N
N

N

HAL

open science

Towards Efficient Reuse of Software Programmable
Streaming Coarse Grained Reconfigurable Architectures

Elias Barbudo Franco

» To cite this version:

Elias Barbudo Franco. Towards Efficient Reuse of Software Programmable Streaming Coarse Grained
Reconfigurable Architectures. Hardware Architecture [cs.AR]. Université Gustave Eiffel, 2021. En-

glish. NNT: 2021UEFL2014 . tel-03551361

HAL Id: tel-03551361
https://theses.hal.science/tel-03551361
Submitted on 1 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-03551361
https://hal.archives-ouvertes.fr

>‘.’< Universite
~ ' Gustave Eiffel

Ecole doctorale n° 532 :

Mathématiques et Sciences et Technologies
de I'Information et de la Communication (MSTIC)

THESE

pour obtenir le grade de docteur délivré par

UNIVERSITE GUSTAVE EIFFEL

présentée publiquement par

Elias Barbudo Franco

Towards Efficient Reuse of Software Programmable
Streaming Coarse Grained Reconfigurable Architectures

Jury

Prof., Alejandro Castillo Atoche Rapporteur
Prof., Jean-Francois Nezan Rapporteur
Prof., Michel Paindavoine Examinateur
Prof., Carlos Valderrama Examinateur
Prof. Associé, Thierry Grandpierre Co-directeur de these
Prof., Eva Dokladalova Directrice de these

LIGM, Univ Gustave Eiffel
CNRS, ESIEE Paris, F-77454 Marne-la-Vallée

Abstract

Coarse-Grained Reconfigurable Architectures (CGRA) are designed to deliver high performance
while drastically reducing the latency of the computing system. There are several types of
CGRA according to the structure, application, type of resources, and memory infrastructure.
We focus our work on a subset of CGRA designs that we call Software Programmable Streaming
Coarse-Grained Reconfigurable Architectures (SPS-CGRA). An SPS-CGRA is a more or less
complex array of coarse-grained heterogeneous hardware resources with a coarser granularity
than the classical. An SPS-CGRA can perform spatial and temporal computations at low
latency. Its stream-based processing provides high performance maintaining a level of flexibility.
Although they are often highly domain-specifically optimized, they keep several levels of custom
post-fabrication programmability, given by a set of parameters, so that they can be reused.
However, their reuse is generally limited due to the complexity of identifying the best allocation
of the processing tasks into the hardware resources. Another limiting point is the complexity
of producing a reliable performance analysis for each new implementation since no mature tool
exists.

To solve these problems, we propose a complete mapping and scheduling framework that
targets SPS-CGRA. We introduce a generic hardware model allowing one to express these in-
trinsically custom levels of flexibility without neglecting data access and system configuration
control. We also propose a performance estimation analysis based on resource latency descrip-
tion, allowing to obtain the upper bound of the computing cost. To complete, we present four
different solutions for the mapping and scheduling problem: a List-based algorithm with back-
tracking, a Lookahead-based heuristic, a Bayesian-based heuristic and, a Q-Learning mapping
algorithm. We evaluate and compare our solutions against an exhaustive approach in a real-life
example and illustrate the benefits and efficiency of the proposed framework.

Résumé

Les architectures reconfigurables & gros grains (CGRA) sont congues pour offrir des perfor-
mances élevées tout en réduisant considérablement la latence du systeme informatique. Il existe
plusieurs types de CGRA en fonction de la structure, de I'application, du type de ressources
et de l'organisation de la mémoire. Nous concentrons notre travail sur un sous-ensemble de
conceptions CGRA que nous appelons les architectures gros grain, flot de données, reconfig-
urables et programmables (SPS-CGRA). Un SPS-CGRA est une grille plus ou moins complexe
de ressources matérielles hétérogenes a gros grains avec une granularité plus grande que les archi-
tectures CGRA classiques. Un SPS-CGRA peut effectuer de grandes quantités de calculs avec
une faible latence. Son principe de traitement orienté flot de données offre des performances
élevées tout en maintenant un niveau élevé de flexibilité. Bien qu’ils soient souvent hautement
optimisés pour un domaine spécifique, ils conservent plusieurs niveaux de programmation apres
la phase de configuration Cette programmation s’effectue par le biais de parametres, rendant
ainsi possible leur réutilisation. Cependant, cette réutilisation est généralement limitée en raison
de la complexité de 'identification de la meilleure allocation des taches de traitement sur les
ressources matérielles. Un autre facteur limitant la réutilisation est la complexité a produire une
analyse de performance fiable pour chaque nouvelle implémentation car généralement il n’existe
aucun outil spécifique pour explorer et exploiter pleinement le potentiel des architectures ainsi
produites.

Pour résoudre ces problémes, nous proposons un cadre complet de distribution et d’ordonnan-
cement qui cible les SPS-CGRA. Nous introduisons un modele théorique et générique de I’archi-
tecture matérielle permettant d’exprimer ces niveaux de flexibilité intrinséquement personnal-
isés, ainsi que l'acces aux données et le controle de la configuration du systéme, souvent négligés
dans les travaux existants. Nous proposons également une analyse d’estimation des perfor-
mances, basée sur la latence des ressources. Pour compléter, nous présentons quatre solutions
différentes pour résoudre le probléme de distribution et d’ordonnancement : un algorithme avec
retour en arriere basé sur des listes, une heuristique basée sur les algorithme de type "looka-
head", une heuristique basée sur un algorithme Bayésien et un algorithme d’ordonnancement
basé sur le Q-learning. Pour finir, nous évaluons et comparons nos solutions sur des ensembles
d’architectures et d’applications dont les parametres sont générés aléatoirement, ainsi que sur
deux applications réelles.

ii

Acknowledgements

First, I would like to express my gratitude to my director Eva Dokladalova, thank you for your
guidance and support. I want to thank my co-director Thierry Grandpierre, it was a pleasure
to benefit and learn from your knowledge.

I am very thankful to the reviewers of this thesis, Alejandro Castillo and Jean-Frangois
Nezan, your insights, and bits of advice are deeply appreciated. I also want to thank Michel
Paindavoine and Carlos Valderrama for being part of my thesis jury. I am grateful for your
advice and words towards this work.

I would like to thank CONACYT for financially support this work, and to the Université
Gustave Eiffel, ESIEE Paris, and Laboratory Gaspard Monge, where this work was prepared.

To my parents, Ruddy and Elvira, I am deeply grateful for your support and love. To my
sister Angelica, thank you very much for all your advice and help. To my brother Ruddy, thank
you very much for your support. I thank all my family for being there for me. Special thanks
to my lovely Noemi, who helped me through this entire journey.

I would like to thank Rosemberg Rodriguez for his friendship and support. My appreciation
goes to all my friends from Mexico and France. I am deeply grateful that there was always
someone to talk to and share my thoughts.

iii

Contents

10

|[1.1 Reusability of Time-Critical Systems|, 10
[1.2 State of the Art: Development Tools and Methodologies| 13
[1.3 Coarse-Grained Reconfigurable Architectures| 15
[1.4 Sottware Programmable Streaming Coarse-Grained Reconfigurable Architectures| 19
(1.5 Thesis Contributions| 23
(1.6 Thesis Outlinel 24
(I Modeling| 28
|2 Application Model| 29
2.1 Introductionl. e e 29
2.2 Stateof the Artl. o 29
[2.2.1 Dependence Graph|o o 30
222 Task Modell 30
[2.2.3 Parallel Synchronous Task Modell 30
[2.2.4 Digraph Real-Time Task Model|. 30
[2.2.5 Non Cyclic Recurrent Real-Time Task Model| 30
2.2.6 Generalized Multiframe Task Modell 30
[2.2.7 Recurring Real-Time Task Model| 31
228 3-Phase Modell 31
[2.2.9 Synchronous Dataflow Graph| 31
[2.2.10 Algorithm Architecture Matching|. 31
[2.2.11 Directed Acyclic Graphl 0 000, 32
[2.2.12 Directed Graph|. 33
[2.2.13 Boolean Dataflow Graphl. 00 . 33
R2IAOMhers . - - - o o ot 33
2.2.15 Discussionl. 33

2.3 Proposed Application Model|. oo oo 34
2.4 Formal Application Modell o 35
2.5 Examples of Real-Life Applications| 37
[2.5.1 Alternated Sequential Filter| 37
2.0.2 Road Line Orientation Detectionl 39

2.6 Conclusions e e 40
3__Hardware Modell 42
3.1 Introductionl. e e 42
3.2 Stateof the Artl. L 43
[3.2.1 Processor-Based Systems| 0 L. 43
[3.2.2 Algorithm-Architecture Matching|. 44
[3.2.3 Multiprocessor System-on-Chip| 44

[3.2.4 Network-on-Chip| 44

[3.2.5 Coarse-Grained Reconfigurable Architectures| 45
[3.2.6 Field Programmable Gate Array| 45
327 Discussionl. e e 45

13.3 Sottware Programmable Streaming Coarse Grained Reconfigurable Architectures| 47
[3.3.1 Architecture Resourcesl. 48
[3.3.2 Hardware Described Through Latency] 49

B4 Formal Modell 50
3.4.1 Set S of SPS-CGRA Resources 51
13.4.2 Sequencer Node s“FC |, 51
3.43 Hardware Resources R1 52
3.4.4 Processing Resources Subset R | 53
3.4.5 _Communication Resources Subset R¢ | 54
13.4.6 Memory Resources Subset R | 56
[3.4.7 Fork-Join Special Nodes| o oo, 59

3.5 Examples| 59
13.5.1 Communication Resources RINTERFACE | = = L. 60
13.5.2 Communication Resources R ™ and R"P| 61
13.5.3 Memory Resources RM | 62
[3.5.4 Fork-Join Special Nodes| oo oo 66
[3.5.5 The Morphological Co-Processor Unit| 67

3.6 Conclusionsl e 69
4 Implementation Model] 70
4.1 TIntroductionl. 70
4.2 Proposed Implementation Model| 0 0oL 71
4.3 Formal Implementation Modelf 0000, 71
4.3.1 Configuration Control Nodes S¢/9 | 72
[4.3.2 Processing Resources RP | oL 72
[4.3.3 Communication Resources R°1, 72
[4.3.4 Memory Resources R™ | Lo 73
[4.3.5 Data Dependency Resources R°™ |. 73
[4.3.6 Examples| 73

4.4 Performance Evaluationl 76
[4.4.1 State of the Artl 76
[4.4.2 Methodology| 77
[4.4.3 Examples| 80

45 Conclusionsl e 91
(II Mapping Algorithms| 92
6_TIntroductionl 93
bl Stateoftheart] 94
[>.1.1 List-Based Scheduling Algorithms| 94
[>.1.2 Linear Programming| 96
[5.1.3 Reinforcement Learning| oo 0oL, 96
BIA _OMhers . - - - o o ottt 97

B2 Discussionlo oo e e 98
b3 Conclusionsl e 99

6 List-Based Mapping Algorithms|
[6.1 Single-Shot Mapping Algorithm|.
[6.1.1 Methodology|
6.1.2 Discussionl v v v v
6.2 Topology-Aware Mapping Algorithm|
[6.2.1 Methodology|
[6.2.2 Tllustrations of the TA-MAP Principle|
6.2.3 Discussionl. e
6.3 Bayes-Based Heuristic Mapping Algorithm|.
[6.3.1 Bayes Theorem|.
[6.3.2 Bayes Theorem Applied to the Mapping Problem|.
[6.3.3 Illustration of the BB-MAP Principlel

7 Q-learning Mapping Algorithm|
7.1 Reinforcement Learning| L o
7.2 Q-learning]
7.3 Q-learning Mapping and Scheduling Algorithm|
B Agent| oL L e

[7.3.3 Rewards Policy|
[7.3.4 Training|
[.3.5 Inferencel e
7.4 Illustration of the Q-learning Principlelo ...
(.41 General Parameters and Policies)
[7.4.2 Example 1|.
[7.4.3 Example 2|.
Ii lsli !:S!Il!:lll: i!!ll:il

|8 Experimental Evaluation|
8.1 Experimental Setup|
8.2 Experimental Graphs|. oo
[8.2.1 Pipeline of Homogeneous Tasks|
[8.2.2 Parallel Structure of Homogeneous Tasks|
[8.2.3 Pipeline of Heterogeneous Tasks|
[8.2.4 Parallel and Hybrid Structures ot Heterogeneous Tasks|.
8.3 Pseudo-Random Graph Generator]
[8.3.1 Methodology|
[8.3.2 Evaluation with Randomly Generated Graphs|.
8.4 Real SP5-CGRA Examplelo oo

19 Conclusions and Perspectives|
0 Viod g

9.2 Mapping Algorithms|
9.3 Perspectives|

Publicai; IC cations

Bibliography]

100
100
101
108
108
109
112
118
119
119
120
122
125

126
126
128
129
129
129
130
133
136
136
136
137
138
139

140
141
141
141
147
150
154
158
158
161
164
164
165
168

170
170
171
173

174

175

List of Figures

[1.1 Comparative study of hardware architectures from reusability point of view.|. . . 11
[1.2 Overall scheme of proposed modeling and mapping framework for SP5S-CGRA. . 12
1.3 Generic processing resource of a CGRA L[| 16
1.4 Generic structure of a CGRA T[] 16
1.5 Logical structure of a CHESS processing element [2]] 17
1.6 CHESS layout 2I] 17
1.7 Logical structure of a MorphoSys reconfigurable cell B[] 18
1.8 MorphoSys reconfigurable array [B]]., 18
1.9 Logical structure of a ADRES processing element |4, 5. 18
1.10 ADRES interconnectio@ 18
1.11 Logical structure of a PipeRench processing element [6L [7].|. 19
1.12 PipeRench interconnection [6, [7]] 19
[1.13 Proposed microarchitectural classification of an SPS-CGRA.|. 20
[1.14 Architecture of the SP5-CGRA implementation of the standalone Lyra2REv2 |
miner [8[. 21

1.15 Axrchitecture of the SPS-CGRA proposed by Ngan et al. O] 21
1.16 Architecture of the SPS-CGRA proposed by Alietal. [10]. 21
1.17 Simplified functional diagram of the P2IP [I1[. |. 22
1.18 Architecture of the MCPU [I2]] 22
[1.19 Architecture of the Neuklow. oL 23
[1.20 Architecture of the FlexFlowlo 0o 0L 23
1.21 Architecture of the Deconvolutional NN [13].| 23
1.22 Architecture of the a Life Long learning Convolutional NN [14].|. 23
11.23 Overview of the software solution for the easy reuse of SPS-CGRA.. 24
[[.24 General overview of the thesisl 0. 25
[2.1 Example of an application model hypergraph. 35
2.2 Example of a single task| oo oo 36
2.3 Example of a single sensor.| oL 36
2.4 Example of a single actuator.| oL Lo 36
[2.5 Example of a task that broadcast is output data.| 37
2.6 Example of a task with input degree two.|, 37
2.7 Application model of the example ASF*| 38
[2.8 Road line orientation detection [15].] L0 39
2.9 Complete road line orientation detection. 39
[2.10 Application model of the example ot the road line orientation detection.| 40
K i SPS-CGRA . . . o oo 48

13.2 Impact of the change of parameters on the latency of a resource|. 50
3.3 Composition of theset S|. 51
3.4 Graphical representation of the connection of a s*C|. 51
3.5 Graphical representation of the connection of a s“*'“ through a solid plane| . . . 52
3.6 Example of a single resource|.o 52

[3.7 Example of a single resource broadcasting its output| 53
3.8 Example of single resource broadcasting its output without the connection to the |

configuration control node|o Lo 53
[3.9 An r¥ with two inputs and one output|. L 54
3.10 Example of a »7°"°"| . .. oL 56
3.11 Example of a rZ€Uator| 56
3.12 Example of a node 37 with 77"V°%" as predecessor and ri*” as successor.| o7
3.13 Example of a node 737 with r{"'* as predecessor and r4“* " as successor.|. 57
3.14 Example of a node 737 with 7' % as predecessor and ri*” as successor.| o7
13.15 Representation of a cyclic hardware model| 58
[3.16 Memory resource modelled by two connect memory nodes| 58
13.17 Representation of a cyclic hardware model|. 58
13.18 Memory resource modelled by two connect memory nodes with two independent |

datapaths| 58
[3.19 Special join node| 59
[3.20 Special fork node| 59
3.21 SPS-CGRA example 1) o o 60
[3.22 Hardware model of SP5-CGRA example 1} 60
3.23 SPS-CGRA example 2| 61
[3.24 Hardware model of the SP5-CGRA example 2. 61
3.25 SPS-CGRA example 3| 62
[3.26 Hardware model of the SP5-CGRA example 3|. 62
[3.27 SPS-CGRA example 4]o 63
[3.28 Hardware model of example 4| 63
[3.29 SPS-CGRA example 5| 63
[3.30 Hardware model of example 5| oL 64
[3.31 SPS-CGRA example 6| 64
[3.32 Hardware model of example 6| oo 65
[3.33 SPS-CGRA example 7| 65
[3.34 hardware model of example 7| oo 65
[3.35 An equivalent hardware model of SP5-CGRA example 7| 66
[3.36 SPS-CGRA example 8 66
[3.37 Division of the regions of processing in example 8 66
13.38 Hardware model of example 8 with the tork and join special nodes| 67
[3.39 Architecture of the Morphological Co-processor Unit [12|. 67
[3.40 Large SE pipeline architecture] 0oL, 68
[B.41 Hardware model of the MCPU] 68
4.1 Y-chart of a mapping and scheduling framework| 70
4.2 Example 1 of a generic implementation graphl 74
4.3 Example 2 of a generic implementation graph| 00000 74
4.4 Inclusion ot the data dependency resources between time slots|. 75
|4.5 Inclusion of the data dependency resources between data-paths 76
4.6 Effects of the computing latency of a resource in the critical path{ 79
|4.7 First implementation graph example).o o000 80
4.8 First evaluation graph example|o oo Lo 80
4.9 Second implementation graph example|o o0 80
|4.10 Second evaluation graph example| oo oL 81
[4.11 Third implementation graph example|. 81
[4.12 Third evaluation graph example|. oo 0oL 81
[4.13 Fourth implementation graph example| 0oL 82
[4.14 Fourth evaluation graph example|o 00000 82
[4.15 Fifth implementation graph example|o oo 82

|4.16 Fifth evaluation graph examplel o 0oL 82
|4.17 Application graph for the performance evaluation example.| 83
|4.18 Hardware graph tfor the performance evaluation example.| 83
[4.19 Implementation graph for the performance evaluation example.| 83
[4.20 Evaluation graph for pertormance evaluation example.| 84
[4.21 Paths of the evaluation graph.. o000 84
|4.22 Critical path of first set of parameters.| L. 85
[4.23 Timing diagram of the first set of parameters.|. 86
[4.24 Critical path for the second set of parameters] 87
[4.25 Timing diagram for the second set of parameters. | 88
|4.26 Critical path for the third set of parameters.. 89
|4.27 Timing diagram for the third set of parameters. | 90
6.1 Flow diagram of initialization.|. 00000, 101
6.2 Allocation process.|o 102
[6.3 Initialization process.|. L 105
6.4 Allocation process.| 106
[6.5 Initialization process.|. 106
6.6 Allocation process.| 107
[6.7 Flow diagram of the SS-MAP algorithm (all topological sortings of Ggw).. . . . 108
6.8 Flow diagram of the TA-MAP algorithm. 109
6.9 Graphical representation of the heuristic optimization.| 112
[6.10 Example application graph 1.| o oo, 113
[6.11 Example hardware graph 1. o oo 113
16.12 First group of possible candidates for example 1.| 114
|6.13 Second group of possible candidates for example 1.| 114
|6.14 Third group of possible candidates for example 1.|. 115
[6.15 Application graph of example 2.|.o o oo 115
[6.16 Hardware graph of example 2.|. oL 116
[6.17 First iteration for example 2.|o oo oo 116
[6.18 Second iteration of example 2.f.o oo oo 117
[6.19 Third iteration of example 2.| oo o oo 117
[6.20 Fourth iteration of example 2.[.o oo Lo 118
[6.21 Fifth iteration of example 2. oL oo 118
[6.22 Sixth iteration of example 2.|. oo oo 118
[6.23 Bayesian network.o 122
[6.24 Example application graph 1.| 123
[6.25 Example hardware graph.|o oo 123
[r.1 Basic principle of RL.| 127
[7.2 Subgraphs and information given to the agent trom the environment. 129
[7.3 Hardware graph of example 1.|. oL 137
7.4 Application graph of example 1.|. oL 137
[7.5 Average rewards composition for example 1.|, 138
7.6 Hardware graph of example 2.|. L. 138
[7.7 Application graph of example 2.|. Lo Lo 138
7.8 Average rewards composition for example 2.| 0oL L. 139
8.1 First set of application examples|, 142
8.2 First set of hardware examples| 0oL, 143
8.3 Comparative study of the exploration time of the first set ot applications and the |

first set of hardware graphs.| oo oo 144
[8.4 Training time of the Q-learning approaches.| 145

8.5 Second set of application examples| o o000 147
[8.6 Second set of hardware examples| oL 147
8.7 Comparative of the exploration time ot the second set of applications and the |

second set of hardware graphs.| o oo oo oo 148
[8.8 Training time of the (Q-learning approaches.| 148
[8.9 Third set of application examples| 150
[8.10 Third set of hardware examples| o000 151
[8.11 Comparative of the exploration time of the third set of applications and the third |

set of hardware graphs.| oo oo 152
[8.12 'Training time of the)-learning approaches.| 152
[8.13 Fourth set of application examples|o oo 154
[8.14 Fourth set of hardware examples| oL, 155
[8.15 Comparative of the exploration time of the fourth set of applications and the |

fourth set of hardware graphs.|. oL 156
[8.16 Training time of the Q-learning approaches.| 156
[8.17 Example of a random generated graph| oL, 159
18.18 Comparison between expected values and real values for the number of nodes in |

the graph| 159
[8.19 Comparison of the input degree of the nodes in a graph| 160
[8.20 Comparison of the input degree of the nodes in a graph| 160
[8.21 Process flow of the generation of an application graph. 161
[8.22 Example of the different structures.|.o oo 161
18.23 Randomly generated hardware.|, 162
[8.24 Randomly generated application.| 0000, 162
18.25 Comparative of the exploration time of the first set of applications and the first |

set of hardware graphs.| oo 163
[8.26 Training time of the Q-learning approaches.| 163
827 Hardware model of the MCPUl 164
[8.28 Application model of the example ASF*| 165
18.29 Application model ot the example of the road line orientation detection.| 166
18.30 Comparative of the exploration time of the first set of applications and the first |

set of hardware graphs.| oo o 168
[8.31 Training time of the (Q-learning approaches.| 168

List of Tables

[2.1 Descriptors of the tasks for the ASF* example| 38
[2.2 Descriptors of the tasks for the Road Line Orientation detection (we consider |

default position of the center of structuring element).. 40
3.1 Hardware models state of the art summary| 46
[3.2 Latency features of the resources| 69
4.1 Parameters of the application graph ot the performance evaluation example.|. . . 84
4.2 First set of parameters of the hardware graph.| 85

4.3 Second set of parameters of the hardware graph of performance evaluation example.| 87
|4.4 'Third set of parameters ot the hardware graph ot performance evaluation example.| 89

6.1 Correspondence between tasks and resources| 105
6.2 Correspondence between tasks and resources| 106
6.3 Application example 1 parameters| 113
6.4 Processing resources features for example 1, for readability the II of " has been |

removed.. L e e 113
6.5 Distance matrix for example 1|. o000 113
6.6 Application example 2 parameters.| Lo 115
6.7 Processing resources features for example 2.|o 0oL 116
6.8 Distance matrix for example 2|.o 116
6.9 Application example 1 parameters|, 123
[6.10 Processing resources teatures for example 1| L. 123
[7.1 Rewards policies| e 137
[7.2 Q-learning mapping general parameters| 137
8.1 Reward policies| 143
8.2 Q-learning mapping general parameters| Lo 143
8.3 Comparative between mapping approaches according to the computing cost mea- |

sured in clock cycles (pipeline of homogeneous tasks)| 146
8.4 Comparative between mapping approaches according to the computing cost mea- |

sured in clock cycles (parallel structure of homogeneous tasks).| 149
[8.5 Comparative between mapping approaches according to the computing cost mea- |

sured in clock cycles (pipeline of heterogeneous tasks)| 153
8.6 Comparative between mapping approaches according to the computing cost mea- |

sured in clock cycles (hybrid structures of heterogeneous tasks)| 157
[8.7 Comparative between mapping approaches according to the computing cost (ran- |

domly generated graphs)|. 164
8.8 Algorithms evaluation for the ASF application| 165
8.9 Algorithms evaluation for the Road line detection application| 167

Acronyms

AAM Algorithm Architecture Matching methodology
ALU Arithmetic Logic Unit

ARM Advanced RISC Machines

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Intructions-Set Processor
CGRA Coarse-Grained Reconfigurable Architecture
CPU Control Processing Unit

DAG Directed Acyclic Graph

DSE Design Space Exploration

DSP Digital Signal Processor

FPGA Field Programmable Gate Array

GPP General-Purpose Processor

GPU Graphics Processing Unit

HPC High-Performance Computing

MCPU Morphological Co-Processing Unit

MPSoC Multiprocessor System on a Chip

NoC Networks-on-Chip

RL Reinforcement Learning

RRG Resource Routing Graph

SDF Synchronous Dataflow Graph

SFG Signal Flow Graph

SoPC System on Programmable Chip

SPS-CGRA Software Programmable Streaming Coarse Grained Reconfigurable Architecture
WCET Worst-Case Execution Time

VDHL VHSIC Hardware Description Language

XML Extensible Markup Language

Chapter 1

Introduction

Time-critical systems need to assure the accuracy of output while meeting hard timing con-
straints. This paradigm increases its importance with the advent of the industrial IoT, au-
tonomous vehicles, drone-based applications, and smart grids. Often, these new applications
must process a significant amount of data from a wide range of sensors. Furthermore, the data
must be processed with maximal reactivity, respecting the capabilities of the hardware resources
and ensuring a valid output. This creates a non-trivial problem for the latency optimization of
processing systems.

To answer these constraints, an extensive number of hardware architectures have been pro-
posed in the past, trying to find the best trade-off between efficiency and execution constraints.
We can cite examples going from General-Purpose Processors (GPPs), Digital Signal Proces-
sors (DSPs), and Graphics Processing Units (GPUs) up to Application-Specific Intructions-Set
Processors (ASIPs), Field Programmable Gate Array (FPGAs), Coarse-Grained Reconfigurable
Architectures (CGRAs), and Application-Specific Integrated Circuit (ASIC).

1.1 Reusability of Time-Critical Systems

The increasing complexity of time-critical systems and their applications make designers lean
towards the reuse of parts of hardware blocks and systems. Since time-to-market constraints are
often an industrial priority, and to design a new hardware block from scratch takes a considerable
amount of time, the best option is to exploit the already developed platforms’ programmable or
configurable blocks.

Reusability is the attribute of a system that allows to use it in different applications. It is the
use of pre-designed and pre-verified platforms or hardware blocks that reduces time-to-market
and ensures a previously known performance [16]. The level of reusability of a given platform
includes the following [17]:

e Hardware features: programmability and parametrization of the hardware blocks, the
complexity of the target applications, type of interfaces.

e Software tools: programming software and support, simulation environments.

e Standardization support (norms and protocols): documentation of parameters, require-
ments, and restrictions.

In Figure we compare the efficiency with respect to the reusability exploitation of differ-
ent platforms used for implementing time-critical systems. Efficiency is the relation of perfor-
mance with regard to power consumption, as reported in the literature [I8, [19]. There, we can
observe that GPPs, DSPs, and GPUs have a broad support structure and can be used for many
applications. However, their performance is lower than an FPGA and an ASIC. ASIPs are better
than GPUs and GPPs in terms of efficiency, given the frequent addition of custom instructions

10

and functional units. However, they remain below FPGAs and ASICs, in terms of efficiency, due
to their completely specialized execution engines [19, 20]. FPGAs offer high performance with
low consumption and with a significant support environment. Nonetheless, this architecture’s
management usually requires low-level knowledge, and its performance is lower than the ASICs.
ASICs offer the best efficiency, but they require a very rare low-level knowledge and a costly
design process. Therefore their reusability is severely reduced. Finally, in the above-mentioned
context, Coarse-Grained Reconfigurable Architectures (CGRAs) provide the best ratio between
the increase of the overall performance while decreasing computing latency and minimizing the
energy budget [2I]. Their reuse capability depends on a degree of programmability provided by
a set of parameters, often custom and positioned between general-purpose and fixed-function,
defining the possibility of their “on-line or off-line re-programming” [18].

>

Efficiency
(Performance w.r.t. power consumption)

Reusability

Figure 1.1 — Comparative study of hardware architectures from reusability point of view.

Effectively, CGRAs are optimized for a given application domain. There is a large diversity
of CGRAs types. Their processing elements are not so generic as the ones of GPPs or DSPs.
Usually, a CGRA consists of a set of ALU-like processing resources organized according to
some well-defined topology for a dedicated application [22]. Hence, their interconnections and
granularity have a reduced complexity than those of FPGAs. Also, their memory infrastructure
allows decreasing the overall memory transactions compared to a GPU.

Based on these re-programming capabilities, we can distinguish an inner CGRA family that
we call Software Programmable Streaming Coarse-Grained Reconfigurable Architecture (SPS-
CGRA). An SPS-CGRA is a systolic, highly pipelined array of heterogeneous hardware resources.
It is a spatially-configured overlay [23], based on an FPGA, can be realized as ASIC or be a part
of a System on Programmable Chip (SoPC). Its hardware resources are defined by an initial
“off-line” structural reconfiguration [24]. After this step, a degree of programmability is pro-
vided through reconfigurable or reprogrammable parameter sets, called configuration contexts
[25]. Each hardware resource may be equipped with multiple contexts that may be individually
switched through its internal registers’ modification. An SPS-CGRA is a data-driven platform
that may perform not only loops but entire applications at low latency. Its stream-based pro-
cessing provides high performance while maintaining a level of flexibility.

11

The use of SPS-CGRAs is widespread across numerous fields. In the cryptocurrency domain,
the implementation of hashing algorithms requires a massive amount of computational power.
This may be solved using an FPGA-based SPS-CGRA, as depicted in Tetu et al. [8] where
an implementation of the Lyra2REv2 algorithm, a standard in cryptocurrency, is presented.
Mathematical algorithms can also take advantage of the systolic structure of an SPS-CGRA.
For example, we can cite the FPGA-based implementation of an Algebraic Multigrid Solver
presented by Haghi et al. [26]. Sound field rendering models the behavior of sound wave
propagation in spatial and time domain using numerical methods, and its implementation and
efficiency are crucial for several engineering application fields. Tan et al. [27], 28] proved that
SPS-CGRA solutions offer better performance than a GPP implementation. In the computer
vision domain, SPS-CGRAs are used to enhance the performance of image processing systems.
Examples of these architectures are the FPGA-based SPS-CGRAs presented by Ngan et al. [29]
and by Isavudeen et al. [10]; and also the ASIC-based SPS-CGRA introduced by Dokladalova et
al. [30]. Deep Learning is another field where the use of SPS-CGRA is growing. Since a Neural
Network (NN) is modeled as a Directed Acyclic Graph (DAG) and its dataflow is unidirectional,
an SPS-CGRA is a perfect candidate to be used as an implementation platform. We can cite, for
example, the ASIC-based Neuflow [31], and FlexFlow [32], the FPGA-based implementations of
a Deconvolutional NN presented by Chang et al. [I3], a Life Long learning Convolutional NN
by Piyasena et al. [14] and a Randomly Wired NN develop by Kuramochi and Nakahara [33].
Some of these examples will be detailed in Section [I.4]

Unfortunately, despite the high performance that an SPS-CGRA can deliver while decreasing
latency of processing, its reuse is not generalized due to the lack of generic tools or frameworks.
This problem is inherited from the CGRA, based on manual or custom programming frameworks,
that can not be easily transferred (or adapted) to other CGRA-based systems [11}, 12].

Consequently, the programming and compiling frameworks remain immature. Hence, the
mapping of any application onto an SPS-CGRA is often manual, requiring expert knowledge
of both inner hardware mechanisms and application specificity. This reuse task could become
overwhelming, leading to the rare reuse of these powerful SPS-CGRA platforms.

To face these issues, we propose a generic automated mapping and scheduling framework
that targets most of the existing SPS-CGRA (Fig. [1.2)).

HARDWARE APPLICATIONS

CONFIGURATION MODEL] SPS-CGRA
LATENCY MODEL MODEL

v

MAPPING AND SCHEDULING

¥
[FervommANCE BTN < | WPLEVENTATONNODEL | = | conmneionor |

Figure 1.2 — Overall scheme of proposed modeling and mapping framework for SPS-CGRA.

Such a framework must be based on a model that allows describing the heterogeneity of
any SPS-CGRA hardware element programming models. Simultaneously, this model has to be
generic enough to match the maximum of SPS-CGRAs variants in granularity and application
fields. Also, considering the need to optimize the system’s reactivity, it has to provide an
accurate, near-to-real performance latency estimation. Additionally, such a framework should
offer mapping assistance to help the designer exploit this type of hardware architecture’s inherent
parallelism. Finally, the mapping assistance should aim to decrease the computing cost, a critical

12

metric in these systems.
In this context, the main contributions of this thesis are:

e A unified modeling framework that includes application, hardware and selected implemen-
tation.

e We propose to use processing latency as a metric of computing cost to be optimized. The
latency can be described as a function of the hardware block programming parameters.

e A computation model to estimate the upper bound of the computing cost of the imple-
mentation selected by the mapping algorithm.

e We propose and evaluate four different mapping approaches.

1. A List-based algorithm equipped with backtracking.
2. A Topology-aware mapping heuristic.

3. A Bayes-based mapping heuristic.

4. A Q-learning-based mapping algorithm.

To complete, we evaluate the algorithms in terms of exploration time and computing cost
of the implementation.

Additionally, we introduce a complete benchmark framework with the previous items, in-
cluding a configuration control generator.

The remainder of the chapter is divided as follows. In Section we review state of the
art on development tools and methodologies. Section describes in detail the characteristics
of a CGRA. Section introduces the concept of SPS-CGRA. Section presents the thesis
contributions. Section presents the outline of the thesis.

1.2 State of the Art: Development Tools and Methodologies

As introduced previously, reusability is the attribute of a system that allows one to use it in
different applications. This aspect directly impacts time-to-market and provides the opportunity
to use already developed and tested tools or frameworks. As stated in Section reusability
includes three aspects: hardware, software, and documentation. However, most of the designers
of SPS-CGRA focus only on the hardware aspect, providing a set of programmable parameters
to allow the use in different applications. Thus, we can observe a lack of tools and methodologies
that could provide the software support. In this context, tools like Design Space Exploration
(DSE) are often used to bridge this reuse technique gap.

A DSE is the systematic evaluation process of the different implementations (mappings) of an
application onto a hardware system to determine optimal or best-suited hardware. This process
can be manual, automatic, or hybrid. In a manual DSE, the engineer is in full charge to find the
optimal implementation, while in an automatic DSE, the framework takes the implementation
decision. In a hybrid DSE, the framework takes the decisions with a fine tunning from the
engineer. This evaluation process may generate many possibilities due to the size of the design
space. As the number of possible implementations increases, a complete, exhaustive exploration
may be prohibitive. For this reason, several works propose different approaches for efficient
DSE.

Giannopoulou et al. [34] presented a DSE framework for many/multicores, part of the
Certification of Real-Time Applications designed for mixed-criticality (CERTAINTY) project,
aiming at avionics applications. It uses a mixed-critically task application model with multiple
critical levels and different task activation patterns and a platform model that allows to abstract
of the memory and the communications of the system. A mixed-critically scheduling policy is

13

used, where only equal critical tasks can be executed in parallel. Finally, the implementation is
evaluated using a response time analysis based on the Worst-Case Execution Time (WCET).

Grandpierre and Sorel [35] presented a prototyping methodology and a software tool (Syn-
DEx) that aims to optimize implementations of real-time image and signal processing onto het-
erogeneous multiprocessors architectures. This methodology has been extended to integrated
circuits [36, B7], VHDL code generation [38], and it has been the subject to improvements in
terms of power consumption [39].

Jalier et al. [40] introduced a DSE framework for Multiprocessors System on Chip (MPSoCs).
Their framework targets telecom applications. The application and hardware model are based
on a SystemC description and specified using an XML standard. The modelization and the
mapping are manual. However, the performance estimation is done automatically. Metrics such
as application throughput, maximum latency, the utilization rate of resources, transient effects
are used.

Castrillon et al. [41] presented the MPSoC Application Programming Studio (MAPS), a
framework focusing on MPSoCs. The application model is described in C for Process Networks
(CPN) and modeled as Kahn Process Networks (CPN). The architecture model is described
with Extensible Markup Language (XML). The authors propose several heuristics for mapping
and scheduling. The performance evaluation is a composability analysis, where the goal is to
determine if a set of applications may be run in parallel.

Jovanovic et al. [42] presented a memory-aware mapping optimization tool for MPSoCs
(MAMOT). The application model is a thread-based task graph. A memory-aware evolution-
ary algorithm is used as a mapping algorithm and is evaluated using performance and energy
consumption as metrics.

Dauphin et al. [43] presented Ordonanceur DY Namique (Odyn), an approach for scheduling
and memory management that targets Non-Uniform Memory Architecture (NUMA) platforms.
The inputs are a Synchronous Data-Flow and a generic logical architecture. The scheduling
aims to prevent deadlocks, using a static analysis of Memory Exclusion Graphs.

Suriano et al. [44] presented a framework that integrates the framework Parallel and Real-
time Embedded Executives Scheduling Method (PREESM) [45] and the Xilinx SDSoC tool for
Zynq devices. It aims to automatize the design and implementation of heterogeneous multicore
multi-hardware accelerators. The framework uses PREESM to generate code, and then this
code is manually adapted to be used within the Xilinx SDSoC software.

Bruneel et al. [46] introduced a tool for mapping applications to an FPGA. This tool allows
a post-mapping reconfiguration by leaving a set of parameters that can be reconfigured on run-
time. The applications are expressed as Boolean functions, and the main module of this tool is
TMAP, a reconfigurability-aware technology mapper that produces a tunable LUT circuit.

Fricke et al. [47] presented an automatic tool-flow for an application-specific CGRA, called
Virtual Coarse-Grained Reconfigurable Array (VCGRA). The architecture consists of layers of
processing elements with virtual channels (switches) between them. The framework takes a data
flow graph as an application model and produces a binary file used as a configuration context.

Peyret et al. [48] introduced a generic method for mapping application onto CGRA architec-
tures. A Control Data Flow Graph is the application model, and the mapping is a combination
between a heuristic and an exact method.

Chin et al. [49] presented CGRA Modelling and Exploration (CGRA-ME), a DSE frame-
work for CGRAs. It includes modeling, mapping, and physical implementation. CGRA-ME
modeling does not provide the descriptors for heterogeneous resources or latency because it only
considers ALU-like processing resources. The framework offers two options for mapping: a sim-
ulated annealing approach and an integer linear programming. The mapping success of these
approaches is directly proportional to the flexibility of the hardware fabric. The more flexible
the platform, the higher is the mapping success rate. The resource’s layout uses a mesh-type
pattern, where the number of columns and rows requires to be specified and should be higher
than one. Irregular structures are not allowed. Canesche et al. [50] introduced TRAVERSAL, a

14

graph-based greedy heuristic that provides a flexible, fast, and adaptive placement and routing
for CGRAs. It’s based on a novel traversal method called ZigZag. It exceeds the performance
of CGRA-ME in terms of execution run-time, due to its execution on GPU. Li et al. [51] pre-
sented ChordMap, it focus on automated mapping of streaming applications, represented as
Synchronous Dataflow graphs, onto a CGRA. Using modulo scheduling, it aims to exploit the
parallelism of an application by partitioning it and using the notion of divide and conquer to
map all the resulting partitions. Targeting High Processing Computing (HPC), Tan et al. [52]
introduced ARENA, a DSE that generates specialized CGRA accelerators. The authors pro-
posed to build CGRA clusters connected by a fast ring network, to increase the performance of
the generated system. Shent et al. [53] opted for a different approach. The authors focus on
the optimization of the FPGA routing. They proposed to divide the nets into three subsets: a
subset of possible dependant nets and two subsets of possible independents. They showed that
their approach speedup current approaches by 1.8x.

Even with the large number of works and frameworks dedicated to the reuse problem, to the
extent of our knowledge, none can be directly applied to the SPS-CGRA. The inner mechanisms
and the latency features can not be captured by the models used for many/ multicores or
MPSoCs frameworks. Furthermore, the mapping and scheduling algorithms are not aware of
the complexity of both the application and the hardware. Thus, the resulting mapping or
implementation will not be near-optimal. Similar works, such as CGRA-ME, use code generation
techniques to build hardware blocks according to the application. They may not be capable of
reusing an already deployed system’s parameters.

1.3 Coarse-Grained Reconfigurable Architectures

Initially, the introduction of the CGRA was motivated to solve development bottlenecks of
the FPGA-based systems. Despite its high performance, the FPGA granularity (bitwise logic)
imposed a significant challenge for the designers. Additionally, the synthesis-time could take
hours or days to finish.

The coarser granularity allows designing more specialized processing resources. This, in turn,
increases the performance. Additionally, the new granularity decreased the synthesis time, and
the possibility of multiple contexts was introduced. The new type of architecture was named
Coarse-Grained Reconfigurable Architecture.

There are many variations of CGRAs. Depending upon the type of interconnections or
processing resources, the structure and application of a CGRA may change. Despite these
variations, the usual basic processing element of a CGRA consists of interconnections, a register
file, and an ALU block [22] [1]. Figureillustrates a generic processing resource. The variations
of the processing resources may cover the addition of several register files, different types of
processing modules. Also, the internal structure of a processing element can be completely
different from the one shown in Figure with only one processing module or without a
register file.

