The last layer is a single affine transforma-
tion followed by a softmax function which outputs the proba-
bilities of characters from vocabularyC. The model is trained
using the CTC loss implementation of [20]. The loss is mini-
mized using ADAM with a learning rate of 10−4, a batch size
of 32, 4000 training epochs with 250 steps per epoch. We
use validation-based early stopping. For transcription, clas-
sic beam search decoding [15] is used, using a beam width of
100.

Finally, we obtain a Character Error Rate (CER) of
47.41% on the test dataset. This is on par with results reported
by [12] on a different dataset. An example of posteriogram
Rℓ inferred using the trained network is pictured in Figure 2.
Rℓ consists of a sequence of spikes, associated with detected
characters, separated by ǫ character.

3.2. Keyword spotting

Fig. 2. A positive sample for keyword ”hate”. Top: Poste-
riogram Rℓ inferred by acoustic model H . Bottom: Decod-
ing matrix composed of coefficients α. Ground truth: ”to see
we’re over and i hate when”. Transcription with beam search:
”e se where over and i hae we”. Decoding line and ground
truth position of keyword are displayed in the figure

Following the work of [21] we select the keywords of D



Metrics Audio baseline Our system Lyrics baseline

Precision .61 (.02) .63 (.02) .65 (.02)
Recall .59 (.02) .71 (.02) .84 (.02)

F1-score .60 (.02) .67 (.02) .73 (.02)

Table 1. Results for explicit detection task on the test set
(standard deviation in parenthesis)

based on the explicit and not-explicit lyrics word distribu-
tions. To generate D, we use the importance I defined in [8].
For a chosen keyword, I is computed as the ratio between fre-
quency of the word in explicit and non-explicit lyrics. As in
[8], we manually discard stop words, too common words, too
rare words, onomatopoeia and abbreviations. The dictionary
is constructed with 128 words with the highest importance.

Performance of decoding with dictionary D are assessed
on DALI test set. 75% of D keywords, with at least one occur-
rence in the test dataset, have a Area Under Curve (AUC) of
Receiver Operating Characteristic (ROC) curve greater than
0.81. Being the first time such metrics are computed for
keyword spotting in the singing case, we cannot compare it
to other results. Since these values are significantly higher
than random, the feature vector V carry some information
on the presence of keywords in D. An example of decod-
ing is displayed in Figure 2. The example is ”positive”, as the
searched keyword is indeed present in the ground truth char-
acter sequence. A decoding line is visible in the figure. Posi-
tion of ”space” character delimiting the decoding line (3.94s
to 4.28s) are quite close to the ground truth position of the
word (3.9s to 4.29s). This result suggests that the acoustic
model H correctly uses the ”space” character and is able to
find words position. This is consistent with results found for
lyrics-to-audio alignment [12].

3.3. Explicit lyrics detection

To train F , we use a private dataset. Songs are either la-
belled explicit or non-explicit. We discard tracks also present
in DALI to avoid overfitting. We notice that the music genre
distribution of explicit tracks and non-explicit tracks, is very
different: rap is strongly over-represented in explicit tracks
(40% of all tracks), but not in the non-explicit ones (few per-
cents). To avoid creating an explicit content detection that
rely mostly on the genre information, we sample both explicit
and non-explicit tracks to obtain same genre distribution for
the two types of songs. The complete dataset then consists
of 2600 non-explicit tracks and 2530 explicit ones. Finally,
we make an artist aware split [19] between training, valida-
tion, test of respectively 70%, 15%, 15%. We create another
dataset the same way for dictionary creation. The dataset con-
sists of 24250 non-explicit tracks and 24250 explicit ones. No
songs are common between the two datasets.

Our model is compared to two baseline systems. The first

one is a classic CRNN audio classifier. This architecture was
successfully used in a variety of music classification tasks,
such as genre recognition [22] or music emotion recognition
[23]. Unlike our system, this classifier tries to directly in-
fer explicit labels from audio in an end-to-end manner. The
model is composed of 4 convolutional layers, followed by 1
gated recurrent units layer and a dense layer. For each input
sample, values of mel-scale log filterbanks coefficient are ex-
tracted using a Hann Window of 48 ms with a step size of 48
ms. The model is trained using a binary cross-entropy loss
which is optimized using an Adadelta optimizer and a batch
size of 1. The model is trained for 3000 epochs with 450 steps
per epoch. We use validation-based early stopping. The sec-
ond baseline is a dictionary lookup based on lyrics as in [8].
Given the dictionary D, this method classifies a song as ex-

plicit if its lyrics contain at least one of the keywords in D and
as non-explicit otherwise. Unlike our system, this baseline is
informed by lyrics at test time. As such, this baseline can be
considered as an oracle (e.g. providing an upper bound for
performance) for our task of detecting explicit content from
audio only.

For F , we use a Random Forest classifier [24]. Hyperpa-
rameters of the classifier are tuned using a first step of random
search and a second step of grid search. Number of keywords
of the dictionary, for our model and for the lyrics baseline,
are tuned on the validation dataset. We report precision, re-
call and F1-score for the explicit class. Since explicit con-
tent might be sensitive to certain audiences, emphasis is put,
at highest F1-score, on the system maximizing the recall. We
use this rule to choose our ”best” parameters on the validation
dataset. The ”best” number of keywords is 128 for the lyrics
baseline and 32 for our model. Baselines and our system with
their ”best” parameters are evaluated on the test dataset. Re-
sults are reported in Table 1. Scores reached by the lyrics
baseline are similar to those found in [8]. Performance of a
naive audio baseline on this challenging task is significantly
outperformed by our modular approach. While yet not equiv-
alent to a lyrics-informed scenario, these results are encour-
aging and show the validity of the proposed method. Perfor-
mances of these systems are still insufficient to be deployed
without human oversight. In [8], authors argue that explicit
detection is an inherently hard task. They propose using these
systems as tools to help annotators making the final labelling.

4. CONCLUSION

We address the novel task of explicit musical content detec-
tion from audio only. Despite the task being challenging, our
proposed modular approach yield promising results. More-
over, the system’s decisions can be explained in terms of spe-
cific keyword presence probability which is a desirable prop-
erty given the sensitivity of the task. Future works will inves-
tigate keyword decoding augmentation with a character level
language model as in [25].
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ABSTRACT

Lyrics-to-audio alignment methods have recently reported
impressive results, opening the door to practical applica-
tions such as karaoke and within song navigation. How-
ever, most studies focus on a single language - usually En-
glish - for which annotated data are abundant. The ques-
tion of their ability to generalize to other languages, es-
pecially in low (or even zero) training resource scenarios
has been so far left unexplored. In this paper, we address
the lyrics-to-audio alignment task in a generalized multi-
lingual setup. More precisely, this investigation presents
the first (to the best of our knowledge) attempt to cre-
ate a language-independent lyrics-to-audio alignment sys-
tem. Building on a Recurrent Neural Network (RNN)
model trained with a Connectionist Temporal Classifica-

tion (CTC) algorithm, we study the relevance of different
intermediate representations, either character or phoneme,
along with several strategies to design a training set. The
evaluation is conducted on multiple languages with a vary-
ing amount of data available, from plenty to zero. Results
show that learning from diverse data and using a univer-
sal phoneme set as an intermediate representation yield the
best generalization performances.

1. INTRODUCTION

Lyrics-to-audio alignment aims at synchronizing lyrics text
units such as paragraphs, lines or words to the timed posi-
tion of their appearance in the audio signal. Tools dedi-
cated to this task have many practical applications: they
can be applied to generate new annotated data to train
more robust singing voice recognizers [1]; or be used as
building blocks in specific applications such as karaoke
[2], navigation within songs [3] or explicit lyrics removal
[4]. Lyrics alignment methods are typically inspired from
text-to-speech methods. Although text-to-speech align-
ment is a mature [5] and widely studied task [6], lyrics-to-
audio alignment remains a challenging problem with spe-
cific limitations. First, the musical accompaniment acts as

c© A. Vaglio, R. Hennequin, M. Moussallam, G. Richard,
and F. d’Alché-Buc. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: A. Vaglio, R. Hen-
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Information Retrieval Conf., Montréal, Canada, 2020.

a loud background "noise", potentially highly correlated
with the signal of interest since vocalists usually sing in
harmony and rhythm with instruments. A singing voice
separation algorithm pre-processing step is often used to
partially overcome this problem [7]. Second, singing voice
exhibits more variety than speech with potentially large
phonemes pronunciation variations between songs and ex-
tended tessitura. Recent studies have proposed efficient
alignment methods for singing voice [8,9], but only for the
English language, for which annotated data is abundant.
The question of their ability to generalize to other lan-
guages, especially in low (or even zero) training resource
scenarios, has not been properly addressed.

Arguably a monolingual evaluation is unrepresenta-
tive of the variety of music recordings available in large
scale collections. Commercial streaming services com-
monly serve content in hundreds of languages and a non-
negligible number of popular songs even have multilingual
lyrics [10]. However, annotated data on this type of con-
tent are scarce. A source of inspiration comes from the re-
lated field of multilingual speech recognition [11]. Trans-
fer learning methods [12] have been shown to improve
performance on language with few to zero training data.
However, this improvement on low-resource languages can
sometimes be detrimental to performances on languages
with more resources [11].

The goal of this paper is to evaluate and extend state
of the art lyrics-to-audio alignment methods to a language-
independent setup. First, we review the fitness of these
systems to the multilingual framework. Then, we focus on
one architecture and study two key features likely to al-
low generalization to several languages: 1) the intermedi-
ate representation space (character versus phoneme) and 2)
the design of the training dataset. Evaluation is performed
on multiple languages with various amounts of data avail-
able, from plenty to zero. The paper is organised as fol-
lows: related works are presented in Section 2. We then
describe the proposed method in Section 3. The experi-
mental setup and results are described respectively in Sec-
tion 4 and Section 5. Finally, conclusions are drawn in
Section 6 and future works are discussed.

2. RELATED WORKS

Singing voice alignment methods are typically inspired
from text-to-speech alignment systems. Classically, an



acoustic model is trained and used to force text to audio
alignment using a Viterbi algorithm [5]. These models are
usually trained using alignment annotations, at the frame
level, between audio and text. However, the availability
of such annotations is very limited for polyphonic mu-
sic where they are traditionally generated by employing
an intermediate model [1], leading to suboptimal perfor-
mances [8]. More generally, the development of such ap-
proaches for singing voice was slowed down by the lack
of publicly available annotated dataset at word or even line
level. Some models were trained on speech and adapted
to singing using speaker adaptation technique and a small
singing dataset. For instance, in [13], a monophone Hidden

Markov Model (HMM) is trained on speech and adapted
on a small corpus of manually annotated a cappella songs
with Maximum Likelihood Linear Regression (MLLR).
The alignment is then performed on polyphonic songs af-
ter extracting the singing voice with a melody transcription
and a sinusoidal modeling technique. Other models were
trained with "low quality" automatic annotations generated
with forced alignment using an Automatic Speech Recog-

nition (ASR) system. In [1], a speech recognizer is used to
generate a large amount of singing annotations by aligning
a large corpus of a cappella singing to their corresponding
lyrics. Annotations are then used to train a new acoustic
model. This new model is used to align 19 vocal tracks
from English language pop songs: the phoneme sequence
is estimated for each track and its Levenshtein distance to
the ground truth sequence from the lyrics is computed to
find the alignment path. To help alignment, multiple ap-
proaches tried extending speech recognizers with external
information such as chords [14], score [15] or note on-
sets [16].

The recent release of the DALI dataset [17] has led
to significant progress in lyrics-to-audio alignment. This
dataset is the first publicly annotated singing voice dataset
available. It contains 5358 audio tracks with time-aligned
lyrics at paragraph, line and word levels. These annota-
tions are created from manual annotations and are consid-
ered to be very good. It is composed of varied western
genres (e.g. rock, rap and electronic) in several languages.
Novel singing voice separation algorithms displayed im-
pressive results [18] and were also shown to improve sig-
nificantly lyrics-to-audio alignment systems performances
[7]. State-of-the-art approaches for lyrics alignment were
compared in the MIREX 2019 challenge 1 . Two submit-
ted systems showed particularly strong performances. The
first one was SDE2, described in [8]. It is based on an
end-to-end audio-to-character architecture, more precisely
a wave-U-net. A preprocessing step of singing voice sep-
aration is performed, during training and inference, us-
ing a U-net convolutional network. The acoustic model is
trained on a private English dataset of 40000 songs using
a CTC algorithm. The second one was GYL1, described
in [9], which obtained the best results on the challenge. It
is based on a Time Delay Neural Network (TDNN) which

1 https://www.music-ir.org/mirex/wiki/2019:

Automatic_Lyrics-to-Audio_Alignment

is trained on the English subpart of the DALI dataset. It
uses an extended lexicon to cope with long vowels dura-
tion in singing and genre labelling information (phoneme
units are annotated with genres) but does not rely on a pre-
processing step of singing voice separation.

