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Titre : Modélisation mathématique et simulation de la transmission, la surveillance et le contrôle des agents 
pathogènes dans les milieux de soins 
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Résumé : Les infections associées aux soins sont le résultat 
de la dissémination d’une grande diversité de 
microorganismes pathogènes. Elles représentent un fardeau 
important de morbidité et de mortalité dans le monde. 
L’objectif principal de cette thèse était de développer de 
nouveaux modèles mathématiques afin de mieux comprendre 
les dynamiques de transmission des pathogènes dans ces 
milieux spécifiques et de proposer des mesures de contrôle et 
de surveillance adaptées. Je me suis spécifiquement intéressé 
aux bactéries résistantes aux antibiotiques et à SARS-CoV-2. 
Dans un premier temps, un nouveau cadre de modélisation 
pour l’épidémiologie des bactéries résistantes aux 
antibiotiques a été formalisé. Celui-ci prend en compte des 
mécanismes d’interactions intra-hôtes entre le microbiote 
humain et des bactéries pathogènes, tel que la résistance à la 
colonisation et le transfert horizontal des gènes de résistance. 
La prise en compte de ces interactions permet d’expliquer 
comment un niveau de consommation intermédiaire 
d’antibiotiques maximise la sélection et la propagation des 
bactéries résistantes au niveau populationnel. Ce modèle a 
ensuite été appliqué à différentes espèces bactériennes pour 
évaluer l’impact potentiel d’interventions de santé publique sur 
le risque qui est leur est associé. Les  résultats des simulations 
suggèrent une efficacité des mesures barrières pour prévenir 
la dissémination de Staphylococcus aureus résistant à la 
méticilline. En revanche, celles-ci se sont avérées inefficaces 
en ce qui concerne les Entérobactéries multirésistantes. 

A l’inverse, les politiques antibiotiques, mais également les 
interventions ciblant la préservation du microbiote, étaient 
globalement efficace pour prévenir toutes les espèces 
pathogènes prises en compte. 
Dans un second temps, j’ai analysé les simulations issues 
d’un modèle individu-centré pour investiguer comment les 
stratégies de surveillance pouvaient être optimisées afin de 
détecter et contrôler au mieux des épidémies de SARS-
CoV-2 dans les hôpitaux de long séjour. Dans un contexte 
de pandémie précoce où l’accès aux tests était limité, les 
résultats ont montré l’intérêt du déploiement du dépistage 
de groupe, qui s’est avéré être la stratégie la plus efficace 
pour détecter des épidémies. Dans un contexte de 
pandémie ultérieur, j’ai montré l’intérêt du déploiement 
additionnel de stratégies de dépistage par des tests 
antigéniques et mis en évidence l’importance des délais 
entre les tests.  
Ainsi, par le développement de modèles spécifiques, les 
travaux de cette thèse ont permis de mieux comprendre 
l’influence du microbiote sur le risque de transmission 
nosocomiale des bactéries multirésistantes dans les milieux 
de soin. Ils ont également permis de proposer des 
protocoles de surveillance optimisés pour détecter 
précocement et contrôler la dissémination de SARS-CoV-2 
dans les milieux de long séjour dans un contexte de 
ressources sanitaires limitées. 

 

 

Title : Mathematical modelling and simulation of the transmission, surveillance and control of human 
pathogens in healthcare settings 

Keywords : nosocomial infection prevention, antibiotic resistance, microbiome, SARS-CoV-2, COVID-19 

Abstract : Healthcare-associated infections are caused by a 
diversity of pathogenic micro-organisms, which together 
represent leading causes of global infectious disease 
morbidity and mortality. The objective of this thesis was to 
develop novel mathematical models to evaluate the 
transmission dynamics of antibiotic-resistant bacteria and 
SARS-CoV-2 in healthcare settings, and to provide evidence 
for the design and optimization of species-specific surveillance 
and control interventions.  
First, a modelling framework for the hospital epidemiology of 
antibiotic-resistant bacteria was formalized. This framework 
accounts for within-host mechanisms of ecological interaction 
between the host microbiome and bacterial pathogens in the 
context of antibiotic exposure. Microbiome-pathogen 
interactions, including microbiome-induced colonization 
resistance and the interspecific horizontal transfer of antibiotic 
resistance genes, were found to underlie trade-offs in how 
antibiotics select for the epidemiological spread of resistance. 
In a simulation study using this framework, contact precautions 
were effective for prevention of colonization with 

methicillin-resistant Staphylococcus aureus but not 
multidrug-resistant Enterobacteriaceae, while antibiotic 
stewardship interventions and microbiome-targeted 
therapies were broadly effective across species. 
Second, simulations from an individual-based SARS-CoV-2 
transmission model were used to inform optimization of 
testing and screening interventions in long-term care 
facilities. In an early pandemic context, group testing 
(sample pooling) was the most efficient means to detect 
emerging outbreaks in resource-limited facilities, while 
hierarchical testing cascades were most effective given high 
testing capacity. In a later pandemic context, population 
screening using rapid antigen diagnostic testing was an 
effective but time-sensitive means to prevent nosocomial 
transmission. 
Overall, work from this thesis represents a first step in 
understanding how the microbiome influences nosocomial 
transmission risk of antibiotic resistance, and provides 
evidence for optimizing SARS-CoV-2 surveillance in the 
context of limited and imperfect testing resources. 
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Résumé en français 

 

Les infections associées aux soins (IAS) font parties des événements indésirables les plus 

fréquents chez les patients hospitalisés et les résidents des établissements de soins de 

longue durée. Elles posent également un risque de santé au travail grave pour les 

soignants. Les IAS représentent un coût important de morbidité et de mortalité dans le 

monde avec un impact significatif sur les parcours de soins des patients. Elles entraînent 

des durées de séjour plus longues et font peser ainsi un lourd fardeau économique sur les 

individus, les établissements de soins et la société dans son ensemble. Bien que 

fréquentes, elles sont souvent évitables et constituent en cela une priorité de recherche et 

d’actions dans le cadre de la prévention des maladies infectieuses au niveau mondial. 

Malgré des progrès significatifs réalisés au cours des dernières décennies dans le contrôle 

des infections nosocomiales, de nouveaux défis de santé publique subsistent et 

apparaissent. Deux enjeux majeurs liés aux IAS se distinguent : la dissémination mondiale 

de bactéries multirésistantes aux antibiotiques et l'émergence soudaine de nouveaux 

agents pathogènes ayant une forte capacité de diffusion nosocomiale tel le SARS-CoV-2. 

 

La modélisation mathématique est un outil puissant pour mieux comprendre 

l'épidémiologie des IAS et guider les interventions de santé publique visant à les contrôler. 

Cependant, ces nouveaux défis épidémiologiques nécessitent de nouvelles approches de 

modélisation. Une des limites à la compréhension de la diffusion de la résistance aux 

antibiotiques est la méconnaissance des principes clés de l'éco-évolution, notamment la 

compétition au sein de l'hôte entre les agents pathogènes bactériens et le microbiote. 

Dans le cas d’un virus émergent comme le SARS-CoV-2, ses caractéristiques 

épidémiologiques uniques, l’incertitude qui peut leur être associée au début d’une 

épidémie et les difficultés de détection et de surveillance dans les milieux de soin, posent 

des défis fondamentaux quant à la détection et le contrôle des épidémies nosocomiales. 

 

Ce travail de thèse avait trois objectifs principaux : mieux comprendre les dynamiques de 

transmission et de risque épidémique de différentes espèces pathogènes, optimiser la 

surveillance des épidémies nosocomiales dans un contexte de ressources de dépistage 

limitées et enfin proposer des mesures de contrôles adaptées au mieux à différentes IAS 

et scénarios épidémiologiques. De nouveaux modèles mathématiques ont été développés 

afin de répondre à ces objectifs à travers deux axes de recherche principaux. Dans le 

premier, j’ai exploré d’une part les effets simultanés de l'écologie du microbiote et de 
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l'utilisation des antibiotiques sur la propagation des bactéries multirésistantes aux 

antibiotiques (BMR) et, d’autre part, leur influence sur l'efficacité des interventions de 

contrôle des IAS en milieu hospitalier. Dans le second axe de recherche, j’ai exploré la 

contribution des mesures de surveillance et d'isolement sur le contrôle et la propagation 

nosocomiale du SARS-CoV-2 dans les établissements de soins de longue durée. 

 

A travers le premier axe de recherche, présenté dans le chapitre 4, j’ai développé un 

nouveau cadre de modélisation mathématique pour formaliser les dynamiques de 

colonisation des BMR. Ce cadre, basé sur des systèmes d’équations différentielles 

ordinaires, s’appuie sur l'incorporation progressive dans un modèle épidémiologique d’une 

gamme d'interactions écologiques ayant lieu au sein de l'hôte. Ces dernières incluent la 

compétition entre les souches d’une même espèces (sensibles et résistantes aux 

antibiotiques), la compétition inter-espèces entre le microbiote et les espèces pathogènes, 

ainsi que le transfert horizontal des gènes de résistance aux antibiotiques. Dans ce 

modèle, je prends également en compte la contribution de la dysbiose du microbiote sur la 

dynamique épidémiologique des BMR en milieu hospitalier, formalisant simultanément 

l’impact des antibiotiques sur la colonisation par des agents pathogènes et sur la stabilité 

du microbiote. 

 

Par le biais d'une analyse numérique d’agents pathogènes théoriques, j’ai montré que 

deux mécanismes écologiques différents peuvent expliquer la sélection de la résistance 

par la consommation des antibiotiques : premièrement la compétition entre deux souches 

d’une même espèce de bactérie pathogène et deuxièmement la compétition entre cette 

espèce et le microbiote dans son ensemble. De manière intéressante, j’ai montré que ces 

mécanismes de compétition ont des conséquences distinctes pour différents indicateurs 

épidémiologiques. Alors que la compétition des souches tend à augmenter la proportion 

des souches résistantes aux antibiotiques dans la population, la compétition entre une 

BMR et le microbiote tend à augmenter l'incidence et la prévalence de colonisation aux 

BMR. Lorsque les antibiotiques provoquent à la fois une dysbiose et éliminent les souches 

sensibles, ils sélectionnent plus fortement la propagation de la résistance. Ces analyses 

révèlent également trois trade-offs distincts de sélection au-delà desquels l'exposition 

intermédiaire aux antibiotiques maximise la propagation des BMR. Dans l'ensemble, ce 

cadre théorique constitue une première étape clé dans la compréhension des impacts 

hétérogènes du microbiote de l'hôte sur la dissémination de la résistance aux antibiotiques 

dans les établissements de soins. 
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Dans le chapitre 5, ce cadre de modélisation a été appliqué à différentes espèces 

bactériennes afin d’évaluer les interactions écologiques intra-hôte en jeu et la manière 

dont celles-ci peuvent déterminer l’efficacité des interventions de santé publique visant à 

contrôler leur dissémination. Quatre des agents pathogènes nosocomiaux les plus 

fréquemment observés en milieu de soin à l'échelle mondiale ont été étudiés : 

Clostridioides difficile, Staphylococcus aureus résistant à la méthicilline (SARM), 

Escherichia coli producteur de BLSE (BLSE-CE) et Klebsiella pneumoniae producteur de 

carbapénémase (CP-KP). Pour chacune de ces BMR, les données disponibles dans la 

littérature scientifique ont été utilisées pour paramétrer un modèle spécifique. De plus, une 

procédure formelle de expert elicitation (consultation d’experts) a été réalisée : des 

entretiens avec des experts en microbiologie clinique et l’épidémiologie de 

l’antibiorésistance ont été menés pour qualifier et quantifier le rôle de la dysbiose sur 

l'épidémiologie des différentes espèces de BMR, et pour quantifier les coefficients 

d'interaction avec une échelle d’incertitude.  

 

Une série d'interventions de santé publique a ensuite été implémentée et simulée pour 

évaluer leur impact respectif sur les dynamiques épidémiologiques des différentes 

espèces pathogènes, en fonction de leur contexte écologique spécifique. Les interventions 

évaluées étaient : les mesures barrières (contact precautions), les politiques antibiotiques 

(antibiotic stewardship) et la thérapie de guérison du microbiote (microbiome recovery 

therapy). Dans l'ensemble, les résultats suggèrent que les mesures barrières sont 

efficaces pour la prévention du SARM mais ont un impact limité contre les espèces 

entériques considérées. De plus, les interventions favorisant un équilibre du microbiote 

(les politiques antibiotiques et la thérapie de guérison du microbiote) étaient globalement 

efficace pour prévenir de la colonisation par toutes les espèces, avec un effet particulier 

pour C. difficile et les Entérobactéries. Dans l'ensemble, les résultats de ce premier axe de 

recherche permettent de mieux comprendre la propagation de la résistance aux 

antibiotiques dans les milieux de soin et l’influence des caractéristiques écologiques intra-

hôtes spécifiques aux différentes espèces bactériennes et du microbiote sur l’efficacité 

des interventions de santé publique. 

 

Dans le deuxième axe de recherche de cette thèse, j'ai investigué des stratégies de 

surveillance pour détecter et contrôler au mieux des épidémies de SARS-CoV-2, 

notamment dans le cadre d’hôpitaux de long séjour. A partir de simulations issues d’un 
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modèle individu-centré de transmission nosocomiale de SARS-CoV-2, j’ai développé un 

algorithme de calcul pour simuler une variété d’interventions de surveillance. Ces 

interventions incluent le dépistage systématique des personnes symptomatiques (qui était 

effectivement mise en place dans ces milieux pendant toute la première phase de 

l’épidémie), de dépistage de groupe (dit les tests poolés), et le dépistage systématique de 

toutes les personnes dans l’établissement. J’ai évalué l’efficacité de ces différentes 

stratégies selon différents scénarios épidémiologiques, notamment plusieurs scénarios 

d’introductions du virus dans l’hôpital (ponctuel ou régulier, via des soignants ou des 

patients) ainsi que différents niveaux de risque sanitaire (en fonction des mesures mises 

en place). Ce travail a été mené en deux parties distinctes.  

 

Premièrement, dans le chapitre 7, des épidémies ont été simulées dans un contexte de 

pandémie précoce sans aucune mesure de contrôle de COVID-19 en place. Dans ce cas, 

l’efficacité des stratégies de dépistage ont été évaluées afin de comparer leur capacité à 

détecter des épidémies émergentes dans un contexte de disponibilité restreinte de test de 

réaction en chaîne par polymérase à transcription inverse (RT-PCR). Le dépistage de 

groupe s'avérait être la stratégie la plus efficace et la plus efficiente lorsque les tests 

disponibles étaient peu nombreux (<1 test/100 lits/jour), tandis que les cascades de tests, 

qui attribuaient les tests en fonction d’une échelle de priorité liés à des indications 

cliniques, étaient les plus efficaces lorsque la capacité en tests était élevée dans l’hôpital 

(>10 tests/100 lits/jour). 

  

Deuxièmement, dans le chapitre 8, les épidémies ont été simulées dans ce même hôpital 

mais dans un contexte de pandémie ultérieure, en supposant qu’une gamme de mesures 

de contrôle de COVID-19 est déjà en place (distanciation sociale, port obligatoire de 

masque, vaccination). À l'aide d'une analyse contrefactuelle, le dépistage de la population 

à l'aide des tests antigéniques a été évalué pour sa capacité à prévenir la transmission de 

SARS-CoV-2 à la suite d’une soudaine augmentation de risque épidémique dans 

l’établissement (par exemple lié à un risque accru en communauté, un retour de vacances 

ou un retour de fêtes). J’ai montré qu’avec deux cycles de dépistage antigénique 

programmés, jusqu'à 75 % des infections nosocomiales pourraient être évitées, contre 

64 % avec un seul cycle de dépistage, ou 47 % dans le cas de tests RT-PCR de routine. 

Un délai de 4 à 5 jours entre le premier et le deuxième tour de dépistage s’avérait optimal 

pour la prévention de la transmission, en raison de la nature variable dans le temps de la 

sensibilité du test. Le risque sous-jacent d'épidémie était le principal facteur du coût-
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efficacité du dépistage. Ce facteur était plus important qu’au moment du dépistage 

(immédiat ou différé), le type de test (antigénique ou RT-PCR) ou sa cible (patients ou 

soignants). En effet, selon la gamme de mesures de prévention de COVID-19 déjà en 

place, les bénéfices médio-économiques du dépistage antigénique différaient par un à 

deux ordres de grandeurs (établissement vulnérable aux épidémies : >10 infections 

évitées/1 000 tests antigéniques utilisés ; établissement résilient aux épidémies : <1 

infection évitée/1 000 tests antigéniques). Ces résultats suggèrent que les tests 

antigéniques à eux seuls seraient insuffisants pour éliminer le risque d'épidémie 

nosocomiale de SARS-CoV-2, mais que leur utilisation constitue néanmoins un élément 

utile et efficace dans le cadre des stratégies multimodales de prévention des infections. En 

revanche, l’intérêt médico-économique de dépister à grande échelle une population 

hospitalière déjà bien protégée contre des épidémies s’avère discutable. 

 

En conclusion, à travers cette thèse, je me suis servi de diverses approches de 

modélisation mathématique pour étudier la transmission, la surveillance et le contrôle des 

agents pathogènes dans les milieux de soins. J’ai développé un nouveau cadre de 

modélisation combinant la dynamique populationnelle et des spécificités écologiques intra-

hôtes pour mieux comprendre la manière dont les bactéries résistantes aux antibiotiques 

se propagent dans les hôpitaux. De plus, j'ai utilisé un modèle individu-centré détaillé pour 

simuler la dynamique de transmission de SARS-CoV-2 dans les établissements de soins 

de longue durée. Les deux modèles ont été appliqués à l’évaluation des interventions de 

surveillance et de contrôle. Cela a permis de mieux comprendre l'écologie au sein de 

l'hôte et ses conséquences sur l'efficacité des interventions, menant ainsi à proposer des 

pistes d’améliorations pour les optimiser. Ces résultats pourraient avoir une application 

directe en termes de programmes de contrôle des infections hospitalières. Ce travail 

souligne également l'utilité de la modélisation mathématique pour comprendre l'étiologie 

mécaniste des infections nosocomiales. Ces connaissances permettent d’éclairer les 

décisions de santé publique face aux menaces infectieuses, qu'elles soient bactériennes 

ou virales, résistantes ou non aux médicaments, anciennes ou nouvellement découvertes. 

  



 

 20 

  



 

 21 

Introduction 

 

Healthcare-associated infections (HCAIs) are leading causes of infectious morbidity and 

mortality, sources of significant economic burden, and pressing health security concerns. 

HCAI control is a global health priority, and is the focus of extensive public health 

campaigns from the World Health Organization (WHO) and other national and international 

health agencies. However, the multiplicity of these infections complexifies their 

epidemiology and control. Indeed, HCAI is an umbrella term encompassing a wide range 

of diseases, caused by a diversity of ecologically distinct micro-organisms, which 

differentially affect the heterogeneous populations that populate the planet’s varied 

healthcare institutions. The greatest infectious threats facing healthcare settings today 

range from longstanding nosocomial pathogens that have been the focus of decades of 

prevention efforts (e.g. Clostridioides difficile), to increasingly antibiotic-resistant strains of 

common bacterial symbionts (e.g. carbapenemase-producing Enterobacteriaceae), to 

emerging zoonotic threats with pandemic potential (e.g. novel coronaviruses like SARS-

CoV-2). In order to prevent HCAIs caused by such distinct pathogens, it is necessary to 

understand the precise intersection between the ecological characteristics of each 

underlying pathogen species, the pathophysiology of the disease(s) they cause, their 

epidemiology in the populations concerned, and the mechanistic impacts of potential 

control interventions. 

 

Over recent decades, mathematical modelling has emerged as a powerful tool for the 

evaluation of public health measures for HCAI control. In describing the fundamental 

mechanisms of pathogen spread in healthcare settings, models can simulate the health 

and economic impacts of surveillance and control interventions, and inform optimization of 

strategies for infection prevention. This is particularly useful when the collection of 

empirical data is impractical, unethical or simply not possible. Recent advances in 

microbiology and surveillance have helped to provide clearer pictures of which organisms 

cause which infections, how they transmit, and with what consequences for human health. 

This has helped to improve the characterization of different nosocomial pathogens, 

allowing for the development of more representative models that better describe HCAI 

epidemiology. However, new modelling approaches are needed to respond to new and 

evolving public health threats, their distinct epidemiological characteristics, and the specific 

public health interventions that are available to control them. 
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The main goal of this thesis is to develop novel mathematical models for the nosocomial 

epidemiology of multidrug-resistant bacteria and SARS-CoV-2, in order to better 

understand how these pathogens spread in healthcare facilities, and to evaluate the 

efficacy and efficiency of surveillance and control measures. First, in Chapter 1 I provide a 

general overview of HCAI epidemiology and control, and in Chapter 2 I present a 

methodological summary of mathematical modelling as applied to infectious disease 

epidemiology. In Chapter 3 I define the specific research objectives of this thesis. In 

Chapter 4 I develop a novel transmission modelling framework describing the 

epidemiology of antibiotic-resistant bacteria in the context of within-host interactions with 

the microbiome, and in Chapter 5 I apply this framework to evaluate impacts of the 

microbiome on the efficacy of public health interventions for different pathogen species. In 

Chapter 6 I introduce the COVID-19 pandemic and its impacts on healthcare settings and 

HCAI, and apply an existing individual-based pathogen transmission model to SARS-CoV-

2. In Chapters 7 and 8 I use this model to evaluate the efficacy and efficiency of 

surveillance and control interventions for SARS-CoV-2 outbreak detection and infection 

prevention in long-term care settings. Finally, in Chapter 9 I discuss the scientific 

contributions made by this thesis, and perspectives for future study. 
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Chapter 1.   Healthcare-associated infections and 

their control 

 

A healthcare-associated infection (HCAI) is any infection acquired in a healthcare facility, 

including hospitals, long-term care facilities (LTCFs), outpatient clinics, or any other clinical 

settings. HCAIs are among the most frequent adverse events experienced by hospital 

patients and LTCF residents, and are an important occupational hazard for healthcare 

workers.(Allegranzi et al., 2017; Institute of Medicine (US) Committee on Quality of Health 

Care in America, 2000; World Health Organization, 2011) HCAIs contribute significantly to 

the global burden of infectious morbidity and mortality, and are a source of great 

psychological stress for victims and their loved ones alike. They complicate care 

pathways, result in longer lengths of stay in healthcare facilities, and place great economic 

burden on individuals, healthcare institutions, and society as a whole.(Marchetti and 

Rossiter, 2013; Stewart et al., 2021c)  Though common, they are often preventable, and 

are an important focus of global investment in infectious disease research and 

prevention.(Bates et al., 2009) However, despite significant progress in HCAI control over 

the last several decades, new challenges continue to arise, from the shifting epidemiology 

of HCAI in aging populations, to the global dissemination of antimicrobial resistance, to the 

sudden emergence of novel nosocomial pathogens. 

 

In this Chapter, I first introduce the burden of HCAIs on a global scale. I proceed to 

describe the epidemiology of the principal types of HCAI and their risk factors, and provide 

a comprehensive overview of the diversity of human pathogens that cause them. I then 

introduce the unique public health challenge of antimicrobial resistance, including key 

ecological and evolutionary considerations. Finally, I provide a summary of contemporary 

public health interventions that are used to mitigate and prevent HCAIs. 
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1.1.  Global burden 

The burden imposed by healthcare-associated infection (HCAI) is a public health concern 

of global significance. In 2011, WHO published a systematic review and meta-analysis 

quantifying the global public health burden of HCAI. The definition of HCAI that they 

propose, which is used throughout this thesis, is: 

 

An infection occurring in a patient during the process of care in a hospital or other 
healthcare facility which was not present or incubating at the time of admission. This 
includes infections acquired in the hospital, but appearing after discharge, and also 
occupational infections among staff of the facility.(World Health Organization, 2011, 
2002) 

 

This definition has largely replaced traditional, narrower definitions of hospital-onset or 

nosocomial infection, which have been limited only to hospitals, only to patients, and only 

to infections both acquired and presenting during a single hospitalization event, which may 

account for as few as half of HCAIs.(Stewart et al., 2021b)  

 

Here I distinguish between two types of HCAI burden: health burden and economic 

burden.  

 

1.1.1.  Health burden 

The health burden of HCAI describes their negative impact on the health and wellbeing of 

individuals who experience infection. A range of international estimates of HCAI health 

burden are reported here using three classic epidemiological indicators: (i) HCAI 

prevalence, the proportion of a population infected at a given point in time, (ii) HCAI 

incidence, the rate of infection acquisition in a population, and (iii) HCAI mortality, the 

rate of death due to infection.  

 

1.1.1.1.  HCAI prevalence 

Synthesizing data from 131 studies published between 1995 and 2010 across 23 high-

income countries, WHO estimated that 1 in every 14 hospital patients will experience HCAI 

at some point during their hospital stay.(World Health Organization, 2011) Mean pooled 

HCAI prevalence was 7.6%, ranging from 3.6% in Germany to 12% in New Zealand. 

Estimated HCAI burden was even greater in low- and middle-income countries, although 

data were less reliable: across 276 studies, 1 in every 10 patients was estimated to 

acquire HCAI; and when only including studies of high methodological quality, this 
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increased to 1 in 6 patients. Mean pooled prevalence was 10.1%, ranging from 5.4% in 

Mongolia to 19.1% in Albania. 

 

According to recent point-prevalence surveys, global HCAI burden appears to have 

remained relatively stable since the WHO report. In an ECDC point prevalence survey 

from acute care hospitals in Europe in 2016/17, pooled HCAI prevalence was 5.4—7.8% 

(among 310,000 patients in 1,209 hospitals across 28 countries); while in LTCFs, 

prevalence was 2.4—6.0% (among 117,000 residents in 2,221 LTCFs across 23 

countries).(Suetens et al., 2018) Country-level hospital HCAI prevalence from the ECDC 

survey is presented in Figure 1.1. In a point prevalence survey from the USA in 2015, 

hospital HCAI prevalence was just 2.9—3.5% (among 12,299 patients in 199 hospitals 

across 10 states), a significant reduction from a previous survey in 2011.(Magill et al., 

2018) Other recent estimates of hospital HCAI prevalence at the national level include: 

3.7% in China in 2014/15,(Y. Chen et al., 2017) 7.4% in Japan in 2018,(Komagamine et 

al., 2019) 7.9% in Canada in 2017,(Mitchell et al., 2019) 8.2% in Ghana in 2016,(Labi et 

al., 2019) 8.4% in Pakistan in 2017/18,(Saleem et al., 2019) 9.9% in Australia in 

2018,(Russo et al., 2019) 11.9% in Singapore in 2015/16,(Cai et al., 2017) and 12.3% in 

2016 across a pooled sample from Brazil, Venezuela, Mexico and Colombia.(Huerta-

Gutiérrez et al., 2019) Recent systematic reviews have further estimated 9.0% in 

Southeast Asia,(Ling et al., 2015) and 17.0% in Ethiopia.(Alemu et al., 2020) 

 

 

Figure 1.1.  HCAI prevalence in Europe. 

Pooled HCAI prevalence (the proportion of patients with at least one HCAI) in acute care hospitals in 
Europe in 2016/17, rendered for this thesis using ECDC point prevalence survey data.(Suetens et al., 
2018) Data were unavailable for countries shaded in grey. Data from England are used for the United 
Kingdom. 
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1.1.1.2.  HCAI incidence 

Point prevalence surveys provide useful estimates of HCAI burden, but prospective 

longitudinal surveillance data are needed for robust estimation of HCAI incidence. 

Although methodologies like the Rhame & Sudderth method are widely used to calculate 

incidence from point prevalence data,(Rhame and Sudderth, 1981) validation studies 

suggest that such estimates are flawed: considerations like post-discharge onset and 

heterogeneous population- and individual-level risk factors make it difficult to reliably 

predict relationships between these distinct epidemiological indicators.(Gastmeier et al., 

2001; Meijs et al., 2017) Further, longitudinal studies more reliably account for pathogens 

with seasonal or outbreak dynamics – as opposed to endemic pathogens with a stable 

background rate of infection – and can help to disentangle location of infection onset, and 

epidemiological risk factors associated with HCAI acquisition. Although comparatively rare 

due to time, cost and logistical considerations, some such studies do exist.  

 

In the Evaluation of Cost of Nosocomial Infection (ECONI) study, a prospective one-year 

study from two Scottish hospitals beginning in April 2018, Stewart et al. reported 250 

HCAIs per 100,000 acute occupied bed-days; in a full 1,000 bed hospital, this translates to 

approximately 2.5 new HCAIs per day.(Stewart et al., 2021b) Importantly, they identified 

trends not observable in point prevalence, including strong seasonality in HCAI – with 

highest rates in summer months, except for a peak in gastrointestinal HCAI in winter 

months – and a median 9-day length of stay until infection onset. Other HCAI incidence 

rates from prospective longitudinal studies include 1.1% from a four-year study in a 

hospital in China,(Han et al., 2021) approximately 5/1,000 patient-days over 2.5 years in a 

hospital in North Carolina,(Sickbert-Bennett et al., 2016) and 28/1,000 patient-days – an 

order of magnitude greater than the Scottish estimates – from a five-month study in a 

hospital in Ethiopia.(Ali et al., 2018) 

 

1.1.1.3.  HCAI mortality 

Reliable estimates of HCAI mortality are notoriously difficult to ascertain. Infected 

individuals usually have comorbidities, and in hospital settings are generally already 

seeking care for other acute health problems or emergencies.(Allegranzi et al., 2017) 

HCAIs are also seldom reported as the primary cause of mortality on hospital records and 

death certificates.(Allegranzi et al., 2017) Nonetheless, using national surveillance data 

from 2002, Klevens et al. estimated that HCAIs result in an annual 99,000 deaths in USA 

hospitals.(Klevens et al., 2007) Relative to mortality rates reported by USA CDC in 2019, 
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this ranks HCAI as the seventh leading cause of death in the USA, following Alzheimer’s 

disease but ahead of diabetes, and the leading cause of infectious mortality.(Kochanek et 

al., 2020) 

 

In a report from ECDC from 2008, HCAIs were directly attributed to 37,000 deaths per 

year across EU member states, while contributing indirectly to an additional 110,000 

deaths.(European Centre for Disease Prevention and Control, 2008) These figures 

contrast with findings from Cassini et al. from 2016, who estimated that HCAIs result in 

90,000 deaths in Europe each year.(Cassini et al., 2016) Combined with estimates for 

HCAI-induced morbidity, this represents approximately 2.5 million disability-adjusted life-

years annually due to HCAI, greater than the estimated health burden of all other 

infectious diseases combined (among the 32 included in the 2009-2013 Burden of 

Communicable Diseases in Europe study).(Kretzschmar et al., 2012; Mangen et al., 2013)  

 

1.1.2.  Economic burden 

The economic burden of HCAI describes the financial costs that infection imposes on 

society. There are few reliable national estimates of the health-economic burden of HCAIs, 

and estimates across studies are rarely comparable due to different methodologies and 

cost definitions. In USA hospitals in 2013, Marchetti & Rossiter estimated annual societal 

costs of $96—$147 billion USD due to HCAI,(Marchetti and Rossiter, 2013) while in UK 

hospitals in 2021, Manoukian et al. estimated £0.3—£2.2 billion GBP in total health-

economic burden.(Manoukian et al., 2021b) In both studies, cost estimates were further 

stratified into direct vs. indirect costs.  

 

1.1.2.1. Direct costs 

Direct health-economic costs are the ensemble of medical costs due to resource use that 

is completely attributable to a particular illness.(Kirch, 2008a) Excess direct costs 

associated with HCAI primarily result from extended inpatient length of hospitalization, 

often expressed as excess bed-days.(Manoukian et al., 2021b) However, HCAI-related 

direct costs result not only from initial hospitalization but also HCAI-related post-discharge 

healthcare use, including follow-up consultation at primary care providers, and 

readmission to hospital or other healthcare facilities. In the UK in 2018/19, direct costs in 

the 90 days post-discharge have been estimated at £1,004—£4,244 GBP per HCAI, 

increasing total cost by approximately 36%.(Manoukian et al., 2021a) Other than standard 

bed-day costs, HCAI-associated direct costs also include consumables like antimicrobial 
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agents, medical devices, and laboratory testing.(Manoukian et al., 2021b) More severe 

HCAIs contribute more to cost burden, particularly for patients treated in intensive care 

units (ICUs).  

 

In a report from ECDC in 2008, direct hospital costs of HCAI in Europe were estimated at 

€7 billion/year,(European Centre for Disease Prevention and Control, 2008) while in a USA 

CDC report from 2009, direct costs were estimated to range from $28—$45 billion USD. 

Later, in 2013, Marchetti & Rossiter estimated that direct costs account for one-third to 

one-half of the health-economic burden of HCAI at $34.3—$74 billion USD, and that 72% 

of these are incurred during initial hospitalization.(Marchetti and Rossiter, 2013) Finally, in 

the UK in 2021, direct costs accounted for 55.5%—72.0% of total estimated health-

economic burden, at £0.2—£1.2 billion GBP.(Manoukian et al., 2021b)  

 

1.1.2.2.  Indirect costs 

Indirect health-economic costs are the combined value of lost economic output (e.g. due to 

impairment or disability to work) due to a disease or disorder, and can vary widely 

depending on the perspective taken.(Kirch, 2008b) In contrast to direct costs, for which 

costing or claims data are sometimes available, indirect costs are often more difficult to 

quantify. In the study by Marchetti & Rossiter, accounting only for lost wages due to 

incapacitation or premature death, annual indirect costs of HCAIs were estimated at 

$61.6—$72.6 billion USD. In Manoukian et al., indirect costs were defined as capital and 

overhead costs, and were estimated at an annual £0.1—£1 billion GBP. Overall, difficulty 

and inconsistency in quantifying the health and economic burden of HCAI relative to other 

diseases likely owes at least in part to its immense epidemiological heterogeneity. 
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1.2.  Types of HCAI 

HCAIs are traditionally grouped by the body system hosting the infection. Here I provide a 

brief overview of the epidemiology of the five principal types of HCAI and their principal 

risk factors. Figure 1.2 depicts the mean hospital and LTCF prevalence of leading HCAI 

from the previously introduced ECDC point prevalence survey, and Figure 1.3 shows a 

summary of risk factors for each infection as estimated from the ECONI study. Risk factors 

unique to each infection are highlighted below; other risk factors common across all or 

most HCAIs include older age, longer length of stay, emergency admission, 

socioeconomic deprivation and comorbidity (cancer, chronic renal failure, cardiovascular 

disease, diabetes). 

 

 

Figure 1.2.  HCAI prevalence in Europe by type of infection. 

Point prevalence of different types of HCAI, comparing acute care hospitals (left, % of patients infected) 
and LTCFs (right, % of residents infected). Prevalence estimates are pooled across all European 
countries contributing data to the 2016/17 ECDC point prevalence survey (rendered for this thesis using 
extracted data).(Suetens et al., 2018) 
 

1.2.1.  Urinary tract infection (UTI) 

1.2.1.1.  Epidemiology 

Reports from WHO suggest that UTI is the most common nosocomial infection 
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worldwide.(World Health Organization, 2011, 2002) UTIs are predominantly caused by 

bacteria and some fungi, and a review of international studies estimated that two-thirds 

had endogenous origin (infection resulting from one’s own microflora).(Iacovelli et al., 

2014) In Europe, UTI was estimated to account for 18.9% of active HCAIs in hospitals and 

32.0% in LTCFs, representing a combined annual 2.2 million infections.(Suetens et al., 

2018) 

 

1.2.1.2.  Risk factors 

Urinary catheterisation is the most important risk factor for nosocomial UTI, with 61.5% of 

UTIs observed to be catheter-associated in US hospitals.(Magill et al., 2018) Similarly, in 

Europe, 59.5% of patients with UTIs had a catheter inserted within 7 days of infection 

onset.(Suetens et al., 2018) In a recent modelling study, I quantified the health and 

economic burden of catheter-associated UTI in English hospitals.(Smith et al., 2019) 

Although women and girls are overall at greater risk of UTI, catheter-associated UTI is 

most prevalent – and most burdensome – in elderly men.(Iacovelli et al., 2014; Smith et 

al., 2019) 
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Figure 1.3.  HCAI risk factors. 

Adjusted risk ratios for hospital HCAI acquisition across a range of patient and care variables (panels). 
Figure was rendered for this thesis using data extracted from the ECONI study.(Stewart et al., 2021a) 
Estimates are based on a multivariate model including all variables. Note that LRTI and pneumonia (PN) 
are considered separately. Socioeconomic deprivation score ranges from 1 (most deprived) to 5 (least 
deprived). SUR=surgery, OGBYN=obstetrics and gynecology, ICU=intensive care unit, HDU=high-
dependency unit, MED=medicine.  
 

1.2.2.  Respiratory tract infection (RTI) 

1.2.2.1.  Epidemiology 

RTI is one of the most common HCAIs,(World Health Organization, 2011, 2002) and the 

most common infection acquired in ICUs and LTCFs.(Suetens et al., 2018; Vincent et al., 

2009)  In Europe, LRTIs (including pneumonia) accounted for 25.7% of active HCAIs in 

both hospitals and LTCFs, translating, like UTI, to approximately 2.2 million infections 

annually.(Suetens et al., 2018) RTIs are caused by a broad range of viruses, bacteria and 

fungi. However, robust RTI burden estimates are difficult to ascertain due to the wide 

range of infections classified as RTIs, high rates of non-symptomatic or pauci-symptomatic 

infection, and the intrinsic seasonality and epidemicity of a wide range of respiratory 

pathogens.(Manchal et al., 2020) Nonetheless, the morbidity and mortality imposed by 
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LRTIs alone may exceed all other HCAIs: in a modelling study, Cassini et al. estimated 

that pneumonia causes greater health burden than any other major HCAI when accounting 

for both years of life lost and years lived with disability.(Cassini et al., 2016) 

 

1.2.2.2.  Risk factors 

The greatest risk factor for nosocomial LRTI is mechanical ventilation. In hospitals in the 

USA, 35.5% of hospital pneumonia cases were ventilator-associated,(Magill et al., 2018) 

and an estimated 10-40% of patients undergoing ventilation will develop ventilator-

associated pneumonia within 48 hours of intubation.(Zaragoza et al., 2020) Likely owing to 

their typically mild nature, URTIs and their risk factors are comparatively understudied and 

poorly described in the literature. 

 

1.2.3.  Surgical site infection (SSI) 

1.2.3.1.  Epidemiology 

WHO reports SSI as the second leading cause of HCAI in the USA, after UTI, and the third 

leading cause in Europe, after UTI and RTI.(World Health Organization, 2011) European 

data suggest that hospital SSI prevalence (18.3% of HCAIs) is similar to UTI (18.9%), but 

that SSI results in substantially fewer annual infections (520,000 vs. 870,000), explained 

by particularly long lengths of stay among patients with SSI.(Suetens et al., 2018) SSIs are 

often caused by endogenous microflora, and in particular bacteria and fungi residing on 

the skin, although contamination from nosocomial pathogens is also common.(Owens and 

Stoessel, 2008) 

 

1.2.3.2.  Risk factors 

A surgery patient’s probability of developing SSI varies widely from 0.5 to 15%, depending 

on the type of operation and their underlying pre-operative health.(World Health 

Organization, 2002) The principal risk factor across any operation is its duration, which 

scales with both the duration of potential contamination of the sterile site and the 

operation’s complexity.(Cheadle, 2006; Lawson et al., 2013; Leong et al., 2006) A range of 

scoring systems for SSI risk have been developed, which all account for surgery duration 

and whether the operation is classified as dirty or contaminated.(Leong et al., 2006)  
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1.2.4.  Gastrointestinal infection (GI) 

1.2.4.1.  Epidemiology 

GI is caused by a diverse array of pathogens, including viruses, bacteria, protozoa and 

helminths, but the majority of GIs are self-limiting viral infections that last from 1 to 3 

days.(Elliott, 2007; Payne et al., 2013) Healthcare-associated GI has historically garnered 

less attention than other HCAIs, largely overlooked by previous WHO reports on HCAI 

burden and prevention,(World Health Organization, 2011, 2002) and excluded from 

national nosocomial infection surveillance systems.(Spackova et al., 2010) However, 

increasing research focus and surveillance effort have been accorded to nosocomial GI in 

recent years.(Lopman et al., 2004; Wikswo et al., 2015)  

 

In European hospitals, 8.9% of active HCAIs were GIs, corresponding to approximately 

330,000 infections per year.(Suetens et al., 2018) By contrast, GI was estimated to be 

comparatively rare in long-term care settings, accounting for just 2.9% of HCAIs (164,000 

annual infections). Yet, over eight years of surveillance in England and Wales, 27% of 

infectious gastroenteritis outbreaks occurred in hospitals and 28% in residential care 

facilities (primarily nursing homes);(Meakins et al., 2003) and over five years of 

surveillance data in the USA, just 4% of GI outbreaks occurred in hospitals versus 70% in 

LTCFs.(Wikswo et al., 2015) These conflicting data may to a certain extent reflect real 

differences in country-specific and time-varying GI epidemiology. They may also reflect 

incomplete data, inconsistent GI surveillance systems, and poor representativeness of 

point-prevalence data for seasonal infections causing sporadic outbreaks.  

 

1.2.4.2.  Risk factors 

Overall GI risk is greater in older patients with longer hospital stays (Figure 1.3), although 

GI in the community is traditionally associated with children. In a retrospective analysis of 

medical records in the USA, approximately 9% of hospitalizations in children aged 1-4 

were associated with gastroenteritis, compared to just 1.5% for adults.(Gangarosa et al., 

1992) However, risks of severe disease and death were primarily borne by the elderly: the 

hospital gastroenteritis case-fatality rate was 3% for those over 80, but just 0.05% for 

those under five.  
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1.2.5.  Bloodstream infection (BSI) 

1.2.5.1.  Epidemiology 

In European hospitals, an estimated 10.8% of HCAIs are bloodstream infections, 

accounting for 375,000 infections annually. However, variation in case definitions, 

reporting standards, estimation methodologies and study populations has made BSI 

surveillance notoriously challenging.(Lin et al., 2010; Viscoli, 2016) In a review of 

population-based studies in North America and Europe, approximately 20-30% of BSIs 

were estimated to be hospital-acquired,(Goto and Al-Hasan, 2013) while LTCF-acquired 

BSI is comparatively rare.(Mylotte, 2005; Suetens et al., 2018) BSI has the highest case-

fatality rate of any HCAI, estimated across a range of settings and methodologies at 12-

32%, with substantially higher rates for nosocomial relative to community-onset 

infection.(Goto and Al-Hasan, 2013; Kontula et al., 2018; Lenz et al., 2012; Rodríguez-

Baño et al., 2010; Søgaard et al., 2011) BSI was the 11th leading cause of death in the 

USA in 2019,(Centers for Disease Control and Prevention, n.d.) and has been estimated in 

a European modelling study to cause the greatest loss of life of any major HCAI.(Cassini 

et al., 2016) Epidemiological characteristics vary significantly across different 

pathogens,(Ani et al., 2015; Kontula et al., 2018; Wisplinghoff et al., 2004) and, as with 

many HCAIs, BSIs most often result from opportunistic infection caused by a patient’s own 

endogenous flora.(Bennett MD et al., 2014)  

 

1.2.5.2.  Risk factors 

Central venous and peripheral venous catheterization are the most important risk factors 

for nosocomial BSI.(Bassetti et al., 2016) Excluding infections with missing data, 39.6% of 

BSIs in European point prevalence were primary BSIs associated with vascular 

catheterization, 22.6% were non-catheter-associated primary BSIs, and 37.9% were 

secondary.(Suetens et al., 2018) The most common precursor infection for secondary BSI 

was UTI (29.3% of secondary BSIs), followed by GI (18.7%) and SSI (16.4%). In USA 

point prevalence, 73.1% of primary BSIs were central venous catheter-associated, and no 

secondary BSIs were reported.(Magill et al., 2018) This latter finding is consistent with the 

widely held belief that secondary BSI is under-reported, with diagnostic codes for primary, 

but not secondary infection often being the only ones entered into electronic medical 

records.(Goto and Al-Hasan, 2013) Further, BSI may go unnoticed as a cause of death in 

patients comorbid with terminal conditions like end-stage liver or kidney disease.  
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1.3.  Nosocomial pathogens 

HCAIs are principally caused by three distinct types of pathogen: bacteria, viruses and 

fungi. Here I introduce the most important nosocomial pathogens belonging to each of 

these groups, and comment on their ecology, transmission characteristics and 

epidemiology. There are no globally representative data describing exactly which 

pathogens cause which HCAIs, and their epidemiology varies through space and time, but 

a range of recent national and regional estimates are available. Some of the most 

comprehensive data come from the previously introduced ECONI study, which followed all 

patients across two Scottish hospitals and their combined 1,473 beds over a 12-month 

period.(Stewart et al., 2021b) The causative pathogen was microbiologically confirmed in 

96.6% of 1,083 HCAIs, across a panel of 118 distinct species or taxonomic groups. These 

data are primarily used below to characterize HCAI aetiology, and are summarized in 

Table 1.1. Where relevant, comparisons are also made in the text to point prevalence 

surveys from the USA in 2015 (427 HCAIs, 70.3% microbiologically confirmed) and from 

ECDC in 2016/17 (19,626 HCAIs, 52.6% microbiologically confirmed).(Magill et al., 2018; 

Suetens et al., 2018) Further, geographical distributions of common pathogens are 

visualized in Figures 1.4 – 1.5 using ECDC data from 2011/12. Although together these 

represent a substantial and relatively up-to-date sample, these estimates should 

nonetheless be interpreted as specific to particular high-income, Occidental contexts. 

 

1.3.1.  Bacteria 

Bacteria are the leading cause of nosocomial infection, estimated in the ECONI study to 

account for 76.7% of HCAIs. Bacteria are ubiquitous, single-celled, prokaryotic 

microorganisms that reproduce asexually through binary fission. Estimates of the number 

of bacterial species on Earth range from approximately 1 million to over 1 

billion,(Dykhuizen, 2005; Louca et al., 2019) but just 538 species have been identified as 

human pathogens, distributed across over 60 families.(Woolhouse et al., 2005) Bacteria 

are composed of an external peptidoglycan cell wall, a phospholipid membrane, and a 

cytoplasm typically containing a single DNA chromosome, and only in some species 

membrane-bound organelles.  

 

In clinical settings, bacteria are classified based on how their cell walls react to Gram 

staining: Gram-positive bacteria have thicker cell walls with many layers of peptidoglycan 

that bind crystal violet stain, and are often capable of forming hardy, dormant structures 
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called endospores; while Gram-negative bacteria have a comparably thin cell wall, but a 

unique outer membrane that helps to protect them from external threats. Bacteria are 

further grouped according to their shape: most are spherical (coccus) or rod-shaped 

(bacillus), although some are spiral (spirillum), filamentous, box-shaped, and beyond. 

Bacteria are also widely classified according to their degree of resistance to common 

antibiotic agents, but this is introduced in the following section 1.4 of this Chapter. 

 

Table 1.1.  Leading pathogens causing different HCAIs. 

Summary of findings from the ECONI study, a prospective longitudinal observational study reporting the 
microbiological causes of 96.6% of HCAIs in two Scottish hospitals in 2018/19. (Stewart et al., 2021b) 
RTI combines LRTI and pneumonia. Other Enterococcus spp. excludes E. faecium and E. faecalis. 
Klebsiella spp. combines K. pneumoniae and other Klebsiella species. Candida spp. combines C. 
albicans and other Candida species. Gram-negative cocci are excluded as individual species were not 
available. Table was compiled for this thesis using data extracted from Stewart et al.  

HCAI Pathogen 

 HCAI 
(%) 

Leading species (% of given 
HCAI) 

 
Species (% of all 
HCAIs) 

HCAI (top 5 
rank) 

1. RTI  
(22.5%) 

Influenza (15.0%) 
Staphylococcus aureus (8.4%) 
Candida spp. (8.4%) 
Escherichia. coli (7.1%) 
Klebsiella spp. (7.1%) 

1. Escherichia coli (18.4%) 

BSI (1st) 
UTI (1st) 
SSI (3rd) 
RTI (4th) 
GI (5th) 

2. UTI  
(21.9%) 

Escherichia coli (48.7%) 
Klebsiella spp. (9.4%) 
Proteus mirabilis (9.4%) 
Other Enterococcus spp. (9.0%) 
Candida spp. (7.3) 

2. 
Staphylococcus aureus 
(10.8%) 

SSI (1st) 
Other (1st) 
BSI (2nd) 
RTI (2nd) 

3. 
BSI  

(18.7%) 

Escherichia coli (26.6%) 
Staphylococcus aureus (14.8%) 
Klebsiella spp. (9.8%) 
Enterococcus faecalis (8.6%) 
Enterococcus faecium (7.8%) 

3. Klebsiella spp. (6.9%) 

UTI (2nd) 
BSI (3rd) 
SSI (5th) 
RTI (5th) 

4. 
GI  

(16.9%) 

Norovirus (39.8%) 
Clostridioides difficile (18.9%) 
Enterococcus faecium (8.2%) 
Coagulase-negative staphylococci 
(5.1%) 
Escherichia coli (5.1%) 

4. 
Coagulase-negative 

staphylococci (6.3%) 

SSI (2nd) 
Other (2nd) 
GI (4th) 

5. 
SSI  

(13.8%) 

Staphylococcus aureus (22.5%) 
Coagulase-negative staphylococci 
(15.7%) 
Escherichia coli (11.0%) 
Enterococcus faecalis (10.2%) 
Klebsiella spp. (6,4%) 

5. Candida spp. (6.0%) 
RTI (3rd) 
Other (3rd) 
UTI (5th) 

6. 
Other 

(6.4%) 

Staphylococcus aureus (30.6%) 
Coagulase-negative staphylococci 
(22.6%) 
Candida spp. (11.3%) 
Streptococcus spp. (4.8%) 
Enterococcus faecalis (4.8%) 

6. Norovirus (5.9%) GI (1st) 

 
 

1.3.1.1.  Gram-negative bacilli 

Gram-negative bacilli are the primary causes of nosocomial infection, responsible for over 

one-third of all HCAIs (37.3% in ECONI) and approximately half of bacterial HCAIs 

(48.6%). Gram-negative bacilli cause all types of infections, including approximately three-

quarters of UTIs (75.2%), half of BSIs (51.2%), and one-third of SSIs (31.4%). The 
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microbial ecology of HCAI-causing Gram-negative bacilli and their propensities for 

nosocomial transmission vary significantly from species to species. However, the most 

common threats belong to the family Enterobacteriaceae, which principally colonize the 

digestive tract as commensal symbionts, only relatively rarely causing opportunistic 

infection.  

 

1.3.1.1.1.  Escherichia coli 

Among all species, Escherichia coli is the single leading cause of nosocomial infection in 

Europe (Figure 1.4). It has been estimated to account for 18.4% of HCAIs in Scotland, 

16.1% across Europe, and 14.7% in the USA.(Magill et al., 2018; Stewart et al., 2021b; 

Suetens et al., 2018) The ECONI study reports it as the cause of approximately half of 

UTIs (48.7%) and one quarter of BSIs (26.6%), and an important cause of all other types 

of infection. Despite its high burden, the nosocomial transmissibility of E. coli is believed to 

be relatively low.(Duval et al., 2019a; Gurieva et al., 2018) E. coli is simply one of the most 

abundant Gram-negative bacteria of the human gut, and a key cause of infection is 

translocation from the colon to sterile sites like the urinary tract, for instance during urinary 

catheterization.(Garmendia et al., 2005; Jacobsen et al., 2008) However, not all E. coli 

strains are alike. While so-called extra-intestinal pathogenic E. coli strains are benign in 

the gut and only cause infection when translocated elsewhere, a distinct collection of 

other, rarer strains – including enteropathogenic, enterotoxigenic, enterohaemorrhagic, 

enteroaggregative and enteroinvasive E. coli – are highly virulent digestive pathogens, and 

important causes of potentially fatal GI associated with foodborne outbreaks.(Chen and 

Frankel, 2005; Yang et al., 2017)  

 

1.3.1.1.2.  Klebsiella species 

After E. coli, Klebsiella spp. are the most common HCAI-causing Gram-negative bacilli, 

and the third overall cause of bacterial HCAI (Figure 1.4). Klebsiella pneumoniae is the 

leading species of concern, and high-risk epidemic clones – including a range of sequence 

types (STs) like ST11, ST442 and ST258 – have disseminated globally since the early 

2000s.(Mathers et al., 2015; Pitout et al., 2015) Klebsiella spp. appear to spread more 

readily than other Enterobacteriaceae through inter-individual contact,(Duval et al., 2019a) 

and have been associated with large nosocomial outbreaks.(Hoenigl et al., 2012; Mollers 

et al., 2017; Shao et al., 2020; Sui et al., 2018) In Europe, acquisition of Klebsiella spp. 

and other Enterobacteriaceae has also been closely associated with international travel, 

highlighting difficulty in containing nosocomial introductions of gut-residing Gram-negative 
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bacilli in a globalized world.(Karampatakis et al., 2016; Ruppé et al., 2015) 

 

1.3.1.1.3.  Other Gram-negative bacilli 

Other high-impact Gram-negative bacilli include Proteus mirabilis (2.7% of HCAIs), 

Pseudomonas spp. (2.1%), Serratia marcescens (1.7%), Acinetobacter spp. (0.4%) and 

other Enterobacterales (2.6%), including important pathogens like Enterobacter spp. and 

Citrobacter spp (Figure 1.4).  Each of these has unique ecological characteristics that 

drive its nosocomial infection dynamics. For one example, Pseudomonas spp. are known 

to establish persistent colonies in sinks, pipes and drains, creating environmental 

reservoirs for spread in closed healthcare environments.(Ayliffe et al., 1974) For another, 

Proteus spp. are known for their adaptability and resilience across a wide range of hosts 

and environments, providing myriad sources for potential nosocomial introduction: Proteus 

spp. colonize the human digestive tract; are abundant in both domestic animals and 

livestock; have been isolated from wild animals ranging from mammals, birds and reptiles, 

to oysters, sandflies and cockroaches; and are found free-living across terrestrial, marine 

and freshwater environments.(Drzewiecka, 2016)  

 

 

Figure 1.4.  Gram-negative bacilli prevalence in Europe. 

Gram-negative bacilli as a percentage of all HCAI isolates per country. Figure was rendered for this thesis 
using data extracted from ECDC surveillance from 2011/12.(Suetens et al., 2013) Data were unavailable 
for countries shaded in grey. Data from England are used for the United Kingdom. 
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1.3.1.2.  Gram-positive cocci 

Gram-positive cocci cause approximately one-third of HCAIs (32.1% in Stewart et al.) and 

an estimated 41.8% of bacterial HCAIs. Although they cause all types of infections, they 

are most strongly associated with SSI (56.4%), BSI (45.5%) and a large share of infections 

classified as other (66.1%), including skin, soft tissue, bone and joint infections. There are 

two main genera responsible for over 90% of HCAIs caused by Gram-positive cocci: 

Staphylococcus and Enterococcus.  

 

1.3.1.2.1.  Staphylococci 

The characteristic nosocomial pathogen Staphylococcus aureus is the second-leading 

HCAI-causing species after E. coli (Figure 1.5). S. aureus is the principal cause of SSI 

(22.5%), the second-leading cause of BSI (14.8%), and a key driver of other HCAIs 

(30.7%). Unlike Gram-negative bacilli, the principal ecological niche of staphylococci is the 

skin, and S. aureus spreads readily on hands, medical equipment and textiles. Healthcare 

workers are key vectors for spread in hospital and long-term care settings, and have been 

estimated to have a 5.4% risk of acquiring S. aureus carriage on their gloves or gowns 

after contacting a colonized patient in a general hospital ward,(Nadimpalli et al., 2020) and 

16.2% in the ICU setting,(O’Hara et al., 2019) with longer and more intimate types of 

contact increasing carriage risk. Beyond S. aureus, coagulase-negative staphylococci are 

also important causes of HCAI (6.3%) (Figure 1.5). This group includes a diverse range of 

nosocomial pathogens, like S. epidermidis and S. haemolyticus, both important causes of 

neonatal HCAI and infections linked to indwelling medical devices, and S. saprophyticus, a 

common cause of acute urethritis.(Becker et al., 2014) 

 

1.3.1.2.2.  Enterococci 

Among Enterococcus spp., which altogether cause about 11.8% of HCAIs, two species 

predominate: E. faecalis and E. faecium. Enterococci are particularly associated with SSI, 

BSI, UTI and GI; their principal niche being the digestive tract, they have an outsized 

impact on GI relative to other Gram-positive cocci. Nosocomial infection by E. faecium is in 

particular associated with a subpopulation of globally disseminated clones that are rarely 

found in the community, and which have acquired a range of genetic elements favouring 

adaptation to healthcare settings.(Guzman Prieto et al., 2016) By contrast, HCAI-causing 

strains of E. faecalis are widely found in the community and animal reservoirs.(Guzman 

Prieto et al., 2016) 
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Figure 1.5.  Gram-positive cocci prevalence in Europe. 

Gram-positive cocci as a percentage of all HCAI isolates per country. Figure was rendered for this thesis 
using data extracted from ECDC surveillance from 2011/12.(Suetens et al., 2013) Data were unavailable 
for countries shaded in grey. Data from England are used for the United Kingdom. 
 

1.3.1.3.  Gram-positive bacilli 

Relatively few nosocomial pathogens are Gram-positive bacilli. The most common is 

Clostridioides difficile (73.2% of HCAI-causing Gram-positive bacilli in Stewart et al.), a 

characteristic hospital pathogen and leading cause of nosocomial diarrheal disease. 

Pathogenic C. difficile strains produce a range of toxins, including enterotoxin and 

cytotoxin, and can cause life-threatening pseudomembranous colitis, colonic perforation 

and death.(Martin et al., 2016) Estimates of C. difficile burden – and hence Gram-positive 

bacilli burden – vary substantially across studies. C. difficile accounted for 2.8% of HCAIs 

and 18.9% of nosocomial GIs in the ECONI study, but 7.3% of HCAIs and 68.4% of GIs in 

ECDC point prevalence. By contrast, in USA point prevalence, C. difficile was the single 

leading cause of nosocomial infection, responsible for 15.5% of HCAIs and 72.5% of GIs. 

C. difficile surveillance is complicated by an important share of asymptomatic carriers, and 

only a minority of hospital infections are estimated to result from nosocomial 

transmission.(Baron et al., 2019; Martin et al., 2016) However, regardless of where 

acquisition occurs, nosocomial colonization and infection are strongly associated with 

disturbances to the intestinal microbiome, whether through antibiotic exposure, co-

infection with other gastrointestinal pathogens, use of enemas or stool softeners, or other 

diarrheal events.(VanInsberghe et al., 2020) 

 

1.3.1.4.  Gram-negataive cocci and other bacteria 

Gram-negative cocci are rare causes of HCAI, estimated to account for 3.4% of HCAIs in 

the ECONI study and just 0.3% in ECDC point prevalence. Although a range of pathogenic 

Gram-negative cocci of the genus Neisseria are common in the community, including N. 



 

 41 

meningitidis and N. gonorrhoeae, these only rarely cause nosocomial infection.(Elias et al., 

2006) Other bacterial pathogens that do not fit neatly into the above categories also cause 

nosocomial infection. These include, but are not limited to: (i) Haemophilus influenzae, a 

coccobacillary bacteria and relatively common cause of nosocomial RTI 

outbreaks;(Barreiro et al., 1995) (ii) Legionella spp., pleomorphic flagellated bacteria, 

which, although incapable of person-to-person transmission, trigger nosocomial outbreaks 

when disseminated by air conditioners, cooling towers and other contaminated water 

supplies in healthcare environments;(Roig et al., 2003) and (iii) Mycobacterium 

tuberculosis, a complex of respiratory bacilli impervious to Gram-staining, which represent 

common nosocomial pathogens, and leading causes of infectious mortality in low- and 

middle-income countries.(Collins and Blumberg, 2020; Genestet et al., 2020; Pai et al., 

2006) 

 

1.3.2.  Viruses 

Viruses are the second leading cause of nosocomial infection after bacteria, estimated in 

the ECONI study to account for 15.3% of HCAIs.(Stewart et al., 2021b) Viruses are 

submicroscopic infectious agents that lack even a rudimentary cellular structure. Each 

individual virus particle (virion) is composed simply of its genetic material, the strands of 

DNA or RNA that encode viral proteins, and a capsid, a protein coat that surrounds and 

protects its genetic material. Some viruses also have an envelope, an outer phospholipid 

layer.  

 

Viruses are not free-living, and can only reproduce by entering a susceptible host cell and 

manipulating its metabolism to transcribe and replicate viral genes, assemble viral 

proteins, and ultimately propagate new virions. Human viruses are broadly classified by 

the structure of their genetic material: DNA viruses generally replicate within the cell 

nucleus, and RNA viruses in the cytoplasm. Although considered by only some scientists 

to be forms of life, viruses nonetheless reproduce and evolve through natural selection. 