15

YYYYY

' '
\Y Register
\ ALU / file
)

Figure 1.3 — Generic processing resource of a CGRA [I].

In terms of interconnection structure, the typical configuration is a mesh of processing re-
sources. In Figure [1.4] a generic structure is showed, where we can see the mesh of processing
resources with the addition of the data and instruction memory. Other types of interconnections
may be torus, linear array, or ring.

[Instruction memory |

PEIS] | PEIST T PE ST PE [

T3 | TF | TF | T3
- PE|_| |PEL.,] "|PE|.] "|PE|_
E T3 | T3 | T3 | &7
g e[Pe [PE [PELL
= T3 | 1% | 1% | 1%
a PE[_ | |PE[] |PE[] | PE

))))

Figure 1.4 — Generic structure of a CGRA [1].

The main role of a CGRA is to perform the computational-demanding inner loops of an
application. A CGRA may process the input data in stream-based processing at low latency.
Due to this, a CGRA acts as a hardware accelerator inside a system controlled by the main
processor. The coupling of the main processor and the CGRA may be tight or loose. In a
loose coupling, the CGRA is connected directly to the main memory and may execute code
concurrently with the main processor. On the other hand, a tight coupling means that the
CGRA shares resources with the main processor and can not execute code in parallel [22].

The last but not least advantage of a CGRA is the context switching time. Specifically the
possibility to switch contexts in a very short time. The implementation of an application onto
a CGRA may result in several configuration contexts. Each configuration context represents a
part of the application and contains the resources’ configuration and one or more addresses to
the next configuration context. The time needed to request and gather a configuration context
and deploy it to the resources to start the new processing process is the context switching time
[54]. This feature opens the door to a temporal execution, as the configuration time is short
enough to allow the use of multiple contexts.

16

Examples

A large number of CGRAs have been developed during the last 30 years. Most of them show
similarities regarding the type of processing resources. According to the type of topology, we
can distinguish two categories: mesh-based and linear-based CGRAs.

Within the category of mesh-based topology, Marshall et al.[2] introduced CHESS. CHESS
is a 4-bit ALU-based system, one of the first CGRA that allowed the use of its processing
elements as a scratchpad. Figure shows a CHESS processing element and Figure the
interconnection. An evolution of this CGRA is the Elixent D-Fabrix Reconfigurable Algorithm
Processor (RAP) [55], where the functionality of the CHESS switch-boxes are improved.

s)
+—p{ CONT
vrege [~ F)
MUX 3
hregs MUX DpQ hregn
= E nregs
) vrege
L— > vregw
|
»—h{ CONT
I)
—» 3
vregw MUX DpQ hregn
MUX = E hregs
hregn il vrege
L— > vregw
—
he_out
nhc_in j‘ N ve_out
SELECT
ve_in " _ N
v
G L ONT
A A
ALU CORE sum Q F
B B

= 8b * 8b MEMORY,

» ORGANISED AS
3 16W*4b

_SWITCHBOX) Figure 1.6 — CHESS layout [2].

Figure 1.5 — Logical structure of a CHESS
processing element [2].

MorphoSys [3l, 56] is a reconfigurable platform that includes a CGRA and a RISC processor
loosely coupled. As illustrated in Figure the basic processing element tasks also include a
multiplier. Additionally, it allows multiple configuration contexts and dynamic reconfiguration.
The interconnection network consists of quadrants that allow three hierarchical levels of inter-
connectivity (Figure . The first level is the nearest neighbor, which is the interconnectivity
between a hardware resource and its direct neighbors. The second level is the intraquadrant
connectivity, which enables the interconnection between hardware resources that belongs to a
quadrant. The last level is the interquadrant connectivity that allows the interconnectivity
between quadrants. These levels of interconnectivity increase the parallelism of the system
and its performance. This platform has been improved to allow floating-point operation and
implemented in silicon [57].

17

3

MUX A MUX B 16

o
reg ? sent | mux_s [mux_b[alu_op| imm

;"

context register 12

i

16 416
RO
R1 Register
ALU-Multiplier R2 File !
R3
32

32l

| output register I
|

|

to result bus, express lanes
and other RCs

Figure 1.8 — MorphoSys reconfig-

Figure 1.7 — Logical structure of a MorphoSys urable array [3].

reconfigurable cell [3].

The Architecture for Dynamically Reconfigurable Embedded Systems (ADRES) [4, 5] fea-
tures a mesh of heterogeneous processing elements (Figure and is widely used for research.
These heterogeneous processing elements feature a functional unit that supports multiple oper-
ations and a distributed register file (Figure . The main advantage of this platform is its
flexibility and easy-to-use framework.

Instruction Data !
memory hierarchy

From different sources '

i =

L Multiplexer / m\ Multiplexer ,;\Multiplexer) r

S O i i 5
é |
P Predicate Source 1 Source 2 :
S) . ;
T 5 Functional unit i ;
> @ Predicate Predicate Register i
"g destination 1 destination 2 Destination1 file :
O A :
L | y Y v

¢ |>Register| |>Register| |>Register| ;
Configuration :
counter To different destinations

Figure 1.9 — Logical structure of a
ADRES processing element [4] [5].

Figure 1.10 — ADRES interconnection

4, 5]

PipeRench [6, [7] is a CGRA with a linear interconnection. The basic structure of its pro-
cessing element is shown in Figure [I.11] as we can notice it is an ALU-based element with an
interconnection layer. The interconnection layer is the main feature of this CGRA, as its struc-
ture is based on independent layers interconnected by the interconnection layer (Figure .
This structure allows for implementing independent applications in each layer. This increases
the parallelism of this platform.

18

Output from
Global | | l Previous | | | P Pass
Busses Stripe Registers
1 N > VT Register File

C Interconnect Network

Network

B I fom
bits H Barrel Shifter Barrel Shifter h next
to 1 L PE

o R
1 ! I 1
: 1 |
next e — ing Al s el I
FE B Register Filo | | 1 Register ['ile
u PEO_ - , L PEL ['J’E’Y‘l,,,,r ,,,,,
B B 4 N e sl S my S B
A B e Stripe n+2 ‘ lnLcrcomt:ct *
s
ALU Network
< [ey —
Control/Carry ContolCarry | L,t,,,,,, r,,,,J,,,j ,,,,,,,,,,,,,,, *,,,,
Bits Out Bits i i i
3F | | i
—{>——#To Global Output Bus -) T .
I I 1
/
To Interconnect Network

Figure 1.12 — PipeRench interconnection [6] [7].
Figure 1.11 — Logical structure of a

PipeRench processing element [6], [7].

Most of the current work on CGRA development applies the same principles as the previous
CGRA examples. They use the same type of connectivity, and the processing elements perform
ALU-like operations. Nonetheless, there have been some improvements in the use of the register
file, different internal structures, the addition of scratchpads, processing elements heterogeneity.
A significant development is in the part of the granularity of the processing elements. We
can observe and corroborate the heterogeneity of resources that will impact the processing
latency and final computing cost. As previously stated, the CGRA was a solution for the FPGA
development process bottlenecks. However, its performance may still be improved. For this,
the designers chose to increase even more the granularity of the processing elements and use a
stream-based interconnection. These new systems can perform time-critical tasks and shown an
increase in the performance of several applications. In the following section, we will introduce
such architectures.

1.4 Software Programmable Streaming Coarse-Grained Recon-
figurable Architectures

An SPS-CGRA is a specific subset of CGRAs that consists of a systolic array of heterogeneous
processing resources. To better understand the features of this type of architecture, we can use
several classification methods. Liu et al. [I8] propose a CGRA multidimensional taxonomy based
on the models of programming, computation, execution, and micro-architecture. According to
the programming model, an SPS-CGRA belongs to the category of the parallel programming
model. Usually, an application for an SPS-CGRA consists of a sequence of expressions that
describe its behavior with partially implicit parallelism. The aim of the mapping tool is to
completely identify and abstract the parallelism to exploit it and provide an efficient implemen-
tation. The second classification is based on the computation model, where the SPS-CGRA falls
in the category of multiple configurations, multiple data (MCMD). However, an SPS-CGRA can
switch between configurations and allows a dynamic parameter-based reconfiguration on run-
time. The third classification is based on the execution model. An SPS-CGRA belongs to the
category of static-scheduling sequential execution where the mapping tool is in charge of the
initiation and mechanism of the reconfiguration.

In the work of Wijtvliet et al. [22] a CGRA classification is proposed using four main
elements, structure, control, integration, and tooling. According to this paper, structurally, an
SPS-CGRA is a multi granular direct connection network with a cache memory hierarchy. The

19

—m o0 —Q

PRI N RN -]

granularity may be coarser than ALU-based operations. In terms of the control, SPSP-CGRA
scheduling is done at compile-time, where the mapping tool creates the spatial and temporal
scheduling. Still, both the resources and network’s reconfiguration can be done at run-time
using a pre-defined configuration. It also allows custom operations since the granularity of the
resources is higher than the usual CGRA operations. Regarding the integration, SPS-CGRAs
are usually used as co-processors (hardware accelerators) with loose coupling and no resource
sharing. The last element of the classification, tooling, claims that the compiler is usually based
on a mix of dataflow/custom language, as each SPS-CGRA has different types of operations.
The framework of an SPS-CGRA does not consider the place and route since the architecture is
usually already deployed, and only a design space exploration is done to find the best mapping
possible.

Hartenstein [58] proposes different classification. The author uses the type of architec-
ture, granularity, fabrics, mapping, and the intended target application to distinguish between
CGRAs. According to this classification, an SPS-CGRA would be a multi granular 1-D array.
Both the fabrics and the target application may vary. The mapping in these types of architec-
tures is described as scheduling. Tehre and Kshirsagar [59] propose a similar classification to [5§].
However, the authors added the category of reconfiguration model, which for an SPS-CGRA is
dynamic.

Chattopadhyay [60] proposes a taxonomy based on three axes, the design choices, the class,
and the modeling and design space exploration tools. The design choices refer to three aspects,
the microarchitectural view, the programming model, and the platform type. In Figure[1.13] we
summarize the different microarchitectural view categories applied to our SPS-CGRA target.
An SPS-CGRA is usually used as a special-purpose co-processor. Its pipelining interconnection
architecture allows a data-driven flow. It typically consists of a linear array of coarse-grained
resources that may be configurable statically /dynamically.

Architecture design points

\ v v
Processor Interface Reconfigurable
architecture block arlchitecture
\ v v v v

Data flow Control flow Data flow Control flow Interconnect Configuration Logic
l l l l architecture control elements
S Special-purpose S Dedicated . Static/ Coarse
Pipelining control Coprocessor Pipelining routing Linear dynamic grained

SPS-CGRA

Figure 1.13 — Proposed microarchitectural classification of an SPS-CGRA.

According to Chattopadhyay [60], an SPS-CGRA belongs to Class III: custom processing
and reconfigurability. The broad range of possible structures and architectures make this family
of accelerators a good candidate for various real-time applications, although it increases the
complexity for a general framework that could cover all types. The last axis of Chattopadhyay
is the modeling and design space exploration tools. Usually, the tools that target SPS-CGRA
allow only the modification/optimization of the (software parameters) implementation, and they
are highly specialized for a given platform.

As stated previously, there are several types of SPS-CGRA. They share similarities in archi-
tecture and properties, but the tools and their frameworks are custom. This aspect overburdens
its use and also the possibility to apply tools from one SPS-CGRA to another. A seamless design
with accurate latency estimation and exploration capability is required to increase the use of
this type of architecture and exploit all its benefits.

20

Examples

As quickly presented in the introduction, an extensive number of SPS-CGRAs have been de-
veloped for research and commercial purposes. They belong to different fields, and they are
application-specific. Due to the higher level of granularity of these architectures, reusability
within the application field may be narrow, but it is compensated by the high performance and
low latency that can provide.

Hashing is an algorithm that calculates a fixed-size bit string value from a file. Within
the cryptocurrency domain, hashing algorithms ensure the integrity of the transactions. The
implementation of hashing algorithms requires a huge amount of computational power. In this
regard, Tetu et al. [§] propose an SPS-CGRA-based implementation of the Lyra2REv2 hashing
algorithm (Figure . It features a pipelined stream-based architecture, and it is loosely
coupled to an ARM processor.

Processing System (PS) Programmable Logic (PL)

GNU/Linux Tyra2REV2 | hasn
Reg. | cex1 Input |block . Thres
User Space : Kernel Space AXI4 File o1l control Chain - Verjf: L
) | S datz’| FSM [meta Metadata
customized | yiviap | FPGA-miner 3 LlltC Memory- FIFO
couminer: T amer |51 | Lo W
| | ctrl Olllpllt nonce
I result|Control success
! FSM

Figure 1.14 — Architecture of the SPS-CGRA implementation of the standalone Lyra2REv2
miner [§].

Sound field rendering uses numerical methods to model the behavior of sound wave propaga-
tion in the spatial and time domain. The finite difference time domain method has been widely
adopted and becomes an essential algorithm in room acoustics owing to its high accuracy, easy
implementation, and parallelization. Tan et al. [27, 28] present an SPS-CGRA implementa-
tion of this method. Its highly pipelined architecture and stream-based processing allow the
computation at continuous time steps and reduced access to external memory.

In the computer vision domain, SPS-CGRAs are used to enhance the performance of image
processing systems. Examples of these are the FPGA-based SPS-CGRAs presented by Ngan
et al. [29, O] (Figure and by Isavudeen et al. [I0] (Figure [1.16]). These architectures
allow handling multiple parallel pixel streams given their adaptable, highly pipelined datapaths.
Another example is the ASIC-based SPS-CGRA introduced by Dokladalova et al. [30]. This
platform features reconfigurable datapaths, and its processing resources are able to implement
different contexts.

Sensing Multi-Stream Processing SoC Display

IMAGE
SENSORS

OUTPUT 1
| —
z L%

SYSTEM-ON-CHIP (SoC) DISPLAYs 4| T TTT ;d_ap_ta_ti;n_la_ye_r _____ 1

Adaptive Pipeline

PU PE PE PE PE

=
o
'~ 7
g -]
2
I
N
Input |Stream 1
' ‘

Frame Buffering

High-level Processing

Output J Stream

Adaptive Pipeline

o]

[m] Master node [£] siave node Processing element ER-N,Res- NV

i e e

InputIStream N

FR :Frame Rate, Res : Resolution

Figure 1.15 — Architecture of the SPS-CGRA
proposed by Ngan et al. [J] Figure 1.16 — Architecture of the SPS-CGRA

proposed by Ali et al. [10]

21

Additionally, within the computer vision domain, another example of SPS-CGRA is the
Programmable Pipeline Image Processor (P2IP) introduced by Possa et al. [II]. The P2IP is
a scalable systolic-based architecture that provides low latency processing and allows run-time
reconfigurable datapaths. Figure[I.17]illustrates the functional diagram of this architecture. No-
tice the main blocks (named PE1, PE2, ..., PEn) of the system, which correspond to the typical
structure and data flow of an SPS-CGRA. The architecture consists of the main controller (P2IP
controller) responsible for delivering the configuration context to all the hardware resources. The
PEn blocks represent the processing resources of the hardware, and the connection of them is
through the Reconfigurable Interconnection (RI) blocks. Observe that the interconnection of
the blocks is in a pipeline form. This feature emphasizes the stream-based processing of an
SPS-CGRA. Another example is the Morphological Co-Processing Unit (MCPU) introduced by
Bartovsky et al. [I12]. The MCPU assembles several efficient dilation/erosion units with geodesic
units and ALUs to support a large collection of morphological operations. It is integrated as
a coprocessor in an FPGA-based platform. Figure layout the architecture of the MCPU.
As we can notice, the MCPU follows the principles of an SPS-CGRA, with its pipeline-based
array of processing resources (Large SE pipeline and Geodesic Pipeline). It has a loose coupling
since there is no resource shared with its host processor. A set of multiplexers, configuration
registers, image buffers, and a memory controller ensures its correct operation.

MPMC

Y| Imageinput

- amd
| Input VFBC1

I
ea]
ate L e
ol |) | FIFO buffer [* |
i- Input | p
FIFO buffer | VFBC3.
[veec 7 . cmd

FBC read control

[
conﬁgf

— control path
=) data path

PIP
Controller

Large SE
pipeline

cmd
VFBC2]

VFBC
Output |
FIFO buffer| "
|

|

Output

FIFO buffer
VFBC

_wr
VFBC4
- cmd

His:

Geodesic
pipeline

Figure 1.18 — Architecture of the MCPU
Figure 1.17 — Simplified functional diagram of the [12].

P21IP [11].

Another field that benefits from the SPS-CGRA high performance is Deep Learning. The
basic computation model of Deep Learning is a NN, and this can be modeled as a Directed
Acyclic Graph (DAG). Given that the dataflow of such computation model is unidirectional,
the stream-based low latency processing of an SPS-CGRA may exceed the performance of other
platforms. Examples of them are the ASIC-based Neuflow [3I] (Figure and FlexFlow [32]
(Figure , both similar in processing resources and interconnection.

22

A Runtime Reconfigurable Dataflow Architecture

Off-chip
Memory

Neuron Buffer 1

IBZEE Convolutional Unit

— Input Neuron(Lines Pooling Unit
(sl (R 3 ¢
RO IT| R0 T R0 ¥ © peen | peen | peen | peen
506 [©66 { 668 g _[ler|[loa|[lealrios o ~|
e PT (o PT PE PE PE PE o i
il { mux. | | mux. | MUX. ‘(1io)" ‘(1£1)" *(1£2)” *(113)“ .§ I) 5
¥ T 200 % & s A RS
QOQ QY PE PE PE PE z o >
@ @@ @@ [Control ’(2 0)" "(z 1)" "(z 2)" *(2 3)" = i] s
. - | & Config i 1 1 T 1] ALU _.i_. '.-':
il = MUX. Fi il = MUX. = il MUX. = A PE Al PE AL PE AN PE J %‘ : 2 ~
QOO 900, QOO e e (BE /A "mm
@ @@ @@ Control Sign3l Lines

= Configurable Route - Global Data Lines —~“~ Runtime Config Bus

Figure 1.19 — Architecture of the NeuFlow. Figure 1.20 — Architecture of the FlexFlow.

Other examples are the FPGA-based implementations of a Deconvolutional NN presented
by Chang et al. [13] (Figure[L.21]), a Life Long learning Convolutional NN by Piyasena et al.[14]
(Figure [1.22) and a Randomly Wired NN develop by Kuramochi and Nakahara [33].

Associative

[Pone2) [Po Nt - Memory label
e |0 | e 2
FPGA &
————————————————————————— 1 ﬁ ﬁ Activity
Tmage Inputs : Tnputs Registers & Processing : ﬁ a L?;aih:\g;gg
Read 3 Read EngineAmrays — [1 1 HUL ST et ; ; W
. . . : : b1 <N7)
Weights | o cnip | VCE 1 onechip | VB i {br, b2}
Memory | Outputs || Memory ! | | {distyy, distpo},
e || G| g : e
1 1 ||
e [cad 2 : T S
bommmmmmmmTTTTIIIT |G G G Gon) o))
. . Neuromodulator T—‘
Figure 1.21 — Architecture of the Deconvolu- v [Neuromaautator |
BRAM BHAM ERAM
tional NN [13].

Figure 1.22 — Architecture of the a Life Long learn-
ing Convolutional NN [I4].

1.5 Thesis Contributions

We can see from the examples presented in Section that there are many application fields
benefiting from SPS-CGRA-based systems. The examples presented above exceed the perfor-
mance of other types of platforms considerably by at least one order of magnitude. Nevertheless,
their reuse opportunity is severely limited. Not only the cited examples but most of the SPS-
CGRAs are not equipped with tools or software support that allows one to reuse them. Usually,
they depend on custom mapping tools, or worst, manual mapping.

Even if there is a mapping assistance tool, such a tool is not flexible enough or easy to
adapt. Generally, it requires a broad knowledge of the platform. Moreover, it can not be
used for another SPS-CGRA, mainly due to such tools are designed specifically for the target
hardware. This situation is understandable if we consider the large diversity of structures and
applications of the SPS-CGRA. However, in general, they share similar characteristics, and those
can be exploited as a foundation of a generic framework that can capture those similarities and
provide enough flexibility for all the SPS-CGRAs. This framework could open the doors for
the easy implementation of more applications onto already deployed SPS-CGRAs. This will
decrease or eliminate the re-design time and reduce the time-to-market.

In this thesis, we present a complete framework for easy reuse of SPS-CGRAs. It is an

23

end-to-end framework that begins with the specification files, which describes at a high level
the application and the main features of the hardware. We introduce a unified graph-based
model covering application, hardware and implementation. We present four mapping
and scheduling algorithms. We propose a performance evaluation based on the latency-
based estimation of the upper bound of the computing cost. Finally, we introduce a software
solution, showed in Figure that accepts the two specification files (application and SPS-
CGRA) and produces, in parallel, the configuration context for a particular application and a
latency report that shows the computing cost.

Specification files Output files
Application Application Lafi\fy report|
= graph . —
— »KH Implementation =
h— -0 graph =
Hardware Hardware Timeslot1
= o | -
= graph oog Confgueten
— Time —

User input g
arguments g

; _
i Complete framework for SPS-CGRA

Figure 1.23 — Overview of the software solution for the easy reuse of SPS-CGRA.

1.6 Thesis Outline

A general overview of the thesis is showed in Figure [1.24

24

Partl

HARDWARE APPLICATION
MODEL MODEL

IMPLEMENTATION
MODEL

PERFORMANCE
EVALUATION

Part i

LIST-BASED REINFORCEMENT
SINGLE-SHOT BAYES-BASED LEARNING

ALGORITHM ALGORITHM
Q-LEARNING
MAPPING ALGORITHM

TOPOLOGY-AWARE
ALGORITHM

RANDOM GRAPH REAL WORLD
GENERATOR EXAMPLE
EXPERIMENTAL
GRAPHS

PART Il

CONCLUSIONS

Figure 1.24 — General overview of the thesis

We divide the thesis into two parts: Modeling and Mapping algorithms. The outline of the
thesis is:

I Modeling

Chapter 2 introduces our application model. We start with the current state of the art of
application models. Considering that models that apply to our problem are not that many,
we include models for other platforms such as multicore processors and MPSoCs. We de-
scribe their main features and benefits. We argue that a graph-based model, and specifically
an extension of the DAG model, could fulfill our requirements. Furthermore, we propose a
specialization of the Parameterized and Interfaced Synchronous Dataflow (PiSDF) and the
AAM methodology. Next, we present the formalization of our model. We introduce the
information that the nodes include and the different tasks that we consider in our model.
Finally, we present two real-life applications that help us illustrate the modeling process
and the benefits and capabilities of our application model.

Chapter 3 introduces our hardware model. A state of the art of current hardware models is
presented. We divided it by type of platform, and we describe the features that the models

25

II

highlight. We claim that current approaches neglect essential elements such as configura-
tion control and latency properties. We then present the main hardware characteristics of
the SPS-CGRA. Considering these characteristics, we introduce the formalization of our
hardware model. We describe all the types of hardware resources that the model is capable
of abstract. Additionally, we present our approach for modeling latency properties of the
processing resources. It is based on the input and computing latency of the processing
resource, and it is a function or the programmable parameter and the physical realization
of the resource. Next, we use several experimental examples to illustrate the modeling pro-
cess, including some transformations required to fit our hardware model. Finally, we use a
real-life SPS-CGRA to demonstrate the benefits and capabilities of our hardware model.

Chapter 4 introduces our implementation model. We present the formal definition of the
model. We describe how the implementation model is composed. We introduce a special
subset of resources called data dependency resources. These resources allow modeling data
dependence between time slots and between datapaths. Next, we present several experi-
mental examples that illustrate the capabilities of the implementation model and its main
features. We introduce our performance evaluation methodology. It is based on the
estimation of the upper bound of the computing cost. From the implementation graph,
we produce a subgraph that we call evaluation graph. This graph is used to estimate the
upper bound of the computing cost through an equation that we also propose in this work.
Within this equation, we introduce the variable w, which abstracts the latency imbalance
among processing resources. We show with some experimental examples that this equation
can accurately estimate the upper bound of the computing cost.

Mapping algorithms

Chapter 5 presents the current state of the art of mapping and scheduling algorithms. We
focus on list-based scheduling algorithms, linear programming, and reinforcement learning.
We argue that list-based and reinforcement learning algorithms show a high probability of
adapting and solving the SPS-CGRA mapping problem. Usually, list-based algorithms tar-
get limited processing elements, and their principle is based on a list of priorities, in which
resources and tasks are ordered according to a fixed metric. We can use these characteristics
to adapt a list-based algorithm to solve the SPS-CGRA mapping problem. Additionally,
list-based algorithms can include heuristics to improve their performance. Reinforcement
learning is a subset of Machine Learning, where an agent interacts within an environment.
From these interactions, the agent aims to improve its actions towards the maximization of
a reward. We argue that this approach is suitable for our problem. Given the trial-and-error
method of this approach, we may extend the exploration design space without reaching a
case explosion usually produced by an exhaustive approach.

Chapter 6 introduces three list-based mapping and scheduling algorithms. We first pro-
pose a Single-Shot List-based mapping algorithm. This algorithm aims to produce a feasible
mapping. It is equipped with backtracking. However, it does not include an optimization
heuristic. Secondly, we introduce a Topology-Aware mapping algorithm. The principle is
based on a look-ahead-based heuristic. The locality of the mapping decision of the single-
shot mapping algorithm is increased by considering the mapping of the successors of the
given task. Additionally, it includes the notion of computing latency within the heuristics.
The third and last algorithm is the Bayes-based mapping algorithm. We use the Bayes
theorem to solve the SPS-CGRA mapping problem. We include two hyperparameters that
the user can tune to obtain better final implementations.

Chapter 7 presents our Q-learning mapping algorithm. We adapt the reinforcement learn-

26

ing framework to our SPS-CGRA mapping problem. We propose to define the agent as a
mapping function. It will interact with the hardware graph, which is defined as the envi-
ronment. The agent will receive information about a defined subgraph that contains the
given task and its successors and predecessors from the environment. Also, information
about the upward and downward rank will be given. With this information, the decision
no longer remains local. We introduce a hierarchical reward policy. The agent will receive
a reward for each allocation of a task onto a processing resource. Additionally, the agent
will receive a reward for the allocation of the entire application onto the hardware. We
propose two types of training, one offline using randomly generated graphs and another
online using the target application. This approach will allow the framework to be used for
other applications rather than only for the given one.

Chapter 8 presents an evaluation of our mapping and scheduling algorithms. The evalua-
tion consists of several sets of experimental graphs, one pair of randomly generated graphs,
and a real-life example. The sets of experimental graphs will help us to characterize the
algorithms. The randomly generated graphs represent graphs with more complex struc-
tures than the normal SPS-CGRA and its applications. The final evaluation uses a real-life
example. It is the proof of concept of our complete framework and its mapping algorithms.

Chapter 9 summarizes our contributions and outlines the perspectives and future lines of
research generated by this work.

27

Part 1

Modeling

28

Chapter 2

Application Model

2.1 Introduction

An application model is an abstraction of an application, its role is to capture its main features.
It should be able to represent the tasks of the application and, it should provide an accurate
description of them and of their important parameters. As one of the inputs of a mapping
algorithm, an application model must share similar features with the hardware model. This is
crucial, as the level of abstraction of the application model should comply with the hardware
model. The description of the application’s tasks should allow a matching with the description
of the resources of the hardware. Since the mapping algorithm aims to find the best allocation
of a task onto a resource, this goal will not be achieved without its correct representation. As
a result of this, an adequate abstraction of the application is a priority. This importance has
attracted the attention of researchers, and several works aim to create new and more accurate
application models.

Important advances have been made in the development of application models. In parallel
and distributed computing, a well-known application model framework is the Directed Acyclic
Graph (DAG) model [61]. The DAG model allows to capture the parallelism of the applications
and exploit the advantages of a distributed system. Several extensions to this model have been
proposed, introducing new features like information about different configurations (scenarios)
[62], parameters [63], interfaces [64], or parameter dependency trees [65]. We propose an special-
ization of the Parameterized and Interfaced Synchronous Dataflow (PiSDF) [65] for SPS-CGRA.
It allows exploiting the parallelism of the SPS-CGRA’s applications and its heterogeneity, and
thanks to it, increase the possibility of achieving the optimal mapping. Furthermore, we exploit
the parameter descriptors in order to define the behaviour of the SPS-CGRA and estimate its
performance in terms of computing cost.

This chapter introduces the proposed application model. We describe the current state of
the art, discuss the different models and define the requirements of our problem. Finally, we
present our application model and its features.

We organize the remaining part of the chapter as follows. Section reviews state of the
art. Section presents the proposed application model. In Section we introduce the
formalization of the model. In Section we present two application examples for a better
understanding of our model. Finally, Section summarizes this chapter.

2.2 State of the Art

A particularity of the application models is that their structure and characteristics should match
the ones of the target architecture. This aspect allows decreasing the complexity and the number
of steps of the mapping algorithm. In this section, we review and describe the main features of
several application models that target different platforms.

29

2.2.1 Dependence Graph

One of the first application models is the Dependence Graph for Very-large-scale integration
(VLSI) array processors. Lo et al. [66] presented the Dependence Graph, which is a directed
graph where nodes represent computations of variables associated with the node and edges are
data dependence between nodes.

2.2.2 Task Model

A interesting application model is the task model. Liu and Layland [67] introduced the task
model, which characterizes task behavior with the execution time and the period of task acti-
vations. Following this first task model, other works integrate different descriptors to enhance
this model. Namely, in the field of multi-core processors, several works use as the main task
descriptor the Worst-Case Execution Time (WCET)[68, [69] of the task.

For the same target, multi-core systems, Marinho et al. [70] introduced a task model for
sporadic tasks. They consider a task set of m sporadic tasks. A relative deadline and its
minimum time span or period between two consecutive activations of the same task are used as
descriptors. Lakshmanan et al. [7I] used the task model and represented each task with the
number of computations segments, the number of parallel threads, the WCET of the sequential
segments, the WCET of each thread, and the period of the task. Kim et al. [72] described
a task model with separate setup times. They divide the setup time into processing time and
transmission time. Also, their task model allows them to deal with different physical realizations
of hardware resources.

2.2.3 Parallel Synchronous Task Model

The parallel synchronous task model [73] uses a directed graph that consists of parallel jobs
integrated by many computation segments. Each segment may contain many synchronous par-
allel threads. The descriptors of each segment are the number of threads and the worst-case
execution requirement. The main target for this model is multi-core system applications.

2.2.4 Digraph Real-Time Task Model

Stigge et al. [74] presented the Digraph Real-Time (DRT) task model for processor-based
systems. It consists of n independent tasks, each one characterized by a directed graph. The
authors describe each node with its WCET and its relative deadline.

2.2.5 Non Cyclic Recurrent Real-Time Task Model

Baruah et al. [75] presented the non-cyclic Recurrent Real-Time (RRT) task model targeting
processor-based systems. It is, in fact, a DAG with a unique source and one or more sinks. The
authors describe each node with the execution requirement and the deadline of the task.

2.2.6 Generalized Multiframe Task Model

Peng et al. [76] presented a generalized multi-frame task model (GMF) with parameter adapta-
tion for processor-based systems. Usually, a generalized multi-frame task model (GMF) repre-
sents each task with a three tuple. The first element represents the execution times, the second
the relative deadlines, and the minimum inter-arrival time between consecutive frames is the
last one. The arrival time, the deadline, and the WCET characterize each frame. The authors
modified this model where the deadlines and the period can be defined as an interval of values.

30

2.2.7 Recurring Real-Time Task Model

The recurring real-time model (RRT) is a generalization of the GMF model where a relaxation
of the types of tasks is included, allowing to model different job types. Chen introduced the
concept of varying task implementations for sporadic tasks, which allows modeling of different
worsts case execution times, increasing the accuracy of the model [77].

2.2.8 3-Phase Model

The 3-phase model is a generalization of the Predictable Execution model (PREM) [78]. The
PREM model consists of two phases, a memory phase and an execution phase. It targets single-
core systems but was extended to multi-cores [79]. The 3-phase model [80] divides each task into
three successive phases. During the Acquisition phase (A-phase), the task loads its instruction
and data into the local memory. Later, in the Execution phase (E-phase), the task executes non-
preemptively. Lastly, in the Restitution phase (R-phase), the main memory stores the processed
data. The model allows bus accesses only during the A- and R-phase. With this feature, the
time required to perform each phase can be accurately computed. In the work of Maia et al.
[80], A;, E; and R; represent the maximum execution time of the A-, E- and R-phase of task ¢;,
respectively. The WCET in isolation of ¢; (without suffering any interference) is the sum of each
phase’s execution times. The authors describe each task with its period and the constrained
deadline.

2.2.9 Synchronous Dataflow Graph

The synchronous dataflow graph was originally created for Digital Signal Processors’ applications
on parallel hardware. It is a graph where the nodes represent actors and the edges FIFOs. It is
widely used, and several works exploit and enhance it. In the field of processor-based systems,
Sih et al. [81I] use an Acyclic Precedence Expansion Graph (APEG), which is a modification
of the Synchronous Dataflow Graph, they describe each with a weight representing the amount
of data. Berler et al. [82] propose a synchronous dataflow model with timing specifications
for cyber-physical systems. The model includes timing specifications for I/O nodes with side
effects (in other words, nodes that interact with the physical world). Pelcat et al. [83] use
the synchronous dataflow model for applications that target MPSoCs. They use a specific
model called Parameterized and Interfaced Synchronous DataFlow (PiSDF). The PiSDF is an
extension of the Parameterized Synchronous Dataflow (PSDF) [63] and the Interface-Based SDF
(IBSDF) [64]. PiSDF model allows to describe a broad range of applications by parameterization,
hierarchy and configuration [84]. This is done through the addition of a set of parameters
associated to the configuration of each task. Additionally, a set of dependencies of the parameters
defines the hierarchy of the parameters and the influence of a given parameter to its child’s and
parent’s parameters. Inherit from the IBSDF and also taken from the Algorithm Architecture
Matching Methodology [35], [85], the PiSDF includes the concept of source and sink special nodes,
that interact with the outside world. These special nodes allow defining the inputs and output
of the system, increasing the feasibility to be instantiated in any design [64].

2.2.10 Algorithm Architecture Matching

The Algorithm Architecture Matching methodology (AAM) [35] 85] covers all the steps of rapid
prototyping in a seamless flow of graph transformations from algorithm and architecture specifi-
cation to distributed executives automatic generation [86]. A Data Dependence Graph represents
an algorithm (application). This graph is a hypergraph where the nodes are operations, and
edges represent data dependency. The methodology defines four types of nodes, memory (delay),
computation (action), conditioning (action), and sensors/actuators. In order to support FPGA,
Kaouane et al. [36] presented an extension of the DAG model of the AAM methodology called
the factorized data dependence graph model. It includes the fork, join, diffusion, and iterate

31

nodes, so the temporal or spatial repetition of a pattern can be modeled. They target real-time
image processing applications and general signal processing applications.

2.2.11 Directed Acyclic Graph

The Directed Acyclic Graph (DAG) model allows describing complex applications with a high
degree of parallelism and the data dependence between tasks. It has been used for several
targets.

In the field of processor-based systems, several works consider the DAG model. Qin et al.[87]
uses a DAG model and describes the nodes with their execution communication cost. Wang et al.
[88] used a DAG to represent an application and complement it with a matrix of the estimated
time to execute a certain task in a particular processor. Melani et al. [89] presented a modified
DAG model. They focus on sporadic conditional parallel tasks. The WCET describes each node
of the DAG (which represents each task). Also, they make a difference between nodes. They
introduce a specification for regular nodes and conditional nodes. Qambhieh et al. [90] introduced
an algorithm to convert from parallel DAGs to sequential in order to reduce the complexity of
the mapping and scheduling algorithm. Topcuoglu et al. [91] used a DAG model, where each
node is described with the average execution cost. Yuan et al.[92] used a DAG model that
specifies the execution cost of the task and the cost of the communication. On the other hand,
as multi-core systems technology evolves, the possibility to use them for parallel applications
increases.

Concurrently, different application models can improve the exploitation of parallelism. Sai-
fullah et al. [73] introduced a decomposition method for DAG models to a sequential model that
decreases the complexity of the scheduling. Pathan et al. [93] used a DAG model and describe
each task with the minimum inter-arrival time of consecutive jobs, the relative deadline, and a
real-time constraint that limits the execution time of the task.

The field of Multi-Processor Systems-on-Chip (MPSoC) uses similar approaches. Zadrija et
al. [94], and Frid et al. [95] 96] used a weighted DAG. The authors describe each node with
the number of operations (computational intensity), and the weight of the edges represents the
amount of data transacted. Sinaei and Fatemi [97] used the Kahn process network model, a
network of concurrent processes interconnected via FIFO channels. Youness et al. [98] used the
DAG model, where the node’s labels are the computation cost and the weight of the edges is
the communication cost. Jalier et al. [40] modeled telecom applications (OFDM, demodulation,
MIMO decoding) as a System(ﬂ function, describing the behavior of each task: communications
with external tasks or buffers, the complexity of the data processing and control flow. They
allow not only tasks but buffers to be in the application model.

Regarding CGRAs, the works in this area also use variations of the DAG model. Bingfeng
et al. [100] introduced a Data Dependence Graph with two types of edges: data edges and
precedence edges. Data edges indicate that data need to be routed between the connected
operation terminals. Precedence edges indicate that the operation needs to be ordered, but no
data is routed between the operations. Ma et al. [I0I] used a Control Data Flow Graph (CDFG)
with the information of the operation nodes and the data and control dependence among them.
Das et al.[102] used a graph-based model called Control Data Flow Graph (CDFG), where each
node represents a basic block. Each basic block represents, in turn, a Data Flow Graph, where
each node has a set of operations as a descriptor. Other works [103], 104} [105] use Data Flow
Graph to represent an application for a CGRA.

Within the field of reconfigurable architectures, Kota et al. [I06] presented a DAG model
for applications that target reconfigurable system-on-chip (rSoC). Each node of the DAG may
represent multiple versions of implementations for that task. Each version has its corresponding
hardware requirements in terms of area, functional units, and time to execute the task. The

!SystemC is an ANSI standard C++ class library for system and hardware design for use by designers and
architects who need to address complex systems that are a hybrid between hardware and software [99]

32

authors consider functionality implementation for each node. This particularity takes full ad-
vantage of the nature of the DAGs to model heterogeneous applications. Lai et al.[107] used the
DAG model where the nodes are operators, and the edges represent data flow. Cong and Xu
[108] used a boolean network, a DAG, where every node represents a logic gate.

Namazi et al. [109] used the DAG model to represent applications for Networks-on-Chip
(NoC). The authors describe each node with the priority assigned to the task and the number
of clock cycles of the task worst-case execution time. In the same matter, the authors defined
the weight of the edges with the maximum volume of data and the required communication
bandwidth between two nodes. Lu et al. [I10] used a weighted directed graph. The weight
represents the packet amount and the edges, the packet transmission.

Regarding other platforms, such as High-Performance Computing systems, Ma et al. [I11]
used a DAG model, where each node has a parameter representing the number of instructions
and each edge the volume of transferred data. Jiang et al. [I12] used a DAG to represent
workflows for clouds. The model uses, as labels, the computation cost, the communication cost,
the earliest start time, and the estimated finish time.

2.2.12 Directed Graph

Gamatié et al. [113] used a directed graph of runnables. Runnables are functions that represent
the smallest unit of code schedulable by an operating system and are associated with non-
functional attributes. It is dedicated to multi-core systems. The nodes represent the runnable
and the release, which is an attribute specifying whether the release mode of a task ¢; is periodic,
sporadic, or aperiodic. Also, the authors provide the means to describe the data communication,
but it is not compulsory to define.

2.2.13 Boolean Dataflow Graph

In the field of code generation, Li et al. [I14] presented a model of computation based on a
boolean dataflow graph, particularly for FPGAs. Their model targets irregular applications,
which are usually built around loop constructs. They classify the loops constructs into for-all
(parallel execution) and for-each (sequential execution).

2.2.14 Others

Rajeev et al. [II5] presented a transformation from the formal model of a distributed system.
They represent a distributed system with a tuple. The first element is the set of schedulable
objects, which can be tasks or messages. The second element is the set of resources, which can be
elements or hardware. The third element describes the allocation of a task, either an Electronic
Control Unit (ECU) or a bus. The last element is the set of data dependency between tasks and
messages (edges). The descriptors of each task or message are the initial offset, the period and
the best and worst-case execution time, and lastly, the deadline.

2.2.15 Discussion

The extensive literature provides a large set of models with different characteristics. Each one
is optimized to match its hardware model pair. In terms of structure, the most used is the DAG
model. The DAG model provides the means to abstract parallelism of applications and the
data dependence of the tasks. It is ideal for parallel processing architectures [89, 90, 100} 111].
Furthermore, an important extension of the DAG model, introduced by the AAM methodology
[35, 85], which uses hypergraphs, allows the broadcast of the output data. This feature is
important for our problem. Normally, an SPS-CGRA application can have tasks connected to
one or more tasks, and the model needs to represent the explicit broadcast of output data.
Moreover, the DAG model allows abstract complex applications that target similar platforms
like CGRAs [101], 102, 103}, 104, T05].

33

Regarding the descriptions and the information associated with the tasks, most works em-
phasize the WCET [68, [69, [72, [71] in the multi-core field. Other approaches include a division
of the setup time and the transmission time [72], or a division between phases (acquisition,
execution, and restitution) [78, 80]. Given the characteristics of our target hardware, the ap-
plication model does not need information about execution time. Das et al. [I02] take another
approach by providing the means to specify a set of operations for a given task. In the works
of Kota et al. [106], the descriptors also allow to describe heterogeneous implementations of a
task. However, these descriptors do not allow the description of explicit parameters. Pelcat et
al. [65] efficiently uses the concept of parameterization of the tasks introduced by Bhattacharya
and Bhattacharya [63] to include functions of the input parameters. Aditionally, the authors
include, from the works of Piat et al. [64] and the AAM methodology, the notion of source
(sensors) and sink (actuators) special nodes that allows to model the external input and output
data. To efficiently map applications onto an SPS-CGRA, the previously stated examples are
not enough. Our target architecture requires both information on the type of task and its pa-
rameters. Usually, the user knows beforehand the application’s computing requirements. The
task type and its parameters become a priority. This information will ultimately affect the
behavior of the hardware accelerator and impact the computing cost of the implementation.

