Skip to Main content Skip to Navigation

Betatron radiation in beam-driven plasma wakefield acceleration and ultra-relativistic beam-plasma instabilities

Abstract : A large variety of physical processes can arise in the interaction of a relativistic particle beam with plasmas. In most of these processes the collective plasma response to the beam's charge and current can act as efficient mechanisms to transform the beam energy into large amplitude electromagnetic fields. Having a good understanding of these mechanisms allows on the one hand to develop new experimental techniques based on these fields, and on the other hand to improve the astrophysical models where similar mechanisms play an important role. This manuscript focuses on two of those processes and the programmed experiments at the FACET-II accelerator facility: plasma wakefield excitation and beam-plasma instabilities.The beam-driven plasma wakefield acceleration technique is now-a-days one of the most promising alternatives to conventional accelerators. With acceleration gradients up to four orders of magnitude larger than in an RF-cavity, this technique could significantly reduce the size and cost of high energy particle accelerators. Yet, several experimental milestones need to be achieved to demonstrate that the PWFA concept can perform at the required level of reproducibility and beam control and quality for societal, industrial and high energy physics applications. In this manuscript we propose via simulations a new non-destructive radiation-based method to diagnose beam transverse dynamics in a non-linear PWFA stage that can be detrimental for the accelerated beam quality.The beam-plasma instabilities are often studied in unbounded systems. In the ultra-relativistic limit, the so-called "oblique instability" is though to mediate the early stage of the interaction. In this manuscript the effects of the system boundaries on the oblique unstable modes are studied, namely a novel spatiotemporal theory is developed. Repercussion on experimental systems aiming to study these processes are discussed. Finally, a laser-based platform to study plasma streaming instabilities is presented together with experimental results.
Complete list of metadata
Contributor : ABES STAR :  Contact
Submitted on : Wednesday, January 26, 2022 - 2:09:15 PM
Last modification on : Wednesday, May 11, 2022 - 3:22:05 PM
Long-term archiving on: : Wednesday, April 27, 2022 - 7:00:56 PM


Version validated by the jury (STAR)


  • HAL Id : tel-03544110, version 1



Pablo San Miguel. Betatron radiation in beam-driven plasma wakefield acceleration and ultra-relativistic beam-plasma instabilities. Mechanics of materials [physics.class-ph]. Institut Polytechnique de Paris, 2021. English. ⟨NNT : 2021IPPAE016⟩. ⟨tel-03544110⟩



Record views


Files downloads