Although it achieved the best performances in the
MIREX challenge, GYL1 can not be straightforwardly
used in a multilingual setup: it is composed of multiple
parts, some of them, such as the pronunciation dictionary
and the language model, being specific to English. To be
able to use it on a new language, it would require to mod-
ify, or retrain, these parts. In comparison, SDE2 is based
on an end-to-end acoustic model, trained with CTC algo-
rithm, that directly outputs characters. It is more suitable
to perform multilingual lyrics-to-audio alignment as it can
be theoretically applied to any languages being based on
the same script (writing system) as the training language.

Employing characters may not be optimal for multi-
lingual lyrics-to-audio alignment: [8] suggest that using
phoneme as an intermediate representation could be more
relevant for aligning song in other languages. They argue
that, for phoneme based systems, only the pronunciation
dictionary has to be replaced for a new language, while
a character based system is limited by the set of charac-
ters that the acoustic model outputs. For instance, SDE2
can only be used to align songs in Latin script languages.
The output of the acoustic model could be extended with
characters from scripts of new languages, as in [19], but
it would require retraining the acoustic model each time a
new script is added in the language pool. Using phoneme
as an intermediate representation, any language can be the-
oretically aligned for any trained model if a pronunciation
dictionary is available. In this work, we study a system
inspired from [8] using either a character or a phoneme in-
termediate representation.

3. PROPOSED METHOD

A general overview of the proposed system is described in
Figure 1. It is composed of three parts: a singing voice
separation model, an acoustic model and a lyrics-to-audio
alignment procedure. It takes as input a song x, its corre-
sponding lyrics y and output the synchronized lyrics ŷ. Vo-
cals are extracted from the song using a singing voice sep-
aration module. The acoustic model processes features ex-
tracted from the isolated vocal signal. The acoustic model
consists in an RNN trained with a CTC algorithm. The set
of outputs of the acoustic model is either characters of the
Latin alphabet or phonemes of an universal phoneme set.
Lyrics-to-audio alignment is performed on outputs of the
acoustic model by a CTC-based alignment decoding func-
tion.

3.1 Acoustic model

The acoustic model of our system is a RNN trained with
a CTC algorithm. CTC-based acoustic models were suc-
cessfully used for multilingual speech recognition [19,20].
The RNN part is composed of bi-directional Long Short-



Figure 1. Overview of the lyrics-to-audio alignment sys-
tem. Our study focuses on the training of the acoustic
model (section 3.1) and the design of intermediate posteri-
ogram representation spaces (section 3.2). The alignment
block is described in section 3.3

Term Memory (LSTM) layers. Authors in [21] argue that
such models can give reliable alignments given that out-
puts at each frame depend on the entire input sequence. In
contrast, uni-directional CTC acoustic model suffers from
alignment delay [22].

CTC makes it possible to directly train RNN models
using weakly aligned annotations, e.g. at word or line
level. To do that, the CTC algorithm introduces a new
symbol called "blank" (noted ǫ) which represent a non-
emission token. The total probability of the output label
sequence is then marginalized over all possible alignment
for a given input. In our case, the output label sequence is
a sequence of character or phoneme. Since the objective
function is differentiable, the network can be trained with
standard back-propagation through time. The CTC algo-
rithm is more extensively described in [23].

3.2 Character vs Phoneme

We consider two different intermediate representations for
our architecture. The first one is a character set, here the
Latin alphabet. This representation does not need any kind
of expert linguistic knowledge as the acoustic model di-
rectly outputs characters probability. However, such a rep-
resentation is not suitable to perform alignments of songs
in a language with a different script. To process those, the
acoustic model would need to be retrained with new data
on the given script. Moreover, even for languages sharing
the same script, a character-based representation is sub-
optimal for transferring knowledge between languages, as
characters pronunciation can significantly differ from one
language to another. Our approach relies on the following
remarks: all languages share some common phonemes and
phonemes are considered to be language independent [24],
i.e. to be pronounced the same way across languages.
Therefore, using a universal phoneme set as an intermedi-
ate representation makes it possible to leverage similarity
between sounds across languages. The idea is to use con-
sistent phonemes across languages used for training and
that most phonemes from an unseen language appear in
the languages used for training.

It can be achieved using international phonetic alpha-

bet (IPA) symbols. The IPA is a set of phonetic nota-
tions which is a standardized representation of sounds of
all spoken language. IPA Pronunciations of words from all
languages can be obtained using Grapheme-To-Phoneme

(GTP) tools. Such tools are available for most common

languages. The universal phoneme set is created by con-
catenating and merging the union of phoneme sets of all
languages based on their IPA symbols.

3.3 Lyrics to audio alignment

In order to align a song to its corresponding lyrics y, the
audio is sliced into segments of 5 seconds with a step size
of 2.5 seconds. A posteriogram is generated by the trained
acoustic model for each segment. To obtain the final pos-
teriogram, all segments posteriograms are concatenated,
cropped to half of their duration centered in their middle.
We obtain a posteriogram P ∈ [0, 1]|C|×T , C being the set
of symbols supported by our acoustic model, either char-
acters of phonemes, and T the number of temporal frames
of the song. This matrix provides an estimation of the pos-
terior probabilities of each symbol through time. Align-
ment annotations are then predicted, using the generated
posteriogram P and lyrics y, with a CTC-based alignment
function inspired from the CTC-based decoding function
presented in [25] and is akin to a Viterbi forced align-
ment [26]. Viterbi forced alignment is a simpler version
of Viterbi decoding where the possible paths are limited to
the lyrics symbol sequence. To allow the use of ǫ during
decoding, y is extended to z by adding a ǫ at the beginning,
end, and between every unit. A decoding network of size
|z| × T is then constructed from z. The goal of the decod-
ing function is to find the path in the network that give the
most probable alignment ŷ of y given the posteriogram P .
More precisely:

ŷ = argmax
B(ŷ)=y

T
∏

j=1

P (ŷj , j) (1)

whereB is an operator that removes blanks and repetitions
from a sequence ŷ. To do that, network’s node αs,j is de-
fined as the probability of the best alignment of the sub-
sequence z1:s after j frames. αs,j scores can be calculated
efficiently using a forward-backward algorithm, by merg-
ing together paths that reach the same node. αs,j is then
computed recursively from the values of α in the previous
frame. Only transitions between blank and non-blank char-
acters, and between pairs of distinct non-blank characters
are allowed. ǫ at the beginning and end of the sequence
being optional, there are two valid starting nodes and two
final nodes. The coefficients α are initialized such as:

αs,1 = P (zs, 1) for s ∈ {1, 2} and αs,1 = 0, ∀s > 2 (2)

Recursion is given by:

αs,j = max
τ∈{0,1}

(αs−τ,j−1)P (zs, j), if zs ∈ {ǫ, zs−2}

ζs,j = argmax
τ∈{0,1}

(αs−τ,j−1)

αs,j = max
τ∈{0,1,2}

(αs−τ,j−1)P (zs, j), otherwise

ζs,j = argmax
τ∈{0,1,2}

(αs−τ,j−1)

(3)



Then, the probability of the best alignment is given by:

P (ŷ) = max
τ∈{0,1}

(α|z|−τ,T ) (4)

Alignment ŷ can finally be computed with an inverse re-
cursion. The initial unit is initialized such as:

ŷT = |z| − argmax
τ∈{0,1}

(α|z|−τ,T ) (5)

Inverse recursion is given by:

ŷj−1 = ŷj − ζŷj ,j (6)

Calculations are performed in log-space using the log-sum-
exp trick [27] to avoid numerical instabilities. As some
phonemes from target languages can be unseen in the train-
ing languages, the acoustic model will be unable to pre-
dict them, resulting in all alignment having a probability
of zero. To get rid of this problem, a small amount of
uniformly distributed noise is added to all entries of the
posteriogram, as suggested in [8].

4. EXPERIMENTAL SETUP

4.1 Dataset

For this study, we consider several language subsets of
the DALI dataset. They are described in Table 1. Experi-
ments are conducted using 5 source languages for the ini-
tial multilingual system development. These source lan-
guages are: English, German, French, Spanish and Ital-
ian. English is considered as a high-resource language.
The 4 others languages are considered as low-resource
languages in this study. The split between train, vali-
dation and test datasets for the first five languages is an
artist aware split [28]. We also consider 4 additional tar-
get zero-resource languages: Portuguese, Polish, Finnish
and Dutch. Data from these languages are only used
for evaluation. The split of the different language data,
i.e. dali ids belonging to each dataset, are made pub-
licly available at https://github.com/deezer/

MultilingualLyricsToAudioAlignment. One
dataset, that we named 5lang, is created for multilingual
training. The training and validation sets of this dataset are
generated by simply concatenating respectively the train-
ing and validation sets of the 5 source languages. This
dataset is largely unbalanced, English data dominating
the corpus. Balancing the dataset with oversampling was
tested without modification on performances of the mul-
tilingual model on low-resource and zero-resource lan-
guages. Similar results were also found for speech [29].
Worse, it significantly degrades results for the English lan-
guage. These results were expected as the quantity of En-
glish data being far superior in comparison to other lan-
guages in the multilingual dataset, diminishing their im-
portance could only degrade results for the multilingual
model when tested on English dataset. Results of multi-
lingual models trained with balanced dataset are displayed
in supplementary materials.

Language # Phonemes Train (h) Test (h)

English (en) 44 (5) 192.7 31.5
German (de) 44 (1) 17.4 2.3
French (fr) 42 (0) 8.9 0.9

Spanish (es) 35 (3) 8.4 1.1
Italian (it) 33 (0) 8.5 1.2

Portuguese (pt) 37 (0) X 1.8
Polish (pl) 31 (2) X 4.2
Finnish (fi) 25 (0) X 3.1
Dutch (nl) 41 (2) X 3.1

Table 1. Description of DALI language subset datasets and
corresponding phoneme dictionary sizes. In parenthesis
are displayed the number of phonemes only occurring in
the given language and its equivalent ISO 639.1 code

The procedure to generate training samples and corre-
sponding labels for the acoustic model is similar to the
one described in [25]. To recall, Spleeter [18] is used
to isolate vocals from each song. Training samples are
then computed by segmenting extracted vocals. The char-
acter sequence associated with a segment is created from
word level annotations of DALI by concatenating all words
whose start position is within the segment. An instrumen-
tal token is generated if no words are present in the seg-
ment. For phoneme models, the phoneme sequence asso-
ciated with a segment is generated from his corresponding
character sequence using Phonemizer 2 . Phonemizer in-
cludes GPT tools for most common languages. It decom-
poses each word into a sequence of IPA symbol. To create
the phoneme dictionary of one given language, we collect
all IPA phonemes present in the corresponding dataset. For
simplicity, we did not consider IPA symbols others than
vowels and consonants. Sizes of dictionaries of phoneme
of each language are given in Table 1. After concatenat-
ing and merging all dictionaries, we obtain a universal
phoneme set of 62 phonemes. The language sharing fac-
tor [24] for the nine languages we used in this study is
5.35. It means that, on average, one unit of the universal
phoneme set is shared by 5 to 6 languages of the language
pool which supports the fact that IPA phonemes are rather
consistent across languages that we consider in this study.

4.2 Parameters of acoustic models

We use the same architecture for all acoustic models. Sev-
eral sets of regularisation and architecture’s size param-
eters were tested without a clear impact on performances.
Parameters of architecture are similar to those used in [25].
The model has 3 layers of bidirectional LSTM and a dense
layer. It takes as input mel-scale log filterbanks coefficients
and energy plus deltas and double-deltas. The acous-
tic model output is the probabilities of characters or IPA
phonemes. In the first case, the set of outputs is the con-
catenation of the Latin alphabet, the apostrophe, the instru-
mental token, the space token and the CTC blank symbol

2 https://github.com/bootphon/phonemizer



ǫ. A set of size 30 is obtained. In the second case, it is con-
stituted of the universal phoneme set, plus the instrumental
token, the space token and the CTC blank symbol ǫ. A set
of size 65 is obtained. Parameters of training are the same
as those used in [25].

4.3 Evaluation

To evaluate our system, we use the Average Absolute Er-

ror (AAE) [13]. For its calculation, the absolute differ-
ence between the actual start of the word timestamp and
its estimation for each word is calculated. The final error
score for a song is obtained by averaging over all word-
level errors. A known issue of this metric is its perceptive
dependence on tempo. In fact, one absolute error will not
be perceived the same if the tempo is fast or slow. The
Percentage of correct onsets (PCO) [14] was proposed to
mitigate this effect. It is computed as the percentage of
start of the word timestamps whose estimation are below
a certain distance from the ground truth. This metric con-
siders that errors bellow a certain threshold fall within hu-
man listeners perceptive tolerance. We use 0.3 seconds
as the tolerance window. Both metrics are classic metrics
of MIREX lyrics-to-audio alignment challenge. They are
computed using the same evaluation script as the one used
for the challenge [30] 3 .

5. RESULTS AND DISCUSSION

5.1 State of the art comparison

To validate our implementation, We first compare our sys-
tem with two state-of-the-art ones. Results are collected
from the 2019 MIREX lyrics-to-audio alignment chal-
lenge. For this comparison, we use characters as inter-
mediate representation space and only English for train-
ing. We use three standard evaluation datasets for lyrics-
to-audio task. Hansen [31] and Mauch [14] are constituted
of respectively 9 and 20 English pop music songs. Ja-
mendo [8] is made of 20 English music songs of several
western genres. All three datasets are annotated with start-
of-word timestamps. Results are summarized in Table 2.