In this work, we propose an specialization of the PiSDF model and the AAM methodol-
ogy that targets SPS-CGRA applications. This application model provides the precise level of
abstraction, by introducing new descriptors, required to exploit the features of an SPS-CGRA.

2.3 Proposed Application Model

The applications that target an SPS-CGRA usually consist of tasks with mixed granularity,
from bit-wise operations to complete transformations. Also, the application tasks exhibit het-
erogeneity in their parameters (kernel size, kernel shape, computing constants, length of input),
which needs to be considered during the mapping. Additionally, the application computing re-
quirements are commonly known in advance, and they are usually compatible with the target
SPS-CGRA.

Recall that SPS-CGRAs are configuration and dataflow driven platforms [I8]. These archi-
tectures employ configuration control to define the behavior of their resources. As a result, the
latencies of the resources, and consequently the computing cost of the final implementation of
an application onto an SPS-CGRA, depend directly on the type of task and its parameters,
and the hardware physical realization of the resource that executes the task. This defines the
necessary information that the application model should have. Since we consider coarse gran-
ularity of computing, the descriptors of the application model do not require to represent any
latency information but the type of task and its parameters. The latency function that models
the material realization of the resource is a part of the hardware model (see Section [3.3.2)).

Since there is an extensive number of application fields where an SPS-CGRA is used, we
propose a generic application model adapted to most of these application fields. We consequently
need to define an application:

Definition 2.3.1 (Application). An application consists of a set of ordered heterogeneous tasks
with data dependency between them. An application consists of a set of indivisible tasks with
mixed granularity.

Definition 2.3.2 (Data dependency). Data dependency is the relation between a task and
the preceding tasks. A task might need the completion of all its preceding tasks to start its
execution. The data dependency defines the order of execution of the tasks.

Definition 2.3.3 (Task). A task is an atomic transformation applied to the input data to obtain
output data. In our context, it can represent an image processing operator, an arithmetic
operation, a bitwise operation, among others. FEach task is defined by a set of parameters
(numerical constant, a boolean value, a string of characters).

34

A task may represent a transformation that requires one or multiple input data.
Definition 2.3.4 (Input(s) of a task). A task might have one or more inputs of data.

The result of the transformation is represented by the output data. A task might forward
or transfer its output data to one or more successor tasks. Hence, creating data dependency
between the task and its successors.

Definition 2.3.5 (Output(s) of task). The task output results from the transformation applied
to the data and can be transferred to the following task or broadcast to several tasks (successors).

Each application requires at least one source of data that usually comes from a sensor,
camera, or electronic device, producing data to be processed.

Definition 2.3.6 (Source of data). The source of data is the origin or producer of data to be
processed. We define a source of data of an application as a sensor. An application can have
one or more sensors, each one with different parameters.

A sink of data will consume the transformed data. This data sink might be an actuator, a
display, a monitor, between other possible devices.

Definition 2.3.7 (Sink of data). The sink of data receives or consumes the processed data. We
define a sink of data of an application as an actuator. An application can have one or more
actuators, each one with different parameters.

2.4 Formal Application Model

Let Gapp(T, D) be a directed hypergraph that models an application. A hypergraph allows
modeling a task that may broadcast its output data to several successor tasks. T is a set of
nodes that represent the tasks of the application. D is a set of oriented hyperedges that represent
data dependency between tasks.

ceg

Figure 2.1 — Example of an application model hypergraph.

We call a task t; € T', so that t; = (type;, p;), where type; is the type of atomic transformation
applied to the data and p; is the set of the transformation parameters. We call also type; and p;
as a descriptors of ¢;. We can see in Figure [2.1] an example of an application model hypergraph.

Observation 2.4.1 (Sensor and actuator descriptors). A node t; that represents a sensor or
an actuator will have type; = inter face and p; are the parameters of the input/output data.
A complete example is given in Section

We represent an atomic task with a single node. Notice in Figure that the input edge
represents the input of data to the task (node) and the output edge the output of processed
data from the task. In the case of the task of Figure the input degree of the node is one (one
input data), and the output degree of the node is also one (one output data).

Definition 2.4.1 (Input degree of a task). We define the input degree of a task t; as the
number of different input of data (number of predecessors). The input degree of a task should
be a natural number greater than zero.

deg™(t;) >0, deg™ (t;) € N (2.1)

35

Definition 2.4.2 (Output degree of a task). We define the output degree of a task ¢; as the
number of successors connected to t;. Notice that the output data, sent to all the successors,
is the same (broadcast). The output degree of a task should be a natural number greater than

Z€r0.
deg™t(t;) >0, deg™(t;) €N (2.2)

—(v

Figure 2.2 — Example of a single task.

Graphically, we represent a task with a node. This node will have the name of the task as a
label. In Figure [2.2] the name of the task is t;.

Observation 2.4.2 (Sensor and actuator representations). Additionally to the name of the task
as a label, a node t; that represents a sensor or an actuator will have a different coloration
than the other type of tasks.

We represent a sensor node (Figure [2.3) or an actuator node (Figure [2.4)) with a different
color than the other nodes. Notice in Figure that the sensor and the actuator nodes are in
gray and the other nodes are in white.

Input degree |Output degree

®_, deg(t) deg*(t)

0 1

Figure 2.3 — Example of a single sensor.

Input degree |Output degree

O deg(t) deg(t)
1 0

Figure 2.4 — Example of a single actuator.

Also, we can see differences in the degrees of the nodes from Figure 2.4 and 2.3

Definition 2.4.3 (Input degree of a sensor node). The input degree of a sensor node t; is always
Z€ero.

deg™(t;) =0 (2.3)

Definition 2.4.4 (Output degree of an actuator node). The output degree of an actuator node

t; is always zero.
deg™t(t;) =0 (2.4)

36

The output degree of a task or a sensor node can be from one to n € N. Figure shows
the graphical representation of a task that broadcasts its output data.

Figure 2.5 — Example of a task that broadcast is output data.

Equally, the input degree of a task or an actuator node can be from one to n € N. In Figure
[2.6] we can see an example of the graphical representation of a task with input degree two.

O
o9

Figure 2.6 — Example of a task with input degree two.

2.5 Examples of Real-Life Applications

In this section, we introduce two application examples. These examples, taken from image
processing, will help us describe the modeling process. The objective is to illustrate how the
proposed application graph applies to real-life problems.

Image processing uses digital computers to perform some operations on an image that allows
to extract meaningful information or enhance the image [I16]. Image processing algorithms
are used in numerous time-critical applications such as autonomous navigation systems, un-
manned aerial vehicles, or industrial control. From the set of image processing algorithms, we
can mention an important subset grouped under the name of mathematical morphology [117].
Mathematical morphology groups algorithms capable of extract image components that are use-
ful in the representation and description of region shape, such as boundaries, skeletons, and the
convex hull [I16]. Additionally, mathematical morphology includes algorithms used for pre- or
post-processing operations, such as filtering, thinning, and pruning. The importance of mor-
phological mathematics has attracted the attention of many hardware designers, who seek to
implement their operators efficiently. One of these hardware implementations is the Morpho-
logical Co-processor Unit (MCPU) [12]. The MCPU assembles several efficient dilation/erosion
units, geodesic units and ALUs to support an extensive collection of morphological operations
(See Section and . In addition, an interesting feature is that the shape and size of struc-
turing elements are programmable. Also, MCPU belongs to one of the hardware realizations
dealing with latency minimization. Due to internal knowledge of this SPS-CGRA, throughout
the thesis, we use it as an example of a real-life SPS-CGRA. We select two applications that
target the MCPU to describe the proposed modeling process.

2.5.1 Alternated Sequential Filter

The first example is an Alternated Sequential Filter (ASF) [118]. The ASF is extensively used
for a nonlinear filtering of images, preserving the topology characteristics. It is known for its
computing cost. In our context, it represents a long linear pipeline of tasks with the possibility

37

to overpass the length of the hardware resources (Figure . The Equation provides its
formal definition.

ASFA(f) = . o'y (f) (2.5)

where f denotes the input image, A the SE size, 7, and ¢ are the operators of opening and
closing defined in [I17]. In this example, we consider an ASF* with A = 4. Here we consider
that the MCPU can only implement erosion and dilation operations. Due to these hardware
constraints, we need to decompose both closing and opening, operations with even numbers
for size of structuring element.. The closing and opening can be decomposed into two basic
morphological operators, erosion (e¢) and dilation (4). By doing this decomposition, we can
transform the ASF* equation using erosion and dilation operators, and in the same way, reduce
it as shown in Equation

ASF4 _ 909’79907779057590373 _ 6961751561351169676563 (26)

After the transformation and reduction, the application will consist of nine tasks. The input
parameters for both erosion and dilation are the size and shape of the structuring elemen‘ﬂ We
can see the resulting application model in Figure Notice the use of one sensor node and
one actuator node, both in gray. Also, the respecting parameters of each task are hidden for
visualization but contained in a joint specification file.

0,0,0.,0.°

Figure 2.7 — Application model of the example ASF*.

We list the entire set of parameters in Table As we can see, for the sensor and actuator
nodes, the type is inter face. The remaining nodes take their type according to the specification
of the application.

Table 2.1 — Descriptors of the tasks for the ASF* example

bi
Size Shape Resolution
to interface N/A N/A height, width

Task type;

t1 dilationd 3 square N/A
to erosion e 5 square N/A
ts dilationd 7 square N/A
t4 erosion e 9 square N/A
ts dilation § 11 square N/A
tg erosion € 13 square N/A
t7 dilation § 15 square N/A
tg erosione 17 square N/A
tg dilationd 9 square N/A

tip interface N/A N/A height, width

2The structuring element is a computing window with different possible shapes: square, line, circle, custom.

38

In Table N/A means Not Applicable, which are descriptors of a task that do not corre-
spond to its type. For example, tg is a task that models a sensor, only the descriptor of resolution
applies to it. Contrarily, t5 is a task that models an erosion operation, in which resolution is
not one of its descriptors. The parameter Resolution (height and width) represents the number
of input data samples to process.

2.5.2 Road Line Orientation Detection

Our second example is a road line orientation detection [I19, I5]. This second application
represents a highly parallel task organization. The principle is the computing of oriented linear
openings of the input (Figure [2.8).

180
150
120

90

- 60

~~._ W30

0
(a) Original Image. b) Composite image indicating the line orientation.

Figure 2.8 — Road line orientation detection [I5].

Figure [2.9 shows the complete road line orientation detection. We only focus on the compu-
tation of the oriented openings. The rest of the application is processed in a CPU.

Figure 2.9 — Complete road line orientation detection.

Again, we decompose the opening in basic morphological operators (erosion and dilation).
We can see in Figure the corresponding application graph. The actuators t3,6,9,12,15,18E| are
the resulting processed images that will be transferred to the CPU. In Table [2.2] we describe the
parameter for each task.

3Here and in the remaining part of the thesis, we will use ¢; ; , as an abbreviation of ¢;,t;,tx,t.

39

Figure 2.10 — Application model of the example of the road line orientation detection.

Table 2.2 — Descriptors of the tasks for the Road Line Orientation detection (we consider
default position of the center of structuring element).

Pi
Size Shape Angle Resolution
to interface N/A N/A N/A height, width

Task type;

t1 erosione 31 line 0 N/A
to dilationd 31 line 0 N/A
ts interface N/A N/A N/A height, width
ts erosione 31 line 30 N/A
ts dilation § 31 line 30 N/A
te interface N/A N/A N/A height, width
t7 erosione 31 line 60 N/A
tg dilation § 31 line 60 N/A
tg interface N/A N/A N/A height, width
tip erosione 31 line 90 N/A
t11 dilation § 31 line 90 N/A
tio interface N/A N/A N/A height, width
ti3 erosion e 31 line 120 N/A
t14 dilation § 31 line 120 N/A
ti5 interface N/A N/A N/A height, width
tig erosione 31 line 150 N/A
ti7 dilation § 31 line 150 N/A

tig interface N/A N/A N/A height, width

As described in Section N/A refers to descriptors that do not apply to a particular
task. We can observe the additional parameters of angle needed to describe the tasks. We can
validate that our model can describe several types of parameters of the applications. And more

importantly, we can describe either sequential and parallel applications and the combination of
both.

2.6 Conclusions

In this chapter, we have introduced our application model. It is a specialization of the PiSDF
model and the AAM methodology applied to applications that target an SPS-CGRA. While
several application models are being used for different platforms, direct use of one of them is
not possible. In this regard, we propose to use a hypergraph and a different set of descriptors

40

for the tasks. The hypergraph allows one to model a possible broadcast of the task’s output
to several successors’ tasks or tasks with several inputs of data. Additionally, it can be used to
model the basic application structures, sequential and parallel, and their combinations. Thus,
fully exploit the parallelism that an SPS-CGRA can offer. The descriptors of the task only
focus on the type of task and its parameters. This decreases the complexity of the application
model. And also matches the features of the hardware model and reduces the complexity of the
mapping algorithm.

We describe the modeling process with two application examples. We select two applications
from the set of applications that the MCPU can implement. Although the examples come from
image processing, our application model can be used for other application fields. The task’s
descriptors allow one to model any parameter, such as integers, strings, or boolean values. Fur-
thermore, the graph-based representation can capture most of the current application structures.
As a whole, our application model is generic, and the modeling process is low complexity.

41

Chapter 3

Hardware Model

3.1 Introduction

Recall that an SPS-CGRA consists of an irregular systolic array of heterogeneous processing,
communication, and memory resources.

The processing resources are functional units able to perform a specific set of tasks, such
as morphological operators, ALU-like tasks, hashing algorithms, image filtering operators, or
others. Not all the processing resources have the same latency or use the same range of pa-
rameters. Even if the operation is the same, the physical implementation may vary. Thus the
latency characteristics or the required parameters may be significantly different, even for the
same function. This is due to the inner implementation of the given functional unit.

The communication resources are dedicated to transfer, copy and perform read/write mem-
ory operations. They realize datapaths. Like the processing resources, each communication
resource can have a different physical realization. Each physical implementation may have dif-
ferent latencies. We may have a multiplexer with a latency of one clock cycle or an crossbar
that requires two clock cycles or more to assign the input to the correct output.

The memory resources are memory blocks (RAMs, FIFOs, Flash or erasable memories). An
SPS-CGRA can have one or more memory resources from different types. This will impact the
communication resources that deal with the read/write operations.

In addition, an SPS-CGRA has a configuration control layer that assigns the configuration
context to all the resources. The number of configurable parameters defines the size of the
configuration context. The largest size of the configuration context will occur when the user
programs the entire SPS-CGRA. But, the user may not need complete programming of the SPS-
CGRA. In these cases, the configuration context will be reduced. The configuration context size
has a direct impact on the configuration control cost. Thus, the configuration control cost in an
SPS-CGRA is a function of the number of parameters to program.

To take full advantage of these architectures, we need an abstraction of the hardware that
can capture all these details. This abstraction comes in the form of a hardware model. To
help the labor of the mapping algorithm and also increase the probability of getting the optimal
implementation, the hardware model should be able to provide the correct information of the
architecture. Information about the resource features and latency functions is the priority.
Also, the hardware model should provide the means to abstract the greatest number of types of
SPS-CGRASs possible.

Several hardware models have been proposed targeting platforms from processor-based up
to hardware accelerators. Most of the works related to processor-based and multicore-based
architectures use the task model to define the latency requirements. To allocate the task to
the optimal processor/core, the mapping algorithm considers the WCET, a descriptor widely
used by the task model. Other works provide the means to deeply detail the latency of the
tasks 78|, [72], either dividing the latency or consider different physical realizations. As we can
see, for these platforms, the details of latency are on the side of the application model, but

42

as the SPS-CGRA is a data-driven architecture, the hardware side (model) is the one that
should define the latencies. On the other hand, some works include a specific hardware model
[110} [100]. Commonly they are custom to a particular architecture or do not provide the means
to accurately describe the latency of the resources. This lack of solutions creates a significant
gap for a hardware model of an SPS-CGRA.

In this chapter, we introduce a new hardware model for SPS-CGRA. It provides the means
to accurately define the latencies of hardware resources and generate a mapping. It is general
enough to model several types of SPS-CGRAs. We define the structure and elements of the
hardware model. We provide information about the descriptors and use an example to explain
the process of the modelization of an architecture.

We organize the remaining part of the chapter as follows. Section [3.2reviews state of the art.
Section [3.3] presents the proposed hardware model. In Section[3.4] we introduce the formalization
of the model. In Section [3.5] we present two hardware examples for a better understanding of
our model. Finally, Section [3.6] summarizes this chapter.

3.2 State of the Art

A hardware model aims to abstract efficiently a system architecture [83]. Its purpose is to capture
the inner mechanism and latency characteristics of the architecture and be able to provide the
best amount of information to the mapping algorithm. The amount of information that the
model delivers is in direct relation to the complexity of the mapping algorithm. A complex
model might increase the exploration time and the complexity of the mapping algorithm without
benefits for the implementation. Therefore, we make a trade-off between the description of the
architecture and the complexity of the model to relax the complexity of the mapping algorithm.
Thus, the hardware models abstract only the crucial points, such as type of resources, working
parameters, and latency characteristics.

Since the hardware models focus on some features of the architecture, usually, they are
custom. From this perspective, we divide this section into types of hardware targets, and at the
end, we present a general discussion of the presented works.

3.2.1 Processor-Based Systems

In a processor-based system, a bus connects one or more processors. The interconnections may
be point-to-point or fully connected. The memory of the systems may be shared or distributed.
Few works detail a specific hardware model for this type of system. Most of the works use the
task model or its variations to describe the latency characteristics [80} 68 (69, [71].

Lo and Jean [66] introduced a Signal Flow Graph (SFG) for processor-based systems. It is
a graph-based model that consists of processing nodes, communication edges, and delays. The
nodes of the graph represent zero delay arithmetic or logic functions. The graph integrates
edges and weighted edges. The edges represent data channels. The weighted edges represent a
time delay operator. Sinaei and Fatemi [120] presented another hardware graph-based model for
processors. The nodes represent processing elements and memory elements. Each element has a
descriptor for its capacity, energy consumption, and cost. Wang et al. [121] represented a high
computing environment [122], consisting of a set of machines [123], as a directed acyclic graph.
They described each node with a value of the estimated expected execution time of subtask s;
on machine m;.

Tafesee et al. [124] divided its hardware model into two aspects. An architecture model,
which is a set of processors and memories. Each element, either processor or memory, is associ-
ated with its architecture, type, power, clock rate, interrupt, and memory. Particularly for the
processors, the model includes the set of tasks that the processor can implement, the WCET,
and the power cost. The second element of the hardware model is a topology model, which
describes the physical layout of the components and defines the communication cost. Ma et

43

al. [I11] modeled a high-performance computing system with a set of homogeneous processing
elements with a parameter of state: active, idle, and shutdown.

Castrillon et al. [41] used a list to describe the processing elements and the communication
primitives. This approach also targets processor-based systems. They defined each processing
element with the operation cost, a descriptor of the multitasking support, including the context
switch time and the scheduling policies. The communication primitives include three descriptors.
The offset represents the overhead as a constant. The start is a variable that increases as a
function of the transferred bytes. And the stair, which is a function of the communication cost.

3.2.2 Algorithm-Architecture Matching

The Algorithm-Architecture Matching (Adequation) (AAM) methodology [35, [36 B7] and its
extension (SynDEx-Mix) [86] model an heterogeneous distributed architecture as an oriented
hypergraph. The architecture may be based on programmable (processor-based), reconfigurable
(FPGA), or ASIC components. The methodology defines four subsets of nodes, operator, com-
municators, memory, and bus/mux/demux. The memory nodes may be Random Access Mem-
ories (RAM) or Sequential Access Memories (SAM), which can be shared for data communica-
tions. The operator node is a sequencer node that represents the execution of a finite subset of
operations (a WCET is associated with each operation). A communicator node is a sequencer
node that executes communication operations to/from its connected memories (RAM, SAM).
The communication operation latency is a function of the size of data to transmit and the
available bandwidth.

3.2.3 Multiprocessor System-on-Chip

A Multiprocessor System-on-Chip (MPSoC) uses multiple processors along with other hardware
subsystems to implement a system [125]. Frid and Sruk [96] introduced a graph-based model
for MPSoCs. It uses a weighted directed graph where they divide the nodes into processing
elements and memory nodes. The execution time of each task of the application is the primary
descriptor of a processing element. If the processing element can not execute the task, the
execution time is infinite. The memory nodes use the number of read, write, or read-write ports
as a descriptor. The weight of the edge is associate with the speed of the write/read operation.
The same authors present in [95] a simpler model. It only considers the processing elements and
computation speed of each one.

Pelcat et al. [83] presented the Linear System-Level Architecture Model, which consists
of an undirected graph that includes the set of processing elements, the set of communication
nodes, the set of unidirectional edges, a function that represents the computing cost, and the
lagrangian coefficient setting the computation to communication cost ratio. The computation
cost can be energy, area, price, amount of memory depending on the model created. This model
is used within the framework PREESM [45] [44].

Jalier et al. [40] described an MPSoC with a SystemC description. They defined only three
types of entities, processor, memory, and communication media.

Zahaf et al. [126] modeled a heterogeneous architecture as a set of execution engines. Each
execution engine is characterized by its execution capabilities, the engine’s tag, and its schedul-
ing policy. The engine’s tag allows identifying different physical implementations. Using the
scheduling policy property allows supporting different scheduling policies, which can be preemp-
tive or non-preemptive.

3.2.4 Network-on-Chip

A Network-on-Chip (NoC) is a structured and scalable interconnection architecture that consists
of multiple segments of wires and routers, structured as a grid [127]. Lu et al. [110] used a tuple
(N, A) to describe a NoC. N is the set of nodes representing the routers, and \; € A represents

44

the number of available neighbors nodes at the X or Y coordinate of node i. Yang et al. [128]
used an array of tiles to model an NoC, where each tile represents an intellectual property IP,
a router, and a set of network interfaces. Mehran et al. [I129] used a directed graph called
Architecture Characterization Graph (ACG), where each vertex is a tile and the edges the
routing path. Each node has a descriptor that represents the average energy consumption of
sending one bit of data. In previous work, Mehran et al. [I30] introduced an order list called
Platform Priority List, according to the connection degree of each tile.

3.2.5 Coarse-Grained Reconfigurable Architectures

Mei et al. [I00] presented Modulo Routing Resource Graph (MRRG), a variation of the Resource
Routing Graph (RRG). The RRG is a time-space graph in which all resources (space dimension)
are modeled with vertices. There is one such vertex per resource per cycle (time dimension) in
the schedule being generated. Directed edges model the connections over which data values can
flow from resource to resource [I31]. The MRRG is a directed graph where the set of nodes
corresponds to the ports, wires, or artificially created nodes. Each node represents an execution
time ¢. The edge set corresponds to switches that connect the nodes. Furthermore, the initiation
interval (II) of the loop is one of the descriptors of an MRRG. Several works use this model
[131], [104] or a variation of it [I03]. Yoon et al. [I05] used a directed graph to model a CGRA,
where the edges represent a data dependence between processing elements.

3.2.6 Field Programmable Gate Array

Li et al. [I14] presented a hardware model based on a set of composable templates for FPGA
accelerators. The templates match the possible elements of a boolean dataflow graph used as
an application model. Each template is a building block for the architecture and its datapaths.

3.2.7 Discussion

A summary of the previously introduced works is presented in Table

45

Table 3.1 — Hardware models state of the art summary

Platform Model Features

Graph-based model
Homogeneous,/ Heterogeneous resources
Parameters: WCET, deadlines, overall

latency characteristics

Graph-based model

Able to characterized communication delays

Graph-based model

Sinaei and Fatemi [120] Processing and memory resources
Parameters: capacity, energy consumption, and cost
Graph-based model
Able to characterized the execution time
Divided into an architecture model
(description and parameters of
the resources) and
topology model (interconnections)
Able to characterized the status
Ma et al. [I11] of the resource (active, idle,
and shutdown)
A descriptor of the multitasking support,
Castrillon et al. [41] including the context switch
time and the scheduling policies
Graph-based model
Frid and Sruk [96] 5] Processing and memory resources
Able to characterized the execution time

Task Model [80] [68] 69] [71]

Processor-based Signal Flow Graph [66]

Wang et al. [121]

Tafesee et al. [124]

MP
SoC . Graph-based model
Linear System-Level Able to characterized the computin
Architecture Model [83] . putims
: cost as a function
Jalier et al. [A0] Processor, memory, and communication
! media resources
Parameters: execution capabilities,
Zahaf et al. [126] the engine’s tag,
and its scheduling policy
; Considers the number of available
Lu et al. [IT0 .
NoC uet al. [L10] neighbors nodes as parameter
. The average energy consumption of
Meh t al. [129 . i .
chran et al. [120] sending one bit of data is consider as parameter
. Graph-based model
Modulo Rout
CGRA odulo foutng Set of nodes corresponds to the ports,
Resource Graph [100 . i
: wires, or artificially created nodes
FPCA Li et al. [I14] Set of composable templates

(building block) for FPGA accelerators

As one of the inputs of a mapping algorithm, the level of abstraction of a hardware model
is critical. An accurate hardware model without high complexity is not trivial to define.

A hardware model for SPS-CGRA requires three main features. In the first place, the
means to define heterogeneous resources. In the field of multiprocessors, usually, the processors
are homogeneous, and the models do not provide any means to define heterogeneous resources
[80, 68]. As the requirements of the applications started to increase, the systems begin to
incorporate heterogeneous resources [69) [71], like in the AAM methodology [85]. MPSoCs,
NoCs, and CGRAs models normally support heterogeneous resources. Usually, these models
are graph-based and make use of the set of properties of the nodes to describe heterogeneous
resources. Moreover, the graph’s edges are used to describe interconnections between resources.
[131), [45, 6]

46

The second feature is a fine grain latency modelization. Most of the works model the latency
of allocating a task onto a resource using the WCET [68], 85]. This approach might lead to
a pessimist performance evaluation (See Section . Few works allow to model different
latencies for the same resource, like in [80], which is crucial in the context of programmable
architectures. Moreover, the possibility to model different physical implementations that are
able to execute the same task is not possible, with the exception of [126], however, without a
fine grain latency modelization.

The last important feature is the configuration control layer. Usually, the hardware models
allow to abstract only the hardware resources and their interconnections [I131], 114, 100]. The
configuration control layer of the system is often neglected and not considered within the hard-
ware model. However, this layer directly impacts the computing cost of the implementation.
The time elapsed during the reconfiguration of the system should be included in the performance
evaluation for a cycle-accurate result.

Clearly, there exists a gap in the field of hardware models for SPS-CGRA. In the following
section, we describe the structure of an SPS-CGRA and the latency of its elements.

3.3 Software Programmable Streaming Coarse Grained Recon-
figurable Architectures

In Section we introduced our target architecture, which we name in this work Software Pro-
grammable Streaming Coarse-Grained Reconfigurable Architectures (SPS-CGRA). Examples of
this architecture can be found in several application fields (see Section . Moreover, it can be
an overlay based on an FPGA, ASIC, or SoPC technology. These different application fields and
technologies used to build an SPS-CGRA allow a great diversity of types of hardware resources
and interconnections. However, preserving many similar characteristics, which allows one to
differentiate the SPS-CGRA from the rest of the hardware platforms. In this section, we will
describe the internal characteristics of an SPS-CGRA.

Definition 3.3.1 (SPS-CGRA). An SPS-CGRA is an irregular systolic array of heterogeneous
hardware resources with fixed interconnections. The hardware resources are heterogeneous in
both functionality and physical realization. It may contain different random access memory
blocks. An integrated interface allows it to receive/transmit data from outside sensors/actuators.
The degree of programmability is given through software reconfiguration. It may allow partial
reconfiguration.

As we can see in Figure 3.1} an SPS-CGRA is a complex architecture that includes resources
with heterogeneous characteristics. From memory blocks up to different types of processing
resources (PR,), and usually including an interconnection block. It can be used to process
data from one or several sensors and produce processed data for one or several actuators. Each
processing resource can be itself composed of some hardware accelerators or processor cores.
Additionally, a configuration control layer is able to program the processing resources and modify
the interconnections through a set of parameters. In the following section, we will describe the
details of each resource.

47

Memory,[e e e [Memory,

[))

| 3» |[INTERCONNECTIONS prrvereed] | = IL—1

¢ ¢ ¢ ! g
— '
[PR1 [qw W Aoy PR3 :
Sensors Hw |Accel2 | - |

Accel HW |

I

I

]

Accel3 HW Accel6

PARAMETERS PARAMETERS PARAMETERS

| CONFIGURATION CONTROL | Actuators

Figure 3.1 — Global architecture of an SPS-CGRA.

3.3.1 Architecture Resources

As it was already introduced, an SPS-CGRA consists of a set of processing, communication,
memory and configuration control resources. The configuration control resources are
in charge of delivering the configuration context to the hardware resources. In the following
paragraphs, we bring the definitions of each hardware resource with the objective of clearly
delimit the terminology.

Definition 3.3.2 (Configuration control resource). A configuration control resource defines the
behavior of the hardware resources. It is in charge of distributing the configuration context.

Depending on the capabilities of the SPS-CGRA, a configuration control resource might
support partial reprogramming of the hardware resources, through the selection of a subset of
hardware resources and distributing only to them the new configuration context.

A processing resource can perform a transformation of its input data to produce output
data. This transformation can be from a simple arithmetic operation to a complex application-
specific operation. A processing resource can have several inputs and also several outputs.
The input type can be the same or different depending on the transformation. The processing
resource can broadcast its output to one or several other resources through an unique output.

Definition 3.3.3 (Processing Resource). A processing resource applies a given transformation
to its input data. It may be able to implement one or several transformations. Each transfor-
mation may require a different set of input parameters. Additionally, the processing resource is
characterized by latency, which is a function of the implemented transformation and its input
parameters. The processing resource may have one or more inputs. The transformation’s output
may be broadcast to one or several resources.

To manage the unused processing resource correctly, each hardware resource can systemati-
cally perform two special operations: copy and disable (see Section .

The communication resources can transfer, copy data from a memory resource to a pro-
cessing resource, copy data from a processing resource to a memory resource, copy data from a
memory resource to another memory resource, and route the data (as multiplexer).

The communication resources may represent multiplexers, buses, or crossbars. These re-
sources may have several inputs and several outputs.

Definition 3.3.4 (Multiplexer / Bus / Crossbar). A communication resource represents a mul-
tiplexer/bus/crossbar. It is a resource that performs a copy operation from one or more inputs

48

to one or more outputs. In addition, they are described by the latency function related to the
data transfer.

A subset of the communication resources is dedicated to perform read/write operations.
These resources are able to transfer data from and to a memory resource. They only have one
input and may have one or more outputs. If the resource has several outputs, this represents
the broadcast of the same output data to several resources.

Definition 3.3.5 (Memory access). Memory access resources are a subset of the communication
resources that perform read/write operations from or to its associated memory resources. Each
memory access resource is associated with a finite address space of a memory block.

Another subset of communication resources is the interface resources. They represent the
external producer and consumer of data. The external producer is the resource that provides the
data for the system. It may be a camera, a personal computer, transducers, or a flash memory.

Definition 3.3.6 (External Producer of Samples). An external producer of data is the main
source of data for the system. There may be one or more external producers.

The external consumer of data is the sink of the output processed data. There may be one
or more external consumers. The external consumer may be a display, a personal computer, or
a monitor.

Definition 3.3.7 (External Consumer of Samples). An external consumer of data is the sink
of processed data of the system. There may be one or more external consumers.

The memory resources are memory blocks (RAM, FIFO, Flash or erasable memory). There
may be one or more memory resources in the system. Each memory resource is unique. Each
memory block may have one or more read/write dedicated channels, which are exposed to the
memory access or interface resources.

Definition 3.3.8 (Memory resources). A RAM / FIFO / Flash or erasable memories are mem-
ory resources used to store a finite amount of data given by its address space.

3.3.2 Hardware Described Through Latency

We can divide the architecture characteristics latency into two main categories, configura-
tion cost and hardware resources latency. The former relates to the configuration control
resource (see Definition [3.3.2). The delivery of the configuration context to all the hardware
resources requires a specific amount of time, which is the time consumed during the program-
ming of the hardware resources. This time may be unique for each hardware resource, as it is a
function of the number of parameters and information to program.

Definition 3.3.9 (Configuration cost). The configuration cost is the time consumed during
the programming or configuration of all the hardware resources. This time is a function of the
parameters of each hardware resource, and therefore unique for each resource.

The hardware resources latency relates to the latency generate by each hardware resource
in the system. The heterogeneity of the hardware resources makes the latency of each hardware
resource unique and a function of its parameters. Consider the example in Figure where the
same task (t;) has been allocated twice onto the same resource (r;) but with a different set of
parameters. In the first case, a set of parameters has been applied to the resource. The outcome
of this set of parameters will be a pair of input and computing latencies (defined formally in
the next paragraph). On the other hand, if we change the set of parameters, these latencies will
change.

49

Computing

Input latency latency
Set of parameters
1 E‘> : : : : : : —>>
Clock cycles
Computing
Input latency latency
Set of parameters I:'>
2 : : : : : : : >
Clock cycles

Figure 3.2 — Impact of the change of parameters on the latency of a resource

Recall that a processing resource applies a given transformation to the input data to obtain
output data (see Definition . This transformation generates a latency value which is a
function of the type of the transformation and its parameters. Since an SPS-CGRA is a stream-
based processing platform, this latency function is, in fact, the union of two latencies: input
latency and computing latency.

Definition 3.3.10 (Input latency). The input latency is the amount of time (measured in clock
cycles) from the arrival of the first sample until the arrival of the last sample required to start
the processing of the samples. At this moment, the processing resource is ready to output the
first processed sample.

Definition 3.3.11 (Computing latency). Computing latency is the amount of time (measured
in clock cycles) elapsed between the output of two consecutive processed samples after the
computing (processing) pipeline is full and the feed of new samples is constant.

The input latency and computing latency are functions of the type of transformation
and its parameters. They are defined by the physical hardware realization for a given task.

A communication resource that applies a copy operation (i.e., from memory to memory) also
generates a latency value. This value is a function of the physical realization, and it is constant.
Equally, the communication resource that applies a read/write operation (i.e., between memory
and processing resource) generates a latency value, which is a function of its physical realization.
Lastly, the external producer and consumer of samples generate a latency value representing
the latency of producing one input sample or consuming one output sample. In our model,
the memory resources do not generate any latency since, we propose to integrate it into the
communication resources.

3.4 Formal Model

In this work, a directed hypergraph Ggw (S, K) models an SPS-CGRA architecture. The set
of nodes (S) represents the entire SPS-CGRA resources. The set of oriented hyperedges (K)
models the hardware resources interconnections. The S is a union of several subsets representing
different hardware resource classes. Their relations are depicted in Figure Each of them is
defined in the following sections.

50

Figure 3.3 — Composition of the set .S

3.4.1 Set S of SPS-CGRA Resources

We define the set of nodes S as the union of the node s¢¥C and the set R.

S=sFYUR (3.1)
CFG ;

The unique node s is the sequencer node that represents the configuration control of the
system (See Definition [3.3.2)). The set R represents the set of hardware resources of the system.
This set is a union of the following subsets.

R=RPURYURM (3.2)

RP represents the processing resources, R® the communication resources and RM the mem-
ory resources. These three subsets will be respectively detailed in Sections and
0.4.0l

3.4.2 Sequencer Node s“7'¢

The sequencer node s“F'“ controls the system configurations (See Definition [3.3.2)). It is in charge
of the modification of the resources configuration between different applications or between
partial configurations required to realize one application. We define s¢F'C as

SCFG — (Cfgfun’cfgparam) (33)

where C'fg/"" is a set of designer-defined functions that express the configuration cost of
each hardware resource according to its configuration mechanism. C fgP* %™ is the set of config-
uration parameters of the hardware resources. These parameters will be fixed by our mapping
algorithms.

Observation 3.4.1 (Unique sequencer node). In a hardware model, we assume that there will
be only one sequencer node, and its descriptor will cover all the possible configuration functions
and parameters of all the hardware resources. There is at least one tuple (Cfg;"", C fgl*™™)

for all r; € R:

The sequencer node is connected to all the hardware resources through a F-hyperedge E We
can see in Figure an example of the connection of one s°/9 to two hardware resources. Notice
the F-hyperedge, which has dotted lines.

F-hyperedge
ypereds

Figure 3.4 — Graphical representation of the connection of a s¢¥'¢

! A Forward hyperedge or F-hyperedge is an hyperedge E = (T(E), H(E)) with | T(E) |= 1 [132).

o1

As the general complexity of an SPS-CGRA is beyond two hardware resources, we introduce
a different graphical representation of the F-hyperedge, which allows better readability. Figure
shows this graphical representation. We use a simple closed shape in a two-dimensional plane
to represent the interconnections. All the nodes inside the closed shape in blue are connected to
the node s“FC through the F-hyperedge. Notice the arrow direction of the node s“¥¢, which
represents that the connection goes from the s®¢ to all the nodes inside the closed shape in
blue. This graphical representation can be used also to represent an B—hyperedgeﬂ, an example

will be given in Section [3.5.2

Figure 3.5 — Graphical representation of the connection of a s“¥'¢ through a solid plane

As we can see in Figure and Figure the node s“F¢ has an input degree of zero. This
means that there is no input connection for this node. On the other hand, the output degree is
equal to the rest of the hardware resources.

Observation 3.4.2 (Degree of sequencer node). The sequencer node degree is given by:

deg™ (s“FC) =0 A degT(s“FC) = S| -1 (3.4)

3.4.3 Hardware Resources R

The set R represents the hardware resources (see Section [3.4.1)): subset R (P stands for process)
dedicated to transform, subset RM (M stands for memory) to store and subset R® (C stands for
communication) to communicate data. We represent each hardware resource as a node r € R,
where the input degree represents the input data connections, and the output degree represents
the output data connections. Figure shows an example of a single resource.

~
N

Figure 3.6 — Example of a single resource

In Figure [3.6] we can notice two input edges, one represented with a solid line and another
with a dotted line. The solid line edge represents an input data connection, and the dotted line
represents the connection with the configuration control node made through the F-hyperedge
presented earlier. In order to alleviate the hypergraph, as explained earlier, this hyperedge is
removed and replaced by a closed shape.

Definition 3.4.1 (Input degree of a resource). The input degree of a hardware resource only
considers the input data connections. The connection with the configuration control node is
implicit.

2A Backward hyperedge or B-hyperedge is an hyperedge FE = (T(E), H(E)) with | H(E) |= 1 [132].

52

Definition 3.4.2 (Output degree of a resource). The output degree of a resource represents the
output data connections of the resource. If the output degree is higher than one, it means that
the output data will be broadcasted to all the successors.

For example, the hardware resource r1 of Figure [3.6] has an output degree of one.

Now consider the resource 71 of Figure This hardware resource has a connection to the
hardware resources ro and r3. Consequently, the output degree of this resource is equal to two.
The output data of r; will be broadcasted to the other resources 72 and r3. Figure[3.8 depicts the
same structure as Figure [3.7] but is drawn without the connection to the configuration control
node in order to lighten the graph.

(2

Figure 3.7 — Example of a single resource broadcasting its output

Figure 3.8 — Example of single resource broadcasting its output without the connection to the
configuration control node

3.4.4 Processing Resources Subset R’

The subset RY represents resources that apply a given transformation of the input data. We
define node r” € R as

where 7; is the set of transformations that rf can perform, and II; is the set of allowed
parameters of each transformation.

Recall that an SPS-CGRA allows two different levels of heterogeneity. On one level, each
processing element may be able to perform different types of tasks (addition, multiply, fast
Fourier transform, hash algorithm). On the second level, the heterogeneity resides on the dif-
ferent physical implementations that a set of processing resources that performs the same type
of task may have. This second level of heterogeneity directly impacts the computing cost of the
system. A naive implementation will be more computationally costly than an optimized imple-
mentation. A set of parameters for a processing resource can result in a reduced computational
cost compared to another set of parameters. Our model is able to deal with this feature using
the latency descriptor £;.

The descriptor £; describes the latency functions of a hardware resource. We define latency
of a hardware resource as the time interval elapsed between the arrival of data at the input and
the update of the output with a value corresponding to the transformation of that particular
data. In our context, this time includes input latency and computing latency. Stream-based
processing resources require a certain time to fill the input pipeline and start output data. We

93

define the internal pipeline filling time as the input latency. Computing latency is the time
consumed to output data after the input pipeline is full. This, in fact, involves two functions,
one for the input latency and another for the computing latency. Our approach solves this with
the possibility that £; includes two different functions.

Li= (i, Lot (3.6)

The descriptor ﬁifN represents the input latency and EZ-CL the computing latency of the
resource ¢. Both are function of 7; and II;. Finally,

L; = (CINV(T, 1), £9F (T3, 1L) (3.7)

An example of the modeling process of the latency features of a real-life SPS-CGRA is given
in Section [3.5.5

As a result of the differences between the type of processing resources and physical imple-
mentations, the configuration cost could not be the same for all the resources. The fourth and
last descriptor C'fg; € C'fg"" (see Section, defining 77, is used to store the configuration
cost function of rf . C'fg; is a designer-defined function that assigns the configuration cost value
of rf’ as:

Cf9i(Ti, 1L;) (3.8)

Observation 3.4.3 (Complementary operations). We assume that each rlP is equipped with
the operations copy and disable allowing to manage correctly unused processing resources.

For some applications, after the configuration step of the whole SPS-CGRA, some resources
may remain unused. The mapping algorithm will automatically assign one of the complementary
operations to the unused resource. In the case of copy operation, the resource will be used as a
bypass (their inputs are directly connected to the outputs without any transformation). In the
case of disable, the resource will be completely disabled.

