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Professeure, École Polytechnique (Centre de Mathématiques
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Abstract

Traveling fronts arising from reaction diffusion equations model various phenomena observed in
physics and biology. From a biological standpoint, a traveling front can be seen as the invasion
of an uninhabited environment by a species. Since biological systems are finite and thus undergo
demographic fluctuations, these deterministic wavefronts only represent an approximation of the
population dynamics, in which we presuppose that the local density of individuals is infinite
so that the fluctuations self-average. In this sense, reaction diffusion equations can be seen
as hydrodynamic limits of some individual based models. In this thesis, we investigate the long
time behaviour of some finite microscopic systems modeling such front propagations and compare
them to the one of their large population asymptotics.

The first part of this thesis is dedicated to the study of the dynamics of a population
colonising a slowly varying environment. This question has been widely studied from the PDE
point of view. However, the results given by the viscosity solutions theory turn out to be
biologically unsatisfactory in some situations. We thus suggest to study an individual based
model for front propagation in the limit, when the scale of heterogeneity of the environment
tends to infinity. In this framework, we show that the spreading speed of the population may be
much smaller than the speed of the front in the PDE describing the large population asymptotics
of the system. This qualitative disagreement between the two behaviours is related to the so-
called tail problem observed in PDE theory, due to the absence of local extinction in FKPP-type
equations.

In a second part, we study the impact of the type of the deterministic limit waves on
the related stochastic models to explain this drastic slow-down in the particle system. Indeed,
wavefronts arising from monostable reaction diffusion PDEs are classified into two types: pulled
and pushed waves. It is well-known that small perturbations have a huge impact on pulled
waves. In sharp contrast, pushed waves are expected to be less sensitive. Nevertheless, some
recent numerical experiments have suggested the existence of a third class of waves in stochastic
fronts. It is a subclass of pushed fronts very sensitive to fluctuations. In this thesis, we investigate
the internal mechanisms of such fronts to explain the transition between these three regimes.



Résumé en français

Les ondes progressives générées par les équations de réaction-diffusion peuvent modéliser divers
phénomènes observés en physique et en biologie. Du point de vue biologique, une onde progressive
peut être interprétée comme l’invasion d’un habitat par une espèce. Cependant, les systèmes
biologiques étant finis, ils sont soumis à des fluctuations démographiques qui n’apparaissent
pas dans ces équations de réaction-diffusion. Ainsi, les ondes progressives qui en résultent ne
représentent qu’une approximation de la véritable dynamique de la population. Par ailleurs,
la dynamique d’une population peut aussi être décrite par un modèle prenant en compte son
caractère aléatoire grâce à des modèles individu-centrés, retraçant la vie de chaque particule.
Contrairement aux ondes progressives, qui donnent une description macroscopique de la dy-
namique, les modèles individu-centrés en donnent une vision microscopique. Le lien entre ces
deux représentations est obtenu en faisant tendre la densité locale de particules dans le modèle
individu-centré vers l’infini de sorte que les fluctuations se compensent. En ce sens, les équations
de réaction-diffusion peuvent être considérées comme les limites hydrodynamiques de modèles
microscopiques.

Dans cette thèse, nous étudions le comportement en temps long de deux systèmes micro-
scopiques modélisant des invasions biologiques et les comparons à celui de leurs limites en grande
population. Plus précisément, nous nous intéressons à deux facteurs importants en écologie :
l’impact d’habitats fragmentés sur les espèces ainsi que l’effet de la coopération entre individus
sur la structure génétique d’une population. En effet, dans le contexte du changement clima-
tique, il semble crucial de prendre en compte ces deux paramètres pour prédire l’évolution des
espèces. D’une part, les habitats naturels se trouvent de plus en plus fragmentés par les amé-
nagements humains et modifiés par le réchauffement climatique. Il est donc essentiel d’identifier
des modèles permettant de mettre en lumière les conséquences de tels changements sur la dy-
namique des espèces. Par ailleurs, de nombreux travaux ont montré que la présence ou l’absence
de coopération au sein d’une espèce affectait de manière radicale sa diversité génétique. Or,
une grande diversité génétique se traduit par une plus grande capacité d’adaptation face aux
changements environnementaux. Comprendre les mécanismes microscopiques menant à de telles
différences de structure génétique permettrait donc de repérer les populations les plus sensibles
aux changements d’environnement.

La première partie de cette thèse est consacrée à l’étude de l’impact des habitats présentant
des hétérogénéités à grande échelle sur la vitesse de propagation des populations. Cette question
a déjà été étudiée dans le domaine des EDP en généralisant des modèles d’invasion en milieu
homogène tel que celui introduit dans les années 1930 par Fisher et par Kolmogorov, Petro-
vsky et Piskunov, l’équation de FKPP. Une théorie, dite des solutions de viscosité, répond à ce
problème lorsque l’échelle d’hétérogénéité est très grande. Cependant, dans certaines situations,
les solutions de viscosité fournissent des dynamiques irréalistes d’un point de vue biologique et
donc inexploitables dans ce cadre. Nous proposons donc de revenir à un modèle individu-centré
et d’étudier son comportement limite lorsque l’échelle d’hétérogénéité de l’environnement tend
vers l’infini, avant de considérer des tailles de population arbitrairement grandes. Dans ce cadre,
nous montrons que la vitesse de propagation de la population peut être beaucoup plus petite
que la vitesse d’invasion donnée par l’équation déterministe décrivant la limite hydrodynamique
du système microscopique. Par conséquent, la limite hydrodynamique ne fournit pas systéma-



tiquement la bonne dynamique macroscopique. Cette différence de comportements est liée au
"problème des queues" dû à l’absence d’extinction locale dans les équations de type FKPP : des
populations exponentiellement petites peuvent dicter la dynamique de l’invasion dans le modèle
déterministe. De plus, cette étude nous renseigne sur les échelles d’hétérogénéité en jeu dans de
tels problèmes de modélisation et nous donne une idée du modèle à adopter en fonction de la
taille des populations étudiées.

Dans une seconde partie, nous étudions l’impact du type des fronts d’onde limites sur les
modèles stochastiques associés pour expliquer ce net ralentissement des systèmes de particules.
En effet, les dynamiques d’invasion modélisées par des équations de réaction-diffusion monosta-
bles sont divisées en deux classes : les fronts tirés et les fronts poussés. Cette classification est
faite en fonction de la vitesse des fronts : ils sont dits tirés si leur vitesse correspond à la vitesse
de l’équation linéarisée en 0 et poussés si leur vitesse est strictement plus grande. De nombreux
travaux ont cherché à quantifier l’effet des fluctuations démographiques sur les fronts tirés. Il est
désormais bien connu que les fluctuations ont un impact considérable sur ces fronts : la correc-
tion sur leur vitesse est bien plus grande que celle suggérée par le théorème central limite. En
revanche, les fronts poussés sont supposées être moins sensibles aux perturbations. Néanmoins,
de récentes études et simulations numériques sur des équations de réaction-diffusion bruitées
suggèrent l’existence d’une troisième classe de fronts. Il s’agit d’une sous-classe de fronts poussés
particulièrement sensibles aux fluctuations. Dans cette thèse, nous développons un système de
particules capturant les mécanismes internes des fronts d’invasion afin d’expliquer la transition
entre ces trois régimes ainsi que leurs conséquences sur la structure génétique des populations en
expansion.
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CHAPTER I

Introduction

1 Modeling spatially structured populations

Biological invasions have been widely studied to understand, predict and control the spatial dis-
tribution of species with which we cohabit. The examples of such biological invasions are manifold
and occur at different scales: they can be observed at a macroscopic level with plants, mammals,
birds, insects, etc. as well as at microscopic levels (virus, bacteriae, etc.). Consequently, there
also exists a variety of mathematical models to investigate biological invasions, each one depend-
ing on the specifications of the species studied. Nevertheless, one can identify two main classes
of models: stochastic and deterministic ones. Stochastic models describe the population at a
microscopic scale. Each individual evolves according to a series of rules, which are given by a
list of conditional probabilities to give birth, migrate, reproduce, die... The population is there-
upon seen as a system of interacting particles and naturally, the invasion speed of the species
is determined by the velocity of the extremal particles in the particle system. From another
perspective, the deterministic approach consists in assuming that the density of population is
governed by a partial differential equation that combines two mechanisms: a diffusion, reporting
the dispersal or migration of the particles, and a reaction, describing the births and deaths. As a
result, wavefront or traveling wave solutions, which perform a switch from one state to another
(e.g. uninhabited to colonised) at constant speed, often arise from this class of equations. The
invasion speed of the population is then deduced from the speed of this wave. Prototypes of
these two different approaches are described in the two following subsections (Sections 1.1 and
1.2).

In the context of climate change, there has been a renewed interest for population dynamics.
Our own living conditions rely on ecosystem services (pollination by bees, carbon sequestration
by trees, etc.) that are threatened by humans alterations. That is why understanding how these

13



Chapter I. Introduction

endangered species colonise their environment is an important challenge. From this perspective,
we will focus on two major factors in ecological studies: large scale space-time heterogeneities in
the environment and Allee effects.

The large space-time heterogeneities are at stake when it comes to model the effect of global
warming on the ecosystem: the time scale at which we observe the temperature and therefore
the climatic niches shift might be much larger than the typical life span of the individuals.
On the other hand, spatial heterogeneities are ubiquitous on earth (mountains, oceans, human
developments) and we have to take it into account to get a workable outcome. The first part of
this thesis will be dedicated to the study of populations colonising slowly varying habitats.

The Allee effects depict, for instance, the effect of intraspecific cooperation. It is natural
to consider that individuals struggle for resources since the food supply is always finite, but
one should not overlook the fact that some individuals cannot reproduce without the help of
their congeners. In other words, the presence of Allee effect in the system presupposes that the
growth of the population is maximal at intermediate population densities. This phenomenon not
only increases the invasion speed of the species but also drastically affects the genetic diversity
of the population. Indeed, when the interactions are restricted to mere competition, only a
few individuals give birth to a significant fraction of the population, which leads to a rapid
diversity loss. The Allee effect might be the result of various biological mechanisms such as
consanguinity, sexual reproduction, cooperation for food/against a predator, etc. In opposition,
when the growth is maximal at low densities, we will say that there is no Allee effect.

1.1 Individual based models (IBM)

In this framework, the individuals are seen as particles. The first example of IBM is the birth and
death process: it is a pure jump Markov process whose jumps are equal to ±1. The transition
rates of this process are the following. If the population size is equal to i, it jumps to i + 1
with rate λi (birth) and to i− 1 with rate µi (death). The sequences (λi)i∈N and (µi)i∈N satisfy
λ0 = µ0 = 0 and may depict several situations. As an example, we cite the birth and death
process with immigration (λi = iλ + ρ, and µi = iµ, with µ, λ, ρ > 0) and the logistic birth
and death process (λi = iλ and µi = iµ + ci(i − 1) with µ, λ > 0). See [Fel57] for further
examples. These monotype processes has been widely studied. For instance, we know a simple
necessary and sufficient condition on the sequences (λi) and (µi) for almost sure absorption at 0
(i.e. extinction) [KM57], and in the latter case, the average extinction time can expressed as a
function of (µi) and (λi) [PK10].

The case of spatially structured populations can be seen as a generalisation of this toy
model, in which individuals are characterised by a type. In this work, the type of the particles
will correspond to their positions. The set of particles evolves in discrete or continuous time, in
a continuous environment or on demes. In this thesis, we will only deal with the one-dimensional
case so that the position of one particle x will be either a point of the real axis or of the
rescaled lattice ∆xZ. In the microscopic framework, the invasion speed of the system is therefore
investigated by tracking the displacement of its rightmost particle on this axis.

In discrete time t, the simplest example of microscopic system to model an expanding
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Section 1. Modeling spatially structured populations

population is the branching random walk (a precise definition is given in the following subsection),
in which there is no interaction between particles, apart from the one induced by the genealogy.
In this model, at each generation, all the particles give birth independently to a random number of
children, scattered around the parental location. Therefore, the population growth is Malthusian
(the growth is exponential if the typical number of children is larger than 1), which is not realistic.
On the other hand, one can assume that the individuals live on demes and that the population
size is fixed on each site. Thus, a birth on one site has to coincide with a death on another
site: this is the so-called Stepping stone model [KW64]. Obviously, this approach is not adapted
to the study of biological invasions. Therefore, it is natural to consider arbitrary population
sizes and to introduce regulation mechanisms. These mechanisms can be thought as the effect
of competition for resources such as food, housing, etc. A legitimate question is to wonder if
such systems survive or die out. Many models have been studied in the mathematical literature
to answer this question [Eth04, BD07, DL94] but we will overlook this difficulty by considering
simplifying assumptions that will ensure that the population does not go extinct.

In discrete time t ∈ {∆t, 2∆t, . . .} and space x ∈ {. . . ,−∆x, 0,∆x, 2∆x, . . .}, an individual
based model can be described by its configuration ξt in such a way that ξt(x) specifies the state
of the system at time t on the site x. This state may refer to the number of particles living on
a site or if the site is occupied or vacant. In this latter case, we mention the example of contact
processes [DL94]. The configuration function ξt takes the value 1 at x if the site is occupied,
0 if it is vacant and evolves as follows. At each generation, a particle living on the site x dies
with probability γ. If it survives, it gives birth to a particle on the site y with probability λ
if y is a neighbour of x i.e if |y − x| = ∆x. At the end of this step, if at least one particle
lives on y, the site y is occupied. In addition, there can be at most one particle per site. This
model is particularly well suited to annual plant populations (see [DL94] for examples) since it is
reasonable to assume that the population evolves in generations and one can easily understand
why a site can only be occupied by one individual (e.g. a tree). In this work, we will rather focus
on the first representation, indicating the number of particles occupying each site.

The discrete time approach is often adopted when the population is supposed to evolve in
generations. The dynamics of plant populations is often depicted by discrete models given that
annual plants produce a random number of fertile seeds each year and that the individuals only
migrate at their birth times. The discrete approach can also be seen as an approximation of a
continuous time model if we let the time step between two generations ∆t tend to zero.

In the continuous framework, particles live during a random lifespan. During its life time,
a particle performs a random motion (e.g. a Brownian motion) before splitting in a random
number of offspring or dying. Instead of describing these systems by their configurations, we will
rather consider the set of particles alive at time t, denoted by Nt, and for each particle u ∈ Nt,
we denote by Xu(t) its position at time t. We refer to the following subsection on branching
Brownian motion and to Section 2.2 for examples of processes evolving in continuous time and
in a continuous state space (R).

To conclude this paragraph, we point out that, in the continuous settings, the evolution of
the system can also be represented by a measure valued process (ρt)t>0. Roughly speaking, an
atom δx is added to the measure ρt when a particle is born at x. This strategy turns out to be
very useful when it comes to investigate some scaling limits [CM07, FM04a].
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We now introduce two individual based models which will serve as the basis for the two
models investigated in this thesis: the branching random walk and the branching Brownian
motion.

The Branching Random Walk

This particle system is governed by a reproduction law (pk)k∈N and a displacement law µ. It
starts with a single particle at x = 0 at time t = 0. At time t = 1, this particle gives birth to
a random number of children N , distributed according to (pk), and die. The N newborns are
respectively located at positions Ξ1, ...,ΞN , where (Ξj) is a sequence of i.i.d. random variables of
law µ. At time t = n, a particle living at position xi is replaced by a random number of particles
M of law (pk), located at xi + Ξi1, ..., xi + ΞiM , where (Ξij) is a sequence of i.i.d random variables
of law µ. Similarly, all the individuals of the n-th generation give birth independently of one
another according to (pk) and their children are independently distributed around the parental
location according to µ.

Note that the reproduction law of the particles is the same at each generation and on
each site. Moreover, all the particles evolve independently and there is no interaction between
individuals in the system (except the one induced by the genealogy).

The invasion speed of this system can be deduced from Biggins’ theorem [Big77]. Indeed,
if we denote by Mn the position of the rightmost particle in the system at time t = n, we know
that as n→∞,

Mn

n
→ c a.s. (1.1)

The value of c depends on the laws (pk) and µ through the rate function I. Let X be a random
variable of law µ. Consider m =

∑∞
k=1 kpk and Λ(θ) = log E

[
eθX

]
. The rate function I is then

given by
I(x) = sup

θ∈R
(θx− Λ(θ)) ,

and for m > 1, the speed c of the BRW is the unique positive solution of

I(c) = log(m).

For instance, if µ is a standard normal distribution and m = 1 + r for some r > 0, we have

c =
√

2r.

This remark will play a crucial role in the analysis made in Chapter II. For further details on
the maximal displacement of a branching random walk, see Section A of Chapter II.

Branching Brownian Motion (BBM)

Branching Brownian motion is the continuous counterpart of the BRW. It starts with a single
particle at time t = 0, located at the origin. Each particle moves independently according to
a standard Brownian motion during its lifespan, which is exponentially distributed time with
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mean one. When it dies, a particle splits into two particles. Actually, the offspring distribution
can be more general than dyadic branching but we will only consider this particular branching
distribution in this work. We recall that we denote by Nt the set of particles alive in the BBM
at time t and by Xu(t) the position of the particle u ∈ Nt at time t.

As in the discrete case, the position Mt of the rightmost particle in this system at time t
has already been well documented. Indeed, Bramson [Bra78] proved that under these assump-
tions, the rightmost particle sits close to

√
2t for t large enough. More precisely, he studied the

distribution function of the position of the random variable Mt,

u(t, x) = P

(
max
u∈Nt

Xu(t) > x

)
(1.2)

and considered the position mδ(t) such that u(t,mδ(t)) = δ for 0 < δ < 1. He proved that for
fixed δ > 0, we have the following asymptotic expansion of mδ as t→∞:

mδ(t) =
√

2t− 3

2
√

2
log(t) +O(1). (1.3)

1.2 Fisher’s equation and wavefronts

From the PDE point of view, a population can be described by a space-time dependent density
u governed by a reaction diffusion (RD) equation. Typically, the function u takes values in [0, 1],
the value 1 indicating the saturation state. This saturation state corresponds to a stable state in
which the population has reached the carrying capacity of the environment. This density then
evolves according to two mechanisms: the diffusion that accounts for the migrations and the
reaction which characterises the births and deaths. A significant property of RD equations is the
existence of wavefront solutions describing the switch from vacancy (u ≈ 0) to saturation by a
traveling front.

The prototypical model for front propagation is the Fisher-Kolmogorov-Petrovskii-Piskounov
(FKPP) equation, a semi-linear parabolic partial different equation. It was first introduced by
Fisher [Fis37] and independently by Kolmogorov, Petrovskii and Piskounov [KPP37] in the fol-
lowing form:

ut =
1

2
uxx + ru(1− u), (1.4)

for some r > 0. Fisher related Equation (1.4) to the expansion of an advantageous gene in a
linear environment as a shore line. What we call FKPP-type equations are the more general
partial differential equations of the form

ut =
1

2
uxx + f(u), (1.5)

where the forcing term f , which governs the population growth, satisfies the following conditions,
referred to as the KPP conditions:

1. f(0) = f(1) = 0,

17
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2. f(u) > 0 for all u ∈ (0, 1),

3. f ′(0) > 0 and f(u) < f ′(0)u for all u ∈ (0, 1).

The first condition ensures that 0 and 1 are respectively sub-solution and super-solution of the
Cauchy problem combining Equation (1.5) and an initial data u0 such that 0 6 u0(x) 6 1, so that
the solution u of this problem stays between 0 and 1 at all time. Biologically speaking, the third
condition implies that the lower the population density, the faster the expansion. Throughout
this thesis, we will assume that the forcing term f is continuously differentiable on R and negative
on (−∞, 0) ∪ (1,+∞), even in the non-FKPP case (unless otherwise specified).

A crucial property of this equation is the existence [KPP37] of traveling wave solutions
u(t, x) = ϕc(x− ct) as long as c > c∗ :=

√
2f ′(0). These traveling fronts ϕc are solutions of the

ordinary differential equation
1
2ϕ
′′
c + cϕ′ + f(ϕc) = 0

lim
x→−∞

ϕc(x) = 1, lim
x→+∞

ϕc(x) = 0

ϕc > 0.

(1.6)

Kolmogorov, Petrovskii and Piskounov [KPP37] proved that Equation (1.6) has a solution as
long as c > c∗. For fixed c > c∗, the traveling front ϕc is unique up to translation and decreases
from 1 to 0. In the case of Equation (1.4), note that

c∗ =
√

2r.

The analysis of Equation (1.6) in a neighbourhood of the stable point 0 suggests that as
z → ∞ (or equivalently ϕc → 0), the front ϕc(z) decreases as Ce−λz if c > c∗ and as Cze−λz if
c = c∗, where λ is a positive real number such that −λ is the largest root of 1

2X
2 + cX + f ′(0).

Therefore, there is a bijection between the speed c of the traveling wave ϕc and the shape of its
leading edge, called the dispersion relation and given by

c =
f ′(0)

λ
+

1

2
λ. (1.7)

Note that c is minimal and equal to c∗ for λ =
√

2f ′(0) = c∗.

The major interest of these traveling fronts lies in the fact that they provide the invasion
speed of the population. Indeed, it was shown [KPP37] that for the solution u of (1.5) with
initial condition u(0, x) = 1x<0, there exists a centring term m(t) such that

sup
x∈R
|u(x−m(t), t)− ϕc∗(x)| = 0 (1.8)

as t→∞ and satisfying
m(t) ∼

√
2f ′(0)t.

In this thesis, we will distinguish two regions of this asymptotic shape ϕc∗ : the bulk and the
leading edge. In the leading edge, the population size is so small that the effect of the nonlin-
earities can be neglected (u ≈ 0). The bulk can itself be divided into two zones: the first one
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corresponds to the sites where the population size is close to the equilibrium/saturation state
(u ≈ 1) and the second one is the transition region between the stable state 1 and the leading
edge.

Another matter of interest is the asymptotic propagation speed of the solution u of the
Cauchy problem (1.5) with compactly supported initial data. We say that the invasion speed of
u is c0 > 0 if for all c < c0

min
|x|6ct

u(t, x)→ 1, as t→∞, (1.9)

and for all c > c0,
sup
|x|>ct

u(t, x)→ 0, as t→∞. (1.10)

In what follows, when we talk about invasion speed, we implicitly assume that the initial condition
u0 is compactly supported and takes values in [0, 1]. It was shown [AW78] that the invasion
speed of the solution u of (1.5) is equal to c∗. In other words, if the population starts with a
configuration u0 such that u0(x) = 0 for x large enough, the individuals successfully invade the
right-hand side of the real axis at speed c∗. Therefore, under the KPP conditions, the upper
bound and the lower bound on the invasion speed coincide. We mention that the dynamics
arising from an initial data with tails e−αx for some α < c∗ has been investigated [Uch78], but
this case is less relevant biologically. As a result, the latter invasion speed is larger than c∗

and the decay of the transition front is given by the relation (1.7). For a study of FKPP-type
equations with slowly decaying initial conditions, see [HR10].

If we then define the position of the invasion front x∗ of a solution u of (1.5) by

x∗(t) = sup

{
x ∈ R : u(t, x) >

1

2

}
, (1.11)

in view of the above, we have
x∗(t) ∼ c∗t as t→∞, (1.12)

for any solution u arising from a compactly supported initial data.

While propagation speed seems well-understood in homogeneous FKPP equations, the ac-
tual expansion of biological species is much more complex [SK97]. The most obvious explanation
is that the habitats are intrinsically heterogeneous and that we need to take this heterogeneity
into account to design a realistic model. Various approaches were suggested to investigate the
impact of space heterogeneity on the conditions of successful invasion and on the propagation
speed of a species. Here, we only cite a simplified version of the SKT model [SKT86], which is
a natural extension of the FKPP equation,

ut =
1

2
uxx + u(µ(x)− γu), (1.13)

where µ and γ are respectively the intrinsic growth rate and γ the intraspecific competition
coefficient. If the growth rate µ is a periodic function, the problem is well documented [SKT86]:
the population will either becomes extinct or invade the real axis, in the latter case the spreading
speed corresponds to the speed of the slowest periodic traveling wave [Wei02]. As in [HFR10],
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we will refer to the SKT patch model [SKT86] when µ is a 1−periodic step function such that

µ(x) =

{
µ+ x ∈

[
0, 1

2

)
µ− x ∈

[
1
2 , 1
)
,

(1.14)

for some µ+ > µ−. This presupposes that the environment can be seen as an alternation of
favourable and unfavourable regions, which are broadly homogeneous. At first sight, one could
expect the invasion front to behave as in the homogeneous settings in each patch. However, we
will see in Section 3.1 that this is not necessarily the case. Heterogeneous FKPP equations will
also be further discussed in Section 3.1.

A first relation between the stochastic and the deterministic approaches is the so-called
McKean representation [McK75]. If X is a BBM with branching law (pk)k∈N and branching rate
β and if u : R+ × R→ [0, 1] solves{

ut = uxx + β(u− f(u))

u(0, x) = g(x),
(1.15)

for some initial data g and f(s) =
∑
pks

k, then u has the following representation:

u(t, x) = Ex

[ ∏
u∈Nt

g (Xu(t))

]
.

In particular, if X is a dyadic branching Brownian motion with branching rate β = r, and g is
the Heaviside function, Equation (1.15) is the FKPP equation introduced in Section 1.2:{

ut = uxx + r(u− u2)

u(0, x) = 1x<0.
(1.16)

The McKean representation then implies that the solution of this equation can be written as

u(t, x) = P

(
max
u∈Nt

Xu(t) > x

)
,

which explains why the coefficient of the first term in (1.3) is given by the invasion speed of the
FKPP equation. Actually, Bramson [Bra78, Bra83] was the first to prove, thanks to probabilistic
arguments, the logarithmic correction of the invasion speed of the FKPP equation, in the sense
that the centring term m(t) from (1.8) has the same expansion as (1.3):

m(t) =
√

2t− 3

2
√

2
log(t) +O(1). (1.17)

2 Particle systems

In this thesis, we will focus on microscopic models for front propagation and compare their long
time behaviour to the results obtained thanks to the deterministic approach. In Sections 2.1 and
2.2, we give an overview of the models studied in Chapters II and III.
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Section 2. Particle systems

2.1 A particle system with local competition and inhomogeneous branching
rate modeling large space-time heterogeneities

In this section, we introduce a simplified version of the interacting particle system analysed in
Chapter II, briefly explain the biological interpretation of its parameters and indicate the main
ideas that allows us to compare this system to the branching random walk defined in Section
1.1.

The system evolves in generations and we assume that the time between two generations
is given by a small parameter ∆t > 0. We also discretise space: the population lives on demes
(xi)i∈Z, with xi = i∆x for some small space step ∆x > 0. The state of the system is described
by a sequence of configurations (nk)k∈N, where nk(i) counts the number of particles living on
the site xi at time tk := k∆t (or equivalently after the k-th generation).

The dynamics of the particle system is governed by two parameters: its growth rate r and
its local population density K. The first one is assumed to be a smooth function r : (0,∞)×R→
(0,∞), (t, x) 7→ r(t, x) that models the heterogeneity of the environment. A favourable (resp.
harsh) region or period corresponds to a large value or r (resp. close to 0). As discussed in
Section 1.1, a regulation mechanism is introduced to prevent the population size from increasing
exponentially. In practice, we assume that the maximal number of particles living on a site is
approximately given by K. Consequently, this parameter can be seen as the local density of
the population, the carrying capacity of the environment or the strength of the competition.
Note that the larger the carrying capacity, the weaker the competition. Typically, we will be
interested in the scaling limit of the system for large values ofK (see Section 3.1). Finally, once in
a generation, the particles migrate, according to a given law µ. To simplify the computations and
get the expected large population limit, we assume in Chapter II that µ is a discretised Gaussian
distribution. However, the same analysis could be conducted for any distribution exhibiting
exponential tails.

Starting from a configuration (nk(i))i∈Z at time tk, the system evolves as follows:

Step 1 At time tk, on each site xi, the nk(i) particles living on xi duplicate independently with
probability r(tk, xi)∆t.

Step 2 The population size on each site is truncated to K,

Step 3 All the particles migrate independently according to (µj)j∈Z: a particle born at xi jumps
to xi+j with probability µj .

The resulting configuration is nk+1. We conclude the definition of this model with two remarks.
First, the particles do not die, except trough the truncation that only affects large populations,
so that the system never goes extinct. This assumption will drastically simplify the proof of the
lower bound on the propagation speed, since there is always at least one particle in the system.
Second, the spatial discretisation allows us to postulate that the competition is only local and
that the particles do not interact with their neighbours. This might also be seen as the mean-field
approximation of a more complex dynamic.

21



Chapter I. Introduction

The main idea to study this system is to locally compare it with some BRWs, whose prop-
agation speeds are well-known (see Equation (1.1)). Therefore, two difficulties arise. First, the
reproduction law is not “constant” since we no longer assume that the environment is homoge-
neous. Second, the truncation (Step 2) breaks the “linearity” of the system: one has to keep in
mind that for K large, the scaling limit of the particle system is not a system without interaction
between the particles. In short, the analysis of this system relies on a comparison principle (or
a coupling lemma) using the monotony of the system with respect to the growth rate r and the
carrying capacity K.

Indeed, note that Step 1 implies that the system is monotone with respect to the growth
rate r in the sense of stochastic domination. In other words, for any m ∈ N, the probability to
get more than m children on a site after Step 2 increases with the value of r. Thus, if there exist
r1, r2 > 0 such that r takes values in the interval [r1, r2], the system can be coupled with two
other systems (n1

k) and (n2
k), evolving according to the same Steps 1,2 and 3, in which individuals

duplicate with probability r1∆t (resp. r2∆t), in such a way that

n1
k(i) 6 nk(i) 6 n

2
k(i), ∀i ∈ Z, ∀k ∈ N, a.s. (2.18)

This observation is the first element of proof. It allows to compare this system with a BRW of
reproduction law p2 = r0∆t, p1 = 1 − r0∆t, in a cylinder [tk0 , tk1 ] × [xi0 − j∆x, xi0 + j∆x], for
some appropriate constant r0 > 0.

Moreover, recall that thanks to the space discretisation, we can assume that the interactions
between the individuals only take place locally, in such a way that the population size is regulated
by a simple competition rule (Step 2). As a consequence, the system (nk) is also monotone with
respect to the local density K in the sense of coupling defined in (2.18). Moreover, remark that
as long as the total population size does not exceed K, the competition step has no effect and
the particles behave as if there was no interaction. These two remarks on the competition step
constitute the second element of the proof.

As mentioned in Section 1, we are interested in the effect of a slowly varying environment
on the invasion speed of a species. Hence, we will introduce an additional parameter ε > 0 that
quantifies the scale of heterogeneity of the habitat and replace the probability to give birth in
Step 1 by

rε(tk, xi)∆t := r(εtk, εxi)∆t. (2.19)

Let X∗k denote the position of the rightmost particle in this system at time tk, that is

X∗k = max {i ∈ Z : nk(i) > 0} . (2.20)

The goal of Chapter II is to establish the existence of a function x such that, for all T > 0, we
have

(εX∗k , 0 6 k 6 T/ε)−→ (x(t), t ∈ [0, T ]) , (2.21)

when we let first ε → 0, then K → ∞. This function t 7→ x(t) will be the solution of a certain
ordinary differential equation whose form depends on r and µ. The result of this chapter and
some simulations of the dynamics are presented in Section 4.1.
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2.2 A branching particle system modeling Allee effects

In this section, we define a version of the branching Brownian motion introduced in Section 1.1:
we consider a BBM with absorption and inhomogeneous branching rate.

Branching Brownian motion with absorption was first introduced by Kesten in 1978 [Kes78].
This process evolves as the Branching Brownian motion (see Section 1.1) except that the particles
move according to a Brownian motion with drift −µ and are killed (or absorbed) when they enter
the interval (−∞, 0]. Kesten proved the existence of a critical drift µc such that this process goes
extinct almost surely as long as µ > µc. If µ < µc, the process survives forever with positive
probability.

In Chapter III, we consider the following version of the BBM with absorption. We now
assume that the particles branch at a space dependent rate r(x), namely, we set

r(x) =

{
ρ
2 x ∈ [0, 1]
1
2 x > 1,

(2.22)

for some ρ > 1. The drift µ is then chosen in such a way that the number of particles in the system
(Nt) stays controlled. Actually, the process (Nt) will eventually die out but its fluctuations will
report the mechanisms driving the invasion in the particle system.

The model introduced in this section is very largely inspired by the one analysed in [BBS13]
to prove (under slightly different assumptions) the conjectures stated in [BDMM06b, BDMM07].
Their model corresponds to the special case where ρ = 1 in (2.22). In [BBS13], the drift is
supercritical (in the case of dyadic branching Brownian motion and constant branching rate
r(x) ≡ 1, µc =

√
2). For each N ∈ N, they consider a dyadic branching Brownian motion with

absorption and drift −µN , with

µN =

√
2− 2π2

(log(N) + 3 log log(N))2
, (2.23)

starting, for instance, with N log(N)3 particles at x = 1, and denote by MN (t) the number
of particles living in the process at time t. Their result is the following: as N tends to +∞,(

2π
NMN (log(N)3t), t > 0

)
converges in law to a version of Neveu’s continuous-state branching

process (see below for a precise definition). Using the results from [BLG00], they deduce that
the genealogy of the particle system is given by a Bolthausen-Sznitman coalescent.

As above-mentioned, this work was motivated by the conjectures from [BDMM06b, BDMM07]
on a particle system with fixed population size N . Their system evolves in generations on a con-
tinuous state space, R. At each generation, the individuals give birth to k children (e.g. k = 2),
scattered around the parental location. Only the N rightmost individuals survive to the next
generation. As discussed in [BDMM06b, BDMM07], this model can be seen as a model of biolog-
ical population undergoing evolutionary selection. The position of a particle measures its fitness,
which evolves because of successive mutations. When a particle gives birth, the dispersion of
the offspring corresponds to the effect of mutations. The constant population size stands for the
selection: the carrying capacity of the environment is finite so that only the N fittest individu-
als survive. In this work, we will rather consider the interpretation given in [BDMM06a]: this
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system is a stochastic model for front propagation, related to the fluctuating fronts arising from
noisy FKPP-type equations. To this extent, the branching Brownian motion with absorption
considered in [BBS13] can be seen as a toy model for what happens at the leading edge of a
wavefront. See Sections 3.1 and 3.2 for further explanation on the link between FKPP-type
equations, noisy FKPP-type equations and particle systems.

In chapter III, we consider a model similar to the one in [BBS13], where the saturation
rule is no longer given by a fixed population size but modeled by a moving wall, that keeps
the population size approximately constant. Biologically speaking, the parameter ρ scales the
strength of the cooperation between individuals. Indeed, for a suitable choice of µ (typically
the speed of the corresponding wavefront), the interval [0, 1] corresponds to the intermediate
density region of the wavefront. In other words, this system is meant to depict the dynamics of
a population undergoing Allee effects in a co-moving frame following the invasion front. Note
that, in contrast to the previous model (Section 2.1), the space-dependent branching rate does
not reflect spatial heterogeneities but the effect of cooperation.

The aim of Chapter III is first to determine the value of µ, to get the speed of the stochastic
front, second, to study the microscopic internal dynamics of the front thanks to the particle
system. The case ρ = 1 has already been dealt with in [BBS13, MS20]: µ is equal to 1 and the
number of particles in the co-moving frame converges to a Neveu’s CSBP so that the genealogy of
the individuals is given by a Bolthausen-Sznitman coalescent. We will discuss the interpretation
of this result later on (Sections 3.2 and 4.2).

Continuous-State Branching Processes (CSBP)

We now turn out our attention to the definition of the continuous state branching processes in
order to motivate the results proved in Chapter III.

A continuous-state branching process is a Feller process (Xt, t > 0), taking values in [0,+∞],
satisfying the branching property:

∀x, y > 0, ∀t > 0, Xt(x+ y)
L
= Xt(x) + X̃t(y), (2.24)

where (Xt(x), t > 0) and (X̃t(y), t > 0) are two independent processes with the same law as
(Xt, t > 0), starting respectively from x and y. The states 0 and +∞ are absorbing.

The branching property means that a population Zt(x+y) started with an initial population
size Z0(x+ y) = x+ y can be seen as the sum of two subpopulations respectively starting from
x and y and evolving independently. The branching and the Markov properties of the process
ensures that there exists a map λ 7→ ut(λ) such that for all λ > 0, x > 0 and t, s > 0, we have{

E
[
e−λXt(x)

]
= exp (−xut(λ))

ut+s(λ) = us ◦ ut.
(2.25)

Each continuous-state branching process can be characterised by a function Ψ : [0,+∞) → R,
called the mechanism of the CSBP, such that if (Xt, t > 0) is a Ψ-CSBP, the function t 7→ ut(λ)
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from (2.25) is a solution of the differential equation{
∂
∂t
ut(λ) = −Ψ(ut(λ))

u0(λ) = λ.
(2.26)

We will be interested in α-stable CSBP for α ∈ [1, 2], for which the branching mechanism Ψ is
of the form

Ψ(u) =

{
−au+ buα, if α ∈ (1, 2]

−au+ bu log u, if α = 1.
(2.27)

It is known that in this case, the CSBP does not explode in finite time, i.e. Grey’s condition
is satisfied. The 2-stable CSBP is also known as the Feller diffusion and the 1-stable CSBP as
Neveu’s CSBP.

As explained in [Ber09], a CSBP can be seen as the continuous analogous of a Galton-Watson
process. In discrete time, let (Zn) denote a Galton Watson process with offspring distribution
(pk). This process can be associated to a random walk on a random time scale. Indeed, if we
consider (Li), a sequence of i.i.d. random variables of law (pk), Xi = Li − 1, Sn =

∑n
i=1Xi and

Tn =
∑n−1

i=1 Zi, we have
Zn = STn , ∀n ∈ N.

Let us now consider a continuous time Galton-Watson process (Zt), in which individuals branch
at rate a > 0 and give birth to a random number of children L. This process can also be
associated to a continuous time random walk (St), with jump rate a and increment distribution
X = L−1. Given that Zt = z, the rate at which Zt jumps to z+x is the rate at which St jumps
from z to z + x times z. The continuous analogous of Zt is the CSBP Xt and the analogous of
the random walk St is a Levy process Yt with non-negative jumps. The Laplace transform of
this Levy process satisfies E

[
e−λ(Yt−Y0)

]
= exp (−tΨ(λ)), where Ψ is the function from Equation

(2.26).

Given this interpretation of the CSBP, the result in [BBS13] can be understood as follows.
Over a time scale of order log(N)3, a particle reaches a position ahead of the front. Since this
particle is far from 0, it produces in a short time a significant number of offspring, which causes,
on the time scale log(N)3, a jump in the CSBP. The goal of Chapter III is to prove that on a
suitable time scale, the number of particles in our system converges in law to an α-stable CSBP.

3 Motivations from PDE and biology literature

3.1 Hydrodynamic limit and tail problems

In Section 1.2, we pointed out a first relation between an individual based model, the branching
brownian motion, and a certain class of FKPP-type equations through the McKean representa-
tion. A second connection between microscopic models and FKPP-type equations lies in what we
call the hydrodynamic limit or the large population asymptotics. Essentially, this limit appears
when we consider a particle system whose typical population size tends to +∞. In practice, we
consider a certain type of IBM with local density K (typically, K represents the average number
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of particles on a site in a stable phase of the system) and weight the individuals by 1
K . The

hydrodynamic limit of the process is thereupon the limit behaviour of the system as K tends
to infinity: the fluctuations self-average and the system converges to a deterministic dynamic,
governed by a PDE.

In the system presented in Section 2.1, the three steps to prove this convergence would be
the following ones. We consider a finite number of sites (xi), i ∈ {−M, ...,M}, and of generations
(tk), k ∈ {0, ..., L}.

1. Assume that the system starts with K individuals located at 0. Set ξKk (i) = nk(i)
K and

prove (using the law of large numbers) that as K →∞, we have(
ξKk (i)

)
i=−M,...,M
k=1,...,L

⇒ (vk(i))i=−M,...,M
k=1,...,L

,

where (vk) is a sequence on “densities” governed by the following deterministic dynamics:{
v0(i) = δ0,

vk+1(i) =
∑

j µj (vk(i− j) ∧ 1) .

2. In the above-mentioned dynamics, let ∆x→ 0. The sequence of configurations (vk)k=1,...,L

converges to a sequence of functions (wk)k=1,...,L governed by{
w0 = δ0

wk+1(x) = [Γ∆t ∗ (wk ∧ 1)] (x),

where Γ∆t(y) = 1√
2π∆t

e−
y2

2∆t .

3. Finally, let ∆t → 0: one can show that (wk) converges to the solution u of a FKPP-type
equation (see (3.28)).

See [CM07] for another type of hydrodynamic limit, where the interactions between the particles
are not replaced by a mean-field approximation.

The continuous limit u of the IBM introduced in Section 2.1 with duplication probability
given by (2.19) would be solution of a PDE of the form

ut =
1

2
uxx + r(εt, εx)f(u), (3.28)

with f(u) = u1u61. A first remark is that at order 1, the invasion speed of (3.28) is the same
as if we replace the forcing term by f(u) = u(1 − u) [KPP37]. Equations of type (3.28) with a
forcing term of the form (x, u) 7→ r(x)f(u), where f is a function satisfying the KPP conditions,
has been broadly investigated in the PDE literature [ES89] but also with probabilistic arguments
[Fre86].

The long time behaviour of this equation is studied by introducing an hyperbolic scaling

uε(t, x) = u

(
t

ε
,
x

ε

)
.
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Figure I.1: Convergence of the IBM to its hydrodynamic limit. The fourth subfigure is the graph
of the growth rate r: we chose a step function as in the SKT patch model (see Equations (1.13) and
(1.14)). In the three first figures, the green line corresponds to the rescaled position of the rightmost
particle (see (2.21)) in one simulation of the process introduced in Section 2.1. This process is run for
ε = 0.075 and different values of K. The blue line corresponds to the position of the invasion front
x(t) = sup{x ∈ R : u(t, x) > 1

K } for u solution of the limit PDE (3.28) with f(u) = u(1 − u) and
u(0, x) = 1x<0, on the same time scale as the process X∗. The orange dotted line represents the solution
of the ordinary differential equation ẋ(t) =

√
2r(x(t)), x(0) = 0, which can be seen as the speed of the

wave in the two equivalent homogeneous environments.

The idea (discussed in [Fre86]) behind this scaling is given by the convergence results in the
homogeneous case (see Section 1.2). Indeed, let us consider u the solution of equation (1.5) with
initial condition u(0, x) = 1x<0. Since u converges to the travelling wave, we will get that for
ε small enough, uε(t, x) ≈ ϕc∗

(
x−c∗t
ε

)
. Yet, since ϕc∗ decreases from 1 to 0, we expect that as

ε→ 0,
uε(t, x)→ 1x<c∗t,
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which provides the invasion speed of the solution. If we now go back to Equation (3.28) and
assume that r does not depend on t, we obtain that uε is a solution of

uεt =
ε

2
uεxx +

1

ε
r(x)f(uε).

Note that the diffusion term vanishes as ε → 0 and that the reaction term blows up. As a
result, it was shown [ES89] that vε = −ε log(uε) converges to the viscosity solution v of an
Hamilton-Jacobi equation of the form

min

(
vt +

1

2
(vx(t, x))2 + r(x), v(t, x)

)
= 0. (3.29)

Again, if we denote by xε the position of the invasion front of the solution uε, for instance
xε(t) = sup

{
x ∈ R : uε(t, x) > 1

2

}
, this convergence result implies that for fixed t > 0,

xε(t)→ xHJ(t) := sup {x : v(t, x) = 0} .

This approach has been extensively employed so far to deal with different types of forcing terms
or equivalently, of heterogeneous environments: periodic, random, patch models, etc. [Xin00,
NR12, Nad16, Xin00, HNR11]. Note that this method hardly provides explicit propagation
speeds except in very specific cases [HFR10, HNR11].

A major limit to this approach is the potential qualitative disagreement between the in-
dividual based model and its hydrodynamic limit. This is the so-called tail problem [Jab12]:
artefacts may be generated by the deterministic equation, due to the lack of local extinction.
Indeed, the solutions of FKPP-type equations exhibit exponential tails that is small populations
sent to +∞ by diffusion, at an infinite speed [HFR10] (for any compactly supported initial date
u0, the solution of (3.28) is positive for all t > 0). If these populations reach a favourable region
before xε(t), in which they expand fast enough, we may observe a jump in the position of the
front: the tail pulls the invasion. The core of the problem is that these exponentially small pop-
ulations, which can be meaningless in some biological way, drive the invasion. In the individual
based model, there is no tail since the population is finite so that there is no ambiguity around
the definition of the position of the rightmost particle.

This phenomenon can be observed in [HFR10, Fre85]. In the first article, the authors
investigate the propagation speed of a population in a slowly varying environment by studying
an SKT patch model (see Equation (1.13) and (1.14)) with a L−periodic reaction term (µ(·) is
replaced by µ(L ·) in (1.13)). Surprisingly, they numerically observe that the propagation speed
of the system is an increasing function of L. Moreover, they remark a speeding up of the invasion
front in the favourable patches, where the front can go faster than the corresponding propagation
speed in the equivalent homogeneous environment. In [Fre85], the author gives a simple example
of reaction term leading to a jump in xHJ , namely a step function f(x) = c1 > 0 if x < 1 and
f(x) = c2 > 2c1 if x > 1. What we can derive from these two remarks is that in the case of
patchy environments, if the ratio between the growth in the favourable and unfavourable patch
is too large, one can observe a speed up of the invasion, generated by the tails. As a remark,
the analysis conducted in [HFR10] explains how this phenomenon can be understood through
the dispersion relation (1.7). With regard to the two above-mentioned examples, Freidlin [Fre85]
claims that the Huygens principle does not hold: the propagation of the front cannot be described
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by a velocity field. A solution suggested from the PDE point of view is to cut the tails with
a negative square root term and a threshold [Jab12, MBPS12]. This allows local extinction in
the solution of the PDE: it can be positive in some regions and vanish in other zones. Another
approach, advanced in [HFR10] consists in adding an Allee effect to the SKT patch model (see
Section 3.2 for a precise definition). In both techniques, the idea is to add a small correction to
the equation, to prevent meaningless populations from driving the invasion. As a consequence,
the KPP conditions no longer hold.

