
HAL Id: tel-03546651
https://theses.hal.science/tel-03546651

Submitted on 28 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Understanding the energy consumption of blockchain
technologies : a focus on smart contracts

Dimitri Saingre

To cite this version:
Dimitri Saingre. Understanding the energy consumption of blockchain technologies : a focus on smart
contracts. Distributed, Parallel, and Cluster Computing [cs.DC]. Ecole nationale supérieure Mines-
Télécom Atlantique, 2021. English. �NNT : 2021IMTA0280�. �tel-03546651�

https://theses.hal.science/tel-03546651
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’ÉCOLE NATIONALE SUPÉRIEURE
MINES-TÉLÉCOM ATLANTIQUE BRETAGNE
PAYS-DE-LA-LOIRE - IMT ATLANTIQUE

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Dimitri SAINGRE
Understanding the energy consumption of blockchain
technologies: a focus on smart contracts

Thèse présentée et soutenue à Nantes, le 13 Décembre 2021
Unité de recherche : Laboratoire des Sciences du Numérique de Nantes (LS2N)
Thèse No : 2021IMTA0280

Rapporteurs avant soutenance :

Maria POTOP-BUTUCARU Professeur (HDR), Sorbonne Université
Romain ROUVOY Professeur (HDR), Université de Lille

Composition du Jury :

Président : Jean-Marc PIERSON Professeur (HDR), Université de Toulouse
Examinateurs : Maria POTOP-BUTUCARU Professeur (HDR), Sorbonne Université

Romain ROUVOY Professeur (HDR), Université de Lille
Anthony SIMONET-BOULOGNE Responsable des projets Scientifique, IExec

Dir. de thèse : Jean-Marc MENAUD Professeur (HDR), IMT Atlantique
Co-dir. de thèse : Thomas LEDOUX Professeur (HDR), IMT Atlantique

REMERCIEMENTS

Dans cette section, je tiens à remercier les personnes m’ayant accompagnés durant ces
trois années de doctorat.

Je remercie tout d’abord M. Jean-Marc Menaud et M. Thomas Ledoux pour m’avoir
donné l’opportunité d’effectuer ce doctorat. Ces trois années, riches en émotions, m’ont
beaucoup apporté autant sur le plan professionnel que personnel. Leurs conseils et remar-
ques avisés m’ont permit de développer mon esprit scientifique et de prendre du recul sur
le sujet abordé dans ce manuscrit.

Je remercie aussi Mme Maria Potop-Butucaru, M. Romain Rouvoy, M. Anthony
Simonet-Boulogne et M. Jean-Marc Pierson d’avoir accepté d’intégrer mon jury de thèse.
Je suis reconnaissant pour toutes les questions et remarques relatives aux manuscrit et à
la soutenance qui ont conduits à des échanges riches.

J’adresse une pensée aux membres de l’équipe STACK et plus globalement à toutes les
personnes que j’ai pu côtoyer à l’IMT Atlantique durant ces trois années. J’ai notamment
eu beaucoup de plaisir à apprendre à connaître les personnes que j’avais d’abord rencontré
comme enseignant durant mes études d’ingénieur.

Enfin, je remercie chaleureusement ma famille et mes amis, qui m’ont soutenus pendant
cette période. Merci Papa, Maman et Jérémie.

Merci enfin à toi Lucie, pour tout le soutiens et l’écoute. Tu es maintenant aussi experte
que moi sur le sujet à force de m’entendre en parler ! Je t’aime de tout mon coeur.

Merci à tous et à toutes.

3

ABSTRACT

Blockchains are distributed ledgers that store information in a peer-to-peer network.
This technology was introduced in 2008 with Bitcoin. Since the launch of the Bitcoin
network, the blockchain ecosystem has grown both in terms of actors and complexity.
Many blockchain projects have been created in the last decade, each with its own technical
features. Blockchains are now used in several domains like cloud computing, energy grids,
or supply chain.

With the rise of the debates on climate change management, the rapid growth of the
information and communication technologies (ICT) sector raises many ethical questions.
Indeed, in 2020 the European Commission estimated an increase in energy consumption of
data centers in Europe of 42% between 2010 and 2018. In the meanwhile, blockchains have
been highly criticised for their energy consumption. Indeed, many blockchains (including
Bitcoin) use a highly computational intensive consensus algorithm called proof-of-work.
The high energy cost of proof-of-work has been well studied and established.

In this thesis, we propose to study another aspect of blockchains: smart contracts.
Smart contracts are scripts deployed and executed on a blockchain. They enable the
development of decentralised applications. Based on the analysis of transaction history and
experiments on real hardware, we contribute to understanding the energy cost of smart
contracts on the Ethereum blockchain. First, we propose a novel framework to deploy and
analyse the performances and footprint of blockchains. Many existing tools lacked crucial
features for blockchains performances (e.g., deployment, network emulation. . .). Based
on this framework, we develop a model to estimate the energy consumption of Ethereum
smart contract. We combined this model with a one-year Ethereum transaction history
to give rough estimations of the energy consumption of blockchain-based applications.
Finally, we proposed a novel protocol to identify and delete unused Ethereum smart
contract. Our studies highlighted that most deployed contracts lead to little or no use. As
contracts are meant to be available forever, we have shown that unused contracts impacted
the performances of each Ethereum node. Our solution challenges the "immortality" aspect
of smart contracts to provide "lighter" blockchains.

5

RÉSUMÉ

Les chaînes de blocs sont des registres distribués permettant le stockage d’informations
dans un réseau pairs à pairs. Chaque membre de ce réseau peut posséder une copie de ce
registre. La modification de ce registre peut se faire par le biais de transactions diffusées
sur le réseau. Ces transactions sont alors traitées sous forme de lots appelés blocs, par
des membres appelés mineurs ou validateurs. Un lien entre chaque bloc validé et son
précédent, garantis l’intégrité de l’historique des transactions validées. Par ce lien, une
“chaîne” est formée : d’où le nom chaîne de blocs. Les chaînes de blocs sont souvent
considérées comme fondations pour le développement d’applications dites décentralisées.

Depuis le lancement du réseau Bitcoin, de nombreuses activités de recherche et de
développement ont mené à la création d’un écosystème complexe. Les chaînes de blocs
sont maintenant étudiées et utilisées dans des domaines métiers variés, tels que la fi-
nance, l’informatique en nuage, les grilles énergétiques, les chaînes logistiques. . . Dans
chacun de ces secteurs, la mise en place de registres distribués par le biais des chaînes
de blocs vise à améliorer la collaboration entre différents acteurs (potentiellement mali-
cieux), l’automatisation de processus (par le biais de contrats intelligents), la sécuri-
sation des données et la transparence. Le développement des cryptomonnaies (et plus
largement de la finance décentralisée) illustre bien ce potentiel en rendant possible le
transfert de valeur financière à travers le monde sans le biais de tiers de confiance tels
que les banques. Bien plus que de simples prototypes, les applications basées sur les
chaînes de blocs semblent aujourd’hui occuper une réelle place dans notre économie. À
titre d’exemple, les cryptomonnaies capitalisent aujourd’hui plus de deux billions d’euros
(source : https://coinmarketcap.com).

Avec le développement des débats sur la gestion du changement climatique, la crois-
sance rapide du secteur des technologies de l’information et de la communication (TIC)
soulève de nombreuses questions éthiques. En effet, en 2020 la commission Européenne
estimait une augmentation de la consommation énergétique des centres de données en
Europe de 42% entre 2010 et 2018.

Les technologies de chaînes de blocs sont loin de faire exception face à l’inquiétude
liée au coût environnemental des TICs. En effet, les chaînes de blocs telles que Bitcoin

6

https://coinmarketcap.com

requièrent l’utilisation de coûteuses ressources de calculs dans le cadre de leur algorithme
de consensus : la preuve de travail. La preuve de travail repose sur une compétition,
appelée minage, entre les différents membres du réseau, dans le but de pouvoir proposer
de nouveaux blocs. En 2014, O’Dwyer et Malone [78] ont estimé que la consommation
énergétique liée au minage de Bitcoin était comparable à celle de l’Irelande. Depuis, de
nombreuses études confirment ont confirmé l’important coût énergétique du minage.

Dans le but de proposer de nouvelles chaînes de blocs moins coûteuses et plus perfor-
mantes, de nouveaux algorithmes de consensus (tels que la preuve d’enjeux) ont émergés.
De nombreuses chaînes de bloc, proposant ces algorithmes de consensus sans minage,
montrent qu’une partie de cette communauté cherche à s’émanciper de la preuve de tra-
vail. A titre d’exemple la seconde version d’Ethereum, une des chaîne de blocs publique
les plus utilisé, embarquera un algorithme de consensus basé sur une preuve d’enjeux.

Il ne faudrait cependant pas réduire la consommation énergétique des chaînes de blocs
à celle de leur algorithme de consensus. En effet, l’émergence des contrats intelligents,
en proposant le déploiement et l’exécution de programmes complets sur les chaînes de
blocs, vient complexifier ces technologies. Si ces contrats intelligents rendent possible de
nombreux nouveaux cas d’usage, ils viennent néanmoins alourdir l’empreinte énergétique
des chaînes de blocs.

Au fur et à mesure que la consommation de la phase de consensus des chaînes de blocs
se réduit, l’empreinte énergétique des contrats intelligent devient proportionnellement plus
importante. Nous estimons alors dans cette thèse qu’il devient nécessaire de s’attarder à
l’étude de ces aspects.

Contributions

Cette thèse vise à contribuer à l’étude et à la réduction du coût des contrats intelligent
sur les plateformes de chaînes de blocs. En effet, cette problématique est souvent délaissée
des études portant sur l’empreinte énergétique et environnementale des chaînes de blocs.
Pour cela, nous avons concentré nos travaux sur la plateforme de chaîne de blocs publique
Ethereum, une des principales plateformes proposant un système de contrat intelligent.
Cette thèse s’articule autour de trois questions centrales :

Les contrats intelligents occupent-ils une place réellement importante dans
les réseaux de chaînes de blocs ? Même s’il est clair que les activités académiques
et industrielles autour des contrats intelligents semblent montrer une forte adoption dans

7

des domaines variés, peu de travaux académiques étudient leur utilisation réelle.
Peut-on estimer et modéliser le coût énergétique de ces contrats ? Mieux

comprendre le coût énergétique engendré par l’exécution de ces contrats semble être néces-
saire à mesure que certaines plateformes de chaîne de blocs s’émancipent peu à peu du
minage et de la preuve de travail. Le coût de l’exécution des applicatifs logiciels devients
alors, proportionnellement, plus important.

Quel est le coût engendré par l’immutabilité des contrats déployés, principe
au cœur des technologies de chaînes de blocs ? Les plateformes de chaîne de blocs
publiques permettent à chacun de déployer de nouveaux contrats intelligents. Une fois
déployés, ceux-ci sont disponibles ad vitam æternam. Il se pose alors la question du coût
de cette propriété. Au-delà d’un espace de stockage requis grandissant pour les membres
du réseau, la mise à disposition, pour toujours, de tous les contrats déployés impacte-t-il
le réseau de chaîne de bloc ?

Par le biais d’analyse d’historiques de transactions stockées sur Ethereum et d’expérimentations
in situ sur la plateforme de recherche Grid’5000, nous proposons de répondre à ces ques-
tions par le biais de trois contributions :

— Un nouveau cadriciel pour l’évaluation comparative des technologies
blockchain : BCTMark. Ce cadriciel répond aux défis du déploiement et du test
des blockchains dans un contexte expérimental. Construit à partir de composants
open-source, BCTMark aborde les phases de gestion des ressources de déploiment,
de montée en charge du système évalué et de sauvegarde des résultats. Ce nouveau
cadriciel permet alors une gestion complète du cycle de vie des experiences portant
sur les performances des chaîne de bloc, en intégrant des capacités d’émulation du
réseau (latence, perte de paquets. . .). Les capacités de BCTMark ont été illustrées
par le biais de déploiements effectués sur deux plateformes de recherche (Grid5000
et un cluster local de Raspberry Pi) et sur trois chaînes de blocs (Ethereum Clique,
Ethereum Ethash, Hyperledger Fabric). Ces travaux ont été présentés dans les
conférences Compas et AICCSA et dans le journal Cluster Computing.

— Une analyse de l’usage et de la consommation énergétique des con-
trats intelligent Ethereum. Sur la base d’une année de transactions Ethereum,
nous analysons l’importance des contrats intelligents dans son trafic. Plus précisé-
ment, nous donnons un aperçu du nombre d’appels de contrats intelligents, du
déploiement de nouveaux contrats et de la complexité de ces contrats. Nous pro-
posons ensuite un modèle permettant d’estimer la consommation énergétique des

8

contrats Ethereum en fonction de leur consommation de gaz. Ce modèle, combiné
avec l’historique de transactions Ethereum, nous permet de donner une estimation
du coût énergétique engendré par l’execution de contrats intelligent sur un ans.
Une partie de ce travail a été présentée dans le journal Cluster Computing.

— Un nouveau protocole qui peut être utilisé pour réduire le nombre
de contrats inutilisés dans Ethereum. Comme nous le montrons dans ce
manuscrit, une grande partie des contrats Ethereum déployés ne seront que peu ou
pas utilisés. Nous démontrons ici que le nombre croissant de contrats a un impact
sur les performances de chaque nœud du réseau en augmentant le temps de traite-
ment de chaque nouveau bloc reçus. Comme solution potentielle à ce problème,
nous proposons un protocole pour inciter les mineurs à identifier et détruire les
contrats inutilisés. Ce protocole vient ajouter une durée de vie pour chaque contrat.
Cette durée de vie, augmentée à chaque nouvelle interaction avec le contrat, per-
met de supprimer les contrats qui cesseraient d’être utilisé. Sur la base d’historique
de transactions, nous montrons que notre proposition pourrait conduire à une ré-
duction significative du nombre de contrats stockés dans la blockchain. Ce travail
a été présenté à la conférence ISCC et a été récompensé par le prix du "meilleur
article étudiant".

9

TABLE OF CONTENTS

1 Introduction 17
1.1 Motivations . 17
1.2 Contributions . 18
1.3 Publications . 20
1.4 Thesis overview . 20

2 Background 23
2.1 Questioning the environmental impact of Blockchain technologies 23

2.1.1 The energy consumption of ICT . 23
2.1.2 The development of blockchain technologies 25
2.1.3 Why study the energy footprint of blockchains? 29

2.2 Blockchains . 29
2.2.1 An overview on blockchain technologies 30
2.2.2 A note on Ethereum’s data storage 33
2.2.3 Chain fork choice . 34
2.2.4 Differences between public and private Blockchains 35
2.2.5 Blockchain consensus algorithms . 35
2.2.6 Decentralised applications with Smart contracts 38

2.3 Conclusion . 44

3 State of the art 45
3.1 A literature review on the energy consumption of blockchain technologies . 45

3.1.1 The energy footprint of Proof-of-Work mining 46
3.1.2 Alternatives to mining . 51

3.2 Evaluate the performances of blockchain systems 52
3.3 Analysing the uses and energy consumption of smart contracts 53
3.4 Data suppression on blockchains . 55
3.5 Conclusion . 55

10

TABLE OF CONTENTS

4 A new framework for benchmarking blockchain technologies 57
4.1 Introduction . 58
4.2 Contribution to state of the art . 60
4.3 BCTMark - Technical architecture & usage 61

4.3.1 Usage . 62
4.3.2 Architecture . 64

4.4 Validation experiments . 66
4.4.1 Deployment of blockchains on two different testbeds 67
4.4.2 Comparison of CPU usage of three blockchain systems 68
4.4.3 Experiments Reproducibility . 70
4.4.4 Performance analysis of Smart contracts 71

4.5 Conclusion . 73

5 Understanding the usage and energy consumption of Ethereum smart
contracts 75
5.1 Introduction . 76
5.2 Understanding the current usage of Ethereum smart contracts 77

5.2.1 Data extraction protocol . 78
5.2.2 Smart contracts calls in Ethereum traffic 79
5.2.3 Gas consumption of Ethereum smart contracts 80
5.2.4 New smart contract deployment . 83
5.2.5 Quantifying the number of unused smart contracts 84

5.3 Measuring and modeling the energy consumption of Ethereum smart con-
tracts . 87
5.3.1 Smart contracts footprint on non-Proof-of-Work systems 87
5.3.2 Deriving energy consumption from gas consumption 88
5.3.3 Ethereum smart contract execution model 91
5.3.4 The impact of replication on smart contracts execution cost 93
5.3.5 Limitations . 94

5.4 Conclusion . 95

6 Reducing the amount of unused smart contracts in Ethereum 97
6.1 Introduction . 98
6.2 The impact of unused smart contract on Ethereum 99

6.2.1 Evaluation protocol . 99

11

TABLE OF CONTENTS

6.2.2 The impact of unused smart contract on contract calls processing
time . 100

6.2.3 Current Ethereum state size . 102
6.3 A Time to live protocol for smart contracts 102

6.3.1 Overview . 102
6.3.2 Details . 103
6.3.3 Contract destruction and data retrieval 105
6.3.4 Discussion on determining parameters value 105
6.3.5 Discussions . 106
6.3.6 Protocol impact depending on TTL duration 106

6.4 Conclusion . 107

7 Conclusion 109
7.1 Achievements . 109
7.2 Perspectives . 111

7.2.1 Impact of layer-two solutions on blockchains footprint 111
7.2.2 Modelling the energy consumption of smart contracts 112
7.2.3 Designing blockchains with temporary data 113

Bibliography 115

12

LIST OF FIGURES

2.1 Energy consumed by European Data Centers (data source: [71]) 24
2.2 The carbon footprint of the ICT sector in 2019 - breakdown between pro-

duction and usage (data source: [97]) . 25
2.3 Hierarchy between databases, distributed ledger technologies, and blockchains 27
2.4 Evolution the number of daily transactions on Ethereum (source: etherscan.

io) . 28
2.5 A schematic view of a classical blockchain "data-structure" 30
2.6 The use of a Merkel tree to store transactions in a block 32
2.7 Ethereum’s data storage . 34
2.8 Chain split management . 34
2.9 How PoW works . 36
2.10 Evolution of Ethereum mining difficulty 37
2.11 An Ethereum contract’s lifecycle . 39

3.1 Evolution of Bitcoin difficulty through time (data source: https://www.
blockchain.com) . 47

3.2 Estimation of the energy consumption per transactions, by Tasca et al. [105] 52

4.1 The experiment workflow of BCTMark . 62
4.2 BCTMark architecture . 64
4.3 Comparison of Power Usage for different loads 68
4.4 Comparison of CPU Usage for different loads 69
4.5 Evolution of Ethash CPU usage for 200 Txs 70
4.6 Cost in gas of three smart contracts depending on provided input 72

5.1 Calls to smart contracts over time . 79
5.2 Calls to smart contracts over time, by types 80
5.3 Distribution gas usage per transactions (logarithmic scale) 81
5.4 Distribution gas usage per smart contract calls (logarithmic scale) 82
5.5 Evolution of gas price and number of processed transactions during the year 83

13

etherscan.io
etherscan.io
https://www.blockchain.com
https://www.blockchain.com

LIST OF FIGURES

5.6 Number of contracts created over time . 84
5.7 Distribution of the number of calls per smart contracts - Lowest 90 percentiles 85
5.8 Distribution of the number of calls per smart contracts - Highest 10 per-

centiles - Logarithmic scale . 86
5.9 Evolution of the percentage of active contracts depending on the number

of days since their creation (Contracts deployed that year only) 86
5.10 Comparison power usage with and without contract execution on Ethereum

PoW . 88
5.11 Comparison power usage with and without contract execution on Ethereum

PoS . 89
5.12 Quicksort - Gas consumption and average power depending on array size

input . 90
5.13 Power depending on gas consumption . 91
5.14 Impact of smart contract calls replication on Ethereum network energy usage 92
5.15 Evolution of the number of Ethereum nodes listed by ethernodes.org,

from October 2020 to June 2021 (source: ethernodes.org) 93
5.16 Global energy consumed by a smart contract call depending on the number

of nodes in the network . 95

6.1 Evolution of the number of contracts depending on TE value 107

14

ethernodes.org
ethernodes.org

LIST OF TABLES

2.1 Examples of fields included in an Ethereum block 31
2.2 Comparison between different blockchain smart contract platforms (sources:

[49], [121], [94]) . 40
2.3 Samples of Gas cost definition from Ethereum Yellow Paper[44] 43

3.1 Estimation of Bitcoin network energy consumption in literature 47
3.2 Differences in energy efficiency between different mining hardware (Data

source: https://en.bitcoin.it/wiki/Mining_hardware_comparison) . . 49

4.1 Comparison of functionalities with the state of the art 61
4.2 Reproducibility across six runs . 71

5.1 Proportion of ERC20 and ERC721 among active contracts 80
5.2 Estimated power usage for Ethereum processed smart contracts and trans-

action over the year . 92

6.1 Block processing time (in milliseconds) compared to state trie size on three
platforms (standard deviation between parenthesis) 101

6.2 Details of variables used in our protocol . 103
6.3 Number of contracts called after an inactivity period 108

15

https://en.bitcoin.it/wiki/Mining_hardware_comparison

Chapter 1

INTRODUCTION

Contents
1.1 Motivations . 17

1.2 Contributions . 18

1.3 Publications . 20

1.4 Thesis overview . 20

1.1 Motivations

Blockchains are distributed ledgers that store information in a peer-to-peer network.
Each member of this network can own a copy of this register. The modification of this
register can be done through transactions diffused on the network. These transactions are
then processed in batches called blocks, by members called miners or validators. A link
between each validated block and its previous one, guarantees the integrity of the history
of validated transactions. By this link, a chain is formed: hence the name blockchain.
Blockchains are often considered as foundations for the development of a new generation
of so-called decentralised applications.

Since the launch of Bitcoin (the first public blockchain network), numerous research
and development activities have led to the creation of a complex ecosystem. Blockchains
are now being studied and used in various business domains, such as finance, cloud com-
puting, energy grids, supply chain, etc. In each of these sectors, the implementation of
distributed ledgers through blockchains aims at improving collaboration between differ-
ent (potentially malicious) actors, process automation (through smart contracts), data
security and transparency. The development of cryptocurrencies (and more broadly of
decentralised finance) illustrates this potential by making it possible to transfer financial
value across the world without the need for trusted third parties such as banks. Much
more than just prototypes, blockchain-based applications seem to have a real place in our

17

Introduction

economy today. As an example, cryptocurrencies are now worth more than two trillion
euros (source: https://coinmarketcap.com).

With the development of debates on the management of climate change, the rapid
growth of the information and communication technologies (ICT) sector raises many
ethical questions. Indeed, in 2020 the European Commission estimated an increase in
energy consumption of data centers in Europe of 42% between 2010 and 2018.

Blockchain technologies are far from being an exception to the concern about the
environmental cost of ICT. Indeed, blockchains such as Bitcoin require the use of expensive
computational resources as part of their consensus algorithm: the proof-of-work. The
proof of work relies on a competition, called mining, between different members of the
network, in order to propose new blocks. In 2014, O’Dwyer & Malone [78] estimated that
Bitcoin mining consumed 3GW (about as much as Ireland at the time). To design new
blockchains that are less costly and more efficient, new consensus algorithms (such as the
proof of stake) have emerged. The energy consumption of those new consensus algorithms
are often several orders of magnitude inferior than PoW mining [105].

However, we can’t reduce the energy consumption of blockchains to that of their con-
sensus algorithm. Indeed, the emergence of smart contracts, by proposing the deployment
and execution of complete programs on blockchains, makes these technologies more com-
plex. While these smart contracts make many new use cases possible, they also increase
the energy footprint of blockchains.

As the power consumption of the consensus phase of blockchains is reduced, we believe
that it is important to study the cost of the deployed applications themselves.

1.2 Contributions

This thesis aims to contribute to the study and reduction of the cost of smart contracts
on blockchain platforms. Indeed, the energy consumption of Bitcoin mining [78, 68, 66,
111, 72] and alternatives such as proof of stake [105, 65, 14] has been already well studied.
However, the energy consumption of smart contracts themselves have been far less studied.
Therefore, we have focused our work on the public blockchain platform Ethereum, one of
the main platforms offering a smart contract system. As large blockchain communities like
Ethereum change their consensus algorithms from Proof of work to non-mining algorithms
(Proof of Stake in the case of Ethereum), studying the energy consumption of applications
built on top of blockchains becomes more relevant. This thesis is structured around three

18

https://coinmarketcap.com

Introduction

central questions:
How important are smart contracts in blockchain networks? Although it is

clear that academic and industrial activities around smart contracts seem to show strong
adoption in various domains, few academic works study their actual use.

Can we estimate and model the energy cost of these contracts? A better
understanding of the energy cost incurred by the execution of these contracts seems to be
necessary as some blockchain platforms gradually emancipate themselves frommining and
proof of work. The cost of running software applications will then become proportionally
more important.

What is the cost generated by the immutability of deployed contracts, a
principle at the heart of blockchain technologies? Public blockchain platforms al-
low anyone to deploy new smart contracts. Once deployed, they are available ad vitam
aeternam. The question then arises of the cost of this property. Beyond a growing stor-
age space requirement for the network members, does the forever availability, of all the
deployed contracts, impact the performances and cost of the blockchain network?

Through analysis of transaction histories stored on Ethereum and experiments in situ
on the Grid’5000 research platform, we propose to answer these questions through three
contributions:

— A novel framework for benchmarking blockchain technologies: BCT-
Mark. This framework addresses the challenges of deploying and testing blockchains
in an experimental context. Built from open-source components, BCTMark ad-
dresses the resources management, deployment benchmarking and result backup
phases in the performances analysis of blockchains. This work has been presented
in Compas and AICCSA conferences and in the Cluster Computing journal.