Consider the processing resource of Fig. [3.9] This resource has two inputs and one output.
To implement the copy operation, the user needs to specify which input should be copy to the
output. This information should be detail in the configuration parameters of the resource.

Figure 3.9 — An ¥ with two inputs and one output

3.4.5 Communication Resources Subset R¢

The subset R® represents the resources dedicated to the data transfer, read/write operations to
memories and interfaces, copy, and data-path control. Recall that (Section, we distinguish
four types of communication resources: multiplexers RMUX input /output interfaces Rimterface,
data reading and writing R?P, RWE,

RC’ — RMUX U RINTERFAC’E U RRD U RWR (3'9)

We describe each subset of R in the following sections.

54

RMUX

A node rMUX ¢ RMUX provides a set of inputs and outputs that performs a copy operation
from a selected input to the selected output. A 7MUX can describe a multiplexer/bus/crossbar
and is model as a four-element tuple

rf 0% = (1, 00, Li, C L gi) (3.10)
The descriptors I7 ot and or Ort, represent the set of input and output ports of rMVX. L; is
the latency of rMUX and Cfg; € Cfg/"" represents the configuration cost.

RWE and REP

An rVE ¢ RWE and an r/iP € REP are resources able to perform a read/write operation from
or to a memory resource. We define V% and r*P with a three-element tuple

TWerRD - (A’Laﬁ’mcfg’b) (311)

The descriptor A; defines the address space to access. £; models the latency of the write/read
operation and C'fg; € C'fgf*" represents the possible configuration cost.

Fach processing resource can be connected directly to one or more communication resources
from the subset R®P and RWE.

One particularly of the descriptor A;, is that it allows one to define the exact address space
available for a hardware resource. As there may be some restrictions on the memory address
space, we can use this descriptor to associate each hardware resource with the correct address
space. This feature helps us to model systems where the re-injection (recomputation) of data
between datapaths is available. Re-injection of data occurs when the processed output of one
datapath is the input data of a second datapath. Consider a communication resource rzW R as
the last element of a datapath, and it writes data to a memory module. On the other hand,
assume that a communication resource rfD is the first element of a datapath, and it reads data
from the same memory module as r}" . If the descriptors 4; and Aj; are the same, or either A4;
range covers the range of A; or vice versa, the system allows re-injection of data.

Observation 3.4.4 (A;). A; allow us to define if re-injection of data is valid, if and only if an
P is able to access the address space of a r'"V1.

An example of the use of the subsets RP and R is given in Section [3.5.2]

RINTERFACE

The external sources and consumers of the data are nodes r$¢ns°r ¢ RINTERFACE

RINTERFACE e describe an 75" with the tuple

and T.;zctuator c

rieor = (T;, 1L, L)) (3.12)
where II; are the allowed parameters and £; is the latency of producing one data sample.

Observation 3.4.5 (RINTERFACE descriptor T;). To complete, each r$¢"°" and rgctuator hag
an implicit descriptor operation 7T; = inter face

We consider that an r{¢™*°" has an internal 7'V %, which allows it to transfer data directly to
an 7 or an rMUX _ or write data to an . In Figure we show this concept graphically.

In this work we use the labels sensor (rf¢"*°") and SNSR (rV5F) interchangeably.

95

sensor
i

Figure 3.10 — Example of a r

actuator

Likewise, we describe a 7§ as

chtuator — (7; Hiwci) (313)

(2

where II; are the allowed parameters and £; is the latency of consuming one data sample.
We consider that an ré¢®“e°" has an internal r#P, which allows it to transfer data directly from
an r” or an MUX or read data from an 7M. In Figure we show this concept graphically.
In this work we use the labels actuator (r¢¢®°r) and ACTR (r{{°"!) interchangeably.

%

actuator
i

Figure 3.11 — Example of a r

sensor

When an r@tuator or an r is directly connected to a r™, the latency of the resource

should include the latency of reading or writing one data sample.
To describe the behaviour of the subset R¥¢"fec¢ two simple examples are given in Section

BT

3.4.6 Memory Resources Subset RM

The subset RM represents the hardware memory resources (RAM modules, sequential memory
modules). We describe each M € RM with a tuple

ril = (A, P ") (3.14)
where A; represents the addressing space of 7M. Cf'P is the number of read channels avail-
able, and O}V the number of write channels. A channel is a specific range of addressable memory

space which is accessible to some hardware resource. We assume the following conditions:

1. The sum of CTP of all M € RM of the hardware should be equal or more than the number
of all 7P plus the number of all ractuator,

n
ZCzRD Z‘ RRD | + | {,ractuator} | (315)
i=1
where n =| RM |.
2. The sum of CWE of all M € RM of the hardware should be equal or more than the
number of all ¥ plus the number of all r5¢msor.
n
S OIR S| RVE| 4| ey | (3.16)

=1

o6

where n =| RM |.

3. An rM is always paired with at least one resource node from R*P U RWE U Rinterface,

Notice that the memory resources do not have the expression of the latency. This one is
always integrated into the associated r*P and "% nodes.

We consider the following interconnection patterns for an

i

M

i

e A linear sub-graph with a sensor rj***" as a predecessor of a r

RD ‘o M :
read 7; as a successor of this ;" resource (Figure .

SNSR
1

resource, and a memory

Figure 3.12 — Example of a node r3! with r as predecessor and r5*P as successor.

M

i

actuator

e A linear sub-graph with a TZVR as a predecessor of a r;" resource, and an actuator rj

as a successor of this M resource (Figure [3.13).

i
ACTR
r,’="3
/rRD>
\——

Figure 3.13 — Example of a node 73! with 7!V # as predecessor and r4\¢T%

as successor.

M

%

resource, and a TRD as successor

WR
k J

e A linear sub-graph with a r as a predecessor of a r
of this 7™ resource (Figure [3.14)).

Figure 3.14 — Example of a node 73! with 7|V as predecessor and r£" as successor.

R WR

Notice the need for an 7P and an r in each pattern. Either in an implicitly form, as in
the 5¢75°" and the 79T or in an explicit way with the rP and r"' % itself.

Our model is a directed hypergraph, and one property that we comply with is acyclicity.
An issue with the acyclicity may appear when we have to model a system where the datapath
uses the same memory resource as a source and sink of the process. During the modelization,
to remove this cycle of the hardware, we split the memory resource according to the number
of channels or the number of datapaths. Consider the hardware model showed in Figure
For didactic reasons, we only show the memory resource, and we represent a set of hardware

o7

M

resources with the cloud shape. Notice that the data go from and to the memory resource r;".

This creates a forbidden cycle in the model.

-

Figure 3.15 — Representation of a cyclic hardware model

To solve this, we split the memory resource into two memory resource nodes but sharing
the same name. We can see in Figure the resulting graph. Notice that now the memory
resource M is split into two, a TZM SRC (source node of the datapath) at one end and rfw SINK (gink
node of the datapath) at the other. This transformation eliminates the cyclicity. In order to
show that these two nodes model the same memory resource, we add the dotted lines to connect
them. The hardware resources that the dotted lines enclosures are considered one datapath. We

include these dotted lines only if both ends of the datapath are the same.

Figure 3.16 — Memory resource modelled by two connect memory nodes

Now, let’s see another example. In Figure we show a different hardware model. In this
case, the hardware graph has two cycles.

—>() >
<«\) -«

Figure 3.17 — Representation of a cyclic hardware model

Since we can not have a cycle in our hardware model, we again split the memory resource,
but this time we end up with two independent datapaths. As we can see in the two
independent datapaths are enclosure with dotted lines.

_>rSRC

Figure 3.18 — Memory resource modelled by two connect memory nodes with two independent
datapaths

o8

Several examples of the memory resource modeling process are given in Section [3.5.3

3.4.7 Fork-Join Special Nodes

In some cases, the sensor (i.e., a camera) produces a burst of n samples of data, where n can
be from 2 to the total amount of expected input samples. Assume that the actuator consumes
a burst of m samples of data, where m can be from 2 to the total amount of expected output
processed samples. Given that the hardware platform is stream-based, the input burst will be
stored entirely and then processed one by one. Next, the processed samples will be again stored,
and after the completion of the processing of all input samples, the processed data will be sent to
the actuator. This condition creates three different regions. It is no longer a pure stream-based
system where as soon as one sample of data is ready, it moves forward to the next resource. In
this case, we need to wait until a specific number of samples are ready to move to the following
resource.

To model this different type of processing, we introduce two special nodes that allow to
represent this behavior.

A join node allows to model the case where we need to wait n number of samples to move
these samples to the following resource. We represent a join node graphically with the difference
of an edge crossing line with a 1 for the input edge and the n samples of the burst in the output
edge. We can see in Figure the graphical representation of a join node.

Ner.

Figure 3.19 — Special join node

A fork node allows to represents the case where we read a burst of n data samples, and these
samples are processed one by one. We represent a fork node graphically with the difference of
an edge crossing line with the n samples of the burst and a 1 in the output edge. We can see in
Figure [3.20] the graphical representation of a fork node.

n : 1
Figure 3.20 — Special fork node
An example of the use of the fork-join nodes is detailed in Section

3.5 Examples

In this section, we provide several examples of the modeling process of hardware architectures.
The examples make use of virtual hardware architectures. Additionally, we provide the modeling
of real-world hardware. We focus on the Morphological Co-processor Unit (MCPU) [12]. This
co-processor will help us illustrate and validate the benefits of our hardware model.

99

3.5.1 Communication Resources RINTERFACE

To describe the behavior of the subset RINTERFACE = ongider the stream-based hardware in
Figure [3.21] The hardware takes data from a camera as input and displays the processed data
on an actuator (e.g., display).

[_)I INTERFACE I_ INTERCONNECTIONS M_L
D: |D2

CAMERA DISPLAY

PRi [rw PR2
HW |[Accel2 HW || Hw
HAcceli||Accel2

PARAMETERS PARAMETERS
NFIGURATION CONTROL

HAccel1 HW 1

IAccels3|

Figure 3.21 — SPS-CGRA example 1

Figure shows the corresponding hardware model of this basic example. The input data
goes directly to the processing resource r{. We represent the camera with rgN SR The reading
of the camera memory is implicitly represented by rgN SE jtself. The output data produced by
r goes directly to the actuator r?CTR. This last node implicitly writes in the actuator (display)
memory. Note the presence of s“F'¢ connected by an F-hyperedge (closed blue shape) to all the

nodes to configure them.

Hardware Hardware
resources _Imodel nodes
Configuration §CFG
control
Ds Interface/ SNSR
r 0
camera
PRz 2
Interface/ rACTR
display 3

Figure 3.22 — Hardware model of SPS-CGRA example 1

In the second example, we study the modeling of a hardware architecture able to process
images using pipelined processing of the pixels. It is depicted in Figure [3.23] The camera
produces an image (pixel by pixel) which is read and stored in the memory module of the
system. After the first input data (first pixel) is available in the memory module, the processing
can begin by reading the data, processing it, and storing back the result in the same memory.
After the first processed pixel is available in the memory module, it can be displayed by the
actuator.

60

Memory,

INTERCONNECTIONS
| INTERFACE I—-)

U —)I INTERFACE D
4
CAMERA D3 % ACTUATOR
HW PRz
HW Accel2 HW HW

Accelq HW WAccel||Accel2ff
Accel3]
PARAMETERS | PARAMETERS

| CONFIGURATION CONTROL __|

Figure 3.23 — SPS-CGRA example 2

Figure [3.24] shows the corresponding hardware model. The camera is represented using
rg NSR_This resource represents the input data (pixel) generation and the writing to the memory
module 7}/. The datapath D1, showed in red, is modeled by the edge (r§V5% | T{VISRC). The
datapath D2, showed in green, is modeled by the edges (ri*SE¢, +EPY and (rfP) +F). The
datapath D3, showed in orange, is modeled by the edge (7"31)3 , 7¥). The datapath D4, showed
in purple, is modeled by the edges (r}, rV'®) and (r}V %, T{WSINK). The last datapath D5 is
modeled by the edge (r{w SINK ré“CTR). Symmetrically, the actuator is represented using rg‘CTR.
This resource represents the data reading (processed pixel) from the memory module and the
actuator’s consumption data. Notice the split of the memory module and the dotted lines that

enclosure the remaining hardware resources, as explained in Section |3.4.6

Hardware Hardware
resources |model nodes
Configuration CFG
control S
Interface/ SNSR
camera r 0

M, M
Memory1 r] snc/ r_l SINK

PRi r’s

PRz r’a

Interface/ ACTR
display r 6

Figure 3.24 — Hardware model of the SPS-CGRA example 2

3.5.2 Communication Resources RV and R?P

Consider the hardware depicted in Figure [3.25] and its associate hardware model in Figure [3.26]

61

Memory;

1
5 *T T [Ds INTERCONNECTIONS 3 |INTERFACE | 5
U ——)I INTERFACE D> ; $ Ds
CAMERA Ds YV __ |Da ACTUATOR
PR1 [hw PR2 PRs
Accel ||
HW CCel2 HW HW HW

| Acceln

Accelq HW HAccel||Accel2]
Accel3|
PARAMETERS | PARAMETERS PARAMETERS

Figure 3.25 — SPS-CGRA example 3

Notice that the processing resource PR, modeled by ri reads and writes data to the
memory module. Recall that each processing resource can be connected directly to one or more
communication resources (See Section . Thanks to 78” and an r¥' % we can model this
behavior. In this example 7“3{3 , r¥ and 7'51)3 can write independently their data in 7, thanks to
r;/v R rgv R rgV R respectively. This correspond to the D3, Dy and Ds datapaths available on

this architecture (Figure [3.25]).

Hardware Hardware
resources | model nodes
Configuration 5CFG
control
Interface/ {SNSR
|camera °
Mg/ oM,
Memory: | I/ s«
PR: rP3
PR: rPa
PR3 r’s
Interface/
ACTR,
display "o

Figure 3.26 — Hardware model of the SPS-CGRA example 3

3.5.3 Memory Resources R

In this section, we present four examples that detail the modeling process of the memory re-
sources. The first two examples illustrate the use of a memory resource as the source and sink
of a datapath [I2, [I1]. The third example illustrates the usage of two memory resources within
the same architecture. The fourth example shows a memory resource as a frame buffer within

a processing pipeline [133].

A Memory Resource as a Source and Sink of a Datapath

Consider the simple hardware example of Figure It consists of one camera, a memory
block, a processing element (PR;), and a single actuator. In this architecture, the processing
element reads the input data from the memory block and stores its result in the same memory.
The actuator then reads this memory.

62

Memory,

Da INTERCONNECTIONS
U —)I INTERFACE D

r INTERFACE

D2 |Ds
CAMERA ACTUATOR
PR1 [Hw
HW IAccel2

HW
Accel3

PARAMETERS
| CONFIGURATION CONTROL _|

Figure 3.27 — SPS-CGRA example 4

Figure shows the hardware model of SPS-CGRA example 4. Notice the graphical
representation of 7}, Recall that the hardware model does not allow cycles (See Section [3.4.6)).
We split 7} into r1"SE¢ and 7S’V Furthermore, notice the dotted lines in Figure e
dotted lines show that the datapath highlighted is connected in both ends with the same 7.

Hardware Hardware
resources |model nodes
Configuration oCFG

control

Interface/ [SNSR,
camera

@ @ e @ @ M emo ry" rlll\ASRC/ r"I\ASINK
PRi r’3

Interface/ pACTR,

display

Figure 3.28 — Hardware model of example 4

Consider now the SPS-CGRA example 5, depicted in Figure Like the preceding ex-
ample, the input data from the camera goes directly to the memory module of the system.
The stored data is read and processed, in this example by two processing resources connected
consecutively. Finally, the data is stored again in the memory module.

Memory,
| ﬁ INTERCONNECTIONS | INTERFACE | >
m INTERFACE
D *I I_D1 D> D4
CAMERA Ds % ACTUATOR
PR [Hw PR:2
Hw |[Accel2 Hw || Hw
Accelq HW WAccel||Accel2ff
Accel3

PARAMETERS | PARAMETERS

Figure 3.29 — SPS-CGRA example 5

Figure shows the G gy of hardware example 5. We again split 7}, One 7P (r£P) and
one rWE (rIVE) represent the internal read and write of data to the memory module. rSNSE
represents the external write to the memory module, and 74¢T% the external read of the same
memory module. Notice the dotted lines enclosing the datapath, in this case, of two processing

63

resources. This means that both ends of the datapath belong to the same memory module, 77,

Hardware Hardware
resources |model nodes
Configuration CFG
control
Interface/ pSNSR
Ds camera
M M
Memory: | I15/ Iy
PR rPa
Interface/ pACTR
display

Figure 3.30 — Hardware model of example 5

Two Memory Resources in the Same Architecture

The SPS-CGRA example depicted in Figure [3.31 has two memory modules. In this architecture,
the input data goes directly to one memory module (Memory;) of the system, then the stored
data is read in parallel by two processing elements (PR; and PR3). These two processing
elements are the first elements of two independent datapaths. One datapath stores its result in
the same memory module. The second datapath stores its result in a different memory module
(Memorysz). Then a pair of actuators reads the processed data from each memory module.

Memory, Memory,
I Do
j D2 T Ds IDs *Ds L1 [iNTERFACE >
U ——)I INTERFACE Ig D4)| INTERFACE |3
CAMERA Y D % * D7 } B
PRi [hw | PRz PR3 PRa4 ACTUATORS
Accel
HW |jAccel2 HW || HW Hw oW
IAcceln HW JAccel}|Accel2] Accelt Accelt
Accel3
PARAMETERS | PARAMETERS PARAMETERS PARAMETERS
TTON CONTROL]

Figure 3.31 — SPS-CGRA example 6

In this case, we introduce two 7M. rM models Memory;. We split 7} to avoid creating a

cycle within the hardware model. Notice the dotted lines only highlight the datapath, in which
rM is the source and the sink. 737 models the second memory module (Memorys). This memory
module only stores the processed data of 7} (PRy), and we do not need to split it. Finally, one
rSNSE and two rACTE represent the external write and read of the memory modules. Figure

[3:32 shows the hardware model of SPS-CGRA example 6.

64

Hardware Hardware Hardware Hardware
resources | model nodes| resources | model nodes
Configuration SCFG PR, rp9
control
Interface/
SNSR P.
camera "o PRs rs
Memory: | /1y PRs rP4
M Interface/ ACTR
Memory2 e display A&y
P Interface/ ACTR,
PR s display ="z

Figure 3.32 — Hardware model of example 6

A Memory Resource in the Middle of a Datapath

The SPS-CGRA example of Figure [3.33] makes use of an internal memory module, which serves

to synchronize the processed data of PRy and PRy.

PARAMETERS [_PARAMETERS |
PR [hfw PRz
HW |[Accel2 HW || HW
HAcceln Accel]|Accel2]
Hw I Memory, I
Accel3||
T I A A[[Ds
—)I INTERFACE I_ J I
D1 Da Ds b Dio
Ds 9
—)I INTERFACE I—DZ—* 'ﬁ Ds Dy
|
CAMERAS PRs [rw] [PRa PRs PRo
Accel2]
HW HW HW HW HW
HAccel HW HAccel||Accel2ff Accelt Accelt
Accel3|
PARAMETERS PARAMETERS PARAMETERS PARAMETERS
1 CONFIGURATION CONTROL |

Figure 3.33 — SPS-CGRA example 7

ACTUATOR

Figure shows the hardware model. 'ré\/" , which models Memory;, does not require to be
split. Notice the interconnections between ré_‘:ﬂ, and rgf/#% and 7). We make use of simple edges

for graphical representation.

Hardware | Hardware | Hardware | Hardware
resources |model nodes| resources |model nodes|
[Configuration P
CFG
control S PRs ra
Interface/
SNSR P
camera "o PRa I's
Interface/ SNSR. P
camera r 1 PRS M
)
Memory: | Mg PRs M2
Interface/ ACTR.
PR r"2 display r =
PR: "3

Figure 3.34 — hardware model of example 7

Figure shows a different graphical representation, where an hyperedge is used (See
Section [3.4.2). The graphical representation of Figure and are equivalents.

65

Hardware | Hardware | Hardware | Hardware
resources _|model nodes| resources |model nodes
onfiguration| CFG P
control S PRs ra
Interface/
SNSR P
camera "o PRa s
Interface/ SNSR. P
camera r 1 PRS r"
P.
Memory: | Mg PRs e
Interface/ ACTR.
P. r"s
PR r display
PR: r’s

Figure 3.35 — An equivalent hardware model of SPS-CGRA example 7

3.5.4 Fork-Join Special Nodes

In the architecture depicted in Figure the camera connected to Memory; produces a burst
of n pixels. These n pixels will be processed by the processing elements PRy and PRs, pixel by
pixel. The processed pixels will be stored in the same Memory;, and they will be read in sets
of m pixels by the display.

Memory,
INTERCONNECTIONS
INTERFACE
D [)I INTERFACE DZ D I_I_ *
4
CAMERA | Ds % DISPLAY
HW PR
HW Accel2 HW HW

Accelq HW HAccel||Accel2ff
IAccel3
PARAMETERS | PARAMETERS

[CONFIGURATION CONTROL ___|

Figure 3.36 — SPS-CGRA example 8

We can see in Figure [3.37] the hardware model of the system described before. In the Figure,
we notice the three regions of the system. The orange section represents the production of

pixels made by the camera (r(*)gN SE) "in this region, we will wait until the arrival of n samples

to move them to the memory resource (7). The brown section represents the processing and
communication elements. In this region, 75¢ will read pixel by pixel and transfer them to the
processing elements in a stream-like way. At the end of this section, all the processed pixels will
be stored again in the same memory resource. We need to wait for m samples to be stored to
move to the following region. After this procedure, the display (r§'¢T%) will start consuming

the bursts of m data samples.

Hardware Hardware
resources | model nodes
onfiguration CFG
control S
Interface/ I'SNSRO
| camera
Memory: [ry"se/ ry'sn
PRi rP3
PRZ rP4
Int‘erface/ r ACTR
display 6

Figure 3.37 — Division of the regions of processing in example 8

To describe this behavior accurately, we use the join and fork nodes introduced in Section
The join node r¢ models the burst of n pixels of the camera. Similarly, the join node

66

rd models the write of m samples to rI*SIN% | which is the number of pixels that the camera
ré‘ICTR requires. On the other hand, the fork node rg models the read of pixel by pixel of the
communication resource 5 and rf; models the same behavior for r{“T%. Figure depicts

the hardware model that includes the fork/join nodes.

o @oeoeceoodos

Figure 3.38 — Hardware model of example 8 with the fork and join special nodes

3.5.5 The Morphological Co-Processor Unit

The MCPU was developed by Bartovsky et al. [12]. It is integrated as a coprocessor in an
FPGA-based platform. The MCPU assembles several efficient units to support a large collection
of morphological operations. Figure layout its architecture. As we can notice, the MCPU
follows the principles of an SPS-CGRA with its pipeline-based array of processing resources
(Large SE pipeline and Geodesic Pipeline), and it has a loose coupling(i.e., no resource sharing
with its host processor). Notice the direct connection of the processing pipelines to the memory,
and the configuration control is depicted as configuration registers connected to all the hardware
resources.

r-—— — - — — — = = 1 _______________ 1
- Bart_proc peripheral (pcore) I

PLB interface ! PLB
R T Y =Rt L
S . l/REG1 REG 1 | /| REG 1 REG 1 ! Start |- | geinp |
® § reG2|, LAreG2 || fREG2], |fREG2 | Reset | — o cma
S %l Iy |
< g |£ REG n REG n z
o
V)

Ready VFBC1
| REG n REGn ||, [State |- | Input |' vfbe
Large SEBank 1-n | Geodesic Bank 1-m) Control |, FIFO buffer

I

I

i- Inpu;f vfbc_rd

| |_FIFO buffer VEBC3
Mux_out/ 1 I %@Ij_"‘/fbc_cmd

LargeSE | | JFM/ - — — — — |
pipeline o e oo e
I Output I .
e v
| 'I FIFO buffer [M
I
OUtpUt J vfbc_wr
) FIFO buffer | VFBCA
Gt.eod.e5|c Mux_out_2 Vfbc_cm g
pipeline

I Image output I

- — — — |

Figure 3.39 — Architecture of the Morphological Co-processor Unit [12]

The MCPU features two pipelines, a Large SE pipeline (detailed in Figure [3.40) and a
Geodesic Pipeline. Both with similar characteristics. They consist of an array of processing

67

resources, ALUs, and multiplexers. All resources can be configurated through the configuration
registers, and as a result, the type of operations and the datapaths can be reconfigured. The
granularity is mixed, from fine-grained (multiplexer) up to coarse-grained (dilation/erosion).
This is a particularity of the SPS-CGRAs, the broad range of granularity that it can contain.
In this example, we focus on the Large SE pipeline detailed in Figure 3.40] Notice that two
pipeline stages are shown and need to be modeled. Other stage quantities and the Geodesic
pipeline can be modeled; however, for didactic purposes, we only focus on two pipeline stages.
From Figure the configuration registers may be modeled as a sequencer node s¢/9 where
the configuration cost and their associated functions are described. The “Image input” and
“Image output” modules may be model as a communication memory resources: respectively
nodes r?f'f and r}/gﬁzg. The resulting modelization is given in Figure The corresponding

external producers and consumers are model as RINTERFACE SNIR)

actuators (ré“l%TQR).

Each Large SE Pipeline basic stage consists of: 1) two processing resources called Large SE
erosion/dilation, 2) one processing resource able to perform ALU-like operations, 3) two multi-
plexers, 4) two processing elements able to compute the infimum, maximum and accumulator
of the image pixels. The modeling of these elements is straightforward. We use r¥ for the

processing elements and rMUX for the multiplexers.

, either as sensors (r or

Operator, SE ALU Mux_{1,2} Operator, SE ALU Mux_{1,2}

I T I S N

" | Large SE " | Large SE M1 |
erosion --+> erosion : (1)

| dilation ST | dilation ST \
INPUT 5 \ OUTPUT

" | Large SE willll; " | Large SE il Mux_2 |
erosion , - - J‘—b erosion

.| dilation 8-bit Data | .| dilation |

\ \

1-bit Acknowledge
1-bit Fifo full flag Stage 1 \

Figure 3.41 — Hardware model of the MCPU

Latency Features

Each resource r; € R” U R® has a specification for the computing latency specific for the
hardware. For the resources r; € R we also define the input latency. Table summarizes
these specifications, where K.S means the size of the input structuring element, [is equal to the
size of structuring element (a line) in the orientated erosion/dilation, width is the width of the
input image, and (3 is the input angle of the orientated erosion/dilation. Finally, N/A means
not applicable.

68

Table 3.2 — Latency features of the resources

L
Resource Ti N cL
‘ L; L;
rfi NSR interface N/A 1
ro b interface N/A 1
ritD read N/A 1
rf%‘j{fg write N/A 1
r%[{l)gi 16 multiplexer N/A 1
erosion/ ((KS-1)/2)*width+ 3
7“56’11,12 dilation ((KS-1)/2)
orientated
erosion/ I sin(f) * width 3
dilation
acummulator,
7"{30,13,17,20 maximum, 1 1
minimum
bit-wise operations,
T4 addition, 1 1

substraction

3.6 Conclusions

In this chapter, we introduced a generic hardware model for SPS-CGRA. It allows modeling
the memories, processing resources, and all kinds of datapaths connecting them. Additionally,
this hardware model provides the means to describe the latency features of all the hardware
resources accurately. Also, for the processing resources, the model can describe two kinds of
latencies: input latency and computing latency. These two latencies are specifically considered
in a stream-based processing system. However, the concept of different sources of latency may
be extended to other types of processing.

The presented hardware model includes the means to model the configuration control re-
sources. This modeling focuses on the configuration cost through the description of its functions
and parameters. This feature will provide the means to accurately compute the upper bound of
the computing cost of implementing an application onto an SPS-CGRA (See Section .

We describe, through several virtual hardware, the modeling process of various structures
and systems. We divide the examples into the type of hardware resources and, we explain in
detail how we can model each one of these types. Furthermore, we presented a real-life example
and shown how the hardware model can abstract the important characteristics.

Finally, the hardware model can be used for most of the SPS-CGRAs, regardless of its
application field, due to its generic descriptors and the consideration of several types of hardware
resources.

69

Chapter 4

Implementation Model

4.1 Introduction

Generally, the sole output product of a mapping and scheduling algorithm, in the literature, is
the configuration context or executable (a hardware implementation description) [134) 135}, [136].
Few works, such as the Algorithm Architecture Matching (AAM) methodology [35} [85], include
an implementation model into their framework. An implementation model abstracts the result
of the mapping and scheduling of an application onto the hardware system (Figure . It is
the result of graph transformations between the application graph and the hardware graph. The
mapping and scheduling produce an implementation graph based on a given implementation
model from a couple of hardware and application graphs.

oplication dware
odel

ementation

Figure 4.1 — Y-chart of a mapping and scheduling framework

An implementation model has the information of the configuration context and, in a few
cases, information about the implementation’s performance. Thus another step may be needed
to generate the missing information about the implementation’s performance. Furthermore, the
features of an implementation model usually are only suitable to its target platform. Hence an

70

implementation model may be applicable only for its target platform and not usable for others.

To solve these issues, we propose to use a graph-based implementation model. It is built
with at least one instance of the hardware model but with fixed parameters (descriptors). To
represent the scheduling of the tasks over time periods, we replicate these instances and only
change the values of the descriptors. These last mentioned are fixed during the matching process
of the mapping and scheduling algorithm. Thus we take advantage of the descriptors of the
nodes from the implementation graph to include the required information for the configuration
context. Additionally, we include and process latency information required for performance
analysis. With this model, we can produce the configuration context and, in parallel, produce
the results of the performance evaluation. Furthermore, the entire framework may apply to
other platforms.

We organize the remaining part of the chapter as follows. In Section we introduce
the formalization of the model. Section [4.4] describes the performance evaluation methodology.
Finally, Section makes a summary of the chapter.

4.2 Proposed Implementation Model

The implementation model provides information of both temporal and spatial allocation of the
application tasks onto the system hardware resources. Additionally, the model integrates latency
information needed for performance analysis. The implementation model allows describing the
result of the matching process during the mapping and scheduling algorithm. The implementa-
tion model is derived from the hardware model.

Definition 4.2.1 (Implementation graph). Grap is a directed weighted hypergraph. Several
different instances Gyrap, (called time slot) may construct the implementation graph when the
available resources are not sufficient.

Definition 4.2.2 (Time slot). A time slot is a subset of hardware resources configured for a
computed duration to perform a subset of the application’s tasks. Thus, a time slot allows
reusing temporally the resources configured through different parameters.

The hardware reconfiguration delimits the duration of a time slot. Each time slot starts
with hardware reconfiguration and ends before the following hardware reconfiguration. Recall
that the reconfiguration is represented by node s¢¥'¢. Within a time slot, an instance of the
hardware executes a subset of tasks or the whole application. A time slot fulfills two purposes,
a resource occupation representation and a representation of resource latencies. Firstly, a time
slot details the task allocation on both temporal and spatial dimensions. By parsing the imple-
mentation graph, we obtain information on the mapping and scheduling of the tasks. Secondly,
our implementation model includes latency information on both nodes and edges. Using this
latency information, we can execute a performance evaluation over the implementation graph.
In Section we describe a performance evaluation method.

4.3 Formal Implementation Model

We define our implementation model as a directed weighted hypergraph Gpyap(S’, K'), where S’
represents the nodes, and K’ represents the weighted hyperedges. It consists of a set of subgraphs
(Garap,) that may be or not disjoint, and each subgraph is an instance of the hardware graph
Grw. In this setting, each subgraph represents a time slot.

The set of weighted hyperedges K’ = K{,K),...,K,,, where m =| K’ |, represents the
interconnections of the programmed hardware resources.
Definition 4.3.1 (Weight of a hyperedge). We define the input latency of the head node [as

the weight of each hyperedge.

!Given a directed edge E(x,y), y is called the tail node, and x is called the head node. Furthermore, node y
is a direct successor of x, and x is the direct predecessor of y.

71

The set of nodes S’ represents the hardware resources with fixed parameters. These param-
eters are fixed during the mapping and scheduling. The set S’ has similar structure of the set S
(See Section [3.4.1)), but with the addition of the subsets R*™ € R’ (See Section and S¢/9
(See Section [4.3.1)) . Thus, S’ consist of

S = SYIUR (4.1)

where

R =RPUR‘UR™UR™ (4.2)

We systematically use lowercase superscripts for the implementation model resources to
differentiate them from the hardware model resources. We describe each subset in the following
sections.

4.3.1 Configuration Control Nodes 5¢/9

The subset S°9 represents the configuration control nodes of each time slot i. Each sequencer
node s¢F¢ (See Section [3.4.2)), from the hardware model, is in charge of the generation of
this subset. Recall that s“¥'“ integrates the configuration cost functions and their parameters.
During the mapping and scheduling process, this information will be processed to obtain the
configuration cost of each time slot ¢ (7'C;). Therefore, there will be the same number of
sff 9 ¢ §°19 as the number of time slots that integrates Gysap. Finally, each sjf 9 is described
as a value of the time (in clock cycles) needed to configure all the resources, and this value is a
function of the parameters needed to configured.

4.3.2 Processing Resources R”

The subset RP represents the processing resources with fixed parameters. Similarly, as in Section
we describe each r¥ € RP.

r? = (7, mi, li, cf gi) (4.3)

where 7; € 7T;, represents the selected type of task. The descriptor m; € II; represents the
set of parameters that correspond to 7;. The computing latency of the processing resource is [;
and corresponds to the type of task and its parameters. The configuration cost of the resource
is ¢fg; and corresponds to the type of task and its parameters.

4.3.3 Communication Resources R¢

The subset R represents the communication resources with fixed parameters. This subset has
the same structure of R® (See Section [3.4.5), which is

R¢ = RmMuT | er U RY" U Rinterface (44)

The subsets of R have the same descriptors as their conterparts of R¢. Accordingly, each

ri** e R™Y* is represented as

= (7 o s e fgi) (4.5)

where i?”" is the input port selected from 0P is the output port selected from O™,

l; is the latency value and cfg; is the configuration cost of r]"“*.

For the subset R and R“", we describe each r" € R¥" and 774 € R™ as

port
L,

T;UT,rgd = (aia lia Cfgz) (46)

where a; is the assigned address space, [; is the cost of the read/write operation and cfg; is
the configuration cost.

72

For the subset R™erface we describe each rinterface ¢ Rinterface qq

T;’nterface _ (ﬂ-iv lz) (47)

where m; € II; are the assigned parameters and /; the latency value.

4.3.4 Memory Resources R™

The subset R™ refers to the memory resources of the system. Similarly, as in Section each
r™ € R™ is described as
m

T

= (ay, crd e’ (4.8)

1 0™
Where a; is the address space available, i is the number of read channels and c" the
number of write channels.

4.3.5 Data Dependency Resources R*"

R*™ is a subset of virtual nodes that allows representing the data dependency between time
slots and between datapaths. Data dependency between time slots occurs when the number
of tasks to allocate exceeds the number of processing resources available. Data dependency
between datapaths occurs when the number of tasks to allocate exceeds the number of processing
resources available in a single datapath. However, other independent datapaths are available.

The addition of these resources provides the correct information to generate the configura-
tion context and evaluate the performance of the implementation of the application onto the
hardware. These resources do not have any descriptor, and their latency is considered as zero
(bypass). If the represented data dependency is between time slots, we add two r” € R*". The
first one (r{™) will be in time slot i. Its predecessor will be the r"sink of time slot ¢ and its
successor will be ;. The second, 77%;, will be in time slot 7 + 1 and its successor will be the
rMsource of time slot ¢ 4+ 1. The connection between these two data dependency resources will be
through an inter-slot hyperedge K € K'.

Definition 4.3.2 (Inter-slot hyperedge). An inter-slot hyperedge KJ’ € K’ is an hyperedge that
connects two data dependency resources ;" and r}Yy, which are in two consecutive time slots.

If the represented data dependency is between datapaths, we add one ;™. Its predecessor
will be the sink node of the datapath that will process the input data first. Its successor will
be the source node of the datapath that will process the input data secondly. The addition of
the data dependency resources is subject to the capabilities of the SPS-CGRA. Examples of the
addition of the data dependency resources and the use of the inter-slot hyperedge are given in
the next section.

4.3.6 Examples

In this section, we present simple experimental graphs for both application and hardware to
detail the main characteristics of the implementation graph. Additionally, we describe the
utility of the data dependency resources.

Implementation Graph

Consider the implementation graph shown in Figure [£.2] For didactic purposes, let’s assume
that this implementation graph results from mapping the application graph onto the hardware
graph, both shown in Figure [£.2 The hardware graph and the implementation graph are very
similar. The only difference is that each resource of the implementation graph is configured (74
is configured to execute %1, rf is configured to execute ta, etc.)

73

Application graph Hardware graph

eseoocoeds

Time slot 1

>

Implementation graph

Figure 4.2 — Example 1 of a generic implementation graph

Now, let study the more complex example depicted in Figure [£:3] In this example, the
tasks of the application graph exceed the number of processing resources of the hardware graph.
Hence, there is a need for 3 processing resources (to allocate t1, to and t3) but only two (r{
and r]’) are available. Thus, we need to execute the whole application through two steps, using
reconfiguration of the hardware between these two steps. During the first step we may execute
t1 on 75 and t2 on r§. Then, we store the to data into the memory (ry"*""*). Next, in a second
step we can reconfigure the hardware so that we read ¢y data from memory (rg"") and reuse rf
to execute t3. In that case 7} is configured as a bypass (will copy its input to its output) thanks
to the copy operation (See Section .

Formally, each hardware configuration is called a time slot (as introduced in Section. So,
depending on the number of time slots required to execute an application, the implementation
graph may be made of several instances of the hardware graph. Notice that in time slot 1, the
actuator node (r®") is missing, and in time slot 2, the sensor node (r*"*") is also missing. This
is due to two reasons. The first is because we can not consume the data in time slot 1, as the
entire processing of the application is not yet finished. The second reason is because we do not
need to produce data in time slot 2 since it stores the partially processed data in time slot 1 and
rereads it in time slot 2. To complete, notice the inter-slot hyperedge, in green, (presented in
Section that connects r{y to r{%. As stated before, the processing of the whole application
is not finished in time slot 1. Therefore the processed data of this time slot will be reuse in time
slot 2. By adding both the inter-slot hyperedge and the data dependency resources, we model
this behavior. Examples of the use of the data dependency resources are given later.

Application graph

Hardware graph

Time
Implementation graph

Figure 4.3 — Example 2 of a generic implementation graph

74

Data Dependency Resources R*"
Between Time Slots

The number of tasks of the application graph exceeds the number of processing resources of the
hardware graph. Thus, the whole application will be executed in two time slots. In Figure [£.4]
we show the implementation graph. As previously stated, in time slot 1, we execute t; on r}
and t2 on r} and then, in time slot 2 we execute the remaining part of the application (¢3 on
rf). This behavior creates a data dependency between time slots. The ¢ data is stored during
time slot 1, and it will be reuse in time slot 2. To represent this behavior, we add the resources
riy for time slot 1 and r{% for time slot 2. Moreover, we connect both through an inter-slot
hyperedge to connect both time slots.

Time slot 1 Time slot 2

Figure 4.4 — Inclusion of the data dependency resources between time slots

Between Datapaths

The hardware graph of Figure [4.5| consists of two independent datapaths of processing resources.
Each datapath has two processing resources. Consider the application graph shown in the same
Figure [£.5] The total number of tasks exceeds the number of available processing resources of a
single hardware datapath. Let’s assume that the hardware can perform recomputation of data
between datapaths in the same time slot. To execute the whole application, we may execute t;
on 7% and ¢ on rX. Then we store the t5 data into the memory (ry"*"*). During the same time
slot we read t2 data from r4"*""*, to execute t3 on rh. This behavior creates a data dependency
between datapaths. To model this behavior, we add r{5. The predecessor of this node will
be the sink hardware resource of the first datapath (r§"). The successor of 7% will be the
source hardware resource of the second datapath (r}?). This resource will also be useful for the
performance evaluation because it allows one to construct the critical path correctly.

75

Application graph Hardware graph

N
>

Time Impblementation arabh

Figure 4.5 — Inclusion of the data dependency resources between data-paths

4.4 Performance Evaluation

In this section, we introduce a method to compute an upper bound estimation of the computing
cost of an implementation. The estimation is based on the critical path of the evaluation
graph. The evaluation graph is the resulting product of a series of transformations on the
implementation graph. We present the performance evaluation in the next subsections.

We divide the rest of the section as follows. In Section we present a brief description of
the state of the art of timing analysis and argue the gaps in the current approaches. In Section
4.4.2| we introduce our performance evaluation methodology. Finally, in Section we present
some examples on the build of the evaluation graph and an experimental example that shows
the use of our proposed equation.

4.4.1 State of the Art

A timing analysis refers to computing the execution time bounds or estimates [I37]. It is a
crucial step in the design and prototyping of real-time systems. Two main approaches exist for
timing analysis, static methods and measurement-based methods.

Measurement-based methods combine static program analysis with a dynamic part, the
execution time measurements [138]. This means that a task or parts of a task are executed in a
given hardware or simulator. Then, the timing is measured for a given input. Static methods
analyze the task itself and its possible implementations using a hardware model and compute
the upper bounds of this analysis. This method is highly dependable on the model’s accuracy.
However, it is appropriate for fast prototyping and development.

Several static-based methods have been proposed to compute the execution time of an ap-
plication. Melani et al. [89] presented a method to calculate the response time of a task. The
response time or make-span is the longest possible time any instance of the task requires to
complete its execution [93]. The authors consider the sum of the WCET of all critical path
nodes and the interference time, which is the time that each node consumes, from its ready
state until its executed. This method is applied to a DAG model that considers conditional
parallel tasks and focuses in homogeneous multiprocessors platforms. Risat et al. [93] proposed
an improvement to the work of Melani et al. to decrease the pessimistic results of their method.
However, their approach also considers the same factors.

76

Frid et al. [I39] proposed to compute the computing cost of an application using the el-
ementary cost of each basic operation. The authors propose a method to identify a set of
possible elementary operations of a platform and compute their costs individually. Next, divide
the applications into those elementary operations and obtain the computing cost by adding the
previously calculated elementary operations cost.