Our system performances are close to those of GYL1,
with no significant differences for PCO metric on the
three evaluation datasets. Although we use an architecture
somewhat similar to SDE2 (i.e. a CTC based approach
with a pre-step of singing voice separation), we report
significantly better performances. It is worth noting that
GYL1 and our system both use the English part of DALI
as training dataset, while SDE2 uses a private dataset of
unknown quality. We can postulate that the DALI dataset
annotation quality is higher, which would explain the bet-
ter performances reached by our implementation despite
using a much smaller train set than SDE2.

3 https://github.com/georgid/

AlignmentEvaluation

Dataset System Mean AAE (s) Mean PCO (%)

Hansen SDE2 [8] 0.39 (0.12) 88 (3)
GYL1 [9] 0.10 (0.03) 97 (1)

Ours 0.18 (0.05) 95 (2)

Mauch SDE2 [8] 0.26 (0.04) 87 (2)
GYL1 [9] 0.19 (0.03) 91 (2)

Ours 0.22 (0.03) 91 (1)

Jamendo SDE2 [8] 0.38 (0.11) 87 (3)
GYL1 [9] 0.22 (0.06) 94 (2)

Ours 0.37 (0.05) 92 (2)

Table 2. Comparison between our character based archi-
tecture trained with the English part of DALI and state-of-
the-art systems on standard lyrics-to-audio alignment eval-
uation datasets. Mean AAE is better if smaller, mean PCO
is better if larger. Standard errors over tested songs are
given in parenthesis

5.2 Multilingual generalization

Results of multilingual generalization experiments are dis-
played in Figure 2. Precise numerical values are reported
in supplementary materials. Several conclusions can be
drawn:

- Using a multilingual training set helps For both
character and phoneme based architectures, the model ex-
hibiting the best multilingual generalization is trained with
multilingual dataset. In fact, this model significantly out-
performs the ones trained on English on low-resource and
zero-resource languages without degrading performances
on English. With phoneme as intermediate representa-
tion, it even improves results on English. On low-resource
languages, multilingual trained model obtains results on
par with models trained only on the target language (e.g.
French trained model on French dataset). It is worth notic-
ing that the multilingual training dataset is only marginally
larger than the English one. Performances differences are
to be attributed to the additional information the model was
able to extract from the diversity of languages seen during
training.

- Use phonemes over characters as an intermediate

representation has better performances Performances
of phoneme based architectures are almost always better
than those of their character based counterparts in all our
experimental setups. The gap is bigger for models trained
on the multilingual dataset than for those trained on mono-
lingual ones. The only models that are not improved are
the ones trained and tested on the same languages. Such re-
sults show that the use of phoneme as an intermediate rep-
resentation enables transfer knowledge between language
better than character representation.

- Training on multilingual data and a phoneme inter-

nal representation yields the best results in all consid-

ered cases Training the acoustic model on multilingual
data and use a universal phoneme set is a relevant way
for improving the generalization capacity of the consid-
ered lyrics-to-audio alignment architecture even to zero-
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resource scenarios.

6. CONCLUSION

In this paper, we investigated extending state-of-the-art
methods in the multilingual context. Focusing on one ar-
chitecture that seemed fit for generalization, we demon-
strated that design choices regarding the training dataset
and the acoustic representation space are salient factors.
We have shown that using many languages to train the
acoustic model and a universal phoneme set improves the
multilingual generalization of such architecture. In this
work, we have built a dataset using the language distribu-
tion found in DALI, which resulted in a largely unbalanced
dataset. For comparison, we also conducted experiments
with a balanced dataset, in which all 5 languages were
equally present. The performance was similar, except for
English, when it was significantly degraded. This raises the
issue of how to design training sets in a setting where sev-
eral high-resource languages are available. Although there
are no publicly available datasets exhibiting such charac-
teristics, future work should investigate this case. Exist-
ing works on multilingual speech processing [11] point
towards increasing model complexity to circumvent this.
Also, only a small set of languages were considered in this
study. Additional experiments on a wider, more diverse
set of songs remain to be conducted. Finally, future works
should consider the specific case of songs with multilin-
gual lyrics. This problem, known as code-switching, has
been studied for speech [21] but never for music. Such
a phenomenon is however not uncommon in popular mu-
sic [10], thus it should be addressed too.
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ABSTRACT

Extensive works have tackled Language Identification

(LID) in the speech domain, however their application to
the singing voice trails and performances on Singing Lan-

guage Identification (SLID) can be improved leveraging re-
cent progresses made in other singing related tasks. This
work presents a modernized phonotactic system for SLID on
polyphonic music: phoneme recognition is performed with
a Connectionist Temporal Classification (CTC)-based acous-
tic model trained with multilingual data, before language
classification with a recurrent model based on the phonemes
estimation. The full pipeline is trained and evaluated with a
large and publicly available dataset, with unprecedented per-
formances. First results of SLID with out-of-set languages
are also presented.

Index Terms— Singing language identification, CTC
training, phonotactic approach, music information retrieval

1. INTRODUCTION

Having semantically meaningful and accurate descriptions of
songs is crucial for organizing and retrieving relevant tracks
in a large musical catalog [1]. Language tags are of particu-
lar interest for characterizing vocal music. This information
can easily be extracted using the song lyrics with a text-based
language identifier [2]. However, lyrics are not ubiquitously
available for consequent musical collections. One then may
want to estimate the song language from the frequently ac-
cessible metadata (e.g. song title, artist name). Yet, this
method is limited as the metadata language can differ from
the song language, and metadata may not contain enough in-
formation for retrieving the language [3]. A more robust ap-
proach would be to extract the language information from the
audio content. Such data is indeed always available, but the
task is arguably more challenging.

The speech community has long tackled language recog-
nition from audio data, notably with the Language Recog-

nition Evaluation (LRE) series [4]. However, the task was
scarcely transposed in the music domain and most of the tech-
niques used for spoken LID have yet to be adapted ffor SLID.
The latter task is more difficult, as the prosodic specificities
of languages are disturbed by the greater variabilities of the

singing voice, in terms of pitch, pronunciation and vowels
duration [5]. The musical accompaniment can be framed as
noise and assumed to be loud and highly correlated with the
signal of interest, being the voice.

Previous works on SLID include acoustic-phonetic sys-
tems which characterize language-specific acoustic events
and their distribution with carefully chosen acoustic fea-
tures, such as Mel Frequency Cepstral Coefficients (MFCC)
[6], Stabilized Auditory Images (SAI) [7] and Temporal Pat-

terns (TRAP) [8]. Statistical modeling and supervised clas-
sification are then applied to identify the language. In partic-
ular, Kruspe’s system using the i-vector extraction technique
obtains the current best performances on SLID [9], with 78%
accuracy on a capella performances in 3 languages.

Phonotactic approaches, on the other hand, try to iden-
tify phonemes from the audio and examine their combinations
and sequences, which are distinctive from one language to an-
other [10]. These approaches are more resource-demanding
as phoneme recognizers, or acoustic models, have to be
trained. Mehrabani et al. [11] use multiple language-specific
phoneme recognizers trained on speech data, to then com-
pute language likelihoods with n-gram models for each target
language. While the performances are on par with Kruspe’s
i-vector-based approach [9], it is more complex to train and
it is hardly scalable to a large set of languages. In [12],
the author simplifies the approach by using a unique Deep

Neural Network (DNN)-based English phoneme recognizer
and identifies the language from phoneme statistics. While
singing data are included in the acoustic model training, the
frame-wise phoneme annotations are obtained by a forced-
alignment step, which leads to poorly annotated data. Also,
this statistics-based language modeling overlooks the infor-
mation contained in the phoneme transitions.

Recent works have trained new acoustic models with
singing data and show great results in lyrics transcription
[13], lyrics-to-audio alignment [14, 15] and explicit content
detection [16], using more recent DNN techniques. In this
work, we propose to apply these advances to a phonotactic
SLID system: in particular, the usage of the CTC algorithm
allows the acoustic model to be trained with DALI, a large
multilingual singing dataset [17], while alleviating the need
for frame-level aligned lyrics. For language modeling, we use
a recurrent architecture that can capture temporal information



Fig. 1. Overview of the proposed SLID system. During train-
ing, the phonetic transcription of the lyrics y and the corre-
sponding language label l of the excerpt X are provided.

in phoneme estimation sequences. We show that our system
outperforms the previous state-of-the-art in a standard closed-
set scenario, obtaining a 91.7% balanced accuracy score on
polyphonic songs in 5 languages. We also investigate a harder
setup with out-of-set languages where we can acknowledge
the limits of our model. In Section 2, we describe the key
aspects of our deep phonotactic SLID approach. The dataset,
baselines and implementation details are given in Section 3.
Results are presented in Section 4, providing a first repro-
ducible benchmark on the public DALI dataset1.

2. PROPOSED SYSTEM

As in previous SLID works, we frame the problem as a multi-
class classification task. The system takes as input audio fea-
tures of a musical excerpt X ∈ R

N×F , with N the number
of time frames and F the feature dimensionality. The sys-
tem should then estimate the language l used in the musical
excerpt, among a set of L languages {l1, l2, ..., lL}.

Our deep phonotactic system, as illustrated by Figure 1,
is composed of two main models: an acoustic model F for
phoneme estimation, followed by a language classifier G. The
acoustic model estimates the occurring phonemes in the input
audio X by producing a |C|-dimensional vector of probabili-
ties at each time frame, with C the set of characters supported
by F . Here, C encompasses the International Phonetic Al-

phabet (IPA) symbols appearing in the training excerpts, a
word-boundary “space” token, an instrumental “I” token and
the blank token ǫ introduced by the CTC algorithm in Section
2.1. The sequence of phoneme probability vectors is referred
as the posteriorgram R := F(X) ∈ [0, 1]N×|C|.

The language classifier G then produces a language prob-
ability vector score G(R) ∈ [0, 1]L from the posteriorgramR.
The language decision is finally taken from this vector score:

l̂ = argmax
l∈{l1,l2,...,lL}

[G(F(X))]l. (1)

Previous phonotactic approaches on SLID made distinct
training of the two models, with different training sets [11,
12]. F needs the phonetic transcription y of each training
excerpt X , whereas G needs the posteriorgram representation

1The dataset split can be found at https://github.com/deezer/
SingingLanguageIdentification

R and the language label l of its training excerpts. We use
the same dataset of musical excerpts for both model training.
Following the works on joint Automatic Speech Recognition

(ASR) and LID [18], we train both models simultaneously.
The joint loss function can be expressed as:

LJoint(R, l̂, y, l) = LCTC(R, y) + λLLID(l̂, l), (2)

with λ the weight given to the cross-entropy LID loss with
regard to the CTC loss. The balance between the two losses
is decisive for the system performance: various strategies are
considered and described in Section 3.5.

2.1. Phoneme recognition

For the acoustic model F , we rely on a Convolutionnal Re-

current Network (CRNN) trained with the CTC algorithm, as
in [16]. CTC-based acoustic models were successfully im-
plemented for singing-related tasks, such as lyrics-to-audio
alignment [13, 15] and keyword spotting [16]. Following
their works, we also employ a singing voice separation pre-
processing step during training and inference, which im-
proves performance over using polyphonic data in [13]. For
the recurrent layers, we choose bidirectional Long Short-Term

Memory (LSTM) cells to take the full sequence into account
when predicting characters at each time frame.

The CTC algorithm enables to train a Recurrent Neural

Network (RNN) with weakly aligned data, e.g. at word or line
level, by introducing a blank token ǫ in the set C of characters
supported by the model. The associated loss function com-
putes the probability of an output sequence by marginalizing
over all possible alignments with the input. Following the
work in [15], the output sequences are composed of multilin-
gual phonemes according to the IPA. As the CTC loss func-
tion is differentiable, network training can be done with any
gradient descent algorithm, by providing the phonetic tran-
scription y of the segment lyrics. Further details on the CTC
algorithm can be found in [19].

2.2. Language Classifier

The language classifier G is built upon a RNN. The usage
of recurrent architectures has been successful for end-to-end
spoken LID [20, 21]. Here, the phoneme posteriorgram rep-
resentation is given as input, instead of the raw acoustic fea-
tures extracted from the audio excerpt. Bidirectional LSTM
layers are chosen with the last layer only outputting a single
probability vector for the whole input segment. This archi-
tecture takes the combination of phonemes into account, as
in n-gram modeling [11], but with confidence scores on the
phoneme predictions by using the full probability vectors, as
in statistical modeling [12]. To avoid vanishing gradient on
very long input sequence [22], we choose to perform SLID
on fixed-length segments for a given song. Song language is
then inferred from the mean of language scores output by the
system on all segments.