A way to go back to the microscopic model in the case of heterogeneous environment, is to
consider a noisy version of the Fisher-KPP equation. For instance [BDMM06a], the equation

ut =
1

2
uxx + u(1− u) +

√
u(1− u)

K
η(t, x), (3.30)

where η is a Gaussian white noise, can be seen as a microscopic model for front propagation. The
deterministic part of (3.30) can be interpreted as the hydrodynamic limit of a stochastic reaction-
diffusion model [Pan04] while the noise term depicts its microscopic fluctuations: the system is
represented as a perturbation of its large population limit. As explained in [BDMM06a], the
front of the noisy equation (3.30) vanishes with a faster decay than the exponential given by
the deterministic FKPP equation in the region where u ≈ 1

K . Heuristically, one can understand
this fact recalling that K is the average number of particle on a site at the equilibrium and
there cannot be less than one individual on a site. Moreover, it was conjectured in [BD97,
BDMM06a] that the velocity of the front in (3.30) admits a correction compared to the speed of
the hydrodynamic limit, which depends on K and tends to 0 as the typical population size K
tends to infinity. More precisely, they inferred that this correction is of order log(K)−2. Since
then, this conjecture has been rigorously proved [MMQ10]. In this framework, the speed of the
system converges to the speed of its hydrodynamic limit. In the light of the above, it is not
always the case in heterogeneous media. A generalisation of Equation (3.30) will be further
discussed in the following section.

3.2 Allee effects and pulled/pushed waves

The qualitative disagreement between the stochastic model and its hydrodynamic limit which
can be observed under the KPP conditions comes from the fact that the wavefronts arising from
the limit PDE (3.28) are pulled. The speed of pulled fronts is only governed by the value of the
reaction term at low densities, which might generate jumps in the position of the front.

Recall from Section 1.2 that in the homogeneous settings, the KPP conditions ensure that
the invasion speed is given by the linearised equation at zero. A wavefront solution ϕc traveling
at speed c exists for all c > c∗ =

√
2f ′(0) and any solution of (1.4) arising from a Heaviside

initial data converges in shape and speed to the front ϕc∗ [KPP37] (but it does not converge to a
specific traveling wave solution ϕc, see (1.17)). A. N. Stokes [Sto76] interpreted this phenomenon
as follows:

“the speed of the wave is determined by the fecundity of their pioneers”.

Two questions arise from this statement:
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1. Is this assumption legitimate for all biological populations ?

2. What is the invasion speed of the population if the KPP conditions do not hold ?

To partially answer the second question, we first mention the case of bistable reaction terms
f satisfying

• f(0) = f(1) = 0, f ′(0) < 0 , f ′(1) < 0,

•
∫ 1

0 f(u)du > 0,

• f has exactly 3 zeros in [0, 1], namely 0, 1 and some α ∈ (0, 1).

Under these assumptions, Equation (1.6) has a wave solution ϕc traveling to the right for a
unique value of c > 0 that not only depends on f ′(0), but on the functional form of f (this
dependence on f is typically integral-like [Sto76]). We denote this speed by cb. Moreover, under
suitable assumptions on the initial condition (that ensure successful invasion), the solution of
the PDE (1.5) arising from a compactly supported initial data converges uniformly to a pair of
diverging fronts, traveling at speed cb [FM77]. Consequently, the speed cb is also the invasion
speed of the solutions. In the latter case, Stokes calls the wavefront pushed.

More generally, the difference between pulled and pushed waves has been discussed in the
case of propagation into unstable states [Van03, Rot81, Sto76]. Here, we only mention the case
of a monostable reaction term, that is, satisfying the following conditions:

f(0) = f(1) = 0, f ′(0) > 0, f ′(1) < 0, and f(u) > 0, ∀u ∈ (0, 1). (3.31)

The second condition ensures that 0 is a saddle point for the linearised equation so that it is
an unstable state for the PDE: any small perturbation (i.e. introduction of a small population)
results in a successful invasion. The linear spreading speed c∗ of this nonlinear PDE is defined
from its linearisation at zero:

ut =
1

2
uxx + f ′(0)u. (3.32)

If we denote by x∗ the position of the invasion front (see Equation (1.11)) for a solution u of
(3.32) arising from a compactly supported initial data, the linear spreading speed of (1.5) is
defined as

c∗ = lim
t→∞

x∗(t)

t
. (3.33)

Note that this definition does not depend on the threshold chosen for x∗ since the equation is
linear. Besides, the assumption f ′(0) > 0 ensures that c∗ > 0. It can be shown (e.g. using the
Fourier transform [Van03] or comparison principles [AW78]) that in the monostable case

c∗ =
√

2f ′(0).

On the other hand, it is a know fact [HR75] that under assumption (3.31), there exists
a minimal speed cmin and a one-parameter family of traveling fronts (ϕc)c>cmin , solutions of
Equation (1.6). The speed cmin plays a crucial role in the dynamics of the solutions of (1.5)
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arising from compactly supported data. Indeed, these solutions converge to a pair of diverging
fronts at speed cmin (at least in shape and speed [Sto77]). Consequently, the invasion speed (see
Equations (1.9) and (1.10)) is given by the minimal speed cmin.

Based on these observations, pulled and pushed waves are defined as follows. A nonlinear
wavefront arising from equations (1.5) and (3.31) is said to be “pulled” if its asymptotic invasion
speed is equal to c∗ and “pushed” if it is greater than c∗. Roughly speaking, this means that
while the dynamics of pulled waves is only driven by their leading edge, the dynamics of pushed
waves depends on the nonlinearities of the reaction term. For bistable reaction terms f , we have
f ′(0) < 0 so that 0 is a linearly stable state. Therefore, small perturbations are bound to die
out so that the invasion is led by the nonlinearities. That is why bistable fronts are classified
as pushed fronts. Another remark formulated in [Van03] is that nonlinear invasions can not be
slower than c∗ in the monostable case (3.31) since small populations go forward with speed c∗.
Thus, the dynamics can only be accelerated by the advance of the bulk. Finally, in the light of
the above, note that pushed waves are observed when c∗ 6= cmin.

Given these definitions, it is now clear that KPP waves are pulled and bistable fronts are
pushed. An interesting question is then to determine when the transition between these two
regimes appears, as well as the microscopic interpretation of this distinction. An enlightening
example can be found in [BHK18]: the authors study an example of solvable model in which we
can observe this transition from pulled to pushed fronts. They consider a reaction term of the
form

f(u) = ru(1− u) (1 +Bu) (3.34)

for some parameter B > 0 (which is sometimes called the Fisher’s Equation). For B = 0, the
KPP conditions hold so that cmin = c∗ =

√
2r. Besides, the authors points out the fact that

ϕc(x) =
1

1 + e
√
rBx

, (3.35)

c =
1

2

√
rB

(
1 +

2

B

)
, (3.36)

is an explicit solution of Equation (1.6). Notice that necessarily, we have c > c∗ (one can easily
prove this fact by computing c−c∗). At first sight, we do not know if this speed c corresponds to
the minimal speed cmin. Nevertheless, they claim that the transition between pulled and pushed
regimes occurs when c = c∗ or equivalently when B = 2. This switch from one to another can be
justified by analysing the decay of the function ϕc and proving that cmin is an increasing function
of B. Indeed, we know [HR75] that the asymptotic behaviour of a traveling front ϕc′ as z → +∞
is given by

ϕc′(z) ∼ Ce−λ(c′)z, with λ(c′) =

{
c′ +

√
(c′)2 − 2f ′(0), if c′ = cmin

c′ −
√

(c′)2 − 2f ′(0), if c′ > cmin.

Equivalently, if we consider the two roots 0 > λ1 > λ2 of 1
2X

2 + c′X + f ′(0), we see that
λ(c′) = −λ2 for c′ = cmin and λ(c′) = −λ1 for c′ > cmin. A simple computation gives that for
B > 2, λ2 =

√
rB so that c′ = cmin and the traveling front (3.35) is the front associated to cmin.

Since cmin > c∗ for B > 2 (because c = c∗ iff B = 2), the wavefronts are pushed for B > 2.
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Then, note that f is increasing with respect to B. Yet, cmin is given by the following variational
formulation [HR75]

cmin = inf
{
L(ρ) : ρ ∈ C1([0, 1]), ρ(0) = 0, ρ′(0) > 0

}
with

L(ρ) = sup
u∈(0,1)

ρ′(u) +
f(u)

ρ(u)
,

so that cmin is also increasing with respect to B. Therefore, cmin =
√

2r = c∗ and the wavefronts
are pulled for all B ∈ [0, 2]. This transition between pulled and pushed fronts is illustrated by
Figure I.2.
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Figure I.2: Speed (a) and shape (b) of the fronts for a reaction term of the form (3.34) and different
values of B for r = 2. Figure (a) The red dashed line corresponds to the linear spreading speed c∗ from
Equation (3.33). In the pulled regime (B 6 2), it coincides with the asymptotic invasion speed of the
solutions of the nonlinear equation (1.5). In the pushed regime (B > 2), this invasion speed is larger
than the linear speed. It is given by Equation (3.36), which corresponds to the green square markers in
the figure. This figure corresponds to Fig. 1.(A) from [BHK18]. Figure (b) Shape of the fronts in the
corresponding co-moving frames at speed cmin. For B 6 2, we have cmin = c∗ and the solutions of the
nonlinear PDE converge in shape and speed to the front ϕc∗ (red solid line). For B > 2, the larger B,
the steeper the limit shape of the front. The green dotted/dashed lines correspond to the graph of ϕc
for c = cmin, for different values of B. In this case, one can prove that the solution of the nonlinear PDE
converges uniformly to the front ϕcmin

The aim of Chapter III is to study the internal mechanisms behind this changeover via a
particle system. The reason why we take such an approach are the results of the simulations
obtained in [BHK18] on a noisy version of Equation (3.34). Before we describe their observations,
we give a first interpretation of the two regimes based on the deterministic equation (3.34).
Indeed, the forcing term (3.34) might be interpreted as follows. While the first part of the
equation is similar to the logistic growth from the FKPP equation, giving the saturation rule
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of the population, the second part can be seen as a cooperative term and B as the strength of
this cooperation. Unlike the KPP conditions, this presumes that the per capita reproduction
rate r(u) = u−1f(u) decreases at low densities and has a peak for some positive value of u.
Consequently, the region of maximal growth in the front is shifted from the tip into the bulk of
the wave when B increases (see Figure I.3). This is known as the Allee effect.

B = 0.5
pulled front
um = 0.0

B = 1.5
pulled front
um = 0.167

B = 2.5
pushed front
um = 0.3

B = 6
pushed front
um = 0.417

Figure I.3: Position of the region of maximal growth in the limit wavefront ϕcmin for different values
of B (see Equation (3.34)). When the cooperativity is low (B 6 2), the wavefront is pulled. For B 6 1,
the KPP conditions hold so that the growth is maximal at the leading edge. For B > 1, the region of
maximal growth is shifted to the left when the strengh of cooperation increases. For B > 2, the growth
in the bulk overtake the growth at the leading edge: the speed of the front is larger and the shape of the
wavefront is steeper than in the pulled regime. The doted line corresponds to the value um of u ∈ [0, 1]
such that uf(u)−1 is maximal.

There may be various biological interpretations for this mechanism: interspecific competi-
tion, reduced fitness due to consanguinity, difficulty to find a mate at low densities, etc. In the
case of monostable reaction terms (3.31), we always have r(0) > 0. We say that the population
undergo no Allee effect if r(u) 6 r(0) for all u ∈ (0, 1) and weak Allee effect otherwise. We speak
of strong Allee effects when r(0) < 0 so that it is often modeled by bistable reaction diffusion
equations. In Equation (3.34), there is no Allee effect for B 6 1 (which coincides with the KPP
conditions) and weak Allee effect for B > 1, so that the transition (B=2) between pulled and
pushed fronts occurs in the region of weak Allee effect (see Figure I.2). From this point of view,
pushed waves are called “pushed” because their are not pulled by their leading edge, but pushed
by the growth in the bulk, that quickly overtakes the growth in the leading edge thanks to co-
operation. See Figure I.4 for a different parametrisation of the forcing term (3.34) for which we
can observe bistable waves and strong Allee effects.
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Figure I.4: Asymptotic spreading speed of the solutions of Equation (1.5) with a forcing term of the
form f(u) = r0u(1− u)(u− u∗). This forcing term can be obtained from (3.34) by setting B = − 1

u∗ and
r0 = − r

B . This representation allows to plot the invasion speed of bistable reaction terms for u > 0, which
corresponds to B → +∞ in (3.34). The main advantage of the first representation (with B) is that the
growth rate per capita u−1f(u) at low densities is the same for all B. That is the reason why we can not
observe bistable waves in (3.34). See [BHK18, SI] for a discussion on the two different parametrisations.

While the distinction between pushed and pulled fronts can be made thanks to the asymp-
totic invasion speed of the fronts, this is not the only consequence of cooperation on the popu-
lation. Indeed, Allee effects also have a huge impact on the genetic diversity. A first way to see
it [RGHK12, BHK18], is to track a neutral marker in the population (that does not interfere in
the dynamics) to trace the location of the individuals that gave birth to a significant part of the
population. In pulled fronts, they are positioned at the leading edge: only a few particles give
birth to a significant part of the population so that a large fraction of the individuals shares the
same ancestor. This leads to a drastic genetic loss. In sharp contrast, the ancestors are located
in the interior of the front for pushed waves, which brings a wider genetic diversity.

Another standpoint developed in [BHK18] is the analysis of the transition between the two
regimes in an “individual-based model”. Actually, they consider the noisy equation

ut =
1

2
uxx + ru (1− u) (1 +Bu) +

1√
N

Γ (u) η(t, x). (3.37)

Here, N stands for the local number of particles at equilibrium, Γ is the strength of the de-
mographic fluctuations and η a Gaussian white noise. As explained in Section 3.1, the noisy
equation can be seen as a perturbation of the hydrodynamic limit of the individual based model,
including the demographic fluctuations generated by the finite nature of the system. The effect of
noise on the density n is the following: the speed and the shape are now fluctuating. Depending
on the type of waves generated by the deterministic equation (without noise), the effect of these
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fluctuations on the system of the front will be drastically different. For instance, pulled waves
are very sensitive to fluctuations. Indeed, recall from Section 3.1 that the difference between the
velocity c of the deterministic front and the velocity cN of the front in the noisy equation (3.37)
is of order log(N)−2 [BDMM06a, MMQ10]:

c− cN ∼
C

log(N)2
, (3.38)

for some C > 0. This correction, that is much greater than expected (1/
√
N), underscores

the large fluctuations in the pulled regime. In opposition, we expect pushed waves to be less
sensitive.

This observation can be explained by considering the genealogies of such processes. In
[BDMM06a], the authors describe the mechanisms driving the fluctuations of the noisy fronts
for B = 0 by considering a particle system rather than a continuous stochastic model. Since the
fluctuations develop at the leading edge, they do not need to introduce a regulation mechanism to
infer the correction on the speed of the noisy wavefront. The addition of a saturation rule in this
model then allows to describe the genealogies of the particles leaving close to the invasion front.
In [BDMM06a], the authors suggest to analyse a branching random walk with a fixed population
size N : at each generation, the individuals give birth to k children, scattered around the parental
location. Only the N rightmost individuals survive to the next generation. This forms a cloud of
particles that does not spread and can be described by a front [BDMM07]. It was shown that the
same correction (3.38) holds for the speed of this cloud of particles [BG10] (for k = 2 and under
suitable assumptions on the displacement law of the offspring). In this model, it was conjectured
[BDMM06b, BDMM07] that the number of generations needed to reach the most recent common
ancestor of two particles sampled in the population at a given generation is of order log(N)3.
This implies that the genealogy of the particles is described by a Bolthausen-Sznitman coalescent,
a coalescent with multiple mergers: the particles sent ahead of the front give birth to a large
number of descendants. These offspring survive and expend exponentially fast since the effect
of competition is negligible at the leading edge. As a consequence, a significant fraction of the
population is replaced by these descendants. This result on the genealogies of the system has
been proved under slightly different settings in [BBS13] (see Section 2.2). In opposition, for large
values of B, the time scale at which we observe the fluctuations is of order N [BHK18], which
suggest the presence of Kingman’s coalescent with binary mergers (see [EP20] for a proof of this
fact, in the framework of population genetics and in the case of bistable waves - see Figure I.4).
Therefore, the population behaves like a neutral population and the system is far less sensitive
to fluctuations.

However, the numerical experiments conducted in [BHK18] suggest the existence of a class
of pushed fronts with large fluctuations. These fluctuations are observed in the position of the
front as well as in the genetic diversity of the population. Besides, the numerical experiments
conducted in [BHK18] suggests that the genealogies can be observed on a time scale of order Nγ

for some γ ∈ (0, 1) for intermediate values of B (that is close to 2). This leads to the distinction
of two different classes in the pushed regime: weakly pushed (or semi pushed) waves and fully
pushed waves. This semi pushed regime will be the object of Chapter III.

We end this section with two other remarks on the stability of pushed fronts. The first
one concerns the asymptotic stability of the solutions in the pushed regime for monostable

35



Chapter I. Introduction

reaction terms. Indeed, Rothe [Rot81] showed the uniform convergence of solutions arising from
compactly supported data to pairs of diverging fronts at speed cmin in the pushed regime. This
is not the case in the pulled regime because of the logarithmic correction of the invasion speed
(see Equation (1.17)). The second one can be connected to the tail problem. Indeed, it was
observed that adding a strong Allee effect to an heterogeneous FKPP equation has the effect of
cutting the tails [HFR10]. Similarly, it was shown by Freidlin [Fre85] that in the bistable case,
the Huygens principle holds and that there is no jump in the position of the front.

4 Main results

4.1 Propagation speed of a population colonising a slowly varying environ-
ment

This section regards the result proved in Chapter II. It is based on the preprint [MRT21].

In this chapter, we are interested in the long time behaviour of the particle system described
in Section 2.1 with a slowly varying growth rate of the form

(t, x) 7→ r(εt, εx),

for some small parameter ε > 0. As mentioned in Section 3.1, considering the viscosity solutions
of the hydrodynamic limit of this system may be unsatisfactory from a biological standpoint.
Recall from Section 3.1 that some corrections on the PDE were suggested to tackle this issue.
However, for biological concerns, we suggest to invert the two limits, that is to let first ε→ 0 in
the microscopic system, then consider large population sizes (i.e. K → ∞). In this framework,
we are interested in the asymptotic behaviour of the position of the rightmost particle X∗k (see
Equation (2.20)) as ε→ 0. Basically, we expect that for all T > 0, we have

(εX∗k , 0 6 k 6 T/ε)−→ (x(t), t ∈ [0, T ]) . (4.39)

when we let first ε→ 0, then K →∞.

The goal of Chapter II is to show that under appropriate assumptions on the reproduction
and migration laws, the function x from Equation (4.39) satisfies an ODE, depending on the
growth rate r and the dispersion law µ of the system. To simplify and clarify the proofs,
we assume that µ is a discretised Gaussian distribution. The resulting ODE can therefore be
expressed only in term of r. Moreover, we essentially assume that r is a smooth positive function
and that the system is monotone with respect to r and K. This latter assumption allows us to
locally compare the system with some branching random walks. This strategy can be thought
as a comparison principle, widely used in PDE theory (see [AW78] for homogeneous FKPP
equations, [BHN08] for recent developments in heterogeneous settings).

Recall from Section 2.1, that ∆t refers to the time step between two generations and ∆x
denotes the space step between two sites. Roughly speaking, in Chapter II, we prove that for
any T > 0 and δ > 0, if ∆t and ∆x are small enough and K is sufficiently large (but fixed)

lim
ε→0

P

(
max

k∈J0,b T
ε∆t
cK
|εX∗k − x(kε∆t)| 6 δ

)
= 1,
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where t 7→ x(t) is the solution of the Cauchy problem{
x′(t) =

√
2r(t, x(t))

x(0) = 0.
(C)

The proof of this result is divided into two main parts. We first establish an upper bound
on the invasion speed of the interacting particle system (Section 4). Second, we establish a lower
bound (Section 5), which concludes the proof. Both steps rely on a coupling lemma, stated
in Section 3. The general assumptions under which each bound is proved as well as precise
statements of the results are given in Section 2.

The main result of this asymptotic method is that the long time behaviour of the system
satisfies the Huygens principle, without adding any correction. Moreover, the proof of this result
suggests that it holds as long as ε log(K) → 0. On the other hand, we know that the large
population asymptotics gives a proper estimate of the invasion speed when ε log(K) → +∞.
Therefore, this provides a good understanding of the scales at stake in each situation. If we
refer to the datas collected in [SK97] on biological species, we can infer which approach will
best fit each situation. Typically, our approach seems relevant when the population size is small
compared to the scale of heterogeneity of the environment.

These two different limits are illustrated in Figures I.1 and I.5: in the first one, we fixed ε
and observe the convergence to the hydrodynamic limit as K increases. In the second one, we
fix K and remark that the rescaled position of the rightmost particle converges to the solution
of the Cauchy problem (C). In both cases, we simulate the simplified version of the system
introduced in Section 2.1 for a space dependent growth rate r that is a 1−periodic step function.
For instance, this could depict the invasion of a species colonising a linear habitat, constituted
of an alternation of favourable and unfavourable patches as in the SKT patch model [SKT86].

4.2 Particle systems and semi-pushed fronts

In Chapter III, we investigate the internal dynamic of a population undergoing moderate Allee
effect. To this extent, we study the branching Brownian motion with absorption and accelerated
branching rate in the interval [0, 1] in Section 2.2. As above-mentioned, this system constitutes
a toy model describing the dynamics of the particles ahead of the front and the barrier at zero
combined with the drift −µ is seen as a moving frame. Thereupon, the effect of cooperativity
on the particle system will be investigated by considering a space dependent branching rate
r(x), reaching its maximum where we expect to find an intermediate density of particles (that
is between the bulk and the leading edge). For simplicity, we consider a step function of the
following form:

r(x) =
1

2
+
ρ− 1

2
1x∈[0,1]. (4.40)

This way, the intensity of the Allee effect can be easily strengthened by increasing ρ.

As explained in Section 3.2, this work was mainly inspired by the conjectures and the results
in [BHK18, BDMM06a, BDMM06b, BBS13]. In [BDMM06a], the authors explain how to infer
the speed correction of the front arising from (3.30) thanks to a particle system, in the pulled
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Figure I.5: Convergence of the position of the rightmost particle in the IBM to the solution of the
ODE (C). The green line corresponds to the rescaled position of the rightmost particle (see (2.21)) in one
simulation of the process. This process is run for K = 20 and different values of ε. The orange dotted
line corresponds to the graph of the solution of the Cauchy problem (C) on a time scale of order 1 (and
not ε−1 as in the process). The last subfigure is the graph of the growth rate r.

regime. The analysis carried out in [BDMM06b] is dedicated to the genealogies of a population
undergoing selection. This selection is modeled by a constant population size: the saturation
rule consists in keeping only the N rightmost individuals in the system at each time step. In
our work, this cloud of particles will be seen as an IBM for front propagation. Under these
assumptions, it was conjectured that the genealogy of the process is described by a Bolthausen-
Snitzman coalescent in the pulled regime. In [BBS13] the authors prove this conjecture under
slightly different settings: they investigate the genealogies of a branching Brownian motion with
absorption. The drift µN (see Equation (1.29)) is chosen so that (3.38) holds (replacing c by
µ =

√
2). Instead of keeping a constant population size, they chose to kill the particles at

a barrier to keep it approximately constant. Therefore, they can assume that particles evolve
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independently during their life span. Moreover, they also considered a continuous time model
to simplify the analysis. Under this assumption, they show that the genealogy of this process
is described on a time scale of order log(N)3 by a Bolthausen-Snitzman coalescent. Based on
the observations made in [BHK18] (see Section 3.2), we study a BBM with absorption at 0 and
branching rate r given by (4.40). The goal of Chapter III is to examine the effect of the parameter
ρ on the genealogy of the process and identify the three regimes (pulled, semi-pushed and fully
pushed) observed numerically in [BHK18].

In our system, the quantity of interest is the number Nt of particles alive at time t. As
in [BBS13], we set µ in such a way that this number stays roughly constant. In our case, the
population will eventually dye out, but the fluctuations of the process (Nt) during its life time
will be extremely instructive and will provide some information on the genealogy of the particles
as well as on the mechanisms driving the invasion.

First, we need to fix µ: it is given by the spectral analysis of the operator

Tv = v′′ + r(x)v.

More precisely, it is related to the principal generalised eigenvalue of the operator T . For ρ <
ρ1 = 1 + π2

4 , we claim that µ = 1. For ρ > ρ1, it is the unique solution of

− tan(
√
ρ− µ2)√

ρ− µ2
=

1

µ2 − 1
, (4.41)

such that ρ−µ2 ∈
[
π
2 , π

]
. In this case, we have µ > 1. Therefore, the critical value ρ1 delineates

the transition between pulled and pushed regimes in the particle system. The drift µ is plotted
and compared with the speed of the deterministic limit waves from [BHK18] in Figure I.6.

As in the numerical experiments conducted in [BHK18], the semi pushed regime will emerge
in the study of the fluctuations of the system for ρ > ρ1. To observe this second transition, we
assume that ρ > ρ1 and set

α =
µ+

√
µ2 − 1

µ−
√
µ2 − 1

> 1. (4.42)

Suppose that the system starts with N particles at 1 and set N̄t = Nt
N . We claim that we can

distinguish the weakly pushed and fully pushed regime thanks to the following observation:

1. If α ∈ (1, 2), (N̄Nα−1t) converges in law to an α−stable CSBP as N →∞,

2. If α > 2, (N̄Nt) converges in law to a Feller diffusion as N →∞.

The transition at α = 2 can also be seen in terms of ρ. Indeed, we have

α > 2 ⇔ µc >
3

4

√
2, (4.43)

which provides a second critical value of ρ > ρ1 thanks to Equation (4.41). We denote by ρ2 this
second critical value and we claim that

α > 2 ⇔ ρ > ρ2.
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Figure I.6: The expansion velocity as a function of cooperativity. Figure (a): in the particle system.
Graph of the drift µ as a function of ρ. For ρ ∈

[
1
2 , ρ1

]
, µ = 1, which corresponds to the pulled regime

in the particle system. For ρ > ρ1, the drift µ is given by Equation (4.41). In this case, µ > 1, which
corresponds to the pushed regime. Figure (b): in the PDE (1.5) with reaction term (3.34) for r = 1

2 .
Graph of the speed cmin as a function of B. For B 6 2 the invasion is pulled and its speed is given by
the linear spreading speed i.e. cmin = c∗ =

√
2r = 1. For B > 2, it is pushed and the invasion speed is

given by Equation (3.36).

Hence, the semi pushed regime occurs in the particle system when the strength of the coopera-
tivity ρ takes values in the interval (ρ1, ρ2). This is illustrated by Figures I.7 and I.8.

The picture is then the following:

• If ρ < ρ1, the Allee effect is not strong enough to let the growth in the bulk overtake the
growth at the leading edge. This corresponds to the pulled regime. As in the deterministic
framework, the speed of the wavefront µ is constant, equal to the linear spreading speed.
An analysis of the fluctuations, similar to the ones carried in [BBS13, MS20], would prove
that the genealogy of the population is described by a Bolthausen-Sznitman coalescent.
Therefore, most particles descend from the particles who gave birth at the leading edge.
In that sense, the invasion is driven by the tip of the front.

• If ρ > ρ2, we claim that the fluctuations in the process occur on a larger time scale, of order
N . This suggests that the genealogy of the process is given by a Kingman’s coalescent. As
expected, the particles evolve as a neutral population, because the wave is pushed by
the growth in the bulk. The speed of the wave µ is an increasing function of ρ (as cmin

is an increasing function of B for a forcing term of type (3.34)).

• If ρ ∈ (ρ1, ρ2), the two dynamics coexist. Indeed, the wave is faster than the linear
spreading speed (µ > 1) so that the invasion is accelerated by the dynamic of the bulk.
Nevertheless, the convergence of the rescaled process (Nt) to the α−stable CSBP implies
that the fluctuations occur at a shorter time scale than in the fully pushed regime. Besides,
the genealogy associated to the α−stable CSBP being given by a Beta(2−α, α) coalescent,
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Figure I.7: The expansion velocity as a function of cooperativity. Figure (a): in the particle system.
The weakly pushed regime is observed when µ ∈ (1, µc), for µc defined in (4.43). Figure (b): in the PDE
(1.5) with reaction term (3.34) for r = 1

2 . Graph of the speed cmin as a function of B.

we deduce that the invasion is still driven by the particles sent to the leading edge of the
front.

This statement and the definitions of µc and α are consistent with the observations made in
[BHK18, BHK20]. Indeed, the genealogy associated to the α-stable CSBP and the Feller diffusion
are exactly the ones suggested for the semi and fully pushed regimes in [BHK20]. Besides, if we
set r = 1

2 in (3.37), the time scale Nα−1 over which we observe the fluctuations in our process
is the same as in [BHK18] (their definition of α is nothing else than 1− α in our notations). In
this case, the critical value of the speed c for which α = 1 in [BHK18] is equal to µc from (1.14).

Chapter III is aimed at proving the convergence of the rescaled process N to the α-stable
CSBP when ρ ∈ (ρ1, ρ2). The proof of this fact is divided in two main parts. First, we estimate
the first and second moments of several quantities in a process with an additional barrier (Sections
2, 3 and 4). Second, we gather these estimates and prove the convergence of the process to the
CSBP by establishing the convergence of its Laplace transform (Sections 5, 6 and 7).

4.3 Open questions and conjectures

In this last section, we indicate the two main questions raised by the results mentioned in Sections
4.1 and 4.2. We then conclude with several other directions for future research.

41



Chapter I. Introduction

3.5 4.0 4.5 5.0 5.5 6.0
cooperativity 

1

2

3

4

5

ex
po

ne
nt

 

= 2
weakly pushed
pushed

3.5 4.0 4.5 5.0 5.5 6.0
cooperativity 

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

dr
ift

 

= c = 3/(2 2)
weakly pushed
pushed

Figure I.8: The pushed regime in the particle system. Figure (a): Graph of α from Equation (4.42) as
a function of ρ. The weakly pushed regime corresponds to the values of ρ such that α ∈ (1, 2). Figure
(a): Graph of µ from Equation (4.42) as a function of ρ.

The interpolation regime between the two scales of heterogeneity

In order to determine which of the analysis of the individual based model from Section 2.1 or of
its hydrodynamic limit (3.28) is better suited to a given biological population, one might consider
our microscopic model in the limit when K and 1/ε go to infinity together. In chapter II, we
deal with the case ε log(K)→ 0 and prove the convergence to the ODE. This condition appears
in the proof of the upper bound on the invasion speed of the particle system. Thanks to a first
moment method, we obtain an upper bound on the probability that the rightmost particle moves
faster than the solution of the ODE of the form

K exp

(
−C
ε

)
,

for some C > 0. Roughly speaking, this is the result of a union bound. Essentially, it corresponds
to the probability that a descendent of a single particle goes too far to the right (which is given
by the theory of large deviations), multiplied by the typical number of particles on a site. On
the other hand, the analysis of the viscosity solutions given by the hydrodynamic limit described
in Section 3.1 corresponds to the case ε log(K)→ +∞.

We conjecture that it is possible to interpolate between the two double limits in K and ε,
when K and 1/ε go to infinity in such a way that logK is of the same order as 1/ε. This relation
is indeed suggested by the hyperbolic scaling (1.5). Precisely, setting logK = κ/ε for a constant
κ > 0, we believe that the renormalised log-density is described in the limit by a solution vκ

to a variational inequality similar to the one satisfied by the solution v of (3.29) [Fre86, ES89],
but with an additional constraint imposing that vκ(t, x) ≥ κ implies vκ(t, x) = +∞, similarly to
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[MBPS12]. The variational representation of the function vκ would then be

vκ(t, x) = sup
τ

inf
z

{∫ t∧τ(z)

0

z′(s)2

2
− r(t− s, z(s)) ds | z(0) = x, z(t) = 0,

∀u ≤ τ(z) :

∫ t∧τ(z)

u

z′(s)2

2
− r(t− s, z(s)) ds < κ

}
.

The fully pushed regime

In Chapter III, we study the long time behaviour of the particle system from Section 2.2 in the
semi pushed regime ρ ∈ (ρ1, ρ2). The logical follow-up question is to investigate the fully pushed
regime ρ > ρ2. As explained in Section 3.2, in the fully pushed regime, we expect the genealogy
of the system to evolve on a time scale of order N . In Section 4.2, we claim that if we start
with N particles at x = 1, the rescaled number of particles in the process N̄t = Nt/N at time t
satisfies

N̄Nt ⇒ Ξ(t), as N →∞,
where Ξ is a Feller diffusion starting from 1.

To prove this result two methods can be employed:

• First, one can prove, as in Chapter III, that the Laplace transform of the process converges
to the one of a Feller diffusion. Contrary to what is observed in [BBS13] and in Chapter
III, the invasion is no longer driven by the particles far to the right of the front but by the
ones living in the bulk. That is the reason why the proof of this point will mainly rely on
first and second moments estimates on the branching Brownian motion in an interval.

• Second, one can prove that the limit of (N̄Nt)t>0 as N → ∞ is solution of a certain
martingale problem whose unique solution is given by a Feller diffusion [Ber09, p.108].
Again, this proof relies on moments estimates.

An overview of the proof described in the first point is given at the end of Chapter III.

Other questions

In this section, we point out additional questions arising from the analyses conducted in Chapter
II and III.

In Chapter II, we establish the convergence of the rightmost particle in the system from
Section 2.1 for a particular reproduction law, ensuring that the population does not go extinct.
First, we point out the fact that this assumption is not necessary to establish the upper bound
on the invasion speed. Therefore, this upper bound is still valid in some situations where the
population does not survive with probability one. However, one can also be interested in the
propagation speed of our system under more general assumptions on the reproduction law. In
this case, the invasion can be slower than the ODE.
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In Chapter III, we investigated the fluctuations of a dyadic branching Brownian motion
with absorption. As in [MS20], one could then investigate the behaviour of such process under
more general assumptions on the branching law. For instance, one can consider that at each
branching event, a particle gives birth to a random number of children N distributed according
to a certain law (pk)k∈N satisfying

∑
kpk > 1.

We are also interested in the genealogy of the system studied in Chapter III. In [BBS13],
the convergence of the genealogy to the Bolthausen–Sznitman coalescent ensues from the con-
vergence of a certain process to Neveu’s CSBP through a flow of bridges [BLG00, BLG06]. In
their case, this convergence takes place on the same deterministic time scale log(N)3 as the con-
vergence to the CSBP. A technical difficulty appears for the genealogy of the α-stable CSBP: the
corresponding flow of bridges encoding the genealogy is defined thanks to a random time change,
depending on the population size [BBC+05]. Besides, we know that Neveu’s CSBP never hits 0,
which allows to consider the genealogies backwards in time starting from any time t > 0. The
α-stable CSBP gets absorbed at 0 in finite time so that we can only sample individuals in the
population before its extinction time.
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CHAPTER II

Spatial dynamics of a population in a heterogeneous environment

We consider a certain lattice branching random walk with on-site competition and in an environ-
ment which is heterogeneous at a macroscopic scale 1/ε in space and time. This can be seen as
a model for the spatial dynamics of a biological population in a habitat which is heterogeneous
at a large scale (mountains, temperature or precipitation gradient. . . ). The model incorporates
another parameter, K, which is a measure of the local population density. We study the model
in the limit when first ε → 0 and then K → ∞. In this asymptotic regime, we show that
the rescaled position of the front as a function of time converges to the solution of an explicit
ODE. We further discuss the relation with another popular model of population dynamics, the
Fisher-KPP equation, which arises in the limit K → ∞. Combined with known results on the
Fisher-KPP equation, our results show in particular that the limits ε → 0 and K → ∞ do not
commute in general. We conjecture that an interpolating regime appears when logK and 1/ε
are of the same order.
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1 Introduction

In this article, we are interested in the spatial propagation of a biological population in a het-
erogeneous environment, where the population lives on discrete sites or demes. Formally, the
population is a system of interacting particles on the integers Z evolving in discrete time. At each
generation, particles duplicate at a certain space- and time-depending rate, undergo a regulation
step where roughly K particles at most survive at each site and jump (migrate) according to a
discretized Gaussian distribution.

In this introductory section, we present a special case of the model and state our main
results for this model. The general model is presented in Section 2.

1.1 Model and main result in a special case

We consider a particle system evolving on the rescaled lattice ∆x · Z at discrete time steps
0,∆t, 2∆t, . . ., where ∆t, ∆x > 0 are small parameters. The system depends furthermore on the
following parameters:

• ε > 0 a small constant (with 1/ε being the space- and time-scale of interest)

• K > 0 a large constant (the local population density)

• (t, x) 7→ r(t, x) a smooth, bounded function (the reproduction rate, see Theorem 1.1 for
precise assumptions).

We denote by nk(i) the number of particles on the site i∆x at time k∆t. We assume that
the initial condition satisfies n0(i) = 0 for i > 0 and n0(0) ≥ 1, i.e. the right-most particle is
at the origin. The configuration (nk+1(i))i∈Z is obtained from (nk(i))i∈Z through the following
three consecutive steps:

1. Reproduction step. Each particle living on the i-th site at generation k duplicates with
probability r(εk∆t, εi∆x)∆t. Hence the number of descendants (including the individual
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itself) produced by a particle is then given by a random variable Y with law

νr(εk∆t,εi∆x) = (1− r(εk∆t, εi∆x)∆t) δ1 + r(εk∆t, εi∆x)∆t δ2. (1.1)

2. Competition step. The number of particles at each site is truncated at K. In other words,
the number of particles after the competition step is given by the truncated sumnk(i)∑

m=1

Ym

 ∧K, (1.2)

with (Ym) a sequence of i.i.d. random variables of law νr(εk∆t,εi∆x).

3. Migration step. A particle on the i-th site jumps to the site i + j with probability µ(j),
where the migration law µ is a discretized normal distribution:

µ =
∑
j∈Z

(∫ (j+ 1
2

)∆x

(j− 1
2

)∆x

1√
2π∆t

e−
x2

2∆t dx

)
δj . (1.3)

All particles jump independently.

The resulting configuration is nk+1.

We denote by X∗k the position of the rightmost particle at generation k in this system. Note
that X∗0 = 0 by assumption. We investigate the long-time behaviour of the process (εX∗k)k∈Z.
More precisely, we compare (εX∗k)k≥0 and the solution x of the Cauchy problem{

x′(t) =
√

2r(t, x(t))

x(0) = 0.
(C)

The result is the following.

Theorem 1.1. Assume that r ∈ C1(R+×R,R), that ∇r is bounded and that there exist r, r̄ > 0,

∀(t, x) ∈ [0,∞]× R, r < r(t, x) ≤ r̄.

Let T > 0 and δ > 0. There exists ∆tδ > 0 and Cδ > 0 such that, if ∆t < ∆tδ and ∆x < Cδ∆t,
there exists K0 such that, for all K > K0

lim
ε→0

P

(
max

k∈J0,b T
ε∆tcK

|εX∗k − x(kε∆t)| 6 δ
)

= 1.

1.2 Discussion and comparison with deterministic models

In Theorem 1.1, we consider a double limit ε→ 0, K →∞. The order of the limit is to first let
ε → 0, then K → ∞. A more classical large population asymptotics of individual-based models
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such as this one consists in exchanging the order of the two limits. If we letK →∞ and divide the
population size by K (and let ∆x,∆t tend to 0 in a controlled way), we obtain a (deterministic)
PDE ([FM04b], [CM07]). This PDE is a reaction-diffusion equation of Fisher-KPP type:

uεt (t, x) =
1

2
uεxx(t, x) + r(εt, εx)f(uε(t, x)), (1.4)

with f(u) = u1u≤1. The limiting behavior of uε as ε → 0 has been widely investigated in the
PDE literature [BES89, ES89, BN15] but also with probabilistic arguments [Fre86]. Introducing
the change of variables (t, x) 7→ (t/ε, x/ε) and the WKB ansatz

uε(t, x) = e−v
ε(t/ε,x/ε)/ε, (1.5)

and assuming that, in a certain sense, uε(t, x)→ 1x=0 as t→ 0, it can be shown that the function
vε converges, when ε→ 0, to the viscosity solution v of the following Hamilton-Jacobi equation
(or, more precisely, a variational inequality) [ES89]:{

min
(
vt(t, x) + 1

2(vx(t, x))2 + r(t, x), v(t, x)
)

= 0

v(t, x)→∞1x 6=0, t→ 0.
(1.6)

As a consequence, uε(t/ε, x/ε) converges to 1 (resp. 0) uniformly on compact subsets of int(I)
(resp. Ic), where

I = {(t, x) ∈ [0,∞)× R : v(t, x) = 0}
In particular, if xε(t) denotes the position of the front (for example, xε(t) = sup{x : uε(t, x) ≥
1/2}), then, for fixed t ≥ 0,

xε(t/ε)→ xHJ(t) = sup{x : v(t, x) = 0}, as ε→ 0.

This approach has been extensively employed so far, to deal with different types of heterogeneous
environments: periodic [SK97, SKT86, Xin91], random [BN15, Nad16], etc., but does not provide
an explicit propagation speed, except in very specific situations [HNR11]. However, if x(·) denotes
the solution of the ODE (C), with initial condition x(0) = 0, we always have

xHJ(t) ≥ x(t) for all t ≥ 0.

To see this, recall the variational representation of the function v [ES89]:

v(x, t) = sup
τ

inf
z

{∫ t∧τ(z)

0

z′(s)2

2
− r(t− s, z(s)) ds | z(0) = x, z(t) = 0

}
. (1.7)

Here, the infimum is over all z ∈ H1
loc([0,∞); R) and the supremum is over all stopping times1

τ , i.e. maps τ : H1
loc([0,∞); R)→ [0,∞) satisfying for all z, z̃ and all s ≥ 0:

if z ≡ z̃ on [0, s] and τ(z) ≤ s, then τ(z̃) = τ(z).

In order to show that xHJ(t) ≥ x(t), it suffices to show that v(x(t), t) = 0 for all t ≥ 0. Fix
t ≥ 0. Define z(s) = x(t − s) for s ∈ [0, t]. Then z(0) = x(t), z(t) = 0 and for all s ∈ [0, t],

1In fact, general theory of variational inequalities (see e.g. [BL82, p.6]) implies that for given (t, x), the optimal
stopping time in (1.7) is given by τt,x(z) = inf{s ∈ [0, t] : v(t− s, z(s)) = 0}, but we don’t make use of this fact.
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(z′(s))2/2 = r(t− s, z(s)). Hence, for every stopping time τ , the integral in (1.7) equals 0. This
shows that v(x(t), t) ≤ 0 and thus v(x(t), t) = 0 by non-negativity of v.

It is easy to construct examples where xHJ(t) > x(t) for some or all t > 0. This is
for example the case when r(t, x) = r0(x) for some strictly increasing function r0. It is even
possible to construct an example in which xHJ has jumps: if we consider a function r such that
r(x) = c1 > 0 for x < h and r(x) = c2 > 2c1 if x > h > 0, and an initial condition 1(−∞,0], we
observe a jump in the wavefront at time T0 := h

c2

√
2(c2 − c1) < h√

2c1
(see Example 3 in [Fre85]).

On the other hand, when r0 is non-increasing, then xHJ(t) = x(t) for all t ≥ 0. See [ES89, Fre85]
for a detailed discussion and other sufficient conditions such that xHJ(t) = x(t) for all t ≥ 0. In
this case, one says that the Huygens principle is verified, in that the propagation of the front is
described by a velocity field, see Freidlin [Fre86] for a discussion of this principle and its relation
with the Hamilton-Jacobi limit, that he relates to geometric optics.

It has been observed previously that the viscosity solution method may be unsatisfactory,
from a biological standpoint, in some situations [HFR10, Jab12]. This has been dubbed the
“tail problem” [Jab12]: artifacts may be generated in the deterministic model by the absence
of local extinction caused by the infinite speed of propagation [HFR10] of the solutions of (1.4),
where meaningless, exponentially small “populations” are sent to favourable regions by diffusion
before the invasion front x(t), accelerating the speed of propagation and possibly causing jumps
in the position of the invasion front. Some adjustments were suggested to “cut the tails” in the
deterministic model. For instance, one can add a square root term with a survival threshold
parameter in the F-KPP equation [Jab12, MBPS12]. Another correction suggested in [HFR10]
consists in adding a strong Allee effect in Equation (1.4). Namely, they set the growth rate f to
be negative at low densities, leading to a bistable reaction-diffusion equation. For such equations,
the Huygens principle is verified, as shown by Freidlin [Fre86].

In this article, we propose to come back to the microscopic, or individual-based population
model and to study it under a double limit, where we let first the space-time scale 1/ε, then the
population density K go to infinity. The discrete nature of our model has the effect of a “cutoff”
which prevents the solution from being exponentially small in 1/ε. In terms of the function v,
which arises in the limit after a hyperbolic scaling, the cutoff prevents the function v from taking
finite positive values and thus formally “pushes it up to ∞” whenever it is (strictly) positive.
The main conceptual advantage of this approach compared to the PDE approach is
that our model naturally satisfies the Huygens principle, without the need of ad-hoc
modifications.

In order to determine which of the two models, with or without cutoff, is a better model
for a given biological population, one might consider our microscopic model in the limit when K
and 1/ε go to infinity together. Indeed, we conjecture that it is possible to interpolate
between the two double limits in K and ε, when K and 1/ε go to infinity in such
a way that logK is of the same order as 1/ε. This relation is indeed suggested by the
hyperbolic scaling (1.5). It also appears in the proof of Theorem 1.1, see for example Theorem 2.1.
Precisely, setting logK = κ/ε for a constant κ > 0, we believe that the renormalized log-density
is described in the limit by a solution vκ to a variational inequality similar to (1.6), but with an
additional constraint imposing that vκ(t, x) ≥ κ implies vκ(t, x) = +∞, similarly to [MBPS12].
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The variational representation of the function vκ would then be

vκ(t, x) = sup
τ

inf
z

{∫ t∧τ(z)

0

z′(s)2

2
− r(t− s, z(s)) ds | z(0) = x, z(t) = 0,

∀u ≤ τ(z) :

∫ t∧τ(z)

u

z′(s)2

2
− r(t− s, z(s)) ds < κ.

}
We leave the details for future work.