Their taxonomy is particularly complex owing to unclear origins in the evolutionary history 

of life, but viruses can be grouped into distinct species, of which 219 have been identified 

as human pathogens.(Woolhouse et al., 2012)  

 

1.3.2.1.  Norovirus 

Stewart et al. reported norovirus (Norwalk virus) as the leading cause of viral HCAI, 

accounting for one-third of viral HCAIs and 5.9% of all HCAIs. Norovirus is a principal 
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cause of acute gastroenteritis worldwide, particularly among children,(Koopmans, 2008) 

and accounts for an estimated 40.0% of nosocomial GIs. Spread through environmental or 

alimentary contamination, or through direct contact with infectious vomit or faeces, 

norovirus is highly infectious and transmits particularly easily in closed healthcare facility 

settings, sometimes as a result of asymptomatic carriage.(Greig and Lee, 2012; Sukhrie et 

al., 2012) Its infectious dose is also particularly low, highlighting the importance of hand 

hygiene and environmental decontamination in limiting norovirus spread.(Atmar et al., 

2014) 

 

1.3.2.2.  Influenza 

Influenza is the second leading cause of viral HCAI (3.0% of all HCAIs), the most common 

cause of healthcare-associated LRTI (15.0%), and an important cause of healthcare-

associated pneumonia (5.2%). Its two principal species – influenza A (Alphainfluenzavirus) 

and influenza B (Betainfluenzavirus) – are both highly seasonal, and tend to co-circulate 

as they spread through winter months, driving global epidemics before receding again into 

the approach of summer.(Borchering et al., 2021) Significant progress has been made in 

nosocomial influenza control over recent decades, including reliable annual deployment of 

influenza vaccines, and use of rapid antigen tests for point of care case 

detection.(Maltezou, 2008) However, influenza nonetheless represents a significant 

nosocomial threat, particularly in the context of relatively low vaccine uptake among 

healthcare personnel, annual variability in vaccine effectiveness, and the unpredictable 

nature and pandemic potential of successive influenza seasons.(Vanhems et al., 2016)  

 

1.3.2.3.  Other respiratory viruses 

Nearly all other endemic HCAI-causing viruses – including respiratory syncytial virus 

(Human orthopneumovirus, 1.3% of HCAIs), rhinovirus (Enterovirus rhinovirus, 1.1%), 

human coronaviruses (Orthocoronavirinae, 1.1%), parainfluenza virus (Respirovirus and 

Rubulavirus, 0.9%) and metapneumovirus (Human metapneumovirus, 0.8%) – principally 

or exclusively cause respiratory infections. By contrast to these estimates from the ECONI 

study, point prevalence surveys from the USA and ECDC  reported, respectively, that only 

1.0% and 0.5% of all HCAIs were caused by viruses. Such low estimates reinforce the 

beliefs that nosocomial viral infection is widely underreported, and that point prevalence 

surveys poorly characterize true nosocomial infection burden, particularly for seasonal 

viruses like norovirus and influenza.(Manchal et al., 2020; Vanhems et al., 2016) Data for 

rare and non-endemic viruses are likely even poorer, while novel threats like the 
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coronaviruses SARS-CoV-1 and SARS-CoV-2 continue to emerge and redefine which 

pathogens cause which HCAI. 

 

1.3.2.4.  Emerging viral threats 

Over recent decades, a range of emerging viral zoonoses – infectious diseases that jump 

from animal reservoirs into human populations – have been closely linked to healthcare 

settings and nosocomial outbreaks. Although bacterial and fungal zoonoses also occur 

(e.g. brucellosis, leptospirosis, Q fever), these are comparatively rare and not discussed 

further.(Asante et al., 2019) 

 

1.3.2.4.1.  Viral haemorrhagic fevers 

Among the most deadly emerging HCAIs are viral haemorrhagic fevers (VHFs), caused by 

a taxonomically diverse array of viruses. Case-fatality rates for some VHFs reach as high 

as 90%.(Fisher-Hoch, 2005) The most common is Lassa fever (Lassavirus 

mammarenavirus), originally acquired from multimammate rats but now endemic to West 

Africa, and estimated to cause thousands of deaths per year.(Richmond and Baglole, 

2003) The first reported cases of Lassa fever occurred during a nosocomial outbreak in 

1969,(Frame et al., 1970) while a well-documented outbreak in a tertiary care facility in 

Nigeria in 2018, responsible for 16 infections and 5 deaths among healthcare workers 

alone, demonstrates its ongoing potential for nosocomial spread.(Dan-Nwafor et al., 2019)  

 

Less common but more deadly than Lassa fever, Ebola virus disease (Zaire ebolavirus) 

has spilled into human populations at least 20 times since its first identification in 

simultaneous outbreaks in 1976 in present-day South Sudan and Democratic Republic of 

the Congo. These outbreaks have repeatedly been associated with transmission between 

patients and personnel in healthcare facilities, and with healthcare workers that amplify 

spread back into the community.(Shears and O’Dempsey, 2015) The Western African 

Ebola outbreak of 2013-16, many times larger than all other Ebola outbreaks combined, 

demonstrated characteristic nosocomial transmission dynamics of zoonotic VHFs, with 

WHO estimating a total 874 healthcare worker infections and 509 deaths as of July 1, 

2015.(World Health Organization, 2015)  

 

Other, rarer zoonotic VHFs that have triggered nosocomial outbreaks include Marburg 

(Marburg marburgvirus),(Gear et al., 1975) Crimean-Congo VHF (Crimean-Congo 

haemorrhagic fever orthonairovirus),(Pshenichnaya and Nenadskaya, 2015) Bolivian VHF 
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(Machupo mammarenavirus),(Peters et al., 1974) the recently-discovered Lujo VHF (Lujo 

mammarenavirus) and Bas-Congo VHF (Bas-Congo tibrovirus),(Grard et al., 2012; 

Paweska et al., 2009)  and Andes hantavirus (Andes orthohantavirus), the only hantavirus 

shown to spread through human-to-human transmission.(Martinez-Valdebenito et al., 

2014) In a review of nosocomial risks posed by rare zoonotic diseases published in 2001, 

Weinstein et al. highlighted a number of other viruses not yet known to have caused 

nosocomial transmission but having theoretical potential to do so, including B virus 

(Cercopithecine herpesvirus 1), rabies (Rabies lyssavirus) and monkeypox (Monkeypox 

virus).(Weber and Rutala, 2001) Since, small nosocomial monkeypox outbreaks have 

been reported in Republic of the Congo,(Learned et al., 2005) Central African 

Republic,(Nakoune et al., 2017) and Nigeria.(Yinka-Ogunleye et al., 2019) Although this 

highlights that proactive outbreak preparedness may help clinicians to anticipate emerging 

zoonotic risks, the pathogens that are expected to pose serious public health threats in the 

future are not necessarily those that do. In 2001, few could have anticipated that novel 

zoonotic coronaviruses would become the great emerging nosocomial threats of the early 

21st century.   

 

1.3.2.4.2.  Coronaviruses 

Since the turn of the millennium, a trio of highly infectious zoonotic coronaviruses have 

spilled into human populations: severe acute respiratory syndrome coronavirus 1 (SARS-

CoV-1), introduced several times from civet cats in Guangdong, China between 2002 and 

2004;(Wang et al., 2005) Middle East respiratory syndrome-related coronavirus (MERS-

CoV), introduced tens to hundreds of times from dromedary camels, predominantly in 

Saudi Arabia since at least 2012; (Conzade et al., 2018) and severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2), introduced from an unknown origin in Hubei, 

China in late 2019. While SARS-CoV-1 has been contained since 2004, MERS-CoV 

infections have been observed every year since 2012, with the most recent infection 

reported to WHO in March 2021.(World Health Organization, 2021a) SARS-CoV-2 is the 

cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic, with hundreds of 

millions of documented infections since the beginning of 2020, and counting. 

 

These novel coronaviruses are all known to amplify in healthcare settings, whereby 

individuals that seek care for their disease trigger nosocomial outbreaks. For SARS-CoV-1 

and MERS-CoV, most observed human-to-human transmission to date has occurred in 

hospitals. In a comparative analysis of hospitals clusters, 71% of MERS-CoV infections 
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and 58% of SARS-CoV-1 infections were estimated to have resulted from nosocomial 

transmission.(Chowell et al., 2021) Since widespread establishment of SARS-CoV-2 in 

community settings, only a relatively small share of total cumulative transmission is likely 

to have occurred in healthcare facilities. However, a rapid review of novel coronavirus 

outbreaks up to March 31, 2020 estimated that 44% of SARS-CoV-2 infections were 

acquired in hospital, similar to estimates for SARS-CoV-1 (36%) and MERS-CoV (56%), 

suggesting comparable intrinsic propensities for nosocomial transmission.(Q. Zhou et al., 

2020) Nonetheless, these estimates may be biased by greater surveillance effort in 

healthcare settings than in the community, particularly early in the COVID-19 pandemic.  

 

There are several reasons why these novel coronaviruses spread so well in hospital 

settings. First, by transmitting primarily through bio-aerosol droplets, classic nosocomial 

risk factors for respiratory pathogens play an important role, including dense 

concentrations of patients and staff with high rates of contact,(Reynolds et al., 2006) 

imperfect infection prevention measures like masking and isolation,(Seto et al., 2013) and 

inadequate ventilation systems that fail to eliminate, or even facilitate viral circulation 

through the air.(Li et al., 2005) Second, aerosolizing procedures required for patients 

undergoing respiratory distress, like bronchoscopy and intubation, increase risk of onward 

transmission.(de Wit et al., 2016) Third, all of these viruses can cause asymptomatic 

infection, and healthcare workers in particular have been identified as sources of silent 

infection, unknowingly transmitting the virus during contacts with their patients and other 

members of staff.(Grant et al., 2019; Rivett et al., 2020; Wilder-Smith et al., 2005) Fourth, 

within-host viral dynamics may also contribute: for SARS-CoV-1 and MERS-CoV, most 

patients have been shown to only begin shedding large amounts of virus well after 

symptom onset, at which point they are more likely to already be seeking care in 

healthcare environments.(de Wit et al., 2016)  

 

1.3.3.  Fungi 

Fungi, although comparatively rare in healthcare settings relative to viruses and bacteria, 

are another important cause of nosocomial infection, estimated to account for 5.9–7.3% of 

HCAIs in Europe.(Stewart et al., 2021b; Suetens et al., 2018) Fungi are eukaryotic 

heterotrophs distinguished from plants and bacteria by the presence of chitin in their cell 

walls. Often multi-cellular, but sometimes single-cellular in the form of yeasts, fungi are 

represented by a tremendous diversity of morphological, ecological and genetic 

adaptations. Of an estimated 2.2 to 3.8 million species of fungi on Earth,(Hawksworth and 
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Lücking, 2017) 317 have been identified as human pathogens.(Woolhouse et al., 2005) 

 

1.3.3.1.  Candida and Aspergillus 

Candida spp. are by far the most common cause of fungal HCAI (6.0% of HCAIs), the 

most noteworthy species being C. albicans and C. auris. Candida spp. are known to cause 

all types of HCAI, and are proportionally overrepresented causes of pneumonia (12.1%), 

other HCAI (11.3%), and LRTI (8.4%), but relatively rare causes of GI (2.6%) and BSI 

(2.0%). C. auris has in particular raised significant concern in recent years as an emerging 

nosocomial pathogen: discovered in Japan in 2009, it has since caused hospital outbreaks 

on all continents except Antarctica, is associated with invasive disease, is highly resistant 

to a range of antifungal compounds, and has proven capable of spreading in healthcare 

settings despite robust infection prevention and control measures.(Lone and Ahmad, 2019; 

Rhodes and Fisher, 2019) Aspergillus spp. are the other HCAI-causing fungi of note (0.7% 

of HCAIs), occasionally causing respiratory and surgical site infections, particularly in 

immunocompromised patients.(Suleyman and Alangaden, 2016)  

 

1.3.4.  Other pathogens 

In the ECONI study, only 0.7% of HCAIs were caused by protozoa or other pathogens not 

classified as bacteria, viruses or fungi.(Stewart et al., 2021b) Protozoa are single-celled 

eukaryotes that lack a cell wall and which cause a range of important human diseases, 

including Chagas disease (Trypanosoma brucei), leishmaniasis (Leishmania spp.), 

toxoplasmosis (Toxoplasma gondii), and one of the most significant and burdensome of 

all: malaria (Plasmodium spp.). Yet most protozoa spread through arthropod vectors or 

contaminated water, and only rarely cause nosocomial infection. However, such 

pathogens can spread in the absence of vectors through, for example, mucous membrane 

contact, or through contaminated needlestick injury, blood transfusion or organ 

transplantation.(Lettau, 1991) Although these risks are likely much greater in endemic 

regions where prevalence is higher, several thousand cases of transfusion-related malaria 

have been reported in the USA since the first described case in 1911,(Bruce-Chwatt, 

1974) while a recent case of unexplained nosocomial P. falciparum transmission in a 

German hospital highlights non-negligible risk, even in the absence of the pathogen’s 

natural vector.(Gruell et al., 2017) Similarly, transfusion-related nosocomial transmission of 

viruses like HIV and hepatitis C virus have also had large impacts over the past several 

decades. Nevertheless, relative to the long list of other important healthcare-associated 

pathogens, such infections represent relatively rare exceptions.   
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1.4.  Antimicrobial agents and antimicrobial resistance 

Antimicrobial agents are chemical agents that kill microorganisms, impede their growth or 

stop their replication. These include: disinfectants, which are applied to inert surfaces (e.g. 

bleach); antiseptics, which are applied to living tissue (e.g. iodine, ethanol, chlorhexidine); 

and anti-infectives, which are introduced into the body to prevent or treat infection (e.g. 

antibiotics, antivirals, antifungals).  

 

Each of these agents plays an important role in the fight against HCAI. Disinfectants are 

used for decontamination of healthcare settings, for instance on an operating table before 

surgery, or across a hospital ward after an infectious disease outbreak. Antiseptics are 

most often used locally on a patient’s skin, for instance to reduce risk of contamination with 

their own flora during invasive procedures like catheter insertion. Finally, anti-infectives are 

used to treat patients for HCAI by ridding their body of the pathogen causing (or likely to 

cause) infection. The most widely used anti-infectives in healthcare settings, and an 

important focus of this thesis, are antibiotics. 

 

1.4.1.  Antibiotics 

Antibiotics are critically important tools for treating and preventing bacterial infections and 

controlling HCAI. A recent ECDC point prevalence survey characterized hospital antibiotic 

use across 1,209 hospitals in 29 European countries in 2016/17. Notwithstanding 

substantial country-level heterogeneity –  antimicrobial exposure prevalence ranged from 

15.9% in Hungary to 55.6% in Greece –  approximately one in three patients (32.9%) was 

estimated to receive an anti-infective agent during their hospitalization, of which 92% were 

antibiotics.(Plachouras et al., 2018) These estimates are presented in Figure 1.6, and are 

consistent with a similar global survey across 303 hospitals in 53 countries in 2015, which 

estimated that 35.5% of patients received at least one anti-infective agent (89.3% 

antibiotics).(Versporten et al., 2018) Both studies further estimated the share of antibiotic 

prescribing specifically for treatment and prevention of HCAI. 

 

1.4.1.1.  Antibiotic therapy and prophylaxis 

Antibiotic chemotherapy describes the use of antibiotics for the treatment of an active 

infection. In ECDC point prevalence, therapy accounted for approximately 70% of hospital 

antibiotic use, 30% of which was for infections with hospital or LTCF onset. This translates 

to approximately one fifth (19.6%) of all hospital antibiotic use being for HCAI 
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therapy.(Plachouras et al., 2018) The estimate was somewhat greater in a global study: 

25.2% of antibiotic use was estimated to be for HCAI therapy, ranging from 9.5% in Africa 

to 34.9% in Latin America.(Versporten et al., 2018)  

 

Antibiotic prophylaxis describes the use of antibiotics for infection prevention. In ECDC 

point prevalence, prophylaxis accounted for 24.9% of all hospital antibiotic 

use.(Plachouras et al., 2018) For surgery patients, antibiotics are typically given 30 to 60 

minutes prior to the first incision,(Cheadle, 2006) but the proportion of patients receiving 

only one antibiotic dose ranged from >60% in Scotland to <5% in Cyprus, highlighting 

important country-level differences in antibiotic prescribing practice even for standard 

procedures.(Plachouras et al., 2018) Overall estimates from the global sample were nearly 

identical, with prophylaxis accounting for 25.2% of hospital antibiotic use. Surgical 

prophylaxis was found to contribute to 71% of prophylaxis, versus 29% for general medical 

prophylaxis. In both studies, there was also extensive variation in exactly which types of 

antibiotics were prescribed and for which purposes.  

 

 

Figure 1.6.  Antimicrobial prescribing prevalence in Europe. 

Predicted antimicrobial prescribing prevalence (the proportion of patients receiving at least one 
antimicrobial) in acute care hospitals in Europe in 2016/17. Figure was rendered for this thesis using data 
extracted from ECDC surveillance.(Plachouras et al., 2018) Data were unavailable for countries shaded 
in grey. Data from England are used for the United Kingdom. 
 

1.4.1.2.  Types of antibiotics 

The Anatomical Therapeutic Chemical (ATC) Classification System, a coding scheme 

developed by WHO for drug taxonomy, recognizes hundreds of different types of 
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antibiotics, which are distributed across 10 main groups (see Table 1.2). For some 

scientists, the definition of antibiotic includes only natural antibiotics, those that are 

isolated or derived from compounds occurring in nature. However, ACT also includes 

important synthetic compounds, such as sulfonamides, trimethoprim, and quinolones.  

Table 1.2.  Types of antibiotics 

The ten groups of antibacterials for systemic use as defined by WHO, with characteristic examples. 
ATC code Name of group Characteristic examples Notes 

J01A Tetracyclines 
- Doxycycline 
- Tetracycline 
- Tigecycline  

 

J01B Amphenicols 
- Chloramphenicol 
- Thiamphenicol 

 

J01C 

Beta-lactam 
antibacterials, 
penicillins 

- Ampicillin 
- Amoxicillin 
- Flucloxacillin 
- Piperacillin 
- Tazobactam 

Subgroups include Penicillins with 
expended spectrum, Beta-
lactamase-sensitive penicillins, 
Beta-lactamase-resistant penicillins, 
Beta-lactamase inhibitors 

J01D 
Other beta-lactam 
antibacterials 

- Cefotaxime 
- Cefepime 
- Imipenem 
- Meropenem 

Subgroups include Cephalosporins 
(1st, 2nd, 3rd, 4th generations), 
Monobactams, Carbapenems 

J01E 
Sulfonamides and 
trimethoprim 

- Trimethoprim 
- Sulfamethoxazole 
- Co-trimoxazole 

Synthetic 

J01F 
Macrolides, 
lincosamides and 
strepogramins 

- Azithromycin 
- Clindamycin 
- Erythromycin 
- Pristinamycin 

 

J01G 
Aminoglycoside 
antibacterials 

- Amikacin 
- Gentamicin 
- Streptomycin 

 

J01M 
Quinolone 
antibacterials 

- Ciprofloxacin 
- Levofloxacin 
- Oxolinic acid 
- Temafloxacin 

Synthetic, mostly fluoroquinolones 

J01R 
Combinations of 
antibacterials 

- Azithromycin + fluconazole + secni-
dazole 

- Cefepime + amikacin 
- Ciprofloxacin + metronidazole 
 

Excludes Combinations of penicillins 
(including with beta-lactamase 
inhibitor), Combinations of 
sulfonamides and trimethoprim 

J01X Other antibacterials 

- Colistin 
- Fusidic acid 
- Linezolid 
- Metronidazole 
- Nitrofurantoin 
- Vancomycin 

Includes Glycopeptides, Polymyxins, 
Steroids, Imidazole derivatives, 
Nitrofuran derivatives, 
Pleuromutilins, and Others 

 

In ECDC point prevalence, the ranking of antibiotics used for HCAI treatment 

was:(Plachouras et al., 2018) 

1. combined penicillin + beta-lactamase inhibitor (J01CR, 19.8%) 

2. carbapenems (J01DH, 9.9%) 

3. fluoroquinolones (J01MA, 9.4%) 

 

Results were similar in the global sample:(Versporten et al., 2018) 

1. combined penicillin + beta-lactamase inhibitor (J01CR, 24.8%) 

2. fluoroquinolones (J01MA, 12.8%) 

3. carbapenems (J01DH, 12.2%) 
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1.4.1.3.  Biological mechanisms of action 
Different types of antibiotics work via different biological mechanisms to either kill bacteria 

or halt their replication. The principal mechanisms of action are described below, including 

examples of prominent antibiotics that employ them.(Kapoor et al., 2017; Lewis, 2013; 

Theuretzbacher et al., 2020) However, it should be noted that the exact molecular targets 

and biochemical pathways of most antibiotics remain poorly understood, if not entirely 

undescribed.(Lewis, 2013)  

 

1.4.1.3.1.  Inhibition of cell wall synthesis 

Some antibiotics work by inhibiting synthesis of peptidoglycan, the fundamental building 

block of the bacterial cell wall. In the presence of a bacterium’s penicillin binding proteins 

(PBPs), peptidoglycan polymers normally form through cross-linking of underlying glycan 

strands and peptide chains. Antibiotics that bind to PBPs prevent cross-linking, impeding 

peptidoglycan synthesis. This disrupts maintenance of the bacterial cell wall and ultimately 

leads to lysis, the bursting of the cell. Antibiotics that work in this way include beta-

lactams (e.g. penicillins, cephalosporins, carbapenems, monobactams) and 

glycopeptides (e.g. vancomycin).  

 

1.4.1.3.2.  Inhibition of protein synthesis 

Like all living cells, bacteria make use of ribosomes to translate messenger RNA (mRNA) 

into proteins, a process known as mRNA translation or protein synthesis. Bacteria have a 

70S ribosome composed of two ribonucleoprotein subunits: the 30S and 50S subunits. 

Antibiotics that bind to these subunits can disrupt or inhibit mRNA translation, impeding 

bacterial metabolism and leading to cell death. Antibiotics that target the 30s subunit 

include aminoglycosides and tetracyclines; those that target the 50s subunit include 

macrolides, chloramphenicol and linezolid.  

 

1.4.1.3.3.  Inhibition of DNA replication 

DNA gyrase is a protein that manipulates the chromosome to facilitate both DNA 

replication and mRNA transcription. Bacterial DNA gyrase is distinct from the version 

found in eukaryotic cells, making it a safe pharmacological target. Antibiotics that target 

DNA gyrase lead to accumulation of double-stranded DNA breaks and interrupted DNA 

replication, ultimately causing cell death. These primarily include quinolones (e.g. 

ciprofloxacin, oxolinic acid). 
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1.4.1.3.4.  Inhibition of folic acid metabolism 

Folic acid metabolism is a fundamental metabolic pathway in bacterial cells, associated 

with DNA biosynthesis and the production of the vital electron donor NADPH. Different 

compounds target different steps in folic acid metabolism. These include sulfonamides 

(e.g. sulfamethoxazole, sulfapyridine), which inhibit the enzyme dihydropteroate 

synthase, and trimethoprim, which inhibits the enzyme dihydrofolate reductase. Such 

compounds can be used simultaneously to increase their bactericidal impact; the most 

common is a combination of sulfamethoxazole and trimethoprim known as co-

trimoxazole. 

 

1.4.1.3.5.  Membrane permeation 

Lipopolysaccharides form the outer membrane of Gram-negative bacteria. Polymyxins 

(e.g. colistin) are a unique class of antibiotics that, in binding to these molecules, result in 

detergent-like action that damages the outer membrane, increasing its permeability and 

killing the cell. However, these antibiotics are both neurotoxic and nephrotoxic, and are 

used relatively sparingly. Colistin is also an example of a “reserve” antibiotic, a 

classification from WHO designating an arsenal of last-resort antibiotics that should be 

saved only for targeted use against highly antibiotic-resistant organisms.(WHO Expert 

Committee on the Selection and Use of Essential Medicines, 2017) 

 

1.4.2.  Antibiotic resistance 

Antibiotic resistance describes the ability of bacteria to resist the chemotherapeutic effects 

of a particular antibiotic compound. Resistance can be intrinsic, whereby bacteria naturally 

evade the toxic effects of antibiotics, such as through a protective outer membrane.(Cox 

and Wright, 2013) Resistance can also be acquired, whereby the emergence of previously 

undetectable resistance occurs, as an evolutionary response to natural selection imposed 

by use of those antibiotics.(Blair et al., 2015) Intrinsic and acquired resistances are not 

mutually exclusive, and acquired resistances can also accumulate, whereby a particular 

bacterium evolves to become multidrug-resistant (MRD), and in some cases even 

extensively drug-resistant (XDR) or totally drug-resistant (TDR), the latter describing a 

situation in which no effective treatment options remain.(Velayati et al., 2009) Such 

acquired multidrug-resistance is a particularly urgent public health challenge, as it renders 

once crucial therapies ineffective, limiting options for therapy and prophylaxis. 
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1.4.2.1.  A brief history of antibiotic discovery and resistance 
Humans have been using plants and fungi to treat infections for millennia, but the first 

explicit example of effective antibiotic chemotherapy dates to Paul Ehrlich’s use of 

arsphenamine to treat syphilis in 1909.(Williams, 2009) Some years later in 1928 came 

Alexander Fleming’s famous accidental discovery of the first naturally derived antibiotic. 

Upon returning from holiday to an uncovered culture plate of S. aureus, Fleming noticed 

that the fungus Penicillium notatum had cleared the bacteria wherever it grew. Penicillin 

would go on to become the first mass-produced antibiotic by the early 1940s, but not 

before bacterial resistance to penicillin was first reported, by Ernst Chain and Edward 

Abraham in 1940.(Abraham and Chain, 1988) The arms race between the discovery of 

new antibiotics, and the subsequent discovery of bacterial resistance to them, has been a 

recurring phenomenon for all major antibiotics introduced into clinical practice (Table 1.3). 

Yet antibiotic resistance long predates Homo sapiens, let alone Chain, Abraham, Fleming 

and Ehrlich.  

 

Table 1.3.  Timeline of antibiotic discovery and resistance. 

Summary timeline for select antibiotics, when they were discovered to science, when they were 
introduced to clinical practice, and when resistance to that antibiotic was first observed. Lag to resistance 
describes the number of years from antibiotic discovery to first observation of resistance. Data adapted 
from Lewis.(Lewis, 2013) 

Antibiotic Year discovered Year introduced 
Year resistance 

observed 
Lag to 

resistance  

Beta-lactams  1928 1938 1940 12 
Sulfonamides  1932 1936 1942 10 
Aminoglycosides 1943 1946 1946 3 
Tetracyclines 1944 1952 1950 6 
Chloramphenicols 1946 1948 1950 4 
Macrolides 1948 1951 1955 7 
Glycopeptides 1953 1958 1960 7 
Oxazolidinones 1955 2000 2001 4 
Rifamycins 1957 1958 1962 5 
Quinolones 1961 1968 1968 7 
Streptogramins 1963 1998 1964 1 
Lipopetides 1986 2003 1987 1 

 

The evolution of resistance to antimicrobial compounds is not a modern or anthropogenic 

phenomenon: antibiotic resistance is ancient. Antimicrobial compounds are naturally 

occurring, and natural selection favours microbes that evolve mechanisms to overcome 

them. For instance, genetic elements conferring resistance to penicillins, tetracyclines, 

glycopeptides and aminoglycosides have been isolated from 30,000 year-old Canadian 

permafrost sediment.(D’Costa et al., 2011) Far more ancient still, whole genome 

sequencing of Paenibacillus isolated from Lechuguilla – a cave system in New Mexico 

severed from the surface over 4 million years ago – identified 18 chromosomal resistance 
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elements, providing evidence for the conservation of multidrug-resistance over the span of 

millennia.(Pawlowski et al., 2016) These are but two examples; the true extent of bacterial 

evolution of resistance to antibacterial compounds is immeasurable. However, the 

evolutionary mechanisms by which bacteria acquire antibiotic resistance are increasingly 

well described.   

 

1.4.2.2.  Evolutionary ecology of acquired resistance 

Antibiotic resistance can be acquired through either genetic or phenotypic adaptation to 

antibiotic exposure. Genetic resistance describes changes to a bacterium’s genetic 

material, which is a relatively stable and heritable means for bacteria to evade antibiotics. 

Conversely, phenotypic resistance (sometimes called adaptive resistance) describes either 

stochastic non-genetic heterogeneity in antibiotic susceptibility, or plastic responses to 

environmental stress; for instance, a bacterium’s ability to alter its metabolism through 

modified gene expression to evade antibiotic effects. Phenotypic resistance is transient, 

reversible and far more difficult to recognize in clinical contexts than genetic resistance.  

 

1.4.2.2.1.  Genetic resistance : mutation 

Bacterial genomes can change through a variety of mechanisms. The simplest are small-

scale random point mutations, whereby a bacterium’s genetic sequence is altered through 

substitution, deletion or insertion of a single base pair, typically resulting from errors made 

by polymerase proteins during DNA replication. Although such mutations occur at low 

rates (estimated across phyla at one mutation for every 107 to 1010 base pairs 

substitutions),(Westra et al., 2017) they can have a large impact on antibiotic susceptibility. 

For instance, in an experiment designed to mimic a naturally occurring bacterial niche, 

populations of wild-type E. coli exposed to ciprofloxacin developed resistance within 10 

hours of antibiotic exposure, as a result of just four random point mutations.(Zhang et al., 

2011)  

 

Other more complex genetic mutations that can also lead to resistance acquisition include 

gene amplifications (duplications),(Sandegren and Andersson, 2009) transposition of 

extrachromosomal genetic elements into chromosomal DNA,(Devaud et al., 1982) and 

chromosomal rearrangements.(Hoeksema et al., 2018) If the mutated cell then 

reproduces, its mutations are transmitted vertically to its progeny. If those progeny are 

more evolutionarily fit than other cells in the population – that is, if they are better able to 

grow, reproduce and transmit, for instance due to an ability to resist antibiotics in a treated 
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patient – they will come to represent an increasing share of the population over 

subsequent generations through Darwinian selection, resulting in clinically observable 

genetic evolution of antibiotic resistance. 

 

1.4.2.2.2.  Genetic resistance : horizontal gene transfer (HGT) 

Antibiotic resistance genes can also transmit horizontally through horizontal gene transfer 

(HGT), whereby a bacterium shares its genetic material with a neighbouring bacterium via 

one of three mechanisms. 

 

1. Transformation: the release of naked DNA fragments from one cell and their sub-

sequent uptake by another. Transformation of penicillin resistance genes across 

Streptococcus pneumoniae cells was observed as early as the 1950s.(Hotchkiss, 

1951)  

2. Transduction: the transfer of genes by a phage from one bacterium to another. For 

instance, phages have been shown to transduce tetracycline, chloramphenicol, 

macrolide, lincomycin and clindamycin resistance genes across Streptococcus py-

ogenes cells.(Ubukata et al., 1975) 

3. Conjugation: the direct transfer of genetic material from one cell to the next via a 

pilus. This is the most widely studied, and purportedly the most common route of 

antibiotic resistance HGT.(Huddleston, 2014) 

 

HGT is often achieved through the spread of plasmids, extrachromosomal genetic 

elements that replicate independently of the host chromosome, and which contribute to 

host metabolism through the production of plasmid-encoded proteins. There are two main 

plasmid categories: narrow-host-range plasmids (e.g. IncF), which typically only transfer 

between closely related species; and broad-host-range plasmids (e.g. IncA/C, IncL/M, 

IncN), which transfer more readily across species. Each poses unique clinical and 

epidemiological challenges. One example is IncF plasmids encoding CTX-M enzymes, 

which confer resistance to beta-lactam antibiotics, including late-generation 

cephalosporins. These highly antibiotic-resistant plasmids have spread quickly through 

various Enterobacteriaceae since the early 2000s, and have been associated with the 

global dissemination of high-risk epidemic clones of MDR E. coli (e.g. ST131) and K. 

pneumoniae (e.g. ST258).(Mathers et al., 2015) Another example is IncN plasmids 

encoding New Delhi metallo-beta-lactamase 1 (NDM-1), a carbapenem-degrading enzyme 

(carbapenemase) that has become perhaps the most common form of carbapenem 
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resistance in nosocomial settings worldwide since first reported in 2009.(Mathers et al., 

2015) 

 

1.4.2.2.3.  Phenotypic resistance 

Two bacteria with identical genes can vary in their susceptibility to antibiotics due to 

phenotypic resistance. This manifests in two principal ways.  

 

Tolerance describes a slowed antibiotic kill rate of an entire bacterial population. A 

common mechanism is through the formation of a biofilm, a polymeric matrix of 

aggregated bacterial cells (e.g. an E. coli biofilm affixed to the bladder wall and causing 

UTI).(Schrader et al., 2020) Biofilms result in biochemical gradients that reduce towards 

their centre, with lower concentrations of oxygen and nutrients, lower metabolic rates and 

reduced antibiotic penetration further from the periphery, ultimately resulting in greater 

antibiotic tolerance of the bacterial population as a whole.(Crabbé et al., 2019)  

 

Persistence describes a particular subset of a genetically identical population of bacterial 

cells that better survive antibiotic exposure, for example due to heterogeneous expression 

of genes encoding porins (bacterial membrane proteins that act as channels allowing 

molecules like antibiotics to enter the cell) or efflux pumps (proteins that actively remove 

chemicals from the cell).(Schrader et al., 2020) For Salmonella enterica experimentally 

exposed to antibiotics, reduced expression of the porin gene ompC was linked to 

increased resistance to kanamycin for certain persister cells, while efflux pump inhibition 

was linked to decreased resistance to nalidixic acid, demonstrating cell-to-cell variability in 

antibiotic resistance depending on pre-existing heterogeneity in gene 

expression.(Sánchez-Romero and Casadesús, 2014)  

 

It is important to note that antibiotic resistance genes themselves – for example, a gene 

encoding a protein that degrades a particular antibiotic – can also vary substantially in their 

expression from one cell to the next. In other words, phenotypic and genotypic resistance 

can combine, whereby environmental factors modulate the expression of acquired 

resistance genes and their impact on resistance phenotypes. 

 

1.4.2.3.  Biological mechanisms of resistance 

The total number of biological mechanisms resulting in antibiotic resistance has been 

estimated at over 6,000.(Bogaert and van Belkum, 2018) However, whether resistance is 
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genetic or phenotypic, the underlying mechanism can normally be described as one of 

three types. First, bacteria can prevent antibiotics from accessing their target by reducing 

intracellular antibiotic concentrations; second, they can directly modify the target of the 

antibiotic; and third, they can inactivate the antibiotic itself.(Blair et al., 2015) Below I 

provide characteristic examples of each. 

 

1.4.2.3.1.  Decreasing permeability 

A bacterium’s first line of defence against an antibiotic is to prevent it from entering the 

cell. A range of MDR Enterobacteriaceae – including clones of E. coli and K. pneumoniae 

– have reduced the permeability of their cell membranes to various antibiotics. This has 

been achieved both through phenotypic adaptation (downregulation of porin-encoding 

genes) and genetic adaptation (porin gene mutations that alter their shape).(Lavigne et al., 

2013; Novais et al., 2012; Tängdén et al., 2013) Notably, a range of such adaptations have 

fostered resistance to carbapenems, and in the case of carbapenem-resistant K. 

pneumoniae have resulted in global dissemination of novel MDR clones associated with 

nosocomial spread.(Novais et al., 2012; Papagiannitsis et al., 2013; Poulou et al., 2013) 

 

1.4.2.3.2.  Increasing efflux 

All bacteria contain efflux pumps capable of expelling chemical compounds from the cell, 

but some are more efficient than others for antibiotic removal.(Blair et al., 2015) 

Overexpression of efflux pumps is an example of phenotypic resistance, while recent 

evidence of a multidrug resistance efflux pump co-occurring with NDM-1 on an IncH1 

plasmid isolated from Citrobacter freundii demonstrates potential for genetic acquisition of 

more effective efflux pumps, and synergistic interactions with other resistance 

genes.(Dolejska et al., 2013)  

 

1.4.2.3.4.  Protecting the target 

Post-translational modifications can protect protein targets from antibiotics without the 

need for genetic mutations that could otherwise compromise protein function. In M. 

tuberculosis, methylation of the 16S ribosome subunit by erm genes adjusts the drug-

binding site, reducing affinity for a range of antibiotics, including macrolides, lincosamines 

and streptogramins.(Blair et al., 2015; Kumar et al., 2014)  

 

1.4.2.3.5.  Inactivating antibiotics 

Thousands of enzymes have been described that modify or degrade antibiotic compounds. 
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From a public health perspective, the most worrisome are the extended-spectrum-beta-

lactamases (ESBLs), a diverse family of enzymes capable of hydrolyzing different types of 

beta-lactam antibiotics, including penicillins, monobactams and cephalosporins.(Blair et 

al., 2015) Many ESBL-producing Enterobacteriaceae in particular currently feature on lists 

of the greatest antibiotic resistance threats in the world today. 

 

1.4.3.  High-risk multidrug-resistant pathogens 

The overall public health threat imposed by any particular antibiotic-resistant pathogen is a 

complex function of its epidemiological prevalence, its intrinsic virulence, and the number 

and efficacy of therapeutic options available for treatment. In 2008, Rice introduced the 

ESKAPE pathogens, a list of highly antibiotic-resistant nosocomial bacteria believed to 

pose the greatest risk to hospital patients worldwide:(Rice, 2008) 

 

- E=Enterococcus faecium 

- S=Staphylococcus aureus 

- K=Klebsiella pneumoniae 

- A=Acinetobacter baumannii 

- P=Pseudomonas aeruginosa 

- E=Enterobacter spp. 

 

A composite index of the nosocomial burden of antibiotic resistance has been developed 

using ESKAPE pathogens, which pools the share of hospital isolates bearing phenotypic 

resistance to key antibiotics. These data are presented in Figure 1.7. 
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Figure 1.7.  Antibiotic resistance prevalence in Europe. 

Pooled resistance isolation rate (the pooled proportion of isolates of S. aureus resistant to methicillin, E. 
faecium and E. faecalis resistant to vancomycin, E. coli and K. pneumoniae resistant to 3rd-generation 
cephalosporins, and P. aeruginosa and A. baumannii resistant to carbapenems) in acute care hospitals 
in Europe in 2016/17, rendered for this thesis using data extracted from an ECDC point prevalence 
survey.(Suetens et al., 2018) Data were unavailable for countries shaded in grey. Data from England are 
used for the United Kingdom. 
 

Later, in 2018, WHO published its global Priority Pathogens List. This list ranks the 

bacteria most urgently in need of new treatment options, due to their high rates of 

resistance, considerable public health burden and future epidemic potential. This involved 

synthesis of a range of previous lists from diverse institutions, collation of data from 

international antibiotic resistance databases, and a survey of 74 subject-matter 

experts.(Tacconelli et al., 2018) Key findings are summarized in Table 1.4, with a focus on 

evidence most relevant to healthcare settings, notably the all-cause mortality rate of 

infection, the excess hospital length of stay incurred by infection, and the resistance 

prevalence among isolates of that species. Most of the highest priority pathogens are 

Gram-negative bacilli resistant to carbapenems and/or third-generation cephalosporins, 

reflecting the few remaining treatment options for these pathogens. Overall, 

carbapenemase-producing Enterobacteriaceae are the bacteria of of greatest public health 

concern. Further, nearly all of the included bacteria are also important nosocomial 

pathogens, as reviewed in section 1.3. A. baumannii in particular – the highest priority of 

all – is almost exclusively isolated from nosocomial environments.(Antunes et al., 2014) 
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Table 1.4.  WHO Priority Pathogens List 

Summary of selected findings from WHO’s Priority Pathogens List. Highest resistance burden lists the 
WHO-defined region with the highest reported resistance rate (proportion of isolates bearing the given 
resistance). Data was compiled using data extracted from Tacconelli et al.(Tacconelli et al., 2018) 
GNB=Gram-negative bacilli; GNC=Gram-negative cocci; GNCB=Gram-negative coccobacilli; 
GPC=Gram-positive cocci; GNS=Gram-negative spirilla or s-shaped; CR=carbapenem resistant; 
3GCR=third-generation cephalosporin resistant; VR=vancomycin resistant; MR=methicillin resistant; 
ClaR=clarithromycin resistant; FQR=fluoroquinolone resistant; PNS=penicillin non-susceptible; 
AmpR=ampicillin resistant; NS=non-significant ; E Med = East Mediterranean 

Rank Species Resistance Category 
All-cause 

mortality, % 
(95% CI) 

Excess 
hospital LOS,  
days (95% CI) 

Highest resistance 
burden 

Region 
Rate  

(95% CI) 

1. 
Acinetobacter 
baumannii 

CR GNCB 52 (45 – 59) 8.3 (4.6 – 12) Africa 74 (72 – 76) 

2. 
Pseudomonas 
aeruginosa 

CR GNB 43 (33 – 53) 11.9 (5 – 19) SE Asia 33 (32 – 34) 

3. Escherichia coli 3GCR GNB 26 (16 – 36) 8.6 (4.5 – 12.8) SE Asia 51 (34 – 68) 
4. Klebsiella spp. 3GCR GNB 36 (26 – 45) 8.3 (2.2 – 14.4) SE Asia 52 (33 – 70) 
5. Klebsiella spp. CR GNB 48 (40 – 55) 9.8 (6.9 – 12.7) E Med 10 (1 – 27) 
6. Enterobacter spp. 3GCR GNB 26 (7 – 46) NS Americas 37 (29 – 45) 
7. Serratia spp. 3GCR GNB 29 (11 – 51) / Americas 33 (27 – 38) 
8. Proteus spp. 3GCR GNB 37 (30 – 44) 17.5 (5.7 – 29.2) Americas 40 (36 – 45) 
9. Enterobacter spp. CR GNB 54 (35 – 73) NS Africa 3 (2 – 4) 

10. Escherichia coli CR GNB 35 (5 – 65) 32 (11 – 54) SE Asia 1 (1 – 2) 
11. Providencia spp. 3GCR GNB 29 (21 – 37) 22 SE Asia 12 (9 – 16) 
12. Enterococcus faecium VR GPC 45 (35 – 54) 10 (6.6 – 14) Americas 36 (20 – 52) 

13. 
Staphylococcus 
aureus 

MR GPC 30 (25 – 35) 5.1 (1.8 – 8.4) Americas 44 (37 – 51) 

14. Citrobacter spp. 3GCR GNB <10 / W Pacific 38 (31 – 45) 
15. Morganella spp. 3GCR GNB 29 (21 – 37) / SE Asia  14 (12 – 16) 
16. Helicobacter pylori ClaR GNS / / E Med 34 (25 – 44) 
17. Campylobacter spp. FQR GNS <10 / Europe 61 (60 – 62) 
18. Salmonella Typhi FQR GNB 6 (3 – 9) NS Europe 26 (24 – 28) 
19. Neisseria gonorrhoeae FQR GNC / / SE Asia 95 (88 – 99) 

20. 
Streptococcus 
pneumoniae 

PNS GPC 18 (15 – 21) NS Africa 34 (18 – 53) 

21. 
Non-typhoidal 
salmonella 

FQR GNB 18 (7 – 30) NS E Med 15 (1 – 40) 

22. 
Haemophilus 

influenzae 

AmpR GNCB 12 (6 – 20) / SE Asia 43 (41 – 46) 

23. Neisseria gonorrhoeae 3GCR GNC / / Europe 2 (1 – 2) 
24. Shigella spp. FQR GNB <10 / Europe 10 (3 – 20) 

25. 
Staphylococcus 
aureus 

VR GPC 18 (15 – 21) 2.4 (0.5 – 4.3) / <10% 

 
 

1.4.4.  Antibiotic resistance in healthcare settings 

Most antibiotic-resistant bacteria (ARB) are endemic and exist widely across community 

and healthcare settings. However, the public health challenges associated with resistance 

are arguably most urgent in nosocomial environments, where ARB cause large numbers of 

infections among particularly vulnerable individuals, and exacerbate the already large 

burden imposed by HCAI.  

 

1.4.4.1.  Increased burden 

HCAIs caused by antibiotic-resistant bacteria result in greater health and economic burden 

than infections caused by antibiotic-sensitive strains of the same species, for several 

reasons. 
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1.4.4.1.1.  Delays to effective therapy 

Bacteria that resist first-line empiric therapy experience longer delays to appropriate 

treatment. This allows infection to aggravate in the interim, resulting in longer hospital 

stays, increased laboratory and treatment costs, and worse patient outcomes, including 

higher risks of mortality and ICU admission.(Schwaber and Carmeli, 2007) For outpatients, 

delays to effective treatment can also increase subsequent hospitalization risk. Infections 

that are not completely antibiotic-resistant but nonetheless tolerant also experience delays 

to completion of therapy and associated costs.  

 

1.4.4.1.2.  More toxic agents 

A need for broader-spectrum or last-resort antibiotics may result in treatment with multiple 

antibiotics and/or with more toxic agents. One example is the use of colistin to treat 

carbapenem-resistant Gram-negative bacterial infection, leading to more, and potentially 

more serious side-effects than regular treatment, and greater pharmacy costs.(Falagas 

and Kasiakou, 2005)  

 

1.4.4.1.3.  Disruptions to care 

The identification of high-risk ARB in healthcare facilities can trigger implementation of 

control measures, which can be expensive and potentially burdensome for resource-

limited healthcare staff. In more extreme cases, ward closures and surgery cancellations in 

response to ARB outbreaks represent serious disruptions to the continuation of care for 

patients and staff alike.(Macrae et al., 2001)  

 

1.4.4.1.4.  Treatment void 

Finally, in cases where no effective treatment options remain (e.g. for a TDR bacterium 

like colistin-resistant A. baumannii), patients may require surgical management, or may 

simply lack any treatment options whatsoever.(Friedman et al., 2016) This is the widely 

feared worst-case scenario of antibiotic resistance, whereby no tools remain to treat or 

prevent once easily cleared infections, placing patients at a high risk of severe 

complications and death. 

 

1.4.4.2.  Antibiotic selection 
As a general rule, bacteria isolated from healthcare settings are more resistant to 

antibiotics than individuals of the same species isolated from the community. This has 
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been observed across all major HCAI-causing pathogens, including E. coli, S. aureus and 

K. pneumoniae.(Caneiras et al., 2019; Ferjani et al., 2015; Fey et al., 2003) Antibiotic-

resistant HCAI are so common because healthcare settings generate strong selection 

pressure for antimicrobial-resistant organisms. Vulnerable patient populations, invasive 

procedures and high densities of inter-individual contact all facilitate the nosocomial 

transmission of resistant bacteria, but the main driver of resistance in healthcare-settings 

is antimicrobial use.(Chatterjee et al., 2018; Holmes et al., 2016) 

 

There are a number of ecological mechanisms by which antibiotic use is proposed to 

select for the spread of ARB, although this remains a widely debated, contemporary focus 

of epidemiological reseaerch.(Knight et al., 2019) In 2002, Lipsitch & Samore proposed 

four such mechanisms, all consequences of ecological competition between drug-sensitive 

and drug-resistant bacteria presumed to overlap in their ecological niche:(Lipsitch and 

Samore, 2002) 

 

1. Survival advantage: if a patient is co-colonized with both drug-sensitive and drug-

resistant pathogen strains, antibiotics that effectively kill the sensitive strain afford a 

survival advantage to the resistant one, favouring its transmission.  

2. Relative prevalence: antibiotics that successfully clear a drug-sensitive strain re-

duce its spread and ultimately its prevalence in the population relative to a resistant 

strain, shifting the competitive balance in favour of resistant bacteria. 

3. Increased susceptibility: bacteria protect against colonization with other bacteria 

in their niche, such that patients are more susceptible to acquisition of a resistant 

strain subsequent to antibiotic clearance of a drug-sensitive strain. 

4. Increased load: antibiotics favour the within-host outgrowth of resistant bacteria, 

leading to a larger population size, higher risk of invasive infection, and ultimately a 

higher transmission rate to other patients or environmental reservoirs. This may 

also favour a longer duration of carriage, extending potential for further onward 

transmission.(Niehus et al., 2020)   

 

In the scientific literature, these mechanisms are widely used to explain antibiotic selection 

for the spread of resistance, but predominantly focus on ecological competition between 

competing strains of the same species (e.g. methicillin-sensitive vs. -resistant S. 

aureus).(Knight et al., 2019; Spicknall et al., 2013) However, there is increasing evidence 

for strong within-host competitive interactions between bacterial pathogens and other 
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constituents of the host microbiome. 

 

1.4.4.3.  The microbiome 

The opportunistic bacterial pathogens introduced thus far in this Chapter represent only a 

small minority of the species comprising the human bacterial microbiome (the trillions of 

individual bacteria that collectively inhabit the human body). Primarily represented by a 

mixture of Bacteroidetes, Actinobacteria, Firmicutes and Proteobacteria, the intestinal 

microbiome has been revealed over the past several decades to be a fundamental 

determinant of human health. It provides support to development and homeostasis, 

facilitates core physiological processes like digestion, and protects against diseases 

ranging from colitis to cancer.(Bäckhed et al., 2005; Kamada et al., 2013b; Lynch and 

Pedersen, 2016; Round and Mazmanian, 2009; Roy and Trinchieri, 2017)  

 

The microbiome can also protect against colonization with infectious bacterial pathogens, 

a phenomenon known as colonization resistance, limiting their capacities to establish 

colonies, grow, persist and transmit.(Bäumler and Sperandio, 2016; Buffie and Pamer, 

2013) From the production of antimicrobial peptides to competition for limited nutrients, 

various biochemical mechanisms have been described by which microbiota protect their 

hosts – and themselves – from pathogen colonization. Among other examples: commensal 

taxa from Bacteroidia and Clostridia release volatile short-chain fatty acids that promote 

intestinal epithelial health and bolster colonization resistance;(Kim et al., 2017) various 

microbiota induce expression of cryptdins, a type of alpha defensin with antimicrobial 

properties that target both Gram-positive and -negative bacteria, as well as certain fungi 

and viruses;(Buffie and Pamer, 2013) and an overlap in the nutritional requirements of 

different E. coli strains may explain why mammalian hosts colonized with commensal 

biotypes are protected against enterohaemorrhagic biotypes.(Maltby et al., 2013) In this 

context, the microbiome is increasingly recognized not just as a reservoir of opportunistic 

pathogens and antibiotic-resistance genes, but conversely as a first-line of defence against 

colonization and infection with ARB, and more broadly as an important arbiter of individual 

and public health.(Wilkinson et al., 2021) 

 

Links between microbiome ecology and bacterial epidemiology are perhaps most critical in 

the context of antibiotic selection for resistance. When prescribed appropriately, antibiotics 

target particular bacterial pathogens, but co-colonizing microbiota are also 

exposed.(Tedijanto et al., 2018) This can unintentionally destabilize healthy microbial 
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communities, resulting in dysbiosis, a state of population dynamic disequilibrium.(Bhalodi 

et al., 2019; Coyte et al., 2015; Dethlefsen and Relman, 2011) Microbiome dysbiosis is 

associated with reduced abundance and diversity of commensal bacteria, impaired host 

immune responses, and loss of colonization resistance, altogether increasing host 

susceptibility to ARB colonization.(Kim et al., 2017; Sorbara and Pamer, 2019; Zhang et 

al., 2015)  

 

Antibiotic-induced dysbiosis may further result in elevated expression of antibiotic 

resistance genes, increased rates of horizontal transfer of resistance genes, and 

ecological release, whereby subdominant ARB are released from competition with other 

bacteria and grow out into dominant colonies (illustrated in Figure 1.8).(Doan et al., 2019; 

Letten et al., 2021; Ruppé et al., 2019; Stecher et al., 2013) These phenomena underlie 

increasing clinical recognition of microbiome dysbiosis as a key driver of ARB colonization 

and infection in healthcare settings.(Baggs et al., 2018; Prescott et al., 2015; Ravi et al., 

2019) Accordingly, interventions facilitating microbiome health and recovery have been 

highlighted in recent years as promising means to control HCAI and limit the spread of 

resistance.(Pamer, 2016) 
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Figure 1.8.  Microbiome dysbiosis illustration. 

Illustration of how microbiota (blue bacteria) protect against outgrowth of an antibiotic-resistant pathogen 
(yellow bacteria) within the host (1), how antibiotics (red and white capsules) that cause microbiome 
dysbiosis can favour pathogen growth (2 and 3), and how microbiome repair can help control populations 
of resistant bacteria (4). Figure is inspired by Pamer.(Pamer, 2016) 
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1.5.  Public health interventions for HCAI control 

Well-designed public health interventions can prevent nosocomial transmission of high-risk 

pathogens, limit risk of endogenous infection, and at a broader scale reduce the societal 

burden imposed by HCAI.  

 

1.5.1.  Surveillance 

Surveillance is a cornerstone of infectious disease control, and a necessary first step for 

outbreak detection and response. Epidemiological surveillance is defined as: 

 

The systematic collection, analysis and dissemination of health data for the 
planning, implementation and evaluation of public health programmes.(Thacker et 
al., 1988)  
 

Surveillance can be passive, whereby a health system routinely detects and reports 

infections in a standardized way, or active, whereby public health professionals seek out 

infections, for instance through population surveys or case reviews, and often in 

conjunction with epidemiological field investigations. Whether passive or active, 

surveillance can be conceptualized as a circular process, in which surveillance efforts are 

in constant evolution to reflect the local epidemiological context (Table 1.5).  

 

Table 1.5.  Surveillance circularity 

Surveillance: a circular process with four key steps. Adapted from WHO.(World Health Organization, 
2002) 
 Step Description 

1. Implementation 
- Define goals (e.g. surveillance of which population, pathogen, disease) 
- Define outcomes (e.g. prevalence, incidence, antibiotic resistance rate) 
- Set protocols for data collection and microbiological analysis 

2. Feedback 
- Analyze data 
- Interpret findings in broader context 
- Discussion of implications 

3. Prevention - Determine areas for improvement and actions required 
- Plan and implement corrective public health actions / interventions 

4. Evaluation 
- Assess impact of interventions on surveillance outcomes 
- Compare to other studies / institutions / contexts 
- Use findings to inform surveillance updates (back to step 1) 

 

1.5.1.1.  Surveillance assessment 

Thacker et al. proposed a range of criteria by which public health surveillance programmes 

can be assessed.(Thacker et al., 1988) In the context of HCAI, these include:  
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- Sensitivity: the proportion of individuals with HCAI that are detected (true positive 

rate) 

- Specificity: the proportion of uninfected individuals correctly identified as such (true 

negative rate)  

- Representativeness: the extent to which the surveillance signal represents true 

HCAI burden in the population 

- Timeliness: rapidity of the surveillance signal 

- Simplicity: operational ease of the intervention 

- Flexibility: ability for the intervention to accommodate operational changes or 

adapt to new purposes 

 

1.5.1.2.  Syndromic surveillance 

Syndromic HCAI surveillance is the use of individual or population health indicators to 

detect potential nosocomial outbreaks. For instance, a hospital conducting syndromic 

influenza surveillance may track all reports of patients and staff experiencing febrile 

respiratory illness. The key advantage to syndromic surveillance is its timeliness, as it can 

trigger alerts before formal diagnoses are made, although sometimes with poor 

discriminatory power (low sensitivity, low specificity). 

 

1.5.1.3.  Testing and screening interventions 

There are a wide variety of testing technologies available for infectious disease diagnosis. 

In this thesis, I discriminate between testing interventions (passive surveillance), 

defined as the targeted use of diagnostic tests for individuals presenting with pre-

determined indications (e.g. infection symptoms), and screening interventions (active 

surveillance), the indiscriminate use of diagnostic tests across a population in order to 

detect any individuals potentially infected. Diagnostic tests can also be classified as point-

of-care tests, bedside tests that provide results in a matter of minutes (e.g. rapid antigen 

tests), and laboratory-based tests, which are generally more sensitive and specific but 

less timely and more complex, requiring patient specimens to be sent to a laboratory for 

comprehensive microbiological analysis. 

 

1.5.1.4.  Surveillance administration 

Public health surveillance requires coordination across a range of administrative levels, 

from individual healthcare institutions, to local health districts, to national or sub-national 

authorities. Most countries have their own particular surveillance systems and 
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corresponding legislation in place. In France, healthcare institutions are legally obliged to 

report HCAIs caused by multidrug-resistant bacteria using the electronic platform e-SIN: 

alerts are sent both to the local authority responsible for nosocomial infection surveillance 

(CPias) and to the regional health authority (ARS), who are then responsible for 

dispatching alerts to the national level (SPF).(Santé publique France, 2021a)  

 

HCAI surveillance obligations vary not only by country, but sometimes by the type of 

pathogen or infection. In the USA as of 2013, 92% of sub-national authorities required 

reporting of primary healthcare-associated BSI in ICUs, compared to 54% for methicillin-

resistant S. aureus (MRSA) infection and 51% for C. difficile infection.(Herzig et al., 2015) 

WHO, ECDC and other organizations also operate internationally collaborative 

surveillance networks and databases. For instance, WHO launched the Global 

Antimicrobial Resistance Surveillance System (GLASS) in 2015, which collects, analyses 

and disseminates global surveillance data on antibiotic resistance. 

 

1.5.2.  HCAI prevention and control 

HCAI prevention has traditionally focused on infection prevention and control (IPC) 

interventions, which encompass the ensemble of public health strategies used to prevent 

nosocomial pathogen transmission and infection acquisition from the healthcare 

environment. These range from common-sense practices (e.g. handling sharps with care) 

to seemingly simple measures with significant operational obstacles (e.g. handwashing) to 

sophisticated biomedical interventions (e.g. use of antimicrobial-impregnated central 

venous catheters). Antibiotic stewardship and, more recently, microbiome-targeted 

interventions have also emerged as important tools for HCAI prevention. Here I list the 

most widely used HCAI control interventions, provide a table of suggested interventions for 

outbreak pathogens depending on their mode of transmission (Table 1.6), and provide a 

summary of common components of antibiotic stewardship interventions (Table 1.7). 

 

1.5.2.1.  Hygiene 
Good hygiene practices help to remove carriage of potentially infectious microorganisms, 

preventing their introduction to sterile sites and transmission to other individuals. These 

include: (i) adherence to aseptic techniques, such as safe injection practices and 

application of antiseptic agents before insertion of indwelling catheters; (ii) sterilization of 

reusable medical equipment using appropriate thermal or chemical means, e.g. peracetic 

acid; (iii) efficient laundering services for uniforms, linens and other textiles;(Overcash and 
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Sehulster, 2021) and (iv) proper handwashing, a seemingly simple but operationally 

complex intervention, and a central pillar of worldwide HCAI and antibiotic resistance 

prevention campaigns.(Tartari et al., 2017)  

 

Proper handwashing occurs prior to any patient contact, before aseptic procedures, after 

potential exposure to bodily fluids, and after touching a patient or any adjacent surfaces. 

WHO further defines multiple levels of handwashing technique depending on patient 

risk:(World Health Organization, 2002) 

 

1. Routine care (low risk): simple handwashing with non-antiseptic soap. 

2. Antiseptic hand cleaning (moderate risk): hygienic handwashing with antiseptic 

soap following guidelines. 

3. Surgical scrub (high risk): hand and forearm washing with antiseptic soap for suffi-

cient duration (3 – 5 minutes). 

 

Proper handwashing is limited in practice by occupational challenges, including lack of 

handwashing infrastructure, understaffing, allergies or discomfort, and impractical 

recommendations. Diverse clinical trials have demonstrated efficacy of behavioural 

interventions for improving handwashing compliance,(Luangasanatip et al., 2015; Ofek 

Shlomai et al., 2015; Pittet et al., 2000; Teesing et al., 2020) but inadequate hand hygiene 

remains a central challenge in global HCAI prevention.(Allegranzi and Pittet, 2009)    

 

1.5.5.2.  Isolation and cohorting 

Limiting inter-individual contact among and between patients and healthcare staff is an 

effective means to limit nosocomial transmission, especially during outbreaks of pathogens 

with high intrinsic transmissibility. These include pathogens that primarily spread through 

aerosols and/or respiratory droplets (e.g. SARS-CoV-2), and fomites (e.g. S. aureus).  

 

Contact reductions can be achieved through patient isolation. This involves some or all of 

the following, depending on the infectious risk and resources available: (i) healthcare 

workers donning full personal protective equipment (PPE), including high-efficiency gowns, 

gloves and masks, (ii) contact precautions, i.e. limiting contacts only to those strictly 

necessary for provisioning of care, (iii) restriction of visitors, (iv) housing patients in private 

rooms, and (v) ensuring rooms have negative pressure and exhaust to the outdoors. 
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Contact reductions can also be achieved through cohorting. Patient cohorting involves 

clustering patients who are already infected by or colonized with the same organism into 

the same room, ward (e.g. ICUs for individuals colonized with MDR bacteria)(Rosenberger 

et al., 2011) or healthcare facility (e.g. tuberculosis or COVID-19 hospitals).(Jijón et al., 

2020; Kang et al., 2020) Staff cohorting involves partitioning of healthcare staff to 

particular patients, to reduce the total number of patients that they contact, and the 

number of healthcare workers that any individual patient contacts. This can prevent staff 

from acting as transient vectors or sources of infection, both to patients and other staff. 

 

Table 1.6.  Interventions for HCAI outbreak control. 