3. EXPERIMENTAL SETUP

3.1. Dataset

All versions of our system are trained and tested on tracks
from the DALI dataset [17]. This dataset contains 5358 songs
of various western genres with the lyrics annotations at word-
level and song-level language labels. All tracks are downsam-
pled to 16kHz and converted to mono. Musical accompani-
ments are removed by vocal extraction with Spleeter [23].

We design two language sets from this dataset: a closed-

set scenario and an open-set scenario. The closed-set retains
languages with more than 10 hours of data each: English,
French, German, Italian and Spanish. The open-set also adds
a sixth label “Others” regrouping low-resource languages
(Dutch, Finnish, Portuguese, Polish). Train, validation and
test sets are obtained with a 80%-10%-10% language-wise
and artist-aware split [24]. Songs in neither target nor low-
resource languages are also labelled as “Others” and added to
the open-set test set only. These out-of-domain samples help
monitoring the generalization of out-of-set modeling learned
from the subset of in-domain “Others” languages. As English
is over-represented in the dataset, all systems and baselines
are trained with a class-weighted LID objective function.

Our system performs SLID at segment-level. Each song is
split into 20s segments with a 0.5 overlapping factor between
two consecutive segments. Segment lyrics are retrieved using
the word-level annotations from DALI and decomposed into
IPA symbols using Phonemizer [25]. Collecting all phonemes
occurring in the training segments and adding the space, in-
strumental and blank tokens, the total number of characters
obtained is |C| = 66 in the closed-set scenario and |C| = 71
in the open-set scenario. For the segment language label,
the FastText language identifier [26] is used on the segment
lyrics. A segment is labeled instrumental when it has less
than 3 words, or ambiguous when the lyrics repetitiveness
or the FastText non-confidence score is above an empirically
found threshold. During inference, ambiguous and instru-

mental scores are not taken into account when estimating the
song language from segment language scores.

3.2. Baseline systems

Two baseline systems are implemented for comparison with
our system. The Metadata baseline is a text-based language
identifier using the artist name and song title metadata pro-
vided with the DALI dataset. The language is extracted using
the FastText language identifier [26].

The i-vector baseline is an acoustic-phonetic i-vector-
based system, as in [9]. Implemented with the Kaldi LRE
receipt [27], this system computes 600-dimensional i-vector
per vocal-isolated song. Sequences of 20 MFCC feature vec-
tors are extracted then modeled by a Gaussian Model Mix-

tures (GMM)-based Universal Background Model (UBM).
Supervised language classification is performed from the

i-vector representation of the song using Support Vector Ma-

chines (SVM) with a cosine kernel, as in [9, 28].

3.3. Acoustic model architecture

40 Mel-scale log filterbanks coefficients and energy features,
plus deltas and double-deltas are computed from the extracted
vocals using a 32ms Hann window with 0.5 overlap. The in-
put feature sequences are downsampled by two sub-modules
each composed of a 2D-convolutional layer (32 filters with
kernel size 3 × 3), a ReLU activation function and a 2 × 3
max-pooling layer: sequence length is thus divided by 4.

The recurrent part of the acoustic model is composed of
3 bidirectional LSTM layers with 256-dimensional hidden
states. Dropout and recurrent dropout of 0.1 each is applied.
Finally a time-distributed dense layer and a softmax activa-
tion function are applied for obtaining per-frame character
probability vectors from C. The CTC layer and objective
function implementations are taken from [29].

3.4. Language classifier

Inputted posteriorgrams are pre-processed by a deterministic
cleaning module: frames with ǫ-emission probability p(ǫ) >
95% are removed, to account only for frames with actual
phoneme predictions.

The language classifier model is composed of 2 bidirec-
tionnal LSTM layers with 64-dimensional hidden states each.
The second layer outputs a single vector per segment, which is
processed by a dense layer with a softmax activation function
to produce one language probability vector. Recurrent lay-
ers have a 0.1 recurrent dropout factor and 0.2 dropout is ap-
plied between each layer. A class-weighted categorical cross-
entropy loss function is used for training the model given the
one-hot encoded language labels.

3.5. Training strategies for our approach

We test two strategies for training our system, implemented in
Tensorflow. Each training variant relies on the ADAM opti-
mization algorithm [30] with a learning rate of 10−3, a batch-
ing size of 32 and validation-based early stopping.

The 2-step variant first trains the acoustic model F alone.
The language classifier G is then trained for SLID from the
posteriorgrams of the training segments computed by F . The
Joint variant trains both models at the same time from scratch.
With hyper-parameter tuning, we found that training the sys-
tem with a loss balance λ = 0.1, then fine-tuning it with
λ = 100 yields the best performances on the validation set.

3.6. Ablation study

We evaluate the relevance of our system parts by designing
two simplified systems for comparison. The E2E system is
an end-to-end approach to SLID with the same architecture



as the Joint variant, except for the CTC component which is
removed from the loss function. The phoneme recognition
task is ignored as the model is solely trained to identify the
language in song segments.

The Statistics system is a modified 2-step variant. Instead
of the recurrent layers, the language classifier is a pooling step
of the mean and variance statistics of each phoneme class over
the full song length. Song language is directly predicted from
these statistic vectors using SVM. This system is analogous
to a modernized version of [12], with a CTC-based acoustic
model instead of the DNN-based one.

4. RESULTS

4.1. Performances in the closed-set scenario

The results of the evaluation of our systems on the test songs
in a closed-set scenario are reported Table 1.

System bAccuracy (%) F1-score (%)

Metadata 76.48 (3.98) 76.71 (3.45)
i-vector 77.26 (3.88) 67.78 (3.57)

E2E 59.90 (4.33) 65.43 (4.47)
Statistics 88.46 (3.04) 89.00 (2.95)

2-step 88.62 (3.03) 90.75 (2.62)
Joint 91.74 (2.70) 92.39 (2.31)

Table 1. Systems evaluation in the closed-set scenario. Mea-
sured by balanced accuracy (bAccuracy) and macro-averaged
F1-score (with standard errors in parenthesis).

All phonotactic approaches (Statistics, 2-step and Joint)
outperform the Metadata baseline, on the contrary of the E2E

system. The phonetic information contained in the audio data
is thus better suited for estimating the language than common
metadata. Reliable estimations from the raw audio can not
be achieved with a naive end-to-end approach and seems to
require more refined techniques. Our deep phonotactic sys-
tem also significantly outperforms the re-implemented state-
of-the-art i-vector system. In particular, joint training of the
acoustic model and language classifier further improves the
system performance, as the Joint variant yields the best over-
all scores, with 91.7% of balanced accuracy.

Regarding the efficiency of each system part, the Statis-

tics system has better performances that the i-vector baseline,
which was not the case between the two analog approaches
from Kruspe [9, 12]. Hence, our CTC-based acoustic model
seems to offer better modeling capability than the DNN-based
model from [12]. The 2-step variant does not significantly
outperform the Statistics system, which implies that the lan-
guage classifier can be improved. Finally, even though the
side phoneme recognition task requires more detailed infor-
mation for training, it proves to be profitable for SLID since
the 2-step and Joint systems outperform the E2E baseline.

System bAccuracy (%) F1-score (%) Target (%) Others (%)

Metadata 70.16 (3.46) 70.52 (3.08) 73.30 (3.45) 56.60 (4.73)
i-vector 70.87 (3.16) 54.79 (2.90) 58.74 (3.18) 35.06 (4.92)

E2E 39.57 (3.17) 35.78 (2.57) 42.93 (3.07) 0.00 (0.00)
Statistics 83.30 (2.83) 80.28 (2.79) 81.70 (3.03)) 73.14 (3.79)

2-step 78.49 (2.77) 74.35 (2.92) 79.89 (3.14) 46.62 (5.40)
Joint 72.89 (2.86) 64.46 (3.14) 72.02 (3.51) 26.67 (5.35)

Table 2. Systems evaluation in the open-set scenario. Mea-
sured by balanced accuracy (bAccuracy) and macro-averaged
F1-score. Macro-averaged F1-score on the target languages
and the F1-score on the “Others” class are also presented.
Standard errors are in parenthesis.

4.2. Performances in the open-set scenario

The results of the evaluation of our systems on the test songs
in the open-set scenario are reported Table 2. All phonotac-
tic systems still outperform the Metadata, E2E and i-vector

approaches. However, both variants of our deep phonotac-
tic system are less robust to the introduction of the “Others”
class than the simpler Statistics system. Indeed, they seem to
overfit on the “Others” training data. It can be explained as
this class has a greater linguistic variability than other classes
but has the same amount of data as a low-resource target lan-
guage. This effect is further demonstrated in Table 3 as only
the Statistics system can generalize the out-of-set modeling to
out-of-domain languages unseen during training.

System In-domain “Others” (%) Out-of-domain “Others” (%)

i-vector 50.00 (10.66) 20.00 (4.46)
E2E 0.00 (0.00) 0.00 (0.00)

Statistics 86.36 (7.29) 56.25 (5.58)

2-step 63.64 (10.28) 21.25 (4.61)
Joint 31.82 (9.87) 11.25 (3.56)

Table 3. Performances comparison on “Others” labelled test
songs in in-domain and out-of-domain languages cases. Mea-
sured by accuracy (with standard errors in parenthesis).

5. CONCLUSION

We investigate modernized phonotactic systems for SLID on
polyphonic music, using recurrent models for both phoneme
recognition and language classification. Trained on a pub-
licly available multilingual dataset, the proposed system out-
performs metadata-based and the previous state-of-the-art
SLID approaches. The CTC-based acoustic model greatly
contributes to the performance increase, both in closed-set
and open-set scenarios. However, the proposed language
classifier hardly exceeds statistical modeling in a closed-set
scenario, and deteriorates with out-of-set languages. Future
works would focus on exploring hierarchical language mod-
eling techniques for SLID with out-of-set languages, taking
inspiration from the speech literature [31].
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ABSTRACT

The growing interest for Human-centered Music Infor-

mation Retrieval (MIR) motivates the development of
perceptually-grounded evaluation metrics. Despite re-
markable progress of lyrics-to-audio alignment systems
in recent years, one thing which remains unresolved is
whether the metrics employed to assess their performance
are perceptually grounded. Even if a tolerance window
for errors was fixed at 0.3s for the Music Information Re-

trieval Evaluation eXchange (MIREX) challenge, no ex-
periment was conducted to confer psychological validity
to this threshold. Following an interdisciplinary approach,
fueled by psychology and musicology insights, we con-
sider the lyrics-to-audio alignment evaluation from a user-
centered perspective. In this paper, we call into question
the perceptual robustness of the most commonly used met-
ric to evaluate this task. We investigate the perception of
audio and lyrics synchrony through two realistic experi-
mental settings inspired from karaoke, and discuss impli-
cations for evaluation metrics. The most striking features
of these results are the asymmetrical perceptual thresholds
of synchrony perception between lyrics and audio, as well
as the influence of rhythmic factors on them.

1. INTRODUCTION

Nowadays, the machine learning community is raising the
question of how to design explainable [1] and human-
grounded algorithms [2]. Especially in the field of MIR,
user studies and evaluation metrics plays a pivotal role in
this shift towards Human-centered MIR. Subjective listen-
ing tests [3–5] and ethnomusicological studies [6] previ-
ously demonstrated the feasibility of including tasks in the
real setting context of user experience. Regarding metrics,
we are witnessing the transition from exclusively system-
centered evaluation to user-aware evaluation. In the ref-
erence toolkit mir_eval, the lack of Human-centered met-
rics was justified by the complexity and cost required to
develop robust subjective evaluation methods [7]. How-
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ever there are a few limitations of system-based evalua-
tion, such as their inability to capture the inherently sub-
jective experience of MIR and the absence of necessary
correlation between system-centered evaluation and users’
perceptions [8]. One could, and indeed should, ask what
is the meaning of the effectiveness of an algorithm with-
out the presence of an embodied experience of human per-
ception? In epistemic terms, how is the distance to the
ground truth translated into an error measurement with-
out the mediation of an individual? Since the advent in
2005 of the system-centered evaluation approach by the
MIREX, there were several attempts at creating percep-
tually grounded metrics, notably among the field of music
transcription [9–11], source separation [12] and audio sim-
ilarity [8].

One application at the frontier of music perception and
human machine interaction is karaoke. Currently, the ma-
jority of alignments used by karaoke systems are fully
manually achieved, or partially corrected by human an-
notators. Obtaining manual annotations of lyrics-to-audio
alignment is costly and time-consuming. To obtain such
annotations automatically, one could turn to automatic
lyrics to audio alignment system. Such system takes as
input lyrics text and outputs timed position of their appear-
ance in the audio signal, at the word, line, or paragraph
level. Several recent automatic lyrics-to-audio alignment
systems have achieved high performance taking inspiration
from automatic speech recognition [13–15] and using large
public singing voice annotation dataset like DALI [16].
Among the metrics developed for the MIREX challenge
to evaluate lyrics-to-audio alignment, the most commonly
used is the Percentage of correct onsets (PCO) ρkτ , illus-
trated in [17], using a tolerance window for the perception
of lyrics-to-audio alignment errors defined by a threshold
τ [17].