1.3 Explicit example and simulations

We now give an example for which the asymptotic speed of propagation of the Fisher-KPP
equation (1.4) is strictly larger than the speed of the ODE (C). Consider a reaction term of the
form r(εt, εx)f(u) = r(εx)u(1− u) where r is a 1−periodic function such that{

r(x) = µ+ ∀x ∈ [0, 1
2)

r(x) = µ− ∀x ∈ [1
2 , 1)

(1.8)

for some constants µ+ and µ− satisfying 0 < µ− < µ+. For ε > 0, denote by c∗ε the minimal
speed such that a pulsating travelling front with speed c exists for all c > c∗ε [BHR05]. It has been
shown [Nad10] that c∗ε is nonincreasing with respect to ε and bounded. Therefore, it converges to
some limit c∗0 as ε→ 0. In the framework of slowly oscillating periodic media, an explicit formula
of the asymptotic spreading speed c∗0 has been computed in [HNR11] with the viscosity solution
method. Under assumption (1.8), this expression is even more explicit and given [HFR10] by

c∗0 = 2
√

2
(µ+)2 + (µ−)2 + (µ+ − µ−)

√
∆

(µ+ + µ− + 2
√

∆)3/2

∆ = (µ+)2 + (µ−)2 − µ−µ+.

The limit speed of the ODE (C) is the harmonic mean between the two speeds
√

2µ+ and
√

2µ−:

cODE = 2

√
2µ+µ−√

µ− +
√
µ+

.

In [HFR10], the authors point out that c∗0 > cODE . On the one hand, they remark, thanks to a
convexity argument, that cODE is strictly smaller than

√
µ+ + µ−, the spreading speed in the

averaged environment. On the other hand, they claim that c∗0 is larger that the homogenization
limit c∗∞ =

√
µ+ + µ− of c∗ε as ε→∞ [ESHR09]. The simulations plotted in Figure II.1 illustrate

the behaviour of the process under the two double limits for a growth rate r of the form (1.8).
We observe that when ε is fixed and K goes to infinity, the position of the rightmost particle in
one simulation of the process tends to the solution of the PDE. When K is fixed and ε tends to
0, it tends to the solution of the ODE.

1.4 Relation with other stochastic models

The model we consider in this work is an example of a microscopic model for front propagation.
Such models have seen considerable interest in the last two decades in mathematics, physics and
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Figure II.1: Rescaled position of the rightmost particle in simulations of the process defined in Section
1.1 (green line) for different values of (K, ε). Left column: fixed ε, increasing K, right column: fixed K,
decreasing ε. The growth rate r is a 1-periodic function of the form (1.8) with µ+ = 3 and µ− = 0.1, and
the initial configuration is given by nk(i) = 1xi<0. The orange dotted line is the graph of the solution
of the ODE (C). The blue solid line is the position of the front x(t) = sup{x ∈ R : u(t, x) > 1

K } for u
solution of ut(t, x) = 1

2uxx(t, x) + r(εt, εx)u(t, x)(1− u(t, x)), with initial condition χ(x) = 1x<0.
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biology. The prototypical model of front propagation is the Fisher-KPP equation, a semi-linear
parabolic partial differential equation which admits so-called travelling waves, i.e. solutions which
are stationary in shape and which travel at constant speed. Many microscopic models of front
propagation (in homogeneous environment) can be seen as noisy versions of the Fisher-KPP
equation, see e.g. the reviews [Pan04, Kue19]. A rich theory originating in the work of Brunet,
Derrida and co-authors [BD97, BDMM06a, BDMM06b] has put forward some universal asymp-
totic behavior when the population density K goes to infinity. First, the speed of propagation
of such systems admits a correction of the order O((logK)−2) compared to the limiting PDE.
Second, the genealogy at the tip of the front is described by the Bolthausen–Sznitman coalescent
over the time scale (logK)3, in stark contrast to mean-field models where the genealogy evolves
over the much longer time scale K and is described by Kingman’s coalescent. These facts have
been proven rigorously for several models [BG10, MMQ10, BBS13, Mai16, Pai16, Cor16].

Compared to the case of homogeneous environment, the model in heterogeneous environ-
ment considered in this paper has a different speed of propagation than its continuous limit, even
in the limit of infinite population size. A similar situation happens in homogeneous environment
when the displacement is heavy-tailed. Such a microscopic model, with branching, competition
and displacement with polynomial tails, was considered in [BDKT18]. For their model, the au-
thors show the existence of a phase transition in the tail exponent of the displacement law: when
the exponent is sufficiently large, the model grows linearly, whereas it grows superlinearly when
the exponent is small. On the other hand, the continuous limit of the model, a certain integro-
differential equation, always grows exponentially fast regardless of the exponent. This example,
as well as the one considered in this paper, show that microscopic probabilistic models of front
propagation or of spatial population dynamics can exhibit quite different qualitative behavior
than their continuous limits. We believe this to be an exciting direction for future research.

Another body of literature is concerned with the behavior of locally regulated population
models at equilibrium, i.e. in the bulk. Basic questions like survival and ergodicity are often
studied using two methods stemming from interacting particle systems: duality and/or compar-
ison with simpler models such as directed percolation [Eth04, HW07, BEM07, BD07, BEH09].
The genealogy of such systems is also of interest. Some related models from population genetics
admit an explicit description of their genealogy in terms of coalescing, and sometimes branching
random walks. Their behavior is therefore dimension-dependent, see e.g. [BEV13] for a survey.
For the one-dimensional model considered here, we expect the same to happen: the genealogy
should be described by random walks coalescing when they meet at a rate proportional to 1/K,
where K is the population density. In particular, on the time-scale K, its scaling limit should be
a system of Brownian motions which coalesce at a rate proportional to their intersection local
time, whereas on a larger time-scale, corresponding to small population density, it should be
described by the Brownian web. See [SSS16, EFS17] for recent results on related models.

Finally, we point out that our model has been defined in such a way that it it is a monotone
particle system. This property is crucial in order to compare the process to other, simpler
processes. It is the analogue of the parabolic maximum principle for PDEs. Its absence causes
significant technical difficulties, see for example [MP21] which studies (homogeneous) branching
random walks with non-local competition.
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1.5 Structure of the proof

In Section 2, we define the general model we study in this article and state Theorems 2.1 and
2.2, which taken together yield a more precise version of Theorem 1.1. In Section 3, we state a
general coupling lemma allowing us to compare models with different reproduction rates r. In
particular, this allows to compare the model to branching random walks.

Section 4 contains the proof of Theorem 2.1 (upper bound). The proof uses a Trotter-Kato-
type scheme and local comparison with branching random walks. The proof of Theorem 2.2
(lower bound) appears in Section 5 and uses a martingale argument together with first and
second moment estimates.

Appendix A recalls some known results on branching random walks and gives some explicit
estimates on the rate functions of the branching random walks used in this article. Finally,
Appendix B recalls known results on the Euler scheme for solutions to (C).

2 General model: definition and results

2.1 Definition of the model, assumptions and notations

Consider a discrete-time system of interacting particles X on Z, evolving in discrete time (tk)k∈N.
At each time step, the particles give birth to a random number of children and die. After their
birth, the offspring migrate independently: they may settle on another deme or stay on their
birth site.

The state of the system at time tk = k∆t (or equivalently at generation k) is described
by its configuration nk : Z → N, where the integer nk(i) counts the number of particles living
on the site xi = i∆x. The intrinsic reproduction rate of the particles is governed by a function
r : [0,∞)× R→ (0,∞) and the intensity of the local competition, by a positive real number K,
called the carrying capacity of the environment. In this paper, we investigate the impact of a
long-scale heterogeneity on our system. The typical scale of this heterogeneity is of order ε−1,
for a small parameter ε > 0.

We will denote by νr,n,K the law of the number of offspring produced on a site inhabited
by n parents, whose reproduction rate is r, given that the carrying capacity of the environment
is K. The migration law of the particles will be given by

µ =

(∑
i∈Z

∫ (i+ 1
2

)∆x

(i− 1
2

)∆x

1√
2π∆t

e−
x2

2∆t dx

)
δi. (2.9)

At time tk, the nk(i) individuals living on the site xi are replaced by a random number of
offspring X distributed according to νr(εtk,εxi),nk(i),K . Once the population is renewed on all
sites, the particles migrate independently according to µ. The resultant configuration is nk+1.

Definition 1. Let µ and ν be two probability distributions on R. We say that ν stochastically
dominates µ if ν([x,∞)) > µ([x,∞)) for all x ∈ R.
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Definition 2. A family of probability distributions (Pr)r>0 on R is increasing with respect to r
if for all r1 < r2, Pr2 stochastically dominates Pr1 .

Assumption 1. The function r : [0,∞) × R → (0,∞) is bounded and there exists r > 0 such
that

r(s, z) > r, ∀(s, z) ∈ (0,∞)× R.

Furthermore, the function r is C1([0,∞)× R)) and ∇r is bounded on [0,∞)× R.

Assumption 2. 1. There exists a family of discrete probability distributions on N, denoted
by (Pr)r>0, such that (Pr) is increasing with respect to r, E[Pr] = 1 + r∆t and, for all
K > 0, P ∗nr stochastically dominates νr,n,K .

2. There exists a probability distribution on N, denoted by ν̄, with finite expectation and such
that ν̄∗K stochastically dominates νr,n,K , for all n ∈ N.

Assumption 3. There exists a family of probability distributions (νr)r>0 such that

1. (νr) is continuous and increasing with respect to r,

2. E[νr] = 1 + r∆t,

3. νr(0) = 0,

4. if X is a random variable distributed according to νn,r,K and (Yi)i∈N is a sequence of i.i.d.
random variables of law νr,

X
L
=

(
n∑
i=1

Yi

)
∧K.

Notations We recall that nk ∈ NZ describes the configuration of the process at time tk and
we define

X∗k = max{i ∈ Z : nk(i) > 0} ·∆x,
the position of the rightmost particle at time tk. We denote by Dk the set of particles alive at
time tk and by Xu the position of the particle u ∈ Dk. For the sake of clarity, we define the
following constants:

γ = log(2), C0 = 16γ−
1
2 , and, L =

‖∂r/∂t‖∞ + ‖∂r/∂x‖∞√
2r

. (2.10)

Note that, for all (t1, x1), (t2, x2) ∈ (0,∞)× R,

|
√

2r(t1, x1)−
√

2r(t2, x2)| 6 L(|t1 − t2|+ |x1 − x2|), (2.11)

under Assumption 1.
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2.2 Main results

Theorem 2.1 (Upper bound on the propagation speed). Assume that Assumptions 1 and 2 hold
and that X∗0 = 0. Let T > 0. Let ∆t 6 ‖r‖−1

∞ and ∆x 6 1
80

√
2γr∆t. There exists α > 0 and

ε0 > 0 such that, for all ε < ε0 and K > 0,

P

(
∃k ∈

s
0,

⌊
T

ε∆t

⌋{
: εX∗k > x(kε∆t) + C

(
∆x

∆t
+ ∆t

))
6

(
T + 1

∆t

)2

Ke−
α
ε , (2.12)

for some constant C > 0 that only depends on r and T , and x the unique global solution of (C)
on [0, T ].

Theorem 2.2 (Lower Bound on the propagation speed). Assume that Assumptions 1 and 3 hold
and that X∗0 = 0. Let δ > 0 and T > 0. There exist ∆tδ > 0, Cδ > 0 such that, if

∆t < ∆tδ, ∆x < Cδ∆t, (H)

there exists K0 > 0 and ε0 > 0 such that, for all K > K0 and ε < ε0

P

(
∃k ∈

s
0,

⌊
T

ε∆t

⌋{
: εX∗k < x(kε∆t)− Cδ

)
6 δ.

for some constant C > 0 that only depends on r and T , and x the unique global solution of (C)
on [0, T ].

3 A coupling lemma

Let S1 and S2 be two systems of interacting particles on Z whose configurations, (n1
k) and (n2

k),
evolve as follows. At time tk, the particles of S1 (resp. S2) living on xi, are replaced by a random
number of offspring distributed according to (p1

l (n
1
k(i), xi, tk))l∈N (resp. (p2

l (n
2
k(i), xi, tk))l∈N).

Once the population is renewed on each site, the particles migrate independently according to
µ in both processes. Furthermore, let τ be a stopping time for the process S2 (which may be
infinite). The following lemma establishes a coupling between S1 and S2 provided that the
reproduction laws p1 and p2 meet certain conditions.

Lemma 3.1. Assume that

1. The initial configurations satisfy n1
0(i) > n2

0(i), for all i ∈ Z.

2. For all (m,n) ∈ N2 such that n ≥ m,∑
q>l

pjq(n, tk, xi) >
∑
q>l

pjq(m, tk, xi), ∀l ∈ N, j ∈ {1, 2}. (3.13)

3. Almost surely with respect to the process S2, for every k < τ , i ∈ N,∑
q>l

p1
q(n

2
k(i), tk, xi) >

∑
q>l

p2
q(n

2
k(i), tk, xi), ∀l ∈ N, ∀i ∈ Z. (3.14)
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Then, there exists two processes S̃1 and S̃2, distributed as S1 and S2, such that

P(∀i ∈ Z,∀k ≤ τ : ñ1
k(i) > ñ

2
k(i)) = 1.

Proof. We first assume that τ = +∞. We construct a probability space supporting two processes
S̃1 and S̃2, distributed as S1 and S2, such that S̃1 dominates S̃2. We first consider a set of
particles organised according to n1

0. On each site xi, n2
0(i) of these particles are coloured blue.

The remaining individuals are coloured red. The initial population of the process S̃2 (resp S̃1)
is defined as the set of blue (resp. red and blue) particles.

We then construct the first generation (k = 1) as follows. Consider a site xi such that
n1

0(i) = ñ1
0(i) 6= 0: this site is inhabited by k1 red particles, k2 blue particles such that k1+k2 > 0.

Draw a uniform random variable U on [0, 1] and consider l1(ω) and l2(ω), two integers defined
by

l1(ω) = max

n ∈ N : U(ω) >
n−1∑
q=1

p1
q(k1 + k2, t1, xi)


and likewise,

l2(ω) = max

n ∈ N : U(ω) >
n−1∑
q=1

p2
q(k2, t1, xi)

 .

According to equations (3.14) and (3.13), for all l2 ∈ N,

l2−1∑
q=1

p2
q(k2, t1, xi) = 1−

∑
q>l2

p2
q(k2, t1, xi) > 1−

∑
q>l2

p1
q(k2, t1, xi) > 1−

∑
q>l2

p1
q(k1 + k2, t1, xi)

>
l2−1∑
q=1

p1
q(k1 + k2, t1, xi).

Hence, by definition of l1 and l2, if l1 > l2 − 1, Equation (3.13) implies that

U(ω) >
l2−1∑
q=1

p2
q(k2, t1, xi) >

l2−1∑
q=1

p2
q(k1 + k2, t1, xi) >

l1∑
q=1

p1
q(k1 + k2, t1, xi) > U(ω).

Thus, we deduce that l1(ω) ≤ l2(ω). We then generate l2(ω) individuals on xi and l1(ω) of
them are coloured blue. The remaining ones are painted in red. We repeat this construction
until the population is renewed on each non-empty site xi. Then, all the particles (red and blue
ones) migrate independently according to µ. After the migration phase, the first generation of
S̃1 (resp. S̃2) is the set of blue (resp. red and blue) particles. The following generations are
constructed similarly by induction on k.

If τ is an arbitrary stopping time, since it is a measurable function of the process S2, it
can be transferred to the probability space constructed above, to become a stopping time for the
process S̃2. The above chain of inequalities then still hold for every k < τ and the statement
follows.
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4 Proof of Theorem 2.1: Upper bound on the propagation speed

In this section, we give an upper bound on the invasion speed of the processX under Assumptions
1 and 2. The idea of the proof of Theorem 2.1 is to first establish a coupling between X and a
process without competition. The absence of competition in this process then allows to compare
it with several branching random walks, for which we can easily control the position of their
rightmost particles (See Section 4.1).

4.1 An estimate on the branching random walk

Let X1 be a random variable of law µ. We define the function Λ by

E
[
eλX1

]
= eΛ(λ), ∀λ ∈ R, (4.15)

and denote by I its convex conjugate:

I(y) = sup
λ∈R

(λy − Λ(λ)) , ∀y ∈ R. (4.16)

Note that µ has super-exponential tails and that its support is unbounded both to the right and
to the left, which implies that both Λ and I are finite and strictly convex on R. Furthermore,
I(0) = I(E[X1]) = 0 that I is decreasing on (−∞, 0) and increasing on (0,∞), as a consequence
of strict convexity. We also define

Λ0(λ) := log

∫
R

1√
2π∆t

e
−x2

2∆t
+λxdx =

∆t

2
λ2, ∀λ ∈ R (4.17)

and remark that I0(y) := supλ∈R

(
λy − Λ0(λ)

)
is given by

I0(y) =
( y

∆t

)
y − Λ0

( y

∆t

)
=

y2

2∆t
. (4.18)

Thus, for all m > 1, the equation I0(c) = log(m) has a unique positive solution,

c0 =
√

2∆t logm. (4.19)

Since I in increasing and strictly convex on (0,∞), the equation I(c) = log(m) also has a unique
solution c ∈ (0,∞). In Appendix A, we state several results (Lemma A.2 to A.5) on the regularity
of I and c. These results lead to a first rough estimate on c.

Lemma 4.1. Let ∆t < ‖r‖−1
∞ and ∆x < 1

16

√
2γr∆t. Let r̄ ∈ [r, ‖r‖∞] and c̄ be the unique

positive solution of I(c̄) = log(1 + r̄∆t). Then,

1

2

√
2γr∆t < c̄ < 2

√
2‖r‖∞∆t. (4.20)

57



Chapter II. Spatial dynamics in a heterogeneous environment

Proof. By concavity of the logarithm function,

(1− r̄∆t) log(1) + r̄∆t log(2) = γr̄∆t 6 log(1 + r̄∆t). (4.21)

This implies that ∆x < 1
16

√
2∆t log(1 + r∆t) and, according to Lemma A.3 and Equation (4.18),

that
1

2

√
2∆t log(1 + r̄∆t) < c̄ < 2

√
2∆t log(1 + r̄∆t). (4.22)

Finally, combining (4.21) and (4.22), we get that

1

2

√
2γr∆t 6

1

2

√
2γr̄∆t 6 c̄ 6 2

√
2r̄∆t 6 2

√
2‖r‖∞∆t. (4.23)

Lemma 4.2. Under the same assumptions as in Lemma 4.1,∣∣∣c̄−√2∆t log(1 + r̄∆t)
∣∣∣ 6 a∆x,

with a = 16γ−
1
2

(
r̄
r

) 1
2
6 16γ−

1
2

(
‖r‖∞
r

) 1
2
.

Proof. According to Lemma 4.1, c̄ is located in a compact interval that does not depend on r̄.
Let c̄0 =

√
2∆t log(1 + r̄∆t) and remark that the inequality (4.20) also holds when c̄ is replaced

by c̄0. Then, since ∆x < 1
4

(
1
2

√
2γr∆t

)
, Lemma A.5 applied with y = 1

2

√
2γr∆t implies that

1

8

√
2γr|c̄− c̄0| 6 |I(c̄)− I(c̄0)|. (4.24)

In addition, note that I(c̄) = I0(c̄0) = log(1 + r̄∆t) (see Equation (4.18)), so that

|I(c̄)− I(c̄0)| = |I0(c̄0)− I(c̄0)| 6 2c̄0
∆x

∆t
6 2
√

2r̄∆x, (4.25)

according to Lemma A.2. Then, thanks to Equations (4.24) and (4.25), we get that,

|c̄− c̄0| 6 a∆x.

Let us now consider a branching random walk (BRW) of reproduction law Pr̄, for some r̄ ∈
[r, ‖r‖∞], and migration law µ. In Lemma 4.3, we give an estimate on the speed of propagation
of this BRW. For further details about the BRW, we refer to Appendix A.

Lemma 4.3. Suppose the same assumptions as in Lemma 4.1 hold. Consider a branching
random walk of reproduction law Pr̄ and displacement law µ, starting with a single particle at 0,
and denote by Mn the position of its rightmost particle at generation n. Then, for all η > 0 and
A > 0,

P(∃n ∈ N : Mn > (1 + η)nc̄+A) 6 h(η)e−
√

2γr
8

A,

with h defined by

h(η) =
e−

γr∆t
8

η

1− e− γr∆t8
η
, ∀η > 0. (4.26)
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Proof. Let η > 0, A > 0. It will be enough to prove that

P(∃n ∈ N : Mn > (1 + η)nc̄+A) 6 g(η)e−
Ac̄
4∆t , (4.27)

where c̄ refers to the unique positive solution of I(c̄) = log(1 + r̄∆t) and

g(η) =
e−

c̄2

4∆t
η

1− e− c̄2

4∆t
η
. (4.28)

Indeed, according to Lemma 4.1, c̄ > 1
2

√
2γr∆t, so that

c̄2

4∆t
>

1

8
γr∆t, and,

c̄

4∆t
>

1

8

√
2γr.

We now prove (4.27). For a particle v living in the process, we denote by Ξv its position
and define Zn =

∑
|v|=n 1Ξv>(1+η)nc̄+A. Markov’s inequality implies that

P(Mn > (1 + η)nc̄+A) = P(Zn > 1) 6 E[Zn], (4.29)

and thanks to the many-to-one lemma (see Lemma A.1), we know that

E[Zn] = (1 + r̄∆t)nP(Ξv > (1 + η)nc̄+A), (4.30)

for any particle v of the n-th generation. Besides, by Chernoff’s bound,

P(Ξv > (1 + η)nc̄+A) 6 en(Λ(θ)−θ((1+η)c̄+A/n)), ∀θ > 0. (4.31)

Remark that for θ < 0,

θ((1 + η)c̄+A/n)− Λ((1 + η)c̄+A/n) 6 −Λ((1 + η)c̄+A/n) 6 I(0) = 0.

Yet, I((1+η)c̄+A/n) > 0, so that I((1+η)c̄+A/n)) = supθ>0 θ((1+η)c̄+A/n)−Λ((1+η)c̄+A/n),
and Equation (4.31) gives that

P(Ξv > (1 + η)nc̄+A) 6 e−nI((1+η)c̄+A/n). (4.32)

Moreover, thanks to Lemma 4.1, we know that ∆x 6 c̄
8 , therefore, according to Lemma A.4,

I(c̄) +
c̄2

4∆t

(
η +

A

nc̄

)
6 I((1 + η +A/(nc̄))c̄), ∀n ∈ N.

Thus, combining (4.29), (4.30) and (4.32), we get that

E[Zn] 6 e−
nc̄2

4∆t(η+ A
nc̄),

since I(c̄) = log(1 + r∆t). Finally, by a union bound,

P(∃n ∈ N : Mn > (1 + η)nc̄+A) 6
∞∑
n=1

E[Zn] 6 e−
Ac̄
4∆t

∞∑
n=1

e−
nc̄2

4∆t
η =

e−
Ac̄
4∆t
− c̄2

4∆t
η

1− e− c̄2

4∆t
η
.

This proves (4.27) and finishes the proof of the lemma.
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4.2 Invasion speed estimate: small time steps

In this subsection, we bound the displacement of the rightmost particle in X after bε−1c gener-
ations, i.e. after time ∆t · bε−1c.
Proposition 4.1. Assume that Assumptions 1 and 2 hold. Let ∆t < ‖r‖−1

∞ and ∆x < 1
80

√
2γr∆t.

There exist two positive constants α and ε0 such that, for all K > 0, ε < ε0, (k0, i0) ∈ N × Z
and k1 = k0 + bε−1c,

P

(
∃k ∈ Jk0, k1K : εX∗k > εxi0 +

√
2r(εtk0 , εxi0)ε∆t(k − k0) +A(∆x+ ∆t2)

∣∣X∗k0
6 xi0

)
6 Ke−

α
ε , (4.33)

for some constant A > 0 that only depends on ‖r‖∞ and r.

Proof. Let (k0, i0) ∈ Z× N. Throughout the proof, we will assume that we start the process at
generation k0 with a deterministic initial condition nk0 such that X∗k0

≤ xi0 . The estimates we
obtain will not depend on this initial condition. Rewriting the statement slightly, it will therefore
be enough to show the following:

P (∃k ∈ Jk0 + 1, k1K : X∗k > ak) 6 Ke
−α
ε , (4.34)

where ak = xi0 +
√

2r(εtk0 , εxi0)∆t(k − k0) + A(∆x + ∆t2)/ε and α, ε0, A, to be defined later,
are as in the statement of the proposition.

The proof is divided into two steps. In the first step, we let the process run for one time
step, after which the expected density of the process can be bounded by a constant multiple of
K, thanks to Assumption 2. In the second step, we control the displacement of the rightmost
particle in X between generations k0 + 1 and k1, thanks to several couplings with processes
without competition and distinguishing the particles according to the position of their ancestor
at generation k0 + 1.

Step 1: Control of the population at generation k0 + 1. In this step, we control the
number of particles on each site in the process X after one generation. Recall that nk denotes
the configuration of the process X at generation k. We denote by Ni the number of individuals
born on the site xi during the first reproduction phase. In addition, for ` ∈ J1, NiK, we denote by
U `i the displacement of the `-th particle born on the site xi during the first reproduction phase.
Therefore, we have for every i ∈ Z

nk0+1(i) =
∑
j6i0

Nj∑
`=1

1U`j=i−j . (4.35)

Recall that (U `i ) is a sequence of i.i.d. random variables of law µ and that the (Ni) are stochas-
tically dominated by the sum of K i.i.d. random variables of law ν̄ of finite expectation m, by
Assumption 2. Thus, we have that

E[nk0+1(i)] 6 mK
∑
j6i0

P(U = i− j), (4.36)
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where U is a random variable of law µ. In particular, we get

E[nk0+1(i)] 6 mK. (4.37)

We will also need a bound on the position of the maximal particle at generation k0 + 1. Let
k ∈ N0 and i ∈ Z such that xi − xi0 > 1

2
√
ε

+ (k + 1)∆x. Then, we have that

∑
j6i0

P(U = i− j) =

∫ ∞
(i−i0− 1

2
)∆x

1√
2π∆t

e−
x2

2∆tdx 6
∫ ∞

1
2
√
ε
+k∆x

1√
2π∆t

e−
x2

2∆tdx

6 e
− 1

2∆t

(
1

2
√
ε
+k∆x

)2

6 e−
1

8ε∆t e
− k∆x

2
√
ε∆t ,

where we have used the Gaussian tail estimate P(Z ≥ x) ≤ e−x
2/2 for a standard Gaussian

r.v. Z. Using Equation (4.36), we have by Markov’s inequality and a union bound,

P

(
X∗k0+1 > xi0 +

1

2
√
ε

+ ∆x

)
6 mKe−

1
8ε∆t

∞∑
k=0

e
− k∆x

2
√
ε∆t ,

and therefore, as long as ε is small enough,

P

(
X∗k0+1 > xi0 +

1√
ε

)
6 2mKe−

1
8ε∆t . (4.38)

Step 2: Between generations k0+1 and k1. As mentioned above, between generations k0+1
and k1, we control the processX by another process without competition between particles. More
precisely, we denote by X1 the process defined as X, but where for every k ∈ Jk0 + 1, k1K the
reproduction law on site xi at time tk is given by the probability distribution P ∗nk(i)

r(εtk,εxi)
instead

of νr(εtk,εxi),n,K (the migration law is still µ). The position of its maximum at generation k is
analogously denoted by X1∗

k . By the first part of Assumption 2 and Lemma 3.1, we can couple X
and X1 such that X1 dominates X. Hence, in what follows, it will be enough to prove (4.34) with
X1 instead of X. The advantage of working with X1 instead of X is the fact that X1 satisfies
the branching property, i.e. the descendants of different individuals from the same generation
evolve independently.

We first make use of the estimates from Step 1. Conditioning on the process at generation
k0 + 1, and using a union bound over the particles from that generation, with the notation
P(δi,k0+1) to mean that the process starts with one particle at site xi at generation k0 + 1, we get
for sufficiently small ε,

P
(
∃k ∈ Jk0 + 1, k1K : X1∗

k > ak
)

6
∑

i∈Z:xi≤xi0+ 1√
ε

E[nk0+1(i)]P(δi,k0+1)

(
∃k ∈ Jk0 + 1, k1K : X1∗

k > ak
)

+ P

(
X∗k0+1 > xi0 +

1√
ε

)

6 mK
∑

i∈Z:xi≤xi0+ 1√
ε

P(δi,k0+1)

(
∃k ∈ Jk0 + 1, k1K : X1∗

k > ak
)

+ 2mKe−
1

8ε∆t . (4.39)
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Here, we used (4.37) and (4.38) from Step 1 in the last line.

In what follows, we bound the probability appearing on the RHS of (4.39) for various values
of xi. The bound will depend on whether xi ≥ xi0 −R/ε or not, where

R := 2
√

2‖r‖∞∆t. (4.40)

We need a few more definitions. Define

r̄ = max

{
r(εt, εx); tk0 6 t 6 tk1 , |x− xi0 | 6

2R

ε

}
. (4.41)

and c̄ the unique positive solution of

I(c̄) = log(1 + r̄∆t). (4.42)

Note that thanks to Assumption 1 and Equation (2.11), with L defined there, we have that

|
√

2r̄ −
√

2r(εtk0 , εxi0)| 6 L(ε(tk1 − tk0) + 2R) 6 L(1 + 4
√

2‖r‖∞)∆t. (4.43)

Denote by r̃ the function

r̃(t, x) =

{
r̄ if |x− xi0 | ≤ 2R

ε

‖r‖∞ if |x− xi0 | > 2R
ε .

(4.44)

Now introduce three more processes X2, X3 and X4. These processes are defined as X1, except
that their reproduction law on site xi at time tk, k ∈ Jk0 + 1, k1K, is given by P ∗nk(i)

r̃(εtk,εxi)
, P ∗nk(i)

r̄

and P ∗nk(i)
‖r‖∞ , respectively. In other words, X3 and X4 are BRW with reproduction laws Pr̄ and

P‖r‖∞ , respectively.

From the definition of r̃, we immediately get that r̃ ≥ r. Therefore, according to Lemma
3.1 and Assumption 2, there exists a coupling between X1 and X2 so that X2 dominates X1.
Similarly, there exists a coupling between X2 and X4 so that X4 dominates X2. In order to
construct a coupling between X2 and X3, define the stopping time τ as the first time at which
a particle from the process X2 exits the interval

[
xi0 − 2R

ε , xi0 + 2R
ε

]
before time tk1 . By the

definition of r̃, there exists then a coupling between X2 and X3, such that X3 dominates X2

until the time τ .

Let i ∈ Z. As a consequence of the previous couplings, we have the following two bounds
for the probability appearing on the RHS of (4.39). First,

P(δi,k0+1)

(
∃k ∈ Jk0 + 1, k1K : X1∗

k > ak
)
≤ P(δi,k0+1)

(
∃k ∈ Jk0 + 1, k1K : X4∗

k > ak
)
. (4.45)

This bound will be used for xi ≤ xi0−R/ε. Second, denoting by X̄3∗
k the position of the minimal

particle in the process X3 at generation k, we have

P(δi,k0+1)

(
∃k ∈ Jk0 + 1, k1K : X1∗

k > ak
)
≤ P(δi,k0+1)

(
∃k ∈ Jk0 + 1, k1K : X3∗

k > ak
)

+ P(δi,k0+1)

(
∃k ∈ Jk0 + 1, k1K : X3∗

k > xi0 + 2R/ε or X̄3∗
k < xi0 − 2R/ε

)
=: T1 + T2. (4.46)

This bound will be used for i such that xi ∈ (xi0 −R/ε, xi0 + 1/
√
ε].
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Step 2a: particles close to the maximum. Let i ∈ Z such that xi ∈ (xi0−R/ε, xi0 +1/
√
ε].

We bound the RHS of (4.46). Assume ε is small enough so that 1/
√
ε ≤ R/ε. Using first the

assumption on xi and then the symmetry and translational invariance of X3, we have

T2 ≤ P(δi,k0+1)

(
∃k ∈ Jk0 + 1, k1K : X3∗

k > xi +R/ε or X̄4∗
k < xi −R/ε

)
≤ 2P(δ0,0)

(
∃k ∈ J0, k1 − (k0 + 1)K : X3∗

k > R/ε
)
.

We can now apply Lemma 4.3 with A = R
4ε and η = 1

4 . Indeed, since ∆x < 1
80

√
2γr∆t, Lemma

4.2 applied to c̄ (see Equation (4.42)) gives that

c̄ 6
√

2∆t log(1 + r̄∆t) + a∆x 6
√

2r̄∆t+
1

5

√
2r̄∆t 6

6

5

√
2r̄∆t ≤ 3

5
R

so that, for k 6 k1

(1 + η)(k − k0 − 1)c̄+A 6
5

4ε
c̄+A 6

3R

4ε
+
R

4ε
=
R

ε
.

Lemma 4.3 now gives that
T2 6 2h(1/4)e−

√
2γr
32

R
ε , (4.47)

with h as in the statement of Lemma 4.3.

We now bound the term T1 on the RHS of (4.46). Let i ∈ Z such that xi ∈ (xi0−R/ε, xi0 +
1/
√
ε]. We then have by the definitions of (ak) and r̄

T1 ≤ P(δi,k0+1)

(
∃k ∈ Jk0 + 1, k1K : X3∗

k > xi0 +
√

2r̄∆t(k − k0) +
A

ε
(∆x+ ∆t2)

)
. (4.48)

Now, according to Lemma 4.3, we have, for some C > 0 not depending on ε,

P

(
∃k ∈ Jk0 + 1, k1K : X3∗

k > xi + (1 + ∆t)(k − k0 − 1)c̄+
∆t2

ε

)
6 Ce−

√
2γr
8

∆t2

ε . (4.49)

Besides, recall from Lemma 4.2 that

c̄ 6
√

2r̄∆t+ a∆x, (4.50)

with some a 6 16γ−
1
2

(
‖r‖∞
r

) 1
2
. Therefore, combining (4.49) and (4.50) and using that xi ≤

xi0 + 1√
ε
and ∆t ≤ ‖r‖−1

∞ and k − k0 6 1
ε for k 6 k1, we have

P

(
∃k ∈ Jk0 + 1, k1K :

X3∗
k > xi0 +

√
2r̄∆t(k − k0) +

√
ε+

√
2‖r‖∞ε+ (1 +

√
2‖r‖∞)∆t2 + a(1 + ‖r‖−1

∞ )∆x

ε

)
6 Ce−

√
2γr
8

∆t2

ε . (4.51)

Combining (4.48), (4.51) and (4.43), it follows that for

A = 1 + max(1 +
√

2‖r‖∞ + L(1 + 4
√

2‖r‖∞), a(1 + ‖r‖−1
∞ )),
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we get for ε small enough,

T1 ≤ Ce−
√

2γr
8

∆t2

ε . (4.52)

Combining (4.46), (4.47) and (4.52), we now get, using again that 1/
√
ε ≤ R/ε,∑

i∈Z:xi∈(xi0−R/ε,xi0+ 1√
ε
]

P(δi,k0+1)

(
∃k ∈ Jk0 + 1, k1K : X1∗

k > ak
)

≤ 2R

∆xε

(
2h(1/4)e−

√
2γr
32

R
ε + Ce−

√
2γr
8

∆t2

ε

)
≤ e−α1/ε, (4.53)

for some α1 > 0 and for ε sufficiently small, and with A as above.

Step 2b: particles far away from the maximum. Let i ∈ Z such that xi ≤ xi0 −R/ε. We
bound the RHS of (4.45). We have for every A ≥ 0, using that ak ≥ xi0 for every k ∈ Jk0 +1, k1K,

P(δi,k0+1)

(
∃k ∈ Jk0 + 1, k1K : X4∗

k > ak
)
≤ P(δi,k0+1)

(
∃k ∈ Jk0 + 1, k1K : X4∗

k > xi0
)

≤ P(δ0,0)

(
∃k ≤ bε−1c : X4∗

k > xi0 − xi
)
. (4.54)

Denote by c∞ the unique positive solution of I(c∞) = log(1 + ‖r‖∞∆t). Following the same
calculations as in Step 2a, we have c∞ ≤ 3

5R. We again use Lemma 4.3 with η = 1/4 and
A = xi0 − xi − 3R

4ε to get

P(δ0,0)

(
∃k ≤ bε−1c : X4∗

k > xi0 − xi
)
≤ P(δ0,0)

(
∃k ≤ bε−1c : X4∗

k >
(1 + η)c∞

ε
+ xi0 − xi −

3R

4ε

)
≤ h(1/4) exp

(
−
√

2γr

8

(
xi0 − xi −

3R

4ε

))
. (4.55)

Combining (4.45) and (4.55), we now get∑
i∈Z:xi≤xi0−R/ε

P(δi,k0+1)

(
∃k ∈ Jk0 + 1, k1K : X1∗

k > ak
)

≤
∑
j≥0

h(1/4) exp

(
−
√

2γr

8

(
R

4ε
+ (∆x)j

))
≤ exp(−α2/ε), (4.56)

for some α2 > 0 and for ε sufficiently small.

Combining (4.39), (4.53) and (4.56), and using the fact that X1 dominates X, we obtain
(4.34) for some α > 0 and for ε sufficiently small, with A as above, depending only on ‖r‖∞ and
r. This concludes the proof of the proposition.

4.3 Comparison with the solution of (C): proof of Theorem 2.1

Let T > 0, and for ε > 0, define N = bT/∆tc and consider the subdivision (si)
N
i=0 of [0, T ] :

s0 = 0 < s1 = εbε−1c∆t < ... < sN = Nεbε−1c∆t.
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We denote by Aε = A
εbε−1c where A > 0 is the constant from Proposition 4.1 and let (ỹj)i=1...N

be a sequence defined by ỹ0 = 0 and,

ỹj+1 = ỹj +

(√
2r(sj , ỹj) +Aε

(
∆x

∆t
+ ∆t

))
bε−1cε∆t, ∀j ∈ J1, N − 1K. (4.57)

For j ∈ N, we define ϕ(j) = jbε−1c and consider the following function:

f(t) = ỹj + (ỹj+1 − ỹj)
t/(ε∆t)− ϕ(j)

ϕ(j + 1)− ϕ(j)
, if t ∈ [εϕ(j)∆t, εϕ(j + 1)∆t]. (4.58)

First, recall that X∗0 = 0 and note that these three events are equal:

B0 : =

{
∃k ∈ Jϕ(0), ϕ(1)K : εX∗k > ỹ0 + (ỹ1 − ỹ0)

k − ϕ(0)

ϕ(1)− ϕ(0)

}
= {∃k ∈ Jϕ(0), ϕ(1)K : εX∗k > f(kε∆t)}

=

{
∃k ∈ Jϕ(0), ϕ(1)K : εX∗k > εX∗0 +

(√
2r(0, εX∗0 ) +Aε

(
∆x

∆t
+ ∆t

))
ε∆t(k − ϕ(0))

}

Then, for all j ∈ J0, N −1K, we define Bj = {∃k ∈ Jϕ(j), ϕ(j + 1)K : εX∗k > f(kε∆t)}. According
to Proposition 4.1, there exists α and ε0, that does not depend on ỹj nor on sj , such that, if
ε < ε0, K > 0,

P(Bj |X∗ϕ(j) 6 ỹj) 6 Ke
−α
ε , ∀j ∈ J0, N − 1K.

Therefore, we get by induction on j that

P(Bj+1) 6 P(Bj) + P(Bj+1|Bc
j ) 6 (j + 1)Ke−

α
ε , ∀j ∈ J1, N − 1K,

and by union bound, we have
P
(
∪N−1
j=0 Bj

)
6 N2Ke−

α
ε . (4.59)

Then, let us consider the maximal solution x̃ of{
˙̃x(t) =

√
2r(t, x̃(t)) +Aε

(
∆x
∆t + ∆t

)
x̃(0) = 0,

on [0,T]. Thanks to Equation (B.112) (see Appendix B), we have

max
j∈J0,N−1K

|x̃(sj)− ỹj | 6
1

2
eLT εbε−1c∆t 6 1

2
eLT∆t.

Thus, for all j ∈ J0, N − 1K and t ∈ [sj , sj+1],

|x̃(t)− f(t)| 6 |x̃(t)− x̃(sj)|+ |x̃(sj)− ỹj |+ |f(t)− ỹj |

6 2

(√
2‖r‖∞ +Aε

(
∆x

∆t
+ ∆t

))
∆t+

1

2
eLT∆t.
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Let us now compare x̃ with the solution x of (C) on [0, T ]. According to Lemma B.1, we have

max
t∈[0,T ]

|x(t)− x̃(t)| 6 Aε
(

∆x

∆t
+ ∆t

)
eLT .

Thus, there exists a constant B > 0 that only depends on r and T such that, for all ε < 1

sup
t∈[0,T ]

|x(t)− f(t)| 6 B
(

∆t+ ∆x+
∆x

∆t

)
. (4.60)

Finally, combining (4.59) and (4.60) and choosing T + 1 instead of T , we get that for all K > 0
and ε < ε0

P

(
∃k ∈ J0, bT/(ε∆t)cK : εX∗k > x(kε∆t) +B

(
∆t+ ∆x+

∆x

∆t

))
6

(
T + 1

∆t

)2

Ke−
α
ε ,

which concludes the proof.

5 Proof of Theorem 2.2: Lower bound on the propagation speed

In this part, we establish a lower bound on the propagation speed of the process X under
Assumptions 1 and 3. Note that Assumption 3 ensures that the process does not vanish and
that the population size on each site is limited to K individuals, before the migration phase.
The idea of the proof of Theorem 2.2 is to construct a minimising process X0 in which the effect
of local competition is negligible (Section 5.1) so that it can be compared to a BRW (Section
5.2), and then to the solution of the ODE (C) (Section 5.3). In contrast to Section 4, we can no
longer compare the process X with several BRW over bε−1c generations. That is why, we will
consider smaller time intervals, of order log(K)� bε−1c, during which the population size does
not grow too much. Note that the length of the time steps considered in Section 4.2 was only
constrained by the scale of heterogeneity of the function r and not by the carrying capacity of
the environment.

In Section 5, we denote by c the unique positive solution of

I(c) = log(1 + ‖r‖∞∆t). (5.61)

5.1 The rebooted process X0

As explained above, this subsection is aimed at constructing a minimising process X0 in which
we can ignore the effect of local competition. By minimising process we mean a process that can
be coupled with X in such a way that it constitutes a subtree of X. We recall that X0∗

k denotes
the position of the rightmost particle in the process X0 at generation k.

The idea of the following construction is to "reboot" the process X before its population
size gets too large. Let (ϕ(k))k∈N be a sequence of rebooting times i.e. an increasing sequence of
integers. The process X0 starts with a single particle at X∗0 and has the same reproduction and

66



Section 5. Lower bound on the invasion speed

migration laws as X. At generation ϕ(1), all the particles in X0 are killed, except one, located
at X0∗

ϕ(1). The process X0 then evolves as X until the following rebooting time ϕ(2). Similarly,
X0 is rebooted at each generation ϕ(k) and is distributed as X between generations ϕ(k) and
ϕ(k + 1).

The goal of the following lemma is to show that for K large enough, the population size of
X0 does not exceed K with high probability for

ϕ(k) = kblog(K)c. (5.62)

Lemma 5.1. Let ∆t < ‖r‖−1
∞ and ∆x > 0. Let K > 0. Consider a branching random walk of

reproduction law ν‖r‖∞ and displacement law µ, starting with a single particle at 0. Let τ0 be the
the first generation during which the population size of the process exceeds K. Then,

P (τ0 6 blog(K)c) 6 K log(1+‖r‖∞∆t)−1.

Proof. Let Nk be the number of individuals alive during generation k in the BRW. Recall that
(Nk) is a Galton-Watson process of reproduction law ν‖r‖∞ . According to Assumption 3, the
expectation of the reproduction law is equal to 1 + ‖r‖∞∆t. Thanks to basic results on Galton-
Watson processes, we know that ((1 + ‖r‖∞∆t)−kNk)k>0 is a positive martingale of mean one.
Thus, Doob’s inequality implies that

P(τ0 6 blog(K)c) = P

(
max

l6blog(K)c
Nl > K

)
6 P

(
max

l6blog(K)c

Nl

(1 + ‖r‖∞∆t)l
>

K

(1 + ‖r‖∞∆t)log(K)

)
6

(1 + ‖r‖∞∆t)logK

K
= e(log(1+‖r‖∞∆t)−1) log(K).

Note that there exists a coupling between X0 and a BRW of reproduction law ν‖r‖∞ , dis-
placement law µ, starting with a single particle at X0∗

ϕ(k) on each time interval [tϕ(k), tϕ(k+1)].
Thus, if we consider a sequence of rebooting times (ϕ(k))k∈N defined by (5.62), the probability
that the population size of X0 exceeds K between generations ϕ(k) and ϕ(k+ 1) is bounded by
K log(1+‖r‖∞∆t)−1, which tends to 0 as K tends to infinity if ∆t < ‖r‖−1

∞ .

5.2 Comparison with a branching random walk

In this section, we bound the first (Lemma 5.5 and 5.3) and the second moment (Lemma 5.4)
of the increments of the process (X0∗

k )k∈N between generations ϕ(k) and ϕ(k+ 1), for ϕ defined
by (5.62). Let (Fk)k∈N be the standard filtration associated with X0∗. In Lemma 5.2, we state
a result on some stopping times, that will be needed to construct a coupling between X0 and

67



Chapter II. Spatial dynamics in a heterogeneous environment

a BRW between generations ϕ(k) and ϕ(k + 1). In what follows, we denote by h the function
defined by

h(x) =
e
− γ
√
‖r‖∞

4
√

2
x

1− e−
γ
√
‖r‖∞

4
√

2
x
, ∀x > 0. (5.63)

Note that h(x)→ 0 as x→ +∞.

Lemma 5.2. Let ∆t < ‖r‖−1
∞ and ∆x < 1

16

√
2γr∆t. Let K > 0 and ε 6 (4

√
2‖r‖∞ϕ(1)∆t)−4.

Let r ∈ [r, ‖r‖∞]. Consider a branching random walk of reproduction law νr, displacement law
µ, starting with a single particle at 0. Denote by Ξv the position of a particule v living in the
BRW and by Nk the size of the process at generation k, and define

τK = inf {k ∈ N : Nk > K} and τε = inf
{
k ∈ N : ∃v : |v| = k, |Ξv| > ε−1/4

}
.

Then,
P(τK 6 ϕ(1)) 6 K log(1+‖r‖∞∆t)−1,

and,

P(τε 6 ϕ(1)) 6 2h

(
ε−1/4

ϕ(1)

)
.

