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CHAPTER 1

Introduction: Robustness and Complexity

This thesis tries to assess the complexity of some robust statistical tasks. In the introduction,
the meaning and the use of this overall goal will be analysed and hopefully precised. First the
two main terms at stake, robustness and complexity, will be successively discussed. Then the five
works that make up this thesis will be presented, situated with respect to the general context,
and their respective contributions and limitations will be exposed.
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1.5.3 Finding algorithms for estimation in any norms . . . . . ... ... ... 26

1.1 What is Robust Statistics?

The main goal of a statistician is to extract useful information from observational data, for instance
inferring patterns, identifying causal effects, in a word learning about a given phenomenon from
the data. Most of the time the statistician has to make some assumptions about the given data
in order to get some guarantees that her procedures will indeed lead to trustworthy information.
The most common assumptions are :

— that the data are independant and identically distributed, meaning that they are produced
from the same process, and independently from one another, they are different realisations
of the same random variable,

— this random variable is assumed by the statistician to have some given property (for instance
a finite expected value),

— that the distribution of the random variable from which the observations are supposed
to be drawn belongs to a specific family of distributions determined beforehand by the
statistician (for instance, the family of normal distributions) and called the statistical
model. When making this kind of assumption, the statistics at stake are called parametric
because in this framework, the different distributions of the given family are often labeled
with a parameter (and can by entirely described with this parameter), so searching for the
right distribution among the family boils down to searching for the right parameter.

We note that these assumptions are increasingly strong. One could say that the overall goal
of Robust Statistics as a field is to question these assumptions, to study if it is possible to give
some guarantees under weaker and more realistic assumptions. To be more precise, the field of
robust statistics tries to study

— what happens to classical non-robust procedures when the assumptions under which they
were created are loosened,

— what are the minimal assumptions one has to make on the data so that it is theoretically
possible to retrieve some information from those,

— and how to find procedures that still hold when making minimal assumptions.

Hampel et al. (1986) gives the following summary: “robust statistics is a body of knowledge
relating to deviations from idealized assumptions in statistics.”

1.1.1 Why Robust Statistics?

One might ask what is the use of such a theory. It has been largely justified by a rich literature
pioneered in the sixties by Tukey (1960), Huber (1964) and Hampel (1973), and numerous
grounds for such a theory are exposed with great details in a number of books (see for instance
Huber (1981), Hampel et al. (1986), Huber and Ronchetti (2009), or Maronna et al. (2006a)).
We recall and illustrate two of the main arguments they develop, which can serve as starting
points to understand the contributions of this thesis.
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Gross error. That is a point made by both Huber (1981) and Hampel et al. (1986): the samples
collected in physical, natural or social science contain “good data”, that are well described by the
model of the statistician, but they are mixed with a fraction of “bad data”, also called gross error
or blunders - typically in the range between 1% and 10% according to Huber (1981) for dataset
of that time (that might have changed in magnitude with internet data and declarative data).
These errors can come from mistakes in copying, in computation, inattention of the experimenter,
and so on, they could also come from an adversary trying to lure the statistican. These bad data
or “outliers” are not well described by the statistician model, and can be orders of magnitude
away from the phenomenon which she wants to quantify.

For instance, a part of the data can be expressed in the wrong unit: when asked in on-line
surveys about their monthly salary, a fraction of the survey respondents rather give their annual
salary. Such mistakes can be very costly: one can think about the failed launch of the Mars
Climate Orbiter in 1999 by NASA that was caused by some key data being expressed in non-
metric units. Classical estimators are very sensitive to this kind of gross error: for instance,
consider a series of observations of the height of people, with 99 observations expressed in meters
and 1 observation mistakenly expressed in centimeter. The empirical mean of this series taken
carelessly could lead to conclude that the average human size is around 3.3 meters high, showing
that it only takes a small fraction of bad data to get a very wrong idea about the phenomenon
at stake when using non-robust estimators.

Gross error are a violation of the first classical assumption that all data are produced from the
same process. When there are gross errors, all observations do not have the same informational
value. Most of classical statistical procedures only present guarantees when the data are i.i.d.
(independant and identically distributed), thus the presence of blunders is a first argument to
justify the need to develop new robust procedures.

Heavy-tail data. Another argument can be found to give grounds for the need of a robust
theory: the presence of heavy-tail phenomena. Heavy tails are characteristic of phenomena where
there is a significant probability of observing a single huge value, that is order of magnitudes away
from other. In contrast to gross error, this huge value is not a mistake and contains information
about the phenomenon at stake. Insurance losses, financial returns, social contagion, the retweet
activity of a tweet are all examples of heavy-tailed phenomena, see Resnick (2007) for more
examples and detailed explanations. The following example illustrates the problem raised by
heavy-tailed data. Take a random variable X that is equal to 0 with probability 999/1000, and
1000 with probability 1/1000, so that its mean value is 1 (and its standard deviation around 32).
When given 10 observations of this random variable, one has about a 1% chance of seeing the
value 1000 which is an extra-ordinary event. When observing such an event among the 10 data,
the statistician desiring to estimate the mean value of the phenomenon faces a dilemma: should
she take into account this observation? Including this observation, the empirical mean of the
observations is 100, which is a few standard deviation away from the true mean. Excluding this
observation before taking the empirical mean allows to get a better estimate of the mean in this
case, but on what ground should the statistician discard some values? Robust theory tries to
answer such questions.

Even if this heavy-tail argument has mainly been explored in the robust literature for the
last decade following the pioneer work of Catoni (2012), it is already mentioned in Huber (1981).
The presence of heavy-tail data breaks the assumption, very common in statistics, that the
observations are drawn from an underlying Gaussian (or sub-Gaussian) distribution; that is a
distribution with good concentration properties.
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What about outlier rejection? From the examples presented above, one could be under
the impression that it is enough to pre-process the data to remove outliers before applying
standard procedures, rather than finding new robust procedures. The example of heavy-tail
data shows that it is not always simple to tell when an observation is an outlier, and it becomes
even more complicated when the observations are multi-dimensional, as we will see throughout
this thesis. While in some cases outlier rejection might be a good idea, it is often complicated
to implement (see Diakonikolas et al. (2019b) for instance) and providing guarantees for such
procedures requires the theoretical tools developed by robust statistics.

1.1.2 Models for gross errors

In order to give guarantees about their procedures, statisticians working on robust statistics have
to make some assumptions about the data, even if these are weaker and more realistic than the
classical ones. In this part we present the main models adopted by robust statistics and precise
the framework that will be used throughout this thesis.

Huber’s contamination model. The first generation of statisticians working on robust
statistics proposed to take into account gross errors with the following model, which is sometimes
called Huber’s contamination model (presented and studied for instance in Huber (1981)): the
observations are supposed to be i.i.d. realizations drawn from a random variable with cumulative
distribution function

F=(1—-¢Fy+eH,

where Fy belongs to a parametric family known in advance by the statistician (for instance
the Gaussian family) but where H can be any cumulative distribution function, and where €
represents the contamination rate, the assumed fraction of gross error (for which an upper bound
is often assumed to be known). Most of the work of early robust statistics was concerned with
finding estimators that were efficient in this framework, that is somehow close to a parametric
framework. This model is still an active research area, see for instance Chen et al. (2017). We
note that a lot of work dealing with this first model focus on providing asymptotic results,
together with non-asymptotic properties such as the breakdown point. In contrast, the point
of view adopted in this thesis is solely non-asymptotic, inspired by recent trends in robust
statistics initiated by Catoni (2012) and by works from the computer science community such as
Diakonikolas et al. (2016).

Adversarial contamination model. The model that we deal with in this work is more general
than Huber’s contamination model and is sometimes referred to as “adversarial contamination”.
It is difficult to trace back, but it seems to have been described and popularised by the computer
science community, for instance in Diakonikolas et al. (2016). The samples are generated from the
following process: First, N samples are drawn independently from some unknown distribution.
Then, an adversary is allowed to look at the samples and arbitrarily corrupt an e-fraction of
them before turning the corrupted data to the statistician. The setting can be described more
formally as follows :

Setting 1.1. There exists N i.i.d random variables distributed like X denoted (X;)N., in R
which are independent. These variables are not directly observed by the statistician, they are first
given to an “adversary” who is allowed to modify up to |eN | of these variables before returning
a modified dataset (X;)I¥., to the statistician.

The only information that the statistician have is that there exists a (possibly random, possibly
data-dependant) set O such that, for any i € O°, X; = X;. The only assumption on the set O
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concerns its size: the statistician knows that |O| < |eN| (the statistician may in some cases not
even know e and adapt to it). The statistician does not know which data has been modified, so
the set O° is unknown. The statistician tries to acquire some knowledge (such as the mean or
the variance) about the random variable X from the corrupted dataset (X;)N,.

In this setup, not only can outliers be correlated to each other and to inliers, but inliers can
also be correlated to one another (because the adversary can choose which original samples to
keep and in doing so correlating the samples that he keeps, for instance only keeping the largest
samples when they are real-valued), which can not be the case in the Huber’s contamination
model.

This model generalizes Huber’s one, and it has been used, as Huber’s one, to deals with
deviations from a parametric model, for instance in Du et al. (2017), Diakonikolas et al. (2019c¢)
or Cheng et al. (2019b), where the inliers are supposed to follow a Gaussian distribution. In
contrast this thesis, along with a modern line of work in robust learning opened by Catoni (2012),
deals with non-parametric statistics (we often try to estimate the mean of a sample distribution),
with a particular emphasis put on heavy-tail data, as will be explained below. The adversarial
contamination model is used here in a non-parametric way, the general form of the distribution
that the inliers follow is not assumed to be known in advance.

1.1.3 Dealing with heavy-tail data

The two models described above (Huber and adversarial contaminations) allow to deal with gross
errors, but they do not directly address the problems raised by heavy-tail phenomena. Let us
get back to our example, where a statistician wants to estimate the mean value of the random
variable X that equals either 0 (with high probability) or 1000 (with small probability), when
given N = 10 observations. If she uses the usual empirical mean, which is the standard tool in
classical statistics to estimate a mean, she will be “close” to the true value with probability 99%
and drastically wrong (~ 30) with probability 1%, a small but not negligible probability. Catoni
(2012) raises the following questions: when given a “precision radius” r, what is the smallest
failure probability 6(r) such that it is possible to find an estimator that lies with probability
1 — §(r) within a radius r of the true mean value of the random variable? In our example,
for a radius ~ o for instance, is it possible to get a better failure probability than 1%? What
estimation procedures can lead to such an estimator? And what are the minimal assumptions
one has to make on the distribution of the random variable?

What assumptions on the underlying distribution? To capture the heavy-tail phe-
nomenon, we want to obtain statistical properties without making either boundedness or gaussian
assumptions on the data (or any other strong concentration assumptions), and it is in this sense
that we will call our estimators robust to heavy-tails. What weaker assumption should we make
on the underlying distribution of the data, that would be weak enough not to limit severely the
applicability of the results, and strong enough to lead to interesting and significant results? This
question is investigated in details in Devroye et al. (2016): authors show that, in order to reach
a rate that resembles the one asymptotically reached with the central limit theorem, rate which
can be proven to be “essentially optimal” and that will be discussed in greater details below, the
minimal assumption to make on the data is the existence of a finite second moment: E(X?) < oo.
Like a large majority of the robust literature that deals with heavy-tail data, the better part of
this thesis complies with this analysis (Chapter 3, 4 and 5)

Setting 1.2. The random variable X from which are sampled the N wvariables (Xz){\;l mn R
has a mean p, which we try to estimate, and a (possibly unknown) second order moment
o? = E[(X — p)?].
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Most of the work presented deals with the case where the underlying distribution has a
-sometimes known, sometimes unknown- second-order moment. We however note that some
recent papers investigate cases where the second moment does not even exists and is replaced by
moments of order 1+ « with a < 1 for instance Cherapanamjeri et al. (2020b). The end of this
thesis also presents new settings that does not require the existence of a finite second moment
(in parts of Chapter 6 and 7), using as inspiration other asymptotic results than the Central
Limit Theorem.

The empirical mean. Let us come back to our example, and to the insufficiency of the
empirical mean. If we are given NV independent realizations of a random variable with mean p
and variance o2, Chebyshev’s inequality tells that the empirical mean /i satisfies, with probability
greater than 1—6, |fi—u| < 0/v/N§. Catoni (2012) states that this rate is sharp for the empirical
mean in general, so one can not give a better inequality for the empirical mean that holds for
all distributions with a variance. So for the empirical mean r(§) = o/v/N§, or equivalently
§(r) = 02/(Nr?). This bound rapidly deteriorates for small values of §: if one wants to get
high-probability results, for instance with 6 ~ 1072, with about a thousand data points, one gets
a radius of ~ 10 o. Is it possible to do better, can one find procedures that gives smaller radius?
This question was raised and answered in Catoni (2012).

Sub-Gaussian estimation. Catoni (2012) states that the rate attained by the empirical mean
can indeed be drastically improved. The rate he proposes is inspired by asymptotic theory.
Indeed, when the data have a finite second moment o, the central limit theorem guarantees the
empirical mean has Gaussian tails, asymptotically, without making further assumptions on the
data, so, when N — oo,

(1.1)

P(\ﬂ—ukM) -,

VN

where ¢ is the cumulative distribution function of the standard normal distribution. Catoni
(2012) also proves that this asymptotic rate cannot be improved: no non-asymptotic estimator
can achieves better-than-Gaussian tails for all distributions in a class that is “large enough” (that
contains at least all Gaussian distributions with a given variance ¢2). The main finding from
Catoni (2012) is that it is possible to find non-asymptotic estimators reaching the rate (1.1), up
to universal multiplicative constants.

Note that the rate 0¢~1(1 — §/2)y/N obtained in (1.1) is the rate achieved by the empirical
mean when the data is a N-sample of i.i.d. Gaussian variables. We thus say that an estimator
achieves a subgaussian rate if it achieves the rate (1.1) up to multiplicative constants. In a sense,
we want our estimators to be as good as if the data were Gaussian, even when the real sample is
heavy tailed (it is only assumed to have a second moment).

Remark 1.1. We know that ¢~1(1 — §/2) < \/2In(2/0), and for small 5, ¢~1(1 —5/2) ~
V2In(2/0). As our results are all formulated up to multiplicative constants', we use the explicit
formulation C\/In(1/0) in most of our results.

Coming back to the example, the rate (1.1) with 6 ~ 107 and N ~ 1000 gives a radius of
around 0.150, and the crucial logarithmic dependence allows it to deteriorate drastically slower
than the rate obtained by Chebychev’s inequality when ¢ goes to 0.

n this thesis, we have not tried to optimize the constants, even though it is an important and interesting
problem, see Section 1.5.
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Catoni (2012) builds a subgaussian estimator 0 implicitly, as a solution of the following
equation:
> ¢ (X —0)] =0,
i

where « is a carefully chosen positive real, and v is a bounded influence function such that
Y(z) ~ x when x is close to 0. In contrast, this thesis mainly studies an other way to build such
subgaussian estimator, the Median-Of-Mean (MOM) heuristic.

The Median-Of-Mean heuristic. This approach which was first described in Nemirovsky
and Yudin (1983) and Jerrum et al. (1986), and has received a lot of attention in the statistical
and machine learning communities in the last decade, for instance in Bubeck et al. (2013), Lerasle
and Oliveira (2011), Devroye et al. (2016), Minsker and Strawn (2017) or Minsker (2015). This
approach was originally designed to build estimators that are robust to heavy-tail data in various
settings (see Alon et al. (1999), Jerrum et al. (1986) and Birgé (1984) for instance). It can
be defined as follows: we first randomly split the data into K blocks Bj, ..., Bx of equal-size
m = |N/K| (if K does not divide N, we just remove some data), K being chosen of order
log(1/6) with ¢ the failure probability desired by the statistician. We then compute the empirical
mean within each block: for k=1,... K,

_ 1
Xp=— )Y X,
miEBk

The final estimator fix is the median of the latter K empirical means. The first paper that
formally proves that this estimator has sub-Gaussian tails is Devroye et al. (2016).

Theorem 1.1 (Devroye et al. (2016)). The estimator ix has subgaussian deviations: with

probability > 1 — e K/32
R 02K
i — p| < VST

The main idea lies in the switch from an unbounded variable to a bounded one thanks to
the median operator. Indeed, to know whether the median is within an interval I, we compute
Z = Eszl 1%, o2 when this quantity is greater than K /2, the median lies in I. The quantity
Z, unlike the empirical mean, is a sum of bounded variable, thus the Hoeffding inequality (see
Hoeffding (1963)) states that it is close to its mean with exponentially low failure probability,
leading to the subgaussian rate in Theorem 1.1.

Note that this procedure does not hold simultaneously for all §: one has to compute a different
estimator for each value of §. This issue can be overcome using Lepskii adaptation method
presented in Lepskii (1990), as explained in greater details in Chapter 3.

This technique allows to fully handle the one-dimensional case, and to deal with both heavy-
tail data and adversarial contamination. However, the rapid development of machine learning
and the growing amount of available high-dimensional data has led many statisticians to focus on
high-dimensional tasks. In these settings, the given data are not observations of a one-dimensional
random variable, but rather observations of a d-dimensional random vector, with d > 1. The
field of robust statistics has taken up this issue, raising new questions: what rate can we reach in
this case? What role does the dimension play? How to change and adapt the procedures for
this setting? We note that the extension of the one dimensional result is not trivial since there
exist several possible generalizations of the median in multi-dimensional set-ups (for instance the
geometric median, see Minsker (2015) for a definition, or the coordinate-wise median).
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1.2 High-dimensional Robustness

1.2.1 The subgaussian rate in high dimension: decoupling complexity and
deviation.

What rates is it possible to reach in high-dimensional setups? One can still try to reach a rate
inspired by the asymptotic normality of the empirical mean of observations with finite second
moment, which is the rate achieved by the empirical mean when the data is a N-sample of
i.i.d. Gaussian variable, that we will still call subgaussian rate. We compute this rate using
Borell-TIS’s inequality (see (Ledoux, 2001, Theorem 7.1)): if Zy, Zs, ..., Zy are independent
identically distributed Gaussian variables N'(u,1d), it follows from this inequality that with
probability at least 1 — 4,

HZN—MHQZ sup (Zn — p,v) <E sup (Zn — p,v) +v4/2log(1/6),

vl <1 vl <1

where v = supj, |, <1 E(Zn — u, v>2. It is elementary knowledge about multivariate Gaussian

distributions that Esup,, <1{Zn — p,v) < \/d/N and v = /1/N, which leads to the following
subgaussian rate (where C' is an absolute constant),

o=, = (i P52 = 12

Whether it was possible to reach such a rate with heavy-tail and corrupted data was an open
problem during a few years. The first attempts to adapt the Median-Of-Mean heuristic, using for
instance the geometric median (also called Fermat point) instead of the one-dimensional median,
and presented in Minsker (2015) or in Hsu and Sabato (2016), led to estimators fi achieving with
probability larger than 1 — 6,

dlog(1/6)

h— yll? < 229\ 7) 1.
A = pl® = —F— (1.3)
where || - || is the canonical Euclidean norm on R?. This bound is proportional to log(1/d), thus

the estimators are somehow robust to heavy tails, but they do not quite achieve the subgaussian
rate. Indeed, in the subgaussian rate, the complexity term d, which captures how involved is the
ambient space, and the failure-dependant factor log(1/0) are not multiplied, but added instead,
and are thus in a way decoupled from each other.

After a few years, the seminal paper of Lugosi and Mendelson (2019¢) described the first
estimator to reach the subgaussian rate only assuming finite second moment, using the Median-
Of-Mean heuristic coupled with a tournament procedure. An idea is to make a clever use of a
generalization of the Hoeffding inequality used in Theorem 1.1, called the Bounded Difference
inequality (also called McDiarmid or Hoeffding/Azuma inequality), that we recall here (see for
instance Theorem 6.2 in Boucheron et al. (2013)):

Theorem 1.2 (McDiarmid’s inequality). Consider independent random variables X1, - , X, €
E and a mapping ¢ : E™ — R. If for all i € [1,n] and for all x1,--- ,xp, x}

(2

|’l,Z)(ZL‘1,"‘ y Lyt 7xn)_w('x17"' ax'/ia"' 7$n)| SCi )

then for every t > 0,

2
]P(|¢(X1,...,Xn)—E[qp(Xh...,Xn)HZt)SeXp(_3162>
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This inequality can be found in McDiarmid (1997) and it allows to deal with functions ¢
more general than the simple sum of random variables. In the problem at stake, we use this
inequality to bound the high-dimensional equivalent of the quantity Z defined above,

Z:= sup Z 1(|<Y/€ —H,U>| > T) > (14)
veSy ™ \ke[K]

which is this time a supremum over all possible d-dimensional direction, but remains a supremum
of bounded quantity. Theorem 1.2 states that Z is exponentially likely to be close to its
expectation. The remaining steps of the proof, that are detailed in Chapter 3, are about

bounding this expectation E(Z), using tools from empirical processes theory.

This pioneer paper, while answering an open question, opens two main research directions
that are at the heart of this thesis, and that both deals with notions of complexity. The first one
is about computational complexity: to compute the estimator described in Lugosi and Mendelson
(2019c), one needs a number of steps that grows exponentially with the dimension, so this
estimator cannot be computed in practice, even for moderate values of d. Thus our first question
is the following one: can we find tractable subgaussian estimators in high-dimensions? Chapter
3 and 4 mainly deal with this question. The second one is about statistical complexity in broad
sense and asks whether it is always possible to find procedures that reach a Gaussian rate for
other estimation tasks, such as estimation with respect to non-euclidean norms for instance.
Chapter 5, 6 and 7 follow that second direction.

1.2.2 Computational complexity

The first kind of complexity this thesis explores is a computational one. Diakonikolas et al. (2016)
is one of the first papers to raise the question of tractability for robust mean estimation in high
dimension, and to show that high-dimensional robust learning is algorithmically possible. Before
this pioneer paper, the computational considerations were mainly hardness results, showing that
traditional robust estimators such as the Tukey median, although provably robust, are provably
hard to compute (see for instance Johnson and Preparata (1978) or Bernholt (2006)). Using
new techniques, Diakonikolas et al. (2016) opens the way to computational, tractable robust
statistics and leaves many exciting questions to explore. Indeed, even though estimators proposed
in Diakonikolas et al. (2016) are robust to adversarial contamination, they fail with constant
probability (for instance 1/100), and do not achieve the aforementioned subgaussian rate. A
similar observation can be made about the works of Minsker (2015) or Hsu and Sabato (2016).
In these two papers, the estimators are very fast to compute: the geometric median of mean
can be computed as fast as the empirical mean up to multiplicative factors logarithmic in the
dimension and the number of point. However as pointed out earlier, the estimators proposed fail
to achieve the subgaussian rate. A large part of this thesis focus on developing procedures that
are computationally efficient and reach the subgaussian rate.

1.3 Statistical complexities

A second question that this work tackles is to know whether it is still possible to find estimators
that behaves as if the data were Gaussian for other estimation tasks, or if it is only possible in a
few special sub-cases as estimating the mean with respect to the usual euclidean norm.

Let us illustrate that question with an example. We now want to estimate the mean with
respect to a sparse norm: we denote the set of s-sparse vectors U, and consider the following
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norm:

lally =" sup  (a,u).
u€ls,Jufl,=1

In a sense we aim to replace the supremum over the euclidean ball Bg by a supremum over
some other set, here U ﬂBg . We see, taking again the Gaussian variables Z;, that with probability
at least 1 — 4, (still from (Ledoux, 2001, Theorem 7.1))

Zn—pl| = sup (In—pmv)<E  sup (Zn — p,v) +94/2log(1/0)
H 5 vl <1,0€ls llv]l,<1,velds
slog(ed/s) 10g(1/(5)>1/2
< . .
<C ( [ (1.5)

The subgaussian rate for the sparse mean estimation problem (1.5) is different from (1.2):
the “deviation term” containing the failure probability ¢ remains unchanged, but the “complexity
term” (the one that does not depend on d) goes from d to slog(ed/s). Can this rate be reached
only assuming second order moment on the random variables? While this question is answered
in this thesis for the special case of the supremum over Us N B‘Q’l, its generalisation to other set V
is still an open question, that is only partly answered in Chapter 5, 6 and 7. We can rephrase
this question in another way: is the complexity term coming from the Gaussian perspective
reachable for non-Gaussian variables, or is there some other complexity measure intrinsically
linked to the non-Gaussian situation? We now give a first overview of the tools used to think
about this question and to measure the complexity of a set V', that mainly come from empirical
processes theory (see Ledoux and Talagrand (2011), Koltchinskii (2011) and van der Vaart and
Wellner (1996)).

1.3.1 Gaussian complexity

The first notion of complexity that naturally arise from the comparison with the Gaussian set
up used as a benchmark (always because of the central limit theorem, that is wished to be
made non-asymptotic in a sense) is the Gaussian complexity, also called Gaussian Mean-Width
when talking about sets V' C R?. It is the complexity that appears when using the Borell-TIS
inequality:

w*(V) = Esup(G, v), (1.6)

veV

where G ~ N (0, I,). This quantity is often used in Banach space theory, see Vershynin (2018),
Ledoux and Talagrand (2011), Pisier (1989) or Holmes (2012). One can think of the Gaussian
mean-width as one of the basic intrinsic geometric quantities associated with sets V' C RP,
such as volume, surface area,... The Gaussian mean-width of various sets V is known, see
for example Vershynin (2018). It is easily computable in some cases: for any subspace F' of
dimension k, w* (B¢ N F) = k, so the Gaussian Mean-Width captures well the usual dimension of
a subspace. We have already mentioned that for the set of sparse vector with unit euclidean
norm w*(Us N BE) = slog(d/s). It can be more involved and hard to compute in some other
cases.

Even if this notion of complexity naturally appears using a Gaussian benchmark, it is for now
unclear whether such a Gaussian rate can be attained only assuming second order moment on
the data, aside from the case V = Bg. Recent research, including works presented in this thesis,
show that one can reach different but closely related rates, where the deviation term remains the
same but where the complexity of the set V' comes into play in another form.
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1.3.2 Rademacher complexity

In the early 2000 several papers including for instance Koltchinskii (2001) and Bartlett and
Mendelson (2003) proposed a new way to measure the complexity of a class of functions called
the Rademacher complexity. This measure somehow arises from the symmetrization lemma,
which is much earlier and can be traced back to Vapnik and Chervonenkis (1971).

Definition 1.1 (Rademacher complexity). Let Xi,---,X,, be independent random variables
taking values in a measurable space (E,E). Let F be a class of functions from E to R. The
Rademacher complezity of the class F is defined as

Rn(F) = {Sup( Zazf )}

fer

where the variables o1, - - , oy are i.i.d Rademacher random variables (P(o1 = 1) =P(o1 = —1) =
1/2) independent of X1,--- ,X,. The expectation is taken with respect to both the Rademacher
random variables and the data X1, -+, X,,.

The Rademacher complexity of a class F quantifies the extent to which one can find, for any
given Bernoulli noise sequence, a function in F that correlates with this particular sequence. The
richer the class of functions, the more likely to find for each given noise sequence one function
that correlates well with it (see Koltchinskii (2011)). In the usual learning setting, choosing
classes that are "too big” and that can mimic any noise usually leads to over-fitting.

In order to come back to the setting presented in this introduction, one can identify a set
V C R? with the class of linear functions Fy = {{v,-) : v € V. C R4}, so that

Sup( Zal (v, X; )} . (1.7)

veV

Ru(V) =

As stated above, the symmetrisation lemma is one of the tools that make this complexity
measure popular. It is used throughout this work (in Chapter 3 and 5 for instance), for instance
to bound expectations of suprema such as Z introduced earlier in equation (1.4).

Lemma 1.1 (Symmetrization). Let F be a class of functions from E to R. Then,

oL

feFr

] < 2R (F) .

We note that, contrary to the Gaussian complexity, the Rademacher complexity depends not
only on the set V', but also on the distribution of the random variables Xj;.

1.3.3 VC-dimension.

The Vapnik—Chervonenkis (VC) dimension is one of the first way ever proposed to measure
the richness and the flexibility of a class of functions. It was first introduced in Vapnik and
Chervonenkis (1971). Unlike the Rademacher complexity, it is restricted to class F of classifiers
(or boolean functions) that take values in the set {0,1}. It is a fundamentally combinatorial
measure of the complexity, and its combinatorial nature often makes it loose when compared
with finer measure such as the Gaussian complexity. We will however see throughout Chapter 5
that it can at time give lead to state-of-the-art results. The definitions and facts that we state
here can be found in a lot of textbooks, see for instance Vapnik (2013) or Ahsen and Vidyasagar
(2019) and references therein.
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Definition 1.2. Let F be a set of Boolean functions on a space X. We say that a finite set S C X
is shattered by F if, for every subset B C S, there exists f € F such that SN f~'({1}) = B. We
call VC-dimension of F (and note VC(F)) the largest integer n such that there exists a set S of
cardinality n that is shattered by F.

Once again, in order to deal with the setting presented in this introduction we abusively
call VC-dimension of a set V C R? and note VC(V') the VC-dimension of the set of half-spaces
generated by the vectors in V:

VC(V) =VC({z € E = 14)>0, v € V}).
We give a few examples to illustrate what this notion does and does not capture.

1. VC(R?) = d + 1. More generally, if F is a set of real-valued functions in a k-dimensional
linear space, then Pos(F) = {x — 1f(;)>0, f € F'} has VC-dimension k +1 (see for instance
Dudley (1978), Theorem 7.2), so when it comes to linear sub-spaces, the VC-dimension
captures the dimension.

2. VC(BY) = d+1: when it comes to VC-dimension, the unit euclidean ball and the whole space
R? have the same complexity. The diameter of the set does not matter ; the combinatorial
complexity of the structure only is measured. For instance the set V' and the set oV’
for a € R always have the same VC-dimension, while it is not the case for Gaussian or
Rademacher complexity: Ry (aV) = aR,(V), and w*(aV) = aw*(V). Even more, if A is
any invertible matrix, then VC(AV) = VC(V). In consequence the VC-dimension can not
measure any fine details of problems where there are no scale/rotational invariance.

3. Sparse vectors: Let eq,...,eq € R< be the canonical basis of R? note Uy = {3 hivi | A €
R & >7; 15,20 < s} the set of s-sparse vectors, then

Cislogy(ed/s) < VC(Us) < Cayslogy(ed/s),

where C7 and C5 are universal constants. This can be found for instance in Theorem 3 in
Ahsen and Vidyasagar (2019). In this case, the VC-dimension captures well the Gaussian
complexity of the set.

We note that, unlike the Rademacher complexity, the VC-dimension does not depend on the
distribution of the random variable Xj.

1.3.4 Entropy-based complexity.

Entropy-based complexity has been used since the fifties to measure how complex a set is,
see for instance Kolmogorov (1959). The principle is the following one: we denote N(V,nB39)
or N(V,B4,n) the minimal number of translated n3§ balls needed to cover the set V. This
quantity measures how many points it takes to “discretize” the set V within radius n. This
number is usually called the n-covering numbers of V', and are also frequently used in geometric
functional analysis and in empirical processes theory (see for instance Vershynin (2018), Ledoux
and Talagrand (2011) or van der Vaart and Wellner (1996)).

How to use such a family of numbers to describe the complexity of a set? The behaviour of
N(V,B¢,n) when 7 goes to 0 often gives an idea about the complexity of V. For instance, for a
linear sub-space F' of dimension k, (1/7)* < N(F N B¢, B4,1) < (3/n)* (this can be found in lot
of textbooks, for instance Vershynin (2018) p.85). As the dimension appears in the exponent, we
are prone to turn to the logarithm of covering numbers, which is sometimes called the entropy:

H(V,B3,n) =log N(V,B4,7) .
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For the case of linear subsets, we see that H(F, B, n) ~ klog(1/n) when 7 goes to 0. One way to
measure the complexity of V is thus to study the behavior of H(V,B$,n) when n goes to 0. Two
quantities related to entropy appears naturally in empirical process theory: Sudakov’s bound
and Dudley’s entropy integral. This two quantities are often used to bound below and above the
Gaussian complexity, thanks to the two following theorems (see Ledoux and Talagrand (2011)):

Theorem 1.3 (Sudakov’s minoration inequality). Let V C RY. Then, for any n, we have

Esup (G, t) > eny/ H(V, B3, 1),

teVv

where G ~ N(0,1,) and c is a universal constant.

We thus define the Sudakov’s bound as ¢(V) = sup, n\/H(V,84,7), so that w*(V) > ¢(V).
We note that for the case of linear subset, we will capture the right behaviour up to universal
constants: ¢(H(V,B¢,n)) o k. The second theorem bounds by above the Gaussian complexity and
it features the whole range of entropy numbers within an integral instead of using a supremum.

Theorem 1.4 (Dudley integral). Let V C R%. Then there exist an absolute constant ¢ such that

wH (V) < c/ooo JHV, B, p)dn.

Theorem 1.4 derives from chaining techniques (detailed for instance in Ledoux and Talagrand
(2011) or Vershynin (2018)), that can be further refined using “generic chaining” techniques
developed by Talagrand (1996).

1.4 Main contributions

With the main concepts, tools and questions introduced we present the various contributions of
the five works that make up this thesis.

1.4.1 Robust Subgaussian Estimation of a Mean Vector in Nearly Linear
Time

The first contribution of this thesis, detailed in Chapter 3, deals with the computational complexity
of subgaussian mean estimation, with respect to the traditional euclidean norm. As this thesis
began, two very important papers were released, that were the firsts to propose procedures
achieving the subgaussian rate (1.2) while running in polynomial time in both variables N
and d: Hopkins (2018) and Cherapanamjeri et al. (2019). They both run in polynomial time:
O(N?* + Nd) for Hopkins (2018) and O(N* + N?2d) for Cherapanamjeri et al. (2019) (see
Cherapanamjeri et al. (2019) for more details on these running times). They do not consider an
adversarial contamination of the dataset even though their results easily extend to this setup. The
first chapter of this thesis thus proposes the third polynomial algorithm reaching the subgaussian
rate for mean estimation, and the first one to explicitly deal with adversarial contamination.
Moreover, it improves the run time of the first procedures proposed: we construct an algorithm
running in time O(Nd 4 ulog(1/6)d) which outputs an estimator of the true mean achieving the
subgaussian rate (1.2) with confidence 1 — 0 — (1/10)* (for exp(—coN) < § < exp(—c1|O|)) on a
corrupted database and under a second moment assumption only. In the worst case, the run
time is thus of O(N?2d).

In order to do so, this paper uses the Median of Mean heuristic, like the two previous
polynomial-time procedures. Our approach in fact takes ideas from two communities: the
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median-of-means principle from the statistics community and a SemiDefinite Programming
(SDP) relaxation used in the Computer Science community by Cheng et al. (2019a) which can
be theoretically computed fast. The computational time improvement upon the procedure in
Cherapanamjeri et al. (2019) is due to the use of this covering Semidefinite program (SDP)
studied in Allen-Zhu et al. (2014), Peng et al. (2012), and Cheng et al. (2019a), and popularised
in the robust statistic field by Cheng et al. (2019a), at each iteration of the robust gradient
descent algorithm. While in Cheng et al. (2019a) this SDP leads to procedures failing with
constant probability and thus failing to reach the subgaussian rate, we show that using this
kind of SDP on block means rather than on the data themselves leads not only to reach the
subgaussian rate, but also to improvement in the computational cost of the algorithm. So the
median of mean heuristic presents in this case a stochastic advantage and a computational one.

To prove that the proposed procedure indeed reaches the subgaussian rate, we had to come
up with a new stochastic lemma interesting in its own, generalizing the one from Lugosi and
Mendelson (2019¢) and Lerasle et al. (2019). This lemma has been used since in a variety of
other works and contexts, for instance in Regression in Cherapanamjeri et al. (2020b), or to
define the notion of Stability in Diakonikolas et al. (2020). The proof of this Lemma relies on a
Gaussian rounding technique similar to the one used in Grothendieck’s inequality.

Very recent works Lei et al. (2020); Hopkins et al. (2020); Depersin (2020a) obtain similar
results to the one from this work. They were also able to replace SDPs by spectral methods for
the computations of a robust descent direction at each step. Indeed, even though cover SDPs are
from a theoretical point of view computationally efficient (see Allen-Zhu et al. (2014),Peng et al.
(2012)) they are notoriously difficult to implement in practice whereas the power methods used
in Lei et al. (2020); Hopkins et al. (2020); Depersin (2020a) open the door to implementable
algorithms. It is interesting to note that the computational time proposed in this work is still
to this date the best run time known, and it is a conjecture that it might even be the fastest
possible way to reach the subgaussian rate.

1.4.2 A Spectral Algorithm for Robust Regression with Subgaussian Rates

The second contribution we make, detailed in Chapter 4 deals with the question of reaching
sub-Gaussian bounds in polynomial time, but for regression instead of mean estimation. We
recall quickly the standard linear regression setting where data are couples (X;,Y;); € R x R
and where one looks for the best linear combination of the coordinates of an input vector X to
predict the output Y, that is we look for 5* defined as follows.

B* = argmin ((f) = argmin E(Y; — (8, X1))?.
BeER? BeR?

Whether reaching sub-Gaussian rates in that framework, under weak moment assumptions,
was even possible was an open question for a long time. Indeed for a time the best known
polynomial algorithms were the one from Prasad et al. (2018) or from Hsu and Sabato (2016). The
guarantee for those two algorithms is the following: when the covariance of X is the identity and
when the noise £ = Y — (8*, X) has bounded variance, £(f) —£(f*) < O(W) with probability
1—4. This rate does not present this decoupling between complexity and deviation that we called
sub-Gaussian. The article from Cherapanamjeri et al. (2020a) has been the first to construct a
polynomial-time method achieving the sub-Gaussian rate of the OLS in the Gaussian setting
of) —e(f*) < O(W). When Chapter 4 was first published, Cherapanamjeri et al. (2020a)
was the only procedure running in polynomial algorithm achieving the optimal subgaussian rate.
However, Cherapanamjeri et al. (2020a) uses the Sum of Square (SoS) programming hierarchy to
design their algorithm. Even if SoS hierarchy runs in polynomial time, its reliance on solving
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large semi-definite programs makes it impractical and remains a theoretical result leaving still
open the question on the existence of a practical efficient algorithm achieving optimal subgaussian
rates.

In Chapter 4, we tackle this issue, showing that techniques from Lei et al. (2020) combined
with lemmas from Depersin (2020a) can be used to give the first practical, nearly quadratic
(and in fact in most cases nearly-linear) algorithm that reaches the subgaussian rate. We also
conduct numerical experiments on simulated data with our proposed procedure to show that it
is indeed practical and fast. Moreover, as predicted by our theoretical findings, our simulation
analysis shows that it is robust both to heavy-tailed data and to outliers. To the best of our
knowledge, this is the first time that numerical experiments implementing the exact formulation
of a sub-gaussian estimator are conducted for a regression algorithm with sub-gaussian rates and
polynomial time guarantees.

1.4.3 Robust subgaussian estimation with VC-dimension

The third contribution we make is detailed in Chapter 5, and it deals with statistical complexity
rather than computational complexity. We tried to show how one can use VC-dimension to get
state-of-the art bounds in non-euclidean estimation with heavy-tail data.

In this work, we show that the analysis presented in Lugosi and Mendelson (2019c¢), in Lecué
and Lerasle (2019), Lerasle (2019) or in Lecué and Lerasle (2020), and generalized in Lugosi
and Mendelson (2019b), all based on the Median-of-mean principle and the use of Rademacher
complexities, can be modified in order to achieve sub-gaussian rates for sparse or structured
problems assuming only bounded two-order moments. The method developed in Lerasle (2019)
or in Lecué and Lerasle (2020) requires data to have at least log(d) finite moments (where d is the
dimension of the space) in order to exploit the sparsity of the problem and offers no guarantees
without that requirement, and to the date is the best known. We show that we can drop this
condition by judiciously introducing VC-dimension in the different proofs, and exploit the sparsity
of the problem with only two moments. We show in Chapter 5 that classical approaches using local
Rademacher complexities cannot achieve this type of subgaussian bounds under only a second
moment assumption. Somehow the classical approach used so far does not capture the right
statistical complexity of high-dimensional problems under low-dimensional structural assumptions
and under only a second moment assumption: it seems that the Rademacher complexity
is not the right way to measure the complexity of the problem of structured mean
estimation in any norm. Our VC-dimension based approach allows to overcome this issue
and to go beyond this log d subgaussian moments assumption that has appeared in all works on
robust and subgaussian estimation in the high-dimensional framework Lerasle (2019). We also
show that this general technique can be easily replicated and give new robust estimators that
achieve state-of-the-art bounds for different estimation tasks such as Regression, Mean estimation
with non-Fuclidean norms, Robust low-rank matrix estimation and Covariance estimation.

This Chapter is not the first to introduce VC-dimension in robust estimation problems: it has
been inspired by Chen et al. (2018) and Gao (2017) for instance. In those two papers, estimation
and regression with possible sparsity structure and outliers are also achieved with optimal rates,
using VC-dimension techniques, but their assumption and their framework is somehow different
from the one we studied in this thesis. For instance, Chen et al. (2018) estimates the center
of symmetric distributions without moment assumption. In comparison, our estimators are for
mean and covariance, thus moment assumption is needed, but we do not need the distributions
at stake to be symmetric.
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We note that VC-dimension has some advantages over Rademacher complexity in some cases,
but this forth Chapter shows that is does not leads to optimal rates in all cases, and thus that it
is not always the right way to measure the complexity of a robust estimation task. Indeed, using
VC-dimension in mean estimation, we lose a nice dependence of the risk bounds in the covariance
structure: our rates for (non-sparse) mean estimation depend on the ambient dimension d instead
of the effective rank Tr(3)/||X||op (that is captured by Rademacher Complexity). In particular,
the general VC-dimension approach does not generalize directly to infinite dimensional spaces. In
the last section of Chapter 5, we show that this issue can be overcome if we have some knowledge
on the covariance matrix, proposing a new procedure for that case.

1.4.4 On the robustness to adversarial corruption and to heavy-tailed data
of the Stahel-Donoho median of means

, Where X

In Chapter 6, we deal with estimation with respect to the norm z € R? — HE_I/%’
is the covariance matrix of the data, and we assume that this matrix is not known beforehand
by the statistician. So in a sense, we try to estimate with respect to an unknown norm, while
techniques derived in Chapter 5 mainly apply to known norms. We study this particular norm,
whose unit ball is the ellipsoid XY/ 2B§l, because it is the best metric — that is the one leading to
minimal volume confidence sets for a given confidence — in the benchmark i.i.d. Gaussian case.

While the subgaussian rate could be obtained with estimators from Lugosi and Mendelson
(2019b) or Lerasle et al. (2019), these estimators would require knowledge about ¥ in their
construction. One therefore has to consider other techniques. In this Chapter, we show that it
can be done thanks to a notion of depth/outlyingness introduced at the beginning of the 80’s
which uses a normalization by a robust estimation of the scale called Stahel-Donoho Outlyingness
(SDO), which has been first introduced in Donoho and Gasko (1992). We couple this notion of
outlyingness with the Median-Of-Mean heuristic to get subgaussian estimators with respect to
the metric HE*U 2-H2. On our way to our goal, we complement the results on the y/n-consistency
and the asymptotic normality of Stahel-Donoho estimators that can be found in Maronna and
Yohai (1995) and Tyler (1994) by deriving the first non-asymptotic convergence rate for the SDO
median (as well as its median of means version). We also show that the robustness properties of
the original SDO median and its MOM version goes beyond the Huber’s contamination model
and that they still persist in the adversarial corruption model from Setting 1.1. We also use the
robust scaling from the Stahel-Donoho Outlyingness to build estimators of the covariance matrix
under some regularity assumption.

1.4.5 Optimal robust mean and location estimation via convex programs with
respect to any pseudo-norms

Our last contribution, detailed in Chapter 7, is to give a new lower bound for mean estimation in
any norm. Lugosi and Mendelson (2019b) gives the following lower bound on mean estimation :

Theorem 1.5. [Theorem 3 from Lugosi and Mendelson (2019b)] There exists an absolute
constant ¢ > 0 such that the following holds. If ji : RN% — R? is an estimator such that for all
p* € R and all § € (0,1/4),

Ph g —w' <r]>1-6

where Pﬁf* is the probability distribution of (X;);c;n] when the X; are i.i.d. N (u*,¥) then
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where N(El/QBO, nB‘Qi) is the minimal number of translated of nt needed to cover ©Y/2B°.

The complexity term in this lower bound is thus measured using the Sudakov’s bound that
we defined in Theorem 1.3. However, there is a gap between this lower bound and the upper
bounds depending on the Gaussian mean width in the Gaussian case. This gap that comes
from the looseness of Sudakov’s inequality presented in Theorem 1.3. For ellipsoids for instance,
Sudakov’s bound is not sharp in general and therefore the lower bound from Theorem 1.5 fails to
recover the classical subgaussian rate for the standard Euclidean norm case (that is for S = Bg)
which is given in Lugosi and Mendelson (2019¢) by

Tr (%) 131l log(1/6)
\/N +\/ ~ . (1.8)

Indeed, when |- is the ¢4 Euclidean norm then E H21/2GH =E HEl/QGH2 ~ /Tr(¥). In

contrast the entropy of £/2B° = £V/2B¢ w.r.t. nBY can be computed using equation (5.45) in
Pisier (1989) that

1/k 1/k

k
~ | sup k H (1.9)

n
sup n\/log2 N(21/2BY,nBf) ~ sup ni/k
2 keld)

n>0 n>1,ke(d]

Aj

1/

where A\; > ... > Ay are the singular values of ¥. In particular, when A\; = 1/j, the entropy
bound (1.9) is of the order of a constant whereas the Gaussian mean width is of the order of
VIogd. We fill this gap in Chapter 7 by showing a lower bound where the entropy is replaced by
the (larger) Gaussian mean width. In order to do so, we use Anderson’s Lemma, and analytic
arguments, intead of geometric and volumetric arguments used by Lugosi and Mendelson (2019b)
to get the Sudakov’s bound as a lower bound.

=1

We also show that this rate can sometimes be achieved by a solution to a convex optimization
problem in the adversarial and Lo heavy-tailed setup by considering minimum of some Fenchel-
Legendre transforms constructed using the Median-of-means principle.

1.5 Unanswered Questions and Future Research Direction.

After those different contributions, there is still a number of exciting unanswered questions that
can be starting points for future research.

1.5.1 A new notion of complexity?

The different complexity measures mentioned in Section 1.3 gives standard tools to measure the
complexity of a set and give some ideas about the rates that could be achieved with heavy-tailed
data. However, it is plausible that none of these measures is the right one, and that the right
way to measure the complexity of robust estimation tasks is yet to be found. The quantity that
is crucial in all the works is

K
r—E (Sup > L8y — KE(1<qu,v>>r>> :
veV

Bounding this quantity using the VC-dimension of V' yields a bound independent of the
covariance of Y. On the other hand, bounding that quantity by the Rademacher complexity of
the Y; (like in Lecué and Lerasle (2020), Lugosi and Mendelson (2019b)) does not exploit the
boundedness of the indicator function and necessitates unnecessary stronger assumptions on data
(see Chapter 5). The ideal would be to conciliate both ideas, and to find a nice in-between that
would take into account both the boundedness and the dependency in the covariance structure.
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1.5.2 Tightening the constants

In most of the work we present in this thesis, the bounds are all given up to universal constants:
we have not focused on the constants but rather on how the rate depends on d, N, X, or other
parameters of interest, such as the sparsity s. In consequence, the constants we give in most
of this work are not optimized and analysed. However it seems that, when computed, they are
huge and make most of the theory not usable as such for practical implementation. Simulations
tends to show that the procedures proposed seem to reach in practice rates with much smaller
and practical constants.

Trying to optimize the constants to find the “sharp rate”, and search for procedures that
could lead to better constants, even in the most simple case of estimation with respect to the
euclidean norm, has not been done in the literature to the best of our knowledge. It seems to be
both challenging from a theoretical perspective and interesting from a practical point of view.

1.5.3 Finding algorithms for estimation in any norms

This thesis is somehow separated in two parts: a more practical one and a more theoretical
one. Chapter 3 and 4 mainly deal with tractable estimation in euclidean set-ups, and their
contributions are (mainly) algorithms, while Chapter 5, 6 and 7 mainly deal with theoretical
estimators in non-euclidean set-ups. It seems like it would be promising to build a bridge between
those two parts and to look for tractable procedures in various non-euclidean set-ups.

For instance, only very little is known on the theoretical computational side for the Stahel-
Donoho outlyingness. In Section 5 of Donoho and Gasko (1992), an algorithm running in time
O(K 1 )og K ) is mentioned but its time complexity is making this approach impractical for
dimensions larger than 5. There are to our knowledge no theoretical results of any kind on
the convergence of some approximate algorithm for the computation of the SDO of a point in
R that could be used in practice. As mentioned already in Donoho and Gasko (1992), “some
sort of computational breakthrough is necessary to make the estimators, as defined here, really
practical”. This looks to be still the case.

In the same way, there is very little known about the computational side of robust sparse
estimation. To the best of our knowledge, there is no tractable algorithm suitable for sparse mean
estimation with subgaussian rates. Knowing if it is even possible to find such an algorithm is one
of the main open question left unanswered by this thesis, and that seems like a very promising
research direction.



CHAPTER 2

Introduction en francais : Robustesse et complexité

Cette these tente d’évaluer la complexité de certaines taches statistiques robustes. Dans
I'introduction, la signification et I'utilité de cet objectif global seront analysées et précisées.
D’abord, les deux principaux termes en jeu, robustesse et complexité, seront successivement
discutés. Puis les cinq travaux qui composent cette thése seront présentés, situés par rapport au
contexte général, et leurs apports et limites respectifs seront exposés.
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2.1 Qu’est-ce que la statistique robuste?

L’objectif principal d’un statisticien est d’extraire des informations utiles de données d’observation,
par exemple en déduisant des modeles, en identifiant des effets causaux, en un mot en apprenant
sur un phénomeéne donné a partir des données. La plupart du temps, le statisticien doit faire des

27
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hypotheses sur les données afin d’obtenir des garanties que ses procédures conduiront effectivement
a des informations fiables. Les hypotheéses les plus courantes sont :

— que les données sont indépendantes et identiquement distribuées, ce qui signifie qu’elles
sont produites a partir du méme processus, et indépendamment les unes des autres, qu’elles
sont différentes réalisations de la méme variable aléatoire,

— que cette variable aléatoire est supposée par le statisticien avoir une certaine propriété
donnée (par exemple une esperance finie),

— que la distribution de la variable aléatoire dont les observations sont censées étre tirées
appartient a une famille spécifique de distributions déterminée au préalable par le statisticien
(par exemple, la famille des distributions normales) et appelée le modele statistique.
Lorsqu’on fait ce genre d’hypothese, les statistiques en jeu sont dites paramétriques car
dans ce cadre, les différentes distributions de la famille donnée sont souvent identifiées par
un parametre (et peuvent étre entierement décrites avec ce parametre), de sorte que la
recherche de la bonne distribution parmi la famille revient a rechercher le bon parameétre.