— An analysis of the usage and energy consumption of Ethereum smart
contracts. Based on one year of real-world data, we analyze the importance of
smart contracts in Ethereum traffic. More specifically, we give insights on the
number of smart contract calls, new contracts deployment and the complexity
of those contracts. We then propose a model to estimate the energy consumption
of Ethereum contracts based on their gas consumption. A part of this work has
been presented in Cluster Computing journal.

— A novel protocol that can be used to reduce the number of unused
contracts in Ethereum. As shown in this manuscript, a large part of deployed
Ethereum contracts will lead to little or no usage. We demonstrate here that the

19

Introduction

growing number of contracts has an impact on the performances of each node in the
network. As a potential solution to this matter, we propose a protocol to incentive
miners to identify and destroy unused contracts. Based on real-world data, we show
that our proposition could lead to a significant reduction of the number of contracts
stored in the blockchain. This work has been presented in ISCC conference and as
been awarded as "Best student paper".

1.3 Publications

Research activities presented in this manuscript has led to the publication of several
papers.

Papers accepted in journals
Saingre, D., Ledoux, T., & Menaud, J. M. Measuring performances and footprint of

blockchains with BCTMark: a case study on Ethereum smart contracts energy consump-
tion. In Cluster Computing, 2021 (to appear)

Papers accepted or published in international conferences
Saingre, D., Ledoux, T., & Menaud, J. M. (2021, September). The Cost of Immor-

tality: A Time to Live for Smart Contracts. In 2021 IEEE Symposium on Computers and
Communications (ISCC) - Best student paper award (to appear)

Saingre, D., Ledoux, T., & Menaud, J. M. (2020, November). BCTMark: a frame-
work for benchmarking blockchain technologies. In 2020 IEEE/ACS 17th International
Conference on Computer Systems and Applications (AICCSA). IEEE.

Paper published in national conferences
Saingre, D., Ledoux, T., & Menaud, J. M. (2019, June). BCTMark-Vers un outil

pour l’évaluation des performances et du coût énergétique des technologies blockchain. In
COMPAS 2019-Conférence d’informatique en Parallélisme, Architecture et Système.

1.4 Thesis overview

This section presents the content of the following chapters.

Chapter 2 presents the research context behind this manuscript. Section 2.1 moti-
vates this thesis by trying to answer the following question: why should one study the
energy footprint of blockchains? Section 2.2 aims to give readers a broad understanding

20

Introduction

of how blockchains work. The notions required to understand research presented in this
manuscript are detailed here.

Chapter 3 presents the current literature related to the research questions presented
in section 1.2. Section 3.1 will present a review of the existing literature regarding the
energy consumption of blockchain systems. In section 3.2 we will present the existing
tools that can be used to evaluate the performances of blockchain systems. Section 3.3
will present existing research that focuses on the analysis of the usage and performances
of smart contracts. Finally, section 3.4 will present research work on the deletion of data
on blockchains.

The next three chapters are then dedicated to our contributions.

Chapter 4 presents BCTMark, a novel framework to deploy and test blockchains.
This framework has then been used to conduct experiments in the following chapters.
BCTMark consists in a new tool to deploy and conduct experiments on blockchains and
their performances. A set of experiments are finally presented to illustrate the possibilities
of BCTMark.

Chapter 5 aims to provide a model to estimate the energy consumption of Ethereum
smart contracts, based on real-world data. This chapter is composed of two parts. In
section 5.2, we detail how important are smart contract in Ethereum traffic. In section 5.3,
we provide a novel way to model the energy consumption of Ethereum contract. Based on
this model, we provide estimations on the energy consumed by Ethereum contract over
the course of one year.

Chapter 6 presents a simple protocol to identify and remove unused contracts in
Ethereum. Section 6.2 identifies the impact of unused contracts on an individual Ethereum
node performances. To reduce this growing impact by removing unused contracts from
the Ethereum blockchain, we propose in section 6.3 a novel protocol that adds a time to
live for smart contracts. We quantify the impact on the number of Ethereum contracts,
based on historical data, as an evaluation.

Finally, chapter 7 will conclude this manuscript. We will present there a summary of
our contributions and potential perspectives.

21

Chapter 2

BACKGROUND

This chapter introduces the fundamental concepts involved in this thesis, motivate
our research.

Contents
2.1 Questioning the environmental impact of Blockchain tech-

nologies . 23
2.1.1 The energy consumption of ICT 23
2.1.2 The development of blockchain technologies 25
2.1.3 Why study the energy footprint of blockchains? 29

2.2 Blockchains . 29
2.2.1 An overview on blockchain technologies 30
2.2.2 A note on Ethereum’s data storage 33
2.2.3 Chain fork choice . 34
2.2.4 Differences between public and private Blockchains 35
2.2.5 Blockchain consensus algorithms 35
2.2.6 Decentralised applications with Smart contracts 38

2.3 Conclusion . 44

2.1 Questioning the environmental impact of Blockchain
technologies

2.1.1 The energy consumption of ICT

With the advent of the Internet, the Information and Communication Technology
(ICT) sector has boomed in the last decades. Alongside with the development of an
awareness of climate change, the growing environmental impact of ICT equipments raises
ethical questions.

23

Background

Information and Communication Technology: the use of computers
and other electronic equipment and systems to collect, store, use,
and send data electronically - Cambridge Business English Dictio-
nnary

Definition of ICT

The European commission [71] has estimated that the energy consumption of data
centers in Europe increased by 42% between 2010 and 2018, going from 53.9TWh/yr
to 76.8TWh/yr. In 2018, 2.7% of the European energy demand was intended for data
centers. They estimated a growth of this demand by 21% by 2025, reaching 92.6TWh/yr
(see Figure 2.1).

Figure 2.1 – Energy consumed by European Data Centers (data source: [71])

However, data centers only represent a part of the global energy consumption of ICT
(around 14% [97]). Between 2015 and 2018, the ICT sector’s energy consumption rose from
3289 to 4181 TWh [97]. This represent the equivalent of an increase of 6.2% every year.
Taking into account the carbon intensity of the world electricity production, the ICT sector
has been responsible for the emission of 1.8 Gt of CO2e in 2019. This represented 3.5% of

24

Background

the year’s overall greenhouse gas emission. Several factors can explain this increase in the
carbon footprint: the development of the internet of thing (IoT), a growth in computation
needs (e.g. for machine learning and data analytic), the development of video streaming. . .

Figure 2.2 illustrates a breakdown of the carbon footprint of the ICT sector. The
CO2e emission produced by the production of the ICT infrastructures (servers, computers,
smartphones. . .) only represent a third of the sector carbon footprint.

Figure 2.2 – The carbon footprint of the ICT sector in 2019 - breakdown between pro-
duction and usage (data source: [97])

As two thirds of the greenhouse gas emission of the ICT sector come from its actual
usage, it is crucial to understand how to reduce the energy consumption of infrastructures
and software.

2.1.2 The development of blockchain technologies

Blockchains appeared in 2008 with the introduction of Bitcoin by Satoshi Nakamoto.
Since then, a large and complex ecosystem (composed of different blockchain platforms,
libraries and APIs, services. . .) has emerged.

The National Institute of Standards and technology (NIST) defines blockchains as a
tamper evident and tamper resistant digital ledgers implemented in a distributed fashion
(i.e., without a central repository) and usually without a central authority (i.e., a bank,
company or government) [117]. Put another way, blockchains are a specific kind of dis-
tributed ledger technology (DLT). Rauchs et al. [91] discussed the concept of distributed

25

Background

ledger technology and defined it as a "multi-party system in which participants reach agree-
ment over a set of shared data and its validity, in the absence of a central coordinator". As
explained in [12], not all DLT are implemented as a chain of blocks, although both terms
are often used interchangeably. Figure 2.3 illustrates the relationship between databases,
DLT and blockchains as sets. DLT can be seen as a specific kind of database whereas
blockchains are an example of DLT. In the case of cryptocurrencies, the blockchain serves
as a ledger that keeps track of all the financial exchanges between users without the need
of a trusted bank.

The NIST described four key characteristics of what blockchains are [117]:
— Ledger - Blockchains are append-only ledgers. Each transaction modifying the

blockchain state is stored so that the entire history can be read at any time.
— Secure - Using cryptographic securing mechanism (e.g. hash references between a

block and the previous one, Merkel trees to store transactions), blockchains provide
a tamper-proof ledger

— Shared - The ledger’s data is shared among the peers, ensuring transparency of
its data

— Distributed - the blockchain is distributed among peers, making it more resilient
to malicious actors.

Blockchains, in particular those including smart contracts, seek to enable the devel-
opment of decentralised applications. Hoffman et al.[50] discussed the concept of decen-
tralised applications and its differences with distributed computing. They define distributed
blockchain platforms as "multi-stakeholder Web ecosystems acting as sophisticated support
networks enabling peer-to-peer transfers of value and information, including goods and
services, in a coordinated manner".

Ethereum - A decentralised application platform

In this thesis, we focused our research and experimentation on Ethereum, one of the
leading open-source Blockchain. First announced by Vitalik Buterin in a white paper in
2013, the main Ethereum network (called mainnet) has been live since 2015. As illustrated
in Figure 2.4, every day more than 1 million transactions are processed by the Ethereum
network. In October 2021, Ethereum market capitalisation peaked at nearly 500 billion
dollars, making it second after Bitcoin.

Ethereum [44] has been the first blockchain to implement smart contracts. Ethereum
is a Proof-of-Work based blockchain. However, the soon-to-be coming version two will

26

Background

Figure 2.3 – Hierarchy between databases, distributed ledger technologies, and blockchains

move to a Proof-of-Stake based consensus engine, removing any mining. The genesis (first
block) of Ethereum 2 has been deployed on December 1st 2020. The merge between the
first version (Proof-of-work based) and second version (Proof-of-Stake based) of Ethereum
is expected to happen in 2022. Since then, both networks exist in parallel.

Examples of blockchain use-cases

Blockchain technologies have been used in several domains, including but also going
beyond cryptocurrencies. They are often used to build decentralised alternatives to exist-
ing services and products. We can cite several application domains from the literature:

— Finance - Finance has been the first use case of Blockchains, with the development
of cryptocurrencies like Bitcoin or Ethereum. The Euro Banking Association stated
that blockchains could bring several benefits to the finance sector such as offering
real-time transparency on trade transactions [3]

— Cloud computing - Decentralised, blockchain-based, cloud platform have recently
emerged. Uriarte et al. [110] have studied and compared three different platforms:
IExec [51], Golem [119] and SOMN [100]. Both three projects aim to build a Cloud
platform where individuals can rent their unused computational power, so oth-

27

Background

Figure 2.4 – Evolution the number of daily transactions on Ethereum (source: etherscan.
io)

ers can run their applications. Uriarte et al. concluded that, in this setting, one
challenge is to verify the computation one paid for. Moreover, decentralised cloud
solutions often suffer from a lack of standards, making interoperability (e.g. in
services definition, execution workflow) and comparison difficult.

— Energy systems - Blockchains have been used to build a decentralised peer-to-
peer energy market. For example, the Brooklyn Microgrid (BMG) projects, run by
the LO3 Energy company, has built a microgrid energy market in Brooklyn (New
York). In a literature review paper, Mengelkamp et al. [69] have concluded that
blockchains could be used to manage a microgrid energy market. They pointed
out that the BMG project enabled a local energy trading at varying price where
financial profits would benefit the local community. Similar projects have been also
built by LO3 Energy in South Australia, Germany and in Texas (USA) [63].

— Supply Chain - Blockchains have been used in the supply chain sector to increase
transparency, traceability and efficiency [24]. For example, IBM, Walmart and Ts-
inghua University have collaborating to leverage blockchains for food products

28

etherscan.io
etherscan.io

Background

traceability [112]. A blockchain-based platform could be used to store a product’s
processing data (e.g. farm origination, expiration date, storage temperature) across
several actors in the supply chain.

2.1.3 Why study the energy footprint of blockchains?

The energy demand of the ICT sector keeps increasing as new technologies and usages
emerge. Worries on the growing environmental footprint of ICT leads to research activities
on reducing this impact. As we saw, two thirds of the greenhouse emitted by the ICT
sector comes from its actual usage. Understanding how to build more frugal infrastructures
and software could help to reduce this impact.

Since its creation a few years ago, the blockchain ecosystem has largely developed.
Although research activities on blockchains keep growing, these technologies still suffer
from a negative image of high energy-consuming systems. This image is mainly induced
by one of its leading representatives: Bitcoin and its Proof-of-Work consensus algorithm.
In 2014, O’Dwyer and Malone [78] estimated that 3GW was necessary to power Bitcoin
miners. Four years later, Mora et al. [72] stated that in a few decades, Bitcoin mining
could have an impact on global warming on its own. In parallel, communities like Ethereum
tries to develop and use new consensus engines like Proof-of-Stake in order to increase the
performances of their system and limit its energy cost. As the blockchain ecosystem grows
and become more complex, we believe that the blockchain community would benefit from
research on blockchain’s energy consumption.

The energy consumption of blockchains is not a novel research topic. Bitcoin min-
ing [78, 68, 66, 111, 72] and alternatives such as proof of stake [105, 65, 14] has been
already well studied. However, blockchains are not only a consensus system. With smart
contracts, users can deploy and execute complex programs on a blockchain network to ad-
dress more complex use cases. Unfortunately, the energy consumption of smart contracts
themselves have been far less studied than that of blockchain’s consensus systems.

2.2 Blockchains

This section aim to give readers a broad understanding of blockchains internals.

29

Background

2.2.1 An overview on blockchain technologies

A blockchain is a distributed database that allows facts (called transactions) to be
recorded as blocks (A batch of transactions). Each block has a link to the previous one
(making a "chain of block," or blockchain). This data structure is distributed among all
participants in a peer-to-peer network. This network is maintained by some peers called
miners (for Proof-of-work based blockchains) or validators (for others), who are in charge
of transaction validations.

Block N

Prev. block Nonce

Transactions root

.

TransactionTransaction

Block N + 1

Prev. block Nonce

Transactions root

Figure 2.5 – A schematic view of a classical blockchain "data-structure"

A block in itself is a structure containing several fields. Table 2.1 present several fields
contained in an Ethereum block.

To prevent the modification of previously validated transactions, blockchains make
use of hash functions (e.g. Keccak256 for Ethereum [44]). Hash functions are a family of
function that takes arbitrary data an input to produce fixed-size values. One key property
of hash functions is their resistance to collisions: given an input and its hash value, it
is costly (in terms of computation) to find another input that matches the same hash
value. As presented in Figure 2.5, each block in the blockchain contains a reference to the
previous one. This reference is the hash value of the previous block header. Therefore,
modifying a given block requires modifying all subsequent blocks. Hash functions can also
be used for transaction storage inside a block. For instance, Ethereum uses Merkel trees
to store transactions in a block. As illustrated in Figure 2.6, Merkel trees are a type of
tree data structure where data are stored in leafs and each node contain the hash value
of its children. The use of Merkel trees to store transactions implies that peers can only
store the root node of the transaction tree: the modification of a transaction will imply the

30

Background

Field name Description
number The length of the blockchain once this block is added. Also known as

block height
hash The hash of the block header
parentHash The hash of the previous block header
Nonce Value used to resolve this block’s proof of work.
transactionsRoot The root of the corresponding transaction trie (the structure containing

transactions)
stateRoot The root of the corresponding state trie (the structure containing the

state (i.e. data related accounts like balances and addresses)
receiptsRoot The root of the corresponding receipt trie (the structure containing

transaction receipts (i.e. transaction "effects")
miner The address of the account that mined the block
difficulty The effort required to mine this block. Evolves over time to maintain a

constant block emission rate.
totalDifficulty The sum of each block’s difficulty up to this block.
extraData Arbitrary data that can be included in this block by the miner.
gasLimit The gas limit of this block. gasUsed cannot exceed this value.
gasUsed The sum of gas used by each transaction included in this block.
timestamp The date on which this block has been mined.
transactions The transactions included in this block.
baseFeePerGas The fees taken by miners on each transaction per unit of gas

Table 2.1 – Examples of fields included in an Ethereum block

modification of the transaction tree root’s node and therefore will imply the modification
of the block’s hash.

The lifecycle of a transaction in a blockchain

Blockchains can be viewed as state machines, where each transaction will modify
the existing state to produce a new one. In a given block, transactions are ordered and
executed sequentially. Transactions are mostly used to send funds from an account to
another (but can also be used for operations that are specific to a given blockchain,
such as staking for Proof-of-Stake based system). In smart contract enabled blockchains,
transactions can also be used to deploy and call contracts. The initial state is often called
genesis and can contain, for instance, prefunded accounts.

Transactions are emitted from a blockchain client. The transaction message contains
a collection of fields, including a recipient and an amount of tokens (Bitcoin, Ether. . .)

31

Background

Figure 2.6 – The use of a Merkel tree to store transactions in a block

to transfer. It can often include arbitrary data that can be used, for instance, for smart
contract calls. The transaction is then electronically signed by its sender. As all blockchain
accounts are tied to a particular private key, no one but a key’s owner can send funds
from its related account.

Transactions emitted over a blockchain network are signed by
an asymmetric cryptographic scheme. Bitcoin and Ethereum, for
example, uses an Elliptic Curve Digital Signature Algorithm
(ECDSA) [53]. In order to sign a transaction, a blockchain user
needs a private / public key pair. Using its private key, the user
will sign its transaction before sending it across the network. The
address of the account emitting the transaction is derived from its
public key.

Cryptographic signature of blockchain transactions

Once signed, the transaction is broadcasted across the network. Each blockchain peer
that receives a transaction stores it in a transaction pool. The transaction pool is respon-
sible for the storage of transactions to be included in a block. For each block creation,
miners pick new transactions from the pool. The choice of which transaction to pick can
depend on each miner, but it is reasonable to consider that transactions with the higher
fees are picked first. Once the new block is mined, it is broadcasted across the network.

32

Background

Peers receiving the block can choose to accept it and to include it in their blockchain.
Transactions included in this block can then be considered as validated.

As an incentive for miners / validators to actively maintain the network, every block
created include a financial reward for the block creator. This reward is often composed
by:

— An intrinsic reward (the block reward), independent of the block content. This block
reward is a way to create new tokens, increasing the total supply of the network.
Several blockchains decrease this reward at a regular interval through a process
called halving. For example, at its creation, Bitcoin offered 50BTC for every new
block created. Since the last having (2020), the reward is 12.5BTC.

— Transaction fees, corresponding to the sum of the fees of each individual transaction
included in the block. Fees values are often chosen by the transaction emitter
and act like a tip for miners. Increasing the fees of a transaction can decrease
its processing time as it incentive miners to include it in new blocks. In some
blockchains, a minimum amount of fees is required. In Ethereum, this minimum
amount is proportional to the amount of computation the transaction will induce
for the network.

2.2.2 A note on Ethereum’s data storage

In Ethereum, all blockchain data is stored in several modified Merkle Patricia Trees
(called tries). The State trie stores all information related to accounts (including smart
contracts). Each account in the State trie is a collection of information related to a given
20-Bytes hexadecimal address, like its balance (number of Wei 1 possessed by the account)
and (for smart contracts) its EVM byte-code.

Each smart contract can store data in a Storage Trie. This Storage Trie is used to
store contract variables that will persist across function calls. Contract’s account, stored
in the state trie, contains the 256-bit hash of its Storage root. The information in the
state and storage tries are updated through transaction executions. Figure 2.7 illustrates
the relationship between a given block, the state trie, and the storage trie.

Ethereum serializes its different Tries using a Recursive Length Prefix (RLP) encoding
scheme (see Ethereum yellow paper [44]). Serialized data are then stored in a Key-Value
database. For instance, the Geth Ethereum implementation uses LevelDB [46] to store its

1. The Smallest denomination of Ether. 1 Ether = 1018 Wei

33

Background

Figure 2.7 – Ethereum’s data storage

data.

2.2.3 Chain fork choice

As many miners / validators can compete to produce blocks in parallel, two blocks
can be emitted at the same time. When a peer receive two new blocks referencing the
same parent block simultaneously, a chain fork (or chain split) happens. As illustrated in
Figure 2.8, both blocks are stored.

Figure 2.8 – Chain split management

With Bitcoin, the fork with the longest chain is considered as the "main" (canonical)
one. However, not all blockchains have the same rules for choosing the fork in the chain.
For instance, on Ethereum, the canonical chain is the one where the sum of its blocks’
difficulty is the highest.

When the two forks have the same size or difficulty, miners will choose on which fork
to mine until one fork outrun the other.

34

Background

2.2.4 Differences between public and private Blockchains

Blockchain technologies can be divided into two categories: public / permissionless
and private / permissioned blockchains.

Public blockchains, such as Bitcoin and Ethereum, have no identified users. One can
join or leave the network at any time without the need for any authorisation. Security
protocols of those public blockchains need to be enforced to face potential Byzantine
faults. Proof-of-work is an example of a consensus system for public blockchains. Public
blockchains are also called permissionless.

Private blockchains have different security models. They aim to identify participants,
especially for the block validators. These are designated in the protocol so that no one
else can validate the block. These blockchain systems, such as Ethereum (with its Clique
engine) and Hyperledger Sawtooth (with its Proof of Elapsed Time system, based on
the Intel SGX enclave), have different consensus engines. These engines have better per-
formances (due to the different security models considered) but offer a lower degree of
decentralisation. In the literature, a distinction can sometimes be made between private
and consortium blockchains. In this case, private will refers to blockchains owned by a
single authority, where consortium will refer to blockchains owned by several authorities.
In this thesis, we will consider private and consortium blockchains as a whole, labelled as
private blockchains.

2.2.5 Blockchain consensus algorithms

Peer-to-peer systems like blockchains consist in a large-scale, distributed network of
entities. Blockchains admit no central entity to process transactions and deliver a correct
state. Put differently, the whole network is decentralised: transactions can be broadcast,
processed and stored by any peer. In this settings, blockchain networks are prone to a
specific kind of failure: Byzantine fault tolerance (BFT) [60]. This kind of failure arise
when malicious peers adopt arbitrary behaviours and spread deceptive messages to others.
Ensuring that the network will converge to the same state is a challenging task. Therefore,
the choice of a correct and efficient consensus algorithm is at the heart of blockchain
projects.

Moreover, the network needs to ensure that transactions are validated by enough inde-
pendent entities to reduce the risk of any censorship or bias in the choice of transactions to
be processed. In [27], John R. Doucer first described the concept of Sybil attacks. A Sybil

35

Background

attack consists in one single entity forging multiple identities. Without an identity vali-
dation protocol, it is impossible to ensure that the entities validating transactions do not
belong to the same identity. However, having a single trusted entity to manage the identity
of peers would however defeat the decentralisation aspect of public blockchains. "Proof"
based consensus algorithms (like Proof of work) are designed to build public blockchains
that are resistant to this kind of attack.

A lot of different consensus algorithms (some more popular than the others) are used
for blockchains, for instance Ouroboros [54], Stellar [67], DPOS [28], Tendermint [108] . . .

We present here three blockchain consensus algorithms mentioned in this manuscript.

Proof-of-Work

Proof-of-Work (abbr. PoW) has been the first consensus algorithms used by the
blockchain community. PoW has been popularised by Bitcoin. The concept behind Proof-
of-Work has been initially invented by Dwork and Naor [29] as a protocol to deter denial-
of-service attack and spam on email services.

Figure 2.9 – How PoW works

With PoW, miners have to complete a resource-intensive computational task, often
qualified as a "cryptographic puzzle". Every block here contains a value called a nonce. To
be able to propose a valid block, a miner has to find a value for the nonce, such as the hash
value of the whole block header is under a certain threshold called target (as illustrated in
Equation 2.1). Once found, the miner can broadcast his block on the blockchain network.

SHA256(SHA256(block_header) <= target (2.1)

36

Background

This threshold value evolves so that, even as the hardware becomes more powerful,
the throughput of the entire network remains stable. For Bitcoin, this evolution aims to
keep an emission rate of one block per 10 minutes. The difficulty is a variable often used
to illustrate the amount of effort to do in order to mine a new block. An increase of this
difficulty correspond to a decrease of the target value (a smaller target value implies fewer
possible values for the nonce). Figure 2.10 illustrate the evolution of Ethereum mining
difficulty from 2015.

Figure 2.10 – Evolution of Ethereum mining difficulty

The overall goal with PoW is to create a system where "one CPU is equal to one
vote". Although PoW has been widely used with Bitcoin, it has been quite criticised for
its high-energy consumption [78]. Alternatives such as proof-of-stake [95] have emerged.

Proof-of-Stake

Instead of basing its security on computational power, proof-of-stake (abbr. PoS) sys-
tems rely on the distribution of wealth among validators. In order to be able to participate
in block creation, a peer needs to prove the possession of a certain amount of tokens. Of-
ten, they will need to send tokens to an escrow accounts (certain networks impose a

37

Background

minimum value). This phase is called putting tokens at stake (hence the name of the pro-
tocol). Then, for every block emission, participants will then get a chance to get elected
as the leader / forger / minter / validator for this block. The chance to be elected as a
block validator depends on the amount put at stake. PoS often comes with a punishing
mechanism for validators that attempt to propagate malicious blocks.

In Ethereum 2.0, for example, users needs to put a fixed minimum of 32 ETH to be
included into the committee (the validators pool). Once proposed, a block needs to be
validated by 2

3 of the validators to be finalised. If the block is rejected, the block author
will lose its stake. This punishing mechanism ensures that any malicious behaviour from
block validators induce a high financial cost.

At the core of these systems, a validator’s voting power is proportional to the amount
of wealth put at stake. To put it in another way, instead of voting "with their CPU power",
stakeholders will "vote with their wealth".