Infection prevention and control interventions implemented during a pathogen outbreak should reflect the 
suspected mode of transmission. Adapted from WHO.(World Health Organization, 2002) 
 Mode of transmission Suggested intervention 

1. 
Person-to-person  
(e.g. respiratory droplets) 

- Patient isolation  
- Barrier precautions  
- PPE (e.g. gowns, face masks) 

2. 
Hands / physical contact 
(e.g. fomites) 

- Hand hygiene (e.g. audits, installation of alcohol-based 
hand rub dispensers) 

- Cohorting (infected individuals and/or healthcare workers) 
3. Airborne - Patient isolation with appropriate ventilation 

4. Waterborne 
- Assessment of water supply and liquid containers (and their 

replacement when necessary) 
- Use of disposable devices 

5. Foodborne - Elimination of the food at risk 
 

1.5.2.3.  Environmental decontamination 

Regular decontamination of healthcare surfaces using disinfectants is standard practice, in 

particular for high-risk areas like ICUs and operating rooms.(World Health Organization, 

2002) Environmental decontamination should also be prioritized during suspected 

nosocomial outbreaks of any pathogen, but particularly those known to transmit through 

fomites. For water sources contaminated by waterborne pathogens like Legionella spp. 

and P. aeruginosa, draining and disinfecting the apparatus, or full replacement may be 

necessary. Air filters should also be changed regularly, in particular for ducts connecting to 

ICUs or isolation rooms. More broadly, improved hospital architecture and design may 

help to limit environmental spread of HCAI, through reduced crowding, improved air flow, 

better handwashing accessibility, efficient processing of healthcare waste, and reduced 

occupational stress and fatigue among healthcare workers.(Cesario, 2009; Chaudhury et 

al., 2009; Dettenkofer et al., 2004) 

 

1.5.2.4.  Multimodal IPC interventions 

Following James Reasons’s Swiss cheese model of safety accidents,(Reason, 2016) 
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HCAIs are best prevented through successive layers of defences, barriers and safeguards: 

each individual IPC intervention is incomplete on its own, but together they accumulate to 

reduce HCAI risk. For this reason, HCAI interventions are often implemented as 

multifaceted infection control interventions, or bundles. A meta-analysis of trials from 2005 

to 2016 estimated that, globally, 35-55% of all HCAIs are preventable by bundles, 

highlighting both that significant progress remains to be made in HCAI prevention, and that 

such progress is achievable.(Schreiber et al., 2018) 

 

1.5.2.5.  Antibiotic stewardship 

In light of strong causal links between antibiotic consumption and the emergence and 

spread of high-risk MDR bacteria,(Chatterjee et al., 2018; Costelloe et al., 2010; Patel et 

al., 2008; Shen et al., 2012; Sun et al., 2012; Wind et al., 2017) the judicious use of 

antibiotics has become a public health priority for control of antibiotic-resistant HCAI. 

Antibiotic stewardship programmes are sets of interventional actions or policies that 

promote the responsible prescribing of antibiotics in order to limit negative consequences 

of their use, including the spread of antibiotic resistance. Stewardship programmes range 

from simple clinician education initiatives to complex, multimodal bundles combining 

simultaneous structural and behavioural interventions. A summary of common 

components of stewardship interventions is provided in Table 1.7. 

 

In systematic reviews and meta-analyses, stewardship programmes have been associated 

with reduced total rates of antibiotic consumption, reduced rates of unnecessary and 

inappropriate prescribing, reduced use of restricted agents, reduced treatment duration, 

and reduced hospital length of stay, all without adversely affecting patient mortality.(Davey 

et al., 2017; Karanika et al., 2016) Critically, they have also proven effective for prevention 

of antibiotic-resistant HCAI. In a systematic review of trials of multimodal hospital antibiotic 

stewardship programmes, Baur et al. reported high efficacy for prevention of colonization 

and infection with high-risk MRB, including a 32% reduction for C. difficile, a 37% reduction 

for MRSA, and a 51% reduction for ESBL-producing Gram-negative bacteria.(Baur et al., 

2017) Only recently has research into antibiotic stewardship begun to take into account 

potential additional benefits for the preservation of microbiome diversity and its ecological 

and immune functions.(Bogaert and van Belkum, 2018; Ruppé et al., 2018)  
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Table 1.7.  Common antibiotic stewardship interventions. 

Common components of antibiotic stewardship interventions, including supporting evidence from clinical 
trials in hospital settings. Data synthesized from WHO.(World Health Organization, 2021b) 
 Intervention Description Supporting evidence (hospital setting) 

1. Clinician 
education 

Provide knowledge on up-to-date 
practices and guidelines for 
judicious antibiotic use through 
lectures, workshops, webinars, 
email memos, telephone 
counselling, etc. 

- Sustained reduction in annual prescribing 
rates (Doron and Davidson, 2011; Regev-
Yochay et al., 2011) 

2. 
Patient and 
public 
education 

Mass education campaigns (e.g. 
informal messaging) or direct 
clinician-to-patient education. 

- Limited evidence outside of community setting 
or when not bundled with other interventions 
(Satterfield et al., 2020) 

3. Local 
guidelines 

Institution-specific guidelines for 
management of common infections 
to reflect local epidemiology, access 
to diagnostic testing and drug 
availability. 

- Increased appropriate antibiotic use (Hauck et 
al., 2004) 

- Increased narrow-spectrum antibiotic use 
(Neuman et al., 2012) 

- Early switch to oral from parenteral formula-
tions (Carratalà et al., 2012) 
 

4. Cumulative 
antibiograms 

Locally-adapted antibiotic 
susceptibility data for common 
pathogens 

- Provide evidence for local emergence of re-
sistance (Qadeer et al., 2016) 

- Allow better management of MDR infections 
(Liang et al., 2016) 

- Improve prescribing practice (Hsu et al., 2015) 

5. Prior 
authorization 

Requires clinicians to obtain 
approval authorization from 
pharmacist / stewardship team for 
use of restricted antimicrobials 

- Decreased use of restricted antibiotics, and 
reduction in resistance to restricted antibiotics 
(Chrysou et al., 2018) 

- Decreased inappropriate antibiotic use 
(Dassner and Girotto, 2018) 

- Reduced C. difficile infection (Feazel et al., 
2014) 

- Reduced isolation of resistant bacteria (White 
et al., 1997) 

6. 

De-labeling of 
spurious 
antibiotic 
allergies 

Performing dedicated allergy 
history-taking and skin testing for 
appropriate identification of 
antibiotic allergies 

- Reduction in use of beta-lactam alternatives 
(J. R. Chen et al., 2017; Moussa et al., 2018) 

- Improved surgical prophylaxis (Moussa et al., 
2018) 

7. 
Prospective 
audit and 
feedback 

Review of antimicrobial use in 
individual patients and real-time 
recommendations to prescribers 

- Increased antibiotic streamlining (Lukaszewicz 
Bushen et al., 2017) 

- Reduced total prescribing rates (Tamma et al., 
2017) 

- Appropriate prescribing and reduced re-
sistance rates (DiazGranados, 2012) 

- Reduced prescribing, duration of therapy and 
length of stay (Khdour et al., 2018) 

8. Antibiotic time-
outs 

Self-directed antibiotic 
reassessments, facilitated by 
structured reminders or 
conversations that prompt clinicians 
to reassess antibiotic prescription 

- Decrease in inappropriate therapy (Thom et 
al., 2019) 

- Decrease in targeted antibiotic prescribing and 
C. difficile infection (Lee et al., 2014) 

- Increased early vancomycin discontinuation 
(Graber et al., 2015) 

9. Dose 
optimization 

Pharmacy protocols, default dosing 
for commonly used agents, 
structured order entry  

- Optimized vancomycin dosing based on com-
mon clinical variables (Crass et al., 2018) 

- Emerging evidence of benefits of weight-ad-
justed dosing (Polso et al., 2014) 

 

1.5.2.6.  Microbiome-targeted interventions 

Beyond antibiotic stewardship – which, intentionally or not, preserves functionally 

important microbial symbionts and limits outgrowth of pro-inflammatory bacteria – a range 

of other interventions targeting microbiome diversity and function have been implemented 

as means of HCAI control. 



 

 72 

 

1.5.2.6.1.  Fecal microbiota transplantation 

Fecal microbiota transplantation involves colonic transfer of healthy donor stool to patients 

indicated for transplant, for instance due to severe diarrheal disease. Fecal microbiota 

transplantation is already used to treat recurrent C. difficile infection, and is under 

investigation for multidrug-resistant Enterobacteriaceae decolonization.(Benjamin Davido 

et al., 2019; Kassam et al., 2013; Saha et al., 2019) However, its appropriateness for 

dysbiosis recovery in the absence of other clinical indications is unclear. Transplantation 

requires rigorous donor screening and close longitudinal follow-up, and cases of donor 

stool contaminated with toxicogenic and multidrug-resistant bacteria highlight non-

negligible risks.(Gupta et al., 2021; Zellmer et al., 2021) 

 

1.5.2.6.2.  Probiotics 

Probiotics are collections of live symbiotic bacteria, typically ingested orally, which are 

purported to boost microbiome diversity and function. Lactobacillus GG, a fermented 

probiotic milk product, has demonstrated efficacy for RTI prevention in clinical trials, and 

has been recommended for prevention of paediatric nosocomial diarrhea.(Hojsak et al., 

2018, 2010) Although probiotic formulations and individual responses to them can vary 

greatly, and high-quality randomized trials are lacking, emerging evidence suggests 

efficacy of probiotics for prevention of ventilator-associated pneumonia and nosocomial C. 

difficile infection.(Bo et al., 2014; Shen et al., 2017) 

 

1.5.2.6.3.  Activated charcoal 

A newly emerging microbiome-protective therapy is DAV132, an activated-charcoal 

product currently undergoing clinical trials. DAV132 is designed to deactivate antibiotics in 

the colon without compromising treatment efficacy. When co-administered with antibiotics 

by the oral route, DAV132 has been shown to absorb antibiotic residues in the colon and 

preserve the richness and composition of intestinal microbiota while maintaining systemic 

antibiotic exposure.(de Gunzburg et al., 2018, 2015; Pinquier et al., 2021) However, its 

impacts on HCAI and colonization or infection with antibiotic resistant bacteria have not yet 

been evaluated. 

 

1.5.3.  Decision-making for HCAI control 

When deciding which HCAI control measures to implement – whether to reduce local 

resistance to a last-resort antibiotic, to curb a nosocomial outbreak of a novel respiratory 
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pathogen, or to achieve some other reduction in HCAI burden – decision-making should 

be founded upon best available scientific evidence. For medical interventions, randomized 

clinical trials are regarded as the best source of evidence. However, such data are often 

unavailable, and, in real-world settings, the kinds of questions answered by clinical trials 

(e.g. How efficacious is intervention X in ideal conditions?) do not necessarily provide 

answers needed for decision-making during public health crises (e.g. How can available 

health-economic resources be optimally deployed to control pathogen Y?), let alone for 

more fundamental questions about HCAI epidemiology (e.g. How does intervention X 

affect the colonization dynamics of pathogen Y?). In the absence of high-quality clinical 

data, mathematical modelling has emerged as a powerful tool to answer just such 

questions.   
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Chapter 2.   Mathematical modelling of infectious 

disease epidemiology 

 

A mathematical model is an abstraction of a complex system formalized by equations or 

computational algorithms. In the context of infectious disease epidemiology, a model 

generally represents a set of assumptions characterizing how a pathogen spreads or a 

disease manifests in a host population over time. Among other purposes, models are used 

to understand the ecology and transmission dynamics of pathogens, to inform biological 

experiments and clinical trials, to evaluate public health impacts of theoretical control 

interventions, and to make predictions about future disease burden under particular 

epidemiological scenarios.(Grundmann and Hellriegel, 2006; Opatowski et al., 2011) By 

distilling the inherent complexity of infectious disease dynamics into tractable systems with 

clear inputs and outputs, mathematical modelling acts as a crucial bridge between real-

world epidemiology, which can be highly uncertain, and public health policy, which often 

requires urgent decision-making despite limited data.(Heesterbeek et al., 2015)  

 

In this Chapter I introduce key concepts and methodological approaches for the 

mathematical modelling of infectious diseases. I then provide a series of illustrative 

examples of models tailored to different pathogens and epidemiological contexts, with a 

focus on considerations for the modelling of HCAI and antibiotic-resistant bacteria. 
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2.1.  Modelling approaches 

Simplifying the epidemiology of an infectious disease into a model requires carefully 

selecting the most relevant characteristics for inclusion. Simple or parsimonious models 

are preferred, which, as per Occam’s razor, include only as few criteria as needed to 

describe the system. More intricate assumptions are required if a model is intended to 

reproduce more complex real-world dynamics, but each new assumption introduces 

additional sources of uncertainty, making it more difficult to disentangle cause and 

effect.(Opatowski et al., 2013) Building a model thus requires striking a balance between 

including enough information to accurately represent the system, while excluding 

extraneous information that limits tractability or muddles interpretation. Ultimately, the best 

model for any particular purpose depends on the specific research questions, the data and 

expertise available, and the underlying biology and epidemiology of the system under 

study.  

 

2.1.1.  Common characteristics of epidemiological models 

Mathematical models of infectious disease epidemiology have several fundamental 

characteristics in common.(Kretzschmar and Wallinga, 2010) First, they are dynamic, 

meaning they account for how the quantities expressed by the model change over time, for 

instance how the number of infections in a population rises and falls as an outbreak waxes 

and wanes. This is in contrast to static models, which do not account for time and are 

unable to capture epidemic flux. Second, they are mechanistic, meaning they explicitly 

represent the biological mechanisms driving system dynamics. This is in contrast to 

phenomenological models, which reproduce empirical observations without describing the 

underlying causative processes. Finally, epidemiological models are by their nature 

between-host models that describe the spread of infection at the level of a host 

population (while nonetheless accounting for within-host phenomena; after all, infection 

inherently occurs within the host). This is in contrast to within-host infectious disease 

models, which explicitly describe within-host population dynamics – for instance, changing 

numbers of pathogen particles or immune cells over the course of infection – but which do 

not describe the epidemiology of the disease. Nested models can account for both, 

simultaneously describing both between-host and within-host population dynamics. This 

more complex approach has been particularly useful in the context of evolutionary 

epidemiology, and for certain pathogens with complex within-host life-cycles, like malaria 

parasites.(Greischar et al., 2019; Mideo et al., 2008) However, nested models remain 
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relatively rare among published models of HCAI and antibiotic resistance.(Birkegård et al., 

2018; van Kleef et al., 2013) 

 

2.1.2.  Defining the host and pathogen 

The first step in building a model is to define the pathogen and host population under 

study. In a review of mathematical modelling for HCAI control, Grundmann & Hellriegel 

(2006) identified three fundamental components needed for host and pathogen 

characterization:  

 

1. Pathogen natural history: the underlying ecology of the pathogen under study, in-

cluding its duration of colonization and/or infection.  

2. Pathogen transmission routes: the different means by which the pathogen trans-

mits and its implications for host acquisition. Common routes include direct trans-

mission from other hosts, acquisition from the environment, or vectoring through in-

termediate hosts (e.g. healthcare workers). 

3. Host behaviour and demography: the underlying changes that occur in the host 

population simultaneous to, but often independent of the pathogen’s spread. These 

vary greatly depending on the scale of the model: at the level of a country, im-

portant demographic variables may be rates of birth, death and migration; at the 

level of a single hospital, patient admission and discharge are more relevant. 

 

Aside from these fundamental characteristics, there is great heterogeneity in the structural 

assumptions and methodological approaches used in different infectious disease models.  

 

2.1.3.  Compartmental models 

Compartmental models aggregate the host population into distinct groups depending on 

the states or characteristics of the individuals in that group (e.g. susceptible to infection, 

currently infectious, or recovered and immunized against re-infection). Within each 

compartment, individuals are assumed to have the same average characteristics, and 

interact and behave in a uniform manner.(Heesterbeek et al., 2015) Compartmental 

models are traditionally accompanied by flow diagrams that use arrows to illustrate how 

individuals move between compartments according to specific rates (e.g. rates of infection 

and recovery from infection). Examples of common compartmental models are provided in 

Figure 2.1. 
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Owing to its relative simplicity, compartmental modelling is the most common 

methodological approach. In a recent systematic review of antibiotic resistance models, 

86% were compartmental.(Ramsay et al., 2018) Beyond infection status, hosts can also be 

aggregated into compartments describing their demographic traits (e.g. patient, healthcare 

worker), vulnerability to infection (e.g. high-risk, low-risk), prior medical exposure (e.g. 

vaccinated, unvaccinated), or any other variable or combination of variables that are 

epidemiologically relevant.(Opatowski et al., 2013) 

 

Figure 2.1.  Compartmental model flow diagrams. 

Flow diagrams for three classic transmission models: the S-I-R model (S=Susceptible, I=Infectious, 
R=Recovered) describing an infection that results in lasting immunity after recovery; the S-C model 
(S=Susceptible, C=Colonized) describing colonization and clearance of a pathogen that induces no 
immunity; and the S-E-I-R-S model (S=Susceptible, E=Exposed, I=Infectious, R=Recovered, 
S=Susceptible) describing an infection with a latent period prior to becoming infectious, and the gradual 
waning of immunity after recovery from infection. Solid arrows describe movement of individuals between 
compartments, while dotted lines indicate sources of transmission and not movement. In all models, only 
pathogen natural history and transmission are defined; in the absence of explicit terms describing host 
demography, the implicit assumption is a large, randomly mixing, demographically stable population. 

 

 

2.1.3.1.  Ordinary differential equations 

Compartmental models can be written as systems of ordinary differential equations 

(ODEs) describing the number, density or proportion of individuals in each compartment 

as a function of time (state variables), with the movement of individuals between 

compartments per unit time described by transition rates (parameters).  

 

The S-I-R model in Figure 2.1 can be written as 
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𝑑𝑆𝑑𝑡 = −𝛽 × 𝑆(𝑡) × 𝐼(𝑡)	
𝑑𝐼𝑑𝑡 = 𝛽 × 𝑆(𝑡) × 𝐼(𝑡) − 𝛾 × 𝐼(𝑡)	
𝑑𝑅𝑑𝑡 = 𝛾 × 𝐼(𝑡) 

(eq 2.1) 

where 𝛽 is the rate of pathogen transmission, 𝛾 is the rate of recovery from infection, and 𝑆, 𝐼 and 𝑅 are interpreted as the number of individuals in the population who are 

Susceptible, Infectious and Recovered at a given point in time 𝑡. This model assumes 

host-to-host transmission because the risk of infection depends simultaneously on the 

prevalence of both susceptible and infectious individuals in the population; in the absence 

of either 𝐼 or 𝑆, no new transmission can occur. (Note that, in ODE models, it is generally 

implicit that state variables are functions of time: terms 𝑡 on the right hand side of ODE 

equations are henceforth omitted for simplicity.) 

 

This classic model, and the underlying theory that ODEs can be used to represent the 

spread of infectious diseases, were first proposed in a series of papers by Kermack and 

McKendrick from the 1920s and 1930s.(Kermack and McKendrick, 1991a, 1991b, 1991c) 

Today, Kermack-McKendrick theory represents the foundation of mathematical 

epidemiology, and the basis of the transmission models presented in this thesis. However, 

adaptations of the original S-I-R model are needed to better describe the ecology of 

different types of pathogens and their particular epidemiological contexts. For instance, the 

S-C model is applicable to pathogens that tend to asymptomatically colonize their hosts 

without inducing host immunity (e.g. some bacterial symbionts), and can be written as 

 𝑑𝑆𝑑𝑡 = −𝛽 × 𝑆 × 𝐶 + 𝛾 × 𝐶	
𝑑𝐶𝑑𝑡 = 𝛽 × 𝑆 × 𝐶 − 𝛾 × 𝐶	

(eq 2.2) 

while the S-E-I-R-S model includes common characteristics of many common pathogens, 

including a rate of progression from latency (𝜎) and a rate of immune waning (𝜔), and can 

be written as 
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𝑑𝑆𝑑𝑡 = −𝛽 × 𝑆 × 𝐼 + 𝜔 × 𝑅	
𝑑𝐸𝑑𝑡 = 𝛽 × 𝑆 × 𝐼 − 𝜎 × 𝐸	
𝑑𝐼𝑑𝑡 = 𝜎 × 𝐸 − 𝛾 × 𝐼(𝑡)	
𝑑𝑅𝑑𝑡 = 𝛾 × 𝐼 − 𝜔 × 𝑅 

 (eq 2.3) 

2.1.3.1.1.  Model analysis 

Model analysis is a useful means to infer epidemiological insights about the system under 

study. For some models, analytical solutions can be derived for population-dynamic 

equilibria: mathematical expressions that symbolically describe the model’s behaviour in 

the form of its steady-state outcomes. However, due to the non-linear structure of 

transmission models, explicit closed-form analytical solutions are often 

unavailable.(Keeling and Rohani, 2007) Alternatively, numerical solutions can be found 

using numerical integration, in which values for parameters and initial state variables are 

substituted into equations, and corresponding integrals are calculated over time using the 

Euler method, or more sophisticated algorithms like Runge-Kutte methods or Gear’s 

method.(Keeling and Rohani, 2007) Time-varying change in state variable quantities – the 

number of individuals in each compartment – is referred to as a model’s dynamics.  

 

2.1.3.1.2.  Epidemiological indicators 

Model dynamics can be translated directly into basic epidemiological indicators or 

outcomes. The following are three examples used throughout this thesis. First, the sum of 

the number or proportion of individuals in each infected compartment (𝐼 for the S-I-R 

model, 𝐶 for the S-C model, or	𝐸 + 𝐼 for the S-E-I-R-S model) represents the prevalence 

of infection, the number or proportion of individuals infected at any given time. A pathogen 

can be described as endemic if it has non-zero prevalence and if this prevalence remains 

relatively stable over time. By contrast, a pathogen is epidemic if its prevalence tends to 

rapidly increase and decrease over time. 

 

Second, integrating terms describing pathogen transmission (calculating the integrals 

∫ 𝛽 × 𝑆 × 𝐼	𝑑𝑡4546  for the S-I-R model and S-E-I-R-S model, or ∫ 𝛽 × 𝑆 × 𝐶	𝑑𝑡4546  for the S-C 

model) represents infection incidence, the rate of infection acquisition over the period of 

time 𝑡7 − 𝑡8.  
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A third indicator that is of particular interest to epidemiologists is the pathogen’s 

reproduction number (R), which describes the average number of secondary infections 

produced by an infected individual over the course of their infection. An outbreak can only 

occur or continue if, on average, each infection causes at least one new infection. In the S-

I-R model, this can only occur if the rate at which an infectious individual causes new 

infections is greater than the rate at which that individual recovers, 

 𝛽 × 𝑆(𝑡) > 𝛾 

(eq 2.4)  

and it follows that the average number of secondary cases produced by an infection at any 

time t, the effective reproduction number, is given by 

 

𝑅4 = 𝛽 × 𝑆(𝑡)𝛾  

(eq 2.5) 

and that the outbreak only continues if 𝑅4 > 1. If the population is fully susceptible (as in a 

naïve population before introduction of the pathogen, i.e. 𝑆(0) = 1) then this indicator is 

termed the basic reproduction number, 

 

𝑅8 = 𝛽𝛾  

(eq 2.6) 

and a newly introduced pathogen will only cause an outbreak if 𝑅8 > 1. Since each of the 

models proposed above assumes the same transmission term and duration of infectivity, 

this same 𝑅8	expression applies to each.(Bjørnstad et al., 2020; Keeling and Rohani, 

2007) 

 

2.1.3.1.3.  Exponential growth 

Provided that a novel pathogen has epidemic potential (𝑅8 > 1), its transmission in the 

absence of control measures is an inherently exponential process: infection risk scales 

with the prevalence of infectious individuals, so each new infection increases the risk of 

subsequent transmission (provided that the susceptible population is not immediately 

depleted, as is the case in all but the smallest populations). The reproduction number is 

also a useful indicator because it allows quantification of a pathogen’s exponential growth 

rate (𝑟4) according to the formula 
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𝑟4 = (𝑅4 − 1)𝜏  

(eq 2.7) 

where 𝜏 is the average generation time, the mean duration between infection events in 

any infector-infectee pair.(The Royal Society, 2020) If 𝑅4 < 1, then 𝑟4 is negative and the 

outbreak is shrinking. Despite identical 𝑅8 expressions for the models introduced above, 

the exposed period in the S-E-I-R-S model delays potential transmission events relative to 

corresponding S-I-R and S-C models, resulting in a longer generation time and lower 

exponential growth rate. 

 

2.1.3.1.4.  Non-linear population dynamics 

Even for pathogens with identical infection durations and transmission rates, other 

differences in their life history – for instance, how they interact with their hosts, whether or 

not they induce immunity, and whether or not immunity is long-lasting – can fundamentally 

change their epidemiological dynamics. This is demonstrated for each of the models 

introduced so far, by numerically integrating each model using the same parameter set 

and initial state variable conditions. In the S-I-R model, as individuals recover from 

infection and acquire immunity, the pool of susceptible individuals dwindles, gradually 

limiting potential for new individuals to become infected and ultimately leading to 

extinction of the epidemic (Figure 2.2A). In the S-C model, due to the absence of 

immunity there is a continuous back-and-forth between susceptible and colonized 

compartments, such that the pathogen quickly becomes endemic, establishing itself at a 

steady population-dynamic equilibrium (Figure 2.2B). In the more complex S-E-I-R-S 

model, gradual replenishment of susceptible individuals through immune waning leads to 

periodic fluctuations with comparatively long delays until stable equilibrium states are 

reached (Figure 2.2C).(Bjørnstad et al., 2020) These examples illustrate that key 

indicators like 𝑅8 and 𝑟4, although useful, provide an incomplete representation of a 

pathogen’s epidemiological trajectories.  
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Figure 2.2.  Epidemiological dynamics of compartmental models. 

Epidemiological dynamics of the three compartmental models presented in Figure 2.1, assuming 999 
susceptible individuals and 1 infected (or colonized) individual at 𝑡 = 0, and identical parameter values 
(𝛽 = 0.001, 𝛾 = 1/3, and for the S-E-I-R-S model, 𝜎 = 1/2,𝜔 = 1/70). Models were solved through 
numerical integration using the function ode from the R package deSolve. 
 

2.1.3.1.5.  Density-dependent transmission 

The models presented above assume density-dependent transmission: the probability 

of transmission increases linearly with the density of infectious individuals in the 

population. Underlying this assumption is a decomposition of the transmission rate,  

 𝛽 = 𝑐 × 𝑣 

(eq 2.8) 

Here, the rate of transmission per unit time is explicitly defined in terms of the number of 

contacts per individual and per unit time (c) and the probability of pathogen transmission 

per contact (v), such that the total number of contacts is an increasing function  

 𝑐 = 𝑘 ×𝑁 

(eq 2.9) 

depending linearly on the population density (N).(Begon et al., 2002) Density-dependent 

transmission maps intuitively to respiratory pathogens, for instance, in which a greater 

density of individuals in a fixed area leads to a higher rate of transmission. 

 

2.1.3.1.6.  Frequency-dependent transmission 

An alternative assumption to density-dependent transmission is frequency-dependent 

transmission, in which interpretation of the transmission rate 𝛽 is slightly modified. With 

frequency-dependent transmission,  
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𝛽 = 𝑛 × 𝑣 

(eq 2.10) 

where n is the number of contacts per individual and per unit time, which, unlike c, is 

assumed to be constant regardless of the density of individuals in the population.(Begon et 

al., 2002) This maps intuitively to sexually transmitted infections, in which an increasing 

density of individuals is unlikely to result in more sexual contacts and opportunities for 

transmission. In turn, the transmission function in the context of frequency-dependent 

transmission is divided by the population density N, as it is the proportion of infected 

individuals in the population that determines transmission risk per contact. For the S-I-R 

model introduced above, this equates to 

 

 𝑑𝑆𝑑𝑡 = −𝛽 × 𝑆 × 𝐼𝑁 	
𝑑𝐼𝑑𝑡 = 𝛽 × 𝑆 × 𝐼𝑁 − 𝛾 × 𝐼	
𝑑𝑅𝑑𝑡 = 𝛾 × 𝐼 

(eq 2.11) 

In reality, this distinction between density and frequency dependence may not be clear-cut. 

Take HCAI-causing pathogens like methicillin-resistant S. aureus (MRSA) and 

vancomycin-resistant Enterococci (VRE), for instance. These bacteria spread extensively 

via contact with healthcare worker vectors, and it is not obvious whether – or how – the 

number of contacts that any given patient has with healthcare workers should change with 

an increasing density of patients in the hospital.  

 

2.1.3.1.7.  Heterogeneous contact behaviour 

Whether density- or frequency-dependent, compartmental models assume homogenous 

mixing of individuals in each compartment. This results in so-called mass-action 

transmission whereby all susceptible individuals are equally likely to be infected by all 

infectious individuals. This assumption is potentially valid in large randomly mixing 

populations,(Bansal et al., 2007) but it is often more realistic to incorporate heterogeneity 

in contact behaviour and hence transmission rates between different types of individuals.  

 

One way to account for such heterogeneity is to subdivide the population based on a 

demographic characteristic of choice (e.g. age, occupation) and introduce specific 
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transmission rates between the different subgroups. This is typically accomplished using a 

WAIFW matrix (“who acquires infection from whom”), in which the probability of an 

infectious individual in the jth column infecting a susceptible individual in the ith row 

depends on a demographically-stratified transmission rate 𝛽J,K .(Vynnycky, 2010) Assuming 

that the intrinsic transmissibility of the pathogen is identical regardless of who is infected, 

heterogeneity in 𝛽 can be interpreted as resulting from heterogeneity in c (the number of 

contacts per unit time, as defined above for density-dependent transmission). 

 

For a hospital with different c between patients (p), healthcare workers (h) and ancillary 

staff (a), an illustrative WAIFW is, 

 

𝐖𝐀𝐈𝐅𝐖 = P𝑐Q,Q = 1𝑐R,Q = 8 𝑐Q,R = 8 𝑐Q,T = 0𝑐R,R = 4 𝑐R,T = 2𝑐Q,T = 0 𝑐R,T = 2 𝑐T,T = 3V 

(eq. 2.12) 

describing a population in which patients have low rates of contact with one another (𝑐Q,Q =1 contact/day), high rates of contact with healthcare workers (𝑐Q,R = 8 contacts/day), and 

no contact whatsoever with ancillary staff (𝑐Q,T = 0 contacts/day), while staff have overall 

similar contact rates with one another (𝑐R,R = 4, 𝑐R,T = 2 and 𝑐T,T = 3 contacts/day). With 

such a matrix, transmission between each sub-group remains a mass-action process, but 

the overall population is no longer assumed to mix homogenously. Accounting for such 

demographic heterogeneity in compartmental models has improved understanding of 

infectious disease dynamics, including spread of childhood diseases among school 

children, and efficiency of age-targeted vaccination strategies.(Babad et al., 1995; Bauch 

et al., 2007; Xiao et al., 2016) Further WAIFW matrix stratification can allow for contacts of 

different durations, types and intensities. However, an important limitation of this approach 

is that the number of model compartments increases exponentially with the number of host 

variables considered and their level of resolution, making it difficult to account for more 

than a select few sources of population heterogeneity, or a limited degree of granularity in 

demographic stratification.(Opatowski et al., 2013) 

 

2.1.3.2.  Stochastic models 

ODE models are deterministic: there is a pre-determined relationship between model 

inputs and outputs. It follows that, for any given set of parameter values or state variable 

inputs, identical outputs result every time the model is evaluated. However, real infectious 
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disease dynamics are fundamentally stochastic: they are subject to random chance. By 

incorporating a degree of randomness, outputs from stochastic models are generally 

viewed as more realistic than outputs from deterministic models, especially in small 

populations where natural epidemic extinction is common and where a small number of 

chance events can have outsized impacts on overall dynamics. However, depending on a 

model’s research goals, stochastic models are not necessarily better suited: ODEs 

produce the average expected behaviour of a system, and random chance may have a 

comparatively small impact on dynamics, particularly in large populations where stochastic 

and deterministic models produce similar outputs. Stochasticity may also muddle 

interpretation of results when using a model to better understand fundamental 

epidemiological mechanisms.(Heesterbeek et al., 2015)  

 

There are a range of methods and algorithms that are used to describe compartmental 

epidemiological models as stochastic processes, which result in heterogeneous epidemic 

trajectories for the same fixed model inputs. Perhaps the most widely used stochastic 

models are Continuous-time Markov chains, which consider state variables as memoryless 

discrete integers, with incremental changes occurring according to a pre-defined 

probability matrix.(Allen, 2017) The Gillespie method is one example of a computational 

algorithm used to evaluate Markov chains.(Gillespie, 1977) Figure 2.3 demonstrates the 

impact of stochasticity on dynamical outputs from the S-I-R model introduced above, 

comparing deterministic results from ODE integration with stochastic results obtained from 

100 independent runs using the Gillespie algorithm (Direct method) from the R package 

gillespiaSSA.(Pineda-Krch, 2008) Beyond Markov chains, other stochastic modelling 

methods include the use of stochastic differential equations and Kolmogorov differential 

equations.(Allen, 2017) 
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Figure 2.3.  Stochastic vs. deterministic dynamics. 

For a structurally identical S-I-R model (𝛽 = 0.001, 𝛾 = 1/3, 𝑆(0) = 999, 𝐼(0) = 1, 𝑅(0) = 0,𝑁 = 1,000), 
a comparison of deterministic outputs from numerical integration of ODEs (solid lines) and stochastic 
outputs from 100 independent runs of the Gillespie algorithm (dotted lines). 
 

2.1.4.  Individual-based models 

Individual-based models (IBMs), also known as agent-based models, consider each 

individual in the model as a compartment unto themselves. Each unique agent can thus be 

represented by a limitless number of characteristics, allowing for individual-level 

heterogeneity at the levels of the host, the pathogen and the environment to be taken into 

account.(Willem et al., 2017) As a result, IBMs can include a far greater range of features 

than a typical compartmental model, from diverse infection risk factors, to gradated 

disease outcomes, to detailed host-pathogen interactions, to heterogeneous spatial 

structure, and beyond. With recent advances in computing power and increasing 

availability of high-resolution epidemiological data, individual-based approaches are 

increasingly used in infectious disease models.(Willem et al., 2017) However, IBMs also 

require a greater number of assumptions to inform this heterogeneity, are built upon more 

complex computational programmes, generally require substantially more time and 

resources to produce, and yield findings that may be more difficult to interpret.(Railsback 

and Grimm, 2011)  

 

2.1.4.1.  Dynamic contact networks 

IBMs are not bound by assumptions of mass-action transmission. Simulating individual-

specific contact behaviour and corresponding probabilities of transmission is a common 

goal of many epidemiological IBMs and can be accomplished through the use of dynamic 

contact networks. There has been a recent surge in the collection of inter-individual 
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contact data, whether from paper diaries or more sophisticated approaches like wearable 

electronic sensor devices.(Duval et al., 2018; Mossong et al., 2008; Vanhems et al., 2013) 

This has facilitated the advent of IBMs that simulate detailed contact networks to re-create 

observed contact patterns, resulting in more lifelike transmission dynamics and potentially 

more representative simulations of public health interventions that target human 

behaviour.(Assab et al., 2017) Figure 2.4 illustrates an example of an IBM covering a 

small population of patients and healthcare workers in a healthcare facility with two wards, 

with arrows representing heterogeneous contact behaviour between individuals. 

 

 
Figure 2.4.  Individual-based model schematic. 

Schematic of an individual-based model, where each square is an individual with his or her own unique 
characteristics: age (integer values), sex (male or female), infection risk (high or low), infection status 
(yes or no), patient status (yes for patient, no for member of staff), and hospital ward (1 or 2). Dashed 
arrows represent contacts between pairs of individuals aggregated over hypothetical unit-time, and are 
coloured red if they are infectious contacts that could potentially lead to pathogen transmission. 

 

2.1.5.  Parameterization and uncertainty 

Parameterization is crucial in order to tailor a model to a specific pathogen and host 

population, but the parameter values used to inform epidemiological models are often 

imperfect or approximate due to the complexity of the underlying systems.(Keeling and 

Rohani, 2007) Even if a model is well-structured and appropriately captures the relevant 

biological mechanisms under study, inaccurate parameter values will result in false or 

misleading outcomes. Steps must be taken to ensure not only that a model is well 

parameterized, but that uncertainty associated with parameter inputs – and corresponding 

impacts on model outputs – are quantified. 
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2.1.5.1.  Parameterization 

2.1.5.1.1.  Literature 

Often the simplest means to parameterize a model is to find previous estimates from the 

scientific or grey literature. Reliable sources of parameter estimates include nationally 

representative population databases, multi-centre longitudinal studies, and systematic 

reviews and meta-analyses.  

 

2.1.5.1.2.  Expert opinion 

In the absence of published estimates, subject-matter experts can be consulted to provide 

estimates for parameter values. Such estimates are inherently subjective and prone to a 

range of biases, but scientific consensus methodologies like expert elicitation have been 

developed that aim to facilitate collation of estimates from multiple experts while 

minimizing inherent biases.(Johnson et al., 2010b) 

 

2.1.5.1.3.  Model fitting and estimation 

If relevant epidemiological data are available, parameters can be estimated directly. There 

are a broad range of potential techniques with different relevance depending on the types 

of data available, ranging from least-squares optimization, to maximum likelihood 

algorithms, to adaptive Bayesian approaches like Markov-Chain Monte Carlo, to emerging 

machine learning algorithms.(Bi et al., 2019; van Kleef et al., 2013) 

 

2.1.5.2.  Uncertainty 

2.1.5.2.1.  Epistemic vs. stochastic uncertainty 

There are two main kinds of uncertainty that can drive heterogeneity in model 

outputs.(Marino et al., 2008) Epistemic uncertainty (also known as subjective, reducible, 

or type B uncertainty) results from incomplete knowledge about the system being 

modelled. Epistemic uncertainty is typically quantified using parameter distributions with 

high variance, from which distinct values are sampled randomly each time the model is 

evaluated. This results in heterogeneous model outcomes across model runs. Stochastic 

uncertainty (also known as aleatory, irreducible, or type A uncertainty) describes output 

uncertainty resulting from random chance, and is hence only relevant for stochastic 

models. 
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2.1.5.2.2.  Sensitivity analyses 

Sensitivity analysis is a quantification of the response of model outputs to uncertainty in 

model inputs (e.g. parameter variation).(Saltelli et al., 2000) Probabilistic sensitivity 

analysis (PSA) is considered a particularly rigorous approach, and is increasingly used in 

published models of HCAI transmission.(van Kleef et al., 2013) One of the most popular 

PSA methods in infectious disease modelling is the Latin Hypercube sampling-partial 

rank correlation coefficient method.(Marino et al., 2008; Wu et al., 2013) First, 

parameters are sampled from their assumed distributions without replacement using 

stratified Monte Carlo sampling, in which their distributions are divided into N equal 

probability intervals, ensuring more representative sampling of the full distribution than 

simple random sampling. Second, sensitivities of output states to variation in parameter 

inputs are calculated using linear regression models, after accounting for linear correlation 

between inputs and outputs. Other common PSA methods include simple visual inspection 

using scatter plots and the Morris and Sobol’ methods.(Wu et al., 2013) 
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2.2.  Modelling nosocomial pathogens in the healthcare setting 

In the 1990s, mathematical modelling emerged as a novel methodology for the study of 

HCAI epidemiology, and has since become a major tool for the assessment of nosocomial 

control measures.(Grundmann and Hellriegel, 2006) Most models are tailored to specific 

healthcare settings and pathogens: in a systematic review, hospitals and ICUs were the 

principal setting for nearly all models, while MRSA was the most commonly studied 

organism (34% of studies), followed by VRE and generic ARB (both 16%).(van Kleef et al., 

2013) Although they found that models for other nosocomial pathogens were relatively 

rare, a range of significant modelling studies have since been published for high-priority 

pathogens like C. difficile,(Gingras et al., 2016) and ESBL-producing 

Enterobacteriaceae,(Bonneault et al., 2019; Domenech de Cellès et al., 2013; Kardaś-

Słoma et al., 2017; Pelat et al., 2016) More recent systematic reviews have further 

characterized specific modelling contexts or approaches, including HCAI models using 

structured contact network data,(Assab et al., 2017) models focusing on health-economic 

evaluation,(Nelson et al., 2017) models of MRSA transmission in residential 

facilities,(Kwok et al., 2018) and HCAI models using system dynamics, discrete event 

simulation or agent-based approaches.(L. K. N. Nguyen et al., 2020)  

 

2.2.1.  Evaluating control strategies 

Systematic reviews report that the primary focus of most HCAI models is evaluation of the 

epidemiological efficacy of control interventions.(L. K. N. Nguyen et al., 2020; van Kleef 

et al., 2013) The most widely studied interventions include hand hygiene, patient isolation, 

healthcare worker cohorting and antibiotic stewardship, followed by patient screening, 

vaccination and decolonization.(van Kleef et al., 2013) Such control measures can lead to 

significant changes in host demography (e.g. separating individuals through isolation), 

pathogen transmission (e.g. reduced host-to-host transmission rates through hand 

hygiene), or pathogen life history (e.g. reduced duration of bacterial colonization due to 

antibiotic treatment). Accordingly, the structure and parameterization of HCAI transmission 

models must reflect not only the specific biology of the HCAI and demography of the 

healthcare setting under study, but also epidemiological impacts of the interventions being 

evaluated. 

 

2.2.2.  A hypothetical HCAI modelling framework 

Here I demonstrate how a mathematical model can be used to evaluate HCAI control 
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measures, through the example of a novel viral pathogen with frequency-dependent 

transmission. I adapt the S-I-R model presented above to represent a patient population in 

a hospital setting with a range of potential public health interventions measures in place.  

 

2.2.2.1.  Host demography 

The main demographic consideration in hospital settings is patient turnover through a 

symmetric rate of new admissions and discharges, 𝜇, which holds the total population size 

constant (i.e. assuming full bed occupancy). The community thus represents a source of 

potential infections – depending on the proportion of individuals infected upon 

admission,	𝑔Z –  which can have a significant impact on epidemiological dynamics. Here, 

in the context of a novel pathogen, I assume no input of recovered individuals from the 

community, and no discharge of infectious or quarantined individuals from the hospital. 

 

2.2.2.2.  HCAI control interventions 

Three distinct interventions are considered:  

- Hand hygiene, which reduces the pathogen transmission rate by a proportion 𝛿 =80% 

- Testing and isolating at admission, in which a proportion 𝜅 = 80% of patients in-

fected upon admission are sent to a quarantine compartment Q 

- Daily testing and isolation, in which a proportion 𝜋 = 40% of infected patients are 

tested daily and isolated in quarantine compartment Q for 10 days (𝜌 = 0.1) 

 

2.2.2.3.  ODEs 

The S-I-Q-R model with these assumptions included is expressed as: 

 𝑑𝑆𝑑𝑡 = 𝑓a − (1 − 𝛿) × 𝜆 × 𝑆 − 𝜇 × 𝑆	
𝑑𝐼𝑑𝑡 = (1 − 𝜅) × 𝑓Z + (1 − 𝛿) × 𝜆 × 𝑆 − (𝛾 + 𝜋) × 𝐼	
𝑑𝑄𝑑𝑡 = 𝜅 × 𝑓Z + 𝜋 × 𝐼 − 𝜌 × 𝑄	
𝑑𝑅𝑑𝑡 = 𝛾 × 𝐼 + 𝜌 × 𝑄 − 𝜇 × 𝑅 

(eq. 2.13) 

where the demography terms 𝑓a and 𝑓Z  expand to 
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𝑓a = (1 − 𝑔Z) × 𝜇 × (𝑁 − 𝐼 − 𝑄)	𝑓Z = 𝑔Z × 𝜇 × (𝑁 − 𝐼 − 𝑄) 
(eq. 2.14) 

and the transmission rate is expressed as the frequency-dependent force of infection 𝜆, 

which excludes quarantined individuals as they are assumed not to transmit, 

 

𝜆 = 𝛽 × 𝐼𝑁  

(eq. 2.15) 

In Figure 2.5, model dynamics are evaluated numerically for each intervention 

independently, demonstrating the prevalence of infection across each scenario. In Figure 

2.6, cumulative infection incidence is reported over time for each intervention, and also 

when combining all interventions. Intervention efficacy can be calculated by comparing 

epidemiological outcomes with and without interventions, for instance reduction in 

pathogen prevalence or reduction in cumulative infection incidence. An example of the 

latter is provided in Figure 2.6. 
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Figure 2.5.  Illustrative HCAI models and dynamics. 

Flow diagrams (left) and model dynamics (right) for four variations of the model in equation 2.13. In the 
absence of testing and isolation, the compartment Q is omitted. Identical initial conditions (𝑆(0) =999, 𝐼(0) = 1,𝑄(0) = 0, 𝑅(0) = 0) and parameter values (𝛽 = 0.4	dayg7, 𝛾 = 0.2	dayg7, 𝑔Z = 0.02, 𝜇 =0.1	dayg7) are assumed for each evaluation. ODEs were solved numerically using the function ode from 
the R package deSolve. 
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Figure 2.6.  Demonstrating intervention efficacy. 

The cumulative incidence of infection over time, corresponding to model dynamics simulated in Figure 
2.5. In text, the efficacy of each intervention is reported as e, the proportional reduction in cumulative 
incidence relative to simulations with no intervention in place. For this model, daily testing and isolation 
is the single most effective intervention considered, while combined interventions prevent over 99% of 
infections. 
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2.3.  Modelling antibiotic selection for resistance 

Antibiotic resistance is a central focus of contemporary infectious disease modelling, and 

multidrug-resistant bacteria are the focal organisms of the vast majority of HCAI 

models.(Heesterbeek et al., 2015; van Kleef et al., 2013) In a review of findings and 

methodological approaches for ARB modelling, Opatowski et al. (2011) highlighted the 

importance of properly representing the mechanisms that drive resistance across scales. 

These range from biological characteristics of resistance at the genetic level (e.g. 

resistance mechanisms like horizontal gene transfer), to the bacterium’s ecological 

dynamics within the host (e.g. competitive interactions with other organisms), to its 

epidemiological drivers at the host level (e.g. routes of person-to-person transmission). 

More recent reviews by Birkegård et al. (2018) and Ramsay et al. (2018) concur that 

mechanisms favouring the emergence and spread of resistance are fundamental 

considerations for most ARB models, and that evaluation of antibiotic stewardship 

interventions is a key motivation for their use. 

 

2.3.1.  Strain competition: a mechanism for antibiotic selection 

To explain mechanistically how antibiotics drive the epidemiological spread of resistance, 

a classic modelling assumption is that selection results from intraspecific competition 

between at least one drug-sensitive strain CS and one drug-resistant strain CR.(Spicknall et 

al., 2013) The reasoning goes: strains of the same species occupy the same ecological 

niche, so colonization with one strain inhibits colonization with another. In turn, antibiotics 

that preferentially clear CS render the within-host niche available to potential colonization 

with co-circulating CR, indirectly favouring CR spread through the host population. A simple 

two-strain exclusive colonization model (illustrated in Figure 2.7) can be written as: 

 𝑑𝑆𝑑𝑡 = 𝑓a − (𝜆a + 𝜆h) × 𝑆 + (𝛾 + a) × 𝐶a + 𝛾 × (1 + 𝑐) × 𝐶h − 𝜇 × 𝑆	
𝑑𝐶a𝑑𝑡 = 𝑓ij + 𝜆a × 𝑆 − (𝛾 + a + 𝜇) × 𝐶a	
𝑑𝐶h𝑑𝑡 = 𝜆h × 𝑆 − (𝛾 × (1 + 𝑐) + 𝜇) × 𝐶h 

(eq. 2.16) 

 

This model assumes: (i) a rate of antibiotic clearance a that only affects the drug-sensitive 

strain, (ii) a fitness cost of resistance 𝑐 that shortens the natural duration of colonization of 
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𝐶h relative to 𝐶a, (iii) a distinct force of infection for each strain, 

 

𝜆ij = 𝛽 × 𝐶a𝑁 , 𝜆ik = 𝛽 × 𝐶h𝑁  

(eq. 2.17) 

and (iv) that the drug-resistant strain is novel, and hence that there is input only of the 

drug-sensitive strain from the community, determined by the proportion of patients 

colonized upon admission 𝑔ij, 
 𝑓a = (1 − 𝑔ij) × 𝜇 × 𝑁	𝑓ij = 𝑔ij × 𝜇 ×𝑁	

(eq. 2.18) 

Under this model, an increasing magnitude of antibiotic use (higher a) leads to a greater 

prevalence of 𝐶h, even though antibiotics have no direct impact on 𝐶h in model equations. 

This is because each strain competes for limited hosts: the drug-resistant strain is at a 

survival disadvantage in the absence of antibiotics (due to supposed metabolic costs of 

expressing antibiotic-resistance genes), but is advantaged in the context of antibiotics that 

preferentially clear its drug-sensitive competitors, increasing the pool of susceptible 

patients that it can colonize.  

 

 

Figure 2.7.  Exclusive colonization strain competition model. 

A flow diagram (top) of a two-strain exclusive colonization strain competition model, and resulting model 
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dynamics (bottom), representing the number of individuals in each compartment in separate subplots. 
Line transparency represents the antibiotic clearance rate a, with more opaque lines corresponding to 
higher rates. ODEs were solved numerically using the function ode from the R package deSolve (S(0) =600, 𝐶a(0) = 399, 𝐶h(0) = 1; 𝛽 = 0.2	dayg7, 𝛾 = 0.02	dayg7	𝜇 = 0.1	dayg7, 𝑐 = 0.2, 𝑔ij = 0.3). 

 

2.3.2.  Beyond strain competition 

Most contemporary antibiotic resistance models are variants of this strain competition 

typology.(Blanquart, 2019; Spicknall et al., 2013) For instance, the ‘mixed-carriage’ model 

by Davies et al. demonstrates how intraspecific competition results in negative frequency-

dependent selection for either of two competing strains, and provides a satisfying 

mechanistic explanation for widespread strain coexistence at the population level.(Davies 

et al., 2019) However, intraspecific strain competition is not the only mechanism by which 

antibiotic consumption can drive ARB spread (see Chapter 1.4.4.2), and may have limited 

relevance for certain species, settings and timescales.(Lipsitch and Samore, 2002) 

 

Accounting for other forms of complexity in epidemiological models – from treatment 

intensity, to age-assortative contact behaviour, to hospital referral networks, to animal-

human interactions, to genetic linkage between resistance and non-resistance genes – 

has helped to unravel the many, disparate forces that contribute to drive the spread of 

resistance.(Blanquart et al., 2018; Cobey et al., 2017; Colijn and Cohen, 2015; Donker et 

al., 2017; Lehtinen et al., 2017; van Bunnik and Woolhouse, 2017) However, 

contemporary work has stopped short of evaluating consequences of between-species 

competition on resistance epidemiology.(Davies et al., 2019) Yet for many ARB, including 

emerging high-priority multidrug-resistant bacteria like ESBL-producing 

Enterobacteriaceae, interactions with the host microbiome appear to be important 

mediators of nosocomial colonization dynamics.(Kim et al., 2017; Lerminiaux and 

Cameron, 2019; Pilmis et al., 2020) Indeed, an incomplete understanding of key eco-

evolutionary principles – including within-host competition between bacterial pathogens 

and the host microbiome – has been highlighted as a limitation to the ability of 

mathematical models to predict future trends and inform decision-making.(Knight et al., 

2019) 
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Chapter 3.   Thesis objectives 

 

This thesis aims at developing novel mathematical models to improve our understanding 

of HCAI epidemiology and to provide evidence informing optimal means of infection 

control. Three principal knowledge gaps are addressed in this work. First, there is a need 

to better understand how infection risk varies across pathogen species and population 

characteristics, and how different routes of transmission and forces of selection drive the 

epidemiological dynamics of diverse nosocomial pathogens in varied healthcare 

environments. Second, in order to ensure the timely detection of nosocomial outbreaks, 

there is a need to optimize infectious disease surveillance in the context of imperfect test 

sensitivity and limited testing capacity. Third, in order to reduce the overall burden of 

HCAI, there is a need to design better infection control strategies that respond to the 

particular ecological and epidemiological characteristics of targeted pathogens. 

 

In this thesis I address these knowledge gaps through two principal bodies of work. First, I 

propose an ODE modelling framework for ARB that accounts for simultaneous impacts of 

antibiotic consumption on pathogen colonization and microbiome stability, in order to 

evaluate how microbiome dysbiosis contributes to the epidemiological dynamics of ARB in 

the hospital setting (Chapter 4). This framework is then applied in a Monte Carlo 

simulation study to evaluate how pathogen-specific differences in within-host ecological 

interactions drive the efficacy of public health interventions for ARB prevention (Chapter 

5). 

 

Second, I use individual-based modelling and counterfactual analysis to analyze how test-

ing and control strategies limit the spread of SARS-CoV-2 in long-term care settings. This 

involves evaluation of surveillance in distinct pandemic contexts (introduced in Chapter 6). 

In an early pandemic context, with limited availability of reverse transcriptase-polymerase 

chain reaction (RT-PCR) tests and high outbreak vulnerability, surveillance interventions 

are evaluated for their ability to detect emerging nosocomial SARS-CoV-2 outbreaks 

(Chapter 7). Then, in a later pandemic context with availability of antigen rapid diagnostic 

testing and various alternative COVID-19 control measures, combined surveillance and 

isolation interventions are evaluated for their ability to prevent SARS-CoV-2 transmission 

(Chapter 8). Finally, these works are discussed in the context of their collective contribu-

tions to the scientific literature and relevance to public health (Chapter 9).



 

 100 

  



 

 101 

Chapter 4.   Modelling within-host microbiome-

pathogen interactions as drivers of epidemiological 

dynamics of antibiotic resistance 

4.1.  Introduction 

Antibiotics are essential medicines for the treatment and prevention of bacterial infections, 

but their use selects for the spread of pathogenic ARB, and can inadvertently disrupt the 

host microbiome and its associated immune function.(Buffie and Pamer, 2013; Chatterjee 

et al., 2018; Kim et al., 2017) Within-host ecological interactions between co-colonizing 

bacteria can have important consequences for their colonization dynamics, which likely 

extend to influence the epidemiology of human pathogens in clinical settings.  

    

Antibiotic-induced disruption of the host microbiome is a long-standing theory explaining 

how antibiotics select for the spread of resistance at both the individual and population 

levels,(Lipsitch and Samore, 2002) but most mathematical models consider just one 

species of bacteria at a time, under the traditional assumption that antibiotic selection for 

resistance results from intraspecific competition between co-circulating strains.(Blanquart, 

2019; Ramsay et al., 2018; Spicknall et al., 2013) This simple framework has been 

particularly useful for bacteria like Streptococcus pneumoniae and Staphylococcus aureus, 

in which different strains – sometimes conceptualized as drug-sensitive vs. drug-resistant, 

or community-associated vs. healthcare-associated – are believed to be in close 

ecological competition.(Blanquart, 2019; Domenech de Cellès et al., 2011; Kardas-Sloma 

et al., 2011; Pressley et al., 2010; van Kleef et al., 2013) However, microbiome ecology 

remains largely absent from the epidemiological modelling of antibiotic resistance, (Assab 

et al., 2017; Birkegård et al., 2018; Blanquart, 2019; Niewiadomska et al., 2019) 

suggesting a need to better understand within-host competition between ARB and the host 

microbiome, its potential epidemiological consequences, and more broadly how antibiotics 

exert selection pressure on resistant bacteria.(Knight et al., 2019) 

 

In this Chapter, I formalize a mathematical modelling framework for the epidemiology of 

antibiotic-resistant bacterial pathogens in the healthcare setting, accounting for the host 

microbiome, various within-host microbiome-pathogen interactions, antibiotic-induced 

microbiome dysbiosis, and consequences for the spread of antibiotic resistance. I use this 
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framework to demonstrate how different combinations of ecological interactions drive 

antibiotic selection for the spread of resistance, with heterogeneous impacts on classic 

epidemiological indicators and consequences for public health interventions. 
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4.2.  Methods 

I propose a series of five compartmental ODE models describing colonization dynamics of 

an antibiotic-resistant bacterial pathogen, denoted PR, in the hospital setting. Each model 

accounts for different within-host ecological interactions between PR and other bacteria, 

including intraspecific pathogen strain competition, interspecific microbiome-pathogen 

competition, and interspecific horizontal gene transfer (HGT). Expressions for the basic 

reproduction number (R0) are derived and evaluated numerically, and ODEs are integrated 

numerically to calculate epidemiological outcomes. All models are evaluated over the 

same generic parameter space, to isolate impacts of model structure and assumptions on 

epidemiological outcomes, and hence to determine theoretical impacts of within-host 

ecological interactions on resistance epidemiology in the context of antibiotic use in the 

healthcare setting. R and Mathematica code for the equations and analyses described 

herein are available online at https://github.com/drmsmith/microbiomeR. 

 

4.2.1.  Model 1: Bacterial colonization in healthcare settings 

I first propose a simple Susceptible-Colonized transmission model (Figure 4.1) 

representing a population of N hospitalized patients as either susceptible to colonization 

(S) or colonized (CR) by PR, the focal strain or species:  

 𝑑𝑆𝑑𝑡 = 𝑁 × (1 − 𝑓) × 𝜇 − 𝑆 × (𝜆h + 𝛼h + 𝜇) + 𝐶h × (𝛾h + 𝜎h)	
𝑑𝐶h𝑑𝑡 = 𝑁 × 𝑓 × 𝜇 + 𝑆 × (𝜆h + 𝛼h) − 𝐶h × (𝛾h + 𝜎h + 𝜇) 

(eq. 4.1) 

This model is adapted from classic colonization models of antibiotic-resistant bacteria 

introduced in Chapter 2,(Austin et al., 1997) includes no ecological interactions with non-

focal bacteria, and reflects a suite of common assumptions relevant to the healthcare 

setting, detailed as follows. 
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Figure 4.1.  Model 1 flow diagram. 

 

4.2.1.1.  Patient demography 

A constant population size is assumed (𝑁 = 1), balanced by a daily rate of hospital 

admission and discharge 𝜇. The number of patients in each host compartment is 

expressed as proportions of the total population. The proportion of patients entering the 

hospital with particular characteristics 𝑔 are given by admission fractions 𝑓n. These are 

interpreted as representing prevalence of respective host types in the community (e.g. 

patients already colonized by the pathogen upon hospital admission), which are assumed 

to be stable over time and unaffected by hospital dynamics. For simplicity, in subsequent 

models demography terms are expressed as ΔJ for each model compartment 𝑖. 
 

4.2.1.2.  Pathogen epidemiology 

Pathogen colonization can be acquired through dynamic patient-to-patient transmission 

according to the dynamic force of infection (𝜆K) for any included strain j of the pathogen Pj. 

The force of infection is defined as the product of the pathogen’s intrinsic transmission rate 

(𝛽) and the prevalence of patients already colonized (𝐶K) with that strain, given by 

 

𝜆K = 𝛽 × 𝐶K𝑁  

(eq. 4.2) 

In hospital environments, pathogen colonization incidence also results from endogenous 
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acquisition (𝛼K). This subsumes alternative routes of acquisition not resulting from direct 

patient-to-patient transmission, and can include processes like translocation and within-

host outgrowth of a subdominant/non-detectable/non-transmissible colony into a 

dominant/detectable/transmissible colony.(Archambaud et al., 2019; Bootsma et al., 2007; 

Duval et al., 2019a; Gurieva et al., 2018) This reflects the microbiological tenet that 

“everything is everywhere, but the environment selects”.(de Wit and Bouvier, 2006) Lastly, 

in the absence of treatment, pathogen colonization is assumed to last for a duration 1/𝛾K 
days, such that colonization is naturally cleared at rate 𝛾K day-1.  

 

4.2.1.3.  Antibiotic-induced pathogen clearance 

Pathogen colonization is also cleared by effective antibiotic treatment. Treatment efficacy 

is assumed to depend both on the distribution of antibiotics consumed in the hospital and 

on the intrinsic antibiotic resistance profile of the pathogen. This is expressed as 	𝜎K = a × (1 − 𝑟K) × 𝜃i 

(eq. 4.3) 

where 𝐚 is the hospital population’s antibiotic exposure prevalence (the proportion of 

patients exposed to antibiotics at any time 𝑡), 𝜃i is the antibiotic-induced clearance rate 

(the rate at which effective antibiotics clear pathogen colonization), and 𝑟K is the antibiotic 

resistance level (the proportion of antibiotics that are ineffective against that strain). 

Modelling the latter as a continuous proportion reflects that bacteria are not necessarily 

fully drug-sensitive (𝑟K = 0) nor -resistant (𝑟K = 1), but can range in their sensitivity to 

different antibiotics (0 ≤ 𝑟K ≤ 1). The resistance level 𝑟K is thus a model input interpreted as 

an overall measure of the pathogen’s innate degree of resistance to the particular 

antibiotics to which it is exposed.  

 

Antibiotic exposure is modelled independently of colonization status, reflecting high 

estimated rates of bystander selection for ARB, which predominantly colonize patients 

asymptomatically, are rarely detected and only opportunistically cause disease.(Tedijanto 

et al., 2018) Further, pathogen colonization is assumed not to be acquired endogenously 

among patients undergoing antibiotic treatment capable of pathogen clearance, such that 

 𝛼K = 𝛼′ × (1 − a × (1 − 𝑟K)) 
(eq. 4.4) 
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where 𝛼′ is the baseline rate in untreated patients. All subsequent models build upon these 

assumptions. 

 

4.2.2.  Model 2: Introducing intraspecific strain competition 

I next integrate intraspecific pathogen strain competition, as introduced in Chapter 2, into 

the above bacterial colonization model (equation 4.1). The resulting two-strain exclusive 

colonization model (Figure 4.2) is written as: 

 𝑑𝑆𝑑𝑡 = −𝑆 × (𝜆a + 𝜆h + 𝛼a + 𝛼h) + 𝐶a × (𝛾a + 𝜎a) + 𝐶h × (𝛾h + 𝜎h) + Δa	
𝑑𝐶a𝑑𝑡 = 𝑆 × (𝜆a + 𝛼a) − 𝐶a × (𝛾a + 𝜎a) + ∆ij 	
𝑑𝐶h𝑑𝑡 = 𝑆 × (𝜆h + 𝛼h) − 𝐶h × (𝛾h + 𝜎h) + ∆ik 

(eq. 4.5) 

where CS and CR denote patients colonized by a drug-sensitive strain PS and a drug-

resistant strain PR, respectively. Strains are labelled as sensitive or resistant, but this 

should be interpreted as relative (𝑟a < 𝑟h). For all parameters, subscripts S and R denote 

strain-specific rates, accounting for ecological differences between strains. Strain-specific 

levels of antibiotic resistance (𝑟a, 𝑟h) drive strain-specific rates of antibiotic-induced 

clearance and endogenous acquisition (per equations 4.3 and 4.4), while the prevalence of 

each respective strain drives their forces of infection (per equation 4.2). To reflect potential 

metabolic costs associated with bearing the focal antibiotic resistance gene R,(Melnyk et 

al., 2015) we assumed that resistant strains PR are naturally cleared at a faster rate than 

PS, such that 𝛾a < 𝛾h. This is given by  

 𝛾h = 𝛾a × (1 + 𝑐) 
(eq. 4.6) 

where c is interpreted as the fitness cost of bearing the resistance gene R. Demography 

terms ΔJ expand to 

 Δa = 𝜇 × ((1 − 𝑓i) − 𝑆) Δij = 𝜇 × (𝑓i × (1 − 𝑓h) − 𝐶a) Δik = 𝜇 × (𝑓i × 𝑓h − 𝐶h) 
(eq. 4.7) 

where 𝑓i  is the proportion of newly admitted patients colonized with any pathogen strain, 
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and 𝑓h the proportion of which bear the resistant strain. 