Nous remarquons que ces hypotheses sont de plus en plus fortes. On pourrait dire que
I’objectif global de la statistique robuste en tant que domaine est de remettre en question ces
hypotheses et d’étudier s’il est possible de donner certaines garanties sous des hypotheses plus
faibles et plus réalistes. Pour étre plus précis, le domaine des statistiques robustes tente d’étudier

— ce qui arrive aux procédures classiques (non robustes) lorsque les hypotheses sur lesquelles
elles ont été créées sont relachées,

— quelles sont les hypotheéses minimales que 'on doit faire sur les données pour qu’il soit
théoriquement possible d’en extraire des informations,

— et comment trouver des procédures qui fonctionnent toujours lorsqu’on fait des hypotheses
minimales.

Hampel et al. (1986) donne le résumé suivant : ”La statistique robuste est un ensemble de
connaissances relatives aux déviations des hypothéses idéalisées en statistique.”

2.1.1 Pourquoi des statistiques robustes?

On peut se demander quelle est I'utilité d’une telle théorie. C’est ’objet d’une littérature riche,
initiée dans les années 60 par Tukey (1960), Huber (1964) et Hampel (1973), et les fondements
théoriques de la robustesse sont exposés avec beaucoup de détails dans un certain nombre
d’ouvrage (voir par exemple Huber (1981), Hampel et al. (1986), Huber and Ronchetti (2009),
ou Maronna et al. (2006a)). Nous rappelons et illustrons deux des principaux arguments qu’ils
développent, qui peuvent servir de points de départ pour comprendre les apports de cette these.

OUtliers. C’est un point soulevé a la fois par Huber (1981) et Hampel et al. (1986) : les
échantillons collectés dans les sciences physiques, naturelles ou sociales contiennent de "bonnes
données”, qui sont bien décrites par le modele du statisticien, mais elles sont mélangées a une
fraction de "mauvaises données”, également appelées erreurs grossieres ou outliers - typiquement
dans une fourchette comprise entre 1% et 10% selon Huber (1981) pour les ensembles de données
de I’époque (dont 'ampleur a pu changer avec les données Internet et les données déclaratives).
Ces erreurs peuvent provenir d’erreurs de copie, de calcul, d’inattention de I’expérimentateur,
etc., mais aussi d’un adversaire qui tente de tromper le statisticien. Ces mauvaises données
ou "valeurs aberrantes” ne sont pas bien décrites par le modele du statisticien, et peuvent étre
éloignées de plusieurs ordres de grandeur du phénomeéne qu’il veut quantifier.



2.1. QU’EST-CE QUE LA STATISTIQUE ROBUSTE? 29

Par exemple, une partie des données peut étre exprimée dans une unité erronée : lorsqu’on
leur demande leur salaire mensuel dans les enquétes en ligne, une fraction des répondants donnent
plut6t leur salaire annuel. De telles erreurs peuvent étre tres cotiteuses : on peut penser a 1’échec
du lancement de l'orbiteur climatique de Mars en 1999 par la NASA, causé par I'expression
de certaines données clés dans des unités non métriques. Les estimateurs classiques sont tres
sensibles a ce type d’erreur grossiere : par exemple, considérons une série d’observations de la
taille des personnes, avec 99 observations exprimées en metres et 1 observation exprimée par
erreur en centimetres. La moyenne empirique de cette série pourrait conduire a conclure que la
taille moyenne des personnes est d’environ 3,3 metres, ce qui montre qu’il suffit d’une petite
fraction de mauvaises données pour se faire une idée tres erronée du phénomene en jeu lorsqu’on
utilise des estimateurs non robustes.

Les erreurs grossiéres sont une violation de la premiere hypothese classique selon laquelle toutes
les données sont produites a partir du méme processus. En présence d’erreurs grossieres, toutes
les observations n’ont pas la méme valeur informative. La plupart des procédures statistiques
classiques ne présentent des garanties que lorsque les données sont i.i.d. (indépendantes et
identiquement distribuées), ainsi la présence d’erreurs est un premier argument pour justifier le
besoin de développer de nouvelles procédures robustes.

Données a queue lourde. Un autre argument peut étre trouvé pour justifier le besoin
d’une théorie robuste : la présence de phénomenes a queue lourde. Les queues lourdes sont
caractéristiques des phénomenes ou il existe une probabilité significative d’observer une seule
valeur énorme, c’est-a-dire d’un ordre de grandeur différent des autres. Contrairement a ’erreur
grossiére, cette valeur énorme n’est pas une erreur et contient des informations sur le phénomeéne
en jeu. Les pertes d’assurance, les rendements financiers, la contagion sociale, 'activité de retweet
d’un tweet sont tous des exemples de phénomeénes a queue lourde, voir Resnick (2007) pour plus
d’exemples et des explications détaillées. L’exemple suivant illustre le probleme soulevé par les
données a queue lourde. Prenons une variable aléatoire X qui est égale a 0 avec une probabilité
de 999/1000, et 1000 avec une probabilité de 1/1000, de sorte que sa valeur moyenne est de 1 (et
son écart-type d’environ 32). Lorsque 'on dispose de 10 d’observations de cette variable aléatoire,
on a environ 1% de chance de voir la valeur 1000, ce qui constitue un événement extraordinaire.
En observant un tel événement parmi les 10 de données, le statisticien désireux d’estimer la
valeur moyenne du phénomene est confronté a un dilemme : doit-il prendre en compte cette
observation 7 En incluant cette observation, la moyenne empirique des observations est de 100,
ce qui se situe a quelques écarts types de la vraie moyenne. Exclure cette observation avant de
prendre la moyenne empirique permet d’obtenir une meilleure estimation de la moyenne dans ce
cas, mais sur quelle base le statisticien doit-il écarter certaines valeurs ? La théorie robuste tente
de répondre a ces questions.

Méme si cet argument de la queue lourde a surtout été exploré dans la littérature robuste
au cours de la derniére décennie suite aux travaux de Catoni (2012), il est déja mentionné
dans Huber (1981). La présence de données & queue lourde brise I’hypothése, trés courante en
statistique, selon laquelle les observations sont tirées d’une distribution gaussienne (ou sous-
gaussienne) sous-jacente, ou plus généralement d’une distribution présentant de bonnes propriétés
de concentration.

Rejet des outliers? D’apres les exemples présentés ci-dessus, on pourrait avoir I'impression
qu’il suffit de prétraiter les données pour éliminer les valeurs aberrantes avant d’appliquer les
procédures standard, plutdot que de trouver de nouvelles procédures robustes. L’exemple des
données a forte queue de distribution montre qu’il n’est pas toujours simple de savoir si une
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observation est aberrante, et cela devient encore plus compliqué lorsque les observations sont
multidimensionnelles, comme nous le verrons tout au long de cette thése. Si dans certains
cas le rejet des outliers peut étre une bonne idée, il est souvent compliqué a mettre en ceuvre
(voir Diakonikolas et al. (2019b) par exemple) et fournir des garanties pour de telles procédures
nécessite les outils théoriques développés par la statistique robuste.

2.1.2 Modeéles pour les outliers

Afin de donner des garanties sur leurs procédures, les statisticiens travaillant sur la statistique
robuste doivent faire certaines hypotheses sur les données, méme si celles-ci sont plus faibles et
plus réalistes que les hypotheses classiques. Dans cette partie, nous présentons les principaux
modeles adoptés par la statistique robuste et précisons le cadre qui sera utilisé tout au long de
cette these.

Modeéle de contamination de Huber . La premiere génération de statisticiens travaillant
sur les statistiques robustes a proposé de prendre en compte les outliers avec le modele suivant,
parfois appelé Modéle de contamination de Huber (présenté et étudié par exemple dans Huber
(1981)) : les observations sont supposées étre des réalisations i.i.d. tirées d’une variable aléatoire
avec une fonction de distribution cumulative

F=(1—¢Fy+eH,

ou Fy appartient & une famille paramétrique connue a I’avance par le statisticien (par exemple
la famille gaussienne) mais ou H peut étre n’importe quelle fonction de distribution cumulative, et
ou € représente le taux de contamination, la fraction supposée de 'erreur brute (pour laquelle une
limite supérieure est souvent supposée connue). La plupart des premiers travaux en statistiques
robustes visaient a trouver des estimateurs efficaces dans ce cadre proche d’un cadre paramétrique.
Ce modele est toujours un domaine de recherche actif, voir par exemple Chen et al. (2017). Nous
remarquons que de nombreux travaux traitant de ce premier modele se concentrent sur 1’obtention
de résultats asymptotiques, ainsi que de propriétés non asymptotiques telles que le point de
rupture. En revanche, le point de vue adopté dans cette these est uniquement non-asymptotique,
inspiré par les tendances récentes en statistique robuste initiées par Catoni (2012) et par des
travaux de la communauté informatique tels que Diakonikolas et al. (2016).

Modele de contamination adversarial. Le modele que nous traitons dans ce travail est
plus général que le modele de contamination de Huber et est parfois appelé ”contamination
adversarial”. 1l est difficile de le retracer, mais il semble avoir été décrit et popularisé par la
communauté informatique, par exemple dans Diakonikolas et al. (2016). Les échantillons sont
générés a partir du processus suivant : D’abord, N échantillons sont tirés indépendamment d’une
certaine distribution inconnue. Ensuite, un adversaire est autorisé a regarder les échantillons et
a en corrompre arbitrairement une fraction de € avant de remettre les données corrompues au
statisticien. Le cadre peut étre décrit plus formellement comme suit :

Setting 2.1. Il existe N variables aléatoires i.i.d. distribuées comme X notées (X;)N, dans R
qui sont indépendantes. Ces variables ne sont pas directement observées par le statisticien, elles
sont d’abord données a un “adversaire” qui est autorisé a modifier jusqu’a |eN | de ces variables
avant de retourner un jeu de données modifié (X;)N | au statisticien.

La seule information dont dispose le statisticien est qu’il existe un ensemble (éventuellement
aléatoire, éventuellement dépendant des données) O tel que, pour tout i € O°, X; = X;. La
seule hypothése sur l’ensemble O concerne sa taille : le statisticien sait que |O| < |eN| (le
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statisticien peut dans certains cas ne méme pas connaitre € et s’y adapter). Le statisticien ne
sait pas quelles données ont été modifiées, I’ensemble O° est donc inconnu. Le statisticien tente
d’acquérir certaines connaissances (telles que la moyenne ou la variance) sur la variable aléatoire
X a partir de l’ensemble de données corrompues (X;)N,.

Dans cette configuration, non seulement les valeurs aberrantes peuvent étre corrélées entre
elles et avec les valeurs aberrantes, mais les valeurs non aberrantes peuvent également étre
corrélées entre elles (car ’adversaire peut choisir les échantillons originaux a conserver et, ce
faisant, corréler les échantillons qu’il conserve, par exemple en ne conservant que les échantillons
les plus grands lorsqu’ils sont a valeur réelle), ce qui ne peut pas étre le cas dans le modele de
contamination de Huber.

Ce modele généralise celui de Huber, et il a été utilisé, comme celui de Huber, pour traiter
les déviations d’un modele paramétrique, par exemple dans Du et al. (2017), Diakonikolas et al.
(2019¢) ou Cheng et al. (2019b), ou les inliers sont supposés suivre une distribution gaussienne.
En revanche, cette thése, ainsi qu’une ligne de travail moderne en apprentissage robuste ouverte
par Catoni (2012), traite des statistiques non-paramétriques. (nous essayons souvent d’estimer
la moyenne d’une distribution d’échantillon), avec un accent particulier mis sur les données a
forte queue de distribution, comme nous I’expliquerons ci-dessous. Le modele de contamination
contradictoire est utilisé ici de maniére non paramétrique, la forme générale de la distribution
que suivent les valeurs aberrantes étant supposée connue a 'avance.

2.1.3 Traitement des données mal concentrées

Les deux modeles décrits ci-dessus (contaminations de Huber et adversaires) permettent de
traiter les erreurs grossieéres, mais ils ne répondent pas directement aux problemes soulevés par
les phénomenes de queue lourde. Revenons a notre exemple, ot un statisticien veut estimer la
valeur moyenne de la variable aléatoire X qui est égale soit a 0 (avec une forte probabilité) soit
a 1000 (avec une faible probabilité), lorsqu’on lui donne N = 10 observations. Si elle utilise la
moyenne empirique habituelle, qui est 'outil standard en statistique classique pour estimer une
moyenne, elle sera "proche” de la vraie valeur avec une probabilité de 99% et radicalement fausse
(~ 30) avec une probabilité de 1%, une probabilité faible mais non négligeable. Catoni (2012)
souléve les questions suivantes : étant donné un “rayon de précision” r, quelle est la plus petite
probabilité d’échec §(r) telle qu’il est possible de trouver un estimateur qui se situe avec une
probabilité 1 — §(r) dans un rayon r de la vraie valeur moyenne de la variable aléatoire ? Dans
notre exemple, pour un rayon ~ ¢ par exemple, est-il possible d’obtenir une meilleure probabilité
de défaillance que 1% ? Quelles procédures d’estimation peuvent conduire a un tel estimateur
? Et quelles sont les hypotheses minimales que ’on doit faire sur la distribution de la variable
aléatoire 7

Quelles hypothéses sur la distribution sous-jacente? Pour capturer le phénomene des
queues lourdes, nous voulons obtenir des propriétés statistiques sans faire [’hypothéses que les
données soient gaussiennes ou bornées (ou toute autre hypotheése de concentration forte), et c’est
dans ce sens que nous appellerons nos estimateurs robustes aux queues lourdes. Quelle hypothese
plus faible devrions-nous faire sur la distribution sous-jacente des données, qui serait suffisamment
faible pour ne pas limiter séverement ’applicabilité des résultats, et suffisamment forte pour
conduire a des résultats intéressants et significatifs 7 Cette question est étudiée en détail dans
Devroye et al. (2016) : les auteurs montrent que, afin d’atteindre un taux qui ressemble & celui
atteint asymptotiquement avec le théoreme central limite, taux dont on peut prouver qu’il est
“essentiellement optimal” et qui sera discuté plus en détail ci-dessous, ’hypothése minimale a
faire sur les données est I'existence d’'un second moment fini : E(X?) < co. Comme une grande
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majorité de la littérature robuste qui traite des données a queue lourde, la majeure partie de
cette these se conforme a cette analyse (Chapitre 3, 4 et 5)

Setting 2.2. La variable aléatoire X a partir de laquelle sont échantillonnées les N wvariables
(X)X, dans R a une moyenne u, que nous essayons d’estimer, et un moment du second ordre
(éventuellement inconnu) o = E[(X — u)?].

La plupart des travaux présentés traitent du cas ou la distribution sous-jacente a un moment
du second ordre, parfois connu, parfois inconnu. Nous notons cependant que certains papiers
récents étudient des cas ou le second moment n’existe méme pas et est remplacé par des moments
d’ordre 1+« avec @ < 1 par exemple Cherapanamjeri et al. (2020b). La fin de cette these présente
également de nouveaux parametres qui ne nécessitent pas ’existence d’un second moment fini
(dans certaines parties du chapitre 6 et 7), en utilisant comme inspiration d’autres résultats
asymptotiques que le théoreme central limite.

La moyenne empirique. Revenons a notre exemple, et a I'insuffisance de la moyenne em-
pirique. Si ’on dispose de N réalisations indépendantes d’une variable aléatoire de moyenne p et
de variance o2, I'inégalité de Chebyshev nous dit que la moyenne empirique /i vérifie, avec une
probabilité supérieure & 1 — 6, |z — p| < 0/+v/Nd. Catoni (2012) indique que ce taux est net pour
la moyenne empirique en général, on ne peut donc pas donner une meilleure inégalité pour la
moyenne empirique qui soit valable pour toutes les distributions avec une variance. Ainsi, pour
la moyenne empirique, r(§) = o/v/NJ, ou de maniére équivalente §(r) = o2/(Nr?). Cette limite
se détériore rapidement pour les petites valeurs de d : si I’on veut obtenir des résultats a haute
probabilité, par exemple avec § ~ 107°, avec environ un millier de points de données, on obtient
un rayon de ~ 10 o. Est-il possible de faire mieux, peut-on trouver des procédures qui donnent
un rayon plus petit ? Cette question a été soulevée dans Catoni (2012), qui donne également une
réponse.

Estimation sous-gaussienne. Catoni (2012) affirme que le taux atteint par la moyenne
empirique peut effectivement étre amélioré de maniere drastique. Le taux qu’il propose s’inspire
de la théorie asymptotique. En effet, lorsque les données ont un second moment fini o, le théoréme
central limite garantit que la moyenne empirique a des queues gaussiennes, asymptotiquement,
sans faire d’autres hypothéses sur les données, ainsi, lorsque N — oo,

ocp (1 —
P (m-m < w> — 4, (2.1)

ou ¢ est la fonction de distribution cumulative de la distribution normale standard. Catoni
(2012) prouve également que ce taux asymptotique ne peut pas étre amélioré : aucun estimateur
non-asymptotique ne peut atteindre des queues meilleures que gaussiennes pour toutes les
distributions d’'une classe "suffisamment grande” (qui contient au moins toutes les distributions
gaussiennes avec une variance donnée o2). La principale conclusion de Catoni (2012) est qu’il
est possible de trouver des estimateurs non-asymptotiques atteignant le taux (1.1), & constantes
multiplicatives universelles pres.

Notons que le taux 0¢ ' (1 — §/2)v/N obtenu dans (1.1) est le taux atteint par la moyenne
empirique lorsque les données sont un échantillon de N de variables gaussiennes i.i.d.. Nous
disons donc qu’un estimateur réalise un tauz subgaussien s’il réalise le taux (1.1) & constantes
multiplicatives pres. En un sens, nous voulons que nos estimateurs soient aussi bons que si
les données étaient gaussiennes, méme lorsque l’échantillon réel est mal concentré (on suppose
seulement qu’il a un second moment).
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Remark 2.1. Nous savons que ¢~ (1 —§/2) < 1/2In(2/9), et pour de petits 6, ¢~ (1 — §/2) ~
V2In(2/5). Comme nos résultats sont tous formulés a constantes multiplicatives prés', nous
utilisons la formulation explicite C/In(1/9) dans la plupart de nos résultats.

Pour revenir & I'exemple, le taux (1.1) avec § ~ 107> et N ~ 1000 donne un rayon d’environ
0,150, et la dépendance logarithmique cruciale lui permet de se dégrader drastiquement moins
vite que le taux obtenu par I'inégalité de Tchebychev lorsque d tends vers 0.

Catoni (2012) construit un estimateur subgaussien 0 implicitement, comme solution de
I’équation suivante :
S [a(Xi— )} -0
i

ol « est un réel positif soigneusement choisi, et ¢ est une fonction d’influence bornée telle que
(x) ~ x lorsque x est proche de 0. Cette thése au contraire étudie principalement une autre
maniere de construire un tel estimateur subgaussien, I’heuristique Median-Of-Mean (MOM).

L’heuristique de la médiane des moyennes. Cette approche, décrite pour la premiere
fois dans Nemirovsky and Yudin (1983) et Jerrum et al. (1986), a fait 'objet d’une attention
particuliere dans les communautés de la statistique et de 'apprentissage automatique au cours
de la derniére décennie, par exemple dans Bubeck et al. (2013), Lerasle and Oliveira (2011),
Devroye et al. (2016), Minsker and Strawn (2017) ou Minsker (2015). Cette approche a été
concue a l'origine pour construire des estimateurs robustes aux données a queue lourde dans
divers contextes (voir Alon et al. (1999), Jerrum et al. (1986) et Birgé (1984) par exemple). Elle
peut étre définie comme suit : on commence par diviser aléatoirement les données en K blocs
By, ..., Bk de taille égale m = | N/K| (si K ne divise pas N, on enléve juste quelques données),
K étant choisi d’ordre log(1/d) avec ¢ la probabilité d’échec souhaitée par le statisticien. On

calcule ensuite la moyenne empirique au sein de chaque bloc : pour k=1,..., K,
. 1
Xp=—)Y_ X,
m
i€By,

L’estimateur final fix est la médiane des dernieres K moyennes empiriques. Le premier article
qui prouve formellement que cet estimateur a des queues sub-gaussiennes est Devroye et al.
(2016).

Theorem 2.1 (Devroye et al. (2016)). L’estimateur i a des déviations subgaussiennes : avec

la probabilité > 1 — e—K/32}
R 02K

L’idée principale réside dans le passage d’une variable non bornée a une variable bornée
grace a lopérateur médian. En effet, pour savoir si la médiane est dans un intervalle I, on
calcule Z := Zﬁ;l 1g, ¢; @ lorsque cette quantité est supérieure a K /2, la médiane est dans I.
La quantité Z, contrairement a la moyenne empirique, est une somme de variables bornées, ainsi
I'inégalité de Hoeffding (voir Hoeffding (1963)) stipule qu’elle est proche de sa moyenne avec une
probabilité d’échec exponentiellement faible, ce qui conduit au taux sous-gaussien du théoreme
2.1.

Notez que cette procédure n’est pas valable simultanément pour tous les ¢ : il faut calculer
un estimateur différent pour chaque valeur de §. Ce probleme peut étre résolu en utilisant la

!Dans cette thése, nous n’avons pas essayé d’optimiser les constantes, bien que ce soit un probléme important
et intéressant, voir la section 1.5.
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méthode d’adaptation de Lepskii présentée dans Lepskii (1990), comme expliqué plus en détail
dans le chapitre 3.

Cette technique permet de traiter pleinement le cas unidimensionnel, ainsi que les données a
queue lourde et la contamination adverse. Cependant, le développement rapide de 'apprentissage
automatique et la quantité croissante de données hautement dimensionnelles disponibles ont
conduit de nombreux statisticiens a se concentrer sur les tadches en grande dimension. Dans ces
contextes, les données données ne sont pas des observations d’une variable aléatoire unidimen-
sionnelle, mais plutot des observations d’un vecteur aléatoire a d dimensions, avec d > 1. Le
domaine de la statistique robuste s’est emparé de cette problématique, soulevant de nouvelles
questions : quel taux peut-on atteindre dans ce cas 7 Quel role joue la dimension 7 Comment
modifier et adapter les procédures pour ce cadre 7 Nous notons que ’extension du résultat
unidimensionnel n’est pas triviale car il existe plusieurs généralisations possibles de la médiane
dans des configurations multidimensionnelles (par exemple la médiane géométrique, voir Minsker
(2015) pour une définition, ou la médiane coordonnées par coordonnées).

2.2 Robustesse en haute dimension

2.2.1 Le taux subgaussien en haute dimension : découplage de la complexité
et de la déviation

Quels taux est-il possible d’atteindre dans des configurations a haute dimension ? On peut
toujours essayer d’atteindre un taux inspiré de la normalité asymptotique de la moyenne empirique
des observations & second moment fini, qui est le taux atteint par la moyenne empirique lorsque
les données sont un échantillon IV de variables gaussiennes i.i.d., que nous appellerons encore tauz
subgaussien. Nous calculons ce taux en utilisant 'inégalité de Borell-TIS (voir (Ledoux, 2001,
Théoreme 7.1)) : si Z1, Zs, ..., Zn sont des variables gaussiennes indépendantes identiquement
distribuées N (u,Id), il découle de cette inégalité qu’avec une probabilité d’au moins 1 — 4,

HZN—MH2= sup (Zy — p,v) <E sup (Zn — p,v) +v4/2log(1/9),

llvll;<1 llvll;<1

ou y = SUD)|jy |, <1 E(Z N — u,v>2. Il est de connaissance élémentaire sur les distributions
gaussiennes multivariées que IEsupHv‘bg(ZN — u,v) <+/d/N et v =/1/N, ce qui conduit au
taux subgaussien suivant (ou C' est une constante absolue),

HZN — ,uHQ < \/3) + 210gN(1/5) = Crs. (2.2)

La question de savoir s’il était possible d’atteindre un tel taux avec des données corrompues
et a forte queue de distribution a été un probléme ouvert pendant quelques années. Les premieres
tentatives d’adaptation de I’heuristique Median-Of-Mean, utilisant par exemple la médiane
géométrique (également appelée point de Fermat) au lieu de la médiane unidimensionnelle, et
présentées dans Minsker (2015) ou dans Hsu and Sabato (2016), ont conduit & des estimateurs /i
atteignant avec une probabilité supérieure a 1 — ¢,

dlog(1/90)

- p)? < = 2.3

I~ < OBU0) (23)
otl || - || est la norme euclidienne canonique sur R?. Cette limite est proportionnelle & log(1/6),

donc les estimateurs sont en quelque sorte robustes aux queues lourdes, mais ils n’atteignent pas
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tout a fait le taux subgaussien. En effet, dans le taux subgaussien, le terme de complexité d,
qui capte le degré de complexité de ’espace ambiant, et le facteur dépendant de la défaillance
log(1/d) ne sont pas multipliés, mais ajoutés, et sont donc en quelque sorte découplés I'un de
Iautre.

Quelques années plus tard, l'article fondateur de Lugosi and Mendelson (2019¢) a décrit
le premier estimateur permettant d’atteindre le taux subgaussien en supposant uniquement
un second moment fini, en utilisant I’heuristique Median-Of-Mean couplée & une procédure de
tournoi. L’idée est d’utiliser une généralisation de 'inégalité de Hoeffding utilisée dans le théoreme
2.1, appelée Inégalité de différence bornée. (également appelée inégalité de McDiarmid ou de
Hoeffding/Azuma), que nous rappelons ici (voir par exemple le théoréme 6.2 dans Boucheron
et al. (2013)) :

Theorem 2.2 (Inégalité de McDiarmid). Considérons des variables aléatoires indépendantes
X1, , X, € E et un mapping b : E™ — wversR. Si pour tous i € [1,n] et pour tous
Ty, - 71'11713;

|¢($1,~- TR 7xn)_w($17"' 73;;’... 71-”)‘ <g ,

alors pour chaque t > 0,

2t2
P((X1, Xo) B Xa)l| 2 ) Sexp (= s )
i=1C
Cette inégalité se trouve dans McDiarmid (1997) et elle permet de traiter des fonctions
¢ plus générales que la simple somme de variables aléatoires. Dans le probleme en question,
nous utilisons cette inégalité pour lier I’équivalent en haute dimension de la quantité Z définie
ci-dessus,

Z:= sup | > LXp—pv)>7)], (2.4)
vesy \ke[K]

qui est cette fois un supremum sur toutes les directions possibles & d-dimensions, mais reste un
supremum de quantité bornée. Le théoréme 2.2 stipule que Z a une probabilité exponentielle
d’étre proche de son espérance. Les étapes restantes de la preuve, qui sont détaillées dans le
chapitre 3, consistent & limiter cette espérance E(Z), en utilisant les outils de la théorie des
processus empiriques.

Cet article pionnier, tout en répondant a une question ouverte, ouvre deux directions de
recherche principales qui sont au cceur de cette these, et qui portent toutes deux sur des notions
de complexité. La premiere concerne la computational complexity : pour calculer 'estimateur
décrit dans Lugosi and Mendelson (2019¢), il faut un nombre d’étapes qui croit exponentiellement
avec la dimension, de sorte que cet estimateur ne peut pas étre calculé en pratique, méme pour
des valeurs modérées de d. Notre premiere question est donc la suivante : Pouvons-nous trouver
des estimateurs subgaussiens traitables en haute dimension ? Les chapitres 3 et 4 traitent
principalement de cette question. La deuxiéme question traite de la complexité statistique
au sens large et demande s’il est toujours possible de trouver des procédures qui atteignent un
taux gaussien pour d’autres taches d’estimation, comme l’estimation par rapport a des normes
non-euclidiennes par exemple. Les chapitres 5, 6 et 7 suivent cette deuxieme direction.

2.2.2 Complexité informatique

Le premier type de complexité que cette these explore est une complexité computationnelle.
Diakonikolas et al. (2016) est 'un des premiers articles a soulever la question de la tractabilité de
I’estimation robuste de la moyenne en haute dimension, et & montrer que ’apprentissage robuste
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en haute dimension est algorithmiquement possible. Avant cet article pionnier, les considérations
calculatoires étaient principalement des résultats de dureté, montrant que les estimateurs robustes
traditionnels tels que la médiane de Tukey, bien que prouvés robustes, sont prouvés difficiles a
calculer (voir par exemple Johnson and Preparata (1978) ou Bernholt (2006)). En utilisant de
nouvelles techniques, Diakonikolas et al. (2016) ouvre la voie a la statistique robuste calculable
et tragable et laisse de nombreuses questions passionnantes a explorer. En effet, méme si les
estimateurs proposés dans Diakonikolas et al. (2016) sont robustes a la contamination adverse,
ils échouent avec une probabilité constante (par exemple 1/100), et n’atteignent pas le taux
subgaussien mentionné ci-dessus. Une observation similaire peut étre faite sur les travaux de
Minsker (2015) ou Hsu and Sabato (2016). Dans ces deux articles, les estimateurs sont trés rapides
a calculer : la médiane géométrique de la moyenne peut étre calculée aussi rapidement que la
moyenne empirique a des facteurs multiplicatifs logarithmiques pres en la dimension. Cependant,
comme nous ’avons souligné précédemment, les estimateurs proposés ne parviennent pas a
atteindre le taux subgaussien. Une grande partie de cette these se concentre sur le développement
de procédures qui sont efficaces en termes de calcul et qui atteignent le taux subgaussien.

2.2.3 Complexité statistique

Une deuxiéme question a laquelle ce travail s’attaque est de savoir s’il est encore possible de
trouver des estimateurs qui se comportent comme si les données étaient gaussiennes pour d’autres
taches d’estimation, ou si cela n’est possible que dans quelques sous-cas particuliers comme
I’estimation de la moyenne par rapport a la norme euclidienne habituelle.

Illustrons cette question par un exemple. Nous voulons maintenant estimer la moyenne par
rapport a une norme sparse : nous désignons ’ensemble des vecteurs s-sparse Us, et considérons
la norme suivante :

lall, = sup  (a,u).
ueus‘7|lull2:1

En un sens, nous cherchons a remplacer le supremum sur la boule euclidienne Bg par un
supremum sur un autre ensemble, ici Us N Bg. On voit, en reprenant les variables gaussiennes Z;,
qu’avec une probabilité d’au moins 1 — 0, (toujours d’aprés (Ledoux, 2001, Theorem 7.1))

= sup  (Zy—p,0)
$ [lv]l,<1,vels

<E sup (Zn—p,v)+vy/2log(1/5)

fov s

lv]l,<1,vels
slog(ed/s) log(1 /5))1/2
< .
<c ( eirs) e

Le taux subgaussien pour le probléme d’estimation de moyenne sparse de la derniere equation
est différent de (2.2) : le "terme d’écart” contenant la probabilité d’échec § reste inchangé, mais
le "terme de complexité” (celui qui ne dépend pas de ) passe de d a slog(ed/s). Ce taux peut-il
étre atteint en supposant un moment du second ordre sur les variables aléatoires 7 Bien que
cette question soit traitée dans cette thése pour le cas particulier du supremum sur U N Bg, sa
généralisation a d’autres ensembles V' reste une question ouverte, qui n’est que partiellement
traitée dans les chapitres 5, 6 et 7. Nous pouvons reformuler cette question d’une autre maniere :
le terme de complexité issu de la perspective gaussienne est-il atteignable pour des variables non
gaussiennes, ou existe-t-il une autre mesure de complexité intrinseéquement liée a la situation non
gaussienne 7
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2.3 Contributions principales

Apres avoir introduit les principaux concepts, outils et questions, nous présentons les différentes
contributions des cing travaux qui composent cette these.

2.3.1 Estimation subgaussienne robuste d’un vecteur moyen en temps quasi-
linéaire

La premiere contribution de cette these, détaillée dans le chapitre 3, porte sur la complexité
computationnelle de I’estimation subgaussienne de la moyenne, par rapport a la norme euclidienne
traditionnelle. Au début de cette thése, deux articles trés importants ont été publiés, qui ont été
les premiers a proposer des procédures atteignant le taux subgaussien (1.2) tout en fonctionnant
en temps polynomial dans les deux variables N et d : Hopkins (2018) et Cherapanamjeri et al.
(2019). Ils s’exécutent tous deux en temps polynomial : O(N?* + Nd) pour Hopkins (2018) et
O(N* + N2d) pour Cherapanamjeri et al. (2019). (voir Cherapanamjeri et al. (2019) pour plus
de détails sur ces temps d’exécution). Ils ne considérent pas une contamination adversariale
du jeu de données alors que leurs résultats s’étendent facilement & cette configuration. Le
premier chapitre de cette these propose donc le troisieme algorithme polynomial atteignant
le taux subgaussien pour l’estimation de la moyenne, et le premier a traiter explicitement la
contamination adverse. De plus, il améliore le temps d’exécution des premieres procédures
proposées : nous construisons un algorithme s’exécutant en temps O(Nd + ulog(1/6)d) qui
produit un estimateur de la vraie moyenne atteignant le taux subgaussien (1.2) avec une confiance
de 1 =46 —(1/10)" (pour exp(—coN) < § < exp(—c1|O|)) sur une base de données corrompue et
sous une hypothese de second moment uniquement. Dans le pire des cas, le temps d’exécution
est donc de O(N2d).

Pour ce faire, cet article utilise I’heuristique de la médiane de la moyenne, comme les deux
procédures précédentes en temps polynomial. Notre approche reprend en fait des idées de deux
communautés : le principe de la médiane des moyennes de la communauté des statistiques
et une relaxation de la programmation semi-définie (SDP) utilisée dans la communauté des
sciences informatiques par Cheng et al. (2019a) qui peut étre théoriquement calculée rapidement.
L’amélioration du temps de calcul par rapport a la procédure de Cherapanamjeri et al. (2019)
est due a l'utilisation de ce programme semi-défini (SDP) couvrant étudié dans Allen-Zhu et al.
(2014), Peng et al. (2012), et Cheng et al. (2019a), et popularisé dans le domaine de la statistique
robuste par Cheng et al. (2019a), a chaque itération de 'algorithme de descente du gradient
robuste. Alors que dans Cheng et al. (2019a) ce SDP conduit & des procédures échouant avec une
probabilité constante et donc a I'impossibilité d’atteindre le taux subgaussien, nous montrons que
I'utilisation de ce type de SDP sur les moyennes de blocs plutot que sur les données elles-mémes
conduit non seulement a atteindre le taux subgaussien, mais aussi a une amélioration du cofit de
calcul de I'algorithme. L’heuristique de la médiane de la moyenne présente donc dans ce cas un
avantage stochastique et un avantage computationnel.

Pour prouver que la procédure proposée atteint effectivement le taux subgaussien, nous avons
dii trouver un nouveau lemme stochastique intéressant en soi, généralisant celui de Lugosi and
Mendelson (2019c¢) et Lerasle et al. (2019). Ce lemme a été utilisé depuis dans divers autres
travaux et contextes, par exemple dans la régression dans Cherapanamjeri et al. (2020b), ou
pour définir la notion de stabilité dans Diakonikolas et al. (2020). La preuve de ce lemme repose
sur une technique d’arrondi gaussien similaire a celle utilisée dans 'inégalité de Grothendieck.

Des travaux tres récents Lei et al. (2020); Hopkins et al. (2020); Depersin (2020a) obtiennent
des résultats similaires a celui de ce travail. Ils ont également réussi a remplacer les SDP par
des méthodes spectrales pour le calcul d’une direction de descente robuste a chaque étape. En
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effet, méme si les SDP de couverture sont d’un point de vue théorique efficaces d’un point de
vue informatique (voir Allen-Zhu et al. (2014),Peng et al. (2012)), ils sont notoirement difficiles &
mettre en ceuvre en pratique alors que les méthodes spectrales utilisées dans Lei et al. (2020);
Hopkins et al. (2020); Depersin (2020a) ouvrent la porte a des algorithmes implémentables. 11
est intéressant de noter que le temps de calcul proposé dans ce travail est encore a ce jour le
meilleur temps d’exécution connu, et on peut conjecturer qu’il pourrait méme étre le moyen le
plus rapide d’atteindre le taux subgaussien.

2.3.2 Un algorithme spectral pour la régression robuste avec des taux sub-
gaussiens

La deuxieme contribution que nous apportons, détaillée dans le chapitre 4 traite de la question
de l'atteinte des limites subgaussiennes en temps polynomial, mais pour la régression au lieu de
I’estimation de la moyenne. Nous rappelons rapidement le cadre standard de la régression linéaire
ot les données sont des couples (X;,Y;); € R? x R et ot l'on cherche la meilleure combinaison
linéaire des coordonnées d’un vecteur d’entrée X pour prédire la sortie Y, c¢’est-a-dire que 1'on
cherche 8* défini comme suit.

B* = argmin £(f) = argmin E(Y; — (8, X1))?.
BeRd BeRd

La question de savoir g’il était méme possible d’atteindre des taux sub-gaussiens dans ce cadre,
sous des hypotheses de moment faible, est restée longtemps ouverte. En effet, pendant un certain
temps, les algorithmes polynomiaux les plus connus étaient ceux de Prasad et al. (2018) ou de Hsu
and Sabato (2016). La garantie pour ces deux algorithmes est la suivante : lorsque la covariance de
X est lidentité et lorsque le bruit &€ = Y —(8*, X) a une variance bornée, £(f)—£(f*) < O(W)
avec une probabilité de 1 —§. Ce taux ne présente pas ce découplage entre complexité et déviation
que nous avons appelé sub-gaussien. L’article de Cherapanamjeri et al. (2020a) a été le premier
a construire une méthode en temps polynomial permettant d’atteindre le taux subgaussien des
MCO dans le cadre gaussien £(f) — £(f*) < O(W). Lors de la premiére publication du
chapitre 4, Cherapanamjeri et al. (2020a) était la seule procédure fonctionnant en algorithme
polynomial atteignant le taux subgaussien optimal. Cependant, Cherapanamjeri et al. (2020a)
utilise la hiérarchie de programmation Sum of Square (SoS) pour concevoir son algorithme. Méme
si la hiérarchie SoS s’exécute en temps polynomial, sa dépendance a 1’égard de la résolution
de grands programmes semi-définis la rend peu pratique et reste un résultat théorique, laissant
toujours ouverte la question de I'existence d’un algorithme pratique efficace permettant d’obtenir
des taux subgaussiens optimaux.

Dans le chapitre 4, nous abordons cette question, en montrant que les techniques de Lei et al.
(2020) combinées aux lemmes de Depersin (2020a) peuvent étre utilisées pour donner le premier
algorithme pratique, presque quadratique (et en fait dans la plupart des cas presque linéaire) qui
atteint le taux subgaussien. Nous réalisons également des expériences numériques sur des données
simulées avec la procédure que nous proposons pour montrer qu’elle est effectivement pratique
et rapide. De plus, comme prévu par nos résultats théoriques, notre analyse de simulation
montre qu’elle est robuste a la fois aux données a queue lourde et aux valeurs aberrantes. A
notre connaissance, c’est la premiere fois que des expériences numériques mettant en ceuvre la
formulation exacte d’un estimateur sous-gaussien sont menées pour un algorithme de régression
avec des taux sous-gaussiens et des garanties de temps polynomial.
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2.3.3 Estimation subgaussienne robuste avec dimension VC

La troisieme contribution que nous apportons est détaillée dans le chapitre 5, et elle concerne
la complexité statistique plutot que la complexité informatique. Nous avons essayé de montrer
comment on peut utiliser la dimension VC pour obtenir des limites de pointe dans ’estimation
non-euclidienne avec des données a forte queue.

Dans ce travail, nous montrons que I’analyse présentée dans Lugosi and Mendelson (2019c),
dans Lecué and Lerasle (2019), Lerasle (2019) ou dans Lecué and Lerasle (2020), et généralisée
dans Lugosi and Mendelson (2019b), toutes basées sur le principe de la médiane des moyennes
et I'utilisation des complexités de Rademacher, peuvent étre modifiées afin d’obtenir des taux
sub-gaussiens pour des problemes épars ou structurés en supposant uniquement des moments
d’ordre deux bornés. La méthode développée dans Lerasle (2019) ou dans Lecué and Lerasle
(2020) nécessite que les données aient au moins log(d) de moments finis (ot d est la dimension de
I'espace) afin d’exploiter la sparsité du probléme et n’offre aucune garantie sans cette condition, et
est a ce jour la meilleure connue. Nous montrons que nous pouvons abandonner cette condition en
introduisant judicieusement la dimension VC dans les différentes preuves, et exploiter la sparsité
du probleme avec seulement deux moments. Nous montrons au chapitre 5 que les approches
classiques utilisant les complexités locales de Rademacher ne peuvent pas atteindre ce type de
limites subgaussiennes sous ’hypothese d’un second moment seulement. D’une certaine manieére,
I’approche classique utilisée jusqu’a présent ne capture pas la complexité statistique correcte
des problemes a haute dimension sous des hypotheses structurelles a basse dimension et sous
une hypothése de second moment seulement : il semble que la complexité de Rademacher
ne soit pas la bonne fagcon de mesurer la complexité du probléeme de I’estimation
de la moyenne structurée dans une norme quelconque. Notre approche basée sur la
dimension VC permet de surmonter ce probléme et d’aller au-dela de cette hypothése de moments
subgaussiens log d qui est apparue dans tous les travaux sur I’estimation robuste et subgaussienne
dans le cadre de la haute dimension Lerasle (2019). Nous montrons également que cette technique
générale peut étre facilement reproduite et nous donnons de nouveaux estimateurs robustes
qui atteignent des limites de pointe pour différentes taches d’estimation telles que la régression,
I’estimation de la moyenne avec des normes non euclidiennes, 'estimation robuste de matrices a
faible rang et I’estimation de la covariance.

Ce chapitre n’est pas le premier a introduire la dimension VC dans les problémes d’estimation
robuste : il a été inspiré par Chen et al. (2018) et Gao (2017) par exemple. Dans ces deux articles,
I’estimation et la régression avec une éventuelle structure de sparsité et des valeurs aberrantes
sont également réalisées avec des taux optimaux, en utilisant des techniques de dimension VC,
mais leur hypotheése d’une structure de sparsité et de valeurs aberrantes n’a pas été retenue.

Nous notons que la dimension VC présente certains avantages par rapport a la complexité de
Rademacher dans certains cas, mais ce quatriéme chapitre montre qu’elle ne conduit pas a des
taux optimaux dans tous les cas, et donc qu’elle n’est pas toujours la bonne facon de mesurer
la complexité d’une tache d’estimation robuste. En effet, en utilisant la dimension VC dans
I’estimation de la moyenne, nous perdons une dépendance intéressante des bornes de risque dans
la structure de covariance : nos taux pour l'estimation de la moyenne (non éparse) dépendent de
la dimension ambiante d au lieu du rang effectif Tr(X)/||X||op (qui est capturé par la complexité
de Rademacher). En particulier, 'approche générale de la dimension VC ne se généralise pas
directement aux espaces de dimension infinie. Dans la derniere section du chapitre 5, nous
montrons que ce probléeme peut étre surmonté si nous avons une certaine connaissance de la
matrice de covariance, en proposant une nouvelle procédure pour ce cas.
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2.3.4 Sur la robustesse de la médiane des moyennes de Stahel-Donoho a la
corruption contradictoire et aux données a queue lourde

Dans le chapitre 6, nous traitons de I'estimation par rapport & la norme z € R4 — HE_l/ 2ZL‘H2, ou
> est la matrice de covariance des données, et nous supposons que cette matrice n’est pas connue
au préalable par le statisticien. Ainsi, en un sens, nous essayons d’estimer par rapport a une
norme inconnue, alors que les techniques dérivées dans le chapitre 5 s’appliquent principalement &
des normes connues. Nous étudions cette norme particuliere, dont la boule unitaire est ’ellipsoide
»i/ 2B, parce qu'il s’agit de la meilleure métrique — c’est-a-dire celle qui conduit & des ensembles
de confiance de volume minimal pour une confiance donnée — dans le cas de référence i.i.d.
gaussien.

Alors que le taux subgaussien pourrait étre obtenu avec les estimateurs de Lugosi and
Mendelson (2019b) ou Lerasle et al. (2019), ces estimateurs nécessiteraient la connaissance de
Y, dans leur construction. Il faut donc envisager d’autres techniques. Dans ce chapitre, nous
montrons que c’est possible grace a une notion de profondeur/extrémité introduite au début
des années 80 qui utilise une normalisation par une estimation robuste de 1’échelle appelée
Stahel-Donoho Outlyingness (SDO), qui a été introduite pour la premiére fois dans Donoho and
Gasko (1992). Nous couplons cette notion d’excentricité avec 1’heuristique Median-Of-Mean pour

obtenir des estimateurs subgaussiens par rapport a la métrique HE*U 2-H2. Sur le chemin de

notre objectif, nous complétons les résultats sur la cohérence /n et la normalité asymptotique
des estimateurs de Stahel-Donoho que I'on peut trouver dans Maronna and Yohai (1995) et Tyler
(1994) en dérivant le premier taux de convergence non-asymptotique pour la médiane SDO (ainsi
que sa version médiane des moyennes). Nous montrons également que les propriétés de robustesse
de la médiane SDO originale et de sa version MOM vont au-deld du modéle de contamination de
Huber et qu’elles persistent toujours dans le modele de corruption adversariale de Setting 2.1.
Nous utilisons également 1’échelonnement robuste de ’écart de Stahel-Donoho pour construire
des estimateurs de la matrice de covariance sous une certaine hypothese de régularité.

2.3.5 Estimation robuste optimale de la moyenne et de ’emplacement via des
programmes convexes en respectant des pseudo-normes quelconques

Notre derniere contribution, détaillée dans le chapitre 7, consiste & donner une nouvelle borne
inférieure pour I'estimation de la moyenne dans toute norme. Lugosi and Mendelson (2019b)
donne la borne inférieure suivante pour I'estimation de la moyenne :

Theorem 2.3. [Théoréme 3 de Lugosi and Mendelson (2019b)] Il existe une constante absolue
c> 0 telle que ce qui suit est vrai. Si fi : RN — R? est un estimateur tel que pour tout p* € R?
et tout 0 € (0,1/4),

P |

p—p<r=1-0

ot IP’fy* est la distribution de probabilité de (X;)ic|n) lorsque les X; sont i.i.d. N'(u*,¥) alors
* ¢ 1/2 d
rt > — supn\/logN(Z /2B° nBY) + sup

v o s 2, 79

oty N(X'2B° nBY) est le nombre minimal de translations de nBY$ nécessaires pour couvrir
»12pe.

Le terme de complexité dans cette borne inférieure est donc mesuré en utilisant la borne
de Sudakov définie dans le 1.3. Cependant, il existe un écart entre cette borne inférieure et les
bornes supérieures dépendant de la largeur moyenne gaussienne dans le cas gaussien. Cet écart
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provient du manque de rigueur de I'inégalité de Sudakov présentée dans le théoreme 1.3. Pour
les ellipsoides par exemple, la limite de Sudakov n’est pas nette en général et donc la limite
inférieure du théoreme 2.3 ne permet pas de retrouver le taux subgaussien classique pour le cas
de la norme euclidienne standard (c’est-a-dire pour S = B¢) qui est donné dans Lugosi and

Mendelson (2019c¢) par :
Tr (3) ¢ [21lgp Loz (1/9)
. 2.

En effet, lorsque ||-|| est la norme euclidienne ¢4, alors E HEI/QGH =E H21/2GH2 ~ /Tr(X).

En revanche, 'entropie de £1/2B° = 31/ 2B¢ par rapport a nBY peut étre calculée en utilisant
I'équation (5.45) dans Pisier (1989) que

1/k L (/K
v |
supny/logy N(X1/2B¢,nBY) ~  sup Y VA ~ |supk by (2.6)
n>0 \/ 2 2 2 n>1,k€(d] on/k 31;[1 ’ keld] ]1;[1 !
ol A\; > ... > Ag sont les valeurs singulieres de ¥. En particulier, lorsque A\; = 1/j, la borne

d’entropie (1.9) est de 'ordre d’une constante alors que la largeur moyenne gaussienne est de
I'ordre de v/log d. Nous comblons cette lacune dans le chapitre 7 en montrant une limite inférieure
ou lentropie est remplacée par la largeur moyenne gaussienne (plus grande). Pour ce faire, nous
utilisons le lemme d’Anderson et des arguments analytiques, au lieu des arguments géométriques
et volumétriques utilisés par Lugosi and Mendelson (2019b) pour obtenir la limite de Sudakov
comme limite inférieure.

Nous montrons également que ce taux peut parfois étre atteint par une solution a un probléme
d’optimisation convexe dans le cadre adversatif et Lo & queue lourde en considérant le minimum
de certaines transformées de Fenchel-Legendre construites en utilisant le principe de la médiane
des moyennes.
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CHAPTER 3

Robust Subgaussian Estimation of a Mean Vector in Nearly Linear Time
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3.1 Thorough introduction on the robust mean vector estima-
tion problem

Estimating the mean of a random variable in a d-dimensional space when given some of its
realizations is arguably the oldest and most fundamental problem of statistics. In the past few
years, it has received important attention from two communities: the statistics community, see
for instance Catoni (2012); Minsker (2015); Chen et al. (2018); Catoni and Giulini (2017); Lugosi
and Mendelson (2019¢); Minsker (2018a); M. Lerasle and Lecué (2017); Hopkins (2018); Chera-
panamjeri et al. (2019); Lei et al. (2020); Dalalyan and Minasyan (2020) and the computer science
one, see Diakonikolas et al. (2016, 2019a, 2018a,b, 2019¢); Cheng et al. (2019a); Diakonikolas
and Kane (2019); Hopkins et al. (2020). Both communities consider the problem of robust mean
estimation, focusing mainly on different definitions of robustness.