Proof. The branching random walk defined in Lemma 5.2 can be coupled with a BRW of repro-
duction law ν‖r‖∞ , displacement law µ, starting with a single particle at 0. Thus, the estimate on
τK directly ensues from Lemma 5.1 and it is sufficient to establish the result on τε for r = ‖r‖∞.
Thanks to a similar argument than in Equation (4.32), one can prove that, for any particle v
living during the n-th generation,

P(Ξv > ε−1/4) 6 e
−nI

(
ε−1/4

n

)
.

Thus, by the many-to-one lemma (see Lemma A.1) and by symmetry of µ, we get that, for all
n 6 ϕ(1),

P(∃v : |v| = n, |Ξv| > ε−1/4) 6 2(1 + ‖r‖∞∆t)ne
−nI

(
ε−1/4

n

)

6 2e
−n

(
I

(
ε−1/4

n

)
−log(1+‖r‖∞∆t)

)

6 2e
−n

(
I

(
ε−1/4

ϕ(1)

)
−log(1+‖r‖∞∆t)

)

= 2e
−n

(
I

(
ε−1/4

ϕ(1)

)
−I(c)

)
.

Besides, I is convexe, therefore I
(
ε−1/4

ϕ(1)

)
> I(c)

c
ε−1/4

ϕ(1) as long as ε−1/4 > cϕ(1). Thus, if ε−1/4 >

2cϕ(1),

I

(
ε−1/4

ϕ(1)

)
− I(c) > I(c)

(
ε−1/4

cϕ(1)
− 1

)
>

I(c)

2cϕ(1)
ε−1/4 >

γ
√
‖r‖∞

4
√

2

ε−1/4

ϕ(1)
, (5.64)
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since I(c) = log(1+‖r‖∞∆t) ≥ γ‖r‖∞∆t and c 6 2
√

2‖r‖∞∆t according to Lemma 4.1. Hence,

P(τε 6 ϕ(1)) = P
(
∃n 6 ϕ(1) : ∃v : |v| = n, |Ξv| > ε−1/4

)
6 2

ϕ(1)∑
n=1

e
−n

(
I

(
ε−1/4

ϕ(1)

)
−log(1+‖r‖∞∆t)

)

6 2h

(
ε−1/4

ϕ(1)

)
.

Lemma 5.3 (Lower bound on the first moment). Let ∆t < ‖r‖−1
∞ , ∆x < 1

16

√
2γr∆t and η > 0.

There exists K0 > 0 such that, for all K > K0, there exists ε0 such that, for all ε < ε0,

E
[
X0∗
ϕ(k+1) −X0∗

ϕ(k)|Fϕ(k)

]
> (cϕ(k) − η)ϕ(1),

with cϕ(k) the unique positive solution of I(cϕ(k)) = log(1 + rϕ(k)∆t) for

rϕ(k) = min
{
r(εt, εx), (t, x) ∈ [ϕ(k)∆t, ϕ(k + 1)∆t]× [X0∗

ϕ(k) − ε−1/4, X0∗
ϕ(k) + ε−1/4]

}
. (5.65)

Proof. For the sake of simplicity, we assume that X0 starts at generation ϕ(k) with a deter-
ministic configuration n0

ϕ(k) = δX0∗
ϕ(k)

. The estimates we obtain will not depend on this initial
condition. The proof of the lemma relies on a coupling argument with a branching random walk
of reproduction law νrϕ(k)

.

Consider a branching random walk Ξ of reproduction law νrϕ(k)
, displacement law µ, starting

with a single particle at X0∗
ϕ(k) at time ϕ(k)∆t. We denote by Ξv the position of a particule v

living in this BRW and by Nk the size of the BRW at generation k, and define

τ ′K = inf {l ≥ ϕ(k) : Nl > K} and τ ′ε = inf
{
l ≥ ϕ(k) : ∃v : |v| = l, |Ξv −X0∗

ϕ(k)| > ε−1/4
}
.

In addition, for n > ϕ(k), define

Mn = max{Ξv, |v| = n}. (5.66)

According to Lemma 3.1, one can couple X0 and Ξ such that Ξ is a subtree of X0 until generation
ϕ(k) + (τ ′K ∧ τ ′ε). Thus, we have

E
[
X0∗
ϕ(k+1) −X0∗

ϕ(k)

]
= E

[
(X0∗

ϕ(k+1) −X0∗
ϕ(k))1τ ′K∧τ ′ε6ϕ(k+1)

]
+ E

[
(X0∗

ϕ(k+1) −X0∗
ϕ(k))1τ ′K∧τ ′ε>ϕ(k+1)

]
> E

[
(X0∗

ϕ(k+1) −X0∗
ϕ(k))1τ ′K∧τ ′ε6ϕ(k+1)

]
+ E

[
(Mϕ(k+1) −X0∗

ϕ(k))1τ ′K∧τ ′ε>ϕ(k+1)

]
.

Note that E
[
(X0∗

ϕ(k+1) −X0∗
ϕ(k))1τ ′K∧τ ′ε6ϕ(k+1)

]
> 0. Indeed, we know that for any particle

v from generation ϕ(k + 1),

E
[
(X0∗

ϕ(k+1) −X0∗
ϕ(k))1τ ′K∧τ ′ε6ϕ(k+1)

]
> E

[
(X0

v −X0∗
ϕ(k))1τ ′K∧τ ′ε6ϕ(k+1)

]
.

69



Chapter II. Spatial dynamics in a heterogeneous environment

Therefore, using that the displacements of the particles and the population size are independent
and that the displacement distribution µ is symmetric, we get that

E
[
(X0

v −X0∗
ϕ(k))1τ ′K∧τ ′ε6ϕ(k+1)

]
= 0.

Besides,

E
[
(Mϕ(k+1) −X0∗

ϕ(k))1τ ′K∧τ ′ε>ϕ(k+1)

]
= E

[
(Mϕ(k+1) −X0∗

ϕ(k))
]
−E
[
(Mϕ(k+1) −X0∗

ϕ(k))1τ ′K∧τ ′ε6ϕ(k+1)

]
,

(5.67)
and by the Cauchy-Schwarz inequality,

E
[
(Mϕ(k+1) −X0∗

ϕ(k))1τ ′K∧τ ′ε6ϕ(k+1)

]
6

√
E
[
(Mϕ(k+1) −X0∗

ϕ(k))
2
]√

P(τ ′K ∧ τ ′ε 6 ϕ(k + 1)).

(5.68)
Note that, by translational invariance, τK (resp. τε) follows the same law as τ ′K (resp. τ ′ε) from
Lemma 5.2. Besides, according to Corollary A.1 and Lemma A.7, there exists K0 > 0, that does
not depend on rϕ(k), nor on X0∗

ϕ(k) such that, if K > K0,

E
[
(Mϕ(k+1) −X0∗

ϕ(k))
2
]
6 4c2ϕ(1)2, (5.69)

and,
E
[
(Mϕ(k+1) −X0∗

ϕ(k))
]
> (cϕ(k) − η)ϕ(1). (5.70)

Hence, combining (5.67), (5.68), (5.69) and (5.70), we get that

E
[
X0∗
ϕ(k+1) −X0∗

ϕ(k)

]
> (cϕ(k) − η)ϕ(1)− 2cϕ(1)

√
P(τK ∧ τε 6 ϕ(1)).

Finally, remark that cϕ(k) 6 c since I is increasing on (0,∞) and that, according to Lemma 5.2,
there exists K1 > 0 such that, for all K > K1, there exists ε1 > 0 such that for all ε < ε1,

P (τk ∧ τε 6 ϕ(1)) 6
η2

c2
,

so that, for K > max(K0,K1) and ε < ε1,

E
[
X0∗
ϕ(k+1) −X0∗

ϕ(k)

]
> (cϕ(k) − 3η)ϕ(1).

This proves the lemma.

Lemma 5.4 (Upper bound on the second moment). Let ∆t < ‖r‖−1
∞ , ∆x < 1

16

√
2γr∆t. There

exists K0 > 0 such that, for all K > K0, for all ε > 0,

E

[(
X0∗
ϕ(k+1) −X0∗

ϕ(k)

)2
|Fϕ(k)

]
6 (4c2 + ∆t)ϕ(1)2.

Proof. One can couple X0 and a BRW Ξ of reproduction law ν‖r‖∞ , displacement law µ, such
that X0 constitutes a subtree of Ξ until generation ϕ(k + 1). Then, if we denote by Mn the
position of the rightmost particle in Ξ at generation n, we get that

E

[((
X0∗
ϕ(k+1) −X0∗

ϕ(k)

)
∨ 0
)2
|Fϕ(k)

]
6 E

[(
Mϕ(1) ∨ 0

)2 |Fϕ(k)

]
6 E

[
M2
ϕ(1)|Fϕ(k)

]
6 4c2ϕ(1)2,
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for K large enough, according to Corollary A.1. Then, consider (Zn) a random walk whose
increments are distributed as µ and remark that

E

[((
X0∗
ϕ(k+1) −X0∗

ϕ(k)

)
∧ 0
)2
|Fϕ(k)

]
6 E

[(
Zϕ(1) ∧ 0

)2 |Fϕ(k)

]
6 E

[
Z2
ϕ(1)|Fϕ(k)

]
6 ϕ(1)2∆t,

which concludes the proof of the lemma.

Lemma 5.5 (Upper bound on the first moment). Let ∆t < ‖r‖−1
∞ , ∆x < 1

16

√
2γr∆t and η > 0.

There exists K0 > 0 such that, for all K > K0, there exists ε0 such that, for all ε < ε0,

E
[
X0∗
ϕ(k+1) −X0∗

ϕ(k)|Fϕ(k)

]
6 (c̄ϕ(k) + η)ϕ(1)

with c̄ϕ(k) the unique positive solution of I(c̄ϕ(k)) = log(1 + r̄ϕ(k)∆t) for

r̄ϕ(k) = max
{
r(εt, εx), (t, x) ∈ [ϕ(k)∆t, ϕ(k + 1)∆t]× [X0∗

ϕ(k) − ε−1/4, X0∗
ϕ(k) + ε−1/4]

}
.

Proof. The proof is similar of the proof of Lemma 5.3 but some details are different, which is
why we give a complete proof. Again, we assume that X0 starts at generation ϕ(k) with a
deterministic configuration n0

ϕ(k) = δX0∗
ϕ(k)

. The estimates we obtain will not depend on this
initial condition.

Consider a branching random walk Ξ̃ of reproduction law νr̄ϕ(k)
, displacement law µ, starting

with a single particle at X0∗
ϕ(k) at time ϕ(k)∆t. We denote by Ξ̃v the position of a particule v

living in this BRW and define

τ ′′ε = inf
{
l ≥ ϕ(k) : ∃v : |v| = l, |Ξ̃v −X0∗

ϕ(k)| > ε−1/4
}
.

In addition, for n > ϕ(k), we define

M̃n = max{Ξ̃v, |v| = n}. (5.71)

According to Lemma 3.1, one can couple X0 and Ξ̃ such that X0 constitutes a subtree of Ξ̃ until
generation ϕ(k) + τ ′′ε . Therefore, we have

E
[
X0∗
ϕ(k+1) −X0∗

ϕ(k)

]
= E

[
(X0∗

ϕ(k+1) −X0∗
ϕ(k))1τ ′′ε 6ϕ(k+1)

]
+ E

[
(X0∗

ϕ(k+1) −X0∗
ϕ(k))1τ ′′ε >ϕ(k+1)

]
6 E

[
(X0∗

ϕ(k+1) −X0∗
ϕ(k))1τ ′′ε 6ϕ(k+1)

]
+ E

[
(Mϕ(k+1) −X0∗

ϕ(k))1τ ′′ε >ϕ(k+1)

]
6

√
E
[
(X0∗

ϕ(k+1) −X0∗
ϕ(k))

2
]√

P(τ ′′ε 6 ϕ(k + 1))

+

√
E
[
(M̃ϕ(k+1) −X0∗

ϕ(k))
2
]√

P(τ ′′ε > ϕ(k + 1)), (5.72)

thanks to the Cauchy-Schwarz inequality. According to Lemma A.8, there exists K0 > 0, that
does not depend on rϕ(k), nor on X0∗

ϕ(k), such that, for all K > K0,

E
[
(M̃ϕ(k+1) −X0∗

ϕ(k))
2|Fϕ(k)

]
6 (c̄ϕ(k) + η)2ϕ(1)2. (5.73)
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Besides, according to Lemma 5.4, there exists K1 > 0 such that for all K > K1,

E

[(
X0∗
ϕ(k+1) −X0∗

ϕ(k)

)2
|Fϕ(k)

]
6 (4c2 + ∆t)ϕ(1)2. (5.74)

Let us now assume that K > max(K0,K1). By translational invariance, τ ′′ε follows the same law
as τε from Lemma 5.2, so that there exists ε1 > 0 such that for all ε < ε1,

P (τε 6 ϕ(1)) 6
η2

(4c2 + ∆t)2
. (5.75)

Finally, combining Equations (5.72), (5.73), (5.74) and (5.75), we get that, for ε < ε1,

E
[
X0∗
ϕ(k+1) −X0∗

ϕ(k)

]
6 (c̄ϕ(k) + 2η)ϕ(1),

which concludes the proof of the lemma.

5.3 Comparison with the solution of (C)

Lemma 5.6. Let δ ∈ (0, 1). There exists Cδ > 0 such that, if

∆t <
(
(1 ∧ Cδ)‖r‖−1

∞
)
, ∆x <

(
1

16

√
2γr ∧

√
2r

3a
δ

)
∆t, (Hδ)

then, for all K > 0, there exists ε0 such that for all ε < ε0,

cϕ(k) > (1− δ)
√

2r(εtϕ(k), εX
0∗
ϕ(k))∆t, ∀k ∈ N,

and
c̄ϕ(k) 6 (1 + δ)

√
2r(εtϕ(k), εX

0∗
ϕ(k))∆t, ∀k ∈ N,

for cϕ(k) and c̄ϕ(k) respectively defined in Lemmas 5.3 and 5.5, and a in Lemma 4.2.

Proof. Let ∆t < ‖r‖−1
∞ and ∆x < 1

16

√
2γr∆t. Thanks to Lemma 4.2, we know that

|cϕ(k) −
√

2∆t log(1 + rϕ(k)∆t)| 6 a∆x. (5.76)

Let δ ∈ (0, 1) and and let Cδ > 0 such that log(1 + x) > (1− δ/3)2x, for all x 6 Cδ. Let us now
assume that ∆t < (1 ∧ Cδ)‖r‖−1

∞ . Then, Equation (5.76) gives that

cϕ(k) >
√

2∆t log(1 + rϕ(k)∆t)− a∆x > (1− δ/3)
√

2rϕ(k)∆t− a∆x. (5.77)

Besides, by definition of rϕ(k) (see Equation (5.65)), Equation (2.11) gives that

|
√

2rϕ(k) −
√

2r(εtϕ(k), εX
0∗
ϕ(k))| 6 L(εϕ(1)∆t+ ε3/4), (5.78)
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for L from Equation (2.10). Combining (5.77) and (5.78) we get that

cϕ(k) > (1− δ/3)
√

2r(εtϕ(k), εX
0∗
ϕ(k))∆t− (1− δ/3)L(εϕ(1)∆t+ ε3/4)∆t− a∆x

Remark that Assumption (Hδ) implies that

a∆x 6
1

3

√
2rδ∆t 6

δ

3

√
2r(εtϕ(k), εX

0∗
ϕ(k))∆t,

so that it is sufficient to choose ε such that

‖∇r‖∞(εϕ(1)∆t+ ε3/4) 6
2r

3
δ,

to get
cϕ(k) > (1− δ)

√
2r(εtϕ(k), εX

0∗
ϕ(k))∆t.

Similarly, Equations (5.76) and (5.78) give that

c̄ϕ(k) 6
√

2r(εtϕ(k), εX
0∗
ϕ(k))∆t+ L(εϕ(1)∆t+ ε3/4)∆t+ a∆x,

and Assumption (Hδ) implies that a∆x 6 1
2

√
2rδ∆t, so that it is sufficient to choose ε such that

‖∇r‖∞(εϕ(1)∆t+ ε3/4)∆t 6 rδ to get the result.

Corollary 5.1. Let δ > 0. There exists Cδ > 0 such that, if ∆t and ∆x satisfy (Hδ), there exists
K0 > 0 such that, for all K > K0, there exists ε0 such that for all ε < ε0,∣∣∣E [X0∗

ϕ(k+1) −X0∗
ϕ(k)|Fϕ(k)

]
−
√

2r(εtϕ(k), εX
0∗
ϕ(k))ϕ(1)∆t

∣∣∣ 6 2
√

2‖r‖∞δϕ(1)∆t.

Proof. We choose η = δ
√

2‖r‖∞∆t in Lemmas 5.3 and 5.5.

Proof of Theorem 2.2. Let δ ∈ (0, 1) and assume that ∆t and ∆x satisfy (Hδ). Let T > 0 and
N =

⌊
T

εϕ(1)∆t

⌋
. We define the Euler scheme (yk)

N
k=0 of Equation (C) on [0, T ], of time step

εϕ(1)∆t, by y0 = εX0∗
0 and

yk+1 = yk +
√

2r(εtϕ(k), yk)εϕ(1)∆t, ∀k ∈ J0, N − 1K.

We also consider the processes (Yk)
N
k=0, (Zk)

N
k=0 and (Wk)

N
k=0 such that Yk = εX0∗

ϕ(k),

Wk = E
[
Yj+1 − Yj |Fϕ(j)

]
, and Zk = Yk −

k−1∑
j=0

E
[
Yj+1 − Yj |Fϕ(j)

]
= Yk −Wk, ∀k ∈ J0, NK.

Since (Zk) is a martingale, we have

Var(Zk) =
k−1∑
j=0

E[Var(Yj+1 − Yj |Fϕ(j))], ∀k ∈ J0, NK. (5.79)
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Besides, Lemma 5.4 implies that there exists K0 > 1 such that, for all K ≥ K0,

Var(Yj+1 − Yj |Fϕ(j)) 6 (4c2 + ∆t)ε2ϕ(1)2, ∀j ∈ J0, N − 1K. (5.80)

Thus,
Var(ZN ) 6 (4c2 + ∆t)ε2ϕ(1)2N 6 (4c2 + ∆t)ϕ(1)εT.

Moreover, let Aδ be the event {
max

k=0,...,N
|Zk − Y0| 6 δ

}
,

then, by Doob’s inequality, we know that

P(Acδ) 6
Var(ZN )

δ2
6

32Tϕ(1)

δ2
ε. (5.81)

Besides, we know that on the event Aδ, |Yk − Y0 −Wk| = |Zk − Y0| 6 δ for all k ∈ J0, NK and,
by triangle inequality

|Yk+1 − yk+1| 6 |Yk+1 −Wk+1 − Y0|+ |Wk+1 − Y0 − yk+1|
6 δ + |Wk+1 − Y0 − yk+1|, (5.82)

for all k ∈ J0, N − 1K. Moreover, using the definition of Wk and yk, we get by triangle inequality
that on the event Aδ, for k ∈ J0, N − 1K,

|Wk+1 + Y0 − yk+1| 6 |Wk + Y0 − yk|+
∣∣∣E[Yk+1 − Yk|Yk]−

√
2r(εtϕ(k), yk)εϕ(1)∆t

∣∣∣
6 |Wk + Y0 − yk|+

∣∣∣E[Yk+1 − Yk|Yk]−
√

2r(εtϕ(k), Yk)εϕ(1)∆t
∣∣∣

+
∣∣∣√2r(εtϕ(k), Yk)εϕ(1)∆t−

√
2r(εtϕ(k), yk)εϕ(1)∆t

∣∣∣ . (5.83)

According to Corollary 5.1, there exists K1 > 0 such that for all K > K1, there exists ε1 > 0
such that, for all ε < ε1, k ∈ J0, N − 1K,

|E[Yk+1 − Yk|Yk]−
√

2r(εtϕ(k), Yk)εϕ(1)∆t| 6
√

2‖r‖∞εδϕ(1)∆t. (5.84)

Besides, recall from Equation (2.11) that, for k ∈ J0, N − 1K, we have∣∣∣√2r(εtϕ(k), Yk)εϕ(1)∆t−
√

2r(εtϕ(k), yk)εϕ(1)∆t
∣∣∣ 6 L|yk − Yk|εϕ(1)∆t. (5.85)

Let us now assume that K > max(K0,K1) and ε < ε1(K). Combining Equations (5.83), (5.84)
and (5.85), we obtain that, on Aδ, we have

|yk+1 −Wk+1 − Y0| 6 |yk −Wk − Y0|+ εϕ(1)∆t
(√

2‖r‖∞δ + L|Yk − yk|
)
, (5.86)

for all k ∈ J0, N − 1K. Thus, combining Equations (5.82) and (5.86), we get that, on Aδ, for all
k ∈ J0, N − 1K,

|yk+1 −Wk+1 − Y0| 6 |yk −Wk − Y0|+ εϕ(1)∆t
(√

2‖r‖∞δ + L
(
|yk −Wk − Y0|+ δ

))
6 (1 + Lεϕ(1)∆t) |yk −Wk − Y0|+ εδϕ(1)∆t

(√
2‖r‖∞ + L

)
6 eLεϕ(1)∆t|yk −Wk − Y0|+ εδϕ(1)∆t

(√
2‖r‖∞ + L

)
.
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Then, by induction, using that Y0 = y0 and W0 = 0, we get that on Aδ,

|yk+1 −Wk+1 − Y0| 6 εδϕ(1)∆t
(√

2‖r‖∞ + L
) k∑
j=0

ejLεϕ(1)∆t

6 Nεϕ(1)∆tδ
(√

2‖r‖∞ + L
)
eNLεϕ(1)∆t

6
(√

2‖r‖∞ + L
)
δTeLT , (5.87)

for all k ∈ J0, N − 1K. If we set α = 1 +
(√

2‖r‖∞ + L
)
TeLT , we obtain that

Yk > yk − αδ, ∀k ∈ J0, NK, on Aδ, (5.88)

thanks to (5.82) and (5.87). Moreover, note that

P
(
∃k ∈ J0, N − 1K : ∃l ∈ Jϕ(k), ϕ(k + 1)K : εX0∗

l < yk − 2αδ
)

6 P
(
∃k ∈ J0, N − 1K : ∃l ∈ Jϕ(k), ϕ(k + 1)K : εX0∗

l < yk − 2αδ|Aδ
)

+P(Acδ)

(5.89)

To show that the first term in (5.89) is small, we prove that the probability of the event{
∃l ∈ Jϕ(k), ϕ(k + 1)K : X0∗

l −X0∗
ϕ(k) < −

αδ

ε

}
decays exponentially as ε goes to zero, for all k ∈ J0, N−1K. Let l ∈ Jϕ(k), ϕ(k+1)K and consider
a sequence (Zi) of i.i.d. random variables of law µ. Note that for any M ∈ R, {X0∗

k < M} ⊂
{X0

u < M} for any particle u living at generation k. Therefore,

P

(
X0∗
l −X0∗

ϕ(k) < −
αδ

ε

)
6 P

l−ϕ(k)∑
i=0

Zi < −
αδ

ε


= P

l−ϕ(k)∑
i=0

Zi >
αδ

ε


6 e

−(l−ϕ(k))I
(

αδ
ε(l−ϕ(k))

)
6 e

−I
(

αδ
εϕ(1)

)
,

using a similar argument than in Equation (4.32). Finally, since I is convex, we know that
I
(

αδ
εϕ(1)

)
> I(αδ)

αδ
αδ
εϕ(1) = I(αδ)

εϕ(1) , as long as εϕ(1) 6 1. Thus, by union bound, we get that, for
εϕ(1) 6 1,

P

(
∃k ∈ J0, N − 1K : ∃l ∈ Jϕ(k), ϕ(k + 1)K : X0∗

l −X0∗
ϕ(k) < −

αδ

ε

)
6

T

ε∆t
e
− I(αδ)
εϕ(1) . (5.90)

In addition, according to Equation (5.88),

P
(
∃k ∈ J0, N − 1K : ∃l ∈ Jϕ(k), ϕ(k + 1)K : εX0∗

l < yk − 2αδ|Aδ
)

6 P
(
∃k ∈ J0, N − 1K : ∃l ∈ Jϕ(k), ϕ(k + 1)K : εX0∗

l − εX0∗
ϕ(k) < −αδ

)
,

(5.91)
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and since the function x is a solution of (C), Equation (B.112) and the mean value theorem imply
that

|yk − x (lε∆t) | 6 |yk − x (kεϕ(1)∆t) |+ |x (kεϕ(1)∆t)− x (lε∆t) |
6 eLT εϕ(1)∆t+

√
2‖r‖∞εϕ(1)∆t, (5.92)

for all k ∈ J0, N − 1K and l ∈ Jϕ(k), ϕ(k + 1)K. Thus, if we choose ε small enough so that

εϕ(1)∆t(
√

2‖r‖∞ + eLT ) 6 αδ,

32Tϕ(1)ε 6
δ3

2
,

T

ε∆t
e
− I(αδ)
εϕ(1) 6

δ

2
,

we get by combining (5.81),(5.89), (5.90), and (5.91) that

P
(
∃n ∈ J0, ϕ(N)K : X0∗

n < yk − 2αδ
)
6 δ,

and finally, using Equation (5.92), we conclude that

P
(
∃n ∈ J0, ϕ(N)K : X0∗

n < x(kε∆t)− 3αδ
)
6 δ.

Again, choosing T + 1 instead of T , we get that for all K > max(K0,K1), there exists ε′(K) > 0
such that for all ε < ε′(K)

P

(
∃n ∈

s
0,

⌊
T

ε∆t

⌋{
: X0∗

n < x(kε∆t)− 3αδ

)
6 δ. (5.93)

We conclude the proof by remarking that for all K > max(K0,K1), one can couple X0

and a process rebooted every blog(max(K0,K1))c generations in such a way that this process
constitutes a subtree of X0. Besides, the previous computations hold for K∗ = max(K0,K1)
and yield the existence of an ε′(K∗) such that (5.93) holds for all ε < ε′(K∗). The coupling then
implies that it also holds for all K > K∗ and ε < ε′(K∗).

A Appendix: the branching random walk

A branching random walk is a particle system governed by a reproduction law (pk)k∈N and
a displacement law µ. The process starts with a single particle located at the origin. This
particle is replaced by N new particles located at positions (Ξ1, ...,ΞN ), where N is distributed
according to (pk)k∈N and (Ξi) is an i.i.d. sequence of random variables of law µ, independent of
N . These individuals constitute the first gereration of the branching random walk. Similarly, the
individuals of the n-th generation reproduce independently of each other according to (pk)k∈N

and their offspring are independently distributed around the parental location according to µ.
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A.1 Many-to-one lemma

Let Dn denote the set of individuals living during the n-th generation of the BRW and remark
that (|Dn|)n∈N constitutes a Galton-Watson process. For an individual u ∈ Dn, we denote by
u0, ..., un the set of its ancestors, ordered in the chronological order, so that u0 = ∅ and un = u,
and by Ξu its position. We assume that 1 < m =

∑∞
i=0 kpk <∞.

Lemma A.1 (Many-to-one Lemma). Let n > 1 and g : Rn → R+ be a measurable function. Let
(Zk)k∈N be a sequence of random variables such that (Zk+1 − Zk) is i.i.d. of law µ. Then,

E

[ ∑
u∈Dn

g(Ξu1 , ...,Ξun)

]
= mnE [g(Z1, ..., Zn)] . (A.94)

A.2 Regularity of the rate function

In this subsection, we state several results on the function I defined by Equation (4.16) in Section
4. All the notations are introduced in Section 4.1

Lemma A.2. Let ∆t > 0 and 0 < y < ȳ. If 0 < ∆x < y, then

I0(y)− y∆x

∆t
6 I(y) 6 I0(y) + 2y

∆x

∆t
, ∀y ∈ [y, ȳ]. (A.95)

Proof. Let y ∈ [y, ȳ]. First, remark that, for λ > 0

Λ(λ) = log
∑
i∈Z

(∫ (i+ 1
2

)∆x

(i− 1
2

)∆x

1√
∆t

ν

(
z√
∆t

)
dz

)
eλi∆x

> log
∑
i∈Z

(∫ (i+ 1
2

)∆x

(i− 1
2

)∆x

1√
∆t

ν

(
z√
∆t

)
eλ(z−∆x)dz

)
= Λ0(λ)− λ∆x.

Similarly, one can obtain an upper bound on Λ and get the following estimate for any λ > 0:

Λ0(λ)− λ∆x 6 Λ(λ) 6 Λ0(λ) + λ∆x. (A.96)

Then,

I(y) = sup
λ∈R

(
λy − Λ∆x(λ)

)
>

( y

∆t

)
y − Λ

( y

∆t

)
>

( y

∆t

)
y − Λ0

( y

∆t

)
−
( y

∆t

)
∆x

> I0(y)− y∆x

∆t
, (A.97)

according to Equations A.96 and (4.18). Using (A.96) again, we get that for any λ > 0,

λy − Λ(λ) 6 λy − Λ0(λ) + λ∆x 6 sup
λ̃∈R

(
λ̃(y + ∆x)− ∆t

2
λ̃2

)
= I0(y + ∆x).
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Note that Λ(λ) = Λ(−λ) for all λ ∈ R. Hence, Equation (A.96) implies that

Λ0(λ)− |λ|∆x 6 Λ(λ) 6 Λ0(λ) + |λ|∆x, ∀λ ∈ R. (A.98)

Then, if λ < 0, we get from (A.98) that

λy − Λ(λ) 6 λy − Λ0(λ)− λ∆x 6 I0(y −∆x), ∀y ∈ R.

Since I0 is increasing on (0,∞), we know that I(y −∆x) 6 I(y + ∆x) as long as ∆x 6 y and

I(y) = sup
λ∈R

(λy − Λ(λ)) 6 I0(y + ∆x) = I0(y) + y
∆x

∆t
+

∆x2

2∆t
.

Since 0 < ∆x < y, we have that ∆x < 2y and

I(y) 6 I0(y) + 2y
∆x

∆t
.

This estimate and Equation (A.97) conclude the proof.

Lemma A.3. Let ∆t > 0 and 1 < ρ < ρ̄. If ∆x < 1
16

√
2∆t log(ρ), then

c0

2
< c < 2c0, ∀ρ ∈ [ρ, ρ̄], (A.99)

where c0 is defined by (4.19) for m = log(ρ) and c is the unique solution of I(c) = log(ρ).

Proof. Let ρ ∈ [ρ, ρ̄] and y ∈
[
0, c02

]
. The function I is increasing on (0,∞), therefore, I(y) 6

I( c02 ). Besides, since ∆x 6 1
16

√
2∆t log(ρ) 6 c0

16 ,

I
(c0

2

)
6 I0

(c0

2

)
+ c0

∆x

∆t
6 I0

(c0

2

)
+

1

16

c2
0

∆t

6
1

4
I0(c0) +

1

8

c2
0

2∆t
=

3

8
I0(c0) =

3

8
log(ρ),

according to Lemma A.2 and Equations (4.18) and (4.19). Since I is increasing, this implies that
c0
2 < c. Let us now consider y > 2c0. Then, I(y) > I(2c0) and since ∆x 6 2c0,

I(2c0) > I0(2c0)− c0
∆x

∆t
= 4I0(c0)− c0

∆x

∆t

> 4I0(c0)− 1

8
I0(c0) > 3I0(c0) = 3 log(ρ),

according to Lemma A.2 and Equations (4.18) and (4.19). Since I is increasing, this estimate
implies that c < 2c0.

Lemma A.4. Let ∆t > 0, y > 0. If ∆x < y
4 , then

I(y) +
y2

4∆t
η 6 I((1 + η)y). (A.100)
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Proof. The function I is convex on R. Thus,

I(y) = I

(
1

1 + η
(1 + η)y

)
6

1

1 + η
I((1 + η)y) +

η

1 + η
I(0) =

1

1 + η
I((1 + η)y), (A.101)

which is equivalent to I((1 + η)y) > I(y) + ηI(y). Besides, if ∆x < y
4 , Lemma A.2 implies that

I(y) > I0(y)− y∆x

∆t
>

y2

2∆t
− y2

4∆t
=

y2

4∆t
. (A.102)

Combining (A.101) and (A.102), we get Equation (2.4).

Lemma A.5. Let ∆t > 0 and y > 0. If ∆x <
y

4 , then

y

4∆t
|y1 − y2| 6 |I(y1)− I(y2)|, ∀(y1, y2) ∈ [y, ȳ]2. (A.103)

Proof. Without loss of generality, assume that y < y1 < y2. Since I is convex on R, we know
that

I(y)

y
=
I(y)− I(0)

y − 0
6
I(y1)− I(y)

y1 − y
6
I(y2)− I(y1)

y2 − y1
. (A.104)

Besides, we know thanks to Lemma A.2 that

I(y) > I0(y)− y∆x

∆t
=

y2

2∆t
− y∆x

∆t
>

y2

4∆t
, (A.105)

since ∆x 6
y

4∆t . We conclude the proof by combining (A.104) and (A.105) and recalling that I
is non-decreasing on (0,∞) so that I(y2)−I(y1)

y2−y1
= |I(y2)−I(y1)|

|y2−y1| .

If y1 = y, we write (A.104) with y− ε instead of y and let ε tend to 0. The case y2 = ȳ can
be dealt with similarly.

A.3 First and second moment of the maximum

For n ∈ N, define Mn the position of the right-most particle in the branching random walk. In
this section we study the asymptotic behaviour of the first and second moments of Mn. These
are used for the proof of the lower bound in Section 5. We recall that the reproduction law of
the BRW is denoted by (pk)k∈N.

Lemma A.6 (Biggins’ theorem [Big77]). Let ∆t > 0 and ∆x > 0. Assume that m > 1 and
p0 = 0. Let c be the unique positive solution of I(c) = log(m). Then,

lim
n→0

E

[
Mn

n

]
= c.

In fact, Biggins [Big77] proves almost sure convergence of Mn/n. Lemma A.6 follows easily
from the subadditive ergodic theorem as outlined in Zeitouni [Zei16].
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Lemma A.7. Let ∆t > 0 and ∆x > 0. Let 1 < ρ < ρ̄. Consider a family of reproduction laws
(pm)m>0 such that

∑∞
i=1 kpm,k = m and (pm) is increasing with respect to m (with respect to

stochastic domination). Uniformly in m ∈ [ρ, ρ̄],

lim
n→+∞

E

[
Mn

n

]
= c,

where c is the unique positive solution of I(c) = log(m).

Proof. Define

fn :

{
(1,∞) → R

m 7→ E
[
Mn
n

] .
We claim that (fn) is a sequence of increasing functions. Indeed, for any 1 < m1 < m2, consider
S1 (resp. S2) a branching random walk of reproduction law pm1 (resp. pm2) and of displacement
law µ. According to Lemma 3.1, we can construct a coupling between S1 and S2, such that S1

is a subtree of S2. Hence, M1
n ≤M2

n, where M i
n denotes the position of the maximal particle in

the branching random walk Si, i = 1, 2. It follows that fn is increasing on (1,∞), for all n ∈ N.

Let us now consider the function c : (1,∞) → (0,∞) that maps m to the unique positive
solution of I(c) = log(m). According to Lemma A.5, the function c is continuous on (1,∞).
Moreover, by Lemma A.6, fn → c pointwise as n → ∞. Using the monotonicity of fn, Dini’s
theorem then yields uniform convergence on the compact sets of [ρ, ρ̄].

Lemma A.8. Let ∆t > 0, 1 < ρ < ρ̄ and ∆x < 1
16

√
2∆t log(ρ). Consider a reproduction law

(pk)k∈N such that
∑
kpk = m > 1 and c the unique positive solution or I(c) = log(m). For any

η > 0, uniformly in m ∈ [ρ, ρ̄], there exists N ∈ N such that

∀n ≥ N, E

[
M2
n

n2

]
6 (c+ η)2.

Proof. Let us first remark that, for all n ∈ N,

E

[
1

n2

(
max
|v|=n

Ξv

)2
]
6 E

[
1

n2

(
max
|v|=n

|Ξv|
)2
]
.

Then, we define ξn = 1
n max|v|=n |Ξv|, and write that, for all R > 0,

E[ξ2
n] = E[ξ2

n1ξ2
n<R

2 ] + E[ξ2
n1ξ2

n>R2 ]. (A.106)

Besides, E[ξ2
n1ξ2

n<R
2 ] ≤ R2 and,

E[ξ2
n1ξ2

n>R2 ] =

∫ ∞
R

2uP(ξn > u)du. (A.107)

Thanks to the Many-to-one lemma (Lemma A.1) and Markov’s inequality, we know that

P(ξn > u) = P

(
1

n
max
|v|=n

|Ξv| > u
)
6 E

∑
|v|=n

1 |Ξv ]
n
≥u

 6 mnP

( |Zn|
n
> u

)
, (A.108)
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where (Zn)n≥0 is a random walk whose increments are distributed as µ. Moreover, by symmetry,

P

( |Ξv|
n
> u

)
= 2P

(
Ξv
n
> u

)
. (A.109)

Equations (A.108) and (A.109), together with Chernoff’s bound then give

P(ξn > u) 6 2mne−nI(u) = 2e−n(I(c)−I(u)) 6 2e−n
I(c)
c

(u−c). (A.110)

According to Lemma A.3 and Equation (4.19), since ∆x < 1
16

√
2∆t log(ρ),

1

2

√
2∆t log(ρ) <

1

2

√
2∆t log(m) < c < 2

√
2∆t log(m) < 2

√
2∆t log(m) < 2

√
2∆t log(ρ̄),

so that

0 < α :=
I
(

1
2

√
2∆t log(ρ)

)
2
√

2∆t log(ρ̄)
<
I(c)

c
. (A.111)

Let η > 0 and consider R = c+ η. Equations (A.107), (A.108), (A.110) and (A.111) give that

E[ξ2
n1ξ2

n>R2 ] 6 4

∫ ∞
c+η

ue−nα(u−c)du = 4

∫ ∞
η

(u+ c)e−nαudu 6 4

∫ ∞
η

(u+
√

2∆t log(ρ̄))e−nαudu.

Remark that the last integral tends to 0 as n tends to infinity, so that there exists Nη ∈ N such
that, for all n > Nη, ∫ ∞

η
(u+

√
2∆t log(ρ̄))e−n

√
2∆t log(ρ)

4∆t
udu 6 η,

and, thanks to Equation (A.106),

E[ξ2
n] = (c+ η)2 + η.

Corollary A.1. Let ∆t > 0, 1 < ρ < ρ̄ and ∆x < 1
16

√
2∆t log(ρ). Let c̄ be the unique positive

solution of I(c̄) = log(ρ̄). Consider a reproduction law (pk)k∈N such that
∑
kpk = m > 1 and

reproduction law µ. Uniformly in m ∈ [ρ, ρ̄], there exists N ∈ N such that

∀n ≥ N, E

[
M2
n

n2

]
6 4c̄2.

B Appendix: stability of the solution of (C) and convergence of
the Euler scheme

B.1 Stability

Lemma B.1. Let δ > 0 and T > 0. Consider x the unique solution of{
ẋ(t) =

√
2r(t, x(t))

x(0) = 0,
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on [0, T ] and x̃ the unique solution of{
˙̃x(t) =

√
2r(t, x̃(t)) + δ

x̃(0) = 0.

Then,
sup
t∈[0,T ]

|x(t)− x̃(t)| 6 δeLT .

Proof. Let u(t) =
√

(x(t)− x̃(t))2 + δ for t ∈ [0, T ]. Note that

|x(t)− x̃(t)| 6 u(t), ∀t ∈ [0, T ].

Besides, the function u is differentiable on [0, T ] and

u′(t) =
1

2u(t)

d

dt
((x̃(t)− x(t))2 + δ) =

1

u(t)

(
d

dt
x(t)− d

dt
x̃(t)

)
(x(t)− x̃(t))

=
1

u(t)

(√
2(t, x̃(t))−

√
2r(t, x(t)) + δ

)
(x̃(t)− x(t))

6
1

u(t)
(L|x(t)− x̃(t)|+ δ)(x̃(t)− x(t)) 6

1

u(t)
(L|x(t)− x̃(t)| − δ)u(t)

6 L(u(t) + δ),

where the third inequality is obtained thanks to Equation (2.11). Then, by the Gronwall’s
inequality, we have

u(t) 6 u(0)eLt 6 δeLT , ∀t ∈ [0, T ],

which concludes the proof of the lemma.

B.2 Euler scheme

Under Assumption 1, we know that each maximal solution y of (C) is global i.e. defined on [0,∞).
Besides, for any T > 0 and h > 0, we can define the Euler scheme of this solution by considering
the sequence defined by {

y0 = y(0)

yi+1 = yi +
√

2r(ih, yi)h.

Thanks to Equation (2.11) and convergence results on the Euler method (see Theorem 14.3 from
[Hen65]), we know that

max
i∈J0,bT/hcK

|y(ti)− yi| 6 eLT
h

2
. (B.112)

Remark B.1. For any δ > 0, Equation (B.112) still holds for the function ỹ solution of

ẏ =
√

2r(t, y(t)) + δ,

and its Euler scheme {
ỹ0 = ỹ(0)

ỹi+1 = ỹi + (
√

2r(ih, ỹi) + δ)h,
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CHAPTER III

Particle systems and semi-pushed fronts

We consider a system of particles performing a one-dimensional dyadic branching Brownian
motion with space-dependent branching rate, negative drift −µ and killed upon reaching 0,
starting with N particles. More precisely, particles branch at rate ρ/2 in the interval [0, 1],
for some ρ > 1, and at rate 1/2 in (1,+∞). The drift µ(ρ) is chosen in such a way that,
heuristically, the system is critical in some sense: the number of particles stays roughly constant
before it eventually dies out. This particle system can be seen as an analytically tractable
model for fluctuating fronts, describing the internal mechanisms driving the invasion of a habitat
by a cooperating population. Recent studies from Birzu, Hallatschek and Korolev suggest the
existence of three classes of fluctuating fronts: pulled, semi-pushed and pushed fronts. Here, we
rigorously verify and make precise this classification and focus on the semi-pushed regime. More
precisely, we prove the existence of two critical values 1 < ρ1 < ρ2 such that for all ρ ∈ (ρ1, ρ2),
there exists α(ρ) ∈ (1, 2) such that the rescaled number of particles in the system converges to an
α-stable continuous-state branching process on the time scale Nα−1 as N goes to infinity. This
complements previous results from Berestycki, Berestycki and Schweinsberg for the case ρ = 1.
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Section 1. Introduction

1 Introduction

In this chapter, we are interested in the underlying dynamics of traveling wavefronts arising from
certain reaction diffusion equations. Formally, the front is represented by a branching Brownian
motion with absorption at zero and negative drift −µ. This system can be seen as a co-moving
frame following the particles located at the tip of the front. In this framework, the drift µ is
interpreted as the speed of the wave.

In this introductory section, we first motivate our analysis with the results of some recent
studies and state an informal version of the theorem in Section 1.1. In Section 1.2, we recall
some well known facts on continuous-state branching processes. The model and the results are
given in Section 1.3 and the sketch of the proof is outlined in Section 1.5. In Section 1.6, we
explain the connection between the model defined in Section 1.1 and the generalised principle
eigenvalue of the pertubated Laplacian on the half-line. We then discuss the link with previous
work on pulled fronts in Section 1.7 and give a biological interpretation of the result in Section
1.8.

1.1 Noisy FKPP-type equations and semi-pushed fronts

This work is motivated by the results of recent work by Birzu, Hallatschek and Korolev [BHK18,
BHK20] on the noisy FKPP-type equation

ut =
1

2
uxx + ru(1− u)(1 +Bu) +

1√
N

Γ(u)W (t, x). (1.1)

From a biological standpoint, Equation (1.1) models the invasion of an uncolonised habitat by a
species: u corresponds to the population density, B is a positive parameter scaling the strength
of cooperation between the individuals, N is the local number of particles at equilibrium, Γ
stands for the strength of the demographic fluctuations and W is a Gaussian white noise. The
numerical experiments and analytical arguments from [BHK18, BHK20] suggest the existence of
three regimes in Equation (1.1): the pulled regime for B 6 2, the semi-pushed or weakly pushed
regime for B ∈ (2, Bc), for some Bc > 2, and the fully pushed regime, for B > Bc.

The notion of pulled and pushed waves was first introduced by Stokes [Sto76] in PDE
theory. The distinction between the pulled and pushed regime in Equation (1.1) relies on the
asymptotic spreading speed v of the solutions of the limiting reaction-diffusion equation (that is
when N →∞),

ut =
1

2
uxx + f(u), (1.2)

where
f(u) = ru(1− u)(1 +Bu). (1.3)

It is a known fact (see e.g. [HR75]) that Equation (1.2) has a one-parameter family of front
solutions u(t, x) = ϕc(x − ct) for c > cmin, for some cmin > 0. Moreover, it was shown [Sto77]
that the asymptotic spreading speed v of any solution to Equation (1.2) with compactly sup-
ported initial data is equal to the minimal speed cmin. See Chapter I for further details on the
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convergence of such solutions. Thereupon, an invasion is said to be “pulled” if cmin coincides
with the asymptotic speed c0 =

√
2r of the linearised equation

ut =
1

2
uxx + f ′(0)u,

and “pushed” if cmin > c0. In Equation (1.2), the transition between pulled and pushed fronts
occurs at B = 2 [HR75] since cmin, and thus v, is given by

v(B) =

{√
2r if B 6 2

1
2

√
rB
(
1 + 2

B

)
if B > 2.

(1.4)

As observed in [BHK18], the addition of demographic fluctuations in (1.2) uncover a third class
of invasions: the semi pushed or weakly pushed regime. The effect of fluctuations on pulled
fronts has already been widely studied in the literature. A rich theory based on the work of
Brunet, Derrida and co-authors [BD97, BDMM06a, BDMM06b] describes the behaviour of the
front solutions of (1.1) for B = 0. The spreading speed of these solutions admits a correction of
order log(N)−2 compared to the one of the limiting PDE (1.2). In this sense, fluctuations have
a huge impact on pulled fronts (see Section 1.7 for further details). Besides, the genealogy at
the tip of the front is expected to be described by a Bolthausen–Sznitman coalescent over a time
scale of order log(N)3, which suggests that the particles located at the tip of the front evolve as
a population undergoing natural selection.

On the other hand, pushed fronts are expected to be less sensitive. In [BHK18], it is
numerically observed that for B > Bc, the fluctuations in the position of the front and in the
genetic drift occur on a time scale of order N , which may indicate the presence of Kingman’s
coalescent (a coalescent with binary mergers). This is consistent with the fact that the population
in the bulk behaves like a neutral population. However, for intermediate values of B, that is
B ∈ (2, Bc), the fluctuations appear on a shorter time-scale, namely Nγ with γ ∈ (0, 1). This
intermediate region is defined as the semi pushed regime.