 

Figure 4.2.  Model 2 flow diagram. 

 

4.2.3.  Model 3: Introducing interspecific microbiome-pathogen competition 

I next propose a model in which (i) bacterial pathogens and commensal microbiota 

compete ecologically within the host, and (ii) antibiotic-induced microbiome dysbiosis 

disrupts these interactions, predisposing hosts to pathogen colonization. I consider three 

competitive within-host microbiome-pathogen interactions and conceptualize how they 

affect pathogen epidemiology (Figure 4.3).(Buffie et al., 2015; Hooper et al., 2003; 

Kamada et al., 2013a)  

 

First, a stable microbiome can act as a barrier preventing introduced pathogens from 

establishing colonies. This colonization resistance (𝜀) is modelled as a reduced rate of 

pathogen transmission (𝛽) to hosts with stable microbiota,  

 𝛽w = (1 − 𝜀) × 𝛽 

(eq. 4.8) 

Second, co-colonizing bacteria can compete for space, nutrients and other limited 

resources within the host. In this case, antibiotics that reduce the density of potential 
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competitors may favour pathogen persistence. This resource competition (𝜂) is modelled 

as a reduced rate of pathogen clearance (𝛾) among hosts undergoing dysbiosis,  

 𝛾y = (1 − 𝜂) × 𝛾 

(eq. 4.9) 

Lastly, microbiome dysbiosis can favour the emergence or outgrowth of subdominant 

pathogen colonies, and this ecological release (𝜙) was modelled as an increased rate of 

endogenous pathogen acquisition (𝛼) upon dysbiosis, 

 𝛼{ = 𝜙 × 𝛼 

(eq. 4.10) 

 

Figure 4.3.  Microbiome-pathogen interactions illustration. 

Illustration of within-host ecological interactions between the host microbiome (blue) and a transmissible 
bacterial pathogen (yellow), and their impact on the pathogen’s vital epidemiological parameters 𝛽 
(transmission rate), 𝛾 (clearance rate) and 𝛼 (endogenous acquisition rate). To illustrate the latter: sub-
dominant, non-transmissible colonies inhibited by microbiota are represented by small cartoon 
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pathogens, which can grow into dominant, transmissible colonies (large cartoon pathogens) via 
endogenous acquisition. Microbiome-pathogen interactions are assumed to differ between hosts with a 
stable microbiome at population dynamic equilibrium (left) and hosts experiencing antibiotic-induced 
microbiome dysbiosis (right). Interaction coefficients can be interpreted as terms explaining variation in 
host susceptibility to pathogen colonization, as depending on their recent history of antibiotic exposure. 
For interaction coefficient parameter values, broad intervals are assumed for the baseline analysis. 
 

I integrate the microbiome, these three interactions, and antibiotic-induced microbiome 

dysbiosis into the single-strain model given by equation 4.1. The resulting ‘microbiome 

competition model’ (Figure 4.4) is given by  

 𝑑𝑆|𝑑𝑡 = −𝑆| × }𝜆h,w + 𝛼h + 𝜎~� + 𝑆� × 𝛿 + 𝐶|h × (𝛾h + 𝜎h) + Δa� 	𝑑𝑆�𝑑𝑡 = 𝑆| × 𝜎~ − 𝑆� × }𝜆h + 𝛼h,{ + 𝛿� + 𝐶�h × }𝛾h,y + 𝜎h� + Δa�	
𝑑𝐶|h𝑑𝑡 = 𝑆| × }𝜆h,w + 𝛼h� − 𝐶|h × (𝛾h + 𝜎~ + 𝜎h) + 𝐶�h × 𝛿 + Δi�k 	𝑑𝐶�h𝑑𝑡 = 𝑆� × }𝜆h + 𝛼h,{� + 𝐶|h × 𝜎~ − 𝐶�h × }𝛾h,y + 𝛿 + 𝜎h� + Δi�k 

(eq. 4.11) 

describing colonization with a single pathogen strain across two host types: patients with a 

microbiome at dynamic equilibrium (subscript e) and those undergoing dysbiosis (subscript 

d). Antibiotics induce dysbiosis at a rate 𝜎~ given by 

 𝜎~ = a × 𝜃~ 

(eq. 4.12) 

such that microbiome dysbiosis depends on both antibiotic exposure prevalence (𝐚) and 

the rate at which antibiotic exposure causes dysbiosis (𝜃~). Accordingly, the same level of 

antibiotic exposure (𝐚) can have asymmetric effects on microbiome stability (via 𝜃~) and 

pathogen colonization (via (1 − 𝑟h) × 𝜃i , as in equation 4.3). Dysbiosis can result in long-

term changes to microbiome composition, but ecological function and population dynamic 

stability tend to recover in the days or weeks following antibiotic therapy,(Lozupone et al., 

2012) represented here by microbiome recovery rate 𝛿. However, microbiome stability is 

assumed not to recover among patients actively undergoing antibiotic treatment, such that 

 𝛿 = 𝛿′ × (1 − a) 
(eq. 4.13) 

where d‘ is the baseline rate in untreated hosts. Lastly, demography terms ΔJ expand to  
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Δa� = 𝜇 × ((1 − 𝑓i) × (1 − 𝑓�) − 𝑆|) Δa� = 𝜇 × ((1 − 𝑓i) × 𝑓� − 𝑆�) Δi� = 𝜇 × (𝑓i × (1 − 𝑓�) − 𝐶|) Δi� = 𝜇 × (𝑓i × 𝑓� − 𝐶�) 
(eq. 4.14) 

where 𝑓�  is the proportion of patients already experiencing antibiotic-induced microbiome 

dysbiosis upon hospital admission. 

 

 

Figure 4.4.  Model 3 flow diagram. 

 

4.2.4.  Model 4: Combined microbiome-strain competition 

Strain competition and microbiome competition are not mutually exclusive: when combined 

in a two-strain “microbiome-strain competition” model, strains of the same species 

compete for hosts whose microbiota and history of antibiotic consumption influence 

susceptibility to colonization. Microbiome-pathogen interactions are assumed to be 

species- and not strain-specific, i.e. 𝜀, 𝜂 and 𝜙 apply equally to PS and PR. This fourth 

model (Figure 4.5) is given by: 
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 𝑑𝑆|𝑑𝑡 = −𝑆| × }𝜆a,w + 𝜆h,w + 𝛼a + 𝛼h + 𝜎~� + 𝑆� × 𝛿 + 𝐶|a × (𝛾a + 𝜎a) + 𝐶|h × (𝛾h + 𝜎h) + Δa�	𝑑𝑆�𝑑𝑡 = −𝑆� × }𝜆a + 𝜆h + 𝛼a,{ + 𝛼h,{ + 𝛿� + 𝑆| × 𝜎~ + 𝐶�a × }𝛾a,y + 𝜎a� + 𝐶�h × }𝛾h,y + 𝜎h� + Δa� 	
𝑑𝐶|a𝑑𝑡 = 𝑆| × }𝜆a,w + 𝛼a� + 𝐶�a × 𝛿 − 𝐶|a × (𝛾a + 𝜎a + 𝜎~) + Δi�j 	𝑑𝐶�a𝑑𝑡 = 𝑆� × }𝜆a + 𝛼a,{� + 𝐶|a × 𝜎~ − 𝐶�a × }𝛿 + 𝛾a,y + 𝜎a� + Δi�j 	𝑑𝐶|h𝑑𝑡 = 𝑆| × }𝜆h,w + 𝛼h� + 𝐶�h × 𝛿 − 𝐶|h × (𝛾h + 𝜎h + 𝜎~) + Δi�k 	𝑑𝐶�h𝑑𝑡 = 𝑆� × }𝜆h + 𝛼h,{� + 𝐶|h × 𝜎~ − 𝐶�h × }𝛿 + 𝛾h,y + 𝜎h� + Δi�k 

(eq. 4.15) 

where demography terms ΔJ expand to 

 Δa� = 𝜇 × ((1 − 𝑓i) × (1 − 𝑓�) − 𝑆|) Δa� = 𝜇 × ((1 − 𝑓i) × 𝑓� − 𝑆�) Δi�j = 𝜇 × (𝑓i × (1 − 𝑓h) × (1 − 𝑓�) − 𝐶|a) Δi�j = 𝜇 × (𝑓i × (1 − 𝑓h) × 𝑓� − 𝐶�a) 
Δi�k = 𝜇 × (𝑓i × 𝑓h × (1 − 𝑓�) − 𝐶|h) Δi�k = 𝜇 × (𝑓i × 𝑓h × 𝑓� − 𝐶�h) 

(eq. 4.16) 
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Figure 4.5.  Model 4 flow diagram. 

 

4.2.5.  Model 5: Introducing interspecific horizontal gene transfer 

The final model incorporates interspecific horizontal gene transfer (HGT) of a transmissible 

resistance gene R into the mixed microbiome-strain competition model. Here, HGT is 

conceptualized as two-way within-host transfer of the gene R, either from an R-bearing 

pathogen strain PR to co-colonizing microbiota, or from R-bearing microbiota to a co-

colonizing drug-sensitive pathogen strain PS. Simplifying assumptions underlying this 

process include: (i) a symmetric rate of HGT (𝜒) from each donor, (ii) no loss of resistance 

upon donation, (iii) no accumulation of resistance (e.g. plasmid copy number 

dependence), (iv) that all patients bear microbiota capable of receiving and transferring R, 

(v) that dysbiosis can accelerate the rate of transfer (𝜒� ≥ 𝜒|), (vi) no impact of R on rates 

of microbiome dysbiosis and recovery, (vii) that a proportion 𝑓� of patients are admitted to 

hospital with microbiota bearing R, and lastly (viii) that microbiota of a proportion w of 

patients can spontaneously acquire R subsequent to dysbiosis. The latter assumption was 
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made to reflect increased expression of antibiotic resistance genes among host microbiota 

following antibiotic therapy, and can be interpreted as a corollary to endogenous pathogen 

acquisition.(Ruppé et al., 2019) The resulting system of ODEs (Figure 4.6) is written as 

 𝑑𝑆|,�𝑑𝑡 = −𝑆|,� × }𝜆a,w + 𝜆h,w + 𝛼a + 𝛼h + 𝜎~� + 𝑆�,� × 𝛿 + 𝐶|,�a × (𝛾a + 𝜎a) + 𝐶|,�h × (𝛾h + 𝜎h) + Δa�,�	𝑑𝑆|,�𝑑𝑡 = −𝑆|,� × }𝜆a,w + 𝜆h,w + 𝛼a + 𝛼h + 𝜎~� + 𝑆�,� × 𝛿 + 𝐶|,�a × (𝛾a + 𝜎a) + 𝐶|,�h × (𝛾h + 𝜎h) + Δa�,�	𝑑𝑆�,�𝑑𝑡 = 𝑆|,� × ((1 − 𝜔) × 𝜎~) − 𝑆�,� × }𝜆a + 𝜆h + 𝛼a,{ + 𝛼h,{ + 𝛿� + 𝐶�,�a × }𝛾a,y + 𝜎a�
+ 𝐶�,�h × }𝛾h,y + 𝜎h� + Δa�,�	𝑑𝑆�,�𝑑𝑡 = 𝑆|,� × (𝜔 × 𝜎~) + 𝑆|,� × 𝜎~ − 𝑆�,� × }𝜆a + 𝜆h + 𝛼a,{ + 𝛼h,{ + 𝛿� + 𝐶�,�a × }𝛾a,y + 𝜎a�
+ 𝐶�,�h × }𝛾h,y + 𝜎h� + Δa�,�	𝑑𝐶|,�a𝑑𝑡 = 𝑆|,� × }𝜆a,w + 𝛼a� − 𝐶|,�a × (𝛾a + 𝜎a + 𝜎~) + 𝐶�,�a × 𝛿 + Δi�,�j 	𝑑𝐶|,�a𝑑𝑡 = 𝑆|,� × }𝜆a,w + 𝛼a� − 𝐶|,�a × (𝛾a + 𝜎a + 𝜎~ + 𝜒|) + 𝐶�,�a × 𝛿 + Δi�,�j 	𝑑𝐶�,�a𝑑𝑡 = 𝑆�,� × }𝜆a + 𝛼a,{� + 𝐶|,�a × }(1 − 𝜔) × 𝜎~� − 𝐶�,�a × (𝛾a,y + 𝜎a + 𝛿) + Δi�,�j 	𝑑𝐶�,�a𝑑𝑡 = 𝑆�,� × }𝜆a + 𝛼a,{� + 𝐶|,�a × (𝜔 × 𝜎~) + 𝐶|,�a × 𝜎~ − 𝐶�,�a × (𝛾a,y + 𝜎a + 𝛿 + 𝜒�) + Δi�,�j 	𝑑𝐶|,�h𝑑𝑡 = 𝑆|,� × }𝜆h,w + 𝛼h� − 𝐶|,�h × (𝛾h + 𝜎h + 𝜎~ + 𝜒|) + 𝐶�,�h × 𝛿 + Δi�,�k 	𝑑𝐶|,�h𝑑𝑡 = 𝑆|,� × }𝜆h,w + 𝛼h� + 𝐶|,�a × 𝜒| + 𝐶|,�h × 𝜒| − 𝐶|,�h × (𝛾h + 𝜎h + 𝜎~) + 𝐶�,�h × 𝛿 + Δi�,�k 	𝑑𝐶�,�h𝑑𝑡 = 𝑆�,� × }𝜆h + 𝛼h,{� + 𝐶|,�h × }(1 − 𝜔) × 𝜎~� − 𝐶�,�h × (𝛾h,y + 𝜎h + 𝛿 + 𝜒�) + Δi�,�k 	𝑑𝐶�,�h𝑑𝑡 = 𝑆�,� × }𝜆h + 𝛼h,{� + 𝐶�,�a × 𝜒� + 𝐶|,�h × (𝜔 × 𝜎~) + 𝐶|,�h × 𝜎~ + 𝐶�,�h × 𝜒� − 𝐶�,�h × (𝛾h,y + 𝜎h
+ 𝛿) + Δi�,�k  

(eq. 4.17) 

which describes epidemiological colonization dynamics of a bacterial pathogen among 

host classes 𝐻K,� corresponding to patients of pathogen colonization status 𝐻 (𝑆, 𝐶a, 𝐶h), 

microbiome status 𝑗 (e, equilibrium; or d, dysbiosis) and microbiome resistance profile 𝑘 (s, 

not bearing R; r, bearing R). In this model, demography terms ΔJ expand to  

 

 

 

 



 

 114 

Δa�,� = 𝜇 × �(1 − 𝑓i) × (1 − 𝑓�) × (1 − 𝑓�) − 𝑆|,��	
Δa�,� = 𝜇 × �(1 − 𝑓i) × (1 − 𝑓�) × 𝑓� − 𝑆|,��	
Δa�,� = 𝜇 × �(1 − 𝑓i) × 𝑓� × (1 − 𝑓�) − 𝑆�,��	
Δa�,� = 𝜇 × �(1 − 𝑓i) × 𝑓� × 𝑓� − 𝑆�,��	
Δi�,�j = 𝜇 × }𝑓i × (1 − 𝑓h) × (1 − 𝑓�) × (1 − 𝑓�) − 𝐶|,�a �	
Δi�,�j = 𝜇 × }𝑓i × (1 − 𝑓h) × (1 − 𝑓�) × 𝑓� − 𝐶|,�a �	
Δi�,�j = 𝜇 × }𝑓i × (1 − 𝑓h) × 𝑓� × (1 − 𝑓�) − 𝐶�,�a �	
Δi�,�j = 𝜇 × }𝑓i × (1 − 𝑓h) × 𝑓� × 𝑓� − 𝐶�,�a �	
Δi�,�k = 𝜇 × }𝑓i × 𝑓h × (1 − 𝑓�) × (1 − 𝑓�) − 𝐶|,�h �	
Δi�,�k = 𝜇 × }𝑓i × 𝑓h × (1 − 𝑓�) × 𝑓� − 𝐶|,�h �	
Δi�,�k = 𝜇 × }𝑓i × 𝑓h × 𝑓� × (1 − 𝑓�) − 𝐶�,�h �	
Δi�,�k = 𝜇 × (𝑓i × 𝑓h × 𝑓� × 𝑓� − 𝐶�,�h  

(eq. 4.18) 
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Figure 4.6.  Model 5 flow diagram. 
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4.2.6.  Numerical solutions 

4.2.6.1.  Numerical integration 

For each model, ODEs were integrated numerically to calculate steady-state 

epidemiological outcomes. Integration was conducted by substituting a corresponding 

vector of numerical parameter values W and solving ODE systems using the lsoda method 

of the function ode from the package deSolve in R (version 3.6.0). To find steady-state 

solutions, integration was conducted until there was no change in state variables between 

times t and t + 1. Equilibria were corroborated by integrating the same ODE systems in 

Mathematica using the function NSolve, while restricting all solutions X to 0 £ X £ 1. 

 

4.2.6.2.  Epidemiological outcomes 

Three epidemiological outcomes were calculated from equilibrium ODE solutions for each 

W: 

1. Colonization prevalence: the proportion of hospital patients colonized by (i) the 

drug-sensitive pathogen strain (𝐶a), (ii) the drug-resistant strain (𝐶h), or (iii) either 

strain (𝐶a + 𝐶h) at population dynamic equilibrium 

2. Colonization incidence: the daily rate of colonization acquisition within the 

hospital, calculated separately for each route of acquisition (patient-to-patient 

transmission, endogenous acquisition, HGT). Daily incidence was calculated at 

population dynamic equilibrium by solving ODE systems numerically for each W as 

described above, then using resulting equilibria as initial values for subsequent 

numerical integration from time t to t +1. For PR in the final 12-compartment model, 

this is expressed as: 

 

𝑖𝑛𝑐� = � 𝜆h,w × }𝑆|,� + 𝑆|,�� + 𝜆h × }𝑆�,� + 𝑆�,��	𝑑𝑡4�7
4 	

𝑖𝑛𝑐� = � 𝛼h × }𝑆|,� + 𝑆|,�� + 𝛼h,{ × }𝑆�,� + 𝑆�,��	𝑑𝑡4�7
4 	

𝑖𝑛𝑐� = � 𝜒| × 𝐶|,�a + 𝜒� × 𝐶�,�a 	𝑑𝑡4�7
4  

(eq. 4.19) 

3. The resistance rate: the proportion of patients colonized with the focal resistant 

strain PR relative to the sensitive strain PS, calculated using equilibrium prevalence 

values as 𝐶h/(𝐶a + 𝐶h).  
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4.2.7.  R0 expressions 

R0 was calculated for PR across Models 1, 2, 3 and 4, and was interpreted as the expected 

number of secondary patients colonized by an index patient in a fully susceptible 

(uncolonized) hospital population (i.e. at disease-free equilibrium, DFE, as indicated by the 

symbol ^ above state variables). To reflect this epidemiological context, two additional 

assumptions were made specifically for R0 calculations: no PR input from the community 

(𝑓h = 0), and that the rate of endogenous acquisition 𝛼h scales linearly with its current 

colonization prevalence CR. R0 expressions were derived following van den Driessche.(van 

den Driessche, 2017) 

 

For the susceptible-colonized model (Model 1),  

          

𝑅8 = 𝑆� 𝛽 + 𝛼h𝛾h + 𝜎h + 𝜇 

(eq. 4.20) 

where 𝑆� = 1, such that PR has higher R0 with increasing rates of transmission (𝛽) or 

endogenous acquisition (𝛼h), but lower R0 with an increasing rate of natural clearance (𝛾h). 

Higher rates of effective antibiotic treatment (𝜎h) and patient admission and discharge (𝜇) 

also reduce R0. 

 

For the strain competition model (Model 2), R0 is derived for PR assuming that PS is at 

endemic equilibrium with input from the community (fC > 0, fR = 0). In this context, the 

same R0 expression was found as for the susceptible-colonized model (equation 4.20), 

except R0 is reduced because of a lower equilibrium prevalence of susceptible hosts when 

PS is endemic (𝑆� < 1). DFE were not found analytically for models with strain competition 

and were solved numerically (details below). 

 

For the microbiome model (Model 3), R0 was calculated using next-generation theory as 

the spectral radius of the next-generation matrix (NGM), 

 𝑅8 = 𝜌(𝐍𝐆𝐌) 
(eq. 4.21) 

where NGM is the product of the transmission matrix F (describing the rates at which 

existing colonies cause colonization in new hosts) and the inverse transition matrix V 

(describing the rates at which colonized hosts shift between colonized classes or are 
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removed). These are given by 

 

𝐅 = �(𝛼h + (1 − 𝜀) × 𝛽) × 𝑆�| (𝛼h + (1 − 𝜀) × 𝛽) × 𝑆�|(𝛼h × 𝜙 + 𝛽) × 𝑆�� (𝛼h × 𝜙 + 𝛽) × 𝑆�� � 

(eq. 4.22) 

and  

 

𝐕 = �𝛾h + 𝜎h + 𝜎~ + 𝜇 −𝛿−𝜎~ 𝛿 + (1 − 𝜂) × 𝛾h + 𝜎h + 𝜇� 
(eq. 4.23) 

which give  

 

𝑅8
= 𝑆�| × (𝛼h + (1 − 𝜀) × 𝛽)(𝛿 + (1 − 𝜂) × 𝛾h + 𝜎~ + 𝜎h + 𝜇) + 𝑆�� × (𝛼h × 𝜙 + 𝛽)(𝛿 + 𝛾h + 𝜎~ + 𝜎h + 𝜇)(𝜎h + 𝜇)(𝛿 + 𝜎~ + 𝜎h + 𝜇) + }𝛿 + 𝜎h + 𝜇 + (1 − 𝜂) × (𝜎~ + 𝜎h + 𝜇)� × 𝛾h + (1 − 𝜂) × 𝛾h�  

(eq. 4.24) 

where the two terms in the numerator correspond to PR acquisition, respectively, in hosts 

with a stable microbiome and in those undergoing dysbiosis. Antibiotic-induced dysbiosis 

(𝜎~) and treatment (𝜎h) are found in both numerator and denominator. 

 

When assuming no microbiome-pathogen interactions (𝜀 = 0, 𝜂 = 0,𝜙 = 1), DFE is 

 

�𝑆�| , 𝑆��, 𝐶�|, 𝐶��� =  𝜇 × (1 − 𝑓�) + 𝛿𝜎~ + 𝜇 + 𝛿 , 𝜇 × 𝑓� + 𝜎~𝜎~ + 𝜇 + 𝛿 , 0, 0¡ 
(eq. 4.25) 

and R0 reduces to the same expression as given by the susceptible-colonized model 

 

𝑅8 = 𝛽 + 𝛼h𝛾h + 𝜎h + 𝜇 

(eq. 4.26) 

Finally, for the microbiome-strain competition model (Model 4), the same R0 expression is 

found for PR, but when PS is endemic, 

 𝑆�| + 𝑆�� < 1 

(eq. 4.27) 

so strain competition dampens R0 relative to the single-strain microbiome competition 
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model, all else being equal. 

 

4.2.8.  Parameterization and analysis 

All models were parameterized to represent the same generic antibiotic-resistant pathogen 

(PR), varying only its ecological interactions with other bacteria from one model to the next 

(parameter values in Table 4.1; note that not all parameters are present in all models). 

Univariate and bivariate analysis were conducted to evaluate how key parameters affected 

epidemiological outcomes (prevalence, incidence, resistance rate, R0), with a focus on 

impacts of the patient population’s antibiotic exposure prevalence (𝐚), rates of antibiotic-

induced pathogen clearance (𝜃i) and microbiome dysbiosis (𝜃~), the focal pathogen 

strain’s intrinsic antibiotic resistance level (𝑟h), and mediating impacts of microbiome-

pathogen interactions (𝜀, 𝜂, 𝜙) and horizontal gene transfer (𝜒|, 𝜒�).  

Table 4.1.  Parameter values for a theoretical nosocomial pathogen. 

Parameter values and ranges for a generic pathogen P circulating in a hospital population, evaluated 
across five different colonization models. For endogenous acquisition and microbiome recovery, rates 
presented are assumed rates in untreated hosts, represented by the ‘ (prime) symbol. Model 1: 
susceptible-colonized model (equation 4.1); Model 2: strain competition model (equation 4.5); Model 3: 
microbiome competition model (equation 4.11); Model 4: microbiome-strain competition model (equation 
4.15); Model 5: microbiome-strain competition model with HGT (equation 4.17). 

Symbol Parameter Unit 
Value 

{Range} 

Model 

1 2 3 4 5 
Pathogen colonization 

b transmission rate  day-1 0.2 X X X X X 

a’ endogenous acquisition rate  day-1 0.01 X X X X X 

g natural clearance rate day-1 0.03 X X X X X 

c fitness cost of resistance / 1 X X X X X 

 Patient demography 

µ admission / discharge rate day-1 0.1 X X X X X 

fC admission fraction (colonized) / 0.1 X X X X X 

fR admission fraction (bearing resistant strain) / 0.5 X X X X X 

fd admission fraction (dysbiosis) / 0   X X X 

fw admission fraction (microbiota bearing resistance 
gene) 

/ 0 
    X 

Antibiotics 

a antibiotic exposure prevalence / 0.2 {0 – 1} X X X X X 

rR antibiotic resistance level (PR) / 0.8 {0 – 1} X X X X X 

rS antibiotic resistance level (PS)  0  X  X X 

qc antibiotic-induced pathogen clearance rate day-1 0.2 X X X X X 

qm antibiotic-induced microbiome dysbiosis rate day-1 1   X X X 

Microbiome ecology 

e colonization resistance / 0.5 {0.2 – 0.8}   X X X 

h resource competition / 0.5 {0.2 – 0.8}   X X X 

f ecological release / 5 {2 – 8}    X X X 

ce HGT rate (equilibrium) day-1 {0, 0.01, 0.1}     X 

cd HGT rate (dysbiosis) day-1 ce ´ 10     X 

d’ microbiome recovery rate day-1 0.143   X X X 

w proportion of patients whose microbiota acquire the 
resistance gene following antibiotic exposure 

/ 0.01 
    X 
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4.2.9.  Modelling antibiotic stewardship interventions 

Finally, theoretical antibiotic stewardship interventions were implemented to evaluate their 

impacts on epidemiological dynamics of endemic PR in the context of co-circulating PS and 

different microbiome-pathogen interactions. Three interventions were conceptualized: 

 

1. Targeted local prescribing: avoiding antibiotics that are ineffective against CR, 

with no change in impact on CS or microbiome stability (halving 𝑟h from 0.8 to 0.4) 

2. Microbiome protection: prioritizing antibiotics that have a lower impact on microbi-

ome dysbiosis, with no change in impact on pathogen colonization (halving 𝜃~ from 

1.0 to 0.5) 

3. Judicious prescribing: reducing overall antibiotic exposure prevalence, with no 

change in the distribution of antibiotics used (halving a from 0.2 to 0.1) 

 

In the context of these interventions, the same generic pathogen PR described above was 

simulated across distinct scenarios: (i) in the absence of any microbiome-pathogen 

competition, (ii) including each microbiome-pathogen competition coefficient (𝜀, 𝜂, 𝜙) 

separately, and lastly (iii) combining all three coefficients. Interventions were implemented 

sequentially to evaluate their successive impacts on colonization dynamics over a one-

year period. ODEs were solved using numerical integration, as described above, with 

interventions introduced at day 90 (intervention 1), day 180 (intervention 2), and day 270 

(intervention 3).  
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4.3.  Results: impacts of within-host ecological interactions on 

pathogen colonization dynamics 

4.3.1.  No interactions (Model 1) 

In the absence of within-host ecological interactions in the single-strain pathogen 

colonization Model 1, antibiotic consumption does not select for the epidemiological 

spread of resistance. When assuming complete antibiotic resistance (rR = 1.0; Figure 

4.7B), all antibiotic-related terms drop out of equation 4.1, and antibiotic use has no impact 

on CR (colonization prevalence of the focal strain PR). When assuming incomplete 

antibiotic resistance (rR < 1.0; Figure 4.7A), antibiotic-induced pathogen clearance is 

maintained, resulting in decreasing CR with increasing a. This is consistent with the R0 

expression for this model, in which ineffective antibiotic treatment (rR = 1.0) has no impact, 

in which effective antibiotic treatment (rR < 1.0) reduces R0, and in which there are no 

positive relationships between a and any terms in the numerator. As a result, R0 decreases 

with increasing a, or remains static if CR is perfectly antibiotic-resistant (Figure 4.8A). 

 

4.3.2.  Strain competition (Model 2) 

With the introduction of strain competition (Model 2), increasing antibiotic consumption can 

favour the epidemiological spread of resistance. When PR is resistant to all antibiotics (rR = 

1), its prevalence CR increases monotonically with increasing antibiotic exposure (a), due 

to increased clearance of the drug-sensitive strain PS and its subsequent replacement by 

PR (Figure 4.7E). When resistance is partial – when PR is still cleared by antibiotics, but at 

a lower rate than PS (rS < rR < 1) – CR is maximized at intermediate antibiotic exposure, 

owing to a trade-off in how antibiotics both clear PR through effective antibiotic treatment, 

and facilitate PR through preferential clearance of PS (Figure 4.7B). As such, R0 for PR 

tends to increase with antibiotic use when PR is highly resistant to antibiotics (high rR), but 

decrease when still largely sensitive (low rR) (Figure 4.8B). In this way, antibiotic selection 

for the epidemiological spread of resistance depends on how antibiotics affect both drug-

sensitive and drug-resistant strains. 

 



 

 122 

 

Figure 4.7.  Antibiotic selection for resistance. 

In contrast to predictions from a model with no ecological competition (A, D), models including strain 
competition (B, E) or microbiome competition (C, F) can explain how antibiotics select for the 
epidemiological spread of antibiotic-resistant bacteria. Equilibrium pathogen prevalence is shown as a 
function of antibiotic exposure prevalence (a), assuming partial antibiotic resistance for the top panels A, 
B and C (rR = 0.8), and complete antibiotic resistance for the bottom panels D, E and F (rR = 1.0). For  B 
and E, PS and PR circulate simultaneously, assuming strain-specific differences in antibiotic resistance 
(rS = 0, rR = {0.8, 1.0}), natural clearance (γS = 0.03 day-1, γR = 0.06 day-1) and transmission (lS = b ´ 
CS/N, lR = b ´ CR/N). For C and F, epidemiological dynamics are evaluated independently for each 
interaction and superimposed (ε = colonization resistance; η = resource competition; ɸ = ecological 
release); shaded intervals represent outcomes across the range of values considered for each interaction 
(see Figure 4.3); and antibiotics are assumed to induce dysbiosis after 1 day (θm = 1 day-1), from which 
microbiome stability recovers after 7 days (d = 1/7 day-1). Dashed vertical arrows denote the levels of 
antibiotic use that maximize CR (colonization prevalence of PR), and are omitted from D, E and F, as CR 
is always maximized at a = 1.0 when the pathogen is completely drug-resistant. ODEs are integrated 
numerically using the same parameter values representing a generic nosocomial pathogen P (see Table 
4.1). 
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4.3.3.  Microbiome-pathogen competition (Model 3) 

Independent of strain competition, microbiome-pathogen interactions (Model 3) can also 

explain antibiotic selection for the spread of resistance. Included microbiome-pathogen 

interactions are all mechanisms by which increasing antibiotic consumption can favour PR 

colonization. Like strain competition, microbiome competition was found to underlie a 

selection trade-off: CR and R0 increase monotonically with antibiotic exposure when PR is 

completely antibiotic-resistant (rR = 1) (Figure 4.7F), but can peak at intermediate 

antibiotic exposure when resistance is partial (0 < rR < 1) (Figure 4.7C). This is because, 

in this scenario, antibiotics simultaneously clear PR colonization and induce greater host 

susceptibility to PR colonization through dysbiosis. Each individual microbiome-pathogen 

interaction results in different epidemiological responses to antibiotic use, and in distinct 

selection trade-offs, hence predicting different levels of antibiotic exposure that maximize 

CR (Figure 4.7C).  

 

 

Figure 4.8.  R0 evaluation for Models 1, 2 and 3. 

Numerical evaluation of the basic reproduction number (R0) of PR as a function of a and rR for Models 1 
to 3. White contour lines indicate R0 = 1, above which a single colonized patient admitted to a naïve 
hospital population is expected to trigger an outbreak. For C, all three microbiome-pathogen interactions 
are applied simultaneously. 
 

Like in the strain competition model, R0 for PR in the microbiome competition model tends 

to increase with antibiotic use when PR is highly resistant to antibiotics (high rR); however, 

impacts of antibiotics are more heterogeneous when PR is largely antibiotic-sensitive (low 

rR) (Figure 4.8C). When multiple microbiome-pathogen interactions are combined, this 

antibiotic selection trade-off becomes more pronounced. This is seen in Figure 4.9, where 
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R0 is evaluated in the context of each microbiome-pathogen interaction separately, and in 

concert, over a range of assumed values. Colonization resistance (𝜀) is found to dampen 

R0 of PR, while resource competition (𝜂) and ecological release (𝜙) augment it. When 

microbiota simultaneously limit multiple colonization processes (transmission, emergence, 

persistence), patients with stable microbiota are more protected from pathogen 

colonization, but increasing antibiotic use selects more strongly for PR spread. Taken 

together, strong microbiome-pathogen interactions can protect patients from PR 

colonization in some conditions (e.g. at low a), while predisposing them to PR colonization 

in others (high a and rR). 

 

 

Figure 4.9.  R0 evaluation across microbiome-pathogen interactions. 

Different microbiome-pathogen interactions of different strengths (figure titles) mediate how antibiotic use 
(a, x-axis) and resistance (rR, y-axis) drive R0 for PR (z-axis, colour) in Model 3 (equation 4.11). White 
contour lines indicate R0=1, and each successive black contour line represents an incremental change 
of 0.2. Microbiome-pathogen interactions are included separately (columns 1, 2, 3) and together (column 
4), and their strengths are varied from low (top row) to medium (middle row) to high (bottom row) using 
values from the illustration in Figure 4.3. See Table 4.1 for parameter values. 
 
 



 

 125 

4.3.4.  Microbiome-strain competition (Model 4) 

Introducing a drug-sensitive strain PS to the microbiome model dampens R0 of the focal 

strain PR, because fewer patients are susceptible to colonization when the competing 

strain co-circulates in the population (evaluated numerically in Figure 4.10). However, 

antibiotic use makes way for PR not only through preferential clearance of PS, but 

remaining PR also benefit preferentially from increased host susceptibility to colonization 

when antibiotics cause dysbiosis. Accordingly, antibiotics that both disrupt host microbiota 

and clear drug-sensitive pathogen strains tend to select more strongly for the spread of 

resistant strains than antibiotics that only target one or the other (Figure 4.11).  

 

 

Figure 4.10.  R0 evaluation for microbiome-strain competition. 

Introducing strain competition to the microbiome competition model reduces R0 for PR. Over the whole 
parameter space, the focal strain PR of a two-strain microbiome competition model (right, Model 4) has a 
lower R0 than the same pathogen evaluated in the absence of strain competition (left, Model 3). The 
competing strain PS is at endemic equilibrium and is completely sensitive to antibiotics (rS=0). White 
contour lines indicate R0=1, and each successive black contour line represents an incremental change 
of 0.2. See Table 4.1 for parameter values. 
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Figure 4.11.  Heterogeneous antibiotic impacts across indicators (1/2). 

Strain competition and microbiome competition as simultaneous forces of antibiotic selection for 
resistance. In a mixed microbiome-strain competition model (Model 4), prevalence of PR (CR, circle size) 
and the pathogen’s resistance rate (colour) depend on the relative rates at which antibiotics disrupt 
microbiota (𝜃~) and clear pathogen colonization (𝜃i).  Antibiotics with a stronger effect on pathogen 
clearance (higher 𝜃i) increase the resistance rate, while antibiotics that cause more dysbiosis (higher 𝜃~) increase prevalence.  
 
 

Overall, links between antibiotic consumption and different indicators of PR colonization 

(prevalence, resistance rate) are heterogeneous in the context of different microbiome-

pathogen interactions (𝜀, 𝜂, 𝜙), different levels of antibiotic resistance (rR), and asymmetric 

impacts of antibiotics on microbiome dysbiosis and pathogen clearance (𝜃~, 𝜃i). 

Antibiotics with stronger impacts on pathogen clearance (higher 𝜃i) led to increased 

resistance rates, while impacts on prevalence of the resistant strain were modest and 

depended on potential interactions with the microbiome. Conversely, antibiotics with 

stronger impacts on microbiome stability (higher 𝜃~) led to higher prevalence of the 

resistant strain, with modest impacts on resistance rates (Figure 4.11). Further, impacts of 

antibiotic treatment on resistance rates were greater when PR resisted a greater share of 

antibiotics (higher rR), while impacts on prevalence were greater when microbiome-

pathogen interactions were stronger (higher 𝜀, 𝜂, 𝜙) (Figure 4.12).  
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Figure 4.12.  Heterogeneous antibiotic impacts across indicators (2/2). 

Antibiotic selection for the spread of an antibiotic-resistant pathogen strain PR depends on the strength 
of its interactions with microbiota (rows) and its level of resistance to antibiotics rR (columns). Complete 
antibiotic sensitivity is assumed for PS (rS = 0), and low, medium and high interactions strengths 
correspond to values in the illustration in Figure 4.3 ({ε = 0.2, η = 0.2, f = 2}, {ε = 0.5, η = 0.5, f = 5} and 
{ε = 0.8, η = 0.8, f = 8}, respectively). See Table 4.1 for parameter values. 
 

 

4.3.5.  Horizontal gene transfer (Model 5) 

Overall, an increasing rate of within-host HGT (c) was found to increase the spread of PR, 

regardless of other microbiome-pathogen interactions and across indicators (incidence, 

prevalence and resistance rate; Figure 4.13). Impacts of HGT on CR colonization (the 

difference between the solid lines and dotted/dashed lines in Figure 4.13) were greatest at 

intermediate antibiotic exposure (a). Under the present modelling assumptions, HGT-

driven gains in CR result from symmetric declines in CS, such that HGT’s potential to drive 

PR colonization dynamics depends on the presence of both sufficient resistance donors 



 

 128 

and sufficient recipients. This results in non-linear feedbacks between HGT and other 

processes that drive strain prevalence. In particular, high a affords a selective advantage 

to the strain PR bearing the transmissible resistance gene, increasing the potential impact 

of HGT on CR; but high a also reduces the pool of recipient PS, ultimately limiting HGT’s 

ability to contribute to increases in CR.  

 

 

Figure 4.13.  Impacts of HGT on model dynamics. 

Impacts of horizontal gene transfer (HGT) on antibiotic selection for resistance. Allowing a resistance 
gene to transfer horizontally increases colonization incidence of the strain PR that bears the gene (top 
row), its colonization prevalence CR (middle row), as well as the pathogen’s resistance rate (bottom row). 
The relative impact of HGT depends on the gene’s rate of transfer (c, line type), antibiotic exposure 
prevalence (a, x-axis), competitive interactions between pathogen strains and host microbiota (colours; 
purple = microbiome-strain competition; orange = only strain competition), and the level of resistance 
conferred by the gene (rR, columns). It is assumed that cd/ce = 10, such that the low HGT rate corresponds 
to {ce=0.01, cd=0.1} and the high rate to {ce=0.1, cd=1}. Alternative HGT assumptions are explored in 
Figure 4.14.  
 
 

Overall impacts of HGT on CR were positively associated with other parameters that tend 

to increase CR (b, a, f, w, fw) and negatively associated with parameters that tend to 

decrease CR (e, h, d) (Figure 4.14A). Increasing the rate of HGT in hosts undergoing 
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dysbiosis (cd), while holding the rate constant in hosts with stable microbiota (ce), 

augmented HGT’s impact but did not substantively shift the level of antibiotic exposure that 

maximizes CR prevalence (Figure 4.14B). Finally, effects of HGT depended on costs of 

the resistance gene being transmitted (Figure 4.14C). For instance, a metabolically costly 

but highly drug-resistant gene R (c = 2, rR = 0.8) was potentially disadvantageous for the 

pathogen species as a whole at low antibiotic use (reducing total prevalence, CS + CR) but 

advantageous at high antibiotic use (increasing CS + CR). 

 

 

 

Figure 4.14.  Sensitivity analyses for HGT impacts. 

Impacts of HGT on pathogen colonization dynamics are tied to other parameters that mediate the 
prevalence of competing pathogen strains. (A) The absolute difference in CR (dashed and dotted lines) 
compared to prevalence in the absence of HGT (solid horizontal line) depends on assumed values of 
other parameters (panels) that drive colonization dynamics. For brevity, w is referred to as the plasmid 
acquisition rate, and fw as the plasmid admission fraction. (B) Assuming a higher rate of HGT in patients 
undergoing dysbiosis (cd) than in patients with stable microbiota (ce) has a modest impact on CR. Here, 
ce is held constant at ce=0.05, such that changes in the fraction cd/ce result from corresponding increases 
in cd. (C) Impacts of HGT on total pathogen prevalence (CS + CR) depend on how selectively 
(dis)advantageous the resistance gene R is for the pathogen bearing it. Here, total prevalence (CS + CR) 
is shown as proportional to a model assuming the same parameter values but excluding HGT (dashed 
horizontal line). Colours represent different fitness costs of resistance c, demonstrating that HGT not only 
changes the relative frequency of competing strains, but can feed forward to alter total prevalence of all 
strains, tending to increase total prevalence when R has little metabolic cost (low c), but decrease 
prevalence when R is costly (high c). See Table 4.1 for parameter values. 
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4.3.6.  Impacts of antibiotic stewardship interventions 

Lastly, different microbiome-pathogen interactions were found to underlie distinct dynamic 

responses to theoretical public health interventions (Figure 4.15). For the same generic 

pathogen PR, interventions generally, but not always prevented against colonization, with 

predictions depending on the ecological interactions in effect (e.g. strain competition, 

microbiome competition), the impact of the intervention (e.g. reduced microbiome 

disruption, reduced overall prescribing), and the epidemiological outcome considered (e.g. 

prevalence, resistance rate). For instance, intervention 1 (using antibiotics more effective 

against CR, holding all else constant) led to substantial declines in both prevalence and the 

resistance rate, while intervention 3 (reducing antibiotic exposure prevalence, holding all 

else constant) further reduced the resistance rate but with heterogeneous impacts on 

prevalence, in some instances increasing CR relative to pre-intervention levels. 

 

 

Figure 4.15.  Epidemiological impacts of antibiotic stewardship interventions. 

Antibiotic prescribing interventions have mixed impacts on colonization dynamics, depending on the 
microbiome interactions in effect (colours) and the epidemiological outcomes considered (top: PR‘s 
colonization prevalence; bottom: the pathogen’s resistance rate). ODEs were integrated numerically, 
introducing interventions at 3, 6 and 9 months. Interventions represent changes to parameter values 
corresponding to presumed changes in antibiotic consumption: for intervention 1, the CR resistance level 
rR was halved from 0.8 to 0.4; for intervention 2, the rate of antibiotic-induced microbiome dysbiosis 𝜃~ 
was halved from 1 to 0.5; and for intervention 3, the baseline antibiotic exposure prevalence a was halved 
from 0.2 to 0.1. See Table 4.1 for parameter values. 
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4.4.  Discussion 

4.4.1.  Summary of model and results 

I developed a novel modelling framework for antibiotic resistance epidemiology that 

includes within-host ecological consequences of antibiotic use in the form of microbiome 

dysbiosis, incorporating a leading hypothesis for antibiotic selection into a classical 

mathematical model of antibiotic resistance.(Austin et al., 1997; Lipsitch and Samore, 

2002) I formalize three examples of microbiome-pathogen competition, and show how 

they, either separately or in combination with other forces of selection, help explain how 

antibiotic use drives the spread of ARB in healthcare settings. I found that antibiotic-

induced microbiome dysbiosis has a large impact on incidence but little impact on 

resistance rates, whereas, conversely, antibiotic-induced pathogen clearance has a large 

impact on resistance rates but not on incidence. These observations reflect the potential 

importance of different forces of ecological competition for different epidemiological 

outcomes: while strain-based competition explains relative ecological dynamics of co-

circulating strains, microbiome interactions may better explain how increasing antibiotic 

use favours ARB incidence, and hence why antimicrobial stewardship interventions limit 

ARB colonization acquisition.(Baur et al., 2017) 

 

Altering population-level antibiotic exposure from the same baseline level was found to 

either prevent or promote PR, depending on how PR was assumed to interact with other 

bacteria. This heterogeneity results from the distinct antibiotic selection trade-offs 

underlying different within-host interactions, and corresponding non-linear dynamic 

feedbacks between antibiotic use and epidemiological indicators. In this model, antibiotics 

may clear PR colonization (assuming that PR is not completely antibiotic-resistant, i.e. rR < 

1.0), but in the context of strain competition they make more hosts available to PR 

colonization, in the context of microbiome competition they increase host susceptibility to 

colonization, and in the context of HGT they increase selection for the transmitted 

resistance gene R while limiting the prevalence of its potential recipients. Through these 

trade-offs I demonstrate that, for an otherwise identical pathogen PR, the intensity of 

antibiotic use that maximizes colonization prevalence is often intermediate (0 < a < 1.0), 

but can vary from the lower boundary a=0 in certain contexts (e.g. given no microbiome-

pathogen interactions, no HGT, and a low antibiotic resistance level), to the upper 

boundary a=1.0 in others (e.g. given microbiome-pathogen interactions, HGT and a high 

resistance level; see Figure 4.13).  



 

 132 

 

4.4.2.  Findings in context 

4.4.2.1.  Antibiotic selection for resistance dissemination 

These findings build upon previous theoretical work exploring how antibiotics select for the 

epidemiological spread of antibiotic-resistant bacteria. Modelling studies often assume that 

antibiotic exposure is a risk factor for ARB colonization, which can be interpreted as 

indirectly accounting for microbiome dysbiosis. In transmission models of Clostridioides 

difficile, ESBL-producing Escherichia coli and Pseudomonas aeruginosa, among others, 

patients undergoing antibiotic therapy have been assumed to be at greater risk of 

colonization and/or infection.(Gingras et al., 2016; Hurford et al., 2012; MacFadden et al., 

2019) An alternative approach has been to use antibiotic exposure as a coefficient on 

epidemiological parameters (e.g. transmission, endogenous acquisition), allowing ARB 

colonization rates to scale with antibiotic use.(Knight et al., 2018) These strategies reflect 

widespread recognition that antibiotic use favours ARB acquisition, through erosion of 

colonization resistance or other supposed mechanisms, and independent of potential 

competition with other strains.  

 

The present work formalizes examples of the microbiome-pathogen interactions that 

underlie these assumptions, demonstrating their relevance to various epidemiological 

outcomes, explicitly distinguishing them from traditional strain-based selection and 

providing a framework for their application. In doing so, this framework simplifies into 

accessible epidemiological parameters what are in reality highly complex ecological 

systems, comprising a staggering diversity of microbes and interactions among them. This 

work ultimately demonstrates that accounting for at least some of this ecological 

complexity may help to explain how antibiotics select for the epidemiological spread of 

resistance.  

 

4.4.2.2.  Antibiotic selection trade-offs 

These findings further build upon previous work demonstrating how different assumptions 

about within-host ecology can shape antibiotic selection trade-offs. At the cellular level, 

intermediate levels of antimicrobial exposure intensity are predicted to select most strongly 

for resistance evolution. The mutant selection window describes the range of antimicrobial 

concentrations that select for drug-resistance mutations, and is specific to each pathogen 

and antimicrobial compound.(Drlica, 2003) Its lower bound is the minimum inhibitory 

concentration (MIC) for a drug-sensitive wild-type pathogen strain, below which the 
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antimicrobial has no impact on any strain, while its upper bound is the MIC for the drug-

resistant mutant strain, above which the antimicrobial clears all strains. The resulting peak 

in emergence of antibiotic resistance at intermediate antibiotic concentrations – the so-

called “inverted U” of antibiotic selection – has been demonstrated empirically for bacteria 

including Streptococcus pneumoniae,(Croisier et al., 2004; Etienne et al., 2004; Negri et 

al., 1994; Zinner et al., 2003) Staphylococcus aureus,(Cui et al., 2006; Firsov et al., 2006, 

2004, 2003; Zhu et al., 2012) Mycobacterium tuberculosis,(Gumbo et al., 2007, 2004) P. 

aeruginosa,(Jumbe et al., 2003; Tam et al., 2005b, 2005a) Enterococcus 

faecalis,(Bourgeois-Nicolaos et al., 2007) Enterobacter cloacae,(Goessens et al., 2007; 

Stearne et al., 2007) and Klebsiella pneumoniae.(Tam et al., 2007)  

 

In a review, Kouyos et al. discuss how simultaneous ecological impacts of antimicrobials 

can lead to selection trade-offs that favour such an inverted U.(Kouyos et al., 2014) They 

illustrate conceptually that increasing treatment intensity decreases pathogen density (and 

hence the rate of resistance mutation), but releases resistant bacteria from competition 

with drug-sensitive strains, hence maximizing rates of resistance emergence at 

intermediate treatment intensity. Day & Read extended this trade-off into a general 

modelling framework for resistance evolution at the within-host level, demonstrating 

mathematically that intermediate treatment intensity is worst from an evolutionary 

perspective, with either the largest tolerable dose or the smallest clinically effective dose 

minimizing the risk of treatment-associated resistance emergence.(Day and Read, 2016) 

Which dose is best, however, was found to be highly sensitive to model assumptions and 

parameterization, and hence to different microbes and their particular treatment options. A 

range of other studies across different hosts, pathogens and treatment types have 

presented conditions in which either aggressive treatment intensity,(de Roode et al., 2004; 

Gullberg et al., 2011; Hansen et al., 2020; Huijben et al., 2013; Read et al., 2011) or 

moderate intensity,(Ankomah and Levin, 2014; Kim et al., 2014; Knudsen et al., 2003; 

Tam et al., 2005a) is predicted to select most strongly for antimicrobial-resistant infections.  

 

Building on this classic trade-off and extending it to the population level, Colijn et al. 

developed a mixed within- and between-host co-colonization model, and showed that the 

degree of competition between co-circulating drug-sensitive and drug-resistant strains 

governs whether low or high intensities of antibiotic use most favour the spread of 

resistance through a host population.(Colijn and Cohen, 2015) Sciré et al. used a similar 

approach, developing a nested strain competition model to show that treatment strategies 
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that are more beneficial for infection recovery may promote the spread of resistance at the 

population level, and vice-versa.(Scire et al., 2019)  

 

The present findings suggest that, in addition to intra-specific competition, inter-specific 

microbiome-pathogen competition and HGT can further shape such antibiotic selection 

trade-offs, and that the characteristics and strengths of these interactions can determine 

whether low, medium, or high intensities of antibiotic treatment most favour the spread of a 

particular drug-resistant pathogen at the epidemiological level. This is exemplified by 

simulations of theoretical antibiotic stewardship interventions, in which the otherwise 

identical pathogen PR experienced diverse, and sometimes opposing responses to 

different interventions in the context of different microbiome-pathogen interactions, and 

different epidemiological indicators. However, antibiotic use in the present work reflects 

bystander exposure among facultative bacterial pathogens, whereas the studies cited 

above largely focus on antibiotic selection for resistance in actively treated infections. 

Clinically, it remains unclear if and to what extent antibiotic selection trade-offs result from 

bystander antibiotic exposure. 

 

 A range of other antibiotic selection trade-offs beyond the scope of this work but 

evaluated elsewhere can further shape the relationship between antibiotic use and 

selection for resistance, including synergistic interactions between antimicrobials (where 

increasing synergy may increase treatment efficacy but favour resistance),(Michel et al., 

2008) delays to initiation of treatment (where longer delays can shift the dosing strategy 

that maximizes resistance selection),(Gjini et al., 2020) and delays to antibiotic switching 

upon identification of drug-resistant organisms (where shorter delays increase treatment 

efficacy but favour emergence of multidrug-resistance).(Wang and Lipsitch, 2006) 

 

4.4.3.  Parsimonious microbiome modelling assumptions 

Under a traditional strain competition modelling framework, pathogen colonization is 

assumed to be limited by closely related strains sharing an ecological niche, with the same 

approximate epidemiological profile and transmission characteristics. In this context, 

competition against ARB is assumed to depend on the epidemic spread of competing 

strains, and removal of drug-sensitive strains from the population necessarily releases 

antibiotic selection for resistance. By contrast, microbiome population structure is 

inherently stable, and depends less on the epidemiological transmission of particular taxa, 

and more on host factors such as diet, maternal inheritance, genetics and antibiotic 
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exposure.(Brito and Alm, 2016) Despite great inter-individual diversity in microbiome 

composition, there is functional redundancy from one host to the next, such that 

colonization resistance and other forms of microbiome competition are shared across 

healthy individuals, even if colonized with different taxa.(Bashan et al., 2016; Kim et al., 

2017) For these reasons, microbiome stability is modelled here as a host trait reflecting the 

functional ecology of the microbiome in different population dynamic states, as opposed to 

a more traditional bacterial colonization process governed by rates of acquisition and 

clearance. This is clearly an oversimplification of real microbiome dynamics and 

complexity,(Hooks and O’Malley, 2017) but is a useful approximation for the needs of 

epidemiological modelling, particularly in the absence of data, and reflects the universality 

of both human microbiome function and of the ecological impacts that antibiotics have on 

microbiome stability.(Bashan et al., 2016)  

 

4.4.4.  Limitations 

The modelling framework presented in this Chapter has a number of limitations. First, 

hospitals and healthcare settings are heterogeneous environments with non-random 

contact patterns and relatively small population sizes. Stochastic, individual-based models 

that account for these factors reproduce more realistic nosocomial transmission dynamics 

than deterministic ODE simulations. Nonetheless, the goal of this work was to study how 

ecological mechanisms impact average epidemiological outcomes in the context of 

different modelling assumptions and parameter uncertainty, and in this context ODE 

modelling was the most appropriate tool. Further insights could certainly be gained by 

accounting for additional complexity and heterogeneity in future work, from within-host 

spatial organization,(Estrela et al., 2015) to patient and staff contact behaviour,(Duval et 

al., 2019a) to inter-institutional or inter-ward meta-population dynamics.(Shapiro et al., 

2020)  

 

Second, evaluation of strain competition was limited to a classic exclusive colonization 

model, the most widely used approach (only an estimated 12% of published strain 

competition models allow co-colonization or -infection).(Niewiadomska et al., 2019) Yet 

alternative models predict unique impacts on resistance dynamics,(Spicknall et al., 2013) 

and explicit consideration of higher-resolution within-host population dynamics has been 

shown to better reproduce empirical results in previous work.(Davies et al., 2019) Third, 

the chosen exclusive colonization approach precluded assessment of intraspecific HGT, 

which may have different impacts on resistance dynamics than interspecific HGT.  
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4.4.5.  Future directions 

Although epidemiological data are limited, insights from experiments and within-host 

models support that antibiotic disruption of microbiome-pathogen competition is a key 

driver of selection for resistance.(Baumgartner et al., 2020; Estrela and Brown, 2018; 

O’Brien et al., 2021; Shaw et al., 2019; Stein et al., 2013; Tepekule et al., 2019) The 

present work highlights the importance of extending these within-host concepts to the 

population level. Magnitudes of within-host microbiome interactions are difficult to 

quantify,(Zimmermann-Kogadeeva, 2021) but this theoretical framework generates 

hypothesis for future study, demonstrating potential consequences of microbiome-

pathogen interactions on antibiotic selection for ARB spread, and highlighting that 

resistance epidemiology is highly sensitive to model parameterization in this context. A 

clear next step is thus to apply this framework to particular bacterial pathogens circulating 

among particular patient populations exposed to particular antibiotics, and hence to 

characterize the magnitudes of within-host competition and antibiotic-induced microbiome 

dysbiosis that are expected to occur in real clinical settings. Natural candidates for model 

application include bacterial pathogens known to have strong interactions with the host 

microbiome, like C. difficile, and bacteria known to transfer resistance genes inter-

specifically to and from host microbiota, including ESBL-producing Enterobacteriaceae.  

  



 

 137 

Chapter 5.   Simulating impacts of microbiome 

interactions on the efficacy of public health 

interventions for nosocomial pathogen control 

 

5.1.  Introduction 

Within-host interactions with the host microbiome can drive the epidemiological dynamics 

of bacterial pathogens.(Bäumler and Sperandio, 2016; Buffie and Pamer, 2013; 

Johanesen et al., 2015) This is perhaps best exemplified by the canonical nosocomial 

pathogen Clostridioides difficile: growth within the intestine is inhibited by secondary 

metabolites of commensal gut bacteria, protecting colonized patients from disease and 

limiting propagation of the infectious spores that drive between-host transmission.(Kamada 

et al., 2013a; Pamer, 2016) The human microbiome is purported to play a similar 

defensive role against a range of nosocomial pathogens, including emerging high-priority 

multidrug-resistant bacteria like ESBL-producing Enterobacteriaceae.(Kim et al., 2017; 

Lerminiaux and Cameron, 2019; Pilmis et al., 2020) However, although the 

epidemiological relevance of microbiome-pathogen interactions is increasingly recognized, 

quantification of the links between within-host microbiome ecology and nosocomial 

pathogen epidemiology are scarce, and consequences for the efficacy of public health 

interventions are poorly understood. Nonetheless, the role of the host microbiome in 

protecting against colonization and infection with ARB has motivated a need for public 

health interventions that minimize or reverse harm to patient microbiota, from antibiotic 

stewardship, to probiotics, to faecal microbiota transplantation, to microbiome protective 

therapies like DAV132 (a colon-targeted antibiotic adsorbent).(de Gunzburg et al., 2018; 

Relman and Lipsitch, 2018) 

 

In the previous Chapter, I developed a modelling framework describing colonization 

dynamics of antibiotic-resistant bacteria in the healthcare setting, and evaluated 

epidemiological consequences of a range of theoretical within-host microbiome-pathogen 

interactions. Here, I apply this framework to four specific high-risk nosocomial ARB: C. 

difficile, methicillin-resistant S. aureus (MRSA), ESBL-producing Escherichia coli (ESBL-

EC) and carbapenemase-producing Klebsiella pneumoniae (CP-KP). By simulating a 

range of public health interventions, I demonstrate the theoretical importance of 
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microbiome-pathogen interactions as mediators of ARB epidemiology in healthcare 

settings, and determining factors in the control of resistance dissemination.   

  



 

 139 

5.2.  Methods 

The modelling framework introduced in Chapter 4 was extended through eight key steps to 

assess the impact of microbiome-pathogen interactions on the epidemiological efficacy of 

control interventions for selected ARB. First, the model population was parameterized to 

represent patients in an acute care hospital in France. Second, the ecological impacts of 

antibiotic consumption on different pathogen strains and on the host microbiome were 

characterized. Third, the model was adapted to each of the four considered ARB (C. 

difficile, MRSA, ESBL-EC, CP-KP), using parameter estimates from the literature. Fourth, 

expert elicitation interviews were conducted to characterize the relevance of microbiome 

dysbiosis for the colonization dynamics of each ARB, and to quantify interaction 

coefficients with uncertainty. Fifth, epidemiological outcomes were simulated for each 

ARB, using Monte Carlo sampling methods to account for epistemic uncertainty. Sixth, 

multivariate sensitivity analyses were conducted to quantify impacts of uncertainty on 

model outcomes. Seventh, a range of public health interventions were incorporated into 

model ODEs. Finally, calculations for evaluation of intervention efficacy across distinct 

epidemiological indicators were conducted. 

 

5.2.1.  Characterizing the hospital inpatient population 

Model 5 from Chapter 4 (equation 4.17) was parameterized to represent a population of 

hospital inpatients in France, prioritizing studies from the French acute care setting where 

available and accounting for parameter uncertainty (Table 5.1). Estimates include a mean 

8-day (95% CI: 3 – 13 day) hospital length of stay, a mean 19.5% (15.7 – 23.3%) antibiotic 

exposure prevalence, and a mean 28-day (7 – 49 day) recovery to microbiome equilibrium 

for hospital patients undergoing microbiome dysbiosis. 

 

Table 5.1.  Hospital parameters. 

Parameters and probability distributions for baseline hospital inpatient parameters applied across all 
ARB. 

Symbol Parameter Unit Distribution Reference Setting Notes 

µ 
admission / 
discharge 
rate 

day-1 
1 / Normal (8, 
2.55) 

(Touat et al., 
2019) 

French 
hospitals 

/ 

fd 
admission 
fraction 
(dysbiosis) 

/ 
Normal 
(0.0756, 
0.0190) 

(Bernier et 
al., 2014) 

French 
community 

taken as proportion of the French 
community exposed to antibiotics in 
previous 28 days, extrapolating weekly 
reimbursed antibiotic 
prescriptions/1000 inhabitants (18.9, 
9.6 – 28.3) to 4 weeks and assuming 
independent prescriptions =75.6 (38.4 
– 113.2) prescriptions/1000 inhabitants 

a 
antibiotic 
exposure 
prevalence 

/ 
Normal (0.195, 
0.0195) 

(Alfandari et 
al., 2015) 

314 French 
hospitals 

/ 
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qc 

antibiotic-
induced 
pathogen 
clearance 
rate 

day-1 
1 / Uniform (1, 
10) 

(Tepekule et 
al., 2017) 

Simulation 
study 

/ 

qm 

antibiotic-
induced 
microbiome 
dysbiosis rate 

day-1 
1 / Normal (2, 
0.4) 

(Bhalodi et 
al., 2019) 

Mixed 

circumstantial evidence of same-day 
microbiome disruption following 
antibiotic therapy; assumed an 
average minimum 12 hours to 
disruption 

d’ microbiome 
recovery rate 

day-1 
1 / Normal (28, 
10.71) 

(Burdet et al., 
2019; Rafii et 
al., 2008) 

Mixed; French 
hospital 

across studies in a review of antibiotic-
induced microbiome disruption, 
intestinal microflora were observed to 
“return to normal” 1-49 days after 
antibiotic cessation; in a French 
hospital, two measures of microbiome 
diversity were observed to “return to 
normal” after 16-21 days. 