In recent years, many efforts have been made by the statistics community on the construction
of estimators performing in a subgaussian way for heavy-tailed data. As seen in the introduction,
such estimators achieve the same statistical properties as the empirical mean X of (X1, -+, Xn),
a N-sample of i.i.d. Gaussian variables N'(y, ) where p € R? and ¥ > 0 is the covariance
matrix. In that case, for a given confidence 1 — §, the subgaussian rate as defined in Lugosi and
Mendelson (2019¢) is (up to an absolute multiplicative constant)

7A(SZ\/TI«]%E) +\/IIE||opfrg(1/5) 3.1)

43
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where Tr(X) is the trace of ¥ and [|X]|,, is the operator norm of . Indeed, it follows from Borell-
TIS’s inequality (see Theorem 7.1 in Ledoux (2001) or pages 56-57 in Ledoux and Talagrand
(2011)) that with probability at least 1 — 4,

HXN_HHQZ sup (Xy — p,v) <E sup (Xy — p,v) + 04/2log(1/6)

llvflo<1 l[oll2<1

where o = SUD) |||, <1 E<XN —,u,v>2 is the weak variance of the Gaussian process. It is

straightforward to check that Esup||v||2§1<XN — p,v) < /Tr(X)/N and o = /|||, /N, which

leads to the rate in (3.1) (up to the constant v/2 on the second term in (3.1)). In most of
the recent works, the effort has been made to achieve the rate rgs for i.i.d. heavy-tailed data
even under the minimal requirement that the data only have a second moment. Under this
second-moment assumption only, the empirical mean cannot! achieve the rate (3.1) and one
needs to consider other procedures. As, recalled in the general introduciton, over the years, some
procedures have been proposed to achieve such a goal: it started with Catoni (2012) and Lerasle
and Oliveira (2011), then, a Le Cam test estimator, called a tournament estimator in Lugosi and
Mendelson (2019¢), a minmax median-of-means estimator in M. Lerasle and Lecué (2017) and a
PAC-Bayesian estimator in Catoni and Giulini (2017) were constructed. The constructions in
Lerasle and Oliveira (2011); Lugosi and Mendelson (2019¢); M. Lerasle and Lecué (2017) are
based on the median-of-means principle, a technique that we will also use.

On the other side, the computer science (CS) community mostly considers a different definition
of robustness and targets a different goal. In many recent CS papers, tractable algorithms (and
not only theoretical estimators) have been constructed and proved to be robust with respect to
adversarial contamination of the dataset seen in the general introduction. We recall now this
adversarial contamination model together with the heavy-tailed setup which will serve as our
unique assumption in this work.

Assumption 3.1. There exists N random vectors (X;)¥, in R? which are independent with

mean p and covariance matriz B(X; — p)(X; — p)T < X where ¥ is an unknown covariance
matriz. The N random vectors ()NQ){\LI are first given to an “adversary” who is allowed to
modify up to |O| of these vectors. This modification does not have to follow any rule. Then, the
“adversary” gives the modified dataset (X;)N., to the statistician. Hence, the statistician receives
an “adversarially” contaminated dataset of N wectors in R® which can be partitioned into two
groups: the modified data (X;)ico, which can be seen as outliers and the “good data” or inliers
(X)ier such thatVi e T,X; = X'Z-. Of course, the statistician does not know which data has been

modified or not so that the partition O UL = {1,..., N} is unknown to the statistician.

In the adversarial contamination model from Assumption 3.1, the set O can depend arbitrarily
on the initial data (X;)Y; the corrupted data (X;);co can have any arbitrary dependance
structure; and the informative data (X;);czr may also be correlated (for instance, it is the case,
in general, when the |O| data X; with largest Eg—norm are modified by the adversary). The
computer science community looks at the problem of robust mean estimation from algorithmic
perspectives such as the running time in this contamination model. A typical result in this line
of research is Theorem 1.3 from Cheng et al. (2019a) that we recall now.

Theorem 3.1 (Theorem 1.3, Cheng et al. (2019a)). Let Xi,..., Xy be a data points in RY
following Assumption 3.1. We assume that the covariance matriz 3 of the inliers satisfies
¥ < 021;. We assume that € = |O|/N is such that 0 < € < 1/3 and N = dlog(d)/e. There exists

!Under only a second-moment assumption, the empirical mean achieves the rate y/Tr(X)/(6N) which can not
be improved in general, see Catoni (2012).
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an algorithm running in O(Nd)/poly(e) which outputs fic such that with probability at least 9/10,
e = plly S ov/e.

The notation O(Nd) stands for the computational running time of an algorithm up to log(Nd)
factors. The first result proving the existence of a polynomial time algorithm robust to adversarial
contamination may be found in Diakonikolas et al. (2016) and the first achieving such a result
under only a second moment assumption may be found in Diakonikolas et al. (2017). Theorem 3.1
improves upon many existing results since it achieves the optimal information theoretic-lower
bound with a (nearly) linear-time algorithm.

Finally, there are two recent papers for which both algorithmic and statistical considerations
are important. In Hopkins (2018); Cherapanamjeri et al. (2019), algorithms achieving the
subgaussian rate in (3.1) have been constructed. They both run in polynomial time: O(N?* 4 Nd)
for Hopkins (2018) and O(N* + N2d) for Cherapanamjeri et al. (2019) (see Cherapanamjeri et al.
(2019) for more details on these running times). They do not consider a contamination of the
dataset even though their results easily extend to this setup. Some other estimators which have
been proposed in the statistics literature are very fast to compute but they do not achieve the
optimal subgaussian rate from (3.1). A typical example is Minsker’s geometric median estimator
Minsker (2015) which achieves the rate \/Tr(X)log(1/6)/N in linear time O(Nd). All the later
three papers use the median-of-means principle. We will also use this principle. What we mainly
borrow from the literature on MOM estimators is the advantage to work with local block means
instead of the data themselves. We will identify two such advantages by doing so: a stochastic
one and a computational one (see Remark 3.4 below for more details).

The aim of this work is to show that a single algorithm can answer the three problems:
robustness to heavy-tailed data, to adversarial contamination and computational cost. Assump-
tion 3.1 covers the two concepts of robustness considered in the statistics and computer science
communities since the informative data (data indexed by Z) are only assumed to have a second
moment and there are |O| adversarial outliers in the dataset. Our aim is to show that the
rate of convergence (3.1) which is the rate achieved by the empirical mean in the ideal i.i.d.
Gaussian case can be achieved in the corrupted and heavy-tailed setup from Assumption 3.1
with a fast algorithm: we construct an algorithm running in time O(Nd + ulog(1/8)d) which
outputs an estimator of the true mean achieving the subgaussian rate (3.1) with confidence
1—9—(1/10)" (for exp(—coN) < 6 < exp(—c1|O])) on a corrupted database and under a second
moment assumption only. It is therefore robust to heavy-tailed data and to contamination. Our
approach takes ideas from both communities: the median-of-means principle which has been
recently used in the statistics community and a SDP relaxation from Cheng et al. (2019a) which
can be theoretically computed fast. The baseline idea is to construct K equal size groups of
data from the N given ones and to compute their empirical means Xy, k = 1,..., K. These
K empirical means are used successively to find a robust descent direction thanks to a SDP
relaxation from Cheng et al. (2019a). We prove the robust subgaussian statistical property of
the resulting descent algorithm under only the Assumption 3.1.

The chapter is organized as follows. In the next section, we give a high-level description of
the algorithm and summarize its statistical and computation performance in our main result
Theorem 3.2. We also clearly identify how it improves upon existing results on the same subject.
In Section 3, we prove its statistical properties and give a precise definition of the algorithm.
In Section 4, we study the statistical performance of the SDP relaxation at the heart of the
descent direction. In Section 5, we fully characterize its computational cost. In Section 3.6, we
construct a procedure achieving the same statistical properties and can automatically adapt to
the number of outliers. This latter adaptive procedure is also proved to satisfy estimation results
in expectation.
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We will use the following notation [n] = {1,...,n} for any n € N and ¢4 stands for the
Euclidean space R? endowed with its canonical Euclidean norm |-|, : = (:cj)gl:l c R? —
(X, m?)lﬂ. A #4-ball centered in z € R? with radius r > 0 is denoted by Bg(x,r), the ¢4 unit

ball is denoted by B and the £3 unit sphere is denoted by Sg~1.

3.2 Construction of the algorithms and main result

The construction of our robust subgaussian descent procedure is using two ideas. The first
one comes from the median-of-means (MOM) approach which has recently received a lot of
attention in the statistical and machine learning communities, see for instance Bubeck et al.
(2013); Lerasle and Oliveira (2011); Devroye et al. (2016); Minsker and Strawn (2017); Minsker
(2015); Nemirovsky and Yudin (1983); Alon et al. (1999); Jerrum et al. (1986); Birgé (1984). The
MOM approach often yields robust estimation strategies (but usually at a high computational
cost). Let us recall the general idea behind that approach already exposed in the introduction: we
first randomly split the data into K equal-size blocks By, ..., Bx (if K does not divide N, we just

remove some data). We then compute the empirical mean within each block: for k=1,... K,
K= Y X
k= i
Bl 25,

where we set |By| = Card(By) = N/K. In the one-dimensional case, we then take the median
of the latter K empirical means to construct a robust and subgaussian estimator of the mean
(see Devroye et al. (2016)). It is more complicated in the multi-dimensional case, where there is
no definitive equivalent of the one dimensional median but instead there are several candidates:
coordinate-wise median, the geometric median (also known as Fermat point), the Tukey Median,
among many others (see Small (1990)). The strength of this approach is the robustness of the
median operator, which leads to good statistical properties even on corrupted databases. For
the construction of our algorithm, we use the idea of grouping the data and compute iteratively
some median of the bucketed means X, k=1,...,K.

In Cherapanamjeri et al. (2019), the authors propose to use these block means for a gradient
descent algorithm: at the current point x. of the iterative algorithm, a "robust descent direction’
well aligned with x.— pu is constructed with high probability. Note that x.—EX is the best descent
direction towards EX starting from x.; we can also re-write that as a matrix problem: a top
eigenvector (i.e. an eigenvector associated with the largest singular value) of (EX —z.)(EX —x.) "
is the optimal descent direction (z. — EX)/ |z, — EX||,. As a consequence, a top eigenvector of
a solution to the optimization problem

i

argmax (M, (EX — z.)(EX —z.)") (3.2)
M=0,Tr(M)=1

also yields the best descent direction we are looking for (note that (A, B) = Tr(AT B) is the
inner product between two matrices A and B). Optimization problem (3.2) may be seen as a
SDP relaxation for the problem of finding a top eigenvector and it is the reason why we go into
SDP optimization techniques. Recently, this SDP relaxation has been bypassed thanks to the
power method in Lei et al. (2020) whose aims is also to approximate a top eigenvector.

Of course, we don’t know (EX — z.)(EX — x.)" in (3.2) but we are given a database of N
data Xi,...,Xn (among which |Z| of them have mean ). We use these data to estimate in
a robust way the unknown quantity (EX — z.)(EX — x.)" in (3.2). Ideally, we would like to
identify the informative data and their block means (1/|K|) ¥ pexc(Xk — 7c) (X — 2¢) ", where
K ={k: BN O =0}, to estimate this quantity but this information is not available either.
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To address this problem we use a tool introduced in Cheng et al. (2019a); Diakonikolas et al.
(2016) adapted to the block means. The idea is to endow each block mean X} with a weight wy,
taken in Ag defined as

1 K
Ay = K i 0<w, < —— =13.
K {(wk)k_l S WE S 9K/10,kz::1wk }

Ideally we would like to put 0 weights to all block means X}, corrupted by outliers. But, we
cannot do it since I is unknown. To overcome this issue, we learn the optimal weights and
consider the following minmax optimization problem

K
in (M Xy — x) (X —20) 7). E
T TR R T )

This is the dual problem from Cheng et al. (2019a) adapted to the block means. The key insight
from Cheng et al. (2019a) is that an approximate solution M, of the maximization problem in
(E%,) can be obtained in a reasonable amount of time using a covering SDP approach Cheng et al.
(2019a); Peng et al. (2012) (see Section 3.4). We expect a solution (in M) to (E,.) to be close to
a solution of the minimization problem in (3.2) — which is M* = (u — z¢)( — z¢) "/ |11 — 2|3
— and the same for their top eigenvectors (up to the sign). We note that in order to find a
good descent direction the authors of Cherapanamjeri et al. (2019) also use a (different) SDP
relaxation. Theirs costs O(N* + Nd) to be computed.

At a high level description, the robust descent algorithm we perform outputs [ix after at most
log d iterations of the form z. — 6.v; where vy is a top eigenvector of an approximate solution M,
to the problem (E,_) and 6, is a step size. It starts at the coordinate-wise median of the bucketed
means X1, ..., X . In Algorithm 4, we define precisely the step size and the stopping criteria
we use to define the algorithm (it requires too much notation to be defined at this stage). This
algorithm outputs the vector fix whose running time and statistical performance are gathered in
the following result.

Theorem 3.2. Grant Assumption 3.1. Let K € {1,...,N} be the number of equal-size blocks
and assume that K > 300|0|. Let u € N* be a parameter of the covering SDP used at each
descent step. With probability at least 1 — exp(—K/180000) — (1/10)%, the descent algorithm
finishes in time O(Nd + Kud) and outputs firc such that

A Tr(3) \/1200 I=1,, K
— pll, < 808 [ 1200 .

To make the presentation of the proof of Theorem 3.2 as simple as possible we did not
optimize the constants (better constants have been obtained in Catoni (2012); Catoni and Giulini
(2017)). Theorem 3.2 generalizes and improves Theorem 3.1 in several ways. We first improve
the confidence from a constant “9/10” to an exponentially large confidence 1 — exp(—coK') (when
u ~ K), which was a major technical challenge (note however that the confidence 9/10 in Cheng
et al. (2019a) can be increased to any desired confidence at the expense of deteriorating the rate
of convergence — see footnote of page 2 in Cheng et al. (2019a)). We obtain the result for any
covariance structure ¥ and [ix does not require the knowledge of ¥ for its construction. We
obtain a result which holds for any N (even in the case where N < d). The construction of fix
does not require the knowledge of the exact proportion of outliers € in the dataset, but it requires
an upper bound in the number of outlier, so that we can chose K 2 |O|. Moreover, using a
Lepskii adaptation method Lepskii (1991, 1990) it is also possible to automatically choose K
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and therefore to adapt to the proportion of outliers if we have some extra knowledge on Tr(X)
and [|X]|,, (see Section 3.6 for more details). Moreover, if we only care about constant 9/10

confidence, our runtime does not depend on € and is nearly-linear O(Nd). We also refer the
reader to Corollary 3.2 for more comparison with Theorem 3.1.

Remark 3.1 (Nearly-linear time). We identify two important situations where the algorithm
from Theorem 3.2 runs in nearly-linear time, that is, in time @(Nd). First, when the number
of outliers is known to be less than VN, we can choose K < /N and u = K. In that case,
the algorithm runs in time @(Nd) and the subgaussian rate is achieved with probability at least
1—2exp(—coK) for some constant ¢y (see also Corollary 3.3 for an adaptive to K version of this
result). Another widely investigated situation is when we only want to have a constant confidence
like 9/10 as it is the case in the CS community such as in Theorem 3.1. In that case, one may
choose u =1 and any values of K € [N] can be chosen (so we can have any number of outliers up
to a N/300) to achieve the rate in Theorem 3.2 with constant probability and in nearly-linear time
@(Nd) (see also Corollary 3.2 for an adaptive to K wversion of this result). Finally, it is possible
to get a subgaussian estimator for the all range of K € [N] which is also robust to adversarial
outliers up to a constant fraction of N when we take u = K. In that case, the running time is
O(Nd + K?2d) which is at worst O(N?d). So algorithm outputs fix in time between O(Nd) and
@(N2d) depending on the number of outliers and the probability deviation certifying the result
we want.

Theorem 3.2 improves the result from Hopkins (2018); Cherapanamjeri et al. (2019) since fix
runs faster than the polynomial times O(N?* + Nd) and O(N* + Nd) in Hopkins (2018) and
Cherapanamjeri et al. (2019). The algorithm fix also does not require the knowledge of Tr(X)
and X[, Finally, Theorem 3.2 provides running time guarantees on the algorithm unlike in
Lugosi and Mendelson (2019c); M. Lerasle and Lecué (2017); Catoni and Giulini (2017) and it
improves upon the statistical performance from Minsker (2015). The main technical novelty lies
in Proposition 3.1, necessary to improve analysis from Cheng et al. (2019a) toward exponentially
large confidence 1 — exp(—coK). Proposition 3.1 may be of independent interest. Theorem 3.2
also improves the running time in Cheng et al. (2019a) O(Nd/e®) and the constant probability
deviation (see Theorem 3.1 for more details) — both probability estimates and computational time
have been improved by using bucketed means in place of the data themselves (see Remark 3.4
below for more details). The computational time improvement from Theorem 3.2 upon the one
in Cherapanamjeri et al. (2019) is due to the use of covering SDP Allen-Zhu et al. (2014); Peng
et al. (2012); Cheng et al. (2019a) at each iteration of the robust gradient descent algorithm.
Very recent works Lei et al. (2020); Hopkins et al. (2020); Depersin (2020b) obtain similar results
to the one of Theorem 3.2. They were also able to replace SDPs by spectral methods for the
computations of a robust descent direction at each step. Even though cover SDPs are from
a theoretical point of view computationally efficient, see Allen-Zhu et al. (2014); Peng et al.
(2012), they are notoriously difficult to implement in practice whereas the power methods used
in Lei et al. (2020); Hopkins et al. (2020); Depersin (2020b) open the door to implementable
algorithms. For more references on robust mean estimation, we refer the reader to the survey
from Diakonikolas and Kane (2019).

3.3 Proof of the statistical performance in Theorem 3.2

In this section, we prove the statistical performance of [ix as stated in Theorem 3.2. We first
identify an event £ onto which we will derive the rate of convergence of the order of (3.1).
This event is also used to compute the running time of jig in the next section as announced in
Theorem 3.2.
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Proposition 3.1. Denote by £ the event onto which for all symmetric matrices M = 0 such
that Tr(M) = 1, there are at least 9K /10 of the blocks for which HMl/Q(Xk - M)HQ < 8r where

Tr(Z) \/1200 12, &
=12 : .
r 00\/ At 5 (3.3)

If Assumptions 3.1 holds and K > 300|O| then P[] > 1 — exp(—K/180000).

Proposition 3.1 contains all the stochastic arguments we will use in this chapter (constants
have not been optimized). In other words, after identifying the event &, all the remaining
arguments do not involve any other stochastic tools. The proof of Proposition 3.1 is based on a
rounding argument similar to the one used to prove Grothendieck’s inequality (see Grothendieck
(1953); Pisier (2012)) or in the Goemans and Williamson’s analysis of a SDP relaxation of the
Max-Cut problem (see Goemans and Williamson (1995)) or in Nesterov’s theorem (see Nesterov
(1997)). Before proving Proposition 3.1, let us first state a result that is of particular interest
beyond our problem.

Corollary 3.1. On the event &, for all symmetric matrices M € R¥% such that M = 0 and
Tr(M) =1 there are at least 9K /10 blocks k for which HM1/2(Xk — 1) ’2 < 8r and for all such

k’s and all . € RY,

oo s < P 2, < o e

Let us now turn to a proof of Proposition 3.1. We first remark that if we were to only consider
matrices M of rank 1, Proposition 3.1 would boil down to showing that for all v € Sg_l (the unit
sphere in ¢4) on more than 9K/10 blocks |(v, X; — u)| < 8r. This is a “classical” result in the
MOM literature which has been proved in Lugosi and Mendelson (2019¢) and M. Lerasle and
Lecué (2017). We recall now this result and the short proof from M. Lerasle and Lecué (2017)
adapted to the adversarial contamination setup from Assumption 3.1. We will use it to prove
Proposition 3.1.

Lemma 3.1. Grant Assumption 3.1 and assume that K > 300|0O|. With probability at least
1 — exp(—K/180000), for all v € S there are at least 99K /100 of the blocks k such that
(v, Xj — )| <r.

Proof. We use the notation introduced in Assumption 3.1 and we considered the following
bucketed means X, = |By| ™! > i, X, for k € [K]. They are the K means constructed on the
N independent vectors X;, i € [N] before contamination (whereas X}, are the ones constructed
after contamination).

In the following, we show that with probability at least 1 —exp(—K/180000), for all v € S;l*l,

2K

< —. .
— 300 (3:5)

> 11Xk~ pov)] > 7)

ke[K]

The result from Lemma 3.1 follows from (3.5) because the adversary is allowed to change at most
|O| data points among the X;’s. Hence, there are at most |O| bucketed means X containing an
outliers and so K — |O| > 299K /300 means X, which are unchanged that is for which X = Xj.

So, if (3.5) holds then they are at least 298//300 means X, for which |<§k — p,v)| < and so,
at least 297K /300 = 99K /100 means X}, for which [(X} — p,v)| <.
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As in Koltchinskii et al. (2003), we define ¢(t) = 0if t < 1/2, ¢(t) =2(t —1/2)if 1/2<t <1
and ¢(t) =1if t > 1. We have I(t > 1) < ¢(t) < I(t > 1/2) for all t € R and so

S 1Ky — p,0)| > 1)

ke[K]
< ST I((X g — )| > 1) = PI(X G — py0)| > /2] + BI(X g, — 0] > /2]
ke[K]
<, )(H)<>
ke[K]
[(X5 = m0)| [(X), — ,0)] =
< sup —Ep | ——L | | + > PI(Xk — pv)| >r/2).
vGSd 1 r r ke[K]
For all k E , We have

2
— E(X} — v 4Kv"Sv
By — o] > /2] < )

(r/2)2 - Nr2
4K sup, _ga-1 vISu 4K 1=, 1
< 2 = P <
- Nr? Nr2  — 300

because 72 > 1200K 1], /N

Next, we use several tools from empirical process theory and in particular, for a symmetrization
argument, we consider a family of N independent Rademacher variables (¢;)¥.; independent of the
(X;)N,. In (bdi) below, we use the bounded difference inequality (Theorem 6.2 in Boucheron et al.
(2013)). In (sa-cp), we use the symmetrization argument and the contraction principle (Chapter 4
in Ledoux and Talagrand (2011)) — we refer to the supplementary material of M. Lerasle and
Lecué (2017) for more details. We have, with probability at least 1 — exp(—£/180000),

. (Z¢(\<5<k—u,v>r>_M(m—u,vw))
0SS \ke[K] r r

(beli) (X g — p,0)] Xk — 1y 0)] K2
< E sup Z p|l————— | " Eo| —— +
vesSit (ke[K] ( " " 560000

(sa—cp) 4K K
< N—E sup (v, Z 61( i — )+ — 600

r _
veSyh ig[N]

4K 1 - K
N ‘er( 600 = 500
because r > 1200E sze[N €(X; — H /V/'N since
2
1 .
Ell—= ) aXi—p)| < > a(X </ Tr(D).
\/NzG[N] 9 \/>ze[N] 9

As a consequence, when K > 300|O|, with probability at least 1 — exp(—/K/180000), for all
ve S,
K| K 2K
I(| X — —
2 b=l > 1) S 555+ 350 = 50p°
ke[K]

which is (3.5). [ ]
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Proof of Proposition 3.1: Let M € R¥9 be such that M > 0 and Tr(M) = 1. Denote by
Ay ={k € [K]: HMl/Z()_(k - M)H2 > 8r} and assume that |Ay/| > 0.1K. Let G be a Gaussian

vector in R? with mean 0 and covariance matrix M (and independent from X1, ..., Xy). We
consider the random variable Z = } ;i1 (](Xk -, G)| > 5r). We work conditionally to
X1,..., Xy in this paragraph.

For all k € [K], (X;—pu, G) is a centered Gaussian variable with variance o2 := HM1/2 (X5 — ) Hz
In particular, for all k € Ayy, if we denote by g a standard real-valued Gaussian variable, we have
P [[(Xy = 1, G)| > 5r| > e [[(Xk = 1, G)| > 50%/8] = 2Pg > 5/8] > 0.528 (where P (vesp.
E¢) denotes the probability (resp. expectation) w.r.t. G conditionally on Xi,..., Xx). Hence,
EqZ > 0.528|Ap| > 0.0528K. Since |Z| < K a.s., it follows from Paley-Zygmund inequality
(see Proposition 3.3.1 in de la Penia and Giné (1999)) that

(EgZ — 0.01K)?

PolZ 01K >
¢lZ > 0.01K] > EgZ°

> (0.0428)% = 0.0018.

Moreover, it follows from the Borell-TIS inequality (see Theorem 7.1 in Ledoux (2001)
or pages 56-57 in Ledoux and Talagrand (2011)) that with probability at least 1 — exp(—8),
Glly < EGlly + 4,/[M]l. Moreover, E[|Gll, < /TF(3) < 1 and [[M]l,, < Tr(M) < 1, s0
|G|, < 5 with probability at least 1 —exp(—8) > 0.9996. Since 0.9996+ 0.0018 > 1 there exists a
vector Gy € RY such that |G|, < 5 and D ker) L (]()_(k — 1, G| > 57") > 0.01K. We recall
that this latter result holds when we assume that |Ap;| > 0.1K.

Next, we denote by {2 the event onto which for all v € Sg_l, there are at least 99/ /100 blocks
such that [(Xj — u,v)| < 7. We know from Lemma 3.1 that P[Q] > 1 — exp(—K/180000). Let
us place ourselves on the event Qy up to the end of the proof. Let M € R¥*¢ be such that M > 0
and Tr(M) = 1 and assume that |Ap;| > 0.1K. It follows from the first paragraph of the proof

that there exists Gp € R? such that ||G ], < 5 and > ker) L (](Xk — 1, Gur)| > 57“) > 0.01K.

Given that we work on the event g, we have for vpr = G/ |G ul|5, that for more than 99K/100
blocks [( X} — p, var)| < rand so [(Xy — u, Gar)| < ||Gully 7 < 5r which contradicts the fact that

D keir) (]<)_(k -, Gar)| > 57") > 0.01K. Therefore, we necessarily have |Ay/| < 0.1K, which
concludes the proof. [ |

Proof of Corollary 3.1: Let us assume that the event £ holds up to the end of the proof.
Let M € R be such that M = 0 and Tr(M) = 1. Let Ky = {k € [K] : HMl/Q()_(k - u)”2 <
8r}. On the event &, we have |Ky/| > 9K/10. Let z. € R% For all k € Ky, we have
HMl/Q(M - Xk)HQ < 8r and so

Jar72(Xe =), & a2 = +[—HM”2M—5@>!2

a2 - x| )

C HMl/Z( H —8r,8r].
|

Let us now turn to the study of the optimization problem (E,, ) on the event £. Like in
Cheng et al. (2019a), we denote by OPT,,_ the optimal value of (E,_) and by

_ T
hy, M—>wr21AnK (M, Z wi( Xk — 2¢ (Xk- zc) ')
ke[K]

its objective function to be minimized over {M € R4 : M = 0, Tr(M) = 1}.
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Remark 3.2. For a given M, the optimal choice of w € Ak in the definition of hy (M) is
straightforward: one just have to put the mazimum possible wez’ght on the 9K/10 smallest
(M, (X — 2c) (X — 2) "), k € [K]. Formally, we set Spyr = o({1,2,--- ,9K/10}), where o is a
permutation on [K| that arranges the (X — x) M(X), — x.), k € [K ] in ascending order:

e =0, = 025 2],

< | MY2(X i) - )

B
Then we get hy, (M) = (1/1Su]) Sy, (X — 20) M (X - 20),

The first lemma deals with the optimal value of (E,,) when the current point z. is far from
the mean pu.

Lemma 3.2. On the event £, for all . € RY, if ||z — plly, > 167 then
8/9(llwe = plly — 8r)* < OPTy, < (||ze — plly + 8r)*.

Proof. Let M be a matrix such that M > 0 and Tr(M) = 1. Set Ky = {k € [K] :
HMl/Q(X'k - ,u)H2 < 8r}. On the event &, we have |Kys| > 9K/10 and it follows from Corollary 3.1

that for all k € Kps and all z. € R?,
M2 (0~ xC)HQ — 8 < [ MV2(X - xC)HQ < || (- xC)HQ + 8 (3.6)

Then we define a weight vector @ € A by setting for all k € [K]

[ 1)K itk e Ky
R ) else.

It follows from the definition of h,, and (3.6) that

hao (M) < Y 0p(Xy — )T M (X, — 2c) (3.7)
ke[K]

= oo 2 P =), < (a0 + )

Taking the maximum over all M € R¢ such that M > 0 and Tr(M) = 1 on both side of the
latter inequality yields the right-hand side inequality of Lemma 3.2.

For the left-hand side inequality of Lemma 3.2, we let z. € R? be such that ||z, — pl, > 167
and let M be such that M > 0 and Tr(M) = 1. We use the notation and observation from
Remark 3.2: we note that |y (\Sa| > 8K/10 so that it follows from Corollary 3.1 that

V2%, - 2 1 /2% _ I
(M) = 9K/10 Z [prt2 e, 2 g 2 MR-z
keAn () Sm
> 9K /10 (HM (1 — ) ) —87") .
Then, taking the maximum over all M > 0 such that Tr(M) = 1 on both sides, finishes the proof.

The next lemma shows that the top eigenvector of an approximate solution to (E,, ) is
aligned with the best possible descent direction (u — x.)/ ||t — z¢||5. It is taken from the proof
of Lemma 3.3 in Cheng et al. (2019a). We reproduce here a short proof for completeness.
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Proposition 3.2. On the event &, if M is a matriz such that M = 0, Tr(M) = 1 and
hyo (M) > (B ||ze — plly +87)% for some 1/3/2 < B < 1, then any top eigenvector vy of M satisfies

>1/262 — 1.

Proof. Let M be a matrix such that M = 0, Tr(M) = 1 and hy, (M) > (B ||ze — pllo+87)?
for some 1/ V2 < B < 1. We use the same argument as in the proof of Lemma 3.2: on the event

E, IKy| > 9K/10 where Ky = {k € [K] : HMI/Q()_(k - ,u)H2 < 8r} and so @ € Ag where for all
ke [K],or=1/|Kyp|if k € Ky and @, =0 if k ¢ Kpy. It follows from the definition of h,, that

Te— [ )

(g, el
Moo —ull

~ (Y T o 1/2
h%(M)ékerjqwk(Xk ze) T M(X - ) ch\k; |ar/2(%y — )]

2
and so from Corollary 3.1, hy (M) < (HMI/Z(/L—JZC) 2+8r> . Since, we assumed that

he (M) > _ 8712, it follows that |M2(u — z)|* > 82 1 — |12
ze(M) > (Bllze — plly + 8r)*, it follows that ( :1:0)2_,6’ | — zcl]5.

Let Ay > Ao > ... > Ag > 0 denote the eigenvalues of M and let vy,...,vy denote cor-
responding eigenvectors. The conditions on M imply that >°;A\; = 1 and By = (v1,...,0q)
is an orthonormal basis of R4, We denote v = (1 — x¢)/ ||t — 2c|l,. We decompose v in By
as v = ) ; ajvj with 37, oz] = 1. Using this decomposition, we have v’ Mv = 2N a2 We
have )\1 =AY ajz > S0 a? > B2, 50 Ay > ﬁQ Moreover, smce 2N = 1 we have
32 > a <A a < Ala%]—l- (1-X)(1—-a?) <a?+(1-p%) >, a , s0 we have a2 > (2382 - 1).
As we know that oy = (v1,v), we get the result. n

Proposition 3.2 is the first tool we need to construct a descent algorithm since it provides a
descent/ascent direction (depending on the sign of the top eigenvector of an approximate solution
to (F,,)). It remains to specify three other quantities to fully characterize our algorithm: a
starting point, a step size and a stopping criteria. We start with the starting point. Here we
simply use the coordinate-wise median-of-means. The following statistical guarantee on the
coordinate-wise median-of-means is known or folklore but we want to put forward that in our
case it holds on the event £. This again shows that £ is the only event we need to fully analyze
all the building blocks of the algorithm. We recall that the coordinate-wise median-of-means is
the estimator (%) € R? whose coordinates are for all j € [d], ﬂ;o) = med(Xy : k € [K]) where

Xk;,j is the j-th coordinate of the block mean X}, for all k € [K].
Proposition 3.3. On the event £, we have Hﬂ(o) — MHQ < 8Vdr.

Proof Let us place ourselves on the event £ during all the proof. For all directions,
vE S , there are at least 9K /10 blocks k such that [(Xy — u,v)| < 8r. In particular, for all
jE [d], |<Xk p1,e;)| < 87 where (e, . . ., eq) is the canonical basis of R%. That is for at least 9K/10
blocks | Xy, ; — pj| < 8r. In particular, the latter result is true for the median of {Xj ; : k € [K]},

that is, for g A( ). We therefore have Hﬂ(o) — MHoo < 8r and so H,&(O) — ,u,H2 < 8r/d. [

Proposition 3.3 guarantees that starting from the coordinate-wise median-of-means we are off
by a v/d proportional factor from the optimal rate r. This will play a key role to analyze the
number of steps we need to reach p within the optimal rate r. Indeed, if we prove a geometric
decay of the distance to p along the descent algorithm then only log d steps (up to a multiplicative
constants) would be enough to reach p by a distance at most of the order of r.
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Let us now specify the step size we use at each iteration. At the current point x. we compute

a top eigenvector v; of an approximate solution M to (E,, ) (i.e. M such that h, (M) >

(B l|lze — ||, + 87)? for some 1/y/2 < 8 < 1). The next iteration is z.1 = z. — 0.v; where the
step size is

fc = —Med ((Xy. — zc,v1) : k € [K]). (3.8)

In particular, since 6.v1 does not depend on the sign of v; (the product 6.v; is the same if we
replace v1 by —v1), we do not care which top eigenvector of M we choose.

Let us now prove a geometric decay of the algorithm while z. is far from p. Again, this result
is proved on the event £.

Proposition 3.4. On the event &, the following holds. Let x. € R? (be the current point of
the algorithm). Assume that M is an approximate solution of (Ey, ): M is such that hy (M) >
(Bllze — plly + 87)2 for some 0.78 < B < 1 and let vy be one of its top eigenvectors. Then, we
have
2 2 2
[T — pllz < 0.8 ([ze — pll3 + 64r

when xey1 = xe — 001 for O, defined in (3.8).

Proof. Let us assume that the event £ holds up to the end of the proof. Let M be an
approximate solution to (E,,) such that hy, (M) > (B ||z — pl, + 8r)? for some 0.78 < 3 < 1
and let v; be a top eigenvector of M.

In direction vy, there are at least 9K /10 blocks such that \(X'k — p,v1)| < 8r (see Lemma 3.1).
Hence, on these blocks, we also have
10c — (e — p,v1)] = [Med (<,u — Xp,v1) ik € [KD |
< Med <|<,quk,v1>\ ke [K]) < 8r. (3.9)
Let v = (p — z.)/ ||t — x|, denote the optimal normalized descent direction. We write

v = AUy + )\gvf where vf is a normalized orthogonal vector to v;. We have )\% + )\g =1 and it
follows from Proposition 3.2 that [A1| = [(v1,v)| > /282 — 1. We conclude that

et = nlls = lloe = 1= evrll3 = || (e — 1, 01) = BeJon + (e — v ot

= ((ze = pv1) = 0)% + (e — pv)” < (87)% + A3 [le — p|2

.

As M3 =1- 22 <2-2B2 < 0.8 we get the result. ]

We now have almost all the building blocks to fully characterize the algorithm. The last
and final step is to find a stopping rule. The idea we use to design such a rule is based on
Proposition 3.4: we know that when the current point x. is not in a £4-neighborhood of x with
a radius 80r then the /g-distance between the next iteration z.,1 and p should be less than
v/0.81 times the ¢4-distance between x. and y — that is a geometric decay of the distance to .
Moreover, if the current iteration x. is in a Eg—ball centered in p with the radius 80r then, it
follows from Proposition 3.4 that the next iteration z.y; will also be in a €g—ball centered in
p with radius at most 80r. So once the algorithm enters the ball BS(u,80r) it never leaves it.
We therefore have a geometric decay of the distance to pu along the iterations until we reach
the ball B(u,80r). Starting from the coordinate-wise median(-of-means) which is in a 8v/dr
neighborhood of 1 (see Proposition 3.3), we only have to do log(8v/d)/log(1/+/0.81) iterations
to output a current point which at most 80r-close to u w.r.t. the Eg—norm.
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We are now in a position to write an “almost final” pseudo-code of our algorithm. In the
next section, we will dive a bit deeper in this pseudo-code (and in particular on the covering
SDP algorithm used to construct an approximate solution to (E,,)) in order to provide a final
pseudo-code together with its total running time.

input :Xi,...,Xy and a number K of blocks
output : A robust subgaussian estimator of u

Construct an equipartition By U --- U Bg ={1,--- , N}
Construct the K empirical means X = (N/K) Yien, Xirk € [K]

Compute 49 the coordinate-wise median-of-means and put z. « a(©)

for T =1,2,--- ,log(8vd)/log(1/+/0.81) do

Compute M, an approximate solution to (E,_) such that

c

[S, TNV I SR

hao(Mc) 2 (0.78 [[zc — pll, + 87’)2

6 Compute v a top eigenvector of M,

7 Compute a step size 0, = — Med (<X’k —xz,v1) k€ [K])
8

9

Update x. + x. — 0.1
end
10 Return x.

Algorithm 1: “Almost final” pseudo-code of the robust sub-gaussian estimator of p

Algorithm 1 is “almost” our final algorithm. There is one last step we need to check
carefully: given a current point . we need to find a way to construct M, satisfying “h,, (M.) >
(0.78 ||z. — pll, + 87)*” without knowing 7 or z. This is the last issue we need to address in order
to explain how step 5 from Algorithm 1 can be realized in a fully data-dependent way in a good
time. This issue is answered in the next section together with the computation of its running
time.

3.4 Approximately solving the SDP (F, )

The aim of this section is to show that, on the event &, it is possible to construct in a reasonable
amount of time a matrix M, such that “h,_(M.) > (0.78 ||z, — ul|, + 87)*” without any extra
information than the data. To that end we construct in an efficient way an approximate solution
to the optimization problem (E,, ) using covering SDP as in Cheng et al. (2019a). The main
result of this section is the following.

Theorem 3.3. Let u € N*. On the event £, for every z. € R such that ||z — ull, > 800r,
given input x., we can either compute, in time O(Kud), with probability > 1 — (1/10)%+>/\/d :

e A matriz M, such that
ha(Mc) 2 (0.78 [[ze — pll, + 87’)2
e Or directly a subgaussian estimate of i, using only the block means X1, ..., Xk as inputs.

Theorem 3.3 answers the last issue raised at the end of Section 3.3 and provides the running
time for step 5 of Algorithm 1. It therefore concludes the statement that there exists a fully
data-driven robust subgaussian algorithm for the estimation of a mean vector under the only
Assumption 3.1 (the total running time of Algorithm 1 is studied in Section 3.5).
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Remark 3.3. Theorem 3.3 states that we either find an approximate solution M. to (E;,) or a
good estimate of p (at the current point x.). As we will see in this section, this second case is
degenerate as it is not the typical situation.

Before turning to the proof of Theorem 3.3, we recall the definition of the following quantities
to ease the reading of the proof:

OPT,, = Mt():r%}(nM):l hy.(M) where hy, : M — wrgiAnK (M, kg[;(] wi( X — ) (X — ) 1)
and (E;,.) refers to the optimization problem minyy (hy (M) : M = 0, Tr(M) = 1).

We now turn to the proof of Theorem 3.3. It is decomposed into several lemmas adapted from
techniques developed by Cheng et al. (2019a) to approximately solve the SDP problem (FE,,)
in time O(Kud) as announced in Theorem 3.1. To that end, we first introduce the following
covering SDP

e e T M/ /
mlAI}[l/IE,lze r(M') + Hy ||1
subject to M’ =0, 3 >0, (Cp)
VEk € [K], p(Xp —ze) M' (X}, — z.) + 9K/10 ¢}, > 1
where p > 0 is some parameter that we will show how to fine-tune later. Then, we show that, for

a good choice of p, we can turn a good approximate solution for (C,) into a good approximate
solution for (E,).

We denote by g(p) the optimal objective value of (C,). We begin with a first lemma that
shows how to link the two optimization problems (E,.) and (C,). The proof can be found in
Lemma 4.2 from Cheng et al. (2019a). We adapt it here for our purpose.

Lemma 3.3. Let p > 0. From a feasible solution (M',y') for (C,) that achieves Tr(M')+||y'||; <
1, we can construct a feasible solution M for (E,, ) with objective value h, (M) > 1/p. The

reverse is also true. In particular, if g(p) (resp. OPTy, ) denotes the optimal value achieved by
the objective function in (C,) (resp. (E.)), we have g(p) <1 iff 1/p > OPT,,.

Proof. We first note that the optimization problem (E,_) is equivalent to the following one:

maximize z — H?JH1
My,z 9K/10 )
subject to M =0, Tr(M)=1, y>0, 2>0 (Eq.)

Vk € [K], (Xk — J}C)TM(Xk —.TC) + yr > 2

Indeed, for a given M = 0 such that Tr(M) = 1, one can notice that the optimal value is achieved

in (E,,) for yp = max(0, z—(Xp—x.) " M(Xp—2.)),k € [K] and z = Q9/10 ((Xk —xe) "M (X}, — a:c))
the 9/10-th quantile of {(X} — x.) " M(Xy — x.) t k € [K]}, so that z — [[yll; /(9K/10) = hy, (M)
which gives the equivalence between (E,, ) and (Ey,).

Then, let a feasible solution (M’,y’) for (C,) be such that Tr(M’) + ||y/||; < 1. We define

_ M1 (9K/10)
M_Tr(M’)’ pTr(M’) dy (pTe(0))”

We can check that (M,y, z) is feasible for (£,,) and z — |ly||; /(9K/10) > 1/p. Hence, given

the equivalence between (E,. ) and (FE,, ), we obtain that M is feasible for (F, ) and that
he (M) > 1/p.
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Conversely, if M is feasible for (E;, ) such that h; (M) > 1/p then we define y and
z such that for all k € [K], yp = max(0,z — (X — z.) M(X — 2.)),k € [K] and z =
Qo/10 ((Xk —xe) " M(X}, — xc)) We check that (M,y, z) is feasible for (E,, ) with objective
values equals to h; (M) and so it is larger than 1/p. Next, by defining

M/ — = d ! y
pz ey (9K/10)z’
we see that (M',y’) is feasible for (C},) and its objective values is less than 1. ]

From Lemma 3.3, it is enough to solve (C,) — for a good choice of p — to find a good
approximate solution for (E,_). It therefore remains to find such a good p. To do so, we rely
on the next two lemmas. The first one is adapted from Lemma 4.3 in Cheng et al. (2019a); we
recall that g(p) is the optimal value achieved by the objective function in (C,).

Lemma 3.4. For every p >0 and a € (0,1), g((1 —a)p) > g(p) > (1 —a)g((1 — a)p).

Proof. A feasible pair (M',y") for (C(;_q),) is also feasible for (C),), which gives the first
inequality. If (M’',y) is a feasible pair for (C,), then (M'/(1 — «),y'/(1 — a)) is a feasible pair
for (C(1—a)p), which gives the second inequality. [

It follows from Lemma 3.4 that ¢ is continuous, non increasing and ¢g(1/OPT,_ ) = 1 (this
follows from Lemma 3.3 since we have that g(p) < 1iff 1/p > OPT,, and the continuity of g).
So in order to find a good solution, we must find a p such that g(p) is as close to 1 as possible.
Unfortunately, we do not know how to solve (C,) exactly for a given p > 0, but we can compute
efficiently a good approximation (M’,y’) and a top eigenvector of M’ thanks to the following
result which can be found in Peng et al. (2012) or Allen-Zhu et al. (2015) and is detailed in
Cheng et al. (2019a) (see Section 4 and Remark 3.4).

Lemma 3.5. [Peng et al. (2012), Allen-Zhu et al. (2015)] Let uw > 1 be an integer. For
every p > 0 and every fized n > 0, we can find with probability > 1 — (1/10)“*19/d a feasible
solution to (C,) that is n-close to the optimal, that is to say a feasible pair (M',y’) so that
Te(M') + ||¥]l, < (1 +1)g(p) in time O(uKd). Moreover, it is possible to find an approzimate

top eigenvector of M' in O(Kd).

We compute (u + 3log(d) 4+ 10) times independently the (randomized) algorithm from Peng
et al. (2012) (or the one from Allen-Zhu et al. (2015)) that has a runtime of O(Kd) and that
outputs an n-close feasible solution with probability 9/10. By taking the largest of the output’s
objective value, we have an 7-close feasible solution with probability 1 — (1/10)u+3108(@)+10 iy
time O(uKd), proving Lemma 3.5.

Let us call ALG, the algorithm from Lemma 3.5, that takes as input ((Xk:)ﬁ(:p T, pyM,u) and
returns a feasible pair (M, y’) for (C,) satistying Tr(M') + ||/[|; < (1 +1)g(p) in O(uKd), with
probability > 1 — (1/10)%*19/d. Next, in order to find a good p, we have to get some additional
information on the function g. We will get it on the event £.

Lemma 3.6. On the event £, for all . € RY, if ||z. — plly > 8 then

| O(lze — ull, + 812
<—— (14 pOPT,, —1)]).
9(r) popTxc< P <8<ch—uu2—8r>2

Proof. We use the same notation as in the proof of Lemma 3.3. For any v > 0, we can choose

a triplet (M, y, 2) feasible for (£, ) such that z—||y|[; /(9/K/10) > OPT,, —v and z and y are the
optimal solutions of the problem (E,,) given by yx = max(0, z — (X —z.) ' M(Xy —¢)), k € [K]

c
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and z = Qq /19 ((ch —x) T M(X — xc)) the 9/10-th quantile of {(X}, — z.) T M(X}, —z.) : k €
K1)

On the event &, Lemma 3.2 yields OPT,, > (8/9)(||zc — pll, — 8r)? and we have from
Corollary 3.1 that

z = Qy/10 ((Xk —z.) M(X}, — xc)> = Qg/10 (HM1/2(Xk - LI?C)Hz)
< (Jort2(ee =], +8)" < Qe =l + 807

because M = 0 and Tr(M) = 1. Let M' = M/(pz),y = y/|2(9K/10)]. Since (M’,y’) is feasible
for (C,), we have

1+ pllyll, /(9K/10)

g9(p) < Te(M') + ||/, <

pz
I(|lwe—plly+8r)?
_ Ltp(z = OPT, +v) _1H v+ pOPTs (e s — 1)
pz B p(OPT-Tc - Z/) ‘
By taking v — 0, we get the result. [ |

Proof of Theorem 3.3. Let us place ourselves on the event £ so that we can apply
Lemma 3.6. Let 2. € R? and assume that ||z, — ||, > 800r. It follows from Lemma 3.6 that
g(p) < 1/(p OPT,,) + 0.171. Therefore, if we can find a p such that g(p) > 1 — e+ 0.171 for
some 0 < € < 1, then necessarily 1/p > OPT,_(1 —¢€). Let us take e = 0.173, and n = 0.0001.
Then if ALG, returns a feasible pair (M’,y’) for (C,) so that 0.9981 < Tr(M') + ||/||; < 1, then,
since 0.9981 > 1.0001 x 0.998 = (1 + n)(1 — € + 0.171) we will know that, with probability
>1—(1/10)u*19/4d,

(L+n)g(p) > Te(M')+ |||, = (1 +n)(1 —e+0.171)

hence 1/p > OPT, (1 — ¢€), and by Lemma 3.3, we can construct a feasible solution M, for (E,,)
with objective value satisfying hy, (M) > OPT,, (1 — €). Next, using Lemma 3.2, we obtain that
when ||z, — pl|, > 800r,

hy (M) > OPTy (1 —€) > (1 —€)(8/9) ([|lze — MHz - 87’)2 > (0.78 ||z — ,u,H2 + ST)Q

for e = 0.173, solving step 5 from Algorithm 1.

Therefore, it only remains to show how to find a p such that ALG, returns a pair (M’',y/)
(feasible for (C,)) satisfying 0.9981 < Tr(M') + ||y/|l; < 1. We do it first by assuming that
we have access to an initial pg such that ALG,, returns a feasible pair (M’,y") for (C,) (for
p = po) so that Tr(M') + ||y/|l; < 1 and to a maximal number T of iterations (we will also
see later how to choose such py and T'). The following algorithm (which is a binary search)
taking as input (X1, .., Xk, ¢, po, u, T) returns a feasible pair (M’,y') for (C,) so that 0.9981 <
Tr(M’)+||y|l; <1 (when T is large enough). This is simply due to the fact that g is continuous,
non increasing, g(0) = 10/9 > 1 and g(p) < 2/8 when p — 400 and ||z, — ||, > 8007 (because
of Lemma 3.6). For this to work, we need that for each iteration, ALG, returns a feasible pair
(M',y') for (C,) (for p = po) so that Tr(M’) + ||y/||; < (1 +0.0001)g(p). We will suppose that
it is the case for the rest of the proof. By union bound, this happens with probability at least
>1-T(1/10)++1%/q
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input :X,,..., Xk, x, po,u, T
output: A feasible pair (M’,y') for (C,) satisfying 0.9981 < Tr(M’) + |||, <1

1 pm < 0, par <= po, V = ALG,y (2, u,n = 0.0001) , i <0
2 while V ¢ [0.9981,1] and i < T do
3 if V < 0.9981 then
| v (par + pm) /2
end
else
| pm < (prr + pm) /2
end
V « objective(ALG pmtpy (Te, uy, 7 = 0.0001)) , i+ i+ 1
2

© W N O N

10 end
11 Return ALG p,, 40y, (2c, u,p = 0.0001)

2

Algorithm 2: The BinarySearch algorithm to find a p so that ALG, returns a pair
(M',y') feasible for (C,) satisfying 0.9981 < Tr(M') + ||y/||; < 1.

If we can find a py (such that ALG,, returns a feasible pair (M’,y’) for (C,) so that Tr(M') +
ly'[l; < 1) and a large enough number of iterations 7" in BinarySerach, Algorithm 2 returns a
feasible pair (M’,y’) for (C,) from which we can construct an approximating solution M. for
(E,,) with objective value A, (M,) larger than (0.78 ||z, — pll, + 8r)* whenever ||z, — ul|, > 8007
This is exactly what we expect in step 5 of Algorithm 1. Next, the last and final step that
remains to be explained is to show how one can get such a pg and T using only the block means
(X3)E | in O(Nd + uKd).