ρkτ =
1

Nk

∑

word i

1|t̂i−ti|<τ × 100 (1)

where Nk is the number of words in the track k, ti the
ground truth start of the word timestamp of the lyrics unit
and t̂i the predicted timestamp. It suggests that listeners
tolerate errors falling within this window, and still perceive
as synchronous lyrics and audio whose onsets are sepa-
rated by this offset. A tolerance window for errors was
fixed at 0.3s for the MIREX, albeit no psychology experi-
ment was conducted to confer validity to this threshold.



Additionally, while spectacular progress has been made
in the past years, the gap between state-of-the-art systems,
as measured in the MIREX competition, has narrowed,
with many systems achieving close to perfect PCO scores
on the test sets. Therefore, it might now be important to
make room for qualitative rather than quantitative metrics.
In this work, we are interested in challenging the PCO met-
ric from a user-centric perspective, focusing on how hu-
mans perceive asynchrony to derive stricter metrics for the
task. To this aim, we expose the design of two percep-
tual experiments in Section 3 and their respective results in
Section 4. We then propose a PCO adaptation in Section 5
and conclude in Section 6.

2. RELATED WORKS

Singing karaoke engages coordination of articulatory
movements, music and language processing systems, as
well as crossmodal integration of audio and visual stim-
uli. It is thus a rich context of perception involving
complex stimuli. As a consequence, we briefly consider
the research on all the domains outlined above to illus-
trate paradigms and hypotheses relevant to lyrics-to-audio
alignment perception. When presented with a pair of au-
diovisual stimuli, individuals reported an asymmetric per-
ception of asynchrony, with audio lagging preferred over
visual lagging [18, 19]. This asymmetry has been corre-
lated with faster transmission of the visual signal over the
audio signal [18] or with the auditory dominance in tem-
poral processing [20]. The latter hypothesis asserts that,
when emitting a judgment of synchrony, audio would pro-
vide individuals a more accurate sensory information in the
case of dynamic event such as music, and also a more sta-
ble internal representation of periodicity, contrary to the
visual modality [20]. The listening experience is a contin-
uous production of rhythmic expectancies [21]. In the case
of sensorimotor synchronisation experiment, one effect in-
duced by rhythmic expectancies is the anticipation of the
stimuli in a sequence, also called Negative Mean Asyn-
chrony (NMA). First reported by Dunlap [22], it states
that the reaction to an audio stimuli tends to precede rather
than follow the stimuli. Repp [23] discovered that indi-
viduals anticipate audio events up to 100ms ahead of time.
Klemmer [24] revealed that the anticipation effect varies
with the tempo of the rhythmic stimuli, usually measured
in terms of InterOnset Interval (IOI) duration. He found
that the reaction time of individuals when attempting to
stay in phase with an isochronous stimulus, is a function
of the IOI between stimuli. The reaction time was greater
for shorter IOI, suggesting that individuals have less sen-
sibility in slow tempo. These observations were further
formalized as a function of local and global rhythmic con-
text by McAuley [25]. Besides global rhythmic factors,
the listening experience is punctuated by local variations.
Metric events are periodic peaks of attention organized into
nested hierarchies that coordinate attention to events on
various time-scales, allowing for grouping and accentua-
tion of notes [26]. Musical stresses are the cues to in-
fer a general rhythmic pattern [26]. Among the signif-

icant factors of stress reported were the duration of syl-
lables [26], loudness [27], alignment with beats [21] and
sequence boundaries [21, 28].

Given previous studies, our theoretical hypothesis is
based on two points. Firstly, we expect individuals to tol-
erate more audio lagging than lyrics lagging. Secondly, we
expect perception of lyrics-to-audio synchrony to rely both
on global and local rhythmic context.

3. METHOD

To investigate the perception of lyrics-to-audio alignment,
we designed two psychological experiments inspired from
the main application of this task, karaoke. We chose
karaoke as it is a popular practice where the participants’
rhythmical precision is important, requiring attention to the
displayed lyrics as much as to the audio. The first experi-
ment is designed to test the influence of global parameters
on human perception of audio/displayed lyrics synchrony
and to investigate its symmetrical properties. The second
experiment intends to explore local factors influences. To
run both experiments we developed a karaoke application
prototype, whose displayed textual lyrics were intention-
ally misaligned with the background audio according to
various, controlled conditions, thereby creating an audio-
visual offset. The stimuli were presented to individuals
who then annotated their perceived quality of alignment in
different error scenarios. A snippet of this interface is dis-
played in Figure 1.

Both experiments were run online, through a web inter-
face that was designed to be correctly displayed on both
computer and phone screens, for a total duration of two
weeks each, between January and April 2021. The first
experiment was conducted only with Deezer employees
while the second experiment was public and hence involv-
ing a larger and more diverse set of participants. Before
engaging in karaoke, participants are asked to fill out a
questionnaire allowing us to determine their level of mu-
sical expertise and familiarity with the practice of karaoke.
We collect, with their consent, a range information of
their age, declared gender and native language. We do
not have control on their external environment when per-
forming karaoke (external noise) or any other factor which
might disturb the readability of the karaoke (low light, un-
corrected vision problem). Nevertheless, the instructions
of the experiment encourage the participants to use head-
phones and favor a quiet environment.

In both experiments the dependent variable measured is
the perceived synchrony and the amount of offset between
lyrics and audio is a within subjects factor. In order to
prevent from order effect, the values of audiovisual offset
are presented in random order. These two experiments are
akin to the Simultaneity Judgment task (SJ) widely used
in the literature for studying the synchrony perception of
audiovisual stimuli [18, 19].



Figure 1. Questionnaire used to evaluate lyrics-to-audio
alignment.

3.1 Dataset

Since the measured effects should be valid irrespective of
the song, we allow participants to choose their song for
karaoke within a set of 80 songs from various genre (pop,
rock, rap and metal) and language (English, French, Ger-
man). We selected popular songs in the DALI dataset [16]
with alignment done at word level. The first criterion for
the choice of songs was their popularity, so that we can ex-
pect a large proportion of participants to be knowledgeable
of their lyrics and melody. Other important point guiding
our choice was the correct lyrics-to-audio alignment and
the absence of syntactical problems. We manually con-
trolled the alignment quality of this subset by visualizing
their lyrics in the karaoke prototype and eliminated poorly
aligned songs from our selection. To avoid a learning ef-
fect of the song, each song can be selected once for a trial
and can only be listened to twice during a trial. Moreover,
the order of the songs in the selection menu for karaoke is
randomized for each trial.

3.2 Influence of global factors

3.2.1 Experiment design

In this experiment, each participant is asked to choose 14
songs from the dataset from which karaoke excerpts are
presented. Each audio extract lasts 35 seconds and con-
sists of a sequence of words within lyrical lines, high-
lighting each word subsequently according to their aligned
onset times. A lyrics-to-audio alignment error is gener-
ated for each user-song pair randomly from a set of posi-
tive and negative offsets between the audio and the lyrics
displayed on screen. The offset is fixed for the whole se-
quence, which means all words in the stimulus are shifted
by the same amount. At the end of each trial, participants
are asked to report whether they perceive an asynchrony
between lyrics and audio with a ternary response ("lyrics
ahead", "lyrics lagging", "synchronous"). This experiment
has a repeated measure design, with lyrics-to-audio syn-

chrony perception as a dependent variable, and the lyrics-
to-audio error offset as the independent variable having
14 modalities. It aims to measure an overall threshold of
lyrics-to-audio synchrony perception and to study the in-
fluence of global rhythmic factors on this threshold, such
as the tempo and word rate. If our theoretical hypothesis
is confirmed, we expect to observe a greater proportion of
"synchronous" responses for lyrics ahead than lyrics lag-
ging, as well as a modulation of the perceptual threshold
with the global rhythmic context (tempo, word rate).

3.2.2 Choice of offsets

In order to precisely define a threshold, we use a wide
range of 14 offsets from −1s to 1s with negative offsets
corresponding to lyrics ahead and reversely positive offsets
mean lyrics lagging behind audio. We intentionally keep
this number as small as possible, since this value is equal
to the number of annotated songs required for each partic-
ipant. Meanwhile, we wish to highlight effects around the
commonly used threshold of 0.3s and −0.3s. Thus we use
smaller steps around these values. We also included larger
offsets (1s, 0.75s) as control values, to test that individ-
uals systematically report those as asynchronous. In the
same spirit, we expect the offset value 0 to trigger "syn-
chronous" answers. The full experimental protocol was
carefully tested beforehand with user testing sessions on
six people. Based on these test results, we evaluated that
completing the annotation required approximately 12 min-
utes per participant. Overall, the experiment involved 53
participants who completed the task.

3.3 Influence of local factors

In this second experiment, we make some changes in the
karaoke interface. This time, we require each participant
to choose one song from the dataset from which 10 audio
excerpts are presented with different audiovisual offsets.
Each sample is composed of three lyrical lines from the
given song. The experience can be repeated multiple times
with additional songs if desired. Each song takes around
3 to 5 minutes to annotate. Whilst in the first experiment
the alignment errors were located on all the words of the
sentence, in the second experiment, the position of the er-
ror may be located on the first, the last word of the sen-
tence, or close to a beat. These choices are driven by some
of the significant factors of stress described in Section 2
namely alignment with beats [21] and sequence bound-
aries [21,28]. We decided to discount the influence of long
syllables [26] and loudness [27] for this study. In fact, long
syllables and loud words are found to be overlapping re-
spectively with the last word of the sentence and words
closed to beats. The perceived synchrony is reported as a
binary response ("yes", "no") with confidence on a 5-point
Likert scale. This experiment intends to quantify the inter-
action of the error location in the sentence and the offset
on the perceived alignment. It has a factorial design with
the lyrics-to-audio offset and the position of the error as
within subject factors. If our theoretical hypothesis is con-
firmed, we expect to observe a modulation of the percep-



tual threshold with the location of the error in the sequence.
Proximity of a word to a beat is defined as at a dis-

tance less than a sixteenth note from the beat, computed
as ˇ “) = 15/ Beats Per Minute (BPM). The tempo esti-
mation relies on Anssi Klapuri’s algorithm, which showed
80% accuracy with constant tempo during the International
Society for Music Information Retrieval (ISMIR) 2004
tempo induction challenge [29]. Starting from the baseline
threshold of synchrony perception established in the pre-
vious experiment, the second experiment focuses only on
lyrics lagging with 3 offsets (0.25, 0.5, 0.75) and a control
sample with no offset. We chose only positive offsets be-
cause of practical constraints. Indeed, applying a negative
offset at the word level can (and does frequently) result in
overlapping with previous words, at least for beat-aligned
and end words. Filtering out cases of overlapping words
resulted in an important selection bias toward very slow
songs. To avoid that, we could apply linearly decreasing
offsets to precedent words until no overlap remains, as a
naive way to "catch-up" with the true annotation. Such be-
haviour is consistent with what is observed in errors made
by lyrics-to-audio alignment systems, multiple errors on
consecutive words being recurrent. The concern was that
we would not control which first offsetted word the partici-
pant would be confronted with. We decided to not consider
negative offsets in this experiment but the problem of over-
lapping words for positive offset remains. However, after
applying linearly decreasing offsets to consecutive words
until no overlap occurs, the first offsetted word to which
each participant is confronted remains the word of inter-
est. Ultimately, we collected 2458 annotations from 193
participants.

4. RESULTS

As we intend to compute an overall threshold of synchrony
perception, we perform the analysis at the level of the ag-
gregated results, considering all annotations from all users.
We removed all the trials from participants who did not an-
swer correctly to our control levels i.e. "non synchronous”
at 1s and “synchronous” at 0s. This represented precisely
11% of answers for the first experiment. We conducted a
similar cleaning phase for users of the second experiment
using the control offset of 0 and removed 8% of answers.

4.1 Asymmetry of Lyrics-to-Audio Alignment

Perception

Using the data collected in the first experiment, we com-
pute an aggregated proportion of respondents who indicate
that lyrics and audio are "synchronous", and display it as a
function of the lyrics offset in Figure 2. We see that syn-
chrony perception is typically asymmetric, positive offsets
being more easily detected than negative ones. This was
expected as it resonates with previous findings [18, 19].
Beyond aggregated data, we also looked at individual re-
sponses and found that the thresholds were indeed asym-
metric for 72% of individuals.

To give perspective, we plot the window function that

0.6 0.4 0.2 0.0 0.2 0.4 0.6
lyrics offset

0

20

40

60

80

100

%

proportion of 'synchronous' response
measures
0.3s window
fitted

Figure 2. Aggregated results of synchronous judgment as
a function of the lyrics/audio offset.

correspond to the PCO metric scoring as used in MIREX,
with an absolute threshold value of 0.3s. We also fit a func-
tion akin to a scaled skew normal distribution function to
the data points. Among several attempts with asymmetri-
cal continuous functions, this was the best fit we obtained,
although it does not respect the maximality at 0. Param-
eters of the fitted function are a skewness factor of 1.12,
a location of −0.22 and a scale of 0.29, a multiplicative
factor is also applied in order to have a value of 1. at the
maximum. Using this function we can derive new percep-
tive thresholds for synchrony using a simple rule of 50%
of respondents being able to detect the offset. For lyrics
ahead and lyrics lagging we respectively identify the off-
sets −0.33s and 0.22s. Given the amount of noise in the
data, we can reduce these to −0.3s and 0.2s and exam-
ine if the differences of perception are significant for these
values. Indeed, pairwise tests revealed a significant dif-
ference of proportions of response "synchronous" on the
levels −0.3 and 0.3s (χ2(1) = 4.26, p = .038), while pro-
portions on the levels −0.3s and 0.2 are not statistically
different (χ2(1) = 0.04, p = .08).