 

5.2.2.  Modelling ecological impacts of antibiotic exposure 

5.2.2.1.  Distribution of antibiotics used 

Antibiotic exposure prevalence was quantified at the level of antibiotic class using 

nationally representative antibiotic consumption data from French hospitals in 

2016.(Agence nationale de sécurité du médicament et des produits de santé, 2017) A 

study from American hospitals in 2006-2012 was used to further stratify antibiotics with 

ATC code J01F into J01FA and J01FF, J01X into J01XA and J01XD, and J01DD+DE into 

J01DD and J01DE.(Baggs et al., 2016) Final antibiotic consumption data are presented in 

Table 5.2.  

 

Table 5.2.  Antibiotic parameters. 

Antibiotic classes, their contribution to total hospital antibiotic consumption, their spectrum, and their 
relative rate of inducing microbiome dysbiosis. Consumption data come from the French Agence 
nationale de sécurité du médicament et des produits de santé and are supplemented with data from 
Baggs et al. (Agence nationale de sécurité du médicament et des produits de santé, 2017; Baggs et al., 
2016) The literature was used to classify antibiotic classes in terms of their spectrum,(Abbara et al., 2020; 
Tan et al., 2017) and relative rate of causing microbiome dysbiosis.(Baggs et al., 2018; Brown et al., 
2013) The percentage column does not total to 100 due to rounding error. 

Antibiotic class 
ACT 
code 

% of 
consumption 

Spectrum 
Rate of inducing 

dysbiosis 

Amoxicillin and beta-lactamase 
inhibitor 

J01CR02 32.4 Broad High 

Penicillins with extended spectrum J01CA 21.9 Narrow Medium 

Quinolones J01M 11.0 Broad High 

C3G J01DD 8.2 Broad Very high 

C1G J01DB 3.7 Narrow High 

Macrolides J01FA 3.4 Narrow Medium 

Imidazole J01XD 2.9 Narrow Medium 

Piperacillin and beta-lactamase 
inhibitor 

J01CR05 2.3 Broad High 



 

 141 

Aminoglycosides J01G 2.3 Narrow Low 

Tetracyclines J01A 2.0 Narrow Low 

Sulfonamides, trimethoprim J01E 1.8 Narrow Medium 

Glycopeptides J01XA 1.8 Narrow Very high 

Lincosamides J01FF 1.6 Broad Very high 

Carbapenems J01DH 1.5 Broad High 

Penicillins (other) J01C_other 1.4 Narrow Medium 

C2G J01DC 0.9 Narrow High 

C4G J01DE 0.6 Broad Very high 

Other Other 2.1 Narrow Medium 

 

5.2.2.2.  Antibiotic-induced microbiome dysbiosis 

To simulate class-specific rates of microbiome dysbiosis, a previously developed four-point 

log-linear scale of intestinal microbiome disruption was used.(Brown et al., 2013) For 

interpretation, antibiotic classes are presented as inducing dysbiosis at a high, medium, 

low, or very low rate. This scale was supplemented with data for additional antibiotic 

classes from Baggs et al.(Baggs et al., 2018) As applied here, the cumulative rate that 

antibiotic treatment induces dysbiosis (𝜎~) is given by 

 

𝜎~ = a × 𝜃~ ×¢(a� × 𝑒g�)¤
�¥8  

(eq. 5.1) 

where ak is the proportion of antibiotics consumed of each group k, and where the most 

ecologically disruptive group (𝑘 = 0, i.e. 3rd and 4th generation cephalosporins, 

glycopeptides and lincosamides) causes dysbiosis a mean 12 hours after antibiotic 

exposure (𝜃~ = 2	dayg7), with classes in less disruptive groups (𝑘 = 1,2,3) causing 

dysbiosis at successively slower rates (Figure 5.1C). Further, it was assumed that 

microbiota can still recover among patients exposed to aminoglycosides and tetracyclines, 

the antibiotic classes inducing microbiome dysbiosis at the lowest rate (𝑘 = 3), such that  

 𝛿 = 𝛿′ × (1 − a × (1 − a�¥¤)) 
(eq. 5.2) 

 

5.2.2.3.  Antibiotic-induced pathogen clearance 

To characterize class-specific effects on pathogen clearance for each ARB, each strain i 
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was classified as sensitive (ri,j = 0), of intermediate sensitivity (0 < ri,j < 1), or resistant (ri,j = 

1)  to each antibiotic class j. Overall, the rate that antibiotic treatment clears each strain is 

given by  

 

𝜎J = a × 𝜃i ×¢(aK × (1 − 𝑟J,K))7¦
K¥7  

(eq. 5.3) 

across the 18 included classes.  

 

5.2.3.  Characterizing pathogen epidemiology 

For all ARB, data from the literature were used to define epidemiological parameters with 

uncertainty, again prioritizing studies from French clinical settings where available (Tables 

5.3 – 5.6). Figure 5.1B further illustrates the ways in which the model was parameterized 

to represent different ARB. Estimates include: higher daily transmission rates for S. aureus 

(0.057, 2.5% – 97.5% quantiles: 0.046 – 0.068) and K. pneumoniae (0.029, 0.012 – 0.046) 

than for E. coli (0.0078, 0.0013 – 0.014) and C. difficile (0.0056, 0.0037 – 0.0074); and a 

shorter natural duration of colonization (in the absence of antibiotic treatment) for C. 

difficile (84 days, 66– 117 days) than for S. aureus (287 days, 252 – 322 days), E. coli 

(372 days, 321 – 411 days) and K. pneumoniae (375 days, 303 – 491 days).  

 

Different types of within-host interactions were considered for different ARB (Figure 5.1A). 

C. difficile, MRSA, ESBL-EC and CP-KP were all assumed to compete with host 

microbiota. MRSA, ESBL-EC and CP-KP were assumed to also compete intra-specifically 

with non-focal strains. For model application, the focal pathogen was taken as the “drug-

resistant” strain CR, while the “drug-sensitive” strain CS was taken to represent all other co-

circulating strains of the same species, for simplicity characterized, respectively, as 

methicillin-sensitive S. aureus (MSSA), E. coli (EC) and K. pneumoniae (KP). Finally, both 

ESBL resistance and carbapenem resistance were assumed to be borne by plasmids 

capable of horizontal transfer between patient microbiota and, respectively, EC and KP. 

These structural assumptions were informed using expert opinion (described below). 
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Figure 5.1.  Model parameterization across ARB. 

Characterizing the species-specific ecology of four selected antibiotic-resistant bacterial pathogens in the 
hospital setting. (A) Model structure: the within-host ecological interactions assumed for each pathogen. 
(B) Simulation inputs: 95% distributions for selected model parameters drawn stochastically over 10,000 
runs. See Tables 5.3 – 5.6 for all parameter distributions for all ARB. (C) The distribution of antibiotic 
classes consumed in French hospitals in 2016,(Agence nationale de sécurité du médicament et des 
produits de santé, 2017) shaded by their assumed impact on intestinal microbiome dysbiosis. Inset: the 
cumulative impact of each antibiotic class (given as ATC codes, see Table 5.2 for corresponding names) 
on dysbiosis (aK × 𝑒g�); circle size represents each class’s contribution to exposure prevalence (aK). (D) 
Assumed antibiograms for each pathogen strain and antibiotic class. 
 

For species subject to intra-specific strain competition, strain-specific rates of natural 

clearance are assumed (resulting from the fitness cost of resistance c, as in equation 4.6) 

and endogenous acquisition. For the latter, in order to prevent rare strains (e.g. CP-KP) 

from emerging endogenously at the same rate as common strains (KP), rates for each 

strain were scaled by the prevalence of that strain in the community,  

 𝛼a = 𝛼′ × (1 − a × (1 − 𝑟a)) × (1 − 𝑓h)	𝛼h = 𝛼′ × (1 − a × (1 − 𝑟h)) × 𝑓h 

(eq. 5.4) 

Characteristic antibiograms informing antibiotic resistance levels for all strains were 
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adapted from an online compendium from the Therapeutics Education Collaboration 

(Figure 5.1D).(McCormack and Lalji, 2015) Under these assumptions, MRSA was 

resistant to the greatest proportion of antibiotics consumed in French hospitals (median rR 

= 94.5%), followed by C. difficile (94.3%), CP-KP (91.7%) and ESBL-EC (84.8%); co-

circulating “drug-sensitive” strains were considerably less antibiotic-resistant (median rS = 

33.0% for MSSA and 23.0% for both E. coli and K. pneumoniae). 

 

Table 5.3.  C. difficile parameters. 

Symbol Parameter Unit Distribution Reference Setting Notes 

b transmission 
rate 

day-1 Normal 
(0.00555, 
0.000944) 

(van Kleef et 
al., 2016) 

English 
hospitals 
(modelling 
study) 

mean of point estimates of the daily 
probability of transmission from 
colonized patients (0.0037) and 
infected patients (0.0074) 

a’ endogenous 
acquisition 
rate 

day-1 Normal 
(0.0000253, 
0.0000114) 

(Durham et 
al., 2016) 

USA hospitals 
(modelling 
study) 

proxy measure: the estimated daily 
rate of progression from 
colonization to infection in hospital 
patients, divided by the relative risk 
of progression in patients exposed 
to antibiotics 

g natural 
clearance 
rate 

day-1 Normal 
(0.0119, 
0.00170) 

(Simor et al., 
1993) 

Canadian care 
home 

fit longitudinal colonization data 
using exponential decay model 

fC admission 
fraction 
(colonized) 

/ Binomial 
(229, 0.048) / 
229 

(Barbut, 
1996) 

11 French 
hospitals 

stool prevalence among 
asymptomatic patients 

r antibiotic 
resistance 
level 

/ median 
94.3%, (range 
93.3–95.4%) 

estimated / cumulative resistance level across 
simulated antibiotic consumption 
data and assumed antibiograms 

e colonization 
resistance 

/ 1 – 1 / 
Cauchy 
(52.85, 1.62) 

estimated / from expert opinion 

h resource 
competition 

/ (1/g)/(1/g + 
Cauchy 
(121.11, 
4.85)) 

estimated / from expert opinion 

f ecological 
release 

/ Cauchy 
(39.22 0.922) 

estimated / from expert opinion 

       

 

Table 5.4.  S. aureus parameters. 

Symbol Parameter Unit Distribution Reference Setting Notes 

b transmission 
rate 

day-1 Normal 
(0.057, 
0.0057) 

(Di Ruscio 
et al., 2019) 

Norwegian 
hospitals 
(modelling 
study) 

/ 

a’ endogenous 
acquisition 
rate 

day-1 Normal 
(0.0016, 
0.0008) 

(Coello et 
al., 1997; Di 
Ruscio et 
al., 2019) 

Spanish 
hospital 

proxy measure: the estimated daily 
rate of progression from colonization 
to infection in hospital patients 

g natural 
clearance 
rate 

day-1 1 / Normal 
(287, 17.9) 

(Shenoy et 
al., 2014) 

Mixed / 

c fitness cost 
of resistance 

/ Normal (0.2, 
0.02) 

(Kouyos et 
al., 2013; 
Laurent et 
al., 2001) 

French 
hospitals 

growth cultures showed 20% fitness 
benefit to MSSA over MRSA strains 

fC admission 
fraction 
(colonized) 

/ Normal 
(0.0757, 
0.00364) 

(Cravo 
Oliveira 
Hashiguchi 
et al., 2019; 
Scanvic et 
al., 2001) 

French 
hospitals 

estimated as the proportion of patients 
arriving to a French hospital with 
MRSA colonization, divided by the 
estimated proportion of S. aureus 
strains that are methicillin-resistant in 
France 

fR admission 
fraction 

/ Normal (0.16, 
0.016) 

(Cravo 
Oliveira 

France / 
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(bearing 
resistant 
strain) 

Hashiguchi 
et al., 2019) 

rS antibiotic 
resistance 
level (MSSA) 

/ median 
33.1% (range 
17.2–48.9%) 

estimated / cumulative resistance level across 
simulated antibiotic consumption data 
and assumed antibiograms 

rR antibiotic 
resistance 
level 
(MRSA) 

/ median 
94.5% (range 
90.8–98.2%) 

estimated / cumulative resistance level across 
simulated antibiotic consumption data 
and assumed antibiograms 

e colonization 
resistance 

/ 1 – 1 / 
Cauchy (2.21, 
0.15) 

estimated / from expert opinion 

h resource 
competition 

/ (1/g) / (1/g + 
Cauchy 
(73.09, 3.09)) 

estimated / from expert opinion 

f ecological 
release 

/ Cauchy (2.97, 
0.28) 

estimated / from expert opinion 

 

Table 5.5.  E. coli parameters. 

Symbol Parameter Unit Distribution Reference Setting Notes 

b 
transmission 
rate 

day-1 
Normal 
(0.0078, 
0.00334) 

(Gurieva et al., 
2018) 

13 
European 
ICUs 

/ 

a’ 
endogenous 
acquisition rate 

day-1 
Normal 
(0.0024, 
0.000663) 

(Gurieva et al., 
2018) 

13 
European 
ICUs 

/ 

g 
natural 
clearance rate 

day-1 
Normal 
(0.00269, 
0.000216) 

(Bar-Yoseph et 
al., 2016) 

Mixed 
fit longitudinal colonization data using 
exponential decay model 

c 
fitness cost of 
resistance 

/ 
Normal (0.2, 
0.02) 

/ / 
in absence of data for ESBL 
resistance, used same distribution as 
for MRSA  

fC 

admission 
fraction 
(colonized) 

/ 
Normal 
(0.275, 
0.0140) 

(Ebrahimi et al., 
2016; Gurieva 
et al., 2018) 

Mixed 

estimated as the proportion of patients 
arriving to 13 European ICUs with 
ESBL-EC carriage, divided by the 
estimated proportion of E. coli that are 
ESBL-producing in a Hungarian 
hospital 

fR 

admission 
fraction 
(bearing 
resistant strain) 

/ 
Normal 
(0.119, 
0.0413) 

(Ebrahimi et al., 
2016) 

Hungarian 
hospital  

proportion of fecal E. coli that were 
ESBL-producing from a non-outbreak 
setting  

fw 

admission 
fraction 
(microbiota 
bearing ESBL 
gene) 

 
Binomial(857, 
0.0665)/857 

(Pilmis et al., 
2018; Vidal-
Navarro et al., 
2010) 

2 French 
hospitals 

estimated by pooling 857 samples 
from two studies reporting fecal 
carriage of ESBL-producing species 
other than E. coli 

rS 
antibiotic 
resistance level 
(EC) 

/ 
median 23.1% 
(range 9.6–
36.5%) 

Estimated / 
cumulative resistance level across 
simulated antibiotic consumption data 
and assumed antibiograms 

rR 

antibiotic 
resistance level 
(ESBL-EC) 

/ 
median 84.9% 
(range 77.4–
92.2%) 

Estimated / 
cumulative resistance level across 
simulated antibiotic consumption data 
and assumed antibiograms 

e 
colonization 
resistance 

/ 
1-1/Cauchy 
(6.06, 0.64) 

Estimated / from expert opinion 

h 
resource 
competition 

/ 
(1/g)/(1/g + 
Cauchy(76.38, 
5.35)) 

Estimated / from expert opinion 

f 
ecological 
release 

/ 
Cauchy(11.80, 
0.80) 

Estimated / from expert opinion 

ce 
HGT rate 
(equilibrium) 

day-1 cd/Log-Normal 
(1.36, 0.81) 

Estimated / from expert opinion 

cd 
HGT rate 
(dysbiosis) 

day-1 
-log(1-Weibull 
(0.94, 0.11)) 
/10 

Estimated / from expert opinion 

w 

proportion of 
patients whose 
microbiota 
acquire ESBL 
gene following 
antibiotic 
exposure 

/ 
Binomial(132, 
18/132)/132 ´ 
0.382 

(Agence 
nationale de 
sécurité du 
médicament et 
des produits de 
santé, 2017; 
Bar-Yoseph et 
al., 2016) 

Mixed 

the proportion of patients in a meta-
analysis who, subsequent to 
treatment, express resistance to the 
antibiotic with which treated (18/132), 
multiplied by the proportion of ESBLs 
among antibiotics consumed in 
French hospitals (38.2%) 
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Table 5.6.  K. pneumoniae parameters. 

Symbol Parameter Unit Distribution Reference Setting Notes 

b 
transmission 
rate 

day-1 
Normal (0.029, 
0.00842) 

(Gurieva et 
al., 2018) 

13 European 
ICUs 

estimate for non-E. coli 
Enterobacteriaceae 

a’ 
endogenous 
acquisition 
rate 

day-1 
Normal 
(0.0048, 
0.00133) 

(Gurieva et 
al., 2018) 

13 European 
ICUs 

estimate for non-E. coli 
Enterobacteriaceae 

g 
natural 
clearance 
rate 

day-1 
Normal 
(0.00267, 
0.000324) 

(Bar-Yoseph 
et al., 2016) 

Meta-analysis 
fit longitudinal colonization data 
using exponential decay model 

c 
fitness cost 
of resistance 

/ 
Normal (0.2, 
0.02) 

/ / 
in absence of data for CP 
resistance, used same distribution 
as for MRSA  

fC 
admission 
fraction 
(colonized) 

/ 

Binomial 
(11420, (928 / 
11420)) / 
11420 

(Cravo 
Oliveira 
Hashiguchi 
et al., 2019; 
Gurieva et 
al., 2018) 

Mixed 

the proportion of patients arriving 
to 13 European ICUs with CP-KP 
carriage, divided by the estimated 
proportion of K. pneumoniae that 
produce carbapenemase in France 

fR 

admission 
fraction 
(bearing 
resistant 
strain) 

/ 
Normal 
(0.01,0.001) 

(Cravo 
Oliveira 
Hashiguchi 
et al., 2019) 

France / 

fw 

admission 
fraction 
(microbiota 
bearing CP 
gene) 

 
Binomial(1135, 
0.00441) / 
1135 

(Pantel et 
al., 2015) 

7 French 
hospitals 

rectal carriage of carbapenemase-
producing bacteria 

rS 
antibiotic 
resistance 
level (KP) 

/ 
median 23.1% 
(range 9.6–
36.5%) 

estimated / 
cumulative resistance level across 
simulated antibiotic consumption 
data and assumed antibiograms 

rR 

antibiotic 
resistance 
level (CP-
KP) 

/ 
median 91.7% 
(range 89.7–
93.7%) 

estimated / 
cumulative resistance level across 
simulated antibiotic consumption 
data and assumed antibiograms 

e 
colonization 
resistance 

/ 
1 - 1 / Cauchy 
(17.16, 0.97) 

estimated / from expert opinion 

h 
resource 
competition 

/ 
(1/g) / (1/g + 
Cauchy 
(74.93, 4.03)) 

estimated / from expert opinion 

f 
ecological 
release 

/ 
Cauchy 
(36.63, 0.82) 

estimated / from expert opinion 

ce 
HGT rate 
(equilibrium) 

day-1 cd / Gamma 
(2.01,0.36) 

estimated / from expert opinion 

cd 
HGT rate 
(dysbiosis) 

day-1 
-log(1-
Gamma(0.54, 
3.67))/10 

estimated / from expert opinion 

w 

proportion of 
patients 
whose 
microbiota 
acquire CP 
gene 
following 
antibiotic 
exposure 

 
Binomial (132, 
0.1363) / 132 
´ 0.0151 

estimated 
from 
(Agence 
nationale de 
sécurité du 
médicament 
et des 
produits de 
santé, 2017; 
Bar-Yoseph 
et al., 2016) 

Mixed 

the proportion of patients in a 
meta-analysis who, subsequent to 
treatment, express resistance to 
the antibiotic with which treated 
(18/132), multiplied by the 
proportion of carbapenems among 
antibiotics consumed in French 
hospitals (1.5%) 

 

5.2.4.  Expert elicitation 

5.2.4.1.  Context 

Expert elicitation is a scientific consensus methodology involving the estimation of 

unknown parameter values from subject-matter experts. Elicitation methodologies for 

estimation of clinical parameter values have been developed, and are increasingly used to 
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inform epidemiological studies.(Johnson et al., 2010a, 2010b) The relevance of different 

within-host ecological interactions (intraspecific strain competition, microbiome 

competition, HGT) for different ARB in the hospital environment are not well-defined, and 

quantitative data linking microbiome interactions with epidemiological parameters are 

scarce. Expert elicitation was thus used to inform model structure and quantify parameter 

distributions for microbiome-pathogen interactions for each ARB. 

 

5.2.4.2.  Protocol 

A standardized expert elicitation protocol was designed following a computer-guided ‘chips 

and bins’ methodology validated previously for estimation of quantitative parameters for 

patient outcomes in clinical settings.(Johnson et al., 2010b) First, the scientific context of 

the study was introduced, including the potential epidemiological relevance of microbiome-

pathogen interactions, and potential roles for intraspecific strain competition and 

microbiome dysbiosis in explaining how antibiotics select for resistance. Second, the 

MATCH Uncertainty Elicitation Tool was presented, a computer software designed to 

facilitate quantitative parameter estimation. Third, the ‘chips and bins’ method of 

parameter estimation was explained. This method allows experts to set minimum and 

maximum values for each parameter and ARB, and to build distributions (histograms) 

visually by pointing and clicking using MATCH.(Morris et al., 2014) Fourth, potential 

cognitive biases were reviewed and tips for reliable parameter estimation were provided. 

Finally, experts were asked to respond to elicitation questions and quantify their beliefs 

(described below). For parameter quantification, it was stressed that the goal was not to 

characterize precise numerical estimates of particular mechanistic interactions, but rather 

to quantify the relative impact of microbiome dysbiosis on different colonization outcomes 

in the hospital setting. 

 

5.2.4.3.  Inclusion criteria and solicitation 

Expert inclusion criteria included having a PhD degree, a current academic appointment, 

and subject-matter expertise in medical microbiology and/or the clinical epidemiology of 

antibiotic resistance. Experts were initially identified through a review of authors of relevant 

publications in the field. At the end of each interview, experts were further asked to refer 

us to additional experts in the form of snowball sampling. Of 23 invited experts, ten 

ultimately participated in elicitation interviews (acceptance rate 43.5%). Their specialties 

include bacteriology, internal medicine, intensive care, infectious disease epidemiology 

and clinical microbiology. Elicitation results are reported anonymously, but all experts 
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agreed to their acknowledgment in this work, and I thank them sincerely for their 

participation: Antoine Andremont, Christian Brun-Buisson, Aurélien Dinh, Stephan 

Harbarth, Jean-Louis Herrmann, Solen Kernéis, Alban Le Monnier, Benoît Pilmis, Etienne 

Ruppé and Paul-Louis Woerther. 

 

5.2.4.4.  Content 

Experts were asked a total of six questions, each stratified by the four included ARB (C. 

difficile, MRSA, ESBL-EC, CP-KP). The first question asked about the influence of strain 

competition on the colonization dynamics of each ARB. Subsequent questions 2 to 6 

asked about microbiome-pathogen interactions. To facilitate more reliable parameter 

interpretation, interaction coefficients were translated into clinical parameters, which 

experts were asked to assess and quantify. An example is translation of the ecological 

release coefficient into the relative risk of pathogen outgrowth among hospital patients 

undergoing microbiome dysbiosis (relative to patients with stable microbiota). Model 

parameters, the clinical parameters that experts were asked to estimate, and assumed 

links between them are provided in Table 5.7. For each parameter, experts were first 

asked to describe qualitatively whether microbiome dysbiosis influences that parameter 

(by answering yes, no, partially or don’t know). Then, if answering partially or yes, experts 

were asked to estimate quantitative parameter estimates using the protocol as described 

above. 

 

5.2.4.5.  Interviews 

Experts were consulted individually in the form of one-on-one interviews, and the elicitation 

protocol was followed systematically to ensure uniformity across experts. Interviews were 

approximately one hour in length and took place in each expert’s office, with the exception 

of one interview conducted via an online video call. 
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Table 5.7.  Expert elicitation parameters. 

Relationship between model parameters and the clinical parameters estimated by experts. 
Model parameter Clinical parameter Assumed relationship 

between model and 
clinical parameters Name Symbol Description Symbol 

colonization 
resistance 𝜀 

relative risk of acquiring colonization 
among patients experiencing 
microbiome dysbiosis 

𝑅𝑅�  𝜀 = 1 − 1𝑅𝑅� 

resource 
competition 𝜂 

excess duration of colonization among 
patients experiencing microbiome 
dysbiosis 

𝑑 𝜂 = 1𝛾1𝛾 + 𝑑  

ecological 
release 𝜙 

relative risk of pathogen outgrowth 
among patients experiencing 
microbiome dysbiosis 

𝑅𝑅�  𝜙 = 𝑅𝑅� 

HGT rate 
(dysbiosis) 𝜒�  

proportion of antibiotic-exposed 
patients colonized with the specified 
species that acquire the specified 
resistance via HGT during their 
hospital stay 

𝑝��  𝑝�� = 1 − 𝑒g��×7̈ 

HGT rate 
(equilibrium) 𝜒|  

relative risk of acquiring the specified 
resistance via HGT among patients 
experiencing microbiome dysbiosis  

𝑅𝑅� 𝑅𝑅� = 𝜒�𝜒|  

 

5.2.4.6.  Analysis of data and generation of parameter distributions 

For qualitative questions, expert responses were tallied (Figure 5.2). For quantitative 

questions, parameter distributions were generated by pooling the individual distributions 

estimated by each expert. For each expert k, outcome i and ARB j, expert histograms 

generated using MATCH were saved as a vector xi,j,k. Scales for different parameters 

varied substantially across experts (see raw data in Figure 5.3). However, for each 

parameter, estimates were made for each ARB consecutively, such that distributions for 

each ARB were ranked relative to one another. Friedman’s tests were conducted to 

determine whether the rank order across ARB for each parameter was randomly 

distributed (the median of each expert’s distribution was used to determine rank, 

considering species as groups and experts as blocks). To preserve rank order when 

combining expert estimates xi,j,k to form pooled histograms, distributions were centred by 

the mean relative distance zi,j between each j and the reference ARB (taken as MRSA) 

over all experts k (see re-scaled data in Figure 5.4). For C. difficile and MRSA, HGT was 

excluded from simulations and pooled distributions were not re-centred. Pooled 

histograms were fit to six candidate distributions (normal, log-normal, Weibull, Cauchy, 

exponential and gamma), and the final distribution was selected as the distribution giving 

the lowest Akaike Information Criterion (using the function fitdist from the R package 

fitdistrplus). Each expert distribution was weighted equally, contributing to 10% of the final 

pooled distribution for each species and parameter. 
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Figure 5.2.  Qualitative expert elicitation results. 

Expert belief about which mechanisms drive epidemiological dynamics of bacterial pathogens. (A) Expert 
belief in whether or not intraspecific strain competition influences nosocomial colonization dynamics for 
each pathogen. (B) Expert belief in whether or not each of the given colonization processes is affected 
by microbiome dysbiosis, and for HGT, whether or not this process is relevant in clinical settings. CD: C. 
difficile; SA: Staphylococcus aureus; EC: Escherichia coli; KP: Klebsiella pneumoniae; HGT: horizontal 
gene transfer. 
 

 

Figure 5.3.  Quantitative expert elicitation results (raw data). 

Expert belief and uncertainty about the impact of microbiome dysbiosis on nosocomial colonization 
dynamics of included bacterial pathogens (colours). Rows A through E represent, respectively, responses 
to questions 2 through 6 from the expert elicitation protocol (see clinical parameters in Table 5.7). 
Distributions were generated during expert interviews using the MATCH Uncertainty Elicitation Tool with 
the chips and bins method.(Morris et al., 2014) Experts are anonymized and represented by different 
columns. Vertical bars represent medians of each distribution to visualize the rank order for each 
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pathogen as estimated by each expert. p-values represent results of Friedman’s tests for distribution 
medians, considering species as groups and experts as blocks for each question; when p<0.05, the 
species rank order across experts is interpreted as non-random. 
 

 

Figure 5.4.  Quantitative expert elicitation results (re-centred data) 

Expert elicitation results: expert belief and uncertainty about the impact of microbiome dysbiosis on 
nosocomial colonization dynamics of included bacterial pathogens. Distributions were generated during 
expert interviews using the MATCH Uncertainty Elicitation Tool with the chips and bins method.(Morris 
et al., 2014) Experts are anonymized and represented by different colours. Rows A through E represent, 
respectively, responses to questions 2 through 6 from the expert elicitation protocol (see clinical 
parameters in Table 5.7). 
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5.2.5.  Simulating colonization dynamics using Monte Carlo sampling 

Using the model characterizations and parameter values described above, colonization 

dynamics for each ARB were simulated. Monte Carlo sampling methods were used to 

account for parameter uncertainty. Specifically, 10,000 unique parameter vectors W were 

created by drawing random values for each parameter from its respective probability 

distribution. For each W, steady-state epidemiological outcomes (prevalence, resistance 

rate, daily incidence) were calculated through numerical ODE integration as described in 

section 4.2.6. Final outcome distributions are reported as the median and 95% uncertainty 

interval, i.e. the 50th (2.5th–97.5th) percentiles across all simulations.  

 

5.2.6.  Sensitivity analyses 

To evaluate the impact of microbiome competition on model outcomes, a second lot of 

“single-species simulations” was run after removing microbiome-pathogen interactions 

from all W (e = 0, h = 0, f = 1, c = 0).  

 

To quantify the impact of parameter uncertainty on model outcomes, multivariate 

sensitivity analyses were conducted. For each pathogen, model parameter values were re-

sampled from their distributions (Tables 5.1, 5.3 – 5.6) using Latin Hypercube Sampling 

over 10,000 iterations. For each parameter set, epidemiological outcomes were re-

calculated at population dynamic equilibrium, and partial rank correlation coefficients 

(PRCCs) were calculated between each parameter and (i) CR prevalence and (ii) the 

pathogen resistance rate (using the R package pse).(Chalom and Prado, 2013) 

 

5.2.7.  Incorporating public health interventions 

Three public health interventions t were incorporated into ODE models (equation 4.17) to 

evaluate their impact on epidemiological outcomes for each ARB.  

 

5.2.7.1.  Contact precautions 

Contact precautions were assumed to represent physical or behavioural barriers that block 

opportunities for transmission, reducing transmission rates by the same fraction tipc across 

all pathogens relative to baseline. This is given by 

 𝛽JQ© = (1 − 𝜏JQ©) × 𝛽 

(eq. 5.5) 
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5.2.7.2.  Antibiotic stewardship 

Antibiotic stewardship programmes were assumed to alter antibiotic consumption patterns 

in the hospital. Two main types were considered: antibiotic reduction, which limits overall 

antibiotic prescribing by a fraction tasp, given by 

 aT�Q = (1 − 𝜏T�Q) × a 
(eq. 5.6) 

and antibiotic restriction, which adjusts the distribution of antibiotic classes consumed in 

the hospital. Two types of restriction were considered, the first favouring narrow-spectrum 

antibiotics (e.g. macrolides) over broad-spectrum (e.g. quinolones), and the second 

favouring antibiotics that cause dysbiosis at very low or low rates (k={3,2}) over those 

causing dysbiosis at medium or high rates (k={1,0}) (see Table 5.2 for antibiotic 

classification). For both, the proportion of antibiotics in the restricted group (prestrict) was 

reduced by the same fraction tasp without adjusting the distribution of antibiotics consumed 

within that group, given by 

 𝑝�|�4�J©4|T�Q = 𝑝�|�4�J©4 − 𝜏T�Q 

(eq. 5.7) 

and the proportion of non-restricted antibiotics was increased symmetrically. With this 

structure, tasp alters antibiotic consumption for the same proportion of hospital patients 

across all three stewardship interventions. In all simulations, prestrict > tasp. 

 

5.2.7.3.  Microbiome recovery therapy 

Microbiome recovery therapy was assumed to trigger recovery at rate 0.5 day-1 and was 

apportioned to the fraction tpbt of patients, such that the overall rate of microbiome 

recovery when including these interventions (dpbt) is given by 

 𝛿Q«4 = 𝛿 + 0.5 × 𝜏Q«4 
(eq. 5.8) 

For simplicity, different values assumed for intervention parameters (tipc Î {0.2, 0.35, 0.5}, 

tasp Î {0.2, 0.35, 0.5}, tpbt Î {0.1, 0.3, 0.5}) are interpreted as different levels of compliance 

to respective interventions. 
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5.2.8.  Calculating intervention efficacy 

Intervention efficacy was calculated using two outcomes: 

1. Reduction in colonization incidence, 1 – IRR (where IRR is the incidence rate ratio 

of post-intervention to pre-intervention incidence). 

2. Reduction in the resistance rate, 1 – RRR (where RRR is the resistance rate ratio, 

the ratio of the post-intervention to pre-intervention resistance rate).  

 

Outcomes were matched across Monte Carlo simulations, such that IRRs and RRRs were 

calculated for each intervention and compliance level for each W. The distribution of 

outcomes is expressed as the median and 95% uncertainty interval. For each intervention, 

outcomes are compared from simulations that include microbiome-pathogen interactions 

and dysbiosis (“microbiome simulations”) and simulations that exclude them (“single-

species simulations”). Unless stated otherwise, results presented are for microbiome 

simulations. 

 

To validate simulations with data from the literature, antibiotic stewardship results were 

compared to findings from a systematic review and meta-analysis of hospital antibiotic 

stewardship interventions.(Baur et al., 2017) They included interventional studies 

published worldwide describing incidence of bacterial colonization or infection among 

hospital inpatients (Jan 1960–May 2016). Stewardship interventions were heterogeneous, 

including audits, antibiotic restriction, antibiotic cycling, antibiotic mixing, feedback, 

guideline implementation and education. No evidence of publication bias or small study 

effects were found. Their analysis included 32 studies over 9 million patient-days, though 

stewardship interventions were co-implemented with other infection control measures (e.g. 

hand hygiene, patient isolation) in 31% of studies. When limited to stewardship, patients 

were still significantly less likely to experience colonization and infection (IRR=0.81, 0.67-

0.97), but species-specific estimates were not made. When excluding studies that included 

non-stewardship interventions, ten studies remained for MRSA, seven for C. difficile, two 

for ESBL-E. coli, and one for CP-K. pneumoniae. For ESBL-E. coli, studies of ESBL-

producing Enterobacteriaceae and Gram-negative bacteria were considered. Using 

methodology from Baur et al., incidence risk ratios (IRR) were calculated using the 

standard inverse-variance method, and pooled IRRs across species using mixed-effects 

meta-analysis models (R package metafor).  
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5.3.  Results 

5.3.1.  Expert characterization of different nosocomial pathogens 

During elicitation interviews, experts highlighted (i) uncertainty about an influence of strain 

competition on hospital colonization dynamics for all ARB, with the majority of experts 

believing strain competition was irrelevant for C. difficile but at least partially relevant for 

other ARB, (ii) unanimous certainty about a role for antibiotic-induced microbiome 

dysbiosis as a driver of colonization for C. difficile, ESBL-EC and CP-KP, with somewhat 

less certainty for MRSA, and (iii) certainty about a role for horizontal gene transfer (HGT) 

for ESBL-EC and CP-KP (Figure 5.2). These findings informed the different ecological 

interactions included for each ARB (Figure 5.1A). 

 

Overall, experts differed substantially in estimated ranges of different parameters, but 

Friedman’s tests suggested that the species rank order was conserved across experts, 

with C. difficile generally having the strongest estimated microbiome-pathogen interaction 

coefficients, and MRSA the weakest (Figure 5.3). For this reason, re-scaled data were 

used when pooling expert distributions (Figure 5.4). Final fitted distributions for each 

parameter and ARB are given in Tables 5.3 – 5.6, and for select parameters in Figure 

5.1B. 

 

5.3.2.  ARB-specific colonization dynamics 

Figure 5.5 depicts the baseline steady-state epidemiological outcomes for each ARB 

(colonization prevalence, colonization incidence and the resistance rate). Across 

simulations, C. difficile was the most prevalent pathogen (Figure 5.5A), MRSA had the 

highest resistance rate (Figure 5.5B), and ESBL-EC had the highest rate of incidence 

within the hospital (Figure 5.5C). CP-KP had the lowest prevalence, resistance rate and 

incidence, consistent with its much low burden in the community. Patient-to-patient 

transmission was the primary route of MRSA acquisition, while endogenous acquisition 

was the primary route for the enteric pathogens C. difficile, ESBL-EC and CP-KP (Figure 

5.5C). HGT played a potentially important but highly uncertain role for ESBL-EC and CP-

KP, accounting for 8.7% (<0.01–49.7%) and 2.1% (<0.01–22.8%) of acquisition events, 

respectively.  
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Figure 5.5.  Baseline epidemiological outcomes (microbiome simulations). 

Baseline steady-state colonization outcomes for each ARB in microbiome simulations. (A) Colonization 
prevalence, the percentage of patients colonized with the focal strain. Dashed lines (model inputs) 
represent assumed community prevalence, i.e. the proportion of patients already colonized upon hospital 
admission (see Tables 5.3 – 5.6). Solid lines represent simulated prevalence within the hospital. (B) 
Resistance rates, the proportion of methicillin-resistant S. aureus strains, ESBL-producing E. coli strains, 
and carbapenemase-producing K. pneumoniae strains. Dashed lines (model inputs) represent assumed 
community resistance rates, i.e. resistance rates upon hospital admission (see Tables 5.3 – 5.6). Solid 
lines represent simulated resistance rates within the hospital. (C) Pathogen incidence (daily rate of within-
hospital colonization acquisition), stratified by route of acquisition. Points (A and B) and bar height (C) 
represent medians, and error bars represent 95% uncertainty intervals across 10,000 Monte Carlo 
simulations. For comparison, the same information for single-species simulations excluding the 
microbiome is presented in Figure 5.6. 
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Figure 5.6.  Baseline epidemiological outcomes (single-species simulations). 

Baseline steady-state colonization outcomes for each ARB in single-species simulations. (A) 
Colonization prevalence, the percentage of patients colonized with the focal strain. Dashed lines (model 
inputs) represent assumed community prevalence, i.e. the proportion of patients already colonized upon 
hospital admission (see Tables 5.3 – 5.6). Solid lines represent simulated prevalence within the hospital. 
(B) Resistance rates, the proportion of methicillin-resistant S. aureus strains, ESBL-producing E. coli 
strains, and carbapenemase-producing K. pneumoniae strains. Dashed lines (model inputs) represent 
assumed community resistance rates, i.e. resistance rates upon hospital admission (see Tables 5.3 – 
5.6). Solid lines represent simulated resistance rates within the hospital. (C) Pathogen incidence (daily 
rate of within-hospital colonization acquisition), stratified by route of acquisition. Points (A and B) and bar 
height (C) represent medians, and error bars represent 95% uncertainty intervals across 10,000 Monte 
Carlo simulations.  

 

Figure 5.7 shows how simulated colonization outcomes (prevalence and resistance rates 

among hospital inpatients) compare to baseline model inputs (assumed prevalence and 

resistance rates among patients upon admission from the community). Overall, the 

hospital environment tended to amplify ARB colonization relative to the community. In 

microbiome simulations, colonization prevalence was greater in the hospital than in the 

community for MRSA, ESBL-EC and CP-KP, but not C. difficile. CP-KP was the pathogen 

most favoured by the hospital environment, its prevalence increasing by approximately 

5.4-fold (95% uncertainty interval: 2.1–10.9) within the hospital relative to baseline 

prevalence in the community (Figure 5.7A). In single-species simulations, CP-KP 

prevalence increased in hospital but to a lesser degree than in microbiome simulations, 

while C. difficile prevalence decreased in the hospital relative to the community, and 
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ESBL-EC prevalence was stable. Only for MRSA were nosocomial colonization 

prevalence ratios approximately equal across microbiome and single-species simulations. 

For pathogens subject to intraspecific strain competition, resistance rates in the hospital 

also tended to exceed rates in the community, with similar estimates across single-species 

and microbiome simulations (Figure 5.7B).  

 

 

Figure 5.7.  Nosocomial ARB amplification. 

Change in ARB colonization outcomes in the hospital relative to the community (log10 scale), comparing 
single-species and microbiome simulations. (A) The ratio of colonization prevalence among hospital 
patients relative to baseline colonization prevalence in the community. (B) The ratio of resistance rates 
in the hospital relative to baseline resistance rates in the community. Points represent medians and error 
bars represent 95% uncertainty intervals across 10,000 Monte Carlo simulations. 
 

5.3.3.  Multivariate sensitivity analyses 

Results of multivariate sensitivity analyses are provided in Figure 5.8. Though each 

pathogen varied somewhat in which parameters drove colonization dynamics, community 

prevalence (fC for C. difficile; fR for MRSA, ESBL-EC and CP-KP) and rates of endogenous 

acquisition (aR) were overall most strongly positively correlated with both hospital 

prevalence and resistance rates across ARB. Ecological release (f) and antibiotic-induced 

microbiome dysbiosis (qm) were also positively associated with prevalence across 

pathogens, as well as the HGT rate during dysbiosis (cd) for ESBL-EC and CP-KP. Rates 

of hospital admission/discharge (µ) and microbiome recovery (d) were generally negatively 

correlated with prevalence across ARB. Conversely, microbiome parameters (e, h, f, d, 
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sm, ce) were minimally correlated with resistance rates, with the exception of cd. 

 

 

Figure 5.8.  Partial rank correlation coefficients. 

Multivariate sensitivity analysis describing partial rank correlation coefficients (PRCC) between model 
parameters and epidemiological outcomes evaluated at population dynamic equilibrium: in panel A, 
colonization prevalence of each ARB (focal strain CR); in panel B, the resistance rate. 
 

5.3.4.  Intervention efficacy 

Epidemiological impacts of simulated public health interventions are presented in Figures 
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5.9 – 5.12 for all species and interventions, and comparing single-species and microbiome 

simulations. Figure 5.9 shows efficacy of interventions for reducing colonization incidence. 

Figure 5.10 shows efficacy of interventions for reducing pathogen resistance rates. Figure 

5.11 shows how intervention efficacy for reduction of colonization incidence varied across 

different acquisition routes (patient-to-patient transmission, endogenous acquisition and 

HGT). Finally, Figure 5.12 shows how each antibiotic stewardship intervention varied in its 

efficacy for reducing colonization incidence. 

 

 

Figure 5.9.  Intervention efficacy (colonization incidence). 

The microbiome drove pathogen-specific responses to simulated public health interventions (left panels, 
contact precautions; middle, antibiotic stewardship; right, microbiome recovery therapy). Top panels 
show results from simulations using classical ‘single-species models’ that only accounted for the focal 
pathogen species (including intraspecific strain competition for MRSA, ESBL-EC and CP-KP); bottom 
panels show simulation results when models also included microbiome-pathogen interactions and 
antibiotic-induced microbiome dysbiosis. For each intervention, three levels of intervention compliance 
(shading) were simulated. For antibiotic stewardship, simulation results were pooled across three 
different types of stewardship (see Figure 5.12). Points correspond to medians, and bars to 95% 
uncertainty intervals across 10,000 Monte Carlo simulations. 
 

5.3.4.1.  Contact precautions 

Intervention efficacy for colonization prevention varied considerably by pathogen and type 

of intervention (Figure 5.9). Contact precautions were highly effective for reducing MRSA 

incidence, of intermediate efficacy for C. difficile, and minimally effective for ESBL-EC and 

CP-KP. Contact precautions had comparatively little impact on resistance rates, with a 
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median 2–4% reduction across simulations and compliance levels for MRSA, 0–2% for 

CP-KP and negligible impact for ESBL-EC (Figure 5.10). These interventions were overall 

less effective in microbiome simulations, which tended to limit the role of between-host 

transmission (via colonization resistance) and favour the role of endogenous acquisition 

(via ecological release) in the hospital environment when compared to single-species 

simulations (see Figures 5.5, 5.6). 

 

 

Figure 5.10.  Intervention efficacy (resistance rates). 

Compared to pathogen incidence, strain dynamic responses to public health interventions were similar 
across single-species and microbiome simulations (left panels, contact precautions; middle, antibiotic 
stewardship; right, microbiome recovery interventions). Top panels show results from simulations using 
‘single-species models’ that only accounted for the focal pathogen species (including intraspecific strain 
competition for MRSA, ESBL-EC and CP-KP); bottom panels show simulation results when models also 
included microbiome-pathogen interactions and antibiotic-induced microbiome dysbiosis. For each 
intervention, three levels of intervention compliance (shading) were simulated. Points correspond to 
medians, and bars to 95% uncertainty intervals across 10,000 Monte Carlo simulations. 

 

5.3.4.2.  Antibiotic stewardship 

Antibiotic stewardship interventions led to substantial reductions in nosocomial incidence 

for all pathogens, but only when the microbiome was taken into account (Figure 5.9). 

Unlike contact precautions, which only reduced incidence via transmission, stewardship 

reduced incidence through all acquisition routes (Figure 5.11). Overall efficacy estimates 

and species-specific responses were similar across three types of stewardship considered 

(Figure 5.12). Pooling these together under intermediate compliance, colonization 
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incidence was reduced by a median 20% for CP-KP, 18% for C. difficile, 15% for ESBL-EC 

and 10% for MRSA. Single-species simulations excluding microbiome competition 

predicted negligible efficacy of all stewardship interventions for reducing incidence, and 

non-efficacy for C. difficile. Stewardship interventions also had a substantial impact on 

resistance rates, with overall greater reductions for CP-KP than MRSA and ESBL-EC, and 

similar outcomes across microbiome and single-species simulations (Figure 5.10). 

 

 

Figure 5.11.  Intervention efficacy (acquisition routes). 

Interventions acted on different routes of colonization acquisition in microbiome simulations. 
Intervention efficacy (x-axis) for reducing colonization incidence via different routes of colonization 
acquisition (colours) for different interventions (columns) and ARB (rows). Unlike contact precautions, 
which only reduced incidence via transmission, antibiotic stewardship and microbiome recovery 
interventions reduced colonization incidence through all considered routes. Points correspond to 
medians, and bars to 95% uncertainty intervals across 10,000 Monte Carlo simulations. 
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5.3.4.3.  Microbiome recovery therapy 

Lastly, microbiome recovery therapy was potentially highly effective for limiting pathogen 

incidence, but efficacy varied greatly across different levels of intervention compliance 

(Figure 5.9). This intervention was most effective against C. difficile, of similar efficacy 

against ESBL-EC and CP-KP, and comparatively least effective against MRSA. Across 

pathogens, microbiome recovery therapy reduced incidence through all acquisition routes 

(Figure 5.11), but had no clear impact on resistance rates (Figure 5.10). 

 

 

Figure 5.12.  Antibiotic stewardship efficacy (colonization incidence). 

Intervention efficacy (reduction in colonization incidence) for three considered types of antibiotic 
stewardship: (i) reducing overall antibiotic prescribing, (ii) restricting broad-spectrum antibiotics in favour 
of narrow-spectrum antibiotics; and (iii) restricting antibiotics categorized as inducing microbiome 
dysbiosis at high or very high rates in favour of those that induce dysbiosis at medium or low rates. In 
microbiome simulations, restricting antibiotics that induce dysbiosis at a high rate was approximately as 
effective as reducing overall antibiotic prescribing. In single-species simulations, all stewardship 
interventions were of limited, if any efficacy. Points correspond to medians, and bars to 95% uncertainty 
intervals across 10,000 Monte Carlo simulations. 
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Figure 5.13.  Antibiotic stewardship efficacy (meta-analysis). 

Incidence rate ratios (IRRs) for ARB colonization and infection among hospital inpatients exposed to 
antibiotic stewardship interventions. IRRs were calculated using data presented in Baur et al.(Baur et al., 
2017) Results are stratified by four pathogens: (a) C. difficile, (b) methicillin-resistant S. aureus, (c) ESBL-
producing E. coli (and here also including ESBL-producing Enterobacteriaceae or Gram-negative 
bacteria), and (d) carbapenemase-producing K. pneumoniae. Points represent means and bars represent 
95% confidence intervals. 
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5.4.  Discussion 

5.4.1.  Summary of model and results 

This work has demonstrated the utility of a microbiome-oriented approach for modelling 

the nosocomial epidemiology of antibiotic-resistant bacterial pathogens. The included 

pathogens MRSA, C. difficile and ESBL- and carbapenemase-producing 

Enterobacteriaceae are all leading causes of antibiotic-resistant and healthcare-associated 

infection, but the mechanistic drivers of their epidemiological dynamics remain relatively 

poorly understood, and developing strategies for their control is a leading public health 

priority.(Cassini et al., 2019; Jernigan et al., 2020; Miller et al., 2011; Rodríguez-Baño et 

al., 2018) Model simulations from this Chapter have helped to provide insights into how 

these ARB spread in healthcare settings, and why particular interventions may be more or 

less effective than others for colonization prevention. 

 

5.4.1.1.  Acquisition routes 

Microbiome-pathogen interactions had large impacts on epidemiological dynamics of 

included pathogens. When microbiota were excluded, patient-to-patient transmission was 

the cause of most nosocomial ARB acquisition, and MRSA had on average higher 

incidence than all other ARB combined. By contrast, when microbiome interactions were 

included, ESBL-EC was the most incident ARB, endogenous acquisition was overall the 

leading cause of colonization acquisition across ARB, and HGT played a less important 

role than patient-to-patient transmission but nonetheless contributed to colonization 

acquisition for multidrug-resistant Enterobacteriaceae. Endogenous acquisition is known to 

be a major source of ARB colonization – in particular for gut-residing bacteria like C. 

difficile and multidrug-resistant Enterobacteriaceae – and the present findings demonstrate 

that microbiome-pathogen interactions may help explain high rates of nosocomial 

colonization incidence for certain ARB in the context of antibiotic use, despite relatively low 

rates of person-to-person transmission. 

 

5.4.1.2.  Intervention efficacy 

Microbiome-pathogen interactions also had large impacts on the efficacy of different 

control interventions for preventing ARB acquisition. When microbiota were excluded,  

contact precautions were the only interventions capable of reducing ARB colonization 

incidence, and were effective against all ARB. By contrast, when microbiome interactions 

were included, contact precautions were effective for reducing incidence of MRSA and to a 
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lesser extent C. difficile, but not Enterobacteriaceae; antibiotic stewardship interventions 

were broadly effective across all ARB for reducing colonization incidence, in particular for 

CP-KP; and theoretical microbiome recovery therapy interventions were potentially highly 

effective for reducing colonization incidence, in particular for C. difficile. Overall, these 

findings suggest that preservation of host microbiota may explain how antibiotic 

stewardship works to reduce ARB colonization incidence, that interventions favouring 

healthy microbiome function hold promise to help mitigate the epidemiological burden of 

antibiotic resistance, and more broadly that patient microbiota may play a significant role in 

determining the epidemiological impacts of public health interventions.  

 

5.4.2.  Findings in context 

5.4.2.1.  Comparison of results 

Microbiome simulations predicted colonization dynamics that are broadly consistent with 

previous findings from the literature. Modelling studies have estimated that input from the 

community is the main driver of hospital prevalence, and that both prevalence and 

resistance rates tend to increase in the hospital relative to the community (Knight et al., 

2018; MacFadden et al., 2019). High rates of between-host transmission for MRSA have 

been observed clinically,(Khader et al., 2019; Nadimpalli et al., 2020) while comparatively 

high rates of endogenous acquisition for C. difficile and antibiotic-resistant 

Enterobacteriaceae have been estimated elsewhere (Bootsma et al., 2007; Gurieva et al., 

2018; Martin et al., 2016). Genomic data also suggest that, for gut-residing ARB like C. 

difficile and ESBL-producing E. coli, person-to-person transmission may explain only a 

minority of nosocomial acquisition events.(Caroff et al., 2017; Ludden et al., 2021)  

 

Estimates of intervention efficacy were also more consistent with findings from the 

literature when microbiome interactions were taken into account. Clinical trials and 

modelling estimates have found that contact precautions are effective for reducing 

incidence of MRSA and to a lesser extent C. difficile, but that impact against ESBL-

producing Enterobacterales is limited.(Khader et al., 2021; Kluytmans-van den Bergh et 

al., 2019; Luangasanatip et al., 2015; Maechler et al., 2020; World Health Organization, 

2014) By contrast, findings from the updated meta-analysis of clinical trials suggest that 

hospital antibiotic stewardship interventions may be broadly effective for reducing 

nosocomial incidence of colonization and infection with all included ARB (Figure 5.13). 

The meta-analysis predicted the same rank order of efficacy across included ARB, and 

similar mean efficacy for C. difficile (19% from n=7 studies, vs. 18% under intermediate 
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compliance in simulations), ESBL-EC (18% from n=4 studies, vs. 15%) and MRSA (12% 

from n=10 studies, vs. 10%), but higher efficacy for CP-KP (54% from n=1 study, vs. 20%). 

However, many of the underlying empirical results were associated with high levels of 

uncertainty across heterogeneous interventions, and low methodological quality. 

 

When excluding microbiome interactions, simulations predicted negligible efficacy of 

antibiotic stewardship interventions for controlling ARB incidence. Previous models in the 

literature have predicted efficacy using predominantly strain-based approaches, but often 

focus on resistance rates as the primary outcome, and in many cases assume that patient-

to-patient transmission is the only route of colonization acquisition.(Niewiadomska et al., 

2019) In present simulations, microbiome interactions had a large impact on incidence but 

little impact on resistance rates, for which stewardship interventions were of similar 

efficacy across single-species and microbiome simulations (Figure 5.9 vs. Figure 5.10). 

Consistent with findings in the previous Chapter, this reflects the potential importance of 

different forces of antibiotic selection for different epidemiological indicators: while 

intraspecific competition is a key force of antibiotic selection for many ARB, driving the 

spread of drug-resistant vs. drug-sensitive strains, microbiome interactions may be highly 

relevant drivers of colonization acquisition, particularly in healthcare settings where risks of 

antibiotic exposure and microbiome dysbiosis are high.  

 

5.4.2.2.  Linking within-host bacterial ecology to between-host dynamics 

Studies focusing on within-host microbiome and pathogen dynamics have reached similar 

conclusions to those found in the present work. Insights from both experiments and 

mathematical models suggest that antibiotic disruption of microbiome-pathogen 

competition is a key driver of selection for resistance evolution and dissemination within 

the host.(Baumgartner et al., 2020; Estrela and Brown, 2018; O’Brien et al., 2021; Shaw et 

al., 2019; Stein et al., 2013; Tepekule et al., 2019) Modelling has also been used 

previously to evaluate impacts of microbiome-oriented interventions at the within-host 

level, suggesting promise for preventing dysbiosis and in turn limiting the proliferation of 

antibiotic-resistant bacteria.(Guittar et al., 2021; Guk et al., 2021) However, knock-on 

impacts of these within-host processes on ARB transmission dynamics and 

epidemiological burden have not been evaluated previously, with the exception of a 

number of studies describing the epidemiological impacts of HGT. 

 

Although HGT modelling has largely been limited to studies of within-host or within-culture 
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bacterial population dynamics,(Leclerc et al., 2019; Lerminiaux and Cameron, 2019) its 

connections to bacterial epidemiology are beginning to come to light. Most notably, 

Lehtinen et al. analyzed S. pneumoniae isolates from infants at a refugee camp in South-

East Asia, estimating a low impact of resistance acquisition via HGT relative to selection 

acting upon standing genetic variation.(Lehtinen et al., 2020) Further, using genomic 

surveillance data from a UK hospital, Ludden et al. found little evidence for plasmid-

mediated transmission of ESBL-encoding genes.(Ludden et al., 2021) By contrast, Evans 

et al. found evidence for plasmid transfer between distantly-related genera in longitudinal 

samples of hospital patients in the USA; and León-Sampedro et al. found pervasive within-

host transfer of a carbapenemase-encoding plasmid (pOXA-48) among gut microbiota of 

patients in a hospital in Spain.(D. R. Evans et al., 2020; León-Sampedro et al., 2021) 

Altogether, these findings suggest an unclear impact of HGT on epidemiological dynamics 

of antibiotic resistance in healthcare settings, consistent with substantial uncertainty 

among expert beliefs and HGT-related outcomes in the present work. 

 

5.4.3.  Limitations 

Simulations were limited by the availability of species-specific model parameters from the 

literature, in some instances necessitating use of previous modelling results, 

approximations, or estimates from small studies in particular locations, making the 

generalizability of findings across healthcare settings unclear. For instance, previous 

modelling studies have estimated a 4-fold difference in MRSA transmission rates between 

hospitals and nursing homes.(Khader et al., 2019) Such differences could have a 

substantial impact on dynamics and estimated intervention efficacy, with higher 

transmission rates favouring use of contact precautions, and higher rates of endogenous 

acquisition favouring antibiotic stewardship (in the context of a high estimated ecological 

release coefficient). Overall, uncertainty in parameter inputs translated to uncertainty in 

model outputs, reflecting the knowledge gaps underlying simulations (Figure 5.8). 

Uncertainty in endogenous acquisition rates may have been particularly important: direct 

estimates from the literature were not available for C. difficile and MRSA, yet in 

multivariate sensitivity analyses this parameter emerged as a key driver of both 

colonization prevalence and resistance rates across all ARB (Figure 5.8). 

 

In light of its outsized role in driving outcome uncertainty, it is important to highlight the 

epistemic uncertainty surrounding endogenous acquisition. In Chapter 4, it was highlighted 

that this parameter represents acquisition not resulting from person-to-person transmission 
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(e.g. translocation). However, in reality, what appears to be endogenous acquisition may 

actually be delayed detection of transmission. A transmitted pathogen can establish a 

colony without becoming detectable in clinical specimens, but this same colony may later 

become detectable, for instance after antibiotic exposure. In this case, transmission and 

endogenous outgrowth may simultaneously drive increased resistance burden and risk of 

onward transmission. This level of complexity was not explicitly captured in this work, and 

future modelling studies accounting for hosts with sub-dominant (i.e. clinically 

undetectable) colonization, and not just dominant (detectable) colonization, may help to 

disentangle and better quantify the true epidemiological impacts of different routes of 

acquisition. Similarly, better understanding of endogenous emergence of resistance 

among microbiota is needed. Here, microbiota could acquire resistance subsequent to 

microbiome dysbiosis, motivated by empirical work demonstrating increased abundance of 

antibiotic resistance determinants subsequent to chronic antibiotic therapy, but in reality 

these mechanisms are poorly understood, and endogenous resistance emergence in the 

absence of microbiome dysbiosis may also occur. 

 

Further, the nature of microbiome-pathogen interactions and their epidemiological 

consequences remain poorly understood and largely unquantified. I show in theory why 

these interactions matter, but it was not possible to inform their parameterization using 

empirical data. Instead, microbiome-pathogen competition coefficients were translated into 

clinical parameters, and I designed an expert elicitation exercise allowing subject-matter 

experts to quantify their beliefs and uncertainty. Although these estimates are subject to 

substantial bias and uncertainty, they facilitated species-specific characterization of the 

epidemiological impact of microbiome dysbiosis, and represent useful proxy measures in 

the absence of clinical data.  

  

More broadly, model characterizations of microbiome-pathogen interactions were 

conceptual, and were mapped mechanistically to particular colonization processes 

(transmission, clearance, endogenous acquisition). However, in other contexts, terms like 

colonization resistance, resource competition and ecological release may map to specific 

biochemical processes that could affect epidemiological parameters in different ways. 

Further, data used to estimate class-specific rates of microbiome dysbiosis are specific to 

the gut; class-specific data for dysbiosis of the skin, the preferred niche of S. aureus, were 

not available, potentially over-estimating impacts of dysbiosis on MRSA colonization 

dynamics.  Finally, although C. difficile, MRSA and ESBL-EC are widely endemic and 
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arguably well-represented by the average behaviour predicted by ODE integration, 

stochastic models would allow for more realistic epidemiological dynamics, and could 

account for the likely important impacts of stochastic uncertainty on intervention efficacy. 

This may be particularly true for CP-KP, which remains a rare outbreak pathogen in many 

regions. 

 

5.4.4.  Future directions 

The view that preservation of the host microbiome is central to the control of antibiotic-

resistant bacteria in clinical settings is not new,(Papanicolas et al., 2020) but interactions 

between bacterial pathogens and the host microbiome are nonetheless rarely considered 

in the mathematical modelling literature.(Knight et al., 2019) Findings from this Chapter 

suggest that simultaneous impacts of antibiotics on competing commensal and pathogenic 

bacteria can drive antibiotic-driven selection for high-risk ARB, with important 

consequences for their epidemiological dynamics and the efficacy of public health 

interventions. Although these simulations were limited to a select few ARB, this modelling 

framework and its findings likely have relevance for other bacteria known to interact with 

the microbiome, including vancomycin-resistant Enterococci and other multidrug-resistant 

Enterobacteriaceae.(B Davido et al., 2019; Stecher et al., 2013) Another extension could 

be to explore impacts of the microbiome on epidemiological dynamics of antibiotic 

resistance in the community or other healthcare settings.  