Proof-of-Authority

Proof-of-Authority (abbr. PoA) is a consensus protocol used in private blockchains.
As described in [18, 104], the goal behind PoA is to maintain a set of trusted signers
(individuals in charge of block emission, equivalent to miners or validators). Ethereum’s
implementation of PoA (Ethereum Clique [104]) include a voting protocol to include or
exclude an account in the signers’ group. Usually, once a group of signers is formed, each
individual will be designated in a round-robin fashion as the next block signer.

For a given set of S signers, PoA assumes at least N/2 + 1 honest signers[18].

2.2.6 Decentralised applications with Smart contracts

Generalities

The first generation of blockchains (like Bitcoin) had use-cases limited to token man-
agement and cryptocurrencies. Even if some of them featured scripting capacities (like
Bitcoin script for Bitcoin), they lacked Turing complete programming environment re-
quired to develop more complex applications.

Ethereum [43] introduced the concept of smart contracts in the blockchain ecosystem.
Smart contracts are Turing complete script that can be deployed and executed on the
blockchain, through the same transaction system used by token exchange. By allowing
arbitrary computation to be run on the blockchain, they extend its possible use-cases.

38

Background

Table 2.2 compares several smart contract platforms 2. As we can see, smart contracts’
platform can either leverage existing programming languages and execution environment
(e.g. Golang and Docker for Hyperledger Fabric) or implement their own (e.g. Solidity
and EVM for Ethereum).

Once written, those smart contracts can be deployed on the network through a trans-
action containing their compiled code. Calls to the deployed contract usually use the same
transaction mechanism used for token transfer. Contract execution is usually replicated
across the network and its result will be stored on the blockchain.

Ethereum smart contract’s life cycle

On Ethereum, smart contracts are executed on a specific virtual machine called the
Ethereum Virtual Machine (EVM).

Figure 2.11 – An Ethereum contract’s lifecycle

Figure 2.11 illustrate the lifecycle of an Ethereum smart contract, divided in four
parts: development, compilation, deployment and calls.

2. We didn’t include NEM, presented in [49], as we couldn’t find any evidence of smart contract
capacities in their documentation

39

Background

Execution envi-
ronment

Smart contract
programming
language

Consensus
algorithm
used by the
blockchain

Permission
model

Ethereum [44] EVM
(Ethereum Vir-
tual Machine)

Solidity PoW Public

Hyperledger
Fabric [39]

Docker Java, Golang PBFT Private

Neo [76] NeoVM Python, C#, Go,
Typescript, Java

dBFT Public

Corda [16] JVM
(Java Virtual Ma-
chine)

Java, Kotlin Raft Private

Quorum [90] EVM Solidity Proof of Author-
ity

Private

Cardano [9] EVM Solidity, Plutus PoS Public
Stellar [102] Docker Python,

Javascript,
Golang

Stellar consensus
protocol

Private

Rootstock [93] RVM
(Rootstock Vir-
tual Machine)

Solidity PoW Public

EOS [32] WebAssembly C++ BFT-DPOS Public
Waves [114] Custom Virtual

Machine
RIDE PoS Public

Tendermint
[108]

Custom Virtual
Machine

RIDE BFT Private

Table 2.2 – Comparison between different blockchain smart contract platforms (sources:
[49], [121], [94])

40

Background

On Ethereum, contracts are usually developed in a dedicated programming language
like Solidity. A smart contract in Ethereum can be seen as a class in object-oriented pro-
gramming. It is composed of data and methods. A contract instance is stateful: data can
be saved and used across multiple execution of a contract. For instance, a contract imple-
menting a token-management system will need to save its user’s balances. A contract’s
(public) methods will be its actual entry point: interacting with a contract comes down
to calling its function, potentially with a given set of parameters.

Listing 2.1 illustrate a simple Hello World in Solidity. Once compiled, it can
be used to deploy a contract called HelloWorld that contains one function
("hello()") that will return "Hello, World". The pragma instruction specifies
the compiler version required for this contract.

1 pragma solidity ^0.8.3;
2 contract HelloWorld {
3 string public greet = "Hello World!";
4 function hello() public view returns (string) {
5 return greet;
6 }
7 }

Listing 2.1 – Illustration of an Hello World in Solidity

Solidity

Once developed, the contract can be compiled for the Ethereum Virtual Machine
(EVM). From compilation will result two artefacts: the contract’s byte code and the
contract’s Application Binary Interface (ABI). The contract’s ABI is a JSON file that
document the different methods’ signatures specified in the contract. It can be used to
generate clients to interact with the contract, once deployed. The contract’s byte code,
once deployed, will be stored in the blockchain and be used for contract execution.

On the EVM, transactions without any recipient are used for smart contract deploy-
ment. In order to deploy a compiled contract, a developer will emit a transaction con-
taining the contact’s byte code and without any recipient. Once processed and included
in an accepted block, a new account will be created for the contract. Users can then send
a transaction to the contract’s account to execute it.

41

Background

Ethereum has two notions of accounts:
— Externaly owned accounts (EOA): accounts controlled by a

private key,
— Contracts accounts: accounts controlled by a smart contract.

Both accounts possessed an address and can emit transactions to
send ethers and call smart contracts. A key difference is the presence
of bytecode for contracts accounts that can be executed once called
by a transaction.

Ethereum contracts

Contract calls on the EVM are done through transactions. To call a specific method
M of a contract C, a user needs to encode the contract call in a transaction sent to the
address of C. A contract call is composed of two parts: 1) the identifier ofM (obtained by
hashing M ’s signature) and 2) the list of methods parameters, if needed. The transaction
will then be broadcasted into the Ethereum network and included in a block.

The notion of gas in Ethereum smart contracts

In Ethereum, transaction emission requires a fee paid by the caller. This fee will
be collected by the miner that will include the corresponding transaction in its block.
Therefore, it serves as an incentive for miners to include the transaction in their blocks.
Transaction fees are calculated as such: transaction_fee = gas_cost× gas_price where
gas_price is defined by the caller and gas_cost equals to the sum of gas cost of each
EVM instruction called during the smart contract function execution. As a result, the
more computations a smart contract function does, the more expensive its call will be.
Callers can freely define the price (gas_price) they are willing to pay for each gas unit
the contract call will consume (gas_cost). This price depends on the market’s state: a
higher gas price will make the transaction more expensive for the caller to execute, but will
serve as a higher incentive for miners to include the transaction in their blocks. Ethereum’s
Yellow Paper [44] defines the gas cost of each EVM instruction. A sample of the cost table
can be found in Table 2.3. We can see that every transaction has an inherent cost of 21 000
gas (Gtransaction). Deploying a new smart contract induces a minimal cost of 53 000 gas
(21 000 gas for the transaction itself and 32 000 to create a new account). This represent,
at the time of writing this thesis around 25 USD (source : ethgasstation.info).

42

ethgasstation.info

Background

Name Value Description

Gbase 2 Amount of gas to pay for operations of
the set Wbase.

Gbalance 400 Amount of gas to pay for a BALANCE
operation.

Gcreate 32000 Paid for a CREATE operation.
Gcall 700 Paid for a CALL operation.
Gtransaction 21000 Paid for every transaction.

Table 2.3 – Samples of Gas cost definition from Ethereum Yellow Paper[44]

Interfaces and standardisation of Ethereum smart contracts

To standardise the behaviour of similar smart contracts, the Ethereum community has
defined several standard interfaces (with a set of function signatures to be implemented).
Standard, community-approved interfaces for contracts that implement similar use cases
allow users and applications to interact more easily with those contracts. ERC20 [38]
(ERC: Ethereum Request for Change) and ERC721 [115] refer to smart contracts that
implement the eponymous interfaces. Both implement a token management system: a
fungible token for ERC20 and a non-fungible token for ERC721. The key differences
between those two kind of tokens is that non-fungible tokens process a clear identity and
owner whereas fungible tokens does not. For instance, a diploma can be considered as a
non-fungible token (each diploma is unique and belong to one person). Money can be seen
as a fungible token system as coins have no clear "identify" (Coins of the same value do
not have any differences and can be exchanged indifferently).

Listing 2.2 details the interface of ERC20 tokens as specified by [38]. Getters (total-
Supply and balanceOf) give values of total amount of the implemented token and the
balance of a single account. Other functions such as transfer, approve, transferFrom are
here to manage transfers of tokens between accounts.

interface IERC20 {
function totalSupply() external view returns (uint256);
function balanceOf(address account) external view returns (uint256);
function allowance(address owner, address spender) external view returns (uint256);
function transfer(address recipient, uint256 amount) external returns (bool);
function approve(address spender, uint256 amount) external returns (bool);
function transferFrom(address sender, address recipient, uint256 amount) external

↪→ returns (bool);
}

43

Background

Listing 2.2 – ERC20 Smart contract Solidity interface[38]

Studying whether a given contract implement a known interface can help to understand
the purpose of this contract.

Managing side effects with oracles

As smart contracts need to be deterministic, they can’t have side effects beyond the
Blockchain (e.g. sending request to an external service exposed over the internet).

A common pattern to import off-chain data into a blockchain is to implement an
oracle. Oracles are third-party services that serve as a bridge between a blockchain and the
"outside world", either by pushing data into a blockchain or monitoring its state to produce
side effects outside the blockchain. Mühlberger et al. [73] have characterised four oracle
patterns, depending on the data flow direction (data going in or out of the blockchain)
and the initiator of the data flow (push or pull from the blockchain’s perspective). For
instance, Provable [89] is an oracle service that integrate with several blockchains. It serves
as an intermediate between smart contracts and different data sources such as IPFS.

2.3 Conclusion

This chapter was twofold. First, section 2.1 aimed to motivate research on the un-
derstanding and reduction of the environmental footprint of blockchain technologies. In
the context of a global climate change and the growth of the footprint of the ICT sec-
tor, it appears crucial to ensure the design of energy-efficient technologies. Blockchain
technologies, well-known for their energy consumption, are no exceptions. In section 2.2,
we presented the technical aspects of blockchains required to appreciate the rest of this
manuscript.

44

Chapter 3

STATE OF THE ART

Contents
3.1 A literature review on the energy consumption of blockchain

technologies . 45

3.1.1 The energy footprint of Proof-of-Work mining 46

3.1.2 Alternatives to mining . 51

3.2 Evaluate the performances of blockchain systems 52

3.3 Analysing the uses and energy consumption of smart contracts 53

3.4 Data suppression on blockchains 55

3.5 Conclusion . 55

This chapter summarizes the existing scientific literature related to the research pre-
sented in this thesis. First, we will present a broad literature review on the energy con-
sumption of blockchain systems. Then, we will present the existing work related to research
work presented in this manuscript.

3.1 A literature review on the energy consumption
of blockchain technologies

This section summarises current knowledge on the energy consumption of blockchain
system, based on a literature review. The first part focuses on the energy footprint of
blockchain mining. The second part focuses on studies made on other aspects of the
blockchain ecosystem, such as alternatives to Proof-of-Work.

45

State of the art

3.1.1 The energy footprint of Proof-of-Work mining

Evaluating the overall energy consumption of Bitcoin network.

Energy consumption is at the heart of proof of work. As mentioned in section 2.2.5,
bitcoin mining consists in a competition between miners to find a value, called nonce.
This competition is called proof of work. As this process is random, brute-force is the
only tactic to use to find a correct node. As a consequence, high-end mining hardware
give miners a competitive advantage in mining as they can provide a better hashrate
(the number of hash computer per seconds). Optimised hardware also provide better
performances (hashrate) per energy unit (joules) ratio. As the cost of electricity is the
main expense required for mining, better hardware can increase the net profit of miners.
Since the launch of the Bitcoin network, miners have shifted from CPU to more specific
cards called ASIC (Application-specific integrated circuit).

O’Dwyer and Malone [78] modelled the overall energy consumption of Bitcoin mining.
The energy consumed by the Bitcoin network for mining depends on block’s difficulty.
The higher the difficulty, the more hash the network needs to execute in order to find the
good nonce value. Authors have determined that the number of hashes H needed to mine
a block of difficulty D equals to:

H = D.232 (3.1)

As a result, the network energy consumption will depend on the number of hash
generated per second (called the hash rate) that evolves with block difficulties.

Figure 3.1 illustrates the evolution of Bitcoin difficulty through time. We notice that its
value has exploded since 2017. Since O’Dwyer and Malone published their paper (2014)
mining difficulty has increased by a factor of over 16 000. Authors had estimated the
energy required to processed transactions emitted in 2014. This estimation (P , in Watts)
is based on Bitcoin network’s hash rate (R, in Hash/s) and its mining efficiency (ε in
Hash/Joules):

P = R/ε (3.2)

Depending on the hardware used by miners, authors claimed that the overall energy con-
sumption induced by Bitcoin mining could be from 0.1 to 10GW. The authors concluded
that this estimation was comparable to Ireland’s national energy consumption (3GW at
the time).

Since O’Dwyer and Malone [78], several estimations on the energy consumption of

46

State of the art

10-2010 02-2012 07-2013 11-2014 04-2016 08-2017 12-2018 05-2020

1,00E+00

5,00E+12

1,00E+13

1,50E+13

2,00E+13

Time

D
if
fi
c
u
lt
y

Figure 3.1 – Evolution of Bitcoin difficulty through time (data source: https://www.
blockchain.com)

Paper Year of estimation Estimation
O’Dwyer & Malone [78] 2014 0.1 to 10 GW
McCook [68] 2015 120 MW
Magaki et al. [66] 2016 300 - 500 MW
Vranken [111] 2017 100 - 500 MW
Mora et al. [72] 2018 13GW
Digiconomist.net 2021 8.8GW

Table 3.1 – Estimation of Bitcoin network energy consumption in literature

Bitcoin network have been made. Table 3.1 illustrates these different evaluations. The
key differences in these estimations are the date of estimation and the hypothesis made
on the mining hardware used by Bitcoin miners. As seen before, the energy consumption
of Bitcoin depends on its ever-growing mining difficulty and the energy efficiency of the
mining hardware. Mora et al. [72], for instance, did not restrict their estimation to the
latest mining hardware but also included older, less efficient hardware, resulting in a
higher energy consumption estimation.

Regarding the impact of this energy usage, Mora et al [72] estimated that Bitcoin’s
mining competition could emit significant carbon emission. On its own, mining could
push global warning above 2°C in just a few decades. They estimated that Bitcoin usage

47

https://www.blockchain.com
https://www.blockchain.com

State of the art

led to the emission of 69 MtCO2e (Carbon Dioxide Equivalent) in 2017. To obtain this
estimation, authors compiled a list of hardware suitable for mining and simulated the
energy used for mining blocks emitted in 2017 (through O’Dwyer and Malone [78] equation
between the number of hash needed to mine a block and its difficulty). The authors
then inferred the CO2e emission based on miner’s location and the CO2e emitted for
electricity production in their country. By comparing the evolution of Bitcoin adoption
with other technologies, they conclude that in a few decades the CO2e emission of Bitcoin
mining would be sufficient to induce a 2°C global warning. Those projections are however
contested. For instance, Dittmar and Praktiknjo [23] highlight three issues: 1) Mora et
al have included legacy, energy-intensive hardware in their simulations; 2) Estimations
exceed others by a factor of 7 to 14; 3) In the projection, the demand in energy implied
in a few decades exceed the current evolution of world energy production.

Evolution of mining hardware and its energy efficiency

A core concept and the major energy consumption factor of Bitcoin is its Proof-of-
Work mining mechanism. Financial rewards given to miners for each block validated give
them an incentive to invest in powerful hardware. As electricity is the main cost for miners,
the more energy-efficient their mining hardware is the more financially profitable it will
be. As a result, the hardware used for Bitcoin mining as evolved over the year, from CPU
to powerful ASIC cards.

This evolution of mining hardware as been detailed by Vranken [111] and Taylor [106].
Initially, CPU have been used for mining and could produce performances in the order of
10−1 / 10−2 MHash per Joule. In late 2010 came the first Bitcoin mining library compatible
with GPU. GPU could offer better performances than CPU due to better optimisation
and parallelism. As Taylor [106] highlights, the mining mechanism would typically be
implemented with OpenCL whereas the Bitcoin protocol itself would be implemented in
a high-level programming language such as Java. In mid 2011, miners switched to FPGAs.
FPGA offers better performances in the nonce search (in the order of 10 MHash/Joules)
as they are optimised on the hardware level. ASICs cards, arrived one year later, are the
current hardware used for mining, offering much higher performance than FPGAs.

Table 3.2 highlights the evolution of the energy efficiency of mining hardware. Data
presented in this table comes from a wiki that is a bit outdated 1 and lacks informations
on the latest ASIC cards. For information, the ASIC S19 J Pro, currently produced by

1. At the time of writing, this article was last updated in early 2018.

48

State of the art

CPU GPU FPGA ASIC
Min (MHash/J) 0.01 0.01 10.4 107
Max (MHash/J) 1.14 3.09 23.25 11 100
Average (MHash/J) 0.15 1.11 18.05 1854.19
Standard Deviation (MHash/J) 0.20 0.76 4.65 2694.54

Table 3.2 – Differences in energy efficiency between different mining hardware (Data
source: https://en.bitcoin.it/wiki/Mining_hardware_comparison)

the Bitmain company, can compute 32 787 MHash per Joule.
As mining hardware become more and more energy-efficient, one can wonder if this

evolution can stabilise or lower the rising Bitcoin energy consumption. Zade et al. [118]
modelled future energy consumption of both Bitcoin and Ethereum depending on the
underlying mining hardware. In their paper, they combined several scenarios on both the
evolution of mining difficulty and evolution of mining hardware efficiency. The authors
drew the following conclusions: between mining difficulty and hardware evolution, the
main factor in the evolution of Bitcoin’s energy consumption is its mining block difficulty.
Hardware efficiency only have a limited impact in lowering Bitcoin’s energy footprint: as
it becomes more and more efficient, it keeps being outrun by an ever-increasing mining
difficulty designed to maintain a constant block mining rate (around one block per ten
minutes).

Making Proof-of-Work greener

As we have just seen, despite considerable improvement in mining hardware energy
efficiency, Proof-of-Work still suffer from a massive energy consumption issue. Significant
work has been made to make Proof-of-Work "greener". Contributions to this topic can be
split into two categories:

— Improving performances of Proof-of-Work based blockchains,
— Replacing the mining puzzle by so-called "useful" work. In this case, the goal is

not to reduce the energy consumption of the system, but to make use of this
computation in order to produce so "useful" work.

Green-PoW [61] and Bitcoin-NG [37] are two examples of Proof-of-Work based blockchain
designed for better performances.

Green-PoW aims to reduce the number of miners in competition. In this system, time
is divided into epoch composed of two rounds (each round resulting in a block produced by

49

https://en.bitcoin.it/wiki/Mining_hardware_comparison

State of the art

a miner). The difference between Green-PoW and Bitcoin is that, will Green-PoW, all the
miners that managed to produce a block in the first round of each epoch will be allowed
to compete in the second block. With Bitcoin, the miners who managed to mine a block
but were not able to spread it faster than their competitors will see their effort wasted.
With Green-PoW they gain access to the second mining-round. As a consequence, for each
epoch, the second round only have a small subset of miners competing for a block mining.
Authors estimate that this design can lead to a 50% reduction in energy consumption.

Bitcoin-NG takes a different approach in order to improve the performances of Proof-
of-Work blockchains. Authors decoupled the transaction validations from the mining
leader election scheme. Each time a miner validate a nonce, it can validate transactions
until the next nonce validated by another miner. It results in a higher number of trans-
actions validated.

As explained before, Proof-of-Work aims to provide a consensus system based on
computational power. To spread their block and obtain its corresponding reward, miners
compute hashes in order to solve a "puzzle". As it is, this puzzle can be seen as a massive
loss of energy because it has no use outside the election of the leader. In the literature,
several papers describe systems where the hash function at the heart of Proof-of-Work is
replaced by computation considered "useful" 2.

Zhang et al [120] proposed REM (Resource Efficient Mining), a mining framework that
aims to replace Proof-of-Work by a Proof-of-Useful-Work. In this consensus framework,
clients submit computation tasks to blockchain agents. Blockchain agents increase their
probability to mine a valid block by performing tasks. Here, nonce trials are replaced
by tasks instructions. Blockchain agent’s honesty is attested by a Trusted Execution
Environment (TEE) called Intex Software Guard Extension (SGX). This model is only
partially decentralised as it assumes trust into Intel (as the Hardware provider). REM
can tolerate compromised SGX nodes and reject their blocks. The overall impact of tasks
execution in an SGX environment is estimated to be at 5-15%.

Shoker [98] proposed to replace computation generated by Proof-of-Work by matrix
multiplications through a consensus mechanism called Proof-of-Exercise. This consensus
has a behaviour similar to REM [120] (restricted to matrix multiplications and without
the use of a TEE): nodes (here called employer) submit matrices to be multiplied. Data
need to be provided in a third-party hosting system. Nodes called verifiers are in charge of

2. In the following papers, computations are considered "useful" when their purpose is not restricted
to the blockchain consensus mechanism.

50

State of the art

result validation through a probabilistic verification scheme. A limitation of this system is
that, once input data (matrix to be multiplied) are not available anymore (as matrix are
stored in a third party storage), a proof cannot be verified. Moreover, with Proof-of-Work,
nonce validation is trivial. With Proof-of-Exercise, tasks are submitted several times to
different nodes to ensure solution validity. Finally, even if matrix multiplications can have
a large range of use-cases (e.g., machine learning algorithms), Proof-of-Exercise is still
restricted to a small subset of tasks.

Other examples of "useful" mining scheme exists such as Primecoin [56] that computes
primer number instead of block hashes. In this case, "usefulness" can be seen as quite
limited.

3.1.2 Alternatives to mining

We have just presented the current literature on the energy consumption of Proof-
of-Work systems: its evaluation, the evolution of mining hardware and proposals for im-
provement. However, other blockchain consensus schemes exist (e.g., Proof-of-Stake).

Cole and Chang [14] modelled the energy consumption of different consensus algo-
rithms in the context of IoT applications. Their study compared three algorithms: Proof-
of-Work, the Ripple protocol and the Stellar protocol. As opposed to Proof-of-Work, nei-
ther Ripple and Stellar protocol embed any mining scheme. Their main observations are
that transactions processed through the Ripple system consumed on average 5.71e−6kWh
of electricity on each node, whereas those processed through the Stellar protocol con-
sumed 1.91e−6kWh of electricity. Authors estimated that this cost could be linear with
the number of nodes in the network but did not provide any arguments to support this
hypothesis.

Tasca et al. [105] focused on modelling and comparing the energy consumption of five
Proof-of-stake based blockchains: Ethereum 2.0, Algorand, Cardano, Polkadot, Tezos and
Hedera. Whereas previous work often tried to estimate the energy consumption of whole
blockchain networks, the authors aimed to give an estimation of the energy consumed by
individual transactions. Their resulting model (see Figure 3.2) depends on the number
of validators nval in the network, their individual average energy consumption p and the
overall throughput l of the network.

Based on historical data found online (for nval and l) and on constructor data (for p),
the authors have estimated and compared the average energy consumed by the processing
of a transaction on each network. Their estimation have highlighted a certain disparity

51

State of the art

fctx(l) = nval × p
l

Figure 3.2 – Estimation of the energy consumption per transactions, by Tasca et al. [105]

between the different proof-of-stake network. For instance, considering a general purpose
server (Dell PowerEdge R730), the authors found that the Polkadot network was 75
times more demanding than Algorand. Moreover, this study confirms that the energy
consumption of Bitcoin far exceed that of studied proof-of-stake blockchains by several
orders of magnitude. Finally, the authors highlighted that the underlying hardware had
a significant impact on the energy consumed by blockchains.

Regarding hardware, Loghin et al. [65] measured the energy consumption of three
different blockchain systems on different infrastructures in order to better understand
blockchains’ energy consumption on low-end nodes (such as Jetson TX2 and Raspberry
Pi 3 boards). Their key conclusion is that high-end low-power nodes (such as Jetson TX2)
offer the best energy/performances ratio. The high cost of Proof-of-Work blockchains
makes them unusable on the cheapest low-power nodes, such as Raspberry Pi.

3.2 Evaluate the performances of blockchain systems

Behind the term blockchain lies a rich ecosystem of technologies. To ensure the proper
evaluation of new contributions, researchers and developers needs experimentation tooling.
We present and evaluate the functionalities of existing tools for the performances analysis
of blockchains.

Blockbench [22] is an academic tool that aims to analyze private blockchains. Block-
bench uses two workloads, YCSB [15] and Smallbank [7], to quantify the transaction rate,
latency, scalability and failure resistance of three blockchain technologies (two implemen-
tations of Ethereum [45][81] and one of Hyperledger [39]). Deployment of blockchains to
be tested is managed through bash scripts. Blockbench is able to collects metrics about
performances (latency and throughput) of deployed blockchains but lacks metrics on the
underlying system like CPU, memory or disk usage (important to consider the overall
footprint of blockchain technologies).

Hyperledger Caliper [8] is a tool maintained by the Hyperledger Foundation. Hyper-
ledger Caliper is well integrated with Hyperledger products and offers a complete exper-

52

State of the art

imentation lifecycle. Hyperledger Caliper can monitor blockchain performances but also
server metrics through Prometheus [88]. Unfortunately, it does not seem to include any
network emulation, crucial for studies on the impact of network failure or latency on a
blockchain. Moreover, Hyperledger Caliper does not seem to include any functionality for
resources reservation on scientific testbeds like Grid’5000.

Boston Blockchain Benchmark (BBB) [80] is another benchmarking tool that en-
ables the deployment and evaluation of blockchains on emulated hardware. BBB uses
Mininet [70] to deploy the SUT. It enables a fine control on the hardware and network
as both are emulated. BBB enables fine-grained network configuration with parameters
like latency, packet loss and bandwidth limitations. BBB deploys the whole blockchain
network on a single server: each peer is deployed on its own process. While this simplify
experiments, hardware emulation can limit some experiments. For instance, evaluations on
energy consumption can require physical energy monitoring. Having the whole blockchain
network on a single server makes fine-grained energy monitoring more difficult.