Grandpierre and Sorel [35] presented a performance prediction based on their implementation
model. Based on the methodology AAM [85], the implementation model is a graph that describes
real-time behavior, and it may be used to verify real-time constraints. The method is based on
the critical path and takes into account the operation and the communication cost. Additionally,
the method provides a diagram of the memory allocation.

Zadrija and Sruk [94] presented a method to compute the cost of mapping a task ¢; onto a
processing resource r;j, which is the base of their scheduling algorithm. This approach particu-
larly considers the different costs of a task depending on where it is implemented.

Hamann et al. [I40] presented a method to compute the end-to-end latency where the implicit
communication cost is taken into account. This approach helps to optimize the communication
overheads and reducing event-chain latencies.

Luet al. [IT0] introduced an equation to calculate the computing cost of an application imple-
mented on NoC. They propose to use the longest path weighted Manhattan distance (LPWMD).
This method uses the critical path of the application after it is implemented and considers the
communication cost as the weight of the edges.

Topcuoglu et al. [91] presented a method to obtain the computation cost of a task recursively.
They consider the computation cost of the task and the maximum value of the computation cost
plus the communication cost on the critical path set to a sink task (upward rank).

SPS-CGRA applications are time-critical. This aspect defines the requirements of the accu-
racy of the performance evaluation. Several conditions need to be considered. The heterogeneity
of the material realizations is an important characteristic of the SPS-CGRA, and this feature is
not commonly considered on static-based timing analysis. In [94] [139] they consider this hetero-
geneity however only using different WCET. Another important aspect is the communication
cost, which is considered in [91], 110} B35, 140]. Also, some path-based works tend to overes-
timate the execution time [89) [93]. And significantly, most of the current approaches neglect
the configuration cost and may not be directly applied to the timing analysis of SPS-CGRA
applications.

Our proposal is to compute the upper bound of the computing cost, which encompasses the
configuration cost and the execution time. It covers the time from the hardware configuration
up to the output of the last processed sample. It allows taking into account different material
realizations, and it also considers two different latencies per resource, input and computing
latency. Overall, it can give accurate cycle upper bounds of the computing cost.

4.4.2 Methodology
The performance evaluation methodology consists of two steps:
1. Evaluation graph building.

2. Estimation of the computing cost upper bound over the critical path of the evaluation
graph.

The input of the methodology is the implementation graph from the mapping and scheduling
algorithm. Through graph transformations of the implementation graph, we obtain the evalua-
tion graph. Next, we use our proposed equation to compute the upper bound of the computing
cost.

7

Evaluation Graph

An implementation graph (defined in Section may be connected across its time slots through
the data dependency resources introduced in Section Otherwise, each time slot will be
disjoint for each other. Regardless of the implementation graph is connected, the configuration
control resources may not be considered a part of the critical path because they are source nodes
and are not connected to the previous time slot. To accurately compute the critical path of the
implementation graph, we perform some transformations over it and build the evaluation graph.

The transformations done over the implementation graph to build an evaluation graph are:

e Removal of the disabled nodes (See Section Complementary operations).
e Removal of the R™ resources.

e If two consecutive time slots ¢ and ¢ + 1 are connected through an inter-slot hyperedge
(See Section , substitute the hyperedge with the configuration control resource of
time slot ¢ + 1. The configuration control resource will have as a predecessor the ;™ of
time slot 7 and as a successor the r7}; of time slot 7 + 1.

e If two consecutive time slots ¢ and ¢ + 1 are disjoint. We insert the configuration control
resource (s¢/9) of time slot i + 1 in sequence between time slots i and i + 1. All the sink
resources of the hardware instance of time slot ¢ will be the predecessors of the configuration
control resource of time slot ¢ + 1. All the source resources of the hardware instance of
time slot ¢4 1 will be the successors of the configuration control resource of time slot ¢ + 1.

Some examples of the building process of the evaluation graph are given in Section [£.4.3]
After building the evaluation graph, we compute the estimation of the upper bound of the
computing cost on the critical path.

Latency-based Performance Evaluation

Computing cost is the time elapsed from the first configuration of the hardware until the con-
sumption of the last output sample. We compute an estimation of the upper bound of the
computing cost (CC) as follows:

N
CC => (TN; + TEX; + T;) (4.9)
=1

where N is the number of time slots of the implementation graph.

We define overall input latency time interval TIN; of time slot ¢ as the number of clock
cycles from the arrival of the first data sample until the start of the computing of the first
result. We call TEX; the execution duration of time slot 7, and it represents the execution
time for processing the entire set of data samples after the input pipeline is full and can provide
a continuous stream of data. T'C; is the configuration cost of time slot i.

We propose to bound the problem to the identification of the critical path of the implemen-
tation graph and compute the computing cost on it. TIN; depends on both the computing and
input latency of each resource. These latencies propagate through the processing pipeline. Also,
T1N; considers the type of resource the type of the task to execute on the given resource. To
obtain an accurate measurement of T'IN; we use the following equation:

|CP;|—1
TiNg= Y (L) (wy) +£5* (4.10)
j=1

Where C'P; is the set of resources that belong to the critical path of time slot . EJIN is
the input latency of the resource, E?L is the computing latency of the resource. Finally, w;

78

is a variable allowing to express the propagation of the impact of the computing latency from
predecessor to successor resources. We call this variable latency propagation parameter.

Latency Propagation Parameter

Recall that an SPS-CGRA consists of a set of heterogeneous processing resources. Thus, we
expect that, within a path, several different values of latencies exist. Accordingly, the critical
path will be imbalanced in terms of latency, and we need to model this phenomenon. We
propose to use the variable w that will carry the information about the worse computing latency
throughout the critical path.

Let w; be given by:

wj = mam(wj_l,ﬁjcfl) (4.11)

where w;_1 is the w of the predecessor and EJC_Ll is the computing latency of the predecessor.
At the beginning of the evaluation process, w will be initialized as zero, and it will be updated at
each resource that belongs to the critical path. The final value of w (w value of the last resource
in the critical path) will be used as the worse computing latency of time slot i.

Consider Figure where two linear sub-graphs of processing resources (t1/r}, t2/r5 and
t3/r}) are given (notation t;/r% represents that ¢; has been allocated onto ’FJP). From the val-
ues of the computing and input latencies, we can see that both paths are imbalanced. The
corresponding timing diagrams are shown on the right. In the first linear sub-graph (top), the
first resource (t1/r}) is the one with the largest computing latency, compared to (t3/r} and
t3/rk), therefore it will give the cadence to the rest of the resources in the pipeline. In other
words, it will provide the timing for the processing of the remaining resources in the critical
path. The impact of its computing latency will result in a waiting time between the output of
two consecutive processed samples of t2/r5 and t3/r}. This largest computing latency and the
associated delays are considered thanks to w;. In the second linear sub-graph (bottom), the
second resource (t2/78) is the one that has the largest computing latency, and it will only affect
the processing of the next resource. The variable wo will provide the means to propagate its
computing latency to the following resources.

Dataflow _ _ _ _ _ > Dataflow _ _ _ _ _ _ _ _ _ o ________ >
|:| Input latency
ty/ro1
Computing latency
ta/rP2 .
CL— CL— CL—
LO=2 [9=1 [9=1 /1% o
LN=1 [N=1 [N=] e I R R . Waiting time for
Dataflow > Clock cycles new data to be

processed
t/rP
LA=1 [¢4=3 [¢=] il

t3/rP3

LIN=1 LIN=D LIN=D : : : |
Clock cycles

Figure 4.6 — Effects of the computing latency of a resource in the critical path

The execution duration TEX;is computed as follows
TEX; = (CL;)(TS) (4.12)

where C'L; is the worse computing latency of the critical path (final value of w) and T'S is
cfg

the total amount of input samples of time slot i. Finally, recall that s, carries the value of

T'c; (See Section [4.3.1)).

79

4.4.3 Examples
Example 1 : Evaluation Graph and Memory

Let’s use some examples with experimental implementation graphs to explain the building pro-
cess of the evaluation graph. In Figure 4.7] a generic implementation graph with only one time
slot. We notice that all the processing resource have their corresponding task.

Time slot 1

Time

Figure 4.7 — First implementation graph example.

In this first example, the transformation is the removal of r*. In Figure we show the
evaluation graph of this first example. As we can notice, with this change, we can obtain the
critical path, which will also correspond to the unique simple path of the evaluation graph, and
compute the upper bound of the computing cost.

|
«< Time slot 1 — 3 |

|
EE>() '
() (O)>()>)>00).

|

|

>
Time

Figure 4.8 — First evaluation graph example

Example 2 : Evaluation Graph and Two Time Slots

For the second example, consider the implementation graph of Figure This implementation
graph has two time slots, and all the processing resources have a task (¢1,t2 and t3) or a copy
(r8 /copy) operation assigned. Also, notice the inclusion of two data dependency resources (r§%
and r7%), which are connected through an inter-slot hyperedge. This means that the partially
processed data from time slot 1 needs to be reread for further processing in time slot 2.

Time slot 1 Time slot 2

Figure 4.9 — Second implementation graph example

80

Figure shows the evaluation graph of the second implementation graph example. In
this example, the transformation includes the connection of both configuration control resources
for the time slot 1 to rg™". In time slot 2, the configuration control resource s will be the
successor of the resource r{% and the predecessor of resource r{5. We include s‘if Y in this way to
be able to get the correct critical path of the implementation. The last change is removing 7" in
both time slots. The upper bound of the computing cost includes the latency of processing the
entire input image. This is the main reason to perform this transformation to the implementation
graph to produce the evaluation graph.

| |
< Time slot 1 > | <€ Time slot 2 >
| I

! Py :
! copy |
| |
Time ~

Figure 4.10 — Second evaluation graph example

Example 3 : Evaluation Graph and One Time Slot

We can see in Figure a third implementation graph example. In this case, the implemen-
tation graph is built only with one time slot. Also, all the processing resources have a task
assigned.

Time slot 1

Time)

Figure 4.11 — Third implementation graph example

In Figure the resulting evaluation graph is shown. We can see that the transformation

corresponds to the connection of the configuration control resource to the hardware resource

rg™®" and removal of 7.

Y

< Time slot 1

\/

Figure 4.12 — Third evaluation graph example

Example 4 : Evaluation Graph and Copy Resource

In Figure we can see a similar implementation graph example as in the Third example. The
difference is that we include copy operations. But as the copy operations should be included
in the performance analysis, we need to keep them in the evaluation graph, which is shown in

Figure

81

Time slot 1

Figure 4.13 — Fourth implementation graph example

< Time slot 1 >

\/

Figure 4.14 — Fourth evaluation graph example

Example 5 : Evaluation Graph and Disable Resource

This last example of an evaluation graph corresponds to an implementation graph that includes
disable resources depicted in Figure Notice that the resources colored in blue are disable
resources.

Time slot 1

|
3
[¢°]

>

Figure 4.15 — Fifth implementation graph example

As the fifth implementation graph includes disabled nodes, we need to exclude them as
well as connect the configuration control resource to r§j™*" and remove r7*. In Figure the
resulting evaluation graph is shown.

«< Time slot 1 > :
I
—> :
I
|
@) .
|
Time -

Figure 4.16 — Fifth evaluation graph example

82

Example 6 : Performance Evaluation

To exemplify the performance evaluation, let’s use a simple, intuitive example. This example
consists of three different sets of parameters for the hardware resources. These different values
will produce different critical paths. The purpose of this example is to detail the performance
evaluation methodology and show the accuracy of the Equation |4.9| presented in Section

Figure [4.17 shows the experimental application graph that we will use. And, Figure [£.18]|
depicts the experimental hardware graph. Finally, Figure we showed the resulting imple-
mentation graph.

Figure 4.17 — Application graph for the performance evaluation example.

Figure 4.18 — Hardware graph for the performance evaluation example.

Time slot 1

Figure 4.19 — Implementation graph for the performance evaluation example.

In order to get the evaluation graph we apply the transformations described in Section [£.4.2]
(memory node removal, disable node removal, etc.). The resulting evaluation graph presented

in Figure [4.20]

83

Figure 4.20 — Evaluation graph for performance evaluation example.

To compute the critical path of the graph from Figure [4.20] we have to compute the length
of 4 possible paths represented in Figure m (each path with different colors):

Figure 4.21 — Paths of the evaluation graph.

e Path 1 (blue) : (scfg,TS"ST,TSd,751/7“27753/7"5,154/7“§aCOP?J/T‘ﬂ»WiUQT’th/T%W)

e Path 2 (red) : (scfg,TS”ST,TEd,751/?”2,t3/7“g,ts/TgaT%TaW/Tilgtr)

e Path 3 (green) : (s%9,rgns™ vl to /v t3 /vl ta/rk, copy/rhy, iy te/riEtT)
(

e Path 4 (purple) : (scfg,TS”ST,rgd,tg/rg,tg/rg,tg,/rg,r}”{,h/r‘fg”)

First Set of Parameters

In the whole example, we will use the parameters of Table for the application graph. Also,
for the rest of the section, N/A means Not Applicable.

Table 4.1 — Parameters of the application graph of the performance evaluation example.

Task type P
to interface N/A
t1 taskl fix
to task?2 fix
t3 task3 fix
ta task?2 fix
ts taskl fix
t¢ interface N/A
t7 interface N/A

84

In this first part of the example, we will use the parameters of the hardware resources

presented in

Table 4.2 — First set of parameters of the hardware graph.

L;
Ti Input Computing Clgi
latency latency
7“59710 taskl,taskd 2 2 1
7"?8,11 task2,task6 2 2 1
rf taskb, task6 2 2 1
rf task3, task4 2 2 1
rgVoR N/A N/A 1 N/A
ris6 07 N/A N/A 1 N/A
o N/A N/A 1 1
35,14 N/A N/A 1 1

Among the paths established above, we have to identify the critical according to the first set
of parameters. For that purpose, we compute the lengths using a timing diagram:

Figure m presents the path 1. We compute the computing cost over this path (if we
compute the computing cost of the three other paths, we will obtain a lower value; hence it will
not be the critical path).

O E-E@ @)

Figure 4.22 — Critical path of first set of parameters.

Using the values of Table [4.2] and Consider an input of 100 samples and a configuration
cost of 1 clock cycle. Also, suppose the duration of the copy operation for all processing resources
has a value of 1 clock cycle. Using Equation we compute the computing cost as follows:

Tcq Tex

N —
cC =((1) + (2 100) +

Ting
snsr rd D P D D wr
To T2 T4 T T3 11 T12

A~ AN A~ =
() + (1) +@2*x14+2)+(2%x2+2)+(2x2+2)+ (1) + (1))

Tcy Texy Tin
e s =~
20)

oo =((1) + (200) + (4.13)

= 221 clock cycles

85

‘s1ojowreIRd JO 198 9SIY OYY) JO WRISRIP SUIWILT, — €7'F oINS

passadoud
9q 0] e1Ep MBU

150> buindwod

A

A>uaye| Indu ||eIdanQ

A

|
uojjeinp uoiNdaX3 > | «<
|

=

<

NI

1

Aouaje|

bupndwod fouapel

indu|

o]

LN)|

<

(agl
NN

i

=1

-
Y o

\O|LN(LN

<M

<r|m|en)
~

il
—|
(ON[e—[—
—|O|O]
O[N]
N[\O[\O|
\O|LN(N
(<t (<

Olovjon
2

~|—[—]

oy awn buniey B4

> |

| Kouare|indu|
foudie|

_ Bbunndwod

| 4equnu sjdwes

|

|

|

|

|

|

|

w_gcum_.:uw‘_
€L,
m_.._Oumzuum_
N_.>>‘__
:a‘_

64l

84l

9l

Sad

o.a‘_

€.
2l

L], ‘osussd

i

| s912£2 3o

86

Second Set of Parameters

Now, let’s use a different set of latency features. We change the parameters for rf’. Let’s assume
that for the implementation of task2, the input latency changes to 3 samples and the computing
latency to 3 clock cycles. These changes are shown in Table The critical path is no longer
the same. Figure [4.24] shows the new critical path and Figure the new timing diagram.

Table 4.3 — Second set of parameters of the hardware graph of performance evaluation example.

L;
Ti Input Computing Crgi
latency latency
7“59710 taskl,taskb 2 2 1
rf task2,task6 3 3 1
i task2,task6 2 2 1
rf taskb,task6 2 2 1
ré task3, task4 2 2 1
roNSE N/A N/A 1 N/A
riE S, N/A N/A 1 N/A
o N/A N/A 1 1
135,14 N/A N/A 1 1

(O EE @)

Figure 4.24 — Critical path for the second set of parameters

With the new values described in Table [4.3] we compute the same Equation as follows:

Tcq Texy
AN ——
CC =((1) + (3% 100) +

Ting

snsr rd p p D D wr
To T3 L Te T8 1 T2

N A~ —— =
1)+ 1) +B*1+3)+(2%3+2)+(2x3+2)+(1+1)+ (1))

”_I‘/c\l Tex1 Tin; (414)
CC =((1) +(300)+ (27)) = 328 clock cycles

87

‘s1ojoureIed Jo 39S PU029S O} I0] WeISeIp SUIUL], — G7'F 9IS

passadoud
9q 0} e}ep M3U
Joyawin bunien 5

A .

> |
| A>usze| indu| [
|
|
|
|
|
|
|
|
|

150> buindwod

A

uoljeinp uolndex3 Aouaje| indui ||eIBAQ >
NI

1

Aouaje
punndwod
Jaqwinu sdwes
9L

A

‘_Oum.‘_auw\—
€yl
Jorenped
a,,l
Ligd

64l

84l

994

Sgl

[

£

SL

(49

511, osuesd
[

6pS

(e
—
—lo|o|
avoo|co
oof~|N
Oftn|in)
|t |
<t|m|m)
ey
—
T

<[™|m|
—

I
I
|
I LU=
|
|
|

i —s—s———— -+ ———————

“ s912£2 30D

88

Third Set of Parameters

Finally, for the third considered latency features, the changes are considerable. For 7 the
implementation of task2 considers 3 samples as input latency and 2 clock cycles as computing
latency. For réD , the implementation of task3 considers 4 samples as input latency and 3 clock
cycles as computing latency. For rgf , the implementation of taskl assumes 1 sample as input
latency and 3 clock cycles as computing latency. These changes are summarized in Table [£.4]
We get a new critical path shown in Figure [4.26], and the latest timing diagram is shown in

Figure

Table 4.4 — Third set of parameters of the hardware graph of performance evaluation example.

L;
Ti Input Computing Clgi
latency latency
ngJo taskl,taskd 2 2 1
rf task2,task6 3 2 1
rg taskl, taskd 3 3 1
7"511 task2,task6 2 2 1
rf taskb, task6 2 2 1
ré task3,task4 4 3 1
ro VSR N/A N/A 1 N/A
risteir N/A N/A 1 N/A
rotd N/A N/A 1 1
AT N/A N/A 1 1

@O 0~®

Figure 4.26 — Critical path for the third set of parameters.

We compute the computing cost with the new values as follows

Tcq

Tex;

N ——
CcC =((1) + (3 100) +

Ting

sSnsr
To

T3 5

rd P

wr
T12

~~ A~ ~~
(1) + (1) +B*1+2)+(4%2+3)+(B3%3+3)+ (1))

A~ =
oo =((1) +(300) +

Tcy Tex

Tin,

=
(31)) = 332 clock cycles

(4.15)

As we can see with these examples, the proposed equation for the computing cost produces
cycle-accurate results. It is helpful to determine the estimation of the upper bound of the

computing cost.

89

‘s10j0urRIRd JO 908 PIIY) 9} 10 WeISerp SUIUL], — Lg§ oINS

1502 buindwo)

Aouaje| indul ||e19AQ
Z,n_u

>,
y

Y

8¢

9¢

O[O0 00|
OO|I [N

Olov[on

N[N N
—
—|O|O]

—

NN [\O|\O
\O[LN(LN
<
—
<[]

(o)l
—
ON[00|00]
CO(M [N

NN[\O|\O

\O[LN(LN

L[| <

<t|m|en

(aal(a\l (e}

passadoud
9(0] e1EP MdU
| 1oyawn bunen B

| Aousrejindu; [
_ £ouaie|
buindwod
| Joqwinu ajdwes
_ 9L iosenyoed
€Lyl
_ Shiojenyoed
Tyl
|
641
| 84l
[
Sl
| Vol

| %ol

Liosuasd

B 7o

£

“ [EThY S plelp)

90

4.5 Conclusions

In this chapter, we have introduced our graph-based implementation model. It can represent
both the spatial (mapping) and the temporal (scheduling) allocation of the application’s tasks
onto the hardware resources. The implementation model also carries information about the
resource’s latencies. This feature is inherited from the hardware model. Additionally, we intro-
duce a subset of virtual nodes that allows one to model data dependency between time slots and
between datapaths. This subset enables to describe recomputation of data within a time slot
and between time slots if the capabilities of the hardware architecture allow it.

We presented a performance evaluation methodology. Based on graph transformations of the
implementation graph, we build what we call an evaluation graph. From the evaluation graph,
we compute an estimation of the upper bound of the computing cost over the critical path. We
evaluate our proposed equation over an example and three different sets of parameters. We
demonstrate the accuracy and the benefits our the performance evaluation methodology.

91

Part 11

Mapping Algorithms

92

Chapter 5

Introduction

The mapping algorithm seeks to allocate, by matching process, an application’s tasks to the
available hardware resources. The scheduling algorithm establishes the order of (sequence) exe-
cution of each task on each hardware resource [141]. Both processes can be performed separately,
although they impact each other efficiency. Both the mapping and scheduling algorithms play
a critical role in today’s systems. They are in charge of allocating the tasks efficiently and opti-
mizing metrics such as latency, resource utilization, energy consumption, and data throughput,
among others.

Generally, the mapping and scheduling problem is considered NP-complete [142]. This means
that the optimal solution can only be obtained by exploring all the possible solutions. The
execution time of algorithms for solving NP-complete problems increases exponentially with
respect to the size of the input data (the number of tasks and resources). An efficient heuristic
may be used to decrease the exploration time and obtain a reasonable solution.

Common approaches to solve this problem are list-scheduling, clustering scheduling, and task
duplication-based scheduling. List-scheduling is the most used approach. List-based scheduling
algorithms usually are single-shot algorithms that focus on systems with limited hardware re-
sources. This approach defines priorities to the tasks according to a metric (latency, types, data
dependence) and schedules them in a topological order in decreasing priority [143]. The task’s
priority can be computed statically, before the scheduling, or dynamically, interleaving with the
scheduling.

List-based scheduling algorithms are widely used for heterogeneous systems and represent an
efficient approach for SPS-CGRA-based systems. This approach provides the means to consider
the complex structure of an SPS-CGRA and the limited availability of hardware resources. It
also allows one to define the priorities according to both the topological order and the realization
efficiency.

Given today’s applications complexity and demands, new approaches for the scheduling
problem have been proposed. Machine learning, a subset of artificial intelligence, has grown
in popularity because of its simple recipes and algorithms that can learn patterns, behaviors,
models, and functions [I44]. In particular, a type of machine learning called reinforcement
learning has been the focus of several current works. In reinforcement learning, an agent is given
the task to explore and interact with an environment. During this interaction, the agent will learn
how to act given some state. This approach relaxes the scheduling problem’s complexity and
increases the universe of possible solutions given the learn-by-trial method used in reinforcement
learning.

In this part of the thesis, we explore two approaches to solve the mapping and scheduling
problem for SPS-CGRA. In Chapter [6| we present three different types of list-based algorithms.
Chapter [7] presents a Q-Learning mapping algorithm. Finally, in Chapter [§ we evaluate and
compare our solutions and briefly discuss the results.

We organize the remaining part of this chapter as follows. Section reviews state of the
art. Section presents a brief discussion of state of the art. Finally, Section [5.3| summarizes

93

this chapter.

5.1 State of the art

As mentioned in the previous paragraphs, mapping and scheduling problems are defined as an
NP-complete problem [I142]. The best solution can only be obtained by brute force search. A
brute force algorithm will find the optimal implementation of an application on the hardware,
but it explores and evaluates all possible solutions in a considerable exploration time. To deal
with this problem, several heuristics and techniques have been proposed to reduce exploration
space and exploration time.

In this section, we review the state of the art of mapping algorithms. We start with list-based
algorithms, continue with linear programming algorithms, following reinforcement learning plan-
ning algorithms. Finally, in the last section, we group together several interesting approaches.
Although these approaches are far from our work, we can benefit from some of their character-
istics.

5.1.1 List-Based Scheduling Algorithms

One of the families of algorithms widely represented in the literature are list-based mapping and
scheduling algorithms. Their principle is based on a list of priorities, in which resources and
tasks are ordered according to a fixed metric. This metric is chosen according to the type of
material and its characteristics.

Qin et al. [87] introduced the Heuristic task based on the Critical Path and Task replication
scheduling algorithm (HCPTD) for distributed systems. It is a list-based algorithm with two
phases. First, it orders the tasks with the earliest start time. Next, the resources are ordered
using the earliest completion time and the shortest distance to the exit. The task is scheduled
according to the previous priority lists. If the task’s predecessors are more than two, the task
may need to wait until their completion, using the processor’s space time slot (idle time).

Topcuoglu et al. [91] presented the Heterogeneous Earliest Finish Time (HEFT) scheduling
algorithm for Multiprocessors. Based on the minimization of the computation cost of the task
and the upward rank of the task. The authors also present the critical path on the processor
(CPOP) algorithm based on the task’s computation cost and both the downward and upward
rank. The upward rank is the computing cost value, which is the sum of the task’s computing
cost plus the maximum value of the successor’s upward rank plus the communication cost to
that task. The downward rank is the maximum value of the set of sums of the following items:
the computing cost of the task plus the communication cost to the predecessor plus the upward
rank of the predecessor.

Bhatti et al. [I45] presented Noodle (No Node is Left Behind), a list-based scheduling
algorithm for MPSoCs. The priority mechanism aims to maintain proportionate fairness among
all ready (to be executed) tasks belonging to all paths within a task graph.

Sih and Lee [81] presented a dynamic level scheduling algorithm. It is a compile-time heuris-
tic for heterogeneous and homogeneous processors. At each step, the algorithm considers the
interprocessor communication overhead and incorporates information about the processor inter-
connection topology.

Grandpierre and Sorel [35] presented a greedy F_-] list-based heuristic algorithm targeting
heterogeneous multicomponent systems based on the critical path and schedule flexibility. It
takes into account the execution duration of operations but also each communication overhead
as a cost function. It is computed from the worst-case execution time.

Wang et al. [88] presented the Heterogeneous Scheduling with Improved Task Priority for
heterogeneous computing systems. It is a list-based scheduling algorithm that orders the tasks,

! An algorithm that always takes the best immediate, or local, solution while finding an answer [146].

94

and their predecessors, concerning their computing cost. The available processors are ordered
using the Earliest Finish Time depending on the type of task that it will be allocated.

Youness et al. [98] presented a partitioning algorithm based on the A-start algorithm [147]
for mixed hardware/software systems. It is a list-based algorithm with computing cost as the
priority. The algorithm first schedules all the tasks to processors. Then, it identifies the critical
path and tries to convert it into hardware to reduce the scheduling length.

Kaida et al. [I48] presented a mapping algorithm for embedded many-core SoCs. It aims
to maximize the gain of mapping task ¢ onto core j, including energy consumption, execution
duration, and other factors. We authors introduce the concept of tile, a set of cores where a
single task might be mapped. A single many-core SoC may have several tiles distributions which
increase the possibilities of scheduling.

Frid and Sruk [95] presented a modification of the Critical Path method [I49] targeting
MPSoCs. The algorithm identifies the critical path of the application and assigns it to the
fastest processor available. Next, two stages are performed for the remaining tasks. First,
they order the processors concerning their computation speed in ascending order. Then the
remaining tasks are scheduled to the slowest possible processor. Finally, if there are still tasks,
the algorithm inverts the processors’ order and schedule the remaining tasks.

Zadrija and Sruk [94] presented a list-based mapping algorithm for MPSoCs that uses the
longest processing time as the priority.

Kota et al. [106] presented two algorithms targeting Reconfigurable Logic Units (RLU). The
first algorithm uses a greedy heuristic based on the minimization of the task finish time. The
second approach is based on dynamic programming. The difference between the two algorithms
is that the greedy algorithm is based on local decisions (the best allocation for a particular task)
and the dynamic programming approach on a sequence of decisions. A novelty of both methods
is that it considers heterogeneous RLUs, both in terms of size of the chip area and multiple
physical hardware implementations.

Lu et al. [I0I] presented a mapping algorithm for CGRA. It is a list-based algorithm that
uses the topological order and the number of available resource neighbors as priorities. The
reasoning behind the latter’s use as a part of the priorities is that the successors of the current
task will have more possibilities to be mapped. The algorithm is equipped with backtracking to
avoid mapping deadlock, and it can split the application into time slots.

Sun and Zhang [134] presented an Energy-aware mapping algorithm for NoCs. It is a list-
based algorithm that uses a greedy heuristic based on Rent’s rule-based communication proba-
bility function. The priority list is constructed according to the smallest communication value.

Sun and Zhang [134] presented an Energy-aware mapping algorithm for NoCs. It is a list-
based algorithm that uses a greedy heuristic based on Rent’s E| rule-based communication prob-
ability function [I52]. The priority list is constructed according to the smallest communication
value, which yields the lowest energy consumption.

Jiang et al. [I53] presented the Testing-Aware Mapping Algorithm (TAMA) that targets
NoCs. It is a list-based algorithm that orders the tasks in a first instance using the number of
edges (maximum first), then after the selection of the first task, the ordering continues using
a Breadth-first search algorithm [I54]. The processors are ordered according to the maximum
number of available neighbors, the most significant number of tested links, and finally, using
the smallest Manhattan distance Bl The test of links refers to the iterative test of idle links to
define if their processors can allocate the tasks and be able to comply with the deadlines of the
tasks. The testing occurs meanwhile mapping other tasks and increase the performance of the
mapping.

Lu et al. [I10] presented a Greedy mapping algorithm based on the Manhattan distance. It

2In VLSI designs, Rent’s rule relates the number of terminals in a boundary, to the number of blocks within
that boundary by a power-law relation: T' = kG?. Where T is the number of terminals, G is the number of blocks
(gates), k is the average number of terminals for each block, and S is the Rent’s exponent [150} [151].

3The Manhattan distance between two points z = (z1,x2,...,z,) and y = (y1,¥2,...,¥yn) in n-dimensional
space is the sum of the distances in each dimension: d(z,y) = >"" | |z —y: | [155].

95

is a list-based algorithm that uses the breadth-first searc}f_r] to traverse the application graph. It
is suitable for both regular or irregular NoCs.

Mehran et al. [I30] presented a Dynamic Spiral Mapping (DSM) heuristic that targets 2-
D mesh topologies and aims to minimize the Manhattan distance. The Spiral Mapping is a
list-based algorithm that uses data transfer, Manhattan distance, and connection degrees as
priorities [129]. The authors introduce two versions, Full Dynamic Spiral Mapping, which tries
to minimize the reconfiguration of the hardware resources without stopping the execution, and
Partial Dynamic Spiral Mapping, which stops the application’s execution tries to execute the
Spiral Mapping again to improve the performance.

5.1.2 Linear Programming

Another approach is represented by linear programming. We can cite the example of Chin and
Anderson [104] who presented an integer linear programming approach for CGRA mapping.
The designer gives a set of constraints such as one operation per functional unit, the functional
unit needs to be able to implement the operation, a route can only be used once, and disallowing
multiplexer inputs from having the same value. Then, the solver tries to find a solution that
improves the performance of the mapping.

Kim et al. [72] introduced a linear programming scheduling algorithm for heterogeneous
multi-core architectures. The algorithm takes into account the different physical hardware im-
plementations and latencies of the hardware resources.

Yoon et al. [I05] introduced Graph Drawing Based Spatial Mapping (SPKM) Algorithm for
CGRA. Tt is an integer linear programming approach based on a split-push kernel algorithm
[156]. It tries to decrease the number of rows used, thus minimizing the resource occupation.

5.1.3 Reinforcement Learning

In recent years, Machine Learning techniques have been successfully applied to the scheduling
problem. We focus on those based on Q-learning. Let’s recall that reinforcement learning (RL)
is a subset of Machine Learning, where an agent interacts within an environment. From these
interactions, the agent aims to improve its actions towards the maximization of a reward. RL
algorithms are known for its generality and adaptability [I57, 158 [159] and are used in several
fields [160} 161, 162] 163], 164, 165] 166]. Adapted to the scheduling problem, RL algorithms have
helped to decrease exploration time [I67], decrease the complexity of the scheduling algorithm
[160], generalization of cases [168] and optimization of some metric [169].

Recently, RL algorithms have been adapted to the task scheduling problem. From a single
machine to hardware platforms, RL algorithms have shown improvements to the current state
of the art. However, the main focus has been Cloud-based [170, 171], 172] or High Performance
Computing (HPC) [I73, [174]. Wu et al. [I75] proposed an RL-based solution of the DAG tasks
scheduling problem for HPC. The authors used a policy gradient-based REINFORCE agent.
Each action’s reward is obtained by calculating the increment of the current schedule length
after a task is scheduled. Liu et al. [I76] proposed a variant of the work of [I75] using Monte
Carlo Tree Search. They showed improvements in the Schedule Length Ratio, however, with
an increase of the exploration time. Grinsztajn et al. [I77] presented an Actor-Critic algorithm
for HPC scheduling. The reward policy is based on the final makespan of the implementation.
Lee et al. [I78] presented Panda, a Reinforcement Learning-Based Priority Assignment for
Multi-Processor Real-Time Scheduling. The authors use the REINFORCE algorithm with a
custom reward policy. The reward policy includes a schedulability evaluation and response
time analysis. Their evaluation shows robust performance in terms of schedulability ratio and
adaptability for non-trivial large-scale settings. Luley and Qiu [I79] presented a Deep Q-learning
scheduler for GPUs. They used a reward policy based on a combination of the device utilization

4 Any search algorithm that explores all of the neighbor nodes at the present depth prior to moving on to the
nodes at the next depth level [146].

96

and turnaround time of waiting tasks. Their evaluation showed an improvement in resource
utilization and throughput. Liu et al. [I80] presented a Deep RL algorithm for CGRA mapping.
The authors proposed a Deep Q-learning method where an application is randomly mapped
to the architecture, and then the agent will relocate the tasks according to a greedy policy.
After each change, the agent will receive a reward that considers power consumption, area, and
performance.

5.1.4 Others

Finally, we recall here again other interesting approaches which allow us to illustrate both the
wealth of research in the field and at the same time the importance of the problem treated.

Honorat et al. [I81] presented a scheduling algorithm for Cyber-Physical Systems (CPSs).
It aims to provide an efficient scheduler for partially periodic CPSs which is modelled as a
Synchronous Data Flow (SDF) graphs [83].

Yang et al. [I82] presented a scheduling algorithm based on Bayesian optimization algo-
rithm (BOA) [I83] for a heterogeneous computing environment. The algorithm consists of two
steps. At first, BOA assigns tasks to processors based on the computing cost. Next, a list-
scheduling algorithm establishes the sequence of tasks. This process is iteratively repeated until
the makespan is optimal.

Biswas et al. [I84] introduced a bayesian optimization-based approach for task scheduling
of heterogeneous multiprocessor systems. This algorithm aims to learn the structure and the
parameters of both the task graph and the multiprocessor system.

Namazi et al. [I09] presented a majority-based reliability-aware mapping algorithm for
NoCs. It is a task duplication-based algorithm that uses reliability as its criteria for task
duplication. Reliability is a quantitative parameter that shows the probability of a system being
operational after some time, considering it was operating initially. The mapping technique takes
into consideration the reliability as well as the execution time.

Yuan et al. [92] presented the fairness-aware single DAG scheduling algorithm (FASS) and
fairness-aware multiple DAGs scheduling algorithm (FAMS), both for multiprocessors. The
algorithms use task replication to improve the reliability, and the upward rank of the task [91]
as the priority. FAMS is a dynamic algorithm capable of scheduling multiple DAGs.

Jiang et al. [I12] presented the Path Clustering Heuristic (PCH) and the Gap Search al-
gorithm for high-performance computing systems. The PCH clusters the tasks into groups
depending on the communication cost. Next, the tasks are scheduled using a list scheduling
algorithm. After the first schedule, the Gap Search algorithm identifies gaps in the schedule and
maps entire clusters to increase the performance.

Liu and Shen [I85] presented the dependency-aware and resource-efficient scheduling algo-
rithm for cloud frameworks. The algorithm can verify the dependency of the tasks, identify
the independent tasks, and schedule them to run in parallel and improve the performance. The
algorithm also identifies different hardware resources (e.g., CPU, memory, GPU), which allows
assigning the tasks to the best suitable resource.

Mei et al. [I00] introduced the modulo scheduling algorithm that targets CGRA. It is
based on simulated annealing. The algorithm iteratively reallocates an operation randomly
and computes the next execution time. Next, a simulated annealing strategy evaluates the
new execution time and decides if the new schedule is accepted or rejected. If rejected, a new
iteration occurs, where a minor change is done to see if the next iteration would be better.

Wang et al. [I2I] presented a genetic algorithm for mapping application tasks to high
computing environments. The algorithm uses a mapping list and topological sorting of the
application as chromosomes, and the fitness value is the execution time of the implementation.

Sinaei and Fatemi [97] presented a tree-based algorithm for mapping application onto MP-
SoCs. It uses two methods, an exhaustive and a genetic algorithm. The algorithm iterative
searches for the implementation with the lowest energy consumption.

97

Zhao et al. [I86] introduced a task scheduling algorithm with resource attribute selection for
Many task computing. Resource attribute selection uses a gene expression programming-based
approach [I87] and work-stealing algorithm ﬂ It can define several characteristics of the task,
such as type, storage space needed, start time, execution time, and use them as a fitness function
to iterative search for the best candidate to allocate the task.

Selvameena and Prasath [I89] introduced a modified score boarding algorithm that targets
MPSoC. It is used along with the particle swarm optimization technique. It aims to improve
the communication cost of the system.

Frid and Sruk [96] presented an evolutionary mapping algorithm for multicore systems with
two approaches. In the first approach, the mapping considers both memory and processing
resources as chromosomes. The second approach divides the mapping process into two phases.
One phase considers only the processing resources as chromosomes, and the second phase uses
only the memory resources.

Emeretlis et al. [I90] presented a mapping algorithm based on benders decomposition [191]
for multicore systems. The Logic-Based Benders decomposition approach is an iterative process
that aims at reducing the solution time of complex optimization problems. The main idea is to
create a sequence of two sub-problems, where the second sub-problem uses the solution of the
first one. The process terminates if no better solution can be found for the first sub-problem
or the whole solution space has been examined [I90}, [I91]. The authors propose to divide the
mapping and scheduling problem into two. The first problem is the mapping and relaxation of
the scheduling. The second problem is the scheduling.

Hamzeh et al. [103] introduced the Register-Aware Application Mapping (REGIMap) for
CGRA. The authors exploit the processing resources’ register files to decrease the initiation
interval II. They reduce the mapping problem to find the maximal weighted clique in the product
graph of the time-extender CGRA and the data dependence graph.

Ferreira et al. [192] presented a mapping and scheduling tool based on the modulo scheduling
with a heuristic for CGRA. The algorithm uses a mix of asap/alap (as soon as possible/as late
as possible) to determine each operation’s scheduling range. It is custom-designed for their
in-house hardware.

Lai and Yeh [I07] presented a mapping algorithm that converts a data flow graph into
a reconfigurable architecture rDPA [193]. The algorithm is based on a set of templates of
processing resources called data path units, and the goal is to convert the nodes of the data flow
to a type of data path unit.

Pathan et al. [93] proposed a two-level preemptive global fixed-priority scheduling for mul-
ticore systems. The first level is a task-level scheduler. Next, a subtask-level scheduler is
implemented.

Qambhieh et al. [90] presented a stretching algorithm that aims to transform the application
into a set of independent sequential threads. This algorithm is used as a previous step for
scheduling algorithms like Global Earliest Deadline First from the fixed-job priority family and
Global Deadline Monotonic from the fixed task priority family. It can improve the performance
of the scheduling.

5.2 Discussion

As illustrated above, there is an extensive quantity of works related to mapping and scheduling
different platforms. Usually, a mapping and scheduling algorithm is designed to perform well for
a particular platform, and it is not always made to allow a migration to another. A significant
drawback of most algorithms is that the hardware is considered a regular structure [87, 91} [88].
However, approaches like [35] [8T], [148] capable of dealing with irregular structures may not be
directed to our problem. This represents an issue for SPS-CGRA mapping, as usually, this type
of platform features an irregular heterogeneous structure. It is also important to mention the

5In work-stealing, underutilized processors attempt to “steal” threads from other processors [188].

98

approach of the algorithm. Cluster-based [I12] and task duplication algorithms [109, 92] may
work fine with multicore systems. Still, it is not directly applicable to our targeted hardware due
to the limited amount of resources and the granularity of the types of tasks they can implement.

List-based algorithms [35, [I0I] are suitable for our purposes, as they aim to limit resource
platforms and the designer who chooses the appropriate priority. Combined with a graph rep-
resentation of the hardware and application, we can use standard graph theory algorithms,
which provide high performance [181], (182} [184] 100]. Furthermore, a heuristic may increase the
performance of such a mapping algorithm [110, 153]. Characteristics like computing cost, use
of resources, and memorization may be considered for the heuristic. Moreover, well-established
techniques such as the Bayes theorem [182] [I84] and its combination with a list-based scheduling
algorithm may be good candidates to solve the SPS-CGRA mapping problem.

The exploitation of RL algorithms for the scheduling problem is hasn’t spread yet. However,
it has shown attractive advantages in contrast to classical approaches. In particular, for hard-
ware accelerators and specifically CGRA, there are no so many RIL-based works. However, RL
algorithms’ inclusion may solve some of the current issues, such as non-optimal mapping and
lack of support for complex structures.