 

In light of the present findings, future clinical and modelling studies investigating the 

nosocomial epidemiology of antibiotic resistance should account for impacts of host 

microbiota on the growth and spread of ARB where possible. In particular, studies are 

needed that describe ecological impacts of antibiotic exposure on microbiome population 

structure across control and treatment groups, with longitudinal follow-up evaluating 

subsequent nosocomial ARB colonization risk. Studies are also needed that evaluate the 

epidemiological impacts of interventions that effectively restore microbiome stability and 

associated colonization resistance as a means to control ARB spread. Increasing 

availability and synthesis of high-quality within-host microbiological data into the future 

should facilitate improved characterization of the ecology of microbiome-pathogen 

interactions, and of the epidemiological consequences of microbiome dysbiosis across 

host populations, pathogen species and healthcare settings. 
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Chapter 6.   Simulating SARS-CoV-2 outbreaks in the 

long-term care setting using individual-based 

modelling 

6.1.  The COVID-19 pandemic 

On December 31st 2019, a cluster of patients with viral pneumonia of unknown aetiology 

was reported in Wuhan, China.(ProMED: International Society for Infectious Diseases, 

2019) On January 9th 2020, a novel coronavirus was identified as the cause of the 

outbreak,(World Health Organization, 2020a) and on January 11th its first officially 

recognized fatality was announced.(World Health Organization, 2020b) Two days later, 

Thailand’s Ministry of Public Health reported the first case outside of China,(World Health 

Organization, 2020c) and on January 24th the first European cases were reported in 

France, among three travelers hospitalized after returning from Wuhan.(World Health 

Organization Regional Office for Europe, 2020) Shortly thereafter, on January 30th, WHO’s 

Director-General Dr. Tedros Adhanom Ghebreyesus declared a public health emergency 

of international concern.(World Health Organization, 2020d) Finally, on March 11th 2020, 

with more than 118,000 confirmed cases and 4,291 deaths across 114 countries, WHO 

declared a global pandemic of coronavirus disease 2019 (COVID-19), caused by severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2).(World Health Organization, 

2020e)  

 

This “first wave” of the COVID-19 pandemic has been succeeded by various subsequent 

waves, which have ebbed and flowed asynchronously across the globe, affecting nearly 

every inhabited region on Earth. As of August 9th 2021, the COVID-19 Dashboard 

administered by Johns Hopkins University estimates that there have been 203 million 

confirmed cases of COVID-19 and 4.3 million deaths worldwide,(Center for System 

Science and Engineering at Johns Hopkins University, 2020) although official figures are 

widely believed to be underestimated.(Kung et al., 2021; Pullano et al., 2021) For instance, 

in a meta-analysis of seroprevalence studies, Rostami et al. extrapolated globally to 

estimate that over 260 million individuals had already been exposed to or infected by 

SARS-CoV-2 as of August 2020.(Rostami et al., 2021) Yet the public health impacts of the 

COVID-19 pandemic extend far beyond SARS-CoV-2 infection. Disruptions to food 

security and global trade are just two examples of how COVID-19 has shocked world 
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economies,(Guan et al., 2020; Swinnen and McDermott, 2020) while one setting in 

particular has been nearly universally burdened across cities, countries and continents: the 

healthcare setting. 

 

6.1.1.  Pandemic impacts on healthcare facilities 

The COVID-19 pandemic has had vast impacts on healthcare facilities and the 

provisioning of health services. Exponential growth in COVID-19 hospitalizations over 

various pandemic waves has overwhelmed hospitals worldwide, with the number of 

patients requiring hospital beds, intensive care and mechanical ventilation often 

outnumbering local capacity.(Condes et al., 2021; Grasselli et al., 2020; L. Li et al., 2020) 

This has compromised care pathways and clinical outcomes for COVID-19 patients and 

non-COVID-19 patients alike.(Bersano et al., 2020; Olivas-Martínez et al., 2021; Richter et 

al., 2021) In many regions, healthcare centres have been restructured to accommodate 

surges in COVID-19 patients at the expense of other services, resulting in cancelled 

surgical operations, delayed emergency care, missed oncological consultations, and other 

deleterious impacts across care sectors.(Bonalumi et al., 2020; Søreide et al., 2020; Stöß 

et al., 2020; Y. Wei et al., 2020) Various other complicating factors have exacerbated 

conditions for both patients and staff, from high rates of healthcare worker sick leave and 

burn-out, to scarce or compromised infection prevention and control resources, to 

medication shortages, to surges in hazardous waste disposal, to heightened hospital 

security needs.(Alquézar-Arbé et al., 2020; Peiffer-Smadja et al., 2020; Siow et al., 2020) 

Yet one of the most significant impacts of the COVID-19 pandemic on healthcare facilities, 

and the focus of subsequent Chapters of this thesis, is that they became epicentres for 

SARS-CoV-2 transmission.  

 

6.1.2.  Nosocomial SARS-CoV-2 transmission 

During the initial outbreak in Wuhan, nosocomial transmission was determined to be an 

important driver of SARS-CoV-2 spread, with identified risk factors for HCW infection 

including limited PPE, sustained exposure to infected patients, and inadequate 

training.(Sun et al., 2020; J. Wang et al., 2020; X. Wang et al., 2020) The WHO-China 

Joint Mission – a 9-day visit of 25 international experts to investigate the emerging 

outbreak – reported 2,055 laboratory-confirmed cases of COVID-19 among Chinese 

HCWs in February 2020.(World Health Organization, 2020f) By March, nosocomial 

outbreaks had been reported in, among other locations, a paediatric ward in South 

Korea,(Jung et al., 2020) a geriatric unit in France,(Vanhems et al., 2020) a university 
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hospital in Germany,(Correa-Martínez et al., 2020) an orthopaedic surgery department in 

Spain,(Lakhani et al., 2020) a rehabilitation clinic in Switzerland,(Mohamed Abbas et al., 

2021a) and a university medical centre in the United States.(Bays et al., 2020) In the 

absence of high-resolution epidemiological or genomic data, particularly early in the 

pandemic and in the context of exponential growth in the community, it has often been 

difficult to determine whether SARS-CoV-2 infections among patients and healthcare 

workers are truly a result of nosocomial acquisition.(Mohamed Abbas et al., 2021b) 

However, a wide number of studies have now observed, characterized and quantified the 

transmission of SARS-CoV-2 in healthcare settings.  

 

Using mixed epidemiological and genetic data, Meredith et al. estimated that 15% of 374 

hospitalized COVID-19 patients across the East of England up to April 2020 likely acquired 

their infection in hospital.(Meredith et al., 2020) This is broadly consistent with findings 

from Evans et al., who used a mathematical modelling approach to estimate that 20% of 

infections in hospital inpatients and 73% in healthcare workers resulted from nosocomial 

transmission during the first pandemic wave in England.(S. Evans et al., 2020) Later, 

between November 2020 and January 2021 in four Oxfordshire hospitals, Lumley et al. 

used whole genome sequencing to estimate a similar rate of nosocomial infection (14%), 

and found that approximately 80% of nosocomial transmission occurred during super-

spreading events.(Lumley et al., 2021) A key role for super-spreading in driving 

nosocomial transmission has also been identified elsewhere, for instance using detailed 

contact tracing data from a tertiary hospital in Taiwan,(Huang et al., 2021) and using 

phylogenetic analysis in a skilled nursing facility in Massachusetts,(Lemieux et al., 2021), a 

general ward of a hospital in Hong Kong,(Cheng et al., 2021) and a hospital in 

England.(Illingworth et al., 2021) There is now an extensive literature describing 

healthcare-associated COVID-19 infection, and nosocomial outbreak risk has been found 

to depend on a range of factors, including the type of healthcare facility and the 

characteristics of the underlying patient and staff populations.(M Abbas et al., 2021; 

Rovers et al., 2020; Q. Zhou et al., 2020) 

 

6.1.3.  COVID-19 in long-term care settings 

From care homes to rehabilitation centres, long-term care facilities (LTCFs) are uniquely 

vulnerable to COVID-19. The reasons for this are severalfold. LTCF patients and residents 

require continuing care, live in close proximity to one another, and are typically elderly and 

multimorbid, placing them at elevated risk of both acquiring SARS-CoV-2 and suffering 
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severe outcomes from COVID-19.(D’Adamo et al., 2020; Salcher-Konrad et al., 2020; F. 

Zhou et al., 2020) High rates of inter-individual contact in certain types of LTCF, including 

rehabilitation centres and nursing homes, may be a particularly important driver of 

outbreak risk.(Temime et al., 2021) For instance, some LTCFs permit visitors, allow social 

gatherings and organize group activities for residents, which are likely to favour 

transmission to and from patients.  

 

Carers and other HCWs in LTCFs are also susceptible to infection and, amidst imperfect 

hygiene and infection prevention measures, potentially acquire and transmit the virus 

through necessary daily interactions with both residents and staff.(Mohamed Abbas et al., 

2021a; Gross et al., 2021; Louie et al., 2021) Other occupational hazards, including staff 

shortages, constrained IPC resources and limited training, likely also contribute to 

nosocomial transmission. 

 

In a policy brief from WHO, a range of structural issues predisposing LTCFs to SARS-

CoV-2 outbreaks were also identified, including underfunding, the sharing of 

underemployed and undervalued staff across facilities, and fragmentation between long-

term care and other health service sectors.(World Health Organization, 2020g) This 

vulnerability has entailed stark epidemiological realities. In a characteristic outbreak in 

early 2020 in a skilled nursing facility in Washington, USA, there were a reported 167 

infections and 34 deaths within just three weeks of identification of an initial index 

case.(McMichael et al., 2020) Myriad similar outbreaks have since been reported 

worldwide, and although the full extent of the ongoing pandemic is unclear and ever-

evolving, LTCFs have and continue to bear a disproportionate burden of SARS-CoV-2 

infection and COVID-19 mortality.(D. Fisman et al., 2020; D. N. Fisman et al., 2020; 

Salcher-Konrad et al., 2020) Across Europe, for instance, LTCFs accounted for an 

estimated 30-60% of all COVID-19 deaths as of June 2020.(ECDC Public Health 

Emergency Team et al., 2020) 
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6.2.  Mobilizing public health research on COVID-19 

The profound and far-reaching consequences of the pandemic have led to an 

unprecedented groundswell of support from scientific research teams, who re-organized or 

postponed existing research projects en masse to address the imminent threat of COVID-

19. Our research group was among those mobilized to contribute to COVID-19 research, 

particularly in the context of our expertise in epidemiological modelling and nosocomial 

infection control. Prior to the pandemic, the next step in my thesis was to extend concepts 

from previous Chapters by simulating within-host microbiome-pathogen interactions in 

LTCF settings using CTCmodeler, a previously developed individual-based pathogen 

transmission model. However, in light of the urgency of the public health challenges posed 

by the pandemic, we instead adapted CTCmodeler to simulate SARS-CoV-2 outbreaks, in 

order to evaluate the efficacy and efficiency of public health interventions for nosocomial 

COVID-19 control. Below, I describe CTCmodeler and how we adapted it to simulate 

SARS-CoV-2 epidemics in the LTCF setting.  
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6.3.  CTCmodeler : an individual-based pathogen transmission 

model 

CTCmodeler (‘the model’) is a stochastic, individual-based pathogen transmission model 

programmed in C++ using the repast HPC library 2.2.0. It was developed and coded by  

Audrey Duval, a former PhD student in our research group, as part of her thesis work on 

nosocomial pathogen control.(Duval, 2019) A detailed description of the model program 

has been published previously.(Duval et al., 2019b) Briefly, the model simulates (i) 

dynamic inter-individual contacts among patients and staff in a long-term care facility 

setting, (ii) pathogen transmission along resulting contact networks, and (iii) disease 

progression among infected individuals. The model can be flexibly adapted to represent 

any pathogen by varying underlying epidemiological parameters like the transmission rate, 

duration of infection and probability of presenting with symptoms. The underlying LTCF 

population structure and inter-individual contact behaviour were informed using 

epidemiological data from the Individual-Based Investigation of Resistance Dissemination 

(i-Bird) study, a longitudinal observational study summarized below, and described in 

detail elsewhere.(Duval et al., 2018; Obadia et al., 2015) 

 

6.3.1.  Demographic and close-proximity interaction data from the i-Bird study 

The i-Bird study was an epidemiological investigation led by Professor Didier Guillemot as 

part of the MOSAR project (Mastering hOSpital Antimicrobial Resistance and its spread 

into the community) funded by the European Commission. It was conducted between May 

and November 2009 at Berck-sur-Mer rehabilitation hospital in northern France, and 

provided detailed demographic data about all individuals in the LTCF over this period. 

There are five wards in this facility corresponding to different medical specialties: three 

neurology rehabilitation wards, one geriatric rehabilitation ward, and one nutrition care 

ward. Patients and staff were associated with specific wards, although some transversal 

staff worked across multiple wards. Patients were potentially admitted or discharged over 

the course of the study period, with an average length of stay of 7 weeks, and a median 2 

(range 0 - 11) new patient admissions per day. Staff were classified across 13 categories 

of employment, grouped here as HCWs (caregiver, nurse, physiotherapist, occupational 

therapist, nurse trainee, physician, and hospital porter) and ancillary staff (hospital 

services, administration, other rehabilitation staff, management, logistical staff, and activity 

coordinator/hairdresser). A diagram of this LTCF and the average number of patients and 

staff found in each ward per week is given in Figure 6.1. 



 

 177 

 

 

Figure 6.1.  LTCF diagram. 

A diagram of Berck-sur-Mer rehabilitation hospital, showing the average weekly number of patients and 
staff in each ward. The ward ‘Other’ accounts for staff not affiliated with any one particular ward, including 
those who work in the back office or regularly move between wards. 

 

During the study period, all patients and staff in the LTCF were recruited to wear Radio-

Frequency Identification Devices (RFIDs) on their person at all times. RFIDs are sensors 

capable of detecting proximity to other RFIDs at a high spatio-temporal resolution. In this 

study, RFIDs detected every 30s whether any other RFIDs were within a proximity of 1.5m 

at that time. All RFID-RFID pairings were recorded and interpreted as close-proximity 

interactions (CPIs) between the individuals wearing each respective RFID. A statistical 

analysis of these CPIs has been published previously.(Duval et al., 2018) Briefly, across 

nearly 2.7 million CPIs recorded among 318 patients and 262 staff over a 17-week period, 

distinct contact patterns were identified in each ward, reflecting behaviours particular to 

patients and different types of staff in this LTCF. For instance, patients typically spent 24 

hours per day in the facility and had higher rates of contact with HCWs during mornings 

and afternoons, but with other patients in evenings. Staff were present according to their 

respective working hours, and had fewer overall contacts during evenings and weekends. 

HCWs had more distinct contacts with other individuals (on average 14.3 CPIs/day) than 

patients (11.2 CPIs/day), but had a shorter cumulative duration of time spent in contact 

with others (15 minutes/day) than patients (32 minutes/day). Compared to other wards, 

contacts were fewest (8.6 distinct CPIs/day) and longest (47 cumulative minutes/day) in 

the geriatric ward. In contrast to a contact network observed using similar methods in an 

acute care setting, patient-patient CPIs were particularly frequent and numerous in this 

LTCF, reflecting the group meals, art classes and other social activities that took place 
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over the data collection period in this pre-pandemic LTCF.(Duval et al., 2018; Vanhems et 

al., 2013) 

 

6.3.2.  Simulating dynamic contact networks 

Demographic data from iBird were used directly as model inputs to describe the patient 

and staff populations simulated by CTCmodeler. Real patient admission and staff 

timesheet data were used to determine who was present in the LTCF on any given day: 

over each 7-day period, there were a mean 170 patients and 240 staff present each week 

(as visualized in Figure 6.1, and stratified further by type of individual in Table 6.1). 
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Table 6.1.  LTCF demography. 

Demographic breakdown of patients and staff present in each ward of the simulated baseline LTCF. Staff 
were grouped as healthcare workers (HCWs) or ancillary staff. The ward ‘Other’ accounts for staff not 
affiliated with any one particular ward, including those who work in the back office or regularly move 
between wards.  

Type of individual 

Average number present per week per ward (% of all individuals present per ward) 

Ward 1 Ward 2 Ward 3 Ward 4 Ward 5 Other All 

Patient Patient 38 (49%) 32 (45%) 35 (55%) 35 (67%) 30 (54%) 0 (0%) 
170 

(41%) 

HCW 

Caregiver 20 (26%) 19 (27%) 14 (21%) 7 (13%) 10 (18%) 21 (23%) 92 (22%) 

Nurse 11 (14%) 7 (10%) 8 (13%) 6 (11%) 7 (13%) 12 (13%) 51 (12%) 

Physiotherapist 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 12 (13%) 12 (3%) 

Nurse trainee 1 (1%) 3 (5%) 2 (3%) 0 (0%) 2 (3%) 2 (2%) 10 (2%) 

Occupational 

Therapist 
0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 7 (8%) 7 (2%) 

Physician 1 (1%) 2 (3%) 1 (2%) 1 (2%) 1 (2%) 0 (0%) 6 (1%) 

Hospital porter 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 6 (6%) 6 (1%) 

Ancillary 

staff 

Hospital services 

staff 
4 (5%) 4 (6%) 3 (5%) 2 (4%) 3 (5%) 0 (0%) 16 (4%) 

Logistical staff 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 16 (18%) 16 (4%) 

Other 

rehabilitation staff 
1 (1%) 3 (4%) 0 (0%) 0 (0%) 2 (4%) 2 (2%) 8 (2%) 

Administrative 

staff 
0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 8 (9%) 8 (2%) 

Management 1 (1%) 1 (1%) 1 (2%) 1 (2%) 1 (2%) 2 (2%) 7 (2%) 

Activity 

coordinator/ 

hairdresser 

0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (2%) 2 (0%) 

Total (100%) 78 72 63 53 55 90 410 

 

CPI data from iBird were also used as model inputs to inform inter-individual contact 

behaviour. However, to account for missing data resulting from imperfect sensor 

compliance in the raw network, novel contact networks were simulated. The probability of 

coming into contact with another individual at each time-step (30 seconds) was estimated 

from the raw contact data. These contact probabilities were stratified by hour of the day 

(e.g. 8:00:00-8:59:30, 9:00:00-9:59:30), day of the week (weekday vs. weekend), ward and 

type of individual. At each time-step, new contacts were simulated based on these 

probabilities, and contact durations were drawn stochastically from log-normal distributions 

fit to raw contact duration data and stratified by the same variables. The final simulated 

contact network aggregated over one randomly selected day is provided in Figure 6.2. 
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Contact behaviours were found to be comparable between the raw and simulated 

networks, and fidelity of the simulated network has been validated previously by its ability 

to reproduce transmission dynamics from a real outbreak of methicillin-resistant 

Staphylococcus aureus in this LTCF.(Duval, 2019; Obadia et al., 2015) 

 

 

Figure 6.2.  Simulated contact network. 

A snapshot of the dynamic contact network simulated by CTCmodeler, showing all patients (circles) and 
staff (triangles) present in the baseline LTCF as nodes, and inter-individual contacts aggregated over one 
randomly selected day as edges. Nodes and edges are coloured by ward, with grey edges representing 
contacts across wards. [Rendered by Audrey Duval.] 
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6.4.  Applying CTCmodeler to SARS-CoV-2 and COVID-19 

I worked collaboratively with Audrey Duval to apply her model to simulate SARS-CoV-2 

outbreaks. Together, we conceptualized how CTCmodeler could be applied to this system, 

using available literature to inform model parameters and epidemiological scenarios. 

Audrey updated the program code and launched simulations, while I was responsible for 

all analysis and calculation of epidemiological outcomes from raw simulation data.  

 

To apply CTCmodeler, three key modeling assumptions were made. First, SARS-CoV-2 

was assumed to be introduced into the LTCF through either newly admitted patients or 

staff members infected in the community. Second, infection followed a modified 

Susceptible-Exposed-Infected-Recovered process, including pre-symptomatic and 

asymptomatic infection, with stochastic progression through infection stages. Third, 

transmission could occur during contacts between infectious and susceptible individuals, 

with transmission probability scaling linearly with contact duration. These assumptions are 

detailed further below. 

 

6.4.1.  SARS-CoV-2 introductions from the community 

We distinguish between SARS-CoV-2 index cases and SARS-CoV-2 introductions. Index 

cases were defined as patients and staff infected with SARS-CoV-2 upon simulation 

outset, who were thus assumed to have acquired infection prior to the simulation period. 

Introductions were defined as subsequent cases of SARS-CoV-2 infection introduced into 

the LTCF from the community over the course of simulation time, limited to staff members 

(assumed to contact individuals in the community outside work hours) and newly admitted 

patients (assumed to potentially carry the virus upon LTCF entry). Different sets of 

assumptions about index cases and introductions represent different epidemiological 

scenarios reflecting variable COVID-19 burden in the community, and are defined 

accordingly in subsequent Chapters. 

 

6.4.2.  Characterizing COVID-19 infection 

Clinical progression of COVID-19 was characterized by a modified SEIR (Susceptible-

Exposed-Infectious-Recovered) process using parameter estimates from the literature 

(Figure 6.3). We assumed: (i) a non-infectious exposed period of 2-5 days, (ii) an 

infectious pre-symptomatic period of 1-3 days, (iii) an on-average 7-day infectious 

“symptomatic” period with three levels of symptom severity (severe, mild or 
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asymptomatic), and (iv) eventual recovery with full immunity. Together, (i) and (ii) amount 

to an incubation period of 3-8 days including a 1-3 day window of pre-symptomatic 

transmission, consistent with estimates used elsewhere.(Lauer et al., 2020; Tindale et al., 

2020; Zhang et al., 2020) For (iii), we assumed that 70% of infected individuals develop 

clinical symptoms,(Buitrago-Garcia et al., 2020; Mizumoto et al., 2020; Nishiura et al., 

2020) 20% of which develop severe/critical symptoms.(Wu and McGoogan, 2020) Model 

parameters are provided in Table 6.3, at the end of this Chapter. 

 

Figure 6.3.  SARS-CoV-2 infection flow diagram. 

A diagram of the modified SEIR process used to characterize SARS-CoV-2 infection (S = susceptible, E 
= exposed, IP = infectious pre-symptomatic, IA = infectious asymptomatic, IM = infectious with mild 
symptoms, IS = infectious with severe symptoms, R = recovered), with transitions between states a to f 
(see Table 6.2). 
 
For each individual infection in the model, durations for each stage of infection were drawn 

probabilistically from their respective distributions. We assumed no difference in average 

time to symptom onset for mild symptomatic and severe symptomatic cases, nor any 

difference in symptom duration. As outbreaks were simulated over short time periods to 

evaluate different epidemiological surveillance strategies, death and potential long-term 

clinical outcomes were not explicitly simulated. Unlike the bacterial colonization processes 

modelled using ODEs in Chapters 4 and 5, this COVID-19 infection process is applied to 

an individual-based model, so transitions between state variables are described 

algorithmically (Table 6.2).  
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Table 6.2.  SARS-CoV-2 infection state transitions. 

State transitions for the SEIR infection process. Numerical values are drawn probabilistically for each 
transition for each individual in the model. Durations were taken as integer values, corresponding to days 
(parameter values in Table 6.3). 

Symbol Name Transition Description 

a Infection S à E 

After a contact with an Infectious individual, Susceptible 

individuals become infected and enter Exposed class with 

probability: (p ´ duration of contact) 

b 

Infectiousness 

onset (pre-

smptomatic) 

E à IP 
Exposed individuals become Infectious (but do not yet show 

symptoms) after duration dE 

c 
Sympton onset 

(severe) 
IP à IS 

Pre-symptomatic individuals progress to the next stage of 

infectiousness after duration dp; a proportion (sMS) ´ (sS) develop 

severe symptoms 

d 
Symptom onset 

(mild) 
IP à IM 

Pre-symptomatic individuals progress to the next stage of 

infectiousness after duration dp; a proportion (sMS) –  (sMS ´ sS) 

develop mild symptoms 

e 
Symptom onset 

(asymptomatic) 
IP à IA 

Pre-symptomatic individuals progress to the next stage of 

infectiousness after duration dp,; a proportion (1 – sMS) are 

asymptomatic and never develop symptoms 

f Recovery 
(IS or IM or 

IA) à R 

Individuals progress to a Recovered state (non-infectious, non-

symptomatic, non-susceptible to re-infection) after duration dS 

 

6.4.3.  Characterizing SARS-CoV-2 transmission 

Parameter estimates from the literature were used to characterize SARS-CoV-2 

transmission (Table 6.3). Susceptible patients and staff j could become infected with 

SARS-CoV-2 if in direct contact with an Infectious individual i. We assumed that the 

probability of transmission per infectious contact, Pi,j, depends on the transmission 

probability per time spent in contact, p, and the duration of that contact, Di,j (limited to 

intervals of 30 seconds, the discrete time-step for the transmission model). This is 

expressed as 

 𝑃J→K = 𝑝 × 𝐷J,K  
(eq. 6.1) 

To apply this specifically to SARS-CoV-2, as discussed in Temime et al., the transmission 

probability parameter p was computed as follows.(Temime et al., 2021) Assuming 

homogeneous mixing among individuals and independent contacts, the basic reproduction 

number (R0) of a pathogen can be approximated as 

 𝑅8 = 𝑝 × 𝑛 × 𝑑 × 𝜏 
(eq. 6.2) 

where n is the average number of daily contacts per individual; d is the average duration of 

these contacts; and 𝜏 is the duration of the infectious period. Owing to a lack of data from 

healthcare settings, these parameters were estimated using epidemiological data from the 
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French community prior to lockdown in March 2020 (R0=3),(Salje et al., 2020) and a 

detailed survey of inter-individual contacts in the general community prior to the pandemic 

(n = 8 contacts/days, d = 30 minutes).(Béraud et al., 2015) Assuming an infectious period 

of 𝜏 = 9 days for COVID-19, we calculated a transmission probability of p = 0.14% per 

minute spent in contact with a Susceptible individual. We further set a saturation threshold 

at one hour of contact, such that the per-contact transmission probability was at most 8.3% 

per contact between any two individuals. Under baseline assumptions in the simulated 

LTCF, this estimate for p resulted in a mean R0=4.04 (Figure 6.4). Compared to the 

assumed R0=3.0 in the community, this is consistent with the finding that, for any given 

value of p, R0 is expected to vary between community and healthcare settings because of 

fundamental differences in inter-individual contact behaviour.(Temime et al., 2021)  

 

Figure 6.4.  R0 distribution. 

Distributions of the basic reproduction number (R0), the number of secondary infections caused by an 
initial index case introduced at the beginning of 200 independent stochastic simulations in the simulated 
LTCF under baseline assumptions (p=0.14%). The index case was a patient in 100 simulations (red) and 
a member of staff in the other 100 (blue). R0 varied from 0 to 20 across all simulations, with a mean value 
of R0=4.04 (dashed black line). However, R0 was greater when index cases were patients (mean R0=6.64) 
than staff (mean R0=1.44). [Rendered by Audrey Duval.] 
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Table 6.3.  Model parameter estimates. 

Parameter Value (distribution) Source 

Parameters for estimation of SARS-CoV-2 transmission rate per minute of contact 

SARS-CoV-2 basic reproduction number (R0) in the 

general community prior to lockdown 

3.0  (Salje et al., 2020) 

Average infectious period of SARS-CoV-2 (t) 9 days (He et al., 2020) 

Average number of contacts per day per individual prior 

to lockdown (n) 

8 (Béraud et al., 2015) 

Average duration per contact prior to lockdown (d) 30 minutes (Béraud et al., 2015) 

Epidemiological and clinical parameters 

SARS-CoV-2 transmission rate per minute of contact (p) 0.00139  Estimated 

Duration of exposed period (latency) (dE) 2-5 days (uniform) (Lauer et al., 2020; W. E. Wei et al., 

2020) 

Duration of pre-symptomatic period (dP) 1-3 days (uniform) (Lauer et al., 2020; W. E. Wei et al., 

2020) 

Duration of symptomatic period  

(whether asymptomatic, mild symptomatic or severe 

symptomatic) (dS) 

7 days (log-normal, σ² = 7) (He et al., 2020)  

Proportion of COVID-19 infections presenting any 

symptoms (sMS) 

0.7 (Buitrago-Garcia et al., 2020) 

Proportion of symptomatic COVID-19 infections with 

severe symptoms (sS) 

0.2 (Wu and McGoogan, 2020) 

 

 
It is important to highlight potential limitations of using these pre-pandemic contact data to 

simulate SARS-CoV-2 outbreaks. First, one assumption underlying CTCmodeler is that in-

ter-individual contacts relevant for transmission are those occurring within a proximity of 

1.5m. However, SARS-CoV-2 is viable in aerosol samples, and overdispersion in transmis-

sion (i.e. superspreading) may result from aerosol-based rather than droplet-based trans-

mission facilitating spread at longer distances.(Greenhalgh et al., 2021; van Doremalen et 

al., 2020) Further, these pre-pandemic contact data clearly represent a facility with no so-

cial distancing measures or behavioural interventions in place. However, such interven-

tions were widely implemented through early 2020 in response to the pandemic. Con-

versely, visitors were excluded from CTCmodeler due to lack of data, which is consistent 

with policies barring guests from LTCFs early in the pandemic.  
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6.5.  Using simulated SARS-CoV-2 outbreaks to evaluate public 

health interventions 

This updated version of CTCmodeler was used to simulate SARS-CoV-2 outbreaks. I then 

calculated epidemiological indicators describing outbreak dynamics, and developed 

computational algorithms to quantify the effectiveness and efficiency of surveillance and 

control interventions through evaluation of simulated outbreak data. These studies and 

their findings are presented in subsequent Chapters. In Chapter 7 I describe evaluation of 

testing strategies for detection of emerging SARS-CoV-2 outbreaks, in an early pandemic 

context with limited availability of reverse-transcriptase polymerase chain reaction (RT-

PCR) testing resources. In Chapter 8 I describe evaluation of surveillance and control 

strategies for prevention of nosocomial SARS-CoV-2 transmission, in a later pandemic 

context with availability of both RT-PCR and antigen rapid diagnostic testing (Ag-RDT), 

and in the context of reactive surveillance following a surge in SARS-CoV-2 importation 

risk from the community. 
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Chapter 7.   Optimizing limited testing resources for 

nosocomial SARS-CoV-2 surveillance  

 

7.1.  Introduction 

Effective nosocomial COVID-19 surveillance is essential for timely outbreak detection and 

implementation of public health interventions that limit transmission, including contact 

tracing, case isolation, and targeted infection prevention measures.(Bakaev et al., 2020; 

Iritani et al., 2020; Sanchez et al., 2020) The “gold-standard” diagnostic test for active SARS-

CoV-2 infection is RT-PCR, typically performed on clinical specimens from nasopharyngeal 

swabs.(Böger et al., 2021) Though sensitive and highly specific, laboratory-based RT-PCR 

is relatively expensive and resource intensive, and must be outsourced for institutions 

lacking on-site infrastructure. Early in the pandemic, shortages of swabs and testing kits, 

logistical challenges and overwhelmed laboratories together resulted in insufficient testing 

capacity and delays to test results in healthcare settings worldwide.(Akst, 2020; Beaudevin 

et al., 2021; Hadaya et al., 2020; Péré et al., 2020) In a survey of 283 heads of emergency 

departments of Spanish hospitals, 55% reported that diagnostic testing resources were 

“often” or “very often” scarce over March and April 2020, more than any other medical 

resource.(Alquézar-Arbé et al., 2020) Although global testing capacity has since been 

dramatically scaled-up in many regions, in practice COVID-19 surveillance is still limited by 

available testing capacity and health-economic resources, particularly for institutions in low- 

and middle-income settings.(Mukhtar and Khogali, 2021; Wachholz and Jacinto, 2020) 

 

In the context of limited testing resources, a common practice in LTCFs in France, the 

Netherlands, the UK, the USA and elsewhere has been to restrict testing to individuals 

presenting with characteristic COVID-19 symptoms.(D’Adamo et al., 2020; Department of 

Health & Social Care, 2020; Ministère des solidarités et de la santé, 2020; Rijksinstituut 

voor Volksgezondheid en Milieu, 2020) Yet symptomatic infections represent just the tip of 

the iceberg: many infections cause no or only mild symptoms, produce high quantities of 

virus in the absence of symptoms, and experience relatively long delays until symptom 

onset.(Arons et al., 2020; Lauer et al., 2020; W. Li et al., 2020; Tindale et al., 2020) Silent 

transmission from asymptomatic and pre-symptomatic infections is a known driver of 

SARS-CoV-2 outbreaks,(Huff and Singh, 2020; Moghadas et al., 2020) and non-
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symptomatic cases can act as Trojan Horses, unknowingly introducing the virus into 

healthcare institutions and triggering nosocomial spread.(Asad et al., 2020; ECDC Public 

Health Emergency Team et al., 2020; Kimball et al., 2020) 

 

Insufficient surveillance systems, including those lacking testing capacity or relying only on 

symptoms as indications for testing, have been identified as aggravating factors for SARS-

CoV-2 outbreaks in LTCFs.(Arons et al., 2020; Bigelow et al., 2021; Blackman et al., 2020; 

ECDC Public Health Emergency Team et al., 2020; Gandhi et al., 2020; Louie et al., 2021) 

Various surveillance strategies have been proposed to optimize limited RT-PCR testing 

while accounting for the particular transmission dynamics of SARS-CoV-2, including 

randomly testing HCWs, testing all patients upon admission, and universal or serial 

testing.(Black et al., 2020; Escobar et al., 2021; Goldberg et al., 2021) Group testing 

(sample pooling, combining clinical specimens from multiple individuals into a single 

biological sample for a single RT-PCR test) has also garnered attention as a potentially 

diagnostically sensitive and resource-efficient alternative to individual-based 

testing.(Eberhardt et al., 2020; Hogan et al., 2020; Mallapaty, 2020; Narayanan et al., 

2020; Pouwels et al., 2020; Yelin et al., 2020)  

 

In order to mitigate and prevent future nosocomial outbreaks, there is an urgent need to 

optimize COVID-19 surveillance in long-term care settings, taking into account both the 

unique epidemiological characteristics of SARS-CoV-2 and limited availability of testing 

resources.(World Health Organization, 2020g) In this Chapter, I investigate the efficacy, 

timeliness and resource efficiency of a range of RT-PCR surveillance strategies for 

detection of emerging SARS-CoV-2 outbreaks in the long-term care setting. 
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7.2.  Methods 

7.2.1.  SARS-CoV-2 outbreak simulations in the long-term care setting 

Nosocomial SARS-CoV-2 outbreaks were simulated by Audrey Duval using CTCmodeler, 

the dynamic, stochastic, individual-based transmission model presented in Chapter 6. To 

represent a vulnerable LTCF at the beginning of the COVID-19 pandemic, we assumed 

that all patients and staff in the facility were susceptible, and that no specific COVID-19 

containment measures (e.g. social distancing, vaccination) were in place. SARS-CoV-2 

was introduced into the facility under a range of importation scenarios, described below. 

For each scenario, 100 stochastic outbreak simulations were run for 12 weeks using 

identical initialization conditions. Accordingly, within-scenario variability in outbreaks 

resulted only from stochasticity inherent to the SARS-CoV-2 transmission process and 

COVID-19 infection progression.  

 

7.2.1.1.  Importation scenarios 

All simulations began with the random introduction of a single non-symptomatic index case 

from the community into the LTCF on the first day of simulation (t=0), with equal probability 

of index cases being exposed, pre-symptomatic or asymptomatic. Introductions from the 

community were limited to staff or new patient admissions, with the latter conceptualized 

as transfers from other healthcare facilities. Five distinct importation scenarios were 

considered, each describing a different source and frequency of SARS-CoV-2 

introduction(s) into the LTCF: 

 

1. Scenario 1 (weekly patient or staff) [baseline scenario]:  

a. an identical 50% probability that index cases were patients or staff 

b. in addition to the initial case at t0, other community-onset cases were 

randomly introduced on average once weekly 

2. Scenario 2 (single patient transfer):  

a. only one infected patient admitted at t0 

3. Scenario 3 (weekly patient transfer): 

a. a different infected patient admitted once weekly 

4. Scenario 4 (single infected staff) : 

a. only one staff member infected in the community at t0 

5. Scenario 5 (weekly infected staff) : 

a. a different staff member infected in the community once weekly 
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7.2.1.2.  Sensitivity analyses 

Two principal sensitivity analyses for outbreak simulations were included. First, to reflect 

uncertainty in the estimated transmissibility of SARS-CoV-2 per minute spent in infectious 

contact (p=0.14% probability / minute), extreme estimates for COVID-19 epidemicity in the 

community were considered (R0=1.5, 6), which translated to lower and higher transmission 

rates, respectively (p=0.07%, 0.28% probability / minute). Second, to account for potential 

epidemiological impacts of LTCF size and structure, a smaller LTCF geared towards elder 

care was simulated by restricting simulations to patients and staff from the 30-bed geriatric 

ward 5 (including ‘other’ transversal staff). For this, a distinct contact network was 

simulated, as described for the baseline LTCF in the previous Chapter, and was 

interpreted as representing a nursing home. There were a mean 8.0 daily patient-patient 

contacts and 8.3 daily patient-staff contacts in this nursing home contact network, which 

compares to patterns reported previously by Assab & Temime in a nursing home in Paris, 

France (5.0 daily patient-patient contacts, 6.3 daily patient-staff contacts).(Assab and 

Temime, 2016)  The five SARS-CoV-2 importation scenarios described above were also 

run for this second LTCF. 

 

7.2.2.  Simulation outputs and epidemiological outcomes 

Final outputs from each outbreak simulation were summarized in an infection file, 

describing the infection status (susceptible, exposed, etc.) of each unique individual in the 

LTCF on each day of simulation time. These outputs were used to calculate four primary 

epidemiological outcomes: 

 

1. Infection incidence: the daily acquisition rate of SARS-CoV-2 infection 

2. Infection prevalence: the number of individuals in each stage of infection on each 

day 

3. Final outbreak size: the cumulative number of infections after 12 weeks of 

unmitigated transmission 

4. Case distribution: the proportion of infections among patients, HCWs and ancillary 

staff 

 

Note that the terms SARS-CoV-2 infection and COVID-19 are used interchangeably. 

Among simulations that resulted in outbreaks (defined as simulations with ≥1 case of 

nosocomial SARS-CoV-2 transmission within 21 days of the initial index case), two 
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additional secondary outcomes were calculated: (i) lag until COVID-19 symptom onset, 

the number of days until someone with COVID-19 presented with symptoms in the LTCF; 

and (ii) outbreak size upon first presentation of COVID-19 symptoms. These 

outcomes are reported as median values across simulations, with uncertainties expressed 

as 95% uncertainty intervals, i.e. outcomes from the 2.5th and 97.5th percentiles. 

 

7.2.3.  Surveillance interventions 

Surveillance was applied retrospectively to output data from outbreak simulations, under 

assumptions of imperfect diagnostic sensitivity and limited capacity of RT-PCR testing. 

The primary goal was to evaluate the timeliness and resource-efficiency of a range of 

surveillance interventions for SARS-CoV-2 outbreak detection.  

 

7.2.3.1.  Included surveillance interventions 

Four types of surveillance were evaluated, each describing different use of RT-PCR tests: 

 

1. Indication-based testing 

2. Random testing 

3. Testing cascades 

4. Group testing 

 

Each was further subdivided into distinct surveillance strategies, listed in Table 7.1. For 

indication-based testing, three indications were considered: presentation of severe 

COVID-like symptoms (reference strategy), presentation of any COVID-like symptoms, or 

new admission to the LTCF. For random testing, tests were randomly distributed among 

patients, HCWs, or all patients and staff present in the LTCF on the day of testing.  

 

In contrast to these first two types of surveillance, testing cascades and group testing were 

conceived as hierarchical testing protocols, in which individuals presenting with severe 

COVID-like symptoms were always tested first to reflect their clinical priority. Remaining 

tests were subsequently allocated via cascades or as a single group test.  

 

Testing cascades were conceived as mixed testing strategies combining indications and 

random testing, in which multiple indications were considered simultaneously but ordered 

according to their perceived clinical priority. If there were more tests available than 

individuals indicated for testing, remaining tests were distributed randomly among 
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remaining patients, such that cascades always maximized daily testing capacity. 

 

For group testing, clinical specimens from individual swabs were pooled together and 

tested as one group test, up to a maximum of 32 swabs per test in the baseline analysis 

(but ranging from 2 to 64 swabs in sensitivity analysis). A simple two-stage ‘Dorfman’ 

protocol was used, which does not require additional investment or infrastructure, but 

which requires all individuals included in the initial group test to be re-swabbed and re-

tested individually upon a positive group test result, in order to determine which 

individual(s) is (are) infected.(Dorfman, 1943; Mallapaty, 2020) Various studies have 

demonstrated the efficacy of group testing for SARS-CoV-2 detection, with sufficient 

diagnostic accuracy to detect a single SARS-CoV-2-positive specimen pooled with 30+ 

negative specimens.(Lohse et al., 2020; World Health Organization, 2020h; Yelin et al., 

2020) Yet diluting positive specimens nonetheless reduces the concentration of viral RNA 

in the sample, which reduces sensitivity of a group test compared to an individual test of 

the same positive specimen.(Lee et al., 2020) Detailed assumptions for RT-PCR test 

sensitivity for both individual and group testing are provided below. 
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Table 7.1.  Surveillance strategies. 

Surveillance strategies evaluated for detection of SARS-CoV-2 outbreaks in a LTCF. Strategies differ in 
how swabs and tests were apportioned to patients and staff. Arrows (→) indicate order of priority for 
testing cascades. Test = RT-PCR test; swab = nasopharyngeal swab; symptoms = COVID-like 
symptoms; admission = transfer of new patient to the LTCF. 

Surveillance 
type 

Description Surveillance strategy 

Daily 
testing 

capacity 
always 

reached? 

Single 
indication 

Administer tests to any individuals 
indicated for testing, up to the daily testing 
capacity. If the number of individuals 
indicated exceeds the number of tests 
available, select randomly among them.  

Symptoms (severe) [reference strategy] No 

Symptoms (any) No 

Admission No 

Random 
Each day, randomly administer tests to 
individuals in a particular demographic 
group.  

Random (patients) Yes 

Random (HCWs) Yes 

Random (all: patients, HCWs and 
ancillary staff) 

Yes 

Cascade  

A combination of indications and random 
testing. First, use indications to administer 
tests according to a given order of priority. 
Then, if any tests remain, distribute them 
randomly among patients not otherwise 
indicated for testing. 

Symptoms (severe) → Symptoms (mild) 
→ Random (patients) 

Yes 

Symptoms (severe) → Symptoms (mild) 
→ Admission → Random (patients) 

Yes 

Symptoms (severe) → Admission → 
Random (patients) 

Yes 

Symptoms (severe) → Admission → 
Symptoms (mild) → Random (patients) 

Yes 

Group testing 

Classic two-stage Dorfman sample 
pooling, modified to account for clinical 
urgency of severe COVID-19. First, 
administer individual tests to any patients 
or staff presenting with severe symptoms. 
Then, if at least one test remains, pool 
clinical specimens together and run one 
test across this group sample. If the test 
result is positive, individually re-swab and 
re-test all included individuals to identify 
cases. The maximum number of samples 
per group test was varied from 2 to 64.  

Symptoms (any) No 

Admission No 

Random (patients) (always maximizes 
number of specimens per group test) 

No 
 

Random (HCWs) (always maximizes 
number of specimens per group test) 

No 

 
 

7.2.4.  Diagnostic sensitivity of RT-PCR 

7.2.4.1.  Individual testing 

RT-PCR sensitivity varies over the course of infection, depending on the density of virus in 

the clinical sample. In a meta-analysis, Kucirka et al. estimated the false-negative rate 

(FNR) of RT-PCR for detection of SARS-CoV-2 in nasopharyngeal samples as a function 

of time since infection.(Kucirka et al., 2020) On the first and second days after infection, 

FNR was 100%, falling to 67% by four days, reaching a minimum of 20% by eight days, 

and increasing gradually thereafter. These estimates were calculated until 21 days after 
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infection; the curve was extrapolated linearly until it reached 100% FNR at 28 days 

(Figure 7.1). Here, for a swab administered to an individual infected t days prior, the 

corresponding test result was determined using a stochastic binomial process, in which the 

probability of a positive test result was calculated as 1-FNRt.  

 

For individuals infected within the LTCF, duration of infection upon swab administration 

was calculated directly from simulation output data. For community-onset infections, 

duration of infection was generated stochastically depending on the stage of infection upon 

LTCF introduction: 1 day if exposed, ~𝑈(2,5) + 1 days if pre-symptomatic infectious, and ~𝑈(2,5) + ~𝑈(1,3) + 1 days if asymptomatic. In a sensitivity analysis, higher and more 

stable RT-PCR sensitivity was considered: instead of varying by time since infection, 

sensitivity was fixed at 30% during the exposed stage of infection (E), and 90% across all 

infectious stages (IP, IA, IM, IS). 

 

 

Figure 7.1.  RT-PCR sensitivity (individual test). 

Diagnostic sensitivity of RT-PCR for detection of SARS-CoV-2 as a function of time since infection. 
Values were calculated from the RT-PCR false negative rate for detection of SARS-CoV-2 using upper 
respiratory samples, as estimated for up to 21 days in a meta-analysis.(Kucirka et al., 2020) Pink bars 
were extrapolated linearly from the data to complete the distribution. 
 

7.2.4.2.  Group testing (single positive sample) 

Diagnostic sensitivity of RT-PCR is reduced when a pathogen-positive sample is diluted 

with negative samples and/or less concentrated positive samples. In an experimental 

study, Yelin et al. combined individual SARS-CoV-2-positive samples with between 1 and 

63 negative samples, and evaluated the Cycle threshold (Ct) at which RT-PCR detected 
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SARS-CoV-2 in each group sample (fluorescence threshold=300).(Yelin et al., 2020) To 

define RT-PCR test results from these data, a default diagnostic threshold was defined for 

the main analysis (positive SARS-CoV-2 test result if fluorescence >300 at Ct=40) and a 

stricter threshold for sensitivity analysis (Ct=35). Using these criteria, the proportion of true 

positive test results (diagnostic sensitivity) was calculated for each sample size S (the total 

number of samples included per group sample), and group test sensitivity (sg) was defined 

as a function of the number of negative samples included in the group sample (S-1). A 

linear relationship was assumed, 

 𝑠n = 𝑠8 − 𝑟 × (𝑆 − 1) 
(eq. 7.1) 

where r is the discounting rate per additional negative sample added to the group sample. 

In this experimental context, the intercept s0 is fixed at 1 since the positive sample is a 

known true-positive. Linear regression was used to estimate the discounting rate for both 

diagnostic cut-offs, finding r=0.690% at Ct=40 and r=1.271% at Ct=35 (Figure 7.2). These 

findings are broadly consistent with empirical data: in a large Spanish study evaluating 

3,519 nasopharyngeal samples in ten-sample pools, group test sensitivity was estimated 

at 97.1% when accounting for only major discrepancies between individual and group test 

results, and 85.5% when accounting for both major and minor discrepancies.(de Salazar et 

al., 2020) However, this formula does not account for group tests containing multiple true-

positive samples. 

 

 

Figure 7.2.  Group test sensitivity (single positive specimen). 

Diagnostic sensitivity of RT-PCR for detecting SARS-CoV-2 in a group sample declines as additional 
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negative specimens are added to the group sample. Using data from Yelin et al. (circles), linear 
regression (lines) was used to estimate r, the discounting rate per additional negative specimen added 
to the sample.(Yelin et al., 2020) A rate r=0.006904 was found for the diagnostic cut-off used in the 
baseline analysis (Ct=40) and r=0.01271 for the stricter cut-off used in sensitivity analysis (Ct=35). Here, 
there is only one individual positive sample included per group sample, regardless of the number of 
negative samples included. 
 

7.2.4.3.  Group testing (multiple positive samples) 

Methods have recently been proposed for using detailed virological data to calculate 

diagnostic sensitivity for a group sample containing multiple positive specimens.(Nguyen 

et al., 2019) In absence of such data, it was necessary to estimate diagnostic sensitivity for 

multi-positive group tests given only the number of specimens included, and the diagnostic 

sensitivity of each positive specimen when tested individually. 

 

For a group sample consisting of multiple potentially detectable positive samples P and a 

set total number of samples S, the density of viral particles is necessarily less than the 

most concentrated sample Pmax, but more than the density given by a group sample with 

the same S but containing only Pmax and no other P. In this sense, the theoretical 

sensitivity of RT-PCR for a multi-positive group sample is bounded by smax (sensitivity for 

Pmax when tested individually) and sS-1 (sensitivity for Pmax when diluted with S-1 negative 

samples, i.e. with no other P). By extension, when RT-PCR sensitivity is known for each 

individual sample si, I propose that sensitivity for a group test can be approximated by 

using equation 1 to estimate sensitivity for Pmax alone, and then modifying this by the 

relative individual sensitivities si of all other P included in the sample. This is given by 

 𝑠n = 𝑠~T³ − 𝑟 × (𝑆 − 𝑃´) 
 (eq. 7.2) 

where the relative contribution of each P (excluding P1, which gives smax) to sg is 

 

𝑃′ =¢ 𝑠J𝑠~T³
µ
J¥�  

 (eq. 7.3) 

This equation is demonstrated in Figure 7.3 using seven hypothetical examples of group 

samples, each composed of S individual samples, of which P are potentially detectable 

SARS-CoV-2-positive samples. The figure shows si (triangles, the diagnostic sensitivity for 

each P when tested individually) and sg (circles, corresponding diagnostic sensitivity for 

the group test), and illustrates the theoretical range of sg (grey shaded area) as a function 
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of S for a given smax and r. 

 

 

Figure 7.3.  Group test sensitivity (multiple positive specimens). 

RT-PCR diagnostic sensitivity for a mixed group sample (sg, circles) was modelled as a function of 
sensitivity for each individual specimen in that sample (si, triangles). Each colour corresponds to a 
different group. Only positive samples P are shown; negative and undetectable individual samples (si = 
0) are excluded from the plot. The shaded grey area gives the full theoretical range of sg (here, given 
smax=0.7 and r=0.006904). 
 

7.2.5.  A stochastic algorithm for COVID-19 surveillance 

To implement and evaluate surveillance interventions, I developed a stochastic algorithm 

that reads output files from outbreak simulations to identify on each day: 

 

1. Which individuals were present in the LTCF 

2. Which patients were newly admitted to the LTCF over the previous 24 hours  

3. Who was actively infected with SARS-CoV-2 

4. Who was experiencing COVID-19 symptoms 

 

Using these data, the algorithm could then: 

 

1. Identify which individuals were to be tested, according to the surveillance strategies 

described above (Table 7.1) 

2. Administer nasopharyngeal swabs and RT-PCR tests to selected individuals, with 



 

 198 

testing capacity ranging from 1 to 32 tests/day 

3. Stochastically determine test results, assuming perfect specificity and using the 

sensitivity curves described above (equation 7.2) 

4. Count the cumulative number of swabs and tests used 

 

If on a given day there were more individuals indicated for testing than there were tests 

available, then tests were distributed randomly among them. It was assumed that no 

individuals refused testing, and a 24-hour lag from swab to test result was implemented. 

All parameters used by the surveillance algorithm are provided in Table 7.2. 

 

Table 7.2.  Surveillance algorithm parameters. 

Parameter Value (distribution) Source 

Daily incidence rate of non-COVID but COVID-like symptoms 
0.011 Estimated from OSCOUR data, 

described in (Fouillet et al., 2015) 

Proportion of non-COVID but COVID-like symptoms with signs of 

severity 

0.2 Assumed 

Delay from test to test result 1 day Assumed 

RT-PCR specificity 100% (Böger et al., 2021) 

RT-PCR sensitivity Up to 80% (Figure 7.1) (Kucirka et al., 2020) 

Daily testing capacity (tests/day) 1, 2, 4, 8, 16, 32 Assumed 

Maximum number of specimens per group test 2, 4, 8, 16, 32, 64 Assumed 

RT-PCR sensitivity discounting rate per additional true-negative 

specimen 

0.7% (1.3% in sensitivity 

analysis) 

Estimated from (Yelin et al., 2020) 

 

7.2.5.1.  COVID-19-like symptoms 

Clinically, COVID-19 can resemble other common acute respiratory infections, such that 

individuals not infected with SARS-CoV-2 can nonetheless present with COVID-19-like 

symptoms and be indicated for symptom-based testing.(Borges do Nascimento et al., 

2020) Influenza-like illness was used as a proxy for COVID-like symptoms of aetiologies 

other than SARS-CoV-2. This was calculated using data from 2008-2017 from French 

emergency departments (OSCOUR network) as the daily incidence rate of influenza-like 

illness among older adults (50-99 years).(Fouillet et al., 2015) As with COVID-19, it was 

assumed that 20% of these individuals also present with “severe” symptoms. Actual 

COVID-19 symptoms were taken directly from simulation output files, so were identical 

across each run of surveillance for any given outbreak, while COVID-19-like symptoms of 

other aetiologies were simulated randomly for each run. Hence, within each simulated 

outbreak, variation in surveillance outcomes resulted from stochasticity in test results and 
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in the incidence of COVID-19-like symptoms of other aetiologies.  

 

7.2.5.2.  Outbreak detection 

For each stochastic run of the algorithm, surveillance began on the first day of outbreak 

simulation (t0) and continued until the first positive test result was returned. The date of the 

first positive test was interpreted as corresponding to outbreak detection, the primary 

surveillance endpoint used in evaluation of surveillance efficacy and efficiency. A 

maximum lag to outbreak detection was defined at 22 days (corresponding to the average 

epidemic peak across outbreaks), after which all outbreaks were assumed to be detected 

regardless of the surveillance strategy used. 

 

7.2.6.  Surveillance outcome measures 

7.2.6.1.  Measures of efficacy 

Efficacy of surveillance strategies for detection of emerging nosocomial SARS-CoV-2 

outbreaks was described using three primary outcome measures. First, detection lag, the 

delay in days from the initial index case to outbreak detection (first positive test result, as 

described above). For group testing, this was taken as the date of the first positive group 

test result (first round of testing) and not the date of subsequent case identification 

(second round). Second, outbreak size upon detection, the cumulative number of 

SARS-CoV-2 infections in the LTCF upon first positive test result. Third, the probability of 

detecting an outbreak (i) at any time t from the index case at t=0, (ii) prior to any 

secondary cases (interpreted as the probability of detecting the index case before any 

nosocomial transmission), and (iii) prior to first presentation of COVID-19 symptoms. 

 

7.2.6.2.  Measures of efficiency 

From a health-economic perspective, an efficient use of healthcare resources is one that 

yields better health outcomes than alternative uses of the same resources.(Palmer and 

Torgerson, 1999) Efficiency can be measured using incremental analysis, in which the 

additional cost of a particular intervention compared to a reference baseline is scaled by its 

additional health benefit.(Shiell et al., 2002) This is traditionally expressed as the 

incremental cost-effectiveness ratio using monetary costs and standardized units of health 

benefit (e.g., quality-adjusted life-years gained). To report on efficiency in terms of the 

surveillance cost and benefit outcomes measured in this study, a similar metric was 

defined, the incremental efficiency ratio (IER),  
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𝐼𝐸𝑅 = (𝑠𝑢𝑟𝑣𝑒𝑖𝑙𝑙𝑎𝑛𝑐𝑒	𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒	𝑢𝑠𝑒)a − (𝑠𝑢𝑟𝑣𝑒𝑖𝑙𝑙𝑎𝑛𝑐𝑒	𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒	𝑢𝑠𝑒)h(𝑠𝑢𝑟𝑣𝑒𝑖𝑙𝑙𝑎𝑛𝑐𝑒	𝑜𝑢𝑡𝑐𝑜𝑚𝑒)a − (𝑠𝑢𝑟𝑣𝑒𝑖𝑙𝑙𝑎𝑛𝑐𝑒	𝑜𝑢𝑡𝑐𝑜𝑚𝑒)h  

(eq. 7.4) 

for each surveillance strategy S relative to the reference R. Efficiency results were 

calculated using the IER as the number of additional swabs and tests required per 1-case 

reduction in outbreak size upon detection (for simplicity, reported as mean additional 

swabs and tests used per case averted). The perspective taken was that of an LTCF 

with a reference strategy of only testing individuals with severe COVID-like symptoms. 

Here, for group testing, efficiency does account for the second round of testing, i.e. 

resources required to individually re-swab and re-test all individuals included in the initial 

positive group test.  

 

7.2.6.3.  Outcome uncertainty 

Surveillance outcomes were only evaluated for model simulations that resulted in 

nosocomial outbreaks (as defined above, simulations with ≥1 case of nosocomial 

transmission within 21 days of the initial index case). For each outbreak simulation, the 

surveillance algorithm was run 100 times across six testing capacities (1, 2, 4, 8, 16 or 32 

RT-PCR tests/day), for a total 60,000 stochastic simulations for each surveillance strategy 

in the baseline scenario. Outcome measures are reported as medians across all 

simulations, with uncertainties expressed as 95% uncertainty intervals, i.e. outcomes from 

the 2.5th and 97.5th percentiles.  
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7.3.  Results 

7.3.1.  Nosocomial transmission dynamics 

7.3.1.1.  Prevalence 

Introductions of SARS-CoV-2 into the LTCF from the community led to nosocomial 

outbreaks with exponential growth in infection prevalence. Figure 7.4 shows the 

prevalence of COVID-19 over time for four example simulations (left panels), as well as 

the median prevalence across all 100 outbreaks simulated (right panel) for the baseline 

scenario of weekly patient or staff introductions. Prevalence curves are stratified by 

infection status (colours), demonstrating lags until first onset of COVID-19 symptoms. 

Although it was assumed in the model that 70% of infections eventually develop COVID-19 

symptoms, this figure demonstrates that symptomatic cases represent a small minority of 

infections in nascent outbreaks, as a result of: (i) lags to symptom onset due to infection 

incubation, and (ii) accumulation of non-symptomatic cases due to pre-symptomatic 

transmission. 

 

 

Figure 7.4.  Simulated COVID-19 prevalence. 

Prevalence curves of COVID-19 cases resulting from random introductions of SARS-CoV-2 into the 
baseline 170-bed LTCF. Left: Four examples of stochastic outbreak simulations. Right: The median 
epidemic curve across all 100 simulations for the baseline scenario, with dotted lines demarcating median 
time lags to selected events. Bars represent the median number of individuals in each infection class 
over time, and do not necessarily total to the median number infected (e.g. there is a median 1 infection 
at t=0 but a median 0 infections in each class, as each index case had an equal 1/3 probability of being 
exposed, pre-symptomatic or asymptomatic). 
 

7.3.1.2.  Incidence 

Incidence of COVID-19 also increased exponentially upon outbreak onset. Figure 7.5 

shows infection incidence across different epidemiological scenarios (columns) and 
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indicators (rows). Figure 7.5A shows the daily incidence of new COVID-19 cases for 

each simulation (coloured lines) as well as the median across all simulations (black lines). 

Figure 7.5B shows the distribution of the cumulative incidence at 12 weeks across all 

100 simulations for each scenario; Figure 7.5C shows the case distribution of the 

cumulative incidence at 12 weeks, stratified by type of individual infected. From these 

figures, it can be seen that SARS-CoV-2 spread quickly, but with a great degree of 

stochasticity upon its introduction into the LTCF. For the baseline importation scenario of 

weekly patient or staff introductions, after three weeks of unmitigated transmission there 

were a cumulative 86 (95% uncertainty interval: 6-224) individuals infected, predominantly 

other patients (median 72%), followed by HCWs (25%) and ancillary staff (3%). Among 

HCWs, most infections were among caregivers, followed by nurses.  

 

By 12 weeks, most outbreaks had gone extinct, with a median incidence of zero cases 

across all importation scenarios over the final week of simulation. Epidemiological 

dynamics were similar across importation scenarios, except for introductions caused by a 

single member of staff (scenario 4), who did not transmit their infection to anyone else in 

the facility in 36% of simulations, resulting in no outbreak.  
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Figure 7.5.  Simulated COVID-19 incidence. 

Simulated COVID-19 incidence, comparing different epidemiological outcomes (rows) and scenarios of 
SARS-CoV-2 introduction into the LTCF (columns, with the baseline scenario in red). (A) Daily COVID-
19 incidence among all patients and staff, with each coloured line representing an individual outbreak 
simulation. Black lines represent the median daily incidence across 100 simulations. (B) Histograms of 
cumulative incidence at 12 weeks (the final epidemic size). NB: data are naturally censured by the 12-
week simulation period. (C) Boxplots of case distributions, the cumulative incidence at 12 weeks stratified 
among the fourteen different categories of individual present in the LTCF. 
 

7.3.1.3.  Outbreak dynamics in different facilities 

Table 7.3 compares the cumulative incidence of infection over time for the baseline 170-
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bed LTCF, and for the smaller 30-bed geriatric LTCF that was simulated as a sensitivity 

analysis. Cumulative incidence was of course reduced in the smaller LTCF, but overall 

epidemiological dynamics were similar, with rapid SARS-CoV-2 transmission, particularly 

among patients, and significantly reduced outbreak risk in scenarios where staff, and not 

patients introduce the virus. 

 

Table 7.3.  Cumulative incidence across facilities. 

Cumulative COVID-19 incidence over time, stratified by epidemiological scenario, LTCF, and type of 
individual. Only simulations resulting in outbreaks were included (for LTCF 1, 64% of simulations from 
scenario 4, 100% from other scenarios; for LTCF 2, 96% from scenario 2, 24% from scenario 4, 100% 
from other scenarios). 

