
HAL Id: tel-03551287
https://theses.hal.science/tel-03551287v2

Submitted on 1 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

There and back again : formal methods and model
learning for real-time systems : acting upon reality and

learning from its reactions
Léo Henry

To cite this version:
Léo Henry. There and back again : formal methods and model learning for real-time systems : acting
upon reality and learning from its reactions. Artificial Intelligence [cs.AI]. Université Rennes 1, 2021.
English. �NNT : 2021REN1S071�. �tel-03551287v2�

https://theses.hal.science/tel-03551287v2
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Léo HENRY
There and back again : formal methods and model learning for real-
time systems

Acting upon reality and learning from its reactions

Thèse présentée et soutenue à Rennes, le 03/12/2021
Unité de recherche : IRISA, équipe SUMO

Rapporteurs avant soutenance :

Étienne ANDRÉ Professeur, LORIA Université Nancy
Frits VAANDRAGER Full Professor, Radboud University Nijmegen

Composition du Jury :

Président : Didier LIME Professeur, LS2N, École Centrale de Nantes
Examinateurs : Étienne ANDRÉ Professeur, LORIA Université de Lorraine

Frits VAANDRAGER Full Professor, Radboud University Nijmegen
Nicolas BASSET Maître de Conférences, VERIMAG, U. Grenobles-Alpes
Delphine LONGUET Maîtresse de Conférences, LRI, Univ. Orsay
Stavros TRIPAKIS Associate Professor, NorthEastern Univ. Boston (USA)

Dir. de thèse : Nicolas MARKEY, Directeur de recherche, CNRS, Université de Rennes
Co-dir. de thèse : Thierry JÉRON, Directeur de recherche, INRIA Rennes.

REMERCIEMENTS

Victory, after all, I suppose ! Well, it
seems a very gloomy business.

— J.R.R. Tolkien "The Hobbit"

J’ai pu lire quelque part qu’une thèse est un aquarium, et les remerciements des poissons
rouges. J’aurais plutôt tendance à comparer la thèse à un marais, avec ses zones boueuses
où l’on peut s’enfoncer, ses cours d’eau, certains vifs et décidés, d’autres réduits à de
simples bras-morts que toute activité a abandonnée. Peut être aussi avec ses mangroves,
se nourrissant avidement des courants marins qu’elles peuvent capter.

Logiquement, dans un tel environnement, les remerciements sont des piranhas. Ils se
déplacent par bancs, sont typiques de l’image du milieu bien qu’ils n’en soient qu’une
toute petite partie, et viennent se coller aux visiteurs pour les accueillir. Il paraît que cela
a bon goût aussi. Certes, ce sont des saletés attirées par l’odeur du sang, mais bon dans
une métaphore, on ne peut pas tout avoir !

Je tiens à remercier Thierry et Nicolas pour leur encadrement, et pour ne pas avoir
sauté en marche lorsque j’ai proposé de défricher un vieux cours d’eau quelque peu effrayant
loin des courants habituels. L’équipe SUMO en général pour son accueil et son ambiance,
et notamment les permanents, Nathalie, Blaise, Loïc, Hervé, Ocan, Éric et Éric, pour leur
aide, leurs points de vue et quelques très bonnes discussions scientifiques. En remerciant
l’équipe je ne peux que laisser une place à part à Laurence et à son support si salutaire
pour moi qui suit facilement submergé par des difficultés administratives (et d’autant plus
émerveillé de les voir disparaître sans que le ciel ne me soit tombé sur la tête).

Merci aussi à Sophie et François, qui m’ont accompagné de bien des manières et sur
le temps long, en réussissant souvent à trouver du temps qu’ils ne semblaient pas avoir.
Pour m’avoir tous les deux trouvé une place dans d’enseignant dans leurs cours aussi, j’y
ai beaucoup appris en patience (un peu) et en pédagogie (beaucoup).

Un grand merci aussi aux membres de mon jury de thèse, qui acceptent de prendre
le temps de m’écouter, et particulièrement à Étienne et Frits, pour avoir lu ces pages et
avoir proposé un bon nombre d’améliorations.

3

Je remercie bien sûr tous les non permanents du département que j’ai croisé, ainsi que
les anciens de ma promo dont j’ai continué de partager le parcours. Particulièrement Emily,
avec qui beaucoup de thé a été versé, et à qui je dois un merci particulier, pour avoir
accepté de lire en avant-avant première les piranhas, ce qui mord un peu et gâche la surprise.
Arthur, Tristan et Hugo également pour de nombreuses discussions (pas forcément toutes
scientifiques). Victor et Choufi, pour la camaraderie. Mathias et Adrian, en particulier
pour l’impressionnante énergie qu’ils réussirent à dispenser. J’ai aussi une pensée pour
Nicolas, Lily et Camille, avec qui j’ai pu passer du bon temps, et échanger quelques bons
mots. Clément enfin, pour beaucoup de bons moments et de nombreuses soirées de jeux
permettant de sortir la tête de l’eau.

Ensuite je tiens à remercier ma famille, qui m’a beaucoup soutenu à travers cette thèse
et les études précédentes, alors même que j’ai bien moins pu la voir pendant ce temps. En
particulier mes parents, qui ont en plus fait l’effort méritoire de s’intéresser aux détails de
ma thèse et de traverser quelques fois la France.

Enfin un grand merci à Solène, qui m’a supporté pendant tout ce temps, en première
ligne et par tous temps.

4

TABLE OF CONTENTS

Résumé 9

Introduction 19
A dire need for models . 21
Learning: leveraging model availability . 22
Between models and reality . 22
Adding time to the mix . 24
Contributions . 26
Publications . 27

1 Definitions 29
1.1 Time representation . 29
1.2 Timed automata . 31
1.3 Equivalence relations . 38

2 State of the art and bibliography 41
2.1 Timed models . 41

2.1.1 Timed automata and related models 41
2.1.2 Behaviour abstraction . 43

2.2 Model verification . 45
2.2.1 Model-based testing . 46
2.2.2 State estimation . 48
2.2.3 Robustness(es) of models . 49

2.3 Model learning . 50
2.3.1 Quick dive in passive model learning 50
2.3.2 Active learning . 54

3 Control strategies for offline testing of timed systems 57
3.1 Introduction . 57

3.1.1 Testing timed systems . 58

5

TABLE OF CONTENTS

3.1.2 Contributions and related works . 59
3.2 Timed automata and timed games . 61

3.2.1 Timed automata with inputs and outputs 61
3.2.2 Timed games . 66

3.3 Testing framework . 68
3.3.1 Framework overview . 68
3.3.2 Test context . 68
3.3.3 Combining specifications and test purposes 72
3.3.4 Accounting for failure . 74

3.4 Translating objective-centered testers into games 78
3.4.1 Rank-lowering strategies . 78
3.4.2 Making rank-lowering strategies win 85
3.4.3 Properties of the test cases . 89

3.5 Implementing Rank Lowering Strategies 93
3.5.1 Algorithm . 93
3.5.2 Properties . 100

3.6 Generalizing Rank-Lowering Strategies . 105
3.6.1 k-Resistance . 106
3.6.2 Combining resistance and optimization 111

3.7 Conclusion . 116

4 Handling unobservability with timed markings 119
4.1 Introduction . 119
4.2 Preliminaries . 122

4.2.1 Sets and intervals of real . 123
4.2.2 One-clock timed automata . 123

4.3 Regular timed sets . 126
4.3.1 Regular unions of intervals . 127
4.3.2 Linear and regular timed sets . 129

4.4 Closure under delay and silent transitions 130
4.4.1 Linear timed markings and their τ -closure 131
4.4.2 Computing τ -closures . 135
4.4.3 Necessity of regular timed sets . 144
4.4.4 Finite representation of the closure 146

6

TABLE OF CONTENTS

4.5 Towards efficient diagnosis for n-clocks timed automata 155
4.5.1 Valuations for multiple clocks . 155
4.5.2 τ -closures . 156
4.5.3 Stability of a representable class . 165

4.6 Conclusion and future works . 166

5 Active learning of timed automata with unobservable resets 169
5.1 Introduction . 169
5.2 Preliminaries . 170

5.2.1 Timed automata . 170
5.2.2 Active learning for timed automata 172

5.3 Abstraction . 175
5.3.1 Zone runs, region runs and K-closed runs 176
5.3.2 Signatures and Behaviours . 179
5.3.3 Manipulations on words . 181

5.4 Observation structures . 183
5.4.1 Timed decision graphs . 184
5.4.2 Consistency and validity . 189

5.5 Updating observation structures . 196
5.5.1 Adding a new observation . 197
5.5.2 Dealing with inconsistency . 203
5.5.3 Dealing with decision states with no successors 207
5.5.4 Rebuilding the graph . 239

5.6 Building a candidate timed automaton . 243
5.7 Conclusion . 245

Conclusion 247

Bibliography 251

7

RÉSUMÉ

Les ordinateurs, et plus généralement les systèmes automatiques, sont de plus en plus
répandus à la fois dans notre vie courante (téléphones, logiciels de paie, jusque dans des
choses aussi simples qu’une machine à café) et dans nos réalisations les plus complexes
et avancées (fusées, médecine de pointe, analyse météorologique. . .). Les solutions aux
problèmes de société, d’ingénierie ou scientifiques sont de plus en plus couramment
recherchées avec l’aide de l’informatique, créant d’autant plus de défis pour les systèmes
informatiques et au final, les informaticiens.

Conséquemment à cette situation une quantité impressionnante de systèmes liés à
l’informatique existe, tant en terme de purs nombres que de taille ou de diversité. De par
leurs interactions variées avec le monde, les systèmes informatiques acceptent des entrées
de natures totalement différentes et s’attachent à des facteurs dissimilaires dans leurs
calculs. Il peut s’agir de données quantitatives ou continues telles que le temps, le poids ou
l’énergie, d’un environnement réactif, de probabilités, de changements de comportement
brusques. . .

Les résultats attendus sont eux aussi de natures variables, telle que des décisions
opérationnelles, le résultat de fonctions mathématiques ou de l’affichage.

Exemple. Pensez à une entrée vidéo : une suite d’images se succédant rapidement dans le
temps, couplée avec les informations de différents senseurs (vitesse, pression, température)
et une voix qui doit être analysée depuis une piste audio et transformée en décisions et
changements de comportement accompagnés d’une sortie vocale présentant les décisions.

Ceci peut parfaitement correspondre à l’interface d’une machine-outil, d’un robot, ou
(plus à la mode) d’une voiture autonome.

Afin de traiter ces situations et besoins variés, et à cause de la progression très active
de la science informatique, les systèmes informatiques ont des principes et des structures
extrêmement dissimilaires.

Remarque. Cette dissimilarité est reflétée (et peut être même magnifiée) dans la variété
des domaines et communautés de recherche en informatique, dont les formations, la
méthodologie et même les méthodes de falsifiabilité varient grandement.

9

Résumé

Il faut ajouter à cela que les systèmes informatiques sont interconnectés par nature,
créant des réseaux hautement plus complexes que la somme de leurs composants. Prédire
le comportement d’un (composant d’un) système une fois interconnecté dans un tel
environnement est donc devenu une tâche d’une épouvantable difficulté pour un humain
seul. Cela met en lumière l’intérêt de méthodes et d’outils d’analyse automatique.

Pour certains de nos systèmes informatiques, une défaillance peut être relativement
bénigne, et peut parfois être corrigée. Pensez par exemple à la corruption d’un (fragment
d’un) pixel d’une image, ou à une machine à laver qui flanche. Néanmoins, pour un grand
nombre de systèmes une erreur peut avoir un coût terrible, qu’il soit monétaire et affecte
l’efficacité (un site internet ne répondant plus, la paralysie d’un réseau ferroviaire, des
erreurs dans un logiciel de paie, un banque perdant des données. . .) ou en vies humaines (le
le système de contrôle du frein d’un train n’arrivant pas à activer les freins, une machine-
outil réalisant des mouvements imprévus en présence de travailleurs, la défaillance d’un
pilote automatique sur un avion. . .). Prévenir des erreurs dans de tels systèmes est donc
d’une importance cruciale, alors qu’ils sont souvent parmi les plus élaborés, ou immergés
dans des environnements hautement complexes.

Exemple. Un exemple assez connu d’une telle erreur est l’échec du lancement de la
première fusée Ariane 5. Cette fusée a explosé moins d’une minute après son décollage à
cause d’une exception matérielle déclenchée par un dépassement provenant de la conversion
de l’accélération horizontale d’entiers à virgule flottante 64 bits en entiers signés 16 bits.

Cette erreur, aussi simple qu’elle puisse paraître une fois découverte, a été causée par
l’usage de connexions légèrement inadaptées entre des composants matériels autrement
corrects et la décision de ne pas protéger la valeur contre les conversions pendant le
processus de création, laquelle découlait d’hypothèses basées sur la fusée Ariane 4. Elle
était donc difficile à repérer et put passer inaperçue à travers de multiples vérifications,
simulations et phases de test.

Cet échec, heureusement non létal, causa la perte des quatre satellites transportés par
la fusée, entraînant un déficit de plus de 370 millions de dollars états-uniens. Il devient
connu comme l’erreur logicielle la plus coûteuse de l’Histoire (jusqu’alors) et joua un rôle
important dans la reconnaissance et le développement des recherches assurant la fiabilité
des composants critiques.

La conséquence de ces situations (dépendance toujours croissante envers les systèmes
informatiques ; importante dissimilarité de buts et de moyens ; interconnection de systèmes ;
existence de systèmes informatiques critiques pour la sécurité) est qu’un nombre toujours

10

Résumé

croissant de systèmes informatiques sont créés et connectés entre eux et avec des composants
plus anciens. Une défaillance de certains de ces systèmes pourrait avoir de désastreuses
conséquences. Dans le même temps, l’analyse et le diagnostic ou la vérification à la (seule)
main est devenu irréaliste.

Un besoin vital de modèles

Comme expliqué précédemment, la plupart des systèmes sont trop complexes ou trop
grands pour être analysés directement par des humains, particulièrement les systèmes
dont la fiabilité est la plus cruciale. Cela est dû à des facteurs variés, notamment le grand
nombre de lignes de codes ; les nombreux langages informatiques différents qui peuvent être
utilisés ; la variété des applications et des expertises associées ; l’interconnexion avec des
composants écrits dans des langages historiques, à peine utilisés mais toujours fonctionnels ;
l’interconnexion avec des composants propriétaires qui ne peuvent pas être complètement
analysés ; la dépendance au matériel. . . entre autres facteurs. Pour cette raison, l’analyse
automatique des systèmes est nécessaire et son domaine d’application ne cesse de s’étendre.
Les méthodes formelles, c’est-à-dire les techniques mathématiquement rigoureuses pour
la spécification et la vérification, constituent l’un des principaux candidats à une telle
analyse. L’utilisation de méthodes mathématiquement correctes et la possibilité d’obtenir
des résultats prouvés permettent une grande confiance dans l’analyse effectuée.

À cause de leur précision, les méthodes formelles peuvent être à la fois très complexes à
utiliser et calculatoirement coûteuses. De ce fait, il est nécessaire d’utiliser des abstractions
appropriées afin de concentrer l’expressivité sur les aspects importants d’un système, tout
en simplifiant la tâche à accomplir.

Dans le cas des systèmes critiques, plusieurs types d’assurances complémentaires sont
recherchées : la vérification formelle donne des preuves de propriétés de haut-niveau, mais
dépend de modèles souvent très abstraits ; l’analyse de programmes travaille directement
sur le code, qui doit donc être disponible, et dérive des propriétés souvent moins complexes
et de type différent ; le test ne peut assurer de propriétés positives (par exemple qu’une
erreur ne va pas arriver) mais peut interagir avec le produit final (incluant l’implémentation
physique et l’environnement) ; la surveillance au moment de l’exécution peut rectifier ou
arrêter les comportements défectueux au fur et à mesure qu’ils se produisent, mais ses
options sont plus limitées (par exemple, elle doit parfois arrêter le système, ce qui peut
être un problème).

11

Résumé

Toutes ces méthodes nécessitent un modèle (pour des raisons d’efficacité et pour obtenir
une représentation commune) et sont des exemples de l’action des modèles sur la réalité :
elles utilisent des modèles pour raisonner sur un objet réel, agir sur eux (surveillance, test)
et prendre des décisions à leur sujet (propriétés).

Pour cette raison, elles dépendent de l’existence d’un modèle adapté. Pourtant, les
modèles formels de qualité, intégrant les bonnes informations et abstractions, sont rares
dans la nature : il est donc utile de pouvoir créer des modèles à partir de systèmes réels.

Apprentissage : un levier pour obtenir des modèles

La plupart des méthodes mentionnées plus haut (notamment le contrôle, le test formel et
la vérification) s’appuient sur un modèle mathématique du système et/ou des propriétés à
vérifier.

Exprimer de tels systèmes et propriétés avec des modèles peut être difficile. Notamment,
formaliser correctement une situation à la main nécessite un expert à la fois de la situation
et du modèle, afin de prendre en compte les subtilités des deux. Même pour un tel expert,
cela prend du temps et est sujet à de nombreuses erreurs

Pire encore il est parfois totalement impossible ou prohibitivement coûteux d’obtenir
un modèle. Cela peut être dû à des composants non-observables, par exemple dans une
approche boite-noire où il est seulement possible d’interagir avec le système (ou certains
composants) sans observer sa dynamique interne (cela peut arriver par exemple pour
les systèmes propriétaires) ; à des réseaux constitués d’un grand nombre de composants
différents (cas le modèle d’un réseau est souvent d’une taille bien supérieure à celle des
modèles de ses composants) ; à des systèmes ne pouvant être arrêtés pour analyse.

Plus généralement, certains algorithmes peuvent ou doivent utiliser des informations
déraisonnables à demander à un expert du domaine (par exemple les probabilités de
différents comportements du système lors de son utilisation).

Ces problèmes peuvent être résolus en apprenant un modèle pour un système ou
une propriété à partir d’exemples de ses comportements (et parfois de comportements
défectueux). Apprendre automatiquement de tels modèles à partir d’observations externes
est l’objet de l’apprentissage de modèles, un sous-domaine de l’apprentissage automatique.

L’apprentissage de modèles est un processus allant de la réalité vers les modèles : il
acquiert des observations de systèmes réels et les synthétise à l’aide d’un formalisme cible.

12

Résumé

Entre modèles et réalité

Dans les sections précédentes, nous avons présenté la vérification formelle (c’est-à-dire
l’action de modèles sur la réalité) et l’apprentissage de modèles (c’est-à-dire l’action de la
réalité sur les modèles). Ces interactions ont d’importants bénéfices : les modèles dirigent
les actions sur la réalité, ce qui aide à viser des comportements spécifiques, dont les
observations peuvent être utilisées pour raffiner ou construire les modèles.

Au cœur de cette opération se trouve l’abstraction d’évènements réels par des forma-
lismes mathématiques. Cette abstraction sous-tend la définition des modèles et aide à
organiser l’apprentissage en visant des comportements d’intérêt. Par exemple, cela permet
de détecter quelles observations sont utiles, et lesquelles correspondent à des parties déjà
explorées de l’abstraction.

Modèle Réalité

Action

Observation

Figure 1 : Boucle entre modèles et réalité

Les interactions entre modèles et réalité forment une spirale vertueuse. Par exemple,
les tests et l’apprentissage sont essentiellement le même processus observé sous des angles
différents : tous deux créent des entrées à proposer à un système et observent ses actions.
Lors des tests, le modèle utilisé pour générer ces entrées est supposé correct et le système est
« en cours de test ». En apprentissage, le système est la référence, et nous visons à construire
un modèle le décrivant. En pratique, les premières phases de test sont souvent utilisées
pour détecter les erreurs de modélisation et affiner le modèle, ce qui peut être qualifié
d’apprentissage. Pour une discussion plus approfondie sur ce parallèle, voir [Aic+18].

La boucle d’interaction générale entre les modèles et la réalité est esquissée dans la
figure 1.

Cette boucle, aussi bénéfique qu’elle soit, vient avec ses propres défis, qui surgissent des
différences entre des modèles mathématiquement parfaits et la réalité, où les mesures sont
floues et les systèmes durs à contrôler et observer. Cela nécessite des méthodes robustes et
prenant en compte la contrôlabilité et l’observabilité limitées d’un système.

13

Résumé

La robustesse n’est pas abordée dans cette thèse, bien que la section 2.2.3 donne
quelques indications bibliographiques. Elle revient à prendre en compte des erreurs de
mesure (par exemple temps d’action d’un capteur qui induit une erreur sur la mesure
du temps ; imprécision d’une information GPS sur la localisation) et des imprécisions de
contrôle (par exemple, en robotique : différence entre le mouvement planifié et l’effet des
moteurs ; pour le temps : un activateur qui peut agir à tout moment dans un intervalle de
temps au lieu d’un instant précis où la commande a été donnée).

L’observabilité peut être gérée au niveau des modèles, en transformant un modèle
avec des actions non observables (par exemple, les communications internes entre les
composants) en un équivalent où toutes les actions sont observables. Un autre élément
central de l’observabilité est la distinguabilité : un modèle peut-il faire la distinction
entre deux observations, ou font-elles partie du même comportement ? Des comportements
indiscernables peuvent être utilisés pour détecter des erreurs de modélisation ou pour
diminuer le nombre d’observations à générer.

Des problèmes de contrôlabilité surviennent dans les systèmes où un contrôleur ou un
testeur ne peut pas toujours appliquer un comportement ciblé. Dans ce cas, le contrôleur
doit s’appuyer sur le système lui-même pour atteindre son objectif, et les méthodes
correspondantes doivent caractériser ce qui est en dehors du contrôle de l’agent et planifier
en conséquence.

Comme déjà mentionné, les abstractions sont au cœur de la boucle entre les modèles
et la réalité. Concrètement, différents niveaux d’abstractions sont nécessaires :

• des exécutions des modèles à leurs traces observées par un agent extérieur, des
abstractions de différents niveaux d’observations sont nécessaires, ajoutant de plus
en plus d’informations sur l’état interne.

• d’exécutions uniques aux ensembles d’exécutions définissant les modèles, en passant
par des ensembles minimaux non distinguables, différents niveaux de précisions sont
utilisés pour analyser ou construire un modèle.

Dans le contexte de cette thèse, ces abstractions sont les plus importantes lorsque l’on
discute des méthodes d’apprentissage ou des méthodes d’approximation d’état, car elles
s’intéressent aux abstractions inverses, c’est-à-dire à la déduction d’exécutions de modèles
à partir d’observations et à celle d’ensembles (infinis) d’exécutions à partir de quelques
exemples. Un soin particulier sera donc apporté à travers tous les chapitres de cette thèse
à la définition de ces différentes abstractions et de leurs relations.

14

Résumé

Départstart Monnaie Attendre

Annuler

Café

?café

?monnaie

?annuler

?annuler

!monnaie

?confirmer!café

Figure 2 : Automate décrivant une simple machine à café.

Ajouter le temps au mélange

Le temps est un aspect important d’un grand nombre d’applications telles que les transports,
la fabrication, la sécurité. . . où les contraintes temporelles sur les actions font partie
intégrante du comportement recherché.

Exemple. Considérons une simple machine à café, un objet banal sans doute critique
pour le bon fonctionnement d’un laboratoire de recherche. Sa spécification (de haut niveau)
pourrait être donnée par un automate simple, comme le montre la figure 2, avec des entrées
données par l’utilisateur préfixées par " ?" et les sorties de la machine préfixées par " !".
Selon cette spécification, tout utilisateur demandant un café, le payant et confirmant l’achat
est sûr de finalement recevoir un café. L’absence de toute contrainte temporelle rend ce
résultat peu attrayant (personne n’apprécierait attendre des minutes ou des heures pour un
café sans aucune garantie de temps). Des contraintes temporelles sont nécessaires pour
encoder le comportement désiré.

La prise en compte du temps apporte un épanouissement de nouveaux défis, notamment
lorsque l’on considère que le temps est continu, ce qui est nécessaire pour obtenir une
plus grande expressivité sur les contraintes temporelles. En particulier, le temps continu
nécessite un nouveau modèle et de nouvelles abstractions, ainsi que des moyens de mettre
en œuvre de telles représentations : encoder une valeur continue dans un système numérique
est impossible, et l’approximer peut être hasardeux.

Les automates temporisés se sont imposés comme l’un des principaux modèles pour le
temps continu, principalement grâce à l’intéressant compromis qu’ils représentent entre

15

Résumé

Départstart Monnaie
c < 15

Attendre
c < 15

Annuler
c < 10

Café
c < 20

?café
{c}

?monnaie
{c}

?annuler

!annuler
?annuler

c = 15
!annuler

!monnaie

?confirmer
{c}!café

Figure 3 : Un automate temporisé spécifiant une machine à café ; temps en secondes.

efficacité et expressivité (ils sont parmi les modèles les plus expressifs dont l’accessibilité
est décidable). Par conséquent, les travaux théoriques sur les automates temporisés sont
à la fois étendus et applicables, en partie grâce aux multiples sous-classes d’automates
temporisés qui ont été identifiées.

Exemple. La figure 3 représente un automate temporisé spécifiant la machine à café de
la figure 2. L’ajout d’une horloge (notée c) mesurant le temps écoulé et remise à 0 (ce que
l’on note {c}) par certaines transitions permet de spécifier des contraintes de temps (en
secondes pour cet exemple). Notez que, par rapport à la version non chronométrée de la
spécification, il est possible de spécifier des délais d’attente comme c’est le cas avec les
transitions étiquetées par !annuler. Cette spécification garantit qu’un utilisateur reçoit un
café en moins de 20 secondes après avoir confirmé son achat.

Dans cette thèse, nous nous concentrons sur des algorithmes et des structures de
données prenant le temps en compte, avec les automates temporisés comme modèle de
référence.

Contributions

Les contributions de cette thèse sont centrées sur les interactions entre modèles et réalité,
dans le cas de systèmes temporisés modélisés avec des (variantes d’)automates temporisés.
Les principaux axes sont la contrôlabilité, l’observabilité et la distinguabilité des comporte-
ments. Un certain soin est également apporté à la disposition des différentes abstractions
nécessaires à la poursuite des discussions techniques.

16

Résumé

Le chapitre 1 présente les définitions centrales et les notions clefs qui sont ré-utilisées
dans toutes les contributions. Le chapitre 2 détaille l’état de l’art des différents domaines
de contribution. Les chapitres 3 à 5 détaillent les contributions.

Les principales contributions sont résumées ci-dessous :

• Le chapitre 3 présente nos travaux sur la contrôlabilité, appliqués aux automates
temporisés de test de conformité (avec entrées et sorties). Il traite des jeux difficiles
où aucune stratégie gagnante n’existe et discute d’un moyen de s’appuyer sur le
système pour progresser – tout en minimisant cette dépendance.

Plus précisément, lors du test de systèmes complexes, il n’est pas rare de faire face à
des systèmes qui ne peuvent pas être complètement contrôlés par l’agent. Pourtant,
bien que les cas de test soient modélisés comme des stratégies sur des arènes de
jeu, le système n’est pas l’adversaire du testeur : il ne combat pas activement les
objectifs du test mais a simplement les siens, qui peuvent ou non correspondre à ceux
du testeur. Dans ce cadre, il est logique de discuter de la dépendance vis-à-vis des
comportements du système (selon une certaine forme d’équité) tout en quantifiant
cette dépendance. Cela se fait via une notion de rangs caractérisant la distance à un
objectif d’accessibilité en termes de pertes de contrôle et de stratégies de baisse de
rang, qui utilisent ces rangs pour progresser vers l’objectif.

Ce travail a été présenté pour la première fois dans [HJM18] et est présentement
soumis sous forme d’article de revue. La section 3.6 étend l’approche du chapitre et
discute de l’utilisation des stratégies introduites précédemment à une configuration
très générale où le recours à l’équité du système n’est pas suffisant pour assurer la
victoire. Il n’est pas encore soumis.

• Le chapitre 4 propose une structure généralisant les automates temporisés et per-
mettant de suivre l’état du système après une observation donnée dans des modèles
partiellement observables – un problème que nous montrerons être à la fois difficile
et central pour de nombreuses méthodes formelles, notamment de diagnostic, de test
formel et de surveillance. Le cœur de la structure est d’obtenir une représentation
symbolique pour les ensembles des configurations du modèle, qui est à la fois fini-
ment représentable et close par les opérations habituelles, c’est-à-dire les actions
observables et laissant le temps s’écouler avec d’éventuelles transitions inobservables.
Nous montrons que cela peut être réalisé pour des automates temporisés avec une
seule horloge, et posons les bases théoriques pour obtenir des résultats similaires

17

pour les automates temporisés généraux, bien que nous n’identifions pas la classe
finiment représentable adéquat. Ce travail a été présenté dans [Bou+21] au cours de
cette thèse, et d’abord développé dans [BJM18] avant elle.

• Le chapitre 5 généralise une méthode d’apprentissage actif antérieure à une sous-
classe beaucoup plus large d’automates temporisés qui présentent une sémantique
inobservable de haute dimension. Pour cette raison, des suppositions sur les diffé-
rentes formalisations possibles des observations doivent être formulées, et écartées si
nécessaire, grâce à une nouvelle notion que nous appelons invalidité.

Plus précisément, nous étudions une sous-classe nouvellement introduite d’automates
temporisés dont les remises à zéro des horloges ne sont pas liées aux observations. Il
est donc nécessaire de deviner les remises à zéro de l’horloge. La notion d’invalidité
caractérise les choix de remise à zéro des horloges qui ne peuvent pas expliquer
l’ensemble actuel d’observations et peuvent donc être écartées en toute sécurité. Une
version antérieure de ce travail a été présentée dans [HJM20] au cours de cette thèse,
tandis que la version actuelle propose des algorithmes mis à jour et une discussion
beaucoup plus approfondie sur l’invalidité.

18

INTRODUCTION

Misery me! I have heard songs of many
battles, and I have always understood
that defeat may be glorious. It seems
very uncomfortable, not to say
distressing. I wish I was well out of it.

—J.R.R. Tolkien "The Hobbit"

Computers and automated systems become ever more prevalent, both in our common
life (smartphones, payroll softwares, even things as simple as coffee machines) and in
our most complex and advanced realizations (rockets, state of the art medicine, weather
analysis. . .). New societal, engineering or scientific obstacles are approached more and
more often with the help of computers, creating all the more challenges for computer
systems, and ultimately, computer scientists.

This situation leads to the existence of an impressive amount of computer related
systems, both in term of sheer size, numbers and diversity. By interacting in disparate ways
with the world, computer systems accept as input informations of completely different kinds,
and take dissimilar factors into account in their computations. These can be quantitative
or continuous data, such as time, weight or energy, a reactive environnement, probabilities,
abrupt changes in behaviours. . .

The expected outputs are themselves of varying nature, such as operative decisions,
results of (mathematical) functions or displays (e.g. image or video).

Example. Think of a video input, which has images coming rapidly through time, coupled
with different sensor informations (speed, pressure, temperature) and a voice that has to be
analysed through an audio feed, and translated into decisions and changes in behaviour as
well as an audio output of a voice presenting those decisions.

This can very well correspond to the interface of a machine-tool, a robot, or, in more
trendy fashion, an autonomous car.

To handle these different situations and needs, and because of the active progression
in computer science, computer systems are extremely dissimilar in design and structure.

19

Remark. This dissimilarity is reflected (and perhaps is easier seen) on the variety of the
research domains and communities in computer science, which vary greatly in formalism,
methodology, and even falsifiability.

Furthermore, by nature computer systems are interconnected and the resulting networks
are highly more complex than their original components. To predict the behaviour of a
(component of a) system once interconnected with such an environment has hence become
a horrendous task for a human to approach directly. This emphasizes the interest of
automated analysis methods and tools.

For some of the computer systems we use, failure is relatively benign, and sometimes
can be corrected. Think of a corruption of (part of a) pixel of an image, or a washing
machine breaking. Yet for a great number of systems, errors have a terrible cost, either
monetary and in efficiency (a website going down, a paralysis of a train system, a payroll
software making mistakes, a bank loosing data. . .) or in human lives (control of a train
break failing to activate the brake, machine tool making an unplanned movement around
workers, auto-pilot failure on a plane).

Preventing errors in such systems is thus of the outmost importance, while they are often
on the most elaborate end of the spectrum, or immersed in highly complex environments.

Example. A somewhat well known example of such error is the launch failure of the
first Ariane 5 rocket. That rocket exploded after less than a minute of flight because of a
hardware exception triggered by an overflow originating from the conversion of horizontal
acceleration from 64-bit floating points integer to 16-bit signed ones.

That error, as trivial as it may seem once discovered, was due to the use of somewhat
unadapted connections between otherwise valid hardware components and the decision not
to protect that value conversion during the design process, which resulted from assumptions
based on the previous Ariane 4 rocket. Hence, it was intricate to discover, and was able to
pass unnoticed through multiple verifications, simulations and test phases.

That failure, fortunately not fatal, caused the waste of four satellites the rocket trans-
ported, resulting in a loss of more than US$370 millions. It became known as the most
expensive software bug in history (so far) and played a great role in the recognition and
development of research ensuring the reliability of safety-critical components.

The result of these situations—ever growing reliance on computer systems; great
dissimilarity of purposes and means; interconnection of systems; existence of safety-critical
computer systems—is that an ever increasing number of computer systems are created and

20

connected between themselves and with older components. For some of these systems a
failure would have dire consequences. Yet analyzing, diagnosing or checking these systems
(only) by hand has become unrealistic.

A dire need for models

As explained previously, most systems are too complex and/or too large to be analysed by
humans, especially those whose reliability is the most required. This is due to different
factors, notably the sheer number of lines of codes; the numerous different languages that
can be used; the variety of applications and associated expertises; the interconnection with
components written in historic languages, barely used anymore but still running in practice;
the interconnection with proprietary components that cannot be completely analysed; the
dependence on hardware. . . between others. Because of this, automatic analysis of systems
is necessary, and its application range ever increasing. One of the main contenders for such
analysis is formal methods i.e. mathematically rigorous techniques for the specification
and verification. The use of sound methods and the possibility to derive proved results
allows for a great confidence in the performed analysis.

Due to their precision, formal methods can be both very complex for an expert to
design and computationally expensive to run. Hence, it is necessary to rely on fitting
abstractions to concentrate the expressivity on the relevant aspects of a system, while
simplifying the task at hand.

For critical systems, different kinds of complementary insurances are sought: formal
verification leads to proofs of high-level properties, but relies on an often very abstract
model; program analysis works directly on the code, which must be available and the
properties derived are generally less complex and of different kind; testing cannot conclude
to positive properties (e.g. a bug will not happen) but can interact with the final product
(including the physical implementation and the environment); monitoring at run-time
can rectify or stop faulty behaviours as they happen but is more limited in its options
(e.g. sometimes has to stop the system, which can be a problem).

All these methods require a model of some sort (for efficiency and to obtain a common
representation), and are examples of actions of the models on reality: they use models to
reason upon real objects, act on them (monitoring, testing), and take decision about them
(properties).

21

As such, they depend on the existence of a fitting model to be employed. Yet, good
formal models integrating the correct informations and abstractions are rare in the wild:
it is hence valuable to be able to create models from real life systems.

Learning: leveraging model availability

Most of the aforementioned approaches—notably control, formal testing and verification—
rely on a mathematical model of the systems and/or properties to be verified.

Expressing such systems and properties with models can be difficult. Notably, correctly
formalizing a situation by hand requires an expert in both the situation and the model, so
as to take into account the subtleties of both. Even for such an expert, it is time consuming,
and error prone.

Even worse, sometimes obtaining a model is completely impossible or prohibitively
difficult. This can be due to unobservable components i.e. in a black-box approach where
one can only interact with the system (or some components) without observing its internals
(e.g. proprietary systems); networks constituted of a great number of different components
(as model of the network is often of far greater size than the models of its components);
system that cannot be taken offline for analysis.

More generally, some algorithms can or must use information that is unreasonable
to ask from a domain expert (e.g. probabilities of different behaviours of the system in
practice).

These problems can be solved by learning a model for a system or a property from
examples of its behaviours (and sometimes of faulty behaviours). To automatically learn
such models from external observations is the object of model learning, a sub-domain of
machine learning.

Model learning is a process that typically goes from reality to the models: it acquires
observations from real systems and synthesizes them using a targeted formalism.

Between models and reality

In the previous sections, we presented formal verification i.e. actions from the models
upon reality and model learning i.e. actions from reality on models. These interactions

22

have important benefits: models direct the action on reality, which in turns helps to target
specific behaviours whose observations can be used to refine or build them.

At the core of this interaction is the mathematical abstraction of real events. That
abstraction underlies the definition of models, and helps to organize the learning toward
behaviours of interest. For example, it allows to detect which observations are useful, and
which correspond to abstractions already explored.

Model Reality

Action

Observation

Figure 4: Reality-Model loop

The interactions between models and reality form a virtuous spiral. For example,
testing and learning are essentially the same process, except observed from a different
perspective: both create inputs to propose to a system and observe its actions. In testing,
the model used to generate these inputs is supposed correct, and the system is under test.
In learning, the system is the reference, and we aim at constructing a model describing it.
In practice, the first testing phases are often used to detect modeling errors and refine
the model, which can be argued to be learning. For a more in depth discussion on this
parallel, see [Aic+18].

The general interaction loop between models and reality is sketched in Figure 4.

This loop, as beneficial as it is, comes with its own challenges, which arise from the
differences between mathematically perfect models and reality, where measures are fuzzy,
and systems hard to control and observe. This calls for methods that are robust, and take
into account the limited controllability and observability of a system.

Robustness is not addressed in this thesis, although Section 2.2.3 gives some biblio-
graphic pointers. It boils down to taking into account errors in measures (e.g. reaction-time
of a captor that induces an error in the measure of time; imprecision of a GPS information
on localisation) and imprecisions in the control (e.g. in robotics: difference between the
planned movement and the effect of the motors; for time: an activator which can act at any
point in an interval of time instead of a precise instant where the command was given).

Observability can be handled at the level of the models, by transforming a model
with unobservable actions (e.g. internal communications between components) into an

23

equivalent one where all actions are observable. Another central element of observability
is distinguishability: i.e. can a model distinguish between two observations, or are they
part of the same behaviour. Undistinguishable behaviours can be used to detect modeling
errors or to diminish the number of observations to generate.

Controllability issues arise in systems where a controller or a tester cannot always
enforce a targeted behaviour. In this case, the controller has to rely on the system itself to
achieve its goal, and corresponding methods should characterize what is outside of the
control of the agent, and plan around it.

As already mentioned, abstractions are at the core of the loop between models and
reality. Specifically, different levels of abstractions are necessary:

• from model executions to their traces observed by an exterior agent, abstractions
of different levels of observations are necessary, adding more and more information
about the internal state.

• from single executions to sets of executions defining the models, passing by minimal
undistinguishable sets, different levels of precisions are used to analyse or construct
a model.

In the context of this thesis, these abstractions are most important when discussing
learning methods or state approximation methods, as these are interested in inverse ab-
stractions i.e. deducing model executions from observations and (infinite) sets of executions
from few examples. A special care will thus be given through all chapters of this thesis to
the definition of these different abstractions and their relations.

Adding time to the mix

Time is a significant aspect in a number of applications—such as e.g. transportation,
manufacturing, security—where time constraints on actions are part of the intended
behaviour.

Example. Consider a simple coffee machine, a mundane object arguably critical for the
good functioning of a research laboratory. Its (high level) specification could be given through
a simple automaton, as depicted in Figure 5, with inputs given by the user prefixed by "?"
and outputs of the machine prefixed by "!". Following this specification, any user asking for
a coffee, paying it and confirming the purchase is ensured to obtain a coffee eventually.

24

Startstart Money Wait

Cancel

Coffee

?coffee

?money

?cancel

?cancel

!money

?confirm!coffee

Figure 5: Automaton describing a simple coffee machine.

The lack of any timing constraint makes that result unappealing (no one would appreciate
waiting minutes or hours for a coffee without any timing guarantees). Time constraints
are necessary to encode the intended behaviour.

Taking time into account brings a flourish of new challenges, notably when considering
that time is continuous, which is necessary to obtain a greater expressivity on time
constraints. In particular, continuous time requires a new model and abstractions, as well
as ways to implement such representations: encoding a continuous value in a digital system
is impossible, and approximating it can be hazardous.

Timed automata have imposed themselves as one of the main models for continuous
time, mainly because of the interesting compromise they represent between tractability
and expressivity (they are the among the most expressive models for which reachability is
decidable). Hence, theoretical work on timed automata are both far reaching and applicable,
thanks in part to the multiple sub-classes of timed automata that have been identified.

Example. Figure 6 represents a timed automaton specifying the coffee machine from
Figure 5. The addition of a clock (noted c) measuring the time elapsing and reset to 0
(noted {c}) by some transitions allows to specify time constraints (in seconds for this
example). Notice that, compared to the untimed version of the specification, it is possible
to specify time-outs as done with the transitions labeled by !cancel.

This specification ensures that a user gets a coffee in less than 20 secondes after
confirming its purchase.

In this thesis, we focus on algorithms and data structures that take time into account,
with timed automata as a reference model.

25

Startstart Money
c < 15

Wait
c < 15

Cancel
c < 10

Coffee
c < 20

?coffee
{c}

?money
{c}

?cancel

!cancel ?cancel c = 15
!cancel

!money

?confirm
{c}

!coffee

Figure 6: A timed automaton specifying a coffee machine with time in seconds.

Contributions

This thesis contributions are centered on the interactions between models and reality, in
the case of timed systems modeled with (variants of) timed automata. The main focuses
are on controllability, observability and distinguishability of behaviours. A certain care
is also given to the lay out of different abstractions necessary to carry on the technical
discussions.

Chapter 1 presents the central definitions and key notions that are re-used in all
contributions. Chapter 2 details the state of the art of the different domains of the
contributions. Chapter 3 to 5 detail the contributions.

The main contributions can be summarized in the following way:

• Chapter 3 presents our work on controllability, applied to conformance testing timed
automata (with inputs and outputs). It deals with difficult games where no winning
strategy exists and discusses a practical way to rely on the system for progress—while
minimizing that reliance.

More precisely, when testing complex systems, it is not unusual to face systems that
cannot be completely controlled by the agent. Yet, although test cases are modeled
as strategies on game arenas, the system is not the tester adversary: it does not
actively fight the test objectives but simply has its own, that may or may not align
with the tester’s. In this framework, it makes sense to discuss reliance on the system
behaviours (according to some fairness) while quantifying that reliance. This is done
via a notion of ranks characterizing the distance to a reachability objective in term of
control losses and rank-lowering strategies, that use these ranks to progress toward

26

the objective.

This work was first presented in [HJM18], and is now submitted as a journal paper.
Section 3.6 extends the approach of the chapter, and discusses the use of the strategies
introduced previously to a very general setup where reliance on the fairness of the
system is not enough to ensure victory. It is not yet submitted.

• Chapter 4 proposes a structure generalizing timed automata and allowing to track
the state of the system after a given observation in partially observable models—a
problem that we will show to be both difficult and central for numerous formal
methods, notably diagnostic, formal testing and monitoring. The core of the structure
is to obtain a symbolic representation for sets of the model configurations, that is
both finitely representable and closed by the usual operations i.e. observable actions
and letting time elapse with possible unobservable transitions. We show that this
can be achieved for timed automata with one clock, and lay the theoretic bases to
obtain similar results for general timed automata, although we do not identify the
fitting finitely representable class. This work was presented in [Bou+21] during this
thesis, and first developed in [BJM18] before it.

• Chapter 5 generalizes a previous active learning method to a far broader subclass of
timed automata that crucially displays a high-dimensional unobservable semantics.
Because of this, guesses on different possible formalizations of the observations have
to be formulated, and ruled out when necessary, through a new notion that we call
invalidity.

More specifically, we study reset-optional event recording automata, a newly intro-
duced subclass of timed automata whose clock resets are not tied to observations. It
is hence necessary to guess the clock resets. Invalidity characterizes clock resets that
cannot explain the current set of observations and can thus be safely discarded. An
earlier version of this work was presented in [HJM20] during the course of this thesis,
while the current version proposes updated algorithms and a much more thorough
discussion on invalidity.

Publications

The publications realized during this thesis are as follows:

27

• Léo Henry, Thierry Jéron, and Nicolas Markey, “Control strategies for off-line testing
of timed systems”, in: 25th International Symposium on Model-Cherking Software
(SPIN’18), ed. by María-del-Mar Gallardo and Pedro Merino, vol. 10869, Lecture
Notes in Computer Science, Springer, June 2018, pp. 171–189, doi: 10.1007/978-
3-319-94111-0_10

• Léo Henry, Thierry Jéron, and Nicolas Markey, “Active learning of timed automata
with unobservable resets”, in: 18th International Conferences on Formal Modelling
and Analysis of Timed Systems (FORMATS’20), ed. by Nathalie Bertrand and
Nils Jansen, vol. 12288, Lecture Notes in Computer Science, Springer, Sept. 2020,
pp. 144–160, doi: 10.1007/978-3-030-57628-8_9

• Patricia Bouyer et al., “Diagnosing timed automata using timed markings”, in:
International Journal on Software Tools for Technology Transfer 23 (Mar. 2021),
doi: 10.1007/s10009-021-00606-2

28

https://doi.org/10.1007/978-3-319-94111-0_10
https://doi.org/10.1007/978-3-319-94111-0_10
https://doi.org/10.1007/978-3-030-57628-8_9
https://doi.org/10.1007/s10009-021-00606-2

Chapter 1

DEFINITIONS

All the same, I should like it all plain
and clear. Also, I should like to know
about risks, out-of-pocket expenses,
time required and remuneration, and
so forth. What am I going to get out
of it? and am I going to come back
alive?

— J.R.R. Tolkien "The Hobbit"

1.1 Time representation

In the rest of this thesis, time is modelled using clocks, that measure the amount of time
elapsed since an arbitrary origin, and are considered perfect (no error appears in the stored
value, reading them is instantaneous and does not introduce errors) and infinitely precise.
These clocks will later be reset by timed automata, as described in Section 1.2.

Time is measured in arbitrary time units abstracting the level of precision required, that
vary from application to application. The value of time units is an important parameter in
the construction of models, as we will only compare time to integer numbers of those time
units.

Example 1.1.1. If one considers a computer-based system, the time unit can be the
computer tick, or any multiple of it. In an interactive system with sensors and activators, the
time unit size can be dictated by the precision of those components. In general, determining
the time unit is a compromise between precision, that allows more expressivity, and efficiency
(most applications having an exponential time dependency on the maximal number of time
units considered by a model).

Formally, given a finite set C of variables named clocks, a valuation of C is a function

29

Chapter 1 – Definitions

c1
c2
c3
c4

{c1} {c2} {c3} {c4} v

v(c1) = ∑4
i=1 ti

v(c2) = ∑4
i=2 ti

v(c3) = ∑4
i=3 ti

v(c4) = t4

t1 t2 t3 t4

Figure 1.1: Clocks encoding the timed elapsed since their last reset in a valuation v.

v : C → R≥0 associating each clock with its positive value. We write 0 for the initial
valuation associating 0 to each clock. For any t ∈ R≥0 we write v + t the valuation such
that for all c ∈ C, (v + t)(c) = v(c) + t. For C ′ ⊆ C and a valuation v, we write v[C′←0]

the valuation mapping c ∈ C to 0 if c ∈ C ′ and v(c) otherwise. Finally, for a valuation v,
we define its future as −→v = {v + t | t ∈ R≥0}.

Remark 1.1.2. A set of clocks C and its valuations can be used to measure the time
elapsed since a maximum of |C| passed events, using resets v[c←0] with c ∈ C to set the
value of c to zero at the time of an event and v + t to measure the passing of time, as
depicted in Figure 1.1.

Remark 1.1.3. Valuations can seamlessly be considered as vectors in R|C|≥0. We will
sometimes abuse the notation and write v ∈ R|C|≥0 when it eases the discussion.

A clock constraint is an expression of the form c1 − c2 ∼ n or c1 ∼ n, for c1, c2 ∈ C,
∼ ∈ {<,≤,=,≥, >} and n ∈ Z.

A valuation v satisfies a constraint c1−c2 ∼ n (resp. c ∼ n) if and only if v(c1)−v(c2) ∼
n (resp. v(c) ∼ n).

We call zone over C [DT98] any finite conjunction of such constraints, and write ZC
(or sometimes simply Z) for the set of zones over C. Given a valuation v and a zone z,
we write v |= z when v satisfies all the constraints in z.

Remark 1.1.4. As for valuations, a zone can be considered as a set of R|C|≥0 defined by
the valuations satisfying its constraints. This justifies notations such as v ∈ z. We will
sometime identify a zone and its set of valuations when it eases the discussion, as done
below.

Given a zone z, we define its future −→z = ⋃
v∈z
−→v and the effect of resetting a subset C ′ ⊆

C z[C′←0] = {v[C′←0] | v ∈ z}. Notice that these are also zones.

30

1.2. Timed automata

We call guard over C any finite conjunction of clock constraints of the form c ∼ n,
and write GC (or simply G) for the set of guards. As guards are zones, we extend every
operation and definition made on zones to guards.

Example 1.1.5. In Figure 1.2 a representation of the valuations for the set of clocks
C = {c1, c2} is displayed.

The valuation 0 is displayed with the result of some operations: v1 = 0 + 0.7, v2 =
v1[{c2}←0] and v3 = v2 + 0.5.

The leftmost highlighted polygon is the zone defined as 1 ≤ c1 ≤ 2 ∧ −1 ≤ c1 − c2 ≤ 1
while the rightmost is the guard defined as c1 ≥ 2.

c1

c2

1 2 3

1

2

0

v1
v2

v3

Figure 1.2: Two zones including a guard, and some valuations.

1.2 Timed automata

Now that a representation of time is defined with basic operations, automata handling
this representation can be introduced.

Definition 1.2.1. [AD94] A timed automaton (TA) is a tuple A = (L, `init,Σ, C, I, E)
such that:

• L is a finite set of locations, and `init ∈ L is the initial location;

• Σ is a finite alphabet of discrete actions;

• C is its finite set of clocks;

• I : L → GC is a function associating an invariant to each location;

31

Chapter 1 – Definitions

• E ⊆ L×GC ×Σ× 2C ×L is a set of transitions. For a transition e = (`, g, a, C ′, `′),
we call g = guard(e) its guard, a = act(e) its action, C ′ = reset(e) its reset, ` = src(e)
its source and `′ = tgt(e) its target. We extend these notations to sequences of
transitions with src((ei)1≤i≤n) = src(e1) tgt((ei)1≤i≤n) = tgt(en) and act((ei)1≤i≤n) =
(act(ei))1≤i≤n.

In a timed automaton A we write KA(c) to denote the maximal constant of c ∈ C,
i.e. the maximal constant to which c is compared in A.

Remark 1.2.2. Notice that a clock which is never tested can safely be removed from a
timed automaton. If one wants to define the maximal constant for such a clock, a recurring
convention is to use 0.

We call maximal constant of A, denoted KA, the maximum of the KA(c) for c ∈ C.
A partial path π = (ei)1≤i≤n is a finite sequence of consecutive transitions (i.e. for all
1 ≤ i < n, src(ei+1) = tgt(ei)). A path is a partial path starting in `init.

Example 1.2.3. A simple timed automaton is depicted in Figure 1.3. In this automaton,
L = {`init, `1, `2}, Σ = {a, b}, C = {c1, c2}, K(c1) = 2 and K(c2) = 3. The invariants and
transitions are represented in the figure.

Two paths of this automaton are π1 = e1 · e3 and π2 = e1 · e2 · e1 · e3.

`init
c1 ≤ 3start `1

c2 ≤ 2
`2
true

e1 = (true, a, ∅)

e2 = (c1 ≤ 2, b, {c1})

e3 = (c1 ≤ 2 ∧ c2 > 3, a, ∅)

Figure 1.3: A simple timed automaton.

Because clocks take real values, and the availability of a transition depends on valuations
(as the clock values have to satisfy the transition guard to enable it), the internal state
(that we call configuration) of a timed automaton is the pair of its location and the current
clock valuation. Thus, timed automata are a finite representation of infinite-state transition
systems, that we use to express their semantics.

Definition 1.2.4. With a TA A = (L, `init,Σ, C, I, E), we associate the infinite-state
transition system T A = (S, sinit,Γ,→) where

• S = {(`, v) ∈ L×RC
≥0 | v |= I(`)} is the set of configurations of the timed automaton

and sinit = (`init,0) is the initial configuration;

32

1.2. Timed automata

• Γ = R≥0] E is the set of transition labels;

• → ⊆ S × Γ× S is the transition relation defined as the union of

– the delay transitions, which contains all triples

((`, v), t, (`, v + t)) ∈ S × R≥0 × S 1;

– the action (or discrete) transitions, consisting of all triples

((`, v), (`, g, a, r, `′), (`′, v[r←0])) ∈ S × E × S

such that v |= g.

We note enab(s) = {e ∈ EA | s e−→} the set of transitions of the timed automaton
enabled in a configuration s.

A partial run of A is a (finite or infinite) sequence ρ = ((si−1, pi, si))1≤i<n of transitions
in T A, with n ∈ N ∪ {+∞}. We write first(ρ) for s0 and, when n ∈ N, last(ρ) for sn.
A run is a partial run starting in the initial configuration sinit. The duration of ρ is
dur(ρ) = ∑

pi∈R≥0 pi. We write Ex(A) for the set of runs of A and pEx(A) the subset of
partial runs.

A configuration s is said reachable from a configuration s′ when there exists a partial
run starting in s′ and ending in s. We write Reach(A, S ′) for the set of states that are
reachable from some configuration in S ′, and Reach(A) for Reach(A, {sinit}).

A (partial) run ρ is said to belong to a (partial) path π, denoted ρ ∈ π when its sequence
of discrete transitions is π. A path is said feasible if and only if some run belongs to it.

Remark 1.2.5. Notice that a run ρ = ((si−1, pi, si))1≤i<n can also be represented as
(si−1

pi−→ si)1≤i<n using the notation → defining the transitions of the semantics.

Example 1.2.6. Consider again the automaton of Figure1.3. A run of this automaton is

ρ = sinit
1.5−→ (`init, (1.5

1.5)) e1−→ (`1, (1.5
1.5)) e2−→ (`init, (0

1.5)) e1−→ (`1, (0
1.5)) 1−→1−→(`1, (2

3.5)) e3−→ (`2, (2
3.5)) .

As ρ ∈ π2 = e1 · e2 · e1 · e3 this shows that π2 is feasible. On the contrary, π1 = e1 · e3 is
unfeasible. Indeed, as a run starts from sinit and e1 does not reset c, it is impossible to
satisfy the guard of e3 after the first e1.

1. By definition of S, both v and v + t satisfy the local invariant.

33

Chapter 1 – Definitions

The (partial) signature associated with a (partial) run ρ = ((si−1, pi, si))1≤i<n is sig(ρ) =
(proj(pi))1≤i<n, where proj(p) = p if p ∈ R≥0, and proj(p) = (a, C ′) if p = (`, g, a, C ′, `′).
We write pSig(A) = proj(pEx(A)) and Sig(A) = proj(Ex(A)) for the sets of (partial)
signatures of A. We write s µ−→ s′ when there exists a (partial) finite run ρ such that
µ = proj(ρ), first(ρ) = s and last(ρ) = s′, and write dur(µ) = Σγi∈R≥0γi. Note that as
expected, when sig(ρ) = µ then dur(ρ) = dur(µ). We write s µ−→when s µ−→s′ for some s′.

Notice that in the above definitions, runs and signatures could have several successive
delay transitions, and several successive discrete transitions. This formulation is useful
when a fine control on the progression of the system is necessary. In the context of this
thesis, this formulation is used notably for game theory. It corresponds to a point of view
from inside the model, when one wants to be able to “stop time” to take a decision before
letting it elapse anew.

Yet, from an outside approach, only the total amount of time elapsed between two
discrete actions is of interest. In this context, concerned with models for the languages it
generates or reads, manipulating words that alternate strictly between delays and discrete
events eases the discussion.

We say that a run (resp. signature) is alternating when it starts with a time elapse
transition and alternates strictly between time elapses and discrete actions. Note that it is
always possible to convert a non-alternating run / signature into an alternating one in a
canonical way by summing consecutive delays and adding 0 delays between consecutive
actions. In the following, we call alternating signatures ending by a discrete action (i.e. in
(R≥0 × Σ× 2C)∗) timed words with resets.

The trace of a (partial) signature corresponds to what can be observed by the envi-
ronment, namely delays and discrete actions. The trace of a signature is the limit of the
following inductive definition, for t, t′ ∈ R≥0, a, b ∈ Σ, C ′ ⊆ C, and partial signatures µ1, µ2:

trace(ε) = 0

trace(t) = t

trace((a, C ′)) = a

trace(µ1 · µ2) = trace(µ1) · trace(µ2)

34

1.2. Timed automata

with the concatenation of traces being defined with two special cases as follow:

t · t′ = t+ t′

a · b = a · 0 · b .

Remark 1.2.7. This definition ensures that traces are always alternating, starting from a
delay. The interest is to enforce a structure corresponding to an observation. Notably, the
separations between consecutive delays in (non alternating) signatures can correspond to
informations about the signature construction that should not be available by an outside
observer.

We say that a (partial) trace ending with a discrete action is a timed word (notably the
trace of a timed word with resets is a timed word). We denote timed words as elements of
(R≥0 × Σ)∗.

We also define resets(µ) as the sequence of clock resets appearing in µ and define the
operator ⊗ that from a timed word wt = ((ti.ai))1≤i<n and a reset sequence of same length
r = (ri)1≤i<n builds the timed word with resets w ⊗ r = ((ti, ai, ri))1≤i<n.

Remark 1.2.8. The ⊗ operation could be defined for general signatures and traces, but
we only use it for timed words, hence the use of this simpler definition.

The above definitions are summed up in the Figure 1.4, where the syntax and different
levels of observation (semantics, signatures and traces) are highlighted.

Example 1.2.9. Considering again the run from Example 1.2.6:

ρ = sinit
1.5−→ (`init, (1.5

1.5)) e1−→ (`1, (1.5
1.5)) e2−→ (`init, (0

1.5)) e1−→ (`1, (0
1.5)) 1−→1−→(`1, (2

3.5)) e3−→ (`2, (2
3.5))

one can construct an alternating run

ρ′ = sinit
1.5−→ (`init, (1.5

1.5)) e1−→ 0−→(`1, (1.5
1.5)) e2−→ 0−→(`init, (0

1.5)) e1−→ (`1, (0
1.5)) 2−→(`1, (2

3.5)) e3−→ (`2, (2
3.5)).

The signature of ρ is

µ = sig(ρ) = 1.5 · (a, ∅) · (b, {c1}) · (a, ∅) · (b, {c1}) · 1 · 1 · (a, ∅).

35

Chapter 1 – Definitions

TA:
A =
(L, `init,Σ, C, I, E)

Path:
π = (ei)1≤i<n ∈ E∗
ei = (`i−1, gi, ai, C

′
i, `i)

T A = (S, sinit,Γ,→)
(Partial) Run: ρ ∈ pEx(A)
⊆ →∗
ρ = ((`i−1, vi−1) pi−→
(`i, vi))1≤i<n

(Partial) Signature:
µ = (proj(pi))1≤i<n
∈ (R≥0 ∪ (Σ× 2C))∗

Timed word with resets
wtr = ((ti, ai, C ′i))1≤i<n
∈ (R≥0 × Σ× 2C)∗

(Partial) Trace:
wt
∈ (R≥0 × Σ)∗ · (R≥0 ∪ ε)

Resets:
r = (C ′i)1≤i<n
∈ (2C)∗

Timed word:
wt = ((ti, ai))1≤i<n ∈
(R≥0 × Σ)∗

Observations

Behaviours

Semantics

Syntax

sig

trace
resets ⊗trace

ρ ∈ π

alternating
ending in Σ

ending in Σ

Observation

Figure 1.4: The central notions of timed automata executions.

36

1.2. Timed automata

Notice that the timed word with resets µ′ constructed from µ by making it alternate is
sig(ρ′).

µ′ = 1.5 · (a, ∅) · 0 · (b, {c1}) · 0 · (a, ∅) · 2 · (a, ∅).

Finally, we can construct the trace w = trace(µ) = trace(µ′):

w = 1.5 · a · 0 · b · 0 · a · 2 · a.

For a run ρ, we write trace(ρ) = trace(sig(ρ)). In the same way, for a timed automaton
A, we write Traces(A) = ⋃

µ∈Sig(A) trace(µ) the set of traces corresponding to its runs
and pTraces(A) the set of traces corresponding to partial runs. Note that all traces are
alternating, as they are meant to encode the words that can be observed. Two timed
automata are said trace equivalent if they have the same set of traces.

Remark 1.2.10. From the point of view of the language of timed words generated by
a model, timed automata without invariants are as expressives as timed automata with
invariants. Indeed, starting from a TA A, one can intersect all the the guards of the
outgoing transitions of a given location with its invariant, i.e. replace g in (`, g, a, C ′, `′) by
g ∧ I(`), and suppress the invariants of the automaton. The only difference between the
runs of A and the resulting automaton A′ is the appearance of greater final delays in A′

which do not appear in timed words (as they end with discrete actions).
While different from a control point of view as new configurations can be reached in

A′ these timed automata have the same language of timed words. For this reason, we
will sometimes omit invariants entirely when focusing on the languages of timed words
generated by timed automata.

We define the notion of determinism for timed automata.

Definition 1.2.11. A timed automaton A is said

• deterministic if for all e1 = (`, g1, a, C1, `
′
2) and e2 = (`, g2, a, C2, `

′
2) either e1 = e2

or g1 ∩ g2 = ∅;

• determinizable if there exists a trace-equivalent deterministic TA.

Remark 1.2.12. The notion of determinism defined above is syntactic. It entails semantic
determinism: for all w ∈ Traces(A), there is a unique ρ ∈ Ex(A) such that trace(ρ) = w.
The converse is not true, as semantic determinism gives no constraints on unreachable
valuations.

37

Chapter 1 – Definitions

We chose the syntactic approach because it makes proofs easier when reasoning at the
syntactic level and can be checked at a lesser cost as it only requires to compare transitions
of the timed automaton, as opposed to its sets of runs and traces.

An important properties of timed automata is that they are not all determinizable.
Even more, the determinizability of a timed automaton is an undecidable problem [Fin06;
Tri06]. We write DTA for deterministic timed automata (and will write D- to emphasize
that we restrict to deterministic models when manipulating other related classes).

Example 1.2.13. Figure 1.5 represents a non-deterministic, non-determinizable timed
automaton.

Intuitively, this automaton requires that a pair of actions must be separated by exactly
one time unit. A deterministic TA should thus keep the timing information of every action
that happened less than one time unit ago, to be able to detect wether those actions happened
exactly one time unit ago.

This cannot be done with a finite set of clocks, as unboundedly many actions could
occur [AD94].

start

(a, true, ∅)

(a, true, {c})

(a, true, ∅)

(a, c = 1, ∅)

(a, true, ∅)

(b, true, {c})

Figure 1.5: A 1-clock non-determinizable timed automaton.

1.3 Equivalence relations

As explained in Section 1.2, the semantics T A of a timed automaton A is an infinite
transition system. While it is possible to use such semantics for abstract reasoning, a finite
representation is necessary, notably for implementation purposes.

Most of these representations are based on zones with states of the form (`, z) ∈ L×Z.
We will often abuse the notation and write s ∈ (`, z) when s = (`, v) and v |= z. We
first define minimal abstractions, based on equivalence relations on valuations: region
equivalence and K-equivalence.

38

1.3. Equivalence relations

Definition 1.3.1. For a TA A equipped with the set of clocks C, consider the following
relation ∼∼∼reg [AD94] between valuations: v∼∼∼reg v′ when the following conditions are met:

1. ∀c ∈ C, v(c) > KA(c)⇔ v′(c) > KA(c) ;

2. ∀c ∈ C, v(c) ≤ KA(c)⇒ (bv(c)c = bv′(c)c ∧ (〈v(c)〉 = 0⇔ 〈v′(c)〉 = 0)) ;

3. ∀c, c′ ∈ C,
(
v(c) ≤ KA(c) ∧ v(c′) ≤ KA(c′)

)
⇒

(〈v(c)〉 ≤ 〈v(c′)〉 ⇔ 〈v′(c)〉 ≤ 〈v′(c′)〉) .

where b·c is the integer part operator and 〈·〉 the fractional part operator. ∼∼∼reg is an
equivalence relation and we call regions its equivalence classes. We write RA for the set of
regions of a timed automaton A.

The ∼∼∼reg relation is a time-abstract bisimulation relation i.e. if two valuations v, v′

are in a same region reg, there exists t ∈ R≥0 such that v + t is in a region reg′ if and only
if there exists t′ ∈ R≥0 such that v′ + t′ ∈ reg′. The name of time-abstract bisimulation
comes from the fact that from v, one can simulate the behaviour of v′ and conversely
(bisimulation), but this may require to choose different delays (time-abstract).

Definition 1.3.2. For a TA A equipped with the set of clocks C, consider the relation
≈K between valuations defined by restricting to points 1. and 2. of Def. 1.3.1.

We call the equivalence classes of ≈K K-closed zones and write Kz(v) for the one
containing v.

K-equivalence is coarser than region equivalence. Indeed, it only encodes direct distin-
guishability by a guard of A but is not a bisimulation relation. Notice that there is a finite
number of regions and K-closed zones in any timed automaton thanks to the limitation
by the automaton’s maximal constants.

Example 1.3.3. In Figure 1.6 the equivalence classes for region equivalence and K-
equivalence are depicted for two clocks C = {c1, c2} and maximal constants of 1.

Note that both regions and K-closed zones are zones. For a region or a K-closed zone z
we define enab(`, z) = enab(`, v) for any v |= z. Furthermore for a region reg and a transition
e ∈ EA, we define next(e, reg) as the unique region reg′ such that ∀s ∈ (`, reg), s e−→s′ ∈ reg′.

39

c1

c2

(a) Regions

c1

c2

(b) K-closed zones

Figure 1.6: Equivalence classes.

Chapter 2

STATE OF THE ART

I have no idea at the moment—if you
mean about removing the treasure.
That obviously depends entirely on
some new turn of luck and the getting
rid of Smaug. Getting rid of dragons is
not at all in my line, but I will do my
best to think about it. Personally I
have no hopes at all, and wish I was
safe back at home

— J.R.R. Tolkien "The Hobbit"

In this chapter, an overview of the state of the art of some research domains related to
this thesis topic is proposed. Most of the literature cited in this chapter is closely related
to one or more of the thesis axes, but some subsections will be identified as general culture
and are proposed for the reader’s interest. They can safely be skipped for the purposes of
the technical developments.

2.1 Timed models

Real-time behaviours often play an important role for modelling and specifying correctness
of computer systems. Discrete models, such as finite-state automata, are not adequate to
model real-time aspects of a behaviour or encode constraints on them. For this reason,
different communities have proposed variants of their models taking time into account.

2.1.1 Timed automata and related models

A variety of different models exist to take continuous time into account. The most ancient
state-machine including (continuous) time is the time Markov decision process that goes

41

Chapter 2 – State of the art and bibliography

back to the 1960’s [How60; Mil68]. In this model, the time elapsed before a selected action
happens is sampled from a continuous random variable. There are however no constraints
on timing embedded in the model.

Timing constraints have been considered in two concomitant extensions of Petri nets
to continuous time: Merlin’s time Petri nets [Mer74] and Ramchandani’s timed Petri
nets [Ram74]. Both models feature explicit time intervals that have to be respected by
executions, but are otherwise not equivalent.

The study of continuous time system has boomed during the 1990’s with the develop-
ment of several models. By far the most expressive, hybrid dynamical systems, or hybrid
systems for short [Alu+92; Nic+93; Alu+95; Hen96], combine discrete automata-like jumps
between control states and continuous behaviours where quantities evolve over time as
dictated by differential equations. As a side effect of hybrid systems expressivity, many
related decision problems are undecidable. Notably reachability is in general undecidable
for hybrid systems, even as “simple” as stopwatch automata where differential equations
are of the form ẋ = 0 and ẋ = 1, although decidable subclasses of hybrid systems are
identified [Hen+95].

Timed automata have been introduced in 1994 by Alur and Dill [AD94]1. Less ex-
pressive than hybrid systems, their reachability problem is decidable (although PSPACE-
complete) [AD94]. Yet they remain highly complex models in general. For example, not
all timed automata are determinizable and determinizability is undecidable [Fin06; Tri06];
the universality problem (Are all words accepted by a given model?) and the language
inclusion problem are decidable only for deterministic timed automata.

For this reason, a number of subclasses have been studied over the years, by reducing
the number of clocks, or linking clock resets to discrete actions as in e.g. event recording
automata [AFH99], a subclass first introduced because it is determinizable. This subclass
(and an extension of it proposed during the course of this thesis) will be further discussed
and introduced in Chapter 5. The number of subclasses is one of the appeals of timed
automata: any general algorithm can be declined for a great number of less complex use
cases.