5.3 Conclusions

In this chapter, we presented a brief state of the art of mapping and scheduling algorithms. We
divide the algorithms into list-based, linear programming, RL, and others. Given the charac-
teristics of the SPS-CGRA and its applications, we propose to use the list-based approach and
the reinforcement approach to solve its mapping problem. The list-based approach is primarily
used on platforms with a limited amount of resources. Moreover, the custom priority list helps
manage the data dependence of the application and the unidirectional processing data of the
hardware. Additionally, an RL approach will help us deal with the complex structure of the
SPS-CGRA and its applications. Using the trial-and-error methodology of this approach, we
may increase the locality of the list-based algorithms’ mapping decision and improve its results.

In the following chapters, we will introduce our proposed solutions for the SPS-CGRA map-
ping problem.

99

Chapter 6

List-Based Mapping Algorithms

In the previous chapter, we saw that the mapping and scheduling problem is considered NP-
complete. This means that the optimal solution can only be obtained by exploring all the
possible solutions. Moreover, SPS-CGRA increases the exploration space because of its different
physical hardware implementation for a given task. Effectively, an efficient hardware resource
may compensate for the memorization and configuration cost. Thus a possible final mapping
would have a single task allocated per time slot. Hence, the design space and exploration
time increase exponentially according to the number of tasks and hardware resources due to
combinatorial explosion. This is why we propose an efficient heuristic that may be used to
decrease the exploration time and obtain a reasonable solution.

In this chapter we present a basis algorithm that we transform into two optimization heuris-
tics.

e Single-Shot mapping algorithm, based on the topological order of the input graphs
(application and hardware graph). This algorithm is able to build a mapping without
considering the performance of this mapping.

e Topology-Aware mapping heuristic, based on look-ahead techniques. It relies initially
on the single-shot algorithm but considers topological distances, the probability of mapping
success, and the computing latency in order to build an optimized solution.

¢ Bayes-Based mapping heuristic, based on the formalization of the previous algorithm
into a Bayes problem. It includes several parameters that the user can use to tune the
mapping process.

We organize the remaining part of the chapter as follows. Section [6.1] introduces the Single-
Shot mapping algorithm. Section presents the Topology-Aware mapping algorithm. Section
6.3] presents the Bayes-Based mapping algorithm. Finally, Section summarizes this chapter.

6.1 Single-Shot Mapping Algorithm

In this section, we introduce the Single-Shot mapping algorithm (SS-MAP). It is the starting
point of the optimization heuristic presented later. As previously stated, the SS-MAP is based
on both the application and the hardware’s topological order. It is capable of accepting one or
all topological sortings of the hardware graph. In the latter case, the algorithm will compute
the mapping for all the topological sortings and select the one with the lowest computation
cost. We select this approach because we target an irregular platform, and there may be several
topological sortings of its hardware resources. Given that we choose one topological sorting, but
we may not obtain a sub-optimal mapping because the firsts tasks may be allocated to resources
that are not the best allocation. Using all possible topological sortings, we ensure that we test
all possible allocations. In both cases, one or all topological sortings, the methodology described
in the following sections holds.

100

6.1.1 Methodology

The SS-MAP mapping algorithm may be divided in two steps : initialization and allocation
process.

Initialization

In this first step, we can decide whether the mapping algorithm will use one or all of the hardware
graph’s topological sortings. Subsequently, the allocation process can be adapted to this choice
quite directly.

From a couple of application (Gapp) and hardware (G gw) graphs we build two subgraphs
Gapp = (T',D") where T = {t; € Gapp | type(i) # inter face} and Gy, (S, K') with §" =
RP. Thus, the algorithm starts to compute one random topological sorting of the application
subgraph G:4 pp and one random or all topological sortings of a subgraph G}IW (lines 1] to [2| of
Algorithm that depicts the processing flow).

This is done using Kahn’s Algorithm [194]. This step produces two lists, Lgw and Lapp.
Each of them contains ordered numbers (indexes) of the input subgraphs nodes. The first, Ly,
represents the processing resources organization. If the mapping algorithm has to use all the
topological sortings, at each mapping iteration, one will be stored in L. The second, Lapp,
represents the data dependence between tasks defined by the application model.

Figure illustrates the initialization process on a pair of application graph (top left) and
hardware graph (bottom left). In this example, several topological sortings of the hardware
graph exist. One is selected randomly. On the contrary, only one topological sorting exist for
the application graph.

Inputs Topological
Application graph sorting

(-t Lo

Hardware graph 32|t
>
Lw

rP3|rP2|rP1|rPs|rP7|rPe

Figure 6.1 — Flow diagram of initialization.

Allocation Process

The allocation process aims to map all the tasks of an application on the available and compatible
hardware resources. It explores both Lapp and Ly, using one element of each list at a time
and verifies if the current t; € L pp can be allocated on rf € Lgw. If rf does not match, we
dequeue another element of Ly .

Figure [6.2] illustrates the principle behind the allocation process. For this illustration, let’s
consider a homogeneous application graph, where all the application tasks belong to the same
type and have the same parameters (p). Consequently, we use a homogeneous hardware graph,
where all the processing resources can implement the same 7 with the same parameters (II).

101

We proceed to order both the application and hardware graphs topologically. Next, we start
the allocation process. We dequeue the first task (¢1) and map it to the first resource in Ly
(rf). Since it is possible to allocate t; on rf’, we move to the next task. We dequeue t2 and
map it to the next resource in Ly (rf). Finally, we dequeue t3 and we allocate it to the next
item in Ly (rl). The result is the implementation graph.

Dequeue Dequeue Dequeue
of first task of second task of third task
ts3 |12 t t3 t2 ts
=> =>
rPs(rP2|rP1|rPs|rPs | [rPe rP3[rP2|rP1 [rPs r’7 rP3|rP2|rP1 s
Step 1 Step 2 Step 3

@Output
(A=

Implementation graph

Figure 6.2 — Allocation process.

The main part of the allocation process algorithm (line 3 to end of Algorithm |1)) is the func-
tion ASSIGNING in line [15] (the other two functions REALLOCATION, in line and PARTITION,
in line are required to escape some allocation issues, they will be explained later). It aims to
find a matching between a current application task ¢; € 7' and a processing resource rf es.
The pseudo-code of the function is shown in Function ASSIGNING (page [L04)). Given that we

want to allocate t; = (type;,p;) (see Section on TJP = (7;,11;,L;,Cfg;) (see Section ,

the function in Line [3] verifies the following conditions:
e Resource can be assigned to execute the task, stated by:

type; € T; (6.1)

e Parameters of the task matches with the set of resource parameters:

pi € Hj (62)

e Source of data is valid. If ¢; is the successor of t; and type; = inter face (t; is a sensor),
there must exist a path where P = {rsemsor . ,Tf}, P € Gyw, where :

t; is assigned to r*"*" A {Vry € S|ri € P} no task has been allocated (6.3)

e Predecessors are correctly reachable. Considering the set of ¢; predecessors tp,. = Pred(t;)
already mapped to a subset of processing resources rp.. C Sl, there must exist a path
P(rpre,rf) verifying:

Vr € P(rpres rf) no task has been allocated (6.4)

102

Algorithm 1 SS-MAP mapping algorithm

Output Lyrap

—
e

11:
12:
13:
14:
15:

: New list Lapp, with the random topological sorting of GAPP
New list Lyw, with the random topological sorting of GHW
New empty list Lyjap
New counter of failed attempts cnt__attempts = 0
while Lapp # {0} do
dequeue t; from Lapp
done = False
while not done do
if ent_attempts == |Gy | then
Lyap, Lapp, Luw, done =
REALLOCATION(ti, LMAP7 GAPP; GHW7 LHW; LAPP)
else
Luaw, Lyap = PARTITION(Lyap, Gapp, Gaw, Law)
else
cnt__attempts, done, Lyrap =
ASSIGNING(t;, 7“5'»3, Lyrap, Gapp, Guw, cnt__attempts)

e Can successors of the current task be allocated on the descendants [of the candidate
resource? If yes, the task is mapped to the given resource, if not, we check if there is an
alternative path to a sink node from the candidate resource: let’s consider tgs,. = Succ(t;)
the set of successors of ¢; and rges = Desc(rf) the set of descendants of TJP , then

Vit € tsue Tk € Tdes ’ type; € T Ap € 11, (6.5)

If equation does not hold: let’s consider r% C RY where 73 = Vrgctuator (it means
the set of actuators of Ggw). Then we verify:

Py, = (rf, oy Tr) | T € P2 (6.6)

e Is the input degree of the candidate resource compatible with the input degree of the task
or zero?

deg™ (t;) = deg_(T]P) v deg_(rf) =0 (6.7)

If Equation does not hold and if the Input degree of the processing resource is higher:
let’s consider t,.. = Pred(t;) the set of predecessors of t; and 7,4 C S" a subset of
processing resources where tp.. — Tpmgp. Additionally, rp.. = Pred(rf) is the set of

predecessors of TJP , then we verify:

ﬂr,f € Tpre | allocates a t & tpre (6.8)

e [s the output degree of the candidate resource equal or higher than the output degree of
the current task or zero?

deg™t(t;) < deg+(7“f) v deg*(rf) =0 (6.9)

LGiven a node v, the set of its descendants is composed of all the nodes that are reachable from v.

103

If Equation does not hold and if the output degree of the candidate resource is lower,
we check that the sum of output degrees of its successors plus the output degree of the

successors of the successors is higher or equal than the output degree of the current task.
To implement this, let’s consider rges = NT(N™T (rf))ﬂ

‘rdes‘fl
deg™ (t;) < Z degT(r € raes) (6.10)
k=1

If the above conditions are validated, we consider that the allocation of ¢; on Tf is valid and
proceed to the allocation (Lines [4] to [7)).

1: function ASSIGNING(t;, Lyw, Layrap, Gapp, Gaw, cnt_attempts)
2 dequeue T'JP from Lygw

3 if t; can be mapped on rjP then

4 map t; on ’I“JP
5: done = True

6 ent__attempts = 0

7 Store mapping in Lyrap
8

9

else
done = False
10: cnt__attempts = ent__attempts + 1
11: return cnt__attempts, done, Lyjap

The allocation process goes through all the tasks and tries to use all the resources available.
However, some issues may appear during the mapping, we present now two functions that will
prevent these issues.

Algorithm Inconveniences

During the mapping, we have to deal mainly with three issues: Sub-optimal correspondence
between Lyw and Lapp, Availability of the Hardware resources and Matching fails. The first
two issues are solved using the function PARTITION. The pseudo-code of this function is presented
below.

1: function PARTITION (LMAPa Gapp, Gaw, Law)

2 New list Paths_ HW, that consists of the independent datapaths in G gw
3 New empty list nodes__available

4 for each path € Paths_ HW do

5: if none rf € path allocates a task or copy operation then
6 Store all rf € path in nodes__available

7 if nodes_available == {()} then

8 Creation of a new time slot

9: else

10: Store the topological ordering of nodes__available in Ly
11: return Ly, Lyap

a) Sub-optimal correspondence between Lgw and Lapp. This issue comes from the multi-
plicity of the topological sorting results and appears as a false lack of resources. Consider the
application and hardware graphs of Figure [6.3] as inputs. The pipelined application consists of

2NT(rl) is the set of out-going neighbors (successors) of r} .

104

three heterogeneous tasks (t1,t2,t3). The hardware architecture consists of two possible inde-
pendent datapaths of three resources each (r{) , r2p , 7“31,3 and réj , rf , 7"5). Following the Table
assume that ¢; can be allocated only on r¥| t3 on rf and ¢ty on r% v rf rl. During the

initialization stage, we produce randomly the topological sorting of the hardware graph showed

in Figure [6.3]

Inputs .
Application graph Topolc?glcal i
sorting Processing resource
L

h Task | able to execute the
2

Hardware graph

@ 1 task
HW n P
@ 0 0 & RuE 20 I

@ .0 .9.0.@ s id

Table 6.1 — Correspondence between tasks
Figure 6.3 — Initialization process. and resources

Then we proceed with the allocation process, depicted in Figure[6.4] The first task to map is
t1. The algorithm goes through the elements of Ly until it reaches r{ (the only one possible
thanks to Table and allocates the task to this resource. Notice the datapath r{, 7 rf has
been dismissed, but no task has been allocated to any of its resources. The next task to allocate
is to. The algorithm map it to 4, which is the first item of Lgy . Finally, we try to allocate
t3. At this moment the last item of Lpgy is r?]f which is not a valid allocation for ¢3. This
is an issue, the algorithm fails. This is why at this moment, the mapping algorithm calls the
Function PARTITION (lines to. The function verifies if there is any datapath without a task
mapped. If there is a datapath available, the function re-add its nodes to Ly and continues
with the mapping. If the function cannot find available data, it will split G 4pp into sub-graphs
and allocate the remaining tasks to a different time slot. In Figure we can see that after
the call of PARTITION, Lyw has resources again, and the mapping process can restart. In the
end, t3 is allocated to rL’, and we get the final implementation graph.

105

Dequeue and allocation of first task
Lo u [] u
I
I I I [
Lot [o 7o) R e r*slr"2 L

STEP 1 STEP 2 @ STEP 3 STEP 4

Dequeue and allocation of second task
[ts] [to]

I I

I I
' Ir]

STEP 5

Dequeue and allocation of third task

Partition function
(Paths available)

STEP 6

Implementation
graph

Figure 6.4 — Allocation process.

b) Availability of the Hardware resources. The application mapping requires more resources
than the available in the hardware model. Consider the application and hardware graphs of
Figure [6.5] These inputs are similar to the previous example. However, now the application
graph has one more task (¢4), which can only be executed in r¥ (Table .

Processing
resource able
Inputs Task t ¢
Application graph Topok?gical O execute
Ly the task
APP
P
Hardware graph t rl
t P P
L 2 2,73
:[> HW : e
r
2 d
4 T

Table 6.2 — Correspondence between tasks
Figure 6.5 — Initialization process. and resources

106

The firsts steps (1 to 8) are the same as stated for the Sub-optimal correspondence between
Lw and L app issue. After the allocation of t3, we continue with t4. In Lgw, the only element
left is rf’, which is not compatible with the current task. At this moment, there are no more
resources to use. To solve the problem we call the function PARTITION. Again this function
verifies the datapaths available, and because all of them are occupied (Line , the function
splits Gapp (line [§)) into sub-graphs and duplicate the hardware graph (Step 10). Next, the
mapping algorithm will try to schedule them into time slots. This process is depicted in Figure
0.0

Dequeue and allocation of first task
Lo’ (] EEE: EES:
. | [
Lowt [Rl de P i i e

STEP1 STEP 2 STEP 3 STEP 4

Dequeue and allocation of second task

—

Partition function
(Make paths

- ta []
|
s [r°q

I
available)) 2
STEP 7 STEP 8
Dequeue and allocation of fourth task

Partition functio
(no more
resources)

L] L L
| | | |

&2 [

STEP 10 STEP 11 STEP 12 STEP 13

@Output

Implementation @ @ W
ta |

=

STEP 9

Time slot 2

graph

Figure 6.6 — Allocation process.

@ @ @ |
_ —— >

¢) Matching fails. We observe this issue by an unsuccessful search of a resource for a particular
task. We solve this issue using the function REALLOCATION. The function REALLOCATION is a
modification of the backtracking algorithm presented by Lu et al. [I95]. The function removes
the mapping of the conflicting task’s predecessor, re-add the task and the resource to their
respective list and restart the mapping algorithm.

107

1: function REALLOCATION(Q‘, Lyrap, GAPP7 GHw, Lgw, LAPP)
/*t; is the conflicted node of Gapp being mapped*/

2: New list Predecessors, predecessors of t;

3: for each task t; € Predecessor do

4: Locate the resource rf that allocates ty,

5: Remove the allocation (tk,rf) from Lyap

6: Reintegrate t into Lapp

7 Reintegrate T‘f into Lgw

8: done = True

9: return LMAP, LAPP, LHW, done

The partial results of the mapping and the overall mapping are stored in a list called Lasap.
This list contains the parameters assigned to each resource during the mapping. Lasap follows
similar structure as Gy 4p, because it consists of lists (subgraphs in the case of Gyr4p) and each
list represents a time slot. Each time slot elements are equal to the resources available (|S|).
The methodology’s final step is the creation of Gjrap, which is obtained by parsing Ljsap.
G prap will collect all the information contained in Lasap.

6.1.2 Discussion

The SS-MAP algorithm searches for a feasible mapping of an application onto hardware. It
provides a reasonable mapping with very little exploration time. It is equipped with a meta-
heuristic, in which we use all the topological sortings of the subgraph G}{W in a bigger loop with
the performance evaluation (Figure . Then the best mapping with the lowest computing cost
is selected.

Initialization
Start of mapping Topological sorting Allocation Performance End of mapping
Cuee process evaluation
Topological sorting
GHW |

New
topological sorting

GHW

Figure 6.7 — Flow diagram of the SS-MAP algorithm (all topological sortings of Ggw).

Even if we provide the algorithm with the tools to overcome some mapping inconveniences
described in Section there is still a need for a better approach. This algorithm may
not work well with multisensor systems. It may encounter a deadlock during the allocation
process that may need to make use of the backtracking feature, representing an increment in the
exploration time. To overcome the SS-MAP algorithm’s problems, we propose to use a variants
heuristic that considers the latency of the resources and the resources’ topological distance. Also,
the decision of mapping a task to a resource is local. We require to increase the magnitude of
this decision. In the following section, we present a heuristic that considers the task’s successors
and the computing latency of the processing resources. This will improve the mapping results.

6.2 Topology-Aware Mapping Algorithm

After the SS-MAP algorithm presented previously, we now introduce the Topology-Aware map-
ping algorithm (TA-MAP), an enhancement to the last algorithm in the form of a heuristic
optimization.

108

The proposed heuristic optimization is based on look-ahead techniques. The purpose of a
look-ahead approach is to foresee the effects of a particular decision. The main goal is to evaluate
the allocation of a specific task onto a particular resource. The heuristic evaluates not only the
allocation of the current task but also the allocation of its successors. The heuristic choices are
based on uses elements such as the topological distance, the computing latency, and the number
of possible matching resources.

6.2.1 Methodology

In this section, we explain the general principle of the algorithm. It is based on list scheduling
and integrates a heuristic optimization. This heuristic is used when we have to choose between
two or more resource candidates. As for the SS-MAP, the inputs of the algorithm are two hyper-
graphs representing the application (G app) and the hardware model (G gy). The flow process
is also divided in two stages: initialization and allocation process (Figure .

Initialization X
. - - Allocation .
Start of mapping Topological sorting | Distance matrix process End of mapping
Gpp G
w

Figure 6.8 — Flow diagram of the TA-MAP algorithm.

Initialization

Similar to the SS-MAP algorithm (see Section , we define two subgraphs. An application
subgraph G4pp = (T',D') where T = {t; € Gapp | type(i) # interface} and a hardware
subgraph G/HW(S/, K/) with S = RP. We start this stage creating a Distance matrix which
is going to be used for the heuristic equation. The Distance matrix represents the distances,
according to the number of nodes, between each couple of nodes of S'. When there is no simple
path between a couple of nodes we represent this with an infinite value. We use the Floyd-
Marshall algorithm [I96] to compute the Distance matrix. We illustrate this computation in
Section [6.2.2

Next, we compute the topological sorting of G:4 pp and store the result in a list (Lapp).

Allocation Process

The goal of the allocation process is to allocate all tasks onto the available compatible resources.
The complete TA-MAP pseudo-code is presented in Algorithm Recall that Ly;4p is a list
where the partial results of the mapping and the overall mapping are stored. MS is the prob-
ability of mapping success function and MAP is a function that allocates t; onto r{ and stores
this allocation in Ljsap, both functions are explained in detail in the following section.

Algorithm 2 TA-MAP algorithm

Input: G:APPH GAPP, GIHW, GHW
Output: Lyap
1: New array distance_matrix
2: New node list L app sorted topological
3: while Lapp 75 {(b} do
dequeue t; from Lapp
New list wW « candidates S' (G, t:)
For all resources Tf in w . compute MS(?‘}D)
rE « max(MS(wiW))
MAP(ti,rE, Lyrap)

109

The first step of the allocation process is to dequeue the first task of L4pp (line . Following
this, we select the possible resources candidates (line [5). This selection is according to the
following rules (Equations and implemented in function candidates of line [f)):
wHW)

e At the first time, the set of resources candidates (will be the source nodes of S’

wiW = {r,f cs] deg_(r,f) =0} (6.11)

e Following, the resources candidates will be the successors of the resource or resources that
allocate the predecessor or predecessors of the current task. Let’s consider ¢, = Pred(t;)
the set of predecessors of the current task ¢; and r,,. the set of processing resources where
tpre = Tpre, then:

W = NT(rp) (6.12)

Recall that N (r,re) is the set of out-going neighbors (successors) of 7. After the selection
of the set of resource candidates (w"') we prune the list. For each candidate ’I“JP € wiW we
verify the compatibility with the current task ¢;. We use the same rules as the ones presented
in Section

e Resource can be assigned to execute the task, stated by:

type; € T; (6.13)

e Parameters of the task matches with the set of resource parameters:

pi € Hj (6.14)

e Source of data is valid. If ¢; is the successor of t; and type; = inter face (t; is a sensor),
there must exist a path where P = {rsensor . ,Tf}, P € Gyw, where :

t; is assigned to r*“"*" A {Vry € S|ri € P} no task has been allocated (6.15)

e Predecessors are correctly reachable. Considering the set of ¢; predecessors tp,. = Pred(t;)
already mapped to a subset of processing resources rp.. C Sl, there must exist a path
P(rpre,rf) verifying:

V1 € P(rpres rf) no task has been allocated (6.16)

e Successors of the current task can be allocated on the descendants of the candidate re-
source. If yes, the task is mapped to the given resource, if not, we check if there is an
alternative path to a sink node from the candidate resource: let’s consider ts,. = Succ(t;)
the set of successors of t; and rges = Desc(rf) the set of descendants of TJP , then

Vit € tsue Tk € Tdes ’ type; € Tr App €Il (6.17)

If Equation does not hold: let’s consider %! C RY where 72 = yractuator (it means
the set of actuators of Ggw). Then we verify:

Py, = (rf, ey | TR € PO (6.18)

110

e Input degree of the candidate resource is compatible with the input degree of task or zero.

deg™ (t;) = deg™ (rf) Vv deg_(rf

)=0 (6.19)
If Equation does not hold and if the Input degree of the processing resource is higher:
let’s consider t,.. = Pred(t;) the set of predecessors of t; and 7,4 C S" a subset of
processing resources where tp.. — Tpmep. Additionally, rp.. = Pred(rf) is the set of

predecessors of TJP , then we verify:

ﬂr,f € Tpre | allocates a t & tpre (6.20)

e [s the output degree of the candidate resource equal or higher than the output degree of
the current task or zero?

deg™t(t;) < dngr(r]P) v deg*(rf) =0 (6.21)

If Equation [6.21] does not hold and if the output degree of the candidate resource is lower,
we check that the sum of output degrees of its successors plus the output degree of the

successors of the successors is higher or equal than the output degree of the current task.
Let’s consider rges = N*T(NT (rjp))ﬂ

‘Tdes‘_l
degt(t;) < Y deg™ (] € T4es) (6.22)
k=1

After the verification, we have left a set of feasible candidates or an empty set. For the first
case, we obtain the mapping success probability of each feasible candidate according to Equation
Next, we select the candidate with the greatest probability of mapping success and map
the task to it. In the second case, if we don’t have any feasible candidate, we need to check
which path of Gy is suitable for the current task. This means the path where we will have a
higher probability to map the current task. For this, we use the same Equation but instead
of the successor tasks, we use the current task as input. After this computation, we select the
path with the higher probability value and obtain the possible candidates from it. Also, if the
task to allocate is a sink task, we compute the mapping success with the task as input.

An interesting characteristic of the algorithm is that it allows recomputation and creates the
time slots automatically. Effectively, if the resulting list w#" is an empty set, the algorithm
enters into a function where it checks if there is any datapath available in Gpy. If there is
a datapath available, the function will compute w" from the resources of that datapath. If
there is no datapath available, the algorithm creates a time slot and computes again w?"'. For
these purposes we use the function PARTITION introduced in Section [6.1.1]

Heuristic Optimization

Given ¢; € T that represents the task to map. Let wAPP = (t1,t2,...,tz), be the set of
successors of ¢;.

Let w#W € S’ represent a subset of n nodes (rf v ...,rF) of interest (window of possible
candidates resources). For each node of interest, we compute the set of its descendants Fj,. Let
F,e S and | F, |=m.

The selection of the best allocation for a particular task is determined by our probability
of mapping success function MS (line @ This probability is based on the value of the com-
puting latency, the number of resources that may be used to allocate a particular task and the
topological distance to the very next processing resource that can allocate a successor task:

SNT(NT(rl)) is the set of out-going neighbors (successors) of the successors of] .

111

|wAPP|

CLY-C-|Qy
MS;= Y leV| | (6.23)
Ucred Y | B
k=1

where 1 < j <| wW |, CLY is the worse computing latency of the set of possible allocations
in all the descendants of all candidates. Computing latency is the one that has a higher impact
on the computing cost. With the consideration of one sample, we can assess the performance of a
given resource when allocating a given task. C' is the length of the critical path of the sub-graph
GF(SF,KT) C Gy (S, K'), where S = LU R U---UE, and K¥ C {(+F, 7)) |(F) €
SENrE #£0rFP}. Qp is given by:

={rl € Fj| type(ty) € T(r])} (6.24)

CL* is the average computing latency of Qb and d is the shortest distance (from the distance
matrix, see Section to the next node rf : type(ty) € T(rl).

After the computatlon of all mapping success probability onto each candidate resource, we
select the one that maximizes MS (line [7) and map the task ¢; on this best resource (line
function MAP). Finally, we loop again while there is a task to map in the list L4pp. A graphical
representation of the heuristic optimization is shown in Figure A simple application and
hardware graphs are used. The subgraph G* is depicted in the bottom right with its critical
path C highlighted.

Application graph

Figure 6.9 — Graphical representation of the heuristic optimization.

6.2.2 Illustrations of the TA-MAP Principle
Example 1

Consider the application graph depicted in Figure It consists of one sensor, one actuator,
and three tasks. Table[6.3]shows the description of each node. For didactic purposes, we neglect
the parameters of each task in these illustrations.

112

Name of task type;

to interface
t1 task0
° o ° ° ° to taskl
ts task2
ta interface

Figure 6.10 — Example application graph 1. Table 6.3 — Application example 1 parameters

Consider the hardware graph depicted in Figure [6.11] Table [6.4) makes a summary of the
features of the processing elements. £/~ and E?L are in clock cycles.

L;
Ti £z- N EZCZ

r1 taskO 2 2

p taskl 2 2
r

2 task2 2 2

p taskl 2 2
T

3 task2 2 2

p taskl 2 3
r

4 task2 2 3

p taskl 2 1
r

5 task2 2 1

p taskO 2 3
T

6 task2 2 3

p taskl 2 3
r

7 task2 2 3

e @ Table 6.4 — Processing resources features for
example 1, for readability the IT of r* has been

Figure 6.11 — Example hardware graph 1. removed.

The first step of the algorithm is the initialization. We compute the topological sorting of
G'ypp- The result is stored in Lspp. The resulting topological sorting is

Lapp = (t1,1t2,t3)

Notice that the topological sorting does not consider the tasks with type = inter face, which
are not included in the set 7". Next, we use the Floyd-Marshall algorithm to build a matrix of

the shortest paths between all the processing resources in G/HW. Table shows the resulting
matrix.

Table 6.5 — Distance matrix for example 1

?
2

81818188 |8|=%
8181888 |2| =%
8181828 |=|m%
8182188 |=| w2l
81088 =|8| w2k

8188|828~
o|818(8|=|38

Next, we look for the first group of possible candidates, which are the nodes with zero input

degree, w™ = {rI'} (Figure|6.12).

113

Iteration 1

Application Hardware
Task to Resource
Topological map S candidate
opologica ource P
t3)t t r
sorting nodes @

Figure 6.12 — First group of possible candidates for example 1.

Now, we start the mapping algorithm. The first task to map is t;. As there is only one
candidate, we verify if the resource candidate is able to implement the task, and as it is, we map
the task onto this resource.

The second iteration starts with selecting the next task to map, which is t5. Next (line
of Algorithm , we obtain the resource candidates: w?"W = {rl’ rP}. After the selection of
the resource candidates (line @, we also compute the descendants of all of them. The resulting
descendants are Fy = {r} rP} and F3 = {r{’,rI'}. Figure shows a graphical representation
of these lists.

Iteration 2

Application Hardware
Task to Resource candidates

) map
Topological Descendants @

sorting

Figure 6.13 — Second group of possible candidates for example 1.

The next step is to compute the probability of mapping success for each resource candidate.

(CLY =3) x (C=1) x (|Q] = 2)

P _
forre M5 = e 9 x (d=1) x (S |F| =2+2)

=0.75

CLY = 3) x (C = 1) x (|Qs] = 1)

(CLe=3)x(d=1)x (3 |F|=2+2) =0.25

for 74’ : MSs =

The selected resource candidate is 75 because it obtains the greatest probability of mapping
success. We map the task to this resource.

The following and last task to map is t3 (Figure . The resource candidates for the
mapping of this task are wW = {r¥ rI’}.

114

Iteration 3

Application Hardware
Task to Resource candidates
Topological P
opologica

sorting

Figure 6.14 — Third group of possible candidates for example 1.

Because there are no more tasks to map, we do not compute the descendants of these group
of candidates. We compute the probability of mapping success with these same candidates as
input. The result will help us identify the best candidate for this particular task in both latency
and topological distance terms. The computations are as follows.

3-1-1
for r : MSy = = 0.
or Ty Sy 5192 0.5
3-1-1
for rf : MSs = —— =1.
or 173 Ss 1 1.9 5

With the computation of each resource candidates’ mapping success, we can see that the
best candidate is rf’. We select this resource to allocate the task, and we end the mapping.
Example 2

Let’s consider a different example. Figure shows an application graph that consists of two
parallel pipelines of tasks. Each pipeline consists of one sensor, one actuator, and three tasks.
Table [6.6] makes a summary of the characteristics of all the nodes of the application graph.

Name of task type;

to interface
t1 taskl
to taskl
t3 taskl
ta interface
t5 interface
@@ =
tr task2
O ® e
tg interface

Table 6.6 — Application example 2 parame-
Figure 6.15 — Application graph of example 2. ters.

For this example 2, consider the hardware graph exposed in Figure It consists of two
parallel independent pipelines of processing resources. Each pipeline has its pair of communica-
tion resources (a sensor and an actuator). Table shows the characteristics of the processing
resources of the hardware graph for example 2.

115

Ti L; L;
p taskl 3 2
r
L task2 3 4
p taskl 3 2
T
2 task2 3 4
p taskl 3 2
r
3 task2 3 4
p taskl 3 4
T
@ 6 “task2 3 2
@ 0O 0 0O S mrman
T
7 task2 3 2
@ OO0 0 O rmmnn
r
8 task2 3 2

Table 6.7 — Processing resources features for
Figure 6.16 — Hardware graph of example 2. example 2.

We start the mapping with the initialization stage. We compute the topological sorting of
G app, and the resulting list is

Lapp = (t1,t2,t3,t6, t7, t3)

And the distance matrix of the processing resources is the following.

Table 6.8 — Distance matrix for example 2

S O S
P10 1 2 |00 | o0 |00
7] o] 0 1 | o0] oo | o
r:]; oo oo | 0 | oo | oo | o0
rE oo oo ool 0 1 2
Pl oo|loo|loo|oo| 0] 1
¥ | oo oo oo oo |oo]| 0

Next, we start the allocation process of the algorithm. We select the first task to map, 1 and
the first group of resource candidates (Figure. Because we are starting the allocation process
we select the source nodes of Gy without considering the communication resources. The
resulting list is w?"W = {rf rl’}. Next we obtain the descendants of each resource candidates.
The descendants are Fy = {rf’ 1} and Fs = {rf rL'}.

Iteration 1
Application Hardware
Task to Resqurce
. candidates
Topological

map Source
sorting nodes

Figure 6.17 — First iteration for example 2.

116

The next step is compute the probability of mapping success for each candidate.

4-3-2
for r{ : MSy = =1.
or 1] S1 114 5
4-3-2
P . _ _
for rg .MSG—2‘1'4—3

Iteration 2: the selected resource is rf’. We allocate the task to this resource and continue
with the mapping. This iteration (Figure [6.18) only considers one resource candidate, rf we
verify that we can use it and map the task onto it.

Iteration 2
Application Hardware
Task to Reso'urce
Topological map candidate
opologica
sorting r's

Figure 6.18 — Second iteration of example 2.

Iteration 3: the following iteration (Figure|6.19) also has one candidate, r{’. We perform the
same operation as previously. We verify that we can use the resource and map the task to it.

Iteration 3
Application Hardware
Task to Resoyrce
Toological map candidate
opologica
sorting

Figure 6.19 — Third iteration of example 2.

Iteration 4: the next task to map is tg (Figure , and as it is a source node of its pipeline,
the selected candidates will be the available source nodes of the subgraph composed only by the
processing resources. In this case, the resource candidate will be w" = £ As there is only
one candidate, we verify the resources’ characteristics and map the task to it.

117

Iteration 4
Application
Task to
Topological map

sorting

Hardware
Resource
candidate

Source
nodes

Figure 6.20 — Fourth iteration of example 2.

Iteration 5: the following iteration (Figure[6.21)) consider also one single candidate w!" =
r{’. We also verify that we can use it and map the task to it.

Iteration 5
Application

Task to

Topological map

sorting

Hardware
Resource
candidate

Figure 6.21 — Fifth iteration of example 2.

Iteration 6: finally, for the last task to map (Figure|6.22)), we use the only remaining resource.
We verify that we can use it and map the task to it.

Iteration 6
Application
Task to
Topological map
sorting

0,020

Hardware
Resource
candidate

Figure 6.22 — Sixth iteration of example 2.

6.2.3 Discussion

In this section, we introduced our first heuristic, the topology-aware algorithm. It improves the
decision-making of the SS-MAP by adapting look-ahead techniques to the mapping problem.
The purpose of a look-ahead approach is to foresee the effects of a particular decision. It provides
the possibility to weight characteristics such as latency and topological distances in the mapping
and scheduling process.

118

6.3 Bayes-Based Heuristic Mapping Algorithm

During the mapping of an application onto a hardware platform, there is a level of uncertainty
concerning the chosen resources optimality since we face to a NP-complete problem. This
uncertainty may be solved using an exhaustive brute-force algorithm. However, this will possible
lead to a considerable exploration time. We saw that, if we use a heuristic-based algorithm, the
exploration time decreases significantly, but there is a high probability that an optimal mapping
maybe not be achieved.

Any heuristic-based mapping algorithm aims to maximize the probability of choosing the
best set of resources for a given application. Although an application consists of several tasks,
we can not consider all of them once because we will end up with an approach similar to a brute
force algorithm with a huge exploration time. We need to concentrate on a smaller set of tasks,
find the best allocation, and then move dynamically to the next set of tasks until we allocate all
the application’s tasks.

An interesting approach is to use a conditional probability-based heuristic [I82]. Conditional
probability allows computing how likely an event will occur given that one or more related events
had happened. Using this approach, we may analyze if a particular task’s successors may be
allocated to a specific resource’s descendants. This allows to chose that specific resource to
allocate the task. With this analysis, we may maximize the probability of obtaining an opti-
mal or sub-optimal mapping without increasing the exploration time. A successful conditional
probability method is the Bayes Theorem which is extensively used in learning methods, cloud
computing, communications, medicine. The Bayes Theorem was developed by Rev. Thomas
Bayes and published post-mortem by his friend Richard Price [I97]. The Bayesian approach is
a modeling methodology that provides a principled approach to reason and act in the context of
uncertainty, and a dynamic environment [I98]. This method will analyze dynamically during the
mapping the allocation of each task and its successors and increase the probability of obtaining
an optimal or sub-optimal mapping.

In this section, we introduce the Bayes-based heuristic mapping algorithm (BB-MAP). We
propose to use a Bayes approach to enhance our previously presented heuristic. This enhance-
ment will provide higher performance results.

6.3.1 Bayes Theorem
The canon equation of the Bayes theorem is:

Likelihood Posterior Probability
—
P(E|H)e P(H)

P(H | E) = (6.25)

~——
Prior Probability

Where P(H|E) reads as, given the evidence E, what is the probability of the hypothesis
H to happen. Bayes’ theorem gives a method of revising probability estimates as additional
information becomes available. The additional information is the information that is being
conditioned on. The probability before additional information becomes available is referred to
as the prior probability, and the revised probability using the additional information is called
the posterior probability [199].

A way to describe the Bayes theorem graphically is through a bayesian belief network. A
Bayesian belief network is a directed acyclic graph whose nodes are the model variables and
whose links represent local causal dependencies. The network topology can be thought of as an
abstract knowledge base that holds independently of the numerical assignment of conditional
probabilities. A fully specified Bayesian network can be used as a probabilistic inference engine,
which computes the posterior probability distribution for a set of query variables given the
probability distribution for some evidence variables [200].

119

6.3.2 Bayes Theorem Applied to the Mapping Problem

In this section, we explain how the Bayes theorem can be used to solve the SPS-CGRA mapping
problem. Similar to the topology-aware methodology presented in Section [6.2.1] the Bayes-based
methodology is divided in two parts : Initialization and Allocation process. The complete
pseudo-code is presented in Algorithm

Algorithm 3 BB-MAP algorithm

Input: Gapp, Guw, 9,
Output: Lyap
: New array B,where each By = {r eS|ty — TP} and | By |= ¢
New array r, where each k; = {NT¥(r j)}
New node list Lapp sorted topological
while Lapp # {0} do
dequeue t; from Lapp
New list wH" with the possible candidates
resources from S’
7 Compute the bayesian probability

for all elements in wW
8: Map t; to the resource that maxrimizes the
bayesian probability
9: Store the mapping in Lyrap
Initialization

As in the previous two sections, we build two subgraphs from a couple of application and
hardware graphs (Gapp and Ggw). The application subgraph G;‘ PP = (T ',D") where T' =
{t: € Gapp | type(i) # mterface} and the hardware subgraph GHW(S K') with 8" = RP.
Given an application graph G app and a hardware graph G, gw as inputs, we compute By,
which is the set of processing resources ’I“JP € S that can allocate task ¢, and provides the
best performance. To obtain By, the algorithm computes the task’s performance t;, over all
the processing resources. Then an ordered list is produced, where the order corresponds to the
decreasing performance. The parameter ¢, provided by the user, will select a number ¢ of the

resources of By, starting from the best in terms of latency performance.

| By |=¢ (6.26)

Next, we compute r;, which is given by:

rj = {NTY(r)} (6.27)

where ¢ € Z is a second parameter provided by the user. It indicates the size of the
neighborhood of TJI-D to be explored by the algorithm. For example, a 1) = 1 represents a set that
includes all the successors of 7“]1-3 . A 1) = 2 represents a set that includes all the successors of ’I“]P
and the successors of these successors.

Finally, we compute the topological sorting of G:4 pp and store the result in Lpp.

Allocation Process

The BB-MAP algorithm’s allocation process follows the same methodology as the allocation
process of the Topology-Aware algorithm described in Section The only difference is the
part devoted to select the resource or the path. It is described in the following section.

120

Bayes-based Heuristic

Given a task ¢; € T', where T is the set of vertices of G:4 pp» and a set of possible candidates

!
wiW = (rP L . rP) where w?W € S, we aim to find which is the Tf € w"W that maximizes

T
APP " onto the set of descendants

the probability of allocating the successors of t;, denoted by w
F j of Tj.

We solve this problem using the Bayes theorem. Hence, this probability can be formulated
as: given t; allocated onto rf , what is the probability of allocate w”F" onto F};. This is done by
computing this probability for all the possible candidates and select the resource that maximizes
the probability.

Let’s formalize the principle. For each possible candidate, we compute the following equation

(coming from Equation |6.25)):

Likelihood Posterior probability
P(t; = r¥ | wPP = F;) e P(w? — F;
———
Prior probability
Where the denominator P(t; — rf) is the probability of allocating success of t; onto rf , and
this is equal to:
P 1
Pti—rj)=~ (6.29)

n

Where n is the number of candidates (|w”"|). We consider that all the candidates have the

same probability to be selected because we prioritize the probability of allocating w?” onto
F;.
The first element of the numerator P(t; — rf | wAPP — F}) is computed as follows:
P(wAPP = F;
P(t; =¥ |0 - Fy) = n() (6.30)

nZP(wAPP — F)
b=1

Where each element of the numerator and the denominator is calculated as Equation [6.31}

The second element of the numerator P(wAF? — F;) is the probability of allocating wAPP onto
F; and it is calculated as follows:
P(wAPP — F;) = P(CLP) e P(d) ® P(Q) (6.31)

Where P(CL?) is the probability of finding the best allocation (r{ € Fj) for each successor
of t;, and it is calculated as follows:

| CL
P(CL?) = | OL | (6.32)
= |
where
CL={rl € Fj|rF € By} (6.33)

P(d) is the probability that we can allocate each successor of ¢; onto the successors of rf ,
in other words, that the topological distance from the allocation of ¢; and its successors will be
the minimum. P(d) is calculated as follows:

Pld) =) || ij{ || (6.34)
b=1""J

where

121

dp = {TZP € Fj | type(ty) € T(TZP) A V“ZP € K} (6.35)

Finally, P(Q) is the probability of finding an allocation of all the successors of ¢; from the
descendants of rf , and it is calculated as:

PQ =Y 1] (6.36)
b=1 | F] ‘
where
Qv = {r] € Fj | type(ty) € T(r})} (6.37)

Back to the allocation heuristic, we compute Equation for each candidate and select
the one that maximizes the probability. In Figure we can see the Bayesian network of the
SPS-CGRA mapping problem, recall that such a network can be seen as a probability inference
engine (see Section . We highlight each part of the Equation The first level of the
network concerns the the prior probability, recall that we consider the same probability for all
the candidates (W) The following levels represent both the likelihood and the posterior
probability. The main features that we consider are the compatibility between a task and a
processing resource, the topological distance and the resulting latency cost. The principle is
that we look for a candidate that can be compatible, be the nearest processing resource and
provide the lowest latency possible.