DAGbench [25] is a benchmarking tool targeting Directed Acyclic Graph (DAG) based
distributed ledgers. Authors have written their framework from scratch in Javascript.
DAGBench currently support three DAG-based blockchains (but could be extended for
more): IOTA [87], Nano [62] and Byteball [13]. Authors compare those three technologies
on several criteria like latency, throughput and CPU consumption. The authors have
implemented two workloads: one that transfer arbitrary data between two accounts and
one that read data on the blockchain.

In chapter 4 we present BCTMark, a novel framework that aims to fill the gaps of
previously mentioned tools. This framework enables researchers to manage the whole life-
cycle of their experiments, from blockchain deployment on a physical infrastructure to load
generation and metrics (e.g. performances-related metrics, server usage. . .) collections.
BCTMark also enables network emulation (e.g. configurable latency between servers).

3.3 Analysing the uses and energy consumption of
smart contracts

In this thesis, we focused most of our research efforts on smart contracts. In chapter 5
we present a study on the use and energy consumption of Ethereum contracts. A few
existing paper aimed to better understand those two topics.

Pinna et al. [84] proposed an empirical study on 10 000 Ethereum smart contracts.

53

State of the art

This study is made from a software engineering point of view, detailing metrics like EVM
compiler version, number of lines of codes, number of declared contracts, and functions...
The authors have reported eight key observations. For instance, newly deployed contracts
often tend to use the last version of their programming language. This study provides
information on how contracts are developed but does not include any energy footprint
analysis.

Chen et al. [11] discuss the financial cost of under-optimized smart contracts in
Ethereum. They identify several gas-costly patterns (e.g., the presence of "dead code")
and quantify, in a set of smart contracts, the presence of those patterns. Based on those
patterns, they proposed a tool (GASPER; GAS-costly Patterns checkER) that can dis-
cover those gas-costly patterns. We believe that such an approach could help to reduce
the energy consumption of smart contract calls. Unfortunately, the authors do not quan-
tify the overhead in gas of those patterns, preventing the estimation of potential benefits
based on our model.

Feist et al. [41] proposed a static analysis framework for smart contracts named Slither.
The proposed framework converts smart contracts written in Solidity to an intermediate
representation better suited for analysis. Slither has been conceived for four use cases:
1) vulnerabilities detection, 2) code optimisation, 3) code understanding for developers,
4) assistance with code review through a provided API. The authors have compared the
performances of each component of Slither with state-of-the-art tools, demonstrating good
performances. Slither does not include any notion related to energy consumption at the
moment.

A more comprehensive list of smart contract analysis tools has been compiled by Di
Angelo and Salzer [21]. The authors have illustrated the key features of several academic
and non-academic tools and their differences. The lack of any notion of energy seems to
indicate that this issue has not been tackled before.

As mentioned, the energy cost of smart contracts have often been neglected. In sec-
tion 5.3 we propose to measure and model the energy consumption of smart contracts.
Regarding the usage made of smart contracts, a few studies picked a set of contracts and
characterised their usage. The approach presented in section 5.2 is different, as we aimed
to provide metrics on a year-long transaction dataset.

54

State of the art

3.4 Data suppression on blockchains

In public blockchains like Ethereum, everyone can deploy new smart contracts. As the
number of contracts on Ethereum keeps increasing, in chapter 6 we propose to study the
consequences of such a growth Ethereum’s network performances. As a potential solution
to limit this impact, we propose a novel protocol to identify and delete unused contracts.

To the best of our knowledge, very few academic papers have addressed the issue of
removing data on blockchains. Dennis et al. [20] proposed a formal analysis of a temporal
"rolling" blockchain, in order to maintain a stable blockchain size. In their proposed model,
transactions are stored for a pre-set period (older transactions are removed). In their
paper, Dennis et al. considered a Bitcoin-like blockchain. Bitcoin differs from Ethereum
at least in two points: 1) it does not have smart contracts, 2) it uses a different model
(called UTXO) for transactions. With UTXO, coins have a transaction history: the balance
of a given account is the sum of coins addressed to this account minus coins emitted from
this account. Ethereum uses a different approach by updating different data structures (as
detailed in subsection 2.2.2) through each transaction. The use of those different structures
makes it more difficult to determine which data to delete with a "rolling" blockchain.
Our protocol focuses on state trie and smart contract management. We consider both
approaches to be complementary: the approach proposed by Dennis et al. could be used
to manage transaction history, whereas ours could be used to manage smart contracts
accounts.

We also find a few exchanges on related topics outside academia. In an article 3, Vitalik
Buterin (co-founder of Ethereum) discuss the issue of state management in Ethereum [6].
He discusses several potential strategies for state expiry. Our approach can be seen as a
mix between approaches here called rent via time-to-live (where users can pay to extend
the lifetime of a state object) and refresh by touching (where a state object’s lifetime is
extended through interactions). Unfortunately, the article does not include any evaluation
of any discussed approaches.

3.5 Conclusion

This section aimed to review the existing literature regarding the energy footprint of
blockchains and smart contracts. While the energy consumption of different consensus

3. We decided to include the following reference for exhaustiveness and as its content helped us in our
thoughts, but we remind readers that this does not constitute any peer-reviewed content.

55

State of the art

algorithms has been investigated in several studies, that induced by smart contracts has
often been neglected. We propose in the following chapter to contribute to the under-
standing of smart contract usage and footprint. To carry our experiments, we developed
a novel framework that can be used to deploy and run benchmark on blockchains. Using
this framework, we measured the energy consumption of smart contracts on Ethereum.
Then, based on real historical data, we highlighted that a large part of Ethereum contracts
were actually little used. To design lighter blockchains, we finally propose a protocol to
identify and destroy unused contracts. As blockchains are designed to store data forever,
the design of a mechanism that would enable the removal of existing data has (to the best
of our knowledge) often been neglected.

56

Chapter 4

A NEW FRAMEWORK FOR

BENCHMARKING BLOCKCHAIN

TECHNOLOGIES

Over the last years, research activities on blockchain technologies have fairly increased.
Since the first release of Bitcoin, many projects have emerged to create or improve
blockchain features like privacy, while others propose to overcome technical limitations
such as scalability and energy consumption. New proposals are often evaluated with ad
hoc tools and experimental environments. Reproducibility and comparison of these new
contributions with the state of the art of the blockchain technologies are therefore com-
plicated. Only a few tools partially address the design of a generic benchmarking of
blockchain technologies (e.g., load generation). In this chapter, we introduce BCTMark,
a generic framework for benchmarking blockchain technologies on an emulated network
in a reproducible way. To illustrate the portability of experiments using BCTMark, we
have conducted some experiments on two different testbeds: a cluster of Dell PowerEdge
R630 servers (Grid’5000) and one of Raspberry Pi 3+. Experiments have been conducted
on three different blockchain systems (Ethereum Clique/Ethash and Hyperledger Fabric)
to measure their CPU consumption and energy footprint for different numbers of clients.

Research presented in this chapter have resulted in a publication at the 17th Interna-
tional Conference on Computer Systems and Applications (AICCSA 2020).

57

A new framework for benchmarking blockchain technologies

Contents
4.1 Introduction . 58
4.2 Contribution to state of the art 60
4.3 BCTMark - Technical architecture & usage 61

4.3.1 Usage . 62

4.3.2 Architecture . 64

4.4 Validation experiments . 66
4.4.1 Deployment of blockchains on two different testbeds 67

4.4.2 Comparison of CPU usage of three blockchain systems 68

4.4.3 Experiments Reproducibility 70

4.4.4 Performance analysis of Smart contracts 71

4.5 Conclusion . 73

4.1 Introduction

Since their introduction in 2008 with Bitcoin [75], blockchain technologies have been
widely developed. First used for crypto-currencies, blockchains are now being implemented
in many cases: sharing of computing resources [119], decentralised social networks [101],
government services [30], storage solutions [59, 103], energy trading [74, 69], . . .

Despite the potential of blockchain technologies in many areas, technical limitations
slow their development as a possible alternative to centralised services. For example,
several issues dealing with their scalability [37, 19] or energy cost [111, 78] have been
identified.

Several improvement proposals have been recently made to face those issues. We can
cite the examples of the reparameterisation 1 proposals in the Bitcoin community (see
BIP 2 100 to 107), new consensus systems such as [95, 92] or the introduction of off-chain
transactions systems like [86].

Those proposals have been mostly evaluated through debates (e.g., in the case of the
BIPs) or have used ad hoc evaluations that are often not reproducible (i.e., cannot be run
on systems other than the one they have been designed for). We argue that, to properly

1. Evolution of parameters like block size and emission rate
2. Bitcoin Improvement Proposal

58

A new framework for benchmarking blockchain technologies

compare the performances of several blockchain systems and quantify the contribution
of new proposals regarding performance issues or functionality (e.g., fault tolerance), the
blockchain community needs proper tooling for reproducible experiments.

This chapter presents a framework enabling reproducible research on the performances
(latency, throughput, energy consumption, . . .) of blockchain technologies. BCTMark
(BlockChain Technologies Benchmarking) is intended to be a framework which can be
used to deploy, compare, and evaluate (through various scenarios) any blockchain on
a large number of different infrastructures. This framework provides an abstraction of
the underlying physical infrastructure and can, therefore, be used to deploy easily on any
platform that supports the SSH protocol. To demonstrate this flexibility, we have deployed
experiments on both a public research cluster (Grid’5000 [5]) with "classical servers" (Dell
PowerEdge R630 servers) and a private "low-power" Raspberry-Pi cluster.

The author of [99] defines several criteria to define a "good" benchmark. We argue that
BCTMark has features that cover each defined criteria:

— Repeatable: BCTMark can manage the whole lifecycle of experiments (resources
reservation, deployment, load generation, metrics collection,. . .) and can be used
to deploy the same experiment on different infrastructures. Experiments results
are consistent across different run (see subsection 4.4.3).

— Observable: BCTMark embeds several components to observe both performances
and impact of the system under test (CPU consumption, disk and memory usage,
. . .)

— Portable: BCTMark can be used to compare different blockchain systems or dif-
ferent versions of the same blockchains. Users can write a driver to use this solution
to compare their new system to existing ones.

— Easily presented: BCTMark embeds a Grafana dashboard [48] that can be used
to present the results. Metrics are also stored in a time-series database.

— Realistic: Network capacities (bandwidth, latency, packet loss, . . .) can be de-
scribed in the deployment topology to emulate real-world deployment.

— Runnable: BCTMark can manage the whole lifecycle of the experiment (from the
resources reservations on a given testbed to the metrics collection of the system
under test). It makes them easier to run: the same configuration deployment can
be shared with other scientists, even on different testbeds. The deployment topol-
ogy itself (number of peers, network partition and capacities, . . .) can be easily
described in YAML, a language commonly used for configuration.

59

A new framework for benchmarking blockchain technologies

To the best of our knowledge, only a few tools address the issue of blockchains bench-
marking (see section 3.2). These existing frameworks, while promising, do not manage
aspects necessary for rigorous benchmarking like environment deployment (improving re-
producibility), collection of resources usage (e.g., CPU and memory consumption) and
network emulation (crucial as, for blockchains, network issues have an impact on the
diffusion of new blocks).

To sum up, our contribution results in the design and the development of a framework
that can be used to create experiments on performance and functionality evaluation of
blockchains systems. Thanks to the design and features provided by BCTMark, these
experiments can be repeated in different environments (and therefore can be shared with
the scientific community for peer evaluation) and can be run in a realistic environment
thanks to network emulation functionalities.

4.2 Contribution to state of the art

We mentioned in section 3.2 existing tools regarding the performances analysis of
blockchains. We will now present the differences between BCTMark and the existing
state of the art.

With Blockbench [22], the deployment of blockchains to be tested is managed through
bash scripts that do not offer abstractions over the targeted testbed. On the contrary,
playbooks written in Ansible and deployed with BCTMark can be used to deploy an
arbitrary number of peers on any testbed that supports SSH connections. BCTMark also
provides the same abstraction over network, enabling scientists to express easily network
constraints and topology. While Blockbench collects metrics about performances (latency
and throughput), BCTMark can also collect both system metrics like CPU, memory or
disk usage (important to consider the overall footprint of blockchain technologies) and
functional metrics (e.g., number of connected peers). Finally, Blockbench only targets
private blockchain whereas BCTMark also target public blockchains (as demonstrated in
the experiments).

Hyperledger Caliper [8] offers a complete lifecycle similar to the one we introduced in
subsection 4.3.1. Unlike BCTMark, it does not however include any network emulation
nor functionality for resources reservation on scientific testbeds like Grid’5000.

The main difference between BCTMark and BBB [80] is that BBB deploys the whole
blockchain network on a single server, with one process per peer. The experiment we

60

A new framework for benchmarking blockchain technologies

present in subsection 4.4.1 needs proper energy monitoring that would have been difficult
to produce with a whole blockchain network on a single server.

BCTMark seeks to be a general-purpose blockchain benchmarking network that allows
experiments to be deployed on real hardware and emulated network to be as close as
possible to a real-world deployment. Main differences in terms of functionalities between
those tools and BCTMark are summarized in Table 4.1 3.

Blockbench Hyperledger
Caliper

BBB DAGBench BCTMark

Targeted
systems

Private
Blockchains

Mainly Hy-
perledger
systems

Private
blockchains

DAG-Based
blockchains

Every
blockchain

Deployment
manage-
ment

No Yes Yes (but on a
single server
only)

No Yes

Network
emulation
abstraction

No No Yes No Yes

Portability
to new
testbeds

N/A (do
not manage
deployment)

Yes (but no
management
of resources
reservation)

Yes, as
hardware
is emulated
(as long as
Mininet can
be installed)

N/A (do
not manage
deployment)

Yes (as long
as testbed
has SSH)

Metric col-
lections

Yes (SUT) Yes (SUT +
testbed)

Yes (SUT) Yes (SUT +
testbed)

Yes (SUT +
testbed)

Table 4.1 – Comparison of functionalities with the state of the art

4.3 BCTMark - Technical architecture & usage

This section presents BCTMark, our solution for benchmarking blockchain technolo-
gies. We first introduce how BCTMark can be used to run existing experiments and how
developers/scientists can integrate new blockchain systems to be tested. Then, we detail
its architecture and underlying components.

3. SUT = System Under Test

61

A new framework for benchmarking blockchain technologies

4.3.1 Usage

From a user’s point of view, the workflow of an experiment performed with BCT-
Mark proceeds as described in Figure 4.1.

Claim resources Prepare Benchmark / Replay Backup Destroy

Figure 4.1 – The experiment workflow of BCTMark

The first step is to claim resources on which to deploy the experiment. BCTMark
is intended to be portable to manage repeatable experiments. Experiments can be de-
ployed on any infrastructure that supports SSH connections. Some research testbeds (like
Grid’5000) require users to book resources before using them. This reservation phase can
be addressed by BCTMark. As shown in Listing 4.1, the deployment topology can be de-
scribed in a YAML file. This provided example can be used to deploy on a local device 1)
an Ethereum network with one bootnode and two peers, 2) one benchmark worker (used
to generate loads), 3) a "dashboard" server that hosts both the monitoring stack and the
load generator master (that coordinate workers, see subsection 4.3.2 for details on load
generation). In this case, the claim phase will only start the required virtual machines.

Once the infrastructure resources claimed, BCTMark can prepare the experiment by
deploying the required components (i.e., download and install dependencies, copy con-
figuration files...). For each role (see Listing 4.1), there is corresponding component
to be deployed. The monitoring stack (dashboard role) and the benchmarking workers
(bench_worker role) are common to many experiments. Users can define their roles to
deploy their blockchain network. In the example in Listing 4.1, we need two roles to deploy
an Ethereum network: bootnodes 4 and peers.

After deployment, users can run the benchmark themselves. BCTMark provides two
possibilities to do this: an ad hoc load generation and a one based on previous traces (for
more details on the implementation choices, readers may refer to subsection 4.3.2). Once
the benchmark has ran, the results can be backed-up, and the environment destroyed/-
cleaned for another experiment.

1 deployment:
2 vagrant:
3 backend: virtualbox

4. Bootnodes are peers that have an address known by everyone in the network. New peers can connect
to those bootnodes to get the address of other peers in the network

62

A new framework for benchmarking blockchain technologies

4 box: generic/debian10
5 resources:
6 machines:
7 - roles: ["dashboard"]
8 flavour: tiny
9 number: 1

10 - roles: ["ethgethclique:bootnode"]
11 flavour: tiny
12 number: 1
13 - roles: ["ethgethclique:peer"]
14 flavour: tiny
15 number: 2
16 - roles: ["bench_worker"]
17 flavour: tiny
18 number: 1

Listing 4.1 – Configuration example for local deployment with Vagrant

From a developer’s point of view, all the following necessary actions must be
implemented to integrate a new blockchain to be tested:

— Deployment: write a new Ansible playbook (cf. subsection 4.3.2) that specify how
to deploy, backup and delete the system;

— Metric collection: write a Telegraf plugin (cf. subsection 4.3.2) to gather system-
specific metrics (e.g., block emission rate) if not already available through HTTP
web services (BCTMark can collect metrics exposed at given HTTP endpoint);

— Adhoc Load generation: write functions that correspond to an interaction one can
have with the system (e.g., how to send a transaction, how to call a smart con-
tract, . . .);

— Reproducible Load generation: implement functions to backup transactions (and
serialize those) and functions to replay a given serialized transaction.

A developer/researcher would benefit from the design of BCTMark as a framework
to easily integrate its new blockchain technology to be tested. Indeed, BCTMark already
provides:

— Deployment: portability of deployment on several testbeds that support SSH;
— Network emulation: latency, bandwidth limits, . . . ;
— Metric collection: collection of metrics related to the infrastructure (e.g., CPU

usage);
— Load generation: distribution of the load to generate among workers.

63

A new framework for benchmarking blockchain technologies

Only specific interactions with the blockchain to be tested need to be implemented.

4.3.2 Architecture

Figure 4.2 – BCTMark architecture

To avoid reinventing the wheel, BCTMark is based on the state-of-the-art, industry-
proven tools. Altogether they empower researchers, allowing them to provision computing

64

A new framework for benchmarking blockchain technologies

resources, deploy blockchain peers, generate load (based on an history to reproduce or
according to a given scenario), and collect metrics relating to peers’ performance and
energy consumption. The architecture of BCTMark is illustrated in Figure 4.2.

Deployment. BCTMark can deploy the entire experiment stack: system under test,
monitoring system, and load generators.

Deployment does not require any agent installation on the machines. They are man-
aged through SSH. A playbook defines the configuration to be deployed, which takes the
form of configuration files in YAML format. Those configuration files make it possible
to specify the desired deployment in a explicit, documented, and repeatable way. BCT-
Mark also provides an abstraction layer of the underlying infrastructure. The deployment
topology can be described in a high-level point of view, portable on different testbeds.
That makes experiments portable on various infrastructures such as Vagrant (local de-
ployment), Grid’5000 and Chameleon.

To manage deployment, BCTMark uses EnosLib [31] (an open-source library to build
experimental frameworks) and Ansible [1] (a software that allows to manage deployment
of configuration on a cluster). These two components enable self-describing, reproducible
deployments.

Metrics management. Metrics about the server (CPU, memory consumption, HDD
usage, . . .) and blockchains (number of blocks produced, hashrate, . . .) are collected,
stored in time-series and displayed by Telegraf [107], InfluxDB [52] and Grafana [48].

Telegraf natively allows the collection of server metrics through many plugins written
in the Go programming language. New ones can be developed to manage the collection
of data on deployed blockchain peers. Current experiments on Ethereum deployment use
the HTTP plugin from Telegraf to collect metrics through the Ethereum HTTP API.

Network Emulation. One strength of BCTMark is its ability to describe simply the
desired network to emulate. Users can describe in the YAML deployment configuration
file several groups of peers and emulate any desired network condition between them. The
current characteristics of the network that can be emulated are the percentage of packet
loss, network delay, and network rate (i.e., bandwidth). A use case of this feature could
be to study the effect of a sudden network partitioning or merge on a blockchain system.
Under the hood, BCTMark uses EnosLib that applies the desired network rules using the
Linux command TC.

Load generation. BCTMark supports two ways to generate workloads 5: an ad hoc

5. By workload, we mean transactions to be processed by the system under test

65

A new framework for benchmarking blockchain technologies

load generation (based on Python scripts) and a load generation based on an history. The
first one uses Locust [64], a load generator written in Python. The user needs to specify,
through Python methods, any interaction a user can have with the system under test
(e.g., sending a transaction to someone or deploying/calling a smart contract). Locust
will then use those methods to generate random loads.

The second way to generate load is based on a provided history. BCTMark can extract
the history of a peer in the system and serialize it in a YAML file containing all the
transactions. To reproduce the history, it can split the transactions between different
workers, create the number of accounts needed to replay it, and let the workers re-run the
transactions. This way, we can aim to replay transactions issued from the mainnet of a
targeted blockchain system.

Energy consumption. BCTMark does not embed any energy monitoring tools. How-
ever, as it enables the deployment of experiments on any kind of testbeds, it can be used to
deploy systems on clusters where the energy consumption is monitored. We have already
tried this by deploying experiments on the SeDuCe [82] cluster (see subsection 4.4.1). It
is part of the Grid’5000 testbed and is monitored with both energy and thermal sensors.

4.4 Validation experiments

In this section, we illustrate BCTMark’s capabilities through three experiments. The
first one demonstrates its capacity to deploy experiments on different testbeds, the second
one its capacity to compare two blockchain systems and the third one, its usage for
smart contract performance evaluation. Those experiments use two different testbeds
(both having power measuring capacities):

1. A Raspberry-pi 3+ cluster. Each node has a quadcore Cortex-A53 ARMv7 CPU
and 1GB of RAM.

2. Grid’5000 [5] Ecotype: A Dell PowerEdge R630 cluster. Each node has two Intel
Xeon E5-2630L v4 (Broadwell, 1.80GHz, 10 cores/CPU) CPU and 128 GiB of
RAM. Grid’5000 is a large scale public research testbed containing several clusters.
Ecotype is one of those clusters, located in Nantes (France).

We evaluated three blockchain systems:

1. Ethereum Ethash, an implementation of the Proof of Work (PoW) system of
Ethereum. It is the default implementation of Ethereum, used in the context of

66

A new framework for benchmarking blockchain technologies

a public blockchain. In this system, every peer can actively participate to block
mining.

2. Ethereum Clique, an implementation of the Proof of Authority (PoA) system of
Ethereum. PoA is used in the context of a private blockchain. In this system, pre-
selected and identified peers can validate blocks one at a time. It does not involve
any mining.

3. Hyperledger Fabric. It is also intended for private blockchain. Peers submit transac-
tions to special peers called orderers. Orderers are in charge of the ordering process
of transactions. Hyperledger Fabric uses a voting-based consensus protocol.

4.4.1 Deployment of blockchains on two different testbeds

This experiment illustrates the capabilities of BCTMark to deploy blockchains on dif-
ferent testbeds. We have deployed Ethereum Clique on both Raspberry Pi and Ecotype
cluster under three scenarios. The IDLE scenario does not include any load generation.
Peers just generate and share empty blocks. The two other scenarios include a load gen-
eration of 5 and 50 transactions per second. Load is generated by separated workers and
spread randomly across peers. For both experiments, we deployed 12 peers and 6 load
generator workers.

Results are presented in Figure 4.3. The bar plotted on the graph corresponds to
the average power usage of every machines in the cluster. The error bar illustrates the
standard deviation of power usage.

Those two platforms have different power draw. Power usage on the Dell servers goes
from 130.4 to 131.54 watts (0.7% increase) whereas power usage on the Raspberry Pi
platform goes from 3.4 to 5.2 watts (44% increase). This result was expected as Raspberry
Pi are much more limited than classical "high performances" Dell servers. This experiment
however illustrates that non-mining chains can be installed on low-power platforms like
Raspberry Pi. This can be useful in the context of the development of blockchains in IoT /
Edge computing. In the context of research on energy consumption, low-power platforms
can be useful to illustrate subtle differences in the consumption.

We can, however, note that this conclusion may not be the same for mining systems
such as Ethereum Ethash. Indeed, we could not install Ethash on our Raspberry Pi
platform due to shortage in memory. The algorithm used by Ethereum Ethash for mining
is memory intensive and therefore not suited for low-power platforms with not enough

67

A new framework for benchmarking blockchain technologies

IDLE 5 tx/s 50 tx/s
0

20

40

60

80

100

120

140

M
ea

n
Po
we

r U
sa
ge

 (W
at
ts
)

Ethereum - Comparison of Power usage for different loads
Dell servers
RPI servers

Figure 4.3 – Comparison of Power Usage for different loads

RAM. A solution for this issue could be to set-up both high-performance nodes dedicated
to mining and low-power nodes that would only broadcast transactions to the miner’s
network.

4.4.2 Comparison of CPU usage of three blockchain systems

This experiment aims to illustrate the capabilities of BCTMark to deploy different
blockchain systems. We deployed Hyperledger Fabric, Ethereum Ethash, and Ethereum
Clique on the Ecotype cluster under four scenarios: IDLE (no-load generation) and load
generation of 5, 50, and 200 transactions per second. The deployed network is composed
of a network of 39 peers and three load generator workers. Figure 4.4 illustrates this
experiment. The bar corresponds to the average CPU usage across all machines, whereas
the error bar goes from the 10th quartile to the 90th quartile.

We can first notice that the CPU consumption of the Ethash system exceeds the CPU
usage of the two others. Moreover, in this deployment, peers only mine blocks using one
thread. It could be possible to dedicate more resources for mining, increasing the CPU
consumption furthermore. The other two systems have non-mining consensus systems,
decreasing the amount of computation needed to secure the network.