4.2 Sensitivity to global rhythmic context

In order to assess whether there is an influence of the global
rhythmic context on lyrics-to-audio alignment perception,
we compared the distribution of "synchronous" responses
at each offset for two rhythmic factors: tempo and Words
Per Second (WPS). We split our dataset of songs into two
classes of tempo, defined as the upper and lower quartiles
of the distribution of tempo, respectively fast (≥138BPM)
and slow (≤93BPM). Although it is correlated with tempo,
we also consider the average WPS rate of songs as a mean-
ingful global factors. Again, we look at the first and last
quartiles as Low (≤1.16WPS) and respectively High WPS
(≥1.2WPS) classes. Figures 3 and 4 show the aggregated
reported synchrony profiles for the negative offsets for the
derived tempo and WPS classes. On both metrics, we ob-
served no threshold discrepancy between the two classes
for positive offsets.
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To highlight the differences between classes, we fit
a relatively simple sigmoid function to the data points.
Among several candidates, a Gauss error function seemed
most appropriate. Fitted functions are also displayed on
Figures 3 and 4 and emphasize the different synchrony
slopes. As before, we particularly consider the offset value
intersecting with an average of 50% of "synchronous" re-
sponses as an indicator of participants’ sensitivity to tem-
poral asynchronies. Interestingly, the 50% threshold for
the perception of synchrony is located at a larger off-
set (−0.36) for slow tempo than in fast tempo (−0.31).
These results show that individuals report more frequently
lyrics ahead as synchronous with slow tempo than with fast
tempo. The lower sensitivity to lyrics-to-audio alignment
errors in slow tempo is consistent with the results of [24].
Significance of these results are tested. The proportions
of "synchronous" response at the offset −0.3s show signif-
icant difference between songs with high and low tempo
(χ2(1) = 5.44, and p < .02).

Analogously, we found out that subjects are more toler-
ant to lyrics ahead (audio lagging) in high word rate than
in low word rate. The 50% threshold for the perception of
synchrony is indeed located at a larger offset for high word
rate (−0.39) than in low word rate (−0.28) (Figure 4).
These results show that subjects are more tolerant to lyrics
ahead (audio lagging) in high word rate than in low word
rate. We again tested the significance of these results. The
proportions of "synchronous" response at the offset −0.3s
are significantly different between songs with high and low
WPS (χ2(1) = 16.86, and p < .00004).

4.3 Interaction between offset and word position

We designed the second experiment to distinguish percep-
tion of asynchrony as a function of the words position in
the sentence. As explained in Section 3.3, we are only able
to test for positive offsets. As insights from the previous
experiment, we can assume that user sensibility is less af-
fected by global factors for positive offsets. As a result,
we expected it to be challenging for local factors too. For
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Figure 4. Proportion of response "synchronous" by WPS
class.

this reason, we aimed at collecting a much larger set of
annotation, with a reduced set of tested offsets.

Figure 5 presents an overview of the results. There is
a fairly large amount of noise in the collected data points,
and few clear differences between synchrony perceptions
for the three classes of word positions. The noise is partic-
ularly clear from the displayed level of confidence of par-
ticipants who were unable to detect the asynchrony even
for large values of the offset, but still were quite con-
fident about their choice (average around 3.8). Regard-
ing the location of the alignment error within the sen-
tence, Cochran’s Q test did not indicate a notable differ-
ence among the proportions of synchrony responses re-
ported for the three error positions, χ2(2) = 5.77, p = .056.

The only visible effect seems to be for words aligned
on beats, for which the confidence in the "asynchronous"
answer at the 0.25 level is markedly higher than for the
end class. More precisely, a Wilcoxon signed-rank test re-
vealed that lyrics-to-audio alignment comparing error lo-
cated on the beat with those on the last word did elicit a
statistically significant change in the reported confidence
of perception of error in individuals at the 0.25 level (Z
= 2.756, p < 0.006). Indeed, mean confidence rating was
4.1 for error on the beat and 3.5 for error on the last word
of the sentence. Such phenomenon is not observed for the
synchronous case.

5. DISCUSSION

5.1 General discussion

Building on psychological theory and previous studies,
we had hypothesized that a perceptual evaluation of
lyrics/audio alignment quality would be asymmetrical and
depend on both global and local factors. Using a first ex-
periment we did find strong evidence for asymmetry and,
to some extent for global factors influence. Despite a much
larger experimental setup which involved hundreds of par-
ticipants, we were not able to exhibit a clear influence of
the local factors we tested. This negative result could mean
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that the local factors considered, i.e. the word position
in the lyrical line are not the relevant ones. It is possi-
ble that words grammatical or semantic functions are more
subject to human attention in a karaoke context. Indeed,
the only significant phenomenon that we observed was on
words located on beats, for which the asynchrony percep-
tion was more acute. Future work should investigate the
relationship between rhythmic position and lyrical func-
tion of words and test new hypothesis of perceptual differ-
ences. Finally, although we did our best to build a realistic
yet controlled experimental setup, we acknowledge that as
a psychological experiment mostly conducted online, we
can not completely rule out the possibility that the mea-
surement noise was too high to allow us to detect signals
on local factors.

There are arguably other factors that could influence
this perception, notably at the human level. Indeed, fa-
miliarity with the song (e.g. previous knowledge of the
lyrics and/or the music), but also participants’ facility with
the languages, level of musical expertise and even karaoke
practice could be important variables to consider. In the
conducted experiment, we collected such information from
participants. Although we did observe some interesting
phenomenon, for the sake of clarity, we chose not to
present additional results on these variables here and leave
it to a follow-up study.

5.2 Implication for evaluation metrics

Here we would like to present a practical use of our results,
as a perceptually motivated evaluation metric for lyrics to
audio alignment tasks. Overall, we propose a generaliza-
tion of the PCO metric in the following form:

ψk =
1

Nk

∑

word i

f(t̂i − ti)× 100 (2)

PCO Asym-PCO Perc-PCO

Gupta [13] 94.47 (1.52) 93.66 (1.59) 89.94 (1.71)

Vaglio [15] 91.85 (1.95) 90.82 (2.04) 86.79 (2.13)
Stoller [14] 87.02 (2.97) 85.23 (3.07) 79.93 (2.90)

Table 1. Averaged metrics over the Jamendo dataset songs.
Standard errors are given in parenthesis.

where the function f can be seen as penalty weighting of
the annotation offset and other notations are common with
Equation 1. We then evaluated 3 state-of-the-art automatic
lyrics-to-audio alignment models [14, 15, 30], on the 20
songs of the Jamendo dataset [14]. We have compared
using the regular PCO (f = 1[−0.3,0.3]), a slightly mod-
ified version still using a square window but taking into
account the asymmetrical perception (f = 1[−0.3,0.2]) and
a Perceptual-PCO function that is the one fit from the data
collected in our first experiment and depicted in Figure 2.
This function can be seen as a smooth relaxation of the
square window, taking into account the perceptive asym-
metry of the error slopes.

Results are compiled in Table 1. Interestingly, there
appears to be little difference between using the standard
PCO window and a slightly shifted one. However, scores
for the perceptual-PCO are much lower. This is despite
the window support being larger (i.e. errors of more than
0.3s are not completely nullified). In our opinion, this
new metric is better suited to capture the relative impor-
tance of alignment errors and weights them according to
human perception. It can also help for comparing between
alignment methods that achieve near perfect scores with
the standard PCO. It is worth noticing that although we
demonstrated it on the PCO, a similar weighting could be
applied to other alignment metrics. A step further would
be to parameterize the window function f on global song
factors such as tempo and WPS. This would arguably re-
quire additional experiments with a larger, more diverse set
of songs.

6. CONCLUSION

In this work, we challenged the objective evaluation of
lyrics-to-audio alignment using hypothesis from psycho-
logical theory. We postulated three effects: asymmetry,
influence of songs features and influence of words local
positions. We were able to demonstrate the first two ef-
fects using a large scale online experiment, disguising the
synchrony annotation task as a Karaoke experience. This
framework proved less efficient for the third effect, despite
our efforts to collect up to several thousands annotation
points. We nonetheless proposed a readily usable weight-
ing function to allow finer comparison between state-of-
the-art alignment methods. Future work will investigate
more diverse sets of factors, both on musical attributes and
user features.
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ABSTRACT

Cover detection has gained sustained interest in the scien-
tific community and has recently made significant progress
both in terms of scalability and accuracy. However, most
approaches are based on the estimation of harmonic and
melodic features and neglect lyrics information although
it is an important invariant across covers. In this work,
we propose a novel approach leveraging lyrics without re-
quiring access to full texts though the use of lyrics recog-
nition on audio. Our approach relies on the fusion of a
singing voice recognition framework and a more classic
tonal-based cover detection method. To the best of our
knowledge, this is the first time that lyrics estimation from
audio has been explicitly used for cover detection. Fur-
thermore, we exploit efficient string matching and an ap-
proximated nearest neighbors search algorithm which lead
to a scalable system which is able to operate on very large
databases. Extensive experiments on the largest publicly
available cover detection dataset demonstrate the validity
of using lyrics information for this task.

1. INTRODUCTION

Cover detection, also known as version identification, aims
at detecting whether two recordings are of the same under-
lying musical work. A cover can be played by the same
artist as the original song, or by another artist, and can be
quite similar or vastly different. Generally, it is assumed,
as in [1], that tonal progression features (chord, melody,
and harmony) are mostly preserved between covers of the
same work. Inversely, musical attributes such as key, tim-
bre, tempo, and structure significantly vary across covers
[1]. Variations of these features between covers were ex-
tensively studied in [2]. Cover detection systems are then
built to be insensitive to these variations and exploit tonal
progression features. The task has been frequently studied
as a query and answer [1] one, i.e. given an input query,
the system outputs a ranked list of possible covers from a
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music collection. True covers are to be ranked as highly as
possible while other songs should be ranked low. This list
is usually obtained by computing pairwise similarities be-
tween the query and each song of a pre-defined dataset [1].
If earlier cover detection systems were shown to be highly
efficient on small datasets (1000 songs or less) [3], per-
formances quickly dropped on larger ones [2, 4]. Recent
works have made significant advances in scalability and
accuracy, for larger datasets, taking inspiration from met-
ric learning [5] and knowledge distillation [6].

Almost none of the existing approaches explicitly con-
sider the textual information provided by the lyrics. To
the best of our knowledge, it is only used in [4], in which
lyrics are assumed to be available for a significant part of
the dataset. In this paper, the authors use metadata and
lyrics alongside audio to perform cover detection. The
textual similarity of lyrics and song titles is computed us-
ing a plain Bag-of-word Term Frequency–Inverse Docu-

ment Frequency (TFIDF). The authors show that results
obtained with lyrics are on par with those given by audio-
based features on a large-scale dataset. Moreover, the best
results are obtained when combining all of the features.
However, each feature is only used in a separate part of a
multi-layer database pruning method; the information car-
ried by each modality is thus not optimally combined. One
limitation of this work is that it assumes that the lyrics of
most songs are available. Considering the task of query
by singing, which may be regarded as a related task to
the cover detection one, authors in [7] employed lyrics
and melody recognition to recognize a singing query and
match it against a collection of songs. They employed a
basic bigram Hidden Markov model (HMM) model that is
trained on speech and adapted to singing voice. However,
this approach also presupposes that the lyrics of songs are
available. Lyrics from the considered dataset are, in fact,
utilized to inform singing voice recognition.

While this assumption arguably does not hold for large
musical collections, one could turn to Singing Voice Recog-

nition (SVR) frameworks to retrieve a noisy estimate of the
lyrics. We thus propose a novel cover detection approach
leveraging lyrics information extracted from audio. It is
based on the fusion of a SVR framework and a more classic
tonal-based cover detection system. Based on our review
of the literature, this is the first time that an estimation of
lyrics transcripts from audio has been explicitly leveraged



to perform cover detection. Our assumption, based on the
results of [4], is that lyrics are often preserved between
covers in popular western music. For the first modality
of our fused system, we thus propose using transcription
methods to obtain estimates of these lyrics for all songs.
The cover song here is framed as a noisy text-matching
task. We expect a lyrics-recognition based system to be
particularly relevant for pairs of covers displaying hugely
different tonal features while using the same lyrics. An
example of such cases is the cover of Summertime by Ja-

nis Joplin where the harmony and melody are considerably
different from the original score, but the lyrics remain quite
similar. Nevertheless, it is clear that a pure lyrics-based
system is inadequate for instrumental music (e.g. without
a singing voice). Therefore, we use a tonal-based system
such as the second modality of our fused system. An in-
strumental detector is applied on the output of the lyrics
recognition framework to inform the fusion strategy. We
provide extensive empirical evidence that both modalities
are indeed complementary. Extra attention is placed on the
scalability of our proposed approach using Approximated

Nearest Neighbors (ANN) methods.