In this work, we propose an analytically tractable particle system to investigate the mi-
croscopic mechanisms leading to semi pushed invasions. This model is an extension of the one
studied by Berestycki, Berestycki and Schweinsberg [BBS13] to prove the conjecture on the
genealogy of pulled fronts. Similarly, we are able to exhibit the timescale and the structure
of the genealogy of our particle system. Based on the branching particle system analysed in
[BBS13], we consider a branching Brownian motion with absorption at 0, negative drift −µ and
a space-dependent branching rate r(x) of the form

r(x) =
1

2
+
ρ− 1

2
1x∈[0,1], (1.5)

for some ρ > 1. As mentioned above, this system is a toy model for what happens to the right
of the front. Hence, the parameter ρ plays the same role as B in Equation (1.1) and thus scales
the strengh of the cooperation between the particles.

We assume that the system starts with N particles located at 1. We denote by Nt the
number of particles alive in the particle system at time t and consider the rescaled number of
particles N̄t = Nt/N . Essentially, our result is the following:
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Theorem 1.1 (informal version). There exists 1 < ρ1 < ρ2 such that for all ρ ∈ (ρ1, ρ2), there
exists µ(ρ) > 1 and α = α(ρ) ∈ (1, 2) such that, if we consider the BBM with branching rate
(1.5) and drift −µ(ρ), the process (N̄Nα−1t)t>0 converges in law to an α-stable continuous-state
branching process as N goes to infinity.

This result seems consistent with the observations made on the fluctuations in [BHK18] and
with the genealogical structure proposed in [BHK20] for semi pushed fronts. Indeed, it is known
that the genealogy corresponding to an α-stable continuous-state branching process is given by
a Beta(2− α, α)-coalescent [BBC+05].

We refer to Section 1.3 for a precise statement of Theorem 1.1 and to Section 1.2 for a
definition of the CSBP.

1.2 Continuous-state branching processes

We recall known facts about continuous-state branching processes (CSBP), and, more specifically,
the family of α-stable CSBP, for α ∈ [1, 2] (see e.g. [Ber09, BBC+05]). A continuous-state
branching process is a [0,∞]-valued Markov process (Ξ(t), t ≥ 0) whose transition functions
satisfy the branching property pt(x + y, ·) = pt(x, ·) ∗ pt(y, ·), which means that the sum of
two independent copies of the process starting from x and y has the same finite-dimensional
distributions as the process starting from x+y. It is well-known that continuous-state branching
processes can be characterised by their branching mechanism, which is a function Ψ : [0,∞)→ R.
If we exclude processes that can make an instantaneous jump to∞, the function Ψ is of the form

Ψ(q) = γq + βq2 +

∫ ∞
0

(e−qx − 1 + qx1x≤1) ν(dx),

where γ ∈ R, β ≥ 0, and ν is a measure on (0,∞) satisfying
∫∞

0 (1∧x2)ν(dx) <∞. If (Ξ(t), t ≥ 0)
is a continuous-state branching process with branching mechanism Ψ, then for all λ ≥ 0,

E[e−λΞ(t) |Ξ0 = x] = e−xut(λ), (1.6)

where ut(λ) can be obtained as the solution to the differential equation

∂

∂t
ut(λ) = −Ψ(ut(λ)), u0(λ) = λ. (1.7)

We will be interested in α-stable CSBP for α ∈ [1, 2], for which the branching mechanism Ψ is
of the form

Ψ(u) =

{
−au+ buα, if α ∈ (1, 2],

−au+ bu log u, if α = 1.
(1.8)

It is known that in this case, the CSBP does not explode in finite time, i.e. Grey’s condition
is satisfied. The 2-stable CSBP is also known as the Feller diffusion and the 1-stable CSBP as
Neveu’s CSBP.
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1.3 The model: assumptions and main result

We consider a dyadic branching Brownian motion with killing at zero, negative drift −µ and
position-dependent branching rate

r(x) =

{
ρ/2 x ∈ [0, 1],

1/2 x > 1,

for some parameter ρ > 1. We denote by Nt the set of particles in the system at time t and for
all v ∈ Nt, we denote by Xv(t) the position of the particle v at time t. Furthermore, we write
Nt = #Nt for the number of particles in the system at time t. The drift µ is chosen with respect
to ρ in such a way that the number of particles in the system stays roughly constant. Depending
on the value of ρ, µ is equal to 1 (pulled regime) or µ is strictly larger than 1 (pushed regime).

In practice, µ = µ(ρ) is a function of ρ related to the principal generalised eigenvalue λ∞1
of a certain differential operator (see Section 1.5 for further details). More precisely, we have

• If ρ < 1 + π2

4 , then
µ = 1. (1.9)

• If ρ > 1 + π2

4 , then µ is the unique solution of

tan(
√
ρ− µ2)√

ρ− µ2
= − 1√

µ2 − 1
, such that ρ− µ2 ∈

[
π2

4
, π2

]
. (1.10)

In terms of λ∞1 , we have that λ∞1 = 0 for ρ < 1 + π2

4 , λ∞1 > 0 for ρ > 1 + π2

4 and that the
definition of µ given by Equations (1.9) and (1.10) is equivalent to

µ =
√

1 + 2λ∞1 , (1.11)

so that

µ > 1 for ρ > 1 +
π2

4
.

This way, the branching Brownian motion with absorption at 0, branching rate r(x) and drift
−µ is fully defined. Let us define the exponent α: for µ > 1, we set

α =
µ+

√
µ2 − 1

µ−
√
µ2 − 1

. (1.12)

We now define two regimes of interest for the parameter ρ. The first one corresponds to a
(subset of) the pushed regime:

ρ > ρ1, ρ /∈
{

1 + k2π
2

4
, k ∈ N

}
. (Hpsh)

where

ρ1 = 1 +
π2

4
. (1.13)
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It turns out that the transition between the weakly pushed and the fully pushed regimes occurs
when α = 2, which corresponds to the critical value of µ,

µc =
3

4

√
2. (1.14)

Therefore, the weakly pushed regime corresponds to the following range of the parameter ρ:

ρ1 < ρ < ρ2, (Hwp)

where ρ2 is the unique solution of

tan
(√

ρ− µ2
c

)
√
ρ− µ2

c

= − 1√
µ2
c − 1

s.t. ρ− µ2
c ∈

[
π2

4
, π2

]
. (1.15)

In this regime, we have the following result, which is the main result of this chapter:

Theorem 1.2. Assume (Hwp) holds and suppose the system initially starts with N particles
located at 1. Then, there exists an explicit constant σ(ρ) > 0 such that if we define N̄t =
σ(ρ)Nt/N , as N →∞, the finite-dimensional distributions of the processes (NNα−1t)t>0 converge
to the finite-dimensional distributions of an α-stable CSBP starting from 1, where α is given by
Equation (1.12).

A more general version of Theorem 1.2 is stated in Theorem 7.2. In addition, an explicit
formula for σ(ρ) is given in Section 7.2 (see Equation (7.15)). We strongly believe that this
result can be completed with the study of the cases ρ ∈ [1, ρ1) and ρ ∈ (ρ2,+∞). The expected
convergence results are summarised in the following conjectures. This will be the subject of
future work.

Conjecture 1. If ρ < ρ1, under suitable assumptions on the initial configurations, the finite-
dimensional distributions of the processes (N (logN)3t)t>0 converge to the finite-dimensional dis-
tributions of a 1-stable (Neveu’s) CSBP starting from 1 as N →∞.

Conjecture 2. If ρ > ρ2, under suitable assumptions on the initial configurations, the finite-
dimensional distributions of the processes (NNt)t>0 converge to the finite-dimensional distribu-
tions of a Feller diffusion starting from 1 as N →∞.

The proof of Theorem 1.2 relies on the first and the second moment estimate of several
processes. The assumptions (Hpsh) and (Hwp) are used to estimate these moments in the weakly
pushed regime. The first moments (see Sections 3.1 and 4.1) are computed under assumption
(Hpsh), so that they can also be used to investigate the fully pushed regime, whereas the upper
bounds on the second moments require the assumption (Hwp).

The fact that ρ /∈
{

1 + k2 π2

4 , k ∈ N
}

is only a technical assumption and one could prove
the result under more general assumptions with extra work. Moreover, one can also investigate
systems with more general branching rates, of the form

r(x) =
1

2
+
ρ− 1

2
f(x),

for a function f that is compactly supported (or even a function that quickly converges to zero).
In this case, the spectrum and eigenvectors are not necessarily explicit, but one can still analyse
the system using spectral theoretic methods.
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Chapter III. Particle systems and semi-pushed fronts

1.4 Comparison with results on fluctuating fronts

In the particle system, we say that the pulled regime corresponds to ρ ∈ [1, ρ1), the weakly
pushed regime to ρ ∈ (ρ1, ρ2) and the fully pushed regime to ρ > ρ2. From a biological stand-
point, the process Nt is related to the number of descendants left by the early founders mentioned
in [BHK20]. Moreover, CSBPs can be seen as scaling limits of Galton-Watson processes, with
associated genealogical structures [Ber09]. In this sense, the convergence results stated in Theo-
rem 1.2 and in the two conjectures are consistent with the observations on the genealogical trees
made in [BHK20]: in the pulled regime, the genealogy of the particles at the tip of the front
is the one of a population undergoing selection, that is a Bolthausen–Sznitman coalescent. We
know since the work of [BLG00] that it is precisely the genealogy associated with Neveu’s CSBP.
Similarly, we know that the genealogy associated to the α-stable process and the Feller diffusion
are respectively the Beta(2− α, α)-coalescent and Kingman’s coalescent [BBC+05]. Again, this
is exactly what is observed [BHK20] on the genealogical structures of their model.

Besides, note that the transitions between the three regimes occur at the same critical values
of µ and v. Indeed, consider Equation (1.1) with r = 1

2 . Therefore, c0 = 1 and the invasion
speed v is given by (see Equation (1.4))

v(B) =

{
1 if B 6 2

1
2
√

2

√
B
(
1 + 2

B

)
if B > 2.

(1.16)

In the particle system, note that the drift is also equal to 1 in the pulled regime (see Equation
(1.9)). In both cases, the definition of the transition between the pushed and the pulled regime
happens when the propagation speed, µ or v, becomes larger than 1, that is when ρ > 1 + π2

4
in the particle system and B > 2 in the noisy FKPP Equation (1.2). Similarly, the transition
between weakly and fully pushed waves occurs for the same critical value of the invasion speed.
Following [BHK18], consider α̃ such that (see [BHK18, Equation (8)])

α̃ =

1− 2
√

1−c20/v2

1−
√
c20/v

2
if v

c0
∈
(
1, 3

4

√
2
)

2 if v
c0
> 3

4

√
2.

(1.17)

They observe that the fluctuations in the pushed regime appear on a time scale N α̃−1, so that the
transition between the weakly and fully pushed regimes occurs at v = 3

4

√
2c0. This is consistent

with Theorem 1.2: if r = 1
2 , c0 = 1 so that the transition occurs at v = 3

4

√
2, which corresponds

to the critical value µc from Equation (1.14), delineating the semi pushed and the pushed regime.
Besides, note that for c0 = 1, we have

α̃ =

{
v+
√
v2−1

v−
√
v2−1

, if v ∈
(
1, 3

4

√
2
)

2 if v > 3
4

√
2.

which seems to indicate the existence of a universality class given the definition of α (see Equation
(1.12)). Besides, note that the exponent α (resp. α̃) depends on ρ (resp. B) only through the
drift µ (resp. the speed v). This can be explained by the fact that the particles which cause the
jumps in the CSBP stay far away from the regions where the branching rate depends on ρ (see
below for further explanations).
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We now investigate the asymptotic behaviours of µ and v as the cooperation parameters ρ
and B tend to their critical values. First, note that Equation (1.16) implies that for r = 1

2 ,

v(B) ∼ 1

2

√
B

2
as B → +∞.

On the other hand, by definition of µ (see Equation (1.10)), we have π2

4 6 ρ− µ2 6 π2, so that

µ ∼ √ρ as ρ→ +∞.

When B → 2, B > 2, a second order Taylor expansion gives that

v(B) ∼ 1 +
(B − 2)2

16
.

Besides, when ρ → ρ1, ρ > ρ1, one can show that µ → 1 and the expansion of each term in
Equation (1.10) gives

µ2 − 1 ∼ 1

4

(
ρ− 1− π2

4

)2

,

so that we have

µ ∼ 1 +
1

8

(
ρ− 1− π2

4

)2

.

These similar asymptotic behaviours as well as the three regimes observed in the particle system
support the hypothesis the existence of a universality class. This is illustrated in Figure III.1
and Figure III.2.
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Figure III.1: The expansion velocity as a function of cooperativity. Figure (a): in the particle
system. Graph of µ as a function of ρ (see Equations (1.9) and (1.10)). The transition between
the pulled and the pushed regimes occurs at ρ1 = 1 + π2

4 ≈ 3, 47. Figure (b): in the PDE
(1.2). Graph of v as a function of B (see Equation (1.16)) for r = 1

2 . The transition between
the pulled and the pushed regimes occurs at B = 2
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Figure III.2: The expansion velocity as a function of cooperativity. Figure (a): in the particle
system. Graph of µ as a function of ρ (see Equation (1.10)). The weakly pushed regime is
observed when µ ∈ (1, µc). The transition between the weakly pushed and fully pushed regime
occurs at ρ = ρ2, given by Equation (1.15). Figure (b): in the PDE. Graph of v as a function
of B (see Equation (1.16)) for r = 1

2 . In the noisy FKPP equation, the transition between
weakly pushed and fully pushed waves occurs when v = µc (see (1.17)), which corresponds to
B = 4.

1.5 Overview of the proof

The strategy of the proof is inspired by the work of Berestycki, Berestycki and Schweinsberg
[BBS13], who treated the case of a constant branching rate r that is ρ = 1. The main idea is to
introduce an additional barrier at a point L depending on N , in such a way that the jumps of the
limit of the rescaled process N̄ are caused by particles that reach L. In their case, one chooses
L = logN + 3 log logN , and it is reasonable to believe that this will be the case for ρ < ρ1.
If ρ ∈ (ρ1, ρ2), we rather choose a barrier at L = C logN for some C > 0. In this section, we
outline the main ideas used to choose this barrier and to prove the convergence to the α-CSBP
in the case where ρ ∈ (ρ1, ρ2).

As explained in [BBS13], the role of the barrier is to capture the particles which cause a
jump in the CSBP, or, stated otherwise, which will have a number of descendants of order N
at a later time. Hence, the barrier is chosen in such a way that the number of descendants at a
later time (but shorter than the time-scale of the CSBP) is of order N . From this perspective,
the behaviour of the particle system is the following:

1. Most of the time, the particles stay in the interval [0, L]. Therefore, the system is well
approximated by a BBM with drift−µ, branching rate r(x), killed at 0 and at the additional
barrier L.

2. From time to time, on the time-scale of the CSBP (which we expect to be Nα−1) a particle
reaches L. The barrier L is chosen in such a way that the number of descendant of a
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particles hitting L is of order N after a short time (on the time scale of the CSBP).

3. In order to deal with these descendants, we let the particle reaching L evolve freely during
a time period which is large but of order 1. Following [BBS13], one can for example fix
some large constant y and track the descendants when they first reach L− y. The number
of such descendants will be a random quantity with tail 1/xα. This random quantity will
be proportional to an additive martingale of the BBM rooted at the particle that reaches
L.

4. After this large (but independent of L) relaxation time, all particles are again in the interval
[0, L] and the system can again evolve as before.

Thanks to this sketch of proof, one can infer a suitable value of L and justify the definition
of the parameter µ. Indeed, the first step implies that most of the time, the system can be
approximated by a heat equation in the interval [0, L] with Dirichlet boundary conditions. In
other words, if we denote by NL

t the set of particles in the BBM at time t that have stayed in
the interval [0, L] until time t, the density of particles is given by the Many-to-one lemma:

Lemma 1.1 (Many-to-one lemma, see [Law18], p.88). Let pt(x, y) be the fundamental solution
to the PDE {

ut(t, x) = 1
2uxx(t, x) + µux(t, x) + r(x)u(t, x)

u(t, 0) = u(t, L) = 0.
(A)

Then for every measurable, positive function f : R+ → R, we have1

Ex

 ∑
v∈NLt

f(Xv(t))

 =

∫ L

0
pt(x, y)f(y) dy.

Therefore, the function pt can be deduced from the Sturm–Liouville theory. Since (A) is
not self-adjoint, we first set the function qt in such a way that

pt(x, y) = e
µ(x−y)+

(
1
2
−µ

2

2

)
t
qt(x, y). (1.18)

Then qt(x, y) is the fundamental solution to the self-adjoint PDE{
ut(t, x) = 1

2uxx(t, x) + ρ−1
2 1[0,1](x)u(t, x)

u(t, 0) = u(t, L) = 0.
(B)

By the Sturm–Liouville theory, the eigenvalues of the operator

Tv =
1

2
v′′ +

ρ− 1

2
1[0,1](x)v (1.19)

are simple and can be numbered

λL1 > λL2 > · · · > λLn > · · · → −∞.
1The notation Ex means that we start with one particle at position x.
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Chapter III. Particle systems and semi-pushed fronts

As a result, we will prove that each λLi is increasing with respect to L. If v1, v2, . . . denote the
corresponding eigenfunctions of unit L2-norm, then the function qt is given by [Zet10, p.87]

qt(x, y) =
∞∑
n=1

eλ
L
n tvn(x)vn(y),

and hence,

pt(x, y) =

∞∑
n=1

eµ(x−y)+(λLn+ 1
2
−µ2/2)tvn(x)vn(y).

We say that pt is the density of the BBM with branching rate r(x), drift −µ and killed at 0 and
L in the sense that, starting with a single particle at x, the expected number of particle in a
Borel subset B a time t is given by

∫
B pt(x, y)dy. From these observations, µ will be chosen in

such a way that the loss of mass in pt is controlled. Yet, we will prove that for ρ > ρ1, a positive
and isolated generalised eigenvalue λ∞1 emerges as L → ∞. Therefore, we will choose µ such
that

µ =
√

1 + 2λ∞1 , (1.20)

as stated in (1.20). We will prove in Section 2.1 that this definition is equivalent to (1.10). In
the case where ρ < ρ1, the sequence (λLi ) converges to a non positive continuous spectrum, in
particular λ∞1 = 0, so that µ = 1.

For ρ > ρ1 and t sufficiently large, we show that

pt(x, y) ≈ eµ(x−y)+(λL1−λ∞1 )tv1(x)v1(y). (1.21)

Note that the time parameter t only appears in the exponential factor in the formula (1.21) so
that the population size should be roughly constant as long as (λL1 − λ∞1 )t� 1. Therefore, the
time scale over which particles reach L is of order (λ∞1 − λL1 )−1. Beside, the spectral analysis of
the system (B) provides the existence of a constant C > 0 such that

λ∞1 − λL1 ∼ Ce−2
√

2λ∞1 L.

To simplify the notations, we set
β =

√
2λ∞1 . (1.22)

As we expect the time scale of the CSBP (that is the time scale over which particles reach L) to
be Nα−1, the asymptotic behaviour of λL1 gives a first relation between α, N and L, that is

Nα−1 = e2βL.

The eigenfunction associated to the principal eigenvalue λL1 will play a crucial role in this
analysis. We denote by w1 the eigenfunction which is of order 1 at L − 1 and such that
w1(1) = sinh(

√
2λL1 (L− 1)). We then define as in [BBS13] the process

Zt =
∑
v∈Nt

eµ(Xv(t)−L)w1(Xv(t))1Xv(t)∈[0,L].

As long as the particles stay in [0, L], this process coincides with

Z ′t =
∑
v∈NLt

eµ(Xv(t)−L)w1(Xv(t)),
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Section 1. Introduction

which is a supermartingale since, by the Many-to-one Lemma 1.1,

Ex
[
Z ′t
]

= e(λL1−λ∞1 )tZ ′0. (1.23)

The process Zt, and thus Z ′t, governs the long time behaviour of the particle system. Indeed, for
t large enough; the expected number of particles in the system starting with a single particle at
x will be approximately given by

Ex [Nt] ≈
∫ L

0
pt(x, y)dy ≈ eµxv1(x)e(λL1−λ∞1 )t

∫ L

0
eµyv1(y)dy.

We will show in Section 7.2 that the second integral is bounded by a constant and that v1(x) ≈
Ce−βLw1(x) so that

Ex [Nt] ≈ Ce(µ−β)LZ ′0, (1.24)

for t� e2βL. Thus, we first prove Theorem 1.2 for Zt instead of N̄t and then deduce the result
on N̄t.

Moreover, we claim that the barrier L has to be chosen so that

N = e(µ−β)L. (1.25)

Indeed, L is fixed in such a way that the particles that reach L have a number of descendants of
order N after a short time, on the time scale e2βL of the CSBP. Yet, if we consider the system
starting with a single particle close to L, say at x = L − 1, we get that Z ′0 is of order 1. Thus,
the result ensues from Equation (1.24). Besides, we obtain that

α =
µ+ β

µ− β (1.26)

which is equivalent to the definition (1.12) given Equations (1.20) and (1.22).

In the light of Equations (1.24), (7.14) and (1.26), we claim that it is sufficient to prove
that as L→∞,

Ze2βLt ⇒ Ξ(t), (1.27)

where Ξ is an α-stable CSBP, starting with a suitable initial configuration.

As explained in [BHK20], the difference between the genealogical structures of the popu-
lation for ρ < ρ1, ρ ∈ (ρ1, ρ2) and ρ > ρ2 is explained by the fluctuations in the total number
of descendants left by the early founders. In our particle system, this number of descendants
is related to to the number of offspring of a particle hitting the barrier L. We prove that the
number Zy of these descendants reaching L− y (for the first time) is such that

e(µ−β)yZy ⇒W as y → +∞,

for some random variable W satisfying

P(W > x) ∼ C

xα
as x→ +∞.
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Chapter III. Particle systems and semi-pushed fronts

The fact that α depends on ρ only through the drift µ can be explained by this barrier at L− y:
it can be chosen in such a way that the particles are stopped before they reach 1 so that they
behave as in a BBM with drift −µ and constant branching rate 1

2 .

The proof of the fact that the number of particles does not fluctuate too much when we
add a barrier at L will rely on the estimate of the second moment of Z ′t. To this end, we will
make use of the Many-to-two Lemma.

Lemma 1.2 (Many-to-two lemma [INW69], Theorem 4.15). Let f and pt(x, y) be as in Lemma 1.1.
Then

Ex

 ∑
v∈NLt

f(Xv(t))

2

=

∫ L

0
pt(x, y)f(y)2 dy +

∫ t

0

∫ L

0
ps(x, y)2r(y)Ey

 ∑
v∈NLt−s

f(Xv(t− s))


2

dy ds.

Actually, this result is more general and a stopping line version of this lemma holds. Once
the result (1.27) is proved, one can deduce the same convergence on N̄t. Indeed, it will be
sufficient to prove that over a short time, on the time-scale of the CSBP, Z does not vary much
and that N̄ is well approximated by Z (see (1.24)) as in [BBS13, Section 4.6].

We end this section with a reformulation of (Hpsh) and (Hwp) in terms of λ∞1 , α, µ and β
(the first assertion will be proved in Section 2.1):

• Assume (Hpsh) holds. Then, λ∞1 > 0 so that µ > 1.

• Assume (Hwp) holds. Then, α ∈ (1, 2), µ > 3β and λ∞1 ∈
(
0, 1

16

)
.

This second remark, which ensues from the definition of µc, will be useful in the estimate of the
second moments.

1.6 Perturbation of the Laplacian on the half-line

A crucial role in the analysis will be played by the family of differential operators Tρ, ρ ∈ R,
defined by

Tρu(x) =

{
1
2u
′′(x) + ρ

21[0,1](x)u(x), x ∈ (0, 1) ∪ (1,∞)

limz→1 Tρu(z), x = 1.

with domain

DTρ = {u ∈ C1((0,∞)) ∩ C2((0, 1) ∪ (1,∞)) : lim
x→0

u(x) = 0, lim
x→1

Tρu(x) exists}.
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The operator Tρ is a perturbation of the Laplacian on the positive half-line by a function of
compact support.

In this section, we recall a few well-known facts about such operators, based on Section
4.6 in [Pin95]. These results are only given for continuous perturbations but one can extend
them to our particular perturbation by approximating the step function on [0, 1] by continuous
functions. Actually, these facts will not be used in the following proofs, yet, they provide a
better understanding of the three regimes in the particle system. To this end, we first define the
generalised principal eigenvalue and the Green function of the operator Tρ.

Define the generalised principle eigenvalue of the operator Tρ by

λc(ρ) = inf{λ ∈ R : ∃u ∈ DTρ : u > 0 on (0,∞), Tu = λu}.

Theorem 4.4.3 in [Pin95] implies that λc is a convex function of ρ and Lipschitz-continuous with
Lipschitz constant 1/2.

Let (Bt) be a standard Brownian motion starting at x > 0 and let τ = inf{t ∈ (0,∞) :
Bt /∈ (0,∞)}. The Green function Gρ of the operator Tρ is the unique function such that for all
bounded measurable functions g : R+ → R, we have

E

[∫ τ

0
exp

(∫ t

0

ρ

2
1[0,1](Bs)ds

)
g(Bt)dt

]
=

∫ ∞
0

Gρ(x, y)g(y)dy.

Similarly, one can define the Green function of the operator Tρ − λ, denoted by Gλρ , such that

E

[∫ τ

0
exp

(∫ t

0

ρ

2
1[0,1](Bs)− λ ds

)
g(Bt)dt

]
=

∫ ∞
0

Gλρ(x, y)g(y)dy.

Recall from [Pin95], Section 4.3, that an operator is called

• subcritical, if its Green function is finite (and hence, positive harmonic functions, i.e. eigen-
functions of eigenvalue 0, exist),

• critical, if its Green function is infinite, but positive harmonic functions exist,

• supercritical, if no positive harmonic function exists.

It is well known that the Laplacian on the positive half-line, i.e. the unperturbed operator T0,
is subcritical in the sense of [Pin95], i.e. its Green function is finite, in fact, it is expressed by
G0(x, y) = 2x ∧ y, x, y > 0. Furthermore, its generalised principle eigenvalue is λc(0) = 0. It
then follows from Theorem 4.6.4 in [Pin95] that there exists ρc > 0, such that λc(ρ) = 0 for all
ρ ≤ ρc and λc(ρ) > 0 for all ρ > ρc. Besides, Tρ is subcritical for ρ < ρc, critical for ρ = ρc and
supercritical for ρ > ρc. In fact, Theorem 4.7.2 in [Pin95] implies that Tρ − λc(ρ) is critical for
ρ > ρc.

These properties can be verified by elementary calculations, which also yield exact expres-
sions of ρc and λc(ρ). We summarise these calculations in the following proposition:
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Proposition 1.1. Define ρc = π2/4. Define the function

g(x) = sinc(
√
x)−2, x ∈ [ρc, π

2),

where sinc(z) = sin(z)/z. Then g is an increasing and strictly convex function on [ρc, π
2) with

g(ρc) = ρc, g′(ρc) = 1 and g(x)→ +∞ as x→ π2. Denote by g−1 its inverse, defined on [ρc,∞).
Then,

λc(ρ) =

{
0, ρ ≤ ρc
1
2(ρ− g−1(ρ)), ρ > ρc.

The proof of this result is given in Appendix A. One could go on expliciting the positive
eigenfunctions of the operator Tρ for all ρ. One would see that there exists for every ρ ∈ R and
every λ ≥ λc(ρ) a unique (up to a multiplicative constant) positive eigenfunction of eigenvalue λ.
For λ = λc(ρ), this function is affine on [1,∞) with positive slope for ρ < ρc, and exponentially
decreasing, with exponent −

√
2λc(ρ), on [1,∞), for ρ > ρc. In fact, in the latter case, an

eigenfunction is

u(x) =

{
sin(

√
g−1(ρ)x), x ∈ [0, 1]

sin(
√
g−1(ρ))e−

√
2λc(ρ)(x−1), x ∈ [1,∞).

This function will play a crucial role in the system. Indeed it corresponds to an harmonic function
of the critical operator Tρ − λc(ρ). According to Theorem 8.6 in [Pin95], this function is the
unique (up to positive multiples) invariant function for the transition measure associated to
Tρ−λc(ρ). Roughly speaking, this means that u is a stable configuration in the particle system.
On the other hand, for λ > λc(ρ), the function grows exponentially on [1,∞) with exponent√

2λ.

Let us now go back to the differential operator L = 1
2v
′′ + µ∇ + r(x) from Equation (A).

Thanks to Equation (1.18), the Green function G of the operator L can be expressed thanks to
Gλρ−1 as follows:

G(x, y) = eµ(x−y)Gλρ−1(x, y), for λ =
µ2 − 1

2
.

The value of µ will be then chosen in such a way that the operator L has an harmonic function.
Then, for ρ− 1 < ρc it is sufficient to choose µ = 1 since Tρ−1 is subcritical. For ρ− 1 > ρc, we
know that Tρ−1 − λc(ρ − 1) is critical. Therefore, the corresponding Green function is infinite
but the operator has harmonic functions. Hence, we will choose the drift µ such that

µ(ρ) =
√

1 + 2λc(ρ− 1).

Note that the limit λ∞1 of the maximal eigenvalues λL1 and the generalised principal eigenvalue
λc(ρ− 1) coincide. This is a consequence of Theorem 4.1 in [Pin95].

1.7 Related models

A rich theory has been developed in the case where B = 0 in (1.1), which corresponds to a
special case of the pulled regime. First, the equation

ut =
1

2
uxx + u(1− u) +

√
u(1− u)

N
W (t, x), (1.28)
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was studied by [BDMM06a] to investigate the effect of demographic fluctuations on the FKPP
equation. Indeed, if one removes the noise term in (1.28), one obtains the FKPP equation intro-
duced by Fisher [Fis37] and independently by Kolmogorov, Petrovskii and Piskounov [KPP37],
to describe the invasion of a stable phase (u ≈ 1) in an unstable phase (u ≈ 0). In this case, it
is well-known [KPP37] that cmin = c0 =

√
2r so that the invasion is pulled.

As explained in [Pan04], the FKPP equation can be seen as the hydrodynamic limit of many
particle systems. However, the finite nature of the physical or biological systems induces fluctu-
ations, that can be modeled by adding multiplicative square root noise to the FKPP equation.
Heuristically, this correction corresponds to the rescaled difference between the limiting PDE and
the particle system in the style of a central limit theorem [MT94]. The addition of this noise term
in Equation (1.28) makes the shape and position of the front fluctuate.

In [BDMM06a], the authors explain how to infer the first order of the correction to the
speed of the noisy fronts (compared to the deterministic fronts) thanks to a particle system.
Since the fluctuations emerge at the leading edge of the front, they do not need to introduce
a saturation rule in the particle system to deduce the correction to the velocity of the wave.
Analysing the mechanisms driving the invasion, they conjecture that the fluctuations appear
over a time scale of order log(N)3. They deduce from this fact that the correction of the speed
c0 is of order log(N)−2. This statement was then rigorously proved in [MMQ10] in the case of
the SPDE (1.28). This correction, that is much greater than expected (1/

√
N) underscores the

large fluctuations in the pulled regime.

In [BDMM06b, BDMM07], the authors analyse a particle system with a fixed population
size to investigate the genealogy at the tip of the invasion front in the pulled regime. The particles
evolve in discrete time and, at each generation, independently give birth to exactly k children,
scattered around the parental location. At the end of each generation, only the N rightmost
individual survive. This set of particles forms a cloud, that does not diffuse and can be described
by a front governed by (1.28) [BDMM07]. In this framework [BDMM06b], they conjectured that
the genealogy of the particles in the cloud is described by a Bolthausen–Sznitman coalescent.
The fact that the correction on the speed of this system is the same as the one for solutions of
(1.28), was rigorously proved in [BG10] (in the case k = 2).

The conjecture on the genealogy stated in [BDMM06b, BDMM07] was proved under slightly
different assumptions in [BBS13]. Indeed, to simplify the analysis, it was proved for a continuous-
time model, in which the constant population size is replaced by a moving wall. More precisely,
they consider a branching Brownian motion with absorption for a suitable choice of drift −µ such
that the population size in the system stays broadly constant. It is the branching property of
the branching Brownian motion with absorption that makes this system analytically tractable.
The drift is then chosen supercritical, matching the correction on the speed of the noisy front
conjectured in [BDMM06a]. More precisely, for each integer N , they consider a dyadic BBM,
with drift −µN , with

µN =

√
1− π2

(log(N) + 3 log log(N))2
, (1.29)

starting, for instance, with N log(N)3 particles at x = 1. With the notations of Theorem 1.2,
they obtain that as N goes to ∞, the processes

(
N̄log(N)3t, t > 0

)
converge in law to Neveu’s

99



Chapter III. Particle systems and semi-pushed fronts

continuous-state branching process. Using the results from [BLG00], they deduce from this fact
that the genealogy of their system is given by a Bolthausen–Sznitman coalescent.

In this work, we are interested in the genealogy of the particles at the tip of the front
for a more general form of reaction term in the limiting PDE. While the study in [BDMM06a,
BDMM06b] concerns FKPP fronts, that are classified as pulled, we focus on forcing terms of the
form (1.3). In this case, the deterministic front of the limit PDE can be either pulled (B 6 2)
or pushed (B > 2).

1.8 Biological motivations : the Allee effects

In terms of population models, a front is pushed, for instance, in the presence of a sufficiently
strong Allee effect, meaning that the particles near the front have a competitive advantage over
particles far away from the front. The strength of the Allee effect is scaled by the parameter B
in Equation (1.1) and by ρ in the particle system defined in Section 1.3.

Allee effects are well explained in [BHK18]: “The presence of conspecifics can be beneficial
due to numerous factors, such as predator dilution, anti predator vigilance, reduction of inbreed-
ing and many others. Then, the individuals in the very tip of the front do not count so much,
because the rate of reproduction decreases when the number density becomes too small. Conse-
quently, the front is pushed in the sense, that its time–evolution is determined by the behavior
of an ensemble of individuals in the boundary region”. In sharp contrast, pulled invasions are
the one for which the growth is maximal at low densities so that the individuals located at the
leading edge pull the invasion. As explained in [Sto76], the consequence of this fact is that “the
speed of the wave is determined by the fecundity of their pioneers”, or, in other words, it only
depends on f ′(0) (see Equation (1.3)). Pushed waves are faster and pushed, or driven, by the
nonlinear dynamic of the bulk (see Section 1.1). Consequently, the speed of the waves depends
on the functional form of the reaction term f .

The shift in the invasion speed is not the only consequence of Allee effects on the population.
Indeed, one can investigate the genealogies of a particle system governed by Equation (1.1). One
expects them to evolve over larger time-scales for pushed fronts than for pulled fronts. In
biological terms, this translates into larger genetic diversity [HN08]. For pulled fronts, the time-
scale is logarithmic in N and the genealogy is described by the Bolthausen–Sznitman coalescent
[BDS08]. If the Allee effect is sufficiently strong, it is natural to assume that the genealogy evolves
over the timescale N and is described by Kingman’s coalescent [BHK18]. This was proved in
the case of strong Allee effects in the context of population genetics [EP20]. Strong Allee effects
are often modeled by bistable reaction diffusion equations, which can not be considered with
reaction terms of the form (1.3) (heuristically, it corresponds to B → ∞). See Chapter 1 for
further details on the classification of Allee effects. The simulations in [BHK18] and the analysis
conducted here describe the intermediate regime between these two extremes: the genealogy is
observed on a time scale Nα−1 for some α ∈ (1, 2) and its structure is given by a Beta-coalescent.

According to [BHK18], pulled and pushed fronts can also be distinguished by the spatial
position of the ancestors of the particles. Taking a particle at random and looking at its ancestor
at a time far in the past, this ancestor will sit at a position at the leading edge of the front (i.e. far
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to the right of the front) in pulled fronts, whereas it will be at the middle of the front in pushed
fronts, where most particles lie [BHK18, Fig. 2]. One can consider the trajectory described by the
ancestors of this particle as the path of an immortal particle, and thus conjecture the following
two distinct behaviours: in pulled fronts, the path of an immortal particle typically spends most
of its time far away from the front, whereas in pushed fronts, it spends most of its time near
the middle of the front, in the vicinity of the other particles. Indeed, in the model studied in
[BBS13], which can be seen as a simplification of the noisy FKPP equation, the prime example of
a pulled front, the path of the immortal particle ressembles in the co-moving frame a Brownian
motion constrained to stay in an interval of size of order logN , and is thus typically a distance
logN away from the front. On the other hand, for pushed fronts, one should expect that the
path of an immortal particle is described in the co-moving frame by a positive recurrent Markov
process independent of the population size.

Another distinction arises when one considers the events which drive the evolutionary dy-
namics, i.e. which cause mergers in the ancestral lines of individuals randomly sampled from the
population. The authors of [BHK18] conjecture here that the distinction does not take place be-
tween pulled and pushed, but between pulled and semi-pushed on the one side and fully pushed
on the other [BHK18, SI, p36]. In fully pushed fronts, the population can be approximated by a
neutral population, with all the organisms at the front. In contrast, the particles located at the
tip of the front that drive the evolutionary dynamics in semi-pushed and pulled waves. This is
consistent with the genealogical structures introduced above. Indeed, in pulled and semi-pushed
fronts we expect the genealogies to be described by coalescents with multiple mergers. In these
coalescents, single individuals replace a fraction of the population during merge events. It is
reasonable to think that for this to happen a particle has to move far away from the front in
order to have time to produce a large number of descendants before being incorporated in the
front again. On the other hand, in fully pushed fronts, we expect the genealogy to be described
by Kingman’s coalescent, indicating that the population behaves like a neutral population where
particles are indistinguishable. Thus, typical particles, i.e. those which are near the front, should
drive the evolutionary dynamics. Of course, it is still possible for particles to move far away from
the front and replace a fraction of the population. But since Kingman’s coalescent only consists
of binary mergers, these events are not visible in the limit and thus have to happen on a longer
time-scale than the time-scale N at which the genealogy evolves.

The characteristics of the three types of fronts are summarised in Table III.1.

1.9 Structure of the chapter

The proof of the result follows the steps detailed in Section 1.5.

First, we examine the density of particles pt in Section 2. We give a detailed description
of the eigenvalues of the PDE (B) for all ρ ∈ (1,+∞) \

{
1 + k2π2

4 , k ∈ N2
}
. This first analysis

motivates the distinction of the pushed and the pulled regime in the particle system. We also
estimate the speed of convergence of the principle eigenvalue to its limit, which provides the time
scale of interest. In Section 2.2, we prove that the density of particles pt is well approximated by
its first term for sufficiently large t. In Section 2.3, we control the Green function of Equation
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Chapter III. Particle systems and semi-pushed fronts

pulled pushed
semi-pushed fully pushed

cooperativity B B ∈ (0, 2] B ∈ (2, Bc) B ∈ (Bc,+∞)

Allee effect weak Allee effect
← no Allee effect strong Allee effect →

(B = 0) (B →∞)

speed of front compared to lin-
earized equation

same faster

path of an immortal particle far to right of front close to front
time-scale of genealogy polylog(N) Nα−1, α ∈ (1, 2) N

evolutionary dynamics driven
by particles at positions. . .

. . . far to right of front . . . close to front

Table III.1: Summary of the characteristics of pulled, semi-pushed and fully pushed fronts.

(B). These estimates are needed to bound the double integral given by the Many-to-two lemma
1.2.

In Section 3, we bound the first and second moments of several quantities (including Z ′t)
which rule the long time behaviour of the system. The first moments is estimated under (Hpsh),
so that the results also hold in the fully pushed regime. The second moments are estimated
under stronger assumptions, that is (Hwp).

In Section 4, we bound the number of particles that hit the additional barrier L. In Section,
5, we estimate the number of descendants of a particle that reach L, after a large time of order 1.

As explained in Section 1.5, we then prove the convergence of the process Z to the CSBP.
Inspired by [MS20], we gather all the estimates established in Sections 3, 4 and 5 to estimate
the Laplace transform of Z. In Section 6, we control the Laplace transform of Z on small time
steps, on the time scale of the CSBP. In Section 7.1, we bring all these small time steps together
to obtain the convergence of the process Z via its Laplace transform and the Euler scheme of
the ODE satisfied by the branching mechanism Ψ of the CSBP. In Section 7.2, we give a more
general version of Theorem 1.2 in the semi pushed regime and deduce it from the convergence of
the process Z.

1.10 Notations

We recall in this section the definition of several quantities depending the parameter ρ of the
model as well as their dependences. As outlined in Section 1.5, we denote by λ1 the maximal
eigenvalue of the operator

Tv =
1

2
v′′ +

ρ− 1

2
1[0,1](x)v,

on the domainDL = {v ∈ C1((0, L))∩C2((0, 1)∪(1, L)) : v(0) = v(L) = 0, limx→1 Tu(x) exists}.
Hence, λ1 depends on L and we prove (this is the object of Section 2.1) that for ρ > ρ1, λ1 in-
creases with L and converges to a positive limit λ∞1 as L goes to ∞.
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Section 2. Branching Brownian motion in an interval: the density of particles

In this case, we write α, β, γ and µ to refer to the following quantities:

µ =
√

1 + 2λ∞1 , β =
√

2λ∞1 , α =
µ+

√
µ2 − 1

µ−
√
µ2 − 1

=
µ+ β

µ− β , and γ =
√
ρ− 1− 2λ∞1 , (1.30)

to emphasize that they do not depend on L, but only on ρ.

2 BBM in an interval: the density of particles

2.1 Spectral analysis

Let L > 1, ρ ∈ (1,∞) \ {1 + k2 π2

4 , k ∈ N} and consider the differential operator

Tv(x) =
1

2
v′′(x) +

ρ− 1

2
v(x)1x61, (2.1)

on the domainDL = {v ∈ C1((0, L))∩C2((0, 1)∪(1, L)) : v(0) = v(L) = 0, limx→1 Tu(x) exists}.
We are interested in the spectrum of the operator T , that is the set

{λ ∈ C : Tv = λv has a non-zero solution v ∈ DL}.

According to Sturm-Liouville theory (see Theorem 4.3.1 from [Zet10]), this set is infinite, count-
able and it has no finite accumulation point. Besides, it is upper bounded and all the eigenvalues
are simple and real so that they can be numbered

λ1 < λ2 < ... < λn → −∞, as n→ +∞.

The sequence (λi)i∈N is described in Lemma 2.1. In Lemma 2.2, we compute an asymptotic
expansion of the positive eigenvalues as L → +∞. For L sufficiently large, the set of positive
eigenvalues is not empty as long as ρ > 1 + π2

4 . In Lemma 2.3 and Corollary 2.1, we give an
explicit formula for the limit of the L2−norm and the speed of convergence of the principal
eigenvalue λ1, which will be needed in Section 6.

We first introduce some notations that will be used throughout this section. Denote by

S(x, λ) =


sinh(

√
λx)√
λ

∀(x, λ) ∈ [0,+∞)× (0,+∞)

sin(
√
−λx)√
−λ ∀(x, λ) ∈ [0,+∞)× (−∞, 0)

x ∀(x, λ) ∈ [0,+∞)× {0}.
=

sinh(
√
λx)√
λ

∀(x, λ) ∈ [0,∞)× R.

(2.2)
Similarly, we define C(x, λ) = cosh

(√
λx
)
and T (x, λ) = S(x,λ)

C(x,λ) for all (x, λ) ∈ [0,+∞)× R.

Lemma 2.1. There exists L0 = L0(ρ), such that the following holds for all L ≥ L0: Let K ∈ N
be the largest positive integer such that

ρ− 1 >

(
K − 1

2

)2

π2, (2.3)
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and K = 0 otherwise. Then, for all 1 6 k 6 K, λk is the unique solution of

T (1, 2λ+ 1− ρ) = T (L− 1, 2λ) , (�)

such that,

(ρ− 1− k2π2 ∨ 0) < 2λk < ρ− 1−
(
k − 1

2

)2

π2, (2.4)

Furthermore, λk < 0 for all k > K. More precisely, set for all i ≥ 0:

Ai =
1

2

((
K +

1

2
+ i

)2

π2 + 1− ρ
)

(2.5)

Ni =

⌊
(L− 1)

π

√
Ai −

1

2

⌋
+ i (2.6)

and A−1 = N−1 = 0. Also, set a0 = 0 and

aj =

(
j − 1

2

)2
2(L− 1)2

π2, j ≥ 1. (2.7)

Then, for every i ≥ 0 and every j ∈ N such that Ni−1 < j ≤ Ni, λK+j is the unique solution of
(�) in the interval

(−Ai,−Ai−1) ∩ (−aj−i+1,−aj−i). (2.8)

Finally, for all k ∈ N, the eigenvector vk associated with λk is unique up to a multiplicative
constant and is given by

vk(x) =

{
S(x, 2λk − ρ− 1)/S(1, 2λk − ρ− 1) x ∈ [0, 1],

S(L− x, 2λk)/S(L− 1, 2λk) x ∈ [1, L].
(2.9)

Proof. For λ ∈ R, consider the system (C)
v′′(x) = (2λ+ 1− ρ)v(x) x ∈ [0, 1],

v′′(x) = 2λv(x) x ∈ [1, L],

v(0) = v(L) = 0.

(C)

First, note that if (C) has a non-zero solution, then 2λ < ρ− 1. Indeed, if there exists a function
v solution of (C) for some λ > (ρ− 1)/2, it is of the form

v(x) =

{
A sinh

(√
2λ+ 1− ρ x

)
x ∈ [0, 1],

B sinh
(√

2λ (L− x)
)

x ∈ [1, L],
(2.10)

for some A,B ∈ R. Thus, λ1 > ρ−1
2 and v1 satisfies (2.10). Yet, v1 > 0 on [0, L] (see The-

orem 4.3.1 in [Zet10]), hence, A and B are both positive. Besides, since v1 is continuous and
differentiable at 1, we have

A
√

2λ+ 1− ρ cosh(
√

2λ+ 1− ρ) = −B
√

2λ cosh(
√

2λ(L− 1)).