The CPU usage of non-mining systems are also more stable than the Ethash sys-

68

A new framework for benchmarking blockchain technologies

IDLE 5 tx/s 50 tx/s 200 tx/s
0

5

10

15

20

25

30

M
ea

n
CP

U
Us

ag
e

(%
)

Comparison of CPU Usage for different loads

Ethereum Ethash
Ethereum Clique
Hyperledger Fabric

Figure 4.4 – Comparison of CPU Usage for different loads

tem. Figure 4.5 illustrates the evolution of the CPU usage for Ethash peers during the
"200 transactions per second" scenario 6. The spike at the beginning of the experiment,
reaching almost 100% CPU, is due to the construction of the data structure needed by
peers to start mining. We can also see that, after this spike, the CPU usage increases over
time. This increase may be due to the evolution of the difficulty in mining resulting from
the mining competition between peers.

On the other hand, in the first three scenarios, the CPU consumption of the two
private blockchains is roughly the same. However, at 200 transactions per second, the
CPU consumption of the Ethereum Clique network increases from 0.3% to 2.9%. This
increase suggests that Hyperledger Fabric could have better performances in the context
of a private blockchain. These results about private blockchains are consistent with those
shown in the Blockbench. paper [22].

6. CPU usage values seem to differ from ones in Figure 4.4 but this visual effect is due to 1) high
variance in data and 2) high density in data points that hides lowest values. We can notice the high
variance on Figure 4.4.

69

A new framework for benchmarking blockchain technologies

0 100000 200000 300000 400000 500000
0

20

40

60

80

100
Ethereum EThash - 200 Txs - CPU Usage (%)

Figure 4.5 – Evolution of Ethash CPU usage for 200 Txs

4.4.3 Experiments Reproducibility

One of the goals behind BCTMark was to enforce reproducibility on blockchain exper-
iments. Reproducibility means that running experiments several times (in similar condi-
tions) should give coherent results. The goal of this section is to illustrate how experiments
made with BCTMark can be reproduced.

We reproduced the experiments done in subsection 4.4.2 on Ethereum Clique and
Ethash to have data on both public and private blockchain systems (readers can refer to
this section to read about the infrastructure used and the deployment topology). Each of
the four scenarios has been run six times. For every run, we have recorded the average CPU
usage across all machines. The data presented in Table 4.2 illustrate the differences in the
results we obtained. For instance, the min column illustrates the min CPU average across
the six runs. Experiments should show consistent results to be considered reproducible.

These results show that we obtained few differences between the six runs. The standard
deviation (column ’Std’) remains low across all scenarios. This small difference in results
leads us to believe that experiments with BCTMark should produce consistent results.
Having exactly the same deployment topology with the same configuration is, in our
opinion, the main factor explaining these consistent results. BCTMark allows researchers
to share experiments that can be run in the same way by other peers in their community.

70

A new framework for benchmarking blockchain technologies

Deployment Min Max Mean Std
Ethereum Clique IDLE 0.113 0.117 0.115 0.002
Ethereum Clique 5 Txs 0.138 0.155 0.145 0.007
Ethereum Clique 50 Txs 0.463 0.526 0.494 0.028
Ethereum Clique 200 Txs 1.682 3.686 2.185 0.843
Ethereum Ethash IDLE 8.751 9.574 9.158 0.304
Ethereum Ethash 5 Txs 9.137 10.169 9.542 0.410
Ethereum Ethash 50 Txs 9.192 11.012 9.945 0.821
Ethereum Ethash 200 Txs 8.934 10.621 9.584 0.630

Table 4.2 – Reproducibility across six runs

4.4.4 Performance analysis of Smart contracts

The experiment, presented in Figure 4.6, is intended to illustrate the capabilities of
BCTMark for performance analysis of software developed for blockchains. As explained
in subsection 2.2.6, blockchains like Ethereum enable developers to write applications
through smart contracts. On Ethereum, each call to a smart contract requires a "fee"
related to its cost in gas. Gas is a unit related to the computational cost of each instruction
in a contract. The more computation there is in a contract, the more expensive for end-
users it will be. Moreover, in each mined block, there can be a limit to the sum of each
transaction’s cost in gas. As a result, there is an incentive for smart contract developers
to control their contract’s cost in gas.

To illustrate how implementation design and details can impact the cost of a smart
contract, we implemented three classical sorting algorithms: Quicksort, Bubblesort, and
Mergesort. Listing 4.2 illustrates the implementation of Quicksort.

We then have deployed those contracts on a four nodes Ethereum network and gen-
erated calls to those contracts. We have measured the cost in gas for each call. For each
algorithm, we have generated calls to its sorting function with a random array of integers.

Figure 4.6 illustrates the evolution of gas consumption depending on the size of the
input array. We can see that the evolution of gas requirements are coherent with the
complexity of those three algorithms. Quicksort and Mergesort have the same average
complexity of O(nlog(n)), whereas Bubblesort has an average complexity of O(n2). This
statement is reassuring as it tends to show that the EVM 7 has been correctly implemented.
This simple example demonstrates that BCTMark can be used to study smart contracts’
costs and that its implementation has an impact on smart contracts possibilities. For the

7. Ethereum Virtual Machine, the VM running smart contracts

71

A new framework for benchmarking blockchain technologies

same iso-functionality (here, sorting), the cost of calling the contract will differ depending
on the underlying algorithm. For information, at the time this article was written, the
Mergesort algorithm would have cost around $0.55 to sort 100 items (cost of ∼101659 gas).
In contrast, the Bubblesort algorithm would have cost around $11.77 (cost of ∼2168761
gas) 8.

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

1e6
Mean Gas Used - Quicksort
Mean Gas Used - Bubblesort
Mean Gas Used - Mergesort

Figure 4.6 – Cost in gas of three smart contracts depending on provided input

8. Calculated on https://ethgasstation.info with average gas price

72

https://ethgasstation.info

A new framework for benchmarking blockchain technologies

1 pragma solidity ^0.7.3;
2
3 contract quicksort {
4
5 function sort(uint[] memory data) public returns(uint[] memory) {
6 quickSort(data, int(0), int(data.length - 1));
7 return data;
8 }
9

10 function quickSort(uint[] memory arr, int left, int right) internal{
11 int i = left;
12 int j = right;
13 if(i==j) return;
14 uint pivot = arr[uint(left + (right - left) / 2)];
15 while (i <= j) {
16 while (arr[uint(i)] < pivot) i++;
17 while (pivot < arr[uint(j)]) j--;
18 if (i <= j) {
19 (arr[uint(i)], arr[uint(j)]) = (arr[uint(j)], arr[uint(i)]);
20 i++;
21 j--;
22 }
23 }
24 if (left < j)
25 quickSort(arr, left, j);
26 if (i < right)
27 quickSort(arr, i, right);
28 }
29 }

Listing 4.2 – Implementation of Quicksort in Solidity

4.5 Conclusion

In this chapter, we introduced BCTMark, a framework for benchmarking blockchains.
Existing tools, while promising, do not include important aspects of reproducible exper-
iments on blockchain systems like network emulation or reproducible deployment. BCT-
Mark aims to empower developers and researchers to create reproducible experiments on
blockchain performances. For this purpose, BCTMark provide abstractions over testbeds

73

A new framework for benchmarking blockchain technologies

and network. To facilitate the development of benchmarks, BCTMark includes functional-
ities like load generation and metrics collection. To illustrate BCTMark’s functionalities,
we have run three experiments on three blockchains (Ethereum Ethash vs Clique and Hy-
perledger Fabric) and two testbeds (one Grid’5000 cluster and one Raspberry Pi cluster).

BCTMark has been used for in situ experiments in the following chapters. In chapter 5,
we used BCTMark to evaluate the energy consumption of smart contracts depending on
their gas input. In chapter 6, we used BCTMark to deploy a minimal Ethereum network
in order to measure performances of individual nodes depending on the network state size.

BCTMark’s code is open-source and accessible here: https://gitlab.inria.fr/
dsaingre/bctmark.

74

https://gitlab.inria.fr/dsaingre/bctmark
https://gitlab.inria.fr/dsaingre/bctmark

Chapter 5

UNDERSTANDING THE USAGE AND

ENERGY CONSUMPTION OF ETHEREUM

SMART CONTRACTS

Smart contracts play a fundamental role in recent blockchain-based decentralised ap-
plications. By allowing developers to write and deploy their own applications, they extend
the possible use-cases of blockchains. This chapter is twofold. First, we analyse one-year of
real-world Ethereum transactions to better understand how important are smart contracts
in this community. Then, we focus on the energy footprint of smart contracts. Through
in situ experiments, we build a model of the energy consumption of smart contracts de-
pending on their cost in gas. Using this model, we try to estimate the energy consumed
by all contracts ran on Ethereum during one year.

With our work, we aim to initiate studies that go beyond the measure of the energy
consumption of blockchain consensus algorithm and take into account the complexity of
modern blockchain-based decentralised applications.

Part of this chapter has been accepted for publication in Cluster Computing journal
(to appear).

75

Understanding the usage and energy consumption of Ethereum smart contracts

Contents
5.1 Introduction . 76
5.2 Understanding the current usage of Ethereum smart contracts 77

5.2.1 Data extraction protocol . 78

5.2.2 Smart contracts calls in Ethereum traffic 79

5.2.3 Gas consumption of Ethereum smart contracts 80

5.2.4 New smart contract deployment 83

5.2.5 Quantifying the number of unused smart contracts 84

5.3 Measuring and modeling the energy consumption of Ethereum
smart contracts . 87

5.3.1 Smart contracts footprint on non-Proof-of-Work systems 87

5.3.2 Deriving energy consumption from gas consumption 88

5.3.3 Ethereum smart contract execution model 91

5.3.4 The impact of replication on smart contracts execution cost . . 93

5.3.5 Limitations . 94

5.4 Conclusion . 95

5.1 Introduction

In 2008 Bitcoin [75] became the first large-scale currency that did not rely on any cen-
tral authority. Seeing the potential of blockchain and the limitation of a cryptocurrency-
only technology, Ethereum [43] introduced the concept of smart contracts. Those scripts,
deployed and executed on the blockchain, enable the development of blockchain-based
decentralised applications (Dapps). Since then, researchers and companies have proposed
a wide range of use cases for Dapps like sharing of computing resources [119, 51], decen-
tralised social networks [101], government services [30], storage solutions [59, 103] and
energy trading [74, 69].

This chapter is twofold. First, we investigate how important smart contracts are in the
Ethereum community five years after its first release. Based on the open data generated
by Ethereum, this study analyses more than 247 million transactions emitted over one
year to give researchers insights into the current usage of smart contracts. This analysis
gives insights:

76

Understanding the usage and energy consumption of Ethereum smart contracts

— On the proportion of smart contract calls compared to classical Ether (Ethereum’s
cryptocurrency) transfer, to understand if smart contracts (as a whole) are really
used, or they are only tied up to experimental projects;

— On some functionalities of smart contracts implement. The goal is to understand
not only if smart contracts are used, but also for what usage;

— On the amount of computation made by smart contracts, in order to quantify their
complexity.

Second, leveraging BCTMark (described in chapter 4), we study in the energy con-
sumption of decentralised, smart contract-based applications. Indeed, even if the energy
consumption of Proof-of-Work have been well studied [78], novel consensus algorithms
have emerged since. As those new algorithms grow in adoption, it becomes crucial to
understand the energy consumption of other key aspects of modern blockchains systems.
Therefore, section 5.3 proposes a novel method to measure and model the energy con-
sumption of smart contracts deployed on Ethereum. Based on this model, we give insights
into the energy consumed by real-world smart contracts over one year. Our key finding is
that even if smart contract calls are relatively cheap on their own, their replication across
the whole network generates an important energy cost.

5.2 Understanding the current usage of Ethereum
smart contracts

This section aims to give insights on the current usage made of Ethereum’s smart
contracts. After an explanation of the data extraction protocol, we analyse one year of
Ethereum transactions data. First, we quantify the importance of smart contracts in
Ethereum’s traffic to understand whether smart contracts are actually used. Second, we
determine for how many computation smart contracts are used. This analysis will be
based on the gas consumption of smart contracts. Third, we focus our analysis on smart
contracts created that year in order to determine if new contracts are still being created
and what volume of traffic is generated by these new contracts. Finally, we determine the
number of deployed, yet unused, smart contract. In this last part, we illustrate that a
large part of contracts deployed on Ethereum will lead to little or no usage. Chapter 6
will then investigate how this can impact Ethereum’s individual nodes performances and
a potential solution.

77

Understanding the usage and energy consumption of Ethereum smart contracts

5.2.1 Data extraction protocol

As stated in section 2.1.2, Ethereum is a public blockchain. Everyone can become a
participant in the network and gain access to all data in the blockchain.

To query these data (blocks, transactions, accounts...) in a convenient way, we ex-
tracted them in a relational database using Ethereum-ETL [36]. Ethereum-ETL is an
open-source ETL (Extract-Transform-Load) developed to extract data from one Ethereum
node (through its JSON-RPC API) to different outputs (including Google Cloud, CSV files
or PostgreSQL). In our case, we stored the extracted data in an open-source Database
Management System (DMS) called PostgreSQL. The data extraction was split in two
phases.

First, we installed an Ethereum Node on a Dell PowerEdge R630 server (Intel Xeon E5-
2630 v3 (Haswell, 2.40GHz, 2 CPUs/node, 8 cores/CPU), 128 GiB of RAM, 600GB HDD
SATA Seagate ST600MM0006 storage). We chose one of the main open-source Ethereum
implementations: OpenEthereum (v3.0.1-stable) 1. We fully synchronized this node with
the rest of the EthereumMainnet (The main/"production" Ethereum network). Processing
took several days and resulted in the downloading of more than 10 million blocks. The
second step was to extract and analyze recent data from this synchronized node, with
Ethereum-ETL. Ethereum-ETL includes, in its extraction process, ERC20 and ERC721
smart contracts detection. To detect if a given contract implements one of those interfaces,
Ethereum-ETL checks if each function signature defined in ERC20/ERC721 interfaces is
present in the contract’s binary code. This detection presents a limitation: contracts that
would have modified these function signatures (e.g., by changing parameters or function
names) cannot be counted as ERC20/ERC721 even if their behavior is similar. Also,
smart contracts that would implement tokens without using one of those two standard
interfaces cannot be detected. In conclusion, in the rest of this chapter, numbers given
on the number of ERC20/ERC721 contracts can be considered as an underestimation on
the real number of smart contracts implementing a token management mechanism.

We extracted a year of data, from September 2019 to August 2020. The resulting
PostgreSQL database represented about 300 GB of data.

1. https://github.com/openethereum

78

https://github.com/openethereum

Understanding the usage and energy consumption of Ethereum smart contracts

5.2.2 Smart contracts calls in Ethereum traffic

Over the year, the Ethereum network managed an average of 24 million transactions
per month, with values going from 17 millions transactions in January 2020 to 36 millions
transactions in August 2020. The goal of this section is to quantify the importance of
smart contract usage in Ethereum’s traffic. In order to identify transactions that have been
addressed to smart contracts, we check if each transaction’s recipient address correspond
to a smart contract address. The smart contract address list have been created during the
Ethereum-ETL’s extraction phase. Figure 5.1 compares the number of smart contracts
calls and the number of "normal" Ether transfer transactions through time. Over the
year, 140 million calls to smart contracts where emitted, representing on average 56% of
Ethereum traffic.

09/19 10/19 11/19 12/19 01/20 02/20 03/20 04/20 05/20 06/20 07/20 08/20

0

5 000 000

10 000 000

15 000 000

20 000 000

25 000 000

Calls to smarts contrats

Transactions without smart contracts

Figure 5.1 – Calls to smart contracts over time

As stated in section 2.2.6, one way to estimate the functionalities implemented by
smart contracts is to detect whether they implement a known code interface. Two well-
known and used interfaces are ERC20 and ERC721, that are both used to implement
token management systems. Table 5.1 illustrates the proportion of ERC20 and ERC721
contracts in smart contracts that have been called over the year. Only a small minority of
active smart contracts implements those interfaces. However, they represent a large part
in smart contracts calls. Figure 5.2 compares the number of calls to ERC20 and ERC721
contracts and the number of calls to other smart contracts. ERC20 contracts represent

79

Understanding the usage and energy consumption of Ethereum smart contracts

Number % of Total
ERC20 28 347 4.8
ERC721 680 0.1
Others 558 234 95.1
TOTAL 587 261 100

Table 5.1 – Proportion of ERC20 and ERC721 among active contracts

55% of smart contracts calls. ERC721 contracts represent 2% of smart contracts calls. At
least 74.64% of Ethereum traffic is dedicated to token exchange, composed of 1) 43.41% of
Ether, "classical", transactions, 2) 30.73% of ERC20 transactions (through smart contract
calls) and 0.50% of ERC721 transactions (through smart contract calls). The remaining
25.35% are used to interact with smart contracts that does not implement ERC20 nor
ERC721 interfaces.

09/19 10/19 11/19 12/19 01/20 02/20 03/20 04/20 05/20 06/20 07/20 08/20

0

2 000 000

4 000 000

6 000 000

8 000 000

10 000 000

12 000 000

Calls to smart contracts (not ERC20 nor ERC721)

Calls to smart contracts (ERC20)

Calls to smart contracts (ERC721)

Figure 5.2 – Calls to smart contracts over time, by types

5.2.3 Gas consumption of Ethereum smart contracts

As explained in section 2.2.6, gas corresponds to the cost instructions in the Ethereum
Virtual Machine. The gas cost of a smart contract function call will be equal to the sum
of each instruction used during the function execution. The more complex a function is,

80

Understanding the usage and energy consumption of Ethereum smart contracts

the more expensive its call will be for the caller. As gas cost is correlated to CPU usage,
we can gain insight into how computational intensive this contract is by studying the gas
consumption of an Ethereum smart contract.

Figure 5.3 displays the distribution of gas usage in all transactions in Ethereum. The
minimum cost for an Ethereum transactions is 21 000 gas. Around 32% of all transactions
consumes this amount of gas. 65% of all transactions consume at most twice this amount
of gas. 90% of all transactions consume 128 852 gas or less, i.e., six times the amount of
a "normal" transaction. That year, the maximum amount of gas used by one transaction
was 12 million, i.e., 580 times more than a "normal" transaction. These high quantities of
gas appear to be the result of errors in the execution of smart contracts (in Ethereum, a
smart contract execution that raises an exception consumes all gas and result in a failed
transaction). Indeed, of the 5% costliest transactions, 4% have been reverted due to an
execution error. Among the other 95% transactions, the error rate is 3.7%, meaning that
there is only a 0.3% difference between the most expensive transactions and the others.
Execution error can be detected by looking at the execution status stored in the blockchain
in the transaction receipt.

0 10 20 30 40 50 60 70 80 90 100

10 000

100 000

1 000 000

Gas used (all txs)

Gas used by normal transaction

Percentiles

G
a

s

Figure 5.3 – Distribution gas usage per transactions (logarithmic scale)

Figure 5.4 illustrates the gas usage of smart contracts, depending on their type (ERC20,
ERC721, other smart contracts). We have seen in subsection 5.2.2 that 75% of the
Ethereum traffic were dedicated to tokens exchange and that 55% of smart contract calls

81

Understanding the usage and energy consumption of Ethereum smart contracts

were addressed to ERC20 contracts. Smart contracts calls always have a gas cost superior
to "normal" transactions. However, ERC20 contracts seem to have stable gas consump-
tion. 98% of ERC20 contract calls cost at most 64 000 gas, i.e., three times more than a
normal transactions. 63% of ERC20 calls did not cost more than twice the amount of gas
of "normal" transactions. On the non-token smart contracts side, 78% of smart contracts
calls did not cost more than the 98% ERC20 contracts calls mentioned above.

0 10 20 30 40 50 60 70 80 90 100

10000

100000

1000000

10000000

100000000

Gas used (Non-ERC20/ERC721)

Gas used (ERC721)

Gas used (ERC20)

Gas used by normal transaction

Percentiles

G
a
s

Figure 5.4 – Distribution gas usage per smart contract calls (logarithmic scale)

As detailed in section 2.2.6, the transaction fee paid by the smart contract caller is
equal to the function’s gas cost multiplied by the declared gas price. The caller can choose
the gas price depending on the state of the market. A higher gas price will lead to a more
expensive transaction fee but will serve as a better incentive for miners to include the
transaction in their block (this implies that the transaction will be processed quicker).
Figure 5.5 illustrates the evolution of gas price and the number of processed transactions
over the year. Gas price is specified in Wei: one Wei is equal to 10−6 Ether.

We can first notice that gas prices have nearly always increased over the year. Its value
has been multiplied by 5.4 in one year. This means that the same transaction would have
cost 5.4 times more in August 2020 than in September 2019. Comparing the gas price
with the number of transactions processed could partially explain its evolution. Pearson
correlation coefficient gives us a correlation value of 0.9, meaning that gas price and the
number of processed transactions may be linearly correlated. An explanation behind this
is that, as the number of pending transactions increases, one should pay more fees to have

82

Understanding the usage and energy consumption of Ethereum smart contracts

its transactions processed in a reasonable time.

09/19 10/19 11/19 12/19 01/20 02/20 03/20 04/20 05/20 06/20 07/20 08/20

0

20000000000

40000000000

60000000000

80000000000

100000000000

120000000000

140000000000

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

Gas price

Nb Txs

Months

G
a
s
 p

ri
c
e
 (

W
e
i)

N
u
m

b
e

r
o
f
p
ro

c
e
s
s
e

d
 t
ra

n
s
a
c
ti
o
n

s

Figure 5.5 – Evolution of gas price and number of processed transactions during the year

Gas price represents a real incentive for developers to optimize their smart contracts
in order for them to be called with reasonable fees. If we consider an Ether price of 596
USD (current price on the 1st December 2020), a gas price of 119 965 865 711 Wei, and
a median gas cost specified in Figure 5.3, we obtain a median transaction fee of 1.5 USD
for normal transactions, 2.9 USD for ERC20 contracts, 7.2 USD for ERC721 contracts
and 3.9 USD for other contracts.

5.2.4 New smart contract deployment

As seen before, half of Ethereum traffic involves smart contract function calls, and
half of Ethereum smart contract calls are used to manage tokens. This section focuses the
analysis on the smart contracts deployed that year, to understand if any new contracts
are still being deployed.

Figure 5.6 illustrates the number of smart contracts deployed over the year. In Ethereum,
the deployment of a new smart contract is made by emitting a transaction embedding
the contract byte-code and with no recipient. The cost of a smart contract deployment
is roughly similar to the cost of a classical, Ether transfer, transaction. The receipt of
this transaction will contain the new smart contract address. By checking the number of
transactions used to deploy smart contracts we can see that, on average, 73 000 new con-

83

Understanding the usage and energy consumption of Ethereum smart contracts

tracts have been deployed each month. Smart contract deployment represents only 0.3%
of the total of transactions processed each month. Although it may seem impressive, this
number must be put into perspective with the actual usage of these new smart contracts.

09/19 10/19 11/19 12/19 01/20 02/20 03/20 04/20 05/20 06/20 07/20 08/20

0

20 000

40 000

60 000

80 000

100 000

120 000

140 000

Months

N
u

m
b

e
r

o
f

c
o

n
tr

a
c
ts

 c
re

a
te

d

Figure 5.6 – Number of contracts created over time

5.2.5 Quantifying the number of unused smart contracts

Figure 5.7 and Figure 5.8 illustrate the distribution of the number of calls per "active"
smart contracts 2, through percentiles (data has been divided into two figures for read-
ability). Percentiles are used to illustrate frequency distribution. Among contracts that
have been deployed that year, we can see that 48% have been called only once 3 and 88%
have been called less than 10 times. Only a few contracts are responsible for most of the
traffic. Indeed, 3236 contracts (1.2% of a total of 259 472 "active" contracts deployed that
year) are the recipients of 95% contracts calls. If we do not limit the analysis to contracts
that were deployed during the year and if we consider calls to every smart contract, the
trends remain the same. 2851 contracts (0.7% of a total of 412 362 "active" contracts)
are the recipients of 95% of all the smart contracts calls. Among those 2851 contracts,

2. We define "active" contracts as contracts that have been called at least once.
3. This value correspond to the 48th percentile in Figure 5.7

84

Understanding the usage and energy consumption of Ethereum smart contracts

1300 (46%) are ERC20 contracts. The most called contract, Tether 4 (an ERC20 cryp-
tocurrency), accumulates 29% of smart contracts calls. The second most used contracts
is responsible for 2% of smart contracts calls.

0 10 20 30 40 50 60 70 80 90

0

2

4

6

8

10

12

14

16

18

All calls to Smart Contracts

Calls to smart contracts deployed this year only

Percentile

T
o

ta
l
n

u
m

b
e

r
o

f
c
a

lls
 (

p
e

r
s
m

a
rt

 c
o

n
tr

a
c
t)

Figure 5.7 – Distribution of the number of calls per smart contracts - Lowest 90 percentiles

As we have seen, only a small minority of contracts are responsible for the traffic of
Ethereum smart contracts. The majority of smart contracts will also stop to be used only
a few days after their deployment. Figure 5.9 illustrates the evolution of the proportion of
active contracts depending on the number of days since their deployment. We only consider
contracts that have been deployed the first 8 months of our dataset, and we consider the
first 4 months of "existence" of each contract. We can see that 50% of considered smart
contracts won’t be called again a week after their deployment. Only 16.6% of deployed
smart contracts will be called after 4 months.

This section aimed to analyze the life cycle of newly deployed smart contracts (number
of contracts deployed, number of calls per contracts, number of days until a contract stop
being used...). However, "active" smart contracts only represent a minority of all contracts.
Among all contracts deployed that year, only 259 472 (30%) of a total of 866 508 have been
called at least one since their deployment. 607 036 (70%) contracts have been deployed
without ever been called. Even if they have never been used, their bytecode is always
stored into the blockchain!