Let us consider /(%) the coordinate-wise median(-of-means) and let us define § = Med(H)_( p — O H2 :

k € [K]) — both quantities can be computed in time O(Kd). On the event &, it follows
from Corollary 3.1 (for M = I/d) and Proposition 3.3 that § < 16v/d x r. So if one takes
po = d/6% > 1/[(16)%*r?], and if ||z, — pl, > 8007, Lemma 3.2 and Lemma 3.6 guarantee that
OPTy, > (8/9) (||ze — plly — 87)% > (8/9)(792)%r2 and so
2

1 16
—_— 4+ 0171 < ————— 4+ 0.171 < 0.18
p OPT,. = ®joyo2)2 ©

s0 ALG,, < (1 +n)g(p) < 1.0001 x 0.18 < 1 (for the same choice of 7 = 0.0001).

g(po) <

Now we tackle the question of the number T of iterations, which is crucial for the runtime.
We know from Lemma 3.4 and Lemma 3.6 that the interval I of all p’s such that 0.9981 <
objective(ALG,) < 1 is at least of size 0.001/OPT,, when |z.— i, > 800r. Indeed, since
g(p) < objective(ALG,) < (1 + n)g(p), if p is such that 0.9981 < g(p) < 1/(1 + n) then
0.9981 < objective(ALG,) < 1. Now, if we let p; > 0 and 0 < o < 1 be such that g(p1) = 0.9981
and g((1 — a)p1) = 1/(1 4+ n) the interval I is at least of size ap;. Moreover, from Lemma 3.4
we have 1/(14+n) < g((1 —a)p1) < g(p1)/(1 —a) and so 0.9981 = g(p1) > (1 —a)/(1 +1n), i.e.
a>1-0.9981(1+n) > 0.001. Finally, since g(p1) <1, g(1/OPT,,) =1 and g is non-increasing,
we conclude that p; > 1/OPT,,_ and so the length of I is at least ap; > 0.001/OPT,,.

So, in the case where ||z, — |y, > 8007, logy(po x OPT,,/0.001) iterations are enough to
ensure that BinarySearch outputs (M’,y’) (from ALG, for a well-chosen p) feasible for (C,) and
such that 0.9981 < Tr(M’) + ||y/||; < 1. Moreover, on the event & it is possible to show that
for all iterations z. of the algorithm we have ||z, — ul, < CVdr for a constant C' < 800 (we
may take that as an induction hypothesis for the firsts iterates x., and the proof of Theorem 3.2
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below in Section 3.5 shows that it will still holds for x.,1). So if § > 7/d then py < d3/r?,
and since OPT;, < (~C2d + 8)r? (this follows from Lemma 3.2), the binary search ends in time
T = logy(Cd*) with C' < 106.

Thus, if the binary search has not ended in that time, we have either 6 < r/d (which is
a degenerate case) or ||z, — ull, < 800r (or both). If ||z, — pll, > 8007 and § < r/d, then,
taking p1 = 1/(dd)?, we have, by Lemma 3.6, ALG,, < 1/2. So, if we can not end our binary
search in time log,(Cd*), we compute ALG, /(@s)2+ if this gives something smaller than 1, that
means that 1/(d6)? > 1/OPT,, = 6 < \/(C?d +8)r/d < (C + 1)r/+/d. We notice that on &,
H[L(O) — 'HHQ < 0+ 8r, so if ALGy/(45)2 < 1, then ) is a good estimate for u. If on the contrary

we have ALG,, > 1, it means that ||z, — pl|, < 800r, so we stop the algorithm and return ..

Let us write now in pseudo-code the procedure we just described. This is an algorithm,
named SolveSDP, running in O(Kud) which takes as inputs X1i,..., Xk, z., u and which
outputs, on the event £, with probability > 1 — log(Cd*)(1/10)%*19/d, for every z. € R? such
that ||z, — pl|ly > 800r either a matrix M. such that

ha (Me) 2 (0.78 |[ze — pl|, + 8r)°

or a subgaussian estimate of u. It therefore describes step 5 from Algorithm 1.

input :Xp,...,Xg, z.and u
output : A feasible solution for (E,,)

Compute the coordinate wise MOM (®) and & = Med(H)_(k — 0 H2 1k e [K))

T < log(Cd%), po < d/s?
(M',y") + BinarySearch(T, pg, u, z.)
if Te(M’) + ||y|l, € [0.9981,1] then
M « M’/ Te(M')
Return (True, M)
nd
Ise
if ALGl/(d5)2 (CEC,U,T] = 00001) < 1 then
‘ Return (False, 1(?)
end
else
‘ Return (False, x.)
end

[uny

[
B W N R O © ® N o ok W
® O

end

=
9]

Algorithm 3: SolveSDP

Remark 3.4. [Two advantages of block means] During the whole algorithm, we solve the program
(Cp) up to a factor (14+n) where n is fixed (here we take it equal to 0.0001). This differs crucially
from the work of Cheng et al. (2019a) where 1 depends on the fraction of outliers, which decreases
the performance of the algorithm in Lemma 3.5, the true running time being O(Kd/Poly(n)).
This is a first advantage of using bucketed means instead of the data themselves: we work with
a constant fraction of corrupted blocks (we took it equal to 1/10). The second advantages is of
stochastic nature, it is revealed by Proposition 3.1 or Lemma 3.1: most of the bucketed means
have a nice subgaussian behavior in all directions. Working with bucketed means has therefore
two advantages: a stochastic one, which is to exhibit a subgaussian behavior for 9K/10 blocks
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even under a Lo-moment assumption and a computational one, which is to make the proportion
of corrupted blocks constant.

3.5 The final algorithm and its computational cost: proof of
Theorem 3.2

We are now in a position to fully describe our robust subgaussian descent algorithm running in

O(Nd+ uKd). One may check that its construction is fully data-dependent, in particular, we do
not need to know the value of r or the proportion of outliers.

input :X;,..., Xy, K € [N] and u € N*
output : A robust subgaussian estimator of u
1 Construct an equipartition By U...UBg ={1,...,N}
2 Construct the K empirical means X = (N/K) >ien, Xink € [K]
3 Compute 29 the coordinate-wise median
4 xo /](O), Bool + True, T'+ 0
5 while Bool and T < log(8v/d)/log(1/0.81) do
6 Bool, A +SolveSDP(X1,..., Xg, &c,u)
7 if Bool then
8 M.+ A
9 Compute v1 a top eigenvector of M,
10 Compute a step size 6. = — Med <<Xk — Ze,v1) k€ [K])
11 Update z. < z. — 6.1
12 T+ T+1
13 end
14 else
15 T.— A
16 end
17 end
18 Return x.

Algorithm 4: Final Algorithm: covSDPofMeans

Proof of Theorem 3.2. From Theorem 3.3, we know that on &, when, ||z, — pl|[, > 800r,
we get, with probability > 1 — (1/10)**5/v/d, an M, so that hy_(M.) > (0.8 ||zc — ||y + 8)* (or
directly a subgaussian estimate, in which case our work is done). Proposition 3.4, states that in
that case ||zcr1 — pll3 < 0.8 ||lze — |3 + 6472 < 0.81 ||z — pl|3. So we have a geometric decays
and Proposition 3.3 guarantees that our starting point is at most 8V/dr far away from the mean
so that in at most log(8v/d)/log(1/0.81)) steps the algorithm outputs its current point which
is 7-close to p, with probability > 1 — (1/10)%**®log(8v/d)/(log(1/0.81))v/d) > 1 — (1/10)* (by
union bound).

The last thing to do is to control what happens when ||z, — p||, < 800r. Then, we have no
guarantees on vy, but using the similar argument as in the proof of Proposition 3.4 we know that

0c — (@e — p,v1)| = [Med ((,u — Xp,v1) k€ [K]) | < Med (\(u — Xy, v1)| 1 k € [K]) < 8r
(3.10)
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and (for some v~ a normalized orthogonal vector to v)
2
|zers = 3 = lwe = = Bevrll} = | ((me = p,01) = Ge)or + (e — o, o Yot |

= (e — py01) — 00)% + (e — py v ) < (87)% + ||ze — ]2

Hence, ||zcy1 — plly < (87) + ||z — p]|y. Therefore, in the worst case scenario where ||z — pufly >
800r at the last iteration, the algorithm outputs the next iteration fix = 41 so that ||ix — pfly <
808r.

We end this proof with the computation of the running time of Algorithm 4. We detail
the computation cost for each line of Algorithm 4: line 1 cost N, line 2 costs Nd, line 3 costs
O(dK log(K)). The while loop in line 5 is running at least logd times (up to constant) so that
the computational cost of all remaining lines of Algorithm 4 are at worst to be multiplied by
logd. Line 6 costs log(C'd*) steps, each of cost O(Kud) (that comes from Lemma 3.5). Line 9
can be computed in O(Nd) thanks to Lemma 3.5. Finally, line 10 costs O(Kd). Other lines take
time at most d. We thus recover the running time announced in Theorem 3.2. [ |

3.6 Adaptive choice of K and results in expectation

Given a number of blocks K € {1,..., N}, a parameter u > 1 (so that the covering SDPs from
Peng et al. (2012) (used in Lemma 3.5) run in u + 3logd + 10 times) and the (adversarially
corrupted and heavy-tailed) dataset {Xi,..., Xx}, Algorithm 4 returns a vector fix in R? and
Theorem 3.2 ensures that fix estimates the true mean p at the subgaussian rate (77) with large
probability as long as K > 300|O|. As a consequence, we have certified statistical guarantees
for fix only when some a priori knowledge on the number |O| of outliers is provided (such as
“the corruption of this database is less than 5%” ) or if we choose K like N- but, in this later
case the rate (??7) may be too pessimistic. The aim of this section is to overcome this issue by
constructing a procedure which can automatically adapt to the number of outliers. The resulting
procedure (denoted later by (7)) satisfies the same statistical bounds as jix for all K > 300|O|
without knowing |O] (up to constants). We also show that it satisfies results in expectation.

The adaptation method we use is based on the Lepski method Lepskii (1990, 1991) which is
another tool used by the “statistical community” working on robustness issues since Lugosi and
Mendelson (2019c¢); Catoni (2012). The price we pay for this adaptation is the a priori knowledge
of the rate (??) for all K which means that we know in advance Tr(X) and |[X|,, — this is for
instance the case when it is known that X is the identity matrix ;. Of course, one can design
robust estimators for Tr(¥) and [|X]|,, but this requires stronger assumptions (more than four
moments) that we want to avoid at this stage.

Lepski’s method proceeds as follows. We set forall K € {1,..., N} andallj € {0,1,...,log, N}

T(m) (12003, K |
ric = 808 (1200\/ z(v ) +\/ ”N” L ) and r) =ty 050

the rate of convergence from Theorem 3.2. For a given parameter u; € N*, we construct from
Algorithm 4

9 « covSDPofMeans(Xy, ..., Xn, K = [N/27],u = u;). (3.11)

Classical Lepski’s method considers the largest J such that ﬂfzo Bg(ﬂ(j),r(j)) is none-empty
and then take any point i in this none-empty intersection. Standard analysis of Lepski’s method
shows that [ estimates p at the rate 7} (up to an absolute constant) simultaneously for all
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K € {300|0]|,..., N} without knowing |O|. Given that checking that the intersection of several
¢3-balls may not be straightforward, we use a slightly modified version of Lepski’s method as
described in the following algorithm.

input :Xi,...,Xyand {u;:j=0,1,2,...,logy N} C N*
output : A robust subgaussian estimator of y with adaptive choice of K
init :J =0 and 4©) = covSDPofMeans(Xy,...,Xn, K = N,u = ug)
1 while HgU) _ ,a(j)H2 <) 40 j=J-1,7-2,...,0do
J—J+1
i)« covSDPofMeans(Xy,..., Xn, K = [N/27],u = uy)
end
Return (/)
Algorithm 5: Adaptive choice of K in covSDPofMeans

(L SV N

Unlike for the traditional Lepski’s method we check that 4(”) is in ﬂj;ol Bg(ﬂ(j), () 4 ()
instead of checking that ﬂ;-]:() Bg(,&(j), r(j)) is none-empty — this simplifies the adaptation step. It
is also possible to speed up the whole procedure by constructing iteratively the bucketed means.
Indeed, given that we consider a dyadic grid for K, i.e. K € {N,[N/2],[N/4],...}, forall j € N,
we can construct the block means {)_(,gjﬂ), k=1,...,[N/27t17} at step K = [N/2/F1] using
the block means from the previous step K = [N/27] by simply averaging two successive block
means: X,gjﬂ) — (Xéi) + XQ(QJrl)/Q.

Let us now turn to the statistical analysis of the output ﬂ(j ) from Algorithm 5 where

J—1
J = max (J €{0,1,...,log, N} : p/) e () BI(aW, ) + r(j))> .
j=0

Theorem 3.4. Let {u; : j = 0,1,2,...,logy N} C N* be the family of parameters used to
construct the family of estimators {p\9), j =0,1,...} in Algorithm 5 (see also (3.11)). For all
K € {600|0|,..., N}, with probability at least

logy (N/ (K —1))
1 - 2exp(—K/360000) — Y (1/10)% (3.12)
=0

the output ,a(j) of Algorithm 5 is such that Hﬂ(j) — MHQ < 3rk.

Proof. For all j € {0,1,...,logy N} denote by &; the event onto which Theorem 3.2 is
valid for K = [N/27] and for u = u;: that is on &, if [N/27] > 300|0], ||3¥) — u‘ , S () and
P[€;] > 1—exp(—[N/27]/180000)—(1/10)%. Let K € {600|0|,..., N} and J € {0,1,...,log, N}
be such that [N/27] < K < [N/277!]. On the event ﬂ}]:O &;, we have H,&(j) — uHQ < ) for
all j =0,1,...,J, in particular, for all j =0,1,...,J — 1, Hﬂ(‘]) — ,a(j)H2 < ) 4+ r0) and so

al) e ﬂj;ol BY(a9),+()) 4+0)). As a consequence J > J therefore Hﬂ(j) — /](J)HZ < r) 4p) <
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2r()) < 2r% . Finally, we have

[ﬂ &l >1- Zexp [N/277/180000) — (1/10)%

logy (N/(K-1))
> 1 — 2exp(—K/360000) — > (1/10)%
j=0
|
We can see in Algorithm 5 that ﬂ(j ) does not use any information on the number of outliers
|O| for its construction but it can still estimate p at the optimal rate 7} for all deviation
parameters K in {600|0|,..., N}. The maximum total running time of Algorithm 5 is achieved
when J = log, N; in that case, it is at most O(Nd + Z;FESN[N/W}ujd). In particular, if one
chooses u; = 27 for all j = 0,1,...,logy N then the total running time for the construction of
i) is nearly-linear O(Nd). For this choice of u;, the probability deviation in (3.12) is constant
and so one should choose the smallest possible K allowed in Theorem 3.4, that is K = 600|O|.
Let us write formally this result.
Corollary 3.2. If one takes uj =2/ for all j =0,1,...,logy N in Algorithm 5 then, in nearly-
linear time O(Nd), with probability at least 1 — 2 exp(—600|0]/360000) — 1/11, the output o’)
from Algorithm 5 satisfies
=, 1©1
N .

|t - )|, < 2o = 1616 (1200\/@

In particular, considering the setup from Theorem 3.1, if |O| = eN for some ¢ < 1/600 then

the rate achieved by ﬂ(j ) in Corollary 3.2 is of the order of

TS (3.13)

which is like X, p € when N > x €. As a consequence, the result from Corol-
op

lary 3.2 improves the one from Theorem 3.1 by removing an extra logd factor in the sample
complexity in the case considered in Theorem 3.1 that is when ¥ < o?l,. Moreover, Corol-
lary 3.2 also shows that the sample complexity depends on the effective rank Tr(X)/ |[X]],, of
>.. This ratio can be much smaller than d if the spectrum of ¥ decays sufficiently fast. Finally,
Corollary 3.2 also covers the case where the sample size N is less than the sample complexity
~ that is when N < (Tr(X)/[[X|,,)/e. In that case, the estimation rate is given by /Tr(X)/N
which is the complexity coming from the estimation of p in the none corrupted case. As a
consequence, Corollary 3.2 exhibits a phase transition happening at N ~ (Tr(X)/ [|X]|,,)/€ above
which corruption is the main source of estimation mistakes and below which corruption does not
play any role.

Corollary 3.2 covers the case where /i) is computed in nearly-linear time and with statistical
guarantees happening with constant probability. In the following final result, we show that
47) can estimate p at the optimal rate 3. for all K > 600|O| with a subgaussian deviation
1—2exp(—K/360000) if we perform more iterations u; of the covering SDP from Lemma 3.5. The
price we pay for this subgaussian behavior of /i(”) is on the total running time which goes from
nearly-linear time O(Nd) to O(N2%d) by taking u; = [N/27] for j = 0,1,...,logy N (uj = N
would do as well). We write formally this statement in the next corollary which follows directly
from Theorem 3.4.
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Corollary 3.3. If one takes uj = [N/27] for all j = 0,1,...,logy N in Algorithm 5 then, in
time O(N2d), for all K > 600|0|, with probability at least 1 — 4 exp(—K/360000), the output

ﬂ(‘j) from Algorithm 5 satisfies

A () (12005, K
~(J) < * op
wr = MHQ 2ry = 1616 (1200\/ N + \/ N .

As a consequence ﬂ(j ) is a subgaussian estimator of u for all range of K from 600|O] to
N which can handle up to |O| outliers in the database (even when |O| ~ N) and that can be
constructed in time O(N2d). It does not require any knowledge on || for its construction.

Let us now show that the algorithm ,&(j ) constructed in Corollary 3.3 also satisfies estimation
results in expectation. So far all the statistical properties have been given with large probability;
for ,a(j ) it is also possible to obtain a result in expectation.

The benchmark result we use here is the rate achieved by the empirical mean in a non-
corrupted setup but unlike the result in deviation we don’t need i.i.d. Gaussian variables since
E HX” - ,uH2 < /Tr(X)/N where X,=n"! > X; and X1,..., Xy are the non-corrupted data

points from Assumption 3.1. Hence, /Tr(X)/N is the rate we aim to achieve but we also may
expect a price to pay for the adversarial corruption, in particular, when ¢ = |O|/N is above the
phase transition exhibited in (3.13), that is for e > (Tr(X)/ ||X][,,) /N

Theorem 3.5. Under Assumption 3.1, and if N > 600|0|, the following holds. If one takes
uj = [N/27] for all j = 0,1,...,logy N in Algorithm 5 then, in time O(N?d), Algorithm 5
outputs oY) satisfying

5 Tr (X X, 10
E||at) — ul|, < (3+16c)riu0j0) < (3 -+ 166)808 x 1200 <\/ r]i[ ) /] l]’\’f ’)

as long as and N > 4cglog(cod + ¢o) where co = 360000.

Proof. We denote i = a(/) and ¢y = 360000. We know from Corollary 3.3 that for all
600|0| < K < N, with probability at least 1 — 4exp(—K/co), ||t — plly < 2r%. So we know
how to control the estimation property of i up to an event of probability measure at most
4dexp(—N/cp). On that event, we only need a crude upper bound on ||fi — x|, to get the result.
This is what we do now.

We know that by construction that i € Bg(,&(N ), 2r%). Moreover, AN starts from ﬂ(()N),

the coordinate wise median of the data X; (because K = N blocks here) and makes at most
T = log(8v/d)/log(1/0.81) descent iterations like z.41 = . — f.v; where v; € S& ! and
0. = —Med ((X; — zc,v1) : @ € [N]). In particular, one has at every iteration

e — ally < 2llee — pal + Med(|[X; — ul, : k € [K]).
Hence, oY) satisfies

0 -, <37

g — |, + Med(|1X; -l : i € [ND))
0V = uf| _+Med(|X; -l 11 € [N]) - (3.14)

< 16d( fo

In the adversarial contamination model from Assumption 3.1, as we assumed that N > 600|0|,
there are at least N —|O| > (599/600) N indices i such that X; = X;, hence for at least (599/600) N
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i’s we have, for all p € [d],
o < . o < . —
[Xiip = gl < | Xip = ppl and 1 — o < ymae | X — g
where X, (resp. p,) denotes the p-th coordinate of X; (resp. p). Hence, in (3.14), we get

H(N) <
Hu MH 32d§r€13\>[§%aX\X,p ip-
Let us now turn to the stochastic argument to upper bound the right-hand side in the last
inequality.
E(maxmax 1 Xip — ipl?) < E(max || X; — p|[3) < N Tr(D).
i€[N] peld 1€[N]

Hence,
E(||f — p)|3) < 20484%N Tr(X) + 8(rk)>. (3.15)

We are now in a position to obtain an estimation result in expectation for fi. We denote
Ko = 600|0|:

N-1
Eli—ply= > Eli—uly 12 <|li— plly < 2]
k=Ko
+E (| = plly LA = mlls < 2rkco)] +EIIE = el L7 — plly > 20%)]
N-1
<o+ . 2ripy x dexp(—k/co) + B[ — pully I(1 — pll; > 2r)]
k=Ko

< 21, + 16655, exp(—Ko/co) + 25¢ody/ N Tr(E) exp(—N/(2¢o
Ko 0" Ko

where, in the last inequality, we used that

E (1 — plly (17— plly = 20)] < (E I = i) @ =l > 204
< (64dy/ N Tr(X) + 3ry) x 2exp(—N/(2¢p)) < 25¢ody/ N Tr(E) exp(—N/(2¢))

from (3.15). When N > 4c¢plog(cod + ¢p), then N > 2¢gloglcodN], so E g —pll, < (3 +
160%)7“?(0. |

We therefore recover the same rate of convergence in expectation in Theorem 3.5 as the one
in deviation in Corollary 3.3 for the adaptive estimator 4(/), it is also the rate achieved by the

non adaptive estimator fix for the minimal value of K = 600|O|. In particular, the same phase
transition phenomena occurs in expectation as in the discussion following Equation (3.13).
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4.1 Introduction

Much work concerning the prototypical problem of regression focuses on the study of error rates
of a given statistical procedure while making strong assumptions on the underlying distributions
of samples, assuming for instance that they are i.i.d. and subgaussian or bounded (see for
instance, Koltchinskii (2011); Massart (2007); Lecué and Mendelson (2013)). It is however
of fundamental importance to understand what happens when the data violates such strong
assumptions, for instance, when the underlying distribution of samples is heavy-tailed and/or
when the dataset is corrupted by outliers. In such cases — which are everyday cases for real-world
datasets — classical estimators such as OLS or MLE exhibit, at best, far-from-optimal statistical
behaviours and at worst completely non-sens outputs. In this work, we study the statistical
properties (non-asymptotic estimations and predictions results) of algorithms coming with actual
working code constructed on this type of real-word datasets. We want to put forward that it
is an algorithm and not only a purely theoretical estimator and that this algorithm can be

67
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coded efficiently (we provide a simulation study in the following) since its most time consuming
fundamental building block is to find a top singular vector of a reasonable size matrix. On top
of these practical considerations, our theoretical results show that even though the dataset is
far from the ideal i.i.d. subgaussian framework and even though we study an actually codable
algorithm, the resulting estimator achieves the very same minimax bounds with (exponentially)
high probability as the MLE/OLS does in the ideal i.i.d. Gaussian framework (i.e. Gaussian
design and independent Gaussian noise), (see Lecué and Mendelson (2013) for deviation optimal
result in the ideal framework). On top of that, we prove a theoretical running time for that
algorithm which can be linear O(Nd) (where N is the sample size and d is the number of features)
and at most quadratic O(N2d).

For a statistical problem such as mean estimation, regression or covariance estimation, we are
given a loss function and an associated risk function ¢ (for instance, for the problem of estimation
of the mean vector p* := E(X) € RY tackled in the general introduction, the loss function is
0,(X) = |lp — X||3,Yp € R and the associated risk is £(u) = Ef,(X)). For robust estimators
the emphasis is not put on the expected risk E(¢(f1)) — where the expectation is taken w.r.t. the
data — but rather on the dependence of the risk bound 75 on the confidence level 1 —4¢ € [0, 1]: we
want to find the smallest r5 so that P(¢(j1) > rs) < and the way rs depends on ¢ is paramount
in this approach (this is a key property of the estimator i that cannot be revealed when its
expected risk is studied). An estimator, as we have seen, is robust to heavy-tailed data if the
rate rs does not grow "too quickly” when § goes to 0: we look for the optimal “subgaussian-rate”
defined in the Introduction. Here we consider the standard linear regression setting where data
are couples (X;,Y;); € R? x R and we look for the best linear combination of the coordinates of
an input vector X to predict the output Y, that is we look for 5* defined as follows.

B* = argmin £(f) = argmin E(Y; — (3, X1))%.
BeR? BeR?

The theoretical question of finding robust to heavy-tailed estimators reaching optimal rates
for the regression problem has attracted much attention during the last ten years. It first started
with the study the standard procedures in this heavy-tailed framework, such as Empirical Risk
Minimization or its regularized versions Lecué and Mendelson (2016); van de Geer and Muro
(2014); Lecué and Mendelson (pear); Oliveira (2016). Several results showed the negative but
unavoidable impact of heavy-tailed data on these classical procedures Lecué and Mendelson
(2016). In the mean time, new estimators have been introduced. For instance, the pioneer
work of Audibert and Catoni (2011) has considered weak moment conditions, such as a Ly — Ly
norm equivalence, under which the subgaussian rate could be reached. It was then followed by
a rich literature such as Lugosi and Mendelson (2016); Lecué and Lerasle (2019); Lecué and
Lerasle (2020); Oliveira (2016); van de Geer and Muro (2014). The remaining issue is that
naive methods to compute these new theoretically-optimal estimators take exponential time
in the number of dimension d, partly because some of them are based on non-convex optimization.

Recent advances have shown that, for the problem of mean estimation, one could find com-
putationally efficient procedures (that is to say polynomial in both the dimension d and the
number of data ) that are statistically nearly optimal, meaning that they reach -up to universal

constants- the optimal radius rs = \/ Tr(E)+||E]|l/Op Pg1/) o every confidence level ¢ € [0, 1] (see
Hopkins (2018); Cherapanamjeri et al. (2019); Depersin and Lecué (2019)). More recently, Lei
et al. (2020) introduce a spectral method reaching the optimal sub-gaussian rates without using
Semi-Definite Programming, making somehow robust mean estimation easier to understand, eas-
ier to interpret and easier to code while still keeping optimal statistical and computational results.
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The question of whether reaching similar bounds (matching the one of the OLS in the
Gaussian setting without the Gaussian and i.i.d. assumptions — thus allowing for corrupted and
heavy-tailed datasets) in polynomial time was possible for other statistical problems such as
regression or covariance matrix estimation had been open for a long time. Indeed, up to recently,
the best known polynomial algorithms were the one from Prasad et al. (2018) or from Hsu and
Sabato (2016). The guarantee is the same for those two algorithms: when the covariance of X is
the identity and when the noise £ = Y — (8*, X) has bounded variance £(f) — £(f*) < O(W)
with probability 1 — 4, and they need a number of sample of order N 2 log(1/d)d. The article
Cherapanamjeri et al. (2020a) has been the first to construct a polynomial-time method achieving
the rate of the OLS in the Gaussian setting £(f) — £(f*) < O(W). To the date, it is the
only procedure running in polynomial algorithm achieving the optimal subgaussian rate. However,
Cherapanamjeri et al. (2020a) uses the Sum of Square (SoS) programming hierarchy to design
their algorithm. Even if SoS hierarchy runs in polynomial time, its reliance on solving large
semi-definite programs makes it impractical and remains a theoretical result leaving still open
the question on the existence of a practical efficient algorithm achieving optimal subgaussian rates.

In this chapter, we tackle this issue, showing that techniques from Lei et al. (2020) can be used
to give the first practical, nearly quadratic (and in fact in most cases nearly-linear) algorithm that
reaches the subgaussian rate. We also conduct numerical experiments on simulated data with our
proposed procedure to show that it is indeed practical and fast. Moreover, as predicted by our
theoretical findings, our simulation analysis shows that it is robust both to heavy-tailed data and
to outliers. To the best of our knowledge, this is the first time that numerical experiments are
conducted for a regression algorithm with sub-gaussian rates and polynomial time guarantees.

From a theoretical point of view, our main result (that we will prove later) can be stated as
follows (see Setting 4.1 for the precise set of assumptions and next sections for the construction
of the algorithm).

Theorem 4.1. There are universal constants A, B,C' so that the following hold. Let § > e=4N
and K > B(|log(1/0)] vV dV |O|) where |O| is the number of outliers. Given N > K points, there
s an algorithm running in time

O ((Nd + K2d) x log(]|#||s) x polylog(K, d))
that outputs an estimate B € R such that with probability at least 1 — §

SUPye By, E(f% <u7 X1>2)K
N .

(B —up) <C

So for K = B(|log(1/6)| vV dV |O|), we get, up to universal constants the (deviation minimax
optimal) subgaussian rate achieved by OLS in the Gaussian framework (see Lecué and Mendelson
(2013)). This rate was achieved previously under similar assumptions by Median-of-means
estimators in Lugosi and Mendelson (2016); Lerasle (2019); Lecué and Lerasle (2020); Lecué and
Lerasle (2019) but none of them come with computational time guarantees.

To construct estimator B from Theorem 4.1 and to prove its theoretical properties as stated

in Theorem 4.1, we outline now the role of the following key tools:

e The Median of Means framework, that has already been explained in the general
introduction, and which is still a very important tool in this chapter.
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e The Furthest hyperplane problem was first adapted to compute median-of-mean
estimators very recently by Lei et al. (2020). Authors from Lei et al. (2020) adapt to the
problem of robust mean estimation a procedure initially proposed by Karnin et al. (2012)
to find the approximate furthest hyperplane, that is to say the hyperplane that separate 0
from most of the data and that is the furthest possible from 0. The method from Karnin
et al. (2012) is based on the multiplicative weight update method (see Arora et al. (2012)
for a survey), a technique which allows to compute efficiently approximations of quantities
such as inf,,,ca sup, >; wi (u, xi)2 where A is a convex set of positive weights.

The combination of these two techniques is at the heart of both the construction and the statistical
and computational time studies of the algorithm satisfying Theorem 4.1.

In Section 4.2 we present the assumptions we make on the data and provide all the stochastic
lemmas that will be needed for the algorithm. In Section 4.3 we will present our descent algorithm,
give its precise statistical performance and make some connexion with the furthest hyperplane
problem. In Section 4.4 we present some empirical results on simulated data.

4.2 Assumptions and preliminary stochastic results

4.2.1 Assumptions

As explained in the previous section, the observed dataset ()N(i, }71)2]\;1 € R? x R is a corrupted
version of the ii.d. dataset {(X;,Y;)i,i € {1,...,N}} in a possibly adversarial way. The
assumptions made on good data (X;,Y;); are gathered in the following setting: (see also Lerasle
(2019) or Audibert and Catoni (2011)).

Setting 4.1. We assume that the following “heavy-tailed setting” holds:

1. Xy is centered and has finite second moments; we write its L?-moments matriz ¥ =
E(X1X{) and we assume that ¥ is known. Let also By = {x € RY| (x,%x) < 1} be the
ellipsoid associated with this Ly structure and, for u € R? ||“H22 = (u|Xu).

2. Let & =Y, — (6%, X1) and assume that o? := sup,cp_ E(&F (u, X1)?) is such that 0% < oo.

3. There exists an universal constant v such that, for all u € R, yE((u, X)?) > \/E((u, X)%).

We assume adversarial contamination on the data: (X1,Y1), -+ ,(Xn, Yn) denote N i.i.d. random
vectors in R x R. The vectors (X1,Y1),--,(Xn,Yn) are not observed, instead, there exists
a (possibly random) set O such that, for any i € O°, (X;,Y;) = (X;,Y;). The set of indices of
outliers O can be arbitrarily correlated with the data (X;,Y;) — for instance, only the 9N/10 data
with the largest || X;||, are observed — and the outliers (X;,Y;)ico can be anything (they can be
arbitrarily correlated between themselves and with the non-corrupted data (X;,Y;),i=1,...,N).
The only constraint on O is on its size: we suppose that we know an upper bound of |O| (even
though, this constraint may be dropped out if we use an adaptive scheme on K such as Lepski’s
method in the end). The observed dataset is therefore {(X;,Y;) :i=1,--- , N}, and we want to

recover 3* out of it.

Let us now comment on Setting 4.1. The first three assumptions deal with the heavy-tailed
setup. It involves at most the existence of a fourth moment on the noise ¢ and the functions class
{u € RY — (u, X)}. The strongest assumption among them is the third one which is a La/Ly
norm equivalence assumption. This type of assumption has been used from the beginning for the
statistical study of ERM and other classical methods in the heavy-tailed scenario for instance in
Oliveira (2016); van de Geer and Muro (2014); Lecué and Mendelson (pear) or in Audibert and
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Catoni (2011). It is also related to the small ball assumption from Koltchinskii and Mendelson
(pear). It has been systematically used for the study of Median-of-means estimators (see Lerasle
(2019)). The remaining of Setting 4.1 deals with the adversarial contamination model, that has
been presented in the introduction.

4.2.2 Bounds on three stochastic processes

In this section, we introduce three stochastic processes that play a central role in our analysis.
We provide a high probability control for the supremum of the three of them into three lemmas.
All the stochastic tools that we will need later will be related to one of the three processes. So
that all the stochastic part of this work is gather into this section and in the end we will identify
a single event onto which the study of the algorithm will be using purely deterministic arguments.

We now state the three lemmas. The two first one deal with the classical quadratic and
multiplier processes which already appeared in the study of ERM in Lecué and Mendelson (2013).
They naturally show up when the quadratic loss is used. The last one is new and is related to
the descent algorithm we are studying below.

We split the data in K blocks denoted by By, k € {1,...,K}, in agreement with the
Median-of-Mean framework. We note m = N/K the number of data in each blocks, and we
set Xy, = (Xj)ien, and X = (Xi)iegk. Y and Y, are defined the same way. We start with
(Depersin, 2020a, Lemma 2), presented in greater details later in Chapter ??, that we will use
several times in what follows. We use the definition of VC-dimension presented in the general
introduction for what follows.

Lemma 4.1. Let F be a set of Boolean functions satisfying the following assumptions.
e Forall feF,P(f(X1,Y)=0)>31/32.
e K> C(VC(F)V|O|) where C is a universal constant.

Then, with probability at least 1 — exp(—K/512), for all f € F, there are at least 19K /20
blocks By on which f(Xy, Yi) = 0.

This lemma is used as a baseline to prove the three following lemmas that will define the
three stochastic events A, B and £ that are needed for our algorithm to give a good estimate. We
state in this section that all three fail with exponentially low probability. We introduce the rate

K
r= 80\/;. (4.1)

Lemma 4.2 (Multiplier process). There is a universal constant Cy so that the following hold.
If K> Ci(dV|0|), then the following event £ holds with probability at least 1 — exp(—K/512) :
for all u € By, there exist more than 19/20K blocks By, so that

%' S (i (8, %)) (w Xy | < .
i€ By,

This can also be also written as: for all u € R? there exist more than 19/20K blocks By, so
that :

Y (T (6 ) () | <l
1€By,
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Lemma 4.3 (Quadratic process). There is C; a universal constant so that the following hold.
If K > C(d V |O|) then the following event B holds with probability at least 1 — exp(—K/512):
for all u,v € R?, there exists more than 19/20K blocks By so that

S %) (0.0 — (. 50) | < 6y =l ol

| 1
m i€By,

In particular, when m > 360 00072, on the event B, for all u € R?
1 -
99/100 (u, Su) < — 3~ {u, X;)? < 101/100 (u, Tu) .
1€By

Lemma 4.4. There is C1 a universal constant so that the following hold. If K > Cy1(d V |O|)
and m > 128y, then the following event A holds with probability at least exp(—K/512). For all
B. € R%, there are more than 19/20K blocks By, so that

. —1/2 2
|28, < 8\/ PO 00) | vays. - 8l < Ve + 118~ 81ls)

where
1

Z(Be) = oo 37V - BeXi)ETV2XK,

1€By,

with v defined as in (4.1).

We assume for the rest of this work, that K > C;(d V |0]) and m > 360 00072. We
moreover assume that events A, B and £ hold.

4.3 Analysis of the algorithm

Starting from f;, the ideal descent direction is u* = (8; — 5*)/||8: — 5*||x, and the associated
step size is ||8; — B*||x. Of course, none of those two quantities can be exactly computed,
but they give a sense of what one should look for : a good descent direction v should check
(v, 88 — B*) > col|Bt — B*||s and ||v||s = 1 for some constant ¢y < 1, and a good step size should
check d; € [e1 |8t — B*|ls, co |8 — B*||s;] with 0 < ¢1 < ¢g so that, taking i1 = B + dyvy,

1Ber1 — B¥I% < (1 —2coe1 + )8t — B*IS < o B — 8713
with a < 1. In order to find a good descent direction, we will be using the central quantity

() = — 3 (Y- AX)B X,

1€B},

already mentioned in the previous section (see Lemma 4.4). Remember that we assume ¥ to be
known. We decompose Zj, as Zx(8.) = = > ieB;, XX+ >ien, (B — Bes Xj) »~1/2X;. The
first term has mean zero by definition of 3*, but the expectation of the second one is %1/2 (6*—Be),
so one might hope the X~1/2Z;(8,) to point toward the right direction.

In fact we can be a little more precise using the previous section. For any u such that
llull2 = 1, we can see using Lemma 4.2 and 4.3 that, for at least 9/10K of the block,

(Zi(Be),u) ~ (ZV2(B* — ), u) (up to errors of magnitude max(r, Hzl/z(lﬁ%ﬁ”?)). So if one
were to find the vector u which maximise Q1 /10((Zk(8¢), u))x, where we denote by Q1 the
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first decile of a sequence, we could find a vector u well aligned with $1/2 (6* — Bc). This unusual
and non-convex maximisation has been tackled under the name of furthest hyperplane problem
in Karnin et al. (2012), where it shown that one can approximately solve such a maximization
using spectral methods. This method has been first used in the context of robust estimation by
Lei et al. (2020), where authors use the spectral algorithm from Karnin et al. (2012) to solve
efficiently the problem of robust mean estimation. The introduction of the quantity Zj, which
allows to adapt the procedures of Lei et al. (2020) to the regression problem, is one of the novelty
of this work. We will see in the rest of this section that finding such a direction indeed leads to a
nice descent, and we will show how to find it efficiently.

The general algorithm, as in Lei et al. (2020), is a basic descent procedure :

input :Xl, }71 e ,XN, Y/N, K> Ci(dVv ’OD, and Tyes.
output : A robust estimator of 5*
Initialize By = 0
for t=1,..., T4 do
dy = stepSize(X'7 Y, K, Bty Tges)
g: = descentDirection(X,Y, K, B, dt, Tyes)
Bry1 = Bt — drgr
end
Return g7, ..

N O oA W N

Algorithm 6: Meta descent algorithm for robust linear regression

More precisely, we will show that the algorithms stepSize and descentDirection are good
step size and descent direction. The main tool is a modification of the algorithm APPROXBREGMAN
from Lei et al. (2020) (which is in turn an adaptation from Karnin et al. (2011)), that we called
BregmanRegression

We summarize the properties of this descent direction in the following theorem :

Theorem 4.2. On the event £, A, B, each iteration of Algorithm 6 satisfies the following with
probability at least 1 — exp(—K)/Tyes

e Whenever ||B. — /*||s > 1007,
1Ber1 — %[l < (1 —2/100.000) || — 57|
e Whenever ||S. — 8*||x < 100r,

[Be+1 — B[y < 1027
Moreover, each iteration runs in time O((Nd + K?2d) x polylog(d, K))

Note that even if we are on the right set of event, our bound holds with a high probability,
but not with probability 1. This is because our algorithm is stochastic in itself, and it has some
chance to fail even if £, A, and B hold.

To prove this theorem, we need a few intermediate lemma and algorithms. All the results
presented hold on the event AN B NE. We first state some essential remarks about pruning.

Because A holds, we know that 9/10K blocks check HZk(BC) , S Vd(r + ||8e — B*|ls). For
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simplicity, we will just denote 7Z1(Be) = Zi. We set K’ = [9/10K |, and we note Z}, ..., Z4, the
K’ smallest Z;, as returned by algorithm 7. For the rest of this part we will mainly work with
the pruned data, so that, on A, R := maxp<g || Z4|]2 < Vd(r + ||8e — 5*||s)-

input 121,---7215 )
output : Pruned Z;(y), ..., Zs (k)

1 Compute the norms ||Z;|| and sort them Zg(l) < Zg2) < o < Zo(k)
2 Remove the top 1/20
3 Return Zo(l), ceny ZG(K/) = (lec)ke{l,...,K’}‘

Algorithm 7: Pruning algorithm

The first lemma of this section states that if O%/19 is the 8/10 quantile of a serie, max,, Bd Q8/10(( 7! u))

is a good estimate of the distance ||8. — 3*||s (B¢ denote the unit ball for the canonical euclidean
distance on R%)

Lemma 4.5. There is u € B§ so that, for at least 8/10 of the k € {1,..., K'}

<Zl/§7 u> > 0

with 61 := 99/100||8. — f*||lz — r
Moreover, for any u € B, at least 8/10 of the pruned blocks check, (Z!,u) < r-+101/100]|3. —
Bl

Now we recall the main lemma from Lei et al. (2020), that states that it is possible to
approximate max,cp, Q% 10((Z; ,u)) with exponentially high probability in polynomial time.

Lemma 4.6 (Lemma 5.2 of Lei et al. (2020)). There is a universal constant C' such that the
following holds. Suppose there is u € BY so that, for at least 8/10 of the k

(Zp,u) >0 >0

and that, for all k, Z, < R. Then, when T > 2log(K')R?/6?, with probability at least
1 — exp(=T/C), algorithm 8 applied with T and § outputs a vector @& € BY so that, for at
least 2/10 blocks, (4, Z;) > 0/10 (and returns “fail” with probability exp(—T/C) ). Moreover,
each of the T iteration of algorithm 8 costs at most K x d + polylog(d) operations.

Remark: Algorithm 8 always return either a vector u € BY so that, for at least 2/10 of the k,
(u, Zp) > 0/10 or "fail”. If there is no u so that for at least 2/10 blocks (u, Z},) > /10, then it
will always return "fail”
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input :7,...,Z},0and T.
output : A good descent direction or ”Fail”.

R = max(||Zj||2)
Initialize weights w; = (1,...,1)/K € RE
for t=1,...,7 do

Let A; be the K x d matrix whose i*" row is Vwi(2)Z! and u; be the approximate top
1/2

AR W N =

right singular vector of 4; x ¥~/#, computed with a PowerMethod (see Lei et al.
(2020)).

Set 07 = (Z!,u)*.

Wi (i) = wili) x (1 - /2)

Normalize a = Y, wiy1(7), wiy1 = wieri/a

Compute the Bregmann projection w;y; = Bregmann(wyy1)

© 0w N o w;

end
10 Return ROUND(Z', 6, (ut)¢).

Algorithm 8: BregmanRegression

Remark 4.1. Lemma 4.6 has a failure probability even if ANBNE holds: it is because Algorithm
8 calls two random algorithms, PowerMethod (see Lei et al. (2020)), which fails with constant
probability, and ROUND, which fails with exponentially low probability < exp(—cT') with ¢ a
constant (Karnin et al. (2012); Lei et al. (2020)). Algorithm 8 can tolerate at most 0.1T among
T mistakes in the computation of the top eigenvectors of the matrices A¢, and the event where
more than 0.1T of the power methods fail happens with probability exponentially low in T. The
failure probability of algorithm 8 and the algorithm itself are explained in depth in Lei et al.
(2020).

The computation of the Bregman projection is described in Barak et al. (2009), and appears to
be a building block in Lei et al. (2020), the rounding algorithm is also given in Lei et al. (2020).

The following lemma states that finding a direction ”aligned” with most of the Zj, grants a
good descent direction.

Lemma 4.7. If for at least 2/10 blocks , (u, Z},) > /10, thenv = ¥ 12y satisfies (v, B, — B*) >
0/10 — r — ||Bc — B*||=/100 (and of course ||v||lz =1 ).

Proof of Theorem 4.2. We now have all the right tools to perform our analysis.

e Whenever ||3. — f*||s > 100r, then by Lemma 4.5, there exists u so that for at least
8/10K’ of the (pruned) blocks (Z/,u) > 98/100||8. — 5*||x. So algorithm 8 with § €

[49/100 || 8. — 8%y ,98/100 |8 — B*|s], and with T' > 6log(K') K > 6log(K')d > 2log(K')R?/6?

does not output "Fail” (Lemma 4.6).

We also recall that if there is no u so that for at least 4/10 blocks , (u, Z;) > 6/10, then it
will always return ”Fail”. Thus whenever 6§ > 10(101/100]|5. — 8*|| + ), by Lemma 4.5 ,
the algorithm returns "Fail”.

So our binary search stepSize returns a 6 € [49/100||8.—5*||s , 10(102/100 || 5. — 5*|I5;)] %
2/100 x (1/10) x (100/102), in less than log(R/||f. — B*|lx) S log(d) iterations. The
vector u returned by descentDirection is so that v = Y 71/2u checks (v, 28, — p*) >
2||8. — 6*||»/100, with high probability (Lemma 4.7).
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So we have, if ¢; =49/100 x 1/10 x 2/100 x 100/102 and ¢y = 2/100
1Bes1 = Bl < (1= 2coer + ef) | Be — 57l < (1 —2/100.000) || — 5|,

o Whenever ||5. — 8*||s < 1007, whenever § > 10(101/100 ||3. — 8*||+7), by Lemma 4.5 , the
algorithm returns "Fail”, so our binary search stepSize returnsa § < 10(102/100 || 5. — 8*||5;) %
2/100 x (1/10) x (100/102) = 2/100 || 8. — B*||s;). We have

1Bes1 — 8%l < 102/100]|5. — B%[ly; < 102r

Once again, we recall that there is no effort made here to optimize the constants.

4.4 Experiments

In this section, we present the results of some synthetic numerical experiments. Our first aim
is to show that our algorithm comes with actual code and that it can be computed efficiently.
This is a important feature of our approach that we want to put forward because, even though
there are polynomial time algorithms (even linear time ones for the problem of mean estimation)
they usually do not come with efficient code. Our second aim is to show the robustness (to
heavy-tailed and outliers) properties of our algorithms as predicted by our theoretical findings in
Theorem 4.2.

4.4.1 Experiments with heavy-tailed data and outliers

Data generating process. We fix the contamination level ¢ = |O|/N. Then, we generate
(1 —€)N 7clean” input vectors X; following a multivariate Student’s standard t-distribution with
parameter 3 and we generate the corresponding ”clean” responses following the linear model
Y = (8% X) + 0 where 8* = [1,...,1] € R? and where ¢ also follows Student’s t-distribution
and is independent from the feature vector X, and o is the inverse signal to noise ration (SNR).
We simulate an outliers attack by adding on the e N remaining data an arbitrary large number
(10%) to some cordinates of the input vectors, or multiplying them by 10°. We also set some
responses to 0 and some other to 10°. The total number of samples is set to be N = 50d. We
note that the sample size we choose increases with the dimension. We conduct 200 independent
simulations.

Metric. We measure the parameter error in ¢4 norm, which is also the estimation norm ||.||s;
as we take X = Id.

Baselines. As our baselines, we use the Ordinary Least Square, the Huber-loss M-estimator,
RANdom SAmple Consensus (RANSAC) and the MOM-estimator from Hsu and Sabato (2016),
that we name metric MOM. The first three are implemented in the python library sci-kit learn,
and we coded the last one.

Results. We summarize our main findings here.

e Error vs dimension d: We fix € = 0.005, and we choose, for both our algorithm and the one
from Hsu and Sabato (2016) to take K = d. We do not include the OLS in our graphic
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because its very poor performance (due to the presence of contamination) would prevent
us to compare the four others. We notice that for all the algorithms but the one presented
in this chapter, the prediction error grows quickly with the dimension. On the opposite,
for our algorithm, the performance does not depend on the dimension. This does not come
as a surprise, as the error is o« 0 K /N, which we chose to be d/N, which is a fixed quantity

in this setup.

e Error vs the inverse SNR o: We fix € = 0.005, d = 200 , we still choose K = d and we study
how the algorithms perform for a range of SNR o. We do not include OLS and we do not
include RANSAC, because its error explodes for large 0. We notice that our algorithm’s
error depends linearly on o, which is predicted by Theorem 4.2.

4.4.2 Which choice of K ?

From a theoretical point of view, we answered the question of how one should choose the
parameter K in the previous section: K should me at least K > Ci(d V |O]| V 1og(1/9)) for our
algorithm to work with probability > 1 — §, but it should not be too large because we do not

want our bound « K/N to explode.
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Setup. In Figure 4.2, we fix the contamination level € = |O|/N to be 0 (there is no outlier).
Then, we generate the covariates of dimension d = 100 from a multivariate Student’s t-distribution
with parameter 3 and we generate the corresponding clean responses using y = (8*, x) + & where
g* =[1,---,1] and where ¢ follows Student’s t-distribution and is independent from the covariates.
The number of samples is set to 10000. We conduct 50 independent simulations.

Results. We can recover a kind of trade-off from numerical experiment. It seems indeed that
when K < d, our algorithm can not seize the complexity of the regression task, and that when
K > d, there are not enough data per block and thus the block are "not informative enough”.
Those two opposite phenomenons lead to a sort of bias-variance trade-off.

4.5 Conclusion

We can outline the main benefits and limitations of our algorithm. On the practical side, the
main benefit is its low computational complexity and that it comes with efficient actual code.
On the theoretical side, the algorithm is robust to adversarial outliers and robust to heavy-tailed
data and it achieves the subgaussian rate. It avoids the pitfall of SOS or SDPs since it uses
spectral methods. This makes our algorithm both easy to understand easy to code, and that
is the reason why this work comes with a simulation study unlike many other works in this
literature.

The main limitation for now is that we need to know the variance matrix ¥ of the co-variates
(whereas sub optimal algorithms such as Hsu and Sabato (2016) do not require knowledge of X).
An other limitation of this work lies in the choice of K: we need prior knowledge on the number
of outliers for our procedure to work. It might be possible to improve this with a Lepski-type
procedure Lerasle (2019).

A final comment is that, while we choose the descent procedure from Lei et al. (2020) for its
simplicity and practical performances, the procedures from Depersin and Lecué (2019) or from
Cherapanamjeri et al. (2020a) applied with our Z;’s would probably work just as well and give
similar rates but may be harder to code efficiently in practice.

An interesting perspective would be to extend this work to other estimation problems such as
covariance estimation, as presented in Cherapanamjeri et al. (2020a). To do so, one would have
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to find an efficient way to compute sup,cp, >-; (U, Aiu>2 for any symmetric matrices A;. While
it is simple to compute sup,¢z, >; (u, v¢>2 with the power method, this other problem seems
harder. We may also wonder if it is possible to adapt this kind of spectral procedure in order
to recover sparse signals or, more generally, if it is possible to introduce any regularisation to
recover structured signal.

4.6 Proofs

4.6.1 Stochatic proofs

We state a theorem and its direct corollary that will be useful to bound the different VC-dimensions
at stake.

Theorem 4.3 (Warren (1968)). Let P = {P,..., Py} denote a set of polynomials of degree at
most v in n real variables with m > n, then the number of sign assignments consistent for P is
at most (devm/n)".