104



Section 2. Branching Brownian motion in an interval: the density of particles

25 20 15 10 5 0
10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0
L = 10, = 9

= 0
= ( 1)/2
= A1

1

25 20 15 10 5 0
10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0
L = 30, = 9

= 0
= ( 1)/2
= A1

1

Figure III.3: Location of the eigenvalues of the differential operator T (see Equation (2.1))
for ρ = 4 and different values of L. The blue line represents the graph of the left-hand term
in Equation (�). The red line corresponds to the graph the right-hand term in Equation (�).
Thus, the eigenvalues are located at the intersections of the blue and red solid lines. The
integer K corresponds to the number of positive eigenvalues. Their limits are isolated. Note
that the negative eigenvalues tend to a continuous spectrum. For ρ = 9, we have K = 1.

Thus, A = B = 0 and v1 is constant equal to 0. Similarly, one can prove that λ1 6= ρ−1
2 .

Therefore,

λk <
ρ− 1

2
, ∀k ∈ N.

If v is a solution of (C) for some 0 < λ < ρ−1
2 , there exist A,B ∈ R such that

v(x) =

{
A sin

(√
ρ− 1− 2λx

)
x ∈ [0, 1],

B sinh
(√

2λ (L− x)
)

x ∈ [1, L].

Since v is continuous and differentiable at 1, λ satisfies the following system:{
A sin(

√
ρ− 1− 2λ) = B sinh(

√
2λ(L− 1)),

A
√
ρ− 1− 2λ cos(

√
ρ− 1− 2λ) = −B

√
2λ cosh(

√
2λ(L− 1)).

If A = 0 (resp. B = 0), the second equation of the system implies that B = 0 (resp. A = 0), so
that v is not an eigenfunction. Hence, we can assume without loss of generality that A 6= 0 and
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Figure III.4: Location of the eigenvalues of the differential operator T (see Equation (2.1))
for ρ = 30 and different values of L. The blue line represents the graph of the left-hand term
in Equation (�). The red line corresponds to the graph the right-hand term in Equation (�).
Thus, the eigenvalues are located at the intersections of the blue and red solid lines. The
integer K corresponds to the number of positive eigenvalues. Their limits are isolated. Note
that the negative eigenvalues tend to a continuous spectrum. For ρ = 30, we have K = 2.

B 6= 0. Therefore, λ is a solution of the equation

− tan(
√
ρ− 1− 2λ)√

ρ− 1− 2λ
=

tanh(
√

2λ(L− 1))√
2λ

. (2.11)

We now prove that Equation (2.11) has exactly K solutions in
(

0, ρ−1
2

)
, for L large enough.

Define
f(x) =

tan(x)

x
, and g(x) =

tanh(x)

x
. (2.12)

For x ∈ (0, π2 ) ∪
(
∪k∈N(k π2 , (k + 1)π2 )

)
,

f ′(x) =
2x− sin(2x)

2x2 cos(x)2
> 0

since sin(2x) < 2x. Besides, f(x) < 0 if and only if x ∈ ∪k∈N(k π2 , kπ) and f(x) → 0 as x → kπ
and f(x)→ +∞ as x→ (k + 1)π2

−. Moreover, for x ∈ (0,∞),

g′(x) =
2x− sinh(2x)

x2 cosh(x)2
< 0
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since sinh(2x) > 2x. Note that g(x) > 0 for all x ∈ (0,∞) g(x)→ 0 as x→∞ and g(x)→ 1 as
x→ 0.

Therefore, on each interval (
(

1
2(ρ− 1− (k + 1

2)2π2), 1
2(ρ− 1− (k − 1

2)2π2)
)
, k ∈ {1, ...,K−

1}, the function λ 7→ −f(
√
ρ− 1− 2λ) is increasing and

−f(
√
ρ− 1− 2λ) = 0, λ =

1

2
(ρ− 1− k2π2)

−f(
√
ρ− 1− 2λ)→ +∞, λ→ 1

2

(
ρ− 1−

(
k − 1

2

)2

π2

)−
.

The function λ 7→ g(
√

2λ(L−1)) is positive and decreasing on (0,∞). Hence, Equation (2.11) has
a unique solution in each interval (

(
1
2(ρ− 1− k2π2), 1

2(ρ− 1− (k − 1
2)2π2)

)
, k ∈ {1, ...,K − 1}.

It has no solution in ∪K−1
k=1 (

[
1
2(ρ− 1− (k + 1

2)2π2), 1
2(ρ− 1− k2π2)

]
since λ 7→ g(

√
2λ(L− 1)) is

continuous and positive on each closed interval and for k ∈ {1, ...,K − 1}, we have

−f(
√
ρ− 1− 2λ) 6 0, λ ∈ ∪K−1

k=1

(
1

2

(
ρ− 1−

(
k +

1

2

)2

π2

)
,
1

2
(ρ− 1− k2π2)

)

−f(
√
ρ− 1− 2λ)→ −∞, λ→ 1

2

(
ρ− 1−

(
k +

1

2

)2

π2

)+

,

−f(
√
ρ− 1− 2λ)→ +∞, λ→ 1

2

(
ρ− 1−

(
k +

1

2

)2

π2

)−
.

Then, note that for sufficiently large L, Equation (2.11) has a unique solution in the interval
(0 ∨ 1

2(ρ − 1 − K2π2), 1
2(ρ − 1 − (K − 1

2)2π2). Indeed, the function λ 7→ −f(
√
ρ− 1− 2λ) is

positive, increasing and

−f(
√
ρ− 1− 2λ)→ +∞, λ→ 1

2

(
ρ− 1−

(
K − 1

2

)2

π2

)
,

−f(
√
ρ− 1− 2λ)→ 0 ∨

(
−tan

√
ρ− 1√

ρ− 1

)
, λ→ 0 ∨ 1

2
(ρ− 1−K2π2).

Besides, λ 7→ g(
√

2λ(L − 1)) is positive, decreasing and g(
√

2λ(L − 1)) → L − 1 as λ → 0.
Therefore, if L > 1− tan

√
ρ−1√

ρ−1
, Equation (2.11) has one solution in (0 ∨ 1

2(ρ− 1−K2π2), 1
2(ρ−

1− (K − 1
2)2π2)). If it exists, this solution is unique.

There is no solution of (2.11) in (0, 1
2(ρ− 1−K2π2)] since the left-hand side term in (2.11)

is negative on this set. Therefore, for L > 1 − tan
√
ρ−1√

ρ−1
, we found exactly K solutions of (2.11)

in (0, ρ−1
2 ). Conversely, one can check that these solutions are eigenvalues of T , corresponding

to eigenvectors defined by (2.9).

Let us now consider the system (C) for λ = 0. A solution of this system is of the form

v(x) =

{
C sin

(√
ρ− 1x

)
sin
(√
ρ− 1

)−1
x ∈ [0, 1],

C L−x
L−1 x ∈ [1, L],
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for some C ∈ R. Remark that this function is not differentiable at 1 if L > 1− tan(
√
ρ−1)√

ρ−1
so that

0 is not an eigenvalue of T .

If (C) has a non-zero solution v associated with some λ < 0, there exist A,B ∈ R such that

v(x) =

{
A sin

(√
ρ− 1− 2λx

)
x ∈ [0, 1],

B sin
(√
−2λ (L− x)

)
x ∈ [1, L].

In the same way as for Equation (2.11), we get that λ has to satisfy the following equation:

− tan(
√
ρ− 1− 2λ)√

ρ− 1− 2λ
=

tan(
√
−2λ(L− 1))√
−2λ

. (2.13)

The function λ 7→ (L − 1)f(
√
−2λ(L − 1)) is defined on ∪∞j=0(−aj+1,−aj), with (aj) defined

in (2.7). In view of the above, λ 7→ (L − 1)f(
√
−2λ(L − 1)) is decreasing on each interval

(−aj+1,−aj). Similarly, the function λ 7→ −f(
√
ρ− 1− 2λ) is defined on ∪∞i=0(−Ai,−Ai−1),

where the sequence (Ai) is defined by Equation (2.5), and it is increasing on each interval
(−Ai,−Ai−1), i ∈ N. Besides, for all i > 0 and j > 1,

lim
λ→−aj
x>−aj

(L− 1)f(
√
−2λ(L− 1)) = +∞,

lim
λ→−aj
x<−aj

(L− 1)f(
√
−2λ(L− 1)) = −∞,

lim
λ→−Ai
x<−Ai

−f(
√
ρ− 1− 2λ) = +∞,

lim
λ→−Ai
x>−Ai

−f(
√
ρ− 1− 2λ) = −∞.

Also note thatNi−Ni−1+1 (see Equation (2.6)) is the number of complete intervals ((−aj+1,−aj))j∈N

included in the interval (−Ai+1,−Ai), i > 0. Therefore, Equation (2.13) has a unique solution
in the interval (−Ai,−Ai−1) ∩ (−aj−i+1,−aj−i), for all Ni−1 < j ≤ Ni, i ∈ N0.

Finally, remark that

lim
λ→0
λ<0

(L− 1)f(
√
−2λ(L− 1)) = L− 1,

lim
λ→0
λ<0

−f(
√
ρ− 1− 2λ) = −tan

√
ρ− 1√

ρ− 1
.

Hence, Equation (2.13) has no solution in (−a1,−a0) if L > 1− tan
√
ρ−1√

ρ−1
.

Again, one can check that all these solutions are eigenvalues, associated with the eigenvectors
given by (2.9).

The position of the eigenvalues for different values of L and ρ are illustrated in Figures
III.3 and III.4. In the following lemma, we compute the speed of convergence of the positive
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Section 2. Branching Brownian motion in an interval: the density of particles

eigenvalues to their limits. The speed of convergence of the maximal eigenvalue indicates the
time scale of interest.

Lemma 2.2 (Asymptotic expansions of the positive eigenvalues). Assume (Hpsh) holds. Let
K ∈ N be the largest positive integer such that

ρ− 1 >

(
K − 1

2

)2

π2.

Then, for all 1 6 k 6 K, λk is decreasing and tends to the unique solution λ∞k of

− tan(
√
ρ− 1− 2λ)√

ρ− 1− 2λ
=

1√
2λ

(2.14)

located in the interval (
ρ− 1− k2π2

2
∨ 0,

1

2

(
ρ− 1−

(
k − 1

2

)2

π2

))
,

as L→∞. Besides, for all 1 6 k 6 K, there exists a constant Ck(ρ) > 0 such that

λk = λ∞k − Ck(ρ)e−2
√

2λ∞k L + o
(
e−2
√

2λ∞k L
)
,

where β from Equation (1.30).

Proof. Recall from Lemma 2.1 that for 1 6 k 6 K, λk is the unique solution of Equation (�):

tan(
√
ρ− 1− 2λ)√

ρ− 1− 2λ
= −tanh(

√
2λ(L− 1))√

2λ

located in the interval (1
2(ρ−1−k2π2∨0), 1

2(ρ−1−
(
k − 1

2

)2
π2)). Besides, L 7→ λk is an increasing

function. Indeed, recall from the proof of Lemma 2.1 that the function λ 7→ −f(
√
ρ− 1− 2λ)

is increasing on each interval (1
2(ρ− 1− k2π2 ∨ 0), 1

2(ρ− 1−
(
k − 1

2

)2
π2)) and does not depend

on L. Yet, for L > 1, the function λ 7→ (L − 1)g(
√

2λ(L − 1)) is decreasing on (0,∞) and for
λ > 0, the function L 7→ (L− 1)g(

√
2λ(L− 1)) is increasing on [1,+∞). Thus, L 7→ λk(L) is an

increasing function for all 1 6 k 6 K. Since it is bounded by 1
2(ρ−1−

(
k − 1

2

)2
π2), it converges

to some limit λ∞k ∈
(

1
2(ρ− 1− k2π2 ∨ 0), 1

2(ρ− 1−
(
k − 1

2

)2
π2)
]
.

If λ∞k = 1
2(ρ−1−

(
k − 1

2

)2
π2), the left-hand term in (2.11) tends to +∞ as L→∞ whereas

the right-hand term tends to (2λ∞k )−
1
2 . Thus,

λ∞k ∈
(

1

2
(ρ− 1− k2π2 ∨ 0),

1

2
(ρ− 1−

(
k − 1

2

)2

π2)

)
.

Then, since the right-hand side and left-hand side terms in (2.11) are continuous on each interval
(1

2(ρ− 1− k2π2 ∨ 0), 1
2(ρ− 1−

(
k − 1

2

)2
π2)), we obtain that λ∞k is a solution of Equation (2.14).

Moreover one can show that this solution is unique (see proof of Lemma 2.1).
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Let us now compute an asymptotic expansion of λk as L→∞. From now, we assume that
k = 1 but similar computations can be conducted for k ∈ J2,KK. Let us recall the definitions
of β and γ from Equation (1.30). First, note that β > 0 since λ∞1 > 0. Then, remark that
cos(γ) < 0. Indeed, we know thanks to Lemma 2.2 that γ ∈

(
π
2 , π

)
and that

sin(γ) = −γ
β

cos(γ).

Hence, we have cos(γ) = −β
γ sin(γ) 6 −1

2
β
γ < 0 if γ ∈

(
π
2 ,

3π
4

]
and cos(γ) 6 −1

2 if γ ∈
(

3π
4 , π

)
.

Let us now rewrite (�) as√
2λ1

ρ− 1− 2λ1
tan

(√
ρ− 1− 2λ1

)
= − tanh

(√
2λ1(L− 1)

)
, (2.15)

and define h = λ1 − λ∞1 . As L→∞, h→ 0, so that√
2λ1

ρ− 1− 2λ1
=

√
2(λ∞1 + h)

ρ− 1− 2(λ∞1 + h)
=

(
2λ∞1

ρ− 1− 2λ∞1

)1/2
(

1 + h
λ∞1

1− 2h
ρ−1−2λ∞1

)1/2

=
β

γ

(
1 +

2h

β2

)1/2(
1− 2h

γ2

)1/2

=
β

γ

(
1 +

h

β2
+ o(h)

)(
1 +

h

γ2
+ o(h)

)
=

β

γ

(
1 +

(
γ2 + β2

γ2β2

)
h+ o(h)

)
,

and

tan(
√
ρ− 1− 2λ1) = tan

(
γ − h

γ
+ o(h)

)
= tan(γ)− h

γ cos(γ)2
+ o(h).

Then, since tan(γ) = − γ
β , we have√

2λ1

ρ− 1− 2λ1
tan(

√
ρ− 1− 2λ1)

=
β

γ

(
tan(γ) +

(
γ2 + β2

γ2β2
tan(γ)− 1

γ cos(γ)2

)
h+ o(h)

)
= −1− 1

γ2β2 cos(γ)2

(
γ

β
(γ2 + β2) cos(γ)2 + γβ2

)
h+ o(h)

= −1− 1

γ2β2 cos(γ)2

(
(γ2 + β2) cos(γ)2 + β3

)
h+ o(h)

= −1− (ρ− 1) cos(
√
ρ− 1− 2λ∞1 )2 + (2λ∞1 )3/2

2λ∞1 (ρ− 1− 2λ∞1 ) cos(
√
ρ− 1− 2λ∞1 )2

h+ o(h).

Besides, as x→∞
tanh(x) = 1− 2e−2x + o(e−2x).

Thus,
tanh(

√
2λ1(L− 1)) = 1− 2e−2

√
2λ1(L−1) + o(e−2

√
2λ1(L−1)).
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Combined with Equation (2.14), this implies that

2e−2
√

2λ1(L−1) + o(e−2
√

2λ1(L−1)) =
(ρ− 1) cos(

√
ρ− 1− 2λ∞1 )2 + (2λ∞1 )3/2

2λ∞1 (ρ− 1− 2λ∞1 ) cos(
√
ρ− 1− 2λ∞1 )2

h+ o(h). (2.16)

Therefore we get that Lh→ 0 as L→ +∞ and that

e−2
√

2λ1(L−1) = e
−2β

(
1+ 1

2
h
β2 +o(h)

)
(L−1)

= e−2β(L−1)eo(1) = e−2β(L−1) + o(e−2β(L)).

Finally, according to Equation (2.16), we have

λ1 − λ∞1 = −2
2λ∞1 (ρ− 1− 2λ∞1 ) cos(

√
ρ− 1− 2λ∞1 )2

(ρ− 1) cos(
√
ρ− 1− 2λ∞1 )2 + (2λ∞1 )3/2

e−2β(L−1)) + o(e−2βL),

with
2λ∞1 (ρ− 1− 2λ∞1 ) cos(

√
ρ− 1− 2λ∞1 )2

(ρ− 1) cos(
√
ρ− 1− 2λ∞1 )2 + (2λ∞1 )3/2

> 0,

since cos(
√
ρ− 1− 2λ∞1 ) = cos(γ) > 0.

Lemma 2.3 (L2-norm of the first eigenvector). Assume (Hpsh) holds. As L→∞,

‖v1‖2 →
1

2

(ρ− 1) cos(
√
ρ− 1− 2λ∞1 )2 + (2λ∞1 )3/2√

2λ∞1 (ρ− 1− 2λ∞1 ) cos(
√
ρ− 1− 2λ∞1 )

.

Proof. The L2 norm of the function v1 is given by

‖v1‖2 =

∫ L

0
v1(x)2dx =

1− sin(2
√
ρ−1−2λ1)

2
√
ρ−1−2λ1

2 sin(
√
ρ− 1− 2λ1)2

+

sinh(2
√

2λ1(L−1))

2
√

2λ1
− (L− 1)

2 sinh(
√

2λ1(L− 1))2
.

One can show that the first term of this sum tends to 1
2 sin(γ)2

(
1− sin(2γ)

2γ

)
and the second one to

1
2β as L→∞. Besides, we know thanks to Equation (2.14) that sin(γ) = − γ

β cos(γ). Therefore,

1

2 sin(γ)2

(
1− sin(2γ)

2γ

)
+

1

2β
=

1

2

β2

γ2

1− sin(γ) cos(γ)
γ

cos(γ)2
+

1

2β


=

1

2

β2

γ2

1 + cos(γ)2

β

cos(γ)2

+
1

2β

=
1

2

β

γ2

(
β + cos(γ)2

cos(γ)2

)
+

1

2β

=
1

2βγ2 cos(γ)2

(
(γ2 + β2) cos(γ)2 + β3

)
=

1

2

(ρ− 1) cos(
√
ρ− 1− 2λ∞1 )2 + (2λ∞1 )3/2√

2λ∞1 (ρ− 1− 2λ∞1 ) cos(
√
ρ− 1− 2λ∞1 )

.

111



Chapter III. Particle systems and semi-pushed fronts

Corollary 2.1 (Asymptotic expansion of the maximal eigenvalue). Assume (Hpsh) holds. There-
fore, we have

λ1 = λ∞1 −
β

lim
L→∞

‖v1‖2
e−2β(L−1) + o(e−2βL), (2.17)

as L→∞.

This expansion yields the following remark, that will be extensively used throughout this
paper.

Remark 2.1. Assume (Hpsh) holds. There exist C1, C2 > 0 such that for L large enough,

C1e
βL 6 sinh(

√
2λ1(L− 1)) 6 C2e

βL.

More precisely, there exists a positive function ηL such that ηL → 0 as L→∞ and

sinh(
√

2λ1(L− 1)) =
1

2
(1 + o(1))eβ(L−1).

One can also deduce the following remark from the fact λ1 ↗ λ∞1 and that γ ∈
(
π
2 , π

)
.

Remark 2.2. Assume (Hpsh) holds. Therefore, there exists a positive constant C > 0 such that,
for L sufficiently large,

sin(
√
ρ− 1− 2λ1)√
ρ− 1− 2λ1

> C.

Indeed, the left-hand side term increases to sin(γ)
γ = − γ

β cos(γ) as L↗ +∞. Besides, γ ∈ (π2 , π)

and cos(γ) = −β
γ sin(γ) 6 −1

2
β
γ < 0 if γ ∈

(
π
2 ,

3π
4

]
and cos(γ) 6 −1

2 if γ ∈
(

3π
4 , π

)
.

The following lemma compares the eigenvectors (vk)k>2 with the eigenvector associated with
the maximal eigenvalue λ1 in the pushed regime. The proof of this result is given in Appendix B.

Lemma 2.4. Assume (Hpsh) holds. Let K the largest integer such that

ρ− 1 >

(
K − 1

2

)2

π2.

There exist C0, C1, C2, C3, C4 > 0 such that for L large enough and x ∈ [0, L], we have

‖v1‖ > C0,

|vk(x)|
‖vk‖

6 C1e
βL v1(x)

‖v1‖
, k ∈ {2, ...,K},

‖vk‖2 > C2, k ∈ {2, ...,K},
|vk(x)|
‖vk‖

6 C3

√
ρ− 1− 2λk e

βL v1(x)

‖v1‖
, k > K,

‖vk‖2 >
C4

sin(
√−2λk(L− 1))2 ∧ sin(

√
ρ− 1− 2λk)2

, k > K.
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Section 2. Branching Brownian motion in an interval: the density of particles

Remark 2.3. If (Hwp) holds, then K = 1. Indeed, if (Hwp) holds, λ∞1 < 1
16 (see Section 1.5)

and according to Lemma 2.1, we have

ρ < 1 + π2 + 2λ1 < 1 + π2 + 2λ∞1 <
9

8
+ π2 (≈ 11),

since λ1 increases with respect to L. Therefore, ρ <
(
2− 1

2

)2
π2 = 9

4π
2 (≈ 22) and K < 2.

2.2 Heat kernel estimates

Consider a dyadic branching Brownian motion with branching rate r(x) and particles killed at
both 0 and L (and no drift). Suppose that there is initially a single particle at x in the system.
Recall from the Many-to-one lemma 1.1 and the definition of qt (see Equation (B)) that the
density of particles in the system at time t > 0 is given by

qt(x, y) =

∞∑
k=1

1

‖vk‖2
eλktvk(x)vk(y), (2.18)

where the functions (vk) are defined by Equation (2.9). We also recall that qt is the density of
the BBM in the sense that the expected number of particles in the Borel subset B ⊂ (0, L) at
t is

∫
B qt(x, y)dy. In Lemma 2.5, we prove that the first term of the sum in Equation (2.18) in

dominant when t� L, using the estimates given in Lemma 2.4. From this perspective, we define

ut(x, y) =
1

‖v1‖2
eλ1tv1(x)v1(y). (2.19)

In what follows, C is a positive constant whose value may change from line to line. The following
result holds under assumption (Hpsh) and the computations conducted in the proof are valid as
long as K > 1.

Lemma 2.5. Assume (Hpsh) holds. Therefore, there exists a constant C0 > 0 such that, for
t > 1, L large enough and x, y ∈ [0, L], we have

|qt(x, y)− ut(x, y)| 6M(t, L)ut(x, y), (2.20)

with
M(t, L) = C0

(
e2βL− 5

8
π2t + Le2βL− 1

2
λ∞1 t
)
. (2.21)

In particular, there exist C1, C2 > 0 such that for L sufficiently large and t > C2L,

|qt(x, y)− ut(x, y)| 6 e−C1Lut(x, y). (2.22)

Proof. First, note that

qt(x, y)− ut(x, y) =

K∑
k=2

1

‖vk‖2
eλktvk(x)vk(y) +

∞∑
k=K+1

1

‖vk‖2
eλktvk(x)vk(y) := S1 + S2. (2.23)

113



Chapter III. Particle systems and semi-pushed fronts

Besides, recall from Lemma 2.1 that for L large enough and k > 2,

λ1 − λk >
{

5
8π

2, if K > 2,
λ∞1
2 if K = 1.

(2.24)

According to Lemma 2.4, for L large enough and k ∈ {2, ...,K}, we have

1

‖vk‖2
|vk(x)vk(y)| 6 Ce2βL−λ1tut(x, y).

Therefore, using (2.24), we get that

|S1| 6 CKe2βL− 5
8
π2tut(x, y). (2.25)

Let us now estimate the quantity S2 from (2.23). According to Lemma 2.4, for L large enough
and k > K, we have

1

‖vk‖2
|vk(x)vk(y)| 6 Ce2βL−λ1t(ρ− 1− 2λk)ut(x, y). (2.26)

Besides, we know thanks to Lemma 2.1 that for i ≥ 0 and Ni−1 < j 6 Ni, we have

−Ai < λK+j < −Ai−1.

Hence,

S3 :=

∞∑
k=K+1

(ρ− 1− 2λk)e
(λk−λK+1)t =

∞∑
i=0

Ni∑
j=Ni−1+1

(ρ− 1− 2λK+j)e
(λK+j−λK+1)t(2.27)

6
∞∑
i=0

Ni∑
j=Ni−1+1

(ρ+ 2Ai)e
0∧(A0−Ai−1)t =

∞∑
i=0

(Ni −Ni−1)(ρ+ 2Ai)e
0∧(A0−Ai−1)t.

In addition, we know (see Lemma 2.1) that

ρ+ 2Ai =

(
K +

1

2
+ i

)2

,

Ni −Ni−1 =

⌊
(L− 1)

π

√
Ai −

1

2

⌋
+ i−

⌊
(L− 1)

π

√
Ai−1 −

1

2

⌋
− (i− 1)

6
L− 1

π

(√
Ai −

√
Ai−1

)
+ 2,√

Ai −
√
Ai−1 =

Ai −Ai−1√
Ai +

√
Ai−1

6
Ai −Ai−1√

A0
,

Ai −Ai−1 =
1

2
(K + 1 + i) 6 C(i+ 1).

for all i > 1. For i = 0, N0 −N−1 = L−1
π

√
A0. Therefore, for all i ∈ N0, we have

Ni −Ni−1 6 CL(i+ 1). (2.28)
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Moreover, for all i ∈ N,

2(A0 −Ai−1) =

(
K +

1

2

)2

−
(
K +

1

2
+ i− 1

)2

= −2(i− 1)

(
K +

1

2

)
− (i− 1)2

6 −(i− 1)2. (2.29)

Combining Equations (2.27), (2.28) and (3.12), we obtain that for sufficiently large L and t > 1,

S3 6 CL

(
1 +

∞∑
i=1

(i+ 1)

(
K +

1

2
+ i

)2

e−
1
2

(i−1)2t

)
6 CL. (2.30)

Therefore, this estimate combined with Equations (2.24) and (2.26) gives that for L large enough
and t > 1 , we have

|S2| 6 Ce2βLe(λK+1−λ1)tS3 6 CLe
2βL−λ

∞
1
2
tut(x, y). (2.31)

Finally, Lemma 2.5 ensues from Equations (2.25) and (2.31).

Remark 2.4. Under Assumption (Hwp), the sum S1 in Equation (2.23) is empty and one can
conclude using (2.31).

2.3 The Green function

In this section, we assume that (Hpsh) holds and we consider a dyadic branching Brownian motion
with branching rate r(x), drift −µ with

µ =
√

1 + 2λ∞1 ,

in which particles killed at 0 and L. We recall from Many-to-one lemma 1.1 and Equation (1.18)
that the density of this BMM is given by

pt(x, y) = eµ(x−y)e
1
2
−µ

2

2
tqt(x, y) = eµ(x−y)e−λ

∞
1 tqt(x, y), (2.32)

where qt is defined in Equation (2.18). This section is aimed at controlling the integral of the
density ∫ t

0
ps(x, y)dy. (2.33)

Indeed, the leading order term in the formula given by the Many-to-two Lemma 1.2 will be the
double integral. More precisely, we will have to estimate the quantity∫ t

0

∫ L

0
ps(x, y) (eµyv1(y))2 dyds =

∫ L

0
(eµyv1(y))2

[∫ t

0
ps(x, y)ds

]
dy.

To this end, we will introduce the Green function associated to the operator L = 1
2∆+µ∇+r(x)

on the domain DL = {v ∈ C1([0, L]) : v(0) = v(L) = 0}. Let us first introduce the Green function
H associated to the operator T from (2.1). Following the definition given in [Pin95], if Bt is a
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one-dimensional Brownian motion without drift starting from x and τ = inf{t : Bt /∈ (0, L)},
then for all bounded measurable functions g,

E

[∫ τ

0
exp

(∫ t

0
r(Bu)− 1

2
du

)
g(Bt)

]
=

∫ L

0
H(x, y)g(y)dy.

By the Many-to-one Lemma 1.1, this definition is equivalent to

H(x, y) =

∫ ∞
0

qt(x, y) dt.

Similarly, one can define the Green function associated to the operator T − λ,

Hλ(x, y) =

∫ ∞
0

e−λtqt(x, y) dt.

Therefore, we know thanks to Equation (1.18), that the Green function associated to the operator
L− ξ is given by

Gξ(x, y) =

∫ ∞
0

e−ξtpt(x, y) dt

= eµ(x−y)

∫ ∞
0

e−(λ∞1 +ξ)tqt(x, y) dt

= eµ(x−y)Hλ∞1 +ξ(x, y).

A first idea to estimate (2.33) would be to bound it by G0(x, y) as in [BBS13]. However, to get
a finer estimate of (2.33), that depends on t, we rather consider the function Gξ and point out
that ∫ t

0
ps(x, y)ds =

∫ ∞
0

ps(x, y)1s∈[0,t]ds 6
∫ ∞

0
e
t−s
t ps(x, y)ds 6 eG 1

t
(x, y). (2.34)

Therefore, we will first explicitly compute the function Gξ following the method introduced in
[BS12, Chapter II,11.]. Then, in Lemmas 2.7 and 2.6, we bound Gξ for different values of ξ.
Equation (2.34) suggests that ξ is a small positive number, which tends to 0 as t→∞.

We now introduce some notations that will be used in the following lemmas. For ξ > 0, we
set

f(ξ) =
√

2ξ sin(
√
ρ− 1− 2ξ) +

√
ρ− 1− 2ξ cos(

√
ρ− 1− 2ξ),

g(ξ) =
√

2ξ sin(
√
ρ− 1− 2ξ)−

√
ρ− 1− 2ξ cos(

√
ρ− 1− 2ξ), (2.35)

ωξ = f(ξ)e
√

2ξ(L−1) + g(ξ)e−
√

2ξ(L−1).

We recall that λ∞1 is the unique solution of Equation (2.14) such that

γ =
√
ρ− 1− 2λ∞1 ∈

(π
2
, π
)
.

Therefore, f(λ∞1 ) = 0 and g(λ∞1 ) > 0. Furthermore,

f ′(λ∞1 ) = (1 +
√

2λ∞1 )

(
sin(

√
ρ− 1− 2λ∞1 )√

2λ∞1
− cos(

√
ρ− 1− 2λ∞1 )√

ρ− 1− 2λ∞1

)

= −(1 +
√

2λ∞1 )(ρ− 1)

2λ∞1
√
ρ− 1− 2λ∞1

cos(
√
ρ− 1− 2λ∞1 ) > 0.
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Let ϕξ and ψξ be solutions of

Tu =
1

2
u′′ +

(
r(x)− 1

2

)
u = ξu,

such that ϕξ(0) = 0 and ψξ(L) = 0. If 0 < ξ < ρ−1
2 , there exists some constants A,B,C,D such

that

ϕξ(x) =

{
sin(
√
ρ− 1− 2ξ x) x ∈ [0, 1]

Ae
√

2ξx +Be−
√

2ξx x ∈ [1, L],

and

ψξ(x) =

{
C cos(

√
ρ− 1− 2ξx) +D sin(

√
ρ− 1− 2ξx) x ∈ [0, 1]

sinh(
√

2ξ(L− x)) x ∈ [1, L].

Since ψξ and ϕξ are continuous and differentiable at 1, the constants A and B satisfy{
sin(
√
ρ− 1− 2ξ) = Ae

√
2ξ +Be−

√
2ξ

√
ρ− 1− 2ξ cos(

√
ρ− 1− 2ξ) =

√
2ξ(Ae

√
2ξ −Be−

√
2ξ),

and similarly, the constants C and D are solutions of{
C cos(

√
ρ− 1− 2ξ) +D sin(

√
ρ− 1− 2ξ) = sinh(

√
2ξ(L− 1))√

ρ− 1− 2ξ(−C sin(
√
ρ− 1− 2ξ +D cos(

√
ρ− 1− 2ξ) = −√2ξ cosh(

√
2ξ(L− 1)).

Hence, we have

A = e−
√

2ξ

2

(
sin(
√
ρ− 1− 2ξ) +

√
ρ−1−2ξ√

2ξ
cos(
√
ρ− 1− 2ξ)

)
= 1

2
√
ξ
f(ξ)e−

√
2ξ

B = e
√

2ξ

2

(
sin(
√
ρ− 1− 2ξ)−

√
ρ−1−2ξ√

2ξ
cos(
√
ρ− 1− 2ξ)

)
= 1

2
√
ξ
g(ξ)e

√
2ξ

C = cos(
√
ρ− 1− 2ξ) sinh(

√
2ξ(L− 1)) +

√
2ξ√

ρ−1−2ξ
sin(
√
ρ− 1− 2ξ) cosh(

√
2ξ)

D = sin(
√
ρ− 1− 2ξ) sinh(

√
2ξ(L− 1))−

√
2ξ√

ρ−1−2ξ
cos(
√
ρ− 1− 2ξ) cosh(

√
2ξ).

Therefore, the functions ϕξ and ψξ are given (up to a multiplicative factor) by

ϕξ(x) =

{
sin(
√
ρ− 1− 2ξ x) x ∈ [0, 1]

1
2
√

2ξ

(
f(ξ)e

√
2ξ(x−1) + g(ξ)e−

√
2ξ(x−1)

)
x ∈ [1, L],

(2.36)

and

ψξ(x) =


sinh(

√
2ξ(L− 1)) cos(

√
ρ− 1− 2ξ(x− 1))

−
√

2ξ√
ρ−1−2ξ

cosh(
√

2ξ(L− 1)) sin(
√
ρ− 1− 2ξ(x− 1)) x ∈ [0, 1],

sinh(
√

2ξ(L− x)) x ∈ [1, L].

(2.37)

The Green function is then given by (see [BS12], Chapter II)

Gξ(x, y) =

{
(ωλ∞1 +ξ)

−1eµ(x−y)ψλ∞1 +ξ(x)ϕλ∞1 +ξ(y) y 6 x

(ωλ∞1 +ξ)
−1eµ(x−y)ψλ∞1 +ξ(y)ϕλ∞1 +ξ(x) y > x,

(2.38)

with ωξ := ψξ(x)ϕ′ξ(x)− ψ′ξ(x)ϕξ(x) = f(ξ)e
√

2ξ(L−1) + g(ξ)e−
√

2ξ(L−1).

The two following lemmas will be used in the following sections to control the fluctuations
of the system. Their proofs can be found in Appendix C.
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Lemma 2.6. Assume (Hpsh) holds and let ξ : (1,∞)→ (0,∞) be a function such that ξ(L)→ 0
and ξ(L)L→ 0 as L→∞. There exist some constants C,C ′ > 0 such that for L large enough,
we have

ωλ∞1 +ξ > C
′ξ(L)eβL,

and for x ∈ [0, L],

ϕλ∞1 +ξ(x) 6 C(1 ∧ x)
(
ξeβx + e−βx

)
,

ψλ∞1 +ξ(x) 6 C(1 ∧ (L− x))eβ(L−x).

Lemma 2.7. Assume (Hpsh) holds and let h > 0. Then, there exist some constants C,C ′ > 0
such that for L large enough and ξ = h

L ,

ωλ∞1 +ξ >
C ′h

2L
eβL.

and for x ∈ [0, L],

ϕλ∞1 +ξ(x) 6 C(1 ∧ x)

(
h

L
eβx + e−βx

)
,

ψλ∞1 +ξ(x) 6 C(1 ∧ (L− x))eβ(L−x).

3 BBM in an interval: moment estimates

In this section, we assume that (Hpsh) holds and we consider a dyadic branching Brownian motion
with branching rate r(x), drift −µ with

µ =
√

1 + 2λ∞1 ,

and particles killed at 0 and L. We recall from Section 1.5 that the density of particles at y at
time t is given by

pt(x, y) = eµ(x−y)+( 1
2
−µ2/2)tqt(x, y) = eµ(x−y)−λ∞1 tqt(x, y),

where qt is defined in Equation (2.18). We denote by NL
t the set of particles alive in this system

at time t and we define N ′t = |NL
t |. For a particle v ∈ Nt, we denote by Xv(t) its position at

time t. We then define the processes Z ′t, Yt and Ỹt as follows:

Z ′t =
∑
v∈NLt

eµ(Xv(t)−L)w1(Xv(t)), (3.1)

Yt =
∑
v∈NLt

(Xv(t) ∧ 1)eµ(Xv(t)−L), (3.2)

Ỹt =
∑
v∈NLt

eµ(Xv(t)−L), (3.3)

with
w1(x) = sinh(

√
2λ1(L− 1))v1(x), (3.4)
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Section 3. Branching Brownian motion in an interval: moment estimates

and v1 is the eigenvector associated with the principal eigenvalue λ1 such that v1(1) = 1, defined
by Equation (2.9).

In Section 3.1, we estimate the first moments of the processes (Z ′t)t>0 and (Ỹt)t>0 under
(Hpsh). In Section 3.2, we bound the second moment of (Z ′t)t>0 under (Hwp). The main tools
used in the proofs of the following lemmas are the estimates on the heat kernel, established in
Lemma 2.5, and on the Green function, established in Lemma 2.6.

3.1 First moment

Lemma 3.1. Assume (Hpsh) holds. There exists C > 0 such that, for L large enough, we have

w1(x) 6 C(x ∧ 1) sinh(
√

2λ1(L− x)) 6 C(x ∧ 1) sinh(β(L− x)),

for all x ∈ [0, L]. As a consequence, there exists C ′ > 0 such that, for L large enough, we have

v1(x) 6 C(x ∧ 1)e−βx,

for all x ∈ [0, L].

Proof. Remark that for x ∈ [0, 1], we have sin(
√
ρ− 1− 2λ1x) 6

√
ρ− 1− 2λ1x, so that

w1(x) 6

√
ρ− 1− 2λ1

sin(
√
ρ− 1− 2λ1)

x sinh(
√

2λ1(L− 1)) 6

√
ρ− 1− 2λ1

sin(
√
ρ− 1− 2λ1)

x sinh(
√

2λ1(L− x)).

Remark 2.2 combined with the fact that λ1 is an increasing function of L then yields the first
part of the lemma. The second part follows from Remark 2.1.

Lemma 3.2 (First moment of Z ′t). Assume (Hpsh) holds. Let t > 0. For sufficiently large L,

E[Z ′t] = e(λ1−λ∞1 )tZ ′0,

Proof. By definition of Z ′t, we have

Ex[Z ′t] =

∫ L

0
pt(x, y)eµ(y−L)w1(y)dy

= eµ(x−L)e−λ
∞
1 t

∫ L

0
qt(x, y)w1(y)dy.

Yet, w1 is an eigenvector associated with the simple eigenvalue λ1 of the operator T , and qt(x, y)
is the fundamental solution of

(B)

{
∂tu = Tu

u(0) = u(L) = 0.

Therefore,
∫ L

0 qt(x, y)w1(y) = e−λ1tw1(x), which concludes the proof of the lemma.

119



Chapter III. Particle systems and semi-pushed fronts

Lemma 3.3 (First moment of Ỹt). Assume (Hpsh) holds. There exist C1, C2 > 0 such that, for
L large enough, t > C2L, we have

E[Ỹt] 6 C1e
−βLZ ′0.

Corollary 3.1 (First moment of Yt). Assume (Hpsh) holds. There exist C1, C2 > 0 such that,
for L large enough, t > C2L, we have

E[Yt] 6 C1e
−βLZ ′0.

Proof of Lemma 3.3. According to Lemmas 2.5 and 2.3, there exist C1, C2 > 0 such that for L
large enough and t > C2L, we have

pt(x, y) 6 C1e
µ(x−y)e(λ1−λ∞1 )tv1(x)v1(y).

Thus, we get that, for sufficiently large L and t > C2L,

Ex[Ỹt] =

∫ L

0
eµ(y−L)pt(x, y)dy 6 Ceµ(x−L)v1(x)e(λ1−λ∞1 )t

∫ L

0
v1(y)dy.

Recalling from Remark 3.1 that v1(y) 6 Ce−βy for all y ∈ [0, L], we get that
∫ L

0 v1(y)dy is
bounded by a constant (the integral converge to a positive limit by the dominated convergence
theorem). Therefore, using that λ1 6 λ∞1 , we get that for L large enough and t > C2L,

Ex[Ỹt] 6 Ce
µ(x−L)v1(x).

Remark 2.1 then yields the lemma.

3.2 Second moment

Lemma 3.4 (Second moment of Z ′t). Assume (Hwp) holds and let u : (0,∞) → (0,∞) be a
function such that u(L)→∞ and u(L)/L→∞ as L→∞. There exists C > 0 such that for L
large enough, we have

E[(Z ′u)2] 6 C
(
ue−2βLZ ′0 + Y0

)
.

Proof. By the Many-to-two Lemma and Lemma 3.2, for all t > 0, we have

T := Ex[(Z ′u)2]

= Ex

 ∑
v∈NL

e2µ(Xv(u)−L)w1(Xv(u))2

+ 2

∫ L

0

∫ u

0
r(y)ps(x, y)Ey[Z

′
t−s]

2dsdy

6 Ex

 ∑
v∈NL

e2µ(Xv(u)−L)w1(Xv(u))2


︸ ︷︷ ︸

=: T1

+2ρ

∫ L

0

∫ u

0
ps(x, y)e2µ(y−L)w1(y)2dsdy︸ ︷︷ ︸

=: T2

. (3.5)
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Section 3. Branching Brownian motion in an interval: moment estimates

We first bound T1. According to Lemmas 2.3 and 2.5, there exist C1, C2 > 0 such that for all
L > 1 large enough and t > C2L,

pt(x, y) 6 C1e
µ(x−y)e(λ1−λ∞1 )tv1(x)v1(y).

Therefore, for L large enough and a time u = u(L) > C2L, we have

T1 =

∫ L

0
pu(x, y)e2µ(y−L)w1(y)2dy

6 Ceµ(x−L)+(λ1−λ∞1 )uv1(x) sinh(
√

2λ1(L− 1))−1

∫ L

0
eµ(y−L)w1(y)3dy,

6 Ceµ(x−L)w1(x) sinh(
√

2λ1(L− 1))−2

∫ L

0
e(3β−µ)(L−y)dy,

where the last inequality comes from Lemma 3.1. Since µ > 3β the last integral is bounded by
a constant. Finally, Remark 2.1 gives that

T1 6 Ce
µ(x−L) sinh(

√
2λ1(L− 1))−2w1(x) 6 Ce−2βLeµ(x−L)w1(x). (3.6)

Let us now bound the quantity T2. First, recall from Equation (2.38) the definition of the
Green function:

G 1
u

(x, y) =

ω
−1
λ∞1 + 1

u

eµ(x−y)ψλ∞1 + 1
u

(x)ϕλ∞1 + 1
u

(y) x ≥ y
ω−1
λ∞1 + 1

u

eµ(x−y)ψλ∞1 + 1
u

(y)ϕλ∞1 + 1
u

(x) y ≥ x,

where ϕλ∞1 + 1
u
and ψλ∞1 + 1

u
are given by Equations (2.36) and (2.37) in Section 2.3, and from

Equation (2.34) that ∫ u

0
ps(x, y)ds 6 eG 1

u
(x, y).

Therefore, we have

T2 =

∫ L

0

∫ u

0
ps(x, y)e2µ(y−L)w1(y)2dsdy

6 C

eµ(x−L)ψλ∞1 + 1
u

(x)ω−1
λ∞1 + 1

u

∫ x

0
eµ(y−L)w1(y)2ϕλ∞1 + 1

u
(y)dy︸ ︷︷ ︸

=: A(x)

+ eµ(x−L)ϕλ∞1 + 1
u

(x)ω−1
λ∞1 + 1

u

∫ L

x
eµ(y−L)w1(y)2ψλ∞1 + 1

u
(y)dy︸ ︷︷ ︸

=: B(x)

 . (3.7)
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Chapter III. Particle systems and semi-pushed fronts

According to Lemma 2.7 (applied to ξ = 1
u) and Lemma 3.1, there exist some constants (inde-

pendent of x and L) such that,

ϕλ∞1 + 1
u

(x) 6 C(1 ∧ x)

(
1

u
eβx + e−βx

)
, (3.8)

ψλ∞1 + 1
u

(x) 6 C(1 ∧ (L− x))eβ(L−x), (3.9)

ω−1
λ∞1 + 1

u

6 Cue−βL, (3.10)

w1(x) 6 C(1 ∧ x)eβ(L−x). (3.11)

Therefore, we get thanks to Equations (3.8), (3.10) and (3.11) that

A(x) 6 Ce(β−µ)L

(∫ x

0
e(µ−β)ydy + u

∫ x

0
e(µ−3β)ydy

)
6 C

(
(1 ∧ x)e(β−µ)(L−x) + u(1 ∧ x)e(3β−µ)(L−x)e−2βL

)
6 C(1 ∧ x)

(
e(β−µ)(L−x) + ue−2βL

)
, (3.12)

since µ > 3β. Equations (3.9), (3.10) and (3.11) give that

B(x) 6 Cue(2β−µ)L

∫ L

x
e(µ−3β)ydy

6 Cue(2β−µ)L(1 ∧ (L− x))e(µ−3β)L = Cu(1 ∧ (L− x))e−βL. (3.13)

Therefore, combining Equations (3.9) and (3.12), we have

ψλ∞1 + 1
u

(x)A(x) 6 C(1 ∧ x ∧ (L− x))
(

1 + ue−2βLeβ(L−x)
)
, (3.14)

and Equations (3.8) and (3.13) implies that

ϕλ∞1 + 1
u

(x)B(x) 6 C(1 ∧ x ∧ (L− x))
(

1 + ue−2βLeβ(L−x)
)

(3.15)

We now need to prove that

(1 ∧ x ∧ (L− x))eβ(L−x) 6 Cw1(x). (3.16)

To this end, we distinguish 3 cases:

• Suppose x ∈ [0, 1]. Recall that for L large enough,
√
ρ− 1− 2λ1 ∈ (π2 , π), therefore, by

concavity, we have sin(
√
ρ− 1− 2λ1x) > sin(

√
ρ− 1− 2λ1)x. Thus, using Remark 2.1, we

get that

w1(x) =
sin(
√
ρ− 1− 2λ1x)

sin(
√
ρ− 1− 2λ1)

sinh(
√

2λ1(L− 1) > x sinh(
√

2λ1(L− 1) > CxeβL

> Cxeβ(L−x),

so that (3.16) holds in [0,1].
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Section 4. The particles hitting the right-boundary

• Suppose x ∈ [1, L− 1]. Then, w1(x) = 1
2

(
e
√

2λ1(L−x) − e−
√

2λ1(L−x)
)
and

w1(x)e−β(L−x) =
1

2

(
e(
√

2λ1−β)(L−x) − e−(
√

2λ1+β)(L−x)
)

>
1

2

(
e(
√

2λ1−β)L − e−(
√

2λ1+β)
)
.