4. https://tether.to/

85

Understanding the usage and energy consumption of Ethereum smart contracts

91 92 93 94 95 96 97 98 99 100

10

100

1000

10000

100000

1000000

10000000

100000000

All calls to Smart Contracts

Calls to smart contracts deployed this year only

Percentile

T
o

ta
l
n

u
m

b
e

r
o

f
c
a

lls
 (

p
e

r
s
m

a
rt

 c
o

n
tr

a
c
t)

Figure 5.8 – Distribution of the number of calls per smart contracts - Highest 10 percentiles
- Logarithmic scale

0 20 40 60 80 100 120

0

10

20

30

40

50

60

70

80

90

100

Days since contract deployment

P
e

rc
e

n
ta

g
e

 s
m

a
rt

 c
o

n
tr

a
c
ts

 s
ti
ll

a
c
ti
v
e

Figure 5.9 – Evolution of the percentage of active contracts depending on the number of
days since their creation (Contracts deployed that year only)

86

Understanding the usage and energy consumption of Ethereum smart contracts

5.3 Measuring and modeling the energy consump-
tion of Ethereum smart contracts

5.3.1 Smart contracts footprint on non-Proof-of-Work systems

The high-energy footprint of Proof-of-Work-based blockchain systems has been es-
tablished several times [78, 68, 111]. However, we did not find any studies focused on
the energy consumption of smart contracts. We aim to illustrate here, through experi-
mentation, how the energy consumption of smart contracts execution will become more
significant in non-Proof-of-Work systems.

To do this, we deployed, with BCTMark, a private Ethereum network on a cluster of
power-monitored servers 5. This cluster of six Dell PowerEdge R640 servers, is equipped
with Intel Xeon Gold 5220 18 cores CPU, 96 GiB of memory, 480 GB SSD SATA Mi-
cron MTFDDAK480TDN, and 25 Gbps Ethernet connection. Ethereum’s peers have been
deployed on five servers. The remaining server was used to host the monitoring dash-
board and database. To illustrate the difference in energy consumption between running
a smart contracts on a Proof-of-Work system and running the same contract on a Proof-
of-Authority system, we deployed the Quicksort contract detailed in subsection 4.4.4. For
each system (Ethereum Proof-of-Work and Proof-of-Authority), we studied the energy
consumption on two cases. In the first, called IDLE, peers are mining empty blocks (no
transactions are emitted). In the second, we add a constant load generation consisting of
contract calls with a random array of size 1000 to be sorted.

Figure 5.10 compares the Ethereum Proof-of-Work system’s power usage with and
without (IDLE) contract calls. In both cases, we can notice a succession of plateaus that
corresponds to the mining process’s energy consumption. The IDLE network consumes
on average 156 Watts, whereas the network executing contract calls consumes on average
160 Watts. The constant execution of contracts represents a 2% increase in its energy
consumption.

Figure 5.11 illustrates the same deployment on an Ethereum network using Proof-of-
Authority. The average power usage on the IDLE system is 63.9 Watts, which represents
40% of the power usage of our IDLE Proof-of-Work system. Running calls of our smart
contract raise the power usage of our system to an average of 72.1 Watts. This represents
an increase of 13.9%. We observe spikes in the power consumption in the deployment with

5. Each server is equiped with a sensor that measure its energy consumption

87

Understanding the usage and energy consumption of Ethereum smart contracts

0 50 100 150 200 250 300

68

88

108

128

148

168

188
PoW – IDLE

PoW – Bench contract

Time (seconds)

P
o

w
e

r
u

s
a

g
e

 (
W

a
tt

s
)

Figure 5.10 – Comparison power usage with and without contract execution on Ethereum
PoW

contract executions. These spikes are due to the processing of those smart contract calls.
No spikes are visible with the Proof-of-Work engine, as the overhead in power consumption
is too small there. In addition, no plateau is visible in the Proof-of-Authority deployments
because this mechanism does not involve any mining for securing the blockchain.

From these two experiments, we can conclude that smart contracts execution implies
more overhead, in proportion, in systems without Proof-of-Work. As the adoption of
non-mining blockchain systems will rise 6, one of the main energy-consuming parts of
blockchains will become the actual processing of smart contract calls and transactions.
That is why we estimate that research will focus on reducing the energy footprint of
transactions and smart contract execution. Once we have stated this fact, we should now
wonder what the actual energy consumed by smart contracts is.

5.3.2 Deriving energy consumption from gas consumption

We believe that research on smart contracts’ energy efficiency presents two benefits:
reducing overall blockchain energy consumption and reducing the financial cost implied by

6. In fact, the second version of Ethereum, in development, will include a Proof-of-Stake engine that
does not include any mining.

88

Understanding the usage and energy consumption of Ethereum smart contracts

0 50 100 150 200 250 300

60

70

80

90

100

110

120

PoA – IDLE

PoA – Bench contract

Time (seconds)

P
o
w

e
r

u
s
a
g
e
 (

W
a
tt
s
)

Figure 5.11 – Comparison power usage with and without contract execution on Ethereum
PoS

smart contracts transaction fees. Indeed, the gas consumption of a smart contract function
call depends on its complexity. The more computation it will do, the more (financially)
costly it will be. This section presents a simple way to estimate a smart contract’s energy
consumption based on its gas consumption. This estimation is a two-step process. First,
we need to calibrate a "gas to power" model on a given infrastructure. Then, we can use
this model to deduce the energy needed to execute smart contracts.

In order to use this model on real Ethereum data and obtain an estimation of the
energy used by real-world smart contract executions, we deployed an Ethereum node on a
server and connected this node to the public Ethereum network. We were able to download
all transactions emitted and validated during one year, from September 2019 to August
2020. The resulting dataset contains over 247 million transactions, including 140 million
smart contract calls.

Our experiments use the same cluster as the one described in subsection 5.3.1. On this
cluster, two smart contracts were deployed and executed to gather metrics to calibrate
our model. These two smart contracts consist implement a Quicksort algorithm and a
Mergesort algorithm (both are the same used in subsection 4.4.4). We evaluated the
energy consumption of these two smart contracts depending on the size of the input
array. The evaluation was conducted in situ, by deploying the smart contract on the

89

Understanding the usage and energy consumption of Ethereum smart contracts

Ethereum network and generating calls to the sorting algorithm with a random integer
array of a given size. We collected the average power consumption of all servers during
the experiment. For the Quicksort algorithm, the results are illustrated in Figure 5.12.

100 200 300 400 500 600 700 800 900 1000

0

500000

1000000

1500000

2000000

2500000

3000000

62

64

66

68

70

72

74

76

78

Gas

Avg. Power (Watts)

Array size

G
a

s
 u

s
a

g
e

A
v
e

ra
g

e
 p

o
w

e
r

(W
a

tt
s
)

Figure 5.12 – Quicksort - Gas consumption and average power depending on array size
input

We can notice that power and gas consumption are both correlated. Those two vari-
ables get a Pearson correlation coefficient of 0.99, indicating a linear correlation. Experi-
ments on Mergesort lead to the same conclusion, with a coefficient of 0.93.

Using this data, we generate a linear regression model to infer the energy consumption
of smart contracts. The estimation given by the model will be tied to the infrastructure
on which the model has been calibrated. However, this can give us an idea of what it
would cost to run smart contracts on this infrastructure. The model resulting from our
experiments is illustrated in Figure 5.13. On our infrastructure, the power needed to run
a smart contract consuming X gas is given by the following function:

Power(X) = X ∗ 0, 0000036756792144 + 66, 1136 (5.1)

In our real-world year long dataset, the median value of X (the gas consumed) for
smart contract calls is 54 842, with values going from 21 051 to 12 188 440. Based
on this power usage Power(X) (in Watts) and the time T (in seconds) needed to run

90

Understanding the usage and energy consumption of Ethereum smart contracts

a given contract, we can compute its energy consumption (in Joules) with a function
Energy(X) = Power(X)∗T . We recall that 1 Watt equals 1 Joule per second. In our ex-
ample, we run an average of 4164 smart contracts calls in 30 minutes for each experiment
for both algorithms, resulting in a 0.43 seconds contract call.

0 500000 1000000 1500000 2000000 2500000 3000000

60

62

64

66

68

70

72

74

76

78

Avg. Power (Watts) – Quicksort

Resulting model

Avg Power (Watts) – Mergesort

Gas

P
u
is

s
a
n

c
e
 M

o
y.

 (
W

a
tt
s
)

Figure 5.13 – Power depending on gas consumption

If we consider the difference in smart contract calls’ running time as negligible, we
can have a rough estimation of the energy needed to run smart contracts on our infras-
tructure. Estimation results are illustrated in Table 5.2. We estimate the average energy
consumption of smart contract calls to be around 29.47 Joules. These values correspond
to the energy consumed on a single Ethereum peer. As we will see in the rest of the pa-
per, smart contracts are executed by the entire network on each call, by each peer, which
multiplies its energy consumption.

5.3.3 Ethereum smart contract execution model

We have just seen that we could model Ethereum smart contracts’ energy consumption
according to their gas usage. Estimations in Table 5.2 only correspond to the energy
consumption of smart contracts on a single peer. As blockchain networks consist of large
networks of peers distributed across the world, we cannot model smart contracts’ energy
consumption by reasoning on a single node.

91

Understanding the usage and energy consumption of Ethereum smart contracts

Smart contracts Simple Txs
Min (Joules) 28,66 28,66
Max (Joules) 73,38 28,66
Average (Joules) 29,47 28,66
Standard deviation 4,49 0

Table 5.2 – Estimated power usage for Ethereum processed smart contracts and transac-
tion over the year

Indeed, even if transaction fees are paid only once by the caller, transactions and smart
contract calls are executed across the whole network. Figure 5.14 illustrates the replication
of smart contracts calls on a three nodes Ethereum Proof-of-Authority network 7. Each
of the three curves illustrates the power usage of each three servers. We emitted a call
to the smart contract sorting function. This contract call has been sent to Gros-42 only.
The first spike in energy usage at 163 seconds corresponds to the execution of this call on
Gros-42. This call is then transmitted to the two other nodes that will execute it. This

0 50 100 150 200 250

50

60

70

80

90

100

110

Gros-42

Gros-52

Gros-62

Time (seconds)

P
o
w

e
r

u
s
a
g
e
 (

W
a
tt
s
)

Figure 5.14 – Impact of smart contract calls replication on Ethereum network energy
usage

experiment shows us that three smart contract executions have resulted from a single call.
As blockchains assume an untrusted environment, each node has to execute transactions

7. Infrastructure and deployment protocol is the same as the one described in subsection 5.3.1. Smart
contract deployed is Quicksort.

92

Understanding the usage and energy consumption of Ethereum smart contracts

to verify their output. As a result, the bigger the network, the more expensive each
transaction and call will be.

5.3.4 The impact of replication on smart contracts execution
cost

Previous work in [55] has been done in order to estimate the number of peers in the
Ethereum network. When this study has been written (early 2018), the authors measured
15 454 peers in a single day. To obtain this estimation, the authors have modified an exist-
ing implementation of Ethereum to build a tool named NodeFinder. Main modifications
are that NodeFinder doesn’t have a maximum peer limit (it seeks to connect to as many
peers as possible) and it disconnects from peers right after the initial Ethereum handshake
(to limit the number of active connections). NodeFinder will also periodically reconnect to
known peers to ensure that those are still active. At the same time, the authors reported
that ethernodes.org (a website that present statistics on the Ethereum network) listed
4717 peers, meaning that NodeFinder outperformed existing methods by a factor of 2.3.

N
o
d
e
 C

o
u
n
t

21
. O

ct

4.
 N

ov

18
. N

ov

2.
 D

ec

16
. D

ec

30
. D

ec

13
. J

an

27
. J

an

10
. F

eb

24
. F

eb

9.
 M

ar

23
. M

ar

6.
 A

pr

20
. A

pr

4.
 M

ay

18
. M

ay

1.
 J
un

15
. J

un

29
. J

un

13
. J

ul

27
. J

ul

10
. A

ug

24
. A

ug

7.
S
ep

21
. S

ep

5.
 O

ct

19
. O

ct

2.
 N

ov

16
. N

ov

30
. N

ov

14
. D

ec

28
. D

ec

11
. J

an

25
. J

an

8.
 F

eb

22
. F

eb

8.
 M

ar

22
. M

ar

5.
 A

pr

19
. A

pr

3.
 M

ay

17
. M

ay

31
. M

ay

14
. J

un

0

2.5k

5k

7.5k

10k

12.5k

15k

Chart provided by ethernodes.org

Figure 5.15 – Evolution of the number of Ethereum nodes listed by ethernodes.org,
from October 2020 to June 2021 (source: ethernodes.org)

Figure 5.15 present the recent evolution of the number of active Ethereum nodes
counted by ethernodes.org. On June 11th 2021 (at the time of writing this study), the
number of peers presented on ethernodes.org was 4036. However, we can see a sudden
drop in the number of active peers in early March 2021, with a number of listed nodes
going from eleven thousand to less than five thousands. We estimate that this drop may

93

ethernodes.org
ethernodes.org
ethernodes.org
ethernodes.org
ethernodes.org

Understanding the usage and energy consumption of Ethereum smart contracts

be linked with Ethereum Berlin update, which occurred at the same time. We can’t be
sure if this update has affected the number of active peers (e.g.: nodes that refused the
update went to another network or were shut down by their owners) or if it has affected
the number of peers listed by the website (e.g.: due to a change in the node discovery
protocol). However, we can estimate that the real number of active peers may either be
equal or higher than 4036.

Figure 5.16 gives a rough estimation on the energy consumed by an average contract
call, depending on the number of nodes in the network. As each contract call is executed
on every node in the network (see subsection 5.3.3), we projected an energy consumption
what would be linear with the number of nodes.

Considering that the number of peers in Ethereum network was around four thousand
(number of nodes declared on ethernodes.org) – and with the strong assumption that
the smart contracts are executed in the same type of infrastructure as ours – we can
consider that the energy consumed by an average smart contract call ranges from 29.47
(estimation on single node) to 1 × 105 Joules (replication of the contract call on each
node). Multiplied by the 140 143 091 contract calls emitted over the year, it results in
a global energy consumption of 1.67 × 1013 Joules. This amount is in the same order of
magnitude that the energy of the maximum fuel a Airbus A380 can carry (source: https:
//en.wikipedia.org/wiki/Orders_of_magnitude_(energy)). Prior to the sudden drop
in early March 2021, we can estimate the energy consumption of a single average contract
call to be around 3× 105 Joules (replication on eleven thousand nodes).

5.3.5 Limitations

Our model is subject to two limitations. First, it only includes the execution cost of
smart contract calls, excluding the network communication energy cost. Second, it does
not take into account the long-lasting energy cost of blockchain transactions. As new
nodes will join the blockchain network, some may replay past transactions during their
synchronization to ensure that the data they download from other peers is correct. To
stay simple, our model only consider the execution of new transactions in active nodes.
However, more complex models to be helpful to give more accurate estimation on the
energy consumption of smart contracts.

94

ethernodes.org
https://en.wikipedia.org/wiki/Orders_of_magnitude_(energy)
https://en.wikipedia.org/wiki/Orders_of_magnitude_(energy)

Understanding the usage and energy consumption of Ethereum smart contracts

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

Energy consumed (Joules) for an average smart contract call

Estimation
(Kim et al.
2018)

Estimation
(ethernodes.
org - Kim et
al. 2018)

Estimation
(ethernodes.org June
2021)

N
u
m

b
e
r

o
f
n
o
d
e
s

Figure 5.16 – Global energy consumed by a smart contract call depending on the number
of nodes in the network

5.4 Conclusion

This chapter focused on the usage and energy consumption of Ethereum smart con-
tracts.

In a first part, we studied one year of Ethereum transaction to better understand how
important were smart contract in Ethereum’s traffic. This analysis resulted in several
observations. Firstly, smart contracts are at the heart of the Ethereum community: around
half of Ethereum traffic corresponds to contract calls, and tens of thousands new contracts
are created each month. A large part of those smart contract seems to be related to
decentralised finance and token management, as half of contract calls are destined to
ERC20 contracts. Secondly, even if many smart contracts are deployed each month, most
of those contracts will lead to little or no usage. On the basis of this fact, we studied in
chapter 6 the impact of having such a growing number of contracts and potential solutions.

In a second part, we measured and modelled the energy consumption of Ethereum
smart contracts based on their cost in gas. Taking into accounts the replication of smart
contracts execution, we provided rough estimations on the energy consumed by a contract
call on the Ethereum network depending on the number of nodes.

95

Chapter 6

REDUCING THE AMOUNT OF UNUSED

SMART CONTRACTS IN ETHEREUM

Smart contracts, scripts at the heart of blockchain-based applications, are meant to be
available forever once deployed. However, this property has a price. The amount of space
required to store new contracts keeps increasing. This increase impacts each participating
node’s performance and makes it inconvenient for low-end devices to participate in the
network. Among all contracts deployed in the blockchain, a vast majority will lead to
little if any usage. We demonstrated in subsection 5.2.5 that, in the course of one year,
70% of deployed contracts lead to no use. Unfortunately, unused contracts keep occupying
space on the blockchain. To tackle this issue, we propose a new protocol to identify and
delete unused contracts. Through simulation, based on Ethereum historical data, we show
that deletion of smart contracts after an inactivity period of 90 days could lead to a 66%
reduction in the number of contracts stored over a year.

Research presented in this chapter have resulted in a publication at the 26th IEEE
Symposium on Computers and Communications (ISCC 2021). This publication received
a "best student paper" award.

97

Reducing the amount of unused smart contracts in Ethereum

Contents
6.1 Introduction . 98
6.2 The impact of unused smart contract on Ethereum 99

6.2.1 Evaluation protocol . 99

6.2.2 The impact of unused smart contract on contract calls process-
ing time . 100

6.2.3 Current Ethereum state size . 102

6.3 A Time to live protocol for smart contracts 102
6.3.1 Overview . 102

6.3.2 Details . 103

6.3.3 Contract destruction and data retrieval 105

6.3.4 Discussion on determining parameters value 105

6.3.5 Discussions . 106

6.3.6 Protocol impact depending on TTL duration 106

6.4 Conclusion . 107

6.1 Introduction

Smart contracts are at the heart of the Ethereum community. Tens of new thousands of
contracts are deployed each month. However, the majority of those deployed contracts will
rarely, if ever, be used (see subsection 5.2.5). Unfortunately, even with no usage, every
contract have a continuous cost on the blockchain. Every contract deployment makes
the Ethereum State (the data structure storing every Ethereum account) bigger. As this
state is read and updated for every new transactions, its growth has an impact on block
processing time (see subsection 6.2.2). Therefore, it is necessary to specify protocols to
limit the growth of Ethereum State.

In this chapter, we challenge the "immortality" aspect of smart contracts by lifespan
mechanism to every deployed contracts. Through a new protocol (presented in subsec-
tion 6.3.1) applied to smart contracts, we provide an incentive for miners to identify
and remove unused contracts without altering the transaction history. This will ensure
that only active contracts will be stored in Ethereum State. Through simulation, based
on one year of Ethereum transactions data (see subsection 6.3.6), we illustrate potential

98

Reducing the amount of unused smart contracts in Ethereum

significant reduction in the number of contracts stored in the blockchain. For instance, re-
moving every contract after an inactivity period of 90 days could lead to a 66% reduction
of deployed contracts at the end of our one-year dataset.

To sum up, we present in this chapter the following contributions:
— A Time-To-Tive (TTL) protocol for smart contracts. After presenting this new

protocol, we discuss the impact of different protocol parameters and security con-
siderations. Eventually, we evaluate the potential impact of our proposition on the
number of active contracts on Ethereum, based on one year of real-world transac-
tions.

— Motivate research on managing the impact of unused smart contracts by giving
insight on the number of unused smart contracts and their impact on the network.
This analysis is based of transactions emitted on the Ethereum network over one
year.

6.2 The impact of unused smart contract on Ethereum

6.2.1 Evaluation protocol

After establishing in subsection 5.2.5 that a large part of deployed smart contracts
will rarely (if ever) be used, we aim to evaluate the impact of those unused contracts on
Ethereum block processing time (a key point in the overall network performances). To
measure this impact, we deployed a minimal two nodes Ethereum network (using Geth
v1.10.3, the primary open-source Ethereum implementation) on three testbeds:

— A two-nodes network hosted on a Grid5000 [5] server equipped with 2 x Intel Xeon
E5-2630 v3 CPU (8 cores/CPU), 128 GB of RAM and a 600 GB HDD, here called
G5K HDD

— A two-nodes network hosted on the same Grid5000 network but with a 200 GB
SSD, here called G5K SSD

— A two-nodes network hosted on a Raspberry Pi 4B equipped with a Quad-core
Cortex-A72 (ARM v8) CPU, 8 GB of RAM, here called RPi

Our experiment consists of measuring block processing time depending on the state
trie size. We define four collected metrics: 1) execution time (time spent to modify current
state with transactions in the received block); 2) validation time (time spent to verify if
the newly produced state is valid); 3) write time (time spent to write the new state

99

Reducing the amount of unused smart contracts in Ethereum

on disk); 4) insert time (the overall time spent to insert the received block, includes
the three others). We collected those metrics through the standard metrics collection of
Geth (the Geth Ethereum client emits performance metrics to a third-party database). In
order to isolate different kind of transactions, we define three loads: 1) transactions load
(generation of random Ether transfer transactions); 2) contract creations load (generation
of contract deployment transactions); 3) contract calls load (generation of contract calls).
The contract used for the two last load generations is an implementation of a basic Counter
manager contract (illustrated in Listing 6.1).

contract Counter {
uint256 public counter;
constructor() {

counter = 0;
}
function increment() public returns(uint256){

counter = counter + 1;
return counter;

}}

Listing 6.1 – A simple Counter contract for analysis purpose

6.2.2 The impact of unused smart contract on contract calls
processing time

Table 6.1 illustrates the impact of State size in Ethereum block processing time. In
nearly all cases, an increase in Ethereum State size leads to a rise in block processing
time (this increase is noted +X.XX% in the table). This increase is more significant for
the low-end Raspberry Pi platform (because of their lower performances). Among all four
collected metrics, an increase in Ethereum state size seems to impact block writing time
the most. Out of the three loads, the Ether transfer appears to be the "cheapest" one for
the "high performances" Grid5000 nodes. An Ether transfer only updates two balances
(creating a new account in the State Trie if the recipient is an unknown address). On the
contrary, contract deployments require more time to execute than a simple Ether transfer,
as it needs to create a new account in the State Trie, copy the contract’s bytecode and
execute the constructor function.

100

Reducing the amount of unused smart contracts in Ethereum
Et

he
r
tr
an

sfe
r

C
on

tr
ac
t
de
pl
oy

m
en
t

C
on

tr
ac
t
ca
ll

Pl
at
fo
rm

M
et
ric

0G
B

10
G
B

0G
B

10
G
B

0G
B

10
G
B

G
5K

H
D
D

Ex
ec
ut
io
n

4.
22

(0
.0
01
)

4.
41

(0
.0
01
)

(+
4.
5%

)
6.
19

(0
.0
02
)

6.
14

(0
.0
02
)

(-
0.
8%

)
7.
17

(0
.0
00
8)

7.
45

(0
.0
01
)

(+
3.
91
%
)

Va
lid

at
io
n

1.
24

(0
.0
00
3)

1.
31

(0
.0
01
)

(+
5.
65
%
)

0.
95

(0
.0
00
8)

0.
96

(0
.0
00
2)

(+
1.
05
%
)

1.
24

(0
.0
00
4)

1.
29

(0
.0
00
1)

(+
4.
03
%
)

W
rit

e
1.
71

(0
.0
02
)

2.
14

(0
.0
00
5)

(+
25
.1
5%

)
8.
67

(0
.0
18
)

13
.0
5
(0
.0
06
)

(+
50
.5
2%

)
1.
88

(0
.0
00
8)

2.
25

(0
.0
03
)

(+
19
.6
8%

)
In
se
rt

7.
38

(0
.0
02
)

9.
00

(0
.0
04
)

(+
21
.9
5%

)
21
.1
9

(0
.0
28
)

28
.2
6
(0
.0
09
)

(+
33
.3
6%

)
10
.5
5

(0
.0
01
)

11
.4
3
(0
.0
05
)

(+
8.
34
%
)

G
5K

SS
D

Ex
ec
ut
io
n

4.
13

(0
.0
01
)

4.
44

(0
.0
02
)

(+
7.
51
%
)

6.
05

(0
.0
04
)

6.
46

(0
.0
03
)

(+
6.
78
%
)

6.
51

(0
.0
05
)

7.
18

(0
.0
03
)

(+
10
.2
9%

)
Va

lid
at
io
n

1.
19

(0
.0
00
4)

1.
32

(0
.0
00
9)

(+
10
.9
2%

)
0.
92

(0
.0
00
1)

0.
97

(0
.0
00
2)

(+
5.
43
%
)

1.
11

(0
.0
00
6)

1.
26

(0
.0
00
8)

(+
13
.5
1%

)
W
rit

e
1.
87

(0
.0
02
)

2.
41

(0
.0
02
)

(+
28
.8
8%

)
8.
98

(0
.0
09
)

13
.3
7
(0
.0
05
)

(+
48
.8
9%

)
1.
69

(0
.0
01
)

2.
27

(0
.0
03
)

(+
34
.3
2%

)
In
se
rt

7.
43

(0
.0
04
)

8.
56

(0
.0
03
)

(+
15
,2
1%

)
21
.6
6

(0
.0
19
)

29
.1
5
(0
.0
05
)

(+
34
.5
8%

)
9.
59

(0
.0
07
)

11
.0
8
(0
.0
03
)

(+
15
,5
4%

)

R
Pi

Ex
ec
ut
io
n

13
.1
1

(0
.0
08
)

13
.0
9
(0
.0
12
)

(-
0.
15
%
)

11
.0
0

(0
.0
39
)

12
.2
2
(0
.0
05
)

(+
11
.0
9%

)
12
.7
4

(0
.0
04
)

14
.5
4
(0
.0
04
)

(+
14
.1
3%

)
Va

lid
at
io
n

1.
14

(0
.0
00
6)

1.
59

(0
.0
00
2)

(+
39
,4
7%

)
0.
89

(0
.0
00
6)

0.
94

(0
.0
00
2)

(+
5.
62
%
)

1.
04

(0
.0
00
3)

1.
12

(0
.0
00
4)

(+
7.
69
%
)

W
rit

e
1.
91

(0
.0
00
3)

14
,2
1
(0
.0
02
)

(+
64
3,
98
%
)

8.
41

(0
.0
23
)

23
.1
2
(0
.0
14
)

(+
17
4.
91
%
)

1.
82

(0
.0
00
9)

5.
08

(0
.0
03
)

(+
17
9.
12
%
)

In
se
rt

16
.8
9

(0
.0
08
)

49
.4
3
(0
.0
14
)

(+
19
2,
66
%
)

27
.5
3

(0
.0
81
)

49
.3
3
(0
.0
09
)

(+
79
.1
9%

)
16
.3
7

(0
.0
00
4)

21
.9
5
(0
.0
01
)

(+
34
.0
9%

)

Table 6.1 – Block processing time (in milliseconds) compared to state trie size on three
platforms (standard deviation between parenthesis)

101

Reducing the amount of unused smart contracts in Ethereum

6.2.3 Current Ethereum state size

When writing the paper corresponding to research presented here (Late May 2021),
contract codes occupy 1.95 GiB of space and State trie occupies 79.50 GiB on an Ethereum
node synchronized using Geth v1.10.3. Apart from impacting block processing time, state
growth limits the use of low-end devices as participating nodes. Indeed, to process trans-
actions, a node needs to store and process at least the state and recent blocs. As the State
grows because of new account creations, it becomes less convenient for low-end nodes to
host an Ethereum node.