Scenario 
Type of 

individual 

Median cumulative number infected per outbreak by time t (95% UI) 

LTCF 1: Rehabilitation hospital (170 beds) LTCF 2: Geriatric LTCF (30 beds) 

1 week (t=7) 
2 weeks 

(t=14) 

3 weeks 

(t=21) 
1 week (t=7) 

2 weeks 

(t=14) 

3 weeks 

(t=21) 

Scenario 1: 

Weekly 

patient or 

staff 

Patient 3 (0 - 16) 21 (0 - 84) 64 (2 - 142) 1 (0 - 10) 7 (0 - 27) 24 (0 - 31) 

HCW 1 (0 - 5) 5 (0 - 25) 22 (1 - 77) 1 (0 - 2) 2 (0 - 12) 8 (1 - 18) 

Ancillary staff 0 (0 - 1) 1 (0 - 5) 3 (0 - 13) 0 (0 - 1) 1 (0 - 3) 2 (0 - 5) 

Total 4 (1 - 20) 30 (2 - 100) 86 (6 - 224) 2 (1 - 12) 10 (2 - 39) 34 (3 - 52) 

Scenario 2: 

Single patient 

transfer 

Patient 7 (2 - 19) 30 (9 - 86) 96 (33 - 145) 3 (1 - 11) 19 (1 - 26) 27 (3 - 31) 

HCW 1 (0 - 5) 8 (1 - 25) 32 (7 - 68) 0 (0 - 3) 5 (0 - 11) 12 (1 - 17) 

Ancillary staff 0 (0 - 2) 1 (0 - 4) 4 (0 - 11) 0 (0 - 1) 0 (0 - 2) 2 (0 - 5) 

Total 9 (2 - 23) 40 (10 - 111) 133 (39 - 221) 4 (1 - 13) 25 (2 - 36) 40 (7 - 49) 

Scenario 3: 

Weekly 

patient 

transfer 

Patient 7 (2 - 19) 37 (11 - 93) 109 (43 - 148) 4 (1 - 11) 17 (2 - 26) 28 (12 - 32) 

HCW 1 (0 - 4) 9 (2 - 28) 36 (11 - 76) 0 (0 - 4) 4 (0 - 12) 11 (1 - 18) 

Ancillary staff 0 (0 - 2) 1 (0 - 4) 5 (0 - 12) 0 (0 - 1) 0 (0 - 3) 2 (0 - 5) 

Total 9 (2 - 21) 48 (15 - 116) 150 (62 - 227) 4 (1 - 13) 23 (3 - 38) 42 (13 - 51) 

Scenario 4: 

Single 

infected staff 

Patient 0 (0 - 6) 3 (0 - 41) 25 (0 - 97) 0 (0 - 4) 4 (0 - 22) 18 (0 - 29) 

HCW 1 (0 - 4) 3 (1 - 14) 8 (1 - 43) 1 (0 - 2) 2 (1 - 7) 6 (2 - 13) 

Ancillary staff 0 (0 - 1) 0 (0 - 3) 1 (0 - 6) 0 (0 - 1) 0 (0 - 1) 1 (0 - 3) 

Total 2 (1 - 9) 6 (2 - 57) 36 (2 - 146) 2 (1 - 6) 6 (2 - 29) 26 (2 - 44) 

Scenario 5: 

Weekly 

infected staff  

Patient 0 (0 - 11) 2 (0 - 48) 20 (0 - 108) 0 (0 - 4) 0 (0 - 19) 0 (0 - 29) 

HCW 1 (0 - 4) 3 (1 - 15) 10 (1 - 40) 1 (0 - 2) 2 (0 - 7) 3 (1 - 13) 

Ancillary staff 0 (0 - 1) 1 (0 - 3) 1 (0 - 6) 0 (0 - 1) 1 (0 - 2) 1 (0 - 4) 

Total 2 (1 - 13) 6 (2 - 64) 34 (3 - 150) 1 (1 - 6) 2 (2 - 25) 4 (3 - 44) 

 



 

 205 

7.3.1.4.  Lags until symptom onset 

In the baseline scenario, SARS-CoV-2 outbreaks were characterized by a median lag of 9 

(2-24) days between the non-symptomatic index case entering the LTCF and first 

presentation of mild COVID-19 symptoms among any patient or staff in the facility (Table 

7.4). By the time symptoms emerged, an additional 5 (0-29) individuals had acquired 

SARS-CoV-2 but were not (yet) showing symptoms (Table 7.5). Lags were longer for first 

presentation of severe COVID-19 symptoms (15 days from index case, 4-28), coinciding 

with a greater cumulative number of secondary infections (25, 0-101). These findings 

underlie potential challenges to relying on symptoms to inform COVID-19 surveillance.  

 

Table 7.4.  Lags to first symptom onset. 

Lags between introduction of the index case and first presentation of mild and severe COVID-19 
symptoms. Results are stratified by epidemiological scenario and LTCF. Only simulations resulting in 
outbreaks were included (for LTCF 1, 64% of simulations from scenario 4, 100% from other scenarios; 
for LTCF 2, 96% from scenario 2, 24% from scenario 4, 100% from other scenarios). Lags for outbreaks 
in which certain symptoms never appeared are indicated as ‘never’. 

Scenario 
Lag until first symptom onset, days (95% CI) 

LTCF 1: Rehabilitation hospital LTCF 2: Nursing home 
Mild symptoms Severe symptoms Mild symptoms Severe symptoms 

Scenario 1: Weekly 

patient or staff 
9 (2-24) 15 (4-28) 9 (2-28) 18 (2 - never) 

Scenario 2: Single 

patient transfer 
7 (2-15) 12 (4-21) 9 (2-24) 15 (3 - never) 

Scenario 3: Weekly 

patient transfer 
7 (2-13) 10 (4-23) 8 (2-19) 14 (3 - never) 

Scenario 4: Single 

infected staff 
8 (2-never) 20 (3-never) 17 (2-never) 27 (3 - never) 

Scenario 5: Weekly 

infected staff 
10 (2-37) 21 (4-never) 9 (2-28) never (3 - never) 

 

Table 7.5.  Outbreak size upon first symptom onset. 

The cumulative number of individuals infected on the day that COVID-19 symptoms first appeared among 
anyone present in the LTCF (outbreak size upon first symptom onset). Results are stratified by 
epidemiological scenario and LTCF. Only simulations resulting in outbreaks were included (for LTCF 1, 
64% of simulations from scenario 4, 100% from other scenarios; for LTCF 2, 96% from scenario 2, 24% 
from scenario 4, 100% from other scenarios), and outbreaks were excluded if no symptoms ever occurred 
over the course of the outbreak. 

Scenario 
Outbreak size upon first symptom onset (95% UI) 

LTCF 1: Rehabilitation hospital LTCF 2: Nursing home 
Any symptoms Severe symptoms Any symptoms Severe symptoms 

Scenario 1: Weekly 

patient or staff 
6 (1-30) 26 (1-102) 3 (1-24) 24 (1-49) 

Scenario 2: Single 

patient transfer 
8 (1-25) 26 (3-100) 7 (1-22) 25 (3-42) 

Scenario 3: Weekly 

patient transfer 
7 (1-24) 23 (4-97) 5 (1-19) 24 (1-45) 

Scenario 4: Single 

infected staff 
2 (1-20) 18 (1-115) 2 (1-9) 22 (2-43) 

Scenario 5: Weekly 

infected staff 
2 (1-23) 26 (1-89) 2 (1-20) 20 (1-44) 
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7.3.2.  Surveillance efficacy over time 

Figure 7.6 shows the cumulative probability over time of different surveillance strategies 

detecting emerging SARS-CoV-2 outbreaks, demonstrated in the context of a maximum of 

1 test/day using the same example simulations (left panels) and median outbreak 

prevalence (right panels) as shown in Figure 7.4. Different surveillance strategies varied 

substantially in their ability to detect emerging SARS-CoV-2 outbreaks, with group testing 

strategies generally having the highest probability of outbreak detection, and random or 

admission-based strategies the lowest probability. Example simulations (left panels of 

Figure 7.6) demonstrate how surveillance efficacy depended on the stochastic nature of 

outbreaks, including how many, and which types of individuals became infected over time. 

Since outbreaks tended to grow exponentially at their outset, delaying outbreak detection 

by just one or two days potentially coincided with tens more infections occurring. 

 

 

Figure 7.6.  Probability of outbreak detection over time (baseline). 

Prevalence curves of COVID-19 cases (bars, coloured by type of individual infected; left y-axis) overlayed with 
the cumulative probability of outbreak detection for various surveillance strategies (points and lines, coloured 
by surveillance strategy; right y-axis). Left panels: the same simulation examples used in Figure 7.4.  Right 
panels: median outcomes. Plots reflect the baseline scenario (weekly patient or staff introductions) and low 
testing capacity (1 test/day). 

 

Importantly, surveillance efficacy varied depending on the epidemiological scenario 

considered and the available testing capacity. Similar to the right panel in Figure 7.6, 

Figure 7.7 shows median infection prevalence (bars) and median cumulative probability of 

outbreak detection (lines), stratified across three epidemiological scenarios (columns) and 

daily RT-PCR testing capacities (rows). Scenarios resulting in smaller outbreaks 

corresponded with lower probabilities of outbreak detection. Surveillance strategies 

favouring patient testing were comparatively less effective in scenarios where cases were 
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only introduced into the LTCF by staff. Conversely, strategies favouring testing at 

admission were only potentially effective in scenarios with patients introducing the virus 

into the LTCF. Overall, the strategies most likely to detect outbreaks varied depending on 

testing capacity: at low capacity, group testing strategies generally had the highest 

probability of outbreak detection; at high capacity, cascades had highest probabilities. 

 

 

Figure 7.7.  Probability of outbreak detection over time (across scenarios). 

COVID-19 prevalence varied over time (coloured vertical bars) across selected SARS-CoV-2 importation 
scenarios (columns). Consequently, the probability of detecting outbreaks over time using different 
surveillance strategies (coloured lines) varied as a result of differences in how many, and which types of 
individuals became infected over time across importation scenarios, as well as on daily testing capacity 
(rows).  
 

7.3.3.  Surveillance efficacy as a function of daily testing capacity 

Figure 7.8 shows two surveillance efficacy outcomes (detection lag and outbreak size 

upon detection) as a function of daily testing capacity for all included surveillance 

strategies. Figure 7.9 shows three additional surveillance outcomes (probability of 

outbreak detection prior to any secondary cases, prior to any mild COVID-19 
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symptoms, and prior to any severe COVID-19 symptoms), also stratified by testing 

capacity across selected surveillance strategies. 

 

 

Figure 7.8.  Surveillance efficacy (1/2). 

For the baseline scenario (weekly patient or staff introductions), surveillance efficacy of different 
surveillance strategies (y-axis) as a function of the daily RT-PCR testing capacity (x-axis) reported using 
two outcomes: (A) median lag to outbreak detection (95% uncertainty interval) and (B) corresponding 
median outbreak sizes upon outbreak detection (95% uncertainty interval). Group testing strategies 
included a maximum of 32 swabs per test. For both cascades and group testing, individual tests were 
always reserved for individuals with severe COVID-19-like symptoms; remaining tests were then 
distributed according to cascades or as a single group test. SS = severe symptoms; MS = mild symptoms; 
A = admission; R = random patients. 
 

7.3.3.1.  Overall surveillance efficacy across testing capacities 

Across all testing capacities, only testing individuals with severe COVID-19-like symptoms 

was among the least effective surveillance strategies considered (Figure 7.8). This 

“reference” strategy took 16-17 days (range of medians) to detect outbreaks, and had a 2-

4% probability of detecting the initial index case prior to any secondary cases (Figure 7.9). 
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Instead of only severe symptoms, testing individuals with any COVID-19-like symptoms 

was more effective, taking 9-15 days to detect outbreaks, with a 3-14% probability of 

detecting index cases prior to any secondary cases. Only testing patients at admission 

was overall ineffective by right of detecting neither staff index cases nor ongoing outbreaks 

already underway in the LTCF, resulting in long median delays to outbreak detection 

despite comparatively high probabilities of detecting COVID-19 prior to any secondary 

cases (10-33%). In the scenario where only new patients introduced SARS-CoV-2 into the 

LTCF, there was a 34% probability of detecting the index case when testing all patients 

upon admission, or 66% in the sensitivity analysis considering higher and more stable RT-

PCR sensitivity. For random testing strategies, surveillance was highly ineffective when 

few tests were available, but increasingly effective at higher testing capacities (Figure 

7.8). Conversely, for indication-based strategies, efficacy plateaued when capacity 

exceeded the number of individuals potentially indicated for testing (Figure 7.9). 

 

7.3.3.2.  Optimal surveillance at high testing capacity 

At high testing capacity (16-32 tests/day, ≈9-19 tests/100 beds/day), testing cascades 

were the most effective surveillance strategies (Figure 7.8). The four cascades considered 

detected outbreaks within a median 7-10 days (range of medians), coinciding with just 3-6 

COVID-19 infections among all patients and staff. Cascades had a 19-36% chance of 

detecting outbreaks prior to any secondary cases, a 26-46% chance prior to the 

emergence of any COVID-19 symptoms, and a 64-85% chance prior to severe COVID-19 

symptoms (Figure 7.9). Cascades that included both new patient admission and 

presentation of any COVID-19-like symptoms as indications for testing were most 

effective.  

 

7.3.3.3.  Optimal surveillance at low testing capacity 

At low testing capacity (1 or 2 tests/day, ≈0.6-1.2 tests/100 beds/day), group testing was 

the most effective form of surveillance considered. Compared to the reference (16-17 

days) and cascades (16-17 days), outbreaks were detected within 11-14 days (coinciding 

with a cumulative 9-16 infections) when pooling random patients, or 12-14 days (15-23 

infections) when pooling random HCWs (Figure 7.8). At this low capacity, it was also more 

effective to pool symptomatic individuals in group tests (10-12 days, 9-17 infections) than 

to test them individually (12-15 days, 17-27 infections) because individuals with non-

COVID-19 but COVID-19-like symptoms were also “in competition” for limited tests. 

Compared to the baseline protocol, which assumed a maximum of 32 swabs/test, group 
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testing was less effective given fewer swabs per test, despite potentially higher test 

sensitivity. For example, when pooling randomly selected patients in daily group tests, 

outbreaks were detected within 11-14 days at 32 swabs/test (range of medians across all 

testing capacities), 12-15 days at 8-16 swabs/test, and 14-17 days at 2-4 swabs/test.  

 

 

Figure 7.9.  Surveillance efficacy (2/2). 

For selected surveillance strategies (x-axis), the probability of detecting COVID-19 outbreaks (y-axis) 
before any secondary cases (top panel), before the onset of any COVID-19 symptoms (middle panel), 
and before the onset of any severe COVID-19 symptoms (bottom panel), under baseline modelling 
assumptions. Probabilities depended on the daily testing capacity (colours), and saturate at high testing 
capacity for all but random and cascade strategies. 
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7.3.3.4.  Surveillance efficacy sensitivity analyses 

7.3.3.4.1.  RT-PCR cycle threshold 

Figure 7.10 shows the efficacy of the four included group testing interventions as reported 

using the same indicators as in Figure 7.8 (detection lag in top panels, and outbreak size 

upon outbreak detection in bottom panels) but comparing results for a high baseline RT-

PCR diagnostic threshold (Ct = 40) and a lower diagnostic threshold considered in 

sensitivity analysis (Ct = 35). At the high threshold, group testing remained highly effective 

up to 64 samples per test, but at the low threshold group testing was most effective given 

16-32 samples per test, with efficacy declining greatly when 64 samples were included.  

 

 

Figure 7.10.  Surveillance efficacy sensitivity analysis: cycle threshold value. 

Efficacy of group testing depended on which individuals were included in group samples (y-axis) and the 
maximum number of individual samples included per group sample (x-axis). Efficacy is visualized as a 
heat map where each tile corresponds to the median outcome (95% uncertainty intervals in parentheses) 
for two outcomes (detection lag, top panels; outbreak size upon detection, bottom panels) and for 
baseline modelling assumptions. Two Cycle thresholds (Ct) are considered, which correspond to 
diagnostic thresholds for RT-PCR testing. (A) Detection lag and (B) outbreak size upon detection for the 
baseline Cycle threshold value used in the main analysis (Ct=40). (C) Detection lag and (D) outbreak size 
upon detection for the stricter threshold used in sensitivity analysis (Ct=35). The baseline epidemiological 
scenario is assumed (weekly patient or staff introductions). 
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7.3.3.4.2.  Transmission rates 

Figure 7.11 shows surveillance efficacy in a sensitivity analysis where a lower SARS-CoV-

2 transmission rate was assumed (p=0.07% probability/minute). Outbreaks were smaller 

compared to the baseline analysis, resulting in longer lags to outbreak detection, but 

smaller outbreak sizes when outbreaks were detected. Conversely, Figure 7.12 shows 

surveillance efficacy in a sensitivity analysis with a higher SARS-CoV-2 transmission rate 

(p=0.28% probability/minute), in which larger outbreaks translated to more rapid outbreak 

detection, but larger outbreak sizes upon detection. Despite these differences, qualitative 

surveillance conclusions are unchanged from the baseline analysis: group testing was 

overall most effective when testing resources were limited, while cascades were overall 

most effective given high testing capacity. 

 

 

Figure 7.11.  Surveillance efficacy sensitivity analysis: low transmission rate. 

For simulations in the baseline LTCF with a low transmission rate (p=0.07%), (A) median lags to outbreak 
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detection (95% uncertainty interval) and (B) corresponding outbreak sizes upon detection are shown for 
each surveillance strategy (y-axis) as a function of the daily testing capacity (x-axis). Group testing 
strategies assume a maximum of 32 swabs per test. The baseline epidemiological scenario is assumed 
(weekly patient or staff introductions). 
 

 

Figure 7.12.  Surveillance efficacy sensitivity analysis: high transmission rate. 

For simulations in the baseline LTCF with a high transmission rate (p=0.28%), (A) median lags to outbreak 
detection (95% uncertainty interval) and (B) corresponding outbreak sizes upon detection are shown for 
each surveillance strategy (y-axis) as a function of the daily testing capacity (x-axis). Group testing 
strategies assume a maximum of 32 swabs per test. The baseline epidemiological scenario is assumed 
(weekly patient or staff introductions). 
 

7.3.3.4.3.  Smaller geriatric LTCF 

Figure 7.13 shows surveillance efficacy in a sensitivity analysis where a smaller, 30-bed 

nursing home LTCF was simulated. In this analysis, high testing and swabbing capacities 

approximated universal testing strategies, in which large proportions of individuals were 

routinely tested several times per week. This explains why randomly testing among all 

individuals was among the most effective strategies at highest testing capacity, and why 

pooling even relatively small numbers of randomly selected individuals was a particularly 
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efficient strategy in this setting (results not shown). Otherwise, qualitative surveillance 

conclusions were the same as for the baseline LTCF. 

 

 

Figure 7.13.  Surveillance efficacy sensitivity analysis: nursing home. 

For simulations in the 30-bed geriatric LTCF, (A) median lags to outbreak detection (95% uncertainty 
interval) and (B) corresponding outbreak sizes upon detection are shown for each surveillance strategy 
(y-axis) as a function of the daily testing capacity (x-axis). Group testing strategies assume a maximum 
of 32 swabs per test. The baseline epidemiological scenario is assumed (weekly patient or staff 
introductions). 
 
 

7.3.4.  Surveillance efficiency 

Figure 7.14 shows efficiency plots depicting how surveillance resource use (number of 

tests and swabs, x-axes) scales with the efficacy of that surveillance strategy (outbreak 

detection lag, y-axis). The reference strategy (only testing individuals with severe COVID-

19-like symptoms) used the fewest swabs and tests, on average <1/day regardless of the 

assumed daily testing capacity, owing to a low daily incidence of severe COVID-like 
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symptoms. At low testing capacity, group testing strategies detected outbreaks earliest 

while using similar numbers of tests compared to other strategies (although group testing 

randomly selected patients or staff required extensive swabbing effort). At high capacity, 

cascades detected outbreaks earliest but used hundreds more tests than indication-based 

or group testing strategies, while random testing strategies were both less effective and 

more resource-intensive than cascades. 

 

Figure 7.15 shows incremental efficiency plots, depicting, relative to the reference 

strategy, the incremental benefits of other strategies (in terms of reduction in outbreak size 

upon detection) scaled against their incremental resource costs (increase in the numbers 

of tests and swabs used). This plot compares a scenario with low daily testing capacity (2 

tests/day) and high capacity (32 tests/day). 

 

 

Figure 7.14.  Efficiency plots. 

Efficiency plots for selected surveillance strategies given baseline modelling assumptions, comparing the 
efficacy (y-axis) and resource use (x-axis) in terms of the number of tests used (top row) and swabs 
collected (bottom row) until outbreaks were detected. The assumed daily testing capacity varies across 
columns. Symbols represent medians and error bars represent 95% uncertainty intervals across all 
outbreak simulations. For cascades: SS=severe symptoms, MS=mild symptoms, A=admission, 
R=random (patients). 
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7.3.4.1.  Cascade efficiency 

At high testing capacity (16-32 tests/day), the high incremental efficacy of cascades 

(outbreak detection a mean 5-8 days earlier than the reference, prior to 22-27 additional 

infections) resulted from extensive resource use (104-276 additional tests and swabs), for 

mean incremental efficiencies of 4.0-11.2 additional swabs and tests per case averted. 

Although simply testing all patients and staff with any COVID-19-like symptoms was less 

effective than using testing cascades, it was a more efficient means to improve 

surveillance (mean 1.3 additional tests per case averted).  

 

 

Figure 7.15.  Incremental efficiency plots. 

Log10-transformed incremental efficiency plots for simulations under baseline modelling assumptions, 
comparing incremental resource-use in terms of (A) nasopharyngeal swabs used and (B) RT-PCR tests 
conducted, and varying testing capacity from 2 tests/day (left panels) to 32 tests/day (right panels). Small 
translucent points represent median outcomes across 100 surveillance simulations for each simulated 
outbreak, and larger opaque points represent the mean of all medians. 
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7.3.4.1.  Group testing efficiency 

Group testing strategies were generally efficient with respect to tests, but used highly 

variable numbers of swabs to detect outbreaks. At high swabbing capacity (16-32 

swabs/group test, ≈9-19 swabs/100 beds/day) and across all testing capacities, pooling 

randomly selected patients used a mean 11-38 excess tests to detect outbreaks 2-4 days 

earlier and prior to 14-21 additional infections (0.8-1.8 additional tests per case averted), 

but a median 94-384 additional swabs (6.7-18.7 additional swabs per case averted). 

Pooling the same number of randomly selected HCWs was less efficient than pooling 

patients (detection=1-4 days earlier, prior to 6-14 infections; efficiency=1.3-2.8 additional 

tests and 15.9-27.5 additional swabs per case averted).  

 

By contrast, for all scenarios and testing capacities considered, pooling individuals with 

any COVID-like symptoms was among the most efficient strategies in terms of both swabs 

and tests. In the most resource-limited scenarios (1-2 tests, ≈0.6-1.2 tests/100 beds/day; 

2-8 swabs per group test, ≈1-5 swabs/100 beds/day), this was both the most effective 

means to detect COVID-19 outbreaks and the most efficient means to improve 

surveillance from the reference (detection=1-6 days earlier, prior to 11-22 additional 

infections; efficiency=0.3-0.6 additional tests and 1.0-1.3 additional swabs per case 

averted). 
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7.4.  Discussion 

7.4.1.  Summary of model and results 

In this Chapter I analyzed outbreak simulations from a high-resolution individual-based 

model adapted to COVID-19, demonstrating a range of known challenges associated with 

nosocomial SARS-CoV-2 surveillance in long-term care settings. Challenges include 

introductions of the virus from the community via non-symptomatic individuals, its rapid 

and often silent transmission among patients and staff, and lags to or absence of COVID-

19 symptoms among a substantial proportion of the population. I then used a stochastic 

algorithm to evaluate efficacy and efficiency of testing interventions in the context of key 

surveillance limitations, including imperfect and time-varying diagnostic sensitivity, and 

limited testing capacity. Findings have ultimately provided evidence for how healthcare 

institutions can optimize COVID-19 surveillance in the context of high nosocomial outbreak 

risk and limited RT-PCR tests.  

 

7.4.1.2. Cascades optimize surveillance at high testing capacity 

Findings suggest that vulnerable LTCFs can detect emerging COVID-19 outbreaks most 

quickly by using testing cascades, provided that they have substantial daily testing 

capacity (on the order of at least 1 test/10 beds/day). The most effective cascades 

considered multiple indications, including both COVID-19-like symptoms and patient 

admission, and detected outbreaks days ahead of traditional symptom-based screening 

and prior to the accumulation of additional infections. By extension, cascades had the 

greatest probability of identifying non-symptomatic cases, a known challenge for COVID-

19 surveillance in real LTCF settings.(World Health Organization, 2020g) These findings 

held in sensitivity analyses considering outbreaks in a smaller, 30-bed geriatric LTCF, as 

well as when halving or doubling SARS-CoV-2 transmissibility. Although only a select few 

indications were considered in the present study, LTCFs may consider a wider range of 

known risk factors for SARS-CoV-2 acquisition in their own cascades to maximize the 

probability of detecting emerging outbreaks before widespread transmission. 

  

7.4.1.2. Group testing optimizes surveillance at low testing capacity 

COVID-19 surveillance was less effective in resource-limited settings because of an 

inability to regularly test large numbers of patients and staff. In this analysis, group testing 

was the most effective COVID-19 surveillance strategy under limited testing capacity, and 

across all epidemiological scenarios and capacities was the most resource-efficient means 
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to improve surveillance with respect to a “bare minimum” reference of only testing 

individuals with severe COVID-like symptoms. Even when assuming stricter diagnostic 

cut-offs in sensitivity analysis (Ct=35 instead of 40), group testing strategies remained 

effective up to a maximum of 32 swabs per test. This broadly agrees with previous 

modeling results suggesting that group testing could be cost-effective for screening in 

large populations, as well as empirical evidence for the efficiency of group testing for 

COVID-19 surveillance in nursing homes.(Ben-Ami et al., 2020; Narayanan et al., 2020) 

As with cascades, LTCFs that conduct group testing may consider a wider range of 

indications than was possible to include in this study, in order to maximize the probability 

of including potentially infected patients and staff in routine group tests.  

 

These findings reinforce current guidance from WHO, endorsing sample pooling to 

increase COVID-19 diagnostic capacity when testing demand outstrips supply, but 

cautioning against its use for contact tracing or in high-prevalence settings.(World Health 

Organization, 2020h) This is consistent with its implementation in the present study, as a 

means of surveillance in resource-limited long-term care settings without known active 

cases, but which are nonetheless vulnerable to outbreaks. 

 

7.4.2.  Findings in context 

7.4.2.1.  Explosive nosocomial outbreaks 

This study, initiated in March 2020, was among the first to simulate SARS-CoV-2 

outbreaks in the healthcare setting. Simulations suggest that silent introductions of SARS-

CoV-2 lead to large outbreaks in the absence of specific control strategies, consistent with 

explosive outbreaks observed in LTCFs worldwide early in the pandemic.(Arons et al., 

2020; ECDC Public Health Emergency Team et al., 2020; D. Fisman et al., 2020; Iritani et 

al., 2020; McMichael et al., 2020) Simulations further predicted that larger proportions of 

patients became infected than staff, consistent with evidence of higher SARS-CoV-2 

incidence in patients than staff across LTCF settings globally.(ECDC Public Health 

Emergency Team et al., 2020; Salcher-Konrad et al., 2020) Larger outbreaks and more 

rapid dissemination were also predicted when SARS-CoV-2 was introduced through 

admission of an infected patient, rather than through a member of staff infected in the 

community, with important implications for surveillance efficacy. This is likely due to the 

nature of human interactions in the LTCF upon which CTCmodeler is based (patient-

patient contacts were particularly long and numerous compared to other settings).(Duval et 

al., 2018) Overall, these findings reinforce both (i) a need to screen incoming patients 
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potentially exposed to or infected with SARS-CoV-2,(Gaur et al., 2020) and (ii) the 

importance of interventions to limit contact between patients (e.g. social distancing among 

retirement home residents), as already widely recommended for affected facilities in the 

current pandemic context.(D’Adamo et al., 2020) 

 

7.4.2.2.  Silent transmission 

Simulated outbreaks were further characterized by delays between silent introduction of 

SARS-CoV-2 and first onset of COVID-19 symptoms, during which time new infections not 

(yet) showing symptoms accumulated. This is consistent with reported transmission 

dynamics of SARS-CoV-2. Modelling studies from early in the pandemic estimated that 30-

57% of secondary infections among identified transmission pairs resulted from pre-

symptomatic transmission,(He et al., 2020) and that, in outbreaks in Singapore and 

Tianjin, pre-symptomatic transmission accounted for at least 65% of all transmission 

events.(Tindale et al., 2020) This is also consistent with reports from various LTCF 

outbreaks identifying important roles for pre-symptomatic and asymptomatic 

transmission.(Arons et al., 2020; Bigelow et al., 2021; Black et al., 2020; Escobar et al., 

2021; Louie et al., 2021; McMichael et al., 2020; Moghadas et al., 2020) The often silent 

nature of SARS-CoV-2 transmission highlights epidemiological challenges associated with 

screening for emerging outbreaks using symptoms alone. In addition to the strategies 

highlighted above, it was found that testing patients and healthcare workers with any, and 

not only severe COVID-like symptoms can substantially improve outbreak detection, 

supporting recommendations to expand testing criteria in LTCFs to include individuals with 

atypical signs and symptoms of COVID-19, such as muscle aches, sore throat and chest 

pain.(Gaur et al., 2020) 

 

7.4.2.3.  Outbreak detection: a specific epidemiological context 

Previous studies of COVID-19 surveillance have largely focused on the ability of testing 

strategies to mitigate ongoing SARS-CoV-2 transmission in active outbreak 

settings.(Grassly et al., 2020) In particular, contact tracing has been identified as a highly 

effective form of surveillance, by targeting testing and isolation interventions to individuals 

at high risk of infection.(Ferretti et al., 2020; Kucharski et al., 2020) However, these 

findings have limited relevance for emerging outbreaks, where active SARS-CoV-2 

infection and ongoing transmission are not yet known. For healthcare facilities vulnerable 

to SARS-CoV-2 introductions, specific surveillance strategies are required for initial 

outbreak detection, in order to alert healthcare professionals and decision-makers to the 
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presence of the virus in their institutions. Only then can proven measures like contact 

tracing and case isolation be implemented. By targeting this important epidemiological 

context, these findings complement an existing evidence base that has until now largely 

focused on how to control outbreaks that are already detected and well underway. 

 

7.4.2.4.  Considerations for implementing group testing 

This analysis was limited to classical two-stage group testing, initially proposed by 

Dorfman in 1943 for syphilis screening among World War II soldiers,(Dorfman, 1943) in 

which all individuals in a positive group test are individually re-tested to determine who is 

infected. This is regarded as the most straightforward approach,(Mallapaty, 2020) and I 

conservatively assumed re-swabbing in addition to re-testing of all individuals in a positive 

group test to account for potential logistical challenges of storing and maintaining large 

numbers of swabs for re-testing. Various alternative group testing strategies have been 

proposed and implemented elsewhere, including the use of simultaneous multi-pool 

samples, non-adaptive pooling schemes, and others.(Eberhardt et al., 2020; Ghosh et al., 

2020; Mallapaty, 2020; Täufer, 2020) These have the advantage of not requiring separate 

re-testing of all individuals in a positive group test, and are hence more efficient in terms of 

the number of tests required for case identification. However, these strategies may also 

require additional testing infrastructure and expertise, which may be cost-prohibitive for the 

resource-limited settings that may benefit most from group testing in the first place. 

Decision-makers must consider trade-offs between the various costs and benefits of 

different group testing technologies, including how many individuals to include per test, 

how many stages of testing to conduct, and other potential operational obstacles.(World 

Health Organization, 2020h)  

 

7.4.3.  Limitations 

This work has several limitations. First, LTCFs represent a diverse range of healthcare 

institutions, each with unique specializations, patient populations and living conditions, and 

the generalizability of findings across settings is not clear. However, in simulations there 

was nonetheless consistency in surveillance outcomes across the baseline 170-bed facility 

and the 30-bed geriatric facility.  

 

Second, there were substantial uncertainties about the epidemiological characteristics of 

SARS-CoV-2 infection when this study was conducted. Although already well established 

that various COVID-19 outcomes vary with age, comorbidity and frailty,(Ma et al., 2020; 
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Petrilli et al., 2020; Zheng et al., 2020) quantitative descriptions of these associations were 

and remain incomplete. It was thus not possible to reliably integrate such individual-level 

variation into the transmission model. For one example, it remains unclear to what extent 

rates of asymptomatic infection may be expected to vary among LTCF residents and staff. 

An outbreak investigation across six London care homes experiencing COVID-19 

outbreaks estimated similar rates of asymptomatic infection in patients and staff, and 

found no association with age,(Ladhani et al., 2020) while the meta-analysis used to 

inform asymptomatic infection in this work highlighted poor reporting of age in included 

studies, precluding quantification of its relationship to COVID-19 symptom risk.(Buitrago-

Garcia et al., 2020) Nonetheless, calibrating model parameters to individual-level risk 

factors would facilitate more realistic simulations, and accounting for potentially higher 

rates of severe infection among older and frailer individuals could result in improved 

performance of symptom-based surveillance, including corresponding cascades and group 

testing strategies. This distinction may be particularly relevant for hospices, nursing 

homes, and other LTCFs with particularly frail populations; however, patients in the 

present rehabilitation hospital population were relatively young (median 58 years, IQR 47-

72), limiting potential impacts of age-stratified disease progression in this study. 

 

Other epidemiological uncertainties that were unable to be accounted for include temporal 

variability in SARS-CoV-2 transmissibility over the infectious period, individual-level 

variation in transmissibility, and a potential role for environmental acquisition or healthcare 

workers acting as transient vectors.(Nelson et al., 2021; van Doremalen et al., 2020) 

Sensitivity analyses considering unusually high and low SARS-CoV-2 transmission rates 

may in part reflect overall impacts of such assumptions on nosocomial outbreak risk. 

Although SARS-CoV-2 spread more or less quickly in these analyses, the relative 

efficacies of surveillance strategies were largely unchanged, resulting in the same 

conclusions for optimizing use of limited testing resources to detect nascent COVID-19 

outbreaks. Nonetheless, there are clear links between viral load, transmissibility and Ct 

values, such that infections more likely to transmit are also more likely to be detected. 

Accounting for this in future refinements of our model – for instance, by simulating a proxy 

for viremia at the individual-level and correlating it with both transmissibility and test 

sensitivity – would not only be more realistic, but could have important consequences for 

estimation of surveillance efficacy.  
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7.4.4.  Future work 

These findings add to a growing evidence base for optimizing surveillance interventions to 

control SARS-CoV-2 spread, which has been a central focus of epidemiological modelling 

studies since COVID-19 first emerged. However, the epidemiological situation continues to 

evolve apace. There is now substantial worldwide population immunity to SARS-CoV-2, 

and most LTCFs now have varying degrees of COVID-19 containment measures in place, 

from social distancing, to use of personal protective equipment, to vaccination, which 

should altogether reduce transmission rates compared to early in the pandemic. 

Conversely, the emergence of highly transmissible variants of concern capable of 

escaping host immune responses may to some extent have the opposite effect. New 

surveillance technologies also continue to become available, such as antigen rapid 

diagnostic testing (Ag-RDT), and global RT-PCR capacity has been extensively scaled up 

since March 2020. In this context, new evidence is needed to understand how LTCFs can 

continue to adapt and optimize available surveillance technologies in order to protect 

themselves from COVID-19 as the pandemic rages on. 
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Chapter 8.   Rapid antigen testing as a reactive 

public health response to surges in nosocomial 

outbreak risk 

 

8.1.  Introduction 

A growing number of vaccines have proven safe and effective for prevention of SARS-

CoV-2 infection and severe COVID-19, protecting patients and staff from disease and 

offering hope towards an end to the pandemic.(Dagan et al., 2021; Heath et al., 2021; 

Pritchard et al., 2021) Yet hospitals and LTCFs remain vulnerable to nosocomial outbreaks 

despite high vaccination rates.(Bergwerk et al., 2021) LTCFs globally report instances of 

breakthrough infection and ensuing transmission among immunized staff and residents, 

notably due to variants of concern like B.1.1.7 (Alpha) and B.1.351 (Beta), which may 

partly escape vaccine-induced immunity relative to wild type.(Bailly et al., 2021; Tober-Lau 

et al., 2021; Vanker et al., 2021) This suggests that testing and screening interventions will 

remain important tools for detecting and isolating SARS-CoV-2 infections in healthcare 

facilities, even in settings with high vaccine coverage. 

 

However, while repeated screening may be an effective tool for nosocomial transmission 

prevention,(Holmdahl et al., 2021; Rosello et al., 2021) it also imposes substantial 

economic cost and occupational burden on healthcare staff.(Buckle et al., 2021; 

Kierkegaard et al., 2021) For potentially vulnerable, resource-limited facilities, a key 

challenge is knowing if, when and how to implement SARS-CoV-2 surveillance 

interventions.(Barker et al., 2021) When outbreak risk is low – perhaps in a highly 

immunized LTCF around low community incidence and few variants of concern – 

screening at frequent intervals is probably an inefficient use of limited health-economic 

resources. Yet outbreak risk is in constant flux, and is sometimes predictable. Festive 

holidays, for instance, draw individuals from distant places into close contact for prolonged 

periods, and have been associated with surges in SARS-CoV-2 epidemic risk in China, 

Israel, and elsewhere.(Chen et al., 2020; Klausner et al., 2020) Into autumn 2021, 

widespread post-holiday, inter-generational population movement in the context of variants 

like B.1.617.2 (Delta) and C.37 (Lambda) may pose similar concerns. In such a context 

where local knowledge or epidemiological data indicate a suspected spike in epidemic risk, 
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or where identification of a new case or exposed contact within a healthcare facility 

indicates potential for a nosocomial outbreak, reactive use of antigen rapid diagnostic 

testing (Ag-RDT) may be an efficient public health response. 

 

Here, to help determine the best surveillance strategies for control of SARS-CoV-2 

transmission in healthcare facilities, I evaluated the epidemiological efficacy and health-

economic efficiency of single or repeated Ag-RDT screening conducted in response to 

surges in nosocomial outbreak risk in the long-term care setting.  

 

  



 

 227 

8.2.  Methods 

8.2.1.  Simulating SARS-CoV-2 outbreaks using CTCmodeler 

In Chapter 6, I presented CTCmodeler as a tool to simulate SARS-CoV-2 outbreaks in the 

long-term care setting. In Chapter 7, I used this model to evaluate efficacy and efficiency 

of RT-PCR testing strategies for timely detection of emerging SARS-CoV-2 outbreaks in 

the context of limited testing resources. In this Chapter, I expand upon this work, using 

simulated outbreaks from CTCmodeler to evaluate the efficacy and efficiency of testing 

and screening interventions for prevention of SARS-CoV-2 transmission, in the context of 

a surge in nosocomial outbreak risk. R code for the surveillance analyses described below 

is available online at https://github.com/drmsmith/agrdt. 

 

8.2.2.  Modelling context 

Model simulations were initialized to include a surge in SARS-CoV-2 introductions from the 

community. This was motivated by lived experiences of colleagues in French long-term 

care facilities over Christmas 2020. The festive holidays were associated with increased 

inter-generational contact between individuals in the community and those residing in 

LTCFs. Accordingly, a surge in nosocomial SARS-CoV-2 outbreaks was anticipated and 

ultimately detected after the holiday period.(Smith et al., 2020) 

 

Simulation outset was interpreted as coinciding with initial SARS-CoV-2 outbreak detection 

within the LTCF, triggering implementation of reactive surveillance interventions 

(introduced below). Accordingly, this modelling context follows naturally from evaluation of 

surveillance interventions for outbreak detection in the previous Chapter. Here, I evaluate 

efficiency of surveillance interventions for transmission prevention, once a potential 

outbreak has been detected.   

 

8.2.3.  Transmission model updates 

Nine new assumptions were integrated into CTCmodeler to reflect the evolving 

epidemiology of COVID-19 and present research context. These include:  

 

1. Index cases acquired during a surge in community SARS-CoV-2 circulation 

2. Heterogeneous SARS-CoV-2 introductions from the community reflecting local 

infection burden 

3. Variable transmissibility between symptomatic and asymptomatic infections 
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4. Immediate isolation of patients with severe COVID-19 symptoms 

5. Sick-leave and shift replacement for staff with severe COVID-19 symptoms 

6. A risk of healthcare workers acting as transient SARS-CoV-2 vectors 

7. Initialization conditions reflecting an updated pandemic context 

8. Storing SARS-CoV-2 transmission chains 

9. Implementation of public health interventions (“COVID-19 containment measures”). 

 

These assumptions are detailed below, and corresponding model parameters are provided 

in Table 8.1. 

 

8.2.3.1.  Index cases acquired during a surge in community SARS-CoV-2 circulation 

As in previous Chapters, I distinguish between SARS-CoV-2 index cases and SARS-CoV-

2 introductions. Index cases were defined as patients and staff infected with SARS-CoV-2 

upon simulation outset, who were thus assumed to have acquired infection prior to the 

simulation period. These infections were conceptualized as resulting from inter-

generational mixing in the community over festive holidays during the week prior to 

simulation outset, leading to an increase in nosocomial outbreak risk within the LTCF. 

Upon simulation initialization, it was assumed that 50% of patients (n=85) and 100% of 

staff (n=240) had contacts in the community over the previous week, with a 1.2% 

probability of acquiring SARS-CoV-2 (calibrated to French epidemiological data from 

Santé Publique France from January 2021). This translated to 1 index patient and 3 index 

members of staff infected with SARS-CoV-2 at simulation outset, randomly selected 

among all patients and staff present in the LTCF. Index cases were assumed to be in any 

infection stage except severe symptomatic. Calibrated using model transition parameters 

(Table 8.1), it was assumed that 28.0% of index cases were exposed, 4.8% pre-

asymptomatic, 16.8% asymptomatic, 11.2% pre-symptomatic and 39.2% mild 

symptomatic.  

 

8.2.3.2.  Heterogeneous SARS-CoV-2 introductions reflecting community burden 

Introductions were defined as subsequent cases of SARS-CoV-2 infection introduced into 

the LTCF from the community over the course of simulation time, limited to staff members 

(assumed to contact individuals in the community outside work hours) and newly admitted 

patients (assumed to potentially carry the virus upon LTCF entry). 

 

It was assumed that staff introductions were new infections (in the exposed stage) 
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acquired in the previous 24 hours. This reflects infection resulting from community 

contacts since that individual’s previous shift. Community SARS-CoV-2 infection incidence 

was used to calculate the daily probability of any working member of staff becoming 

infected with the virus and introducing it to the LTCF. Using French epidemiological data 

from late January 2021 (daily incidence of 26,676 cases among a population of 67.1 

million individuals), a daily community incidence rate of 0.04% was estimated. In a “high 

incidence” sensitivity analysis, a rate of under-reporting of 90.8% was assumed (as 

estimated elsewhere by Anand et al.), translating to an incidence rate of 0.37%.(Anand et 

al., 2020)  

 

For patient introductions, it was assumed that infection is acquired at any time prior to 

LTCF admission. Community SARS-CoV-2 prevalence was used to estimate the 

probability that a new patient entering the LTCF is already infected. Using the incidence 

data above and assuming an infection duration of 12.5 days (the mean duration under 

present modelling assumptions), a community SARS-CoV-2 infection prevalence of 0.50% 

was estimated, or 4.57% in the “high incidence” sensitivity analysis. Patient introductions 

could be in any infection stage, using the same stage-specific probabilities as for index 

cases (above). 

 

Combining patient and staff introductions, there were a mean 0.08 introductions/day in the 

baseline “low incidence” scenario, and a mean 0.8 introductions/day in a “high incidence” 

sensitivity analysis. 

 

8.2.3.3.  Variable transmissibility according to symptom status 

In CTCmodeler, the probability of SARS-CoV-2 transmission from an infectious individual 

to a susceptible individual depends on the duration of their contact (see equation 6.1). 

Previously, using epidemiological data from the community in France, we estimated a 

SARS-CoV-2 transmission rate per minute of infectious contact p=0.14% (see equation 

6.2). Here, we now assume that SARS-CoV-2 infectivity varies between symptomatic 

(including pre-symptomatic) and asymptomatic (including pre-asymptomatic) infections. In 

a systematic review and meta-analysis, Buitrago-Garcia et al. estimated the secondary 

attack rate among contacts of asymptomatic infections to be 35% relative to symptomatic 

infections, and that approximately 30% of all infections remained asymptomatic.(Buitrago-

Garcia et al., 2020) Using these data, we stratified p to estimate distinct transmission rates 

from symptomatic (psym) and asymptomatic (pasym) individuals as 
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 0.7 × 𝑝�»~ + 0.3 × 𝑝T�»~ = 0.14% 

(eq. 8.1) 

 where 

 𝑝T�»~ = 0.35 × 𝑝�»~ 

(eq. 8.2) 

Solving these equations, psym = 0.174% and pasym = 0.061%. 

 

8.2.3.4.  Patients with severe COVID-19 symptoms: isolation 

We assumed that patients with severe COVID-19 symptoms are automatically isolated 

(independent of retrospective surveillance and isolation interventions introduced and 

evaluated later). We assumed a lag from symptom onset to isolation (24 hours), 100% 

isolation efficacy for transmission prevention (psym,isolated = 0, pasym,isolated = 0), and an 

isolation duration equivalent to the remaining duration of infection (i.e. duration of 

symptoms), drawn from log-normal(7,7) distribution. 

 

8.2.3.5.  Staff with severe COVID-19 symptoms: sick-leave and replacement 

We assumed that staff with severe COVID-19 symptoms immediately go on sick leave, 

with a duration equivalent to symptom duration (drawn from log-normal(7,7) distribution), 

after which they return to the LTCF recovered. During sick-leave, staff were replaced with 

a temporary member of staff who executes the same functions within the LTCF, and hence 

with no change to the underlying contact network. Probability of SARS-CoV-2 infection 

among newly arrived temporary replacement staff is calculated using community 

prevalence data (as for patient introductions, see above). 

 

8.2.3.6.  Healthcare workers as transient SARS-CoV-2 vectors 

We allowed members of staff to act as transient vectors for SARS-CoV-2 after contact with 

infectious patients.(Choi et al., 2021) Transient vectors were assumed to physically “carry” 

SARS-CoV-2, and could transmit the virus to subsequent patients visited in quick 

succession (within 60 minutes), infecting those patients without themselves becoming 

infected. The probability of a member of staff i becoming a vector (Pv) was assumed to 

depend on the duration of their contact with the infectious patient j, Di,j. This is given by 
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𝑃¼ = 𝑝©T��JTn| × 𝐷J,K × (1 − 𝑃Q�½4|©4J½¾) 
(eq. 8.3) 

and the probability of this transient vector i then infecting a susceptible patient k (Piàk) 

during a subsequent contact relies on transmission rate p (using p to represent either psym 

or pasym), thus taking the same form as standard host-to-host transmission, given by 

 𝑃J→� = 𝑝 × 𝐷J,� 

(eq. 8.4) 

but limited to 60 minutes from the end of contact with j, after which time i loses transient 

carriage and is no longer a vector.  

 

Here, pcarriage is the per-minute probability of a member of staff acquiring transient SARS-

CoV-2 carriage. We set a saturation threshold at 80% such that transient carriage is not 

inevitable subsequent to long infectious contacts. Similar to transmission rates psym and 

pasym (see above), we assumed that pcarriage varies between symptomatic and 

asymptomatic patients, such that pcarriage_asym = 0.35 × pcarriage_sym. Finally, Pprotection 

describes the degree to which staff protect themselves during interactions with patients. 

The latter reflects an assumed asymmetry in patient-staff interactions, in which staff take 

measures to protect themselves from perceived risk of acquiring the virus when caring for 

patients, but take less care to protect patients from virus potentially lingering on their 

clothing or equipment. 

 

8.2.3.7.  Initialization conditions for an updated pandemic context 

In addition to the index cases introduced above, we updated two key initialization 

conditions for outbreak simulation to reflect the ongoing pandemic context of COVID-19. 

First, we assumed a baseline immunizing seroprevalence of 20% among patients and 

staff. For each individual in each outbreak simulation, initial infection status was 

determined stochastically, with a 20% probability of entering the simulation already 

recovered. Second, we assumed that baseline rates of infection prevention and control 

were improved relative to pre-pandemic baseline. This reflects observed increases in 

compliance to hygiene and infection prevention measures in healthcare institutions 

worldwide since the beginning of the COVID-19 pandemic.(Moore et al., 2021; Roshan et 

al., 2020; Wong et al., 2020) For this, we introduced the parameter PIPC, which modifies 

rates of transmission (Piàj,IPC) and transient carriage acquisition (Pv,IPC) across all patients 

and staff, given by: 
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 𝑃J→K,Zµi = 𝑃J→K × (1 − 𝑃Zµi) 
(eq. 8.5) 

and 

 𝑃¼,Zµi = 𝑃¼ × (1 − 𝑃Zµi) 
(eq. 8.6) 

 

Using data from a clinical trial across 33 Dutch nursing homes, we assumed a baseline 

36% compliance to IPC measures in such an intervention context (PIPC = 0.36).(Teesing et 

al., 2020) 

 

8.2.3.8.  Storing SARS-CoV-2 transmission chains 

In addition to the simulation output data described in the previous Chapter (a list of 

introductions from the community, daily infection status), a list of all nosocomial 

transmission events was saved throughout simulation, including donor and recipient IDs 

and mode of transmission, i.e. from an infected individual or transient vector. This 

facilitated evaluation of surveillance interventions for prevention of SARS-CoV-2 

transmission. 

 

8.2.3.9.  COVID-19 containment measures 

Three different COVID-19 containment measures were included in outbreak simulations.  

 

8.2.3.9.1  Patient social distancing 

First, a patient social distancing intervention was considered, interpreted as cancellation of 

all social activities occurring in the baseline pre-pandemic contact network. This was 

modelled by removing all contacts involving ³3 patients simultaneously. Impacts of this 

intervention on dynamic contact behaviours simulated by CTCmodeler are visualized in 

Figure 8.1. We did not impose staff social distancing, under the assumption that staff 

contacts are necessary for provisioning of care. 
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Figure 8.1.  Behavioural impacts of the patient social distancing intervention. 

Over the course of one day (x-axis), the median hourly number of close-proximity interactions (CPIs, y-
axis) is shown. Patient-patient contacts vary considerably across (A) the baseline LTCF and (B) the LTCF 
with the patient social distancing intervention in place, while patient-staff and staff-staff contacts are 
unchanged. [Rendered by Audrey Duval.] 
 

8.2.3.9.2.  Mandatory face mask policy 

Second, a mandatory face mask policy among all patients and staff was considered. In a 

systematic review and meta-analysis, Liang et al. estimated an 80% reduction in risk of 

respiratory virus transmission through wearing of face masks.(Liang et al., 2020) This was 

modelled here by setting PIPC = 0.8, reducing rates of transmission and transient carriage 

acquisition across patients and staff. 

 

8.2.3.9.3.  Vaccination intervention 

Third, a vaccination intervention was considered, in which an assumed 50% of individuals 

had immunizing seroprevalence at simulation outset (relative to 20% baseline). This could 

be interpreted in different ways, for instance as 100% vaccine coverage for a vaccine 

providing 50% protection from infection with the locally circulating strain (in the absence of 

any further effect of naturally-acquired immunity), 75% vaccine coverage for a vaccine 

providing 75% protection from infection, etc. 
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Table 8.1.  Transmission model parameter estimates. 

COVID-19 infection parameters are unchanged from Chapter 7; all other parameters are new or updated. 
SA = sensitivity analysis. 

Parameter 
Value 

[distribution] 
Source 

COVID-19 infection parameters 

Duration of exposed period (latency) 2-5 days [uniform] (Lauer et al., 2020; W. E. Wei et al., 2020) 

Duration of pre-symptomatic or pre-asymptomatic period 1-3 days [uniform] (Lauer et al., 2020; W. E. Wei et al., 2020) 

Duration of symptomatic period  (whether asymptomatic, 

mild symptomatic or severe symptomatic) 

7 days [log-normal, 

σ² = 7] 

(He et al., 2020) 

Proportion of COVID-19 infections presenting any symptoms  0.7 (Buitrago-Garcia et al., 2020) 

Proportion of symptomatic COVID-19 infections with severe 

symptoms 

0.2 (Wu and McGoogan, 2020) 

Daily incidence proportion of COVID-19-like symptoms 0.011 Estimated from OSCOUR (Fouillet et al., 2015) 

SARS-CoV-2 transmission parameters 

SARS-CoV-2 transmission rate per minute of contact, pre-

symptomatic and symptomatic infection (psym) 

0.001739 Previous estimate (Chapter 6) scaled using 

data from (Buitrago-Garcia et al., 2020) 

SARS-CoV-2 transmission rate per minute of contact, pre-

asymptomatic and asymptomatic infection (pasym) 

0.000609 Previous estimate (Chapter 6) scaled using 

data from (Buitrago-Garcia et al., 2020) 

Staff SARS-CoV-2 transient carriage acquisition rate per 

minute of contact with symptomatic or pre-symptomatic 

patients (pcarriage_sym) 

0.1 Assumed 

Staff SARS-CoV-2 transient carriage acquisition rate per 

minute of contact with asymptomatic or pre-asymptomatic 

patients (pcarriage_asym) 

0.035 Assumed 

Degree of patient and staff compliance to infection 

prevention and control interventions (PIPC) 

0.36 (0.80 with face 

mask intervention) 

(Liang et al., 2020; Teesing et al., 2020) 

Degree to which staff protect themselves (but not patients) 

from high-risk contacts potentially leading to SARS-CoV-2 

transmission (Pprotection) 

0.80 Assumed 

SARS-CoV-2 introductions from the community   

Daily probability of SARS-CoV-2 introduction from staff  
0.03976% (0.366% 

in SA) 

Calibrated to incidence in France in January 

2021 (Santé publique France, 2021b) 

Probability of SARS-CoV-2 introduction per new patient 

admission  

0.497% (4.57% in 

SA) 

Calibrated to incidence in France in January 

2021 (Santé publique France, 2021b) 

Probability of SARS-CoV-2 introduction per replacement staff  
0.497% (4.57% in 

SA) 

Calibrated to incidence in France in January 

2021 (Santé publique France, 2021b) 

Probability exposed (patient admissions, replacement staff) 0.28 From infection parameters 

Probability pre-asymptomatic (patient admissions, 

replacement staff) 

0.048 From infection parameters 

Probability asymptomatic (patient admissions, replacement 

staff) 

0.168 From infection parameters 

Probability pre-symptomatic (patient admissions, 

replacement staff) 

0.112 From infection parameters 

Probability symptomatic mild (patient admissions, 

replacement staff) 

0.392 From infection parameters 
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8.2.4.  Simulating one LTCF with three levels of COVID-19 control 

Three distinct combinations of the containment measures introduced above were applied 

to the baseline LTCF, to represent variable degrees of investment in COVID-19 

prevention. These are presented as:  

 

1. Low-control LTCF 1: no explicit measures in place 

2. Moderate-control LTCF 2: patient social distancing 

3. High-control LTCF 3: patient social distancing, face masks and vaccination 

 

For each LTCF, 100 outbreaks were simulated stochastically with otherwise identical 

initialization conditions, each for a period of two weeks, in order to evaluate short-term 

outbreak risk and immediate health-economic benefits of surveillance interventions. 

 

8.2.5.  Surveillance interventions 

Surveillance interventions were implemented in response to the identified surge in 

nosocomial outbreak risk at simulation outset. As in Chapter 7, surveillance was applied 

retrospectively to simulated outbreak data using a stochastic algorithm, detailed below. I 

distinguish between two types of surveillance: 

 

1. Routine testing: the targeted use of RT-PCR upon onset of COVID-19-like 

symptoms or admission of new patients into the LTCF 

2. Screening: the mass testing of entire populations (e.g. patients, staff) on selected 

dates 

 

I assessed a total of 27 surveillance interventions grouped into four categories:  

 

1. Routine testing 

2. 1-round screening 

3. Routine testing + 1-round screening 

4. Routine testing + 2-round screening 

 

The latter two categories are defined as multi-level surveillance interventions that combine 

both screening and testing. See the full list of interventions and corresponding 

assumptions in Table 8.2. 
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Table 8.2.  Surveillance interventions. 

List of surveillance interventions considered. Screening timing refers to the number of days since initial 
detection of the surge in outbreak risk upon simulation outset. Sensitivity curves for RT-PCR, Ag-RDT 
(A) and Ag-RDT (B) are provided in Figure 8.2. 

# 
Surveillance 

category 
Screening 

timing 
Test used Test target 

1 Routine testing / RT-PCR 
Individuals with COVID-like symptoms 
and new patient admissions 

2 

1-round screening 

Day 1 

Ag-RDT (A)  
 
In sensitivity analysis: 
Ag-RDT (B), RT-PCR 

Patients & staff  
 
In sensitivity analysis:  
only patients, only staff 

3 Day 2 
4 Day 3 
5 Day 4 
6 Day 5 
7 Day 6 
8 Day 7 
9 Day 8 
10 Day 9 
11 

Routine testing +  
1-round screening 

Day 1 For routine testing:  
RT-PCR 
 
For screening:  
Ag-RDT (A)  
 
For screening in 
sensitivity analysis:  
Ag-RDT (B), RT-PCR 

For routine testing:  
individuals with COVID-like symptoms 
and new patient admissions 
 
For screening:  
patients & staff  
 
For screening in sensitivity analysis: 
only patients, only staff 

12 Day 2 
13 Day 3 
14 Day 4 
15 Day 5 
16 Day 6 
17 Day 7 
18 Day 8 
19 Day 9 

20 

Routine testing +  
2-round screening 

Days 1 & 2 

For routine testing:  
RT-PCR 
 
For screening:  
Ag-RDT (A)  
 
For screening in 
sensitivity analysis:  
Ag-RDT (B), RT-PCR 

For routine testing:  
individuals with COVID-like symptoms 
and new patient admissions 
 
For screening:  
patients & staff  
 
For screening in sensitivity analysis: 
only patients, only staff 

21 Days 1 & 3 

22 Days 1 & 4 

23 Days 1 & 5 

24 Days 1 & 6 

25 Days 1 & 7 

26 Days 1 & 8 

27 Days 1 & 9 

 

8.2.6.  Diagnostic sensitivity of RT-PCR and Ag-RDT 

As in Chapter 7, test sensitivity (probability of positive diagnosis for a true infection) was 

assumed to depend on infection age t (i.e. time since SARS-CoV-2 exposure, as 

calculated previously), expressed as 𝑠µih(𝑡) for RT-PCR and 𝑠h¿À(𝑡) for Ag-RDT. Data 

from Kucirka et al. were again used to inform 𝑠µih(𝑡), and the curve was extrapolated 

beyond t=20 using an exponential function fit to days 11-20 (pink line in Figure 

8.2).(Kucirka et al., 2020) For diagnostic specificity, 99.7% was assumed for Ag-RDT and 

99.9% for RT-PCR.(Brümmer et al., 2021) 

 

Literature estimates for Ag-RDT sensitivity (𝛼) are typically expressed as relative to RT-

PCR sensitivity, given here by 𝑠h¿À(𝑡) = 𝛼 × 𝑠µih(𝑡), such that absolute Ag-RDT sensitivity 𝑠h¿À(𝑡) varies in time with 𝑠µih(𝑡). In a meta-analysis of 73 clinical data sets and 31,202 
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samples, Brümmer et al. estimated Ag-RDT to be 𝛼 = 73.8% as sensitive as RT-

PCR,(Brümmer et al., 2021) which when crossed with the data from Kucirka et al. 

corresponds to a peak absolute Ag-RDT sensitivity of 𝑠h¿À = 59.7% at 𝑡 = 8 days. 

However, they also estimated greater relative Ag-RDT sensitivity up to one week from 

symptom onset (𝛼 = 87.5%) and lower relative sensitivity thereafter (𝛼 = 64.1%). Relative 

Ag-RDT sensitivity was adjusted accordingly using two shape parameters 𝛾 and	𝛽, and 

depending on time since peak RT-PCR sensitivity (𝜏 = 𝑡 − 8), such that: 

 

𝛼(𝑡, 𝛽, 𝛾) = (1 − 𝛾) × 𝑒g�	×	ÁÂ 
(eq. 8.7) 

where sensitivity of Ag-RDT relative to RT-PCR varies with time, decreasing exponentially 

with increasing t. Values of 𝛾 and	𝛽 were estimated by minimizing the sum of three 

squared distance functions 

 argmin((𝑑7)� + (𝑑�)� + (𝑑¤)�) 
(eq. 8.8) 

using the R function optim. Assuming a 5-day incubation period, these correspond to 

distances of the target sensitivity function to estimates from Brümmer et al. for, 

respectively, sensitivity over all 𝑡 (d1), up to 𝑡 ≤ 11 days from SARS-CoV-2 exposure (d2), 

and 𝑡 > 11 days from SARS-CoV-2 exposure (d3). These are given by: 

 

𝑑7 = 0.738 − ¢ 𝛼(𝑡, 𝛽, 𝛾)𝑠h¿À(𝑡)
4ÈÉÊ

4¥7  

𝑑� = 0.875 −¢𝛼(𝑡, 𝛽, 𝛾)𝑠h¿À(𝑡)
77
4¥7  

𝑑¤ = 0.641 − ¢ 𝛼(𝑡, 𝛽, 𝛾)𝑠h¿À(𝑡)
4ÈÉÊ

4¥7�  

(eq. 8.9) 

Solving 𝛼(𝑡, 𝛽, 𝛾) over all 𝑡 using the shape parameters estimated from the minimized sum 

of squared distances (𝛽 = 0.001998, 𝛾 = 0.1172) reproduced summary estimates from 

Brümmer et al. to within 0.3%: 𝛼4Ë77 = 87.5%, 𝛼4Ì77 = 64.1%, and 𝛼4Í7 = 73.5%. This 

function was used to determine the probability of a positive test result for Ag-RDT testing 

as conducted in the main analysis (black line in Figure 8.2).  
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Alternative assumptions for RT-PCR and Ag-RDT diagnostic sensitivity considered in 

sensitivity analyses were: (i) uniform Ag-RDT sensitivity relative to time-varying RT-PCR 

(𝛼 = 73.8%, green line in Figure 8.2), (ii) uniform absolute sensitivity regardless of time 

since exposure for both RT-PCR (𝑠µih = 70%) and Ag-RDT (𝑠h¿À = 54%), and (iii) perfect 

absolute sensitivity for both (𝑠µih = 𝑠h¿À = 100%).  