Recall from Lemma 2.2 that (
√

2λ1 − β)L → 0 as L → ∞. Besides e−(
√

2λ1+β) < 1.
Therefore, for L large enough, e(

√
2λ1−β)L − e−(

√
λ1+β)L > C for some C > 0 and (3.16)

holds in [1, L− 1].

• Suppose x ∈ [L− 1, L]. By convexity, we have

w1(x) = sinh(
√

2λ1(L− x)) > sinh(
√

2λ1)(L− x) > C(L− x) > C(L− x)eβ

> C(L− x)eβ(L−x),

which concludes the proof of (3.16).

Finally, combining Equations (3.7), (3.14), (3.15) and (3.16), we have

T2 6 Ce
µ(x−L)

(
(1 ∧ x) + ue−2βLw1(x)

)
. (3.17)

Equations (3.6) and (3.17) yield the lemma.

4 The particles hitting the right-boundary

In this section, we are interested in the number of particles killed at the right boundary in a
BBM with branching rate r(x), drift −µ and killed upon reaching 0 and L.

Let us denote by R(S) the number of particles killed at the right border L in the time
interval S, for a measurable subset S ⊂ [0,∞). In this section, we estimate the first moment and
establish an upper bound on the second moment of the process (R([0, t]))t>0, under the same
assumptions as in Section 3, that is, under (Hpsh) for the first moment and (Hwp) for the second
moment.

In order to bound the expectation of R(S) for a measurable subset S ⊂ (0,∞), we first
consider the case of S ⊂ (0,∞) such that inf(S) > CL (Lemma 4.1) and use the estimates
established in Lemma 2.5. We then bound the expected number of particles killed at the right
boundary in a time interval of the form [0, CL] (Lemma 4.2), thanks to the Green function and
Lemma 2.7. We finally combine these two estimates in Lemma 4.4. The second moment of the
process (R([0, t]))t>0 is then upper bounded in Lemma 4.5 with a similar argument as for the
process (Z ′t).

In order to apply these results, we define

I(x, S) = −1

2

∫
S
e−λ

∞
1 s ∂

∂y
qs(x, y)|y=Lds,
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Chapter III. Particle systems and semi-pushed fronts

and denote by `(S) the following integral:

`(S) =

∫
S
e(λ1−λ∞1 )sds. (4.1)

First, remark that
`(S) 6 λ(S), (4.2)

where λ(S) refers to the Lebesgue measure of the set S.

4.1 First moment

First, we claim that

Ex[R(S)] = −1

2

∫
S

∂

∂y
ps(x, y)|y=Lds = eµ(x−L)I(x, S). (4.3)

Indeed, this means that the density of particles hitting L at time s is equal to the heat flow of
ps out of the boundary L at time s. This result is classical but it is difficult to find a complete
proof of this fact in the literature: see [IMJ74, p.154] for an early appearance of this fact or
[Gar85, Section 5.2.1] for a non-rigorous proof of this result. Hence, it is sufficient to estimate
the integral I(x, S) to estimate the first moment of R.

Lemma 4.1. Assume (Hpsh) holds. Therefore, there exist C1, C2 > 0 such that for L large
enough and inf(S) > C2L,

|I(x, S)− g(L)`(S)w1(x)| 6 e−C1Lg(L)w1(x),

with

g(L) =
1

2

√
2λ1

‖v1‖2
sinh(

√
2λ1(L− 1))−2.

Remark 4.1. According to Lemma 2.3 and Remark 2.1, for L large enough, we have

g(L) 6 Ce−2βL.

Proof. The proof of this result is very similar to the one of Lemma 2.5.

Since the sum is uniformly convergent for s ≥ inf(S) > 0, we have

U := I(x, S)− g(L)w1(x)

∫
S
e(λ1−λ∞1 )sds

=
K∑
k=2

gk
vk(x)

‖vk‖2
∫
S
e(λk−λ∞1 )sds︸ ︷︷ ︸

=: U1

+

∞∑
i=K+1

gk
vk(x)

‖vk‖2
∫
S
e(λk−λ∞1 )sds︸ ︷︷ ︸

=: U2

,

with gk := −1
2v
′
k(L). Note that for all k > 2,∫

S
e(λk−λ∞1 )sds ≤ e(λk−λ∞1 ) inf(S)

λ∞1 − λk
, (4.4)
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and recall from Lemma 2.1 and 2.2 that

λ∞1 − λk >
{

5
8π

2, if K > 2,

λ∞1 if K = 1.
(4.5)

According to Lemma 2.4, we know that for L large enough and k ∈ {2, ...K}, we have

|vk(x)|
‖vk‖2

6 CeβL
v1(x)

‖v1‖2
. (4.6)

Then, remark that for k ∈ {2, ...,K}, we have

gk =
1

2

√
2λk

sinh(
√

2λk(L− 1))
6 C, (4.7)

according to Lemma 2.1. Therefore, combining Equation (4.6), Equation (4.7) and Remark 2.1
that for L large enough, we have

gk
‖vk‖2

|vk(x)| 6 CeβL v1(x)

‖v1‖2
6 Ce2βLg(L)w1(x). (4.8)

Combining Equations (4.5), (4.4) and (4.8), we get that for L large enough and x ∈ [0, L], we
have

|U1| 6 Ce2βL− 5
8
π2 inf(S)g(L)w1(x). (4.9)

We now bound the sum U2. According to Lemma 2.4, we know that for L large enough and
k > K, we have

|vk(x)|
‖vk‖

6 C
√
ρ− 1− 2λk e

βL |v1(x)|
‖v1‖

.

Besides, note that for k > K, we have

gk =
1

2

√−2λk

sin
(√−2λk(L− 1)

) 6 C √
ρ− 1− 2λk

sin
(√−2λk(L− 1)

)
so that, according to Lemma 2.4, we have

gk
‖vk‖

6 C
√
ρ− 1− 2λk.

Thus, using Remark 2.1 again, we get that

gk
|vk(x)|
‖vk‖2

6 C(ρ− 1− 2λk)e
βL |v1(x)|
‖v1‖2

6 C(ρ− 1− 2λk)e
2βLg(L)w1(x).

Hence, we get thanks to Equation (4.4) that for L large enough,

|U2| 6 Ce2βL

[ ∞∑
i=K+1

(ρ− 1− 2λk)
e(λk−λ∞1 ) inf(S)

λ∞1 − λk

]
g(L)w1(x).
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We recall that the sum
∞∑

i=K+1

(ρ− 1− 2λi)e
(λk−λK+1) inf(S)

is bounded by a constant if inf(S) > 1 (see Equation (2.30) in the proof of Lemma 2.5). Therefore,
we obtain thanks to Equation (4.5) that for L large enough and inf(S) > 1, we have

|U2| 6 CLe2βL−λ∞1 inf(S)g(L)w1(x). (4.10)

Finally, we obtain the result by combining (4.9) and (4.10).

Lemma 4.2. Assume (Hpsh) holds and let a > 0. Therefore, there exists C > 0 such that, for L
large enough and x ∈ [0, L], we have

I(x, [0, aL]) 6 C(1 ∧ x).

Proof. Note that for all x ∈ [0, L], − ∂
∂y qs(x, y)|y=L ≥ 0. Therefore, according to (2.34) we have,

I(x, [0, aL]) =

∫ aL

0
e−λ

∞
1 s

(
− ∂

∂y
qs(x, y)|y=L

)
ds 6 e

∫ ∞
0

e−λ
∞
1 s−s/aL

(
− ∂

∂y
qs(x, y)|y=L

)
ds.

By definition of the Green function (see Section 2.3), we have

∂

∂y
G 1
aL

(x, y)|y=L = eµ(x−L)

∫ ∞
0

e−(λ∞1 + β
aL)s

(
− ∂

∂y
qs(x, y)|y=L

)
ds.

so that,

I(x, [0, aL]) 6 Ceµ(L−x)

(
− ∂

∂y
G 1
aL

(x, y)|y=L

)
.

We deduce from the explicit formula for the Green function given by Equation (2.38) that for
0 6 x 6 L,

eµ(L−x) ∂

∂y
G 1
aL

(x, y)|y=L = (ωλ∞1 + 1
aL

)−1ψ′
λ∞1 + 1

aL

(L)ϕλ∞1 + 1
aL

(x),

with ϕλ∞1 + 1
aL
, ψλ∞1 + 2

aL
and ωλ∞1 + 1

aL
defined in Equations (2.36), (2.37) and (2.35) in Section 2.3.

Then, remark that

−ψ′
λ∞1 + 1

aL

(L) =

√
2λ∞1 +

1

aL
6 2
√
λ∞1 ,

for L large enough. Lemma 2.7 applied to h = 1
a provides that for L large enough, we have

ω−1
λ∞1 + 1

aL

6 CLe−βL,

ϕλ∞1 + 1
aL

(x) 6 C(1 ∧ x)

(
1

L
eβx + e−βx

)
.

Finally, we get that for L large enough,

I([0, aL]) 6 C(1 ∧ x)
(
eβ(x−L) + Le−βL

)
6 C(1 ∧ x).

126



Section 4. The particles hitting the right-boundary

Lemma 4.3. Assume (Hpsh) holds. Therefore, there exists C > 0 such that for any measurable
subset S ⊂ [0,∞), L large enough and x ∈ [0, L], we have

|I(x, S)− g(L)`(S)w1(x)| 6 C((1 ∧ x) + g(L)w1(x)).

Proof. Let a > 0. By definition of I,

I(x, S) = I(x, S ∩ [0, aL]) + I(x, S ∩ (aL,∞)).

Then, by triangle inequality, we have

|I(x, S)− g(L)`(S)w1(x)|
6 |I(x, S ∩ [0, aL])|+ |I(x, S ∩ (aL,∞))− g(L)`(S)w1(x)|
6 |I(x, S ∩ [0, aL])|+ |I(x, S ∩ (aL,∞))− g(L)`(S ∩ (aL,∞))w1(x)|

+ g(L)w1(x)|`(S ∩ (aL,∞))− `(S)|.

The second term can be bounded thanks to Lemma 4.1: there exist C1, C2 > 0 such that for L
large enough and a > C2,

|I(x, S ∩ (aL,∞))− g(L)`(S ∩ (aL,∞))w1(x)| 6 e−C1Lg(L)w1(x).

For a = C2 + 1, we know thanks to Lemma 4.2 that there exists a C3 > 0 such that

|I(x, S ∩ [0, aL])| 6 C3(1 ∧ x).

Finally, remark thanks to Equation (4.2) that

g(L)w1(x)|`(S ∩ (aL,∞))− `(S)| 6 `([0, aL])g(L)w1(x) 6 aLw1(x)g(L),

and that according, to Lemmas 3.1 and Remark 4.1, there exists C4 > 0 such that

Lw1(x)g(L) 6 C4(1 ∧ x).

This concludes the proof of the lemma.

Lemma 4.4. Assume (Hpsh) holds. Therefore, there exists C > 0 such that for L large enough
and s < t ∈ R, we have ∣∣E[R([s, t])]− `([s, t])g(L)Z ′0

∣∣ 6 C(Y0 + g(L)Z ′0),

with

g(L) =
1

2

√
2λ1

‖v1‖2
sinh(

√
2λ1(L− 1))−2.

Proof. The lemma follows directly from Equation (4.3) and Lemma 4.3.
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Chapter III. Particle systems and semi-pushed fronts

4.2 Second moment

Lemma 4.5. Assume (Hwp) holds and let u : (0,∞)→ (0,∞) be a function such that u(L)→∞
and u(L)/L→∞ as L→∞. There exists a constant C > 0 such that for L large enough,

E
[
R2

[0,u]

]
− E

[
R[0,u]

]
6 C

(
1 + g(L)2u2

)
(Y0 + ue−2βLZ ′0). (4.11)

Proof. Standard moment calculations [INW69, Theorem 4.15] give

Ex
[
R([0, u])2

]
= Ex [R([0, u])] + 2

∫ L

y=0

∫ u

s=0
r(y)ps(x, y)Ey [R([s, u])]2 dsdy

6 Ex [R([0, u])] + ρ

∫ L

y=0

∫ u

s=0
ps(x, y)Ey [R([s, u])]2 dsdy.

Besides, according to Lemma 4.4 and Equation (4.2), there exists C > 0 such that for L large
enough and s 6 u, we have

Ey [R([s, u])] 6 Ceµ(y−L)((1 ∧ y) + g(L)(1 + (u− s))w1(y))

Then, using that (a+ b)2 6 2a2 + 2b2, (1∧ y)2 6 1 and 1 + (u− s)2 6 1 +u2 6 Cu2, we get that
for L large enough, we have

Ex
[
R([0, u])2

]
6 Ex [R([0, u])] (4.12)

+ C


∫ L

0
e2µ(y−L)

∫ u

s=0
ps(x, y)dsdy︸ ︷︷ ︸

=: U1

+g(L)2u2

∫ L

0
e2µ(y−L)w1(y)2

∫ u

s=0
ps(x, y)dsdy︸ ︷︷ ︸

=: U2


Then, as in the proof of Lemma 3.4, we bound the integrals U1 and U2 using the estimates made
on the Green function in Section 2.3. First, we recall that for all u > 0, we have∫ u

0
ps(x, y)ds 6 CG 1

u
(x, y).

Therefore, as in Equation (3.7), we have

U1 :=

∫ L

0
e2µ(y−L)

∫ u

s=0
ps(x, y)dsdy

6 Ceµ(x−L)ω−1
λ∞1 + 1

u

(
ψλ∞1 + 1

u
(x)

∫ x

0
eµ(y−L)ϕλ∞1 + 1

u
(y)dy + ϕλ∞1 + 1

u
(x)

∫ L

x
eµ(y−L)ψλ∞1 + 1

u
(y)dy

)
,

:= B1 +B2, (4.13)

and,

U2 :=

∫ L

0
e2µ(y−L)w1(y)2

∫ u

s=0
ps(x, y)dsdy

6 Ceµ(x−L)ω−1
λ∞1 + 1

u

(
ψλ∞1 + 1

u
(x)

∫ x

0
eµ(y−L)w1(y)2ϕλ∞1 + 1

u
(y)dy

+ϕλ∞1 + 1
u

(x)

∫ L

x
eµ(y−L)w2

1(y)ψλ∞1 + 1
u

(y)dy

)
.
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Section 5. Descendants of a single particle

Note that U2 has already been estimated in the proof of Lemma 3.4 (see Equations (3.7) and
(3.17)). In particular, we know that for L large enough, we have

U2 6 Ce
µ(x−L)

(
(1 ∧ x) + u−2βLw1(x)

)
. (4.14)

Then, following the proof Lemma 3.4, we use Equations (3.8), (3.9) and (3.10) to bound U1. We
get that for L large enough, we have

B1 6 C(1 ∧ (L− x))eµ(x−L)ue−βx
∫ x

0
eµ(y−L)

(
1

u
eβy + e−βy

)
dy

6 C(x ∧ 1 ∧ (L− x))eµ(x−L)
(
eµ(x−L) + ue(µ−2β)xe−µL

)
6 C(x ∧ 1 ∧ (L− x))eµ(x−L)

(
1 + ue−2βL

)
6 C(x ∧ 1 ∧ (L− x))eµ(x−L)

(
1 + ue−2βLeβ(L−x)

)
where the two last inequalities come from the fact that (µ− 2β)x 6 (µ− 2β)L and 1 6 eβ(L−x).
Similarly, we get that for L large enough,

B2 6 C(1 ∧ x)eµ(x−L)e−βL
(
eβx + ue−βx

)∫ L

x
e(µ−β)(y−L)dy

6 C(1 ∧ x ∧ (L− x))eµ(x−L)e−βL
(
eβx + ue−βx

)
6 C(1 ∧ x ∧ (L− x))eµ(x−L)

(
1 + ue−2βLeβ(L−x)

)
We then recall from Equation (3.16) that (1 ∧ x ∧ (L− x))eβ(L−x) 6 Cw1(x), so that

B1 +B2 6 e
µ(x−L)((1 ∧ x) + ue−2βLw1(x)). (4.15)

Therefore, combining Equation (4.12), (4.13), (4.14) and (4.15), we have

Ex
[
R([0, u])2

]
6 Ex [R([0, u])] + Ceµ(x−L)(1 + g(L)2u2)((1 ∧ x) + ue−2βLw1(x)),

which concludes the proof of the lemma.

5 Descendants of a single particle

In this Section, we assume that (Hpsh) holds and we consider a dyadic branching Brownian
motion with branching rate 1

2 , drift −µ (see Equation (1.20)), starting with a single particle at
0 and killed at −y. Since µ > 1, we know that this process goes extinct almost surely [Kes78].
Therefore, we can define Zy, the total number of particles killed at −y in the BBM. It was
shown [Nev88] that the process (Zy)y>0 is a supercritical continuous time branching process.
In this section, we investigate the asymptotic behaviour of the branching process (Zy) as y
goes to infinity. As explained in Section 1.5, this quantity is strongly related to the number of
descendants left by the early founders from [BHK20] and dictates the genealogical structure of
the population.

Lemma 5.1 follows from the uniqueness of the travelling wave solutions of Kolmogorov’s
equation and Karamata’s Tauberian Theorem (see Theorem 8.1.6 of [BGT89]).
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Chapter III. Particle systems and semi-pushed fronts

Lemma 5.1. Assume (Hwp) holds. There exists a random variable W such that, as y →∞,

e−(µ−β)yZy →W a.s. (5.16)

Besides, we have E [exp (−e−µuW )] = φ(u), where φ : R→ (0, 1) solves Kolmogorov’s equation

1

2
φ′′ − µφ′ = 1

2
φ(1− φ) (5.17)

with limx→−∞ φ(x) = 1 and limx→+∞ φ(x) = 0. Besides, there exists b > 0 such that as λ→ 0,
we have

E
[
e−λW

]
= exp (−λ+ bλα + o(λα)) , (5.18)

with α from Equation (1.30).

Proof. First, note that Zy has the same law as the number of “first crossings” of the line of
equation t 7→ y + µt in a branching Brownian motion with branching rate 1

2 , no killing and no
drift. For this BBM, we denote by Nt the set of individuals alive at time t and for v ∈ Nt, by
Xv(t) its position at time t.

Equations (5.16) and (5.17) are a consequence of the uniqueness (up to translation) of the
travelling wave solution of Equation (5.17). Indeed, let λ = µ− β and define

Wt(λ) =
∑
v∈Nt

e−λ(Xv(t)+µt).

This process is a positive martingale so that it converges almost surely. We denote by W (λ) its
limit. It was shown [Nev88] that this convergence also holds in L1.

We can then deduce from [Cha91] and [Nev88] that Wt(λ) and e−λyZy have the same limit
W in L1 (up to a multiplicative constant) and that

E
[
exp

(
−e−µuW

)]
= φ(u).

Besides, note that we can also deduce from [Cha91] that the two limits are equal almost surely.

The second part of the lemma can be deduced from Theorem 2.2 of [Liu00]. We consider
the branching Brownian motion at discrete times. This leads to a branching random walk and
for all θ ∈ R, one can define the additive martingale Wn(θ) as follows:

Wn(θ) =
∑
v∈Nn

e−θXv(n)−nϕ(θ),

with

ϕ(θ) = log E

∑
v∈N1

e−θXv(1)

 =
θ2

2
+

1

2
.
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Section 6. Small time steps

Theorem 2.2 of [Liu00] states that if for some p > 1,

ϕ(pθ) = pϕ(θ), E

∑
v∈N1

(
e−θXv−ϕ(θ)

)p
log+

(
e−θXv−ϕ(θ)

) <∞,
and E

∑
v∈N1

e−θXv−ϕ(θ)

p <∞, (5.19)

then W (θ)
a.s.
= limn→∞Wn(θ) is such that as x→∞,

P (W (θ) > x) ∼ l

xp
, (5.20)

for some l > 0. Note that the first condition of (5.19) implies that

(pθ)2 + 1 = p(θ + 1)⇔ p =
1

θ2
.

Besides, one can easily prove that the two following conditions hold. For θ = λ, one obtains that
p = 1/λ2. Moreover, note that λ is the smallest root of θ2

2 − µθ + 1
2 . The second root of this

polynomial function is λ̄ = µ+ β and we have λλ̄ = 1. Therefore, for θ = λ, we have

p =
1

λ2 =
λ̄

λ
=
µ+ β

µ− β = α > 1.

Finally, one can deduce from Equation (5.20) and Theorem 8.1.6 of [BGT89] that as λ→ 0,

E
[
e−λW (λ)

]
= 1− E[W (λ)]λ+ bλα + o(λα),

with b = −lΓ
(
− 2β
µ−β

)
> 0. Hence, the same expansion holds for W and since E[W ] = 1 (the

convergence (5.16) also holds in L1) and α ∈ (1, 2), we have

E
[
e−λW

]
= exp (−λ+ bλα + o(λα)) .

6 Small time steps

In this section, we assume that (Hwp) holds and consider the BBM absorbed at 0, with branching
rate r(x) and drift −µ (see Equation (1.20)). We recall that Nt is the set of particles alive at
time t > 0 in the BBM with absorption at 0 and that NL

t refers to the set of particles whose
ancestors stay below L until time t. We also denote by L the set of particles that hit L. We then
define the function z such that

z(x) = eµ(x−L)w1(x), ∀x ∈ [0, L],
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Chapter III. Particle systems and semi-pushed fronts

where w1 is defined in Equation (3.4) and recall the definitions of the processes defined in the
previous sections:

Zt =
∑
v∈Nt

z(Xv(t))1Xv(t)∈[0,L] =
∑
v∈Nt

eµ(Xv(t)−L)w1(Xv(t))1Xv(t)∈[0,L],

Z
′
t =

∑
v∈NLt

z(Xv(t)) =
∑
v∈NLt

eµ(Xv(t)−L)w1(Xv(t)),

Yt =
∑
v∈NLt

(Xv(t) ∧ 1)eµ(Xv(t)−L),

Ỹt =
∑
v∈NLt

eµ(Xv(t)−L).

Morevover, we consider a quantity A that goes slowly to ∞ as L tends to infinity. In other
words, we first let L→∞, then A→∞ and we denote by

• εL a quantity that is bounded in absolute value by a function h(A,L) such that

∀A > 1 : lim
L→∞

h(A,L) = 0,

• εA,L a quantity that is bounded in absolute value by a function h(A,L) such that

lim
A→∞

lim sup
L→∞

h(A,L) = 0.

We set Λ > 0 and consider a function θ̄ = (0,∞)→ (0,∞) such that θ̄(A)e4βA → 0 as A→∞.
We also fix a time τ > 0 and consider θ ∈ (0, θ̄(A)) such that τ

(
θe2βA

)−1 ∈ N. We then set
K ∈ N such that τ = Kθe2βA and define a sequence of discrete times (tk)

K
k=1 such that

tk = kθe2β(L+A).

In what follows, the symbol O(·) denotes a quantity bounded in absolute value by a constant
times the quantity inside the parentheses. The constant in this definition and the functions h
defined above may only depend on Λ and θ̄.

The goal of this section is to prove the following proposition.

Proposition 6.1. Assume (Hwp) holds and let Λ > 0. Uniformly in λ 6 Λ and in θ 6 θ̄(A), on
the event {∀v ∈ Ntk , Xv(tk) 6 L}, we have

E

[
e
−λe−(µ−β)AZtk+1 |Ftk

]
= exp

(
(−λ+ θ (Cλα + εA,L))e−(µ−β)AZtk +O(e−(µ−β)AYtk)

)
.

As outlined is Section 1.5, the proof of this result is divided into two steps: we first estimate
the contribution of the particles that hit L (Lemma 6.2) and we then combine it with the estimates
on the BBM killed at 0 and L (Section 6.2).
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Section 6. Small time steps

We end this paragraph by recalling two results from Sections 2 and 4 that will be needed
in the following proofs. First, recall from Corollary 2.1 that

λ1 − λ∞1 = −ae−2β(L−1) + o(e−2βL), with a =
β

lim
L→∞

‖v1‖2
, (6.1)

and that g(L) from Lemma 4.4 is such that

g(L) =
1

2
(a+ εL) sinh(

√
2λ1(L− 1))−2 = 2a(1 + εL)e−2β(L−1), (6.2)

according to Remark 2.1.

6.1 The particles hitting L

Lemma 6.1. Assume (Hwp) holds and let Λ > 0 and y : (0,∞) → (0,∞) be a function such
that y(L) = o(L). Uniformly in λ 6 Λ, in θ 6 θ̄(A) and u ∈ [tk, tk+1], we have

E(L−y,u)
2
[
e
−λZtk+1

]
= exp

(
−λ

2
(1 +O(θe2βA) + εL)e−(µ−β)y

)
.

Proof. On the event {R([u, tk+1]) = 0}, Zt = Z
′
t for all t ∈ [u, tk+1]. Thus,∣∣∣∣E(L−y,u)

[
e
−λZtk+1

]
− E(L−y,u)

[
e
−λZ′tk+1

]∣∣∣∣ 6 P(L−y,u) (R([u, tk+1]) > 1)

6 E(L−y,u) [R([u, tk+1])] , (6.3)

by Markov’s inequality. Thus, according to Lemma 4.4,

E(L−y,u) [R([u, tk+1])] 6 C
(
g(L)` ([0, tk+1 − u]) z(L− y) + e−µy

)
6 C(θe2βAz(L− y) + e−µy),

(6.4)
since `([u, tk+1]) 6 tk+1 − u 6 θe2β(L+A) and g(L) 6 Ce−2βL according to Remark 4.1. Besides,
Lemma 3.2 and Lemma 3.4 give that

E(L−y,u)

[
Z
′
tk+1

]
= e(λ1−λ∞1 )(tk+1−u)z(L− y), (6.5)

E(L−y,u)

[
(Z
′
tk+1

)2
]
6 C((tk+1 − u)e−2βLz(L− y) + (1 ∧ (L− y))e−µy)

6 C(θe2βAz(L− y) + (1 ∧ (L− y))e−µy). (6.6)

According to Equation (6.1), (λ1−λ∞1 )(tk+1−u) = O(θe2βA), therefore, Equation (6.5) becomes

E(L−y,u)

[
Z
′
tk+1

]
= (1 +O(θe2βA))z(L− y). (6.7)

2The notation E(x,t) means that we start with one particle at position x at time t.
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Besides, for L large enough, we have thanks to Equation (6.1) that

z(L− y) = e−µyw1(L− y) = e−µy sinh(
√

2λ1y) = e−µy
(

sinh(βy) +O(Le−βL)
)

= e−µy
(

1

2
eβy +O(ye−βy)

)
=

1

2
e−(µ−β)y

(
1 +O(ye−2βy)

)
=

1

2
(1 + εL)e−(µ−β)y, (6.8)

since e−βy 6 ye−βy and Le−βL 6 ye−βy for L large enough. Using that e−µy = e−(µ−β)ye−βy =
e−(µ−β)yεL, we get from Equations (6.6), (6.7) and (6.8) that

E(L−y,u)

[
e
−λZ′tk+1

]
= 1− λE(L−y,u)

[
Z
′
tk+1

]
+O

(
E(L−y,u)

[(
Z
′
tk+1

)2
])

= 1− λ

2
(1 +O(θe2βA) + e−2βL + εL)e−(µ−β)y

= 1− λ

2

(
1 +O(θe2βA) + εL

)
e−(µ−β)y.

Combining this with Equations (6.3) and (6.4), we get that

E(L−y,u)

[
e
−λZtk+1

]
= 1− λ

2

(
1 +O(θe2βA) + εL

)
e−(µ−β)y.

Finally, we use that e−x+O(x2) = 1− x and obtain that

E(L−y,u)

[
e
−λZtk+1

]
= exp

(
−λ

2
(1 +O(θe2βA) + εL)e−(µ−β)y

)
,

which concludes the proof of the lemma.

Lemma 6.2. Assume (Hwp) holds and let Λ > 0. There exist C > 0 and b > 0 such that,
uniformly in λ 6 Λ, in θ 6 θ̄(A) and u ∈ [tk, tk+1 − CL], we have

E(L,u)

[
e
−λe−(µ−β)AZtk+1

]
= exp

(
ψ1,b

(
λ

2
e−(µ−β)A

)
+ e−(µ+β)AεA,L

)
,

with ψ1,b(λ) = −λ+ bλα.

Proof. Let C > 0 and y : (0,∞)→ (0,∞) be a function such that y(L) = o(L). We start with a
single particle located at L at time u ∈ [tk, tk+1−CL] and stop the particles as soon as they hit
L− y. We denote by κ the number of particles that hit L− y and (wi)

κ
i=1 the times they hit it.

Then, for sufficiently large L, wi ∈ [u, tk+1] ⊂ [tk, tk+1] for all i ∈ J1, κK, with probability 1− εL.
Thus,

E(L,u)

[
e
−λe−(µ−β)AZtk+1

]
= E(L,u)

[
κ∏
i=1

E(L−y,wi)

[
e
−λe−(µ−β)AZtk+1

]]

= E(L,u)

[
κ∏
i=1

E(L−y,wi)

[
e
−λe−(µ−β)AZtk+1

]
1wi∈[tk,tk+1],∀i=1...κ

]
+ εL.
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Besides, according to Lemma 6.1, we have

E(L,u)

[
κ∏
i=1

E(L−y,wi)

[
e
−λe−(µ−β)AZtk+1

]
1wi∈[tk,tk+1],∀i=1...κ

]

= E(L,u)

[
exp

(
−λ

2
e−(µ−β)A(1 +O(θe2βA) + εL)κe−(µ−β)y

)
1wi∈[tk,tk+1],∀i=1...κ

]
= (1− εL)E(L,u)

[
exp

(
−λ

2
e−(µ−β)A(1 +O(θe2βA) + εL)κe−(µ−β)y

)]
= E(L,u)

[
exp

(
−λ

2
e−(µ−β)A(1 +O(θe2βA) + εL)κe−(µ−β)y

)]
+ εL.

Yet, we know thanks to Lemma 5.1 that κe−(µ−β)y converges in law to a random variable W as
L→∞. Therefore, using that |e−x − e−y| < |x− y| ∧ 1, for all x, y > 0, we get that

E(L,u)

[
exp

(
−λ

2
e−(µ−β)A(1 +O(θe2βA) + εL)κe−(µ−β)y

)]
= E

[
exp

(
−λ

2
e−(µ−β)A(1 +O(θe2βA) + εL)W

)]
+ εL

In addition, Lemma 5.1 gives the existence of a constant b > 0 such that as λ→ 0,

E
[
e−λW

]
= exp (ψ1,b(λ) + o(λα)) = exp (−λ+ bλα + o(λα)) .

Yet, α(µ− β) = µ+ β, hence , we have

ψ1,b

(
λ

2
e−(µ−β)A(1 +O(θe2βA) + εL)

)
= −λ

2
e−(µ−β)A(1 +O(θe2βA) + εL) + b

λα

2α
e−(µ+β)A(1 +O(θe2βA) + εL)α + e−(µ+β)AεA,L

= ψ1,b

(
λ

2
e−(µ−β)A

)
+O(θe−(µ−3β)A) + e−(µ+β)AεA,L

= ψ1,b

(
λ

2
e−(µ−β)A

)
+ e−(µ+β)AεA,L,

since θe−(µ−3β)A = θe4βAe−(µ+β)A and θe4βA → 0 as A→∞. Therefore, we have

E

[
exp

(
−λ

2
e−(µ−β)A(1 +O(θe2βA) + εL)W

)]
= exp

(
ψ1,b

(
λ

2
e−(µ−β)A)

)
+ e−(µ+β)AεA,L

)
,

and finally, we get that

E(L,u)

[
e
−λe−(µ−β)βAZtk+1

]
= exp

(
ψ1,b

(
λ

2
e−(µ−β)A

)
+ e−(µ+β)AεA,L

)
+ εL,

= exp

(
ψ1,b

(
λ

2
e−(µ−β)A + e−(µ+β)AεA,L

))
,

which concludes the proof of the lemma.
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6.2 Proof of Proposition 6.1

Starting with one particle at x 6 L, we stop the particles when they hit L. For each particle
v hitting L at time u, we denote by Z(v) the contribution of its descendants to Z . We further
define L the set of particles that hit L. Thus, we write the process Z as

Zt = Z
′
t +

∑
v∈L

Z
(v)
t .

Therefore, conditioning on L, we obtain that

E(x,tk)

[
e
−λe−(µ−β)AZtk+1

]
= E(x,tk)

[
e
−λe−(µ−β)AZ

t′
k+1

∏
v∈L

E(L,u)

[
e
−λe−(µ−β)AZ

(v)
tk+1

]]
.

Since Lemma 6.2 holds for all u ∈ [tk, tk+1 −CL], we need to prove that only a few particles hit
L between tk+1 − CL and tk+1. Set s = tk+1 − CL. Using Lemma 4.4, Corollary 3.1, Markov’s
inequality and conditioning on Fs, we get that

P(x,tk) (|L ∩ [s, tk+1]| > 1) 6 E(x,tk) [R([s, tk+1])]] 6 E(x,tk)

[
(`([0, CL]) + C)g(L)Z

′
s + CY ′s

]
6 εLz(x). (6.9)

Besides, Lemma 6.2 implies that

E(x,tk)

e−λe−(µ−β)AZ
′
tk+1

∏
v∈L∩[tk,s]

E(L,u)

[
e
−λe−(µ−β)AZ

(v)
tk+1

]
= E(x,tk)

[
e
−λe−(µ−β)AZ

′
tk+1

+R([tk,s])(ψ1,b(λ2 e
−(µ−β)A)+e−(µ+β)AεA,L)

]
.

Thus, a Taylor expansion combined with Equation (6.9) give that

E(x,tk)

[
e
−λe−(µ−β)AZtk+1

]
= 1− λe−(µ−β)AE(x,tk)

[
Z
′
tk+1

]
(6.10)

+

(
ψ1,b

(
λ

2
e−(µ−β)A

)
+ e−(µ+β)AεA,L

)
E(x,tk) [R([tk, s])]

+O

(
e−2(µ−β)AE(x,tk)

[(
Z
′
tk+1

)2
+R([tk, s])

2

])
+ εLz(x).

Yet, thanks to Lemmas 3.2, 3.4, 4.4 and 4.5, we know that

E(x,tk)

[
Z
′
tk+1

]
= e(λ1−λ∞1 )(tk+1−tk)z(x), (6.11)

E(x,tk)

[(
Z
′
tk+1

)2
]
6 C

(
θe2βAz(x) + (1 ∧ x)eµ(x−L)

)
, (6.12)

E(x,tk) [R([tk, s])] = (`([0, s− tk]) + C)g(L)z(x) +O
(

(1 ∧ x)eµ(x−L)
)
, (6.13)

E(x,tk)

[
(R([tk, s]))

2
]
6 C(1 + θ2e4βA)

(
θe2βAz(x) + (1 ∧ x)eµ(x−L)

)
, (6.14)
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since g(L)(tk+1 − tk) = O(θe2βA). Besides,

`([0, s− tk]) =
1

λ∞1 − λ1

(
1− e(λ1−λ∞1 )(s−tk)

)
and

(λ∞1 − λ1)−1 = (1 + εL)a−1e2β(L−1), g(L) = 2a(1 + εL)e−2β(L−1).

according to Equations (6.1) and (6.2). Therefore,

E(x,tk) [R([tk, s])] = 2(1 + εL)
(

1− e(λ1−λ∞1 )(s−tk)
)
z(x) +O

(
(1 ∧ x)eµ(x−L)

)
,

and thus, using that ψ1,b(λ) = −λ+ bλα and that α(µ− β) = µ+ β, we obtain(
ψ1,b

(
λ

2
e−(µ−β)A

)
+ e−(µ+β)AεA,L

)
E(x,tk) [R([tk, s])] (6.15)

=

((
1− e(λ1−λ∞1 )(s−tk)

)(
−e−(µ−β)Aλ+

b

2α−1
e−(µ+β)Aλα

)
+ e−(µ+β)AεA,L

)
z(x)

+O
(
e−(µ−β)A(1 ∧ x)eµ(x−L)

)
.

Then, note that
e−2(µ−β)Ae2βA = e−(µ−β)Ae−(µ−3β)A = εA,Le

−(µ−β)A.

Yet, (Hwp) holds, hence, µ > 3β and according to Equations (6.13) and (6.14), we have

e−2(µ−β)AE(x,tk)

[(
Z
′
tk+1

)2
+R([tk, s])

2

]
= O

(
θe−(µ−β)AεA,Lz(x) + e−2(µ−β)A(1 ∧ x)eµ(x−L)

)
(6.16)

Combining Equations (6.10), (6.11), (6.15) and (6.16), we get that

E(x,tk)

[
e
−λe(µ−β)AZtk+1

]
= 1−

[
λ− λ

(
e(λ1−λ∞1 )(s−tk) − e(λ1−λ∞1 )(tk+1−tk)

)
+
(

1− e(λ1−λ∞1 )(s−tk)
)( b

2α−1
λα + εA,L

)
e−2βA + θεA,L

]
e−(µ−β)Az(x)

+O
(
e−(µ−β)A(1 ∧ x)eµ(x−L)

)
.

Moreover, we know that∣∣∣e(λ1−λ∞1 )(s−tk) − e(λ1−λ∞1 )(tk+1−tk)
∣∣∣ 6 (λ∞1 − λ1)(tk+1 − s) = εL

and,

e(λ1−λ∞1 )(s−tk) = exp
(
−θ(ae2β)e2βA + θe2βAεA,L

)
= 1− (ae2β)θe2βA + θe2βAεA,L,

so that,

E(x,tk)

[
e
−λe(µ−β)AZtk+1

]
= 1−

[
λ− (ae2β)b

2α−1
θλα + θεA,L

]
e−(µ−β)Az(x) +O

(
e−(µ−β)A(1 ∧ x)eµ(x−L)

)
.(6.17)
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Finally, we use that e−x+O(x2) = 1− x as x→ 0: according to Lemma 3.1,

e−2(µ−β)Az(x)2 = e−2(µ−β)Ae2µ(x−L)w1(x)2 6 Ce−2(µ−β)Ae2µ(x−L)(1 ∧ x)e2β(L−x)

6 C
(
e−(µ−β)A(1 ∧ x)eµ(x−L)

)(
e−(µ−β)Ae(2β−µ)(L−x)

)
6 Ce−(µ−β)A(1 ∧ x)eµ(x−L)

since µ > 3β. This remark combined with Equation (6.17) conclude the proof of Proposition 6.1.

7 Convergence to the CSBP

In this section, we prove the convergence of the rescaled process Z to the α-stable CSBP. In
practice, we gather the estimates from Proposition 6.1 to control the Laplace transform of this
process.

In what follows, we denote by M(t) the position of the rightmost particle in the process
at time t, we write ⇒ to refer to the convergence in distribution and →p for the convergence in
probability. We also use all the notations defined at the beginning of Section 6.

7.1 The process Zt

Theorem 7.1. Assume (Hwp) holds and suppose the configuration of particles at time zero
satisfies Z0 ⇒ Z and M(0) − L →p −∞ as L → ∞. There exists b > 0 such that the finite-
dimensional distributions of the processes

(Ze2βLt, t > 0)

converges as L → ∞ to the finite-dimensional distributions of a continuous-state branching
process (Ξ(t), t > 0) with branching mechanism ψ0,b(λ) = bλα, whose distribution at time zero is
the distribution of Z.

The proof of Theorem 7.1 is inspired by the one of Theorem 2.1 in [MS20]. Likewise, we claim
that it is sufficient to prove the one-dimensional convergence of the process. Indeed, Theorem
7.1 can be deduced from the one-dimensional convergence result and the Markov property of the
process if we prove that, under the assumptions of Theorem 7.1, for any t > 0, Z(te2βL) ⇒ Z ′

for some random variable Z ′ > 0 and that L−M(te2βL)→p ∞ as L tends to∞ (the result then
follows by induction). Yet, the first point is a consequence of the one-dimensional convergence
and the second follows from Lemmas 3.1 and 4.4.

More precisely, this second point can be proved by considering a branching Brownian motion
killed at 0 and L + y for some large y > 0. In fact, it could be proved using estimates on the
density of the branching Brownian motion killed at 0, but since we only established estimates
on the BBM in an interval, we use the results from Sections 3 and 4 with an additional barrier
larger than L.
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Define Zt,y, Z ′t,y, Yt,y, Ỹt,y, zy, w1,y and Ry in the the same way as Zt, Z ′t, Yt, Ỹt, z, w1 and R
from Section 6 but for L− y instead of L. First, note that since Z0 ⇒ Z and L−M(0)→p +∞,
then

Z0,−y ⇒ e−(µ−β)yZ, L→∞. (7.1)

Indeed, there exists a sequence a satisfying aL → ∞ as L → ∞ and such that the event
AL := {L−M(0) > aL} occurs with high probability:

P(AL) = P(L−M(0) > aL) = 1− εL. (7.2)

Therefore, for any bounded and continuous test function f on [0,∞),

E
[
f(Z0,−y)− f(e−(µ−β)yZ)

]
6 2‖f‖∞P(AcL) + E

[(
f(Z0,−y)− f(e−(µ−β)yZ)

)
1AL

]
.

On the event AL, we know that for any particle v ∈ N0, we have L−Xv(0) > aL. Therefore, on
AL, for all v ∈ N0, we get that

z−y(Xv(0)) = (1 + εL)e−(µ−β)yz(Xv(0)).

Indeed, one can show that for all 0 6 x 6 L− aL, we have

z−y(x) = eµ(x−L−y)w1,−y(x) = (1 + εL)eµ(x−L−y)eβyw1(x).

Hence, on the event AL,
Z0,−y = (1 + εL)e−(µ−β)yZ0,

which concludes the proof of (7.1).

Let us now prove that
L−M(te2βL)→p +∞ (7.3)

as L → ∞, under the assumptions of Theorem 7.1. We know thanks to Corollary 3.1 and 4.4
and Equations (6.1) and (6.2) that for sufficiently large L, conditionally on F0, we have

E
[
Ỹte2βL,−y1R−y([0,te2βL])=0|F0

]
1M(0)6L 6 CZ ′0,−y1M(0)6L

E
[
R−y([0, te

2βL])|F0

]
1M(0)6L 6 C(Y0,−y + Z ′0,−y)1M(0)6L.

Therefore, conditioning on the number of particles that hit L+ y between times 0 and te2βL, we
get that for L large enough

P
(
L−M(te2βL) 6 aL|F0

)
= P

(
eµ(L−M(te2βL)) 6 eµaL |F0

)
1M(0)6L

+P
(
eµ(L−M(te2βL)) 6 eµaL |F0

)
1M(0)>L

6 1M(0)>L +
[
P
(
Ỹte2βL,−y > e

−µaL , R−y([0, te
2βL]) = 0|F0

)
+P
(
R−y([0, te

2βL]) 6= 0|F0

)]
1M(0)6L

6 1M(0)>L + C(Y0,−y + Z ′0,−y)1M(0)6L,
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by Markov’ inequality. Note that Z ′0,−y 6 Z0,−y and that we can deduce from (7.1) that Z0,−y →p

0 as y →∞. We now have to show that Y0,−y →p 0 to conclude this proof. First, we prove that
under the assumptions of Theorem 7.1,

Y0 →p 0, as L→∞. (7.4)

Indeed, for L sufficiently large and x ∈ [0, L],

(1 ∧ x)eµ(x−L)

z(x)
6

1

L− x,

which implies that on the event AL,

Y0 6
1

L−M(0)
Z0 6

1

aL
Z0. (7.5)

Since P(AcL) = εL, aL → ∞ and Z0 ⇒ Z as L → ∞, this concludes the proof of (7.4). Then,
remark that Y0,−y = e−µyY0 so that Y0,−y →p 0 as L→∞. Finally, if we choose y = −L, we see
that Z ′0,−y + Y0,−y →p 0 as L→∞, and since P(M(0) > L) = εL, we get that

P
(
L−M(te2βL) 6 aL

)
= εL.

Note that it is also sufficient to assume that Z0 →p z0 as L→∞ for some constant z0 > 0.
One can then deduce Theorem 7.1 thanks to a conditioning argument. We now prove the one
dimensional convergence under this assumption: we fix t > 0 and prove that for any λ > 0,

lim
L→∞

E
[
e−λZte2βL

]
= e−z0ut(λ), (7.6)

where ut(λ) is the function from Equation (1.7) corresponding to the branching mechanism
Ψ(λ) = ψ0,b(λ) = bλα. To prove Equation (7.6), we discretise time: we consider the same
parameter A as in Section 6 and choose θ 6 θ̄(A) such that t = Kθe2βA, for some integer K,
and consider the corresponding time discretisation tk = kθe2β(L+A) for k ∈ J0,KK. We recall the
definition of aL from Equation (7.2) and define bL = aL −A and the events

Gk =
{
∀j ∈ J0, kK : M(tj) 6 L−A, Ytj ,A 6 Ztj ,A/bL

}
, (7.7)

for all k ∈ J0,KK. Note that bL →∞ as L→∞ by definition of A.

Lemma 7.1. We have P(GK) = 1− εL.

Proof. According to Equations (7.2) and (7.5), P (G0) = 1 − εL. Let k ∈ J1,KK. Again, one
can prove that P (L−A−M(tk) > bL) = 1 − εL. We then deduce from (7.5) that P(Ytk,A 6
Ztk,A/bL) = 1− εL and conclude the proof of the lemma using a union bound.

We now fix λ > 0 and for δ ∈ R, we define the sequence (λ
(δ)
k )Kk=0 as follows:

λ
(δ)
K = λ

λ
(δ)
k = λ

(δ)
k+1 − θ(ψ0,b(λ

(δ)
k+1)− δ).
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Lemma 7.2. 1. There exists Λ > 1 such that for |δ| small enough and for θ small enough,
we have λ(δ)

k ∈ [0,Λ] for all k ∈ J0,KK .

2. For every ε > 0, there exists δ > 0 such that for θ sufficiently small,

λ
(δ)
0 , λ

−(δ)
0 ∈ [ut(λ) + ε, ut(λ)− ε].

3. For every δ > 0, we have for sufficiently large A and L, for every k = 0, ...,K,

E
[
e−λ

(δ)
k e−(µ−β)AZtk,A1Gk

]
− P (GK \Gk) 6 E

[
e−λe

−(µ−β)AZtK,A1GK
]
, (7.8)

and
E
[
e−λ

(−δ)
k e−(µ−β)AZtk,A1Gk

]
> E

[
e−λe

−(µ−β)AZtK,A1GK
]
. (7.9)

Proof. The proof of parts 1 and 2 relies on standard results on the Euler scheme and is similar
to the proof of Theorem 2.1 in [MS20]. The only difference is that we do not need to modify the
function Ψ at zero, since it is a Lipschitz function on any interval [0,Λ], Λ > 0.