Extensions of timed automata also exist. Some add new considerations to timed
automata, such as timed automata with energy that add a constraint in the form of a
positive "energy" variable that has to be maintained above 0 through a run [Bou+08;
Bac+21], timed game automata [Asa+98; Cas+05] that add controllability aspects in the

1. A first conference version was published in 1990.

42

2.1. Timed models

form of a (2-player) game or timed automata with inputs and outputs [KT09] (this last
will be presented in context in Section 2.2 and further discussed in Chapter 3).

Others are simpler variants on the definition, such as adding invariants (as presented
Section 1.2), first introduced in Timed Safety Automata [Hen+94], a model slightly
different from modern timed automata (based on [AD94]) that deviated from the first timed
automaton [ACD90]. Another classic variant authorizes diagonal constraints i.e. constraints
of the form c1 − c2 ∼ n with c1, c2 ∈ C, n ∈ Z and ∼ ∈ {<,≤,=,≥, >}. Diagonal
constraints have been first discussed in [AD94]. It is known that a timed automaton with
diagonal constraints can be converted into a classic timed automaton (i.e. without diagonal
constraints), although at the cost of an exponential blow-up in locations, depending on the
number of diagonal constraints [Bér+98]. Interestingly, the usual reachability algorithm for
TAs, which is zone based, has been found to be faulty in the case of timed automata with
diagonal constraints [Bou03; BY03] and a modified algorithm has been proposed [BLR05].

More recently, some models including continuous time have been built upon Mealy
machines, such as time delay Mealy machines [CCF15] and their generalization Mealy
machines with a single timer [VBE21]. Time delay Mealy machines propose to use a single
countdown timer, forcing an action to be taken instantly when it reaches 0. The model
dictates that the timer is reset at each transition, which limits its expressivity. Mealy
machines with a single timer remove that reset constraint.

In the following of this thesis, we will focus our technical developments on timed
automata, although related approaches based on other timed models are often part of the
relevant literature.

2.1.2 Behaviour abstraction

In the first introduction of timed automata, reachability of a given configuration has been
proven to be PSPACE-complete by the mean of the region graph associated with a timed
automaton, that is a finite (untimed) automaton whose states are pairs of locations and
clock regions.

Despite this challenging worst case, a great amount of work has been put into more
efficient algorithms to solve reachability and other related problems for timed automata.

Most of these algorithm rely primarily on zones (presented in Section 1.1) and their
implementations with Difference-Bound Matrices (DBMs), defined in [BM83] with an
application for Time Petri nets and introduced to timed automata by [Dil90].

Difference-bound matrices for zones upon the set of clocks C = {c1, . . . , cn} are

43

Chapter 2 – State of the art and bibliography

(n + 1) × (n + 1) matrices such that the coefficient mi,j of a matrix at the i-th line
and j-th column is a pair (c,≺) with n ∈ Z and ≺ ∈ {<,≤}. It is interpreted as the
constraint ci−1 − cj−1 ≺ n with a special clock c0 that is always evaluated to 0, serving to
encode guard constraints (i.e. c ∼ n). Difference-bound matrices come with operations
corresponding to the usual operations on zones and a canonical form uniquely representing
zones, see e.g. [BY04; San13].

Zones and DBMs, as well as other finite representations (for a discussion and related
algorithms, see e.g. [Rou20]), are the basis of several scientific and industrial tools for
timed automata, which have adopted always more algorithms to gain efficiency in practice.
Amongst the best-known tools handling timed automata are:

Kronos [Daw+96; Boz+98] the historic first tool implementing verification of timed
automata and a forward reachability algorithm, now outclassed by successors2;

Uppaal [Beh+06] is an academic and industrial tool building upon timed automata and
expending the model in various ways (e.g. with game semantics, different type of
actions, notions of urgency or parameters). Sadly, the software code is kept by its
designers, which has complicated its interaction with the research community3;

IMITATOR [And21; And+12] a parametric verification tool for real time systems,
modeled as networks of timed automata with some extensions4;

TCHECKER an academic tool providing a test-bed for verification algorithms of timed
automata, augmented by libraries implementing classic data-structures and algo-
rithms 5;

Roméo [Lim+09] an open source modeling tool for parametric systems based on Petri-
nets, with extensions in real-time such as stopwatches. It can notably translate timed
Petri nets into timed automata 6;

PAT [Sun+09] a very general tool dealing in concurrent and real-time systems and
providing many model-checking algorithms for them 7;

2. https://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/
3. https://uppaal.org/
4. https://www.imitator.fr/index.html
5. https://www.labri.fr/perso/herbrete/tchecker/
6. http://romeo.rts-software.org/
7. https://pat.comp.nus.edu.sg/

44

2.2. Model verification

IF TTG [KT05] is a test-generation tool handling non-deterministic timed automata.

Because of the predominance of those representations, most algorithms introduced for
timed automata (especially practical algorithms) manipulate a zone-based representation
of the automaton behaviours.

2.2 Model verification

Offline verification. Because of the wide range of applications of computer systems—
notably their use in numerous safety critical systems—and of their increasing complexity,
the use of formal methods for checking their correct behaviours has become essential [HS06;
CES09]. It is even one of the main motivations (if not the main) for the introduction of
formal models. Numerous approaches have been introduced and extensively studied over
the last 40 years, and mature tools now exist and are used in practice, as those mentioned
in Section 2.1.2 for timed automata, see e.g. [BY04; Beh+06].

Most of these approaches rely on building mathematical models, such as automata and
extensions thereof, in order to represent and reason about the behaviours of those systems;
various algorithmic techniques are then applied in order to ensure correctness of those
behaviours, such as model checking [CGP00; Cla+18] or deductive verification [Hoa69;
Fil11].

These techniques focus on assessing properties of a model in an offline manner i.e. rea-
soning on the system model, without executing the system itself. With powerful properties
such as the correctness of all of the system behaviours, this can lead to very costly
algorithms, in terms of computation and memory. This is sometimes a too demanding
requirement, especially with highly expressive timed models. Furthermore, it is sometimes
desirable to not only check the correctness of a model of the system but to verify properties
of its implementation in its environment, in which bugs could appear independently of
the model correctness e.g. due to implementations errors (software) or faulty components
(hardware), or interactions between them.

Online verification. To leverage this issue, a set of online (or runtime) verification
approaches have been crafted, that interact with the running system to assess its proper-
ties [LS09].

Fault diagnosis is a prominent problem in runtime verification: it consists in moni-
toring real executions of a partially-observable system, and detect at runtime, as early

45

Chapter 2 – State of the art and bibliography

as possible, whether some property holds (e.g. whether some unobservable fault has oc-
curred)8 [Sam+96]. This is usually done by synthesizing a diagnoser i.e. a formal model
used to monitor the executions w.r.t. the properties of interest. For finite-state models,
a diagnoser can usually be built by determinizing a model of the system, using the power-
set construction; it will keep track of all possible states that can be reached after each
(observable) step of the system, thereby computing whether a fault may or must have
occurred. The related problem of prediction, a.k.a. prognosis, (that e.g. no faults may
occur in the near future) [GL09], is also of particular interest in runtime verification, and
can be solved using similar techniques [Jér+08].

Conformance testing is another online verification technique whose aim is to check
whether the behaviours of a (black-box) running system conform to its specification. To
do that a tester runs test cases which apply inputs to the system and observe that outputs
conform to the specification. In its model-based declination [Tre96], the specification is
formal, e.g. an automaton, and since the system and specification are partially observable,
the generation of tests (online or offline) may also rely on determinization to know the
effect of any given action of the system in order to control it.

The following subsections discuss more in depth the model-based testing of timed
systems and focus on the state estimation problem underlying determinization.

2.2.1 Model-based testing

Real-time reactive systems are open systems interacting with their environment and subject
to timing constraints. Such systems are encountered in many contexts, in particular in
critical applications such as transportation, control of manufacturing systems, etc. Their
correctness is then of prime importance, but is also very challenging due to multiple factors:
combination of discrete and continuous behaviours, concurrency aspects in distributed
systems, partial observability and limited controllability of open systems.

To assess the correctness of such systems, testing remains the most-used validation
technique, with variations depending on the design phase. Conformance testing is one of
those variations, consisting in checking whether a real system correctly implements its
specification, which serves as a reference. Those real systems, also called implementations
under test are considered as black boxes, thereby offering only partial observability to the
tester, for various reasons (e.g. because sensors cannot observe all actions, or because the

8. Although the termed “diagnosis” is coined by the community, fault detection may be more accurate,
as suggested by S. Tripakis [Tri02], as it is not concerned with the root cause of a failure.

46

2.2. Model verification

system is composed of communicating components whose communications cannot all be
observed, or because of intellectual property of peer software). Controllability is another
well-known issue when the system makes its own choices upon which the environment,
and thus the tester, has a limited control. This is the main focus of the ideas developed in
Chapter 3 around strategies to control test cases.

One of the most challenging activities of conformance testing is the design of test
cases that, when executed on the real system, produce meaningful verdicts about the
conformance of the system at hand with respect to its specification. Formal models and
methods are good candidates to help test-case synthesis, both in terms of productivity
gain and increased confidence in their verdict [Tre96]. Observability and controllability
problems are central issues to overcome in this task.

In formal testing, it is adequate to refine the TA model by explicitly distinguishing
(controllable) inputs and (uncontrollable) outputs, giving rise to the model of TAIOs
(Timed Automata with Inputs and Outputs) [KT09]. Other variations of the TA model
have been equipped with inputs and outputs and used in the context of testing, such as
TIOA [SVD01; Kay+03], or TIOTS [LMN04].

Test-case synthesis from timed automata. Test-case synthesis from TAs has been
extensively studied during the last 20 years (see [CG98; CKL98; SVD01; EDK02; NS03;
BB04; LMN04; KT09; Ber+12], to cite a few). When testing offline, the test cases are
first computed, stored, and later executed on the implementation. They should thus
anticipate all specified outputs after an observed trace. But then, one of the difficulties
comes from partial observation. In the untimed framework, this is tackled by determinizing
the specification. Unfortunately, this is not always feasible for TAIO specifications since
determinization is not possible in general. The solution is then either to perform online
testing, where a subset construction is made on the current execution trace [LMN04], or to
restrict to determinizable sub-classes (see e.g. [NS03] for ERAs). While the latter approach
limits the class of models that can be used, the former suffers from the multiplication of
possible configurations after a given trace.

Partial observation is addressed in [Dav+10] with a variant of the TA model where
observations are described by observation predicates, composed of a set of locations together
with clock constraints. Test cases are then synthesized as winning strategies, if they exist,
in a game between the specification and its environment that tries to guide the system to
satisfy the test purpose. More recently, some advances were obtained in [Ber+12] by the

47

Chapter 2 – State of the art and bibliography

use of an approximate determinization procedure using a game approach [Ber+15] that
preserves tioco conformance and is exact for most of the known determinizable sub-classes
of TAs when sufficient resources (i.e. number of clocks and maximal constant) are provided.

Controllability of a system under test. The problem of testing is often informally
presented as a game between the environment and the system under test (see e.g. [Yan04]).
But in reality very few papers effectively take into account the controllability of the system
in this game.

In the context of timed testing, a game approach has been studied in [Dav+08a], where
test cases are synthesized as winning strategies of a reachability game. But this work is
restricted to deterministic models, and controllability problems are not really mastered.
In fact, like in [Dav+10], when no winning strategies are found, the game is abandoned
and it is suggested to modify the test purpose. This is mitigated in [Dav+08b] with the
use of cooperative strategies, which rely on the cooperation of the system under test to
win the game. The strategy can furthermore distinguish between cooperating states, where
it needs to rely on the system to win, and winning states, where it can win despite the
system best effort.

A more in-depth approach to the controllability problem is the one of [Ram98] in the
untimed setting, unfortunately a scarcely-known work. Test selection is modelled as a
game where the tester tries to satisfy a test purpose while detecting non-conformance,
but faces control losses, i.e., states where the system proposes uncontrollable but correct
outputs that moves it away from its objective. The computed strategies could quantify on
the number of control losses. Interestingly, this allows to minimize both the reliance on
the system decisions and the distance to the next control loss.

Conformance testing of timed automata is discussed in the Chapter 3 of this thesis.
Notice that Uppaal has an extension named TIGA (TImed GAmes) that implements
timed games algorithms [Cas+05].

2.2.2 State estimation

As mentioned before, efficient offline algorithms for the analysis of timed automata have
been proposed and implemented. Despite these successes, the state estimation problem
remains one of the most challenging limitations that all methods have to encounter. This
problem is concerned with the detection of the possible configurations of a system after a
given trace. For offline methods, it takes the form of determinization and closure with respect

48

2.2. Model verification

to silent transitions. Sadly, for timed automata, determinizability is undecidable [Fin06;
Tri06] and silent transitions strictly increase expressivity [BGP96].

For online methods, one can try to efficiently keep tracks of the possible configu-
rations [Gre+20]. For example, Baier et al. have proposed a method to construct a
deterministic timed tree from a timed automaton, with the limitation that the tree may be
infinite [Bai+09]. This method has been declined for diagnosis [Tri02], and implemented
in UPPAAL TRON [Hes+08] (one of UPPAAL’s libraries) and IF TTG [KT09] for online
testing of timed input-output systems.

This approach is computationally very expensive, as one step consists in maintaining
the set of all configurations that can be reached by following (arbitrarily long) sequences of
unobservable transitions; moreover, the set of possible configurations is updated only when
a new event is observed (or after a timeout), which may significantly delay the detection
of a fault.

Another possibility is to impose some restrictions on the constructed model. Bouyer,
Chevalier and D’Souza studied a restricted setting, only looking for diagnosers under the
form of deterministic timed automata with limited resources [BCD05]. Similarly, Krichen et
al. have proposed to build a deterministic timed automaton from a non-deterministic one,
by fixing a set of clocks and possibly making some approximations in the behaviour [KT09].
Bertrand et al. later generalized and improved this approach using games [Ber+15]. Both
works have then been used for offline test generation from timed automata models [KT09;
Ber+12; HJM18].

Finally, automata over timed domains [BJM17], a larger determinizable class of models
comprising timed automata has been created to offer a determinization procedure, but
with a great expressivity—and hence complexity.

2.2.3 Robustness(es) of models

This subsection is for scientific culture, as no contribution is made on robustness on
this thesis. We include it to acknowledge the importance of robustness in model-reality
interactions and provide (a few) bibliographic pointers on that matter.

The robustness of a model is generally understood as its ability to maintain good
properties under small perturbations. This take is obviously vague, notably depending on
what one consider a “good property” and a perturbation—which can both vary. In the
case of timed models, an important emphasis is given to timing errors that can arise from
imprecise measure of time, unexpected runtime behaviours or imprecisions in actuator

49

Chapter 2 – State of the art and bibliography

controls.
Precise definitions and modeling vary. Robust timed automata [GHJ97] first proposed a

topological semantics for timed automata and consider that a run is only accepted if an
open tube around it is accepted too (i.e. it excludes isolated behaviours). Timed automata
with clock drifts were also considered [Pur00]. A classic syntactic approach is to consider
automata with enlarged or shrinked guards by a small 0 < ε < 1 [De +04]. A survey
of this approach and related works and results for the verification, implementation and
monitoring of such system can be found in [BMS13].

Game based approaches also exist, that try to propose optimally robust strategies for
reachability [Cle+20].

2.3 Model learning

Machine learning is the automatic improvement of agents through experience and inter-
actions with an environment, which can consist of provided data or be an open word. It
is one of the core component of the so-called artificial intelligence domain that tries to
design machines that can mimic (or approximate) cognitive functions associated with the
human or animal mind, typically learning and problem solving.

Concept learning is a sub-domain of machine learning interested in the automatic
inference and refinement of high-level concepts from the environment. In the context of
interactions with formal methods, it is interesting that the representation of those concepts
takes the form of formal models (state machines, logic formulae. . .). This specific branch
of research is called model learning.

In this section we first propose a quick discussion about the various passive model
learning methods in existence (Section 2.3.1), then a presentation of active learning, the
learning method most relevant to this thesis (Section 2.3.2).

2.3.1 Quick dive in passive model learning

This subsection is mostly general culture, as it presents roots of model learning and some
research efforts that differ greatly from the technical developments of this thesis which are
based on active learning.

One of the theoretical backbones of model learning is the work of Anil Nerode on the so
called Nerode congruence [Ner58], an equivalence relation between states of a deterministic

50

2.3. Model learning

finite automaton allowing to define the minimal deterministic automaton recognizing a
given language.

The first historical approach to model learning is a passive learning approach, where the
agent learns from predetermined set of examples, either positive (i.e. part of the language
to be learned) or negative (i.e. out of the language to be learned).

It is long known that learning from positive examples only is far less expressive. For
instance, primitive recursive languages can be identified in the limit—roughly, after an
unbounded but finite number of examples—by passive learning, but only finite languages
can be identified from positive examples only [Gol67]. Notably, negative examples are
necessary to learn the class of regular languages. Gold then investigated the learning from a
finite set of given data, and found that DFA learning9 is NP-hard in this framework [Gol78].
Angluin gave a characterization of the learnability from text [Ang80] and investigated
some ways to extend the class of learnable languages. This research effort lead to active
learning (see Section 2.3.2) and showed that relaxing the learning condition to learning
with probability one enhances that expressivity [Ang88].

Learning of cyber-physical systems. Model learning was in part motivated by the
need to obtain models to test cyber-physical systems. Obtaining negative examples of a
cyber-physical system behaviours is costly, if not outright infeasible (as it corresponds
to security issues or require to break the system). Due to the restriction on learning
from positive observations only, researchers have sought passive learning methods for
probabilistic automata from positive examples only.

One of the best known methods is ALERGIA [CO94]. This algorithm first constructs
a tree representing the available examples and then merge its states when their sub-trees
have similar languages (i.e. the same language with a high probability). This approach
has been developed with a global criterion for merging in the algorithm MDI (Minimal
Divergence Inference) [TDH00] that allows to obtain a bound on the (Kullback-Leibler)
divergence between the samples and the model. A state-merging method based on Kullback-
Leibler divergence is also proposed in [CT04]. The article is more theoretical and does
not provide an implementation, but gives an in-depth review of their complexity results.
It notable proves that probabilistic deterministic automata are Probably Approximately
Correct (PAC)-learnable [Val84], PAC-learning being an important theoretical framework
for learning, that links together the probability of error, the precision of the model learned

9. and minimal DFA learning

51

Chapter 2 – State of the art and bibliography

and the number of required data.
When a model integrating time is required, it is necessary to add a splitting operator

to distinguish between different behaviours depending on time. The BUTLA (Bottom Up
Timing Learning Algorithm) [Mai+11] is a first work on this topic, learning a probabilistic
timed automaton. The authors rely on domain specific knowledge to advocate a split
performed to separate modes in the probability distribution of a transition rather than
a difference in the sub-automata. This idea is re-exploited in [MNE15] to propose a
preprocessing of the data to separate the different modes, suppressing the splitting operation.
A general scheme for offline learning of deterministic real-time automata is presented
in [VWW08; VWW12] with statistical tests to decide merge and splits.

All the aforementioned algorithms are offline, working only on a given set of observations.
Yet, online techniques for passive learning have also been investigated, forcing to rethink
the general scheme of the algorithm, as a tree of all available observations could not be
built. OTALA [Mai14] is an online adaptation of BUTLA, allowing online passive learning
from positive examples only in an incremental way. It learns a deterministic real time
automaton (only one clock, reset at every transition). It has been extended to a parallel
framework [WLN17].

An overview of cyber-physical systems [NL15] identifies the following key-points for
the domain:

• A general learnable model is needed;
• this model should deal with timed and hybrid constraints;
• more work should be done at the level of the component, instead of always focusing

on root causes: early identification of a faulty component can be more valuable and
easier to obtain to root causes.

Learning software. Another longstanding application of formal methods is software
analysis. In the case of model learning, the specificity of software is that it allows to leverage
some black-box hypotheses by making assumptions on the structure of the observed object.
One interesting point is that this specificity can be used to learn more complex models
(such as automata with multiple clocks).

When learning software models, the two main models of interest are specifications
describing the language of a program and normal use models that describe how the software
is used in practice, focusing not on its expressivity or design but on its interactions with
actual users.

52

2.3. Model learning

A wide array of applications exist for these models, ranging from test generation,
anomaly identification to detection of inefficiencies or debugging assistance.

One of the early methods is the k-Tail algorithm, first introduced theoretically [BF72]
as a variation on the work of Nerode and then reformulated and implemented [CW98].
This algorithm takes a local approach and compare nodes based on they "k-future" i.e. the
next k steps in their executions. This approach is especially efficient at detecting loops,
which are a central focus of software learning. It has been extended to models with
parameters [LMP08] with the gk-Tail algorithm and to real time models with the Timed
k-Tail algorithm [PMM17]. Interestingly, Timed k-Tail is able te learn automata with
multiple clocks, which are notoriously difficult for passive learning, by using a learning
bias and targeting nested behaviours (e.g. nested loops or function calls).

An interesting research direction is implemented in the TAUTOKO tool that combines
learning and testing. In its earliest version [Dal+10] this tool generates a first model using
the results of a test suite and enrich it using mutations on the test suite. This work has
been extended to avoid the need for an initial test suite and generate different types of
new tests [Dal+12]. This extension allows to iterate on the learning / testing loop and
generate new tests. The comparison of these methods is performed in the latter article.
The methodology of this work is of great interest to interleave test and learning even in
other frameworks, notably the use of a coverage criterion to direct tests at each learning
step.

Let us mention that works exist that learn non automata-based models. One example
of this is the TREM tool implementing a set of methods to learn regular expressions as
specifications [SNF17].

Other applications These works are more loosely related to ours, as our setting greatly
differs from positive inference. Applications of model learning are numerous and are not
limited to the somewhat classical formal-method application domains of cyber-physical
systems and software. We give some examples of different applications.

A combination of learning, abstraction, testing and modeling has been applied to the
learning of large scale software with a focus in keeping an expert user in the center of the
loop [Xia+05]. This approach has been demonstrated on commercial games, where the
purpose is to maximise a loosely defined enjoyability metric, that can only be evaluated
by experts. This makes the learned model central for visualization purposes and calls for
an interactive method instead of a monolithic tool.

53

Chapter 2 – State of the art and bibliography

Model learning is also used in medicine. This is not new, with the important use
of Markov’s models. In a recent thesis [Sch13] the modeling is pushed further with the
addition of an explicit modeling of time. The author use probabilistic real time automata
(and subclasses of these) to model the evolution of a disease, taking into account both
timing and discrete (the different symptoms) aspects.

2.3.2 Active learning

Active learning [Ang87a] is a type of learning in which a teacher assesses the learner’s
progress and directs the learning effort toward meaningful decisions. The learner can
request information from the teacher via membership queries, asking about a specific
observation, and equivalence queries, proposing to compare the current hypothesis to the
correct model; in the latter case, the teacher either accepts the hypothesis or returns a
counter-example witnessing mispredictions of the learner’s hypothesis.

It was introduced by D. Angluin to leverage the restrictions found on learning from
random given samples by E. Gold [Gol67; Gol78]. The author argues that in a human
learning process you can assume the learner to be "helpful", and to interact with the learner
as a professor would do for a student. They take the example of a human specialist trying
to train an expert system. To quantify this helpfulness would not make a lot of sense, but
Angluin proposes a "minimally adequate teacher" (MAT) that would be able to answer
membership and equivalence queries as a reference. The MAT structure is illustrated in
Figure 2.1

Learner Teacher

Membership w?

Equivalent model ?
Acceptance

Yes/Counterexample

Figure 2.1: The basic active learning framework.

The MAT allows Angluin to define the L∗ algorithm, that can learn regular languages
represented by a (minimal) deterministic finite automaton. This algorithm identifies nodes
by using Nerode’s congruence and stands as a proof of concept establishing a well-studied
framework [Ang87a; Ang87b; Ang90] which allows for sound proofs of correctness and
complexity of learning algorithms. The L∗ was afterward refined to deal with input-output

54

2.3. Model learning

systems [RS93] or to obtain a better data structure based on trees [KV94]. Extensions
have then been made to languages of infinite words ([MP95] for a first work on sub-classes
and [Far+08] for the general class of ω-regular languages), as well as non-deterministic finite
automata [Bol+09]. Other models have also been studied such as Mealy machines [Nie03;
SG09], I/O automata [AV10], cover automata [Ipa12] or extended finite state machines
(i.e. automata with data) [Cas15].

Some work have focused in the addition of continuous time in the active learning
framework, notably to some subclasses of timed automata: deterministic TAs with only
one clock [An+20] and deterministic event-recording automata (DERA) [GJP06; Gri08;
GJL10; Lin+11], which have as many clocks as actions in the alphabet, and where each
clock encodes exactly the time elapsed since the last corresponding action was taken.
These classes of automata present the advantages of having a low-dimensional continuous
behaviour (for 1-clock TAs) and to allow to derive the resets of the clocks directly
from the observations (for DERA). Generalization to non-deterministic models has been
studied in the case of real-time automata (1-clock automata whose clock is reset at each
transition)[An+21].

Timed automata have also been learned via genetic programming [Tap+19], a search
method different from active or passive learning that generates (guided) mutations on a
model to obtain the desired result.

Interestingly, methods combining learning and formal methods have already been
used for DERAs in the case of assume-guarantee model-checking [Lin+14]. In modular
model-checking, building the model of a multi-component system is avoided by the mean
of assumptions on components. Such assumptions have then to be proven correct on the
component themselves. The main limitation of this method is that expert-knowledge is
required to build the assumptions. In [Lin+14], the authors propose to use active-learning
of DERAs [Lin+11] to automatically learn the assumptions.

55

Chapter 3

CONTROL STRATEGIES FOR OFFLINE

TESTING OF TIMED SYSTEMS

Program testing can be used to show
the presence of bugs, but never to
show their absence!

— Edsger W. Dijkstra

This chapter presents the thesis contribution on timed game theory for difficult
games i.e. games in which a winning strategy cannot exist. This contribution is expressed
in the context of black-box model-based testing.

3.1 Introduction

As explained in Section 2.2.1 of the state of the art, real-time systems are prevalent in
numerous critical applications, and their correctness is often ensured in practice through
testing. The main challenges that an automated test generation must overcome are the
partial observability and partial controllability of implementations under test. Namely,
some actions cannot be observed, which makes state estimation after a given trace complex,
and as some actions are controlled by the system, notably its outputs, it may not always
be possible to reach or avoid a given set of states. In the context of formal testing, inputs
and outputs of the system are separated in the models and alphabets, giving rise (notably)
to the model of timed automata with inputs and outputs (TAIO). This separation is used
to encode the controllability issue as a formal game between tester and implementation.

57

Chapter 3 – Control strategies for offline testing of timed systems

Implementation
I (unknown TAIO)

Test purpose
T P (OTAIO)

Specification
S (TAIO)

conforms to ?
tioco

Test case
TC (TAIO with verdicts)

test synthesis

controls

observes

Figure 3.1: The testing framework.

3.1.1 Testing timed systems

In the present chapter, TAIOs will be used for most testing artifacts, namely specifications,
implementations, and test cases. Since completeness of testing is hopeless in practice1,
it is helpful and usual to rely on test purposes that focus on some behaviours that need
to be tested. We use an extension of TAIOs called Open TAIOs (or OTAIOs) [Ber+12]
to formally specify them. OTAIOs play the role of non-intrusive observers of actions
and clocks of peer OTAIOs, thus allowing test purposes to identify those behaviours of
the specification to be tested. Formal testing also requires to define conformance as a
relation between models of specifications and their possible implementations. In the timed
setting, the classical tioco relation [KT09] states that, after an observable timed trace of
the specification, the outputs and delays of the implementation should be possible in the
specification. This testing framework is sketched in Figure 3.1. The general problem we
address is to synthesize test cases from a specification, that directs the implementation
towards the behaviours targeted by test purposes, with the intention that verdicts issued
during the executions of the test cases on the implementation are consistent with the actual
conformance between the implementation and the specification. This formal framework will
be described more precisely later on. The following example motivates the controllability
problem we want to address.

Example 3.1.1. Consider the simple airport conveyor-belt described in Figure 3.2. Lug-

1. See this chapter’s epigraph.

58

3.1. Introduction

Black box
automated sorting

Controls

Figure 3.2: An airport conveyor belt2.

gages arrive on the conveyor belt, and after some time they reach an automated sorting
area, where the system may dispose of a luggage. If it is not removed, the luggage reaches
an operator, who can choose to route it towards one of two planes. If the operator fails to
decide, after some time the luggage loops on the belt and restarts the whole process.

When testing such system from the operator’s point of view, the tester would have no
control over the sorting of the luggage by the belt. Possible test cases could verify that the
system is able to dispose of a luggage, or that the conveyor speed is as expected (i.e. that
time constraints are met during the system execution). When testing for such properties,
the choice operated by the system may be problematic; for instance, the automatic sorting
may choose not to dispose of a given luggage, although it is able to, or on the contrary it
could dispose of a luggage used to check time constraints, which would not allow to verify
them.

3.1.2 Contributions and related works

The present chapter extends the work presented in [HJM18]. It adapts the game approach
proposed in [Ram98] to the timed context using the framework developed in [Ber+12].
Precisely, we develop rank lowering strategies inspired by [Ram98] on top of the testing
framework of [Ber+12]. The latter work culminated in the construction of a game between
the tester and the system under test, but it did not construct the strategies of the tester

2. Briefcase icon, commercial airplane icon and person icon by Delapouite under CC BY 3.0 from
https://game-icons.net/.

59

https://game-icons.net/

Chapter 3 – Control strategies for offline testing of timed systems

to solve the game, i.e., the inputs and delays that could control as much as possible the
system through behaviours targetted by the test purpose.

Compared to [Ram98], the model of TA is much more complex than finite transition
systems, the test purposes are also much more powerful than simple sub-sequences of
the specification considered in that work, thus even if the approach is similar, the game
has to be completely revised. Furthermore, we present some fairness assumptions that
identify a reasonable restriction of the implementation behaviours, under which our
strategies are winning. Our model is a bit different to the one of [Dav+10], since we do not
rely on observation predicates, but partial observation comes from internal actions and
non-determinism. While our approach handles non-deterministic specifications and test
purposes (thanks to the determinization game presented in [Ber+15]), at some point in
this work we do require exact determinization to ensure some of the test-case properties.
We also assume the constant reachability to a subset of so-called restart transitions that
send the model back in its initial configuration. We will however explain what happens
when relaxing these assumptions. In comparison, [Dav+10] avoids determinizing TAs,
relying on the determinization of a finite state model, thanks to a projection on a finite
set of observable predicates. Cooperative strategies of [Dav+08b] have similarities with
our fairness assumptions, but their models are assumed deterministic, and their strategies
cannot count the number of control losses that will be faced, just detecting that some are
needed. Our approach takes controllability into account in a more complete and practical
way with the reachability game and rank-lowering strategies.

An other related line of work is the thesis [Bos20], that discusses the formal relationships
between games and model-based testing in the untimed case. Notably, it coins the joker-n
strategies, that are winning when the system under tests behaves as the tester needs at n
well chosen states along the execution.

The chapter is organized as follows. Section 3.2 introduces basic models: TAIOs, OTAs,
OTAIOs, and then timed game automata (TGA). Section 3.3 is dedicated to the testing
framework with hypotheses on models of testing artifacts, the conformance relation and
the construction of the objective-centered tester that denotes both non-conformant traces
and the goal to reach according to a test purpose. Section 3.4 constitutes the core of the
chapter and the main contribution. The test-synthesis problem is interpreted as a game
on the objective-centered tester. Rank-lowering strategies are proposed as candidate test
cases, and a fairness assumption is introduced to make such strategies win. Then properties
of test cases with respect to conformance are proved. Section 3.5 presents the algorithms

60

3.2. Timed automata and timed games

used to compute a machine-compatible symbolic representation of a strategy and some
interesting properties of these algorithms.

Section 3.6 defines a notion of resistance of configurations and strategies and explains
how rank-lowering strategies can be defined and used in the most general framework,
where no restrictions on the models are proposed. Notably, in this setting, rank-lowering
strategies are not winning.

Finally, Section 3.7 concludes the chapter with some future works and take-away.

3.2 Timed automata and timed games

In this section, we introduce our models for timed systems and for concurrent games on
these objects, along with some useful notions and operations.

3.2.1 Timed automata with inputs and outputs

In order to adapt timed automata to the testing framework, we consider TAs with inputs
and outputs (TAIOs), in which the alphabet is split between input, output and internal
actions (the latter being used to model partial observability). We present a variation
of TAs (and TAIOs) called open TAs (and open TAIOs) [Ber+12], in which a distinguished
subset of observed clocks is only observed and cannot be controlled with resets. This will
be useful to specify test purposes describing those behaviours of a TA (or TAIO) that
require testing. TAs (and TAIOs) will be viewed as particular cases with no observed
clocks.

Definition 3.2.1. An open timed automaton (OTA) is a timed automaton A = (LA, `Ainit,
ΣA, CA = CAp] CAo , IA, EA) where the set of clocks is partitioned into proper clocks CAp
and observed clocks CAo so that only proper clocks may be reset along transitions.

Formally EA ⊆ LA×G(CA)×ΣA× 2CAp ×LA. We will often ommit the A superscripts
when the referenced timed automaton is clear from context.

Intuitively, proper clocks Cp are controlled by A through resets, while observed clocks
Co can only be observed by A through guards and invariants, but belong to (are proper
clocks of) another OTA B that controls them, and with which A is synchronized by product
(see below).

61

Chapter 3 – Control strategies for offline testing of timed systems

Definition 3.2.2. An Open Timed Automaton with Inputs and Outputs (OTAIO) is an
OTA in which ΣA = ΣA?] ΣA!] ΣAτ is the disjoint union of input actions in ΣA? (denoted
by ?a, ?b, ...), output actions in ΣA! (denoted by !a, !b, ...), and internal actions in ΣAτ
(denoted by τ1, τ2, ...). We write Σobs = Σ?] Σ! for the alphabet of observable actions.

We call TAIO an OTAIO with no observed clocks.

TAIOs will be sufficient to model most objects of the testing framework, but the
ability of OTAIOs to observe other clocks will be essential to specify test purposes
(see Section 3.3.2), which need to synchronize with the specification to focus on behaviours
that need to be tested.

The semantics of TAs need to be expanded for OTAs to take into account the clock
resets of observed clocks, that are not specified by the OTA but will be observed along
with discrete actions.

Definition 3.2.3. Let A = (LA, `Ainit,ΣA, CAp] CAo , IA, EA) be an OTA. Its semantics is
defined as an infinite-state transition system T A = (SA, sAinit,ΓA,→A) that differs from
the one of a timed automaton in the following ways:

• ΓA = R≥0] (EA × 2CAo) integrates observed clock resets to the transitions labels;

• the transitions corresponding to discrete moves take observed clocks into account i.e.

((`, v), (eA, C ′Ao), (`′, v[C′p∪C′o←0])) ∈ SA × (EA × 2CAo)× SA .

Example 3.2.4. Figure 3.3 is an example of TAIO specifying a conveyor belt such as
the one of Example 3.1.1. It uses one proper clock c (no observed one) that is used in
invariants to bound the sojourn time in locations. It has as inputs ?ship1 and ?ship2, and a
special restart action ?ζ (see later), outputs !end1, !end2, !past, !waste, and internal action
τ . After a maximum of 2 time units in location Start (depending for example on their
weight), packages reach a sorting point in location Sort, where they are automatically
sorted between packages to reject and packages to ship. Packages to reject go to location
Waste, while packages to ship are sent to a boarding platform (location Boarding), where
an operator can send them to two different destinations Dest1 or Dest2. If the operator
takes more than 3 time units to select a destination, the package goes past the boarding
platform and restarts the process. The restart action ?ζ also allows to go back to Start
from several locations.

62

3.2. Timed automata and timed games

Dest1
true

Boarding
c ≤ 3

Dest2
true

Sort
c ≤ 1

Waste
c ≤ 1

Start
c ≤ 2start

c ≤ 2
τ
{c}

true
!waste
{c}

true
τ
{c}

true
?ship1
{c}

true
?ship2
{x}

c = 3
!past
{c}

c = 1
!end1
{c}

c = 1
!end2
{c}

true
?ζ
{c}

true
?ζ
{c}

c = 1
τ
{c}

true
?ζ
{c}

Figure 3.3: A TAIO specifying a conveyor belt.

In the sequel, we only consider infinite runs that are non-Zeno i.e. have an infinite
duration. This restricts the set of theoretically possible runs of some timed automata, but
only suppresses runs that have no interest for test-generation: either a Zeno run expresses
a finite delay as an infinite sum of delays converging to that value - which is clearly a
mathematical artifact - or realises an infinite number of discrete actions in finite time,
which is impossible for most systems under test in practice.

Example 3.2.5. A simple Zeno run is ρ = (si, 1
2i , si+1)1≤i<∞ that simply corresponds

to a delay of 1 time unit. As will be explained later in this chapter, separations between
consecutive delays in a run will come from so called "decision points" for a strategy. Having
an infinite number of them in finite time is thus impossible, as it would require an infinite
amount of computations.

Similarly, the timed automaton in Figure 3.4 excluding Zeno runs, ensure that every
run ends in `2, while infinite Zeno runs could oscillate between `init and `1 by playing a an
infinite number of times in less than 1 time unit.

A finite run is accepted in a set of locations F ⊆ LA if its last configuration belongs
to F × R≥0. We denote by ExF (A) the subset of runs accepted in F (note that Ex(A) =
ExLA(A)).

63

Chapter 3 – Control strategies for offline testing of timed systems

`init `1 `2

true, a, ∅

x < 1, a, ∅
true, b, ∅

Figure 3.4: A timed automaton displaying Zeno-runs with infinitely many discrete actions.

When discussing signatures for OTAIOs, the resets of observed clocks is preserved:
proj((`, g, a, C ′p, `′), C ′o)) = (a, C ′p]C ′o). The intuition is that signatures should only abstract
informations linked to the locations and guards, while preserving everything necessary to
identify the behaviour, and observed clocks resets are necessary to deduce the valuations.

Finally, when constructing traces of runs of OTAIOs, and more generally automata
with internal actions, these actions are ignored, since they cannot be observed by the
environment. For t1, . . . , tk ∈ R≥0, τ ∈ Στ C

′ ⊆ C and a partial signature µ:

trace(t1, . . . , tk · (τ, C ′) · µ) = (∑k
i=1 ti) · trace(µ)

We furthermore define, for an OTAIO A, a trace σ and a configuration s:

• A after σ = {s ∈ S | ∃µ ∈ Sig(A), sinit
µ−→ s ∧ trace(µ) = σ} is the set of all

configurations that can be reached when the trace σ has been observed from sAinit;

• elapse(s) = {t ∈ R≥0 | ∃µ ∈ (R≥0 ∪ (Στ × 2C))∗, s µ−→ ∧ dur(µ) = t} is the set of
delays that can be observed from location s without observing any action;

• out(s) = {a ∈ Σ! | ∃e ∈ enab(s), act(e) = a} ∪ elapse(s) is the set of possible outputs
and delays that can be observed from s. For S ′ ⊆ S, we write out(S ′) = ⋃

s∈S′ out(s);

• in(s) = {a ∈ Σ? | ∃e ∈ enab(s), act(e) = a} is the set of possible inputs that can be
proposed when arriving in s. For S ′ ⊆ S, we write in(S ′) = ⋃

s∈S′ in(s).

The notion of enabled transitions and delay transitions are extended to regions as
follows: for a region reg, we let enab((`, reg)) = enab((`, v)) for any v in reg3; for any
transition e, we let next(e, reg) be the unique region reg′ such that for all s ∈ reg, s e−→s′

implies s′ ∈ reg′, and we write SucTemp(reg) for all strict time-successor regions reg′ of reg.
We also extend the notion of execution to regions4.

3. This definition is valid because the two first conditions in Def. 1.3.1 ensure that guards cannot
distinguish between valuations in a given region. Hence the enabled transitions are the same.

4. Observe that writing reg t−→ reg′ for a delay t is execution-specific, as that delay may lead to a region
reg′′ 6= reg′ from some configurations in reg.

64

3.2. Timed automata and timed games

The notion of determinism and determinizability defined for TAs is generalized to
OTAIOs, and we define some more useful sub-classes of OTAIOs. An OTAIO A is said

• complete if any action can be played from any configuration, formally S = L × RC
≥0

(i.e., all invariants are always true) and for any location ` ∈ L and action a ∈ Σ,∨
(`,g,a,C′,`′)∈EA g = true;

• input-complete if any input can be taken from any configuration, formally for any
location ` ∈ L and action a ∈ Σ?,

∨
(`,g,a,C′,`′)∈EA g = true;

• non-blocking if it does not block time waiting for an input, i.e. for any s ∈ SA and
any non-negative real t, there is a partial run ρ from s involving no input actions
(i.e., proj(ρ) is a sequence over R≥0 ∪ (Σ! ∪ Στ)× 2C) and such that dur(ρ) = t;

• repeatedly observable if from any state some action can be observed, formally for any
s ∈ S, there exists a partial run ρ from s such that trace(ρ) /∈ R≥0.

Remark 3.2.6. As for determinism in the case of TAs, (input-)completeness is defined in
a syntactic way, with the semantic versions being:

Completeness: from any reachable state, any delay and action can be taken, i.e., S =
L × RC

≥0 (i.e., all invariants are always true) and for any state s ∈ Reach(A) and
any action a ∈ Σ, it holds s (a,C′)−−−→ for some C ′ ⊆ C;

Input-completeness: for any s ∈ Reach(A), in(s) = Σ?.

As for determinism, the semantic notions are implied by the syntactic ones, but not
equivalent.

The product of two OTAIOs extends the classical product of TAs.

Definition 3.2.7. Given two OTAIOs A = (LA, `Ainit,Σ?] Σ!] Στ , C
A
p] CAo , IA, EA)

and B = (LB, `Binit,Σ?] Σ!] Στ , C
B
p] CBo , IB, EB) over the same alphabets, their product

is the OTAIO A × B = (LA × LB, (`Ainit, `Binit),Σ?] Σ!] Στ , (CAp ∪ CBp)] ((CAo ∪ CBo \
(CAp ∪ CBp)), I, E) where E : (`1, `2) 7→ IA(`1) ∧ IB(`2) and E is the (smallest) set such
that for each (`1, g1, a, C ′1p , `

′1) ∈ EA and (`2, g2, a, C ′2p , `
′2) ∈ EB, E contains ((`1, `2), g1 ∧

g2, a, C ′1p ∪ C ′2p , (`′1, `′2)).

65

Chapter 3 – Control strategies for offline testing of timed systems

Intuitively, proper clocks of the product are proper clocks of one of the operands,
while observed clocks are observed clocks of an operand which are not proper of the
other. Two transitions carrying a common action synchronize if guards intersect and
only proper clocks of the product can be reset. Notice that if a proper clock of A is an
observed clock of B, its evolution is observed by guards of B, and vice versa. Then it is
not difficult to see that the product of two OTAIOs corresponds to the intersection of
the signatures of the individual OTAIOs, i.e. Sig(A × B) = Sig(A) ∩ Sig(B) [Ber+15].
Moreover if TAs are equipped with accepting locations FA ⊆ LA and FB ⊆ LB, we also
get SigFA×FB(A× B) = SigFA(A) ∩ SigFB(B).

3.2.2 Timed games

We introduce timed game automata [Asa+98], which we later use to formalize the interac-
tions between the tester and the system under test.

Definition 3.2.8. A timed game automaton (TGA) is a timed automaton Ag = (L, `init,Σco]
Σuco, C, I, E) where Σ = Σco] Σuco is partitioned into actions that are controllable by the
player (Σco), and those that are not (Σuco).

Intuitively, the tester is the player for which we will try to find winning strategies
against its opponent, the system under test. All the notions of runs and signatures defined
previously for TAs are extended to TGAs, with the interpretation of Σco as inputs controlled
by the environment and Σuco as outputs controlled by the system.

Notice that in this work we consider games that are built observable and deterministic.
We can thus define strategies in terms of runs. Indeed, any system output can only
correspond to a unique transition from any given configuration. Hence, one can always
know in which configuration the tester is (because our strategies are deterministic too)
and it is sufficient to define strategies on runs and configurations (instead of set of runs /
configurations for non-deterministic games).

Definition 3.2.9. Let Ag = (L, `init,Σco] Σuco, C, I, E) be a TGA. A strategy for the
player is a partial function f : Ex(Ag)→ R≥0 × (Σco ∪ {⊥}) \ {(0,⊥)} such that for any
finite run ρ, letting f(ρ) = (t, a), t ∈ elapse(last(ρ)) is a possible delay from last(ρ), and
there is an a-transition available from the resulting configuration (unless a = ⊥).

The special action ⊥ is used to model situations where the player only wants to spend
some delay: when waiting for the adversary to take a move, or when the player has

66

3.2. Timed automata and timed games

already won. We do not allow strategies to output (0,⊥), as it would amount to instantly
recompute a strategy, and would only loop until time delays, which is not desirable for a
decision-making function. Strategies give rise to sets of runs of Ag, defined as follows:

Definition 3.2.10. Let Ag = (L, `init,Σco] Σuco, C, I, E) be a TGA and f be a strategy
over Ag. The set of outcomes of f from sinit, denoted by Outcome(f, sinit) (we might omit
to mention sinit when it is clear from the context), is the smallest subset of partial runs
starting from sinit containing the empty partial run (whose last configuration is sinit), and
s.t. for any ρ ∈ Outcome(f), letting f(ρ) = (t, a) and last(ρ) = (`, v), we have

• ρ · ((`, v), t′, (`, v + t′)) · ((`, v + t′), e, (`′, v′)) ∈ Outcome(f) for any 0 ≤ t′ ≤ t and
act(e) ∈ Σuco such that ((`, v + t′), e, (`′, v′)) ∈ pEx(Ag);

• and

– either a = ⊥, and ρ · ((`, v), t, (`, v + t)) ∈ Outcome(f);

– or a ∈ Σco, and ρ · ((`, v), t, (`, v + t)) · ((`, v + t), e, (`′, v′)) ∈ Outcome(f) with
act(e) = a.

An infinite partial run is in Outcome(f) if infinitely many of its finite prefixes are.

The outcomes of f characterize the subset of runs of Ag that can be observed while
following the strategy f . The first point corresponds to the system taking an uncontrollable
transition while the tester waits. It also includes a race for actions between the system
and the tester, when t′ = t. The second point adds the runs corresponding to the actions
selected by the tester, when the system does not interfere.

In this chapter, we will be interested in reachability winning conditions (under particular
conditions). In the untimed setting, the set of winning configurations can be computed
iteratively, starting from the target locations and computing controllable predecessors in a
backward manner. In a timed setting, the computation can be performed on regions, so
that it terminates (in exponential time) [Asa+98; Cas+05]. In Section 3.4 we adapt this
approach to our test-generation framework, after presenting it in Section 3.3. The main
idea of this framework is to build a fully-observable deterministic TAIO synthesizing all the
information from the specification and the test purpose, which we call objective-centered
tester. This tester is then interpreted as a game in order to apply the backward strategy
computation.

67

Chapter 3 – Control strategies for offline testing of timed systems

3.3 Testing framework

We now present the testing framework, defining (i) the main testing artifacts, i.e., spec-
ifications, implementations, test purposes, and test cases, along with the assumptions
we put on them; (ii) a conformance relation relating implementations and specifications.
The combination of the test purposes and the specification and the construction of an
approximate deterministic tester is explained afterwards.

3.3.1 Framework overview

We first give in Figure 3.5 an overview of the framework detailed in the rest of this section.
Conformance testing aims at checking whether some black-box implementation conforms
to its specification. In formal testing, the specification is given by a formal model and it is
assumed that implementations, which are real objects, behave like some unknown model.
Conformance is formalized by a relation linking implementations to specifications. This
conformance relation is checked by test cases, which interact with the implementation
through controls and observations. Test cases are also given by formal models, synthesized
from the specification and from test purposes that target some particular behaviours
one would like to test. It is then important that some properties can be proved about
the accuracy of test cases to detect (non-)conformance. In the following, a particular
formalization is presented in the context of timed systems.

3.3.2 Test context

We use TAIOs as models for specifications and implementations, TGAs and strategies for
test cases, and OTAIOs for test purposes. This allows us to define expressive test purposes
(as we have a timed automaton to describe objectives and conditions) while remaining
abstract with respect to some of the system details given in the specification. On a technical
side, it gives a unity to the objects we manipulate. In formal testing, the main objective is
to detect non-conformances, which correspond to Fail verdicts. If a test purpose is given,
another objective, if no non-conformances are detected, is to exercise behaviours targetted
by the test purpose, which are figured out by the Pass verdict. But due to lack of control
of the tester upon the implementation, one may miss those targetted behaviours, giving
rise to Inconclusive verdicts. In order to enforce the occurrence of conclusive verdicts
(i.e., Fail or Pass), we equip specifications with restart transitions, corresponding to a

68

3.3. Testing framework

Implementation
I (unknown TAIO)

Test purpose
T P (OTAIO)

Specification
S (TAIO)

conforms to?

Product
P = T P × S (TAIO)

Determinized Product
DP (DTAIO)

Objective centered tester
OT (complete DTAIO)

Determinization game [Ber+15]

Completion with sink state

Strategy

controls

observes

Figure 3.5: The testing framework.

kind of system shutdown and restart, and assume that from any (reachable) configuration,
a restart transition is always reachable.

Definition 3.3.1. A specification with restarts (or simply specification) on (Σ?,Σ!,Στ) is
a non-blocking, repeatedly-observable TAIO S = (LS , `Sinit, (Σ?∪{ζ})]Σ!]Στ , C

S
p , IS , ES),

where ζ /∈ Σ? is the restart action. We let RestartS = ES ∩ (LS ×GMS (CS)×{ζ}×{CSp }×
{`Sinit}) be the set of ζ-transitions, and assume that from any reachable configuration, there
exists a finite partial execution containing ζ, i.e. for any s ∈ Reach(S), there exists µ s.t.
s

µ·ζ−→ sSinit.

The non-blocking hypothesis rules out "faulty" specifications having no conformant
physically-possible implementation. Indeed, a blocking implementation should be able to
stop time to wait for an input that it does not control. As this is impossible, implementations
are non-blocking, and so should their specifications be. Repeated-observability will be
useful for technical reasons, when analyzing exhaustiveness of test cases. It intuitively
ensures that some output will always eventually be visible, allowing to detect the current
configuration of the system. Our assumption on ζ-transitions entails:

Proposition 3.3.2. Let S be a specification with restarts. Then Reach(TS) is strongly-
connected.

69

Chapter 3 – Control strategies for offline testing of timed systems

Proof. Let s be a configuration of TS reachable from sSinit. By hypothesis, there exists
a finite partial execution starting in s whose trace contains ζ. This trace leads to the
configuration sSinit hence any reachable configuration of TS is reachable from s, and we
conclude that the reachable part of TS is strongly-connected. �

Being strongly connected ensures that there is always a possibility to reach any
(reachable) configuration, and will help us ensure that a strategy always leads to a conclusive
verdict, as it cannot be stuck in a situation where no path exists to a reachability goal. We
discuss the consequences of releasing the strong connectivity hypothesis in Remark 3.4.11.

We now introduce the formalization of test purposes. In practice, test purposes are
used to describe the intention behind test cases, typically behaviours one wants to test
because they describe basic functionalities that must be correct and/or because an error is
suspected. In our formal testing framework, we describe them with OTAIOs that observe
the specification (its actions and clocks) and use accepting locations to define behaviours
to be tested.

Definition 3.3.3. Given a specification S = (LS , `Sinit, (Σ? ∪ {ζ})] Σ!] Στ , C
S
p , IS , ES]

Restart), a test purpose for S is a pair (T P ,AcceptT P) where T P = (LT P , `T Pinit,Σ?∪{ζ}]
Σ!] Στ , C

T P
p] CSp , IT P , ET P) is a complete OTAIO and AcceptT P ⊆ LT P is a subset of

accepting locations; it is required that transitions carrying restart actions ζ in T P are of
the form (`, g, ζ, CT Pp , `TPinit), i.e., they reset all proper clocks and return to the initial state.

In the following, we may simply write T P in place of (T P ,AcceptT P). Notice that
we force test purposes to be complete because they are non-intrusive observers: they should
never constrain the runs of the specification they observe, but should only label those
accepted behaviours to be tested. Test purposes observe the clocks of the specification
through guards, but cannot reset them. They have their own proper clocks that they can
reset; those clocks may serve e.g. to count unspecified delays. The condition on restart
transitions in test purposes encodes the fact that we do not want to test ζ (no test cases
will require to make a certain number of restart to complete), and forces the test purpose
to be strongly connected.

Example 3.3.4. Figure 3.6 is a test purpose for our conveyor-belt example. It aims to
test that it is possible to ship a package to destination 2 in less than 5 time units, while
avoiding to visit Waste. The Accept set is limited to one location, named Accept. The test
purpose has a proper clock c2, and no observed clocks. We denote by oth (for otherwise)
the set of transitions that reset no clocks, and are enabled for an action other than ζ when

70

3.3. Testing framework

Start
true

Accept
true

Waste
true

c2 ≤ 5, ?ship2, ∅

true, !waste, ∅

oth

true, ?ζ, {y}

oth

true, ?ζ, {y}

oth

true, ?ζ, {y}

Figure 3.6: A test purpose for the conveyor belt.

no other transition is possible for this action in this location. This set serves to complete
the test purpose.

In practice, conformance testing links a mathematical model, the specification, and a
black-box implementation, that is a real-life physical object observed by its interactions
with the environment. In order to formally reason about conformance, one needs to
bridge the gap between the mathematical world and the physical world. We then assume
that the real implementation has the same behavior as an unknown TAIO that we call
implementation, and has the same interface as the specification S.

Definition 3.3.5. Let S = (LS , `Sinit, (Σ? ∪ {ζ})] Σ!] Στ , C
S
p , IS , ES ∪ Restart) be

a specification. An implementation of S is an input-complete and non-blocking TAIO
I = (LI , `Iinit, (Σ? ∪ {ζ})] Σ!] ΣIτ , CIp , II , EI). We denote by I(S) the set of possible
implementations of S.

The hypotheses made on implementations are not restrictions, but model real-world
contingencies: the environment might always provide any input and the system cannot
alter the course of time.

Having defined the necessary objects, it is now possible to introduce the timed input-
output conformance (tioco) relation [KT09]. Intuitively, it can be understood as “after any
specified trace, outputs and delays of the implementation should be specified”.

Definition 3.3.6. Let S be a specification and I ∈ I(S). We say that I conforms to S
for tioco, and write I tioco S when:

∀σ ∈ Traces(S), out(I after σ) ⊆ out(S after σ)

71

Chapter 3 – Control strategies for offline testing of timed systems

3.3.3 Combining specifications and test purposes

Now that the main objects are defined, we explain how the behaviours targetted by
the test purpose T P are characterized on the specification S by the construction of the
product OTAIO P = S × T P. Since S is a TAIO and the observed clocks of T P are
exactly the clocks of S, the product P is actually a TAIO. Furthermore, since T P is
complete, Sig(P) = Sig(S). By defining accepting locations in the product by AcceptP =
LS × AcceptT P , we get that signatures accepted in P are exactly signatures of S accepted
by T P . Formally:

Proposition 3.3.7. Let S be a specification and T P a test purpose on this specification,
P = S × T P their product. Then

Sig(P) = Sig(S) and SigAcceptP (P) = Sig(S) ∩ SigAcceptT P (T P)

Proof. Remember that the set of signatures of the product of two OTAIOs is the intersection
of the signatures of the two original OTAIOs [Ber+15], so that Sig(S × T P) = Sig(S) ∩
Sig(T P); since T P is complete (it cannot prevent any signature of S), Sig(T P) = (R≥0 ∪
(Σ× 2Cp∪Co))∗, we conclude that Sig(S × T P) = Sig(S).

We also have SigLS×Accept(T P)(S×T P) = SigLS (S)∩SigAcceptT P (T P) thus SigAccept(P)(P) =
Sig(S) ∩ SigAcceptT P (T P) �

By projection on traces, we immediately get:

Corollary 3.3.8. Let S be a specification, T P a test purpose, and P their product. S and
P are trace-equivalent.

This entails that I tioco S if, and only if, I tioco P . Observe in particular that ζ of S
synchronize with ζ of T P , which are available everywhere. This induces that the product
is also strongly-connected, as shown below.

Corollary 3.3.9. Let S be a specification, T P a test purpose, P their product and TP its
associated timed transition system. The reachable part of TP is strongly-connected.

Proof. This proof is derived from the proof of Prop. 3.3.2. Although they are really close,
we have to do it again as the product does not ensure any relation on the semantics.

Let ((`1, `2), v) be a reachable configuration of TP . There exists a finite partial execution
of S starting in (`1, v) whose trace contains ζ, and thus by Corollary 3.3.8 there exists a

72

3.3. Testing framework

finite partial execution starting in ((`1, `2), v) whose trace contains ζ. Hence this transition
leads to the configuration sinit = ((`Sinit, `T Pinit), 0). It comes that there exists a finite partial
execution from ((`1, `2), v) to sinit. Hence any reachable configuration of TP is reachable
from ((`1, `2), v). It can then be concluded that the reachable part of TP is strongly-
connected. �

Example 3.3.10. Figure 3.7 represents the product of the conveyor-belt specification of
Figure 3.3 and the test purpose of Figure 3.6. All nodes are named by the first letters of the
corresponding states of the specification (first) and of the test purpose (second). The only
accepting location is (D2, A).

D1, St
true

Bo, St
c ≤ 3

D2, St
true

D2,A
true

So, St
c ≤ 1

Wa,Wa
c ≤ 1

St, St
c ≤ 2start

c ≤ 2
τ
{c}

true
!waste
{c}

true
τ
{c}

true, ?ship1, {c}
c2 > 5, ?ship2, {c}

c2 ≤ 5, ?ship2, {c}

c = 3
!past
{c}

c = 1, !end1, {c}

c = 1
!end2
{c}

c = 1, !end2, {c}

true
ζ

{c, c2}

true
ζ

{c, c2}

true
ζ

{c, c2}

c = 1
τ
{c}

true
ζ

{c, c2}

Figure 3.7: Product of the conveyor belt specification and the presented test purpose.

We make one final hypothesis: we consider only pairs of specifications S and test
purposes T P whose product P can be exactly determinized. This restriction is necessary
for technical reasons: if the determinization is only approximated (i.e. the deterministic
product DPa is not trace-equivalent to the product P), we cannot ensure that restarts are
still reachable in general and thus lose strong connectivity. As noted in Remark 3.4.11 our
approach can still be of interest in this general case, but can benefit of some refinements.
This is later explored in Section 3.6. One possible method to achieve determinization is

73

Chapter 3 – Control strategies for offline testing of timed systems

to use the determinization game presented in [Ber+15]. This determinization is known
to be exact for several classes of timed automata, such as strongly-non-Zeno automata,
integer-reset automata, or event-recording automata. Furthermore this game always con-
structs a deterministic timed automaton, and when the set of traces is approximated,
it preserves tioco-conformance in the following sense: if an implementation I conforms
to its specification S (equivalently it conforms to P), then it also conforms to the ap-
proximate determinization DPa; in other words, non-conformances with respect to the
approximation DPa are still non-conformances with respect to the specification S.

Given the product P = S×T P , letDP be its exact determinization. Then Traces(DP) =
Traces(P), and the reachability of ζ transitions is preserved. We also realize the closure
by Στ to obtain an observable model5. Moreover the traces leading to AcceptDP and
AcceptP are the same.

Example 3.3.11. The automaton in Figure 3.8 is a deterministic approximation of the
product presented in Figure 3.7. The internal transitions have collapsed, leading to an
augmented Start location.

D1, St
true

St
c ≤ 6

D2, St
true

D2,A
true

Wa
true

c ≤ 3
!waste
{c}

true, ?ship1, {c}

c2 > 5, ?ship2, {c}

c ≤ 5, ?ship2, {c}

3 ≤ c ≤ 6, !past, {c}

c = 1, !end1, {c}

c = 1
!end2
{c}

c = 1, !end2, {c}

true, ζ, {c, c2}

true, ζ, {c, c2}

true, ζ, {c, c2}

true
ζ

{c, c2}

Figure 3.8: A deterministic approximation of the product.

3.3.4 Accounting for failure

At this stage of the process, we dispose of a deterministic and fully-observable TAIO DP
having exactly the same traces as the original specification S, and equipped with a subset
of locations labelled as AcceptDP which identifies traces of runs of S accepted by the test
purpose. From this TAIO, we aim to build a tester, that can monitor the implementation,
feeding it with inputs and selecting verdicts from the returned outputs.

5. The determinization procedure in [Ber+15] also realizes the closure.

74

3.3. Testing framework

In order to also explicitly model tioco-faulty behaviours (unspecified outputs and delays
after a specified trace), we complete DP with respect to its output alphabet, by adding
an explicit Fail location. We call this completed TAIO the objective-centered tester.

Definition 3.3.12. Given a deterministic TAIO DP = (LDP , `DPinit,Σ?] Σ!] Στ , C
DP
p ,

IDP , EDP), we construct its objective-centered tester OT = (LDP ∪ {Fail}, `DPinit,Σ?]
Σ!] Στ , C

DP
p , IOT , EOT) where IOT (l) = true. The set of transitions EOT is defined

from EDP by:

EOT = EDP ∪
(⋃
`∈LDP
a∈ΣDP!

{(`, g, a, ∅,Fail) | g ∈ Ga,l}
)
∪
{

(Fail, true, a, ∅,Fail) | a ∈ ΣDP
}

where for each a and `, Ga,l is a set of guards complementing the set of all valuations v
for which an a-transition is available from (`, v) (notice that Ga,l generally is non-convex,
so that it cannot be represented by a single guard).

Verdicts are defined on the configurations of OT as follows:

• Pass = ⋃
`∈AcceptDP ({`} × IDP(`));

• Fail = {Fail} × R≥0 ∪
⋃
`∈LDP

(
{`} ×

(
RCp
≥0 \ IDP(`)

))
.

Pass corresponds to behaviours accepted by the test purpose, while Fail corresponds
to non-conformant behaviours. Notice that we do not define the usual Inconclusive
verdicts (i.e. configurations in which we cannot conclude to non-conformance, nor accept
the run with respect to the test purpose) as we will enforce the apparition of Pass or Fail
thanks to the preservation of strong connectivity.

In the following, we present some of the useful properties of objective centered testers,
notably what properties are kept from DP .

First, the ζ-transitions are preserved in OT .

Lemma 3.3.13. Let OT be an objective-centered tester. For any location ` in LOT \{Fail},
there exists a finite partial execution ρ ∈ pEx(OT) starting in ` and containing a ζ-
transition.

Proof. The same result holds from any state in S, and Traces(S) = Traces(S × T P).
The result follows by exact determinizability of the product S × T P . �

This, as for previous objects, is used to ensure the strong connectivity of the semantics.

75

Chapter 3 – Control strategies for offline testing of timed systems

Corollary 3.3.14. Let OT be an objective-centered tester and T OT its associated timed
transition system. Then Reach(T OT) \ Fail is strongly-connected.

Proof. The proof is the same as the one of Prop. 3.3.2, using Lemma 3.3.13. �

Lemma 3.3.13 is the reason our method assumes exact determinizability: we cannot
ensure in general that a restart transition will remain reachable: if determinization is
approximated, some traces might be lost, and the lemma would not hold anymore.

Observe that OT and DP model the same behaviours. Obviously, their sets of traces
differ, but the traces added in OT precisely correspond to runs reaching Fail. We now
define a specific subset of runs, signatures and traces corresponding to traces that are
meant to conform to the specification.

Definition 3.3.15. A run ρ of an objective-centered tester OT is said conformant if
it does not reach Fail. We write Exconf(OT) for the set of conformant runs of OT , and
Sigconf(OT) (resp. Tracesconf(OT)) the corresponding signatures (resp. traces). We write
Exfail(OT) = Ex(OT) \ Exconf(OT) and similarly for the signatures and traces.

The conformant traces are exactly those traces specified by DP, i.e. Traces(DP) =
Tracesconf(OT) and correspond to executions that are tioco-conformant with the specifica-
tion; on the other hand, Exfail are runs where a non-conformance is detected. We prove
this in the following.

Proposition 3.3.16. Let DP be the exact determinization of the product P between a
specification and a test purpose, and OT be its associated objective-centered tester. Then

Traces(DP) = Tracesconf(OT).

Proof. An execution is in Exconf(OT) if it avoids the Fail verdict. This amounts to avoiding
location Fail and respecting the invariants of DP . By construction of OT , this corresponds
exactly to the runs of DP . �

We can furthermore ensure that no approximation is made, by proving that Tracesconf(OT)
and Traces(Exfail(OT)) are disjoint. As we know by construction that the executions differ,
this result highlights that no confusion is made when abstracting from execution to traces.

Lemma 3.3.17. Given an objective-centered tester OT , we have

Tracesconf(OT) ∩ Traces(Exfail(OT)) = ∅.

76

3.3. Testing framework

Proof. Let ρ ∈ Exfail(OT). Consider the longest prefix ρ′ of ρ that does not reach Fail,
and let γ be the transition taken after ρ′ in ρ. Two cases should be considered:

• If γ is a delay transition, then it violates the invariant of the location in DP.
By determinism of DP, DP after trace(ρ′) is a singleton set of states. Hence the
same delay is not available after ρ′ in DP ;

• If act(γ) ∈ Σ! then this output is not specified in the current location of DP.
By determinism of DP, DP after trace(ρ′) is a singleton. Hence transition γ is not
possible after ρ′ in DP .

In both cases trace(ρ) /∈ Tracesconf(OT). As this holds for any run of Exfail(OT) we have
the desired property. �

It remains to say that OT is repeatedly-observable, except for configurations in Fail.

Lemma 3.3.18. For a repeatedly-observable specification S, Reach(OT)\Fail is repeatedly-
observable.

Proof. We know that Traces(S) = Traces(P), hence out(P after σ) = out(S after σ) for
all σ ∈ Traces(P). As Traces(DP) = Traces(P) by assumption, we also know that for all
σ ∈ Traces(DP), out(P after σ) ⊆ out(DP after σ). It comes

∀σ ∈ Traces(OT), out(S after σ) ⊆ out(OT after σ)

as OT only adds traces to DP. Hence for all s ∈ Reach(SOT) \ Fail, there exists µ ∈
Sig(OT) s.t. s µ−→ and trace(µ) /∈ R≥0. Indeed, there exists σ ∈ Tracesconf(OT) such that
s = OT after σ (as OT is deterministic outside of Fail) and for s′ ∈ S after σ, there
exists µ′ such that s′ µ

′
−→ and trace(µ′) /∈ R≥0. It suffices to take µ ∈ pSig(OT) such that

trace(µ) = trace(µ′), and by the previous trace-inclusion property, such a trace exists.
�

In this section we explained the construction of the objective-centered tester OT from
the specification and a test purpose and some of its properties. It represents the most
general behaviours of testers that detect both non-conformance to the specification S and
acceptance by the test purpose T P . In the next section, we go further and explain how to
tackle controllability problems by interpreting OT as a game whose winning strategies
will be test cases that try to avoid control losses.

77

Chapter 3 – Control strategies for offline testing of timed systems

3.4 Translating objective-centered testers into games

In this section, we interpret objective-centered testers as games between the tester and the
implementation, and propose strategies that try to avoid control losses. We then introduce
a scope in which the tester always has a winning strategy, and discuss the properties of
the resulting test cases (i.e. game structure and built strategy).

We want to enforce conclusive verdicts when running test cases, i.e. either the imple-
mentation does not conform to its specification (Fail verdict) or the awaited behaviour
appears (Pass verdict). We thus say that an execution ρ is winning for the tester if it
reaches a Fail or Pass configuration and denote by Win(Ag) the set of such executions.
Observe however that Fail is entirely controlled by the implementation, which may or
may not reveal non-conformances. We will thus only target Pass (while monitoring Fail).
In the following, we consider the TGA AOTg = (LOT , `OTinit,ΣOT?]ΣOT! , Cp, IOT , EOT) where
the controllable actions are the inputs Σco = ΣOT? and the uncontrollable actions are the
outputs Σuco = ΣOT! . Indeed, we place ourselves on the tester side, from which inputs of
the system are controlled and outputs are observed.

3.4.1 Rank-lowering strategies

In this part, we restrict our discussion to TGAs where Pass configurations are reachable
(when seen as plain TAs). Indeed, when this is not the case (we will discuss the fact that
the proposed method can detect this), trying to construct a strategy seeking a Pass
verdict is hopeless. This is a natural restriction, as it only rules out test purposes that are
unsatisfiable by the specification.

To discuss partial controllability we introduce control losses (that will be formalised later
in this section) as configurations where the system under test can propose uncontrollable
outputs that move its configuration further away from Pass. We define a hierarchy of
configurations, depending on their “distance” to Pass, based on the number of control
losses one has to suffer to reach Pass, and the number of transitions toward the next
control loss. This uses a backward algorithm, for which we define the predecessors of a set
of configuration.