Figure 6.23 — Bayesian network.

6.3.3 Illustration of the BB-MAP Principle
Example 1

At first, we present the principle on an easy example. Consider the same example 1 given
in Section The application graph is depicted again in Figure [6.24, Table shows the
description of each node. For didactic purposes, we neglect the parameters of each task. Consider
the hardware graph depicted in Figure Table makes a summary of the characteristics
of the processing elements. [,iI N and EZCL are given in clock cycles.

122

Name of task type;

to interface
t1 task0
° o ° ° ° to taskl
ts task2
ta interface

Figure 6.24 — Example application graph 1. Table 6.9 — Application example 1 parameters

T L; Corresponding
LIy Lot task
’I"{D task0 2 2 t1
P taskl 2 2 ta
2 task2 2 2 t3
P taskl 2 2 12
3 task2 2 2 t3
P taskl 2 3 12
4 task2 2 3 t3
P taskl 2 1 12
5 task2 2 1 t3
P task0 2 3 t1
6 “task2 2 3 t3
P taskl 2 3 to
T task2 2 3 t3

Table 6.10 — Processing resources features for
Figure 6.25 — Example hardware graph. example 1

Initialization

1) The initial step is to fix ¢ and 1 arbitrarily (see Equations and . Let’s choose
¢ = 1 and ¢ = 1 in this example, but the user could change these parameters if not satisfied
with the obtained results.

2) The second step is to extract G;}PP from Gapp and compute the topological sorting
L app of the subgraph qu pp- In this example this gives:

Lapp = (t1,t2,13)

3) Next, we compute « (definition on Equation and By for each type of task. To
compute each By we list first the number of task types in the application: in this example they
are task0, taskl and task2.

For each of them we search the list of processing resources able to execute them. Among
this list we select the best resource given (because we use ¢ = 1 only one resource is selected).

P
Btask() =r
P
Btaskl =Ty
P
Btask2 =Ty

Now we need to compute the sets « for each resource rf , we consider ¥ = 1, the results are

123

Kpp =T5,T3

kP _varéj

KR,.P —74(133,7"5
K/,,,f:
IiTg:@
o = 0
Fpp =

Allocation Process

After the completion of the initialization stage we can start the allocation process. We define
the first set of possible candidates, which is going to be 7’ because is the only source node of
the hardware graph. This resource will be used to allocate t1, so we verify the requirements of
t1 (type(t1) = task0) (Table and we allocate t; onto 7. Next, we take the successors of r’
as the next set of possible candidates (7"%D , r:f), we verify that both of these processing resources
are able to implement the next task (¢2). At this point to select the best processing resource
we evaluate Equation which compute the bayesian probability of mapping success for a set
of resources defined by ¢ and . We need to get the successor of to which is t3. We need the
type of ts (which is task2), to identify the possible processing resources able to execute task2:
these are 7}’ and r{’. So we compute F), p and F,p as follow: F,.p = = (rf,r¥) and F, P = = (rf,rF).

First, we present the evaluation process of 7“2 .

P(ti—7r]) =Pty = 13) = 5

P(wt? = Fj) = P(wf? — F p) = (P(CLP) = %) o (P(d) =

T2

D=

PwsP? — Fp) =
(z 7“]) (2 T | Wy 7'5) (n:2)(ZP(wAPPHFb):%+O)

P = Fj | t; = 1) = P(wy™" = Fop [ta 5) =

Second, the evaluation of rf’ is given as follows:

P(w APP%FP |ty = 1rF) = =0 (6.39)

After, the evaluation we choose i for the allocation of t; since the probability of rf gave

a better change to success (50%) than on r{ (0%). Next, we try to find the best allocation

resource for execution of t3 of type task2. The possible candidates are rf. We evaluate the

same Equation [6.28] however with the current task as input, because there is no remaining task
to map.

P(ngP P

= Fop |ty = rp) = =0 (6.40)

124

(1))
1

2

Since the probability of 7£ (100 %) is higher than on r{ (0%). We allocate the last task to rf
and finalize the mapping.

P(wi™ = Fop[ts = 18) = =1 (6.41)

6.4 Conclusions

In this chapter, we have introduced three list-based approaches for the SPS-CGRA mapping
problem. A simple list-based algorithm (SS-MAP) can be used for less complex applications
and hardware, mainly full pipelined hardware. Due to its simplicity, the exploration time is not
considerable. The SS-MAP allows to explore all the topological sortings of the hardware graph
and, among the set of results, to select the best using the performance evaluation equation
(Equation . Using all topological sortings increases the quality of the final mapping for
complex applications, but, the exploration time will increase significantly.

This is why we proposed the second solution in which we added a heuristic based on look-
ahead techniques (TA-MAP). This heuristic principle is to foresee the outcome of allocating one
task to a given resource in terms of allocating the successors of such task onto the descendant
of the given resource. This approach targets platforms that have several datapaths and inter-
connection between them. It can select the best datapath to use for the allocation of a task and
its successors.

The third proposed solution, a Bayes-based mapping algorithm, may be recommended for
complex structures. It considers two hyperparameters that can be used for fine-tuning the
mapping process by the user. These hyperparameters define the preferred maximum topological
distance to explore and the number of elements of the set of best allocations to explore, in terms
of latency, for a given task.

These solutions can deal with more or less complex applications and hardware. However,
their decision policy remains local. Both of the heuristics approaches can increase this range of
decisions to include the successors of the task. Nonetheless, they still may not be optimal. In
this regard, we propose to use a reinforcement learning approach that can solve this problem.
This approach will be presented in the next chapter.

125

Chapter 7
Q-learning Mapping Algorithm

In the previous chapter, we presented three list-based mapping algorithms. Each of these algo-
rithms combines different techniques to increase the probability of obtaining an optimal map-
ping. The SS-MAP (see Section is a single shot mapping algorithm that targets less complex
hardware platforms. Both TA-MAP (see Section [6.2)) and BB-MAP (see Section algorithms
feature a heuristic that is capable of selecting the best resource for a given task. However, these
approaches use a greedy policy, where the decision is taken locally (the allocation of a given
task). The heuristics of TA-MAP and BB-MAP consider the mapping of a task’s successors,
improving the locality of the decision. However, it is still not enough for complex hardware
platforms with multisensor capabilities.

We propose to transpose the SPS-CGRA mapping problem into a reinforcement learning
problem. In this chapter, we introduce a Q-learning mapping algorithm. This mapping algorithm
features an agent capable of identifying a suitable processing resource for a given task. Its
learning process is based on information about the type/parameters of the processing resource
and task, interconnectivity of the resource, and data dependence, among other data.

We organize the remaining part of the chapter as follows. Section introduces reinforce-
ment learning and illustrates the basic reinforcement learning problem. Section describes
the Q-learning algorithm and its application to the scheduling problem. Section presents our
Q-learning mapping algorithm and its methodology. Section presents an illustrative example
of the use of different reward policies and their impact on the total reward. Finally, Section
summarizes this chapter.

7.1 Reinforcement Learning

Reinforcement learning (RL) is a branch of Machine Learning (ML) that aims to learn what
to do by maximizing a numerical reward signal [I57]. It involves the construction of an agent
that interacts within a dynamic environment and learns from it. The agent will deal with
different states and take actions according to some policy. Each action that the agent takes
will be rewarded either positively or negatively according to some performance measure which
will grade the "goodness" of the current action [201]. The goal of the agent is to improve its
performance and maximize the cumulative reward.

RL contrasts with Unsupervised Learning (UL). The second does not depend on any guidance
or teacher. The training data is not tagged with the correct output, and the learning process
relies on an unsupervised model that will learn freely. Similar to RL, Supervised Learning (SL)
requires guidance for its learning method. However, the approach of SL is instructional and it
learns by minimizing some loss. On the contrary, the approach of RL is evaluative, where the
guidance or teacher provides feedback to the agent according to some performance measure [201].
These differences allow RL to support custom performance evaluation functions which help to
accelerate the learning process. The evaluative approach of RL helps to discover solutions to
problems where there is a lack of information and structure. The agent will compensate for

126

these problems by randomly exploring the universe of possible solutions and obtaining a reward
related to its actions.

RL algorithms may be divided according to the used model: model-based [202] and model-
free. Model-based algorithms use the transition probability distributionE] and reward function
for learning a model of the environment. They may be able to predict the outcomes (rewards)
of actions. Model-free algorithms do not use the transition probability distribution, and reward
function related to the Markov decision process (MDP) [203]. A model-free algorithm will not
try to understand the environment. It will learn through an iterative process of trial and error.
Model-free algorithms may be further divided into policy-based and value-based. Policy-based
algorithms try to improve a policy function directly without using a value function. The policy
function selects the best action which should be considered in a particular state to increase the
reward without calculating the value function. Some examples of this type of algorithms are
Deep Deterministic Policy Gradient [204], Trust Region Policy Optimization [205] and Proximal
Policy Optimization [206]. In value-based algorithms, an agent makes its decisions based on the
value function, which is the representation of the expected maximum reward, collected using
some policy (greedy or random). Examples of value-based algorithms are Q-learning [207), 208],
State-Action-Reward-State-Action (SARSA) [209, [157], Deep Q-Network (DQN) [210], Double
DQN [211], 212], Dueling DQN [213].

Description of an RL Problem

An RL problem consists of a finite set of states SE] and a finite set of actions A. During the
learning (training) phase, the agent interacts with the environment and observes one state. In
this state, the agent is fed with some information, from the environment, about the state and
the available actions. Then, the agent is required to choose some action according to some policy
function [I57]. This policy may explore or exploit the environment. Following the former, the
agent will randomly choose any action. According to the latter, the agent will choose the best-
observed action (so far) related to that particular state. After the decision, the agent will be
transferred to the following state and receives a reward according to the action taken (Figure

7).

Agent

State AA Reward Action

Environment (<€

Figure 7.1 — Basic principle of RL.

The transition between states follows the Markov Decision Process (MDP)consisting in five
components [214]:

e A finite set of states S.
e A finite set of actions A.

e A transition function T : (S x A) — S’ that maps a state to its successor according to the
action taken.

In a Markov decision process, given the states i and j, the transition probability is the probability of transition
from the state ¢ in time n to the state j in time n + 1.

2We systematically differentiate the variables related to the reinforcement learning approach from the models
and mapping and scheduling algorithms variables, with bold letters.

127

e A reward function R : (S, A) — R.

e A discount factor 0 < v < 1 to assess value over future actions compared to the current
ones.

By following the Markov property, we can assume that the next state and the received reward
depend upon only the previous state and the action taken. The result of the learning phase is a
surjective policy function, which maps states to actions. The agent will use this policy to decide
which action to take when observing a state[214].

7.2 Q-learning

Q-learning is a value-based RL algorithm developed by Watkins [207, 208] that uses the Bellman
optimal equation and an e-greedy policy E] to select the action for a given state. Its efficiency
has made it the foundation of many other reinforcement learning algorithms [215, 216]. The
adaptability of the reward function can be used to suit different problems [171], 217, 218 216,
219]. The basic Q-learning algorithm takes as inputs a g-table (Q), the set of actions (A), the
set of states (S), and a possible terminal state that belongs to the set of states. The g-table
consists of the action and the state space, and it is arbitrarily initialized. The process will iterate
a number of episodes defined by the user. During each episode, we initialize the list of states
S (Algorithm [4 line [2). Next, for each state s € S, we choose an action (a € A(s)) using a
policy defined by the user (Algorithm (4] line . We observe the reward and update the g-table
(Algorithm [4] line [5] to [6)) using some learning rate (o) and some discount factor () policies,
update the state (S'), and iterate again until we reach the terminal state. The terminal state
defines the end of the episode.

Algorithm 4 Q-learning algorithm
Input: Initialize Q(s,a),Vs € S,a € A(s), arbitrarily and Q(terminal-state,-) =0
1: Repeat (for each episode) :
2: Initialize S
3 Repeat (for each step of episode) :
4 Choose A from S using policy derived from Q(e.g., e-greedy)
5: Take action A, observe R, S’
6: Q(S,A) «— Q(S,A) + a[R + ymaz.Q(S',a) — Q(S, A)]
7.
8

S« S’
until S is terminal

Q-learning Applied to Mapping and Scheduling Problems

Applied to mapping and scheduling problems, Q-learning has been proved to solve some of the
issues that classical and other machine learning algorithms may not be able to solve, such as
stochastic arrival of tasks [220], online single-machine scheduling [221] or resource allocation for
vehicular systems [222]. In a Q-learning algorithm, the agent may learn to identify the best
allocations for each particular task considering the entire application without the expense of
high exploration time and memorization needs. And compared to other learning approaches, Q-
learning does not need a huge data set to learn. The learn-by-trial of Q-learning allows searching
for the optimal implementation exploring possible solutions that with classical algorithms we
may not be able to explore.

3¢e-greedy policy is a simple method to balance exploration and exploitation by choosing between exploration
and exploitation randomly (see Section [7.3.4)).

128

7.3 Q-learning Mapping and Scheduling Algorithm

In this section, we introduce our Q-learning mapping and scheduling algorithm. The inputs
are a couple of application (G app) and hardware (Gyw) graphs. The goal for the agent is to
learn the best allocation for each task of the application. The agent will receive information
about two subgraphs (Figure . The first one will comprise the task and its successors and
predecessors. The second subgraph will be a resource and its successors and predecessors. For
both subgraphs, the uprank and the downrank will be also given. With this information, the
agent will learn to select the optimal allocation.

Application graph Hardware graph

o000 & 00000
DS 09600

-~ ~
-~ ~
- > g Downward Upward N
< _Downward __Upward o> < - c>- P > |
rank rank
N r ______ 1 / N
9000
4 L ______ -I -
Figure 7.2 — Subgraphs and information given to the agent from the environment.
7.3.1 Agent

The agent 7 is a mapping function that maps the application to the hardware.
%:GAPP_>GHW (71)

The agent will traverse the application allocating each task (State) to a suitable resource
(Action). It will obtain rewards according to the policy described in Section[7.3.3] The terminal
State will be the last task to allocate. The decisions that take the agent are local. However,
the information that is fed to it is semi-global. The environment provides information about the
successors and predecessors of a given task and resource (Figure . Additionally, information
about the location (downward and upward rank) of the resource and task within their own graph
is also given.

7.3.2 Environment

We propose to use the hardware graph (Ggw) as an environment. It will provide the possible set
of actions and the reward feedback. We consider that the agent will traverse the environment,
and it will be allocating (mapping) the tasks to the available resources. The environment after
each allocation of a task will provide the reward to the agent, and this reward will be used to
update the g-table.

State Space

We propose to define the state space (S) with all the possible combinations of the processing
resources of the hardware graph. Hence, the state space will consist of the combinations of the
following characteristics:

e Type of task (7;)

129

e Parameters of the task (IL;)

e Input degree of the resource (deg_(rf)

e Output degree of the resource (deg™ (rf))

e Type of tasks that the successors of the resource (rg, = Succ('rf)) may implement
(T (rsuc))

e Type of tasks that the predecessors of the resource (ry.. = Pred(rfj) may implement
(T(rpre))

e Upward rank of TJP

e Downward rank of 1"]1-3

These state characteristics can be interpreted as explained in the following lines: Given a
hardware graph Gy, we gather the information about all the possible tasks that each resource
can implement, without special operations: disable and copy. As we deal with heterogeneous
hardware on both types of tasks and physical hardware implementation, we need to ensure that
the parameters are considered. On this matter, the final list of type of tasks will discard only
the type of tasks that have the same parameters, also considering ranges and values. Also, we
gather information about the degree, both the input and output.

The upward rank is the largest topological distance from a given resource to a sink resource
(a resource with an output degree equal to zero). The downward rank is the largest topological
distance from a given resource to a source resource (a resource with an input degree equal to
zero). However, we consider the number of resources that compose Guw (|Grw|) as the upward
and downward rank. Though this number will exceed any actual rank, it is used because some
pipelined applications exceed the number of resources, and we need an item to identify this
situation.

Given an application G 4pp, the number of states for a single episode will be given by |G opp|.
Some states of the complete state space may never be visited during the learning process or the
inference. However, the logic behind it is to create a state space that is the complete universe
of possible hardware combinations. Using this idea, we can discard any application with a task
that does not correspond to any state. If any task can not be related to a state, the application
can not be implemented on the hardware. Furthermore, the complete state space allows one to
implement different applications to the same hardware.

Action Space

The action space (A) is the set of available resources. The set A changes dynamically depending
on the previous mappings. Considering the subgraph GIHW(S/, K') with 8" = RP| the action
space consists of all the T'JP € S'. After each allocation, the used resources will be removed from
A.

7.3.3 Rewards Policy
The rewards policy (Rt) for each State-Action pair is given by:

R1(Si,Aj) = Rg + RL(Si, Aj) (7.2)
Where Rg represents the global reward and Ry (S;, Aj) the local reward.

130

Local Reward Policy

The local reward policy Rr(S;, A;), evaluates the allocation of a task (t;), of the application
subgraph Gy pp = (T', D’) where T' = {t; € Gapp | type(i) # inter face}, onto some resource
(rf € S’). This evaluation is based on an adaptation for the Q-learning approach of the rules
given in Section It is given by the following equation:

RL(S;i; Aj) = Myalia + DDyalid + Srcyatia + Snkyatia + Dvaitid + Lopt + Prevaiia + Sucyaiia
(7.3)
where My)34 represents the reward assigned by the environment and represents the goodness
of the allocation considering the type of task and its parameters. Myaiiq is given by:

Muate, if type(t;) € T(rl) Ap(t:) € TI(r})

(7.4)
—Malue, Otherwise

Myalid = {

Where Myalue is @ user defined value.

DDy.1iq (data dependence validation) is the reward provided by the environment given that
the predecessors of t; are correctly reachable. DDyy,)iq is given by Equation Considering
the set of ¢; predecessors tp.. = Pred(t;) already mapped to a subset of processing resources
Tpre C S', and the path P(rpre, rf) exist.

DDyaiue, if Vi € P(rpre, Tf) no task has been allocated (75)

DD.iia =
- {_DDvalue, otherwise

Where DDy 1ue is a user defined value.
Srcyaliq is the reward provided by the environment given that the source of data is valid. If
t; is the successor of t; and type; = inter face (t; is a sensor), we validate Srcyajg by:

S Srcyalue, if ¢ is assigned to 7% A {Vrp € S|rp € P} no task has been allocated
I'Cyalid =
valid —Srcyalue, Ootherwise
(7.6)
where P = {rsenser .| rJP}, P € Ggw and Srcyayue is a user defined value.

Snkyaliq is the reward provided by the environment given that the sink of data is valid. If
t; is the predecessor of ¢; and type; = inter face (t; is a sensor), we validate Snkyajg by:

Snkyaue, if ¢ is assigned to r°"*" A {Vr, € S|rr € P} no task has been allocated
Snkyalia = .
—SnKkyalue, Otherwise
(7.7)
where path P = {T’JP, e, 5O D e Gy and SnKyapye is @ user defined value.

Dyalia is the reward provided by the environment due to the out degree and in degree of
both the task and resource. Dyy,)iq is given by:

Doatiq = Dyalues if Ivalid. = T'rue A Oyatia = T'rue (78)
—Dyalue, otherwise
Where Iya)q represents the evaluation of the in degree characteristics and is given by:
True, if deg™ (t;) = deg*(rf) Vdeg™ (rf) =0
Liatia = { True, if Brf € rpre | allocates a t; ¢ tpre (7.9)

False, otherwise

Consider t,,. = Pred(t;) the set of predecessors of t; and 7,4y C S a subset of processing
resources where tyre — T'map. Additionally, 7, = Pred(rjl-D) is the set of predecessors of rf)

131

O, a1iq represents the evaluation of the out degree characteristics and is given by:

True, if deg™(t;) < deg+(7“f) V d,eg+(rf) =0

|Tdes|_1

Ovalia = { True, if degt(t;) < Z deg™ (ry) (7.10)
k=1

False, otherwise

Where 7ges = N+(N+(rf) and 7y € rges.

Lopt represents the reward assigned by the environment that means the optimally of the
allocation of the task ¢; onto ’I“JP in terms of latency. This value depends on a table of rewards
where the lowest latency will receive the entire value Lyajue, Which is an input value defined by
the user. This value will decrease depending on the increase of the latency of the allocation. If
the resource can not implement the type of task, the reward will be —Lyaiye-

maz(LET) — £§F

L J . if type; € T; Ap; € 11
Lopt _ (Value)(mal‘(LiCL) _ ’m’Ln(LZCL)) ype; 7\ Di j (7.11)
—Lyalue, otherwise
where LiCL is the list of computing latencies of all the resources that can implement ;.

Preyaiiq is the reward assigned by the environment that represents if the predecessors (rpre =
Pred(rf)) of TJP can allocate the predecessors (t,.. = Pred(t;)) of t;. If they able to allocate
them the reward is Preyaiue and if not —Preyaiye-

Prevaluey if tpre — Tpre

Prealia = { (7.12)

—Preyaiue, otherwise

Preyaiue is an input value defined by the user.

Sucyaliq is a reward provided by the environment that represents if the successors(rgy. =
Succ(r;D)) of rf are able to allocate the successors(tsye = Succ(t;)) of t;. If they are able to
allocate them, the reward is Sucya1yue and if not —Sucyajye-

Sucvaluea if toue = Tsuc

Sucvalid = { (7.13)

—Sucyalue, Otherwise

Sucyalue is an input value defined by the user.

Global Reward Policy

The global reward policy Rg evaluates the entire mapping, if all the tasks are allocated in
some resource and if the data dependency is respected. We have two cases if we evaluate the
performance or not. This depends on the type of training that we are executing. During the
offline training, we don’t consider the performance. Otherwise, during the online training, we
evaluate the performance. If the computing cost of the episode (CCepisode) is better than the
previous episode (C'Cepisode—1), We provide a reward. The reward of the performance evaluation
needs to be minimal. Otherwise, its value will exceed the other rewards as it may increase
severely during the entire training. In this sense, we divide the value by the number of episodes,
and we take advantage of the exploitation of the g-table made by the epsilon policy. In other
words, the greatest reward will be given during the last episodes of the online training, where
we are converting to the optimal mapping.
For the offline training the value of Rg is given by:

. / P ! —y P
Re = {Rvalue; if Vt; € Gypp,Iry € Gw i = 7 (7.14)

—Ryalue, Otherwise

“N*(rl) is the set of out-going neighbors (successors) of r} .

132

where t; — Tf is subject to the same mapping constrains given in Section
For the online training the equation changes to

Ryalue (m, if Vt; € G:4PP, EIrJP c G'HW St — Tf
CCepisode—1 > CClepisode
Ré =\ Roaue, if Vt; € Gupp, Il € Gy ti — 17 (7.15)
CCepisode—1 = CClepisode
—Ryalue, otherwise

Where t; — rf is subject to the same mapping constrains given in Section Ryalue
and CCyqye are input values defined by the user, 7. is the subset of processing resources that
allocate the predecessors of the task t;, episode is the current episode number and episodes is
total number of episodes of the training.

7.3.4 Training

The Q-learning algorithm is based on the dynamic update of a table (g-table) made by the action
space and the states space. The g-table is a look-up table that stores the q values obtained after
each episode that composes the learning process.

The learning process is based on two different types of training: offline training and online
training. The set of applications of a given hardware platform may not be large enough to be used
in a training process. This is particularly true for SPS-CGRAs, as the universe of applications
for each one is limited. We solve this issue using randomly generated graphs. The offline training
is used to create a seed g-table (bootstrap table) that may be used directly for inference if all
the application states are already evaluated and the resulting mapping is a correct mapping.
We initialize the training with the offline training, which will provide the above mentioned seed
g-table, afterwards we proceed with the online training. During the online training, we use the
target application that we want to map onto the hardware platform. The online training is used
to increase the inference performance and the obtention of the optimal mapping. The idea of
both types of training is to generalize the g-table to map other applications than the current
one.

We use two policies that control the balance of exploitation-exploration and future-present re-
wards for both types of training. The e-policy allows one to balance the exploitation-exploration.
We propose to at the beginning explore as much as possible. As the number of episodes increases,
we start exploiting the g-table to converge faster, as the agent will know most of the environment
and it will be able to select intelligently a suitable processing resource for a given task. The
gamma policy allows one to balance future and present rewards. We propose prioritizing future
rewards at the start of the training, and as the number of episodes increases, change the policy
to present rewards. This will help us provide better rewards to more mature solutions at the
end of the training. Both policies will help the agent to learn more efficiently.

Q-Table

The g-table is made by the states space and the action space. Where the y-azis is the state
space and the z-axis is the action space. It is initialized all zeros, and after each episode, it is
updated.

Epsilon Policy

The epsilon-greedy policy or e-greedy policy allows one to manage the exploitation and explo-
ration of the environment. We propose using an epsilon-greedy policy where we explore the
environment randomly at the beginning of the training. After a given number of episodes, we

133

allow the agent to exploit its knowledge. Therefore, ¢ will be initialized with a value near or
equal to 1. After a given number of episodes (start_decay epsilon), its value will decrease
until zero. The epsilon policy is provided by:

Einit if episodes > start__decay__epsilon
€= Ve — €init
it episodes — start__decay epsilon’

(7.16)

otherwise

where start__decay__epsilon is an input value defined by the user, and €;,;; is the initial value
of ¢, also given by the user.

Learning Rate

The learning rate (a) controls how fast the learning process modifies our g-values given new
evidence [223]. One expects to start with a high learning rate, which allows fast changes, and
lowers the learning rate as time progresses. However, this policy will easily discard old values
and replace them with new knowledge, which may mean that the agent will not learn what is
needed to find the optimal mapping. We use a fixed learning rate value to allow the agent to
learn only with epsilon and gamma variation.

Gamma Policy

The discount factor or gamma (7) allows balancing future and present rewards. With the
learning rate, both control the agent learning and define future rewards’ value over present
rewards. Recall that we use a fixed learning rate (see Section . Therefore we use only ~
to control the balance. We propose using a dynamic gamma policy, where the future rewards
are prioritized (gamma value equal or near to 1) at the beginning of the training. After a given
number of episodes (start_decay _gamma), gamma starts to decrease until the present rewards
are the priority (gamma value equal or near to 0). We propose a gamma policy given by:

Yinits if episodes > start__decay__gamma
Y= Yinit

(7.17)
Yinit — -
episodes — start__decay__gamma

, otherwise

where start_decay gamma is an input value defined by the user, and v;n; is the initial
value of 7, also given by the user.

Off-line Training

We use the off-line training to create a seed g-table. The training uses as inputs the subgraph
Giw (S, K') with " = R” and N, a user-input variable that defines the number of randomly
generated application graphs that we will produce. The first step is the creation of the g-table
(Algorithm [5| line , which consists of the combination of the state space and the action space.

Next, we create the set APP__SET, that consist of N randomly generated application graphs
(Algorithm |5, line . We enter the main cycle, where we will iterate according to the number
of training episodes. Inside of the main cycle, we start with choosing an application graph
from APP_SET (Algorithm [5] line). Then we create the list of states of the current episode
(Algorithm |5, line . This list of states will correspond to the tasks of the chosen application.
Also, we create a new list Ly that consists of all the processing resources of the hardware
subgraph (G'pyy) (Algorithm line @)

Next, we enter a sub-cycle where we iterate over the list of states created previously. The
first step in this sub-cycle is choosing a processing resource from Lpgys. This decision will be
based on the e-policy introduced in Section Then we allocate the current task (state) to
the selected resource, observe the reward of this allocation and update the g-table accordingly

134

(Algorithm [5] lines @] to . Finally, we update the state and remove the selected resource from
Lpw (Algorithm [5] lines [12] to [13) and iterate again until there are no more states.

Algorithm 5 Offline training algorithm

Input: G}{W,N(Number of Gapp for training)

Output: Q
1: New Q with the universe of states given by G}{W
2: New array APP_SFET, which consists of N randomly created G opp
3: for each episode do

4: Choose a G app from APP_SET

5: New list of states given by Gapp, each state represents a t; € Gapp
6: New list Lyw of all r¥ e s

7 repeat(for each state i of the episode) :

8: Choose a rf from Lgw using e-policy

9: Map t; to rf

10: Observe the Reward R and the next state t; 1

11: Update Q(ti,rf) — Q(ti,'rf) + a[R + ymazaQ(tiy1,a) — Q(ti,rf)]
12: ti < tit1

13: Remove r]P from Lpgw

14: until ¢; is terminal

On-line Training

The online training uses the hardware graph, the application graph, and the Q-table obtained
from the offline training. After the offline training, we attempt to allocate the application onto
the hardware without performing the online training (Inference, Section [7.3.5)). If the allocation
is successful, we end the entire process. If the allocation is not successful, we perform the
online training. Usually, the inference process fails after the offline training due to the following
reasons:

e A state that belongs to the application graph has not been visited yet.

e The inference process produced a not valid complete mapping.

The first step of the Inference algorithm is to create the list of states that belongs to the
application graph. If any of these states had not been visited yet, the g-values will be
all zeros. In this case, the inference process will be finished, and we will proceed to the online
training. If all the states had been visited, we attempt to allocate the tasks to the resources
exploiting the Q-Table. Since in the inference, we only exploit the g-values, we may not produce
a mapping that respects the data dependence or shows errors on the source of data. As a result,
the complete mapping will be not valid and we proceed to the online training.

The online training helps to evaluate the states from the target application graph that were
not covered during the offline training and improve the inference process results. The steps
are the same as the offline training. The difference is that the application graph used is the
target application graph, and the use of randomly generated application graphs is removed.
Additionally, as introduced in Equation during the online training we also evaluate the
performance of the final mapping. Algorithm [6] shows the pseudo-code of the online training.

135

Algorithm 6 Online training algorithm

Input: Gy, Gapp, Q
Output: Q
1: New list of states given by G:4PP, each state represents a t; € G,APP
2: for each episode do
New list Lgw of all r¥ € s
repeat(for each state i of the episode) :
Choose a rf from Lpgw using e-policy
Map t; to r]P
Observe the Reward R and the next state t; 1
Update Q(t;,7]) + Q(ti,r}) + a[R + ymazaQ(ti+1,a) — Q(t:,77)]
t; < tit1
10: Remove rf from Lgw
11: until ¢; is terminal

7.3.5 Inference

The inference provides the final allocation of G4pp onto Ggyw. In this step, we exploit the
g-table, which is the result of the training. The process starts with the creation of the list
of states and the list of processing resources (Algorithm (7} line (1| and . Next, we select the
processing resource for each state of the application that has the higher g-value. If we can not
use the first M (M is a user-input value, and 1 < M < |S'|) processing resources with the
higher g-values, we create a new time slot. We consider that this operation will not increase the
latency significantly, and we will still produce a sub-optimal mapping. After the selection of the
processing resource, we allocate the task to it (Line |5)) and store the partial mapping (Line @
The process ends when we allocate all the tasks to the resources. Then we validate the mapping
in terms of data dependence. If the mapping is valid, according to the rules given in Section
we finish the entire process. If not, we perform another iteration of the online training.

Algorithm 7 Inference algorithm

Input: G;‘PP, G}{W,Q

Output: Lyap

. New list of states given by G:4PP, each state represents a t; € G/APP
. New list Lyw of all ¥ e S

: for each state i of the list of states do

Choose the TJP from Lgw with the mazimum g-value for t;

map t; — rf

Store the mapping in Lyap

7.4 Illustration of the Q-learning Principle

7.4.1 General Parameters and Policies

In this section, we present two easy examples to show the principle of the Q-learning mapping
algorithm. We will show that we can achieve different results by using different reward policies
and even fail to converge to a good mapping. Let’s consider the set of rewards values of Table
In this table, we present three different reward policies. Policy 1 prioritize the final mapping
(Rg), Policy 2 made emphasize the parameters verification (Myaiq), Policy 3 prioritize the data
dependence (DDyajye)-

136

Table 7.1 — Rewards policies

Rewards
Ryvalue CCialue Myalue DDyalue Srcvalue Snkvalue Lvalue Dvalue Prevalue + Sucyarue
Policy 1 0.8 0.2 0.5 0.5 0.1 0.1 0.1 0.1 0.1
Policy 2 0.5 0.5 0.9 0.1 0.1 0.1 0.1 0.1 0.1
Policy 3 0.5 0.5 0.1 0.9 0.1 0.1 0.1 0.1 0.1

The general parameters for these examples are shown in Table

Table 7.2 — Q-learning mapping general parameters

Episodes Epsilon Gamma Learning
rate
Offline Online Initial = Decrement Decrement Initial Decrement Decrement
.. Value
training training value start episode end episode value start episode end episode
10000 10000 1.0 1500 7000 0.9 1 10000 0.1

7.4.2 Example 1

Let’s consider the hardware and application graphs showed in Figure[7.4.2|and [7.4.2] accordingly.
These simple graphs represent homogeneous resources and tasks.

t t
@@ ’x AN AN
t, t, .

Figure 7.3 — Hardware graph of example 1. Figure 7.4 — Application graph of example 1.

In Figure we depict the average reward composition for both offline and online training.
We separate the rewards for local and global rewards policies. In blue, we can see the results
for Policy 1, in red for Policy 2, and in green for Policy 3. In this example, we can notice that
the best results from the offline training are obtained with Policy 2. This may be because we
use randomly generated graphs, and the agent uses the parameters as a foundation because the
structures of the graphs are changing, but the parameters remain the same. The worse results
are obtained using Policy 1, which uses the entire mapping of the application onto the hardware
as a metric. Again, as we are using randomly generated graphs, it is difficult for the agent to
learn the entire structure and features of a complete application and hardware graph. Moreover,
the total reward, which considers Rg shows no improvement during the episodes, and it may
need more episodes to achieve a good value. In the online training (bottom two figures), we can
see a similar behavior for all the sets. Moreover, as we already perform the offline training, this
helps as a bootstrap, and the agent will learn faster during the online training.

137

Offline training resources reward Offline training total reward

°

20 40 60 80 100 0 20 40 60 80 100

Online training resources reward Online training total reward

o

20 40 60 80 100 0 20 40 60 80 100

Figure 7.5 — Average rewards composition for example 1.

7.4.3 Example 2

Now, lets consider the hardware application graphs of Figure [7.4.3] and [7.4.3] Again we are
using homogeneous resources and tasks, but the number of them are different from the previous
example.

t t t t
‘4 AN A N A N 18>4‘
t1 t3 t5 t7

Figure 7.6 — Hardware graph of example 2. Figure 7.7 — Application graph of example 2.

In Figure [7.§] we depict the average reward composition of this example. In this example,
the input graphs are bigger than the ones of the previous example. The lines coloring are the
same as in Section Policy 2 (blue) shows better performance in the offline training. This
may result from the number of processing resources of the hardware, which is lower than the
previous example. The reward DDy)39 refers to the data dependence validation. This means
that we verify that all the predecessors can reach the task being mapped. If the number of
processing resources is low, the probability that this verification results in a valid value is higher
than if the number is high. Regarding the online training, the behavior of Policy 3 shows that
for the local reward, that set can achieve better results than the others but fails to achieve a
valid mapping (total reward). This is maybe due to the number of tasks of the application and
its pipelined structure. It is difficult for the algorithm to consider this aspect, as most of the
structures (see Section of the application are the same. For this, the algorithm may rely on
the other sets of parameters to achieve a good mapping.

138

Offline training resources reward Offline training total reward
0.8 2.0

0.7

0.6

05 0.0

0.4

0.3

°

20 40 60 80 100

°

20 40 60 80 100

Online training resources reward Online training total reward

o

20 40 60 80 100

o
N
3
5
8
a
8

80 100

Figure 7.8 — Average rewards composition for example 2.

Another aspect to considering is the randomness of the e-greedy policy. This may result in
difficulty to converge to a valid mapping. As the agent chooses its actions, it may not choose at
the beginning the best actions. Thus the agent will not be able to learn.

7.5 Conclusions

This chapter has introduced a formalization of the SPS-CGRA mapping problem to a reinforce-
ment learning problem. We describe the environment in terms of the hardware graph. We
propose considering the agent as a mapping function that aims to allocate the application onto
the hardware. We feed the agent with information about the structures that we can produce
from the hardware graph. We consider a structure as the association of a resource with its pre-
decessors and successors and the position in which it concerns the hardware graph (downward
and upward rank). Furthermore, we consider the descriptors of all the resources that belong to
such structure as part of the information that we feed to the agent. With this information, the
agent can decide where the best allocation for a given task is.

We describe a reward policy composed of a global and a local reward. This policy aids to
converge quickly, given that it not only considers local decisions. Additionally, we propose
to solve the lack of examples for training using a random graph generator and a two-step
training process. This approach allows one to generalize the Q-Table, and it may be subject to
exploitation from others applications, not only the targeted one.

Finally, this approach is expected to be the best option for complex applications, where the
nodes’ degree is considerable.

139

Chapter 8

Experimental Evaluation

In the last two chapters, we presented two different approaches to solve the SPS-CGRA mapping
problem. Hence, in Chapter [6] we presented three list-based mapping algorithms, and in Chapter
we presented a Q-learning mapping algorithm. In this chapter, we present an experimental
evaluation of these mapping algorithms. The mapping algorithms are evaluated in terms of
exploration time and computing cost of the final mapping (i.e., the execution time of the resulting
implementation). We divide the evaluation into three experiments:

e Experimental graphs.
e Randomly generated graph.

e (Case study.

The experimental graphs are a set of defined graphs with generic parameters that characterize
the mapping algorithms. Used as a benchmark, they represent the typical structures of an
SPS-CGRA and its applications, pipeline, and parallel configurations. The set includes both
homogeneous and heterogeneous organizations of resources.

In order to enlarge our evaluations, we present a pseudo-random graph generator that can
create virtual SPS-CGRA-alike hardware. Additionally, it can generate a set of applications for
the built virtual hardware. The generator includes the means to define the degree of intercon-
nectivity of the hardware organization and the number and types of resources. Also, it provides
several parameters that target the set of applications, which help to define the number of tasks
and structure of the application (pipeline or parallel). We use a set of randomly generated
SPS-CGRA-alike hardware platforms to evaluate the mapping algorithms. These artificially
generated hardware platforms’ structure and resource organization may be more complex than
a normal SPS-CGRA and represent the worst-case scenario for the list-based and the Q-learning
mapping algorithms. We present the results on one couple of hardware and application graphs.

Finally, we evaluate our mapping algorithms using a real-life hardware platform. In this
experiment, we use the Morphological Co-processor Unit (MCPU) [12]. It has the main features
that we can find in other SPS-CGRA hardware and serve as a mean to provide a proof of concept
to the mapping algorithms.

For the experiments of Section [8.2]and we evaluate our algorithms against an exhaustive
mapping algorithm (named exhaustive algorithm in the rest of the chapter) that we also devel-
oped. We chose to use an exhaustive algorithm because no other framework or mapping and
scheduling algorithm can be used as a direct comparison to the extent of our knowledge. The
exhaustive mapping algorithm is a brute-force algorithm that aims to construct all the possible
mappings of an application onto hardware. It systemically tries to find the optimal allocation
to a task. The exhaustive mapping algorithm also considers the possible different physical re-
alizations of each hardware resource. Hence, a possible mapping may be the allocation of one
task per time slot, where the efficiency of the chosen resource compensates the configuration and
memorization cost. This exhaustive algorithm is used as a golden reference for our proposed

140

mapping and scheduling algorithms. In Section we present an experimental evaluation only
considering our proposed algorithms. This is because the use of the exhaustive algorithm is
prohibitive due to combinatorial explosion.

8.1 Experimental Setup

The evaluation presented in this chapter is done using a software tool developed from scratch
using Python 3.6 (more than 10,000 lines of code without comments). We use the library
Networkx [224] to handle graph-based processes. For visualization we use Graphviz [225] and
Matplotlib [226]. For the experiments in this section we use a personal computer with an
8-core Intel® Core™ i7-7700HQ CPU @ 2.80GHz and 7,7 GB of RAM and 1 TB of disk,
running Ubuntu 16.04 LTS. The complete code is available in https://github.com/ebarbudo/
MappingSPSCGRAL

8.2 Experimental Graphs

In this section, we present the first evaluation of the mapping algorithms. We use different sets
of typical experimental graphs. These graphs will help us to characterize the behavior of the
algorithms. They represent the typical structure of an SPS-CGRA and its applications. We
make use of four sets of experimental application graphs:

e Pipeline of homogeneous tasks
e Parallel structure of homogeneous tasks
e Pipeline of heterogeneous tasks

e Parallel and hybrid (parallel-pipeline) structures of heterogeneous tasks

These are the basic and representatives types of application structures and organizations.
We consider a set of application graphs covering the same characteristics, pipeline and par-
allel structures, and homogeneous and heterogeneous resources. For each set of experimental
application graphs, corresponding experimental hardware graphs are defined.

The evaluation analyses the following features:

e Exploration time.

e Computing cost of the resulting application.

e Training time (Q-learning algorithm).

In the following sections, we will refer to the version of the SS-MAP that uses all topological
sortings of the hardware graph as SS-MAP T. Also, the version that only uses one random
topological sorting as SS-MAP U.

8.2.1 Pipeline of Homogeneous Tasks

The first set of application graph examples represent a group of pipelined homogeneous appli-
cations. The difference between each other is the number of tasks. Figure shows this set.
All tasks belong to the same type of task, which is in this case a generic task0. The parameter
for this task is fixed. We identify the tasks with type task0 with the color purple and in brown
the ones with type inter face.

141

https://github.com/ebarbudo/MappingSPSCGRA
https://github.com/ebarbudo/MappingSPSCGRA

.xtlﬁtzx.

(a) Application graph example
APP1 (2 homogeneous tasks).

'x ftzx 1t">« ﬂ.
t1 t3 tS

(d) Application graph example
APP4 (5 homogeneous tasks).

’x 1t2>« 1.
t‘l t3

(b) Application graph example
APP2 (3 homogeneous tasks).

.\tlﬂtzxtaft"xt:%x.