6.3 A Time to live protocol for smart contracts

Due to a smart contract deployment’s relatively low financial cost 1, tens of thousands
of contracts are deployed each month (see Figure 5.6). Among all those contracts, only a
small portion will generate significant and long-term use. All the remaining unused con-
tracts, still stored in the state forever, participate in increasing the hardware performances
required to host an Ethereum node. This section proposes a potential solution to limit
the footprint caused by unused smart contracts by restricting their lifetime (otherwise
unlimited).

6.3.1 Overview

In order to limit the amount of deployed, yet unused, smart contracts on Ethereum, we
propose to add a notion of lifetime to every contracts. Once deployed, a smart contracts
can exist for a given time. This default lifetime, here called Time To Live is fixed by the
blockchain community.

After this default time has passed, any miner can request the contract destruction
and be rewarded for its action. A contract TTL can be extended in two ways: through
interaction (function call by transactions) or through payment.

The overall goal behind this protocol is to add a continuous financial cost for a smart
contract’s users that would reflect its hosting cost reality. This cost is manifested through
direct payment to maintain potentially inactive contracts or through transactions fees for

1. We estimate the average cost of contract deployment in our one-year dataset to be around 38 euros
with an average gas cost of 520 249 and a gas price of 32gwei (average gas cost from ethgasstation.info)

102

ethgasstation.info

Reducing the amount of unused smart contracts in Ethereum

active contracts. Unused contracts with no users willing to pay for its maintenance would
be deleted in order to remove the overhead generated otherwise.

Smart contracts are initially designed to be stored on the blockchain forever.
However, in Ethereum, contracts can implement a call to selfdestruct(address)
function that, once called, will destroy the contract and transfer funds in its
balance to the provided address. Contract destruction removes its account (ad-
dress, balance, bytecode) from the state trie and all stored variables from the
storage trie. The contract can’t be called anymore, and its address can be re-
assigned to a new contract. However, all transactions related to the destructed
contract still exist in the blockchain transaction history.
Chen et al. [10] investigated the use of selfdestruct in Ethereum smart con-
tracts. They found out that only 5.1% out of 54,739 analyzed contracts contain
a selfdestruct function. Through surveys addressed to smart contract develop-
ers, they defined six reasons for why most contracts does not include selfde-
struct. Those reasons include security and trust issues. Indeed, an incorrect
contract implementation could lead to an accidental or malicious use of self-
destruct. Chen et al. also define five reasons for the inclusion of selfdestruct
(e.g. to destroy a contract when security vulnerabilities are detected). How-
ever, numbers show that those reasons are not enough to incentive developers
to implement selfdestruct in their contracts.

An existing way to remove contracts on Ethereum

6.3.2 Details

We introduce the notations used in this section in Table 6.2

Notation Details
TTL Time after which a contract’s next rent can be redeemed.
TE Time Extension - Duration in seconds for which a contract TTL is

extended at interaction or extension payment.
P Price to pay to extend TTL by TE.
R Reward gave to miner for unused contract destruction.

Table 6.2 – Details of variables used in our protocol

103

Reducing the amount of unused smart contracts in Ethereum

At deployment time, a smart contract has an initial expiration date of TTL = TE.
Without any extension, miners will be able to request its destruction at time TTL and be
financially rewarded by R tokens. Those R tokens come from a fixed deposit made during
contract deployment by the account requesting the deployment. This new destruction
deposit will serve as an incentive for miners to purge unused contracts.

If any user interacts with this contract by sending a transaction to its address, the con-
tract’s TTL will be extended if its remaining lifetime is shorter than TE (see algorithm 1).
In other words, a contract is considered active TE seconds after its last call.

Algorithm 1: Function called for every interaction with a contract
Function ExtendTTL(addr):

if CurrentDate >= TTL(addr)− TE then
TTL(addr) = CurrentDate+ TE

end

To ensure that a contract will still be deployed on a certain date, regardless of its
activity, any participant can pay in advance for its hosting fees (see algorithm 2). By
paying N × P tokens, the participant will increase the contract’s TTL by N × TE.

Algorithm 2: Function called to increment a contract TTL in advance
Function PayForTTL(addr, tokens):

TTL(addr) = TTL(addr) + TE × (tokens mod P)

Once a contract’s expiration date has been reached, it become eligible for destruction.
Any miner will be able to emit a call for destruction transaction. This new kind of trans-
action will destroy a given contract if and only if it’s TTL is greater or equal to current
date. As for blocs’ timestamp, we allow here a certain lag between current date and TTL
as blockchain networks does not include any central clock. A call for destruction has two
effect: 1) destroy the specified contract and 2) financially reward the caller. This reward
of R tokens correspond to the destruction deposit made during the contract’s deployment.
In theory, anyone can send a call for destruction but in practice we consider that, as min-
ers have power on which transaction they include in new blocs, miners have a financial
incentive to manage contract destruction themselves.

In order not to flood the network with call for destruction transactions, we define its
input as a list of contracts to be deleted. This way, a miner can request the destruction of
unused contracts through batches. For a list of contracts to be destroyed, only contracts

104

Reducing the amount of unused smart contracts in Ethereum

available for destruction will actually be destroyed (others will be ignored). The reward
granted to the miner will correspond to the sum of each individual contract reward.

6.3.3 Contract destruction and data retrieval

Through a call for destruction transaction, a miner can destroy an unused contract. In
Ethereum, destructing a contract is equivalent to removing its account (address, balance,
bytecode) and related storage from the state trie. However, a contract destruction does
not impact a blockchain transaction history. Transactions related to a contract could still
be retrieved and replayed after its destruction for later use (e.g. for later analysis). The
impact of our proposed protocol lie in State trie management.

6.3.4 Discussion on determining parameters value

As we described our protocol for smart contracts with Time To Live, we have presented
several protocol parameters (detailed in Table 6.2). We did not specified any fixed values
as we wanted to describe a general protocol that could be adapted to any blockchain
network. We will now discuss on some considerations regarding the choice of specific
values.

Setting TE

TE represents the unit of time used for contract lifetime and its payment. A value
too high would reduce the gains on state management, taking longer to purge unused
contracts. On the other hand, a value too low could be too intrusive and lead to the
destruction of contract that could be still used. We detail this trade-off in subsection 6.3.6.

Setting P

We believe that paying in advance should be roughly equal to basic transaction fees. If
set too high, this could create an incentive for the creation of undesired "uptime services"
that could maintain contracts through interactions for cheaper (< P) fees.

Setting R

A higher destruction deposit serves as a better incentive for miners to purge unused
contracts but makes it more expensive for developers to deploy new contracts. However,

105

Reducing the amount of unused smart contracts in Ethereum

too high a value could be an incentive for undesired behaviour (see section 6.3.5).

6.3.5 Discussions

Potential attacks

With this proposition, we enable the destruction of deployed (unused) contracts by
miners once their TTL has been outdated. The main potential attack we conceive would
be the censorship of some contract-related transactions by miners in order to reach a con-
tract’s TTL, destroy this contract and redeem the destruction reward. We believe that the
plausibility of such an attack lies in the byzantine fault tolerance of the blockchain consen-
sus algorithm. Indeed, as long as enough miners stay honest, contract-related transaction
will be still processed. Moreover, this potentially undesired behaviour could be limited by
avoiding setting the destruction reward R too high.

Implementing the protocol

Integrating our protocol to existing blockchains like Ethereum would require modifi-
cations of the blockchain itself, resulting in a hardfork (a new version of the blockchain
protocol that won’t be compatible with the previous one).

In the case of Ethereum, the existing selfdestruct operation that enable a contract
to be deleted from the state has to be called from the contract’s code. To leverage this
functionality, the Ethereum protocol has to be modified to add a new type of transactions
that enable the call of selfdestruct on a contract (even if the function was not included in
the contract’s code) if it’s lifespan is ended. Information’s regarding the remaining living
time of a contract could be stored in the state along with existing contract’s data.

6.3.6 Protocol impact depending on TTL duration

As stated in subsection 6.3.4, TE is the principal protocol parameter that will deter-
mine the duration of an inactivity period before determining that a contract is eligible for
destruction.

Figure 6.1 illustrates the evolution of the number of deployed contracts during our one-
year dataset and potential gains depending on TE value. In this evaluation, we consider
that a contract will be destructed right after an inactivity period of TE days. We do
not consider any payment in advance in order to extend contract lifespan. As expected, a

106

Reducing the amount of unused smart contracts in Ethereum

small TE (e.g 10 days) leads to significant reduction in the number of deployed contracts
(90% reduction, from 945 116 contracts at the end of the year to 85 485). An larger value
of TE still brings significant impact (77% reduction for TE = 60 days) while limiting
overhead for contract users.

20
19

-0
9

20
19

-1
0

20
19

-1
1

20
19

-1
2

20
20

-0
1

20
20

-0
2

20
20

-0
3

20
20

-0
4

20
20

-0
5

20
20

-0
6

20
20

-0
7

20
20

-0
8

20
20

-0
9

0

100 000

200 000

300 000

400 000

500 000

600 000

700 000

800 000

900 000

1 000 000

Number of contracts (No TTL)

NB contracts (TE = 90 Days)

NB contracts (TE = 60 Days)

NB contracts (TE = 30 Days)

NB contracts (TE = 10 Days)

Figure 6.1 – Evolution of the number of contracts depending on TE value

Concerning the potential overhead of this proposed protocol, Table 6.3 illustrates the
number of contracts called after an inactivity period of TE days. We see that, in this
one year dataset, only 7.1% (66 709) of all 945 116 contracts have been used after a 10
days inactivity period. This percentage drops to 1.1% (10 236) for a 90 days inactivity
period. Among all contracts that have been called after a certain period of inactivity, only
a small minority have lead to significant usage. For instance, 90% of contracts used after
an inactivity period of 10 days have been called at most 10 times after this inactivity
period. Users of such contracts that could be used after an inactivity period greater than
TE could pay in advance to ensure that their contract will be still deployed for later use.

6.4 Conclusion

This chapter tackles the issue of the ever-growing space required by unused smart
contracts. As we saw in subsection 5.2.5, a large majority of deployed smart contracts will
lead to limited usage. In subsection 5.2.5, we determined that 70% of deployed contracts

107

Reducing the amount of unused smart contracts in Ethereum

TE (in Days) 10 30 60 90
Number contract called after inactivity period of TE days 66 709 36 731 18 226 10 236
% Total (945 116) 7.1 3.9 1.9 1.1
Number of calls after inactivity period of TE days (max) 358 274 254 218
Number of calls after inactivity period of TE days (average) 6 4 3.5 3
Number of calls after inactivity period of TE days (median) 2 2 1 1
Number of calls after inactivity period of TE days (90th percentile) 10 7 6 5

Table 6.3 – Number of contracts called after an inactivity period

were never called. Half of the remaining 30% won’t be called a week after their deploy-
ment. This ever-growing amount of unused contracts is not without consequences for the
Ethereum community. Indeed, each contract deployment participates in the increase of
Ethereum state size. This increase impacts the performances of the network and makes
impractical the use of low-end devices as participating nodes.

In order to identify and remove unused smart contracts, we propose a novel "Time-To-
Live" protocol for smart contracts. This protocol incentives miners to identify and remove
unused contracts from the blockchain. We simulated that, over the course of one year,
removing contracts after an inactivity period of 90 days could lead to the reduction of the
number of contracts in Ethereum state by 66%.

108

Chapter 7

CONCLUSION

This chapter first summarise the contributions presented in this thesis, providing an-
swer to the three questions presented in the introduction. Then, we discuss potential leads
for future work.

Contents
7.1 Achievements . 109
7.2 Perspectives . 111

7.2.1 Impact of layer-two solutions on blockchains footprint 111

7.2.2 Modelling the energy consumption of smart contracts 112

7.2.3 Designing blockchains with temporary data 113

7.1 Achievements

This thesis aimed to better understand the cost of smart contracts deployed on blockchain
platforms. To this end, we focused our research work on the Ethereum platform. We
provided analysis based on real Ethereum history and experiments deployed on real in-
frastructure, using the Grid’5000 research testbed and a local Raspberry Pi cluster. To
conduct our experiments, we proposed a novel framework for the deployment and perfor-
mances analysis of blockchains called BCTMark. Research presented in this manuscript
permit us to answer the questions proposed in the introduction.

How important are smart contracts in blockchain networks?
Although the academic literature and industrial activity would tend to show the use

of smart contracts in a lot of different domains, only a few papers analysed the real usage
of smart contracts on a public blockchain network. In section 5.2, by downloading and
analysing one year of Ethereum transaction history, we provided readers insights on the
importance of smart contracts in the Ethereum traffic. Our investigations shown that
smart contracts calls indeed occupy a significant part in Ethereum traffic. In our dataset,

109

half of the processed transactions were intended for contract calls. A large part of those
calls were targeting contracts implementing an ERC20 fungible token interface. This fact
tends to show how important token management is for the Ethereum community. Our
investigations also illustrated an important fact: a majority of deployed contracts will lead
to little or no usage. We have shown in subsection 5.2.5 that 70% of contracts deployed
in our dataset were never called. Among the remaining, only a few induced significant
usage. Starting from this point, we proposed in chapter 6 to investigate the consequences
of storing so many unused contracts.

Can we estimate and model the energy cost of these contracts?We have seen a
general tendency for blockchain platforms to quit Proof-of-Work based consensus system,
often for performances reasons. As a consequence, we estimate that it is now important
for researcher to focus on the energy aspect of decentralised applications themselves (as
discussed in subsection 5.3.1). A first step is to study and model the energy consumption of
smart contracts. In section 5.3, we proposed a model to estimate the energy consumption
of Ethereum smart contracts based on their cost in gas. To this end, we deployed and
measured the energy cost of smart contracts on physical infrastructure. Based on this
model and on several estimations on the size of the Ethereum network, we estimated the
rough energy cost of smart contracts calls on Ethereum.

What is the cost generated by the immutability of deployed contracts? A
key promise of Ethereum is the immutability of data inserted in blocs. Once deployed,
smart contracts are supposed to be available forever on the platform. However, as the
popular adage says, "There is no such thing as a free lunch". We studied in section 6.2
the performances impact induced by the growing number of contracts in Ethereum. Our
experiments show an increase in the block processing time as the Ethereum state grows.
This state growth is induced by the creation of new accounts, including contract-based
accounts. Therefore, the identification and suppression of unused contracts would lighten
the block processing phase for all peers. We proposed in section 6.3 a protocol to add
a lifetime to all deployed contracts. The idea is simple: each new contract come with a
defined lifespan. Each calls to a contract will increase its lifespan. Once the lifespan of
a contract is exceeded due to a period of no use, miners are financially incentive to call
for the destruction of this contract. This proposition seeks to challenge the "immortality"
aspect of smart contracts to produce a "lighter" blockchain.

To conduct our experiments on real testbeds, we also proposed in chapter 4 a novel
framework for the deployment and performances analysis of blockchains. Indeed, as the

110

blockchain ecosystem grows in complexity, the need for standard, performances analy-
sis tools become more important. A few existing tools addresses this issue, but each of
those were lacking important aspects required for scientific experiments. To this end, we
proposed BCTMark, a framework that addresses the several phases in the performances’
analysis of blockchains: deployment, load generation, metrics management and network
emulation. To illustrate the capacities of BCTMark, we deployed and analysed the per-
formances of three blockchain networks on different testbeds.

Research presented in this thesis lead to the publication of papers in a national con-
ference, two international conferences and in a journal.

7.2 Perspectives

Contributions presented in this thesis could be extended in several directions.

7.2.1 Impact of layer-two solutions on blockchains footprint

As mentioned in this manuscript, blockchain solutions often suffer from performances
and footprint issues like low throughput, high energy cost due to consensus algorithm
choice or a high replication factor, an increasing need for storage. . . As a potential solution
to those issues, an ecosystem of protocols called layer two has emerged. Layer two protocols
are built on top of existing blockchains (now considered as layer one). The goal of such
solutions is to move computation and / or data off-chain and only store and process
critical data on the blockchain.

Payment channels (e.g., the Lightning network [86]) are an example of layer two so-
lutions. When a set of users want to exchange a high number of transactions, payment
channels can be used to process transactions while generating a minimal amounts of traf-
fic on the blockchain. Payment channels typically generates only two transactions on the
blockchain: one at the opening of the channel (freezing a certain amount of money for
each user to generate initial balances) and one when closing the channel (redistributed
the funds to each users, depending on their final balance). All exchanges between those
two transactions are processed by the payment channel without any transactions on the
blockchain. In this case, both data and computations are stored off-chain. Payment chan-
nels are often used for micropayments: as they generate a minimal amount of blockchain
transactions, they minimise the cost of transaction fees.

111

Although those protocols are often presented as solutions to reduce the footprint and
increase the performances of blockchains, we didn’t find any experimentations measuring
their impact. Using BCTMark, we could deploy more complex scenarios to evaluate the
different impact (in terms of performances and energy cost) and trade-off induced by
the introduction of layer two systems in blockchains. For instance, we could deploy a
set of experiments with a blockchain network and a growing set of payment channels to
measure how this layer two system can affect the overall blockchain energy consumption.
Moreover, payment channels are far from being the only layer two system for blockchains.
Comparing how different proposal affect the energy consumption of blockchains could
help communities to build efficient blockchain networks and researcher to improve existing
proposals.

7.2.2 Modelling the energy consumption of smart contracts

Section 5.3 presented a model to estimate the energy consumption of Ethereum smart
contracts depending on their cost in gas. We inferred a global energy cost by multiplying
the energy consumption of an individual node by the number of nodes (as every node will
execute each contract calls).

However, our intuition is that this produces a low estimate of a contract’s call en-
ergy cost. As new nodes will enter the blockchain network, they can repeat its history.
Therefore, a contract call may not be executed only once on each nodes present in the
network at his emission but it can also be executed in the future when new nodes will
replay history to ensure the integrity of the blockchain data they are downloading.

Future work on modelling the energy cost of Ethereum contract calls would be three-
fold. First, we could verify the intuition detailed in the previous paragraph. Then we
could model the execution of Ethereum contracts and integrate this model into existing
blockchain simulators like Blocksim [40] or Simblock [2]. Both simulators could benefit
from energy models that could help in the design of more frugal blockchain protocols.
Finally, we could model the impact of different layer two protocols to better understand
the impact of different network architectures (e.g. a blockchain on its own or a blockchain
using payment channels).

112

7.2.3 Designing blockchains with temporary data

Regarding the evaluation of the impact of the growing number of Ethereum contracts,
we could measure the energy footprint potentially induced by state growth. As illustrated
in section 6.2, the creation of new contracts leads to performance’s impact on Ethereum’s
block processing time. Due to a lack of time, we didn’t include any energy considerations
in our experiments. Quantifying the impact of the state growth on the energy consumption
of Ethereum nodes could help to better understand the cost of "immortal" contracts.

The protocol proposed in section 6.3 still has room for improvement. First, we could
investigate the possibility to create "immortal" contracts through on chain governance.
Indeed, our proposition does not let the possibility for a blockchain community to define
core contracts that would stay available regardless their usage. Blockchains like Tezos[47]
include a mechanism to let the community decide and vote on next features and protocol
improvement. Seeking inspiration on such "on-chain" governance mechanism could help
define a proper balance between the current "immortal contracts" situation and our propo-
sition. Then, we could study the possibility to dynamically determine the TTL extension
value TE, based on account creation rate, in order to limit contract suppression if state
size stabilises. Finally, we could investigate how this protocol could be adapted to Ex-
ternally Owned Accounts (accounts that does not belong to smart contracts). It appears
hazardous to delete accounts that could belong to human users, as they could be using
their account for long-time investment.

Such advances could help to build the foundation of a new framework for low-footprint
blockchains.

113

BIBLIOGRAPHY

[1] Ansible, Ansible is Simple IT Automation, https://www.ansible.com/.

[2] Yusuke Aoki et al., « Simblock: A blockchain network simulator », in: IEEE IN-
FOCOM 2019-IEEE Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS), IEEE, 2019, pp. 325–329.

[3] Applying cryptotechnologies to Trade Finance, https://www.abe-eba.eu/media/
azure/production/1549/applying-cryptotechnologies-to-trade-finance.
pdf, Accessed: 2021-09-16.

[4] Adam Back et al., « Hashcash-a denial of service counter-measure », in: (2002).

[5] Daniel Balouek et al., « Adding Virtualization Capabilities to the Grid’5000 Testbed »,
in: Cloud Computing and Services Science, ed. by Ivan I. Ivanov et al., vol. 367,
Communications in Computer and Information Science, Springer International
Publishing, 2013, pp. 3–20, isbn: 978-3-319-04518-4, doi: 10.1007/978-3-319-
04519-1_1.

[6] Vitalik Buterin, A Theory of Ethereum State Size Management, https://hackmd.
io/@vbuterin/state_size_management, Accessed: 2021-10-15.

[7] Michael J Cahill, Uwe Röhm, and Alan D Fekete, « Serializable isolation for snap-
shot databases », in: ACM Transactions on Database Systems (TODS) 34.4 (2009),
p. 20.

[8] Hyperledger Caliper, https://www.hyperledger.org/projects/caliper, Ac-
cessed: 2019-12-6.

[9] Cardano, cardano.org, Accessed: 2021-10-15.

[10] Jiachi Chen et al., « Why do smart contracts self-destruct? investigating the self-
destruct function on ethereum », in: arXiv preprint arXiv:2005.07908 (2020).

[11] Ting Chen et al., « Under-optimized smart contracts devour your money », in:
2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), IEEE, 2017, pp. 442–446.

115

https://www.ansible.com/
https://www.abe-eba.eu/media/azure/production/1549/applying-cryptotechnologies-to-trade-finance.pdf
https://www.abe-eba.eu/media/azure/production/1549/applying-cryptotechnologies-to-trade-finance.pdf
https://www.abe-eba.eu/media/azure/production/1549/applying-cryptotechnologies-to-trade-finance.pdf
https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1007/978-3-319-04519-1_1
https://hackmd.io/@vbuterin/state_size_management
https://hackmd.io/@vbuterin/state_size_management
https://www.hyperledger.org/projects/caliper
cardano.org

[12] Mohammad Jabed Morshed Chowdhury et al., « A comparative analysis of dis-
tributed ledger technology platforms », in: IEEE Access 7 (2019), pp. 167930–
167943.

[13] Anton Churyumov, « Byteball: A decentralized system for storage and transfer of
value », in: URL https://byteball. org/Byteball. pdf (2016).

[14] Ryan Cole and Liang Cheng, « Modeling the Energy Consumption of Blockchain
Consensus Algorithms », in: 2018 IEEE International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart
Data (SmartData), IEEE, 2018, pp. 1691–1696.

[15] Brian F Cooper et al., « Benchmarking cloud serving systems with YCSB », in:
Proceedings of the 1st ACM symposium on Cloud computing, ACM, 2010, pp. 143–
154.

[16] Corda - Open-source blockchain platform for business, corda.net, Accessed: 2021-
10-15.

[17] Cryptokitties, https://www.cryptokitties.co/.

[18] Stefano De Angelis et al., « PBFT vs proof-of-authority: Applying the CAP theo-
rem to permissioned blockchain », in: (2018).

[19] Christian Decker and Roger Wattenhofer, « A fast and scalable payment network
with bitcoin duplex micropayment channels », in: Symposium on Self-Stabilizing
Systems, Springer, 2015, pp. 3–18.

[20] Richard Dennis, Gareth Owenson, and Benjamin Aziz, « A temporal blockchain: a
formal analysis », in: 2016 International Conference on Collaboration Technologies
and Systems (CTS), IEEE, 2016, pp. 430–437.

[21] Monika Di Angelo and Gernot Salzer, « A survey of tools for analyzing Ethereum
smart contracts », in: 2019 IEEE International Conference on Decentralized Ap-
plications and Infrastructures (DAPPCON), IEEE, 2019, pp. 69–78.