We denote by R[X] the set of polynomials of dergree at most v in n real variables.

Corollary 4.1. Assume that the set of functions F can be written F = {P € R}[X] —
Lp@)>0,7 € R"}, then VC(F) < 2nlogy(4ev).

Let us also recall that, if g : Y — X is a function and Fog = {fog | f € F}, then
VC(Fog) < VC(F).

Proof of Lemma 4.2. Let F = {(x,y) € Rld+Dxm _ 1 u € By}. This

(W, (i (B @i))zi)  >m2r2?
is not a set of indicators of half-spaces, but F is the composition of g : (x,y) € Rld+1)xm _y (u —
(u, X5 (yi — (8%, 23))2)° — m*r?) € RY[X] and of {P € RY[X] = 1p(,)>0.u € R?}. By Corollary
4.1 , there exists an absolute constant ¢ such that VC(F) < cd.

For all u € By,

1
< —,
- mr2 - 32

P (;r S (¥ - (8%, X0)) (u X | = 7

i€EB1

) - B {u X1)?)

By Lemma 4.1 applied with F, it follows that the following event £ has probability >
1 —exp(—K/512): for all u € By, there exist more than 3/4K blocks k where

| (Vi = (a, X3)) (u, Xi) | < o
i€By,

Proof of Lemma 4.3. We note that, by bilinearity, it is enough to prove this result when ||u||y =
[lvfls = 1.

Let G = {(Xl) € Rdxm _, 1|Z<$’i7u><$i1v
composition of g : (x,y) € REFDX™ 5 (y v — | (x4, u) (x5, v) —uDv|? —c||u| & |Jv]|3) € RIYX]
and of {P € R}[X] — 1p)>0,u € R}, so there exists an absolute constant ¢ such that
VC(G) < ed (Corollary 4.1).

Let r1 = 64/ = llullg [[o]ly; -

d . .
>_UZU|2ZCHUH%HUH%’u7v e R } Once again, g 1S a
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1
—_— 2 _—
B, mry 32

2 2
P (I1 S (u, Xi) (0, Xq) — (u, Sy | > m) - E((u, X0)* (v, X1)) _

because E((u, X1)% (v, X1)?) < E((u, X1)")V2E((v, X1)")/2 < 42 ||ul|% ||v]|% (this is from the
Ly — L4 norm equivalence). We conclude with Lemma 4.1.
]

Proof of Lemma 4.4. We define Zy(8:) = > ,ep, (Yj — BXj)Z_l/QXj.

We can write | Z(8:)l; < || & Sjen, (Y = B7X) 572X ||+ Sjep, (8" = B)X5)%
we will bound those two quantities :

First B((Y] — 5*X;)S12X;) = 0, so, if a = 8/ EUEE2X1E)

m

E(lGE2X03) _ 1
ma? ~ 64

1 _
P(|-— Y (¥ = BX)S VX2 2 0) <

JjEB1

Then, if we note Vi = ((6* — 8.)X;) ¥~/2X, we notice that E(V}) = ZY/2(3* — 8,), and

that E(|[Vi]]2) < E(2-V2X, 5-12X)}) /2 E((8, — B*, X)?)/2. As X checks the Ly — Ly norm

equivalence, £71/2X checks the same equivalence, so IE(HE*UQX‘E)U2 < 'yE(HZfl/QXHz) = ~d,
and E((8. — 5%, X)*)'/? = ||, — B*[ls;, so

1 * 1 *
HE > Vill3) = EW)I3+— E(HV —E(V3)|[3) < IIE(V1)||§+%]E(HV¢I|§) <|B.—8 H22+Ewd||ﬁc—ﬂ 15
1€B1

So, as m > 128, if b = Vd 8. — B*|s;
1
B S Vil =0 < o
zGBl

So the probability that one of the two bounds fails is < 1/32. We then just use lemma 4.1,
d+1 d .

with the functions F = {(x,y) € R+Dxm 1||Z —(Bye))zil[2d(r2+]|Be—B*||2) pBeR }. Again,

we use Corollary 4.1 to state that there exists an absolute constant ¢ such that VC(G) < c¢d. m

4.6.2 Algorithmic proofs

Proof of Lemma 4.5. In fact, we just know that, if we take u = %, and v = M
By,
(Ziyu)y = > (Y= (8%, Xa) (0, Xi) + Y ((B* = Be, Xi)) (v, Xi) (4.2)
1€By 1€EBy,

So for at least 9/10 blocks, (Zi,u) > 99/100]|8. — §*||s — r := #;. This is true for at least
9/10 of the blocks (Z;), it is true for at least 17/19 > 8/10 of the "pruned blocks” (Z).

The same way, for any u € By, we take v = X71/2y € By,
<Zlvu>: Z(ﬁ—<,8*,X UX +Z _607 l)<U>Xi>
1€By 1€ By
<r+ (8% = B, Xv) + 1/100]|8. — B*||x
<r +101/100[|5: — 57|15
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for at least 9/10 of the blocks. Again, as this is true for at least 9/10 of the blocks, it is true for
at least 17/19 > 8/10 of the "pruned blocks”

Proof of Lemma 4.7.

(Ziyu) = D (Y= (55, X0) (v, Xi) + Y ((B* = Be, X)) (v, Xi)

1€By 1€EBy,
<r + (8" = Be, o) +1/100]| B — B*||s

for at least 9/10 of the blocks Z;. Again, as this is true for at least 9/10 of the blocks, it is true
for at least 17/19 > 8/10 of the "pruned blocks” Z/.

Their is at least one block that checks both (u, Z!) > 0/10 and (u, Z]) < r+ (8* — B¢, Zv) +
1/100||8. — B*||s (as 2/10 +17/19 > 1), so

(B* = Be,Xv) > 0/10 —r — ||B. — £¥||=/100

4.7 Appendix

input :Zi,...,Zk, 0 and u, ..., ur.
output:u.
while (Z;,u) < /10 for more than 0.6K blocks do
g; ~N(0,1) for j € {1,...,T}
u =35 g5ui/|| 225 gjull
Report ”Fail” and exit if more than 7' trials have been performed
end
Return w.

(= N VS

Algorithm 9: Round
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© g N O A W N e

= R e =
B W N = O

input : X1, Y1..., XN, Yy, Be, K > |0, Tyes

output : A good distance estimation, d;

Let, for i < K, Zz = % ZjeBiO}j — ﬁch)2_1/2Xj

7' = prune(Z)

R = max(Z!)

dhigh = R7 dlow =0

for j € {1,2,...,|log(K)|} do

dpy = (dhigh + dlow)/2

if BregmanRegression(Z’,d,log(Tyes) + log(K)K) returns “Fail” then
‘ dhigh <~ dm

end

else
‘ dlow < dm

end

end
Return dj,, x 2/100 x (1/10) x (100/102).

Algorithm 10: stepSize

AW N =

input :X:l?}h}vl"'?XN?f}N? BC?K2|O‘7 Td657 9‘
output: u.

Let, for i < K, Zy = 2 Y5 (V; — B.X;)87V2X;
prune(Z)
u = BregmanRegression(Z,6 x 100/2 x (10) x (102/100), log(Tyes) + log(K)K)

Return X1/,

Algorithm 11: descentDirection
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Robust subgaussian estimation with VC-dimension

Contents
5.1 Introduction . . . . . . . . . @ @ i i i i i it ittt 83
5.2 Warm-up: MOM principle, VC-dimension and mean estimation .. 85
52.1 VC-dimension . . . . . . . . ... 85
5.2.2 Median-of-mean . . . . . . .. ... 87
5.2.3 Mean estimation . . . . . . . ... ... 88
5.3 Sparse setting and other estimation tasks . . . . . .. ... ... ... 89
5.3.1 Sparse mean estimation . . . . ... ... ... oo 89
5.3.2 Regression. . . . . . .. L e 90
5.3.3 Low rank matrix estimation . . . . . .. ... 91
5.3.4 Covariance estimation . . . . . . . . .. .. oL 92
5.4 An algorithm to improve risk bounds . ... ... ........... 93
5.5 Conclusion: concurrent work and discussion . .. ........... 95
5.6 Main Proofs. . . . . . . . 0 i i i i i e e e e e e e e e e e 96
5.6.1 A fact about VC-dimension . . . . . ... ... ... ... 96
5.6.2 General methodology . . . . . .. .. ... L 96
5.6.3 Proof of Theorem 5.2, 5.3,5.5,5.6 . . . ... .. ... ... ....... 99
5.6.4 Proof of Theorem 5.4 . . . . . . . . .. ... 101
5.6.5 Proof of Proposition 5.3 . . . . . . ... ... o 102

5.1 Introduction

We stated in the general introduction that the subgaussian rate for the sparse mean estimation
problem (5.2) described below is different from (5.1): the “complexity term” (the one that does
not depend on §) goes from d to slog(d/s). Can this rate be reached only assuming second order
moment on the random variables at stake 7

(4~ logu/é))”

=+ (5.1)

83
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<slog(d/8) . 10g(1/5>>1/2 (5.2)

N N

In this work, we show that the analysis presented in Lugosi and Mendelson (2019c¢), in Lecué
and Lerasle (2019), Lerasle (2019) or in Lecué and Lerasle (2020), all based on the Median-of-mean
principle and the use of Rademacher complexities, can be modified in order to achieve sub-
gaussian rates for sparse or structured problems assuming only bounded two-order moments. The
method developed in Lerasle (2019) or in Lecué and Lerasle (2020) requires data to have at least
log(d) finite moments (where d is the dimension of the space) in order to exploit the sparsity of
the problem and offers no guarantees without that requirement, and to the date is the best known.
We show that we can drop this condition by judiciously introducing VC-dimension in the different
proofs, and exploit the sparsity of the problem with only two moments. Classical approaches
using local Rademacher complexities cannot achieve this type of subgaussian bounds under
only a second moment assumption in this setup. Indeed, as shown in the counter-example from
Section 3.2.3 of Chinot et al. (2018), local Rademacher complexities may scale like d'/® whereas
the right Gaussian bound should be of the order of v/logd. Somehow the classical approach
used so far does not capture the right statistical complexity of high-dimensional problems under
low-dimensional structural assumptions and under only a second moment assumption : it seems
that the Rademacher complexity is not the right way to measure the complexity of
the problem of mean estimation in any norm. Our VC-dimension based approach allows
to overcome this issue and to go beyond this log d subgaussian moments assumption that has
appeared in all works on robust and subgaussian estimation in the high-dimensional framework
Lerasle (2019). We also show that this general technique can be easily replicated and give new
robust estimators that achieve state-of-the-art bounds for different estimation tasks such as:

- Regression, already studied in Lecué and Lerasle (2020) where our estimator’s rate match
the one from Lecué and Lerasle (2020), and sparse regression where our estimator’s rate is
the first to match the one from Lecué and Lerasle (2020) with only two moments.

- Mean estimation with non-Euclidean norms, studied in Lugosi and Mendelson (2018),
where our analysis gives a different rate that is better for some norms.

- Robust low-rank matrix estimation.

- Covariance estimation, studied in Mendelson and Zhivotovskiy (2018) under Ly — Lo norm
equivalence: we do not need this assumption with our analysis, thus we give the first
subgaussian estimator without this assumption.

This paper is not the first to introduce VC-dimension in robust estimation problems: we have
been inspired by Chen et al. (2018) and Gao (2017) for instance. In those two papers, estimation
and regression with possible sparsity and outliers are also achieved with optimal rates, using VC
dimension techniques. The main differences lie in the model assumptions. For example, Chen
et al. (2018) estimates the center of symmetric distributions without moment assumption. In
comparison, our estimators is for mean and covariance, and thus moment assumption is needed,
but we do not need the distributions at stake to be symmetric.

Using VC-dimension in mean estimation, we lose a nice dependence of the risk bounds in
the covariance structure: our rates for (non-sparse) mean estimation depend on the ambient
dimension d instead of the effective rank Tr(X)/||X||op. In particular, the general approach does
not generalize directly to infinite dimensional spaces. In the last section, we show that this issue
can be overcome if we have some knowledge on the covariance matrix.
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5.2 Warm-up: MOM principle, VC-dimension and mean esti-
mation

We start with the mean estimation problem in R¢ that illustrates our technique: the goal is to
estimate the mean E[Y] of a random vector Y in R? given a possibly corrupted dataset of i.i.d.
copies of Y. The precise setting is the following:

Setting 5.1. Let (Y1,...,YN) denote N independent and identically distributed random vectors
in RY. We want to estimate E(Y1) = p, assuming that Y1 has finite second moment. Let
Y =E((Y1 — p) (Y1 — p)T) denote the unknown covariance matriz of Yi.

The vectors Y1,...,YN are not observed, instead, this dataset may have been corrupted, and
this corruption may be adversarial: there exists a (possibly random) set O such that, for any
i€ 0% X;=Y;. The O satisfies |O] < |eN |

The observed dataset is {X; : i =1,..., N}, and we want to recover p.

Notice that there are no assumption on the data {X;,i € O}. In particular these may be
dependent of {Y; : i =1,..., N}, and the {X; : i € O} may have arbitrary dependence structure.

5.2.1 VC-dimension

We start this part by recalling some basic facts about VC-dimension that appear for instance in
Ahsen and Vidyasagar (2019).

Definition 5.1. Let F be a set of Boolean functions on any space X. We say that a finite set
S C X is shattered by F if, for every subset B C S, there exists f € F such that SN f~*({1}) = B.
We call VC-dimension of F (and note VC(F)) the largest integer n such that there exists a set S
of cardinality n that is shattered by F.

Whenever FE is a Euclidean space, we will sometimes abusively call VC-dimension of a set
C' C FE and note VC(C) the VC-dimension of the set of half-spaces generated by the vectors of
C:

Let us recall some basic facts about VC dimensions.

1. VC(RY) = d + 1. More generally, if F' a set of real-valued functions in a k-dimensional
linear space, then Pos(F) = {x — 1f(;)>0, f € F'} has VC-dimension k +1 (see for instance
Dudley (1978), Theorem 7.2).

2. For a function g: Y — X | if we note Fog={fog| f € F}, then we have VC(F o g) <
VC(F).

3. Forany 7 > 0, VC({z € E — 1, 4)>,,v € C}) < VC(C - C) $ VC(C), see Section 5.6.

4. Sauer’s Lemma Sauer (1972): Let F denote a set a functions with VC-dimension v and let
S be a set of n > s points. Let F* S = {SN f~1({1}), f € F}, then

Card(F * 5) < (?) .

This last lemma can be used to prove the following result that is useful to bound the VC
dimension of the set of sparse vectors.
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Lemma 5.1. Let F1, ..., F,, denote n sets of boolean functions, each having VC-dimension < v.
Then,

VC(./—"l UFU..U ]:n) <4v + 2log2(n).

Lemma 5.1 is a straightforward extension of Theorem 3 in Ahsen and Vidyasagar (2019).

Proof. Let S be a set shattered by F = F1 UF U ..U Fy,, and s = Card(S). Because S is
shattered, we have Card(F % S) = 2°. But we also have F xS =F; « SUFa+x SU...UF, *S, so
Card(F * S) < n (2)".

It follows that 25 < n (£2)" or s < vlogy(esn'/? /v). By technical Lemma 4.6 in Vidyasagar
(1997) if < alogy(bx), then z < 2alogy(ab). Hence, s < 2vlogy(en'/?), which implies
Lemma 5.1. m

Corollary 5.1. Fiz vi,...,uq € R" and note Us = {d_; \ivi | \i € R & 37,1y, 20 < s} the set of
s-sparse vectors, then

VC(Us) < 4slogy(ed/s).

To prove Corollary 5.1, just write the set U as a union of (g) s-dimensional subspaces. As a
side remark, we note that Ahsen and Vidyasagar (2019) also shows that this bound is tight up to
multiplicative constants: there exists an absolute constant ¢ such that VC(Us) > cslogy(ed/s).
Besides, the result holds even if the set of vectors (v1,...,v4) is not an orthogonal family or if it
is not a base. Let us now recall an important theorem that will be very useful in regression and
covariance estimation. Let P = {P, ..., P,,} denote a set of multivariate polynomials. A sign
assignment is an element s of {4, —}"™. The sign assignment s is consistent with P if there exists
x € R" such that P;(x) >0 < s; = +.

Theorem 5.1 (Warren, Warren (1968)). Let P = {P,..., Py} denote a set of polynomials of
degree at most v in n real variables with m > n, then the number of sign assignments consistent
for P is at most (devm/n)".

Corollary 5.2. Assume that the set of functions F can be written F = {P € R}[X] —
Lp@)>0, 7 € R"}, then VC(F) < 2nlogy(4ev).

The following example will be useful in some applications (we note that this is not a novelty,
a similar result can be found, for instance, in Wolf et al. (2007), Theorem 2 ).

Proposition 5.1. Let v > 0 and call MS(R) the set of rank k, symmetric, d-dimensional
matrices.

Let F = {M € Mg(R) = Lixansm X € ME(R)}. Then VC(F) = VC(ME(R)) < 2(d +
1)klogs(12e).

Proof. Any X € M’j(R) can be written X = Zle Nzl with (A, z;) € R x RY. Besides, for
any M, the function (\;, z;)i<x — (X, M) —r is a polynomial of degree 3 in k(d + 1) variables.
Hence, the result follows from Corollary 5.2. [ |

Combining Lemma 5.1 applied with rank-one matrices of the form zz”,z € R® x {0}9~* and
Corollary 5.2 yields the following result.

Proposition 5.2. Let F = {M € Ma(R) = 14,7 ary>p, @ € Us}. Then VC(F) < 16slogy(ed/s).
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5.2.2 Median-of-mean

This work uses the median-of-means (MOM) approach which was introduced in Nemirovsky and
Yudin (1983); Alon et al. (1999); Jerrum et al. (1986) and has received a lot of attention recently
in the statistical and machine learning communities Bubeck et al. (2013); Lerasle and Oliveira
(2011); Devroye et al. (2016); Minsker and Strawn (2017); Minsker (2015). This approach allows
to build estimators that are robust to both outliers and heavy-tail data in various settings Alon
et al. (1999); Jerrum et al. (1986); Birgé (1984). It can be defined as follows: we first randomly
split the data into K blocks By, ..., Bx of equal-size m (if K does not divide IV, we just remove

some data). We then compute the empirical mean within each block: for k =1,..., K,
- 1
Xp=— )Y X,
m .
1€By,

In the one-dimensional case, the final estimator is the median of the latter K empirical means.
This estimator has subgaussian deviations as shown in Devroye et al. (2016). The extension of
this result to higher dimensions is not trivial as there exist several possible generalizations of the
one dimensional median, see Minsker (2015).

For any k € {1,...,K}, let X}, := (X;)ien, and Y := (Yi)iep,. We start with a basic
observation.

Remark 5.1. When K > |O|, there is at least K — |O| blocks By, on which Xy = Y.

For instance, if K > 4|O)|, then, there exist at least three quarters of the blocks By where
Xt = Y. We can now state the main lemma.

Lemma 5.2. Let F be a set of Boolean functions satisfying the following assumptions.

e Forall feF,P(f(Y1)=0)>15/16.

e K> C(VC(F)V|O|) where C is a universal constant.

Then, with probability > 1 — exp(—K/128), for all f € F, there is at least 3K /4 blocks By,
on which f(Xy) = 0.

In words, if each property f is true for one non corrupted block with constant probability
(here 15/16 but it could be any fixed constant o > 1/2) and K is large enough, then, with very
high probability, all properties are “true for most of the blocks”. The Boolean functions that we
will consider to construct estimators will measure whether the mean of the block is far from the
true mean. For instance, for mean estimation, we take the set

f = {(X'L)ng — 1(% ZZ xi*]E(Yl)ﬂOer’ v G V}

This result is an alternative to (Lugosi and Mendelson, 2018, Theorem 2) where the complexity
is measured with VC-dimension instead of the Rademacher complexity. We show below that this
difference yields to substantial improvements in some examples such as sparse multivariate mean
estimation compared with the bounds in Lugosi and Mendelson (2018). The strength of this
result is that it is uniform in F and gives an exponentially low failure probability, but its proof
is quite simple. The proof of this result is given in Section 5.6.2.

Clearly, the fraction 3/4 of the block is arbitrary in Lemma 5.2. In fact, up to some
modifications of the constants, the same result holds for any fized fraction o < 1.
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5.2.3 Mean estimation

Let ||-|| denote a norm on R and let ||-||, denote its dual norm. Let B denote the unit ball for
the norm ||-|| and B* the one for the norm ||-||,. Let B denote the set of extremal vectors of B*.
Let [|A|| = sup,ep- ||Aull, where ||-||, is the Euclidean norm on RY. Let

fixx = argmin max Med((X}, — a,u)).
acRd  u€B;

Theorem 5.2. There exists an universal constant C' such that if K > C(VC(B{) V |0O|), then,
with probability larger than 1 — exp(—K/128),

i -l <8 |\

In particular, for any & € [e=¢V,1/2], there exists an estimator ps such that

et 5 ) 5+ 2] 53

The ’outlier’ term /€ can be shown to be optimal in important cases (see the remarks after
(Cheng et al., 2019a, Theorem 1.3)). The deviation term (‘HEVQH‘ log(1/d)/N) is the same as in

the Borel-TIS inequality, ’El/ QH’ being the weak variance term. It is optimal as shown in Lugosi
and Mendelson (2018). The difference with Lugosi and Mendelson (2018) is the complexity
term, which is here H‘EI/Q’H./VC(BE;)/N. Neither Lugosi and Mendelson (2018) nor this work

build estimators achieving in every cases the true subgaussian rate, where this complexity is
E(|G||)/vV' N, G being a centered Gaussian vector with the same covariance as Y. For now it is
not known whether MOM estimators can or cannot achieve this rate in general, for all possible
norms. However, as we will show, our rate match the true subgaussian rate in some special cases
(so does the one from Lugosi and Mendelson (2018) for some other special cases)

Remark 5.2. The inequality VC(Bg) < d+ 1 gives a general bound on the complexity term.

The complexity term in Lugosi and Mendelson (2018), which can also be found in (Lerasle,
2019, Chapter 4, Lemma 47) is E(||Y||)/N where Y = " €;(Y; — ), € being i.i.d. Rademacher

variables. Here it is H’El/QH‘,/VC(BS)/N. Which of them is the best depends on the situation.

For instance, when one wishes to estimate with respect to |-||,, the Euclidean norm on R,

E(||Y||l2)/N ~ /Tr(Z)/N, while H‘Zl/zH‘,/VC(BS)/N = \/A1d/N, A1 being the largest eigenvalue
of ¥, so the former is better. In this example, the bound in VC dimension loses the nice dependence
in the covariance structure. On the other hand, suppose that we want to estimate p with respect
to the sup norm |jal|, = max{ay,...,a,} and assume that ¥ = Id for simplicity. Then |[Id|| =1
and VC(B{) < log(d) so

22 Ve /N = fiog@/N.

On the other hand, if we only have two moments on the coordinates of Y, then the best bound
on the Rademacher complexity is E(||Y||2)/N which is of order v/d/N in general (to see that,
take for Y7 a random vector whose coordinates are independent, equal to v/dN with probability
1/(dN) and 0 otherwise).
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Remark 5.3. The analysis of Section 5.6.2 and in particular Lemma 5.4°, shows that the estima-
tor fux achieves the bound ‘HZI/QH’\/K/N when K > CV |O|, where the complexity C is the min-

imum between the VC dimension VC(B() and the Rademacher complexity E(!]Y|])2/(Nm21/2m)
Therefore both our bounds and the bound of Lugosi and Mendelson (2018) hold simultaneously
and we can always keep the “best complexity term” among VC and Rademacher complexity. As
the main novelty here is the introduction of the VC-dimension, we do not remind this fact in each
application. The interested reader can have in mind that, in most examples, the same result holds
and the estimators have risk bounds smaller than both complexities. Our aim is to show that VC
type bounds are particularly efficient in structured scenarii, when Rademacher complexity fails to
achieve optimal bounds.

5.3 Sparse setting and other estimation tasks

This section shows that the methodology of Theorem 5.2 also applies to a great variety of
estimation tasks. Let us start with the example of sparse mean estimation for the Euclidean
norm.

5.3.1 Sparse mean estimation

For any v1,...,vq € R", let Us(v1,...,va) = {D_; Aivi | Mi € R & 37, 1),20 < s} denote the set of
s-sparse vectors over the dictionary {vy,...,v4}. We fix for this part the vectors vy, ..., vg and we
note Us = Us(v1, ...,v4). We consider Setting 5.1 and assume furthermore that p belongs to Us.
We note By the unit ball for the canonical Euclidean norm in R™, and we propose the estimator
i =argmin = max  Med (X; — a,u) .
HK ageus u€EU25sNB2 < k >
Theorem 5.3. There exists an absolute constant C such that, if K > C(slog(d/s) V |O|), then,
with probability larger than 1 — exp(—K/128),

N M(D)K
1Ak = plly = 8\ —F—-
Here, \1(X) is the largest eigenvalue of X.

The conclusion of Theorem 5.3 can be written as follows. For any 6 € [e=¢V,1/2], there exists
an estimator ps such that

= sl $ u(1o8S) . os19) oy

We see that the complexity (slog(d/s)) is once again decoupled from the deviation (log(1/4)),
which is not the case in works such as Hsu and Sabato (2016) where those two terms are multiplied
together. The complexity term slog(d)/N is not optimal because it does not depend on the
structure of ¥ (see Section 5.4 for details). However, our complexity term is interesting for two
main reasons:

e This is the first sparsity dependent bound that holds without higher moments conditions
than the Ly ones. By contrast, Lerasle (2019) or Lecué and Lerasle (2020) need to assume
the existence log(d) subgaussian moments in order to make the sparsity appear, and offer
no guarantees without that requirement.
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e It comes close to the theoretic optimal when > ~ A\ 1d.

Remark 5.4. This theorem can be obtain without resorting to VC-dimensions, simply by using
the analysis of Lugosi and Mendelson (2019c) on the (f) subspaces of Us and a union bound. In
other words, we can get similar rates with the standard median-of-means approach and simple
manipulations. However, for other examples where the set considered is not a simple union of
subspaces, this kind of trick are no longer possible.

5.3.2 Regression

In this section, we consider the standard linear regression setting where data are couples
(Y;, Vi) € R? x R and we look for the best linear combination of the coordinates of Y; to predict
V;, that is we look for 3* defined as follows: Given S C R? (in practice, we will only study
S=R%orS=U,),
B* = argmin () = argmin E(V; — (8, Y1))>.
BeS BeS

As in the previous section, the observed dataset (X;, Z;); € R? x R is a corrupted version of the
i.i.d. dataset {(Y;, Vi), i € {1,..., N}} in a possibly adversarial way. The assumptions made on
good data (Y;,V;); are gathered in the following setting: (see also Lerasle (2019) or Audibert
and Catoni (2011)).

Setting 5.2. There exists a (possibly random) set O such that, for anyi € O°, (X;, Z;) = (Y, Vi),
where (Y;, V;) are independent identically distributed observations in R4 xR. Let & = V; —(B*,Y;),
we make four main assumptions:

e Y1 has finite second moment and write its L?>-moments matriz ¥ = E(Y1Y{"). Let also
By, ={x €S — 8| (z,Xx) < 1} be the ellipsoid associated with this Lo structure.

e Let 0% :=sup,cp. E(&F (u, Y1)?) and assume that 02 < co.
o There exists an universal constant vy such that, for allu € S=8, E(| (u, X)|) > vvE(] (u, X) [?).
« E(&1Y1) =0

Condition 2 is implied by Assumptions 3.5 and 3.7 in Audibert and Catoni (2011), the same
assumption is made in Lerasle (2019).

Condition 3 is called the “small ball hypothesis”, it is described in details in Mendelson
(2017a) or in Lecué and Mendelson (2016) for instance. It is implied by Condition 3.5 in Audibert
and Catoni (2011), it is stated similarly in Lerasle (2019).

Condition 4 is always true in the non sparse-case. In the sparse case, it is true in a number
of applications, for instance, the very important when the noise £ and Y are independent.

The two last conditions may seem exotic, we refer to (Audibert and Catoni, 2011, Section
3) for detailed discussions and examples where these are satisfied. For the moment, we may
emphase that they involve only first and second moment conditions on &; and (u, Y7)

Our estimator is the following: Let By = {ue S — S | Q’f/zli ien, | (u, Xi) | < 1}, where
Q’f/4 is the first quartile over k¥ < K: for any sequence zy, ...,x, € R, if we note z7, ...,z the

corresponding increasingly ordered sequence, Q’f 4Tk = m’[n e Then,

3 = argmin max Med Z (Zi — (a, Xi)) (u, X;) .
a€ES u€EBy k i€By

This new estimator satisfies the following result.
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Theorem 5.4. There exists an absolute constant C' such that the following holds. Let S = R?
or Us and let Nv%/64 > K > C(VC(S — S) V |0|). Then, with probability > 1 — exp(—K/128),

N

5 K
(B—p6%%5(8—p)) <128 G2W'
For all 3,
1(B) =1UB") +2E(& (B —B% Y1) + (B —B")X(B - B%) <UB*) +(B—B")X(B - 5%).

So, if r =128 ¢ % , then
1(B) —U(B*) <r?/7*.

The conclusion of Theorem 5.4 can be written as follows: for any § € [e=¢,1/2], there exists
an estimator ugs such that

@ﬁﬂzwﬁﬂw5d¢vaf)+¢bﬁy“+v®.

Once again we notice the nice decoupling between complexity and deviation. This result is
interesting for a several reasons, the main one being that this work is the first that gives a bound
holding with exponential probability, that holds without assuming more than 2 moments on the
design Y7, even in the sparse setting. By comparison, Lecué and Lerasle (2020) or Lugosi and
Mendelson (2017) for instance, assume that at least log(d) subgaussian moments exist to achieve
this kind of rate and offers no guarantees without that requirement and are the best to the date.

5.3.3 Low rank matrix estimation

We now turn to the problem of matrix estimation, presented for instance in Zinodiny et al. (2017,
2018); Tsukuma (2010). We have observations in M4(R) (square matrices of size d) and we try
to recover their mean, assuming a kind low-ranked structure. The setting is the following: we
have, as in setting 5.1, N (corrupted) observations (X;); € My(R) of original (Y;) satisfying
E(Y;) = B and we try to recover the (non necessarily low rank) mean B. We will assume for
simplicity that E((Y¥ — BY)(Y* — Bk)) = 0%8(; jy=(k,1)- We try to estimate B with respect to
the following norm :

Al = sup (U, A)p,
UeMy(R), U] z=1

where we recall that M¥&(R) is the set of rank k, symmetric, d-dimensional matrices.We will
try to show that this structure can not be recovered through the analysis based on Rademacher
complexity: we give this example to illustrate the benefit of our approach.

~ 1 _
By = argmin sup Med—Z(U,Xk—M)F,
MeMy(R) UM (R), |Ul=1 * ™

Theorem 5.5. There exists an absolute constant C' such that, if K > C(kd V |0|), then, with

probability larger than 1 — exp(—K/128),
. oK
B - B[ <3/
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The conclusion of Theorem 5.5 can be writen as follows. For any & € [V, 1/2], there exists
an estimator Bg such that

[Bo- 5], s ot/50 4 S, gy

While in X; to be i.i.d. gaussian in Zinodiny et al. (2017 ) we only need second-order moments.
We want to show at this point that those results could not be obtained using standard analysis
with Rademacher complexity (Lugosi and Mendelson (2018); Lerasle (2019)). Indeed this analysis
would give a bound of order E(maXUeM?[(R), U] p=1 (Y,U))/N (with Y =3 ¢(Y; — B), ¢; being

i.i.d. Rademacher variables) instead of o %, as mentionned in section 5.2.3. Let us show a case

where those two quantities have different behaviours.
We take for instance N = 1 and, independent identically distributed (Ykl)lgk,lgd so that

+od with probability 1/(2d?)
Y* ={ —od with probability 1/(2d?)
0 with probability 1 — 1/d?,

If one of the Y* is non zero, then MAX(re A2 (R), U] =1 (Y,U))/N > od. Given that P(¥(k,1),Y* =
0) = (1—1/d*)% < e, we get that

E( max Y,U)) > od(1—e™t).
UeMT (R), |Ullp=1
In this case, the quantity we get from the Rademacher analysis scales as d whereas our bound
scales as vV kd ! Moreover, use of union bounds (as in Section 5.3.1, Remark 4 for the sparse case)
is not possible here because M%’” is not an union of linear subspaces.

5.3.4 Covariance estimation

This section studies the problem of robust covariance estimation. Consider Setting 5.1, and
assume that p is known, fixed to 0 without loss of generality. We want to estimate 3. This
problem has a number of applications: the bounds we present can for instance easily be transposed
(with the Davis-Kahan theorem) to the problem of robust PCA. It has already been studied
in Wei and Minsker (2017), or Hsu and Sabato (2016), but these estimators do not exhibit
any decoupling between complexity and deviation. In Mendelson and Zhivotovskiy (2018), the
authors propose a robust estimator for covariance using the MOM method, and get the optimal
complexity-deviation decoupling. They also give interesting comments and insights about this
estimation problem. However, they do not study the problem of low rank estimation that we
present here.
For any matrix A, define its spectral norm by

HA33||2
" lall,

Let Sym(d) denote the set of d dimensional symmetric positive matrices. Assume that

Al =

o2 =sup E ((u, (X -— YlYlT)u)2> < 00.
uEBa

This quantity is sometime refered to as weak variance of a random matrix Mendelson and
Zhivotovskiy (2018). Our estimator is defined as follows

3 = argmin  sup Med (u, ZXXT Ju) .
MeSymyg ||ul| =1
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It satisfies the following bound.

Theorem 5.6. There exists an absolute constant C' such that, if K > C(dV |0O|), then, with
probability larger than 1 — exp(—K/128),

- <3 /%

Corollary 5.3. Assume that R = sup,, 7”;:(:‘;};)2)41 < oo, then, for K > C(dV |0|)

[I£x -2 <8 Rmzm\/f

The “bounded kurtosis assumption” R < oo appears similarly in Hsu and Sabato (2016). In
Hsu and Sabato (2016), the estimator achieves a bound of order r(X)||X||/K/N where r(X) is
the effective rank of the covariance matrix: once again, the complexity r(X)[||2|| is multiplied by
the deviation term K oc log(1/6) in this case, while here they are decoupled: the dimension does
not multiply K in our bound. In Mendelson and Zhivotovskiy (2018), authors give a better rate
(because they only need K to be larger than 7(X) instead of d for the bound to hold) but they
use the Ly — Lo norm equivalence, which is an hypothesis we do not need here.

5.4 An algorithm to improve risk bounds

The different applications of Lemma 5.2 show that, in general, the complexity term derived from
this result is not optimal. For example, for mean estimation in Euclidean norm, the complexity
term reached by our estimator is proportional to \/A1(X)d/N, where the best rate would be

JT(Z)/N.

In this section, we provide an algorithm that leads to better and in some cases optimal
complexity rates. The price to pay is that these new estimators require some knowledge on the
covariance matrix Y. We will consider the example of sparse mean estimation for the sake of
clarity, but we argue that it also holds for sparse (and non-sparse) regression. We therefore use
the setting 5.1 and assume furthermore that the mean u belongs to Us(vy, ..., vg), where the set
of vectors (vy,...,vq) € R? is fixed and known.

Let A1, Mg, ..., Aq denote the eigenvalues of ¥ in decreasing order, and let ey, ..., ¢4 denote a
set of normalized corresponding eigenvectors. For any 1 < n < |logy(d)] := ny, let s,, denote
the largest index such that A\g, > A;/2". In particular, A\ > ... > As; > A\1/2 > Ag;4+1.... By
convention, let so = 0. Finally, we note E,, = Vect{es, ,+1,€s, ,+2,...,€s,}, With convention
B, = Vect(esnlfﬁl, €5y 1425 0> eq). If we know the matrix 3, we can identify the eigenspaces E,,
and thus compute the orthogonal projections of the data on these subspaces: X,i = projg, (Xx),
forie {1,...,m} and k € {1,..., K}.

In Section 5.3.1, we described a procedure that takes as input an integer K > ¢o(5log(d/35) V
|O|) and a (possibly corrupted) dataset Zi,...Zy having common mean fi which is §-sparse
relatively to a set of vectors (uq,us,...,u;) and common covariance matrix Y. The procedure
returns fix satisfying, with probability at least 1 — exp(—c1 K)

e — pill2 < 8 ‘HEJ\WK
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Let proc(Zy, ..., Zn, K, u, ug, ..., ug, §) denote the output of this procedure. The idea of the
algorithm is to project on the subspaces E; and apply this preliminary procedure on those
subspaces. Let d; the dimension of E;. The algorithm is formally defined as follows:

input :X;,...,Xyand K >|0|.
output : A robust subgaussian estimator fis.
14 1.
while ¢ <n; do
Compute X%, ..., X}.
Compute uj,us, ..., u}; the orthogonal projections of vq,vs,...v4 onto Ej;.
Ki + K x 2171,
if d; < slog(d/s) then
‘ wi < proc(Xi,..., X}, Ki,es, (+1,...,€s,,d;).
end
else
‘ pi < proc(Xi, .., X1, K ub,ub, ..., ub, s).
end
141+ 1.
end
fr <= 2 j<i Mi-
Return jix.

© 0w N O TR W N

[
= o

[
AW N

=
9]

Algorithm 12: Pseudo-code of the robust sub-gaussian estimator of u

The algorithm produces an estimator i satisfying the following result.

Proposition 5.3. Assume setup 5.1. There exists an absolute constant C' such that, if K >
C[>;27%d; A slog(d/s)) V |O|], the output jix of Algorithm 12, satisfies, with probability >

1 — 2exp(—K/128),
. MK
ik — pll2 < 8log(d)y N

The complexity term in Proposition 5.3 is better than in Theorem 5.3, because >, 27%(d; A
slog(d/s)) < slog(d/s). More importantly, this complexity term depends on the the covariance
structure of the data through the d;. In the case of sparse mean estimation, we can deduce a
precise estimate of this complexity term: for any § € [V, 1/2], there exists an estimator ji
such that:

R log(d/s) > 7—1 Ai A log(1/6
I35 — plly < Clog(d) [ Y Zum i [ 108U/0) | i)
N N
This estimate comes from the bounds >>7_; A; > doi<jt1 A2~ 1d; A s, where j is such that
Dici i <5 < 31 dic We then write 37, 27(d; A slog(d/s)) < log(d/s) > i<jy127di N5+
277slog(d/s) < 4log(d/s) 3271 Ai-

This result is proved in Section 5.6.5. We argue that the very same proof can be replicated
for the regression problem, if E(¢2Y1Y{) has the same eigenspaces as E(Y1Y{). This happens
for instance when £ is independent of Y. We end up with the bound of Theorem 5.4, holding
whenever K > C[>2;27%(d; A VC(S) V |O]] instead of K > C[VC(S V |0O]]
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5.5 Conclusion: concurrent work and discussion

This work is not the first to deal with robust estimation: a lot of results and algorithms have
been developed over the past few years for sparse estimation in presence of outliers (see for
instance Li (2017)) but most of these works assume that non-corrupted data are Gaussian. For
instance Chen et al. (2018) already deal with mean and covariance estimation using extensions
of the Tukey-depth (and using VC-dimension), but their methods rely on informative data being
Gaussian.

Robustness to heavy-tailed data has also been studied in various works, see Lugosi and
Mendelson (2019a) for a survey of recent developments. We already mentioned two articles that
this work tries to complete and improve: Lugosi and Mendelson (2018) for mean estimation
under any norm and Lecué and Lerasle (2020) for sparse regression. Though the techniques
involved are close, this work illustrates that using VC-dimension can drastically improve risk
bounds in various applications, in particular in the sparse setting.

Concurrent work: After the initial submission of this manuscript, we became aware of two
concurrent works Prasad et al. (2019) and Prasad et al. (2020). Authors use an approach based
on the 1/2-cover of the unit sphere to deal with mean and sparse-mean estimation for the
euclidean norm (Prasad et al. (2019)), and with covariance estimation for spectral norms (Prasad
et al. (2020)). They get close-to-optimal bounds for those two problems, with a remaining
extra-logarithmic term. They do not tackle mean estimation in any norms, regression or low-rank
covariance estimation.

There are still many exciting open questions. The quantity that is crucial in all the studies is

K
E (sup Z f(Ye) — KE(f(Yk))>

k=0

where f are boolean functions. In mean estimation for instance,

K
E <Sup > Ly — KE(I(Yk—u,Wzr))
UEV k=0

is the important quantity. Bounding this quantity using the VC-dimension of V yields a
bound independent of the covariance of Y. On the other hand, bounding that quantity by the
Rademacher complexity of the Y; (like in Lecué and Lerasle (2020), Lugosi and Mendelson (2018)
or here in Part 5.6.2) stating that

(oo Lo KE(L< < VEUYD
(TS)E‘B (Yk7ﬂ77}>27‘ o ( <Yk7p‘7v>)) < T\/N
does not exploit the boundedness of the indicator function and necessitates unnecessary stronger
assumptions on data. The ideal would be to conciliate both ideas, and to find a nice in-between
that would take into account both the boundedness and the dependency in the covariance
structure.

The last point we make is about computational issues. The estimators presented can not be
implemented as is. Nevertheless, encouraging recent works have shown that “relaxed”, computable
estimators can be derived from this kind of work. For instance the pioneer work of Hopkins
(2018), followed by Depersin and Lecué (2019) and Cherapanamjeri et al. (2019) for instance,
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derived tractable estimators, in polynomial times, from the work of Lugosi and Mendelson (2019c).
Even more recently, some new tractable estimators for regression and covariance estimation with
heavy-tailed data have emerged in Cherapanamjeri et al. (2020a). We can hope for this work to
be made tractable as well, which seems to be quite a challenge.

5.6 Main Proofs

5.6.1 A fact about VC-dimension
For any Euclidean space E, and any C € E

Lemma 5.3. VC({r € £ — 1, )>,,v € C}) < VC(C — C) < ¢o VC(C) where cq is universal
constant.

Proof. Assume that a set x1,...,z4 € E is shattered by F = {z € E = 1(; ,y>,,v € C}. Then,
for any I C {1,2,...,d}, there is a vector v; so that (vy,z;) > r if and only if i € I. There is
a vector vy so that (vg, x;) < r if and only if i € I. Then we have (v; — vo,x;) > 0 if and only
if i € I, 50 {x € E — 1(;,)>0,v € C — C} shatters z1,...,24, and VC({z € E = 13 )>,,v €
C}) < VC(C - C).

Now we see that VC({(z,y) € E* = 113y 4(y.w)>0l (v, w) € C x C}) > VC(C — C) because
if 21,...,z4 € E is shattered by {z € ' = 1(;4)>0,v € C — C} then ((z1,—71),..., (T4, —T4)) €
E x E is shattered by {(z,y) € E? = 1(; )1 (yuwy>0l(v,w) € C x C}. Theorem 1.1 in van der
Vaart and Wellner (2009) states that VC(C x C) < ¢g VC(C) for some constant co, and that
concludes the proof. [ |

5.6.2 General methodology
We begin by proving the main lemma 5.2 of Part 5.2.3

Proof. We want to prove that, with probability > 1 — exp(—K/128),

K
sup 3 F(Xy) < K/4.
k=0

If C > 16, K > 16|O| and it is sufficient to show that sup; S K o f(Y}R) <3K/16 by Remark 5.1.
Now we write

K K K K
sup Z f(Yy) <sup Z f(Yy)—E (sup Z f(Yk)> +E (sup Z f(Yk)> )
f k=0 I k=0 f =0 o
Deviation=D Magnitude=M

By the bounded difference inequality (Boucheron et al., 2013, Theorem 6.2), with probability
>1—exp(K/128), D < K/16.

For the magnitude term, we write

K
M<E <sup S F(Yy) - KE(f(Yk») +sup KE(/(Y))
k=0
By hypothesis, supy KE(f(Y}y)) < K/16. Then, we just have to use a classical result of
Vapnik-Chervonenkis theory, either in the version of (Vershynin, 2018, Theorem 8.3.23), or of
(van Handel, 2016, Corollary 7.18). There exists a universal constant C” such that
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K
E <sup S (Vi) - KE(f(Yk») <oy Y9
k=0

Hence, if K > 256 C"2 VC(F),

s =

K
E (Sup > f(Yr) - KE(f(Y,J)) <

k=0

Putting everything together, we have the following. If C' > 256 C'?, with probability
> 1 —exp(K/128), sup; K o f(Yr) < K/16 + K/16 + K/16. Therefore, by Remark 5.1, for all
ferF

K

> F(Xy) < K/4

k=0
|

We state a technical lemma that appears in most proofs. Let g be any measurable function
R? — E so that E(g(Y71)) exists. We take

G = argmin max Med (— Z 9(X;) —a,v)
acly VeV
lGBk

where U,V are any sets of E. We have:

Lemma 5.4. If K > C(VC(V) Vv |O|) and if E(g(Y1)) € U, then, with probability > 1 —
exp(—K/126),
n1/2 | K

max (B(9(11)) = a,0) < 8sup B (1) ~ Eg(11))w)*) ™/

where C' is a universal constant
1/2
Sup,cy E ((g(Yl) —E(9(Y1)), u>2) / is the “weak variance” of the problem.

Proof. Let K > C(VC(F)V |O|) with C the universal constant from Lemma 5.2, let g = E(g(Y1))

and let
1/2 |K
rk =4supE Y] —7,u2 —.
K =4sup (to(v1) = g,w)°) VN

Let F = {(xi)i<m — 1 LS () —Eg(vi)wyzri U € V'}. The function f € F are compositions
of the function x — L 3~ g(atz) E( (Yl)) and of the functions  — 1, y>, for v € V. The
VC-dimension of the set of these compositions is smaller than the VC-dimension of the set of
indicator functions indexed by V', as recalled in the basic fact 2 at the beginning of Section 5.2.1.
We just use fact 3 to remove the rx and we get VC(F) < ¢g VC(V) for some constant cp.

By Markov’s inequality, for any v € V,

E(Sien (900 —g:w)°) 1
Z 9(Yi) = g,v) | 2 1K) < — <
7,631 K

By Lemma 5.2, applied with F, the following event £ has probability P(£) > 1 —exp(—K/128).
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1 _
sup Med | (— Z 9(Xi) —g,v) | <rk
veV i€By,

For any a € U if there exists v* € V such that (g — a,v*) > 2r, then, on &

Med (— Zg ) —a,v*) = (g —a,v*) + Med (— Zg v*)
ZEBk leBk
1
>Sre > Med (— X;)—g,v).
ri > max Me (miEZBkg( i) = 9,)

Therefore a # a. As this holds for any a € U such that sup,cy (g — a,v) > 2ry, it follows
that, on &,

sup (g — a,v) <2 rg.
veV

We can give a somewhat improved version of that lemma: let us note,

R(g,V) = ﬁE sup (3 €ig (Vi) v) , 0% = sup E ((g(¥1) — B(g(11)),u)°)

R is the Rademacher complexity associated to a given problem. The following lemma shows
that we can take the best term between the one given by a rescaled Rademacher complexity and
the one given by VC-dimension.

Lemma 5.5. general If K 2 C((VC(V) A (R(g,V)/a)?) V |O|) and if E(g(Y1)) € U, then, with
probability > 1 — exp(—K/126),

max (E(g(¥1)) - a,v) < 160\/5

where C is a universal constant

Proof. We know that this holds when K > C(VC(V) Vv |O|).

Now if K > C(R(g,V)/a)? V |O|, we only need to prove that, for rx = 801/K/N

<
1812\13 Zk: 1<% ZieBk 9(X3)—E(g(Y1))v)2rx = K/2

and then we follow the path of the previous proof.

We do this in the classic way, that can be found, for instance in Depersin and Lecué (2019)
or the supplementary material of M. Lerasle and Lecué (2017)

As K > 4]|O|, we only need to show that

sup21<1

veV ZGBk

¥i)—E(g(v1)w) > < /4



5.6. MAIN PROOFS 99

We define ¢(t) =0if t <1/2, ¢(t) =2(t —1/2)if 1/2 <t <1 and ¢(t) =1if t > 1. We have
It>1)<¢(t) <I(t>1/2) forallte R and so forveV

> I Zg v)| > rK)
%

zEBk
SZI Zg V)| > i) — |<*Zg ) —g,v)| > ri/2]
zEBk ZeBk
Z 9(Yi) = g, v)| > 1 /2]
zEBk
o 2ies, 9Y5) — g, v)| (o Sien, 9(Yi) = 3,0)]
<Z¢( Tam Bl

Zg g,U>|>TK/2]

ZEBk

For all v € V', we have

B(L Siep o) - 50 _ 1
zs;g vl >/ (ric/2)? =16

Next, using the bounded difference inequality (Theorem 6.2 in Boucheron et al. (2013)), the
symmetrization argument and the contraction principle (Chapter 4 in Ledoux and Talagrand
(2011)) — we refer to the supplementary material of M. Lerasle and Lecué (2017) for more details
— with probability at least 1 — exp(—K/128),

Sup<2¢< m ’LEBkg(K)_gv’UM) Ed)(KmZzeBkg(K)—g,vM))

Yi) - g, 1s v)—a
< Esup Z¢ mZZEBk g( ) g U>’ _Eé ‘<m ZzeBk g( ) g 1}>‘ N 5
UGV TK TK 16
4K K
< E sup(v, e(g(Yy) — 7)) + —
N Sup ieu%:Bk (9(¥)) = 9)) + ¢
VK _ 1 K K
= 55 Bl = i(gY:) —g),v) + —= < —
20 <mi€§3k€ ) = 2).0) 16 = 8

when VK > 8R(g,V)/o or K > 64(R(g,V)/0)?
As a consequence, when K > 64(R(g,V)/o)?, with probability at least 1 — exp(—K/126),
forallveV,

K K K
> I Z 9(¥i) = g,v) > 1K) < =+ - <
ke[K] zEBk

5.6.3 Proof of Theorem 5.2, 5.3, 5.5, 5.6

This proofs are very similar: we just apply lemma 5.4 with the right g, U and V. We begin with
Theorem 5.2 for estimating the mean with respect to a general norm.
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Proof of Theorem 5.2. We just use lemma 5.4 with g : x — 2, U = R? and V = Bj. We have

sup E ((g(Y1) — E(g(11)),w)*) = sup || Zull, = ||
ueV u€Bj

and, for any a € R?

sup (E(Y1) — a,v) = [[p — af
veB;

so by Lemma 5.4 , we get that if K > C(VC(V) V |0]), then, with probability > 1 —

exp(—K/126)
K
=l <8|1X1/ =
Il < sl 5

We continue with the proof of Theorem 5.3 for estimating sparse means.