2. RELATED WORKS

Classically, cover song detection systems use tonal fea-
tures, which are thought to be the least altered between a
song and its covers. Chroma [8] and derived features such
as Harmonic Pitch Class Profil (HPCP) [3] and CremaPCP
[5] are among most effective examples. Before computing
the similarity between two songs, multiple preprocessing
steps can be applied to obtain features that are invariant to
the key [9], the tempo [10], or the structure of the song [5].
After extracting the features to be compared for both songs,
a cross similarity matrix [11], or a cross recurrent plot [9],
is then generally computed. A similarity score is then
computed using dynamic programming like Dynamic Time

Warping (DTW) [12] and recurrence quantification analy-
sis [3]. For a given query, this score is calculated for all
tracks in a pre-defined dataset and thus yields the desired
sorted list. These methods achieve satisfactory results for
small datasets of up to a thousand songs [3], but are com-
putationally costly for larger datasets.

To address this issue, some authors have attempted to
reduce the size of the input representation to obtain a
low-dimensional fixed size representation for each track.
The similarity comparison thus boils down to a basic dis-
tance metric such as Euclidean distance or cosine similar-
ity [5] that are much faster than dynamic programming al-
gorithms of quadratic complexity. Early approaches of this
type include using fingerprinting in the form of Chroma
landmarks [10] and 2D Fourier transform of Chroma vec-
tors [13], both obtaining low performances. More recent
approaches using metric learning, triplet loss, and distilla-
tion methods show greater improvement [5, 6] in terms of
computation speed and retrieval performances. Database
pruning was also used to decrease the overall complex-
ity in [4, 14]. A first fast global candidate selection us-
ing text and metadata was performed, followed by a more
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W

Audio Pair  
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Figure 1. Audio from a pair of tracks is processed in paral-
lel by two branches computing lyrics and tonal-based simi-
larities respectively. The fusion mechanism is informed by
an instrumental detection on the transcripts

complex similarity function to re-rank the subset. Most
of these approaches, which are based on low-dimensional
embeddings and simple distance functions, are then simply
exploited into existing scalable nearest-neighbors meth-
ods. For example, the authors in [10, 15] use index-
based matching on extracted audio fingerprinting. Scalable
nearest-neighbors methods are more broadly discussed in
Section 3.6.

3. PROPOSED APPROACH

A general overview of our approach is described in
Figure 1. It is composed of a lyrics-recognition based
cover detection system and a classic tonal-based system.
The first branch is constituted of a lyrics recognition frame-
work and a string matching function. It takes two songs
x1 and x2 as input and outputs the respective estimated
lyrics b̂1 and b̂2. A similarity estimation slyrics is then ob-
tained using these transcriptions. The second branch of
our approach, the classic tonal-based system, also takes
these two songs as input and outputs a similarity estima-
tion stonal. They are then fused using a fusion function
to obtain a new similarity estimation sfus. Extra input is
added to the fusion function α to weigh the participation of
both modalities during the fusion. The value of this input
depends on the instrumental detector taking as input both
transcripts and outputting the probability that at least one
of the tracks is purely instrumental. This avoids using the
lyrics-based recognition system during the fusion in the ab-
sence of lyrics. To obtain the desired sorted list, for a given
query, a similarity is then computed for the considered sys-
tem between the query and each track of the dataset. Fi-
nally, a fast approximate index search technique is used on
our system to make it scalable. In our work, we rely on
the ANN approach where the similarity is only computed
between the query and the nearest neighbors returned by
the method.



3.1 Lyrics recognition

We choose a state-of-the-art framework [16] that obtained
the best results in the Music Information Retrieval Eval-

uation eXchange (MIREX) 2020 lyrics transcription chal-
lenge 1 . It uses an acoustic model composed of several
layers of Time Delay Neural Network (TDNN) that are
trained using the English tracks of the DALI dataset [17].
Background music is directly modeled as an output of the
acoustic model as such that it does not use any preprocess-
ing step of Singing Voice Separation (SVS). Moreover,
phoneme units are annotated with genre labelling informa-
tion. An extended lexicon is also employed to handle long-
vowel duration. Finally, a 3-gram word language model
with interpolated Kneser-Ney smoothing is trained on the
English portion of DALI lyrics. The complete framework
extracts Mel-Frequency Cepstral Coefficients (MFCC) of
dimension 40 from the input audio and outputs transcribed
English words. As this model cannot output non-English
words, extra care on the results of non-English tracks will
be considered later in this paper. The acoustic model
and lexicon are collected from the code implementation
of the authors 2 . We compute the language model with the
kenLM toolkit [18]. The vocabulary of the language model
is restricted to the 6000 most frequent words, thus reducing
overfitting. Obtained transcription results are on par with
those in MIREX with a Word Error rate (WER) of 62% on
the Jamendo dataset [19].

3.2 String matching

To allow for a swift computation of the similarity between
pairs of estimated transcripts, each string is transformed
to a vector using a TFIDF based on a 3-gram at character
level with IDF values computed from the DALI dataset.
The complexity of this type of algorithm is O(m + n)
withm and n, which are the respective length of each tran-
script. The similarity is then simply given using a cosine
similarity, which is independent of the length of each tran-
script. Using a word level 3-gram was not shown to im-
prove performances on a cover song tuning set described
in Section 4. We also considered the Levenshtein distance
for the string matching, but it did not yield significant gains
in performances while inducing a quadratic complexity.

3.3 Detecting instrumentals

Looking at various transcripts given by our SVR frame-
work, we notice that, for most instrumental tracks, the tran-
script obtained is composed of either a very few number
of words, or highly repeated ones such as onomatopoeia.
Therefore, we consider a track as instrumental if the re-
spective transcription is composed of less than l different
words with l tuned on the cover song tuning set. The mod-
ule outputs δx1,x2

= 1 if both tracks are not detected as
instrumentals, and 0 otherwise. For some rare cases where
the SVR framework is truly performing poorly, it is also

1 https://www.music-ir.org/mirex/wiki/2020:

MIREX2020_Results
2 https://github.com/chitralekha18/

AutoLyrixAlign

only outputting a few words. The instrumental detector
then helps with additionally filtering some marginal cases
where the lyrics transcription fails completely. We chose
to keep this very simple as it performed sufficiently well
for our purposes and allowed for improvements in future
works.

3.4 Tonal-based cover detection

The tonal-based cover detection method selected is de-
scribed in [6]. This system, called Re-MOVE [6], is an
updated version of MOVE [5] and obtains the second most
accurate benchmark on the Da-Tacos dataset [2]. Com-
pared to the best one reported [20], it has the advantage
of being publicly available 3 . The system is trained using
the training part of Da-Tacos, as described in Section 4.1,
and early stopping is performed using its validation com-
ponent. For a given track, the system takes CremaPCP ex-
tracted from the audio as input and outputs a correspond-
ing compact embedding. The CremaPCP feature is an in-
termediate representation of a chord estimation model. It
is considered an efficient way to capture the tonal infor-
mation of music and is shown to outperform more classic
HPCP features for cover detection [2]. The similarity be-
tween the query and each track of the dataset is then the
cosine similarity of their respective embeddings.

The Re-MOVE system uses a latent space reconfigu-
ration technique on top of MOVE in order to reduce the
embedding dimension (and then reduce memory require-
ments and retrieval time) while maintaining high detection
performances. This technique reconfigures a pre-trained
learned distance metric into a more compact embedding
space with the same learned semantic relation.

3.5 Fusion

It has been shown in multiple domains that the fusion
of different modalities can yield better performances than
those obtained with each single modality [21]. For cover
detection, fusing modalities, features or similarities matrix
have already shown to improve results [22,23], notably us-
ing rank aggregation methods [24]. The fusion function
chosen here is a weighted sum. It is more precisely de-
scribed by:

sfus =

{

αslyrics + (1− α)stonal if δx1,x2
= 1

stonal otherwise
(1)

α is a simple scalar defined as an hyperparameter to tune.
As the distributions of both similarities are very different,
calibration before fusion was also tested. However, no im-
provement was shown on the cover song tuning set. Other
fusion functions, such as linear regression or max function,
did not lead to improvements in our simulations.

3.6 Scalability

Pairwise comparisons between a given query and all tracks
in a dataset are linearly dependent on the size of the dataset

3 https://github.com/furkanyesiler/re-move



without optimization, which cannot be considered scal-
able. In fact, a linear complexity for the queries involves
a quadratic complexity for retrieving all musical works in
the dataset, which can quickly become prohibitive for large
collections. To achieve better scalability properties, most
cover detection studies use ANN methods such as Locality

Sensitive Hashing (LSH) [25, 26]. The idea behind ANN
is that for a given query x and a database D the method
outputs an approximation of the k nearest neighbors of the
query in the database with the complexity being sublinear
in the size of the database. For a given query, in contrast
with classic K-Nearest Neighbors (KNN), ANN methods
are only browsing a subset of the complete search graph.
All these methods are based on an index table allowing
fast queries by outputting a "good" guess of the k nearest
neighbors of a given query, making it possible to recover
the most highly classified covers in the ranked list obtained
with all candidate points. The recall is used to quantify
the quality of an ANN method by averaging percentages
obtained, for various queries, of true k-nearest-neighbors
from k points returned by the method. In our case, we use
the Hierarchical Navigable Small World Graph (HNSW)
state-of-the-art ANN method; an extensive study of it is
given in [27]. This algorithm gives logarithmic complex-
ity for a query in terms of the size of the dataset. This
method is directly applied on Re-MOVE and TFIDF em-
beddings, outputting for a given query k nearest neighbors
for each of them. Both sets of points are then concatenated
and merged, obtaining a maximum of 2k points to consider
for the fusion. Pairwise similarities between the query and
these points are then generated using the Re-MOVE sys-
tem and our lyrics-recognition pipeline.

4. EXPERIMENTAL EVALUATION

4.1 Dataset

Da-Tacos [2, 6] is the largest publicly available dataset for
cover detection; the training set is composed of 83904
songs in 14999 cliques and the validation set of 14000
songs in 3500 cliques. A clique is defined as a cover
group gathering multiple recordings of the same under-
lying "piece". The Da-Tacos benchmark test subset is a
15000 tracks dataset composed of 1000 cliques with 13
songs each and 2000 noise songs (i.e. that are in a single-
song clique) that are not queried. To avoid overfitting, no
clique overlaps with any set of Da-Tacos. Instrumentals
represent around 20% of the dataset which motivates our
choice of using an instrumental detection process. Cur-
rently, only a set of precomputed audio features are pub-
licly available for the benchmarking subset test dataset.
The dataset is mainly composed of English tracks and pop-
ular western music with a few non-English cliques. All
hyperparameter tuning made during this paper is carried
out on a subpart of the Da-Tacos validation that we choose
to refer to as a Da-Tacos tuning set. We verified that no
clique of this subset overlaped with any clique present in
the dataset used to train the tonal-based cover detection
system, i.e. the Da-Tacos training set. Also, a clique is dis-

carded if it possesses one track present in the dataset used
to train the SVR framework, i.e. DALI dataset. Detection
of overlapping tracks and cliques is made using metadata,
i.e. titles and artists names. Da-Tacos tuning is notably
used to choose the string matching algorithm and the fu-
sion function. We recover audio of 12862 tracks from the
test dataset. 1849 are in single-song cliques and thus are
not queried and only used as noise songs. We make sure no
clique of this dataset overlaps with cliques in the Da-Tacos
train and validation and that cliques possessing tracks ex-
isting in the DALI dataset are discarded. It will be simply
referred to as Da-Tacos test for the rest of the document.

4.2 Fusion parameters

A track is classified as instrumental if the number of differ-
ent words of its transcript is less than l = 8. This number
is adjusted using Da-Tacos tuning as the value that maxi-
mizes the recall for the highest F1 score. Emphasis is put
on the recall in order to avoid taking into account the lyrics-
recognition based similarity for an instrumental track that
has been misclassified as non-instrumental. An α value of
0.6 for fusing both system is tuned on Da-Tacos tuning.

4.3 Parameters of ANN

We use the HNSW implementation of the NMSLIB sim-
ilarity search library [28]. For each query, we return
the k = 100 nearest neighbors. This choice is derived
from [4], which shows performance does not evolve sig-
nificantly after the top-100 pruning. We use an approxi-
mated cosine similarity function to retrieve 100 candidates
for each branch which results in, at most, 200 items for the
fused model after concatenating and merging both sets.

4.4 Evaluation

The empirical evaluation of the cover detection task perfor-
mances is given using the Mean Average Precision (MAP)
4 . For a query, Average Precision (AP) is quantifying the
number of actual covers that are highly ranked. The AP
score increases when actual covers are detected in the top
ranks. The MAP is then simply obtained by averaging on
the AP of all queries. As the MAP is not properly defined
for systems that do not score every track (such as ANN),
we report MAP@100 for these cases considering only the
top-100 ranked item of each query. In any case, the MAP
does not significantly evolve after the top-100 pruning as
explained in the previous section.