Given a set of configurations S ′ ⊆ S of AOTg , letting V denote the complement of V ,
we define three kinds of predecessors of S ′:

78

3.4. Translating objective-centered testers into games

• discrete predecessors by a sub-alphabet Σ′ ⊆ Σ

PredΣ′(S ′) = {(`, v) | ∃a ∈ Σ′, ∃(`, a, g, C ′, `′) ∈ E, v |= g ∧ (`′, v[C′←0]) ∈ S ′}

• timed predecessors, while avoiding a set V of configurations:

tPred≤(S ′, V) = {(`, v) | ∃t ∈ R≥0, (`, v + t) ∈ S ′ ∧ ∀ 0 ≤ t′ ≤ t. (`, v + t′) /∈ V }

with a less constraining variant:

tPred<(S ′, V) = {(`, v) | ∃t ∈ R≥0, (`, v+ t) ∈ S ′ ∧ ∀ 0 ≤ t′ < t. (`, v+ t′) /∈ V \ S ′}

We furthermore write tPred(S ′) = tPred≤(S ′, ∅) = tPred<(S ′, ∅);

• final timed predecessors are defined for convenience (see below):

ftPred(S ′) = tPred<(Fail,PredΣuco(S ′)) ∪ tPred(PredΣ(S ′))

The first two sets are the easier to understand: PredΣ′(S ′) is the set of states from which a
transition carrying an action in Σ′ leads to S ′; tPred≤(S ′, V) and tPred<(S ′, V) are the
sets of states from which delaying leads to S ′ without entering V , with a discussion on
whether reaching S ′ ∩ V is accepted (it is for tPred<(S ′, V)).

Remark 3.4.1. For tPred<(S ′, V), the condition (`, v + t′) /∈ V \ S ′ is necessary for open
zones: without it, for any open S ′ and V , tPred< would be equivalent to tPred≤.

The final timed predecessors correspond to situations where the system is cornered
into reaching S ′ unless it choses non-conformance or to remain indefinitely idle: on the
left side of the union, tPred(Fail,PredΣuco(S ′)) is the set of states from which the system
under test only has the choice between taking an uncontrollable transition to S ′ (as no
uncontrollable transition to S ′ will be available) or reach Fail. On the right side are the
states from which there are no transitions to anywhere but S ′ in the future, hence the
system will end up playing a transition to S ′. Intuitively, this is because the system will
not remain infinitely idle when it can act (this will be formally enforced by a fairness
hypothesis). Such situations are not considered as control losses, as the system can only
take a beneficial transition for the tester (either by going to S ′ or to Fail). Observe that

79

Chapter 3 – Control strategies for offline testing of timed systems

tPred≤ (resp. tPred<) and ftPred need not return convex sets, but are efficiently computable
using Pred and simple set constructions [Cas+05].

Now, using these notions of predecessors, a hierarchy of configurations based on the
distance to Pass is defined.

Definition 3.4.2. The sequence (W j
i)j,i of sets of configurations is defined as:

• W 0
0 = Pass;

• W j
i+1 = π(W j

i) with π(S ′) =tPred<
(
S ′,PredΣuco(S ′)

)
∪tPred≤

(
PredΣco(S ′),PredΣuco(S ′)

)
∪ftPred(S ′) ;

• W j+1
0 = π′(W j

∞) with π′(S ′) = tPred(S ′) ∪ PredΣ(S ′) and W j
∞ the limit6 of the

sequence (W j
i)i .

In this hierarchy, j corresponds to the minimum number of control losses the tester
has to go through (in the worst case) in order to reach Pass, and i corresponds to the
minimal number of steps before the next control loss (or to Pass). The states in W j+1

0 are
considered control losses as the implementation might take an output transition leading
to an undesirable configuration (higher in the hierarchy). On the other hand, in the
construction of W j

i+1, the tester keeps full control, as it is not possible to reach such bad
configurations with an uncontrollable transition. The computation of (W j

i)i corresponds
to finding the controllable zones, the least fix points W j

∞, and then taking a control-loss
step W j+1

0 . Finally, the hierarchy iterates this process and terminates on its least fix point,
effectively finding all configurations coreachable from Pass and the minimal number of
control losses.

Remark 3.4.3. The use of tPred< and tPred≤ in the definition of W j
i+1 corresponds to

the following intuition: for tPred<(S ′,PredΣuco(S ′)), it is undesirable to force conditions
on S ′, which is W j

i and has been handled by its own definition. On the other hand,
tPred≤(PredΣco(S ′),PredΣuco(S ′)) enforces that no control loss can happen in PredΣco(S ′).

Notice that the sequence (W j
i) is an increasing sequence of pairs of regions and locations,

and hence can be computed in time exponential in the size of COT and linear in the size
of LOT . We then have the following property saying that the computation of (W j

i) covers

6. The sequence (W j
i)i is non-decreasing, and can be computed in terms of clock regions; hence the

limit exists and is reached in a finite number of iterations [Cas+05].

80

3.4. Translating objective-centered testers into games

j=0
j=1
j=2

...

i=2 i=1 i=0

...

i=2 i=1 i=0

...

i=1 i=0

Pass

Figure 3.9: A representation of the outcomes of a rank lowering strategy

all reachable states except Fail:

Proposition 3.4.4. There exists i, j ∈ N such that (Reach(AOTg) \ Fail) ⊆ W j
i .

Proof. Let s ∈ Reach(AOTg) \Fail be a reachable configuration. Since i) Pass is reachable
from sTinit (by hypothesis); ii) there is a partial run from s back to the initial configuration
(Corollary 3.3.14), then Pass is reachable from s. Moreover, there is such a partial run
with length bounded by the number of regions.

For each s ∈ Reach(AOTg) \ Fail, we fix a finite partial run to Pass, and reason by
induction on the length n of this partial run in order to prove that conf ∈ W n

0 :

• case n = 0: in this case s ∈ Pass = W 0
0 ;

• inductive case: we assume that the result holds for n, and take s with a partial run
to Pass of length n + 1. Then s γ−→ s′ for some γ with act(γ) ∈ Γ, and there is a
partial run from s′ to Pass of length at most n, so that s′ ∈ W n

0 . Hence in the worst
case s ∈ W n+1

0 .

This proves our result. �

As explained above, this property is based on the assumption that the Pass verdict
is reachable. Nevertheless, if this were not the case, it would be detected during the
hierarchy construction, which would then converge to a fixpoint not including sAginit. As all
the configurations in which we want to define a strategy are covered by the hierarchy, we
can use it to define a preference relation (i.e. a total preorder) that will guide the tester
to better places in terms of control and distance to Pass.

Definition 3.4.5. Let s ∈ Reach(AOTg) \ Fail. The rank r(s) of s is the pair

(js = arg min
j∈N

(s ∈ W j
∞), is = arg min

i∈N
(s ∈ W js

i))

81

Chapter 3 – Control strategies for offline testing of timed systems

When r(s) = (js, is), it holds s ∈ W js
is and js is the minimal number of control losses

before reaching an accepting state, and is is the minimal number of steps in the strategy
before the next control loss. We write s v s′ when r(s) ≤N2 r(s′), where ≤N2 is the lexical
order on N2. Intuitively, it is easier to drive trajectories to Pass from s than from s′.

Proposition 3.4.6. v is a total preorder on Reach(AOTg) \ Fail.

Proof. v inherits transitivity and reflexivity from ≤N2 . It is not antisymmetric because
several configurations may have the same rank, for example, all configurations of Pass have
rank (0, 0). As by Prop. 3.4.4 there exists j, i ∈ N2 such that W j

i covers Reach(AOTg)\Fail,
all these configurations have a rank and can be compared, hence v is total. �

Example 3.4.7. In Figure 3.10, the (W j
i) are represented on the game constructed

from the OT corresponding to the deterministic TA presented in Figure 3.8. For clarity,
the Fail location and the transitions leading to it are not represented. In this example,
W 0

0 = (D2,A) × R≥0, W 1
0 = W 0

0] St × (c ≤ 5) and W 1
1 = W 1

0] St × (5 < c ≤
6) ∪ {Wa, (D1, St), (D2, St)} × R≥0. The Fail verdict corresponds to Fail ∪ (St× (c ≥ 6)).

D1, St
true

St
true

D2, St
true

D2,A
true

Wa
true

c ≤ 3
!waste
{c}

true, ?ship1, {c}

c2 > 5, ?ship2, {c}

c2 ≤ 5, ?ship2, {c}

3 ≤ c ≤ 6, !past, {c}

c = 1, !end1, {c}

c = 1
!end2
{c}

c = 1, !end2, {c}

true, ζ, {c, c2}

true, ζ, {c, c2}

true, ζ, {c, c2}

true
ζ

{c, c2}

Figure 3.10: The ranks of Ag

Example 3.4.8. This notion of rank can be applied to many difficult games i.e. games
where you cannot always win, even out of the testing framework. For example, the game in
Figure 3.11 has the following ranks, with all configurations in `6 considered as accepting:
(0, 0) in `6×R≥0, (0, 1) in `5×R≥0, (0, 2) in s4× (c > 4), (1, 0) in `3×R≥0 ∪ `4× (c ≤ 4),
(1, 1) in `2 × (c < 3), (1, 2) in `2 × (c ≥ 3), (2, 0) in `0 × (c ≤ 3) ∪ s1 × R≥0 and (2, 1) in
`0 × (c > 3).

82

3.4. Translating objective-centered testers into games

`6`3

`5`4

`2

`1

`0start

true, ?a, ∅
true, !b, {c}

c ≤ 3, !b, ∅

c ≤ 4, !b, {c}

c ≥ 5, ?a, {c}

true, ?a, ∅

true, ?c, ∅

c > 5, ?c, {c}

c < 3, !b, ∅

true, !d, ∅

true, ?c, ∅

true, !b, {c}

Figure 3.11: The ranks in a complex game

The notion of rank and its order relation v define a preference relation on configurations,
with configurations in Pass being the minimal elements. We use it to define a strategy
trying to decrease the rank during the execution, i.e. decrease in each state both the
distance and the number of control losses. For any s ∈ S, we write r−(s) for the largest
rank such that r−(s) <N2 r(s), and W−(s) for the associated set in (W j

i)j,i. We (partially)
order pairs (t, a) ∈ R≥0 × Σ according to t.

Definition 3.4.9. A strategy f for the tester is rank-lowering if, for any finite run ρ with
last(ρ) = s = (`, v), it selects the smallest delay satisfying one of the following constraints:

• if s ∈ tPred(PredΣco(W−(s))), then f(ρ) = (t, a) with a ∈ Σco s.t. there exists e ∈ E
with act(e) = a and s t−→s′

e−→s′′ with s′′ ∈ W−(s), s′ /∈ W− and t is minimal in the
following sense: if s t′−→e′−→s′′′ with s′′′ ∈ W−(s), act(e′) ∈ Σco and t′ ≤ t, then v + t

and v + t′ belong to the same region;

• if s ∈ tPred(PredΣuco(W−(s))), then f(ρ) = (t,⊥) with t such that s t−→ s′ /∈
PredΣuco(W−(s)), ∃t′ < t s

t′−→ s′′ ∈ PredΣuco(W−(s)) and t is minimal if such a
t exists. Else t is maximal in the same sense as above (maximal delay successor
region);

• if s ∈ tPred(W−(s)),then f(ρ) = (t,⊥) such that s t−→s′ with s′ ∈ W−(s), and t is
minimal in the same sense as above;

83

Chapter 3 – Control strategies for offline testing of timed systems

• otherwise f(ρ) = (t,⊥) where t is maximal in the same sense as above (maximal
delay-successor region).

The first three cases follow the construction of the (W j
i) and propose the shortest

behaviour leading to W−. The fourth case corresponds either to a configuration of Pass,
where W− is undefined, or to a ftPred leading to Fail, cases in which the tester has won.
Interestingly, (possibly several) rank-lowering strategies always exist. The constraints of
rank-lowering strategies allow the creation of memoryless strategies, i.e. strategies that
only rely on local information without keeping the history in memory. Indeed, they only
use local information, aggregated during the incremental construction of sets (W j

i). Hence,
a straightforward implementation only using the sets (W j

i) is memoryless.

Example 3.4.10. An example of a rank-lowering strategy on the automaton of Fig-
ure 3.10 is: in (D2,A), play ⊥ (as W 0

0 has been reached); in St, play (0, ship2?) from W 1
0 ,

otherwise play (1,⊥). In any other state, play (0, ζ). The omission of Fail in Figure 3.10
does not impact the strategy representation: Fail is a winning set of configurations, but is
not targetted by the strategies.

Remark 3.4.11. It is worth noting that even in a more general setup where the models
are not equiped with ζ-transitions, as in [Ber+15], rank-lowering strategies may still be
useful: as they are defined on the co-reachable set of Pass, they can still constitute test
cases, and the configurations where they are not defined are exactly the configurations
corresponding to a Fail verdict or to an Inconclusive verdict, i.e. no conclusions can be
made since an accepting configuration cannot be reached.

Yet, rank-lowering strategies would gain to be refined in this case in order to avoid
Inconclusive verdicts as much as possible. Indeed, as defined in this chapter, a rank
lowering strategy would choose a path that is shorter but more prone to inconclusivity over
a longer but safer path. This can be handled by adding a new layer to the ranks encoding
the distance to an inconclusive verdict (i.e. the minimum number of uncontrollable actions
required to reach one) over the path to Pass. Strategies are defined in a similar fashion,
but in this general case we cannot ensure that they win, as they could sometimes reach
Inconclusive.

We detail this generalization in Section 3.6.

84

3.4. Translating objective-centered testers into games

3.4.2 Making rank-lowering strategies win

A rank-lowering strategy is generally not a winning strategy: it relies on the implementation
fairly exploring its different possibilities and not repeatedly avoiding an enabled transition.
In this section, we introduce a notion of fairness, and prove that the rank-lowering strategies
are winning under this fairness assumption.

The following lemma ensures that we cannot end in a situation where no transitions
can be taken, forcing the system to delay indefinitely. It will be used with the support of
fairness, and will be the key to ensuring victory on fair executions.

Lemma 3.4.12. If OT is repeatedly-observable, then for any run ρ = ((si, γi, si+1))i∈N ∈
Ex(Ag) ending with an infinite sequence of delays, if ρ does no reach Fail, there is an
infinite number of states in ρ where some transition e is enabled, formally,7

ρ /∈ Exfail(Ag)⇒ ∃e ∈ EAg ,
∞
∃ i ∈ N, e ∈ enab(si).

Proof. We show this lemma by contradiction. Assume that for some ρ ∈ Ex(Ag), we have

ρ /∈ Exfail(Ag) ∧ ∀e ∈ EAg ,
∞
∀ i ∈ N, e /∈ enab(si).

Let ρmax be the shortest prefix such that no transition is enabled after this prefix along ρ
(it exists because E is finite and there is only a finite number of these prefixes per element
of E). Consider any prefix ρ′ of ρ strictly containing ρmax; there is no partial signature µ
such that last(ρ′) µ−→ and trace(µ) /∈ R≥0, as there is no time successor of last(ρ′) with an
enabled transition. This contradicts the repeated-observability of OT out of Fail (as Ag
and OT are the same automaton). �

In order to introduce our notion of fairness, we define three notions of the infinite
support of a run. The first one characterizes the set of regions encountered infinitely often,
while the other two distinguish the regions from which a discrete action was taken infinitely
often from the regions left by elapsing time infinitely often. This distinction will help us
precisely define the behaviour expected from the implementation in each case.

Definition 3.4.13. Let ρ be an infinite run, its infinite regions support Inf(ρ) is the set

7. In this expression,
∞
∃ i ∈ N, φ(i) means that φ(i) is true for infinitely many integers. In the same

way,
∞
∀ i ∈ N φ(i) means that φ(i) is true for all but finitely many integers.

85

Chapter 3 – Control strategies for offline testing of timed systems

of regions appearing infinitely often in ρ:

Inf((si, γi, si+1)i∈N) = {reg ∈ R |
∞
∃ i ∈ N, si ∈ reg ∨

(γi ∈ R≥0 ∧ ∃s′i ∈ reg, ∃ti < γi, si
ti−→s′i)}

Its infinite transitions support InfE(ρ) is the set of pairs (reg, e) of R× EAg such that the
transition e is taken infinitely often from the region reg:

InfE((si, γi, si+1)i∈N) = {(reg, e) ∈ Inf(ρ)× EAg |
∞
∃ i ∈ N, si ∈ reg ∧ γi = e}

and its infinite waiting support is the set of regions left infinitely often by delaying along ρ.

Inft((si, γi, si+1)i∈N) ={reg ∈ Inf(ρ) |
∞
∃ i ∈ N, γi ∈ R≥0 ∧

∃ t′ ≤ γi, si
t′−→s′i ∈ reg ∧ si+1 ∈ reg′ ∈ SucTemp(reg)}

Using these notions of infinite support, we will define the fairness of a run. The intuition
behind it is as follows: if a behaviour is implemented, then it will be ultimately displayed if
repeatedly requested. Formally, we reason on the game and not on the implementation, as
we do not know its model, making our fairness assumption stronger than what is intuitively
expected.

To ease the reading of the definition we define the set of transitions with uncontrollable
actions Euco = {e | act(e) ∈ Σuco} and similarly for controllable actions Eco = {e | act(e) ∈
Σco}. We furthermore define the set of controllable enabled transitions for a region reg:
enabco(reg) = enab(reg) ∩ Eco and similarly the set of conformant uncontrollable enabled
transitions (i.e. that do not lead to Fail):

enabuco,conf(reg) = enab(reg) ∩ Euco \ {e | next(e, reg) ⊆ Fail}.

Definition 3.4.14. An infinite run ρ in a TGA Ag = (L, `init,Σuco] Σco, C, I, E) (with
timed transitions system T = (S, sinit,Γ,→T)) is said to be fair when:8

8. See definitions of enab, next, SucTemp in subsection 3.2.1.

86

3.4. Translating objective-centered testers into games

∀reg ∈ Inf(ρ),

{reg} × enabuco,conf(reg) ⊆ InfE(ρ) ∧ (3.1) ∨
{e | (reg, e) ∈ InfE(ρ)} ∩ Eco 6= ∅

∨ reg ∈ Inft(ρ)
enabco(reg) = ∅ ∧ SucTemp(reg) ⊂ Fail

 (3.2)

We denote by Fair(Ag) the set of fair runs of Ag.

Fair runs model restrictions on the system runs corresponding to strategies of the
system. The first part (3.1) of the definition ensures that for each region visited infinitely
often, each tioco-conformant enabled action of the implementation will be played infinitely
often from that region. Intuitively, it means that the implementation explores all of
its options infinitely often. The second part (3.2) ensures that the implementation will
infinitely often let the tester play in this region, by saying that either a discrete action
(selected by the tester) has been played infinitely often from this region (first disjunctive
case) or that it has been possible to leave this region by waiting infinitely often (second
disjunctive case). This is limited by the third disjunctive case, when there is no controllable
action enabled and the strict timed successors of the region are either empty (maximal
delay successor region) or included in Fail. This definition of fairness is related to the
“strong fairness” notion used in model checking. Restricting to fair runs is sufficient to
ensure a winning execution when the tester uses a rank-lowering strategy. Intuitively,
combined with Lemma 3.4.12 and the repeated-observability assumption, it assures that
the system will keep providing outputs until a verdict is reached, and allows to show the
following property.

Proposition 3.4.15. Rank-lowering strategies are winning on Fair(Ag) (i.e., all fair
outcomes are winning).

In terms of testing, this means that if the implementation is fair, a tester following a
rank-lowering strategy will reach a conclusive verdict. In order to carry out this proof, we
reason on regions. We exploit the fact that a region is included in any W j

i it intersects.
Proof. Let T = (S, sinit,Γ,→T) be the timed transition system associated with Ag =
(L, `init,Σuco] Σco, C, I, E). Let f be a rank-lowering strategy. We want to prove that
Outcome(f) ∩ Fair(Ag) ⊆ Win(Ag). We proceed by contradiction.

Suppose there exists an infinite run ρ ∈ Outcome(f)∩ Fair(Ag) such that ρ /∈ Win(Ag).
We consider the set of prefixes of ρ ending in a "decision point" i.e. where the strategy

87

Chapter 3 – Control strategies for offline testing of timed systems

proposed a new pair (delay,action). Observe that as there are infinitely many such prefixes,
there exist some regions where infinitely many of them end. These regions are a subset
of Inf(ρ). We denote by rmin the minimal rank obtained in these regions and consider
one of these regions reg such that r(reg) = rmin. By definition of reg there are infinitely
many prefixes ν of ρ ending in reg such that the strategy proposed a new pair. We write
f(last(ν)) = (tfν , afν). As there are four possible ways to propose an action for a rank
lowering strategy, at least one of them appeared infinitely often. We distinguish these four
cases in our reasoning:

• afν ∈ Σco, i.e. last(ν) ∈ tPred(PredΣco(W−(last(ν)))). In this case, there exists e ∈ EAg
such that act(e) = afν ∧ last(ν) tfν−→ s′ν

e−→s′′ ∈ W−(last(ν)). Because of the minimality
constraint on tfν there exists a unique region reg′ such that for all ν, s′ν ∈ reg′. If
last(ν) ∈ reg′ then last(ν) ∈ Pred{afν}(W

−(last(ν))) and by the minimality constraint
on tfν no rank lowering strategy can delay out of reg′, hence reg′ /∈ Inft(ρ). Furthermore
e ∈ enabc(reg). It follows from fairness that there exists a controllable transition
e such that (reg, e) ∈ InfE(ρ). As this can only be a transition labeled by afν by
definition of Outcome(f) andAg is deterministic, next(e, reg) ∈ Inf(ρ)∩W−(last(ν)) =
Inf(ρ)∩W−(reg) and f will take a new decision once arriving in this region after each
of the infinitely many transitions, contradicting the minimality of rmin. Else, when
last(ν) /∈ reg′ we have reg′ ∈ SucTemp(reg) \ Fail. Hence by construction of a rank
lowering strategy and definition of Outcome(f), there is no controllable transition
taken in reg along ρ. Hence by fairness reg ∈ Inft(ρ) and the first delay-successor
region of reg is in Inf(ρ). By induction on the number of regions between reg and reg′,
using the case reg = reg′ as the base case and the previous remark as induction step,
we know that reg′ ∈ Inf(ρ). We can then conclude using the previous discussion;

• afν = ⊥ and last(ν) ∈ tPred(PredΣuco(W−(last(ν)))). In this case there exists e ∈ EAg
such that act(e) ∈ Σuco ∧ ∃t′ ≤ tfν , last(ν) t′−→s′ν

e−→s′′ ∈ W−(last(ν)). Plus, because
of the minimality constraint on tfν there exists a unique region reg′ such that for all ν
last(ν) tfν−→∈ reg′. As in the previous case, if reg = reg′ then by fairness (reg, e) ∈ InfE(ρ)
as e is uncontrollable and thus next(e, reg) ∈ Inf(ρ) ∩W−(reg) and f will take a new
decision once arriving in this region after each of the infinitely many transitions,
contradicting the minimality of rmin. Else reg′ ∈ SucTemp(reg) \ Fail and as a rank
lowering strategy will never play a discrete transition in reg by minimality constraint
on tfν we have the same induction as in the previous case and we can conclude using

88

3.4. Translating objective-centered testers into games

the case reg = reg′;

• afν = ⊥ and last(ν) ∈ tPred(W−(last(ν))). In this situation the simple induction on
time successors regions is enough to conclude that we reach infinitely often a region
in W−(last(ν)) in which (by minimality of the delays proposed by a rank lowering
strategy) the strategy will take a decision infinitely often. This contradicts once
again the minimality of rmin;

• otherwise, either W−(last(ν)) is undefined and hence rmin = (0, 0), contradicting the
fact that ρ is not winning, or there is no partial execution from last(ν) toW−(last(ν))
meaning that the system can only delay. By construction of the (W j

i) this corresponds
to a timed predecessor of Fail. Hence the system is cornered and can only delay to
Fail, thus ρ should be winning. �

Under the hypothesis of a fair implementation, we thus have identified a test-case
generation method, starting from the specification with restarts and the test purpose, and
constructing a test case as a winning strategy on the game created from the objective-
centered tester. The complexity of this method is exponential in the size of DP. More
precisely:

Proposition 3.4.16. Given a deterministic product DP, the objective-centered tester OT
can be linearly computed from DP, the construction of a strategy relies on the construction
of the (W j

i), and is hence exponential in the size of CDP and linear in the size of LDP .

Observe that if DP is obtained from P by the game presented in [Ber+15], then LDP

is doubly-exponential in the size of CS]CT P]CDP (in the setting of [Ber+15], CDP is a
parameter of the algorithm).

3.4.3 Properties of the test cases

Having constructed strategies for the tester, and identified a scope of implementation
behaviours that allows these strategies to enforce a conclusive verdict, we now study the
properties obtained by the test generation method presented above. We call test case a
pair (Ag, f) where Ag is the game corresponding to the objective-centered tester OT , and
f is a rank-lowering strategy on Ag. We denote by T C(S, T P) the set of possible test
cases generated from a specification S and a test purpose T P , and T C(S) the set of test

89

Chapter 3 – Control strategies for offline testing of timed systems

cases for any test purpose. Recall that it is assumed that the test purposes associated with
a specification are restricted to those leading to a determinizable product.

We first define parallel runs as the possible outcomes of a test case combined with an
implementation, which thus model their parallel composition.

Definition 3.4.17. Given a test case (Ag, f) and an implementation I, their parallel
runs are the sequences ((si, s′i), (γi, γ′i), (si+1, s

′
i+1))i such that (si, γi, si+1)i is an outcome

of f in Ag, ((s′i, γ′i, s′i+1))i is a run of I, and for all i, either γi = γ′i if γi ∈ R≥0 or
act(γi) = act(γ′i) otherwise. We write ParRun(Ag, f, I) for the set of parallel runs of the
test case (Ag, f) and of the implementation I.

We say that an implementation I fails a test case (Ag, f), and write I fails (Ag, f),
when there exists a run in ParRun(Ag, f, I) that reaches Fail. Our method is sound, that is,
a conformant implementation cannot be detected as faulty.

Proposition 3.4.18. The test-case generation method is sound: for any specification S,
it holds

∀I ∈ I(S), ∀(Ag, f) ∈ T C(S), (I fails (Ag, f)⇒ ¬(I tioco S)).

Proof. Let S be a specification, I ∈ I(S) and (Ag, f) ∈ T C(S). Suppose that I fails (Ag, f),
we will prove that ¬(I tioco S).

Since I fails (Ag, f), there is a finite run ρ of ParRun(Ag, f, I) such that last(ρ) ∈ Fail×
SI and it is the first configuration of ρ in this set. Let σ = trace(ρ). By construction of Fail,
either σ = σ′ · t (if the configuration of Fail reached corresponds to a faulty invariant) or
σ = σ′ ·a with a ∈ Σ! (and Fail is reached). In both cases out(I after σ′) * out(DP after σ′),
and by definition ¬(I tioco DP).

As Traces(P) = Traces(DP) by exact-determinizability hypothesis, ¬(I tioco P). Fi-
nally, as Traces(P) = Traces(S), we have ¬(I tioco S), which concludes the proof. �

The proofs of this property and the following one are based on the exact correspondence
between Fail and the faulty signatures of S, and use the trace equivalence of the different
models (DP , P and S) to conclude. As they exploit mainly the game structure, fairness is
not used, and they do not rely on the strategy being played. They are in fact true for any
strategy and not only for rank-lowering ones.

We first state that if a test case exercises a non-conformant trace, then it produces the
Fail verdict.

90

3.4. Translating objective-centered testers into games

Proposition 3.4.19. The test generation method is strict: given a specification S,

∀I ∈ I(S), ∀(Ag, f) ∈ T C(S), ¬(ParRun(Ag, f, I) tioco S)⇒ I fails (Ag, f)

Proof. Let S be a specification, I ∈ I(S) and (Ag, f) ∈ T C(S).
Suppose that ¬(ParRun(Ag, f, I) tioco S). We want to show that I fails (Ag, f). By
definition of ¬(ParRun(Ag, f, I) tioco S), there exist σ ∈ Traces(S) and

a ∈ out(ParRun(Ag, f, I) after σ) \ out(S after σ)

with out(ParRun(Ag, f, I) after σ) = {a ∈ Σ! ∪ R≥0 | ∃ρ ∈ ParRun(Ag, f, I), trace(ρ) =
σ · a} the extension of outputs after a trace to parallel runs. Since DP is an exact deter-
minization of P we have the following equalities: Traces(S) = Traces(P) = Traces(DP) =
Tracesconf(OT). Since a ∈ R≥0 ∪ Σ!, σ · a ∈ Traces(OT) as invariants have been re-
moved, and the automaton has been completed on Σ! with transitions to Fail). Hence
σ · a ∈ Traces(Exfail(OT)). Thus, for ρ ∈ ParRun(Ag, f, I) such that trace(ρ) = σ · a,
last(ρ) ∈ Fail and I fails (Ag, f). �

Observe that once again, the properties of the strategy are not used.
This method also enjoys a precision property: traces leading the test case to Pass are

exactly traces conforming to the specification and accepted by the test purpose. The proof
of this property uses the exact encoding of the Accept states and the definition of Pass.
As the previous two, it then propagates the property through the different test artifacts.

Proposition 3.4.20. The test case generation method is precise: for any specification S
and test purpose T P it can be stated that

∀(Ag, f) ∈ T C(S, T P),∀σ ∈ Traces(Outcome(f)),

Ag after σ ∈ Pass ⇔ (σ ∈ Traces(S) ∧ T P after σ ∩ AcceptT P 6= ∅)

Proof. Let σ be in Traces(Outcome(f)). Then Ag after σ ∈ Pass if, and only if, the run ρ
such that trace(ρ) = σ (which is unique by determinism of Ag outside Fail) is such that
last(ρ) ∈ Pass, i.e. ρ ∈ Ex(DP) and last(ρ) ∈ AcceptDP . Hence DP after σ ∈ AcceptDP

and as the determinization is exact, σ ∈ Traces(P) and P after σ ∈ AcceptP , which gives
by definition σ ∈ Traces(S) ∧ T P after σ ∩ AcceptT P 6= ∅. �

The proof uses only properties of the game, and once more does not rely on the precise

91

Chapter 3 – Control strategies for offline testing of timed systems

strategy used.
Lastly, this method is exhaustive in the sense that for any non-conformance, there

exists a test case that allows to detect it, under fairness assumption.

Proposition 3.4.21. The test generation method is exhaustive: for any exactly deter-
minizable specification S and any implementation I ∈ I(S) making fair runs

¬(I tioco S)⇒ ∃(Ag, f) ∈ T C(S), I fails (Ag, f).

To demonstrate this property, a test purpose is tailored to detect a given non-
conformance, by targeting a related conformant trace.

Proof. Let S be a specification, and I ∈ I(S) a non-conformant implementation. By
definition of ¬(I tioco S), there exists σ ∈ Traces(S) and a ∈ R≥0 ∪ Σ! such that
a ∈ out(I after σ) and a /∈ out(S after σ). As S is repeatedly-observable, there exists
t ∈ R≥0 and b ∈ ΣSobs such that σ · t · b ∈ Traces(S). Because S is also non-blocking, if a is
a delay, we can take b ∈ ΣS! . Indeed, otherwise there would be no trace controlled by the
implementation for any finite time (say, for time a).

It is possible to build a test purpose T P that accepts exactly the trace σ·t·b. It suffices to
direct every transition that is not part of this trace to a sink location. As σ ·t ·b ∈ Traces(S),
it is also a trace of the product P = S × T P. As S is exactly determinizable and T P
is deterministic, P is exactly determinizable by allowing enough resources (number of
clocks and maximal constant) to DP. We thus obtain Traces(DP) = Traces(P) and
σ · t · b ∈ Traces(DP). Hence, the minimal elements of Pass are OT after σ · t · b.

From OT a test case (Ag, f) can be built, with f a rank-lowering strategy. By as-
sumption, the implementation is playing fair runs, hence f is winning. So there exists
ρ ∈ Outcome(f) such that trace(ρ) = σ · t · b, and thus there exists ρ′ ∈ Outcome(f) such
that trace(ρ′) = σ. By assumption, σ · a ∈ Traces(I), and depending on the nature of a:

• if a ∈ Σ! then σ · a ∈ Outcome(sAginit, f) as Ag is complete on Σ!. Hence σ · a ∈
ParRun(Ag, f, I) and as σ · a /∈ Traces(S) and the determinization is exact, σ · a /∈
Tracesconf(OT) and Ag after σ · a ∈ Fail. Hence I fails (Ag, f);

• if a is a delay, then a > t, and b ∈ Σ!. As b is controlled by the implementation, and
there is no invariant in Ag, σ · a ∈ Outcome(f). Hence σ · a ∈ ParRun(Ag, f, I) and
as σ · a /∈ Traces(S) and the determinization is exact, σ · a /∈ Tracesconf(OT) and
Ag after σ · a ∈ Fail. Hence I fails (Ag, f). �

92

3.5. Implementing Rank Lowering Strategies

The properties obtained in this last part correspond exactly to the properties already
obtained in [Ber+12] in the determinizable case, our results only adapt the formalism
to the game formulation, making it more precise, especially on the interaction between
the test strategy and the implementation, as expected from the game formulation. The
construction of rank-lowering strategies allows to keep the interesting properties of the
test cases, while adding an equally important information about the control of the tests:
the test strategies are winning in finite time (i.e. an outcome of the strategy cannot loop
infinitely without reaching a winning configuration) against all fair implementations.

3.5 Implementing Rank Lowering Strategies

The construction of a practical algorithm to implement a rank lowering strategy mainly
boils down to the computation of the (W j

i) hierarchy on a symbolic representation of the
game semantic. Although the construction points toward a backward implementation,
we chose a forward one in order to allow to (over) approximate the ranks or to use a
partial result while the exact ranks are being computed online. Furthermore, we argue that
extending this algorithm to the more general setting where Inconclusive configurations
exist is less complex than for a backward one.

3.5.1 Algorithm

In order to practically use the rank lowering strategies, an algorithm has to be devised to
deal with the necessary symbolic representation of locations and zones. For this we develop
on the algorithm proposed in [Cas+05], that presents an efficient on-the-fly approach
to construct winning strategies for timed games, using a zone-based representation. Our
symbolic algorithm presented in Algorithm 1 is inspired from this work, and uses at its
core a rank updating function detailed in Algorithm 2. In order to present these functions,
we first define (j, i)− as the maximal rank strictly lower than (j, i) in order to avoid the
distinction between (j, i− 1) and (j− 1,∞) in the algorithms. We also define, for a zone z,
a location `, an action α ∈ Σ, the set of states reached from (`, z) after α and some delay:

Postα((`, z)) = {s′ | ∃s ∈ (`, z), ∃t ∈ R≥0 s
α.t−→ s′}.

As Ag is deterministic, this set of states corresponds to a zone in a unique location.

93

Chapter 3 – Control strategies for offline testing of timed systems

Observe that the (W j
i) operators π and π′ (defined in Def. 3.4.2) use information about

the game structure, and are not restricted to the configurations explored by the algorithm.
In the following, we heavily rely on the properties of π and π′, the two functions used

to compute the sets (W j
i). We quickly formalize them bellow.

Proposition 3.5.1. For p a function in {π, π′} and S ′ a set of configurations, p(S ′) ≥ S ′

and p is increasing (i.e. S ′ ≥ S ′′ ⇒ p(S ′) ≥ p(S ′′)).

Proof. For the first property, p(S ′) ≥ S ′ is implied by the inclusion of null delays in tPred<.
For the second property, notice that PredΣ and tPred are increasing, and for π that S ′

decreases when S ′ increases. �

These properties transfer to the computation of (W j
i) and are used to ground the

algorithms. Although it was not formally stated before, it was already highlighted in
Figure 3.10.

To maintain coherence and ease the notations, we present the set of configurations
computed by the algorithm as unions of products of a location with a zone of valuations.
Of course an actual implementation of the algorithm should suppress the information
about locations, that is already referenced in the symbolic states.

The computation of an RLS realized by Algorithm 1 is based on a set Visited of
encountered symbolic states and a queue Waiting of transitions to be processed9. For each
symbolic state, two informations are stored: a list Depend of incoming transitions and
a dictionary W of zones associated with different ranks in the state. The algorithm is
based on a method updateRank that will be presented later and correctly updates the
estimates W (s) according to the available information. After an initialization taking care
of the timed successors of the initial configuration, denoted by (`init,

−→0) (lines 1 to 9),
the main loop starts in line 10 and iterates until the reachable part of the automaton is
explored, unless the initial configuration is a final one. In this loop, at each iteration a
transition is taken from Waiting and processed. There are two cases to consider, presented
in Figure 3.12, where the snake arrow represents the call to an edge, forward or backward.
If s′ /∈ Visited the transition was stored to explore and the first branch of the if executes
(line 13). It records the new s′ and analyses the local information as presented on the left
side of Figure 3.12. If new information is acquired, its backpropagation is planed (line 19).
The second situation corresponds to a backpropagation triggered by a previous call to

9. The specific order of computation of the transitions does not impact termination or correctness, but
can be of great importance for the efficiency.

94

3.5. Implementing Rank Lowering Strategies

line 19. In this case we are mostly interested in updating the ranks in the origin of the
transition, and backpropagate again if something has been updated. This corresponds to
the right side of Figure 3.12. Observe that line 25 is there to account for an exploration
that leads to a pre-existing state10.

s

s′

s′′ s′′

α

s

s′
s′′ s′′

α

Figure 3.12: The two kind of edges popped from Waiting.

Our algorithm is based on a data structure approximating the (W j
i). It takes the form

of a dictionary W (s) for each symbolic state s. In order to reduce the memory cost of W (s)
we chose to keep in memory only the ranks (j, i) that increase strictly the corresponding
zone e.g. such that W j

i) W j
i−1. The ranks that do not have their zone explicitly stored

hence refer to the greatest zone of lesser rank. If no such zone exists, then the zone is
empty.

Algorithm 2 describes the updateRank function. Its purpose is for a given state s
to update W (s)[(j, i)] according to W (.) of its successors. The general structure of the
algorithm is a while loop on the ranks. In order to compute more efficiently, and to
avoid the complex discussion about the unbounded number of i for a given j (and of j
in general), it relies on an identification of active ranks through active(j, i), i.e. ranks
in which W (s′)[(j, i)] strictly increases in an s′ of interest (either s or a successor). We
distinguish between local activity (in actloc,) which has to be updated directly, and activity
in a successor (in actsuc), that is of interest for the next rank. Furthermore, we identify the
maximal active rank in rmax

11. This is realized in the initialization (until line 8). In the
following we use the notations r.i and r.j to denote the components of a rank. The rest of
the algorithm is a loop in the ranks, that uses the jumpNext method to update the current
rank according to active. The loop terminates when we went far enough to ensure that no
more updates can be performed. Lines 10 to 13 compute the current estimation of W j

i

10. It corresponds to the case where this transition is not triggered by a backpropagation call.
11. The maximal rank may evolve during the algorithm execution as ranks are added to or removed

from active.

95

Chapter 3 – Control strategies for offline testing of timed systems

Algorithm 1: Computation of an RLS
1 Computation of an RLS
Input: an observable DTA Ag
Output: A symbolic transition system augmented with information about ranks
// Initialization

2 let s0 = (`init,
−→0) in

3 Visited← {s0}
4 Waiting← {(s0, α, s

′) | α ∈ Σ, s′ = Postα(s0)}
5 Depend(s0) = ∅
6 let z = s0 ∩Pass in
7 if z 6= ∅ then
8 W (s0)[(0, 0)]← z
9 updateRank(s0)

// Main
10 while Waiting 6= ∅ ∧ ((`init,0) /∈ W (s0)[(0, 0)]) do
11 e = (s, α, s′)← pop(Waiting)
12 if s′ /∈ Visited then
13 Visited := Visited ∪ {s′}
14 Depend(s′)← {(s, α, s′)}
15 let z = s′ ∩Pass in
16 if z 6= ∅ then
17 W (s′)[(0, 0)]← z
18 updateRank(s′)
19 Waiting := Waiting ∪ {e}
20 Waiting := Waiting ∪ {(s′, α, s′′) | α ∈ Σ, s′′ = Postα(s′)}
21 else
22 improved = updateRank(s)
23 if improved then
24 Waiting := Waiting ∪ Depend(s)
25 Depend(s′) := Depend(s′) ∪ {e}

96

3.5. Implementing Rank Lowering Strategies

according to the W (s′). Then, if this zone is strictly greater than the current approximate,
it is updated (starting line 19). Else, the data structure is cleared for this rank (lines 14
to 17). In both cases, local is updated.

The jumpNext method is used in updateRank to correctly select the next rank of interest.
Two main discussions are handled by Algorithm 3. First, local and distant ranks have a
different behaviour. Indeed, if something is stored in W (s)[(j, i)], it has to be updated and
thus we target (j, i). Else, we go to (j, i+ 1) as the construction of a zone only depends on
the zones of strictly lesser rank. This distinction is performed using the actloc subset of
active. Second, when the next active rank is after a control loss (i.e. j increases), we have
to know if that control loss can increase the zone. If the control loss operator (π′) has not
been applied to the current zone yet, it could lead to an increase of the zone and we go to
(j + 1, 0) to test it. Else we can go directly to the next active rank (with the discussion
according to its location).

Example 3.5.2. In Figure 3.13 an example of execution of updateRank is presented. On
the first row active(j, i) is represented, with the local subset being denoted by (l). On the
second row the action of the while loop is represented. The algorithm first looks at rank
(0, 1) which is both local and a successor of an active one. It is updated, and we consider
for this example that the region has strictly increased. Hence it becomes active and the
next iteration goes to (0, 2). This one is not increased and hence the next jump targets the
next active rank, (0, 4). As it is a local rank, we stay at (0, 4) and try to update it. Say that
it does not correspond to a greater region than the new (0, 1). In this case, it is suppressed
from the dictionary and the rank is not local anymore. For this example, we consider that
it is not active anymore. It leads to a call to jumpNext that targets the next control loss,
i.e. (1, 0). The example corresponds to the case where this control loss does not augment
the zone, and we jump just after the next active rank as we know that a control loss would
not help (it was just tried without success) and the next rank is not local. If (2, 2) does not
yield a strict zone increase, then updateRank terminates and the only key remaining in
W (s) is (0, 1).

Using a forward algorithm instead of a purely backward one allows to compute approx-
imate strategies (by requiring only the initial state to be in W (sinit)[(j, i)]), and avoids
(most) unreachable states while making it possible to extend the algorithm to prune a
(preprocessed) set of losing states (e.g. inconclusive states). Observe that if the strategies
are approximated, the (W j

i) are under-approximated i.e. the ranks are over approximated.

97

Chapter 3 – Control strategies for offline testing of timed systems

Algorithm 2: updateRank
1 updateRank
Input: a symbolic state s
Output: a boolean denoting whether an improvement has been performed

2 let actsuc((j, i)) be true iff W (s′)[(j, i)] 6= W (s′)[(j, i)−] for s′ being a successor of s.
3 and actloc((j, i)) be true iff W (s)[(j, i)] 6= W (s)[(j, i)−]
4 we write active((j, i)) = actsuc((j, i)) ∨ actloc((j, i))
5 and rmax = max(j,i)active((j, i))
6 Tempj = −1 // the last j for which a set has been improved
7 TempW = W (s)[(0, 0)] // the current set
8 j = 0; i = 1
9 while (j, i) ≤ (rmax.j + 1, 0) do

// We try to improve the set of rank (j, i)
10 if i = 0 then

// then we add a control loss
11 W ← π′(∪s′∈VisitedW (s′)[(j, i)−]) ∩ s
12 else
13 W ← π(∪s′∈VisitedW (s′)[(j, i)−]) ∩ s
14 if W ⊆ TempW then

// this set does not need to be explicitly stored
15 erase W (s)[(j, i)] // handles the data structure
16 actloc(j, i)← false
17 jumpNext
18 else
19 if W (s)[(j, i)] (W then

// the set was improved
20 W (s)[(j, i)]← W
21 actloc((j, i))← true
22 Tempj = j
23 TempW = W

24 i := i+ 1
25 return Tempj ≥ 0

98

3.5. Implementing Rank Lowering Strategies

Algorithm 3: jumpNext
1 jumpNext

// We jump to the next possible improvement
2 let nr be the next active rank, including the current one.
3 if j = nr.j then
4 if actloc(nr) then
5 i := nr.i
6 else
7 i := nr.i+ 1
8 else
9 if Tempj = j then

// we might win something more after a control loss
10

11 j := j + 1
12 i := 0
13 else
14 j := nr.j
15 if actloc(nr) then
16 i := nr.i
17 else
18 i := nr.i+ 1

Figure 3.13: An execution of updateRank

j:
i:

(l)

0
0

0
1

(l)

0
4

2
1

j:
i:

(l)

0
0

0
1

0
2

(l)

0
4

1
0

2
1

2
2

99

Chapter 3 – Control strategies for offline testing of timed systems

Furthermore it may be necessary to refine the approximation online if a control loss leads
to an unexplored part of the system.

Most importantly, the core of the computation happens inside updateRank, making
it easier to adapt the algorithm to different ways to construct the symbolic graph, both
forward and backward.

3.5.2 Properties

We prove some interesting properties of the algorithm by constructing them from properties
of updateRank and invariants of the main algorithm while loop.

The following lemma ensures that updateRank preserves the soundness of the approxima-
tion of the W j

i . Informally, it states that from an under-approximation of W j
i updateRank

cannot overestimate it (i.e. overestimate the rank).

Lemma 3.5.3. The following property is an invariant of updateRank:

∀s ∈ Visited, ∀ i, j ∈ N, W (s)[(j, i)] ⊆ W j
i .

Proof. Suppose that the property is satisfied. We show that the property is preserved by
induction on (j, i). Let

P (jm, im) = ∀j ≤ jm, i ≤ im, ∀s ∈ Visited,W (s)[(j, i)] ⊆ W j
i .

• for W (s)[(0, 0)] nothing is updated so P (0, 0) remains true;

• fix j, i ∈ N and suppose P (j, i). For a given s, either W (s)[(j, i+ 1)] is not updated
and the property trivially holds, or

W (s)[(j, i+ 1)] = π(∪s′∈VisitedW (s′)[(j, i)]) ∩ s.

By hypothesis, ∪s′∈VisitedW (s′)[(j, i)] ⊆ W j
i . Furthermore, π is an increasing function.

Hence W (s)[(j, i + 1)] = π(∪s′∈VisitedW (s′)[(j, i)]) ∩ s ⊆ π(W j
i) ∩ s = W j

i+1 ∩ s. It
comes that P (j, i+ 1) is satisfied after the call to updateRank;

• fix j ∈ N. We denote by ij the minimal i such that (∀i′ > i, W j
i = W j

i′) holds. Suppose
P (j, ij). For a given s, if W (s)[(j+ 1, 0)] is not updated then the property is trivially
preserved. Else, with the same arguments as in the previous case, W (s)[(j + 1, 0)] =

100

3.5. Implementing Rank Lowering Strategies

π′(∪s′∈VisitedW (s′)[(j, ij)]) ∩ s ⊆ W j+1
0 . It comes that after updateRank P (j + 1, 0) is

satisfied. �

The following lemma allows to say that W (s) is increasing as a function of the rank,
when it corresponds to a coherent approximation.

Lemma 3.5.4. For s ∈ Visited, (j, i) > (j′, i′), when updateRank is not processing a rank
between these two, we have that W (s)[(j, i)] ⊇ W (s)[(j′, i′)].

Proof. The proof can be done by a direct induction using the fact that either W (s)[(j, i)]
is not explicitly stored, which means that W (s)[(j, i)] = W (s)[(j, i)−] or W (s)[(j, i)] =
π(∪s′∈VisitedW (s)[(j, i)−]) ∩ s ⊇ ∪s′∈VisitedW (s)[(j, i)−] ∩ s = W (s)[(j, i)−] as π(S) ⊇ S, or
the same with π′. �

We can now use the previous result to state that updateRank correctly updates the
approximation.

Lemma 3.5.5. The application of updateRank ensures the two following properties:

• if before the call,

∀s ∈ Visited, ∀i, j ∈ N, W (s)[(j, i+ 1)] ⊆ π(∪s′∈VisitedW (s′)[(j, i)]) ∩ s

then, after the call,

∀s ∈ Visited, ∀i, j ∈ N, W (s)[(j, i+ 1)] = π(∪s′∈VisitedW (s′)[(j, i)]) ∩ s;

• if before the call,

∀s ∈ Visited, ∀i, j ∈ N, W (s)[(j + 1, 0)] ⊆ π′(∪s′∈VisitedW (s′)[(j + 1, 0)−]) ∩ s

then, after the call,

∀s ∈ Visited, ∀j ∈ N,W (s)[(j + 1, 0)] = π′(∪s′∈VisitedW (s′)[(j + 1, 0)−]) ∩ s.

Proof. We prove the first property. The same proof can be used for the second one with
π′ instead of π. Fix j, i ∈ N and s ∈ Visited. Suppose that before the call to updateRank,
∀s ∈ Visited, ∀i, j ∈ N, W (s)[(j, i+ 1)] ⊆ π(∪s′∈VisitedW (s′)[(j, i)]) ∩ s.

101

Chapter 3 – Control strategies for offline testing of timed systems

• if (j, i) is processed, then when the counter of the function are equal to (j, i) we
discuss according to the condition W ⊆ TempW . If it is satisfied, W (s)[(j, i)] is
suppressed from the data structure, meaning that W (s)[(j, i + 1)] = TempW . We
furthermore have W ⊇ TempW as W ⊇ W (s)[(j, i)] as π(S) ⊇ S and same for π′,
and W (s)[(j, i)] ⊇ TempW by Lemma 3.5.4. It comes that W (s)[(j, i + 1)] = W

and the property is satisfied. If the condition W ⊆ TempW is not met, either the
test W (s)[(j, i+ 1)] (W is satisfied, and in this case the value of W (s)[(j, i+ 1)]
is updated to the correct value, or it is not, and by hypothesis, we already have
W (s)[(j, i+ 1)] = W = π(∪s′∈VisitedW (s′)[(j, i)]) ∩ s;

• if (j, i) is not processed by updateRank, then it means that

π(∪s′∈VisitedW (s′)[(j, i)]) ∩ s = π(∪s′∈VisitedW (s′)[(j, i)−]) ∩ s.

Indeed it means that for all s′ that matter for s, there is no increase in the region
between these two ranks. In this case, we know that (j, i) is not a key of W (s) as
the rank is not local (else it would have been updated). It comes that W (s)[(j, i)] =
W (s)[(j, i)−]. By induction W (s)[(j, i)−] = π(∪s′∈VisitedW (s′)[(j, i)−]) ∩ s (the in-
duction is correctly initialized as (0, 1) is processed). It comes that W (s)[(j, i)] =
π(∪s′∈VisitedW (s′)[(j, i)]) ∩ s. �

Now that the properties of the auxiliary function are stated, we discuss of the while
loop invariants in the main algorithm.

Lemma 3.5.6. The following properties are true at the beginning and end of every while

loop iteration:

• ∀ s ∈ Visited, ∀ α ∈ Σ, noting s′ = Postα(s):
(s, α, s′) ∈ Waiting ∨ (s′ ∈ Visited ∧ (s, α, s′) ∈ Depend(s′));

• ∀s ∈ Visited, ∀ i, j ∈ N, W (s)[(j, i)] ⊆ W j
i ;

• ∀s ∈ Visited, ∀i, j ∈ N,
W (s)[(j, i+ 1)] ⊆ π(∪s′∈VisitedW (s′)[(j, i)]) ∩ s ∧
(W (s)[(j, i+ 1)] = π(∪s′∈VisitedW (s′)[(j, i)]) ∩ s ∨
∃(s, α, s′) ∈ Waiting, s′ ∈ Visited) ;

102

3.5. Implementing Rank Lowering Strategies

• ∀s ∈ Visited, ∀j ∈ N,
W (s)[(j + 1, 0)] ⊆ π′(∪s′∈VisitedW (s′)[(j + 1, 0)−]) ∩ s ∧
(W (s)[(j + 1, 0)] = π′(∪s′∈VisitedW (s′)[(j + 1, 0)−]) ∩ s ∨
∃(s, α, s′) ∈ Waiting, s′ ∈ Visited).

Proof. We prove each point independently.

• we prove the first invariant by induction. Before the loop execution, Visited = {sinit}
and Waiting = {(sinit, α, s′) | s′ = Postα(sinit)}. Hence the property is satisfied.
During the loop execution, the property is preserved. Indeed, if e = (s, α, s′) is the
considered edge, if s′ ∈ Visited the only array taken out of Waiting is e and it is
added to Depend(s′). Furthermore no state is added to Visited, hence the property
is preserved. Else, s′ /∈ Visited and (1) e is added to Depend(s′) which ensures the
property for Visited \ {s′}; (2) {(s′, α, s′′) | s′′ = Postα(s′)} is added to Waiting,
ensuring the property of s′. In both cases, the property is preserved;

• we will show the property by induction:

– before the loop start, the property is satisfied. Indeed, either W (sinit)[(0, 0)] is
empty, and in this case all the W (sinit)[(j, i)] are empty, or W (sinit)[(j, i)] =
sinit∩Pass ⊆ Pass = W 0

0 . In this case, observe that this satisfies the property,
and we know by Lemma 3.5.3 that updateRank preserves it;

– with the same argument as in the base case, we know that W (s)[(0, 0)] ⊆ W 0
0 .

Hence, by induction hypothesis, the property is always satisfied before the call
to updateRank, and this call preserves it by Lemma 3.5.3.

• the property is satisfied when first entering the loop. Indeed, if sinit ∩ Pass = ∅,
W (sinit) is empty and the property trivially holds. Else, notice that W (sinit)[(j, i+
1)] = W (sinit)[(0, 0)] ⊆ π(W (sinit)[(j, i)]) ∩ s before the call to updateRank as only
W (sinit)[(0, 0)] adds some states (i.e.implicitly, all other indices have equal sets). By
Lemma 3.5.5 the property is ensured upon entering the loop.
During the loop execution, when s′ is a new state, for any state previously in Visited
the property is ensured by induction hypothesis. For s′, if there is no successor of
s′ in Visited then the same proof as for sinit ensures that the property is satisfied
at the end of the loop iteration. Else, such a (s′, α, s′′) is in Waiting with s′′ ∈
Visited, and W (s′) is empty, and thus W (s′)[j, i+ 1] is included in every set, and in

103

Chapter 3 – Control strategies for offline testing of timed systems

π(∪s′∈VisitedW (s′)[(j, i)]) ∩ s. This is enough to ensure the property.
When s′ is not a new state, the property is ensured for Visited \ {s} by induction
hypothesis. For s, we know that W (s)[(j, i+ 1)] ⊆ π(∪s′∈VisitedW (s′)[(j, i)]). Hence
by Lemma 3.5.5 the call to updateRank ensures the property;

• this property is proven as the previous one, using the second case of the same lemma.
�

For the following property, we restrict A to its reachable part. This allows to state the
third equation without intersecting W j

i with Reach(A) or ∪s∈Visiteds.

Proposition 3.5.7. Upon termination of the algorithm, the following properties hold:

∀s ∈ Visited, ∀i, j ∈ N, W (s)[(j, i)] ⊆ W j
i (A),

Waiting = ∅ ⇒ ∀q ∈ ReachA((`init,0)),∃s ∈ Visited, q ∈ s,

Waiting = ∅ ⇒
(
∀s ∈ Visited,∀ j, i : s \W (s)[(j, i)] ⊆ s \W j

i (A)
)
.

Proof. The first property is a direct consequence of Lemma 3.5.6 second point.
For the second property, we reason by induction on an execution.

Consider q = (`, v) ∈ Reach((`init, 0)). There exists a path qi
ai−→ qi+1 inA with q0 = (`init, 0)

and qn = q. We associate an element of Visited to each qi by induction as follows: q0 ∈ sinit
by construction. If ai ∈ R, si+1 = si. As the elements of Visited are closed by delays, we
have qi+1 ∈ si+1. Else si+1 = Postai(si). Observe that si+1 is guaranteed to be in Visited
by the first point of Lemma 3.5.6 as Waiting = ∅. By induction, we have sn ∈ Visited such
that q ∈ sn.
In order to prove the third property, we suppose that Waiting = ∅ and prove the property
by induction:

• for (0, 0) we have that W (s)[(0, 0)] = s ∩ Pass = s ∩W 0
0 . So s \W (s)[(0, 0)] =

s \ (s ∩W 0
0) = s \W 0

0 ;

• for (j, i + 1) suppose that the property is satisfied for (j, i). s \W (s)[(j, i + 1)] =
s\π(∪s′∈VisitedW (s′)[(j, i)]) by the third point of Lemma 3.5.6. Plus, the induction hy-
pothesis implies thatW (s′)[(j, i)] ⊇ W j

i ∩s′. It comes that π(∪s′∈VisitedW (s′)[(j, i)]) ⊇
π(∪s′∈Visited(s′∩W j

i)) as π is an increasing function. Hence, s\π(∪s′∈VisitedW (s′)[(j, i)]) ⊆
s \ π(∪s′∈Visited(s′ ∩ W j

i)). Furthermore s \ π(∪s′∈Visited(s′ ∩ W j
i)) = s \ π(W j

i ∩

104

3.6. Generalizing Rank-Lowering Strategies

(∪s′∈Visiteds′)). By using the second equation and restricting A to its reachable part,
we have (since Waiting = ∅): s \ π(W j

i ∪s′∈Visited s′) = s \ π(W j
i) = s \W j

i+1. In the
end, we have that s \W (s)[(j, i+ 1)] ⊆ s \W j

i+1;

• for (j + 1, i) we follow the same ideas using the fourth point of Lemma 3.5.6 instead
of the third, and the properties of π′ instead of those of π. �

Together, those three properties ensure that either the algorithm terminates early, and
then the W j

i are under approximated (i.e.the rank is over approximated) or it computes
exactly the W j

i (on the reachable part).

3.6 Generalizing Rank-Lowering Strategies

This section discusses the use of rank-lowering strategies in the most general case where
the reachable configurations of the testing game are not all co-reachable from Pass. In
this case, Inconclusive verdicts reappear and, given that we consider difficult games
where it is necessary to let the system take (a possibly unbounded number of) uncontrol-
lable transitions to reach our targets, we cannot ensure that our strategies are winning
(i.e. eventually reach Pass or Fail). Still it is possible to define resistant strategies that
try to avoid the Inconclusive verdict as much as they can - while pursuing a conclusive
one.

We define resistent strategies through the notion of k-resistance. Intuitively, a con-
figuration is considered k-resistant if there is a path from it to the goal along which the
system needs to play more than k well chosen uncontrollable actions to reach Inconclu-
sive. Bluntly speaking "it remains more than k hurtful events away from Inconclusive
configurations".

In the following, we first present the notion of resistance in Section 3.6.1, and then
describe a general notion of resistant strategies, before specializing it for resistant rank-
lowering strategies 3.6.2.

Remark 3.6.1. We choose the term of resistance over the one of robustness as this
section treats of pure game theory. In this thesis, robustness is always meant with respect
to reality, as opposed to "perfect" formal models. Specifically, we consider that a method or
model is robust when it copes well with errors in measures and control.

105

Chapter 3 – Control strategies for offline testing of timed systems

3.6.1 k-Resistance

First, we need to define the notion of inconclusive verdict. A configuration s is said
to be inconclusive with respect to a target set Pass when s /∈ coReach(Pass), i.e. a
configuration is inconclusive as soon as we cannot construct a strategy leading to the
accepting verdict. Thus, formally Inconclusive = coReach(Pass).

As we now authorize the presence of inconclusive configurations, the conditions on
specifications and test purposes can be relaxed: we can consider specifications without
restart transitions and products of specifications and test purposes that are not (exactly)
determinizable.

The notion of k-resistance is defined similarly to the ranks of rank-lowering strategies,
by considering that a “hurtful” uncontrollable transition (or delay) is a control loss. The
main difference is that, as this is a safety matter and not an optimization problem, the
number of controllable steps separating a configuration from a resistance loss is irrelevant.
Based on the prior intuition of resistance, we have that the set of (at least) 0-resistant
configurations is coReach(Pass).

Using this, we define the k-resistant sets by induction.

Definition 3.6.2. For a TGA Ag with a set of target configurations Pass, we define the
k-resistant sets Rk for k ∈ N inductively as:

R0 = coReach(Pass)

Rk+1 = {s | ∃µ, s µ−→Pass ∧ ∀µ1µ2 = µ, s
µ1−→ s′ ⇒

s′ /∈
(
PredΣuco(Rk) ∪ tPred<(Rk,PredΣco(Rk))

)
\Pass}

R∞ = limk→∞Rk

The construction of Rk+1 relies on the following intuition: a configuration can resist to
k+ 1 control losses if there exists a partial run from it to Pass such that all uncontrollable
deviations from this partial run are k resistant. Uncontrollable delays (i.e. delays that
cannot be avoided with a controllable actions) are considered as control losses with the
additions of tPred<(Rk,PredΣco(Rk)) in the set of configurations to avoid in the definition
of Rk+1.

Remark 3.6.3. It is not explicitly required that s′ /∈ Rk in the definition of Rk+1 as this
condition is already ensured by s′ /∈ tPred<(Rk,PredΣco(Rk)).

106

3.6. Generalizing Rank-Lowering Strategies

The following lemma gives some insight on the structure of (Rk)k∈N, which is reminiscent
of the (W j

i) structure.

Lemma 3.6.4. For any k ∈ N, we have that

Rk+1 ⊆ PredΣuco(Rk) ∩ tPred<(Rk,PredΣco(Rk)) ∪Pass

and Rk+1 ⊆ Rk.

Proof. We first prove the first property. Consider s ∈ Rk+1. By applying the definition, either
s ∈ Pass and we can conclude, or there exists µ such that s µ−→Pass∧∀µ1µ2 = µ, s

µ1−→ s′

and either s′ ∈ Pass or s′ /∈ PredΣuco(Rk) ∪ tPred<(Rk,PredΣco(Rk)). By taking µ1 = ε,
we can conclude that s /∈ PredΣuco(Rk) ∪ tPred<(Rk,PredΣco(Rk)), i.e. s ∈ PredΣuco(Rk) ∩
tPred<(Rk,PredΣco(Rk)), which implies our first property.

Using this first property we obtain that Rk+1 ⊆ Rk by noticing that ∀k ∈ N,Pass ⊆ Rk

and tPred<(Rk,PredΣco(Rk)) ⊆ Rk. This last inclusion comes by applying the complement
to tPred<(Rk,PredΣco(Rk)) ⊇ Rk. �

The idea of the Rk hierarchy is to propose a lower bound to the number of actions that
can be taken by an implementation to reach an Inconclusive verdict, by ensuring that
such an incontrollable action cannot decrease k by more than 1. As long as k ≥ 0 we know
that it is possible to reach a Pass verdict if we play a correct strategy.

Remark 3.6.5. We construct Rk with a forward-completion approach. This is useful to
avoid "local maxima" of resistance that would trap strategies or require expensive computa-
tions to counter, but it also has some flaws, the main one being that if an unsafe set of
configurations is unavoidable on the partial run to Pass, then all previous configurations
cannot be distinguished, as illustrated in Figure 3.14.

It is possible to leverage this issue by considering "resistance up to a point" to distinguish
such configurations but it would either require an enormous computational and memory
effort (if every e.g. region is considered) or (more reasonably) expert knowledge to identify
bottlenecks and ask for a refinement. This is not discussed here.

To ensure that the hierarchy of k-resistant sets can be computed, a first step is to
prove that despite being in theory infinite, only a finite number of different k appear for a
given game and reachability objective.

Proposition 3.6.6. For a TGA Ag and a reachability objective Pass, the number of
different elements of (Rk)k∈N∪{∞} is finite.

107

Chapter 3 – Control strategies for offline testing of timed systems

R∞R0

Inconclusive

c?

u!

R0

Figure 3.14: A game with undistinguishable states for the Rk hierarchy.

Proof. It is easy to see that a Rk contains every region it intersects, as it depends on
possible transitions. Hence, if there is an infinite number of different (Rk)k∈N (we can omit
R∞ without loss of generality as it is a unique element) we can find an infinite sequence of
location-region pair (`i, regi)i∈N and an increasing mapping function m : i 7→ k associating
a k to each element of the sequence such that (`i, regi) ⊆ Rm(i)+1 \Rm(i). By Lemma 3.6.4
we know that (Rk)k∈N is a decreasing sequence. Thus for each infinitely many k > 0 such
that Rk 6= Rk−1, m−1(k) points to new pairs of locations and regions.

As there are only finitely many such pairs, this is impossible. �

The previous definition of resistance is intuitive (mathematically speaking), but does
not hint toward an algorithm to compute the sets. The following characterization will
point toward a computation.

Proposition 3.6.7. Consider a TGA Ag. An equivalent definition of Rk is:

R−1 = LAg × R|C
Ag |

≥0

Rk+1 = lfp
[
S ′ 7→Pass

∪tPred<
(
S ′,PredΣuco(Rk) ∪ tPred<(Rk,PredΣco(Rk))

)
∪tPred≤

(
PredΣ(S ′),PredΣuco(Rk) ∪ tPred<(Rk,PredΣco(Rk))

)]

R∞ = lfp[k 7→ Rk]

where lfp is the least fix point operator.

Remark 3.6.8. As for the (W j
i), it is necessary to distinguish PredΣ(S ′), on which we want

to implement some constraints (and thus use tPred≤) and S ′ that should not be constrained

108

3.6. Generalizing Rank-Lowering Strategies

(and hence handled with tPred<). For example, constraining S ′ could be problematic when
starting from Pass if there exists uncontrollable transitions from Pass to undesirable
configurations.

Proof. The proof is made by induction. First, notice that since R−1 is the set of all
configurations, R−1 = ∅. Thus the characterization of R0 is exactly the definition of
co-reachability of Pass as a fix-point and it matches the definition.

Now consider for k ∈ N that the definition and characterization of Rk match. We make
the proof for k+1 by double inclusion. Let us note Di the definition of Ri and Fi the fixpoint
characterization. We will furthermore note Vi = PredΣuco(Ri) ∪ tPred<(Ri,PredΣco(Ri))
when it is known that Di = Fi.

Dk+1 ⊆ Fk+1 Consider s ∈ Dk+1. By definition there exists s µ−→ s′ with s′ ∈ Pass. If
s ∈ Pass ⊆ Fk+1 we have our result. Else, consider a partial run ρ = s0γ1...γnsn

corresponding to µ. We show by induction that all si are in Fk+1. Without loss
of generality, we consider that there exists 0 ≤ j < n such that for all 0 ≤ i ≤ j,
si /∈ Pass and conversely for j < i ≤ n, si ∈ Pass. First, for all such i > j,
si ∈ Pass ⊆ Fk+1. Next, for i ≤ j, considering si+1 is in Fk+1, we discuss on
γi+1 ∈ E ∪ R≥0.

• If γi+1 ∈ E then si ∈ PredΣ(si+1)\Vk byDk+1. Thus si ∈ tPred≤
(
PredΣ(si+1),Vk

)
.

It comes that si ∈ Fk+1.

• If γi+1 ∈ R≥0 then si ∈ tPred<(si+1 ∪Pass,Vk). Indeed we get the restriction
by applying the constraint of Dk+1 for µ1 = γ1 . . . γiγ

′
i+1 with 0 ≤ γ′i+1 < γi+1.

For each such signature, either it ends in Pass or in Vk, hence the result. It
comes that si ∈ Fk+1.

By induction, it comes that s = s0 ∈ F .

Fk+1 ⊆ Dk+1 It suffices to prove that D is a fixpoint of

S ′ 7→ Pass ∪ tPred(S ′ ∪ PredΣ(S ′), Rk ∪ PredΣuco(Rk) ∪ tPred<(Rk,PredΣco(Rk)))

that we will note f here. First note that for any sets S ′ and V , tPred<(S ′, V) ⊇ S ′,
such that f(Dk+1) ⊇ Dk+1. It remains to prove that f(Dk+1) ⊆ Dk+1. We discuss
according to the cases of f :

109

Chapter 3 – Control strategies for offline testing of timed systems

• Pass ⊆ Dk+1;

• for s ∈ tPred<(Dk+1,Vk) we know that there exists t ∈ R≥0 such that s t−→
s′ ∈ Dk+1. Furthermore, by definition of Dk+1, s′

µ−→Pass. By aggregating the
constraints on Vk on t and µ it comes that s tµ−→ Pass proves that s′ ∈ Dk+1;

• for s ∈ tPred≤(PredΣ(Dk+1),Vk), we can similarly construct s eµ−→ Pass to prove
that s ∈ Dk+1.

Now to conclude on R∞ it is enough to remark that by Prop. 3.6.6, R∞ is a Rk for k ∈ N.
�

Remark 3.6.9. The function iterated is close to the π function defining W j
i in its

construction, but its semantic differs greatly: allowing predecessors by uncontrollable
actions and even more importantly avoiding a fix set makes a greatly wider fix point.

This characterization could equivalently start from R0 = coReach(Pass). This defini-
tion however highlights the inductive nature of R0 and unites the computation for k = 0
and k > 0. We can use it to insist on the forward-completion of the k-resistant sets.