Proof of Theorem 5.3. We just use lemma 5.4, this time with g : ¢ — x, U = U and V = UssNBs
We have

21/2qu =\ (2)

sup B ({g(v1) ~ E(g(¥1)),u)*) = sup
u€EU2sMNBa u€EU2sNBs

and, for any a € Us (so a fortiori for ji € Uy)

sup  (E(Y1) —a,v) = [[u—all,
vEU2sNB2

because we assumed that u € Us. So by Lemma 5.4, as pu € Us, we get that if K > C(VC(Uss) V
|O|), then, with probability > 1 — exp(—K/126)

K

17— slly < 8X (D) 3

We recalled in part 5.2.1 that VC(Uas) < 2slog(d/s), which concludes the proof.
]

Proof of Theorem 5.5. Let V.= {U € M?"(R), ||U|| = 1}. This is just Theorem 5.2 , because
we recalled in part 5.2.1 (Proposition 5.1) that VC(V') < ¢okd, for some universal constant co,
which concludes the proof. [ |

We move to the proof of Theorem 5.6, for estimating covariance with respect to the canonical
euclidean operator norm.

Proof of Theorem 5.6. This time, we take g : © — x2”, U = Sym(d), and V = {uu” |u € Bo(R?)}.
We notice that E(g(Y1)) =X

We have

sup E ((9(¥1) = E(9(11)). M)*) = o
MeV

by definition of 2, and for any A € Sym(d) (so a fortiori for 3 € Sym(d))

sup (¥ — A, M) = ||| — Al|
MeV
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So by Lemma 5.4, as 3 € Sym(d), we get that if K > C(VC(V) V |O]), then, with probability

>1—exp(—K/126)
-] < 55y

We recalled in part 5.2.1 (Proposition 5.1) that VC(V') < ¢yd, for some universal constant cy,
which concludes the proof. [ |

Appendix

5.6.4 Proof of Theorem 5.4

This proof is a bit different from the rest because we will have to control two different events.

Proof. Let F = {(x,y) € RU@+)xm _ q u € By}. This is not a

(W, (yi— (B x:)zi) >m2r2?
set of indicators of half-spaces, but F is the composition of g : (x,y) € RUTD*™ _ (4 —
(u, (s — (8%, 23)) ) —m2r?) € RY[X] and of {P € RY[X] — Lpy>0,u € S —S}. By Lemma
5.3 there exists an absolute constant ¢ such that VC(F) < VC(S - S).

Let G = {(x;) — 12<$i,u>2zf,u € § — §}. The same way, by Lemma 5.3, there exists an
absolute constant ¢ such that VC(G) < ¢VC(S). Assume that K > C(VC(F) v VC(G) vV |0O|)
where C is the universal constant introduced in Lemma 5.2.

Multiplier process: Let

T =

) \/supuEBE E(&F (u, 1)) K
o .

For all u € By,

B (1)) _ 1
(|Z <uY>|>r)s R T

T
ZEBl m

By Lemma 5.2 applied with F, it follows that the following event £ has probability >
1 —exp(—K/128): for all u € By, there exist more than 3/4K blocks k where

1N (Zi — (0, X3)) (u, X3 | < mr

1€By

Quadratic process: From Chebyshev’s inequality, for any u € S — S,

1 E (u, Y;)? 1
Pl = Vi) | < E|(u,Y7) | — 4y 22U ) < =
(méuu, )| < Bl (u, Y1) ) <o
So, when K < 42N/64, by the small ball hypothesis,

P (; > Y| < V/2\/E<U7Y1>2) <

i€B;

As Ll Yien, | (u, Xi) | < \/% > ien, | (u, Xi) |2, by Lemma 5.2 applied with G and 7 = m~?/4E (u, v1)?2,
the following event .4 has probability probability > 1 — exp(—K/128): for all u € S — S, there
exists more than 3/4K blocks k where
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1
=3 [, X [P = 924 (u, S
m .

1€Bk

So we have Q’f/4% Sien, | (U, Xa) |2 > 72 /4 x (u, Su).

Conclusion of the proof. The event £ N A has probability at least 1 — 2 exp(—K/128).
On A, if u € By, then (u, Yu) < 4/42, so, on ANE,

max Med Z — (B, Xi)) (u, X;) < 2/7 max Med Z — (6%, X)) (u, X;) < 2mr/~.
ueBs kg €Bx i€By,
For any 8 € S such that (5 — %) # 0, let

u g

VO uE Sien, [ (BB X0} P
By construction u* € By, so for 3/4 of the blocks, on £ N A,

1> (Z X)) (u™, Xo) | < 2mr /.

1€By
On the other hand, by definition, for 3/4 of the blocks,
wa B, Xi) \2>Ql/4 ST B -5 X
1€Bk 1€B

Therefore, for at least half the blocks, both inequalities hold, so, on £ N A,

S (Zi— (8- 5+ 57, X)) (u' Xi) > 2mr/v+mJ b 1B - 57, X) I
1€ By 1€By,
> —2mr/y +my/2y/ (8 — B)S(5 - 5).

It follows that, on € N A, if /(8 —p*)X(8 — *) > 8r/4% then Y,cp (Zi — (8,X;)) >
=2mr/y+4dmr/y > Y cp, (Zi— (B, X;)) and B can not be the chosen estimator. This concludes

the proof. m

5.6.5 Proof of Proposition 5.3

Proof. We study separately what happens on each subspace F;. The dimension of F; is d; and
the orthogonal projection y; of y is s-sparse on the set of vectors u, ub, ..., ufi. W; is also generated
by es; ,+1,...,es;, which is a base of ;. We choose which representation of p; leads to the best
bound: if d; > slog(d/s), we choose the first, else we choose the second. The preliminary bound
holds if K is larger than either d; or slog(d/s). Let fi; denote our estimation on E;:

ﬂi = pl"OC()(i'7 ceey szw KZ', €s;_14+15--+5€Es;5 di)1d¢<slog(d/s)
—|—proc(Xi, "'7X;L7Kiau?lau227 "-auzl73>1di231og(d/s)'
If K; > (Cd; A slog(d/s)) vV |O], on an event &; of probability > 1 — exp(—K;/128),

Kl o )\1K
= N

12 — pill2 < 8
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Let £ =nN&;, s0 P(£) > 1 — Y exp(—2'K/128) > 1 — 2exp(—K/128) if both K > 128 and
K >27'Cd;Aslog(d/s) for all i. As the subspaces Ej; are orthogonal to each other (as eigenspaces
of a symmetric matrix), by Pythagoras theorem,

- - MK
15— pl3 = Z i — pill3 < log(d)\/ N
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On the robustness to adversarial corruption and to heavy-tailed data of the
Stahel-Donoho median of means
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6.1 Introduction

As mentioned in the general introduction, robust estimation of a mean vector has witnessed an
important renewal during the last decade. The aim here is to construct an estimator achieving
statistical bounds with the same confidence as if all the data were i.i.d. Gaussian even though
the data at hand are only assumed to have a second moment. For the mean estimation problem
in R? most of the results have been given w.r.t. the Euclidean ¢4 distance. There is however no
statistical justification for this choice but that the ¢4 metric is simply the most natural Hilbert
metric in R? and so it seems natural to use it as a way to measure the statistical performance of
an estimator of a d-dimensional vector. The resulting confidence sets have therefore the form
f+ r}"v75B§1 where /i is an estimator, B = {z € R? : ||z|, < 1} is the unit Euclidean ball and

105
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N, is the rate of convergence w.r.t. ¢4 achieved by i with confidence 1 — . When estimating
w.r.t. the £4 metric, confidence sets are therefore £3-balls. One may wonder if these confidence
sets are the best from a statistical point of view, for instance, the one with smallest volume for
a fixed confidence 1 — §. To answer this type of question, we usually go back to the ideal i.i.d.
Gaussian case, and use results obtained in that framework as benchmark results. We may also
consider this model to design optimal benchmark confidence sets, that could be used to define
more appealing estimation metric of a mean vector in R,

Let us now see what are the ”best” (in some sense given later) confidence sets in the i.i.d.
Gaussian case: let X1,..., Xy be i.i.d. distributed like A'(y, ¥) where u € R? is the mean and
Y is a symmetric definite positive matrix (we assume here that X is invertible). The MLE is the
empirical mean Xy and vVN(Xy — p) ~ N(0,%). The latter result holds asymptotically if the
data are only assumed to be in Lo thanks to the CLT. The key observation here is that ¥ is
the inverse of the Fisher information in this model and thus there are no regular asymptotically
normal M-estimator that can estimate the mean with an asymptotic covariance matrix better
than Y. Moreover, level sets of the standard Gaussian density function are Euclidean B¢ balls
centered at zero. As a consequence, the best confidence sets for p with confidence 1 — ¢ are
ellipsoids 1/ 2B¢ with radius given by the quantile of order 1 — & of a chi-square variable with
parameter d centered at the estimator. This type of confidence region are equivalently written as
estimation results of y with respect to the norm z € R? — HE_l/Q:cHz. It follows that the best
metric — that is the one leading to minimal volume confidence sets for a given confidence in the
benchmark i.i.d. Gaussian case — is the norm HE_l/ 2.H2 whose unit ball is the ellipsoid X/2BY.

Regarding our robust mean estimation problem, the two next natural questions are the
following: is it possible to construct robust mean estimators w.r.t. the HZ*I/ 2 H metric? and
what is the best convergence rate one can hope for? In the literature, see Lugosi a2nd Mendelson
(2019b); Depersin and Lecué (2020), one may find estimators which can estimate in a robust way
a mean vector w.r.t. any metric of the type u € R? — |julg = sup,cg(v,u) where S C R%. In
particular, for S = 2_1/23‘21, this metric coincides with the one we want to use, i.e. HZ_1/2‘H2. It

has also been proved that the optimal deviation minimax rate (the one obtained in the benchmark
iid. Gaussian case) is for the mean estimation problem with respect to [|-||g given by (see
Depersin and Lecué (2020))

+(21/28) 1/2 log(1/9)
ECE) [t [0 61)
For instance, for S = B¢ that is for ||-|[¢ = |||, the later rate is the classical /Tr(Z)/N +
2 s 2

\/HEHOp log(1/0)/N rate. The case that is interesting to us is when ||-[|g = HE_l/Q-‘

. that is for

S = %~Y2B4. In that case, the subgaussian rate is

d  [log(1/6)
J2. [ o

This is the rate we will try to reach from an adversarial corrupted and heavy-tailed dataset. We
will also have to take into account the price for corruption. There are indeed known information
theoretic lower bounds showing that there are no statistics that can do better than (|O|/N)“
where a € [1/2,1] is some exponent depending on properties of the ’good’ inliers data. For
instance, a = 1 for Gaussian variables and o = 1/2 for some Lo variables. However, we will see
that the best possible cost |O|/N (i.e. for & = 1) can be achieved even for variables which do



6.1. INTRODUCTION 107

not have a first moment as long as the cdfs of all one-dimensional projections of the centered
and normalized data are regular enough.

Unfortunately, all estimators known to achieve the subgaussian rate in (6.2) (the Le Cam
test estimator in Lugosi and Mendelson (2019b), the minmax MOM estimator with loss function

Uz, u) = HE_I/Q(u — U)H from Lerasle et al. (2019) or the Fenchel-Legendre estimators from

Depersin and Lecué (2020)) are using the set S in their construction. This is something we
cannot do here because S = X~1/2B¢ depends on ¥ which is unknown in general. One therefore
has to consider other types of estimators than the ones cited above. In this work, we will do it
thanks to a notion of depth/outlyingness introduced at the beginning of the 80’s which, unlike
the last cited estimators, uses a normalization by a robust estimation of the scale.

There are several ways to measure how ’deep’ is a vector with respect to a cloud of points,
see for instance the half-space depth of Tukey (1975); Nagy et al. (2019), the simplicial depth in
Liu (1990); Liu and Singh (1992), Mahalanobis depth or the projection depth Liu (1992). Taking
a point with maximal depth is usually seen as a way to define a median in R¢ (see Radon points
inBarany and Mustafa (2020) or Fermat Points in Haldane (1948)). There are therefore several
ways to define a median of a cloud of points in R%. One depth has received a particular attention
both in theory and in practice and is known as the Stahel-Donoho outlyingness (SDO), see Stahel
(1981); Donoho (1982b). It can be used to construct estimators of multivariate location and
scatter known as the Stahel-Donoho estimators (SDE) which were the first equivariant estimators
with a high breakdown point. The aim of this work is to show that this notion of depth can be
used to construct estimator of a mean vector in R? which is robust to adversarial contamination
and to heavy-tailed data with respect to HZ*U 2-H2. Let us now define this notion of depth! and

recall some of its properties.

There is a common approach to many notion of depths for a general d-dimensional set of
vectors: first, a definition of depth in R is given and second, this notion is extended to R? simply
by applying this one-dimensional definition to the set of one-dimensional projections of the data
in all directions v € R? (or all v € S for some subset S C R?) and then by taking the supremum
over all v € R? (or v € ). This approach is based on the idea that if a point in R? is an outlier
then there must be some direction v such that it is an (univariate) outlier when projected into
that direction.

The SDO of z € R with respect to a dataset {ai,...,ax} in R is defined as

SDO(z;{a1,...,ax}) = Me(l?’;kl\fef/[(sj()lkm o

and a natural extension to R? is using the previous one for all one-dimensional projections of the
data and by taking the supremum over all directions: for any v € R? and a dataset {Z1,..., Zx}
in R?, we set
SDO(v,{Z1,...,ZK}) = sup SDO((v,v); {{Z1,v),...,{(ZK,v)})
veER
(v, v) — Med((Z, v))|
= sup .
verd Med([(Zg, v) — Med({Z, v))])

A natural way to define a median of the Z;’s is obtained by taking a point with minimal
outlyingness (i.e. maximal depth):

2P0 ¢ argmin SDO(u,{Z1,...,ZKk}).
peRd

(6.4)

The concepts of depth and outlyningness are expressing the same notion but in reverse order.



108 CHAPTER 6. ON THE ROBUSTNESS OF THE MOM STAHEL-DONOHO

We note that 15P€ is not the only possible choice to estimate some location of the Z;’s. The
Stahel-Donoho location estimator, for instance, is rather defined as a convex sums of the data:

K
— WiZ,

ﬂf(DE _ Zk;{l Wk 4Lk (6.5)
D k=1 Wk

where the weights are some function of the outlyingness of the data, i.e. wy = w(SDO(Zy)) for
some (decreasing) weight function w : Rt — RT. The weights can also be used to estimate the
scatter of the set of points {Z1,...,Zk} by

$9DE _ > wi(Zy — 15PP)(Z) — ﬂSDE)T.

>k W

Note that there is a more general definition of SDO than the one considered in (6.3) with general
(one dimensional) definitions of location and scale statistics; in (6.3), we used the median Med(ax)
and Median Absolute Deviation (MAD) Med(|ax — Med(ag)|) for these statistics, see Hampel
(1974) for more details.

(6.6)

As mentioned previously several results on the Stahel-Donoho Estimator (SDE) have been
established during the last forty years. They are affine equivariant meaning that for any affine
transformation = € R — Az + b of the dataset by a nonsingular matrix A € R%*? and a vector
b € R? the location estimator ,af(D Eis following the same transformation and the scatter estimator
f]f{DE is transformed via M € R*? — AMAT. SDE have been proved to have a finite-sample
breakdown point Donoho and Huber (1983) which is the ”smallest amount of contamination
necessary to upset an estimator entirely” from Donoho and Gasko (1992) in Donoho (1982a).
In Tyler (1994), it is proved that the SDE with MAD replaced by the average of the kith and
koth smallest absolute deviations about the median Med(ay) for k; =d — 1+ [(K + 1)/2] and
ko = d— 14 [(K + 2)/2] achieves the best finite-sample replacement breakdown point among all
affine equivariant estimators obtained in Davies (1987) which is [(K — d + 1)/2]/K (this result
holds when the weight function w is continuous and there is an absolute constant ¢y such that
w(r) < cg, w(r) < co/r? for all » > 0). This result was later extended in Theorem 3.2 from
Zuo et al. (2004a). The influence function and the maximum bias of SDE and SD median have
been obtained in Zuo et al. (2004b), they can be used to prove robustness properties in Huber’s
contamination model but not in the adversarial contamination model considered here. These are
to our knowledge the only established non-asymptotic properties of Stahel-Donoho estimators.

There are however several asymptotic results for SDE such as a /n-consistency in Maronna
and Yohai (1995): if the Z;’s are i.i.d. then VK ((,EL?(DE, SOPEY _ (¢, V)) tends to 0 in probability
when K — 400 where t and V are some location and scatter parameters of the distribution of 7.
This result holds when the weight function w is such as |w(r) —w(r’)| < ymin(1,1/min(r, r’)3)|r—
7’| for all 7,7/ € R and when for all v € R? the cumulative distribution function (cdf) of (Z1,v)
denoted by F), satisfies the following assumption: there exists some absolute constants ¢y > 0
and ¢; > 0 such that for all |e] < ¢

|Fy(Med(F,) +€) — F,(Med(Fy))| > cile| and |F,(Med(Fy,) 0, +¢€) — Fy(Med(F, £0,))| > c1]e]

(6.7)
where Med(F),) = inf(z € R : F,(x) > 1/2) is the median of F,, and o, = Med(G,) where G, is the
cumulative distribution of the random variable M AD({Z;,v)) := Med(|(Z1,v) — Med({Z1,v))]).
A typical situation mentioned in Maronna and Yohai (1995) where (6.7) holds is when the cdf
F:R?— [0,1] of Z is such that F' = (1 —n)Fy + nF* where n < 1 and F* is any cdf and Fj is
such that there exists ¢g > 0 and ¢; > 0 such that for all v € RY, (Z1,v) has a density denoted
by f, satisfying f,(t) > ¢ for all t € [Med(F,) & ¢o] U [Med(Fy) — 0 % co] U [Med(Fy) + 0y £ co.
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According to Maronna and Yohai (1995), the later holds when F' is spherical with positive density
in a neighborhood of 0 and o, e; where e; = (1,0,---,0) € R?. We will come back later on
these conditions since we will encounter similar assumptions for our analysis. Finally, asymptotic
normality of SDE location estimators have been obtained in Zuo et al. (2004a) under great
generality for the location and scatter estimators as well as for the weight function including
the median and MAD estimators as in (6.3) and the projection depth obtained for the weight
function w : r € R* — 1/(1 + ). From a stochastic point of view, asymptotic results for i73P2F
hold when the cdf F is elliptically symmetric around p which means that there exists a symmetric
definite positive matrix ¥ such that for all v € S§~1 == {v € R? : ||v||, = 1}, (X"Y2(Z) — p),v)
has the same distribution as <Z_1/ 2(Zy — p), e1) which is a univariate symmetric variable with
density function f. In that case, asymptotic normality was obtained when f(0)f(o) > 0 where
o= MAD((X7V2(Zy — p),e1)). Again we will meet this type of condition in our analysis.

On the practical side, SDEs have been used a lot in practice and implementation on various
languages such as R exists; and that is one reason why the study of the SDO may be useful,
maybe more than some other notions of depth. In the original paper of Stahel (1981), the author
proposes a random algorithm where the supremum over all directions v € R? is approximated
by subsampling orthogonal directions to d — 1 hyperplanes generated by d randomly chosen
points in the dataset. Other strategies mixing random and deterministic directions have been
proposed for instance in Pena and Prieto (2007). Several adaptations and extensions of this
algorithm may be found in Debruyne (2009) for an extension to an arbitrary kernel space or in
Van Aelst et al. (2011); Van Aelst (2016) for a "cell-wise weights” extension of the SDO where
each coordinate of each data receives its own weight. However, only very little is known on the
theoretical computational side. In Section 5 of Donoho and Gasko (1992), an algorithm running
in time O(K% ! log K) is mentioned but its time complexity is making this approach impractical
for dimensions larger than 5. There are to our knowledge no theoretical results of any kind on
the convergence of some approximate algorithm for the computation of the SDO of a point in
RY that could be used in practice. As mentioned already in Donoho and Gasko (1992), “some
sort of computational breakthrough is necessary to make the estimators, as defined here, really
practical”. This looks to be still the case. We will however not discuss about this issue in the
present work and leave this question still opened.

The aim of this work is to construct mean vector estimators robust to adversarial outliers and
heavy-tailed data achieving the deviation-minimax subgaussian rate from (6.2) with respect to
the metric HZ*U 2-H2. On our way to our goal, we complement the results on the y/n-consistency
and the asymptotic normality of SDE, by deriving the first non-asymptotic convergence rate
for the original SDO median (as well as its median of means version). We also show that the
robustness properties of the original SD median and its MOM version goes beyond the Huber’s
contamination model and that they still persist in the following adversarial corruption model.

Assumption 6.1. [Adversarial contamination and Ly inliers] There exist N random vectors
(X)X, in R? which are independent with mean p and covariance matriz $. The N random
vectors (X-)J\i1 are first given to an "adversary” who is allowed to modify up to |O| of these
vectors. This modification does not have to follow any rule. Then, the “adversary” gives back the
modified dataset (X;)N., to the statistician. Hence, the statistician receives an “adversarially”
contaminated dataset of N vectors in R% which can be partitioned into two groups: the modified
data (X;)ico, which can be seen as outliers and the “good data” or inliers (X;);cz such that
Vi e I,X; = X;. Of course, the statistician does not know which data has been modified or not
so that the partition OUZ = {1,..., N} is unknown to the statistician.

In the setup defined by Assumption 6.1, we will use the SDO as one of our building block to
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achieve our goal as well as the Median-of-means principle Nemirovsky and Yudin (1983); Alon
et al. (1999); Jerrum et al. (1986). This principle has been extensively used during the last
decades in particular for the problem of robust mean estimation Lerasle and Oliveira (2011);
Devroye et al. (2016); Minsker (2015); Lugosi and Mendelson (2019b,a); M. Lerasle and Lecué
(2017); Depersin and Lecué (2020); Hopkins (2018); Cherapanamjeri et al. (2019). The starting
point of MOM estimator is to choose an integer K € [N], split the dataset into K equal size blocks
BiU---UBg = [N] (w.l.o.g. we assume that N can be divided by K) and construct K empirical
means Xy, = |Bg| 7' ;e B, Xi, one over each block. The Stahel-Donoho Median-of-Means that

will be used to achieve the subgaussian rate (6.2) with respect to HZ*U 2~H2 in the adversarial

and heavy-tailed setup from Assumption 6.1 is

— Med((X
ﬂSM%O]\/[vK € argmin sup [ v) ed((X, v))|

perd [ofl,=1 Med([(Xk,v) — Med((Xy, v))[)’

It is a min-max MOM estimator but it differs for the min-max MOM estimators introduced in
Lecué and Lerasle (2020) because of the renomalization MAD term.

Indeed, unlike recently introduced robust mean estimators, ﬂ}?fo%y ) 1s using a robust scatter
estimator for normalization. Here it is a MOM version of MAD which is used to construct
ﬂf/IDO%’K, ie. v = Med(|(Xg,v) — Med({Xy,v))|). We will show that this normalization plays a

central role in the analysis when one wants results w.r.t. the HZ_l/ 2-H2—norm. But beyond this

observation, we will show that MAD and its MOM version satisfy isomorphic and almost-isometric
properties that can be used for other tasks such as to construct estimators of the covariance
matrix under the existence of only a second moment or for the estimation of a scale matrix when
no moment exist but a regularity assumption holds (see Section 6.4 below).

The chapter is organized as follows. In the next section, we consider the case where the good
data have a Gaussian distribution and the dataset has been adversarially corrupted. In that
case, no need to construct bucketed means and the original Stahel-Donoho median is proved to
achieve the subgaussian rate (6.2). The Section 6.3 considers the general adversarial corrupted
and heavy-tailed framework from Assumption 6.1 where the MOM version of the SDO is proved
to achieve the subgaussian rate. We also exhibit in this section a family of cdfs denoted here by
(HNkgw:v € SQd_l) which plays a key role in our analysis. In particular, when the behavior of
these functions around 0 is similar to the one described above in (6.7) then the same result as
in the Gaussian case can be obtained and that may hold without the existence of any moment
(see Section 6.3.3). In Section 6.4, we show how to use the MOM version of MAD to construct
an estimator of the scale matrix under a regularity assumption. In Section 6.5, we explore the
properties of the family of functions (Hy k., : v € Sgil). A conclusion and open questions are
provided in Section 6.6 that are followed by the proofs of all the results in Section 6.7.

3

unit sphere Sg_l and unit ball B§. We also denote by g ~ N(0,1) a standard one-dimensional
Gaussian variable and its associated standard Gaussian cdf by @ : t € R — Plg < t] = fioo o(u)du
where ¢ : u € R — (21)~1/2 exp(—u?/2) is the one dimensional Gaussian density function. We
also set Hg :t — 1 — ®(t) and Wg : p € (0,1) — Hé_l)(p) the inverse function of Hg so that
W(p) =®~(1-p).

1/2
Notations. We denote by z € R? — ||z, = ( -332-) the Euclidean norm with associated
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6.2 The Gaussian case

In this section, we prove that the original SDO median achieves the (non-asymptotic) subgaussian
rate (6.2) when the dataset may have been corrupted by an adversary and when the good data
have a Gaussian distribution; our main model assumption is the following.

Assumption 6.2. [Adversarial contamination and Gaussian inliers] There exists N i.i.d. Gaus-
sian vectors (G;)N.; in R? with mean p and (unknown) covariance matriz ¥.. We assume that ¥
is tnvertible. The N random vectors (Gi)ij\;1 are first given to an “adversary” who is allowed to
modify up to |O| of these vectors. This modification does not have to follow any rule. Then, the
“adversary” gives the modified dataset (Xz‘)i]L to the statistician.

We will use the Gaussian case studied in the section as a benchmark case for the later more
involved heavy-tailed situations considered after — in these cases, we will bucket the data and
make some assumptions on the distribution of the good data. When the "good” data are Gaussian
there is no need to bucket the data and the elliptically symmetric property of the Gaussian
variables is simplifying the analysis. The mean estimator we use in this section is therefore the
median %P9 ¢ argmin ,cga SDO(1) of the original Stahel-Donoho outlyingness function

— Med((X;,
SDO : i€ R? — sup ](,u,v> ¢ (< U>)’

verd Med([(X;, v) — Med((X;,v))]) (6.8)

Our main result in the adversarial corruption setup with Gaussian inliers is the following:

Theorem 6.1. We assume that the adversarial contamination with Gaussian inliers model
Assumption 6.2 holds with a number of adversarial outliers denoted by |O|. Let ko be the
absolute constant defined in Section 6.5. We assume that |O| < koN and N > 403k (d + 1)
(where Cy is the absolute constants defined in (6.29)). For all 0 < u < k3N/8 such that
Cov/(d+1)/N + \/2u/N + |O|/N < 1/¢(1), with probability at least 1 — 2 exp(—u),

el = o (S5 )

Let us first remark that if N < d then the N data Xi,..., Xy cannot span the entire R?
space and so there exists a non zero vector v € R% which is orthogonal to all the data points.
Hence, M AD(v) := Med(|(X;,v) — Med((X;,v))|) = 0 a.s. and so SDO(u) = +oo0 for all u € R%
Therefore, assuming that N > d is a minimal assumption when we work with the SDO function.

Theorem 6.1 shows that the SD median 15P° is robust to adversarial contamination up
to a universal constant proportion xg of N and that the rate achieved remains the same as if
there was no contamination when |O| < v/N max(y/u,v/d). If we put this result with regard
to the finite-sample replacement breakdown point (RBP) achieved by the SDE (with a slight
modification of MAD at the denominator as recalled in the Introduction), we see that the order of
magnitude are the same: SDE and 5”9 can both handle a constant proportion of N adversarial

outliers.

It is important to note that the RBP (which is close to (1/2)N when N >> d) has the same
order of magnitude but a better constant than the one obtained in Theorem 6.1 (1/2 versus kg
defined in Section 6.5). We want to point out two observations: the result in Theorem 6.1 shows
that the estimator still achieves the deviation minimax subgaussian rate (6.2) even up to ko/N
outliers whereas RBP only insures that the estimator does not go to infinity: the two results
(RBP and Theorem 6.1) do not quantify the same property. In other words, RBP does not insure
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any statistical convergence rate after data corruption whereas Theorem 6.1 does: Theorem 6.1
does not only guarantee that the estimator does not go to infinity, it insures that it stays in a
statistically optimal confidence sets (an i/ QBS ellipsoid with a minimax optimal radius) around
the mean. As a consequence, Theorem 6.1 is a stronger statement than a RBP and it shows that
the price to pay for this stronger guarantee is just at the level of absolute constants. Secondly, as
pointed out in Chen et al. (2018), Remark 2.1, one can in fact ensure some statistical convergence
up to a bigger constant fraction of corruption (in their case, 1/3). We point out that, following a
large line of works in robust estimation, especially when it comes to achieving (non-asymptotic)
sub-gaussian rates, we did not try to optimize the constants in this work, which explain the
looseness of this constant. While getting tight constants is interesting and non-trivial, we leave
this question opened for future work.

The rate of convergence obtained in Theorem 6.1 has been obtained by several other procedures.
For instance, it has been proved that the Tukey median achieves this rate in Chen et al. (2018)
when the covariance is proportional to the identity and for the Huber-contamination setup. The
same bound was also obtained by a polynomial time algorithm in Dalalyan and Thompson (2019)
when the covariance matrix X is known.

The proof of Theorem 6.1 (which may be found in Section 6.7) is based on two isomorphic
principles of the MAD and SDO functions. We will extend these two properties to the MOM
versions of MAD and SDO in the next section. For the moment, let us recall their definitions
and write these two properties that are interesting beyond the proof of Theorem 6.1.

The normalization factor in the SDO function (6.8) is called the MAD (median absolute
deviation), see Hampel (1973)

MAD :v e R — Med(|{X;,v) — Med({X;,v))|).

It plays a key role to get an estimation result w.r.t. the HE*I/ 2-H2 norm when 3 is unknown.

However, this normalization factor requires some more work than for the analysis of classical
robust estimators that are only focused on the estimation of the mean. Indeed, M AD(v) is

actually a robust estimator of the scatter of (g,v) which is ®~1(3/4) H21/2UH2 (note that if

g~ N(0,1) then MAD(g) = Med(]g — Med(g)|) = ®1(3/4)). It is therefore a ’second order’
robust estimator but since it appears in the denominator of the SDO function, we cannot only
prove an upper estimate for this quantity and we need an isomorphic result — that is upper and
lower matching (up to constants) bounds — on the MAD. This result is of independent interest
and we are therefore stating it here. The proof is given in Section 6.7.1. We also state a similar
isomophic result for SDO which can be use to prove Theorem 6.1. We will see later in Section 6.5
that these metric properties of SDO and MAD can be extended to cases where the mean does not
even exist (in that case p is a location parameter) showing that these properties have actually
more to do with elliptical symmetry of the underlying data distribution than they have to do
with concentration or moment assumption.

Proposition 6.1. Let 0 < € < kg (where kg is an absolute constant defined in Section 6.5). We
assume that the adversarial contamination model with Gaussian inliers Assumption 6.2 holds
with a number of adversarial outliers |O| < eN. We assume that N > 4Coe=2(d + 1) (where Cy
is the absolute constant defined in (6.29)). With probability at least 1 — exp(—€2N/8), for all
v € RY,

(@71(3/4) — 2che) Hz”%Hz < MAD(v) < (®1(3/4) + 2c)e) H21/2vH2

where ¢y is the absolute constant defined in Section 6.5.
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Moreover, for all 0 < u < €2N/8, with probability at least 1 — 2exp(—u), for all a € RY, if
HE””(@ - M)H2 > 2r* then

R O o)
2(®1(3/4) + 2che) — (@) < ST/ = 2¢)c)

and if HE_l/Q(a - ,u)H2 < 2r* then SDO(a) < 3r*(®1(3/4) —2che) =t where v* is the subgaussian

rate from (6.2) with the additive adversarial contamination term |O|/N given by

st (G ) 9

as long as the right-hand side term in (6.9) is smaller than 1.

The isomorphic properties of the MAD and SDO functions uniformly over R? imply the
robustness and subgaussian properties of the SDO median in Theorem 6.1. Similar results for
other depths may be found in the literature on robust mean estimation such as the isomorphic
property of the Tukey depth proved in Chen et al. (2018).

6.3 The L, case and beyond

In this section, we do not anymore assume that the good data follow a Gaussian distribution
but we only assume that they have a second moment or that a location and scale parameter
exists and some regularity assumption holds (and that the dataset may still be contaminated by
an adversary). Nevertheless, even though we are in the heavy tailed setup with adversarially

)

corrupted data we still want to achieve the subgaussian rate for the HE* -norm. To achieve

such a result the median-of-means principle has been proved to perform well. We will therefore
use this principle together with the Stahel-Donoho concept of outlyingness. We introduce now
an estimator constructed according to these two principles.

Let K € [N] be the number of blocks and let X;, = (1/|By|) s p, Xi, k € [K] be the bucketed

means. Outlyingness / depth of a point p € R? is measured with respect to the bucketed means:

B () — Med((X,v))|
SPOKU) = S0 N fed(|(X 0 — Med({Xe v))])

and the Stahel-Donoho Median of means is defined as

ﬂ}\q})OOMK € argmin SDOg ().
ueER
As for the Gaussian case, the isomorphic and nearly-isometric properties of SDOg and its
denominator, called MOM ADg, play a key role in our analysis. The MOM ADg is a Median of
means version of the Median Absolute Deviation function. We denote it as MOMAD for Median
Of Means Absolute Deviation:

MOMADg : v e R? = Med (\()_(k,@ — Med(<)_(k,v>)|) . (6.10)

In the next section, we study metric properties of MOM ADg and SDOp that will be useful for
our analysis of [L%DO(M - Then, we will turn to the statistical bounds obtained for the median

ﬂf/‘,DOOM i in the general heavy-tailed Lo setup in Section 6.3.2 and finally we will study some

extra regularity assumption of the cdfs (Hy g : v € Sgil) at 0 that allows to get better rates
in Section 6.3.3.
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6.3.1 Some isomorphic and almost isometric properties of MOMADg and
SDOg

In this section, we show that the MOM versions of the SDO and MAD operators (called
SDOg and MOM ADf) satisfy isomorphic and almost-isometry properties under a Ly moment
assumption.

We introduce two families of functions which play a central role in our analysis. They involve
the non-corrupted random variables X;,i € [N] (and not the corrupted data X;,i € [N]).

Definition 6.1. For all v € S¢71,

N/K
1 -
H,=Hnpgy,:TER=P|—x <E_1/2(Xi—,u),v> >r (6.11)
VTR 2
and
W, = WN,K,D :pE (Oa 1) — Hz(;_l)(p)a

where Hqg*l)(p) =max(r € R: Hy(r) > p) is the generalized inverse of H,.

As already observed in the proof of the \/n-consistency of SDE from Maronna and Yohai (1995)
as well as its asymptotic normality in Zuo et al. (2004a), the behavior of the one-dimensional
projection cdfs at the median and the two 1/4 and 3/4 quartiles play a central role in the analysis
of SDO based estimators. This will also be the case for the MOM version of the SD median. It
will appear in Section 6.5 that taking bucketed mean may force toward the Gaussian case for
which all these conditions are naturally satisfied because of the elliptical symmetry of Gaussian
variables. Let us now state our main assumption on the behavior of the one-dimensional quantile
functions W, : v € S§~ 1.

Assumption 6.3. There exists some 0 < € < 1/8 and some absolute constants 0 < p;(€) < py(€)
such that for all v e S¢1,

max <W@ (i — 26) — W, (; + 26) , W (; — 26) — W, (i + 26)) < pule)
i (37 (1 20) -, (1 2) e (L) - (2 2)) 2

Assumption 6.3 is a pretty weak assumption since, intuitively, it requires that the distribution

and

of the centered and variance one real-valued random variables <E_1/ 2(X; — w),v) have their
1/4-quartiles and medians constant far away as well as for their 3/4-quartiles and medians,
and this has to hold uniformly in all directions v € SZd_l. For instance, in the Gaussian case,
Assumption 6.3 holds for ¢, (€) = ®7(3/4) + coe and ¢;(€) = ®~1(3/4) — cge for some absolute
constant ¢ and for all 0 < € < 1/12 (where we recall that ® : t — P[g < t] where g ~ N(0,1)).
Assumption 6.3 appears in our analysis because of the renormalization MOM AD term which
should not vanish. To understand why the interquartiles range (IQR) appear in this assumption,
one may observe that if U is a real-valued random variable and M AD(U) = Med(|U — Med(U)|)
then

min (W (1/4) — Wiy (1/2), Wi (1/2) — Wi (1/4)) < MAD(D)

< max (Wy(1/4) — Wy(1/2), Wy (1/2) — Wy (1/4))
where Wy is the generalized inverse function of » — P[U > r]. As a consequence, the (IQR) of
the projections of the scaled and centered bucketed means should be controlled in all directions

v and since we are concerned with non-asymptotic results we allows for small perturbations e
around the quartiles: this gives Assumption 6.3.
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Proposition 6.2. We assume that Assumption 6.3 holds for some 0 < e < 1/8 and constants
i(€) and @y (€). We assume that the adversarial contamination with Lo inliers model from
Assumption 6.1 holds with a number of adversarial outliers |O] < eK. We assume that K >
4C3e72(d + 1) where Cy is the absolute constant from (6.29). With probability at least 1 —
exp( 2K /8), for allv € R?,

6)\/5”21/21;"2 < MOMADg () < %(6)\/5“21/%”2

Proposition 6.2 shows that MOM ADy is equivalent to v — /K /N H21/2UH2 up to the two

constants ¢, (€) and ¢;(e). We will be interested in two situations regarding these constants.
The first one is when their ratio is upper bounded by some absolute constant: there exists an
absolute constant ¢; > 0 such that for some 0 < € < 1/8

Pul€)
wi(€)
This condition will be enough to obtain robust optimal subgaussian bounds for N%Do?\/[ K in
the two following theorems. If condition (6.12) holds we say that MOM ADy is isomorphic
tov — K/N HEl/QUHQ' The second condition, that will be of interest to us is when we will

estimate ¥ using MOM AD in Section 6.4, is when the two constants ¢, (¢) and ¢;(e) can be
made arbitrarily close to the same constant by taking e small enough, that is when there exists
some absolute constants ¢y and cg, c; > 0 such that for all 0 < € < ¢,

¢i(€) = ¢o — c1e and @y (€) = ¢o + cre. (6.13)

<ep. (6.12)

In that case, we speak about an almost-isometric property of MOM ADp. The latter condition
is stronger than an isomorphic property but it allows to solve a higher order moment estimation
problem, the one of estimating . In Section 6.5, we provide several examples where these
conditions hold (as well as other properties of the family of cdfs (H, : v € S¢1)) even when
there is not even a first moment.

We finish this section with an isomorphic result for SDOg. The rate of convergence
appears in this result: it is the level 7* above which SDO is isomorphic to v € R? —

HE*I/Z(V — M)H2 /v K /N. One can define it as a solution to

/d+ 24 0] 1
—l— sup H v — < = 6.14
||v||281 W) e < (19

where u is a confidence parameter and Cj is the absolute constant appearing in (6.29).

Proposition 6.3. We assume that Assumption 6.3 holds for some 0 < € < 1/8 and constants
wi(€) and @y (€). We assume that the adversarial contamination with Lo inliers model from
Assumption 6.1 holds with a number of adversarial outliers denoted by |O|. We assume that
0| < €K and K > 4C2¢72(d +1). Let u > 0 and r* be such that (6.14) holds. Then, with

probability at least 1 — exp(—u) — exp(—€e2K/8), for all v € R?, if "2_1/2(1/ - M)Hz > 2/K/Nr*
th
k [0~ |zt~

20u(e)V K/N 2¢1(e)\/K/N
and if HZ*UZ(V — M)H2 < 2{/K/Nr* then SDOk(v) < (3/¢i(€))r*

< SDOk(v) <
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Proposition 6.3 may be seen as a MOM version holding in the heavy-tailed case of the
Proposition 6.1 obtained in the Gaussian case. Such an extension from the Gaussian case to
the Lo heavy-tail case is made possible thanks to the median-of-means principle and the use of
the bucketed means instead of the data themselves. However, we will identify situations where
condition (6.12) and (6.14) with an optimal choice of rate r* (that is for the subgaussian rate
(6.2)) hold for K = N even when a first moment does not exist. In that case, one can get a
contamination price down to |O|/N instead of the information theoretic lower bound in the
general Lo case given by /|O|/N (see Section 6.3.3). We start with the general Ly case and
then we will consider an extra assumption that allows for such better bounds.

6.3.2 The L, case

Unlike in Section 6.2 or Section 6.3.3 below where we demand that for all v € S§~! and all
0 < r < ¢ the deviation function Hy g () is less than 1/2 — ¢y here (in this section) we simply
use Markov inequality to control the functions Hy g, around 0. The price we pay by using
this approach is that we will not prove anymore estimation results for the SDO MOM over K
blocks which hold for all deviation parameters v up to K but only for u ~ K. The other price we
pay here is for the adversarial contamination cost that will be of the order of 1/|O|/N whereas
(as proved in Theorem 6.4 below) it can be better up to |O|/N (as in the Gaussian case from
Theorem 6.1). We will be able to achieve this result thanks to a regularity assumption of the cdfs
H, of all one-dimensional projections around 0 (see Assumption 6.4 below). But, for the moment,
we do not grant this type of assumption in this section and obtain a general result under the
existence of a second moment as well as Assumption 6.3. Subgaussian rates can be derived out of
this result when condition (6.12) holds (we refer to Section 6.5 where this condition is studied).

In this section, the bound we use is simply the one deduced from Markov’s inequality that is
for all r > 0 and K € [N]:

N/K

1
2%
E / —p),v) >r| < -l (6.15)

Hy ko(r) =

\/N/K

(Note that we used a slightly modification of Markov’s inequality: if Z is a centered variance
one real-valued random variable then P[Z > r] = mingeg P[Z +a > 7 +a] < (1 +72)71). Our
main result in the general Ly setup will follow from this bound and a general result stated in
Section 6.7. It is now stated in the following theorem.

Theorem 6.2. We assume that Assumption 6.3 holds for some 0 < € < 1/8. We assume that
the adversarial contamination with Lo inliers model from Assumption 6.1 holds with a number
of adversarial outliers |O| < eK. We assume that K > 100e=2d. With probability at least
1 — 2exp(—€2K/15),

123800 H Gpu(e) [K
HZ HpMoM,K ) 9 < o) | v

The rate of convergence in Theorem 6.2 can be written like the one in Theorem 6.1 and
Theorem 6.4 below where the three terms: complexity, deviation and price for adversarial
corruption appear. Indeed, one should notice here that the deviation probability in Theorem 6.2
is fixed equal to 1 — 2exp(—coe? K) because we had to take the deviation parameter u equal to K
because of the approach based on Markov’s inequality (6.15). It is however, equivalent to replace
VK/N by \/d/(e2N) + \/u/e2N + /|O]/(eN) for u = K since the two quantities are equivalent
under the assumptions of Theorem 6.2. In that case, one may recognize the complexity term
Vd/N, the deviation term /u/N as well as the price for adversarial corruption /|O|/N. In
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particular, we see that the price we pay for the corruption is of the order of 1/|O|/N which is
larger than the |O|/N term in the Gaussian case from Theorem 6.1 and it is the worst case of
Theorem 6.4 below. Indeed, in Theorem 6.2 we did not exploit any other property than the
existence of a second moment whereas the other two Theorems 6.1 and Theorem 6.4 exploit
some regularity assumption around 0 of the family of functions Hy g ,,v € SQd*l.

Adaptation to K via Lepski’s method. It follows from Theorem 6.2 that ﬂJSMDOOM’ K is an
estimator which depends on the deviation parameter K : we need to specify a value of K, which
is used to build the estimator, so we need, for instance, some prior knowledge on the number of
outliers. However, even if we do not have such prior knowledge, it is possible to overcome this
difficulty by constructing an adaptive to K version of this estimator to disentangle the estimator
from the parameter K. The classical way to do it is via Lepski’s method Lepskii (1990, 1991).
Usually, the price we pay to make this approach work is some extra knowledge on X such as its
trace and operator norm (see for instance Depersin and Lecué (2019), Section 6). An interesting
feature of SDO type estimators is that we do not need no such information on ¥ to build this
adaptation scheme: we only need knowledge on ¢, (€) and ¢;(€). Let us now construct this
adaptive scheme: the number of blocks is chosen adaptively via

R _ . . 9 6pu(e) | K
K =min | K € [N]: SDOR(35F & — 053RS, 1) < max , 1+4/=1]].,Vk=N,...,K |.
( [ ] ( MOM,K MOM,k 901(6) 9012(6) k

(6.16)

Theorem 6.3. There are absolute constants cg and c1 such that the following holds. We assume
that Assumption 6.3 holds for some 0 < € < 1/8 and all K € [N]. We assume that the
adversarial contamination with Lo inliers model from Assumption 6.1 holds with a number of
adversarial outliers denoted by |O|. Then, for all K > max(coe 2d, co|O|) with probability at

least 1 — 2exp(—c1e2K),
_ 2802 (e) |K
1/2 ~SDO Pu n

where K is the adaptive choice of number of blocks from (6.16).

6.3.3 Beyond the L, case and a regularity condition around 0 of the H,’s

In this section, we obtain an estimation bound for the MOM version of the SDO median in the
adversarial corruption model under an extra assumption on the regularity at 0 of the family of
functions H,,v € Sg_l that is stated now.

Assumption 6.4. There exists a location parameter ;1 € R%, a scale matriz ¥ > 0 and
some absolute constants cg,c1 > 0 and co > 0 and such that for all v € Sg_l and all
(2Ch/c1)V/(d+1)/K <r <cy (where Cy is the absolute constant from (6.29))

N/K

JNTK 2 T ) 2

—_

HN7K7’U(T) = HU(T) =

< — —cor.

[\]

This assumption is about the behavior around the origin of the cdf of all one-dimensional
projections of the random vectors (N/K)~1/2 Zfi/lK »~1/2(X; — pu) where the X; are the non-
corrupted data. The term % — cor in the bound above is the behavior of regular in 0 cdfs such as
in the Gaussian case (see Section 6.5 for more details and more examples).
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Our main result in the adversarial corruption model under Assumption 6.4 is the following
theorem. The proof may be found in Section 6.7.

Theorem 6.4. We assume that Assumption 6.3 holds for some 0 < € < 1/8 and that Assump-
tion 6.4 holds as well with constants cg,c1 and co. We assume that the adversarial contamination
model holds with a number of adversarial outliers |O] < eK. We assume that K > 4C3e 2(d+1).
For all 0 < u < €2K/8 such that Co\/(d + 1)/K + \/2u/K +|0|/K < coca/2, with probability at
least 1 — 2 exp(—u),

1/9, 4y (€) d+1 2u |O]
1/2( ~SDO . < ¥ <u
HE (AXroh Kk M)H2 = 2o (Co\/N Wyt ve (6.17)

We recover the optimal subgaussian rate (6.2) in Theorem 6.4 when for some 0 < e < 1/8,
condition (6.12) holds and |O| < v/Kd. The term |O|/v KN appearing in the convergence rate
of Theorem 6.4 is the price we pay for the adversarial contamination. It is between /|O|/N when
K ~ |O| and |O|/N when K ~ N. We note that the rate gets better when K comes closer to N:
however we note that we cannot always choose K as we please. Indeed both Assumptions 6.3
and 6.4 are assumptions on the functions Hy g ., and they might be true for some K and not
for others. Usually when the inliers are in Lo, and without further assumptions, the information
theoretic lower bound is known to be of the order of 1/|O|/N and not of order |O|/N. We get a
better rate in Theorem 6.4 thanks to Assumption 6.4 which is using in some more efficient way
the regularity of the H, functions at 0.

Remark 6.1. Assumption 6.3 and Assumption 6.4 do not need the data to have a first moment:
both assumptions may hold without the existence of any moment. In these assumptions, u or
Y are not used in the role of mean and variance matriz but can be thought of as location and
scatter parameters. Such parameters may exist even in situations where there is not even a first
moment. We note that in Theorem 6.2, on the contrary, we use Markov’s inequality instead of
Assumption 6.4 and so we need u to be the mean and X to be the covariance matriz and not just
a scatter matrixz — hence, we need the existence of two moments in Theorem 6.2 but not of any
moment in Theorem 6.4.

Unlike typical results in the MOM literature except for the one obtained in Minsker and
Strawn (2017), the deviation rate in Theorem 6.4 is 1 — 2 exp(—u) for all u < K, in particular
it does not have to depend on parameter K. As a consequence, the estimator [L%DOOM x does
not depend on the deviation parameter. Usually, results for MOM estimators constructed on K
blocks are given with probability at least 1 — exp(—coK) and then a Lepski’s method is used
to construct an adaptive to K procedure (as we did in the previous section). This is not the
case here nor it is for the Gaussian case in Section 6.2. This is again because Assumption 6.4 is

efficiently using the behavior of Hy g, around 0.

6.4 Estimation of ¥ using MOMAD

In this section, we show that it is possible to estimate a scale or covariance matrix > using the
MOMAD estimator. In particular, given that the isomorphic property of MOMAD hold under
Assumption 6.3 (which does not grants the existence of a second moment), we show that it is
possible to estimate a scale matrix under only this assumptions. This differs from approaches
based on the empirical covariance matrix where at best a Loys-moment assumption for some
positive J is granted for the estimation of the covariance matrix, see Lounici (2014); Cai et al.
(2016); Lu et al. (2020). In this section, we construct two estimators of X.
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We show that for the estimation of ¥ via the MOMAD, the properties of ¢;(€) and ¢, (€)
introduced in Assumption 6.3 play a key role. Let us first have a look at these quantities in the
Gaussian case. In that case, there are some absolute constants ¢g and ¢y, c; > 0 such that for all
0 <e<c,

wi(€) = ¢pp — c1€ and @, (€) = ¢o + 1€ (6.18)
where ¢g = ®71(3/4) (see Section 6.5 or the proof of Proposition 6.1 for more details). This
latter result holds in the Gaussian case first because the two interquartile intervals have the same
length: ®~1(0) — ®71(1/4) = ®~1(3/4) — ®(0) = ¢g and, second, because the Gaussian density
function is uniformly lower bounded by an absolute positive constant locally around the two 1/4
and 3/4 quartiles ®~1(1/4) and ®~1(3/4) as well as around the median ®~1(1/2) = 0. If this last
condition were not true at some ¢ € {W(1/4),W(1/2),W(3/4)} where W = Wy g, for some
direction v € Sgil then there will be some plateau of the cdf r € R — 1 — Hy i ,(r) starting at
¢ and thus there would be a constant factor gap between W (¢/4 — 2¢) and W (¢/4 + 2¢) for some
¢ € {1,2,3}. In that case, there would be some absolute constants ¢y > 0 and ¢; > 0 such that
loi(€) — @i(€)] > ¢o for all 0 < € < ¢1. In particular, we would only have an isomorphic property
for the MOMAD and thus it is not clear how to estimate ¥ using MOMAD at a better rate than a
constant rate. Typical values of ¢¢ in (6.18) will be pg = W (1/4) — W (1/2) = W(1/2) — W (3/4).
In particular, the interquartile interval lengths have to be equal in all directions v € 33—1;
this will hold, in particular, under a spherical symmetry assumption of the X~1/2(X; — p) (see
Section 6.5 for a more formal statement). That is a reason why we will use an isometric property
of MOMAD (and not just an isomorphic property) and that to insure this property we consider
the following assumption.