5. RESULTS AND DISCUSSION

5.1 Lyrics-recognition based system results

5.1.1 Instrumental detection

Among the 12862 tracks in the test set, 3269 are detected
as instrumentals. We compared this with the "Instrumen-
tal" tag available in the Da-tacos for all tracks. We obtain a

4 Computed using the Metrics toolkit from https://github.

com/benhamner/Metrics



Query System MAP (%)

Da-Tacos-voice
Lyrics 66.4 (0.4)

Tonal 54.0 (0.4)

Da-Tacos-instr
Lyrics 0.45 (0.06)
Tonal 47.8 (0.7)

Table 1. Results of lyrics-recognition based and tonal-
based cover detection system on Da-Tacos-voice. Da-

Tacos-instr is the subset of the Da-Tacos test restricted to
instrumental tracks. Standard errors are given in parenthe-
sis

precision of 82.86% for the instrumental detection, a recall
of 96.68% and a F1 score of 89.24%. A closer look at mis-
classified tracks showed that there is some annotation noise
in the Da-Tacos annotations which could artificially lower
the previous metrics. As simple as it is, the instrumental
detection performance seems suitable for our application.
After filtering detected instrumentals, we obtain a subset
of 9593 tracks that we label Da-Tacos-voice. 1582 tracks
are in single-song cliques. 8011 tracks are then queried.

5.1.2 Lyrics-based cover detection

We first evaluate our lyrics-recognition based system on
the Da-Tacos-voice. Our results, displayed in Table 1,
show that it is generally performing better than the tonal-
based one in terms of MAP. They validate the assumption
that lyrics can be considered as a strong invariant between
covers. It also proves that the most recent state-of-the-art
singing voice recognition framework produces transcrip-
tions of sufficiently good quality to perform the cover song
as a noisy text matching task. Looking empirically at re-
sults coming from both systems, most improvements of
the lyrics-recognition system over the tonal-based system
come, as expected, from covers with highly different tonal-
content and lyrics being roughly the same.

We also query the tracks detected as instrumental and
not from single-song cliques. Results are also displayed
in Table 1. As expected, performance of the lyrics-
recognition based system is almost close to zero. For the
tonal-based system, results seem to degrade when com-
pared to non-instrumentals tracks. This suggests that the
system has either learned characteristics of the melody car-
ried by the singing voice or implicitly estimated some of
the lyrics information to perform cover detection.

5.1.3 The case of non-English tracks

As stated in Section 3.1, our lyrics recognition framework
cannot output non-English words, therefore non-English
tracks may produce unexpected results. In order to assess
the impact of this issue, we predicted a language label for
every track of the Da-Tacos-voice using a language clas-
sifier [29] taking track metadata as input. Results show
that the dataset is largely composed of English with more
than 92.4% of the tracks being detected as English. Look-
ing at tracks outside single-song cliques detected as non-

Dataset System MAP (%)

Da-Tacos test
Fused 62.7 (0.3)

Fused-wo-inst 50.2 (0.3)
Tonal 50.6 (0.3)

Da-Tacos-voice Fused 80.4 (0.3)

Table 2. Results of fused, with and without instrumental
detection, tonal and lyrics-recognition based cover detec-
tion system on various datasets
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Figure 2. Similarities of sampled pairs of tracks from the
Da-Tacos-voice. Here, each point is a pair of tracks. Each
color indicates a same-clique belonging status. Some level
curves of sfus are also displayed

English, half of them are false positives. We query non-
English tracks of the resulting 44 cliques on the Da-Tacos-

voice, representing 299 tracks. It is interesting to report
that almost all cliques are homogeneous in terms of lan-
guage. We obtain a MAP of 28% (2). Results show that
even if performances deteriorate for these cases, our sys-
tem is often able to correctly classify these tracks. It can be
explained as the chosen singing voice framework is tran-
scribing something similar from one cover to another even
for non-English lyrics. Considering the small quantity of
non-English tracks and results on these tracks, we consider
that this issue has a limited impact on performance in our
evaluation setup.

5.2 Fused system results

Results for the fused system on the full Da-Tacos test and
its Da-Tacos-voice subset are given in Table 2. The fused
system significantly outperforms the results of the tonal-
based one alone showing the validity of our assumption of
both systems being highly complementary. The use of the
instrumental detection module to inform the fusion strat-
egy is empirically validated, with a major drop of perfor-
mances occurring when it is not considered. The gain in
performance comes essentially for increased accuracy on
the Da-Tacos-voice subset, where information from both



System SVR MAP (%)

Lyrics
CTC 40.3 (0.7)
Our 79.0 (0.6)

Lyrics-informed 89.7 (0.4)

Fused
CTC 71.1 (0.6)
Our 88.5 (0.4)

Lyrics-informed 93.6 (0.4)

Table 3. Performances of lyrics-recognition and fused
based cover detection system on Da-Tacos-lyrics with var-
ious SVR framework. Lyrics-informed framework are in-
formed by lyrics at test time

branches is available and the MAP reaches around 80%.
To highlight this complementarity, similarities for sampled
pairs of tracks from the Da-Tacos-voice are displayed in
Figure 2. While the majority of same-clique pair lyrics
and tonal similarities are significantly higher than non-
matching pairs, there are multiple cases where one modal-
ity seems more indicative than the other. Level curves of
sfus are also displayed illustrating most pairs being lin-
early separable in the combined modality plane.

5.3 ANN results

We first evaluate the impact of pruning results to the first
100 candidates by computing the MAP@100 of the fused
system on the Da-Tacos test dataset. A small decrease
is observed with a MAP@100 of 62.4% (0.3). After ap-
plying an ANN to our fused system, results remain the
same with a MAP@100 of 62.4% (0.3) . This result
can be explained as the recall of the HNSW for both a
tonal-based and lyrics-recognition system being more than
99.5%. Thus, the scalability of our system is assured while
maintaining the cover detection performances.

5.4 Impact of the SVR framework

A detailed analysis of failing samples of the lyrics-
recognition based system shows that the main cause for
failure is the low quality of the transcriptions. To fur-
ther investigate this impact, we introduce two baselines by
changing the SVR framework part of our system. In the
first, an alternative Connectionist Temporal Classification

(CTC) based SVR framework is used. The acoustic model
of this framework is described in [30]. It consists of several
Bidirectional Long Short-Term Memory (BiLSTM) layers,
is trained on a multilingual subpart of the DALI dataset
with a CTC algorithm and relies on a pre-processing step
of singing voice separation. The language model used is
the same as the one described in Section 3.1. Decoding
is performed, after tuning the language model weight and
insertion penalty value using a validation dataset, with a
CTC beam search decoding tooklit 5 . The transcription
of the results obtained on Jamendo dataset [19] are sig-
nificantly lower than our current singing voice recognition

5 https://github.com/parlance/ctcdecode

framework with a WER of 84.4%. We thus expect this
CTC-baseline to obtain results far below our system for
cover detection tasks.

In the second baseline, we simulate an "ideal" SVR
framework outputting an exact transcription. It can be
considered as an oracle system, yielding an upper bound
for performances of lyrics-recognition based systems. To
compare these three systems, we retrieve the lyrics text in-
formation for part of the Da-Tacos test. The subset ob-
tained is labeled Da-Tacos-lyrics and is composed of 3467
tracks for which we found matching lyrics. Considering
that this subset only contains non-instrumental tracks, we
discard the instrumental detector for this section. Again,
tracks from single-song cliques are not queried and are
used as noise songs.

The results obtained on Da-Tacos-lyrics are given in
Table 3. These results confirm the intuition that the lyrics-
recognition system’s strength for covering detection task
directly depends on the quality of the lyrics transcription.
Ranking performances on Da-Tacos-lyrics for these sys-
tems are conserved after fusing them with the tonal-based
branch. In comparison to the oracle system, our fused sys-
tem shows excellent results even if there is still some room
for improvement. With the transcription performances of
our SVR framework being as low as 62% WER, it certainly
indicates that a perfect transcription is not needed for the
cover detection task. Interestingly, even an oracle system
informed by the true lyrics benefits from being fused with
a tonal-based one. This, once again, demonstrates both
branches are acutely complementary to address the cover
song detection problem. Future works will extend our sys-
tem to take into account cases where lyrics are available
for a part of the dataset.

6. CONCLUSION

Using only audio, we have proposed a framework that ex-
plicitly leverages two types of similarities, tonal and lyrics
based, and reach high accuracy levels while remaining
simple and scalable. With that said, work on more diverse
data still remains to be done, notably on non-English tracks
where performances seem to be limited.

Future work will include replacing the current mono-
lingual lyrics recognition with a multilingual framework.
A multilingual similarity, capable of detecting the similar-
ity of two texts based on their semantic content, indepen-
dently of their language, will also be defined and evaluated.
More generally, the Da-Tacos dataset is quite biased to-
wards popular western music. Additional experimentation
on a wider range of genres, notably none western music,
and cover types (e.g. karaoke, renditions, etc.) remains
to be conducted. Finally, we will explore more elaborate
fusion schemes, specifically, a mid-level fusion which can
be further optimized and possibly lead to improved perfor-
mance.
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Titre : Exploiter les paroles de chansons à partir de l’audio pour le MIR
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Résumé : Les paroles de chansons fournissent un

grand nombre d’informations sur la musique car elles

contiennent une grande partie de la sémantique des

chansons. Ces informations pourraient aider les utili-

sateurs à naviguer facilement dans une large collec-

tion de chansons et permettre de leur offrir des re-

commandations personnalisées. Cependant, ces in-

formations ne sont souvent pas disponibles sous leur

forme textuelle. Les systèmes de reconnaissance de

la voix chantée pourraient être utilisés pour obtenir

des transcriptions directement à partir de la source

audio.

Ces approches sont usuellement adaptées de celles

de la reconnaissance vocale. La transcription de la

parole est un domaine vieux de plusieurs décennies

qui a récemment connu des avancées significa-

tives en raison des derniers développements des

techniques d’apprentissage automatique. Cependant,

appliqués au chant, ces algorithmes donnent des

résultats peu satisfaisants et le processus de trans-

cription des paroles reste difficile avec des complica-

tions particulières.

Dans cette thèse, nous étudions plusieurs problèmes

de ’Music Information Retrieval’ scientifiquement et

industriellement complexes en utilisant des informa-

tions sur les paroles générées directement à partir

de l’audio. L’accent est mis sur la nécessité de rendre

les approches aussi pertinentes que possible dans le

monde réel. Cela implique par exemple de les tester

sur des ensembles de données vastes et diversifiés et

d’étudier leur extensibilité. À cette fin, nous utilisons

un large ensemble de données publiques possédant

des annotations vocales et adaptons avec succès plu-

sieurs des algorithmes de reconnaissance de paroles

les plus performants.

Nous présentons notamment, pour la première fois,

un système qui détecte le contenu explicite directe-

ment à partir de l’audio. Les premières recherches

sur la création d’un système d’alignement paroles-

audio multilingue sont également décrites. L’étude

de la tâche alignement paroles-audio est complétée

de deux expériences quantifiant la perception de la

synchronisation de l’audio et des paroles. Une nou-

velle approche phonotactique pour l’identification de

la langue est également présentée. Enfin, nous pro-

posons le premier algorithme de détection de versions

employant explicitement les informations sur les pa-

roles extraites de l’audio.

Title : Leveraging lyrics from audio for MIR

Keywords : Singing voice recognition, Explicit content detection, Lyrics-to-audio alignment, Language identi-

fication, Cover song detection

Abstract : Lyrics provide a lot of information about

music since they encapsulate a lot of the semantics

of songs. Such information could help users navigate

easily through a large collection of songs and to re-

commend new music to them. However, this infor-

mation is often unavailable in its textual form. To get

around this problem, singing voice recognition sys-

tems could be used to obtain transcripts directly from

the audio.

These approaches are generally adapted from the

speech recognition ones. Speech transcription is a

decades-old domain that has lately seen significant

advancements due to developments in machine lear-

ning techniques. When applied to the singing voice,

however, these algorithms provide poor results. For a

number of reasons, the process of lyrics transcription

remains difficult.

In this thesis, we investigate several scientifically and

industrially difficult ’Music Information Retrieval’ pro-

blems by utilizing lyrics information generated straight

from audio. The emphasis is on making approaches

as relevant in real-world settings as possible. This en-

tails testing them on vast and diverse datasets and

investigating their scalability. To do so, a huge publi-

cly available annotated lyrics dataset is used, and se-

veral state-of-the-art lyrics recognition algorithms are

successfully adapted.

We notably present, for the first time, a system that

detects explicit content directly from audio. The first

research on the creation of a multilingual lyrics-to-

audio system are as well described. The lyrics-to-

audio alignment task is further studied in two expe-

riments quantifying the perception of audio and ly-

rics synchronization. A novel phonotactic method for

language identification is also presented. Finally, we

provide the first cover song detection algorithm that

makes explicit use of lyrics information extracted from

audio.
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