Corollary 3.6.10. For any k ∈ N and s ∈ Rk, there exists a partial run ρ such that
s
ρ−→Pass and for any s′ reached from s after a prefix of ρ, s′ ∈ Rk.

Proof. The characterization function f constructs such a partial run iteratively. �

Example 3.6.11. Consider the timed game automaton over C = {c1, c2} depicted in
Figure 3.15 where Pass is `5 (true guards and empty resets are omitted for the sake of
readability). The inconclusive verdicts and different safety ranks are displayed in the table
below in the form of location/zone pairs.

Inconclusive `3 × true, `2 × c1 ≥ 3
R0 \R1 `2 × c1 < 3, `8 × (c1 ≤ 1 ∧ c2 < c1)
R1 \R2 `1 × c1 < 3, `8 × c1 > 1, `8 × c1 ≤ c2

R2 \R∞ `6 × true, `7 × true
R∞ `4 × true, `5 × true, `1 × c1 ≥ 3

Notice that if most of control losses defining ranks correspond to uncontrollable transitions,
we have an example in `2 or `8 of a control loss due to an uncontrollable delay: in `2 for
c1 < 3, the condition on tPred<(Rk,PredΣco(Rk)) is the only thing stopping the zone to be
in R1. The same goes for the zone (c1 < 1 ∧ c2 ≤ c1) in `8.

110

3.6. Generalizing Rank-Lowering Strategies

`1 `2 `3

`4

`5

`8

`6 `7

!a
c1 < 3

!a
c1 < 3 !a

c1 ≥ 3

!a
c1 ≥ 3

?b

?c
c1 ≤ 2

!a
c ≥ 1
{c1}

?b

?b

?b

!a
{c1}

!a
{c2}

!a
c1 = 1 ∧ c2 < 1

?b
c1 > 1

Figure 3.15: A TGA with two clocks, considering Pass = `5.

Finally, we point out that choosing to enhance the resistance (i.e. go from a k to a
k + 1 resistant configuration) cannot be done without taking risks.

Lemma 3.6.12. Let k ∈ N and s ∈ Rk \ Rk+1. Then for any partial run ρ, s ρ−→ s′ ∈
Rk+1 ⇒ ∃ρ′ ∈ fPref(ρ), s ρ′−→s′′ ∈ Rk ∪ PredΣuco(tPred<(Rk,PredΣco(Rk)) with fPref(ρ) the
set of prefixes of ρ.

Proof. We conduct this proof by contradiction. Consider ρ such that s ρ−→s′ ∈ Rk+1 and for
all prefixes ρ′, s ρ′−→s′′ /∈ Rk ∪ PredΣuco(Rk) ∪ tPred<(Rk,PredΣco(Rk)). Then, by induction,
iterating the function f defined in Prop. 3.6.7 will prove that s ∈ Rk+1. �

This impossibility to enhance resistance without taking risks entails that it should not
be a safety decision to enhance it. Instead, the optimization part of the strategy should
weight it with its own criterions e.g. is it worth to take that risk, or should another one
be preferred?

3.6.2 Combining resistance and optimization

In this section, we explain how to combine safety with respect to the Inconclusive verdict
-which is expressed by the mean of so-called safety first strategies- and optimization with
respect to a reachability objective.

111

Chapter 3 – Control strategies for offline testing of timed systems

Safety first strategies The k-resistant sets do not retain enough information to decide
what a player should do to achieve the reachability objective, but they advise about some
actions that should not be proposed to avoid as much as possible the Inconclusive verdict.
Using them, we define a set of safety first strategy that restrain their choices to actions
that are considered "safe" by the resistance hierarchy. For that, we extend the usual notion
of strategy with an aim token. This will extend strategies in the case where it relies on its
adversary to take a move, by specifying a set of possible actions of the adversary that are
expected. Although the player cannot control these actions, the aim is used to prove that
the strategy aims for a safe configuration.

Definition 3.6.13. A strategy aim for a strategy f is a partial function af from runs
to sets of transitions that is coherent with the strategy, i.e. when f(ρ) = (t, a) if a ∈ Σco

then af(ρ) = {e ∈ E | act(e) = a ∧ ρ t·e−→} and when a = ⊥, af(ρ) ⊆ {e ∈ E | act(e) ∈
Σuco ∧ ∃t′ ≤ t, ρ

t′·e−→}. We take the convention that an empty aim corresponds to a delay
only.

Aims can be used to complement the strategy definition, to add additional constraints
on its behaviour. We use it to specify safety-first strategies.

Definition 3.6.14. A strategy f in a deterministic TGA Ag with a reachability objective
Pass is considered to be safety first when for all finite ρ such that last(ρ) /∈ Pass, with
f(ρ) = (t, a),

• if a ∈ Σco: last(ρ) ∈ Rk ⇒ last(ρ) t·e−→ s ∈ Rk with e the unique transition enabled
such that act(e) = a;

• if a = ⊥ and af (ρ) 6= ∅: last(ρ) ∈ Rk ⇒ ρ
t′·e−→ s ∈ Rk for all e ∈ af (ρ) and all t′ ≤ t

such that e is enabled after t′;

• if a = ⊥ and af (ρ) = ∅: last(ρ) ∈ Rk ⇒ ρ
t−→s ∈ Rk .

The set of safety first strategies of a game Ag is noted SFAg .

Remark 3.6.15. This definition of safety-first strategies is tailored for reachability objec-
tives but could easily be adapted for other objectives. We only enforce that the strategy is
only safety-first until the game is won to relieve technical discussion about actions after
the objective is reached.

112

3.6. Generalizing Rank-Lowering Strategies

These strategies are called safety first because if there exists a safe partial run (as safe
as the current configuration at least) they will try to follow it regardless of the efficiency
cost. As emphasized by Lemma 3.6.12 this is the strongest requirement one can make on
strategies.

Safety first rank lowering strategies A simple combination of (Rk) and (W j
i) propos-

ing to simply play "safety first" and optimize in the set of safest moves fails to generate
effective strategies. Indeed, although they both recommend somewhat related runs, these
ones can differ, and taking a local decision can be difficult. Figure 3.16 (discussed in
Example 3.6.16) proposes a timed automaton that traps a memoryless strategy in a loop.
Notice that this kind of difficulty does not depend on the timed nature of the automaton,
but arises from the conflict between optimization and safety. To highlight it, no clock
constraint is put in this example.

Example 3.6.16. In the automaton displayed in Figure 3.16 a memoryless strategy trying
to reach A using only local information about Rk and W j

i would either be unsafe (and
ignore the safest path 1-2-3) or get stuck between locations `1 and `4. Indeed, after `1,
all directly reachable locations are in R∞ and the best W j

i is (1, 1) in `4. But once in `4,
prioritizing safety means avoiding the risky location `5 and going back to `1.

This issue arises from a form of dependency tracking problem: `4 is safe only because
`1 is, so there is no point in going in `4 from `1: this does not progress along a safe path.

In order to prevent such blocking situations, we first compute the (Rk), and use them
to define (kW j

i) and a safety first equivalent of rank lowering strategies.

Definition 3.6.17. Given the sequence (Rk)k∈N∪{∞}, we define the sequence (kW j
i)j,i∈N

as:

• kW 0
0 = Pass for all k;

• kW j
i+1 = πk(

⋃
k′≥k

k′W j
i) where πk(S ′) = π(S ′) ∩Rk+1;

• kW j+1
0 = π′k(

⋃
k′≥k

k′W j
∞) where π′k(S ′) = π′(S ′) ∩Rk+1;

Here the intersection of the operators definingW j
i (π and π′) with Rk+1 comes from the

backward nature of the computation: by ensuring that k does not increase when computing
the predecessors, we ensure that it does not decrease when playing forward. Using this
(kW j

i), we can now find back some of the useful results we have on (W j
i).

113

Chapter 3 – Control strategies for offline testing of timed systems

A

`3`2`1start

`5`4

`6

c?

c?

u!u! u!

u!

c? c?

c?

c?

c?

c? c?

L A `1 `2 `3 `4 `5 `6

W j
i (0, 0) (3, 0) (2, 0) (1, 0) (1, 1) (1, 0) -

Rk ∞ ∞ ∞ ∞ ∞ 0 −1

Figure 3.16: A TA trapping a memoryless strategy

Proposition 3.6.18. There exists i, j ∈ N such that

Reach(Ag) \ (Inconclusive ∪ Fail) ⊆
⋃
k∈N

kW j
i

Proof. Let s ∈ Reach(Ag) \ (Inconclusive ∪ Fail) be a reachable configuration. We have
that s ∈ coReach(Pass) as s /∈ Inconclusive, and hence there exists a maximal k such
that s ∈ Rk by finiteness of the number of such k (Prop. 3.6.6). Thus by Corollary 3.6.10
there exists a partial run ρ from s to Pass that stays in Rk. By noting n the length of this
partial run, we prove that s ∈ kW n

0 by induction on ρ. When n = 0, s ∈ Accept = ∞W 0
0

and the property holds. If we assume that the result holds for all partial runs of length n
and consider s ∈ Rk such that its corresponding partial run ρ = (s, γ, s′).ρ′ has length n+1.
Then by induction hypothesis, as s′ is in Rk, s′ ∈ kW n

0 and s ∈ π′k(kW n
0), i.e. s ∈ kW n+1

0 .
�

This result ensures that we have a rank information available everywhere it can be
used. We can thus rank the configurations using this information.

114

3.6. Generalizing Rank-Lowering Strategies

Definition 3.6.19. Let s ∈ Reach(Ag) \ (Inconclusive ∪ Fail). The rank of s is:

r(s) = (ks = arg max
k∈N∪{∞}

s ∈ Rk, js = arg min
j∈N

s ∈ ksW j
∞, is = arg min

i∈N
s ∈ ksW js

i)

We can equip the ranks with an order 4 induced by the lexical order on (≥,N)×(≤,N)2,
i.e. (k, j, i) 4 (k′, j′, i′) if and only if k > k′ or k = k′ and either j < j′ or j = j′ and i ≤ i′.
We note s v s′ when r(s) 4 r(s′).

Proposition 3.6.20. v is a total preorder on Reach(Ag) \ (Inconclusive ∪ Fail).

Proof. v inherit transitivity and reflexivity from 4. It is not antisymmetric as different
configurations can have the same rank12. It is total thanks to Prop.3.6.18 that assures us
that Reach(Ag) \ (Inconclusive ∪ Fail) is covered by the (kW j

i). �

We define ≺ as the strict relation corresponding to 4, and we write r−(s) for the
greatest rank such that r−(s) ≺ r(s), and W−(s) for the associated kW j

i . Then using this
new notion of W−(s), a safety first rank lowering strategy can be defined exactly in the
same way that it was when using only W j

i .

Definition 3.6.21. We call safety-first rank-lowering strategy a rank lowering strategy
defined using W−(s) on the ranks induced by (kW j

i). We define the aim of these rank
lowering strategies in the following way (according to the cases of Definition 3.4.9), with
s = last(ρ):

• if s ∈ tPred(PredΣco(W−(s))) then f(ρ) = (t, a) with a ∈ Σco and af(ρ) = {e} the
unique e enabled after ρ · t such that act(e) = a;

• if s ∈ tPred(PredΣuco(W−(s))), then f(ρ) = (t,⊥) with t such that s t−→ s′ /∈
PredΣuco(W−(s)), ∃t′ < t, s t′−→ s′′ ∈ PredΣuco(W−(s)) and s′′ e−→ s′′′ ∈ W−(s) with
act(e) ∈ Σuco. We take af (ρ) to be the set of such e.

• in the two last cases af (ρ) = ∅.

The name of safety-first rank lowering strategy is justified by the following proposition.

Proposition 3.6.22. Let f be a safety first rank lowering strategy computed in a deter-
ministic TGA Ag. Then f ∈ SFAg .

12. Even configurations coming from different regions or zones can have the same rank.

115

Chapter 3 – Control strategies for offline testing of timed systems

Proof. We discuss according to the case in the definition of rank-lowering strategy as given
in Definition 3.4.9. Noting s = last(ρ) and k we discuss according to f(ρ).

• In the first case, s ∈ tPred(PredΣco(W−(s))) and then f(ρ) = (t, a) such that there
exist e ∈ E with act(e) = a satisfying s t·e−→ s′′ ∈ W−(s). In this case, by definition of
W− s′′ ∈ Rks with ks the maximal k such that s ∈ Rk. We thus have that for all k
such that last(ρ) in Rk, last(ρ) t·a−→ s′′ ∈ Rk.

• In the second case, s ∈ tPred(PredΣuco(W−(s))) and by the definition ∃t′ < t

s
t′−→s′′

af (ρ)−−−→ s′′′ ∈ W−(s). By definition of W− we again have our result.

• In the third case af (ρ) = ∅ and by Definition 3.4.9 we know that f(ρ) = (t,⊥) with
last(ρ) t−→s′ ∈ W−(s) and by definition of W− we again have our result.

• In the last case last(ρ) ∈ Pass and there is no condition to satisfy.

�

Note that safety-first rank-lowering strategies correspond to rank-lowering strategies
when Inconclusive = ∅. In this setting they are thus winning under the aforementioned
fairness assumption. In general however they are not winning, unless the initial configuration
happens to be in R∞.

3.7 Conclusion

This chapter proposes a game approach to the controllability problem for conformance
testing from timed automata (TA) specifications. It defines a test synthesis method that
produces test cases whose aim is to maximize their control upon the implementation under
test, while detecting non-conformance.

Test cases are defined as strategies of a game between the tester and the implementation,
based on the distance to the satisfaction of a test purpose, both in terms of number of
transitions and potential control losses. Fairness assumptions are used to make those
strategies winning and are proved sufficient to obtain the exhaustiveness of the test
synthesis method, together with soundness, strictness and precision.

A symbolic algorithm is proposed to effectively compute these strategies, paving the
way to an implementation.

116

3.7. Conclusion

Finally, an extension is proposed for the strategies in the case where the Inconclusive
verdict cannot be avoided. Although in this setting the strategies are not winning, they
offer a basis to approach the control problem for test cases and related situations.

This chapter opens numerous directions for future work. First, we intend to tackle
partial observation in a more complete and practical way. One direction consists in finding
weaker conditions under which approximate determinization [Ber+15] preserves strong
connectivity, a condition for the existence of winning strategies. One could also consider a
mixture of our model and the model of [Dav+10] whose observer predicates are clearly
adequate in some contexts. Quantitative aspects could also better meet practical needs.
The distance to the goal could also include the time distance or costs of transitions, in
particular to avoid restarts when they induce heavy costs but longer and cheaper runs are
possible.

The fairness assumption could also be refined. For now it is assumed on both the
specification and the implementation. If the implementation does not implement some
outputs, a tester could detect it with a bounded fairness assumption [Ram98], adapted to
the timed context (after sufficiently many experiments traversing some region all outputs
have been observed), thus allowing a stronger conformance relation with equality of output
sets. A natural extension could also be to complete the approach in a stochastic view, for
example by constructing a probabilistic approximation of the implementation behaviour
during the test execution, allowing to use this information to improve efficiency or to
gradually adapt our fairness expectation and thus the test strategy. Fundamentally, refining
the fairness assumption requires to learn the implementation behaviours and adapt the
assumption and strategies to them, raising the question of the interleaving of (formal)
testing and (formal) learning.

Notably, stochastic information is required in the general setting of Section 3.6 to
prove some form of optimality of the strategies in term of resistance to the Inconclusive
verdict.

117

Chapter 4

TIMED MARKINGS

Go back? No good at all! Go
sideways? Impossible! Go forward?
Only thing to do! On we go!

— J.R.R. Tolkien "The Hobbit"

4.1 Introduction

As discussed in Section 2.2, the state estimation problem (i.e. knowing in which state
a system is after a given trace) is a major component of formal verification as well
as an important limitation for offline verification methods, that circumvent it using
approximations or limitations to sub-classes of models.

For timed automata, this problem is especially challenging as both silent transitions
and non-determinism strictly augment the expressivity of the models. In order to tackle it,
it is thus interesting to consider intuitions coming from a larger determinizable class of
systems, namely automata over timed domains [BJM17] from which we import the notion
of system state as sets of configurations as well as the transitions between such sets.

In this chapter, we develop a technique (first presented in [BJM18]) for efficiently
computing, at runtime, the set of all possible configurations in which a partially-observable
one-clock timed automaton can be and discuss its extension to general timed automata
with multiple clocks - although that extension is not fully developed.

The main ingredient of our approach is the notion of linear timed sets: intuitively,
a timed set is a set of valuations that evolves over time (formally, for a one-clock timed
automaton, it is a mapping f : t ∈ R≥0 7→ f(t) ⊆ R≥0). Linear timed sets form a restricted
class of timed sets, where a valuation v in the set is transformed in v + t by a time elapse
of t and then filtered with respect to some minimal constant r.

A linear timed set can be defined as f : t ∈ R≥0 7→
⋃
i(Xi + t) ∩ [ri; +∞), with Xi ⊆ R

119

Chapter 4 – Handling unobservability with timed markings

`0 `1 `2

c ≤ 2; τ ; c := 0

3 ≤ c ≤ 4; τ ; c := 0

c ≥ 1; b

Figure 4.1: A one-clock timed automaton where only the b-transition between `1 and `2 is
observable.

0 1 2 3 4 5

values in [1; 1.3] can be reached in `2
if we observe b at date 1.3

0 1 2 3 4 5

values in [1; 1.6] ∪ [2.6; 4.6] can be reached
in `2 if we observe b at date 4.6

Figure 4.2: Two sets (in location `2) representing the reachable configurations in the
automaton of Figure 4.1 after observing transition b at dates 1.3 (left) and 4.6 (right).

and ri ∈ Q≥0 for all i (see Figure 4.3 on page 121 for an example of a linear timed set).
Linear timed sets are well-suited to represent sets of clock valuations for one-clock timed
automata, and compute their evolution along time, which is needed to update state
estimations, as we illustrate on the following example.

Example 4.1.1. Consider the one-clock timed automaton of Figure 4.1: in this automaton,
the transition from `1 to `2 is observable (labelled with b), while the transitions from `0 to
`1 are unobservable (labelled with the silent action τ).

Assume that this automaton starts from the initial configuration (`0, c = 0). As long
as no b-action is observed, we have no way of knowing whether the automaton is in `0

or `1. Now, assume that a b-action takes place at time 1.3: then we know that one of
the transitions from `0 to `1 has occurred; moreover, it cannot be the transition guarded
with 3 ≤ c ≤ 4, since only 1.3 time units have elapsed in total. One easily checks that, if
we observe a b-transition at time 1.3, then the automaton is in state `2 with c ∈ [1; 1.3].
Figure 4.2 (left) represents this set of valuations.

Similarly, if, starting from the initial configuration, we observe a b-transition at time 4.6,
then both transitions from `0 to `1 may have taken place; in this situation, it can be checked
that if the top transition has been taken, then the automaton can be in `2 with c ∈ [2.6; 4.6],
while if the bottom transition has been taken, the automaton can be in `2 with c ∈ [1; 1.6].
This set is represented on Figure 4.2 (right).

120

4.1. Introduction

For such an example, our algorithm would first compute the linear timed set

t ∈ R≥0 7→ (([−4;−3] ∪ [−2; 0]) + t) ∩ [0; +∞),

corresponding to all clock valuations that can be obtained in `1 after a delay t, as long as
no transition has been observed. Since the b-transition can only take place if c ≥ 1 (and
does not reset clock c), the linear timed set reached when observing b is the intersection of
this linear timed set with [1; +∞), namely:

t ∈ R≥0 7→ (([−4;−3] ∪ [−2; 0]) + t) ∩ [1; +∞).

This linear timed set is represented at Figure 4.3. It provides a way of representing, as
a single object, all possible configurations that can be reached in `2 right after observing
transition b at time t, for any t ∈ R≥0.

−4 −3 −2 −1 0 1 2 3 4 5

r = 1

X f(0) = ∅

−4 −3 −2 −1 0 1 2 3 4 5

X + 1.3

r = 1

f(1.3) = [1; 1.3]

−4 −3 −2 −1 0 1 2 3 4 5

X + 4.6

r = 1 f(4.6) = [1; 1.6] ∪ [2.6; 4.6]

Figure 4.3: The linear timed set f : t 7→ (([−4;−3] ∪ [−2; 0]) + t) ∩ [1; +∞) representing
all reachable valuations that can be reached in `2 when observing transition b at time t.
The fact that f(0) = ∅ indicates that transition b cannot be taken at time 0.

In order to deal with all locations of a timed automaton, we use markings, which
associate a set of valuations with each location of the automaton; similarly, linear timed
markings associate a linear timed set with each location of the automaton: while sets and
linear timed sets represent valuations, markings and linear timed markings represent sets
of configurations.

Our algorithm consists in computing linear timed markings representing all configu-

121

Chapter 4 – Handling unobservability with timed markings

markings
map locations to sets

timed markings (Section 4.4.1)

linear timed markings
map locations to linear timed

sets

regular
timed

markings

observable action

τ -closure (Sections 4.4.1 and 4.4.2)

Figure 4.4: Markings, linear timed markings, and related operations

rations that can be reached from a given initial configuration after a given sequence of
timed observations (alternations of observable transitions and delay transitions possibly
including an arbitrary number of unobservable transitions). Given such a linear timed
marking M , when an observation a is received at time t, we can easily compute the
marking m containing all possible configurations in which the automaton can end up just
after an a-transition is taken. From there, our algorithm computes the set of configurations
that can be reached when time elapses (this is a linear timed marking), and the sets of
configurations that can be reached by following any possible sequence of silent transitions.
We prove that this can be effectively computed and finitely represented as a regular timed
marking, which we call the τ -closure of m. Figure 4.4 is a graphical representation of those
different concepts and operations.

Finally, in Section 4.5 we start extending our technique to timed automata with an
arbitrary number of clocks: we prove in particular that linear timed markings are still
sufficient to represent the configurations that can be reached after a given sequence of
timed observations. But we have not been able to extend our notion of regular timed
markings to a notion that could be used to properly represent and compute all reachable
configurations in the n-clock setting; this is part of our future work.

Our work is most tied with [BJM17] from which automata over timed domains are
borrowed, and [Tri02] for the idea of computing sets of states after some finite execution
-although we use a precomputation by opposition to Tripakis’s fully online method.

4.2 Preliminaries

In this part (focusing on one-clock timed automata), we heavily use sets and intervals of
reals with rational bounds, and especially unbounded ones. We first introduce these (and

122

4.2. Preliminaries

more generally notations for sets of reals with bounds in any subset of R), and then the
model of timed automata and related notions.

4.2.1 Sets and intervals of real

Let X and Y be two subsets of R, we define X + Y = {x + y | x ∈ X, y ∈ Y } and
X−Y = {x−y | x ∈ X, y ∈ Y }. For t ∈ R≥0, we write X+ t (resp. X− t) as a shorthand
for X + {t} (resp. X − {t}), used to shift X forward (resp. backward) by t.

For any subset K of R, we write IK for the set of intervals of R with bounds in
K ∪ {−∞,+∞}, and IK≥0 for the set of intervals with bounds in K≥0 ∪ {+∞}.

For r ∈ K, we define the following sets of IK:

7→r = [r; +∞) →r = (r; +∞)

→

r = (−∞; r) 7→

r = (−∞; r].

We write K̂≥0 = { 7→r, →r | r ∈ K≥0} for the set of upward-closed intervals in IK; in the
sequel, elements of K̂≥0 are denoted with r̂. Similarly, K̂≥0 = { 7→ r, → r | r ∈ K≥0} ∪ {R},
and we use notation r̂ for intervals in K̂≥0.

The following results are straightforward, and will be useful to ground intuition and in
the sequel:

Lemma 4.2.1. Let v ∈ K≥0, r̂ and ŝ in K̂≥0, and t̂ in R̂≥0. Then

• if v /∈ r̂, then r̂ ⊆ →v;

• r̂ ∩ ŝ ∈ {r̂, ŝ};

• if t̂ intersects both r̂ and ŝ, then r̂ ∩ ŝ ∩ t̂ 6= ∅.

4.2.2 One-clock timed automata

We consider in this chapter one (and later n-) clock timed automata without invariants
(i.e. all invariants are set to true) and equipped with a set of final transitions F that is
used to define their language. We thus note a timed automaton A = (L,Σ] {τ}, {`init},
C, E,F) with F ⊆ L and omitting the invariant function. Σ is an alphabet of observable
actions, while τ is an unobservable one. Notice that the automaton is not forced to be
deterministic.

123

Chapter 4 – Handling unobservability with timed markings

As the automata are equipped with a single clock we can partition E by separating Eid,
the set of non-resetting transitions, i.e., having ∅ as their reset, and E0 for the complement
set of resetting transitions.

As for a transition e = (`, g, a, C ′, `′), the guard g is an interval, it can be written in
a unique way as the intersection of an element ê ∈ Q̂≥0 and an element ê ∈ Q̂≥0. In the
sequel of this chapter, the guard of a transition e will often be written ê ∩ ê.

Remark 4.2.2. This chapter was originally written with rational guards instead of integer
ones. We kept it this way to showcase that the method developed here does not depend
on the value of the time unit. For this reason, intervals and (representation of) semantic
notions often use Q≥0 instead of N. This does not impact most of the discussion, except
for Section 4.4.3 (where it is discussed).

In this chapter we will consider only (partial) runs (resp. signatures) with a strict
alternation between delay transitions and action transitions, but not always ending by Σ.
As explained in chapter 3, τ does not appear in traces. We write (`, v) t−→π (`′, v′) when
such a partial run ρ exists with dur(ρ) = t and π its partial path (i.e. in E∗).

For any sequence of observable actions λ ∈ Σ∗ 1 and any t ∈ R≥0, we write (`, v) t
→λ

(`′, v′) whenever there exists a partial run π such that λ = act(π)|{τ} and (`, v) t−→π (`′, v′).
The untimed language L(A) of A is the set of words λ ∈ Σ∗ such that (`init, 0) t

→λ (`′, v′)
for some `′ ∈ F , some valuation v′ and some delay t ∈ R≥0.

In the sequel, we heavily use markings, which map locations of A to sets of clock
valuations, thereby representing sets of configurations of A. In our context, a marking of a
one-clock timed automaton A = (L,Σ] {τ}, {`init}, C, E,F) is a function m : L → 2R≥0

representing the set of configurations {(`, v) | v ∈ m(`)}. We note M = {m | m : L → 2R≥0}
the set of markings of A (we omit to reference A in the M symbol as it will always be
clear from context).

For any t ∈ R≥0, we define the function Ot : M→ M by letting, for any m ∈ M and
any `′ ∈ L,

Ot(m) : `′ ∈ L 7→ {v′ ∈ R≥0 | ∃` ∈ L. ∃v ∈ m(`). (`, v) t
→ε (`′, v′)},

representing the configurations reached from m after observing a delay of t time units.

1. Remember that consider automata over Σ] {τ} to distinguish observable and unobservable actions.

124

4.2. Preliminaries

Similarly, for any a ∈ Σ, we let

Oa(m) : `′ ∈ L 7→ {v′ ∈ R≥0 | ∃` ∈ L. ∃v ∈ m(`). ∃e ∈ enab((`, v)). act(e) = a ∧

(`, v) 0−→e (`′, v′)}.

Then Oa(m) is the marking representing the set of configurations that can be reached
after taking an a-transition from the configurations represented by m.

Remark 4.2.3. Oa(m) does not represent the set of configurations that can be reached
after observing an a-transition, as this would include the possibility of taking unobserv-
able transitions instantly before or after the a-transition. The corresponding marking is
O0(Oa(O0(m))). We choose this definition because it concentrates the challenges related
to silent transitions exclusively in the computation of Ot.

When all transitions in E are observable (i.e. are labelled by observable letters in Σ),
the operations Oa and Ot can be easily computed. Oa consists in taking all transitions
labelled by a that are enabled in some item of the marking, while Ot amounts to adding t
to each item of the marking (in other terms, for any marking m, any state ` ∈ L, and
any v ∈ R≥0, we have v ∈ m(`) if, and only if, v + t ∈ Ot(m)(`)).

When timed automata contain a silent (i.e. unobservable) action τ , the computation
becomes more complex.

Now (`, v) t
→ε (`′, v′) indicates a sequence of zero or more silent transitions in t time

units; in that case we may have `′ 6= `.
The function Ot cannot be computed anymore by just shifting valuations by t. In its

raw form, the function Ot can be obtained by the computation of the set of reachable
configurations in a delay t by following (arbitrarily long sequences of) silent transitions.
This is analogous to the method proposed by Tripakis [Tri02] for keeping track of the set
of all possible configurations the automaton can be in after observation λ ∈ Σ∗ and delay t.
In [Tri02], the set of possible configurations is updated each time a new action is observed
(or after a time out, if no new observations occur); this approach may increase the delay
for detecting the occurrence of faulty actions.

Example 4.2.4. Consider again the one-clock timed automaton of Figure 4.1, and the
(initial) marking m0 which maps `0 to the single valuation v0 such that v0(x) = 0, and
locations `1 and `2 to the empty set. This marking corresponds to a single valuation.

Assume that we observe transition b after 1.3 time units. Obviously, the automaton
must have taken one of the transitions from `1 to `2, but since they are unobservable,

125

Chapter 4 – Handling unobservability with timed markings

we cannot know when this occurred. Actually, the bottom transition requires 3 ≤ c ≤ 4, so
it cannot have been used during the first 1.3 time units. In the end, it is not hard to check
that

O1.3(m0) : `0 7→ {1.3}
`1 7→ [0; 1.3]
`2 7→ ∅

The b-transition can be taken from the configurations in `1 where c ≥ 1. This amounts to
applying Ob to the marking above, which results in a marking m1.3,b mapping l0 and `1 to
the empty set, and `2 to [1; 1.3].

Now, what if, instead, we observe b at time 4.6? Computing O4.6(m0) can be done as
above, but now taking both transitions between `0 and `1 into account. This results in

O4.6(m0) : `0 7→ {4.6}
`1 7→ [0.6; 1.6] ∪ [2.6; 4.6]
`2 7→ ∅

Then taking transition b is similar to the previous situation: it corresponds to applying Ob,
which results in a marking m4.6,b mapping `0 and `1 to the empty set, and `2 to [1; 1.6] ∪
[2.6, 4.6]. We recover the markings represented on Figure 4.2.

The two following sections will be devoted to the computation of Ot (and Oa). First
Section 4.3 introduces the notion of linear timed sets, which we use to represent sets of
valuations that evolve over time, and its subclass of regular timed sets which allows a
finite representation in the case of one-clock timed automata. In Section 4.4 we lift these
notions to sets of configurations and their evolution over time, by the notions of linear
timed markings and regular timed markings. We define a τ -closure operator on linear timed
markings, and, show that in the case of one-clock timed automata, it can be efficiently
computed using regular timed markings, at the expense of some precomputations.

4.3 Regular timed sets

In this section, we define the notion of linear timed set to represent sets of clock valuations
and their evolution over time. Most important to us is the subclass of regular timed sets,
that uses regularity (as we will define just below) to ensure a finite representation, and
will be key to efficiency in the computation of closure, as will be seen in the next section.

126

4.3. Regular timed sets

4.3.1 Regular unions of intervals

Before defining linear and regular timed sets, we introduce our notion of regularity for
sets.

Definition 4.3.1. A regular union of intervals is a 4-tuple R = (I, J, p, q) where I and J
are finite unions of intervals in IQ (e.g. intervals of R with bounds in Q ∪ {−∞,+∞}),
p ∈ Q≥0 is the period, and q ∈ N is the offset. It is required that J ⊆ (−p; 0] and
I ⊆ 7→(−q · p).

The regular union of intervals R = (I, J, p, q) represents the subset of IQ S(R) =
I ∪ ⋃+∞

k=q (J − k · p) (where J − k · p is the interval obtained by shifting J by −k · p).

A regular union of interval offers an efficient - or at least finite - representation of a
structured infinite set of intervals.

Example 4.3.2. Figure 4.5 shows an example of a regular union of intervals. There, the
period is 1, the offset is 3, and the sets I and J are as displayed on the figure.

−6 −5 −4 −3 −2 −1 0 1 2
I

J

Figure 4.5: Example of a regular union of intervals.

Remark 4.3.3. The constraints J ⊆ (−p; 0] and I ⊆ 7→(−q · p) simply serve to ensure that
I and the J − p · k do not overlap for k ≥ q.

Regular unions of intervals enjoy the following properties:

Proposition 4.3.4. Let R and R′ be regular unions of intervals representing the sets of
reals S(R) and S(R′). Then one can define regular unions of intervals, denoted R, R ∪R′

and R +R′ which represent respectively the sets S(R), S(R) ∪ S(R′), and S(R) + S(R′).

Proof. We now prove the result for S(R): writing S(R) = I ∪⋃+∞
k=q J − k · p, thanks to the

constraints imposed on I and J , we have

S(R) = (7→(−q · p) \ I) ∪
+∞⋃
k=q

((−p; 0] \ J)− k · p.

127

Chapter 4 – Handling unobservability with timed markings

For the union we write R = (I, J, p, q) and R′ = (I ′, J ′, p′, q′), so that

S(R) = I ∪
+∞⋃
k=q

J − k · p S(R′) = I ′ ∪
+∞⋃
k=q′

J ′ − k′ · p′.

We can write p = a
b
and p′ = a′

b′
, where a, b, a′ and b′ are positive integers. Let

N = min{n ∈ N | n · b · a′ ≥ q and n · b′ · a ≥ q′}.

Then we can write

S(R) =
I ∪ N ·b·a′−1⋃

k=q
J − k · p

 ∪ +∞⋃
k=N

b·a′−1⋃
r=0

J − r · p

− k · a · a′
 .

and

S(R′) =
I ′ ∪ N ·b′·a−1⋃

k=q′
J ′ − k · p′

 ∪ +∞⋃
k=N

b′·a−1⋃
r=0

J ′ − r · p′
− k · a · a′

 .
Since J ⊆ (−p; 0], we have ⋃b·a′−1

r=0 J − r · p ⊆ (−b · a′ · p; 0] = (a · a′; 0], and similarly for J ′.
Taking the union of the equalities above, we get an expression of S(R) ∪ S(R′) under the
form I ′′ ∪ ⋃+∞

k=N (J ′′ − k · (a · a′)), which proves that S(R) ∪ S(R′) can be represented as a
regular union of intervals.

The proof for S(R)+S(R′) follows similar ideas: as for S(R)∪S(R′), we first rewrite S(R)
and S(R′) in such a way that they have the same period. Hence we assume w.l.o.g.
R = (I, J, p, q) and R′ = (I ′, J ′, p, q′). Since I and J are finite unions of intervals, we can
write

S(R) =
⋃
ki

Iki ∪
⋃
kj

(
+∞⋃
k=q

Jkj − kp)

where Iki and Jkj are intervals. Similarly for S(R′). This way, we can simply consider the
following cases, and apply our previous result for union to prove that we end up with a
regular union of intervals:

• Iki + I ′ki′ ;

• Iki + (⋃+∞
k=q′ J

′
kj′
− kp);

• (⋃+∞
k=q Jkj − kp) + (⋃+∞

k=q J
′
kj′
− kp).

The first case is trivial. The second and third cases are easy to handle. �

128

4.3. Regular timed sets

Notice that a regular union of intervals is finitely representable.

4.3.2 Linear and regular timed sets

We introduce linear timed sets as a way to represent sets of clock valuations (and eventually
markings), and how they evolve over time. Informally, a linear timed set represents a
mapping from the non-negative reals to the set of subsets of R≥0. We begin with the
definition of atomic timed sets, which form a special case.

Definition 4.3.5. An atomic timed set is a pair T = (X; r̂) where X ⊆ R and r̂ ∈ Q̂≥0.
With such a pair T = (X; r̂), we associate a mapping fT : R≥0 → 2R≥0 defined as fT (t) =
(X + t) ∩ r̂. The set fT (t) represents the actual valuations after t time units. We call the
second component r̂ a filter.

A linear timed set T is a countable set {Tk | k ∈ K} (sometimes also denoted with⊔
k∈K Tk) of atomic timed sets. With such a linear timed set, we again associate a mapping

fT : R≥0 → 2R≥0 defined as fT (t) = ⋃
k∈K fTk(t). A linear timed set is finite when K is.

We write T (R) for the set of linear timed sets of R.

For a timed set T after a delay t, we will often call actual valuations the elements of
fT (t) = (X + t)∩ r̂ by contrast to potential valuations i.e. elements of (X + t) \ r̂ that are
not valuations for this particular delay, but model valuations that will appear for greater
delays.

Remark 4.3.6. Notice that potential and actual valuations heavily depend on the delay t
as a potential valuation for a given valuation is an actual valuation for a greater delay.

Example 4.3.7. Figure 4.3 displays an example of an atomic timed set T = (X; 7→1), with
X = [−4;−3] ∪ [−2; 0]. The picture displays the sets fT (0) = ∅, fT (1.3) = [1; 1.3], and
fT (4.6) = [1; 1.6] ∪ [2.6; 4.6].

Notice that those sets correspond to the markings reached in the situations of Exam-
ple 4.1.1 (see Figure 4.2). Actually, T can be used to represent all clock valuations that
may be reached in state `2 in the automaton depicted on Figure 4.1 (starting from the
initial configuration (`init, 0)), depending on the date at which b is observed.

Given two linear timed sets T and T ′, we write T v T ′ whenever fT (t) ⊆ fT ′(t)
for all t ∈ R≥0. This is a pre-order relation; it is not anti-symmetric as for instance
({1}; 7→0) v ({1}; 7→1) and ({1}; 7→1) v ({1}; 7→0). We write T ≡ T ′ whenever T v T ′ and
T ′ v T .

129

Chapter 4 – Handling unobservability with timed markings

Clearly, cycles in timed automata may generate linear timed sets where the set X is
infinite. Think of a self-loop silently resetting the clock whenever it reaches 1: the resulting
linear timed set would be (−N; 7→0). We will prove that for keeping track of all the
configurations of any one-clock timed automaton, it is always sufficient to use finite unions
of atomic timed sets in which the first component has a simple shape, namely that of a
regular union of intervals.

Definition 4.3.8. A regular timed set is a finite timed set T = {(Xk; r̂k) | k ∈ K} such
that for all k ∈ K, the set Xk ⊆ R is S(Rk) the image by S of a regular union of intervals
Rk = (Ik, Jk, pk, qk).

This defines an adequate structure for representing and manipulating sets of configura-
tions of one-clock timed automata and their evolution over time. In the sequel, we extend
linear timed sets into linear timed markings, explain how to compute them, and show
that regular timed markings are (necessary and) sufficient for representing all reachable
configurations of partially-observable one-clock timed automata.

4.4 Closure under delay and silent transitions

In this section, we fix a one-clock timed automaton A = (L,Σ]{τ}, {`init}, C, E,F), with
a unique silent action τ and aim at computing the functions Oa for any a ∈ Σ and Ot

for any t ∈ R≥0. Computing Oa(m) for a ∈ Σ is not very involved: for a given location
`′ ∈ L, for each location ` ∈ L and each transition e labelled with a with source ` and
target `′, it suffices to intersect m(`) with the guard ê ∩ ê, and add the resulting interval
(or the singleton {0} if the intersection with the guard is non-empty and e is a resetting
transition) to Oa(m)(`′), i.e.:

Oa(m)(`′) =
(⋃

(`,ê∩ê,a,r,`′)∈Eid

m(`) ∩ (ê ∩ ê)
)
∪
(⋃

(`,ê∩ê,a,r,`′)∈E0

(
m(`) ∩ (ê ∩ ê)

)
[C←0]

)
.

From now on, we only focus on computing Ot, for t ∈ R≥0. For this, it is sufficient to
only consider silent transitions of A: we let U = U0]Uid be the subset of E containing
exactly the transitions labelled with τ , partitioned into those transitions that reset the
clock (in U0), and those that do not (in Uid). We write Aτ for the restriction of A to silent
transitions, and only consider that automaton in the sequel.

130

4.4. Closure under delay and silent transitions

ε(M) : U∗ → (L → (R≥0 → 2R≥0))

T = (X, r̂)

R = (I, J, p, q)

fT

S(R)

Figure 4.6: Relation between the objects and their representations.

In the following, we first describe the effect of (silent) transitions on markings and
use it to define the τ -closure in Section 4.4.1 and then propose an operator ε to explicitly
compute this closure in Section 4.4.2, using linear timed sets. Finally we prove that this
computation and its result can be finitely represented and effectively computed with
regular timed sets in Section 4.4.4. This process is summarized in Figure 4.6.

4.4.1 Linear timed markings and their τ-closure

We use markings to represent sets of configurations; in order to compute Ot, we need to
represent the evolution of these sets over time. For this, we introduce timed markings.
A timed marking is a mapping M : L → (R≥0 → 2R≥0). For any delay t ∈ R, we may
(abusively) write M(t) for the marking represented by M after delay t (so that for
any ` ∈ L and any d ∈ R≥0, both notations M(t)(`) and M(`)(t) represent the same
subset of valuations in R≥0).

For any ` ∈ L and any t ∈ R≥0, M(`)(t) is intended to represent all clock valuations
that can be obtained in ` after a delay of t time units from the marking M(0).

A special case of timed marking are those timed markings M that can be defined using
linear timed sets, i.e., for any `, M(`) is a mapping fT for some linear timed set T ; timed
markings of this kind will be called linear timed markings in the sequel. Atomic (resp.
finite, regular) timed markings are linear timed markings whose values can be defined
using atomic (resp. finite, regular) timed sets (we may omit to mention linearity in these
cases to alleviate notations). The structure of these different classes of timed markings
can be found in Figure 4.7. As we prove below, regular timed markings are expressive
enough to represent how markings evolve over time in one-clock timed automata.

Definition 4.4.1. We define the union of timed markings M1 and M2 as the timed marking
such that M1 ∪M2(`)(t) = M1(`)(t) ∪M2(`)(t). The intersection of two timed markings is

131

Chapter 4 – Handling unobservability with timed markings

timed markingtimed marking
linearlinear
finitefinite regular

atomic

Figure 4.7: The different classes of timed markings.

defined similarly.
Two timed markings are said equivalent when for all locations ` and delays t,M1(`)(t) =

M2(`)(t). We write M1 ≡M2 when this is the case.

Proposition 4.4.2. The union of two linear (resp. finite, regular) timed markings is a
linear (resp. finite, regular) timed marking.

Proof. This can be seen directly by the stability of timed sets and regular unions of intervals
by union, which comes respectively by definition and Prop. 4.3.4. �

As we prove below, regular timed markings are expressive enough to represent how
markings evolve over time in one-clock timed automata.

We use (linear) timed markings to dispose of a representation in the form of linear
timed sets, that can store both actual valuations, and potential valuations that do not
exist yet but will exist after some time elapses, as displayed for example in Figure 4.3.
This representation has the advantage over markings to be time-independent as a single
timed marking represents the set of valuations for all possible delays.

With any marking m, we associate a linear timed marking, which we write −→m, defined
as −→m(`)(t) = {v+ t | v ∈ m(`)}. This timed marking is linear since it can be defined e.g. as
−→m(`) = f(m(`); 7→0). It can be used to represent all clock valuations that can be reached from
marking m after any delay t ∈ R≥0, without taking any transition.

To go further, we define the effect of a partial path π ∈ U∗ of silent transitions on a
marking m as the following timed marking mπ associating to each delay the marking of
reachable configurations:

mπ : `′ 7→ t 7→ {v′ ∈ R≥0 | ∃` ∈ L.∃v ∈ m(`). (`, v) t−→π (`′, v′)}.

The set mπ(`′)(t) corresponds to all configurations reachable in `′ after reading π from
a configuration in m with a delay of exactly t time units. By definition of the transition

132

4.4. Closure under delay and silent transitions

relation →π, for mπ(t) to be non-empty, π must be a sequence of consecutive transitions.
Notice that mε = −→m as one would expect 2 (and hence is linear). Going further, we can
define the τ -closure of m as the timed marking mτ such that mτ (`)(t) = ⋃

π∈U∗m
π(`)(t).

By definition of Ot, for any delay t ∈ R≥0, we have Ot(m) = mτ (t) for any marking m.

This formalism is easily extended from markings to timed markings by taking for a
timed marking M and a partial path of silent transitions π ∈ U∗:

Mπ : `′ 7→ t 7→ {v′ ∈ R≥0 | ∃` ∈ L.∃t0 ≤ t. ∃v ∈M(`)(t0). (`, v) t−t0−−→π (`′, v′)}

and defining M τ (t)(`) = ⋃
π∈U∗M

π(t)(`).

Remark 4.4.3. Notice that the definition of Mπ differs from the one of mπ only by
the addition of an initial delay t0; this takes into account the fact that some potential
configurations may become actual in M . By seeing M(t0) as a marking, we have

Mπ : `′ 7→ t 7→
⋃
t0≤t

M(t0)π(`′)(t− t0).

The following lemmas prove that this extension is self consistent and coherent with
what was defined on markings. First, the effect of the empty sequence on a linear timed
marking leaves it unchanged:

Lemma 4.4.4. For any linear timed marking M , it holds M ε ≡M .

Proof. Since M is linear, for any `′, M(`′) is a linear timed set, so that M(`′)(t) =⋃
k∈N(Xk + t) ∩ r̂k. On the other hand,

M ε(`′)(t) = {v′ ∈ R≥0 | ∃` ∈ L. ∃t0 ≤ t.∃v ∈M(`)(t0). (`, v) t−t0−−→ε (`′, v′)}

= {v′ ∈ R≥0 | ∃t0 ≤ t.∃v ∈M(`′)(t0). (`′, v) t−t0−−→ε (`′, v′)}

= {v′ ∈ R≥0 | ∃t0 ≤ t.∃v ∈M(`′)(t0). v′ = v + (t− t0)}

= {v′ ∈ R≥0 | ∃t0 ≤ t. ∃k ∈ N.∃v ∈ (Xk + t0) ∩ r̂k. v′ = v + (t− t0)}

= {v′ ∈ R≥0 | ∃t0 ≤ t. ∃k ∈ N.v′ ∈ (Xk + t) ∩ r̂k}

=
⋃
k∈N

(Xk + t) ∩ r̂k.

2. Remember that in mε, ε corresponds to the empty sequence of transitions.

133

Chapter 4 – Handling unobservability with timed markings

Second, applying a partial path of silent transitions to a marking or to its corresponding
linear timed marking yields the same result:

Lemma 4.4.5. For any marking m and any partial path π ∈ U∗, it holds (−→m)π ≡ mπ.

Proof. For any t ∈ R≥0 and `′ ∈ L, we have

(−→m)π(t)(`′) = {v′ ∈ R≥0 | ∃` ∈ L. ∃t0 ≤ t.∃v′′ ∈ −→m(t0)(`).(`, v′′) t−t0−−→π (`′, v′)}

= {v′ ∈ R≥0 | ∃` ∈ L. ∃t0 ≤ t.∃v ∈ m(`).(`, v) t0−→ε (`, v′′) t−t0−−→π (`′, v′)}

On the other hand,

mπ(t)(`′) = {v′ ∈ R≥0 | ∃` ∈ L. ∃v ∈ m(`).(`, v) t−→π (`′, v′)}.

It follows that any v′ ∈ (−→m)π(t)(`′) is in mπ(t)(`′), since (`, v) t0−→ε (`, v′′) t−t0−−→π (`′, v′)
implies (`, v) t−→π (`′, v′). Conversely, any v′ ∈ mπ(t)(`′) is in (−→m)π(t)(`′), since if (`, v) t−→π
(`′, v′), then taking t0 = 0, we have (`, v) t0−→ε (`, v) t−t0−−→π (`′, v′). �

This result can be generalized in the following way, linking even more the operations
mπ (defined on markings) and Mπ (defined on linear timed markings):

Corollary 4.4.6. For any marking m and any two silent partial paths π1 and π2 in U∗, it
holds (mπ1)π2 ≡ mπ1.π2.

Proof. For any m, π1 and π2:

(mπ1)π2 = ((−→m)π1)π2 (by lemma 4.4.5)

= (−→m)π1.π2 (by definition)

= mπ1.π2 (by lemma 4.4.5)

Finally, we formally define what we will consider as τ -closures in the sequel:

Definition 4.4.7. Let M be a timed marking. A timed marking N is a τ -closure of M if
N ≡M τ . The timed marking M is said τ -closed if it is a τ -closure of itself.

Our aim in this section is to compute (a finite representation of) a τ -closure of any
given initial marking (defined using regular unions of intervals).

134

4.4. Closure under delay and silent transitions

`0 `1

c < 1; τ

c ≥ 2; τ ; c := 0

`1
−3 −2 −1 0 1 2

r = 0

`0
−3 −2 −1 0 1 2

r = 0

Figure 4.8: A silent timed automaton and its reachable configurations.

Example 4.4.8. Consider the (silent) timed automaton of Figure 4.8. The initial con-
figuration can be represented by the marking m defined as m(`0) = {0} and m(`1) = ∅,
corresponding to the single configuration {(`0, c = 0)}. It gives rise to a timed marking
−→m defined as −→m(`0) = f({0}; 7→0) and −→m(`1) = f(∅; 7→0). Write M for this timed marking;
M is not closed under silent-transitions, as for instance configuration (`1, 0) is reach-
able; however, this configuration cannot be reached after any delay: it is only reachable
after delay 0, or after a delay larger than or equal to 2 time units. In the end, it can
be checked that a τ -closed timed marking for this automaton is M τ (`0) = M(`0), and
M τ (`1) = ((−∞;−2] ∪ [0; 0]; 7→0).

4.4.2 Computing τ-closures

In this subsection, we show how to compute τ -closures. For this, we rely on linear timed
sets as a mean to represent M(`) for the timed markings M and locations ` encountered
during the operation.

We will define an operator ε computing the effect of a silent transition on a linear
timed set, and then extend it to sequences and languages of silent transitions on one hand
and to linear timed markings on the other hand. We will also prove that this operator
corresponds to the semantic operations on linear timed markings Mπ and M τ used to
compute the τ -closure. The approach we have followed so far is summarized in Figure 4.9,
with links to the different sections.

Core to the definition of the ε operator is the gauge, that computes the effect of a
resetting transition on a set of (potential) valuations.

135

Chapter 4 – Handling unobservability with timed markings

markings:
m : L → 2R≥0

linear timed sets:
T = tk∈K(Xk; r̂k)

linear timed markings:
M(`) = fT

timed markings:
M : L → (R≥0 → 2R≥0)

fT

−→m,mπ

Mπ,M τ

ε

ε

≡
Sec. 4.2.2

Sec. 4.4.1

Sec. 4.4.2

Sec. 4.3.2

Figure 4.9: Link between the different objects and plan of the 1-clock discussion.

Definition 4.4.9. Let X and Y be two subsets of R. We define their gauge as the set
X n Y = (X − Y) ∩ R≤0

This operation can be characterised in the following ways:

Proposition 4.4.10. Let X and Y be two subsets of R. Then

X n Y = {−t | t ∈ R≥0 ∧ (Y − t) ∩X 6= ∅}

= {−t | t ∈ R≥0 ∧ (X + t) ∩ Y 6= ∅}

Proof. We observe that

X n Y = {x− y | x ∈ X, y ∈ Y s.t. x ≤ y}

= {−t | t ∈ R≥0 ∧ ∃t ∈ X. ∃y ∈ Y. t = y − x}

= {−t | t ∈ R≥0 ∧ ∃y ∈ Y. y − t ∈ X}

= {−t | t ∈ R≥0 ∧ (Y − t) ∩X 6= ∅}.

The other equality is proven similarly. �

These characterizations can be read as “X n Y is the inverse of the set of delays after
which valuations in X satisfy the guard Y ”. It corresponds to the intuition that after
waiting such a delay, the transition can be taken and as it is a resetting one, the clock
value becomes 0.

Remark 4.4.11. These characterizations are specific to the one clock setting. Indeed,
X n Y is by definition a set of valuations and only when there is a unique clock do

136

4.4. Closure under delay and silent transitions

`0 `1
g = 1 ≤ c ≤ 2, τ

c := 0

−5 −4 −3 −2 −1 0 1 2

X g

−5 −4 −3 −2 −1 0 1 2

X n g

Figure 4.10: Effect of the gauge operator.

valuations and delays correspond.
In general, X n Y is the set of valuations that will be in (X + tY)[{c}←0] (i.e. {0})

after t time units. This is the definition used for n-clocks, and it is proven (in Section 4.5)
that it corresponds to the current one.

Example 4.4.12. Consider the simple transition in Figure 4.10, with guard g = [1, 2].
When entering in `0 with a set of potential configurations corresponding to X = {0} ∪
[−3,−2] displayed on the bottom of the figure, the result of Xng is the set of configurations
[−5,−3]∪ [−2,−1]. To see this, imagine a right shift of X, and consider the delays t during
which the two intervals composing X meet g, i.e. [1, 2] and [3, 5]. Each such t is a date at
which a configuration (`1, c = 0) can be spawned (because the transition resets the clock);
therefore, −t is a potential valuation in `1. In the end, (Xng; 7→0) = ([−5,−3]∪[−2,−1]; 7→0)
is the linear timed set of all potential valuations in `1 in this situation.

In the following, we use the gauge to define the operator ε on linear timed sets and
extend it to linear timed markings, while proving that it corresponds to the semantic
operations Mπ and M τ defined on general timed markings.

Proposition 4.4.13. The following simple statements will be useful in the sequel:

• If X ≤ Y (that is, if for any x ∈ X and any y ∈ Y , it holds x ≤ y; this is the case
in particular if X ⊆ R≤0 and Y ⊆ R≥0), then X n Y = X − Y ;

• if X > Y (i.e., if for any x ∈ X and any y ∈ Y , it holds x > y), then X n Y = ∅;

• If X and Y are two intervals, then X n Y is an interval;

• If R is a regular union of intervals and Y is an interval, then S(R) n Y can be
represented as a regular union of intervals noted Rn Y ;

137

Chapter 4 – Handling unobservability with timed markings

• If Y ′ ⊆ R≥0, then (X n Y) n Y ′ = (X n Y)− Y ′.

Proof. The first two claims are trivial from the definition of XnY . The third claim follows
from the fact that X − Y is an interval if X and Y are. The fourth claim follows from
Prop. 4.3.4. Finally, the last claim is a consequence of the first one (because XnY ⊆ R≤0).

�

We now define a mapping ε : T (R)×U∗ → T (R), intended to represent the linear timed
set that is reached by performing sequences of silent transitions from some given linear timed
set. Intuitively, we want to replace semantic operations, such as M 7→Mπ : M× U∗ →M
by computations based on their representations (i.e. linear timed sets). This will serve to
compute a representation of the closure of any linear timed set.

We first consider atomic timed sets, and the application of a single silent transition.

Definition 4.4.14. For an atomic timed set (X; r̂) of T (R) and a transition e =
(`, ê ∩ ê, τ, C ′, `′) of U :

ε((X; r̂), e) =

(∅; 7→0) if r̂ ∩ ê = ∅
(X ∩ ê; r̂ ∩ ê)

if r̂ ∩ ê 6= ∅ and C ′ = ∅
(X n (r̂ ∩ ê ∩ ê); 7→0)

if r̂ ∩ ê 6= ∅ and C ′ = C

The intuition behind these three cases is as follows (see also Figure 4.11 for a graphical
illustration, and the proof of Lemma 4.4.17 for the formal arguments):

• if r̂ ∩ ê = ∅, then the transition cannot be taken: it means that the upper bound ê of
the guard is smaller than the smallest clock value in r̂ that can be reached;

• if r̂ ∩ ê 6= ∅, then there is some range of delays t such that f(X;r̂)(t) ∩ ê ∩ ê is not
empty and the transition can be taken. Furthermore, the transition can be taken
from any potential valuation in X ∩ ê: for valuations in this set the transition will
be possible after some delay, while valuations out of ê will never go back in this set.
Then after the transition:

– if the transition does not reset the clock, then the value of the clock is not
changed. Then X ∩ ê can represent the set of potential valuations. In order for a
valuation to be actually reachable, it needs to be actual in (X; r̂) (i.e. in r̂) and

138

4.4. Closure under delay and silent transitions

` `′
c ∈ [a, b]

C ′

• if r̂ ∩ 7→ b = ∅:

(X; r̂) in `

a b

• if r̂ ∩ 7→ b 6= ∅:

(X; r̂) in `

a b

(∅; 7→0) in `′

• if C ′ = ∅:

(X∩ 7→ b; 7→a∩r̂) in `′

• if C ′ = C:

((X−r̂∩[a, b])∩R≤0; 7→0) in `′

Figure 4.11: Representation of the effect of silent transition (`, [a, b], τ, C ′, `′) in three cases.

to have reached ê∩ ê (i.e. in ê). Hence the timed set of reachable configurations
can be represented by (X ∩ ê; r̂ ∩ ê);

– if the transition resets the clock, then the set of reachable values for the clock
in `′ after delay t1 corresponds to the set of delays that can be spent in `′ (after
the clock reset), i.e., the difference between t1 and the delays t that can be spent
in ` before taking the transition. Those delays that can be spent in ` before
taking the transition can be seen to precisely correspond to X n (r̂ ∩ ê ∩ ê).
Notice that r̂ ∩ ê ∩ ê corresponds to the set of actual valuations of f(X;r̂)(t)
satisfying the guard.

Example 4.4.15. Consider a linear timed set T = (X = [−3,−2] ∪ {0}; 7→n) with n ∈ N
representing the configurations reachable in the state `0 of the automaton in Figure 4.10.
If n = 3, then for all delays t, fT (t) ≥ 3 and it is clear that the transition cannot be taken.
Hence, as expected, ε(T, (`0, 7→1 ∩

7→ 2, τ, {c}, `1)) = ∅ (this corresponds to the first case of
the definition).

In contrast, if n = 1 then all configurations satisfying the guard can be reached after a
fitting delay, and ε(T, (`0, 7→1∩

7→ 2, τ, {c}, `1)) = (Xng, 7→0) with Xng = [−5,−3]∪[−2,−1]
as displayed on the figure. Notice that the new filter 7→0 corresponds to the intuition: all
positive clock values can be reached (after a certain delay), as the transition can be taken
and it resets the clock.

139

Chapter 4 – Handling unobservability with timed markings

Definition 4.4.14 (cont.). We extend ε to partial paths inductively as follows:

ε((X; r̂), ε) = (X; r̂)

and, for π ∈ U∗ and e ∈ U ,

ε((X; r̂), π · e) =

 ε(ε((X; r̂), π), e) if tgt(π) = src(e)

(∅; 7→0) otherwise.

Example 4.4.16. Consider a linear timed set ([−3,−1]; 7→2), intended to represent the
configurations that are reachable in a state `: then after 3 time units, only configuration (`, 2)
can be observed, and after 4.5 time units, the set of reachable configurations in ` is
{(`, c) | 2 ≤ c ≤ 3.5}.

Now, assume that there is a resetting transition from ` to `′, guarded with c ∈ [1; 4].
The set of configurations reachable in `′ (originating from the above linear timed set and
transition) then is

([−3;−1] n (7→2 ∩ 7→1 ∩

7→ 4); 7→0) = ([−3;−1] n [2; 4]; 7→0)

= ([−7;−3]; 7→0).

In particular, assuming we depart from the linear timed set ([−3;−1]; 7→2) in `, the transition
can only take place between 3 and 7 time units.

Definition 4.4.14 (cont.). We extend this definition to linear timed sets as follows:

ε({Tk | k ∈ K}, π) = {ε(Tk, π) | k ∈ K}

The ε operator is now extended to all linear timed sets and sequences of transitions.
We now prove that it indeed corresponds to the effect of taking transitions from a given
timed set. For this we do not reason directly on the linear timed sets but on their associated
functions fT . The following lemma states that (informally) ε(T, π) corresponds to the
effect of following π from T . It is the technical core of the section, linking the semantics
and the ε operator.

Lemma 4.4.17. Let T be a linear timed set and π ∈ U∗. Then for any t ∈ R≥0 and

140

4.4. Closure under delay and silent transitions

any v ∈ R≥0,

v ∈ fε(T,π)(t) ⇔ ∃0 ≤ t0 ≤ t. ∃v′ ∈ fT (t0).(src(π), v′) t−t0−−→π (tgt(π), v).

Proof. We carry the proof for the case where T is an atomic timed set. The extension to
unions of atomic timed sets is straightforward.

The proof is in two parts: we begin with proving the result for π = ε, then for a single
transition, and finally proceed by induction to prove the full result.

If π = ε, then v ∈ fε(T, π)(t) is equivalent to v ∈ fT (t), which entails the right-hand-
side of the equivalence for t0 = t. Conversely, if v = v′ + (t− t0) for some v′ ∈ fT (t0), then,
writing T = (X; r̂), we have v′ ∈ (X + t0) ∩ r̂, so that v ∈ (X + t) ∩ r̂, i.e. v ∈ fT (t).

Now, assume that π is a single transition e = (`, ê ∩ ê, τ, C ′, `′), for which we assume
(w.l.o.g.) that ê ∩ ê 6= ∅. In case T is empty (i.e. X = ∅), then also ε(T, e) is empty, and
the result holds. We now assume that T = (X; r̂) is not empty (i.e. X 6= ∅), and consider
three cases, corresponding to the three cases of the definition of ε(T, e):

• if r̂∩ ê = ∅, then ε(T, e) = (∅; 7→0). On the other hand, for any t0 and any v′ ∈ fT (t0),
it holds v′ ∈ r̂, so that v′ /∈ ê, and the transition cannot be taken from that valuation
(even after some delay). Hence both sides of the equivalence evaluate to false, and
the equivalence holds.

• now assume that r̂ ∩ ê 6= ∅, and consider the case where e does not reset the clock.
Write p̂ = r̂ ∩ ê, and pick v ∈ fε(T,π)(t) = f(X∩ê;p̂)(t) (assuming one exists). Then
v ∈ (X + t) ∩ (ê+ t) ∩ p̂; this implies p̂ ∩ ê ∩ [v − t; v] 6= ∅: indeed,

– if v ∈ ê or v − t ∈ p̂, then the result is trivial;

– otherwise, v /∈ ê implies ê ⊆ → v, and v − t /∈ p̂ implies p̂ ⊆ →v − t, so that
p̂ ∩ ê ⊆ (v − t; v). Moreover, the fact that both r̂ ∩ ê and ê ∩ ê are non-empty
implies that also p̂ ∩ ê = r̂ ∩ ê ∩ ê is non-empty.

Then for any v′ in that set p̂∩ ê∩ [v−t; v], letting t0 = v′−(v−t), we have v′ ∈ X+t0.
In the end, v′ ∈ fT (t0), and v′ ∈ ê ∩ ê, so that (src(e), v′) t−t0−−→e (tgt(e), v).

Conversely, if t0 ∈ [0; t] and v′ ∈ fT (t0) exist such that (src(π), v′) t−t0−−→π (tgt(π), v),
then v′ ∈ X+ t0∩ r̂, and for some t1 ≤ t− t0, v′+ t1 ∈ ê∩ ê. Then v = v′+ t− t0 since
t does not reset the clock; also, since v′ ∈ X + t0 ∩ r̂, we have v ∈ (X + t)∩ r̂; finally,

141

Chapter 4 – Handling unobservability with timed markings

from v′ + t1 ∈ ê∩ ê, we get v ∈ ê+ (t− t0 − t1) ⊆ ê and v ∈ ê+ (t− t0 − t1) ⊆ ê+ t.
In the end, v ∈ ((X + ê) + t) ∩ (r̂ ∩ ê) = fε(T,e)(t).

• we finally consider the case where r̂ ∩ ê 6= ∅ and e resets the clock. In this case,
v ∈ fε(T,π)(t) means that v ∈ 7→0 and v− t ∈ X n (p̂∩ ê), which rewrites as 0 ≤ v ≤ t

and (X + t− v) ∩ (p̂ ∩ ê) 6= ∅ (by Prop. 4.4.13). Let t0 = t− v. The property above
entails that 0 ≤ t0 ≤ t, and that there exists some v′ ∈ (E + t0) ∩ (p̂ ∩ ê), so that
0 ≤ t0 ≤ t, v′ ∈ fT (t0) and (src(e), v′) t−t0−−→e (tgt(e), v). Conversely, if those conditions
hold, then for some 0 ≤ t1 ≤ t− t0, we have v′ + t1 ∈ ê∩ ê, and v = t− (t0 + t1) ≥ 0
(remember that e resets the clock). Then v′ + t1 ∈ X + (t0 + t1) ∩ r̂ ∩ ê ∩ ê, so that
−(t0 + t1) ∈ X n (p̂ ∩ ê), and finally v ∈ fε(T,π)(t).

We now consider the case of π · e, assuming that the result holds for π ∈ U+. In case
tgt(π) 6= src(e), the result is trivial. Otherwise, first assume that v′ ∈ (ε(T, π · e))(t),
and let T ′ = ε(T, π). Then v′ ∈ fε(T ′,e)(t), thus there exist 0 ≤ t0 ≤ t and v ∈ fT ′(t0)
s.t. (src(e), v) t−t0−−→e (tgt(e), v′). Since v ∈ fT ′(t0), there must exist 0 ≤ t1 ≤ t0 and
v′′ ∈ fT (t1) such that (src(π), v′′) t0−t1−−−→π (tgt(π), v). We thus have found 0 ≤ t1 ≤ t such
that (src(π), v′′) t−t1−−→π·e (tgt(e), v′).

Conversely, if (src(π), v′′) t−t1−−→π·e (tgt(e), v′) for some 0 ≤ t1 ≤ t and v′′ ∈ fT (t1),
then we have (src(π), v′′) t0−t1−−−→π (tgt(π), v) t−t0−−→e (tgt(e), v′) for some t0 ∈ [t1; t] and
some v. In that case, we prove that v ∈ fε(T,π)(t0): indeed, we have t1 ∈ [0; t0], and
v′′ ∈ fT (t1) such that (src(π), v′′) t0−t1−−−→π (tgt(π), v), which by induction hypothesis entails
v ∈ fε(T,π)(t0). Thus we have 0 ≤ t0 ≤ d and v ∈ fT ′(t0), where T ′ = ε(T, π), such that
(tgt(π), v) t−t0−−→e (tgt(e), v′), which means v′ ∈ fε(T ′,e)(t), and concludes the proof. �

This results is the first link between ε and the semantics of timed automata, and the
main technical result of the section, the following ones stemming from it. Thanks to this
characterization of ε(T, π), we get:

Corollary 4.4.18. For any sequence π of silent transitions, and any two equivalent linear
timed sets T and T ′, the linear timed sets ε(T, π) and ε(T ′, π) are equivalent.

This corollary ensures that we do not depend on the representation of the structure for
our results since the mapping ε defined on linear timed sets preserves the equivalence of
markings that they represent.

Finally, we extend ε to linear timed markings in the expected way:

142

4.4. Closure under delay and silent transitions

Definition 4.4.14 (cont.). Given a linear timed marking M , and a sequence π of transi-
tions, we let:

ε(M,π) : ` 7→ fε(TM(src(π)),π) if ` = tgt(π),
` 7→ f(∅; 7→0) otherwise.

with TM(src(π)) a timed set such that fT = M(src(π)).

Since ε(T1tT2, π) = ε(T1, π)tε(T2, π), we also have ε(M1tM2, π) ≡ ε(M1, π)tε(M2, π)
when applied to linear timed markings. Then, we can extend the link between ε and the
semantics to linear timed markings. This is the main result of the section, as it formally
establishes the correspondence between the semantic computation of the effect of silent
transitions and the operator ε that we build to compute it.

Theorem 4.4.19. ε(M,π) ≡Mπ for all π ∈ U∗ and all linear timed marking M .

Proof. For t ∈ R≥0 and ` ∈ L, we have

Mπ(t)(`) = {v ∈ R≥0 | ∃`′ ∈ L. ∃t0 ≤ t.∃v′ ∈M(t0)(`′). (`′, v′) t−t0−−→π (`, v)}.

Hence clearly Mπ(`) ≡ f(∅; 7→0) if ` 6= tgt(π). When ` = tgt(π), we have

Mπ(t)(`) = {v ∈ R≥0 | ∃t0 ≤ t.∃v′ ∈M(t0)(src(π)). (src(π), v′) t−t0−−→π (`, v)}.

By Lemma 4.4.17, this corresponds to ε(M,π)(`)(t). �

Finally, we extend ε from sequences of transitions to languages.

Definition 4.4.20. For a timed marking M and a language L ⊆ U∗, we let

ε(M,L) =
⊔
π∈L

ε(M,π)

and we note ε(M) = ε(M,U∗).

From this definition and the previous statements, we immediately get:

Corollary 4.4.21. For any linear timed marking M , it holds ε(M) ≡M τ . It comes that
ε correctly implements se semantics.

It follows that the τ -closure of any marking (in particular the initial marking) can be
represented as a linear timed marking. However, this linear timed marking is currently
defined as an infinite union over all sequences of consecutive silent transitions. We make
the computation more effective (and representable) in the Section 4.4.4.

143

Chapter 4 – Handling unobservability with timed markings

4.4.3 Necessity of regular timed sets

The next subsection will prove that regular timed sets are enough to express (and effectively
compute) the set of configurations reached by a one-clock timed automaton. To complete
this result, we prove that any regular timed marking can appear in the τ -closure of a
one-clock timed automaton.