[22] Tien Tuan Anh Dinh et al., « Blockbench: A framework for analyzing private
blockchains », in: Proceedings of the 2017 ACM International Conference on Man-
agement of Data, ACM, 2017, pp. 1085–1100.

[23] Lars Dittmar and Aaron Praktiknjo, « Could Bitcoin emissions push global warm-
ing above 2° C? », in: Nature Climate Change 9.9 (2019), pp. 656–657.

116

corda.net
https://www.cryptokitties.co/

[24] Alexandre Dolgui et al., « Blockchain-oriented dynamic modelling of smart con-
tract design and execution in the supply chain », in: International Journal of
Production Research 58.7 (2020), pp. 2184–2199.

[25] Zhongli Dong et al., « Dagbench: A performance evaluation framework for dag dis-
tributed ledgers », in: 2019 IEEE 12th International Conference on Cloud Com-
puting (CLOUD), IEEE, 2019, pp. 264–271.

[26] John R Douceur, « The Sybil Attack », in: Peer-to-Peer Systems, ed. by Peter
Druschel, Frans Kaashoek, and Antony Rowstron, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002, pp. 251–260, isbn: 978-3-540-45748-0.

[27] John R Douceur, « The sybil attack », in: International workshop on peer-to-peer
systems, Springer, 2002, pp. 251–260.

[28] DPOS Consensus Algorithm - The Missing White Paper, https://steemit.com/
dpos/@dantheman/dpos-consensus-algorithm-this-missing-white-paper,
Accessed: 2021-10-15.

[29] Cynthia Dwork and Moni Naor, « Pricing via processing or combatting junk mail »,
in: Annual international cryptology conference, Springer, 1992, pp. 139–147.

[30] E-Estonia, https://e-estonia.com/.

[31] Enoslib, Enoslib : A framework to build experimental frameworks on various plat-
forms, https://github.com/BeyondTheClouds/enoslib, Github repository.

[32] EOS, eos.io, Accessed: 2021-10-15.

[33] Ethereum Wiki - Ethash, https://github.com/ethereum/wiki/wiki/Ethash.

[34] Ethereum Wiki - Ethash - DAG, https://github.com/ethereum/wiki/wiki/
Ethash-DAG.

[35] Ethereum Wiki - Ethash Design Rationale, https://github.com/ethereum/
wiki/wiki/Ethash-Design-Rationale.

[36] Medvedev Evgeny, Ethereum-ETL, https : / / github . com / blockchain - etl /
ethereum-etl, 2020.

[37] Ittay Eyal et al., « Bitcoin-ng: A scalable blockchain protocol », in: 13th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 16), 2016,
pp. 45–59.

117

https://steemit.com/dpos/@dantheman/dpos-consensus-algorithm-this-missing-white-paper
https://steemit.com/dpos/@dantheman/dpos-consensus-algorithm-this-missing-white-paper
https://e-estonia.com/
https://github.com/BeyondTheClouds/enoslib
eos.io
https://github.com/ethereum/wiki/wiki/Ethash
https://github.com/ethereum/wiki/wiki/Ethash-DAG
https://github.com/ethereum/wiki/wiki/Ethash-DAG
https://github.com/ethereum/wiki/wiki/Ethash-Design-Rationale
https://github.com/ethereum/wiki/wiki/Ethash-Design-Rationale
https://github.com/blockchain-etl/ethereum-etl
https://github.com/blockchain-etl/ethereum-etl

[38] Vogelsteller Fabian and Buterin Vitalik, EIP-20: ERC-20 Token Standard, https:
//eips.ethereum.org/EIPS/eip-20, Accessed: 2020-12-04.

[39] Hyperledger Fabric, https://github.com/hyperledger/fabric, Accessed: 2019-
12-6.

[40] Carlos Faria and Miguel Correia, « BlockSim: blockchain simulator », in: 2019
IEEE International Conference on Blockchain (Blockchain), IEEE, 2019, pp. 439–
446.

[41] Josselin Feist, Gustavo Grieco, and Alex Groce, « Slither: a static analysis frame-
work for smart contracts », in: 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB), IEEE, 2019,
pp. 8–15.

[42] Eduardo Castelló Ferrer, « The blockchain: a new framework for robotic swarm
systems », in: Proceedings of the Future Technologies Conference, Springer, 2018,
pp. 1037–1058.

[43] Ethereum Foundation, A Next-Generation Smart Contract and Decentralized Ap-
plication Platform, https://github.com/ethereum/wiki/wiki/White-Paper,
whitepaper, 2013.

[44] Wood Gavin, Ethereum: a secure decentralised generalised transaction ledger, https:
//ethereum.github.io/yellowpaper/paper.pdf, yellowpaper, 2020.

[45] Go-Ethereum - Official Go implementation of the Ethereum protocol, https://
github.com/ethereum/go-ethereum, Accessed: 2019-12-6.

[46] Sanjay Ghemawat and Jeff Dean, LevelDB is a fast key-value storage library writ-
ten at Google that provides an ordered mapping from string keys to string values.
https://github.com/google/leveldb, 2021.

[47] LM Goodman, « Tezos: A self-amending crypto-ledger position paper », in: Aug 3
(2014), p. 2014.

[48] Grafana - The open observable platform, https://grafana.com/, Accessed: 2019-
12-6.

[49] Tharaka Hewa, Mika Ylianttila, and Madhusanka Liyanage, « Survey on blockchain
based smart contracts: Applications, opportunities and challenges », in: Journal
of Network and Computer Applications (2020), p. 102857.

118

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://github.com/hyperledger/fabric
https://github.com/ethereum/wiki/wiki/White-Paper
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://github.com/google/leveldb
https://grafana.com/

[50] Michał R Hoffman, Luis-Daniel Ibáñez, and Elena Simperl, « Toward a Formal
Scholarly Understanding of Blockchain-Mediated Decentralization: A Systematic
Review and a Framework », in: Frontiers in Blockchain 3 (2020), p. 35.

[51] Iexec, IExec: Blockchain-Based Decentralized Cloud Computing, https://iex.ec/
wp-content/uploads/pdf/iExec-WPv3.0-English.pdf, whitepaper, 2018.

[52] InfluxDB - Scalable datastore for metrics, events, and real-time analytics, https:
//github.com/influxdata/telegraf, Accessed: 2019-12-6.

[53] Don Johnson, Alfred Menezes, and Scott Vanstone, « The elliptic curve digital
signature algorithm (ECDSA) », in: International journal of information security
1.1 (2001), pp. 36–63.

[54] Aggelos Kiayias et al., « Ouroboros: A provably secure proof-of-stake blockchain
protocol », in: Annual International Cryptology Conference, Springer, 2017, pp. 357–
388.

[55] Seoung Kyun Kim et al., « Measuring ethereum network peers », in: Proceedings
of the Internet Measurement Conference 2018, 2018, pp. 91–104.

[56] Sunny King, « Primecoin: Cryptocurrency with prime number proof-of-work », in:
July 7th 1.6 (2013).

[57] Sunny King and Scott Nadal, « Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake », in: self-published paper, August 19 (2012), p. 1.

[58] Nir Kshetri, « Can blockchain strengthen the internet of things? », in: IT profes-
sional 19.4 (2017), pp. 68–72.

[59] Protocol Labs, Filecoin: A Decentralized Storage Network, https://filecoin.
io/filecoin.pdf, whitepaper, 2017.

[60] Leslie Lamport, Robert Shostak, and Marshall Pease, « The Byzantine Generals
Problem », in: ACM Transactions on Programming Languages and Systems 4.3
(1982), pp. 382–401, issn: 01640925, doi: 10.1145/357172.357176, url: http:
//portal.acm.org/citation.cfm?doid=357172.357176.

[61] Noureddine Lasla et al., « Green-PoW: An Energy-Efficient Blockchain Proof-of-
Work Consensus Algorithm », in: arXiv preprint arXiv:2007.04086 (2020).

119

https://iex.ec/wp-content/uploads/pdf/iExec-WPv3.0-English.pdf
https://iex.ec/wp-content/uploads/pdf/iExec-WPv3.0-English.pdf
https://github.com/influxdata/telegraf
https://github.com/influxdata/telegraf
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://doi.org/10.1145/357172.357176
http://portal.acm.org/citation.cfm?doid=357172.357176
http://portal.acm.org/citation.cfm?doid=357172.357176

[62] Colin LeMahieu, « Nano: A feeless distributed cryptocurrency network », in: Nano
[Online resource]. URL: https://nano. org/en/whitepaper (date of access: 24.03.
2018) (2018).

[63] LO3 Energy - Empowering communities through localized energy solutions, https:
//lo3energy.com/innovations/, Accessed: 2021-09-16.

[64] Locust - A modern load testing framework, https://locust.io/, Accessed: 2019-
12-6.

[65] Dumitrel Loghin et al., « Blockchain goes green? An analysis of blockchain on
low-power nodes », in: arXiv preprint arXiv:1905.06520 (2019).

[66] Ikuo Magaki et al., « Asic clouds: Specializing the datacenter », in: 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA), IEEE,
2016, pp. 178–190.

[67] David Mazieres, « The stellar consensus protocol: A federated model for internet-
level consensus », in: Stellar Development Foundation 32 (2015).

[68] Hass McCook, « An order-of-magnitude estimate of the relative sustainability of
the Bitcoin network », in: A critical assessment of the Bitcoin mining industry,
gold production industry, the legacy banking system, and the production of physical
currency 2 (2014), p. 25.

[69] Esther Mengelkamp et al., « Designing microgrid energy markets: A case study:
The Brooklyn Microgrid », in: Applied Energy 210 (2018), pp. 870–880.

[70] Mininet: An instant Virtual Network on your laptop (or other PC), http : / /
mininet.org/, Accessed: 2021-06-15.

[71] F Montevecchi et al., « Energy-efficient cloud computing technologies and policies
for an eco-friendly cloud market », in: European Commission, final study report,
Vienna, report commissioned by the Directorate-General for Communications Net-
works, Content and Technology (2020).

[72] Camilo Mora et al., « Bitcoin emissions alone could push global warming above 2
C », in: Nature Climate Change 8.11 (2018), pp. 931–933.

[73] Roman Mühlberger et al., « Foundational oracle patterns: Connecting blockchain
to the off-chain world », in: International Conference on Business Process Man-
agement, Springer, 2020, pp. 35–51.

120

https://lo3energy.com/innovations/
https://lo3energy.com/innovations/
https://locust.io/
http://mininet.org/
http://mininet.org/

[74] Michael Mylrea and Sri Nikhil Gupta Gourisetti, « Blockchain for smart grid re-
silience: Exchanging distributed energy at speed, scale and security », in: 2017
Resilience Week (RWS), IEEE, 2017, pp. 18–23.

[75] Satoshi Nakamoto, « Bitcoin: A Peer-to-Peer Electronic Cash System », in: Journal
for General Philosophy of Science 39.1 (2008), pp. 53–67, issn: 09254560, doi:
10.1007/s10838-008-9062-0, arXiv: 43543534534v343453.

[76] Neo Smart Economy, neo.org, Accessed: 2021-10-15.

[77] Jiacheng Ni and Xuelian Bai, « A review of air conditioning energy performance in
data centers », in: Renewable and sustainable energy reviews 67 (2017), pp. 625–
640.

[78] Karl J O’Dwyer and David Malone, Bitcoin mining and its energy footprint, 2014.

[79] Openethereum,Openethereum, https://github.com/openethereum/openethereum,
2020.

[80] Haochen Pan et al., « BBB: A Lightweight Approach to Evaluate Private Blockchains
in Clouds », in: GLOBECOM 2020-2020 IEEE Global Communications Confer-
ence, IEEE, 2020, pp. 1–6.

[81] Parity - Fast and feature-rich multi-network Ethereum client. https://github.
com/paritytech/parity-ethereum, Accessed: 2019-12-6.

[82] Jonathan Pastor and Jean Marc Menaud, « SeDuCe: a Testbed for Research on
Thermal and Power Management in Datacenters », in: 2018 26th International
Conference on Software, Telecommunications and Computer Networks (SoftCOM),
IEEE, 2018, pp. 1–6.

[83] Gareth W Peters and Efstathios Panayi, « Understanding modern banking ledgers
through blockchain technologies: Future of transaction processing and smart con-
tracts on the internet of money », in: Banking beyond banks and money, Springer,
2016, pp. 239–278.

[84] Andrea Pinna et al., « A massive analysis of ethereum smart contracts empirical
study and code metrics », in: IEEE Access 7 (2019), pp. 78194–78213.

[85] PoET 1.0 Specification, https://sawtooth.hyperledger.org/docs.

[86] Joseph Poon and Thaddeus Dryja, The bitcoin lightning network: Scalable off-chain
instant payments, 2016.

121

https://doi.org/10.1007/s10838-008-9062-0
https://arxiv.org/abs/43543534534v343453
neo.org
https://github.com/openethereum/openethereum
https://github.com/paritytech/parity-ethereum
https://github.com/paritytech/parity-ethereum
https://sawtooth.hyperledger.org/docs

[87] Serguei Popov, « The tangle », in: ().

[88] Prometheus - From metrics to insight, https://prometheus.io/, Accessed: 2019-
12-6.

[89] Provable - blockchain oracle service, enabling data-rich smart contracts, https:
//provable.xyz/, Accessed: 2021-09-29.

[90] Consensys Quorum, consensys.net/quorum/, Accessed: 2021-10-15.

[91] Michel Rauchs et al., « Distributed ledger technology systems: A conceptual frame-
work », in: Available at SSRN 3230013 (2018).

[92] Team Rocket, Snowflake to avalanche: A novel metastable consensus protocol fam-
ily for cryptocurrencies, 2018.

[93] Rootstock, rsk.co, Accessed: 2021-10-15.

[94] Sara Rouhani and Ralph Deters, « Security, performance, and applications of smart
contracts: A systematic survey », in: IEEE Access 7 (2019), pp. 50759–50779.

[95] Fahad Saleh, « Blockchain without waste: Proof-of-stake », in: Available at SSRN
3183935 (2019).

[96] Vikram Saraph and Maurice Herlihy, « An Empirical Study of Speculative Concur-
rency in Ethereum Smart Contracts », in: arXiv preprint arXiv:1901.01376 (2019).

[97] The shift project, IMPACT ENVIRONNEMENTAL DU NUMÉRIQUE : TEN-
DANCES À 5 ANS ET GOUVERNANCE DE LA 5G, https://theshiftproject.
org/wp-content/uploads/2021/03/Note-danalyse_Numerique-et-5G_30-
mars-2021.pdf, Accessed: 2021-10-15.

[98] Ali Shoker, « Sustainable blockchain through proof of exercise », in: 2017 IEEE
16th International Symposium on Network Computing and Applications (NCA),
IEEE, 2017, pp. 1–9.

[99] Bart Smaalders, « Performance anti-patterns », in: ACM Queue 4.1 (2006), pp. 44–
50.

[100] SOMN - Decentralized Fog Computing Platform, https://sonm.com, Accessed:
2021-09-16.

[101] Steem, Steem - An incentivized, blockchain-based, public content platform, https:
//steem.com/steem-whitepaper.pdf, whitepaper, 2016.

122

https://prometheus.io/
https://provable.xyz/
https://provable.xyz/
consensys.net/quorum/
rsk.co
https://theshiftproject.org/wp-content/uploads/2021/03/Note-danalyse_Numerique-et-5G_30-mars-2021.pdf
https://theshiftproject.org/wp-content/uploads/2021/03/Note-danalyse_Numerique-et-5G_30-mars-2021.pdf
https://theshiftproject.org/wp-content/uploads/2021/03/Note-danalyse_Numerique-et-5G_30-mars-2021.pdf
https://sonm.com
https://steem.com/steem-whitepaper.pdf
https://steem.com/steem-whitepaper.pdf

[102] Stellar - An open network for money, stellar.org, Accessed: 2021-10-15.

[103] Inc Storj Labs, Storj: A Decentralized cloud storage network framework, https:
//storj.io/storjv3.pdf, whitepaper, 2018.

[104] Péter Szilágyi, EIP-225: Clique proof-of-authority consensus protocol, https://
eips.ethereum.org/EIPS/eip-225, 2017.

[105] Paolo Tasca et al., « Energy Footprint of Blockchain Consensus Mechanisms Be-
yond Proof-of-Work », in: arXiv preprint arXiv:2109.03667 (2021).

[106] Michael Bedford Taylor, « The evolution of bitcoin hardware », in: Computer 50.9
(2017), pp. 58–66.

[107] Telegraf - The plugin-driven server agent for collecting and reporting metrics.
https://github.com/influxdata/influxdb, Accessed: 2019-12-6.

[108] Tendermint, tendermint.com, Accessed: 2021-10-15.

[109] « Untangling Blockchain: A Data Processing View of Blockchain Systems », in:
IEEE Transactions on Knowledge and Data Engineering 30.7 (2018), pp. 1366–
1385, issn: 10414347, doi: 10.1109/TKDE.2017.2781227.

[110] Rafael Brundo Uriarte and Rocco DeNicola, « Blockchain-based decentralized cloud/-
fog solutions: Challenges, opportunities, and standards », in: IEEE Communica-
tions Standards Magazine 2.3 (2018), pp. 22–28.

[111] Harald Vranken, « Sustainability of bitcoin and blockchains », in: Current opinion
in environmental sustainability 28 (2017), pp. 1–9.

[112] Walmart, IBM and Tsinghua University Explore the Use of Blockchain to Help
Bring Safer Food to Dinner Tables Across China, https://newsroom.ibm.com/
2016-10-19-Walmart-IBM-and-Tsinghua-University-Explore-the-Use-of-
Blockchain-to-Help-Bring-Safer-Food-to-Dinner-Tables-Across-China,
Accessed: 2021-09-16.

[113] Qin Wang et al., « SoK: Diving into DAG-based blockchain systems », in: arXiv
preprint arXiv:2012.06128 (2020).

[114] Waves, waves.tech, Accessed: 2021-10-15.

[115] Entriken William et al., EIP-721: ERC-721 Non-Fungible Token Standard, https:
//eips.ethereum.org/EIPS/eip-721, Accessed: 2020-12-04.

123

stellar.org
https://storj.io/storjv3.pdf
https://storj.io/storjv3.pdf
https://eips.ethereum.org/EIPS/eip-225
https://eips.ethereum.org/EIPS/eip-225
https://github.com/influxdata/influxdb
tendermint.com
https://doi.org/10.1109/TKDE.2017.2781227
https://newsroom.ibm.com/2016-10-19-Walmart-IBM-and-Tsinghua-University-Explore-the-Use-of-Blockchain-to-Help-Bring-Safer-Food-to-Dinner-Tables-Across-China
https://newsroom.ibm.com/2016-10-19-Walmart-IBM-and-Tsinghua-University-Explore-the-Use-of-Blockchain-to-Help-Bring-Safer-Food-to-Dinner-Tables-Across-China
https://newsroom.ibm.com/2016-10-19-Walmart-IBM-and-Tsinghua-University-Explore-the-Use-of-Blockchain-to-Help-Bring-Safer-Food-to-Dinner-Tables-Across-China
waves.tech
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721

[116] Karl Wüst and Arthur Gervais, « Do you need a blockchain? », in: 2018 Crypto
Valley Conference on Blockchain Technology (CVCBT), IEEE, 2018, pp. 45–54.

[117] Dylan Yaga et al., « Blockchain technology overview », in: arXiv preprint arXiv:1906.11078
(2019).

[118] Michel Zade et al., « Is bitcoin the only problem? a scenario model for the power
demand of blockchains », in: Frontiers in Energy Research 7 (2019), p. 21.

[119] Julian Zawistowski et al., The Golem Project, https://golem.network/crowdfunding/
Golemwhitepaper.pdf, whitepaper, 2016.

[120] Fan Zhang et al., « {REM}: Resource-efficient mining for blockchains », in: 26th
{USENIX} Security Symposium ({USENIX} Security 17), 2017, pp. 1427–1444.

[121] Zibin Zheng et al., « An overview on smart contracts: Challenges, advances and
platforms », in: Future Generation Computer Systems 105 (2020), pp. 475–491.

124

https://golem.network/crowdfunding/Golemwhitepaper.pdf
https://golem.network/crowdfunding/Golemwhitepaper.pdf

Titre : Comprendre la consommation énergétique des blockchains : un regard sur les contrats
intelligents

Mot clés : Chaînes de blocs, contrats intelligents, consommation énergétique, système distri-

bués, systèmes pairs à pairs

Résumé : Les systèmes de chaînes de blocs
sont des registres répliqués dans un réseau
pair à pair. Elles ont connu un développement
rapide depuis quelques années en s’illustrant
dans de nombreux domaines d’activités. En
permettant le traitement et la sauvegarde de
données dans un contexte distribué et Byzan-
tin, ces technologies ont le potentiel de modi-
fier de nombreux secteurs. Par exemple, dans
le cadre de la finance décentralisée, les cryp-
tomonnaies se développement comme une
alternative aux monnaies fiduciaires en pro-
posant un système de paiement dépourvu
de tiers de confiance. Cependant, une cer-
taine inquiétude vis-à-vis de l’impact environ-
nemental des chaînes de blocs a émergé en
parallèle de leur développement. En particu-
lier, de nombreuses recherches ont démon-
tré le coût énergétique important des chaînes

basées sur les preuves de travail. Dans cette
thèse, nous proposons de contribuer à l’étude
expérimentale du coût énergétique des so-
lutions logicielles basées sur les chaînes de
blocs. Face à l’enrichissement progressif de
l’écosystème lié aux chaînes de blocs, nous
proposons BCTMark, un nouvel outil de dé-
ploiement et d’évaluation des performances
des chaînes de blocs. Partant de cet outil,
nous concentrons notre étude sur l’impact des
contrats intelligents sur la chaîne de blocs
Ethereum. D’une part, nous proposons un
modèle pour l’estimation du coût énergétique
des contrats intelligents développé pour Ethe-
reum. D’autre part, nous proposons un nou-
veau protocole pour l’identification et l’élimina-
tion des contrats non utilisés dans le but de
proposer des chaînes de blocs plus frugales
en calculs et espaces de stockages.

Title: Understanding the energy consumption of blockchains: a focus on smart contracts

Keywords: blockchain, smart contracts, energy consumption, distributed systems, peer to peer

systems

Abstract: Blockchain systems are ledgers
distributed in a peer-to-peer network. They
have been developing rapidly over the past
few years and have been used in many do-
mains. By enabling the processing and stor-
age of data in a distributed and Byzantine
context, these technologies have the poten-
tial to change many sectors. For instance,
in the context of decentralized finance, cryp-
tocurrencies are developing as an alternative
to fiat currencies by offering a payment sys-
tem without relying on a trusted third party.
However, some concerns about the environ-
mental impacts of blockchains have emerged
in parallel with their development. In particular,
many studies have demonstrated the high en-
ergy cost of proof-of-work based blockchains.

In this thesis, we propose to contribute to
the experimental study of the energy cost of
blockchain-based software solutions. Facing
the progressive enrichment of the blockchain
ecosystem, we propose BCTMark, a new tool
for deploying and evaluating the performance
of blockchains. Based on this tool, we focus
our study on the impact of smart contracts on
the blockchain Ethereum. On the one hand,
we propose a model for estimating the en-
ergy cost of smart contracts developed for
Ethereum. On the other hand, we propose a
new protocol for the identification and elimina-
tion of unused contracts in order to propose
blockchains that are more frugal in computa-
tion and storage space.

	Introduction
	Motivations
	Contributions
	Publications
	Thesis overview

	Background
	Questioning the environmental impact of Blockchain technologies
	The energy consumption of ICT
	The development of blockchain technologies
	Why study the energy footprint of blockchains?

	Blockchains
	An overview on blockchain technologies
	A note on Ethereum's data storage
	Chain fork choice
	Differences between public and private Blockchains
	Blockchain consensus algorithms
	Decentralised applications with Smart contracts

	Conclusion

	State of the art
	A literature review on the energy consumption of blockchain technologies
	The energy footprint of Proof-of-Work mining
	Alternatives to mining

	Evaluate the performances of blockchain systems
	Analysing the uses and energy consumption of smart contracts
	Data suppression on blockchains
	Conclusion

	A new framework for benchmarking blockchain technologies
	Introduction
	Contribution to state of the art
	BCTMark - Technical architecture & usage
	Usage
	Architecture

	Validation experiments
	Deployment of blockchains on two different testbeds
	Comparison of CPU usage of three blockchain systems
	Experiments Reproducibility
	Performance analysis of Smart contracts

	Conclusion

	Understanding the usage and energy consumption of Ethereum smart contracts
	Introduction
	Understanding the current usage of Ethereum smart contracts
	Data extraction protocol
	Smart contracts calls in Ethereum traffic
	Gas consumption of Ethereum smart contracts
	New smart contract deployment
	Quantifying the number of unused smart contracts

	Measuring and modeling the energy consumption of Ethereum smart contracts
	Smart contracts footprint on non-Proof-of-Work systems
	Deriving energy consumption from gas consumption
	Ethereum smart contract execution model
	The impact of replication on smart contracts execution cost
	Limitations

	Conclusion

	Reducing the amount of unused smart contracts in Ethereum
	Introduction
	The impact of unused smart contract on Ethereum
	Evaluation protocol
	The impact of unused smart contract on contract calls processing time
	Current Ethereum state size

	A Time to live protocol for smart contracts
	Overview
	Details
	Contract destruction and data retrieval
	Discussion on determining parameters value
	Discussions
	Protocol impact depending on TTL duration

	Conclusion

	Conclusion
	Achievements
	Perspectives
	Impact of layer-two solutions on blockchains footprint
	Modelling the energy consumption of smart contracts
	Designing blockchains with temporary data

	Bibliography