(e) Application graph example
APP5 (6 homogeneous tasks).

.x 1t2>4 1t“>« 1t5x 1t“
t, t, t, t, \.

(g) Application graph example
APP7 (8 homogeneous tasks).

.\ 1t2>« 1t"x
t, t" @

(c) Application graph example
APP3 (4 homogeneous tasks).

t t t
‘4 AP AN AN 1.
tl t3 tS t7

(f) Application graph example
APP6 (7 homogeneous tasks).

Figure 8.1 — First set of application examples

We will use this first set of application graphs over four sets of hardware graphs. The first
set of hardware graphs represents a linear pipeline of homogeneous resources. Consider that all
the resources can implement the task0. Figure [8.2]shows this first set, notice that the number of
resources increases by one for all the graphs. Notice the color purple of the processing resources
(rF) that matches the color of the tasks (¢;) of the application graphs. This represents that the
processing resources are able to allocate those tasks. We evaluate the mappings in terms of the
computing cost and the exploration time.

142

(b) Hardware graph example HW2 (4 homogeneous tasks).

(c) Hardware graph example HW3 (5 homogeneous tasks).

(d) Hardware graph example HW4 (6 homogeneous tasks).

Figure 8.2 — First set of hardware examples

We consider three reward policies for the Q-learning approach (see Section , each one
emphasizing an important aspect, the final mapping (Rq), the data dependence verification
(DDyania) and the parameters verification (Myajq). The values of the each policy are showed
in Table For clarity, we will refer to the Q-learning algorithm subject to Policy 1 as Q-L
POL 1, the one subject to Policy 2 as Q-L. POL 2, and the one subject to Policy 3 as Q-L POL
3.

Table 8.1 — Reward policies

Rewards
Ryalve CCvalue Mvale DDvalwe Srcvaie Sbkvaue Lvalue Dvalue Prevalue + Sucvalue
Policy 1 0.8 0.2 0.5 0.5 0.1 0.1 0.1 0.1 0.1
Policy 2 0.5 0.5 0.9 0.1 0.1 0.1 0.1 0.1 0.1
Policy 3 0.5 0.5 0.1 0.9 0.1 0.1 0.1 0.1 0.1

The general parameters for all the Q-learning mapping approaches are shown in Table [8.2]
Both the reward policies and the general parameters showed above are used for all the sets of
experimental graphs.

Table 8.2 — Q-learning mapping general parameters

Episodes Epsilon Gamma Learning
rate
Offline Online Initial = Decrement Decrement Initial ~ Decrement Decrement,
.. Value
training training value start episode end episode value start episode end episode
10000 10000 1.0 1500 7000 0.9 1 10000 0.1

143

Firstly we study the exploration time. Figure [8.3] gives the resulting exploration times of
the mapping and scheduling algorithms. We only consider the inference and the performance
evaluation time for the Q-learning approaches. We can observe that there are no substantial
differences between the other heuristics mappings nor the Q-learning mapping algorithm. The
behavior of the algorithms is not that influenced by the number of nodes, both tasks and
resources. This means that there is no combinatorial explosion, as we can see with the behavior
of the exhaustive algorithm.

Exploration time

100000

10000 o

[J
° °
1000 []
° [J
100 °
® []
[} ° [
T
8 [° [
Q ° °
("] []
1]
[[}
[] ..

| [I
0,1... = u

peEl il dannniguinnijun
0.01 |

A N O F 4 N O F d4 N OO F AN MO F AN F AN ;Nm F 4 N ;n <

S 2323232323323 =s2=32=32=s=s=3=3=s=z:sz°:s°:

I I I I rIr T rrrrrrxxTrIrIrIrIrIrIrrxrrz=x

APP1 APP2 APP3 APP4 APP5 APP6 APP7

® Exhaustive B SS-MAP U B SS-MAP T W BB-MAP B TA-MAP BQ-LPOL1 mQ-LPOL2 mQ-LPOL3

Figure 8.3 — Comparative study of the exploration time of the first set of applications and the
first set of hardware graphs.

With the Q-learning mapping algorithm, the offline and online training time depends on
the number of tasks and resources. This phenomenon is more evident in offline training. We
use randomly generated applications for the offline training, and these applications may be
larger than the original target application. Figure shows the timings for both offline and
online training for this first set of experimental application graphs. The offline training time is
considerably more significant than the online training.

144

Training time

S 2333333333222 ==:s=s=s=s=s:s¢:s°:
I XTI XTI XTI ¥rrIrIrXITrIXIrITXIrITrrXIIrIrIIXIzIIzTzzzTCZ

1000

100

Seconds

=
o

1

APP1 APP2 APP3 APP4 APP5 APP6 APP7
M Training time Q-L POL 1 Offline m Training time Q-L POL 1 Online m Training time Q-L POL 2 Offline
Training time Q-L POL 2 Online M Training time Q-L POL 3 Offline M Training time Q-L POL 3 Online

Figure 8.4 — Training time of the Q-learning approaches.

Finally, the resulting computing costs (the execution time of the implementation) and the
error percentage with regard to the optimal are shown in Table B3] We consider as optimal
the results of the exhaustive algorithm, and in the rest of this chapter, we calculate the error or
difference with regard to this value as follows

. B .)
ERROR = loptimal value — obtained value| x 100

% (8.1)

optimal value

Thus, a value of 0% will mean that the resulting computing cost is equal or close to the
optimal value. We can notice that the results of all the mapping algorithms are optimal since
they are identical to the ones obtained by the exhaustive algorithm. This first set of simple
experimental graphs shows the impact of increasing the number of tasks and resources for the
mapping algorithms. We can see that the difference between exploration time is not considerable,
and in most cases, it may be neglected. The mapping algorithms met the expectations of
achieving the exact computing cost as the exhaustive approach.

145

%06 S9166 %0 8ETTT9 %0 SETTTY 3TP19 %0 8TP19 SETTT9 8ETT19 8719 TMH

%0 vETIT9 %0 VETTT9 %0 VETTI9 VETTT9 %0 VErrT9 verrI9 verrI9 Za4at) eMH Laav

%0 0£FF19 %0 0EFF19 %0 0EFF19 0719 %0 0£7P19 0£PP19 0£PP19 0£FF19 TMH

%0 7€9126 %0 7£9126 %0 7£9126 7£9136 %0 v£9136 7£9126 7£9126 7€9126 TMH

%0 LEVTT9 %0 LETTT9 %0 LEFFTY LEFFTY %0 LEFFT9 LETTT9 LETPTY LETTT9 TMH

%0 £eTT19 %0 £eTT19 %0 £errT9 €errT9 %0 €errT9 £errT9 £err19 £eTT19 eMH 0ddV

%0 6CV719 %0 6CV719 %0 6GTV19 6CVT19 %0 6CVV19 6CV19 6CVP19 6CV719 ¢MH

%0 ££9126 %0 ££9126 %0 ££9126 ££9126 %0 ££9126 ££9126 ££9126 ££9126 TMH

%0 TGTL0E %0 TTTL0E %0 2eeL0g 2egL0¢s %0 22L0% 22L0s 2TL08 TGTL0E TAMH

%0 GEVVTY %0 ETVTY %0 ETTIY 2errI9 %0 ETVI9 [3aar) [3aar) GETVTY EMH cddV

%0 8CVv19 %0 8CI719 %0 GV 19 SCIT19 %0 SCII19 SCIV19 SCIV19 SCV719 ¢MH

%0 [Za4at) %0 [Za4at) %0 [Z4adt) [Zaadt) %0 [Zaadt) verb19 verv19 (2444t TMH

%0 133L0€ %0 1330S %0 16308 1630 %0 16308 16208 1G2L0¢ 133L0€ TMH

%0 61208 %0 61208 %0 61208 %0 61208 %0 61208 61208 61208 61208 EMH —

%0 LCVP19 %0 LCVP19 %0 LCVV19 %0 LTVV19 %0 LTVT19 LTVP19 LTVV19 LTVY19 cMH

%0 &Crv19 %0 &Crv19 %0 CCVV19 %0 CCVV19 %0 CCVI19 ECVV19 &CYVI9 &Crv19 ITMH

%0 022L0g %0 022L0g %0 022L0g %0 0GTL0€ %0 0220 020 0220 022L0g TMH

%0 81208 %0 81208 %0 8TGL0E %0 8TGL0E %0 812.L0¢% 81208 81208 81208 EMH edav

%0 91208 %0 912L0€ %0 91308 %0 91208 %0 91208 91208 91208 91208 CMH

%0 (44448 %0 CoVv19 %0 CoVv19 %0 Ceyv19 %0 Ceyvi19 (44448 ceyvi9 (44448 TMH

%0 61208 %0 61208 %0 61CL0€ %0 6120 %0 612L0€ 612L0€ 612L0€ 612L0€ TMH

%0 L1208 %0 L1208 %0 L1208 %0 L1208 %0 L1208 L1208 %0 112208 L1208 MH 4V

%0 ¢TGL08 %0 ¢TGL08 %0 S12L0¢ %0 STGL08 %0 §T5L08 G108 %0 61208 TG0 ZMH

%0 £12L0€ %0 £12L0¢ %0 £12L0¢ %0 £12L0¢ %0 £12L0¢ €108 %0 £12.08 £12L0¢ TMH

%0 81208 %0 812,08 %0 812L0€E %0 812L0€E %0 812L0€E %0 8120 %0 812.0€ 812.L0€ TMH

%0 91208 %0 91208 %0 9TGL0¢E %0 91208 %0 91208 %0 91208 %0 91208 912L0¢ EMH dav

%0 715L0¢8 %0 715L08 %0 715L08 %0 715L08 %0 7108 %0 71608 %0 7108 71508 ZMH

%0 z12L0¢ %0 z12L0¢ %0 z12L0¢ %0 212L0¢ %0 212L0¢ %0 21208 % 0 21208 z12L0g TMH

(%) LS0D (%) LSOO (%) LSOO (%) IS0D (%) LSOO (%) LSOO (%) 1S0D IS0D

JOUYA ONLLAJINOD HO™Yd OHNLLAJINOD HOMMHd OHNILAJINOD MOYYH OHNLLAJINOD HOYYd OHNLLAJNOD HOYYd OHNLLAJINOD HOHMH OHNILAJIINOD ONILAIINOD otemprey wonwoddy
¢ 10d 10 ¢ 10d T-O 1 70d T-O dVIN-gd dVIN-VL I dVIN-SS 0 dVIN-SS UYILIOB[E SATISIRYX]] T

(sy{se) snosusgowoy Jo suredid) se[dAd D0 Ul peanseaur 1500 Surndurod o) 0} Surproooe seyproidde Jurddewr usemioq sarjeredwo)) — g8 S[qeL,

146

8.2.2 Parallel Structure of Homogeneous Tasks

The second set of experimental application graphs are based on a parallel organization, where
several independent task branches build an application. The tasks’ type is again generic taskO,
and the parameters are fixed. We consider that all the tasks are of the same type. Figure [8.5]
gives the set of experimental application graphs. Again we use the same coloring as the previous
example.

" A
" R A

(a) Application graph example (b) Application graph example (c) Application graph example
APP8 (4 homogeneous tasks). APP9 (6 homogeneous tasks). APP10 (6 homogeneous tasks).

Figure 8.5 — Second set of application examples

The second set of hardware graphs are structured with parallel connectivity. Assume that
all the processing resources can execute task0. Figure [8.6] shows the hardware graphs that we
consider for this experiment.

@

(a) Hardware graph example HW5 (homogeneous, 6 processing
resources).

(b) Hardware graph example HW6 (homogeneous, 9 processing
resources).

Figure 8.6 — Second set of hardware examples

Figure [8.7] shows the comparison between the mapping algorithms base on the exploration
time. Notice that, except for the SS-MAP that uses all the topological sortings of the hardware
graph, the other algorithms remain with similar exploration times. This shows that the impact
of a parallel structure can be neglected, and the algorithms’ behavior remains constant without
regard to the structure of the application and hardware graphs.

147

Exploration time

100000

[
[
10000
| |
1000 n
2 10 -
[
]
g 10 u] L =
1
01 u
. [i [[] i
0.01
HW5 HW6 HW5 HW6 HW5 HW6
APPO8 APPO9 APP10

M Exhaustive W SS-MAPU mSS-MAPT B TA-MAP EBB-MAP EQ-LPOL1 EQ-LPOL2 EQ-LPOL3

Figure 8.7 — Comparative of the exploration time of the second set of applications and the second
set of hardware graphs.

Regarding the training times of the Q-learning approach, we can see in Figure that the

changes in the reward policies do not affect the training time. Also, notice that the online
training is almost the same for all the reward policies.

1 I
HW5

H Training time Q-L POL 1 Offline H Training time Q-L POL 1 Online M Training time Q-L POL 2 Offline
Training time Q-L POL 2 Online M Training time Q-L POL 3 Offline M Training time Q-L POL 3 Online

Training time

HW6 HWS5 HW6 HW5 HW6

APPO8 APP09 APP10

1000

1

Seconds
8

=
S}

Figure 8.8 — Training time of the Q-learning approaches.

Table [8:4] shows the resulting computing cost for the mapping algorithms. Notice that the
heuristics and the Q-learning approaches shown better performance than the SS-MAP algo-
rithms, as they can obtain the exact optimal value. Recall that the optimal value is the one
obtaining from the exhaustive algorithm. As in the previous set of experimental graphs, the
algorithms can obtain near or optimal results (compared to the exhaustive algorithm).

148

%0 LTTL0E %0 LTTLOE %0 L1TLOE %0 LTTLOE %0 L1TLOE %0 L1TLOE %0 L1TLOE LTTL0E 9IMH 01ddV
%0 9TFy19 %0 9TFy19 %0 LTVPT9 %0 9Trv19 %0 9TrP19 %0 LTVP19 %0 LTVP19 9TFy19 SMH
%0 LTTLOE %0 LTTLOE %0 LTITLOE %0 LTITLOE %0 LITLOE %0 L12L0€ %0 L1TLOE L12L0¢ IMH 60ddV
%0 V1CL0E %0 VITLOE %0 VICLOE %0 VICLOE %0 VITLOE %0 ¥12L0E %0 ¥12L0E V1CL0E SMH
%0 £¢CL0g %0 £CaL0g %0 £¢cL0E %0 81¢L0¢ %0 81¢L0E %0 S81¢L0E %0 S81¢L0E L02L0¢ 9IMH Q0ddV
%0 QTTL0E %0 CTTL0E %001 9TTI 19 %0 STTL0E %0 GTTL0E %0 STTL0E %0 STGL0E L0GL0€ SMH
(%) LS00 (%) LSOO (%) LS0D (%) LIS0D (%) LIS0D (%) LIS0D (%) LS00 LSOO
MOUYd ONILAJNOD HOUYH ONILAJNOD HOUYHE ONILAJNOD HOUHA ONILAJNOD HOUYA ONILAJNOD HOHUA ONILAINOD HOHUA ONILAJNOD ONLLAJNOD otemprey] woywonddy
£ 70d TO ¢ 70d TO 1 70d TO dVIN-dd dVIN-VL L dVIN-SS 0 dVIN-SS W JLI0B[ANSIRYXG S
“(sysey

snoauagowoy] Jo aInjoniys [a[rered) so[24d J0O[d Ul painsesut s0d urnduos o) 0} Surprosoe saypeordde Suiddewr wsemyaq aanyeredwo)) — F°8 S[qeR],

149

8.2.3 Pipeline of Heterogeneous Tasks

The third set of application graphs (Figure represents an heterogeneous pipeline of tasks.
We increase the number of tasks for each example and we consider three type of tasks, task0 ,
taskl and task2. Each type of task is colored in a different way, task0 is colored in dark violet,
taskl in light violet and task2 in green. We consider that the parameters of the task are fixed.

o A0

(a) Application graph exam-
ple APP11 (3 heterogeneous
tasks).

t t
.\tf.\tj “\.1 5\.
(d) Application graph exam-

ple APP14 (6 heterogeneous
tasks).

t
.xt1>v.>4t31 “\.

(b) Application graph exam-
ple APP12 (4 heterogeneous
tasks).

t, ot
.4t1>v.xt31 4\.1 ‘Nt7ﬂ.

(e) Application graph exam-
ple APP15 (7 heterogeneous
tasks).

.\ ¢ ’\tsﬁt“\.x.

(¢c) Application graph exam-
ple APP13 (5 heterogeneous
tasks).

t t
.xtlﬁ.\tsﬂ “x.;v 6\,".)‘.

(f) Application graph exam-
ple APP16 (8 heterogeneous
tasks).

Figure 8.9 — Third set of application examples

The third set of hardware examples (Figure |8.10d|) represent a group of heterogeneous re-
sources. Each resource is able to implement one single task, complying to the second application
set of examples they can implement task0, taskl and task2. We identify each type of resource

by its color, blue for task0, brown for taskl and orange for task?2.

150

(b) Hardware graph example HW8 (4 heterogeneous resources).

@
@ @

(c) Hardware graph example HW9 (5 heterogeneous resources).

(d) Hardware graph example HW10 (6 heterogeneous re-
sources).

Figure 8.10 — Third set of hardware examples

Figure [8.11] shows the exploration time for this set of experimental graphs. The exploration
time remains uniform for the mapping algorithms, with only a few exceptions, mainly the Q-
learning algorithm.

151

Exploration time

100

| |
| |
10 |
| |
| |
"]
-
81 |] = |
o | |
(2}]]
[] [] L] u
-] |] | n ™
01 ™
"L 0w _ = " g EE
u " § u I I
Illlllllllllll!. fiasis
| |
0.01 =
~ 0 (<2} o ~ 0 (<2} o ~ o0 [«2] o ~ 0 [o ~ 0 (<2} o ~ o0 [<2] o
2 22g2=2==<d 22322222 =2=2=2d=2z=2=2¢d
T T 2T T T2 T2 T2 FTFTFT =TT
T T T T T T
APP11 APP12 APP13 APP14 APP15 APP16

M Exhaustive W SS-MAP U B SS-MAPT mBB-MAP BTA-MAP EQ-LPOL1 EQ-LPOL2 EQ-LPOL3

Figure 8.11 — Comparative of the exploration time of the third set of applications and the third
set of hardware graphs.

As seen in Figure B.12] the training time showed some differences, mainly for the offline
training. The online training remains with a uniform behavior.

Training time
1800
1600
1400
1200
1000

800

Seconds

600

400

~ 0 [=2] o ~ 0 [l o ~ 0 [o ~ o0 (=2} o ~ o0 (=2} o ~ 0 o o
2 2 2 g 2=2=2<Id 222 2=2=2g 2229 =2:=2:2¢d
T ¥ 2Tz T T TS FTIT TS TITT2 T T T3
T T T T T T

APP11 APP12 APP13 APP14 APP15 APP16

M Training time Q-L POL 1 Offline M Training time Q-L POL 1 Online M Training time Q-L POL 2 Offline
Training time Q-L POL 2 Online M Training time Q-L POL 3 Offline M Training time Q-L POL 3 Online

Figure 8.12 — Training time of the Q-learning approaches.

Because of the simplicity of these experimental graphs, we can see in Table that all the
mapping algorithms could meet a sub-optimal computing cost.

152

%0 SETFT9 %0 SETTT9 %0 SEFVTY %0 SEFVTY %0 SEFFTY SETFIY SEFVTY 8ETTT9 0TMH

%0 VEVP19 %0 VEVPI9 %0 VEVVI9 %0 VEVVI9 %0 VEVVT9 VEVV19 VEYVI9 VEVP19 6 MH 9TddV
%0 079186 %0 079126 %0 079126 %0 09126 %0 079126 079126 079126 079126 SMH

%0 YE9106 %0 7€9106 %0 ¥€9156 %0 ¥€9186 %0 V£9126 7€9126 7€9126 7E9156 LMH

%0 LEVFTY %0 LETFTY %0 LETPTY %0 LETPTY %0 LETTTY LEVPTY LEVPTY LEVFTY 0TMH

%0 £ETVT9 %0 £eTTT9 %0 £errI9 %0 €719 %0 €719 £ETT19 £ET719 £ETVI9 6MH P
%0 6CV719 %0 6CV719 %0 6CVV19 %0 6CVV19 %0 6CV19 6CVV19 6CVP19 6CV719 SMH

%0 £69106 %0 £69106 %0 £69126 %0 €916 %0 £69136 £69126 £€9126 £69106 LMH

%0 TLTLOE %0 TLTLOE %0 TLTLOE %0 TLTLOE %0 TGeL08 3Gel08 2Gel08 TLTLOE 0TMH

%0 TEITIY %0 ZEITI9 %0 TEVIY TEVVTY %0 TEVVIY TEVVIY TEVVI9 ZEVPTY 6MH S~
%0 STIV1E %0 STIV1E %0 SCIV1E SCIT1E %0 SCIV1E SCIV1E SCIVIE STIV1E SMH

%0 YCriL9 %0 YErvL9 %0 [Za4an) [Za4an) %0 [Za4an) Fadar) V19 [Fadat) LMH

%0 122L0€ %0 122L0€ %0 122L0€ 133L0S %0 13GL0S 122208 123L0€ freans 0TMH

%0 61CL0% %0 61CL0% %0 6TCLO0E 6TCLOE %0 6TCLOE 6TCL0E 6TGLOE 61CL0% 6MH P
%0 LCVV19 %0 LTVV19 %0 LTVV19 LTVV19 %0 LTVV19 LTVV19 LTVV19 LCVV19 SMH

%0 £CIP19 %0 £CIPL9 %0 £TII19 £TII19 %0 €TP19 %0 €219 €119 £2I719 LMH

%0 02308 %0 02308 %0 022L0g 0GTL0€ %0 0CTL0E %0 03208 0G5L0E 025L0€ YMH

%0 8TCLOE %0 8TCLOE %0 8TCLOE 8TCLOE %0 81208 %0 8TCLOE 8TCLOE 8TCLOE eMH S~
%0 912L0¢ %0 912.0¢ %0 912L0¢ 912L0¢ %0 912L0€ %0 912L0¢ 912L0€ 912L0¢g TMH

%0 T 19 %0 LI 19 %0 aiar) adar) %0 [aais %0 [adar) [adar) [aaan) TMH

%0 GITL0E %0 GITL0E %0 STGL0E STGL0E %0 GITL0E %0 G108 G108 QIgL0E 0IMH

%0 TTL0E %0 STTLO0E %0 STTLO0E STGL08 %0 STTLOE %0 GTTL0E STGLOE TTL0E 6MH Tday
%0 TTL0E %0 STTL0E %0 STTL0E STEL0E %0 S12L0¢E %0 S12L0¢E G12L0¢E 1TL0¢ SMH

%0 £15L08 %0 £15L08 %0 £12L0€ £12L0€ %0 £12L0€ %0 €120 £12L0€ £12L0¢ LMH

(%) LSOO (%) LS0D (%) LS0D LS00 (%) LIS0D (%) LS00 (%) LS00 LS00
OUYd ONILNJINOD dOd¥d OHNILAJINOD MOYYd OHNILAJNOD HOMYH OHNILAJNOD ¥O¥¥d OHNILAJINOD ¥MOYYd OHNILAINOD HOUHYd OHNILAJNOD ONILAJINOD oxempiey] wonwrddy

€ 10d T-0

¢ 10d T-O

1104 170

dVIN-dd

dVIN-V.L

L dVIN-SS

N dVIN-SS

WILIOS[® dATISIRYXY

(s¥se) snoauadorajey jo auradid) sa[o4D }o0[D Ul painseaw 4500 Jurnduroo ay) 0} Surpiodde seyprordde Surddewr usamiaq aarjeredwo)) — g*'Q a[qey,

153

8.2.4 Parallel and Hybrid Structures of Heterogeneous Tasks

The last set of experimental graphs (Figure [8.13]) represent both parallel and hybrid organiza-
tions. We use four application graphs that represents parallel organizations and the remaining
two applications are used for hybrid hardware organizations. All the application graphs are

heterogeneous as in the previous example.

(a) Application graph exam-
ple APP17 (6 heterogeneous
tasks).

.x.xtzxtsﬂ.

‘At:tN.x.

(d) Application graph exam-
ple APP20 (12 heterogeneous
tasks).

(b) Application graph exam-
ple APP18 (8 heterogeneous
tasks).

Bt -6
@ 60

(e) Application graph exam-
ple APP21 (5 heterogeneous
tasks).

.\‘tzxtaﬂ.

.xtﬂt’x.x.
6
o 5. 8
n 13
(c) Application graph exam-

ple APP19 (9 heterogeneous
tasks).

.\‘tzxtaﬂ.

(f) Application graph exam-
ple APP22 (3 heterogeneous
tasks).

Figure 8.13 — Fourth set of application examples

We use three hardware graphs (Figure|8.14). One is used for the parallel application graphs,
and the other two are used for the hybrid application graphs (one for each application). We
make use of these hardware graphs to highlight the features of our mapping algorithms.

154

(a) Hardware graph example HW11 (9 heterogeneous re-
sources).

@
@

(b) Hardware graph example HW12 (8 heterogeneous re-
sources).

(¢) Hardware graph example HW13 (11 heterogeneous re-
sources).

Figure 8.14 — Fourth set of hardware examples

Contrarily to the previous sets of experimental graphs, the exploration times of the mapping
algorithms are different. We can see in Figure [8.15] that the exhaustive algorithm and the SS-
MAP T, which uses all topological sortings of the hardware graph, shown the worst performance
in terms of exploration time. Followed by the Q-learning approaches. Still, the TA-MAP and
BB-MAP have shown better performance than the other approaches.

155

Exploration time
10000

[
1000
100 -
"} [
}g [| n : [|
o 10 "
(]
[]
(7] - ™
1 u =
= [
[| " "
0.1
[- [
| [] I n a
0.01
APP17 APP18 APP19 APP20 APP21 APP22
HW11 HW12 HW13

M Exhaustive B SS-MAPU MSS-MAPT W BB-MAP BTA-MAP BMQ-LPOL1 BQ-LPOL2 EQ-LPOL3

Figure 8.15 — Comparative of the exploration time of the fourth set of applications and the
fourth set of hardware graphs.

The behavior of the training time remains the same, with slight differences. In Figure [8.16]
we can notice that the offline training takes almost the same time for all the applications and
the different reward policies.

Training time

100000

10000

1

1
APP17 APP18 APP19 APP20 APP21 APP22

Seconds

1S)
=]

=
S}

HW11 HW12 HW13

M Training time Q-L POL 1 Offline ™ Training time Q-L POL 1 Online ™ Training time Q-L POL 2 Offline
Training time Q-L POL 2 Online M Training time Q-L POL 3 Offline M Training time Q-L POL 3 Online

Figure 8.16 — Training time of the Q-learning approaches.

Table shows the resulting computing cost from the mapping algorithms. We want to
highlight that for hybrid organizations, the Q-learning approach can obtain results close to
the exhaustive algorithm, while the SS-MAP (both SS-MAP U and SS-MAP T) and TA-MAP
results are 50% and sometimes 100% worse. This shows the great adaptability of the Q-learning
approach for complex structures.

156

%08 £691C6 %0 0ETP19 %0 0ETP19 %08 7€9126 %09 769126 %0¢ 769126 %0¢ 7691¢6 0EVP19 ¢cddv STMH
%0 8916 %0 89106 %0 8€916 %0 659106 %0 659156 %0 869156 %0 8€9126 89126 1eddy CIMH
%0 STTLOE %0 STTLOE %0 81¢L0E %0 81¢L0E %0 S8T1¢L0E %001 SETVTY %001 SEYPI9 ST1¢L0E 0cddVv
%0 STTLOE %0 STTLOE %0 81¢L0¢ %0 81¢L0E %0 S81¢L0E %0 S81¢L0E %0 STCL0E S1TLOE 61ddV T
%0 L1TL0E %0 L1TLOE %0 L1TLOE %0 L1TLOE %0 L1TLOE %001 9EFFT9 %001 9EYVI9 L1TL0E STddV
%0 LTGL0E %0 LT2L0€ %0 LTTL0€ %0 L12L0€ %0 L12L0€ %0 L12L0€ %0 L12L0€ LTGL0E L1ddV
(%) LS00 (%) LSOO (%) LS0D (%) LIS0D (%) LIS0D (%) LIS0D (%) LS00 LSOO
MOUYd ONILAJNOD HOUYH ONILAJNOD HOUYHE ONILAJNOD HOUHA ONILAJNOD HOUYA ONILAJNOD HOHUA ONILAINOD HOHUA ONILAJNOD ONLLAJNOD otemprey] woywonddy
£ 70d TO ¢ 70d TO 1 70d TO dVIN-dd dVIN-VL L dVIN-SS 0 dVIN-SS wyLI0S[e dASNEYX o
(sysey

SN0UAG0I9)OY JO SOIMPONIIS PLIGAT) SO[DAD IDO[D UI painsesur 3500 Surpndurod o1y 03 Surpiosoe soyprordde Surddew usomyoq sarjereduio)) — 9°g a[qer,

157

8.3 Pseudo-Random Graph Generator

Random graphs are extensively used to experiment complex systems. For example, the phone
network, the internet, the gene network or the cell, which is a network of chemicals linked by
chemical reactions, may be described using random graphs [227]. Random graphs are built
through an evolutionary process based on models such as Erdés-Rényi [228], Watts-Strogatz
[229], and Barabasi-Albert [230], which are the main models.

The Erdés-Rényi model defines a random graph as N labeled nodes connected by n edges,
which are chosen randomly given a probability P. The decision is made individually for each
edge that connects two given nodes. The Watts-Strogatz model starts with N nodes placed
regularly in a ring and each of these nodes are connected to its K/2, where K is an even
number, neighbors on both side. Next, in a clockwise loop, for every node v € N, the edge that
connects to its clockwise ¢ — th next node is rewired with a probability P.

Both previous models establish a priory the number of nodes and do not modify it during
the evolutionary process. Additionally, the attachment of an edge is given by a probability P,
which is independent of the edges that are already attached. On the contrary, most real-world
networks tend to grow through time by adding new nodes. Furthermore, the addition of an
edge that connects two nodes, shows a direct relation with the already existent edges. The
Barabési-Albert model or Scale-free model allows the growth of the random graph and also a
preferential attachment. It starts with a small number of nodes M, where 1 < M < N. Next,
the method sequentially adds a new node with M new edges. For a node to be added, it will
be connected to an existing node v with probability proportional to its degree. The new node
repeatedly adds non-duplicate edges in this way until it has M edges. Then this is iterated until
the graph has N nodes [231].

Since the universe of SPS-CGRAs is considerably broad, in our work, we have developed
from scratch a random graph generator to evaluate our mapping algorithms. This random graph
generator, coded in Python 3.6, allows to create complex structures that include a wide range of
input and output degrees and manage the heterogeneity of the artificially created hardware. We
base our generator on the Barabési-Albert model. This will enable us to manage the input and
output degree of the hardware, define the number of nodes and their parameters and functions.
It should be mentioned that the described models target undirected graphs. Consequently, we
include a mechanism to produce only directed graphs without loops.

8.3.1 Methodology

The pseudo-random graph generator allows one to produce synthetic graphs to verify the per-
formance of the mapping algorithms. The input of the generator is a specification file (text
file), and the output products are a hardware graph and a set of application graphs (text files).
It is specifically designed to build SPS-CGRA a-like systems, although it can be used to build
pseudo-random DAGs.

The process starts with the specification file written by the user, where the following fields
have to be filled:

e Number of

— Internal nodes

— Input and output degree of the nodes
— Sensors

— Actuators

— Memory resources
e Name, type and parameters of the tasks that each processing resource may perform.

e Parameters of the memory and the communication resources.

158

e Configuration cost functions.

Next, we build the hardware graph and from it we create the application set.

Hardware Graph

The generator uses the above parameters to build the hardware graph, starting with the basic
structure of the graph. For this purpose, the generator will create n number of nodes according
to the specification file. Next, it will create the interconnections (edges). For each created node,
the generator defines the input and output connections. For the input connection, the generator
will randomly decide if the node will be connected to a source node (sensor) or to internal node.
For both decisions the generator will randomly decide to which sensor node or internal node
will be connected. For the output connection, the generator will also randomly select if the
node will be connected to a sink node (actuator) or to a internal node. The specific sink node
or internal node will be selected randomly by the generator. Before the addition of every edge
(interconnection) the generator checks if a cycle will be created. If we do not create a cycle, the
edge is added, otherwise the edge is dismissed.

After the creation of the basic structure, the generator performs a pruning of the nodes
without any interconnection, both input and output interconnections. This means that the
nodes with input and output degree equal to zero are removed. At the end of this step we
will ended up with a pseudo-random dag, that can be used for other purposes other than
mapping. Figure shows an example of a complex pseudo-random generated dag (some
simpler random generated graphs will be presented in details in Section . Even with the
pruning the expected number of nodes are similar to the real number of nodes as we can see in
Figure The relative error between the expected and the real number of nodes is minimal.

N —
‘ ——
/ ro
'° _.
(“ - ‘ 9 Average real value of number of nodes
n@‘ ' 120
»
o 100
B [
5 80 @
o
% 60 G)
r_g 40 o
T.‘J’ 20 @
o

20 a0 60 80 100 120

Defined value of number of nodes

Figure 8.18 — Comparison between ex-
pected values and real values for the num-
ber of nodes in the graph

Figure 8.17 — Example of a random gener-
ated graph

As for the degree distribution, both input and output degree, we can see in Figure (input
degree) and Figure (output degree) that second and third degree takes the predominance.

159

Composition of the graph in terms of input degree Composition of the graph in terms of output degree

5 Degree 6 - E L Degree 6 -

Q s =2

S Degree5 | - E S Degree 5]

€ o < o

S S Degree 4 I — | g E Degree 4 IR |

g S Degrees I 3 éODegreeS I

g @ Degree 2 | D 5 Degree 2

1) Q o

E % 0% 20% 40% 60% 80% 100% u% 5’ 0% 20% 40% 60% 80% 100%

é Percentage of nodes with a given input degree °© Percentage of nodes with a given output degree

x

- HEO N1l m2 w3 m4 m5 W6 HO N1l m2 m3 m4 m5 W6
Figure 8.19 — Comparison of the input de- Figure 8.20 — Comparison of the input de-
gree of the nodes in a graph gree of the nodes in a graph

The next step is to deal with memory resources integration. The generator will randomly
decide the addition of memory resources. If the generator chooses to integrate memory resources,
the number of this resources will be according to the limit of memory resources defined by the
specification file. To add the memory resource, we need to also add communication resources,
specifically REW and RTP. This is done automatically by the generator. If the generator
choose not to add any memory block, the sensors and actuators will be directly connected to
the processing resources.

The following step is the assignment of the parameters and labels of each resource. The
generator will randomly select the parameters of each node, according to its type. Another
feature is the inclusion of communication resources of type RMYX . This inclusion is enabled
through the specification file. The generator will assign this type of resource to any node with
input degree above 1 and output equal or above 1. This assignment is randomly decided.

Application Graph

After the finalization of the build of the hardware graph we continue with the construction of
the application graph set. The application graph is the result of the modification (addition and
removal of nodes) of the hardware graph. Also, the generator allows one to define some aspects
of the application graph through the specification file which have to contain:

e Number of applications.
e Type of application.
e Nodes to remove.

e Number of parallel and serial instances.

The generator uses the number of applications to create accordingly the set of applications.
The type of application is used to define the type of input that the application will require. Two
types of application are considered, signal and image. The type of application image considers
an image as an input, and parameters such as width of the image and height of the image as
main parameters for the processing. The type of application signal considers a signal as an
input, and the main parameter is input samples.

The structure of the application depends on the number of nodes to remove and the number
of parallel and serial instances. The number of nodes to remove defines how many nodes of
the hardware graph will be removed to create the application graph. As stated before, the
application graph is build after the hardware graph by removing randomly nodes from it (Figure
8.21)). After the removal we get the main structure of the application graph.

160

\ P
- -
T

Hardware graph Removal of nodes Application graph

Figure 8.21 — Process flow of the generation of an application graph.

The number of parallel and serial instances represents how many instances will be added
to the main structure. The parallel instances are disjoint graphs that make up the application
graph. The serial instances are instances connected in series that make up the application graph.
Both type of instances are shown in Figure [8.22

Original Parallel Series

Figure 8.22 — Example of the different structures.

8.3.2 Evaluation with Randomly Generated Graphs

This section presents an evaluation of our mapping algorithms using one couple of application
and hardware graphs. These graphs are randomly generated using our pseudo-random generator.
Both graphs exhibit a hybrid structure and are more complex, in the organization, than a regular
SPS-CGRA. The purpose of this evaluation is to measure the performance of each mapping
algorithm against a possible worst-case scenario for them. A detailed example of a randomly
generated pair of graphs is given in Figure (hardware graph) and Figure (application

graph).

161

Lpddesoenioe

ocddeiojenipe

‘uoryesrdde pajerousd AJwopury — g '8 2INS3I

1cdderojenioe

erddesojenioe

O—O—O—0

cpddeaosues

i)

giddeiolen)oe e

"dIeMPIRY POJRISUSS A[WOPURY — £7'] 2INSI]

ﬂ 25;__2
o o

7T.

L1

L}

opdde.osuss

162

Figure shows the comparison of exploration time between the mapping algorithms. For
this evaluation, we only use 10000 random topological sortings of the hardware graph as input
of the SS-MAP T algorithm. As in the previous evaluations, the difference between mapping
algorithms is almost negligible, except for the SS-MAP that uses all topological sortings of the
hardware graph. In that case, we can see that the exploration time is more than 1000 seconds.
Also, the Q-learning that uses reward policies 2 and 3 takes more time than using reward policy
1.

Exploration time
10000

1000 u
100

10

Seconds

0.1]

0.01
SS-MAP U SS-MAP T BB-MAP TA-MAP Q-LPOL1 Q-LPOL2 Q-LPOL3

Mapping algorithms

Figure 8.25 — Comparative of the exploration time of the first set of applications and the first
set of hardware graphs.

Figure shows the training time. Notice the lower training time for reward policy 2.
Recall, that this policy emphasizes the parameters verification (Myaliq)-

Training time

D 20
E
= 20
150
100
0 .

Offline Online Offline Online Offline Online

g

Q-LPOL1 Q-LPOL2 Q-LPOL3

Training time

Figure 8.26 — Training time of the Q-learning approaches.

Table [8.7 shows the resulting computing cost of all the mapping algorithms. TA-MAP and

163

BB-MAP can achieve lower computing costs than both SS-MAP versions. As the complexity of
the hardware and application graph increases, the impact of a heuristic is more evident, and in
this case, the effect is shown through the computing cost. On the other hand, the Q-learning
mapping algorithm can obtain the same results as TA-MAP and BB-MAP. This indicates that
the agent can learn and the approach can match the performance of the list-based methods. The
lower training time of reward policy 2 is because the agent is focused on neither the complete
mapping nor the data dependence of all the tasks. This decreases the number of negative rewards
during training, and it can converge faster.

Table 8.7 — Comparative between mapping approaches according to the computing cost (ran-
domly generated graphs)

Number . Computing Exploration
of tasks Algorithm cost (clock cycles) time (seconds)
SS-MAP U 9216262 0.291
SS-MAP T 9216214 1277.667
Randomly TA-MAP 3072211 0.096
generated 21 BB-MAP 3072211 0.237
example 1 Q-L POL 1 3072211 0.172
Q-L POL 2 3072211 0.578
Q-L POL 3 3072211 0.693

Lastly, in the case of randomly generated graphs, we could not perform the exhaustive
algorithm comparison since the exploration time became too long (months).

8.4 Real SPS-CGRA Example

In this section we present the last evaluation of the mapping and scheduling algorithms. We use
a real-life SPS-CGRA, the Morphological Co-Processor Unit (MCPU) [12] introduced in Section
The MCPU assembles several efficient dilation/erosion units with geodesic units and ALUs
to support a large collection of morphological operations. It is integrated as a coprocessor in an
FPGA-based platform. The MCPU follows the principles of an SPS-CGRA, with its pipeline-
based array of processing resources (Large SE pipeline and Geodesic Pipeline).

8.4.1 Hardware Model

Recall that in Section [3.5.5|we presented the modeling methodology of the MCPU as an example.
Here, we again depict in Figure the hardware model of the MCPU. This is the hardware
graph that we will use in the evaluation.

Figure 8.27 — Hardware model of the MCPU

164

8.4.2 Application Graphs

In Section we presented two applications and their modeling methodology. In this Section,
we use these two applications and show the obtained results of the mapping and scheduling
algorithms. We use the same metrics as the previous evaluations, computing cost and exploration
time.

Alternated Sequential Filter

The first example is an Alternated Sequential Filter (ASF) [118], presented in Section The
ASF is extensively used to smooth objects in images, preserving the topology characteristics. It
is known for its computing cost. In our context, it represents a long linear pipeline of tasks with
the possibility to overpass the length of the hardware resources (Figure [8.28).

020200

Figure 8.28 — Application model of the example ASF*.

In this example we consider an ASF with A\ = 4 : ASF*. Table presents the evaluation
of the implementation of the ASF* onto the MCPU. In this first example, the pipeline of tasks
exceeds the number of processing resources of a single time slot, so the necessary time slots had
been added automatically. As we can see in Table the exploration time of the proposed
mapping and scheduling algorithms are significantly lower than the one of the exhaustive al-
gorithm. In Table N/A means not applicable. In terms of computing cost, the list-based
algorithms can achieve the resulting value of the exhaustive. The Q-learning mapping algorithm
only achieves a near to optimal value with the second reward policy (see Table , which prior-
itize the verification of the parameters. A possible reason that the Q-learning algorithms do not
achieve good results is that the application is a pipeline. Thus it is formed by several subgraphs
with the same characteristic. This is the worst-case scenario for the Q-learning because the
agent cannot differentiate the tasks and find the best allocation for them.

Table 8.8 — Algorithms evaluation for the ASF application

Number Algorithm Computing Exploration Error
of tasks cost (clock cycles) time (seconds) (%)
Exhaustive algorithm 2790499 47 hours N/A
SS-MAP U 2790499 0.0707 0%
Alternated SS-MAP T 2790499 122.059 0%
Sequential 9 TA-MAP 2790499