Remark 4.4.22. In this subsection, we consider timed automata with guards in Q≥0. This
is necessary to encode the regular timed markings, as their intervals and periods can be
rationals.

Conversely, if it is desired to limit the discussion to automata with integer guards,
it suffices to consider regular timed markings with integer bounded intervals and integer
periods.

Proposition 4.4.23. Given a regular timed set T , there exists a one-clock timed automaton
A such that T represents the τ -closure of A.

Proof. The proof is first made for an atomic regular timed set T = (X; r̂) defined using
a regular union of intervals R = (I, J, p, q). The generalization to finite unions of atomic
regular timed sets is then proposed at the end. We prove this result by constructing
a timed automaton. For this, we first explain how to encode intervals with bounds in
Q≤0∪{−∞}, regular repetitions, finite unions, and how to add a filter r̂. Then we construct
an automaton for T .

• Consider an interval I with bounds in Q≤0 ∪ {−∞}. In the automaton represented
in Figure 4.12, we start from the initial (atomic regular) timed marking Minit

associating f({0}; 7→0) with the initial location `init and f(∅; 7→0) with any other location.
The τ -closure M τ

init = ε(Minit) of Minit associates f({0}; 7→0) with `init, and f(I; 7→0)

with `1. Indeed, by definition of ε, the closure is computed as: ({0}n−I ∩ 7→0; 7→0) =
({0}n−I; 7→0) = (I; 7→0).

`init `1
−I, τ, {c}

Figure 4.12: An automaton whose closure in `1 is (I, 7→0).

• Consider a rational p ∈ Q≤0, an integer q, an interval J ∈ (−p; 0] with rational
bounds, and the automaton depicted in Figure 4.13. As argued in the previous case,

144

4.4. Closure under delay and silent transitions

starting from Minit, the effect of the transition `init → `1 through ε is represented by
(J − p · q; 7→0). Then it is easy to see that the τ -closure is represented by (⋃∞k=q J − k ·
p; 7→0) in `1. Indeed, the effect of one application of the self-loop has the form ·n {p},
effectively repeating the pattern shifted by −p. The fixpoint then is (⋃∞k=q J−k ·p; 7→0)
in `1.

`init `1
−(J − q.p), τ, {c}

p, τ, {c}

Figure 4.13: An automaton whose closure in `1 is (⋃∞k=q J − k.p; 7→0).

• The general method to combine a finite number of atomic timed sets representing
different behaviours ending in the same configuration is to regroup them in a finite
timed set (i.e., a finite collection of atomic timed sets). When all the atomic timed
sets share the same constraint r̂, an equivalent method is to take the explicit union
of their first part. As argued in Prop. 4.3.4, when the atomic timed sets are regular,
this yields an atomic regular timed set. A simple example of such unions is shown in
Figure 4.14.

`init `1

−I1, τ, {c}

−I2, τ, {c}

Figure 4.14: An automaton having (I1 ∪ I2; 7→0) as closure in `1.

• Adding a stricter filter r̂ to a linear timed set through a transition is straightforward:
it is the exact effect of a non-resetting transition of guard r̂.

Using these components, we can build an automaton using T = (S(R); r̂) to encode
the τ -closure of the initial timed marking. A possible example is depicted in Figure 4.15
for R = (⋃nIk=1 Ik,

⋃nJ
k=1 Jk, p, q), where the dotted line is meant to represent the nI and nJ

transitions. In this automaton, the closure can be represented by (S(R); 7→0) in `R and T
is `f .

145

Chapter 4 – Handling unobservability with timed markings

`init

`1

`nJ

`R `f

−InI , τ, {c}

−I1, τ, {c}

−(J1 − q.p), τ, {c}

p, τ, {c}

Q≥0, τ, ∅

−(JnJ − q.p), τ, {c}

p, τ, {c}

Q≥0, τ, ∅

r̂, τ, ∅

Figure 4.15: An automaton using T to encode the closure in `f .

It is clear to see that for a regular timed set T = {(Xk; r̂k) | k ∈ K}, as K is by
definition finite, building all components necessary to accept the (Xk; r̂k) with the same
initial and final location yields a finite timed automaton with 1 clock requiring T to
represent its τ -closure. �

Remark 4.4.24. Notice that we rely on the intervals defining a regular union of intervals
having bounds in Q≤0, in order to define automaton guards with their additive inverse.

4.4.4 Finite representation of the closure

In Section 4.4.2, we demonstrated how the τ -closure of any linear timed marking (and
hence of any marking) can be computed as a linear timed marking using the ε operator.
To complete this result, we prove in this subsection that when starting from regular timed
markings, the τ -closure can be computed with regular timed markings. This presents two
main interests:

• First, it corresponds to the semantics of timed automata, as the initial timed marking
is clearly regular and we have proved that any regular timed set can appear in a
τ -closure (Prop. 4.4.23),

146

4.4. Closure under delay and silent transitions

• second, linear timed markings rely on linear timed sets, which in general use in-
finite unions of sets of R. In order to get an effective algorithm, we need a finite
representation of sets, which regular unions of intervals provide.

The following theorem is the general result we prove in the following discussion. We call
language of transitions of a timed automaton A, noted LE(A), the language obtained by
reading the names of the transitions instead of the labels.

Theorem 4.4.25. Consider a timed automaton A and a regular language L ⊆ LE(A)
included in its language of transitions. Given a regular timed markingM , the timed marking
ε(M,L) is regular.

Thanks to this theorem and the fact that the timed marking corresponding to the
initial valuation is regular, we can deduce the following facts:

Corollary 4.4.26. Given a timed automaton A with τ transitions and its silent frag-
ment Aτ :

• the initial (timed) marking of Aτ is regular and

• the τ -closure of any regular (timed) marking is regular.

This result entails that regular timed markings are indeed enough to represent and
compute the τ -closures.

The remaining of this subsection is a proof of the previous Theorem 4.4.25. We first
prove in the Paragraph 4.4.4 that the linear timed marking ε(M,L) is a finite timed
marking, by discussing the set of possible filters. Then we prove that it is a regular timed
marking in Paragraph 4.4.4.

Finiteness

Finiteness is achieved by separating the initial timed marking per location, and then
proving that there is only a finite amount of possible filters.

Let M be a regular timed marking: then M can be written as the finite union of atomic
regular timed markings M(`,X,r̂), defined as M(`,X,r̂)(`) = f(X;r̂) and M(`,X,r̂)(`′) = f(∅; 7→0)

for all `′ 6= `. Thus ε(M,L) is the function associating to an input the union of the
corresponding outputs of ε(M(`,X,r̂),L) and it suffices to compute the result for atomic
regular timed markings M(`,X,r̂).

147

Chapter 4 – Handling unobservability with timed markings

We write ε1((X; r̂), π) ⊆ R and ε2((X; r̂), π) ∈ R̂≥0 for the first and second components
of ε((X; r̂), π). Notice that ε2((X; r̂), π) does not depend on X (so that we may denote it
with ε2(r̂, π) in the sequel). In particular,

• ε2((X; r̂), π) = 7→0 if π ∈ U∗×U0 is a sequence of consecutive transitions ending with
a resetting transition;

• ε2((X; r̂), π) = r̂ ∩ ⋂k<n êk if π = e1 . . . en ∈ Uid
∗ is a sequence of consecutive

non-resetting transitions.

Letting Jr̂ = { 7→0, r̂} ∪ {ê | e ∈ Uid}, it follows that ε2((X; r̂), π) ∈ Jr̂ for any (X; r̂)
and any π (because by Lemma 4.2.1, r̂ ∩ ê is either r̂ or ê, for any r̂ and ê in R̂≥0).
Hence ε(M(`,X,r̂)), and thus also ε(M,L), can be written as a finite union of atomic timed
markings as Jr̂ is a finite set. By definition, ε(M,L) is thus a finite timed marking.

Regularity

In the following, we reason on eachM(`,X,r̂) separately. To prove regularity, we first introduce
some more notations and state Lemma 4.4.27, that allows to rewrite ε using the properties
of the gauge. Then we separate ε(M(`,X,r̂),L) as we did forM by separating first the ending
locations and then the ending filters. For this we separate L = ⋃

`,`′∈L, r̂,r̂′∈J
r̂

[L(`, `′)]r̂′
r̂
.

The proof that ε(M(`,X,r̂), [L(`, `′)]r̂′
r̂

) is indeed regular is encapsulated in Lemma 4.4.28.
First, some more formalism:

• we let Ĝid = {ê | e ∈ Uid} and Ĝid = {ê | e ∈ Uid}. We thus have Jr̂ = { 7→0, r̂} ∪ Ĝid;

• for r̂ ∈ R̂≥0 and e ∈ U , we write Φ(r̂, e) for the interval r̂ ∩ ê ∩ ê;

• we define a mapping Jr̂ : U∗ → NJ
r̂
×U0 that counts the number of occurrences of

certain timing constraints at resetting transitions along a path: precisely, it is defined
inductively as follows (where d represents addition of an element to a multiset):

Jr̂(ε) = {0}Jr̂×U0

Jr̂(π · e) = Jr̂(π) d {(ε2(r̂, π), e)} if e ∈ U0

Jr̂(π · e) = Jr̂(π) if e ∈ Uid.

The idea behind Jr̂ is the following: consider a timed set (X; r̂), and a resetting silent
transition guarded with c ∈ ê ∩ ê. Resetting clock c when it is in r̂ ∩ ê ∩ ê amounts to

148

4.4. Closure under delay and silent transitions

substracting to c some value in that interval. The function Jr̂ precisely counts the number
of occurrences of each of those intervals along a sequence π of silent transitions. Since there
is only one clock, the order of the transitions is not important. Lemma 4.4.27 formalizes
this intuition:

Lemma 4.4.27. Let (X; r̂) be an atomic timed set with X ⊆ R≤0, and π ∈ U∗. Then
either ε1((X; r̂), π) = ∅, or

ε1((X; r̂), π) = X −
∑

J=(ŷ,e)∈J
r̂
×U0

Jr̂(π)(J)× Φ(ŷ, e)

=
{
x−

∑
J∈J

r̂
×U0

Jr̂(π)(J) · yJ
∣∣∣∣ x ∈ X and yJ ∈ Φ(J) for all J ∈ Jr̂ × U0

}
.

Proof. The result is straightforward for π = ε. Now, assume the result holds for some π ∈ U∗,
and consider π′ = π · e.

Assuming that ε1((X; r̂), π) 6= ∅, we first consider the case where e ∈ Uid: then

ε1((X; r̂), π · e) = ε1((X; r̂), π) ∩ ê

(by Definition 4.4.14 of ε). Since ε1((X; r̂), π) ⊆ R≤0 ⊆ ê, we have ε1((X; r̂), π · e) =
ε1((X; r̂), π). Since Jr̂(π · e) = Jr̂(π) when e ∈ Uid, our result follows.

Now assume e ∈ U0: we have

ε1((X; r̂), π · e) = ε1((X; r̂), π) n (ε2(r̂, π) ∩ ê ∩ ê).

Since ε1((X; r̂), π) ⊆ R≤0 and ε2(r̂, π) ⊆ R≥0, Prop. 4.4.13 entails

ε1((X; r̂), π · e) = ε1((X; r̂), π)− (ε2(r̂, π) ∩ ê ∩ ê).

Then, since Φ(ε2(r̂, π), e) = ε2(r̂, π)∩ ê∩ ê, substracting ε2(r̂, π)∩ ê∩ ê precisely corresponds
to the effect of adding {(ε2(r̂, π), e)} to the multiset Jr̂(π). �

LetM(`,X,r̂) be an atomic regular timed marking. As regular timed markings are defined
using linear timed sets, we extend the notations ε1 and ε2 to regular timed markings as
the functions returning resp. mappings from locations to sets (that we want to define
using regular unions of intervals), and elements of R̂≥0, such that for any regular timed
marking M , we have ε(M,π) : ` 7→ f(ε1(M,π)(`);ε2(M,π)(`)). For any state `′ of Aτ , we let

149

Chapter 4 – Handling unobservability with timed markings

L(`, `′) be the set of all sequences of consecutive transitions from ` to `′ in Aτ . Then

(M(`,X,r̂))τ =
⊔
`′∈L

ε(M(`,X,r̂),L(`, `′)).

Hence it suffices to prove that ε(M(`,X,r̂),L(`, `′)) is regular.
For any set L of sequences of consecutive transitions, and for any r̂ and r̂′ in R̂≥0,

we let Lr̂′
r̂

= {π ∈ L | r̂′ = ε2(r̂, π)}. One easily observes that for any r̂ ∈ R̂≥0 and any L,
it holds L = ⋃

r̂′∈J
r̂

Lr̂′
r̂
, so that ε(M(`,X,r̂),L(`, `′)) can be written as

⊔
r̂′∈J

r̂

`′′ 7→ f(
ε1(M

(`,X,̂r)
,[L(`,`′)]̂r′

r̂
)(`′′);r̂′

).

We can thus focus on ε1(M(`,X,r̂), [L(`, `′)]r̂′
r̂

). The following key lemma entails that this set
is a regular union of intervals:

Lemma 4.4.28. Let M(`,X,r̂) be an atomic regular timed marking. Let r̂ and r̂′ be two
elements of R̂≥0, and L ⊆ L(Aτ) be a regular language. Then ε1(M(`,X,r̂),Lr̂

′

r̂
) can be

defined using a regular union of intervals.

Proof. The proof of this result is in two parts: we first express Lr̂′
r̂
as the language of a

finite automaton, and then—by a tedious proof—express ε1(M(`,X,r̂),Lr̂
′

r̂
) using regular

unions of intervals.

Finite automaton for Lr̂′
r̂
. We assume that L is accepted by some automaton B = (L,Σ,

`init, C, U,F) (in particular, L(`, `′) would be obtained from Aτ by imposing an initial
state ` and a single accepting state `′). In order to derive a finite automaton accepting
Lr̂′
r̂
, we have to keep track of the value of ε2 along runs. For this, we take the product of B

with Jr̂: we define the automaton Br̂′
r̂

= (L × Jr̂, R̂≥0 × U × R̂≥0, (`init, r̂), C, U ′,F × {r̂′})
over the extended alphabet R̂≥0×U × R̂≥0 (this will be useful for technical reasons), where

U ′ =

{([`, ĝ], ê ∩ ê, (ĝ, e, 7→0), ∅, [`′, 7→0]) | e = (`, ê ∩ ê, ∅, τ, `′) ∈ U and ĝ ∩ ê 6= ∅} ∪

{([`, ĝ], ê ∩ ê, (ĝ, e, ĝ′), C, [`′, ĝ′]) | e = (`, ê ∩ ê, C, τ, `′) ∈ U and ĝ ∩ ê 6= ∅ and ĝ′ = ĝ ∩ ê}.

This automaton accepts words in (R̂≥0 × U × R̂≥0)∗. For any r̂ ∈ R̂≥0, we define

150

4.4. Closure under delay and silent transitions

κr̂ : U → (R̂≥0 × U × R̂≥0) as

κr̂(e) =

 (r̂, e, r̂ ∩ ê) if e ∈ Uid

(r̂, e, 7→0) if e ∈ U0

and extend this to U∗ as κr̂(e · π) = κr̂(e) · κr̂′(π) where r̂′ is such that κr̂(e) = (r̂, e, r̂′).
Then:

Lemma 4.4.29. For any r̂ and r̂′, we have κr̂(L(B)r̂′
r̂

) = L(Br̂′
r̂

).

Proof. Pick a finite word π̄ = (r̂k, ek, r̂′k)0≤k≤n in (R̂≥0 × U × R̂≥0)∗ accepted by Br̂′
r̂
.

By construction of Br̂′
r̂
, it holds r̂0 = r̂, and r̂′k = κr̂k(ek) for all k. Hence π̄ ∈ κr̂(L(B)r̂′

r̂
).

Conversely, pick a partial path π = (ek)0≤k≤n in L(B)r̂′
r̂
, and consider the word

π̄ = κr̂(π) = (r̂k, ek, r̂′k)0≤k≤n. Again by construction of Br̂′
r̂
, any accepting run of B on π

can be transformed into an accepting run of Br̂′
r̂
on π̄, which entails our result. �

Writing PU : R̂≥0 × U × R̂≥0 → U for the projection on the second element of this
alphabet (and extending it to sequences in the natural way), we get PU (L(Br̂′

r̂
)) = L(B)r̂′

r̂
.

Defining ε1(M(`,X,r̂), [L(`, `′)]r̂′
r̂

) as a regular union of intervals. We now focus on
ε1(M(`,X,r̂), [L(`, `′)]r̂′

r̂
): this function maps `′ to ε1((X, r̂), [L(`, `′)]r̂′

r̂
) (which we write η in

the sequel for the sake of readability), and any other state to the empty timed set. To
define η as a regular timed set, we progress in three steps: first, we decompose [L(`, `′)]r̂′

r̂

according to the presence of a reset in each sequence of transitions, then we quickly
conclude for non-resetting sequences. Finally we discuss the resetting ones.

• Separating resetting and non-resetting transitions. For any ĝ ∈ Jr̂ = { 7→0, r̂}∪
Ĝid and any ĝ′ ∈ Ĝid, we define

W id
ĝ,̂g′ = {π̄ = (ĝ1, e1, ĝ

′
1) · · · (ĝn, en, ĝ′n) |

ĝ′n = ĝ and min
1≤k≤n

êk = ĝ′ and ek ∈ Uid for all 1 ≤ k ≤ n}.

We decompose [L(`, `′)]r̂′
r̂
as the disjoint union of

⋃
ĝ′∈Ĝid

[L(`, `′)]r̂′r̂ ∩ PU(W id
r̂′ ,̂g′)

151

Chapter 4 – Handling unobservability with timed markings

(all runs in [L(`, `′)]r̂′
r̂
that do not contain any resetting transition) and

⋃
ĝ′∈Ĝid

⋃
(ĝ,e)∈J

r̂
×U0

[L(`, `′)]r̂′r̂ ∩ PU
(
W id
ĝ,̂g′ × {(ĝ, e, 7→0)} × (Jr̂ × U × Jr̂)∗

)

where the right-hand side of the intersection contains (the projection of) all paths
containing at least one resetting transition labelled (ĝ, e, 7→0). We write Z for the set
W id
ĝ,̂g′
× {(ĝ, e, 7→0)} × (Jr̂ × U × Jr̂)∗. Using the decomposition above, we get

η =
(⋃
ĝ′∈Ĝid

⋃
π∈[L(`,`′)]̂r′

r̂
∩PU (W id

r̂′ ,̂g′
)

ε1((X, r̂), π)
)
∪

(⋃
ĝ′∈Ĝid

⋃
(ĝ,e)∈J

r̂
×U0

⋃
π∈[L(`,`′)]̂r′

r̂
∩PU (Z)

ε1((X, r̂), π)
)
.

• Conclusion for non-resetting transitions. In the first part, any path π ∈
[L(`, `′)]r̂′

r̂
∩ PU(W id

r̂′ ,̂g′
) contains only non-resetting transitions, so that we have

ε1((X, r̂), π) = X ∩ ĝ′. Hence the first part is a finite union of regular intervals
(because M(`,X,r̂) is a regular timed marking). This can be represented by a regular
union of intervals of the form (I, ∅, 0, 0).

• Discussion on the non-resetting transitions. The non-resetting transitions are
handled in the following way. Lemma 4.4.27 and the regularity of L(l, l′)r̂′

r̂
, that

we obtained by constructing a finite timed automaton recognising it, are used to
reformulate the expression enough to use Parikh’s theorem. Then, using the new
form arising from the theorem, a final discussion is conducted to separate the case
where the closure uses a finite union of sets, and the case where there is an infinite
(but regular) union.

For the second part of η, i.e.(⋃
ĝ′∈Ĝid

⋃
(ĝ,e)∈J

r̂
×U0

⋃
π∈[L(`,`′)]̂r′

r̂
∩PU (Z)

ε1((X, r̂), π)
)

decomposing π ∈ PU(Z) as π1 · e · π2 according to the above unions, we have

ε1((X, r̂), π) = ε1(ε(ε((X, r̂), π1), e), π2).

152

4.4. Closure under delay and silent transitions

Since π1 only contains non-resetting transitions, we have ε1((X, r̂), π1) = X ∩ ĝ′, and
since π1 ∈ W id

ĝ,̂g′
we have ε2((X, r̂), π1) = ĝ. Then, since e is a resetting transition,

we get

ε1((X, r̂), π) = ε1(((X ∩ ĝ′) n Φ(ĝ, e), 7→0), π2).

We then have

⋃
π∈[L(`,`′)]̂r′

r̂
∩PU (Z)

ε1((X, r̂), π) = ε1
(
((X ∩ ĝ′) n Φ(ĝ, e), 7→0),Q

)

where Q = PU(W id
ĝ,̂g′
× {(ĝ, e, 7→0)})\[L(`, `′)]r̂′

r̂
is the left-quotient of [L(`, `′)]r̂′

r̂
by

PU (W id
ĝ,̂g′
× {(ĝ, e, 7→0)}), i.e. the set of all finite words β ∈ U∗ for which there exists

a finite word α in PU(W id
ĝ,̂g′
× {(ĝ, e, 7→0)}) such that α · β is in [L(`, `′)]r̂′

r̂
. Hence it

remains to prove that for all ĝ′ ∈ Ĝid and all (ĝ, e) ∈ Jr̂ × U0, the set

η′ = ε1
(
((X ∩ ĝ′) n Φ(ĝ, e), 7→0),Q

)
,

is a regular union of intervals.

Write Xe,̂g,̂g′ = (X ∩ ĝ′) n Φ(ĝ, e) ⊆ R≤0. From Lemma 4.4.27, we derive, for
any π2 ∈ Q:

ε1((Xe,̂g,̂g′ , 7→0), π2) = Xe,̂g,̂g′ −
∑

J∈J

7→0
×U0

J 7→0(π2)(J)× Φ(J).

Hence

η′ =
⋃
π2∈Q

Xe,̂g,̂g′ −
∑

J∈J

7→0
×U0

J 7→0(π2)(J)× Φ(J)

= Xe,̂g,̂g′ −
⋃
π2∈Q

∑
J∈J

7→0
×U0

J 7→0(π2)(J)× Φ(J)

For any π2 ∈ Q, we write p(π2) for the Parikh vector of κ 7→0(π2), i.e. the function
mapping each letter λ of J 7→0×U×J 7→0 to the number of occurrences of λ along κ 7→0(π2).
We write p(Q) for the set of all such vectors. Then for all (n̂, e) ∈ J 7→0 × U0, we have

153

Chapter 4 – Handling unobservability with timed markings

J 7→0(π2)(n̂, e) = ∑
n̂′∈J

7→0
p(π2)(n̂, e, n̂′). It follows:

η′ = Xe,̂g,̂g′ −
⋃

P∈p(Q)

∑
(n̂,e)∈J

7→0
×U0

n̂′∈J

7→0

P (n̂, e, n̂′)× Φ(n̂, e).

Now, the set Q = PU(W id
ĝ,̂g′
× {(ĝ, e, 7→0)})\[L(`, `′)]r̂′

r̂
is regular, so that by Parikh’s

theorem, p(Q) is a semi-linear set; it can be written p(Q) = ⋃d
k=1(pk0 +∑dk

k′=1 pkk′×N),
where pkk′ ∈ NJ

7→0
×U0×J 7→0 for all 1 ≤ k ≤ d and 0 ≤ k′ ≤ dk. Then:

η′ = Xe,̂g,̂g′ −
d⋃

k=1

(∑
(n̂,e)∈J

7→0
×U0

n̂′∈J

7→0

pk0(n̂, e, n̂′)× Φ(n̂, e) +

⋃
(γk′)k′∈Ndk

dk∑
k′=1

∑
(n̂,e)∈J

7→0
×U0

n̂′∈J

7→0

γk′ · pkk′(n̂, e, n̂′)× Φ(n̂, e)
)
.

We write Γe,̂g,̂g′ for the second term, so that η′ = Xe,̂g,̂g′ − Γe,̂g,̂g′ . For each 1 ≤ k ≤ d

and 0 ≤ k′ ≤ dk, we define the interval

Ikk′ =
∑

(n̂,e)∈J

7→0
×U0

∑
n̂′∈J

7→0

pkk′(n̂, e, n̂′)× Φ(n̂, e),

so that

Γe,̂g,̂g′ =
d⋃

k=1

(
Ik0 +

⋃
(γk′)k′∈Ndk

dk∑
k′=1

γk′ · Ikk′
)
.

Notice that Ikk′ ⊆ R≥0 for all k′ and k. We then consider two cases:

– first assume that for some k0 and k′0 ≥ 1 and some (n̂0, e0) ∈ J 7→0 × U0, it holds
pk0
k′0

(n̂0, e0, 7→0) > 0 and Φ(n̂0, e0) has positive length. Consider the interval
Lγ = Ik0

0 + γ · Ik0
k′0

for any γ ∈ N. Then clearly Lγ ⊆ Γe,̂g,̂g′ for all γ. Moreover,
by definition of k0 and k′0, the length of Ik0

k′0
is positive, so that the length of γ ·Ik0

k′0

tends to infinity with γ. It follows that for some α ∈ Q≥0, 7→α ⊆
⋃
γ∈N Lγ ⊆ Γe,̂g,̂g′ .

Then Γe,̂g,̂g′ ∩

7→

α has finite granularity, so that it is a finite union of intervals
of the form Ikk′ ∩

7→

α. It follows that Γe,̂g,̂g′ is a finite union of intervals, and can

154

4.5. Towards efficient diagnosis for n-clocks timed automata

hence be represented by a regular union of intervals.
Now, by hypothesis, X can be represented as a regular union of intervals.
By Prop. 4.4.13, so can Xe,̂g,̂g′ . Then by Prop. 4.3.4, η′ = Xe,̂g,̂g′ − Γe,̂g,̂g′ can be
represented as a regular union of intervals.

– We now assume that for all k and k′ ≥ 1 and all (n̂, e) ∈ Jr̂ × U0, either
pkk′(n̂, e, 7→0) = 0, or Φ(n̂, e) has length 0. Then for all 1 ≤ k ≤ n and 1 ≤ k′ ≤ dk,
Ikk′ contains a single element, which is a rational. Then −Γe,̂g,̂g′ = {−γ | γ ∈
Γe,̂g,̂g′} can be represented as a regular union of intervals. By Prop. 4.3.4, we get
that η′ can also be represented by a regular union of intervals in that case.

In the end, η is the union of two sets that can be represented as regular unions
of intervals, thus by Prop. 4.3.4, it can also be represented as a regular union of
intervals. �

4.5 Towards efficient diagnosis for n-clocks timed au-
tomata

In this section, we extend (part) of our formalism to n-clock timed automata. Precisely,
we define a generalized gauge (n) operator, and prove that it can be used to compute an ε
function. As for one-clock automata, we show that it is enough to consider linear timed
markings, that ε handles.

However we do not propose an extension of regular unions of intervals and thus do not
prove that we can furthermore restrict the study to regular timed markings.

We first extend the basic definitions in Section 4.5.1, and then use them to define
a generalized n-operator and prove that it can be used to compute τ -closures for any
number of clocks (Section 4.5.2).

4.5.1 Valuations for multiple clocks

In this subsection, we present the approach taken on n-clocks timed automata, and most
importantly their valuations, and how the generic notations of this chapter are lifted from
1 to n ∈ N clocks.

Recall that a clock valuation is usually defined as a function v ∈ RC
≥0. As we use

negative values to store future clock values, we sometimes consider functions to R instead.

155

Chapter 4 – Handling unobservability with timed markings

To simplify furthermore the technical discussions, we fix an (arbitrary) order on the clocks,
and hence allow ourselves to consider valuations as vectors in Rn (more heavily than in
other chapters). Using this, we generalize the notions introduced in 4.2.1 for intervals
to intersections of constraints on different dimensions. For a subset K of R, we consider
r̂ ∈ K̂n

≥0 and r̂ ∈ K̂n
≥0

3. We define the sum of a subset X of Rn with an integer t ∈ R as the
translation of the set on all dimensions: X + t = {(x1 + t, .., xn + t) | (x1, .., xn) ∈ X}. This
corresponds to t time units elapsing. Using these definitions, we can extend atomic, finite
and linear timed sets to n-clocks simply by considering sets and constraints in n dimensions.
We note T (Rn) the set of linear timed sets of Rn. We extend the clock resets operations
to sets elementwise, i.e. for C ′ ⊆ C, X[C′←0] == {x[C′←0] | x ∈ X}.

To discuss timed predecessors and successors of a set of clock valuations we note
respectively Pre(X) = ⋃

t∈R≥0

(X − t) and Post(X) = ⋃
t∈R≥0

(X + t).

The notion of sequences of transitions and its associated notations does not depend
on the number of clocks and can be directly reused. We extend markings to elements of
M = (2Rn≥0)L and use similar definitions for Oa for an observable action a ∈ Σ:

Oa(m) : `′ ∈ L 7→ {v′ ∈ Rn
≥0 | ∃` ∈ L. ∃v ∈ m(`). ∃e ∈ enab((`, v)). act(e) = a ∧

(`, v) 0−→e (`′, v′)}.

and Ot:
Ot(m) : `′ 7→ {v′ ∈ Rn

≥0 | ∃` ∈ L. ∃v ∈ m(`).(`, v) t
→ε (`′, v′)}.

4.5.2 τ-closures

Using the previous definitions, we can extend timed markings to n dimensions and get
back every definition and result of Section 4.4.1 by just considering valuations in Rn

≥0

instead of R≥0. In this context, 7→0 has to be read as the intersection of the corresponding
one dimensional constraints on all dimensions. We hence focus here on how to compute the
τ -closures using linear timed markings, as done in Section 4.4.2. For this, we first define
and formalize the operator transforming a set of (potential) configurations by the effect of
a guard and a set of clock resets.

3. Both open and closed intervals may appear in the same element on different dimensions

156

4.5. Towards efficient diagnosis for n-clocks timed automata

c1

c2

−4 −3 −2 −1 1 2 3

−1

0

1

2

3

X YX n{c1} Y
v

v + t

v′

v′ + t

Figure 4.16: Effect of the gauge on c1 for X = −1 ≤ c1 ≤ 0 ∧ c2 ≥ 0 ∧ c2 − c1 ≤ 1 and
Y = 1 ≤ c1 ≤ 2.

Definition 4.5.1. For two sets X and Y (a guard) and C ′ ⊆ C, we let

X nC′ Y = {v ∈ Rn | ∃t ≥ 0, v ∈ ((X + t) ∩ Y)[C′←0] − t} (4.1)

Remark 4.5.2. A valuation v in X nC′ Y is an anticipation (i.e. a potential valuation
corresponding to) an element of ((X + t) ∩ Y)[C′←0]: the intersection of f(X, 7→0)(t)4 with
the guard Y . This can be better seen by rephrasing the definition as

v + t ∈ ((X + t) ∩ Y)[C′←0] .

Hence v ∈ X nC′ Y if and only if there exists v′ ∈ X and t ∈ R≥0 such that v′ + t ∈ Y
and v + t = v′ + t[C′←0] as can be seen in Figure 4.16.

We give some characterizations of nC′ , that can both help to represent the resulting
set of valuations and obtain a zone-based computation.

Proposition 4.5.3. For two sets X and Y (a guard) and C ′ ⊆ C,

X nC′ Y = {v ∈ Rn | ∃t ≥ 0, v ∈ (X ∩ (Y − t))[C′←0] − t× 1C′} (4.2)

with 1C′ the vector with ones in the dimensions corresponding to clocks of C ′ and zeros

4. The filter is taken as 7→0 because it is not part of the definition.

157

Chapter 4 – Handling unobservability with timed markings

c1

c2

−4 −3 −2 −1 1 2 3

−3

−2

−1

0

1

2

3

X YX n{c1} Y

X n{c2} Y

Figure 4.17: Effect of the gauge on individual clocks for X = −1 ≤ c1 ≤ 0 ∧ c2 ≥
0 ∧ c2 − c1 ≤ 1 and Y = 1 ≤ c1 ≤ 2.

otherwise. Similarly, letting I = {t ∈ R≥0 | (X + t) ∩ Y 6= ∅}:

X nC′ Y =
(
((X + I) ∩ Y)[C′←0] − I

)
∩X[C′←0]−1 (4.3)

X nC′ Y =
(
(X ∩ (Y − I))[C′←0] − I × 1C′

)
∩X[C′←0]−1 (4.4)

with X[C′←0]−1 the zone obtained from X by suppressing all constraints (guard and diagonals)
including clocks in C ′.

The characterization 4.2 can be used to more easily handle examples of nC′ : it behaves
as a filter on X where Y is sent back by an increasing delay −t for t ∈ R≥0 and the
projection on C \ C ′ is used on the sub-vector space −t× 1C′ .

The characterization 4.3 allows to express the gauge using only operations on sets (of
delays and valuations). Its variant 4.4 proposes the same for 4.2.

Example 4.5.4. Consider a transition with guard Y = 1 ≤ c1 ≤ 2 in a timed automaton
over the two clocks C = {c1, c2}. We take the set of potential valuations X = −1 ≤ c1 ≤
0∧ c2 ≥ 0∧ c2− c1 ≤ 1. Both X and Y are depicted in Figure 4.17, together with Xn{c1}Y

and Xn{c2} Y and the constructions necessary to obtain them through characterization 4.3.
Notice that in this case, I = [1, 3].

158

4.5. Towards efficient diagnosis for n-clocks timed automata

Notice how by adding delays t ∈ R to these sets we can see that the gauge corresponds
to the resets of clocks for valuations in X + t ∩ Y .

Proof. The characterization 4.2 is simply obtained from the definition 4.1 by manipulating
the +t and considering valuations and zones as vectors in Rn. 4.4 is obtained similarly
from 4.3.

Hence, it remains to prove 4.3. The core of the work is to show that the two occurrences
of t in 4.1 can be made independent by adding the constraint v ∈ X[C′←0]−1 . First, we can
see that

X nC′ Y ⊆
(
((X + I) ∩ Y)[C′←0] − I

)
as by definition t ∈ I. Furthermore, X nC′ Y ⊆ X[C′←0]−1 as by definition of the gauge
for v ∈ X nC′ Y and c ∈ C \ C ′, there exists v′ ∈ X such that v(c) = v′(c) (as argued in
Remark 4.5.2). We now show that

(
((X + I) ∩ Y)[C′←0] − I

)
∩X[C′←0]−1 ⊆ X nC′ Y .

For this consider v ∈
(
((X + I) ∩ Y)[C′←0] − I

)
∩ X[C′←0]−1 . By definition, there exists

t2 ∈ I such that v+ t2 ∈ ((X + I) ∩ Y)[C′←0]. We note K = ((X+I)∩Y)∩ (v + t2)[C′←0]−1 .
By definition of t2, K is not empty. Now, if we can take a valuation v′ ∈ (K − t2) ∩X we
will have that v′+ t2 ∈ (X + t2)∩ Y and v = (v′ + t2)[C′←0]− t2. Thus we will have proven
that v ∈ X nC′ Y .

It remains to prove that (K − t2) ∩X is not empty. For this, we translate the problem
and prove that K ∩ (X + t2) is not empty.

The rest of the proof is geometric and relies heavily on the structure of zones and
guards. It constructs an element of K ∩ (X + t2). We note P = Y ∩ (v + t2)[C′←0]−1 and
rewrite K ∩ (X + t2) as the intersection of P , (X + t2) ∩ (v + t2)[C′←0]−1 and Y ∩ (X + t2).
By definition of t2 ∈ I we know that these three sets are not empty. We will use this to
construct an element of K ∩ (X + t2).

By 4.3 there is t1 ∈ R≥0 such that (P−t1)∩X 6= ∅. Consider p1 ∈ (P−t1+t2)∩(X+t2) 6=
∅, q ∈ (X + t2)∩ (v + t2)[C′←0]−1 and s ∈ Y ∩ (X + t2). We can construct p2 = p1 + t2− t2.
We then have that p2 ∈ P and respects all diagonal constraints of X + t2 (as p1 ∈ X + t2

and diagonal constraints are invariant by time elapsing).

159

Chapter 4 – Handling unobservability with timed markings

Finally, we construct p3 in the following way:

∀c ∈ C, p3(c) =

 p2(c) if c /∈ C ′

s(c) if c ∈ C ′ .

We now prove that p3 ∈ (K − t2) ∩X:

• p3 is in Y . Indeed Y being a guard it suffices to verify that for each clock c, p3(c)
satisfies the guard (i.e. non-diagonal) constraints of Y . This is ensured by definition
of p3 as p2, s ∈ Y ;

• p3 is in v + t2[C′←0]−1 . Indeed p2 ∈ P ⊆ v + t2[C′←0]−1 and the projections on C \ C ′

of p2 and p3 are equal;

• p3 is in X + t2. We prove this by showing that it satisfies the different constraints;

– p3 is on the segment between p2 and s, which both satisfy the diagonal constraints
of X + t2. As these constraints are convex, p3 satisfies them too;

– for all guard constraints on c ∈ C ′, s ∈ (X + t2) and p3(c) = s(c) ensures the
satisfaction of the constraint;

– similarly for all guard constraints on c /∈ C ′, p3(c) = v + t2(c) = q(c) and
q ∈ (X + t2).

Hence p3 ∈ X + t2 as it satisfies all its constraints.

We thus have our result, as p3 is a witness that v ∈ X nC′ Y . �

Remark 4.5.5. There is no delay-based characterization in the n-clock case as delays are
not of the same type than valuations anymore - by opposition to the 1 clock case.

This operator generalizes the operator we defined for the one-clock case: indeed, for
C = {c}:

X nC Y = {v ∈ R | ∃t ≥ 0, v ∈ ((X + t) ∩ Y)[{c}←0] − t}

= {v ∈ R | ∃t ≥ 0, ((X + t) ∩ Y)[{c}←0] 6= ∅ ∧ v ∈ {0} − t}

= {−t | t ∈ R≥0 ∧ ((X + t) ∩ Y) 6= ∅}

which is equal to X n Y (the one-clock operator) by Prop. 4.4.10.

160

4.5. Towards efficient diagnosis for n-clocks timed automata

` `′
Y = ê ∩ ê

C ′

• if Post(X) ∩ r̂ ∩ Y = ∅:
(X, r̂) in `

c1

c2

X

Y

• if Post(X) ∩ r̂ ∩ Y 6= ∅:
(X, r̂) in `

c1

c2

X
Y

(∅, 7→0) in `′

c1

c2

• if C ′ = ∅:

c1

c2

• if C ′ = {c1}:

x

y

Figure 4.18: Representation of the effect of silent transition (`, Y, τ, C ′, `′) in three cases.

Thanks to this operator, we can define the effect of a transition on an atomic timed
set:

Definition 4.5.6. For an atomic timed set T = (X, r̂) of T (Rn) and a transition e =
(`, g = ê ∩ ê, τ, C ′, `′) of U :

ε((X, r̂); e) =

(∅; 7→0) if Post(X) ∩ r̂ ∩ g = ∅

(X nC′ (r̂ ∩ g); (r̂ ∩ ê)[C′←0])

if Post(X) ∩ r̂ ∩ g 6= ∅.

Remark 4.5.7. We can separate the case C ′ = ∅ in the expression of ε to obtain X ∩
Pre(r̂ ∩ g) = X n∅ (r̂ ∩ g). As the computation is then far less involved it can be interesting
to separate this case in an implementation.

One can notice that for the 1-clock case C ′ = ∅ and C ′ = C were separated and no
general expression was given. The reason is that both cases can be expressed with far

161

Chapter 4 – Handling unobservability with timed markings

simpler expressions than the general case (which corresponds to)nC′.

Remark 4.5.8. Unlike in the 1-clock case, we do not separate the guard g between upper
and lower constraints (ê and ê). Indeed, the interactions between the upper and lower ones
induce diagonal constraints that would not appear with only the upper (resp. lower) ones
and are necessary to correctly model the behaviours.

The definition of ε is illustrated in Figure 4.18 for a two-clock automaton (r̂ is repre-
sented by the non-grayed-out areas).

Definition 4.5.6 (cont.). As in the one-clock case, we extend ε to sequences of transitions
inductively by letting ε((X; r̂), ε) = (X; r̂) and, for π ∈ U+,

ε((X; r̂), π · e) =

 ε(ε((X; r̂), π), e) if tgt(π) = src(e)

(∅; 7→0) otherwise.

Finally we extend this definition to linear timed sets by letting

ε({Tk | k ∈ K}, π) = {ε(Tk, π) | k ∈ K}.

Using these definitions, we can prove that ε corresponds to the effect of a sequence of
transitions from a timed set. The following lemma extends Lemma 4.4.17. Notice that the
proof has to be adapted, not only to the new gauge definition but also to the diagonal
constraints arising in timed automata with multiple clocks.

Lemma 4.5.9. Let T be a linear timed set and π ∈ U∗. Then for any t ∈ R≥0 and
any v ∈ Rn

≥0,

v ∈ fε(T,π)(t) ⇔ ∃t0 ∈ [0; t]. ∃v′ ∈ fT (t0).(src(π), v′) t−t0−−→π (tgt(π), v).

Proof. We carry the proof for the case where T = (X; r̂) is an atomic timed set. The ex-
tension to unions of atomic timed sets is straightforward. We begin with the case where π
is a single transition e = (`, Y = ê ∩ ê, τ, C ′, `′). In case X is empty, then also fε(T,e)(t) is
empty, and ∀t0, fT (t0) = ∅, so the result holds. We now assume that X is not empty, and
consider three cases:

• if Post(X) ∩ r̂ ∩ Y = ∅, then ε(T, e) = (∅; 7→0). On the other hand, for any t0 and
any v′ ∈ fT (t0), it holds v′ ∈ Post(X) ∩ r̂, so that v′ /∈ Y , and the transition cannot

162

4.5. Towards efficient diagnosis for n-clocks timed automata

be taken from that valuation. Hence both sides of the equivalence evaluate to false,
and the equivalence holds.

• now assume that Post(X) ∩ r̂ ∩ Y 6= ∅, and consider the case where C ′ is empty. We
proceed by double inclusion. We first take a valuation v ∈ fε(T,π)(t) and exhibit a
predecessor of this configuration in fT (t0) ∩ Y for a t0 to be constructed.

v ∈ fε(T,π)(t) means that v ∈ (X ∩ Pre(r̂ ∩ Y)) + t ∩ r̂ ∩ ê. Equivalently, v ∈
(X+ t)∩Pre(r̂+ t∩Y + t)∩ r̂∩ ê. As ê encodes the lower bounds on individual clocks
of Y and Pre(r̂ + t ∩ Y + t) keeps all diagonal constraints of r̂ ∩ Y , we have that
v ∈ (X+t)∩Pre(r̂+t∩Y +t)∩Post(r̂∩Y). Hence ∃t′ ∈ [0, t], v−t′ ∈ X+t−t′∩r̂∩Y . By
taking t0 = t−t′ and v′ = v−t+t0 = v−t′ we can write ∃t0 ∈ [0, t],∃v′ ∈ fT (t0)∩r̂∩Y .
The first inclusion then holds by definition of π.

Conversely, if t0 ∈ [0; t] and v′ ∈ fT (t0) exist such that (src(π), v′) t−t0−−→π (tgt(π), v),
then v′ ∈ X + t0 ∩ r̂ and as there is no reset on π, v = v′ + t− t0, v ∈ X + t ∩ r̂ +
t− t0 ⊆ X + t ∩ r̂. Furthermore, ∃t1 ≤ t− t0 such that v′ + t1 ∈ Y . More precisely,
v′+ t1 ∈ r̂∩Y as v′ ∈ r̂ and this set has no upper bound. As v = v′+ t− t0, we have
v ∈ Pre(r̂∩Y) + t and v ∈ ê as t1 ≤ t− t0. By aggregating the constraints, we obtain
v ∈ (X + t) ∩ Pre((r̂ ∩ Y ∩) + t) ∩ r̂ ∩ ê i.e. the left-hand side of the equivalence.

• Consider Post(X) ∩ r̂ ∩ Y 6= ∅ and C ′ 6= ∅. In this case v ∈ fε(T,π)(t) means that
∃t2 ≥ 0, v ∈ (r̂ ∩ Y ∩ (X + t2))[C′←0] − t2 + t. Notice that as v ∈ Rn

≥0, it comes
that t− t2 ≥ 0. Let v′[C′←0] = v + t2 − t ∈ (fT (t2) ∩ Y)[C′←0] It comes that we can
construct v′ ∈ fT (t2) ∩ Y from v′[C′←0]

5. By taking t0 = t2 we have that 0 ≤ t0 ≤ t,
v′ ∈ fT (t0) such that v′ t−t0−−→π v

′ + t− t0 = v.

Conversely if for a given 0 ≤ t0 ≤ t and a given v′ ∈ fT (t0), we have that
(src(π), v′) t−t0−−→π (tgt(π), v), then there exists 0 ≤ t1 ≤ t− t0 such that v′ + t1 ∈ Y
and the transition is taken from v′. By definition of fT , v′ + t1 ∈ fT (t0 + t1)∩ Y . We
have that v = (v′ + t1)[C′←0] + t− t0− t1 ∈ (fT (t0 + t1) ∩ Y)[C′←0] + t− t0− t1. Hence
by taking t2 = t0 + t1 we ensure that v ∈ (X nC′ Y) + t. Furthermore, t− t0− t1 ≥ 0
as t1 ≤ t− t0 thus ∀c ∈ C ′, v(c) ≥ 0, and v|C′ ∈ (r̂ ∩ ê)|C′ as v|C′ ∈ Post(v′ + t1)|C′
(t1 ≤ t− t0) and v′ + t1 ∈ fT (t0 + t1) ∩ Y ⊆ r̂ ∩ Y ⊆ r̂ ∩ ê. This proves the left part
of the equivalence.

5. Possibly several such v′ exists, we consider one of them.

163

Chapter 4 – Handling unobservability with timed markings

We now extend this result to sequences of transitions. The case where π = ε is
straightforward. Now assume that the result holds for some word π, and consider a
word π · e. In case tgt(π) 6= src(e), the result is trivial.

The case of single transitions has been handled just above. We thus consider the
case of π · e with π ∈ U+. First assume that v′ ∈ fε(T,π·e)(t), and let T ′ = ε(T, π).
Then v′ ∈ fε(T ′,e)(t), thus there exist 0 ≤ t0 ≤ t and v ∈ fT ′(t0) s.t. (src(e), v) t−t0−−→e

(tgt(e), v′). Since v ∈ fT ′(t0), there must exist 0 ≤ t1 ≤ t0 and v′′ ∈ fT (t1) such that
(src(π), v′′) t0−t1−−−→π (tgt(π), v). This way, we have found a value t1 with 0 ≤ t1 ≤ t such that
(src(π), v′′) t−t1−−→π·e (tgt(e), v′).

Conversely, if (src(π), v′′) t−t1−−→π·e (tgt(e), v′) for some 0 ≤ t1 ≤ t and v′′ ∈ fT (t1),
then we have (src(π), v′′) t0−t1−−−→π (tgt(π), v) t−t0−−→e (tgt(e), v′) for some t1 ≤ t0 ≤ t and
some v. We prove v ∈ fε(T,π)(t0): indeed, we have 0 ≤ t1 ≤ t0], and v′′ ∈ fT (t1) such
that (src(π), v′′) t0−t1−−−→π (tgt(π), v), which by induction hypothesis entails v ∈ fε(T,π)(t0).
Thus we have 0 ≤ t0 ≤ t and v ∈ fT ′(t0), where T ′ = ε(T, π), such that (tgt(π), v) t−t0−−→e

(tgt(e), v′), which means v′ ∈ fε(T ′,e)(t), and concludes the proof. �

As in the one-clock case, this semantic characterization of ε(T, π) entails the following,
ensuring that the result of a computation by ε does not depend on the representation.

Corollary 4.5.10. For any sequence π of transitions, and any two equivalent linear timed
sets T and T ′, the linear timed sets ε(T, π) and ε(T ′, π) are equivalent.

We can once more extend ε to linear timed markings in the same way and generalize
Theorem 4.4.19 to n clocks. The proof is the same for v ∈ Rn

≥0, using Lemma 4.5.9.
By considering the extensions of ε to languages, we immediately get:

Corollary 4.5.11. For any linear timed marking M , it holds ε(M) ≡M τ .

This proves that our ε operator (and the underlying gauge) is a correct representation
of the semantic of a (silent) timed automaton, and that linear timed markings are sufficient
to represent the semantics of timed automata.

Example 4.5.12. Consider the timed automaton with two clocks depicted in Figure 4.19
(the τ labels are omitted). The construction with `0, `1 and `2 allows to obtain the atomic
timed set (c1 ∈ [−1, 0] ∧ c2 ∈ [−1, 0]; c1, c2 ≥ 0) as input for `3

6. The closure of `3 is
depicted on the side with the two guards generating it. It is composed of several infinite

6. We slightly abuse the construction to take the union of sets for two timed sets sharing the same
filter.

164

4.5. Towards efficient diagnosis for n-clocks timed automata

behaviours. Notice that there is some regularity in the structure, but that it can be complex:
several nested infinite repetitions appear.

`0

`1 `2

`3

c1 ≤ 1
c1 := 0

c2 ≤ 1
c2 := 0

c2 ≤ 1
c2 := 0

c1 ≤ 1
c1 := 0

c1 = 2
c1 := 0

c2 = 2
c1, c2 := 0

c1

c2

−8−7−6−5−4−3−2−1 1 2 3

−7
−6
−5
−4
−3
−2
−1

1
2
3

{c1}

{c1, c2}

Figure 4.19: A simple timed automaton and its associated timed set.

4.5.3 Stability of a representable class

We do not define regular timed sets and markings for multiple clocks, but in the following,
we prove that finite timed markings are enough to represent the closure.

Proposition 4.5.13. Consider a timed automaton A and a regular language L ⊆ LE(A)
included in the language of transitions. Given a finite timed marking M , ε(M,L) is a finite
timed marking.

Proof. Let M be a finite timed marking: then M can be written as the finite union of
atomic timed markings M(`,X,r̂), defined as M(`,X,r̂)(`) = f(X;r̂) and M(`,X,r̂)(`′) = f(∅; 7→0) for
all `′ 6= `.

In the end, any regular timed marking M can be written as the finite union ⊔k∈KMk

of atomic timed markings. Thus we have ε(M) ≡ ⊔k∈K ε(Mk) and it is enough to prove
the property for atomic timed markings.

We write ε1((X; r̂), π) and ε2((X; r̂), π) for the first and second components of ε((X; r̂), π),
and use the same generalization to timed markings than in the one-clock case.

Note that:

• ε2((X; r̂), π) = r̂ ∩ ⋂k<n êk if π = e1 . . . en ∈ Uid
∗ is a sequence of consecutive

non-resetting transitions.

165

Chapter 4 – Handling unobservability with timed markings

• ε2((X; r̂), π · e) = (ε2((X; r̂), π) ∩ ê)[C′←0] if e is a resetting transition for C ′.

We define the set of upper bounds of guards appearing in U as

G = {ê | ∃ e = (`, Y = ê ∧ ê, C ′, ε, `′) ∈ U}

and using this set Jr̂ = {ĝ ∈ Rn
≥0 | ∀i ∈ [1, n], ∃ ê ∈ G ∪ {r̂, 7→0}, êi = ĝi}. It is easy to see

that Jr̂ is a finite set and ε2((X; r̂), π) ∈ Jr̂. Hence a finite number of atomic timed sets is
sufficient to describe the closure of a finite timed marking, i.e. the closure is a finite timed
set. Indeed, there is a finite number of filters r̂ in the representation of M (one per Mk),
no more than |Jr̂| different atomic timed sets are needed per location of the automaton for
each r̂, and there is a finite number of locations. �

4.6 Conclusion and future works

In this chapter, we presented a novel approach to solve the state estimation problem,
and in particular to efficiently compute the τ -closure in the case of partially observable
one-clock timed automata; it builds on a kind of powerset construction for automata over
timed domains, using our new formalism of linear timed sets to represent the evolution
of the set of reachable configurations of the automaton. We prove that the semantics -
and in particular the τ -closure - of a one-clock timed automaton can be computed using
regular timed sets, a finitely representable subclass of linear timed sets. We furthermore
show that the full class of regular timed sets is needed to represent general one-clock timed
automata.

We extend the basis of our approach to timed automata with multiple clocks, and
prove that finite timed sets are again enough to compute the τ -closure.

An implementation demonstrating the approach for 1-clock automata, in the case
of diagnosis, and comparing it to the technique proposed in [Tri02] has been realized.
It is not reproduced in this thesis as the author did not take part in its creation, but
can be found at http://people.irisa.fr/Nicolas.Markey/download/DOTA.zip. It is
furthermore commented in [Bou+21].

A natural extension of these results is to introduce a (representable) notion of regularity
for multiple clocks automata and to prove that it is large enough to represent the semantics
and τ -closure.

166

http://people.irisa.fr/Nicolas.Markey/download/DOTA.zip

4.6. Conclusion and future works

This is by no means immediate, as first the presence of multiple clocks allows involved
behaviours, and second (and most importantly), the proofs proposed in the one-clock
case rely on the structure of the n operator, and the ability to simply "count" resetting
transitions (i.e. the order of transitions only slightly matters). This is not true for multiple
clocks, where the orders of the resets is central to the dynamics.

Another possible direction of research could target priced timed automata, with the
aim of monitoring the cost of the execution in the worst case.

167

Chapter 5

ACTIVE LEARNING

Never laugh at live dragons, Bilbo you
fool!

— J.R.R. Tolkien "The Hobbit"

In this chapter, we focus on model learning of a new sub-class of timed automata:
reset-optional event recording automata. Fundamentally, learning corresponds to the
construction of the inverse functions trace−1 and sig−1 that would allow to deduce a run
(of a given model) from an observation.

The work displayed in this chapter focuses on the inference, representation and manage-
ment of the information necessary to the construction of the inverse functions, i.e. to find
and represent the semantics of a timed language under a form fitting a timed automaton.

5.1 Introduction

As discussed in Section 2.3.2, active learning is a fitting learning framework for timed
automata, as it can overcome passive learning expressivity limitations. For this reason,
some contributions have already been made in this domain, although limited to somewhat
simple models: automata with one clock displaying low-dimensional behaviours and event-
recording automata where clock resets can be directly inferred from observations.

Furthermore, by its interacting nature, active learning is a method of interest to ground
a general theoretical framework for a learning-acting loop between (timed) models and
reality.

Remark 5.1.1. It is interesting to note that reinforcement learning, a kind of learning
stemming from the artificial-intelligence community, would also be a good candidate for
such loop. Yet, reinforcement learning theory usually relies on stochastic models and have
been less developed (to the author’s knowledge) for timed automata, potentially due to the
complex nature of probabilistic timed automata [SB18].

169

Chapter 5 – Active learning of timed automata with unobservable resets

In this chapter, we propose to generalize active learning to a class of timed automata
enjoying both several clocks and different possible resets that cannot be inferred directly
from observations. This allows us to design and prove algorithms that handle all the main
difficulties that arise in deterministic TAs, making this contribution an important first
step towards active learning for generic deterministic TAs.

To our knowledge, the closest works to ours are Grinchtein’s thesis on active learning
of DERA [Gri08], the TL∗ algorithm [Lin+11], that proposes the most efficient algorithm
to learn DERAs using observation tables, and the paper proposing to learn one clock
TAs [An+20]. The work of Grinchtein et al. [GJP06] is the most related to ours, as we
use some of the data structures they developed and keep the general approach based on
timed decision trees. The main difference between our work and this one is that we handle
the inference of resets in a class of models in which they cannot be directly deduced from
observations. The authors of this work have later proposed TL∗s, a completely different
and more efficient algorithm to learn DERAs. This approach relies on the region-graph
construction, which uses the knowledge of clock values to minimize the number of queries.
As clock values depend on clock resets, we could not use this argument and build upon
the method proposed in TL∗s. The approach reported in [An+20] proposes to deal with
reset guessing, but makes it in a somewhat "brute force" manner, by directly applying a
branch-and-bound algorithm and jumping from model to model. In order to be able to
deal with larger dimensions, e.g. to handle TAs with more than one clock, we need to
be more efficient by exploiting the theory built around TAs and detecting invalid models
as early as possible. Finally, TL∗ [Lin+11] is thematically very close to our work (both
because it learns DERAs and enhances upon Grinchtein’s thesis). Yet it is a different
technical stem, that uses specificities of the ERAs to optimize the learning method in a
fashion similar to TL∗s, while our approach goes beyond ERAs. It is furthermore based on
a table data-structure, while our work reasons on trees.

5.2 Preliminaries

5.2.1 Timed automata

For the rest of this chapter, we fix a finite alphabet Σ of actions. We are mostly interested
in the language generative approach of timed automata. Because of this we consider timed
automata without invariants and equipped with a subset of accepting locations that will

170

5.2. Preliminaries

be used to define their language.
As a consequence, in this chapter we define timed automata as A = (L, `init, C,

E,Accept) without precising the alphabet Σ, the invariant function I : L → {true} but
adding the accepting subset Accept ⊆ L. We define the set of accepting configurations as
AcceptT = Accept× RC

≥0.
We say that a path (resp. run) is accepting when the target of the last transition is in

Accept (resp. in AcceptT).
As this chapter focuses on languages and not controllability, we consider only finite

alternating runs, signatures and traces ending in Σ (as final delays are by nature unobserv-
able in this setting). As mentioned in Section 1.2 (Figure 1.4), we will refer to signatures
as timed words with resets and traces as timed words. Furthermore, for such words one
can group delays and discrete transitions. We will thus represent timed words with resets
as wtr = (ti, ai, ri)1≤i≤n ∈ (R≥0 × Σ × 2C)∗ and timed words as sequences of pairs in
(R≥0 × Σ)∗.

Remark 5.2.1. These denominations accentuate the language recognition point of view
of learning. We wish to learn a model from a timed language that we query as needed, as
such we are interested in timed words and add semantics and behavioural informations,
such as resets.

Event recording automata (ERA) [AFH99] form a subclass of TAs in which there is
one clock ca per action a of the alphabet Σ, and such that for each transition (`, g, a, r, `′),
it holds r = {ca}. Since clock resets are determined by actions, they can be retrieved from
observed timed words, and this class of TAs is easier to learn than general TAs (although
more complex than DFAs).

A TA is said complete when from any configuration (`, v) and any letter a, there is a
transition of the form (`, g, a, r, `′) such that v |= g. Clearly enough, any timed automaton
can be turned into a complete timed automaton accepting the same timed language.

Remark 5.2.2. This definition is equivalent to the definition of completeness given in
Chapter 3 (p.65) but stated in a more semantic manner.

In a given deterministic timed automaton, a timed word (resp. timed word with resets)
can be the trace (resp. signature) of at most one (alternating) run (ending in Σ). This
unique run ρ such that trace(ρ) = wt is then denoted trace−1

run(wt). As a consequence, a
timed word wt is accepted if and only if the run trace−1

run(wt) is (defined and) accepted.

171

Chapter 5 – Active learning of timed automata with unobservable resets

In this chapter, we extend ERAs as reset-optional ERAs (RERAs), by allowing transi-
tions to not reset their clock:

Definition 5.2.3. A reset-optional event recording automaton (RERA) over Σ is a TA
A = (L, `init, C, E,Accept) such that for all transitions (`, g, a, r, `′) ∈ E, it holds r ⊆ {ca}.

While not as expressive as generic timed automata, RERAs are more complex than
ERAs in a crucial way with respect to learning: the clock resets along a run ρ of an
unknown RERA cannot be inferred directly from its observed timed word wt = obs(ρ).
Furthermore, RERAs are not determinizable in general. Indeed, the classical example of
non-determinizable 1-clock TA proposed in Figure 1.5 and adapted to the current setting
in Figure 5.1, is in fact a RERA. In the rest of this chapter, we will restrict our study to
deterministic RERAs.

start

(a, true, ∅)

(a, true, {c})

(a, true, ∅)

(a, c = 1, ∅)

(a, true, ∅)

Figure 5.1: A one-clock non-determinizable RERA.

5.2.2 Active learning for timed automata

The general principle of (untimed) active learning is to learn a model from observations
acquired by membership queries and equivalence queries made to a teacher, as displayed
in Figure 5.2.

In membership queries, a word is provided to a teacher, who in return provides
the observation, i.e. its membership to the target language. In an equivalence query, a
hypothesis (a model) is proposed to the teacher; she either agrees it if it is equivalent to
the model we wish to learn, or otherwise provides a counterexample, i.e. a word and its
observation that separates the language of the target model and that of the hypothesis.

The set of observations, which grows with counter-examples and results from mem-
bership queries, is formalized as a partial function Acc mapping words to acceptance
status (+ or −). To build a model, classical active learning algorithms then want to
identify a prefix-closed subset U of Dom(Acc) such that for all letters a in the alphabet
and words u ∈ U , u.a ∈ Dom(Acc) and either u.a ∈ U , or there is another word u′ ∈ U

172

5.2. Preliminaries

Learner Teacher

Membership w?

Equivalent model ?
Acceptance

Yes/Counterexample

Figure 5.2: The basic active learning framework.

having the same observed behaviour as u.a. This is usually done by a data structure that
can store observations, makes it possible to check some important properties on the set U
and can be transformed into a hypothesis when the current set indeed has these properties.
This is the role of the observation table in Angluin’s L∗ algorithm [Ang87a].

A high level pseudo-code of a generic active learning approach is presented in Algo-
rithm 4. Its principle is the following: starting from the empty hypothesis (i.e. a model
accepting the empty language), an equivalence query is made, and the counterexamples
processed into the data structure, i.e. membership queries are made to help the structure
get back its set of “good” properties. This is then repeated until an equivalence query
returns yes.

Algorithm 4: A high-level pseudo-code of an active learning algorithm.
1 Start from the structure representing U = ∅ and the hypothesis H = ∅.
2 while H is not equivalent to the model we want to learn do
3 Process counterexample
4 Make and process membership queries to obtain good properties on U .
5 Fold the data structure into a model H.
6 Return H

In the setting of timed automata, the problem can be expressed in the very same way,
with the definitions of the previous section: the learner makes membership queries about
timed words, and aims at reconstructing a timed automaton matching those observations.

In this setting, the acceptance function is a partial function Acc : (R≥0×Σ)∗ ↪→ {+,−}
associating acceptance status to timed words that have been observed. We then define
what it means for a timed automaton to model a set of observations:

Definition 5.2.4. Let Acc be an acceptance function and A be a deterministic timed
automaton. We say that A is a model for Acc when for all wt ∈ Dom(Acc), wt is accepting
if, and only if, Acc(wt) = +.

173

Chapter 5 – Active learning of timed automata with unobservable resets

Remember that in a deterministic TA, there is at most a unique run ρ = trace−1
run(wt)

of A such that trace(ρ) = wt, and the acceptance of wt by A is defined by the acceptance
of ρ by A. If there is no such run, then by definition wt is not accepted.

Recall that the objective of an active learning agent is not to learn a model corresponding
to a fixed set of observations, but rather to acquire enough information via adapted requests
and hypotheses, so as to build an automaton equivalent to the teacher’s model.

There are two main challenges when considering the timed-automata setting:

• the first one is the uncountable number of possible delays, and more generally the
uncountable number of configurations of the automaton. This is a classical issue
in the area of timed automata, and finite abstractions have already been studied
extensively to cope with this;

• the second challenge lies in the fact that timed words do not contain enough
information to recover the full configuration of the timed automaton they are learning:
clock resets have to be inferred as well, proposing hypotheses and discarding them
on-the-fly when they are contradicted by new observations.

In this chapter, we present a method to perform the active learning of deterministic
reset-optional event recording automata. Precisely, we consider that the teacher has a
deterministic RERA model in mind. This objective makes us face the two challenges
mentioned above, as RERAs have both a high dimensionality and unobservable clock
resets. We propose to deal with them by

• introducing relevant abstractions to group the (infinitely) many behaviours in a
finite number of sets. These will be used to describe the different levels of precision
that we need, namely answering the following two questions: how large can we afford
our guards to be? What is the acceptance status of elementary (non distinguishable)
sets of behaviours?

• using our abstractions to infer from the observations the relevance of different
sequences of resets to explain the behaviours. Precisely, we detect reset combinations
that do not allow to separate observations despite their disagreement on acceptance,
and prune them as soon as they appear.

Section 5.3 introduces more formalism to abstract observations and behaviours of timed
automata at different levels, according to our needs for the rest of the chapter.

174

5.3. Abstraction

In Section 5.4, our data-structures and their important properties are described. They
separate decision making (akin to the construction of U) and reset guessing, as these
two tasks require different levels of abstraction. In Section 5.5, we describe our version
of the active learning algorithm and the properties verified by each function. Finally in
Section 5.6, the construction of a hypothesis from the data structures is discussed.

5.3 Abstraction

In this section, we will detail several layers of abstractions that are useful to understand
timed automata behaviours and that will be used in this chapter.

We extend the notions defined in Chapter 1 to obtain representations of single observa-
tions, minimal undistinguishable sets of observations, and large sets of observations that
will serve to define the model behaviours (i.e. paths). These abstractions are central to our
work on model-reality interactions, as they serve to define different languages encoding the
information inferred from observations or induced from the models, e.g. clock dynamics.
One could see a connection with abstract interpretation in the crucial importance of
different representations (abstract domains) used to organise the information. The main
difference probably being that we are only interested in exact representation, whereas
abstract interpretation often serves to discuss the balance between precision and efficiency.

Two orthogonal kinds of abstractions arise.

Precision level: A run does not describe only the atomic behaviour that a timed au-
tomaton can encode, as if a run is accepted by an automaton, usually an infinite
number of related runs are also accepted. Infinite sets of runs can be regrouped in
so-called zone runs. Using region equivalence and K-equivalence relations, the atomic
behaviour of timed automata can be finitely represented by specific zone runs called
region runs and K-closed runs.

Another interesting level of precision is that of paths, as they define the behaviour of
the model by fixing the guards. This gives us three decreasingly-precise levels: runs,
region or K-closed runs and paths that are respectively related to single executions,
atomic behaviours, and construction of the language.

Observation level: In Section 1.2, runs of timed automata and their corresponding
traces, which are obtained by projecting away unobservable aspects, have been
introduced. In many applications, such as learning, one intuitively wants to retrieve

175

Chapter 5 – Active learning of timed automata with unobservable resets

runs from traces, i.e., invert the projection. However runs depend on a specific
model (notably on the locations and transitions names) that can not be learned.
Hence, we will introduce model-agnostic intermediate notions. First, abstract runs
will be defined, based on the information available in timed words with resets, which
forget model-specific information. In the same way, but at a less precise level, zone
words with resets and guarded words with resets will be defined as model-agnostic
behaviours of zone runs and paths, and at the same time as infinite sets of abstract
runs or timed words with resets.

The different notions that will be introduced in this section are summarized in Figure 5.3,
along with the two axis of abstraction: precision and observation level.

5.3.1 Zone runs, region runs and K-closed runs

Alternating runs serve as representations of single executions, but we still lack a notion of
minimally distinguishable set of runs, which we now define using K-equivalence.

We start by defining (alternating) zone runs, i.e., runs in which all valuations are
generalized to zones. Formally, a (partial) zone run is an element η = ((`i−1, zi−1) δ−→
(`i−1, z

′
i−1)

ei−→ (`i, zi))1≤i≤n of ((L × Z) × {δ} × (L × Z) × E)∗ × (L × Z) such that for
all 1 ≤ i ≤ n, z′i−1 ⊆ −→z i−1 and for ei = (`i−1, g, a, r, `i), we have z′i−1 ∩ g 6= ∅ and
zi = (z′i−1 ∧ g)[r←0]. Here, δ is a symbolic representation of time elapse, as any precise
delay may lead to different zones from different valuations in the same zone. We say that
a partial zone run is a zone run when z0 is the zone limited to 0.

We say that an alternating (partial) run ρ = ((`i−1, vi−1) ti−→(`i−1, v
′
i−1) ei−→(`i, vi))1≤i≤n

belongs to a zone run η = ((`′i−1, zi−1) δ−→(`′i−1, z
′
i−1) e′i−→(`′i, zi))1≤i≤n, noted ρ ∈ η when for

0 ≤ i ≤ n: `i = `′i, vi ∈ zi and for i > 0, ei = e′i.
Similarly, we say that a partial zone run η1 is included in a partial zone run η2 of the

same length n, noted η1 ⊆ η2, when for any 0 ≤ i ≤ n, `1
i = `2

i , z1
i ⊆ z2

i , z′
1
i ⊆ z′2i and

e1
i = e2

i if i 6= 0.

Remark 5.3.1. Notice that once we know that z1
0 ⊆ z2

0 it is only necessary to check that
z′1i ⊆ z′2i . Notably, for zone runs this is ensured by definition.

We call region run a zone run in which all zones are regions and K-closed run a
zone run in which all zones are K-closed zones. Notice that for any run ρ, there is a
unique K-closed run η (resp. region run η) such that ρ ∈ η. Furthermore, any other run ρ′

belonging to η is accepting if, and only if, ρ is.