Assumption 6.5. For the same choice of K as in Assumption 6.3 where € > 0 — ¢;(€), py(€) are
defined, there are absolute constants ¢g, co,c1 > 0 such that for all v € Sgil and all 0 < € < ¢,

wi(€) = o — c1e and py(€) = ¢ + ci€.

Let us now turn to the construction of two estimators of the covariance matrix ¥ using
MOMAD under Assumption 6.5 (as well as Assumption 6.3). Because of the constant factor ¢
in Assumption 6.5 we will provide an estimator of the scatter matriz 2% (according to Maronna
et al. (2006b), a scatter matrix is any matrix proportional to the covariance matrix — this type
of matrix gives in particular information on the relative uncertainty in all directions).

It follows from Proposition 6.2 that M OM ADp is isomorphic to v € R — ¢g/K/N H21/2vH2
and that under Assumption 6.5 it becomes an almost isometry, that is, with probability at least

1 — exp(—€2K/8), for all v € R?,
<aelx H21/2 (6.19)

‘MOMADK \/7]\21/2

as long as |0 < €K, K > 4C2¢ 2(d+ 1) and 0 < ¢ < ¢p. In the Gaussian case and other
spherical cases studied in Section 6.5, thls almost isometric property holds for K = N (and
MOMADy = MAD) and any 0 < € < 1/12: it follows from Proposition 6.1 that with probability
at least 1 — exp(—€2N/8), for all v € R?,

’MAD(U) — ®71(3/4) HEI/%HJ < cre HZI/QUH2. (6.20)

We then may use two distinct ideas to build an estimator from (6.19) and (6.20). The first
one is to consider the matrix > defined by

~

N
Y€ —argmin  max |[MOMADgk(v)—1|
K A-0 ||avz,=1
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where the minimum is taken over the cone of semi-definite positive matrices. The following
estimation error bound follows from (6.19) and basic algebra (see the proof in Section 6.7).

Proposition 6.4. Assume that Assumption 6.1 holds. Let K € [N], ¢; and ¢, be such that
Assumption 6.3 and Assumption 6.5 hold with constants ¢g,co and c1, and that 4dcie < ¢q.
Then, for all 0 < € < co such that |O] < eK and K > 4CZe2(d + 1), with probability at least
1 —exp(—€2K/8),

HE_”ZEE_lm——¢3ka7§]2¢mne

Comparing the rate obtained in Proposition 6.4 with the ones from the literature, we notice
that this estimator achieves a rate of the order of the contamination rate e = |O|/N when one
can choose K ~ N in the assumptions of Proposition 6.4. This is the typical rate when the data
are Gaussian, while the typical and information-theoretically optimal rate for Lo inliers is like
V€ (see for instance Kothari and Steurer (2017), discussion after Theorem 1.2). Once again, we
get a better rate in Proposition 6.4 thanks to Assumption 6.5 which is using in some efficient
way the behavior of the two ,, ; functions around 0 and so the isometric property of MOMAD,
which explains this gap.

We then present a second way to use (6.19) to estimate directly the entries of ¥ following
an idea from Gnanadesikan and Kettenring (1972). This way will lead to a somehow worse
rate, but it provides an estimator that is very easy to compute, and that is tractable in time
O(N log(N)d), that is in linear time.

Let (ej);-lzl denote the canonical basis of R?. We have, for all 4,5 € [d],

2 2
421‘]‘ = 4<€Z’, Eej> = HEl/Q(ei + 6j>H2 — H21/2(6i — ej)”? .
As a consequence, a natural estimator of ¢2¥ based on MOM ADj is the matrix 3> whose entries
are defined for all i, j € [d] by

A

Sy = MOMAD3(e; + ¢;) = MOMAD}(¢; — ¢;)) .

4K (

Note that 3 is symmetric but it may not be positive semi-definite (PSD). To overcome this issue,

a prOJeCtIOH method has been introduced in Lu et al. (2020) which may also be used as well for
. Our main statistical bound for ¥ is the following.

Proposition 6.5. Assume that Assumption 6.1 holds. Let K € [N], ¢; and ¢, be such that
Assumption 6.3 and Assumption 6.5 hold with constants ¢y, co and ci1. Then, for all 0 < e < ¢
such that |O] < eK and K > 40026_2(d + 1), with probability at least 1 — exp(—€e’K/8),

<u’ (Q%E - 2)v>
2oilfui] + [vil)Zii

¢0 ij z]
i + Xjj

' < cre(cie + ¢p) /2.
we[d}

llully=[lvll; =1

In particular, if one can choose K = N so that Assumption 6.3 and Assumption 6.5 hold —
for instance, in the Gaussian case or for other spherical variables as in Section 6.5 — then the
MOMADy estimator becomes the classical MAD one and for €2 = cod/N we have that with

probability at least 1 — exp(—c4d),
iz -3 /
<U, (¢O )U> S s i
N

2 (Jua] + |vi]) B

$Zij — Sij
X+ 255

< sup
lull;=lv|l;=1

m
i,j€[d]

as long as |O] < cgd.
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6.5 Study of the Hy g, v € 53—1 functions

The functions Hy v, v € Sg_l play a key role in our analysis. Their behavior in a neighborhood
of their 1/4 and 3/4 quartiles and medians should be controlled so that Assumption 6.3 may hold:
they are driving the isomoprhic properties and almost isometric properties of the MOM AD g
and SDOg functions and so of the statistical performance of the Stahel Donoho Median and
its MOM version. Their behavior around 0 also drives the improved rates obtained under
Assumption 6.4. From our perspective, it is of the utmost importance to understand the behavior
of these functions at these particular points.

Let us first settle down the properties of the Hy r,, functions desirable for our analysis. We
set Z; = N~Y2(X; — p) for all i € [N] so that the Z;’s are independent centered isotropic vectors
in R? and n = N/K. We want to identify conditions on the distributions of the Z;’s such that

e for Assumption 6.4: there exists some absolute constants cy,c; > 0 such that for all

ve Sy and all 0 < 7 < ¢,

< ——qr. (6.21)

H,,(r):=P [\/15 ;:;(Zi,v) >

o for Assumption 6.3 and the two following conditions (6.12) and (6.18): there exists an
absolute constant ¢; > 0 and 0 < € < 1/8 such that ¢;(e) and ¢, (€) exist and are such that

~—

oule
@i(e)

< (6.22)

or there are absolute constants ¢g and cg, c; > 0 such that for all 0 < € < ¢,

pi(€) = ¢o — cre and @y (€) = ¢ + c1€ (6.23)

which are respectively Condition (6.12) (insuring an isomorphic property of MOM ADg
and SDOf as well as optimal subgaussian rates for SD median and median of means) and
Condition (6.18) (insuring almost isometric property of MOM ADy as well as estimation
properties for 3 in Section 6.4).

Let us first study the Gaussian case which is our benchmark situation. We will then study other
cases where the family of functions Hy k., v € SQdfl satisfies these conditions.

The Gaussian case. We recall that ® : ¢t € R — Plg < t] = [*__ ¢(u)du where ¢ : u € R —
(2m)~ Y2 exp(—u?/2) is the Gaussian density function. We also denote Hg : t — 1 — ®(t) and
Wg:pe(0,1) — Hé_l)(p) the inverse function of Hg so that Wg(p) = ®~1(1 — p). It follows
from the mean value theorem that for all ¢t,e € Ry, |Hg(t +¢) — Hg(t)| > ¢(t + €)e so that
around 0 we have for all ¢g > 0 and 0 < r < ¢, Hg(r) < 1/2 — ¢(co)r. As a consequence, (6.21)
holds in the Gaussian case, for instance, with ¢o = 1 and ¢; = ¢(1). Let us now look at the
two other conditions in the Gaussian case. Using Taylor formulae and that for all p € (0, 1),
W(p) = [¢(We(p))] ™t and Wi(p) = —Wea(p)/[o(Wa(p))]?, we show that one can take ¢, and
¢ defined for all 0 < e < 1/12 by

ul€) = @71(3/4) + che + cie? and py(e) = 1(3/4) — che — ¢} €

where ¢} == 2(¢(®71(3/4)) 7L + ¢(0)71) and ¢} = 4971(11/12)/[¢(P1(11/12))]. In particular,
using that (1 —¢)~! < 1+ 2t for all 0 < ¢ < 1/2, we get that one can choose @,(€) =
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®=1(3/4) + 2c)e and ¢;(e) = ®71(3/4) — 2che and p,(€)/@i(e) < 3 for all 0 < € < Ko where
ko := min(1/[8¢p], 1/4/2¢}, ¢y/c)).

So that both conditions (6.21) and (6.23) hold with ¢g = ®~!(3/4). In particular, we also
recover that the values of the density function ¢ at the 1/4 and 3/4 quartiles (here we used that
H(®1(3/4)) = ¢(®~1(1/4))) and at the median ¢(0) (here we used that ®~1(1/2) = 0) play a
key role for the study SDO estimators as it was previously observed in several works on SDE.

In the following, we identify situations where the Hy v, v € Sgil functions and their pseudo
inverses mimic the Hg and W functions from the Gaussian case. There are at least two reasons
for that to happen: the first one is that we are projecting random vectors leaving in R? onto one
dimensional subspaces; the second reason is that we are averaging random variables having a
second moment. We will explore these two observations in the two following paragraphs.

One dimensional projections and elliptically contoured distributions. The fact that
the H, functions deal only with one-dimensional marginals is making these functions likely
to behave as in the Gaussian case since one-dimensional projections of sufficiently spherically
symmetric random vectors in R? are expected to behave like one-dimensional Gaussian variables
and this phenomenon is even more accentuated when d is large (this is one particular situation
where large dimension d may help in Statistics). Indeed, one may have in mind an observation —
sometimes attributed to H. Poincaré — that the density function of the one-dimensional projection
<\/gU, e1) — where VdU is uniformly distributed over \/gSg_l and (ej);l:l is the canonical basis
of R? - converges to the density of a A(0,1) when d — oo (see page 16 in Ledoux and Talagrand
(2011) or Chapter 4 in Bryc (1995)). One may also have in mind that there are directions such
as v = (1/v/d,...,1/+/d) which are mixing the coordinates of X~1/2(X; — y) when projected
onto v and therefore may have the tendency to mimic a standard Gaussian variable because of
the CLT. Note that all these observations hold for N = K that is even for n = 1: because of the
one-dimensional projections we may not even have to average the Z;’s to mimic the Gaussian
case. Therefore, Theorem 6.5 can be extended beyond the Gaussian case when this phenomenon
occurs.

Let us now consider an example of elliptically contoured distributions where this happens to
be true. Our aim is to show that Condition (6.12) and Assumption 6.4 (and so Theorem 6.4)
may hold for K = N (i.e. n =1) even when the X;’s do not have a first moment.

We assume that the X;’s are i.i.d. and that 2_1/2(X1 — 1) has a spherically symmetric
distribution; in that case, X; — u is sometimes said to have an elliptically contoured distribution.
Then, there exists a non-negative random variable R such that X~%2(X; — ) is distributed
according to RU where U is uniformly distributed on Sgil and is independent of R (see Chapter 4
in Bryc (1995)). In that case, all the (X~1/2(X; — ), v) for v € S§! have the same distribution
as (N7V2(X1 — ), e1) (where (ej)?zl is the canonical basis of R?) which is distributed according
to R(U, e1). Now, using that (U, e;) is absolutely continuous w.r.t. the Lebesgue measure with
density function given by, when d > 2,

1

-1
tER = Ca(1— )T I(|#] < 1) where Cy = (/_1(1 - tQ)d“’Sdt) - r((jf(f)//z;)ﬁ

and T" is the Gamma function, we can deduce that (even for K = N), H, is independent of
v € 8§71 and is such that for all » > 0, H,(—r) = 1 — H,(r) and

1 d—3

Hy(r)=H(r) = Cd/o P[R > r/z] (1 —:1:2)T dx.
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In particular, we recover that H(0) = 1/2 since R > 0 a.s.. Let us now consider a simple example
for the distribution of R. In that example, R takes values r; < ro < --- such that a; =P[R = ;]
for all j € N* so that for all ¢ > 0, ER? =}, r?ozj which may be infinite even for ¢ = 1 (that is
when there is not even a first moment). For this example, we have for all » > 0,

o0 1 B
H(T):CdZaj/ (1—x2)%dxl(r§rj).
j=1 T/7;

In particular, H is differentiable and R(U,e;) is absolutely continuous w.r.t. the Lebesgue
measure with a density function given by

) 2] 72
f:rER—)—H/(r):CdZaj[l—<r>] I(r <rj).
j=1"7

rj

In particular, for roo = limj_,o 7, H is strictly decreasing on [0,7) from H(0) = 1/2 to
H(ro) = 0 and beyond ro, it is constant equal to 0. Therefore, for all v € Sg_l, the generalized
inverse W, of H, is independent of v and it is the inverse of H: for all p € (0,1/2] there is a
unique element W (p)(= W,(p)) in [0, ) such that H(W (p)) = p and W (1 —p) = —W(p).

Now, let us choose r; = 2/Cy; and aj = 277 for all j € N. We also assume d > 4 to make the
presentation simpler (the cases d = 1,2, 3 can be treated separately). In that case, ER = +o0 and
so the mean and covariance matrix do not exist. Nevertheless, one may still assume that there
exists u € R% and ¥ € R4 definite positive such that ¥~1/2 (X 1 — ) is spherically symmetric
(without having 1 to be a mean vector and ¥ to be a covariance matrix). Then, Theorem 6.4
still applies.

Let us first check Condition (6.21). We have H(0) = 1/2 and for all 0 < r < Cy/v/d — 3,
1 d—3(r\?* _1
> — |l —— | = > —. .24
102 Y o [ et () ] > (6:24)

Moreover, we see that v/d < Cy < 6v/d, hence, (6.24) holds for all 0 < r < 1. Which is according
to the mean value theorem enough to show that Condition (6.21) holds (see (6.26) below for
more details).

Let us now check conditions (6.22) and (6.23). It follows from Proposition 6.6 below
that, it is enough to lower bound the density function f in a neighborhood of p for p €
{W(1/4),W(1/2),W(3/4)} and that W (1/4) — W (3/4) is an absolute constant. But, given that
W(1/2) = 0 and (6.24) holds, that f is symmetric about 0 and that W (1/4) = —W(3/4), we only
have to check that f(q) > ¢o for all ¢ € [W(1/4) — 2¢, W(1/4) + 2¢] for some 0 < € < 1/8 and
an absolute constant ¢y and that W (1/4) is an absolute constant. We first have to find W (1/4)
which is the unique solution r such that H(r) = 1/4. We see that f is symmetric unimodal with
maximal value at 0 given by f(0) = 4/3 and we showed that f(r) > 1/3 for all 0 < r < 1 in
(6.24). Therefore, H(1/8) > 1/3 and H(1—1/10) < 3/15 < 1/4, hence, W(1/4) € [1/8,1—1/10].
It follows from (6.24) that f(q) > 1/3 for all ¢ € [W(1/4) —1/10, W (1/4) + 1/10]. We conclude
that both conditions (6.22) and (6.23) hold thanks to Proposition 6.6 below.

For this example, one can take ¢, (€) = W(1/4) — (4/3)e and ¢;(¢) = W(1/4) + (4/3)e for
all 0 < e < 1/16. In that case, MOM ADf is an almost isometry and we can state a result like
Theorem 6.1 where ®~1(3/4) is replaced by W (1/4) and u and ¥ are not anymore the mean
and covariance matrix since they do not exist but ’location’ and ’scale’ parameters defined such
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that ©~1/2(X; — u) are spherically symmetric. As a consequence, the phenomenon underlying
the Gaussian case from Section 6.2 has nothing to do with concentration but it is more about
elliptical symmetry.

Gaussian approximation. In cases where there is some lack of spherical symmetry of
»~1Y2(X; — p) one may study the H, functions for a smaller number K of blocks so that
n = N/K may be large enough to see some averaging effect. In that case and because Gaussian
variables satisfy all the properties we need, it is tempting to use a Gaussian approximation result
such as a Berry-Esseen bound (see Petrov (1995); Chen and Shao (2012, 2001)) to approximate
the H, functions by 1 — ® for n = N/K large enough. This strategy has been used several times
in Minsker and co-authors works on Median-of-means and Catoni’s type of estimators (see for
instance Minsker and Strawn (2017); Minsker (2018b)).

For instance, when for all v € S§1, (X~Y2(X; — p),v),i € [n] are (independent, centered
and variance one) real-valued random variables in Lo s such that H(E*I/ 2(X; — ), v>H2+5 <K

(uniformly in v € 8§~1) for some § > 0 then, it follows from Theorem 5.7 in Petrov (1995) that
there is an absolute constant ¢y > 0 such that for all v € S§ ! and all 7 € R,

246
T] ’ < C1R

|Hn,k0(r) = Plg =02

A\

= Cp (6.25)
It follows that for all p € (0,1) and € € R satisfying p + € € (0,1) that
Pl l-p—e—c) SWhp+e<d 1A —p—c+tc,).

In particular, for all 0 < e < 1/16, if n is large enough so that ¢, < e then one can take
ule) = ®71(3/4) — coe and py(€) = ®71(3/4) — cpe. So that the ratio ¢, (€)/w;(€) is constant; in
that case, the MOM ADg and SDOy, are isomorphism (see Proposition 6.2) and we recover a
subgaussian rate in Theorem 6.4.

However, a Gaussian approximation result such as the one in (6.25) is not enough for
Assumption 6.4. Indeed, it follows from (6.25) that for all 0 < r < ¢, Hy(r) < Hg(r) + ¢ <
1/2 — 17 + ¢, for some absolute constants ¢g > 0 and ¢; > 0. It appears that our analysis used
to prove Theorem 6.4 does not stand this extra error term ¢, compare with Assumption 6.4.
Gaussian approximation does not help in this case: indeed Assumption 6.4 is more about the
existence of a uniform lower bound around 0 of the density functions of the one-dimensional
projections (n='/23". Z; v) as we are considering now.

Beyond the Gaussian behavior. In the latter two paragraphs, we identified situations where
the n~1/2 1 ({Z;,v) for v € Sg_l behave like Gaussian variables. We saw that this may be the
case because we are considering one-dimensional projections of d-dimensional vectors and/or we
are taking empirical means over n variables. But properties we are looking for the H,, ,,v € Sg_l
functions (see (6.21), (6.22) and (6.23)) are all dealing only with their behavior around 3 (or 4
when the median is not 0) points. So that only the behavior of these functions at these points
play a role and there is no need to mimic the Gaussian case for all values of r in R. We now state
a general result going in this direction. In particular, we recover the conditions from Maronna
and Yohai (1995) and Zuo et al. (2004a) recalled in the Introduction section.

Let us assume that the n='/2 3" | (Z; v) for v € S4~1 are absolutely continuous w.r.t. the
Lebesgue measure with a density function denoted by f,. By the mean value theorem, we have
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for all » >0, all p € (0,1) and € > 0 such that p+ ¢ € (0, 1),

€ €
S Wv (p) Wv (p+€) S mian[PJH—e] fv(Wv(Q>) ‘
(6.26)
In particular, the values of the density functions f,,v € S at 0, W (1/4), W (1/2) and W (3/4)
drives the quality of inequalities from (6.26) and, as noted in previous works on the Stahel-Donoho
outlyingness function, are enough to insure all the conditions we need on H, and W, recalled in
(6.21), (6.22) and (6.23).

- o
Hy(r) < Hy(0)—min f,(t)r and maxgefpprd Jo(Wo(4))

Proposition 6.6. Let K € [N] be such that N/JK € N. We assume that the original non-
corrupted data X;,i € [N] are independent and that there exists u € R? and ¥ € R¥? definite
positive so that for all v € Sg_l, VEK/N ZZJ-V:/1K<Z_1/2(XZ~ — 1), v) are absolutely continuous real
valued random variables with a density denoted by f,.

If there exists 0 < € < 1/8 and cg > 0 such that for allv € S§™, allp € {W,(1/4), W, (1/2), W, (3/4)}
and all g € [p—2¢,p+2¢], fu(q) > co then for I)"** = max (W, (1/4) — W, (1/2), W,,(1/2) — W, (3/4))
and TM"™ = min (W, (1/4) — W, (1/2), W, (1/2) — W, (3/4)) we can take

ou(€) = max IM 4 4e/co and @i(€) = min T — 4e/cy.
vesy! vesit

We also have

Ou (E) max

maxr
_ ¥esit Iy - 16¢
vi(e) — minvesgfl Zman co minvesgfl Zmin

when 4e < comin, Z™". Moreover, if (cy/4) max, I < 1/8 and min, Z™" > ¢1, for some
absolute constant ¢1 > 0, then condition (6.22) holds (and so we recover the optimal subgaussian
rates in Theorem 6.2 and Theorem 6.3) and if for all v € S&1, Ime® = Tmin .= ¢ then
condition (6.23) holds and so does Proposition 6.5.

If for all v € 8§71, H,(0) < 1/2 and there are absolute constants co > 0 and ¢; > 0 so that
for all 0 < r < ¢y, fo(v) > c1 then Assumption 6.4 holds (that is (6.23) holds) and so does
Theorem 6.4.

Note that in Proposition 6.6, # and 3 do not have to be the mean and covariance matrix of
the X;’s. In that case, u and ¥ are sometimes called location and scale and so Theorem 6.4 still
applies for the robust to adversarial contamination and heavy-tail estimation of location, even in
situations where there is not even a first moment.

Proposition 6.6 gives an alternative to Gaussian approximation which does not, in general,
allow to check Assumption 6.4 because of the residual terms in Esseen or Berry-Esseen type
inequalities. The assumptions in Proposition 6.6 are all granting that the density functions f,
are locally lower bounded around the ’critical’ 1/4 and 3/4 quartiles and medians. They are
natural assumptions that already appeared in several studies of estimators based on the SDO.
In Proposition 6.6 we show that by using the median-of-means principle these assumptions are
dealing with the density functions on the bucketed means and not the data themselves. However,
Proposition 6.6 may also be applied in the K = N case as for elliptically contoured distributions.

6.6 Conclusion

We showed that it is possible to estimate a mean vector in R% w.r.t. the metric HE_l/ 2-H2 even
though ¥ is unknown, the data set is corrupted by an adversary and the data are heavy-tailed.
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The rate obtained are the (deviation) minmax one in the ideal i.i.d. Gaussian case. The estimator
used to achieve this rate is a deepest point with respect to a median-of-means version of the
Stahel-Donoho outlyingness functional. When the data are spherical enough there is no need to
bucket the data and then the estimator is using the classical Stahel-Donoho outlyingness. Our
analysis shows that the two cases can be handled using the same methodology and that the
family of cdfs (Hn i, : v € Sg_l) plays a key role in this analysis, in particular, their behavior
around 0, the median and the 1/4 and 3/4 quartiles.

In this work, we have not dealt with several research opportunities opened by the SDO. We
now list some of them that may be considered in future works. a) It may look possible to use
the isomorphic properties of the MOM ADg and SDOg to study the Stahel-Donoho estimator
(SDE) or a median-of-means version of the SDE defined as

Ko

_SDE D o1 WXy

HMOMK = ——<K  ~ (627)
Zf:l W

where (’Lf)k),[le are non-negative weights such that @y depends on the outlyingness of the k-th
bucketed mean Xj. For instance,

B, = { L SDOK(Xe) < Ak (oo a4y = Med(SDOK(X). (6.28)

0 otherwise.

b) Similarly, the isomorphic or almost-isometry properties of MOM ADy and SDOg may also
be used to study the properties of a MOM version of the SDE of the covariance matrix:

R o
Y= It > (X — /“LE/IDO%\/[,K)(XIC - M%%%,K)T-
k=1

c¢) From a computational point of view, it is still an open question to construct an approximate
solution to the SDO. The original or MOM version of the Stahel-Donoho median could be approxi-
mated via a robust gradient descent algorithm such as the one introduced in Cherapanamjeri et al.
(2019); Depersin and Lecué (2019); Lei et al. (2020) with some extra normalization step required
by the MAD denominator. We expect this algorithm to be more efficient than the classical
weighted SDE because we expect to do only logd iterations to achieve a subgaussian estimator
using a robust gradient descent algorithm whereas the SDE would require to approximate the K
depths SDO(Xy), k € [K] and should therefore require more computational time (note that, in
practice the SDE has been reported to be more efficient than the deepest data that is the data
X}, with the smallest SDOg (Xy) but the SDE was not compared with an approximate solution

~SDO
of MMOM,K)-

6.7 Proofs

In this section, we provide some proofs of all the results from the preceding sections. The
only complexity measure we are using in this work is the Vapnik and Chervonenkis (VC)
dimension Vapnik and Chervonenkis (2015); Vapnik (2000) of a class F of Boolean functions,
i.e. of functions from R? to {0, 1} in our case, following Chen et al. (2018); Depersin (2020a).
We recall that VC(F) is the maximal integer n such that there exists z1,...,z, € R? for
which the set {(f(x1), -+, f(zn)) : f € F)} is of maximal cardinality that is 2”. The only
VC-dimension we will use is the one of the set of all indicators of half affine spaces in R%:
VC{z e R - I({,v) >r):v e R r e R}) =d+ 1 (see Example 2.6.1 in van der Vaart and
Wellner (1996)). The main technical tool (see Chapter 3 in Koltchinskii (2011) or Chapters
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6.1 and 13.3 in Boucheron et al. (2013)) we will be using is the following one: let Y7,...,Y,, be
independent random vectors in R?, there exists an absolute constant Cy such that for all u > 0,
with probability at least 1 — exp(—u),

[VC(F) 2u
?1615)?( Zf Z)) < Cy — + \/Z (6.29)

One can for instance take Cy = /14407 /(1 — e~1) as in the proof of Lemma 7.3 in Chen et al.
(2018).

We recall that for all v € S§~!, K € [N] and 7 > 0,

N/K

Hygp(r) =P [\/W Z SU2(% — ), ) > r] )

The rate of convergence we will obtain is the smallest r* satisfying

d —I— 2 O 1
\/ u+ sup Hy i o(r )+u<, (6.30)
V loll,=1 K2

where C is the constant from (6.29) and for some choice of K and u specified in each result
depending on the set of assumptions.

6.7.1 Proof of Proposition 6.2 and 6.1 (first part): isomorphic property of
MOMAD

We first prove Proposition 6.2 — the proof of Proposition 6.1 is a straighforward application of
Proposition 6.2.
Proof of Proposition 6.2. We first observe that by renormalization, it is enough to show
that for all v € 8§71,
pi(e) < Med((E™V2(X, — ), v) — Med((E72(Xp — ), 0)]) < pule). (6.31)

Moreover, for all i € [N],£~Y2(X; — u) has mean zero and covariance I;. Hence, without loss of
generality we assume that ¢ =0 and > = 1.

The strategy we are using to prove (6.31) is the following one. Let K real numbers aq,...,ax
be given and denote by a() < -+ < a(k) the non-decreasing rearrangement of the (ak)x (this is
the rearrangement of the a;’s and not of their absolute values). To prove a result like p;(€) <
Med(|aj, — Med(ay)|) < @u(e), it is enough to show that ¢i(€) < a(g(r+1)/4) — A((K+1)/2) < Pul€)
and ¢i(€) < agk+41)/2) — O(K+1)/4) < Pu(€). As a consequence, to prove a result like (6.31),
we should study the rearrangement (the two quartiles and the median) of the (Xj,v), k € [K]
uniformly over all v € SQd*l. But, |O| elements among the X;’s come from the adversary and
we do not have any control on their behavior. We therefore have to consider the worst possible
case which is when |O| bucketed means X are corrupted by one outlier from {X; : i € O}.
However, one may check that if we change |O| points in a set {ay : k € [K]} to get a new
set {Ar : k € [K]} then pi(€) < a@rin)/a) — a(k+1)/2) < pule) Will be true if we show
that ¢i(e) < Airi1)/a—jo) — Aix+1)/2410) and Aki1)/atio) — Ar+1)/2-10) < Pule) —
and a similar observation holds for the other (1/4)-quartile. We will therefore first study the
rearrangement of the original (i.e. non corrupted) bucketed means (later denoted by Xy, k € [K])
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projected on all one dimensional directions uniformly over these directions to deduce the result
from (6.31) on the corrupted bucketed means Xj.

We denote by Xy ke [K] the bucketed means of the original (non corrupted) dataset, i.e.
X1, = (1/|Bg)) > icB, X; for k € [K]. To prove (6.31) we first study the rearrangements of vectors

(<)~( ks V) ke[k) uniformly over all v € Sg_l. We will then deal with the adversarial corruption to
We introduce the following supremum of empirical process:
/K = Wy(l/K
ZI<Xka > v(/ )>—IP’[<X;§,U>ZU(/)

get (6.31).
JN/K VN/K |

where W, has been defined in Definition 6.1. It follows from (6.29) that for all u > 0, with
probability at least 1 — exp(—u), Z < Coy/(d+1)/K + /2u/K (note that even though the
function W, depends on v, the boolean function x — I((x,v) > W, (¢/N)) is still the indicator
of an affine half-space of R? for all v € R? and all £ € [K — 1] and thus the VC dimension of
the set of Boolean functions {z — I((z,v) > W,(¢/K)) : v € R% (€ [K — 1]} is less or equal
to d+ 1). As a consequence, for some choice of 0 < € < 1/8 such that Assumption 6.3 holds, if
K > 4C2(d + 1)e~2 then with probability at least 1 — exp(—€2K/8), Z < e. Let us denote by €2,
the event onto which Z < ¢; we proved that P[Q)] > 1 — exp(—€2K/8).

Z = sup sup
Le[K—-1] ||v||2=1

Let us place ourselves on the event ). up to the end of the proof. Since for all v € 55“,

P l@zk,@ > V%;?] — H (W () K)) = O/K,

(by left continuity of H, we have H,(W,(p)) = p for all p € (0,1)), we have for all ¢ € [K] and

v € S§7, that
er (K] : (Xp,0) > WWK)}

VN/EK

This last result on the uniform in v € 8§~! rearrangement of ((Xy,v)); will be used to get the

€[l —eK, l+eK]. (6.32)

desired result on the rearrangement for ((X,v))x (uniformly in v). To go from the X}’s to the
X’s we now have to deal with the adversarial corruption.

Since, there are |O| original data that may have been modified by the adversary, in the worse

case |O| bucketed means X, may be considered as corrupted and so, from the above cardinality
estimation result (6.32), we may only certify (on €2) that

er[K]:(Xk,@z%}

on the K bucketed means X}, constructed from the adversarialy corrupted dataset {X; : i € [N]}.
We used here the assumption that |O| < eK. If follows from the latter result that if we denote

by q1/4 3/4

€l —eK — |0, +€eK +|0]] C [l —2eK,{+ 2eK]

the 1/4 quartile of vector ((Xj,v) : k € [K]), by qK/U its median and by gy, its 3/4
quartlle then,

,/ W +2e <q1/4 ,/ W W<1+26 2 < ,/ W
\/ W +2 <q3/4 ,/ W
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It follows from these inequalities that on the event )¢, we have for all v € Sg L

Mo o) MK o)) = e (w1, (4 20) < (B ) (3 2) < (302

and
- = K 1 1 1 3
Med(|( Xy, v)—Med((Xg,v))]) > |/ — min (Wv ( + 26) - W, ( - 26) Wy ( + 26) - W, ( - 26)) :
N 4 2 2 4
The result follows from the definition of ¢;(e) and ¢, (€¢) in Assumption 6.3. ]

6.7.2 Proof of Proposition 6.3 and 6.1 (second part): isomorphic property of
SDOk.

The proof of Proposition 6.3 and 6.1 (second part) relies on the next result.

Proposition 6.7. We assume that the adversarial contamination with Lo inliers model from
Assumption 6.1 holds with a number of adversarial outliers denoted by |O|. Let K € [N], u >0
and r* be such that (6.30) holds. Then, with probability at least 1 — exp(—u),

sup | Med((SV2(% — ), )] < 4| oo,
veSéi*l N

Proof of Proposition 6.7. Denote by X = {k : By N O = ()} the set of indices of non-
corrupted blocks of data. It follows from (6.29) and the definition of 7* that with probability at
least 1 — exp(—u), for all v € Sg_l,

I << —1/2(Xk— ) ’U)> > W)

1/2 v - I( 1/2 — ), v)) > r )
Ti(E ez Fr) e ) = A

L
K ¢

N\H M=

< — i 1/2 X _ ) )> > r + @
S K &= KR =NIR) TR
< / r 2% "
< sup SVA(Xy - ) v)) > >—P<<E_1 2(Xp—p)yv)) > )]
oll=1 l Z:: ( N/K VN/K
. : o
P2 (X, - > 7 101
+ (< ( 1 M)vv)> = \/]\7/7 + K
/d /2 o
+ + HNKv )+ u < 5
As a consequence, with probability at least 1 — exp(—u), for all v € Sg_l,
* K
I —12(x, — > )8
Z ( k ) ’U)> = \/]\[/7 2
and so
—1/2( v K *
sup | Med((S7V2(Xy — o), o)) <y o (6.33)

vesg_l
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Remark 6.2. It is also possible to consider a “directional version” of Proposition 6.7 if one
defines a "directional version” of r*, that is for all directions v € 551—17 define )y > 0 satisfying

fd+1 [2u . |O|
eT- el < o M
Co % + e + N,K,U(TU) + i%e <

Then, under the same conditions as in Proposition 6.7, we have with probability at least 1 —
GXp(_U),

N | =

py [MEA(E2E o)) K
quSéi*l T; B N

Hence, Proposition 6.7 holds as well for r* = SUD)jy|, =1 ry. Note that for most of the v € Sd71
the value of r}; is expected to be much smaller than r*. For instance, for vectors v well-spread,
we expect them to have a strong "mizing” power (see for instance “super-Gaussian directions” in
Klartag (2017) or Klartag and Sodin (2011); Klartag (2009)).

Proof of Proposition 6.3 and 6.1. It follows from Proposition 6.7 and Proposition 6.2 that,
with probability at least 1 — exp(—u) — exp(—e?K/8), for all v € Sg_l,

_ - K
| Med(E72(Xs = ), )| < \ﬁ ,

where 7* is such that (6.30) holds, and

\/>H21/2 < MOMAD(v) < pu(e \/>H21/2

We denote by g the event onto which the last two properties hold. On the even )y, for all
v € R4, we have

o Med(F—mo)l _ Med(B—mo)) [ Med((SV2(% — ), )
SPOKW) = h T HOMADK() = B o VRNl o a@VEIY
= o M2 = ) D]+ IS0 =) VR 4 = )0

st ei(e)VE/N ~ veRrd oi(e)VK/N
3)|=-1/2(v—p)| ) 12 )
<{ PN A |22 - )|, = 2V/ETNr

3r* /o (€) otherwise

and when HE_UQ(V - M)Hz > 2./K/Nr*, we have

SDO(v) > sup (B2 — ), v)] = [Med((B~V2(Xy — ), )] |2 12w -,

vesi! pu(e)V K/N ~ 2pu(e)VK/N
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6.7.3 Proof of the statistical bounds

Proof of Proposition 6.1. Proposition 6.1 is a corollary of Proposition 6.2 for K = N. For this
choice of K, there are N blocks, each containing only one data and so MOM ADy(v) = M AD(v)
for all v € R%. The only thing that remains to be checked is the validity of Assumption 6.3 in
the Gaussian case and the dependency of the ¢;(e) and ¢, (€) in terms of e.

When the original data X;,i € [N] are N i.i.d. Gaussian vectors Gy,...,Gn with mean u
and covariance matrix ¥ then for all K € [N], (1/y/N/K) Zfi/lK »Y2(X; — p) is a standard
Gaussian vector in R?. Therefore the H := H N,k function from Assumption 6.3 is equal to
the function x € R — 1 — ®(x) where ® : z € R — P[g < z] is the cdf of a standard Gaussian
variable g ~ N (0,1) in R. This holds for all N, K and v € Sg_l, that is Hy i, is independent
of N, K and v € S2d_1. Since W := Wi i, is the generalized inverse of H, in the Gaussian case,
we obtain that W (p) = ®~1(1 — p) for all p € (0,1). It follows from Lemma 5.2 in Petrov (1995)

that there exists some absolute constant C'; > 0 such that
. 1 1 1 3 _1
min ( W 1—1—26 -Ww 5—26 W 5—1—26 -Ww 1—26 > &7 (3/4) — Cre == py(€)

and

max (W (le - ze) -W (; + 2e> W <; - 26) -W (f’l + 2e)> <& 1(1/4) < d71(3/4)+Che

As a consequence, Assumption 6.3 holds in the Gaussian case for all 0 < e < ®~1(3/4)/C with
oi1(e) = ®71(3/4) — Cre and @, (e) = ®71(3/4) + C1e. [ ]

Proofs of theorems 6.1, 6.2 and 6.4 Theorems 6.1, 6.2 and 6.4 are corollaries of a general
result that we are stating now.

Theorem 6.5. There are absolute constants cg,c1 and co such that the following holds. We
assume that Assumption 6.3 holds for some 0 < € < 1/8 and constants ;(€) and p,(€). We
assume that the adversarial contamination with Lo inliers model from Assumption 6.1 holds
with a number of adversarial outliers denoted by |O|. Let K > max(e~1|O|,4Coe2(d + 1)),
0 <u < e@K/8 and r* be such that (6.30) holds (where Cy is the absolute constant defined in
(6.29)). Then, with probability at least 1 — 2 exp(—u),

|22 058 — )], < 22

Proof of Theorem 6.1. We have for all 0 < r < 1,P[g > r] < 1/2 — ¢(1)r where g ~ N (0, 1).

Moreover, for all K € [N],v € 8§7! and r > 0, we have Hy (1) = Plg > 7]. As a consequence,
(6.30) holds if one choose 7*, u and K such that

. [d+1 [2u  |O]
o()r* = Cy K + K+ K

as long as for such choice r* < 1 (which indeed holds under the assumptions of Theorem 6.1).

Finally, we apply Theorem 6.5 for € = kg, K = N and the bound on the ratio ¢, (€)/¢;(€) in the

Gaussian case from Section 6.5. The result follows since [L%DOOM N = PO, ]
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Proof of Theorem 6.2. It follows from Markov’s inequality (6.15) that (6.30) holds when we
take u, r* and K such that

d+1 [2u 1 o] 1
“\Vm Ve Tirer TR <2

The latter holds, for instance, when 7* = 3, K > 4|0|, K > 100C3(d + 1) and u < K/800.
Note however, that because r* is constant, the convergence rate is proportional to /K /N, in
particular it does not depend on u. Hence there is no interest to consider values of u smaller
than K (up to constant). We therefore apply Theorem 6.5 for this choice of K, u = 2K /15 and
r* = 3. [ |

Proof of Theorem 6.4. Thanks to Assumption 6.4, there exist absolute constants cg,c; > 0
and ¢y > 0 such that for all v € 8§ and (2Co/c1)\/(d+ 1)/K <1 < co, Hy k.o < 1/2 — cor.
As a consequence, (6.30) holds if one can choose r*, u and K such that

"L\ K VK T K

as long as this latter quantity is less or equal to ¢o. Finally, we apply Theorem 6.5 for this choice
of K, u and r*. [ |

Proof of Theorem 6.5. We first note that a proof of Theorem 6.5 may follow from the
isomorphic property of SDOy from Proposition 6.3. However, it is possible to improve constants
by using the following strategy.

Let us place ourselves on the intersection of the two events where the results of both
Proposition 6.2 and Proposition 6.7 hold. We set f : v € R? — Med((Xj,v)). Since f is
symmetric we have

_ R _ N R v
HZ 1/2(M7\q413001\4,1{ - M)HQ = sup (¥ 1/2(,‘1%/1]3001\4,K — 1), v) = sup <M7\q4[)001\471( — M W>
loll,=1 veRd [21/20],
- (P35 50 v) — F(0) + F(0) = (1, v) MOM ADg(v)
veRd MOMADk (v) [%1/20]],
| ay OMI V) — [ () o JO =) MOMAD (v)
= \oip MOMADK(v) ' oegu MOMADg(v) ) oo |51/,
MOMAD MOMAD
< (SDOK (5 10) + DOk () sup LIMADEW) < 99D0, () sup M IMADK()
’ veRd ’|21/2”H2 veRd ||El/27)||2

where we used that SDOK(;}%DO%LK) < SDOk () by definition of ﬂSM%%,K-

We know how to control sup,cga MOMADg(v)/ H21/211H2 by /K /Np,(€) using Proposi-
tion 6.2. It remains to control the term SDOg (u). We have

— Med((X Med((p — X 512y
SDOk(p) = sup ‘<M’Z}> ed({ k’fjm = sup | Me (<“1 - £ 0)] H Hz
o Med(|( X, 0) — Med(Xp0))) oo [SV2],  MOMAD(v)
Zl/QUH
2

< sup |Med((Z7V2(Xy — p),v)))| sup .
||v||2:1‘ ( (X =) >>)‘U€RdMOMADK('U)
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The term sup,cgd

21/221“2/MOMADK(U) is smaller than \/N/K/¢;(€) thanks to Proposi-

tion 6.2. Finally, to finish the proof, we upper bound the term sup,, - | Med((X12(X}, —
©),v)))| by /K/Nr* thanks to Proposition 6.7. ]

Proof of Theorem 6.3 For all k € [N], we set fiy = ﬂff)o%’k we denote by € the event onto

which
-, < 4229 X

and, for all v € R4, if HE_I/Q(V - M)H2 > 6+/k/N then

212w - ) - SDOM) < 3212 —

2¢u(e)VE/N = 2¢(e)VE/N
and if HE_I/Q(V — M)HQ < 6/k/N then

9
pi(e)

SDO(v) <

It follows from Proposition 6.3 for r* = 3 and u = K/(16C2) and Theorem 6.2 that P[§2;] >
1 — 3exp(—cie?k) when k > max(|O|/e, cod/€?).

Let K > max(|O|/e, cod/e?). On the event Ny_,-Q, we have for all K <k < N,

3|22 (ke — )
SDO(fix — i) < max ( ) H H2 < max ) , 6¢ule) 1+ %

oi(€)” 2¢(e)VE/N pi(e)” wi(e)

and so, by definition of K, we have K < K. We also have by definition of K and because K < K

that
. ~ 9 6ipyle) K 124 (€)

We conclude that either HE_1/2(,&R - ﬂK)H2 < 64/K/N and so

o)

=I5

o2 =, < [ = [0 ], < o+

or “2*1/2(/2]% - /lK)H2 > 61/K/N and so

ot < 57—+ 5,

€ 2 (¢
< 5003~ w2y + 225 < o

PR
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Proof of Proposition 6.4. Let us place ourselves on the event where (6.19) holds. We

therefore have for all v € R,
< C1€\| == HZUQ

‘MOMADK \/>H21/2
Cl€

and so, by definition of 3, we have for all v € R?,
< -
)

0

5 21/2UH2 E ij1/20H2'

‘MOMADK(U) -

In particular, it follows from the two isomorphic results above that for all v € R%,

(1- ) 5 [, < MOMADK) = (040K [0, @3

It follows from the two isomorphic results above and (6.34) that for all v € R,

\/> MOMADg (v \/7 MOMADy (v qﬁgHZl/Q H

iv%wumuzém vau

2720l = o =20 =

cre
< 21°

%o 2

as long as c1e < ¢ and for k1 := (2c1€¢0)/(Po — c1€).
We deduce that for all v € RY, Hi]l/QZ_l/%HZ lies in [¢o — K1, o + K1] ||v]|5, so that all the

1/2

cigenvalues of 1255712 are in [(¢o — k1)2, (¢o + £1)?] as long as k; < ¢o. Finally, as long as

dere < ¢o, we get
[B12En 2 - g 1d| < 3omt < 1200cse.
op

Proof of Proposition 6.5. We have for all i, j € [d],
because, it follows from (6.19) that for all v € RY,

MOMAD%((U)—%gHZl/%H‘ IMOMADK \/>H21/2 H|(MOMADK +¢0\/>H21/2 )

< 016% HEI/QUH2 (c1e+ o).

2] < 016(616 + d)O) (Z“ + Zl])

Next, we have for all u,v € R? such that |jul|, = [jv]|; = 1

[(u, ($55 — Z)v)l

=% Zjuv] <¢3§ |51/ (es + ej)Hz — MOMAD%(¢; + ¢;) + qﬁ%% |5/ (es - ej)Hz — MOMAD?(e; — ej):

- c1€(C1Z+ o) 3 Jutl o] (quz(ei n ej)HZ n Hzl/z(ei B ej)Hi) _ C1e(01;+ ) Z faallos| (B + 55
(2 i,
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Optimal robust mean and location estimation via convex programs with
respect to any pseudo-norms
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7.1 Introduction

We consider the problem of robust (to adversarial corruption and heavy-tailed data) multivariate
mean and location estimation with respect to any pseudo-norm v € R? — ||v||g = SUp,,es{ths V)
where S is any symmetric subset of R? (i.e. if z € S then —z € S). Only little is known for
general symmetric sets S and we will mainly refer to Lugosi and Mendelson (2019b) where this
problem has been handled for S which is the unit dual ball B° of a norm ||-|| (so that ||-[|¢ = ||-[])-

In Lugosi and Mendelson (2019b), the authors introduced the problem of robust to heavy-
tailed data estimation of a mean vector w.r.t. any norm. The problem can be stated as follow:
given N i.i.d. random vectors Xi,..., Xy in R with mean p* and covariance matrix ¥, a norm
|-l on R? and a confidence parameter § € (0,1) find an estimator fiy(6) and the best possible
accuracy (N, ) such that with probability at least 1 — 0, ||an () — p*|| < r*(N, ). In Lugosi
and Mendelson (2019b), the authors use the median-of-means principle Nemirovsky and Yudin
(1983); Jerrum et al. (1986); Alon et al. (1999) to construct an estimator satisfying the following
result.

Theorem 7.1. [Theorem 2 in Lugosi and Mendelson (2019b)] There exist an absolute constant
c such that the following holds. Given a norm ||-| on R? and a confidence & € (0,1), one can

135
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construct fin(9) such that with probability at least 1 — o

+E HEl/QGH + sup
veB®°

Zl/QUHQ \/log(1/5)>

where B® is the unit dual ball associated with ||-||, (€;) are i.i.d. Rademacher variables independent
of the X;’s and G ~ N (0, I).

c 1 X
[L 0) — |l < — E|— fiXi_ *
[an(d) — p*|| < ﬁN< H ﬁN;:l ( ©)

The construction of fin(0) is pretty involved and it seems hard to design an algorithm out of
this procedure. In particular, fix(d) has not been proved to be solution to a convex optimization
problem. Theorem 7.1’s main interest is thus from a theoretical point of view, while robust
multivariate mean estimation can also be interesting from a practical point of view Diakonikolas
et al. (2017).

The rate obtained in Theorem 7.1 can be decomposed into two terms: a deviation term

El/szQ \/1og(1/6)

where sup,¢cpo »l/ 2vH2 is a weak variance term and a complexity term which is the sum of

a Rademacher complexity E HN*1/2 Zfil €(X; — p¥) ’ and a Gaussian mean width E HEl/QGH.
The intuition behind this rate is explained in Lugosi and Mendelson (2019b), in particular, in
Question 1. We will however show that this rate is not the right one and that the Gaussian
mean width term is actually not necessary. Moreover, we will show that the improved rate can
be achieved by an estimator solution to a convex optimization problem in Section 7.3 and that
this holds even in the adversarial corruption model (see Assumption 7.1 in Section 7.3 below for
a formal definition) and even in some situations where there is not even a first moment; in that
case, u* is a location parameter and X a scatter parameter.

sup
veB®°

The optimality of the rate in Theorem 7.1 has been raised in Lugosi and Mendelson (2019b).
The classical approach to answer this type of question is to consider the Gaussian case that
is when the data X;,i € [N] are i.i.d. N (p*,X). This is also the strategy used in Lugosi and
Mendelson (2019b) to obtain the following deviation-minimax lower bound result!.

Theorem 7.2. [Theorem 8 and first paragraph in p.962 in Lugosi and Mendelson (2019b)] There
exists an absolute constant ¢ > 0 such that the following holds. If ji : RN? — R? is an estimator
such that for all p* € R and all § € (0,1/4),

IP’QZ[

p—pl<r]=1-9

where IP’fy* is the probability distribution of (X;);c(n) when the X; are i.i.d. N'(u*,%) then
supn\/log N(X1/2B°,nBY) + sup

where N(XY2B° nBY) is the minimal number of translated of nBY needed to cover £1/?B°.

The term sup,cg HEl/szQ V10g(1/6) in the lower bound from Theorem 7.2 is obtained in
Lugosi and Mendelson (2019b) from Proposition 6.1 in Catoni (2012) which is a deviation-

the result from Lugosi and Mendelson (2019b) is proved for X = I, it is however straightforward to extend it
to the general case.
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minimax lower bound result holding in the one dimensional case which relies on the fact that the

empirical mean is a sufficient statistics in the Gaussian shift theorem?.

The complexity term sup, - 17\/ log N(X1/2B°,Bg) obtained in Theorem 7.2 follows from
the duality theorem of metric entropy from Artstein et al. (2004) and a volumetric argument in
the Gauss space similar to the one used to prove dual Sudakov’s inequality in p.82-83 in Ledoux
and Talagrand (2011) which has also been used to obtain minimax lower bounds based on the
entropy in Lecué and Mendelson (2013) and Mendelson (2017b).

In general, there is a gap between the upper bound from Theorem 7.1 and the lower bound
from Theorem 7.2 even in the Gaussian case. This gap is characterized by Sudakov’s inequality
(see Theorem 3.18 in Ledoux and Talagrand (2011) or Theorem 5.6 in Pisier (1989)):

supn/log N(SY/2B°,nBg) < cE [ £1/%G| (7.1)
n>0

where G ~ N(0, I;). Indeed, in the Gaussian case the complexity term of the rate obtained in
Theorem 7.1 is the Gaussian mean width, that is the right-hand term from (7.1) whereas the
complexity term from Theorem 7.2 is the entropy, that is the left-hand term in (7.1).