 

 

Figure 8.2.  Test sensitivity. 

Test sensitivity as a function of time since infection, estimated by crossing data from meta-analyses by 
Kucirka et al. for RT-PCR (pink) and Brümmer et al. for Ag-RDT, considering time-varying Ag-RDT 
sensitivity relative to RT-PCR (black, for baseline analysis) and uniform relative sensitivity (green, for 
sensitivity analysis). 
 
 

8.2.7.  Simulating counterfactual scenarios 

The surveillance algorithm developed in the previous Chapter was developed further here 

to account for the updated surveillance interventions described above, to retrospectively 

apply them to daily outbreak data, and to simulate impacts of testing and isolation on 

transmission prevention.  

 

Each “run” of the surveillance algorithm was conducted in five steps: 

 

1. The algorithm was applied to each outbreak to determine who to test for SARS-

CoV-2 infection and when, and using which type of test, according to the 

surveillance strategies described in Table 8.2 

2. Test results were determined stochastically, with probability of SARS-CoV-2 

detection depending on test sensitivity s(t), as described in Figure 8.2 

3. Individuals were retrospectively “isolated” upon SARS-CoV-2 diagnosis (positive 

test result), assuming immediate isolation for Ag-RDT but a 24-hour lag for RT-PCR 

(reflecting a lag between sample and result) 
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4. Counterfactual scenarios were simulated by pruning transmission events occurring 

subsequent to isolation, i.e. removing all transmission chains originating from 

isolated individuals (illustrated in Figure 8.3A) 

5. Nosocomial incidence was re-calculated subsequent to transmission pruning 

(change in incidence illustrated in Figure 8.3B) 

 

 

Figure 8.3.  Example of counterfactual scenario simulation. 

Surveillance interventions were applied retrospectively to simulated SARS-CoV-2 outbreaks, illustrated 
here using data from outbreak simulation #22 from LTCF 1. (A) The SARS-CoV-2 transmission chain, 
with infections (shapes) transmitted from left to right following black lines. Of four community-onset 
infections (grey shapes) at simulation outset, three transmitted to other individuals in the LTCF, triggering 
a nosocomial outbreak. Routine RT-PCR testing was conducted upon COVID-19 symptom onset (blue 
four-pointed stars), with results and case isolation 24-hours later (blue crosses). A population-wide Ag-
RDT screening event was conducted on day 2 (red dashed line) with immediate results and isolation (red 
crosses). Test sensitivity – the probability of a positive test result and subsequent isolation – is given by 
s adjacent to each test, as determined by infection age t at the time of each test (see Figure 8.2). 
Nosocomial infections are coloured blue if potentially averted by routine testing, red if by screening, or 
both if by either. (B) Corresponding surveillance results from three selected surveillance interventions 
evaluated over 100 stochastic surveillance runs. The multi-level testing + screening intervention always 
averted at least as many infections as either individual intervention in the same run, demonstrating 
matching of “controlled” and “uncontrolled” epidemics across interventions, and its relevance for 
calculation of marginal benefits of multi-level interventions. 
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With these methods, in each run of surveillance, “uncontrolled” epidemics with no 

surveillance were matched to “controlled” counterfactual scenarios with surveillance. This 

methodology is adapted from single-world counterfactual analysis (see Kaminsky et 

al.), and facilitates precise estimation of intervention efficacy by overcoming the strong 

stochastic effects inherent to outbreaks in small populations, as in the present 

simulations.(Kaminsky et al., 2019) Single-world matching also facilitated estimation of 

marginal benefits of multi-level surveillance interventions (interventions 11 to 27), which 

introduced screening against a backdrop of a facility already conducting routine testing. 

For these calculations, routine testing was simulated first, with downstream transmission 

chains pruned as described above; second, screening was applied, with potential only to 

prune remaining transmission chains not already pruned by routine testing; and third, if 

conducting a second round of screening, the only chains potentially pruned were those not 

already pruned by routine testing and the first round of screening. In this way, infections 

averted by subsequent levels of surveillance did not double-count infections already 

averted by previous levels (as in Figure 8.3B).  

 

This surveillance algorithm was run 100 times per outbreak, across all interventions and 

factors resulting in a total 43.7 million simulations of nosocomial incidence and 

surveillance resource use. These outputs were used to calculate surveillance efficacy, 

efficiency and cost-effectiveness. 

 

8.2.8.  Surveillance outcomes 

For each outbreak simulation, cumulative nosocomial incidence 𝐼 was re-calculated for 

each surveillance simulation after transmission chain pruning.  

 

Surveillance efficacy was reported as reduction in 𝐼, given by 

 

𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦 = 1 − (𝐼|𝑠𝑢𝑟𝑣𝑒𝑖𝑙𝑙𝑎𝑛𝑐𝑒)(𝐼|𝑛𝑜	𝑠𝑢𝑟𝑣𝑒𝑖𝑙𝑙𝑎𝑛𝑐𝑒) 
(eq. 8.10) 

Three measures of efficiency were also calculated.  

 

First, apparent efficiency was defined as perceived operational efficiency, calculated 

using the per-test number of detected infections D as 
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𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡	𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = (𝐷|𝑠𝑢𝑟𝑣𝑒𝑖𝑙𝑙𝑎𝑛𝑐𝑒)𝑛 × 1,000 

(eq. 8.11) 

where n is the number of tests used. 

 

Second, real efficiency was defined as the relative health benefit resulting from 

intervention, calculated using the per-test number of infections averted as 

 

𝑟𝑒𝑎𝑙	𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = (𝐼|𝑛𝑜	𝑠𝑢𝑟𝑣𝑒𝑖𝑙𝑙𝑎𝑛𝑐𝑒) 	−	(𝐼|𝑠𝑢𝑟𝑣𝑒𝑖𝑙𝑙𝑎𝑛𝑐𝑒)𝑛 × 1,000 

(eq. 8.12) 

For multi-level interventions combining routine testing and screening, marginal real 

efficiency of screening was calculated by excluding infections already averted and tests 

already used due to routine testing (“testing”), given by  

 

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙	𝑟𝑒𝑎𝑙	𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦�©�||¾J¾n = (𝐼|𝑡𝑒𝑠𝑡𝑖𝑛𝑔) − (𝐼|𝑡𝑒𝑠𝑡𝑖𝑛𝑔 + 𝑠𝑐𝑟𝑒𝑒𝑛𝑖𝑛𝑔)𝑛�©�||¾J¾n × 1,000 

(eq. 8.13) 

Third, cost-effectiveness was defined as total surveillance costs per case averted, 

accounting for unit costs c of routine testing (ctesting) and screening (cscreening), 

 

𝑐𝑜𝑠𝑡	𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 	𝑛4|�4J¾n × 𝑐4|�4J¾n + 𝑛�©�||¾J¾n × 𝑐�©�||¾J¾n(𝐼|𝑛𝑜	𝑠𝑢𝑟𝑣𝑒𝑖𝑙𝑙𝑎𝑛𝑐𝑒) − (𝐼|𝑠𝑢𝑟𝑣𝑒𝑖𝑙𝑙𝑎𝑛𝑐𝑒)  

(eq. 8.14) 

Testing unit costs were varied over a wide range to determine impact on cost 

effectiveness. Under baseline assumptions, RT-PCR for routine testing was assumed to 

cost €50/test, and Ag-RDT for screening cost €5/test, similar to previous cost estimates for 

France and the UK.(Assurance maladie française, 2021; Torjesen, 2021)  

 

Other outcomes evaluated to assess performance of testing and screening interventions 

were true-positive rate (TPR), true-negative rate (TNR), negative predictive value (NPV) 

and positive predictive value (PPV).  

 

8.2.9.  Outcome uncertainty 

Figure 8.4 demonstrates how uncertainty in surveillance outcomes was quantified. 

Distributions of intervention efficacy (the proportion of infections averted) were largely 

bimodal (Figures 8.4A, 8.4B). This reflects the exponential nature of outbreak prevention, 
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whereby effective isolation of a single index case can prevent entire chains of downstream 

infection, while missing that case can allow an entire outbreak to result (see Figure 8.3A). 

As a result, outcome distribution quantiles were relatively uninformative (Figure 8.4B). 

Instead, outcomes are reported as means across 10,000 simulations (100 outbreaks × 

100 surveillance runs / outbreak). Confidence intervals for means were calculated using 

bootstrap resampling with 100 replicates and normal approximation using the R package 

boot (increasing the number of replicates was found to have marginal impact, see Figure 

8.4C). 

 

 

Figure 8.4.  Quantifying outcome uncertainty. 

Estimation of outcome uncertainty, demonstrated here for efficacy of routine RT-PCR testing (intervention 
#1). (A) Raw surveillance data: for each outbreak simulation (y-axis), each small transparent circle is the 
proportion of infections averted by routine testing – intervention efficacy – for each counterfactual 
scenario, as simulated by the surveillance algorithm. Opaque diamonds are the means across all 100 
counterfactual scenarios for each outbreak. (B) The efficacy distribution from A as a histogram (top) and 
boxplot (bottom), pooling all outbreaks together. In both A and B, the vertical dotted line is the mean 
across all 10,000 counterfactual scenarios.  (C) Estimated mean efficacy and 95% confidence intervals 
using bootstrap resampling, comparing three different numbers of bootstrap replicates (colours). 
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8.3.  Results 

8.3.1.  Nosocomial outbreak dynamics 

8.3.1.1.  Outbreak risk and size 

Following the surge in SARS-CoV-2 importations at simulation outset, nosocomial 

incidence varied across LTCFs depending on the COVID-19 containment measures in 

place (Figure 8.5). The low-control LTCF 1 experienced exponential epidemic growth 

driven by patient-dominated clusters, with a mean 28.9 (range 0–82) nosocomial infections 

over two weeks. With patient social distancing in the moderate-control LTCF 2, epidemic 

growth was linear, and nosocomial incidence was reduced by a mean 62.2% to 10.9 (0–

34) infections at two weeks, more evenly split among patients and staff. Finally, with 50% 

immunization, mandatory face masks and social distancing combined in the high-control 

LTCF 3, outbreaks tended towards extinction, with a cumulative 1.1 (0–6) infections at two 

weeks, a mean 96.2% reduction in incidence relative to LTCF 1. In this latter LTCF, staff 

members infected in the community represented the majority of cases, and rarely 

transmitted. See Figure 8.6 for cumulative incidence stratified by infection onset and type 

of individual. 
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Figure 8.5.  Outbreak context. 

Modelling context: simulating SARS-CoV-2 outbreaks in a long-term care facility (LTCF) with three 
different levels of COVID-19 control. (A) A list of the COVID-19 containment measures in place across 
low-control LTCF 1, moderate-control LTCF 2, and high-control LTCF 3. (B) Daily infection prevalence, 
the mean number of individuals in each infection stage (colours) over time. Pre-symptomatic infection 
combines pre-symptomatic and pre-asymptomatic infection, and symptomatic infection combines mild 
symptomatic and severe symptomatic infection. (C) Daily nosocomial infection incidence, the number of 
new SARS-CoV-2 infections acquired within the LTCF each day. Thin coloured lines are individual 
simulations; the thick black line is the mean across 100 simulations. In text, the mean (range) cumulative 
nosocomial incidence, I, over two weeks. 
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Figure 8.6.  Infection distributions by onset and type of individual. 

Across LTCFs (columns), the distributions of cumulative SARS-CoV-2 infection incidence at two weeks, 
stratified by (A) location of infection onset, and (B) type of individual infected. Dashed vertical lines 
represent means across 100 outbreak simulations. Note that community-onset infection combines index 
cases at simulation outset and subsequent introductions over the simulation period. 
 

8.3.1.2.  Transmission heterogeneity and super-spreading 

Figure 8.7 shows heterogeneity in the number of transmission events caused by different 

individuals in the LTCF. Super-spreaders (defined as individuals transmitting to ³3 

individuals in the LTCF) drove high incidence in low-control LTCF 1, representing a mean 

5.5% of infected individuals but responsible for a mean 47.3% of all nosocomial infections, 

versus just 0.2% of infected individuals and 1.1% of nosocomial infections in the high-

control LTCF 3. The proportion of infected individuals who never transmitted was higher in 

LTCF 3 (mean 77.7%) than in LTCFs 1 (69.4%) or 2 (67.0%).  
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Figure 8.7.  Transmission heterogeneity. 

Impact of super-spreading on nosocomial SARS-CoV-2 outbreaks. (A) Contribution of super-spreading 
to nosocomial transmission: across simulated outbreaks, the distribution of the proportions of individuals 
that were super-spreaders (transmitted to ³3 individuals, pink), low-spreaders (1-2 individuals, orange), 
and non-spreaders (0 individuals, grey). (B) Contribution of super-spreading to nosocomial acquisition: 
across outbreaks, the distribution of the proportions of acquisitions that resulted from super-spreaders 
(pink) versus low-spreaders (orange). 
 
 

8.3.2.  Surveillance efficacy 

8.3.2.1.  Routine RT-PCR testing 

Figure 8.8 shows distributions of outbreak sizes (cumulative nosocomial incidence at two 

weeks) with and without a routine RT-PCR testing intervention (intervention #1 in Table 

8.2) in place. Routine RT-PCR testing significantly reduced incidence of hospital-acquired 

SARS-CoV-2 infection, by a mean 39.8% in LTCF 1, 41.2% in LTCF 2, and 46.6% in LTCF 

3. Greater relative efficacy in higher-control LTCFs was consistent with a higher average 

probability of positive test results, a consequence of fewer new, as-yet undetectable 

infections in scenarios with fewer transmission events and smaller outbreaks (Figure 8.9). 

In terms of absolute efficacy, routine RT-PCR testing translated to a mean 11.9 infections 

averted in LTCF 1, 4.8 in LTCF 2, and 0.51 in LTCF 3. Greater absolute efficacy in lower 

control LTCFs is consistent with larger outbreaks, and a greater number of infections to 

potentially avert through intervention. 
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Figure 8.8.  Efficacy of routine RT-PCR testing. 

Compared to the baseline scenario with no surveillance (blue), counterfactual scenarios with routine RT-
PCR testing (brown) had reduced cumulative nosocomial incidence (x-axis, with means as vertical 
dashed lines) due to pruning of transmission chains. For each LTCF (panels), relative efficacy (% 
reduction in incidence) was similar whether in (A) the baseline scenario of low community SARS-CoV-2 
incidence, with a mean 1.1 new community-onset infections over two weeks subsequent to the initial 
surge; and (B) the high community incidence scenario, with a mean 10.6 new community-onset infections 
over two weeks. 
 

 

Figure 8.9.  Temporal dynamics of RT-PCR sensitivity. 

Temporal dynamics of RT-PCR true-positive rate (TPR), in a hypothetical scenario of testing every 
infected individual every day. TPR is stratified by individuals who acquired infection in the community 
(blue) versus within the LTCF (red). Note that community-onset infection combines index cases at 
simulation outset and subsequent introductions over the simulation period. Sensitivity dynamics are 
shown for (A) the baseline low community incidence scenario, with its average 1.1 new community-onset 
introductions over the two weeks of simulation and (B) the high community incidence scenario, with its 
average 10.6 introductions.  



 

 248 

8.3.2.2.  One-round Ag-RDT screening 

Figure 8.10 compares the relative efficacy (proportion of nosocomial infections averted) of 

all screening interventions from Table 8.2, and Figure 8.11 compares their absolute 

efficacy (number of nosocomial infections averted). On its own, 1-round Ag-RDT screening 

was less effective than routine testing, reducing incidence of hospital-acquired SARS-CoV-

2 infection by up to 31.2-37.5% (range of means across LTCFs). For 1-round Ag-RDT 

screening in combination with routine testing, nosocomial incidence was reduced by 58.4-

63.5%. Among infections not prevented by routine testing, this represents a 30.5-32.4% 

reduction in remaining incidence due to Ag-RDT screening. Whether paired with routine 

testing or conducted independently, 1-round Ag-RDT screening was most effective if 

conducted immediately upon outbreak detection. 

 

 

Figure 8.10.  Relative surveillance efficacy 

Relative efficacy of Ag-RDT screening interventions for reducing nosocomial SARS-CoV-2 incidence. 
Points represent mean efficacy (across 10,000 simulations) for each of 26 screening interventions, 
arranged by timing of the screening intervention (days since initial outbreak detection, x-axis) and 
coloured by screening implementation (either as 1-round screening with no other testing, orange; as 1-
round screening in combination with routine RT-PCR testing, purple; or as 2-round screening with routine 
RT-PCR testing, black). For 2-round screening, the first round was conducted on day 1, with points 
arranged according to the date of the second round (days 2 to 9). The solid horizontal line represents 
mean efficacy of routine RT-PCR testing in absence of screening, which is conducted continuously over 
time and does not correspond to a specific date. Relative reductions in incidence were similar across 
LTCFs, but there was significant variation in the number of infections averted (Figure 8.11). Error bars 
(dashed lines for routine testing) represent 95% confidence intervals estimated by bootstrap resampling. 
Baseline assumptions underlying simulations include: “low” community SARS-CoV-2 incidence; time-
varying Ag-RDT sensitivity relative to RT-PCR (Ag-RDT A); and screening interventions that target all 
patients and staff in the LTCF. 
 

8.3.2.3.  Two-round Ag-RDT screening 

Two-round screening – conducting a first round of screening immediately upon outbreak 



 

 249 

detection, and an additional second round over the following days – increased overall 

surveillance efficacy. Nosocomial incidence was reduced by up to 69.4%-75.0% across 

LTCFs with well-timed 2-round screening (Figure 8.10). This represents a reduction of 

48.1%-52.8% among remaining infections not averted by routine testing alone. Optimal 

timing for the second round of screening was on days 5-6 (4-5 days after the first round of 

screening).  

 

 

Figure 8.11.  Absolute surveillance efficacy. 

The total number of nosocomial SARS-CoV-2 infections averted by testing and screening interventions. 
This contrasts to relative reductions in incidence, as in Figure 8.10. Points and error bars correspond to 
bootstrap means and 95% confidence intervals (for routine RT-PCR testing, the solid horizontal line and 
dashed lines, respectively). Baseline assumptions underlying simulations include: “low” community 
SARS-CoV-2 incidence; time-varying Ag-RDT sensitivity relative to RT-PCR (Ag-RDT A); and screening 
interventions that target all patients and staff in the LTCF. 
 

8.3.2.4.  Sensitivity analyses 

Figure 8.12. shows how estimated surveillance efficacy varied across a range of 

sensitivity analyses. 

 

8.3.2.4.1.  Screening targets 

Targeting both patients and staff for screening was always more effective than only 

targeting one or the other (Figure 8.12A). Targeting only patients was substantially more 

effective than staff for LTCF 1, consistent with its large patient-led outbreaks. This 

difference was less pronounced in LTCF 2, while in LTCF 3 screening efficacy was nearly 

identical whether targeting patients or staff.  

 

8.3.2.4.2.  Test types 

Use of RT-PCR instead of Ag-RDT was considered for screening interventions, 
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maintaining its higher diagnostic sensitivity and longer turnaround time (24h) (Figure 

8.12B). For all screening interventions considered (1-round, 1-round with routine testing, 

2-round with routine testing), Ag-RDT screening led to greater reductions in incidence than 

RT-PCR screening. This suggests that the assumed benefits of using Ag-RDT (faster turn-

around time) outweigh its assumed costs (reduced diagnostic sensitivity). This finding was 

robust to a sensitivity analysis considering the alternative Ag-RDT (B) diagnostic sensitivity 

curve, which generally resulted in lower efficacy estimates than Ag-RDT (A) but greater 

efficacy than predicted for RT-PCR screening. 

 

8.3.2.4.3.  Community incidence 

In an alternative scenario of higher community incidence and more frequent introductions 

of SARS-CoV-2 into the LTCF, screening was overall less effective for transmission 

prevention than in the baseline scenario (Figure 8.12C). Optimal timing for second-round 

screening was also delayed further in LTCFs 2 and 3. When incidence is high, delaying 

the second round of screening allows for considerably more community-onset SARS-CoV-

2 infections introduced into the LTCF over the course of simulations to be tested and 

ultimately detected.  

 

8.3.2.4.4.  Sensitivity functions 

Alternative diagnostic sensitivity functions that do not vary over time were also considered 

(Figure 8.12D). When assuming uniform but imperfect diagnostic sensitivity over the 

course of infection (70% for RT-PCR, 54% for Ag-RDT; turquoise points), the second 

round of screening was more effective the sooner it was conducted. This suggests that, if 

test sensitivity does not vary over time, it is better to conduct screening rounds 

consecutively in order to increase probability of detecting infections before transmission 

occurs. Alternatively, assuming 100% diagnostic sensitivity for both RT-PCR and Ag-RDT 

(brown points), longer delays to second-round screening resulted in higher efficacy, with 

nosocomial incidence reduced by up to 98.6-99.2% when second-round screening was 

conducted 8 days after the first round (the longest interval considered). This suggests that, 

if tests are perfectly sensitive, it is better to delay second-round screening in order to 

increase the number of community-onset infections included for testing in the second 

round. Altogether, this analysis suggests that the time-varying nature of test sensitivity is 

what drives optimal efficacy of two-round screening at an intermediate screening lag. 
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Figure 8.12.  Surveillance efficacy sensitivity analyses. 

Impacts of alternative modelling assumptions on efficacy of screening interventions. Points and error bars 
correspond to bootstrap means and 95% confidence intervals. For all panels, black asterisks represent 
the assumption used in baseline analyses, unless specified otherwise. (A) Comparison of targeting 
patients and/or staff in screening interventions. (B) Comparison of using Ag-RDT or RT-PCR for 
screening, assuming immediate results for Ag-RDT and a 24-hour delay for RT-PCR. Two sensitivity 
curves for Ag-RDT are considered (see Figure 8.2). (C) Comparison of screening efficacy in the baseline 
low incidence scenario, and the alternative high incidence scenario. (D) Comparison of alternative 
sensitivity functions for both RT-PCR and Ag-RDT.  
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8.3.3.  Surveillance performance and efficiency 

8.3.3.1.  Routine RT-PCR testing 

Figure 8.13 shows how various performance measures of routine RT-PCR testing vary 

across LTCFs. In particular, TPR and NPV were substantially lower in LTCF 1 than in 

other LTCFs, while PPV was higher. Figure 8.13 also reveals how efficiency varies across 

scenarios. Mean apparent efficiency ranged from 28-65 infections detected/1,000 RT-PCR 

tests across LTCFs, while mean real efficiency ranged from 5-105 infections averted/1,000 

RT-PCR tests. 

 

 

Figure 8.13.  Performance of routine RT-PCR testing. 

Performance of routine RT-PCR testing across LTCFs (y-axis, colours) and various surveillance 
outcomes (panels). Points and error bars correspond to bootstrap means and 95% confidence intervals. 
 

8.3.3.2.  Ag-RDT screening 

Figure 8.14 compares the apparent efficiency (left) and real marginal efficiency (right) of 

Ag-RDT screening in the context of the most effective overall surveillance intervention 

evaluated (routine RT-PCR testing + two-round Ag-RDT screening on days 1 and 5). 

Efficiency estimates are presented as different colours for screening interventions that 

target all patients (red), all staff (blue), or all individuals in the LTCF (orange). 

 

Apparent efficiency of Ag-RDT screening was nearly identical across LTCFs. This reflects 

that, despite substantial differences in outbreak size, screening detected similar numbers 

of infections in each LTCF relative to the large number of screening tests used. However, 

marginal real efficiency varied greatly across LTCFs. Beyond the infections already 

averted due to routine RT-PCR testing, this well-timed patient Ag-RDT screening 
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intervention averted approximately 20 cases/1,000 Ag-RDT tests in LTCF 1, compared to 

5 cases/1,000 Ag-RDT tests in LTCF 2, and just 0.5 cases/1,000 Ag-RDT tests in the high 

control LTCF 3 (Figure 8.14).  

 

 

Figure 8.14.  Apparent vs. real surveillance efficiency. 

Efficiency of Ag-RDT screening in the context of a highly effective surveillance intervention (routine RT-
PCR + 2-round Ag-RDT screening on days 1 and 5), comparing (A) apparent screening efficiency with 
(B) marginal real screening efficiency. Marginal real screening efficiency describes efficiency of Ag-RDT 
screening for prevention of remaining nosocomial SARS-CoV-2 infections not already averted by routine 
RT-PCR testing. Screening interventions targeted either all members of staff (blue), all patients (red), or 
all individuals in the LTCF (orange). Baseline assumptions underlying simulations include: “low” 
community SARS-CoV-2 incidence and time-varying Ag-RDT sensitivity relative to RT-PCR (Ag-RDT A). 
 

Figure 8.15 shows various performance indicators for Ag-RDT screening interventions, 

including TPR, TNR, PPV and NPV, and again comparing screening interventions that 

target only patients (red), only staff (blue), or everyone in the LTCF (orange). TPR was 

substantially lower in lower control LTCFs, while TNR was indistinguishable across 

facilities. For 2-round screening interventions, PPV tended to increase when second-round 

screening was conducted later, while NPV tended to decrease. Overall, targeting staff 

tended to result in higher screening performance indicator estimates than targeting 

patients. This reflects that staff infections were more likely to be community-onset, and 

tended to have higher probabilities of being detected due to an older infection age when 

screening interventions were conducted, while patient infections were more likely to be 

nascent nosocomial infections with lower probability of being detected. Figure 8.15 further 

builds on Figure 8.14 by demonstrating, across a range of screening interventions, that 

apparent efficiency is highly similar across LTCFs, while real marginal efficiency is 

consistently more than an order of magnitude greater in low control LTCF 1 than in high 

control LTCF 3.  
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Figure 8.15.  Ag-RDT screening performance indicators. 

Performance of Ag-RDT screening interventions paired with routine RT-PCR testing (interventions 11 
and 20 to 27 from Table 8.2) across various surveillance outcomes (rows). For (F), note that efficacy 
reflects marginal cases averted: cases averted by Ag-RDT screening exclude cases already averted by 
routine RT-PCR testing. Points and error bars correspond to bootstrap means and 95% confidence 
intervals 
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8.3.4.  Surveillance cost-effectiveness 

Figure 8.16 shows cost-effectiveness estimates for four selected surveillance 

interventions (colours) across LTCFs and while varying testing unit costs. Similar to real 

marginal efficiency, cost-effectiveness of different surveillance interventions varied by 

orders of magnitude across LTCFs.  

 

In LTCF 1, assuming baseline costs of €50/RT-PCR test and €5/Ag-RDT test, routine RT-

PCR testing + 1-round Ag-RDT screening cost €422 (€413-€431)/case averted, with 

similar estimates for 2-round screening. In LTCF 2, the same intervention cost €1,070 

(€1,051-€1,088)/case averted, and in LTCF 3 it cost €10,263 (€9,963-€10,583)/case 

averted.  

 

Cost-effectiveness estimates were highly sensitive to testing unit costs. Above €50/RT-

PCR test, routine testing was overall more cost-effective when coupled with Ag-RDT 

screening. Conversely, above €5/Ag-RDT test, routine testing was overall less cost-

effective when coupled with Ag-RDT screening. Although combined testing and screening 

strategies were much more epidemiologically effective than screening on its own (Figure 

8.10), they were generally less cost-effective (Figure 8.16). 
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Figure 8.16.  Surveillance cost-effectiveness. 

Cost-effectiveness of four surveillance interventions (colours), estimated as surveillance unit costs per 
case averted. Cost-effectiveness was estimated while varying either (A) the unit cost per Ag-RDT test (at 
a fixed €50/RT-PCR test), or (B) the unit cost per RT-PCR test (at a fixed €5/Ag-RDT test). One-round 
screening was conducted on day 1 (strategies 2 and 11 in Table 8.2), and 2-round screening on days 1 
and 5 (strategy 23). Baseline assumptions underlying simulations include: “low” community SARS-CoV-
2 incidence; time-varying Ag-RDT sensitivity relative to RT-PCR (Ag-RDT A); and screening interventions 
that target all patients and staff in the LTCF.  
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8.4.  Discussion 

8.4.1.  Summary of model and results 

Surges in nosocomial SARS-CoV-2 importation or outbreak risk are often predictable, 

resulting from phenomena like local emergence of a highly transmissible variant, seasonal 

or festive gatherings that increase population mixing, and the identification of index cases 

or exposed contacts within a healthcare facility. When such risks are known, implementing 

reactive surveillance may help to identify and isolate asymptomatic and pre-symptomatic 

infections, limiting onward nosocomial transmission. Using simulation modelling, I 

demonstrate how reactive Ag-RDT screening complements routine RT-PCR testing in 

reducing nosocomial SARS-CoV-2 incidence following a known surge in outbreak risk.  

 

In simulations, with two rounds of well-timed Ag-RDT screening, up to 75% of infections 

were prevented, compared to 64% with a single round of screening, or 47% with routine 

RT-PCR testing alone. A lag of 4-5 days between the first and second rounds of screening 

was found to be optimal for transmission prevention, as a result of the time-varying nature 

of test sensitivity (in a sensitivity analysis assuming imperfect but time-invariant sensitivity, 

an immediate second round of screening was optimal). Underlying outbreak risk was the 

greatest driver of screening efficiency, more important than screening timing (immediate 

vs. delayed), test type (Ag-RDT vs. RT-PCR) or target (patients vs. staff). I estimated that 

a vulnerable LTCF gains between one and two orders of magnitude more health-economic 

benefit (>10 infections averted/1,000 Ag-RDT tests used for combined routine testing and 

2-round screening interventions) than a resilient LTCF with alternative COVID-19 control 

measures already in place (<1 infection averted/1,000 Ag-RDT tests). This translated to 

similar cost-effectiveness conclusions, whereby the highest-control LTCF 3 paid over 

€10,000 in surveillance unit costs per infection averted, compared to approximately 

€400/infection averted for identical interventions in the lowest-control LTCF 1. 

 

8.4.2.  Findings in context 

Ag-RDT screening is widely used in healthcare settings, but there is limited empirical 

evidence demonstrating efficacy for SARS-CoV-2 transmission prevention.(Tulloch et al., 

2021) Despite a range of studies reporting efficacy for case identification,(Kernéis et al., 

2021; McKay et al., 2021; Wagenhäuser et al., 2021) interventional trials are needed to 

understand impacts on nosocomial spread. The present comparison of apparent and real 

screening efficiency demonstrates why case identification may be a poor proxy measure 
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for actual health and economic benefit. In the absence of empirical data, mathematical 

models have been useful tools to evaluate performance of SARS-CoV-2 screening 

interventions in healthcare settings. Most studies have simulated use of routine screening 

at regular intervals (e.g. weekly, biweekly), finding that more frequent screening reduces 

outbreak probability, that targeting patients versus staff can significantly impact 

effectiveness, and that faster diagnostic turn-around time of Ag-RDT tends to outweigh 

reduced sensitivity relative to RT-PCR.(Chin et al., 2020; Hellewell et al., 2021; Holmdahl 

et al., 2021; Kahn et al., 2021; Kendall et al., 2021; L. L. K. Nguyen et al., 2020; Pham et 

al., 2021; Rosello et al., 2021; Vilches et al., 2021; Zhang et al., 2021) These conclusions 

were all recapitulated in this work.  

 

Despite potential to reduce transmission, routine screening is an economic and 

occupational burden with uncertain suitability for low-risk healthcare settings.(Buckle et al., 

2021; Kierkegaard et al., 2021) These considerations have generally been neglected in 

previous work. A few modelling studies have estimated cost-effectiveness of nosocomial 

screening interventions in specific use cases, including for hospital patients admitted with 

respiratory symptoms,(Ricks et al., 2021) patients admitted to German emergency 

rooms,(Diel and Nienhaus, 2021) and routine staff and resident testing in English nursing 

homes.(Stevenson et al., 2021) However, key impacts of stochastic transmission 

dynamics, screening heterogeneity, and other concomitant COVID-19 containment 

measures have rarely been accounted for. Further, no studies have evaluated efficacy and 

efficiency of reactive, as opposed to routine screening, although findings from See et al. 

suggest greater efficiency of testing in outbreak versus non-outbreak settings.(See et al., 

2021) Overall, the present use of high-resolution, stochastic, individual-based modelling 

complements previous studies in demonstrating how epidemiological and health-economic 

benefits of reactive screening scale with test sensitivity, screening timing, test type, 

population targets, and – most critically – underlying nosocomial outbreak risk. 

 

8.4.3.  Limitations 

Findings should be interpreted in the context of several methodological limitations. First, 

some results may reflect specificities of the rehabilitation hospital contact network 

underlying CTCmodeler. Greater efficiency was estimated for screening patients relative to 

staff, but the opposite result may be expected in settings where staff have higher rates of 

contact than patients. Second, use of retrospective counterfactual analysis facilitated 

precise estimation of intervention efficacy, but precluded consideration of how surveillance 
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interventions might impact human behaviour. For instance, healthcare workers that 

conduct screening inevitably come into contact with many individuals, potentially creating 

new opportunities for transmission. This limitation does not hold if results are interpreted in 

the context of self-administered auto-tests, which may be a cost-effective intervention in 

the context of at-home testing in the community.(Paltiel et al., 2021) However, auto-testing 

may be less feasible for patients or residents than staff, particularly in certain high-risk 

settings.(Würstle et al., 2021)  

 

Third, transmission chain pruning did not account for the possibility of case isolation 

delaying, rather than preventing infection. For instance, a healthcare worker whose 

infection was averted due to isolation of an infectious patient could nonetheless become 

infected by a subsequent contact with a different infectious individual. This effect was likely 

negligible in higher-control LTCFs, where multiple acquisition routes are unlikely in the 

context of low nosocomial incidence, but may have resulted in overestimation of 

intervention efficacy in lower-control LTCFs. However, this effect should not have 

qualitatively changed any conclusions, as transmission chain pruning was conducted 

identically across interventions (e.g. testing vs. screening), tests (RT-PCR vs. Ag-RDT) 

and targets (patients vs. staff).  

 

Fourth, cost-effectiveness estimates only considered testing unit costs, but decision-

makers must consider a range of other implementation costs, from human resources, to 

logistical coordination, to opportunity costs of false-positive isolation. Decision-makers may 

also have a wide variety of specific tests and manufacturers to choose from, including 

tests with heterogeneous sampling techniques (e.g. nasopharyngeal swabs vs. saliva or 

pharynx gargle samples), with potential consequences for surveillance costs, efficacy and 

occupational burden. (Note that the RT-PCR and Ag-RDT sensitivity curves used in the 

present work represent average results across a range of different tests used on upper 

respiratory specimens.) Finally, this analysis was limited to the two weeks following 

intervention implementation, under the assumption that LTCFs came to control nosocomial 

transmission at the same time. Findings thus do not capture potential downstream 

exponential benefits of preventing infections, including those that go on to seed 

transmission in the community.  

 

8.4.4.  Future directions 

Since its widespread uptake as a SARS-CoV-2 surveillance intervention, there has been 
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substantial debate about whether the potential health-economic efficiency of Ag-RDT 

justifies an elevated risk of false-negative diagnosis.(Deeks and Raffle, 2020; Mina and 

Andersen, 2021) The present findings are consistent with the view that Ag-RDT is on its 

own insufficient to eliminate nosocomial SARS-CoV-2 outbreak risk, but that it is 

nonetheless an effective component of multi-modal infection prevention strategies.(Dinnes, 

2021) I demonstrate that reactive Ag-RDT screening is a potentially efficient public health 

response to surges in outbreak risk in the LTCF setting, but that its health and economic 

benefits scale by orders of magnitude depending on other epidemiological risk factors, 

including the facility’s inter-individual contact patterns, infection prevention measures, and 

vaccine coverage. This suggests that healthcare institutions should carefully evaluate their 

vulnerability to COVID-19 – and hence potential returns on investment – before 

implementation of Ag-RDT screening interventions. Such decision-making may be guided 

by local indicators, including the burden of SARS-CoV-2 infection in the local community, 

levels of SARS-CoV-2 immunity among patients and staff, the immune escape properties 

of locally circulating variants, and other factors that underlie nosocomial outbreak risk.   
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Chapter 9.   Contributions, perspectives and 

conclusion 

 

9.1.  Synthesis of contributions 

The main objectives of this thesis were to develop novel mathematical models to better 

understand the aetiology and transmission risks of diverse nosocomial pathogens, and to 

provide evidence for improvement of HCAI surveillance and control interventions. These 

objectives were met through two principal bodies of work. First, the study of how within-

host microbiome-pathogen interactions drive nosocomial dissemination of ARB and 

determine the efficacy of public health interventions for colonization prevention in the 

hospital setting. Second, the study of how systematic surveillance and isolation 

interventions can be optimized to detect and prevent SARS-CoV-2 outbreaks in the long-

term care setting. Here, these works are discussed in the context of their broader 

contributions to the study of the transmission, surveillance and control of HCAI. 

 

9.1.1.  How do antibiotics select for the spread of resistance? 

This thesis has provided a theoretical framework explaining how antibiotic use in the 

context of microbiome-pathogen competition can drive the epidemiological spread of 

ARB. This offers an alternative selection mechanism to intraspecific strain competition – 

the classic modelling framework – for how antibiotics select for resistance dissemination. 

Through this work, two novel mechanistic antibiotic selection trade-offs were identified, 

whereby intermediate antibiotic use tends to select most strongly for the spread of ARB in 

the context of either microbiome dysbiosis (due to antibiotics both clearing ARB and 

increasing host susceptibility to colonization) or interspecific HGT (due to antibiotics both 

selecting for bacteria bearing an antibiotic-resistance gene and clearing potential HGT 

recipients).  

 

This work also demonstrated how different colonization acquisition routes (including 

person-to-person transmission, endogenous acquisition, horizontal gene transfer) and 

within-host competitive interactions (colonization resistance, resource competition, 

ecological release) combine to drive the colonization dynamics of distinct ARB. In 

particular, high estimated ecological release coefficients for C. difficile, ESBL-EC and CP-
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KP were found to drive high rates of endogenous colonization acquisition. However, 

despite large impacts on pathogen prevalence and incidence, microbiome-pathogen 

interactions had little impact on resistance rates, suggesting that the ecological forces that 

drive antibiotic selection for ARB dissemination may vary across levels of biological 

organization (e.g. bacterial strains vs. species) and epidemiological indicators (e.g. 

resistance isolation rates vs. colonization prevalence).  

 

9.1.2.  Which control interventions for which ARB? 

Variation in within-host ecology and acquisition routes was found to underlie variation in 

the efficacy of public health interventions for the control of distinct nosocomial pathogens. 

Contact precautions were highly effective for reducing colonization incidence of MRSA 

(which was primarily acquired through person-to-person transmission), but had limited 

impact on incidence of enteric ARB (primarily acquired endogenously). Conversely, 

antibiotic stewardship interventions were broadly effective for colonization prevention 

across all ARB (with highest efficacy for CP-KP and lowest efficacy for MRSA), as well as 

for reducing resistance rates (again with highest efficacy for CP-KP). Stewardship 

interventions were found not only to limit endogenous outgrowth of subdominant ARB, but 

also to reduce acquisition through HGT and person-to-person transmission, hinting as to 

why stewardship may be broadly effective across ecologically distinct ARB (as observed 

empirically). Through similar mechanisms, this work also demonstrated benefits of 

microbiome-targeted therapies that protect microbiome stability and/or diversity as a tool 

to limit acquisition of HCAI-causing ARB (with highest efficacy for C. difficile prevention, 

and lowest for MRSA prevention), but not to limit resistance rates.  

 

9.1.3.  What makes LTCFs vulnerable to SARS-CoV-2 outbreaks? 

Through detailed analysis of the in silico transmission of SARS-CoV-2 along high-

resolution inter-individual contact networks simulated using data from a real long-term care 

hospital setting, this thesis demonstrated several factors that make LTCFs vulnerable to 

SARS-CoV-2 outbreaks. First, simulations highlighted how contact patterns can shape 

differential infection risk among patients and staff. As expected, high rates of patient-to-

patient contact in the baseline contact network entailed high rates of patient-to-patient 

transmission, while a simple patient social distancing intervention more than halved 

nosocomial incidence. Second, high incidence was primarily driven by super-spreaders, 

but only in the absence of control measures: super-spreaders accounted for approximately 

half of transmission events in a low-control LTCF, but just 1% when combined COVID-19 
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control measures (social distancing, masks and vaccination) were in place.  Third, the 

introduction of non-symptomatic infections from the community in the context of symptom-

based surveillance was associated with outbreak vulnerability: routine symptomatic RT-

PCR testing entailed longer delays to outbreak detection than other strategies, and 

prevented on average fewer than half of infections across three simulated LTCFs. 

 

9.1.4.  How can SARS-CoV-2 surveillance be optimized? 

This thesis demonstrated that optimal surveillance strategies for SARS-CoV-2 outbreak 

detection and transmission prevention vary depending on the types of tests or 

combinations of tests used, their diagnostic sensitivity, available testing capacity, testing 

timeliness, testing targets, and underlying nosocomial outbreak risk. In the context of 

outbreak detection, SARS-CoV-2 group testing (sample pooling) was found to be highly 

effective and efficient in the context of limited RT-PCR testing capacity (<1 test/100 

beds/day), while testing cascades were the most effective strategy when tests were more 

readily available (>10 tests/100 beds/day), and in particular when cascades included a 

range of indications, including new patient admission and presentation of any COVID-19-

like symptoms among all patients and staff. I also showed that mass screening using 

rapid point-of-care tests may be an effective surveillance intervention for transmission 

prevention in the context of a surge in SARS-CoV-2 introductions from the community. 

Screening was always more effective the earlier it was conducted relative to the detected 

surge in outbreak risk, but two-round screening was optimized by allowing a delay of 4 to 5 

days between the first and second rounds. Screening interventions were generally more 

effective for transmission prevention when using Ag-RDT as opposed to RT-PCR 

(assuming a 24-hour delay to RT-PCR results), and when targeting patients rather than 

staff (in the context of a facility with high underlying rates of patient-patient contact). 

However, the number of infections averted per test used scaled by over an order of 

magnitude depending on the other COVID-19 control measures in place, demonstrating 

that health-economic benefits of surveillance depend principally on underlying nosocomial 

outbreak risk. 
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9.2.  Perspectives for coming years 

9.2.1.  Bridging scales using nested models 

Links between within- and between-host infectious disease dynamics have been widely 

studied in various contexts, including the evolution of parasite life history and Darwinian 

selection for antimicrobial resistance, but remain largely absent from epidemiological 

models of antibiotic resistance.(Birkegård et al., 2018; Day et al., 2011; Niewiadomska et 

al., 2019; zur Wiesch et al., 2011) The work in this thesis is among the first to 

mechanistically link microbiome dynamics to the clinical epidemiology of ARB, and to 

antibiotic selection for resistance dissemination at the population level. However, due to a 

lack of empirical data to inform more detailed modelling assumptions, within-host 

dynamics were greatly simplified. A clear extension of the present work is to explicitly 

account for within-host microbiome and pathogen population dynamics using nested 

models informed by detailed within- and between-host data. 

 

9.2.2.1.  Within-host microbiome dynamics 

Impacts of interspecific interactions on within-host microbiome population dynamics and 

community assembly are increasingly well described. Using different modelling 

approaches, Levy & Borenstein showed that metabolic competition correlates with 

microbiome colonization, such that species occupying a similar nutritional niche tend to co-

occur,(Levy and Borenstein, 2013) and Coyte et al. showed that inter-specific competition, 

and not cooperation, best explains the intrinsic population dynamic stability of the 

microbiome.(Coyte et al., 2015) Competitive interactions between bacteria have also been 

shown to drive their spatial organization,(Liu et al., 2016) history-dependent species 

abundance,(Venturelli et al., 2018) and predictability in the taxonomic organization of 

emergent microbial communities(Friedman et al., 2017).  

 

Other studies have further accounted for antibiotic exposure in this context. Using 

ecological time-series data, Stein et al. extended a Lotka-Volterra framework to infer 

competition dynamics and demonstrate that antibiotic exposure can cause catastrophic 

shifts in microbiome composition.(Stein et al., 2013) Using an alternative stability 

landscape framework, Shaw et al. modelled the impact of different antibiotic classes on 

phylogenetic diversity, demonstrating particularly deleterious impacts of clindamycin and 

ciprofloxacin. Relatively fewer studies have further explored consequences for the 

emergence of antibiotic resistance. Notably, Tepekule et al. modelled microbiome 
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population dynamics against a backdrop of ecological competition and antibiotic treatment, 

and showed how properties of generic antibiotic exposure, including treatment duration 

and time since last exposure, can explain within-host selection for resistance.(Tepekule et 

al., 2019) Finally, Guittar et al. used within-host mathematical modelling to show how host-

mediated resource competition between mutualistic and pathogenic microorganisms can 

reproduce a range of empirical observations, including: different infection outcomes among 

similar hosts exposed to the same pathogen, a non-linear relationship between pathogen 

inoculum size and colonization duration, use of microbiome recovery therapies to 

overcome antibiotic-induced dysbiosis, and potential for probiotic therapy to protect 

against infection.(Guittar et al., 2021)  

 

9.2.2.2.  Extensions to between-host dynamics: the missing link 

Despite these recent advances in understanding within-host microbiome dynamics, critical 

links to between-host epidemiological processes are missing. To date, few if any studies 

have described how impacts of antibiotics on microbiome population dynamics feed 

forward to impact colonization and/or infection dynamics at the between-host level. Indeed, 

a lack of data and challenges associated with validating simultaneous within- and 

between-host outcomes are known barriers to using nested models in the study of 

infectious disease dynamics.(Restif and Graham, 2015) Yet informative data are not out of 

reach. In theory, parameters linking within- and between-host processes could be 

estimated through longitudinal observational studies that simultaneously assess impacts of 

antibiotic consumption on microbiome dynamics (e.g. estimates of microbiome 

composition before, during and after antibiotic therapy from metagenomic analysis of stool 

samples), and subsequent risks of acquisition, clearance and outgrowth of different 

pathogens in treatment and control groups. With the advent of high-throughput sequencing 

technologies and advanced methods in genomic epidemiology, future work should be able 

to more rigorously quantify how indicators of microbiome health and dysbiosis (e.g. 

species diversity or dynamic stability) map to epidemiological outcomes (e.g. pathogen 

acquisition risk). 

 

9.2.3.  Pathogen-pathogen interactions 

Infectious disease models typically consider only one pathogen strain or species at a time. 

This is a sensible methodological approach in the absence of strong evidence supporting 

interactions with other co-circulating pathogens, but some pathogen-pathogen interactions 

may have important epidemiological consequences. Influenza, for example, has been 
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identified as a key driver of seasonality in invasive pneumococcal disease, such that 

models of S. pneumoniae in isolation may be less likely to correctly represent its 

epidemiology than models accounting for both S. pneumoniae and influenza.(Domenech 

de Cellès et al., 2019) One possible extension of our microbiome model is to account for 

co-colonization with and competitive within-host interactions between different nosocomial 

pathogen species. For instance, Enterobacteriaceae like E. coli and K. pneumoniae may 

overlap significantly in their ecological niche and are known to horizontally exchange 

antibiotic resistance genes,(Mathers et al., 2015) making them hypothetical candidates for 

such a coinfection model, but data informing if or how such interactions affect their 

nosocomial epidemiology are scarce.  

 

For COVID-19 patients, bacterial coinfection has been a topic of major concern since the 

beginning of the pandemic. This has been motivated by high rates of mortality due to 

bacterial coinfection for other respiratory infections (e.g. during the 2009 H1N1 influenza 

pandemic), resulting in high rates of prophylactic antibiotic prescribing in hospitalized 

COVID-19 patients.(Knight et al., 2021; MacIntyre et al., 2018) Yet preliminary evidence 

suggests that bacterial coinfection is relatively rare subsequent to SARS-CoV-2 infection, 

while coinfection with other respiratory viruses is more common but may be relatively 

inconsequential (Davis et al., 2020; Langford et al., 2020; Lansbury et al., 2020; Le Hingrat 

et al., 2021; Rawson et al., 2020) For instance, there was no evidence from extensive UK 

surveillance data that SARS-CoV-2 infection was associated with increased rates of 

invasive pneumococcal disease (S. pneumoniae was the most common coinfecting 

bacteria during the H1N1 pandemic).(Amin-Chowdhury et al., 2021; MacIntyre et al., 2018) 

However, such findings must also be interpreted in the context of global declines in 

incidence of respiratory bacterial disease coincident with lockdowns during the first wave 

of the COVID-19 pandemic.(Brueggemann et al., 2021) Indeed, transmission dynamics of 

diverse pathogen species can be driven by the same host or environmental factors, and 

limited by the same public health interventions. A critical research question that has thus 

emerged since early 2020 is: how has the COVID-19 pandemic and its associated control 

interventions impacted the transmission, surveillance and control of other nosocomial 

pathogens? 

 

9.2.4.  Impacts of the COVID-19 pandemic on other healthcare-associated 

infections 

The overall impact of the COVID-19 pandemic on HCAI epidemiology remains largely 
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uncertain, but emerging literature suggests that its effects have been heterogeneous 

across geographical regions, healthcare facilities, types of care, types of infection and 

pathogen species. In a literature review, O’Toole identified increased rates of carbapenem-

resistant Enterobacterales and A. baumanii, but reduced rates of MRSA and VRE as 

compared with pre-pandemic rates; and in a commentary, McMullen et al. suggest that the 

COVID-19 pandemic may be expected to lead to increased central line-associated 

bloodstream infection (BSI) and catheter-associated urinary tract infection (UTI), but 

reduced surgical site infection (SSI).(McMullen et al., 2020; O’Toole, 2021)  

 

9.2.4.1.  Increased HCAI burden due to COVID-19 

9.2.4.1.1.  Mechanisms 

There are a number of hypotheses as to why the COVID-19 pandemic may have 

exacerbated HCAI burden.(McMullen et al., 2020; O’Toole, 2021) These include: 

disorganization of the workplace, resulting in reduced adherence to standard infection 

prevention and control practices and to antimicrobial stewardship; healthcare worker 

absenteeism due to COVID-19 infection or pandemic burnout, resulting in higher patient-

to-staff ratios; high rates of prophylactic antibiotic prescribing among COVID-19 patients, 

resulting in background selection for resistant bacteria; increased use of invasive devices 

like central lines and mechanical ventilators for treatment of severe COVID-19 infections; 

and fewer elective hospital admissions, shifting the denominator of patient populations 

towards more vulnerable individuals, and increasing per-capita HCAI rates.  

 

9.2.4.1.2.  Evidence 

One of the largest reports of increased HCAI rates during the COVID-19 pandemic comes 

from an analysis of data from 148 USA hospitals by Baker et al. They reported a 23–108% 

increase in incidence of central line-associated BSI, and an 8–90% increase for catheter-

associated UTI. They also reported increases in MRSA, VRE and multidrug-resistant 

Gram-negative bacteria, but no change in C. difficile infection, and observed that clusters 

of hospital-onset pathogens were associated with surges in COVID-19 cases.(Baker et al., 

2021) A similar increase of central-line associated BSI was reported in Michigan, and of 

device-associated HCAI in Italy.(Baccolini et al., 2021; LeRose et al., 2021) In ICUs in 

France, Buetti et al. reported higher rates of BSI among COVID-19 patients than non-

COVID-19 patients;(Buetti et al., 2021) and in a COVID-19-dedicated ICU in Germany, two 

VRE clusters emerged despite intensification of infection prevention measures due to the 

pandemic.(Kampmeier et al., 2020) In separate hospitals in Florida and Italy, 
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dissemination of highly drug-resistant C. auris was potentially exacerbated by the COVID-

19 pandemic, with nosocomial transmission occurring in COVID-19-dedicated wards.(Di 

Pilato et al., 2021; Prestel et al., 2021) Finally, in a case-control series from Italy, higher 

rates of multidrug-resistant bacterial infections were reported in COVID-19 versus non-

COVID-19 wards, with the greatest difference reported for ESBL-producing K. 

pneumoniae. However, across all wards, they found a significant decrease in the incidence 

of multidrug-resistant bacterial infections during the pandemic compared to pre-pandemic 

years (2017-2019).(Bentivegna et al., 2021) 

 

9.2.4.2.  Decreased HCAI burden due to COVID-19 

9.2.4.2.1.  Mechanisms 

There are also a number of hypotheses as to why the COVID-19 pandemic may have 

indirectly helped to reduce HCAI burden.(McMullen et al., 2020; O’Toole, 2021; Smith and 

Opatowski, 2021) These include: reduced transmission of nosocomial pathogens due to 

COVID-19 prevention measures, including contact precautions, universal masking, hand 

hygiene and personal protective equipment; fewer total admissions and hence reduced 

patient density; fewer surgical operations; reduced pathogen carriage in the community 

due to decreased population mixing, increased hand hygiene and other pandemic control 

measures, resulting in fewer introductions into healthcare settings; and reduced hospital 

and community circulation of potential co-infecting pathogens that predispose patients to 

severe infection (e.g. reduced influenza incidence resulting in lower rates of invasive 

disease due to S. pneumoniae).  

 

9.2.4.2.2.  Evidence 

Healthcare facilities worldwide have and continue to report reduced rates of HCAI 

coincident with implementation of COVID-19 containment measures. In a retrospective 

cross-sectional study in four California hospitals, overall rates of healthcare-onset MDR 

bacteria were reduced by 35%, including a 21% decrease in “ESBL” (organism not 

defined), 41% decrease in MRSA and 80% decrease in VRE. These decreases were 

concomitant with a 25% increase in hand sanitizer and hand soap usage.(Cole and 

Barnard, 2021) In a tertiary-care hospital in Madrid, there was a 70% reduction in C. 

difficile infection despite a slight increase in antibiotic use.(Ponce-Alonso et al., 2021) In 

neurological units in a hospital in Rome, hospitalization from March to May 2020 (as 

compared to 2019) was independently associated with both reduced antibiotic prescribing 

and reduced HCAI incidence.(Cerulli Irelli et al., 2020) In another Italian hospital, rates of 
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SSI during the COVID-19 period in 2020 (as compared to 2018 and 2019) were 

significantly lower (3.3% during COVID-19 vs. 8.4% in baseline), including significantly 

lower proportions of patients developing either superficial SSI (0.8% vs. 3.4%) or deep SSI 

(0% vs. 3.4%). Measures to reduce nosocomial SARS-CoV-2 transmission were 

independently associated with reduced SSI.(Losurdo et al., 2020) 

 

Significant reductions have also been reported for respiratory viral HCAIs. In a healthcare 

network in Hong Kong with high compliance of masking among staff (100%) and patients 

(76%), there were no cases of nosocomial influenza A, influenza B, and RSV infection in 

early 2020. This was significantly lower than the same period from 2017 to 2019, which 

had on average 5, 2 and 3 cases of influenza A, influenza B and RSV per month.(Wong et 

al., 2021) In Singapore’s largest hospital system, a multimodal IPC intervention put in 

place for COVID-19 prevention corresponded with a major decrease in healthcare-

associated respiratory virus infection (IRR 0.05–0.13), in addition to reduced MRSA 

acquisition rates (IRR 0.46–0.64) and CA-BSI rates (IRR 0.07–0.57).(Wee et al., 2021) 

Finally, in a separate study of adenovirus infection from the same setting, Wee et al. 

reported reduced incidence of healthcare-associated infection subsequent to COVID-19 

containment measures (0.03 cases / 10,000 patient days) compared to the pre-pandemic 

period (0.40 cases / 10,000 patient-days), despite higher rates of community-onset 

adenovirus infection at pandemic onset.(Wee et al., 2020)  

 

9.2.4.3.  Pandemic impacts on the microbiome 

The COVID-19 pandemic may also be associated with important consequences for human 

microbiota. First, high rates of prophylactic antibiotic prescribing among COVID-19 

patients can be expected to increase risks of dysbiosis and C. difficile infection.(Kullar et 

al., 2021) Second, in a review of the causes and consequences of gastrointestinal 

symptoms associated with COVID-19, Trottein & Sokol describe mechanisms by which 

SARS-CoV-2 infection may itself trigger gut dysbiosis, and suggest that targeting gut 

microbiota to limit or prevent dysbiosis may help to control COVID-19 

pathogenesis.(Trottein and Sokol, 2020) Evidence for microbiome-targeted interventions 

remains limited, but one trial of probiotic therapy in COVID-19 patients demonstrated 

effectiveness for resolution of COVID-19-associated diarrhea compared to controls, and 

reduced rates of ICU transfer and mortality.(d’Ettorre et al., 2020) In light of findings from 

this thesis, microbiome-targeted interventions may have the additional downstream 

benefits of reducing subsequent risk of ARB colonization and HCAI in hospitalized COVID-
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19 patients.  

 

COVID-19 containment measures may also have impacted the transmission and 

composition of human microbiota. For instance, in a cohort of acute myeloid leukemia 

patients in the USA who provided stool samples longitudinally over pre- and post-

pandemic periods, implementation of COVID-19 containment measures left a clear imprint 

on microbiome composition, including reduced abundance of Pseudomonas spp. and 

Akkermansia spp.(Rashidi et al., 2021) In both community and healthcare settings, 

measures like social distancing, sedentary lifestyles, extensive antimicrobial hygiene 

practices and travel restrictions may indirectly favour loss of microbial diversity and limit 

reinoculation with commensal symbionts, with potential deleterious consequences for 

protection against infectious disease.(Finlay et al., 2021)  

 

9.2.5.  Future work 

A planned extension of the work from this thesis is to build a hospital model that 

simultaneously accounts for ARB carriage, SARS-CoV-2 infection and patient microbiota, 

in order to better understand impacts of the COVID-19 pandemic on the epidemiology of 

ARB in French hospitals. This project, in partnership with Santé Publique France, will 

synthesize three sources of surveillance data from hospitals across each of France’s 13 

metropolitan regions: the daily prevalence of hospitalized COVID-19 patients, the daily 

incidence of ARB isolation from clinical samples (including MRSA, VRE and ESBL-

producing Enterobacteriaceae), and monthly antibiotic consumption data. Together, these 

data will be fit to mechanistic models to quantify potential impacts of the COVID-19 

pandemic  – including control interventions like the implementation of contact precautions, 

and unintended consequences like increased antibiotic prescribing – on the nosocomial 

dynamics of antibiotic resistance. 
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9.3.  Mathematical modelling for the betterment of public health 

Over the last several decades, mathematical modelling has emerged as an indispensable 

tool in infectious disease epidemiology and HCAI control, but not without its skeptics. In an 

essay about which types of information ought to be used to inform responses to the 

COVID-19 pandemic, philosopher of medicine Jonathan Fuller distinguished between 

public health epidemiologists, who synthesize diverse sources of data to build models and 

make predictions, and clinical epidemiologists, who eschew such predictions in favour of 

hard evidence from controlled trials.(Fuller, 2020) Although this binary distinction is 

perhaps somewhat caricatural,(Lipsitch, 2020) it evokes an older debate about the ultimate 

purpose of epidemiology. 

 

9.3.1.  Contribution of modelling to epidemiology 

Epidemiology is traditionally defined as the study of the causes and distributions of 

diseases in human populations, in order to identify ways to prevent and control 

disease.(Last, 1993) Inevitably, no one study can address all relevant questions, and 

much epidemiological research is constrained to respond to either one axis of this 

definition (aetiology) or the other (intervention). Yet contemporary epidemiological 

methods are largely built upon causal formalism, and introductory epidemiology textbooks 

are overwhelming devoted to understanding the causes and distributions of disease, and 

not optimal means to control them.(Gordis, 2008; Merrill, 2019; Webb et al., 2016) In 2013, 

epidemiologist Sandro Galea argued for a move towards consequentialism in 

epidemiology – an approach oriented towards maximizing desired outcomes, i.e. 

population health – and hence putting greater emphasis on the study of disease 

prevention and control.(Galea, 2013) 

 

A great strength of mathematical models is that they can be used to address both of these 

axes. The same model can simultaneously assess how micro-level changes in an 

exposure translate into macro-level changes in population health (aetiology, e.g. how 

antibiotics select for the spread of ARB, or how different inter-individual contact patterns 

affect SARS-CoV-2 outbreak risk), and equally how a control measure targeting that 

exposure feeds forward to impact public health outcomes (intervention, e.g. how 

antibiotic stewardship prevents ARB colonization incidence, or how screening and isolation 

interventions limit nosocomial SARS-CoV-2 transmission).(Auchincloss and Diez Roux, 

2008) Overall, the work in this thesis has provided examples why, in the absence of data 
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from randomized controlled trials, mathematical modelling is a useful tool both to 

understand HCAI aetiology and to inform consequentialist public health decision-making. 
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9.4.  Conclusion 

Over the course of this thesis, I have used various mathematical modelling approaches to 

study the transmission, surveillance and control of human pathogens in the healthcare 

setting. I developed a novel ODE modelling framework to better understand how antibiotic-

resistant bacteria spread in hospitals, and used a detailed individual-based model to 

simulate transmission dynamics of SARS-CoV-2 in long-term care facilities. Both models 

were applied to evaluate the epidemiological impacts of surveillance and control 

interventions, helping to elucidate how within-host ecology can impact intervention 

efficacy, and how imperfect surveillance interventions can be optimized in the context of 

limited health-economic resources. These findings are readily applicable to hospital 

infection control programmes, and demonstrate the utility of mathematical modelling for 

understanding the mechanistic aetiology of HCAI, and for informing public health decision-

making in the face of infectious threats, be they bacterial or viral, drug-resistant or -

susceptible, ancient or newly discovered. 
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