176

5.3. Abstraction

TA
:

A
=

(L
,`
in
it
,C
,E
,A

cc
ep
t)

Pa
th
:

π
=

(e
i) 1
≤
i≤
n

e i
=

(`
i−

1,
g i
,a

i,
r i
,`
i)

T
=

(S
,s
in
it
,Γ
,→

)

Ru
n:
ρ
∈
Ex

(A
)
al
te
rn
at
in
g

ρ
=

((
` i
−

1,
v i
−

1)
t i −→

(`
i−

1,
v i
−

1
+
t i

)
e i −→

(`
i,
v i

))
1≤
i≤
n

Zo
ne

ru
n:

η
=

((
` i
−

1,
z i
−

1)
δ −→

(`
i−

1,
z′ i
−

1)
e i −→

(`
i,
z i

))
1≤
i≤
n

A
bs
tr
ac
t
ru
n:

σ
=

(v
i−

1
t i −→

v i
−

1+
t i

(a
i
,r
i
)

−−
−→

v i
) 1
≤
i≤
n

T
im

ed
wo

rd
s
w
ith

re
se
ts
:

w
tr

=
((
t i
,a

i,
r i

))
1≤
i≤
n

∈
(R
≥

0
×

Σ
×

2C
)∗

T
im

ed
wo

rd
s:

w
t

=
((
t i
,a

i))
1≤
i≤
n

∈
(R
≥

0
×

Σ
)∗

A
bs
tr
ac
t
zo
ne

ru
n:

ζ
=

(z
i−

1)
δ −→

z′ i
−

1
(a
i
,r
i
)

−−
−→

z i
) 1
≤
i≤
n

Zo
ne

wo
rd

w
ith

re
se
ts
:

w
z
r

=
((
z′ i
−

1,
a
i,
r i

))
1≤
i≤
n

∈
(Z
×

Σ
×

2C
)∗

G
ua

rd
ed

wo
rd

w
ith

re
-

se
ts
:

w
g
r

=
((
g i
,a

i,
r i

))
1≤
i≤
n

∈
(G
×

Σ
×

2C
)∗

R
es
et
s:

r
=

(r
i) 1
≤
i≤
n

∈
(2
C

)∗
O
bs
er
va
tio

ns

Be
ha

vi
ou

rs

Se
m
an

tic
s

Sy
nt
ax

sig

be
ha
v

sig

be
ha
v

sig

tra
ce

re
se
ts

re
se
ts

⊗
tra

ce

ρ
∈
η

η
⊆
η
′

σ
∈
ζ

σ
∈
w
z
r

w
tr
∈
w
z
r

w
z
r
⊆
w
′ zr

O
bs
er
va
tio

n

Pr
ec
isi
on

Figure 5.3: Words, runs, models and their relations.

177

Chapter 5 – Active learning of timed automata with unobservable resets

We say that two runs are region (resp. K)-equivalent when they belong to the same
region (resp. K-closed) run.

Interestingly, although K-closed runs concentrate on undistinguishability in the present,
one can deduce a unique region run from a K-closed run, thanks to the interaction between
the constraints and the resets.

Lemma 5.3.2. Pairs of runs are K-equivalent if and only if they are region-equivalent.

Proof. We can easily see that pairs of region-equivalent runs are K-equivalent, as region-
equivalence adds strictly more constraints.

Consider a K-closed run η and two runs ρ1, ρ2 ∈ η. We show that ρ1 and ρ2 are
region-equivalent. We make the proof by induction on the runs, noting ρj = ((`i−1, v

j
i−1) tji−→

(`i−1, v
′
i−1

j) ei−→(`i, vji))1≤i≤n for j ∈ {1, 2} and η = ((`i−1, zi−1) δ−→(`i−1, z
′
i−1) ei−→(`i, zi))1≤i≤n.

The central fact underlying the proof is that a region has the same constraints as a K-closed
zone plus constraints on the order on the fractional parts of the clock values, i.e. to be in
the same region, the fractional parts of the clock values must be in the same order (with
equalities at the same places).

First, v1
0 = v2

0 = 0 with all clocks evaluated to 0. These are clearly region-equivalent.
After t1, v′0

1≈K v′0
2 and for both valuations, all (fractional parts of the) clock values are

equal. Hence they are region-equivalent.
Inductively, starting from two region-equivalent valuations v′1i−1

∼∼∼reg v′2i−1, for j ∈
{1, 2} vji = v′i−1

j
[ri←0], hence vi

1∼∼∼reg vi2 as resets preserve region-equivalence. After ti the
valuations v′i

j are K-equivalent and the order of the fractional parts of the clock valuations
in v′i

j is equal to the one of vji up to a permutation induced by the delay. We show that
both runs are affected by the same permutation. Indeed, the permutation depends on the
integer constants crossed by the clock values (i.e. the K-closed zones with constraints
c = n with n ∈ N and c ∈ C). Starting from the same region and ending in the same
K-closed zone implies that both runs cross the same constants (those in the intersection of
the past of the K-closed zone and the future of the region). Hence v′i

1∼∼∼reg v′i
2.

By induction this gives us our result. �

Remark 5.3.3. This result obviously does not hold for partial K-closed and region runs
as it relies on the initial valuation 0 to ensure that first valuations are region equivalent.

Remark 5.3.4. In this chapter K-closed runs (and related notions) are abundantly used
instead of region runs. This is because we are mostly interested in the question "given two

178

5.3. Abstraction

runs, could a model have separated them?" which is encoded by K-equivalence (for timed
automata without diagonal constraints).

5.3.2 Signatures and Behaviours

Now that all semantic notions are defined, we need a way to capture the corresponding
behaviours that is model-agnostic, similarly to how timed words with resets capture
alternating runs.

Between runs and timed words with resets, we define abstract runs, that keep the
valuations of a run, and only abstract the locations of the timed automaton. For an
alternating run ρ = ((`i−1, vi−1) ti−→(`i−1, v

′
i−1) ei−→(`i, vi))1≤i≤n we define its behaviour behav

as the abstract run σ = behav(ρ) = (vi−1
ti−→v′i−1

(ai,ri)−−−→ vi)1≤i≤n.
We define the signature of an abstract run σ = (vi−1

ti−→ v′i−1
(ai,ri)−−−→ vi)1≤i≤n as the

projection on timed words with resets; i.e. sig(σ) = (ti, ai, ri)1≤i≤n. Notice that this
definition is coherent with the previous definition of signatures for runs as sig(behav(ρ)) =
sig(ρ) for any run ρ.

From a timed word with resets, we have enough information to infer the clock values
after each delay and action/reset pair, starting from the initial valuation. Formally, sig
is bijective from abstract runs to timed words with resets. We note sig−1

behav its inverse.
Considering a timed word with reset wtr = (ti, ai, ri)1≤i≤n we have sig−1

behav(wtr) = (vi−1
ti−→

vi−1 + ti
(ai,ri)−−−→ vi)1≤i≤n with v0 = 0 the initial valuation and vi = (vi−1 + ti)[ri←0].

Remark 5.3.5. As we have defined several signature functions (from runs and from
abstract runs), we differentiate the inverse functions by precising their target: sig−1

behav for
abstract runs (i.e. behaviours) and sig−1

run for runs. Despite similar notations, these two
functions are very different in nature. Notably sig−1

behav is always known while sig−1
run depends

on the model.

We define similar abstractions and (inverse) projections for zone runs under the name
of abstract zone runs and zone words with resets in (Z × Σ× 2C)∗.

For a zone run η = ((`i−1, zi−1) δ−→ (`′i−1, z
′
i−1)

ei−→ (`i, zi))1≤i≤n, its behaviour is
defined as the abstract zone run ζ = behav(η) = (zi−1

δ−→ z′i−1
(ai,ri)−−−→ zi)1≤i≤n with

ei = (`i−1, gi, ai, ri, `i).
The signature of that abstract zone run is the zone word with resets sig(ζ) =

(z′i−1, ai, ri)1≤i≤n. Notice that only the zone z′i−1 is taken into account, as we want to

179

Chapter 5 – Active learning of timed automata with unobservable resets

know the zone after the observed delay but before the action transition and possible reset
is taken.

Again, we define sig(η) = sig(behav(η)) and sig−1
behav the inverse projection starting from

z0 = {0}.
We call K-closed word (resp. region word) (with reset) a zone run with resets where

all zones are K-closed zones (resp. regions).
For a path π = (ei), the abstraction has to keep the guards, as they are important to

define the behaviours. For this, a specific kind of zone words with resets, named guarded
words with resets (in (G×Σ×2C)∗) is used. Precisely, for transitions ei = (`i−1, gi, ai, ri, `i),
we define the signature of the path as sig((ei)1≤i≤n) = (gi, ai, ri)1≤i≤n.

Remark 5.3.6. We do not define abstract paths as we have no use for them, but they
could be defined similarly to abstract zones with resets.

We extend the "belongs-to" relation of abstract runs with respect to abstract zone runs
and zone words with resets (resp. the inclusion to pairs of abstract zone runs and zone
words with resets) by checking that at all indices, the actions and resets correspond, and
that the valuation after delay belongs to the zone, i.e. vi−1 + ti ∈ z′i−1 (resp. that at each
index, the zone of the first word is included in the corresponding zone of the second one).
This "belongs-to" relation can also be extended to timed words with resets with respect
to zone runs with resets by wtr ∈ wzr if sig−1

behav(wtr) ∈ wzr. We extend the notation Kz
(used to define the K-closed zone containing a given valuation) to timed words with resets,
so that for a timed word with resets wtr, Kz(wtr) is the unique K-closed word for which
wtr ∈ Kz(wtr).

We can also extend the resets projection to all these notions (run, abstract run, zone
runs with resets, zone words with resets, guarded words with resets) by projecting away
everything but resets.

Finally, we say that a timed word wt is compatible with a zone word with resets wzr
and write wt a wzr, if there exists a timed word with resets wtr ∈ wzr with trace(wtr) = wt.
In other words, letting r = resets(wzr), we have wt a wzr whenever wtr = wt ⊗ r belongs
to wzr.

Remark 5.3.7. The abstractions defined in this section span the semantics (with zone
runs) and behaviours (with abstract runs, zone and guarded words with resets) but not the
observations. Indeed there is no point in generalizing observations: without information
about clocks, one would not know what to deduce out of a single observation.

180

5.3. Abstraction

5.3.3 Manipulations on words

In this subsection, some manipulations on timed words and K-closed words useful in the
rest of the paper are presented.

Linear combinations of timed words

In our learning process, we will manipulate linear combinations of timed words. For
two timed words w1

t = ((t1i , ai))0≤i≤n and w2
t = ((t2i , ai))0≤i≤n with the same untimed

projection, we define their λ-weighted sum w3
t = λ · w1

t + (1− λ) · w2
t , as the timed word

w3
t = ((λ · t1i + (1−λ) · t2i , ai)0≤i≤n). Such linear combinations have the following property:

Proposition 5.3.8. For any two timed words wjt = (tji , ai)0≤i≤n for j ∈ {1, 2} with the
same untimed projection, for any 0 ≤ λ ≤ 1 and for any reset word r = (ri)0≤i≤n:

sig−1
behav((λ · w1

t + (1− λ) · w2
t)⊗ r) = λ · sig−1

behav(w1
t ⊗ r) + (1− λ) · sig−1

behav(w2
t ⊗ r).

This means that for any valuation vi reached in sig−1
behav((λ · w1

t + (1 − λ) · w2
t) ⊗ r) and

any clock c ∈ C, vi(c) = λ · v1
i (c) + (1− λ) · v2

i (c) with vji the corresponding valuation in
sig−1

behav(w
j
t)⊗ r.

Proof. The proof is made by induction on 0 ≤ i ≤ n considering the valuations vi in
λ · w1

t + (1 − λ) · w2
t) ⊗ (ri)i. For i = 0, the only valuation encountered is v0 = 0 =

λ · v1
0 + (1− λ) · v2

0. For i > 0, assume that we have the property for all valuations reached
along the prefixes (i.e. for i′ < i), and especially that vi−1(c) = λ · v1

i−1(c) + (1−λ) · v2
i−1(c).

Then we have that vi−1(c) + λ · t1 + (1− λ) · t2 = λ · (v1
i−1 + t1) + (1− λ) · (v2

i−1 + t2) and
by applying the resets commended by r we obtain the result desired for the i-th valuation.

�

Offsets on zones and directions

We generalize the notion of offset from valuations (e.g. v + t for t ∈ R≥0) to zones, with
integer (positive or negative) offsets affecting subsets of clocks in the following way.

Definition 5.3.9. Consider a zone z defined by a set of constraints of the form ci ≺ k

and ci − cj ≺ k with ci, cj ∈ C, ≺ ∈ {<,≤,=,≥, >} and k ∈ N. For a vector of integers
N =

(
n1
...
n|C|

)
∈ Z|C| we note z +N the zone defined by the constraints

∀ i, j ∈ {1, . . . , |C|}, ci ≺ k + ni and ci − cj ≺ k + ni − nj.

181

Chapter 5 – Active learning of timed automata with unobservable resets

c1

c2

1 2 3

1

2

3
(1
−1)

(−1
0)

Figure 5.4: The effect of some offsets on a zone.

Example 5.3.10. In Figure 5.4, an open zone is presented, together with the effect of
multiples offsets on it. Offsets are noted (n1

n2) with n1 the offset on clock c1 and n2 the
offset on clock c2.

Finally, it will be useful to consider the effect of modifying the delay at a given index
in a word on the rest of the word. This is formalized through the notion of direction. To
ease the notations, we will note 1C′ for C ′ ⊆ C the vector with ones in the dimensions of
clocks in C ′ and zeros everywhere else.

Definition 5.3.11. Consider a sequence of resets r = (rk)1≤k≤n. For two indices 1 ≤ i ≤
j ≤ n we define the direction at rank i on rank j, noted dirji (r), as

dirji (r) = 1C′ with C ′ = {c ∈ C | ∀i ≤ k < j, c /∈ rk}.

We generalize directions to j < i by fixing dirji (r) = 1∅ and by defining directions on all
words with resets (i.e. time, zone and guarded words with resets).

We will use directions to build offsets. To explain the convention for j < i, we give a
characterization of directions for timed words with resets.

Proposition 5.3.12. Consider a timed word with resets wtr = (ti, ai, ri)1≤i≤n and its
corresponding abstract run σ = sig−1

behav(wtr) = (vi−1
(ti,ai,ri)−−−−→ vi)1≤i≤n. Then for any

1 ≤ k, j ≤ n, dirjk(wtr) corresponds to the effect on vj−1 + tj of adding one time unit
to tk. Formally, noting w′tr = (ti, ai, ri)1≤i<k · (tk + 1, ak, rk) · (ti, ai, ri)k<i≤n, and σ =
sig−1

behav(w′tr) = (v′i−1
(t′i,ai,ri)−−−−→ v′i)1≤i≤n, it holds

v′j−1 + t′j = (vj−1 + tj) + dirjk(wtr).

182

5.4. Observation structures

Proof. For any clock c ∈ C, (v′j−1 + t′j)(c) is the sum of delays since the last index l at
which c was reset. If l ≥ k then adding time to tk does not modify the valuation of c.
By definition we have dirjk(wtr)(c) = 0, and the equality holds. Conversely, if l < k, or if
clock c has not been reset, then the modification directly impacts the valuation by the
same amount, and we have dirjk(wtr)(i) = 1, matching the addition of 1 time unit. �

Example 5.3.13. Consider the timed word with resets (for C = {ca, cb, cc})

wtr = (1.2, a, ca)(0.3, b, cb)(1.6, a, ca)(2.6, c, cc)(0.1, c, ∅)(0.1, c, ∅).

Then dir6
6(wtr) = dir6

5(wtr) = 1C, dir6
4(wtr) = 1{ca,cb}, dir6

3(wtr) = 1{cb} and dir6
2(wtr) =

dir6
1(wtr) = 1∅.

5.4 Observation structures

In this section, we describe the structures used to represent and process the timed
observations acquired during learning (and stored via the acceptance function Acc), and
the decisions we make based on those observations.

We begin with defining a generic structure, which we call timed decision graphs, which
are tree-shaped structures encoding (abstractions of) timed words, as well as all possible
combinations of resets. We then define two special instances of these graphs:

• timed language graphs are timed decision graphs in which we reason more specifically
about guards that have to be assigned to transitions. Timed language graphs will be
very close to the candidate timed automata we aim at building;

• timed observation graphs are timed decision graphs in which we reason more specifi-
cally about reset sequences. We use them to detect invalid sequences of resets.

Remark 5.4.1. From now on, we will rely on the targeted class of automata: RERAs.
Notably, we will replace resets denoted by 2C by {>,⊥} where > denotes that the clock
corresponding to the transition action is reset and ⊥ that it is not.

This will notably serve in the construction of the timed decision graphs and in the
different languages to simplify the expressions.

We did not apply these restrictions before as the abstractions are fitting for any timed
automaton and thus need not be restrained in this way.

183

Chapter 5 – Active learning of timed automata with unobservable resets

5.4.1 Timed decision graphs

Definition 5.4.2. A timed decision graph (TDG) is a labelled graph D = (S,E) where S
is partitioned into two sets So and Sd as follows:

• So ⊆ (Z × Σ× {>,⊥})∗ is the set of observation states: it is a non-empty prefix-
closed set of zone words with resets. We write s0

o for the empty word, which always
belongs to So. With any state so ∈ So, we associate the zone ζ(so) reached after the
zone word with reset so, and defined inductively as follows:

– ζ(s0
o) = {0};

– ζ(wzr · (z, a, r)) = (
−−−−→
ζ(wzr) ∩ z)[r←0] (where we consider that r = {ca} when

r = > and r = ∅ if r = ⊥).

• Sd ⊆ So ×Z × Σ is the set of decision states; a state sd = (so, z, a) represents the
situation where we observe the occurrence of action a, and have to decide whether
clock ca will be reset. We require that

– for any sd = (so, z, a), it holds ζ(so) ∩ z 6= ∅;

– for any so, for any a, if both (so, z, a) and (so, z′, a) are in Sd, then z = z′ or
z ∩ z′ = ∅.

Edges are defined as follows: we have E = Eod]Edo ⊆ S × ((Z × Σ) ∪ {>,⊥})× S, such
that for any so ∈ So and any sd ∈ Sd:

• there is an edge (so, f, sd) ∈ Eod if, and only if, f is of the form (z, a) and sd =
(so, z, a);

• there is an edge (sd, f, so) ∈ Edo if, and only if, f ∈ {>,⊥} and, writing sd = (s′o, z, a),
we have so = s′o · (z, a, f).

Notice that by our definition, for all sd = (so, z, a), the state so belongs to So. Symmetrically,
we require that for all so = s′o · (z, a, f), the state (s′o, z, a) ∈ Sd. This way, our timed
decision structures always are connected, tree-shaped graphs.

Finally, we require that all decision states have at least one successor, so that all leaves
are observation states.

We use timed decision graphs to represent and manipulate observations stored in
the Acc function (i.e. in Dom(Acc)). Fix such a function Acc, and a TDG D. With any

184

5.4. Observation structures

observation state so ∈ So of D, corresponding to a zone word with resets wzr, we associate
the (possibly empty) set of timed words that are observation-compatible with it, formally:

words(so) = {wt ∈ Dom(Acc) | wt a wzr}.

We also let
label(so) = {Acc(wt) | wt ∈ words(so)}.

The labelled TDG associated with D and Acc is then defined as the pair DAcc = (D, label).
Not all labelled TDGs are relevant to handle acceptance functions. A labelled TDG DAcc

is said

• complete (w.r.t. Acc) when Dom(Acc) ⊆ ⋃so∈So words(so);
• well-grounded (w.r.t. Acc) if for any observation state so ∈ So it holds words(so) 6= ∅.

Completeness means that all observations are represented in the TDG, while well-
groundedness means that every observation state has a non-empty set of compatible
observations. A labelled TDG is said to implement an acceptance function Acc when it is
both complete and well-grounded w.r.t. Acc.

We will use two instantiations of these structures in our learning process:

• timed language graphs (TLG) are timed decision graphs with the following extra
requirements:

– all zones appearing in a TLG are guards (i.e., they do not involve diagonal
constraints);

– for any so, writing Z = {z | (so, z, a) ∈ Sd}, if Z is non-empty, then Z partitions
the set of clock valuations RC

≥0.

As we explain below, TLGs will be used to refine guards, eventually representing
(the unfolding of) a candidate timed automaton modelling the current observation.

• timed observation graphs (TOG) are timed decision graphs in which

– all zones that appear in the definitions of the states are K-closed zones;

– all decision states have two successors, by both > and ⊥.

185

Chapter 5 – Active learning of timed automata with unobservable resets

As we explain below, these will be useful for characterizing (im)possible sequences of
clock resets. In a TOG, we note sε the root state, as it corresponds to the empty
word.

Notice that in general, different labelled TDGs can implement the same acceptance
function Acc, because different zones can appear in the zone words defining the states of
the TDG. This is the case for TLGs. However there is unicity for TOGs, as proven below.

Proposition 5.4.3. Given an acceptance function Acc, there is a unique TOGM imple-
menting it.

Proof. ConsiderM andM′ implementing Acc. By definition of TOGs, all zones appearing
in these graphs are K-closed, and thus all the zone words are K-closed words.

We will first prove that SMo ⊆ SM
′

o . AsM is well-grounded w.r.t. Acc, for any so ∈ SMo .
there exist some wt ∈ Dom(Acc) ∩ words(so). And asM′ is complete, there also exists a
state s′o ∈ SM

′
o such that wt ∈ words(s′o). Furthermore, since by definition of TOGs all

decision states inM′ have two successors, one can choose s′o with the same sequence of
resets as so, i.e. r = resets(s′o) = resets(so). Now, given wt and r, the K-closed word with
resets wzr such that (wt ⊗ r) ∈ wzr is unique, hence we get so = wzr = s′o.

It comes that SMo ⊆ SM
′

o . We can show the opposite inclusion by symmetry, and thus
SMo = SM

′
o . By the definition of TOGs, this implies that SMd = SM

′
d and EM = EM

′ .
ThusM =M′. �

Example 5.4.4. Consider the RERA of Figure 5.5a with the final location being the only
accepting one. If the learner issues requests for the timed words ε, (0.7, a), (0.7, a)(0.9, a)
and (0.7, a)(1.2, a), they end up with the following acceptance function:

Acc(ε) = − Acc((0.7, a)(0.9, a)) = +

Acc((0.7, a)) = − Acc((0.7, a)(1.2, a)) = −

The graph of Figure 5.5b represents a labelled TLG implementing this acceptance func-
tion Acc; in that figure (and all similar figures in this chapter), circle states are observation
states and diamond states are decision states. In that example, all zones (which we see
here as guards) contain all clock valuations.

Notice that some states (here all leaves) are labelled with both − and +, indicating
that this graph (which can be seen as a timed automaton) is not a good candidate for our
learning situation, and has to be refined.

186

5.4. Observation structures

start
a, true, {ca}

a, ca ≤ 1, ∅

(a) The RERA providing observations.
−start

−

± ±

−

± ±

a, true
>

a, true
> ⊥

⊥

a, true
> ⊥

(b) A first TLG.

−start

−

+ + − −

−

± ±

a, (0, 1)
>

a, (0, 1)

> ⊥

a, (1, 2)

> ⊥

⊥

a, (1, 2)
> ⊥

(c) The TOG implementing Acc.

Figure 5.5: An active-learning setting.

The TOG implementing Acc is displayed in Figure 5.5c. Notice that the rightmost
leaves are both accepting and non-accepting, as both (0.7, a)(0.9, a) and (0.7, a), (1.2, a)
satisfy their constraints. As the guards of a TOG are minimal, we know that these two
words are equivalent and that any model for those observations should reset the clock ca
after the first transition (at least for 0 < ca < 1).

Timed language graphs and timed observation graphs provide two different views
of a set of observations, with opposite levels of abstraction. Timed observation graphs
are precise in the sense that they distinguish the behaviours as finely as possible for a
deterministic RERA, using K-equivalence as a base.

Timed language graphs are made to be as general as possible, only featuring guards
that are necessary to model the observations, i.e. a transition labelled by a guard g is
only split in g1 and g2 when it is necessary to distinguish accepting and non-accepting
behaviours.

Remark 5.4.5. This notion of necessity is local: from a given TLG, if it is necessary
to add a guard this does not mean that there exist no fitting TLGs without that guard:
perhaps a different one could have been added, or changing another guard would make the
addition unnecessary.

We introduce a function α : SMo → SNo that links these two models, both in order to
display the strong links between the two graphs and for later algorithmic use.

187

Chapter 5 – Active learning of timed automata with unobservable resets

Definition 5.4.6. Consider a timed language graph N and a timed observation graphM.
For two observation states sMo = wzr ∈ SMo and sNo = wgr ∈ SNo , we define α(sMo) = sNo

when wzr ⊆ wgr.

We prove below that α is well-defined, and some of its basic properties:

Proposition 5.4.7. Consider a complete TLG N for Acc and a TOGM implementing Acc.
Then α is well-defined. It is surjective if, and only if, the TLG N is well-grounded (thus
implements Acc). Furthermore, for all sMo ∈ SMo , words(sMo) ⊆ words(α(sMo)), (and
consequently label(sMo) ⊆ label(α(sMo))).

Proof. We prove the different properties independently.

• To ensure that α is well-defined, it suffices to check that for every sMo ∈ SMo there
is a unique covering guarded word sNo in SNo . The unicity comes by induction by
the properties of the observation states of a TLG: there is no overlapping between
guards corresponding to the same action after a given language state (by definition
of a TLG); the existence comes from the well-groundedness ofM w.r.t. Acc and the
completeness of the observation structure: by well-groundedness, for each observation
state sNo there is an observation wt, and by completeness, that observation wt is
covered by the TLG.

• If the TLG is well-grounded, then for any sNo ∈ SNo , there is a timed word wt of Acc
in words(sNo). By completeness ofM w.r.t. Acc, there exists some observation state
sMo ∈ SMo , with wt ∈ words(sMo), and thus α(sMo) = sNo . Thus α is surjective.

Conversely, suppose that α is surjective. Then for any sNo = wgr ∈ SNo , there exists
sMo ∈ SMo such that α(sMo) = sNo . By well-groundedness of M, there is wt ∈ Acc
such that wt ∈ words(sMo) and by definition of α, we get wt a wgr. Well-groundedness
of N then follows by definition of words.

• The inclusion words(sMo) ⊆ words(α(sMo)) comes from the fact that any observation
that belongs to sMo also belongs to α(sMo).

�

188

5.4. Observation structures

5.4.2 Consistency and validity

In the learning process we will construct TLGs, i.e. basically prefix-closed sets of guarded
words with resets associated with their sets of compatible observed timed words. These
guarded words with resets are the premises of paths in the targeted TA. However only
some of them can form those paths in a deterministic TA modeling Acc, since their image
by Acc must be unique for all compatible observed timed words. This is formalized by the
notion of consistency:

Definition 5.4.8. A guarded word with resets wgr is said consistent with respect to an
acceptance function Acc when for all wt, w′t ∈ Dom(Acc), if wt and w′t are compatible with
wgr then Acc(wt) = Acc(w′t). Otherwise, wgr is said inconsistent.

Detecting and handling inconsistencies is central to our algorithms, as it characterizes
the need to introduce new guards to split observation nodes in the timed language graphs.
For this, we use the following characterization of inconsistencies of observation states of a
TLG.

Proposition 5.4.9. Consider a labelled TLG N implementing an acceptance function
Acc. An observation state so ∈ SNo is inconsistent if and only if |label(so)| = 2.

Proof. By definition, so is inconsistent if and only if there exists two timed words wt, w′t
in Dom(Acc) compatible with so, but Acc(wt) 6= Acc(w′t). By definition of labelled TLGs,
words and label, this is equivalent to wt, w′t ∈ words(so) such that Acc(wt) 6= Acc(w′t), which
is equivalent to |label(so)| = 2. �

Then, we say that a timed language graph NAcc is consistent when for any so ∈ So,
we have |label(so)| = 1; it is said inconsistent otherwise.

−start

−

+ + − −

−

± ±

a, true
>

a, ca ≤ 1
> ⊥

a, ca > 1
> ⊥

⊥
a, true

> ⊥

Figure 5.6: The TLG obtained after handling an inconsistency in the TLG of Figure 5.5b.

189

Chapter 5 – Active learning of timed automata with unobservable resets

Example 5.4.10. The leaves of the TLG in Figure 5.5b are inconsistent: the labels of all
leaves have size 2. That TLG can be refined into the TLG depicted in Figure 5.6: in the left
subtree, guard true has been split into two guards, ca ≤ 1 on one side, and ca > 1 on the
other side. In this situation, the learner may issue an extra request, namely (0.7, a)(1, a),
in order to decide how to set the guards; the TLG of Figure 5.6 corresponds to the case
where Acc((0.7, a)(1, a)) = +.

In the subtree to the right, however, it can be checked that no guards (only involving
clock xa and integer constants) can resolve the inconsistencies in this subtree: this indicates
that resetting clock xa in the first decision state is the only solution in this example.

We claim that detecting impossible reset decisions on the TLG, as we do in Exam-
ple 5.4.10, is not an efficient approach. Indeed, detecting such an impossibility requires
discarding every possible guard that could separate the observations. This can be done
either by refining guards until no refinements are possible (which may require numerous
membership queries, see Algorithm 9 in Section 5.5.2 for more insight), or by checking on
any pair of words leading to an inconsistency, whether there is a guard that can separate
them, which again may require a large number of queries.

Example 5.4.11. Consider again the situation of Example 5.4.10; Figure 5.7 displays the
TOG implementing the corresponding acceptance function; remember that in a TOG, all
zones are K-closed zones. Notice that it has labels of size two on the leaves of the right
branch. While such incompatibilities can be resolved on TLGs by refining guards, here
guards cannot be refined, and as we now argue, this indicates that the decision not to reset
the clock cannot be correct.

−start

−

+ + − −+ +

−

± ±

a, (0, 1)

>

a, (0, 1)
a, {1}

a, (1, 2)

> ⊥ > ⊥ > ⊥

⊥

a, (1, 2)

> ⊥

Figure 5.7: The timed observation graph implementing Acc for Example 5.4.10.

As exemplified above, TOGs are composed with K-closed words with resets, that

190

5.4. Observation structures

cannot be refined. However some of them may not be possible in any deterministic TA
modeling the acceptance function Acc. This is formalized by the notion of invalidity:

Definition 5.4.12. Let Acc be an acceptance function. Let wzr be a K-closed word with
resets. We say that wzr is valid for Acc if there exists a deterministic complete RERA A
that models Acc such that all timed words with resets in wzr are signatures of runs of A.
Otherwise, wzr is said invalid.

We generalize (in)validity to TLGs and say that an observation state so of a TLG is
invalid when there exists an invalid K-closed word with resets included in so. We call so
valid otherwise. We say that the TLG N is valid when it has no invalid observation state.
We call the valid part of a TLG its restriction to valid observation states and intermediate
decision states.

In the particular case of TOGs, the following proposition characterizes invalid reset
combinations in the (unique) TOG implementing Acc; this will allow us to identify and
prune them:

Proposition 5.4.13. Let Acc be an acceptance function, andMAcc the TOG implement-
ing Acc. The set of marked observation states ofMAcc is defined by the least fixpoint of
the following marking:

• any observation state so with |label(so)| = 2 is marked;

• if, for some observation state so, there is an action a and a K-closed zone z such
that both observation states corresponding to so · (z, a,>) and so · (z, a,⊥) exist and
are marked inMAcc, then so is marked;

A K-closed word with resets wzr ∈ SMAcc
o is invalid w.r.t. Acc if, and only if it has a

marked predecessor.

Proof. Consider a TOGMAcc implementing Acc and an observation state so = wzr.
Let us first consider that so is marked and prove that wzr is invalid by induction on

the definition of marked states.
First assume that |label(so)| = 2; then by definition of label and words, there exist two

timed words wt and w′t compatible with wzr, such that Acc(wt) 6= Acc(w′t). Take the two
corresponding timed words with resets wtr = wt ⊗ resets(wzr) and w′tr = w′t ⊗ resets(wzr),
implementing the resets of wzr along wt and w′t. If a timed automaton A contains wtr as a

191

Chapter 5 – Active learning of timed automata with unobservable resets

run, it also contains w′tr (because they correspond to the same K-closed word with resets).
Since A must be deterministic, either both wtr and w′tr correspond to accepting runs, or
they both correspond to non-accepting runs. By Definition 5.2.4, A cannot be a model
for Acc.

Second, suppose so = wzr and there is an action a and a K-closed zone z such that
both s′o = wzr · (z, a,>) and s′′o = wzr · (z, a,⊥) are marked. By induction hypothesis, they
are invalid.

Assume that some complete deterministic RERA A contains a timed word with
resets wtr ∈ wzr as a run, then by completeness it would also contain wtr · (v, a,>)
or wtr · (v, a,⊥) for some v ∈ z, contradicting our induction hypotheses as these are invalid.

We thus have proven that all marked states are invalid.
Now, assume that so = wzr is a successor of a marked observation state s′o = w′zr.

Hence w′zr is invalid. By definition, no timed automata containing a timed word with
resets w′tr ∈ w′zr may be a model for Acc. Then, this directly extends to wzr (as all automata
containing wzr contain its prefixes), and wzr is invalid.

Conversely, we consider a zone word with resets wzr invalid for the acceptance func-
tion Acc, and try to prove that the observation state so = wzr has a marked prefix in
the TOGMAcc. The proof follows the following scheme: we first show how TAs can be
extracted from the TOG. We then discuss on such TAs containing paths for wzr, and use
the fact that they cannot be models to find states that cover accepting and non accepting
observations. Finally, the definition of marked states is used to reach the conclusion.
The difficulty comes from the fact that the pair of observations that we have may not
correspond to wzr in the first place (we have no guarantees except that the TA is not a
model). Hence we have to show that other labels of size two can be handled by changing
the reset choices (thus changing the TA extracted from the TOG) without modifying the
path containing wzr. This enforces that, in the end, a pair relevant for wzr will appear.

By definition of invalidity any deterministic RERA A containing signatures in wzr is
not a model of Acc. This is the case in particular for any (tree-shaped) RERA obtained
from the TOGMAcc by keeping only observation states, freely choosing whether or not to
reset the clock on each transition, and making leaves accepting or not depending on label
(both choices are possible when |label(s′o)| = 2).

Take such a TA AM containing the path π corresponding to wzr in the TOG. It cannot
be a model of Acc, so by Definition 5.2.4 there must be wt ∈ Dom(Acc) such that Acc(wt)
disagrees with the acceptance of wt in AM. Notice that, for Acc(wt) not to agree with

192

5.4. Observation structures

the acceptance of the target location, it has to end in a location in AM built from an
observation state s′o with |label(s′o)| = 2. Hence, there is another timed word w′t in words(s′o)
such that Acc(wt) 6= Acc(w′t).

We will now prove that wzr has a marked predecessor. We consider two cases:

• first, assume that for any reset choices, wt and w′t cannot be separated by any guard.
Formally: for any sequence of reset choices r ∈ {>,⊥}|wt|, for any index 0 ≤ j ≤ |wt|,
and for any guard g, writing vi and v′i for the clock valuations reached at step i along
the abstract runs sig−1

behav(wt ⊗ r) and sig−1
behav(w′t ⊗ r) obtained from wt and w′t by

resetting clocks according to r, we have vi |= g if, and only if, v′i |= g.

In this case, all leaves in the TOGMAcc that can be reached by reading wt or w′t
are labelled with both + and −, and are marked by our marking procedure. By
our hypothesis, all intermediary valuations visit the same K-closed zones, and all
corresponding states in the TOG are marked. In the end, the root of the TOG
is marked, and then all states have a marked predecessor. In particular, it is true
for so = wzr;

• now, assume that there exist two timed words with resets wtr = wt⊗r and w′tr = w′t⊗r,
obtained from wt and w′t by adding a same sequence of resets r, that can be separated
at some step i by a guard g. This sequence of resets r might not be the one considered
in AM but we can modify the reset sequence of AM along the branch corresponding
to wt and w′t (i.e. by changing the reset choices and using different branches of N).

– First assume that we can modify AM so that wtr and w′tr correspond to runs
of AM, without modifying the path π corresponding to wzr; in that case,
we build a new TA A′M from AM accordingly, and add the guard g at step i, so
as to separate wtr and w′tr. In that case, we can repeat the arguments above with
the TA A′M, as we assumed that no TA containing wzr can be a model for Acc.
By furthermore forbidding to re-use a reset combination already discarded
(e.g. to return to AM) and since there are only finitely many observations,
and they are of finite length, this situation cannot occur indefinitely. Notice
that if there is no way to separate two observations without coming back to a
previously discarded reset combination, we can conclude to the invalidity of the
root as previously.

– If the modification inevitably leads to excluding wzr from the runs of AM, then
there is a prefix w′zr of wzr (which is also a prefix of wtr) after which no guard can

193

Chapter 5 – Active learning of timed automata with unobservable resets

distinguish between (the suffixes of) wt and w′t. Applying the same arguments
as above for the root, all leaves in the subtree after wtr corresponding to all
reset sequences for suffixes of wt and w′t are labelled with + and −; the state
corresponding to w′zr must also be marked, and so so = wzr has a marked
predecessor.

�

Example 5.4.14. In the TOG of Example 5.4.11, both leaves in the right-hand-side subtree
are invalid, which indicates that the clock has to be reset when reading the first a (at least
when it occurs after a delay in (0, 1)).

Remark 5.4.15. We could propagate marks to suffixes to mark exactly all invalid states,
but as the TOGs are always explored from the root it is unnecessary (a marked prefix will
be reached beforehand) and constitutes a simple optimization.

When marking a state of the TOG, we are able to aggregate a set of pairs of words
that will characterize an invalidity.

Definition 5.4.16. Let Acc be an acceptance function and M the TOG implementing
Acc. When marking the observation states so ofM, construct the following set of pairs of
timed words with resets Wso:

• if |label(so)| = 2,Wso = {(w1, w2)} for a pair w1, w2 in words(so) such that Acc(w1) 6=
Acc(w2)

• when marking a state so with two marked successors so · (z, a>), so · (z, a⊥), Wso =
Wso·(z,a>) ∪Wso·(z,a⊥).

For unmarked successors of marked states, we use their predecessor characteristic sets. For
an invalid observation state so, we call Wso a characteristic set of its invalidity.

One can see that a characteristic set of an invalidity is sufficient to characterize it, as
it matches the definition of marking.

Using the marked states introduced in Prop. 5.4.13, the TOG will be used to detect
invalid resets, while the purpose of the TLG is to construct possible guards for candidate
timed automata. In order to be able to construct as many different hypotheses as possible,
all (valid) combinations of resets must be considered, while the invalid ones should be
pruned to avoid any overhead. For this we define a notion of maximal TLG, where no
valid resets are pruned.

194

5.4. Observation structures

Definition 5.4.17. A TLG N is said maximal if for any decision state sd = (s′o, z, a) ∈ Sd
and for r ∈ {>,⊥}, there is (sd, r, s′o · (z, a, r)) ∈ E if, and only if, s′o · (z, a, r) is valid.

The algorithms proposed in the following sections will construct and maintain maximal
and valid TLGs. Notice that as we suppose that the system we try to learn can be modelled
by a RERA, ensuring the maximality of a TLG implementing Acc suffices to ensure that
we will find a model (as there is a valid RERA model and we do not discard valid choices).

Example 5.4.18. Consider the following set of observations over Σ = {a}:

Acc(ε) = − Acc((1.7, a)) = − Acc((3.7, a)) = −

Acc((1.7, a)(1, a)) = + Acc((3.7, a)(1.1, a)) = +

Acc((1.7, a)(1.1, a)) = − Acc((3.9, a)(1.1, a)) = −

The TOGM implementing this acceptance function is displayed to the left of Figure 5.8.

−

−

+ + − −

−

± ±

−

± ±

−

+ + − −

a,(1,2)

>
a,[1]

> ⊥

a,(1,2)

> ⊥

⊥

a,(2,3)
> ⊥

a,(3,4)

>

a,(1,2)
> ⊥

⊥
a,(4,5)

> ⊥

a,[5]

> ⊥

−

sd

− −

a, true
> ⊥

Figure 5.8: On the left: the TOG for Example 5.4.18, with its invalid nodes (in grey); on
the right: a corresponding maximal TLG.

It can be noticed that the root of this TOG is valid, but that it is required for a model to
distinguish between the cases where the first a occurs before time 2 and the cases where
it occurs after time 3. For example, the TLG N displayed to the right of Figure 5.8 is
maximal and implementing Acc. Indeed, as there is no guard on the first a-transition, the
decision state sd leads only to invalid successors, which are thus pruned.

Example 5.4.18 is a situation where a guarded word with resets (here ε) is not invalid
in the TLG, but all its successors for a given action and guard (in this case a and true,
corresponding to the decision state sd in the TLG of Figure 5.8) are. In such situations,
two different K-closed words with resets make the successors invalid, and a guard has to
be added in the TLG to separate them. This corresponds to a situation where Acc displays

195

Chapter 5 – Active learning of timed automata with unobservable resets

two different behaviours, one that require a clock reset to model, and another one that
requires not to reset this very clock. Thus, in order to model Acc it is necessary to introduce
a guard to separate these two behaviours (identified by two different invalidities).

5.5 Updating observation structures

The algorithms presented in this section are the operational core of our work. They are
used to update the previously-defined data structures and ensure their good properties
by membership queries and their processing, thus corresponding to line 4 of Algorithm 4
(Section 5.2.2).

We present the details of our algorithms as a set of subfunctions, connected as displayed
on Figure 5.9. They work in three phases:

FindPath

AddWord AdjPair

InvalidityGuard Rebuild

FindGuard

Request

Sec.5.5.1 Sec.5.5.2 & 5.5.3 Sec.5.5.4
Invalidity

Inconsistency

set of
guards

Counterexample

Figure 5.9: The structure of the update algorithms.

• First, starting from a new observation (obtained from a counterexample or via a
membership query), FindPath (Algorithm 5) updates the structures (TLG and TOG)
while keeping most of their good properties, except possibly consistency. It uses
AddWord (Algorithm 6) on prefixes when new states have to be added in either
tree. This may require calls to Request (Algorithm 7) on prefixes, which provides
new observations (via membership queries) and thus new calls to FindPath on those
prefixes when necessary.

When an invalidity is detected in the TOG during this process, FindPath finds the
root of the invalidity and prunes the corresponding subtree of the TLG as it is itself
invalid (this approach is further discussed in Remark 5.5.1). These algorithms are
presented in Section 5.5.1.

196

5.5. Updating observation structures

• When an inconsistency is detected by FindPath, a call to AdjPair (Algorithm 9) is
made. This algorithm introduces a separating guard for the inconsistency, using
a binary search timed words to find a fitting separation. Similarly, when a (valid)
decision state is left without successors, InvalidityGuard (Algorithm 12) is called
(through a preprocessing via Init-InvalidityGuard (Algorithm 8)). Its process is similar
to AdjPair, but it reasons on K-closed words with resets, making it more complex.

These algorithms request new observations through Request, possibly leading to
new calls to FindPath. Both these algorithms add guards to symbolic set of guards
that can be used, but do not modify directly the structures. AdjPair is described in
Section 5.5.2 and InvalidityGuard in Section 5.5.3.

• Finally, after the cycle of new observations and guard storing finishes, the relevant
part of the models are rebuilt using these new guards by Rebuild (Algorithm 15)
using calls to FindGuard (Algorithm 16) to find relevant guards. These algorithms
are presented in Section 5.5.4.

5.5.1 Adding a new observation

Adding a new observation in the TLG N and in the TOG M is performed by func-
tion FindPath (Algorithm 5): this function recursively descends into M, following the
input timed word wt and exploring both resetting and non-resetting edges. It is called as
FindPath(ε, wt,0, sε).

• If the descent gets stuck by lack of new successors before exhausting wt, then new
nodes have to be added in the TOG (and possibly corresponding nodes in the TLG).
This is performed by AddWord (Algorithm 6), making new membership queries
via Request (Algorithm 7) if needed to ensure prefix-closure. Each call to AddWord
adds two observation states (corresponding to the two reset choices) in the TOG
and possibly two observation states in the TLG (unless they already exist), as well
as the intermediary decision states.

• If the descent exhausts wt, then it reaches a node corresponding to the K-closed
timed word containing wt, whose words (and label, as a side-effect) function can
be updated (as well as those of the associated node in the TLG). Invalidities and
inconsistencies can be detected and resolved, respectively by scheduling calls to
InvalidityGuard (Algorithm 12) and AdjPair (Algorithm 9). These two functions will be

197

Chapter 5 – Active learning of timed automata with unobservable resets

explained in the next sections. Notice that they are not run until FindPath terminates;
this is precisely to simplify the termination proof of FindPath.

Remark 5.5.1. Notice the way FindPath handles invalidities: it finds the root of the
invalidity and marks it in the TOG. In the TLG the corresponding observation state is
pruned. This approach is somewhat lazy as it chooses to prune a node that covers potentially
more than the invalidity (and possibly valid observations), without reintroducing ones that
cover its valid observations. This is made to avoid both the computational cost and the
blow-up of the model (as it would require a great number of new states). This pruning is not
problematic as long as any decision states has at least one un-pruned successor. When all
successors are pruned, we use algorithm InvalidityGuard (Algorithm 12) to introduce a guard
and create new decision states that have valid successors, as discussed in Section 5.5.3.

Function AddWord recursively creates the nodes in the TOG and TLG as needed.
It launches new calls to Request for each intermediary word, which in turn calls FindPath in
order to add the new information in all corresponding nodes and checks for inconsistencies
and invalidities.

The following statements express soundness of our algorithms. They ensure that the
good properties of the structures are preserved by the call to FindPath. Note that we do
not consider the consequences of the scheduled calls to InvalidityGuard and AdjPair in the
following properties. They will be discussed in the following subsections.

Proposition 5.5.2 ensures that the pruning made during the execution of the FindPath
algorithm prunes exactly the invalid states of the TLG (ensuring maximality) and that the
corresponding states of the TOG are marked. Proposition 5.5.3 states that FindPath keeps
the implementation properties of the TOG and TLG with respect to the updated set of
observations. Notice that these algorithms do not handle consistency, but only schedule a
call to AdjPair that will handle it later.

We note NewPrefM(wt) the set of prefixes of a timed word that is not covered by the
TOGM, i.e. for wt = (ti, ai)1≤i≤n, NewPrefM(wt) = {w′t = (ti, ai)1≤i≤j | j < n ∧w′t a SMo }
where a timed word is compatible with a set of zone word with resets if and only if it is
compatible with one of its elements.

Proposition 5.5.2. Consider an acceptance function Acc, a maximal TLG N , a marked
TOGM implementing Acc, such that no invalid states w.r.t. Acc can be reached in N , and
a new observation wt /∈ Dom(Acc). Let Acc′ be such that Dom(Acc′) = Dom(Acc) ∪ {wt} ∪
NewPrefM(wt) and for all w′t ∈ Dom(Acc), Acc′(w′t) = Acc(w′t). Calling FindPath(ε, wt, 0, sε)

198

5.5. Updating observation structures

Algorithm 5: Adding a new observed timed word pt · wt in N andM
1 def FindPath (pt, wt, v, so):

Input: pt: prefix timed word; wt: suffix timed word; v: valuation after pt;
so: state of TOG after pt

2 if wt = ε then // end of word reached
3 add pt to words(so) and words(α(so))
4 if |label(so)| = 2 then // invalidity detected in TOG
5 so.invalid := true
6 sd := parent(so)
7 while both successors of sd are invalid do // seek invalidity root
8 so := parent(sd)
9 so.invalid := True

10 sd := parent(so)
11 delete transition entering α(so) and subtree rooted at α(so) fromM
12 schedule a call to Init-InvalidityGuard(so)
13 else
14 if |label(α(so))| = 2 then // inconsistency detected in TLG
15 pick wt and w′t in words(α(so)) s.t. Acc(wt) 6= Acc(w′t)
16 schedule a call to AdjPair(wt ⊗ (resets(so)), w′t ⊗ (resets(so)))
17 else // wt not empty
18 (t, a) · w′t := wt
19 if there exist z and sd s.t. (so, (z, a), sd) ∈ EM and v + t ∈ z then
20 for (sd, r, s′o) ∈ EM do
21 FindPath(pt · (t, a), w′t, (v + t)[r←0], s

′
o)

22 else
23 AddWord(pt, wt, v, so)

199

Chapter 5 – Active learning of timed automata with unobservable resets

Algorithm 6: ExtendingM and N to include a new timed word
1 def AddWord (pt, wt, v, so):

Input: pt: prefix timed word; wt: suffix timed word; v: valuation after pt;
so: state of TOG after pt

2 (t, a) · w′t := wt
3 create state sd := (so, Kz(v + t), a) in SMd // Handling M
4 create states s′o := so.(Kz(v + t), a,>) and s′′o := so.(Kz(v + t), a,⊥) in SMo
5 create transitions (so, (Kz(v + t), a), sd), (sd,>, s′o) and (sd,⊥, s′′o) in EM
6 if ∃sc = (α(so), g, a) ∈ SNd such that v + t ∈ g then // Handling N
7 let s′l, s′′l in SNo such that (sc,>, s′l) and (sc,⊥, s′′l) in EN
8 else
9 create state sc := (α(so), true, a) in SNd

10 create states s′l := α(so).(true, a,>) and s′′l := α(so).(true, a,⊥) in SNl
11 create transitions (α(so), (true, a), sc), (sc,>, s′l) and (sc,⊥, s′′l) in EN
12 define α(s′o) := s′l and α(s′′o) := s′′l
13 Request (pt · (t, a)) // get status of pt · (t, a)
14 add pt · (t, a) to words(s′o), words(s′′o), words(s′l), and words(s′′l)
15 if |label(s′l)| = 2 then // inconsistency detected at node s′l (and s′′l)
16 pick wt and w′t in words(s′l) s.t. Acc(wt) 6= Acc(w′t)
17 schedule a call to AdjPair(wt ⊗ (resets(so)), w′t ⊗ (resets(so)))
18 if w′t 6= ε then // proceed recursively with the suffix
19 for (sd, r, s′o) ∈ EM do
20 AddWord(pt · (t, a), w′t, (v + t)[r←0], s

′
o)

Algorithm 7: Requesting an observation.
1 def Request (wt):

Input: wt: timed word
2 if wt ∈ Dom(Acc) then
3 return Acc(wt)
4 else
5 Make a membership query on wt and set its result o to Acc(wt)
6 FindPath(ε, wt,0, sε)
7 return o

200

5.5. Updating observation structures

Algorithm 8: Pruning N after detecting an invalid timed word with resets.
1 def Init-InvalidityGuard :

Input: so an observation state corresponding to the root of an invalidity inM
2 Let sd be the parent of so
3 if |{(sd,_,_) ∈ EN}| = 0 then
4 Let W1 be the characteristic set of so and W2 the characteristic set of the

other pruned child of sd.
5 InvalidityGuard(W1,W2, sd)

modifiesM and N in such a way thatM becomes marked w.r.t. Acc′, N becomes maximal
w.r.t. Acc′ and no invalid states can be reached in N .

Proof. Invalidity is detected along the calls to FindPath, and the propagation of the invalid
tag follows the definition of marks for all ascendant states. No descendant are tagged,
but this does not matter as they cannot be reached without passing by marked states
asM is a tree. A call to SearchPrune is then made, that targets exactly the root of the
invalid subtree that has been detected, and prune it in N . As this is made for all detected
invalidities and the subtrees are detected, when the procedure terminates, no language
state invalid because of an invalidity detected in FindPath can be reached. Furthermore
only the invalid subtree is suppressed, hence no valid states are made unreachable (as by
definition all descendant of invalid states are invalid).

To conclude, it suffices to notice that every new membership query gives rise to a
corresponding call to FindPath, leaving no invalidities undetected. �

Proposition 5.5.3. Starting from an acceptance function Acc, a TLG N and a TOGM
implementing the valid part of Acc and a timed word wt /∈ Dom(Acc), we consider Acc′

be such that Dom(Acc′) = Dom(Acc) ∪ {wt} ∪ NewPrefM(wt) and for all w′t ∈ Dom(Acc),
Acc′(w′t) = Acc(w′t).

A call to FindPath(ε, wt, 0, sε) with sε the root ofM modifiesM and N in such a way
that they implement the valid part of Acc′.

Proof. First of all, a call to FindPath terminates, as recursive calls are in finite number and
on words of strictly decreasing length, there is at most one call to AddWord or SearchPrune
from FindPath along each explored path and recursive calls to AddWord are in finite number
and on words of strictly lower length. Thus, there is a finite number of calls to Request,
and if these calls make calls to FindPath for new observations, the timed words given as
arguments are of strictly lesser length.

201

Chapter 5 – Active learning of timed automata with unobservable resets

We now prove the rest of the property by induction on the calls to both FindPath and
AddWord. We use the following induction hypothesis: A call to AddWord/FindPath creates
subgraphs of N andM that implement the restriction of Acc′ to the subset of its domain
belonging to so the observation state given in argument.

• Basic case for FindPath. Here we have wt = ε. In this case the complete word to add
was read before along the path. The past pt storing that word is added to words
of both so and α(so). Hence the subgraphs are complete with respect to the new
observation (by adding delays and actions no other reachable states can correspond
to that same word) and every new observation requested during the recursive calls (as
they do not reach it). No other states are created, hence the hypothesis on the initial
structures suffice to conclude that the subgraphs are complete and well-grounded
with respect to the valid part of Acc′, as by Proposition 5.5.2 only invalid states
w.r.t. Acc′ are pruned.

• Basic case for AddWord. We first discuss the properties ofM. As AddWord is never
called on empty words, we have wt = (t, a). The call to AddWord adds a new decision
state sd = (so, a,Kz(v + t)) and two new language nodes s′o and s′′o corresponding to
the effect of resetting or not ca after the action. As AddWord was called in FindPath,
we know that no successor covers (t, a) in so. As we are in the base case, words
of s′o and s′′o are augmented with the observation pt · (t, a), making them complete
with respect to Acc′ (as no other timed word in Dom(Acc′′) reaches this state) and
well-grounded. The edges constructed by this call agree with the definition, and
by the hypothesis on the initial observation graph, the other successors of so are
complete (except with respect to the new word, but their sequence of letters and
K-closed zones do not match) and well grounded, hence in all cases we obtain a
subgraph ofM that is complete (as s′l and s′′l have no successors) and well grounded.

We now discuss the properties of N . There are two possibilities. Either a decision
state covering (t, a) from α(so) exists, in which case the behaviour of AddWord
mimics the one of FindPath, and we can conclude using the previous point, or there
is no such decision state. In this case, by definition of a TLG, we know that no
decision state for letter a exist as successors of α(so). Hence the new decision and
observation states created in N correspond to the definition of a TLG. Furthermore,
the observation states are well-grounded, as pt.(t, a) is added to their set of words,
and this, together with the initial hypothesis on N implementing Acc, ensures that

202

5.5. Updating observation structures

the subgraph is complete w.r.t. Acc′.

• Inductive case of FindPath. We consider that wt = (t, a).w′t. Thus we enter the else
part in line 2. If the else case is called in line 22, we only make a call to AddWord on
wt hence by induction hypothesis, we have the desired properties. Else, as there is
only one guard such that wt can go through that guard (by unicity of the K-closed
set containing a timed word with resets), all successors satisfying a prefix of wt are
reached by the recursive calls and by induction hypothesis they lead to implementing
subgraphs for both the TOG and TLG. Furthermore, other successors of so (resp.
α(so)) constitute, by the hypothesis on the initial structure, a subgraph implementing
Acc (except that the guard g of the considered transition is not covered), except for
the new word that may not be covered. But by unicity, they cannot correspond to
paths satisfying the new word and thus we have our properties.

• Inductive case for AddWord. This case works exactly as the base case, except that calls
to Request ensure that the new states have non-empty words, and the completeness
with respect to wt is ensured by the induction hypothesis.

�

5.5.2 Dealing with inconsistency

An inconsistency arises when a language state of the TLG contains both accepting and
non-accepting observations. It entails that a guard must be added somewhere in the
structure in order to separate these observations.

For this we search for a pair of adjacent timed words with resets, which intuitively
identify the boundary between accepting and non-accepting behaviours. We then build a
finite set of differences between adjacent timed words with resets, each of which corresponds
to a possible guard. This procedure is described in the AdjPair algorithm (Algorithm 9).

We use K-equivalence to define the notion of adjacency. Intuitively adjacent timed
words with resets have the same projection on actions and resets, and their valuations
either are K-equivalent, or materialize a boundary between the accepted and non-accepted
words.

As these boundaries rely on clock values, we define adjacency on abstract runs and
transfer it to timed words with resets using the sig bijection.

203

Chapter 5 – Active learning of timed automata with unobservable resets

Definition 5.5.4. For two abstract runs sharing the same length, the same actions and
resets σ = (vi−1

ti,ai,ri−−−→ vi)1≤i≤n and σ′ = (v′i−1
t′i,ai,ri−−−→ v′i)1≤i≤n, we say that σ is adjacent to

σ′ when for all i ∈ [1, n] and c ∈ C:

• if vi−1(c) + ti ∈ N then |(vi−1(c) + ti)− (v′i−1(c) + t′i)| < 1,

• otherwise, vi−1(c) + ti≈K v′i−1(c) + t′i.

A timed word with resets wtr is said adjacent to a timed word with resets w′tr when
sig−1

behav(wtr) is adjacent to sig−1
behav(w′tr).

Notice that adjacency is not a symmetric relation. However, we will sometimes say
that an ordered pair (wtr, w′tr) is adjacent to mean that wtr is adjacent to w′tr. We will
often abuse the term and call (wtr, w′tr) an adjacent pair.

We use adjacency to identify differences between the timed words with resets as possible
new guards that resolve the inconsistency.

Definition 5.5.5. Given a pair of adjacent abstract runs sharing the same length, the
same actions and resets σ = (vi−1

ti,ai,ri−−−→ vi)1≤i≤n and σ′ = (v′i−1
t′i,ai,ri−−−→ v′i)1≤i≤n, their

difference noted diff(σ, σ′) is the set of quadruples defined as follows: if for a clock c ∈ C,
vi−1(c) + ti = k ∈ N, then if v′i−1(c) + t′i < k, (i, c,≥, k) ∈ diff(σ, σ′), and if v′i−1(c) + t′i > k,
(i, c,≤, k) ∈ diff(σ, σ′).

For a pair of adjacent timed words with resets (wtr, w′tr) we define diff(wtr, w′tr) =
diff(sig−1

behav(wtr), sig−1
behav(w′tr)).

Using these definitions, we can derive from two adjacent abstract runs or timed words
with resets a set of candidates to make a new guard, that we call consistency guards. These
guards will be used to reconstruct a language graph that is consistent with respect to the
adjacent pair.

Definition 5.5.6. For an adjacent pair (wtr, w′tr), a clock constraint c ≺ k with ≺ ∈
{<,≤,≥, >}, (i, c,≺, k) ∈ diff(wtr, w′tr) is a consistency guard if there is no (j, c,≺′, l) ∈
diff(wtr, w′tr) such that j < i or j = i and l < k.

The consistency guards are taken on the first difference, so as to ensure that they
cannot be overwritten later (as there are no guards that can separate the pair before
the consistency guard), and to avoid large constants as much as possible. Notice that
we cannot always infer a unique guard from an adjacent pair, as multiple clocks can be
different at the same time.

204

5.5. Updating observation structures

Remark 5.5.7. We choose to introduce a bias on guards by choosing a consistency guard
with a constant as small as possible. In practice, one could replace this bias by another
(expert-designed) one more fitted to the application. Our algorithms do not depend on it.

We define a set GCons of consistency guards that will be used to create the guards in
the updated TLG afterward.

AdjPair makes membership queries on linear combinations of the two initial observations
to perform a binary search until the clock values of the pair have less than 1 time unit
of distance. Then it forces every non-K-equivalent pair of clock values to have one of its
elements be an integer with more linear combinations. Finally, in order to ensure that only
one of the two timed words with resets have such integer distinctions, it compares them
with their mean. This gives an adjacent pair, from which consistency guards are extracted
and added to GCons.

Proposition 5.5.8. The AdjPair algorithm constructs an adjacent pair using at most
O(m|Σ| log(K)) membership queries.

Proof. We refer the reader to the proof of Theorem 5.8 in [GJ08], a long version of [GJP06]
appearing in O.Grinchtein’s thesis [Gri08]. �

The AdjPair algorithm proposes a guard that separates, as one would expect, the
accepting and non-accepting observations given as an argument, as well as the accepting
and non-accepting observations made during the algorithm execution.

Proposition 5.5.9. Let w1
tr, w

2
tr be two timed words with resets sharing the same length

n, the same actions and resets such that Acc(trace(w1
tr)) = + and Acc(trace(w2

tr)) = −.
Consider W1 the set of accepting observations requested during the call to AdjPair(w1

tr, w
2
tr)

and W2 the set of negative ones. By taking a consistency guard (i, c,≺, k) for ≺ ∈
{<,≤,=,≥, >}, at depth 1 ≤ i ≤ n in the set of guards added to GCons by AdjPair(w1

tr, w
2
tr),

we have the following:
There is a guard g being either x ≺ k, or its complement such that, for any w1 ∈

W1∪{trace(w1
tr)} (resp. w2 ∈ W2∪{trace(w2

tr)}), noting sig−1
behav(w1⊗resets(w1

tr)) = (vj−1
tj−→

vj−1+tj
(aj ,rj)−−−→ vj)1≤j≤n (resp. sig−1

behav(w2⊗resets(w2
tr)) = (v′j−1

t′j−→v′j−1+t′j
(aj ,rj)−−−→ v′j)1≤j≤n),

we get vi−1 + ti ∈ g and v′i−1 + t′i 6∈ g.

Proof. First, notice that every call to Request is made on (the trace of) a linear combination
of w1

tr and w2
tr. This can be seen by induction on the while and for loops: at the beginning

205

Chapter 5 – Active learning of timed automata with unobservable resets

Algorithm 9: Adding to GCons consistency guards corresponding to an inconsis-
tency.
1 AdjPair
Input: wtr, w′tr two timed words with resets of same length n, with same actions

and resets, such that Acc(trace(wtr)) = + and Acc(trace(w′tr)) = −.
Output: GCons a modified set of adjacent pairs

2 Note sig−1
behav(wtr) = (vi−1

(ti,ai,ri)−−−−→ vi)1≤i≤n and
sig−1

behav(w′tr) = (v′i−1
(t′i,ai,ri)−−−−→ v′i)1≤i≤n.

3 while not(∀i ∈ [0, n],∀c ∈ C, |vi(c) + ti − (v′i(c) + t′i)| < 1 ∨ ((vi(c) + ti >
K) ∧ (v′i(c) + t′i > K))) do

4 w′′tr := 0.5wtr + 0.5w′tr
5 if Request(obs(w′′tr)) then
6 wtr := w′′tr
7 else
8 w′tr := w′′tr
9 for i ∈ [0, n], c ∈ C do

10 if bvi(c) + tic 6= bv′i(c) + t′ic ∧ vi(c) + ti 6∈ N ∧ v′i(c) + t′i 6∈ N then
11 if vi(c) + ti < v′i(c) + t′i then
12 λ := (bv′i(c) + t′ic − (vi(c) + ti))/(v′i(c) + t′i − (vi(c) + ti))
13 else
14 λ := (bvi(c) + tic − (v′i(c) + t′i))/(vi(c) + ti − (v′i(c) + t′i))
15 w′′tr := λ.wtr + (1− λ).w′tr if Request(trace(w′′tr)) = + then
16 wtr := w′′tr
17 else
18 w′tr := w′′tr
19 w′′tr = 0.5wtr + 0.5w′tr
20 if Request(trace(w′′tr)) = + then
21 Add to GCons the consistency guards from diff(w′tr, w′′tr)
22 else
23 Add to GCons the consistency guards from diff(wtr, w′′tr)

206

5.5. Updating observation structures

wtr = w1
tr and w′tr = w2

tr, and w′′tr is clearly constructed as a linear combination of both.
Afterward, either wtr or w′tr becomes w′′tr. As linear combinations of linear combinations of
w1
tr and w2

tr are linear combinations of w1
tr and w2

tr, we have our result.
By Prop. 5.3.8 we know that the clock values on the abstract run of these timed words

with resets are linear combinations of the clock values of sig−1
behav(w1

tr) and sig−1
behav(w2

tr). This
tells us that for a given depth 1 ≤ j ≤ n, the valuations vj−1 + tj (i.e. the valuations before
the j-th transition) of the different words are on a segment between the corresponding
valuations of w1

tr and w2
tr.

We will now show that the following property is an invariant of the while and for
loops: for any depth 1 ≤ j ≤ n, the valuations before the j-th transition of any positive
observation’s abstract run are between the ones of sig−1

behav(w1
tr) and sig−1

behav(wtr) (wtr being
– as defined in the algorithm – the current positive timed word with resets). Similarly, the
valuation of any negative observation’s abstract run are between the ones of sig−1

behav(w2
tr)

and sig−1
behav(w′tr).

At the beginning of the algorithm, this is clear, as w1
tr = wtr, w2

tr = w′tr and no other
Request has been made yet. Now suppose that it is true before a (for or while) loop
iteration. w′′tr is a linear combination of wtr and w′tr, so as previously, by Prop. 5.3.8, the
valuation reached in sig−1

behav(w′′tr) before the j-th transition is in the segment between the
ones of sig−1

behav(wtr) and sig−1
behav(w′tr). As w′′tr takes the name of the member of {wtr, w′tr}

it shares its acceptance with, the property is preserved at the end of the iteration.

Finally, by definition of a consistency guard at depth i, it separates the valuations of
the adjacent pair before their i-th transition. As the adjacent pair used is either (wtr, w′′tr)
or (w′tr, w′′tr) according to w′′tr acceptance status, as w′′tr is a linear combination of wtr and
w′tr and by using the previously proved facts, we have our result. �

5.5.3 Dealing with decision states with no successors

As explained earlier, a marked observation state in the TOG indicates an invalidity:
it points to a combination of resets that is unable to explain a precise set of observations.
Invalidity is first simply dealt with by pruning the invalid parts of the TLG, as done in
line 11 of FindPath (Algorithm 5). But sometimes a challenge may arise, as exemplified in
Example 5.4.18: it can occur that all successors of a decision state of the TLG following a
valid observation state are pruned, due to invalidities; this is because the guard leading
to that decision state is not strong enough, and it has to be reinforced so as to split

207

Chapter 5 – Active learning of timed automata with unobservable resets

−

−

± ±

− − −

± ±

a, xa ≤ 3

>

true
> ⊥

⊥

a, xa > 3

> ⊥

true
> ⊥

Figure 5.10: TLG of Figure 5.8 after the addition of a guard splitting the two invalidities.
Invalid pruned nodes in grey.

the decision state of the TLG into several decision states, as explained by the following
example.

Example 5.5.10. In Example 5.4.18, all the successors of the decision state (a,>) of
the TLG were pruned (see right-hand side of Figure 5.8). It is easily seen from the TOG
(left of Figure 5.8) that this is due to the TLG merging the behaviours with ca ∈ (1, 2) and
those with ca ∈ (3, 4).

Introducing any guard on ca separating the behaviours for ca < 2 and ca > 3 would
create two decision states which would each have one valid successor. For example, the
TLG after the introduction of the guard ca > 3 is presented in Figure 5.10. Note that the
valid leaves are inconsistent, as could be expected from the TOG. We would then have to
call AdjPair as described in Section 5.5.2.

Remark 5.5.11. In such situation, the introduction of a guard (called validity guard)
is the only possible solution. Indeed, pruning a valid node of the TLG would contradict
the definition of a (maximal) implementation of Acc, and leaving a valid node without
successors does not allow to use it to construct an hypothesis.

Remark 5.5.12. This situation is a consequence of our somewhat lazy handling of
invalidities. Indeed, when detecting an invalidity in the TOG, one could decide to "cut" it
out of the TLG by introducing guards modelling it and splitting the corresponding node.
However, this would require isolating a K-closed zone from its complement, which in turn
requires introducing a large number of subtrees, since the complement of a K-closed zone
can in general only be represented by a disjunction of a large number of guards.

On the contrary, we chose to directly prune the subtree, and only split nodes (by
introducing a validity guard as above) once we have pruned all possible resets. This

208

5.5. Updating observation structures

approach remains correct, as the TLG remains maximal and we add separations as soon
as a decision state is left without successors.

The constant in the guard that is introduced is taken in the set of integer constants
separating the two invalid K-closed words with resets in the TOG. This is formalised by
the notion of validity guard, akin to the consistency guard introduced previously.

Definition 5.5.13. Consider two K-closed words with resets w1
zr = (z1

i , ai, ri)1≤i≤n and
w2
zr = (z2

i , ai, ri)1≤i≤n sharing the same length, actions and resets. Then c ≺ k, with c ∈ C,
≺∈ {<,≤}, and k ∈ N, is called a validity guard at depth 1 ≤ i ≤ n if, and only if,
for all j > i, it holds z1

j ≈K z2
j and c ≺ k separates z1

i and z2
i (i.e., either z1

i ∈ c ≺ k and
z2
i 6∈ c ≺ k, or the converse). We then say that (c ≺ k, i, w1

zr, w
2
zr) is a validity guard.