We prove part 3 of the lemma. According to Equation (7.1), Z0,A →p e
(µ−β)Az0 as L→∞.

Besides, we know that L−A−M(0)→p ∞ as L→∞.

Let Λ > 0 such that the first part of the lemma holds. By proposition 6.1, we know that
for L and A sufficiently large, for all λ′ ∈ [0,Λ], and for all k ∈ J0,KK,

e−λ
′+θ(ψ0,b(λ

′)−δ)e−(µ−β)AZtk,A1Gk 6 E
[
e−λ

′e−(µ−β)AZtk,A |Fk
]

1Gk 6 e
−λ′+θ(ψ0,b(λ

′)+δ)e−(µ−β)AZtk,A1Gk a.s.

Besides, for δ > 0 small enough, λ(±δ)
k ∈ [0,Λ] for all k ∈ J0,KK. Therefore, we have for every

δ > 0 small enough, A and L large enough, that for all k ∈ J0,KK,

E

[
e−λ

(δ)
k+1e

−(µ−β)AZtk+1,A |Fk
]

1Gk > e−λ
(δ)
k e−(µ−β)AZtk,A1Gk , (7.10)

E

[
e−λ

(δ)
k+1e

−(µ−β)AZtk+1,A |Fk
]

1Gk 6 e−λ
(−δ)
k e−(µ−β)AZtk,A1Gk . (7.11)

The third part of the lemma follows by induction as in [MS20]: for k = K, Equation (7.8) holds.
Let k ∈ J0,K − 1K and assume that (7.8) holds for k+ 1. By definition of the sequence (Gk), we
have Gk ⊂ Gk+1, so that the induction hypothesis implies that

E

[
e−λ

(δ)
k e−(µ−β)AZtk+1,A1Gk

]
− P (GK \Gk) 6 E

[
e−λe

−(µ−β)AZtK,A1GK
]

E

[
e−λ

(−δ)
k e−(µ−β)AZtk+1,A1Gk

]
> E

[
e−λe

−(µ−β)AZtK,A1GK
]

These equations combined with Equations (7.10) and (7.11) concludes the proof of the third
point.
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We now prove Equation (7.6) using Lemmas 7.1 and 7.2. According to Lemma 7.1, we have

E
[
e−λe

−(µ−β)AZtK,A
]

= E
[
e−λe

−(µ−β)AZtK,A1GK
]

+ εL. (7.12)

Let ε > 0 and choose δ > 0 such that the second part of Lemma 7.2 holds. Therefore, the third
part of the lemma implies that for L and A large enough,

E
[
e−(ut(λ)+ε)e−(µ−β)AZ0,A

]
− εL 6 E

[
e−λe

−(µ−β)AZtK,A
]
6 E

[
e−(ut(λ)−ε)e−(µ−β)AZ0,A

]
+ εL.

Letting ε→ 0 and using that Z0,A →p e
(µ−β)Az0 as L→∞, we get that

lim
L→∞

E
[
e
−λe−(µ−β)AZ

te2βL,A

]
= e−z0ut(λ)

Hence, if we denote by Ξ the CSBP with branching mechanism ψ0,b, such that Ξ0 = z0, then,
we get that e−(µ−β)AZte2βL,A ⇒ Ξt as L→∞. Since we know that L− A−M(te2βL)→p +∞,
we have (see Equation (7.1))

e−(µ−β)AZte2βL,A ⇒ Zte2βL,0 = Zte2βL ,

as L→∞. This concludes the proof of Theorem 7.1.

7.2 The number of particles Nt

In this section, we conclude the proof of Theorem 1.2 by deducing the result on the number
of particles Nt from the convergence of the processe Zt obtained in Theorem 7.1. For a sake
of clarity, we first recall several definitions from previous sections. In Theorem 7.2, we state a
version of Theorem 1.2, under more general assumptions on the initial configuration.

Recall from Section 1.3 that the exponent α is defined as

α =
µ+

√
µ2 − 1

µ−
√
µ2 − 1

, (1.12)

and from Section 6 that the process Zt is given by

Zt =
∑
v∈Nt

eµ(Xv(t)−L)w1(Xv(t))1Xv(t)∈[0,L],

with

w1(x) =

{
sinh

(√
2λ1(L− 1)

)
sin(
√
ρ− 1− 2λ1 x)/ sin(

√
ρ− 1− 2λ1) if x ∈ [0, 1],

sinh
(√

2λ1(L− x)
)

if x ∈ [1, L].

In addition, we define the constant C0 as

C0 =
1

2

(
lim
L→∞

‖v1‖
)−2(

lim
L→∞

∫ L

0
e−µyv1(y)dy

)
. (7.13)
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where
v1 = sinh(

√
2λ1(L− 1))−1w1.

Recall from Theorem 2.3 that the L2-norm of the eigenvector v1 converges to a positive limit as
L goes to ∞. Besides, one can prove that L 7→

∫ L
0 e−µyv1(y)dy also converges to a positive limit

as L → ∞, using the dominated convergence theorem combined with Lemma 3.1 and Remark
2.2, so that the constant C0 is well defined.

Theorem 7.2. Assume (Hwp) holds. In addition, suppose the configuration of particles at time
zero satisfies Z0 →p z0, for some z0 > 0, and M(0)− L→p −∞ as L→∞. Then, there exists
b > 0 such that the finite-dimensional distributions of the processes(

1

C0e(µ−β)Lz0
Ne2βLt, t > 0

)
converge as L→∞ to the finite-dimensional distributions of a continuous-state branching process
(Ξ(t), t > 0) with branching mechanism ψ0,b(λ) = bλα starting from 1.

Note that Theorem 1.2 can be deduced from Theorem 7.2 by computing Z0 when the system
starts with N particles located a 1. In this case, according to Remark 2.1, we have

Z0 = Neµ(1−L)w1(1) =
1

2
N(1 + εL)e−(µ−β)Leµ−β.

Hence, we set

L =
1

µ− β log(N),

so that
N = e(µ−β)L and Nα−1 = e2βL. (7.14)

Then, Theorem 7.2 yields the result and gives that

σ(ρ) =
2

C0eµ−β
, (7.15)

where C0 is defined by Equation (7.13).

As in the proof of Theorem 7.1, we define the process (N ′t), which corresponds to the number
of particles alive in the system at time t, whose ancestors stay in (0, L) until time t, and estimate
its first and second moments.

As outlined in Section 1.5, there exists a constant C > 0 such that the number of particles
Nt can be approximated by

Nt ≈ Ce(µ−β)LZt

for t and L large enough. Actually, this constant is equal to C0 and a rigorous statement of this
observation is given by the following lemma.

Lemma 7.3. Assume (Hwp) holds and suppose the configuration of particles at time zero satisfies
Z0 →p z0, for some z0 > 0, and M(0)− L→p −∞ as L→∞. Let t > 0. Then, we have∣∣∣e−(µ−β)LNe2βLt − C0Ze2βLt

∣∣∣→p 0 (7.16)

as L goes to +∞.
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As in [BBS13], we claim that one can deduce Theorem 7.2 from Theorem 7.1 combined with
Lemma 7.3.

In what follows, we consider a time t and denote by u the corresponding time on the time
scale of the CSBP:

u = te2βL.

We also consider a small parameter 0 < δ < 1 and note that, according to Lemma 2.5, for all
(x, y) ∈ (0, L)2, we have

pδu = (1 + εL)(1 +O(δ))‖v1‖−2eµ(x−y)v1(x)v1(y), (7.17)

where O(δ) is a quantity bounded Cδ for some constant C > 0 that does not depend on L, x,
and y. The proof of Lemma 7.3 is divided in three parts:

1. We first prove that N ′u is well approximated by C0e
(µ−β)LZ ′(1−δ)u for large values of L, by

controlling the first and second moments of N ′ (Lemma 7.4 and Lemma 7.5).

2. Then, we show that Z ′ does not vary two much between times (1− δ)u and u for δ small
enough with a similar argument.

3. Finally, we recall why Z ′u (resp. N ′u) is a good approximation of Zu (resp. Nu) for L large
enough.

Let us first bound the first and second moment of N ′. As in Section 3, we estimate its first
moment in the pushed regime (that is under (Hpsh)) and the second moment in the weakly
pushed regime (i.e. under (Hwp)).

Lemma 7.4 (First moment of N ′). Assume (Hpsh) holds. Therefore, we have

E[N ′u|F(1−δ)s] = C0(1 + εL)(1 +O(δ))e(µ−β)LZ ′(1−δ)u,

where C0 is the constant given by Equation (7.13).

Proof. The Many-to-one Lemma 1.1 implies that for any x ∈ (0, L), we have

E(x,(1−δ)u)[N
′
u] = E(x,(1−δ)u)

 ∑
v∈NL

1

 =

∫ L

0
pδu(x, y)dy.

Besides, we get thanks to Equation (7.17) that

E(x,(1−δ)u)[N
′
u] = C(1 + εL)(1 +O(δ))‖v1‖−2eµxv1(x)

∫ L

0
e−µyv1(y)dy.

Moreover, Remark 2.1 implies that

eµxv1(x) =
1

2
(1 + εL)e(µ−β)Leµ(x−L)w1(x). (7.18)
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Finally, we obtain thanks to Lemma 2.3 that for x ∈ [0, L], we have

E(x,(1−δ)u)[N
′
u] = C0(1 + εL)(1 +O(δ))e(µ−β)Leµ(x−L)w1(x),

which concludes the proof of the lemma.

Lemma 7.5 (Second moment of N ′). Assume (Hwp) holds. Therefore, for L large enough, we
have

E
[
(N ′u)2|F(1−δ)u

]
6 Ce2(µ−β)L

(
Y(1−δ)u + δZ ′(1−δ)u

)
.

Proof. By the Many-to-two Lemma 1.2, we have for all x ∈ (0, L),

E(x,(1−δ)u)

[
(N ′u)2

]
= E(x,(1−δ)u)

[
N ′u
]

+

∫ δu

0

∫ L

0
ps(x, y)2r(y)Ey

[
N ′δu−s

]2
dyds︸ ︷︷ ︸

=: U

.

The quantity U can be written as follows:

U =

∫ L

0
2r(y)

∫ δu

0
ps(x, y)

(∫ L

0
pδu−s(y, z)dz

)2

dsdy.

To estimate this integral, we split the second integral into three parts.

• According to Lemma 2.5 and Lemma 2.3, there exists C1 > 0 such that for δu− s > C1L
and L large enough,

pδu−s(y, z) 6 Ce
(λ1−λ∞1 )(δu−s)eµ(x−y)v1(x)v1(y) 6 Ceµ(x−y)v1(x)v1(y). (7.19)

Therefore, combining Equations (7.18) and (7.19), we obtain that

U1 :=

∫ L

0
2r(y)

∫ δu−C1L

0
ps(x, y)

(∫ L

0
pδu−s(y, z)dz

)2

dsdy

6 Ce2(µ−β)L

∫ L

0
e2µ(y−L)w2

1(y)

∫ δu−C1L

0
ps(x, y)dsdy

6 Ce2(µ−β)L

∫ L

0
e2µ(y−L)w2

1(y)

∫ δu

0
ps(x, y)dsdy

6 Ce2(µ−β)L
(
eµ(x−L)

(
(1 ∧ x) + δue−2βLw1(x)

))
where we use Equations (3.7) and (3.17) from the proof of Lemma 3.4 applied to u(L) =
δe2βL to get the last line. Hence, we get that for L large enough

U1 6 Ce
2(µ−β)Leµ(x−L) ((1 ∧ x) + δw1(x)) . (7.20)

• For small values of δu− s, we bound the integral
∫ L

0 pδu−s(y, z)dz by the expected number
of particles in a branching Brownian motion with no killing and constant branching rate
ρ/2. This way, we get that ∫ L

0
pδu−s(y, z) 6 e

ρ
2

(δu−s),
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We use this upper bound on the last integral for δu− s ∈ [0, C2L] for some constant C2 to
determine. Therefore, we define

U2 :=

∫ L

0
2r(y)

∫ δu−C2L

δu
ps(x, y)

(∫ L

0
pδu−s(y, z)dz

)2

.

Note that Equation (7.17) holds for all s ∈ [δu, δu − C2L] instead of δu as long as L is
large enough. Therefore, we get that for L large enough

U2 6 C

∫ L

0

∫ δu

δu−C2L
ps(x, y)eρ(δu−s)dsdy

6 Ce(µ−β)Leµ(x−L)w1(x)

∫ L

0
e−µyv1(y)

(∫ δu

δu−C2L
eρ(δu−s)ds

)
dy

6 Ce(µ−β)Leµ(x−L)w1(x)eρC2L

∫ L

0
e−µyv1(y)dy

6 Ce(µ−β)Leµ(x−L)w1(x)eρC2L.

Hence, we choose a constant C2 > 0 satisfying ρC2 < µ− β. This way, we get that

U2 6 Ce
2(µ−β)L

(
e(ρC2−(µ−β))L

)
eµ(x−L)w1(x). (7.21)

• We now consider the remaining part of the time integral that is s ∈ [δu−C1L, δu−C2L].
To this end, we go back to the definition of the density p:

pu(x, y) = eµ(x−y)
∞∑
i=1

e(λi−λ∞1 )u vi(x)vi(y)

‖vi‖2
.

Recall from Remark 2.3 that in the semi pushed regime we have K = 1. Besides, by
definition of the eigenfunction vi (see Lemma 2.1) and using the lower bound on the L2-
norm of vi given in Lemma 2.4 for i > K, there exists a constant C > 0 such that

vi(x)vi(y)

‖vi‖2
6 C,

for all (x, y) ∈ (0, L)2 and i > K. Hence, recalling that ‖v1‖ converges to a positive limit
as L goes to infinity, we get that

pu(x, y) 6 Ceµ(x−y)

(
v1(x)v1(y) + e(λ2−λ∞1 )u

∞∑
i=2

e(λi−λ2)u

)
.

Note that, since λi < 0 for i > K = 1, the last sum is bounded by
∞∑
i=2

e(λi−λ2)u 6 (ρ− 1)−1S3 = (ρ− 1)−1
∞∑
i=2

e(λi−λ2)t(ρ− 1− 2λi),

where S3 corresponds to the sum defined in Equation (2.27). Yet, we proved (see Equation
(2.30)) that S3 6 CL for t > 1. Therefore, we get that for C2L 6 u 6 C1L, we have

pu(x, y) 6 Ceµ(x−y)
(
v1(x)v1(y) + Le−λ

∞
1 u
)
,
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so that (∫ L

0
pu(y, z)dz

)2

6 Ce2µy
(
v1(y)2 + L2e−2λ∞1 u

)
, (7.22)

since
∫ L

0 e−µzv1(z)dz converges to a positive limit as L→∞. Besides, note that Equation
(7.17) holds for all s ∈ [δu− C1L, δu− C2L] instead of δu as long as L is large enough.
Therefore, one can write

U3 :=

∫ L

0
2r(y)

∫ δu−C2L

δu−C1L
ps(x, y)

(∫ L

0
pδu−s(y, z)dz

)2

dsdy

6 U3,1 + U3,2,

with

U3,1 6 Ce
µxv1(x)

∫ L

0

∫ δu−C2L

δu−C1L
eµyv3

1(y)dsdy

and

U3,2 6 CL
2eµxv1(x)

∫ L

0

∫ δu−C2L

δu−C1L
eµyv1(y)e−2λ∞1 (δu−s)dyds.

Since µ > 3β in the semi pushed regime, we have

U3,1 6 CLeµxv1(x)

∫ L

0
eµyv3

1(y)dy

6 CLe(µ−β)Leµ(x−L)w1(x)e(µ−3β)L

6 C
(
Le−2βL

)
e2(µ−β)Leµ(x−L)w1(x). (7.23)

On the other hand,

U3,2 6 CL2eµxv1(x)

(∫ L

0
eµyv1(y)dy

)(∫ δu−C2L

δu−C1L
e−2λ∞1 (δu−s)ds

)
6 Ce2(µ−β)Leµ(x−L)w1(x)

(
L2e−2λ∞1 C2L

)
, . (7.24)

Finally, we obtain the lemma by combining equations (7.20), (7.21), (7.23) and (7.24).

Proof of Lemma 7.3. Let γ > 0. Let us prove that for L large enough, we have

P
(
|N̄u − C0Zu| > γ

)
= P

(
|Nu − C0e

(µ−β)LZu| > γe(µ−β)L
)
< γ.

As explained at the beginning of the section, we use that for u > 0,

|Nu − C0e
(µ−β)LZu| 6 |Nu −N ′u|+ |N ′u − C0e

(µ−β)LZ ′(1−δ)u|
+C0e

(µ−β)L|Z ′(1−δ)u − Z ′u|+ C0e
(µ−β)L|Z ′u − Zu|,

and that each quantity in the right hand side term is small as long as L is large enough and δ is
small enough.
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First, we choose δ > 0 of the form

δ = θe2βA,

where A and θ are defined in the beginning of Section 6. Recall that for fixed θ and A, we have

P(GK) = 1− εL,
where (Gk) is defined in Equation (7.7) and K is such that t = Kθe2βA. Note that with these
notations, we have u = tK and (1− δ)u = tK−1.

Since the variances of N ′u and Z ′u are both bounded by a quantity that depends on Z ′(1−δ)u,

we first control Z ′(1−δ)u onGK . To this end, we consider the martingale Uj = e(λ∞1 −λ1)jθe2β(L+A)
Z ′tj

for j = 1, ...,K (see Lemma 3.2). Using that tK = Kθe2β(L+A) = te2βL and that λ∞1 − λ1 =
a(1 + εL)e−2β(L−1) > a

2 (1 + εL)e−2β(L−1) for L large enough (see Equation (6.1)), we get thanks
to Doob’s martingale inequality that for B > 0,

P

(
max

06j6K
Z ′tj > Bγ−1

)
= P

(
max

06j6K
U ′j > Bγ−1e(λ∞1 −λ1)jθe2β(L+A)

)
6 P

(
max

06j6K
U ′j > Bγ−1e(λ∞1 −λ1)Kθe2β(L+A)

)
6 P

(
max

06j6K
U ′j > Bγ−1e

a
2
e−βt

)
6 γ

E[U0]

Be
a
2
e−βt

= γ
E[Z ′0]

Be
a
2
e−βt

= γ
E[Z0]

Be
a
2
e−βt

, (7.25)

on GK . Let EKγ = GK ∩
{

max06j6K Z
′
tj 6 Bγ

−1
}
. Remark that we can choose B large enough

in such a way that P(EKγ ) > 1 − γ/4. From now, we consider the event EKγ corresponding
to this choice of B. Besides, note that on EKγ , we can assume without loss of generality that
Y(1−δ)u 6 δZ(1−δ)u (see Equation (7.5)).

We now bound the quantities |N ′u − C0e
(µ−β)LZ ′(1−δ)u| and C0e

(µ−β)L|Z ′(1−δ)u − Z ′u| with
high probability. First, recall from Lemma 3.2 that

E
[
Z ′u|F(1−δ)u

]
= (1 +O(δ))Z ′(1−δ)u

and that according to Lemma 3.4, we have

E
[(
Z ′u
)2 |F(1−δ)u

]
6 C

(
δZ ′(1−δ)u + Y(1−δ)u

)
Therefore, on the event EKγ , Chebyshev’s inequality gives that for δ small enough and L large
enough, we have

P
(∣∣Z ′u − E

[
Z ′u
∣∣F(1−δ)u

]∣∣ > γ

2

∣∣F(1−δ)u

)
6 CδBγ−2 6

γ

2
,

and we know that, on the event EKγ , δZ ′(1−δ)u 6 δBγ−1 6 γ
2 for δ small enough and L large

enough. Hence, we get that for sufficiently large L and sufficiently small δ, we have

P
(∣∣∣Z ′u − Z ′(1−δ)u∣∣∣ > γ

)
6 P

(∣∣∣Z ′u − Z ′(1−δ)u∣∣∣ > γ,EKγ

)
+ P((EKγ )c)

6
γ

2
+ P((EKγ )c) 6 γ. (7.26)
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Similarly, we get thanks to Lemma 7.4 and Lemma 7.5 that for δ small enough and L large
enough,

P
(∣∣∣N ′u − C0e

(µ−β)LZ ′(1−δ)u

∣∣∣ > γe(µ−β)L
)
6 γ. (7.27)

Besides, recall that if the process starts with all its particles to the right of L at time (1−δ)u,
then Z ′(1−δ)u = Z(1−δ)u and, Z ′u = Zu with high probability. This is a consequence of Lemma 4.4
combined with Markov’s inequality. Indeed, on the event EKγ , we have

P
(∣∣Zu − Z ′u∣∣ > 0

∣∣F(1−δ)u
)
6 P

(
R([0, δu]) > 1

∣∣F(1−δ)u
)
6 C

(
δZ ′(1−δ)u + Y(1−δ)u

)
6
γ

2
,

for L large enough and δ small enough. With a similar argument as in Equation (7.26), we get
that

P
(∣∣Zu − Z ′u∣∣ > 0

)
6 γ. (7.28)

Similarly, we get that for sufficiently small δ and large L, we have

P
(∣∣N ′u −Nu

∣∣ > 0
)
6 γ. (7.29)

Combining (7.26), (7.27), (7.28) and (7.29), we get that for L large enough, we have

P
(
|N̄u − C0Zu| > 2γ

)
6 4γ,

which concludes the proof of the lemma.

8 The case α > 2: the fully pushed regime

In this section, we briefly outline the adjustments required to prove the second conjecture stated
at the end of Section 1.3. In this case, we have ρ > ρ2 so that µ < 3β (see Equation (1.14)).

In the fully pushed regime, we expect (see Equation (7.14)) the genealogy to evolve over
the timescale

N = e(µ−β)L.

Therefore, we consider a small parameter θ > 0 and a large A as in Section 6, but such that
θe(µ−β)A → 0 as L→∞. Similarly, we will consider a subdivision of the form

tk = kθe(µ−β)(L+A), k ∈ N.

For t = θe(µ−β)(L+A), Equation (1.23) becomes

E[Z ′t] = (1 + εL)Z ′0,

since λ∞1 −λ1 ∼ ae−2βL and µ < 3β. Essentially, this means that for L large enough, no particle
exits the interval (0, L) during the time interval [0, t]. Indeed, one can show that on the same
time interval

E[R([0, t])] = εLZ
′
0.
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On the other hand, an analysis similar to the one conducted in Section 5 would give that
the number Zy of descendants stopped at L− y is such that

e−(µ−β)LZy →W a.s.

for some random variable W satisfying

E
[
e−λW

]
= exp

(
−λ+ o(λ2)

)
.

Therefore, we would require a finer estimate of the second moment of Z ′ (not only an upper
bound) to establish a result similar to Proposition 6.1 with α = 2. Again, the second moments
can be estimated thanks to the Green function, using analogous techniques.

The computations from Sections 6 and 7 would then be quite similar to prove the conver-
gence of the process (Ze(µ−β)Lt, t > 0) to a 2-stable CSBP.

From a biological standpoint, we see that for N large enough, the particles in the system
do not reach the additional barrier L so that the invasion is no longer driven by the particles
far to the right of the front (i.e. that hit L) but by the ones living in the bulk (i.e. that stay far
from L).

A Appendix: proof of Proposition 1.1

The properties of g are easily checked. We only have to prove the expression of λc(ρ).

We first show that λc(ρ) ≥ 0 for all ρ ∈ R. Let λ < 0. Assume u ∈ DTρ , Tρu = λu. Then
u′′ = 2λu on [1,∞), and so u = a sin(

√
2|λ|x) + b cos(

√
2|λ|x) on [1,∞) for some a, b ∈ R. But

then u changes sign on [1,∞) and so we cannot have u > 0 on (0,∞). Hence, λc(ρ) ≥ 0 for all
ρ ∈ R.

We now claim that λc(ρ) = 0 for ρ ≤ ρc. Since λc(ρ) is increasing, it is enough to show
that λc(ρc) = 0. Define

u(x) =

{
sin(π2x), x ∈ [0, 1]

1, x ≥ 1.

Then u ∈ C1((0,∞))∩C2((0, 1)∪ (1,∞)), u(0) = 0 and u > 0 on (0,∞). Moreover, Tρcu(x) = 0
for x ∈ (0, 1) ∪ (1,∞), hence, u ∈ DTρc and Tρcu = 0. It follows that λc(ρc) = 0.

Now let ρ > ρc and λ ∈ (0, ρ/2). Let u ∈ DTρ such that u > 0 on (0,∞) and Tρu = λu.
Then u′′ = (2λ − ρ)u on (0, 1) and so, since limx→0 u(x) = 0, we have u(x) = C sin(

√
ρ− 2λx)

for x ∈ (0, 1) for some C ∈ R. Since u > 0, we have ρ−2λ < π2 and C > 0. Suppose w.l.o.g. that
C = 1, so that u(x) = sin(

√
ρ− 2λx) for x ∈ (0, 1).

For x ∈ (1,∞), we have u′′(x) = 2λu(x), so that u(x) = a cosh(
√

2λ(x−1))+b sinh(
√

2λ(x−
1)) for some a, b ∈ R. Since u and u′ are continuous at 1, we must have a = u(1) = sin(

√
ρ− 2λ)
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and b = u′(1) =
√
ρ− 2λ cos(

√
ρ− 2λ). Furthermore, we have u > 0 on (1,∞) iff a + b ≥ 0,

which holds iff
cos(
√
ρ− 2λ)√
2λ

≥ −sin(
√
ρ− 2λ)√
ρ− 2λ

(A.1)

Moreover, all of these conditions are also sufficient: if λ ∈ Jρ := (0 ∨ 1
2(ρ − π2), ρ/2) satisfies

(A.1), then the function u defined by

u(x) =

{
sin(
√
ρ− 2λx), x ∈ [0, 1]

sin(
√
ρ− 2λ) cosh(

√
2λ(x− 1)) +

√
ρ− 2λ cos(

√
ρ− 2λ) sinh(

√
2λ(x− 1)), x ≥ 1

satisfies u ∈ C1((0,∞)) ∩ C2((0, 1) ∩ (1,∞)), u > 0 on (0, 1) ∪ (1,∞), limx→0 u(x) = 0 and
Tρu(x) = λu(x) for x ∈ (0, 1)∪ (1,∞). Hence, by continuity of u, Tρu(1) = limx→1 Tρu(x) exists
and equals λu(1). Hence, u ∈ DTρ , u > 0 on (0,∞) (again by continuity) and Tρu = λu.

Let Λρ be the set of those λ ∈ Jρ such that (A.1) holds. It remains to show that inf Λ =
λc(ρ), where λc(ρ) is as in the statement of the theorem. Note that

√
ρ− 2λ ∈ (0, π) for λ ∈ Jρ,

so that we can rewrite (A.1) as
√

2λ ≥ −
√
ρ− 2λ cot(

√
ρ− 2λ). (A.2)

Now the right-hand side is a decreasing function of λ on the interval J ′ρ := (0∨ 1
2(ρ−π2), 1

2(ρ−ρc)),
and the left-hand side an increasing function of λ. Admit for the moment that λc = λc(ρ) as
defined in the statement of the theorem yields equality in (A.2) and that λc ∈ J ′ρ. It then follows
that Λρ ∩ J ′ρ = [λc,

1
2(ρ− ρc)], and in particular, λc = inf Λρ, which was to be proven.

It remains to show that λc ∈ J ′ρ and that λc yields equality in (A.2). Note that g−1(ρ) ∈
(ρc, π

2) for all ρ > ρc, whence λc ∈ (1
2(ρ−π2), 1

2(ρ−ρc)). Furthermore, g−1(ρ) < ρ for all ρ > ρc,
since g(ρ) > ρ for all ρ > ρc by the properties of g stated in the theorem. Hence, λc > 0. It
follows that λc ∈ J ′ρ.

On the interval J ′ρ, the right-hand side of (A.2) is positive, whence equality holds in (A.2)
if and only if

2λ = (ρ− 2λ) cot(
√
ρ− 2λ)2 = (ρ− 2λ)(sin(

√
ρ− 2λ)−2 − 1) = g(ρ− 2λ)− (ρ− 2λ),

whence, if and only if
g(ρ− 2λ) = ρ,

which is exactly satisfied for λ = λc. This finishes the proof.

B Appendix: estimates on the eigenvectors

In this section, we compare the eigenvectors and their L2-norms under the assumption (Hpsh).
In this case we know that K > 1 in Lemma 2.1.
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L2−norms of the eigenvectors

Lemma B.1. If K > 1, there exists C > 0, such that for L large enough,

‖v1‖2L2 6 C.

Proof. This result directly ensues from Lemma 2.3.

Lemma B.2. There exists C > 0 such that for L large enough and k ∈ J1,KK,

‖vk‖2 > C. (B.1)

Proof. For 1 6 k 6 K,

‖vk‖2 =
1− sin(2

√
ρ−1−2λk)

2
√
ρ−1−2λk

2 sin(
√
ρ− 1− 2λk)2

+

sinh(2
√

2λk(L−1))

2
√

2λk
− (L− 1)

2 sinh(
√

2λk(L− 1))2
.

Remark that the second term of the sum is non negative by convexity of the function sinh.
Besides, according to Lemma 2.1,

√
ρ− 1− 2λk ∈

((
k − 1

2

)
π, kπ

)
for L large enough, which

implies that

1− sin(2
√
ρ− 1− 2λk)

2
√
ρ− 1− 2λk

> 1− 1

2
√
ρ− 1− 2λk

> 1− 1

2(k − 1/2)π
> 1− 1

π
,

so that
‖vk‖2 >

1

2

(
1− 1

π

)
1

sin(
√
ρ− 1− 2λk)2

>
1

2

(
1− 1

π

)
.

Lemma B.3. There exists a constants C > 0 such that for L large enough and k > K,

‖vk‖2 >
C

sin(
√−2λk(L− 1))2 ∧ sin(

√
ρ− 1− 2λk)2

.

Proof. For k > K

‖vk‖2 =
1− sin(2

√
ρ−1−2λk)

2
√
ρ−1−2λk

2 sin(
√
ρ− 1− 2λk)2

+
(L− 1)− sin(2

√
−2λk(L−1))

2
√
−2λk

2 sin(
√−2λk(L− 1))2

.

Both terms are non negative. Besides, since λk < 0, we have
√
ρ− 1− 2λk >

√
ρ− 1 > π

2 > 0
and there exists C > 0 such that

1− sin(2
√
ρ− 1− 2λk)

2
√
ρ− 1− 2λk

> C,
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for all k > K. Besides, recall from Lemma 2.1 that λk < −a1 for all k > K. Therefore, we have∣∣∣∣sin(2
√−2λk(L− 1))

2
√−2λk

∣∣∣∣ 6 1

2
√
a1
,

and,

L− 1− sin(2
√−2λk(L− 1))

2
√−2λk

> L− 1− 1

2
√
a1

> L− 1− 1

π
(L− 1) =

(
1− 1

π

)
(L− 1).

Thus, we have for L large enough and k > K,

‖vk‖2 > C
(

L− 1

2 sin(
√−2λk(L− 1))2

∨ 1

2 sin(
√
ρ− 1− 2λk)2

)
.

Upperbound on vk for k 6 K

Lemma B.4. There exists C > 0 such that for L large enough, x ∈ [0, 1] and k 6 K,

|vk(x)| 6 Cv1(x).

Proof. Let x ∈ [0, 1]. Note that for k 6 K,
√
ρ− 1− 2λk ∈

(
(k − 1

2)π, kπ
)
and

|vk(x)| 6
√
ρ− 1− 2λk

sin(
√
ρ− 1− 2λk)

x.

Then, one can prove with a similar argument as in Remark 2.2 that
√
ρ−1−2λk

sin(
√
ρ−1−2λk)

is bounded by
a positive constant. Finally, remark that

v1(x) > x,

since
√
ρ− 1− 2λ1 ∈ (π2 , π) for L large enough. This concludes the proof of the lemma.

Lemma B.5. There exists C > 0 such that for L large enough, x ∈ [1, L] and k 6 K,

vk(x) 6 CeβLv1(x).

Proof. Let x ∈ [1, L]. Since sinh is convex on (0,∞), we have

vk(x) =
sinh

(√
2λk(L− x)

)
sinh

(√
2λk(L− 1)

) 6 L− x
L− 1

6 L− 1.

Besides, we also have, for L large enough,

v1(x) >

√
2λ1(L− x)

sinh(
√

2λ1(L− 1))
> Ce−

√
2λ∞1 L(L− x), (B.2)

according to Remark 2.1. Finally, we get that for L large enough,

vk(x) 6 CeβLv1(x).
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Corollary B.1. There exists C > 0 such that for L large enough, x ∈ [0, L] and k 6 K,

|vk(x)| 6 CeβLv1(x).

Upperbound on vk for k > K.

Lemma B.6. For L large enough, x ∈ [0, 1] and k ∈ N, we have

|vk(x)| 6
∣∣∣∣ √ρ− 1− 2λk
sin(
√
ρ− 1− 2λk)

∣∣∣∣ v1(x).

Proof. As in the proof of Lemma B.4, we use that for x ∈ [0, 1], we have v1(x) > x and that

|vk(x)| 6
√
ρ− 1− 2λk

| sin(
√
ρ− 1− 2λk)|

x.

Lemma B.7. For L large enough, x ∈ [1, L] and k > K,

|vk(x)| 6 L
√
ρ− 1− 2λk

| sin(
√−2λk(L− 1))| sin(πx/L). (B.3)

Proof. Let x ∈ [1, L]. Again, we use a convexity argument to claim that

|vk(x)| 6
√−2λk

| sin(
√−2λk(L− 1)| (L− x),

and that
sin(πx/L) = sin(π(L− x)/L) > sin(π/L)(L− x) >

L− x
L

,

for L large enough. Therefore, we get that

|vk(x)| 6 L
√−2λk

| sin(
√−2λk(L− 1)| sin(πx/L),

and we conclude the proof of the lemma by remarking that
√−2λk 6

√
ρ− 1− 2λk since λk <

0.

Lemma B.8. There exists C > 0 such that for all L large enough and x ∈ [1, L],

sin(πx/L) 6 CL−1eβLv1(x). (B.4)

Proof. Let x ∈ [1, L]. Note that

sin(πx/L) = sin(π(L− x)/L) 6 π
L− x
L

,
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and recall from Equation (B.2) that for L large enough, we have

v1(x) > Ce−
√

2λ∞1 L(L− x).

Combining these two estimates, we get that

sin(πx/L) 6 CL−1e−
√

2λ∞1 L,

which concludes the proof of the lemma.

Corollary B.2. There exists C > 0 such that for L large enough, x ∈ [1, L] and k>K,

|vk(x)| 6 C
√
ρ− 1− 2λk

| sin(
√−2λk(L− 1))|e

βLv1(x).

Corollary B.3. There exists C > 0 such that for L large enough, x ∈ [0, L] and k > K,

|vk(x)| 6 C
√
ρ− 1− 2λk

| sin(
√
ρ− 1− 2λk)| ∧ | sin(

√−2λk(L− 1))|e
βLv1(x).

C Appendix: the Green function

Lemma C.1. There exist C > 0 and δ > 0 such that for L sufficiently large, x ∈ [0, L] and
ξ ∈ (0, δ),

ψλ∞1 +ξ(x) 6 C sinh

(√
2(λ∞1 + ξ)(L− x)

)
, (C.1)

ϕλ∞1 +ξ(x) 6 C(1 ∧ x)
(
f(λ∞1 + ξ)e

√
2(λ∞1 +ξ)(x−1) + g(λ∞1 + ξ)e−

√
2(λ∞1 +ξ)(x−1)

)
. (C.2)

Proof. According to Equation (2.37), it is sufficient to prove that (C.1) holds in [0, 1]. Yet, for
x ∈ [0, 1], we have

ψλ∞1 +ξ(x) 6 |ψλ∞1 +ξ(x)| 6
(

1 +

√
2(λ∞1 + ξ)√

ρ− 1− 2(λ∞1 + ξ)

)
e
√

2(λ∞1 +ξ)(L−1). (C.3)

Since
√
ρ− 1− 2λ∞1 ∈ (π/2, π), there exists δ > 0 such that

π/2 <
√
ρ− 1− 2(λ∞1 + ξ) < π, (C.4)

and √
0 ∧ (ρ− 1− π2) 6

√
2(λ∞1 + ξ) 6

√
ρ− 1− π2/4,

for all |ξ| < δ. Therefore, for all ξ ∈ (−δ, δ), we have√
2(λ∞1 + ξ)√

ρ− 1− 2(λ∞1 + ξ)
6 2

√
ρ− 1− π2/4

π
. (C.5)
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Moreover, we know that for x ∈ [0, 1] and ξ ∈ (0, δ),

sinh

(√
2(λ∞1 + ξ)(L− x)

)
> sinh

(√
2(λ∞1 + ξ)(L− 1)

)
=

1

2
(1− e−2

√
2λ∞1 +ξ(L−1))e

√
2(λ∞1 +ξ)(L−1)

>
1

2
(1− e−2

√
2λ∞1 (L−1))e

√
2(λ∞1 +ξ)(L−1)

>
1

4
e
√

2(λ∞1 +ξ)(L−1),

for L large enough (that does not depend on δ). This estimate, combined with Equations (C.3)
and (C), concludes the proof of (C.1).

In order to prove (C.2), we use that f(λ∞1 ) = 0, f ′(λ∞1 ) > 0 and g(λ∞1 ) > 0. Therefore,
without loss of generality, we have f(λ∞1 + ξ) > 0 and g(λ∞1 + ξ) > 1

2g(λ∞1 ) for all ξ ∈ (0, δ).
Thus, for x ∈ [0, 1] and ξ ∈ (0, δ), we have

f(λ∞1 + ξ)e
√

2(λ∞1 +ξ)(x−1) + g(λ∞1 + ξ)e−
√

2(λ∞1 +ξ)(x−1) >
g(λ∞1 )

2
. (C.6)

Besides, combining Equations (2.36) and (C.4), we obtain that for x ∈ [0, 1] and ξ ∈ (0, δ),

ϕλ∞1 +ξ(x) = sin(
√
ρ− 1− 2(λ∞1 + ξ)x) 6

√
ρ− 1− 2(λ∞1 + ξ)x 6 πx.

This equation, combined with (C.6), implies that (C.2) holds on [0, 1] for any C > 2π
g(λ∞1 ) . Finally,

note that for ξ ∈ (0, δ),
1√

2(λ∞1 + ξ)
<

1√
2λ∞1

,

so that (C.2) holds on [0, L] for any C > max

(
1√
2λ∞1

, 2π
g(λ∞1 )

)
.

Proof of Lemma 2.6. Since√
2(λ∞1 + ξ)−

√
2λ∞1 =

2ξ√
2λ∞1 +

√
2(λ∞1 + ξ)

∼ 1√
2λ∞1

ξ,

as L→∞, we know that for L large enough (that does not depend on x), we have

e
√

2(λ∞1 +ξ)(L−x) 6 e
√

2λ∞1 (L−x)e

2√
2λ∞1

ξ(L−x)

.

Yet, ξ(L− x) 6 ξL uniformly tends to 0 as L→∞. Therefore, for L large enough (which does
not depend on x), we have

e
√

2λ∞1 (L−x) 6 e
√

2(λ∞1 +ξ)(L−x) 6 2e
√

2λ∞1 (L−x). (C.7)

We then use that g(λ∞1 ) > 0, f(λ∞1 ) = 0 and f ′(λ∞1 ) > 0 to claim that

0 <
1

2
g(λ∞1 ) < g(λ∞1 + ξ(L)) < 2g(λ∞1 ), (C.8)

1

2
f ′(λ∞1 )ξ(L) < f(λ∞1 + ξ(L)) < 2f ′(λ∞1 )ξ(L), (C.9)
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for L large enough. Thus, combining the definition of the Wronskian (2.35) and Equations (C.7),
(C.8) and (C.9), we get that for L large enough,

ωλ∞1 +ξ > f(λ∞1 + ξ)e
√

2(λ∞1 +ξ)(L−1) > Cf ′(λ∞1 )ξ(L)e
√

2λ∞1 L.

Then, Equation (C.7) applied to x = 1, divided by Equation (C.7) implies that for L large
enough,

1

2
e
√

2λ∞1 (x−1) 6 e
√

2(λ∞1 +ξ)(x−1) 6 2e
√

2λ∞1 (x−1).

This inequality combined with Equations (C.2) from Lemma C.1, (C.9) and (C.8) yields the
expected control on ϕλ∞1 +ξ.

The estimate on ψλ∞1 +ξ can be easily deduced from Equations (C.1) from Lemma C.1 and
from Equation (C.7) on [0, L− 1]. For x ∈ [L− 1, L], we use that

sinh

(√
2(λ∞1 + ξ)(L− x)

)
6 sinh

(√
2(λ∞1 + ξ)

)
(L− x) 6 C(L− x),

for L large enough. Therefore, we have according to Equation (C.1) that for L large enough and
x ∈ [L− 1, L],

ψλ∞1 +ξ(x) 6 C(L− x) 6 C(L− x)e
√

2λ∞1 (L−x),

which concludes the proof of the lemma.

Proof of Lemma 2.7. The proof is similar to the one of Lemma 2.6 except that√
2(λ∞1 + ξ)−

√
2(λ∞1 + ξ) ∼ 1√

2λ∞1

h

L
,

as L→∞, so that for L large enough (that does not depend on x), we have

e
√

2(λ∞1 +ξ)(L−x) 6 e
√

2λ∞1 (L−x)e

2√
2λ∞1

h

.
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Titre : Dynamique d’interfaces en écologie : modèles déterministes et stochastiques
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Résumé : Les ondes progressives générées par les
équations de réaction-diffusion peuvent modéliser divers
phénomènes observés en physique et en biologie. Du
point de vue de la biologie, une onde progressive peut
être interprétée comme l’invasion d’un habitat par une
espèce. Les systèmes biologiques étant finis et donc sou-
mis à des fluctuations démographiques, ces fronts d’onde
déterministes ne représentent qu’une approximation de la
véritable dynamique de la population, dans laquelle on pos-
tule que la densité locale d’individus est infinie de sorte
que les fluctuations se compensent. En ce sens, certaines
équations de réaction-diffusion peuvent être considérées
comme les limites hydrodynamiques de modèles indivi-
dus centrés. Dans cette thèse, nous étudions le comporte-
ment en temps long de deux systèmes microscopiques finis
modélisant de telles invasions et les comparons à celui de
leurs limites en grande population.
La première partie de cette thèse est consacrée à l’im-
pact d’un milieu variant lentement sur la vitesse de propa-
gation d’une population. Cette question a déjà été étudiée
dans le domaine des EDP. Cependant, dans certaines si-
tuations, les résultats obtenus par la théorie des solutions
de viscosité s’avèrent inexploitables du point de vue de
la biologie. Nous proposons donc de revenir à un modèle
individu-centré et d’étudier son comportement limite lorsque

l’échelle d’hétérogénéité de l’environnement tend vers l’in-
fini. Dans ce cadre, nous montrons que la vitesse de propa-
gation de la population peut être beaucoup plus lente que
la vitesse du front de l’EDP décrivant le comportement du
système en grande population. Cette différence de compor-
tements est liée au ”problème des queues” observé en EDP,
dû à l’absence d’extinction locale dans les équations de type
FKPP.
Dans une seconde partie, nous étudions l’impact du type
des fronts d’onde limites sur les modèles stochastiques as-
sociés pour expliquer ce net ralentissement des systèmes
de particules. En effet, les fronts d’onde issus des équations
de réaction-diffusion monostable sont divisés en deux
types : les fronts tirés et les fronts poussés. Il est bien
connu que les fluctuations ont un impact considérable sur
les fronts tirés. En revanche, les ondes poussées sont sup-
posées être moins sensibles aux perturbations. Néanmoins,
de récentes simulations numériques sur des équations
bruitées suggèrent l’existence d’une troisième classe de
fronts. Il s’agit d’une sous-classe de fronts poussés par-
ticulièrement sensibles aux fluctuations. Dans cette thèse,
nous étudions les mécanismes internes de ces fronts pour
expliquer la transition entre ces trois régimes.

Title : Spatial dynamic of interfaces in ecology : deterministic and stochastic models

Keywords : reaction-diffusion equation, individual-based model, heterogeneous environment, branching ran-
dom walk, branching Brownian motion

Abstract : Traveling waves arising from reaction diffusion
equations explain various phenomena observed in physics
and biology. From a biological standpoint, a traveling wave-
front can be seen as the invasion of an uninhabited environ-
ment by a species. Since biological systems are finite and
thus undergo demographic fluctuations, these deterministic
wavefronts only represent an approximation of the popula-
tion dynamics, in which we consider that the local density of
individuals is infinite so that the fluctuations self-average. In
this sense, reaction diffusion equations can be seen as hy-
drodynamic limits of some individual based models. In this
thesis, we investigate the long time behaviour of some finite
microscopic systems modeling such front propagations and
compare them to the one of their large population asympto-
tics.
The first part of this thesis is dedicated to the impact of a
slowly varying media on the propagation speed of a popu-
lation. This question has been widely studied from the PDE
point of view. However, the results given by the viscosity so-
lutions theory turns out to be biologically unsatisfactory in
some situations. We thus suggest to study an individual ba-
sed model for front propagation in the limit when the scale

of heterogeneity of the environment tends to infinity. In this
framework, we show that the spreading speed of the popu-
lation may be much slower than the speed of the front in
the PDE describing the large population asymptotics of the
system. This qualitative disagreement between the two be-
haviours is related to the so-called tails problem observed in
PDE theory, due to the absence of local extinction in FKPP-
types equations.
In a second part, we study the impact of the type of the
deterministic waves on the related stochastic models to ex-
plain this drastic slow-down in the particle system. Indeed,
wavefronts arising from monostable reaction diffusion PDE
are classified in two types : pulled and pushed waves. It is
well-known that small perturbations have a huge impact on
pulled waves. In sharp contrast, pushed waves are expec-
ted to be less sensitive. Nevertheless, some recent nume-
rical experiments have suggested the existence of a third
class of waves in stochastic fronts. It is a subclass of pu-
shed fronts very sensitive to fluctuations. In this thesis, we
investigate the internal mechanisms of such fronts to explain
the transition between these three regimes.
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