As mentioned in Remark 3 from Lugosi and Mendelson (2019b), when Sudakov’s inequality
(7.1) is sharp then upper and lower bounds from Theorem 7.1 and 7.2 match in the Gaussian case
(in that case the Rademacher complexity is equal to the Gaussian mean width in Theorem 7.1).
Sharpness in Sudakov’s inequality is however not a typical situation. In particular, for ellipsoids,
Sudakov’s bound (7.1) is not sharp in general and therefore the lower bound from Theorem 7.2
fails to recover the classical subgaussian rate for the standard Euclidean norm case (that is for
S = BY) which is given in Lugosi and Mendelson (2019c) by

Tr (3) 13|, log(1/6)
\/ N +\/ ~ : (7.2)

Indeed, when ||-|| is the ¢4 Euclidean norm then E HEI/QGH =E HZUQGHQ ~ /Tr(X) (see, for

instance, Proposition 2.5.1 in Talagrand (2014)). Whereas, for the entropy of »i/2pe = 21/2B§l
w.r.t. nBY, it follows from equation (5.45) in Pisier (1989) that

1/k

sup n\/log2 N(Y/2Bg,nB3) = sup epy1(SV)vVn+ 1~ | sup k Aj (7.3)
n>0 n>1 kE[d} j=1

where (en41(X1/?)), are the entropy numbers of £1/2 : ¢4 — ¢4 (see page 62 in Pisier (1989) for
a definition) and A\; > ... > A\ are the singular values of ¥. In particular, when \; = 1/j, the
entropy bound (7.3) is of the order of a constant whereas the Gaussian mean width is of the
order of \/logd. We will fill this gap in Section 7.2 by showing a lower bound where the entropy
is replaced by the (larger) Gaussian mean width. We will therefore obtain matching upper and

2The argument used in Lugosi and Mendelson (2019b) goes from the one dimensional case studied in Catoni
(2012) to the d-dimensional case. It is given in a none formal way and may require some extra argument to
hold. Indeed the estimator z*(¥y) in Lugosi and Mendelson (2019b) is constructed using the d-dimensional
data X1,..., X~ and not one-dimensional data such as z*(X1),...,z*(Xn). However, the result from Catoni
(2012) holds for estimators of a one dimensional mean using one-dimensional data and not d-dimensional ones.
Nevertheless, Olivier Catoni showed us how to adapt the proof of Proposition 6.1 in Catoni (2012) by using the
sufficiency of the empirical mean in the Gaussian shift model in R? to get this deviation dependent lower bound
term.
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lower bounds revealing that Gaussian mean width is the right way to measure the statistical
complexity for the mean estimation problem w.r.t. any |-||g.

The chapter is organized as follows. In the next section, we obtain the deviation-minimax
optimal rate in the i.i.d. Gaussian case. In Section 7.3 we show that the rate from Theorem 7.1
can be improved and that it can be achieved by a solution to a convex program in the adversarial
contamination model and in under weak or no moment assumptions. All the proofs have been
gathered in Section 7.4.

7.2 Deviation minimax rates in the Gaussian case: benchmark
subgaussian rates for the mean estimation w.r.t. ||

In this section, we obtain the optimal deviation-minimax rates of estimation of a mean vector u*
when we are given N i.i.d. Xi,..., Xy distributed like A'(p*,X) when ¥ > 0 is some unknown
covariance matrix. In the following, IP’{)Q denotes the probability distribution of (X1,..., Xy); it
is a Gaussian measure on R™V? with mean ((u*)7, ..., (#*)") and a block (Nd) x (Nd) covariance
matrix with d x d diagonal blocks given by ¥ repeated N times and 0 outside of these blocks.

Unlike classical minimax results holding in expectation or with constant probability (see
Chapter 2 in Tsybakov (2009)) we want, in this section, the deviation parameter ¢ to appear
explicitly in the minimax lower bound. Moreover, this dependency of the convergence rate with
respect to § should be of the right order given by the subgaussian /log(1/0) rate and not other
polynomial dependency such as /1/6 as one gets for the empirical mean for Ly variables (see
Proposition 6.2 in Catoni (2012)). This subtle behavior of the rate in terms of § cannot be seen in
expectation or constant deviation minimax lower bounds. In particular, this makes such results
(like Theorem 7.3 or 7.4 below) unachievable via classical information theoretic arguments as in
Chapter 2 in Tsybakov (2009).

Fortunately, in Lecué and Mendelson (2013), a minimax lower bound has been proved thanks
to the Gaussian shift theorem which makes the deviation parameter § appearing explicitly in the
minimax lower bound. We use the same strategy here to prove our main result Theorem 7.3
below and its corollary Theorem 7.4 in the classical Euclidean S = BY case.

We consider the general problem of estimating u* w.r.t. ||-||g. Let S C R? be a symmetric
set. We first obtain an upper bound result revealing the subgaussian rate. We use the empirical
mean Xy = N~} >; Xi as an estimator of p*. Using Borell TIS’s inequality (Theorem 7.1 in
Ledoux (2001) or pages 56-57 in Talagrand (2014)) we get: for all 0 < 6 < 1, with probability at
least 1 — 6,

H)_(N - ,uHS = sup(v, Xy — ) < Esup(v, Xy — p) + o54/21og(1/6)

vES veS

where o5 = sup,cg \/ E(v, Xy — u>2 is called the weak variance. It follows that with probability

at least 1 — 9,
(2125)  subucs [2/%0]], VIog(1/5)
v VN
where £*(X1/28) = sup ((G,z) : z € B1/25) = E HEl/zG’ o for G ~ N(0,1;), is the Gaussian

mean width of the set £1/25. In particular, in the case where S = B‘Qi, we recover the subgaussian
rate (7.2) in (7.4). Our aim is now to show that the rate in (7.4) is deviation-minimax optimal.
This is what is obtained in the next result.

(7.4)

i, <
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Theorem 7.3. Let S be a symmetric subset of R? such that span(S) = R, If i : RN — RY is
an estimator such that for all p* € RY and all 6 € (0,1/4],

BN (- g <7 216

. log2 (*(X1/28) SUPues HZ /2 H log( 1/5
r > max | — ,
log(5/4) /N

It follows from the upper bound (7.4) and the deviation-minimax lower bound from Theo-
rem 7.3 that it is now possible to know exactly (up to absolute constants) the subgaussian rate
for the problem of mean estimation in R? w.r.t. |-|g, it is given by

(Z*(El/QS) SUP,cg HZl/QvHQ \/log(1/5)>
max )

then

N T (7.5)

We may identify the two complexity and deviation terms in this rate. In particular, the complexity
term is measured here via the Gaussian mean width of the set £'/2S and not its entropy as
it was previously known following Theorem 7.2. Theorem 7.3 together with (7.4) show that
the right way to measure the statistical complexity in the problem of mean estimation in R%
w.r.t. to any ||-||g is via the Gaussian mean width. This differs from other statistical problems
such as the regression model with random design where the entropy has been proved to be the
right statistical complexity in several examples Mendelson (2017b); Lecué and Mendelson (2013).
Following the later results in the regression model, Theorem 7.3 is a bit unexpected because
one may though that by taking an ERM over an epsilon net of R¢ for the right choice of € one
could obtain a better rate than the one driven by the Gaussian mean width in (7.5); indeed, for
this type of procedure, one may expect a rate depending on the (smaller) entropy instead of the
(larger) Gaussian mean width. Theorem 7.3 shows that this is not the case: even discretized
ERM cannot achieve a better rate than the one driven by the Gaussian mean width in the mean
estimation problem.

An important consequence of Theorem 7.3 is obtained when S = B¢ that is for the problem of
multivariate mean estimation w.r.t. the ¢4-norm which is the problem that has been extensively
considered during the last decade. In the following result, we recover the well-known subgaussian
rate (7.2) showing that all the upper bound results where this rate has been proved to be achieved
are actually deviation-minimax optimal and therefore could not have been improved uniformly
over all u* € R%.

Theorem 7.4. If ji : RN? = R is an estimator such that IP)L\Q [l —p*lly <7*] > 1 =6 for all
p* € R and all § € (0,1/4], then

. 1 [ log2 \/ﬂ(z) 1\/IIEHoplog(1/5)
=M 210g5/a) | TN 12 N ‘

Given that the empirical mean Xy is such that for all 4 € R? with IP’fy -probability at least

1-4,
K- u], < \/ () , \/2 =1y (1)

we conclude from Theorem 7.4 that the sub-gaussian rate (7.2) is the deviation-minimax rate of
convergence for the multivariate mean estimation problem w.r.t. ¢4 and that it is achieved by
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the empirical mean. In particular, there are no statistical procedure that can do better than
the empirical mean uniformly over all mean vectors u* € R? up to constant, this includes in
particular all discretized versions of X .

7.3 Convex programs

In this section, we introduce statistical procedures which are solutions to convex programs and
which can achieve the rate from Theorem 7.1 without the unnecessary Gaussian mean width

term E ’ »12G H We also show that these procedures handle adversarial corruption and may
still perform optimally in some situations where there is not even a first moment.

7.3.1 Construction of the Fenchel-Legendre minimum estimators.

Definition 7.1. Let S be a subset of R? and f : R® — R. The Fenchel-Legendre transform of f
on S is the function f% defined for all p € R? by f&(u) = sup,eg ({1, v) — f(v)).

For our purpose, the main property of a Fenchel-Legendre transform we will use is that it is
a convex function as it is the maximal function of the family (u € R? — (u,v) — f(v) : v € S) of
linear functions.

We are now defining two examples of functions such that by taking the minimum of their
Fenchel-Legendre transform over S will lead to optimal estimators of pu* w.r.t. ||-||g. The
construction of these two functions are based on the median-of-means principle: the dataset
{Xy,..., Xn} is split into K equal size blocks of data indexed by (By)x forming an equipartition
of [N]. On each block, an empirical mean is constructed Xj, = [Bi|™' Y ;cp Xi. The two
functions we are considering are using the K bucketed means (X}); and are defined, for all
v e R, by

!
k|

f(v) > <Xk,v>?k) and g(v) = Med((Xy,v)) = <Xk,v>f@) (7.6)

kel 2

where if a;, = (Xy,v), k € [K] then <)_(k,v>zﬁk),k: € [K] are the rearrangement of (ay)x such
that cf("l) <...< a’(“K) (this is the rearrangement of the values a;’s themselves and not of their
absolute values) and

, K+1 3(K+1)] {K+1 K+1}
K: =

4 Ty FhRE0Le e

is the inter-quartiles interval — w.l.o.g. we assume that K 41 can be divided by 4. In other words,
f(v) is the average sum over all inter-quartile values of the vector ((Xj,v))ye(x) and g(v) is the
median of this vector. Note that both functions f and g are homogeneous i.e. f(6v) = 0f(v) and
g(0v) = 0g(v) for every v € R and @ € R and in particular they are odd functions; two facts we
will use later.

We are now considering the Fenchel-Legendre transform of the functions f and g over a
symmetric set S:

fipeR— 816115) ({p,v) — f(v)) and g : p € R — 816115) ((p,v) — g(v)) . (7.7)

As mentioned previously the two functions f¢ and gg are convex functions. We are now using
them to define convex programs whose solutions will be proved to be robust and subgaussian
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estimators of the mean / location vector p* w.r.t. ||-|| g
ﬂé € argmin f¢(p) and 4 € argmin g§(p). (7.8)
nERA HERA

For some special choices of S, the Fenchel-Legendre minimization estimator ﬂ% coincides
with some classical procedures. This is for instance the case when S = B{ (the unit ball of the
¢¢-norm) or S = BY. Indeed, when S = B{, i is the coordinate-wise Median of Means:

= avgmin max|p; —Med ((%i.ey))| = (Med ((Fiep)) g €l0)  (79)

where (ej)?zl is the canonical basis of R?, because |- g = ||-|| conv(s) Where conv(S) is the convex
hull of S and so one may just take S = {%e; : j € [d]}. It is therefore possible to derive
deviation-minimax optimal bounds for the coordinate-wise Median of Means w.r.t. the ¢4 -norm
from general upper bounds on 2% since in that case ||||g = |||l -

In the case S = B¢ (that is for the mean/location estimation problem w.r.t. £2), the Fenchel-
Legendre minimum estimator 4% is a minmax MOM estimator Lecué and Lerasle (2020). This
connection allows to write 44, (as well as ﬂé) as a non-constraint estimator, it also shows that
this minmax MOM estimator is actually solution to a convex optimization problem and how

minmax MOM estimator can be generalized to other estimation risks.

Minmax MOM estimators have been introduced as a systematic way to construct robust and
subgaussian estimators in Lecué and Lerasle (2020). They have been proved to be deviation-
minimax optimal for the mean estimation problem in Lerasle et al. (2019) w.r.t. |-||,. Their
definition only requires to consider a loss function; here we take for all ; € RY, bz € R? —
|z — ,qu and the minmax MOM estimator is then defined as

fi € argmin sup Med (Pp, (¢, — 4,) : k € [K]) (7.10)
ueERE  peRd
where Pp, is the empirical measure on the data in block Bj. The minmax MOM estimator /i

was proved to achieve the subgaussian rate in (7.2) with confidence 1 — § when the number of
blocks is K ~ log(1/d) and K 2 |O] in Lerasle et al. (2019).

Even though the minmax formulation of i suggests a robust version of a descent/ascent
gradient method over the median block (see Lecué and Lerasle (2020); Lerasle et al. (2019)
for more details), no proof of convergence of this algorithm is known so far. Moreover, the
main drawback of the minmax MOM estimator seems to be that it is solution of a non-convex
optimization problem and may therefore be likely to be rather difficult to compute in practice.
In the next result, we show that this is not the case since the minmax MOM estimator (7.10) is
in fact equal to ﬂ% for S = BY and it is therefore solution to a convex optimization problem.

Proposition 7.1. The minmaz MOM estimator fi defined in (7.10) satisfies fi € argmin ,cga gpq(4)-
2

The minmax MOM estimator is therefore solution to a convexr optimization problem.

Proof. ~We show that ji € argmin, cgasupj,,— Med((X) — p,v)). We consider the
quadratic/multiplier decomposition of the difference of loss functions: for all p,v € R? and
x € RY, we have (£, —0,)(zx) = ||z — pl3 — |z — v|3 = —2(x — p, s — v) — ||u — v||3. Hence, for
all 1 € R?, we have

sup Med (Pp, (¢, — () = sup (—2Med((Xy, — p,j1 = v)) — |l — v/13)
veERL veERL

2
= sup sup (20 Med({ Xy, — p,v)) — 92> = sup (Med(<Xk — u,’u>))2 = < sup Med(( Xy — u,v>)> )
llv]l ;=1 620 llv]l =1 llvll;=1
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We conclude since

2
argmin ( sup Med({X}, — ,u,v>)> = argmin sup Med <<Xk - u,v>> .
peERT  \[lvll,=1 peERL  lvlly=1

It follows from Proposition 7.1 that the minmax MOM estimator f is solution to a convex
optimization problem. This fact is far from being obvious given the definition of i in (7.10).

Proposition 7.1 suggests a new formulation for g and ﬂé. It is indeed possible to write
these estimators as regularized estimators instead of their original constraint formulation (note
that the Fenchel-Legendre transforms in (7.7) are suprema over S and are therefore constraint
optimization problems). We now show that we may write them as suprema over all R? if we add
an ad hoc regularization function.

Let us introduce the two following functions which may be seen as regularized versions of the
two f and g functions from (7.6): for all v € R,

2 2
Fs(v)=f(v)+ HV4|:|S and Gg(v) = g(v) + HV4|:|S (7.11)

We also consider their Fenchel-Legendre transforms over the entire set R%: for all u € R?,

Fi(p) = sup, ((u,v) — Fs(v)) and Gg(p) = sup ((u,v) = Gs(v)).

The next result shows that the later two Fenchel-Legendre transforms can be used to define
the two estimators ,&é and ﬂg. The proof of Proposition 7.2 is similar to the one of Proposition 7.1
where the ¢>-norm is replaced by ||-||g and is therefore omitted.

Proposition 7.2. Let S be a symmetric subset of R? such that span(S) = R%. We have

ﬂé € argmin,,cga Fg(p) and i% € argmin,,cga G5(11).

As a consequence of Proposition 7.2, one can write the two estimators ﬂé and i as solutions

to unconstrained minmax optimization problems like the minmax MOM estimator (7.10) and in
particular, one may design an alternating ascent/descent sub-gradient algorithm similar to the
one from Lecué and Lerasle (2020) — we expect the one associated with ,&é which uses half of
the dataset at each iteration to be more efficient than the one associated with i which uses
only the N/K data in the median block at each iteration. That is the reason why we provide in
Figure 13 this algorithm only for

{0 3 1 o * v 2
v (w1, ).
peRd  veRA k| o7

We also recall that by the Danskin-Bertekas theorem the subgradient of ||-||¢ at ¥ € R? when S
is a compact and non empty set is given by the convex hull of all z € S such that |v| ¢ = (z,v).
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input :the data Xi,..., Xy, a number K of blocks, two decreasing steps size sequences
(n¢)t, (0¢): C R% and € > 0 a stopping parameter

output : A robust estimator of the mean p

Construct an equipartition By U---U Bg = {1,--- , N} at random

Construct the K empirical means X = (N/K) >ien, Xirk € [K]

Compute (9 the coordinate-wise median-of-means and put £ = i and (@ = z©)

while H,u(t) — M(HI)HS > e do

AW N =

Construct an equipartition By U--- U Bg = {1,--- , N} at random

6 Construct the K empirical means X = (N/K) >ien, Xisk € [K]
Find the inter-quartile block numbers k1, ..., k(x11y/2 € [K] such that
(K+1)/2

foW) = — > <Xk]-,V(t)>'

J=1

Construct ¢*) a subgradient of ||| ¢ at v} and the ascent direction

(t+1) (t) 1 R Hy(t)Hsg(t)
VI = Y Xy~
j=1

Update vt « p® 4 TItVI(/tH).

8 Make one descent step: p(+t1) « p() — g,p(t+1),
9 end
10 Return p(+1)

Algorithm 13: An alternating ascent/descent algorithm for the robust mean estimation
problem w.r.t. ||-||g with randomly chosen blocks of data at each step.

7.3.2 The adversarial corruption model and two models for inlier.

In this section, we introduce the assumptions under which we will obtain some statistical upper
bounds for the Fenchel-Legendre minimum estimators introduced above. We are considering two
types of assumptions: one for the outliers which will be the adversarial corruption model and one
for the inlier which will be either the existence of a second moment or a regularity assumption
on a family of cdf around 0. We start with the adversarial corruption model.

Assumption 7.1. There exists N independent random vectors (Xi)ﬁl in R, The N random
vectors (X;)N., are first given to an “adversary” who is allowed to modify up to |O| of these
vectors. This modification does not have to follow any rule. Then, the “adversary” gives the
modified dataset (X;)N.| to the statistician. Hence, the statistician receives an “adversarially”
contaminated dataset of N wvectors in R% which can be partitioned into two groups: the modified
data (X;)ico, which can be seen as outliers and the “good data” or inlier (X;);er such that
Vie I, X; = X,. Of course, the statistician does not know which data has been modified or not
so that the partition OUZ = {1,..., N} is unknown to the statistician.

In the adversarial contamination model from Assumption 7.1, the set O C [N] can depend
arbitrarily on the initial data (X;),; the corrupted data (X;)ico can have any arbitrary
dependence structure; and the informative data (X;);c7r may also be correlated (for instance, it
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is, in general, the case when the |O| data X; with largest Eg—norm are modified by the adversary).
The adversarial corruption model covers the Huber e-contamination model Huber and Ronchetti
(2009) and also the O UZ framework from Lecué¢ and Lerasle (2019); Lecué and Lerasle (2020);
M. Lerasle and Lecué (2017).

Assumption 7.1 does not grant any property of the inlier data (Xi)ie[ N] except that they are
independent. We will obtain a general result under only Assumption 7.1 in Section 7.4. However,
to recover convergence rates similar to the one in Theorem 7.1 or the subgaussian rate in (7.5),
we will grant some assumptions on the inlier as well. We are now considering two assumptions
on the inlier which are of different nature.

The two assumptions on the inlier we are now considering are related to a subtle property of
the Median-of-Means (MOM) principle which somehow benefits from its two components: the
empirical median and the empirical mean. Indeed, MOM is en empirical median of empirical
means and so if we refer to the classical asymptotic normality (a.n.) results of the empirical
mean and the empirical median, the first one holds under the existence of a second moment and
the second one holds under the assumption that the cdf is differentiable at the median with
positive derivative at the median (see Corollary 21.5 in van der Vaart (1998)). We therefore
recover these two types of assumptions when we work with estimators using the MOM principle.
A nice feature of MOM based estimators is that their estimation results hold under either one
of the two conditions and do not require the two assumptions to hold simultaneously. We can
therefore consider the two assumptions independently and get two estimation results for the
Fenchel-Legendre minimum estimators introduced above (which are based on the MOM principle).
We start with the moment assumption.

Assumption 7.2. The N independent random vectors (X) ~, have mean p* and there exists a
SDP matriz ¥ € R such that B(X; — p*)(X; — p*)T < 2.

Most of the statistical bounds obtained on MOM based estimators have focused on the
heavy-tailed setup and have therefore consider Assumption 7.2 as their main assumption. This is
the ’empirical mean component’ of the MOM principle which has been the most exploited so far.
It is however also possible to use the ’empirical median component’ of the MOM principle to get
statistical bounds in cases where a first moment does not even exist. In that case, u* is called a
location parameter and X a scale parameter. Also, a natural assumption is similar to the one used
to get the a.n. of the empirical median, that is an assumption on the cdf at the median adapted
to the multidimensional and non-asymptotic setup. We are now introducing such an assumption.

Assumption 7.3. The inlier data (X;)N, are i.i.d.. There exists u* € R? and two absolute
constants cg > 0 and c¢1 > 0 such that the following holds: for all v € S and all 0 < r < ¢,
Hy ko(r) < 1/2 = cir where

N/K

Z( —pt o)y >r|. (7.12)

Hy k(1) =

VN / K

A typical example where Assumption 7.3 holds is when S = Sg_l (that is for the location
estimation problem w.r.t. the Euclidean ¢4 norm) and the X,’s are rotational invariant that
is when for all v € Sg_l, (X4 - p*,v) has the same distribution as (X; — p*, e1) where e; =
(1,0,...,0) € R% In that case, X; has the same distribution as y* + RU where R is a real-valued

random variable on Ry independent of U a random vector uniformly distributed over Sgil. In
that case and for K = N, for all v € Sg_l and all r € R,

—+00

r |z U

Hy g=Ny(r)=H(r) :=P[R{U,e) >r| = f(z)dx where f: 2z € R — Cy /+OO E (1 — 2) N dPr(u),
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Pp is the probability distribution of R and Cy is a normalization constant which can be proved

to satisfy vd < Cy < 6V/d (see for instance, Chapter 4 in Bryc (1995)). In particular, it follows

from the mean value theorem that for all » > 0, H(r) < H(0) — minp<gz<, f(z)r = 1/2 — f(r)r.

Therefore, Assumption 7.3 holds in that case when there exists constants ¢, ¢j > 0 such that

f(cp) > ¢y, which in turn holds when there exists constants cg, ¢c; > 0 such that H(cp) < 1/2—¢;.
Furthermore, we have, for all £ > 0

P[R(U, e1) > co] < P[(U,e1) > t/Vd] + %IP’[R > coVd/1]

<e R4 %IP’[R > coVd/t),

where the classical second inequality can be found for instance in Vershynin (2018), Chapter
5. So if for some constants ¢y, ¢; > 0, bP[R > 60\/@ < 1—¢1, then Assumption 7.3 holds. This is
for instance the case, when R is distributed like |G|, for G ~ N(0, I4) (by Borell-TIS inequality)
but as well when R is the positive part of a Cauchy variable for instance. As a consequence,
Assumption 7.3 has nothing to do with the existence of any moment and it may hold even when
there is not a first moment and even for K = N.

Another example where Assumption 7.3 holds, that we will use in the following to obtain
statistical bounds for the coordinate-wise median of means for the location problem is when
S ={+e;:j€[d}and X; = u* + Z where Z = (zj);lzl is random vector in R? with coordinates
21, ...,z having a symmetric around 0 Cauchy distribution. In that case, X; does not have a
first moment and p* is a location parameter as the center of symmetry of the distribution of X;.
We have for all j € [d],

1 r
< Z_
2 7

HN K=Nxe;(T) I]P’Rfﬁ—u* +ej) >r} =P[z; > 7] :/+Oo dx _r L
A=AV, ’ 1/ = J = , ﬂ( (1—}-7‘2)_2 o

1+ 22)

for all 0 < r < 1. Therefore, Assumption 7.3 holds in that case as well.

7.3.3 Statistical bounds for i and p
In this section, we obtain estimation bounds w.r.t. ||| for ﬂf; and A in the adversarial contam-

ination model with either the Ls moment Assumption 7.1 or the regularity at 0 Assumption 7.3.

Estimation properties of ﬂg and /i under Assumption 7.2. In this section, we obtain

high probability estimation upper bounds satisfied by [Lé and 2, w.r.t. ||]|g in the adversarial
contamination and heavy-tailed inlier model. The rate of convergence is given by the quantity

T = max (%E‘ ,itelg H21/2UH2 N(M]\f() . (7.13)

The key metric property satisfied by the two Fenchel-Legendre transforms f§ and g% in the
adversarial contamination and heavy-tailed inlier model is the following isomorphic result.

1 -
— > Gi(Xi_H*)|
\/ﬁz’e[N]

S

Lemma 7.1. Grant Assumption 7.1 and Assumption 7.2. Let S be a symmetric subset of
R%. Assume that |0 < K/16. With probability at least 1 — exp(—K/512), for all p € RY,

195 (1) — [l = p*llsl < g5(p*) < 7§ and [f5(1) — [ — p*lls] < f5(p) < 7§

Lemma 7.1 shows that if || — p*||g > 2rg then || — p*|lg < g&(p) < 2||p — p*||g and the
same holds for f&. It means that both g% and f§ are two convex functions equivalent (up to
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absolute constants) to p — ||u — u*||g on R%\(2r%)Bg, where By is the unit ball associated with
|-|lg and, on (2r§)Bs, they are both smaller than 2r§. Hence, both g§(- — p*) and f&(- — pn*)
provide a good approximation of the metric space (R, ||-|| g)- In particular, any minimum of g%
and f§ will be close (up to r§) to a minimum of 4 — ||u — p*||g which is p*. This explains the
statistical properties of ﬂg and ﬂ%: from Lemma 7.1,

*

< fERL) + FEt) < 275(ut) < 2%

Hﬂg—ﬂ S

and the same holds for 4. This leads to the following result.

Theorem 7.5. Grant Assumption 7.1 and Assumption 7.2. Let S be a symmetric subset of R%
and r§ be defined in (7.13). For all K > 16|0|, with probability at least 1 — exp(—K/512),

s — || < 205 and Nl — g < 2r%

The rate r5 obtained in Theorem 7.5 can be split into two terms: the complexity term given
by the Rademacher complexity and a deviation term exhibiting the weak variance term as in
the Gaussian case. Compare with Theorem 7.1 from Lugosi and Mendelson (2019b), this result
shows that the Gaussian mean width term appearing in Theorem 7.1 is actually not necessary, it
also shows that this improved rate can be obtained by a procedure solution to a convex program
and that it can also handle adversarial corruption. When S = B, we recover the classical
subgaussian rate because in that case the Rademacher complexity term in 7% is less or equal to

Tr(X), see Koltchinskii (2006). In particular, since 4% is the minmax MOM estimator in that
case, we recover the main result from Lerasle et al. (2019).

Estimation properties of /i, under Assumption 7.3. In this section, we consider some
cases where a first moment may not exist; in that case, u* is a location parameter so that
Assumption 7.3 holds. The rate of convergence we obtain in that case is given by

Co [d+1 [u |O|
o Y - - _ S s B
" “ ( ) aVvVKN (7.14)

where ¢; is the absolute constant from Assumption 7.3, Cj the absolute constant from (7.28)
and v > 0 a confidence parameter.

The following result is an isomorphic result satisfied by the Fenchel-Legendre transforms gg
under Assumption 7.3. It is similar to the one of Lemma 7.1 but with the rate r°.

Lemma 7.2. Let S be a symmetric subset of R?. Grant Assumption 7.1 and Assumption 7.3
for some K € [N]. Let u > 0. Assume that Cj (\/(d—i— 1)/K + \/u/K) + |O|/K < coper. With
probability at least 1 — exp(—u), for all p € R, |g&(p) — |p — p*|l gl < r°.

As explained below Lemma 7.1, a result such as Lemma 7.2 may be used to upper bound the
|ll¢ distance between A, a minimum of g%, and p*, a minimum of u — ||u — p*||g. This yields
to the following result.

Theorem 7.6. Let S be a symmetric subset of R%. Grant Assumption 7.1 and Assumption 7.3
for some K € [N]. Let u > 0 and assume that C <\/(d+ 1)/K + \/u/K> +]0|/K < coey. With
probability at least 1 — exp(—u), ||i% — p*||g < 2r° where r° is defined in (7.14).
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Unlike Theorem 7.5, Theorem 7.6 may hold even when there is not a first moment. The
result from Theorem 7.6 holds for all 0 < u < K whereas Theorem 7.5 holds only for u = K
(even though one may use a Lepski’s adaptive scheme to chose adaptively K in that case).
The price for adversarial corruption in (7.14) is between |O|/N (for K ~ N) and +/|O|/N (for
K ~ |0]). It therefore depends on the choice of K for which Assumption 7.3 holds. As shown
after Assumption 7.3 for spherically symmetric random variables one can take K = N and so the
best possible price |O|/N for adversarial corruption may be achieved even when a first moment
does not exist. If one needs some averaging effect so that Theorem 7.6 holds, then one should
take K as small as possible that is K ~ |O| and then /|O|/N will be the price for adversarial
corruption as in the Lo case described in Theorem 7.6.

Subgaussian rates under weak or no moment assumption. It is possible to recover (up
to absolute constants) the subgaussian rate (7.5) in Theorem 7.5 for K ~ log(1/d) when the
Rademacher complexity term from (7.13) and the Gaussian mean width from (7.5) satisfy

E <o (21/25) . (7.15)

1 -
— ) (X — )
\/Nz‘e[N] IS

Such a result (i.e. Rademacher complexity is smaller than the Gaussian mean width up to
constant) depends on the set S and the number of moments granted on the X;’s as well as
the sample size. It obviously holds when the X;’s are i.i.d. N (u*,X), so that we recover the
deviation-minimax optimal subgaussian rate (7.5) in that case. It is also true when the X;’s are
subgaussian vectors. There are other situations under weaker moment assumption where (7.15)
holds.

For instance, when S = BY, (7.15) holds under only a Ly-moment assumption (see Koltchinskii
(2006)). It also holds for S = B¢ when the X;’s are isotropic with coordinates having logd

subgaussian moments (i.e. |[(X;,e; < Lpforalll <p<logdandj€|[d])and N = logd.
aairs
P

Together with (7.9) and Theorem 7.5, this implies that the coordinate-wise MOM is a subgaussian
estimator of the mean under a log d subgaussian moment assumption. Upper bounds such as
(7.15) have been extended in Mendelson (2017¢) to general unconditional norms.

It is also possible to recover the subgaussian rate (7.5) in situations where there is not
even a first moment thanks to Theorem 7.6. Indeed, for the case S = B and X; = p* + Z
where Z = (zj)}i:l has symmetric around 0 Cauchy distributed coordinates, we showed that
Assumption 7.3 holds for K = N and that 4 is the coordinate-wise median (here K = N) in
(7.9). It follows from Theorem 7.6 that, when d < N and |O] < N then for all d < u < N, with
probability at least 1 — exp(—u),

. d+1 u 27| O|
g _ % <
4% — 1™l <2Co (1/ N +4/ .”) + N (7.16)

which is the deviation-minimiax optimal subgaussian rate (7.5) we would have gotten if the X;
were i.i.d. isotropic Gaussian vectors centered in p* corrupted by |O| adversarial outliers (up
to absolute constants). But here, (7.16) is obtained without the existence of a first moment.
Moreover, in (7.16), the number of outliers is allowed to be proportional to N and the price for
adversarial corruption is of the order of |O|/N which is the same price we have to pay when
inlier have a Gaussian distribution — this differs from the /|O|/N information theoretical lower
bound that has been obtained for some non-symmetric inlier. Furthermore, the computational
cost of the coordinate-wise MOM is O(Nd) since the cost for computing the bucketed means
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is O(Nd), the one of finding the median of K numbers is O(K), see Blum et al. (1973), it is
therefore the same computational cost as the one of the empirical mean. It is therefore possible
to achieve the same computational and statistical properties as the empirical mean in a setup
where a first moment does not even exist.

7.4 Proofs

Proof of Theorem 7.3. The minimax lower bound rate r* exhibits two quantities: one which
is a complexity term depending on the Gaussian mean width of /25 and a deviation term
depending on §. The two terms come from two arguments. We start with the deviation term.

Let v; € R? be such that [v1]|g = 1. We consider two Gaussian measures on R¥: Py =
N(0,2)®N and P; = N (3r*vy, £)®V. They are the distributions of a sample of N i.i.d. Gaussian
vectors in R? with the same covariance matrix ¥ and the first one with mean 0 and the second one
with mean 3r*v;. We set Ag = ()" (Bs(0,7*)) = {(21,...,zn) € RN ||a(21, ..., 2n)|lg < 7*}
and A; = (1) ~1(Bg(3r*vy, r*)). It follows from the statistical properties of fi that Pg[Ag] > 1—6
and Pl[Al] Z 1-6.

The key ingredient for the deviation lower bound term is a slightly generalization of Lemma 3.3
in Lecué and Mendelson (2013) which is based on a version of the Gaussian shift Theorem from
Li and Kuelbs (1998).

Lemma 7.3. Let t — ®(t) = P(g < t) be the cumulative distribution function of a standard
gaussian random variable on R. Let So = 0 be in RND*WND) gnd v e R, Let two gaussian
measures vy, ~ N (u, X)) and v, ~ N(v,%g) on RN, If A ¢ R is measurable, then

vo(A4) = 1= (@7 (1= vy (4)) + 25 (u = v)]l2) (7.17)

/2

where 261 1s the square root of the pseudo-inverse of Xg.

Proof of Lemma 7.3. When ¥y = Iyg4, Lemma 7.3 is exactly Lemma 3.3 in Lecué and

Mendelson (2013) for o = 1. To prove Lemma 7.3, we observe that v,(A) = P[G + 261/22} € B|
where B = ¥, /24 and G is a standard Gaussian variable in Im(Xp). Hence, it follows from
Lemma 3.3 in Lecué and Mendelson (2013) that

PG+ 3y v e Bl >1- @@ (1 - PG + 35 u € B]) + 55 (u— v)ly)

which is exactly (7.17). |
It follows from Lemma 7.3 that

Pi[Ag] = 1 - @ [®71(1 — Po[Ao]) + |25 /(0 = 3wy, 3rv)| ] (7.18)
Moreover, we have ®~1(1 — Py[Ag]) < ®1(5) (because 1 — Py[4q] < J) and

HZal/Q(O — (3r*vy, ... ,37’*1}1))H2 =3r*vVN "271/201“ (7.19)

.

As a consequence, if 3r*v/N HE_I/Qlez < —®71(§) then, in (7.18), we get Py [Ag] > 1—®[0] > 1/2

which is not possible because P1[41] > 1 — 6 > 3/4 and A; N Ayg = (). As a consequence, we
—1

necessarily have 3r*vN > (—®~1(9)) “2*1/201“2 . The later holds for any v; € R? such that

|v1]lg = 1 hence 3r*v/N > (—@*1(6))[1/inf”v”S:1 HE*1/21)H2]. It also follows from the bound on
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the Mill’s ratio from Komatu (1955) (here we use that for all x > 0, ®(—z) > 2p(x)/V4 + 22 + x
where ¢ is the standard Gaussian density function) that for all 0 < § < 1/4, —®~1(5) >

1/44/log(1/d). This shows that

« 1 [log(1/0) 1
TERNTN by o, (7:20)
llolls=1 2

To conclude on the deviation term, we use the following duality argument.

Lemma 7.4. Let A € R¥™4 be a symmetric and invertible matriz. Let ||-|| be a norm and its
dual norm ||-|* on RY. Let S be a symmetric subset of R? such that span(S) = R, We have

1
> sup ||Aw]|".
S

inf =1 A7l 7~ we

s

Proof of Lemma 7.4. Let v be such that [|v]¢ = 1 and w € S. We have |(v,w)| <1
and so [(A7lv/||A7 ||, Aw)| < 1/ ||A7 0||. The later holds for all v such that |jv||g = 1 and
{A7 '/ ||A || : [|Jv]|g = 1} is the unit sphere of ||-||. Hence, we conclude by taking the sup over
v such that ||v||g =1 and w € S. ]

It follows from (7.20) and Lemma 7.4 for ||-|| = ||-||, and A = £1/2 that

N 1 [log(1/9) 1/2
> =2 7
T 121/ N S}Lé}; ’Z wH2. (7.21)

Let us now turn to the second part of the lower bound; the one coming from the complexity
of the problem (here, it is the Gaussian mean width of $'/2S). We know that /i is an estimator
such that for all ;4 € R, ]P’ﬁ[ [l — pllg < 7*] > 1 — 6 which is equivalent to say that

0 > sup Eﬁ[(b (HM_*MHS) (7.22)
MERd T
where we set ¢ : t € R — I(t > 1) and IEZY is the expectation with respect to X1,... Xy i

N(u,¥). Next, we consider a Gaussian distribution v over the set of parameters u € R%: for
s > 0, we assume that u ~ N (0, sX). It follows from (7.22) that

¥
(7.23)
In other words, we lower bound the minmax risk by a Bayesian risk. We now use Anderson’s
lemma to lower bound the Bayesian risk appearing in (7.23). We first recall Anderson’s Lemma.

Theorem 7.7 (Anderson’s Lemma). Let T' be a semi-definite d x d matriz and Z ~ N(0,T).
Let w: RY — R be such that all its level sets (i.e. {x € R?: w(x) < c} for c € R) are convex and
symmetric around the origin. Then for all x € R?, Ew(Z + z) > Ew(Z).

We remark that g — E[u|Xq,. .., Xy] is distributed according to N(0, (s/(1 + Ns)X)) condi-
tionally to X1, ..., Xxn. Therefore, applying Anderson’s Lemma conditionally to X1, ..., Xy, we
obtain in (7.23) that

§>E {qﬁ (HE[M\XL o, XN] — MHS)] _p

T.*

=26l =
S S

14+ Ns *]
r
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where G ~ N(0,1;). This result is true for all s > 0 so taking s 1 +00, we obtain
5= P[22, = V],

Using Borell-TIS’s inequality (Theorem 7.1 in Ledoux (2001) or pages 56-57 in Talagrand
(2014)), we know that with probability at least 4/5, HEI/QGHS >E HZI/QGHS — 05v/21og(5/4)
where we set og = SUP||y| =1 HEU%HQ. As a consequence, for § = 1/4, we necessarily have
VNr* > EH21/2GHS — 05+/2log(5/4) and so V/Nr* > (1/2)EH21/2GHS when EH21/2GHS >
205+/21og(5/4). Finally, when E HZI/QGHS < 20g+/2log(5/4), we know from (7.21) for § = 1/4

that
i 1 flogd 1 | log2 EHEUQGHS
T - g - .
12\ N 7% 7 24\ log(5/4) VN

Proof of Theorem 7.4. Theorem 7.4 follows from Theorem 7.3 and the following lower bound
on E HEI/QGHBd‘ We have from Borell-TIS’s inequality that
2

2

B[s2al, - (= al,)” < B (=], -2 %], )

- [ el -2l |2 v

where 01293 = SUP)||y||,=1 HEl/Qsz = [|Z]|,,- Since E HEl/QGHz = Tr(X), we have (]E HEUZGH2>2 >
Te(S) - 2|, Therefore, E H21/2GH2 > \/Tr()/2 when Tr(E) > 4|, and when Tr(E) <

4[/%]|,,, we use the lower bound from (7.21) and an argument similar to the one appearing in
the end of the proof of Theorem 7.3 to get the result. [ |

Proof of Lemma 7.1. We first prove the result for the gg function. The one for the f¢ is
similar up to constants and will be sketched after. The proof of Lemma 7.1 for the gg function is
a corollary of the general fact which holds under only Assumption 7.1. Let u > 0 be a confidence

parameter and define R such that
2u R |N O] 1
— H =S = — < - 7.24
VR T N’K’”<2\/K>+K<2 (7.24)
S

Let us show that with large probability for all u € RY, |g5(u) — ||u — p*||g] < RE.

4
VNE;,

Z 62'(5(@' — 1)

1
Ell——
| \/NiE[N}

We have for all € R?,

195(1) — [l = w*llsl = |sup ((u,v) — g(v)) —sup(v, p — p*)| < sup [{",v) — g(v)| = g5(n")
veS vES vES

(7.25)
where we used that S is symmetric and g is odd. It only remains to show that ¢g&(u*) < R§ with

large probability. To that end, it is enough to prove that, with large probability, for all v € S,

v * * K
> I((Xy — p*v) > R) < o> (7.26)
ke[K)
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We use the notation introduced in Assumption 7.1 and we consider Xj, = 1Bl ™ Yicn, X; for

k € [K] which are the K bucketed means constructed on the N independent vectors X;,i € [N]
before contamination (whereas X}, are the ones constructed after contamination). We also set
K ={k € [K]: BN O = ()} the indices of the non corrupted blocks. We have

Z I(<Xk_,u*vv> > RZ”) = ZI(<XI<:_M*7U> >R§)+ ZI(<XI<:_M*7U> >R*S)

ke[K] ke k¢K
< Y I(Xk—ptv) > RE) +10]. (7.27)
ke[K]

It only remains to show that with probability at least 1 — exp(—u), for all v € S,

Ry |N
+V2uK+KsupHn ko | 24/ ] -
s veS ’ 2 K

We define ¢(t) =0ift <1/2, ¢(t) =2(t —1/2)if 1/2 <t <1 and ¢(t) =1if t > 1. We have
It>1) < ¢(t) <I(t>1/2) forallt e R and so

3 I((X) — u,0) > RY)

4K
S I({(X—p*,v) > RY) <

Z 62 i *
ke[K] \/>RS N

i€[N]

kE[K]

< 3 I(Xg - p,0) > RE) — P(Xj — ", 0) > R/2) + (X, — u*,0) > R%/2)
ke[K]
<Y o (R“>> ~Es (<X’“_”>) FRIRe— ') > Ry/2)
ke[K] S s

w*v) <§k — p*,v) Rj‘g\/ﬁ
§ilelg(z ¢<S)—E¢ (%))+K§EEHN,K,1;( 9 E .

Next, we use several tools from empirical process theory and in particular, for a symmetrization
argument, we consider a family of N independent Rademacher variables (¢;)¥ ; independent of the
(X;)Y,. In (bdi) below, we use the bounded difference inequality (Theorem 6.2 in Boucheron et al.
(2013)). In (sa-cp), we use the symmetrization argument and the contraction principle (Chapter 4
in Ledoux and Talagrand (2011)) — we refer to the supplementary material of M. Lerasle and
Lecué (2017) for more details. We have, with probability at least 1 — exp(—u),

(5 () ()

Y Esup ( > ¢ (M* v>) —E¢ (<Xk ;%*H*’w)) + V2uK

vES S S
(sa—cp) 4K ~
< —Esup(v, Y (X; —p*)) + V2uK
NRS veS ZG[N]
4K
= Z (X — )| +V2uK
\/NRS \/> 1€[N] S

We therefore showed that under Assumption 7.1, with probability at least 1 — exp(—u), for
all 11 € RY, |g5(u) — [l — po*ll | < R
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Now, if Assumption 7.2 holds then for all v € S, we have from Markov’s inequality that

X 2
Ry |N E(X}, — u,v>2 AKu TSy AKsup,cg ’21/%“
Hy ko | = 7 < _ <

2 <

col

2 (r5/2)? N(rg)* — N(rg)?

and therefore (7.24) holds for R = 7§ when |0 < K/8 and v = K/128. This proves the result
of Lemma 7.1 for g§ under Assumption 7.2.

Finally, for the function f& one needs to control the average of the K /2 inter-quartiles. One
way to do it is to control the value of all elements <X k — p*,v) in the inter-quartiles interval.
This can be done by defining an R§ similar to the one in (7.24) but where the right-hand side
value 1/2 is replaced by 1/4 in (7.24). This only modifies the absolute constants which are the
one used in Lemma 7.1. [ |

Proof of Lemma 7.2. Unlike in Lemma 7.1 where we used the Rademacher complexities as
a complexity measure, in this proof, the complexity measure we are using is the Vapnik and
Chervonenkis (VC) dimension Vapnik and Chervonenkis (2015); Vapnik (2000) of a class F of
Boolean functions, i.e. of functions from R? to {0,1} in our case. We recall that the Vapnik and
Chervonenkis dimension of F, denoted by VC(F), is the maximal integer n such that there exists
1, ..., T, € R? for which the set {(f(z1),..., f(xn)) : f € F)} is of maximal cardinality, that is
of size 2". The VC dimension of the set of all indicators of half affine spaces in R? is d + 1 (see
Example 2.6.1 in van der Vaart and Wellner (1996)). We also know (see, for instance, Chapter 3
in Koltchinskii (2011)) the following concentration bound: let Y7,...,Y,, be independent random
vectors in R?, there exists an absolute constant Cy such that for all v > 0, with probability at

least 1 — exp(—u),
1 & N ' VC(F) u
sup (n;m@) Ef(K)) < Co (\/ 4 ,/n) : (7.28)

Lemma 7.2 is a corollary of a general result which holds under the only Assumption 7.1.
This general result says that for all u > 0, with probability at least 1 — exp(—u), for all u € R,
l9&(1) — |le — p¥||g| £ R® where R® is any point such that

[i+1 [ N) o 1
C _ — H v R°y/ — — — 7.29
O( K +VK>+||S|E31 A ( K)+K<2 (7.29)

where Cj is the constant from (7.28). In particular, when Assumption 7.3 holds then one can
check that (7.29) holds for R® = r® when r® < ¢y proving the result of Lemma 7.2. It only
remains to show the general result. To that end we follow the same strategy as in the proof of
Lemma 7.1 up to (7.27) (and with R§ replaced by R®). From that point, we use (7.28) and the
VC dimension of the set of affine half spaces to get that with probability at least 1 — exp(—u),
forallv € S,

ke}{;q I((X), — u*,v) > R®) < Hy k0 (R°ﬁ) +Co <,/?VZ§ +, /N;LK>

and so by definition of R°, on the same event, for all v € S, 3=k T(( Xy — p*,v) > R°) < 1/2.
This concludes the proof. [ |
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Résumé : La théorie de I'apprentissage statistique
vise a fournir une meilleure compréhension des pro-
priétés statistiques des algorithmes d’apprentissage.
Ces propriétés sont souvent dérivées en supposant
gue les données sous-jacentes sont recueillies par
échantillonnage de variables aléatoires gaussiennes
(ou sous-gaussiennes) indépendantes et identique-
ment distribuées. Ces propriétés peuvent donc étre
radicalement affectées par la présence derreurs
grossieres (également appelées “valeurs aberrantes”)
dans les données, et par des données a queue
lourde. Nous sommes intéressés par les procédures
qui ont de bonnes propriétés méme lorsqu’une par-
tie des données est corrompue et a forte queue,
procédures que nous appelons robustes, que nous
obtenons souvent dans cette thése en utilisant I'heu-
ristique Median-Of-Mean.

Nous sommes particulierement intéressés par les
procédures qui sont robustes dans des configura-
tions a haute dimension, et nous étudions (i) com-
ment la dimensionnalité affecte les propriétés sta-
tistiques des procédures robustes, et (i) comment

la dimensionnalité affecte la complexité computation-
nelle des algorithmes associés. Dans I'étude des pro-
priétés statistiques (i), nous trouvons que pour une
large gamme de problemes, la complexité statistique
des problemes et sa "robustesse” peuvent étre en
un sens "découplées”, conduisant a des limites ou le
terme dépendant de la dimension est ajouté au terme
dépendant de la corruption, plutét que multiplié par
celui-ci. Nous proposons des moyens de mesurer les
complexités statistiques de certains problemes dans
ce cadre corrompu, en utilisant par exemple la di-
mension VC. Nous fournissons également des limites
inférieures pour certains de ces problemes.

Dans l'étude de la complexité computationnelle de
l'algorithme associé (i), nous montrons que dans
deux cas particuliers, a savoir I'estimation robuste de
la moyenne par rapport a la norme euclidienne et
la régression robuste, on peut relaxer les problemes
d’optimisation associés qui deviennent exponentielle-
ment difficiles avec la dimension pour obtenir un algo-
rithme tractable qui se comporte de maniére polyno-
miale dans la dimension.

Title : Statistical and Computational Complexities of Robust and High-Dimensional Estimation Pro-

blems

Keywords : Robustness ; High Dimension ; Algorithms

Abstract : Statistical learning theory aims at provi-
ding a better understanding of the statistical proper-
ties of learning algorithms. These properties are often
derived assuming the underlying data are gathered
by sampling independent and identically distributed
gaussian (or subgaussian) random variables. These
properties can thus be drastically affected by the pre-
sence of gross errors (also called "outliers”) in the
data, and by data being heavy-tailed. We are inter-
ested in procedures that have good properties even
when part of the data is corrupted and heavy-tailed,
procedures that we call robusts, that we often get in
this thesis by using the Median-Of-Mean heuristic.

We are especially interested in procedures that are
robust in high-dimensional set-ups, and we study (i)
how dimensionality affects the statistical properties of
robust procedures, and (ii) how dimensionality affects
the computational complexity of the associated algo-

rithms. In the study of the statistical properties (i), we
find that for a large range of problems, the statistical
complexity of the problems and its "robustness” can
be in a sense "decoupled”, leading to bounds where
the dimension-dependent term is added to the term
that depends on the corruption, rather than multiplied
by it. We propose ways of measuring the statistical
complexities of some problems in that corrupted fra-
mework, using for instance VC-dimension. We also
provide lower bounds for some of those problems.

In the study of computational complexity of the as-
sociated algorithm (ii), we show that in two special
cases, namely robust mean-estimation with respect to
the euclidean norm and robust regression, one can
relax the associated optimization problems that be-
comes exponentially hard with the dimension to get
tractable algorithm that behaves polynomially in the
dimension.
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