We extend the definition of validity guard for sets of K-closed words by saying that
(c ≺ k, i,W1

zr,W2
zr) is a validity guard if there is w1

zr ∈ W1
zr and w2

zr ∈ W2
zr such that

(c ≺ k, i, w1
zr, w

2
zr) is a validity guard and for all pairs in W1

zr ×W2
zr, c ≺ k separates their

zones at depth i.

Remark 5.5.14. The validity guards are introduced as deep as possible as opposed to
consistency guards that are introduced high in the tree. The reason for this is that invalidity
is not primarily used to introduce guards to the model. In addition, it can be harder to
achieve a precise guard separating K-closed words due to their structure and the difficulty
to reproduce invalid K-closed words with their characteristic sets, which is discussed in the
rest of this subsection.

We define validity guards for sets of words because we sometimes want to enforce a
validity guard deduced from a pair upon other pairs (as we have more insight on its utility)
while it is not formally a validity guard for the other pairs (i.e. it separates them but does
not meet all criteria).

As for inconsistencies, it is desirable to introduce guards that correspond as closely as
possible to the behaviours of the teacher’s model. To this aim, we try to identify relevant
validity guards by making new membership queries that "replicate" an invalidity by shifting
its characteristic set (the set of pairs of timed words with resets witnessing the invalidity,
see Definition 5.4.16).

Example 5.5.15. In Examples 5.4.18 and 5.5.10, several guards could have been introduced.
In order to identify a good candidate, a solution is to replicate the characteristic set of
(one of the) invalidities with xa ∈ (2, 3). For this, membership queries are made for

209

Chapter 5 – Active learning of timed automata with unobservable resets

−

−

+ + − −

−

± ±

−

± ±

−

+ + − −

−

± ±

−

+ + − −

a,(1,2)

>
a,[1]

> ⊥

a,(1,2)

> ⊥

⊥

a,(2,3)
> ⊥

a,(2,3)
>

a,(1,2)
> ⊥

⊥
a,(3,4)

> ⊥

a,[4]

> ⊥

a,(3,4)

>

a,(1,2)
> ⊥

⊥
a,(4,5)

> ⊥

a,[5]

> ⊥

Figure 5.11: TOG after the creation of a new branch, obtained by shifting the observations
in the (3, 4) branch in the (2, 3) time interval.

observations stemming from the characteristic set of one of the invalidities. For example,
we can shift the observations corresponding to the subtree with xa ∈ (3, 4), which may
result in the following new observations:

Acc((2.7, a)) = − Acc((2.7, a)(1.1, a)) = + Acc((2.9, a)(1.1, a)) = −

We end up with the TOG of Figure 5.11.
Since the subtrees of the TOG for guards xa ∈ (1, 2) and xa ∈ (2, 3) are different, we

know that there is a change of behaviour at xa = 2. Here, we cannot determine which
behaviour prevails for xa = 2, as explained later in Remark 5.5.16.

Remember that the characteristic set of an invalidity at depth n is made of pairs of
timed words with resets (w1

tr, w
2
tr), each pair sharing the same length at least equal to

n, the same actions and reset sequence resets(w1
tr) = resets(w2

tr), but diverging on the
acceptance of their observations: Acc(trace(w1

tr)) 6= Acc(trace(w2
tr)).

Introducing a guard precisely separating two invalidities is more complex than for
inconsistencies for three reasons:

(i) first, any attempt to detect the span of an invalidity of depth n should be able
to replicate its characteristic set targeting a new K-closed word with resets of
length n. Moreover, replication should not modify the K-equivalence structure of
the characteristic set even beyond the invalidity at depth n: valuations reached by
replicas should be K-equivalent if and only if they were initially.

(ii) second, the reset sequence r cannot explain the observations of the characteristic
set, but a yet unknown one r′ could. When replicating invalidities we should thus
consider all pairs of timed words with resets (trace(w1

tr)⊗ r′, trace(w2
tr)⊗ r′) for any

210

5.5. Updating observation structures

sequence of resets r′ and also try not to modify their K-equivalence structure.

(iii) third, as for inconsistencies, it is important that the guards introduced by the algo-
rithm separate all the K-closed words corresponding to each invalidity encountered
during the execution. Yet, K-closed zones have a more complex structure than
valuations. Notably, K-closed zones can have different forms, being open or closed
in different dimensions (i.e. with constraints of the form c = n or n < c < n + 1),
which will make preserving this property more challenging.

Remark 5.5.16. The second point—having to preserve K-equivalence for other sequences
of resets—induces that it is highly difficult to replicate the characteristic sets in K-closed
words that have finer constraints than the initial K-closed word (i.e. equality constraint
replacing a pair of inequalities). In Example 5.5.15 for instance, determining the behaviour
for ca = 2 requires to collapse (2.7, a)(1.1, a) and (2.9, a)(1.1, a) which both transform into
(2, a)(1.1, a). Thus no invalidity could be detected.

Remark 5.5.17. Points (i) and (iii) are absolutely necessary: without always satisfying
them, an algorithm becomes meaningless, as it either fails to displace the observations or
to introduce meaningful guards separating the sets of K-closed words with resets.

On the other hand, it is possible that failing to satisfy constraint (ii) still keeps the
invalidity: changing the behaviour for other resets may lose the invalidity, but is not
guaranteed to do so, especially if all reset combinations are not affected.

We found that no simple algorithm was satisfactory to solve the above sketched problem.
The rest of this subsection is organized as follows: we first formalize the problem to be
solved, then we review some approaches to solve it and point their shortcomings. Finally,
we propose an algorithm that produces a validity guard, and explain the choice of our
approach.

A formalization of constraints

Consider an invalid K-closed word with reset wzr = (zi−1, ai, ri)1≤i≤n and a pair (w1
tr, w

2
tr)

of timed words with resets in the characteristic set of wzr. We note, for j ∈ 1, 2, wjtr =
(tji , ai, ri)0≤i<n′

1.
Trying to replicate the invalidity in a K-closed word w′zr = (z′i−1, ai, ri)1≤i≤n requires

to construct a new characteristic set containing pairs (w′1tr, w′
2
tr) solving the following

1. The length n′ of the timed words is greater than the length of wzr.

211

Chapter 5 – Active learning of timed automata with unobservable resets

constraints, by noting sig−1
behav(w′

j
tr) = (v′ji−1

(t′ji ,ai,ri)−−−−−→ v′ji)1≤i≤n′ .

∀1 ≤ i ≤ n. v′
j
i−1 + t′

j
i ∈ z′i−1 (i.e., w′jtr[1, n] ∈ w′zr) (5.1)

∀0 ≤ l < l′ ≤ |w′1tr|.
∑
l<i≤l′

t′
1
i ≈K

∑
l<i≤l′

t′
2
i iff

∑
l<i≤l′

t1i ≈K
∑
l<i≤l′

t2i (5.2)

Here (5.1) corresponds to targeting w′zr (part of constraints (i)), expressing that w′1/2tr ∈ w′zr,
and (5.2) encodes (ii) (and the corresponding part of (i)), i.e., the preservation of the
equivalence relation between the words for any reset sequence. Indeed, the clock valuations
for any reset sequence are sums of consecutive delays. Together, these equations encode (i)
and (ii).

Remark 5.5.18. Notice that the constraints in (5.2) can be relieved in the following way:
one only has to consider reset combinations for which both words of the pair are valid, as if
they reach invalid states we know that the reset combination does not happen in the model
we wish to learn. We do not give the details of this optimization here, as it would not help
to construct a general algorithm and would make equations (5.2) much less readable.

The constraint (iii) can be stated in the following way: consider twoK-closed words with
resets w1

zr = ((z1
i , ai, ri)1≤i≤n) and w2

zr = ((z2
i , ai, ri)1≤i≤n) corresponding to two different

invalidities. When one tries to replicate the invalidity of w1
zr in w1

zr
′ = ((z1

i
′
, ai, ri)1≤i≤n)

and w2
zr in w2

zr
′ = ((z2

i
′
, ai, ri)1≤i≤n), the following property should hold: for any guard

c ∼ n with c ∈ C, n ∈ N and ∼ ∈ {<,≤,≥, >} such that z1
i
′ ∈ g and z2

i
′ 6∈ g, it holds

z1
i ∈ g and z2

i 6∈ g.

Different approaches

Different approaches are now listed, together with counter-examples showing the properties
that they would violate.

A first simple approach would be to reason at the level of observations inside the
invalidities characteristic sets and construct linear combinations of timed words with resets.
The problem of this approach is that it is very well possible that the combinations are not
K-equivalent, as shown in Example 5.5.19.

Example 5.5.19. Consider the words (as depicted on Figure 5.12) w1
1 = (0.1, a, {ca})(0.95, b, ∅),

w1
2 = (0.95, a, {ca})(0.1, b, ∅) and w2

1 = (3.1, a, {ca})(1.95, b, ∅), w2
2 = (3.95, a, {ca})(1.1, b, ∅)

that could be prefixes of pairs of elements of W1 and W2 respectively. The final valuations

212

5.5. Updating observation structures

xb

xa

1 2 3 4 5 6

1

2

3

4

Figure 5.12: Two pairs of timed word with resets that cannot be handled by a direct binary
search.

for the first pair are (ca = 0.95, cb = 1.01) and (ca = 0.1, cb = 1.05), and for the second
pair (1.95, 5.05) and (1.1, 5.05). As it can be seen, the values of ca in both pairs are close
to the limits of the constraints of K-equivalence (assuming K > 1). As the values of the
pairs in cb are vastly different, most linear combinations of the top elements of those pairs
are not equivalent to linear combinations of bottom elements, as ca > 1 for the top ones
and ca < 1 for the bottom ones.

This makes such direct method impossible to use, as observations that are not K-
equivalent can never detect an invalidity.

Another possible approach is to apply offsets to zones in the invalid K-closed words
based on their current distances i.e. define a "distance" between zones and use it on the
zones z1

i and z2
i to make them closer in the sense of that distance. The problem with

that approach is that the distance between two zones at depth i is not affected only by
operations at depth i but by all operations on depth 0 < j < i. Indeed if a zone is modified
at depth j, the effect of that modification has to be taken into account on all the future
zones to ensure that the resulting word is feasible.

For this reason applying modifications at each depth i simultaneously based on distances
between z1

i and z2
i would be meaningless: the effect of the modifications on the first zones

would invalidate the next ones. Notably, the resulting K-closed word would not always be
feasible.

To avoid this, one could chose to work only on a given depth i at a time, and loop
through the word. Sadly, such modifications would (sometimes) either invalidate condition

213

Chapter 5 – Active learning of timed automata with unobservable resets

(i) or (iii), as shown in Example 5.5.20.

Example 5.5.20. Consider the two one clock K-closed words represented on Figure 5.13a

w1
zr = (0 < ca < 1, a, ∅)(1 < ca < 2, a, ∅)

w2
zr = (4 < ca < 5, a, ∅)(4 < ca < 5, a, ∅).

An algorithm trying to reduce the distance between them at depth one without breaking
constraint (iii) at this depth would likely propose to replace their first zones by 2 < ca < 3
(i.e. an offset of 2× 1ca for w1

zr and −2× 1ca for w2
zr). If the effect of this modification is

not propagated at depth two, then w1
zr would be transformed in

w3
zr = (2 < ca < 3, a, ∅)(1 < ca < 1, a, ∅)

which cannot be satisfied by any timed word, as it would require a negative delay.
On the other hand, applying the effect of this transformation With the effect of this

modification on the zones at depth 2 the same offset would be applied on the zone at depth
two, resulting in the words

w1
zr
′ = (2 < ca < 3, a, ∅)(3 < ca < 4, a, ∅)

w2
zr
′ = (2 < ca < 3, a, ∅)(2 < ca < 3, a, ∅).

Because of this, the guard g : ca > 3 separates the zones at depth two in a different way for
(w1

zr, w
2
zr) on one hand (i.e. z1

2 /∈ g and z2
2 ∈ g) and (w1

zr
′
, w2

zr
′) (i.e. z1

2
′ ∈ g and z2

2
′
/∈ g).

The zone words after modification for both choices (propagating the offsets or not) are
represented in Figure 5.13b.

A possibility is to mimic the binary search employed for inconsistency: use delays
between subsequent zones (or an abstract representation of such delays at least) as the
metric we want to converge on. For this we define a pseudo-distance ∆ on zones as follows.

Definition 5.5.21. Consider two K-closed zones z1 and z2. We define ∆(z1, z2) as:

∆(z1, z2) = min{|n2 − n1| | ∃c ∈ C, ∃n1, n2 ∈ N, c ≺1 n1 appears in z1∧

c ≺2 n2 appears in z2 ∧ (≺1,≺2 ∈ {<,≤,=} ∨ ≺1,≺2 ∈ {>,≥,=})}

214

5.5. Updating observation structures

xa
0 1 2 3 4 5

w1
zr

δ1 δ2

xa
0 1 2 3 4 5

w2
zr

δ1 δ2

(a) w1
zr and w2

zr.

xa
0 1 2 3 4 5

δ1 δ2δ2

xa
0 1 2 3 4 5

δ1 δ2 δ2

(b) Effect of offsets at depth 1 with and without
propagation at depth 2.

Figure 5.13: One depth modification.

The intuition behind the distance ∆ is the following:

Proposition 5.5.22. Consider a K-closed zone z and a K-closed time successor z′ of z,
i.e. z′ ∈ −→z , such that no constraint can be suppressed in z or z′ without changing the set
of satisfying valuations. Then ∆(z, z′) = max{n ∈ N | z′ ∈ −−−→z + n}

This means that ∆ is the maximal integer constant you can add to a valuation in z
while steel having a successor in z′. ∆ will then be used as an abstraction of delays for
K-closed words with resets.

Proof. First, notice that indeed z′ ∈
−−−−−−−−→
z + ∆(z, z′) as for any constraint c ≺ k in z + ∆(z, z′)

with ≺ ∈ {<,≤}, we have by definition of ∆ and offsets that

k = n+ ∆(z, z′) ≤ n′

with n the corresponding constraint in z and n′ in z′. Furthermore the diagonal constraints
are unchanged and the future operator lifts all upper bounds. Hence for all v |= z,
v |=
−−−−−−−−→
z + ∆(z, z′).
On the other hand for N ≥ ∆(z, z′) + 1 by considering an argmin constraint c ≺ n′

in z′ (i.e. a constraint that minimizes the |n′ − n|), as there is no useless constraint in z′

there are v |= z′ infinitely close to that constraint (else it could be suppressed). For such v
we have that v(c) < n′ + 1 = n + ∆(z, z′) + 1 = n + N and hence v 6|= −−−→z +N . Thus we
have our result. �

The necessary elements to build a binary search for K-closed words with resets have
now been introduced.

215

Chapter 5 – Active learning of timed automata with unobservable resets

Remark 5.5.23. Notice that this kind of binary search can only work if applied to the
whole word. Applying it to just a given depth would in general lead to the exact situation
of Example 5.5.20 (when the offset is propagated to future zones).

Sadly, this approach fails to satisfy constraint (iii) because of the variety of forms of
the zones, as shown in Example 5.5.24.

Example 5.5.24. Consider the K-closed words presented in Figure 5.14a:

w1
zr = (0 < ca < 1 ∧ 0 < cb < 1, b, {cb}).((ca = 1 ∧ 0 < cb < 1, a, ∅))

w2
zr = (2 < ca < 3 ∧ 2 < cb < 3, b, {cb}).((2 < ca < 3 ∧ cb = 0, a, ∅)) .

In order to apply a binary search, one has to reason on the K-closed runs associated
with these words, so as to deduce the delays ∆ taken. We note {0} for the initial zone
corresponding to this set.

sig−1
behav(w1

zr) = {0} δ−→0 < ca < 1 ∧ 0 < cb < 1 (b,{cb})−−−−→ 0 < ca < 1 ∧ cb = 0 δ−→

ca = 1 ∧ 0 < cb < 1 (a,∅)−−→ ca = 1 ∧ 0 < cb < 1

sig−1
behav(w2

zr) = {0} δ−→2 < ca < 3 ∧ 2 < cb < 3 (b,{cb})−−−−→ 2 < ca < 3 ∧ cb = 0 δ−→

2 < ca < 3 ∧ cb = 0 (a,∅)−−→ 2 < ca < 3 ∧ cb = 0

Using this, one can see that at depth 1 the "delays" built from ∆ are 0 for w1
zr and 2 for

w2
zr. At depth 2 both words have delay 0. Thus the result of a binary search would give the

K-closed words presented in Figure 5.14b.
One can see that the zones at depth 2 have exchanged positions with respect to e.g. the

guard ca < 2.

Remark 5.5.25. Notice that the issue raised in Example 5.5.24 does not really depend on
∆. It would occur for any pseudo distance used, precisely because we do not have a valid
distance on general zones.

In the example, adding different offsets to the zones at depth 2 would not satisfy
constraint (iii).

216

5.5. Updating observation structures

ca

cb

At depth one.

ca

cb

At depth two.

(a) The K-closed words before modification.

ca

cb

At depth one.

ca

cb

At depth two.

(b) The K-closed words after modification.

Figure 5.14: Issue with binary search on general zones.

217

Chapter 5 – Active learning of timed automata with unobservable resets

InvalidityGuard

MakeGuardEnlarge BinSearch

BinComb

Construct words Handles binary search

Construct words

Select guards

Figure 5.15: Algorithmic structure backing InvalidityGuard.

All the aforementioned approaches cannot be used, as they either fail to construct
meaningful K-closed words with resets or to satisfy constraint (iii). In the following, we
propose a method that will always satisfy constraints (i) and (iii), but will fail to satisfy
constraint (ii) in a specific step. We argue that this is more desirable as loosing the
invalidity only impacts efficiency (the introduced guard is less precise and may have to be
refined) instead of correctness by e.g. introducing guards that do not separate all targeted
behaviours i.e. failing constraint (iii).

Binary search on open zones

We build on the above binary search method, but try to avoid the difficult handling of
K-closed zones of different form (open or closed in different dimensions).

The solution we propose is based on a binary search on open zones, which satisfies
all three constraints (as proven below). That binary search is initialized with a zone
enlargement phase. This step respects constraints (i) and (iii) but not condition (ii) (a
counter example is shown below).

The general algorithm is InvalidityGuard, described in Algorithm 12. It takes as input the
decision state of the TLG which successors have been pruned, along with the characteristic
sets of the invalidities, and adds a set of validity guards to the set GV al of validity
guards using algorithm MakeGuard (Algorithm 11). The algorithm depends on BinSearch
(Algorithm 14) that handles the binary search on open zones and Enlarge (Algorithm 10)
that proposes open K-closed words replicas of the initial invalidities. BinSearch itself
depends on BinComb to propose new K-closed words replicas (and their characteristic
sets). The algorithmic structure is summarized in Figure 5.15.

218

5.5. Updating observation structures

We first describe the properties of the enlargement phase, then of the binary search on
open zones and finally of InvalidityGuard in general.

The Enlarge algorithm is depicted in Algorithm 10. Its idea is to replace equality
constraints in the K-closed words by large ones (i.e. k < c < k+ 1), based on the following
fact.

Lemma 5.5.26. Any K-closed zone z that is not open has one unique direct time successor
K-closed zone, that we note z ↗. For any constraint k < c < k + 1 in z, that constraint
appears in z ↗. For any constraint c = k in z, a constraint k < c < k + 1 appears in z ↗.

Proof. We first prove that z ↗ is well defined. For this consider a zone z that is not open
and take a valuation v in that zone. Then there is some clocks c such that v(c) ∈ N (as z
is not open). Consider 0 < ε << 1 infinitesimal. Then v + ε belongs to an open zone such
that for c ∈ C, if v(c) = k ∈ N then k < v(c) + ε < k + 1 and if k < v(c) < k + 1 then
k < v(c) + ε < k + 1 (as long as ε < k + 1− v(c)). This being true for any valuation of z,
and the constraints on the new zone depending uniquely on the constraints of z, we have
that z ↗ is well-defined and open. �

The Enlarge algorithm takes as parameters an invalid K-closed word with resets w1
zr,

its characteristic set W and a positive real ε.

Algorithm 10: Constructing an open K-closed word from an initial K-closed
word, and replicating the characteristic set associated.
1 Enlarge
Input: An invalid K-closed word with resets wzr, its characteristic set W and an

offset ε > 0.
Output: An open K-closed word with resets w′zr and a replica set W ′.

2 W ′ :=W and w′zr := wzr
3 Noting w′zr := ((z′i, ai, ri))
4 for for i ∈ [1, |wzr|] do
5 if z′i is not open then
6 z′i := z′i ↗
7 for ((t1j , aj, rj)j, (t2j , aj, rj)j) ∈ W ′ do
8 t1i , t

2
i+ := ε

9 Return w′zr,W ′.

It simply replaces all non-open zones in w1
zr by their direct time successors, and add ε

to the delays of the words. We show that for a fitting (small) value of ε this algorithm
respects equation 5.1.

219

Chapter 5 – Active learning of timed automata with unobservable resets

Proposition 5.5.27. Consider wzr = ((zi, ai, ri))1≤i≤n an invalid K-closed word and W
its characteristic set. Then for

ε <
min(w1

tr,w
2
tr)∈W min((ti,ai,ri))1≤i≤m∈{w1

tr,w
2
tr}{1− 〈

∑j
l=i tl〉 | 1 ≤ i ≤ j ≤ m}

n

Enlarge(wzr,W, ε) terminates and returns w′zr = (z′i, ai, ri) and W ′ such that z′i = zi if
zi is open and z′i = zi ↗ else. Furthermore all pairs in W ′ respect the constraints of
Equation 5.1 (i.e. their elements are in w′zr).

The value of epsilon proposed is upper bounded so that it cannot make a clock valuation
reach a new integer value in an observation, and so for any reset combination.
Proof. First, as Enlarge features only for loops on the (finite) length of wzr and the (finite)
number of pairs in W ′, it terminates. Next, the constraint on z′i compared to zi is clearly
satisfied as the z′i are initialized equal to zi and then replaced by their direct time successors
if and only if they are not open.

It remains to show that the observations of the characteristic set W ′ are indeed in w′zr.
Consider w′tr an element of a pair ofW ′. We note sig−1

behav(w′tr) = (v′i−1
t′i−→v′i−1 + t′i

(ai,ri)−−−→ vi)
and consider the corresponding wtr in W sig−1

behav(wtr) = (vi−1
ti−→ vi−1 + ti

(ai,ri)−−−→ vi).
We show by induction on 1 ≤ i ≤ |w′zr| that v′i−1 + t′i ∈ z′i. For i = 1, either z1 was
open; in which case v′0 + t′1 = v0 + t1 ∈ z′1 = z1; or z1 was not and z′1 = z1 ↗. In this
case, v′0 + t′1 = v0 + t1 + ε and for all guards c = k in z1, k < (v′0 + t′1)(c) < k + 1 as
ε < 1. Furthermore for all guards k < c < k + 1 in z1, k < (v′0 + t′1)(c) < k + 1. Indeed,
ε < 1− 〈v0 + t1〉 by definition. Hence v′0 + t′1 ∈ z′1.

Suppose that the property is verified up to a depth i (included). We show the result
for depth i+ 1. If zi+1 is open then z′i+1 = zi+1 and v′i + t′i+1 = v′i + ti+1. We want to show
that the clock values in v′i + t′i+1 have the same integer part than the ones of vi + ti+1. As
both have a non-zero fractional part (vi + ti+1 because it is in an open zone, and v′i + t′i+1

because it only adds positive delays, hence without changing its integer part it cannot
reach a zero fractional part), this suffices to prove that v′i + t′i+1 ∈ zi+1 = z′i+1.

Notice that for c ∈ C, (v′i + t′i+1)(c) = (vi + ti+1)(c) + k.ε with k ∈ N, k ≤ i. By
definition of ε, k + ε is not enough to change the integer part of a clock value, as clocks
values are sum of consecutive delays. Hence we have our result.

If zi+1 is not open, we get our result in the same way as (v′i+t′i+1)(c) = (vi+ti+1)(c)+k.ε
with k ∈ N, 1 ≤ k ≤ i+ 1. First for open constraints in zi+1 as before we know that adding
k.ε does not change the integer part and thus cannot make the fractional part null. On

220

5.5. Updating observation structures

ca

cb

Figure 5.16: Non-open K-closed zones and their direct timed successors.

the other hand, for closed constraints (i.e. equality constraints) in zi+1, the addition of ε
in the last delay ensures that it reach the next open constraint (i.e. from c = c to c < c)
and k.ε < 1 thus (v′i + ti+1)(c) < c + 1. This corresponds exactly to the constraints of
zi+1 ↗= z′i+1, hence we have our result. �

Remark 5.5.28. The Enlarge algorithm is built simple. It could be possible to add ε at
fewer steps by tracking if the previous ε were enough to push the valuations in zi ↗. This
in turn would allow for slightly more permissive constraints on ε. This could be done for
example by checking if ε has already been added since the last time the clocks which have
closed constraints were reset.

We choose to present the algorithm in a simple way to enhance readability at the price
of this optimization.

With respect to constraint (iii), for two K-closed zones z1, z2 there are guards that
separate z1 ↗ and z2 ↗ but not z1 and z2. An example is given in Example 5.5.29.

Example 5.5.29. Consider the zones z1 : 0 < ca < 1∧ cb = 2 and z2 : ca = 1∧ 1 < cb < 2.
They are represented on Figure 5.16 together with their direct time successors z′1 and z′2.
Notice that the guard g : ca ≤ 3 accepts z1, z′1 ↗ and z2 but not z′2 ↗.

Despite this difficulty, we can use the fact that the zones have been enlarged toward
the future to select guards that do not distinguish between non-open zones and their direct
time successors, allowing to preserve constraint (iii).

Lemma 5.5.30. For any K-closed zone z, and any guard of the form g : c ≺ n with
n ∈ N, c ∈ C and ≺ ∈ {≤, >} we have that z ↗∈ g if and only if z ∈ g. Such guard is
called enlargement closed guard.

Proof. This result comes from the fact that these guards cannot distinguish between
v(c) = k ∈ N and k < v(c) < k + 1, which are the only differences between a non-open
K-closed zone and its direct time successor, as shown in Lemma 5.5.26. �

221

Chapter 5 – Active learning of timed automata with unobservable resets

We use these guards to separate open K-closed zones in BinSearch. Notice that if there
exists a guard separating K-closed open zones, then there exists an enlargement closed
one that separates them.

Finally, the Enlarge algorithm replicates characteristic sets while guaranteeing that
pairs of K-equivalent words for any sequence of resets remain equivalent.

Proposition 5.5.31. For w1
tr, w2

tr elements of pairs of a characteristic set W, considering
w′1tr, w′

2
tr the corresponding words in W ′ constructed by a call to Enlarge(wzr,W , ε) with

an ε satisfying the constraint of Proposition 5.5.27 we have that

∀ 1 ≤ i ≤ j ≤ min(|w1
tr|, |w2

tr|)
j∑
k=i

t1k≈K
j∑
k=i

t2k =⇒
j∑
k=i

t′
1
k≈K

j∑
k=i

t′
2
k .

where tmk is the k-th delay in wmtr and t′mk is the k-th delay in w′mtr .

Proof. The proof uses the same arguments as the proof of Proposition 5.5.27 but generalised
to all sums of consecutive delays and not only clock values for the sequence of resets
considered. �

This property assures that the structure of the characteristic set is not broken (i.e. pairs
remain K-equivalent). Nevertheless this approach does not respect all the constraints of
Equation 5.2. Indeed, adding ε sometimes makes equivalent two previously non-equivalent
delay sequences, as shown on Example 5.5.32. As explained in that example, this is not a
failure of that particular algorithm but a larger problem with any zone enlargement.

Example 5.5.32. Consider the sequences of delays and clock resets displayed in Table 5.1
for a set of clocks C = {ca, cb}. The three words w1, w2 and w3 are K-equivalent and reach
at depth 5 a non-open zone with constraint ca = 1. Hence any algorithm looking to enlarge
the zone should add (or remove) an ε at the fourth or fifth delays (Enlarge does it at the
fifth).

Now consider the alternative sequence of resets where cb is not reset by the second
transition. For that reset sequence, the three words are not K-equivalent. Notably, at the
end of the fifth delay, the valuation of cb is 2.1 for w1, 2 for w2 and 1.9 for w3. Hence
adding (resp. removing) an ε to the total elapsed time makes the valuations of w1 and
w2 equivalent (resp. w3 and w2), which violates the constraints of equation 5.2. Hence to
satisfy these constraints, an ε should be removed (resp. added) from the delays 1 2 or 3.
Yet, the same problem occurs at depth 3 as the valuation of cb at depth 3 (without the clock
reset of cb) is 1.1 for w1, 1 for w2 and 0.9 for w3.

222

5.5. Updating observation structures

1 2 3 4 5
w1 0.5 0.4 0.2 0.3 0.7
w2 0.4 0.4 0.2 0.5 0.5
w3 0.3 0.4 0.2 0.7 0.3

2.1 + ε
2.0 + ε
1.9 + ε

{ca} {cb} {ca}

Table 5.1: An example of enlargement making timed words with resets equivalent.

Hence we have here an example of words that cannot be "enlarged" without making
some of their previously non-equivalent valuations equivalent.

The enlargement step is the first performed by InvalidityGuard (Algorithm 12), that
uses Enlarge to create open replicas of its initial K-closed zones and performs membership
queries on the resulting set. InvalidityGuard makes calls to MakeGuard (Algorithm 11) to
introduce all necessary guards when terminating. That algorithm takes an ordered list of
pairs of K-closed words, and adds validity guards to separate them when necessary.

To ease the algorithms notations, we define the predicate IsOpen that returns true if
and only if its parameter is an open K-closed word.

Algorithm 11: Creates validity guards to separate an ordered list of pairs of
K-closed words with resets.
MakeGuard
Input: Two sets W1 and W2 of K-closed words with resets that have to be

separated by validity guards.
Output: A set of validity guards separating the two sets.

1 Let G := ∅
2 for w1

zr ∈ W1 do
3 for w2

zr ∈ W2 do
4 if a guard (g, i) for (g, i,W ,W ′) ∈ G separates (w1

zr, w
2
zr) then

5 Let W :=W ∪ {w1
zr} and W ′ :=W ′ ∪ {w2

zr}
6 else
7 Let G := G ∪ {(g, i, {w1

zr}, {w2
zr})} where (g, i, w1

zr, w
2
zr) is a validity

guard and is enlargement closed if IsOpen(w1
zr) ∧ IsOpen(w2

zr).
8 Return G

The main purpose of MakeGuard is to avoid to add validity guards to GV al when
another validity guard already separates a pair of incompatible invalidities. In this case,
we nevertheless add the pair to the set of the validity guard. This is a consequence of the
enlargement phase: as enlargement is not a linear combination, it is possible to separate

223

Chapter 5 – Active learning of timed automata with unobservable resets

sε
(a1, z1)

r1 ¬r1

(a2, z2)

r2 ¬r2

Candidates for Rs1(wzr).

Figure 5.17: The K-closed words tested for Rs1wzr with wzr = ((ai, zi, ri))1≤i≤2.

enlarged zones from the original ones by a guard (consistency guard for example). In
such case, it is important that we know that a validity guard must still be introduced to
separate the pair. A more in depth discussion is made in Section 5.5.4 for the proof of
Lemma 5.5.51.

We order the pairs from those that are separated by few guards i.e. a non-open K-closed
word and its enlargement or a pair of large K-closed words on which we were able to apply
a binary search to pairs on which we pick from a greater set of guards—and thus have a
lower probability of obtaining a meaningful one.

InvalidityGuard first discusses wether or not the invalidities are open, and in the case
they are not enlarges them. Then it discusses on the validity of reset combinations for the
enlarged K-closed words with resets. To ground the discussion, we define the set of valid
resets after a prefix of a word.

Definition 5.5.33. Consider an acceptance function Acc. For a timed word with resets
wtr and 0 < i ≤ |wtr|, we call reset set at depth i, noted Rsi(wtr), the set of valid resets for
the i-th transition after the prefix of size i− 1 of wtr. Formally, f ∈ {>,⊥} is in Rsi(wtr)
if and only if wtr[1, i− 1].(t, a, f) is valid, with t, a the i-th delay and action of wtr.

We generalize this definition to K-closed words and to a set of timed words with resets
which prefix(es) of size i belongs to the same K-closed word.

An illustration of the valid reset is given in Figure 5.17. In the case where the two
original K-closed words with resets are open, a binary search is performed to introduce a
guard separating them in the form of a validity guard for their linear combinations (see
BinComb and BinSearch for more details).

Else, an enlargement is performed and the algorithm discusses according to the validity
of the resets at depth |so|+1 of the enlarged words. Notice that in this case, as enlargements
are not linear combinations, we may have to introduce several validity guards or to make

224

5.5. Updating observation structures

Algorithm 12: Finding a guard to separate two invalidities.
InvalidityGuard
Input: sd = (so, g, a) a decision state inM with two invalid (pruned) successors;

W1 and W2 the two characteristic sets of the invalidities.
Output: GV al modified by adding a validity guard

1 Let w1
zr (resp. w2

zr) be the invalid K-closed word of size |so|+ 1 characterized by
W1 (resp. W2)

2 Let ε ∈ R≥0 \ {0} satisfying the constraints of Prop. 5.5.27 w.r.t. W1 and W2
3 switch (IsOpen(w1

zr), IsOpen(w2
zr)) do

4 case (>,>) do
5 Let (w1, w2) := BinSearch(w1

zr, w
2
zr) and MakeGuard({w1}, {w2})

6 case (>,⊥) do
7 w2

zr
′
,W ′2 := Enlarge(w2

zr,W2, ε)
8 For (wtr, w′tr) ∈ W ′2 Request(wtr) and Request(w′tr)
9 switch Rs|so|+1(w2

zr
′) do

10 case Rs|so|+1(w2
zr) do

11 Let (w1, w2) := BinSearch(w1
zr, w

2
zr
′) and

MakeGuard({w1}, {w2, w2
zr})

12 case Rs|so|+1(w1
zr) do

13 MakeGuard({w2
zr
′
, w1

zr}, {w2
zr})

14 otherwise do
15 MakeGuard({w1

zr}, {w2
zr})

16 case ((⊥,>)) do Same as above inverting 1 and 2.
17 case ((⊥,⊥)) do
18 w1

zr
′
,W ′1 := Enlarge(w1

zr,W1, ε); w2
zr
′
,W ′2 := Enlarge(w2

zr,W2, ε)
19 For (wtr, w′tr) ∈ W ′1 ∪W ′2 Request(wtr) and Request(w′tr)
20 switch (Rs|so|+1(w1

zr
′), Rs|so|+1(w2

zr
′)) do

21 case (∅, ∅) or ({>,⊥}, {>,⊥}) do
22 MakeGuard({w1

zr}, {w2
zr})

23 case (Rs|so|+1(w1
zr), ∅) or (Rs|so|+1(w1

zr), {>,⊥}) do
24 MakeGuard({w1

zr, w
1
zr
′}, {w2

zr})
25 case (Rs|so|+1(w2

zr), ∅) or (Rs|so|+1(w2
zr), {>,⊥}) do

26 MakeGuard({w1
zr}, {w1

zr
′
, w2

zr})
27 case (Rs|so|+1(w1

zr), Rs|so|+1(w2
zr)) do

28 Let (w1, w2) = BinSearch(w1
zr
′
, w2

zr
′)

29 MakeGuard({w1, w1
zr}, {w2, w2

zr})
30 case (Rs|so|+1(w2

zr), Rs|so|+1(w2
zr)) do

31 MakeGuard({w1
zr}, {w1

zr
′
, w2

zr, w
2
zr
′})

32 case (Rs|so|+1(w2
zr), Rs|so|+1(w1

zr)) do
33 Let (w1, w2), (w1

first, w
2
first) = BinSearch(w1

zr
′
, w2

zr
′
, first)

34 MakeGuard({w1, w2
zr}, {w2, w1

zr})
35 For j ∈ {1, 2} MakeGuard({wjzr

′
, wjfirst}, {wjzr})

36 otherwise do Symetric to previous cases.225

Chapter 5 – Active learning of timed automata with unobservable resets

w2
zr
′
w1
zr
′

∅ or {>,⊥} Rs|so|+1(w1
zr) Rs|so|+1(w2

zr)

∅ or {>,⊥} g({w1
zr}, {w2

zr}) g({w1
zr, w

1
zr
′}, {w2

zr}) g({w1
zr}, {w1

zr
′
, w2

zr})

Rs|so|+1(w2
zr) g({w1

zr}, {w2
zr
′
, w2

zr})
BS:

g({w1
zr, w

1}, {w2
zr, w

2})
g({w1

zr},
{w1

zr
′
, w2

zr, w
2
zr
′})

Rs|so|+1(w1
zr) g({w1

zr, w
2
zr
′}, {w2

zr})
g({w1

zr, w
2
zr
′
, w1

zr
′},

{w2
zr})

BS:
g({w1, w2

zr}, {w2, w1
zr}),

g({w1
zr}, {w1

zr
′
, w1

first}),
g({w2

zr}, {w2
zr
′
, w2

first})

Table 5.2: The effect of the enlargement phase of InvalidityGuard depending on
Rs|so|+1(w1/2

zr

′). We note g(W ,W ′) a call to MakeGuard with those parameters, BS a
call to BinSearch on (w1

zr, w
2
zr) and w1 w1

first (resp. w2, w2
first) the result and optional

results corresponding to w1
zr
′ (resp. w2

zr
′).

validity guards depend on sets of words to ensure that the guards will be available when
needed when reconstructing the TLG (this is discussed in the proof of Lemma 5.5.51). The
discussion in the case where both initial invalidities have to be enlarged is summarized in
Table 5.2.

After the enlargement step, InvalidityGuard either terminates or calls BinSearch that
performs a binary search between two open K-closed words. The procedure constructing
new K-closed words and characteristic sets from given ones, called BinComb, is described
in Algorithm 13.

The BinComb algorithm constructs new K-closed sets and characteristic sets that meet
constraints (i), (ii) and (iii). The core of its work is to find the middle (in the sense of ∆)
between the abstract delays (i.e. the ∆ between the zone after the (i− 1)-th reset and the
zone before i-th transition) of the two K-closed words with resets given as arguments and
construct both the new K-closed word using these middle zones and a characteristic set
for it. The main difficulty lies in the nature of distances between (open) zones: they must
remain in N. Hence it is sometimes necessary to round the mean up or down.

The fact it is sufficient to reason on abstract delays comes from the following lemma
characterizing zones from delays, resets and directions.

Lemma 5.5.34. Let ((z′i−1, ai, ri))1≤i≤n be an open K-closed word with resets of behaviours

(zi−1
δ−→z′i−1

(ai,ri)−−−→ zi)1≤i≤n .

226

5.5. Updating observation structures

Algorithm 13: Replication of open invalidities.
BinComb
Input: w1

zr = ((z1
i , ai, r

1
i)) an open invalid K-closed word with its characteristic set

W1 and same for w2
zr = ((z2

i , ai, r
2
i)), W2 with both invalid words being of

same size and having the same actions and resets except fro the last reset.
Output: w1

zr
′
,W ′1, w2

zr
′
,W ′2 replicating the inputs such that w1

zr
′ and w2

zr
′ differ

only on their last reset.
1 Let W ′1,W ′2 :=W1,W2

2 For j ∈ 1, 3 let zjtemp := ∧
c∈C c = 0

3 Let r1
0 := >

4 Pick above ∈ {>,⊥}
5 for i ∈ [1, |w1

zr|] do
6 δ := ∆(z1

i ,z
1
temp)+∆(z2

i ,z
2
temp)

2
7 if δ /∈ N then // Rounding δ up or down
8 if above then
9 δ := dδe

10 else
11 δ := bδc
12 if δ = 0 ∧ ¬ri−1 then

// Detects risk for fractional values of delays
13 Return (w1

zr,W1, w
2
zr,W2)

14 above := ¬above
15 if z3

temp is open then
16 z3

i := z3
temp + δ

17 else
18 z3

i := z3
temp ↗ +δ

19 for j ∈ {1, 2} do // Handles the observations delays
20 for ((ti, ai), (t′i, ai)) ∈ W ′j do
21 t, t′+ := δ −∆(zji , z

j
temp)

22 For j ∈ 1, 3 let zjtemp := zjtemp[ri←0]
23 Return (z3

i , ai, r
1
i),W ′1, (z3

i , ai, r
2
i),W ′2.

227

Chapter 5 – Active learning of timed automata with unobservable resets

Then, noting {0} ↗:
∧
c∈C

0 < c < 1:

∀1 ≤ i ≤ n, z′i−1 = {0} ↗ +
i∑

j=1
∆(zj−1, z

′
j−1)× dirij((rk)k) .

Proof. We make the proof by induction. For i = 1, there is n ∈ N such that for any clock
c ∈ C, the constraint n < c < n + 1 is in z′0. By definition of ∆, n = ∆(z0, z

′
0) and we

have our result. For i > 1, by induction z′i−2 = {0} ↗ +∑i−1
j=1 ∆(zj−1, z

′
j−1)× diri−1

j ((rk)k)
and thus zi−1 = {0} ↗ +∑i−1

j=1 ∆(zj−1, z
′
j−1)× dirij((rk)k). By Proposition 5.5.22 we then

have our result because dirii(·) = 1C and as the two zones are K-closed and open. Indeed
the characterization of Proposition 5.5.22 maximum is equality for open K-closed zones.

�

The fact that BinComb respects (i) simply comes from correct manipulation of delays,
while respecting (iii) requires alternating between rounding δ up and down (when an
approximation is required) to avoid stacking approximation errors.

Because of this, we happen to round δ down. This is problematic in the case where it
is rounded down to 0 in a delay transition between two open zones (i.e. when the previous
discrete transition did not reset any clock). In this case one may have to manipulate the
fractional values of the time elapses in the characteristic sets observations, which would
contradict constraints (ii). To avoid this we cut the computation and return the arguments
in place of the new K-closed word with resets.

Example 5.5.35. Consider two (prefixes of) K-closed words with resets depicted in
Figure 5.18 (we represent them with |C| = 2 but one clock suffice):

w1
zr = (

∧
c∈C

0 < c < 1, a,⊥)(
∧
c∈C

0 < c < 1, a,⊥)(
∧
c∈C

1 < c < 2, a,⊥) ,

w2
zr = (

∧
c∈C

0 < c < 1, a,⊥)(
∧
c∈C

1 < c < 2, a,⊥)(
∧
c∈C

1 < c < 2, a,⊥) .

There is no problem at depth one as both words have an abstract delay of 0 (from {sinit} to
its direct successor). At both depth two and three however one word has an abstract delay of
1 and one of 0. Hence the mean of those delays is 0.5 and must be approximated (as abstract
delays between zones are always integers). One can see that an upper approximation at
both steps would create an un-fitting resulting word, as it would reach zone ∧c∈C 2 < c < 3
at depth three, falsifying constraint (iii). Hence using a lower approximation is necessary.

228

5.5. Updating observation structures

ca

cb

(a) Depth one.

ca

cb

(b) Depth two.

ca

cb

(c) Depth three.

Figure 5.18: Two problematic close K-closed words with resets.

Yet, it means forcing an abstract delay of 0 instead of 1 on a K-closed word with resets.
This raises a problem for its characteristic set. Suppose we choose to transform w2

zr in
w1
zr by diminishing its abstract delay at depth two (and augmenting it at depth three) and

consider the following (prefix of a) pair of its characteristic set:

(wt = (0.7, a)(0.7, a)(0.1, a), w′t = (0.3, a)(1.1, a)(0.1, a)) .

Diminishing their two first delays to end in ∧c∈C 0 < c < 1 without resets requires to make
them equivalent for the reset sequence >>> while they are currently not equivalent.

Remark that this discussion is independent of any algorithm.

Proposition 5.5.36. Let w1
zr and w2

zr be two (invalid) K-closed words with resets of same
size and actions, with equal resets except for the final one and W1, W2 their characteristic
sets. Then w1

zr
′
,W ′1, w2

zr
′
,W ′2 = BinComb(w1

zr,W1, w
2
zr,W2) respect the constraints (i) (ii).

Proof. We will make the proof using Equations 5.1 and 5.2 instead of constraints (i) and
(ii). As already argued this is correct. First notice that all delays given to characteristic set
observations are non negative. Indeed, when delays are modified, either the last transition
was a resetting one or δ ≥ 1. In both cases we show that the new modified delays are non
negative. The modification of a delay is of the form

t′ = t+ δ −∆i

with ∆i = ∆(zi, ztemp) the abstract delays between the zones of the word at index i. If the
last transition was resetting, t ≥ ∆i (as the final zone is open). As furthermore δ ≥ 0 (it is
the mean of two natural integers with a floor or ceil approximation) we have t′ ≥ 0. Else,
notice that t ∈ [∆i − 1,∆i + 1]. Thus, as we suppose that δ ≥ 1 we have that t′ ≥ 0.

229

Chapter 5 – Active learning of timed automata with unobservable resets

We start by Equation 5.2. Either BinComb returns the arguments, and the result
trivially holds (as the delays are not modified), or it adds the same integer delay to all
elements of W1 (resp. W2) to create W ′1 (resp. W ′2). This cannot affect K-equivalence as
the fractional parts are not modified and the integer parts are modified in the same way.

We prove that Equation 5.1 is satisfied using the delay based characterization of zones
given in Lemma 5.5.34. Note j ∈ {1, 2}, δi the value of δ during the i-th iteration of the
BinComb’s main for loop and ∆j

i = ∆(zji , z
j
temp) during this iteration.

v′i−1 + t′i = v′i−1 + ti + δi −∆j
i

= vi−1 + ti +
i∑

k=1
(δk −∆j

k)× dirik(w1
zr)

by separating the delays added by the algorithm and the pre-existing ones. We hence can
say, noting zji the i-th zone in w1

zr:

v′i−1 + t′i ∈ z
j
i +

i∑
k=1

(δk −∆j
k)× dirik(w1

zr)

= {0} ↗ +
i∑

k=1
(δk)

= z3
i

by applying Lemma 5.5.34 twice. We thus have our result by the induction principle.

Finally we prove that the constraints (iii) are satisfied. �

The following lemma is the technical core ensuring that BinComb (and BinSearch)
respect the constraints (iii).

Lemma 5.5.37. Consider w1
zr and w2

zr be two (invalid) K-closed words with resets of same
size and actions, with equals resets except for the final one and W1, W2 their characteristic
sets. Consider the call w1

zr
′
,W ′1, w2

zr
′
,W ′2 = BinComb(w1

zr,W1, w
2
zr,W2) and suppose that

the result of the function is not its arguments. We note zji−1
∆j
i−→ z′i−1

j (ai,ri)−−−→ zji the abstract
runs for j ∈ {1, 2, 3}, j ∈ {1, 2} corresponding to wjzr and j = 3 corresponding to the
behaviours of both w1

zr
′ and w2

zr
′ (we abuse the notation as we will not use the final zone

and reset).

230

5.5. Updating observation structures

We have that for any i ≤ i′:

i′∑
k=i

∆3
k =

i′∑
k=i

∆1
k + ∆2

k

2

if the first approximation made after i is d·e and

i′∑
k=i

∆3
k =

 i′∑
k=i

∆1
k + ∆2

k

2

otherwise.

Furthermore, in both cases

i′∑
k=i

∆3
k =

∑i′

k=i ∆1
k + ∆2

k

2

if and only if the last approximation made is different from the first one (or no approxima-
tion has been made).

Proof. We make the proof by induction on i′ ≥ i. We suppose that the first approximation
is d·e. The proof for b·c is similar. For i′ = i we have ∆3

i equals to δ at the step i of the for
loop of BinComb. Thus ∆3

i = ∆1
i+∆2

i

2 if no approximation is made (i.e. iff ∆1
i+∆2

i

2 ∈ N). Else,
as the first approximation is d·e we have ∆3

i =
⌈

∆1
i+∆2

i

2

⌉
. In both cases, the property holds.

For the inductive case, suppose that the property holds up to i′ ≥ i. We prove that
it holds for i′ + 1. For this we discuss according to the last approximation made and the
need for an approximation at this index.

If the last approximation made was d·e then∑i′

k=i ∆3
k 6=

∑i′

k=i
∆1
k+∆2

k

2 . Precisely∑i′

k=i ∆3
k =∑i′

k=i
∆1
k+∆2

k

2 − 1
2 .

Suppose that no approximation is necessary at index i′+1, i.e. ∆3
i′+1 = ∆1

i′+1+∆2
i′+1

2 ∈ N.
Then we have our result as one can pass integers under the ceil function and no new
approximation can correct the sum to make it equal to the approximated one. Now
suppose that an approximation is necessary. Then the approximation applied is b·c as
approximations are alternating. Thus we have that ∑i′+1

k=i ∆3
k = ∑i′+1

k=i
∆1
k+∆2

k

2 as ∆3
i′+1 =

∆1
i′+1+∆2

i′+1
2 + 1

2 .

The case where the last approximation made is b·c follows the same ideas. �

231

Chapter 5 – Active learning of timed automata with unobservable resets

This lemma is used afterward to show that we do not sum approximation mistakes but
always keep an integer approximation of the mean of the original delays.

Combining this wih the chracterization by delays of zones given in Lemma 5.5.34, we
can show that the result of a call to BinComb satisfies constraints (iii) with respect to the
arguments.

Proposition 5.5.38. Let w1
zr and w2

zr be two (invalid) K-closed words with resets of same
size and actions, with equals resets except for the final one and W1, W2 their characteristic
sets. Consider the call w1

zr
′
,W ′1, w2

zr
′
,W ′2 = BinComb(w1

zr,W1, w
2
zr,W2) and j, k ∈ {1, 2}.

Any separating atomic guard g at depth i for wjzr and wkzr
′ such that wjzr passes in g at

depth i verifies that w3−j
zr does not pass in g at depth i.

Proof. We first consider the case where the returns of the BinComb call are its arguments.
In this case the result trivially holds. Indeed, no guard can separate wjzr and wkzr

′ = wkzr

for k = j and for k = 3− j any guard separating wjzr and w3−j
zr indeed separates them.

We now reason on the case where a modification is made by BinComb. Consider that
g : c ≺ n. Then noting zji−1 (resp. zji−1

′) the K-closed zones appearing before the i-th
transition in wjzr (resp. wkzr

′) and ∆j
i (resp. (∆k

i)′) the abstract delays leading to it we have
by Lemma 5.5.34:

zji−1 = {0} ↗ +
i∑
l=1

∆j
l × diril(resets(wjzr))

zji−1
′ = {0} ↗ +

i∑
l=1

∆k
l

′ × diril(resets(wjzr)) .

Furthermore we know that diril for a given clock c and a fixed i is always 0 until a first l0
and always 1 afterward.

It comes that for vji−1 ∈ z
j
i−1 and vki−1

′ ∈ zki−1
′:

vji−1(c) ∈ (
i∑

l=l0
∆j
l ,

i∑
l=l0

∆j
l + 1)

vki−1
′(c) ∈ (

i∑
l=l0

∆k
l

′
,

i∑
l=l0

∆k
l

′ + 1) .

By Lemma 5.5.37 we can conclude, as we know that ∑i
l=l0 ∆k

l
′ is an integer approximation

of the mean of ∑i
l=l0 ∆j

l and
∑i
l=l0 ∆3−j

l . �

232

5.5. Updating observation structures

Remark 5.5.39. Our algorithm is non-deterministic because of the approximation problem:
in practice, a branch and bound approach is to be used, that we do not detail here to avoid
a more convoluted discussion. Furthermore, to avoid making the algorithm more complex
or longer we interrupt the computation as soon as we detect that modifying fractional parts
of delays may be necessary. That necessity could be checked in the characteristic set: if all
delays are greater than one it is not necessary.

Finally, one could choose to still carry on the computation and recreate a characteristic
set, even without satisfying (ii). Indeed, we simply need to replicate the invalidity, and it
may happen that not completely satisfying (ii) still replicates it.

Remark 5.5.40. Notice that for RERAs with only one clock, the alternation can be
reset after each resetting transition as clock values are put back to 0, hence having a nul
fractional part.

The algorithm BinSearch is depicted in Algorithm 14 and uses BinComb to generate
new K-closed words and corresponding characteristic sets that it turns into membership
queries. It then iterates the process to find a pair of K-closed words that are as close as
possible (while keeping different invalidities). For that, initial K-closed words are replaced
by the results of BinComb, depending on the valid resets at maximum depth. The decisions
depending on the valid resets of the replicas are summarized in Table 5.3.

Remark 5.5.41. We do not distinguish between the stop case (there is no valid reset)
and the return case (both resets are valid) in the implementation to avoid discussing the
existence of a return which would make InvalidityGuard longer. In practice, if there is no
valid reset, then a predecessor has become invalid and will be pruned, hence there is no
point in finding a separating guard (the state without successors will be pruned). Hence it
is important to stop the call to InvalidityGuard in order not to waste the computations.

Notice that we only reason on Rs|w1
zr|(w1

zr
′) because they are the same as Rs|w1

zr|(w2
zr
′)

as these two K-closed words with resets only differ on the last reset choice. The optional
argument of BinSearch is used when one wants to return, on top of the initial pair, the first
time w1

zr (resp. w2
zr) is modified during the execution. This in turn is used by InvalidityGuard

in the case where the two initial invalidities have to be enlarged and the enlargement have
different valid resets at depth |so|+ 1. This is because w1

zr must be separated from w1
zr
′

and other linear combinations, but as the enlargement is not a linear combination itself, a
different guard may be necessary for strict linear combinations. A simple example is given
in Example 5.5.42.

233

Chapter 5 – Active learning of timed automata with unobservable resets

Algorithm 14: Finding a guard to separate two invalidities.
BinSearch
Input: two invalid K-closed words with resets w1

zr, w
2
zr of same size and W1 W2

their two characteristic sets. An optional parameter first defaulting to
false.

Output: A pair (w1, w2) of limit linear combinations of w1
zr, w

2
zr such that for

j ∈ {1, 2} Rs|w1
zr|(wj) = Rs|w1

zr|(w2
zr). If first was passed as argument a

second pair (w1
first, w

2
first) corresponding to the first strict combinations

such that Rs|w1
zr|(w

j
first) = Rs|w1

zr|(wjzr).
if first then // Initializes the first combinations

1 Let w1
first := w1

zr and w2
first = w2

zr.
2 Let f 1, f 2 := false

3 while true do
4 w1

zr
′
,W ′1, w2

zr
′
,W ′2 := BinComb(w1

zr,W1, w
2
zr,W2)

5 for (wtr, w′tr) ∈ W ′1 ∪W ′2 do // Query the characteristic sets
6 Request(wtr)
7 Request(w′tr)
8 for j ∈ {1, 2} do
9 if Rs|w1

zr|(wjzr
′) = Rs|w1

zr|(wjzr) then
10 if wjzr

′ 6= wjzr then
11 wjzr := wjzr

′

12 Let Wj be the characteristic set for wjzr.
13 if ¬f j then
14 f j := true

15 wjfirst := wjzr.
16 else // BinComb does not manage to progress anymore
17 Break While
18 if |Rs|w1

zr|(w1
zr
′)| 6= 1 then

// Invalidity lost or propagated to the parent
19 Break
20 if first then
21 Return (w1

zr, w
2
zr), (w1

first, w
2
first)

22 else
23 Return (w1

zr, w
2
zr)

Rs|w1
zr|(w1

zr
′) ∅ Rs|so|+1(w1

zr) Rs|so|+1(w2
zr) {>,⊥}

Action Stop w1
zr ← w1

zr
′

w2
zr ← w2

zr
′ return (w1

zr, w
2
zr)

Table 5.3: The effect of BinSearch depending on the relative valid resets of the replicas.

234

5.5. Updating observation structures

ca

cb

w1
zr

w1
zr
′ w1

first

w2
zr

w2
zr
′

Figure 5.19: Binary search between enlarged zones.

Example 5.5.42. Consider two K-closed words w1
zr w

2
zr (of same size, agreeing on

their actions and resets except for the last reset) going through the zones represented in
Figure 5.19 at a given depth. Suppose that their enlarged versions w1

zr
′
w2
zr
′ are such that

Rs|w1
zr|(w1

zr
′) = w2

zr and Rs|w2
zr|(w1

zr
′) = w1

zr. In this case a guard has to be introduced
between each initial invalidity and its enlarged version.

Furthermore, a binary search is made between w1
zr
′ and w2

zr
′. Suppose that it leads to

w1
first such that Rs|w1

zr|(w1
first) = w2

zr. Then w1
zr and w1

first must be separated by a guard,
which cannot be the same than the one separating w1

zr and w1
zr
′ (in the example depicted

on Figure 5.19). Thus a new guard is necessary.

We know by Propositions 5.5.27, 5.5.31 and 5.5.36 that InvalidityGuard respects con-
straints (i) and (ii) except for collapsing K-equivalent classes during the enlargement phase
as explained in Example 5.5.32. It remains to show that this algorithm terminates and
respects constraint (iii). We first prove termination.

Proposition 5.5.43. Consider sd a decision state of a TLG N succeeding to a valid obser-
vation state, such that both its successors have been pruned due to invalidities characterised
by the set W1 (resp. W2) corresponding to the K-closed word w1

zr (resp. w2
zr).

Then a call to InvalidityGuard(sd,W1,W2) terminates in

O(|Wmax
1 ∪Wmax

2 | × log(δmax)× nmax)

where Wmax
1 , Wmax

2 are the largest characteristic sets built during the algorithm, δmax is the
maximal difference between delays ∆(z1

i−1, z
1
i−1
′) in behav(w1

zr) and behav(w2
zr) and nmax

is the maximal length of observations in W1 ∪W2.
Such call makes up to

O(|W1 ∪W2| × log(δmax))

membership queries before termination.

235

Chapter 5 – Active learning of timed automata with unobservable resets

Proof. The initial enlargement phase has a time complexity O(|W1∪W2|×nmax) dominated
by the cost of the copy of the characteristic sets in the calls to Enlarge and makes |W1∪W2|
calls to Request, resulting in (up to) the same amount of membership queries. After that step,
each loop iteration of the main while loop in BinSearch has the same O(|W1 ∪W2| × nmax)
complexity (due to the copies in BinComb) and makes up to |W1∪W2| membership queries,
with the current values of W1 and W2 in the algorithm. For any iteration of that loop,
either the algorithm terminates or exactly one of the two replicas replace its original invalid
K-closed word (and is not equal to it). Hence as the difference of distances is divided by 2
(by the choice of δ) we have our result. �

Remark 5.5.44. Notice that the size of W1, W2 is bounded during the execution of the
algorithm because new characteristic sets are built of replica of ancient ones. In the worst
case, a W can have 2nmax−|so| pairs with nmax being constant through the algorithm and so
the predecessor of sd.

To show that InvalidityGuard respects the constraints (iii) we first show that BinSearch
respects them (using the related properties on BinComb). This will then be used to conclude.

Lemma 5.5.45. At any iteration of the While loop of BinSearch, any (enlargement closed)
validity guard (g, i, wjzr

′
, w3−j

zr) with j ∈ {1, 2} is also a separating guard for (wjzr, w3−j
zr)

such that zji
′ ∈ g if and only if zji ∈ g with zji (resp. zji

′) the i-th zone of wjzr (resp. wjzr
′).

Proof. This property holds by induction by using Lemma 5.5.38 as wjzr
′ is taken from the

results of a call to BinComb passing w1/2
zr as arguments. �

The next property shows that the guards introduced by InvalidityGuard indeed separate
the different invalidities, as a corollary of Lemma 5.5.45 and Lemma 5.5.30.

Proposition 5.5.46. Let Acc be an acceptance function and N be a TLG implementing
the valid part of Acc. Consider sd = (so, g, a) ∈ SdN , such that so is valid and the two
possible successors of sd by > and ⊥ are invalid. Consider the characteristic sets W1, W2

of the two invalidities.
We note W> (resp. W⊥) the set of timed words with resets which prefixes are invalid

after the sequence of resets resets(so).> (resp. resets(so).⊥) encountered during the call to
InvalidityGuard(sd,W1,W2).

Upon the termination of a call InvalidityGuard(sd,W1,W2), a set of validity guards is
added to GV al that separate W> and W⊥.

236

5.5. Updating observation structures

Proof. During this proof, we use the fact that MakeGuard introduces guards that indeed
separate its arguments, and are enlargement closed if the pair to be separated is made of
open K-closed words with resets.

We divide the proof in cases depending on wether w1
zr and w2

zr are open and on the
different cases of the algorithm.

• If both w1
zr and w2

zr are open, InvalidityGuard defaults to a call to BinSearch. By
Lemma 5.5.45 and using the fact that we replace invalidities by invalidities of the
same type, we know that this call separates correctly the invalidities encountered.

• If exactly one of the two words is open, consider without loss of generality that it
is w1

zr. Then w2
zr
′ is constructed by Enlarge from w2

zr. If it has the same valid resets
than w2

zr at depth |w2
zr| then we conclude using the case where both words are open,

with the addition that the guard returned between two open K-closed sets with
resets is enlargement closed. Thus, by Lemma 5.5.30 w2

zr is also separated by the
guard and a unique guard is returned by MakeGuard.

Else, if Rs|w2
zr|(w2

zr
′) = Rs|w2

zr|(w1
zr) then WRs|w2

zr |
(w2
zr) = {w2

zr} and W
¬Rs|w2

zr |
(w2
zr) =

{w1
zr, w

2
zr
′} and this corresponds to the call to MakeGuard made.

Finally if |Rs|w2
zr|(w2

zr
′)| 6= 1 (either the invalidity has propagated to the predecessor

or the words are not invalid) it suffices to separate w1
zr and w2

zr, which is done by
MakeGuard.

• If both initial invalidities are not open, then both are enlarged through Enlarge,
generating w1

zr
′ and w2

zr
′. The cases in which one of the two (for j ∈ {1, 2}) has

|Rs|w2
zr|(wjzr

′)| 6= 1 are treated by directly introducing guards that separate W> and
W⊥ has done for the previous case (when only one word is enlarged). Similarly, the
case where both enlargements behave like the original one uses the result on binary
search and enlargement closed guards to conclude, as done in the previous case.
In the last case, where Rs|w2

zr|(w2
zr
′) = Rs|w2

zr|(w1
zr) and Rs|w2

zr|(w1
zr
′) = Rs|w2

zr|(w2
zr),

more guards are required to separate the different parts ofW> andW⊥. We suppose
without loss of generality that w1

zr ∈ W>. Using this we can partition the sets of
observations as

W> = {w1
zr, w

2
zr
′} ∪W>strict

W⊥ = {w2
zr, w

1
zr
′} ∪W⊥strict

237

Chapter 5 – Active learning of timed automata with unobservable resets

ca

cb

w1
zr
′

w1
first
′

w1

w2
zr
′

w2
first
′

w1

w1
zr

w1
zr

W⊥strict

W>strict

Figure 5.20: An example of W> and W⊥ in the case where the enlarged timed words with
resets have the complementary valid resets of their initial ones.

with W>strict the set of strict linear combinations (with w2
first the first one and w2 the

last) and respectively for W⊥strict.

An example of the structure ofW> andW⊥ is proposed Figure 5.20 (the figure shoes
W>strict and W>⊥ as simple linear combinations instead of means for conciseness.)

We show that every subsets of W> and W⊥ are separated by the guards introduced.
For any w> ∈ W>strict and w⊥ ∈ W⊥strict, by Lemma 5.5.45 the guard separating w1

and w2 separates them (as w1 and w2 are the last linear combinations constructed
through BinSearch). The same goes for w1

zr and w2
zr as well as for the pair (w1

zr
′
, w2

zr
′).

In the same way, w1
zr
′ is separated from W⊥strict by the guard separating w1 and w2.

w2
zr
′ is separated from W>strict in the same way. w1

zr is explicitly separated from w1
zr
′

and w1
first by MakeGuard, and in the same way w2

zr is explicitly separated from w2
zr
′

and w2
first. Hence W> and W⊥ are indeed separated by the guards introduced by

InvalidityGuard.

�

The proposed method relying on a binary search on open zones is thus satisfying, as

238

5.5. Updating observation structures

it indeed solves the problem by introducing fitting separating guards and handling the
intricate structures of K-closed zones. It yet has some short-comings, namely the risk of
collapsing K-equivalence classes for different resets during the enlargement phase and
the possibility to stop the binary search when a specific manipulation on small distances
between K-closed zones happens. As argued in the previous discussion and shown in
examples, these are consequences of the structure of equivalence classes of valuations and
would require a completely different approach to be handled (or rather avoided).

Now that the search of all different necessary guards has been presented (through
AdjPair and InvalidityGuard) we discuss the introduction of those guards in the TLG and
the rebuilding of subtrees that ensues.

5.5.4 Rebuilding the graph

To rebuild a subtree of a TLG is to introduce new guards using consistency and validity
guards only when necessary, and re-propagate the informations in the new guarded words
with resets they satisfy. We use Rebuild (Algorithm 15) for this.

Intuitively, Rebuild only introduces guards "when needed", which is formalized by the
following well-guardedness property.

Definition 5.5.47. A timed language graph N is said well guarded if, for all transitions
(sl, (g, a), sd) ∈ EN and all constraints c ≺ k in g, either there is a consistency guard
(c ≺ k, |sl| + 1, wtr, w′tr) with wtr adjacent to w′tr such that both pass by sl.(g, a) or (c ≺
k, |sl|+ 1,W ,W ′) a validity guard with wzr ∈ W and w′zr ∈ W ′ passing through sl.(g, a).

Rebuild is described in Algorithm 15. It is called on a valid and consistent observation
state of the TLG and erases the subtree rooted in it, before reconstructing a valid and
consistent subtree with respect to the current observation function. It uses calls to FindGuard
(Algorithm 16) that handles the guard creation.

Remark 5.5.48. In the rebuild function, we use Request on guarded words with resets
instead of timed word. The extension is quite simple thanks to the resets, as searching in
M if an observation modelling the argument exists is only a dive in the tree, and if none
is found, making an membership query from the last guess is the same.

Remark 5.5.49. As written, Rebuild completely erases the subtree and then reconstructs
it. An obvious optimization is to only suppress transitions and nodes when necessary to
avoid invalidity or inconsistency. We do not develop this here to keep the algorithm short
and simple.

239

Chapter 5 – Active learning of timed automata with unobservable resets

Algorithm 15: Rebuilds a subtree of N to handle consistency.
1 Rebuild
Input: A (valid) language state sl

2 Suppress recursively all successors of sl
3 for a ∈ Σ such that there is at least an observation passing sl.(a,>) do
4 for each guard g ∈ FindGuard(sl, a, true) do
5 create sd := (sl, a, g) and (sl, a, g, sd) ∈ EΣ
6 if sl.(a, g,>) is not invalid then
7 create s′l := sl.(a, g,>)
8 label(s′′l) := Request(s′′l)
9 Rebuild (s′l)

10 if sl.(a, g,⊥) is not invalid then
11 create s′′l := sl.(a, g,⊥)
12 label(s′′l) := Request(s′′l)
13 Rebuild (s′′l)

Algorithm 16: Find a partition in guards to be applied to an action in a language
node.
1 FindGuard
Input: A (valid and consistent) language state sl, an action a and a guard g
Output: a partition of g

2 if there is a consistency guard (g′, |sl|+ 1, wtr, w′tr) with (wtr, w′tr) passing sl.(a, g)
then

3 return FindGuard(sl, a, g ∧ g′) ∪ FindGuard(sl, a, g ∧ ¬g′)
4 else
5 if there is a validity guard (g′, |sl|+ 1,Wzr,W ′zr) with (wzr, w′zr) ∈ Wzr ×W ′zr

passing sl.(a, g) then
6 return FindGuard(sl, a, g ∧ g′) ∪ FindGuard(sl, a, g ∧ ¬g′)
7 else
8 return {g}

Remark 5.5.50. Notice that, on top of validity guards being chosen as deep as possible
in the pairs of words and the consistency guard as close to the root as possible, FindGuard
introduces all consistency guards before the validity guards at a given depth. This entails
that validity guards are used only when absolutely necessary and matches the intuition that
invalidity should be used to inform reset guesses and not primarily to construct the model.

Rebuild constructs a complete, consistent and well-guarded subtree if it is called high
enough in the tree. This is proven in Proposition 5.5.52 that assumes all sources of

240

5.5. Updating observation structures

inconsistencies and decisions states without successors in the subtree have been handled.
To verify this would require a prior check.

In practice it may be more efficient to rebuild without that verification, thus handling
all detected issues but rebuilding a potentially inconsistent subtree, or with some decisions
states having no successors. This would function as a detection method, allowing to treat
those (newly discovered) issues and rebuilding again.

We prove in Lemma 5.5.51 that any validity or consistency guard added in GCons,
GV al indeed separates all the observations and K-closed words that must be separated,
independently of other guards introduced by the algorithm.

Lemma 5.5.51. Consider a call to AdjPair (resp. InvalidityGuard) in which two sets of
timed words with resets W+ and W− respectively accepting and non-accepting (resp. W>
and W⊥ sets of K-closed words with resets respectively invalid for a sequence of resets
terminated by > and ⊥) have been requested.

Then independently of the other guards in GCons no pairs in W+ ×W− can end in the
same language state in the subtree rebuilt by Rebuild. Respectively independently of the
other guards in GV al no pairs in W> ×W⊥ can end in language states child to the same
decision state in the subtree rebuilt by Rebuild.

Proof. We separate the proofs for consistency and validity. In the case of AdjPair we
know that all valuations in words W+ ∪W− are linear combinations of valuations in the
arguments of AdjPair (by Proposition 5.3.8). Thus any guard separating W+ ∪W− either
separates exactly W+ and W− or separates only one of those two sets in two and the
half that stays with the other set contains the observation that carries the consistency
guard (as it is the limit linear combination). By Proposition 5.5.9 we have that the sets
are separated.

In the case of InvalidityGuard, we first assume that the call did not end with so the
predecessor of the argument sd being invalid. We then know by Lemma 5.5.34 that we can
characterize the zones in the K-closed words reached during the binary search as linear
combinations (based on ∆) of the initial enlarged zones. We thus have the same result
as for AdjPair for the open-zones only. But notice that either a specific validity guard is
introduced between the two initial (non-open)K-closed words or they are added to the set
for which the validity guard must be raised. Thus in any case, as the validity guard indeed
separates pairs of W> ×W⊥ by Proposition 5.5.46 we have our result.

Now consider the case where so became invalid. In that case, it means that an open
K-closed word wzr of size |so| was found invalid for a given continuation (z, a) and both

241

Chapter 5 – Active learning of timed automata with unobservable resets

resets >,⊥. In that case if some of the open zones in W> ∪W⊥ appear in the subtree it
means that a guard has been introduced separating it from wzr. As wzr was the last linear
combination constructed when the algorithm stopped, it means that it is separated from
the open zones that do not agree with its Rs|so|+1. Hence again we have our result for
the open-zones only. Notice that even when so’s invalidity is detected, guards are added
to GV al to separate non-open K-closed words with resets between them and with open
K-closed words. We hence have our result. �

Notice that the condition for invalidities not to be covered by the children of a given
decision state corresponds to the condition of not being in the same language state for
inconsistencies. Indeed the resets of these words are different at the last depth only.

Proposition 5.5.52. Consider a valid and consistent language state sNl of the TLG.
After adding consistency (resp. validity) guards to GCons (resp. GV al) to separate every pair
causing an inconsistency (resp. forcing the pruning of all successors of a decision state),
if every guard added is at depth strictly greater than |sNl | running Rebuild(sNl) constructs
a subtree rooted in sNl argument that is maximal, complete, well-grounded, consistent
with respect to the current acceptance function Acc and well-guarded. Notably, no decision
states are left without successors.

Proof. First notice that the subtree built is indeed a TLG subtree as it respects the
alternation of decision and observation states, the type of edges, the constraints of guards
(i.e. a call to FindGuard returns a partition of its original guard and it is always called on
true) and all leaves are observation states. Indeed, by Lemma 5.5.51 we know that no pair
encountered during an call to InvalidityGuard can end in both children of a decision state.
By hypothesis all such pairs have been treated hence we have our result.

We show each property independently.

Maximality Maximality comes directly from the structure of Rebuild where all successors
of a constructed decision state are considered for building and only abandoned if
invalid.

Completeness Consider an observation wt ∈ Acc that passes the root sNl of the subtree.
As the Rebuild function continuously calls itself as long as an observation passes the
current word and no decision state is left without successors, there is by induction a
language state s′l such that wt ∈ words(s′l).

242

5.6. Building a candidate timed automaton

Well-groundedness The construction of any new language state stops as soon as no
observation continues from the current language state. As Dom(Acc) is prefix-closed
in the sense of K-closed words (this is ensured by the TOG) we know that all
previously constructed language states have an observation in their words (as the
last one has one).

Consistency Consistency is ensured by Lemma 5.5.51 and the hypothesis that all pairs
of words that can create an inconsistency have led to a call to AdjPair that separated
them.

Well-guardedness This property is ensured by construction, as all guards introduced
by FindGuard are consistency or validity guards.

�

This proposition tells us that we can keep the timed language graph up-to-date with
respect to observations (i.e., complete and consistent) while preserving the good properties
that were ensured by the previous algorithms.

This concludes the presentation of the algorithms updating the data-structure (TLG
and TOG). It remains to show how a candidate timed automaton can be constructed from
this structure.

5.6 Building a candidate timed automaton

Following the active learning approach, our purpose is to identify a subset of nodes in
the language graph that will correspond to locations of the automaton, and then fold
transitions according to an order on the remaining nodes. [GJP06] discusses such orders
when resets are fixed. To handle RERA we first have to fix a reset strategy before applying
the original method. This gives as many hypotheses as we have strategies.

Reset selection. We present the general framework but do not discuss good strategies
in the following. Such strategies would rely on heuristics.

Definition 5.6.1. A reset strategy over a timed language graph N is a mapping π : Sd →
{>,⊥}, assigning a decision to each decision states.

A reset strategy π is said admissible if for any state sd, there is a language state sl
such that (sd, π(sd), sl) ∈ E.

243

Chapter 5 – Active learning of timed automata with unobservable resets

An admissible reset strategy is used to prune the language graph in such a way that
only one reset combination is considered for each transition. The effect of an admissible
reset strategy π on its timed language graph N is the TLG π(N) defined from N by
keeping only outgoing transitions from decision states that agree with π. We call this TLG
the resulting graph of π.

It can be seen quite directly that a resulting graph always has exactly one successor to
each decision state. Using this, we can notice that those resulting graphs are very close to
timed decision trees of [GJP06], in which no decision states exist and the transitions from
language states to language states directly hold the (only possible) reset.

Having an admissible strategy thus is the basis of the construction of a hypothesis.
The way our data structure is handled suffices to ensure that once all observations are
integrated and the TLG is rebuilt, an admissible strategy always exists.

Proposition 5.6.2. In a timed language graph constructed using the FindPath and Rebuild
algorithms and where every scheduled call to Rebuild has been done, there always exists at
least one admissible reset strategy.

Proof. To ensure that an admissible reset strategy exists, one only needs to check that
every decision state has at least one successor. We only prune the graph in the SearchPrune
algorithm, and this algorithm schedules a call to Rebuild when no successors exist for a
decision state. As Rebuild constructs a subtree where all decision states have at least a
successor (thanks to the FindGuard function that explicitly checks for this), we have our
property. �

Orders and folding. Once an admissible reset strategy is fixed, it is possible to fold
the resulting graph into a RERA. This is made through the use of a preorder on states:
we want to find a maximal subset for this order.

We define the height of a language state sl, noted height(sl), as the height of the subtree
it is the root of. A preorder v on language states is said height-monotone when sl v s′l

implies height(sl) ≤ height(s′l).

Definition 5.6.3. Let N be a timed language graph and v a preorder on its language
states. A prefix-closed subset U of N is called v-closed if sl v U for all successors of U
and v-unique if for all sl, s′l ∈ U , sl 6= s′l ⇒ ¬(sl v s′l).

244

5.7. Conclusion

v-closedness is used to construct a RERA by folding the successors of U into comparable
states of U . v-uniqueness is useful to bound the number of states in U and thus the size
of the resulting automaton.

The following lemma (Lemma 6.2 in [GJ08], a long version of [GJP06] appearing in
O.Grinchtein’s thesis [Gri08]) ensures that there always exists a satisfying set of states U .
For its constructive proof, we refer the reader to the original paper.

Lemma 5.6.4. Let v be a height-monotone preorder on states in a resulting graph π(N).
Then there exists a v-closed and v-unique prefix-closed subset of the language states of
π(N).

Using such a subset, we can fold the resulting graph into a RERA as follows:

Definition 5.6.5. Let N be a consistent TLG for Acc, π an admissible reset strategy
and v a preorder on language states of π(N). Consider a v-unique, v-closed and prefix-
closed subset U of π(N). Then a Uv-merging of N according to π is a RERA (U, ε, C,
E,Accept) such that Accept = {u ∈ U | label(u) = {+}} and for any observation state
u.(g, a, r) of π(N) with u ∈ U , there is exactly one edge of the form (u, (g, a, r), u′) ∈ E with
u.(g, a, r) v u′. Notice that, by the second condition, a Uv-merging RERA is deterministic.

Furthermore, if the observation structure is complete, a Uv-merging generalizes the
observations obtained so far.

Constructing a candidate RERA. Using the results of the previous subsections, we
can now construct a candidate RERA from our observation structure. All admissible reset
strategies can be constructed by branch and bound. Then a merging is constructed for
each resulting graph, and equivalence queries are launched.

For each of the RERA constructed by merging, either a counter-example will be
returned by the equivalence query, or the candidate is deemed correct. In the latter case,
we return this RERA; in the former case, we include the counter-example in our observation
structure and repeat the process.

5.7 Conclusion

In this chapter, we propose an active learning method for deterministic reset-optional event
recording automata. We add a key feature to the state of the art: invalidity, that allows to

245

Chapter 5 – Active learning of timed automata with unobservable resets

detect incorrect guesses of resets when they are not tied to observations. This required
to rework all the data structures and algorithms involved to handle invalidity on-the-fly.
Most importantly, this brings the lacking notion to scale up to the class of deterministic
timed automata (DTAs). Interestingly, the algorithmic handling of invalidity highlights the
complex dynamics of undistinguishable classes of valuations and observations, formalized
as K-closed zones and K-closed words with resets.

A clear future work is to generalize this method to actually handle DTAs. This mostly
requires to handle resets of sets of clocks instead of single ones. As the complexity would
be greatly increased, this calls for some optimization. A promising addition would be to
use an implicit structure. Instead of storing all possible reset configurations, only storing a
small set of them at the same time would decrease the memory cost. As the models are
built directly from observations, and not from previous states, the computational overhead
may be limited. Another interesting trail for future development is to find a way to build
a timed automaton from the observation structure that exploits the different admissible
reset strategies without building all of them. Works on approximate determinization of
timed automata through games [Ber+15] deal with similar problems and offer interesting
leads. Finally, in [GJP06], the authors propose to refine the adjacent pairs into critical
pairs, that have a minimal set of differences. This allows to better identify the guards to
be added, and thus can have a positive effect on both the size of the constructed models
and the computational cost. Sadly, no precise procedure is given to construct the pairs, so
creating one would be beneficial to the approach. More generally, studying the efficiency
of this algorithm and of the variants proposed as future work could help better understand
the applicability and bottlenecks of the approach.

An interesting branch would be to try to integrate invalidity and its characterization to
TL∗. This could allow to benefit from the algorithm efficiency. One of the main difficulties
in this line of research would probably be to integrate the abstractions we propose into
TL∗ that uses the ERA structure to remain at the level of guarded words with resets even
for membership queries. In a similar fashion, the TL∗ algorithm relies on prior learning of
the untimed language of the timed automaton. Yet, the untimed language construction is
existential (i.e. an untimed word is accepted if it is the projection of an accepted timed
word), and the implementation of untimed equivalence of membership queries could be
difficult (or require a far greater complexity) in a timed setting, which is not discussed in
the original paper.

246

CONCLUSION

So comes snow after fire, and even
dragons have their ending.

— J.R.R. Tolkien "The Hobbit"

This thesis has tackled different problems related to the interactions between formal
models of timed systems (as timed automata and some variants) and sheer reality. Chrono-
logically, the research effort started from a discussion of the action of model-based agents
on reality, through formal game theory. This lead to the realization that some informations
lack in any reasonable model of a system. It thus makes sense to try to recover those
information from the real system we are already interacting with, which can take the form
of various (model) learning techniques. The hazard (and the discovery of an exciting body
of research compiled during Olga Grinchtein’s thesis [Gri08]) led the author to primarily
consider active learning.

Contributions The contributions of this thesis focus on a very formal approach of
reality-models interactions, with their upsides, such as a fine control and understanding
of the behaviours, and their downsides, mainly the complexity that can arise and the
formal (or perhaps mathematical) limitations that sprout from the model choices. The
main contributions are three-fold:

• A model-based conformance testing method for timed automata with inputs and
outputs that relies on game theory, and specifically so-called rank lowering strategies
for hard games, allowing to plan even in situations where victory cannot be achieved
without the opponent’s cooperation. These strategies allow a quantitative take on
such games, minimizing the reliance on cooperation and planing around it. We
discuss their interest both in a restricted "fair" setting where they can be proved
to be winning and in very general situations where the game difficulty forbids to
hope for an assured victory. In this case, these strategies can nevertheless offer an
interesting way toward the objective while trying to resist to failure.

• A discussion on a timed markings, a structure allowing to pre-compute a finite

247

representation of a system set of configurations that can be reached after a given
observation, at least for 1-clock automata. We extend the theoretical basis of this
structure to general (n-clock) timed automata, but do not propose a sufficient finitely
representable class for them. This contribution has a double interest: it allows to
avoid the undecidable determinisation problem (in the 1-clock case) by defaulting to
a sufficient representation and gives some insight on the structure of time dynamics
in timed automata.

• An active learning method for deterministic reset-optional event recoding automata
(DRERAs), a new quite general subclass of deterministic timed automata that
displays both a high dimensionality and unobservable clock resets (and thus time
dynamic). The key of this contribution is the notion of (in)validity that allows to
characterize reset choices that can or cannot be part of a model of a set of observations.
On top of that notion, we propose data structures to handle the learning of DRERAs,
focusing on the representation of their behaviours, and the algorithms necessary to
construct, update and exploit them. We believe that the notion of invalidity is the
last previously missing piece to handle the learning of deterministic timed automata.

Modeling as abstract interpretation A guiding thread of the different axes of this
thesis is the correct formalisation of the various abstractions underpinning timed automata
in term of level of observation—syntax with paths; semantics with runs; behaviours with
abstract runs and timed words with resets; observations with timed words—and precision—
from simple runs (and other observation levels) to minimally distinguishable sets (region
or K-equivalent) to general sets defined by paths. These different representations, and the
abstraction functions that link them, are presented from the beginning (see Figure 1.4)
and further developed in the case of learning (see Figure 5.3). The abstraction functions
play an important role in the first chapters of the thesis, while the invert-abstractions are
at the core of the discussion on active learning.

Even more generally, and perhaps more notably, laying out these abstractions and
their relations is akin to abstract interpretation as the correct representation (i.e. abstract
domain) and their properties are central to state estimation (which builds on a new
abstract domain) and learning (that sees paths and equivalence classes as an abstract
framework that constrains the observations interpretation).

248

One could see the interactions between models and reality as an interpretation of the
"real semantic" (i.e. what is happening in the real world) into specific sound approximations
(i.e. formal objects) that both abstract parts of the reality that are deemed irrelevant for
the task at hands and organize the relevant information.

Perspectives The different contributions of this thesis open multiple perspectives for
future developments. Firstly, our active learning method is limited to DRERAs, but as
discussed earlier, reunites all the key elements to learn deterministic timed automata,
thus that extension should be made, in regard for the interest of having a formal learning
technique general enough for all learning models. Developing other learning methods for
(subclasses of) timed automata could also be of interest, notably reinforcement learning,
that is simultaneously historically model-based, linked to formal communities and extremely
in vogue among machine learning specialists.

Completing the generalization of the state estimation method of Chapter 4 to general
timed automata could also have great practical interests, although it would require new
ideas that are not introduced here, as discussed at the end of the chapter.

Finally, developing formal game-based test generation for timed systems would both
be interesting for its theoretical implications and practical consequences, due to the far
reaching use of tests in the industry. The author believes that further developing such
methods greatly depends on the association of testing and learning in mixed methods that
would allow to start testing from an initial (partial) model and carry on with increasingly
complex and accurate models synthesized through learning. This would allow both to
verify properties of the implementation and to construct a model of the system (hopefully
of great quality) that helps understanding and analyzing it.

Related to this last point, but outside the scope of timed models, the abstraction
based approach supported by this thesis could be used in other domains to intertwine
formal learning and acting (i.e. testing, control, diagnostic. . .), especially for systems that
have rich behaviours such as e.g. models with data, a great number of agents (potentially
parametric and/or dynamic) or monads.

249

BIBLIOGRAPHY

[ACD90] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking for real-time systems”,
in: Fifth Annual IEEE Symposium on Logic in Computer Science, 1990,
pp. 414–425, doi: 10.1109/LICS.1990.113766.

[AD94] Rajeev Alur and David L. Dill, “A Theory of Timed Automata”, in: Theoret-
ical Computer Science 126.2 (Apr. 1994), pp. 183–235.

[AFH99] Rajeev Alur, Limor Fix, and Thomas A. Henzinger, “Event-Clock Automata:
A Determinizable Class of Timed Automata”, in: Theoretical Computer
Science 211.1-2 (Jan. 1999), pp. 253–273, doi: 10.1016/S0304-3975(97)
00173-4.

[Aic+18] Bernhard K. Aichernig, Wojciech Mostowski, Mohammad Reza Mousavi,
Martin Tappler, and Masoumeh Taromirad, “Model Learning and Model-
Based Testing”, English, in:Machine Learning for Dynamic Software Analysis:
Potentials and Limits: International Dagstuhl Seminar 16172, ed. by Amel
Bennaceur, Reiner Hähnle, and Karl Meinke, Lecture Notes in Computer
Science, Springer Nature, July 2018, pp. 74–100, isbn: 978-3-319-96561-1,
doi: 10.1007/978-3-319-96562-8_3.

[Alu+92] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin
Ho, “Hybrid Automata: An Algorithmic Approach to the Specification and
Verification of Hybrid Systems”, in: Hybrid Systems I, Springer, 1992, pp. 209–
229.

[Alu+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X.
Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic analysis of
hybrid systems”, in: Theoretical Computer Science 138 (1995), pp. 3–34.

[An+20] Jie An, Mingshuai Chen, Bohua Zhan, Naijun Zhan, and Miaomiao Zhang,
“Learning One-Clock Timed Automata”, in: Proceedings of the 26th Inter-
national Conference on Tools and Algorithms for Construction and Analysis
of Systems (TACAS’20) – Part I, ed. by Armin Biere and David Parker,

251

https://doi.org/10.1109/LICS.1990.113766
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1007/978-3-319-96562-8_3

vol. 12078, Lecture Notes in Computer Science, Springer, Apr. 2020, pp. 444–
462, doi: 10.1007/978-3-030-45190-5_25.

[An+21] Jie An, Lingtai Wang, Bohua Zhan, Naijun Zhan, and Miaomiao Zhang,
“Learning real-time automata”, in: Science China Information Sciences,
vol. 64, Science China Press, Sept. 2021, doi: 10.1007/s11432-019-2767-4.

[And+12] Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat, “IMI-
TATOR 2.5: A Tool for Analyzing Robustness in Scheduling Problems”, in:
FM 2012: Formal Methods, ed. by Dimitra Giannakopoulou and Dominique
Méry, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 33–36, isbn:
978-3-642-32759-9.

[And21] Étienne André, “IMITATOR 3: Synthesis of timing parameters beyond decid-
ability”, in: CAV’21, ed. by Rustan Leino and Alexandra Silva, vol. 12759,
Lecture Notes in Computer Science, Springer, 2021, pp. 1–14.

[Ang80] Dana Angluin, “Inductive Inference of Formal Languages from Positive Data”,
in: Information and Control 45.2 (1980), pp. 117–135, doi: 10.1016/S0019-
9958(80)90285- 5, url: https://doi.org/10.1016/S0019- 9958(80)
90285-5.

[Ang87a] Dana Angluin, “Learning Regular Sets from Queries and Counterexamples”,
in: Information and Computation 75.2 (1987), pp. 87–106, doi: 10.1016/
0890-5401(87)90052-6, url: https://doi.org/10.1016/0890-5401(87)
90052-6.

[Ang87b] Dana Angluin, “Queries and Concept Learning”, in: Machine Language 2.4
(1987), pp. 319–342, doi: 10.1007/BF00116828, url: https://doi.org/10.
1007/BF00116828.

[Ang88] Dana Angluin, Identifying languages from stochastic examples, Research
Report, 1988.

[Ang90] Dana Angluin, “Negative Results for Equivalence Queries”, in: Machine
Language 5 (1990), pp. 121–150, doi: 10.1007/BF00116034, url: https:
//doi.org/10.1007/BF00116034.

252

https://doi.org/10.1007/978-3-030-45190-5_25
https://doi.org/10.1007/s11432-019-2767-4
https://doi.org/10.1016/S0019-9958(80)90285-5
https://doi.org/10.1016/S0019-9958(80)90285-5
https://doi.org/10.1016/S0019-9958(80)90285-5
https://doi.org/10.1016/S0019-9958(80)90285-5
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/BF00116828
https://doi.org/10.1007/BF00116828
https://doi.org/10.1007/BF00116828
https://doi.org/10.1007/BF00116034
https://doi.org/10.1007/BF00116034
https://doi.org/10.1007/BF00116034

[Asa+98] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis, “Controller
Synthesis for Timed Automata”, in: Proceedings of the 5th IFAC Conference
on System Structure and Control (SSC’98), vol. 31, Elsevier, July 1998,
pp. 469–474.

[AV10] Fides Aarts and Frits Vaandrager, “Learning I/O Automata”, in: Proceed-
ibgs of the 21st int. conf on Concurrency Theory - CONCUR 2010, ed. by
Paul Gastin and François Laroussinie, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 71–85.

[Bac+21] Giovanni Bacci, Patricia Bouyer, Uli Fahrenberg, Kim Guldstrand Larsen,
Nicolas Markey, and Pierre-Alain Reynier, “Optimal and Robust Controller
Synthesis Using Energy Timed Automata with Uncertainty”, in: Formal
Aspects of Computing 33.1 (Jan. 2021), pp. 3–25, doi: 10.1007/s00165-
020-00521-4.

[Bai+09] Christel Baier, Nathalie Bertrand, Patricia Bouyer, and Thomas Brihaye,
“When Are Timed Automata Determinizable?”, in: Automata, Languages and
Programming, 36th International Colloquium ICALP 2009, ed. by Susanne
Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris Nikoletseas, and
Wolfgang Thomas, vol. 5556, Lecture Notes in Computer Science, Berlin,
Heidelberg: Springer Berlin Heidelberg, July 2009, pp. 43–54, isbn: 978-3-
642-02930-1.

[BB04] Laura Brandán Briones and Ed Brinksma, “A Test Generation Framework
for Quiescent Real-Time Systems”, in: Proceedings of the 4th International
Workshop on Formal Approaches to Software Testing (FATES’04), ed. by Jens
Grabowski and Brian Nielsen, vol. 3395, Lecture Notes in Computer Science,
Springer, Sept. 2004, pp. 64–78, doi: 10.1007/978-3-540-31848-4_5.

[BCD05] Patricia Bouyer, Fabrice Chevalier, and Deepak D’Souza, “Fault Diagnosis
Using Timed Automata”, in: Proceedings of the 8th International Conference
on Foundations of Software Science and Computation Structure (FoSSaCS’05),
ed. by Vladimiro Sassone, vol. 3441, Lecture Notes in Computer Science,
Springer, Apr. 2005, pp. 219–233, doi: 10.1007/978-3-540-31982-5_14.

[Beh+06] Gerd Behrmann, Alexandre David, Kim G. Larsen, Paul Pettersson, Wang Yi,
and Martijn Hendriks, “Uppaal 4.0”, in: Quantitative Evaluation of Systems -

253

https://doi.org/10.1007/s00165-020-00521-4
https://doi.org/10.1007/s00165-020-00521-4
https://doi.org/10.1007/978-3-540-31848-4_5
https://doi.org/10.1007/978-3-540-31982-5_14

QEST’06: Proceedings of the 3rd international conference on the Quantitative
Evaluation of Systems, IEEE Computer Society, 2006, pp. 125–126.

[Ber+12] Nathalie Bertrand, Thierry Jéron, Amélie Stainer, and Moez Krichen, “Off-
line test selection with test purposes for non-deterministic timed automata”,
in: Logical Methods in Computer Science 8.4 (2012), doi: 10.2168/LMCS-
8(4:8)2012.

[Ber+15] Nathalie Bertrand, Amélie Stainer, Thierry Jéron, and Moez Krichen, “A game
approach to determinize timed automata”, in: Formal Methods in System
Design 46.1 (Feb. 2015), pp. 42–80, doi: 10.1007/s10703-014-0220-1.

[Bér+98] B. Bérard, A. Petit, V. Diekert, and P. Gastin, “Characterization of the
Expressive Power of Silent Transitions in Timed Automata”, in: Fundam.
Informaticae 36 (1998), pp. 145–182.

[BF72] Alan W. Biermann and Jerome A. Feldman, “On the Synthesis of Finite-
State Machines from Samples of Their Behavior”, in: IEEE Trans. Computers
21.6 (1972), pp. 592–597, doi: 10.1109/TC.1972.5009015, url: https:
//doi.org/10.1109/TC.1972.5009015.

[BGP96] Béatrice Bérard, Paul Gastin, and Antoine Petit, “On the power of non-
observable actions in timed automata”, in: STACS 96, ed. by Claude Puech
and Rüdiger Reischuk, vol. 1046, Lecture Notes in Computer Science, Berlin,
Heidelberg: Springer Berlin Heidelberg, 1996, pp. 255–268, isbn: 978-3-540-
49723-3.

[BJM17] Patricia Bouyer, Samy Jaziri, and Nicolas Markey, “On the determinization
of timed systems”, in: Proceedings of the 15th International Conferences on
Formal Modelling and Analysis of Timed Systems (FORMATS’17), ed. by
Alessandro Abate and Gilles Geeraerts, vol. 10419, Lecture Notes in Computer
Science, Springer, Sept. 2017, pp. 25–41, doi: 10.1007/978-3-319-65765-
32.

[BJM18] Patricia Bouyer, Samy Jaziri, and Nicolas Markey, “Efficient timed diagnosis
using automata with timed domains”, in: Proceedings of the 18th International
Workshop on Runtime Verification (RV’18), ed. by Christian Colombo and
Martin Leucker, vol. 11237, Lecture Notes in Computer Science, Springer,
Nov. 2018, pp. 205–221, doi: 10.1007/978-3-030-03769-7_12.

254

https://doi.org/10.2168/LMCS-8(4:8)2012
https://doi.org/10.2168/LMCS-8(4:8)2012
https://doi.org/10.1007/s10703-014-0220-1
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1007/978-3-319-65765-3 2
https://doi.org/10.1007/978-3-319-65765-3 2
https://doi.org/10.1007/978-3-030-03769-7_12

[BLR05] Patricia Bouyer, François Laroussinie, and Pierre-Alain Reynier, “Diagonal
Constraints in Timed Automata: Forward Analysis of Timed Systems”, in:
FORMATS 2005, vol. 3829, Lecture Notes in Computer Science, Springer
Berlin Heidelberg, Sept. 2005, pp. 112–126, isbn: 978-3-540-30946-8, doi:
10.1007/11603009_10.

[BM83] Bernard Berthomieu and Miguel Menasche, “An Enumerative Approach For
Analyzing Time Petri Nets”, in: Proceedings IFIP, Elsevier Science Publishers,
1983, pp. 41–46.

[BMS13] Patricia Bouyer, Nicolas Markey, and Ocan Sankur, “Robustness in timed
automata”, in: Proceedings of the 7th Workshop on Reachability Problems in
Computational Models (RP’13), ed. by Parosh Aziz Abdulla and Igor Potapov,
vol. 8169, Lecture Notes in Computer Science, Springer, Sept. 2013, pp. 1–18,
doi: 10.1007/978-3-642-41036-9_1.

[Bol+09] Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker, “Angluin-
style learning of NFA”, in: IJCAI’09: Proceedings of the 21st International
Joint Conference on Artificial Intelligence, July 2009, pp. 1004–1009.

[Bos20] Petra van den Boss, “Coverage and Games in Model-Based Testing”, PhD
thesis, Radboud University Nijmegen, 2020, url: https://petravdbos.nl/
publications/ThesisPetravandenBosDigital.pdf.

[Bou+08] Patricia Bouyer, Uli Fahrenberg, Kim Guldstrand Larsen, Nicolas Markey,
and Jiří Srba, “Infinite Runs in Weighted Timed Automata with Energy
Constraints”, in: Proceedings of the 6th International Conferences on Formal
Modelling and Analysis of Timed Systems (FORMATS’08), ed. by Franck
Cassez and Claude Jard, vol. 5215, Lecture Notes in Computer Science,
Springer, Sept. 2008, pp. 33–47, doi: 10.1007/978-3-540-85778-5_4.

[Bou+21] Patricia Bouyer, Léo Henry, Samy Jaziri, Thierry Jéron, and Nicolas Markey,
“Diagnosing timed automata using timed markings”, in: International Journal
on Software Tools for Technology Transfer 23 (Mar. 2021), doi: 10.1007/
s10009-021-00606-2.

[Bou03] Patricia Bouyer, “Untameable Timed Automata!”, in: 20th Annual Symposium
on Theoretical Aspects of Computer Science (STACS’03), ed. by Habib M. Alt
H., vol. 2607, Lecture Notes in Computer Science, Springer Berlin Heidelberg,

255

https://doi.org/10.1007/11603009_10
https://doi.org/10.1007/978-3-642-41036-9_1
https://petravdbos.nl/publications/ThesisPetravandenBosDigital.pdf
https://petravdbos.nl/publications/ThesisPetravandenBosDigital.pdf
https://doi.org/10.1007/978-3-540-85778-5_4
https://doi.org/10.1007/s10009-021-00606-2
https://doi.org/10.1007/s10009-021-00606-2

Feb. 2003, pp. 620–631, isbn: 978-3-540-00623-7, doi: 10.1007/3- 540-
36494-3_54.

[Boz+98] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis,
and Sergio Yovine, “Kronos: a model-checking tool for real-time systems”, in:
Computer Aided Verification 10th International Conference, CAV’98, ed. by
Hu, Alan J.; Vardi, and Moshe Y., vol. 1427, Lecture Notes in Computer
Science, Vancouver, BC, Canada: Springer, June 1998, pp. 546–549, doi:
10.1007/BFb0028779, url: https://hal.archives-ouvertes.fr/hal-
00374784.

[BY03] Johan Bengtsson and Wang Yi, “On Clock Difference Constraints and Termi-
nation in Reachability Analysis of Timed Automata”, in: Formal Methods
and Software Engineering, ed. by Jin Song Dong and Jim Woodcock, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 491–503.

[BY04] Johan Bengtsson and Wang Yi, “Timed Automata: Semantics, Algorithms
and Tools”, in: Lectures on Concurrency and Petri Nets, ed. by Jörg De-
sel, Wolfgang Reisig, and Grzegorz Rozenberg, vol. 2098, Lecture Notes in
Computer Science, Springer, 2004, pp. 87–124, doi: 10.1007/b98282.

[Cas+05] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim Guldstrand Larsen,
and Didier Lime, “Efficient On-the-fly Algorithms for the Analysis of Timed
Games”, in: Proceedings of the 16th International Conference on Concurrency
Theory (CONCUR’05), ed. by Martín Abadi and Luca de Alfaro, vol. 3653,
Lecture Notes in Computer Science, Springer, Aug. 2005, pp. 66–80, doi:
10.1007/11539452_9.

[Cas15] Sofia Cassel, “Learning Component Behavior from Tests: Theory and Algo-
rithms for Automata with Data”, PhD thesis, Uppsala University, Sweden,
2015, url: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-
265369.

[CCF15] Ben Caldwell, Rachel Cardell-Oliver, and Tim French, “Learning Time Delay
Mealy Machines From Programmable Logic Controllers”, in: IEEE Transac-
tions on Automation Science and Engineering 13 (Dec. 2015), pp. 1–10, doi:
10.1109/TASE.2015.2496242.

256

https://doi.org/10.1007/3-540-36494-3_54
https://doi.org/10.1007/3-540-36494-3_54
https://doi.org/10.1007/BFb0028779
https://hal.archives-ouvertes.fr/hal-00374784
https://hal.archives-ouvertes.fr/hal-00374784
https://doi.org/10.1007/b98282
https://doi.org/10.1007/11539452_9
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-265369
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-265369
https://doi.org/10.1109/TASE.2015.2496242

[CES09] Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis, “Model checking:
algorithmic verification and debugging”, in: Communications of the ACM
52.11 (Nov. 2009), pp. 74–84, doi: 10.1145/1592761.1592781.

[CG98] Rachel Cardell-Oliver and Tim Glover, “A Practical and Complete Algorithm
for Testing Real-Time Systems”, in: Proceedings of the 5th Formal Techniques
in Real-Time and Fault-Tolerant Systems (FTRTFT’98), vol. 1486, Lecture
Notes in Computer Science, Springer, Sept. 1998, pp. 251–261, doi: 10.1007/
BFb0055352.

[CGP00] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled, Model checking,
MIT Press, 2000, isbn: 978-0-262-03270-4.

[CKL98] Richard Castanet, Ousmane Koné, and Patrice Laurençot, “On-the-fly Test
Generation for Real Time Protocols”, in: Proceedings of the International
Conference On Computer Communications and Networks (ICCCN’98), IEEE
Comp. Soc. Press, Oct. 1998, pp. 378–387, doi: 10.1109/ICCCN.1998.
998798.

[Cla+18] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem, Handbook of Model Checking, Springer, Apr. 2018, doi: 10.1007/978-
3-319-10575-8.

[Cle+20] Emily Clement, Thierry Jéron, Nicolas Markey, and David Mentré, “Comput-
ing Maximally-Permissive Strategies in Acyclic Timed Automata”, in: Formal
Modeling and Analysis of Timed Systems - 18th International Conference,
FORMATS 2020, Vienna, Austria, September 1-3, 2020, Proceedings, ed. by
Nathalie Bertrand and Nils Jansen, vol. 12288, Lecture Notes in Computer
Science, Springer, 2020, pp. 111–126.

[CO94] Rafael C. Carrasco and Jose Oncina, “Learning stochastic regular grammars
by means of a state merging method”, in: Grammatical Inference and Applica-
tions, ed. by Rafael C. Carrasco and Jose Oncina, Springer Berlin Heidelberg,
1994, pp. 139–152, isbn: 978-3-540-48985-6.

[CT04] Alexander Clark and Franck Thollard, “PAC-learnability of Probabilistic
Deterministic Finite State Automata”, in: Journal of Machine Learning
Research 5 (2004), pp. 473–497, url: http://www.ai.mit.edu/projects/
jmlr/papers/volume5/clark04a/clark04a.pdf.

257

https://doi.org/10.1145/1592761.1592781
https://doi.org/10.1007/BFb0055352
https://doi.org/10.1007/BFb0055352
https://doi.org/10.1109/ICCCN.1998.998798
https://doi.org/10.1109/ICCCN.1998.998798
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
http://www.ai.mit.edu/projects/jmlr/papers/volume5/clark04a/clark04a.pdf
http://www.ai.mit.edu/projects/jmlr/papers/volume5/clark04a/clark04a.pdf

[CW98] Jonathan E. Cook and Alexander L. Wolf, “Discovering Models of Software
Processes from Event-Based Data”, in: ACM Trans. Softw. Eng. Methodol.
7.3 (1998), pp. 215–249, doi: 10.1145/287000.287001, url: http://doi.
acm.org/10.1145/287000.287001.

[Dal+10] Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Sebastian Hack, and
Andreas Zeller, “Generating test cases for specification mining”, in: Proceed-
ings of the Nineteenth International Symposium on Software Testing and
Analysis, ISSTA 2010, Trento, Italy, July 12-16, 2010, 2010, pp. 85–96, doi:
10.1145/1831708.1831719, url: http://doi.acm.org/10.1145/1831708.
1831719.

[Dal+12] Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Gordon Fraser, Sebas-
tian Hack, and Andreas Zeller, “Automatically Generating Test Cases for
Specification Mining”, in: IEEE Trans. Software Eng. 38.2 (2012), pp. 243–
257, doi: 10.1109/TSE.2011.105, url: https://doi.org/10.1109/TSE.
2011.105.

[Dav+08a] Alexandre David, Kim G. Larsen, Shuhao Li, and Brian Nielsen, “A Game-
Theoretic Approach to Real-Time System Testing”, in: Proceedings of the
Conference on Design, Automation and Test in Europe (DATE’08), Mar.
2008, pp. 486–491, doi: 10.1109/DATE.2008.4484728.

[Dav+08b] Alexandre David, Kim G. Larsen, Shuhao Li, and Brian Nielsen, “Cooperative
Testing of Timed Systems”, in: Proceedings of the 4th Workshop on Model
Based Testing (MBT’08), vol. 220, Electronic Notes in Theoretical Computer
Science, 2008, pp. 79–92, doi: https://doi.org/10.1016/j.entcs.2008.
11.007.

[Dav+10] Alexandre David, Kim Guldstrand Larsen, Shuhao Li, Marius Mikučionis,
and Brian Nielsen, “Testing Real-Time Systems under Uncertainty”, in:
Revised Papers of the 13th International Conference on Formal Methods for
Components and Objects (FMCO’10), vol. 6957, Lecture Notes in Computer
Science, Springer, Dec. 2010, pp. 352–371, doi: 10.1007/978-3-642-25271-
6_19.

[Daw+96] C. Daws, A. Olivero, S. Tripakis, and S. Yovine, “The Tool KRONOS”, in:
In Proc. of Hybrid Systems III, vol. 1066, Lecture Notes in Computer Science,
Springer Verlag, 1996, pp. 208–219.

258

https://doi.org/10.1145/287000.287001
http://doi.acm.org/10.1145/287000.287001
http://doi.acm.org/10.1145/287000.287001
https://doi.org/10.1145/1831708.1831719
http://doi.acm.org/10.1145/1831708.1831719
http://doi.acm.org/10.1145/1831708.1831719
https://doi.org/10.1109/TSE.2011.105
https://doi.org/10.1109/TSE.2011.105
https://doi.org/10.1109/TSE.2011.105
https://doi.org/10.1109/DATE.2008.4484728
https://doi.org/https://doi.org/10.1016/j.entcs.2008.11.007
https://doi.org/https://doi.org/10.1016/j.entcs.2008.11.007
https://doi.org/10.1007/978-3-642-25271-6_19
https://doi.org/10.1007/978-3-642-25271-6_19

[De +04] Martin De Wulf, Laurent Doyen, Nicolas Markey, and Jean-François Raskin,
“Robustness and Implementability of Timed Automata”, in: Proceedings of
the Joint International Conferences on Formal Modelling and Analysis of
Timed Systems (FORMATS’04) and Formal Techniques in Real-Time and
Fault-Tolerant Systems (FTRTFT’04), ed. by Yassine Lakhnech and Sergio
Yovine, vol. 3253, Lecture Notes in Computer Science, Springer, Sept. 2004,
pp. 118–133.

[Dil90] David L. Dill, “Timing assumptions and verification of finite-state concurrent
systems”, in: Automatic Verification Methods for Finite State Systems, ed. by
Joseph Sifakis, Berlin, Heidelberg: Springer Berlin Heidelberg, 1990, pp. 197–
212.

[DT98] Conrado Daws and Stavros Tripakis, “Model checking of real-time reachability
properties using abstractions”, in: Tools and Algorithms for the Construction
and Analysis of Systems, Berlin, Heidelberg: Springer Berlin Heidelberg, 1998,
pp. 313–329, isbn: 978-3-540-69753-4.

[EDK02] Abdeslam En-Nouaary, Radhida Dssouli, and Ferhat Khendek, “Timed WP-
Method: Testing Real-Time Systems”, in: IEEE Transactions on Software
Engineering 28.11 (Nov. 2002), pp. 1023–1038, doi: 10.1109/TSE.2002.
1049402.

[Far+08] Azadeh Farzan, Yu-Fang Chen, Edmund M. Clarke, Yih-Kuen Tsay, and
Bow-Yaw Wang, “Extending Automated Compositional Verification to the
Full Class of Omega-Regular Languages”, in: Tools and Algorithms for the
Construction and Analysis of Systems, ed. by C. R. Ramakrishnan and Jakob
Rehof, Springer Berlin Heidelberg, 2008.

[Fil11] Jean-Christophe Filliâtre, “Deductive software verification”, in: International
Journal on Software Tools for Technology Transfer 13.5 (Oct. 2011), pp. 397–
403, doi: 10.1007/s10009-011-0211-0.

[Fin06] Olivier Finkel, “Undecidable Problems About Timed Automata”, in: Proceed-
ings of the 4th International Conferences on Formal Modelling and Analysis
of Timed Systems (FORMATS’06), ed. by Eugene Asarin and Patricia Bouyer,
vol. 4202, Lecture Notes in Computer Science, Springer, Sept. 2006, pp. 187–
199, doi: 10.1007/11867340_14.

259

https://doi.org/10.1109/TSE.2002.1049402
https://doi.org/10.1109/TSE.2002.1049402
https://doi.org/10.1007/s10009-011-0211-0
https://doi.org/10.1007/11867340_14

[GHJ97] Vineet Gupta, Thomas A. Henzinger, and Radha Jagadeesan, “Robust Timed
Automata”, in: Proceedings of the 1997 International Workshop on Hybrid
and Real-Time Systems (HART’97), ed. by Oded Maler, vol. 1201, Lecture
Notes in Computer Science, Springer, Mar. 1997, pp. 331–345.

[GJ08] Olga Grinchtein and Bengt Jonsson, Inference of Event-Recording Automataus-
ing Timed Decision Trees, tech. rep., Uppsala Universitet, 2008, url: https:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.473&
rep=rep1&type=pdf.

[GJL10] Olga Grinchtein, Bengt Jonsson, and Martin Leucker, “Learning of event-
recording automata”, in: Theoretical Computer Science 411.47 (2010), pp. 4029–
4054, issn: 0304-3975, doi: https://doi.org/10.1016/j.tcs.2010.07.
008, url: https://www.sciencedirect.com/science/article/pii/
S0304397510003944.

[GJP06] Olga Grinchtein, Bengt Jonsson, and Paul Pettersson, “Inference of Event-
Recording Automata Using Timed Decision Trees”, in: International Con-
ference on Concurrency Theory (CONCUR’06), Lecture Notes in Computer
Science, Springer, 2006.

[GL09] Sahika Genc and Stéphane Lafortune, “Predictability of event occurrences in
partially-observed discrete-event systems”, in: Automatica 45.2 (Feb. 2009),
pp. 301–311, doi: 10.1016/j.automatica.2008.06.022.

[Gol67] E. Mark Gold, “Language Identification in the Limit”, in: Information and
Control 10.5 (1967), pp. 447–474, doi: 10.1016/S0019-9958(67)91165-5,
url: https://doi.org/10.1016/S0019-9958(67)91165-5.

[Gol78] E. Mark Gold, “Complexity of Automaton Identification from Given Data”,
in: Information and Control 37.3 (1978), pp. 302–320, doi: 10.1016/S0019-
9958(78)90562- 4, url: https://doi.org/10.1016/S0019- 9958(78)
90562-4.

[Gre+20] Alejandro Grez, Filip Mazowiecki, Michał Pilipczuk, Gabriele Puppis, and
Cristian Riveros, The monitoring problem for timed automata, 2020, arXiv:
2002.07049 [cs.FL].

260

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.473&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.473&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.473&rep=rep1&type=pdf
https://doi.org/https://doi.org/10.1016/j.tcs.2010.07.008
https://doi.org/https://doi.org/10.1016/j.tcs.2010.07.008
https://www.sciencedirect.com/science/article/pii/S0304397510003944
https://www.sciencedirect.com/science/article/pii/S0304397510003944
https://doi.org/10.1016/j.automatica.2008.06.022
https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1016/S0019-9958(78)90562-4
https://arxiv.org/abs/2002.07049

[Gri08] Olga Grinchtein, “Learning of Timed Systems”, PhD thesis, Uppsala Univer-
sity, Sweden, 2008, url: http://nbn-resolving.de/urn:nbn:se:uu:diva-
8763.

[Hen+94] T.A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine, “Symbolic
model checking for real-time systems”, in: vol. 111(2), 1994, pp. 193–244.

[Hen+95] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya,
“What’s Decidable about Hybrid Automata?”, in: Journal of Computer and
System Sciences, ACM Press, 1995, pp. 373–382.

[Hen96] Thomas A. Henzinger, “The Theory of Hybrid Automata”, in: IEEE Computer
Society Press, 1996, pp. 278–292.

[Hes+08] Anders Hessel, Kim Larsen, Marius Mikucionis, Brian Nielsen, Paul Pettersson,
and Arne Skou, “Testing Real-Time Systems Using UPPAAL”, in: Formal
Methods and Testing: An outcome of the FORTEST network, ed. by Robert M.
Hierons, Jonathan P. Bowen, and Mark Harman, vol. 4949, Lecture Notes
in Computer Science, Springer, 2008, pp. 77–117, url: http://www.cs.aau.
dk/~marius/tron/FMT2008.pdf.

[HJM18] Léo Henry, Thierry Jéron, and Nicolas Markey, “Control strategies for off-
line testing of timed systems”, in: 25th International Symposium on Model-
Cherking Software (SPIN’18), ed. by María-del-Mar Gallardo and Pedro
Merino, vol. 10869, Lecture Notes in Computer Science, Springer, June 2018,
pp. 171–189, doi: 10.1007/978-3-319-94111-0_10.

[HJM20] Léo Henry, Thierry Jéron, and Nicolas Markey, “Active learning of timed
automata with unobservable resets”, in: 18th International Conferences on
Formal Modelling and Analysis of Timed Systems (FORMATS’20), ed. by
Nathalie Bertrand and Nils Jansen, vol. 12288, Lecture Notes in Computer
Science, Springer, Sept. 2020, pp. 144–160, doi: 10.1007/978-3-030-57628-
8_9.

[Hoa69] Charles Antony Richard Hoare, “An axiomatic basis for computer program-
ming”, in: Communications of the ACM 12.10 (Oct. 1969), pp. 576–580, doi:
10.1145/363235.363259.

[How60] Ronald A Howard, “Dynamic programming and markov processes.”, in:
(1960).

261

http://nbn-resolving.de/urn:nbn:se:uu:diva-8763
http://nbn-resolving.de/urn:nbn:se:uu:diva-8763
http://www.cs.aau.dk/~marius/tron/FMT2008.pdf
http://www.cs.aau.dk/~marius/tron/FMT2008.pdf
https://doi.org/10.1007/978-3-319-94111-0_10
https://doi.org/10.1007/978-3-030-57628-8_9
https://doi.org/10.1007/978-3-030-57628-8_9
https://doi.org/10.1145/363235.363259

[HS06] Thomas A. Henzinger and Joseph Sifakis, “The Embedded Systems Design
Challenge”, in: Proceedings of the 14th International Symposium on Formal
Methods (FM’06), ed. by Jayadev Misra, Tobias Nipkow, and Emil Sekerinski,
vol. 4085, Lecture Notes in Computer Science, Springer, Aug. 2006, pp. 1–15,
doi: 10.1007/11813040_1.

[Ipa12] Florentin Ipate, “Learning finite cover automata from queries”, in: Journal of
Computer and System Sciences 78.1 (2012), JCSS Knowledge Representation
and Reasoning, pp. 221–244, issn: 0022-0000, doi: https://doi.org/10.
1016/j.jcss.2011.04.002, url: https://www.sciencedirect.com/
science/article/pii/S002200001100047X.

[Jér+08] Thierry Jéron, Hervé Marchand, Sahika Genc, and Stéphane Lafortune,
“Predictability of Sequence Patterns in Discrete Event Systems”, in: IFAC
Proceedings Volumes 41.2 (2008), 17th IFAC World Congress, pp. 537–543,
issn: 1474-6670, doi: https://doi.org/10.3182/20080706-5-KR-1001.
00091, url: https://www.sciencedirect.com/science/article/pii/
S147466701639005X.

[Kay+03] Dilsun Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager, “Timed
I/O Automata: A Mathematical Framework for Modeling and Analyzing
Real-Time Systems.”, in: Real-Time Systems Symposium, Jan. 2003, pp. 166–
177, doi: 10.1109/REAL.2003.1253264.

[KT05] Moez Krichen and Stavros Tripakis, “An Expressive and Implementable
Formal Framework for Testing Real-Time Systems”, in: Testing of Communi-
cating Systems, vol. 3502, Springer Berlin Heidelberg, May 2005, pp. 209–225,
isbn: 978-3-540-26054-7, doi: 10.1007/11430230_15.

[KT09] Moez Krichen and Stavros Tripakis, “Conformance testing for real-time
systems”, in: Formal Methods in System Design 34.3 (June 2009), pp. 238–
304, doi: 10.1007/s10703-009-0065-1.

[KV94] Michael J. Kearns and Umesh Vazirani, An Introduction to Computational
Learning Theory, The MIT Press, Aug. 1994, isbn: 0262111934, url: http:
//www.worldcat.org/isbn/0262111934.

262

https://doi.org/10.1007/11813040_1
https://doi.org/https://doi.org/10.1016/j.jcss.2011.04.002
https://doi.org/https://doi.org/10.1016/j.jcss.2011.04.002
https://www.sciencedirect.com/science/article/pii/S002200001100047X
https://www.sciencedirect.com/science/article/pii/S002200001100047X
https://doi.org/https://doi.org/10.3182/20080706-5-KR-1001.00091
https://doi.org/https://doi.org/10.3182/20080706-5-KR-1001.00091
https://www.sciencedirect.com/science/article/pii/S147466701639005X
https://www.sciencedirect.com/science/article/pii/S147466701639005X
https://doi.org/10.1109/REAL.2003.1253264
https://doi.org/10.1007/11430230_15
https://doi.org/10.1007/s10703-009-0065-1
http://www.worldcat.org/isbn/0262111934
http://www.worldcat.org/isbn/0262111934

[Lim+09] Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie Traonouez,
“Romeo: A Parametric Model-Checker for Petri Nets with Stopwatches”, in:
15th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2009), ed. by Stefan Kowalewski and
Anna Philippou, vol. 5505, Lecture Notes in Computer Science, York, United
Kingdom: Springer, Mar. 2009, pp. 54–57.

[Lin+11] Shang-Wei Lin, Étienne André, Jin Song Dong, Jun Sun, and Yang Liu, “An
Efficient Algorithm for Learning Event-Recording Automata”, in: Automated
Technology for Verification and Analysis, ed. by Tevfik Bultan and Pao-Ann
Hsiung, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 463–472,
isbn: 978-3-642-24372-1.

[Lin+14] Shang-Wei Lin, Étienne André, Yang Liu, Jun Sun, and Jin Song Dong,
“Learning Assumptions for CompositionalVerification of Timed Systems”, in:
IEEE Transactions on Software Engineering 40.2 (2014), pp. 137–153, doi:
10.1109/TSE.2013.57.

[LMN04] Kim Guldstrand Larsen, Marius Mikučionis, and Brian Nielsen, “Online
Testing of Real-time Systems Using Uppaal”, in: Proceedings of the 4th Inter-
national Workshop on Formal Approaches to Software Testing (FATES’04),
ed. by Jens Grabowski and Brian Nielsen, vol. 3395, Lecture Notes in Com-
puter Science, Springer, Sept. 2004, pp. 79–94, doi: 10.1007/978-3-540-
31848-4_6.

[LMP08] Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè, “Automatic generation
of software behavioral models”, in: 2008 ACM/IEEE 30th International
Conference on Software Engineering (2008), pp. 501–510.

[LS09] Martin Leucker and Christian Schallart, “A brief account of runtime verifi-
cation”, in: Journal of Logic and Algebraic Programming 78.5 (May 2009),
pp. 293–303, doi: 10.1016/j.jlap.2008.08.004.

[Mai+11] Alexander Maier, Oliver Niggemann, Roman Just, Michael Jäger, and As-
mir Vodencarevic, “Anomaly Detection in Production Plants using Timed
Automata - Automated Learning of Models from Observations”, in: ICINCO
2011 - Proceedings of the 8th International Conference on Informatics in Con-
trol, Automation and Robotics, Volume 1, Noordwijkerhout, The Netherlands,
28 - 31 July, 2011, 2011, pp. 363–369.

263

https://doi.org/10.1109/TSE.2013.57
https://doi.org/10.1007/978-3-540-31848-4_6
https://doi.org/10.1007/978-3-540-31848-4_6
https://doi.org/10.1016/j.jlap.2008.08.004

[Mai14] Alexander Maier, “Online passive learning of timed automata for cyber-
physical production systems”, in: 2014 12th IEEE International Conference
on Industrial Informatics (INDIN) (2014), pp. 60–66.

[Mer74] Philip Meir Merlin, “A Study of the Recoverability of Computing Systems”,
AAI7511026, PhD thesis, 1974.

[Mil68] Bruce L Miller, “Finite state continuous time Markov decision processes
with a finite planning horizon”, in: SIAM Journal on Control 6.2 (1968),
pp. 266–280.

[MNE15] Alexander Maier, Oliver Niggemann, and Jens Eickmeyer, “On the Learning
of Timing Behavior for Anomaly Detection in Cyber-Physical Production
Systems”, in: Proceedings of the 26th International Workshop on Principles of
Diagnosis (DX-2015) co-located with 9th IFAC Symposium on Fault Detection,
Supervision and Safety for Technical Processes (Safeprocess 2015), Paris,
France, August 31 - September 3, 2015. 2015, pp. 217–224, url: http://ceur-
ws.org/Vol-1507/dx15paper28.pdf.

[MP95] Oded Maler and Amir Pnueli, “On the Learnability of Infinitary Regular
Sets”, in: Information and Computation 118.2 (1995), pp. 316–326, issn:
0890-5401, doi: https://doi.org/10.1006/inco.1995.1070, url: https:
//www.sciencedirect.com/science/article/pii/S089054018571070X.

[Ner58] Anil Nerode, “Linear automaton transformations”, in: Proceedings of the
American Mathematical Society 9.4 (1958), pp. 541–544.

[Nic+93] X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “An Approach to the
Description and Analysis of Hybrid Systems”, in: Hybrid Systems I, Springer,
1993, pp. 149–178.

[Nie03] Oliver Niese, “An integrated approach to testing complex systems”, PhD
thesis, Fachbereich Informatik, Universitat Dortmund, Dec. 2003, doi: 10.
17877/DE290R-14871.

[NL15] Oliver Niggemann and Volker Lohweg, “On the Diagnosis of Cyber-physical
Production Systems: State-of-the-art and Research Agenda”, in: Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15,
2015, url: http://dl.acm.org/citation.cfm?id=2888116.2888294.

264

http://ceur-ws.org/Vol-1507/dx15paper28.pdf
http://ceur-ws.org/Vol-1507/dx15paper28.pdf
https://doi.org/https://doi.org/10.1006/inco.1995.1070
https://www.sciencedirect.com/science/article/pii/S089054018571070X
https://www.sciencedirect.com/science/article/pii/S089054018571070X
https://doi.org/10.17877/DE290R-14871
https://doi.org/10.17877/DE290R-14871
http://dl.acm.org/citation.cfm?id=2888116.2888294

[NS03] Brian Nielsen and Arne Skou, “Automated test generation from timed au-
tomata”, in: International Journal on Software Tools for Technology Transfer
5.1 (Nov. 2003), pp. 59–77, doi: 10.1007/s10009-002-0094-1.

[PMM17] Fabrizio Pastore, Daniela Micucci, and Leonardo Mariani, “Timed k-Tail:
Automatic Inference of Timed Automata”, in: CoRR abs/1705.08399 (2017),
url: http://arxiv.org/abs/1705.08399.

[Pur00] Anuj Puri, “Dynamical Properties of Timed Automata”, in: Discrete Event
Dynamic Systems 10.1-2 (Jan. 2000), pp. 87–113, doi: 10.1023/A:1008387132377.

[Ram74] C. Ramchandani, “Analysis of Asynchronous Concurrent Systems by Timed
Petri Nets”, PhD thesis, 1974.

[Ram98] Solofo Ramangalahy, Strategies for comformance testing, Research Report
98-010, Max-Planck Institut für Informatik, May 1998.

[Rou20] Victor Roussanaly, “Efficient Verification of real-time systems”, Ph.D. thesis,
IRISA, Univ. Rennes 1, France, 2020.

[RS93] Ronald L. Rivest and Robert E. Schapire, “Inference of Finite Automata
Using Homing Sequences”, in: Information and Computation 103.2 (1993),
pp. 299–347, issn: 0890-5401, doi: https://doi.org/10.1006/inco.1993.
1021, url: https://www.sciencedirect.com/science/article/pii/
S0890540183710217.

[Sam+96] Meera Sampath, Raja Sengupta, Stéphane Lafortune, Kasim Sinnamohideen,
and Demosthenis Teneketzis, “Failure diagnosis using discrete-event models”,
in: IEEE Transactions on Computers 35.1 (Jan. 1996), pp. 105–124, doi:
10.1109/87.486338.

[San13] Ocan Sankur, “Robustness in Timed Automata: Analysis, Synthesis, Im-
plementation”, Ph.D. thesis, Laboratoire Spécification et Vérification, ENS
Cachan, France, June 2013, url: http://www.lsv.ens-cachan.fr/Publis/
PAPERS/PDF/sankur-phd13.pdf.

[SB18] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Intro-
duction, second edition, Cambridge, MA, USA: A Bradford Book, 2018, isbn:
0262039249.

265

https://doi.org/10.1007/s10009-002-0094-1
http://arxiv.org/abs/1705.08399
https://doi.org/10.1023/A:1008387132377
https://doi.org/https://doi.org/10.1006/inco.1993.1021
https://doi.org/https://doi.org/10.1006/inco.1993.1021
https://www.sciencedirect.com/science/article/pii/S0890540183710217
https://www.sciencedirect.com/science/article/pii/S0890540183710217
https://doi.org/10.1109/87.486338
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/sankur-phd13.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/sankur-phd13.pdf

[Sch13] Jana Schmidt, “Machine learning of timed automata”, PhD thesis, Technical
University Munich, 2013, url: http://nbn-resolving.de/urn:nbn:de:
bvb:91-diss-20131216-1145664-0-4.

[SG09] Muzammil Shahbaz and Roland Groz, “Inferring Mealy Machines”, in: FM
2009: Formal Methods, ed. by Ana Cavalcanti and Dennis R. Dams, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 207–222.

[SNF17] Lukas Schmidt, Apurva Narayan, and Sebastian Fischmeister, “TREM: a tool
for mining timed regular specifications from system traces”, in: Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software
Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017,
2017, pp. 901–906, doi: 10.1109/ASE.2017.8115702, url: https://doi.
org/10.1109/ASE.2017.8115702.

[Sun+09] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang, “PAT: Towards Flexible
Verification under Fairness”, in: Proceedings of the 21th International Con-
ference on Computer Aided Verification (CAV’09), vol. 5643, Lecture Notes
in Computer Science, Springer, 2009, pp. 709–714.

[SVD01] Jan Springintveld, Frits Vaandrager, and Pedro R. D’Argenio, “Testing timed
automata”, in: Theoretical Computer Science 254.1-2 (Mar. 2001), pp. 225–
257, doi: 10.1016/S0304-3975(99)00134-6.

[Tap+19] Martin Tappler, Bernhard K. Aichernig, Kim Guldstrand Larsen, and Florian
Lorber, “Time to Learn - Learning Timed Automata from Tests”, in: Formal
Modeling and Analysis of Timed Systems - 17th International Conference,
FORMATS 2019, Amsterdam, The Netherlands, August 27-29, 2019, Pro-
ceedings, ed. by Étienne André and Mariëlle Stoelinga, vol. 11750, Lecture
Notes in Computer Science, Springer, 2019, pp. 216–235, doi: 10.1007/978-
3-030-29662-9_13, url: https://doi.org/10.1007/978-3-030-29662-
9%5C_13.

[TDH00] Franck Thollard, Pierre Dupont, and Colin de la Higuera, “Probabilistic DFA
Inference using Kullback-Leibler Divergence and Minimality”, in: 17th Inter-
national Conference on Machine Learning (ICML 2000), Stanford University,
Stanford, CA, USA, June 29 - July 2, 2000, 2000, pp. 975–982.

266

http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20131216-1145664-0-4
http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20131216-1145664-0-4
https://doi.org/10.1109/ASE.2017.8115702
https://doi.org/10.1109/ASE.2017.8115702
https://doi.org/10.1109/ASE.2017.8115702
https://doi.org/10.1016/S0304-3975(99)00134-6
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1007/978-3-030-29662-9%5C_13
https://doi.org/10.1007/978-3-030-29662-9%5C_13

[Tre96] Jan Tretmans, “Conformance Testing with Labelled Transition Systems:
Implementation Relations and Test Generation”, in: Computer Networks and
ISDN Systems 29.1 (1996), pp. 49–79, doi: 10.1016/S0169-7552(96)00017-
7.

[Tri02] Stavros Tripakis, “Fault Diagnosis for Timed Automata”, in: Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, ed. by Werner Damm and
Ernst -Rüdiger Olderog, Berlin, Heidelberg: Springer Berlin Heidelberg, 2002,
pp. 205–221, isbn: 978-3-540-45739-8.

[Tri06] Stavros Tripakis, “Folk theorems on the determinization and minimization of
timed automata”, in: Information Processing Letters 99.6 (2006), pp. 222–226,
issn: 0020-0190, doi: https://doi.org/10.1016/j.ipl.2006.04.015.

[Val84] Leslie G. Valiant, “A Theory of the Learnable”, in: Commun. ACM 27.11
(1984), pp. 1134–1142, doi: 10.1145/1968.1972, url: http://doi.acm.
org/10.1145/1968.1972.

[VBE21] Frits W. Vaandrager, Roderick Bloem, and Masoud Ebrahimi, “Learning
Mealy Machines with One Timer”, in: Language and Automata Theory and
Applications - 15th International Conference, LATA 2021, Milan, Italy, March
1-5, 2021, Proceedings, ed. by Alberto Leporati, Carlos Martín-Vide, Dana
Shapira, and Claudio Zandron, vol. 12638, Lecture Notes in Computer Science,
Springer, 2021, pp. 157–170, doi: 10.1007/978-3-030-68195-1_13, url:
https://doi.org/10.1007/978-3-030-68195-1%5C_13.

[VWW08] Sicco E Verwer, Mathijs M de Weerdt, and Cees Witteveen, “Efficiently
learning simple timed automata”, in: Induction of Process Models, Workshop
at ECML PKDD (2008), ed. by W. Bridewell, T. Calders, A. K. de Medeiros,
S. Kramer, M. Pechenizkiy, and L. Todorovski, pp. 61–68.

[VWW12] Sicco E Verwer, Mathijs M de Weerdt, and Cees Witteveen, “Efficiently
identifying deterministic real-time automata from labeled data”, in: Machine
Learning 86 (Mar. 2012), pp. 295–333, doi: 10.1007/s10994-011-5265-4.

[WLN17] Stefan Windmann, Dorota Lang, and Oliver Niggemann, “Learning parallel
automata of PLCs”, in: 22nd IEEE International Conference on Emerg-
ing Technologies and Factory Automation, ETFA 2017, Limassol, Cyprus,
September 12-15, 2017, 2017, pp. 1–7, doi: 10.1109/ETFA.2017.8247693,
url: https://doi.org/10.1109/ETFA.2017.8247693.

267

https://doi.org/10.1016/S0169-7552(96)00017-7
https://doi.org/10.1016/S0169-7552(96)00017-7
https://doi.org/https://doi.org/10.1016/j.ipl.2006.04.015
https://doi.org/10.1145/1968.1972
http://doi.acm.org/10.1145/1968.1972
http://doi.acm.org/10.1145/1968.1972
https://doi.org/10.1007/978-3-030-68195-1_13
https://doi.org/10.1007/978-3-030-68195-1%5C_13
https://doi.org/10.1007/s10994-011-5265-4
https://doi.org/10.1109/ETFA.2017.8247693
https://doi.org/10.1109/ETFA.2017.8247693

[Xia+05] Gang Xiao, Finnegan Southey, Robert C. Holte, and Dana F. Wilkinson, “Soft-
ware Testing by Active Learning for Commercial Games”, in: Proceedings, The
Twentieth National Conference on Artificial Intelligence and the Seventeenth
Innovative Applications of Artificial Intelligence Conference, 2005, pp. 898–
903, url: http://www.aaai.org/Library/AAAI/2005/aaai05-142.php.

[Yan04] Mihalis Yannakakis, “Testing, Optimization, and Games”, in: Proceedings of
the 31st International Colloquium on Automata, Languages and Programming
(ICALP’04), Lecture Notes in Computer Science, Springer, 2004, pp. 28–45,
doi: 10.1007/978-3-540-27836-8_6.

268

http://www.aaai.org/Library/AAAI/2005/aaai05-142.php
https://doi.org/10.1007/978-3-540-27836-8_6

Titre : Histoire d’un aller et retour : méthodes formelles et apprentissage de modèles pour les
systèmes en temps réel

Mot clés : Automates temporisés, Théorie des jeux, Apprentissage actif, Méthodes formelles,

Estimation d’état

Résumé : Cette thèse traite des méthodes
formelles utilisant les automates temporisés,
de leurs actions sur la réalité, et des informa-
tions que l’on peut apprendre grâce à ces ob-
servations. Elle propose différentes contribu-
tions dans trois domaines distincts : la théorie
des jeux et la génération de tests, vue comme
un moyen de contrôler un système à l’aide
de méthodes formelles ; l’estimation d’état, qui
déduit les configurations possibles d’un sys-
tème à partir d’observations au moyen d’une
construction formelle ; l’apprentissage actif de
modèles, qui propose de construire un modèle
d’un système en lui demandant des observa-
tions, en les orientant selon les besoins de la
tâche.

Aussi diverses qu’elles puissent paraître,
ces contributions sont liées par le formalisme
sous-jacent, les abstractions utilisées et les
préoccupations qui caractérisent les interac-
tions entre les modèles formels et la réalité.
De plus, elles bénéficient les unes des autres
dans la pratique, formant un cercle vertueux :
la capacité d’apprendre de la réalité permet de
meilleurs modèles, qui à leur tour permettent
un contrôle plus fin des systèmes, ce qui favo-
rise les processus d’apprentissage.

Nous relions ces différentes contributions
entre elles sur la base des motifs ci-dessus,
et nous plaidons pour un rapprochement entre
les méthodes et les communautés d’apprentis-
sage de modèles et de méthodes formelles.

Title: There and back again : formal methods and model learning for real-time systems

Keywords: Timed automata, Game Theory, Active learning, Formal methods, State estimation

Abstract: This thesis deals with formal meth-
ods based on timed automata, their actions
upon reality, and the informations that can be
learned from it. It proposes different contribu-
tions in three separate domains: game theory
and formal test generation, seen as a way to
control a system using formal methods; state
estimation, that deduce the possible configu-
rations of a system from observations by the
mean of a formal construction; active model
learning, that propose to construct a formal
model of a system by requesting observations
out of it, directing them as needed for the task.

As diverse as they may seem, these contri-

butions are linked by the underlying formalism,
abstractions and preoccupations that charac-
terizes interactions between formal models
and reality. Furthermore, they benefit from one
another in practice, forming a virtuous loop:
the capacity to learn from reality allows for bet-
ter models, that in turn permit a finer control
of the real systems, which helps the learning
processes.

We link these different contributions to-
gether based on the grounds above, and ad-
vocate for a greater rapprochement between
learning and formal methods and communi-
ties.

	Résumé
	Introduction
	A dire need for models
	Learning: leveraging model availability
	Between models and reality
	Adding time to the mix
	Contributions
	Publications

	Definitions
	Time representation
	Timed automata
	Equivalence relations

	State of the art and bibliography
	Timed models
	Timed automata and related models
	Behaviour abstraction

	Model verification
	Model-based testing
	State estimation
	Robustness(es) of models

	Model learning
	Quick dive in passive model learning
	Active learning

	Control strategies for offline testing of timed systems
	Introduction
	Testing timed systems
	Contributions and related works

	Timed automata and timed games
	Timed automata with inputs and outputs
	Timed games

	Testing framework
	Framework overview
	Test context
	Combining specifications and test purposes
	Accounting for failure

	Translating objective-centered testers into games
	Rank-lowering strategies
	Making rank-lowering strategies win
	Properties of the test cases

	Implementing Rank Lowering Strategies
	Algorithm
	Properties

	Generalizing Rank-Lowering Strategies
	k-Resistance
	Combining resistance and optimization

	Conclusion

	Handling unobservability with timed markings
	Introduction
	Preliminaries
	Sets and intervals of real
	One-clock timed automata

	Regular timed sets
	Regular unions of intervals
	Linear and regular timed sets

	Closure under delay and silent transitions
	Linear timed markings and their -closure
	Computing -closures
	Necessity of regular timed sets
	Finite representation of the closure

	Towards efficient diagnosis for n-clocks timed automata
	Valuations for multiple clocks
	-closures
	Stability of a representable class

	Conclusion and future works

	Active learning of timed automata with unobservable resets
	Introduction
	Preliminaries
	Timed automata
	Active learning for timed automata

	Abstraction
	Zone runs, region runs and K-closed runs
	Signatures and Behaviours
	Manipulations on words

	Observation structures
	Timed decision graphs
	Consistency and validity

	Updating observation structures
	Adding a new observation
	Dealing with inconsistency
	Dealing with decision states with no successors
	Rebuilding the graph

	Building a candidate timed automaton
	Conclusion

	Conclusion
	Bibliography

